1 //===-- CodeGenFunction.h - Per-Function state for LLVM CodeGen -*- C++ -*-===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This is the internal per-function state used for llvm translation.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #ifndef CLANG_CODEGEN_CODEGENFUNCTION_H
15 #define CLANG_CODEGEN_CODEGENFUNCTION_H
16 
17 #include "clang/AST/Type.h"
18 #include "clang/AST/ExprCXX.h"
19 #include "clang/AST/ExprObjC.h"
20 #include "clang/AST/CharUnits.h"
21 #include "clang/Frontend/CodeGenOptions.h"
22 #include "clang/Basic/ABI.h"
23 #include "clang/Basic/TargetInfo.h"
24 #include "llvm/ADT/DenseMap.h"
25 #include "llvm/ADT/SmallVector.h"
26 #include "llvm/Support/ValueHandle.h"
27 #include "CodeGenModule.h"
28 #include "CGBuilder.h"
29 #include "CGValue.h"
30 
31 namespace llvm {
32   class BasicBlock;
33   class LLVMContext;
34   class MDNode;
35   class Module;
36   class SwitchInst;
37   class Twine;
38   class Value;
39   class CallSite;
40 }
41 
42 namespace clang {
43   class APValue;
44   class ASTContext;
45   class CXXDestructorDecl;
46   class CXXForRangeStmt;
47   class CXXTryStmt;
48   class Decl;
49   class LabelDecl;
50   class EnumConstantDecl;
51   class FunctionDecl;
52   class FunctionProtoType;
53   class LabelStmt;
54   class ObjCContainerDecl;
55   class ObjCInterfaceDecl;
56   class ObjCIvarDecl;
57   class ObjCMethodDecl;
58   class ObjCImplementationDecl;
59   class ObjCPropertyImplDecl;
60   class TargetInfo;
61   class TargetCodeGenInfo;
62   class VarDecl;
63   class ObjCForCollectionStmt;
64   class ObjCAtTryStmt;
65   class ObjCAtThrowStmt;
66   class ObjCAtSynchronizedStmt;
67   class ObjCAutoreleasePoolStmt;
68 
69 namespace CodeGen {
70   class CodeGenTypes;
71   class CGDebugInfo;
72   class CGFunctionInfo;
73   class CGRecordLayout;
74   class CGBlockInfo;
75   class CGCXXABI;
76   class BlockFlags;
77   class BlockFieldFlags;
78 
79 /// A branch fixup.  These are required when emitting a goto to a
80 /// label which hasn't been emitted yet.  The goto is optimistically
81 /// emitted as a branch to the basic block for the label, and (if it
82 /// occurs in a scope with non-trivial cleanups) a fixup is added to
83 /// the innermost cleanup.  When a (normal) cleanup is popped, any
84 /// unresolved fixups in that scope are threaded through the cleanup.
85 struct BranchFixup {
86   /// The block containing the terminator which needs to be modified
87   /// into a switch if this fixup is resolved into the current scope.
88   /// If null, LatestBranch points directly to the destination.
89   llvm::BasicBlock *OptimisticBranchBlock;
90 
91   /// The ultimate destination of the branch.
92   ///
93   /// This can be set to null to indicate that this fixup was
94   /// successfully resolved.
95   llvm::BasicBlock *Destination;
96 
97   /// The destination index value.
98   unsigned DestinationIndex;
99 
100   /// The initial branch of the fixup.
101   llvm::BranchInst *InitialBranch;
102 };
103 
104 template <class T> struct InvariantValue {
105   typedef T type;
106   typedef T saved_type;
107   static bool needsSaving(type value) { return false; }
108   static saved_type save(CodeGenFunction &CGF, type value) { return value; }
109   static type restore(CodeGenFunction &CGF, saved_type value) { return value; }
110 };
111 
112 /// A metaprogramming class for ensuring that a value will dominate an
113 /// arbitrary position in a function.
114 template <class T> struct DominatingValue : InvariantValue<T> {};
115 
116 template <class T, bool mightBeInstruction =
117             llvm::is_base_of<llvm::Value, T>::value &&
118             !llvm::is_base_of<llvm::Constant, T>::value &&
119             !llvm::is_base_of<llvm::BasicBlock, T>::value>
120 struct DominatingPointer;
121 template <class T> struct DominatingPointer<T,false> : InvariantValue<T*> {};
122 // template <class T> struct DominatingPointer<T,true> at end of file
123 
124 template <class T> struct DominatingValue<T*> : DominatingPointer<T> {};
125 
126 enum CleanupKind {
127   EHCleanup = 0x1,
128   NormalCleanup = 0x2,
129   NormalAndEHCleanup = EHCleanup | NormalCleanup,
130 
131   InactiveCleanup = 0x4,
132   InactiveEHCleanup = EHCleanup | InactiveCleanup,
133   InactiveNormalCleanup = NormalCleanup | InactiveCleanup,
134   InactiveNormalAndEHCleanup = NormalAndEHCleanup | InactiveCleanup
135 };
136 
137 /// A stack of scopes which respond to exceptions, including cleanups
138 /// and catch blocks.
139 class EHScopeStack {
140 public:
141   /// A saved depth on the scope stack.  This is necessary because
142   /// pushing scopes onto the stack invalidates iterators.
143   class stable_iterator {
144     friend class EHScopeStack;
145 
146     /// Offset from StartOfData to EndOfBuffer.
147     ptrdiff_t Size;
148 
149     stable_iterator(ptrdiff_t Size) : Size(Size) {}
150 
151   public:
152     static stable_iterator invalid() { return stable_iterator(-1); }
153     stable_iterator() : Size(-1) {}
154 
155     bool isValid() const { return Size >= 0; }
156 
157     /// Returns true if this scope encloses I.
158     /// Returns false if I is invalid.
159     /// This scope must be valid.
160     bool encloses(stable_iterator I) const { return Size <= I.Size; }
161 
162     /// Returns true if this scope strictly encloses I: that is,
163     /// if it encloses I and is not I.
164     /// Returns false is I is invalid.
165     /// This scope must be valid.
166     bool strictlyEncloses(stable_iterator I) const { return Size < I.Size; }
167 
168     friend bool operator==(stable_iterator A, stable_iterator B) {
169       return A.Size == B.Size;
170     }
171     friend bool operator!=(stable_iterator A, stable_iterator B) {
172       return A.Size != B.Size;
173     }
174   };
175 
176   /// Information for lazily generating a cleanup.  Subclasses must be
177   /// POD-like: cleanups will not be destructed, and they will be
178   /// allocated on the cleanup stack and freely copied and moved
179   /// around.
180   ///
181   /// Cleanup implementations should generally be declared in an
182   /// anonymous namespace.
183   class Cleanup {
184     // Anchor the construction vtable.
185     virtual void anchor();
186   public:
187     // Provide a virtual destructor to suppress a very common warning
188     // that unfortunately cannot be suppressed without this.  Cleanups
189     // should not rely on this destructor ever being called.
190     virtual ~Cleanup() {}
191 
192     /// Emit the cleanup.  For normal cleanups, this is run in the
193     /// same EH context as when the cleanup was pushed, i.e. the
194     /// immediately-enclosing context of the cleanup scope.  For
195     /// EH cleanups, this is run in a terminate context.
196     ///
197     // \param IsForEHCleanup true if this is for an EH cleanup, false
198     ///  if for a normal cleanup.
199     virtual void Emit(CodeGenFunction &CGF, bool IsForEHCleanup) = 0;
200   };
201 
202   /// ConditionalCleanupN stores the saved form of its N parameters,
203   /// then restores them and performs the cleanup.
204   template <class T, class A0>
205   class ConditionalCleanup1 : public Cleanup {
206     typedef typename DominatingValue<A0>::saved_type A0_saved;
207     A0_saved a0_saved;
208 
209     void Emit(CodeGenFunction &CGF, bool IsForEHCleanup) {
210       A0 a0 = DominatingValue<A0>::restore(CGF, a0_saved);
211       T(a0).Emit(CGF, IsForEHCleanup);
212     }
213 
214   public:
215     ConditionalCleanup1(A0_saved a0)
216       : a0_saved(a0) {}
217   };
218 
219   template <class T, class A0, class A1>
220   class ConditionalCleanup2 : public Cleanup {
221     typedef typename DominatingValue<A0>::saved_type A0_saved;
222     typedef typename DominatingValue<A1>::saved_type A1_saved;
223     A0_saved a0_saved;
224     A1_saved a1_saved;
225 
226     void Emit(CodeGenFunction &CGF, bool IsForEHCleanup) {
227       A0 a0 = DominatingValue<A0>::restore(CGF, a0_saved);
228       A1 a1 = DominatingValue<A1>::restore(CGF, a1_saved);
229       T(a0, a1).Emit(CGF, IsForEHCleanup);
230     }
231 
232   public:
233     ConditionalCleanup2(A0_saved a0, A1_saved a1)
234       : a0_saved(a0), a1_saved(a1) {}
235   };
236 
237   template <class T, class A0, class A1, class A2>
238   class ConditionalCleanup3 : public Cleanup {
239     typedef typename DominatingValue<A0>::saved_type A0_saved;
240     typedef typename DominatingValue<A1>::saved_type A1_saved;
241     typedef typename DominatingValue<A2>::saved_type A2_saved;
242     A0_saved a0_saved;
243     A1_saved a1_saved;
244     A2_saved a2_saved;
245 
246     void Emit(CodeGenFunction &CGF, bool IsForEHCleanup) {
247       A0 a0 = DominatingValue<A0>::restore(CGF, a0_saved);
248       A1 a1 = DominatingValue<A1>::restore(CGF, a1_saved);
249       A2 a2 = DominatingValue<A2>::restore(CGF, a2_saved);
250       T(a0, a1, a2).Emit(CGF, IsForEHCleanup);
251     }
252 
253   public:
254     ConditionalCleanup3(A0_saved a0, A1_saved a1, A2_saved a2)
255       : a0_saved(a0), a1_saved(a1), a2_saved(a2) {}
256   };
257 
258 private:
259   // The implementation for this class is in CGException.h and
260   // CGException.cpp; the definition is here because it's used as a
261   // member of CodeGenFunction.
262 
263   /// The start of the scope-stack buffer, i.e. the allocated pointer
264   /// for the buffer.  All of these pointers are either simultaneously
265   /// null or simultaneously valid.
266   char *StartOfBuffer;
267 
268   /// The end of the buffer.
269   char *EndOfBuffer;
270 
271   /// The first valid entry in the buffer.
272   char *StartOfData;
273 
274   /// The innermost normal cleanup on the stack.
275   stable_iterator InnermostNormalCleanup;
276 
277   /// The innermost EH cleanup on the stack.
278   stable_iterator InnermostEHCleanup;
279 
280   /// The number of catches on the stack.
281   unsigned CatchDepth;
282 
283   /// The current EH destination index.  Reset to FirstCatchIndex
284   /// whenever the last EH cleanup is popped.
285   unsigned NextEHDestIndex;
286   enum { FirstEHDestIndex = 1 };
287 
288   /// The current set of branch fixups.  A branch fixup is a jump to
289   /// an as-yet unemitted label, i.e. a label for which we don't yet
290   /// know the EH stack depth.  Whenever we pop a cleanup, we have
291   /// to thread all the current branch fixups through it.
292   ///
293   /// Fixups are recorded as the Use of the respective branch or
294   /// switch statement.  The use points to the final destination.
295   /// When popping out of a cleanup, these uses are threaded through
296   /// the cleanup and adjusted to point to the new cleanup.
297   ///
298   /// Note that branches are allowed to jump into protected scopes
299   /// in certain situations;  e.g. the following code is legal:
300   ///     struct A { ~A(); }; // trivial ctor, non-trivial dtor
301   ///     goto foo;
302   ///     A a;
303   ///    foo:
304   ///     bar();
305   llvm::SmallVector<BranchFixup, 8> BranchFixups;
306 
307   char *allocate(size_t Size);
308 
309   void *pushCleanup(CleanupKind K, size_t DataSize);
310 
311 public:
312   EHScopeStack() : StartOfBuffer(0), EndOfBuffer(0), StartOfData(0),
313                    InnermostNormalCleanup(stable_end()),
314                    InnermostEHCleanup(stable_end()),
315                    CatchDepth(0), NextEHDestIndex(FirstEHDestIndex) {}
316   ~EHScopeStack() { delete[] StartOfBuffer; }
317 
318   // Variadic templates would make this not terrible.
319 
320   /// Push a lazily-created cleanup on the stack.
321   template <class T>
322   void pushCleanup(CleanupKind Kind) {
323     void *Buffer = pushCleanup(Kind, sizeof(T));
324     Cleanup *Obj = new(Buffer) T();
325     (void) Obj;
326   }
327 
328   /// Push a lazily-created cleanup on the stack.
329   template <class T, class A0>
330   void pushCleanup(CleanupKind Kind, A0 a0) {
331     void *Buffer = pushCleanup(Kind, sizeof(T));
332     Cleanup *Obj = new(Buffer) T(a0);
333     (void) Obj;
334   }
335 
336   /// Push a lazily-created cleanup on the stack.
337   template <class T, class A0, class A1>
338   void pushCleanup(CleanupKind Kind, A0 a0, A1 a1) {
339     void *Buffer = pushCleanup(Kind, sizeof(T));
340     Cleanup *Obj = new(Buffer) T(a0, a1);
341     (void) Obj;
342   }
343 
344   /// Push a lazily-created cleanup on the stack.
345   template <class T, class A0, class A1, class A2>
346   void pushCleanup(CleanupKind Kind, A0 a0, A1 a1, A2 a2) {
347     void *Buffer = pushCleanup(Kind, sizeof(T));
348     Cleanup *Obj = new(Buffer) T(a0, a1, a2);
349     (void) Obj;
350   }
351 
352   /// Push a lazily-created cleanup on the stack.
353   template <class T, class A0, class A1, class A2, class A3>
354   void pushCleanup(CleanupKind Kind, A0 a0, A1 a1, A2 a2, A3 a3) {
355     void *Buffer = pushCleanup(Kind, sizeof(T));
356     Cleanup *Obj = new(Buffer) T(a0, a1, a2, a3);
357     (void) Obj;
358   }
359 
360   /// Push a lazily-created cleanup on the stack.
