1 //===-- CodeGenFunction.h - Per-Function state for LLVM CodeGen -*- C++ -*-===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This is the internal per-function state used for llvm translation.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #ifndef LLVM_CLANG_LIB_CODEGEN_CODEGENFUNCTION_H
15 #define LLVM_CLANG_LIB_CODEGEN_CODEGENFUNCTION_H
16 
17 #include "CGBuilder.h"
18 #include "CGDebugInfo.h"
19 #include "CGLoopInfo.h"
20 #include "CGValue.h"
21 #include "CodeGenModule.h"
22 #include "CodeGenPGO.h"
23 #include "EHScopeStack.h"
24 #include "clang/AST/CharUnits.h"
25 #include "clang/AST/ExprCXX.h"
26 #include "clang/AST/ExprObjC.h"
27 #include "clang/AST/ExprOpenMP.h"
28 #include "clang/AST/Type.h"
29 #include "clang/Basic/ABI.h"
30 #include "clang/Basic/CapturedStmt.h"
31 #include "clang/Basic/OpenMPKinds.h"
32 #include "clang/Basic/TargetInfo.h"
33 #include "clang/Frontend/CodeGenOptions.h"
34 #include "llvm/ADT/ArrayRef.h"
35 #include "llvm/ADT/DenseMap.h"
36 #include "llvm/ADT/SmallVector.h"
37 #include "llvm/IR/ValueHandle.h"
38 #include "llvm/Support/Debug.h"
39 
40 namespace llvm {
41 class BasicBlock;
42 class LLVMContext;
43 class MDNode;
44 class Module;
45 class SwitchInst;
46 class Twine;
47 class Value;
48 class CallSite;
49 }
50 
51 namespace clang {
52 class ASTContext;
53 class BlockDecl;
54 class CXXDestructorDecl;
55 class CXXForRangeStmt;
56 class CXXTryStmt;
57 class Decl;
58 class LabelDecl;
59 class EnumConstantDecl;
60 class FunctionDecl;
61 class FunctionProtoType;
62 class LabelStmt;
63 class ObjCContainerDecl;
64 class ObjCInterfaceDecl;
65 class ObjCIvarDecl;
66 class ObjCMethodDecl;
67 class ObjCImplementationDecl;
68 class ObjCPropertyImplDecl;
69 class TargetInfo;
70 class TargetCodeGenInfo;
71 class VarDecl;
72 class ObjCForCollectionStmt;
73 class ObjCAtTryStmt;
74 class ObjCAtThrowStmt;
75 class ObjCAtSynchronizedStmt;
76 class ObjCAutoreleasePoolStmt;
77 
78 namespace CodeGen {
79 class CodeGenTypes;
80 class CGFunctionInfo;
81 class CGRecordLayout;
82 class CGBlockInfo;
83 class CGCXXABI;
84 class BlockByrefHelpers;
85 class BlockByrefInfo;
86 class BlockFlags;
87 class BlockFieldFlags;
88 
89 /// The kind of evaluation to perform on values of a particular
90 /// type.  Basically, is the code in CGExprScalar, CGExprComplex, or
91 /// CGExprAgg?
92 ///
93 /// TODO: should vectors maybe be split out into their own thing?
94 enum TypeEvaluationKind {
95   TEK_Scalar,
96   TEK_Complex,
97   TEK_Aggregate
98 };
99 
100 /// CodeGenFunction - This class organizes the per-function state that is used
101 /// while generating LLVM code.
102 class CodeGenFunction : public CodeGenTypeCache {
103   CodeGenFunction(const CodeGenFunction &) = delete;
104   void operator=(const CodeGenFunction &) = delete;
105 
106   friend class CGCXXABI;
107 public:
108   /// A jump destination is an abstract label, branching to which may
109   /// require a jump out through normal cleanups.
110   struct JumpDest {
111     JumpDest() : Block(nullptr), ScopeDepth(), Index(0) {}
112     JumpDest(llvm::BasicBlock *Block,
113              EHScopeStack::stable_iterator Depth,
114              unsigned Index)
115       : Block(Block), ScopeDepth(Depth), Index(Index) {}
116 
117     bool isValid() const { return Block != nullptr; }
118     llvm::BasicBlock *getBlock() const { return Block; }
119     EHScopeStack::stable_iterator getScopeDepth() const { return ScopeDepth; }
120     unsigned getDestIndex() const { return Index; }
121 
122     // This should be used cautiously.
123     void setScopeDepth(EHScopeStack::stable_iterator depth) {
124       ScopeDepth = depth;
125     }
126 
127   private:
128     llvm::BasicBlock *Block;
129     EHScopeStack::stable_iterator ScopeDepth;
130     unsigned Index;
131   };
132 
133   CodeGenModule &CGM;  // Per-module state.
134   const TargetInfo &Target;
135 
136   typedef std::pair<llvm::Value *, llvm::Value *> ComplexPairTy;
137   LoopInfoStack LoopStack;
138   CGBuilderTy Builder;
139 
140   /// \brief CGBuilder insert helper. This function is called after an
141   /// instruction is created using Builder.
142   void InsertHelper(llvm::Instruction *I, const llvm::Twine &Name,
143                     llvm::BasicBlock *BB,
144                     llvm::BasicBlock::iterator InsertPt) const;
145 
146   /// CurFuncDecl - Holds the Decl for the current outermost
147   /// non-closure context.
148   const Decl *CurFuncDecl;
149   /// CurCodeDecl - This is the inner-most code context, which includes blocks.
150   const Decl *CurCodeDecl;
151   const CGFunctionInfo *CurFnInfo;
152   QualType FnRetTy;
153   llvm::Function *CurFn;
154 
155   /// CurGD - The GlobalDecl for the current function being compiled.
156   GlobalDecl CurGD;
157 
158   /// PrologueCleanupDepth - The cleanup depth enclosing all the
159   /// cleanups associated with the parameters.
160   EHScopeStack::stable_iterator PrologueCleanupDepth;
161 
162   /// ReturnBlock - Unified return block.
163   JumpDest ReturnBlock;
164 
165   /// ReturnValue - The temporary alloca to hold the return
166   /// value. This is invalid iff the function has no return value.
167   Address ReturnValue;
168 
169   /// AllocaInsertPoint - This is an instruction in the entry block before which
170   /// we prefer to insert allocas.
171   llvm::AssertingVH<llvm::Instruction> AllocaInsertPt;
172 
173   /// \brief API for captured statement code generation.
174   class CGCapturedStmtInfo {
175   public:
176     explicit CGCapturedStmtInfo(CapturedRegionKind K = CR_Default)
177         : Kind(K), ThisValue(nullptr), CXXThisFieldDecl(nullptr) {}
178     explicit CGCapturedStmtInfo(const CapturedStmt &S,
179                                 CapturedRegionKind K = CR_Default)
180       : Kind(K), ThisValue(nullptr), CXXThisFieldDecl(nullptr) {
181 
182       RecordDecl::field_iterator Field =
183         S.getCapturedRecordDecl()->field_begin();
184       for (CapturedStmt::const_capture_iterator I = S.capture_begin(),
185                                                 E = S.capture_end();
186            I != E; ++I, ++Field) {
187         if (I->capturesThis())
188           CXXThisFieldDecl = *Field;
189         else if (I->capturesVariable())
190           CaptureFields[I->getCapturedVar()] = *Field;
191       }
192     }
193 
194     virtual ~CGCapturedStmtInfo();
195 
196     CapturedRegionKind getKind() const { return Kind; }
197 
198     virtual void setContextValue(llvm::Value *V) { ThisValue = V; }
199     // \brief Retrieve the value of the context parameter.
200     virtual llvm::Value *getContextValue() const { return ThisValue; }
201 
202     /// \brief Lookup the captured field decl for a variable.
203     virtual const FieldDecl *lookup(const VarDecl *VD) const {
204       return CaptureFields.lookup(VD);
205     }
206 
207     bool isCXXThisExprCaptured() const { return getThisFieldDecl() != nullptr; }
208     virtual FieldDecl *getThisFieldDecl() const { return CXXThisFieldDecl; }
209 
210     static bool classof(const CGCapturedStmtInfo *) {
211       return true;
212     }
213 
214     /// \brief Emit the captured statement body.
215     virtual void EmitBody(CodeGenFunction &CGF, const Stmt *S) {
216       CGF.incrementProfileCounter(S);
217       CGF.EmitStmt(S);
218     }
219 
220     /// \brief Get the name of the capture helper.
221     virtual StringRef getHelperName() const { return "__captured_stmt"; }
222 
223   private:
224     /// \brief The kind of captured statement being generated.
225     CapturedRegionKind Kind;
226 
227     /// \brief Keep the map between VarDecl and FieldDecl.
228     llvm::SmallDenseMap<const VarDecl *, FieldDecl *> CaptureFields;
229 
230     /// \brief The base address of the captured record, passed in as the first
231     /// argument of the parallel region function.
232     llvm::Value *ThisValue;
233 
234     /// \brief Captured 'this' type.
235     FieldDecl *CXXThisFieldDecl;
236   };
237   CGCapturedStmtInfo *CapturedStmtInfo;
238 
239   /// \brief RAII for correct setting/restoring of CapturedStmtInfo.
240   class CGCapturedStmtRAII {
241   private:
242     CodeGenFunction &CGF;
243     CGCapturedStmtInfo *PrevCapturedStmtInfo;
244   public:
245     CGCapturedStmtRAII(CodeGenFunction &CGF,
246                        CGCapturedStmtInfo *NewCapturedStmtInfo)
247         : CGF(CGF), PrevCapturedStmtInfo(CGF.CapturedStmtInfo) {
248       CGF.CapturedStmtInfo = NewCapturedStmtInfo;
249     }
250     ~CGCapturedStmtRAII() { CGF.CapturedStmtInfo = PrevCapturedStmtInfo; }
251   };
252 
253   /// \brief Sanitizers enabled for this function.
254   SanitizerSet SanOpts;
255 
256   /// \brief True if CodeGen currently emits code implementing sanitizer checks.
257   bool IsSanitizerScope;
258 
259   /// \brief RAII object to set/unset CodeGenFunction::IsSanitizerScope.
260   class SanitizerScope {
261     CodeGenFunction *CGF;
262   public:
263     SanitizerScope(CodeGenFunction *CGF);
264     ~SanitizerScope();
265   };
266 
267   /// In C++, whether we are code generating a thunk.  This controls whether we
268   /// should emit cleanups.
269   bool CurFuncIsThunk;
270 
271   /// In ARC, whether we should autorelease the return value.
272   bool AutoreleaseResult;
273 
274   /// Whether we processed a Microsoft-style asm block during CodeGen. These can
275   /// potentially set the return value.
276   bool SawAsmBlock;
277 
278   /// True if the current function is an outlined SEH helper. This can be a
279   /// finally block or filter expression.
280   bool IsOutlinedSEHHelper;
281 
282   bool IsCleanupPadScope = false;
283 
284   const CodeGen::CGBlockInfo *BlockInfo;
285   llvm::Value *BlockPointer;
286 
287   llvm::DenseMap<const VarDecl *, FieldDecl *> LambdaCaptureFields;
288   FieldDecl *LambdaThisCaptureField;
289 
290   /// \brief A mapping from NRVO variables to the flags used to indicate
291   /// when the NRVO has been applied to this variable.
292   llvm::DenseMap<const VarDecl *, llvm::Value *> NRVOFlags;
293 
294   EHScopeStack EHStack;
295   llvm::SmallVector<char, 256> LifetimeExtendedCleanupStack;
296   llvm::SmallVector<const JumpDest *, 2> SEHTryEpilogueStack;
297 
298   /// Header for data within LifetimeExtendedCleanupStack.
299   struct LifetimeExtendedCleanupHeader {
300     /// The size of the following cleanup object.
301     unsigned Size;
302     /// The kind of cleanup to push: a value from the CleanupKind enumeration.
303     CleanupKind Kind;
304 
305     size_t getSize() const { return Size; }
306     CleanupKind getKind() const { return Kind; }
307   };
308 
309   /// i32s containing the indexes of the cleanup destinations.
310   llvm::AllocaInst *NormalCleanupDest;
311 
312   unsigned NextCleanupDestIndex;
313 
314   /// FirstBlockInfo - The head of a singly-linked-list of block layouts.
315   CGBlockInfo *FirstBlockInfo;
316 
317   /// EHResumeBlock - Unified block containing a call to llvm.eh.resume.
318   llvm::BasicBlock *EHResumeBlock;
319 
320   /// The exception slot.  All landing pads write the current exception pointer
321   /// into this alloca.
322   llvm::Value *ExceptionSlot;
323 
324   /// The selector slot.  Under the MandatoryCleanup model, all landing pads
325   /// write the current selector value into this alloca.
326   llvm::AllocaInst *EHSelectorSlot;
327 
328   /// A stack of exception code slots. Entering an __except block pushes a slot
329   /// on the stack and leaving pops one. The __exception_code() intrinsic loads
330   /// a value from the top of the stack.
331   SmallVector<Address, 1> SEHCodeSlotStack;
332 
333   /// Value returned by __exception_info intrinsic.
334   llvm::Value *SEHInfo = nullptr;
335 
336   /// Emits a landing pad for the current EH stack.
337   llvm::BasicBlock *EmitLandingPad();
338 
339   llvm::BasicBlock *getInvokeDestImpl();
340 
341   template <class T>
342   typename DominatingValue<T>::saved_type saveValueInCond(T value) {
343     return DominatingValue<T>::save(*this, value);
344   }
345 
346 public:
347   /// ObjCEHValueStack - Stack of Objective-C exception values, used for
348   /// rethrows.
349   SmallVector<llvm::Value*, 8> ObjCEHValueStack;
350 
351   /// A class controlling the emission of a finally block.
352   class FinallyInfo {
353     /// Where the catchall's edge through the cleanup should go.
354     JumpDest RethrowDest;
355 
356     /// A function to call to enter the catch.
357     llvm::Constant *BeginCatchFn;
358 
359     /// An i1 variable indicating whether or not the @finally is
360     /// running for an exception.
361     llvm::AllocaInst *ForEHVar;
362 
363     /// An i8* variable into which the exception pointer to rethrow
364     /// has been saved.
365     llvm::AllocaInst *SavedExnVar;
366 
367   public:
368     void enter(CodeGenFunction &CGF, const Stmt *Finally,
369                llvm::Constant *beginCatchFn, llvm::Constant *endCatchFn,
370                llvm::Constant *rethrowFn);
371     void exit(CodeGenFunction &CGF);
372   };
373 
374   /// Returns true inside SEH __try blocks.
375   bool isSEHTryScope() const { return !SEHTryEpilogueStack.empty(); }
376 
377   /// Returns true while emitting a cleanuppad.
378   bool isCleanupPadScope() const { return IsCleanupPadScope; }
379 
380   /// pushFullExprCleanup - Push a cleanup to be run at the end of the
381   /// current full-expression.  Safe against the possibility that
382   /// we're currently inside a conditionally-evaluated expression.
383   template <class T, class... As>
384   void pushFullExprCleanup(CleanupKind kind, As... A) {
385     // If we're not in a conditional branch, or if none of the
386     // arguments requires saving, then use the unconditional cleanup.
387     if (!isInConditionalBranch())
388       return EHStack.pushCleanup<T>(kind, A...);
389 
390     // Stash values in a tuple so we can guarantee the order of saves.
391     typedef std::tuple<typename DominatingValue<As>::saved_type...> SavedTuple;
392     SavedTuple Saved{saveValueInCond(A)...};
393 
394     typedef EHScopeStack::ConditionalCleanup<T, As...> CleanupType;
395     EHStack.pushCleanupTuple<CleanupType>(kind, Saved);
396     initFullExprCleanup();
397   }
398 
399   /// \brief Queue a cleanup to be pushed after finishing the current
400   /// full-expression.
401   template <class T, class... As>
402   void pushCleanupAfterFullExpr(CleanupKind Kind, As... A) {
403     assert(!isInConditionalBranch() && "can't defer conditional cleanup");
404 
405     LifetimeExtendedCleanupHeader Header = { sizeof(T), Kind };
406 
407     size_t OldSize = LifetimeExtendedCleanupStack.size();
408     LifetimeExtendedCleanupStack.resize(
409         LifetimeExtendedCleanupStack.size() + sizeof(Header) + Header.Size);
410 
411     static_assert(sizeof(Header) % llvm::AlignOf<T>::Alignment == 0,
412                   "Cleanup will be allocated on misaligned address");
413     char *Buffer = &LifetimeExtendedCleanupStack[OldSize];
414     new (Buffer) LifetimeExtendedCleanupHeader(Header);
415     new (Buffer + sizeof(Header)) T(A...);
416   }
417 
418   /// Set up the last cleaup that was pushed as a conditional
419   /// full-expression cleanup.
420   void initFullExprCleanup();
421 
422   /// PushDestructorCleanup - Push a cleanup to call the
423   /// complete-object destructor of an object of the given type at the
424   /// given address.  Does nothing if T is not a C++ class type with a
425   /// non-trivial destructor.
426   void PushDestructorCleanup(QualType T, Address Addr);
427 
428   /// PushDestructorCleanup - Push a cleanup to call the
429   /// complete-object variant of the given destructor on the object at
430   /// the given address.
431   void PushDestructorCleanup(const CXXDestructorDecl *Dtor, Address Addr);
432 
433   /// PopCleanupBlock - Will pop the cleanup entry on the stack and
434   /// process all branch fixups.
435   void PopCleanupBlock(bool FallThroughIsBranchThrough = false);
436 
437   /// DeactivateCleanupBlock - Deactivates the given cleanup block.
438   /// The block cannot be reactivated.  Pops it if it's the top of the
439   /// stack.
440   ///
441   /// \param DominatingIP - An instruction which is known to
442   ///   dominate the current IP (if set) and which lies along
443   ///   all paths of execution between the current IP and the
444   ///   the point at which the cleanup comes into scope.
445   void DeactivateCleanupBlock(EHScopeStack::stable_iterator Cleanup,
446                               llvm::Instruction *DominatingIP);
447 
448   /// ActivateCleanupBlock - Activates an initially-inactive cleanup.
449   /// Cannot be used to resurrect a deactivated cleanup.
450   ///
451   /// \param DominatingIP - An instruction which is known to
452   ///   dominate the current IP (if set) and which lies along
453   ///   all paths of execution between the current IP and the
454   ///   the point at which the cleanup comes into scope.
455   void ActivateCleanupBlock(EHScopeStack::stable_iterator Cleanup,
456                             llvm::Instruction *DominatingIP);
457 
458   /// \brief Enters a new scope for capturing cleanups, all of which
459   /// will be executed once the scope is exited.
460   class RunCleanupsScope {
461     EHScopeStack::stable_iterator CleanupStackDepth;
462     size_t LifetimeExtendedCleanupStackSize;
463     bool OldDidCallStackSave;
464   protected:
465     bool PerformCleanup;
466   private:
467 
468     RunCleanupsScope(const RunCleanupsScope &) = delete;
469     void operator=(const RunCleanupsScope &) = delete;
470 
471   protected:
472     CodeGenFunction& CGF;
473 
474   public:
475     /// \brief Enter a new cleanup scope.
476     explicit RunCleanupsScope(CodeGenFunction &CGF)
477       : PerformCleanup(true), CGF(CGF)
478     {
479       CleanupStackDepth = CGF.EHStack.stable_begin();
480       LifetimeExtendedCleanupStackSize =
481           CGF.LifetimeExtendedCleanupStack.size();
482       OldDidCallStackSave = CGF.DidCallStackSave;
483       CGF.DidCallStackSave = false;
484     }
485 
486     /// \brief Exit this cleanup scope, emitting any accumulated
487     /// cleanups.
488     ~RunCleanupsScope() {
489       if (PerformCleanup) {
490         CGF.DidCallStackSave = OldDidCallStackSave;
491         CGF.PopCleanupBlocks(CleanupStackDepth,
492                              LifetimeExtendedCleanupStackSize);
493       }
494     }
495 
496     /// \brief Determine whether this scope requires any cleanups.
