1 //===-- CodeGenFunction.h - Per-Function state for LLVM CodeGen -*- C++ -*-===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This is the internal per-function state used for llvm translation.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #ifndef LLVM_CLANG_LIB_CODEGEN_CODEGENFUNCTION_H
15 #define LLVM_CLANG_LIB_CODEGEN_CODEGENFUNCTION_H
16 
17 #include "CGBuilder.h"
18 #include "CGDebugInfo.h"
19 #include "CGLoopInfo.h"
20 #include "CGValue.h"
21 #include "CodeGenModule.h"
22 #include "CodeGenPGO.h"
23 #include "EHScopeStack.h"
24 #include "clang/AST/CharUnits.h"
25 #include "clang/AST/ExprCXX.h"
26 #include "clang/AST/ExprObjC.h"
27 #include "clang/AST/Type.h"
28 #include "clang/Basic/ABI.h"
29 #include "clang/Basic/CapturedStmt.h"
30 #include "clang/Basic/OpenMPKinds.h"
31 #include "clang/Basic/TargetInfo.h"
32 #include "clang/Frontend/CodeGenOptions.h"
33 #include "llvm/ADT/ArrayRef.h"
34 #include "llvm/ADT/DenseMap.h"
35 #include "llvm/ADT/SmallVector.h"
36 #include "llvm/IR/ValueHandle.h"
37 #include "llvm/Support/Debug.h"
38 
39 namespace llvm {
40 class BasicBlock;
41 class LLVMContext;
42 class MDNode;
43 class Module;
44 class SwitchInst;
45 class Twine;
46 class Value;
47 class CallSite;
48 }
49 
50 namespace clang {
51 class ASTContext;
52 class BlockDecl;
53 class CXXDestructorDecl;
54 class CXXForRangeStmt;
55 class CXXTryStmt;
56 class Decl;
57 class LabelDecl;
58 class EnumConstantDecl;
59 class FunctionDecl;
60 class FunctionProtoType;
61 class LabelStmt;
62 class ObjCContainerDecl;
63 class ObjCInterfaceDecl;
64 class ObjCIvarDecl;
65 class ObjCMethodDecl;
66 class ObjCImplementationDecl;
67 class ObjCPropertyImplDecl;
68 class TargetInfo;
69 class TargetCodeGenInfo;
70 class VarDecl;
71 class ObjCForCollectionStmt;
72 class ObjCAtTryStmt;
73 class ObjCAtThrowStmt;
74 class ObjCAtSynchronizedStmt;
75 class ObjCAutoreleasePoolStmt;
76 
77 namespace CodeGen {
78 class CodeGenTypes;
79 class CGFunctionInfo;
80 class CGRecordLayout;
81 class CGBlockInfo;
82 class CGCXXABI;
83 class BlockFlags;
84 class BlockFieldFlags;
85 
86 /// The kind of evaluation to perform on values of a particular
87 /// type.  Basically, is the code in CGExprScalar, CGExprComplex, or
88 /// CGExprAgg?
89 ///
90 /// TODO: should vectors maybe be split out into their own thing?
91 enum TypeEvaluationKind {
92   TEK_Scalar,
93   TEK_Complex,
94   TEK_Aggregate
95 };
96 
97 /// CodeGenFunction - This class organizes the per-function state that is used
98 /// while generating LLVM code.
99 class CodeGenFunction : public CodeGenTypeCache {
100   CodeGenFunction(const CodeGenFunction &) = delete;
101   void operator=(const CodeGenFunction &) = delete;
102 
103   friend class CGCXXABI;
104 public:
105   /// A jump destination is an abstract label, branching to which may
106   /// require a jump out through normal cleanups.
107   struct JumpDest {
108     JumpDest() : Block(nullptr), ScopeDepth(), Index(0) {}
109     JumpDest(llvm::BasicBlock *Block,
110              EHScopeStack::stable_iterator Depth,
111              unsigned Index)
112       : Block(Block), ScopeDepth(Depth), Index(Index) {}
113 
114     bool isValid() const { return Block != nullptr; }
115     llvm::BasicBlock *getBlock() const { return Block; }
116     EHScopeStack::stable_iterator getScopeDepth() const { return ScopeDepth; }
117     unsigned getDestIndex() const { return Index; }
118 
119     // This should be used cautiously.
120     void setScopeDepth(EHScopeStack::stable_iterator depth) {
121       ScopeDepth = depth;
122     }
123 
124   private:
125     llvm::BasicBlock *Block;
126     EHScopeStack::stable_iterator ScopeDepth;
127     unsigned Index;
128   };
129 
130   CodeGenModule &CGM;  // Per-module state.
131   const TargetInfo &Target;
132 
133   typedef std::pair<llvm::Value *, llvm::Value *> ComplexPairTy;
134   LoopInfoStack LoopStack;
135   CGBuilderTy Builder;
136 
137   /// \brief CGBuilder insert helper. This function is called after an
138   /// instruction is created using Builder.
139   void InsertHelper(llvm::Instruction *I, const llvm::Twine &Name,
140                     llvm::BasicBlock *BB,
141                     llvm::BasicBlock::iterator InsertPt) const;
142 
143   /// CurFuncDecl - Holds the Decl for the current outermost
144   /// non-closure context.
145   const Decl *CurFuncDecl;
146   /// CurCodeDecl - This is the inner-most code context, which includes blocks.
147   const Decl *CurCodeDecl;
148   const CGFunctionInfo *CurFnInfo;
149   QualType FnRetTy;
150   llvm::Function *CurFn;
151 
152   /// CurGD - The GlobalDecl for the current function being compiled.
153   GlobalDecl CurGD;
154 
155   /// PrologueCleanupDepth - The cleanup depth enclosing all the
156   /// cleanups associated with the parameters.
157   EHScopeStack::stable_iterator PrologueCleanupDepth;
158 
159   /// ReturnBlock - Unified return block.
160   JumpDest ReturnBlock;
161 
162   /// ReturnValue - The temporary alloca to hold the return value. This is null
163   /// iff the function has no return value.
164   llvm::Value *ReturnValue;
165 
166   /// AllocaInsertPoint - This is an instruction in the entry block before which
167   /// we prefer to insert allocas.
168   llvm::AssertingVH<llvm::Instruction> AllocaInsertPt;
169 
170   /// \brief API for captured statement code generation.
171   class CGCapturedStmtInfo {
172   public:
173     explicit CGCapturedStmtInfo(CapturedRegionKind K = CR_Default)
174         : Kind(K), ThisValue(nullptr), CXXThisFieldDecl(nullptr) {}
175     explicit CGCapturedStmtInfo(const CapturedStmt &S,
176                                 CapturedRegionKind K = CR_Default)
177       : Kind(K), ThisValue(nullptr), CXXThisFieldDecl(nullptr) {
178 
179       RecordDecl::field_iterator Field =
180         S.getCapturedRecordDecl()->field_begin();
181       for (CapturedStmt::const_capture_iterator I = S.capture_begin(),
182                                                 E = S.capture_end();
183            I != E; ++I, ++Field) {
184         if (I->capturesThis())
185           CXXThisFieldDecl = *Field;
186         else if (I->capturesVariable())
187           CaptureFields[I->getCapturedVar()] = *Field;
188       }
189     }
190 
191     virtual ~CGCapturedStmtInfo();
192 
193     CapturedRegionKind getKind() const { return Kind; }
194 
195     virtual void setContextValue(llvm::Value *V) { ThisValue = V; }
196     // \brief Retrieve the value of the context parameter.
197     virtual llvm::Value *getContextValue() const { return ThisValue; }
198 
199     /// \brief Lookup the captured field decl for a variable.
200     virtual const FieldDecl *lookup(const VarDecl *VD) const {
201       return CaptureFields.lookup(VD);
202     }
203 
204     bool isCXXThisExprCaptured() const { return getThisFieldDecl() != nullptr; }
205     virtual FieldDecl *getThisFieldDecl() const { return CXXThisFieldDecl; }
206 
207     static bool classof(const CGCapturedStmtInfo *) {
208       return true;
209     }
210 
211     /// \brief Emit the captured statement body.
212     virtual void EmitBody(CodeGenFunction &CGF, const Stmt *S) {
213       CGF.incrementProfileCounter(S);
214       CGF.EmitStmt(S);
215     }
216 
217     /// \brief Get the name of the capture helper.
218     virtual StringRef getHelperName() const { return "__captured_stmt"; }
219 
220   private:
221     /// \brief The kind of captured statement being generated.
222     CapturedRegionKind Kind;
223 
224     /// \brief Keep the map between VarDecl and FieldDecl.
225     llvm::SmallDenseMap<const VarDecl *, FieldDecl *> CaptureFields;
226 
227     /// \brief The base address of the captured record, passed in as the first
228     /// argument of the parallel region function.
229     llvm::Value *ThisValue;
230 
231     /// \brief Captured 'this' type.
232     FieldDecl *CXXThisFieldDecl;
233   };
234   CGCapturedStmtInfo *CapturedStmtInfo;
235 
236   /// BoundsChecking - Emit run-time bounds checks. Higher values mean
237   /// potentially higher performance penalties.
238   unsigned char BoundsChecking;
239 
240   /// \brief Sanitizers enabled for this function.
241   SanitizerSet SanOpts;
242 
243   /// \brief True if CodeGen currently emits code implementing sanitizer checks.
244   bool IsSanitizerScope;
245 
246   /// \brief RAII object to set/unset CodeGenFunction::IsSanitizerScope.
247   class SanitizerScope {
248     CodeGenFunction *CGF;
249   public:
250     SanitizerScope(CodeGenFunction *CGF);
251     ~SanitizerScope();
252   };
253 
254   /// In C++, whether we are code generating a thunk.  This controls whether we
255   /// should emit cleanups.
256   bool CurFuncIsThunk;
257 
258   /// In ARC, whether we should autorelease the return value.
259   bool AutoreleaseResult;
260 
261   /// Whether we processed a Microsoft-style asm block during CodeGen. These can
262   /// potentially set the return value.
263   bool SawAsmBlock;
264 
265   /// True if the current function is an outlined SEH helper. This can be a
266   /// finally block or filter expression.
267   bool IsOutlinedSEHHelper;
268 
269   const CodeGen::CGBlockInfo *BlockInfo;
270   llvm::Value *BlockPointer;
271 
272   llvm::DenseMap<const VarDecl *, FieldDecl *> LambdaCaptureFields;
273   FieldDecl *LambdaThisCaptureField;
274 
275   /// \brief A mapping from NRVO variables to the flags used to indicate
276   /// when the NRVO has been applied to this variable.
277   llvm::DenseMap<const VarDecl *, llvm::Value *> NRVOFlags;
278 
279   EHScopeStack EHStack;
280   llvm::SmallVector<char, 256> LifetimeExtendedCleanupStack;
281   llvm::SmallVector<const JumpDest *, 2> SEHTryEpilogueStack;
282 
283   /// Header for data within LifetimeExtendedCleanupStack.
284   struct LifetimeExtendedCleanupHeader {
285     /// The size of the following cleanup object.
286     unsigned Size : 29;
287     /// The kind of cleanup to push: a value from the CleanupKind enumeration.
288     unsigned Kind : 3;
289 
290     size_t getSize() const { return size_t(Size); }
291     CleanupKind getKind() const { return static_cast<CleanupKind>(Kind); }
292   };
293 
294   /// i32s containing the indexes of the cleanup destinations.
295   llvm::AllocaInst *NormalCleanupDest;
296 
297   unsigned NextCleanupDestIndex;
298 
299   /// FirstBlockInfo - The head of a singly-linked-list of block layouts.
300   CGBlockInfo *FirstBlockInfo;
301 
302   /// EHResumeBlock - Unified block containing a call to llvm.eh.resume.
303   llvm::BasicBlock *EHResumeBlock;
304 
305   /// The exception slot.  All landing pads write the current exception pointer
306   /// into this alloca.
307   llvm::Value *ExceptionSlot;
308 
309   /// The selector slot.  Under the MandatoryCleanup model, all landing pads
310   /// write the current selector value into this alloca.
311   llvm::AllocaInst *EHSelectorSlot;
312 
313   llvm::AllocaInst *AbnormalTerminationSlot;
314 
315   /// The implicit parameter to SEH filter functions of type
316   /// 'EXCEPTION_POINTERS*'.
317   ImplicitParamDecl *SEHPointersDecl;
318 
319   /// Emits a landing pad for the current EH stack.
320   llvm::BasicBlock *EmitLandingPad();
321 
322   llvm::BasicBlock *getInvokeDestImpl();
323 
324   template <class T>
325   typename DominatingValue<T>::saved_type saveValueInCond(T value) {
326     return DominatingValue<T>::save(*this, value);
327   }
328 
329 public:
330   /// ObjCEHValueStack - Stack of Objective-C exception values, used for
331   /// rethrows.
332   SmallVector<llvm::Value*, 8> ObjCEHValueStack;
333 
334   /// A class controlling the emission of a finally block.
335   class FinallyInfo {
336     /// Where the catchall's edge through the cleanup should go.
337     JumpDest RethrowDest;
338 
339     /// A function to call to enter the catch.
340     llvm::Constant *BeginCatchFn;
341 
342     /// An i1 variable indicating whether or not the @finally is
343     /// running for an exception.
344     llvm::AllocaInst *ForEHVar;
345 
346     /// An i8* variable into which the exception pointer to rethrow
347     /// has been saved.
348     llvm::AllocaInst *SavedExnVar;
349 
350   public:
351     void enter(CodeGenFunction &CGF, const Stmt *Finally,
352                llvm::Constant *beginCatchFn, llvm::Constant *endCatchFn,
353                llvm::Constant *rethrowFn);
354     void exit(CodeGenFunction &CGF);
355   };
356 
357   /// Returns true inside SEH __try blocks.
358   bool isSEHTryScope() const { return !SEHTryEpilogueStack.empty(); }
359 
360   /// pushFullExprCleanup - Push a cleanup to be run at the end of the
361   /// current full-expression.  Safe against the possibility that
362   /// we're currently inside a conditionally-evaluated expression.
363   template <class T, class... As>
364   void pushFullExprCleanup(CleanupKind kind, As... A) {
365     // If we're not in a conditional branch, or if none of the
366     // arguments requires saving, then use the unconditional cleanup.
367     if (!isInConditionalBranch())
368       return EHStack.pushCleanup<T>(kind, A...);
369 
370     // Stash values in a tuple so we can guarantee the order of saves.
371     typedef std::tuple<typename DominatingValue<As>::saved_type...> SavedTuple;
372     SavedTuple Saved{saveValueInCond(A)...};
373 
374     typedef EHScopeStack::ConditionalCleanup<T, As...> CleanupType;
375     EHStack.pushCleanupTuple<CleanupType>(kind, Saved);
376     initFullExprCleanup();
377   }
378 
379   /// \brief Queue a cleanup to be pushed after finishing the current
380   /// full-expression.
381   template <class T, class... As>
382   void pushCleanupAfterFullExpr(CleanupKind Kind, As... A) {
383     assert(!isInConditionalBranch() && "can't defer conditional cleanup");
384 
385     LifetimeExtendedCleanupHeader Header = { sizeof(T), Kind };
386 
387     size_t OldSize = LifetimeExtendedCleanupStack.size();
388     LifetimeExtendedCleanupStack.resize(
389         LifetimeExtendedCleanupStack.size() + sizeof(Header) + Header.Size);
390 
391     char *Buffer = &LifetimeExtendedCleanupStack[OldSize];
392     new (Buffer) LifetimeExtendedCleanupHeader(Header);
393     new (Buffer + sizeof(Header)) T(A...);
394   }
395 
396   /// Set up the last cleaup that was pushed as a conditional
397   /// full-expression cleanup.
398   void initFullExprCleanup();
399 
400   /// PushDestructorCleanup - Push a cleanup to call the
401   /// complete-object destructor of an object of the given type at the
402   /// given address.  Does nothing if T is not a C++ class type with a
403   /// non-trivial destructor.
404   void PushDestructorCleanup(QualType T, llvm::Value *Addr);
405 
406   /// PushDestructorCleanup - Push a cleanup to call the
407   /// complete-object variant of the given destructor on the object at
408   /// the given address.
409   void PushDestructorCleanup(const CXXDestructorDecl *Dtor,
410                              llvm::Value *Addr);
411 
412   /// PopCleanupBlock - Will pop the cleanup entry on the stack and
413   /// process all branch fixups.
414   void PopCleanupBlock(bool FallThroughIsBranchThrough = false);
415 
416   /// DeactivateCleanupBlock - Deactivates the given cleanup block.
417   /// The block cannot be reactivated.  Pops it if it's the top of the
418   /// stack.
419   ///
420   /// \param DominatingIP - An instruction which is known to
421   ///   dominate the current IP (if set) and which lies along
422   ///   all paths of execution between the current IP and the
423   ///   the point at which the cleanup comes into scope.
424   void DeactivateCleanupBlock(EHScopeStack::stable_iterator Cleanup,
425                               llvm::Instruction *DominatingIP);
426 
427   /// ActivateCleanupBlock - Activates an initially-inactive cleanup.
428   /// Cannot be used to resurrect a deactivated cleanup.
429   ///
430   /// \param DominatingIP - An instruction which is known to
431   ///   dominate the current IP (if set) and which lies along
432   ///   all paths of execution between the current IP and the
433   ///   the point at which the cleanup comes into scope.
434   void ActivateCleanupBlock(EHScopeStack::stable_iterator Cleanup,
435                             llvm::Instruction *DominatingIP);
436 
437   /// \brief Enters a new scope for capturing cleanups, all of which
438   /// will be executed once the scope is exited.
439   class RunCleanupsScope {
440     EHScopeStack::stable_iterator CleanupStackDepth;
441     size_t LifetimeExtendedCleanupStackSize;
442     bool OldDidCallStackSave;
443   protected:
444     bool PerformCleanup;
445   private:
446 
447     RunCleanupsScope(const RunCleanupsScope &) = delete;
448     void operator=(const RunCleanupsScope &) = delete;
449 
450   protected:
451     CodeGenFunction& CGF;
452 
453   public:
454     /// \brief Enter a new cleanup scope.
455     explicit RunCleanupsScope(CodeGenFunction &CGF)
456       : PerformCleanup(true), CGF(CGF)
457     {
458       CleanupStackDepth = CGF.EHStack.stable_begin();
459       LifetimeExtendedCleanupStackSize =
460           CGF.LifetimeExtendedCleanupStack.size();
461       OldDidCallStackSave = CGF.DidCallStackSave;
462       CGF.DidCallStackSave = false;
463     }
464 
465     /// \brief Exit this cleanup scope, emitting any accumulated
466     /// cleanups.
