1 //===-- CodeGenFunction.h - Per-Function state for LLVM CodeGen -*- C++ -*-===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This is the internal per-function state used for llvm translation. 10 // 11 //===----------------------------------------------------------------------===// 12 13 #ifndef LLVM_CLANG_LIB_CODEGEN_CODEGENFUNCTION_H 14 #define LLVM_CLANG_LIB_CODEGEN_CODEGENFUNCTION_H 15 16 #include "CGBuilder.h" 17 #include "CGDebugInfo.h" 18 #include "CGLoopInfo.h" 19 #include "CGValue.h" 20 #include "CodeGenModule.h" 21 #include "CodeGenPGO.h" 22 #include "EHScopeStack.h" 23 #include "VarBypassDetector.h" 24 #include "clang/AST/CharUnits.h" 25 #include "clang/AST/CurrentSourceLocExprScope.h" 26 #include "clang/AST/ExprCXX.h" 27 #include "clang/AST/ExprObjC.h" 28 #include "clang/AST/ExprOpenMP.h" 29 #include "clang/AST/Type.h" 30 #include "clang/Basic/ABI.h" 31 #include "clang/Basic/CapturedStmt.h" 32 #include "clang/Basic/CodeGenOptions.h" 33 #include "clang/Basic/OpenMPKinds.h" 34 #include "clang/Basic/TargetInfo.h" 35 #include "llvm/ADT/ArrayRef.h" 36 #include "llvm/ADT/DenseMap.h" 37 #include "llvm/ADT/MapVector.h" 38 #include "llvm/ADT/SmallVector.h" 39 #include "llvm/IR/ValueHandle.h" 40 #include "llvm/Support/Debug.h" 41 #include "llvm/Transforms/Utils/SanitizerStats.h" 42 43 namespace llvm { 44 class BasicBlock; 45 class LLVMContext; 46 class MDNode; 47 class Module; 48 class SwitchInst; 49 class Twine; 50 class Value; 51 } 52 53 namespace clang { 54 class ASTContext; 55 class BlockDecl; 56 class CXXDestructorDecl; 57 class CXXForRangeStmt; 58 class CXXTryStmt; 59 class Decl; 60 class LabelDecl; 61 class EnumConstantDecl; 62 class FunctionDecl; 63 class FunctionProtoType; 64 class LabelStmt; 65 class ObjCContainerDecl; 66 class ObjCInterfaceDecl; 67 class ObjCIvarDecl; 68 class ObjCMethodDecl; 69 class ObjCImplementationDecl; 70 class ObjCPropertyImplDecl; 71 class TargetInfo; 72 class VarDecl; 73 class ObjCForCollectionStmt; 74 class ObjCAtTryStmt; 75 class ObjCAtThrowStmt; 76 class ObjCAtSynchronizedStmt; 77 class ObjCAutoreleasePoolStmt; 78 79 namespace analyze_os_log { 80 class OSLogBufferLayout; 81 } 82 83 namespace CodeGen { 84 class CodeGenTypes; 85 class CGCallee; 86 class CGFunctionInfo; 87 class CGRecordLayout; 88 class CGBlockInfo; 89 class CGCXXABI; 90 class BlockByrefHelpers; 91 class BlockByrefInfo; 92 class BlockFlags; 93 class BlockFieldFlags; 94 class RegionCodeGenTy; 95 class TargetCodeGenInfo; 96 struct OMPTaskDataTy; 97 struct CGCoroData; 98 99 /// The kind of evaluation to perform on values of a particular 100 /// type. Basically, is the code in CGExprScalar, CGExprComplex, or 101 /// CGExprAgg? 102 /// 103 /// TODO: should vectors maybe be split out into their own thing? 104 enum TypeEvaluationKind { 105 TEK_Scalar, 106 TEK_Complex, 107 TEK_Aggregate 108 }; 109 110 #define LIST_SANITIZER_CHECKS \ 111 SANITIZER_CHECK(AddOverflow, add_overflow, 0) \ 112 SANITIZER_CHECK(BuiltinUnreachable, builtin_unreachable, 0) \ 113 SANITIZER_CHECK(CFICheckFail, cfi_check_fail, 0) \ 114 SANITIZER_CHECK(DivremOverflow, divrem_overflow, 0) \ 115 SANITIZER_CHECK(DynamicTypeCacheMiss, dynamic_type_cache_miss, 0) \ 116 SANITIZER_CHECK(FloatCastOverflow, float_cast_overflow, 0) \ 117 SANITIZER_CHECK(FunctionTypeMismatch, function_type_mismatch, 0) \ 118 SANITIZER_CHECK(ImplicitConversion, implicit_conversion, 0) \ 119 SANITIZER_CHECK(InvalidBuiltin, invalid_builtin, 0) \ 120 SANITIZER_CHECK(LoadInvalidValue, load_invalid_value, 0) \ 121 SANITIZER_CHECK(MissingReturn, missing_return, 0) \ 122 SANITIZER_CHECK(MulOverflow, mul_overflow, 0) \ 123 SANITIZER_CHECK(NegateOverflow, negate_overflow, 0) \ 124 SANITIZER_CHECK(NullabilityArg, nullability_arg, 0) \ 125 SANITIZER_CHECK(NullabilityReturn, nullability_return, 1) \ 126 SANITIZER_CHECK(NonnullArg, nonnull_arg, 0) \ 127 SANITIZER_CHECK(NonnullReturn, nonnull_return, 1) \ 128 SANITIZER_CHECK(OutOfBounds, out_of_bounds, 0) \ 129 SANITIZER_CHECK(PointerOverflow, pointer_overflow, 0) \ 130 SANITIZER_CHECK(ShiftOutOfBounds, shift_out_of_bounds, 0) \ 131 SANITIZER_CHECK(SubOverflow, sub_overflow, 0) \ 132 SANITIZER_CHECK(TypeMismatch, type_mismatch, 1) \ 133 SANITIZER_CHECK(AlignmentAssumption, alignment_assumption, 0) \ 134 SANITIZER_CHECK(VLABoundNotPositive, vla_bound_not_positive, 0) 135 136 enum SanitizerHandler { 137 #define SANITIZER_CHECK(Enum, Name, Version) Enum, 138 LIST_SANITIZER_CHECKS 139 #undef SANITIZER_CHECK 140 }; 141 142 /// Helper class with most of the code for saving a value for a 143 /// conditional expression cleanup. 144 struct DominatingLLVMValue { 145 typedef llvm::PointerIntPair<llvm::Value*, 1, bool> saved_type; 146 147 /// Answer whether the given value needs extra work to be saved. 148 static bool needsSaving(llvm::Value *value) { 149 // If it's not an instruction, we don't need to save. 150 if (!isa<llvm::Instruction>(value)) return false; 151 152 // If it's an instruction in the entry block, we don't need to save. 153 llvm::BasicBlock *block = cast<llvm::Instruction>(value)->getParent(); 154 return (block != &block->getParent()->getEntryBlock()); 155 } 156 157 static saved_type save(CodeGenFunction &CGF, llvm::Value *value); 158 static llvm::Value *restore(CodeGenFunction &CGF, saved_type value); 159 }; 160 161 /// A partial specialization of DominatingValue for llvm::Values that 162 /// might be llvm::Instructions. 163 template <class T> struct DominatingPointer<T,true> : DominatingLLVMValue { 164 typedef T *type; 165 static type restore(CodeGenFunction &CGF, saved_type value) { 166 return static_cast<T*>(DominatingLLVMValue::restore(CGF, value)); 167 } 168 }; 169 170 /// A specialization of DominatingValue for Address. 171 template <> struct DominatingValue<Address> { 172 typedef Address type; 173 174 struct saved_type { 175 DominatingLLVMValue::saved_type SavedValue; 176 CharUnits Alignment; 177 }; 178 179 static bool needsSaving(type value) { 180 return DominatingLLVMValue::needsSaving(value.getPointer()); 181 } 182 static saved_type save(CodeGenFunction &CGF, type value) { 183 return { DominatingLLVMValue::save(CGF, value.getPointer()), 184 value.getAlignment() }; 185 } 186 static type restore(CodeGenFunction &CGF, saved_type value) { 187 return Address(DominatingLLVMValue::restore(CGF, value.SavedValue), 188 value.Alignment); 189 } 190 }; 191 192 /// A specialization of DominatingValue for RValue. 193 template <> struct DominatingValue<RValue> { 194 typedef RValue type; 195 class saved_type { 196 enum Kind { ScalarLiteral, ScalarAddress, AggregateLiteral, 197 AggregateAddress, ComplexAddress }; 198 199 llvm::Value *Value; 200 unsigned K : 3; 201 unsigned Align : 29; 202 saved_type(llvm::Value *v, Kind k, unsigned a = 0) 203 : Value(v), K(k), Align(a) {} 204 205 public: 206 static bool needsSaving(RValue value); 207 static saved_type save(CodeGenFunction &CGF, RValue value); 208 RValue restore(CodeGenFunction &CGF); 209 210 // implementations in CGCleanup.cpp 211 }; 212 213 static bool needsSaving(type value) { 214 return saved_type::needsSaving(value); 215 } 216 static saved_type save(CodeGenFunction &CGF, type value) { 217 return saved_type::save(CGF, value); 218 } 219 static type restore(CodeGenFunction &CGF, saved_type value) { 220 return value.restore(CGF); 221 } 222 }; 223 224 /// CodeGenFunction - This class organizes the per-function state that is used 225 /// while generating LLVM code. 226 class CodeGenFunction : public CodeGenTypeCache { 227 CodeGenFunction(const CodeGenFunction &) = delete; 228 void operator=(const CodeGenFunction &) = delete; 229 230 friend class CGCXXABI; 231 public: 232 /// A jump destination is an abstract label, branching to which may 233 /// require a jump out through normal cleanups. 234 struct JumpDest { 235 JumpDest() : Block(nullptr), ScopeDepth(), Index(0) {} 236 JumpDest(llvm::BasicBlock *Block, 237 EHScopeStack::stable_iterator Depth, 238 unsigned Index) 239 : Block(Block), ScopeDepth(Depth), Index(Index) {} 240 241 bool isValid() const { return Block != nullptr; } 242 llvm::BasicBlock *getBlock() const { return Block; } 243 EHScopeStack::stable_iterator getScopeDepth() const { return ScopeDepth; } 244 unsigned getDestIndex() const { return Index; } 245 246 // This should be used cautiously. 247 void setScopeDepth(EHScopeStack::stable_iterator depth) { 248 ScopeDepth = depth; 249 } 250 251 private: 252 llvm::BasicBlock *Block; 253 EHScopeStack::stable_iterator ScopeDepth; 254 unsigned Index; 255 }; 256 257 CodeGenModule &CGM; // Per-module state. 258 const TargetInfo &Target; 259 260 typedef std::pair<llvm::Value *, llvm::Value *> ComplexPairTy; 261 LoopInfoStack LoopStack; 262 CGBuilderTy Builder; 263 264 // Stores variables for which we can't generate correct lifetime markers 265 // because of jumps. 266 VarBypassDetector Bypasses; 267 268 // CodeGen lambda for loops and support for ordered clause 269 typedef llvm::function_ref<void(CodeGenFunction &, const OMPLoopDirective &, 270 JumpDest)> 271 CodeGenLoopTy; 272 typedef llvm::function_ref<void(CodeGenFunction &, SourceLocation, 273 const unsigned, const bool)> 274 CodeGenOrderedTy; 275 276 // Codegen lambda for loop bounds in worksharing loop constructs 277 typedef llvm::function_ref<std::pair<LValue, LValue>( 278 CodeGenFunction &, const OMPExecutableDirective &S)> 279 CodeGenLoopBoundsTy; 280 281 // Codegen lambda for loop bounds in dispatch-based loop implementation 282 typedef llvm::function_ref<std::pair<llvm::Value *, llvm::Value *>( 283 CodeGenFunction &, const OMPExecutableDirective &S, Address LB, 284 Address UB)> 285 CodeGenDispatchBoundsTy; 286 287 /// CGBuilder insert helper. This function is called after an 288 /// instruction is created using Builder. 289 void InsertHelper(llvm::Instruction *I, const llvm::Twine &Name, 290 llvm::BasicBlock *BB, 291 llvm::BasicBlock::iterator InsertPt) const; 292 293 /// CurFuncDecl - Holds the Decl for the current outermost 294 /// non-closure context. 295 const Decl *CurFuncDecl; 296 /// CurCodeDecl - This is the inner-most code context, which includes blocks. 297 const Decl *CurCodeDecl; 298 const CGFunctionInfo *CurFnInfo; 299 QualType FnRetTy; 300 llvm::Function *CurFn = nullptr; 301 302 // Holds coroutine data if the current function is a coroutine. We use a 303 // wrapper to manage its lifetime, so that we don't have to define CGCoroData 304 // in this header. 305 struct CGCoroInfo { 306 std::unique_ptr<CGCoroData> Data; 307 CGCoroInfo(); 308 ~CGCoroInfo(); 309 }; 310 CGCoroInfo CurCoro; 311 312 bool isCoroutine() const { 313 return CurCoro.Data != nullptr; 314 } 315 316 /// CurGD - The GlobalDecl for the current function being compiled. 317 GlobalDecl CurGD; 318 319 /// PrologueCleanupDepth - The cleanup depth enclosing all the 320 /// cleanups associated with the parameters. 321 EHScopeStack::stable_iterator PrologueCleanupDepth; 322 323 /// ReturnBlock - Unified return block. 324 JumpDest ReturnBlock; 325 326 /// ReturnValue - The temporary alloca to hold the return 327 /// value. This is invalid iff the function has no return value. 328 Address ReturnValue = Address::invalid(); 329 330 /// ReturnValuePointer - The temporary alloca to hold a pointer to sret. 331 /// This is invalid if sret is not in use. 332 Address ReturnValuePointer = Address::invalid(); 333 334 /// Return true if a label was seen in the current scope. 335 bool hasLabelBeenSeenInCurrentScope() const { 336 if (CurLexicalScope) 337 return CurLexicalScope->hasLabels(); 338 return !LabelMap.empty(); 339 } 340 341 /// AllocaInsertPoint - This is an instruction in the entry block before which 342 /// we prefer to insert allocas. 343 llvm::AssertingVH<llvm::Instruction> AllocaInsertPt; 344 345 /// API for captured statement code generation. 346 class CGCapturedStmtInfo { 347 public: 348 explicit CGCapturedStmtInfo(CapturedRegionKind K = CR_Default) 349 : Kind(K), ThisValue(nullptr), CXXThisFieldDecl(nullptr) {} 350 explicit CGCapturedStmtInfo(const CapturedStmt &S, 351 CapturedRegionKind K = CR_Default) 352 : Kind(K), ThisValue(nullptr), CXXThisFieldDecl(nullptr) { 353 354 RecordDecl::field_iterator Field = 355 S.getCapturedRecordDecl()->field_begin(); 356 for (CapturedStmt::const_capture_iterator I = S.capture_begin(), 357 E = S.capture_end(); 358 I != E; ++I, ++Field) { 359 if (I->capturesThis()) 360 CXXThisFieldDecl = *Field; 361 else if (I->capturesVariable()) 362 CaptureFields[I->getCapturedVar()->getCanonicalDecl()] = *Field; 363 else if (I->capturesVariableByCopy()) 364 CaptureFields[I->getCapturedVar()->getCanonicalDecl()] = *Field; 365 } 366 } 367 368 virtual ~CGCapturedStmtInfo(); 369 370 CapturedRegionKind getKind() const { return Kind; } 371 372 virtual void setContextValue(llvm::Value *V) { ThisValue = V; } 373 // Retrieve the value of the context parameter. 374 virtual llvm::Value *getContextValue() const { return ThisValue; } 375 376 /// Lookup the captured field decl for a variable. 377 virtual const FieldDecl *lookup(const VarDecl *VD) const { 378 return CaptureFields.lookup(VD->getCanonicalDecl()); 379 } 380 381 bool isCXXThisExprCaptured() const { return getThisFieldDecl() != nullptr; } 382 virtual FieldDecl *getThisFieldDecl() const { return CXXThisFieldDecl; } 383 384 static bool classof(const CGCapturedStmtInfo *) { 385 return true; 386 } 387 388 /// Emit the captured statement body. 389 virtual void EmitBody(CodeGenFunction &CGF, const Stmt *S) { 390 CGF.incrementProfileCounter(S); 391 CGF.EmitStmt(S); 392 } 393 394 /// Get the name of the capture helper. 395 virtual StringRef getHelperName() const { return "__captured_stmt"; } 396 397 private: 398 /// The kind of captured statement being generated. 399 CapturedRegionKind Kind; 400 401 /// Keep the map between VarDecl and FieldDecl. 402 llvm::SmallDenseMap<const VarDecl *, FieldDecl *> CaptureFields; 403 404 /// The base address of the captured record, passed in as the first 405 /// argument of the parallel region function. 406 llvm::Value *ThisValue; 407 408 /// Captured 'this' type. 409 FieldDecl *CXXThisFieldDecl; 410 }; 411 CGCapturedStmtInfo *CapturedStmtInfo = nullptr; 412 413 /// RAII for correct setting/restoring of CapturedStmtInfo. 414 class CGCapturedStmtRAII { 415 private: 416 CodeGenFunction &CGF; 417 CGCapturedStmtInfo *PrevCapturedStmtInfo; 418 public: 419 CGCapturedStmtRAII(CodeGenFunction &CGF, 420 CGCapturedStmtInfo *NewCapturedStmtInfo) 421 : CGF(CGF), PrevCapturedStmtInfo(CGF.CapturedStmtInfo) { 422 CGF.CapturedStmtInfo = NewCapturedStmtInfo; 423 } 424 ~CGCapturedStmtRAII() { CGF.CapturedStmtInfo = PrevCapturedStmtInfo; } 425 }; 426 427 /// An abstract representation of regular/ObjC call/message targets. 428 class AbstractCallee { 429 /// The function declaration of the callee. 430 const Decl *CalleeDecl; 431 432 public: 433 AbstractCallee() : CalleeDecl(nullptr) {} 434 AbstractCallee(const FunctionDecl *FD) : CalleeDecl(FD) {} 435 AbstractCallee(const ObjCMethodDecl *OMD) : CalleeDecl(OMD) {} 436 bool hasFunctionDecl() const { 437 return dyn_cast_or_null<FunctionDecl>(CalleeDecl); 438 } 439 const Decl *getDecl() const { return CalleeDecl; } 440 unsigned getNumParams() const { 441 if (const auto *FD = dyn_cast<FunctionDecl>(CalleeDecl)) 442 return FD->getNumParams(); 443 return cast<ObjCMethodDecl>(CalleeDecl)->param_size(); 444 } 445 const ParmVarDecl *getParamDecl(unsigned I) const { 446 if (const auto *FD = dyn_cast<FunctionDecl>(CalleeDecl)) 447 return FD->getParamDecl(I); 448 return *(cast<ObjCMethodDecl>(CalleeDecl)->param_begin() + I); 449 } 450 }; 451 452 /// Sanitizers enabled for this function. 453 SanitizerSet SanOpts; 454 455 /// True if CodeGen currently emits code implementing sanitizer checks. 456 bool IsSanitizerScope = false; 457 458 /// RAII object to set/unset CodeGenFunction::IsSanitizerScope. 459 class SanitizerScope { 460 CodeGenFunction *CGF; 461 public: 462 SanitizerScope(CodeGenFunction *CGF); 463 ~SanitizerScope(); 464 }; 465 466 /// In C++, whether we are code generating a thunk. This controls whether we 467 /// should emit cleanups. 468 bool CurFuncIsThunk = false; 469 470 /// In ARC, whether we should autorelease the return value. 471 bool AutoreleaseResult = false; 472 473 /// Whether we processed a Microsoft-style asm block during CodeGen. These can 474 /// potentially set the return value. 475 bool SawAsmBlock = false; 476 477 const NamedDecl *CurSEHParent = nullptr; 478 479 /// True if the current function is an outlined SEH helper. This can be a 480 /// finally block or filter expression. 481 bool IsOutlinedSEHHelper = false; 482 483 const CodeGen::CGBlockInfo *BlockInfo = nullptr; 484 llvm::Value *BlockPointer = nullptr; 485 486 llvm::DenseMap<const VarDecl *, FieldDecl *> LambdaCaptureFields; 487 FieldDecl *LambdaThisCaptureField = nullptr; 488 489 /// A mapping from NRVO variables to the flags used to indicate 490 /// when the NRVO has been applied to this variable. 491 llvm::DenseMap<const VarDecl *, llvm::Value *> NRVOFlags; 492 493 EHScopeStack EHStack; 494 llvm::SmallVector<char, 256> LifetimeExtendedCleanupStack; 495 llvm::SmallVector<const JumpDest *, 2> SEHTryEpilogueStack; 496 497 llvm::Instruction *CurrentFuncletPad = nullptr; 498 499 class CallLifetimeEnd final : public EHScopeStack::Cleanup { 500 llvm::Value *Addr; 501 llvm::Value *Size; 502 503 public: 504 CallLifetimeEnd(Address addr, llvm::Value *size) 505 : Addr(addr.getPointer()), Size(size) {} 506 507 void Emit(CodeGenFunction &CGF, Flags flags) override { 508 CGF.EmitLifetimeEnd(Size, Addr); 509 } 510 }; 511 512 /// Header for data within LifetimeExtendedCleanupStack. 513 struct LifetimeExtendedCleanupHeader { 514 /// The size of the following cleanup object. 515 unsigned Size; 516 /// The kind of cleanup to push: a value from the CleanupKind enumeration. 517 unsigned Kind : 31; 518 /// Whether this is a conditional cleanup. 519 unsigned IsConditional : 1; 520 521 size_t getSize() const { return Size; } 522 CleanupKind getKind() const { return (CleanupKind)Kind; } 523 bool isConditional() const { return IsConditional; } 524 }; 525 526 /// i32s containing the indexes of the cleanup destinations. 527 Address NormalCleanupDest = Address::invalid(); 528 529 unsigned NextCleanupDestIndex = 1; 530 531 /// FirstBlockInfo - The head of a singly-linked-list of block layouts. 532 CGBlockInfo *FirstBlockInfo = nullptr; 533 534 /// EHResumeBlock - Unified block containing a call to llvm.eh.resume. 535 llvm::BasicBlock *EHResumeBlock = nullptr; 536 537 /// The exception slot. All landing pads write the current exception pointer 538 /// into this alloca. 539 llvm::Value *ExceptionSlot = nullptr; 540 541 /// The selector slot. Under the MandatoryCleanup model, all landing pads 542 /// write the current selector value into this alloca. 543 llvm::AllocaInst *EHSelectorSlot = nullptr; 544 545 /// A stack of exception code slots. Entering an __except block pushes a slot 546 /// on the stack and leaving pops one. The __exception_code() intrinsic loads 547 /// a value from the top of the stack. 548 SmallVector<Address, 1> SEHCodeSlotStack; 549 550 /// Value returned by __exception_info intrinsic. 551 llvm::Value *SEHInfo = nullptr; 552 553 /// Emits a landing pad for the current EH stack. 554 llvm::BasicBlock *EmitLandingPad(); 555 556 llvm::BasicBlock *getInvokeDestImpl(); 557 558 template <class T> 559 typename DominatingValue<T>::saved_type saveValueInCond(T value) { 560 return DominatingValue<T>::save(*this, value); 561 } 562 563 public: 564 /// ObjCEHValueStack - Stack of Objective-C exception values, used for 565 /// rethrows. 566 SmallVector<llvm::Value*, 8> ObjCEHValueStack; 567 568 /// A class controlling the emission of a finally block. 569 class FinallyInfo { 570 /// Where the catchall's edge through the cleanup should go. 571 JumpDest RethrowDest; 572 573 /// A function to call to enter the catch. 574 llvm::FunctionCallee BeginCatchFn; 575 576 /// An i1 variable indicating whether or not the @finally is 577 /// running for an exception. 578 llvm::AllocaInst *ForEHVar; 579 580 /// An i8* variable into which the exception pointer to rethrow 581 /// has been saved. 582 llvm::AllocaInst *SavedExnVar; 583 584 public: 585 void enter(CodeGenFunction &CGF, const Stmt *Finally, 586 llvm::FunctionCallee beginCatchFn, 587 llvm::FunctionCallee endCatchFn, llvm::FunctionCallee rethrowFn); 588 void exit(CodeGenFunction &CGF); 589 }; 590 591 /// Returns true inside SEH __try blocks. 592 bool isSEHTryScope() const { return !SEHTryEpilogueStack.empty(); } 593 594 /// Returns true while emitting a cleanuppad. 595 bool isCleanupPadScope() const { 596 return CurrentFuncletPad && isa<llvm::CleanupPadInst>(CurrentFuncletPad); 597 } 598 599 /// pushFullExprCleanup - Push a cleanup to be run at the end of the 600 /// current full-expression. Safe against the possibility that 601 /// we're currently inside a conditionally-evaluated expression. 602 template <class T, class... As> 603 void pushFullExprCleanup(CleanupKind kind, As... A) { 604 // If we're not in a conditional branch, or if none of the 605 // arguments requires saving, then use the unconditional cleanup. 606 if (!isInConditionalBranch()) 607 return EHStack.pushCleanup<T>(kind, A...); 608 609 // Stash values in a tuple so we can guarantee the order of saves. 610 typedef std::tuple<typename DominatingValue<As>::saved_type...> SavedTuple; 611 SavedTuple Saved{saveValueInCond(A)...}; 612 613 typedef EHScopeStack::ConditionalCleanup<T, As...> CleanupType; 614 EHStack.pushCleanupTuple<CleanupType>(kind, Saved); 615 initFullExprCleanup(); 616 } 617 618 /// Queue a cleanup to be pushed after finishing the current 619 /// full-expression. 620 template <class T, class... As> 621 void pushCleanupAfterFullExpr(CleanupKind Kind, As... A) { 622 if (!isInConditionalBranch()) 623 return pushCleanupAfterFullExprImpl<T>(Kind, Address::invalid(), A...); 624 625 Address ActiveFlag = createCleanupActiveFlag(); 626 assert(!DominatingValue<Address>::needsSaving(ActiveFlag) && 627 "cleanup active flag should never need saving"); 628 629 typedef std::tuple<typename DominatingValue<As>::saved_type...> SavedTuple; 630 SavedTuple Saved{saveValueInCond(A)...}; 631 632 typedef EHScopeStack::ConditionalCleanup<T, As...> CleanupType; 633 pushCleanupAfterFullExprImpl<CleanupType>(Kind, ActiveFlag, Saved); 634 } 635 636 template <class T, class... As> 637 void pushCleanupAfterFullExprImpl(CleanupKind Kind, Address ActiveFlag, 638 As... A) { 639 LifetimeExtendedCleanupHeader Header = {sizeof(T), Kind, 640 ActiveFlag.isValid()}; 641 642 size_t OldSize = LifetimeExtendedCleanupStack.size(); 643 LifetimeExtendedCleanupStack.resize( 644 LifetimeExtendedCleanupStack.size() + sizeof(Header) + Header.Size + 645 (Header.IsConditional ? sizeof(ActiveFlag) : 0)); 646 647 static_assert(sizeof(Header) % alignof(T) == 0, 648 "Cleanup will be allocated on misaligned address"); 649 char *Buffer = &LifetimeExtendedCleanupStack[OldSize]; 650 new (Buffer) LifetimeExtendedCleanupHeader(Header); 651 new (Buffer + sizeof(Header)) T(A...); 652 if (Header.IsConditional) 653 new (Buffer + sizeof(Header) + sizeof(T)) Address(ActiveFlag); 654 } 655 656 /// Set up the last cleanup that was pushed as a conditional 657 /// full-expression cleanup. 