497     bool requiresCleanups() const {
498       return CGF.EHStack.stable_begin() != CleanupStackDepth;
499     }
500 
501     /// \brief Force the emission of cleanups now, instead of waiting
502     /// until this object is destroyed.
503     void ForceCleanup() {
504       assert(PerformCleanup && "Already forced cleanup");
505       CGF.DidCallStackSave = OldDidCallStackSave;
506       CGF.PopCleanupBlocks(CleanupStackDepth,
507                            LifetimeExtendedCleanupStackSize);
508       PerformCleanup = false;
509     }
510   };
511 
512   class LexicalScope : public RunCleanupsScope {
513     SourceRange Range;
514     SmallVector<const LabelDecl*, 4> Labels;
515     LexicalScope *ParentScope;
516 
517     LexicalScope(const LexicalScope &) = delete;
518     void operator=(const LexicalScope &) = delete;
519 
520   public:
521     /// \brief Enter a new cleanup scope.
522     explicit LexicalScope(CodeGenFunction &CGF, SourceRange Range)
523       : RunCleanupsScope(CGF), Range(Range), ParentScope(CGF.CurLexicalScope) {
524       CGF.CurLexicalScope = this;
525       if (CGDebugInfo *DI = CGF.getDebugInfo())
526         DI->EmitLexicalBlockStart(CGF.Builder, Range.getBegin());
527     }
528 
529     void addLabel(const LabelDecl *label) {
530       assert(PerformCleanup && "adding label to dead scope?");
531       Labels.push_back(label);
532     }
533 
534     /// \brief Exit this cleanup scope, emitting any accumulated
535     /// cleanups.
536     ~LexicalScope() {
537       if (CGDebugInfo *DI = CGF.getDebugInfo())
538         DI->EmitLexicalBlockEnd(CGF.Builder, Range.getEnd());
539 
540       // If we should perform a cleanup, force them now.  Note that
541       // this ends the cleanup scope before rescoping any labels.
542       if (PerformCleanup) {
543         ApplyDebugLocation DL(CGF, Range.getEnd());
544         ForceCleanup();
545       }
546     }
547 
548     /// \brief Force the emission of cleanups now, instead of waiting
549     /// until this object is destroyed.
550     void ForceCleanup() {
551       CGF.CurLexicalScope = ParentScope;
552       RunCleanupsScope::ForceCleanup();
553 
554       if (!Labels.empty())
555         rescopeLabels();
556     }
557 
558     void rescopeLabels();
559   };
560 
561   typedef llvm::DenseMap<const Decl *, Address> DeclMapTy;
562 
563   /// \brief The scope used to remap some variables as private in the OpenMP
564   /// loop body (or other captured region emitted without outlining), and to
565   /// restore old vars back on exit.
566   class OMPPrivateScope : public RunCleanupsScope {
567     DeclMapTy SavedLocals;
568     DeclMapTy SavedPrivates;
569 
570   private:
571     OMPPrivateScope(const OMPPrivateScope &) = delete;
572     void operator=(const OMPPrivateScope &) = delete;
573 
574   public:
575     /// \brief Enter a new OpenMP private scope.
576     explicit OMPPrivateScope(CodeGenFunction &CGF) : RunCleanupsScope(CGF) {}
577 
578     /// \brief Registers \a LocalVD variable as a private and apply \a
579     /// PrivateGen function for it to generate corresponding private variable.
580     /// \a PrivateGen returns an address of the generated private variable.
581     /// \return true if the variable is registered as private, false if it has
582     /// been privatized already.
583     bool
584     addPrivate(const VarDecl *LocalVD,
585                llvm::function_ref<Address()> PrivateGen) {
586       assert(PerformCleanup && "adding private to dead scope");
587 
588       // Only save it once.
589       if (SavedLocals.count(LocalVD)) return false;
590 
591       // Copy the existing local entry to SavedLocals.
592       auto it = CGF.LocalDeclMap.find(LocalVD);
593       if (it != CGF.LocalDeclMap.end()) {
594         SavedLocals.insert({LocalVD, it->second});
595       } else {
596         SavedLocals.insert({LocalVD, Address::invalid()});
597       }
598 
599       // Generate the private entry.
600       Address Addr = PrivateGen();
601       QualType VarTy = LocalVD->getType();
602       if (VarTy->isReferenceType()) {
603         Address Temp = CGF.CreateMemTemp(VarTy);
604         CGF.Builder.CreateStore(Addr.getPointer(), Temp);
605         Addr = Temp;
606       }
607       SavedPrivates.insert({LocalVD, Addr});
608 
609       return true;
610     }
611 
612     /// \brief Privatizes local variables previously registered as private.
613     /// Registration is separate from the actual privatization to allow
614     /// initializers use values of the original variables, not the private one.
615     /// This is important, for example, if the private variable is a class
616     /// variable initialized by a constructor that references other private
617     /// variables. But at initialization original variables must be used, not
618     /// private copies.
619     /// \return true if at least one variable was privatized, false otherwise.
620     bool Privatize() {
621       copyInto(SavedPrivates, CGF.LocalDeclMap);
622       SavedPrivates.clear();
623       return !SavedLocals.empty();
624     }
625 
626     void ForceCleanup() {
627       RunCleanupsScope::ForceCleanup();
628       copyInto(SavedLocals, CGF.LocalDeclMap);
629       SavedLocals.clear();
630     }
631 
632     /// \brief Exit scope - all the mapped variables are restored.
633     ~OMPPrivateScope() {
634       if (PerformCleanup)
635         ForceCleanup();
636     }
637 
638   private:
639     /// Copy all the entries in the source map over the corresponding
640     /// entries in the destination, which must exist.
641     static void copyInto(const DeclMapTy &src, DeclMapTy &dest) {
642       for (auto &pair : src) {
643         if (!pair.second.isValid()) {
644           dest.erase(pair.first);
645           continue;
646         }
647 
648         auto it = dest.find(pair.first);
649         if (it != dest.end()) {
650           it->second = pair.second;
651         } else {
652           dest.insert(pair);
653         }
654       }
655     }
656   };
657 
658   /// \brief Takes the old cleanup stack size and emits the cleanup blocks
659   /// that have been added.
660   void PopCleanupBlocks(EHScopeStack::stable_iterator OldCleanupStackSize);
661 
662   /// \brief Takes the old cleanup stack size and emits the cleanup blocks
663   /// that have been added, then adds all lifetime-extended cleanups from
664   /// the given position to the stack.
665   void PopCleanupBlocks(EHScopeStack::stable_iterator OldCleanupStackSize,
666                         size_t OldLifetimeExtendedStackSize);
667 
668   void ResolveBranchFixups(llvm::BasicBlock *Target);
669 
670   /// The given basic block lies in the current EH scope, but may be a
671   /// target of a potentially scope-crossing jump; get a stable handle
672   /// to which we can perform this jump later.
673   JumpDest getJumpDestInCurrentScope(llvm::BasicBlock *Target) {
674     return JumpDest(Target,
675                     EHStack.getInnermostNormalCleanup(),
676                     NextCleanupDestIndex++);
677   }
678 
679   /// The given basic block lies in the current EH scope, but may be a
680   /// target of a potentially scope-crossing jump; get a stable handle
681   /// to which we can perform this jump later.
682   JumpDest getJumpDestInCurrentScope(StringRef Name = StringRef()) {
683     return getJumpDestInCurrentScope(createBasicBlock(Name));
684   }
685 
686   /// EmitBranchThroughCleanup - Emit a branch from the current insert
687   /// block through the normal cleanup handling code (if any) and then
688   /// on to \arg Dest.
689   void EmitBranchThroughCleanup(JumpDest Dest);
690 
691   /// isObviouslyBranchWithoutCleanups - Return true if a branch to the
692   /// specified destination obviously has no cleanups to run.  'false' is always
693   /// a conservatively correct answer for this method.
694   bool isObviouslyBranchWithoutCleanups(JumpDest Dest) const;
695 
696   /// popCatchScope - Pops the catch scope at the top of the EHScope
697   /// stack, emitting any required code (other than the catch handlers
698   /// themselves).
699   void popCatchScope();
700 
701   llvm::BasicBlock *getEHResumeBlock(bool isCleanup);
702   llvm::BasicBlock *getEHDispatchBlock(EHScopeStack::stable_iterator scope);
703   llvm::BasicBlock *getMSVCDispatchBlock(EHScopeStack::stable_iterator scope);
704 
705   /// An object to manage conditionally-evaluated expressions.
706   class ConditionalEvaluation {
707     llvm::BasicBlock *StartBB;
708 
709   public:
710     ConditionalEvaluation(CodeGenFunction &CGF)
711       : StartBB(CGF.Builder.GetInsertBlock()) {}
712 
713     void begin(CodeGenFunction &CGF) {
714       assert(CGF.OutermostConditional != this);
715       if (!CGF.OutermostConditional)
716         CGF.OutermostConditional = this;
717     }
718 
719     void end(CodeGenFunction &CGF) {
720       assert(CGF.OutermostConditional != nullptr);
721       if (CGF.OutermostConditional == this)
722         CGF.OutermostConditional = nullptr;
723     }
724 
725     /// Returns a block which will be executed prior to each
726     /// evaluation of the conditional code.
727     llvm::BasicBlock *getStartingBlock() const {
728       return StartBB;
729     }
730   };
731 
732   /// isInConditionalBranch - Return true if we're currently emitting
733   /// one branch or the other of a conditional expression.
734   bool isInConditionalBranch() const { return OutermostConditional != nullptr; }
735 
736   void setBeforeOutermostConditional(llvm::Value *value, Address addr) {
737     assert(isInConditionalBranch());
738     llvm::BasicBlock *block = OutermostConditional->getStartingBlock();
739     auto store = new llvm::StoreInst(value, addr.getPointer(), &block->back());
740     store->setAlignment(addr.getAlignment().getQuantity());
741   }
742 
743   /// An RAII object to record that we're evaluating a statement
744   /// expression.
745   class StmtExprEvaluation {
746     CodeGenFunction &CGF;
747 
748     /// We have to save the outermost conditional: cleanups in a
749     /// statement expression aren't conditional just because the
750     /// StmtExpr is.
751     ConditionalEvaluation *SavedOutermostConditional;
752 
753   public:
754     StmtExprEvaluation(CodeGenFunction &CGF)
755       : CGF(CGF), SavedOutermostConditional(CGF.OutermostConditional) {
756       CGF.OutermostConditional = nullptr;
757     }
758 
759     ~StmtExprEvaluation() {
760       CGF.OutermostConditional = SavedOutermostConditional;
761       CGF.EnsureInsertPoint();
762     }
763   };
764 
765   /// An object which temporarily prevents a value from being
766   /// destroyed by aggressive peephole optimizations that assume that
767   /// all uses of a value have been realized in the IR.
768   class PeepholeProtection {
769     llvm::Instruction *Inst;
770     friend class CodeGenFunction;
771 
772   public:
773     PeepholeProtection() : Inst(nullptr) {}
774   };
775 
776   /// A non-RAII class containing all the information about a bound
777   /// opaque value.  OpaqueValueMapping, below, is a RAII wrapper for
778   /// this which makes individual mappings very simple; using this
779   /// class directly is useful when you have a variable number of
780   /// opaque values or don't want the RAII functionality for some
781   /// reason.
782   class OpaqueValueMappingData {
783     const OpaqueValueExpr *OpaqueValue;
784     bool BoundLValue;
785     CodeGenFunction::PeepholeProtection Protection;
786 
787     OpaqueValueMappingData(const OpaqueValueExpr *ov,
788                            bool boundLValue)
789       : OpaqueValue(ov), BoundLValue(boundLValue) {}
790   public:
791     OpaqueValueMappingData() : OpaqueValue(nullptr) {}
792 
793     static bool shouldBindAsLValue(const Expr *expr) {
794       // gl-values should be bound as l-values for obvious reasons.
795       // Records should be bound as l-values because IR generation
796       // always keeps them in memory.  Expressions of function type
797       // act exactly like l-values but are formally required to be
798       // r-values in C.
799       return expr->isGLValue() ||
800              expr->getType()->isFunctionType() ||
801              hasAggregateEvaluationKind(expr->getType());
802     }
803 
804     static OpaqueValueMappingData bind(CodeGenFunction &CGF,
805                                        const OpaqueValueExpr *ov,
806                                        const Expr *e) {
807       if (shouldBindAsLValue(ov))
808         return bind(CGF, ov, CGF.EmitLValue(e));
809       return bind(CGF, ov, CGF.EmitAnyExpr(e));
810     }
811 
812     static OpaqueValueMappingData bind(CodeGenFunction &CGF,
813                                        const OpaqueValueExpr *ov,
814                                        const LValue &lv) {
815       assert(shouldBindAsLValue(ov));
816       CGF.OpaqueLValues.insert(std::make_pair(ov, lv));
817       return OpaqueValueMappingData(ov, true);
818     }
819 
820     static OpaqueValueMappingData bind(CodeGenFunction &CGF,
821                                        const OpaqueValueExpr *ov,
822                                        const RValue &rv) {
823       assert(!shouldBindAsLValue(ov));
824       CGF.OpaqueRValues.insert(std::make_pair(ov, rv));
825 
826       OpaqueValueMappingData data(ov, false);
827 
828       // Work around an extremely aggressive peephole optimization in
829       // EmitScalarConversion which assumes that all other uses of a
830       // value are extant.
831       data.Protection = CGF.protectFromPeepholes(rv);
832 
833       return data;
834     }
835 
836     bool isValid() const { return OpaqueValue != nullptr; }
837     void clear() { OpaqueValue = nullptr; }
838 
839     void unbind(CodeGenFunction &CGF) {
840       assert(OpaqueValue && "no data to unbind!");
841 
842       if (BoundLValue) {
843         CGF.OpaqueLValues.erase(OpaqueValue);
844       } else {
845         CGF.OpaqueRValues.erase(OpaqueValue);
846         CGF.unprotectFromPeepholes(Protection);
847       }
848     }
849   };
850 
851   /// An RAII object to set (and then clear) a mapping for an OpaqueValueExpr.
852   class OpaqueValueMapping {
853     CodeGenFunction &CGF;
854     OpaqueValueMappingData Data;
855 
856   public:
857     static bool shouldBindAsLValue(const Expr *expr) {
858       return OpaqueValueMappingData::shouldBindAsLValue(expr);
859     }
860 
861     /// Build the opaque value mapping for the given conditional
862     /// operator if it's the GNU ?: extension.  This is a common
863     /// enough pattern that the convenience operator is really
864     /// helpful.
865     ///
866     OpaqueValueMapping(CodeGenFunction &CGF,
867                        const AbstractConditionalOperator *op) : CGF(CGF) {
868       if (isa<ConditionalOperator>(op))
869         // Leave Data empty.
870         return;
871 
872       const BinaryConditionalOperator *e = cast<BinaryConditionalOperator>(op);
873       Data = OpaqueValueMappingData::bind(CGF, e->getOpaqueValue(),
874                                           e->getCommon());
875     }
876 
877     OpaqueValueMapping(CodeGenFunction &CGF,
878                        const OpaqueValueExpr *opaqueValue,
879                        LValue lvalue)
880       : CGF(CGF), Data(OpaqueValueMappingData::bind(CGF, opaqueValue, lvalue)) {
881     }
882 
883     OpaqueValueMapping(CodeGenFunction &CGF,
884                        const OpaqueValueExpr *opaqueValue,
885                        RValue rvalue)
886       : CGF(CGF), Data(OpaqueValueMappingData::bind(CGF, opaqueValue, rvalue)) {
887     }
888 
889     void pop() {
890       Data.unbind(CGF);
891       Data.clear();
892     }
893 
894     ~OpaqueValueMapping() {
895       if (Data.isValid()) Data.unbind(CGF);
896     }
897   };
898 
899 private:
900   CGDebugInfo *DebugInfo;
901   bool DisableDebugInfo;
902 
903   /// DidCallStackSave - Whether llvm.stacksave has been called. Used to avoid
904   /// calling llvm.stacksave for multiple VLAs in the same scope.
905   bool DidCallStackSave;
906 
907   /// IndirectBranch - The first time an indirect goto is seen we create a block
908   /// with an indirect branch.  Every time we see the address of a label taken,
909   /// we add the label to the indirect goto.  Every subsequent indirect goto is
910   /// codegen'd as a jump to the IndirectBranch's basic block.
911   llvm::IndirectBrInst *IndirectBranch;
912 
913   /// LocalDeclMap - This keeps track of the LLVM allocas or globals for local C
914   /// decls.
915   DeclMapTy LocalDeclMap;
916 
917   /// SizeArguments - If a ParmVarDecl had the pass_object_size attribute, this
918   /// will contain a mapping from said ParmVarDecl to its implicit "object_size"
919   /// parameter.
920   llvm::SmallDenseMap<const ParmVarDecl *, const ImplicitParamDecl *, 2>
921       SizeArguments;
922 
923   /// Track escaped local variables with auto storage. Used during SEH
924   /// outlining to produce a call to llvm.localescape.
925   llvm::DenseMap<llvm::AllocaInst *, int> EscapedLocals;
926 
927   /// LabelMap - This keeps track of the LLVM basic block for each C label.
928   llvm::DenseMap<const LabelDecl*, JumpDest> LabelMap;
929 
930   // BreakContinueStack - This keeps track of where break and continue
931   // statements should jump to.
932   struct BreakContinue {
933     BreakContinue(JumpDest Break, JumpDest Continue)
934       : BreakBlock(Break), ContinueBlock(Continue) {}
935 
936     JumpDest BreakBlock;
937     JumpDest ContinueBlock;
938   };
939   SmallVector<BreakContinue, 8> BreakContinueStack;
940 
941   CodeGenPGO PGO;
942 
943   /// Calculate branch weights appropriate for PGO data
944   llvm::MDNode *createProfileWeights(uint64_t TrueCount, uint64_t FalseCount);
945   llvm::MDNode *createProfileWeights(ArrayRef<uint64_t> Weights);
946   llvm::MDNode *createProfileWeightsForLoop(const Stmt *Cond,
947                                             uint64_t LoopCount);
948 
949 public:
950   /// Increment the profiler's counter for the given statement.
951   void incrementProfileCounter(const Stmt *S) {
952     if (CGM.getCodeGenOpts().ProfileInstrGenerate)
953       PGO.emitCounterIncrement(Builder, S);
954     PGO.setCurrentStmt(S);
955   }
956 
957   /// Get the profiler's count for the given statement.
958   uint64_t getProfileCount(const Stmt *S) {
959     Optional<uint64_t> Count = PGO.getStmtCount(S);
960     if (!Count.hasValue())
961       return 0;
962     return *Count;
963   }
964 
965   /// Set the profiler's current count.
966   void setCurrentProfileCount(uint64_t Count) {
967     PGO.setCurrentRegionCount(Count);
968   }
969 
970   /// Get the profiler's current count. This is generally the count for the most
971   /// recently incremented counter.
972   uint64_t getCurrentProfileCount() {
973     return PGO.getCurrentRegionCount();
974   }
975 
976 private:
977 
978   /// SwitchInsn - This is nearest current switch instruction. It is null if
979   /// current context is not in a switch.
980   llvm::SwitchInst *SwitchInsn;
981   /// The branch weights of SwitchInsn when doing instrumentation based PGO.
982   SmallVector<uint64_t, 16> *SwitchWeights;
983 
984   /// CaseRangeBlock - This block holds if condition check for last case
985   /// statement range in current switch instruction.
986   llvm::BasicBlock *CaseRangeBlock;
987 
988   /// OpaqueLValues - Keeps track of the current set of opaque value
989   /// expressions.
990   llvm::DenseMap<const OpaqueValueExpr *, LValue> OpaqueLValues;
991   llvm::DenseMap<const OpaqueValueExpr *, RValue> OpaqueRValues;
992 
993   // VLASizeMap - This keeps track of the associated size for each VLA type.
994   // We track this by the size expression rather than the type itself because
995   // in certain situations, like a const qualifier applied to an VLA typedef,
996   // multiple VLA types can share the same size expression.