467     ~RunCleanupsScope() {
468       if (PerformCleanup) {
469         CGF.DidCallStackSave = OldDidCallStackSave;
470         CGF.PopCleanupBlocks(CleanupStackDepth,
471                              LifetimeExtendedCleanupStackSize);
472       }
473     }
474 
475     /// \brief Determine whether this scope requires any cleanups.
476     bool requiresCleanups() const {
477       return CGF.EHStack.stable_begin() != CleanupStackDepth;
478     }
479 
480     /// \brief Force the emission of cleanups now, instead of waiting
481     /// until this object is destroyed.
482     void ForceCleanup() {
483       assert(PerformCleanup && "Already forced cleanup");
484       CGF.DidCallStackSave = OldDidCallStackSave;
485       CGF.PopCleanupBlocks(CleanupStackDepth,
486                            LifetimeExtendedCleanupStackSize);
487       PerformCleanup = false;
488     }
489   };
490 
491   class LexicalScope : public RunCleanupsScope {
492     SourceRange Range;
493     SmallVector<const LabelDecl*, 4> Labels;
494     LexicalScope *ParentScope;
495 
496     LexicalScope(const LexicalScope &) = delete;
497     void operator=(const LexicalScope &) = delete;
498 
499   public:
500     /// \brief Enter a new cleanup scope.
501     explicit LexicalScope(CodeGenFunction &CGF, SourceRange Range)
502       : RunCleanupsScope(CGF), Range(Range), ParentScope(CGF.CurLexicalScope) {
503       CGF.CurLexicalScope = this;
504       if (CGDebugInfo *DI = CGF.getDebugInfo())
505         DI->EmitLexicalBlockStart(CGF.Builder, Range.getBegin());
506     }
507 
508     void addLabel(const LabelDecl *label) {
509       assert(PerformCleanup && "adding label to dead scope?");
510       Labels.push_back(label);
511     }
512 
513     /// \brief Exit this cleanup scope, emitting any accumulated
514     /// cleanups.
515     ~LexicalScope() {
516       if (CGDebugInfo *DI = CGF.getDebugInfo())
517         DI->EmitLexicalBlockEnd(CGF.Builder, Range.getEnd());
518 
519       // If we should perform a cleanup, force them now.  Note that
520       // this ends the cleanup scope before rescoping any labels.
521       if (PerformCleanup) {
522         ApplyDebugLocation DL(CGF, Range.getEnd());
523         ForceCleanup();
524       }
525     }
526 
527     /// \brief Force the emission of cleanups now, instead of waiting
528     /// until this object is destroyed.
529     void ForceCleanup() {
530       CGF.CurLexicalScope = ParentScope;
531       RunCleanupsScope::ForceCleanup();
532 
533       if (!Labels.empty())
534         rescopeLabels();
535     }
536 
537     void rescopeLabels();
538   };
539 
540   /// \brief The scope used to remap some variables as private in the OpenMP
541   /// loop body (or other captured region emitted without outlining), and to
542   /// restore old vars back on exit.
543   class OMPPrivateScope : public RunCleanupsScope {
544     typedef llvm::DenseMap<const VarDecl *, llvm::Value *> VarDeclMapTy;
545     VarDeclMapTy SavedLocals;
546     VarDeclMapTy SavedPrivates;
547 
548   private:
549     OMPPrivateScope(const OMPPrivateScope &) = delete;
550     void operator=(const OMPPrivateScope &) = delete;
551 
552   public:
553     /// \brief Enter a new OpenMP private scope.
554     explicit OMPPrivateScope(CodeGenFunction &CGF) : RunCleanupsScope(CGF) {}
555 
556     /// \brief Registers \a LocalVD variable as a private and apply \a
557     /// PrivateGen function for it to generate corresponding private variable.
558     /// \a PrivateGen returns an address of the generated private variable.
559     /// \return true if the variable is registered as private, false if it has
560     /// been privatized already.
561     bool
562     addPrivate(const VarDecl *LocalVD,
563                const std::function<llvm::Value *()> &PrivateGen) {
564       assert(PerformCleanup && "adding private to dead scope");
565       if (SavedLocals.count(LocalVD) > 0) return false;
566       SavedLocals[LocalVD] = CGF.LocalDeclMap.lookup(LocalVD);
567       CGF.LocalDeclMap.erase(LocalVD);
568       SavedPrivates[LocalVD] = PrivateGen();
569       CGF.LocalDeclMap[LocalVD] = SavedLocals[LocalVD];
570       return true;
571     }
572 
573     /// \brief Privatizes local variables previously registered as private.
574     /// Registration is separate from the actual privatization to allow
575     /// initializers use values of the original variables, not the private one.
576     /// This is important, for example, if the private variable is a class
577     /// variable initialized by a constructor that references other private
578     /// variables. But at initialization original variables must be used, not
579     /// private copies.
580     /// \return true if at least one variable was privatized, false otherwise.
581     bool Privatize() {
582       for (auto VDPair : SavedPrivates) {
583         CGF.LocalDeclMap[VDPair.first] = VDPair.second;
584       }
585       SavedPrivates.clear();
586       return !SavedLocals.empty();
587     }
588 
589     void ForceCleanup() {
590       RunCleanupsScope::ForceCleanup();
591       // Remap vars back to the original values.
592       for (auto I : SavedLocals) {
593         CGF.LocalDeclMap[I.first] = I.second;
594       }
595       SavedLocals.clear();
596     }
597 
598     /// \brief Exit scope - all the mapped variables are restored.
599     ~OMPPrivateScope() {
600       if (PerformCleanup)
601         ForceCleanup();
602     }
603   };
604 
605   /// \brief Takes the old cleanup stack size and emits the cleanup blocks
606   /// that have been added.
607   void PopCleanupBlocks(EHScopeStack::stable_iterator OldCleanupStackSize);
608 
609   /// \brief Takes the old cleanup stack size and emits the cleanup blocks
610   /// that have been added, then adds all lifetime-extended cleanups from
611   /// the given position to the stack.
612   void PopCleanupBlocks(EHScopeStack::stable_iterator OldCleanupStackSize,
613                         size_t OldLifetimeExtendedStackSize);
614 
615   void ResolveBranchFixups(llvm::BasicBlock *Target);
616 
617   /// The given basic block lies in the current EH scope, but may be a
618   /// target of a potentially scope-crossing jump; get a stable handle
619   /// to which we can perform this jump later.
620   JumpDest getJumpDestInCurrentScope(llvm::BasicBlock *Target) {
621     return JumpDest(Target,
622                     EHStack.getInnermostNormalCleanup(),
623                     NextCleanupDestIndex++);
624   }
625 
626   /// The given basic block lies in the current EH scope, but may be a
627   /// target of a potentially scope-crossing jump; get a stable handle
628   /// to which we can perform this jump later.
629   JumpDest getJumpDestInCurrentScope(StringRef Name = StringRef()) {
630     return getJumpDestInCurrentScope(createBasicBlock(Name));
631   }
632 
633   /// EmitBranchThroughCleanup - Emit a branch from the current insert
634   /// block through the normal cleanup handling code (if any) and then
635   /// on to \arg Dest.
636   void EmitBranchThroughCleanup(JumpDest Dest);
637 
638   /// isObviouslyBranchWithoutCleanups - Return true if a branch to the
639   /// specified destination obviously has no cleanups to run.  'false' is always
640   /// a conservatively correct answer for this method.
641   bool isObviouslyBranchWithoutCleanups(JumpDest Dest) const;
642 
643   /// popCatchScope - Pops the catch scope at the top of the EHScope
644   /// stack, emitting any required code (other than the catch handlers
645   /// themselves).
646   void popCatchScope();
647 
648   llvm::BasicBlock *getEHResumeBlock(bool isCleanup);
649   llvm::BasicBlock *getEHDispatchBlock(EHScopeStack::stable_iterator scope);
650 
651   /// An object to manage conditionally-evaluated expressions.
652   class ConditionalEvaluation {
653     llvm::BasicBlock *StartBB;
654 
655   public:
656     ConditionalEvaluation(CodeGenFunction &CGF)
657       : StartBB(CGF.Builder.GetInsertBlock()) {}
658 
659     void begin(CodeGenFunction &CGF) {
660       assert(CGF.OutermostConditional != this);
661       if (!CGF.OutermostConditional)
662         CGF.OutermostConditional = this;
663     }
664 
665     void end(CodeGenFunction &CGF) {
666       assert(CGF.OutermostConditional != nullptr);
667       if (CGF.OutermostConditional == this)
668         CGF.OutermostConditional = nullptr;
669     }
670 
671     /// Returns a block which will be executed prior to each
672     /// evaluation of the conditional code.
673     llvm::BasicBlock *getStartingBlock() const {
674       return StartBB;
675     }
676   };
677 
678   /// isInConditionalBranch - Return true if we're currently emitting
679   /// one branch or the other of a conditional expression.
680   bool isInConditionalBranch() const { return OutermostConditional != nullptr; }
681 
682   void setBeforeOutermostConditional(llvm::Value *value, llvm::Value *addr) {
683     assert(isInConditionalBranch());
684     llvm::BasicBlock *block = OutermostConditional->getStartingBlock();
685     new llvm::StoreInst(value, addr, &block->back());
686   }
687 
688   /// An RAII object to record that we're evaluating a statement
689   /// expression.
690   class StmtExprEvaluation {
691     CodeGenFunction &CGF;
692 
693     /// We have to save the outermost conditional: cleanups in a
694     /// statement expression aren't conditional just because the
695     /// StmtExpr is.
696     ConditionalEvaluation *SavedOutermostConditional;
697 
698   public:
699     StmtExprEvaluation(CodeGenFunction &CGF)
700       : CGF(CGF), SavedOutermostConditional(CGF.OutermostConditional) {
701       CGF.OutermostConditional = nullptr;
702     }
703 
704     ~StmtExprEvaluation() {
705       CGF.OutermostConditional = SavedOutermostConditional;
706       CGF.EnsureInsertPoint();
707     }
708   };
709 
710   /// An object which temporarily prevents a value from being
711   /// destroyed by aggressive peephole optimizations that assume that
712   /// all uses of a value have been realized in the IR.
713   class PeepholeProtection {
714     llvm::Instruction *Inst;
715     friend class CodeGenFunction;
716 
717   public:
718     PeepholeProtection() : Inst(nullptr) {}
719   };
720 
721   /// A non-RAII class containing all the information about a bound
722   /// opaque value.  OpaqueValueMapping, below, is a RAII wrapper for
723   /// this which makes individual mappings very simple; using this
724   /// class directly is useful when you have a variable number of
725   /// opaque values or don't want the RAII functionality for some
726   /// reason.
727   class OpaqueValueMappingData {
728     const OpaqueValueExpr *OpaqueValue;
729     bool BoundLValue;
730     CodeGenFunction::PeepholeProtection Protection;
731 
732     OpaqueValueMappingData(const OpaqueValueExpr *ov,
733                            bool boundLValue)
734       : OpaqueValue(ov), BoundLValue(boundLValue) {}
735   public:
736     OpaqueValueMappingData() : OpaqueValue(nullptr) {}
737 
738     static bool shouldBindAsLValue(const Expr *expr) {
739       // gl-values should be bound as l-values for obvious reasons.
740       // Records should be bound as l-values because IR generation
741       // always keeps them in memory.  Expressions of function type
742       // act exactly like l-values but are formally required to be
743       // r-values in C.
744       return expr->isGLValue() ||
745              expr->getType()->isFunctionType() ||
746              hasAggregateEvaluationKind(expr->getType());
747     }
748 
749     static OpaqueValueMappingData bind(CodeGenFunction &CGF,
750                                        const OpaqueValueExpr *ov,
751                                        const Expr *e) {
752       if (shouldBindAsLValue(ov))
753         return bind(CGF, ov, CGF.EmitLValue(e));
754       return bind(CGF, ov, CGF.EmitAnyExpr(e));
755     }
756 
757     static OpaqueValueMappingData bind(CodeGenFunction &CGF,
758                                        const OpaqueValueExpr *ov,
759                                        const LValue &lv) {
760       assert(shouldBindAsLValue(ov));
761       CGF.OpaqueLValues.insert(std::make_pair(ov, lv));
762       return OpaqueValueMappingData(ov, true);
763     }
764 
765     static OpaqueValueMappingData bind(CodeGenFunction &CGF,
766                                        const OpaqueValueExpr *ov,
767                                        const RValue &rv) {
768       assert(!shouldBindAsLValue(ov));
769       CGF.OpaqueRValues.insert(std::make_pair(ov, rv));
770 
771       OpaqueValueMappingData data(ov, false);
772 
773       // Work around an extremely aggressive peephole optimization in
774       // EmitScalarConversion which assumes that all other uses of a
775       // value are extant.
776       data.Protection = CGF.protectFromPeepholes(rv);
777 
778       return data;
779     }
780 
781     bool isValid() const { return OpaqueValue != nullptr; }
782     void clear() { OpaqueValue = nullptr; }
783 
784     void unbind(CodeGenFunction &CGF) {
785       assert(OpaqueValue && "no data to unbind!");
786 
787       if (BoundLValue) {
788         CGF.OpaqueLValues.erase(OpaqueValue);
789       } else {
790         CGF.OpaqueRValues.erase(OpaqueValue);
791         CGF.unprotectFromPeepholes(Protection);
792       }
793     }
794   };
795 
796   /// An RAII object to set (and then clear) a mapping for an OpaqueValueExpr.
797   class OpaqueValueMapping {
798     CodeGenFunction &CGF;
799     OpaqueValueMappingData Data;
800 
801   public:
802     static bool shouldBindAsLValue(const Expr *expr) {
803       return OpaqueValueMappingData::shouldBindAsLValue(expr);
804     }
805 
806     /// Build the opaque value mapping for the given conditional
807     /// operator if it's the GNU ?: extension.  This is a common
808     /// enough pattern that the convenience operator is really
809     /// helpful.
810     ///
811     OpaqueValueMapping(CodeGenFunction &CGF,
812                        const AbstractConditionalOperator *op) : CGF(CGF) {
813       if (isa<ConditionalOperator>(op))
814         // Leave Data empty.
815         return;
816 
817       const BinaryConditionalOperator *e = cast<BinaryConditionalOperator>(op);
818       Data = OpaqueValueMappingData::bind(CGF, e->getOpaqueValue(),
819                                           e->getCommon());
820     }
821 
822     OpaqueValueMapping(CodeGenFunction &CGF,
823                        const OpaqueValueExpr *opaqueValue,
824                        LValue lvalue)
825       : CGF(CGF), Data(OpaqueValueMappingData::bind(CGF, opaqueValue, lvalue)) {
826     }
827 
828     OpaqueValueMapping(CodeGenFunction &CGF,
829                        const OpaqueValueExpr *opaqueValue,
830                        RValue rvalue)
831       : CGF(CGF), Data(OpaqueValueMappingData::bind(CGF, opaqueValue, rvalue)) {
832     }
833 
834     void pop() {
835       Data.unbind(CGF);
836       Data.clear();
837     }
838 
839     ~OpaqueValueMapping() {
840       if (Data.isValid()) Data.unbind(CGF);
841     }
842   };
843 
844   /// getByrefValueFieldNumber - Given a declaration, returns the LLVM field
845   /// number that holds the value.
846   std::pair<llvm::Type *, unsigned>
847   getByRefValueLLVMField(const ValueDecl *VD) const;
848 
849   /// BuildBlockByrefAddress - Computes address location of the
850   /// variable which is declared as __block.
851   llvm::Value *BuildBlockByrefAddress(llvm::Value *BaseAddr,
852                                       const VarDecl *V);
853 private:
854   CGDebugInfo *DebugInfo;
855   bool DisableDebugInfo;
856 
857   /// DidCallStackSave - Whether llvm.stacksave has been called. Used to avoid
858   /// calling llvm.stacksave for multiple VLAs in the same scope.
859   bool DidCallStackSave;
860 
861   /// IndirectBranch - The first time an indirect goto is seen we create a block
862   /// with an indirect branch.  Every time we see the address of a label taken,
863   /// we add the label to the indirect goto.  Every subsequent indirect goto is
864   /// codegen'd as a jump to the IndirectBranch's basic block.
865   llvm::IndirectBrInst *IndirectBranch;
866 
867   /// LocalDeclMap - This keeps track of the LLVM allocas or globals for local C
868   /// decls.
869   typedef llvm::DenseMap<const Decl*, llvm::Value*> DeclMapTy;
870   DeclMapTy LocalDeclMap;
871 
872   /// Track escaped local variables with auto storage. Used during SEH
873   /// outlining to produce a call to llvm.frameescape.
874   llvm::DenseMap<llvm::AllocaInst *, int> EscapedLocals;
875 
876   /// LabelMap - This keeps track of the LLVM basic block for each C label.
877   llvm::DenseMap<const LabelDecl*, JumpDest> LabelMap;
878 
879   // BreakContinueStack - This keeps track of where break and continue
880   // statements should jump to.
881   struct BreakContinue {
882     BreakContinue(JumpDest Break, JumpDest Continue)
883       : BreakBlock(Break), ContinueBlock(Continue) {}
884 
885     JumpDest BreakBlock;
886     JumpDest ContinueBlock;
887   };
888   SmallVector<BreakContinue, 8> BreakContinueStack;
889 
890   CodeGenPGO PGO;
891 
892   /// Calculate branch weights appropriate for PGO data
893   llvm::MDNode *createProfileWeights(uint64_t TrueCount, uint64_t FalseCount);
894   llvm::MDNode *createProfileWeights(ArrayRef<uint64_t> Weights);
895   llvm::MDNode *createProfileWeightsForLoop(const Stmt *Cond,
896                                             uint64_t LoopCount);
897 
898 public:
899   /// Increment the profiler's counter for the given statement.
900   void incrementProfileCounter(const Stmt *S) {
901     if (CGM.getCodeGenOpts().ProfileInstrGenerate)
902       PGO.emitCounterIncrement(Builder, S);
903     PGO.setCurrentStmt(S);
904   }
905 
906   /// Get the profiler's count for the given statement.
907   uint64_t getProfileCount(const Stmt *S) {
908     Optional<uint64_t> Count = PGO.getStmtCount(S);
909     if (!Count.hasValue())
910       return 0;
911     return *Count;
912   }
913 
914   /// Set the profiler's current count.
915   void setCurrentProfileCount(uint64_t Count) {
916     PGO.setCurrentRegionCount(Count);
917   }
918 
919   /// Get the profiler's current count. This is generally the count for the most
920   /// recently incremented counter.