658 void initFullExprCleanup() { 659 initFullExprCleanupWithFlag(createCleanupActiveFlag()); 660 } 661 662 void initFullExprCleanupWithFlag(Address ActiveFlag); 663 Address createCleanupActiveFlag(); 664 665 /// PushDestructorCleanup - Push a cleanup to call the 666 /// complete-object destructor of an object of the given type at the 667 /// given address. Does nothing if T is not a C++ class type with a 668 /// non-trivial destructor. 669 void PushDestructorCleanup(QualType T, Address Addr); 670 671 /// PushDestructorCleanup - Push a cleanup to call the 672 /// complete-object variant of the given destructor on the object at 673 /// the given address. 674 void PushDestructorCleanup(const CXXDestructorDecl *Dtor, Address Addr); 675 676 /// PopCleanupBlock - Will pop the cleanup entry on the stack and 677 /// process all branch fixups. 678 void PopCleanupBlock(bool FallThroughIsBranchThrough = false); 679 680 /// DeactivateCleanupBlock - Deactivates the given cleanup block. 681 /// The block cannot be reactivated. Pops it if it's the top of the 682 /// stack. 683 /// 684 /// \param DominatingIP - An instruction which is known to 685 /// dominate the current IP (if set) and which lies along 686 /// all paths of execution between the current IP and the 687 /// the point at which the cleanup comes into scope. 688 void DeactivateCleanupBlock(EHScopeStack::stable_iterator Cleanup, 689 llvm::Instruction *DominatingIP); 690 691 /// ActivateCleanupBlock - Activates an initially-inactive cleanup. 692 /// Cannot be used to resurrect a deactivated cleanup. 693 /// 694 /// \param DominatingIP - An instruction which is known to 695 /// dominate the current IP (if set) and which lies along 696 /// all paths of execution between the current IP and the 697 /// the point at which the cleanup comes into scope. 698 void ActivateCleanupBlock(EHScopeStack::stable_iterator Cleanup, 699 llvm::Instruction *DominatingIP); 700 701 /// Enters a new scope for capturing cleanups, all of which 702 /// will be executed once the scope is exited. 703 class RunCleanupsScope { 704 EHScopeStack::stable_iterator CleanupStackDepth, OldCleanupScopeDepth; 705 size_t LifetimeExtendedCleanupStackSize; 706 bool OldDidCallStackSave; 707 protected: 708 bool PerformCleanup; 709 private: 710 711 RunCleanupsScope(const RunCleanupsScope &) = delete; 712 void operator=(const RunCleanupsScope &) = delete; 713 714 protected: 715 CodeGenFunction& CGF; 716 717 public: 718 /// Enter a new cleanup scope. 719 explicit RunCleanupsScope(CodeGenFunction &CGF) 720 : PerformCleanup(true), CGF(CGF) 721 { 722 CleanupStackDepth = CGF.EHStack.stable_begin(); 723 LifetimeExtendedCleanupStackSize = 724 CGF.LifetimeExtendedCleanupStack.size(); 725 OldDidCallStackSave = CGF.DidCallStackSave; 726 CGF.DidCallStackSave = false; 727 OldCleanupScopeDepth = CGF.CurrentCleanupScopeDepth; 728 CGF.CurrentCleanupScopeDepth = CleanupStackDepth; 729 } 730 731 /// Exit this cleanup scope, emitting any accumulated cleanups. 732 ~RunCleanupsScope() { 733 if (PerformCleanup) 734 ForceCleanup(); 735 } 736 737 /// Determine whether this scope requires any cleanups. 738 bool requiresCleanups() const { 739 return CGF.EHStack.stable_begin() != CleanupStackDepth; 740 } 741 742 /// Force the emission of cleanups now, instead of waiting 743 /// until this object is destroyed. 744 /// \param ValuesToReload - A list of values that need to be available at 745 /// the insertion point after cleanup emission. If cleanup emission created 746 /// a shared cleanup block, these value pointers will be rewritten. 747 /// Otherwise, they not will be modified. 748 void ForceCleanup(std::initializer_list<llvm::Value**> ValuesToReload = {}) { 749 assert(PerformCleanup && "Already forced cleanup"); 750 CGF.DidCallStackSave = OldDidCallStackSave; 751 CGF.PopCleanupBlocks(CleanupStackDepth, LifetimeExtendedCleanupStackSize, 752 ValuesToReload); 753 PerformCleanup = false; 754 CGF.CurrentCleanupScopeDepth = OldCleanupScopeDepth; 755 } 756 }; 757 758 // Cleanup stack depth of the RunCleanupsScope that was pushed most recently. 759 EHScopeStack::stable_iterator CurrentCleanupScopeDepth = 760 EHScopeStack::stable_end(); 761 762 class LexicalScope : public RunCleanupsScope { 763 SourceRange Range; 764 SmallVector<const LabelDecl*, 4> Labels; 765 LexicalScope *ParentScope; 766 767 LexicalScope(const LexicalScope &) = delete; 768 void operator=(const LexicalScope &) = delete; 769 770 public: 771 /// Enter a new cleanup scope. 772 explicit LexicalScope(CodeGenFunction &CGF, SourceRange Range) 773 : RunCleanupsScope(CGF), Range(Range), ParentScope(CGF.CurLexicalScope) { 774 CGF.CurLexicalScope = this; 775 if (CGDebugInfo *DI = CGF.getDebugInfo()) 776 DI->EmitLexicalBlockStart(CGF.Builder, Range.getBegin()); 777 } 778 779 void addLabel(const LabelDecl *label) { 780 assert(PerformCleanup && "adding label to dead scope?"); 781 Labels.push_back(label); 782 } 783 784 /// Exit this cleanup scope, emitting any accumulated 785 /// cleanups. 786 ~LexicalScope() { 787 if (CGDebugInfo *DI = CGF.getDebugInfo()) 788 DI->EmitLexicalBlockEnd(CGF.Builder, Range.getEnd()); 789 790 // If we should perform a cleanup, force them now. Note that 791 // this ends the cleanup scope before rescoping any labels. 792 if (PerformCleanup) { 793 ApplyDebugLocation DL(CGF, Range.getEnd()); 794 ForceCleanup(); 795 } 796 } 797 798 /// Force the emission of cleanups now, instead of waiting 799 /// until this object is destroyed. 800 void ForceCleanup() { 801 CGF.CurLexicalScope = ParentScope; 802 RunCleanupsScope::ForceCleanup(); 803 804 if (!Labels.empty()) 805 rescopeLabels(); 806 } 807 808 bool hasLabels() const { 809 return !Labels.empty(); 810 } 811 812 void rescopeLabels(); 813 }; 814 815 typedef llvm::DenseMap<const Decl *, Address> DeclMapTy; 816 817 /// The class used to assign some variables some temporarily addresses. 818 class OMPMapVars { 819 DeclMapTy SavedLocals; 820 DeclMapTy SavedTempAddresses; 821 OMPMapVars(const OMPMapVars &) = delete; 822 void operator=(const OMPMapVars &) = delete; 823 824 public: 825 explicit OMPMapVars() = default; 826 ~OMPMapVars() { 827 assert(SavedLocals.empty() && "Did not restored original addresses."); 828 }; 829 830 /// Sets the address of the variable \p LocalVD to be \p TempAddr in 831 /// function \p CGF. 832 /// \return true if at least one variable was set already, false otherwise. 833 bool setVarAddr(CodeGenFunction &CGF, const VarDecl *LocalVD, 834 Address TempAddr) { 835 LocalVD = LocalVD->getCanonicalDecl(); 836 // Only save it once. 837 if (SavedLocals.count(LocalVD)) return false; 838 839 // Copy the existing local entry to SavedLocals. 840 auto it = CGF.LocalDeclMap.find(LocalVD); 841 if (it != CGF.LocalDeclMap.end()) 842 SavedLocals.try_emplace(LocalVD, it->second); 843 else 844 SavedLocals.try_emplace(LocalVD, Address::invalid()); 845 846 // Generate the private entry. 847 QualType VarTy = LocalVD->getType(); 848 if (VarTy->isReferenceType()) { 849 Address Temp = CGF.CreateMemTemp(VarTy); 850 CGF.Builder.CreateStore(TempAddr.getPointer(), Temp); 851 TempAddr = Temp; 852 } 853 SavedTempAddresses.try_emplace(LocalVD, TempAddr); 854 855 return true; 856 } 857 858 /// Applies new addresses to the list of the variables. 859 /// \return true if at least one variable is using new address, false 860 /// otherwise. 861 bool apply(CodeGenFunction &CGF) { 862 copyInto(SavedTempAddresses, CGF.LocalDeclMap); 863 SavedTempAddresses.clear(); 864 return !SavedLocals.empty(); 865 } 866 867 /// Restores original addresses of the variables. 868 void restore(CodeGenFunction &CGF) { 869 if (!SavedLocals.empty()) { 870 copyInto(SavedLocals, CGF.LocalDeclMap); 871 SavedLocals.clear(); 872 } 873 } 874 875 private: 876 /// Copy all the entries in the source map over the corresponding 877 /// entries in the destination, which must exist. 878 static void copyInto(const DeclMapTy &Src, DeclMapTy &Dest) { 879 for (auto &Pair : Src) { 880 if (!Pair.second.isValid()) { 881 Dest.erase(Pair.first); 882 continue; 883 } 884 885 auto I = Dest.find(Pair.first); 886 if (I != Dest.end()) 887 I->second = Pair.second; 888 else 889 Dest.insert(Pair); 890 } 891 } 892 }; 893 894 /// The scope used to remap some variables as private in the OpenMP loop body 895 /// (or other captured region emitted without outlining), and to restore old 896 /// vars back on exit. 897 class OMPPrivateScope : public RunCleanupsScope { 898 OMPMapVars MappedVars; 899 OMPPrivateScope(const OMPPrivateScope &) = delete; 900 void operator=(const OMPPrivateScope &) = delete; 901 902 public: 903 /// Enter a new OpenMP private scope. 904 explicit OMPPrivateScope(CodeGenFunction &CGF) : RunCleanupsScope(CGF) {} 905 906 /// Registers \p LocalVD variable as a private and apply \p PrivateGen 907 /// function for it to generate corresponding private variable. \p 908 /// PrivateGen returns an address of the generated private variable. 909 /// \return true if the variable is registered as private, false if it has 910 /// been privatized already. 911 bool addPrivate(const VarDecl *LocalVD, 912 const llvm::function_ref<Address()> PrivateGen) { 913 assert(PerformCleanup && "adding private to dead scope"); 914 return MappedVars.setVarAddr(CGF, LocalVD, PrivateGen()); 915 } 916 917 /// Privatizes local variables previously registered as private. 918 /// Registration is separate from the actual privatization to allow 919 /// initializers use values of the original variables, not the private one. 920 /// This is important, for example, if the private variable is a class 921 /// variable initialized by a constructor that references other private 922 /// variables. But at initialization original variables must be used, not 923 /// private copies. 924 /// \return true if at least one variable was privatized, false otherwise. 925 bool Privatize() { return MappedVars.apply(CGF); } 926 927 void ForceCleanup() { 928 RunCleanupsScope::ForceCleanup(); 929 MappedVars.restore(CGF); 930 } 931 932 /// Exit scope - all the mapped variables are restored. 933 ~OMPPrivateScope() { 934 if (PerformCleanup) 935 ForceCleanup(); 936 } 937 938 /// Checks if the global variable is captured in current function. 939 bool isGlobalVarCaptured(const VarDecl *VD) const { 940 VD = VD->getCanonicalDecl(); 941 return !VD->isLocalVarDeclOrParm() && CGF.LocalDeclMap.count(VD) > 0; 942 } 943 }; 944 945 /// Takes the old cleanup stack size and emits the cleanup blocks 946 /// that have been added. 947 void 948 PopCleanupBlocks(EHScopeStack::stable_iterator OldCleanupStackSize, 949 std::initializer_list<llvm::Value **> ValuesToReload = {}); 950 951 /// Takes the old cleanup stack size and emits the cleanup blocks 952 /// that have been added, then adds all lifetime-extended cleanups from 953 /// the given position to the stack. 954 void 955 PopCleanupBlocks(EHScopeStack::stable_iterator OldCleanupStackSize, 956 size_t OldLifetimeExtendedStackSize, 957 std::initializer_list<llvm::Value **> ValuesToReload = {}); 958 959 void ResolveBranchFixups(llvm::BasicBlock *Target); 960 961 /// The given basic block lies in the current EH scope, but may be a 962 /// target of a potentially scope-crossing jump; get a stable handle 963 /// to which we can perform this jump later. 964 JumpDest getJumpDestInCurrentScope(llvm::BasicBlock *Target) { 965 return JumpDest(Target, 966 EHStack.getInnermostNormalCleanup(), 967 NextCleanupDestIndex++); 968 } 969 970 /// The given basic block lies in the current EH scope, but may be a 971 /// target of a potentially scope-crossing jump; get a stable handle 972 /// to which we can perform this jump later. 973 JumpDest getJumpDestInCurrentScope(StringRef Name = StringRef()) { 974 return getJumpDestInCurrentScope(createBasicBlock(Name)); 975 } 976 977 /// EmitBranchThroughCleanup - Emit a branch from the current insert 978 /// block through the normal cleanup handling code (if any) and then 979 /// on to \arg Dest. 980 void EmitBranchThroughCleanup(JumpDest Dest); 981 982 /// isObviouslyBranchWithoutCleanups - Return true if a branch to the 983 /// specified destination obviously has no cleanups to run. 'false' is always 984 /// a conservatively correct answer for this method. 985 bool isObviouslyBranchWithoutCleanups(JumpDest Dest) const; 986 987 /// popCatchScope - Pops the catch scope at the top of the EHScope 988 /// stack, emitting any required code (other than the catch handlers 989 /// themselves). 990 void popCatchScope(); 991 992 llvm::BasicBlock *getEHResumeBlock(bool isCleanup); 993 llvm::BasicBlock *getEHDispatchBlock(EHScopeStack::stable_iterator scope); 994 llvm::BasicBlock * 995 getFuncletEHDispatchBlock(EHScopeStack::stable_iterator scope); 996 997 /// An object to manage conditionally-evaluated expressions. 998 class ConditionalEvaluation { 999 llvm::BasicBlock *StartBB; 1000 1001 public: 1002 ConditionalEvaluation(CodeGenFunction &CGF) 1003 : StartBB(CGF.Builder.GetInsertBlock()) {} 1004 1005 void begin(CodeGenFunction &CGF) { 1006 assert(CGF.OutermostConditional != this); 1007 if (!CGF.OutermostConditional) 1008 CGF.OutermostConditional = this; 1009 } 1010 1011 void end(CodeGenFunction &CGF) { 1012 assert(CGF.OutermostConditional != nullptr); 1013 if (CGF.OutermostConditional == this) 1014 CGF.OutermostConditional = nullptr; 1015 } 1016 1017 /// Returns a block which will be executed prior to each 1018 /// evaluation of the conditional code. 1019 llvm::BasicBlock *getStartingBlock() const { 1020 return StartBB; 1021 } 1022 }; 1023 1024 /// isInConditionalBranch - Return true if we're currently emitting 1025 /// one branch or the other of a conditional expression. 1026 bool isInConditionalBranch() const { return OutermostConditional != nullptr; } 1027 1028 void setBeforeOutermostConditional(llvm::Value *value, Address addr) { 1029 assert(isInConditionalBranch()); 1030 llvm::BasicBlock *block = OutermostConditional->getStartingBlock(); 1031 auto store = new llvm::StoreInst(value, addr.getPointer(), &block->back()); 1032 store->setAlignment(addr.getAlignment().getQuantity()); 1033 } 1034 1035 /// An RAII object to record that we're evaluating a statement 1036 /// expression. 1037 class StmtExprEvaluation { 1038 CodeGenFunction &CGF; 1039 1040 /// We have to save the outermost conditional: cleanups in a 1041 /// statement expression aren't conditional just because the 1042 /// StmtExpr is. 1043 ConditionalEvaluation *SavedOutermostConditional; 1044 1045 public: 1046 StmtExprEvaluation(CodeGenFunction &CGF) 1047 : CGF(CGF), SavedOutermostConditional(CGF.OutermostConditional) { 1048 CGF.OutermostConditional = nullptr; 1049 } 1050 1051 ~StmtExprEvaluation() { 1052 CGF.OutermostConditional = SavedOutermostConditional; 1053 CGF.EnsureInsertPoint(); 1054 } 1055 }; 1056 1057 /// An object which temporarily prevents a value from being 1058 /// destroyed by aggressive peephole optimizations that assume that 1059 /// all uses of a value have been realized in the IR. 1060 class PeepholeProtection { 1061 llvm::Instruction *Inst; 1062 friend class CodeGenFunction; 1063 1064 public: 1065 PeepholeProtection() : Inst(nullptr) {} 1066 }; 1067 1068 /// A non-RAII class containing all the information about a bound 1069 /// opaque value. OpaqueValueMapping, below, is a RAII wrapper for 1070 /// this which makes individual mappings very simple; using this 1071 /// class directly is useful when you have a variable number of 1072 /// opaque values or don't want the RAII functionality for some 1073 /// reason. 1074 class OpaqueValueMappingData { 1075 const OpaqueValueExpr *OpaqueValue; 1076 bool BoundLValue; 1077 CodeGenFunction::PeepholeProtection Protection; 1078 1079 OpaqueValueMappingData(const OpaqueValueExpr *ov, 1080 bool boundLValue) 1081 : OpaqueValue(ov), BoundLValue(boundLValue) {} 1082 public: 1083 OpaqueValueMappingData() : OpaqueValue(nullptr) {} 1084 1085 static bool shouldBindAsLValue(const Expr *expr) { 1086 // gl-values should be bound as l-values for obvious reasons. 1087 // Records should be bound as l-values because IR generation 1088 // always keeps them in memory. Expressions of function type 1089 // act exactly like l-values but are formally required to be 1090 // r-values in C. 1091 return expr->isGLValue() || 1092 expr->getType()->isFunctionType() || 1093 hasAggregateEvaluationKind(expr->getType()); 1094 } 1095 1096 static OpaqueValueMappingData bind(CodeGenFunction &CGF, 1097 const OpaqueValueExpr *ov, 1098 const Expr *e) { 1099 if (shouldBindAsLValue(ov)) 1100 return bind(CGF, ov, CGF.EmitLValue(e)); 1101 return bind(CGF, ov, CGF.EmitAnyExpr(e)); 1102 } 1103 1104 static OpaqueValueMappingData bind(CodeGenFunction &CGF, 1105 const OpaqueValueExpr *ov, 1106 const LValue &lv) { 1107 assert(shouldBindAsLValue(ov)); 1108 CGF.OpaqueLValues.insert(std::make_pair(ov, lv)); 1109 return OpaqueValueMappingData(ov, true); 1110 } 1111 1112 static OpaqueValueMappingData bind(CodeGenFunction &CGF, 1113 const OpaqueValueExpr *ov, 1114 const RValue &rv) { 1115 assert(!shouldBindAsLValue(ov)); 1116 CGF.OpaqueRValues.insert(std::make_pair(ov, rv)); 1117 1118 OpaqueValueMappingData data(ov, false); 1119 1120 // Work around an extremely aggressive peephole optimization in 1121 // EmitScalarConversion which assumes that all other uses of a 1122 // value are extant. 1123 data.Protection = CGF.protectFromPeepholes(rv); 1124 1125 return data; 1126 } 1127 1128 bool isValid() const { return OpaqueValue != nullptr; } 1129 void clear() { OpaqueValue = nullptr; } 1130 1131 void unbind(CodeGenFunction &CGF) { 1132 assert(OpaqueValue && "no data to unbind!"); 1133 1134 if (BoundLValue) { 1135 CGF.OpaqueLValues.erase(OpaqueValue); 1136 } else { 1137 CGF.OpaqueRValues.erase(OpaqueValue); 1138 CGF.unprotectFromPeepholes(Protection); 1139 } 1140 } 1141 }; 1142 1143 /// An RAII object to set (and then clear) a mapping for an OpaqueValueExpr. 1144 class OpaqueValueMapping { 1145 CodeGenFunction &CGF; 1146 OpaqueValueMappingData Data; 1147 1148 public: 1149 static bool shouldBindAsLValue(const Expr *expr) { 1150 return OpaqueValueMappingData::shouldBindAsLValue(expr); 1151 } 1152 1153 /// Build the opaque value mapping for the given conditional 1154 /// operator if it's the GNU ?: extension. This is a common 1155 /// enough pattern that the convenience operator is really 1156 /// helpful. 1157 /// 1158 OpaqueValueMapping(CodeGenFunction &CGF, 1159 const AbstractConditionalOperator *op) : CGF(CGF) { 1160 if (isa<ConditionalOperator>(op)) 1161 // Leave Data empty. 1162 return; 1163 1164 const BinaryConditionalOperator *e = cast<BinaryConditionalOperator>(op); 1165 Data = OpaqueValueMappingData::bind(CGF, e->getOpaqueValue(), 1166 e->getCommon()); 1167 } 1168 1169 /// Build the opaque value mapping for an OpaqueValueExpr whose source 1170 /// expression is set to the expression the OVE represents. 1171 OpaqueValueMapping(CodeGenFunction &CGF, const OpaqueValueExpr *OV) 1172 : CGF(CGF) { 1173 if (OV) { 1174 assert(OV->getSourceExpr() && "wrong form of OpaqueValueMapping used " 1175 "for OVE with no source expression"); 1176 Data = OpaqueValueMappingData::bind(CGF, OV, OV->getSourceExpr()); 1177 } 1178 } 1179 1180 OpaqueValueMapping(CodeGenFunction &CGF, 1181 const OpaqueValueExpr *opaqueValue, 1182 LValue lvalue) 1183 : CGF(CGF), Data(OpaqueValueMappingData::bind(CGF, opaqueValue, lvalue)) { 1184 } 1185 1186 OpaqueValueMapping(CodeGenFunction &CGF, 1187 const OpaqueValueExpr *opaqueValue, 1188 RValue rvalue) 1189 : CGF(CGF), Data(OpaqueValueMappingData::bind(CGF, opaqueValue, rvalue)) { 1190 } 1191 1192 void pop() { 1193 Data.unbind(CGF); 1194 Data.clear(); 1195 } 1196 1197 ~OpaqueValueMapping() { 1198 if (Data.isValid()) Data.unbind(CGF); 1199 } 1200 }; 1201 1202 private: 1203 CGDebugInfo *DebugInfo; 1204 /// Used to create unique names for artificial VLA size debug info variables. 1205 unsigned VLAExprCounter = 0; 1206 bool DisableDebugInfo = false; 1207 1208 /// DidCallStackSave - Whether llvm.stacksave has been called. Used to avoid 1209 /// calling llvm.stacksave for multiple VLAs in the same scope. 1210 bool DidCallStackSave = false; 1211 1212 /// IndirectBranch - The first time an indirect goto is seen we create a block 1213 /// with an indirect branch. Every time we see the address of a label taken, 1214 /// we add the label to the indirect goto. Every subsequent indirect goto is 1215 /// codegen'd as a jump to the IndirectBranch's basic block. 1216 llvm::IndirectBrInst *IndirectBranch = nullptr; 1217 1218 /// LocalDeclMap - This keeps track of the LLVM allocas or globals for local C 1219 /// decls. 1220 DeclMapTy LocalDeclMap; 1221 1222 // Keep track of the cleanups for callee-destructed parameters pushed to the 1223 // cleanup stack so that they can be deactivated later. 1224 llvm::DenseMap<const ParmVarDecl *, EHScopeStack::stable_iterator> 1225 CalleeDestructedParamCleanups; 1226 1227 /// SizeArguments - If a ParmVarDecl had the pass_object_size attribute, this 1228 /// will contain a mapping from said ParmVarDecl to its implicit "object_size" 1229 /// parameter. 1230 llvm::SmallDenseMap<const ParmVarDecl *, const ImplicitParamDecl *, 2> 1231 SizeArguments; 1232 1233 /// Track escaped local variables with auto storage. Used during SEH 1234 /// outlining to produce a call to llvm.localescape. 1235 llvm::DenseMap<llvm::AllocaInst *, int> EscapedLocals; 1236 1237 /// LabelMap - This keeps track of the LLVM basic block for each C label. 1238 llvm::DenseMap<const LabelDecl*, JumpDest> LabelMap; 1239 1240 // BreakContinueStack - This keeps track of where break and continue 1241 // statements should jump to. 1242 struct BreakContinue { 1243 BreakContinue(JumpDest Break, JumpDest Continue) 1244 : BreakBlock(Break), ContinueBlock(Continue) {} 1245 1246 JumpDest BreakBlock; 1247 JumpDest ContinueBlock; 1248 }; 1249 SmallVector<BreakContinue, 8> BreakContinueStack; 1250 1251 /// Handles cancellation exit points in OpenMP-related constructs. 1252 class OpenMPCancelExitStack { 1253 /// Tracks cancellation exit point and join point for cancel-related exit 1254 /// and normal exit. 1255 struct CancelExit { 1256 CancelExit() = default; 1257 CancelExit(OpenMPDirectiveKind Kind, JumpDest ExitBlock, 1258 JumpDest ContBlock) 1259 : Kind(Kind), ExitBlock(ExitBlock), ContBlock(ContBlock) {} 1260 OpenMPDirectiveKind Kind = OMPD_unknown; 1261 /// true if the exit block has been emitted already by the special 1262 /// emitExit() call, false if the default codegen is used. 1263 bool HasBeenEmitted = false; 1264 JumpDest ExitBlock; 1265 JumpDest ContBlock; 1266 }; 1267 1268 SmallVector<CancelExit, 8> Stack; 1269 1270 public: 1271 OpenMPCancelExitStack() : Stack(1) {} 1272 ~OpenMPCancelExitStack() = default; 1273 /// Fetches the exit block for the current OpenMP construct. 1274 JumpDest getExitBlock() const { return Stack.back().ExitBlock; } 1275 /// Emits exit block with special codegen procedure specific for the related 1276 /// OpenMP construct + emits code for normal construct cleanup. 