1 //===-- CodeGenFunction.h - Per-Function state for LLVM CodeGen -*- C++ -*-===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This is the internal per-function state used for llvm translation.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #ifndef LLVM_CLANG_LIB_CODEGEN_CODEGENFUNCTION_H
15 #define LLVM_CLANG_LIB_CODEGEN_CODEGENFUNCTION_H
16 
17 #include "CGBuilder.h"
18 #include "CGDebugInfo.h"
19 #include "CGLoopInfo.h"
20 #include "CGValue.h"
21 #include "CodeGenModule.h"
22 #include "CodeGenPGO.h"
23 #include "EHScopeStack.h"
24 #include "clang/AST/CharUnits.h"
25 #include "clang/AST/ExprCXX.h"
26 #include "clang/AST/ExprObjC.h"
27 #include "clang/AST/Type.h"
28 #include "clang/Basic/ABI.h"
29 #include "clang/Basic/CapturedStmt.h"
30 #include "clang/Basic/OpenMPKinds.h"
31 #include "clang/Basic/TargetInfo.h"
32 #include "clang/Frontend/CodeGenOptions.h"
33 #include "llvm/ADT/ArrayRef.h"
34 #include "llvm/ADT/DenseMap.h"
35 #include "llvm/ADT/SmallVector.h"
36 #include "llvm/IR/ValueHandle.h"
37 #include "llvm/Support/Debug.h"
38 
39 namespace llvm {
40 class BasicBlock;
41 class LLVMContext;
42 class MDNode;
43 class Module;
44 class SwitchInst;
45 class Twine;
46 class Value;
47 class CallSite;
48 }
49 
50 namespace clang {
51 class ASTContext;
52 class BlockDecl;
53 class CXXDestructorDecl;
54 class CXXForRangeStmt;
55 class CXXTryStmt;
56 class Decl;
57 class LabelDecl;
58 class EnumConstantDecl;
59 class FunctionDecl;
60 class FunctionProtoType;
61 class LabelStmt;
62 class ObjCContainerDecl;
63 class ObjCInterfaceDecl;
64 class ObjCIvarDecl;
65 class ObjCMethodDecl;
66 class ObjCImplementationDecl;
67 class ObjCPropertyImplDecl;
68 class TargetInfo;
69 class TargetCodeGenInfo;
70 class VarDecl;
71 class ObjCForCollectionStmt;
72 class ObjCAtTryStmt;
73 class ObjCAtThrowStmt;
74 class ObjCAtSynchronizedStmt;
75 class ObjCAutoreleasePoolStmt;
76 
77 namespace CodeGen {
78 class CodeGenTypes;
79 class CGFunctionInfo;
80 class CGRecordLayout;
81 class CGBlockInfo;
82 class CGCXXABI;
83 class BlockFlags;
84 class BlockFieldFlags;
85 
86 /// The kind of evaluation to perform on values of a particular
87 /// type.  Basically, is the code in CGExprScalar, CGExprComplex, or
88 /// CGExprAgg?
89 ///
90 /// TODO: should vectors maybe be split out into their own thing?
91 enum TypeEvaluationKind {
92   TEK_Scalar,
93   TEK_Complex,
94   TEK_Aggregate
95 };
96 
97 /// CodeGenFunction - This class organizes the per-function state that is used
98 /// while generating LLVM code.
99 class CodeGenFunction : public CodeGenTypeCache {
100   CodeGenFunction(const CodeGenFunction &) LLVM_DELETED_FUNCTION;
101   void operator=(const CodeGenFunction &) LLVM_DELETED_FUNCTION;
102 
103   friend class CGCXXABI;
104 public:
105   /// A jump destination is an abstract label, branching to which may
106   /// require a jump out through normal cleanups.
107   struct JumpDest {
108     JumpDest() : Block(nullptr), ScopeDepth(), Index(0) {}
109     JumpDest(llvm::BasicBlock *Block,
110              EHScopeStack::stable_iterator Depth,
111              unsigned Index)
112       : Block(Block), ScopeDepth(Depth), Index(Index) {}
113 
114     bool isValid() const { return Block != nullptr; }
115     llvm::BasicBlock *getBlock() const { return Block; }
116     EHScopeStack::stable_iterator getScopeDepth() const { return ScopeDepth; }
117     unsigned getDestIndex() const { return Index; }
118 
119     // This should be used cautiously.
120     void setScopeDepth(EHScopeStack::stable_iterator depth) {
121       ScopeDepth = depth;
122     }
123 
124   private:
125     llvm::BasicBlock *Block;
126     EHScopeStack::stable_iterator ScopeDepth;
127     unsigned Index;
128   };
129 
130   CodeGenModule &CGM;  // Per-module state.
131   const TargetInfo &Target;
132 
133   typedef std::pair<llvm::Value *, llvm::Value *> ComplexPairTy;
134   LoopInfoStack LoopStack;
135   CGBuilderTy Builder;
136 
137   /// \brief CGBuilder insert helper. This function is called after an
138   /// instruction is created using Builder.
139   void InsertHelper(llvm::Instruction *I, const llvm::Twine &Name,
140                     llvm::BasicBlock *BB,
141                     llvm::BasicBlock::iterator InsertPt) const;
142 
143   /// CurFuncDecl - Holds the Decl for the current outermost
144   /// non-closure context.
145   const Decl *CurFuncDecl;
146   /// CurCodeDecl - This is the inner-most code context, which includes blocks.
147   const Decl *CurCodeDecl;
148   const CGFunctionInfo *CurFnInfo;
149   QualType FnRetTy;
150   llvm::Function *CurFn;
151 
152   /// CurGD - The GlobalDecl for the current function being compiled.
153   GlobalDecl CurGD;
154 
155   /// PrologueCleanupDepth - The cleanup depth enclosing all the
156   /// cleanups associated with the parameters.
157   EHScopeStack::stable_iterator PrologueCleanupDepth;
158 
159   /// ReturnBlock - Unified return block.
160   JumpDest ReturnBlock;
161 
162   /// ReturnValue - The temporary alloca to hold the return value. This is null
163   /// iff the function has no return value.
164   llvm::Value *ReturnValue;
165 
166   /// AllocaInsertPoint - This is an instruction in the entry block before which
167   /// we prefer to insert allocas.
168   llvm::AssertingVH<llvm::Instruction> AllocaInsertPt;
169 
170   /// \brief API for captured statement code generation.
171   class CGCapturedStmtInfo {
172   public:
173     explicit CGCapturedStmtInfo(CapturedRegionKind K = CR_Default)
174         : Kind(K), ThisValue(nullptr), CXXThisFieldDecl(nullptr) {}
175     explicit CGCapturedStmtInfo(const CapturedStmt &S,
176                                 CapturedRegionKind K = CR_Default)
177       : Kind(K), ThisValue(nullptr), CXXThisFieldDecl(nullptr) {
178 
179       RecordDecl::field_iterator Field =
180         S.getCapturedRecordDecl()->field_begin();
181       for (CapturedStmt::const_capture_iterator I = S.capture_begin(),
182                                                 E = S.capture_end();
183            I != E; ++I, ++Field) {
184         if (I->capturesThis())
185           CXXThisFieldDecl = *Field;
186         else if (I->capturesVariable())
187           CaptureFields[I->getCapturedVar()] = *Field;
188       }
189     }
190 
191     virtual ~CGCapturedStmtInfo();
192 
193     CapturedRegionKind getKind() const { return Kind; }
194 
195     void setContextValue(llvm::Value *V) { ThisValue = V; }
196     // \brief Retrieve the value of the context parameter.
197     llvm::Value *getContextValue() const { return ThisValue; }
198 
199     /// \brief Lookup the captured field decl for a variable.
200     const FieldDecl *lookup(const VarDecl *VD) const {
201       return CaptureFields.lookup(VD);
202     }
203 
204     bool isCXXThisExprCaptured() const { return CXXThisFieldDecl != nullptr; }
205     FieldDecl *getThisFieldDecl() const { return CXXThisFieldDecl; }
206 
207     static bool classof(const CGCapturedStmtInfo *) {
208       return true;
209     }
210 
211     /// \brief Emit the captured statement body.
212     virtual void EmitBody(CodeGenFunction &CGF, Stmt *S) {
213       RegionCounter Cnt = CGF.getPGORegionCounter(S);
214       Cnt.beginRegion(CGF.Builder);
215       CGF.EmitStmt(S);
216     }
217 
218     /// \brief Get the name of the capture helper.
219     virtual StringRef getHelperName() const { return "__captured_stmt"; }
220 
221   private:
222     /// \brief The kind of captured statement being generated.
223     CapturedRegionKind Kind;
224 
225     /// \brief Keep the map between VarDecl and FieldDecl.
226     llvm::SmallDenseMap<const VarDecl *, FieldDecl *> CaptureFields;
227 
228     /// \brief The base address of the captured record, passed in as the first
229     /// argument of the parallel region function.
230     llvm::Value *ThisValue;
231 
232     /// \brief Captured 'this' type.
233     FieldDecl *CXXThisFieldDecl;
234   };
235   CGCapturedStmtInfo *CapturedStmtInfo;
236 
237   /// BoundsChecking - Emit run-time bounds checks. Higher values mean
238   /// potentially higher performance penalties.
239   unsigned char BoundsChecking;
240 
241   /// \brief Sanitizers enabled for this function.
242   SanitizerSet SanOpts;
243 
244   /// \brief True if CodeGen currently emits code implementing sanitizer checks.
245   bool IsSanitizerScope;
246 
247   /// \brief RAII object to set/unset CodeGenFunction::IsSanitizerScope.
248   class SanitizerScope {
249     CodeGenFunction *CGF;
250   public:
251     SanitizerScope(CodeGenFunction *CGF);
252     ~SanitizerScope();
253   };
254 
255   /// In C++, whether we are code generating a thunk.  This controls whether we
256   /// should emit cleanups.
257   bool CurFuncIsThunk;
258 
259   /// In ARC, whether we should autorelease the return value.
260   bool AutoreleaseResult;
261 
262   /// Whether we processed a Microsoft-style asm block during CodeGen. These can
263   /// potentially set the return value.
264   bool SawAsmBlock;
265 
266   const CodeGen::CGBlockInfo *BlockInfo;
267   llvm::Value *BlockPointer;
268 
269   llvm::DenseMap<const VarDecl *, FieldDecl *> LambdaCaptureFields;
270   FieldDecl *LambdaThisCaptureField;
271 
272   /// \brief A mapping from NRVO variables to the flags used to indicate
273   /// when the NRVO has been applied to this variable.
274   llvm::DenseMap<const VarDecl *, llvm::Value *> NRVOFlags;
275 
276   EHScopeStack EHStack;
277   llvm::SmallVector<char, 256> LifetimeExtendedCleanupStack;
278 
279   /// Header for data within LifetimeExtendedCleanupStack.
280   struct LifetimeExtendedCleanupHeader {
281     /// The size of the following cleanup object.
282     unsigned Size : 29;
283     /// The kind of cleanup to push: a value from the CleanupKind enumeration.
284     unsigned Kind : 3;
285 
286     size_t getSize() const { return size_t(Size); }
287     CleanupKind getKind() const { return static_cast<CleanupKind>(Kind); }
288   };
289 
290   /// i32s containing the indexes of the cleanup destinations.
291   llvm::AllocaInst *NormalCleanupDest;
292 
293   unsigned NextCleanupDestIndex;
294 
295   /// FirstBlockInfo - The head of a singly-linked-list of block layouts.
296   CGBlockInfo *FirstBlockInfo;
297 
298   /// EHResumeBlock - Unified block containing a call to llvm.eh.resume.
299   llvm::BasicBlock *EHResumeBlock;
300 
301   /// The exception slot.  All landing pads write the current exception pointer
302   /// into this alloca.
303   llvm::Value *ExceptionSlot;
304 
305   /// The selector slot.  Under the MandatoryCleanup model, all landing pads
306   /// write the current selector value into this alloca.
307   llvm::AllocaInst *EHSelectorSlot;
308 
309   /// The implicit parameter to SEH filter functions of type
310   /// 'EXCEPTION_POINTERS*'.
311   ImplicitParamDecl *SEHPointersDecl;
312 
313   /// Emits a landing pad for the current EH stack.
314   llvm::BasicBlock *EmitLandingPad();
315 
316   llvm::BasicBlock *getInvokeDestImpl();
317 
318   template <class T>
319   typename DominatingValue<T>::saved_type saveValueInCond(T value) {
320     return DominatingValue<T>::save(*this, value);
321   }
322 
323 public:
324   /// ObjCEHValueStack - Stack of Objective-C exception values, used for
325   /// rethrows.
326   SmallVector<llvm::Value*, 8> ObjCEHValueStack;
327 
328   /// A class controlling the emission of a finally block.
329   class FinallyInfo {
330     /// Where the catchall's edge through the cleanup should go.
331     JumpDest RethrowDest;
332 
333     /// A function to call to enter the catch.
334     llvm::Constant *BeginCatchFn;
335 
336     /// An i1 variable indicating whether or not the @finally is
337     /// running for an exception.
338     llvm::AllocaInst *ForEHVar;
339 
340     /// An i8* variable into which the exception pointer to rethrow
341     /// has been saved.
342     llvm::AllocaInst *SavedExnVar;
343 
344   public:
345     void enter(CodeGenFunction &CGF, const Stmt *Finally,
346                llvm::Constant *beginCatchFn, llvm::Constant *endCatchFn,
347                llvm::Constant *rethrowFn);
348     void exit(CodeGenFunction &CGF);
349   };
350 
351   /// pushFullExprCleanup - Push a cleanup to be run at the end of the
352   /// current full-expression.  Safe against the possibility that
353   /// we're currently inside a conditionally-evaluated expression.
354   template <class T, class A0>
355   void pushFullExprCleanup(CleanupKind kind, A0 a0) {
356     // If we're not in a conditional branch, or if none of the
357     // arguments requires saving, then use the unconditional cleanup.
358     if (!isInConditionalBranch())
359       return EHStack.pushCleanup<T>(kind, a0);
360 
361     typename DominatingValue<A0>::saved_type a0_saved = saveValueInCond(a0);
362 
363     typedef EHScopeStack::ConditionalCleanup1<T, A0> CleanupType;
364     EHStack.pushCleanup<CleanupType>(kind, a0_saved);
365     initFullExprCleanup();
366   }
367 
368   /// pushFullExprCleanup - Push a cleanup to be run at the end of the
369   /// current full-expression.  Safe against the possibility that
370   /// we're currently inside a conditionally-evaluated expression.
371   template <class T, class A0, class A1>
372   void pushFullExprCleanup(CleanupKind kind, A0 a0, A1 a1) {
373     // If we're not in a conditional branch, or if none of the
374     // arguments requires saving, then use the unconditional cleanup.
375     if (!isInConditionalBranch())
376       return EHStack.pushCleanup<T>(kind, a0, a1);
377 
378     typename DominatingValue<A0>::saved_type a0_saved = saveValueInCond(a0);
379     typename DominatingValue<A1>::saved_type a1_saved = saveValueInCond(a1);
380 
381     typedef EHScopeStack::ConditionalCleanup2<T, A0, A1> CleanupType;
382     EHStack.pushCleanup<CleanupType>(kind, a0_saved, a1_saved);
383     initFullExprCleanup();
384   }
385 
386   /// pushFullExprCleanup - Push a cleanup to be run at the end of the
387   /// current full-expression.  Safe against the possibility that
388   /// we're currently inside a conditionally-evaluated expression.
389   template <class T, class A0, class A1, class A2>
390   void pushFullExprCleanup(CleanupKind kind, A0 a0, A1 a1, A2 a2) {
391     // If we're not in a conditional branch, or if none of the
392     // arguments requires saving, then use the unconditional cleanup.
393     if (!isInConditionalBranch()) {
394       return EHStack.pushCleanup<T>(kind, a0, a1, a2);
395     }
396 
397     typename DominatingValue<A0>::saved_type a0_saved = saveValueInCond(a0);
398     typename DominatingValue<A1>::saved_type a1_saved = saveValueInCond(a1);
399     typename DominatingValue<A2>::saved_type a2_saved = saveValueInCond(a2);
400 
401     typedef EHScopeStack::ConditionalCleanup3<T, A0, A1, A2> CleanupType;
402     EHStack.pushCleanup<CleanupType>(kind, a0_saved, a1_saved, a2_saved);
403     initFullExprCleanup();
404   }
405 
406   /// pushFullExprCleanup - Push a cleanup to be run at the end of the
407   /// current full-expression.  Safe against the possibility that
408   /// we're currently inside a conditionally-evaluated expression.
409   template <class T, class A0, class A1, class A2, class A3>
410   void pushFullExprCleanup(CleanupKind kind, A0 a0, A1 a1, A2 a2, A3 a3) {
411     // If we're not in a conditional branch, or if none of the
412     // arguments requires saving, then use the unconditional cleanup.
413     if (!isInConditionalBranch()) {
414       return EHStack.pushCleanup<T>(kind, a0, a1, a2, a3);
415     }
416 
417     typename DominatingValue<A0>::saved_type a0_saved = saveValueInCond(a0);
418     typename DominatingValue<A1>::saved_type a1_saved = saveValueInCond(a1);
419     typename DominatingValue<A2>::saved_type a2_saved = saveValueInCond(a2);
420     typename DominatingValue<A3>::saved_type a3_saved = saveValueInCond(a3);
421 
422     typedef EHScopeStack::ConditionalCleanup4<T, A0, A1, A2, A3> CleanupType;
423     EHStack.pushCleanup<CleanupType>(kind, a0_saved, a1_saved,
424                                      a2_saved, a3_saved);
425     initFullExprCleanup();
426   }
427 
428   /// \brief Queue a cleanup to be pushed after finishing the current
429   /// full-expression.