921   uint64_t getCurrentProfileCount() {
922     return PGO.getCurrentRegionCount();
923   }
924 
925 private:
926 
927   /// SwitchInsn - This is nearest current switch instruction. It is null if
928   /// current context is not in a switch.
929   llvm::SwitchInst *SwitchInsn;
930   /// The branch weights of SwitchInsn when doing instrumentation based PGO.
931   SmallVector<uint64_t, 16> *SwitchWeights;
932 
933   /// CaseRangeBlock - This block holds if condition check for last case
934   /// statement range in current switch instruction.
935   llvm::BasicBlock *CaseRangeBlock;
936 
937   /// OpaqueLValues - Keeps track of the current set of opaque value
938   /// expressions.
939   llvm::DenseMap<const OpaqueValueExpr *, LValue> OpaqueLValues;
940   llvm::DenseMap<const OpaqueValueExpr *, RValue> OpaqueRValues;
941 
942   // VLASizeMap - This keeps track of the associated size for each VLA type.
943   // We track this by the size expression rather than the type itself because
944   // in certain situations, like a const qualifier applied to an VLA typedef,
945   // multiple VLA types can share the same size expression.
946   // FIXME: Maybe this could be a stack of maps that is pushed/popped as we
947   // enter/leave scopes.
948   llvm::DenseMap<const Expr*, llvm::Value*> VLASizeMap;
949 
950   /// A block containing a single 'unreachable' instruction.  Created
951   /// lazily by getUnreachableBlock().
952   llvm::BasicBlock *UnreachableBlock;
953 
954   /// Counts of the number return expressions in the function.
955   unsigned NumReturnExprs;
956 
957   /// Count the number of simple (constant) return expressions in the function.
958   unsigned NumSimpleReturnExprs;
959 
960   /// The last regular (non-return) debug location (breakpoint) in the function.
961   SourceLocation LastStopPoint;
962 
963 public:
964   /// A scope within which we are constructing the fields of an object which
965   /// might use a CXXDefaultInitExpr. This stashes away a 'this' value to use
966   /// if we need to evaluate a CXXDefaultInitExpr within the evaluation.
967   class FieldConstructionScope {
968   public:
969     FieldConstructionScope(CodeGenFunction &CGF, llvm::Value *This)
970         : CGF(CGF), OldCXXDefaultInitExprThis(CGF.CXXDefaultInitExprThis) {
971       CGF.CXXDefaultInitExprThis = This;
972     }
973     ~FieldConstructionScope() {
974       CGF.CXXDefaultInitExprThis = OldCXXDefaultInitExprThis;
975     }
976 
977   private:
978     CodeGenFunction &CGF;
979     llvm::Value *OldCXXDefaultInitExprThis;
980   };
981 
982   /// The scope of a CXXDefaultInitExpr. Within this scope, the value of 'this'
983   /// is overridden to be the object under construction.
984   class CXXDefaultInitExprScope {
985   public:
986     CXXDefaultInitExprScope(CodeGenFunction &CGF)
987         : CGF(CGF), OldCXXThisValue(CGF.CXXThisValue) {
988       CGF.CXXThisValue = CGF.CXXDefaultInitExprThis;
989     }
990     ~CXXDefaultInitExprScope() {
991       CGF.CXXThisValue = OldCXXThisValue;
992     }
993 
994   public:
995     CodeGenFunction &CGF;
996     llvm::Value *OldCXXThisValue;
997   };
998 
999 private:
1000   /// CXXThisDecl - When generating code for a C++ member function,
1001   /// this will hold the implicit 'this' declaration.
1002   ImplicitParamDecl *CXXABIThisDecl;
1003   llvm::Value *CXXABIThisValue;
1004   llvm::Value *CXXThisValue;
1005 
1006   /// The value of 'this' to use when evaluating CXXDefaultInitExprs within
1007   /// this expression.
1008   llvm::Value *CXXDefaultInitExprThis;
1009 
1010   /// CXXStructorImplicitParamDecl - When generating code for a constructor or
1011   /// destructor, this will hold the implicit argument (e.g. VTT).
1012   ImplicitParamDecl *CXXStructorImplicitParamDecl;
1013   llvm::Value *CXXStructorImplicitParamValue;
1014 
1015   /// OutermostConditional - Points to the outermost active
1016   /// conditional control.  This is used so that we know if a
1017   /// temporary should be destroyed conditionally.
1018   ConditionalEvaluation *OutermostConditional;
1019 
1020   /// The current lexical scope.
1021   LexicalScope *CurLexicalScope;
1022 
1023   /// The current source location that should be used for exception
1024   /// handling code.
1025   SourceLocation CurEHLocation;
1026 
1027   /// ByrefValueInfoMap - For each __block variable, contains a pair of the LLVM
1028   /// type as well as the field number that contains the actual data.
1029   llvm::DenseMap<const ValueDecl *, std::pair<llvm::Type *,
1030                                               unsigned> > ByRefValueInfo;
1031 
1032   llvm::BasicBlock *TerminateLandingPad;
1033   llvm::BasicBlock *TerminateHandler;
1034   llvm::BasicBlock *TrapBB;
1035 
1036   /// Add a kernel metadata node to the named metadata node 'opencl.kernels'.
1037   /// In the kernel metadata node, reference the kernel function and metadata
1038   /// nodes for its optional attribute qualifiers (OpenCL 1.1 6.7.2):
1039   /// - A node for the vec_type_hint(<type>) qualifier contains string
1040   ///   "vec_type_hint", an undefined value of the <type> data type,
1041   ///   and a Boolean that is true if the <type> is integer and signed.
1042   /// - A node for the work_group_size_hint(X,Y,Z) qualifier contains string
1043   ///   "work_group_size_hint", and three 32-bit integers X, Y and Z.
1044   /// - A node for the reqd_work_group_size(X,Y,Z) qualifier contains string
1045   ///   "reqd_work_group_size", and three 32-bit integers X, Y and Z.
1046   void EmitOpenCLKernelMetadata(const FunctionDecl *FD,
1047                                 llvm::Function *Fn);
1048 
1049 public:
1050   CodeGenFunction(CodeGenModule &cgm, bool suppressNewContext=false);
1051   ~CodeGenFunction();
1052 
1053   CodeGenTypes &getTypes() const { return CGM.getTypes(); }
1054   ASTContext &getContext() const { return CGM.getContext(); }
1055   CGDebugInfo *getDebugInfo() {
1056     if (DisableDebugInfo)
1057       return nullptr;
1058     return DebugInfo;
1059   }
1060   void disableDebugInfo() { DisableDebugInfo = true; }
1061   void enableDebugInfo() { DisableDebugInfo = false; }
1062 
1063   bool shouldUseFusedARCCalls() {
1064     return CGM.getCodeGenOpts().OptimizationLevel == 0;
1065   }
1066 
1067   const LangOptions &getLangOpts() const { return CGM.getLangOpts(); }
1068 
1069   /// Returns a pointer to the function's exception object and selector slot,
1070   /// which is assigned in every landing pad.
1071   llvm::Value *getExceptionSlot();
1072   llvm::Value *getEHSelectorSlot();
1073 
1074   /// Returns the contents of the function's exception object and selector
1075   /// slots.
1076   llvm::Value *getExceptionFromSlot();
1077   llvm::Value *getSelectorFromSlot();
1078 
1079   llvm::Value *getNormalCleanupDestSlot();
1080 
1081   llvm::BasicBlock *getUnreachableBlock() {
1082     if (!UnreachableBlock) {
1083       UnreachableBlock = createBasicBlock("unreachable");
1084       new llvm::UnreachableInst(getLLVMContext(), UnreachableBlock);
1085     }
1086     return UnreachableBlock;
1087   }
1088 
1089   llvm::BasicBlock *getInvokeDest() {
1090     if (!EHStack.requiresLandingPad()) return nullptr;
1091     return getInvokeDestImpl();
1092   }
1093 
1094   bool currentFunctionUsesSEHTry() const {
1095     const auto *FD = dyn_cast_or_null<FunctionDecl>(CurCodeDecl);
1096     return FD && FD->usesSEHTry();
1097   }
1098 
1099   const TargetInfo &getTarget() const { return Target; }
1100   llvm::LLVMContext &getLLVMContext() { return CGM.getLLVMContext(); }
1101 
1102   //===--------------------------------------------------------------------===//
1103   //                                  Cleanups
1104   //===--------------------------------------------------------------------===//
1105 
1106   typedef void Destroyer(CodeGenFunction &CGF, llvm::Value *addr, QualType ty);
1107 
1108   void pushIrregularPartialArrayCleanup(llvm::Value *arrayBegin,
1109                                         llvm::Value *arrayEndPointer,
1110                                         QualType elementType,
1111                                         Destroyer *destroyer);
1112   void pushRegularPartialArrayCleanup(llvm::Value *arrayBegin,
1113                                       llvm::Value *arrayEnd,
1114                                       QualType elementType,
1115                                       Destroyer *destroyer);
1116 
1117   void pushDestroy(QualType::DestructionKind dtorKind,
1118                    llvm::Value *addr, QualType type);
1119   void pushEHDestroy(QualType::DestructionKind dtorKind,
1120                      llvm::Value *addr, QualType type);
1121   void pushDestroy(CleanupKind kind, llvm::Value *addr, QualType type,
1122                    Destroyer *destroyer, bool useEHCleanupForArray);
1123   void pushLifetimeExtendedDestroy(CleanupKind kind, llvm::Value *addr,
1124                                    QualType type, Destroyer *destroyer,
1125                                    bool useEHCleanupForArray);
1126   void pushCallObjectDeleteCleanup(const FunctionDecl *OperatorDelete,
1127                                    llvm::Value *CompletePtr,
1128                                    QualType ElementType);
1129   void pushStackRestore(CleanupKind kind, llvm::Value *SPMem);
1130   void emitDestroy(llvm::Value *addr, QualType type, Destroyer *destroyer,
1131                    bool useEHCleanupForArray);
1132   llvm::Function *generateDestroyHelper(llvm::Constant *addr, QualType type,
1133                                         Destroyer *destroyer,
1134                                         bool useEHCleanupForArray,
1135                                         const VarDecl *VD);
1136   void emitArrayDestroy(llvm::Value *begin, llvm::Value *end,
1137                         QualType type, Destroyer *destroyer,
1138                         bool checkZeroLength, bool useEHCleanup);
1139 
1140   Destroyer *getDestroyer(QualType::DestructionKind destructionKind);
1141 
1142   /// Determines whether an EH cleanup is required to destroy a type
1143   /// with the given destruction kind.
1144   bool needsEHCleanup(QualType::DestructionKind kind) {
1145     switch (kind) {
1146     case QualType::DK_none:
1147       return false;
1148     case QualType::DK_cxx_destructor:
1149     case QualType::DK_objc_weak_lifetime:
1150       return getLangOpts().Exceptions;
1151     case QualType::DK_objc_strong_lifetime:
1152       return getLangOpts().Exceptions &&
1153              CGM.getCodeGenOpts().ObjCAutoRefCountExceptions;
1154     }
1155     llvm_unreachable("bad destruction kind");
1156   }
1157 
1158   CleanupKind getCleanupKind(QualType::DestructionKind kind) {
1159     return (needsEHCleanup(kind) ? NormalAndEHCleanup : NormalCleanup);
1160   }
1161 
1162   //===--------------------------------------------------------------------===//
1163   //                                  Objective-C
1164   //===--------------------------------------------------------------------===//
1165 
1166   void GenerateObjCMethod(const ObjCMethodDecl *OMD);
1167 
1168   void StartObjCMethod(const ObjCMethodDecl *MD, const ObjCContainerDecl *CD);
1169 
1170   /// GenerateObjCGetter - Synthesize an Objective-C property getter function.
1171   void GenerateObjCGetter(ObjCImplementationDecl *IMP,
1172                           const ObjCPropertyImplDecl *PID);
1173   void generateObjCGetterBody(const ObjCImplementationDecl *classImpl,
1174                               const ObjCPropertyImplDecl *propImpl,
1175                               const ObjCMethodDecl *GetterMothodDecl,
1176                               llvm::Constant *AtomicHelperFn);
1177 
1178   void GenerateObjCCtorDtorMethod(ObjCImplementationDecl *IMP,
1179                                   ObjCMethodDecl *MD, bool ctor);
1180 
1181   /// GenerateObjCSetter - Synthesize an Objective-C property setter function
1182   /// for the given property.
1183   void GenerateObjCSetter(ObjCImplementationDecl *IMP,
1184                           const ObjCPropertyImplDecl *PID);
1185   void generateObjCSetterBody(const ObjCImplementationDecl *classImpl,
1186                               const ObjCPropertyImplDecl *propImpl,
1187                               llvm::Constant *AtomicHelperFn);
1188   bool IndirectObjCSetterArg(const CGFunctionInfo &FI);
1189   bool IvarTypeWithAggrGCObjects(QualType Ty);
1190 
1191   //===--------------------------------------------------------------------===//
1192   //                                  Block Bits
1193   //===--------------------------------------------------------------------===//
1194 
1195   llvm::Value *EmitBlockLiteral(const BlockExpr *);
1196   llvm::Value *EmitBlockLiteral(const CGBlockInfo &Info);
1197   static void destroyBlockInfos(CGBlockInfo *info);
1198   llvm::Constant *BuildDescriptorBlockDecl(const BlockExpr *,
1199                                            const CGBlockInfo &Info,
1200                                            llvm::StructType *,
1201                                            llvm::Constant *BlockVarLayout);
1202 
1203   llvm::Function *GenerateBlockFunction(GlobalDecl GD,
1204                                         const CGBlockInfo &Info,
1205                                         const DeclMapTy &ldm,
1206                                         bool IsLambdaConversionToBlock);
1207 
1208   llvm::Constant *GenerateCopyHelperFunction(const CGBlockInfo &blockInfo);
1209   llvm::Constant *GenerateDestroyHelperFunction(const CGBlockInfo &blockInfo);
1210   llvm::Constant *GenerateObjCAtomicSetterCopyHelperFunction(
1211                                              const ObjCPropertyImplDecl *PID);
1212   llvm::Constant *GenerateObjCAtomicGetterCopyHelperFunction(
1213                                              const ObjCPropertyImplDecl *PID);
1214   llvm::Value *EmitBlockCopyAndAutorelease(llvm::Value *Block, QualType Ty);
1215 
1216   void BuildBlockRelease(llvm::Value *DeclPtr, BlockFieldFlags flags);
1217 
1218   class AutoVarEmission;
1219 
1220   void emitByrefStructureInit(const AutoVarEmission &emission);
1221   void enterByrefCleanup(const AutoVarEmission &emission);
1222 
1223   llvm::Value *LoadBlockStruct() {
1224     assert(BlockPointer && "no block pointer set!");
1225     return BlockPointer;
1226   }
1227 
1228   void AllocateBlockCXXThisPointer(const CXXThisExpr *E);
1229   void AllocateBlockDecl(const DeclRefExpr *E);
1230   llvm::Value *GetAddrOfBlockDecl(const VarDecl *var, bool ByRef);
1231   llvm::Type *BuildByRefType(const VarDecl *var);
1232 
1233   void GenerateCode(GlobalDecl GD, llvm::Function *Fn,
1234                     const CGFunctionInfo &FnInfo);
1235   /// \brief Emit code for the start of a function.
1236   /// \param Loc       The location to be associated with the function.
1237   /// \param StartLoc  The location of the function body.
1238   void StartFunction(GlobalDecl GD,
1239                      QualType RetTy,
1240                      llvm::Function *Fn,
1241                      const CGFunctionInfo &FnInfo,
1242                      const FunctionArgList &Args,
1243                      SourceLocation Loc = SourceLocation(),
1244                      SourceLocation StartLoc = SourceLocation());
1245 
1246   void EmitConstructorBody(FunctionArgList &Args);
1247   void EmitDestructorBody(FunctionArgList &Args);
1248   void emitImplicitAssignmentOperatorBody(FunctionArgList &Args);
1249   void EmitFunctionBody(FunctionArgList &Args, const Stmt *Body);
1250   void EmitBlockWithFallThrough(llvm::BasicBlock *BB, const Stmt *S);
1251 
1252   void EmitForwardingCallToLambda(const CXXMethodDecl *LambdaCallOperator,
1253                                   CallArgList &CallArgs);
1254   void EmitLambdaToBlockPointerBody(FunctionArgList &Args);
1255   void EmitLambdaBlockInvokeBody();
1256   void EmitLambdaDelegatingInvokeBody(const CXXMethodDecl *MD);
1257   void EmitLambdaStaticInvokeFunction(const CXXMethodDecl *MD);
1258   void EmitAsanPrologueOrEpilogue(bool Prologue);
1259 
1260   /// \brief Emit the unified return block, trying to avoid its emission when
1261   /// possible.
1262   /// \return The debug location of the user written return statement if the
1263   /// return block is is avoided.
1264   llvm::DebugLoc EmitReturnBlock();
1265 
1266   /// FinishFunction - Complete IR generation of the current function. It is
1267   /// legal to call this function even if there is no current insertion point.
1268   void FinishFunction(SourceLocation EndLoc=SourceLocation());
1269 
1270   void StartThunk(llvm::Function *Fn, GlobalDecl GD,
1271                   const CGFunctionInfo &FnInfo);
1272 
1273   void EmitCallAndReturnForThunk(llvm::Value *Callee, const ThunkInfo *Thunk);
1274 
1275   /// Emit a musttail call for a thunk with a potentially adjusted this pointer.
1276   void EmitMustTailThunk(const CXXMethodDecl *MD, llvm::Value *AdjustedThisPtr,
1277                          llvm::Value *Callee);
1278 
1279   /// GenerateThunk - Generate a thunk for the given method.
1280   void GenerateThunk(llvm::Function *Fn, const CGFunctionInfo &FnInfo,
1281                      GlobalDecl GD, const ThunkInfo &Thunk);
1282 
1283   void GenerateVarArgsThunk(llvm::Function *Fn, const CGFunctionInfo &FnInfo,
1284                             GlobalDecl GD, const ThunkInfo &Thunk);
1285 
1286   void EmitCtorPrologue(const CXXConstructorDecl *CD, CXXCtorType Type,
1287                         FunctionArgList &Args);
1288 
1289   void EmitInitializerForField(FieldDecl *Field, LValue LHS, Expr *Init,
1290                                ArrayRef<VarDecl *> ArrayIndexes);
1291 
1292   /// InitializeVTablePointer - Initialize the vtable pointer of the given
1293   /// subobject.