997   // FIXME: Maybe this could be a stack of maps that is pushed/popped as we
998   // enter/leave scopes.
999   llvm::DenseMap<const Expr*, llvm::Value*> VLASizeMap;
1000 
1001   /// A block containing a single 'unreachable' instruction.  Created
1002   /// lazily by getUnreachableBlock().
1003   llvm::BasicBlock *UnreachableBlock;
1004 
1005   /// Counts of the number return expressions in the function.
1006   unsigned NumReturnExprs;
1007 
1008   /// Count the number of simple (constant) return expressions in the function.
1009   unsigned NumSimpleReturnExprs;
1010 
1011   /// The last regular (non-return) debug location (breakpoint) in the function.
1012   SourceLocation LastStopPoint;
1013 
1014 public:
1015   /// A scope within which we are constructing the fields of an object which
1016   /// might use a CXXDefaultInitExpr. This stashes away a 'this' value to use
1017   /// if we need to evaluate a CXXDefaultInitExpr within the evaluation.
1018   class FieldConstructionScope {
1019   public:
1020     FieldConstructionScope(CodeGenFunction &CGF, Address This)
1021         : CGF(CGF), OldCXXDefaultInitExprThis(CGF.CXXDefaultInitExprThis) {
1022       CGF.CXXDefaultInitExprThis = This;
1023     }
1024     ~FieldConstructionScope() {
1025       CGF.CXXDefaultInitExprThis = OldCXXDefaultInitExprThis;
1026     }
1027 
1028   private:
1029     CodeGenFunction &CGF;
1030     Address OldCXXDefaultInitExprThis;
1031   };
1032 
1033   /// The scope of a CXXDefaultInitExpr. Within this scope, the value of 'this'
1034   /// is overridden to be the object under construction.
1035   class CXXDefaultInitExprScope {
1036   public:
1037     CXXDefaultInitExprScope(CodeGenFunction &CGF)
1038       : CGF(CGF), OldCXXThisValue(CGF.CXXThisValue),
1039         OldCXXThisAlignment(CGF.CXXThisAlignment) {
1040       CGF.CXXThisValue = CGF.CXXDefaultInitExprThis.getPointer();
1041       CGF.CXXThisAlignment = CGF.CXXDefaultInitExprThis.getAlignment();
1042     }
1043     ~CXXDefaultInitExprScope() {
1044       CGF.CXXThisValue = OldCXXThisValue;
1045       CGF.CXXThisAlignment = OldCXXThisAlignment;
1046     }
1047 
1048   public:
1049     CodeGenFunction &CGF;
1050     llvm::Value *OldCXXThisValue;
1051     CharUnits OldCXXThisAlignment;
1052   };
1053 
1054 private:
1055   /// CXXThisDecl - When generating code for a C++ member function,
1056   /// this will hold the implicit 'this' declaration.
1057   ImplicitParamDecl *CXXABIThisDecl;
1058   llvm::Value *CXXABIThisValue;
1059   llvm::Value *CXXThisValue;
1060   CharUnits CXXABIThisAlignment;
1061   CharUnits CXXThisAlignment;
1062 
1063   /// The value of 'this' to use when evaluating CXXDefaultInitExprs within
1064   /// this expression.
1065   Address CXXDefaultInitExprThis = Address::invalid();
1066 
1067   /// CXXStructorImplicitParamDecl - When generating code for a constructor or
1068   /// destructor, this will hold the implicit argument (e.g. VTT).
1069   ImplicitParamDecl *CXXStructorImplicitParamDecl;
1070   llvm::Value *CXXStructorImplicitParamValue;
1071 
1072   /// OutermostConditional - Points to the outermost active
1073   /// conditional control.  This is used so that we know if a
1074   /// temporary should be destroyed conditionally.
1075   ConditionalEvaluation *OutermostConditional;
1076 
1077   /// The current lexical scope.
1078   LexicalScope *CurLexicalScope;
1079 
1080   /// The current source location that should be used for exception
1081   /// handling code.
1082   SourceLocation CurEHLocation;
1083 
1084   /// BlockByrefInfos - For each __block variable, contains
1085   /// information about the layout of the variable.
1086   llvm::DenseMap<const ValueDecl *, BlockByrefInfo> BlockByrefInfos;
1087 
1088   llvm::BasicBlock *TerminateLandingPad;
1089   llvm::BasicBlock *TerminateHandler;
1090   llvm::BasicBlock *TrapBB;
1091 
1092   /// Add a kernel metadata node to the named metadata node 'opencl.kernels'.
1093   /// In the kernel metadata node, reference the kernel function and metadata
1094   /// nodes for its optional attribute qualifiers (OpenCL 1.1 6.7.2):
1095   /// - A node for the vec_type_hint(<type>) qualifier contains string
1096   ///   "vec_type_hint", an undefined value of the <type> data type,
1097   ///   and a Boolean that is true if the <type> is integer and signed.
1098   /// - A node for the work_group_size_hint(X,Y,Z) qualifier contains string
1099   ///   "work_group_size_hint", and three 32-bit integers X, Y and Z.
1100   /// - A node for the reqd_work_group_size(X,Y,Z) qualifier contains string
1101   ///   "reqd_work_group_size", and three 32-bit integers X, Y and Z.
1102   void EmitOpenCLKernelMetadata(const FunctionDecl *FD,
1103                                 llvm::Function *Fn);
1104 
1105 public:
1106   CodeGenFunction(CodeGenModule &cgm, bool suppressNewContext=false);
1107   ~CodeGenFunction();
1108 
1109   CodeGenTypes &getTypes() const { return CGM.getTypes(); }
1110   ASTContext &getContext() const { return CGM.getContext(); }
1111   CGDebugInfo *getDebugInfo() {
1112     if (DisableDebugInfo)
1113       return nullptr;
1114     return DebugInfo;
1115   }
1116   void disableDebugInfo() { DisableDebugInfo = true; }
1117   void enableDebugInfo() { DisableDebugInfo = false; }
1118 
1119   bool shouldUseFusedARCCalls() {
1120     return CGM.getCodeGenOpts().OptimizationLevel == 0;
1121   }
1122 
1123   const LangOptions &getLangOpts() const { return CGM.getLangOpts(); }
1124 
1125   /// Returns a pointer to the function's exception object and selector slot,
1126   /// which is assigned in every landing pad.
1127   Address getExceptionSlot();
1128   Address getEHSelectorSlot();
1129 
1130   /// Returns the contents of the function's exception object and selector
1131   /// slots.
1132   llvm::Value *getExceptionFromSlot();
1133   llvm::Value *getSelectorFromSlot();
1134 
1135   Address getNormalCleanupDestSlot();
1136 
1137   llvm::BasicBlock *getUnreachableBlock() {
1138     if (!UnreachableBlock) {
1139       UnreachableBlock = createBasicBlock("unreachable");
1140       new llvm::UnreachableInst(getLLVMContext(), UnreachableBlock);
1141     }
1142     return UnreachableBlock;
1143   }
1144 
1145   llvm::BasicBlock *getInvokeDest() {
1146     if (!EHStack.requiresLandingPad()) return nullptr;
1147     return getInvokeDestImpl();
1148   }
1149 
1150   bool currentFunctionUsesSEHTry() const {
1151     const auto *FD = dyn_cast_or_null<FunctionDecl>(CurCodeDecl);
1152     return FD && FD->usesSEHTry();
1153   }
1154 
1155   const TargetInfo &getTarget() const { return Target; }
1156   llvm::LLVMContext &getLLVMContext() { return CGM.getLLVMContext(); }
1157 
1158   //===--------------------------------------------------------------------===//
1159   //                                  Cleanups
1160   //===--------------------------------------------------------------------===//
1161 
1162   typedef void Destroyer(CodeGenFunction &CGF, Address addr, QualType ty);
1163 
1164   void pushIrregularPartialArrayCleanup(llvm::Value *arrayBegin,
1165                                         Address arrayEndPointer,
1166                                         QualType elementType,
1167                                         CharUnits elementAlignment,
1168                                         Destroyer *destroyer);
1169   void pushRegularPartialArrayCleanup(llvm::Value *arrayBegin,
1170                                       llvm::Value *arrayEnd,
1171                                       QualType elementType,
1172                                       CharUnits elementAlignment,
1173                                       Destroyer *destroyer);
1174 
1175   void pushDestroy(QualType::DestructionKind dtorKind,
1176                    Address addr, QualType type);
1177   void pushEHDestroy(QualType::DestructionKind dtorKind,
1178                      Address addr, QualType type);
1179   void pushDestroy(CleanupKind kind, Address addr, QualType type,
1180                    Destroyer *destroyer, bool useEHCleanupForArray);
1181   void pushLifetimeExtendedDestroy(CleanupKind kind, Address addr,
1182                                    QualType type, Destroyer *destroyer,
1183                                    bool useEHCleanupForArray);
1184   void pushCallObjectDeleteCleanup(const FunctionDecl *OperatorDelete,
1185                                    llvm::Value *CompletePtr,
1186                                    QualType ElementType);
1187   void pushStackRestore(CleanupKind kind, Address SPMem);
1188   void emitDestroy(Address addr, QualType type, Destroyer *destroyer,
1189                    bool useEHCleanupForArray);
1190   llvm::Function *generateDestroyHelper(Address addr, QualType type,
1191                                         Destroyer *destroyer,
1192                                         bool useEHCleanupForArray,
1193                                         const VarDecl *VD);
1194   void emitArrayDestroy(llvm::Value *begin, llvm::Value *end,
1195                         QualType elementType, CharUnits elementAlign,
1196                         Destroyer *destroyer,
1197                         bool checkZeroLength, bool useEHCleanup);
1198 
1199   Destroyer *getDestroyer(QualType::DestructionKind destructionKind);
1200 
1201   /// Determines whether an EH cleanup is required to destroy a type
1202   /// with the given destruction kind.
1203   bool needsEHCleanup(QualType::DestructionKind kind) {
1204     switch (kind) {
1205     case QualType::DK_none:
1206       return false;
1207     case QualType::DK_cxx_destructor:
1208     case QualType::DK_objc_weak_lifetime:
1209       return getLangOpts().Exceptions;
1210     case QualType::DK_objc_strong_lifetime:
1211       return getLangOpts().Exceptions &&
1212              CGM.getCodeGenOpts().ObjCAutoRefCountExceptions;
1213     }
1214     llvm_unreachable("bad destruction kind");
1215   }
1216 
1217   CleanupKind getCleanupKind(QualType::DestructionKind kind) {
1218     return (needsEHCleanup(kind) ? NormalAndEHCleanup : NormalCleanup);
1219   }
1220 
1221   //===--------------------------------------------------------------------===//
1222   //                                  Objective-C
1223   //===--------------------------------------------------------------------===//
1224 
1225   void GenerateObjCMethod(const ObjCMethodDecl *OMD);
1226 
1227   void StartObjCMethod(const ObjCMethodDecl *MD, const ObjCContainerDecl *CD);
1228 
1229   /// GenerateObjCGetter - Synthesize an Objective-C property getter function.
1230   void GenerateObjCGetter(ObjCImplementationDecl *IMP,
1231                           const ObjCPropertyImplDecl *PID);
1232   void generateObjCGetterBody(const ObjCImplementationDecl *classImpl,
1233                               const ObjCPropertyImplDecl *propImpl,
1234                               const ObjCMethodDecl *GetterMothodDecl,
1235                               llvm::Constant *AtomicHelperFn);
1236 
1237   void GenerateObjCCtorDtorMethod(ObjCImplementationDecl *IMP,
1238                                   ObjCMethodDecl *MD, bool ctor);
1239 
1240   /// GenerateObjCSetter - Synthesize an Objective-C property setter function
1241   /// for the given property.
1242   void GenerateObjCSetter(ObjCImplementationDecl *IMP,
1243                           const ObjCPropertyImplDecl *PID);
1244   void generateObjCSetterBody(const ObjCImplementationDecl *classImpl,
1245                               const ObjCPropertyImplDecl *propImpl,
1246                               llvm::Constant *AtomicHelperFn);
1247 
1248   //===--------------------------------------------------------------------===//
1249   //                                  Block Bits
1250   //===--------------------------------------------------------------------===//
1251 
1252   llvm::Value *EmitBlockLiteral(const BlockExpr *);
1253   llvm::Value *EmitBlockLiteral(const CGBlockInfo &Info);
1254   static void destroyBlockInfos(CGBlockInfo *info);
1255 
1256   llvm::Function *GenerateBlockFunction(GlobalDecl GD,
1257                                         const CGBlockInfo &Info,
1258                                         const DeclMapTy &ldm,
1259                                         bool IsLambdaConversionToBlock);
1260 
1261   llvm::Constant *GenerateCopyHelperFunction(const CGBlockInfo &blockInfo);
1262   llvm::Constant *GenerateDestroyHelperFunction(const CGBlockInfo &blockInfo);
1263   llvm::Constant *GenerateObjCAtomicSetterCopyHelperFunction(
1264                                              const ObjCPropertyImplDecl *PID);
1265   llvm::Constant *GenerateObjCAtomicGetterCopyHelperFunction(
1266                                              const ObjCPropertyImplDecl *PID);
1267   llvm::Value *EmitBlockCopyAndAutorelease(llvm::Value *Block, QualType Ty);
1268 
1269   void BuildBlockRelease(llvm::Value *DeclPtr, BlockFieldFlags flags);
1270 
1271   class AutoVarEmission;
1272 
1273   void emitByrefStructureInit(const AutoVarEmission &emission);
1274   void enterByrefCleanup(const AutoVarEmission &emission);
1275 
1276   void setBlockContextParameter(const ImplicitParamDecl *D, unsigned argNum,
1277                                 llvm::Value *ptr);
1278 
1279   Address LoadBlockStruct();
1280   Address GetAddrOfBlockDecl(const VarDecl *var, bool ByRef);
1281 
1282   /// BuildBlockByrefAddress - Computes the location of the
1283   /// data in a variable which is declared as __block.
1284   Address emitBlockByrefAddress(Address baseAddr, const VarDecl *V,
1285                                 bool followForward = true);
1286   Address emitBlockByrefAddress(Address baseAddr,
1287                                 const BlockByrefInfo &info,
1288                                 bool followForward,
1289                                 const llvm::Twine &name);
1290 
1291   const BlockByrefInfo &getBlockByrefInfo(const VarDecl *var);
1292 
1293   void GenerateCode(GlobalDecl GD, llvm::Function *Fn,
1294                     const CGFunctionInfo &FnInfo);
1295   /// \brief Emit code for the start of a function.
1296   /// \param Loc       The location to be associated with the function.
1297   /// \param StartLoc  The location of the function body.
1298   void StartFunction(GlobalDecl GD,
1299                      QualType RetTy,
1300                      llvm::Function *Fn,
1301                      const CGFunctionInfo &FnInfo,
1302                      const FunctionArgList &Args,
1303                      SourceLocation Loc = SourceLocation(),
1304                      SourceLocation StartLoc = SourceLocation());
1305 
1306   void EmitConstructorBody(FunctionArgList &Args);
1307   void EmitDestructorBody(FunctionArgList &Args);
1308   void emitImplicitAssignmentOperatorBody(FunctionArgList &Args);
1309   void EmitFunctionBody(FunctionArgList &Args, const Stmt *Body);
1310   void EmitBlockWithFallThrough(llvm::BasicBlock *BB, const Stmt *S);
1311 
1312   void EmitForwardingCallToLambda(const CXXMethodDecl *LambdaCallOperator,
1313                                   CallArgList &CallArgs);
1314   void EmitLambdaToBlockPointerBody(FunctionArgList &Args);
1315   void EmitLambdaBlockInvokeBody();
1316   void EmitLambdaDelegatingInvokeBody(const CXXMethodDecl *MD);
1317   void EmitLambdaStaticInvokeFunction(const CXXMethodDecl *MD);
1318   void EmitAsanPrologueOrEpilogue(bool Prologue);
1319 
1320   /// \brief Emit the unified return block, trying to avoid its emission when
1321   /// possible.
1322   /// \return The debug location of the user written return statement if the
1323   /// return block is is avoided.
1324   llvm::DebugLoc EmitReturnBlock();
1325 
1326   /// FinishFunction - Complete IR generation of the current function. It is
1327   /// legal to call this function even if there is no current insertion point.
1328   void FinishFunction(SourceLocation EndLoc=SourceLocation());
1329 
1330   void StartThunk(llvm::Function *Fn, GlobalDecl GD,
1331                   const CGFunctionInfo &FnInfo);
1332 
1333   void EmitCallAndReturnForThunk(llvm::Value *Callee, const ThunkInfo *Thunk);
1334 
1335   void FinishThunk();
1336 
1337   /// Emit a musttail call for a thunk with a potentially adjusted this pointer.
1338   void EmitMustTailThunk(const CXXMethodDecl *MD, llvm::Value *AdjustedThisPtr,
1339                          llvm::Value *Callee);
1340 
1341   /// Generate a thunk for the given method.
1342   void generateThunk(llvm::Function *Fn, const CGFunctionInfo &FnInfo,
1343                      GlobalDecl GD, const ThunkInfo &Thunk);
1344 
1345   llvm::Function *GenerateVarArgsThunk(llvm::Function *Fn,
1346                                        const CGFunctionInfo &FnInfo,
1347                                        GlobalDecl GD, const ThunkInfo &Thunk);
1348 
1349   void EmitCtorPrologue(const CXXConstructorDecl *CD, CXXCtorType Type,
1350                         FunctionArgList &Args);
1351 
1352   void EmitInitializerForField(FieldDecl *Field, LValue LHS, Expr *Init,
1353                                ArrayRef<VarDecl *> ArrayIndexes);
1354 
1355   /// Struct with all informations about dynamic [sub]class needed to set vptr.
1356   struct VPtr {
1357     BaseSubobject Base;
1358     const CXXRecordDecl *NearestVBase;
1359     CharUnits OffsetFromNearestVBase;
1360     const CXXRecordDecl *VTableClass;
1361   };
1362 
1363   /// Initialize the vtable pointer of the given subobject.
1364   void InitializeVTablePointer(const VPtr &vptr);
1365 
1366   typedef llvm::SmallVector<VPtr, 4> VPtrsVector;
1367 
1368   typedef llvm::SmallPtrSet<const CXXRecordDecl *, 4> VisitedVirtualBasesSetTy;
1369   VPtrsVector getVTablePointers(const CXXRecordDecl *VTableClass);
1370 
1371   void getVTablePointers(BaseSubobject Base, const CXXRecordDecl *NearestVBase,
1372                          CharUnits OffsetFromNearestVBase,
1373                          bool BaseIsNonVirtualPrimaryBase,
1374                          const CXXRecordDecl *VTableClass,
1375                          VisitedVirtualBasesSetTy &VBases, VPtrsVector &vptrs);
1376 
1377   void InitializeVTablePointers(const CXXRecordDecl *ClassDecl);
1378 
1379   /// GetVTablePtr - Return the Value of the vtable pointer member pointed
1380   /// to by This.
1381   llvm::Value *GetVTablePtr(Address This, llvm::Type *VTableTy,
1382                             const CXXRecordDecl *VTableClass);
1383 
1384   enum CFITypeCheckKind {
1385     CFITCK_VCall,
1386     CFITCK_NVCall,
1387     CFITCK_DerivedCast,
1388     CFITCK_UnrelatedCast,
1389   };
1390 
1391   /// \brief Derived is the presumed address of an object of type T after a
1392   /// cast. If T is a polymorphic class type, emit a check that the virtual
1393   /// table for Derived belongs to a class derived from T.
1394   void EmitVTablePtrCheckForCast(QualType T, llvm::Value *Derived,
1395                                  bool MayBeNull, CFITypeCheckKind TCK,
1396                                  SourceLocation Loc);
1397 
1398   /// EmitVTablePtrCheckForCall - Virtual method MD is being called via VTable.
1399   /// If vptr CFI is enabled, emit a check that VTable is valid.