430   template <class T, class A0, class A1, class A2, class A3>
431   void pushCleanupAfterFullExpr(CleanupKind Kind, A0 a0, A1 a1, A2 a2, A3 a3) {
432     assert(!isInConditionalBranch() && "can't defer conditional cleanup");
433 
434     LifetimeExtendedCleanupHeader Header = { sizeof(T), Kind };
435 
436     size_t OldSize = LifetimeExtendedCleanupStack.size();
437     LifetimeExtendedCleanupStack.resize(
438         LifetimeExtendedCleanupStack.size() + sizeof(Header) + Header.Size);
439 
440     char *Buffer = &LifetimeExtendedCleanupStack[OldSize];
441     new (Buffer) LifetimeExtendedCleanupHeader(Header);
442     new (Buffer + sizeof(Header)) T(a0, a1, a2, a3);
443   }
444 
445   /// Set up the last cleaup that was pushed as a conditional
446   /// full-expression cleanup.
447   void initFullExprCleanup();
448 
449   /// PushDestructorCleanup - Push a cleanup to call the
450   /// complete-object destructor of an object of the given type at the
451   /// given address.  Does nothing if T is not a C++ class type with a
452   /// non-trivial destructor.
453   void PushDestructorCleanup(QualType T, llvm::Value *Addr);
454 
455   /// PushDestructorCleanup - Push a cleanup to call the
456   /// complete-object variant of the given destructor on the object at
457   /// the given address.
458   void PushDestructorCleanup(const CXXDestructorDecl *Dtor,
459                              llvm::Value *Addr);
460 
461   /// PopCleanupBlock - Will pop the cleanup entry on the stack and
462   /// process all branch fixups.
463   void PopCleanupBlock(bool FallThroughIsBranchThrough = false);
464 
465   /// DeactivateCleanupBlock - Deactivates the given cleanup block.
466   /// The block cannot be reactivated.  Pops it if it's the top of the
467   /// stack.
468   ///
469   /// \param DominatingIP - An instruction which is known to
470   ///   dominate the current IP (if set) and which lies along
471   ///   all paths of execution between the current IP and the
472   ///   the point at which the cleanup comes into scope.
473   void DeactivateCleanupBlock(EHScopeStack::stable_iterator Cleanup,
474                               llvm::Instruction *DominatingIP);
475 
476   /// ActivateCleanupBlock - Activates an initially-inactive cleanup.
477   /// Cannot be used to resurrect a deactivated cleanup.
478   ///
479   /// \param DominatingIP - An instruction which is known to
480   ///   dominate the current IP (if set) and which lies along
481   ///   all paths of execution between the current IP and the
482   ///   the point at which the cleanup comes into scope.
483   void ActivateCleanupBlock(EHScopeStack::stable_iterator Cleanup,
484                             llvm::Instruction *DominatingIP);
485 
486   /// \brief Enters a new scope for capturing cleanups, all of which
487   /// will be executed once the scope is exited.
488   class RunCleanupsScope {
489     EHScopeStack::stable_iterator CleanupStackDepth;
490     size_t LifetimeExtendedCleanupStackSize;
491     bool OldDidCallStackSave;
492   protected:
493     bool PerformCleanup;
494   private:
495 
496     RunCleanupsScope(const RunCleanupsScope &) LLVM_DELETED_FUNCTION;
497     void operator=(const RunCleanupsScope &) LLVM_DELETED_FUNCTION;
498 
499   protected:
500     CodeGenFunction& CGF;
501 
502   public:
503     /// \brief Enter a new cleanup scope.
504     explicit RunCleanupsScope(CodeGenFunction &CGF)
505       : PerformCleanup(true), CGF(CGF)
506     {
507       CleanupStackDepth = CGF.EHStack.stable_begin();
508       LifetimeExtendedCleanupStackSize =
509           CGF.LifetimeExtendedCleanupStack.size();
510       OldDidCallStackSave = CGF.DidCallStackSave;
511       CGF.DidCallStackSave = false;
512     }
513 
514     /// \brief Exit this cleanup scope, emitting any accumulated
515     /// cleanups.
516     ~RunCleanupsScope() {
517       if (PerformCleanup) {
518         CGF.DidCallStackSave = OldDidCallStackSave;
519         CGF.PopCleanupBlocks(CleanupStackDepth,
520                              LifetimeExtendedCleanupStackSize);
521       }
522     }
523 
524     /// \brief Determine whether this scope requires any cleanups.
525     bool requiresCleanups() const {
526       return CGF.EHStack.stable_begin() != CleanupStackDepth;
527     }
528 
529     /// \brief Force the emission of cleanups now, instead of waiting
530     /// until this object is destroyed.
531     void ForceCleanup() {
532       assert(PerformCleanup && "Already forced cleanup");
533       CGF.DidCallStackSave = OldDidCallStackSave;
534       CGF.PopCleanupBlocks(CleanupStackDepth,
535                            LifetimeExtendedCleanupStackSize);
536       PerformCleanup = false;
537     }
538   };
539 
540   class LexicalScope : public RunCleanupsScope {
541     SourceRange Range;
542     SmallVector<const LabelDecl*, 4> Labels;
543     LexicalScope *ParentScope;
544 
545     LexicalScope(const LexicalScope &) LLVM_DELETED_FUNCTION;
546     void operator=(const LexicalScope &) LLVM_DELETED_FUNCTION;
547 
548   public:
549     /// \brief Enter a new cleanup scope.
550     explicit LexicalScope(CodeGenFunction &CGF, SourceRange Range)
551       : RunCleanupsScope(CGF), Range(Range), ParentScope(CGF.CurLexicalScope) {
552       CGF.CurLexicalScope = this;
553       if (CGDebugInfo *DI = CGF.getDebugInfo())
554         DI->EmitLexicalBlockStart(CGF.Builder, Range.getBegin());
555     }
556 
557     void addLabel(const LabelDecl *label) {
558       assert(PerformCleanup && "adding label to dead scope?");
559       Labels.push_back(label);
560     }
561 
562     /// \brief Exit this cleanup scope, emitting any accumulated
563     /// cleanups.
564     ~LexicalScope() {
565       if (CGDebugInfo *DI = CGF.getDebugInfo())
566         DI->EmitLexicalBlockEnd(CGF.Builder, Range.getEnd());
567 
568       // If we should perform a cleanup, force them now.  Note that
569       // this ends the cleanup scope before rescoping any labels.
570       if (PerformCleanup) ForceCleanup();
571     }
572 
573     /// \brief Force the emission of cleanups now, instead of waiting
574     /// until this object is destroyed.
575     void ForceCleanup() {
576       CGF.CurLexicalScope = ParentScope;
577       RunCleanupsScope::ForceCleanup();
578 
579       if (!Labels.empty())
580         rescopeLabels();
581     }
582 
583     void rescopeLabels();
584   };
585 
586   /// \brief The scope used to remap some variables as private in the OpenMP
587   /// loop body (or other captured region emitted without outlining), and to
588   /// restore old vars back on exit.
589   class OMPPrivateScope : public RunCleanupsScope {
590     typedef llvm::DenseMap<const VarDecl *, llvm::Value *> VarDeclMapTy;
591     VarDeclMapTy SavedLocals;
592     VarDeclMapTy SavedPrivates;
593 
594   private:
595     OMPPrivateScope(const OMPPrivateScope &) LLVM_DELETED_FUNCTION;
596     void operator=(const OMPPrivateScope &) LLVM_DELETED_FUNCTION;
597 
598   public:
599     /// \brief Enter a new OpenMP private scope.
600     explicit OMPPrivateScope(CodeGenFunction &CGF) : RunCleanupsScope(CGF) {}
601 
602     /// \brief Registers \a LocalVD variable as a private and apply \a
603     /// PrivateGen function for it to generate corresponding private variable.
604     /// \a PrivateGen returns an address of the generated private variable.
605     /// \return true if the variable is registered as private, false if it has
606     /// been privatized already.
607     bool
608     addPrivate(const VarDecl *LocalVD,
609                const std::function<llvm::Value *()> &PrivateGen) {
610       assert(PerformCleanup && "adding private to dead scope");
611       if (SavedLocals.count(LocalVD) > 0) return false;
612       SavedLocals[LocalVD] = CGF.LocalDeclMap.lookup(LocalVD);
613       CGF.LocalDeclMap.erase(LocalVD);
614       SavedPrivates[LocalVD] = PrivateGen();
615       CGF.LocalDeclMap[LocalVD] = SavedLocals[LocalVD];
616       return true;
617     }
618 
619     /// \brief Privatizes local variables previously registered as private.
620     /// Registration is separate from the actual privatization to allow
621     /// initializers use values of the original variables, not the private one.
622     /// This is important, for example, if the private variable is a class
623     /// variable initialized by a constructor that references other private
624     /// variables. But at initialization original variables must be used, not
625     /// private copies.
626     /// \return true if at least one variable was privatized, false otherwise.
627     bool Privatize() {
628       for (auto VDPair : SavedPrivates) {
629         CGF.LocalDeclMap[VDPair.first] = VDPair.second;
630       }
631       SavedPrivates.clear();
632       return !SavedLocals.empty();
633     }
634 
635     void ForceCleanup() {
636       RunCleanupsScope::ForceCleanup();
637       // Remap vars back to the original values.
638       for (auto I : SavedLocals) {
639         CGF.LocalDeclMap[I.first] = I.second;
640       }
641       SavedLocals.clear();
642     }
643 
644     /// \brief Exit scope - all the mapped variables are restored.
645     ~OMPPrivateScope() { ForceCleanup(); }
646   };
647 
648   /// \brief Takes the old cleanup stack size and emits the cleanup blocks
649   /// that have been added.
650   void PopCleanupBlocks(EHScopeStack::stable_iterator OldCleanupStackSize);
651 
652   /// \brief Takes the old cleanup stack size and emits the cleanup blocks
653   /// that have been added, then adds all lifetime-extended cleanups from
654   /// the given position to the stack.
655   void PopCleanupBlocks(EHScopeStack::stable_iterator OldCleanupStackSize,
656                         size_t OldLifetimeExtendedStackSize);
657 
658   void ResolveBranchFixups(llvm::BasicBlock *Target);
659 
660   /// The given basic block lies in the current EH scope, but may be a
661   /// target of a potentially scope-crossing jump; get a stable handle
662   /// to which we can perform this jump later.
663   JumpDest getJumpDestInCurrentScope(llvm::BasicBlock *Target) {
664     return JumpDest(Target,
665                     EHStack.getInnermostNormalCleanup(),
666                     NextCleanupDestIndex++);
667   }
668 
669   /// The given basic block lies in the current EH scope, but may be a
670   /// target of a potentially scope-crossing jump; get a stable handle
671   /// to which we can perform this jump later.
672   JumpDest getJumpDestInCurrentScope(StringRef Name = StringRef()) {
673     return getJumpDestInCurrentScope(createBasicBlock(Name));
674   }
675 
676   /// EmitBranchThroughCleanup - Emit a branch from the current insert
677   /// block through the normal cleanup handling code (if any) and then
678   /// on to \arg Dest.
679   void EmitBranchThroughCleanup(JumpDest Dest);
680 
681   /// isObviouslyBranchWithoutCleanups - Return true if a branch to the
682   /// specified destination obviously has no cleanups to run.  'false' is always
683   /// a conservatively correct answer for this method.
684   bool isObviouslyBranchWithoutCleanups(JumpDest Dest) const;
685 
686   /// popCatchScope - Pops the catch scope at the top of the EHScope
687   /// stack, emitting any required code (other than the catch handlers
688   /// themselves).
689   void popCatchScope();
690 
691   llvm::BasicBlock *getEHResumeBlock(bool isCleanup);
692   llvm::BasicBlock *getEHDispatchBlock(EHScopeStack::stable_iterator scope);
693 
694   /// An object to manage conditionally-evaluated expressions.
695   class ConditionalEvaluation {
696     llvm::BasicBlock *StartBB;
697 
698   public:
699     ConditionalEvaluation(CodeGenFunction &CGF)
700       : StartBB(CGF.Builder.GetInsertBlock()) {}
701 
702     void begin(CodeGenFunction &CGF) {
703       assert(CGF.OutermostConditional != this);
704       if (!CGF.OutermostConditional)
705         CGF.OutermostConditional = this;
706     }
707 
708     void end(CodeGenFunction &CGF) {
709       assert(CGF.OutermostConditional != nullptr);
710       if (CGF.OutermostConditional == this)
711         CGF.OutermostConditional = nullptr;
712     }
713 
714     /// Returns a block which will be executed prior to each
715     /// evaluation of the conditional code.
716     llvm::BasicBlock *getStartingBlock() const {
717       return StartBB;
718     }
719   };
720 
721   /// isInConditionalBranch - Return true if we're currently emitting
722   /// one branch or the other of a conditional expression.
723   bool isInConditionalBranch() const { return OutermostConditional != nullptr; }
724 
725   void setBeforeOutermostConditional(llvm::Value *value, llvm::Value *addr) {
726     assert(isInConditionalBranch());
727     llvm::BasicBlock *block = OutermostConditional->getStartingBlock();
728     new llvm::StoreInst(value, addr, &block->back());
729   }
730 
731   /// An RAII object to record that we're evaluating a statement
732   /// expression.
733   class StmtExprEvaluation {
734     CodeGenFunction &CGF;
735 
736     /// We have to save the outermost conditional: cleanups in a
737     /// statement expression aren't conditional just because the
738     /// StmtExpr is.
739     ConditionalEvaluation *SavedOutermostConditional;
740 
741   public:
742     StmtExprEvaluation(CodeGenFunction &CGF)
743       : CGF(CGF), SavedOutermostConditional(CGF.OutermostConditional) {
744       CGF.OutermostConditional = nullptr;
745     }
746 
747     ~StmtExprEvaluation() {
748       CGF.OutermostConditional = SavedOutermostConditional;
749       CGF.EnsureInsertPoint();
750     }
751   };
752 
753   /// An object which temporarily prevents a value from being
754   /// destroyed by aggressive peephole optimizations that assume that
755   /// all uses of a value have been realized in the IR.
756   class PeepholeProtection {
757     llvm::Instruction *Inst;
758     friend class CodeGenFunction;
759 
760   public:
761     PeepholeProtection() : Inst(nullptr) {}
762   };
763 
764   /// A non-RAII class containing all the information about a bound
765   /// opaque value.  OpaqueValueMapping, below, is a RAII wrapper for
766   /// this which makes individual mappings very simple; using this
767   /// class directly is useful when you have a variable number of
768   /// opaque values or don't want the RAII functionality for some
769   /// reason.
770   class OpaqueValueMappingData {
771     const OpaqueValueExpr *OpaqueValue;
772     bool BoundLValue;
773     CodeGenFunction::PeepholeProtection Protection;
774 
775     OpaqueValueMappingData(const OpaqueValueExpr *ov,
776                            bool boundLValue)
777       : OpaqueValue(ov), BoundLValue(boundLValue) {}
778   public:
779     OpaqueValueMappingData() : OpaqueValue(nullptr) {}
780 
781     static bool shouldBindAsLValue(const Expr *expr) {
782       // gl-values should be bound as l-values for obvious reasons.
783       // Records should be bound as l-values because IR generation
784       // always keeps them in memory.  Expressions of function type
785       // act exactly like l-values but are formally required to be
786       // r-values in C.
787       return expr->isGLValue() ||
788              expr->getType()->isFunctionType() ||
789              hasAggregateEvaluationKind(expr->getType());
790     }
791 
792     static OpaqueValueMappingData bind(CodeGenFunction &CGF,
793                                        const OpaqueValueExpr *ov,
794                                        const Expr *e) {
795       if (shouldBindAsLValue(ov))
796         return bind(CGF, ov, CGF.EmitLValue(e));
797       return bind(CGF, ov, CGF.EmitAnyExpr(e));
798     }
799 
800     static OpaqueValueMappingData bind(CodeGenFunction &CGF,
801                                        const OpaqueValueExpr *ov,
802                                        const LValue &lv) {
803       assert(shouldBindAsLValue(ov));
804       CGF.OpaqueLValues.insert(std::make_pair(ov, lv));
805       return OpaqueValueMappingData(ov, true);
806     }
807 
808     static OpaqueValueMappingData bind(CodeGenFunction &CGF,
809                                        const OpaqueValueExpr *ov,
810                                        const RValue &rv) {
811       assert(!shouldBindAsLValue(ov));
812       CGF.OpaqueRValues.insert(std::make_pair(ov, rv));
813 
814       OpaqueValueMappingData data(ov, false);
815 
816       // Work around an extremely aggressive peephole optimization in
817       // EmitScalarConversion which assumes that all other uses of a
818       // value are extant.
819       data.Protection = CGF.protectFromPeepholes(rv);
820 
821       return data;
822     }
823 
824     bool isValid() const { return OpaqueValue != nullptr; }
825     void clear() { OpaqueValue = nullptr; }
826 
827     void unbind(CodeGenFunction &CGF) {
828       assert(OpaqueValue && "no data to unbind!");
829 
830       if (BoundLValue) {
831         CGF.OpaqueLValues.erase(OpaqueValue);
832       } else {
833         CGF.OpaqueRValues.erase(OpaqueValue);
834         CGF.unprotectFromPeepholes(Protection);
835       }
836     }
837   };
838 
839   /// An RAII object to set (and then clear) a mapping for an OpaqueValueExpr.
