1 //===-- CodeGenFunction.h - Per-Function state for LLVM CodeGen -*- C++ -*-===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This is the internal per-function state used for llvm translation. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #ifndef CLANG_CODEGEN_CODEGENFUNCTION_H 15 #define CLANG_CODEGEN_CODEGENFUNCTION_H 16 17 #include "CGBuilder.h" 18 #include "CGDebugInfo.h" 19 #include "CGValue.h" 20 #include "CodeGenModule.h" 21 #include "CodeGenPGO.h" 22 #include "EHScopeStack.h" 23 #include "clang/AST/CharUnits.h" 24 #include "clang/AST/ExprCXX.h" 25 #include "clang/AST/ExprObjC.h" 26 #include "clang/AST/Type.h" 27 #include "clang/Basic/ABI.h" 28 #include "clang/Basic/CapturedStmt.h" 29 #include "clang/Basic/TargetInfo.h" 30 #include "clang/Frontend/CodeGenOptions.h" 31 #include "llvm/ADT/ArrayRef.h" 32 #include "llvm/ADT/DenseMap.h" 33 #include "llvm/ADT/SmallVector.h" 34 #include "llvm/IR/ValueHandle.h" 35 #include "llvm/Support/Debug.h" 36 37 namespace llvm { 38 class BasicBlock; 39 class LLVMContext; 40 class MDNode; 41 class Module; 42 class SwitchInst; 43 class Twine; 44 class Value; 45 class CallSite; 46 } 47 48 namespace clang { 49 class ASTContext; 50 class BlockDecl; 51 class CXXDestructorDecl; 52 class CXXForRangeStmt; 53 class CXXTryStmt; 54 class Decl; 55 class LabelDecl; 56 class EnumConstantDecl; 57 class FunctionDecl; 58 class FunctionProtoType; 59 class LabelStmt; 60 class ObjCContainerDecl; 61 class ObjCInterfaceDecl; 62 class ObjCIvarDecl; 63 class ObjCMethodDecl; 64 class ObjCImplementationDecl; 65 class ObjCPropertyImplDecl; 66 class TargetInfo; 67 class TargetCodeGenInfo; 68 class VarDecl; 69 class ObjCForCollectionStmt; 70 class ObjCAtTryStmt; 71 class ObjCAtThrowStmt; 72 class ObjCAtSynchronizedStmt; 73 class ObjCAutoreleasePoolStmt; 74 75 namespace CodeGen { 76 class CodeGenTypes; 77 class CGFunctionInfo; 78 class CGRecordLayout; 79 class CGBlockInfo; 80 class CGCXXABI; 81 class BlockFlags; 82 class BlockFieldFlags; 83 84 /// The kind of evaluation to perform on values of a particular 85 /// type. Basically, is the code in CGExprScalar, CGExprComplex, or 86 /// CGExprAgg? 87 /// 88 /// TODO: should vectors maybe be split out into their own thing? 89 enum TypeEvaluationKind { 90 TEK_Scalar, 91 TEK_Complex, 92 TEK_Aggregate 93 }; 94 95 /// CodeGenFunction - This class organizes the per-function state that is used 96 /// while generating LLVM code. 97 class CodeGenFunction : public CodeGenTypeCache { 98 CodeGenFunction(const CodeGenFunction &) LLVM_DELETED_FUNCTION; 99 void operator=(const CodeGenFunction &) LLVM_DELETED_FUNCTION; 100 101 friend class CGCXXABI; 102 public: 103 /// A jump destination is an abstract label, branching to which may 104 /// require a jump out through normal cleanups. 105 struct JumpDest { 106 JumpDest() : Block(0), ScopeDepth(), Index(0) {} 107 JumpDest(llvm::BasicBlock *Block, 108 EHScopeStack::stable_iterator Depth, 109 unsigned Index) 110 : Block(Block), ScopeDepth(Depth), Index(Index) {} 111 112 bool isValid() const { return Block != 0; } 113 llvm::BasicBlock *getBlock() const { return Block; } 114 EHScopeStack::stable_iterator getScopeDepth() const { return ScopeDepth; } 115 unsigned getDestIndex() const { return Index; } 116 117 // This should be used cautiously. 118 void setScopeDepth(EHScopeStack::stable_iterator depth) { 119 ScopeDepth = depth; 120 } 121 122 private: 123 llvm::BasicBlock *Block; 124 EHScopeStack::stable_iterator ScopeDepth; 125 unsigned Index; 126 }; 127 128 CodeGenModule &CGM; // Per-module state. 