1400   void EmitVTablePtrCheckForCall(const CXXMethodDecl *MD, llvm::Value *VTable,
1401                                  CFITypeCheckKind TCK, SourceLocation Loc);
1402 
1403   /// EmitVTablePtrCheck - Emit a check that VTable is a valid virtual table for
1404   /// RD using llvm.bitset.test.
1405   void EmitVTablePtrCheck(const CXXRecordDecl *RD, llvm::Value *VTable,
1406                           CFITypeCheckKind TCK, SourceLocation Loc);
1407 
1408   /// CanDevirtualizeMemberFunctionCalls - Checks whether virtual calls on given
1409   /// expr can be devirtualized.
1410   bool CanDevirtualizeMemberFunctionCall(const Expr *Base,
1411                                          const CXXMethodDecl *MD);
1412 
1413   /// EnterDtorCleanups - Enter the cleanups necessary to complete the
1414   /// given phase of destruction for a destructor.  The end result
1415   /// should call destructors on members and base classes in reverse
1416   /// order of their construction.
1417   void EnterDtorCleanups(const CXXDestructorDecl *Dtor, CXXDtorType Type);
1418 
1419   /// ShouldInstrumentFunction - Return true if the current function should be
1420   /// instrumented with __cyg_profile_func_* calls
1421   bool ShouldInstrumentFunction();
1422 
1423   /// EmitFunctionInstrumentation - Emit LLVM code to call the specified
1424   /// instrumentation function with the current function and the call site, if
1425   /// function instrumentation is enabled.
1426   void EmitFunctionInstrumentation(const char *Fn);
1427 
1428   /// EmitMCountInstrumentation - Emit call to .mcount.
1429   void EmitMCountInstrumentation();
1430 
1431   /// EmitFunctionProlog - Emit the target specific LLVM code to load the
1432   /// arguments for the given function. This is also responsible for naming the
1433   /// LLVM function arguments.
1434   void EmitFunctionProlog(const CGFunctionInfo &FI,
1435                           llvm::Function *Fn,
1436                           const FunctionArgList &Args);
1437 
1438   /// EmitFunctionEpilog - Emit the target specific LLVM code to return the
1439   /// given temporary.
1440   void EmitFunctionEpilog(const CGFunctionInfo &FI, bool EmitRetDbgLoc,
1441                           SourceLocation EndLoc);
1442 
1443   /// EmitStartEHSpec - Emit the start of the exception spec.
1444   void EmitStartEHSpec(const Decl *D);
1445 
1446   /// EmitEndEHSpec - Emit the end of the exception spec.
1447   void EmitEndEHSpec(const Decl *D);
1448 
1449   /// getTerminateLandingPad - Return a landing pad that just calls terminate.
1450   llvm::BasicBlock *getTerminateLandingPad();
1451 
1452   /// getTerminateHandler - Return a handler (not a landing pad, just
1453   /// a catch handler) that just calls terminate.  This is used when
1454   /// a terminate scope encloses a try.
1455   llvm::BasicBlock *getTerminateHandler();
1456 
1457   llvm::Type *ConvertTypeForMem(QualType T);
1458   llvm::Type *ConvertType(QualType T);
1459   llvm::Type *ConvertType(const TypeDecl *T) {
1460     return ConvertType(getContext().getTypeDeclType(T));
1461   }
1462 
1463   /// LoadObjCSelf - Load the value of self. This function is only valid while
1464   /// generating code for an Objective-C method.
1465   llvm::Value *LoadObjCSelf();
1466 
1467   /// TypeOfSelfObject - Return type of object that this self represents.
1468   QualType TypeOfSelfObject();
1469 
1470   /// hasAggregateLLVMType - Return true if the specified AST type will map into
1471   /// an aggregate LLVM type or is void.
1472   static TypeEvaluationKind getEvaluationKind(QualType T);
1473 
1474   static bool hasScalarEvaluationKind(QualType T) {
1475     return getEvaluationKind(T) == TEK_Scalar;
1476   }
1477 
1478   static bool hasAggregateEvaluationKind(QualType T) {
1479     return getEvaluationKind(T) == TEK_Aggregate;
1480   }
1481 
1482   /// createBasicBlock - Create an LLVM basic block.
1483   llvm::BasicBlock *createBasicBlock(const Twine &name = "",
1484                                      llvm::Function *parent = nullptr,
1485                                      llvm::BasicBlock *before = nullptr) {
1486 #ifdef NDEBUG
1487     return llvm::BasicBlock::Create(getLLVMContext(), "", parent, before);
1488 #else
1489     return llvm::BasicBlock::Create(getLLVMContext(), name, parent, before);
1490 #endif
1491   }
1492 
1493   /// getBasicBlockForLabel - Return the LLVM basicblock that the specified
1494   /// label maps to.
1495   JumpDest getJumpDestForLabel(const LabelDecl *S);
1496 
1497   /// SimplifyForwardingBlocks - If the given basic block is only a branch to
1498   /// another basic block, simplify it. This assumes that no other code could
1499   /// potentially reference the basic block.
1500   void SimplifyForwardingBlocks(llvm::BasicBlock *BB);
1501 
1502   /// EmitBlock - Emit the given block \arg BB and set it as the insert point,
1503   /// adding a fall-through branch from the current insert block if
1504   /// necessary. It is legal to call this function even if there is no current
1505   /// insertion point.
1506   ///
1507   /// IsFinished - If true, indicates that the caller has finished emitting
1508   /// branches to the given block and does not expect to emit code into it. This
1509   /// means the block can be ignored if it is unreachable.
1510   void EmitBlock(llvm::BasicBlock *BB, bool IsFinished=false);
1511 
1512   /// EmitBlockAfterUses - Emit the given block somewhere hopefully
1513   /// near its uses, and leave the insertion point in it.
1514   void EmitBlockAfterUses(llvm::BasicBlock *BB);
1515 
1516   /// EmitBranch - Emit a branch to the specified basic block from the current
1517   /// insert block, taking care to avoid creation of branches from dummy
1518   /// blocks. It is legal to call this function even if there is no current
1519   /// insertion point.
1520   ///
1521   /// This function clears the current insertion point. The caller should follow
1522   /// calls to this function with calls to Emit*Block prior to generation new
1523   /// code.
1524   void EmitBranch(llvm::BasicBlock *Block);
1525 
1526   /// HaveInsertPoint - True if an insertion point is defined. If not, this
1527   /// indicates that the current code being emitted is unreachable.
1528   bool HaveInsertPoint() const {
1529     return Builder.GetInsertBlock() != nullptr;
1530   }
1531 
1532   /// EnsureInsertPoint - Ensure that an insertion point is defined so that
1533   /// emitted IR has a place to go. Note that by definition, if this function
1534   /// creates a block then that block is unreachable; callers may do better to
1535   /// detect when no insertion point is defined and simply skip IR generation.
1536   void EnsureInsertPoint() {
1537     if (!HaveInsertPoint())
1538       EmitBlock(createBasicBlock());
1539   }
1540 
1541   /// ErrorUnsupported - Print out an error that codegen doesn't support the
1542   /// specified stmt yet.
1543   void ErrorUnsupported(const Stmt *S, const char *Type);
1544 
1545   //===--------------------------------------------------------------------===//
1546   //                                  Helpers
1547   //===--------------------------------------------------------------------===//
1548 
1549   LValue MakeAddrLValue(Address Addr, QualType T,
1550                         AlignmentSource AlignSource = AlignmentSource::Type) {
1551     return LValue::MakeAddr(Addr, T, getContext(), AlignSource,
1552                             CGM.getTBAAInfo(T));
1553   }
1554 
1555   LValue MakeAddrLValue(llvm::Value *V, QualType T, CharUnits Alignment,
1556                         AlignmentSource AlignSource = AlignmentSource::Type) {
1557     return LValue::MakeAddr(Address(V, Alignment), T, getContext(),
1558                             AlignSource, CGM.getTBAAInfo(T));
1559   }
1560 
1561   LValue MakeNaturalAlignPointeeAddrLValue(llvm::Value *V, QualType T);
1562   LValue MakeNaturalAlignAddrLValue(llvm::Value *V, QualType T);
1563   CharUnits getNaturalTypeAlignment(QualType T,
1564                                     AlignmentSource *Source = nullptr,
1565                                     bool forPointeeType = false);
1566   CharUnits getNaturalPointeeTypeAlignment(QualType T,
1567                                            AlignmentSource *Source = nullptr);
1568 
1569   Address EmitLoadOfReference(Address Ref, const ReferenceType *RefTy,
1570                               AlignmentSource *Source = nullptr);
1571   LValue EmitLoadOfReferenceLValue(Address Ref, const ReferenceType *RefTy);
1572 
1573   /// CreateTempAlloca - This creates a alloca and inserts it into the entry
1574   /// block. The caller is responsible for setting an appropriate alignment on
1575   /// the alloca.
1576   llvm::AllocaInst *CreateTempAlloca(llvm::Type *Ty,
1577                                      const Twine &Name = "tmp");
1578   Address CreateTempAlloca(llvm::Type *Ty, CharUnits align,
1579                            const Twine &Name = "tmp");
1580 
1581   /// CreateDefaultAlignedTempAlloca - This creates an alloca with the
1582   /// default ABI alignment of the given LLVM type.
1583   ///
1584   /// IMPORTANT NOTE: This is *not* generally the right alignment for
1585   /// any given AST type that happens to have been lowered to the
1586   /// given IR type.  This should only ever be used for function-local,
1587   /// IR-driven manipulations like saving and restoring a value.  Do
1588   /// not hand this address off to arbitrary IRGen routines, and especially
1589   /// do not pass it as an argument to a function that might expect a
1590   /// properly ABI-aligned value.
1591   Address CreateDefaultAlignTempAlloca(llvm::Type *Ty,
1592                                        const Twine &Name = "tmp");
1593 
1594   /// InitTempAlloca - Provide an initial value for the given alloca which
1595   /// will be observable at all locations in the function.
1596   ///
1597   /// The address should be something that was returned from one of
1598   /// the CreateTempAlloca or CreateMemTemp routines, and the
1599   /// initializer must be valid in the entry block (i.e. it must
1600   /// either be a constant or an argument value).
1601   void InitTempAlloca(Address Alloca, llvm::Value *Value);
1602 
1603   /// CreateIRTemp - Create a temporary IR object of the given type, with
1604   /// appropriate alignment. This routine should only be used when an temporary
1605   /// value needs to be stored into an alloca (for example, to avoid explicit
1606   /// PHI construction), but the type is the IR type, not the type appropriate
1607   /// for storing in memory.
1608   ///
1609   /// That is, this is exactly equivalent to CreateMemTemp, but calling
1610   /// ConvertType instead of ConvertTypeForMem.
1611   Address CreateIRTemp(QualType T, const Twine &Name = "tmp");
1612 
1613   /// CreateMemTemp - Create a temporary memory object of the given type, with
1614   /// appropriate alignment.
1615   Address CreateMemTemp(QualType T, const Twine &Name = "tmp");
1616   Address CreateMemTemp(QualType T, CharUnits Align, const Twine &Name = "tmp");
1617 
1618   /// CreateAggTemp - Create a temporary memory object for the given
1619   /// aggregate type.
1620   AggValueSlot CreateAggTemp(QualType T, const Twine &Name = "tmp") {
1621     return AggValueSlot::forAddr(CreateMemTemp(T, Name),
1622                                  T.getQualifiers(),
1623                                  AggValueSlot::IsNotDestructed,
1624                                  AggValueSlot::DoesNotNeedGCBarriers,
1625                                  AggValueSlot::IsNotAliased);
1626   }
1627 
1628   /// Emit a cast to void* in the appropriate address space.
1629   llvm::Value *EmitCastToVoidPtr(llvm::Value *value);
1630 
1631   /// EvaluateExprAsBool - Perform the usual unary conversions on the specified
1632   /// expression and compare the result against zero, returning an Int1Ty value.
1633   llvm::Value *EvaluateExprAsBool(const Expr *E);
1634 
1635   /// EmitIgnoredExpr - Emit an expression in a context which ignores the result.
1636   void EmitIgnoredExpr(const Expr *E);
1637 
1638   /// EmitAnyExpr - Emit code to compute the specified expression which can have
1639   /// any type.  The result is returned as an RValue struct.  If this is an
1640   /// aggregate expression, the aggloc/agglocvolatile arguments indicate where
1641   /// the result should be returned.
1642   ///
1643   /// \param ignoreResult True if the resulting value isn't used.
1644   RValue EmitAnyExpr(const Expr *E,
1645                      AggValueSlot aggSlot = AggValueSlot::ignored(),
1646                      bool ignoreResult = false);
1647 
1648   // EmitVAListRef - Emit a "reference" to a va_list; this is either the address
1649   // or the value of the expression, depending on how va_list is defined.
1650   Address EmitVAListRef(const Expr *E);
1651 
1652   /// Emit a "reference" to a __builtin_ms_va_list; this is
1653   /// always the value of the expression, because a __builtin_ms_va_list is a
1654   /// pointer to a char.
1655   Address EmitMSVAListRef(const Expr *E);
1656 
1657   /// EmitAnyExprToTemp - Similary to EmitAnyExpr(), however, the result will
1658   /// always be accessible even if no aggregate location is provided.
1659   RValue EmitAnyExprToTemp(const Expr *E);
1660 
1661   /// EmitAnyExprToMem - Emits the code necessary to evaluate an
1662   /// arbitrary expression into the given memory location.
1663   void EmitAnyExprToMem(const Expr *E, Address Location,
1664                         Qualifiers Quals, bool IsInitializer);
1665 
1666   void EmitAnyExprToExn(const Expr *E, Address Addr);
1667 
1668   /// EmitExprAsInit - Emits the code necessary to initialize a
1669   /// location in memory with the given initializer.
1670   void EmitExprAsInit(const Expr *init, const ValueDecl *D, LValue lvalue,
1671                       bool capturedByInit);
1672 
1673   /// hasVolatileMember - returns true if aggregate type has a volatile
1674   /// member.
1675   bool hasVolatileMember(QualType T) {
1676     if (const RecordType *RT = T->getAs<RecordType>()) {
1677       const RecordDecl *RD = cast<RecordDecl>(RT->getDecl());
1678       return RD->hasVolatileMember();
1679     }
1680     return false;
1681   }
1682   /// EmitAggregateCopy - Emit an aggregate assignment.
1683   ///
1684   /// The difference to EmitAggregateCopy is that tail padding is not copied.
1685   /// This is required for correctness when assigning non-POD structures in C++.
1686   void EmitAggregateAssign(Address DestPtr, Address SrcPtr,
1687                            QualType EltTy) {
1688     bool IsVolatile = hasVolatileMember(EltTy);
1689     EmitAggregateCopy(DestPtr, SrcPtr, EltTy, IsVolatile, true);
1690   }
1691 
1692   void EmitAggregateCopyCtor(Address DestPtr, Address SrcPtr,
1693                              QualType DestTy, QualType SrcTy) {
1694     EmitAggregateCopy(DestPtr, SrcPtr, SrcTy, /*IsVolatile=*/false,
1695                       /*IsAssignment=*/false);
1696   }
1697 
1698   /// EmitAggregateCopy - Emit an aggregate copy.
1699   ///
1700   /// \param isVolatile - True iff either the source or the destination is
1701   /// volatile.
1702   /// \param isAssignment - If false, allow padding to be copied.  This often
1703   /// yields more efficient.
1704   void EmitAggregateCopy(Address DestPtr, Address SrcPtr,
1705                          QualType EltTy, bool isVolatile=false,
1706                          bool isAssignment = false);
1707 
1708   /// GetAddrOfLocalVar - Return the address of a local variable.
1709   Address GetAddrOfLocalVar(const VarDecl *VD) {
1710     auto it = LocalDeclMap.find(VD);
1711     assert(it != LocalDeclMap.end() &&
1712            "Invalid argument to GetAddrOfLocalVar(), no decl!");
1713     return it->second;
1714   }
1715 
1716   /// getOpaqueLValueMapping - Given an opaque value expression (which
1717   /// must be mapped to an l-value), return its mapping.
1718   const LValue &getOpaqueLValueMapping(const OpaqueValueExpr *e) {
1719     assert(OpaqueValueMapping::shouldBindAsLValue(e));
1720 
1721     llvm::DenseMap<const OpaqueValueExpr*,LValue>::iterator
1722       it = OpaqueLValues.find(e);
1723     assert(it != OpaqueLValues.end() && "no mapping for opaque value!");
1724     return it->second;
1725   }
1726 
1727   /// getOpaqueRValueMapping - Given an opaque value expression (which
1728   /// must be mapped to an r-value), return its mapping.
1729   const RValue &getOpaqueRValueMapping(const OpaqueValueExpr *e) {
1730     assert(!OpaqueValueMapping::shouldBindAsLValue(e));
1731 
1732     llvm::DenseMap<const OpaqueValueExpr*,RValue>::iterator
1733       it = OpaqueRValues.find(e);
1734     assert(it != OpaqueRValues.end() && "no mapping for opaque value!");
1735     return it->second;
1736   }
1737 
1738   /// getAccessedFieldNo - Given an encoded value and a result number, return
1739   /// the input field number being accessed.
1740   static unsigned getAccessedFieldNo(unsigned Idx, const llvm::Constant *Elts);
1741 
1742   llvm::BlockAddress *GetAddrOfLabel(const LabelDecl *L);
1743   llvm::BasicBlock *GetIndirectGotoBlock();
1744 
1745   /// EmitNullInitialization - Generate code to set a value of the given type to
1746   /// null, If the type contains data member pointers, they will be initialized
1747   /// to -1 in accordance with the Itanium C++ ABI.
1748   void EmitNullInitialization(Address DestPtr, QualType Ty);
1749 
1750   /// Emits a call to an LLVM variable-argument intrinsic, either
1751   /// \c llvm.va_start or \c llvm.va_end.
1752   /// \param ArgValue A reference to the \c va_list as emitted by either
1753   /// \c EmitVAListRef or \c EmitMSVAListRef.
1754   /// \param IsStart If \c true, emits a call to \c llvm.va_start; otherwise,
1755   /// calls \c llvm.va_end.
1756   llvm::Value *EmitVAStartEnd(llvm::Value *ArgValue, bool IsStart);
1757 
1758   /// Generate code to get an argument from the passed in pointer
1759   /// and update it accordingly.
1760   /// \param VE The \c VAArgExpr for which to generate code.
1761   /// \param VAListAddr Receives a reference to the \c va_list as emitted by
1762   /// either \c EmitVAListRef or \c EmitMSVAListRef.
1763   /// \returns A pointer to the argument.
1764   // FIXME: We should be able to get rid of this method and use the va_arg
1765   // instruction in LLVM instead once it works well enough.
1766   Address EmitVAArg(VAArgExpr *VE, Address &VAListAddr);
1767 
1768   /// emitArrayLength - Compute the length of an array, even if it's a
1769   /// VLA, and drill down to the base element type.
1770   llvm::Value *emitArrayLength(const ArrayType *arrayType,
1771                                QualType &baseType,
1772                                Address &addr);
1773 
1774   /// EmitVLASize - Capture all the sizes for the VLA expressions in
1775   /// the given variably-modified type and store them in the VLASizeMap.
1776   ///
1777   /// This function can be called with a null (unreachable) insert point.
1778   void EmitVariablyModifiedType(QualType Ty);
1779 
1780   /// getVLASize - Returns an LLVM value that corresponds to the size,
1781   /// in non-variably-sized elements, of a variable length array type,
1782   /// plus that largest non-variably-sized element type.  Assumes that
1783   /// the type has already been emitted with EmitVariablyModifiedType.
1784   std::pair<llvm::Value*,QualType> getVLASize(const VariableArrayType *vla);
1785   std::pair<llvm::Value*,QualType> getVLASize(QualType vla);
1786 
1787   /// LoadCXXThis - Load the value of 'this'. This function is only valid while
1788   /// generating code for an C++ member function.
1789   llvm::Value *LoadCXXThis() {
1790     assert(CXXThisValue && "no 'this' value for this function");
1791     return CXXThisValue;
1792   }
1793   Address LoadCXXThisAddress();
1794 
1795   /// LoadCXXVTT - Load the VTT parameter to base constructors/destructors have
1796   /// virtual bases.