361   template <class T, class A0, class A1, class A2, class A3, class A4>
362   void pushCleanup(CleanupKind Kind, A0 a0, A1 a1, A2 a2, A3 a3, A4 a4) {
363     void *Buffer = pushCleanup(Kind, sizeof(T));
364     Cleanup *Obj = new(Buffer) T(a0, a1, a2, a3, a4);
365     (void) Obj;
366   }
367 
368   // Feel free to add more variants of the following:
369 
370   /// Push a cleanup with non-constant storage requirements on the
371   /// stack.  The cleanup type must provide an additional static method:
372   ///   static size_t getExtraSize(size_t);
373   /// The argument to this method will be the value N, which will also
374   /// be passed as the first argument to the constructor.
375   ///
376   /// The data stored in the extra storage must obey the same
377   /// restrictions as normal cleanup member data.
378   ///
379   /// The pointer returned from this method is valid until the cleanup
380   /// stack is modified.
381   template <class T, class A0, class A1, class A2>
382   T *pushCleanupWithExtra(CleanupKind Kind, size_t N, A0 a0, A1 a1, A2 a2) {
383     void *Buffer = pushCleanup(Kind, sizeof(T) + T::getExtraSize(N));
384     return new (Buffer) T(N, a0, a1, a2);
385   }
386 
387   /// Pops a cleanup scope off the stack.  This should only be called
388   /// by CodeGenFunction::PopCleanupBlock.
389   void popCleanup();
390 
391   /// Push a set of catch handlers on the stack.  The catch is
392   /// uninitialized and will need to have the given number of handlers
393   /// set on it.
394   class EHCatchScope *pushCatch(unsigned NumHandlers);
395 
396   /// Pops a catch scope off the stack.
397   void popCatch();
398 
399   /// Push an exceptions filter on the stack.
400   class EHFilterScope *pushFilter(unsigned NumFilters);
401 
402   /// Pops an exceptions filter off the stack.
403   void popFilter();
404 
405   /// Push a terminate handler on the stack.
406   void pushTerminate();
407 
408   /// Pops a terminate handler off the stack.
409   void popTerminate();
410 
411   /// Determines whether the exception-scopes stack is empty.
412   bool empty() const { return StartOfData == EndOfBuffer; }
413 
414   bool requiresLandingPad() const {
415     return (CatchDepth || hasEHCleanups());
416   }
417 
418   /// Determines whether there are any normal cleanups on the stack.
419   bool hasNormalCleanups() const {
420     return InnermostNormalCleanup != stable_end();
421   }
422 
423   /// Returns the innermost normal cleanup on the stack, or
424   /// stable_end() if there are no normal cleanups.
425   stable_iterator getInnermostNormalCleanup() const {
426     return InnermostNormalCleanup;
427   }
428   stable_iterator getInnermostActiveNormalCleanup() const; // CGException.h
429 
430   /// Determines whether there are any EH cleanups on the stack.
431   bool hasEHCleanups() const {
432     return InnermostEHCleanup != stable_end();
433   }
434 
435   /// Returns the innermost EH cleanup on the stack, or stable_end()
436   /// if there are no EH cleanups.
437   stable_iterator getInnermostEHCleanup() const {
438     return InnermostEHCleanup;
439   }
440   stable_iterator getInnermostActiveEHCleanup() const; // CGException.h
441 
442   /// An unstable reference to a scope-stack depth.  Invalidated by
443   /// pushes but not pops.
444   class iterator;
445 
446   /// Returns an iterator pointing to the innermost EH scope.
447   iterator begin() const;
448 
449   /// Returns an iterator pointing to the outermost EH scope.
450   iterator end() const;
451 
452   /// Create a stable reference to the top of the EH stack.  The
453   /// returned reference is valid until that scope is popped off the
454   /// stack.
455   stable_iterator stable_begin() const {
456     return stable_iterator(EndOfBuffer - StartOfData);
457   }
458 
459   /// Create a stable reference to the bottom of the EH stack.
460   static stable_iterator stable_end() {
461     return stable_iterator(0);
462   }
463 
464   /// Translates an iterator into a stable_iterator.
465   stable_iterator stabilize(iterator it) const;
466 
467   /// Finds the nearest cleanup enclosing the given iterator.
468   /// Returns stable_iterator::invalid() if there are no such cleanups.
469   stable_iterator getEnclosingEHCleanup(iterator it) const;
470 
471   /// Turn a stable reference to a scope depth into a unstable pointer
472   /// to the EH stack.
473   iterator find(stable_iterator save) const;
474 
475   /// Removes the cleanup pointed to by the given stable_iterator.
476   void removeCleanup(stable_iterator save);
477 
478   /// Add a branch fixup to the current cleanup scope.
479   BranchFixup &addBranchFixup() {
480     assert(hasNormalCleanups() && "adding fixup in scope without cleanups");
481     BranchFixups.push_back(BranchFixup());
482     return BranchFixups.back();
483   }
484 
485   unsigned getNumBranchFixups() const { return BranchFixups.size(); }
486   BranchFixup &getBranchFixup(unsigned I) {
487     assert(I < getNumBranchFixups());
488     return BranchFixups[I];
489   }
490 
491   /// Pops lazily-removed fixups from the end of the list.  This
492   /// should only be called by procedures which have just popped a
493   /// cleanup or resolved one or more fixups.
494   void popNullFixups();
495 
496   /// Clears the branch-fixups list.  This should only be called by
497   /// ResolveAllBranchFixups.
498   void clearFixups() { BranchFixups.clear(); }
499 
500   /// Gets the next EH destination index.
501   unsigned getNextEHDestIndex() { return NextEHDestIndex++; }
502 };
503 
504 /// CodeGenFunction - This class organizes the per-function state that is used
505 /// while generating LLVM code.
506 class CodeGenFunction : public CodeGenTypeCache {
507   CodeGenFunction(const CodeGenFunction&); // DO NOT IMPLEMENT
508   void operator=(const CodeGenFunction&);  // DO NOT IMPLEMENT
509 
510   friend class CGCXXABI;
511 public:
512   /// A jump destination is an abstract label, branching to which may
513   /// require a jump out through normal cleanups.
514   struct JumpDest {
515     JumpDest() : Block(0), ScopeDepth(), Index(0) {}
516     JumpDest(llvm::BasicBlock *Block,
517              EHScopeStack::stable_iterator Depth,
518              unsigned Index)
519       : Block(Block), ScopeDepth(Depth), Index(Index) {}
520 
521     bool isValid() const { return Block != 0; }
522     llvm::BasicBlock *getBlock() const { return Block; }
523     EHScopeStack::stable_iterator getScopeDepth() const { return ScopeDepth; }
524     unsigned getDestIndex() const { return Index; }
525 
526   private:
527     llvm::BasicBlock *Block;
528     EHScopeStack::stable_iterator ScopeDepth;
529     unsigned Index;
530   };
531 
532   /// An unwind destination is an abstract label, branching to which
533   /// may require a jump out through EH cleanups.
534   struct UnwindDest {
535     UnwindDest() : Block(0), ScopeDepth(), Index(0) {}
536     UnwindDest(llvm::BasicBlock *Block,
537                EHScopeStack::stable_iterator Depth,
538                unsigned Index)
539       : Block(Block), ScopeDepth(Depth), Index(Index) {}
540 
541     bool isValid() const { return Block != 0; }
542     llvm::BasicBlock *getBlock() const { return Block; }
543     EHScopeStack::stable_iterator getScopeDepth() const { return ScopeDepth; }
544     unsigned getDestIndex() const { return Index; }
545 
546   private:
547     llvm::BasicBlock *Block;
548     EHScopeStack::stable_iterator ScopeDepth;
549     unsigned Index;
550   };
551 
552   CodeGenModule &CGM;  // Per-module state.
553   const TargetInfo &Target;
554 
555   typedef std::pair<llvm::Value *, llvm::Value *> ComplexPairTy;
556   CGBuilderTy Builder;
557 
558   /// CurFuncDecl - Holds the Decl for the current function or ObjC method.
559   /// This excludes BlockDecls.
560   const Decl *CurFuncDecl;
561   /// CurCodeDecl - This is the inner-most code context, which includes blocks.
562   const Decl *CurCodeDecl;
563   const CGFunctionInfo *CurFnInfo;
564   QualType FnRetTy;
565   llvm::Function *CurFn;
566 
567   /// CurGD - The GlobalDecl for the current function being compiled.
568   GlobalDecl CurGD;
569 
570   /// PrologueCleanupDepth - The cleanup depth enclosing all the
571   /// cleanups associated with the parameters.
572   EHScopeStack::stable_iterator PrologueCleanupDepth;
573 
574   /// ReturnBlock - Unified return block.
575   JumpDest ReturnBlock;
576 
577   /// ReturnValue - The temporary alloca to hold the return value. This is null
578   /// iff the function has no return value.
579   llvm::Value *ReturnValue;
580 
581   /// RethrowBlock - Unified rethrow block.
582   UnwindDest RethrowBlock;
583 
584   /// AllocaInsertPoint - This is an instruction in the entry block before which
585   /// we prefer to insert allocas.
586   llvm::AssertingVH<llvm::Instruction> AllocaInsertPt;
587 
588   bool CatchUndefined;
589 
590   /// In ARC, whether we should autorelease the return value.
591   bool AutoreleaseResult;
592 
593   const CodeGen::CGBlockInfo *BlockInfo;
594   llvm::Value *BlockPointer;
595 
596   /// \brief A mapping from NRVO variables to the flags used to indicate
597   /// when the NRVO has been applied to this variable.
598   llvm::DenseMap<const VarDecl *, llvm::Value *> NRVOFlags;
599 
600   EHScopeStack EHStack;
601 
602   /// i32s containing the indexes of the cleanup destinations.
603   llvm::AllocaInst *NormalCleanupDest;
604   llvm::AllocaInst *EHCleanupDest;
605 
606   unsigned NextCleanupDestIndex;
607 
608   /// The exception slot.  All landing pads write the current
609   /// exception pointer into this alloca.
610   llvm::Value *ExceptionSlot;
611 
612   /// The selector slot.  Under the MandatoryCleanup model, all
613   /// landing pads write the current selector value into this alloca.
614   llvm::AllocaInst *EHSelectorSlot;
615 
616   /// Emits a landing pad for the current EH stack.
617   llvm::BasicBlock *EmitLandingPad();
618 
619   llvm::BasicBlock *getInvokeDestImpl();
620 
621   /// Set up the last cleaup that was pushed as a conditional
622   /// full-expression cleanup.
623   void initFullExprCleanup();
624 
625   template <class T>
626   typename DominatingValue<T>::saved_type saveValueInCond(T value) {
627     return DominatingValue<T>::save(*this, value);
628   }
629 
630 public:
631   /// ObjCEHValueStack - Stack of Objective-C exception values, used for
632   /// rethrows.
633   llvm::SmallVector<llvm::Value*, 8> ObjCEHValueStack;
634 
635   /// A class controlling the emission of a finally block.
636   class FinallyInfo {
637     /// Where the catchall's edge through the cleanup should go.
638     JumpDest RethrowDest;
639 
640     /// A function to call to enter the catch.
641     llvm::Constant *BeginCatchFn;
642 
643     /// An i1 variable indicating whether or not the @finally is
644     /// running for an exception.
645     llvm::AllocaInst *ForEHVar;
646 
647     /// An i8* variable into which the exception pointer to rethrow
648     /// has been saved.
649     llvm::AllocaInst *SavedExnVar;
650 
651   public:
652     void enter(CodeGenFunction &CGF, const Stmt *Finally,
653                llvm::Constant *beginCatchFn, llvm::Constant *endCatchFn,
654                llvm::Constant *rethrowFn);
655     void exit(CodeGenFunction &CGF);
656   };
657 
658   /// pushFullExprCleanup - Push a cleanup to be run at the end of the
659   /// current full-expression.  Safe against the possibility that
660   /// we're currently inside a conditionally-evaluated expression.
661   template <class T, class A0>
662   void pushFullExprCleanup(CleanupKind kind, A0 a0) {
663     // If we're not in a conditional branch, or if none of the
664     // arguments requires saving, then use the unconditional cleanup.
665     if (!isInConditionalBranch())
666       return EHStack.pushCleanup<T>(kind, a0);
667 
668     typename DominatingValue<A0>::saved_type a0_saved = saveValueInCond(a0);
669 
670     typedef EHScopeStack::ConditionalCleanup1<T, A0> CleanupType;
671     EHStack.pushCleanup<CleanupType>(kind, a0_saved);
672     initFullExprCleanup();
673   }
674 
675   /// pushFullExprCleanup - Push a cleanup to be run at the end of the
676   /// current full-expression.  Safe against the possibility that
677   /// we're currently inside a conditionally-evaluated expression.
678   template <class T, class A0, class A1>
679   void pushFullExprCleanup(CleanupKind kind, A0 a0, A1 a1) {
680     // If we're not in a conditional branch, or if none of the
681     // arguments requires saving, then use the unconditional cleanup.
682     if (!isInConditionalBranch())
683       return EHStack.pushCleanup<T>(kind, a0, a1);
684 
685     typename DominatingValue<A0>::saved_type a0_saved = saveValueInCond(a0);
686     typename DominatingValue<A1>::saved_type a1_saved = saveValueInCond(a1);
687 
688     typedef EHScopeStack::ConditionalCleanup2<T, A0, A1> CleanupType;
689     EHStack.pushCleanup<CleanupType>(kind, a0_saved, a1_saved);
690     initFullExprCleanup();
691   }
692 
693   /// pushFullExprCleanup - Push a cleanup to be run at the end of the
694   /// current full-expression.  Safe against the possibility that
695   /// we're currently inside a conditionally-evaluated expression.
696   template <class T, class A0, class A1, class A2>
697   void pushFullExprCleanup(CleanupKind kind, A0 a0, A1 a1, A2 a2) {
698     // If we're not in a conditional branch, or if none of the
699     // arguments requires saving, then use the unconditional cleanup.
700     if (!isInConditionalBranch()) {
701       return EHStack.pushCleanup<T>(kind, a0, a1, a2);
702     }
703 
704     typename DominatingValue<A0>::saved_type a0_saved = saveValueInCond(a0);
705     typename DominatingValue<A1>::saved_type a1_saved = saveValueInCond(a1);
706     typename DominatingValue<A2>::saved_type a2_saved = saveValueInCond(a2);
707 
708     typedef EHScopeStack::ConditionalCleanup3<T, A0, A1, A2> CleanupType;
709     EHStack.pushCleanup<CleanupType>(kind, a0_saved, a1_saved, a2_saved);
710     initFullExprCleanup();
711   }
712 
713   /// PushDestructorCleanup - Push a cleanup to call the
714   /// complete-object destructor of an object of the given type at the
715   /// given address.  Does nothing if T is not a C++ class type with a
716   /// non-trivial destructor.