1277 void emitExit(CodeGenFunction &CGF, OpenMPDirectiveKind Kind, 1278 const llvm::function_ref<void(CodeGenFunction &)> CodeGen) { 1279 if (Stack.back().Kind == Kind && getExitBlock().isValid()) { 1280 assert(CGF.getOMPCancelDestination(Kind).isValid()); 1281 assert(CGF.HaveInsertPoint()); 1282 assert(!Stack.back().HasBeenEmitted); 1283 auto IP = CGF.Builder.saveAndClearIP(); 1284 CGF.EmitBlock(Stack.back().ExitBlock.getBlock()); 1285 CodeGen(CGF); 1286 CGF.EmitBranch(Stack.back().ContBlock.getBlock()); 1287 CGF.Builder.restoreIP(IP); 1288 Stack.back().HasBeenEmitted = true; 1289 } 1290 CodeGen(CGF); 1291 } 1292 /// Enter the cancel supporting \a Kind construct. 1293 /// \param Kind OpenMP directive that supports cancel constructs. 1294 /// \param HasCancel true, if the construct has inner cancel directive, 1295 /// false otherwise. 1296 void enter(CodeGenFunction &CGF, OpenMPDirectiveKind Kind, bool HasCancel) { 1297 Stack.push_back({Kind, 1298 HasCancel ? CGF.getJumpDestInCurrentScope("cancel.exit") 1299 : JumpDest(), 1300 HasCancel ? CGF.getJumpDestInCurrentScope("cancel.cont") 1301 : JumpDest()}); 1302 } 1303 /// Emits default exit point for the cancel construct (if the special one 1304 /// has not be used) + join point for cancel/normal exits. 1305 void exit(CodeGenFunction &CGF) { 1306 if (getExitBlock().isValid()) { 1307 assert(CGF.getOMPCancelDestination(Stack.back().Kind).isValid()); 1308 bool HaveIP = CGF.HaveInsertPoint(); 1309 if (!Stack.back().HasBeenEmitted) { 1310 if (HaveIP) 1311 CGF.EmitBranchThroughCleanup(Stack.back().ContBlock); 1312 CGF.EmitBlock(Stack.back().ExitBlock.getBlock()); 1313 CGF.EmitBranchThroughCleanup(Stack.back().ContBlock); 1314 } 1315 CGF.EmitBlock(Stack.back().ContBlock.getBlock()); 1316 if (!HaveIP) { 1317 CGF.Builder.CreateUnreachable(); 1318 CGF.Builder.ClearInsertionPoint(); 1319 } 1320 } 1321 Stack.pop_back(); 1322 } 1323 }; 1324 OpenMPCancelExitStack OMPCancelStack; 1325 1326 CodeGenPGO PGO; 1327 1328 /// Calculate branch weights appropriate for PGO data 1329 llvm::MDNode *createProfileWeights(uint64_t TrueCount, uint64_t FalseCount); 1330 llvm::MDNode *createProfileWeights(ArrayRef<uint64_t> Weights); 1331 llvm::MDNode *createProfileWeightsForLoop(const Stmt *Cond, 1332 uint64_t LoopCount); 1333 1334 public: 1335 /// Increment the profiler's counter for the given statement by \p StepV. 1336 /// If \p StepV is null, the default increment is 1. 1337 void incrementProfileCounter(const Stmt *S, llvm::Value *StepV = nullptr) { 1338 if (CGM.getCodeGenOpts().hasProfileClangInstr()) 1339 PGO.emitCounterIncrement(Builder, S, StepV); 1340 PGO.setCurrentStmt(S); 1341 } 1342 1343 /// Get the profiler's count for the given statement. 1344 uint64_t getProfileCount(const Stmt *S) { 1345 Optional<uint64_t> Count = PGO.getStmtCount(S); 1346 if (!Count.hasValue()) 1347 return 0; 1348 return *Count; 1349 } 1350 1351 /// Set the profiler's current count. 1352 void setCurrentProfileCount(uint64_t Count) { 1353 PGO.setCurrentRegionCount(Count); 1354 } 1355 1356 /// Get the profiler's current count. This is generally the count for the most 1357 /// recently incremented counter. 1358 uint64_t getCurrentProfileCount() { 1359 return PGO.getCurrentRegionCount(); 1360 } 1361 1362 private: 1363 1364 /// SwitchInsn - This is nearest current switch instruction. It is null if 1365 /// current context is not in a switch. 1366 llvm::SwitchInst *SwitchInsn = nullptr; 1367 /// The branch weights of SwitchInsn when doing instrumentation based PGO. 1368 SmallVector<uint64_t, 16> *SwitchWeights = nullptr; 1369 1370 /// CaseRangeBlock - This block holds if condition check for last case 1371 /// statement range in current switch instruction. 1372 llvm::BasicBlock *CaseRangeBlock = nullptr; 1373 1374 /// OpaqueLValues - Keeps track of the current set of opaque value 1375 /// expressions. 1376 llvm::DenseMap<const OpaqueValueExpr *, LValue> OpaqueLValues; 1377 llvm::DenseMap<const OpaqueValueExpr *, RValue> OpaqueRValues; 1378 1379 // VLASizeMap - This keeps track of the associated size for each VLA type. 1380 // We track this by the size expression rather than the type itself because 1381 // in certain situations, like a const qualifier applied to an VLA typedef, 1382 // multiple VLA types can share the same size expression. 1383 // FIXME: Maybe this could be a stack of maps that is pushed/popped as we 1384 // enter/leave scopes. 1385 llvm::DenseMap<const Expr*, llvm::Value*> VLASizeMap; 1386 1387 /// A block containing a single 'unreachable' instruction. Created 1388 /// lazily by getUnreachableBlock(). 1389 llvm::BasicBlock *UnreachableBlock = nullptr; 1390 1391 /// Counts of the number return expressions in the function. 1392 unsigned NumReturnExprs = 0; 1393 1394 /// Count the number of simple (constant) return expressions in the function. 1395 unsigned NumSimpleReturnExprs = 0; 1396 1397 /// The last regular (non-return) debug location (breakpoint) in the function. 1398 SourceLocation LastStopPoint; 1399 1400 public: 1401 /// Source location information about the default argument or member 1402 /// initializer expression we're evaluating, if any. 1403 CurrentSourceLocExprScope CurSourceLocExprScope; 1404 using SourceLocExprScopeGuard = 1405 CurrentSourceLocExprScope::SourceLocExprScopeGuard; 1406 1407 /// A scope within which we are constructing the fields of an object which 1408 /// might use a CXXDefaultInitExpr. This stashes away a 'this' value to use 1409 /// if we need to evaluate a CXXDefaultInitExpr within the evaluation. 1410 class FieldConstructionScope { 1411 public: 1412 FieldConstructionScope(CodeGenFunction &CGF, Address This) 1413 : CGF(CGF), OldCXXDefaultInitExprThis(CGF.CXXDefaultInitExprThis) { 1414 CGF.CXXDefaultInitExprThis = This; 1415 } 1416 ~FieldConstructionScope() { 1417 CGF.CXXDefaultInitExprThis = OldCXXDefaultInitExprThis; 1418 } 1419 1420 private: 1421 CodeGenFunction &CGF; 1422 Address OldCXXDefaultInitExprThis; 1423 }; 1424 1425 /// The scope of a CXXDefaultInitExpr. Within this scope, the value of 'this' 1426 /// is overridden to be the object under construction. 1427 class CXXDefaultInitExprScope { 1428 public: 1429 CXXDefaultInitExprScope(CodeGenFunction &CGF, const CXXDefaultInitExpr *E) 1430 : CGF(CGF), OldCXXThisValue(CGF.CXXThisValue), 1431 OldCXXThisAlignment(CGF.CXXThisAlignment), 1432 SourceLocScope(E, CGF.CurSourceLocExprScope) { 1433 CGF.CXXThisValue = CGF.CXXDefaultInitExprThis.getPointer(); 1434 CGF.CXXThisAlignment = CGF.CXXDefaultInitExprThis.getAlignment(); 1435 } 1436 ~CXXDefaultInitExprScope() { 1437 CGF.CXXThisValue = OldCXXThisValue; 1438 CGF.CXXThisAlignment = OldCXXThisAlignment; 1439 } 1440 1441 public: 1442 CodeGenFunction &CGF; 1443 llvm::Value *OldCXXThisValue; 1444 CharUnits OldCXXThisAlignment; 1445 SourceLocExprScopeGuard SourceLocScope; 1446 }; 1447 1448 struct CXXDefaultArgExprScope : SourceLocExprScopeGuard { 1449 CXXDefaultArgExprScope(CodeGenFunction &CGF, const CXXDefaultArgExpr *E) 1450 : SourceLocExprScopeGuard(E, CGF.CurSourceLocExprScope) {} 1451 }; 1452 1453 /// The scope of an ArrayInitLoopExpr. Within this scope, the value of the 1454 /// current loop index is overridden. 1455 class ArrayInitLoopExprScope { 1456 public: 1457 ArrayInitLoopExprScope(CodeGenFunction &CGF, llvm::Value *Index) 1458 : CGF(CGF), OldArrayInitIndex(CGF.ArrayInitIndex) { 1459 CGF.ArrayInitIndex = Index; 1460 } 1461 ~ArrayInitLoopExprScope() { 1462 CGF.ArrayInitIndex = OldArrayInitIndex; 1463 } 1464 1465 private: 1466 CodeGenFunction &CGF; 1467 llvm::Value *OldArrayInitIndex; 1468 }; 1469 1470 class InlinedInheritingConstructorScope { 1471 public: 1472 InlinedInheritingConstructorScope(CodeGenFunction &CGF, GlobalDecl GD) 1473 : CGF(CGF), OldCurGD(CGF.CurGD), OldCurFuncDecl(CGF.CurFuncDecl), 1474 OldCurCodeDecl(CGF.CurCodeDecl), 1475 OldCXXABIThisDecl(CGF.CXXABIThisDecl), 1476 OldCXXABIThisValue(CGF.CXXABIThisValue), 1477 OldCXXThisValue(CGF.CXXThisValue), 1478 OldCXXABIThisAlignment(CGF.CXXABIThisAlignment), 1479 OldCXXThisAlignment(CGF.CXXThisAlignment), 1480 OldReturnValue(CGF.ReturnValue), OldFnRetTy(CGF.FnRetTy), 1481 OldCXXInheritedCtorInitExprArgs( 1482 std::move(CGF.CXXInheritedCtorInitExprArgs)) { 1483 CGF.CurGD = GD; 1484 CGF.CurFuncDecl = CGF.CurCodeDecl = 1485 cast<CXXConstructorDecl>(GD.getDecl()); 1486 CGF.CXXABIThisDecl = nullptr; 1487 CGF.CXXABIThisValue = nullptr; 1488 CGF.CXXThisValue = nullptr; 1489 CGF.CXXABIThisAlignment = CharUnits(); 1490 CGF.CXXThisAlignment = CharUnits(); 1491 CGF.ReturnValue = Address::invalid(); 1492 CGF.FnRetTy = QualType(); 1493 CGF.CXXInheritedCtorInitExprArgs.clear(); 1494 } 1495 ~InlinedInheritingConstructorScope() { 1496 CGF.CurGD = OldCurGD; 1497 CGF.CurFuncDecl = OldCurFuncDecl; 1498 CGF.CurCodeDecl = OldCurCodeDecl; 1499 CGF.CXXABIThisDecl = OldCXXABIThisDecl; 1500 CGF.CXXABIThisValue = OldCXXABIThisValue; 1501 CGF.CXXThisValue = OldCXXThisValue; 1502 CGF.CXXABIThisAlignment = OldCXXABIThisAlignment; 1503 CGF.CXXThisAlignment = OldCXXThisAlignment; 1504 CGF.ReturnValue = OldReturnValue; 1505 CGF.FnRetTy = OldFnRetTy; 1506 CGF.CXXInheritedCtorInitExprArgs = 1507 std::move(OldCXXInheritedCtorInitExprArgs); 1508 } 1509 1510 private: 1511 CodeGenFunction &CGF; 1512 GlobalDecl OldCurGD; 1513 const Decl *OldCurFuncDecl; 1514 const Decl *OldCurCodeDecl; 1515 ImplicitParamDecl *OldCXXABIThisDecl; 1516 llvm::Value *OldCXXABIThisValue; 1517 llvm::Value *OldCXXThisValue; 1518 CharUnits OldCXXABIThisAlignment; 1519 CharUnits OldCXXThisAlignment; 1520 Address OldReturnValue; 1521 QualType OldFnRetTy; 1522 CallArgList OldCXXInheritedCtorInitExprArgs; 1523 }; 1524 1525 private: 1526 /// CXXThisDecl - When generating code for a C++ member function, 1527 /// this will hold the implicit 'this' declaration. 1528 ImplicitParamDecl *CXXABIThisDecl = nullptr; 1529 llvm::Value *CXXABIThisValue = nullptr; 1530 llvm::Value *CXXThisValue = nullptr; 1531 CharUnits CXXABIThisAlignment; 1532 CharUnits CXXThisAlignment; 1533 1534 /// The value of 'this' to use when evaluating CXXDefaultInitExprs within 1535 /// this expression. 1536 Address CXXDefaultInitExprThis = Address::invalid(); 1537 1538 /// The current array initialization index when evaluating an 1539 /// ArrayInitIndexExpr within an ArrayInitLoopExpr. 1540 llvm::Value *ArrayInitIndex = nullptr; 1541 1542 /// The values of function arguments to use when evaluating 1543 /// CXXInheritedCtorInitExprs within this context. 1544 CallArgList CXXInheritedCtorInitExprArgs; 1545 1546 /// CXXStructorImplicitParamDecl - When generating code for a constructor or 1547 /// destructor, this will hold the implicit argument (e.g. VTT). 1548 ImplicitParamDecl *CXXStructorImplicitParamDecl = nullptr; 1549 llvm::Value *CXXStructorImplicitParamValue = nullptr; 1550 1551 /// OutermostConditional - Points to the outermost active 1552 /// conditional control. This is used so that we know if a 1553 /// temporary should be destroyed conditionally. 1554 ConditionalEvaluation *OutermostConditional = nullptr; 1555 1556 /// The current lexical scope. 1557 LexicalScope *CurLexicalScope = nullptr; 1558 1559 /// The current source location that should be used for exception 1560 /// handling code. 1561 SourceLocation CurEHLocation; 1562 1563 /// BlockByrefInfos - For each __block variable, contains 1564 /// information about the layout of the variable. 1565 llvm::DenseMap<const ValueDecl *, BlockByrefInfo> BlockByrefInfos; 1566 1567 /// Used by -fsanitize=nullability-return to determine whether the return 1568 /// value can be checked. 1569 llvm::Value *RetValNullabilityPrecondition = nullptr; 1570 1571 /// Check if -fsanitize=nullability-return instrumentation is required for 1572 /// this function. 1573 bool requiresReturnValueNullabilityCheck() const { 1574 return RetValNullabilityPrecondition; 1575 } 1576 1577 /// Used to store precise source locations for return statements by the 1578 /// runtime return value checks. 1579 Address ReturnLocation = Address::invalid(); 1580 1581 /// Check if the return value of this function requires sanitization. 1582 bool requiresReturnValueCheck() const { 1583 return requiresReturnValueNullabilityCheck() || 1584 (SanOpts.has(SanitizerKind::ReturnsNonnullAttribute) && 1585 CurCodeDecl && CurCodeDecl->getAttr<ReturnsNonNullAttr>()); 1586 } 1587 1588 llvm::BasicBlock *TerminateLandingPad = nullptr; 1589 llvm::BasicBlock *TerminateHandler = nullptr; 1590 llvm::BasicBlock *TrapBB = nullptr; 1591 1592 /// Terminate funclets keyed by parent funclet pad. 1593 llvm::MapVector<llvm::Value *, llvm::BasicBlock *> TerminateFunclets; 1594 1595 /// Largest vector width used in ths function. Will be used to create a 1596 /// function attribute. 1597 unsigned LargestVectorWidth = 0; 1598 1599 /// True if we need emit the life-time markers. 1600 const bool ShouldEmitLifetimeMarkers; 1601 1602 /// Add OpenCL kernel arg metadata and the kernel attribute metadata to 1603 /// the function metadata. 1604 void EmitOpenCLKernelMetadata(const FunctionDecl *FD, 1605 llvm::Function *Fn); 1606 1607 public: 1608 CodeGenFunction(CodeGenModule &cgm, bool suppressNewContext=false); 1609 ~CodeGenFunction(); 1610 1611 CodeGenTypes &getTypes() const { return CGM.getTypes(); } 1612 ASTContext &getContext() const { return CGM.getContext(); } 1613 CGDebugInfo *getDebugInfo() { 1614 if (DisableDebugInfo) 1615 return nullptr; 1616 return DebugInfo; 1617 } 1618 void disableDebugInfo() { DisableDebugInfo = true; } 1619 void enableDebugInfo() { DisableDebugInfo = false; } 1620 1621 bool shouldUseFusedARCCalls() { 1622 return CGM.getCodeGenOpts().OptimizationLevel == 0; 1623 } 1624 1625 const LangOptions &getLangOpts() const { return CGM.getLangOpts(); } 1626 1627 /// Returns a pointer to the function's exception object and selector slot, 1628 /// which is assigned in every landing pad. 1629 Address getExceptionSlot(); 1630 Address getEHSelectorSlot(); 1631 1632 /// Returns the contents of the function's exception object and selector 1633 /// slots. 1634 llvm::Value *getExceptionFromSlot(); 1635 llvm::Value *getSelectorFromSlot(); 1636 1637 Address getNormalCleanupDestSlot(); 1638 1639 llvm::BasicBlock *getUnreachableBlock() { 1640 if (!UnreachableBlock) { 1641 UnreachableBlock = createBasicBlock("unreachable"); 1642 new llvm::UnreachableInst(getLLVMContext(), UnreachableBlock); 1643 } 1644 return UnreachableBlock; 1645 } 1646 1647 llvm::BasicBlock *getInvokeDest() { 1648 if (!EHStack.requiresLandingPad()) return nullptr; 1649 return getInvokeDestImpl(); 1650 } 1651 1652 bool currentFunctionUsesSEHTry() const { return CurSEHParent != nullptr; } 1653 1654 const TargetInfo &getTarget() const { return Target; } 1655 llvm::LLVMContext &getLLVMContext() { return CGM.getLLVMContext(); } 1656 const TargetCodeGenInfo &getTargetHooks() const { 1657 return CGM.getTargetCodeGenInfo(); 1658 } 1659 1660 //===--------------------------------------------------------------------===// 1661 // Cleanups 1662 //===--------------------------------------------------------------------===// 1663 1664 typedef void Destroyer(CodeGenFunction &CGF, Address addr, QualType ty); 1665 1666 void pushIrregularPartialArrayCleanup(llvm::Value *arrayBegin, 1667 Address arrayEndPointer, 1668 QualType elementType, 1669 CharUnits elementAlignment, 1670 Destroyer *destroyer); 1671 void pushRegularPartialArrayCleanup(llvm::Value *arrayBegin, 1672 llvm::Value *arrayEnd, 1673 QualType elementType, 1674 CharUnits elementAlignment, 1675 Destroyer *destroyer); 1676 1677 void pushDestroy(QualType::DestructionKind dtorKind, 1678 Address addr, QualType type); 1679 void pushEHDestroy(QualType::DestructionKind dtorKind, 1680 Address addr, QualType type); 1681 void pushDestroy(CleanupKind kind, Address addr, QualType type, 1682 Destroyer *destroyer, bool useEHCleanupForArray); 1683 void pushLifetimeExtendedDestroy(CleanupKind kind, Address addr, 1684 QualType type, Destroyer *destroyer, 1685 bool useEHCleanupForArray); 1686 void pushCallObjectDeleteCleanup(const FunctionDecl *OperatorDelete, 1687 llvm::Value *CompletePtr, 1688 QualType ElementType); 1689 void pushStackRestore(CleanupKind kind, Address SPMem); 1690 void emitDestroy(Address addr, QualType type, Destroyer *destroyer, 1691 bool useEHCleanupForArray); 1692 llvm::Function *generateDestroyHelper(Address addr, QualType type, 1693 Destroyer *destroyer, 1694 bool useEHCleanupForArray, 1695 const VarDecl *VD); 1696 void emitArrayDestroy(llvm::Value *begin, llvm::Value *end, 1697 QualType elementType, CharUnits elementAlign, 1698 Destroyer *destroyer, 1699 bool checkZeroLength, bool useEHCleanup); 1700 1701 Destroyer *getDestroyer(QualType::DestructionKind destructionKind); 1702 1703 /// Determines whether an EH cleanup is required to destroy a type 1704 /// with the given destruction kind. 1705 bool needsEHCleanup(QualType::DestructionKind kind) { 1706 switch (kind) { 1707 case QualType::DK_none: 1708 return false; 1709 case QualType::DK_cxx_destructor: 1710 case QualType::DK_objc_weak_lifetime: 1711 case QualType::DK_nontrivial_c_struct: 1712 return getLangOpts().Exceptions; 1713 case QualType::DK_objc_strong_lifetime: 1714 return getLangOpts().Exceptions && 1715 CGM.getCodeGenOpts().ObjCAutoRefCountExceptions; 1716 } 1717 llvm_unreachable("bad destruction kind"); 1718 } 1719 1720 CleanupKind getCleanupKind(QualType::DestructionKind kind) { 1721 return (needsEHCleanup(kind) ? NormalAndEHCleanup : NormalCleanup); 1722 } 1723 1724 //===--------------------------------------------------------------------===// 1725 // Objective-C 1726 //===--------------------------------------------------------------------===// 1727 1728 void GenerateObjCMethod(const ObjCMethodDecl *OMD); 1729 1730 void StartObjCMethod(const ObjCMethodDecl *MD, const ObjCContainerDecl *CD); 1731 1732 /// GenerateObjCGetter - Synthesize an Objective-C property getter function. 1733 void GenerateObjCGetter(ObjCImplementationDecl *IMP, 1734 const ObjCPropertyImplDecl *PID); 1735 void generateObjCGetterBody(const ObjCImplementationDecl *classImpl, 1736 const ObjCPropertyImplDecl *propImpl, 1737 const ObjCMethodDecl *GetterMothodDecl, 1738 llvm::Constant *AtomicHelperFn); 1739 1740 void GenerateObjCCtorDtorMethod(ObjCImplementationDecl *IMP, 1741 ObjCMethodDecl *MD, bool ctor); 1742 1743 /// GenerateObjCSetter - Synthesize an Objective-C property setter function 1744 /// for the given property. 1745 void GenerateObjCSetter(ObjCImplementationDecl *IMP, 1746 const ObjCPropertyImplDecl *PID); 1747 void generateObjCSetterBody(const ObjCImplementationDecl *classImpl, 1748 const ObjCPropertyImplDecl *propImpl, 1749 llvm::Constant *AtomicHelperFn); 1750 1751 //===--------------------------------------------------------------------===// 1752 // Block Bits 1753 //===--------------------------------------------------------------------===// 1754 1755 /// Emit block literal. 1756 /// \return an LLVM value which is a pointer to a struct which contains 1757 /// information about the block, including the block invoke function, the 1758 /// captured variables, etc. 1759 llvm::Value *EmitBlockLiteral(const BlockExpr *); 1760 static void destroyBlockInfos(CGBlockInfo *info); 1761 1762 llvm::Function *GenerateBlockFunction(GlobalDecl GD, 1763 const CGBlockInfo &Info, 1764 const DeclMapTy &ldm, 1765 bool IsLambdaConversionToBlock, 1766 bool BuildGlobalBlock); 1767 1768 /// Check if \p T is a C++ class that has a destructor that can throw. 1769 static bool cxxDestructorCanThrow(QualType T); 1770 1771 llvm::Constant *GenerateCopyHelperFunction(const CGBlockInfo &blockInfo); 1772 llvm::Constant *GenerateDestroyHelperFunction(const CGBlockInfo &blockInfo); 1773 llvm::Constant *GenerateObjCAtomicSetterCopyHelperFunction( 1774 const ObjCPropertyImplDecl *PID); 1775 llvm::Constant *GenerateObjCAtomicGetterCopyHelperFunction( 1776 const ObjCPropertyImplDecl *PID); 1777 llvm::Value *EmitBlockCopyAndAutorelease(llvm::Value *Block, QualType Ty); 1778 1779 void BuildBlockRelease(llvm::Value *DeclPtr, BlockFieldFlags flags, 1780 bool CanThrow); 1781 1782 class AutoVarEmission; 1783 1784 void emitByrefStructureInit(const AutoVarEmission &emission); 1785 1786 /// Enter a cleanup to destroy a __block variable. Note that this 1787 /// cleanup should be a no-op if the variable hasn't left the stack 1788 /// yet; if a cleanup is required for the variable itself, that needs 1789 /// to be done externally. 1790 /// 1791 /// \param Kind Cleanup kind. 1792 /// 1793 /// \param Addr When \p LoadBlockVarAddr is false, the address of the __block 1794 /// structure that will be passed to _Block_object_dispose. When 1795 /// \p LoadBlockVarAddr is true, the address of the field of the block 1796 /// structure that holds the address of the __block structure. 1797 /// 1798 /// \param Flags The flag that will be passed to _Block_object_dispose. 1799 /// 1800 /// \param LoadBlockVarAddr Indicates whether we need to emit a load from 1801 /// \p Addr to get the address of the __block structure. 1802 void enterByrefCleanup(CleanupKind Kind, Address Addr, BlockFieldFlags Flags, 1803 bool LoadBlockVarAddr, bool CanThrow); 1804 1805 void setBlockContextParameter(const ImplicitParamDecl *D, unsigned argNum, 1806 llvm::Value *ptr); 1807 1808 Address LoadBlockStruct(); 1809 Address GetAddrOfBlockDecl(const VarDecl *var); 1810 1811 /// BuildBlockByrefAddress - Computes the location of the 1812 /// data in a variable which is declared as __block. 1813 Address emitBlockByrefAddress(Address baseAddr, const VarDecl *V, 1814 bool followForward = true); 1815 Address emitBlockByrefAddress(Address baseAddr, 1816 const BlockByrefInfo &info, 1817 bool followForward, 1818 const llvm::Twine &name); 1819 1820 const BlockByrefInfo &getBlockByrefInfo(const VarDecl *var); 1821 1822 QualType BuildFunctionArgList(GlobalDecl GD, FunctionArgList &Args); 1823 1824 void GenerateCode(GlobalDecl GD, llvm::Function *Fn, 1825 const CGFunctionInfo &FnInfo); 1826 1827 /// Annotate the function with an attribute that disables TSan checking at 1828 /// runtime. 1829 void markAsIgnoreThreadCheckingAtRuntime(llvm::Function *Fn); 1830 1831 /// Emit code for the start of a function. 1832 /// \param Loc The location to be associated with the function. 1833 /// \param StartLoc The location of the function body. 1834 void StartFunction(GlobalDecl GD, 1835 QualType RetTy, 1836 llvm::Function *Fn, 1837 const CGFunctionInfo &FnInfo, 1838 const FunctionArgList &Args, 1839 SourceLocation Loc = SourceLocation(), 1840 SourceLocation StartLoc = SourceLocation()); 1841 1842 static bool IsConstructorDelegationValid(const CXXConstructorDecl *Ctor); 1843 1844 void EmitConstructorBody(FunctionArgList &Args); 1845 void EmitDestructorBody(FunctionArgList &Args); 1846 void emitImplicitAssignmentOperatorBody(FunctionArgList &Args); 1847 void EmitFunctionBody(const Stmt *Body); 1848 void EmitBlockWithFallThrough(llvm::BasicBlock *BB, const Stmt *S); 1849 1850 void EmitForwardingCallToLambda(const CXXMethodDecl *LambdaCallOperator, 1851 CallArgList &CallArgs); 1852 void EmitLambdaBlockInvokeBody(); 1853 void EmitLambdaDelegatingInvokeBody(const CXXMethodDecl *MD); 1854 void EmitLambdaStaticInvokeBody(const CXXMethodDecl *MD); 1855 void EmitLambdaVLACapture(const VariableArrayType *VAT, LValue LV) { 1856 EmitStoreThroughLValue(RValue::get(VLASizeMap[VAT->getSizeExpr()]), LV); 1857 } 1858 void EmitAsanPrologueOrEpilogue(bool Prologue); 1859 1860 /// Emit the unified return block, trying to avoid its emission when 1861 /// possible. 