1294   ///
1295   void InitializeVTablePointer(BaseSubobject Base,
1296                                const CXXRecordDecl *NearestVBase,
1297                                CharUnits OffsetFromNearestVBase,
1298                                const CXXRecordDecl *VTableClass);
1299 
1300   typedef llvm::SmallPtrSet<const CXXRecordDecl *, 4> VisitedVirtualBasesSetTy;
1301   void InitializeVTablePointers(BaseSubobject Base,
1302                                 const CXXRecordDecl *NearestVBase,
1303                                 CharUnits OffsetFromNearestVBase,
1304                                 bool BaseIsNonVirtualPrimaryBase,
1305                                 const CXXRecordDecl *VTableClass,
1306                                 VisitedVirtualBasesSetTy& VBases);
1307 
1308   void InitializeVTablePointers(const CXXRecordDecl *ClassDecl);
1309 
1310   /// GetVTablePtr - Return the Value of the vtable pointer member pointed
1311   /// to by This.
1312   llvm::Value *GetVTablePtr(llvm::Value *This, llvm::Type *Ty);
1313 
1314   /// \brief Derived is the presumed address of an object of type T after a
1315   /// cast. If T is a polymorphic class type, emit a check that the virtual
1316   /// table for Derived belongs to a class derived from T.
1317   void EmitVTablePtrCheckForCast(QualType T, llvm::Value *Derived,
1318                                  bool MayBeNull);
1319 
1320   /// EmitVTablePtrCheckForCall - Virtual method MD is being called via VTable.
1321   /// If vptr CFI is enabled, emit a check that VTable is valid.
1322   void EmitVTablePtrCheckForCall(const CXXMethodDecl *MD, llvm::Value *VTable);
1323 
1324   /// EmitVTablePtrCheck - Emit a check that VTable is a valid virtual table for
1325   /// RD using llvm.bitset.test.
1326   void EmitVTablePtrCheck(const CXXRecordDecl *RD, llvm::Value *VTable);
1327 
1328   /// CanDevirtualizeMemberFunctionCalls - Checks whether virtual calls on given
1329   /// expr can be devirtualized.
1330   bool CanDevirtualizeMemberFunctionCall(const Expr *Base,
1331                                          const CXXMethodDecl *MD);
1332 
1333   /// EnterDtorCleanups - Enter the cleanups necessary to complete the
1334   /// given phase of destruction for a destructor.  The end result
1335   /// should call destructors on members and base classes in reverse
1336   /// order of their construction.
1337   void EnterDtorCleanups(const CXXDestructorDecl *Dtor, CXXDtorType Type);
1338 
1339   /// ShouldInstrumentFunction - Return true if the current function should be
1340   /// instrumented with __cyg_profile_func_* calls
1341   bool ShouldInstrumentFunction();
1342 
1343   /// EmitFunctionInstrumentation - Emit LLVM code to call the specified
1344   /// instrumentation function with the current function and the call site, if
1345   /// function instrumentation is enabled.
1346   void EmitFunctionInstrumentation(const char *Fn);
1347 
1348   /// EmitMCountInstrumentation - Emit call to .mcount.
1349   void EmitMCountInstrumentation();
1350 
1351   /// EmitFunctionProlog - Emit the target specific LLVM code to load the
1352   /// arguments for the given function. This is also responsible for naming the
1353   /// LLVM function arguments.
1354   void EmitFunctionProlog(const CGFunctionInfo &FI,
1355                           llvm::Function *Fn,
1356                           const FunctionArgList &Args);
1357 
1358   /// EmitFunctionEpilog - Emit the target specific LLVM code to return the
1359   /// given temporary.
1360   void EmitFunctionEpilog(const CGFunctionInfo &FI, bool EmitRetDbgLoc,
1361                           SourceLocation EndLoc);
1362 
1363   /// EmitStartEHSpec - Emit the start of the exception spec.
1364   void EmitStartEHSpec(const Decl *D);
1365 
1366   /// EmitEndEHSpec - Emit the end of the exception spec.
1367   void EmitEndEHSpec(const Decl *D);
1368 
1369   /// getTerminateLandingPad - Return a landing pad that just calls terminate.
1370   llvm::BasicBlock *getTerminateLandingPad();
1371 
1372   /// getTerminateHandler - Return a handler (not a landing pad, just
1373   /// a catch handler) that just calls terminate.  This is used when
1374   /// a terminate scope encloses a try.
1375   llvm::BasicBlock *getTerminateHandler();
1376 
1377   llvm::Type *ConvertTypeForMem(QualType T);
1378   llvm::Type *ConvertType(QualType T);
1379   llvm::Type *ConvertType(const TypeDecl *T) {
1380     return ConvertType(getContext().getTypeDeclType(T));
1381   }
1382 
1383   /// LoadObjCSelf - Load the value of self. This function is only valid while
1384   /// generating code for an Objective-C method.
1385   llvm::Value *LoadObjCSelf();
1386 
1387   /// TypeOfSelfObject - Return type of object that this self represents.
1388   QualType TypeOfSelfObject();
1389 
1390   /// hasAggregateLLVMType - Return true if the specified AST type will map into
1391   /// an aggregate LLVM type or is void.
1392   static TypeEvaluationKind getEvaluationKind(QualType T);
1393 
1394   static bool hasScalarEvaluationKind(QualType T) {
1395     return getEvaluationKind(T) == TEK_Scalar;
1396   }
1397 
1398   static bool hasAggregateEvaluationKind(QualType T) {
1399     return getEvaluationKind(T) == TEK_Aggregate;
1400   }
1401 
1402   /// createBasicBlock - Create an LLVM basic block.
1403   llvm::BasicBlock *createBasicBlock(const Twine &name = "",
1404                                      llvm::Function *parent = nullptr,
1405                                      llvm::BasicBlock *before = nullptr) {
1406 #ifdef NDEBUG
1407     return llvm::BasicBlock::Create(getLLVMContext(), "", parent, before);
1408 #else
1409     return llvm::BasicBlock::Create(getLLVMContext(), name, parent, before);
1410 #endif
1411   }
1412 
1413   /// getBasicBlockForLabel - Return the LLVM basicblock that the specified
1414   /// label maps to.
1415   JumpDest getJumpDestForLabel(const LabelDecl *S);
1416 
1417   /// SimplifyForwardingBlocks - If the given basic block is only a branch to
1418   /// another basic block, simplify it. This assumes that no other code could
1419   /// potentially reference the basic block.
1420   void SimplifyForwardingBlocks(llvm::BasicBlock *BB);
1421 
1422   /// EmitBlock - Emit the given block \arg BB and set it as the insert point,
1423   /// adding a fall-through branch from the current insert block if
1424   /// necessary. It is legal to call this function even if there is no current
1425   /// insertion point.
1426   ///
1427   /// IsFinished - If true, indicates that the caller has finished emitting
1428   /// branches to the given block and does not expect to emit code into it. This
1429   /// means the block can be ignored if it is unreachable.
1430   void EmitBlock(llvm::BasicBlock *BB, bool IsFinished=false);
1431 
1432   /// EmitBlockAfterUses - Emit the given block somewhere hopefully
1433   /// near its uses, and leave the insertion point in it.
1434   void EmitBlockAfterUses(llvm::BasicBlock *BB);
1435 
1436   /// EmitBranch - Emit a branch to the specified basic block from the current
1437   /// insert block, taking care to avoid creation of branches from dummy
1438   /// blocks. It is legal to call this function even if there is no current
1439   /// insertion point.
1440   ///
1441   /// This function clears the current insertion point. The caller should follow
1442   /// calls to this function with calls to Emit*Block prior to generation new
1443   /// code.
1444   void EmitBranch(llvm::BasicBlock *Block);
1445 
1446   /// HaveInsertPoint - True if an insertion point is defined. If not, this
1447   /// indicates that the current code being emitted is unreachable.
1448   bool HaveInsertPoint() const {
1449     return Builder.GetInsertBlock() != nullptr;
1450   }
1451 
1452   /// EnsureInsertPoint - Ensure that an insertion point is defined so that
1453   /// emitted IR has a place to go. Note that by definition, if this function
1454   /// creates a block then that block is unreachable; callers may do better to
1455   /// detect when no insertion point is defined and simply skip IR generation.
1456   void EnsureInsertPoint() {
1457     if (!HaveInsertPoint())
1458       EmitBlock(createBasicBlock());
1459   }
1460 
1461   /// ErrorUnsupported - Print out an error that codegen doesn't support the
1462   /// specified stmt yet.
1463   void ErrorUnsupported(const Stmt *S, const char *Type);
1464 
1465   //===--------------------------------------------------------------------===//
1466   //                                  Helpers
1467   //===--------------------------------------------------------------------===//
1468 
1469   LValue MakeAddrLValue(llvm::Value *V, QualType T,
1470                         CharUnits Alignment = CharUnits()) {
1471     return LValue::MakeAddr(V, T, Alignment, getContext(),
1472                             CGM.getTBAAInfo(T));
1473   }
1474 
1475   LValue MakeNaturalAlignAddrLValue(llvm::Value *V, QualType T);
1476 
1477   /// CreateTempAlloca - This creates a alloca and inserts it into the entry
1478   /// block. The caller is responsible for setting an appropriate alignment on
1479   /// the alloca.
1480   llvm::AllocaInst *CreateTempAlloca(llvm::Type *Ty,
1481                                      const Twine &Name = "tmp");
1482 
1483   /// InitTempAlloca - Provide an initial value for the given alloca.
1484   void InitTempAlloca(llvm::AllocaInst *Alloca, llvm::Value *Value);
1485 
1486   /// CreateIRTemp - Create a temporary IR object of the given type, with
1487   /// appropriate alignment. This routine should only be used when an temporary
1488   /// value needs to be stored into an alloca (for example, to avoid explicit
1489   /// PHI construction), but the type is the IR type, not the type appropriate
1490   /// for storing in memory.
1491   llvm::AllocaInst *CreateIRTemp(QualType T, const Twine &Name = "tmp");
1492 
1493   /// CreateMemTemp - Create a temporary memory object of the given type, with
1494   /// appropriate alignment.
1495   llvm::AllocaInst *CreateMemTemp(QualType T, const Twine &Name = "tmp");
1496 
1497   /// CreateAggTemp - Create a temporary memory object for the given
1498   /// aggregate type.
1499   AggValueSlot CreateAggTemp(QualType T, const Twine &Name = "tmp") {
1500     CharUnits Alignment = getContext().getTypeAlignInChars(T);
1501     return AggValueSlot::forAddr(CreateMemTemp(T, Name), Alignment,
1502                                  T.getQualifiers(),
1503                                  AggValueSlot::IsNotDestructed,
1504                                  AggValueSlot::DoesNotNeedGCBarriers,
1505                                  AggValueSlot::IsNotAliased);
1506   }
1507 
1508   /// CreateInAllocaTmp - Create a temporary memory object for the given
1509   /// aggregate type.
1510   AggValueSlot CreateInAllocaTmp(QualType T, const Twine &Name = "inalloca");
1511 
1512   /// Emit a cast to void* in the appropriate address space.
1513   llvm::Value *EmitCastToVoidPtr(llvm::Value *value);
1514 
1515   /// EvaluateExprAsBool - Perform the usual unary conversions on the specified
1516   /// expression and compare the result against zero, returning an Int1Ty value.
1517   llvm::Value *EvaluateExprAsBool(const Expr *E);
1518 
1519   /// EmitIgnoredExpr - Emit an expression in a context which ignores the result.
1520   void EmitIgnoredExpr(const Expr *E);
1521 
1522   /// EmitAnyExpr - Emit code to compute the specified expression which can have
1523   /// any type.  The result is returned as an RValue struct.  If this is an
1524   /// aggregate expression, the aggloc/agglocvolatile arguments indicate where
1525   /// the result should be returned.
1526   ///
1527   /// \param ignoreResult True if the resulting value isn't used.
1528   RValue EmitAnyExpr(const Expr *E,
1529                      AggValueSlot aggSlot = AggValueSlot::ignored(),
1530                      bool ignoreResult = false);
1531 
1532   // EmitVAListRef - Emit a "reference" to a va_list; this is either the address
1533   // or the value of the expression, depending on how va_list is defined.
1534   llvm::Value *EmitVAListRef(const Expr *E);
1535 
1536   /// EmitAnyExprToTemp - Similary to EmitAnyExpr(), however, the result will
1537   /// always be accessible even if no aggregate location is provided.
1538   RValue EmitAnyExprToTemp(const Expr *E);
1539 
1540   /// EmitAnyExprToMem - Emits the code necessary to evaluate an
1541   /// arbitrary expression into the given memory location.
1542   void EmitAnyExprToMem(const Expr *E, llvm::Value *Location,
1543                         Qualifiers Quals, bool IsInitializer);
1544 
1545   void EmitAnyExprToExn(const Expr *E, llvm::Value *Addr);
1546 
1547   /// EmitExprAsInit - Emits the code necessary to initialize a
1548   /// location in memory with the given initializer.
1549   void EmitExprAsInit(const Expr *init, const ValueDecl *D, LValue lvalue,
1550                       bool capturedByInit);
1551 
1552   /// hasVolatileMember - returns true if aggregate type has a volatile
1553   /// member.
1554   bool hasVolatileMember(QualType T) {
1555     if (const RecordType *RT = T->getAs<RecordType>()) {
1556       const RecordDecl *RD = cast<RecordDecl>(RT->getDecl());
1557       return RD->hasVolatileMember();
1558     }
1559     return false;
1560   }
1561   /// EmitAggregateCopy - Emit an aggregate assignment.
1562   ///
1563   /// The difference to EmitAggregateCopy is that tail padding is not copied.
1564   /// This is required for correctness when assigning non-POD structures in C++.
1565   void EmitAggregateAssign(llvm::Value *DestPtr, llvm::Value *SrcPtr,
1566                            QualType EltTy) {
1567     bool IsVolatile = hasVolatileMember(EltTy);
1568     EmitAggregateCopy(DestPtr, SrcPtr, EltTy, IsVolatile, CharUnits::Zero(),
1569                       true);
1570   }
1571 
1572   void EmitAggregateCopyCtor(llvm::Value *DestPtr, llvm::Value *SrcPtr,
1573                            QualType DestTy, QualType SrcTy) {
1574     CharUnits DestTypeAlign = getContext().getTypeAlignInChars(DestTy);
1575     CharUnits SrcTypeAlign = getContext().getTypeAlignInChars(SrcTy);
1576     EmitAggregateCopy(DestPtr, SrcPtr, SrcTy, /*IsVolatile=*/false,
1577                       std::min(DestTypeAlign, SrcTypeAlign),
1578                       /*IsAssignment=*/false);
1579   }
1580 
1581   /// EmitAggregateCopy - Emit an aggregate copy.
1582   ///
1583   /// \param isVolatile - True iff either the source or the destination is
1584   /// volatile.
1585   /// \param isAssignment - If false, allow padding to be copied.  This often
1586   /// yields more efficient.
1587   void EmitAggregateCopy(llvm::Value *DestPtr, llvm::Value *SrcPtr,
1588                          QualType EltTy, bool isVolatile=false,
1589                          CharUnits Alignment = CharUnits::Zero(),
1590                          bool isAssignment = false);
1591 
1592   /// StartBlock - Start new block named N. If insert block is a dummy block
1593   /// then reuse it.
1594   void StartBlock(const char *N);
1595 
1596   /// GetAddrOfLocalVar - Return the address of a local variable.
1597   llvm::Value *GetAddrOfLocalVar(const VarDecl *VD) {
1598     llvm::Value *Res = LocalDeclMap[VD];
1599     assert(Res && "Invalid argument to GetAddrOfLocalVar(), no decl!");
1600     return Res;
1601   }
1602 
1603   /// getOpaqueLValueMapping - Given an opaque value expression (which
1604   /// must be mapped to an l-value), return its mapping.
1605   const LValue &getOpaqueLValueMapping(const OpaqueValueExpr *e) {
1606     assert(OpaqueValueMapping::shouldBindAsLValue(e));
1607 
1608     llvm::DenseMap<const OpaqueValueExpr*,LValue>::iterator
1609       it = OpaqueLValues.find(e);
1610     assert(it != OpaqueLValues.end() && "no mapping for opaque value!");
1611     return it->second;
1612   }
1613 
1614   /// getOpaqueRValueMapping - Given an opaque value expression (which
1615   /// must be mapped to an r-value), return its mapping.
1616   const RValue &getOpaqueRValueMapping(const OpaqueValueExpr *e) {
1617     assert(!OpaqueValueMapping::shouldBindAsLValue(e));
1618 
1619     llvm::DenseMap<const OpaqueValueExpr*,RValue>::iterator
1620       it = OpaqueRValues.find(e);
1621     assert(it != OpaqueRValues.end() && "no mapping for opaque value!");
1622     return it->second;
1623   }
1624 
1625   /// getAccessedFieldNo - Given an encoded value and a result number, return
1626   /// the input field number being accessed.
1627   static unsigned getAccessedFieldNo(unsigned Idx, const llvm::Constant *Elts);
1628 
1629   llvm::BlockAddress *GetAddrOfLabel(const LabelDecl *L);
1630   llvm::BasicBlock *GetIndirectGotoBlock();
1631 
1632   /// EmitNullInitialization - Generate code to set a value of the given type to
1633   /// null, If the type contains data member pointers, they will be initialized
1634   /// to -1 in accordance with the Itanium C++ ABI.
1635   void EmitNullInitialization(llvm::Value *DestPtr, QualType Ty);
1636 
1637   // EmitVAArg - Generate code to get an argument from the passed in pointer
1638   // and update it accordingly. The return value is a pointer to the argument.
1639   // FIXME: We should be able to get rid of this method and use the va_arg
1640   // instruction in LLVM instead once it works well enough.
1641   llvm::Value *EmitVAArg(llvm::Value *VAListAddr, QualType Ty);
1642 
1643   /// emitArrayLength - Compute the length of an array, even if it's a
1644   /// VLA, and drill down to the base element type.
1645   llvm::Value *emitArrayLength(const ArrayType *arrayType,
1646                                QualType &baseType,
1647                                llvm::Value *&addr);
1648 
1649   /// EmitVLASize - Capture all the sizes for the VLA expressions in
1650   /// the given variably-modified type and store them in the VLASizeMap.
1651   ///
1652   /// This function can be called with a null (unreachable) insert point.
1653   void EmitVariablyModifiedType(QualType Ty);
1654 
1655   /// getVLASize - Returns an LLVM value that corresponds to the size,
1656   /// in non-variably-sized elements, of a variable length array type,
1657   /// plus that largest non-variably-sized element type.  Assumes that
1658   /// the type has already been emitted with EmitVariablyModifiedType.