717   void PushDestructorCleanup(QualType T, llvm::Value *Addr);
718 
719   /// PushDestructorCleanup - Push a cleanup to call the
720   /// complete-object variant of the given destructor on the object at
721   /// the given address.
722   void PushDestructorCleanup(const CXXDestructorDecl *Dtor,
723                              llvm::Value *Addr);
724 
725   /// PopCleanupBlock - Will pop the cleanup entry on the stack and
726   /// process all branch fixups.
727   void PopCleanupBlock(bool FallThroughIsBranchThrough = false);
728 
729   /// DeactivateCleanupBlock - Deactivates the given cleanup block.
730   /// The block cannot be reactivated.  Pops it if it's the top of the
731   /// stack.
732   void DeactivateCleanupBlock(EHScopeStack::stable_iterator Cleanup);
733 
734   /// ActivateCleanupBlock - Activates an initially-inactive cleanup.
735   /// Cannot be used to resurrect a deactivated cleanup.
736   void ActivateCleanupBlock(EHScopeStack::stable_iterator Cleanup);
737 
738   /// \brief Enters a new scope for capturing cleanups, all of which
739   /// will be executed once the scope is exited.
740   class RunCleanupsScope {
741     CodeGenFunction& CGF;
742     EHScopeStack::stable_iterator CleanupStackDepth;
743     bool OldDidCallStackSave;
744     bool PerformCleanup;
745 
746     RunCleanupsScope(const RunCleanupsScope &); // DO NOT IMPLEMENT
747     RunCleanupsScope &operator=(const RunCleanupsScope &); // DO NOT IMPLEMENT
748 
749   public:
750     /// \brief Enter a new cleanup scope.
751     explicit RunCleanupsScope(CodeGenFunction &CGF)
752       : CGF(CGF), PerformCleanup(true)
753     {
754       CleanupStackDepth = CGF.EHStack.stable_begin();
755       OldDidCallStackSave = CGF.DidCallStackSave;
756       CGF.DidCallStackSave = false;
757     }
758 
759     /// \brief Exit this cleanup scope, emitting any accumulated
760     /// cleanups.
761     ~RunCleanupsScope() {
762       if (PerformCleanup) {
763         CGF.DidCallStackSave = OldDidCallStackSave;
764         CGF.PopCleanupBlocks(CleanupStackDepth);
765       }
766     }
767 
768     /// \brief Determine whether this scope requires any cleanups.
769     bool requiresCleanups() const {
770       return CGF.EHStack.stable_begin() != CleanupStackDepth;
771     }
772 
773     /// \brief Force the emission of cleanups now, instead of waiting
774     /// until this object is destroyed.
775     void ForceCleanup() {
776       assert(PerformCleanup && "Already forced cleanup");
777       CGF.DidCallStackSave = OldDidCallStackSave;
778       CGF.PopCleanupBlocks(CleanupStackDepth);
779       PerformCleanup = false;
780     }
781   };
782 
783 
784   /// PopCleanupBlocks - Takes the old cleanup stack size and emits
785   /// the cleanup blocks that have been added.
786   void PopCleanupBlocks(EHScopeStack::stable_iterator OldCleanupStackSize);
787 
788   void ResolveBranchFixups(llvm::BasicBlock *Target);
789 
790   /// The given basic block lies in the current EH scope, but may be a
791   /// target of a potentially scope-crossing jump; get a stable handle
792   /// to which we can perform this jump later.
793   JumpDest getJumpDestInCurrentScope(llvm::BasicBlock *Target) {
794     return JumpDest(Target,
795                     EHStack.getInnermostNormalCleanup(),
796                     NextCleanupDestIndex++);
797   }
798 
799   /// The given basic block lies in the current EH scope, but may be a
800   /// target of a potentially scope-crossing jump; get a stable handle
801   /// to which we can perform this jump later.
802   JumpDest getJumpDestInCurrentScope(llvm::StringRef Name = llvm::StringRef()) {
803     return getJumpDestInCurrentScope(createBasicBlock(Name));
804   }
805 
806   /// EmitBranchThroughCleanup - Emit a branch from the current insert
807   /// block through the normal cleanup handling code (if any) and then
808   /// on to \arg Dest.
809   void EmitBranchThroughCleanup(JumpDest Dest);
810 
811   /// isObviouslyBranchWithoutCleanups - Return true if a branch to the
812   /// specified destination obviously has no cleanups to run.  'false' is always
813   /// a conservatively correct answer for this method.
814   bool isObviouslyBranchWithoutCleanups(JumpDest Dest) const;
815 
816   /// EmitBranchThroughEHCleanup - Emit a branch from the current
817   /// insert block through the EH cleanup handling code (if any) and
818   /// then on to \arg Dest.
819   void EmitBranchThroughEHCleanup(UnwindDest Dest);
820 
821   /// getRethrowDest - Returns the unified outermost-scope rethrow
822   /// destination.
823   UnwindDest getRethrowDest();
824 
825   /// An object to manage conditionally-evaluated expressions.
826   class ConditionalEvaluation {
827     llvm::BasicBlock *StartBB;
828 
829   public:
830     ConditionalEvaluation(CodeGenFunction &CGF)
831       : StartBB(CGF.Builder.GetInsertBlock()) {}
832 
833     void begin(CodeGenFunction &CGF) {
834       assert(CGF.OutermostConditional != this);
835       if (!CGF.OutermostConditional)
836         CGF.OutermostConditional = this;
837     }
838 
839     void end(CodeGenFunction &CGF) {
840       assert(CGF.OutermostConditional != 0);
841       if (CGF.OutermostConditional == this)
842         CGF.OutermostConditional = 0;
843     }
844 
845     /// Returns a block which will be executed prior to each
846     /// evaluation of the conditional code.
847     llvm::BasicBlock *getStartingBlock() const {
848       return StartBB;
849     }
850   };
851 
852   /// isInConditionalBranch - Return true if we're currently emitting
853   /// one branch or the other of a conditional expression.
854   bool isInConditionalBranch() const { return OutermostConditional != 0; }
855 
856   /// An RAII object to record that we're evaluating a statement
857   /// expression.
858   class StmtExprEvaluation {
859     CodeGenFunction &CGF;
860 
861     /// We have to save the outermost conditional: cleanups in a
862     /// statement expression aren't conditional just because the
863     /// StmtExpr is.
864     ConditionalEvaluation *SavedOutermostConditional;
865 
866   public:
867     StmtExprEvaluation(CodeGenFunction &CGF)
868       : CGF(CGF), SavedOutermostConditional(CGF.OutermostConditional) {
869       CGF.OutermostConditional = 0;
870     }
871 
872     ~StmtExprEvaluation() {
873       CGF.OutermostConditional = SavedOutermostConditional;
874       CGF.EnsureInsertPoint();
875     }
876   };
877 
878   /// An object which temporarily prevents a value from being
879   /// destroyed by aggressive peephole optimizations that assume that
880   /// all uses of a value have been realized in the IR.
881   class PeepholeProtection {
882     llvm::Instruction *Inst;
883     friend class CodeGenFunction;
884 
885   public:
886     PeepholeProtection() : Inst(0) {}
887   };
888 
889   /// An RAII object to set (and then clear) a mapping for an OpaqueValueExpr.
890   class OpaqueValueMapping {
891     CodeGenFunction &CGF;
892     const OpaqueValueExpr *OpaqueValue;
893     bool BoundLValue;
894     CodeGenFunction::PeepholeProtection Protection;
895 
896   public:
897     static bool shouldBindAsLValue(const Expr *expr) {
898       return expr->isGLValue() || expr->getType()->isRecordType();
899     }
900 
901     /// Build the opaque value mapping for the given conditional
902     /// operator if it's the GNU ?: extension.  This is a common
903     /// enough pattern that the convenience operator is really
904     /// helpful.
905     ///
906     OpaqueValueMapping(CodeGenFunction &CGF,
907                        const AbstractConditionalOperator *op) : CGF(CGF) {
908       if (isa<ConditionalOperator>(op)) {
909         OpaqueValue = 0;
910         BoundLValue = false;
911         return;
912       }
913 
914       const BinaryConditionalOperator *e = cast<BinaryConditionalOperator>(op);
915       init(e->getOpaqueValue(), e->getCommon());
916     }
917 
918     OpaqueValueMapping(CodeGenFunction &CGF,
919                        const OpaqueValueExpr *opaqueValue,
920                        LValue lvalue)
921       : CGF(CGF), OpaqueValue(opaqueValue), BoundLValue(true) {
922       assert(opaqueValue && "no opaque value expression!");
923       assert(shouldBindAsLValue(opaqueValue));
924       initLValue(lvalue);
925     }
926 
927     OpaqueValueMapping(CodeGenFunction &CGF,
928                        const OpaqueValueExpr *opaqueValue,
929                        RValue rvalue)
930       : CGF(CGF), OpaqueValue(opaqueValue), BoundLValue(false) {
931       assert(opaqueValue && "no opaque value expression!");
932       assert(!shouldBindAsLValue(opaqueValue));
933       initRValue(rvalue);
934     }
935 
936     void pop() {
937       assert(OpaqueValue && "mapping already popped!");
938       popImpl();
939       OpaqueValue = 0;
940     }
941 
942     ~OpaqueValueMapping() {
943       if (OpaqueValue) popImpl();
944     }
945 
946   private:
947     void popImpl() {
948       if (BoundLValue)
949         CGF.OpaqueLValues.erase(OpaqueValue);
950       else {
951         CGF.OpaqueRValues.erase(OpaqueValue);
952         CGF.unprotectFromPeepholes(Protection);
953       }
954     }
955 
956     void init(const OpaqueValueExpr *ov, const Expr *e) {
957       OpaqueValue = ov;
958       BoundLValue = shouldBindAsLValue(ov);
959       assert(BoundLValue == shouldBindAsLValue(e)
960              && "inconsistent expression value kinds!");
961       if (BoundLValue)
962         initLValue(CGF.EmitLValue(e));
963       else
964         initRValue(CGF.EmitAnyExpr(e));
965     }
966 
967     void initLValue(const LValue &lv) {
968       CGF.OpaqueLValues.insert(std::make_pair(OpaqueValue, lv));
969     }
970 
971     void initRValue(const RValue &rv) {
972       // Work around an extremely aggressive peephole optimization in
973       // EmitScalarConversion which assumes that all other uses of a
974       // value are extant.
975       Protection = CGF.protectFromPeepholes(rv);
976       CGF.OpaqueRValues.insert(std::make_pair(OpaqueValue, rv));
977     }
978   };
979 
980   /// getByrefValueFieldNumber - Given a declaration, returns the LLVM field
981   /// number that holds the value.
982   unsigned getByRefValueLLVMField(const ValueDecl *VD) const;
983 
984   /// BuildBlockByrefAddress - Computes address location of the
985   /// variable which is declared as __block.
986   llvm::Value *BuildBlockByrefAddress(llvm::Value *BaseAddr,
987                                       const VarDecl *V);
988 private:
989   CGDebugInfo *DebugInfo;
990   bool DisableDebugInfo;
991 
992   /// DidCallStackSave - Whether llvm.stacksave has been called. Used to avoid
993   /// calling llvm.stacksave for multiple VLAs in the same scope.
994   bool DidCallStackSave;
995 
996   /// IndirectBranch - The first time an indirect goto is seen we create a block
997   /// with an indirect branch.  Every time we see the address of a label taken,
998   /// we add the label to the indirect goto.  Every subsequent indirect goto is
999   /// codegen'd as a jump to the IndirectBranch's basic block.
1000   llvm::IndirectBrInst *IndirectBranch;
1001 
1002   /// LocalDeclMap - This keeps track of the LLVM allocas or globals for local C
1003   /// decls.
1004   typedef llvm::DenseMap<const Decl*, llvm::Value*> DeclMapTy;
1005   DeclMapTy LocalDeclMap;
1006 
1007   /// LabelMap - This keeps track of the LLVM basic block for each C label.
1008   llvm::DenseMap<const LabelDecl*, JumpDest> LabelMap;
1009 
1010   // BreakContinueStack - This keeps track of where break and continue
1011   // statements should jump to.
1012   struct BreakContinue {
1013     BreakContinue(JumpDest Break, JumpDest Continue)
1014       : BreakBlock(Break), ContinueBlock(Continue) {}
1015 
1016     JumpDest BreakBlock;
1017     JumpDest ContinueBlock;
1018   };
1019   llvm::SmallVector<BreakContinue, 8> BreakContinueStack;
1020 
1021   /// SwitchInsn - This is nearest current switch instruction. It is null if if
1022   /// current context is not in a switch.
1023   llvm::SwitchInst *SwitchInsn;
1024 
1025   /// CaseRangeBlock - This block holds if condition check for last case
1026   /// statement range in current switch instruction.
1027   llvm::BasicBlock *CaseRangeBlock;
1028 
1029   /// OpaqueLValues - Keeps track of the current set of opaque value
1030   /// expressions.
1031   llvm::DenseMap<const OpaqueValueExpr *, LValue> OpaqueLValues;
1032   llvm::DenseMap<const OpaqueValueExpr *, RValue> OpaqueRValues;
1033 
1034   // VLASizeMap - This keeps track of the associated size for each VLA type.
1035   // We track this by the size expression rather than the type itself because
1036   // in certain situations, like a const qualifier applied to an VLA typedef,
1037   // multiple VLA types can share the same size expression.
1038   // FIXME: Maybe this could be a stack of maps that is pushed/popped as we
1039   // enter/leave scopes.
1040   llvm::DenseMap<const Expr*, llvm::Value*> VLASizeMap;
1041 
1042   /// A block containing a single 'unreachable' instruction.  Created
1043   /// lazily by getUnreachableBlock().
1044   llvm::BasicBlock *UnreachableBlock;
1045 
1046   /// CXXThisDecl - When generating code for a C++ member function,
1047   /// this will hold the implicit 'this' declaration.
1048   ImplicitParamDecl *CXXThisDecl;
1049   llvm::Value *CXXThisValue;
1050 
1051   /// CXXVTTDecl - When generating code for a base object constructor or
1052   /// base object destructor with virtual bases, this will hold the implicit
1053   /// VTT parameter.
1054   ImplicitParamDecl *CXXVTTDecl;
1055   llvm::Value *CXXVTTValue;
1056 
1057   /// OutermostConditional - Points to the outermost active
1058   /// conditional control.  This is used so that we know if a
1059   /// temporary should be destroyed conditionally.
1060   ConditionalEvaluation *OutermostConditional;
1061 
1062 
1063   /// ByrefValueInfoMap - For each __block variable, contains a pair of the LLVM
1064   /// type as well as the field number that contains the actual data.