1862 /// \return The debug location of the user written return statement if the 1863 /// return block is is avoided. 1864 llvm::DebugLoc EmitReturnBlock(); 1865 1866 /// FinishFunction - Complete IR generation of the current function. It is 1867 /// legal to call this function even if there is no current insertion point. 1868 void FinishFunction(SourceLocation EndLoc=SourceLocation()); 1869 1870 void StartThunk(llvm::Function *Fn, GlobalDecl GD, 1871 const CGFunctionInfo &FnInfo, bool IsUnprototyped); 1872 1873 void EmitCallAndReturnForThunk(llvm::FunctionCallee Callee, 1874 const ThunkInfo *Thunk, bool IsUnprototyped); 1875 1876 void FinishThunk(); 1877 1878 /// Emit a musttail call for a thunk with a potentially adjusted this pointer. 1879 void EmitMustTailThunk(GlobalDecl GD, llvm::Value *AdjustedThisPtr, 1880 llvm::FunctionCallee Callee); 1881 1882 /// Generate a thunk for the given method. 1883 void generateThunk(llvm::Function *Fn, const CGFunctionInfo &FnInfo, 1884 GlobalDecl GD, const ThunkInfo &Thunk, 1885 bool IsUnprototyped); 1886 1887 llvm::Function *GenerateVarArgsThunk(llvm::Function *Fn, 1888 const CGFunctionInfo &FnInfo, 1889 GlobalDecl GD, const ThunkInfo &Thunk); 1890 1891 void EmitCtorPrologue(const CXXConstructorDecl *CD, CXXCtorType Type, 1892 FunctionArgList &Args); 1893 1894 void EmitInitializerForField(FieldDecl *Field, LValue LHS, Expr *Init); 1895 1896 /// Struct with all information about dynamic [sub]class needed to set vptr. 1897 struct VPtr { 1898 BaseSubobject Base; 1899 const CXXRecordDecl *NearestVBase; 1900 CharUnits OffsetFromNearestVBase; 1901 const CXXRecordDecl *VTableClass; 1902 }; 1903 1904 /// Initialize the vtable pointer of the given subobject. 1905 void InitializeVTablePointer(const VPtr &vptr); 1906 1907 typedef llvm::SmallVector<VPtr, 4> VPtrsVector; 1908 1909 typedef llvm::SmallPtrSet<const CXXRecordDecl *, 4> VisitedVirtualBasesSetTy; 1910 VPtrsVector getVTablePointers(const CXXRecordDecl *VTableClass); 1911 1912 void getVTablePointers(BaseSubobject Base, const CXXRecordDecl *NearestVBase, 1913 CharUnits OffsetFromNearestVBase, 1914 bool BaseIsNonVirtualPrimaryBase, 1915 const CXXRecordDecl *VTableClass, 1916 VisitedVirtualBasesSetTy &VBases, VPtrsVector &vptrs); 1917 1918 void InitializeVTablePointers(const CXXRecordDecl *ClassDecl); 1919 1920 /// GetVTablePtr - Return the Value of the vtable pointer member pointed 1921 /// to by This. 1922 llvm::Value *GetVTablePtr(Address This, llvm::Type *VTableTy, 1923 const CXXRecordDecl *VTableClass); 1924 1925 enum CFITypeCheckKind { 1926 CFITCK_VCall, 1927 CFITCK_NVCall, 1928 CFITCK_DerivedCast, 1929 CFITCK_UnrelatedCast, 1930 CFITCK_ICall, 1931 CFITCK_NVMFCall, 1932 CFITCK_VMFCall, 1933 }; 1934 1935 /// Derived is the presumed address of an object of type T after a 1936 /// cast. If T is a polymorphic class type, emit a check that the virtual 1937 /// table for Derived belongs to a class derived from T. 1938 void EmitVTablePtrCheckForCast(QualType T, llvm::Value *Derived, 1939 bool MayBeNull, CFITypeCheckKind TCK, 1940 SourceLocation Loc); 1941 1942 /// EmitVTablePtrCheckForCall - Virtual method MD is being called via VTable. 1943 /// If vptr CFI is enabled, emit a check that VTable is valid. 1944 void EmitVTablePtrCheckForCall(const CXXRecordDecl *RD, llvm::Value *VTable, 1945 CFITypeCheckKind TCK, SourceLocation Loc); 1946 1947 /// EmitVTablePtrCheck - Emit a check that VTable is a valid virtual table for 1948 /// RD using llvm.type.test. 1949 void EmitVTablePtrCheck(const CXXRecordDecl *RD, llvm::Value *VTable, 1950 CFITypeCheckKind TCK, SourceLocation Loc); 1951 1952 /// If whole-program virtual table optimization is enabled, emit an assumption 1953 /// that VTable is a member of RD's type identifier. Or, if vptr CFI is 1954 /// enabled, emit a check that VTable is a member of RD's type identifier. 1955 void EmitTypeMetadataCodeForVCall(const CXXRecordDecl *RD, 1956 llvm::Value *VTable, SourceLocation Loc); 1957 1958 /// Returns whether we should perform a type checked load when loading a 1959 /// virtual function for virtual calls to members of RD. This is generally 1960 /// true when both vcall CFI and whole-program-vtables are enabled. 1961 bool ShouldEmitVTableTypeCheckedLoad(const CXXRecordDecl *RD); 1962 1963 /// Emit a type checked load from the given vtable. 1964 llvm::Value *EmitVTableTypeCheckedLoad(const CXXRecordDecl *RD, llvm::Value *VTable, 1965 uint64_t VTableByteOffset); 1966 1967 /// EnterDtorCleanups - Enter the cleanups necessary to complete the 1968 /// given phase of destruction for a destructor. The end result 1969 /// should call destructors on members and base classes in reverse 1970 /// order of their construction. 1971 void EnterDtorCleanups(const CXXDestructorDecl *Dtor, CXXDtorType Type); 1972 1973 /// ShouldInstrumentFunction - Return true if the current function should be 1974 /// instrumented with __cyg_profile_func_* calls 1975 bool ShouldInstrumentFunction(); 1976 1977 /// ShouldXRayInstrument - Return true if the current function should be 1978 /// instrumented with XRay nop sleds. 1979 bool ShouldXRayInstrumentFunction() const; 1980 1981 /// AlwaysEmitXRayCustomEvents - Return true if we must unconditionally emit 1982 /// XRay custom event handling calls. 1983 bool AlwaysEmitXRayCustomEvents() const; 1984 1985 /// AlwaysEmitXRayTypedEvents - Return true if clang must unconditionally emit 1986 /// XRay typed event handling calls. 1987 bool AlwaysEmitXRayTypedEvents() const; 1988 1989 /// Encode an address into a form suitable for use in a function prologue. 1990 llvm::Constant *EncodeAddrForUseInPrologue(llvm::Function *F, 1991 llvm::Constant *Addr); 1992 1993 /// Decode an address used in a function prologue, encoded by \c 1994 /// EncodeAddrForUseInPrologue. 1995 llvm::Value *DecodeAddrUsedInPrologue(llvm::Value *F, 1996 llvm::Value *EncodedAddr); 1997 1998 /// EmitFunctionProlog - Emit the target specific LLVM code to load the 1999 /// arguments for the given function. This is also responsible for naming the 2000 /// LLVM function arguments. 2001 void EmitFunctionProlog(const CGFunctionInfo &FI, 2002 llvm::Function *Fn, 2003 const FunctionArgList &Args); 2004 2005 /// EmitFunctionEpilog - Emit the target specific LLVM code to return the 2006 /// given temporary. 2007 void EmitFunctionEpilog(const CGFunctionInfo &FI, bool EmitRetDbgLoc, 2008 SourceLocation EndLoc); 2009 2010 /// Emit a test that checks if the return value \p RV is nonnull. 2011 void EmitReturnValueCheck(llvm::Value *RV); 2012 2013 /// EmitStartEHSpec - Emit the start of the exception spec. 2014 void EmitStartEHSpec(const Decl *D); 2015 2016 /// EmitEndEHSpec - Emit the end of the exception spec. 2017 void EmitEndEHSpec(const Decl *D); 2018 2019 /// getTerminateLandingPad - Return a landing pad that just calls terminate. 2020 llvm::BasicBlock *getTerminateLandingPad(); 2021 2022 /// getTerminateLandingPad - Return a cleanup funclet that just calls 2023 /// terminate. 2024 llvm::BasicBlock *getTerminateFunclet(); 2025 2026 /// getTerminateHandler - Return a handler (not a landing pad, just 2027 /// a catch handler) that just calls terminate. This is used when 2028 /// a terminate scope encloses a try. 2029 llvm::BasicBlock *getTerminateHandler(); 2030 2031 llvm::Type *ConvertTypeForMem(QualType T); 2032 llvm::Type *ConvertType(QualType T); 2033 llvm::Type *ConvertType(const TypeDecl *T) { 2034 return ConvertType(getContext().getTypeDeclType(T)); 2035 } 2036 2037 /// LoadObjCSelf - Load the value of self. This function is only valid while 2038 /// generating code for an Objective-C method. 2039 llvm::Value *LoadObjCSelf(); 2040 2041 /// TypeOfSelfObject - Return type of object that this self represents. 2042 QualType TypeOfSelfObject(); 2043 2044 /// getEvaluationKind - Return the TypeEvaluationKind of QualType \c T. 2045 static TypeEvaluationKind getEvaluationKind(QualType T); 2046 2047 static bool hasScalarEvaluationKind(QualType T) { 2048 return getEvaluationKind(T) == TEK_Scalar; 2049 } 2050 2051 static bool hasAggregateEvaluationKind(QualType T) { 2052 return getEvaluationKind(T) == TEK_Aggregate; 2053 } 2054 2055 /// createBasicBlock - Create an LLVM basic block. 2056 llvm::BasicBlock *createBasicBlock(const Twine &name = "", 2057 llvm::Function *parent = nullptr, 2058 llvm::BasicBlock *before = nullptr) { 2059 return llvm::BasicBlock::Create(getLLVMContext(), name, parent, before); 2060 } 2061 2062 /// getBasicBlockForLabel - Return the LLVM basicblock that the specified 2063 /// label maps to. 2064 JumpDest getJumpDestForLabel(const LabelDecl *S); 2065 2066 /// SimplifyForwardingBlocks - If the given basic block is only a branch to 2067 /// another basic block, simplify it. This assumes that no other code could 2068 /// potentially reference the basic block. 2069 void SimplifyForwardingBlocks(llvm::BasicBlock *BB); 2070 2071 /// EmitBlock - Emit the given block \arg BB and set it as the insert point, 2072 /// adding a fall-through branch from the current insert block if 2073 /// necessary. It is legal to call this function even if there is no current 2074 /// insertion point. 2075 /// 2076 /// IsFinished - If true, indicates that the caller has finished emitting 2077 /// branches to the given block and does not expect to emit code into it. This 2078 /// means the block can be ignored if it is unreachable. 2079 void EmitBlock(llvm::BasicBlock *BB, bool IsFinished=false); 2080 2081 /// EmitBlockAfterUses - Emit the given block somewhere hopefully 2082 /// near its uses, and leave the insertion point in it. 2083 void EmitBlockAfterUses(llvm::BasicBlock *BB); 2084 2085 /// EmitBranch - Emit a branch to the specified basic block from the current 2086 /// insert block, taking care to avoid creation of branches from dummy 2087 /// blocks. It is legal to call this function even if there is no current 2088 /// insertion point. 2089 /// 2090 /// This function clears the current insertion point. The caller should follow 2091 /// calls to this function with calls to Emit*Block prior to generation new 2092 /// code. 2093 void EmitBranch(llvm::BasicBlock *Block); 2094 2095 /// HaveInsertPoint - True if an insertion point is defined. If not, this 2096 /// indicates that the current code being emitted is unreachable. 2097 bool HaveInsertPoint() const { 2098 return Builder.GetInsertBlock() != nullptr; 2099 } 2100 2101 /// EnsureInsertPoint - Ensure that an insertion point is defined so that 2102 /// emitted IR has a place to go. Note that by definition, if this function 2103 /// creates a block then that block is unreachable; callers may do better to 2104 /// detect when no insertion point is defined and simply skip IR generation. 2105 void EnsureInsertPoint() { 2106 if (!HaveInsertPoint()) 2107 EmitBlock(createBasicBlock()); 2108 } 2109 2110 /// ErrorUnsupported - Print out an error that codegen doesn't support the 2111 /// specified stmt yet. 2112 void ErrorUnsupported(const Stmt *S, const char *Type); 2113 2114 //===--------------------------------------------------------------------===// 2115 // Helpers 2116 //===--------------------------------------------------------------------===// 2117 2118 LValue MakeAddrLValue(Address Addr, QualType T, 2119 AlignmentSource Source = AlignmentSource::Type) { 2120 return LValue::MakeAddr(Addr, T, getContext(), LValueBaseInfo(Source), 2121 CGM.getTBAAAccessInfo(T)); 2122 } 2123 2124 LValue MakeAddrLValue(Address Addr, QualType T, LValueBaseInfo BaseInfo, 2125 TBAAAccessInfo TBAAInfo) { 2126 return LValue::MakeAddr(Addr, T, getContext(), BaseInfo, TBAAInfo); 2127 } 2128 2129 LValue MakeAddrLValue(llvm::Value *V, QualType T, CharUnits Alignment, 2130 AlignmentSource Source = AlignmentSource::Type) { 2131 return LValue::MakeAddr(Address(V, Alignment), T, getContext(), 2132 LValueBaseInfo(Source), CGM.getTBAAAccessInfo(T)); 2133 } 2134 2135 LValue MakeAddrLValue(llvm::Value *V, QualType T, CharUnits Alignment, 2136 LValueBaseInfo BaseInfo, TBAAAccessInfo TBAAInfo) { 2137 return LValue::MakeAddr(Address(V, Alignment), T, getContext(), 2138 BaseInfo, TBAAInfo); 2139 } 2140 2141 LValue MakeNaturalAlignPointeeAddrLValue(llvm::Value *V, QualType T); 2142 LValue MakeNaturalAlignAddrLValue(llvm::Value *V, QualType T); 2143 CharUnits getNaturalTypeAlignment(QualType T, 2144 LValueBaseInfo *BaseInfo = nullptr, 2145 TBAAAccessInfo *TBAAInfo = nullptr, 2146 bool forPointeeType = false); 2147 CharUnits getNaturalPointeeTypeAlignment(QualType T, 2148 LValueBaseInfo *BaseInfo = nullptr, 2149 TBAAAccessInfo *TBAAInfo = nullptr); 2150 2151 Address EmitLoadOfReference(LValue RefLVal, 2152 LValueBaseInfo *PointeeBaseInfo = nullptr, 2153 TBAAAccessInfo *PointeeTBAAInfo = nullptr); 2154 LValue EmitLoadOfReferenceLValue(LValue RefLVal); 2155 LValue EmitLoadOfReferenceLValue(Address RefAddr, QualType RefTy, 2156 AlignmentSource Source = 2157 AlignmentSource::Type) { 2158 LValue RefLVal = MakeAddrLValue(RefAddr, RefTy, LValueBaseInfo(Source), 2159 CGM.getTBAAAccessInfo(RefTy)); 2160 return EmitLoadOfReferenceLValue(RefLVal); 2161 } 2162 2163 Address EmitLoadOfPointer(Address Ptr, const PointerType *PtrTy, 2164 LValueBaseInfo *BaseInfo = nullptr, 2165 TBAAAccessInfo *TBAAInfo = nullptr); 2166 LValue EmitLoadOfPointerLValue(Address Ptr, const PointerType *PtrTy); 2167 2168 /// CreateTempAlloca - This creates an alloca and inserts it into the entry 2169 /// block if \p ArraySize is nullptr, otherwise inserts it at the current 2170 /// insertion point of the builder. The caller is responsible for setting an 2171 /// appropriate alignment on 2172 /// the alloca. 2173 /// 2174 /// \p ArraySize is the number of array elements to be allocated if it 2175 /// is not nullptr. 2176 /// 2177 /// LangAS::Default is the address space of pointers to local variables and 2178 /// temporaries, as exposed in the source language. In certain 2179 /// configurations, this is not the same as the alloca address space, and a 2180 /// cast is needed to lift the pointer from the alloca AS into 2181 /// LangAS::Default. This can happen when the target uses a restricted 2182 /// address space for the stack but the source language requires 2183 /// LangAS::Default to be a generic address space. The latter condition is 2184 /// common for most programming languages; OpenCL is an exception in that 2185 /// LangAS::Default is the private address space, which naturally maps 2186 /// to the stack. 2187 /// 2188 /// Because the address of a temporary is often exposed to the program in 2189 /// various ways, this function will perform the cast. The original alloca 2190 /// instruction is returned through \p Alloca if it is not nullptr. 2191 /// 2192 /// The cast is not performaed in CreateTempAllocaWithoutCast. This is 2193 /// more efficient if the caller knows that the address will not be exposed. 2194 llvm::AllocaInst *CreateTempAlloca(llvm::Type *Ty, const Twine &Name = "tmp", 2195 llvm::Value *ArraySize = nullptr); 2196 Address CreateTempAlloca(llvm::Type *Ty, CharUnits align, 2197 const Twine &Name = "tmp", 2198 llvm::Value *ArraySize = nullptr, 2199 Address *Alloca = nullptr); 2200 Address CreateTempAllocaWithoutCast(llvm::Type *Ty, CharUnits align, 2201 const Twine &Name = "tmp", 2202 llvm::Value *ArraySize = nullptr); 2203 2204 /// CreateDefaultAlignedTempAlloca - This creates an alloca with the 2205 /// default ABI alignment of the given LLVM type. 2206 /// 2207 /// IMPORTANT NOTE: This is *not* generally the right alignment for 2208 /// any given AST type that happens to have been lowered to the 2209 /// given IR type. This should only ever be used for function-local, 2210 /// IR-driven manipulations like saving and restoring a value. Do 2211 /// not hand this address off to arbitrary IRGen routines, and especially 2212 /// do not pass it as an argument to a function that might expect a 2213 /// properly ABI-aligned value. 2214 Address CreateDefaultAlignTempAlloca(llvm::Type *Ty, 2215 const Twine &Name = "tmp"); 2216 2217 /// InitTempAlloca - Provide an initial value for the given alloca which 2218 /// will be observable at all locations in the function. 2219 /// 2220 /// The address should be something that was returned from one of 2221 /// the CreateTempAlloca or CreateMemTemp routines, and the 2222 /// initializer must be valid in the entry block (i.e. it must 2223 /// either be a constant or an argument value). 2224 void InitTempAlloca(Address Alloca, llvm::Value *Value); 2225 2226 /// CreateIRTemp - Create a temporary IR object of the given type, with 2227 /// appropriate alignment. This routine should only be used when an temporary 2228 /// value needs to be stored into an alloca (for example, to avoid explicit 2229 /// PHI construction), but the type is the IR type, not the type appropriate 2230 /// for storing in memory. 2231 /// 2232 /// That is, this is exactly equivalent to CreateMemTemp, but calling 2233 /// ConvertType instead of ConvertTypeForMem. 2234 Address CreateIRTemp(QualType T, const Twine &Name = "tmp"); 2235 2236 /// CreateMemTemp - Create a temporary memory object of the given type, with 2237 /// appropriate alignmen and cast it to the default address space. Returns 2238 /// the original alloca instruction by \p Alloca if it is not nullptr. 2239 Address CreateMemTemp(QualType T, const Twine &Name = "tmp", 2240 Address *Alloca = nullptr); 2241 Address CreateMemTemp(QualType T, CharUnits Align, const Twine &Name = "tmp", 2242 Address *Alloca = nullptr); 2243 2244 /// CreateMemTemp - Create a temporary memory object of the given type, with 2245 /// appropriate alignmen without casting it to the default address space. 2246 Address CreateMemTempWithoutCast(QualType T, const Twine &Name = "tmp"); 2247 Address CreateMemTempWithoutCast(QualType T, CharUnits Align, 2248 const Twine &Name = "tmp"); 2249 2250 /// CreateAggTemp - Create a temporary memory object for the given 2251 /// aggregate type. 2252 AggValueSlot CreateAggTemp(QualType T, const Twine &Name = "tmp") { 2253 return AggValueSlot::forAddr(CreateMemTemp(T, Name), 2254 T.getQualifiers(), 2255 AggValueSlot::IsNotDestructed, 2256 AggValueSlot::DoesNotNeedGCBarriers, 2257 AggValueSlot::IsNotAliased, 2258 AggValueSlot::DoesNotOverlap); 2259 } 2260 2261 /// Emit a cast to void* in the appropriate address space. 2262 llvm::Value *EmitCastToVoidPtr(llvm::Value *value); 2263 2264 /// EvaluateExprAsBool - Perform the usual unary conversions on the specified 2265 /// expression and compare the result against zero, returning an Int1Ty value. 2266 llvm::Value *EvaluateExprAsBool(const Expr *E); 2267 2268 /// EmitIgnoredExpr - Emit an expression in a context which ignores the result. 2269 void EmitIgnoredExpr(const Expr *E); 2270 2271 /// EmitAnyExpr - Emit code to compute the specified expression which can have 2272 /// any type. The result is returned as an RValue struct. If this is an 2273 /// aggregate expression, the aggloc/agglocvolatile arguments indicate where 2274 /// the result should be returned. 2275 /// 2276 /// \param ignoreResult True if the resulting value isn't used. 2277 RValue EmitAnyExpr(const Expr *E, 2278 AggValueSlot aggSlot = AggValueSlot::ignored(), 2279 bool ignoreResult = false); 2280 2281 // EmitVAListRef - Emit a "reference" to a va_list; this is either the address 2282 // or the value of the expression, depending on how va_list is defined. 2283 Address EmitVAListRef(const Expr *E); 2284 2285 /// Emit a "reference" to a __builtin_ms_va_list; this is 2286 /// always the value of the expression, because a __builtin_ms_va_list is a 2287 /// pointer to a char. 2288 Address EmitMSVAListRef(const Expr *E); 2289 2290 /// EmitAnyExprToTemp - Similarly to EmitAnyExpr(), however, the result will 2291 /// always be accessible even if no aggregate location is provided. 2292 RValue EmitAnyExprToTemp(const Expr *E); 2293 2294 /// EmitAnyExprToMem - Emits the code necessary to evaluate an 2295 /// arbitrary expression into the given memory location. 2296 void EmitAnyExprToMem(const Expr *E, Address Location, 2297 Qualifiers Quals, bool IsInitializer); 2298 2299 void EmitAnyExprToExn(const Expr *E, Address Addr); 2300 2301 /// EmitExprAsInit - Emits the code necessary to initialize a 2302 /// location in memory with the given initializer. 2303 void EmitExprAsInit(const Expr *init, const ValueDecl *D, LValue lvalue, 2304 bool capturedByInit); 2305 2306 /// hasVolatileMember - returns true if aggregate type has a volatile 2307 /// member. 2308 bool hasVolatileMember(QualType T) { 2309 if (const RecordType *RT = T->getAs<RecordType>()) { 2310 const RecordDecl *RD = cast<RecordDecl>(RT->getDecl()); 2311 return RD->hasVolatileMember(); 2312 } 2313 return false; 2314 } 2315 2316 /// Determine whether a return value slot may overlap some other object. 2317 AggValueSlot::Overlap_t getOverlapForReturnValue() { 2318 // FIXME: Assuming no overlap here breaks guaranteed copy elision for base 2319 // class subobjects. These cases may need to be revisited depending on the 2320 // resolution of the relevant core issue. 2321 return AggValueSlot::DoesNotOverlap; 2322 } 2323 2324 /// Determine whether a field initialization may overlap some other object. 2325 AggValueSlot::Overlap_t getOverlapForFieldInit(const FieldDecl *FD); 2326 2327 /// Determine whether a base class initialization may overlap some other 2328 /// object. 2329 AggValueSlot::Overlap_t getOverlapForBaseInit(const CXXRecordDecl *RD, 2330 const CXXRecordDecl *BaseRD, 2331 bool IsVirtual); 2332 2333 /// Emit an aggregate assignment. 2334 void EmitAggregateAssign(LValue Dest, LValue Src, QualType EltTy) { 2335 bool IsVolatile = hasVolatileMember(EltTy); 2336 EmitAggregateCopy(Dest, Src, EltTy, AggValueSlot::MayOverlap, IsVolatile); 2337 } 2338 2339 void EmitAggregateCopyCtor(LValue Dest, LValue Src, 2340 AggValueSlot::Overlap_t MayOverlap) { 2341 EmitAggregateCopy(Dest, Src, Src.getType(), MayOverlap); 2342 } 2343 2344 /// EmitAggregateCopy - Emit an aggregate copy. 2345 /// 2346 /// \param isVolatile \c true iff either the source or the destination is 2347 /// volatile. 2348 /// \param MayOverlap Whether the tail padding of the destination might be 2349 /// occupied by some other object. More efficient code can often be 2350 /// generated if not. 2351 void EmitAggregateCopy(LValue Dest, LValue Src, QualType EltTy, 2352 AggValueSlot::Overlap_t MayOverlap, 2353 bool isVolatile = false); 2354 2355 /// GetAddrOfLocalVar - Return the address of a local variable. 