840   class OpaqueValueMapping {
841     CodeGenFunction &CGF;
842     OpaqueValueMappingData Data;
843 
844   public:
845     static bool shouldBindAsLValue(const Expr *expr) {
846       return OpaqueValueMappingData::shouldBindAsLValue(expr);
847     }
848 
849     /// Build the opaque value mapping for the given conditional
850     /// operator if it's the GNU ?: extension.  This is a common
851     /// enough pattern that the convenience operator is really
852     /// helpful.
853     ///
854     OpaqueValueMapping(CodeGenFunction &CGF,
855                        const AbstractConditionalOperator *op) : CGF(CGF) {
856       if (isa<ConditionalOperator>(op))
857         // Leave Data empty.
858         return;
859 
860       const BinaryConditionalOperator *e = cast<BinaryConditionalOperator>(op);
861       Data = OpaqueValueMappingData::bind(CGF, e->getOpaqueValue(),
862                                           e->getCommon());
863     }
864 
865     OpaqueValueMapping(CodeGenFunction &CGF,
866                        const OpaqueValueExpr *opaqueValue,
867                        LValue lvalue)
868       : CGF(CGF), Data(OpaqueValueMappingData::bind(CGF, opaqueValue, lvalue)) {
869     }
870 
871     OpaqueValueMapping(CodeGenFunction &CGF,
872                        const OpaqueValueExpr *opaqueValue,
873                        RValue rvalue)
874       : CGF(CGF), Data(OpaqueValueMappingData::bind(CGF, opaqueValue, rvalue)) {
875     }
876 
877     void pop() {
878       Data.unbind(CGF);
879       Data.clear();
880     }
881 
882     ~OpaqueValueMapping() {
883       if (Data.isValid()) Data.unbind(CGF);
884     }
885   };
886 
887   /// getByrefValueFieldNumber - Given a declaration, returns the LLVM field
888   /// number that holds the value.
889   unsigned getByRefValueLLVMField(const ValueDecl *VD) const;
890 
891   /// BuildBlockByrefAddress - Computes address location of the
892   /// variable which is declared as __block.
893   llvm::Value *BuildBlockByrefAddress(llvm::Value *BaseAddr,
894                                       const VarDecl *V);
895 private:
896   CGDebugInfo *DebugInfo;
897   bool DisableDebugInfo;
898 
899   /// DidCallStackSave - Whether llvm.stacksave has been called. Used to avoid
900   /// calling llvm.stacksave for multiple VLAs in the same scope.
901   bool DidCallStackSave;
902 
903   /// IndirectBranch - The first time an indirect goto is seen we create a block
904   /// with an indirect branch.  Every time we see the address of a label taken,
905   /// we add the label to the indirect goto.  Every subsequent indirect goto is
906   /// codegen'd as a jump to the IndirectBranch's basic block.
907   llvm::IndirectBrInst *IndirectBranch;
908 
909   /// LocalDeclMap - This keeps track of the LLVM allocas or globals for local C
910   /// decls.
911   typedef llvm::DenseMap<const Decl*, llvm::Value*> DeclMapTy;
912   DeclMapTy LocalDeclMap;
913 
914   /// LabelMap - This keeps track of the LLVM basic block for each C label.
915   llvm::DenseMap<const LabelDecl*, JumpDest> LabelMap;
916 
917   // BreakContinueStack - This keeps track of where break and continue
918   // statements should jump to.
919   struct BreakContinue {
920     BreakContinue(JumpDest Break, JumpDest Continue)
921       : BreakBlock(Break), ContinueBlock(Continue) {}
922 
923     JumpDest BreakBlock;
924     JumpDest ContinueBlock;
925   };
926   SmallVector<BreakContinue, 8> BreakContinueStack;
927 
928   CodeGenPGO PGO;
929 
930 public:
931   /// Get a counter for instrumentation of the region associated with the given
932   /// statement.
933   RegionCounter getPGORegionCounter(const Stmt *S) {
934     return RegionCounter(PGO, S);
935   }
936 private:
937 
938   /// SwitchInsn - This is nearest current switch instruction. It is null if
939   /// current context is not in a switch.
940   llvm::SwitchInst *SwitchInsn;
941   /// The branch weights of SwitchInsn when doing instrumentation based PGO.
942   SmallVector<uint64_t, 16> *SwitchWeights;
943 
944   /// CaseRangeBlock - This block holds if condition check for last case
945   /// statement range in current switch instruction.
946   llvm::BasicBlock *CaseRangeBlock;
947 
948   /// OpaqueLValues - Keeps track of the current set of opaque value
949   /// expressions.
950   llvm::DenseMap<const OpaqueValueExpr *, LValue> OpaqueLValues;
951   llvm::DenseMap<const OpaqueValueExpr *, RValue> OpaqueRValues;
952 
953   // VLASizeMap - This keeps track of the associated size for each VLA type.
954   // We track this by the size expression rather than the type itself because
955   // in certain situations, like a const qualifier applied to an VLA typedef,
956   // multiple VLA types can share the same size expression.
957   // FIXME: Maybe this could be a stack of maps that is pushed/popped as we
958   // enter/leave scopes.
959   llvm::DenseMap<const Expr*, llvm::Value*> VLASizeMap;
960 
961   /// A block containing a single 'unreachable' instruction.  Created
962   /// lazily by getUnreachableBlock().
963   llvm::BasicBlock *UnreachableBlock;
964 
965   /// Counts of the number return expressions in the function.
966   unsigned NumReturnExprs;
967 
968   /// Count the number of simple (constant) return expressions in the function.
969   unsigned NumSimpleReturnExprs;
970 
971   /// The last regular (non-return) debug location (breakpoint) in the function.
972   SourceLocation LastStopPoint;
973 
974 public:
975   /// A scope within which we are constructing the fields of an object which
976   /// might use a CXXDefaultInitExpr. This stashes away a 'this' value to use
977   /// if we need to evaluate a CXXDefaultInitExpr within the evaluation.
978   class FieldConstructionScope {
979   public:
980     FieldConstructionScope(CodeGenFunction &CGF, llvm::Value *This)
981         : CGF(CGF), OldCXXDefaultInitExprThis(CGF.CXXDefaultInitExprThis) {
982       CGF.CXXDefaultInitExprThis = This;
983     }
984     ~FieldConstructionScope() {
985       CGF.CXXDefaultInitExprThis = OldCXXDefaultInitExprThis;
986     }
987 
988   private:
989     CodeGenFunction &CGF;
990     llvm::Value *OldCXXDefaultInitExprThis;
991   };
992 
993   /// The scope of a CXXDefaultInitExpr. Within this scope, the value of 'this'
994   /// is overridden to be the object under construction.
995   class CXXDefaultInitExprScope {
996   public:
997     CXXDefaultInitExprScope(CodeGenFunction &CGF)
998         : CGF(CGF), OldCXXThisValue(CGF.CXXThisValue) {
999       CGF.CXXThisValue = CGF.CXXDefaultInitExprThis;
1000     }
1001     ~CXXDefaultInitExprScope() {
1002       CGF.CXXThisValue = OldCXXThisValue;
1003     }
1004 
1005   public:
1006     CodeGenFunction &CGF;
1007     llvm::Value *OldCXXThisValue;
1008   };
1009 
1010 private:
1011   /// CXXThisDecl - When generating code for a C++ member function,
1012   /// this will hold the implicit 'this' declaration.
1013   ImplicitParamDecl *CXXABIThisDecl;
1014   llvm::Value *CXXABIThisValue;
1015   llvm::Value *CXXThisValue;
1016 
1017   /// The value of 'this' to use when evaluating CXXDefaultInitExprs within
1018   /// this expression.
1019   llvm::Value *CXXDefaultInitExprThis;
1020 
1021   /// CXXStructorImplicitParamDecl - When generating code for a constructor or
1022   /// destructor, this will hold the implicit argument (e.g. VTT).
1023   ImplicitParamDecl *CXXStructorImplicitParamDecl;
1024   llvm::Value *CXXStructorImplicitParamValue;
1025 
1026   /// OutermostConditional - Points to the outermost active
1027   /// conditional control.  This is used so that we know if a
1028   /// temporary should be destroyed conditionally.
1029   ConditionalEvaluation *OutermostConditional;
1030 
1031   /// The current lexical scope.
1032   LexicalScope *CurLexicalScope;
1033 
1034   /// The current source location that should be used for exception
1035   /// handling code.
1036   SourceLocation CurEHLocation;
1037 
1038   /// ByrefValueInfoMap - For each __block variable, contains a pair of the LLVM
1039   /// type as well as the field number that contains the actual data.
1040   llvm::DenseMap<const ValueDecl *, std::pair<llvm::Type *,
1041                                               unsigned> > ByRefValueInfo;
1042 
1043   llvm::BasicBlock *TerminateLandingPad;
1044   llvm::BasicBlock *TerminateHandler;
1045   llvm::BasicBlock *TrapBB;
1046 
1047   /// Add a kernel metadata node to the named metadata node 'opencl.kernels'.
1048   /// In the kernel metadata node, reference the kernel function and metadata
1049   /// nodes for its optional attribute qualifiers (OpenCL 1.1 6.7.2):
1050   /// - A node for the vec_type_hint(<type>) qualifier contains string
1051   ///   "vec_type_hint", an undefined value of the <type> data type,
1052   ///   and a Boolean that is true if the <type> is integer and signed.
1053   /// - A node for the work_group_size_hint(X,Y,Z) qualifier contains string
1054   ///   "work_group_size_hint", and three 32-bit integers X, Y and Z.
1055   /// - A node for the reqd_work_group_size(X,Y,Z) qualifier contains string
1056   ///   "reqd_work_group_size", and three 32-bit integers X, Y and Z.
1057   void EmitOpenCLKernelMetadata(const FunctionDecl *FD,
1058                                 llvm::Function *Fn);
1059 
1060 public:
1061   CodeGenFunction(CodeGenModule &cgm, bool suppressNewContext=false);
1062   ~CodeGenFunction();
1063 
1064   CodeGenTypes &getTypes() const { return CGM.getTypes(); }
1065   ASTContext &getContext() const { return CGM.getContext(); }
1066   CGDebugInfo *getDebugInfo() {
1067     if (DisableDebugInfo)
1068       return nullptr;
1069     return DebugInfo;
1070   }
1071   void disableDebugInfo() { DisableDebugInfo = true; }
1072   void enableDebugInfo() { DisableDebugInfo = false; }
1073 
1074   bool shouldUseFusedARCCalls() {
1075     return CGM.getCodeGenOpts().OptimizationLevel == 0;
1076   }
1077 
1078   const LangOptions &getLangOpts() const { return CGM.getLangOpts(); }
1079 
1080   /// Returns a pointer to the function's exception object and selector slot,
1081   /// which is assigned in every landing pad.
1082   llvm::Value *getExceptionSlot();
1083   llvm::Value *getEHSelectorSlot();
1084 
1085   /// Returns the contents of the function's exception object and selector
1086   /// slots.
1087   llvm::Value *getExceptionFromSlot();
1088   llvm::Value *getSelectorFromSlot();
1089 
1090   llvm::Value *getNormalCleanupDestSlot();
1091 
1092   llvm::BasicBlock *getUnreachableBlock() {
1093     if (!UnreachableBlock) {
1094       UnreachableBlock = createBasicBlock("unreachable");
1095       new llvm::UnreachableInst(getLLVMContext(), UnreachableBlock);
1096     }
1097     return UnreachableBlock;
1098   }
1099 
1100   llvm::BasicBlock *getInvokeDest() {
1101     if (!EHStack.requiresLandingPad()) return nullptr;
1102     return getInvokeDestImpl();
1103   }
1104 
1105   const TargetInfo &getTarget() const { return Target; }
1106   llvm::LLVMContext &getLLVMContext() { return CGM.getLLVMContext(); }
1107 
1108   //===--------------------------------------------------------------------===//
1109   //                                  Cleanups
1110   //===--------------------------------------------------------------------===//
1111 
1112   typedef void Destroyer(CodeGenFunction &CGF, llvm::Value *addr, QualType ty);
1113 
1114   void pushIrregularPartialArrayCleanup(llvm::Value *arrayBegin,
1115                                         llvm::Value *arrayEndPointer,
1116                                         QualType elementType,
1117                                         Destroyer *destroyer);
1118   void pushRegularPartialArrayCleanup(llvm::Value *arrayBegin,
1119                                       llvm::Value *arrayEnd,
1120                                       QualType elementType,
1121                                       Destroyer *destroyer);
1122 
1123   void pushDestroy(QualType::DestructionKind dtorKind,
1124                    llvm::Value *addr, QualType type);
1125   void pushEHDestroy(QualType::DestructionKind dtorKind,
1126                      llvm::Value *addr, QualType type);
1127   void pushDestroy(CleanupKind kind, llvm::Value *addr, QualType type,
1128                    Destroyer *destroyer, bool useEHCleanupForArray);
1129   void pushLifetimeExtendedDestroy(CleanupKind kind, llvm::Value *addr,
1130                                    QualType type, Destroyer *destroyer,
1131                                    bool useEHCleanupForArray);
1132   void pushCallObjectDeleteCleanup(const FunctionDecl *OperatorDelete,
1133                                    llvm::Value *CompletePtr,
1134                                    QualType ElementType);
1135   void pushStackRestore(CleanupKind kind, llvm::Value *SPMem);
1136   void emitDestroy(llvm::Value *addr, QualType type, Destroyer *destroyer,
1137                    bool useEHCleanupForArray);
1138   llvm::Function *generateDestroyHelper(llvm::Constant *addr, QualType type,
1139                                         Destroyer *destroyer,
1140                                         bool useEHCleanupForArray,
1141                                         const VarDecl *VD);
1142   void emitArrayDestroy(llvm::Value *begin, llvm::Value *end,
1143                         QualType type, Destroyer *destroyer,
1144                         bool checkZeroLength, bool useEHCleanup);
1145 
1146   Destroyer *getDestroyer(QualType::DestructionKind destructionKind);
1147 
1148   /// Determines whether an EH cleanup is required to destroy a type
1149   /// with the given destruction kind.
1150   bool needsEHCleanup(QualType::DestructionKind kind) {
1151     switch (kind) {
1152     case QualType::DK_none:
1153       return false;
1154     case QualType::DK_cxx_destructor:
1155     case QualType::DK_objc_weak_lifetime:
1156       return getLangOpts().Exceptions;
1157     case QualType::DK_objc_strong_lifetime:
1158       return getLangOpts().Exceptions &&
1159              CGM.getCodeGenOpts().ObjCAutoRefCountExceptions;
1160     }
1161     llvm_unreachable("bad destruction kind");
1162   }
1163 
1164   CleanupKind getCleanupKind(QualType::DestructionKind kind) {
1165     return (needsEHCleanup(kind) ? NormalAndEHCleanup : NormalCleanup);
1166   }
1167 
1168   //===--------------------------------------------------------------------===//
1169   //                                  Objective-C
1170   //===--------------------------------------------------------------------===//
1171 
1172   void GenerateObjCMethod(const ObjCMethodDecl *OMD);
1173 
1174   void StartObjCMethod(const ObjCMethodDecl *MD, const ObjCContainerDecl *CD);
1175 
1176   /// GenerateObjCGetter - Synthesize an Objective-C property getter function.
1177   void GenerateObjCGetter(ObjCImplementationDecl *IMP,
1178                           const ObjCPropertyImplDecl *PID);
1179   void generateObjCGetterBody(const ObjCImplementationDecl *classImpl,
1180                               const ObjCPropertyImplDecl *propImpl,
1181                               const ObjCMethodDecl *GetterMothodDecl,
1182                               llvm::Constant *AtomicHelperFn);
1183 
1184   void GenerateObjCCtorDtorMethod(ObjCImplementationDecl *IMP,
1185                                   ObjCMethodDecl *MD, bool ctor);
1186 
1187   /// GenerateObjCSetter - Synthesize an Objective-C property setter function
1188   /// for the given property.
1189   void GenerateObjCSetter(ObjCImplementationDecl *IMP,
1190                           const ObjCPropertyImplDecl *PID);
1191   void generateObjCSetterBody(const ObjCImplementationDecl *classImpl,
1192                               const ObjCPropertyImplDecl *propImpl,
1193                               llvm::Constant *AtomicHelperFn);
1194   bool IndirectObjCSetterArg(const CGFunctionInfo &FI);
1195   bool IvarTypeWithAggrGCObjects(QualType Ty);
1196 
1197   //===--------------------------------------------------------------------===//
1198   //                                  Block Bits
1199   //===--------------------------------------------------------------------===//
1200 
1201   llvm::Value *EmitBlockLiteral(const BlockExpr *);
1202   llvm::Value *EmitBlockLiteral(const CGBlockInfo &Info);
1203   static void destroyBlockInfos(CGBlockInfo *info);
1204   llvm::Constant *BuildDescriptorBlockDecl(const BlockExpr *,
1205                                            const CGBlockInfo &Info,
1206                                            llvm::StructType *,
1207                                            llvm::Constant *BlockVarLayout);
1208 
1209   llvm::Function *GenerateBlockFunction(GlobalDecl GD,
1210                                         const CGBlockInfo &Info,
1211                                         const DeclMapTy &ldm,
1212                                         bool IsLambdaConversionToBlock);
1213 
1214   llvm::Constant *GenerateCopyHelperFunction(const CGBlockInfo &blockInfo);
1215   llvm::Constant *GenerateDestroyHelperFunction(const CGBlockInfo &blockInfo);
1216   llvm::Constant *GenerateObjCAtomicSetterCopyHelperFunction(
1217                                              const ObjCPropertyImplDecl *PID);
1218   llvm::Constant *GenerateObjCAtomicGetterCopyHelperFunction(
1219                                              const ObjCPropertyImplDecl *PID);
1220   llvm::Value *EmitBlockCopyAndAutorelease(llvm::Value *Block, QualType Ty);
1221 
1222   void BuildBlockRelease(llvm::Value *DeclPtr, BlockFieldFlags flags);
1223 
1224   class AutoVarEmission;
1225 
1226   void emitByrefStructureInit(const AutoVarEmission &emission);
1227   void enterByrefCleanup(const AutoVarEmission &emission);
1228 
1229   llvm::Value *LoadBlockStruct() {
1230     assert(BlockPointer && "no block pointer set!");
1231     return BlockPointer;
1232   }
1233 
1234   void AllocateBlockCXXThisPointer(const CXXThisExpr *E);
1235   void AllocateBlockDecl(const DeclRefExpr *E);
1236   llvm::Value *GetAddrOfBlockDecl(const VarDecl *var, bool ByRef);
1237   llvm::Type *BuildByRefType(const VarDecl *var);
1238 
1239   void GenerateCode(GlobalDecl GD, llvm::Function *Fn,
1240                     const CGFunctionInfo &FnInfo);
1241   /// \brief Emit code for the start of a function.