129 const TargetInfo &Target; 130 131 typedef std::pair<llvm::Value *, llvm::Value *> ComplexPairTy; 132 CGBuilderTy Builder; 133 134 /// CurFuncDecl - Holds the Decl for the current outermost 135 /// non-closure context. 136 const Decl *CurFuncDecl; 137 /// CurCodeDecl - This is the inner-most code context, which includes blocks. 138 const Decl *CurCodeDecl; 139 const CGFunctionInfo *CurFnInfo; 140 QualType FnRetTy; 141 llvm::Function *CurFn; 142 143 /// CurGD - The GlobalDecl for the current function being compiled. 144 GlobalDecl CurGD; 145 146 /// PrologueCleanupDepth - The cleanup depth enclosing all the 147 /// cleanups associated with the parameters. 148 EHScopeStack::stable_iterator PrologueCleanupDepth; 149 150 /// ReturnBlock - Unified return block. 151 JumpDest ReturnBlock; 152 153 /// ReturnValue - The temporary alloca to hold the return value. This is null 154 /// iff the function has no return value. 155 llvm::Value *ReturnValue; 156 157 /// AllocaInsertPoint - This is an instruction in the entry block before which 158 /// we prefer to insert allocas. 159 llvm::AssertingVH<llvm::Instruction> AllocaInsertPt; 160 161 /// \brief API for captured statement code generation. 162 class CGCapturedStmtInfo { 163 public: 164 explicit CGCapturedStmtInfo(const CapturedStmt &S, 165 CapturedRegionKind K = CR_Default) 166 : Kind(K), ThisValue(0), CXXThisFieldDecl(0) { 167 168 RecordDecl::field_iterator Field = 169 S.getCapturedRecordDecl()->field_begin(); 170 for (CapturedStmt::const_capture_iterator I = S.capture_begin(), 171 E = S.capture_end(); 172 I != E; ++I, ++Field) { 173 if (I->capturesThis()) 174 CXXThisFieldDecl = *Field; 175 else 176 CaptureFields[I->getCapturedVar()] = *Field; 177 } 178 } 179 180 virtual ~CGCapturedStmtInfo(); 181 182 CapturedRegionKind getKind() const { return Kind; } 183 184 void setContextValue(llvm::Value *V) { ThisValue = V; } 185 // \brief Retrieve the value of the context parameter. 186 llvm::Value *getContextValue() const { return ThisValue; } 187 188 /// \brief Lookup the captured field decl for a variable. 189 const FieldDecl *lookup(const VarDecl *VD) const { 190 return CaptureFields.lookup(VD); 191 } 192 193 bool isCXXThisExprCaptured() const { return CXXThisFieldDecl != 0; } 194 FieldDecl *getThisFieldDecl() const { return CXXThisFieldDecl; } 195 196 /// \brief Emit the captured statement body. 197 virtual void EmitBody(CodeGenFunction &CGF, Stmt *S) { 198 RegionCounter Cnt = CGF.getPGORegionCounter(S); 199 Cnt.beginRegion(CGF.Builder); 200 CGF.EmitStmt(S); 201 } 202 203 /// \brief Get the name of the capture helper. 204 virtual StringRef getHelperName() const { return "__captured_stmt"; } 205 206 private: 207 /// \brief The kind of captured statement being generated. 208 CapturedRegionKind Kind; 209 210 /// \brief Keep the map between VarDecl and FieldDecl. 211 llvm::SmallDenseMap<const VarDecl *, FieldDecl *> CaptureFields; 212 213 /// \brief The base address of the captured record, passed in as the first 214 /// argument of the parallel region function. 215 llvm::Value *ThisValue; 216 217 /// \brief Captured 'this' type. 218 FieldDecl *CXXThisFieldDecl; 219 }; 220 CGCapturedStmtInfo *CapturedStmtInfo; 221 222 /// BoundsChecking - Emit run-time bounds checks. Higher values mean 223 /// potentially higher performance penalties. 224 unsigned char BoundsChecking; 225 226 /// \brief Whether any type-checking sanitizers are enabled. If \c false, 227 /// calls to EmitTypeCheck can be skipped. 228 bool SanitizePerformTypeCheck; 229 230 /// \brief Sanitizer options to use for this function. 231 const SanitizerOptions *SanOpts; 232 233 /// In ARC, whether we should autorelease the return value. 