1 //===-- CodeGenFunction.h - Per-Function state for LLVM CodeGen -*- C++ -*-===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This is the internal per-function state used for llvm translation.
10 //
11 //===----------------------------------------------------------------------===//
12 
13 #ifndef LLVM_CLANG_LIB_CODEGEN_CODEGENFUNCTION_H
14 #define LLVM_CLANG_LIB_CODEGEN_CODEGENFUNCTION_H
15 
16 #include "CGBuilder.h"
17 #include "CGDebugInfo.h"
18 #include "CGLoopInfo.h"
19 #include "CGValue.h"
20 #include "CodeGenModule.h"
21 #include "CodeGenPGO.h"
22 #include "EHScopeStack.h"
23 #include "VarBypassDetector.h"
24 #include "clang/AST/CharUnits.h"
25 #include "clang/AST/CurrentSourceLocExprScope.h"
26 #include "clang/AST/ExprCXX.h"
27 #include "clang/AST/ExprObjC.h"
28 #include "clang/AST/ExprOpenMP.h"
29 #include "clang/AST/StmtOpenMP.h"
30 #include "clang/AST/Type.h"
31 #include "clang/Basic/ABI.h"
32 #include "clang/Basic/CapturedStmt.h"
33 #include "clang/Basic/CodeGenOptions.h"
34 #include "clang/Basic/OpenMPKinds.h"
35 #include "clang/Basic/TargetInfo.h"
36 #include "llvm/ADT/ArrayRef.h"
37 #include "llvm/ADT/DenseMap.h"
38 #include "llvm/ADT/MapVector.h"
39 #include "llvm/ADT/SmallVector.h"
40 #include "llvm/Frontend/OpenMP/OMPIRBuilder.h"
41 #include "llvm/IR/ValueHandle.h"
42 #include "llvm/Support/Debug.h"
43 #include "llvm/Transforms/Utils/SanitizerStats.h"
44 
45 namespace llvm {
46 class BasicBlock;
47 class LLVMContext;
48 class MDNode;
49 class Module;
50 class SwitchInst;
51 class Twine;
52 class Value;
53 }
54 
55 namespace clang {
56 class ASTContext;
57 class BlockDecl;
58 class CXXDestructorDecl;
59 class CXXForRangeStmt;
60 class CXXTryStmt;
61 class Decl;
62 class LabelDecl;
63 class EnumConstantDecl;
64 class FunctionDecl;
65 class FunctionProtoType;
66 class LabelStmt;
67 class ObjCContainerDecl;
68 class ObjCInterfaceDecl;
69 class ObjCIvarDecl;
70 class ObjCMethodDecl;
71 class ObjCImplementationDecl;
72 class ObjCPropertyImplDecl;
73 class TargetInfo;
74 class VarDecl;
75 class ObjCForCollectionStmt;
76 class ObjCAtTryStmt;
77 class ObjCAtThrowStmt;
78 class ObjCAtSynchronizedStmt;
79 class ObjCAutoreleasePoolStmt;
80 class OMPUseDevicePtrClause;
81 class OMPUseDeviceAddrClause;
82 class ReturnsNonNullAttr;
83 class SVETypeFlags;
84 class OMPExecutableDirective;
85 
86 namespace analyze_os_log {
87 class OSLogBufferLayout;
88 }
89 
90 namespace CodeGen {
91 class CodeGenTypes;
92 class CGCallee;
93 class CGFunctionInfo;
94 class CGRecordLayout;
95 class CGBlockInfo;
96 class CGCXXABI;
97 class BlockByrefHelpers;
98 class BlockByrefInfo;
99 class BlockFlags;
100 class BlockFieldFlags;
101 class RegionCodeGenTy;
102 class TargetCodeGenInfo;
103 struct OMPTaskDataTy;
104 struct CGCoroData;
105 
106 /// The kind of evaluation to perform on values of a particular
107 /// type.  Basically, is the code in CGExprScalar, CGExprComplex, or
108 /// CGExprAgg?
109 ///
110 /// TODO: should vectors maybe be split out into their own thing?
111 enum TypeEvaluationKind {
112   TEK_Scalar,
113   TEK_Complex,
114   TEK_Aggregate
115 };
116 
117 #define LIST_SANITIZER_CHECKS                                                  \
118   SANITIZER_CHECK(AddOverflow, add_overflow, 0)                                \
119   SANITIZER_CHECK(BuiltinUnreachable, builtin_unreachable, 0)                  \
120   SANITIZER_CHECK(CFICheckFail, cfi_check_fail, 0)                             \
121   SANITIZER_CHECK(DivremOverflow, divrem_overflow, 0)                          \
122   SANITIZER_CHECK(DynamicTypeCacheMiss, dynamic_type_cache_miss, 0)            \
123   SANITIZER_CHECK(FloatCastOverflow, float_cast_overflow, 0)                   \
124   SANITIZER_CHECK(FunctionTypeMismatch, function_type_mismatch, 1)             \
125   SANITIZER_CHECK(ImplicitConversion, implicit_conversion, 0)                  \
126   SANITIZER_CHECK(InvalidBuiltin, invalid_builtin, 0)                          \
127   SANITIZER_CHECK(LoadInvalidValue, load_invalid_value, 0)                     \
128   SANITIZER_CHECK(MissingReturn, missing_return, 0)                            \
129   SANITIZER_CHECK(MulOverflow, mul_overflow, 0)                                \
130   SANITIZER_CHECK(NegateOverflow, negate_overflow, 0)                          \
131   SANITIZER_CHECK(NullabilityArg, nullability_arg, 0)                          \
132   SANITIZER_CHECK(NullabilityReturn, nullability_return, 1)                    \
133   SANITIZER_CHECK(NonnullArg, nonnull_arg, 0)                                  \
134   SANITIZER_CHECK(NonnullReturn, nonnull_return, 1)                            \
135   SANITIZER_CHECK(OutOfBounds, out_of_bounds, 0)                               \
136   SANITIZER_CHECK(PointerOverflow, pointer_overflow, 0)                        \
137   SANITIZER_CHECK(ShiftOutOfBounds, shift_out_of_bounds, 0)                    \
138   SANITIZER_CHECK(SubOverflow, sub_overflow, 0)                                \
139   SANITIZER_CHECK(TypeMismatch, type_mismatch, 1)                              \
140   SANITIZER_CHECK(AlignmentAssumption, alignment_assumption, 0)                \
141   SANITIZER_CHECK(VLABoundNotPositive, vla_bound_not_positive, 0)
142 
143 enum SanitizerHandler {
144 #define SANITIZER_CHECK(Enum, Name, Version) Enum,
145   LIST_SANITIZER_CHECKS
146 #undef SANITIZER_CHECK
147 };
148 
149 /// Helper class with most of the code for saving a value for a
150 /// conditional expression cleanup.
151 struct DominatingLLVMValue {
152   typedef llvm::PointerIntPair<llvm::Value*, 1, bool> saved_type;
153 
154   /// Answer whether the given value needs extra work to be saved.
155   static bool needsSaving(llvm::Value *value) {
156     // If it's not an instruction, we don't need to save.
157     if (!isa<llvm::Instruction>(value)) return false;
158 
159     // If it's an instruction in the entry block, we don't need to save.
160     llvm::BasicBlock *block = cast<llvm::Instruction>(value)->getParent();
161     return (block != &block->getParent()->getEntryBlock());
162   }
163 
164   static saved_type save(CodeGenFunction &CGF, llvm::Value *value);
165   static llvm::Value *restore(CodeGenFunction &CGF, saved_type value);
166 };
167 
168 /// A partial specialization of DominatingValue for llvm::Values that
169 /// might be llvm::Instructions.
170 template <class T> struct DominatingPointer<T,true> : DominatingLLVMValue {
171   typedef T *type;
172   static type restore(CodeGenFunction &CGF, saved_type value) {
173     return static_cast<T*>(DominatingLLVMValue::restore(CGF, value));
174   }
175 };
176 
177 /// A specialization of DominatingValue for Address.
178 template <> struct DominatingValue<Address> {
179   typedef Address type;
180 
181   struct saved_type {
182     DominatingLLVMValue::saved_type SavedValue;
183     CharUnits Alignment;
184   };
185 
186   static bool needsSaving(type value) {
187     return DominatingLLVMValue::needsSaving(value.getPointer());
188   }
189   static saved_type save(CodeGenFunction &CGF, type value) {
190     return { DominatingLLVMValue::save(CGF, value.getPointer()),
191              value.getAlignment() };
192   }
193   static type restore(CodeGenFunction &CGF, saved_type value) {
194     return Address(DominatingLLVMValue::restore(CGF, value.SavedValue),
195                    value.Alignment);
196   }
197 };
198 
199 /// A specialization of DominatingValue for RValue.
200 template <> struct DominatingValue<RValue> {
201   typedef RValue type;
202   class saved_type {
203     enum Kind { ScalarLiteral, ScalarAddress, AggregateLiteral,
204                 AggregateAddress, ComplexAddress };
205 
206     llvm::Value *Value;
207     unsigned K : 3;
208     unsigned Align : 29;
209     saved_type(llvm::Value *v, Kind k, unsigned a = 0)
210       : Value(v), K(k), Align(a) {}
211 
212   public:
213     static bool needsSaving(RValue value);
214     static saved_type save(CodeGenFunction &CGF, RValue value);
215     RValue restore(CodeGenFunction &CGF);
216 
217     // implementations in CGCleanup.cpp
218   };
219 
220   static bool needsSaving(type value) {
221     return saved_type::needsSaving(value);
222   }
223   static saved_type save(CodeGenFunction &CGF, type value) {
224     return saved_type::save(CGF, value);
225   }
226   static type restore(CodeGenFunction &CGF, saved_type value) {
227     return value.restore(CGF);
228   }
229 };
230 
231 /// CodeGenFunction - This class organizes the per-function state that is used
232 /// while generating LLVM code.
233 class CodeGenFunction : public CodeGenTypeCache {
234   CodeGenFunction(const CodeGenFunction &) = delete;
235   void operator=(const CodeGenFunction &) = delete;
236 
237   friend class CGCXXABI;
238 public:
239   /// A jump destination is an abstract label, branching to which may
240   /// require a jump out through normal cleanups.
241   struct JumpDest {
242     JumpDest() : Block(nullptr), ScopeDepth(), Index(0) {}
243     JumpDest(llvm::BasicBlock *Block,
244              EHScopeStack::stable_iterator Depth,
245              unsigned Index)
246       : Block(Block), ScopeDepth(Depth), Index(Index) {}
247 
248     bool isValid() const { return Block != nullptr; }
249     llvm::BasicBlock *getBlock() const { return Block; }
250     EHScopeStack::stable_iterator getScopeDepth() const { return ScopeDepth; }
251     unsigned getDestIndex() const { return Index; }
252 
253     // This should be used cautiously.
254     void setScopeDepth(EHScopeStack::stable_iterator depth) {
255       ScopeDepth = depth;
256     }
257 
258   private:
259     llvm::BasicBlock *Block;
260     EHScopeStack::stable_iterator ScopeDepth;
261     unsigned Index;
262   };
263 
264   CodeGenModule &CGM;  // Per-module state.
265   const TargetInfo &Target;
266 
267   // For EH/SEH outlined funclets, this field points to parent's CGF
268   CodeGenFunction *ParentCGF = nullptr;
269 
270   typedef std::pair<llvm::Value *, llvm::Value *> ComplexPairTy;
271   LoopInfoStack LoopStack;
272   CGBuilderTy Builder;
273 
274   // Stores variables for which we can't generate correct lifetime markers
275   // because of jumps.
276   VarBypassDetector Bypasses;
277 
278   // CodeGen lambda for loops and support for ordered clause
279   typedef llvm::function_ref<void(CodeGenFunction &, const OMPLoopDirective &,
280                                   JumpDest)>
281       CodeGenLoopTy;
282   typedef llvm::function_ref<void(CodeGenFunction &, SourceLocation,
283                                   const unsigned, const bool)>
284       CodeGenOrderedTy;
285 
286   // Codegen lambda for loop bounds in worksharing loop constructs
287   typedef llvm::function_ref<std::pair<LValue, LValue>(
288       CodeGenFunction &, const OMPExecutableDirective &S)>
289       CodeGenLoopBoundsTy;
290 
291   // Codegen lambda for loop bounds in dispatch-based loop implementation
292   typedef llvm::function_ref<std::pair<llvm::Value *, llvm::Value *>(
293       CodeGenFunction &, const OMPExecutableDirective &S, Address LB,
294       Address UB)>
295       CodeGenDispatchBoundsTy;
296 
297   /// CGBuilder insert helper. This function is called after an
298   /// instruction is created using Builder.
299   void InsertHelper(llvm::Instruction *I, const llvm::Twine &Name,
300                     llvm::BasicBlock *BB,
301                     llvm::BasicBlock::iterator InsertPt) const;
302 
303   /// CurFuncDecl - Holds the Decl for the current outermost
304   /// non-closure context.
305   const Decl *CurFuncDecl;
306   /// CurCodeDecl - This is the inner-most code context, which includes blocks.
307   const Decl *CurCodeDecl;
308   const CGFunctionInfo *CurFnInfo;
309   QualType FnRetTy;
310   llvm::Function *CurFn = nullptr;
311 
312   // Holds coroutine data if the current function is a coroutine. We use a
313   // wrapper to manage its lifetime, so that we don't have to define CGCoroData
314   // in this header.
315   struct CGCoroInfo {
316     std::unique_ptr<CGCoroData> Data;
317     CGCoroInfo();
318     ~CGCoroInfo();
319   };
320   CGCoroInfo CurCoro;
321 
322   bool isCoroutine() const {
323     return CurCoro.Data != nullptr;
324   }
325 
326   /// CurGD - The GlobalDecl for the current function being compiled.
327   GlobalDecl CurGD;
328 
329   /// PrologueCleanupDepth - The cleanup depth enclosing all the
330   /// cleanups associated with the parameters.
331   EHScopeStack::stable_iterator PrologueCleanupDepth;
332 
333   /// ReturnBlock - Unified return block.
334   JumpDest ReturnBlock;
335 
336   /// ReturnValue - The temporary alloca to hold the return
337   /// value. This is invalid iff the function has no return value.
338   Address ReturnValue = Address::invalid();
339 
340   /// ReturnValuePointer - The temporary alloca to hold a pointer to sret.
341   /// This is invalid if sret is not in use.
342   Address ReturnValuePointer = Address::invalid();
343 
344   /// If a return statement is being visited, this holds the return statment's
345   /// result expression.
346   const Expr *RetExpr = nullptr;
347 
348   /// Return true if a label was seen in the current scope.
349   bool hasLabelBeenSeenInCurrentScope() const {
350     if (CurLexicalScope)
351       return CurLexicalScope->hasLabels();
352     return !LabelMap.empty();
353   }
354 
355   /// AllocaInsertPoint - This is an instruction in the entry block before which
356   /// we prefer to insert allocas.
357   llvm::AssertingVH<llvm::Instruction> AllocaInsertPt;
358 
359   /// API for captured statement code generation.
360   class CGCapturedStmtInfo {
361   public:
362     explicit CGCapturedStmtInfo(CapturedRegionKind K = CR_Default)
363         : Kind(K), ThisValue(nullptr), CXXThisFieldDecl(nullptr) {}
364     explicit CGCapturedStmtInfo(const CapturedStmt &S,
365                                 CapturedRegionKind K = CR_Default)
366       : Kind(K), ThisValue(nullptr), CXXThisFieldDecl(nullptr) {
367 
368       RecordDecl::field_iterator Field =
369         S.getCapturedRecordDecl()->field_begin();
370       for (CapturedStmt::const_capture_iterator I = S.capture_begin(),
371                                                 E = S.capture_end();
372            I != E; ++I, ++Field) {
373         if (I->capturesThis())
374           CXXThisFieldDecl = *Field;
375         else if (I->capturesVariable())
376           CaptureFields[I->getCapturedVar()->getCanonicalDecl()] = *Field;
377         else if (I->capturesVariableByCopy())
378           CaptureFields[I->getCapturedVar()->getCanonicalDecl()] = *Field;
379       }
380     }
381 
382     virtual ~CGCapturedStmtInfo();
383 
384     CapturedRegionKind getKind() const { return Kind; }
385 
386     virtual void setContextValue(llvm::Value *V) { ThisValue = V; }
387     // Retrieve the value of the context parameter.
388     virtual llvm::Value *getContextValue() const { return ThisValue; }
389 
390     /// Lookup the captured field decl for a variable.
391     virtual const FieldDecl *lookup(const VarDecl *VD) const {
392       return CaptureFields.lookup(VD->getCanonicalDecl());
393     }
394 
395     bool isCXXThisExprCaptured() const { return getThisFieldDecl() != nullptr; }
396     virtual FieldDecl *getThisFieldDecl() const { return CXXThisFieldDecl; }
397 
398     static bool classof(const CGCapturedStmtInfo *) {
399       return true;
400     }
401 
402     /// Emit the captured statement body.
403     virtual void EmitBody(CodeGenFunction &CGF, const Stmt *S) {
404       CGF.incrementProfileCounter(S);
405       CGF.EmitStmt(S);
406     }
407 
408     /// Get the name of the capture helper.
409     virtual StringRef getHelperName() const { return "__captured_stmt"; }
410 
411   private:
412     /// The kind of captured statement being generated.
413     CapturedRegionKind Kind;
414 
415     /// Keep the map between VarDecl and FieldDecl.
416     llvm::SmallDenseMap<const VarDecl *, FieldDecl *> CaptureFields;
417 
418     /// The base address of the captured record, passed in as the first
419     /// argument of the parallel region function.
420     llvm::Value *ThisValue;
421 
422     /// Captured 'this' type.
423     FieldDecl *CXXThisFieldDecl;
424   };
425   CGCapturedStmtInfo *CapturedStmtInfo = nullptr;
426 
427   /// RAII for correct setting/restoring of CapturedStmtInfo.
428   class CGCapturedStmtRAII {
429   private:
430     CodeGenFunction &CGF;
431     CGCapturedStmtInfo *PrevCapturedStmtInfo;
432   public:
433     CGCapturedStmtRAII(CodeGenFunction &CGF,
434                        CGCapturedStmtInfo *NewCapturedStmtInfo)
435         : CGF(CGF), PrevCapturedStmtInfo(CGF.CapturedStmtInfo) {
436       CGF.CapturedStmtInfo = NewCapturedStmtInfo;
437     }
438     ~CGCapturedStmtRAII() { CGF.CapturedStmtInfo = PrevCapturedStmtInfo; }
439   };
440 
441   /// An abstract representation of regular/ObjC call/message targets.
442   class AbstractCallee {
443     /// The function declaration of the callee.
444     const Decl *CalleeDecl;
445 
446   public:
447     AbstractCallee() : CalleeDecl(nullptr) {}
448     AbstractCallee(const FunctionDecl *FD) : CalleeDecl(FD) {}
449     AbstractCallee(const ObjCMethodDecl *OMD) : CalleeDecl(OMD) {}
450     bool hasFunctionDecl() const {
451       return dyn_cast_or_null<FunctionDecl>(CalleeDecl);
452     }
453     const Decl *getDecl() const { return CalleeDecl; }
454     unsigned getNumParams() const {
455       if (const auto *FD = dyn_cast<FunctionDecl>(CalleeDecl))
456         return FD->getNumParams();
457       return cast<ObjCMethodDecl>(CalleeDecl)->param_size();
458     }
459     const ParmVarDecl *getParamDecl(unsigned I) const {
460       if (const auto *FD = dyn_cast<FunctionDecl>(CalleeDecl))
461         return FD->getParamDecl(I);
462       return *(cast<ObjCMethodDecl>(CalleeDecl)->param_begin() + I);
463     }
464   };
465 
466   /// Sanitizers enabled for this function.
467   SanitizerSet SanOpts;
468 
469   /// True if CodeGen currently emits code implementing sanitizer checks.
470   bool IsSanitizerScope = false;
471 
472   /// RAII object to set/unset CodeGenFunction::IsSanitizerScope.
473   class SanitizerScope {
474     CodeGenFunction *CGF;
475   public:
476     SanitizerScope(CodeGenFunction *CGF);
477     ~SanitizerScope();
478   };
479 
480   /// In C++, whether we are code generating a thunk.  This controls whether we
481   /// should emit cleanups.
482   bool CurFuncIsThunk = false;
483 
484   /// In ARC, whether we should autorelease the return value.
485   bool AutoreleaseResult = false;
486 
487   /// Whether we processed a Microsoft-style asm block during CodeGen. These can
488   /// potentially set the return value.
489   bool SawAsmBlock = false;
490 
491   const NamedDecl *CurSEHParent = nullptr;
492 
493   /// True if the current function is an outlined SEH helper. This can be a
494   /// finally block or filter expression.
495   bool IsOutlinedSEHHelper = false;
496 
497   /// True if CodeGen currently emits code inside presereved access index
498   /// region.
499   bool IsInPreservedAIRegion = false;
500 
501   /// True if the current statement has nomerge attribute.
502   bool InNoMergeAttributedStmt = false;
503 
504   const CodeGen::CGBlockInfo *BlockInfo = nullptr;
505   llvm::Value *BlockPointer = nullptr;
506 
507   llvm::DenseMap<const VarDecl *, FieldDecl *> LambdaCaptureFields;
508   FieldDecl *LambdaThisCaptureField = nullptr;
509 
510   /// A mapping from NRVO variables to the flags used to indicate
511   /// when the NRVO has been applied to this variable.
512   llvm::DenseMap<const VarDecl *, llvm::Value *> NRVOFlags;
513 
514   EHScopeStack EHStack;
515   llvm::SmallVector<char, 256> LifetimeExtendedCleanupStack;
516   llvm::SmallVector<const JumpDest *, 2> SEHTryEpilogueStack;
517 
518   llvm::Instruction *CurrentFuncletPad = nullptr;
519 
520   class CallLifetimeEnd final : public EHScopeStack::Cleanup {
521     llvm::Value *Addr;
522     llvm::Value *Size;
523 
524   public:
525     CallLifetimeEnd(Address addr, llvm::Value *size)
526         : Addr(addr.getPointer()), Size(size) {}
527 
528     void Emit(CodeGenFunction &CGF, Flags flags) override {
529       CGF.EmitLifetimeEnd(Size, Addr);
530     }
531   };
532 
533   /// Header for data within LifetimeExtendedCleanupStack.
534   struct LifetimeExtendedCleanupHeader {
535     /// The size of the following cleanup object.
536     unsigned Size;
537     /// The kind of cleanup to push: a value from the CleanupKind enumeration.
538     unsigned Kind : 31;
539     /// Whether this is a conditional cleanup.
540     unsigned IsConditional : 1;
541 
542     size_t getSize() const { return Size; }
543     CleanupKind getKind() const { return (CleanupKind)Kind; }
544     bool isConditional() const { return IsConditional; }
545   };
546 
547   /// i32s containing the indexes of the cleanup destinations.
548   Address NormalCleanupDest = Address::invalid();
549 
550   unsigned NextCleanupDestIndex = 1;
551 
552   /// EHResumeBlock - Unified block containing a call to llvm.eh.resume.
553   llvm::BasicBlock *EHResumeBlock = nullptr;
554 
555   /// The exception slot.  All landing pads write the current exception pointer
556   /// into this alloca.
557   llvm::Value *ExceptionSlot = nullptr;
558 
559   /// The selector slot.  Under the MandatoryCleanup model, all landing pads
560   /// write the current selector value into this alloca.
561   llvm::AllocaInst *EHSelectorSlot = nullptr;
562 
563   /// A stack of exception code slots. Entering an __except block pushes a slot
564   /// on the stack and leaving pops one. The __exception_code() intrinsic loads
565   /// a value from the top of the stack.
566   SmallVector<Address, 1> SEHCodeSlotStack;
567 
568   /// Value returned by __exception_info intrinsic.
569   llvm::Value *SEHInfo = nullptr;
570 
571   /// Emits a landing pad for the current EH stack.
572   llvm::BasicBlock *EmitLandingPad();
573 
574   llvm::BasicBlock *getInvokeDestImpl();
575 
576   /// Parent loop-based directive for scan directive.
577   const OMPExecutableDirective *OMPParentLoopDirectiveForScan = nullptr;
578   llvm::BasicBlock *OMPBeforeScanBlock = nullptr;
579   llvm::BasicBlock *OMPAfterScanBlock = nullptr;
580   llvm::BasicBlock *OMPScanExitBlock = nullptr;
581   llvm::BasicBlock *OMPScanDispatch = nullptr;
582   bool OMPFirstScanLoop = false;
583 
584   /// Manages parent directive for scan directives.
585   class ParentLoopDirectiveForScanRegion {
586     CodeGenFunction &CGF;
587     const OMPExecutableDirective *ParentLoopDirectiveForScan;
588 
589   public:
590     ParentLoopDirectiveForScanRegion(
591         CodeGenFunction &CGF,
592         const OMPExecutableDirective &ParentLoopDirectiveForScan)
593         : CGF(CGF),
594           ParentLoopDirectiveForScan(CGF.OMPParentLoopDirectiveForScan) {
595       CGF.OMPParentLoopDirectiveForScan = &ParentLoopDirectiveForScan;
596     }
597     ~ParentLoopDirectiveForScanRegion() {
598       CGF.OMPParentLoopDirectiveForScan = ParentLoopDirectiveForScan;
599     }
600   };
601 
602   template <class T>
603   typename DominatingValue<T>::saved_type saveValueInCond(T value) {
604     return DominatingValue<T>::save(*this, value);
605   }
606 
607   class CGFPOptionsRAII {
608   public:
609     CGFPOptionsRAII(CodeGenFunction &CGF, FPOptions FPFeatures);
610     ~CGFPOptionsRAII();
611 
612   private:
613     CodeGenFunction &CGF;
614     FPOptions OldFPFeatures;
615     Optional<CGBuilderTy::FastMathFlagGuard> FMFGuard;
616   };
617   FPOptions CurFPFeatures;
618 
619 public:
620   /// ObjCEHValueStack - Stack of Objective-C exception values, used for
621   /// rethrows.
622   SmallVector<llvm::Value*, 8> ObjCEHValueStack;
623 
624   /// A class controlling the emission of a finally block.
625   class FinallyInfo {
626     /// Where the catchall's edge through the cleanup should go.
627     JumpDest RethrowDest;
628 
629     /// A function to call to enter the catch.
630     llvm::FunctionCallee BeginCatchFn;
631 
632     /// An i1 variable indicating whether or not the @finally is
633     /// running for an exception.
634     llvm::AllocaInst *ForEHVar;
635 
636     /// An i8* variable into which the exception pointer to rethrow
637     /// has been saved.
638     llvm::AllocaInst *SavedExnVar;
639 
640   public:
641     void enter(CodeGenFunction &CGF, const Stmt *Finally,
642                llvm::FunctionCallee beginCatchFn,
643                llvm::FunctionCallee endCatchFn, llvm::FunctionCallee rethrowFn);
644     void exit(CodeGenFunction &CGF);
645   };
646 
647   /// Returns true inside SEH __try blocks.
648   bool isSEHTryScope() const { return !SEHTryEpilogueStack.empty(); }
649 
650   /// Returns true while emitting a cleanuppad.
651   bool isCleanupPadScope() const {
652     return CurrentFuncletPad && isa<llvm::CleanupPadInst>(CurrentFuncletPad);
653   }
654 
655   /// pushFullExprCleanup - Push a cleanup to be run at the end of the
656   /// current full-expression.  Safe against the possibility that
657   /// we're currently inside a conditionally-evaluated expression.
658   template <class T, class... As>
659   void pushFullExprCleanup(CleanupKind kind, As... A) {
660     // If we're not in a conditional branch, or if none of the
661     // arguments requires saving, then use the unconditional cleanup.
662     if (!isInConditionalBranch())
663       return EHStack.pushCleanup<T>(kind, A...);
664 
665     // Stash values in a tuple so we can guarantee the order of saves.
666     typedef std::tuple<typename DominatingValue<As>::saved_type...> SavedTuple;
667     SavedTuple Saved{saveValueInCond(A)...};
668 
669     typedef EHScopeStack::ConditionalCleanup<T, As...> CleanupType;
670     EHStack.pushCleanupTuple<CleanupType>(kind, Saved);
671     initFullExprCleanup();
672   }
673 
674   /// Queue a cleanup to be pushed after finishing the current
675   /// full-expression.
676   template <class T, class... As>
677   void pushCleanupAfterFullExpr(CleanupKind Kind, As... A) {
678     if (!isInConditionalBranch())
679       return pushCleanupAfterFullExprImpl<T>(Kind, Address::invalid(), A...);
680 
681     Address ActiveFlag = createCleanupActiveFlag();
682     assert(!DominatingValue<Address>::needsSaving(ActiveFlag) &&
683            "cleanup active flag should never need saving");
684 
685     typedef std::tuple<typename DominatingValue<As>::saved_type...> SavedTuple;
686     SavedTuple Saved{saveValueInCond(A)...};
687 
688     typedef EHScopeStack::ConditionalCleanup<T, As...> CleanupType;
689     pushCleanupAfterFullExprImpl<CleanupType>(Kind, ActiveFlag, Saved);
690   }
691 
692   template <class T, class... As>
693   void pushCleanupAfterFullExprImpl(CleanupKind Kind, Address ActiveFlag,
694                                     As... A) {
695     LifetimeExtendedCleanupHeader Header = {sizeof(T), Kind,
696                                             ActiveFlag.isValid()};
697 
698     size_t OldSize = LifetimeExtendedCleanupStack.size();
699     LifetimeExtendedCleanupStack.resize(
700         LifetimeExtendedCleanupStack.size() + sizeof(Header) + Header.Size +
701         (Header.IsConditional ? sizeof(ActiveFlag) : 0));
702 
703     static_assert(sizeof(Header) % alignof(T) == 0,
704                   "Cleanup will be allocated on misaligned address");
705     char *Buffer = &LifetimeExtendedCleanupStack[OldSize];
706     new (Buffer) LifetimeExtendedCleanupHeader(Header);
707     new (Buffer + sizeof(Header)) T(A...);
708     if (Header.IsConditional)
709       new (Buffer + sizeof(Header) + sizeof(T)) Address(ActiveFlag);
710   }
711 
712   /// Set up the last cleanup that was pushed as a conditional
713   /// full-expression cleanup.