1242   /// \param Loc       The location to be associated with the function.
1243   /// \param StartLoc  The location of the function body.
1244   void StartFunction(GlobalDecl GD,
1245                      QualType RetTy,
1246                      llvm::Function *Fn,
1247                      const CGFunctionInfo &FnInfo,
1248                      const FunctionArgList &Args,
1249                      SourceLocation Loc = SourceLocation(),
1250                      SourceLocation StartLoc = SourceLocation());
1251 
1252   void EmitConstructorBody(FunctionArgList &Args);
1253   void EmitDestructorBody(FunctionArgList &Args);
1254   void emitImplicitAssignmentOperatorBody(FunctionArgList &Args);
1255   void EmitFunctionBody(FunctionArgList &Args, const Stmt *Body);
1256   void EmitBlockWithFallThrough(llvm::BasicBlock *BB, RegionCounter &Cnt);
1257 
1258   void EmitForwardingCallToLambda(const CXXMethodDecl *LambdaCallOperator,
1259                                   CallArgList &CallArgs);
1260   void EmitLambdaToBlockPointerBody(FunctionArgList &Args);
1261   void EmitLambdaBlockInvokeBody();
1262   void EmitLambdaDelegatingInvokeBody(const CXXMethodDecl *MD);
1263   void EmitLambdaStaticInvokeFunction(const CXXMethodDecl *MD);
1264   void EmitAsanPrologueOrEpilogue(bool Prologue);
1265 
1266   /// \brief Emit the unified return block, trying to avoid its emission when
1267   /// possible.
1268   /// \return The debug location of the user written return statement if the
1269   /// return block is is avoided.
1270   llvm::DebugLoc EmitReturnBlock();
1271 
1272   /// FinishFunction - Complete IR generation of the current function. It is
1273   /// legal to call this function even if there is no current insertion point.
1274   void FinishFunction(SourceLocation EndLoc=SourceLocation());
1275 
1276   void StartThunk(llvm::Function *Fn, GlobalDecl GD, const CGFunctionInfo &FnInfo);
1277 
1278   void EmitCallAndReturnForThunk(llvm::Value *Callee, const ThunkInfo *Thunk);
1279 
1280   /// Emit a musttail call for a thunk with a potentially adjusted this pointer.
1281   void EmitMustTailThunk(const CXXMethodDecl *MD, llvm::Value *AdjustedThisPtr,
1282                          llvm::Value *Callee);
1283 
1284   /// GenerateThunk - Generate a thunk for the given method.
1285   void GenerateThunk(llvm::Function *Fn, const CGFunctionInfo &FnInfo,
1286                      GlobalDecl GD, const ThunkInfo &Thunk);
1287 
1288   void GenerateVarArgsThunk(llvm::Function *Fn, const CGFunctionInfo &FnInfo,
1289                             GlobalDecl GD, const ThunkInfo &Thunk);
1290 
1291   void EmitCtorPrologue(const CXXConstructorDecl *CD, CXXCtorType Type,
1292                         FunctionArgList &Args);
1293 
1294   void EmitInitializerForField(FieldDecl *Field, LValue LHS, Expr *Init,
1295                                ArrayRef<VarDecl *> ArrayIndexes);
1296 
1297   /// InitializeVTablePointer - Initialize the vtable pointer of the given
1298   /// subobject.
1299   ///
1300   void InitializeVTablePointer(BaseSubobject Base,
1301                                const CXXRecordDecl *NearestVBase,
1302                                CharUnits OffsetFromNearestVBase,
1303                                const CXXRecordDecl *VTableClass);
1304 
1305   typedef llvm::SmallPtrSet<const CXXRecordDecl *, 4> VisitedVirtualBasesSetTy;
1306   void InitializeVTablePointers(BaseSubobject Base,
1307                                 const CXXRecordDecl *NearestVBase,
1308                                 CharUnits OffsetFromNearestVBase,
1309                                 bool BaseIsNonVirtualPrimaryBase,
1310                                 const CXXRecordDecl *VTableClass,
1311                                 VisitedVirtualBasesSetTy& VBases);
1312 
1313   void InitializeVTablePointers(const CXXRecordDecl *ClassDecl);
1314 
1315   /// GetVTablePtr - Return the Value of the vtable pointer member pointed
1316   /// to by This.
1317   llvm::Value *GetVTablePtr(llvm::Value *This, llvm::Type *Ty);
1318 
1319 
1320   /// CanDevirtualizeMemberFunctionCalls - Checks whether virtual calls on given
1321   /// expr can be devirtualized.
1322   bool CanDevirtualizeMemberFunctionCall(const Expr *Base,
1323                                          const CXXMethodDecl *MD);
1324 
1325   /// EnterDtorCleanups - Enter the cleanups necessary to complete the
1326   /// given phase of destruction for a destructor.  The end result
1327   /// should call destructors on members and base classes in reverse
1328   /// order of their construction.
1329   void EnterDtorCleanups(const CXXDestructorDecl *Dtor, CXXDtorType Type);
1330 
1331   /// ShouldInstrumentFunction - Return true if the current function should be
1332   /// instrumented with __cyg_profile_func_* calls
1333   bool ShouldInstrumentFunction();
1334 
1335   /// EmitFunctionInstrumentation - Emit LLVM code to call the specified
1336   /// instrumentation function with the current function and the call site, if
1337   /// function instrumentation is enabled.
1338   void EmitFunctionInstrumentation(const char *Fn);
1339 
1340   /// EmitMCountInstrumentation - Emit call to .mcount.
1341   void EmitMCountInstrumentation();
1342 
1343   /// EmitFunctionProlog - Emit the target specific LLVM code to load the
1344   /// arguments for the given function. This is also responsible for naming the
1345   /// LLVM function arguments.
1346   void EmitFunctionProlog(const CGFunctionInfo &FI,
1347                           llvm::Function *Fn,
1348                           const FunctionArgList &Args);
1349 
1350   /// EmitFunctionEpilog - Emit the target specific LLVM code to return the
1351   /// given temporary.
1352   void EmitFunctionEpilog(const CGFunctionInfo &FI, bool EmitRetDbgLoc,
1353                           SourceLocation EndLoc);
1354 
1355   /// EmitStartEHSpec - Emit the start of the exception spec.
1356   void EmitStartEHSpec(const Decl *D);
1357 
1358   /// EmitEndEHSpec - Emit the end of the exception spec.
1359   void EmitEndEHSpec(const Decl *D);
1360 
1361   /// getTerminateLandingPad - Return a landing pad that just calls terminate.
1362   llvm::BasicBlock *getTerminateLandingPad();
1363 
1364   /// getTerminateHandler - Return a handler (not a landing pad, just
1365   /// a catch handler) that just calls terminate.  This is used when
1366   /// a terminate scope encloses a try.
1367   llvm::BasicBlock *getTerminateHandler();
1368 
1369   llvm::Type *ConvertTypeForMem(QualType T);
1370   llvm::Type *ConvertType(QualType T);
1371   llvm::Type *ConvertType(const TypeDecl *T) {
1372     return ConvertType(getContext().getTypeDeclType(T));
1373   }
1374 
1375   /// LoadObjCSelf - Load the value of self. This function is only valid while
1376   /// generating code for an Objective-C method.
1377   llvm::Value *LoadObjCSelf();
1378 
1379   /// TypeOfSelfObject - Return type of object that this self represents.
1380   QualType TypeOfSelfObject();
1381 
1382   /// hasAggregateLLVMType - Return true if the specified AST type will map into
1383   /// an aggregate LLVM type or is void.
1384   static TypeEvaluationKind getEvaluationKind(QualType T);
1385 
1386   static bool hasScalarEvaluationKind(QualType T) {
1387     return getEvaluationKind(T) == TEK_Scalar;
1388   }
1389 
1390   static bool hasAggregateEvaluationKind(QualType T) {
1391     return getEvaluationKind(T) == TEK_Aggregate;
1392   }
1393 
1394   /// createBasicBlock - Create an LLVM basic block.
1395   llvm::BasicBlock *createBasicBlock(const Twine &name = "",
1396                                      llvm::Function *parent = nullptr,
1397                                      llvm::BasicBlock *before = nullptr) {
1398 #ifdef NDEBUG
1399     return llvm::BasicBlock::Create(getLLVMContext(), "", parent, before);
1400 #else
1401     return llvm::BasicBlock::Create(getLLVMContext(), name, parent, before);
1402 #endif
1403   }
1404 
1405   /// getBasicBlockForLabel - Return the LLVM basicblock that the specified
1406   /// label maps to.
1407   JumpDest getJumpDestForLabel(const LabelDecl *S);
1408 
1409   /// SimplifyForwardingBlocks - If the given basic block is only a branch to
1410   /// another basic block, simplify it. This assumes that no other code could
1411   /// potentially reference the basic block.
1412   void SimplifyForwardingBlocks(llvm::BasicBlock *BB);
1413 
1414   /// EmitBlock - Emit the given block \arg BB and set it as the insert point,
1415   /// adding a fall-through branch from the current insert block if
1416   /// necessary. It is legal to call this function even if there is no current
1417   /// insertion point.
1418   ///
1419   /// IsFinished - If true, indicates that the caller has finished emitting
1420   /// branches to the given block and does not expect to emit code into it. This
1421   /// means the block can be ignored if it is unreachable.
1422   void EmitBlock(llvm::BasicBlock *BB, bool IsFinished=false);
1423 
1424   /// EmitBlockAfterUses - Emit the given block somewhere hopefully
1425   /// near its uses, and leave the insertion point in it.
1426   void EmitBlockAfterUses(llvm::BasicBlock *BB);
1427 
1428   /// EmitBranch - Emit a branch to the specified basic block from the current
1429   /// insert block, taking care to avoid creation of branches from dummy
1430   /// blocks. It is legal to call this function even if there is no current
1431   /// insertion point.
1432   ///
1433   /// This function clears the current insertion point. The caller should follow
1434   /// calls to this function with calls to Emit*Block prior to generation new
1435   /// code.
1436   void EmitBranch(llvm::BasicBlock *Block);
1437 
1438   /// HaveInsertPoint - True if an insertion point is defined. If not, this
1439   /// indicates that the current code being emitted is unreachable.
1440   bool HaveInsertPoint() const {
1441     return Builder.GetInsertBlock() != nullptr;
1442   }
1443 
1444   /// EnsureInsertPoint - Ensure that an insertion point is defined so that
1445   /// emitted IR has a place to go. Note that by definition, if this function
1446   /// creates a block then that block is unreachable; callers may do better to
1447   /// detect when no insertion point is defined and simply skip IR generation.
1448   void EnsureInsertPoint() {
1449     if (!HaveInsertPoint())
1450       EmitBlock(createBasicBlock());
1451   }
1452 
1453   /// ErrorUnsupported - Print out an error that codegen doesn't support the
1454   /// specified stmt yet.
1455   void ErrorUnsupported(const Stmt *S, const char *Type);
1456 
1457   //===--------------------------------------------------------------------===//
1458   //                                  Helpers
1459   //===--------------------------------------------------------------------===//
1460 
1461   LValue MakeAddrLValue(llvm::Value *V, QualType T,
1462                         CharUnits Alignment = CharUnits()) {
1463     return LValue::MakeAddr(V, T, Alignment, getContext(),
1464                             CGM.getTBAAInfo(T));
1465   }
1466 
1467   LValue MakeNaturalAlignAddrLValue(llvm::Value *V, QualType T);
1468 
1469   /// CreateTempAlloca - This creates a alloca and inserts it into the entry
1470   /// block. The caller is responsible for setting an appropriate alignment on
1471   /// the alloca.
1472   llvm::AllocaInst *CreateTempAlloca(llvm::Type *Ty,
1473                                      const Twine &Name = "tmp");
1474 
1475   /// InitTempAlloca - Provide an initial value for the given alloca.
1476   void InitTempAlloca(llvm::AllocaInst *Alloca, llvm::Value *Value);
1477 
1478   /// CreateIRTemp - Create a temporary IR object of the given type, with
1479   /// appropriate alignment. This routine should only be used when an temporary
1480   /// value needs to be stored into an alloca (for example, to avoid explicit
1481   /// PHI construction), but the type is the IR type, not the type appropriate
1482   /// for storing in memory.
1483   llvm::AllocaInst *CreateIRTemp(QualType T, const Twine &Name = "tmp");
1484 
1485   /// CreateMemTemp - Create a temporary memory object of the given type, with
1486   /// appropriate alignment.
1487   llvm::AllocaInst *CreateMemTemp(QualType T, const Twine &Name = "tmp");
1488 
1489   /// CreateAggTemp - Create a temporary memory object for the given
1490   /// aggregate type.
1491   AggValueSlot CreateAggTemp(QualType T, const Twine &Name = "tmp") {
1492     CharUnits Alignment = getContext().getTypeAlignInChars(T);
1493     return AggValueSlot::forAddr(CreateMemTemp(T, Name), Alignment,
1494                                  T.getQualifiers(),
1495                                  AggValueSlot::IsNotDestructed,
1496                                  AggValueSlot::DoesNotNeedGCBarriers,
1497                                  AggValueSlot::IsNotAliased);
1498   }
1499 
1500   /// CreateInAllocaTmp - Create a temporary memory object for the given
1501   /// aggregate type.
1502   AggValueSlot CreateInAllocaTmp(QualType T, const Twine &Name = "inalloca");
1503 
1504   /// Emit a cast to void* in the appropriate address space.
1505   llvm::Value *EmitCastToVoidPtr(llvm::Value *value);
1506 
1507   /// EvaluateExprAsBool - Perform the usual unary conversions on the specified
1508   /// expression and compare the result against zero, returning an Int1Ty value.
1509   llvm::Value *EvaluateExprAsBool(const Expr *E);
1510 
1511   /// EmitIgnoredExpr - Emit an expression in a context which ignores the result.
1512   void EmitIgnoredExpr(const Expr *E);
1513 
1514   /// EmitAnyExpr - Emit code to compute the specified expression which can have
1515   /// any type.  The result is returned as an RValue struct.  If this is an
1516   /// aggregate expression, the aggloc/agglocvolatile arguments indicate where
1517   /// the result should be returned.
1518   ///
1519   /// \param ignoreResult True if the resulting value isn't used.
1520   RValue EmitAnyExpr(const Expr *E,
1521                      AggValueSlot aggSlot = AggValueSlot::ignored(),
1522                      bool ignoreResult = false);
1523 
1524   // EmitVAListRef - Emit a "reference" to a va_list; this is either the address
1525   // or the value of the expression, depending on how va_list is defined.
1526   llvm::Value *EmitVAListRef(const Expr *E);
1527 
1528   /// EmitAnyExprToTemp - Similary to EmitAnyExpr(), however, the result will
1529   /// always be accessible even if no aggregate location is provided.
1530   RValue EmitAnyExprToTemp(const Expr *E);
1531 
1532   /// EmitAnyExprToMem - Emits the code necessary to evaluate an
1533   /// arbitrary expression into the given memory location.
1534   void EmitAnyExprToMem(const Expr *E, llvm::Value *Location,
1535                         Qualifiers Quals, bool IsInitializer);
1536 
1537   /// EmitExprAsInit - Emits the code necessary to initialize a
1538   /// location in memory with the given initializer.
1539   void EmitExprAsInit(const Expr *init, const ValueDecl *D, LValue lvalue,
1540                       bool capturedByInit);
1541 
1542   /// hasVolatileMember - returns true if aggregate type has a volatile
1543   /// member.
1544   bool hasVolatileMember(QualType T) {
1545     if (const RecordType *RT = T->getAs<RecordType>()) {
1546       const RecordDecl *RD = cast<RecordDecl>(RT->getDecl());
1547       return RD->hasVolatileMember();
1548     }
1549     return false;
1550   }
1551   /// EmitAggregateCopy - Emit an aggregate assignment.
1552   ///
1553   /// The difference to EmitAggregateCopy is that tail padding is not copied.
1554   /// This is required for correctness when assigning non-POD structures in C++.
1555   void EmitAggregateAssign(llvm::Value *DestPtr, llvm::Value *SrcPtr,
1556                            QualType EltTy) {
1557     bool IsVolatile = hasVolatileMember(EltTy);
1558     EmitAggregateCopy(DestPtr, SrcPtr, EltTy, IsVolatile, CharUnits::Zero(),
1559                       true);
1560   }
1561 
1562   /// EmitAggregateCopy - Emit an aggregate copy.
1563   ///
1564   /// \param isVolatile - True iff either the source or the destination is
1565   /// volatile.