234 bool AutoreleaseResult; 235 236 const CodeGen::CGBlockInfo *BlockInfo; 237 llvm::Value *BlockPointer; 238 239 llvm::DenseMap<const VarDecl *, FieldDecl *> LambdaCaptureFields; 240 FieldDecl *LambdaThisCaptureField; 241 242 /// \brief A mapping from NRVO variables to the flags used to indicate 243 /// when the NRVO has been applied to this variable. 244 llvm::DenseMap<const VarDecl *, llvm::Value *> NRVOFlags; 245 246 EHScopeStack EHStack; 247 llvm::SmallVector<char, 256> LifetimeExtendedCleanupStack; 248 249 /// Header for data within LifetimeExtendedCleanupStack. 250 struct LifetimeExtendedCleanupHeader { 251 /// The size of the following cleanup object. 252 size_t Size : 29; 253 /// The kind of cleanup to push: a value from the CleanupKind enumeration. 254 unsigned Kind : 3; 255 256 size_t getSize() const { return Size; } 257 CleanupKind getKind() const { return static_cast<CleanupKind>(Kind); } 258 }; 259 260 /// i32s containing the indexes of the cleanup destinations. 261 llvm::AllocaInst *NormalCleanupDest; 262 263 unsigned NextCleanupDestIndex; 264 265 /// FirstBlockInfo - The head of a singly-linked-list of block layouts. 266 CGBlockInfo *FirstBlockInfo; 267 268 /// EHResumeBlock - Unified block containing a call to llvm.eh.resume. 269 llvm::BasicBlock *EHResumeBlock; 270 271 /// The exception slot. All landing pads write the current exception pointer 272 /// into this alloca. 273 llvm::Value *ExceptionSlot; 274 275 /// The selector slot. Under the MandatoryCleanup model, all landing pads 276 /// write the current selector value into this alloca. 277 llvm::AllocaInst *EHSelectorSlot; 278 279 /// Emits a landing pad for the current EH stack. 280 llvm::BasicBlock *EmitLandingPad(); 281 282 llvm::BasicBlock *getInvokeDestImpl(); 283 284 template <class T> 285 typename DominatingValue<T>::saved_type saveValueInCond(T value) { 286 return DominatingValue<T>::save(*this, value); 287 } 288 289 public: 290 /// ObjCEHValueStack - Stack of Objective-C exception values, used for 291 /// rethrows. 292 SmallVector<llvm::Value*, 8> ObjCEHValueStack; 293 294 /// A class controlling the emission of a finally block. 295 class FinallyInfo { 296 /// Where the catchall's edge through the cleanup should go. 297 JumpDest RethrowDest; 298 299 /// A function to call to enter the catch. 300 llvm::Constant *BeginCatchFn; 301 302 /// An i1 variable indicating whether or not the @finally is 303 /// running for an exception. 304 llvm::AllocaInst *ForEHVar; 305 306 /// An i8* variable into which the exception pointer to rethrow 307 /// has been saved. 308 llvm::AllocaInst *SavedExnVar; 309 310 public: 311 void enter(CodeGenFunction &CGF, const Stmt *Finally, 312 llvm::Constant *beginCatchFn, llvm::Constant *endCatchFn, 313 llvm::Constant *rethrowFn); 314 void exit(CodeGenFunction &CGF); 315 }; 316 317 /// pushFullExprCleanup - Push a cleanup to be run at the end of the 318 /// current full-expression. Safe against the possibility that 319 /// we're currently inside a conditionally-evaluated expression. 320 template <class T, class A0> 321 void pushFullExprCleanup(CleanupKind kind, A0 a0) { 322 // If we're not in a conditional branch, or if none of the 323 // arguments requires saving, then use the unconditional cleanup. 324 if (!isInConditionalBranch()) 325 return EHStack.pushCleanup<T>(kind, a0); 326 327 typename DominatingValue<A0>::saved_type a0_saved = saveValueInCond(a0); 328 329 typedef EHScopeStack::ConditionalCleanup1<T, A0> CleanupType; 330 EHStack.pushCleanup<CleanupType>(kind, a0_saved); 331 initFullExprCleanup(); 332 } 333 334 /// pushFullExprCleanup - Push a cleanup to be run at the end of the 335 /// current full-expression. Safe against the possibility that 336 /// we're currently inside a conditionally-evaluated expression. 