1065   llvm::DenseMap<const ValueDecl *, std::pair<const llvm::Type *,
1066                                               unsigned> > ByRefValueInfo;
1067 
1068   llvm::BasicBlock *TerminateLandingPad;
1069   llvm::BasicBlock *TerminateHandler;
1070   llvm::BasicBlock *TrapBB;
1071 
1072 public:
1073   CodeGenFunction(CodeGenModule &cgm);
1074 
1075   CodeGenTypes &getTypes() const { return CGM.getTypes(); }
1076   ASTContext &getContext() const { return CGM.getContext(); }
1077   CGDebugInfo *getDebugInfo() {
1078     if (DisableDebugInfo)
1079       return NULL;
1080     return DebugInfo;
1081   }
1082   void disableDebugInfo() { DisableDebugInfo = true; }
1083   void enableDebugInfo() { DisableDebugInfo = false; }
1084 
1085   bool shouldUseFusedARCCalls() {
1086     return CGM.getCodeGenOpts().OptimizationLevel == 0;
1087   }
1088 
1089   const LangOptions &getLangOptions() const { return CGM.getLangOptions(); }
1090 
1091   /// Returns a pointer to the function's exception object slot, which
1092   /// is assigned in every landing pad.
1093   llvm::Value *getExceptionSlot();
1094   llvm::Value *getEHSelectorSlot();
1095 
1096   llvm::Value *getNormalCleanupDestSlot();
1097   llvm::Value *getEHCleanupDestSlot();
1098 
1099   llvm::BasicBlock *getUnreachableBlock() {
1100     if (!UnreachableBlock) {
1101       UnreachableBlock = createBasicBlock("unreachable");
1102       new llvm::UnreachableInst(getLLVMContext(), UnreachableBlock);
1103     }
1104     return UnreachableBlock;
1105   }
1106 
1107   llvm::BasicBlock *getInvokeDest() {
1108     if (!EHStack.requiresLandingPad()) return 0;
1109     return getInvokeDestImpl();
1110   }
1111 
1112   llvm::LLVMContext &getLLVMContext() { return CGM.getLLVMContext(); }
1113 
1114   //===--------------------------------------------------------------------===//
1115   //                                  Cleanups
1116   //===--------------------------------------------------------------------===//
1117 
1118   typedef void Destroyer(CodeGenFunction &CGF, llvm::Value *addr, QualType ty);
1119 
1120   void pushIrregularPartialArrayCleanup(llvm::Value *arrayBegin,
1121                                         llvm::Value *arrayEndPointer,
1122                                         QualType elementType,
1123                                         Destroyer &destroyer);
1124   void pushRegularPartialArrayCleanup(llvm::Value *arrayBegin,
1125                                       llvm::Value *arrayEnd,
1126                                       QualType elementType,
1127                                       Destroyer &destroyer);
1128 
1129   Destroyer &getDestroyer(QualType::DestructionKind destructionKind);
1130   void pushDestroy(CleanupKind kind, llvm::Value *addr, QualType type,
1131                    Destroyer &destroyer, bool useEHCleanupForArray);
1132   void emitDestroy(llvm::Value *addr, QualType type, Destroyer &destroyer,
1133                    bool useEHCleanupForArray);
1134   void emitArrayDestroy(llvm::Value *begin, llvm::Value *end,
1135                         QualType type, Destroyer &destroyer,
1136                         bool useEHCleanup);
1137 
1138   /// Determines whether an EH cleanup is required to destroy a type
1139   /// with the given destruction kind.
1140   bool needsEHCleanup(QualType::DestructionKind kind) {
1141     switch (kind) {
1142     case QualType::DK_none:
1143       return false;
1144     case QualType::DK_cxx_destructor:
1145     case QualType::DK_objc_weak_lifetime:
1146       return getLangOptions().Exceptions;
1147     case QualType::DK_objc_strong_lifetime:
1148       return getLangOptions().Exceptions &&
1149              CGM.getCodeGenOpts().ObjCAutoRefCountExceptions;
1150     }
1151     llvm_unreachable("bad destruction kind");
1152   }
1153 
1154   //===--------------------------------------------------------------------===//
1155   //                                  Objective-C
1156   //===--------------------------------------------------------------------===//
1157 
1158   void GenerateObjCMethod(const ObjCMethodDecl *OMD);
1159 
1160   void StartObjCMethod(const ObjCMethodDecl *MD,
1161                        const ObjCContainerDecl *CD,
1162                        SourceLocation StartLoc);
1163 
1164   /// GenerateObjCGetter - Synthesize an Objective-C property getter function.
1165   void GenerateObjCGetter(ObjCImplementationDecl *IMP,
1166                           const ObjCPropertyImplDecl *PID);
1167   void GenerateObjCGetterBody(ObjCIvarDecl *Ivar, bool IsAtomic, bool IsStrong);
1168   void GenerateObjCAtomicSetterBody(ObjCMethodDecl *OMD,
1169                                     ObjCIvarDecl *Ivar);
1170 
1171   void GenerateObjCCtorDtorMethod(ObjCImplementationDecl *IMP,
1172                                   ObjCMethodDecl *MD, bool ctor);
1173 
1174   /// GenerateObjCSetter - Synthesize an Objective-C property setter function
1175   /// for the given property.
1176   void GenerateObjCSetter(ObjCImplementationDecl *IMP,
1177                           const ObjCPropertyImplDecl *PID);
1178   bool IndirectObjCSetterArg(const CGFunctionInfo &FI);
1179   bool IvarTypeWithAggrGCObjects(QualType Ty);
1180 
1181   //===--------------------------------------------------------------------===//
1182   //                                  Block Bits
1183   //===--------------------------------------------------------------------===//
1184 
1185   llvm::Value *EmitBlockLiteral(const BlockExpr *);
1186   llvm::Constant *BuildDescriptorBlockDecl(const BlockExpr *,
1187                                            const CGBlockInfo &Info,
1188                                            const llvm::StructType *,
1189                                            llvm::Constant *BlockVarLayout);
1190 
1191   llvm::Function *GenerateBlockFunction(GlobalDecl GD,
1192                                         const CGBlockInfo &Info,
1193                                         const Decl *OuterFuncDecl,
1194                                         const DeclMapTy &ldm);
1195 
1196   llvm::Constant *GenerateCopyHelperFunction(const CGBlockInfo &blockInfo);
1197   llvm::Constant *GenerateDestroyHelperFunction(const CGBlockInfo &blockInfo);
1198 
1199   void BuildBlockRelease(llvm::Value *DeclPtr, BlockFieldFlags flags);
1200 
1201   class AutoVarEmission;
1202 
1203   void emitByrefStructureInit(const AutoVarEmission &emission);
1204   void enterByrefCleanup(const AutoVarEmission &emission);
1205 
1206   llvm::Value *LoadBlockStruct() {
1207     assert(BlockPointer && "no block pointer set!");
1208     return BlockPointer;
1209   }
1210 
1211   void AllocateBlockCXXThisPointer(const CXXThisExpr *E);
1212   void AllocateBlockDecl(const BlockDeclRefExpr *E);
1213   llvm::Value *GetAddrOfBlockDecl(const BlockDeclRefExpr *E) {
1214     return GetAddrOfBlockDecl(E->getDecl(), E->isByRef());
1215   }
1216   llvm::Value *GetAddrOfBlockDecl(const VarDecl *var, bool ByRef);
1217   const llvm::Type *BuildByRefType(const VarDecl *var);
1218 
1219   void GenerateCode(GlobalDecl GD, llvm::Function *Fn,
1220                     const CGFunctionInfo &FnInfo);
1221   void StartFunction(GlobalDecl GD, QualType RetTy,
1222                      llvm::Function *Fn,
1223                      const CGFunctionInfo &FnInfo,
1224                      const FunctionArgList &Args,
1225                      SourceLocation StartLoc);
1226 
1227   void EmitConstructorBody(FunctionArgList &Args);
1228   void EmitDestructorBody(FunctionArgList &Args);
1229   void EmitFunctionBody(FunctionArgList &Args);
1230 
1231   /// EmitReturnBlock - Emit the unified return block, trying to avoid its
1232   /// emission when possible.
1233   void EmitReturnBlock();
1234 
1235   /// FinishFunction - Complete IR generation of the current function. It is
1236   /// legal to call this function even if there is no current insertion point.
1237   void FinishFunction(SourceLocation EndLoc=SourceLocation());
1238 
1239   /// GenerateThunk - Generate a thunk for the given method.
1240   void GenerateThunk(llvm::Function *Fn, const CGFunctionInfo &FnInfo,
1241                      GlobalDecl GD, const ThunkInfo &Thunk);
1242 
1243   void GenerateVarArgsThunk(llvm::Function *Fn, const CGFunctionInfo &FnInfo,
1244                             GlobalDecl GD, const ThunkInfo &Thunk);
1245 
1246   void EmitCtorPrologue(const CXXConstructorDecl *CD, CXXCtorType Type,
1247                         FunctionArgList &Args);
1248 
1249   /// InitializeVTablePointer - Initialize the vtable pointer of the given
1250   /// subobject.
1251   ///
1252   void InitializeVTablePointer(BaseSubobject Base,
1253                                const CXXRecordDecl *NearestVBase,
1254                                CharUnits OffsetFromNearestVBase,
1255                                llvm::Constant *VTable,
1256                                const CXXRecordDecl *VTableClass);
1257 
1258   typedef llvm::SmallPtrSet<const CXXRecordDecl *, 4> VisitedVirtualBasesSetTy;
1259   void InitializeVTablePointers(BaseSubobject Base,
1260                                 const CXXRecordDecl *NearestVBase,
1261                                 CharUnits OffsetFromNearestVBase,
1262                                 bool BaseIsNonVirtualPrimaryBase,
1263                                 llvm::Constant *VTable,
1264                                 const CXXRecordDecl *VTableClass,
1265                                 VisitedVirtualBasesSetTy& VBases);
1266 
1267   void InitializeVTablePointers(const CXXRecordDecl *ClassDecl);
1268 
1269   /// GetVTablePtr - Return the Value of the vtable pointer member pointed
1270   /// to by This.
1271   llvm::Value *GetVTablePtr(llvm::Value *This, const llvm::Type *Ty);
1272 
1273   /// EnterDtorCleanups - Enter the cleanups necessary to complete the
1274   /// given phase of destruction for a destructor.  The end result
1275   /// should call destructors on members and base classes in reverse
1276   /// order of their construction.
1277   void EnterDtorCleanups(const CXXDestructorDecl *Dtor, CXXDtorType Type);
1278 
1279   /// ShouldInstrumentFunction - Return true if the current function should be
1280   /// instrumented with __cyg_profile_func_* calls
1281   bool ShouldInstrumentFunction();
1282 
1283   /// EmitFunctionInstrumentation - Emit LLVM code to call the specified
1284   /// instrumentation function with the current function and the call site, if
1285   /// function instrumentation is enabled.
1286   void EmitFunctionInstrumentation(const char *Fn);
1287 
1288   /// EmitMCountInstrumentation - Emit call to .mcount.
1289   void EmitMCountInstrumentation();
1290 
1291   /// EmitFunctionProlog - Emit the target specific LLVM code to load the
1292   /// arguments for the given function. This is also responsible for naming the
1293   /// LLVM function arguments.
1294   void EmitFunctionProlog(const CGFunctionInfo &FI,
1295                           llvm::Function *Fn,
1296                           const FunctionArgList &Args);
1297 
1298   /// EmitFunctionEpilog - Emit the target specific LLVM code to return the
1299   /// given temporary.
1300   void EmitFunctionEpilog(const CGFunctionInfo &FI);
1301 
1302   /// EmitStartEHSpec - Emit the start of the exception spec.
1303   void EmitStartEHSpec(const Decl *D);
1304 
1305   /// EmitEndEHSpec - Emit the end of the exception spec.
1306   void EmitEndEHSpec(const Decl *D);
1307 
1308   /// getTerminateLandingPad - Return a landing pad that just calls terminate.
1309   llvm::BasicBlock *getTerminateLandingPad();
1310 
1311   /// getTerminateHandler - Return a handler (not a landing pad, just
1312   /// a catch handler) that just calls terminate.  This is used when
1313   /// a terminate scope encloses a try.
1314   llvm::BasicBlock *getTerminateHandler();
1315 
1316   llvm::Type *ConvertTypeForMem(QualType T);
1317   llvm::Type *ConvertType(QualType T);
1318   llvm::Type *ConvertType(const TypeDecl *T) {
1319     return ConvertType(getContext().getTypeDeclType(T));
1320   }
1321 
1322   /// LoadObjCSelf - Load the value of self. This function is only valid while
1323   /// generating code for an Objective-C method.
1324   llvm::Value *LoadObjCSelf();
1325 
1326   /// TypeOfSelfObject - Return type of object that this self represents.
1327   QualType TypeOfSelfObject();
1328 
1329   /// hasAggregateLLVMType - Return true if the specified AST type will map into
1330   /// an aggregate LLVM type or is void.
1331   static bool hasAggregateLLVMType(QualType T);
1332 
1333   /// createBasicBlock - Create an LLVM basic block.
1334   llvm::BasicBlock *createBasicBlock(llvm::StringRef name = "",
1335                                      llvm::Function *parent = 0,
1336                                      llvm::BasicBlock *before = 0) {
1337 #ifdef NDEBUG
1338     return llvm::BasicBlock::Create(getLLVMContext(), "", parent, before);
1339 #else
1340     return llvm::BasicBlock::Create(getLLVMContext(), name, parent, before);
1341 #endif
1342   }
1343 
1344   /// getBasicBlockForLabel - Return the LLVM basicblock that the specified
1345   /// label maps to.
1346   JumpDest getJumpDestForLabel(const LabelDecl *S);
1347 
1348   /// SimplifyForwardingBlocks - If the given basic block is only a branch to
1349   /// another basic block, simplify it. This assumes that no other code could
1350   /// potentially reference the basic block.
1351   void SimplifyForwardingBlocks(llvm::BasicBlock *BB);
1352 
1353   /// EmitBlock - Emit the given block \arg BB and set it as the insert point,
1354   /// adding a fall-through branch from the current insert block if
1355   /// necessary. It is legal to call this function even if there is no current
1356   /// insertion point.
1357   ///
1358   /// IsFinished - If true, indicates that the caller has finished emitting
1359   /// branches to the given block and does not expect to emit code into it. This
1360   /// means the block can be ignored if it is unreachable.