1659   std::pair<llvm::Value*,QualType> getVLASize(const VariableArrayType *vla);
1660   std::pair<llvm::Value*,QualType> getVLASize(QualType vla);
1661 
1662   /// LoadCXXThis - Load the value of 'this'. This function is only valid while
1663   /// generating code for an C++ member function.
1664   llvm::Value *LoadCXXThis() {
1665     assert(CXXThisValue && "no 'this' value for this function");
1666     return CXXThisValue;
1667   }
1668 
1669   /// LoadCXXVTT - Load the VTT parameter to base constructors/destructors have
1670   /// virtual bases.
1671   // FIXME: Every place that calls LoadCXXVTT is something
1672   // that needs to be abstracted properly.
1673   llvm::Value *LoadCXXVTT() {
1674     assert(CXXStructorImplicitParamValue && "no VTT value for this function");
1675     return CXXStructorImplicitParamValue;
1676   }
1677 
1678   /// LoadCXXStructorImplicitParam - Load the implicit parameter
1679   /// for a constructor/destructor.
1680   llvm::Value *LoadCXXStructorImplicitParam() {
1681     assert(CXXStructorImplicitParamValue &&
1682            "no implicit argument value for this function");
1683     return CXXStructorImplicitParamValue;
1684   }
1685 
1686   /// GetAddressOfBaseOfCompleteClass - Convert the given pointer to a
1687   /// complete class to the given direct base.
1688   llvm::Value *
1689   GetAddressOfDirectBaseInCompleteClass(llvm::Value *Value,
1690                                         const CXXRecordDecl *Derived,
1691                                         const CXXRecordDecl *Base,
1692                                         bool BaseIsVirtual);
1693 
1694   /// GetAddressOfBaseClass - This function will add the necessary delta to the
1695   /// load of 'this' and returns address of the base class.
1696   llvm::Value *GetAddressOfBaseClass(llvm::Value *Value,
1697                                      const CXXRecordDecl *Derived,
1698                                      CastExpr::path_const_iterator PathBegin,
1699                                      CastExpr::path_const_iterator PathEnd,
1700                                      bool NullCheckValue, SourceLocation Loc);
1701 
1702   llvm::Value *GetAddressOfDerivedClass(llvm::Value *Value,
1703                                         const CXXRecordDecl *Derived,
1704                                         CastExpr::path_const_iterator PathBegin,
1705                                         CastExpr::path_const_iterator PathEnd,
1706                                         bool NullCheckValue);
1707 
1708   /// GetVTTParameter - Return the VTT parameter that should be passed to a
1709   /// base constructor/destructor with virtual bases.
1710   /// FIXME: VTTs are Itanium ABI-specific, so the definition should move
1711   /// to ItaniumCXXABI.cpp together with all the references to VTT.
1712   llvm::Value *GetVTTParameter(GlobalDecl GD, bool ForVirtualBase,
1713                                bool Delegating);
1714 
1715   void EmitDelegateCXXConstructorCall(const CXXConstructorDecl *Ctor,
1716                                       CXXCtorType CtorType,
1717                                       const FunctionArgList &Args,
1718                                       SourceLocation Loc);
1719   // It's important not to confuse this and the previous function. Delegating
1720   // constructors are the C++0x feature. The constructor delegate optimization
1721   // is used to reduce duplication in the base and complete consturctors where
1722   // they are substantially the same.
1723   void EmitDelegatingCXXConstructorCall(const CXXConstructorDecl *Ctor,
1724                                         const FunctionArgList &Args);
1725   void EmitCXXConstructorCall(const CXXConstructorDecl *D, CXXCtorType Type,
1726                               bool ForVirtualBase, bool Delegating,
1727                               llvm::Value *This, const CXXConstructExpr *E);
1728 
1729   void EmitSynthesizedCXXCopyCtorCall(const CXXConstructorDecl *D,
1730                               llvm::Value *This, llvm::Value *Src,
1731                               const CXXConstructExpr *E);
1732 
1733   void EmitCXXAggrConstructorCall(const CXXConstructorDecl *D,
1734                                   const ConstantArrayType *ArrayTy,
1735                                   llvm::Value *ArrayPtr,
1736                                   const CXXConstructExpr *E,
1737                                   bool ZeroInitialization = false);
1738 
1739   void EmitCXXAggrConstructorCall(const CXXConstructorDecl *D,
1740                                   llvm::Value *NumElements,
1741                                   llvm::Value *ArrayPtr,
1742                                   const CXXConstructExpr *E,
1743                                   bool ZeroInitialization = false);
1744 
1745   static Destroyer destroyCXXObject;
1746 
1747   void EmitCXXDestructorCall(const CXXDestructorDecl *D, CXXDtorType Type,
1748                              bool ForVirtualBase, bool Delegating,
1749                              llvm::Value *This);
1750 
1751   void EmitNewArrayInitializer(const CXXNewExpr *E, QualType elementType,
1752                                llvm::Type *ElementTy, llvm::Value *NewPtr,
1753                                llvm::Value *NumElements,
1754                                llvm::Value *AllocSizeWithoutCookie);
1755 
1756   void EmitCXXTemporary(const CXXTemporary *Temporary, QualType TempType,
1757                         llvm::Value *Ptr);
1758 
1759   llvm::Value *EmitLifetimeStart(uint64_t Size, llvm::Value *Addr);
1760   void EmitLifetimeEnd(llvm::Value *Size, llvm::Value *Addr);
1761 
1762   llvm::Value *EmitCXXNewExpr(const CXXNewExpr *E);
1763   void EmitCXXDeleteExpr(const CXXDeleteExpr *E);
1764 
1765   void EmitDeleteCall(const FunctionDecl *DeleteFD, llvm::Value *Ptr,
1766                       QualType DeleteTy);
1767 
1768   RValue EmitBuiltinNewDeleteCall(const FunctionProtoType *Type,
1769                                   const Expr *Arg, bool IsDelete);
1770 
1771   llvm::Value* EmitCXXTypeidExpr(const CXXTypeidExpr *E);
1772   llvm::Value *EmitDynamicCast(llvm::Value *V, const CXXDynamicCastExpr *DCE);
1773   llvm::Value* EmitCXXUuidofExpr(const CXXUuidofExpr *E);
1774 
1775   /// \brief Situations in which we might emit a check for the suitability of a
1776   ///        pointer or glvalue.
1777   enum TypeCheckKind {
1778     /// Checking the operand of a load. Must be suitably sized and aligned.
1779     TCK_Load,
1780     /// Checking the destination of a store. Must be suitably sized and aligned.
1781     TCK_Store,
1782     /// Checking the bound value in a reference binding. Must be suitably sized
1783     /// and aligned, but is not required to refer to an object (until the
1784     /// reference is used), per core issue 453.
1785     TCK_ReferenceBinding,
1786     /// Checking the object expression in a non-static data member access. Must
1787     /// be an object within its lifetime.
1788     TCK_MemberAccess,
1789     /// Checking the 'this' pointer for a call to a non-static member function.
1790     /// Must be an object within its lifetime.
1791     TCK_MemberCall,
1792     /// Checking the 'this' pointer for a constructor call.
1793     TCK_ConstructorCall,
1794     /// Checking the operand of a static_cast to a derived pointer type. Must be
1795     /// null or an object within its lifetime.
1796     TCK_DowncastPointer,
1797     /// Checking the operand of a static_cast to a derived reference type. Must
1798     /// be an object within its lifetime.
1799     TCK_DowncastReference,
1800     /// Checking the operand of a cast to a base object. Must be suitably sized
1801     /// and aligned.
1802     TCK_Upcast,
1803     /// Checking the operand of a cast to a virtual base object. Must be an
1804     /// object within its lifetime.
1805     TCK_UpcastToVirtualBase
1806   };
1807 
1808   /// \brief Whether any type-checking sanitizers are enabled. If \c false,
1809   /// calls to EmitTypeCheck can be skipped.
1810   bool sanitizePerformTypeCheck() const;
1811 
1812   /// \brief Emit a check that \p V is the address of storage of the
1813   /// appropriate size and alignment for an object of type \p Type.
1814   void EmitTypeCheck(TypeCheckKind TCK, SourceLocation Loc, llvm::Value *V,
1815                      QualType Type, CharUnits Alignment = CharUnits::Zero(),
1816                      bool SkipNullCheck = false);
1817 
1818   /// \brief Emit a check that \p Base points into an array object, which
1819   /// we can access at index \p Index. \p Accessed should be \c false if we
1820   /// this expression is used as an lvalue, for instance in "&Arr[Idx]".
1821   void EmitBoundsCheck(const Expr *E, const Expr *Base, llvm::Value *Index,
1822                        QualType IndexType, bool Accessed);
1823 
1824   llvm::Value *EmitScalarPrePostIncDec(const UnaryOperator *E, LValue LV,
1825                                        bool isInc, bool isPre);
1826   ComplexPairTy EmitComplexPrePostIncDec(const UnaryOperator *E, LValue LV,
1827                                          bool isInc, bool isPre);
1828 
1829   void EmitAlignmentAssumption(llvm::Value *PtrValue, unsigned Alignment,
1830                                llvm::Value *OffsetValue = nullptr) {
1831     Builder.CreateAlignmentAssumption(CGM.getDataLayout(), PtrValue, Alignment,
1832                                       OffsetValue);
1833   }
1834 
1835   //===--------------------------------------------------------------------===//
1836   //                            Declaration Emission
1837   //===--------------------------------------------------------------------===//
1838 
1839   /// EmitDecl - Emit a declaration.
1840   ///
1841   /// This function can be called with a null (unreachable) insert point.
1842   void EmitDecl(const Decl &D);
1843 
1844   /// EmitVarDecl - Emit a local variable declaration.
1845   ///
1846   /// This function can be called with a null (unreachable) insert point.
1847   void EmitVarDecl(const VarDecl &D);
1848 
1849   void EmitScalarInit(const Expr *init, const ValueDecl *D, LValue lvalue,
1850                       bool capturedByInit);
1851   void EmitScalarInit(llvm::Value *init, LValue lvalue);
1852 
1853   typedef void SpecialInitFn(CodeGenFunction &Init, const VarDecl &D,
1854                              llvm::Value *Address);
1855 
1856   /// \brief Determine whether the given initializer is trivial in the sense
1857   /// that it requires no code to be generated.
1858   bool isTrivialInitializer(const Expr *Init);
1859 
1860   /// EmitAutoVarDecl - Emit an auto variable declaration.
1861   ///
1862   /// This function can be called with a null (unreachable) insert point.
1863   void EmitAutoVarDecl(const VarDecl &D);
1864 
1865   class AutoVarEmission {
1866     friend class CodeGenFunction;
1867 
1868     const VarDecl *Variable;
1869 
1870     /// The alignment of the variable.
1871     CharUnits Alignment;
1872 
1873     /// The address of the alloca.  Null if the variable was emitted
1874     /// as a global constant.
1875     llvm::Value *Address;
1876 
1877     llvm::Value *NRVOFlag;
1878 
1879     /// True if the variable is a __block variable.
1880     bool IsByRef;
1881 
1882     /// True if the variable is of aggregate type and has a constant
1883     /// initializer.
1884     bool IsConstantAggregate;
1885 
1886     /// Non-null if we should use lifetime annotations.
1887     llvm::Value *SizeForLifetimeMarkers;
1888 
1889     struct Invalid {};
1890     AutoVarEmission(Invalid) : Variable(nullptr) {}
1891 
1892     AutoVarEmission(const VarDecl &variable)
1893       : Variable(&variable), Address(nullptr), NRVOFlag(nullptr),
1894         IsByRef(false), IsConstantAggregate(false),
1895         SizeForLifetimeMarkers(nullptr) {}
1896 
1897     bool wasEmittedAsGlobal() const { return Address == nullptr; }
1898 
1899   public:
1900     static AutoVarEmission invalid() { return AutoVarEmission(Invalid()); }
1901 
1902     bool useLifetimeMarkers() const {
1903       return SizeForLifetimeMarkers != nullptr;
1904     }
1905     llvm::Value *getSizeForLifetimeMarkers() const {
1906       assert(useLifetimeMarkers());
1907       return SizeForLifetimeMarkers;
1908     }
1909 
1910     /// Returns the raw, allocated address, which is not necessarily
1911     /// the address of the object itself.
1912     llvm::Value *getAllocatedAddress() const {
1913       return Address;
1914     }
1915 
1916     /// Returns the address of the object within this declaration.
1917     /// Note that this does not chase the forwarding pointer for
1918     /// __block decls.
1919     llvm::Value *getObjectAddress(CodeGenFunction &CGF) const {
1920       if (!IsByRef) return Address;
1921 
1922       auto F = CGF.getByRefValueLLVMField(Variable);
1923       return CGF.Builder.CreateStructGEP(F.first, Address, F.second,
1924                                          Variable->getNameAsString());
1925     }
1926   };
1927   AutoVarEmission EmitAutoVarAlloca(const VarDecl &var);
1928   void EmitAutoVarInit(const AutoVarEmission &emission);
1929   void EmitAutoVarCleanups(const AutoVarEmission &emission);
1930   void emitAutoVarTypeCleanup(const AutoVarEmission &emission,
1931                               QualType::DestructionKind dtorKind);
1932 
1933   void EmitStaticVarDecl(const VarDecl &D,
1934                          llvm::GlobalValue::LinkageTypes Linkage);
1935 
1936   /// EmitParmDecl - Emit a ParmVarDecl or an ImplicitParamDecl.
1937   void EmitParmDecl(const VarDecl &D, llvm::Value *Arg, bool ArgIsPointer,
1938                     unsigned ArgNo);
1939 
1940   /// protectFromPeepholes - Protect a value that we're intending to
1941   /// store to the side, but which will probably be used later, from
1942   /// aggressive peepholing optimizations that might delete it.
1943   ///
1944   /// Pass the result to unprotectFromPeepholes to declare that
1945   /// protection is no longer required.
1946   ///
1947   /// There's no particular reason why this shouldn't apply to
1948   /// l-values, it's just that no existing peepholes work on pointers.
1949   PeepholeProtection protectFromPeepholes(RValue rvalue);
1950   void unprotectFromPeepholes(PeepholeProtection protection);
1951 
1952   //===--------------------------------------------------------------------===//
1953   //                             Statement Emission
1954   //===--------------------------------------------------------------------===//
1955 
1956   /// EmitStopPoint - Emit a debug stoppoint if we are emitting debug info.
1957   void EmitStopPoint(const Stmt *S);
1958 
1959   /// EmitStmt - Emit the code for the statement \arg S. It is legal to call
1960   /// this function even if there is no current insertion point.
1961   ///
1962   /// This function may clear the current insertion point; callers should use
1963   /// EnsureInsertPoint if they wish to subsequently generate code without first
1964   /// calling EmitBlock, EmitBranch, or EmitStmt.
1965   void EmitStmt(const Stmt *S);
1966 
1967   /// EmitSimpleStmt - Try to emit a "simple" statement which does not
1968   /// necessarily require an insertion point or debug information; typically
1969   /// because the statement amounts to a jump or a container of other
1970   /// statements.
1971   ///
1972   /// \return True if the statement was handled.
1973   bool EmitSimpleStmt(const Stmt *S);
1974 
1975   llvm::Value *EmitCompoundStmt(const CompoundStmt &S, bool GetLast = false,
1976                                 AggValueSlot AVS = AggValueSlot::ignored());
1977   llvm::Value *EmitCompoundStmtWithoutScope(const CompoundStmt &S,
1978                                             bool GetLast = false,
1979                                             AggValueSlot AVS =
1980                                                 AggValueSlot::ignored());
1981 
1982   /// EmitLabel - Emit the block for the given label. It is legal to call this
1983   /// function even if there is no current insertion point.
1984   void EmitLabel(const LabelDecl *D); // helper for EmitLabelStmt.
1985 
1986   void EmitLabelStmt(const LabelStmt &S);
1987   void EmitAttributedStmt(const AttributedStmt &S);
1988   void EmitGotoStmt(const GotoStmt &S);
1989   void EmitIndirectGotoStmt(const IndirectGotoStmt &S);
1990   void EmitIfStmt(const IfStmt &S);
1991 
1992   void EmitCondBrHints(llvm::LLVMContext &Context, llvm::BranchInst *CondBr,
1993                        ArrayRef<const Attr *> Attrs);
1994   void EmitWhileStmt(const WhileStmt &S,
1995                      ArrayRef<const Attr *> Attrs = None);
1996   void EmitDoStmt(const DoStmt &S, ArrayRef<const Attr *> Attrs = None);
1997   void EmitForStmt(const ForStmt &S,
1998                    ArrayRef<const Attr *> Attrs = None);
1999   void EmitReturnStmt(const ReturnStmt &S);
2000   void EmitDeclStmt(const DeclStmt &S);
2001   void EmitBreakStmt(const BreakStmt &S);
2002   void EmitContinueStmt(const ContinueStmt &S);
2003   void EmitSwitchStmt(const SwitchStmt &S);
2004   void EmitDefaultStmt(const DefaultStmt &S);
2005   void EmitCaseStmt(const CaseStmt &S);
2006   void EmitCaseStmtRange(const CaseStmt &S);
2007   void EmitAsmStmt(const AsmStmt &S);
2008 
2009   void EmitObjCForCollectionStmt(const ObjCForCollectionStmt &S);
2010   void EmitObjCAtTryStmt(const ObjCAtTryStmt &S);
2011   void EmitObjCAtThrowStmt(const ObjCAtThrowStmt &S);
2012   void EmitObjCAtSynchronizedStmt(const ObjCAtSynchronizedStmt &S);
2013   void EmitObjCAutoreleasePoolStmt(const ObjCAutoreleasePoolStmt &S);
2014 
2015   void EnterCXXTryStmt(const CXXTryStmt &S, bool IsFnTryBlock = false);
2016   void ExitCXXTryStmt(const CXXTryStmt &S, bool IsFnTryBlock = false);
2017 
2018   void EmitCXXTryStmt(const CXXTryStmt &S);
2019   void EmitSEHTryStmt(const SEHTryStmt &S);
2020   void EmitSEHLeaveStmt(const SEHLeaveStmt &S);
2021   void EnterSEHTryStmt(const SEHTryStmt &S);
2022   void ExitSEHTryStmt(const SEHTryStmt &S);
2023 
2024   void startOutlinedSEHHelper(CodeGenFunction &ParentCGF, StringRef Name,
2025                               QualType RetTy, FunctionArgList &Args,
2026                               const Stmt *OutlinedStmt);
2027 
2028   llvm::Function *GenerateSEHFilterFunction(CodeGenFunction &ParentCGF,
2029                                             const SEHExceptStmt &Except);
2030 
2031   llvm::Function *GenerateSEHFinallyFunction(CodeGenFunction &ParentCGF,
2032                                              const SEHFinallyStmt &Finally);
2033 
2034   void EmitSEHExceptionCodeSave();
2035   llvm::Value *EmitSEHExceptionCode();
2036   llvm::Value *EmitSEHExceptionInfo();
2037   llvm::Value *EmitSEHAbnormalTermination();
2038 
2039   /// Scan the outlined statement for captures from the parent function. For
2040   /// each capture, mark the capture as escaped and emit a call to
2041   /// llvm.framerecover. Insert the framerecover result into the LocalDeclMap.