714   void initFullExprCleanup() {
715     initFullExprCleanupWithFlag(createCleanupActiveFlag());
716   }
717 
718   void initFullExprCleanupWithFlag(Address ActiveFlag);
719   Address createCleanupActiveFlag();
720 
721   /// PushDestructorCleanup - Push a cleanup to call the
722   /// complete-object destructor of an object of the given type at the
723   /// given address.  Does nothing if T is not a C++ class type with a
724   /// non-trivial destructor.
725   void PushDestructorCleanup(QualType T, Address Addr);
726 
727   /// PushDestructorCleanup - Push a cleanup to call the
728   /// complete-object variant of the given destructor on the object at
729   /// the given address.
730   void PushDestructorCleanup(const CXXDestructorDecl *Dtor, QualType T,
731                              Address Addr);
732 
733   /// PopCleanupBlock - Will pop the cleanup entry on the stack and
734   /// process all branch fixups.
735   void PopCleanupBlock(bool FallThroughIsBranchThrough = false);
736 
737   /// DeactivateCleanupBlock - Deactivates the given cleanup block.
738   /// The block cannot be reactivated.  Pops it if it's the top of the
739   /// stack.
740   ///
741   /// \param DominatingIP - An instruction which is known to
742   ///   dominate the current IP (if set) and which lies along
743   ///   all paths of execution between the current IP and the
744   ///   the point at which the cleanup comes into scope.
745   void DeactivateCleanupBlock(EHScopeStack::stable_iterator Cleanup,
746                               llvm::Instruction *DominatingIP);
747 
748   /// ActivateCleanupBlock - Activates an initially-inactive cleanup.
749   /// Cannot be used to resurrect a deactivated cleanup.
750   ///
751   /// \param DominatingIP - An instruction which is known to
752   ///   dominate the current IP (if set) and which lies along
753   ///   all paths of execution between the current IP and the
754   ///   the point at which the cleanup comes into scope.
755   void ActivateCleanupBlock(EHScopeStack::stable_iterator Cleanup,
756                             llvm::Instruction *DominatingIP);
757 
758   /// Enters a new scope for capturing cleanups, all of which
759   /// will be executed once the scope is exited.
760   class RunCleanupsScope {
761     EHScopeStack::stable_iterator CleanupStackDepth, OldCleanupScopeDepth;
762     size_t LifetimeExtendedCleanupStackSize;
763     bool OldDidCallStackSave;
764   protected:
765     bool PerformCleanup;
766   private:
767 
768     RunCleanupsScope(const RunCleanupsScope &) = delete;
769     void operator=(const RunCleanupsScope &) = delete;
770 
771   protected:
772     CodeGenFunction& CGF;
773 
774   public:
775     /// Enter a new cleanup scope.
776     explicit RunCleanupsScope(CodeGenFunction &CGF)
777       : PerformCleanup(true), CGF(CGF)
778     {
779       CleanupStackDepth = CGF.EHStack.stable_begin();
780       LifetimeExtendedCleanupStackSize =
781           CGF.LifetimeExtendedCleanupStack.size();
782       OldDidCallStackSave = CGF.DidCallStackSave;
783       CGF.DidCallStackSave = false;
784       OldCleanupScopeDepth = CGF.CurrentCleanupScopeDepth;
785       CGF.CurrentCleanupScopeDepth = CleanupStackDepth;
786     }
787 
788     /// Exit this cleanup scope, emitting any accumulated cleanups.
789     ~RunCleanupsScope() {
790       if (PerformCleanup)
791         ForceCleanup();
792     }
793 
794     /// Determine whether this scope requires any cleanups.
795     bool requiresCleanups() const {
796       return CGF.EHStack.stable_begin() != CleanupStackDepth;
797     }
798 
799     /// Force the emission of cleanups now, instead of waiting
800     /// until this object is destroyed.
801     /// \param ValuesToReload - A list of values that need to be available at
802     /// the insertion point after cleanup emission. If cleanup emission created
803     /// a shared cleanup block, these value pointers will be rewritten.
804     /// Otherwise, they not will be modified.
805     void ForceCleanup(std::initializer_list<llvm::Value**> ValuesToReload = {}) {
806       assert(PerformCleanup && "Already forced cleanup");
807       CGF.DidCallStackSave = OldDidCallStackSave;
808       CGF.PopCleanupBlocks(CleanupStackDepth, LifetimeExtendedCleanupStackSize,
809                            ValuesToReload);
810       PerformCleanup = false;
811       CGF.CurrentCleanupScopeDepth = OldCleanupScopeDepth;
812     }
813   };
814 
815   // Cleanup stack depth of the RunCleanupsScope that was pushed most recently.
816   EHScopeStack::stable_iterator CurrentCleanupScopeDepth =
817       EHScopeStack::stable_end();
818 
819   class LexicalScope : public RunCleanupsScope {
820     SourceRange Range;
821     SmallVector<const LabelDecl*, 4> Labels;
822     LexicalScope *ParentScope;
823 
824     LexicalScope(const LexicalScope &) = delete;
825     void operator=(const LexicalScope &) = delete;
826 
827   public:
828     /// Enter a new cleanup scope.
829     explicit LexicalScope(CodeGenFunction &CGF, SourceRange Range)
830       : RunCleanupsScope(CGF), Range(Range), ParentScope(CGF.CurLexicalScope) {
831       CGF.CurLexicalScope = this;
832       if (CGDebugInfo *DI = CGF.getDebugInfo())
833         DI->EmitLexicalBlockStart(CGF.Builder, Range.getBegin());
834     }
835 
836     void addLabel(const LabelDecl *label) {
837       assert(PerformCleanup && "adding label to dead scope?");
838       Labels.push_back(label);
839     }
840 
841     /// Exit this cleanup scope, emitting any accumulated
842     /// cleanups.
843     ~LexicalScope() {
844       if (CGDebugInfo *DI = CGF.getDebugInfo())
845         DI->EmitLexicalBlockEnd(CGF.Builder, Range.getEnd());
846 
847       // If we should perform a cleanup, force them now.  Note that
848       // this ends the cleanup scope before rescoping any labels.
849       if (PerformCleanup) {
850         ApplyDebugLocation DL(CGF, Range.getEnd());
851         ForceCleanup();
852       }
853     }
854 
855     /// Force the emission of cleanups now, instead of waiting
856     /// until this object is destroyed.
857     void ForceCleanup() {
858       CGF.CurLexicalScope = ParentScope;
859       RunCleanupsScope::ForceCleanup();
860 
861       if (!Labels.empty())
862         rescopeLabels();
863     }
864 
865     bool hasLabels() const {
866       return !Labels.empty();
867     }
868 
869     void rescopeLabels();
870   };
871 
872   typedef llvm::DenseMap<const Decl *, Address> DeclMapTy;
873 
874   /// The class used to assign some variables some temporarily addresses.
875   class OMPMapVars {
876     DeclMapTy SavedLocals;
877     DeclMapTy SavedTempAddresses;
878     OMPMapVars(const OMPMapVars &) = delete;
879     void operator=(const OMPMapVars &) = delete;
880 
881   public:
882     explicit OMPMapVars() = default;
883     ~OMPMapVars() {
884       assert(SavedLocals.empty() && "Did not restored original addresses.");
885     };
886 
887     /// Sets the address of the variable \p LocalVD to be \p TempAddr in
888     /// function \p CGF.
889     /// \return true if at least one variable was set already, false otherwise.
890     bool setVarAddr(CodeGenFunction &CGF, const VarDecl *LocalVD,
891                     Address TempAddr) {
892       LocalVD = LocalVD->getCanonicalDecl();
893       // Only save it once.
894       if (SavedLocals.count(LocalVD)) return false;
895 
896       // Copy the existing local entry to SavedLocals.
897       auto it = CGF.LocalDeclMap.find(LocalVD);
898       if (it != CGF.LocalDeclMap.end())
899         SavedLocals.try_emplace(LocalVD, it->second);
900       else
901         SavedLocals.try_emplace(LocalVD, Address::invalid());
902 
903       // Generate the private entry.
904       QualType VarTy = LocalVD->getType();
905       if (VarTy->isReferenceType()) {
906         Address Temp = CGF.CreateMemTemp(VarTy);
907         CGF.Builder.CreateStore(TempAddr.getPointer(), Temp);
908         TempAddr = Temp;
909       }
910       SavedTempAddresses.try_emplace(LocalVD, TempAddr);
911 
912       return true;
913     }
914 
915     /// Applies new addresses to the list of the variables.
916     /// \return true if at least one variable is using new address, false
917     /// otherwise.
918     bool apply(CodeGenFunction &CGF) {
919       copyInto(SavedTempAddresses, CGF.LocalDeclMap);
920       SavedTempAddresses.clear();
921       return !SavedLocals.empty();
922     }
923 
924     /// Restores original addresses of the variables.
925     void restore(CodeGenFunction &CGF) {
926       if (!SavedLocals.empty()) {
927         copyInto(SavedLocals, CGF.LocalDeclMap);
928         SavedLocals.clear();
929       }
930     }
931 
932   private:
933     /// Copy all the entries in the source map over the corresponding
934     /// entries in the destination, which must exist.
935     static void copyInto(const DeclMapTy &Src, DeclMapTy &Dest) {
936       for (auto &Pair : Src) {
937         if (!Pair.second.isValid()) {
938           Dest.erase(Pair.first);
939           continue;
940         }
941 
942         auto I = Dest.find(Pair.first);
943         if (I != Dest.end())
944           I->second = Pair.second;
945         else
946           Dest.insert(Pair);
947       }
948     }
949   };
950 
951   /// The scope used to remap some variables as private in the OpenMP loop body
952   /// (or other captured region emitted without outlining), and to restore old
953   /// vars back on exit.
954   class OMPPrivateScope : public RunCleanupsScope {
955     OMPMapVars MappedVars;
956     OMPPrivateScope(const OMPPrivateScope &) = delete;
957     void operator=(const OMPPrivateScope &) = delete;
958 
959   public:
960     /// Enter a new OpenMP private scope.
961     explicit OMPPrivateScope(CodeGenFunction &CGF) : RunCleanupsScope(CGF) {}
962 
963     /// Registers \p LocalVD variable as a private and apply \p PrivateGen
964     /// function for it to generate corresponding private variable. \p
965     /// PrivateGen returns an address of the generated private variable.
966     /// \return true if the variable is registered as private, false if it has
967     /// been privatized already.
968     bool addPrivate(const VarDecl *LocalVD,
969                     const llvm::function_ref<Address()> PrivateGen) {
970       assert(PerformCleanup && "adding private to dead scope");
971       return MappedVars.setVarAddr(CGF, LocalVD, PrivateGen());
972     }
973 
974     /// Privatizes local variables previously registered as private.
975     /// Registration is separate from the actual privatization to allow
976     /// initializers use values of the original variables, not the private one.
977     /// This is important, for example, if the private variable is a class
978     /// variable initialized by a constructor that references other private
979     /// variables. But at initialization original variables must be used, not
980     /// private copies.
981     /// \return true if at least one variable was privatized, false otherwise.
982     bool Privatize() { return MappedVars.apply(CGF); }
983 
984     void ForceCleanup() {
985       RunCleanupsScope::ForceCleanup();
986       MappedVars.restore(CGF);
987     }
988 
989     /// Exit scope - all the mapped variables are restored.
990     ~OMPPrivateScope() {
991       if (PerformCleanup)
992         ForceCleanup();
993     }
994 
995     /// Checks if the global variable is captured in current function.
996     bool isGlobalVarCaptured(const VarDecl *VD) const {
997       VD = VD->getCanonicalDecl();
998       return !VD->isLocalVarDeclOrParm() && CGF.LocalDeclMap.count(VD) > 0;
999     }
1000   };
1001 
1002   /// Save/restore original map of previously emitted local vars in case when we
1003   /// need to duplicate emission of the same code several times in the same
1004   /// function for OpenMP code.
1005   class OMPLocalDeclMapRAII {
1006     CodeGenFunction &CGF;
1007     DeclMapTy SavedMap;
1008 
1009   public:
1010     OMPLocalDeclMapRAII(CodeGenFunction &CGF)
1011         : CGF(CGF), SavedMap(CGF.LocalDeclMap) {}
1012     ~OMPLocalDeclMapRAII() { SavedMap.swap(CGF.LocalDeclMap); }
1013   };
1014 
1015   /// Takes the old cleanup stack size and emits the cleanup blocks
1016   /// that have been added.
1017   void
1018   PopCleanupBlocks(EHScopeStack::stable_iterator OldCleanupStackSize,
1019                    std::initializer_list<llvm::Value **> ValuesToReload = {});
1020 
1021   /// Takes the old cleanup stack size and emits the cleanup blocks
1022   /// that have been added, then adds all lifetime-extended cleanups from
1023   /// the given position to the stack.
1024   void
1025   PopCleanupBlocks(EHScopeStack::stable_iterator OldCleanupStackSize,
1026                    size_t OldLifetimeExtendedStackSize,
1027                    std::initializer_list<llvm::Value **> ValuesToReload = {});
1028 
1029   void ResolveBranchFixups(llvm::BasicBlock *Target);
1030 
1031   /// The given basic block lies in the current EH scope, but may be a
1032   /// target of a potentially scope-crossing jump; get a stable handle
1033   /// to which we can perform this jump later.
1034   JumpDest getJumpDestInCurrentScope(llvm::BasicBlock *Target) {
1035     return JumpDest(Target,
1036                     EHStack.getInnermostNormalCleanup(),
1037                     NextCleanupDestIndex++);
1038   }
1039 
1040   /// The given basic block lies in the current EH scope, but may be a
1041   /// target of a potentially scope-crossing jump; get a stable handle
1042   /// to which we can perform this jump later.
1043   JumpDest getJumpDestInCurrentScope(StringRef Name = StringRef()) {
1044     return getJumpDestInCurrentScope(createBasicBlock(Name));
1045   }
1046 
1047   /// EmitBranchThroughCleanup - Emit a branch from the current insert
1048   /// block through the normal cleanup handling code (if any) and then
1049   /// on to \arg Dest.
1050   void EmitBranchThroughCleanup(JumpDest Dest);
1051 
1052   /// isObviouslyBranchWithoutCleanups - Return true if a branch to the
1053   /// specified destination obviously has no cleanups to run.  'false' is always
1054   /// a conservatively correct answer for this method.
1055   bool isObviouslyBranchWithoutCleanups(JumpDest Dest) const;
1056 
1057   /// popCatchScope - Pops the catch scope at the top of the EHScope
1058   /// stack, emitting any required code (other than the catch handlers
1059   /// themselves).
1060   void popCatchScope();
1061 
1062   llvm::BasicBlock *getEHResumeBlock(bool isCleanup);
1063   llvm::BasicBlock *getEHDispatchBlock(EHScopeStack::stable_iterator scope);
1064   llvm::BasicBlock *
1065   getFuncletEHDispatchBlock(EHScopeStack::stable_iterator scope);
1066 
1067   /// An object to manage conditionally-evaluated expressions.
1068   class ConditionalEvaluation {
1069     llvm::BasicBlock *StartBB;
1070 
1071   public:
1072     ConditionalEvaluation(CodeGenFunction &CGF)
1073       : StartBB(CGF.Builder.GetInsertBlock()) {}
1074 
1075     void begin(CodeGenFunction &CGF) {
1076       assert(CGF.OutermostConditional != this);
1077       if (!CGF.OutermostConditional)
1078         CGF.OutermostConditional = this;
1079     }
1080 
1081     void end(CodeGenFunction &CGF) {
1082       assert(CGF.OutermostConditional != nullptr);
1083       if (CGF.OutermostConditional == this)
1084         CGF.OutermostConditional = nullptr;
1085     }
1086 
1087     /// Returns a block which will be executed prior to each
1088     /// evaluation of the conditional code.
1089     llvm::BasicBlock *getStartingBlock() const {
1090       return StartBB;
1091     }
1092   };
1093 
1094   /// isInConditionalBranch - Return true if we're currently emitting
1095   /// one branch or the other of a conditional expression.
1096   bool isInConditionalBranch() const { return OutermostConditional != nullptr; }
1097 
1098   void setBeforeOutermostConditional(llvm::Value *value, Address addr) {
1099     assert(isInConditionalBranch());
1100     llvm::BasicBlock *block = OutermostConditional->getStartingBlock();
1101     auto store = new llvm::StoreInst(value, addr.getPointer(), &block->back());
1102     store->setAlignment(addr.getAlignment().getAsAlign());
1103   }
1104 
1105   /// An RAII object to record that we're evaluating a statement
1106   /// expression.
1107   class StmtExprEvaluation {
1108     CodeGenFunction &CGF;
1109 
1110     /// We have to save the outermost conditional: cleanups in a
1111     /// statement expression aren't conditional just because the
1112     /// StmtExpr is.
1113     ConditionalEvaluation *SavedOutermostConditional;
1114 
1115   public:
1116     StmtExprEvaluation(CodeGenFunction &CGF)
1117       : CGF(CGF), SavedOutermostConditional(CGF.OutermostConditional) {
1118       CGF.OutermostConditional = nullptr;
1119     }
1120 
1121     ~StmtExprEvaluation() {
1122       CGF.OutermostConditional = SavedOutermostConditional;
1123       CGF.EnsureInsertPoint();
1124     }
1125   };
1126 
1127   /// An object which temporarily prevents a value from being
1128   /// destroyed by aggressive peephole optimizations that assume that
1129   /// all uses of a value have been realized in the IR.
1130   class PeepholeProtection {
1131     llvm::Instruction *Inst;
1132     friend class CodeGenFunction;
1133 
1134   public:
1135     PeepholeProtection() : Inst(nullptr) {}
1136   };
1137 
1138   /// A non-RAII class containing all the information about a bound
1139   /// opaque value.  OpaqueValueMapping, below, is a RAII wrapper for
1140   /// this which makes individual mappings very simple; using this
1141   /// class directly is useful when you have a variable number of
1142   /// opaque values or don't want the RAII functionality for some
1143   /// reason.
1144   class OpaqueValueMappingData {
1145     const OpaqueValueExpr *OpaqueValue;
1146     bool BoundLValue;
1147     CodeGenFunction::PeepholeProtection Protection;
1148 
1149     OpaqueValueMappingData(const OpaqueValueExpr *ov,
1150                            bool boundLValue)
1151       : OpaqueValue(ov), BoundLValue(boundLValue) {}
1152   public:
1153     OpaqueValueMappingData() : OpaqueValue(nullptr) {}
1154 
1155     static bool shouldBindAsLValue(const Expr *expr) {
1156       // gl-values should be bound as l-values for obvious reasons.
1157       // Records should be bound as l-values because IR generation
1158       // always keeps them in memory.  Expressions of function type
1159       // act exactly like l-values but are formally required to be
1160       // r-values in C.
1161       return expr->isGLValue() ||
1162              expr->getType()->isFunctionType() ||
1163              hasAggregateEvaluationKind(expr->getType());
1164     }
1165 
1166     static OpaqueValueMappingData bind(CodeGenFunction &CGF,
1167                                        const OpaqueValueExpr *ov,
1168                                        const Expr *e) {
1169       if (shouldBindAsLValue(ov))
1170         return bind(CGF, ov, CGF.EmitLValue(e));
1171       return bind(CGF, ov, CGF.EmitAnyExpr(e));
1172     }
1173 
1174     static OpaqueValueMappingData bind(CodeGenFunction &CGF,
1175                                        const OpaqueValueExpr *ov,
1176                                        const LValue &lv) {
1177       assert(shouldBindAsLValue(ov));
1178       CGF.OpaqueLValues.insert(std::make_pair(ov, lv));
1179       return OpaqueValueMappingData(ov, true);
1180     }
1181 
1182     static OpaqueValueMappingData bind(CodeGenFunction &CGF,
1183                                        const OpaqueValueExpr *ov,
1184                                        const RValue &rv) {
1185       assert(!shouldBindAsLValue(ov));
1186       CGF.OpaqueRValues.insert(std::make_pair(ov, rv));
1187 
1188       OpaqueValueMappingData data(ov, false);
1189 
1190       // Work around an extremely aggressive peephole optimization in
1191       // EmitScalarConversion which assumes that all other uses of a
1192       // value are extant.
1193       data.Protection = CGF.protectFromPeepholes(rv);
1194 
1195       return data;
1196     }
1197 
1198     bool isValid() const { return OpaqueValue != nullptr; }
1199     void clear() { OpaqueValue = nullptr; }
1200 
1201     void unbind(CodeGenFunction &CGF) {
1202       assert(OpaqueValue && "no data to unbind!");
1203 
1204       if (BoundLValue) {
1205         CGF.OpaqueLValues.erase(OpaqueValue);
1206       } else {
1207         CGF.OpaqueRValues.erase(OpaqueValue);
1208         CGF.unprotectFromPeepholes(Protection);
1209       }
1210     }
1211   };
1212 
1213   /// An RAII object to set (and then clear) a mapping for an OpaqueValueExpr.
1214   class OpaqueValueMapping {
1215     CodeGenFunction &CGF;
1216     OpaqueValueMappingData Data;
1217 
1218   public:
1219     static bool shouldBindAsLValue(const Expr *expr) {
1220       return OpaqueValueMappingData::shouldBindAsLValue(expr);
1221     }
1222 
1223     /// Build the opaque value mapping for the given conditional
1224     /// operator if it's the GNU ?: extension.  This is a common
1225     /// enough pattern that the convenience operator is really
1226     /// helpful.
1227     ///
1228     OpaqueValueMapping(CodeGenFunction &CGF,
1229                        const AbstractConditionalOperator *op) : CGF(CGF) {
1230       if (isa<ConditionalOperator>(op))
1231         // Leave Data empty.
1232         return;
1233 
1234       const BinaryConditionalOperator *e = cast<BinaryConditionalOperator>(op);
1235       Data = OpaqueValueMappingData::bind(CGF, e->getOpaqueValue(),
1236                                           e->getCommon());
1237     }
1238 
1239     /// Build the opaque value mapping for an OpaqueValueExpr whose source
1240     /// expression is set to the expression the OVE represents.
1241     OpaqueValueMapping(CodeGenFunction &CGF, const OpaqueValueExpr *OV)
1242         : CGF(CGF) {
1243       if (OV) {
1244         assert(OV->getSourceExpr() && "wrong form of OpaqueValueMapping used "
1245                                       "for OVE with no source expression");
1246         Data = OpaqueValueMappingData::bind(CGF, OV, OV->getSourceExpr());
1247       }
1248     }
1249 
1250     OpaqueValueMapping(CodeGenFunction &CGF,
1251                        const OpaqueValueExpr *opaqueValue,
1252                        LValue lvalue)
1253       : CGF(CGF), Data(OpaqueValueMappingData::bind(CGF, opaqueValue, lvalue)) {
1254     }
1255 
1256     OpaqueValueMapping(CodeGenFunction &CGF,
1257                        const OpaqueValueExpr *opaqueValue,
1258                        RValue rvalue)
1259       : CGF(CGF), Data(OpaqueValueMappingData::bind(CGF, opaqueValue, rvalue)) {
1260     }
1261 
1262     void pop() {
1263       Data.unbind(CGF);
1264       Data.clear();
1265     }
1266 
1267     ~OpaqueValueMapping() {
1268       if (Data.isValid()) Data.unbind(CGF);
1269     }
1270   };
1271 
1272 private:
1273   CGDebugInfo *DebugInfo;
1274   /// Used to create unique names for artificial VLA size debug info variables.
1275   unsigned VLAExprCounter = 0;
1276   bool DisableDebugInfo = false;
1277 
1278   /// DidCallStackSave - Whether llvm.stacksave has been called. Used to avoid
1279   /// calling llvm.stacksave for multiple VLAs in the same scope.
1280   bool DidCallStackSave = false;
1281 
1282   /// IndirectBranch - The first time an indirect goto is seen we create a block
1283   /// with an indirect branch.  Every time we see the address of a label taken,
1284   /// we add the label to the indirect goto.  Every subsequent indirect goto is
1285   /// codegen'd as a jump to the IndirectBranch's basic block.
1286   llvm::IndirectBrInst *IndirectBranch = nullptr;
1287 
1288   /// LocalDeclMap - This keeps track of the LLVM allocas or globals for local C
1289   /// decls.
1290   DeclMapTy LocalDeclMap;
1291 
1292   // Keep track of the cleanups for callee-destructed parameters pushed to the
1293   // cleanup stack so that they can be deactivated later.
1294   llvm::DenseMap<const ParmVarDecl *, EHScopeStack::stable_iterator>
1295       CalleeDestructedParamCleanups;
1296 
1297   /// SizeArguments - If a ParmVarDecl had the pass_object_size attribute, this
1298   /// will contain a mapping from said ParmVarDecl to its implicit "object_size"
1299   /// parameter.
1300   llvm::SmallDenseMap<const ParmVarDecl *, const ImplicitParamDecl *, 2>
1301       SizeArguments;
1302 
1303   /// Track escaped local variables with auto storage. Used during SEH
1304   /// outlining to produce a call to llvm.localescape.
1305   llvm::DenseMap<llvm::AllocaInst *, int> EscapedLocals;
1306 
1307   /// LabelMap - This keeps track of the LLVM basic block for each C label.
1308   llvm::DenseMap<const LabelDecl*, JumpDest> LabelMap;
1309 
1310   // BreakContinueStack - This keeps track of where break and continue
1311   // statements should jump to.
1312   struct BreakContinue {
1313     BreakContinue(JumpDest Break, JumpDest Continue)
1314       : BreakBlock(Break), ContinueBlock(Continue) {}
1315 
1316     JumpDest BreakBlock;
1317     JumpDest ContinueBlock;
1318   };
1319   SmallVector<BreakContinue, 8> BreakContinueStack;
1320 
1321   /// Handles cancellation exit points in OpenMP-related constructs.
1322   class OpenMPCancelExitStack {
1323     /// Tracks cancellation exit point and join point for cancel-related exit
1324     /// and normal exit.
1325     struct CancelExit {
1326       CancelExit() = default;
1327       CancelExit(OpenMPDirectiveKind Kind, JumpDest ExitBlock,
1328                  JumpDest ContBlock)
1329           : Kind(Kind), ExitBlock(ExitBlock), ContBlock(ContBlock) {}
1330       OpenMPDirectiveKind Kind = llvm::omp::OMPD_unknown;
1331       /// true if the exit block has been emitted already by the special
1332       /// emitExit() call, false if the default codegen is used.
1333       bool HasBeenEmitted = false;
1334       JumpDest ExitBlock;
1335       JumpDest ContBlock;
1336     };
1337 
1338     SmallVector<CancelExit, 8> Stack;
1339 
1340   public:
1341     OpenMPCancelExitStack() : Stack(1) {}
1342     ~OpenMPCancelExitStack() = default;
1343     /// Fetches the exit block for the current OpenMP construct.
1344     JumpDest getExitBlock() const { return Stack.back().ExitBlock; }
1345     /// Emits exit block with special codegen procedure specific for the related
1346     /// OpenMP construct + emits code for normal construct cleanup.
1347     void emitExit(CodeGenFunction &CGF, OpenMPDirectiveKind Kind,
1348                   const llvm::function_ref<void(CodeGenFunction &)> CodeGen) {
1349       if (Stack.back().Kind == Kind && getExitBlock().isValid()) {
1350         assert(CGF.getOMPCancelDestination(Kind).isValid());
1351         assert(CGF.HaveInsertPoint());
1352         assert(!Stack.back().HasBeenEmitted);
1353         auto IP = CGF.Builder.saveAndClearIP();
1354         CGF.EmitBlock(Stack.back().ExitBlock.getBlock());
1355         CodeGen(CGF);
1356         CGF.EmitBranch(Stack.back().ContBlock.getBlock());
1357         CGF.Builder.restoreIP(IP);
1358         Stack.back().HasBeenEmitted = true;
1359       }
1360       CodeGen(CGF);
1361     }
1362     /// Enter the cancel supporting \a Kind construct.
1363     /// \param Kind OpenMP directive that supports cancel constructs.
1364     /// \param HasCancel true, if the construct has inner cancel directive,
1365     /// false otherwise.
1366     void enter(CodeGenFunction &CGF, OpenMPDirectiveKind Kind, bool HasCancel) {
1367       Stack.push_back({Kind,
1368                        HasCancel ? CGF.getJumpDestInCurrentScope("cancel.exit")
1369                                  : JumpDest(),
1370                        HasCancel ? CGF.getJumpDestInCurrentScope("cancel.cont")
1371                                  : JumpDest()});
1372     }
1373     /// Emits default exit point for the cancel construct (if the special one
1374     /// has not be used) + join point for cancel/normal exits.