1566   /// \param isAssignment - If false, allow padding to be copied.  This often
1567   /// yields more efficient.
1568   void EmitAggregateCopy(llvm::Value *DestPtr, llvm::Value *SrcPtr,
1569                          QualType EltTy, bool isVolatile=false,
1570                          CharUnits Alignment = CharUnits::Zero(),
1571                          bool isAssignment = false);
1572 
1573   /// StartBlock - Start new block named N. If insert block is a dummy block
1574   /// then reuse it.
1575   void StartBlock(const char *N);
1576 
1577   /// GetAddrOfLocalVar - Return the address of a local variable.
1578   llvm::Value *GetAddrOfLocalVar(const VarDecl *VD) {
1579     llvm::Value *Res = LocalDeclMap[VD];
1580     assert(Res && "Invalid argument to GetAddrOfLocalVar(), no decl!");
1581     return Res;
1582   }
1583 
1584   /// getOpaqueLValueMapping - Given an opaque value expression (which
1585   /// must be mapped to an l-value), return its mapping.
1586   const LValue &getOpaqueLValueMapping(const OpaqueValueExpr *e) {
1587     assert(OpaqueValueMapping::shouldBindAsLValue(e));
1588 
1589     llvm::DenseMap<const OpaqueValueExpr*,LValue>::iterator
1590       it = OpaqueLValues.find(e);
1591     assert(it != OpaqueLValues.end() && "no mapping for opaque value!");
1592     return it->second;
1593   }
1594 
1595   /// getOpaqueRValueMapping - Given an opaque value expression (which
1596   /// must be mapped to an r-value), return its mapping.
1597   const RValue &getOpaqueRValueMapping(const OpaqueValueExpr *e) {
1598     assert(!OpaqueValueMapping::shouldBindAsLValue(e));
1599 
1600     llvm::DenseMap<const OpaqueValueExpr*,RValue>::iterator
1601       it = OpaqueRValues.find(e);
1602     assert(it != OpaqueRValues.end() && "no mapping for opaque value!");
1603     return it->second;
1604   }
1605 
1606   /// getAccessedFieldNo - Given an encoded value and a result number, return
1607   /// the input field number being accessed.
1608   static unsigned getAccessedFieldNo(unsigned Idx, const llvm::Constant *Elts);
1609 
1610   llvm::BlockAddress *GetAddrOfLabel(const LabelDecl *L);
1611   llvm::BasicBlock *GetIndirectGotoBlock();
1612 
1613   /// EmitNullInitialization - Generate code to set a value of the given type to
1614   /// null, If the type contains data member pointers, they will be initialized
1615   /// to -1 in accordance with the Itanium C++ ABI.
1616   void EmitNullInitialization(llvm::Value *DestPtr, QualType Ty);
1617 
1618   // EmitVAArg - Generate code to get an argument from the passed in pointer
1619   // and update it accordingly. The return value is a pointer to the argument.
1620   // FIXME: We should be able to get rid of this method and use the va_arg
1621   // instruction in LLVM instead once it works well enough.
1622   llvm::Value *EmitVAArg(llvm::Value *VAListAddr, QualType Ty);
1623 
1624   /// emitArrayLength - Compute the length of an array, even if it's a
1625   /// VLA, and drill down to the base element type.
1626   llvm::Value *emitArrayLength(const ArrayType *arrayType,
1627                                QualType &baseType,
1628                                llvm::Value *&addr);
1629 
1630   /// EmitVLASize - Capture all the sizes for the VLA expressions in
1631   /// the given variably-modified type and store them in the VLASizeMap.
1632   ///
1633   /// This function can be called with a null (unreachable) insert point.
1634   void EmitVariablyModifiedType(QualType Ty);
1635 
1636   /// getVLASize - Returns an LLVM value that corresponds to the size,
1637   /// in non-variably-sized elements, of a variable length array type,
1638   /// plus that largest non-variably-sized element type.  Assumes that
1639   /// the type has already been emitted with EmitVariablyModifiedType.
1640   std::pair<llvm::Value*,QualType> getVLASize(const VariableArrayType *vla);
1641   std::pair<llvm::Value*,QualType> getVLASize(QualType vla);
1642 
1643   /// LoadCXXThis - Load the value of 'this'. This function is only valid while
1644   /// generating code for an C++ member function.
1645   llvm::Value *LoadCXXThis() {
1646     assert(CXXThisValue && "no 'this' value for this function");
1647     return CXXThisValue;
1648   }
1649 
1650   /// LoadCXXVTT - Load the VTT parameter to base constructors/destructors have
1651   /// virtual bases.
1652   // FIXME: Every place that calls LoadCXXVTT is something
1653   // that needs to be abstracted properly.
1654   llvm::Value *LoadCXXVTT() {
1655     assert(CXXStructorImplicitParamValue && "no VTT value for this function");
1656     return CXXStructorImplicitParamValue;
1657   }
1658 
1659   /// LoadCXXStructorImplicitParam - Load the implicit parameter
1660   /// for a constructor/destructor.
1661   llvm::Value *LoadCXXStructorImplicitParam() {
1662     assert(CXXStructorImplicitParamValue &&
1663            "no implicit argument value for this function");
1664     return CXXStructorImplicitParamValue;
1665   }
1666 
1667   /// GetAddressOfBaseOfCompleteClass - Convert the given pointer to a
1668   /// complete class to the given direct base.
1669   llvm::Value *
1670   GetAddressOfDirectBaseInCompleteClass(llvm::Value *Value,
1671                                         const CXXRecordDecl *Derived,
1672                                         const CXXRecordDecl *Base,
1673                                         bool BaseIsVirtual);
1674 
1675   /// GetAddressOfBaseClass - This function will add the necessary delta to the
1676   /// load of 'this' and returns address of the base class.
1677   llvm::Value *GetAddressOfBaseClass(llvm::Value *Value,
1678                                      const CXXRecordDecl *Derived,
1679                                      CastExpr::path_const_iterator PathBegin,
1680                                      CastExpr::path_const_iterator PathEnd,
1681                                      bool NullCheckValue, SourceLocation Loc);
1682 
1683   llvm::Value *GetAddressOfDerivedClass(llvm::Value *Value,
1684                                         const CXXRecordDecl *Derived,
1685                                         CastExpr::path_const_iterator PathBegin,
1686                                         CastExpr::path_const_iterator PathEnd,
1687                                         bool NullCheckValue);
1688 
1689   /// GetVTTParameter - Return the VTT parameter that should be passed to a
1690   /// base constructor/destructor with virtual bases.
1691   /// FIXME: VTTs are Itanium ABI-specific, so the definition should move
1692   /// to ItaniumCXXABI.cpp together with all the references to VTT.
1693   llvm::Value *GetVTTParameter(GlobalDecl GD, bool ForVirtualBase,
1694                                bool Delegating);
1695 
1696   void EmitDelegateCXXConstructorCall(const CXXConstructorDecl *Ctor,
1697                                       CXXCtorType CtorType,
1698                                       const FunctionArgList &Args,
1699                                       SourceLocation Loc);
1700   // It's important not to confuse this and the previous function. Delegating
1701   // constructors are the C++0x feature. The constructor delegate optimization
1702   // is used to reduce duplication in the base and complete consturctors where
1703   // they are substantially the same.
1704   void EmitDelegatingCXXConstructorCall(const CXXConstructorDecl *Ctor,
1705                                         const FunctionArgList &Args);
1706   void EmitCXXConstructorCall(const CXXConstructorDecl *D, CXXCtorType Type,
1707                               bool ForVirtualBase, bool Delegating,
1708                               llvm::Value *This, const CXXConstructExpr *E);
1709 
1710   void EmitSynthesizedCXXCopyCtorCall(const CXXConstructorDecl *D,
1711                               llvm::Value *This, llvm::Value *Src,
1712                               const CXXConstructExpr *E);
1713 
1714   void EmitCXXAggrConstructorCall(const CXXConstructorDecl *D,
1715                                   const ConstantArrayType *ArrayTy,
1716                                   llvm::Value *ArrayPtr,
1717                                   const CXXConstructExpr *E,
1718                                   bool ZeroInitialization = false);
1719 
1720   void EmitCXXAggrConstructorCall(const CXXConstructorDecl *D,
1721                                   llvm::Value *NumElements,
1722                                   llvm::Value *ArrayPtr,
1723                                   const CXXConstructExpr *E,
1724                                   bool ZeroInitialization = false);
1725 
1726   static Destroyer destroyCXXObject;
1727 
1728   void EmitCXXDestructorCall(const CXXDestructorDecl *D, CXXDtorType Type,
1729                              bool ForVirtualBase, bool Delegating,
1730                              llvm::Value *This);
1731 
1732   void EmitNewArrayInitializer(const CXXNewExpr *E, QualType elementType,
1733                                llvm::Value *NewPtr, llvm::Value *NumElements,
1734                                llvm::Value *AllocSizeWithoutCookie);
1735 
1736   void EmitCXXTemporary(const CXXTemporary *Temporary, QualType TempType,
1737                         llvm::Value *Ptr);
1738 
1739   llvm::Value *EmitCXXNewExpr(const CXXNewExpr *E);
1740   void EmitCXXDeleteExpr(const CXXDeleteExpr *E);
1741 
1742   void EmitDeleteCall(const FunctionDecl *DeleteFD, llvm::Value *Ptr,
1743                       QualType DeleteTy);
1744 
1745   RValue EmitBuiltinNewDeleteCall(const FunctionProtoType *Type,
1746                                   const Expr *Arg, bool IsDelete);
1747 
1748   llvm::Value* EmitCXXTypeidExpr(const CXXTypeidExpr *E);
1749   llvm::Value *EmitDynamicCast(llvm::Value *V, const CXXDynamicCastExpr *DCE);
1750   llvm::Value* EmitCXXUuidofExpr(const CXXUuidofExpr *E);
1751 
1752   /// \brief Situations in which we might emit a check for the suitability of a
1753   ///        pointer or glvalue.
1754   enum TypeCheckKind {
1755     /// Checking the operand of a load. Must be suitably sized and aligned.
1756     TCK_Load,
1757     /// Checking the destination of a store. Must be suitably sized and aligned.
1758     TCK_Store,
1759     /// Checking the bound value in a reference binding. Must be suitably sized
1760     /// and aligned, but is not required to refer to an object (until the
1761     /// reference is used), per core issue 453.
1762     TCK_ReferenceBinding,
1763     /// Checking the object expression in a non-static data member access. Must
1764     /// be an object within its lifetime.
1765     TCK_MemberAccess,
1766     /// Checking the 'this' pointer for a call to a non-static member function.
1767     /// Must be an object within its lifetime.
1768     TCK_MemberCall,
1769     /// Checking the 'this' pointer for a constructor call.
1770     TCK_ConstructorCall,
1771     /// Checking the operand of a static_cast to a derived pointer type. Must be
1772     /// null or an object within its lifetime.
1773     TCK_DowncastPointer,
1774     /// Checking the operand of a static_cast to a derived reference type. Must
1775     /// be an object within its lifetime.
1776     TCK_DowncastReference,
1777     /// Checking the operand of a cast to a base object. Must be suitably sized
1778     /// and aligned.
1779     TCK_Upcast,
1780     /// Checking the operand of a cast to a virtual base object. Must be an
1781     /// object within its lifetime.
1782     TCK_UpcastToVirtualBase
1783   };
1784 
1785   /// \brief Whether any type-checking sanitizers are enabled. If \c false,
1786   /// calls to EmitTypeCheck can be skipped.
1787   bool sanitizePerformTypeCheck() const;
1788 
1789   /// \brief Emit a check that \p V is the address of storage of the
1790   /// appropriate size and alignment for an object of type \p Type.
1791   void EmitTypeCheck(TypeCheckKind TCK, SourceLocation Loc, llvm::Value *V,
1792                      QualType Type, CharUnits Alignment = CharUnits::Zero(),
1793                      bool SkipNullCheck = false);
1794 
1795   /// \brief Emit a check that \p Base points into an array object, which
1796   /// we can access at index \p Index. \p Accessed should be \c false if we
1797   /// this expression is used as an lvalue, for instance in "&Arr[Idx]".
1798   void EmitBoundsCheck(const Expr *E, const Expr *Base, llvm::Value *Index,
1799                        QualType IndexType, bool Accessed);
1800 
1801   llvm::Value *EmitScalarPrePostIncDec(const UnaryOperator *E, LValue LV,
1802                                        bool isInc, bool isPre);
1803   ComplexPairTy EmitComplexPrePostIncDec(const UnaryOperator *E, LValue LV,
1804                                          bool isInc, bool isPre);
1805 
1806   void EmitAlignmentAssumption(llvm::Value *PtrValue, unsigned Alignment,
1807                                llvm::Value *OffsetValue = nullptr) {
1808     Builder.CreateAlignmentAssumption(CGM.getDataLayout(), PtrValue, Alignment,
1809                                       OffsetValue);
1810   }
1811 
1812   //===--------------------------------------------------------------------===//
1813   //                            Declaration Emission
1814   //===--------------------------------------------------------------------===//
1815 
1816   /// EmitDecl - Emit a declaration.
1817   ///
1818   /// This function can be called with a null (unreachable) insert point.
1819   void EmitDecl(const Decl &D);
1820 
1821   /// EmitVarDecl - Emit a local variable declaration.
1822   ///
1823   /// This function can be called with a null (unreachable) insert point.
1824   void EmitVarDecl(const VarDecl &D);
1825 
1826   void EmitScalarInit(const Expr *init, const ValueDecl *D, LValue lvalue,
1827                       bool capturedByInit);
1828   void EmitScalarInit(llvm::Value *init, LValue lvalue);
1829 
1830   typedef void SpecialInitFn(CodeGenFunction &Init, const VarDecl &D,
1831                              llvm::Value *Address);
1832 
1833   /// \brief Determine whether the given initializer is trivial in the sense
1834   /// that it requires no code to be generated.
1835   bool isTrivialInitializer(const Expr *Init);
1836 
1837   /// EmitAutoVarDecl - Emit an auto variable declaration.
1838   ///
1839   /// This function can be called with a null (unreachable) insert point.
1840   void EmitAutoVarDecl(const VarDecl &D);
1841 
1842   class AutoVarEmission {
1843     friend class CodeGenFunction;
1844 
1845     const VarDecl *Variable;
1846 
1847     /// The alignment of the variable.
1848     CharUnits Alignment;
1849 
1850     /// The address of the alloca.  Null if the variable was emitted
1851     /// as a global constant.
1852     llvm::Value *Address;
1853 
1854     llvm::Value *NRVOFlag;
1855 
1856     /// True if the variable is a __block variable.
1857     bool IsByRef;
1858 
1859     /// True if the variable is of aggregate type and has a constant
1860     /// initializer.
1861     bool IsConstantAggregate;
1862 
1863     /// Non-null if we should use lifetime annotations.
1864     llvm::Value *SizeForLifetimeMarkers;
1865 
1866     struct Invalid {};
1867     AutoVarEmission(Invalid) : Variable(nullptr) {}
1868 
1869     AutoVarEmission(const VarDecl &variable)
1870       : Variable(&variable), Address(nullptr), NRVOFlag(nullptr),
1871         IsByRef(false), IsConstantAggregate(false),
1872         SizeForLifetimeMarkers(nullptr) {}
1873 
1874     bool wasEmittedAsGlobal() const { return Address == nullptr; }
1875 
1876   public:
1877     static AutoVarEmission invalid() { return AutoVarEmission(Invalid()); }
1878 
1879     bool useLifetimeMarkers() const {
1880       return SizeForLifetimeMarkers != nullptr;
1881     }
1882     llvm::Value *getSizeForLifetimeMarkers() const {
1883       assert(useLifetimeMarkers());
1884       return SizeForLifetimeMarkers;
1885     }
1886 
1887     /// Returns the raw, allocated address, which is not necessarily
1888     /// the address of the object itself.
1889     llvm::Value *getAllocatedAddress() const {
1890       return Address;
1891     }
1892 
1893     /// Returns the address of the object within this declaration.
1894     /// Note that this does not chase the forwarding pointer for
1895     /// __block decls.
1896     llvm::Value *getObjectAddress(CodeGenFunction &CGF) const {
1897       if (!IsByRef) return Address;
1898 
1899       return CGF.Builder.CreateStructGEP(Address,
1900                                          CGF.getByRefValueLLVMField(Variable),
1901                                          Variable->getNameAsString());
1902     }
1903   };
1904   AutoVarEmission EmitAutoVarAlloca(const VarDecl &var);
1905   void EmitAutoVarInit(const AutoVarEmission &emission);
1906   void EmitAutoVarCleanups(const AutoVarEmission &emission);
1907   void emitAutoVarTypeCleanup(const AutoVarEmission &emission,
1908                               QualType::DestructionKind dtorKind);
1909 
1910   void EmitStaticVarDecl(const VarDecl &D,
1911                          llvm::GlobalValue::LinkageTypes Linkage);
1912 
1913   /// EmitParmDecl - Emit a ParmVarDecl or an ImplicitParamDecl.
1914   void EmitParmDecl(const VarDecl &D, llvm::Value *Arg, bool ArgIsPointer,
1915                     unsigned ArgNo);
1916 
1917   /// protectFromPeepholes - Protect a value that we're intending to
1918   /// store to the side, but which will probably be used later, from
1919   /// aggressive peepholing optimizations that might delete it.
1920   ///
1921   /// Pass the result to unprotectFromPeepholes to declare that
1922   /// protection is no longer required.
1923   ///
1924   /// There's no particular reason why this shouldn't apply to
1925   /// l-values, it's just that no existing peepholes work on pointers.