1361   void EmitBlock(llvm::BasicBlock *BB, bool IsFinished=false);
1362 
1363   /// EmitBranch - Emit a branch to the specified basic block from the current
1364   /// insert block, taking care to avoid creation of branches from dummy
1365   /// blocks. It is legal to call this function even if there is no current
1366   /// insertion point.
1367   ///
1368   /// This function clears the current insertion point. The caller should follow
1369   /// calls to this function with calls to Emit*Block prior to generation new
1370   /// code.
1371   void EmitBranch(llvm::BasicBlock *Block);
1372 
1373   /// HaveInsertPoint - True if an insertion point is defined. If not, this
1374   /// indicates that the current code being emitted is unreachable.
1375   bool HaveInsertPoint() const {
1376     return Builder.GetInsertBlock() != 0;
1377   }
1378 
1379   /// EnsureInsertPoint - Ensure that an insertion point is defined so that
1380   /// emitted IR has a place to go. Note that by definition, if this function
1381   /// creates a block then that block is unreachable; callers may do better to
1382   /// detect when no insertion point is defined and simply skip IR generation.
1383   void EnsureInsertPoint() {
1384     if (!HaveInsertPoint())
1385       EmitBlock(createBasicBlock());
1386   }
1387 
1388   /// ErrorUnsupported - Print out an error that codegen doesn't support the
1389   /// specified stmt yet.
1390   void ErrorUnsupported(const Stmt *S, const char *Type,
1391                         bool OmitOnError=false);
1392 
1393   //===--------------------------------------------------------------------===//
1394   //                                  Helpers
1395   //===--------------------------------------------------------------------===//
1396 
1397   LValue MakeAddrLValue(llvm::Value *V, QualType T, unsigned Alignment = 0) {
1398     return LValue::MakeAddr(V, T, Alignment, getContext(),
1399                             CGM.getTBAAInfo(T));
1400   }
1401 
1402   /// CreateTempAlloca - This creates a alloca and inserts it into the entry
1403   /// block. The caller is responsible for setting an appropriate alignment on
1404   /// the alloca.
1405   llvm::AllocaInst *CreateTempAlloca(const llvm::Type *Ty,
1406                                      const llvm::Twine &Name = "tmp");
1407 
1408   /// InitTempAlloca - Provide an initial value for the given alloca.
1409   void InitTempAlloca(llvm::AllocaInst *Alloca, llvm::Value *Value);
1410 
1411   /// CreateIRTemp - Create a temporary IR object of the given type, with
1412   /// appropriate alignment. This routine should only be used when an temporary
1413   /// value needs to be stored into an alloca (for example, to avoid explicit
1414   /// PHI construction), but the type is the IR type, not the type appropriate
1415   /// for storing in memory.
1416   llvm::AllocaInst *CreateIRTemp(QualType T, const llvm::Twine &Name = "tmp");
1417 
1418   /// CreateMemTemp - Create a temporary memory object of the given type, with
1419   /// appropriate alignment.
1420   llvm::AllocaInst *CreateMemTemp(QualType T, const llvm::Twine &Name = "tmp");
1421 
1422   /// CreateAggTemp - Create a temporary memory object for the given
1423   /// aggregate type.
1424   AggValueSlot CreateAggTemp(QualType T, const llvm::Twine &Name = "tmp") {
1425     return AggValueSlot::forAddr(CreateMemTemp(T, Name), T.getQualifiers(),
1426                                  false);
1427   }
1428 
1429   /// Emit a cast to void* in the appropriate address space.
1430   llvm::Value *EmitCastToVoidPtr(llvm::Value *value);
1431 
1432   /// EvaluateExprAsBool - Perform the usual unary conversions on the specified
1433   /// expression and compare the result against zero, returning an Int1Ty value.
1434   llvm::Value *EvaluateExprAsBool(const Expr *E);
1435 
1436   /// EmitIgnoredExpr - Emit an expression in a context which ignores the result.
1437   void EmitIgnoredExpr(const Expr *E);
1438 
1439   /// EmitAnyExpr - Emit code to compute the specified expression which can have
1440   /// any type.  The result is returned as an RValue struct.  If this is an
1441   /// aggregate expression, the aggloc/agglocvolatile arguments indicate where
1442   /// the result should be returned.
1443   ///
1444   /// \param IgnoreResult - True if the resulting value isn't used.
1445   RValue EmitAnyExpr(const Expr *E,
1446                      AggValueSlot AggSlot = AggValueSlot::ignored(),
1447                      bool IgnoreResult = false);
1448 
1449   // EmitVAListRef - Emit a "reference" to a va_list; this is either the address
1450   // or the value of the expression, depending on how va_list is defined.
1451   llvm::Value *EmitVAListRef(const Expr *E);
1452 
1453   /// EmitAnyExprToTemp - Similary to EmitAnyExpr(), however, the result will
1454   /// always be accessible even if no aggregate location is provided.
1455   RValue EmitAnyExprToTemp(const Expr *E);
1456 
1457   /// EmitAnyExprToMem - Emits the code necessary to evaluate an
1458   /// arbitrary expression into the given memory location.
1459   void EmitAnyExprToMem(const Expr *E, llvm::Value *Location,
1460                         Qualifiers Quals, bool IsInitializer);
1461 
1462   /// EmitExprAsInit - Emits the code necessary to initialize a
1463   /// location in memory with the given initializer.
1464   void EmitExprAsInit(const Expr *init, const ValueDecl *D,
1465                       LValue lvalue, bool capturedByInit);
1466 
1467   /// EmitAggregateCopy - Emit an aggrate copy.
1468   ///
1469   /// \param isVolatile - True iff either the source or the destination is
1470   /// volatile.
1471   void EmitAggregateCopy(llvm::Value *DestPtr, llvm::Value *SrcPtr,
1472                          QualType EltTy, bool isVolatile=false);
1473 
1474   /// StartBlock - Start new block named N. If insert block is a dummy block
1475   /// then reuse it.
1476   void StartBlock(const char *N);
1477 
1478   /// GetAddrOfStaticLocalVar - Return the address of a static local variable.
1479   llvm::Constant *GetAddrOfStaticLocalVar(const VarDecl *BVD) {
1480     return cast<llvm::Constant>(GetAddrOfLocalVar(BVD));
1481   }
1482 
1483   /// GetAddrOfLocalVar - Return the address of a local variable.
1484   llvm::Value *GetAddrOfLocalVar(const VarDecl *VD) {
1485     llvm::Value *Res = LocalDeclMap[VD];
1486     assert(Res && "Invalid argument to GetAddrOfLocalVar(), no decl!");
1487     return Res;
1488   }
1489 
1490   /// getOpaqueLValueMapping - Given an opaque value expression (which
1491   /// must be mapped to an l-value), return its mapping.
1492   const LValue &getOpaqueLValueMapping(const OpaqueValueExpr *e) {
1493     assert(OpaqueValueMapping::shouldBindAsLValue(e));
1494 
1495     llvm::DenseMap<const OpaqueValueExpr*,LValue>::iterator
1496       it = OpaqueLValues.find(e);
1497     assert(it != OpaqueLValues.end() && "no mapping for opaque value!");
1498     return it->second;
1499   }
1500 
1501   /// getOpaqueRValueMapping - Given an opaque value expression (which
1502   /// must be mapped to an r-value), return its mapping.
1503   const RValue &getOpaqueRValueMapping(const OpaqueValueExpr *e) {
1504     assert(!OpaqueValueMapping::shouldBindAsLValue(e));
1505 
1506     llvm::DenseMap<const OpaqueValueExpr*,RValue>::iterator
1507       it = OpaqueRValues.find(e);
1508     assert(it != OpaqueRValues.end() && "no mapping for opaque value!");
1509     return it->second;
1510   }
1511 
1512   /// getAccessedFieldNo - Given an encoded value and a result number, return
1513   /// the input field number being accessed.
1514   static unsigned getAccessedFieldNo(unsigned Idx, const llvm::Constant *Elts);
1515 
1516   llvm::BlockAddress *GetAddrOfLabel(const LabelDecl *L);
1517   llvm::BasicBlock *GetIndirectGotoBlock();
1518 
1519   /// EmitNullInitialization - Generate code to set a value of the given type to
1520   /// null, If the type contains data member pointers, they will be initialized
1521   /// to -1 in accordance with the Itanium C++ ABI.
1522   void EmitNullInitialization(llvm::Value *DestPtr, QualType Ty);
1523 
1524   // EmitVAArg - Generate code to get an argument from the passed in pointer
1525   // and update it accordingly. The return value is a pointer to the argument.
1526   // FIXME: We should be able to get rid of this method and use the va_arg
1527   // instruction in LLVM instead once it works well enough.
1528   llvm::Value *EmitVAArg(llvm::Value *VAListAddr, QualType Ty);
1529 
1530   /// emitArrayLength - Compute the length of an array, even if it's a
1531   /// VLA, and drill down to the base element type.
1532   llvm::Value *emitArrayLength(const ArrayType *arrayType,
1533                                QualType &baseType,
1534                                llvm::Value *&addr);
1535 
1536   /// EmitVLASize - Capture all the sizes for the VLA expressions in
1537   /// the given variably-modified type and store them in the VLASizeMap.
1538   ///
1539   /// This function can be called with a null (unreachable) insert point.
1540   void EmitVariablyModifiedType(QualType Ty);
1541 
1542   /// getVLASize - Returns an LLVM value that corresponds to the size,
1543   /// in non-variably-sized elements, of a variable length array type,
1544   /// plus that largest non-variably-sized element type.  Assumes that
1545   /// the type has already been emitted with EmitVariablyModifiedType.
1546   std::pair<llvm::Value*,QualType> getVLASize(const VariableArrayType *vla);
1547   std::pair<llvm::Value*,QualType> getVLASize(QualType vla);
1548 
1549   /// LoadCXXThis - Load the value of 'this'. This function is only valid while
1550   /// generating code for an C++ member function.
1551   llvm::Value *LoadCXXThis() {
1552     assert(CXXThisValue && "no 'this' value for this function");
1553     return CXXThisValue;
1554   }
1555 
1556   /// LoadCXXVTT - Load the VTT parameter to base constructors/destructors have
1557   /// virtual bases.
1558   llvm::Value *LoadCXXVTT() {
1559     assert(CXXVTTValue && "no VTT value for this function");
1560     return CXXVTTValue;
1561   }
1562 
1563   /// GetAddressOfBaseOfCompleteClass - Convert the given pointer to a
1564   /// complete class to the given direct base.
1565   llvm::Value *
1566   GetAddressOfDirectBaseInCompleteClass(llvm::Value *Value,
1567                                         const CXXRecordDecl *Derived,
1568                                         const CXXRecordDecl *Base,
1569                                         bool BaseIsVirtual);
1570 
1571   /// GetAddressOfBaseClass - This function will add the necessary delta to the
1572   /// load of 'this' and returns address of the base class.
1573   llvm::Value *GetAddressOfBaseClass(llvm::Value *Value,
1574                                      const CXXRecordDecl *Derived,
1575                                      CastExpr::path_const_iterator PathBegin,
1576                                      CastExpr::path_const_iterator PathEnd,
1577                                      bool NullCheckValue);
1578 
1579   llvm::Value *GetAddressOfDerivedClass(llvm::Value *Value,
1580                                         const CXXRecordDecl *Derived,
1581                                         CastExpr::path_const_iterator PathBegin,
1582                                         CastExpr::path_const_iterator PathEnd,
1583                                         bool NullCheckValue);
1584 
1585   llvm::Value *GetVirtualBaseClassOffset(llvm::Value *This,
1586                                          const CXXRecordDecl *ClassDecl,
1587                                          const CXXRecordDecl *BaseClassDecl);
1588 
1589   void EmitDelegateCXXConstructorCall(const CXXConstructorDecl *Ctor,
1590                                       CXXCtorType CtorType,
1591                                       const FunctionArgList &Args);
1592   // It's important not to confuse this and the previous function. Delegating
1593   // constructors are the C++0x feature. The constructor delegate optimization
1594   // is used to reduce duplication in the base and complete consturctors where
1595   // they are substantially the same.
1596   void EmitDelegatingCXXConstructorCall(const CXXConstructorDecl *Ctor,
1597                                         const FunctionArgList &Args);
1598   void EmitCXXConstructorCall(const CXXConstructorDecl *D, CXXCtorType Type,
1599                               bool ForVirtualBase, llvm::Value *This,
1600                               CallExpr::const_arg_iterator ArgBeg,
1601                               CallExpr::const_arg_iterator ArgEnd);
1602 
1603   void EmitSynthesizedCXXCopyCtorCall(const CXXConstructorDecl *D,
1604                               llvm::Value *This, llvm::Value *Src,
1605                               CallExpr::const_arg_iterator ArgBeg,
1606                               CallExpr::const_arg_iterator ArgEnd);
1607 
1608   void EmitCXXAggrConstructorCall(const CXXConstructorDecl *D,
1609                                   const ConstantArrayType *ArrayTy,
1610                                   llvm::Value *ArrayPtr,
1611                                   CallExpr::const_arg_iterator ArgBeg,
1612                                   CallExpr::const_arg_iterator ArgEnd,
1613                                   bool ZeroInitialization = false);
1614 
1615   void EmitCXXAggrConstructorCall(const CXXConstructorDecl *D,
1616                                   llvm::Value *NumElements,
1617                                   llvm::Value *ArrayPtr,
1618                                   CallExpr::const_arg_iterator ArgBeg,
1619                                   CallExpr::const_arg_iterator ArgEnd,
1620                                   bool ZeroInitialization = false);
1621 
1622   void EmitCXXAggrDestructorCall(const CXXDestructorDecl *D,
1623                                  const ArrayType *Array,
1624                                  llvm::Value *This);
1625 
1626   static Destroyer destroyCXXObject;
1627 
1628   void EmitCXXAggrDestructorCall(const CXXDestructorDecl *D,
1629                                  llvm::Value *NumElements,
1630                                  llvm::Value *This);
1631 
1632   llvm::Function *GenerateCXXAggrDestructorHelper(const CXXDestructorDecl *D,
1633                                                   const ArrayType *Array,
1634                                                   llvm::Value *This);
1635 
1636   void EmitCXXDestructorCall(const CXXDestructorDecl *D, CXXDtorType Type,
1637                              bool ForVirtualBase, llvm::Value *This);
1638 
1639   void EmitNewArrayInitializer(const CXXNewExpr *E, llvm::Value *NewPtr,
1640                                llvm::Value *NumElements);
1641 
1642   void EmitCXXTemporary(const CXXTemporary *Temporary, llvm::Value *Ptr);
1643 
1644   llvm::Value *EmitCXXNewExpr(const CXXNewExpr *E);
1645   void EmitCXXDeleteExpr(const CXXDeleteExpr *E);
1646 
1647   void EmitDeleteCall(const FunctionDecl *DeleteFD, llvm::Value *Ptr,
1648                       QualType DeleteTy);
1649 
1650   llvm::Value* EmitCXXTypeidExpr(const CXXTypeidExpr *E);
1651   llvm::Value *EmitDynamicCast(llvm::Value *V, const CXXDynamicCastExpr *DCE);
1652 
1653   void EmitCheck(llvm::Value *, unsigned Size);
1654 
1655   llvm::Value *EmitScalarPrePostIncDec(const UnaryOperator *E, LValue LV,
1656                                        bool isInc, bool isPre);
1657   ComplexPairTy EmitComplexPrePostIncDec(const UnaryOperator *E, LValue LV,
1658                                          bool isInc, bool isPre);
1659   //===--------------------------------------------------------------------===//
1660   //                            Declaration Emission
1661   //===--------------------------------------------------------------------===//
1662 
1663   /// EmitDecl - Emit a declaration.