1375     void exit(CodeGenFunction &CGF) {
1376       if (getExitBlock().isValid()) {
1377         assert(CGF.getOMPCancelDestination(Stack.back().Kind).isValid());
1378         bool HaveIP = CGF.HaveInsertPoint();
1379         if (!Stack.back().HasBeenEmitted) {
1380           if (HaveIP)
1381             CGF.EmitBranchThroughCleanup(Stack.back().ContBlock);
1382           CGF.EmitBlock(Stack.back().ExitBlock.getBlock());
1383           CGF.EmitBranchThroughCleanup(Stack.back().ContBlock);
1384         }
1385         CGF.EmitBlock(Stack.back().ContBlock.getBlock());
1386         if (!HaveIP) {
1387           CGF.Builder.CreateUnreachable();
1388           CGF.Builder.ClearInsertionPoint();
1389         }
1390       }
1391       Stack.pop_back();
1392     }
1393   };
1394   OpenMPCancelExitStack OMPCancelStack;
1395 
1396   CodeGenPGO PGO;
1397 
1398   /// Calculate branch weights appropriate for PGO data
1399   llvm::MDNode *createProfileWeights(uint64_t TrueCount, uint64_t FalseCount);
1400   llvm::MDNode *createProfileWeights(ArrayRef<uint64_t> Weights);
1401   llvm::MDNode *createProfileWeightsForLoop(const Stmt *Cond,
1402                                             uint64_t LoopCount);
1403 
1404 public:
1405   /// Increment the profiler's counter for the given statement by \p StepV.
1406   /// If \p StepV is null, the default increment is 1.
1407   void incrementProfileCounter(const Stmt *S, llvm::Value *StepV = nullptr) {
1408     if (CGM.getCodeGenOpts().hasProfileClangInstr())
1409       PGO.emitCounterIncrement(Builder, S, StepV);
1410     PGO.setCurrentStmt(S);
1411   }
1412 
1413   /// Get the profiler's count for the given statement.
1414   uint64_t getProfileCount(const Stmt *S) {
1415     Optional<uint64_t> Count = PGO.getStmtCount(S);
1416     if (!Count.hasValue())
1417       return 0;
1418     return *Count;
1419   }
1420 
1421   /// Set the profiler's current count.
1422   void setCurrentProfileCount(uint64_t Count) {
1423     PGO.setCurrentRegionCount(Count);
1424   }
1425 
1426   /// Get the profiler's current count. This is generally the count for the most
1427   /// recently incremented counter.
1428   uint64_t getCurrentProfileCount() {
1429     return PGO.getCurrentRegionCount();
1430   }
1431 
1432 private:
1433 
1434   /// SwitchInsn - This is nearest current switch instruction. It is null if
1435   /// current context is not in a switch.
1436   llvm::SwitchInst *SwitchInsn = nullptr;
1437   /// The branch weights of SwitchInsn when doing instrumentation based PGO.
1438   SmallVector<uint64_t, 16> *SwitchWeights = nullptr;
1439 
1440   /// CaseRangeBlock - This block holds if condition check for last case
1441   /// statement range in current switch instruction.
1442   llvm::BasicBlock *CaseRangeBlock = nullptr;
1443 
1444   /// OpaqueLValues - Keeps track of the current set of opaque value
1445   /// expressions.
1446   llvm::DenseMap<const OpaqueValueExpr *, LValue> OpaqueLValues;
1447   llvm::DenseMap<const OpaqueValueExpr *, RValue> OpaqueRValues;
1448 
1449   // VLASizeMap - This keeps track of the associated size for each VLA type.
1450   // We track this by the size expression rather than the type itself because
1451   // in certain situations, like a const qualifier applied to an VLA typedef,
1452   // multiple VLA types can share the same size expression.
1453   // FIXME: Maybe this could be a stack of maps that is pushed/popped as we
1454   // enter/leave scopes.
1455   llvm::DenseMap<const Expr*, llvm::Value*> VLASizeMap;
1456 
1457   /// A block containing a single 'unreachable' instruction.  Created
1458   /// lazily by getUnreachableBlock().
1459   llvm::BasicBlock *UnreachableBlock = nullptr;
1460 
1461   /// Counts of the number return expressions in the function.
1462   unsigned NumReturnExprs = 0;
1463 
1464   /// Count the number of simple (constant) return expressions in the function.
1465   unsigned NumSimpleReturnExprs = 0;
1466 
1467   /// The last regular (non-return) debug location (breakpoint) in the function.
1468   SourceLocation LastStopPoint;
1469 
1470 public:
1471   /// Source location information about the default argument or member
1472   /// initializer expression we're evaluating, if any.
1473   CurrentSourceLocExprScope CurSourceLocExprScope;
1474   using SourceLocExprScopeGuard =
1475       CurrentSourceLocExprScope::SourceLocExprScopeGuard;
1476 
1477   /// A scope within which we are constructing the fields of an object which
1478   /// might use a CXXDefaultInitExpr. This stashes away a 'this' value to use
1479   /// if we need to evaluate a CXXDefaultInitExpr within the evaluation.
1480   class FieldConstructionScope {
1481   public:
1482     FieldConstructionScope(CodeGenFunction &CGF, Address This)
1483         : CGF(CGF), OldCXXDefaultInitExprThis(CGF.CXXDefaultInitExprThis) {
1484       CGF.CXXDefaultInitExprThis = This;
1485     }
1486     ~FieldConstructionScope() {
1487       CGF.CXXDefaultInitExprThis = OldCXXDefaultInitExprThis;
1488     }
1489 
1490   private:
1491     CodeGenFunction &CGF;
1492     Address OldCXXDefaultInitExprThis;
1493   };
1494 
1495   /// The scope of a CXXDefaultInitExpr. Within this scope, the value of 'this'
1496   /// is overridden to be the object under construction.
1497   class CXXDefaultInitExprScope  {
1498   public:
1499     CXXDefaultInitExprScope(CodeGenFunction &CGF, const CXXDefaultInitExpr *E)
1500         : CGF(CGF), OldCXXThisValue(CGF.CXXThisValue),
1501           OldCXXThisAlignment(CGF.CXXThisAlignment),
1502           SourceLocScope(E, CGF.CurSourceLocExprScope) {
1503       CGF.CXXThisValue = CGF.CXXDefaultInitExprThis.getPointer();
1504       CGF.CXXThisAlignment = CGF.CXXDefaultInitExprThis.getAlignment();
1505     }
1506     ~CXXDefaultInitExprScope() {
1507       CGF.CXXThisValue = OldCXXThisValue;
1508       CGF.CXXThisAlignment = OldCXXThisAlignment;
1509     }
1510 
1511   public:
1512     CodeGenFunction &CGF;
1513     llvm::Value *OldCXXThisValue;
1514     CharUnits OldCXXThisAlignment;
1515     SourceLocExprScopeGuard SourceLocScope;
1516   };
1517 
1518   struct CXXDefaultArgExprScope : SourceLocExprScopeGuard {
1519     CXXDefaultArgExprScope(CodeGenFunction &CGF, const CXXDefaultArgExpr *E)
1520         : SourceLocExprScopeGuard(E, CGF.CurSourceLocExprScope) {}
1521   };
1522 
1523   /// The scope of an ArrayInitLoopExpr. Within this scope, the value of the
1524   /// current loop index is overridden.
1525   class ArrayInitLoopExprScope {
1526   public:
1527     ArrayInitLoopExprScope(CodeGenFunction &CGF, llvm::Value *Index)
1528       : CGF(CGF), OldArrayInitIndex(CGF.ArrayInitIndex) {
1529       CGF.ArrayInitIndex = Index;
1530     }
1531     ~ArrayInitLoopExprScope() {
1532       CGF.ArrayInitIndex = OldArrayInitIndex;
1533     }
1534 
1535   private:
1536     CodeGenFunction &CGF;
1537     llvm::Value *OldArrayInitIndex;
1538   };
1539 
1540   class InlinedInheritingConstructorScope {
1541   public:
1542     InlinedInheritingConstructorScope(CodeGenFunction &CGF, GlobalDecl GD)
1543         : CGF(CGF), OldCurGD(CGF.CurGD), OldCurFuncDecl(CGF.CurFuncDecl),
1544           OldCurCodeDecl(CGF.CurCodeDecl),
1545           OldCXXABIThisDecl(CGF.CXXABIThisDecl),
1546           OldCXXABIThisValue(CGF.CXXABIThisValue),
1547           OldCXXThisValue(CGF.CXXThisValue),
1548           OldCXXABIThisAlignment(CGF.CXXABIThisAlignment),
1549           OldCXXThisAlignment(CGF.CXXThisAlignment),
1550           OldReturnValue(CGF.ReturnValue), OldFnRetTy(CGF.FnRetTy),
1551           OldCXXInheritedCtorInitExprArgs(
1552               std::move(CGF.CXXInheritedCtorInitExprArgs)) {
1553       CGF.CurGD = GD;
1554       CGF.CurFuncDecl = CGF.CurCodeDecl =
1555           cast<CXXConstructorDecl>(GD.getDecl());
1556       CGF.CXXABIThisDecl = nullptr;
1557       CGF.CXXABIThisValue = nullptr;
1558       CGF.CXXThisValue = nullptr;
1559       CGF.CXXABIThisAlignment = CharUnits();
1560       CGF.CXXThisAlignment = CharUnits();
1561       CGF.ReturnValue = Address::invalid();
1562       CGF.FnRetTy = QualType();
1563       CGF.CXXInheritedCtorInitExprArgs.clear();
1564     }
1565     ~InlinedInheritingConstructorScope() {
1566       CGF.CurGD = OldCurGD;
1567       CGF.CurFuncDecl = OldCurFuncDecl;
1568       CGF.CurCodeDecl = OldCurCodeDecl;
1569       CGF.CXXABIThisDecl = OldCXXABIThisDecl;
1570       CGF.CXXABIThisValue = OldCXXABIThisValue;
1571       CGF.CXXThisValue = OldCXXThisValue;
1572       CGF.CXXABIThisAlignment = OldCXXABIThisAlignment;
1573       CGF.CXXThisAlignment = OldCXXThisAlignment;
1574       CGF.ReturnValue = OldReturnValue;
1575       CGF.FnRetTy = OldFnRetTy;
1576       CGF.CXXInheritedCtorInitExprArgs =
1577           std::move(OldCXXInheritedCtorInitExprArgs);
1578     }
1579 
1580   private:
1581     CodeGenFunction &CGF;
1582     GlobalDecl OldCurGD;
1583     const Decl *OldCurFuncDecl;
1584     const Decl *OldCurCodeDecl;
1585     ImplicitParamDecl *OldCXXABIThisDecl;
1586     llvm::Value *OldCXXABIThisValue;
1587     llvm::Value *OldCXXThisValue;
1588     CharUnits OldCXXABIThisAlignment;
1589     CharUnits OldCXXThisAlignment;
1590     Address OldReturnValue;
1591     QualType OldFnRetTy;
1592     CallArgList OldCXXInheritedCtorInitExprArgs;
1593   };
1594 
1595   // Helper class for the OpenMP IR Builder. Allows reusability of code used for
1596   // region body, and finalization codegen callbacks. This will class will also
1597   // contain privatization functions used by the privatization call backs
1598   //
1599   // TODO: this is temporary class for things that are being moved out of
1600   // CGOpenMPRuntime, new versions of current CodeGenFunction methods, or
1601   // utility function for use with the OMPBuilder. Once that move to use the
1602   // OMPBuilder is done, everything here will either become part of CodeGenFunc.
1603   // directly, or a new helper class that will contain functions used by both
1604   // this and the OMPBuilder
1605 
1606   struct OMPBuilderCBHelpers {
1607 
1608     OMPBuilderCBHelpers() = delete;
1609     OMPBuilderCBHelpers(const OMPBuilderCBHelpers &) = delete;
1610     OMPBuilderCBHelpers &operator=(const OMPBuilderCBHelpers &) = delete;
1611 
1612     using InsertPointTy = llvm::OpenMPIRBuilder::InsertPointTy;
1613 
1614     /// Cleanup action for allocate support.
1615     class OMPAllocateCleanupTy final : public EHScopeStack::Cleanup {
1616 
1617     private:
1618       llvm::CallInst *RTLFnCI;
1619 
1620     public:
1621       OMPAllocateCleanupTy(llvm::CallInst *RLFnCI) : RTLFnCI(RLFnCI) {
1622         RLFnCI->removeFromParent();
1623       }
1624 
1625       void Emit(CodeGenFunction &CGF, Flags /*flags*/) override {
1626         if (!CGF.HaveInsertPoint())
1627           return;
1628         CGF.Builder.Insert(RTLFnCI);
1629       }
1630     };
1631 
1632     /// Returns address of the threadprivate variable for the current
1633     /// thread. This Also create any necessary OMP runtime calls.
1634     ///
1635     /// \param VD VarDecl for Threadprivate variable.
1636     /// \param VDAddr Address of the Vardecl
1637     /// \param Loc  The location where the barrier directive was encountered
1638     static Address getAddrOfThreadPrivate(CodeGenFunction &CGF,
1639                                           const VarDecl *VD, Address VDAddr,
1640                                           SourceLocation Loc);
1641 
1642     /// Gets the OpenMP-specific address of the local variable /p VD.
1643     static Address getAddressOfLocalVariable(CodeGenFunction &CGF,
1644                                              const VarDecl *VD);
1645     /// Get the platform-specific name separator.
1646     /// \param Parts different parts of the final name that needs separation
1647     /// \param FirstSeparator First separator used between the initial two
1648     ///        parts of the name.
1649     /// \param Separator separator used between all of the rest consecutinve
1650     ///        parts of the name
1651     static std::string getNameWithSeparators(ArrayRef<StringRef> Parts,
1652                                              StringRef FirstSeparator = ".",
1653                                              StringRef Separator = ".");
1654     /// Emit the Finalization for an OMP region
1655     /// \param CGF	The Codegen function this belongs to
1656     /// \param IP	Insertion point for generating the finalization code.
1657     static void FinalizeOMPRegion(CodeGenFunction &CGF, InsertPointTy IP) {
1658       CGBuilderTy::InsertPointGuard IPG(CGF.Builder);
1659       assert(IP.getBlock()->end() != IP.getPoint() &&
1660              "OpenMP IR Builder should cause terminated block!");
1661 
1662       llvm::BasicBlock *IPBB = IP.getBlock();
1663       llvm::BasicBlock *DestBB = IPBB->getUniqueSuccessor();
1664       assert(DestBB && "Finalization block should have one successor!");
1665 
1666       // erase and replace with cleanup branch.
1667       IPBB->getTerminator()->eraseFromParent();
1668       CGF.Builder.SetInsertPoint(IPBB);
1669       CodeGenFunction::JumpDest Dest = CGF.getJumpDestInCurrentScope(DestBB);
1670       CGF.EmitBranchThroughCleanup(Dest);
1671     }
1672 
1673     /// Emit the body of an OMP region
1674     /// \param CGF	The Codegen function this belongs to
1675     /// \param RegionBodyStmt	The body statement for the OpenMP region being
1676     /// 			 generated
1677     /// \param CodeGenIP	Insertion point for generating the body code.
1678     /// \param FiniBB	The finalization basic block
1679     static void EmitOMPRegionBody(CodeGenFunction &CGF,
1680                                   const Stmt *RegionBodyStmt,
1681                                   InsertPointTy CodeGenIP,
1682                                   llvm::BasicBlock &FiniBB) {
1683       llvm::BasicBlock *CodeGenIPBB = CodeGenIP.getBlock();
1684       if (llvm::Instruction *CodeGenIPBBTI = CodeGenIPBB->getTerminator())
1685         CodeGenIPBBTI->eraseFromParent();
1686 
1687       CGF.Builder.SetInsertPoint(CodeGenIPBB);
1688 
1689       CGF.EmitStmt(RegionBodyStmt);
1690 
1691       if (CGF.Builder.saveIP().isSet())
1692         CGF.Builder.CreateBr(&FiniBB);
1693     }
1694 
1695     /// RAII for preserving necessary info during Outlined region body codegen.
1696     class OutlinedRegionBodyRAII {
1697 
1698       llvm::AssertingVH<llvm::Instruction> OldAllocaIP;
1699       CodeGenFunction::JumpDest OldReturnBlock;
1700       CGBuilderTy::InsertPoint IP;
1701       CodeGenFunction &CGF;
1702 
1703     public:
1704       OutlinedRegionBodyRAII(CodeGenFunction &cgf, InsertPointTy &AllocaIP,
1705                              llvm::BasicBlock &RetBB)
1706           : CGF(cgf) {
1707         assert(AllocaIP.isSet() &&
1708                "Must specify Insertion point for allocas of outlined function");
1709         OldAllocaIP = CGF.AllocaInsertPt;
1710         CGF.AllocaInsertPt = &*AllocaIP.getPoint();
1711         IP = CGF.Builder.saveIP();
1712 
1713         OldReturnBlock = CGF.ReturnBlock;
1714         CGF.ReturnBlock = CGF.getJumpDestInCurrentScope(&RetBB);
1715       }
1716 
1717       ~OutlinedRegionBodyRAII() {
1718         CGF.AllocaInsertPt = OldAllocaIP;
1719         CGF.ReturnBlock = OldReturnBlock;
1720         CGF.Builder.restoreIP(IP);
1721       }
1722     };
1723 
1724     /// RAII for preserving necessary info during inlined region body codegen.
1725     class InlinedRegionBodyRAII {
1726 
1727       llvm::AssertingVH<llvm::Instruction> OldAllocaIP;
1728       CodeGenFunction &CGF;
1729 
1730     public:
1731       InlinedRegionBodyRAII(CodeGenFunction &cgf, InsertPointTy &AllocaIP,
1732                             llvm::BasicBlock &FiniBB)
1733           : CGF(cgf) {
1734         // Alloca insertion block should be in the entry block of the containing
1735         // function so it expects an empty AllocaIP in which case will reuse the
1736         // old alloca insertion point, or a new AllocaIP in the same block as
1737         // the old one
1738         assert((!AllocaIP.isSet() ||
1739                 CGF.AllocaInsertPt->getParent() == AllocaIP.getBlock()) &&
1740                "Insertion point should be in the entry block of containing "
1741                "function!");
1742         OldAllocaIP = CGF.AllocaInsertPt;
1743         if (AllocaIP.isSet())
1744           CGF.AllocaInsertPt = &*AllocaIP.getPoint();
1745 
1746         // TODO: Remove the call, after making sure the counter is not used by
1747         //       the EHStack.
1748         // Since this is an inlined region, it should not modify the
1749         // ReturnBlock, and should reuse the one for the enclosing outlined
1750         // region. So, the JumpDest being return by the function is discarded
1751         (void)CGF.getJumpDestInCurrentScope(&FiniBB);
1752       }
1753 
1754       ~InlinedRegionBodyRAII() { CGF.AllocaInsertPt = OldAllocaIP; }
1755     };
1756   };
1757 
1758 private:
1759   /// CXXThisDecl - When generating code for a C++ member function,
1760   /// this will hold the implicit 'this' declaration.
1761   ImplicitParamDecl *CXXABIThisDecl = nullptr;
1762   llvm::Value *CXXABIThisValue = nullptr;
1763   llvm::Value *CXXThisValue = nullptr;
1764   CharUnits CXXABIThisAlignment;
1765   CharUnits CXXThisAlignment;
1766 
1767   /// The value of 'this' to use when evaluating CXXDefaultInitExprs within
1768   /// this expression.
1769   Address CXXDefaultInitExprThis = Address::invalid();
1770 
1771   /// The current array initialization index when evaluating an
1772   /// ArrayInitIndexExpr within an ArrayInitLoopExpr.
1773   llvm::Value *ArrayInitIndex = nullptr;
1774 
1775   /// The values of function arguments to use when evaluating
1776   /// CXXInheritedCtorInitExprs within this context.
1777   CallArgList CXXInheritedCtorInitExprArgs;
1778 
1779   /// CXXStructorImplicitParamDecl - When generating code for a constructor or
1780   /// destructor, this will hold the implicit argument (e.g. VTT).
1781   ImplicitParamDecl *CXXStructorImplicitParamDecl = nullptr;
1782   llvm::Value *CXXStructorImplicitParamValue = nullptr;
1783 
1784   /// OutermostConditional - Points to the outermost active
1785   /// conditional control.  This is used so that we know if a
1786   /// temporary should be destroyed conditionally.
1787   ConditionalEvaluation *OutermostConditional = nullptr;
1788 
1789   /// The current lexical scope.
1790   LexicalScope *CurLexicalScope = nullptr;
1791 
1792   /// The current source location that should be used for exception
1793   /// handling code.
1794   SourceLocation CurEHLocation;
1795 
1796   /// BlockByrefInfos - For each __block variable, contains
1797   /// information about the layout of the variable.
1798   llvm::DenseMap<const ValueDecl *, BlockByrefInfo> BlockByrefInfos;
1799 
1800   /// Used by -fsanitize=nullability-return to determine whether the return
1801   /// value can be checked.
1802   llvm::Value *RetValNullabilityPrecondition = nullptr;
1803 
1804   /// Check if -fsanitize=nullability-return instrumentation is required for
1805   /// this function.
1806   bool requiresReturnValueNullabilityCheck() const {
1807     return RetValNullabilityPrecondition;
1808   }
1809 
1810   /// Used to store precise source locations for return statements by the
1811   /// runtime return value checks.
1812   Address ReturnLocation = Address::invalid();
1813 
1814   /// Check if the return value of this function requires sanitization.
1815   bool requiresReturnValueCheck() const;
1816 
1817   llvm::BasicBlock *TerminateLandingPad = nullptr;
1818   llvm::BasicBlock *TerminateHandler = nullptr;
1819   llvm::BasicBlock *TrapBB = nullptr;
1820 
1821   /// Terminate funclets keyed by parent funclet pad.
1822   llvm::MapVector<llvm::Value *, llvm::BasicBlock *> TerminateFunclets;
1823 
1824   /// Largest vector width used in ths function. Will be used to create a
1825   /// function attribute.
1826   unsigned LargestVectorWidth = 0;
1827 
1828   /// True if we need emit the life-time markers.
1829   const bool ShouldEmitLifetimeMarkers;
1830 
1831   /// Add OpenCL kernel arg metadata and the kernel attribute metadata to
1832   /// the function metadata.
1833   void EmitOpenCLKernelMetadata(const FunctionDecl *FD,
1834                                 llvm::Function *Fn);
1835 
1836 public:
1837   CodeGenFunction(CodeGenModule &cgm, bool suppressNewContext=false);
1838   ~CodeGenFunction();
1839 
1840   CodeGenTypes &getTypes() const { return CGM.getTypes(); }
1841   ASTContext &getContext() const { return CGM.getContext(); }
1842   CGDebugInfo *getDebugInfo() {
1843     if (DisableDebugInfo)
1844       return nullptr;
1845     return DebugInfo;
1846   }
1847   void disableDebugInfo() { DisableDebugInfo = true; }
1848   void enableDebugInfo() { DisableDebugInfo = false; }
1849 
1850   bool shouldUseFusedARCCalls() {
1851     return CGM.getCodeGenOpts().OptimizationLevel == 0;
1852   }
1853 
1854   const LangOptions &getLangOpts() const { return CGM.getLangOpts(); }
1855 
1856   /// Returns a pointer to the function's exception object and selector slot,
1857   /// which is assigned in every landing pad.
1858   Address getExceptionSlot();
1859   Address getEHSelectorSlot();
1860 
1861   /// Returns the contents of the function's exception object and selector
1862   /// slots.
1863   llvm::Value *getExceptionFromSlot();
1864   llvm::Value *getSelectorFromSlot();
1865 
1866   Address getNormalCleanupDestSlot();
1867 
1868   llvm::BasicBlock *getUnreachableBlock() {
1869     if (!UnreachableBlock) {
1870       UnreachableBlock = createBasicBlock("unreachable");
1871       new llvm::UnreachableInst(getLLVMContext(), UnreachableBlock);
1872     }
1873     return UnreachableBlock;
1874   }
1875 
1876   llvm::BasicBlock *getInvokeDest() {
1877     if (!EHStack.requiresLandingPad()) return nullptr;
1878     return getInvokeDestImpl();
1879   }
1880 
1881   bool currentFunctionUsesSEHTry() const { return CurSEHParent != nullptr; }
1882 
1883   const TargetInfo &getTarget() const { return Target; }
1884   llvm::LLVMContext &getLLVMContext() { return CGM.getLLVMContext(); }
1885   const TargetCodeGenInfo &getTargetHooks() const {
1886     return CGM.getTargetCodeGenInfo();
1887   }
1888 
1889   //===--------------------------------------------------------------------===//
1890   //                                  Cleanups
1891   //===--------------------------------------------------------------------===//
1892 
1893   typedef void Destroyer(CodeGenFunction &CGF, Address addr, QualType ty);
1894 
1895   void pushIrregularPartialArrayCleanup(llvm::Value *arrayBegin,
1896                                         Address arrayEndPointer,
1897                                         QualType elementType,
1898                                         CharUnits elementAlignment,
1899                                         Destroyer *destroyer);
1900   void pushRegularPartialArrayCleanup(llvm::Value *arrayBegin,
1901                                       llvm::Value *arrayEnd,
1902                                       QualType elementType,
1903                                       CharUnits elementAlignment,
1904                                       Destroyer *destroyer);
1905 
1906   void pushDestroy(QualType::DestructionKind dtorKind,
1907                    Address addr, QualType type);
1908   void pushEHDestroy(QualType::DestructionKind dtorKind,
1909                      Address addr, QualType type);
1910   void pushDestroy(CleanupKind kind, Address addr, QualType type,
1911                    Destroyer *destroyer, bool useEHCleanupForArray);
1912   void pushLifetimeExtendedDestroy(CleanupKind kind, Address addr,
1913                                    QualType type, Destroyer *destroyer,
1914                                    bool useEHCleanupForArray);
1915   void pushCallObjectDeleteCleanup(const FunctionDecl *OperatorDelete,
1916                                    llvm::Value *CompletePtr,
1917                                    QualType ElementType);
1918   void pushStackRestore(CleanupKind kind, Address SPMem);
1919   void emitDestroy(Address addr, QualType type, Destroyer *destroyer,
1920                    bool useEHCleanupForArray);
1921   llvm::Function *generateDestroyHelper(Address addr, QualType type,
1922                                         Destroyer *destroyer,
1923                                         bool useEHCleanupForArray,
1924                                         const VarDecl *VD);
1925   void emitArrayDestroy(llvm::Value *begin, llvm::Value *end,
1926                         QualType elementType, CharUnits elementAlign,
1927                         Destroyer *destroyer,
1928                         bool checkZeroLength, bool useEHCleanup);
1929 
1930   Destroyer *getDestroyer(QualType::DestructionKind destructionKind);
1931 
1932   /// Determines whether an EH cleanup is required to destroy a type
1933   /// with the given destruction kind.
1934   bool needsEHCleanup(QualType::DestructionKind kind) {
1935     switch (kind) {
1936     case QualType::DK_none:
1937       return false;
1938     case QualType::DK_cxx_destructor:
1939     case QualType::DK_objc_weak_lifetime:
1940     case QualType::DK_nontrivial_c_struct:
1941       return getLangOpts().Exceptions;
1942     case QualType::DK_objc_strong_lifetime:
1943       return getLangOpts().Exceptions &&
1944              CGM.getCodeGenOpts().ObjCAutoRefCountExceptions;
1945     }
1946     llvm_unreachable("bad destruction kind");
1947   }
1948 
1949   CleanupKind getCleanupKind(QualType::DestructionKind kind) {
1950     return (needsEHCleanup(kind) ? NormalAndEHCleanup : NormalCleanup);
1951   }
1952 
1953   //===--------------------------------------------------------------------===//
1954   //                                  Objective-C
1955   //===--------------------------------------------------------------------===//
1956 
1957   void GenerateObjCMethod(const ObjCMethodDecl *OMD);
1958 
1959   void StartObjCMethod(const ObjCMethodDecl *MD, const ObjCContainerDecl *CD);
1960 
1961   /// GenerateObjCGetter - Synthesize an Objective-C property getter function.
1962   void GenerateObjCGetter(ObjCImplementationDecl *IMP,
1963                           const ObjCPropertyImplDecl *PID);
1964   void generateObjCGetterBody(const ObjCImplementationDecl *classImpl,
1965                               const ObjCPropertyImplDecl *propImpl,
1966                               const ObjCMethodDecl *GetterMothodDecl,
1967                               llvm::Constant *AtomicHelperFn);
1968 
1969   void GenerateObjCCtorDtorMethod(ObjCImplementationDecl *IMP,
1970                                   ObjCMethodDecl *MD, bool ctor);
1971 
1972   /// GenerateObjCSetter - Synthesize an Objective-C property setter function
1973   /// for the given property.
1974   void GenerateObjCSetter(ObjCImplementationDecl *IMP,
1975                           const ObjCPropertyImplDecl *PID);
1976   void generateObjCSetterBody(const ObjCImplementationDecl *classImpl,
1977                               const ObjCPropertyImplDecl *propImpl,
1978                               llvm::Constant *AtomicHelperFn);
1979 
1980   //===--------------------------------------------------------------------===//
1981   //                                  Block Bits
1982   //===--------------------------------------------------------------------===//
1983 
1984   /// Emit block literal.
1985   /// \return an LLVM value which is a pointer to a struct which contains
1986   /// information about the block, including the block invoke function, the
1987   /// captured variables, etc.