1926   PeepholeProtection protectFromPeepholes(RValue rvalue);
1927   void unprotectFromPeepholes(PeepholeProtection protection);
1928 
1929   //===--------------------------------------------------------------------===//
1930   //                             Statement Emission
1931   //===--------------------------------------------------------------------===//
1932 
1933   /// EmitStopPoint - Emit a debug stoppoint if we are emitting debug info.
1934   void EmitStopPoint(const Stmt *S);
1935 
1936   /// EmitStmt - Emit the code for the statement \arg S. It is legal to call
1937   /// this function even if there is no current insertion point.
1938   ///
1939   /// This function may clear the current insertion point; callers should use
1940   /// EnsureInsertPoint if they wish to subsequently generate code without first
1941   /// calling EmitBlock, EmitBranch, or EmitStmt.
1942   void EmitStmt(const Stmt *S);
1943 
1944   /// EmitSimpleStmt - Try to emit a "simple" statement which does not
1945   /// necessarily require an insertion point or debug information; typically
1946   /// because the statement amounts to a jump or a container of other
1947   /// statements.
1948   ///
1949   /// \return True if the statement was handled.
1950   bool EmitSimpleStmt(const Stmt *S);
1951 
1952   llvm::Value *EmitCompoundStmt(const CompoundStmt &S, bool GetLast = false,
1953                                 AggValueSlot AVS = AggValueSlot::ignored());
1954   llvm::Value *EmitCompoundStmtWithoutScope(const CompoundStmt &S,
1955                                             bool GetLast = false,
1956                                             AggValueSlot AVS =
1957                                                 AggValueSlot::ignored());
1958 
1959   /// EmitLabel - Emit the block for the given label. It is legal to call this
1960   /// function even if there is no current insertion point.
1961   void EmitLabel(const LabelDecl *D); // helper for EmitLabelStmt.
1962 
1963   void EmitLabelStmt(const LabelStmt &S);
1964   void EmitAttributedStmt(const AttributedStmt &S);
1965   void EmitGotoStmt(const GotoStmt &S);
1966   void EmitIndirectGotoStmt(const IndirectGotoStmt &S);
1967   void EmitIfStmt(const IfStmt &S);
1968 
1969   void EmitCondBrHints(llvm::LLVMContext &Context, llvm::BranchInst *CondBr,
1970                        ArrayRef<const Attr *> Attrs);
1971   void EmitWhileStmt(const WhileStmt &S,
1972                      ArrayRef<const Attr *> Attrs = None);
1973   void EmitDoStmt(const DoStmt &S, ArrayRef<const Attr *> Attrs = None);
1974   void EmitForStmt(const ForStmt &S,
1975                    ArrayRef<const Attr *> Attrs = None);
1976   void EmitReturnStmt(const ReturnStmt &S);
1977   void EmitDeclStmt(const DeclStmt &S);
1978   void EmitBreakStmt(const BreakStmt &S);
1979   void EmitContinueStmt(const ContinueStmt &S);
1980   void EmitSwitchStmt(const SwitchStmt &S);
1981   void EmitDefaultStmt(const DefaultStmt &S);
1982   void EmitCaseStmt(const CaseStmt &S);
1983   void EmitCaseStmtRange(const CaseStmt &S);
1984   void EmitAsmStmt(const AsmStmt &S);
1985 
1986   void EmitObjCForCollectionStmt(const ObjCForCollectionStmt &S);
1987   void EmitObjCAtTryStmt(const ObjCAtTryStmt &S);
1988   void EmitObjCAtThrowStmt(const ObjCAtThrowStmt &S);
1989   void EmitObjCAtSynchronizedStmt(const ObjCAtSynchronizedStmt &S);
1990   void EmitObjCAutoreleasePoolStmt(const ObjCAutoreleasePoolStmt &S);
1991 
1992   void EnterCXXTryStmt(const CXXTryStmt &S, bool IsFnTryBlock = false);
1993   void ExitCXXTryStmt(const CXXTryStmt &S, bool IsFnTryBlock = false);
1994 
1995   void EmitCXXTryStmt(const CXXTryStmt &S);
1996   void EmitSEHTryStmt(const SEHTryStmt &S);
1997   void EmitSEHLeaveStmt(const SEHLeaveStmt &S);
1998   void EnterSEHTryStmt(const SEHTryStmt &S);
1999   void ExitSEHTryStmt(const SEHTryStmt &S);
2000 
2001   llvm::Function *GenerateSEHFilterFunction(CodeGenFunction &ParentCGF,
2002                                             const SEHExceptStmt &Except);
2003 
2004   void EmitSEHExceptionCodeSave();
2005   llvm::Value *EmitSEHExceptionCode();
2006   llvm::Value *EmitSEHExceptionInfo();
2007 
2008   void EmitCXXForRangeStmt(const CXXForRangeStmt &S,
2009                            ArrayRef<const Attr *> Attrs = None);
2010 
2011   LValue InitCapturedStruct(const CapturedStmt &S);
2012   llvm::Function *EmitCapturedStmt(const CapturedStmt &S, CapturedRegionKind K);
2013   void GenerateCapturedStmtFunctionProlog(const CapturedStmt &S);
2014   llvm::Function *GenerateCapturedStmtFunctionEpilog(const CapturedStmt &S);
2015   llvm::Function *GenerateCapturedStmtFunction(const CapturedStmt &S);
2016   llvm::Value *GenerateCapturedStmtArgument(const CapturedStmt &S);
2017   void EmitOMPAggregateAssign(LValue OriginalAddr, llvm::Value *PrivateAddr,
2018                               const Expr *AssignExpr, QualType Type,
2019                               const VarDecl *VDInit);
2020   void EmitOMPFirstprivateClause(const OMPExecutableDirective &D,
2021                                  OMPPrivateScope &PrivateScope);
2022   void EmitOMPPrivateClause(const OMPExecutableDirective &D,
2023                             OMPPrivateScope &PrivateScope);
2024 
2025   void EmitOMPParallelDirective(const OMPParallelDirective &S);
2026   void EmitOMPSimdDirective(const OMPSimdDirective &S);
2027   void EmitOMPForDirective(const OMPForDirective &S);
2028   void EmitOMPForSimdDirective(const OMPForSimdDirective &S);
2029   void EmitOMPSectionsDirective(const OMPSectionsDirective &S);
2030   void EmitOMPSectionDirective(const OMPSectionDirective &S);
2031   void EmitOMPSingleDirective(const OMPSingleDirective &S);
2032   void EmitOMPMasterDirective(const OMPMasterDirective &S);
2033   void EmitOMPCriticalDirective(const OMPCriticalDirective &S);
2034   void EmitOMPParallelForDirective(const OMPParallelForDirective &S);
2035   void EmitOMPParallelForSimdDirective(const OMPParallelForSimdDirective &S);
2036   void EmitOMPParallelSectionsDirective(const OMPParallelSectionsDirective &S);
2037   void EmitOMPTaskDirective(const OMPTaskDirective &S);
2038   void EmitOMPTaskyieldDirective(const OMPTaskyieldDirective &S);
2039   void EmitOMPBarrierDirective(const OMPBarrierDirective &S);
2040   void EmitOMPTaskwaitDirective(const OMPTaskwaitDirective &S);
2041   void EmitOMPFlushDirective(const OMPFlushDirective &S);
2042   void EmitOMPOrderedDirective(const OMPOrderedDirective &S);
2043   void EmitOMPAtomicDirective(const OMPAtomicDirective &S);
2044   void EmitOMPTargetDirective(const OMPTargetDirective &S);
2045   void EmitOMPTeamsDirective(const OMPTeamsDirective &S);
2046 
2047 private:
2048 
2049   /// Helpers for the OpenMP loop directives.
2050   void EmitOMPLoopBody(const OMPLoopDirective &Directive,
2051                        bool SeparateIter = false);
2052   void EmitOMPInnerLoop(const OMPLoopDirective &S, OMPPrivateScope &LoopScope,
2053                         bool SeparateIter = false);
2054   void EmitOMPSimdFinal(const OMPLoopDirective &S);
2055   void EmitOMPWorksharingLoop(const OMPLoopDirective &S);
2056   void EmitOMPForOuterLoop(OpenMPScheduleClauseKind ScheduleKind,
2057                            const OMPLoopDirective &S,
2058                            OMPPrivateScope &LoopScope, llvm::Value *LB,
2059                            llvm::Value *UB, llvm::Value *ST, llvm::Value *IL,
2060                            llvm::Value *Chunk);
2061 
2062 public:
2063 
2064   //===--------------------------------------------------------------------===//
2065   //                         LValue Expression Emission
2066   //===--------------------------------------------------------------------===//
2067 
2068   /// GetUndefRValue - Get an appropriate 'undef' rvalue for the given type.
2069   RValue GetUndefRValue(QualType Ty);
2070 
2071   /// EmitUnsupportedRValue - Emit a dummy r-value using the type of E
2072   /// and issue an ErrorUnsupported style diagnostic (using the
2073   /// provided Name).
2074   RValue EmitUnsupportedRValue(const Expr *E,
2075                                const char *Name);
2076 
2077   /// EmitUnsupportedLValue - Emit a dummy l-value using the type of E and issue
2078   /// an ErrorUnsupported style diagnostic (using the provided Name).
2079   LValue EmitUnsupportedLValue(const Expr *E,
2080                                const char *Name);
2081 
2082   /// EmitLValue - Emit code to compute a designator that specifies the location
2083   /// of the expression.
2084   ///
2085   /// This can return one of two things: a simple address or a bitfield
2086   /// reference.  In either case, the LLVM Value* in the LValue structure is
2087   /// guaranteed to be an LLVM pointer type.
2088   ///
2089   /// If this returns a bitfield reference, nothing about the pointee type of
2090   /// the LLVM value is known: For example, it may not be a pointer to an
2091   /// integer.
2092   ///
2093   /// If this returns a normal address, and if the lvalue's C type is fixed
2094   /// size, this method guarantees that the returned pointer type will point to
2095   /// an LLVM type of the same size of the lvalue's type.  If the lvalue has a
2096   /// variable length type, this is not possible.
2097   ///
2098   LValue EmitLValue(const Expr *E);
2099 
2100   /// \brief Same as EmitLValue but additionally we generate checking code to
2101   /// guard against undefined behavior.  This is only suitable when we know
2102   /// that the address will be used to access the object.
2103   LValue EmitCheckedLValue(const Expr *E, TypeCheckKind TCK);
2104 
2105   RValue convertTempToRValue(llvm::Value *addr, QualType type,
2106                              SourceLocation Loc);
2107 
2108   void EmitAtomicInit(Expr *E, LValue lvalue);
2109 
2110   RValue EmitAtomicLoad(LValue lvalue, SourceLocation loc,
2111                         AggValueSlot slot = AggValueSlot::ignored());
2112 
2113   void EmitAtomicStore(RValue rvalue, LValue lvalue, bool isInit);
2114 
2115   std::pair<RValue, RValue> EmitAtomicCompareExchange(
2116       LValue Obj, RValue Expected, RValue Desired, SourceLocation Loc,
2117       llvm::AtomicOrdering Success = llvm::SequentiallyConsistent,
2118       llvm::AtomicOrdering Failure = llvm::SequentiallyConsistent,
2119       bool IsWeak = false, AggValueSlot Slot = AggValueSlot::ignored());
2120 
2121   /// EmitToMemory - Change a scalar value from its value
2122   /// representation to its in-memory representation.
2123   llvm::Value *EmitToMemory(llvm::Value *Value, QualType Ty);
2124 
2125   /// EmitFromMemory - Change a scalar value from its memory
2126   /// representation to its value representation.
2127   llvm::Value *EmitFromMemory(llvm::Value *Value, QualType Ty);
2128 
2129   /// EmitLoadOfScalar - Load a scalar value from an address, taking
2130   /// care to appropriately convert from the memory representation to
2131   /// the LLVM value representation.
2132   llvm::Value *EmitLoadOfScalar(llvm::Value *Addr, bool Volatile,
2133                                 unsigned Alignment, QualType Ty,
2134                                 SourceLocation Loc,
2135                                 llvm::MDNode *TBAAInfo = nullptr,
2136                                 QualType TBAABaseTy = QualType(),
2137                                 uint64_t TBAAOffset = 0);
2138 
2139   /// EmitLoadOfScalar - Load a scalar value from an address, taking
2140   /// care to appropriately convert from the memory representation to
2141   /// the LLVM value representation.  The l-value must be a simple
2142   /// l-value.
2143   llvm::Value *EmitLoadOfScalar(LValue lvalue, SourceLocation Loc);
2144 
2145   /// EmitStoreOfScalar - Store a scalar value to an address, taking
2146   /// care to appropriately convert from the memory representation to
2147   /// the LLVM value representation.
2148   void EmitStoreOfScalar(llvm::Value *Value, llvm::Value *Addr,
2149                          bool Volatile, unsigned Alignment, QualType Ty,
2150                          llvm::MDNode *TBAAInfo = nullptr, bool isInit = false,
2151                          QualType TBAABaseTy = QualType(),
2152                          uint64_t TBAAOffset = 0);
2153 
2154   /// EmitStoreOfScalar - Store a scalar value to an address, taking
2155   /// care to appropriately convert from the memory representation to
2156   /// the LLVM value representation.  The l-value must be a simple
2157   /// l-value.  The isInit flag indicates whether this is an initialization.
2158   /// If so, atomic qualifiers are ignored and the store is always non-atomic.
2159   void EmitStoreOfScalar(llvm::Value *value, LValue lvalue, bool isInit=false);
2160 
2161   /// EmitLoadOfLValue - Given an expression that represents a value lvalue,
2162   /// this method emits the address of the lvalue, then loads the result as an
2163   /// rvalue, returning the rvalue.
2164   RValue EmitLoadOfLValue(LValue V, SourceLocation Loc);
2165   RValue EmitLoadOfExtVectorElementLValue(LValue V);
2166   RValue EmitLoadOfBitfieldLValue(LValue LV);
2167   RValue EmitLoadOfGlobalRegLValue(LValue LV);
2168 
2169   /// EmitStoreThroughLValue - Store the specified rvalue into the specified
2170   /// lvalue, where both are guaranteed to the have the same type, and that type
2171   /// is 'Ty'.
2172   void EmitStoreThroughLValue(RValue Src, LValue Dst, bool isInit = false);
2173   void EmitStoreThroughExtVectorComponentLValue(RValue Src, LValue Dst);
2174   void EmitStoreThroughGlobalRegLValue(RValue Src, LValue Dst);
2175 
2176   /// EmitStoreThroughBitfieldLValue - Store Src into Dst with same constraints
2177   /// as EmitStoreThroughLValue.
2178   ///
2179   /// \param Result [out] - If non-null, this will be set to a Value* for the
2180   /// bit-field contents after the store, appropriate for use as the result of
2181   /// an assignment to the bit-field.
2182   void EmitStoreThroughBitfieldLValue(RValue Src, LValue Dst,
2183                                       llvm::Value **Result=nullptr);
2184 
2185   /// Emit an l-value for an assignment (simple or compound) of complex type.
2186   LValue EmitComplexAssignmentLValue(const BinaryOperator *E);
2187   LValue EmitComplexCompoundAssignmentLValue(const CompoundAssignOperator *E);
2188   LValue EmitScalarCompooundAssignWithComplex(const CompoundAssignOperator *E,
2189                                               llvm::Value *&Result);
2190 
2191   // Note: only available for agg return types
2192   LValue EmitBinaryOperatorLValue(const BinaryOperator *E);
2193   LValue EmitCompoundAssignmentLValue(const CompoundAssignOperator *E);
2194   // Note: only available for agg return types
2195   LValue EmitCallExprLValue(const CallExpr *E);
2196   // Note: only available for agg return types
2197   LValue EmitVAArgExprLValue(const VAArgExpr *E);
2198   LValue EmitDeclRefLValue(const DeclRefExpr *E);
2199   LValue EmitReadRegister(const VarDecl *VD);
2200   LValue EmitStringLiteralLValue(const StringLiteral *E);
2201   LValue EmitObjCEncodeExprLValue(const ObjCEncodeExpr *E);
2202   LValue EmitPredefinedLValue(const PredefinedExpr *E);
2203   LValue EmitUnaryOpLValue(const UnaryOperator *E);
2204   LValue EmitArraySubscriptExpr(const ArraySubscriptExpr *E,
2205                                 bool Accessed = false);
2206   LValue EmitExtVectorElementExpr(const ExtVectorElementExpr *E);
2207   LValue EmitMemberExpr(const MemberExpr *E);
2208   LValue EmitObjCIsaExpr(const ObjCIsaExpr *E);
2209   LValue EmitCompoundLiteralLValue(const CompoundLiteralExpr *E);
2210   LValue EmitInitListLValue(const InitListExpr *E);
2211   LValue EmitConditionalOperatorLValue(const AbstractConditionalOperator *E);
2212   LValue EmitCastLValue(const CastExpr *E);
2213   LValue EmitMaterializeTemporaryExpr(const MaterializeTemporaryExpr *E);
2214   LValue EmitOpaqueValueLValue(const OpaqueValueExpr *e);
2215 
2216   llvm::Value *EmitExtVectorElementLValue(LValue V);
2217 
2218   RValue EmitRValueForField(LValue LV, const FieldDecl *FD, SourceLocation Loc);
2219 
2220   class ConstantEmission {
2221     llvm::PointerIntPair<llvm::Constant*, 1, bool> ValueAndIsReference;
2222     ConstantEmission(llvm::Constant *C, bool isReference)
2223       : ValueAndIsReference(C, isReference) {}
2224   public:
2225     ConstantEmission() {}
2226     static ConstantEmission forReference(llvm::Constant *C) {
2227       return ConstantEmission(C, true);
2228     }
2229     static ConstantEmission forValue(llvm::Constant *C) {
2230       return ConstantEmission(C, false);
2231     }
2232 
2233     LLVM_EXPLICIT operator bool() const {
2234       return ValueAndIsReference.getOpaqueValue() != nullptr;
2235     }
2236 
2237     bool isReference() const { return ValueAndIsReference.getInt(); }
2238     LValue getReferenceLValue(CodeGenFunction &CGF, Expr *refExpr) const {
2239       assert(isReference());
2240       return CGF.MakeNaturalAlignAddrLValue(ValueAndIsReference.getPointer(),
2241                                             refExpr->getType());
2242     }
2243 
2244     llvm::Constant *getValue() const {
2245       assert(!isReference());
2246       return ValueAndIsReference.getPointer();
2247     }
2248   };
2249 
2250   ConstantEmission tryEmitAsConstant(DeclRefExpr *refExpr);
2251 
2252   RValue EmitPseudoObjectRValue(const PseudoObjectExpr *e,
2253                                 AggValueSlot slot = AggValueSlot::ignored());
2254   LValue EmitPseudoObjectLValue(const PseudoObjectExpr *e);
2255 
2256   llvm::Value *EmitIvarOffset(const ObjCInterfaceDecl *Interface,
2257                               const ObjCIvarDecl *Ivar);
2258   LValue EmitLValueForField(LValue Base, const FieldDecl* Field);
2259   LValue EmitLValueForLambdaField(const FieldDecl *Field);
2260 
2261   /// EmitLValueForFieldInitialization - Like EmitLValueForField, except that
2262   /// if the Field is a reference, this will return the address of the reference
2263   /// and not the address of the value stored in the reference.