337 template <class T, class A0, class A1> 338 void pushFullExprCleanup(CleanupKind kind, A0 a0, A1 a1) { 339 // If we're not in a conditional branch, or if none of the 340 // arguments requires saving, then use the unconditional cleanup. 341 if (!isInConditionalBranch()) 342 return EHStack.pushCleanup<T>(kind, a0, a1); 343 344 typename DominatingValue<A0>::saved_type a0_saved = saveValueInCond(a0); 345 typename DominatingValue<A1>::saved_type a1_saved = saveValueInCond(a1); 346 347 typedef EHScopeStack::ConditionalCleanup2<T, A0, A1> CleanupType; 348 EHStack.pushCleanup<CleanupType>(kind, a0_saved, a1_saved); 349 initFullExprCleanup(); 350 } 351 352 /// pushFullExprCleanup - Push a cleanup to be run at the end of the 353 /// current full-expression. Safe against the possibility that 354 /// we're currently inside a conditionally-evaluated expression. 355 template <class T, class A0, class A1, class A2> 356 void pushFullExprCleanup(CleanupKind kind, A0 a0, A1 a1, A2 a2) { 357 // If we're not in a conditional branch, or if none of the 358 // arguments requires saving, then use the unconditional cleanup. 359 if (!isInConditionalBranch()) { 360 return EHStack.pushCleanup<T>(kind, a0, a1, a2); 361 } 362 363 typename DominatingValue<A0>::saved_type a0_saved = saveValueInCond(a0); 364 typename DominatingValue<A1>::saved_type a1_saved = saveValueInCond(a1); 365 typename DominatingValue<A2>::saved_type a2_saved = saveValueInCond(a2); 366 367 typedef EHScopeStack::ConditionalCleanup3<T, A0, A1, A2> CleanupType; 368 EHStack.pushCleanup<CleanupType>(kind, a0_saved, a1_saved, a2_saved); 369 initFullExprCleanup(); 370 } 371 372 /// pushFullExprCleanup - Push a cleanup to be run at the end of the 373 /// current full-expression. Safe against the possibility that 374 /// we're currently inside a conditionally-evaluated expression. 375 template <class T, class A0, class A1, class A2, class A3> 376 void pushFullExprCleanup(CleanupKind kind, A0 a0, A1 a1, A2 a2, A3 a3) { 377 // If we're not in a conditional branch, or if none of the 378 // arguments requires saving, then use the unconditional cleanup. 379 if (!isInConditionalBranch()) { 380 return EHStack.pushCleanup<T>(kind, a0, a1, a2, a3); 381 } 382 383 typename DominatingValue<A0>::saved_type a0_saved = saveValueInCond(a0); 384 typename DominatingValue<A1>::saved_type a1_saved = saveValueInCond(a1); 385 typename DominatingValue<A2>::saved_type a2_saved = saveValueInCond(a2); 386 typename DominatingValue<A3>::saved_type a3_saved = saveValueInCond(a3); 387 388 typedef EHScopeStack::ConditionalCleanup4<T, A0, A1, A2, A3> CleanupType; 389 EHStack.pushCleanup<CleanupType>(kind, a0_saved, a1_saved, 390 a2_saved, a3_saved); 391 initFullExprCleanup(); 392 } 393 394 /// \brief Queue a cleanup to be pushed after finishing the current 395 /// full-expression. 396 template <class T, class A0, class A1, class A2, class A3> 397 void pushCleanupAfterFullExpr(CleanupKind Kind, A0 a0, A1 a1, A2 a2, A3 a3) { 398 assert(!isInConditionalBranch() && "can't defer conditional cleanup"); 399 400 LifetimeExtendedCleanupHeader Header = { sizeof(T), Kind }; 401 402 size_t OldSize = LifetimeExtendedCleanupStack.size(); 403 LifetimeExtendedCleanupStack.resize( 404 LifetimeExtendedCleanupStack.size() + sizeof(Header) + Header.Size); 405 406 char *Buffer = &LifetimeExtendedCleanupStack[OldSize]; 407 new (Buffer) LifetimeExtendedCleanupHeader(Header); 408 new (Buffer + sizeof(Header)) T(a0, a1, a2, a3); 409 } 410 411 /// Set up the last cleaup that was pushed as a conditional 412 /// full-expression cleanup. 