1988   llvm::Value *EmitBlockLiteral(const BlockExpr *);
1989 
1990   llvm::Function *GenerateBlockFunction(GlobalDecl GD,
1991                                         const CGBlockInfo &Info,
1992                                         const DeclMapTy &ldm,
1993                                         bool IsLambdaConversionToBlock,
1994                                         bool BuildGlobalBlock);
1995 
1996   /// Check if \p T is a C++ class that has a destructor that can throw.
1997   static bool cxxDestructorCanThrow(QualType T);
1998 
1999   llvm::Constant *GenerateCopyHelperFunction(const CGBlockInfo &blockInfo);
2000   llvm::Constant *GenerateDestroyHelperFunction(const CGBlockInfo &blockInfo);
2001   llvm::Constant *GenerateObjCAtomicSetterCopyHelperFunction(
2002                                              const ObjCPropertyImplDecl *PID);
2003   llvm::Constant *GenerateObjCAtomicGetterCopyHelperFunction(
2004                                              const ObjCPropertyImplDecl *PID);
2005   llvm::Value *EmitBlockCopyAndAutorelease(llvm::Value *Block, QualType Ty);
2006 
2007   void BuildBlockRelease(llvm::Value *DeclPtr, BlockFieldFlags flags,
2008                          bool CanThrow);
2009 
2010   class AutoVarEmission;
2011 
2012   void emitByrefStructureInit(const AutoVarEmission &emission);
2013 
2014   /// Enter a cleanup to destroy a __block variable.  Note that this
2015   /// cleanup should be a no-op if the variable hasn't left the stack
2016   /// yet; if a cleanup is required for the variable itself, that needs
2017   /// to be done externally.
2018   ///
2019   /// \param Kind Cleanup kind.
2020   ///
2021   /// \param Addr When \p LoadBlockVarAddr is false, the address of the __block
2022   /// structure that will be passed to _Block_object_dispose. When
2023   /// \p LoadBlockVarAddr is true, the address of the field of the block
2024   /// structure that holds the address of the __block structure.
2025   ///
2026   /// \param Flags The flag that will be passed to _Block_object_dispose.
2027   ///
2028   /// \param LoadBlockVarAddr Indicates whether we need to emit a load from
2029   /// \p Addr to get the address of the __block structure.
2030   void enterByrefCleanup(CleanupKind Kind, Address Addr, BlockFieldFlags Flags,
2031                          bool LoadBlockVarAddr, bool CanThrow);
2032 
2033   void setBlockContextParameter(const ImplicitParamDecl *D, unsigned argNum,
2034                                 llvm::Value *ptr);
2035 
2036   Address LoadBlockStruct();
2037   Address GetAddrOfBlockDecl(const VarDecl *var);
2038 
2039   /// BuildBlockByrefAddress - Computes the location of the
2040   /// data in a variable which is declared as __block.
2041   Address emitBlockByrefAddress(Address baseAddr, const VarDecl *V,
2042                                 bool followForward = true);
2043   Address emitBlockByrefAddress(Address baseAddr,
2044                                 const BlockByrefInfo &info,
2045                                 bool followForward,
2046                                 const llvm::Twine &name);
2047 
2048   const BlockByrefInfo &getBlockByrefInfo(const VarDecl *var);
2049 
2050   QualType BuildFunctionArgList(GlobalDecl GD, FunctionArgList &Args);
2051 
2052   void GenerateCode(GlobalDecl GD, llvm::Function *Fn,
2053                     const CGFunctionInfo &FnInfo);
2054 
2055   /// Annotate the function with an attribute that disables TSan checking at
2056   /// runtime.
2057   void markAsIgnoreThreadCheckingAtRuntime(llvm::Function *Fn);
2058 
2059   /// Emit code for the start of a function.
2060   /// \param Loc       The location to be associated with the function.
2061   /// \param StartLoc  The location of the function body.
2062   void StartFunction(GlobalDecl GD,
2063                      QualType RetTy,
2064                      llvm::Function *Fn,
2065                      const CGFunctionInfo &FnInfo,
2066                      const FunctionArgList &Args,
2067                      SourceLocation Loc = SourceLocation(),
2068                      SourceLocation StartLoc = SourceLocation());
2069 
2070   static bool IsConstructorDelegationValid(const CXXConstructorDecl *Ctor);
2071 
2072   void EmitConstructorBody(FunctionArgList &Args);
2073   void EmitDestructorBody(FunctionArgList &Args);
2074   void emitImplicitAssignmentOperatorBody(FunctionArgList &Args);
2075   void EmitFunctionBody(const Stmt *Body);
2076   void EmitBlockWithFallThrough(llvm::BasicBlock *BB, const Stmt *S);
2077 
2078   void EmitForwardingCallToLambda(const CXXMethodDecl *LambdaCallOperator,
2079                                   CallArgList &CallArgs);
2080   void EmitLambdaBlockInvokeBody();
2081   void EmitLambdaDelegatingInvokeBody(const CXXMethodDecl *MD);
2082   void EmitLambdaStaticInvokeBody(const CXXMethodDecl *MD);
2083   void EmitLambdaVLACapture(const VariableArrayType *VAT, LValue LV) {
2084     EmitStoreThroughLValue(RValue::get(VLASizeMap[VAT->getSizeExpr()]), LV);
2085   }
2086   void EmitAsanPrologueOrEpilogue(bool Prologue);
2087 
2088   /// Emit the unified return block, trying to avoid its emission when
2089   /// possible.
2090   /// \return The debug location of the user written return statement if the
2091   /// return block is is avoided.
2092   llvm::DebugLoc EmitReturnBlock();
2093 
2094   /// FinishFunction - Complete IR generation of the current function. It is
2095   /// legal to call this function even if there is no current insertion point.
2096   void FinishFunction(SourceLocation EndLoc=SourceLocation());
2097 
2098   void StartThunk(llvm::Function *Fn, GlobalDecl GD,
2099                   const CGFunctionInfo &FnInfo, bool IsUnprototyped);
2100 
2101   void EmitCallAndReturnForThunk(llvm::FunctionCallee Callee,
2102                                  const ThunkInfo *Thunk, bool IsUnprototyped);
2103 
2104   void FinishThunk();
2105 
2106   /// Emit a musttail call for a thunk with a potentially adjusted this pointer.
2107   void EmitMustTailThunk(GlobalDecl GD, llvm::Value *AdjustedThisPtr,
2108                          llvm::FunctionCallee Callee);
2109 
2110   /// Generate a thunk for the given method.
2111   void generateThunk(llvm::Function *Fn, const CGFunctionInfo &FnInfo,
2112                      GlobalDecl GD, const ThunkInfo &Thunk,
2113                      bool IsUnprototyped);
2114 
2115   llvm::Function *GenerateVarArgsThunk(llvm::Function *Fn,
2116                                        const CGFunctionInfo &FnInfo,
2117                                        GlobalDecl GD, const ThunkInfo &Thunk);
2118 
2119   void EmitCtorPrologue(const CXXConstructorDecl *CD, CXXCtorType Type,
2120                         FunctionArgList &Args);
2121 
2122   void EmitInitializerForField(FieldDecl *Field, LValue LHS, Expr *Init);
2123 
2124   /// Struct with all information about dynamic [sub]class needed to set vptr.
2125   struct VPtr {
2126     BaseSubobject Base;
2127     const CXXRecordDecl *NearestVBase;
2128     CharUnits OffsetFromNearestVBase;
2129     const CXXRecordDecl *VTableClass;
2130   };
2131 
2132   /// Initialize the vtable pointer of the given subobject.
2133   void InitializeVTablePointer(const VPtr &vptr);
2134 
2135   typedef llvm::SmallVector<VPtr, 4> VPtrsVector;
2136 
2137   typedef llvm::SmallPtrSet<const CXXRecordDecl *, 4> VisitedVirtualBasesSetTy;
2138   VPtrsVector getVTablePointers(const CXXRecordDecl *VTableClass);
2139 
2140   void getVTablePointers(BaseSubobject Base, const CXXRecordDecl *NearestVBase,
2141                          CharUnits OffsetFromNearestVBase,
2142                          bool BaseIsNonVirtualPrimaryBase,
2143                          const CXXRecordDecl *VTableClass,
2144                          VisitedVirtualBasesSetTy &VBases, VPtrsVector &vptrs);
2145 
2146   void InitializeVTablePointers(const CXXRecordDecl *ClassDecl);
2147 
2148   /// GetVTablePtr - Return the Value of the vtable pointer member pointed
2149   /// to by This.
2150   llvm::Value *GetVTablePtr(Address This, llvm::Type *VTableTy,
2151                             const CXXRecordDecl *VTableClass);
2152 
2153   enum CFITypeCheckKind {
2154     CFITCK_VCall,
2155     CFITCK_NVCall,
2156     CFITCK_DerivedCast,
2157     CFITCK_UnrelatedCast,
2158     CFITCK_ICall,
2159     CFITCK_NVMFCall,
2160     CFITCK_VMFCall,
2161   };
2162 
2163   /// Derived is the presumed address of an object of type T after a
2164   /// cast. If T is a polymorphic class type, emit a check that the virtual
2165   /// table for Derived belongs to a class derived from T.
2166   void EmitVTablePtrCheckForCast(QualType T, llvm::Value *Derived,
2167                                  bool MayBeNull, CFITypeCheckKind TCK,
2168                                  SourceLocation Loc);
2169 
2170   /// EmitVTablePtrCheckForCall - Virtual method MD is being called via VTable.
2171   /// If vptr CFI is enabled, emit a check that VTable is valid.
2172   void EmitVTablePtrCheckForCall(const CXXRecordDecl *RD, llvm::Value *VTable,
2173                                  CFITypeCheckKind TCK, SourceLocation Loc);
2174 
2175   /// EmitVTablePtrCheck - Emit a check that VTable is a valid virtual table for
2176   /// RD using llvm.type.test.
2177   void EmitVTablePtrCheck(const CXXRecordDecl *RD, llvm::Value *VTable,
2178                           CFITypeCheckKind TCK, SourceLocation Loc);
2179 
2180   /// If whole-program virtual table optimization is enabled, emit an assumption
2181   /// that VTable is a member of RD's type identifier. Or, if vptr CFI is
2182   /// enabled, emit a check that VTable is a member of RD's type identifier.
2183   void EmitTypeMetadataCodeForVCall(const CXXRecordDecl *RD,
2184                                     llvm::Value *VTable, SourceLocation Loc);
2185 
2186   /// Returns whether we should perform a type checked load when loading a
2187   /// virtual function for virtual calls to members of RD. This is generally
2188   /// true when both vcall CFI and whole-program-vtables are enabled.
2189   bool ShouldEmitVTableTypeCheckedLoad(const CXXRecordDecl *RD);
2190 
2191   /// Emit a type checked load from the given vtable.
2192   llvm::Value *EmitVTableTypeCheckedLoad(const CXXRecordDecl *RD, llvm::Value *VTable,
2193                                          uint64_t VTableByteOffset);
2194 
2195   /// EnterDtorCleanups - Enter the cleanups necessary to complete the
2196   /// given phase of destruction for a destructor.  The end result
2197   /// should call destructors on members and base classes in reverse
2198   /// order of their construction.
2199   void EnterDtorCleanups(const CXXDestructorDecl *Dtor, CXXDtorType Type);
2200 
2201   /// ShouldInstrumentFunction - Return true if the current function should be
2202   /// instrumented with __cyg_profile_func_* calls
2203   bool ShouldInstrumentFunction();
2204 
2205   /// ShouldXRayInstrument - Return true if the current function should be
2206   /// instrumented with XRay nop sleds.
2207   bool ShouldXRayInstrumentFunction() const;
2208 
2209   /// AlwaysEmitXRayCustomEvents - Return true if we must unconditionally emit
2210   /// XRay custom event handling calls.
2211   bool AlwaysEmitXRayCustomEvents() const;
2212 
2213   /// AlwaysEmitXRayTypedEvents - Return true if clang must unconditionally emit
2214   /// XRay typed event handling calls.
2215   bool AlwaysEmitXRayTypedEvents() const;
2216 
2217   /// Encode an address into a form suitable for use in a function prologue.
2218   llvm::Constant *EncodeAddrForUseInPrologue(llvm::Function *F,
2219                                              llvm::Constant *Addr);
2220 
2221   /// Decode an address used in a function prologue, encoded by \c
2222   /// EncodeAddrForUseInPrologue.
2223   llvm::Value *DecodeAddrUsedInPrologue(llvm::Value *F,
2224                                         llvm::Value *EncodedAddr);
2225 
2226   /// EmitFunctionProlog - Emit the target specific LLVM code to load the
2227   /// arguments for the given function. This is also responsible for naming the
2228   /// LLVM function arguments.
2229   void EmitFunctionProlog(const CGFunctionInfo &FI,
2230                           llvm::Function *Fn,
2231                           const FunctionArgList &Args);
2232 
2233   /// EmitFunctionEpilog - Emit the target specific LLVM code to return the
2234   /// given temporary.
2235   void EmitFunctionEpilog(const CGFunctionInfo &FI, bool EmitRetDbgLoc,
2236                           SourceLocation EndLoc);
2237 
2238   /// Emit a test that checks if the return value \p RV is nonnull.
2239   void EmitReturnValueCheck(llvm::Value *RV);
2240 
2241   /// EmitStartEHSpec - Emit the start of the exception spec.
2242   void EmitStartEHSpec(const Decl *D);
2243 
2244   /// EmitEndEHSpec - Emit the end of the exception spec.
2245   void EmitEndEHSpec(const Decl *D);
2246 
2247   /// getTerminateLandingPad - Return a landing pad that just calls terminate.
2248   llvm::BasicBlock *getTerminateLandingPad();
2249 
2250   /// getTerminateLandingPad - Return a cleanup funclet that just calls
2251   /// terminate.
2252   llvm::BasicBlock *getTerminateFunclet();
2253 
2254   /// getTerminateHandler - Return a handler (not a landing pad, just
2255   /// a catch handler) that just calls terminate.  This is used when
2256   /// a terminate scope encloses a try.
2257   llvm::BasicBlock *getTerminateHandler();
2258 
2259   llvm::Type *ConvertTypeForMem(QualType T);
2260   llvm::Type *ConvertType(QualType T);
2261   llvm::Type *ConvertType(const TypeDecl *T) {
2262     return ConvertType(getContext().getTypeDeclType(T));
2263   }
2264 
2265   /// LoadObjCSelf - Load the value of self. This function is only valid while
2266   /// generating code for an Objective-C method.
2267   llvm::Value *LoadObjCSelf();
2268 
2269   /// TypeOfSelfObject - Return type of object that this self represents.
2270   QualType TypeOfSelfObject();
2271 
2272   /// getEvaluationKind - Return the TypeEvaluationKind of QualType \c T.
2273   static TypeEvaluationKind getEvaluationKind(QualType T);
2274 
2275   static bool hasScalarEvaluationKind(QualType T) {
2276     return getEvaluationKind(T) == TEK_Scalar;
2277   }
2278 
2279   static bool hasAggregateEvaluationKind(QualType T) {
2280     return getEvaluationKind(T) == TEK_Aggregate;
2281   }
2282 
2283   /// createBasicBlock - Create an LLVM basic block.
2284   llvm::BasicBlock *createBasicBlock(const Twine &name = "",
2285                                      llvm::Function *parent = nullptr,
2286                                      llvm::BasicBlock *before = nullptr) {
2287     return llvm::BasicBlock::Create(getLLVMContext(), name, parent, before);
2288   }
2289 
2290   /// getBasicBlockForLabel - Return the LLVM basicblock that the specified
2291   /// label maps to.
2292   JumpDest getJumpDestForLabel(const LabelDecl *S);
2293 
2294   /// SimplifyForwardingBlocks - If the given basic block is only a branch to
2295   /// another basic block, simplify it. This assumes that no other code could
2296   /// potentially reference the basic block.
2297   void SimplifyForwardingBlocks(llvm::BasicBlock *BB);
2298 
2299   /// EmitBlock - Emit the given block \arg BB and set it as the insert point,
2300   /// adding a fall-through branch from the current insert block if
2301   /// necessary. It is legal to call this function even if there is no current
2302   /// insertion point.
2303   ///
2304   /// IsFinished - If true, indicates that the caller has finished emitting
2305   /// branches to the given block and does not expect to emit code into it. This
2306   /// means the block can be ignored if it is unreachable.
2307   void EmitBlock(llvm::BasicBlock *BB, bool IsFinished=false);
2308 
2309   /// EmitBlockAfterUses - Emit the given block somewhere hopefully
2310   /// near its uses, and leave the insertion point in it.
2311   void EmitBlockAfterUses(llvm::BasicBlock *BB);
2312 
2313   /// EmitBranch - Emit a branch to the specified basic block from the current
2314   /// insert block, taking care to avoid creation of branches from dummy
2315   /// blocks. It is legal to call this function even if there is no current
2316   /// insertion point.
2317   ///
2318   /// This function clears the current insertion point. The caller should follow
2319   /// calls to this function with calls to Emit*Block prior to generation new
2320   /// code.
2321   void EmitBranch(llvm::BasicBlock *Block);
2322 
2323   /// HaveInsertPoint - True if an insertion point is defined. If not, this
2324   /// indicates that the current code being emitted is unreachable.
2325   bool HaveInsertPoint() const {
2326     return Builder.GetInsertBlock() != nullptr;
2327   }
2328 
2329   /// EnsureInsertPoint - Ensure that an insertion point is defined so that
2330   /// emitted IR has a place to go. Note that by definition, if this function
2331   /// creates a block then that block is unreachable; callers may do better to
2332   /// detect when no insertion point is defined and simply skip IR generation.
2333   void EnsureInsertPoint() {
2334     if (!HaveInsertPoint())
2335       EmitBlock(createBasicBlock());
2336   }
2337 
2338   /// ErrorUnsupported - Print out an error that codegen doesn't support the
2339   /// specified stmt yet.
2340   void ErrorUnsupported(const Stmt *S, const char *Type);
2341 
2342   //===--------------------------------------------------------------------===//
2343   //                                  Helpers
2344   //===--------------------------------------------------------------------===//
2345 
2346   LValue MakeAddrLValue(Address Addr, QualType T,
2347                         AlignmentSource Source = AlignmentSource::Type) {
2348     return LValue::MakeAddr(Addr, T, getContext(), LValueBaseInfo(Source),
2349                             CGM.getTBAAAccessInfo(T));
2350   }
2351 
2352   LValue MakeAddrLValue(Address Addr, QualType T, LValueBaseInfo BaseInfo,
2353                         TBAAAccessInfo TBAAInfo) {
2354     return LValue::MakeAddr(Addr, T, getContext(), BaseInfo, TBAAInfo);
2355   }
2356 
2357   LValue MakeAddrLValue(llvm::Value *V, QualType T, CharUnits Alignment,
2358                         AlignmentSource Source = AlignmentSource::Type) {
2359     return LValue::MakeAddr(Address(V, Alignment), T, getContext(),
2360                             LValueBaseInfo(Source), CGM.getTBAAAccessInfo(T));
2361   }
2362 
2363   LValue MakeAddrLValue(llvm::Value *V, QualType T, CharUnits Alignment,
2364                         LValueBaseInfo BaseInfo, TBAAAccessInfo TBAAInfo) {
2365     return LValue::MakeAddr(Address(V, Alignment), T, getContext(),
2366                             BaseInfo, TBAAInfo);
2367   }
2368 
2369   LValue MakeNaturalAlignPointeeAddrLValue(llvm::Value *V, QualType T);
2370   LValue MakeNaturalAlignAddrLValue(llvm::Value *V, QualType T);
2371 
2372   Address EmitLoadOfReference(LValue RefLVal,
2373                               LValueBaseInfo *PointeeBaseInfo = nullptr,
2374                               TBAAAccessInfo *PointeeTBAAInfo = nullptr);
2375   LValue EmitLoadOfReferenceLValue(LValue RefLVal);
2376   LValue EmitLoadOfReferenceLValue(Address RefAddr, QualType RefTy,
2377                                    AlignmentSource Source =
2378                                        AlignmentSource::Type) {
2379     LValue RefLVal = MakeAddrLValue(RefAddr, RefTy, LValueBaseInfo(Source),
2380                                     CGM.getTBAAAccessInfo(RefTy));
2381     return EmitLoadOfReferenceLValue(RefLVal);
2382   }
2383 
2384   Address EmitLoadOfPointer(Address Ptr, const PointerType *PtrTy,
2385                             LValueBaseInfo *BaseInfo = nullptr,
2386                             TBAAAccessInfo *TBAAInfo = nullptr);
2387   LValue EmitLoadOfPointerLValue(Address Ptr, const PointerType *PtrTy);
2388 
2389   /// CreateTempAlloca - This creates an alloca and inserts it into the entry
2390   /// block if \p ArraySize is nullptr, otherwise inserts it at the current
2391   /// insertion point of the builder. The caller is responsible for setting an
2392   /// appropriate alignment on
2393   /// the alloca.
2394   ///
2395   /// \p ArraySize is the number of array elements to be allocated if it
2396   ///    is not nullptr.
2397   ///
2398   /// LangAS::Default is the address space of pointers to local variables and
2399   /// temporaries, as exposed in the source language. In certain
2400   /// configurations, this is not the same as the alloca address space, and a
2401   /// cast is needed to lift the pointer from the alloca AS into
2402   /// LangAS::Default. This can happen when the target uses a restricted
2403   /// address space for the stack but the source language requires
2404   /// LangAS::Default to be a generic address space. The latter condition is
2405   /// common for most programming languages; OpenCL is an exception in that
2406   /// LangAS::Default is the private address space, which naturally maps
2407   /// to the stack.
2408   ///
2409   /// Because the address of a temporary is often exposed to the program in
2410   /// various ways, this function will perform the cast. The original alloca
2411   /// instruction is returned through \p Alloca if it is not nullptr.
2412   ///
2413   /// The cast is not performaed in CreateTempAllocaWithoutCast. This is
2414   /// more efficient if the caller knows that the address will not be exposed.
2415   llvm::AllocaInst *CreateTempAlloca(llvm::Type *Ty, const Twine &Name = "tmp",
2416                                      llvm::Value *ArraySize = nullptr);
2417   Address CreateTempAlloca(llvm::Type *Ty, CharUnits align,
2418                            const Twine &Name = "tmp",
2419                            llvm::Value *ArraySize = nullptr,
2420                            Address *Alloca = nullptr);
2421   Address CreateTempAllocaWithoutCast(llvm::Type *Ty, CharUnits align,
2422                                       const Twine &Name = "tmp",
2423                                       llvm::Value *ArraySize = nullptr);
2424 
2425   /// CreateDefaultAlignedTempAlloca - This creates an alloca with the
2426   /// default ABI alignment of the given LLVM type.
2427   ///
2428   /// IMPORTANT NOTE: This is *not* generally the right alignment for
2429   /// any given AST type that happens to have been lowered to the
2430   /// given IR type.  This should only ever be used for function-local,
2431   /// IR-driven manipulations like saving and restoring a value.  Do
2432   /// not hand this address off to arbitrary IRGen routines, and especially
2433   /// do not pass it as an argument to a function that might expect a
2434   /// properly ABI-aligned value.
2435   Address CreateDefaultAlignTempAlloca(llvm::Type *Ty,
2436                                        const Twine &Name = "tmp");
2437 
2438   /// InitTempAlloca - Provide an initial value for the given alloca which
2439   /// will be observable at all locations in the function.
2440   ///
2441   /// The address should be something that was returned from one of
2442   /// the CreateTempAlloca or CreateMemTemp routines, and the
2443   /// initializer must be valid in the entry block (i.e. it must
2444   /// either be a constant or an argument value).
2445   void InitTempAlloca(Address Alloca, llvm::Value *Value);
2446 
2447   /// CreateIRTemp - Create a temporary IR object of the given type, with
2448   /// appropriate alignment. This routine should only be used when an temporary
2449   /// value needs to be stored into an alloca (for example, to avoid explicit
2450   /// PHI construction), but the type is the IR type, not the type appropriate
2451   /// for storing in memory.
2452   ///
2453   /// That is, this is exactly equivalent to CreateMemTemp, but calling
2454   /// ConvertType instead of ConvertTypeForMem.
2455   Address CreateIRTemp(QualType T, const Twine &Name = "tmp");
2456 
2457   /// CreateMemTemp - Create a temporary memory object of the given type, with
2458   /// appropriate alignmen and cast it to the default address space. Returns
2459   /// the original alloca instruction by \p Alloca if it is not nullptr.
2460   Address CreateMemTemp(QualType T, const Twine &Name = "tmp",
2461                         Address *Alloca = nullptr);
2462   Address CreateMemTemp(QualType T, CharUnits Align, const Twine &Name = "tmp",
2463                         Address *Alloca = nullptr);
2464 
2465   /// CreateMemTemp - Create a temporary memory object of the given type, with
2466   /// appropriate alignmen without casting it to the default address space.
2467   Address CreateMemTempWithoutCast(QualType T, const Twine &Name = "tmp");
2468   Address CreateMemTempWithoutCast(QualType T, CharUnits Align,
2469                                    const Twine &Name = "tmp");
2470 
2471   /// CreateAggTemp - Create a temporary memory object for the given
2472   /// aggregate type.
2473   AggValueSlot CreateAggTemp(QualType T, const Twine &Name = "tmp",
2474                              Address *Alloca = nullptr) {
2475     return AggValueSlot::forAddr(CreateMemTemp(T, Name, Alloca),
2476                                  T.getQualifiers(),
2477                                  AggValueSlot::IsNotDestructed,
2478                                  AggValueSlot::DoesNotNeedGCBarriers,
2479                                  AggValueSlot::IsNotAliased,
2480                                  AggValueSlot::DoesNotOverlap);
2481   }
2482 
2483   /// Emit a cast to void* in the appropriate address space.
2484   llvm::Value *EmitCastToVoidPtr(llvm::Value *value);
2485 
2486   /// EvaluateExprAsBool - Perform the usual unary conversions on the specified
2487   /// expression and compare the result against zero, returning an Int1Ty value.
2488   llvm::Value *EvaluateExprAsBool(const Expr *E);
2489 
2490   /// EmitIgnoredExpr - Emit an expression in a context which ignores the result.
2491   void EmitIgnoredExpr(const Expr *E);
2492 
2493   /// EmitAnyExpr - Emit code to compute the specified expression which can have
2494   /// any type.  The result is returned as an RValue struct.  If this is an
2495   /// aggregate expression, the aggloc/agglocvolatile arguments indicate where
2496   /// the result should be returned.
2497   ///
2498   /// \param ignoreResult True if the resulting value isn't used.
2499   RValue EmitAnyExpr(const Expr *E,
2500                      AggValueSlot aggSlot = AggValueSlot::ignored(),
2501                      bool ignoreResult = false);
2502 
2503   // EmitVAListRef - Emit a "reference" to a va_list; this is either the address
2504   // or the value of the expression, depending on how va_list is defined.
2505   Address EmitVAListRef(const Expr *E);
2506 
2507   /// Emit a "reference" to a __builtin_ms_va_list; this is
2508   /// always the value of the expression, because a __builtin_ms_va_list is a
2509   /// pointer to a char.
2510   Address EmitMSVAListRef(const Expr *E);
2511 
2512   /// EmitAnyExprToTemp - Similarly to EmitAnyExpr(), however, the result will
2513   /// always be accessible even if no aggregate location is provided.
2514   RValue EmitAnyExprToTemp(const Expr *E);
2515 
2516   /// EmitAnyExprToMem - Emits the code necessary to evaluate an
2517   /// arbitrary expression into the given memory location.
2518   void EmitAnyExprToMem(const Expr *E, Address Location,
2519                         Qualifiers Quals, bool IsInitializer);
2520 
2521   void EmitAnyExprToExn(const Expr *E, Address Addr);
2522 
2523   /// EmitExprAsInit - Emits the code necessary to initialize a
2524   /// location in memory with the given initializer.
2525   void EmitExprAsInit(const Expr *init, const ValueDecl *D, LValue lvalue,
2526                       bool capturedByInit);
2527 
2528   /// hasVolatileMember - returns true if aggregate type has a volatile
2529   /// member.
2530   bool hasVolatileMember(QualType T) {
2531     if (const RecordType *RT = T->getAs<RecordType>()) {
2532       const RecordDecl *RD = cast<RecordDecl>(RT->getDecl());
2533       return RD->hasVolatileMember();
2534     }
2535     return false;
2536   }
2537 
2538   /// Determine whether a return value slot may overlap some other object.
2539   AggValueSlot::Overlap_t getOverlapForReturnValue() {
2540     // FIXME: Assuming no overlap here breaks guaranteed copy elision for base
2541     // class subobjects. These cases may need to be revisited depending on the
2542     // resolution of the relevant core issue.
2543     return AggValueSlot::DoesNotOverlap;
2544   }
2545 
2546   /// Determine whether a field initialization may overlap some other object.
2547   AggValueSlot::Overlap_t getOverlapForFieldInit(const FieldDecl *FD);
2548 
2549   /// Determine whether a base class initialization may overlap some other
2550   /// object.
2551   AggValueSlot::Overlap_t getOverlapForBaseInit(const CXXRecordDecl *RD,
2552                                                 const CXXRecordDecl *BaseRD,
2553                                                 bool IsVirtual);
2554 
2555   /// Emit an aggregate assignment.