1797   // FIXME: Every place that calls LoadCXXVTT is something
1798   // that needs to be abstracted properly.
1799   llvm::Value *LoadCXXVTT() {
1800     assert(CXXStructorImplicitParamValue && "no VTT value for this function");
1801     return CXXStructorImplicitParamValue;
1802   }
1803 
1804   /// GetAddressOfBaseOfCompleteClass - Convert the given pointer to a
1805   /// complete class to the given direct base.
1806   Address
1807   GetAddressOfDirectBaseInCompleteClass(Address Value,
1808                                         const CXXRecordDecl *Derived,
1809                                         const CXXRecordDecl *Base,
1810                                         bool BaseIsVirtual);
1811 
1812   static bool ShouldNullCheckClassCastValue(const CastExpr *Cast);
1813 
1814   /// GetAddressOfBaseClass - This function will add the necessary delta to the
1815   /// load of 'this' and returns address of the base class.
1816   Address GetAddressOfBaseClass(Address Value,
1817                                 const CXXRecordDecl *Derived,
1818                                 CastExpr::path_const_iterator PathBegin,
1819                                 CastExpr::path_const_iterator PathEnd,
1820                                 bool NullCheckValue, SourceLocation Loc);
1821 
1822   Address GetAddressOfDerivedClass(Address Value,
1823                                    const CXXRecordDecl *Derived,
1824                                    CastExpr::path_const_iterator PathBegin,
1825                                    CastExpr::path_const_iterator PathEnd,
1826                                    bool NullCheckValue);
1827 
1828   /// GetVTTParameter - Return the VTT parameter that should be passed to a
1829   /// base constructor/destructor with virtual bases.
1830   /// FIXME: VTTs are Itanium ABI-specific, so the definition should move
1831   /// to ItaniumCXXABI.cpp together with all the references to VTT.
1832   llvm::Value *GetVTTParameter(GlobalDecl GD, bool ForVirtualBase,
1833                                bool Delegating);
1834 
1835   void EmitDelegateCXXConstructorCall(const CXXConstructorDecl *Ctor,
1836                                       CXXCtorType CtorType,
1837                                       const FunctionArgList &Args,
1838                                       SourceLocation Loc);
1839   // It's important not to confuse this and the previous function. Delegating
1840   // constructors are the C++0x feature. The constructor delegate optimization
1841   // is used to reduce duplication in the base and complete consturctors where
1842   // they are substantially the same.
1843   void EmitDelegatingCXXConstructorCall(const CXXConstructorDecl *Ctor,
1844                                         const FunctionArgList &Args);
1845 
1846   void EmitCXXConstructorCall(const CXXConstructorDecl *D, CXXCtorType Type,
1847                               bool ForVirtualBase, bool Delegating,
1848                               Address This, const CXXConstructExpr *E);
1849 
1850   /// Emit assumption load for all bases. Requires to be be called only on
1851   /// most-derived class and not under construction of the object.
1852   void EmitVTableAssumptionLoads(const CXXRecordDecl *ClassDecl, Address This);
1853 
1854   /// Emit assumption that vptr load == global vtable.
1855   void EmitVTableAssumptionLoad(const VPtr &vptr, Address This);
1856 
1857   void EmitSynthesizedCXXCopyCtorCall(const CXXConstructorDecl *D,
1858                                       Address This, Address Src,
1859                                       const CXXConstructExpr *E);
1860 
1861   void EmitCXXAggrConstructorCall(const CXXConstructorDecl *D,
1862                                   const ConstantArrayType *ArrayTy,
1863                                   Address ArrayPtr,
1864                                   const CXXConstructExpr *E,
1865                                   bool ZeroInitialization = false);
1866 
1867   void EmitCXXAggrConstructorCall(const CXXConstructorDecl *D,
1868                                   llvm::Value *NumElements,
1869                                   Address ArrayPtr,
1870                                   const CXXConstructExpr *E,
1871                                   bool ZeroInitialization = false);
1872 
1873   static Destroyer destroyCXXObject;
1874 
1875   void EmitCXXDestructorCall(const CXXDestructorDecl *D, CXXDtorType Type,
1876                              bool ForVirtualBase, bool Delegating,
1877                              Address This);
1878 
1879   void EmitNewArrayInitializer(const CXXNewExpr *E, QualType elementType,
1880                                llvm::Type *ElementTy, Address NewPtr,
1881                                llvm::Value *NumElements,
1882                                llvm::Value *AllocSizeWithoutCookie);
1883 
1884   void EmitCXXTemporary(const CXXTemporary *Temporary, QualType TempType,
1885                         Address Ptr);
1886 
1887   llvm::Value *EmitLifetimeStart(uint64_t Size, llvm::Value *Addr);
1888   void EmitLifetimeEnd(llvm::Value *Size, llvm::Value *Addr);
1889 
1890   llvm::Value *EmitCXXNewExpr(const CXXNewExpr *E);
1891   void EmitCXXDeleteExpr(const CXXDeleteExpr *E);
1892 
1893   void EmitDeleteCall(const FunctionDecl *DeleteFD, llvm::Value *Ptr,
1894                       QualType DeleteTy);
1895 
1896   RValue EmitBuiltinNewDeleteCall(const FunctionProtoType *Type,
1897                                   const Expr *Arg, bool IsDelete);
1898 
1899   llvm::Value *EmitCXXTypeidExpr(const CXXTypeidExpr *E);
1900   llvm::Value *EmitDynamicCast(Address V, const CXXDynamicCastExpr *DCE);
1901   Address EmitCXXUuidofExpr(const CXXUuidofExpr *E);
1902 
1903   /// \brief Situations in which we might emit a check for the suitability of a
1904   ///        pointer or glvalue.
1905   enum TypeCheckKind {
1906     /// Checking the operand of a load. Must be suitably sized and aligned.
1907     TCK_Load,
1908     /// Checking the destination of a store. Must be suitably sized and aligned.
1909     TCK_Store,
1910     /// Checking the bound value in a reference binding. Must be suitably sized
1911     /// and aligned, but is not required to refer to an object (until the
1912     /// reference is used), per core issue 453.
1913     TCK_ReferenceBinding,
1914     /// Checking the object expression in a non-static data member access. Must
1915     /// be an object within its lifetime.
1916     TCK_MemberAccess,
1917     /// Checking the 'this' pointer for a call to a non-static member function.
1918     /// Must be an object within its lifetime.
1919     TCK_MemberCall,
1920     /// Checking the 'this' pointer for a constructor call.
1921     TCK_ConstructorCall,
1922     /// Checking the operand of a static_cast to a derived pointer type. Must be
1923     /// null or an object within its lifetime.
1924     TCK_DowncastPointer,
1925     /// Checking the operand of a static_cast to a derived reference type. Must
1926     /// be an object within its lifetime.
1927     TCK_DowncastReference,
1928     /// Checking the operand of a cast to a base object. Must be suitably sized
1929     /// and aligned.
1930     TCK_Upcast,
1931     /// Checking the operand of a cast to a virtual base object. Must be an
1932     /// object within its lifetime.
1933     TCK_UpcastToVirtualBase
1934   };
1935 
1936   /// \brief Whether any type-checking sanitizers are enabled. If \c false,
1937   /// calls to EmitTypeCheck can be skipped.
1938   bool sanitizePerformTypeCheck() const;
1939 
1940   /// \brief Emit a check that \p V is the address of storage of the
1941   /// appropriate size and alignment for an object of type \p Type.
1942   void EmitTypeCheck(TypeCheckKind TCK, SourceLocation Loc, llvm::Value *V,
1943                      QualType Type, CharUnits Alignment = CharUnits::Zero(),
1944                      bool SkipNullCheck = false);
1945 
1946   /// \brief Emit a check that \p Base points into an array object, which
1947   /// we can access at index \p Index. \p Accessed should be \c false if we
1948   /// this expression is used as an lvalue, for instance in "&Arr[Idx]".
1949   void EmitBoundsCheck(const Expr *E, const Expr *Base, llvm::Value *Index,
1950                        QualType IndexType, bool Accessed);
1951 
1952   llvm::Value *EmitScalarPrePostIncDec(const UnaryOperator *E, LValue LV,
1953                                        bool isInc, bool isPre);
1954   ComplexPairTy EmitComplexPrePostIncDec(const UnaryOperator *E, LValue LV,
1955                                          bool isInc, bool isPre);
1956 
1957   void EmitAlignmentAssumption(llvm::Value *PtrValue, unsigned Alignment,
1958                                llvm::Value *OffsetValue = nullptr) {
1959     Builder.CreateAlignmentAssumption(CGM.getDataLayout(), PtrValue, Alignment,
1960                                       OffsetValue);
1961   }
1962 
1963   //===--------------------------------------------------------------------===//
1964   //                            Declaration Emission
1965   //===--------------------------------------------------------------------===//
1966 
1967   /// EmitDecl - Emit a declaration.
1968   ///
1969   /// This function can be called with a null (unreachable) insert point.
1970   void EmitDecl(const Decl &D);
1971 
1972   /// EmitVarDecl - Emit a local variable declaration.
1973   ///
1974   /// This function can be called with a null (unreachable) insert point.
1975   void EmitVarDecl(const VarDecl &D);
1976 
1977   void EmitScalarInit(const Expr *init, const ValueDecl *D, LValue lvalue,
1978                       bool capturedByInit);
1979   void EmitScalarInit(llvm::Value *init, LValue lvalue);
1980 
1981   typedef void SpecialInitFn(CodeGenFunction &Init, const VarDecl &D,
1982                              llvm::Value *Address);
1983 
1984   /// \brief Determine whether the given initializer is trivial in the sense
1985   /// that it requires no code to be generated.
1986   bool isTrivialInitializer(const Expr *Init);
1987 
1988   /// EmitAutoVarDecl - Emit an auto variable declaration.
1989   ///
1990   /// This function can be called with a null (unreachable) insert point.
1991   void EmitAutoVarDecl(const VarDecl &D);
1992 
1993   class AutoVarEmission {
1994     friend class CodeGenFunction;
1995 
1996     const VarDecl *Variable;
1997 
1998     /// The address of the alloca.  Invalid if the variable was emitted
1999     /// as a global constant.
2000     Address Addr;
2001 
2002     llvm::Value *NRVOFlag;
2003 
2004     /// True if the variable is a __block variable.
2005     bool IsByRef;
2006 
2007     /// True if the variable is of aggregate type and has a constant
2008     /// initializer.
2009     bool IsConstantAggregate;
2010 
2011     /// Non-null if we should use lifetime annotations.
2012     llvm::Value *SizeForLifetimeMarkers;
2013 
2014     struct Invalid {};
2015     AutoVarEmission(Invalid) : Variable(nullptr), Addr(Address::invalid()) {}
2016 
2017     AutoVarEmission(const VarDecl &variable)
2018       : Variable(&variable), Addr(Address::invalid()), NRVOFlag(nullptr),
2019         IsByRef(false), IsConstantAggregate(false),
2020         SizeForLifetimeMarkers(nullptr) {}
2021 
2022     bool wasEmittedAsGlobal() const { return !Addr.isValid(); }
2023 
2024   public:
2025     static AutoVarEmission invalid() { return AutoVarEmission(Invalid()); }
2026 
2027     bool useLifetimeMarkers() const {
2028       return SizeForLifetimeMarkers != nullptr;
2029     }
2030     llvm::Value *getSizeForLifetimeMarkers() const {
2031       assert(useLifetimeMarkers());
2032       return SizeForLifetimeMarkers;
2033     }
2034 
2035     /// Returns the raw, allocated address, which is not necessarily
2036     /// the address of the object itself.
2037     Address getAllocatedAddress() const {
2038       return Addr;
2039     }
2040 
2041     /// Returns the address of the object within this declaration.
2042     /// Note that this does not chase the forwarding pointer for
2043     /// __block decls.
2044     Address getObjectAddress(CodeGenFunction &CGF) const {
2045       if (!IsByRef) return Addr;
2046 
2047       return CGF.emitBlockByrefAddress(Addr, Variable, /*forward*/ false);
2048     }
2049   };
2050   AutoVarEmission EmitAutoVarAlloca(const VarDecl &var);
2051   void EmitAutoVarInit(const AutoVarEmission &emission);
2052   void EmitAutoVarCleanups(const AutoVarEmission &emission);
2053   void emitAutoVarTypeCleanup(const AutoVarEmission &emission,
2054                               QualType::DestructionKind dtorKind);
2055 
2056   void EmitStaticVarDecl(const VarDecl &D,
2057                          llvm::GlobalValue::LinkageTypes Linkage);
2058 
2059   class ParamValue {
2060     llvm::Value *Value;
2061     unsigned Alignment;
2062     ParamValue(llvm::Value *V, unsigned A) : Value(V), Alignment(A) {}
2063   public:
2064     static ParamValue forDirect(llvm::Value *value) {
2065       return ParamValue(value, 0);
2066     }
2067     static ParamValue forIndirect(Address addr) {
2068       assert(!addr.getAlignment().isZero());
2069       return ParamValue(addr.getPointer(), addr.getAlignment().getQuantity());
2070     }
2071 
2072     bool isIndirect() const { return Alignment != 0; }
2073     llvm::Value *getAnyValue() const { return Value; }
2074 
2075     llvm::Value *getDirectValue() const {
2076       assert(!isIndirect());
2077       return Value;
2078     }
2079 
2080     Address getIndirectAddress() const {
2081       assert(isIndirect());
2082       return Address(Value, CharUnits::fromQuantity(Alignment));
2083     }
2084   };
2085 
2086   /// EmitParmDecl - Emit a ParmVarDecl or an ImplicitParamDecl.
2087   void EmitParmDecl(const VarDecl &D, ParamValue Arg, unsigned ArgNo);
2088 
2089   /// protectFromPeepholes - Protect a value that we're intending to
2090   /// store to the side, but which will probably be used later, from
2091   /// aggressive peepholing optimizations that might delete it.
2092   ///
2093   /// Pass the result to unprotectFromPeepholes to declare that
2094   /// protection is no longer required.
2095   ///
2096   /// There's no particular reason why this shouldn't apply to
2097   /// l-values, it's just that no existing peepholes work on pointers.
2098   PeepholeProtection protectFromPeepholes(RValue rvalue);
2099   void unprotectFromPeepholes(PeepholeProtection protection);
2100 
2101   //===--------------------------------------------------------------------===//
2102   //                             Statement Emission
2103   //===--------------------------------------------------------------------===//
2104 
2105   /// EmitStopPoint - Emit a debug stoppoint if we are emitting debug info.
2106   void EmitStopPoint(const Stmt *S);
2107 
2108   /// EmitStmt - Emit the code for the statement \arg S. It is legal to call
2109   /// this function even if there is no current insertion point.
2110   ///
2111   /// This function may clear the current insertion point; callers should use
2112   /// EnsureInsertPoint if they wish to subsequently generate code without first
2113   /// calling EmitBlock, EmitBranch, or EmitStmt.
2114   void EmitStmt(const Stmt *S);
2115 
2116   /// EmitSimpleStmt - Try to emit a "simple" statement which does not
2117   /// necessarily require an insertion point or debug information; typically
2118   /// because the statement amounts to a jump or a container of other
2119   /// statements.
2120   ///
2121   /// \return True if the statement was handled.
2122   bool EmitSimpleStmt(const Stmt *S);
2123 
2124   Address EmitCompoundStmt(const CompoundStmt &S, bool GetLast = false,
2125                            AggValueSlot AVS = AggValueSlot::ignored());
2126   Address EmitCompoundStmtWithoutScope(const CompoundStmt &S,
2127                                        bool GetLast = false,
2128                                        AggValueSlot AVS =
2129                                                 AggValueSlot::ignored());
2130 
2131   /// EmitLabel - Emit the block for the given label. It is legal to call this
2132   /// function even if there is no current insertion point.
2133   void EmitLabel(const LabelDecl *D); // helper for EmitLabelStmt.
2134 
2135   void EmitLabelStmt(const LabelStmt &S);
2136   void EmitAttributedStmt(const AttributedStmt &S);
2137   void EmitGotoStmt(const GotoStmt &S);
2138   void EmitIndirectGotoStmt(const IndirectGotoStmt &S);
2139   void EmitIfStmt(const IfStmt &S);
2140 
2141   void EmitWhileStmt(const WhileStmt &S,
2142                      ArrayRef<const Attr *> Attrs = None);
2143   void EmitDoStmt(const DoStmt &S, ArrayRef<const Attr *> Attrs = None);
2144   void EmitForStmt(const ForStmt &S,
2145                    ArrayRef<const Attr *> Attrs = None);
2146   void EmitReturnStmt(const ReturnStmt &S);
2147   void EmitDeclStmt(const DeclStmt &S);
2148   void EmitBreakStmt(const BreakStmt &S);
2149   void EmitContinueStmt(const ContinueStmt &S);
2150   void EmitSwitchStmt(const SwitchStmt &S);
2151   void EmitDefaultStmt(const DefaultStmt &S);
2152   void EmitCaseStmt(const CaseStmt &S);
2153   void EmitCaseStmtRange(const CaseStmt &S);
2154   void EmitAsmStmt(const AsmStmt &S);
2155 
2156   void EmitObjCForCollectionStmt(const ObjCForCollectionStmt &S);
2157   void EmitObjCAtTryStmt(const ObjCAtTryStmt &S);
2158   void EmitObjCAtThrowStmt(const ObjCAtThrowStmt &S);
2159   void EmitObjCAtSynchronizedStmt(const ObjCAtSynchronizedStmt &S);
2160   void EmitObjCAutoreleasePoolStmt(const ObjCAutoreleasePoolStmt &S);
2161 
2162   void EnterCXXTryStmt(const CXXTryStmt &S, bool IsFnTryBlock = false);
2163   void ExitCXXTryStmt(const CXXTryStmt &S, bool IsFnTryBlock = false);
2164 
2165   void EmitCXXTryStmt(const CXXTryStmt &S);
2166   void EmitSEHTryStmt(const SEHTryStmt &S);
2167   void EmitSEHLeaveStmt(const SEHLeaveStmt &S);
2168   void EnterSEHTryStmt(const SEHTryStmt &S);
2169   void ExitSEHTryStmt(const SEHTryStmt &S);
2170 
2171   void startOutlinedSEHHelper(CodeGenFunction &ParentCGF, bool IsFilter,
2172                               const Stmt *OutlinedStmt);
2173 
2174   llvm::Function *GenerateSEHFilterFunction(CodeGenFunction &ParentCGF,
2175                                             const SEHExceptStmt &Except);
2176 
2177   llvm::Function *GenerateSEHFinallyFunction(CodeGenFunction &ParentCGF,
2178                                              const SEHFinallyStmt &Finally);
2179 
2180   void EmitSEHExceptionCodeSave(CodeGenFunction &ParentCGF,
2181                                 llvm::Value *ParentFP,
2182                                 llvm::Value *EntryEBP);
2183   llvm::Value *EmitSEHExceptionCode();
2184   llvm::Value *EmitSEHExceptionInfo();
2185   llvm::Value *EmitSEHAbnormalTermination();
2186 
2187   /// Scan the outlined statement for captures from the parent function. For
2188   /// each capture, mark the capture as escaped and emit a call to
2189   /// llvm.localrecover. Insert the localrecover result into the LocalDeclMap.
2190   void EmitCapturedLocals(CodeGenFunction &ParentCGF, const Stmt *OutlinedStmt,
2191                           bool IsFilter);
2192 
2193   /// Recovers the address of a local in a parent function. ParentVar is the
2194   /// address of the variable used in the immediate parent function. It can
2195   /// either be an alloca or a call to llvm.localrecover if there are nested
2196   /// outlined functions. ParentFP is the frame pointer of the outermost parent
2197   /// frame.