2356 Address GetAddrOfLocalVar(const VarDecl *VD) { 2357 auto it = LocalDeclMap.find(VD); 2358 assert(it != LocalDeclMap.end() && 2359 "Invalid argument to GetAddrOfLocalVar(), no decl!"); 2360 return it->second; 2361 } 2362 2363 /// Given an opaque value expression, return its LValue mapping if it exists, 2364 /// otherwise create one. 2365 LValue getOrCreateOpaqueLValueMapping(const OpaqueValueExpr *e); 2366 2367 /// Given an opaque value expression, return its RValue mapping if it exists, 2368 /// otherwise create one. 2369 RValue getOrCreateOpaqueRValueMapping(const OpaqueValueExpr *e); 2370 2371 /// Get the index of the current ArrayInitLoopExpr, if any. 2372 llvm::Value *getArrayInitIndex() { return ArrayInitIndex; } 2373 2374 /// getAccessedFieldNo - Given an encoded value and a result number, return 2375 /// the input field number being accessed. 2376 static unsigned getAccessedFieldNo(unsigned Idx, const llvm::Constant *Elts); 2377 2378 llvm::BlockAddress *GetAddrOfLabel(const LabelDecl *L); 2379 llvm::BasicBlock *GetIndirectGotoBlock(); 2380 2381 /// Check if \p E is a C++ "this" pointer wrapped in value-preserving casts. 2382 static bool IsWrappedCXXThis(const Expr *E); 2383 2384 /// EmitNullInitialization - Generate code to set a value of the given type to 2385 /// null, If the type contains data member pointers, they will be initialized 2386 /// to -1 in accordance with the Itanium C++ ABI. 2387 void EmitNullInitialization(Address DestPtr, QualType Ty); 2388 2389 /// Emits a call to an LLVM variable-argument intrinsic, either 2390 /// \c llvm.va_start or \c llvm.va_end. 2391 /// \param ArgValue A reference to the \c va_list as emitted by either 2392 /// \c EmitVAListRef or \c EmitMSVAListRef. 2393 /// \param IsStart If \c true, emits a call to \c llvm.va_start; otherwise, 2394 /// calls \c llvm.va_end. 2395 llvm::Value *EmitVAStartEnd(llvm::Value *ArgValue, bool IsStart); 2396 2397 /// Generate code to get an argument from the passed in pointer 2398 /// and update it accordingly. 2399 /// \param VE The \c VAArgExpr for which to generate code. 2400 /// \param VAListAddr Receives a reference to the \c va_list as emitted by 2401 /// either \c EmitVAListRef or \c EmitMSVAListRef. 2402 /// \returns A pointer to the argument. 2403 // FIXME: We should be able to get rid of this method and use the va_arg 2404 // instruction in LLVM instead once it works well enough. 2405 Address EmitVAArg(VAArgExpr *VE, Address &VAListAddr); 2406 2407 /// emitArrayLength - Compute the length of an array, even if it's a 2408 /// VLA, and drill down to the base element type. 2409 llvm::Value *emitArrayLength(const ArrayType *arrayType, 2410 QualType &baseType, 2411 Address &addr); 2412 2413 /// EmitVLASize - Capture all the sizes for the VLA expressions in 2414 /// the given variably-modified type and store them in the VLASizeMap. 2415 /// 2416 /// This function can be called with a null (unreachable) insert point. 2417 void EmitVariablyModifiedType(QualType Ty); 2418 2419 struct VlaSizePair { 2420 llvm::Value *NumElts; 2421 QualType Type; 2422 2423 VlaSizePair(llvm::Value *NE, QualType T) : NumElts(NE), Type(T) {} 2424 }; 2425 2426 /// Return the number of elements for a single dimension 2427 /// for the given array type. 2428 VlaSizePair getVLAElements1D(const VariableArrayType *vla); 2429 VlaSizePair getVLAElements1D(QualType vla); 2430 2431 /// Returns an LLVM value that corresponds to the size, 2432 /// in non-variably-sized elements, of a variable length array type, 2433 /// plus that largest non-variably-sized element type. Assumes that 2434 /// the type has already been emitted with EmitVariablyModifiedType. 2435 VlaSizePair getVLASize(const VariableArrayType *vla); 2436 VlaSizePair getVLASize(QualType vla); 2437 2438 /// LoadCXXThis - Load the value of 'this'. This function is only valid while 2439 /// generating code for an C++ member function. 2440 llvm::Value *LoadCXXThis() { 2441 assert(CXXThisValue && "no 'this' value for this function"); 2442 return CXXThisValue; 2443 } 2444 Address LoadCXXThisAddress(); 2445 2446 /// LoadCXXVTT - Load the VTT parameter to base constructors/destructors have 2447 /// virtual bases. 2448 // FIXME: Every place that calls LoadCXXVTT is something 2449 // that needs to be abstracted properly. 2450 llvm::Value *LoadCXXVTT() { 2451 assert(CXXStructorImplicitParamValue && "no VTT value for this function"); 2452 return CXXStructorImplicitParamValue; 2453 } 2454 2455 /// GetAddressOfBaseOfCompleteClass - Convert the given pointer to a 2456 /// complete class to the given direct base. 2457 Address 2458 GetAddressOfDirectBaseInCompleteClass(Address Value, 2459 const CXXRecordDecl *Derived, 2460 const CXXRecordDecl *Base, 2461 bool BaseIsVirtual); 2462 2463 static bool ShouldNullCheckClassCastValue(const CastExpr *Cast); 2464 2465 /// GetAddressOfBaseClass - This function will add the necessary delta to the 2466 /// load of 'this' and returns address of the base class. 2467 Address GetAddressOfBaseClass(Address Value, 2468 const CXXRecordDecl *Derived, 2469 CastExpr::path_const_iterator PathBegin, 2470 CastExpr::path_const_iterator PathEnd, 2471 bool NullCheckValue, SourceLocation Loc); 2472 2473 Address GetAddressOfDerivedClass(Address Value, 2474 const CXXRecordDecl *Derived, 2475 CastExpr::path_const_iterator PathBegin, 2476 CastExpr::path_const_iterator PathEnd, 2477 bool NullCheckValue); 2478 2479 /// GetVTTParameter - Return the VTT parameter that should be passed to a 2480 /// base constructor/destructor with virtual bases. 2481 /// FIXME: VTTs are Itanium ABI-specific, so the definition should move 2482 /// to ItaniumCXXABI.cpp together with all the references to VTT. 2483 llvm::Value *GetVTTParameter(GlobalDecl GD, bool ForVirtualBase, 2484 bool Delegating); 2485 2486 void EmitDelegateCXXConstructorCall(const CXXConstructorDecl *Ctor, 2487 CXXCtorType CtorType, 2488 const FunctionArgList &Args, 2489 SourceLocation Loc); 2490 // It's important not to confuse this and the previous function. Delegating 2491 // constructors are the C++0x feature. The constructor delegate optimization 2492 // is used to reduce duplication in the base and complete consturctors where 2493 // they are substantially the same. 2494 void EmitDelegatingCXXConstructorCall(const CXXConstructorDecl *Ctor, 2495 const FunctionArgList &Args); 2496 2497 /// Emit a call to an inheriting constructor (that is, one that invokes a 2498 /// constructor inherited from a base class) by inlining its definition. This 2499 /// is necessary if the ABI does not support forwarding the arguments to the 2500 /// base class constructor (because they're variadic or similar). 2501 void EmitInlinedInheritingCXXConstructorCall(const CXXConstructorDecl *Ctor, 2502 CXXCtorType CtorType, 2503 bool ForVirtualBase, 2504 bool Delegating, 2505 CallArgList &Args); 2506 2507 /// Emit a call to a constructor inherited from a base class, passing the 2508 /// current constructor's arguments along unmodified (without even making 2509 /// a copy). 2510 void EmitInheritedCXXConstructorCall(const CXXConstructorDecl *D, 2511 bool ForVirtualBase, Address This, 2512 bool InheritedFromVBase, 2513 const CXXInheritedCtorInitExpr *E); 2514 2515 void EmitCXXConstructorCall(const CXXConstructorDecl *D, CXXCtorType Type, 2516 bool ForVirtualBase, bool Delegating, 2517 AggValueSlot ThisAVS, const CXXConstructExpr *E); 2518 2519 void EmitCXXConstructorCall(const CXXConstructorDecl *D, CXXCtorType Type, 2520 bool ForVirtualBase, bool Delegating, 2521 Address This, CallArgList &Args, 2522 AggValueSlot::Overlap_t Overlap, 2523 SourceLocation Loc, bool NewPointerIsChecked); 2524 2525 /// Emit assumption load for all bases. Requires to be be called only on 2526 /// most-derived class and not under construction of the object. 2527 void EmitVTableAssumptionLoads(const CXXRecordDecl *ClassDecl, Address This); 2528 2529 /// Emit assumption that vptr load == global vtable. 2530 void EmitVTableAssumptionLoad(const VPtr &vptr, Address This); 2531 2532 void EmitSynthesizedCXXCopyCtorCall(const CXXConstructorDecl *D, 2533 Address This, Address Src, 2534 const CXXConstructExpr *E); 2535 2536 void EmitCXXAggrConstructorCall(const CXXConstructorDecl *D, 2537 const ArrayType *ArrayTy, 2538 Address ArrayPtr, 2539 const CXXConstructExpr *E, 2540 bool NewPointerIsChecked, 2541 bool ZeroInitialization = false); 2542 2543 void EmitCXXAggrConstructorCall(const CXXConstructorDecl *D, 2544 llvm::Value *NumElements, 2545 Address ArrayPtr, 2546 const CXXConstructExpr *E, 2547 bool NewPointerIsChecked, 2548 bool ZeroInitialization = false); 2549 2550 static Destroyer destroyCXXObject; 2551 2552 void EmitCXXDestructorCall(const CXXDestructorDecl *D, CXXDtorType Type, 2553 bool ForVirtualBase, bool Delegating, 2554 Address This); 2555 2556 void EmitNewArrayInitializer(const CXXNewExpr *E, QualType elementType, 2557 llvm::Type *ElementTy, Address NewPtr, 2558 llvm::Value *NumElements, 2559 llvm::Value *AllocSizeWithoutCookie); 2560 2561 void EmitCXXTemporary(const CXXTemporary *Temporary, QualType TempType, 2562 Address Ptr); 2563 2564 llvm::Value *EmitLifetimeStart(uint64_t Size, llvm::Value *Addr); 2565 void EmitLifetimeEnd(llvm::Value *Size, llvm::Value *Addr); 2566 2567 llvm::Value *EmitCXXNewExpr(const CXXNewExpr *E); 2568 void EmitCXXDeleteExpr(const CXXDeleteExpr *E); 2569 2570 void EmitDeleteCall(const FunctionDecl *DeleteFD, llvm::Value *Ptr, 2571 QualType DeleteTy, llvm::Value *NumElements = nullptr, 2572 CharUnits CookieSize = CharUnits()); 2573 2574 RValue EmitBuiltinNewDeleteCall(const FunctionProtoType *Type, 2575 const CallExpr *TheCallExpr, bool IsDelete); 2576 2577 llvm::Value *EmitCXXTypeidExpr(const CXXTypeidExpr *E); 2578 llvm::Value *EmitDynamicCast(Address V, const CXXDynamicCastExpr *DCE); 2579 Address EmitCXXUuidofExpr(const CXXUuidofExpr *E); 2580 2581 /// Situations in which we might emit a check for the suitability of a 2582 /// pointer or glvalue. 2583 enum TypeCheckKind { 2584 /// Checking the operand of a load. Must be suitably sized and aligned. 2585 TCK_Load, 2586 /// Checking the destination of a store. Must be suitably sized and aligned. 2587 TCK_Store, 2588 /// Checking the bound value in a reference binding. Must be suitably sized 2589 /// and aligned, but is not required to refer to an object (until the 2590 /// reference is used), per core issue 453. 2591 TCK_ReferenceBinding, 2592 /// Checking the object expression in a non-static data member access. Must 2593 /// be an object within its lifetime. 2594 TCK_MemberAccess, 2595 /// Checking the 'this' pointer for a call to a non-static member function. 2596 /// Must be an object within its lifetime. 2597 TCK_MemberCall, 2598 /// Checking the 'this' pointer for a constructor call. 2599 TCK_ConstructorCall, 2600 /// Checking the operand of a static_cast to a derived pointer type. Must be 2601 /// null or an object within its lifetime. 2602 TCK_DowncastPointer, 2603 /// Checking the operand of a static_cast to a derived reference type. Must 2604 /// be an object within its lifetime. 2605 TCK_DowncastReference, 2606 /// Checking the operand of a cast to a base object. Must be suitably sized 2607 /// and aligned. 2608 TCK_Upcast, 2609 /// Checking the operand of a cast to a virtual base object. Must be an 2610 /// object within its lifetime. 2611 TCK_UpcastToVirtualBase, 2612 /// Checking the value assigned to a _Nonnull pointer. Must not be null. 2613 TCK_NonnullAssign, 2614 /// Checking the operand of a dynamic_cast or a typeid expression. Must be 2615 /// null or an object within its lifetime. 2616 TCK_DynamicOperation 2617 }; 2618 2619 /// Determine whether the pointer type check \p TCK permits null pointers. 2620 static bool isNullPointerAllowed(TypeCheckKind TCK); 2621 2622 /// Determine whether the pointer type check \p TCK requires a vptr check. 2623 static bool isVptrCheckRequired(TypeCheckKind TCK, QualType Ty); 2624 2625 /// Whether any type-checking sanitizers are enabled. If \c false, 2626 /// calls to EmitTypeCheck can be skipped. 2627 bool sanitizePerformTypeCheck() const; 2628 2629 /// Emit a check that \p V is the address of storage of the 2630 /// appropriate size and alignment for an object of type \p Type 2631 /// (or if ArraySize is provided, for an array of that bound). 2632 void EmitTypeCheck(TypeCheckKind TCK, SourceLocation Loc, llvm::Value *V, 2633 QualType Type, CharUnits Alignment = CharUnits::Zero(), 2634 SanitizerSet SkippedChecks = SanitizerSet(), 2635 llvm::Value *ArraySize = nullptr); 2636 2637 /// Emit a check that \p Base points into an array object, which 2638 /// we can access at index \p Index. \p Accessed should be \c false if we 2639 /// this expression is used as an lvalue, for instance in "&Arr[Idx]". 2640 void EmitBoundsCheck(const Expr *E, const Expr *Base, llvm::Value *Index, 2641 QualType IndexType, bool Accessed); 2642 2643 llvm::Value *EmitScalarPrePostIncDec(const UnaryOperator *E, LValue LV, 2644 bool isInc, bool isPre); 2645 ComplexPairTy EmitComplexPrePostIncDec(const UnaryOperator *E, LValue LV, 2646 bool isInc, bool isPre); 2647 2648 /// Converts Location to a DebugLoc, if debug information is enabled. 2649 llvm::DebugLoc SourceLocToDebugLoc(SourceLocation Location); 2650 2651 2652 //===--------------------------------------------------------------------===// 2653 // Declaration Emission 2654 //===--------------------------------------------------------------------===// 2655 2656 /// EmitDecl - Emit a declaration. 2657 /// 2658 /// This function can be called with a null (unreachable) insert point. 2659 void EmitDecl(const Decl &D); 2660 2661 /// EmitVarDecl - Emit a local variable declaration. 2662 /// 2663 /// This function can be called with a null (unreachable) insert point. 2664 void EmitVarDecl(const VarDecl &D); 2665 2666 void EmitScalarInit(const Expr *init, const ValueDecl *D, LValue lvalue, 2667 bool capturedByInit); 2668 2669 typedef void SpecialInitFn(CodeGenFunction &Init, const VarDecl &D, 2670 llvm::Value *Address); 2671 2672 /// Determine whether the given initializer is trivial in the sense 2673 /// that it requires no code to be generated. 2674 bool isTrivialInitializer(const Expr *Init); 2675 2676 /// EmitAutoVarDecl - Emit an auto variable declaration. 2677 /// 2678 /// This function can be called with a null (unreachable) insert point. 2679 void EmitAutoVarDecl(const VarDecl &D); 2680 2681 class AutoVarEmission { 2682 friend class CodeGenFunction; 2683 2684 const VarDecl *Variable; 2685 2686 /// The address of the alloca for languages with explicit address space 2687 /// (e.g. OpenCL) or alloca casted to generic pointer for address space 2688 /// agnostic languages (e.g. C++). Invalid if the variable was emitted 2689 /// as a global constant. 2690 Address Addr; 2691 2692 llvm::Value *NRVOFlag; 2693 2694 /// True if the variable is a __block variable that is captured by an 2695 /// escaping block. 2696 bool IsEscapingByRef; 2697 2698 /// True if the variable is of aggregate type and has a constant 2699 /// initializer. 2700 bool IsConstantAggregate; 2701 2702 /// Non-null if we should use lifetime annotations. 2703 llvm::Value *SizeForLifetimeMarkers; 2704 2705 /// Address with original alloca instruction. Invalid if the variable was 2706 /// emitted as a global constant. 2707 Address AllocaAddr; 2708 2709 struct Invalid {}; 2710 AutoVarEmission(Invalid) 2711 : Variable(nullptr), Addr(Address::invalid()), 2712 AllocaAddr(Address::invalid()) {} 2713 2714 AutoVarEmission(const VarDecl &variable) 2715 : Variable(&variable), Addr(Address::invalid()), NRVOFlag(nullptr), 2716 IsEscapingByRef(false), IsConstantAggregate(false), 2717 SizeForLifetimeMarkers(nullptr), AllocaAddr(Address::invalid()) {} 2718 2719 bool wasEmittedAsGlobal() const { return !Addr.isValid(); } 2720 2721 public: 2722 static AutoVarEmission invalid() { return AutoVarEmission(Invalid()); } 2723 2724 bool useLifetimeMarkers() const { 2725 return SizeForLifetimeMarkers != nullptr; 2726 } 2727 llvm::Value *getSizeForLifetimeMarkers() const { 2728 assert(useLifetimeMarkers()); 2729 return SizeForLifetimeMarkers; 2730 } 2731 2732 /// Returns the raw, allocated address, which is not necessarily 2733 /// the address of the object itself. It is casted to default 2734 /// address space for address space agnostic languages. 2735 Address getAllocatedAddress() const { 2736 return Addr; 2737 } 2738 2739 /// Returns the address for the original alloca instruction. 2740 Address getOriginalAllocatedAddress() const { return AllocaAddr; } 2741 2742 /// Returns the address of the object within this declaration. 2743 /// Note that this does not chase the forwarding pointer for 2744 /// __block decls. 2745 Address getObjectAddress(CodeGenFunction &CGF) const { 2746 if (!IsEscapingByRef) return Addr; 2747 2748 return CGF.emitBlockByrefAddress(Addr, Variable, /*forward*/ false); 2749 } 2750 }; 2751 AutoVarEmission EmitAutoVarAlloca(const VarDecl &var); 2752 void EmitAutoVarInit(const AutoVarEmission &emission); 2753 void EmitAutoVarCleanups(const AutoVarEmission &emission); 2754 void emitAutoVarTypeCleanup(const AutoVarEmission &emission, 2755 QualType::DestructionKind dtorKind); 2756 2757 /// Emits the alloca and debug information for the size expressions for each 2758 /// dimension of an array. It registers the association of its (1-dimensional) 2759 /// QualTypes and size expression's debug node, so that CGDebugInfo can 2760 /// reference this node when creating the DISubrange object to describe the 2761 /// array types. 2762 void EmitAndRegisterVariableArrayDimensions(CGDebugInfo *DI, 2763 const VarDecl &D, 2764 bool EmitDebugInfo); 2765 2766 void EmitStaticVarDecl(const VarDecl &D, 2767 llvm::GlobalValue::LinkageTypes Linkage); 2768 2769 class ParamValue { 2770 llvm::Value *Value; 2771 unsigned Alignment; 2772 ParamValue(llvm::Value *V, unsigned A) : Value(V), Alignment(A) {} 2773 public: 2774 static ParamValue forDirect(llvm::Value *value) { 2775 return ParamValue(value, 0); 2776 } 2777 static ParamValue forIndirect(Address addr) { 2778 assert(!addr.getAlignment().isZero()); 2779 return ParamValue(addr.getPointer(), addr.getAlignment().getQuantity()); 2780 } 2781 2782 bool isIndirect() const { return Alignment != 0; } 2783 llvm::Value *getAnyValue() const { return Value; } 2784 2785 llvm::Value *getDirectValue() const { 2786 assert(!isIndirect()); 2787 return Value; 2788 } 2789 2790 Address getIndirectAddress() const { 2791 assert(isIndirect()); 2792 return Address(Value, CharUnits::fromQuantity(Alignment)); 2793 } 2794 }; 2795 2796 /// EmitParmDecl - Emit a ParmVarDecl or an ImplicitParamDecl. 2797 void EmitParmDecl(const VarDecl &D, ParamValue Arg, unsigned ArgNo); 2798 2799 /// protectFromPeepholes - Protect a value that we're intending to 2800 /// store to the side, but which will probably be used later, from 2801 /// aggressive peepholing optimizations that might delete it. 2802 /// 2803 /// Pass the result to unprotectFromPeepholes to declare that 2804 /// protection is no longer required. 2805 /// 2806 /// There's no particular reason why this shouldn't apply to 2807 /// l-values, it's just that no existing peepholes work on pointers. 2808 PeepholeProtection protectFromPeepholes(RValue rvalue); 2809 void unprotectFromPeepholes(PeepholeProtection protection); 2810 2811 void EmitAlignmentAssumptionCheck(llvm::Value *Ptr, QualType Ty, 2812 SourceLocation Loc, 2813 SourceLocation AssumptionLoc, 2814 llvm::Value *Alignment, 2815 llvm::Value *OffsetValue, 2816 llvm::Value *TheCheck, 2817 llvm::Instruction *Assumption); 2818 2819 void EmitAlignmentAssumption(llvm::Value *PtrValue, QualType Ty, 2820 SourceLocation Loc, SourceLocation AssumptionLoc, 2821 llvm::Value *Alignment, 2822 llvm::Value *OffsetValue = nullptr); 2823 2824 void EmitAlignmentAssumption(llvm::Value *PtrValue, QualType Ty, 2825 SourceLocation Loc, SourceLocation AssumptionLoc, 2826 unsigned Alignment, 2827 llvm::Value *OffsetValue = nullptr); 2828 2829 void EmitAlignmentAssumption(llvm::Value *PtrValue, const Expr *E, 2830 SourceLocation AssumptionLoc, unsigned Alignment, 2831 llvm::Value *OffsetValue = nullptr); 2832 2833 //===--------------------------------------------------------------------===// 2834 // Statement Emission 2835 //===--------------------------------------------------------------------===// 2836 2837 /// EmitStopPoint - Emit a debug stoppoint if we are emitting debug info. 2838 void EmitStopPoint(const Stmt *S); 2839 2840 /// EmitStmt - Emit the code for the statement \arg S. It is legal to call 2841 /// this function even if there is no current insertion point. 2842 /// 2843 /// This function may clear the current insertion point; callers should use 2844 /// EnsureInsertPoint if they wish to subsequently generate code without first 2845 /// calling EmitBlock, EmitBranch, or EmitStmt. 2846 void EmitStmt(const Stmt *S, ArrayRef<const Attr *> Attrs = None); 2847 2848 /// EmitSimpleStmt - Try to emit a "simple" statement which does not 2849 /// necessarily require an insertion point or debug information; typically 2850 /// because the statement amounts to a jump or a container of other 2851 /// statements. 2852 /// 2853 /// \return True if the statement was handled. 2854 bool EmitSimpleStmt(const Stmt *S); 2855 2856 Address EmitCompoundStmt(const CompoundStmt &S, bool GetLast = false, 2857 AggValueSlot AVS = AggValueSlot::ignored()); 2858 Address EmitCompoundStmtWithoutScope(const CompoundStmt &S, 2859 bool GetLast = false, 2860 AggValueSlot AVS = 2861 AggValueSlot::ignored()); 2862 2863 /// EmitLabel - Emit the block for the given label. It is legal to call this 2864 /// function even if there is no current insertion point. 2865 void EmitLabel(const LabelDecl *D); // helper for EmitLabelStmt. 