1664   ///
1665   /// This function can be called with a null (unreachable) insert point.
1666   void EmitDecl(const Decl &D);
1667 
1668   /// EmitVarDecl - Emit a local variable declaration.
1669   ///
1670   /// This function can be called with a null (unreachable) insert point.
1671   void EmitVarDecl(const VarDecl &D);
1672 
1673   void EmitScalarInit(const Expr *init, const ValueDecl *D,
1674                       LValue lvalue, bool capturedByInit);
1675   void EmitScalarInit(llvm::Value *init, LValue lvalue);
1676 
1677   typedef void SpecialInitFn(CodeGenFunction &Init, const VarDecl &D,
1678                              llvm::Value *Address);
1679 
1680   /// EmitAutoVarDecl - Emit an auto variable declaration.
1681   ///
1682   /// This function can be called with a null (unreachable) insert point.
1683   void EmitAutoVarDecl(const VarDecl &D);
1684 
1685   class AutoVarEmission {
1686     friend class CodeGenFunction;
1687 
1688     const VarDecl *Variable;
1689 
1690     /// The alignment of the variable.
1691     CharUnits Alignment;
1692 
1693     /// The address of the alloca.  Null if the variable was emitted
1694     /// as a global constant.
1695     llvm::Value *Address;
1696 
1697     llvm::Value *NRVOFlag;
1698 
1699     /// True if the variable is a __block variable.
1700     bool IsByRef;
1701 
1702     /// True if the variable is of aggregate type and has a constant
1703     /// initializer.
1704     bool IsConstantAggregate;
1705 
1706     struct Invalid {};
1707     AutoVarEmission(Invalid) : Variable(0) {}
1708 
1709     AutoVarEmission(const VarDecl &variable)
1710       : Variable(&variable), Address(0), NRVOFlag(0),
1711         IsByRef(false), IsConstantAggregate(false) {}
1712 
1713     bool wasEmittedAsGlobal() const { return Address == 0; }
1714 
1715   public:
1716     static AutoVarEmission invalid() { return AutoVarEmission(Invalid()); }
1717 
1718     /// Returns the address of the object within this declaration.
1719     /// Note that this does not chase the forwarding pointer for
1720     /// __block decls.
1721     llvm::Value *getObjectAddress(CodeGenFunction &CGF) const {
1722       if (!IsByRef) return Address;
1723 
1724       return CGF.Builder.CreateStructGEP(Address,
1725                                          CGF.getByRefValueLLVMField(Variable),
1726                                          Variable->getNameAsString());
1727     }
1728   };
1729   AutoVarEmission EmitAutoVarAlloca(const VarDecl &var);
1730   void EmitAutoVarInit(const AutoVarEmission &emission);
1731   void EmitAutoVarCleanups(const AutoVarEmission &emission);
1732   void emitAutoVarTypeCleanup(const AutoVarEmission &emission,
1733                               QualType::DestructionKind dtorKind);
1734 
1735   void EmitStaticVarDecl(const VarDecl &D,
1736                          llvm::GlobalValue::LinkageTypes Linkage);
1737 
1738   /// EmitParmDecl - Emit a ParmVarDecl or an ImplicitParamDecl.
1739   void EmitParmDecl(const VarDecl &D, llvm::Value *Arg, unsigned ArgNo);
1740 
1741   /// protectFromPeepholes - Protect a value that we're intending to
1742   /// store to the side, but which will probably be used later, from
1743   /// aggressive peepholing optimizations that might delete it.
1744   ///
1745   /// Pass the result to unprotectFromPeepholes to declare that
1746   /// protection is no longer required.
1747   ///
1748   /// There's no particular reason why this shouldn't apply to
1749   /// l-values, it's just that no existing peepholes work on pointers.
1750   PeepholeProtection protectFromPeepholes(RValue rvalue);
1751   void unprotectFromPeepholes(PeepholeProtection protection);
1752 
1753   //===--------------------------------------------------------------------===//
1754   //                             Statement Emission
1755   //===--------------------------------------------------------------------===//
1756 
1757   /// EmitStopPoint - Emit a debug stoppoint if we are emitting debug info.
1758   void EmitStopPoint(const Stmt *S);
1759 
1760   /// EmitStmt - Emit the code for the statement \arg S. It is legal to call
1761   /// this function even if there is no current insertion point.
1762   ///
1763   /// This function may clear the current insertion point; callers should use
1764   /// EnsureInsertPoint if they wish to subsequently generate code without first
1765   /// calling EmitBlock, EmitBranch, or EmitStmt.
1766   void EmitStmt(const Stmt *S);
1767 
1768   /// EmitSimpleStmt - Try to emit a "simple" statement which does not
1769   /// necessarily require an insertion point or debug information; typically
1770   /// because the statement amounts to a jump or a container of other
1771   /// statements.
1772   ///
1773   /// \return True if the statement was handled.
1774   bool EmitSimpleStmt(const Stmt *S);
1775 
1776   RValue EmitCompoundStmt(const CompoundStmt &S, bool GetLast = false,
1777                           AggValueSlot AVS = AggValueSlot::ignored());
1778 
1779   /// EmitLabel - Emit the block for the given label. It is legal to call this
1780   /// function even if there is no current insertion point.
1781   void EmitLabel(const LabelDecl *D); // helper for EmitLabelStmt.
1782 
1783   void EmitLabelStmt(const LabelStmt &S);
1784   void EmitGotoStmt(const GotoStmt &S);
1785   void EmitIndirectGotoStmt(const IndirectGotoStmt &S);
1786   void EmitIfStmt(const IfStmt &S);
1787   void EmitWhileStmt(const WhileStmt &S);
1788   void EmitDoStmt(const DoStmt &S);
1789   void EmitForStmt(const ForStmt &S);
1790   void EmitReturnStmt(const ReturnStmt &S);
1791   void EmitDeclStmt(const DeclStmt &S);
1792   void EmitBreakStmt(const BreakStmt &S);
1793   void EmitContinueStmt(const ContinueStmt &S);
1794   void EmitSwitchStmt(const SwitchStmt &S);
1795   void EmitDefaultStmt(const DefaultStmt &S);
1796   void EmitCaseStmt(const CaseStmt &S);
1797   void EmitCaseStmtRange(const CaseStmt &S);
1798   void EmitAsmStmt(const AsmStmt &S);
1799 
1800   void EmitObjCForCollectionStmt(const ObjCForCollectionStmt &S);
1801   void EmitObjCAtTryStmt(const ObjCAtTryStmt &S);
1802   void EmitObjCAtThrowStmt(const ObjCAtThrowStmt &S);
1803   void EmitObjCAtSynchronizedStmt(const ObjCAtSynchronizedStmt &S);
1804   void EmitObjCAutoreleasePoolStmt(const ObjCAutoreleasePoolStmt &S);
1805 
1806   llvm::Constant *getUnwindResumeFn();
1807   llvm::Constant *getUnwindResumeOrRethrowFn();
1808   void EnterCXXTryStmt(const CXXTryStmt &S, bool IsFnTryBlock = false);
1809   void ExitCXXTryStmt(const CXXTryStmt &S, bool IsFnTryBlock = false);
1810 
1811   void EmitCXXTryStmt(const CXXTryStmt &S);
1812   void EmitCXXForRangeStmt(const CXXForRangeStmt &S);
1813 
1814   //===--------------------------------------------------------------------===//
1815   //                         LValue Expression Emission
1816   //===--------------------------------------------------------------------===//
1817 
1818   /// GetUndefRValue - Get an appropriate 'undef' rvalue for the given type.
1819   RValue GetUndefRValue(QualType Ty);
1820 
1821   /// EmitUnsupportedRValue - Emit a dummy r-value using the type of E
1822   /// and issue an ErrorUnsupported style diagnostic (using the
1823   /// provided Name).
1824   RValue EmitUnsupportedRValue(const Expr *E,
1825                                const char *Name);
1826 
1827   /// EmitUnsupportedLValue - Emit a dummy l-value using the type of E and issue
1828   /// an ErrorUnsupported style diagnostic (using the provided Name).
1829   LValue EmitUnsupportedLValue(const Expr *E,
1830                                const char *Name);
1831 
1832   /// EmitLValue - Emit code to compute a designator that specifies the location
1833   /// of the expression.
1834   ///
1835   /// This can return one of two things: a simple address or a bitfield
1836   /// reference.  In either case, the LLVM Value* in the LValue structure is
1837   /// guaranteed to be an LLVM pointer type.
1838   ///
1839   /// If this returns a bitfield reference, nothing about the pointee type of
1840   /// the LLVM value is known: For example, it may not be a pointer to an
1841   /// integer.
1842   ///
1843   /// If this returns a normal address, and if the lvalue's C type is fixed
1844   /// size, this method guarantees that the returned pointer type will point to
1845   /// an LLVM type of the same size of the lvalue's type.  If the lvalue has a
1846   /// variable length type, this is not possible.
1847   ///
1848   LValue EmitLValue(const Expr *E);
1849 
1850   /// EmitCheckedLValue - Same as EmitLValue but additionally we generate
1851   /// checking code to guard against undefined behavior.  This is only
1852   /// suitable when we know that the address will be used to access the
1853   /// object.
1854   LValue EmitCheckedLValue(const Expr *E);
1855 
1856   /// EmitToMemory - Change a scalar value from its value
1857   /// representation to its in-memory representation.
1858   llvm::Value *EmitToMemory(llvm::Value *Value, QualType Ty);
1859 
1860   /// EmitFromMemory - Change a scalar value from its memory
1861   /// representation to its value representation.
1862   llvm::Value *EmitFromMemory(llvm::Value *Value, QualType Ty);
1863 
1864   /// EmitLoadOfScalar - Load a scalar value from an address, taking
1865   /// care to appropriately convert from the memory representation to
1866   /// the LLVM value representation.
1867   llvm::Value *EmitLoadOfScalar(llvm::Value *Addr, bool Volatile,
1868                                 unsigned Alignment, QualType Ty,
1869                                 llvm::MDNode *TBAAInfo = 0);
1870 
1871   /// EmitLoadOfScalar - Load a scalar value from an address, taking
1872   /// care to appropriately convert from the memory representation to
1873   /// the LLVM value representation.  The l-value must be a simple
1874   /// l-value.
1875   llvm::Value *EmitLoadOfScalar(LValue lvalue);
1876 
1877   /// EmitStoreOfScalar - Store a scalar value to an address, taking
1878   /// care to appropriately convert from the memory representation to
1879   /// the LLVM value representation.
1880   void EmitStoreOfScalar(llvm::Value *Value, llvm::Value *Addr,
1881                          bool Volatile, unsigned Alignment, QualType Ty,
1882                          llvm::MDNode *TBAAInfo = 0);
1883 
1884   /// EmitStoreOfScalar - Store a scalar value to an address, taking
1885   /// care to appropriately convert from the memory representation to
1886   /// the LLVM value representation.  The l-value must be a simple
1887   /// l-value.
1888   void EmitStoreOfScalar(llvm::Value *value, LValue lvalue);
1889 
1890   /// EmitLoadOfLValue - Given an expression that represents a value lvalue,
1891   /// this method emits the address of the lvalue, then loads the result as an
1892   /// rvalue, returning the rvalue.
1893   RValue EmitLoadOfLValue(LValue V);
1894   RValue EmitLoadOfExtVectorElementLValue(LValue V);
1895   RValue EmitLoadOfBitfieldLValue(LValue LV);
1896   RValue EmitLoadOfPropertyRefLValue(LValue LV,
1897                                  ReturnValueSlot Return = ReturnValueSlot());
1898 
1899   /// EmitStoreThroughLValue - Store the specified rvalue into the specified
1900   /// lvalue, where both are guaranteed to the have the same type, and that type
1901   /// is 'Ty'.
1902   void EmitStoreThroughLValue(RValue Src, LValue Dst);
1903   void EmitStoreThroughExtVectorComponentLValue(RValue Src, LValue Dst);
1904   void EmitStoreThroughPropertyRefLValue(RValue Src, LValue Dst);
1905 
1906   /// EmitStoreThroughLValue - Store Src into Dst with same constraints as
1907   /// EmitStoreThroughLValue.
1908   ///
1909   /// \param Result [out] - If non-null, this will be set to a Value* for the
1910   /// bit-field contents after the store, appropriate for use as the result of
1911   /// an assignment to the bit-field.
1912   void EmitStoreThroughBitfieldLValue(RValue Src, LValue Dst,
1913                                       llvm::Value **Result=0);
1914 
1915   /// Emit an l-value for an assignment (simple or compound) of complex type.