2042   void EmitCapturedLocals(CodeGenFunction &ParentCGF, const Stmt *OutlinedStmt,
2043                           llvm::Value *ParentFP);
2044 
2045   void EmitCXXForRangeStmt(const CXXForRangeStmt &S,
2046                            ArrayRef<const Attr *> Attrs = None);
2047 
2048   LValue InitCapturedStruct(const CapturedStmt &S);
2049   llvm::Function *EmitCapturedStmt(const CapturedStmt &S, CapturedRegionKind K);
2050   void GenerateCapturedStmtFunctionProlog(const CapturedStmt &S);
2051   llvm::Function *GenerateCapturedStmtFunctionEpilog(const CapturedStmt &S);
2052   llvm::Function *GenerateCapturedStmtFunction(const CapturedStmt &S);
2053   llvm::Value *GenerateCapturedStmtArgument(const CapturedStmt &S);
2054   /// \brief Perform element by element copying of arrays with type \a
2055   /// OriginalType from \a SrcAddr to \a DestAddr using copying procedure
2056   /// generated by \a CopyGen.
2057   ///
2058   /// \param DestAddr Address of the destination array.
2059   /// \param SrcAddr Address of the source array.
2060   /// \param OriginalType Type of destination and source arrays.
2061   /// \param CopyGen Copying procedure that copies value of single array element
2062   /// to another single array element.
2063   void EmitOMPAggregateAssign(
2064       llvm::Value *DestAddr, llvm::Value *SrcAddr, QualType OriginalType,
2065       const llvm::function_ref<void(llvm::Value *, llvm::Value *)> &CopyGen);
2066   /// \brief Emit proper copying of data from one variable to another.
2067   ///
2068   /// \param OriginalType Original type of the copied variables.
2069   /// \param DestAddr Destination address.
2070   /// \param SrcAddr Source address.
2071   /// \param DestVD Destination variable used in \a CopyExpr (for arrays, has
2072   /// type of the base array element).
2073   /// \param SrcVD Source variable used in \a CopyExpr (for arrays, has type of
2074   /// the base array element).
2075   /// \param Copy Actual copygin expression for copying data from \a SrcVD to \a
2076   /// DestVD.
2077   void EmitOMPCopy(CodeGenFunction &CGF, QualType OriginalType,
2078                    llvm::Value *DestAddr, llvm::Value *SrcAddr,
2079                    const VarDecl *DestVD, const VarDecl *SrcVD,
2080                    const Expr *Copy);
2081   /// \brief Emit atomic update code for constructs: \a X = \a X \a BO \a E or
2082   /// \a X = \a E \a BO \a E.
2083   ///
2084   /// \param X Value to be updated.
2085   /// \param E Update value.
2086   /// \param BO Binary operation for update operation.
2087   /// \param IsXLHSInRHSPart true if \a X is LHS in RHS part of the update
2088   /// expression, false otherwise.
2089   /// \param AO Atomic ordering of the generated atomic instructions.
2090   /// \param CommonGen Code generator for complex expressions that cannot be
2091   /// expressed through atomicrmw instruction.
2092   /// \returns <true, OldAtomicValue> if simple 'atomicrmw' instruction was
2093   /// generated, <false, RValue::get(nullptr)> otherwise.
2094   std::pair<bool, RValue> EmitOMPAtomicSimpleUpdateExpr(
2095       LValue X, RValue E, BinaryOperatorKind BO, bool IsXLHSInRHSPart,
2096       llvm::AtomicOrdering AO, SourceLocation Loc,
2097       const llvm::function_ref<RValue(RValue)> &CommonGen);
2098   bool EmitOMPFirstprivateClause(const OMPExecutableDirective &D,
2099                                  OMPPrivateScope &PrivateScope);
2100   void EmitOMPPrivateClause(const OMPExecutableDirective &D,
2101                             OMPPrivateScope &PrivateScope);
2102   /// \brief Emit code for copyin clause in \a D directive. The next code is
2103   /// generated at the start of outlined functions for directives:
2104   /// \code
2105   /// threadprivate_var1 = master_threadprivate_var1;
2106   /// operator=(threadprivate_var2, master_threadprivate_var2);
2107   /// ...
2108   /// __kmpc_barrier(&loc, global_tid);
2109   /// \endcode
2110   ///
2111   /// \param D OpenMP directive possibly with 'copyin' clause(s).
2112   /// \returns true if at least one copyin variable is found, false otherwise.
2113   bool EmitOMPCopyinClause(const OMPExecutableDirective &D);
2114   /// \brief Emit initial code for lastprivate variables. If some variable is
2115   /// not also firstprivate, then the default initialization is used. Otherwise
2116   /// initialization of this variable is performed by EmitOMPFirstprivateClause
2117   /// method.
2118   ///
2119   /// \param D Directive that may have 'lastprivate' directives.
2120   /// \param PrivateScope Private scope for capturing lastprivate variables for
2121   /// proper codegen in internal captured statement.
2122   ///
2123   /// \returns true if there is at least one lastprivate variable, false
2124   /// otherwise.
2125   bool EmitOMPLastprivateClauseInit(const OMPExecutableDirective &D,
2126                                     OMPPrivateScope &PrivateScope);
2127   /// \brief Emit final copying of lastprivate values to original variables at
2128   /// the end of the worksharing or simd directive.
2129   ///
2130   /// \param D Directive that has at least one 'lastprivate' directives.
2131   /// \param IsLastIterCond Boolean condition that must be set to 'i1 true' if
2132   /// it is the last iteration of the loop code in associated directive, or to
2133   /// 'i1 false' otherwise.
2134   void EmitOMPLastprivateClauseFinal(const OMPExecutableDirective &D,
2135                                      llvm::Value *IsLastIterCond);
2136   /// \brief Emit initial code for reduction variables. Creates reduction copies
2137   /// and initializes them with the values according to OpenMP standard.
2138   ///
2139   /// \param D Directive (possibly) with the 'reduction' clause.
2140   /// \param PrivateScope Private scope for capturing reduction variables for
2141   /// proper codegen in internal captured statement.
2142   ///
2143   void EmitOMPReductionClauseInit(const OMPExecutableDirective &D,
2144                                   OMPPrivateScope &PrivateScope);
2145   /// \brief Emit final update of reduction values to original variables at
2146   /// the end of the directive.
2147   ///
2148   /// \param D Directive that has at least one 'reduction' directives.
2149   void EmitOMPReductionClauseFinal(const OMPExecutableDirective &D);
2150 
2151   void EmitOMPParallelDirective(const OMPParallelDirective &S);
2152   void EmitOMPSimdDirective(const OMPSimdDirective &S);
2153   void EmitOMPForDirective(const OMPForDirective &S);
2154   void EmitOMPForSimdDirective(const OMPForSimdDirective &S);
2155   void EmitOMPSectionsDirective(const OMPSectionsDirective &S);
2156   void EmitOMPSectionDirective(const OMPSectionDirective &S);
2157   void EmitOMPSingleDirective(const OMPSingleDirective &S);
2158   void EmitOMPMasterDirective(const OMPMasterDirective &S);
2159   void EmitOMPCriticalDirective(const OMPCriticalDirective &S);
2160   void EmitOMPParallelForDirective(const OMPParallelForDirective &S);
2161   void EmitOMPParallelForSimdDirective(const OMPParallelForSimdDirective &S);
2162   void EmitOMPParallelSectionsDirective(const OMPParallelSectionsDirective &S);
2163   void EmitOMPTaskDirective(const OMPTaskDirective &S);
2164   void EmitOMPTaskyieldDirective(const OMPTaskyieldDirective &S);
2165   void EmitOMPBarrierDirective(const OMPBarrierDirective &S);
2166   void EmitOMPTaskwaitDirective(const OMPTaskwaitDirective &S);
2167   void EmitOMPFlushDirective(const OMPFlushDirective &S);
2168   void EmitOMPOrderedDirective(const OMPOrderedDirective &S);
2169   void EmitOMPAtomicDirective(const OMPAtomicDirective &S);
2170   void EmitOMPTargetDirective(const OMPTargetDirective &S);
2171   void EmitOMPTeamsDirective(const OMPTeamsDirective &S);
2172 
2173   /// \brief Emit inner loop of the worksharing/simd construct.
2174   ///
2175   /// \param S Directive, for which the inner loop must be emitted.
2176   /// \param RequiresCleanup true, if directive has some associated private
2177   /// variables.
2178   /// \param LoopCond Bollean condition for loop continuation.
2179   /// \param IncExpr Increment expression for loop control variable.
2180   /// \param BodyGen Generator for the inner body of the inner loop.
2181   /// \param PostIncGen Genrator for post-increment code (required for ordered
2182   /// loop directvies).
2183   void EmitOMPInnerLoop(
2184       const Stmt &S, bool RequiresCleanup, const Expr *LoopCond,
2185       const Expr *IncExpr,
2186       const llvm::function_ref<void(CodeGenFunction &)> &BodyGen,
2187       const llvm::function_ref<void(CodeGenFunction &)> &PostIncGen);
2188 
2189 private:
2190 
2191   /// Helpers for the OpenMP loop directives.
2192   void EmitOMPLoopBody(const OMPLoopDirective &Directive,
2193                        bool SeparateIter = false);
2194   void EmitOMPSimdFinal(const OMPLoopDirective &S);
2195   /// \brief Emit code for the worksharing loop-based directive.
2196   /// \return true, if this construct has any lastprivate clause, false -
2197   /// otherwise.
2198   bool EmitOMPWorksharingLoop(const OMPLoopDirective &S);
2199   void EmitOMPForOuterLoop(OpenMPScheduleClauseKind ScheduleKind,
2200                            const OMPLoopDirective &S,
2201                            OMPPrivateScope &LoopScope, llvm::Value *LB,
2202                            llvm::Value *UB, llvm::Value *ST, llvm::Value *IL,
2203                            llvm::Value *Chunk);
2204 
2205 public:
2206 
2207   //===--------------------------------------------------------------------===//
2208   //                         LValue Expression Emission
2209   //===--------------------------------------------------------------------===//
2210 
2211   /// GetUndefRValue - Get an appropriate 'undef' rvalue for the given type.
2212   RValue GetUndefRValue(QualType Ty);
2213 
2214   /// EmitUnsupportedRValue - Emit a dummy r-value using the type of E
2215   /// and issue an ErrorUnsupported style diagnostic (using the
2216   /// provided Name).
2217   RValue EmitUnsupportedRValue(const Expr *E,
2218                                const char *Name);
2219 
2220   /// EmitUnsupportedLValue - Emit a dummy l-value using the type of E and issue
2221   /// an ErrorUnsupported style diagnostic (using the provided Name).
2222   LValue EmitUnsupportedLValue(const Expr *E,
2223                                const char *Name);
2224 
2225   /// EmitLValue - Emit code to compute a designator that specifies the location
2226   /// of the expression.
2227   ///
2228   /// This can return one of two things: a simple address or a bitfield
2229   /// reference.  In either case, the LLVM Value* in the LValue structure is
2230   /// guaranteed to be an LLVM pointer type.
2231   ///
2232   /// If this returns a bitfield reference, nothing about the pointee type of
2233   /// the LLVM value is known: For example, it may not be a pointer to an
2234   /// integer.
2235   ///
2236   /// If this returns a normal address, and if the lvalue's C type is fixed
2237   /// size, this method guarantees that the returned pointer type will point to
2238   /// an LLVM type of the same size of the lvalue's type.  If the lvalue has a
2239   /// variable length type, this is not possible.
2240   ///
2241   LValue EmitLValue(const Expr *E);
2242 
2243   /// \brief Same as EmitLValue but additionally we generate checking code to
2244   /// guard against undefined behavior.  This is only suitable when we know
2245   /// that the address will be used to access the object.
2246   LValue EmitCheckedLValue(const Expr *E, TypeCheckKind TCK);
2247 
2248   RValue convertTempToRValue(llvm::Value *addr, QualType type,
2249                              SourceLocation Loc);
2250 
2251   void EmitAtomicInit(Expr *E, LValue lvalue);
2252 
2253   bool LValueIsSuitableForInlineAtomic(LValue Src);
2254   bool typeIsSuitableForInlineAtomic(QualType Ty, bool IsVolatile) const;
2255 
2256   RValue EmitAtomicLoad(LValue LV, SourceLocation SL,
2257                         AggValueSlot Slot = AggValueSlot::ignored());
2258 
2259   RValue EmitAtomicLoad(LValue lvalue, SourceLocation loc,
2260                         llvm::AtomicOrdering AO, bool IsVolatile = false,
2261                         AggValueSlot slot = AggValueSlot::ignored());
2262 
2263   void EmitAtomicStore(RValue rvalue, LValue lvalue, bool isInit);
2264 
2265   void EmitAtomicStore(RValue rvalue, LValue lvalue, llvm::AtomicOrdering AO,
2266                        bool IsVolatile, bool isInit);
2267 
2268   std::pair<RValue, llvm::Value *> EmitAtomicCompareExchange(
2269       LValue Obj, RValue Expected, RValue Desired, SourceLocation Loc,
2270       llvm::AtomicOrdering Success = llvm::SequentiallyConsistent,
2271       llvm::AtomicOrdering Failure = llvm::SequentiallyConsistent,
2272       bool IsWeak = false, AggValueSlot Slot = AggValueSlot::ignored());
2273 
2274   void EmitAtomicUpdate(LValue LVal, llvm::AtomicOrdering AO,
2275                         const std::function<RValue(RValue)> &UpdateOp,
2276                         bool IsVolatile);
2277 
2278   /// EmitToMemory - Change a scalar value from its value
2279   /// representation to its in-memory representation.
2280   llvm::Value *EmitToMemory(llvm::Value *Value, QualType Ty);
2281 
2282   /// EmitFromMemory - Change a scalar value from its memory
2283   /// representation to its value representation.
2284   llvm::Value *EmitFromMemory(llvm::Value *Value, QualType Ty);
2285 
2286   /// EmitLoadOfScalar - Load a scalar value from an address, taking
2287   /// care to appropriately convert from the memory representation to
2288   /// the LLVM value representation.
2289   llvm::Value *EmitLoadOfScalar(llvm::Value *Addr, bool Volatile,
2290                                 unsigned Alignment, QualType Ty,
2291                                 SourceLocation Loc,
2292                                 llvm::MDNode *TBAAInfo = nullptr,
2293                                 QualType TBAABaseTy = QualType(),
2294                                 uint64_t TBAAOffset = 0);
2295 
2296   /// EmitLoadOfScalar - Load a scalar value from an address, taking
2297   /// care to appropriately convert from the memory representation to
2298   /// the LLVM value representation.  The l-value must be a simple
2299   /// l-value.
2300   llvm::Value *EmitLoadOfScalar(LValue lvalue, SourceLocation Loc);
2301 
2302   /// EmitStoreOfScalar - Store a scalar value to an address, taking
2303   /// care to appropriately convert from the memory representation to
2304   /// the LLVM value representation.
2305   void EmitStoreOfScalar(llvm::Value *Value, llvm::Value *Addr,
2306                          bool Volatile, unsigned Alignment, QualType Ty,
2307                          llvm::MDNode *TBAAInfo = nullptr, bool isInit = false,
2308                          QualType TBAABaseTy = QualType(),
2309                          uint64_t TBAAOffset = 0);
2310 
2311   /// EmitStoreOfScalar - Store a scalar value to an address, taking
2312   /// care to appropriately convert from the memory representation to
2313   /// the LLVM value representation.  The l-value must be a simple
2314   /// l-value.  The isInit flag indicates whether this is an initialization.
2315   /// If so, atomic qualifiers are ignored and the store is always non-atomic.
2316   void EmitStoreOfScalar(llvm::Value *value, LValue lvalue, bool isInit=false);
2317 
2318   /// EmitLoadOfLValue - Given an expression that represents a value lvalue,
2319   /// this method emits the address of the lvalue, then loads the result as an
2320   /// rvalue, returning the rvalue.
2321   RValue EmitLoadOfLValue(LValue V, SourceLocation Loc);
2322   RValue EmitLoadOfExtVectorElementLValue(LValue V);
2323   RValue EmitLoadOfBitfieldLValue(LValue LV);
2324   RValue EmitLoadOfGlobalRegLValue(LValue LV);
2325 
2326   /// EmitStoreThroughLValue - Store the specified rvalue into the specified
2327   /// lvalue, where both are guaranteed to the have the same type, and that type
2328   /// is 'Ty'.
2329   void EmitStoreThroughLValue(RValue Src, LValue Dst, bool isInit = false);
2330   void EmitStoreThroughExtVectorComponentLValue(RValue Src, LValue Dst);
2331   void EmitStoreThroughGlobalRegLValue(RValue Src, LValue Dst);
2332 
2333   /// EmitStoreThroughBitfieldLValue - Store Src into Dst with same constraints
2334   /// as EmitStoreThroughLValue.
2335   ///
2336   /// \param Result [out] - If non-null, this will be set to a Value* for the
2337   /// bit-field contents after the store, appropriate for use as the result of
2338   /// an assignment to the bit-field.
2339   void EmitStoreThroughBitfieldLValue(RValue Src, LValue Dst,
2340                                       llvm::Value **Result=nullptr);
2341 
2342   /// Emit an l-value for an assignment (simple or compound) of complex type.