2556   void EmitAggregateAssign(LValue Dest, LValue Src, QualType EltTy) {
2557     bool IsVolatile = hasVolatileMember(EltTy);
2558     EmitAggregateCopy(Dest, Src, EltTy, AggValueSlot::MayOverlap, IsVolatile);
2559   }
2560 
2561   void EmitAggregateCopyCtor(LValue Dest, LValue Src,
2562                              AggValueSlot::Overlap_t MayOverlap) {
2563     EmitAggregateCopy(Dest, Src, Src.getType(), MayOverlap);
2564   }
2565 
2566   /// EmitAggregateCopy - Emit an aggregate copy.
2567   ///
2568   /// \param isVolatile \c true iff either the source or the destination is
2569   ///        volatile.
2570   /// \param MayOverlap Whether the tail padding of the destination might be
2571   ///        occupied by some other object. More efficient code can often be
2572   ///        generated if not.
2573   void EmitAggregateCopy(LValue Dest, LValue Src, QualType EltTy,
2574                          AggValueSlot::Overlap_t MayOverlap,
2575                          bool isVolatile = false);
2576 
2577   /// GetAddrOfLocalVar - Return the address of a local variable.
2578   Address GetAddrOfLocalVar(const VarDecl *VD) {
2579     auto it = LocalDeclMap.find(VD);
2580     assert(it != LocalDeclMap.end() &&
2581            "Invalid argument to GetAddrOfLocalVar(), no decl!");
2582     return it->second;
2583   }
2584 
2585   /// Given an opaque value expression, return its LValue mapping if it exists,
2586   /// otherwise create one.
2587   LValue getOrCreateOpaqueLValueMapping(const OpaqueValueExpr *e);
2588 
2589   /// Given an opaque value expression, return its RValue mapping if it exists,
2590   /// otherwise create one.
2591   RValue getOrCreateOpaqueRValueMapping(const OpaqueValueExpr *e);
2592 
2593   /// Get the index of the current ArrayInitLoopExpr, if any.
2594   llvm::Value *getArrayInitIndex() { return ArrayInitIndex; }
2595 
2596   /// getAccessedFieldNo - Given an encoded value and a result number, return
2597   /// the input field number being accessed.
2598   static unsigned getAccessedFieldNo(unsigned Idx, const llvm::Constant *Elts);
2599 
2600   llvm::BlockAddress *GetAddrOfLabel(const LabelDecl *L);
2601   llvm::BasicBlock *GetIndirectGotoBlock();
2602 
2603   /// Check if \p E is a C++ "this" pointer wrapped in value-preserving casts.
2604   static bool IsWrappedCXXThis(const Expr *E);
2605 
2606   /// EmitNullInitialization - Generate code to set a value of the given type to
2607   /// null, If the type contains data member pointers, they will be initialized
2608   /// to -1 in accordance with the Itanium C++ ABI.
2609   void EmitNullInitialization(Address DestPtr, QualType Ty);
2610 
2611   /// Emits a call to an LLVM variable-argument intrinsic, either
2612   /// \c llvm.va_start or \c llvm.va_end.
2613   /// \param ArgValue A reference to the \c va_list as emitted by either
2614   /// \c EmitVAListRef or \c EmitMSVAListRef.
2615   /// \param IsStart If \c true, emits a call to \c llvm.va_start; otherwise,
2616   /// calls \c llvm.va_end.
2617   llvm::Value *EmitVAStartEnd(llvm::Value *ArgValue, bool IsStart);
2618 
2619   /// Generate code to get an argument from the passed in pointer
2620   /// and update it accordingly.
2621   /// \param VE The \c VAArgExpr for which to generate code.
2622   /// \param VAListAddr Receives a reference to the \c va_list as emitted by
2623   /// either \c EmitVAListRef or \c EmitMSVAListRef.
2624   /// \returns A pointer to the argument.
2625   // FIXME: We should be able to get rid of this method and use the va_arg
2626   // instruction in LLVM instead once it works well enough.
2627   Address EmitVAArg(VAArgExpr *VE, Address &VAListAddr);
2628 
2629   /// emitArrayLength - Compute the length of an array, even if it's a
2630   /// VLA, and drill down to the base element type.
2631   llvm::Value *emitArrayLength(const ArrayType *arrayType,
2632                                QualType &baseType,
2633                                Address &addr);
2634 
2635   /// EmitVLASize - Capture all the sizes for the VLA expressions in
2636   /// the given variably-modified type and store them in the VLASizeMap.
2637   ///
2638   /// This function can be called with a null (unreachable) insert point.
2639   void EmitVariablyModifiedType(QualType Ty);
2640 
2641   struct VlaSizePair {
2642     llvm::Value *NumElts;
2643     QualType Type;
2644 
2645     VlaSizePair(llvm::Value *NE, QualType T) : NumElts(NE), Type(T) {}
2646   };
2647 
2648   /// Return the number of elements for a single dimension
2649   /// for the given array type.
2650   VlaSizePair getVLAElements1D(const VariableArrayType *vla);
2651   VlaSizePair getVLAElements1D(QualType vla);
2652 
2653   /// Returns an LLVM value that corresponds to the size,
2654   /// in non-variably-sized elements, of a variable length array type,
2655   /// plus that largest non-variably-sized element type.  Assumes that
2656   /// the type has already been emitted with EmitVariablyModifiedType.
2657   VlaSizePair getVLASize(const VariableArrayType *vla);
2658   VlaSizePair getVLASize(QualType vla);
2659 
2660   /// LoadCXXThis - Load the value of 'this'. This function is only valid while
2661   /// generating code for an C++ member function.
2662   llvm::Value *LoadCXXThis() {
2663     assert(CXXThisValue && "no 'this' value for this function");
2664     return CXXThisValue;
2665   }
2666   Address LoadCXXThisAddress();
2667 
2668   /// LoadCXXVTT - Load the VTT parameter to base constructors/destructors have
2669   /// virtual bases.
2670   // FIXME: Every place that calls LoadCXXVTT is something
2671   // that needs to be abstracted properly.
2672   llvm::Value *LoadCXXVTT() {
2673     assert(CXXStructorImplicitParamValue && "no VTT value for this function");
2674     return CXXStructorImplicitParamValue;
2675   }
2676 
2677   /// GetAddressOfBaseOfCompleteClass - Convert the given pointer to a
2678   /// complete class to the given direct base.
2679   Address
2680   GetAddressOfDirectBaseInCompleteClass(Address Value,
2681                                         const CXXRecordDecl *Derived,
2682                                         const CXXRecordDecl *Base,
2683                                         bool BaseIsVirtual);
2684 
2685   static bool ShouldNullCheckClassCastValue(const CastExpr *Cast);
2686 
2687   /// GetAddressOfBaseClass - This function will add the necessary delta to the
2688   /// load of 'this' and returns address of the base class.
2689   Address GetAddressOfBaseClass(Address Value,
2690                                 const CXXRecordDecl *Derived,
2691                                 CastExpr::path_const_iterator PathBegin,
2692                                 CastExpr::path_const_iterator PathEnd,
2693                                 bool NullCheckValue, SourceLocation Loc);
2694 
2695   Address GetAddressOfDerivedClass(Address Value,
2696                                    const CXXRecordDecl *Derived,
2697                                    CastExpr::path_const_iterator PathBegin,
2698                                    CastExpr::path_const_iterator PathEnd,
2699                                    bool NullCheckValue);
2700 
2701   /// GetVTTParameter - Return the VTT parameter that should be passed to a
2702   /// base constructor/destructor with virtual bases.
2703   /// FIXME: VTTs are Itanium ABI-specific, so the definition should move
2704   /// to ItaniumCXXABI.cpp together with all the references to VTT.
2705   llvm::Value *GetVTTParameter(GlobalDecl GD, bool ForVirtualBase,
2706                                bool Delegating);
2707 
2708   void EmitDelegateCXXConstructorCall(const CXXConstructorDecl *Ctor,
2709                                       CXXCtorType CtorType,
2710                                       const FunctionArgList &Args,
2711                                       SourceLocation Loc);
2712   // It's important not to confuse this and the previous function. Delegating
2713   // constructors are the C++0x feature. The constructor delegate optimization
2714   // is used to reduce duplication in the base and complete consturctors where
2715   // they are substantially the same.
2716   void EmitDelegatingCXXConstructorCall(const CXXConstructorDecl *Ctor,
2717                                         const FunctionArgList &Args);
2718 
2719   /// Emit a call to an inheriting constructor (that is, one that invokes a
2720   /// constructor inherited from a base class) by inlining its definition. This
2721   /// is necessary if the ABI does not support forwarding the arguments to the
2722   /// base class constructor (because they're variadic or similar).
2723   void EmitInlinedInheritingCXXConstructorCall(const CXXConstructorDecl *Ctor,
2724                                                CXXCtorType CtorType,
2725                                                bool ForVirtualBase,
2726                                                bool Delegating,
2727                                                CallArgList &Args);
2728 
2729   /// Emit a call to a constructor inherited from a base class, passing the
2730   /// current constructor's arguments along unmodified (without even making
2731   /// a copy).
2732   void EmitInheritedCXXConstructorCall(const CXXConstructorDecl *D,
2733                                        bool ForVirtualBase, Address This,
2734                                        bool InheritedFromVBase,
2735                                        const CXXInheritedCtorInitExpr *E);
2736 
2737   void EmitCXXConstructorCall(const CXXConstructorDecl *D, CXXCtorType Type,
2738                               bool ForVirtualBase, bool Delegating,
2739                               AggValueSlot ThisAVS, const CXXConstructExpr *E);
2740 
2741   void EmitCXXConstructorCall(const CXXConstructorDecl *D, CXXCtorType Type,
2742                               bool ForVirtualBase, bool Delegating,
2743                               Address This, CallArgList &Args,
2744                               AggValueSlot::Overlap_t Overlap,
2745                               SourceLocation Loc, bool NewPointerIsChecked);
2746 
2747   /// Emit assumption load for all bases. Requires to be be called only on
2748   /// most-derived class and not under construction of the object.
2749   void EmitVTableAssumptionLoads(const CXXRecordDecl *ClassDecl, Address This);
2750 
2751   /// Emit assumption that vptr load == global vtable.
2752   void EmitVTableAssumptionLoad(const VPtr &vptr, Address This);
2753 
2754   void EmitSynthesizedCXXCopyCtorCall(const CXXConstructorDecl *D,
2755                                       Address This, Address Src,
2756                                       const CXXConstructExpr *E);
2757 
2758   void EmitCXXAggrConstructorCall(const CXXConstructorDecl *D,
2759                                   const ArrayType *ArrayTy,
2760                                   Address ArrayPtr,
2761                                   const CXXConstructExpr *E,
2762                                   bool NewPointerIsChecked,
2763                                   bool ZeroInitialization = false);
2764 
2765   void EmitCXXAggrConstructorCall(const CXXConstructorDecl *D,
2766                                   llvm::Value *NumElements,
2767                                   Address ArrayPtr,
2768                                   const CXXConstructExpr *E,
2769                                   bool NewPointerIsChecked,
2770                                   bool ZeroInitialization = false);
2771 
2772   static Destroyer destroyCXXObject;
2773 
2774   void EmitCXXDestructorCall(const CXXDestructorDecl *D, CXXDtorType Type,
2775                              bool ForVirtualBase, bool Delegating, Address This,
2776                              QualType ThisTy);
2777 
2778   void EmitNewArrayInitializer(const CXXNewExpr *E, QualType elementType,
2779                                llvm::Type *ElementTy, Address NewPtr,
2780                                llvm::Value *NumElements,
2781                                llvm::Value *AllocSizeWithoutCookie);
2782 
2783   void EmitCXXTemporary(const CXXTemporary *Temporary, QualType TempType,
2784                         Address Ptr);
2785 
2786   llvm::Value *EmitLifetimeStart(uint64_t Size, llvm::Value *Addr);
2787   void EmitLifetimeEnd(llvm::Value *Size, llvm::Value *Addr);
2788 
2789   llvm::Value *EmitCXXNewExpr(const CXXNewExpr *E);
2790   void EmitCXXDeleteExpr(const CXXDeleteExpr *E);
2791 
2792   void EmitDeleteCall(const FunctionDecl *DeleteFD, llvm::Value *Ptr,
2793                       QualType DeleteTy, llvm::Value *NumElements = nullptr,
2794                       CharUnits CookieSize = CharUnits());
2795 
2796   RValue EmitBuiltinNewDeleteCall(const FunctionProtoType *Type,
2797                                   const CallExpr *TheCallExpr, bool IsDelete);
2798 
2799   llvm::Value *EmitCXXTypeidExpr(const CXXTypeidExpr *E);
2800   llvm::Value *EmitDynamicCast(Address V, const CXXDynamicCastExpr *DCE);
2801   Address EmitCXXUuidofExpr(const CXXUuidofExpr *E);
2802 
2803   /// Situations in which we might emit a check for the suitability of a
2804   /// pointer or glvalue. Needs to be kept in sync with ubsan_handlers.cpp in
2805   /// compiler-rt.
2806   enum TypeCheckKind {
2807     /// Checking the operand of a load. Must be suitably sized and aligned.
2808     TCK_Load,
2809     /// Checking the destination of a store. Must be suitably sized and aligned.
2810     TCK_Store,
2811     /// Checking the bound value in a reference binding. Must be suitably sized
2812     /// and aligned, but is not required to refer to an object (until the
2813     /// reference is used), per core issue 453.
2814     TCK_ReferenceBinding,
2815     /// Checking the object expression in a non-static data member access. Must
2816     /// be an object within its lifetime.
2817     TCK_MemberAccess,
2818     /// Checking the 'this' pointer for a call to a non-static member function.
2819     /// Must be an object within its lifetime.
2820     TCK_MemberCall,
2821     /// Checking the 'this' pointer for a constructor call.
2822     TCK_ConstructorCall,
2823     /// Checking the operand of a static_cast to a derived pointer type. Must be
2824     /// null or an object within its lifetime.
2825     TCK_DowncastPointer,
2826     /// Checking the operand of a static_cast to a derived reference type. Must
2827     /// be an object within its lifetime.
2828     TCK_DowncastReference,
2829     /// Checking the operand of a cast to a base object. Must be suitably sized
2830     /// and aligned.
2831     TCK_Upcast,
2832     /// Checking the operand of a cast to a virtual base object. Must be an
2833     /// object within its lifetime.
2834     TCK_UpcastToVirtualBase,
2835     /// Checking the value assigned to a _Nonnull pointer. Must not be null.
2836     TCK_NonnullAssign,
2837     /// Checking the operand of a dynamic_cast or a typeid expression.  Must be
2838     /// null or an object within its lifetime.
2839     TCK_DynamicOperation
2840   };
2841 
2842   /// Determine whether the pointer type check \p TCK permits null pointers.
2843   static bool isNullPointerAllowed(TypeCheckKind TCK);
2844 
2845   /// Determine whether the pointer type check \p TCK requires a vptr check.
2846   static bool isVptrCheckRequired(TypeCheckKind TCK, QualType Ty);
2847 
2848   /// Whether any type-checking sanitizers are enabled. If \c false,
2849   /// calls to EmitTypeCheck can be skipped.
2850   bool sanitizePerformTypeCheck() const;
2851 
2852   /// Emit a check that \p V is the address of storage of the
2853   /// appropriate size and alignment for an object of type \p Type
2854   /// (or if ArraySize is provided, for an array of that bound).
2855   void EmitTypeCheck(TypeCheckKind TCK, SourceLocation Loc, llvm::Value *V,
2856                      QualType Type, CharUnits Alignment = CharUnits::Zero(),
2857                      SanitizerSet SkippedChecks = SanitizerSet(),
2858                      llvm::Value *ArraySize = nullptr);
2859 
2860   /// Emit a check that \p Base points into an array object, which
2861   /// we can access at index \p Index. \p Accessed should be \c false if we
2862   /// this expression is used as an lvalue, for instance in "&Arr[Idx]".
2863   void EmitBoundsCheck(const Expr *E, const Expr *Base, llvm::Value *Index,
2864                        QualType IndexType, bool Accessed);
2865 
2866   llvm::Value *EmitScalarPrePostIncDec(const UnaryOperator *E, LValue LV,
2867                                        bool isInc, bool isPre);
2868   ComplexPairTy EmitComplexPrePostIncDec(const UnaryOperator *E, LValue LV,
2869                                          bool isInc, bool isPre);
2870 
2871   /// Converts Location to a DebugLoc, if debug information is enabled.
2872   llvm::DebugLoc SourceLocToDebugLoc(SourceLocation Location);
2873 
2874   /// Get the record field index as represented in debug info.
2875   unsigned getDebugInfoFIndex(const RecordDecl *Rec, unsigned FieldIndex);
2876 
2877 
2878   //===--------------------------------------------------------------------===//
2879   //                            Declaration Emission
2880   //===--------------------------------------------------------------------===//
2881 
2882   /// EmitDecl - Emit a declaration.
2883   ///
2884   /// This function can be called with a null (unreachable) insert point.
2885   void EmitDecl(const Decl &D);
2886 
2887   /// EmitVarDecl - Emit a local variable declaration.
2888   ///
2889   /// This function can be called with a null (unreachable) insert point.
2890   void EmitVarDecl(const VarDecl &D);
2891 
2892   void EmitScalarInit(const Expr *init, const ValueDecl *D, LValue lvalue,
2893                       bool capturedByInit);
2894 
2895   typedef void SpecialInitFn(CodeGenFunction &Init, const VarDecl &D,
2896                              llvm::Value *Address);
2897 
2898   /// Determine whether the given initializer is trivial in the sense
2899   /// that it requires no code to be generated.
2900   bool isTrivialInitializer(const Expr *Init);
2901 
2902   /// EmitAutoVarDecl - Emit an auto variable declaration.
2903   ///
2904   /// This function can be called with a null (unreachable) insert point.
2905   void EmitAutoVarDecl(const VarDecl &D);
2906 
2907   class AutoVarEmission {
2908     friend class CodeGenFunction;
2909 
2910     const VarDecl *Variable;
2911 
2912     /// The address of the alloca for languages with explicit address space
2913     /// (e.g. OpenCL) or alloca casted to generic pointer for address space
2914     /// agnostic languages (e.g. C++). Invalid if the variable was emitted
2915     /// as a global constant.
2916     Address Addr;
2917 
2918     llvm::Value *NRVOFlag;
2919 
2920     /// True if the variable is a __block variable that is captured by an
2921     /// escaping block.
2922     bool IsEscapingByRef;
2923 
2924     /// True if the variable is of aggregate type and has a constant
2925     /// initializer.
2926     bool IsConstantAggregate;
2927 
2928     /// Non-null if we should use lifetime annotations.
2929     llvm::Value *SizeForLifetimeMarkers;
2930 
2931     /// Address with original alloca instruction. Invalid if the variable was
2932     /// emitted as a global constant.
2933     Address AllocaAddr;
2934 
2935     struct Invalid {};
2936     AutoVarEmission(Invalid)
2937         : Variable(nullptr), Addr(Address::invalid()),
2938           AllocaAddr(Address::invalid()) {}
2939 
2940     AutoVarEmission(const VarDecl &variable)
2941         : Variable(&variable), Addr(Address::invalid()), NRVOFlag(nullptr),
2942           IsEscapingByRef(false), IsConstantAggregate(false),
2943           SizeForLifetimeMarkers(nullptr), AllocaAddr(Address::invalid()) {}
2944 
2945     bool wasEmittedAsGlobal() const { return !Addr.isValid(); }
2946 
2947   public:
2948     static AutoVarEmission invalid() { return AutoVarEmission(Invalid()); }
2949 
2950     bool useLifetimeMarkers() const {
2951       return SizeForLifetimeMarkers != nullptr;
2952     }
2953     llvm::Value *getSizeForLifetimeMarkers() const {
2954       assert(useLifetimeMarkers());
2955       return SizeForLifetimeMarkers;
2956     }
2957 
2958     /// Returns the raw, allocated address, which is not necessarily
2959     /// the address of the object itself. It is casted to default
2960     /// address space for address space agnostic languages.
2961     Address getAllocatedAddress() const {
2962       return Addr;
2963     }
2964 
2965     /// Returns the address for the original alloca instruction.
2966     Address getOriginalAllocatedAddress() const { return AllocaAddr; }
2967 
2968     /// Returns the address of the object within this declaration.
2969     /// Note that this does not chase the forwarding pointer for
2970     /// __block decls.
2971     Address getObjectAddress(CodeGenFunction &CGF) const {
2972       if (!IsEscapingByRef) return Addr;
2973 
2974       return CGF.emitBlockByrefAddress(Addr, Variable, /*forward*/ false);
2975     }
2976   };
2977   AutoVarEmission EmitAutoVarAlloca(const VarDecl &var);
2978   void EmitAutoVarInit(const AutoVarEmission &emission);
2979   void EmitAutoVarCleanups(const AutoVarEmission &emission);
2980   void emitAutoVarTypeCleanup(const AutoVarEmission &emission,
2981                               QualType::DestructionKind dtorKind);
2982 
2983   /// Emits the alloca and debug information for the size expressions for each
2984   /// dimension of an array. It registers the association of its (1-dimensional)
2985   /// QualTypes and size expression's debug node, so that CGDebugInfo can
2986   /// reference this node when creating the DISubrange object to describe the
2987   /// array types.
2988   void EmitAndRegisterVariableArrayDimensions(CGDebugInfo *DI,
2989                                               const VarDecl &D,
2990                                               bool EmitDebugInfo);
2991 
2992   void EmitStaticVarDecl(const VarDecl &D,
2993                          llvm::GlobalValue::LinkageTypes Linkage);
2994 
2995   class ParamValue {
2996     llvm::Value *Value;
2997     unsigned Alignment;
2998     ParamValue(llvm::Value *V, unsigned A) : Value(V), Alignment(A) {}
2999   public:
3000     static ParamValue forDirect(llvm::Value *value) {
3001       return ParamValue(value, 0);
3002     }
3003     static ParamValue forIndirect(Address addr) {
3004       assert(!addr.getAlignment().isZero());
3005       return ParamValue(addr.getPointer(), addr.getAlignment().getQuantity());
3006     }
3007 
3008     bool isIndirect() const { return Alignment != 0; }
3009     llvm::Value *getAnyValue() const { return Value; }
3010 
3011     llvm::Value *getDirectValue() const {
3012       assert(!isIndirect());
3013       return Value;
3014     }
3015 
3016     Address getIndirectAddress() const {
3017       assert(isIndirect());
3018       return Address(Value, CharUnits::fromQuantity(Alignment));
3019     }
3020   };
3021 
3022   /// EmitParmDecl - Emit a ParmVarDecl or an ImplicitParamDecl.
3023   void EmitParmDecl(const VarDecl &D, ParamValue Arg, unsigned ArgNo);
3024 
3025   /// protectFromPeepholes - Protect a value that we're intending to
3026   /// store to the side, but which will probably be used later, from
3027   /// aggressive peepholing optimizations that might delete it.
3028   ///
3029   /// Pass the result to unprotectFromPeepholes to declare that
3030   /// protection is no longer required.
3031   ///
3032   /// There's no particular reason why this shouldn't apply to
3033   /// l-values, it's just that no existing peepholes work on pointers.
3034   PeepholeProtection protectFromPeepholes(RValue rvalue);
3035   void unprotectFromPeepholes(PeepholeProtection protection);
3036 
3037   void emitAlignmentAssumptionCheck(llvm::Value *Ptr, QualType Ty,
3038                                     SourceLocation Loc,
3039                                     SourceLocation AssumptionLoc,
3040                                     llvm::Value *Alignment,
3041                                     llvm::Value *OffsetValue,
3042                                     llvm::Value *TheCheck,
3043                                     llvm::Instruction *Assumption);
3044 
3045   void emitAlignmentAssumption(llvm::Value *PtrValue, QualType Ty,
3046                                SourceLocation Loc, SourceLocation AssumptionLoc,
3047                                llvm::Value *Alignment,
3048                                llvm::Value *OffsetValue = nullptr);
3049 
3050   void emitAlignmentAssumption(llvm::Value *PtrValue, const Expr *E,
3051                                SourceLocation AssumptionLoc,
3052                                llvm::Value *Alignment,
3053                                llvm::Value *OffsetValue = nullptr);
3054 
3055   //===--------------------------------------------------------------------===//
3056   //                             Statement Emission
3057   //===--------------------------------------------------------------------===//
3058 
3059   /// EmitStopPoint - Emit a debug stoppoint if we are emitting debug info.
3060   void EmitStopPoint(const Stmt *S);
3061 
3062   /// EmitStmt - Emit the code for the statement \arg S. It is legal to call
3063   /// this function even if there is no current insertion point.
3064   ///
3065   /// This function may clear the current insertion point; callers should use
3066   /// EnsureInsertPoint if they wish to subsequently generate code without first
3067   /// calling EmitBlock, EmitBranch, or EmitStmt.
3068   void EmitStmt(const Stmt *S, ArrayRef<const Attr *> Attrs = None);
3069 
3070   /// EmitSimpleStmt - Try to emit a "simple" statement which does not
3071   /// necessarily require an insertion point or debug information; typically
3072   /// because the statement amounts to a jump or a container of other
3073   /// statements.
3074   ///
3075   /// \return True if the statement was handled.
3076   bool EmitSimpleStmt(const Stmt *S);
3077 
3078   Address EmitCompoundStmt(const CompoundStmt &S, bool GetLast = false,
3079                            AggValueSlot AVS = AggValueSlot::ignored());
3080   Address EmitCompoundStmtWithoutScope(const CompoundStmt &S,
3081                                        bool GetLast = false,
3082                                        AggValueSlot AVS =
3083                                                 AggValueSlot::ignored());
3084 
3085   /// EmitLabel - Emit the block for the given label. It is legal to call this
3086   /// function even if there is no current insertion point.
3087   void EmitLabel(const LabelDecl *D); // helper for EmitLabelStmt.
3088 
3089   void EmitLabelStmt(const LabelStmt &S);
3090   void EmitAttributedStmt(const AttributedStmt &S);
3091   void EmitGotoStmt(const GotoStmt &S);
3092   void EmitIndirectGotoStmt(const IndirectGotoStmt &S);
3093   void EmitIfStmt(const IfStmt &S);
3094 
3095   void EmitWhileStmt(const WhileStmt &S,
3096                      ArrayRef<const Attr *> Attrs = None);
3097   void EmitDoStmt(const DoStmt &S, ArrayRef<const Attr *> Attrs = None);
3098   void EmitForStmt(const ForStmt &S,
3099                    ArrayRef<const Attr *> Attrs = None);
3100   void EmitReturnStmt(const ReturnStmt &S);
3101   void EmitDeclStmt(const DeclStmt &S);
3102   void EmitBreakStmt(const BreakStmt &S);
3103   void EmitContinueStmt(const ContinueStmt &S);
3104   void EmitSwitchStmt(const SwitchStmt &S);
3105   void EmitDefaultStmt(const DefaultStmt &S);
3106   void EmitCaseStmt(const CaseStmt &S);
3107   void EmitCaseStmtRange(const CaseStmt &S);
3108   void EmitAsmStmt(const AsmStmt &S);
3109 
3110   void EmitObjCForCollectionStmt(const ObjCForCollectionStmt &S);
3111   void EmitObjCAtTryStmt(const ObjCAtTryStmt &S);
3112   void EmitObjCAtThrowStmt(const ObjCAtThrowStmt &S);
3113   void EmitObjCAtSynchronizedStmt(const ObjCAtSynchronizedStmt &S);
3114   void EmitObjCAutoreleasePoolStmt(const ObjCAutoreleasePoolStmt &S);
3115 
3116   void EmitCoroutineBody(const CoroutineBodyStmt &S);
3117   void EmitCoreturnStmt(const CoreturnStmt &S);
3118   RValue EmitCoawaitExpr(const CoawaitExpr &E,
3119                          AggValueSlot aggSlot = AggValueSlot::ignored(),
3120                          bool ignoreResult = false);
3121   LValue EmitCoawaitLValue(const CoawaitExpr *E);
3122   RValue EmitCoyieldExpr(const CoyieldExpr &E,
3123                          AggValueSlot aggSlot = AggValueSlot::ignored(),
3124                          bool ignoreResult = false);
3125   LValue EmitCoyieldLValue(const CoyieldExpr *E);
3126   RValue EmitCoroutineIntrinsic(const CallExpr *E, unsigned int IID);
3127 
3128   void EnterCXXTryStmt(const CXXTryStmt &S, bool IsFnTryBlock = false);
3129   void ExitCXXTryStmt(const CXXTryStmt &S, bool IsFnTryBlock = false);
3130 
3131   void EmitCXXTryStmt(const CXXTryStmt &S);
3132   void EmitSEHTryStmt(const SEHTryStmt &S);
3133   void EmitSEHLeaveStmt(const SEHLeaveStmt &S);
3134   void EnterSEHTryStmt(const SEHTryStmt &S);
3135   void ExitSEHTryStmt(const SEHTryStmt &S);
3136 
3137   void pushSEHCleanup(CleanupKind kind,
3138                       llvm::Function *FinallyFunc);
3139   void startOutlinedSEHHelper(CodeGenFunction &ParentCGF, bool IsFilter,
3140                               const Stmt *OutlinedStmt);
3141 
3142   llvm::Function *GenerateSEHFilterFunction(CodeGenFunction &ParentCGF,
3143                                             const SEHExceptStmt &Except);
3144 
3145   llvm::Function *GenerateSEHFinallyFunction(CodeGenFunction &ParentCGF,
3146                                              const SEHFinallyStmt &Finally);
3147 
3148   void EmitSEHExceptionCodeSave(CodeGenFunction &ParentCGF,
3149                                 llvm::Value *ParentFP,
3150                                 llvm::Value *EntryEBP);
3151   llvm::Value *EmitSEHExceptionCode();
3152   llvm::Value *EmitSEHExceptionInfo();
3153   llvm::Value *EmitSEHAbnormalTermination();
3154 
3155   /// Emit simple code for OpenMP directives in Simd-only mode.