2264   LValue EmitLValueForFieldInitialization(LValue Base,
2265                                           const FieldDecl* Field);
2266 
2267   LValue EmitLValueForIvar(QualType ObjectTy,
2268                            llvm::Value* Base, const ObjCIvarDecl *Ivar,
2269                            unsigned CVRQualifiers);
2270 
2271   LValue EmitCXXConstructLValue(const CXXConstructExpr *E);
2272   LValue EmitCXXBindTemporaryLValue(const CXXBindTemporaryExpr *E);
2273   LValue EmitLambdaLValue(const LambdaExpr *E);
2274   LValue EmitCXXTypeidLValue(const CXXTypeidExpr *E);
2275   LValue EmitCXXUuidofLValue(const CXXUuidofExpr *E);
2276 
2277   LValue EmitObjCMessageExprLValue(const ObjCMessageExpr *E);
2278   LValue EmitObjCIvarRefLValue(const ObjCIvarRefExpr *E);
2279   LValue EmitStmtExprLValue(const StmtExpr *E);
2280   LValue EmitPointerToDataMemberBinaryExpr(const BinaryOperator *E);
2281   LValue EmitObjCSelectorLValue(const ObjCSelectorExpr *E);
2282   void   EmitDeclRefExprDbgValue(const DeclRefExpr *E, llvm::Constant *Init);
2283 
2284   //===--------------------------------------------------------------------===//
2285   //                         Scalar Expression Emission
2286   //===--------------------------------------------------------------------===//
2287 
2288   /// EmitCall - Generate a call of the given function, expecting the given
2289   /// result type, and using the given argument list which specifies both the
2290   /// LLVM arguments and the types they were derived from.
2291   ///
2292   /// \param TargetDecl - If given, the decl of the function in a direct call;
2293   /// used to set attributes on the call (noreturn, etc.).
2294   RValue EmitCall(const CGFunctionInfo &FnInfo,
2295                   llvm::Value *Callee,
2296                   ReturnValueSlot ReturnValue,
2297                   const CallArgList &Args,
2298                   const Decl *TargetDecl = nullptr,
2299                   llvm::Instruction **callOrInvoke = nullptr);
2300 
2301   RValue EmitCall(QualType FnType, llvm::Value *Callee, const CallExpr *E,
2302                   ReturnValueSlot ReturnValue,
2303                   const Decl *TargetDecl = nullptr,
2304                   llvm::Value *Chain = nullptr);
2305   RValue EmitCallExpr(const CallExpr *E,
2306                       ReturnValueSlot ReturnValue = ReturnValueSlot());
2307 
2308   llvm::CallInst *EmitRuntimeCall(llvm::Value *callee,
2309                                   const Twine &name = "");
2310   llvm::CallInst *EmitRuntimeCall(llvm::Value *callee,
2311                                   ArrayRef<llvm::Value*> args,
2312                                   const Twine &name = "");
2313   llvm::CallInst *EmitNounwindRuntimeCall(llvm::Value *callee,
2314                                           const Twine &name = "");
2315   llvm::CallInst *EmitNounwindRuntimeCall(llvm::Value *callee,
2316                                           ArrayRef<llvm::Value*> args,
2317                                           const Twine &name = "");
2318 
2319   llvm::CallSite EmitCallOrInvoke(llvm::Value *Callee,
2320                                   ArrayRef<llvm::Value *> Args,
2321                                   const Twine &Name = "");
2322   llvm::CallSite EmitCallOrInvoke(llvm::Value *Callee,
2323                                   const Twine &Name = "");
2324   llvm::CallSite EmitRuntimeCallOrInvoke(llvm::Value *callee,
2325                                          ArrayRef<llvm::Value*> args,
2326                                          const Twine &name = "");
2327   llvm::CallSite EmitRuntimeCallOrInvoke(llvm::Value *callee,
2328                                          const Twine &name = "");
2329   void EmitNoreturnRuntimeCallOrInvoke(llvm::Value *callee,
2330                                        ArrayRef<llvm::Value*> args);
2331 
2332   llvm::Value *BuildAppleKextVirtualCall(const CXXMethodDecl *MD,
2333                                          NestedNameSpecifier *Qual,
2334                                          llvm::Type *Ty);
2335 
2336   llvm::Value *BuildAppleKextVirtualDestructorCall(const CXXDestructorDecl *DD,
2337                                                    CXXDtorType Type,
2338                                                    const CXXRecordDecl *RD);
2339 
2340   RValue
2341   EmitCXXMemberOrOperatorCall(const CXXMethodDecl *MD, llvm::Value *Callee,
2342                               ReturnValueSlot ReturnValue, llvm::Value *This,
2343                               llvm::Value *ImplicitParam,
2344                               QualType ImplicitParamTy, const CallExpr *E);
2345   RValue EmitCXXStructorCall(const CXXMethodDecl *MD, llvm::Value *Callee,
2346                              ReturnValueSlot ReturnValue, llvm::Value *This,
2347                              llvm::Value *ImplicitParam,
2348                              QualType ImplicitParamTy, const CallExpr *E,
2349                              StructorType Type);
2350   RValue EmitCXXMemberCallExpr(const CXXMemberCallExpr *E,
2351                                ReturnValueSlot ReturnValue);
2352   RValue EmitCXXMemberOrOperatorMemberCallExpr(const CallExpr *CE,
2353                                                const CXXMethodDecl *MD,
2354                                                ReturnValueSlot ReturnValue,
2355                                                bool HasQualifier,
2356                                                NestedNameSpecifier *Qualifier,
2357                                                bool IsArrow, const Expr *Base);
2358   // Compute the object pointer.
2359   RValue EmitCXXMemberPointerCallExpr(const CXXMemberCallExpr *E,
2360                                       ReturnValueSlot ReturnValue);
2361 
2362   RValue EmitCXXOperatorMemberCallExpr(const CXXOperatorCallExpr *E,
2363                                        const CXXMethodDecl *MD,
2364                                        ReturnValueSlot ReturnValue);
2365 
2366   RValue EmitCUDAKernelCallExpr(const CUDAKernelCallExpr *E,
2367                                 ReturnValueSlot ReturnValue);
2368 
2369 
2370   RValue EmitBuiltinExpr(const FunctionDecl *FD,
2371                          unsigned BuiltinID, const CallExpr *E,
2372                          ReturnValueSlot ReturnValue);
2373 
2374   RValue EmitBlockCallExpr(const CallExpr *E, ReturnValueSlot ReturnValue);
2375 
2376   /// EmitTargetBuiltinExpr - Emit the given builtin call. Returns 0 if the call
2377   /// is unhandled by the current target.
2378   llvm::Value *EmitTargetBuiltinExpr(unsigned BuiltinID, const CallExpr *E);
2379 
2380   llvm::Value *EmitAArch64CompareBuiltinExpr(llvm::Value *Op, llvm::Type *Ty,
2381                                              const llvm::CmpInst::Predicate Fp,
2382                                              const llvm::CmpInst::Predicate Ip,
2383                                              const llvm::Twine &Name = "");
2384   llvm::Value *EmitARMBuiltinExpr(unsigned BuiltinID, const CallExpr *E);
2385 
2386   llvm::Value *EmitCommonNeonBuiltinExpr(unsigned BuiltinID,
2387                                          unsigned LLVMIntrinsic,
2388                                          unsigned AltLLVMIntrinsic,
2389                                          const char *NameHint,
2390                                          unsigned Modifier,
2391                                          const CallExpr *E,
2392                                          SmallVectorImpl<llvm::Value *> &Ops,
2393                                          llvm::Value *Align = nullptr);
2394   llvm::Function *LookupNeonLLVMIntrinsic(unsigned IntrinsicID,
2395                                           unsigned Modifier, llvm::Type *ArgTy,
2396                                           const CallExpr *E);
2397   llvm::Value *EmitNeonCall(llvm::Function *F,
2398                             SmallVectorImpl<llvm::Value*> &O,
2399                             const char *name,
2400                             unsigned shift = 0, bool rightshift = false);
2401   llvm::Value *EmitNeonSplat(llvm::Value *V, llvm::Constant *Idx);
2402   llvm::Value *EmitNeonShiftVector(llvm::Value *V, llvm::Type *Ty,
2403                                    bool negateForRightShift);
2404   llvm::Value *EmitNeonRShiftImm(llvm::Value *Vec, llvm::Value *Amt,
2405                                  llvm::Type *Ty, bool usgn, const char *name);
2406   // Helper functions for EmitAArch64BuiltinExpr.
2407   llvm::Value *vectorWrapScalar8(llvm::Value *Op);
2408   llvm::Value *vectorWrapScalar16(llvm::Value *Op);
2409   llvm::Value *emitVectorWrappedScalar8Intrinsic(
2410       unsigned Int, SmallVectorImpl<llvm::Value *> &Ops, const char *Name);
2411   llvm::Value *emitVectorWrappedScalar16Intrinsic(
2412       unsigned Int, SmallVectorImpl<llvm::Value *> &Ops, const char *Name);
2413   llvm::Value *EmitAArch64BuiltinExpr(unsigned BuiltinID, const CallExpr *E);
2414   llvm::Value *EmitNeon64Call(llvm::Function *F,
2415                               llvm::SmallVectorImpl<llvm::Value *> &O,
2416                               const char *name);
2417 
2418   llvm::Value *BuildVector(ArrayRef<llvm::Value*> Ops);
2419   llvm::Value *EmitX86BuiltinExpr(unsigned BuiltinID, const CallExpr *E);
2420   llvm::Value *EmitPPCBuiltinExpr(unsigned BuiltinID, const CallExpr *E);
2421   llvm::Value *EmitR600BuiltinExpr(unsigned BuiltinID, const CallExpr *E);
2422 
2423   llvm::Value *EmitObjCProtocolExpr(const ObjCProtocolExpr *E);
2424   llvm::Value *EmitObjCStringLiteral(const ObjCStringLiteral *E);
2425   llvm::Value *EmitObjCBoxedExpr(const ObjCBoxedExpr *E);
2426   llvm::Value *EmitObjCArrayLiteral(const ObjCArrayLiteral *E);
2427   llvm::Value *EmitObjCDictionaryLiteral(const ObjCDictionaryLiteral *E);
2428   llvm::Value *EmitObjCCollectionLiteral(const Expr *E,
2429                                 const ObjCMethodDecl *MethodWithObjects);
2430   llvm::Value *EmitObjCSelectorExpr(const ObjCSelectorExpr *E);
2431   RValue EmitObjCMessageExpr(const ObjCMessageExpr *E,
2432                              ReturnValueSlot Return = ReturnValueSlot());
2433 
2434   /// Retrieves the default cleanup kind for an ARC cleanup.
2435   /// Except under -fobjc-arc-eh, ARC cleanups are normal-only.
2436   CleanupKind getARCCleanupKind() {
2437     return CGM.getCodeGenOpts().ObjCAutoRefCountExceptions
2438              ? NormalAndEHCleanup : NormalCleanup;
2439   }
2440 
2441   // ARC primitives.
2442   void EmitARCInitWeak(llvm::Value *value, llvm::Value *addr);
2443   void EmitARCDestroyWeak(llvm::Value *addr);
2444   llvm::Value *EmitARCLoadWeak(llvm::Value *addr);
2445   llvm::Value *EmitARCLoadWeakRetained(llvm::Value *addr);
2446   llvm::Value *EmitARCStoreWeak(llvm::Value *value, llvm::Value *addr,
2447                                 bool ignored);
2448   void EmitARCCopyWeak(llvm::Value *dst, llvm::Value *src);
2449   void EmitARCMoveWeak(llvm::Value *dst, llvm::Value *src);
2450   llvm::Value *EmitARCRetainAutorelease(QualType type, llvm::Value *value);
2451   llvm::Value *EmitARCRetainAutoreleaseNonBlock(llvm::Value *value);
2452   llvm::Value *EmitARCStoreStrong(LValue lvalue, llvm::Value *value,
2453                                   bool resultIgnored);
2454   llvm::Value *EmitARCStoreStrongCall(llvm::Value *addr, llvm::Value *value,
2455                                       bool resultIgnored);
2456   llvm::Value *EmitARCRetain(QualType type, llvm::Value *value);
2457   llvm::Value *EmitARCRetainNonBlock(llvm::Value *value);
2458   llvm::Value *EmitARCRetainBlock(llvm::Value *value, bool mandatory);
2459   void EmitARCDestroyStrong(llvm::Value *addr, ARCPreciseLifetime_t precise);
2460   void EmitARCRelease(llvm::Value *value, ARCPreciseLifetime_t precise);
2461   llvm::Value *EmitARCAutorelease(llvm::Value *value);
2462   llvm::Value *EmitARCAutoreleaseReturnValue(llvm::Value *value);
2463   llvm::Value *EmitARCRetainAutoreleaseReturnValue(llvm::Value *value);
2464   llvm::Value *EmitARCRetainAutoreleasedReturnValue(llvm::Value *value);
2465 
2466   std::pair<LValue,llvm::Value*>
2467   EmitARCStoreAutoreleasing(const BinaryOperator *e);
2468   std::pair<LValue,llvm::Value*>
2469   EmitARCStoreStrong(const BinaryOperator *e, bool ignored);
2470 
2471   llvm::Value *EmitObjCThrowOperand(const Expr *expr);
2472 
2473   llvm::Value *EmitObjCProduceObject(QualType T, llvm::Value *Ptr);
2474   llvm::Value *EmitObjCConsumeObject(QualType T, llvm::Value *Ptr);
2475   llvm::Value *EmitObjCExtendObjectLifetime(QualType T, llvm::Value *Ptr);
2476 
2477   llvm::Value *EmitARCExtendBlockObject(const Expr *expr);
2478   llvm::Value *EmitARCRetainScalarExpr(const Expr *expr);
2479   llvm::Value *EmitARCRetainAutoreleaseScalarExpr(const Expr *expr);
2480 
2481   void EmitARCIntrinsicUse(ArrayRef<llvm::Value*> values);
2482 
2483   static Destroyer destroyARCStrongImprecise;
2484   static Destroyer destroyARCStrongPrecise;
2485   static Destroyer destroyARCWeak;
2486 
2487   void EmitObjCAutoreleasePoolPop(llvm::Value *Ptr);
2488   llvm::Value *EmitObjCAutoreleasePoolPush();
2489   llvm::Value *EmitObjCMRRAutoreleasePoolPush();
2490   void EmitObjCAutoreleasePoolCleanup(llvm::Value *Ptr);
2491   void EmitObjCMRRAutoreleasePoolPop(llvm::Value *Ptr);
2492 
2493   /// \brief Emits a reference binding to the passed in expression.
2494   RValue EmitReferenceBindingToExpr(const Expr *E);
2495 
2496   //===--------------------------------------------------------------------===//
2497   //                           Expression Emission
2498   //===--------------------------------------------------------------------===//
2499 
2500   // Expressions are broken into three classes: scalar, complex, aggregate.
2501 
2502   /// EmitScalarExpr - Emit the computation of the specified expression of LLVM
2503   /// scalar type, returning the result.
2504   llvm::Value *EmitScalarExpr(const Expr *E , bool IgnoreResultAssign = false);
2505 
2506   /// EmitScalarConversion - Emit a conversion from the specified type to the
2507   /// specified destination type, both of which are LLVM scalar types.
2508   llvm::Value *EmitScalarConversion(llvm::Value *Src, QualType SrcTy,
2509                                     QualType DstTy);
2510 
2511   /// EmitComplexToScalarConversion - Emit a conversion from the specified
2512   /// complex type to the specified destination type, where the destination type
2513   /// is an LLVM scalar type.
2514   llvm::Value *EmitComplexToScalarConversion(ComplexPairTy Src, QualType SrcTy,
2515                                              QualType DstTy);
2516 
2517 
2518   /// EmitAggExpr - Emit the computation of the specified expression
2519   /// of aggregate type.  The result is computed into the given slot,
2520   /// which may be null to indicate that the value is not needed.