1916   LValue EmitComplexAssignmentLValue(const BinaryOperator *E);
1917   LValue EmitComplexCompoundAssignmentLValue(const CompoundAssignOperator *E);
1918 
1919   // Note: only available for agg return types
1920   LValue EmitBinaryOperatorLValue(const BinaryOperator *E);
1921   LValue EmitCompoundAssignmentLValue(const CompoundAssignOperator *E);
1922   // Note: only available for agg return types
1923   LValue EmitCallExprLValue(const CallExpr *E);
1924   // Note: only available for agg return types
1925   LValue EmitVAArgExprLValue(const VAArgExpr *E);
1926   LValue EmitDeclRefLValue(const DeclRefExpr *E);
1927   LValue EmitStringLiteralLValue(const StringLiteral *E);
1928   LValue EmitObjCEncodeExprLValue(const ObjCEncodeExpr *E);
1929   LValue EmitPredefinedLValue(const PredefinedExpr *E);
1930   LValue EmitUnaryOpLValue(const UnaryOperator *E);
1931   LValue EmitArraySubscriptExpr(const ArraySubscriptExpr *E);
1932   LValue EmitExtVectorElementExpr(const ExtVectorElementExpr *E);
1933   LValue EmitMemberExpr(const MemberExpr *E);
1934   LValue EmitObjCIsaExpr(const ObjCIsaExpr *E);
1935   LValue EmitCompoundLiteralLValue(const CompoundLiteralExpr *E);
1936   LValue EmitConditionalOperatorLValue(const AbstractConditionalOperator *E);
1937   LValue EmitCastLValue(const CastExpr *E);
1938   LValue EmitNullInitializationLValue(const CXXScalarValueInitExpr *E);
1939   LValue EmitMaterializeTemporaryExpr(const MaterializeTemporaryExpr *E);
1940   LValue EmitOpaqueValueLValue(const OpaqueValueExpr *e);
1941 
1942   llvm::Value *EmitIvarOffset(const ObjCInterfaceDecl *Interface,
1943                               const ObjCIvarDecl *Ivar);
1944   LValue EmitLValueForAnonRecordField(llvm::Value* Base,
1945                                       const IndirectFieldDecl* Field,
1946                                       unsigned CVRQualifiers);
1947   LValue EmitLValueForField(llvm::Value* Base, const FieldDecl* Field,
1948                             unsigned CVRQualifiers);
1949 
1950   /// EmitLValueForFieldInitialization - Like EmitLValueForField, except that
1951   /// if the Field is a reference, this will return the address of the reference
1952   /// and not the address of the value stored in the reference.
1953   LValue EmitLValueForFieldInitialization(llvm::Value* Base,
1954                                           const FieldDecl* Field,
1955                                           unsigned CVRQualifiers);
1956 
1957   LValue EmitLValueForIvar(QualType ObjectTy,
1958                            llvm::Value* Base, const ObjCIvarDecl *Ivar,
1959                            unsigned CVRQualifiers);
1960 
1961   LValue EmitLValueForBitfield(llvm::Value* Base, const FieldDecl* Field,
1962                                 unsigned CVRQualifiers);
1963 
1964   LValue EmitBlockDeclRefLValue(const BlockDeclRefExpr *E);
1965 
1966   LValue EmitCXXConstructLValue(const CXXConstructExpr *E);
1967   LValue EmitCXXBindTemporaryLValue(const CXXBindTemporaryExpr *E);
1968   LValue EmitExprWithCleanupsLValue(const ExprWithCleanups *E);
1969   LValue EmitCXXTypeidLValue(const CXXTypeidExpr *E);
1970 
1971   LValue EmitObjCMessageExprLValue(const ObjCMessageExpr *E);
1972   LValue EmitObjCIvarRefLValue(const ObjCIvarRefExpr *E);
1973   LValue EmitObjCPropertyRefLValue(const ObjCPropertyRefExpr *E);
1974   LValue EmitStmtExprLValue(const StmtExpr *E);
1975   LValue EmitPointerToDataMemberBinaryExpr(const BinaryOperator *E);
1976   LValue EmitObjCSelectorLValue(const ObjCSelectorExpr *E);
1977   void   EmitDeclRefExprDbgValue(const DeclRefExpr *E, llvm::Constant *Init);
1978 
1979   //===--------------------------------------------------------------------===//
1980   //                         Scalar Expression Emission
1981   //===--------------------------------------------------------------------===//
1982 
1983   /// EmitCall - Generate a call of the given function, expecting the given
1984   /// result type, and using the given argument list which specifies both the
1985   /// LLVM arguments and the types they were derived from.
1986   ///
1987   /// \param TargetDecl - If given, the decl of the function in a direct call;
1988   /// used to set attributes on the call (noreturn, etc.).
1989   RValue EmitCall(const CGFunctionInfo &FnInfo,
1990                   llvm::Value *Callee,
1991                   ReturnValueSlot ReturnValue,
1992                   const CallArgList &Args,
1993                   const Decl *TargetDecl = 0,
1994                   llvm::Instruction **callOrInvoke = 0);
1995 
1996   RValue EmitCall(QualType FnType, llvm::Value *Callee,
1997                   ReturnValueSlot ReturnValue,
1998                   CallExpr::const_arg_iterator ArgBeg,
1999                   CallExpr::const_arg_iterator ArgEnd,
2000                   const Decl *TargetDecl = 0);
2001   RValue EmitCallExpr(const CallExpr *E,
2002                       ReturnValueSlot ReturnValue = ReturnValueSlot());
2003 
2004   llvm::CallSite EmitCallOrInvoke(llvm::Value *Callee,
2005                                   llvm::Value * const *ArgBegin,
2006                                   llvm::Value * const *ArgEnd,
2007                                   const llvm::Twine &Name = "");
2008 
2009   llvm::Value *BuildVirtualCall(const CXXMethodDecl *MD, llvm::Value *This,
2010                                 const llvm::Type *Ty);
2011   llvm::Value *BuildVirtualCall(const CXXDestructorDecl *DD, CXXDtorType Type,
2012                                 llvm::Value *This, const llvm::Type *Ty);
2013   llvm::Value *BuildAppleKextVirtualCall(const CXXMethodDecl *MD,
2014                                          NestedNameSpecifier *Qual,
2015                                          const llvm::Type *Ty);
2016 
2017   llvm::Value *BuildAppleKextVirtualDestructorCall(const CXXDestructorDecl *DD,
2018                                                    CXXDtorType Type,
2019                                                    const CXXRecordDecl *RD);
2020 
2021   RValue EmitCXXMemberCall(const CXXMethodDecl *MD,
2022                            llvm::Value *Callee,
2023                            ReturnValueSlot ReturnValue,
2024                            llvm::Value *This,
2025                            llvm::Value *VTT,
2026                            CallExpr::const_arg_iterator ArgBeg,
2027                            CallExpr::const_arg_iterator ArgEnd);
2028   RValue EmitCXXMemberCallExpr(const CXXMemberCallExpr *E,
2029                                ReturnValueSlot ReturnValue);
2030   RValue EmitCXXMemberPointerCallExpr(const CXXMemberCallExpr *E,
2031                                       ReturnValueSlot ReturnValue);
2032 
2033   llvm::Value *EmitCXXOperatorMemberCallee(const CXXOperatorCallExpr *E,
2034                                            const CXXMethodDecl *MD,
2035                                            llvm::Value *This);
2036   RValue EmitCXXOperatorMemberCallExpr(const CXXOperatorCallExpr *E,
2037                                        const CXXMethodDecl *MD,
2038                                        ReturnValueSlot ReturnValue);
2039 
2040 
2041   RValue EmitBuiltinExpr(const FunctionDecl *FD,
2042                          unsigned BuiltinID, const CallExpr *E);
2043 
2044   RValue EmitBlockCallExpr(const CallExpr *E, ReturnValueSlot ReturnValue);
2045 
2046   /// EmitTargetBuiltinExpr - Emit the given builtin call. Returns 0 if the call
2047   /// is unhandled by the current target.
2048   llvm::Value *EmitTargetBuiltinExpr(unsigned BuiltinID, const CallExpr *E);
2049 
2050   llvm::Value *EmitARMBuiltinExpr(unsigned BuiltinID, const CallExpr *E);
2051   llvm::Value *EmitNeonCall(llvm::Function *F,
2052                             llvm::SmallVectorImpl<llvm::Value*> &O,
2053                             const char *name,
2054                             unsigned shift = 0, bool rightshift = false);
2055   llvm::Value *EmitNeonSplat(llvm::Value *V, llvm::Constant *Idx);
2056   llvm::Value *EmitNeonShiftVector(llvm::Value *V, const llvm::Type *Ty,
2057                                    bool negateForRightShift);
2058 
2059   llvm::Value *BuildVector(const llvm::SmallVectorImpl<llvm::Value*> &Ops);
2060   llvm::Value *EmitX86BuiltinExpr(unsigned BuiltinID, const CallExpr *E);
2061   llvm::Value *EmitPPCBuiltinExpr(unsigned BuiltinID, const CallExpr *E);
2062 
2063   llvm::Value *EmitObjCProtocolExpr(const ObjCProtocolExpr *E);
2064   llvm::Value *EmitObjCStringLiteral(const ObjCStringLiteral *E);
2065   llvm::Value *EmitObjCSelectorExpr(const ObjCSelectorExpr *E);
2066   RValue EmitObjCMessageExpr(const ObjCMessageExpr *E,
2067                              ReturnValueSlot Return = ReturnValueSlot());
2068 
2069   /// Retrieves the default cleanup kind for an ARC cleanup.
2070   /// Except under -fobjc-arc-eh, ARC cleanups are normal-only.
2071   CleanupKind getARCCleanupKind() {
2072     return CGM.getCodeGenOpts().ObjCAutoRefCountExceptions
2073              ? NormalAndEHCleanup : NormalCleanup;
2074   }
2075 
2076   // ARC primitives.
2077   void EmitARCInitWeak(llvm::Value *value, llvm::Value *addr);
2078   void EmitARCDestroyWeak(llvm::Value *addr);
2079   llvm::Value *EmitARCLoadWeak(llvm::Value *addr);
2080   llvm::Value *EmitARCLoadWeakRetained(llvm::Value *addr);
2081   llvm::Value *EmitARCStoreWeak(llvm::Value *value, llvm::Value *addr,
2082                                 bool ignored);
2083   void EmitARCCopyWeak(llvm::Value *dst, llvm::Value *src);
2084   void EmitARCMoveWeak(llvm::Value *dst, llvm::Value *src);
2085   llvm::Value *EmitARCRetainAutorelease(QualType type, llvm::Value *value);
2086   llvm::Value *EmitARCRetainAutoreleaseNonBlock(llvm::Value *value);
2087   llvm::Value *EmitARCStoreStrong(LValue lvalue, llvm::Value *value,
2088                                   bool ignored);
2089   llvm::Value *EmitARCStoreStrongCall(llvm::Value *addr, llvm::Value *value,
2090                                       bool ignored);
2091   llvm::Value *EmitARCRetain(QualType type, llvm::Value *value);
2092   llvm::Value *EmitARCRetainNonBlock(llvm::Value *value);
2093   llvm::Value *EmitARCRetainBlock(llvm::Value *value);
2094   void EmitARCRelease(llvm::Value *value, bool precise);
2095   llvm::Value *EmitARCAutorelease(llvm::Value *value);
2096   llvm::Value *EmitARCAutoreleaseReturnValue(llvm::Value *value);
2097   llvm::Value *EmitARCRetainAutoreleaseReturnValue(llvm::Value *value);
2098   llvm::Value *EmitARCRetainAutoreleasedReturnValue(llvm::Value *value);
2099 
2100   std::pair<LValue,llvm::Value*>
2101   EmitARCStoreAutoreleasing(const BinaryOperator *e);
2102   std::pair<LValue,llvm::Value*>
2103   EmitARCStoreStrong(const BinaryOperator *e, bool ignored);
2104 
2105   llvm::Value *EmitObjCProduceObject(QualType T, llvm::Value *Ptr);
2106   llvm::Value *EmitObjCConsumeObject(QualType T, llvm::Value *Ptr);
2107   llvm::Value *EmitObjCExtendObjectLifetime(QualType T, llvm::Value *Ptr);
2108 
2109   llvm::Value *EmitARCRetainScalarExpr(const Expr *expr);
2110   llvm::Value *EmitARCRetainAutoreleaseScalarExpr(const Expr *expr);
2111 
2112   void PushARCReleaseCleanup(CleanupKind kind, QualType type,
2113                              llvm::Value *addr, bool precise,
2114                              bool forFullExpr = false);
2115   void PushARCArrayReleaseCleanup(CleanupKind kind, QualType elementType,
2116                                   llvm::Value *addr,
2117                                   llvm::Value *countOrCountPtr,
2118                                   bool precise, bool forFullExpr = false);
2119   void PushARCWeakReleaseCleanup(CleanupKind kind, QualType type,
2120                                  llvm::Value *addr, bool forFullExpr = false);
2121   void PushARCArrayWeakReleaseCleanup(CleanupKind kind, QualType elementType,
2122                                       llvm::Value *addr,
2123                                       llvm::Value *countOrCountPtr,
2124                                       bool forFullExpr = false);
2125   static Destroyer destroyARCStrongImprecise;
2126   static Destroyer destroyARCStrongPrecise;
2127   static Destroyer destroyARCWeak;
2128 
2129   void PushARCFieldReleaseCleanup(CleanupKind cleanupKind,
2130                                   const FieldDecl *Field);
2131   void PushARCFieldWeakReleaseCleanup(CleanupKind cleanupKind,
2132                                       const FieldDecl *Field);
2133 
2134   void EmitObjCAutoreleasePoolPop(llvm::Value *Ptr);
2135   llvm::Value *EmitObjCAutoreleasePoolPush();
2136   llvm::Value *EmitObjCMRRAutoreleasePoolPush();
2137   void EmitObjCAutoreleasePoolCleanup(llvm::Value *Ptr);
2138   void EmitObjCMRRAutoreleasePoolPop(llvm::Value *Ptr);
2139 
2140   /// EmitReferenceBindingToExpr - Emits a reference binding to the passed in
2141   /// expression. Will emit a temporary variable if E is not an LValue.
2142   RValue EmitReferenceBindingToExpr(const Expr* E,
2143                                     const NamedDecl *InitializedDecl);
2144 
2145   //===--------------------------------------------------------------------===//
2146   //                           Expression Emission
2147   //===--------------------------------------------------------------------===//
2148 
2149   // Expressions are broken into three classes: scalar, complex, aggregate.
2150 
2151   /// EmitScalarExpr - Emit the computation of the specified expression of LLVM
2152   /// scalar type, returning the result.
2153   llvm::Value *EmitScalarExpr(const Expr *E , bool IgnoreResultAssign = false);
2154 
2155   /// EmitScalarConversion - Emit a conversion from the specified type to the
2156   /// specified destination type, both of which are LLVM scalar types.
2157   llvm::Value *EmitScalarConversion(llvm::Value *Src, QualType SrcTy,
2158                                     QualType DstTy);
2159 
2160   /// EmitComplexToScalarConversion - Emit a conversion from the specified
2161   /// complex type to the specified destination type, where the destination type
2162   /// is an LLVM scalar type.