3156   void EmitSimpleOMPExecutableDirective(const OMPExecutableDirective &D);
3157 
3158   /// Scan the outlined statement for captures from the parent function. For
3159   /// each capture, mark the capture as escaped and emit a call to
3160   /// llvm.localrecover. Insert the localrecover result into the LocalDeclMap.
3161   void EmitCapturedLocals(CodeGenFunction &ParentCGF, const Stmt *OutlinedStmt,
3162                           bool IsFilter);
3163 
3164   /// Recovers the address of a local in a parent function. ParentVar is the
3165   /// address of the variable used in the immediate parent function. It can
3166   /// either be an alloca or a call to llvm.localrecover if there are nested
3167   /// outlined functions. ParentFP is the frame pointer of the outermost parent
3168   /// frame.
3169   Address recoverAddrOfEscapedLocal(CodeGenFunction &ParentCGF,
3170                                     Address ParentVar,
3171                                     llvm::Value *ParentFP);
3172 
3173   void EmitCXXForRangeStmt(const CXXForRangeStmt &S,
3174                            ArrayRef<const Attr *> Attrs = None);
3175 
3176   /// Controls insertion of cancellation exit blocks in worksharing constructs.
3177   class OMPCancelStackRAII {
3178     CodeGenFunction &CGF;
3179 
3180   public:
3181     OMPCancelStackRAII(CodeGenFunction &CGF, OpenMPDirectiveKind Kind,
3182                        bool HasCancel)
3183         : CGF(CGF) {
3184       CGF.OMPCancelStack.enter(CGF, Kind, HasCancel);
3185     }
3186     ~OMPCancelStackRAII() { CGF.OMPCancelStack.exit(CGF); }
3187   };
3188 
3189   /// Returns calculated size of the specified type.
3190   llvm::Value *getTypeSize(QualType Ty);
3191   LValue InitCapturedStruct(const CapturedStmt &S);
3192   llvm::Function *EmitCapturedStmt(const CapturedStmt &S, CapturedRegionKind K);
3193   llvm::Function *GenerateCapturedStmtFunction(const CapturedStmt &S);
3194   Address GenerateCapturedStmtArgument(const CapturedStmt &S);
3195   llvm::Function *GenerateOpenMPCapturedStmtFunction(const CapturedStmt &S,
3196                                                      SourceLocation Loc);
3197   void GenerateOpenMPCapturedVars(const CapturedStmt &S,
3198                                   SmallVectorImpl<llvm::Value *> &CapturedVars);
3199   void emitOMPSimpleStore(LValue LVal, RValue RVal, QualType RValTy,
3200                           SourceLocation Loc);
3201   /// Perform element by element copying of arrays with type \a
3202   /// OriginalType from \a SrcAddr to \a DestAddr using copying procedure
3203   /// generated by \a CopyGen.
3204   ///
3205   /// \param DestAddr Address of the destination array.
3206   /// \param SrcAddr Address of the source array.
3207   /// \param OriginalType Type of destination and source arrays.
3208   /// \param CopyGen Copying procedure that copies value of single array element
3209   /// to another single array element.
3210   void EmitOMPAggregateAssign(
3211       Address DestAddr, Address SrcAddr, QualType OriginalType,
3212       const llvm::function_ref<void(Address, Address)> CopyGen);
3213   /// Emit proper copying of data from one variable to another.
3214   ///
3215   /// \param OriginalType Original type of the copied variables.
3216   /// \param DestAddr Destination address.
3217   /// \param SrcAddr Source address.
3218   /// \param DestVD Destination variable used in \a CopyExpr (for arrays, has
3219   /// type of the base array element).
3220   /// \param SrcVD Source variable used in \a CopyExpr (for arrays, has type of
3221   /// the base array element).
3222   /// \param Copy Actual copygin expression for copying data from \a SrcVD to \a
3223   /// DestVD.
3224   void EmitOMPCopy(QualType OriginalType,
3225                    Address DestAddr, Address SrcAddr,
3226                    const VarDecl *DestVD, const VarDecl *SrcVD,
3227                    const Expr *Copy);
3228   /// Emit atomic update code for constructs: \a X = \a X \a BO \a E or
3229   /// \a X = \a E \a BO \a E.
3230   ///
3231   /// \param X Value to be updated.
3232   /// \param E Update value.
3233   /// \param BO Binary operation for update operation.
3234   /// \param IsXLHSInRHSPart true if \a X is LHS in RHS part of the update
3235   /// expression, false otherwise.
3236   /// \param AO Atomic ordering of the generated atomic instructions.
3237   /// \param CommonGen Code generator for complex expressions that cannot be
3238   /// expressed through atomicrmw instruction.
3239   /// \returns <true, OldAtomicValue> if simple 'atomicrmw' instruction was
3240   /// generated, <false, RValue::get(nullptr)> otherwise.
3241   std::pair<bool, RValue> EmitOMPAtomicSimpleUpdateExpr(
3242       LValue X, RValue E, BinaryOperatorKind BO, bool IsXLHSInRHSPart,
3243       llvm::AtomicOrdering AO, SourceLocation Loc,
3244       const llvm::function_ref<RValue(RValue)> CommonGen);
3245   bool EmitOMPFirstprivateClause(const OMPExecutableDirective &D,
3246                                  OMPPrivateScope &PrivateScope);
3247   void EmitOMPPrivateClause(const OMPExecutableDirective &D,
3248                             OMPPrivateScope &PrivateScope);
3249   void EmitOMPUseDevicePtrClause(
3250       const OMPUseDevicePtrClause &C, OMPPrivateScope &PrivateScope,
3251       const llvm::DenseMap<const ValueDecl *, Address> &CaptureDeviceAddrMap);
3252   void EmitOMPUseDeviceAddrClause(
3253       const OMPUseDeviceAddrClause &C, OMPPrivateScope &PrivateScope,
3254       const llvm::DenseMap<const ValueDecl *, Address> &CaptureDeviceAddrMap);
3255   /// Emit code for copyin clause in \a D directive. The next code is
3256   /// generated at the start of outlined functions for directives:
3257   /// \code
3258   /// threadprivate_var1 = master_threadprivate_var1;
3259   /// operator=(threadprivate_var2, master_threadprivate_var2);
3260   /// ...
3261   /// __kmpc_barrier(&loc, global_tid);
3262   /// \endcode
3263   ///
3264   /// \param D OpenMP directive possibly with 'copyin' clause(s).
3265   /// \returns true if at least one copyin variable is found, false otherwise.
3266   bool EmitOMPCopyinClause(const OMPExecutableDirective &D);
3267   /// Emit initial code for lastprivate variables. If some variable is
3268   /// not also firstprivate, then the default initialization is used. Otherwise
3269   /// initialization of this variable is performed by EmitOMPFirstprivateClause
3270   /// method.
3271   ///
3272   /// \param D Directive that may have 'lastprivate' directives.
3273   /// \param PrivateScope Private scope for capturing lastprivate variables for
3274   /// proper codegen in internal captured statement.
3275   ///
3276   /// \returns true if there is at least one lastprivate variable, false
3277   /// otherwise.
3278   bool EmitOMPLastprivateClauseInit(const OMPExecutableDirective &D,
3279                                     OMPPrivateScope &PrivateScope);
3280   /// Emit final copying of lastprivate values to original variables at
3281   /// the end of the worksharing or simd directive.
3282   ///
3283   /// \param D Directive that has at least one 'lastprivate' directives.
3284   /// \param IsLastIterCond Boolean condition that must be set to 'i1 true' if
3285   /// it is the last iteration of the loop code in associated directive, or to
3286   /// 'i1 false' otherwise. If this item is nullptr, no final check is required.
3287   void EmitOMPLastprivateClauseFinal(const OMPExecutableDirective &D,
3288                                      bool NoFinals,
3289                                      llvm::Value *IsLastIterCond = nullptr);
3290   /// Emit initial code for linear clauses.
3291   void EmitOMPLinearClause(const OMPLoopDirective &D,
3292                            CodeGenFunction::OMPPrivateScope &PrivateScope);
3293   /// Emit final code for linear clauses.
3294   /// \param CondGen Optional conditional code for final part of codegen for
3295   /// linear clause.
3296   void EmitOMPLinearClauseFinal(
3297       const OMPLoopDirective &D,
3298       const llvm::function_ref<llvm::Value *(CodeGenFunction &)> CondGen);
3299   /// Emit initial code for reduction variables. Creates reduction copies
3300   /// and initializes them with the values according to OpenMP standard.
3301   ///
3302   /// \param D Directive (possibly) with the 'reduction' clause.
3303   /// \param PrivateScope Private scope for capturing reduction variables for
3304   /// proper codegen in internal captured statement.
3305   ///
3306   void EmitOMPReductionClauseInit(const OMPExecutableDirective &D,
3307                                   OMPPrivateScope &PrivateScope,
3308                                   bool ForInscan = false);
3309   /// Emit final update of reduction values to original variables at
3310   /// the end of the directive.
3311   ///
3312   /// \param D Directive that has at least one 'reduction' directives.
3313   /// \param ReductionKind The kind of reduction to perform.
3314   void EmitOMPReductionClauseFinal(const OMPExecutableDirective &D,
3315                                    const OpenMPDirectiveKind ReductionKind);
3316   /// Emit initial code for linear variables. Creates private copies
3317   /// and initializes them with the values according to OpenMP standard.
3318   ///
3319   /// \param D Directive (possibly) with the 'linear' clause.
3320   /// \return true if at least one linear variable is found that should be
3321   /// initialized with the value of the original variable, false otherwise.
3322   bool EmitOMPLinearClauseInit(const OMPLoopDirective &D);
3323 
3324   typedef const llvm::function_ref<void(CodeGenFunction & /*CGF*/,
3325                                         llvm::Function * /*OutlinedFn*/,
3326                                         const OMPTaskDataTy & /*Data*/)>
3327       TaskGenTy;
3328   void EmitOMPTaskBasedDirective(const OMPExecutableDirective &S,
3329                                  const OpenMPDirectiveKind CapturedRegion,
3330                                  const RegionCodeGenTy &BodyGen,
3331                                  const TaskGenTy &TaskGen, OMPTaskDataTy &Data);
3332   struct OMPTargetDataInfo {
3333     Address BasePointersArray = Address::invalid();
3334     Address PointersArray = Address::invalid();
3335     Address SizesArray = Address::invalid();
3336     unsigned NumberOfTargetItems = 0;
3337     explicit OMPTargetDataInfo() = default;
3338     OMPTargetDataInfo(Address BasePointersArray, Address PointersArray,
3339                       Address SizesArray, unsigned NumberOfTargetItems)
3340         : BasePointersArray(BasePointersArray), PointersArray(PointersArray),
3341           SizesArray(SizesArray), NumberOfTargetItems(NumberOfTargetItems) {}
3342   };
3343   void EmitOMPTargetTaskBasedDirective(const OMPExecutableDirective &S,
3344                                        const RegionCodeGenTy &BodyGen,
3345                                        OMPTargetDataInfo &InputInfo);
3346 
3347   void EmitOMPParallelDirective(const OMPParallelDirective &S);
3348   void EmitOMPSimdDirective(const OMPSimdDirective &S);
3349   void EmitOMPForDirective(const OMPForDirective &S);
3350   void EmitOMPForSimdDirective(const OMPForSimdDirective &S);
3351   void EmitOMPSectionsDirective(const OMPSectionsDirective &S);
3352   void EmitOMPSectionDirective(const OMPSectionDirective &S);
3353   void EmitOMPSingleDirective(const OMPSingleDirective &S);
3354   void EmitOMPMasterDirective(const OMPMasterDirective &S);
3355   void EmitOMPCriticalDirective(const OMPCriticalDirective &S);
3356   void EmitOMPParallelForDirective(const OMPParallelForDirective &S);
3357   void EmitOMPParallelForSimdDirective(const OMPParallelForSimdDirective &S);
3358   void EmitOMPParallelSectionsDirective(const OMPParallelSectionsDirective &S);
3359   void EmitOMPParallelMasterDirective(const OMPParallelMasterDirective &S);
3360   void EmitOMPTaskDirective(const OMPTaskDirective &S);
3361   void EmitOMPTaskyieldDirective(const OMPTaskyieldDirective &S);
3362   void EmitOMPBarrierDirective(const OMPBarrierDirective &S);
3363   void EmitOMPTaskwaitDirective(const OMPTaskwaitDirective &S);
3364   void EmitOMPTaskgroupDirective(const OMPTaskgroupDirective &S);
3365   void EmitOMPFlushDirective(const OMPFlushDirective &S);
3366   void EmitOMPDepobjDirective(const OMPDepobjDirective &S);
3367   void EmitOMPScanDirective(const OMPScanDirective &S);
3368   void EmitOMPOrderedDirective(const OMPOrderedDirective &S);
3369   void EmitOMPAtomicDirective(const OMPAtomicDirective &S);
3370   void EmitOMPTargetDirective(const OMPTargetDirective &S);
3371   void EmitOMPTargetDataDirective(const OMPTargetDataDirective &S);
3372   void EmitOMPTargetEnterDataDirective(const OMPTargetEnterDataDirective &S);
3373   void EmitOMPTargetExitDataDirective(const OMPTargetExitDataDirective &S);
3374   void EmitOMPTargetUpdateDirective(const OMPTargetUpdateDirective &S);
3375   void EmitOMPTargetParallelDirective(const OMPTargetParallelDirective &S);
3376   void
3377   EmitOMPTargetParallelForDirective(const OMPTargetParallelForDirective &S);
3378   void EmitOMPTeamsDirective(const OMPTeamsDirective &S);
3379   void
3380   EmitOMPCancellationPointDirective(const OMPCancellationPointDirective &S);
3381   void EmitOMPCancelDirective(const OMPCancelDirective &S);
3382   void EmitOMPTaskLoopBasedDirective(const OMPLoopDirective &S);
3383   void EmitOMPTaskLoopDirective(const OMPTaskLoopDirective &S);
3384   void EmitOMPTaskLoopSimdDirective(const OMPTaskLoopSimdDirective &S);
3385   void EmitOMPMasterTaskLoopDirective(const OMPMasterTaskLoopDirective &S);
3386   void
3387   EmitOMPMasterTaskLoopSimdDirective(const OMPMasterTaskLoopSimdDirective &S);
3388   void EmitOMPParallelMasterTaskLoopDirective(
3389       const OMPParallelMasterTaskLoopDirective &S);
3390   void EmitOMPParallelMasterTaskLoopSimdDirective(
3391       const OMPParallelMasterTaskLoopSimdDirective &S);
3392   void EmitOMPDistributeDirective(const OMPDistributeDirective &S);
3393   void EmitOMPDistributeParallelForDirective(
3394       const OMPDistributeParallelForDirective &S);
3395   void EmitOMPDistributeParallelForSimdDirective(
3396       const OMPDistributeParallelForSimdDirective &S);
3397   void EmitOMPDistributeSimdDirective(const OMPDistributeSimdDirective &S);
3398   void EmitOMPTargetParallelForSimdDirective(
3399       const OMPTargetParallelForSimdDirective &S);
3400   void EmitOMPTargetSimdDirective(const OMPTargetSimdDirective &S);
3401   void EmitOMPTeamsDistributeDirective(const OMPTeamsDistributeDirective &S);
3402   void
3403   EmitOMPTeamsDistributeSimdDirective(const OMPTeamsDistributeSimdDirective &S);
3404   void EmitOMPTeamsDistributeParallelForSimdDirective(
3405       const OMPTeamsDistributeParallelForSimdDirective &S);
3406   void EmitOMPTeamsDistributeParallelForDirective(
3407       const OMPTeamsDistributeParallelForDirective &S);
3408   void EmitOMPTargetTeamsDirective(const OMPTargetTeamsDirective &S);
3409   void EmitOMPTargetTeamsDistributeDirective(
3410       const OMPTargetTeamsDistributeDirective &S);
3411   void EmitOMPTargetTeamsDistributeParallelForDirective(
3412       const OMPTargetTeamsDistributeParallelForDirective &S);
3413   void EmitOMPTargetTeamsDistributeParallelForSimdDirective(
3414       const OMPTargetTeamsDistributeParallelForSimdDirective &S);
3415   void EmitOMPTargetTeamsDistributeSimdDirective(
3416       const OMPTargetTeamsDistributeSimdDirective &S);
3417 
3418   /// Emit device code for the target directive.
3419   static void EmitOMPTargetDeviceFunction(CodeGenModule &CGM,
3420                                           StringRef ParentName,
3421                                           const OMPTargetDirective &S);
3422   static void
3423   EmitOMPTargetParallelDeviceFunction(CodeGenModule &CGM, StringRef ParentName,
3424                                       const OMPTargetParallelDirective &S);
3425   /// Emit device code for the target parallel for directive.
3426   static void EmitOMPTargetParallelForDeviceFunction(
3427       CodeGenModule &CGM, StringRef ParentName,
3428       const OMPTargetParallelForDirective &S);
3429   /// Emit device code for the target parallel for simd directive.
3430   static void EmitOMPTargetParallelForSimdDeviceFunction(
3431       CodeGenModule &CGM, StringRef ParentName,
3432       const OMPTargetParallelForSimdDirective &S);
3433   /// Emit device code for the target teams directive.
3434   static void
3435   EmitOMPTargetTeamsDeviceFunction(CodeGenModule &CGM, StringRef ParentName,
3436                                    const OMPTargetTeamsDirective &S);
3437   /// Emit device code for the target teams distribute directive.
3438   static void EmitOMPTargetTeamsDistributeDeviceFunction(
3439       CodeGenModule &CGM, StringRef ParentName,
3440       const OMPTargetTeamsDistributeDirective &S);
3441   /// Emit device code for the target teams distribute simd directive.
3442   static void EmitOMPTargetTeamsDistributeSimdDeviceFunction(
3443       CodeGenModule &CGM, StringRef ParentName,
3444       const OMPTargetTeamsDistributeSimdDirective &S);
3445   /// Emit device code for the target simd directive.
3446   static void EmitOMPTargetSimdDeviceFunction(CodeGenModule &CGM,
3447                                               StringRef ParentName,
3448                                               const OMPTargetSimdDirective &S);
3449   /// Emit device code for the target teams distribute parallel for simd
3450   /// directive.
3451   static void EmitOMPTargetTeamsDistributeParallelForSimdDeviceFunction(
3452       CodeGenModule &CGM, StringRef ParentName,
3453       const OMPTargetTeamsDistributeParallelForSimdDirective &S);
3454 
3455   static void EmitOMPTargetTeamsDistributeParallelForDeviceFunction(
3456       CodeGenModule &CGM, StringRef ParentName,
3457       const OMPTargetTeamsDistributeParallelForDirective &S);
3458   /// Emit inner loop of the worksharing/simd construct.
3459   ///
3460   /// \param S Directive, for which the inner loop must be emitted.
3461   /// \param RequiresCleanup true, if directive has some associated private
3462   /// variables.
3463   /// \param LoopCond Bollean condition for loop continuation.
3464   /// \param IncExpr Increment expression for loop control variable.
3465   /// \param BodyGen Generator for the inner body of the inner loop.
3466   /// \param PostIncGen Genrator for post-increment code (required for ordered
3467   /// loop directvies).
3468   void EmitOMPInnerLoop(
3469       const OMPExecutableDirective &S, bool RequiresCleanup,
3470       const Expr *LoopCond, const Expr *IncExpr,
3471       const llvm::function_ref<void(CodeGenFunction &)> BodyGen,
3472       const llvm::function_ref<void(CodeGenFunction &)> PostIncGen);
3473 
3474   JumpDest getOMPCancelDestination(OpenMPDirectiveKind Kind);
3475   /// Emit initial code for loop counters of loop-based directives.
3476   void EmitOMPPrivateLoopCounters(const OMPLoopDirective &S,
3477                                   OMPPrivateScope &LoopScope);
3478 
3479   /// Helper for the OpenMP loop directives.
3480   void EmitOMPLoopBody(const OMPLoopDirective &D, JumpDest LoopExit);
3481 
3482   /// Emit code for the worksharing loop-based directive.
3483   /// \return true, if this construct has any lastprivate clause, false -
3484   /// otherwise.
3485   bool EmitOMPWorksharingLoop(const OMPLoopDirective &S, Expr *EUB,
3486                               const CodeGenLoopBoundsTy &CodeGenLoopBounds,
3487                               const CodeGenDispatchBoundsTy &CGDispatchBounds);
3488 
3489   /// Emit code for the distribute loop-based directive.
3490   void EmitOMPDistributeLoop(const OMPLoopDirective &S,
3491                              const CodeGenLoopTy &CodeGenLoop, Expr *IncExpr);
3492 
3493   /// Helpers for the OpenMP loop directives.
3494   void EmitOMPSimdInit(const OMPLoopDirective &D, bool IsMonotonic = false);
3495   void EmitOMPSimdFinal(
3496       const OMPLoopDirective &D,
3497       const llvm::function_ref<llvm::Value *(CodeGenFunction &)> CondGen);
3498 
3499   /// Emits the lvalue for the expression with possibly captured variable.
3500   LValue EmitOMPSharedLValue(const Expr *E);
3501 
3502 private:
3503   /// Helpers for blocks.
3504   llvm::Value *EmitBlockLiteral(const CGBlockInfo &Info);
3505 
3506   /// struct with the values to be passed to the OpenMP loop-related functions
3507   struct OMPLoopArguments {
3508     /// loop lower bound
3509     Address LB = Address::invalid();
3510     /// loop upper bound
3511     Address UB = Address::invalid();
3512     /// loop stride
3513     Address ST = Address::invalid();
3514     /// isLastIteration argument for runtime functions
3515     Address IL = Address::invalid();
3516     /// Chunk value generated by sema
3517     llvm::Value *Chunk = nullptr;
3518     /// EnsureUpperBound
3519     Expr *EUB = nullptr;
3520     /// IncrementExpression
3521     Expr *IncExpr = nullptr;
3522     /// Loop initialization
3523     Expr *Init = nullptr;
3524     /// Loop exit condition
3525     Expr *Cond = nullptr;
3526     /// Update of LB after a whole chunk has been executed
3527     Expr *NextLB = nullptr;
3528     /// Update of UB after a whole chunk has been executed
3529     Expr *NextUB = nullptr;
3530     OMPLoopArguments() = default;
3531     OMPLoopArguments(Address LB, Address UB, Address ST, Address IL,
3532                      llvm::Value *Chunk = nullptr, Expr *EUB = nullptr,
3533                      Expr *IncExpr = nullptr, Expr *Init = nullptr,
3534                      Expr *Cond = nullptr, Expr *NextLB = nullptr,
3535                      Expr *NextUB = nullptr)
3536         : LB(LB), UB(UB), ST(ST), IL(IL), Chunk(Chunk), EUB(EUB),
3537           IncExpr(IncExpr), Init(Init), Cond(Cond), NextLB(NextLB),
3538           NextUB(NextUB) {}
3539   };
3540   void EmitOMPOuterLoop(bool DynamicOrOrdered, bool IsMonotonic,
3541                         const OMPLoopDirective &S, OMPPrivateScope &LoopScope,
3542                         const OMPLoopArguments &LoopArgs,
3543                         const CodeGenLoopTy &CodeGenLoop,
3544                         const CodeGenOrderedTy &CodeGenOrdered);
3545   void EmitOMPForOuterLoop(const OpenMPScheduleTy &ScheduleKind,
3546                            bool IsMonotonic, const OMPLoopDirective &S,
3547                            OMPPrivateScope &LoopScope, bool Ordered,
3548                            const OMPLoopArguments &LoopArgs,
3549                            const CodeGenDispatchBoundsTy &CGDispatchBounds);
3550   void EmitOMPDistributeOuterLoop(OpenMPDistScheduleClauseKind ScheduleKind,
3551                                   const OMPLoopDirective &S,
3552                                   OMPPrivateScope &LoopScope,
3553                                   const OMPLoopArguments &LoopArgs,
3554                                   const CodeGenLoopTy &CodeGenLoopContent);
3555   /// Emit code for sections directive.
3556   void EmitSections(const OMPExecutableDirective &S);
3557 
3558 public:
3559 
3560   //===--------------------------------------------------------------------===//
3561   //                         LValue Expression Emission
3562   //===--------------------------------------------------------------------===//
3563 
3564   /// GetUndefRValue - Get an appropriate 'undef' rvalue for the given type.
3565   RValue GetUndefRValue(QualType Ty);
3566 
3567   /// EmitUnsupportedRValue - Emit a dummy r-value using the type of E
3568   /// and issue an ErrorUnsupported style diagnostic (using the
3569   /// provided Name).
3570   RValue EmitUnsupportedRValue(const Expr *E,
3571                                const char *Name);
3572 
3573   /// EmitUnsupportedLValue - Emit a dummy l-value using the type of E and issue
3574   /// an ErrorUnsupported style diagnostic (using the provided Name).
3575   LValue EmitUnsupportedLValue(const Expr *E,
3576                                const char *Name);
3577 
3578   /// EmitLValue - Emit code to compute a designator that specifies the location
3579   /// of the expression.
3580   ///
3581   /// This can return one of two things: a simple address or a bitfield
3582   /// reference.  In either case, the LLVM Value* in the LValue structure is
3583   /// guaranteed to be an LLVM pointer type.
3584   ///
3585   /// If this returns a bitfield reference, nothing about the pointee type of
3586   /// the LLVM value is known: For example, it may not be a pointer to an
3587   /// integer.
3588   ///
3589   /// If this returns a normal address, and if the lvalue's C type is fixed
3590   /// size, this method guarantees that the returned pointer type will point to
3591   /// an LLVM type of the same size of the lvalue's type.  If the lvalue has a
3592   /// variable length type, this is not possible.
3593   ///
3594   LValue EmitLValue(const Expr *E);
3595 
3596   /// Same as EmitLValue but additionally we generate checking code to
3597   /// guard against undefined behavior.  This is only suitable when we know
3598   /// that the address will be used to access the object.
3599   LValue EmitCheckedLValue(const Expr *E, TypeCheckKind TCK);
3600 
3601   RValue convertTempToRValue(Address addr, QualType type,
3602                              SourceLocation Loc);
3603 
3604   void EmitAtomicInit(Expr *E, LValue lvalue);
3605 
3606   bool LValueIsSuitableForInlineAtomic(LValue Src);
3607 
3608   RValue EmitAtomicLoad(LValue LV, SourceLocation SL,
3609                         AggValueSlot Slot = AggValueSlot::ignored());
3610 
3611   RValue EmitAtomicLoad(LValue lvalue, SourceLocation loc,
3612                         llvm::AtomicOrdering AO, bool IsVolatile = false,
3613                         AggValueSlot slot = AggValueSlot::ignored());
3614 
3615   void EmitAtomicStore(RValue rvalue, LValue lvalue, bool isInit);
3616 
3617   void EmitAtomicStore(RValue rvalue, LValue lvalue, llvm::AtomicOrdering AO,
3618                        bool IsVolatile, bool isInit);
3619 
3620   std::pair<RValue, llvm::Value *> EmitAtomicCompareExchange(
3621       LValue Obj, RValue Expected, RValue Desired, SourceLocation Loc,
3622       llvm::AtomicOrdering Success =
3623           llvm::AtomicOrdering::SequentiallyConsistent,
3624       llvm::AtomicOrdering Failure =
3625           llvm::AtomicOrdering::SequentiallyConsistent,
3626       bool IsWeak = false, AggValueSlot Slot = AggValueSlot::ignored());
3627 
3628   void EmitAtomicUpdate(LValue LVal, llvm::AtomicOrdering AO,
3629                         const llvm::function_ref<RValue(RValue)> &UpdateOp,
3630                         bool IsVolatile);
3631 
3632   /// EmitToMemory - Change a scalar value from its value
3633   /// representation to its in-memory representation.
3634   llvm::Value *EmitToMemory(llvm::Value *Value, QualType Ty);
3635 
3636   /// EmitFromMemory - Change a scalar value from its memory
3637   /// representation to its value representation.
3638   llvm::Value *EmitFromMemory(llvm::Value *Value, QualType Ty);
3639 
3640   /// Check if the scalar \p Value is within the valid range for the given
3641   /// type \p Ty.
3642   ///
3643   /// Returns true if a check is needed (even if the range is unknown).
3644   bool EmitScalarRangeCheck(llvm::Value *Value, QualType Ty,
3645                             SourceLocation Loc);
3646 
3647   /// EmitLoadOfScalar - Load a scalar value from an address, taking
3648   /// care to appropriately convert from the memory representation to
3649   /// the LLVM value representation.
3650   llvm::Value *EmitLoadOfScalar(Address Addr, bool Volatile, QualType Ty,
3651                                 SourceLocation Loc,
3652                                 AlignmentSource Source = AlignmentSource::Type,
3653                                 bool isNontemporal = false) {
3654     return EmitLoadOfScalar(Addr, Volatile, Ty, Loc, LValueBaseInfo(Source),
3655                             CGM.getTBAAAccessInfo(Ty), isNontemporal);
3656   }
3657 
3658   llvm::Value *EmitLoadOfScalar(Address Addr, bool Volatile, QualType Ty,
3659                                 SourceLocation Loc, LValueBaseInfo BaseInfo,
3660                                 TBAAAccessInfo TBAAInfo,
3661                                 bool isNontemporal = false);
3662 
3663   /// EmitLoadOfScalar - Load a scalar value from an address, taking
3664   /// care to appropriately convert from the memory representation to
3665   /// the LLVM value representation.  The l-value must be a simple
3666   /// l-value.