2866 2867 void EmitLabelStmt(const LabelStmt &S); 2868 void EmitAttributedStmt(const AttributedStmt &S); 2869 void EmitGotoStmt(const GotoStmt &S); 2870 void EmitIndirectGotoStmt(const IndirectGotoStmt &S); 2871 void EmitIfStmt(const IfStmt &S); 2872 2873 void EmitWhileStmt(const WhileStmt &S, 2874 ArrayRef<const Attr *> Attrs = None); 2875 void EmitDoStmt(const DoStmt &S, ArrayRef<const Attr *> Attrs = None); 2876 void EmitForStmt(const ForStmt &S, 2877 ArrayRef<const Attr *> Attrs = None); 2878 void EmitReturnStmt(const ReturnStmt &S); 2879 void EmitDeclStmt(const DeclStmt &S); 2880 void EmitBreakStmt(const BreakStmt &S); 2881 void EmitContinueStmt(const ContinueStmt &S); 2882 void EmitSwitchStmt(const SwitchStmt &S); 2883 void EmitDefaultStmt(const DefaultStmt &S); 2884 void EmitCaseStmt(const CaseStmt &S); 2885 void EmitCaseStmtRange(const CaseStmt &S); 2886 void EmitAsmStmt(const AsmStmt &S); 2887 2888 void EmitObjCForCollectionStmt(const ObjCForCollectionStmt &S); 2889 void EmitObjCAtTryStmt(const ObjCAtTryStmt &S); 2890 void EmitObjCAtThrowStmt(const ObjCAtThrowStmt &S); 2891 void EmitObjCAtSynchronizedStmt(const ObjCAtSynchronizedStmt &S); 2892 void EmitObjCAutoreleasePoolStmt(const ObjCAutoreleasePoolStmt &S); 2893 2894 void EmitCoroutineBody(const CoroutineBodyStmt &S); 2895 void EmitCoreturnStmt(const CoreturnStmt &S); 2896 RValue EmitCoawaitExpr(const CoawaitExpr &E, 2897 AggValueSlot aggSlot = AggValueSlot::ignored(), 2898 bool ignoreResult = false); 2899 LValue EmitCoawaitLValue(const CoawaitExpr *E); 2900 RValue EmitCoyieldExpr(const CoyieldExpr &E, 2901 AggValueSlot aggSlot = AggValueSlot::ignored(), 2902 bool ignoreResult = false); 2903 LValue EmitCoyieldLValue(const CoyieldExpr *E); 2904 RValue EmitCoroutineIntrinsic(const CallExpr *E, unsigned int IID); 2905 2906 void EnterCXXTryStmt(const CXXTryStmt &S, bool IsFnTryBlock = false); 2907 void ExitCXXTryStmt(const CXXTryStmt &S, bool IsFnTryBlock = false); 2908 2909 void EmitCXXTryStmt(const CXXTryStmt &S); 2910 void EmitSEHTryStmt(const SEHTryStmt &S); 2911 void EmitSEHLeaveStmt(const SEHLeaveStmt &S); 2912 void EnterSEHTryStmt(const SEHTryStmt &S); 2913 void ExitSEHTryStmt(const SEHTryStmt &S); 2914 2915 void pushSEHCleanup(CleanupKind kind, 2916 llvm::Function *FinallyFunc); 2917 void startOutlinedSEHHelper(CodeGenFunction &ParentCGF, bool IsFilter, 2918 const Stmt *OutlinedStmt); 2919 2920 llvm::Function *GenerateSEHFilterFunction(CodeGenFunction &ParentCGF, 2921 const SEHExceptStmt &Except); 2922 2923 llvm::Function *GenerateSEHFinallyFunction(CodeGenFunction &ParentCGF, 2924 const SEHFinallyStmt &Finally); 2925 2926 void EmitSEHExceptionCodeSave(CodeGenFunction &ParentCGF, 2927 llvm::Value *ParentFP, 2928 llvm::Value *EntryEBP); 2929 llvm::Value *EmitSEHExceptionCode(); 2930 llvm::Value *EmitSEHExceptionInfo(); 2931 llvm::Value *EmitSEHAbnormalTermination(); 2932 2933 /// Emit simple code for OpenMP directives in Simd-only mode. 2934 void EmitSimpleOMPExecutableDirective(const OMPExecutableDirective &D); 2935 2936 /// Scan the outlined statement for captures from the parent function. For 2937 /// each capture, mark the capture as escaped and emit a call to 2938 /// llvm.localrecover. Insert the localrecover result into the LocalDeclMap. 2939 void EmitCapturedLocals(CodeGenFunction &ParentCGF, const Stmt *OutlinedStmt, 2940 bool IsFilter); 2941 2942 /// Recovers the address of a local in a parent function. ParentVar is the 2943 /// address of the variable used in the immediate parent function. It can 2944 /// either be an alloca or a call to llvm.localrecover if there are nested 2945 /// outlined functions. ParentFP is the frame pointer of the outermost parent 2946 /// frame. 2947 Address recoverAddrOfEscapedLocal(CodeGenFunction &ParentCGF, 2948 Address ParentVar, 2949 llvm::Value *ParentFP); 2950 2951 void EmitCXXForRangeStmt(const CXXForRangeStmt &S, 2952 ArrayRef<const Attr *> Attrs = None); 2953 2954 /// Controls insertion of cancellation exit blocks in worksharing constructs. 2955 class OMPCancelStackRAII { 2956 CodeGenFunction &CGF; 2957 2958 public: 2959 OMPCancelStackRAII(CodeGenFunction &CGF, OpenMPDirectiveKind Kind, 2960 bool HasCancel) 2961 : CGF(CGF) { 2962 CGF.OMPCancelStack.enter(CGF, Kind, HasCancel); 2963 } 2964 ~OMPCancelStackRAII() { CGF.OMPCancelStack.exit(CGF); } 2965 }; 2966 2967 /// Returns calculated size of the specified type. 2968 llvm::Value *getTypeSize(QualType Ty); 2969 LValue InitCapturedStruct(const CapturedStmt &S); 2970 llvm::Function *EmitCapturedStmt(const CapturedStmt &S, CapturedRegionKind K); 2971 llvm::Function *GenerateCapturedStmtFunction(const CapturedStmt &S); 2972 Address GenerateCapturedStmtArgument(const CapturedStmt &S); 2973 llvm::Function *GenerateOpenMPCapturedStmtFunction(const CapturedStmt &S); 2974 void GenerateOpenMPCapturedVars(const CapturedStmt &S, 2975 SmallVectorImpl<llvm::Value *> &CapturedVars); 2976 void emitOMPSimpleStore(LValue LVal, RValue RVal, QualType RValTy, 2977 SourceLocation Loc); 2978 /// Perform element by element copying of arrays with type \a 2979 /// OriginalType from \a SrcAddr to \a DestAddr using copying procedure 2980 /// generated by \a CopyGen. 2981 /// 2982 /// \param DestAddr Address of the destination array. 2983 /// \param SrcAddr Address of the source array. 2984 /// \param OriginalType Type of destination and source arrays. 2985 /// \param CopyGen Copying procedure that copies value of single array element 2986 /// to another single array element. 2987 void EmitOMPAggregateAssign( 2988 Address DestAddr, Address SrcAddr, QualType OriginalType, 2989 const llvm::function_ref<void(Address, Address)> CopyGen); 2990 /// Emit proper copying of data from one variable to another. 2991 /// 2992 /// \param OriginalType Original type of the copied variables. 2993 /// \param DestAddr Destination address. 2994 /// \param SrcAddr Source address. 2995 /// \param DestVD Destination variable used in \a CopyExpr (for arrays, has 2996 /// type of the base array element). 2997 /// \param SrcVD Source variable used in \a CopyExpr (for arrays, has type of 2998 /// the base array element). 2999 /// \param Copy Actual copygin expression for copying data from \a SrcVD to \a 3000 /// DestVD. 3001 void EmitOMPCopy(QualType OriginalType, 3002 Address DestAddr, Address SrcAddr, 3003 const VarDecl *DestVD, const VarDecl *SrcVD, 3004 const Expr *Copy); 3005 /// Emit atomic update code for constructs: \a X = \a X \a BO \a E or 3006 /// \a X = \a E \a BO \a E. 3007 /// 3008 /// \param X Value to be updated. 3009 /// \param E Update value. 3010 /// \param BO Binary operation for update operation. 3011 /// \param IsXLHSInRHSPart true if \a X is LHS in RHS part of the update 3012 /// expression, false otherwise. 3013 /// \param AO Atomic ordering of the generated atomic instructions. 3014 /// \param CommonGen Code generator for complex expressions that cannot be 3015 /// expressed through atomicrmw instruction. 3016 /// \returns <true, OldAtomicValue> if simple 'atomicrmw' instruction was 3017 /// generated, <false, RValue::get(nullptr)> otherwise. 3018 std::pair<bool, RValue> EmitOMPAtomicSimpleUpdateExpr( 3019 LValue X, RValue E, BinaryOperatorKind BO, bool IsXLHSInRHSPart, 3020 llvm::AtomicOrdering AO, SourceLocation Loc, 3021 const llvm::function_ref<RValue(RValue)> CommonGen); 3022 bool EmitOMPFirstprivateClause(const OMPExecutableDirective &D, 3023 OMPPrivateScope &PrivateScope); 3024 void EmitOMPPrivateClause(const OMPExecutableDirective &D, 3025 OMPPrivateScope &PrivateScope); 3026 void EmitOMPUseDevicePtrClause( 3027 const OMPClause &C, OMPPrivateScope &PrivateScope, 3028 const llvm::DenseMap<const ValueDecl *, Address> &CaptureDeviceAddrMap); 3029 /// Emit code for copyin clause in \a D directive. The next code is 3030 /// generated at the start of outlined functions for directives: 3031 /// \code 3032 /// threadprivate_var1 = master_threadprivate_var1; 3033 /// operator=(threadprivate_var2, master_threadprivate_var2); 3034 /// ... 3035 /// __kmpc_barrier(&loc, global_tid); 3036 /// \endcode 3037 /// 3038 /// \param D OpenMP directive possibly with 'copyin' clause(s). 3039 /// \returns true if at least one copyin variable is found, false otherwise. 3040 bool EmitOMPCopyinClause(const OMPExecutableDirective &D); 3041 /// Emit initial code for lastprivate variables. If some variable is 3042 /// not also firstprivate, then the default initialization is used. Otherwise 3043 /// initialization of this variable is performed by EmitOMPFirstprivateClause 3044 /// method. 3045 /// 3046 /// \param D Directive that may have 'lastprivate' directives. 3047 /// \param PrivateScope Private scope for capturing lastprivate variables for 3048 /// proper codegen in internal captured statement. 3049 /// 3050 /// \returns true if there is at least one lastprivate variable, false 3051 /// otherwise. 3052 bool EmitOMPLastprivateClauseInit(const OMPExecutableDirective &D, 3053 OMPPrivateScope &PrivateScope); 3054 /// Emit final copying of lastprivate values to original variables at 3055 /// the end of the worksharing or simd directive. 3056 /// 3057 /// \param D Directive that has at least one 'lastprivate' directives. 3058 /// \param IsLastIterCond Boolean condition that must be set to 'i1 true' if 3059 /// it is the last iteration of the loop code in associated directive, or to 3060 /// 'i1 false' otherwise. If this item is nullptr, no final check is required. 3061 void EmitOMPLastprivateClauseFinal(const OMPExecutableDirective &D, 3062 bool NoFinals, 3063 llvm::Value *IsLastIterCond = nullptr); 3064 /// Emit initial code for linear clauses. 3065 void EmitOMPLinearClause(const OMPLoopDirective &D, 3066 CodeGenFunction::OMPPrivateScope &PrivateScope); 3067 /// Emit final code for linear clauses. 3068 /// \param CondGen Optional conditional code for final part of codegen for 3069 /// linear clause. 3070 void EmitOMPLinearClauseFinal( 3071 const OMPLoopDirective &D, 3072 const llvm::function_ref<llvm::Value *(CodeGenFunction &)> CondGen); 3073 /// Emit initial code for reduction variables. Creates reduction copies 3074 /// and initializes them with the values according to OpenMP standard. 3075 /// 3076 /// \param D Directive (possibly) with the 'reduction' clause. 3077 /// \param PrivateScope Private scope for capturing reduction variables for 3078 /// proper codegen in internal captured statement. 3079 /// 3080 void EmitOMPReductionClauseInit(const OMPExecutableDirective &D, 3081 OMPPrivateScope &PrivateScope); 3082 /// Emit final update of reduction values to original variables at 3083 /// the end of the directive. 3084 /// 3085 /// \param D Directive that has at least one 'reduction' directives. 3086 /// \param ReductionKind The kind of reduction to perform. 3087 void EmitOMPReductionClauseFinal(const OMPExecutableDirective &D, 3088 const OpenMPDirectiveKind ReductionKind); 3089 /// Emit initial code for linear variables. Creates private copies 3090 /// and initializes them with the values according to OpenMP standard. 3091 /// 3092 /// \param D Directive (possibly) with the 'linear' clause. 3093 /// \return true if at least one linear variable is found that should be 3094 /// initialized with the value of the original variable, false otherwise. 3095 bool EmitOMPLinearClauseInit(const OMPLoopDirective &D); 3096 3097 typedef const llvm::function_ref<void(CodeGenFunction & /*CGF*/, 3098 llvm::Function * /*OutlinedFn*/, 3099 const OMPTaskDataTy & /*Data*/)> 3100 TaskGenTy; 3101 void EmitOMPTaskBasedDirective(const OMPExecutableDirective &S, 3102 const OpenMPDirectiveKind CapturedRegion, 3103 const RegionCodeGenTy &BodyGen, 3104 const TaskGenTy &TaskGen, OMPTaskDataTy &Data); 3105 struct OMPTargetDataInfo { 3106 Address BasePointersArray = Address::invalid(); 3107 Address PointersArray = Address::invalid(); 3108 Address SizesArray = Address::invalid(); 3109 unsigned NumberOfTargetItems = 0; 3110 explicit OMPTargetDataInfo() = default; 3111 OMPTargetDataInfo(Address BasePointersArray, Address PointersArray, 3112 Address SizesArray, unsigned NumberOfTargetItems) 3113 : BasePointersArray(BasePointersArray), PointersArray(PointersArray), 3114 SizesArray(SizesArray), NumberOfTargetItems(NumberOfTargetItems) {} 3115 }; 3116 void EmitOMPTargetTaskBasedDirective(const OMPExecutableDirective &S, 3117 const RegionCodeGenTy &BodyGen, 3118 OMPTargetDataInfo &InputInfo); 3119 3120 void EmitOMPParallelDirective(const OMPParallelDirective &S); 3121 void EmitOMPSimdDirective(const OMPSimdDirective &S); 3122 void EmitOMPForDirective(const OMPForDirective &S); 3123 void EmitOMPForSimdDirective(const OMPForSimdDirective &S); 3124 void EmitOMPSectionsDirective(const OMPSectionsDirective &S); 3125 void EmitOMPSectionDirective(const OMPSectionDirective &S); 3126 void EmitOMPSingleDirective(const OMPSingleDirective &S); 3127 void EmitOMPMasterDirective(const OMPMasterDirective &S); 3128 void EmitOMPCriticalDirective(const OMPCriticalDirective &S); 3129 void EmitOMPParallelForDirective(const OMPParallelForDirective &S); 3130 void EmitOMPParallelForSimdDirective(const OMPParallelForSimdDirective &S); 3131 void EmitOMPParallelSectionsDirective(const OMPParallelSectionsDirective &S); 3132 void EmitOMPTaskDirective(const OMPTaskDirective &S); 3133 void EmitOMPTaskyieldDirective(const OMPTaskyieldDirective &S); 3134 void EmitOMPBarrierDirective(const OMPBarrierDirective &S); 3135 void EmitOMPTaskwaitDirective(const OMPTaskwaitDirective &S); 3136 void EmitOMPTaskgroupDirective(const OMPTaskgroupDirective &S); 3137 void EmitOMPFlushDirective(const OMPFlushDirective &S); 3138 void EmitOMPOrderedDirective(const OMPOrderedDirective &S); 3139 void EmitOMPAtomicDirective(const OMPAtomicDirective &S); 3140 void EmitOMPTargetDirective(const OMPTargetDirective &S); 3141 void EmitOMPTargetDataDirective(const OMPTargetDataDirective &S); 3142 void EmitOMPTargetEnterDataDirective(const OMPTargetEnterDataDirective &S); 3143 void EmitOMPTargetExitDataDirective(const OMPTargetExitDataDirective &S); 3144 void EmitOMPTargetUpdateDirective(const OMPTargetUpdateDirective &S); 3145 void EmitOMPTargetParallelDirective(const OMPTargetParallelDirective &S); 3146 void 3147 EmitOMPTargetParallelForDirective(const OMPTargetParallelForDirective &S); 3148 void EmitOMPTeamsDirective(const OMPTeamsDirective &S); 3149 void 3150 EmitOMPCancellationPointDirective(const OMPCancellationPointDirective &S); 3151 void EmitOMPCancelDirective(const OMPCancelDirective &S); 3152 void EmitOMPTaskLoopBasedDirective(const OMPLoopDirective &S); 3153 void EmitOMPTaskLoopDirective(const OMPTaskLoopDirective &S); 3154 void EmitOMPTaskLoopSimdDirective(const OMPTaskLoopSimdDirective &S); 3155 void EmitOMPDistributeDirective(const OMPDistributeDirective &S); 3156 void EmitOMPDistributeParallelForDirective( 3157 const OMPDistributeParallelForDirective &S); 3158 void EmitOMPDistributeParallelForSimdDirective( 3159 const OMPDistributeParallelForSimdDirective &S); 3160 void EmitOMPDistributeSimdDirective(const OMPDistributeSimdDirective &S); 3161 void EmitOMPTargetParallelForSimdDirective( 3162 const OMPTargetParallelForSimdDirective &S); 3163 void EmitOMPTargetSimdDirective(const OMPTargetSimdDirective &S); 3164 void EmitOMPTeamsDistributeDirective(const OMPTeamsDistributeDirective &S); 3165 void 3166 EmitOMPTeamsDistributeSimdDirective(const OMPTeamsDistributeSimdDirective &S); 3167 void EmitOMPTeamsDistributeParallelForSimdDirective( 3168 const OMPTeamsDistributeParallelForSimdDirective &S); 3169 void EmitOMPTeamsDistributeParallelForDirective( 3170 const OMPTeamsDistributeParallelForDirective &S); 3171 void EmitOMPTargetTeamsDirective(const OMPTargetTeamsDirective &S); 3172 void EmitOMPTargetTeamsDistributeDirective( 3173 const OMPTargetTeamsDistributeDirective &S); 3174 void EmitOMPTargetTeamsDistributeParallelForDirective( 3175 const OMPTargetTeamsDistributeParallelForDirective &S); 3176 void EmitOMPTargetTeamsDistributeParallelForSimdDirective( 3177 const OMPTargetTeamsDistributeParallelForSimdDirective &S); 3178 void EmitOMPTargetTeamsDistributeSimdDirective( 3179 const OMPTargetTeamsDistributeSimdDirective &S); 3180 3181 /// Emit device code for the target directive. 3182 static void EmitOMPTargetDeviceFunction(CodeGenModule &CGM, 3183 StringRef ParentName, 3184 const OMPTargetDirective &S); 3185 static void 3186 EmitOMPTargetParallelDeviceFunction(CodeGenModule &CGM, StringRef ParentName, 3187 const OMPTargetParallelDirective &S); 3188 /// Emit device code for the target parallel for directive. 3189 static void EmitOMPTargetParallelForDeviceFunction( 3190 CodeGenModule &CGM, StringRef ParentName, 3191 const OMPTargetParallelForDirective &S); 3192 /// Emit device code for the target parallel for simd directive. 3193 static void EmitOMPTargetParallelForSimdDeviceFunction( 3194 CodeGenModule &CGM, StringRef ParentName, 3195 const OMPTargetParallelForSimdDirective &S); 3196 /// Emit device code for the target teams directive. 3197 static void 3198 EmitOMPTargetTeamsDeviceFunction(CodeGenModule &CGM, StringRef ParentName, 3199 const OMPTargetTeamsDirective &S); 3200 /// Emit device code for the target teams distribute directive. 3201 static void EmitOMPTargetTeamsDistributeDeviceFunction( 3202 CodeGenModule &CGM, StringRef ParentName, 3203 const OMPTargetTeamsDistributeDirective &S); 3204 /// Emit device code for the target teams distribute simd directive. 3205 static void EmitOMPTargetTeamsDistributeSimdDeviceFunction( 3206 CodeGenModule &CGM, StringRef ParentName, 3207 const OMPTargetTeamsDistributeSimdDirective &S); 3208 /// Emit device code for the target simd directive. 3209 static void EmitOMPTargetSimdDeviceFunction(CodeGenModule &CGM, 3210 StringRef ParentName, 3211 const OMPTargetSimdDirective &S); 3212 /// Emit device code for the target teams distribute parallel for simd 3213 /// directive. 3214 static void EmitOMPTargetTeamsDistributeParallelForSimdDeviceFunction( 3215 CodeGenModule &CGM, StringRef ParentName, 3216 const OMPTargetTeamsDistributeParallelForSimdDirective &S); 3217 3218 static void EmitOMPTargetTeamsDistributeParallelForDeviceFunction( 3219 CodeGenModule &CGM, StringRef ParentName, 3220 const OMPTargetTeamsDistributeParallelForDirective &S); 3221 /// Emit inner loop of the worksharing/simd construct. 3222 /// 3223 /// \param S Directive, for which the inner loop must be emitted. 3224 /// \param RequiresCleanup true, if directive has some associated private 3225 /// variables. 3226 /// \param LoopCond Bollean condition for loop continuation. 3227 /// \param IncExpr Increment expression for loop control variable. 3228 /// \param BodyGen Generator for the inner body of the inner loop. 3229 /// \param PostIncGen Genrator for post-increment code (required for ordered 3230 /// loop directvies). 3231 void EmitOMPInnerLoop( 3232 const Stmt &S, bool RequiresCleanup, const Expr *LoopCond, 3233 const Expr *IncExpr, 3234 const llvm::function_ref<void(CodeGenFunction &)> BodyGen, 3235 const llvm::function_ref<void(CodeGenFunction &)> PostIncGen); 3236 3237 JumpDest getOMPCancelDestination(OpenMPDirectiveKind Kind); 3238 /// Emit initial code for loop counters of loop-based directives. 3239 void EmitOMPPrivateLoopCounters(const OMPLoopDirective &S, 3240 OMPPrivateScope &LoopScope); 3241 3242 /// Helper for the OpenMP loop directives. 3243 void EmitOMPLoopBody(const OMPLoopDirective &D, JumpDest LoopExit); 3244 3245 /// Emit code for the worksharing loop-based directive. 3246 /// \return true, if this construct has any lastprivate clause, false - 3247 /// otherwise. 3248 bool EmitOMPWorksharingLoop(const OMPLoopDirective &S, Expr *EUB, 3249 const CodeGenLoopBoundsTy &CodeGenLoopBounds, 3250 const CodeGenDispatchBoundsTy &CGDispatchBounds); 3251 3252 /// Emit code for the distribute loop-based directive. 3253 void EmitOMPDistributeLoop(const OMPLoopDirective &S, 3254 const CodeGenLoopTy &CodeGenLoop, Expr *IncExpr); 3255 3256 /// Helpers for the OpenMP loop directives. 3257 void EmitOMPSimdInit(const OMPLoopDirective &D, bool IsMonotonic = false); 3258 void EmitOMPSimdFinal( 3259 const OMPLoopDirective &D, 3260 const llvm::function_ref<llvm::Value *(CodeGenFunction &)> CondGen); 3261 3262 /// Emits the lvalue for the expression with possibly captured variable. 3263 LValue EmitOMPSharedLValue(const Expr *E); 3264 3265 private: 3266 /// Helpers for blocks. 3267 llvm::Value *EmitBlockLiteral(const CGBlockInfo &Info); 3268 3269 /// struct with the values to be passed to the OpenMP loop-related functions 3270 struct OMPLoopArguments { 3271 /// loop lower bound 3272 Address LB = Address::invalid(); 3273 /// loop upper bound 3274 Address UB = Address::invalid(); 3275 /// loop stride 3276 Address ST = Address::invalid(); 3277 /// isLastIteration argument for runtime functions 3278 Address IL = Address::invalid(); 3279 /// Chunk value generated by sema 3280 llvm::Value *Chunk = nullptr; 3281 /// EnsureUpperBound 3282 Expr *EUB = nullptr; 3283 /// IncrementExpression 3284 Expr *IncExpr = nullptr; 3285 /// Loop initialization 3286 Expr *Init = nullptr; 3287 /// Loop exit condition 3288 Expr *Cond = nullptr; 3289 /// Update of LB after a whole chunk has been executed 3290 Expr *NextLB = nullptr; 3291 /// Update of UB after a whole chunk has been executed 3292 Expr *NextUB = nullptr; 3293 OMPLoopArguments() = default; 3294 OMPLoopArguments(Address LB, Address UB, Address ST, Address IL, 3295 llvm::Value *Chunk = nullptr, Expr *EUB = nullptr, 3296 Expr *IncExpr = nullptr, Expr *Init = nullptr, 3297 Expr *Cond = nullptr, Expr *NextLB = nullptr, 3298 Expr *NextUB = nullptr) 3299 : LB(LB), UB(UB), ST(ST), IL(IL), Chunk(Chunk), EUB(EUB), 3300 IncExpr(IncExpr), Init(Init), Cond(Cond), NextLB(NextLB), 3301 NextUB(NextUB) {} 3302 }; 3303 void EmitOMPOuterLoop(bool DynamicOrOrdered, bool IsMonotonic, 3304 const OMPLoopDirective &S, OMPPrivateScope &LoopScope, 3305 const OMPLoopArguments &LoopArgs, 3306 const CodeGenLoopTy &CodeGenLoop, 3307 const CodeGenOrderedTy &CodeGenOrdered); 3308 void EmitOMPForOuterLoop(const OpenMPScheduleTy &ScheduleKind, 3309 bool IsMonotonic, const OMPLoopDirective &S, 3310 OMPPrivateScope &LoopScope, bool Ordered, 3311 const OMPLoopArguments &LoopArgs, 3312 const CodeGenDispatchBoundsTy &CGDispatchBounds); 3313 void EmitOMPDistributeOuterLoop(OpenMPDistScheduleClauseKind ScheduleKind, 3314 const OMPLoopDirective &S, 3315 OMPPrivateScope &LoopScope, 3316 const OMPLoopArguments &LoopArgs, 3317 const CodeGenLoopTy &CodeGenLoopContent); 3318 /// Emit code for sections directive. 3319 void EmitSections(const OMPExecutableDirective &S); 3320 3321 public: 3322 3323 //===--------------------------------------------------------------------===// 3324 // LValue Expression Emission 3325 //===--------------------------------------------------------------------===// 3326 3327 /// GetUndefRValue - Get an appropriate 'undef' rvalue for the given type. 3328 RValue GetUndefRValue(QualType Ty); 3329 3330 /// EmitUnsupportedRValue - Emit a dummy r-value using the type of E 3331 /// and issue an ErrorUnsupported style diagnostic (using the 3332 /// provided Name). 3333 RValue EmitUnsupportedRValue(const Expr *E, 3334 const char *Name); 3335 3336 /// EmitUnsupportedLValue - Emit a dummy l-value using the type of E and issue 3337 /// an ErrorUnsupported style diagnostic (using the provided Name). 3338 LValue EmitUnsupportedLValue(const Expr *E, 3339 const char *Name); 3340 3341 /// EmitLValue - Emit code to compute a designator that specifies the location 3342 /// of the expression. 3343 /// 3344 /// This can return one of two things: a simple address or a bitfield 3345 /// reference. In either case, the LLVM Value* in the LValue structure is 3346 /// guaranteed to be an LLVM pointer type. 3347 /// 3348 /// If this returns a bitfield reference, nothing about the pointee type of 3349 /// the LLVM value is known: For example, it may not be a pointer to an 3350 /// integer. 3351 /// 3352 /// If this returns a normal address, and if the lvalue's C type is fixed 3353 /// size, this method guarantees that the returned pointer type will point to 3354 /// an LLVM type of the same size of the lvalue's type. If the lvalue has a 3355 /// variable length type, this is not possible. 3356 /// 3357 LValue EmitLValue(const Expr *E); 3358 3359 /// Same as EmitLValue but additionally we generate checking code to 3360 /// guard against undefined behavior. This is only suitable when we know 3361 /// that the address will be used to access the object. 