413 void initFullExprCleanup(); 414 415 /// PushDestructorCleanup - Push a cleanup to call the 416 /// complete-object destructor of an object of the given type at the 417 /// given address. Does nothing if T is not a C++ class type with a 418 /// non-trivial destructor. 419 void PushDestructorCleanup(QualType T, llvm::Value *Addr); 420 421 /// PushDestructorCleanup - Push a cleanup to call the 422 /// complete-object variant of the given destructor on the object at 423 /// the given address. 424 void PushDestructorCleanup(const CXXDestructorDecl *Dtor, 425 llvm::Value *Addr); 426 427 /// PopCleanupBlock - Will pop the cleanup entry on the stack and 428 /// process all branch fixups. 429 void PopCleanupBlock(bool FallThroughIsBranchThrough = false); 430 431 /// DeactivateCleanupBlock - Deactivates the given cleanup block. 432 /// The block cannot be reactivated. Pops it if it's the top of the 433 /// stack. 434 /// 435 /// \param DominatingIP - An instruction which is known to 436 /// dominate the current IP (if set) and which lies along 437 /// all paths of execution between the current IP and the 438 /// the point at which the cleanup comes into scope. 439 void DeactivateCleanupBlock(EHScopeStack::stable_iterator Cleanup, 440 llvm::Instruction *DominatingIP); 441 442 /// ActivateCleanupBlock - Activates an initially-inactive cleanup. 443 /// Cannot be used to resurrect a deactivated cleanup. 444 /// 445 /// \param DominatingIP - An instruction which is known to 446 /// dominate the current IP (if set) and which lies along 447 /// all paths of execution between the current IP and the 448 /// the point at which the cleanup comes into scope. 449 void ActivateCleanupBlock(EHScopeStack::stable_iterator Cleanup, 450 llvm::Instruction *DominatingIP); 451 452 /// \brief Enters a new scope for capturing cleanups, all of which 453 /// will be executed once the scope is exited. 454 class RunCleanupsScope { 455 EHScopeStack::stable_iterator CleanupStackDepth; 456 size_t LifetimeExtendedCleanupStackSize; 457 bool OldDidCallStackSave; 458 protected: 459 bool PerformCleanup; 460 private: 461 462 RunCleanupsScope(const RunCleanupsScope &) LLVM_DELETED_FUNCTION; 463 void operator=(const RunCleanupsScope &) LLVM_DELETED_FUNCTION; 464 465 protected: 466 CodeGenFunction& CGF; 467 468 public: 469 /// \brief Enter a new cleanup scope. 470 explicit RunCleanupsScope(CodeGenFunction &CGF) 471 : PerformCleanup(true), CGF(CGF) 472 { 473 CleanupStackDepth = CGF.EHStack.stable_begin(); 474 LifetimeExtendedCleanupStackSize = 475 CGF.LifetimeExtendedCleanupStack.size(); 476 OldDidCallStackSave = CGF.DidCallStackSave; 477 CGF.DidCallStackSave = false; 478 } 479 480 /// \brief Exit this cleanup scope, emitting any accumulated 481 /// cleanups. 482 ~RunCleanupsScope() { 483 if (PerformCleanup) { 484 CGF.DidCallStackSave = OldDidCallStackSave; 485 CGF.PopCleanupBlocks(CleanupStackDepth, 486 LifetimeExtendedCleanupStackSize); 487 } 488 } 489 490 /// \brief Determine whether this scope requires any cleanups. 491 bool requiresCleanups() const { 492 return CGF.EHStack.stable_begin() != CleanupStackDepth; 493 } 494 495 /// \brief Force the emission of cleanups now, instead of waiting 496 /// until this object is destroyed. 