2198   Address recoverAddrOfEscapedLocal(CodeGenFunction &ParentCGF,
2199                                     Address ParentVar,
2200                                     llvm::Value *ParentFP);
2201 
2202   void EmitCXXForRangeStmt(const CXXForRangeStmt &S,
2203                            ArrayRef<const Attr *> Attrs = None);
2204 
2205   LValue InitCapturedStruct(const CapturedStmt &S);
2206   llvm::Function *EmitCapturedStmt(const CapturedStmt &S, CapturedRegionKind K);
2207   llvm::Function *GenerateCapturedStmtFunction(const CapturedStmt &S);
2208   Address GenerateCapturedStmtArgument(const CapturedStmt &S);
2209   llvm::Function *GenerateOpenMPCapturedStmtFunction(const CapturedStmt &S);
2210   void GenerateOpenMPCapturedVars(const CapturedStmt &S,
2211                                   SmallVectorImpl<llvm::Value *> &CapturedVars);
2212   /// \brief Perform element by element copying of arrays with type \a
2213   /// OriginalType from \a SrcAddr to \a DestAddr using copying procedure
2214   /// generated by \a CopyGen.
2215   ///
2216   /// \param DestAddr Address of the destination array.
2217   /// \param SrcAddr Address of the source array.
2218   /// \param OriginalType Type of destination and source arrays.
2219   /// \param CopyGen Copying procedure that copies value of single array element
2220   /// to another single array element.
2221   void EmitOMPAggregateAssign(
2222       Address DestAddr, Address SrcAddr, QualType OriginalType,
2223       const llvm::function_ref<void(Address, Address)> &CopyGen);
2224   /// \brief Emit proper copying of data from one variable to another.
2225   ///
2226   /// \param OriginalType Original type of the copied variables.
2227   /// \param DestAddr Destination address.
2228   /// \param SrcAddr Source address.
2229   /// \param DestVD Destination variable used in \a CopyExpr (for arrays, has
2230   /// type of the base array element).
2231   /// \param SrcVD Source variable used in \a CopyExpr (for arrays, has type of
2232   /// the base array element).
2233   /// \param Copy Actual copygin expression for copying data from \a SrcVD to \a
2234   /// DestVD.
2235   void EmitOMPCopy(QualType OriginalType,
2236                    Address DestAddr, Address SrcAddr,
2237                    const VarDecl *DestVD, const VarDecl *SrcVD,
2238                    const Expr *Copy);
2239   /// \brief Emit atomic update code for constructs: \a X = \a X \a BO \a E or
2240   /// \a X = \a E \a BO \a E.
2241   ///
2242   /// \param X Value to be updated.
2243   /// \param E Update value.
2244   /// \param BO Binary operation for update operation.
2245   /// \param IsXLHSInRHSPart true if \a X is LHS in RHS part of the update
2246   /// expression, false otherwise.
2247   /// \param AO Atomic ordering of the generated atomic instructions.
2248   /// \param CommonGen Code generator for complex expressions that cannot be
2249   /// expressed through atomicrmw instruction.
2250   /// \returns <true, OldAtomicValue> if simple 'atomicrmw' instruction was
2251   /// generated, <false, RValue::get(nullptr)> otherwise.
2252   std::pair<bool, RValue> EmitOMPAtomicSimpleUpdateExpr(
2253       LValue X, RValue E, BinaryOperatorKind BO, bool IsXLHSInRHSPart,
2254       llvm::AtomicOrdering AO, SourceLocation Loc,
2255       const llvm::function_ref<RValue(RValue)> &CommonGen);
2256   bool EmitOMPFirstprivateClause(const OMPExecutableDirective &D,
2257                                  OMPPrivateScope &PrivateScope);
2258   void EmitOMPPrivateClause(const OMPExecutableDirective &D,
2259                             OMPPrivateScope &PrivateScope);
2260   /// \brief Emit code for copyin clause in \a D directive. The next code is
2261   /// generated at the start of outlined functions for directives:
2262   /// \code
2263   /// threadprivate_var1 = master_threadprivate_var1;
2264   /// operator=(threadprivate_var2, master_threadprivate_var2);
2265   /// ...
2266   /// __kmpc_barrier(&loc, global_tid);
2267   /// \endcode
2268   ///
2269   /// \param D OpenMP directive possibly with 'copyin' clause(s).
2270   /// \returns true if at least one copyin variable is found, false otherwise.
2271   bool EmitOMPCopyinClause(const OMPExecutableDirective &D);
2272   /// \brief Emit initial code for lastprivate variables. If some variable is
2273   /// not also firstprivate, then the default initialization is used. Otherwise
2274   /// initialization of this variable is performed by EmitOMPFirstprivateClause
2275   /// method.
2276   ///
2277   /// \param D Directive that may have 'lastprivate' directives.
2278   /// \param PrivateScope Private scope for capturing lastprivate variables for
2279   /// proper codegen in internal captured statement.
2280   ///
2281   /// \returns true if there is at least one lastprivate variable, false
2282   /// otherwise.
2283   bool EmitOMPLastprivateClauseInit(const OMPExecutableDirective &D,
2284                                     OMPPrivateScope &PrivateScope);
2285   /// \brief Emit final copying of lastprivate values to original variables at
2286   /// the end of the worksharing or simd directive.
2287   ///
2288   /// \param D Directive that has at least one 'lastprivate' directives.
2289   /// \param IsLastIterCond Boolean condition that must be set to 'i1 true' if
2290   /// it is the last iteration of the loop code in associated directive, or to
2291   /// 'i1 false' otherwise. If this item is nullptr, no final check is required.
2292   void EmitOMPLastprivateClauseFinal(const OMPExecutableDirective &D,
2293                                      llvm::Value *IsLastIterCond = nullptr);
2294   /// \brief Emit initial code for reduction variables. Creates reduction copies
2295   /// and initializes them with the values according to OpenMP standard.
2296   ///
2297   /// \param D Directive (possibly) with the 'reduction' clause.
2298   /// \param PrivateScope Private scope for capturing reduction variables for
2299   /// proper codegen in internal captured statement.
2300   ///
2301   void EmitOMPReductionClauseInit(const OMPExecutableDirective &D,
2302                                   OMPPrivateScope &PrivateScope);
2303   /// \brief Emit final update of reduction values to original variables at
2304   /// the end of the directive.
2305   ///
2306   /// \param D Directive that has at least one 'reduction' directives.
2307   void EmitOMPReductionClauseFinal(const OMPExecutableDirective &D);
2308   /// \brief Emit initial code for linear variables. Creates private copies
2309   /// and initializes them with the values according to OpenMP standard.
2310   ///
2311   /// \param D Directive (possibly) with the 'linear' clause.
2312   void EmitOMPLinearClauseInit(const OMPLoopDirective &D);
2313 
2314   void EmitOMPParallelDirective(const OMPParallelDirective &S);
2315   void EmitOMPSimdDirective(const OMPSimdDirective &S);
2316   void EmitOMPForDirective(const OMPForDirective &S);
2317   void EmitOMPForSimdDirective(const OMPForSimdDirective &S);
2318   void EmitOMPSectionsDirective(const OMPSectionsDirective &S);
2319   void EmitOMPSectionDirective(const OMPSectionDirective &S);
2320   void EmitOMPSingleDirective(const OMPSingleDirective &S);
2321   void EmitOMPMasterDirective(const OMPMasterDirective &S);
2322   void EmitOMPCriticalDirective(const OMPCriticalDirective &S);
2323   void EmitOMPParallelForDirective(const OMPParallelForDirective &S);
2324   void EmitOMPParallelForSimdDirective(const OMPParallelForSimdDirective &S);
2325   void EmitOMPParallelSectionsDirective(const OMPParallelSectionsDirective &S);
2326   void EmitOMPTaskDirective(const OMPTaskDirective &S);
2327   void EmitOMPTaskyieldDirective(const OMPTaskyieldDirective &S);
2328   void EmitOMPBarrierDirective(const OMPBarrierDirective &S);
2329   void EmitOMPTaskwaitDirective(const OMPTaskwaitDirective &S);
2330   void EmitOMPTaskgroupDirective(const OMPTaskgroupDirective &S);
2331   void EmitOMPFlushDirective(const OMPFlushDirective &S);
2332   void EmitOMPOrderedDirective(const OMPOrderedDirective &S);
2333   void EmitOMPAtomicDirective(const OMPAtomicDirective &S);
2334   void EmitOMPTargetDirective(const OMPTargetDirective &S);
2335   void EmitOMPTargetDataDirective(const OMPTargetDataDirective &S);
2336   void EmitOMPTeamsDirective(const OMPTeamsDirective &S);
2337   void
2338   EmitOMPCancellationPointDirective(const OMPCancellationPointDirective &S);
2339   void EmitOMPCancelDirective(const OMPCancelDirective &S);
2340   void EmitOMPTaskLoopDirective(const OMPTaskLoopDirective &S);
2341   void EmitOMPTaskLoopSimdDirective(const OMPTaskLoopSimdDirective &S);
2342 
2343   /// \brief Emit inner loop of the worksharing/simd construct.
2344   ///
2345   /// \param S Directive, for which the inner loop must be emitted.
2346   /// \param RequiresCleanup true, if directive has some associated private
2347   /// variables.
2348   /// \param LoopCond Bollean condition for loop continuation.
2349   /// \param IncExpr Increment expression for loop control variable.
2350   /// \param BodyGen Generator for the inner body of the inner loop.
2351   /// \param PostIncGen Genrator for post-increment code (required for ordered
2352   /// loop directvies).
2353   void EmitOMPInnerLoop(
2354       const Stmt &S, bool RequiresCleanup, const Expr *LoopCond,
2355       const Expr *IncExpr,
2356       const llvm::function_ref<void(CodeGenFunction &)> &BodyGen,
2357       const llvm::function_ref<void(CodeGenFunction &)> &PostIncGen);
2358 
2359   JumpDest getOMPCancelDestination(OpenMPDirectiveKind Kind);
2360 
2361 private:
2362 
2363   /// Helpers for the OpenMP loop directives.
2364   void EmitOMPLoopBody(const OMPLoopDirective &D, JumpDest LoopExit);
2365   void EmitOMPSimdInit(const OMPLoopDirective &D);
2366   void EmitOMPSimdFinal(const OMPLoopDirective &D);
2367   /// \brief Emit code for the worksharing loop-based directive.
2368   /// \return true, if this construct has any lastprivate clause, false -
2369   /// otherwise.
2370   bool EmitOMPWorksharingLoop(const OMPLoopDirective &S);
2371   void EmitOMPForOuterLoop(OpenMPScheduleClauseKind ScheduleKind,
2372                            const OMPLoopDirective &S,
2373                            OMPPrivateScope &LoopScope, bool Ordered,
2374                            Address LB, Address UB, Address ST,
2375                            Address IL, llvm::Value *Chunk);
2376   /// \brief Emit code for sections directive.
2377   OpenMPDirectiveKind EmitSections(const OMPExecutableDirective &S);
2378 
2379 public:
2380 
2381   //===--------------------------------------------------------------------===//
2382   //                         LValue Expression Emission
2383   //===--------------------------------------------------------------------===//
2384 
2385   /// GetUndefRValue - Get an appropriate 'undef' rvalue for the given type.
2386   RValue GetUndefRValue(QualType Ty);
2387 
2388   /// EmitUnsupportedRValue - Emit a dummy r-value using the type of E
2389   /// and issue an ErrorUnsupported style diagnostic (using the
2390   /// provided Name).
2391   RValue EmitUnsupportedRValue(const Expr *E,
2392                                const char *Name);
2393 
2394   /// EmitUnsupportedLValue - Emit a dummy l-value using the type of E and issue
2395   /// an ErrorUnsupported style diagnostic (using the provided Name).
2396   LValue EmitUnsupportedLValue(const Expr *E,
2397                                const char *Name);
2398 
2399   /// EmitLValue - Emit code to compute a designator that specifies the location
2400   /// of the expression.
2401   ///
2402   /// This can return one of two things: a simple address or a bitfield
2403   /// reference.  In either case, the LLVM Value* in the LValue structure is
2404   /// guaranteed to be an LLVM pointer type.
2405   ///
2406   /// If this returns a bitfield reference, nothing about the pointee type of
2407   /// the LLVM value is known: For example, it may not be a pointer to an
2408   /// integer.
2409   ///
2410   /// If this returns a normal address, and if the lvalue's C type is fixed
2411   /// size, this method guarantees that the returned pointer type will point to
2412   /// an LLVM type of the same size of the lvalue's type.  If the lvalue has a
2413   /// variable length type, this is not possible.
2414   ///
2415   LValue EmitLValue(const Expr *E);
2416 
2417   /// \brief Same as EmitLValue but additionally we generate checking code to
2418   /// guard against undefined behavior.  This is only suitable when we know
2419   /// that the address will be used to access the object.
2420   LValue EmitCheckedLValue(const Expr *E, TypeCheckKind TCK);
2421 
2422   RValue convertTempToRValue(Address addr, QualType type,
2423                              SourceLocation Loc);
2424 
2425   void EmitAtomicInit(Expr *E, LValue lvalue);
2426 
2427   bool LValueIsSuitableForInlineAtomic(LValue Src);
2428   bool typeIsSuitableForInlineAtomic(QualType Ty, bool IsVolatile) const;
2429 
2430   RValue EmitAtomicLoad(LValue LV, SourceLocation SL,
2431                         AggValueSlot Slot = AggValueSlot::ignored());
2432 
2433   RValue EmitAtomicLoad(LValue lvalue, SourceLocation loc,
2434                         llvm::AtomicOrdering AO, bool IsVolatile = false,
2435                         AggValueSlot slot = AggValueSlot::ignored());
2436 
2437   void EmitAtomicStore(RValue rvalue, LValue lvalue, bool isInit);
2438 
2439   void EmitAtomicStore(RValue rvalue, LValue lvalue, llvm::AtomicOrdering AO,
2440                        bool IsVolatile, bool isInit);
2441 
2442   std::pair<RValue, llvm::Value *> EmitAtomicCompareExchange(
2443       LValue Obj, RValue Expected, RValue Desired, SourceLocation Loc,
2444       llvm::AtomicOrdering Success = llvm::SequentiallyConsistent,
2445       llvm::AtomicOrdering Failure = llvm::SequentiallyConsistent,
2446       bool IsWeak = false, AggValueSlot Slot = AggValueSlot::ignored());
2447 
2448   void EmitAtomicUpdate(LValue LVal, llvm::AtomicOrdering AO,
2449                         const llvm::function_ref<RValue(RValue)> &UpdateOp,
2450                         bool IsVolatile);
2451 
2452   /// EmitToMemory - Change a scalar value from its value
2453   /// representation to its in-memory representation.
2454   llvm::Value *EmitToMemory(llvm::Value *Value, QualType Ty);
2455 
2456   /// EmitFromMemory - Change a scalar value from its memory
2457   /// representation to its value representation.
2458   llvm::Value *EmitFromMemory(llvm::Value *Value, QualType Ty);
2459 
2460   /// EmitLoadOfScalar - Load a scalar value from an address, taking
2461   /// care to appropriately convert from the memory representation to
2462   /// the LLVM value representation.
2463   llvm::Value *EmitLoadOfScalar(Address Addr, bool Volatile, QualType Ty,
2464                                 SourceLocation Loc,
2465                                 AlignmentSource AlignSource =
2466                                   AlignmentSource::Type,
2467                                 llvm::MDNode *TBAAInfo = nullptr,
2468                                 QualType TBAABaseTy = QualType(),
2469                                 uint64_t TBAAOffset = 0,
2470                                 bool isNontemporal = false);
2471 
2472   /// EmitLoadOfScalar - Load a scalar value from an address, taking
2473   /// care to appropriately convert from the memory representation to
2474   /// the LLVM value representation.  The l-value must be a simple
2475   /// l-value.
2476   llvm::Value *EmitLoadOfScalar(LValue lvalue, SourceLocation Loc);
2477 
2478   /// EmitStoreOfScalar - Store a scalar value to an address, taking
2479   /// care to appropriately convert from the memory representation to
2480   /// the LLVM value representation.
2481   void EmitStoreOfScalar(llvm::Value *Value, Address Addr,
2482                          bool Volatile, QualType Ty,
2483                          AlignmentSource AlignSource = AlignmentSource::Type,
2484                          llvm::MDNode *TBAAInfo = nullptr, bool isInit = false,
2485                          QualType TBAABaseTy = QualType(),
2486                          uint64_t TBAAOffset = 0, bool isNontemporal = false);
2487 
2488   /// EmitStoreOfScalar - Store a scalar value to an address, taking
2489   /// care to appropriately convert from the memory representation to
2490   /// the LLVM value representation.  The l-value must be a simple
2491   /// l-value.  The isInit flag indicates whether this is an initialization.
2492   /// If so, atomic qualifiers are ignored and the store is always non-atomic.
2493   void EmitStoreOfScalar(llvm::Value *value, LValue lvalue, bool isInit=false);
2494 
2495   /// EmitLoadOfLValue - Given an expression that represents a value lvalue,
2496   /// this method emits the address of the lvalue, then loads the result as an
2497   /// rvalue, returning the rvalue.
2498   RValue EmitLoadOfLValue(LValue V, SourceLocation Loc);
2499   RValue EmitLoadOfExtVectorElementLValue(LValue V);
2500   RValue EmitLoadOfBitfieldLValue(LValue LV);
2501   RValue EmitLoadOfGlobalRegLValue(LValue LV);
2502 
2503   /// EmitStoreThroughLValue - Store the specified rvalue into the specified
2504   /// lvalue, where both are guaranteed to the have the same type, and that type
2505   /// is 'Ty'.
2506   void EmitStoreThroughLValue(RValue Src, LValue Dst, bool isInit = false);
2507   void EmitStoreThroughExtVectorComponentLValue(RValue Src, LValue Dst);
2508   void EmitStoreThroughGlobalRegLValue(RValue Src, LValue Dst);
2509 
2510   /// EmitStoreThroughBitfieldLValue - Store Src into Dst with same constraints
2511   /// as EmitStoreThroughLValue.
2512   ///
2513   /// \param Result [out] - If non-null, this will be set to a Value* for the
2514   /// bit-field contents after the store, appropriate for use as the result of
2515   /// an assignment to the bit-field.
2516   void EmitStoreThroughBitfieldLValue(RValue Src, LValue Dst,
2517                                       llvm::Value **Result=nullptr);
2518 
2519   /// Emit an l-value for an assignment (simple or compound) of complex type.