3362 LValue EmitCheckedLValue(const Expr *E, TypeCheckKind TCK); 3363 3364 RValue convertTempToRValue(Address addr, QualType type, 3365 SourceLocation Loc); 3366 3367 void EmitAtomicInit(Expr *E, LValue lvalue); 3368 3369 bool LValueIsSuitableForInlineAtomic(LValue Src); 3370 3371 RValue EmitAtomicLoad(LValue LV, SourceLocation SL, 3372 AggValueSlot Slot = AggValueSlot::ignored()); 3373 3374 RValue EmitAtomicLoad(LValue lvalue, SourceLocation loc, 3375 llvm::AtomicOrdering AO, bool IsVolatile = false, 3376 AggValueSlot slot = AggValueSlot::ignored()); 3377 3378 void EmitAtomicStore(RValue rvalue, LValue lvalue, bool isInit); 3379 3380 void EmitAtomicStore(RValue rvalue, LValue lvalue, llvm::AtomicOrdering AO, 3381 bool IsVolatile, bool isInit); 3382 3383 std::pair<RValue, llvm::Value *> EmitAtomicCompareExchange( 3384 LValue Obj, RValue Expected, RValue Desired, SourceLocation Loc, 3385 llvm::AtomicOrdering Success = 3386 llvm::AtomicOrdering::SequentiallyConsistent, 3387 llvm::AtomicOrdering Failure = 3388 llvm::AtomicOrdering::SequentiallyConsistent, 3389 bool IsWeak = false, AggValueSlot Slot = AggValueSlot::ignored()); 3390 3391 void EmitAtomicUpdate(LValue LVal, llvm::AtomicOrdering AO, 3392 const llvm::function_ref<RValue(RValue)> &UpdateOp, 3393 bool IsVolatile); 3394 3395 /// EmitToMemory - Change a scalar value from its value 3396 /// representation to its in-memory representation. 3397 llvm::Value *EmitToMemory(llvm::Value *Value, QualType Ty); 3398 3399 /// EmitFromMemory - Change a scalar value from its memory 3400 /// representation to its value representation. 3401 llvm::Value *EmitFromMemory(llvm::Value *Value, QualType Ty); 3402 3403 /// Check if the scalar \p Value is within the valid range for the given 3404 /// type \p Ty. 3405 /// 3406 /// Returns true if a check is needed (even if the range is unknown). 3407 bool EmitScalarRangeCheck(llvm::Value *Value, QualType Ty, 3408 SourceLocation Loc); 3409 3410 /// EmitLoadOfScalar - Load a scalar value from an address, taking 3411 /// care to appropriately convert from the memory representation to 3412 /// the LLVM value representation. 3413 llvm::Value *EmitLoadOfScalar(Address Addr, bool Volatile, QualType Ty, 3414 SourceLocation Loc, 3415 AlignmentSource Source = AlignmentSource::Type, 3416 bool isNontemporal = false) { 3417 return EmitLoadOfScalar(Addr, Volatile, Ty, Loc, LValueBaseInfo(Source), 3418 CGM.getTBAAAccessInfo(Ty), isNontemporal); 3419 } 3420 3421 llvm::Value *EmitLoadOfScalar(Address Addr, bool Volatile, QualType Ty, 3422 SourceLocation Loc, LValueBaseInfo BaseInfo, 3423 TBAAAccessInfo TBAAInfo, 3424 bool isNontemporal = false); 3425 3426 /// EmitLoadOfScalar - Load a scalar value from an address, taking 3427 /// care to appropriately convert from the memory representation to 3428 /// the LLVM value representation. The l-value must be a simple 3429 /// l-value. 3430 llvm::Value *EmitLoadOfScalar(LValue lvalue, SourceLocation Loc); 3431 3432 /// EmitStoreOfScalar - Store a scalar value to an address, taking 3433 /// care to appropriately convert from the memory representation to 3434 /// the LLVM value representation. 3435 void EmitStoreOfScalar(llvm::Value *Value, Address Addr, 3436 bool Volatile, QualType Ty, 3437 AlignmentSource Source = AlignmentSource::Type, 3438 bool isInit = false, bool isNontemporal = false) { 3439 EmitStoreOfScalar(Value, Addr, Volatile, Ty, LValueBaseInfo(Source), 3440 CGM.getTBAAAccessInfo(Ty), isInit, isNontemporal); 3441 } 3442 3443 void EmitStoreOfScalar(llvm::Value *Value, Address Addr, 3444 bool Volatile, QualType Ty, 3445 LValueBaseInfo BaseInfo, TBAAAccessInfo TBAAInfo, 3446 bool isInit = false, bool isNontemporal = false); 3447 3448 /// EmitStoreOfScalar - Store a scalar value to an address, taking 3449 /// care to appropriately convert from the memory representation to 3450 /// the LLVM value representation. The l-value must be a simple 3451 /// l-value. The isInit flag indicates whether this is an initialization. 3452 /// If so, atomic qualifiers are ignored and the store is always non-atomic. 3453 void EmitStoreOfScalar(llvm::Value *value, LValue lvalue, bool isInit=false); 3454 3455 /// EmitLoadOfLValue - Given an expression that represents a value lvalue, 3456 /// this method emits the address of the lvalue, then loads the result as an 3457 /// rvalue, returning the rvalue. 3458 RValue EmitLoadOfLValue(LValue V, SourceLocation Loc); 3459 RValue EmitLoadOfExtVectorElementLValue(LValue V); 3460 RValue EmitLoadOfBitfieldLValue(LValue LV, SourceLocation Loc); 3461 RValue EmitLoadOfGlobalRegLValue(LValue LV); 3462 3463 /// EmitStoreThroughLValue - Store the specified rvalue into the specified 3464 /// lvalue, where both are guaranteed to the have the same type, and that type 3465 /// is 'Ty'. 3466 void EmitStoreThroughLValue(RValue Src, LValue Dst, bool isInit = false); 3467 void EmitStoreThroughExtVectorComponentLValue(RValue Src, LValue Dst); 3468 void EmitStoreThroughGlobalRegLValue(RValue Src, LValue Dst); 3469 3470 /// EmitStoreThroughBitfieldLValue - Store Src into Dst with same constraints 3471 /// as EmitStoreThroughLValue. 3472 /// 3473 /// \param Result [out] - If non-null, this will be set to a Value* for the 3474 /// bit-field contents after the store, appropriate for use as the result of 3475 /// an assignment to the bit-field. 3476 void EmitStoreThroughBitfieldLValue(RValue Src, LValue Dst, 3477 llvm::Value **Result=nullptr); 3478 3479 /// Emit an l-value for an assignment (simple or compound) of complex type. 3480 LValue EmitComplexAssignmentLValue(const BinaryOperator *E); 3481 LValue EmitComplexCompoundAssignmentLValue(const CompoundAssignOperator *E); 3482 LValue EmitScalarCompoundAssignWithComplex(const CompoundAssignOperator *E, 3483 llvm::Value *&Result); 3484 3485 // Note: only available for agg return types 3486 LValue EmitBinaryOperatorLValue(const BinaryOperator *E); 3487 LValue EmitCompoundAssignmentLValue(const CompoundAssignOperator *E); 3488 // Note: only available for agg return types 3489 LValue EmitCallExprLValue(const CallExpr *E); 3490 // Note: only available for agg return types 3491 LValue EmitVAArgExprLValue(const VAArgExpr *E); 3492 LValue EmitDeclRefLValue(const DeclRefExpr *E); 3493 LValue EmitStringLiteralLValue(const StringLiteral *E); 3494 LValue EmitObjCEncodeExprLValue(const ObjCEncodeExpr *E); 3495 LValue EmitPredefinedLValue(const PredefinedExpr *E); 3496 LValue EmitUnaryOpLValue(const UnaryOperator *E); 3497 LValue EmitArraySubscriptExpr(const ArraySubscriptExpr *E, 3498 bool Accessed = false); 3499 LValue EmitOMPArraySectionExpr(const OMPArraySectionExpr *E, 3500 bool IsLowerBound = true); 3501 LValue EmitExtVectorElementExpr(const ExtVectorElementExpr *E); 3502 LValue EmitMemberExpr(const MemberExpr *E); 3503 LValue EmitObjCIsaExpr(const ObjCIsaExpr *E); 3504 LValue EmitCompoundLiteralLValue(const CompoundLiteralExpr *E); 3505 LValue EmitInitListLValue(const InitListExpr *E); 3506 LValue EmitConditionalOperatorLValue(const AbstractConditionalOperator *E); 3507 LValue EmitCastLValue(const CastExpr *E); 3508 LValue EmitMaterializeTemporaryExpr(const MaterializeTemporaryExpr *E); 3509 LValue EmitOpaqueValueLValue(const OpaqueValueExpr *e); 3510 3511 Address EmitExtVectorElementLValue(LValue V); 3512 3513 RValue EmitRValueForField(LValue LV, const FieldDecl *FD, SourceLocation Loc); 3514 3515 Address EmitArrayToPointerDecay(const Expr *Array, 3516 LValueBaseInfo *BaseInfo = nullptr, 3517 TBAAAccessInfo *TBAAInfo = nullptr); 3518 3519 class ConstantEmission { 3520 llvm::PointerIntPair<llvm::Constant*, 1, bool> ValueAndIsReference; 3521 ConstantEmission(llvm::Constant *C, bool isReference) 3522 : ValueAndIsReference(C, isReference) {} 3523 public: 3524 ConstantEmission() {} 3525 static ConstantEmission forReference(llvm::Constant *C) { 3526 return ConstantEmission(C, true); 3527 } 3528 static ConstantEmission forValue(llvm::Constant *C) { 3529 return ConstantEmission(C, false); 3530 } 3531 3532 explicit operator bool() const { 3533 return ValueAndIsReference.getOpaqueValue() != nullptr; 3534 } 3535 3536 bool isReference() const { return ValueAndIsReference.getInt(); } 3537 LValue getReferenceLValue(CodeGenFunction &CGF, Expr *refExpr) const { 3538 assert(isReference()); 3539 return CGF.MakeNaturalAlignAddrLValue(ValueAndIsReference.getPointer(), 3540 refExpr->getType()); 3541 } 3542 3543 llvm::Constant *getValue() const { 3544 assert(!isReference()); 3545 return ValueAndIsReference.getPointer(); 3546 } 3547 }; 3548 3549 ConstantEmission tryEmitAsConstant(DeclRefExpr *refExpr); 3550 ConstantEmission tryEmitAsConstant(const MemberExpr *ME); 3551 llvm::Value *emitScalarConstant(const ConstantEmission &Constant, Expr *E); 3552 3553 RValue EmitPseudoObjectRValue(const PseudoObjectExpr *e, 3554 AggValueSlot slot = AggValueSlot::ignored()); 3555 LValue EmitPseudoObjectLValue(const PseudoObjectExpr *e); 3556 3557 llvm::Value *EmitIvarOffset(const ObjCInterfaceDecl *Interface, 3558 const ObjCIvarDecl *Ivar); 3559 LValue EmitLValueForField(LValue Base, const FieldDecl* Field); 3560 LValue EmitLValueForLambdaField(const FieldDecl *Field); 3561 3562 /// EmitLValueForFieldInitialization - Like EmitLValueForField, except that 3563 /// if the Field is a reference, this will return the address of the reference 3564 /// and not the address of the value stored in the reference. 3565 LValue EmitLValueForFieldInitialization(LValue Base, 3566 const FieldDecl* Field); 3567 3568 LValue EmitLValueForIvar(QualType ObjectTy, 3569 llvm::Value* Base, const ObjCIvarDecl *Ivar, 3570 unsigned CVRQualifiers); 3571 3572 LValue EmitCXXConstructLValue(const CXXConstructExpr *E); 3573 LValue EmitCXXBindTemporaryLValue(const CXXBindTemporaryExpr *E); 3574 LValue EmitCXXTypeidLValue(const CXXTypeidExpr *E); 3575 LValue EmitCXXUuidofLValue(const CXXUuidofExpr *E); 3576 3577 LValue EmitObjCMessageExprLValue(const ObjCMessageExpr *E); 3578 LValue EmitObjCIvarRefLValue(const ObjCIvarRefExpr *E); 3579 LValue EmitStmtExprLValue(const StmtExpr *E); 3580 LValue EmitPointerToDataMemberBinaryExpr(const BinaryOperator *E); 3581 LValue EmitObjCSelectorLValue(const ObjCSelectorExpr *E); 3582 void EmitDeclRefExprDbgValue(const DeclRefExpr *E, const APValue &Init); 3583 3584 //===--------------------------------------------------------------------===// 3585 // Scalar Expression Emission 3586 //===--------------------------------------------------------------------===// 3587 3588 /// EmitCall - Generate a call of the given function, expecting the given 3589 /// result type, and using the given argument list which specifies both the 3590 /// LLVM arguments and the types they were derived from. 3591 RValue EmitCall(const CGFunctionInfo &CallInfo, const CGCallee &Callee, 3592 ReturnValueSlot ReturnValue, const CallArgList &Args, 3593 llvm::CallBase **callOrInvoke, SourceLocation Loc); 3594 RValue EmitCall(const CGFunctionInfo &CallInfo, const CGCallee &Callee, 3595 ReturnValueSlot ReturnValue, const CallArgList &Args, 3596 llvm::CallBase **callOrInvoke = nullptr) { 3597 return EmitCall(CallInfo, Callee, ReturnValue, Args, callOrInvoke, 3598 SourceLocation()); 3599 } 3600 RValue EmitCall(QualType FnType, const CGCallee &Callee, const CallExpr *E, 3601 ReturnValueSlot ReturnValue, llvm::Value *Chain = nullptr); 3602 RValue EmitCallExpr(const CallExpr *E, 3603 ReturnValueSlot ReturnValue = ReturnValueSlot()); 3604 RValue EmitSimpleCallExpr(const CallExpr *E, ReturnValueSlot ReturnValue); 3605 CGCallee EmitCallee(const Expr *E); 3606 3607 void checkTargetFeatures(const CallExpr *E, const FunctionDecl *TargetDecl); 3608 void checkTargetFeatures(SourceLocation Loc, const FunctionDecl *TargetDecl); 3609 3610 llvm::CallInst *EmitRuntimeCall(llvm::FunctionCallee callee, 3611 const Twine &name = ""); 3612 llvm::CallInst *EmitRuntimeCall(llvm::FunctionCallee callee, 3613 ArrayRef<llvm::Value *> args, 3614 const Twine &name = ""); 3615 llvm::CallInst *EmitNounwindRuntimeCall(llvm::FunctionCallee callee, 3616 const Twine &name = ""); 3617 llvm::CallInst *EmitNounwindRuntimeCall(llvm::FunctionCallee callee, 3618 ArrayRef<llvm::Value *> args, 3619 const Twine &name = ""); 3620 3621 SmallVector<llvm::OperandBundleDef, 1> 3622 getBundlesForFunclet(llvm::Value *Callee); 3623 3624 llvm::CallBase *EmitCallOrInvoke(llvm::FunctionCallee Callee, 3625 ArrayRef<llvm::Value *> Args, 3626 const Twine &Name = ""); 3627 llvm::CallBase *EmitRuntimeCallOrInvoke(llvm::FunctionCallee callee, 3628 ArrayRef<llvm::Value *> args, 3629 const Twine &name = ""); 3630 llvm::CallBase *EmitRuntimeCallOrInvoke(llvm::FunctionCallee callee, 3631 const Twine &name = ""); 3632 void EmitNoreturnRuntimeCallOrInvoke(llvm::FunctionCallee callee, 3633 ArrayRef<llvm::Value *> args); 3634 3635 CGCallee BuildAppleKextVirtualCall(const CXXMethodDecl *MD, 3636 NestedNameSpecifier *Qual, 3637 llvm::Type *Ty); 3638 3639 CGCallee BuildAppleKextVirtualDestructorCall(const CXXDestructorDecl *DD, 3640 CXXDtorType Type, 3641 const CXXRecordDecl *RD); 3642 3643 // Return the copy constructor name with the prefix "__copy_constructor_" 3644 // removed. 3645 static std::string getNonTrivialCopyConstructorStr(QualType QT, 3646 CharUnits Alignment, 3647 bool IsVolatile, 3648 ASTContext &Ctx); 3649 3650 // Return the destructor name with the prefix "__destructor_" removed. 3651 static std::string getNonTrivialDestructorStr(QualType QT, 3652 CharUnits Alignment, 3653 bool IsVolatile, 3654 ASTContext &Ctx); 3655 3656 // These functions emit calls to the special functions of non-trivial C 3657 // structs. 3658 void defaultInitNonTrivialCStructVar(LValue Dst); 3659 void callCStructDefaultConstructor(LValue Dst); 3660 void callCStructDestructor(LValue Dst); 3661 void callCStructCopyConstructor(LValue Dst, LValue Src); 3662 void callCStructMoveConstructor(LValue Dst, LValue Src); 3663 void callCStructCopyAssignmentOperator(LValue Dst, LValue Src); 3664 void callCStructMoveAssignmentOperator(LValue Dst, LValue Src); 3665 3666 RValue 3667 EmitCXXMemberOrOperatorCall(const CXXMethodDecl *Method, 3668 const CGCallee &Callee, 3669 ReturnValueSlot ReturnValue, llvm::Value *This, 3670 llvm::Value *ImplicitParam, 3671 QualType ImplicitParamTy, const CallExpr *E, 3672 CallArgList *RtlArgs); 3673 RValue EmitCXXDestructorCall(GlobalDecl Dtor, 3674 const CGCallee &Callee, 3675 llvm::Value *This, llvm::Value *ImplicitParam, 3676 QualType ImplicitParamTy, const CallExpr *E); 3677 RValue EmitCXXMemberCallExpr(const CXXMemberCallExpr *E, 3678 ReturnValueSlot ReturnValue); 3679 RValue EmitCXXMemberOrOperatorMemberCallExpr(const CallExpr *CE, 3680 const CXXMethodDecl *MD, 3681 ReturnValueSlot ReturnValue, 3682 bool HasQualifier, 3683 NestedNameSpecifier *Qualifier, 3684 bool IsArrow, const Expr *Base); 3685 // Compute the object pointer. 3686 Address EmitCXXMemberDataPointerAddress(const Expr *E, Address base, 3687 llvm::Value *memberPtr, 3688 const MemberPointerType *memberPtrType, 3689 LValueBaseInfo *BaseInfo = nullptr, 3690 TBAAAccessInfo *TBAAInfo = nullptr); 3691 RValue EmitCXXMemberPointerCallExpr(const CXXMemberCallExpr *E, 3692 ReturnValueSlot ReturnValue); 3693 3694 RValue EmitCXXOperatorMemberCallExpr(const CXXOperatorCallExpr *E, 3695 const CXXMethodDecl *MD, 3696 ReturnValueSlot ReturnValue); 3697 RValue EmitCXXPseudoDestructorExpr(const CXXPseudoDestructorExpr *E); 3698 3699 RValue EmitCUDAKernelCallExpr(const CUDAKernelCallExpr *E, 3700 ReturnValueSlot ReturnValue); 3701 3702 RValue EmitNVPTXDevicePrintfCallExpr(const CallExpr *E, 3703 ReturnValueSlot ReturnValue); 3704 3705 RValue EmitBuiltinExpr(const GlobalDecl GD, unsigned BuiltinID, 3706 const CallExpr *E, ReturnValueSlot ReturnValue); 3707 3708 RValue emitRotate(const CallExpr *E, bool IsRotateRight); 3709 3710 /// Emit IR for __builtin_os_log_format. 3711 RValue emitBuiltinOSLogFormat(const CallExpr &E); 3712 3713 llvm::Function *generateBuiltinOSLogHelperFunction( 3714 const analyze_os_log::OSLogBufferLayout &Layout, 3715 CharUnits BufferAlignment); 3716 3717 RValue EmitBlockCallExpr(const CallExpr *E, ReturnValueSlot ReturnValue); 3718 3719 /// EmitTargetBuiltinExpr - Emit the given builtin call. Returns 0 if the call 3720 /// is unhandled by the current target. 3721 llvm::Value *EmitTargetBuiltinExpr(unsigned BuiltinID, const CallExpr *E); 3722 3723 llvm::Value *EmitAArch64CompareBuiltinExpr(llvm::Value *Op, llvm::Type *Ty, 3724 const llvm::CmpInst::Predicate Fp, 3725 const llvm::CmpInst::Predicate Ip, 3726 const llvm::Twine &Name = ""); 3727 llvm::Value *EmitARMBuiltinExpr(unsigned BuiltinID, const CallExpr *E, 3728 llvm::Triple::ArchType Arch); 3729 3730 llvm::Value *EmitCommonNeonBuiltinExpr(unsigned BuiltinID, 3731 unsigned LLVMIntrinsic, 3732 unsigned AltLLVMIntrinsic, 3733 const char *NameHint, 3734 unsigned Modifier, 3735 const CallExpr *E, 3736 SmallVectorImpl<llvm::Value *> &Ops, 3737 Address PtrOp0, Address PtrOp1, 3738 llvm::Triple::ArchType Arch); 3739 3740 llvm::Function *LookupNeonLLVMIntrinsic(unsigned IntrinsicID, 3741 unsigned Modifier, llvm::Type *ArgTy, 3742 const CallExpr *E); 3743 llvm::Value *EmitNeonCall(llvm::Function *F, 3744 SmallVectorImpl<llvm::Value*> &O, 3745 const char *name, 3746 unsigned shift = 0, bool rightshift = false); 3747 llvm::Value *EmitNeonSplat(llvm::Value *V, llvm::Constant *Idx); 3748 llvm::Value *EmitNeonShiftVector(llvm::Value *V, llvm::Type *Ty, 3749 bool negateForRightShift); 3750 llvm::Value *EmitNeonRShiftImm(llvm::Value *Vec, llvm::Value *Amt, 3751 llvm::Type *Ty, bool usgn, const char *name); 3752 llvm::Value *vectorWrapScalar16(llvm::Value *Op); 3753 llvm::Value *EmitAArch64BuiltinExpr(unsigned BuiltinID, const CallExpr *E, 3754 llvm::Triple::ArchType Arch); 3755 3756 llvm::Value *BuildVector(ArrayRef<llvm::Value*> Ops); 3757 llvm::Value *EmitX86BuiltinExpr(unsigned BuiltinID, const CallExpr *E); 3758 llvm::Value *EmitPPCBuiltinExpr(unsigned BuiltinID, const CallExpr *E); 3759 llvm::Value *EmitAMDGPUBuiltinExpr(unsigned BuiltinID, const CallExpr *E); 3760 llvm::Value *EmitSystemZBuiltinExpr(unsigned BuiltinID, const CallExpr *E); 3761 llvm::Value *EmitNVPTXBuiltinExpr(unsigned BuiltinID, const CallExpr *E); 3762 llvm::Value *EmitWebAssemblyBuiltinExpr(unsigned BuiltinID, 3763 const CallExpr *E); 3764 llvm::Value *EmitHexagonBuiltinExpr(unsigned BuiltinID, const CallExpr *E); 3765 3766 private: 3767 enum class MSVCIntrin; 3768 3769 public: 3770 llvm::Value *EmitMSVCBuiltinExpr(MSVCIntrin BuiltinID, const CallExpr *E); 3771 3772 llvm::Value *EmitBuiltinAvailable(ArrayRef<llvm::Value *> Args); 3773 3774 llvm::Value *EmitObjCProtocolExpr(const ObjCProtocolExpr *E); 3775 llvm::Value *EmitObjCStringLiteral(const ObjCStringLiteral *E); 3776 llvm::Value *EmitObjCBoxedExpr(const ObjCBoxedExpr *E); 3777 llvm::Value *EmitObjCArrayLiteral(const ObjCArrayLiteral *E); 3778 llvm::Value *EmitObjCDictionaryLiteral(const ObjCDictionaryLiteral *E); 3779 llvm::Value *EmitObjCCollectionLiteral(const Expr *E, 3780 const ObjCMethodDecl *MethodWithObjects); 3781 llvm::Value *EmitObjCSelectorExpr(const ObjCSelectorExpr *E); 3782 RValue EmitObjCMessageExpr(const ObjCMessageExpr *E, 3783 ReturnValueSlot Return = ReturnValueSlot()); 3784 3785 /// Retrieves the default cleanup kind for an ARC cleanup. 3786 /// Except under -fobjc-arc-eh, ARC cleanups are normal-only. 3787 CleanupKind getARCCleanupKind() { 3788 return CGM.getCodeGenOpts().ObjCAutoRefCountExceptions 3789 ? NormalAndEHCleanup : NormalCleanup; 3790 } 3791 3792 // ARC primitives. 3793 void EmitARCInitWeak(Address addr, llvm::Value *value); 3794 void EmitARCDestroyWeak(Address addr); 3795 llvm::Value *EmitARCLoadWeak(Address addr); 3796 llvm::Value *EmitARCLoadWeakRetained(Address addr); 3797 llvm::Value *EmitARCStoreWeak(Address addr, llvm::Value *value, bool ignored); 3798 void emitARCCopyAssignWeak(QualType Ty, Address DstAddr, Address SrcAddr); 3799 void emitARCMoveAssignWeak(QualType Ty, Address DstAddr, Address SrcAddr); 3800 void EmitARCCopyWeak(Address dst, Address src); 3801 void EmitARCMoveWeak(Address dst, Address src); 3802 llvm::Value *EmitARCRetainAutorelease(QualType type, llvm::Value *value); 3803 llvm::Value *EmitARCRetainAutoreleaseNonBlock(llvm::Value *value); 3804 llvm::Value *EmitARCStoreStrong(LValue lvalue, llvm::Value *value, 3805 bool resultIgnored); 3806 llvm::Value *EmitARCStoreStrongCall(Address addr, llvm::Value *value, 3807 bool resultIgnored); 3808 llvm::Value *EmitARCRetain(QualType type, llvm::Value *value); 3809 llvm::Value *EmitARCRetainNonBlock(llvm::Value *value); 3810 llvm::Value *EmitARCRetainBlock(llvm::Value *value, bool mandatory); 3811 void EmitARCDestroyStrong(Address addr, ARCPreciseLifetime_t precise); 3812 void EmitARCRelease(llvm::Value *value, ARCPreciseLifetime_t precise); 3813 llvm::Value *EmitARCAutorelease(llvm::Value *value); 3814 llvm::Value *EmitARCAutoreleaseReturnValue(llvm::Value *value); 3815 llvm::Value *EmitARCRetainAutoreleaseReturnValue(llvm::Value *value); 3816 llvm::Value *EmitARCRetainAutoreleasedReturnValue(llvm::Value *value); 3817 llvm::Value *EmitARCUnsafeClaimAutoreleasedReturnValue(llvm::Value *value); 3818 3819 llvm::Value *EmitObjCAutorelease(llvm::Value *value, llvm::Type *returnType); 3820 llvm::Value *EmitObjCRetainNonBlock(llvm::Value *value, 3821 llvm::Type *returnType); 3822 void EmitObjCRelease(llvm::Value *value, ARCPreciseLifetime_t precise); 3823 3824 std::pair<LValue,llvm::Value*> 3825 EmitARCStoreAutoreleasing(const BinaryOperator *e); 3826 std::pair<LValue,llvm::Value*> 3827 EmitARCStoreStrong(const BinaryOperator *e, bool ignored); 3828 std::pair<LValue,llvm::Value*> 3829 EmitARCStoreUnsafeUnretained(const BinaryOperator *e, bool ignored); 3830 3831 llvm::Value *EmitObjCAlloc(llvm::Value *value, 3832 llvm::Type *returnType); 3833 llvm::Value *EmitObjCAllocWithZone(llvm::Value *value, 3834 llvm::Type *returnType); 3835 llvm::Value *EmitObjCAllocInit(llvm::Value *value, llvm::Type *resultType); 3836 3837 llvm::Value *EmitObjCThrowOperand(const Expr *expr); 3838 llvm::Value *EmitObjCConsumeObject(QualType T, llvm::Value *Ptr); 3839 llvm::Value *EmitObjCExtendObjectLifetime(QualType T, llvm::Value *Ptr); 3840 3841 llvm::Value *EmitARCExtendBlockObject(const Expr *expr); 3842 llvm::Value *EmitARCReclaimReturnedObject(const Expr *e, 3843 bool allowUnsafeClaim); 3844 llvm::Value *EmitARCRetainScalarExpr(const Expr *expr); 3845 llvm::Value *EmitARCRetainAutoreleaseScalarExpr(const Expr *expr); 3846 llvm::Value *EmitARCUnsafeUnretainedScalarExpr(const Expr *expr); 3847 3848 void EmitARCIntrinsicUse(ArrayRef<llvm::Value*> values); 3849 3850 static Destroyer destroyARCStrongImprecise; 3851 static Destroyer destroyARCStrongPrecise; 3852 static Destroyer destroyARCWeak; 3853 static Destroyer emitARCIntrinsicUse; 3854 static Destroyer destroyNonTrivialCStruct; 3855 3856 void EmitObjCAutoreleasePoolPop(llvm::Value *Ptr); 3857 llvm::Value *EmitObjCAutoreleasePoolPush(); 3858 llvm::Value *EmitObjCMRRAutoreleasePoolPush(); 3859 void EmitObjCAutoreleasePoolCleanup(llvm::Value *Ptr); 3860 void EmitObjCMRRAutoreleasePoolPop(llvm::Value *Ptr); 3861 3862 /// Emits a reference binding to the passed in expression. 