3667   llvm::Value *EmitLoadOfScalar(LValue lvalue, SourceLocation Loc);
3668 
3669   /// EmitStoreOfScalar - Store a scalar value to an address, taking
3670   /// care to appropriately convert from the memory representation to
3671   /// the LLVM value representation.
3672   void EmitStoreOfScalar(llvm::Value *Value, Address Addr,
3673                          bool Volatile, QualType Ty,
3674                          AlignmentSource Source = AlignmentSource::Type,
3675                          bool isInit = false, bool isNontemporal = false) {
3676     EmitStoreOfScalar(Value, Addr, Volatile, Ty, LValueBaseInfo(Source),
3677                       CGM.getTBAAAccessInfo(Ty), isInit, isNontemporal);
3678   }
3679 
3680   void EmitStoreOfScalar(llvm::Value *Value, Address Addr,
3681                          bool Volatile, QualType Ty,
3682                          LValueBaseInfo BaseInfo, TBAAAccessInfo TBAAInfo,
3683                          bool isInit = false, bool isNontemporal = false);
3684 
3685   /// EmitStoreOfScalar - Store a scalar value to an address, taking
3686   /// care to appropriately convert from the memory representation to
3687   /// the LLVM value representation.  The l-value must be a simple
3688   /// l-value.  The isInit flag indicates whether this is an initialization.
3689   /// If so, atomic qualifiers are ignored and the store is always non-atomic.
3690   void EmitStoreOfScalar(llvm::Value *value, LValue lvalue, bool isInit=false);
3691 
3692   /// EmitLoadOfLValue - Given an expression that represents a value lvalue,
3693   /// this method emits the address of the lvalue, then loads the result as an
3694   /// rvalue, returning the rvalue.
3695   RValue EmitLoadOfLValue(LValue V, SourceLocation Loc);
3696   RValue EmitLoadOfExtVectorElementLValue(LValue V);
3697   RValue EmitLoadOfBitfieldLValue(LValue LV, SourceLocation Loc);
3698   RValue EmitLoadOfGlobalRegLValue(LValue LV);
3699 
3700   /// EmitStoreThroughLValue - Store the specified rvalue into the specified
3701   /// lvalue, where both are guaranteed to the have the same type, and that type
3702   /// is 'Ty'.
3703   void EmitStoreThroughLValue(RValue Src, LValue Dst, bool isInit = false);
3704   void EmitStoreThroughExtVectorComponentLValue(RValue Src, LValue Dst);
3705   void EmitStoreThroughGlobalRegLValue(RValue Src, LValue Dst);
3706 
3707   /// EmitStoreThroughBitfieldLValue - Store Src into Dst with same constraints
3708   /// as EmitStoreThroughLValue.
3709   ///
3710   /// \param Result [out] - If non-null, this will be set to a Value* for the
3711   /// bit-field contents after the store, appropriate for use as the result of
3712   /// an assignment to the bit-field.
3713   void EmitStoreThroughBitfieldLValue(RValue Src, LValue Dst,
3714                                       llvm::Value **Result=nullptr);
3715 
3716   /// Emit an l-value for an assignment (simple or compound) of complex type.
3717   LValue EmitComplexAssignmentLValue(const BinaryOperator *E);
3718   LValue EmitComplexCompoundAssignmentLValue(const CompoundAssignOperator *E);
3719   LValue EmitScalarCompoundAssignWithComplex(const CompoundAssignOperator *E,
3720                                              llvm::Value *&Result);
3721 
3722   // Note: only available for agg return types
3723   LValue EmitBinaryOperatorLValue(const BinaryOperator *E);
3724   LValue EmitCompoundAssignmentLValue(const CompoundAssignOperator *E);
3725   // Note: only available for agg return types
3726   LValue EmitCallExprLValue(const CallExpr *E);
3727   // Note: only available for agg return types
3728   LValue EmitVAArgExprLValue(const VAArgExpr *E);
3729   LValue EmitDeclRefLValue(const DeclRefExpr *E);
3730   LValue EmitStringLiteralLValue(const StringLiteral *E);
3731   LValue EmitObjCEncodeExprLValue(const ObjCEncodeExpr *E);
3732   LValue EmitPredefinedLValue(const PredefinedExpr *E);
3733   LValue EmitUnaryOpLValue(const UnaryOperator *E);
3734   LValue EmitArraySubscriptExpr(const ArraySubscriptExpr *E,
3735                                 bool Accessed = false);
3736   LValue EmitMatrixSubscriptExpr(const MatrixSubscriptExpr *E);
3737   LValue EmitOMPArraySectionExpr(const OMPArraySectionExpr *E,
3738                                  bool IsLowerBound = true);
3739   LValue EmitExtVectorElementExpr(const ExtVectorElementExpr *E);
3740   LValue EmitMemberExpr(const MemberExpr *E);
3741   LValue EmitObjCIsaExpr(const ObjCIsaExpr *E);
3742   LValue EmitCompoundLiteralLValue(const CompoundLiteralExpr *E);
3743   LValue EmitInitListLValue(const InitListExpr *E);
3744   LValue EmitConditionalOperatorLValue(const AbstractConditionalOperator *E);
3745   LValue EmitCastLValue(const CastExpr *E);
3746   LValue EmitMaterializeTemporaryExpr(const MaterializeTemporaryExpr *E);
3747   LValue EmitOpaqueValueLValue(const OpaqueValueExpr *e);
3748 
3749   Address EmitExtVectorElementLValue(LValue V);
3750 
3751   RValue EmitRValueForField(LValue LV, const FieldDecl *FD, SourceLocation Loc);
3752 
3753   Address EmitArrayToPointerDecay(const Expr *Array,
3754                                   LValueBaseInfo *BaseInfo = nullptr,
3755                                   TBAAAccessInfo *TBAAInfo = nullptr);
3756 
3757   class ConstantEmission {
3758     llvm::PointerIntPair<llvm::Constant*, 1, bool> ValueAndIsReference;
3759     ConstantEmission(llvm::Constant *C, bool isReference)
3760       : ValueAndIsReference(C, isReference) {}
3761   public:
3762     ConstantEmission() {}
3763     static ConstantEmission forReference(llvm::Constant *C) {
3764       return ConstantEmission(C, true);
3765     }
3766     static ConstantEmission forValue(llvm::Constant *C) {
3767       return ConstantEmission(C, false);
3768     }
3769 
3770     explicit operator bool() const {
3771       return ValueAndIsReference.getOpaqueValue() != nullptr;
3772     }
3773 
3774     bool isReference() const { return ValueAndIsReference.getInt(); }
3775     LValue getReferenceLValue(CodeGenFunction &CGF, Expr *refExpr) const {
3776       assert(isReference());
3777       return CGF.MakeNaturalAlignAddrLValue(ValueAndIsReference.getPointer(),
3778                                             refExpr->getType());
3779     }
3780 
3781     llvm::Constant *getValue() const {
3782       assert(!isReference());
3783       return ValueAndIsReference.getPointer();
3784     }
3785   };
3786 
3787   ConstantEmission tryEmitAsConstant(DeclRefExpr *refExpr);
3788   ConstantEmission tryEmitAsConstant(const MemberExpr *ME);
3789   llvm::Value *emitScalarConstant(const ConstantEmission &Constant, Expr *E);
3790 
3791   RValue EmitPseudoObjectRValue(const PseudoObjectExpr *e,
3792                                 AggValueSlot slot = AggValueSlot::ignored());
3793   LValue EmitPseudoObjectLValue(const PseudoObjectExpr *e);
3794 
3795   llvm::Value *EmitIvarOffset(const ObjCInterfaceDecl *Interface,
3796                               const ObjCIvarDecl *Ivar);
3797   LValue EmitLValueForField(LValue Base, const FieldDecl* Field);
3798   LValue EmitLValueForLambdaField(const FieldDecl *Field);
3799 
3800   /// EmitLValueForFieldInitialization - Like EmitLValueForField, except that
3801   /// if the Field is a reference, this will return the address of the reference
3802   /// and not the address of the value stored in the reference.
3803   LValue EmitLValueForFieldInitialization(LValue Base,
3804                                           const FieldDecl* Field);
3805 
3806   LValue EmitLValueForIvar(QualType ObjectTy,
3807                            llvm::Value* Base, const ObjCIvarDecl *Ivar,
3808                            unsigned CVRQualifiers);
3809 
3810   LValue EmitCXXConstructLValue(const CXXConstructExpr *E);
3811   LValue EmitCXXBindTemporaryLValue(const CXXBindTemporaryExpr *E);
3812   LValue EmitCXXTypeidLValue(const CXXTypeidExpr *E);
3813   LValue EmitCXXUuidofLValue(const CXXUuidofExpr *E);
3814 
3815   LValue EmitObjCMessageExprLValue(const ObjCMessageExpr *E);
3816   LValue EmitObjCIvarRefLValue(const ObjCIvarRefExpr *E);
3817   LValue EmitStmtExprLValue(const StmtExpr *E);
3818   LValue EmitPointerToDataMemberBinaryExpr(const BinaryOperator *E);
3819   LValue EmitObjCSelectorLValue(const ObjCSelectorExpr *E);
3820   void   EmitDeclRefExprDbgValue(const DeclRefExpr *E, const APValue &Init);
3821 
3822   //===--------------------------------------------------------------------===//
3823   //                         Scalar Expression Emission
3824   //===--------------------------------------------------------------------===//
3825 
3826   /// EmitCall - Generate a call of the given function, expecting the given
3827   /// result type, and using the given argument list which specifies both the
3828   /// LLVM arguments and the types they were derived from.
3829   RValue EmitCall(const CGFunctionInfo &CallInfo, const CGCallee &Callee,
3830                   ReturnValueSlot ReturnValue, const CallArgList &Args,
3831                   llvm::CallBase **callOrInvoke, SourceLocation Loc);
3832   RValue EmitCall(const CGFunctionInfo &CallInfo, const CGCallee &Callee,
3833                   ReturnValueSlot ReturnValue, const CallArgList &Args,
3834                   llvm::CallBase **callOrInvoke = nullptr) {
3835     return EmitCall(CallInfo, Callee, ReturnValue, Args, callOrInvoke,
3836                     SourceLocation());
3837   }
3838   RValue EmitCall(QualType FnType, const CGCallee &Callee, const CallExpr *E,
3839                   ReturnValueSlot ReturnValue, llvm::Value *Chain = nullptr);
3840   RValue EmitCallExpr(const CallExpr *E,
3841                       ReturnValueSlot ReturnValue = ReturnValueSlot());
3842   RValue EmitSimpleCallExpr(const CallExpr *E, ReturnValueSlot ReturnValue);
3843   CGCallee EmitCallee(const Expr *E);
3844 
3845   void checkTargetFeatures(const CallExpr *E, const FunctionDecl *TargetDecl);
3846   void checkTargetFeatures(SourceLocation Loc, const FunctionDecl *TargetDecl);
3847 
3848   llvm::CallInst *EmitRuntimeCall(llvm::FunctionCallee callee,
3849                                   const Twine &name = "");
3850   llvm::CallInst *EmitRuntimeCall(llvm::FunctionCallee callee,
3851                                   ArrayRef<llvm::Value *> args,
3852                                   const Twine &name = "");
3853   llvm::CallInst *EmitNounwindRuntimeCall(llvm::FunctionCallee callee,
3854                                           const Twine &name = "");
3855   llvm::CallInst *EmitNounwindRuntimeCall(llvm::FunctionCallee callee,
3856                                           ArrayRef<llvm::Value *> args,
3857                                           const Twine &name = "");
3858 
3859   SmallVector<llvm::OperandBundleDef, 1>
3860   getBundlesForFunclet(llvm::Value *Callee);
3861 
3862   llvm::CallBase *EmitCallOrInvoke(llvm::FunctionCallee Callee,
3863                                    ArrayRef<llvm::Value *> Args,
3864                                    const Twine &Name = "");
3865   llvm::CallBase *EmitRuntimeCallOrInvoke(llvm::FunctionCallee callee,
3866                                           ArrayRef<llvm::Value *> args,
3867                                           const Twine &name = "");
3868   llvm::CallBase *EmitRuntimeCallOrInvoke(llvm::FunctionCallee callee,
3869                                           const Twine &name = "");
3870   void EmitNoreturnRuntimeCallOrInvoke(llvm::FunctionCallee callee,
3871                                        ArrayRef<llvm::Value *> args);
3872 
3873   CGCallee BuildAppleKextVirtualCall(const CXXMethodDecl *MD,
3874                                      NestedNameSpecifier *Qual,
3875                                      llvm::Type *Ty);
3876 
3877   CGCallee BuildAppleKextVirtualDestructorCall(const CXXDestructorDecl *DD,
3878                                                CXXDtorType Type,
3879                                                const CXXRecordDecl *RD);
3880 
3881   // Return the copy constructor name with the prefix "__copy_constructor_"
3882   // removed.
3883   static std::string getNonTrivialCopyConstructorStr(QualType QT,
3884                                                      CharUnits Alignment,
3885                                                      bool IsVolatile,
3886                                                      ASTContext &Ctx);
3887 
3888   // Return the destructor name with the prefix "__destructor_" removed.
3889   static std::string getNonTrivialDestructorStr(QualType QT,
3890                                                 CharUnits Alignment,
3891                                                 bool IsVolatile,
3892                                                 ASTContext &Ctx);
3893 
3894   // These functions emit calls to the special functions of non-trivial C
3895   // structs.
3896   void defaultInitNonTrivialCStructVar(LValue Dst);
3897   void callCStructDefaultConstructor(LValue Dst);
3898   void callCStructDestructor(LValue Dst);
3899   void callCStructCopyConstructor(LValue Dst, LValue Src);
3900   void callCStructMoveConstructor(LValue Dst, LValue Src);
3901   void callCStructCopyAssignmentOperator(LValue Dst, LValue Src);
3902   void callCStructMoveAssignmentOperator(LValue Dst, LValue Src);
3903 
3904   RValue
3905   EmitCXXMemberOrOperatorCall(const CXXMethodDecl *Method,
3906                               const CGCallee &Callee,
3907                               ReturnValueSlot ReturnValue, llvm::Value *This,
3908                               llvm::Value *ImplicitParam,
3909                               QualType ImplicitParamTy, const CallExpr *E,
3910                               CallArgList *RtlArgs);
3911   RValue EmitCXXDestructorCall(GlobalDecl Dtor, const CGCallee &Callee,
3912                                llvm::Value *This, QualType ThisTy,
3913                                llvm::Value *ImplicitParam,
3914                                QualType ImplicitParamTy, const CallExpr *E);
3915   RValue EmitCXXMemberCallExpr(const CXXMemberCallExpr *E,
3916                                ReturnValueSlot ReturnValue);
3917   RValue EmitCXXMemberOrOperatorMemberCallExpr(const CallExpr *CE,
3918                                                const CXXMethodDecl *MD,
3919                                                ReturnValueSlot ReturnValue,
3920                                                bool HasQualifier,
3921                                                NestedNameSpecifier *Qualifier,
3922                                                bool IsArrow, const Expr *Base);
3923   // Compute the object pointer.
3924   Address EmitCXXMemberDataPointerAddress(const Expr *E, Address base,
3925                                           llvm::Value *memberPtr,
3926                                           const MemberPointerType *memberPtrType,
3927                                           LValueBaseInfo *BaseInfo = nullptr,
3928                                           TBAAAccessInfo *TBAAInfo = nullptr);
3929   RValue EmitCXXMemberPointerCallExpr(const CXXMemberCallExpr *E,
3930                                       ReturnValueSlot ReturnValue);
3931 
3932   RValue EmitCXXOperatorMemberCallExpr(const CXXOperatorCallExpr *E,
3933                                        const CXXMethodDecl *MD,
3934                                        ReturnValueSlot ReturnValue);
3935   RValue EmitCXXPseudoDestructorExpr(const CXXPseudoDestructorExpr *E);
3936 
3937   RValue EmitCUDAKernelCallExpr(const CUDAKernelCallExpr *E,
3938                                 ReturnValueSlot ReturnValue);
3939 
3940   RValue EmitNVPTXDevicePrintfCallExpr(const CallExpr *E,
3941                                        ReturnValueSlot ReturnValue);
3942   RValue EmitAMDGPUDevicePrintfCallExpr(const CallExpr *E,
3943                                         ReturnValueSlot ReturnValue);
3944 
3945   RValue EmitBuiltinExpr(const GlobalDecl GD, unsigned BuiltinID,
3946                          const CallExpr *E, ReturnValueSlot ReturnValue);
3947 
3948   RValue emitRotate(const CallExpr *E, bool IsRotateRight);
3949 
3950   /// Emit IR for __builtin_os_log_format.
3951   RValue emitBuiltinOSLogFormat(const CallExpr &E);
3952 
3953   /// Emit IR for __builtin_is_aligned.
3954   RValue EmitBuiltinIsAligned(const CallExpr *E);
3955   /// Emit IR for __builtin_align_up/__builtin_align_down.
3956   RValue EmitBuiltinAlignTo(const CallExpr *E, bool AlignUp);
3957 
3958   llvm::Function *generateBuiltinOSLogHelperFunction(
3959       const analyze_os_log::OSLogBufferLayout &Layout,
3960       CharUnits BufferAlignment);
3961 
3962   RValue EmitBlockCallExpr(const CallExpr *E, ReturnValueSlot ReturnValue);
3963 
3964   /// EmitTargetBuiltinExpr - Emit the given builtin call. Returns 0 if the call
3965   /// is unhandled by the current target.
3966   llvm::Value *EmitTargetBuiltinExpr(unsigned BuiltinID, const CallExpr *E,
3967                                      ReturnValueSlot ReturnValue);
3968 
3969   llvm::Value *EmitAArch64CompareBuiltinExpr(llvm::Value *Op, llvm::Type *Ty,
3970                                              const llvm::CmpInst::Predicate Fp,
3971                                              const llvm::CmpInst::Predicate Ip,
3972                                              const llvm::Twine &Name = "");
3973   llvm::Value *EmitARMBuiltinExpr(unsigned BuiltinID, const CallExpr *E,
3974                                   ReturnValueSlot ReturnValue,
3975                                   llvm::Triple::ArchType Arch);
3976   llvm::Value *EmitARMMVEBuiltinExpr(unsigned BuiltinID, const CallExpr *E,
3977                                      ReturnValueSlot ReturnValue,
3978                                      llvm::Triple::ArchType Arch);
3979   llvm::Value *EmitARMCDEBuiltinExpr(unsigned BuiltinID, const CallExpr *E,
3980                                      ReturnValueSlot ReturnValue,
3981                                      llvm::Triple::ArchType Arch);
3982   llvm::Value *EmitCMSEClearRecord(llvm::Value *V, llvm::IntegerType *ITy,
3983                                    QualType RTy);
3984   llvm::Value *EmitCMSEClearRecord(llvm::Value *V, llvm::ArrayType *ATy,
3985                                    QualType RTy);
3986 
3987   llvm::Value *EmitCommonNeonBuiltinExpr(unsigned BuiltinID,
3988                                          unsigned LLVMIntrinsic,
3989                                          unsigned AltLLVMIntrinsic,
3990                                          const char *NameHint,
3991                                          unsigned Modifier,
3992                                          const CallExpr *E,
3993                                          SmallVectorImpl<llvm::Value *> &Ops,
3994                                          Address PtrOp0, Address PtrOp1,
3995                                          llvm::Triple::ArchType Arch);
3996 
3997   llvm::Function *LookupNeonLLVMIntrinsic(unsigned IntrinsicID,
3998                                           unsigned Modifier, llvm::Type *ArgTy,
3999                                           const CallExpr *E);
4000   llvm::Value *EmitNeonCall(llvm::Function *F,
4001                             SmallVectorImpl<llvm::Value*> &O,
4002                             const char *name,
4003                             unsigned shift = 0, bool rightshift = false);
4004   llvm::Value *EmitNeonSplat(llvm::Value *V, llvm::Constant *Idx,
4005                              const llvm::ElementCount &Count);
4006   llvm::Value *EmitNeonSplat(llvm::Value *V, llvm::Constant *Idx);
4007   llvm::Value *EmitNeonShiftVector(llvm::Value *V, llvm::Type *Ty,
4008                                    bool negateForRightShift);
4009   llvm::Value *EmitNeonRShiftImm(llvm::Value *Vec, llvm::Value *Amt,
4010                                  llvm::Type *Ty, bool usgn, const char *name);
4011   llvm::Value *vectorWrapScalar16(llvm::Value *Op);
4012   /// SVEBuiltinMemEltTy - Returns the memory element type for this memory
4013   /// access builtin.  Only required if it can't be inferred from the base
4014   /// pointer operand.
4015   llvm::Type *SVEBuiltinMemEltTy(SVETypeFlags TypeFlags);
4016 
4017   SmallVector<llvm::Type *, 2> getSVEOverloadTypes(SVETypeFlags TypeFlags,
4018                                                    llvm::Type *ReturnType,
4019                                                    ArrayRef<llvm::Value *> Ops);
4020   llvm::Type *getEltType(SVETypeFlags TypeFlags);
4021   llvm::ScalableVectorType *getSVEType(const SVETypeFlags &TypeFlags);
4022   llvm::ScalableVectorType *getSVEPredType(SVETypeFlags TypeFlags);
4023   llvm::Value *EmitSVEAllTruePred(SVETypeFlags TypeFlags);
4024   llvm::Value *EmitSVEDupX(llvm::Value *Scalar);
4025   llvm::Value *EmitSVEDupX(llvm::Value *Scalar, llvm::Type *Ty);
4026   llvm::Value *EmitSVEReinterpret(llvm::Value *Val, llvm::Type *Ty);
4027   llvm::Value *EmitSVEPMull(SVETypeFlags TypeFlags,
4028                             llvm::SmallVectorImpl<llvm::Value *> &Ops,
4029                             unsigned BuiltinID);
4030   llvm::Value *EmitSVEMovl(SVETypeFlags TypeFlags,
4031                            llvm::ArrayRef<llvm::Value *> Ops,
4032                            unsigned BuiltinID);
4033   llvm::Value *EmitSVEPredicateCast(llvm::Value *Pred,
4034                                     llvm::ScalableVectorType *VTy);
4035   llvm::Value *EmitSVEGatherLoad(SVETypeFlags TypeFlags,
4036                                  llvm::SmallVectorImpl<llvm::Value *> &Ops,
4037                                  unsigned IntID);
4038   llvm::Value *EmitSVEScatterStore(SVETypeFlags TypeFlags,
4039                                    llvm::SmallVectorImpl<llvm::Value *> &Ops,
4040                                    unsigned IntID);
4041   llvm::Value *EmitSVEMaskedLoad(const CallExpr *, llvm::Type *ReturnTy,
4042                                  SmallVectorImpl<llvm::Value *> &Ops,
4043                                  unsigned BuiltinID, bool IsZExtReturn);
4044   llvm::Value *EmitSVEMaskedStore(const CallExpr *,
4045                                   SmallVectorImpl<llvm::Value *> &Ops,
4046                                   unsigned BuiltinID);
4047   llvm::Value *EmitSVEPrefetchLoad(SVETypeFlags TypeFlags,
4048                                    SmallVectorImpl<llvm::Value *> &Ops,
4049                                    unsigned BuiltinID);
4050   llvm::Value *EmitSVEGatherPrefetch(SVETypeFlags TypeFlags,
4051                                      SmallVectorImpl<llvm::Value *> &Ops,
4052                                      unsigned IntID);
4053   llvm::Value *EmitSVEStructLoad(SVETypeFlags TypeFlags,
4054                                  SmallVectorImpl<llvm::Value *> &Ops, unsigned IntID);
4055   llvm::Value *EmitSVEStructStore(SVETypeFlags TypeFlags,
4056                                   SmallVectorImpl<llvm::Value *> &Ops,
4057                                   unsigned IntID);
4058   llvm::Value *EmitAArch64SVEBuiltinExpr(unsigned BuiltinID, const CallExpr *E);
4059 
4060   llvm::Value *EmitAArch64BuiltinExpr(unsigned BuiltinID, const CallExpr *E,
4061                                       llvm::Triple::ArchType Arch);
4062   llvm::Value *EmitBPFBuiltinExpr(unsigned BuiltinID, const CallExpr *E);
4063 
4064   llvm::Value *BuildVector(ArrayRef<llvm::Value*> Ops);
4065   llvm::Value *EmitX86BuiltinExpr(unsigned BuiltinID, const CallExpr *E);
4066   llvm::Value *EmitPPCBuiltinExpr(unsigned BuiltinID, const CallExpr *E);
4067   llvm::Value *EmitAMDGPUBuiltinExpr(unsigned BuiltinID, const CallExpr *E);
4068   llvm::Value *EmitSystemZBuiltinExpr(unsigned BuiltinID, const CallExpr *E);
4069   llvm::Value *EmitNVPTXBuiltinExpr(unsigned BuiltinID, const CallExpr *E);
4070   llvm::Value *EmitWebAssemblyBuiltinExpr(unsigned BuiltinID,
4071                                           const CallExpr *E);
4072   llvm::Value *EmitHexagonBuiltinExpr(unsigned BuiltinID, const CallExpr *E);
4073   bool ProcessOrderScopeAMDGCN(llvm::Value *Order, llvm::Value *Scope,
4074                                llvm::AtomicOrdering &AO,
4075                                llvm::SyncScope::ID &SSID);
4076 
4077 private:
4078   enum class MSVCIntrin;
4079 
4080 public:
4081   llvm::Value *EmitMSVCBuiltinExpr(MSVCIntrin BuiltinID, const CallExpr *E);
4082 
4083   llvm::Value *EmitBuiltinAvailable(ArrayRef<llvm::Value *> Args);
4084 
4085   llvm::Value *EmitObjCProtocolExpr(const ObjCProtocolExpr *E);
4086   llvm::Value *EmitObjCStringLiteral(const ObjCStringLiteral *E);
4087   llvm::Value *EmitObjCBoxedExpr(const ObjCBoxedExpr *E);
4088   llvm::Value *EmitObjCArrayLiteral(const ObjCArrayLiteral *E);
4089   llvm::Value *EmitObjCDictionaryLiteral(const ObjCDictionaryLiteral *E);
4090   llvm::Value *EmitObjCCollectionLiteral(const Expr *E,
4091                                 const ObjCMethodDecl *MethodWithObjects);
4092   llvm::Value *EmitObjCSelectorExpr(const ObjCSelectorExpr *E);
4093   RValue EmitObjCMessageExpr(const ObjCMessageExpr *E,
4094                              ReturnValueSlot Return = ReturnValueSlot());
4095 
4096   /// Retrieves the default cleanup kind for an ARC cleanup.
4097   /// Except under -fobjc-arc-eh, ARC cleanups are normal-only.
4098   CleanupKind getARCCleanupKind() {
4099     return CGM.getCodeGenOpts().ObjCAutoRefCountExceptions
4100              ? NormalAndEHCleanup : NormalCleanup;
4101   }
4102 
4103   // ARC primitives.