2520   LValue EmitComplexAssignmentLValue(const BinaryOperator *E);
2521   LValue EmitComplexCompoundAssignmentLValue(const CompoundAssignOperator *E);
2522   LValue EmitScalarCompoundAssignWithComplex(const CompoundAssignOperator *E,
2523                                              llvm::Value *&Result);
2524 
2525   // Note: only available for agg return types
2526   LValue EmitBinaryOperatorLValue(const BinaryOperator *E);
2527   LValue EmitCompoundAssignmentLValue(const CompoundAssignOperator *E);
2528   // Note: only available for agg return types
2529   LValue EmitCallExprLValue(const CallExpr *E);
2530   // Note: only available for agg return types
2531   LValue EmitVAArgExprLValue(const VAArgExpr *E);
2532   LValue EmitDeclRefLValue(const DeclRefExpr *E);
2533   LValue EmitStringLiteralLValue(const StringLiteral *E);
2534   LValue EmitObjCEncodeExprLValue(const ObjCEncodeExpr *E);
2535   LValue EmitPredefinedLValue(const PredefinedExpr *E);
2536   LValue EmitUnaryOpLValue(const UnaryOperator *E);
2537   LValue EmitArraySubscriptExpr(const ArraySubscriptExpr *E,
2538                                 bool Accessed = false);
2539   LValue EmitOMPArraySectionExpr(const OMPArraySectionExpr *E,
2540                                  bool IsLowerBound = true);
2541   LValue EmitExtVectorElementExpr(const ExtVectorElementExpr *E);
2542   LValue EmitMemberExpr(const MemberExpr *E);
2543   LValue EmitObjCIsaExpr(const ObjCIsaExpr *E);
2544   LValue EmitCompoundLiteralLValue(const CompoundLiteralExpr *E);
2545   LValue EmitInitListLValue(const InitListExpr *E);
2546   LValue EmitConditionalOperatorLValue(const AbstractConditionalOperator *E);
2547   LValue EmitCastLValue(const CastExpr *E);
2548   LValue EmitMaterializeTemporaryExpr(const MaterializeTemporaryExpr *E);
2549   LValue EmitOpaqueValueLValue(const OpaqueValueExpr *e);
2550 
2551   Address EmitExtVectorElementLValue(LValue V);
2552 
2553   RValue EmitRValueForField(LValue LV, const FieldDecl *FD, SourceLocation Loc);
2554 
2555   Address EmitArrayToPointerDecay(const Expr *Array,
2556                                   AlignmentSource *AlignSource = nullptr);
2557 
2558   class ConstantEmission {
2559     llvm::PointerIntPair<llvm::Constant*, 1, bool> ValueAndIsReference;
2560     ConstantEmission(llvm::Constant *C, bool isReference)
2561       : ValueAndIsReference(C, isReference) {}
2562   public:
2563     ConstantEmission() {}
2564     static ConstantEmission forReference(llvm::Constant *C) {
2565       return ConstantEmission(C, true);
2566     }
2567     static ConstantEmission forValue(llvm::Constant *C) {
2568       return ConstantEmission(C, false);
2569     }
2570 
2571     explicit operator bool() const {
2572       return ValueAndIsReference.getOpaqueValue() != nullptr;
2573     }
2574 
2575     bool isReference() const { return ValueAndIsReference.getInt(); }
2576     LValue getReferenceLValue(CodeGenFunction &CGF, Expr *refExpr) const {
2577       assert(isReference());
2578       return CGF.MakeNaturalAlignAddrLValue(ValueAndIsReference.getPointer(),
2579                                             refExpr->getType());
2580     }
2581 
2582     llvm::Constant *getValue() const {
2583       assert(!isReference());
2584       return ValueAndIsReference.getPointer();
2585     }
2586   };
2587 
2588   ConstantEmission tryEmitAsConstant(DeclRefExpr *refExpr);
2589 
2590   RValue EmitPseudoObjectRValue(const PseudoObjectExpr *e,
2591                                 AggValueSlot slot = AggValueSlot::ignored());
2592   LValue EmitPseudoObjectLValue(const PseudoObjectExpr *e);
2593 
2594   llvm::Value *EmitIvarOffset(const ObjCInterfaceDecl *Interface,
2595                               const ObjCIvarDecl *Ivar);
2596   LValue EmitLValueForField(LValue Base, const FieldDecl* Field);
2597   LValue EmitLValueForLambdaField(const FieldDecl *Field);
2598 
2599   /// EmitLValueForFieldInitialization - Like EmitLValueForField, except that
2600   /// if the Field is a reference, this will return the address of the reference
2601   /// and not the address of the value stored in the reference.
2602   LValue EmitLValueForFieldInitialization(LValue Base,
2603                                           const FieldDecl* Field);
2604 
2605   LValue EmitLValueForIvar(QualType ObjectTy,
2606                            llvm::Value* Base, const ObjCIvarDecl *Ivar,
2607                            unsigned CVRQualifiers);
2608 
2609   LValue EmitCXXConstructLValue(const CXXConstructExpr *E);
2610   LValue EmitCXXBindTemporaryLValue(const CXXBindTemporaryExpr *E);
2611   LValue EmitLambdaLValue(const LambdaExpr *E);
2612   LValue EmitCXXTypeidLValue(const CXXTypeidExpr *E);
2613   LValue EmitCXXUuidofLValue(const CXXUuidofExpr *E);
2614 
2615   LValue EmitObjCMessageExprLValue(const ObjCMessageExpr *E);
2616   LValue EmitObjCIvarRefLValue(const ObjCIvarRefExpr *E);
2617   LValue EmitStmtExprLValue(const StmtExpr *E);
2618   LValue EmitPointerToDataMemberBinaryExpr(const BinaryOperator *E);
2619   LValue EmitObjCSelectorLValue(const ObjCSelectorExpr *E);
2620   void   EmitDeclRefExprDbgValue(const DeclRefExpr *E, llvm::Constant *Init);
2621 
2622   //===--------------------------------------------------------------------===//
2623   //                         Scalar Expression Emission
2624   //===--------------------------------------------------------------------===//
2625 
2626   /// EmitCall - Generate a call of the given function, expecting the given
2627   /// result type, and using the given argument list which specifies both the
2628   /// LLVM arguments and the types they were derived from.
2629   RValue EmitCall(const CGFunctionInfo &FnInfo, llvm::Value *Callee,
2630                   ReturnValueSlot ReturnValue, const CallArgList &Args,
2631                   CGCalleeInfo CalleeInfo = CGCalleeInfo(),
2632                   llvm::Instruction **callOrInvoke = nullptr);
2633 
2634   RValue EmitCall(QualType FnType, llvm::Value *Callee, const CallExpr *E,
2635                   ReturnValueSlot ReturnValue,
2636                   CGCalleeInfo CalleeInfo = CGCalleeInfo(),
2637                   llvm::Value *Chain = nullptr);
2638   RValue EmitCallExpr(const CallExpr *E,
2639                       ReturnValueSlot ReturnValue = ReturnValueSlot());
2640 
2641   void checkTargetFeatures(const CallExpr *E, const FunctionDecl *TargetDecl);
2642 
2643   llvm::CallInst *EmitRuntimeCall(llvm::Value *callee,
2644                                   const Twine &name = "");
2645   llvm::CallInst *EmitRuntimeCall(llvm::Value *callee,
2646                                   ArrayRef<llvm::Value*> args,
2647                                   const Twine &name = "");
2648   llvm::CallInst *EmitNounwindRuntimeCall(llvm::Value *callee,
2649                                           const Twine &name = "");
2650   llvm::CallInst *EmitNounwindRuntimeCall(llvm::Value *callee,
2651                                           ArrayRef<llvm::Value*> args,
2652                                           const Twine &name = "");
2653 
2654   llvm::CallSite EmitCallOrInvoke(llvm::Value *Callee,
2655                                   ArrayRef<llvm::Value *> Args,
2656                                   const Twine &Name = "");
2657   llvm::CallSite EmitRuntimeCallOrInvoke(llvm::Value *callee,
2658                                          ArrayRef<llvm::Value*> args,
2659                                          const Twine &name = "");
2660   llvm::CallSite EmitRuntimeCallOrInvoke(llvm::Value *callee,
2661                                          const Twine &name = "");
2662   void EmitNoreturnRuntimeCallOrInvoke(llvm::Value *callee,
2663                                        ArrayRef<llvm::Value*> args);
2664 
2665   llvm::Value *BuildAppleKextVirtualCall(const CXXMethodDecl *MD,
2666                                          NestedNameSpecifier *Qual,
2667                                          llvm::Type *Ty);
2668 
2669   llvm::Value *BuildAppleKextVirtualDestructorCall(const CXXDestructorDecl *DD,
2670                                                    CXXDtorType Type,
2671                                                    const CXXRecordDecl *RD);
2672 
2673   RValue
2674   EmitCXXMemberOrOperatorCall(const CXXMethodDecl *MD, llvm::Value *Callee,
2675                               ReturnValueSlot ReturnValue, llvm::Value *This,
2676                               llvm::Value *ImplicitParam,
2677                               QualType ImplicitParamTy, const CallExpr *E);
2678   RValue EmitCXXStructorCall(const CXXMethodDecl *MD, llvm::Value *Callee,
2679                              ReturnValueSlot ReturnValue, llvm::Value *This,
2680                              llvm::Value *ImplicitParam,
2681                              QualType ImplicitParamTy, const CallExpr *E,
2682                              StructorType Type);
2683   RValue EmitCXXMemberCallExpr(const CXXMemberCallExpr *E,
2684                                ReturnValueSlot ReturnValue);
2685   RValue EmitCXXMemberOrOperatorMemberCallExpr(const CallExpr *CE,
2686                                                const CXXMethodDecl *MD,
2687                                                ReturnValueSlot ReturnValue,
2688                                                bool HasQualifier,
2689                                                NestedNameSpecifier *Qualifier,
2690                                                bool IsArrow, const Expr *Base);
2691   // Compute the object pointer.
2692   Address EmitCXXMemberDataPointerAddress(const Expr *E, Address base,
2693                                           llvm::Value *memberPtr,
2694                                           const MemberPointerType *memberPtrType,
2695                                           AlignmentSource *AlignSource = nullptr);
2696   RValue EmitCXXMemberPointerCallExpr(const CXXMemberCallExpr *E,
2697                                       ReturnValueSlot ReturnValue);
2698 
2699   RValue EmitCXXOperatorMemberCallExpr(const CXXOperatorCallExpr *E,
2700                                        const CXXMethodDecl *MD,
2701                                        ReturnValueSlot ReturnValue);
2702 
2703   RValue EmitCUDAKernelCallExpr(const CUDAKernelCallExpr *E,
2704                                 ReturnValueSlot ReturnValue);
2705 
2706 
2707   RValue EmitBuiltinExpr(const FunctionDecl *FD,
2708                          unsigned BuiltinID, const CallExpr *E,
2709                          ReturnValueSlot ReturnValue);
2710 
2711   RValue EmitBlockCallExpr(const CallExpr *E, ReturnValueSlot ReturnValue);
2712 
2713   /// EmitTargetBuiltinExpr - Emit the given builtin call. Returns 0 if the call
2714   /// is unhandled by the current target.
2715   llvm::Value *EmitTargetBuiltinExpr(unsigned BuiltinID, const CallExpr *E);
2716 
2717   llvm::Value *EmitAArch64CompareBuiltinExpr(llvm::Value *Op, llvm::Type *Ty,
2718                                              const llvm::CmpInst::Predicate Fp,
2719                                              const llvm::CmpInst::Predicate Ip,
2720                                              const llvm::Twine &Name = "");
2721   llvm::Value *EmitARMBuiltinExpr(unsigned BuiltinID, const CallExpr *E);
2722 
2723   llvm::Value *EmitCommonNeonBuiltinExpr(unsigned BuiltinID,
2724                                          unsigned LLVMIntrinsic,
2725                                          unsigned AltLLVMIntrinsic,
2726                                          const char *NameHint,
2727                                          unsigned Modifier,
2728                                          const CallExpr *E,
2729                                          SmallVectorImpl<llvm::Value *> &Ops,
2730                                          Address PtrOp0, Address PtrOp1);
2731   llvm::Function *LookupNeonLLVMIntrinsic(unsigned IntrinsicID,
2732                                           unsigned Modifier, llvm::Type *ArgTy,
2733                                           const CallExpr *E);
2734   llvm::Value *EmitNeonCall(llvm::Function *F,
2735                             SmallVectorImpl<llvm::Value*> &O,
2736                             const char *name,
2737                             unsigned shift = 0, bool rightshift = false);
2738   llvm::Value *EmitNeonSplat(llvm::Value *V, llvm::Constant *Idx);
2739   llvm::Value *EmitNeonShiftVector(llvm::Value *V, llvm::Type *Ty,
2740                                    bool negateForRightShift);
2741   llvm::Value *EmitNeonRShiftImm(llvm::Value *Vec, llvm::Value *Amt,
2742                                  llvm::Type *Ty, bool usgn, const char *name);
2743   llvm::Value *vectorWrapScalar16(llvm::Value *Op);
2744   llvm::Value *EmitAArch64BuiltinExpr(unsigned BuiltinID, const CallExpr *E);
2745 
2746   llvm::Value *BuildVector(ArrayRef<llvm::Value*> Ops);
2747   llvm::Value *EmitX86BuiltinExpr(unsigned BuiltinID, const CallExpr *E);
2748   llvm::Value *EmitPPCBuiltinExpr(unsigned BuiltinID, const CallExpr *E);
2749   llvm::Value *EmitAMDGPUBuiltinExpr(unsigned BuiltinID, const CallExpr *E);
2750   llvm::Value *EmitSystemZBuiltinExpr(unsigned BuiltinID, const CallExpr *E);
2751   llvm::Value *EmitNVPTXBuiltinExpr(unsigned BuiltinID, const CallExpr *E);
2752   llvm::Value *EmitWebAssemblyBuiltinExpr(unsigned BuiltinID,
2753                                           const CallExpr *E);
2754 
2755   llvm::Value *EmitObjCProtocolExpr(const ObjCProtocolExpr *E);
2756   llvm::Value *EmitObjCStringLiteral(const ObjCStringLiteral *E);
2757   llvm::Value *EmitObjCBoxedExpr(const ObjCBoxedExpr *E);
2758   llvm::Value *EmitObjCArrayLiteral(const ObjCArrayLiteral *E);
2759   llvm::Value *EmitObjCDictionaryLiteral(const ObjCDictionaryLiteral *E);
2760   llvm::Value *EmitObjCCollectionLiteral(const Expr *E,
2761                                 const ObjCMethodDecl *MethodWithObjects);
2762   llvm::Value *EmitObjCSelectorExpr(const ObjCSelectorExpr *E);
2763   RValue EmitObjCMessageExpr(const ObjCMessageExpr *E,
2764                              ReturnValueSlot Return = ReturnValueSlot());
2765 
2766   /// Retrieves the default cleanup kind for an ARC cleanup.
2767   /// Except under -fobjc-arc-eh, ARC cleanups are normal-only.
2768   CleanupKind getARCCleanupKind() {
2769     return CGM.getCodeGenOpts().ObjCAutoRefCountExceptions
2770              ? NormalAndEHCleanup : NormalCleanup;
2771   }
2772 
2773   // ARC primitives.
2774   void EmitARCInitWeak(Address addr, llvm::Value *value);
2775   void EmitARCDestroyWeak(Address addr);
2776   llvm::Value *EmitARCLoadWeak(Address addr);
2777   llvm::Value *EmitARCLoadWeakRetained(Address addr);
2778   llvm::Value *EmitARCStoreWeak(Address addr, llvm::Value *value, bool ignored);
2779   void EmitARCCopyWeak(Address dst, Address src);
2780   void EmitARCMoveWeak(Address dst, Address src);
2781   llvm::Value *EmitARCRetainAutorelease(QualType type, llvm::Value *value);
2782   llvm::Value *EmitARCRetainAutoreleaseNonBlock(llvm::Value *value);
2783   llvm::Value *EmitARCStoreStrong(LValue lvalue, llvm::Value *value,
2784                                   bool resultIgnored);
2785   llvm::Value *EmitARCStoreStrongCall(Address addr, llvm::Value *value,
2786                                       bool resultIgnored);
2787   llvm::Value *EmitARCRetain(QualType type, llvm::Value *value);
2788   llvm::Value *EmitARCRetainNonBlock(llvm::Value *value);
2789   llvm::Value *EmitARCRetainBlock(llvm::Value *value, bool mandatory);
2790   void EmitARCDestroyStrong(Address addr, ARCPreciseLifetime_t precise);
2791   void EmitARCRelease(llvm::Value *value, ARCPreciseLifetime_t precise);
2792   llvm::Value *EmitARCAutorelease(llvm::Value *value);
2793   llvm::Value *EmitARCAutoreleaseReturnValue(llvm::Value *value);
2794   llvm::Value *EmitARCRetainAutoreleaseReturnValue(llvm::Value *value);
2795   llvm::Value *EmitARCRetainAutoreleasedReturnValue(llvm::Value *value);
2796 
2797   std::pair<LValue,llvm::Value*>
2798   EmitARCStoreAutoreleasing(const BinaryOperator *e);
2799   std::pair<LValue,llvm::Value*>
2800   EmitARCStoreStrong(const BinaryOperator *e, bool ignored);
2801 
2802   llvm::Value *EmitObjCThrowOperand(const Expr *expr);
2803   llvm::Value *EmitObjCConsumeObject(QualType T, llvm::Value *Ptr);
2804   llvm::Value *EmitObjCExtendObjectLifetime(QualType T, llvm::Value *Ptr);
2805 
2806   llvm::Value *EmitARCExtendBlockObject(const Expr *expr);
2807   llvm::Value *EmitARCRetainScalarExpr(const Expr *expr);
2808   llvm::Value *EmitARCRetainAutoreleaseScalarExpr(const Expr *expr);
2809 
2810   void EmitARCIntrinsicUse(ArrayRef<llvm::Value*> values);
2811 
2812   static Destroyer destroyARCStrongImprecise;
2813   static Destroyer destroyARCStrongPrecise;
2814   static Destroyer destroyARCWeak;
2815 
2816   void EmitObjCAutoreleasePoolPop(llvm::Value *Ptr);
2817   llvm::Value *EmitObjCAutoreleasePoolPush();
2818   llvm::Value *EmitObjCMRRAutoreleasePoolPush();
2819   void EmitObjCAutoreleasePoolCleanup(llvm::Value *Ptr);
2820   void EmitObjCMRRAutoreleasePoolPop(llvm::Value *Ptr);
2821 
2822   /// \brief Emits a reference binding to the passed in expression.
2823   RValue EmitReferenceBindingToExpr(const Expr *E);
2824 
2825   //===--------------------------------------------------------------------===//
2826   //                           Expression Emission
2827   //===--------------------------------------------------------------------===//
2828 
2829   // Expressions are broken into three classes: scalar, complex, aggregate.
2830 
2831   /// EmitScalarExpr - Emit the computation of the specified expression of LLVM
2832   /// scalar type, returning the result.
2833   llvm::Value *EmitScalarExpr(const Expr *E , bool IgnoreResultAssign = false);
2834 
2835   /// Emit a conversion from the specified type to the specified destination
2836   /// type, both of which are LLVM scalar types.
2837   llvm::Value *EmitScalarConversion(llvm::Value *Src, QualType SrcTy,
2838                                     QualType DstTy, SourceLocation Loc);
2839 
2840   /// Emit a conversion from the specified complex type to the specified
2841   /// destination type, where the destination type is an LLVM scalar type.
2842   llvm::Value *EmitComplexToScalarConversion(ComplexPairTy Src, QualType SrcTy,
2843                                              QualType DstTy,
2844                                              SourceLocation Loc);
2845 
2846   /// EmitAggExpr - Emit the computation of the specified expression
2847   /// of aggregate type.  The result is computed into the given slot,
2848   /// which may be null to indicate that the value is not needed.
2849   void EmitAggExpr(const Expr *E, AggValueSlot AS);
2850 
2851   /// EmitAggExprToLValue - Emit the computation of the specified expression of
2852   /// aggregate type into a temporary LValue.
2853   LValue EmitAggExprToLValue(const Expr *E);
2854 
2855   /// EmitExtendGCLifetime - Given a pointer to an Objective-C object,
2856   /// make sure it survives garbage collection until this point.
2857   void EmitExtendGCLifetime(llvm::Value *object);
2858 
2859   /// EmitComplexExpr - Emit the computation of the specified expression of
2860   /// complex type, returning the result.
2861   ComplexPairTy EmitComplexExpr(const Expr *E,
2862                                 bool IgnoreReal = false,
2863                                 bool IgnoreImag = false);
2864 
2865   /// EmitComplexExprIntoLValue - Emit the given expression of complex
2866   /// type and place its result into the specified l-value.
2867   void EmitComplexExprIntoLValue(const Expr *E, LValue dest, bool isInit);
2868 
2869   /// EmitStoreOfComplex - Store a complex number into the specified l-value.
2870   void EmitStoreOfComplex(ComplexPairTy V, LValue dest, bool isInit);
2871 
2872   /// EmitLoadOfComplex - Load a complex number from the specified l-value.
2873   ComplexPairTy EmitLoadOfComplex(LValue src, SourceLocation loc);
2874 
2875   Address emitAddrOfRealComponent(Address complex, QualType complexType);
2876   Address emitAddrOfImagComponent(Address complex, QualType complexType);
2877 
2878   /// AddInitializerToStaticVarDecl - Add the initializer for 'D' to the
2879   /// global variable that has already been created for it.  If the initializer
2880   /// has a different type than GV does, this may free GV and return a different
2881   /// one.  Otherwise it just returns GV.
2882   llvm::GlobalVariable *
2883   AddInitializerToStaticVarDecl(const VarDecl &D,
2884                                 llvm::GlobalVariable *GV);
2885 
2886 
2887   /// EmitCXXGlobalVarDeclInit - Create the initializer for a C++
2888   /// variable with global storage.