2163   llvm::Value *EmitComplexToScalarConversion(ComplexPairTy Src, QualType SrcTy,
2164                                              QualType DstTy);
2165 
2166 
2167   /// EmitAggExpr - Emit the computation of the specified expression
2168   /// of aggregate type.  The result is computed into the given slot,
2169   /// which may be null to indicate that the value is not needed.
2170   void EmitAggExpr(const Expr *E, AggValueSlot AS, bool IgnoreResult = false);
2171 
2172   /// EmitAggExprToLValue - Emit the computation of the specified expression of
2173   /// aggregate type into a temporary LValue.
2174   LValue EmitAggExprToLValue(const Expr *E);
2175 
2176   /// EmitGCMemmoveCollectable - Emit special API for structs with object
2177   /// pointers.
2178   void EmitGCMemmoveCollectable(llvm::Value *DestPtr, llvm::Value *SrcPtr,
2179                                 QualType Ty);
2180 
2181   /// EmitExtendGCLifetime - Given a pointer to an Objective-C object,
2182   /// make sure it survives garbage collection until this point.
2183   void EmitExtendGCLifetime(llvm::Value *object);
2184 
2185   /// EmitComplexExpr - Emit the computation of the specified expression of
2186   /// complex type, returning the result.
2187   ComplexPairTy EmitComplexExpr(const Expr *E,
2188                                 bool IgnoreReal = false,
2189                                 bool IgnoreImag = false);
2190 
2191   /// EmitComplexExprIntoAddr - Emit the computation of the specified expression
2192   /// of complex type, storing into the specified Value*.
2193   void EmitComplexExprIntoAddr(const Expr *E, llvm::Value *DestAddr,
2194                                bool DestIsVolatile);
2195 
2196   /// StoreComplexToAddr - Store a complex number into the specified address.
2197   void StoreComplexToAddr(ComplexPairTy V, llvm::Value *DestAddr,
2198                           bool DestIsVolatile);
2199   /// LoadComplexFromAddr - Load a complex number from the specified address.
2200   ComplexPairTy LoadComplexFromAddr(llvm::Value *SrcAddr, bool SrcIsVolatile);
2201 
2202   /// CreateStaticVarDecl - Create a zero-initialized LLVM global for
2203   /// a static local variable.
2204   llvm::GlobalVariable *CreateStaticVarDecl(const VarDecl &D,
2205                                             const char *Separator,
2206                                        llvm::GlobalValue::LinkageTypes Linkage);
2207 
2208   /// AddInitializerToStaticVarDecl - Add the initializer for 'D' to the
2209   /// global variable that has already been created for it.  If the initializer
2210   /// has a different type than GV does, this may free GV and return a different
2211   /// one.  Otherwise it just returns GV.
2212   llvm::GlobalVariable *
2213   AddInitializerToStaticVarDecl(const VarDecl &D,
2214                                 llvm::GlobalVariable *GV);
2215 
2216 
2217   /// EmitCXXGlobalVarDeclInit - Create the initializer for a C++
2218   /// variable with global storage.
2219   void EmitCXXGlobalVarDeclInit(const VarDecl &D, llvm::Constant *DeclPtr);
2220 
2221   /// EmitCXXGlobalDtorRegistration - Emits a call to register the global ptr
2222   /// with the C++ runtime so that its destructor will be called at exit.
2223   void EmitCXXGlobalDtorRegistration(llvm::Constant *DtorFn,
2224                                      llvm::Constant *DeclPtr);
2225 
2226   /// Emit code in this function to perform a guarded variable
2227   /// initialization.  Guarded initializations are used when it's not
2228   /// possible to prove that an initialization will be done exactly
2229   /// once, e.g. with a static local variable or a static data member
2230   /// of a class template.
2231   void EmitCXXGuardedInit(const VarDecl &D, llvm::GlobalVariable *DeclPtr);
2232 
2233   /// GenerateCXXGlobalInitFunc - Generates code for initializing global
2234   /// variables.
2235   void GenerateCXXGlobalInitFunc(llvm::Function *Fn,
2236                                  llvm::Constant **Decls,
2237                                  unsigned NumDecls);
2238 
2239   /// GenerateCXXGlobalDtorFunc - Generates code for destroying global
2240   /// variables.
2241   void GenerateCXXGlobalDtorFunc(llvm::Function *Fn,
2242                                  const std::vector<std::pair<llvm::WeakVH,
2243                                    llvm::Constant*> > &DtorsAndObjects);
2244 
2245   void GenerateCXXGlobalVarDeclInitFunc(llvm::Function *Fn,
2246                                         const VarDecl *D,
2247                                         llvm::GlobalVariable *Addr);
2248 
2249   void EmitCXXConstructExpr(const CXXConstructExpr *E, AggValueSlot Dest);
2250 
2251   void EmitSynthesizedCXXCopyCtor(llvm::Value *Dest, llvm::Value *Src,
2252                                   const Expr *Exp);
2253 
2254   RValue EmitExprWithCleanups(const ExprWithCleanups *E,
2255                               AggValueSlot Slot =AggValueSlot::ignored());
2256 
2257   void EmitCXXThrowExpr(const CXXThrowExpr *E);
2258 
2259   //===--------------------------------------------------------------------===//
2260   //                             Internal Helpers
2261   //===--------------------------------------------------------------------===//
2262 
2263   /// ContainsLabel - Return true if the statement contains a label in it.  If
2264   /// this statement is not executed normally, it not containing a label means
2265   /// that we can just remove the code.
2266   static bool ContainsLabel(const Stmt *S, bool IgnoreCaseStmts = false);
2267 
2268   /// containsBreak - Return true if the statement contains a break out of it.
2269   /// If the statement (recursively) contains a switch or loop with a break
2270   /// inside of it, this is fine.
2271   static bool containsBreak(const Stmt *S);
2272 
2273   /// ConstantFoldsToSimpleInteger - If the specified expression does not fold
2274   /// to a constant, or if it does but contains a label, return false.  If it
2275   /// constant folds return true and set the boolean result in Result.
2276   bool ConstantFoldsToSimpleInteger(const Expr *Cond, bool &Result);
2277 
2278   /// ConstantFoldsToSimpleInteger - If the specified expression does not fold
2279   /// to a constant, or if it does but contains a label, return false.  If it
2280   /// constant folds return true and set the folded value.
2281   bool ConstantFoldsToSimpleInteger(const Expr *Cond, llvm::APInt &Result);
2282 
2283   /// EmitBranchOnBoolExpr - Emit a branch on a boolean condition (e.g. for an
2284   /// if statement) to the specified blocks.  Based on the condition, this might
2285   /// try to simplify the codegen of the conditional based on the branch.
2286   void EmitBranchOnBoolExpr(const Expr *Cond, llvm::BasicBlock *TrueBlock,
2287                             llvm::BasicBlock *FalseBlock);
2288 
2289   /// getTrapBB - Create a basic block that will call the trap intrinsic.  We'll
2290   /// generate a branch around the created basic block as necessary.
2291   llvm::BasicBlock *getTrapBB();
2292 
2293   /// EmitCallArg - Emit a single call argument.
2294   void EmitCallArg(CallArgList &args, const Expr *E, QualType ArgType);
2295 
2296   /// EmitDelegateCallArg - We are performing a delegate call; that
2297   /// is, the current function is delegating to another one.  Produce
2298   /// a r-value suitable for passing the given parameter.
2299   void EmitDelegateCallArg(CallArgList &args, const VarDecl *param);
2300 
2301 private:
2302   void EmitReturnOfRValue(RValue RV, QualType Ty);
2303 
2304   /// ExpandTypeFromArgs - Reconstruct a structure of type \arg Ty
2305   /// from function arguments into \arg Dst. See ABIArgInfo::Expand.
2306   ///
2307   /// \param AI - The first function argument of the expansion.
2308   /// \return The argument following the last expanded function
2309   /// argument.
2310   llvm::Function::arg_iterator
2311   ExpandTypeFromArgs(QualType Ty, LValue Dst,
2312                      llvm::Function::arg_iterator AI);
2313 
2314   /// ExpandTypeToArgs - Expand an RValue \arg Src, with the LLVM type for \arg
2315   /// Ty, into individual arguments on the provided vector \arg Args. See
2316   /// ABIArgInfo::Expand.
2317   void ExpandTypeToArgs(QualType Ty, RValue Src,
2318                         llvm::SmallVector<llvm::Value*, 16> &Args,
2319                         llvm::FunctionType *IRFuncTy);
2320 
2321   llvm::Value* EmitAsmInput(const AsmStmt &S,
2322                             const TargetInfo::ConstraintInfo &Info,
2323                             const Expr *InputExpr, std::string &ConstraintStr);
2324 
2325   llvm::Value* EmitAsmInputLValue(const AsmStmt &S,
2326                                   const TargetInfo::ConstraintInfo &Info,
2327                                   LValue InputValue, QualType InputType,
2328                                   std::string &ConstraintStr);
2329 
2330   /// EmitCallArgs - Emit call arguments for a function.
2331   /// The CallArgTypeInfo parameter is used for iterating over the known
2332   /// argument types of the function being called.
2333   template<typename T>
2334   void EmitCallArgs(CallArgList& Args, const T* CallArgTypeInfo,
2335                     CallExpr::const_arg_iterator ArgBeg,
2336                     CallExpr::const_arg_iterator ArgEnd) {
2337       CallExpr::const_arg_iterator Arg = ArgBeg;
2338 
2339     // First, use the argument types that the type info knows about
2340     if (CallArgTypeInfo) {
2341       for (typename T::arg_type_iterator I = CallArgTypeInfo->arg_type_begin(),
2342            E = CallArgTypeInfo->arg_type_end(); I != E; ++I, ++Arg) {
2343         assert(Arg != ArgEnd && "Running over edge of argument list!");
2344         QualType ArgType = *I;
2345 #ifndef NDEBUG
2346         QualType ActualArgType = Arg->getType();
2347         if (ArgType->isPointerType() && ActualArgType->isPointerType()) {
2348           QualType ActualBaseType =
2349             ActualArgType->getAs<PointerType>()->getPointeeType();
2350           QualType ArgBaseType =
2351             ArgType->getAs<PointerType>()->getPointeeType();
2352           if (ArgBaseType->isVariableArrayType()) {
2353             if (const VariableArrayType *VAT =
2354                 getContext().getAsVariableArrayType(ActualBaseType)) {
2355               if (!VAT->getSizeExpr())
2356                 ActualArgType = ArgType;
2357             }
2358           }
2359         }
2360         assert(getContext().getCanonicalType(ArgType.getNonReferenceType()).
2361                getTypePtr() ==
2362                getContext().getCanonicalType(ActualArgType).getTypePtr() &&
2363                "type mismatch in call argument!");
2364 #endif
2365         EmitCallArg(Args, *Arg, ArgType);
2366       }
2367 
2368       // Either we've emitted all the call args, or we have a call to a
2369       // variadic function.
2370       assert((Arg == ArgEnd || CallArgTypeInfo->isVariadic()) &&
2371              "Extra arguments in non-variadic function!");
2372 
2373     }
2374 
2375     // If we still have any arguments, emit them using the type of the argument.
2376     for (; Arg != ArgEnd; ++Arg)
2377       EmitCallArg(Args, *Arg, Arg->getType());
2378   }
2379 
2380   const TargetCodeGenInfo &getTargetHooks() const {
2381     return CGM.getTargetCodeGenInfo();
2382   }
2383 
2384   void EmitDeclMetadata();
2385 
2386   CodeGenModule::ByrefHelpers *
2387   buildByrefHelpers(const llvm::StructType &byrefType,
2388                     const AutoVarEmission &emission);
2389 };
2390 
2391 /// Helper class with most of the code for saving a value for a
2392 /// conditional expression cleanup.
2393 struct DominatingLLVMValue {
2394   typedef llvm::PointerIntPair<llvm::Value*, 1, bool> saved_type;
2395 
2396   /// Answer whether the given value needs extra work to be saved.
2397   static bool needsSaving(llvm::Value *value) {
2398     // If it's not an instruction, we don't need to save.
2399     if (!isa<llvm::Instruction>(value)) return false;
2400 
2401     // If it's an instruction in the entry block, we don't need to save.
2402     llvm::BasicBlock *block = cast<llvm::Instruction>(value)->getParent();
2403     return (block != &block->getParent()->getEntryBlock());
2404   }
2405 
2406   /// Try to save the given value.
2407   static saved_type save(CodeGenFunction &CGF, llvm::Value *value) {
2408     if (!needsSaving(value)) return saved_type(value, false);
2409 
2410     // Otherwise we need an alloca.
2411     llvm::Value *alloca =
2412       CGF.CreateTempAlloca(value->getType(), "cond-cleanup.save");
2413     CGF.Builder.CreateStore(value, alloca);
2414 
2415     return saved_type(alloca, true);
2416   }
2417 
2418   static llvm::Value *restore(CodeGenFunction &CGF, saved_type value) {
2419     if (!value.getInt()) return value.getPointer();
2420     return CGF.Builder.CreateLoad(value.getPointer());
2421   }
2422 };
2423 
2424 /// A partial specialization of DominatingValue for llvm::Values that
2425 /// might be llvm::Instructions.
2426 template <class T> struct DominatingPointer<T,true> : DominatingLLVMValue {
2427   typedef T *type;
2428   static type restore(CodeGenFunction &CGF, saved_type value) {
2429     return static_cast<T*>(DominatingLLVMValue::restore(CGF, value));
2430   }
2431 };
2432 
2433 /// A specialization of DominatingValue for RValue.
2434 template <> struct DominatingValue<RValue> {
2435   typedef RValue type;
2436   class saved_type {
2437     enum Kind { ScalarLiteral, ScalarAddress, AggregateLiteral,
2438                 AggregateAddress, ComplexAddress };
2439 
2440     llvm::Value *Value;
2441     Kind K;
2442     saved_type(llvm::Value *v, Kind k) : Value(v), K(k) {}
2443 
2444   public:
2445     static bool needsSaving(RValue value);
2446     static saved_type save(CodeGenFunction &CGF, RValue value);
2447     RValue restore(CodeGenFunction &CGF);
2448 
2449     // implementations in CGExprCXX.cpp
2450   };
2451 
2452   static bool needsSaving(type value) {
2453     return saved_type::needsSaving(value);
2454   }
2455   static saved_type save(CodeGenFunction &CGF, type value) {
2456     return saved_type::save(CGF, value);
2457   }
2458   static type restore(CodeGenFunction &CGF, saved_type value) {
2459     return value.restore(CGF);
2460   }
2461 };
2462 
2463 }  // end namespace CodeGen
2464 }  // end namespace clang
2465 
2466 #endif
2467