2521   void EmitAggExpr(const Expr *E, AggValueSlot AS);
2522 
2523   /// EmitAggExprToLValue - Emit the computation of the specified expression of
2524   /// aggregate type into a temporary LValue.
2525   LValue EmitAggExprToLValue(const Expr *E);
2526 
2527   /// EmitGCMemmoveCollectable - Emit special API for structs with object
2528   /// pointers.
2529   void EmitGCMemmoveCollectable(llvm::Value *DestPtr, llvm::Value *SrcPtr,
2530                                 QualType Ty);
2531 
2532   /// EmitExtendGCLifetime - Given a pointer to an Objective-C object,
2533   /// make sure it survives garbage collection until this point.
2534   void EmitExtendGCLifetime(llvm::Value *object);
2535 
2536   /// EmitComplexExpr - Emit the computation of the specified expression of
2537   /// complex type, returning the result.
2538   ComplexPairTy EmitComplexExpr(const Expr *E,
2539                                 bool IgnoreReal = false,
2540                                 bool IgnoreImag = false);
2541 
2542   /// EmitComplexExprIntoLValue - Emit the given expression of complex
2543   /// type and place its result into the specified l-value.
2544   void EmitComplexExprIntoLValue(const Expr *E, LValue dest, bool isInit);
2545 
2546   /// EmitStoreOfComplex - Store a complex number into the specified l-value.
2547   void EmitStoreOfComplex(ComplexPairTy V, LValue dest, bool isInit);
2548 
2549   /// EmitLoadOfComplex - Load a complex number from the specified l-value.
2550   ComplexPairTy EmitLoadOfComplex(LValue src, SourceLocation loc);
2551 
2552   /// AddInitializerToStaticVarDecl - Add the initializer for 'D' to the
2553   /// global variable that has already been created for it.  If the initializer
2554   /// has a different type than GV does, this may free GV and return a different
2555   /// one.  Otherwise it just returns GV.
2556   llvm::GlobalVariable *
2557   AddInitializerToStaticVarDecl(const VarDecl &D,
2558                                 llvm::GlobalVariable *GV);
2559 
2560 
2561   /// EmitCXXGlobalVarDeclInit - Create the initializer for a C++
2562   /// variable with global storage.
2563   void EmitCXXGlobalVarDeclInit(const VarDecl &D, llvm::Constant *DeclPtr,
2564                                 bool PerformInit);
2565 
2566   llvm::Constant *createAtExitStub(const VarDecl &VD, llvm::Constant *Dtor,
2567                                    llvm::Constant *Addr);
2568 
2569   /// Call atexit() with a function that passes the given argument to
2570   /// the given function.
2571   void registerGlobalDtorWithAtExit(const VarDecl &D, llvm::Constant *fn,
2572                                     llvm::Constant *addr);
2573 
2574   /// Emit code in this function to perform a guarded variable
2575   /// initialization.  Guarded initializations are used when it's not
2576   /// possible to prove that an initialization will be done exactly
2577   /// once, e.g. with a static local variable or a static data member
2578   /// of a class template.
2579   void EmitCXXGuardedInit(const VarDecl &D, llvm::GlobalVariable *DeclPtr,
2580                           bool PerformInit);
2581 
2582   /// GenerateCXXGlobalInitFunc - Generates code for initializing global
2583   /// variables.
2584   void GenerateCXXGlobalInitFunc(llvm::Function *Fn,
2585                                  ArrayRef<llvm::Function *> CXXThreadLocals,
2586                                  llvm::GlobalVariable *Guard = nullptr);
2587 
2588   /// GenerateCXXGlobalDtorsFunc - Generates code for destroying global
2589   /// variables.
2590   void GenerateCXXGlobalDtorsFunc(llvm::Function *Fn,
2591                                   const std::vector<std::pair<llvm::WeakVH,
2592                                   llvm::Constant*> > &DtorsAndObjects);
2593 
2594   void GenerateCXXGlobalVarDeclInitFunc(llvm::Function *Fn,
2595                                         const VarDecl *D,
2596                                         llvm::GlobalVariable *Addr,
2597                                         bool PerformInit);
2598 
2599   void EmitCXXConstructExpr(const CXXConstructExpr *E, AggValueSlot Dest);
2600 
2601   void EmitSynthesizedCXXCopyCtor(llvm::Value *Dest, llvm::Value *Src,
2602                                   const Expr *Exp);
2603 
2604   void enterFullExpression(const ExprWithCleanups *E) {
2605     if (E->getNumObjects() == 0) return;
2606     enterNonTrivialFullExpression(E);
2607   }
2608   void enterNonTrivialFullExpression(const ExprWithCleanups *E);
2609 
2610   void EmitCXXThrowExpr(const CXXThrowExpr *E, bool KeepInsertionPoint = true);
2611 
2612   void EmitLambdaExpr(const LambdaExpr *E, AggValueSlot Dest);
2613 
2614   RValue EmitAtomicExpr(AtomicExpr *E, llvm::Value *Dest = nullptr);
2615 
2616   //===--------------------------------------------------------------------===//
2617   //                         Annotations Emission
2618   //===--------------------------------------------------------------------===//
2619 
2620   /// Emit an annotation call (intrinsic or builtin).
2621   llvm::Value *EmitAnnotationCall(llvm::Value *AnnotationFn,
2622                                   llvm::Value *AnnotatedVal,
2623                                   StringRef AnnotationStr,
2624                                   SourceLocation Location);
2625 
2626   /// Emit local annotations for the local variable V, declared by D.
2627   void EmitVarAnnotations(const VarDecl *D, llvm::Value *V);
2628 
2629   /// Emit field annotations for the given field & value. Returns the
2630   /// annotation result.
2631   llvm::Value *EmitFieldAnnotations(const FieldDecl *D, llvm::Value *V);
2632 
2633   //===--------------------------------------------------------------------===//
2634   //                             Internal Helpers
2635   //===--------------------------------------------------------------------===//
2636 
2637   /// ContainsLabel - Return true if the statement contains a label in it.  If
2638   /// this statement is not executed normally, it not containing a label means
2639   /// that we can just remove the code.
2640   static bool ContainsLabel(const Stmt *S, bool IgnoreCaseStmts = false);
2641 
2642   /// containsBreak - Return true if the statement contains a break out of it.
2643   /// If the statement (recursively) contains a switch or loop with a break
2644   /// inside of it, this is fine.
2645   static bool containsBreak(const Stmt *S);
2646 
2647   /// ConstantFoldsToSimpleInteger - If the specified expression does not fold
2648   /// to a constant, or if it does but contains a label, return false.  If it
2649   /// constant folds return true and set the boolean result in Result.
2650   bool ConstantFoldsToSimpleInteger(const Expr *Cond, bool &Result);
2651 
2652   /// ConstantFoldsToSimpleInteger - If the specified expression does not fold
2653   /// to a constant, or if it does but contains a label, return false.  If it
2654   /// constant folds return true and set the folded value.
2655   bool ConstantFoldsToSimpleInteger(const Expr *Cond, llvm::APSInt &Result);
2656 
2657   /// EmitBranchOnBoolExpr - Emit a branch on a boolean condition (e.g. for an
2658   /// if statement) to the specified blocks.  Based on the condition, this might
2659   /// try to simplify the codegen of the conditional based on the branch.
2660   /// TrueCount should be the number of times we expect the condition to
2661   /// evaluate to true based on PGO data.
2662   void EmitBranchOnBoolExpr(const Expr *Cond, llvm::BasicBlock *TrueBlock,
2663                             llvm::BasicBlock *FalseBlock, uint64_t TrueCount);
2664 
2665   /// \brief Emit a description of a type in a format suitable for passing to
2666   /// a runtime sanitizer handler.
2667   llvm::Constant *EmitCheckTypeDescriptor(QualType T);
2668 
2669   /// \brief Convert a value into a format suitable for passing to a runtime
2670   /// sanitizer handler.
2671   llvm::Value *EmitCheckValue(llvm::Value *V);
2672 
2673   /// \brief Emit a description of a source location in a format suitable for
2674   /// passing to a runtime sanitizer handler.
2675   llvm::Constant *EmitCheckSourceLocation(SourceLocation Loc);
2676 
2677   /// \brief Create a basic block that will call a handler function in a
2678   /// sanitizer runtime with the provided arguments, and create a conditional
2679   /// branch to it.
2680   void EmitCheck(ArrayRef<std::pair<llvm::Value *, SanitizerKind>> Checked,
2681                  StringRef CheckName, ArrayRef<llvm::Constant *> StaticArgs,
2682                  ArrayRef<llvm::Value *> DynamicArgs);
2683 
2684   /// \brief Create a basic block that will call the trap intrinsic, and emit a
2685   /// conditional branch to it, for the -ftrapv checks.
2686   void EmitTrapCheck(llvm::Value *Checked);
2687 
2688   /// EmitCallArg - Emit a single call argument.
2689   void EmitCallArg(CallArgList &args, const Expr *E, QualType ArgType);
2690 
2691   /// EmitDelegateCallArg - We are performing a delegate call; that
2692   /// is, the current function is delegating to another one.  Produce
2693   /// a r-value suitable for passing the given parameter.
2694   void EmitDelegateCallArg(CallArgList &args, const VarDecl *param,
2695                            SourceLocation loc);
2696 
2697   /// SetFPAccuracy - Set the minimum required accuracy of the given floating
2698   /// point operation, expressed as the maximum relative error in ulp.
2699   void SetFPAccuracy(llvm::Value *Val, float Accuracy);
2700 
2701 private:
2702   llvm::MDNode *getRangeForLoadFromType(QualType Ty);
2703   void EmitReturnOfRValue(RValue RV, QualType Ty);
2704 
2705   void deferPlaceholderReplacement(llvm::Instruction *Old, llvm::Value *New);
2706 
2707   llvm::SmallVector<std::pair<llvm::Instruction *, llvm::Value *>, 4>
2708   DeferredReplacements;
2709 
2710   /// ExpandTypeFromArgs - Reconstruct a structure of type \arg Ty
2711   /// from function arguments into \arg Dst. See ABIArgInfo::Expand.
2712   ///
2713   /// \param AI - The first function argument of the expansion.
2714   void ExpandTypeFromArgs(QualType Ty, LValue Dst,
2715                           SmallVectorImpl<llvm::Argument *>::iterator &AI);
2716 
2717   /// ExpandTypeToArgs - Expand an RValue \arg RV, with the LLVM type for \arg
2718   /// Ty, into individual arguments on the provided vector \arg IRCallArgs,
2719   /// starting at index \arg IRCallArgPos. See ABIArgInfo::Expand.
2720   void ExpandTypeToArgs(QualType Ty, RValue RV, llvm::FunctionType *IRFuncTy,
2721                         SmallVectorImpl<llvm::Value *> &IRCallArgs,
2722                         unsigned &IRCallArgPos);
2723 
2724   llvm::Value* EmitAsmInput(const TargetInfo::ConstraintInfo &Info,
2725                             const Expr *InputExpr, std::string &ConstraintStr);
2726 
2727   llvm::Value* EmitAsmInputLValue(const TargetInfo::ConstraintInfo &Info,
2728                                   LValue InputValue, QualType InputType,
2729                                   std::string &ConstraintStr,
2730                                   SourceLocation Loc);
2731 
2732 public:
2733   /// EmitCallArgs - Emit call arguments for a function.
2734   template <typename T>
2735   void EmitCallArgs(CallArgList &Args, const T *CallArgTypeInfo,
2736                     CallExpr::const_arg_iterator ArgBeg,
2737                     CallExpr::const_arg_iterator ArgEnd,
2738                     const FunctionDecl *CalleeDecl = nullptr,
2739                     unsigned ParamsToSkip = 0) {
2740     SmallVector<QualType, 16> ArgTypes;
2741     CallExpr::const_arg_iterator Arg = ArgBeg;
2742 
2743     assert((ParamsToSkip == 0 || CallArgTypeInfo) &&
2744            "Can't skip parameters if type info is not provided");
2745     if (CallArgTypeInfo) {
2746       // First, use the argument types that the type info knows about
2747       for (auto I = CallArgTypeInfo->param_type_begin() + ParamsToSkip,
2748                 E = CallArgTypeInfo->param_type_end();
2749            I != E; ++I, ++Arg) {
2750         assert(Arg != ArgEnd && "Running over edge of argument list!");
2751         assert(
2752             ((*I)->isVariablyModifiedType() ||
2753              getContext()
2754                      .getCanonicalType((*I).getNonReferenceType())
2755                      .getTypePtr() ==
2756                  getContext().getCanonicalType(Arg->getType()).getTypePtr()) &&
2757             "type mismatch in call argument!");
2758         ArgTypes.push_back(*I);
2759       }
2760     }
2761 
2762     // Either we've emitted all the call args, or we have a call to variadic
2763     // function.
2764     assert(
2765         (Arg == ArgEnd || !CallArgTypeInfo || CallArgTypeInfo->isVariadic()) &&
2766         "Extra arguments in non-variadic function!");
2767 
2768     // If we still have any arguments, emit them using the type of the argument.
2769     for (; Arg != ArgEnd; ++Arg)
2770       ArgTypes.push_back(getVarArgType(*Arg));
2771 
2772     EmitCallArgs(Args, ArgTypes, ArgBeg, ArgEnd, CalleeDecl, ParamsToSkip);
2773   }
2774 
2775   void EmitCallArgs(CallArgList &Args, ArrayRef<QualType> ArgTypes,
2776                     CallExpr::const_arg_iterator ArgBeg,
2777                     CallExpr::const_arg_iterator ArgEnd,
2778                     const FunctionDecl *CalleeDecl = nullptr,
2779                     unsigned ParamsToSkip = 0);
2780 
2781 private:
2782   QualType getVarArgType(const Expr *Arg);
2783 
2784   const TargetCodeGenInfo &getTargetHooks() const {
2785     return CGM.getTargetCodeGenInfo();
2786   }
2787 
2788   void EmitDeclMetadata();
2789 
2790   CodeGenModule::ByrefHelpers *
2791   buildByrefHelpers(llvm::StructType &byrefType,
2792                     const AutoVarEmission &emission);
2793 
2794   void AddObjCARCExceptionMetadata(llvm::Instruction *Inst);
2795 
2796   /// GetPointeeAlignment - Given an expression with a pointer type, emit the
2797   /// value and compute our best estimate of the alignment of the pointee.
2798   std::pair<llvm::Value*, unsigned> EmitPointerWithAlignment(const Expr *Addr);
2799 
2800   llvm::Value *GetValueForARMHint(unsigned BuiltinID);
2801 };
2802 
2803 /// Helper class with most of the code for saving a value for a
2804 /// conditional expression cleanup.
2805 struct DominatingLLVMValue {
2806   typedef llvm::PointerIntPair<llvm::Value*, 1, bool> saved_type;
2807 
2808   /// Answer whether the given value needs extra work to be saved.
2809   static bool needsSaving(llvm::Value *value) {
2810     // If it's not an instruction, we don't need to save.
2811     if (!isa<llvm::Instruction>(value)) return false;
2812 
2813     // If it's an instruction in the entry block, we don't need to save.
2814     llvm::BasicBlock *block = cast<llvm::Instruction>(value)->getParent();
2815     return (block != &block->getParent()->getEntryBlock());
2816   }
2817 
2818   /// Try to save the given value.
2819   static saved_type save(CodeGenFunction &CGF, llvm::Value *value) {
2820     if (!needsSaving(value)) return saved_type(value, false);
2821 
2822     // Otherwise we need an alloca.
2823     llvm::Value *alloca =
2824       CGF.CreateTempAlloca(value->getType(), "cond-cleanup.save");
2825     CGF.Builder.CreateStore(value, alloca);
2826 
2827     return saved_type(alloca, true);
2828   }
2829 
2830   static llvm::Value *restore(CodeGenFunction &CGF, saved_type value) {
2831     if (!value.getInt()) return value.getPointer();
2832     return CGF.Builder.CreateLoad(value.getPointer());
2833   }
2834 };
2835 
2836 /// A partial specialization of DominatingValue for llvm::Values that
2837 /// might be llvm::Instructions.
2838 template <class T> struct DominatingPointer<T,true> : DominatingLLVMValue {
2839   typedef T *type;
2840   static type restore(CodeGenFunction &CGF, saved_type value) {
2841     return static_cast<T*>(DominatingLLVMValue::restore(CGF, value));
2842   }
2843 };
2844 
2845 /// A specialization of DominatingValue for RValue.
2846 template <> struct DominatingValue<RValue> {
2847   typedef RValue type;
2848   class saved_type {
2849     enum Kind { ScalarLiteral, ScalarAddress, AggregateLiteral,
2850                 AggregateAddress, ComplexAddress };
2851 
2852     llvm::Value *Value;
2853     Kind K;
2854     saved_type(llvm::Value *v, Kind k) : Value(v), K(k) {}
2855 
2856   public:
2857     static bool needsSaving(RValue value);
2858     static saved_type save(CodeGenFunction &CGF, RValue value);
2859     RValue restore(CodeGenFunction &CGF);
2860 
2861     // implementations in CGExprCXX.cpp
2862   };
2863 
2864   static bool needsSaving(type value) {
2865     return saved_type::needsSaving(value);
2866   }
2867   static saved_type save(CodeGenFunction &CGF, type value) {
2868     return saved_type::save(CGF, value);
2869   }
2870   static type restore(CodeGenFunction &CGF, saved_type value) {
2871     return value.restore(CGF);
2872   }
2873 };
2874 
2875 }  // end namespace CodeGen
2876 }  // end namespace clang
2877 
2878 #endif
2879