2343   LValue EmitComplexAssignmentLValue(const BinaryOperator *E);
2344   LValue EmitComplexCompoundAssignmentLValue(const CompoundAssignOperator *E);
2345   LValue EmitScalarCompoundAssignWithComplex(const CompoundAssignOperator *E,
2346                                              llvm::Value *&Result);
2347 
2348   // Note: only available for agg return types
2349   LValue EmitBinaryOperatorLValue(const BinaryOperator *E);
2350   LValue EmitCompoundAssignmentLValue(const CompoundAssignOperator *E);
2351   // Note: only available for agg return types
2352   LValue EmitCallExprLValue(const CallExpr *E);
2353   // Note: only available for agg return types
2354   LValue EmitVAArgExprLValue(const VAArgExpr *E);
2355   LValue EmitDeclRefLValue(const DeclRefExpr *E);
2356   LValue EmitReadRegister(const VarDecl *VD);
2357   LValue EmitStringLiteralLValue(const StringLiteral *E);
2358   LValue EmitObjCEncodeExprLValue(const ObjCEncodeExpr *E);
2359   LValue EmitPredefinedLValue(const PredefinedExpr *E);
2360   LValue EmitUnaryOpLValue(const UnaryOperator *E);
2361   LValue EmitArraySubscriptExpr(const ArraySubscriptExpr *E,
2362                                 bool Accessed = false);
2363   LValue EmitExtVectorElementExpr(const ExtVectorElementExpr *E);
2364   LValue EmitMemberExpr(const MemberExpr *E);
2365   LValue EmitObjCIsaExpr(const ObjCIsaExpr *E);
2366   LValue EmitCompoundLiteralLValue(const CompoundLiteralExpr *E);
2367   LValue EmitInitListLValue(const InitListExpr *E);
2368   LValue EmitConditionalOperatorLValue(const AbstractConditionalOperator *E);
2369   LValue EmitCastLValue(const CastExpr *E);
2370   LValue EmitMaterializeTemporaryExpr(const MaterializeTemporaryExpr *E);
2371   LValue EmitOpaqueValueLValue(const OpaqueValueExpr *e);
2372 
2373   llvm::Value *EmitExtVectorElementLValue(LValue V);
2374 
2375   RValue EmitRValueForField(LValue LV, const FieldDecl *FD, SourceLocation Loc);
2376 
2377   class ConstantEmission {
2378     llvm::PointerIntPair<llvm::Constant*, 1, bool> ValueAndIsReference;
2379     ConstantEmission(llvm::Constant *C, bool isReference)
2380       : ValueAndIsReference(C, isReference) {}
2381   public:
2382     ConstantEmission() {}
2383     static ConstantEmission forReference(llvm::Constant *C) {
2384       return ConstantEmission(C, true);
2385     }
2386     static ConstantEmission forValue(llvm::Constant *C) {
2387       return ConstantEmission(C, false);
2388     }
2389 
2390     explicit operator bool() const {
2391       return ValueAndIsReference.getOpaqueValue() != nullptr;
2392     }
2393 
2394     bool isReference() const { return ValueAndIsReference.getInt(); }
2395     LValue getReferenceLValue(CodeGenFunction &CGF, Expr *refExpr) const {
2396       assert(isReference());
2397       return CGF.MakeNaturalAlignAddrLValue(ValueAndIsReference.getPointer(),
2398                                             refExpr->getType());
2399     }
2400 
2401     llvm::Constant *getValue() const {
2402       assert(!isReference());
2403       return ValueAndIsReference.getPointer();
2404     }
2405   };
2406 
2407   ConstantEmission tryEmitAsConstant(DeclRefExpr *refExpr);
2408 
2409   RValue EmitPseudoObjectRValue(const PseudoObjectExpr *e,
2410                                 AggValueSlot slot = AggValueSlot::ignored());
2411   LValue EmitPseudoObjectLValue(const PseudoObjectExpr *e);
2412 
2413   llvm::Value *EmitIvarOffset(const ObjCInterfaceDecl *Interface,
2414                               const ObjCIvarDecl *Ivar);
2415   LValue EmitLValueForField(LValue Base, const FieldDecl* Field);
2416   LValue EmitLValueForLambdaField(const FieldDecl *Field);
2417 
2418   /// EmitLValueForFieldInitialization - Like EmitLValueForField, except that
2419   /// if the Field is a reference, this will return the address of the reference
2420   /// and not the address of the value stored in the reference.
2421   LValue EmitLValueForFieldInitialization(LValue Base,
2422                                           const FieldDecl* Field);
2423 
2424   LValue EmitLValueForIvar(QualType ObjectTy,
2425                            llvm::Value* Base, const ObjCIvarDecl *Ivar,
2426                            unsigned CVRQualifiers);
2427 
2428   LValue EmitCXXConstructLValue(const CXXConstructExpr *E);
2429   LValue EmitCXXBindTemporaryLValue(const CXXBindTemporaryExpr *E);
2430   LValue EmitLambdaLValue(const LambdaExpr *E);
2431   LValue EmitCXXTypeidLValue(const CXXTypeidExpr *E);
2432   LValue EmitCXXUuidofLValue(const CXXUuidofExpr *E);
2433 
2434   LValue EmitObjCMessageExprLValue(const ObjCMessageExpr *E);
2435   LValue EmitObjCIvarRefLValue(const ObjCIvarRefExpr *E);
2436   LValue EmitStmtExprLValue(const StmtExpr *E);
2437   LValue EmitPointerToDataMemberBinaryExpr(const BinaryOperator *E);
2438   LValue EmitObjCSelectorLValue(const ObjCSelectorExpr *E);
2439   void   EmitDeclRefExprDbgValue(const DeclRefExpr *E, llvm::Constant *Init);
2440 
2441   //===--------------------------------------------------------------------===//
2442   //                         Scalar Expression Emission
2443   //===--------------------------------------------------------------------===//
2444 
2445   /// EmitCall - Generate a call of the given function, expecting the given
2446   /// result type, and using the given argument list which specifies both the
2447   /// LLVM arguments and the types they were derived from.
2448   ///
2449   /// \param TargetDecl - If given, the decl of the function in a direct call;
2450   /// used to set attributes on the call (noreturn, etc.).
2451   RValue EmitCall(const CGFunctionInfo &FnInfo,
2452                   llvm::Value *Callee,
2453                   ReturnValueSlot ReturnValue,
2454                   const CallArgList &Args,
2455                   const Decl *TargetDecl = nullptr,
2456                   llvm::Instruction **callOrInvoke = nullptr);
2457 
2458   RValue EmitCall(QualType FnType, llvm::Value *Callee, const CallExpr *E,
2459                   ReturnValueSlot ReturnValue,
2460                   const Decl *TargetDecl = nullptr,
2461                   llvm::Value *Chain = nullptr);
2462   RValue EmitCallExpr(const CallExpr *E,
2463                       ReturnValueSlot ReturnValue = ReturnValueSlot());
2464 
2465   llvm::CallInst *EmitRuntimeCall(llvm::Value *callee,
2466                                   const Twine &name = "");
2467   llvm::CallInst *EmitRuntimeCall(llvm::Value *callee,
2468                                   ArrayRef<llvm::Value*> args,
2469                                   const Twine &name = "");
2470   llvm::CallInst *EmitNounwindRuntimeCall(llvm::Value *callee,
2471                                           const Twine &name = "");
2472   llvm::CallInst *EmitNounwindRuntimeCall(llvm::Value *callee,
2473                                           ArrayRef<llvm::Value*> args,
2474                                           const Twine &name = "");
2475 
2476   llvm::CallSite EmitCallOrInvoke(llvm::Value *Callee,
2477                                   ArrayRef<llvm::Value *> Args,
2478                                   const Twine &Name = "");
2479   llvm::CallSite EmitCallOrInvoke(llvm::Value *Callee,
2480                                   const Twine &Name = "");
2481   llvm::CallSite EmitRuntimeCallOrInvoke(llvm::Value *callee,
2482                                          ArrayRef<llvm::Value*> args,
2483                                          const Twine &name = "");
2484   llvm::CallSite EmitRuntimeCallOrInvoke(llvm::Value *callee,
2485                                          const Twine &name = "");
2486   void EmitNoreturnRuntimeCallOrInvoke(llvm::Value *callee,
2487                                        ArrayRef<llvm::Value*> args);
2488 
2489   llvm::Value *BuildAppleKextVirtualCall(const CXXMethodDecl *MD,
2490                                          NestedNameSpecifier *Qual,
2491                                          llvm::Type *Ty);
2492 
2493   llvm::Value *BuildAppleKextVirtualDestructorCall(const CXXDestructorDecl *DD,
2494                                                    CXXDtorType Type,
2495                                                    const CXXRecordDecl *RD);
2496 
2497   RValue
2498   EmitCXXMemberOrOperatorCall(const CXXMethodDecl *MD, llvm::Value *Callee,
2499                               ReturnValueSlot ReturnValue, llvm::Value *This,
2500                               llvm::Value *ImplicitParam,
2501                               QualType ImplicitParamTy, const CallExpr *E);
2502   RValue EmitCXXStructorCall(const CXXMethodDecl *MD, llvm::Value *Callee,
2503                              ReturnValueSlot ReturnValue, llvm::Value *This,
2504                              llvm::Value *ImplicitParam,
2505                              QualType ImplicitParamTy, const CallExpr *E,
2506                              StructorType Type);
2507   RValue EmitCXXMemberCallExpr(const CXXMemberCallExpr *E,
2508                                ReturnValueSlot ReturnValue);
2509   RValue EmitCXXMemberOrOperatorMemberCallExpr(const CallExpr *CE,
2510                                                const CXXMethodDecl *MD,
2511                                                ReturnValueSlot ReturnValue,
2512                                                bool HasQualifier,
2513                                                NestedNameSpecifier *Qualifier,
2514                                                bool IsArrow, const Expr *Base);
2515   // Compute the object pointer.
2516   RValue EmitCXXMemberPointerCallExpr(const CXXMemberCallExpr *E,
2517                                       ReturnValueSlot ReturnValue);
2518 
2519   RValue EmitCXXOperatorMemberCallExpr(const CXXOperatorCallExpr *E,
2520                                        const CXXMethodDecl *MD,
2521                                        ReturnValueSlot ReturnValue);
2522 
2523   RValue EmitCUDAKernelCallExpr(const CUDAKernelCallExpr *E,
2524                                 ReturnValueSlot ReturnValue);
2525 
2526 
2527   RValue EmitBuiltinExpr(const FunctionDecl *FD,
2528                          unsigned BuiltinID, const CallExpr *E,
2529                          ReturnValueSlot ReturnValue);
2530 
2531   RValue EmitBlockCallExpr(const CallExpr *E, ReturnValueSlot ReturnValue);
2532 
2533   /// EmitTargetBuiltinExpr - Emit the given builtin call. Returns 0 if the call
2534   /// is unhandled by the current target.
2535   llvm::Value *EmitTargetBuiltinExpr(unsigned BuiltinID, const CallExpr *E);
2536 
2537   llvm::Value *EmitAArch64CompareBuiltinExpr(llvm::Value *Op, llvm::Type *Ty,
2538                                              const llvm::CmpInst::Predicate Fp,
2539                                              const llvm::CmpInst::Predicate Ip,
2540                                              const llvm::Twine &Name = "");
2541   llvm::Value *EmitARMBuiltinExpr(unsigned BuiltinID, const CallExpr *E);
2542 
2543   llvm::Value *EmitCommonNeonBuiltinExpr(unsigned BuiltinID,
2544                                          unsigned LLVMIntrinsic,
2545                                          unsigned AltLLVMIntrinsic,
2546                                          const char *NameHint,
2547                                          unsigned Modifier,
2548                                          const CallExpr *E,
2549                                          SmallVectorImpl<llvm::Value *> &Ops,
2550                                          llvm::Value *Align = nullptr);
2551   llvm::Function *LookupNeonLLVMIntrinsic(unsigned IntrinsicID,
2552                                           unsigned Modifier, llvm::Type *ArgTy,
2553                                           const CallExpr *E);
2554   llvm::Value *EmitNeonCall(llvm::Function *F,
2555                             SmallVectorImpl<llvm::Value*> &O,
2556                             const char *name,
2557                             unsigned shift = 0, bool rightshift = false);
2558   llvm::Value *EmitNeonSplat(llvm::Value *V, llvm::Constant *Idx);
2559   llvm::Value *EmitNeonShiftVector(llvm::Value *V, llvm::Type *Ty,
2560                                    bool negateForRightShift);
2561   llvm::Value *EmitNeonRShiftImm(llvm::Value *Vec, llvm::Value *Amt,
2562                                  llvm::Type *Ty, bool usgn, const char *name);
2563   // Helper functions for EmitAArch64BuiltinExpr.
2564   llvm::Value *vectorWrapScalar8(llvm::Value *Op);
2565   llvm::Value *vectorWrapScalar16(llvm::Value *Op);
2566   llvm::Value *emitVectorWrappedScalar8Intrinsic(
2567       unsigned Int, SmallVectorImpl<llvm::Value *> &Ops, const char *Name);
2568   llvm::Value *emitVectorWrappedScalar16Intrinsic(
2569       unsigned Int, SmallVectorImpl<llvm::Value *> &Ops, const char *Name);
2570   llvm::Value *EmitAArch64BuiltinExpr(unsigned BuiltinID, const CallExpr *E);
2571   llvm::Value *EmitNeon64Call(llvm::Function *F,
2572                               llvm::SmallVectorImpl<llvm::Value *> &O,
2573                               const char *name);
2574 
2575   llvm::Value *BuildVector(ArrayRef<llvm::Value*> Ops);
2576   llvm::Value *EmitX86BuiltinExpr(unsigned BuiltinID, const CallExpr *E);
2577   llvm::Value *EmitPPCBuiltinExpr(unsigned BuiltinID, const CallExpr *E);
2578   llvm::Value *EmitR600BuiltinExpr(unsigned BuiltinID, const CallExpr *E);
2579   llvm::Value *EmitSystemZBuiltinExpr(unsigned BuiltinID, const CallExpr *E);
2580 
2581   llvm::Value *EmitObjCProtocolExpr(const ObjCProtocolExpr *E);
2582   llvm::Value *EmitObjCStringLiteral(const ObjCStringLiteral *E);
2583   llvm::Value *EmitObjCBoxedExpr(const ObjCBoxedExpr *E);
2584   llvm::Value *EmitObjCArrayLiteral(const ObjCArrayLiteral *E);
2585   llvm::Value *EmitObjCDictionaryLiteral(const ObjCDictionaryLiteral *E);
2586   llvm::Value *EmitObjCCollectionLiteral(const Expr *E,
2587                                 const ObjCMethodDecl *MethodWithObjects);
2588   llvm::Value *EmitObjCSelectorExpr(const ObjCSelectorExpr *E);
2589   RValue EmitObjCMessageExpr(const ObjCMessageExpr *E,
2590                              ReturnValueSlot Return = ReturnValueSlot());
2591 
2592   /// Retrieves the default cleanup kind for an ARC cleanup.
2593   /// Except under -fobjc-arc-eh, ARC cleanups are normal-only.
2594   CleanupKind getARCCleanupKind() {
2595     return CGM.getCodeGenOpts().ObjCAutoRefCountExceptions
2596              ? NormalAndEHCleanup : NormalCleanup;
2597   }
2598 
2599   // ARC primitives.
2600   void EmitARCInitWeak(llvm::Value *value, llvm::Value *addr);
2601   void EmitARCDestroyWeak(llvm::Value *addr);
2602   llvm::Value *EmitARCLoadWeak(llvm::Value *addr);
2603   llvm::Value *EmitARCLoadWeakRetained(llvm::Value *addr);
2604   llvm::Value *EmitARCStoreWeak(llvm::Value *value, llvm::Value *addr,
2605                                 bool ignored);
2606   void EmitARCCopyWeak(llvm::Value *dst, llvm::Value *src);
2607   void EmitARCMoveWeak(llvm::Value *dst, llvm::Value *src);
2608   llvm::Value *EmitARCRetainAutorelease(QualType type, llvm::Value *value);
2609   llvm::Value *EmitARCRetainAutoreleaseNonBlock(llvm::Value *value);
2610   llvm::Value *EmitARCStoreStrong(LValue lvalue, llvm::Value *value,
2611                                   bool resultIgnored);
2612   llvm::Value *EmitARCStoreStrongCall(llvm::Value *addr, llvm::Value *value,
2613                                       bool resultIgnored);
2614   llvm::Value *EmitARCRetain(QualType type, llvm::Value *value);
2615   llvm::Value *EmitARCRetainNonBlock(llvm::Value *value);
2616   llvm::Value *EmitARCRetainBlock(llvm::Value *value, bool mandatory);
2617   void EmitARCDestroyStrong(llvm::Value *addr, ARCPreciseLifetime_t precise);
2618   void EmitARCRelease(llvm::Value *value, ARCPreciseLifetime_t precise);
2619   llvm::Value *EmitARCAutorelease(llvm::Value *value);
2620   llvm::Value *EmitARCAutoreleaseReturnValue(llvm::Value *value);
2621   llvm::Value *EmitARCRetainAutoreleaseReturnValue(llvm::Value *value);
2622   llvm::Value *EmitARCRetainAutoreleasedReturnValue(llvm::Value *value);
2623 
2624   std::pair<LValue,llvm::Value*>
2625   EmitARCStoreAutoreleasing(const BinaryOperator *e);
2626   std::pair<LValue,llvm::Value*>
2627   EmitARCStoreStrong(const BinaryOperator *e, bool ignored);
2628 
2629   llvm::Value *EmitObjCThrowOperand(const Expr *expr);
2630 
2631   llvm::Value *EmitObjCProduceObject(QualType T, llvm::Value *Ptr);
2632   llvm::Value *EmitObjCConsumeObject(QualType T, llvm::Value *Ptr);
2633   llvm::Value *EmitObjCExtendObjectLifetime(QualType T, llvm::Value *Ptr);
2634 
2635   llvm::Value *EmitARCExtendBlockObject(const Expr *expr);
2636   llvm::Value *EmitARCRetainScalarExpr(const Expr *expr);
2637   llvm::Value *EmitARCRetainAutoreleaseScalarExpr(const Expr *expr);
2638 
2639   void EmitARCIntrinsicUse(ArrayRef<llvm::Value*> values);
2640 
2641   static Destroyer destroyARCStrongImprecise;
2642   static Destroyer destroyARCStrongPrecise;
2643   static Destroyer destroyARCWeak;
2644 
2645   void EmitObjCAutoreleasePoolPop(llvm::Value *Ptr);
2646   llvm::Value *EmitObjCAutoreleasePoolPush();
2647   llvm::Value *EmitObjCMRRAutoreleasePoolPush();
2648   void EmitObjCAutoreleasePoolCleanup(llvm::Value *Ptr);
2649   void EmitObjCMRRAutoreleasePoolPop(llvm::Value *Ptr);
2650 
2651   /// \brief Emits a reference binding to the passed in expression.
2652   RValue EmitReferenceBindingToExpr(const Expr *E);
2653 
2654   //===--------------------------------------------------------------------===//
2655   //                           Expression Emission
2656   //===--------------------------------------------------------------------===//
2657 
2658   // Expressions are broken into three classes: scalar, complex, aggregate.