3863 RValue EmitReferenceBindingToExpr(const Expr *E); 3864 3865 //===--------------------------------------------------------------------===// 3866 // Expression Emission 3867 //===--------------------------------------------------------------------===// 3868 3869 // Expressions are broken into three classes: scalar, complex, aggregate. 3870 3871 /// EmitScalarExpr - Emit the computation of the specified expression of LLVM 3872 /// scalar type, returning the result. 3873 llvm::Value *EmitScalarExpr(const Expr *E , bool IgnoreResultAssign = false); 3874 3875 /// Emit a conversion from the specified type to the specified destination 3876 /// type, both of which are LLVM scalar types. 3877 llvm::Value *EmitScalarConversion(llvm::Value *Src, QualType SrcTy, 3878 QualType DstTy, SourceLocation Loc); 3879 3880 /// Emit a conversion from the specified complex type to the specified 3881 /// destination type, where the destination type is an LLVM scalar type. 3882 llvm::Value *EmitComplexToScalarConversion(ComplexPairTy Src, QualType SrcTy, 3883 QualType DstTy, 3884 SourceLocation Loc); 3885 3886 /// EmitAggExpr - Emit the computation of the specified expression 3887 /// of aggregate type. The result is computed into the given slot, 3888 /// which may be null to indicate that the value is not needed. 3889 void EmitAggExpr(const Expr *E, AggValueSlot AS); 3890 3891 /// EmitAggExprToLValue - Emit the computation of the specified expression of 3892 /// aggregate type into a temporary LValue. 3893 LValue EmitAggExprToLValue(const Expr *E); 3894 3895 /// EmitExtendGCLifetime - Given a pointer to an Objective-C object, 3896 /// make sure it survives garbage collection until this point. 3897 void EmitExtendGCLifetime(llvm::Value *object); 3898 3899 /// EmitComplexExpr - Emit the computation of the specified expression of 3900 /// complex type, returning the result. 3901 ComplexPairTy EmitComplexExpr(const Expr *E, 3902 bool IgnoreReal = false, 3903 bool IgnoreImag = false); 3904 3905 /// EmitComplexExprIntoLValue - Emit the given expression of complex 3906 /// type and place its result into the specified l-value. 3907 void EmitComplexExprIntoLValue(const Expr *E, LValue dest, bool isInit); 3908 3909 /// EmitStoreOfComplex - Store a complex number into the specified l-value. 3910 void EmitStoreOfComplex(ComplexPairTy V, LValue dest, bool isInit); 3911 3912 /// EmitLoadOfComplex - Load a complex number from the specified l-value. 3913 ComplexPairTy EmitLoadOfComplex(LValue src, SourceLocation loc); 3914 3915 Address emitAddrOfRealComponent(Address complex, QualType complexType); 3916 Address emitAddrOfImagComponent(Address complex, QualType complexType); 3917 3918 /// AddInitializerToStaticVarDecl - Add the initializer for 'D' to the 3919 /// global variable that has already been created for it. If the initializer 3920 /// has a different type than GV does, this may free GV and return a different 3921 /// one. Otherwise it just returns GV. 3922 llvm::GlobalVariable * 3923 AddInitializerToStaticVarDecl(const VarDecl &D, 3924 llvm::GlobalVariable *GV); 3925 3926 // Emit an @llvm.invariant.start call for the given memory region. 3927 void EmitInvariantStart(llvm::Constant *Addr, CharUnits Size); 3928 3929 /// EmitCXXGlobalVarDeclInit - Create the initializer for a C++ 3930 /// variable with global storage. 3931 void EmitCXXGlobalVarDeclInit(const VarDecl &D, llvm::Constant *DeclPtr, 3932 bool PerformInit); 3933 3934 llvm::Function *createAtExitStub(const VarDecl &VD, llvm::FunctionCallee Dtor, 3935 llvm::Constant *Addr); 3936 3937 /// Call atexit() with a function that passes the given argument to 3938 /// the given function. 3939 void registerGlobalDtorWithAtExit(const VarDecl &D, llvm::FunctionCallee fn, 3940 llvm::Constant *addr); 3941 3942 /// Call atexit() with function dtorStub. 3943 void registerGlobalDtorWithAtExit(llvm::Constant *dtorStub); 3944 3945 /// Emit code in this function to perform a guarded variable 3946 /// initialization. Guarded initializations are used when it's not 3947 /// possible to prove that an initialization will be done exactly 3948 /// once, e.g. with a static local variable or a static data member 3949 /// of a class template. 3950 void EmitCXXGuardedInit(const VarDecl &D, llvm::GlobalVariable *DeclPtr, 3951 bool PerformInit); 3952 3953 enum class GuardKind { VariableGuard, TlsGuard }; 3954 3955 /// Emit a branch to select whether or not to perform guarded initialization. 3956 void EmitCXXGuardedInitBranch(llvm::Value *NeedsInit, 3957 llvm::BasicBlock *InitBlock, 3958 llvm::BasicBlock *NoInitBlock, 3959 GuardKind Kind, const VarDecl *D); 3960 3961 /// GenerateCXXGlobalInitFunc - Generates code for initializing global 3962 /// variables. 3963 void 3964 GenerateCXXGlobalInitFunc(llvm::Function *Fn, 3965 ArrayRef<llvm::Function *> CXXThreadLocals, 3966 ConstantAddress Guard = ConstantAddress::invalid()); 3967 3968 /// GenerateCXXGlobalDtorsFunc - Generates code for destroying global 3969 /// variables. 3970 void GenerateCXXGlobalDtorsFunc( 3971 llvm::Function *Fn, 3972 const std::vector<std::tuple<llvm::FunctionType *, llvm::WeakTrackingVH, 3973 llvm::Constant *>> &DtorsAndObjects); 3974 3975 void GenerateCXXGlobalVarDeclInitFunc(llvm::Function *Fn, 3976 const VarDecl *D, 3977 llvm::GlobalVariable *Addr, 3978 bool PerformInit); 3979 3980 void EmitCXXConstructExpr(const CXXConstructExpr *E, AggValueSlot Dest); 3981 3982 void EmitSynthesizedCXXCopyCtor(Address Dest, Address Src, const Expr *Exp); 3983 3984 void enterFullExpression(const FullExpr *E) { 3985 if (const auto *EWC = dyn_cast<ExprWithCleanups>(E)) 3986 if (EWC->getNumObjects() == 0) 3987 return; 3988 enterNonTrivialFullExpression(E); 3989 } 3990 void enterNonTrivialFullExpression(const FullExpr *E); 3991 3992 void EmitCXXThrowExpr(const CXXThrowExpr *E, bool KeepInsertionPoint = true); 3993 3994 RValue EmitAtomicExpr(AtomicExpr *E); 3995 3996 //===--------------------------------------------------------------------===// 3997 // Annotations Emission 3998 //===--------------------------------------------------------------------===// 3999 4000 /// Emit an annotation call (intrinsic). 4001 llvm::Value *EmitAnnotationCall(llvm::Function *AnnotationFn, 4002 llvm::Value *AnnotatedVal, 4003 StringRef AnnotationStr, 4004 SourceLocation Location); 4005 4006 /// Emit local annotations for the local variable V, declared by D. 4007 void EmitVarAnnotations(const VarDecl *D, llvm::Value *V); 4008 4009 /// Emit field annotations for the given field & value. Returns the 4010 /// annotation result. 4011 Address EmitFieldAnnotations(const FieldDecl *D, Address V); 4012 4013 //===--------------------------------------------------------------------===// 4014 // Internal Helpers 4015 //===--------------------------------------------------------------------===// 4016 4017 /// ContainsLabel - Return true if the statement contains a label in it. If 4018 /// this statement is not executed normally, it not containing a label means 4019 /// that we can just remove the code. 4020 static bool ContainsLabel(const Stmt *S, bool IgnoreCaseStmts = false); 4021 4022 /// containsBreak - Return true if the statement contains a break out of it. 4023 /// If the statement (recursively) contains a switch or loop with a break 4024 /// inside of it, this is fine. 4025 static bool containsBreak(const Stmt *S); 4026 4027 /// Determine if the given statement might introduce a declaration into the 4028 /// current scope, by being a (possibly-labelled) DeclStmt. 4029 static bool mightAddDeclToScope(const Stmt *S); 4030 4031 /// ConstantFoldsToSimpleInteger - If the specified expression does not fold 4032 /// to a constant, or if it does but contains a label, return false. If it 4033 /// constant folds return true and set the boolean result in Result. 4034 bool ConstantFoldsToSimpleInteger(const Expr *Cond, bool &Result, 4035 bool AllowLabels = false); 4036 4037 /// ConstantFoldsToSimpleInteger - If the specified expression does not fold 4038 /// to a constant, or if it does but contains a label, return false. If it 4039 /// constant folds return true and set the folded value. 4040 bool ConstantFoldsToSimpleInteger(const Expr *Cond, llvm::APSInt &Result, 4041 bool AllowLabels = false); 4042 4043 /// EmitBranchOnBoolExpr - Emit a branch on a boolean condition (e.g. for an 4044 /// if statement) to the specified blocks. Based on the condition, this might 4045 /// try to simplify the codegen of the conditional based on the branch. 4046 /// TrueCount should be the number of times we expect the condition to 4047 /// evaluate to true based on PGO data. 4048 void EmitBranchOnBoolExpr(const Expr *Cond, llvm::BasicBlock *TrueBlock, 4049 llvm::BasicBlock *FalseBlock, uint64_t TrueCount); 4050 4051 /// Given an assignment `*LHS = RHS`, emit a test that checks if \p RHS is 4052 /// nonnull, if \p LHS is marked _Nonnull. 4053 void EmitNullabilityCheck(LValue LHS, llvm::Value *RHS, SourceLocation Loc); 4054 4055 /// An enumeration which makes it easier to specify whether or not an 4056 /// operation is a subtraction. 4057 enum { NotSubtraction = false, IsSubtraction = true }; 4058 4059 /// Same as IRBuilder::CreateInBoundsGEP, but additionally emits a check to 4060 /// detect undefined behavior when the pointer overflow sanitizer is enabled. 4061 /// \p SignedIndices indicates whether any of the GEP indices are signed. 4062 /// \p IsSubtraction indicates whether the expression used to form the GEP 4063 /// is a subtraction. 4064 llvm::Value *EmitCheckedInBoundsGEP(llvm::Value *Ptr, 4065 ArrayRef<llvm::Value *> IdxList, 4066 bool SignedIndices, 4067 bool IsSubtraction, 4068 SourceLocation Loc, 4069 const Twine &Name = ""); 4070 4071 /// Specifies which type of sanitizer check to apply when handling a 4072 /// particular builtin. 4073 enum BuiltinCheckKind { 4074 BCK_CTZPassedZero, 4075 BCK_CLZPassedZero, 4076 }; 4077 4078 /// Emits an argument for a call to a builtin. If the builtin sanitizer is 4079 /// enabled, a runtime check specified by \p Kind is also emitted. 4080 llvm::Value *EmitCheckedArgForBuiltin(const Expr *E, BuiltinCheckKind Kind); 4081 4082 /// Emit a description of a type in a format suitable for passing to 4083 /// a runtime sanitizer handler. 4084 llvm::Constant *EmitCheckTypeDescriptor(QualType T); 4085 4086 /// Convert a value into a format suitable for passing to a runtime 4087 /// sanitizer handler. 4088 llvm::Value *EmitCheckValue(llvm::Value *V); 4089 4090 /// Emit a description of a source location in a format suitable for 4091 /// passing to a runtime sanitizer handler. 4092 llvm::Constant *EmitCheckSourceLocation(SourceLocation Loc); 4093 4094 /// Create a basic block that will either trap or call a handler function in 4095 /// the UBSan runtime with the provided arguments, and create a conditional 4096 /// branch to it. 4097 void EmitCheck(ArrayRef<std::pair<llvm::Value *, SanitizerMask>> Checked, 4098 SanitizerHandler Check, ArrayRef<llvm::Constant *> StaticArgs, 4099 ArrayRef<llvm::Value *> DynamicArgs); 4100 4101 /// Emit a slow path cross-DSO CFI check which calls __cfi_slowpath 4102 /// if Cond if false. 4103 void EmitCfiSlowPathCheck(SanitizerMask Kind, llvm::Value *Cond, 4104 llvm::ConstantInt *TypeId, llvm::Value *Ptr, 4105 ArrayRef<llvm::Constant *> StaticArgs); 4106 4107 /// Emit a reached-unreachable diagnostic if \p Loc is valid and runtime 4108 /// checking is enabled. Otherwise, just emit an unreachable instruction. 4109 void EmitUnreachable(SourceLocation Loc); 4110 4111 /// Create a basic block that will call the trap intrinsic, and emit a 4112 /// conditional branch to it, for the -ftrapv checks. 4113 void EmitTrapCheck(llvm::Value *Checked); 4114 4115 /// Emit a call to trap or debugtrap and attach function attribute 4116 /// "trap-func-name" if specified. 4117 llvm::CallInst *EmitTrapCall(llvm::Intrinsic::ID IntrID); 4118 4119 /// Emit a stub for the cross-DSO CFI check function. 4120 void EmitCfiCheckStub(); 4121 4122 /// Emit a cross-DSO CFI failure handling function. 4123 void EmitCfiCheckFail(); 4124 4125 /// Create a check for a function parameter that may potentially be 4126 /// declared as non-null. 4127 void EmitNonNullArgCheck(RValue RV, QualType ArgType, SourceLocation ArgLoc, 4128 AbstractCallee AC, unsigned ParmNum); 4129 4130 /// EmitCallArg - Emit a single call argument. 4131 void EmitCallArg(CallArgList &args, const Expr *E, QualType ArgType); 4132 4133 /// EmitDelegateCallArg - We are performing a delegate call; that 4134 /// is, the current function is delegating to another one. Produce 4135 /// a r-value suitable for passing the given parameter. 4136 void EmitDelegateCallArg(CallArgList &args, const VarDecl *param, 4137 SourceLocation loc); 4138 4139 /// SetFPAccuracy - Set the minimum required accuracy of the given floating 4140 /// point operation, expressed as the maximum relative error in ulp. 4141 void SetFPAccuracy(llvm::Value *Val, float Accuracy); 4142 4143 private: 4144 llvm::MDNode *getRangeForLoadFromType(QualType Ty); 4145 void EmitReturnOfRValue(RValue RV, QualType Ty); 4146 4147 void deferPlaceholderReplacement(llvm::Instruction *Old, llvm::Value *New); 4148 4149 llvm::SmallVector<std::pair<llvm::Instruction *, llvm::Value *>, 4> 4150 DeferredReplacements; 4151 4152 /// Set the address of a local variable. 4153 void setAddrOfLocalVar(const VarDecl *VD, Address Addr) { 4154 assert(!LocalDeclMap.count(VD) && "Decl already exists in LocalDeclMap!"); 4155 LocalDeclMap.insert({VD, Addr}); 4156 } 4157 4158 /// ExpandTypeFromArgs - Reconstruct a structure of type \arg Ty 4159 /// from function arguments into \arg Dst. See ABIArgInfo::Expand. 4160 /// 4161 /// \param AI - The first function argument of the expansion. 4162 void ExpandTypeFromArgs(QualType Ty, LValue Dst, 4163 SmallVectorImpl<llvm::Value *>::iterator &AI); 4164 4165 /// ExpandTypeToArgs - Expand an CallArg \arg Arg, with the LLVM type for \arg 4166 /// Ty, into individual arguments on the provided vector \arg IRCallArgs, 4167 /// starting at index \arg IRCallArgPos. See ABIArgInfo::Expand. 4168 void ExpandTypeToArgs(QualType Ty, CallArg Arg, llvm::FunctionType *IRFuncTy, 4169 SmallVectorImpl<llvm::Value *> &IRCallArgs, 4170 unsigned &IRCallArgPos); 4171 4172 llvm::Value* EmitAsmInput(const TargetInfo::ConstraintInfo &Info, 4173 const Expr *InputExpr, std::string &ConstraintStr); 4174 4175 llvm::Value* EmitAsmInputLValue(const TargetInfo::ConstraintInfo &Info, 4176 LValue InputValue, QualType InputType, 4177 std::string &ConstraintStr, 4178 SourceLocation Loc); 4179 4180 /// Attempts to statically evaluate the object size of E. If that 4181 /// fails, emits code to figure the size of E out for us. This is 4182 /// pass_object_size aware. 4183 /// 4184 /// If EmittedExpr is non-null, this will use that instead of re-emitting E. 4185 llvm::Value *evaluateOrEmitBuiltinObjectSize(const Expr *E, unsigned Type, 4186 llvm::IntegerType *ResType, 4187 llvm::Value *EmittedE, 4188 bool IsDynamic); 4189 4190 /// Emits the size of E, as required by __builtin_object_size. This 4191 /// function is aware of pass_object_size parameters, and will act accordingly 4192 /// if E is a parameter with the pass_object_size attribute. 4193 llvm::Value *emitBuiltinObjectSize(const Expr *E, unsigned Type, 4194 llvm::IntegerType *ResType, 4195 llvm::Value *EmittedE, 4196 bool IsDynamic); 4197 4198 public: 4199 #ifndef NDEBUG 4200 // Determine whether the given argument is an Objective-C method 4201 // that may have type parameters in its signature. 4202 static bool isObjCMethodWithTypeParams(const ObjCMethodDecl *method) { 4203 const DeclContext *dc = method->getDeclContext(); 4204 if (const ObjCInterfaceDecl *classDecl= dyn_cast<ObjCInterfaceDecl>(dc)) { 4205 return classDecl->getTypeParamListAsWritten(); 4206 } 4207 4208 if (const ObjCCategoryDecl *catDecl = dyn_cast<ObjCCategoryDecl>(dc)) { 4209 return catDecl->getTypeParamList(); 4210 } 4211 4212 return false; 4213 } 4214 4215 template<typename T> 4216 static bool isObjCMethodWithTypeParams(const T *) { return false; } 4217 #endif 4218 4219 enum class EvaluationOrder { 4220 ///! No language constraints on evaluation order. 4221 Default, 4222 ///! Language semantics require left-to-right evaluation. 4223 ForceLeftToRight, 4224 ///! Language semantics require right-to-left evaluation. 4225 ForceRightToLeft 4226 }; 4227 4228 /// EmitCallArgs - Emit call arguments for a function. 4229 template <typename T> 4230 void EmitCallArgs(CallArgList &Args, const T *CallArgTypeInfo, 4231 llvm::iterator_range<CallExpr::const_arg_iterator> ArgRange, 4232 AbstractCallee AC = AbstractCallee(), 4233 unsigned ParamsToSkip = 0, 4234 EvaluationOrder Order = EvaluationOrder::Default) { 4235 SmallVector<QualType, 16> ArgTypes; 4236 CallExpr::const_arg_iterator Arg = ArgRange.begin(); 4237 4238 assert((ParamsToSkip == 0 || CallArgTypeInfo) && 4239 "Can't skip parameters if type info is not provided"); 4240 if (CallArgTypeInfo) { 4241 #ifndef NDEBUG 4242 bool isGenericMethod = isObjCMethodWithTypeParams(CallArgTypeInfo); 4243 #endif 4244 4245 // First, use the argument types that the type info knows about 4246 for (auto I = CallArgTypeInfo->param_type_begin() + ParamsToSkip, 4247 E = CallArgTypeInfo->param_type_end(); 4248 I != E; ++I, ++Arg) { 4249 assert(Arg != ArgRange.end() && "Running over edge of argument list!"); 4250 assert((isGenericMethod || 4251 ((*I)->isVariablyModifiedType() || 4252 (*I).getNonReferenceType()->isObjCRetainableType() || 4253 getContext() 4254 .getCanonicalType((*I).getNonReferenceType()) 4255 .getTypePtr() == 4256 getContext() 4257 .getCanonicalType((*Arg)->getType()) 4258 .getTypePtr())) && 4259 "type mismatch in call argument!"); 4260 ArgTypes.push_back(*I); 4261 } 4262 } 4263 4264 // Either we've emitted all the call args, or we have a call to variadic 4265 // function. 4266 assert((Arg == ArgRange.end() || !CallArgTypeInfo || 4267 CallArgTypeInfo->isVariadic()) && 4268 "Extra arguments in non-variadic function!"); 4269 4270 // If we still have any arguments, emit them using the type of the argument. 4271 for (auto *A : llvm::make_range(Arg, ArgRange.end())) 4272 ArgTypes.push_back(CallArgTypeInfo ? getVarArgType(A) : A->getType()); 4273 4274 EmitCallArgs(Args, ArgTypes, ArgRange, AC, ParamsToSkip, Order); 4275 } 4276 4277 void EmitCallArgs(CallArgList &Args, ArrayRef<QualType> ArgTypes, 4278 llvm::iterator_range<CallExpr::const_arg_iterator> ArgRange, 4279 AbstractCallee AC = AbstractCallee(), 4280 unsigned ParamsToSkip = 0, 4281 EvaluationOrder Order = EvaluationOrder::Default); 4282 4283 /// EmitPointerWithAlignment - Given an expression with a pointer type, 4284 /// emit the value and compute our best estimate of the alignment of the 4285 /// pointee. 4286 /// 4287 /// \param BaseInfo - If non-null, this will be initialized with 4288 /// information about the source of the alignment and the may-alias 4289 /// attribute. Note that this function will conservatively fall back on 4290 /// the type when it doesn't recognize the expression and may-alias will 4291 /// be set to false. 4292 /// 4293 /// One reasonable way to use this information is when there's a language 4294 /// guarantee that the pointer must be aligned to some stricter value, and 4295 /// we're simply trying to ensure that sufficiently obvious uses of under- 4296 /// aligned objects don't get miscompiled; for example, a placement new 4297 /// into the address of a local variable. In such a case, it's quite 4298 /// reasonable to just ignore the returned alignment when it isn't from an 4299 /// explicit source. 4300 Address EmitPointerWithAlignment(const Expr *Addr, 4301 LValueBaseInfo *BaseInfo = nullptr, 4302 TBAAAccessInfo *TBAAInfo = nullptr); 4303 4304 /// If \p E references a parameter with pass_object_size info or a constant 4305 /// array size modifier, emit the object size divided by the size of \p EltTy. 4306 /// Otherwise return null. 4307 llvm::Value *LoadPassedObjectSize(const Expr *E, QualType EltTy); 4308 4309 void EmitSanitizerStatReport(llvm::SanitizerStatKind SSK); 4310 4311 struct MultiVersionResolverOption { 4312 llvm::Function *Function; 4313 FunctionDecl *FD; 4314 struct Conds { 4315 StringRef Architecture; 4316 llvm::SmallVector<StringRef, 8> Features; 4317 4318 Conds(StringRef Arch, ArrayRef<StringRef> Feats) 4319 : Architecture(Arch), Features(Feats.begin(), Feats.end()) {} 4320 } Conditions; 4321 4322 MultiVersionResolverOption(llvm::Function *F, StringRef Arch, 4323 ArrayRef<StringRef> Feats) 4324 : Function(F), Conditions(Arch, Feats) {} 4325 }; 4326 4327 // Emits the body of a multiversion function's resolver. Assumes that the 4328 // options are already sorted in the proper order, with the 'default' option 4329 // last (if it exists). 4330 void EmitMultiVersionResolver(llvm::Function *Resolver, 4331 ArrayRef<MultiVersionResolverOption> Options); 4332 4333 static uint64_t GetX86CpuSupportsMask(ArrayRef<StringRef> FeatureStrs); 4334 4335 private: 4336 QualType getVarArgType(const Expr *Arg); 4337 4338 void EmitDeclMetadata(); 4339 4340 BlockByrefHelpers *buildByrefHelpers(llvm::StructType &byrefType, 4341 const AutoVarEmission &emission); 4342 4343 void AddObjCARCExceptionMetadata(llvm::Instruction *Inst); 4344 4345 llvm::Value *GetValueForARMHint(unsigned BuiltinID); 4346 llvm::Value *EmitX86CpuIs(const CallExpr *E); 4347 llvm::Value *EmitX86CpuIs(StringRef CPUStr); 4348 llvm::Value *EmitX86CpuSupports(const CallExpr *E); 4349 llvm::Value *EmitX86CpuSupports(ArrayRef<StringRef> FeatureStrs); 4350 llvm::Value *EmitX86CpuSupports(uint64_t Mask); 4351 llvm::Value *EmitX86CpuInit(); 4352 llvm::Value *FormResolverCondition(const MultiVersionResolverOption &RO); 4353 }; 4354 4355 inline DominatingLLVMValue::saved_type 4356 DominatingLLVMValue::save(CodeGenFunction &CGF, llvm::Value *value) { 4357 if (!needsSaving(value)) return saved_type(value, false); 4358 4359 // Otherwise, we need an alloca. 4360 auto align = CharUnits::fromQuantity( 4361 CGF.CGM.getDataLayout().getPrefTypeAlignment(value->getType())); 4362 Address alloca = 4363 CGF.CreateTempAlloca(value->getType(), align, "cond-cleanup.save"); 4364 CGF.Builder.CreateStore(value, alloca); 4365 4366 return saved_type(alloca.getPointer(), true); 4367 } 4368 4369 inline llvm::Value *DominatingLLVMValue::restore(CodeGenFunction &CGF, 4370 saved_type value) { 4371 // If the value says it wasn't saved, trust that it's still dominating. 4372 if (!value.getInt()) return value.getPointer(); 4373 4374 // Otherwise, it should be an alloca instruction, as set up in save(). 4375 auto alloca = cast<llvm::AllocaInst>(value.getPointer()); 4376 return CGF.Builder.CreateAlignedLoad(alloca, alloca->getAlignment()); 4377 } 4378 4379 } // end namespace CodeGen 4380 } // end namespace clang 4381 4382 #endif 4383