2889   void EmitCXXGlobalVarDeclInit(const VarDecl &D, llvm::Constant *DeclPtr,
2890                                 bool PerformInit);
2891 
2892   llvm::Constant *createAtExitStub(const VarDecl &VD, llvm::Constant *Dtor,
2893                                    llvm::Constant *Addr);
2894 
2895   /// Call atexit() with a function that passes the given argument to
2896   /// the given function.
2897   void registerGlobalDtorWithAtExit(const VarDecl &D, llvm::Constant *fn,
2898                                     llvm::Constant *addr);
2899 
2900   /// Emit code in this function to perform a guarded variable
2901   /// initialization.  Guarded initializations are used when it's not
2902   /// possible to prove that an initialization will be done exactly
2903   /// once, e.g. with a static local variable or a static data member
2904   /// of a class template.
2905   void EmitCXXGuardedInit(const VarDecl &D, llvm::GlobalVariable *DeclPtr,
2906                           bool PerformInit);
2907 
2908   /// GenerateCXXGlobalInitFunc - Generates code for initializing global
2909   /// variables.
2910   void GenerateCXXGlobalInitFunc(llvm::Function *Fn,
2911                                  ArrayRef<llvm::Function *> CXXThreadLocals,
2912                                  Address Guard = Address::invalid());
2913 
2914   /// GenerateCXXGlobalDtorsFunc - Generates code for destroying global
2915   /// variables.
2916   void GenerateCXXGlobalDtorsFunc(llvm::Function *Fn,
2917                                   const std::vector<std::pair<llvm::WeakVH,
2918                                   llvm::Constant*> > &DtorsAndObjects);
2919 
2920   void GenerateCXXGlobalVarDeclInitFunc(llvm::Function *Fn,
2921                                         const VarDecl *D,
2922                                         llvm::GlobalVariable *Addr,
2923                                         bool PerformInit);
2924 
2925   void EmitCXXConstructExpr(const CXXConstructExpr *E, AggValueSlot Dest);
2926 
2927   void EmitSynthesizedCXXCopyCtor(Address Dest, Address Src, const Expr *Exp);
2928 
2929   void enterFullExpression(const ExprWithCleanups *E) {
2930     if (E->getNumObjects() == 0) return;
2931     enterNonTrivialFullExpression(E);
2932   }
2933   void enterNonTrivialFullExpression(const ExprWithCleanups *E);
2934 
2935   void EmitCXXThrowExpr(const CXXThrowExpr *E, bool KeepInsertionPoint = true);
2936 
2937   void EmitLambdaExpr(const LambdaExpr *E, AggValueSlot Dest);
2938 
2939   RValue EmitAtomicExpr(AtomicExpr *E);
2940 
2941   //===--------------------------------------------------------------------===//
2942   //                         Annotations Emission
2943   //===--------------------------------------------------------------------===//
2944 
2945   /// Emit an annotation call (intrinsic or builtin).
2946   llvm::Value *EmitAnnotationCall(llvm::Value *AnnotationFn,
2947                                   llvm::Value *AnnotatedVal,
2948                                   StringRef AnnotationStr,
2949                                   SourceLocation Location);
2950 
2951   /// Emit local annotations for the local variable V, declared by D.
2952   void EmitVarAnnotations(const VarDecl *D, llvm::Value *V);
2953 
2954   /// Emit field annotations for the given field & value. Returns the
2955   /// annotation result.
2956   Address EmitFieldAnnotations(const FieldDecl *D, Address V);
2957 
2958   //===--------------------------------------------------------------------===//
2959   //                             Internal Helpers
2960   //===--------------------------------------------------------------------===//
2961 
2962   /// ContainsLabel - Return true if the statement contains a label in it.  If
2963   /// this statement is not executed normally, it not containing a label means
2964   /// that we can just remove the code.
2965   static bool ContainsLabel(const Stmt *S, bool IgnoreCaseStmts = false);
2966 
2967   /// containsBreak - Return true if the statement contains a break out of it.
2968   /// If the statement (recursively) contains a switch or loop with a break
2969   /// inside of it, this is fine.
2970   static bool containsBreak(const Stmt *S);
2971 
2972   /// ConstantFoldsToSimpleInteger - If the specified expression does not fold
2973   /// to a constant, or if it does but contains a label, return false.  If it
2974   /// constant folds return true and set the boolean result in Result.
2975   bool ConstantFoldsToSimpleInteger(const Expr *Cond, bool &Result);
2976 
2977   /// ConstantFoldsToSimpleInteger - If the specified expression does not fold
2978   /// to a constant, or if it does but contains a label, return false.  If it
2979   /// constant folds return true and set the folded value.
2980   bool ConstantFoldsToSimpleInteger(const Expr *Cond, llvm::APSInt &Result);
2981 
2982   /// EmitBranchOnBoolExpr - Emit a branch on a boolean condition (e.g. for an
2983   /// if statement) to the specified blocks.  Based on the condition, this might
2984   /// try to simplify the codegen of the conditional based on the branch.
2985   /// TrueCount should be the number of times we expect the condition to
2986   /// evaluate to true based on PGO data.
2987   void EmitBranchOnBoolExpr(const Expr *Cond, llvm::BasicBlock *TrueBlock,
2988                             llvm::BasicBlock *FalseBlock, uint64_t TrueCount);
2989 
2990   /// \brief Emit a description of a type in a format suitable for passing to
2991   /// a runtime sanitizer handler.
2992   llvm::Constant *EmitCheckTypeDescriptor(QualType T);
2993 
2994   /// \brief Convert a value into a format suitable for passing to a runtime
2995   /// sanitizer handler.
2996   llvm::Value *EmitCheckValue(llvm::Value *V);
2997 
2998   /// \brief Emit a description of a source location in a format suitable for
2999   /// passing to a runtime sanitizer handler.
3000   llvm::Constant *EmitCheckSourceLocation(SourceLocation Loc);
3001 
3002   /// \brief Create a basic block that will call a handler function in a
3003   /// sanitizer runtime with the provided arguments, and create a conditional
3004   /// branch to it.
3005   void EmitCheck(ArrayRef<std::pair<llvm::Value *, SanitizerMask>> Checked,
3006                  StringRef CheckName, ArrayRef<llvm::Constant *> StaticArgs,
3007                  ArrayRef<llvm::Value *> DynamicArgs);
3008 
3009   /// \brief Create a basic block that will call the trap intrinsic, and emit a
3010   /// conditional branch to it, for the -ftrapv checks.
3011   void EmitTrapCheck(llvm::Value *Checked);
3012 
3013   /// \brief Emit a call to trap or debugtrap and attach function attribute
3014   /// "trap-func-name" if specified.
3015   llvm::CallInst *EmitTrapCall(llvm::Intrinsic::ID IntrID);
3016 
3017   /// \brief Create a check for a function parameter that may potentially be
3018   /// declared as non-null.
3019   void EmitNonNullArgCheck(RValue RV, QualType ArgType, SourceLocation ArgLoc,
3020                            const FunctionDecl *FD, unsigned ParmNum);
3021 
3022   /// EmitCallArg - Emit a single call argument.
3023   void EmitCallArg(CallArgList &args, const Expr *E, QualType ArgType);
3024 
3025   /// EmitDelegateCallArg - We are performing a delegate call; that
3026   /// is, the current function is delegating to another one.  Produce
3027   /// a r-value suitable for passing the given parameter.
3028   void EmitDelegateCallArg(CallArgList &args, const VarDecl *param,
3029                            SourceLocation loc);
3030 
3031   /// SetFPAccuracy - Set the minimum required accuracy of the given floating
3032   /// point operation, expressed as the maximum relative error in ulp.
3033   void SetFPAccuracy(llvm::Value *Val, float Accuracy);
3034 
3035 private:
3036   llvm::MDNode *getRangeForLoadFromType(QualType Ty);
3037   void EmitReturnOfRValue(RValue RV, QualType Ty);
3038 
3039   void deferPlaceholderReplacement(llvm::Instruction *Old, llvm::Value *New);
3040 
3041   llvm::SmallVector<std::pair<llvm::Instruction *, llvm::Value *>, 4>
3042   DeferredReplacements;
3043 
3044   /// Set the address of a local variable.
3045   void setAddrOfLocalVar(const VarDecl *VD, Address Addr) {
3046     assert(!LocalDeclMap.count(VD) && "Decl already exists in LocalDeclMap!");
3047     LocalDeclMap.insert({VD, Addr});
3048   }
3049 
3050   /// ExpandTypeFromArgs - Reconstruct a structure of type \arg Ty
3051   /// from function arguments into \arg Dst. See ABIArgInfo::Expand.
3052   ///
3053   /// \param AI - The first function argument of the expansion.
3054   void ExpandTypeFromArgs(QualType Ty, LValue Dst,
3055                           SmallVectorImpl<llvm::Argument *>::iterator &AI);
3056 
3057   /// ExpandTypeToArgs - Expand an RValue \arg RV, with the LLVM type for \arg
3058   /// Ty, into individual arguments on the provided vector \arg IRCallArgs,
3059   /// starting at index \arg IRCallArgPos. See ABIArgInfo::Expand.
3060   void ExpandTypeToArgs(QualType Ty, RValue RV, llvm::FunctionType *IRFuncTy,
3061                         SmallVectorImpl<llvm::Value *> &IRCallArgs,
3062                         unsigned &IRCallArgPos);
3063 
3064   llvm::Value* EmitAsmInput(const TargetInfo::ConstraintInfo &Info,
3065                             const Expr *InputExpr, std::string &ConstraintStr);
3066 
3067   llvm::Value* EmitAsmInputLValue(const TargetInfo::ConstraintInfo &Info,
3068                                   LValue InputValue, QualType InputType,
3069                                   std::string &ConstraintStr,
3070                                   SourceLocation Loc);
3071 
3072   /// \brief Attempts to statically evaluate the object size of E. If that
3073   /// fails, emits code to figure the size of E out for us. This is
3074   /// pass_object_size aware.
3075   llvm::Value *evaluateOrEmitBuiltinObjectSize(const Expr *E, unsigned Type,
3076                                                llvm::IntegerType *ResType);
3077 
3078   /// \brief Emits the size of E, as required by __builtin_object_size. This
3079   /// function is aware of pass_object_size parameters, and will act accordingly
3080   /// if E is a parameter with the pass_object_size attribute.
3081   llvm::Value *emitBuiltinObjectSize(const Expr *E, unsigned Type,
3082                                      llvm::IntegerType *ResType);
3083 
3084 public:
3085 #ifndef NDEBUG
3086   // Determine whether the given argument is an Objective-C method
3087   // that may have type parameters in its signature.
3088   static bool isObjCMethodWithTypeParams(const ObjCMethodDecl *method) {
3089     const DeclContext *dc = method->getDeclContext();
3090     if (const ObjCInterfaceDecl *classDecl= dyn_cast<ObjCInterfaceDecl>(dc)) {
3091       return classDecl->getTypeParamListAsWritten();
3092     }
3093 
3094     if (const ObjCCategoryDecl *catDecl = dyn_cast<ObjCCategoryDecl>(dc)) {
3095       return catDecl->getTypeParamList();
3096     }
3097 
3098     return false;
3099   }
3100 
3101   template<typename T>
3102   static bool isObjCMethodWithTypeParams(const T *) { return false; }
3103 #endif
3104 
3105   /// EmitCallArgs - Emit call arguments for a function.
3106   template <typename T>
3107   void EmitCallArgs(CallArgList &Args, const T *CallArgTypeInfo,
3108                     llvm::iterator_range<CallExpr::const_arg_iterator> ArgRange,
3109                     const FunctionDecl *CalleeDecl = nullptr,
3110                     unsigned ParamsToSkip = 0) {
3111     SmallVector<QualType, 16> ArgTypes;
3112     CallExpr::const_arg_iterator Arg = ArgRange.begin();
3113 
3114     assert((ParamsToSkip == 0 || CallArgTypeInfo) &&
3115            "Can't skip parameters if type info is not provided");
3116     if (CallArgTypeInfo) {
3117 #ifndef NDEBUG
3118       bool isGenericMethod = isObjCMethodWithTypeParams(CallArgTypeInfo);
3119 #endif
3120 
3121       // First, use the argument types that the type info knows about
3122       for (auto I = CallArgTypeInfo->param_type_begin() + ParamsToSkip,
3123                 E = CallArgTypeInfo->param_type_end();
3124            I != E; ++I, ++Arg) {
3125         assert(Arg != ArgRange.end() && "Running over edge of argument list!");
3126         assert((isGenericMethod ||
3127                 ((*I)->isVariablyModifiedType() ||
3128                  (*I).getNonReferenceType()->isObjCRetainableType() ||
3129                  getContext()
3130                          .getCanonicalType((*I).getNonReferenceType())
3131                          .getTypePtr() ==
3132                      getContext()
3133                          .getCanonicalType((*Arg)->getType())
3134                          .getTypePtr())) &&
3135                "type mismatch in call argument!");
3136         ArgTypes.push_back(*I);
3137       }
3138     }
3139 
3140     // Either we've emitted all the call args, or we have a call to variadic
3141     // function.
3142     assert((Arg == ArgRange.end() || !CallArgTypeInfo ||
3143             CallArgTypeInfo->isVariadic()) &&
3144            "Extra arguments in non-variadic function!");
3145 
3146     // If we still have any arguments, emit them using the type of the argument.
3147     for (auto *A : llvm::make_range(Arg, ArgRange.end()))
3148       ArgTypes.push_back(getVarArgType(A));
3149 
3150     EmitCallArgs(Args, ArgTypes, ArgRange, CalleeDecl, ParamsToSkip);
3151   }
3152 
3153   void EmitCallArgs(CallArgList &Args, ArrayRef<QualType> ArgTypes,
3154                     llvm::iterator_range<CallExpr::const_arg_iterator> ArgRange,
3155                     const FunctionDecl *CalleeDecl = nullptr,
3156                     unsigned ParamsToSkip = 0);
3157 
3158   /// EmitPointerWithAlignment - Given an expression with a pointer
3159   /// type, emit the value and compute our best estimate of the
3160   /// alignment of the pointee.
3161   ///
3162   /// Note that this function will conservatively fall back on the type
3163   /// when it doesn't
3164   ///
3165   /// \param Source - If non-null, this will be initialized with
3166   ///   information about the source of the alignment.  Note that this
3167   ///   function will conservatively fall back on the type when it
3168   ///   doesn't recognize the expression, which means that sometimes
3169   ///
3170   ///   a worst-case One
3171   ///   reasonable way to use this information is when there's a
3172   ///   language guarantee that the pointer must be aligned to some
3173   ///   stricter value, and we're simply trying to ensure that
3174   ///   sufficiently obvious uses of under-aligned objects don't get
3175   ///   miscompiled; for example, a placement new into the address of
3176   ///   a local variable.  In such a case, it's quite reasonable to
3177   ///   just ignore the returned alignment when it isn't from an
3178   ///   explicit source.
3179   Address EmitPointerWithAlignment(const Expr *Addr,
3180                                    AlignmentSource *Source = nullptr);
3181 
3182 private:
3183   QualType getVarArgType(const Expr *Arg);
3184 
3185   const TargetCodeGenInfo &getTargetHooks() const {
3186     return CGM.getTargetCodeGenInfo();
3187   }
3188 
3189   void EmitDeclMetadata();
3190 
3191   BlockByrefHelpers *buildByrefHelpers(llvm::StructType &byrefType,
3192                                   const AutoVarEmission &emission);
3193 
3194   void AddObjCARCExceptionMetadata(llvm::Instruction *Inst);
3195 
3196   llvm::Value *GetValueForARMHint(unsigned BuiltinID);
3197 };
3198 
3199 /// Helper class with most of the code for saving a value for a
3200 /// conditional expression cleanup.
3201 struct DominatingLLVMValue {
3202   typedef llvm::PointerIntPair<llvm::Value*, 1, bool> saved_type;
3203 
3204   /// Answer whether the given value needs extra work to be saved.
3205   static bool needsSaving(llvm::Value *value) {
3206     // If it's not an instruction, we don't need to save.
3207     if (!isa<llvm::Instruction>(value)) return false;
3208 
3209     // If it's an instruction in the entry block, we don't need to save.
3210     llvm::BasicBlock *block = cast<llvm::Instruction>(value)->getParent();
3211     return (block != &block->getParent()->getEntryBlock());
3212   }
3213 
3214   /// Try to save the given value.
3215   static saved_type save(CodeGenFunction &CGF, llvm::Value *value) {
3216     if (!needsSaving(value)) return saved_type(value, false);
3217 
3218     // Otherwise, we need an alloca.
3219     auto align = CharUnits::fromQuantity(
3220               CGF.CGM.getDataLayout().getPrefTypeAlignment(value->getType()));
3221     Address alloca =
3222       CGF.CreateTempAlloca(value->getType(), align, "cond-cleanup.save");
3223     CGF.Builder.CreateStore(value, alloca);
3224 
3225     return saved_type(alloca.getPointer(), true);
3226   }
3227 
3228   static llvm::Value *restore(CodeGenFunction &CGF, saved_type value) {
3229     // If the value says it wasn't saved, trust that it's still dominating.
3230     if (!value.getInt()) return value.getPointer();
3231 
3232     // Otherwise, it should be an alloca instruction, as set up in save().
3233     auto alloca = cast<llvm::AllocaInst>(value.getPointer());
3234     return CGF.Builder.CreateAlignedLoad(alloca, alloca->getAlignment());
3235   }
3236 };
3237 
3238 /// A partial specialization of DominatingValue for llvm::Values that
3239 /// might be llvm::Instructions.
3240 template <class T> struct DominatingPointer<T,true> : DominatingLLVMValue {
3241   typedef T *type;
3242   static type restore(CodeGenFunction &CGF, saved_type value) {
3243     return static_cast<T*>(DominatingLLVMValue::restore(CGF, value));
3244   }
3245 };
3246 
3247 /// A specialization of DominatingValue for Address.
3248 template <> struct DominatingValue<Address> {
3249   typedef Address type;
3250 
3251   struct saved_type {
3252     DominatingLLVMValue::saved_type SavedValue;
3253     CharUnits Alignment;
3254   };
3255 
3256   static bool needsSaving(type value) {
3257     return DominatingLLVMValue::needsSaving(value.getPointer());
3258   }
3259   static saved_type save(CodeGenFunction &CGF, type value) {
3260     return { DominatingLLVMValue::save(CGF, value.getPointer()),
3261              value.getAlignment() };
3262   }
3263   static type restore(CodeGenFunction &CGF, saved_type value) {
3264     return Address(DominatingLLVMValue::restore(CGF, value.SavedValue),
3265                    value.Alignment);
3266   }
3267 };
3268 
3269 /// A specialization of DominatingValue for RValue.
3270 template <> struct DominatingValue<RValue> {
3271   typedef RValue type;
3272   class saved_type {
3273     enum Kind { ScalarLiteral, ScalarAddress, AggregateLiteral,
3274                 AggregateAddress, ComplexAddress };
3275 
3276     llvm::Value *Value;
3277     unsigned K : 3;
3278     unsigned Align : 29;
3279     saved_type(llvm::Value *v, Kind k, unsigned a = 0)
3280       : Value(v), K(k), Align(a) {}
3281 
3282   public:
3283     static bool needsSaving(RValue value);
3284     static saved_type save(CodeGenFunction &CGF, RValue value);
3285     RValue restore(CodeGenFunction &CGF);
3286 
3287     // implementations in CGCleanup.cpp
3288   };
3289 
3290   static bool needsSaving(type value) {
3291     return saved_type::needsSaving(value);
3292   }
3293   static saved_type save(CodeGenFunction &CGF, type value) {
3294     return saved_type::save(CGF, value);
3295   }
3296   static type restore(CodeGenFunction &CGF, saved_type value) {
3297     return value.restore(CGF);
3298   }
3299 };
3300 
3301 }  // end namespace CodeGen
3302 }  // end namespace clang
3303 
3304 #endif
3305