2659 
2660   /// EmitScalarExpr - Emit the computation of the specified expression of LLVM
2661   /// scalar type, returning the result.
2662   llvm::Value *EmitScalarExpr(const Expr *E , bool IgnoreResultAssign = false);
2663 
2664   /// EmitScalarConversion - Emit a conversion from the specified type to the
2665   /// specified destination type, both of which are LLVM scalar types.
2666   llvm::Value *EmitScalarConversion(llvm::Value *Src, QualType SrcTy,
2667                                     QualType DstTy);
2668 
2669   /// EmitComplexToScalarConversion - Emit a conversion from the specified
2670   /// complex type to the specified destination type, where the destination type
2671   /// is an LLVM scalar type.
2672   llvm::Value *EmitComplexToScalarConversion(ComplexPairTy Src, QualType SrcTy,
2673                                              QualType DstTy);
2674 
2675 
2676   /// EmitAggExpr - Emit the computation of the specified expression
2677   /// of aggregate type.  The result is computed into the given slot,
2678   /// which may be null to indicate that the value is not needed.
2679   void EmitAggExpr(const Expr *E, AggValueSlot AS);
2680 
2681   /// EmitAggExprToLValue - Emit the computation of the specified expression of
2682   /// aggregate type into a temporary LValue.
2683   LValue EmitAggExprToLValue(const Expr *E);
2684 
2685   /// EmitGCMemmoveCollectable - Emit special API for structs with object
2686   /// pointers.
2687   void EmitGCMemmoveCollectable(llvm::Value *DestPtr, llvm::Value *SrcPtr,
2688                                 QualType Ty);
2689 
2690   /// EmitExtendGCLifetime - Given a pointer to an Objective-C object,
2691   /// make sure it survives garbage collection until this point.
2692   void EmitExtendGCLifetime(llvm::Value *object);
2693 
2694   /// EmitComplexExpr - Emit the computation of the specified expression of
2695   /// complex type, returning the result.
2696   ComplexPairTy EmitComplexExpr(const Expr *E,
2697                                 bool IgnoreReal = false,
2698                                 bool IgnoreImag = false);
2699 
2700   /// EmitComplexExprIntoLValue - Emit the given expression of complex
2701   /// type and place its result into the specified l-value.
2702   void EmitComplexExprIntoLValue(const Expr *E, LValue dest, bool isInit);
2703 
2704   /// EmitStoreOfComplex - Store a complex number into the specified l-value.
2705   void EmitStoreOfComplex(ComplexPairTy V, LValue dest, bool isInit);
2706 
2707   /// EmitLoadOfComplex - Load a complex number from the specified l-value.
2708   ComplexPairTy EmitLoadOfComplex(LValue src, SourceLocation loc);
2709 
2710   /// AddInitializerToStaticVarDecl - Add the initializer for 'D' to the
2711   /// global variable that has already been created for it.  If the initializer
2712   /// has a different type than GV does, this may free GV and return a different
2713   /// one.  Otherwise it just returns GV.
2714   llvm::GlobalVariable *
2715   AddInitializerToStaticVarDecl(const VarDecl &D,
2716                                 llvm::GlobalVariable *GV);
2717 
2718 
2719   /// EmitCXXGlobalVarDeclInit - Create the initializer for a C++
2720   /// variable with global storage.
2721   void EmitCXXGlobalVarDeclInit(const VarDecl &D, llvm::Constant *DeclPtr,
2722                                 bool PerformInit);
2723 
2724   llvm::Constant *createAtExitStub(const VarDecl &VD, llvm::Constant *Dtor,
2725                                    llvm::Constant *Addr);
2726 
2727   /// Call atexit() with a function that passes the given argument to
2728   /// the given function.
2729   void registerGlobalDtorWithAtExit(const VarDecl &D, llvm::Constant *fn,
2730                                     llvm::Constant *addr);
2731 
2732   /// Emit code in this function to perform a guarded variable
2733   /// initialization.  Guarded initializations are used when it's not
2734   /// possible to prove that an initialization will be done exactly
2735   /// once, e.g. with a static local variable or a static data member
2736   /// of a class template.
2737   void EmitCXXGuardedInit(const VarDecl &D, llvm::GlobalVariable *DeclPtr,
2738                           bool PerformInit);
2739 
2740   /// GenerateCXXGlobalInitFunc - Generates code for initializing global
2741   /// variables.
2742   void GenerateCXXGlobalInitFunc(llvm::Function *Fn,
2743                                  ArrayRef<llvm::Function *> CXXThreadLocals,
2744                                  llvm::GlobalVariable *Guard = nullptr);
2745 
2746   /// GenerateCXXGlobalDtorsFunc - Generates code for destroying global
2747   /// variables.
2748   void GenerateCXXGlobalDtorsFunc(llvm::Function *Fn,
2749                                   const std::vector<std::pair<llvm::WeakVH,
2750                                   llvm::Constant*> > &DtorsAndObjects);
2751 
2752   void GenerateCXXGlobalVarDeclInitFunc(llvm::Function *Fn,
2753                                         const VarDecl *D,
2754                                         llvm::GlobalVariable *Addr,
2755                                         bool PerformInit);
2756 
2757   void EmitCXXConstructExpr(const CXXConstructExpr *E, AggValueSlot Dest);
2758 
2759   void EmitSynthesizedCXXCopyCtor(llvm::Value *Dest, llvm::Value *Src,
2760                                   const Expr *Exp);
2761 
2762   void enterFullExpression(const ExprWithCleanups *E) {
2763     if (E->getNumObjects() == 0) return;
2764     enterNonTrivialFullExpression(E);
2765   }
2766   void enterNonTrivialFullExpression(const ExprWithCleanups *E);
2767 
2768   void EmitCXXThrowExpr(const CXXThrowExpr *E, bool KeepInsertionPoint = true);
2769 
2770   void EmitLambdaExpr(const LambdaExpr *E, AggValueSlot Dest);
2771 
2772   RValue EmitAtomicExpr(AtomicExpr *E, llvm::Value *Dest = nullptr);
2773 
2774   //===--------------------------------------------------------------------===//
2775   //                         Annotations Emission
2776   //===--------------------------------------------------------------------===//
2777 
2778   /// Emit an annotation call (intrinsic or builtin).
2779   llvm::Value *EmitAnnotationCall(llvm::Value *AnnotationFn,
2780                                   llvm::Value *AnnotatedVal,
2781                                   StringRef AnnotationStr,
2782                                   SourceLocation Location);
2783 
2784   /// Emit local annotations for the local variable V, declared by D.
2785   void EmitVarAnnotations(const VarDecl *D, llvm::Value *V);
2786 
2787   /// Emit field annotations for the given field & value. Returns the
2788   /// annotation result.
2789   llvm::Value *EmitFieldAnnotations(const FieldDecl *D, llvm::Value *V);
2790 
2791   //===--------------------------------------------------------------------===//
2792   //                             Internal Helpers
2793   //===--------------------------------------------------------------------===//
2794 
2795   /// ContainsLabel - Return true if the statement contains a label in it.  If
2796   /// this statement is not executed normally, it not containing a label means
2797   /// that we can just remove the code.
2798   static bool ContainsLabel(const Stmt *S, bool IgnoreCaseStmts = false);
2799 
2800   /// containsBreak - Return true if the statement contains a break out of it.
2801   /// If the statement (recursively) contains a switch or loop with a break
2802   /// inside of it, this is fine.
2803   static bool containsBreak(const Stmt *S);
2804 
2805   /// ConstantFoldsToSimpleInteger - If the specified expression does not fold
2806   /// to a constant, or if it does but contains a label, return false.  If it
2807   /// constant folds return true and set the boolean result in Result.
2808   bool ConstantFoldsToSimpleInteger(const Expr *Cond, bool &Result);
2809 
2810   /// ConstantFoldsToSimpleInteger - If the specified expression does not fold
2811   /// to a constant, or if it does but contains a label, return false.  If it
2812   /// constant folds return true and set the folded value.
2813   bool ConstantFoldsToSimpleInteger(const Expr *Cond, llvm::APSInt &Result);
2814 
2815   /// EmitBranchOnBoolExpr - Emit a branch on a boolean condition (e.g. for an
2816   /// if statement) to the specified blocks.  Based on the condition, this might
2817   /// try to simplify the codegen of the conditional based on the branch.
2818   /// TrueCount should be the number of times we expect the condition to
2819   /// evaluate to true based on PGO data.
2820   void EmitBranchOnBoolExpr(const Expr *Cond, llvm::BasicBlock *TrueBlock,
2821                             llvm::BasicBlock *FalseBlock, uint64_t TrueCount);
2822 
2823   /// \brief Emit a description of a type in a format suitable for passing to
2824   /// a runtime sanitizer handler.
2825   llvm::Constant *EmitCheckTypeDescriptor(QualType T);
2826 
2827   /// \brief Convert a value into a format suitable for passing to a runtime
2828   /// sanitizer handler.
2829   llvm::Value *EmitCheckValue(llvm::Value *V);
2830 
2831   /// \brief Emit a description of a source location in a format suitable for
2832   /// passing to a runtime sanitizer handler.
2833   llvm::Constant *EmitCheckSourceLocation(SourceLocation Loc);
2834 
2835   /// \brief Create a basic block that will call a handler function in a
2836   /// sanitizer runtime with the provided arguments, and create a conditional
2837   /// branch to it.
2838   void EmitCheck(ArrayRef<std::pair<llvm::Value *, SanitizerKind>> Checked,
2839                  StringRef CheckName, ArrayRef<llvm::Constant *> StaticArgs,
2840                  ArrayRef<llvm::Value *> DynamicArgs);
2841 
2842   /// \brief Create a basic block that will call the trap intrinsic, and emit a
2843   /// conditional branch to it, for the -ftrapv checks.
2844   void EmitTrapCheck(llvm::Value *Checked);
2845 
2846   /// EmitCallArg - Emit a single call argument.
2847   void EmitCallArg(CallArgList &args, const Expr *E, QualType ArgType);
2848 
2849   /// EmitDelegateCallArg - We are performing a delegate call; that
2850   /// is, the current function is delegating to another one.  Produce
2851   /// a r-value suitable for passing the given parameter.
2852   void EmitDelegateCallArg(CallArgList &args, const VarDecl *param,
2853                            SourceLocation loc);
2854 
2855   /// SetFPAccuracy - Set the minimum required accuracy of the given floating
2856   /// point operation, expressed as the maximum relative error in ulp.
2857   void SetFPAccuracy(llvm::Value *Val, float Accuracy);
2858 
2859 private:
2860   llvm::MDNode *getRangeForLoadFromType(QualType Ty);
2861   void EmitReturnOfRValue(RValue RV, QualType Ty);
2862 
2863   void deferPlaceholderReplacement(llvm::Instruction *Old, llvm::Value *New);
2864 
2865   llvm::SmallVector<std::pair<llvm::Instruction *, llvm::Value *>, 4>
2866   DeferredReplacements;
2867 
2868   /// ExpandTypeFromArgs - Reconstruct a structure of type \arg Ty
2869   /// from function arguments into \arg Dst. See ABIArgInfo::Expand.
2870   ///
2871   /// \param AI - The first function argument of the expansion.
2872   void ExpandTypeFromArgs(QualType Ty, LValue Dst,
2873                           SmallVectorImpl<llvm::Argument *>::iterator &AI);
2874 
2875   /// ExpandTypeToArgs - Expand an RValue \arg RV, with the LLVM type for \arg
2876   /// Ty, into individual arguments on the provided vector \arg IRCallArgs,
2877   /// starting at index \arg IRCallArgPos. See ABIArgInfo::Expand.
2878   void ExpandTypeToArgs(QualType Ty, RValue RV, llvm::FunctionType *IRFuncTy,
2879                         SmallVectorImpl<llvm::Value *> &IRCallArgs,
2880                         unsigned &IRCallArgPos);
2881 
2882   llvm::Value* EmitAsmInput(const TargetInfo::ConstraintInfo &Info,
2883                             const Expr *InputExpr, std::string &ConstraintStr);
2884 
2885   llvm::Value* EmitAsmInputLValue(const TargetInfo::ConstraintInfo &Info,
2886                                   LValue InputValue, QualType InputType,
2887                                   std::string &ConstraintStr,
2888                                   SourceLocation Loc);
2889 
2890 public:
2891   /// EmitCallArgs - Emit call arguments for a function.
2892   template <typename T>
2893   void EmitCallArgs(CallArgList &Args, const T *CallArgTypeInfo,
2894                     CallExpr::const_arg_iterator ArgBeg,
2895                     CallExpr::const_arg_iterator ArgEnd,
2896                     const FunctionDecl *CalleeDecl = nullptr,
2897                     unsigned ParamsToSkip = 0) {
2898     SmallVector<QualType, 16> ArgTypes;
2899     CallExpr::const_arg_iterator Arg = ArgBeg;
2900 
2901     assert((ParamsToSkip == 0 || CallArgTypeInfo) &&
2902            "Can't skip parameters if type info is not provided");
2903     if (CallArgTypeInfo) {
2904       // First, use the argument types that the type info knows about
2905       for (auto I = CallArgTypeInfo->param_type_begin() + ParamsToSkip,
2906                 E = CallArgTypeInfo->param_type_end();
2907            I != E; ++I, ++Arg) {
2908         assert(Arg != ArgEnd && "Running over edge of argument list!");
2909         assert(
2910             ((*I)->isVariablyModifiedType() ||
2911              getContext()
2912                      .getCanonicalType((*I).getNonReferenceType())
2913                      .getTypePtr() ==
2914                  getContext().getCanonicalType(Arg->getType()).getTypePtr()) &&
2915             "type mismatch in call argument!");
2916         ArgTypes.push_back(*I);
2917       }
2918     }
2919 
2920     // Either we've emitted all the call args, or we have a call to variadic
2921     // function.
2922     assert(
2923         (Arg == ArgEnd || !CallArgTypeInfo || CallArgTypeInfo->isVariadic()) &&
2924         "Extra arguments in non-variadic function!");
2925 
2926     // If we still have any arguments, emit them using the type of the argument.
2927     for (; Arg != ArgEnd; ++Arg)
2928       ArgTypes.push_back(getVarArgType(*Arg));
2929 
2930     EmitCallArgs(Args, ArgTypes, ArgBeg, ArgEnd, CalleeDecl, ParamsToSkip);
2931   }
2932 
2933   void EmitCallArgs(CallArgList &Args, ArrayRef<QualType> ArgTypes,
2934                     CallExpr::const_arg_iterator ArgBeg,
2935                     CallExpr::const_arg_iterator ArgEnd,
2936                     const FunctionDecl *CalleeDecl = nullptr,
2937                     unsigned ParamsToSkip = 0);
2938 
2939 private:
2940   QualType getVarArgType(const Expr *Arg);
2941 
2942   const TargetCodeGenInfo &getTargetHooks() const {
2943     return CGM.getTargetCodeGenInfo();
2944   }
2945 
2946   void EmitDeclMetadata();
2947 
2948   CodeGenModule::ByrefHelpers *
2949   buildByrefHelpers(llvm::StructType &byrefType,
2950                     const AutoVarEmission &emission);
2951 
2952   void AddObjCARCExceptionMetadata(llvm::Instruction *Inst);
2953 
2954   /// GetPointeeAlignment - Given an expression with a pointer type, emit the
2955   /// value and compute our best estimate of the alignment of the pointee.
2956   std::pair<llvm::Value*, unsigned> EmitPointerWithAlignment(const Expr *Addr);
2957 
2958   llvm::Value *GetValueForARMHint(unsigned BuiltinID);
2959 };
2960 
2961 /// Helper class with most of the code for saving a value for a
2962 /// conditional expression cleanup.
2963 struct DominatingLLVMValue {
2964   typedef llvm::PointerIntPair<llvm::Value*, 1, bool> saved_type;
2965 
2966   /// Answer whether the given value needs extra work to be saved.
2967   static bool needsSaving(llvm::Value *value) {
2968     // If it's not an instruction, we don't need to save.
2969     if (!isa<llvm::Instruction>(value)) return false;
2970 
2971     // If it's an instruction in the entry block, we don't need to save.
2972     llvm::BasicBlock *block = cast<llvm::Instruction>(value)->getParent();
2973     return (block != &block->getParent()->getEntryBlock());
2974   }
2975 
2976   /// Try to save the given value.
2977   static saved_type save(CodeGenFunction &CGF, llvm::Value *value) {
2978     if (!needsSaving(value)) return saved_type(value, false);
2979 
2980     // Otherwise we need an alloca.
2981     llvm::Value *alloca =
2982       CGF.CreateTempAlloca(value->getType(), "cond-cleanup.save");
2983     CGF.Builder.CreateStore(value, alloca);
2984 
2985     return saved_type(alloca, true);
2986   }
2987 
2988   static llvm::Value *restore(CodeGenFunction &CGF, saved_type value) {
2989     if (!value.getInt()) return value.getPointer();
2990     return CGF.Builder.CreateLoad(value.getPointer());
2991   }
2992 };
2993 
2994 /// A partial specialization of DominatingValue for llvm::Values that
2995 /// might be llvm::Instructions.
2996 template <class T> struct DominatingPointer<T,true> : DominatingLLVMValue {
2997   typedef T *type;
2998   static type restore(CodeGenFunction &CGF, saved_type value) {
2999     return static_cast<T*>(DominatingLLVMValue::restore(CGF, value));
3000   }
3001 };
3002 
3003 /// A specialization of DominatingValue for RValue.
3004 template <> struct DominatingValue<RValue> {
3005   typedef RValue type;
3006   class saved_type {
3007     enum Kind { ScalarLiteral, ScalarAddress, AggregateLiteral,
3008                 AggregateAddress, ComplexAddress };
3009 
3010     llvm::Value *Value;
3011     Kind K;
3012     saved_type(llvm::Value *v, Kind k) : Value(v), K(k) {}
3013 
3014   public:
3015     static bool needsSaving(RValue value);
3016     static saved_type save(CodeGenFunction &CGF, RValue value);
3017     RValue restore(CodeGenFunction &CGF);
3018 
3019     // implementations in CGExprCXX.cpp
3020   };
3021 
3022   static bool needsSaving(type value) {
3023     return saved_type::needsSaving(value);
3024   }
3025   static saved_type save(CodeGenFunction &CGF, type value) {
3026     return saved_type::save(CGF, value);
3027   }
3028   static type restore(CodeGenFunction &CGF, saved_type value) {
3029     return value.restore(CGF);
3030   }
3031 };
3032 
3033 }  // end namespace CodeGen
3034 }  // end namespace clang
3035 
3036 #endif
3037