4104   void EmitARCInitWeak(Address addr, llvm::Value *value);
4105   void EmitARCDestroyWeak(Address addr);
4106   llvm::Value *EmitARCLoadWeak(Address addr);
4107   llvm::Value *EmitARCLoadWeakRetained(Address addr);
4108   llvm::Value *EmitARCStoreWeak(Address addr, llvm::Value *value, bool ignored);
4109   void emitARCCopyAssignWeak(QualType Ty, Address DstAddr, Address SrcAddr);
4110   void emitARCMoveAssignWeak(QualType Ty, Address DstAddr, Address SrcAddr);
4111   void EmitARCCopyWeak(Address dst, Address src);
4112   void EmitARCMoveWeak(Address dst, Address src);
4113   llvm::Value *EmitARCRetainAutorelease(QualType type, llvm::Value *value);
4114   llvm::Value *EmitARCRetainAutoreleaseNonBlock(llvm::Value *value);
4115   llvm::Value *EmitARCStoreStrong(LValue lvalue, llvm::Value *value,
4116                                   bool resultIgnored);
4117   llvm::Value *EmitARCStoreStrongCall(Address addr, llvm::Value *value,
4118                                       bool resultIgnored);
4119   llvm::Value *EmitARCRetain(QualType type, llvm::Value *value);
4120   llvm::Value *EmitARCRetainNonBlock(llvm::Value *value);
4121   llvm::Value *EmitARCRetainBlock(llvm::Value *value, bool mandatory);
4122   void EmitARCDestroyStrong(Address addr, ARCPreciseLifetime_t precise);
4123   void EmitARCRelease(llvm::Value *value, ARCPreciseLifetime_t precise);
4124   llvm::Value *EmitARCAutorelease(llvm::Value *value);
4125   llvm::Value *EmitARCAutoreleaseReturnValue(llvm::Value *value);
4126   llvm::Value *EmitARCRetainAutoreleaseReturnValue(llvm::Value *value);
4127   llvm::Value *EmitARCRetainAutoreleasedReturnValue(llvm::Value *value);
4128   llvm::Value *EmitARCUnsafeClaimAutoreleasedReturnValue(llvm::Value *value);
4129 
4130   llvm::Value *EmitObjCAutorelease(llvm::Value *value, llvm::Type *returnType);
4131   llvm::Value *EmitObjCRetainNonBlock(llvm::Value *value,
4132                                       llvm::Type *returnType);
4133   void EmitObjCRelease(llvm::Value *value, ARCPreciseLifetime_t precise);
4134 
4135   std::pair<LValue,llvm::Value*>
4136   EmitARCStoreAutoreleasing(const BinaryOperator *e);
4137   std::pair<LValue,llvm::Value*>
4138   EmitARCStoreStrong(const BinaryOperator *e, bool ignored);
4139   std::pair<LValue,llvm::Value*>
4140   EmitARCStoreUnsafeUnretained(const BinaryOperator *e, bool ignored);
4141 
4142   llvm::Value *EmitObjCAlloc(llvm::Value *value,
4143                              llvm::Type *returnType);
4144   llvm::Value *EmitObjCAllocWithZone(llvm::Value *value,
4145                                      llvm::Type *returnType);
4146   llvm::Value *EmitObjCAllocInit(llvm::Value *value, llvm::Type *resultType);
4147 
4148   llvm::Value *EmitObjCThrowOperand(const Expr *expr);
4149   llvm::Value *EmitObjCConsumeObject(QualType T, llvm::Value *Ptr);
4150   llvm::Value *EmitObjCExtendObjectLifetime(QualType T, llvm::Value *Ptr);
4151 
4152   llvm::Value *EmitARCExtendBlockObject(const Expr *expr);
4153   llvm::Value *EmitARCReclaimReturnedObject(const Expr *e,
4154                                             bool allowUnsafeClaim);
4155   llvm::Value *EmitARCRetainScalarExpr(const Expr *expr);
4156   llvm::Value *EmitARCRetainAutoreleaseScalarExpr(const Expr *expr);
4157   llvm::Value *EmitARCUnsafeUnretainedScalarExpr(const Expr *expr);
4158 
4159   void EmitARCIntrinsicUse(ArrayRef<llvm::Value*> values);
4160 
4161   static Destroyer destroyARCStrongImprecise;
4162   static Destroyer destroyARCStrongPrecise;
4163   static Destroyer destroyARCWeak;
4164   static Destroyer emitARCIntrinsicUse;
4165   static Destroyer destroyNonTrivialCStruct;
4166 
4167   void EmitObjCAutoreleasePoolPop(llvm::Value *Ptr);
4168   llvm::Value *EmitObjCAutoreleasePoolPush();
4169   llvm::Value *EmitObjCMRRAutoreleasePoolPush();
4170   void EmitObjCAutoreleasePoolCleanup(llvm::Value *Ptr);
4171   void EmitObjCMRRAutoreleasePoolPop(llvm::Value *Ptr);
4172 
4173   /// Emits a reference binding to the passed in expression.
4174   RValue EmitReferenceBindingToExpr(const Expr *E);
4175 
4176   //===--------------------------------------------------------------------===//
4177   //                           Expression Emission
4178   //===--------------------------------------------------------------------===//
4179 
4180   // Expressions are broken into three classes: scalar, complex, aggregate.
4181 
4182   /// EmitScalarExpr - Emit the computation of the specified expression of LLVM
4183   /// scalar type, returning the result.
4184   llvm::Value *EmitScalarExpr(const Expr *E , bool IgnoreResultAssign = false);
4185 
4186   /// Emit a conversion from the specified type to the specified destination
4187   /// type, both of which are LLVM scalar types.
4188   llvm::Value *EmitScalarConversion(llvm::Value *Src, QualType SrcTy,
4189                                     QualType DstTy, SourceLocation Loc);
4190 
4191   /// Emit a conversion from the specified complex type to the specified
4192   /// destination type, where the destination type is an LLVM scalar type.
4193   llvm::Value *EmitComplexToScalarConversion(ComplexPairTy Src, QualType SrcTy,
4194                                              QualType DstTy,
4195                                              SourceLocation Loc);
4196 
4197   /// EmitAggExpr - Emit the computation of the specified expression
4198   /// of aggregate type.  The result is computed into the given slot,
4199   /// which may be null to indicate that the value is not needed.
4200   void EmitAggExpr(const Expr *E, AggValueSlot AS);
4201 
4202   /// EmitAggExprToLValue - Emit the computation of the specified expression of
4203   /// aggregate type into a temporary LValue.
4204   LValue EmitAggExprToLValue(const Expr *E);
4205 
4206   /// Build all the stores needed to initialize an aggregate at Dest with the
4207   /// value Val.
4208   void EmitAggregateStore(llvm::Value *Val, Address Dest, bool DestIsVolatile);
4209 
4210   /// EmitExtendGCLifetime - Given a pointer to an Objective-C object,
4211   /// make sure it survives garbage collection until this point.
4212   void EmitExtendGCLifetime(llvm::Value *object);
4213 
4214   /// EmitComplexExpr - Emit the computation of the specified expression of
4215   /// complex type, returning the result.
4216   ComplexPairTy EmitComplexExpr(const Expr *E,
4217                                 bool IgnoreReal = false,
4218                                 bool IgnoreImag = false);
4219 
4220   /// EmitComplexExprIntoLValue - Emit the given expression of complex
4221   /// type and place its result into the specified l-value.
4222   void EmitComplexExprIntoLValue(const Expr *E, LValue dest, bool isInit);
4223 
4224   /// EmitStoreOfComplex - Store a complex number into the specified l-value.
4225   void EmitStoreOfComplex(ComplexPairTy V, LValue dest, bool isInit);
4226 
4227   /// EmitLoadOfComplex - Load a complex number from the specified l-value.
4228   ComplexPairTy EmitLoadOfComplex(LValue src, SourceLocation loc);
4229 
4230   Address emitAddrOfRealComponent(Address complex, QualType complexType);
4231   Address emitAddrOfImagComponent(Address complex, QualType complexType);
4232 
4233   /// AddInitializerToStaticVarDecl - Add the initializer for 'D' to the
4234   /// global variable that has already been created for it.  If the initializer
4235   /// has a different type than GV does, this may free GV and return a different
4236   /// one.  Otherwise it just returns GV.
4237   llvm::GlobalVariable *
4238   AddInitializerToStaticVarDecl(const VarDecl &D,
4239                                 llvm::GlobalVariable *GV);
4240 
4241   // Emit an @llvm.invariant.start call for the given memory region.
4242   void EmitInvariantStart(llvm::Constant *Addr, CharUnits Size);
4243 
4244   /// EmitCXXGlobalVarDeclInit - Create the initializer for a C++
4245   /// variable with global storage.
4246   void EmitCXXGlobalVarDeclInit(const VarDecl &D, llvm::Constant *DeclPtr,
4247                                 bool PerformInit);
4248 
4249   llvm::Function *createAtExitStub(const VarDecl &VD, llvm::FunctionCallee Dtor,
4250                                    llvm::Constant *Addr);
4251 
4252   /// Call atexit() with a function that passes the given argument to
4253   /// the given function.
4254   void registerGlobalDtorWithAtExit(const VarDecl &D, llvm::FunctionCallee fn,
4255                                     llvm::Constant *addr);
4256 
4257   /// Call atexit() with function dtorStub.
4258   void registerGlobalDtorWithAtExit(llvm::Constant *dtorStub);
4259 
4260   /// Call unatexit() with function dtorStub.
4261   llvm::Value *unregisterGlobalDtorWithUnAtExit(llvm::Function *dtorStub);
4262 
4263   /// Emit code in this function to perform a guarded variable
4264   /// initialization.  Guarded initializations are used when it's not
4265   /// possible to prove that an initialization will be done exactly
4266   /// once, e.g. with a static local variable or a static data member
4267   /// of a class template.
4268   void EmitCXXGuardedInit(const VarDecl &D, llvm::GlobalVariable *DeclPtr,
4269                           bool PerformInit);
4270 
4271   enum class GuardKind { VariableGuard, TlsGuard };
4272 
4273   /// Emit a branch to select whether or not to perform guarded initialization.
4274   void EmitCXXGuardedInitBranch(llvm::Value *NeedsInit,
4275                                 llvm::BasicBlock *InitBlock,
4276                                 llvm::BasicBlock *NoInitBlock,
4277                                 GuardKind Kind, const VarDecl *D);
4278 
4279   /// GenerateCXXGlobalInitFunc - Generates code for initializing global
4280   /// variables.
4281   void
4282   GenerateCXXGlobalInitFunc(llvm::Function *Fn,
4283                             ArrayRef<llvm::Function *> CXXThreadLocals,
4284                             ConstantAddress Guard = ConstantAddress::invalid());
4285 
4286   /// GenerateCXXGlobalCleanUpFunc - Generates code for cleaning up global
4287   /// variables.
4288   void GenerateCXXGlobalCleanUpFunc(
4289       llvm::Function *Fn,
4290       const std::vector<std::tuple<llvm::FunctionType *, llvm::WeakTrackingVH,
4291                                    llvm::Constant *>> &DtorsOrStermFinalizers);
4292 
4293   void GenerateCXXGlobalVarDeclInitFunc(llvm::Function *Fn,
4294                                         const VarDecl *D,
4295                                         llvm::GlobalVariable *Addr,
4296                                         bool PerformInit);
4297 
4298   void EmitCXXConstructExpr(const CXXConstructExpr *E, AggValueSlot Dest);
4299 
4300   void EmitSynthesizedCXXCopyCtor(Address Dest, Address Src, const Expr *Exp);
4301 
4302   void EmitCXXThrowExpr(const CXXThrowExpr *E, bool KeepInsertionPoint = true);
4303 
4304   RValue EmitAtomicExpr(AtomicExpr *E);
4305 
4306   //===--------------------------------------------------------------------===//
4307   //                         Annotations Emission
4308   //===--------------------------------------------------------------------===//
4309 
4310   /// Emit an annotation call (intrinsic).
4311   llvm::Value *EmitAnnotationCall(llvm::Function *AnnotationFn,
4312                                   llvm::Value *AnnotatedVal,
4313                                   StringRef AnnotationStr,
4314                                   SourceLocation Location);
4315 
4316   /// Emit local annotations for the local variable V, declared by D.
4317   void EmitVarAnnotations(const VarDecl *D, llvm::Value *V);
4318 
4319   /// Emit field annotations for the given field & value. Returns the
4320   /// annotation result.
4321   Address EmitFieldAnnotations(const FieldDecl *D, Address V);
4322 
4323   //===--------------------------------------------------------------------===//
4324   //                             Internal Helpers
4325   //===--------------------------------------------------------------------===//
4326 
4327   /// ContainsLabel - Return true if the statement contains a label in it.  If
4328   /// this statement is not executed normally, it not containing a label means
4329   /// that we can just remove the code.
4330   static bool ContainsLabel(const Stmt *S, bool IgnoreCaseStmts = false);
4331 
4332   /// containsBreak - Return true if the statement contains a break out of it.
4333   /// If the statement (recursively) contains a switch or loop with a break
4334   /// inside of it, this is fine.
4335   static bool containsBreak(const Stmt *S);
4336 
4337   /// Determine if the given statement might introduce a declaration into the
4338   /// current scope, by being a (possibly-labelled) DeclStmt.
4339   static bool mightAddDeclToScope(const Stmt *S);
4340 
4341   /// ConstantFoldsToSimpleInteger - If the specified expression does not fold
4342   /// to a constant, or if it does but contains a label, return false.  If it
4343   /// constant folds return true and set the boolean result in Result.
4344   bool ConstantFoldsToSimpleInteger(const Expr *Cond, bool &Result,
4345                                     bool AllowLabels = false);
4346 
4347   /// ConstantFoldsToSimpleInteger - If the specified expression does not fold
4348   /// to a constant, or if it does but contains a label, return false.  If it
4349   /// constant folds return true and set the folded value.
4350   bool ConstantFoldsToSimpleInteger(const Expr *Cond, llvm::APSInt &Result,
4351                                     bool AllowLabels = false);
4352 
4353   /// EmitBranchOnBoolExpr - Emit a branch on a boolean condition (e.g. for an
4354   /// if statement) to the specified blocks.  Based on the condition, this might
4355   /// try to simplify the codegen of the conditional based on the branch.
4356   /// TrueCount should be the number of times we expect the condition to
4357   /// evaluate to true based on PGO data.
4358   void EmitBranchOnBoolExpr(const Expr *Cond, llvm::BasicBlock *TrueBlock,
4359                             llvm::BasicBlock *FalseBlock, uint64_t TrueCount);
4360 
4361   /// Given an assignment `*LHS = RHS`, emit a test that checks if \p RHS is
4362   /// nonnull, if \p LHS is marked _Nonnull.
4363   void EmitNullabilityCheck(LValue LHS, llvm::Value *RHS, SourceLocation Loc);
4364 
4365   /// An enumeration which makes it easier to specify whether or not an
4366   /// operation is a subtraction.
4367   enum { NotSubtraction = false, IsSubtraction = true };
4368 
4369   /// Same as IRBuilder::CreateInBoundsGEP, but additionally emits a check to
4370   /// detect undefined behavior when the pointer overflow sanitizer is enabled.
4371   /// \p SignedIndices indicates whether any of the GEP indices are signed.
4372   /// \p IsSubtraction indicates whether the expression used to form the GEP
4373   /// is a subtraction.
4374   llvm::Value *EmitCheckedInBoundsGEP(llvm::Value *Ptr,
4375                                       ArrayRef<llvm::Value *> IdxList,
4376                                       bool SignedIndices,
4377                                       bool IsSubtraction,
4378                                       SourceLocation Loc,
4379                                       const Twine &Name = "");
4380 
4381   /// Specifies which type of sanitizer check to apply when handling a
4382   /// particular builtin.
4383   enum BuiltinCheckKind {
4384     BCK_CTZPassedZero,
4385     BCK_CLZPassedZero,
4386   };
4387 
4388   /// Emits an argument for a call to a builtin. If the builtin sanitizer is
4389   /// enabled, a runtime check specified by \p Kind is also emitted.
4390   llvm::Value *EmitCheckedArgForBuiltin(const Expr *E, BuiltinCheckKind Kind);
4391 
4392   /// Emit a description of a type in a format suitable for passing to
4393   /// a runtime sanitizer handler.
4394   llvm::Constant *EmitCheckTypeDescriptor(QualType T);
4395 
4396   /// Convert a value into a format suitable for passing to a runtime
4397   /// sanitizer handler.
4398   llvm::Value *EmitCheckValue(llvm::Value *V);
4399 
4400   /// Emit a description of a source location in a format suitable for
4401   /// passing to a runtime sanitizer handler.
4402   llvm::Constant *EmitCheckSourceLocation(SourceLocation Loc);
4403 
4404   /// Create a basic block that will either trap or call a handler function in
4405   /// the UBSan runtime with the provided arguments, and create a conditional
4406   /// branch to it.
4407   void EmitCheck(ArrayRef<std::pair<llvm::Value *, SanitizerMask>> Checked,
4408                  SanitizerHandler Check, ArrayRef<llvm::Constant *> StaticArgs,
4409                  ArrayRef<llvm::Value *> DynamicArgs);
4410 
4411   /// Emit a slow path cross-DSO CFI check which calls __cfi_slowpath
4412   /// if Cond if false.
4413   void EmitCfiSlowPathCheck(SanitizerMask Kind, llvm::Value *Cond,
4414                             llvm::ConstantInt *TypeId, llvm::Value *Ptr,
4415                             ArrayRef<llvm::Constant *> StaticArgs);
4416 
4417   /// Emit a reached-unreachable diagnostic if \p Loc is valid and runtime
4418   /// checking is enabled. Otherwise, just emit an unreachable instruction.
4419   void EmitUnreachable(SourceLocation Loc);
4420 
4421   /// Create a basic block that will call the trap intrinsic, and emit a
4422   /// conditional branch to it, for the -ftrapv checks.
4423   void EmitTrapCheck(llvm::Value *Checked);
4424 
4425   /// Emit a call to trap or debugtrap and attach function attribute
4426   /// "trap-func-name" if specified.
4427   llvm::CallInst *EmitTrapCall(llvm::Intrinsic::ID IntrID);
4428 
4429   /// Emit a stub for the cross-DSO CFI check function.
4430   void EmitCfiCheckStub();
4431 
4432   /// Emit a cross-DSO CFI failure handling function.
4433   void EmitCfiCheckFail();
4434 
4435   /// Create a check for a function parameter that may potentially be
4436   /// declared as non-null.
4437   void EmitNonNullArgCheck(RValue RV, QualType ArgType, SourceLocation ArgLoc,
4438                            AbstractCallee AC, unsigned ParmNum);
4439 
4440   /// EmitCallArg - Emit a single call argument.
4441   void EmitCallArg(CallArgList &args, const Expr *E, QualType ArgType);
4442 
4443   /// EmitDelegateCallArg - We are performing a delegate call; that
4444   /// is, the current function is delegating to another one.  Produce
4445   /// a r-value suitable for passing the given parameter.
4446   void EmitDelegateCallArg(CallArgList &args, const VarDecl *param,
4447                            SourceLocation loc);
4448 
4449   /// SetFPAccuracy - Set the minimum required accuracy of the given floating
4450   /// point operation, expressed as the maximum relative error in ulp.
4451   void SetFPAccuracy(llvm::Value *Val, float Accuracy);
4452 
4453   /// SetFPModel - Control floating point behavior via fp-model settings.
4454   void SetFPModel();
4455 
4456   /// Set the codegen fast-math flags.
4457   void SetFastMathFlags(FPOptions FPFeatures);
4458 
4459 private:
4460   llvm::MDNode *getRangeForLoadFromType(QualType Ty);
4461   void EmitReturnOfRValue(RValue RV, QualType Ty);
4462 
4463   void deferPlaceholderReplacement(llvm::Instruction *Old, llvm::Value *New);
4464 
4465   llvm::SmallVector<std::pair<llvm::Instruction *, llvm::Value *>, 4>
4466   DeferredReplacements;
4467 
4468   /// Set the address of a local variable.
4469   void setAddrOfLocalVar(const VarDecl *VD, Address Addr) {
4470     assert(!LocalDeclMap.count(VD) && "Decl already exists in LocalDeclMap!");
4471     LocalDeclMap.insert({VD, Addr});
4472   }
4473 
4474   /// ExpandTypeFromArgs - Reconstruct a structure of type \arg Ty
4475   /// from function arguments into \arg Dst. See ABIArgInfo::Expand.
4476   ///
4477   /// \param AI - The first function argument of the expansion.
4478   void ExpandTypeFromArgs(QualType Ty, LValue Dst,
4479                           llvm::Function::arg_iterator &AI);
4480 
4481   /// ExpandTypeToArgs - Expand an CallArg \arg Arg, with the LLVM type for \arg
4482   /// Ty, into individual arguments on the provided vector \arg IRCallArgs,
4483   /// starting at index \arg IRCallArgPos. See ABIArgInfo::Expand.
4484   void ExpandTypeToArgs(QualType Ty, CallArg Arg, llvm::FunctionType *IRFuncTy,
4485                         SmallVectorImpl<llvm::Value *> &IRCallArgs,
4486                         unsigned &IRCallArgPos);
4487 
4488   llvm::Value* EmitAsmInput(const TargetInfo::ConstraintInfo &Info,
4489                             const Expr *InputExpr, std::string &ConstraintStr);
4490 
4491   llvm::Value* EmitAsmInputLValue(const TargetInfo::ConstraintInfo &Info,
4492                                   LValue InputValue, QualType InputType,
4493                                   std::string &ConstraintStr,
4494                                   SourceLocation Loc);
4495 
4496   /// Attempts to statically evaluate the object size of E. If that
4497   /// fails, emits code to figure the size of E out for us. This is
4498   /// pass_object_size aware.
4499   ///
4500   /// If EmittedExpr is non-null, this will use that instead of re-emitting E.
4501   llvm::Value *evaluateOrEmitBuiltinObjectSize(const Expr *E, unsigned Type,
4502                                                llvm::IntegerType *ResType,
4503                                                llvm::Value *EmittedE,
4504                                                bool IsDynamic);
4505 
4506   /// Emits the size of E, as required by __builtin_object_size. This
4507   /// function is aware of pass_object_size parameters, and will act accordingly
4508   /// if E is a parameter with the pass_object_size attribute.
4509   llvm::Value *emitBuiltinObjectSize(const Expr *E, unsigned Type,
4510                                      llvm::IntegerType *ResType,
4511                                      llvm::Value *EmittedE,
4512                                      bool IsDynamic);
4513 
4514   void emitZeroOrPatternForAutoVarInit(QualType type, const VarDecl &D,
4515                                        Address Loc);
4516 
4517 public:
4518 #ifndef NDEBUG
4519   // Determine whether the given argument is an Objective-C method
4520   // that may have type parameters in its signature.
4521   static bool isObjCMethodWithTypeParams(const ObjCMethodDecl *method) {
4522     const DeclContext *dc = method->getDeclContext();
4523     if (const ObjCInterfaceDecl *classDecl= dyn_cast<ObjCInterfaceDecl>(dc)) {
4524       return classDecl->getTypeParamListAsWritten();
4525     }
4526 
4527     if (const ObjCCategoryDecl *catDecl = dyn_cast<ObjCCategoryDecl>(dc)) {
4528       return catDecl->getTypeParamList();
4529     }
4530 
4531     return false;
4532   }
4533 
4534   template<typename T>
4535   static bool isObjCMethodWithTypeParams(const T *) { return false; }
4536 #endif
4537 
4538   enum class EvaluationOrder {
4539     ///! No language constraints on evaluation order.
4540     Default,
4541     ///! Language semantics require left-to-right evaluation.
4542     ForceLeftToRight,
4543     ///! Language semantics require right-to-left evaluation.
4544     ForceRightToLeft
4545   };
4546 
4547   /// EmitCallArgs - Emit call arguments for a function.
4548   template <typename T>
4549   void EmitCallArgs(CallArgList &Args, const T *CallArgTypeInfo,
4550                     llvm::iterator_range<CallExpr::const_arg_iterator> ArgRange,
4551                     AbstractCallee AC = AbstractCallee(),
4552                     unsigned ParamsToSkip = 0,
4553                     EvaluationOrder Order = EvaluationOrder::Default) {
4554     SmallVector<QualType, 16> ArgTypes;
4555     CallExpr::const_arg_iterator Arg = ArgRange.begin();
4556 
4557     assert((ParamsToSkip == 0 || CallArgTypeInfo) &&
4558            "Can't skip parameters if type info is not provided");
4559     if (CallArgTypeInfo) {
4560 #ifndef NDEBUG
4561       bool isGenericMethod = isObjCMethodWithTypeParams(CallArgTypeInfo);
4562 #endif
4563 
4564       // First, use the argument types that the type info knows about
4565       for (auto I = CallArgTypeInfo->param_type_begin() + ParamsToSkip,
4566                 E = CallArgTypeInfo->param_type_end();
4567            I != E; ++I, ++Arg) {
4568         assert(Arg != ArgRange.end() && "Running over edge of argument list!");
4569         assert((isGenericMethod ||
4570                 ((*I)->isVariablyModifiedType() ||
4571                  (*I).getNonReferenceType()->isObjCRetainableType() ||
4572                  getContext()
4573                          .getCanonicalType((*I).getNonReferenceType())
4574                          .getTypePtr() ==
4575                      getContext()
4576                          .getCanonicalType((*Arg)->getType())
4577                          .getTypePtr())) &&
4578                "type mismatch in call argument!");
4579         ArgTypes.push_back(*I);
4580       }
4581     }
4582 
4583     // Either we've emitted all the call args, or we have a call to variadic
4584     // function.
4585     assert((Arg == ArgRange.end() || !CallArgTypeInfo ||
4586             CallArgTypeInfo->isVariadic()) &&
4587            "Extra arguments in non-variadic function!");
4588 
4589     // If we still have any arguments, emit them using the type of the argument.
4590     for (auto *A : llvm::make_range(Arg, ArgRange.end()))
4591       ArgTypes.push_back(CallArgTypeInfo ? getVarArgType(A) : A->getType());
4592 
4593     EmitCallArgs(Args, ArgTypes, ArgRange, AC, ParamsToSkip, Order);
4594   }
4595 
4596   void EmitCallArgs(CallArgList &Args, ArrayRef<QualType> ArgTypes,
4597                     llvm::iterator_range<CallExpr::const_arg_iterator> ArgRange,
4598                     AbstractCallee AC = AbstractCallee(),
4599                     unsigned ParamsToSkip = 0,
4600                     EvaluationOrder Order = EvaluationOrder::Default);
4601 
4602   /// EmitPointerWithAlignment - Given an expression with a pointer type,
4603   /// emit the value and compute our best estimate of the alignment of the
4604   /// pointee.
4605   ///
4606   /// \param BaseInfo - If non-null, this will be initialized with
4607   /// information about the source of the alignment and the may-alias
4608   /// attribute.  Note that this function will conservatively fall back on
4609   /// the type when it doesn't recognize the expression and may-alias will
4610   /// be set to false.
4611   ///
4612   /// One reasonable way to use this information is when there's a language
4613   /// guarantee that the pointer must be aligned to some stricter value, and
4614   /// we're simply trying to ensure that sufficiently obvious uses of under-
4615   /// aligned objects don't get miscompiled; for example, a placement new
4616   /// into the address of a local variable.  In such a case, it's quite
4617   /// reasonable to just ignore the returned alignment when it isn't from an
4618   /// explicit source.
4619   Address EmitPointerWithAlignment(const Expr *Addr,
4620                                    LValueBaseInfo *BaseInfo = nullptr,
4621                                    TBAAAccessInfo *TBAAInfo = nullptr);
4622 
4623   /// If \p E references a parameter with pass_object_size info or a constant
4624   /// array size modifier, emit the object size divided by the size of \p EltTy.
4625   /// Otherwise return null.
4626   llvm::Value *LoadPassedObjectSize(const Expr *E, QualType EltTy);
4627 
4628   void EmitSanitizerStatReport(llvm::SanitizerStatKind SSK);
4629 
4630   struct MultiVersionResolverOption {
4631     llvm::Function *Function;
4632     FunctionDecl *FD;
4633     struct Conds {
4634       StringRef Architecture;
4635       llvm::SmallVector<StringRef, 8> Features;
4636 
4637       Conds(StringRef Arch, ArrayRef<StringRef> Feats)
4638           : Architecture(Arch), Features(Feats.begin(), Feats.end()) {}
4639     } Conditions;
4640 
4641     MultiVersionResolverOption(llvm::Function *F, StringRef Arch,
4642                                ArrayRef<StringRef> Feats)
4643         : Function(F), Conditions(Arch, Feats) {}
4644   };
4645 
4646   // Emits the body of a multiversion function's resolver. Assumes that the
4647   // options are already sorted in the proper order, with the 'default' option
4648   // last (if it exists).
4649   void EmitMultiVersionResolver(llvm::Function *Resolver,
4650                                 ArrayRef<MultiVersionResolverOption> Options);
4651 
4652   static uint64_t GetX86CpuSupportsMask(ArrayRef<StringRef> FeatureStrs);
4653 
4654 private:
4655   QualType getVarArgType(const Expr *Arg);
4656 
4657   void EmitDeclMetadata();
4658 
4659   BlockByrefHelpers *buildByrefHelpers(llvm::StructType &byrefType,
4660                                   const AutoVarEmission &emission);
4661 
4662   void AddObjCARCExceptionMetadata(llvm::Instruction *Inst);
4663 
4664   llvm::Value *GetValueForARMHint(unsigned BuiltinID);
4665   llvm::Value *EmitX86CpuIs(const CallExpr *E);
4666   llvm::Value *EmitX86CpuIs(StringRef CPUStr);
4667   llvm::Value *EmitX86CpuSupports(const CallExpr *E);
4668   llvm::Value *EmitX86CpuSupports(ArrayRef<StringRef> FeatureStrs);
4669   llvm::Value *EmitX86CpuSupports(uint64_t Mask);
4670   llvm::Value *EmitX86CpuInit();
4671   llvm::Value *FormResolverCondition(const MultiVersionResolverOption &RO);
4672 };
4673 
4674 inline DominatingLLVMValue::saved_type
4675 DominatingLLVMValue::save(CodeGenFunction &CGF, llvm::Value *value) {
4676   if (!needsSaving(value)) return saved_type(value, false);
4677 
4678   // Otherwise, we need an alloca.
4679   auto align = CharUnits::fromQuantity(
4680             CGF.CGM.getDataLayout().getPrefTypeAlignment(value->getType()));
4681   Address alloca =
4682     CGF.CreateTempAlloca(value->getType(), align, "cond-cleanup.save");
4683   CGF.Builder.CreateStore(value, alloca);
4684 
4685   return saved_type(alloca.getPointer(), true);
4686 }
4687 
4688 inline llvm::Value *DominatingLLVMValue::restore(CodeGenFunction &CGF,
4689                                                  saved_type value) {
4690   // If the value says it wasn't saved, trust that it's still dominating.
4691   if (!value.getInt()) return value.getPointer();
4692 
4693   // Otherwise, it should be an alloca instruction, as set up in save().
4694   auto alloca = cast<llvm::AllocaInst>(value.getPointer());
4695   return CGF.Builder.CreateAlignedLoad(alloca, alloca->getAlign());
4696 }
4697 
4698 }  // end namespace CodeGen
4699 
4700 // Map the LangOption for floating point exception behavior into
4701 // the corresponding enum in the IR.
4702 llvm::fp::ExceptionBehavior
4703 ToConstrainedExceptMD(LangOptions::FPExceptionModeKind Kind);
4704 }  // end namespace clang
4705 
4706 #endif
4707