497 void ForceCleanup() { 498 assert(PerformCleanup && "Already forced cleanup"); 499 CGF.DidCallStackSave = OldDidCallStackSave; 500 CGF.PopCleanupBlocks(CleanupStackDepth, 501 LifetimeExtendedCleanupStackSize); 502 PerformCleanup = false; 503 } 504 }; 505 506 class LexicalScope: protected RunCleanupsScope { 507 SourceRange Range; 508 SmallVector<const LabelDecl*, 4> Labels; 509 LexicalScope *ParentScope; 510 511 LexicalScope(const LexicalScope &) LLVM_DELETED_FUNCTION; 512 void operator=(const LexicalScope &) LLVM_DELETED_FUNCTION; 513 514 public: 515 /// \brief Enter a new cleanup scope. 516 explicit LexicalScope(CodeGenFunction &CGF, SourceRange Range) 517 : RunCleanupsScope(CGF), Range(Range), ParentScope(CGF.CurLexicalScope) { 518 CGF.CurLexicalScope = this; 519 if (CGDebugInfo *DI = CGF.getDebugInfo()) 520 DI->EmitLexicalBlockStart(CGF.Builder, Range.getBegin()); 521 } 522 523 void addLabel(const LabelDecl *label) { 524 assert(PerformCleanup && "adding label to dead scope?"); 525 Labels.push_back(label); 526 } 527 528 /// \brief Exit this cleanup scope, emitting any accumulated 529 /// cleanups. 530 ~LexicalScope() { 531 if (CGDebugInfo *DI = CGF.getDebugInfo()) 532 DI->EmitLexicalBlockEnd(CGF.Builder, Range.getEnd()); 533 534 // If we should perform a cleanup, force them now. Note that 535 // this ends the cleanup scope before rescoping any labels. 536 if (PerformCleanup) ForceCleanup(); 537 } 538 539 /// \brief Force the emission of cleanups now, instead of waiting 540 /// until this object is destroyed. 541 void ForceCleanup() { 542 CGF.CurLexicalScope = ParentScope; 543 RunCleanupsScope::ForceCleanup(); 544 545 if (!Labels.empty()) 546 rescopeLabels(); 547 } 548 549 void rescopeLabels(); 550 }; 551 552 553 /// \brief Takes the old cleanup stack size and emits the cleanup blocks 554 /// that have been added. 555 void PopCleanupBlocks(EHScopeStack::stable_iterator OldCleanupStackSize); 556 557 /// \brief Takes the old cleanup stack size and emits the cleanup blocks 558 /// that have been added, then adds all lifetime-extended cleanups from 559 /// the given position to the stack. 560 void PopCleanupBlocks(EHScopeStack::stable_iterator OldCleanupStackSize, 561 size_t OldLifetimeExtendedStackSize); 562 563 void ResolveBranchFixups(llvm::BasicBlock *Target); 564 565 /// The given basic block lies in the current EH scope, but may be a 566 /// target of a potentially scope-crossing jump; get a stable handle 567 /// to which we can perform this jump later. 568 JumpDest getJumpDestInCurrentScope(llvm::BasicBlock *Target) { 569 return JumpDest(Target, 570 EHStack.getInnermostNormalCleanup(), 571 NextCleanupDestIndex++); 572 } 573 574 /// The given basic block lies in the current EH scope, but may be a 575 /// target of a potentially scope-crossing jump; get a stable handle 576 /// to which we can perform this jump later. 577 JumpDest getJumpDestInCurrentScope(StringRef Name = StringRef()) { 578 return getJumpDestInCurrentScope(createBasicBlock(Name)); 579 } 580 581 /// EmitBranchThroughCleanup - Emit a branch from the current insert 582 /// block through the normal cleanup handling code (if any) and then 583 /// on to \arg Dest. 584 void EmitBranchThroughCleanup(JumpDest Dest); 585 586 /// isObviouslyBranchWithoutCleanups - Return true if a branch to the 587 /// specified destination obviously has no cleanups to run. 'false' is always 588 /// a conservatively correct answer for this method. 589 bool isObviouslyBranchWithoutCleanups(JumpDest Dest) const; 590 591 /// popCatchScope - Pops the catch scope at the top of the EHScope 592 /// stack, emitting any required code (other than the catch handlers 593 /// themselves). 594 void popCatchScope(); 595 596 llvm::BasicBlock *getEHResumeBlock(bool isCleanup); 597 llvm::BasicBlock *getEHDispatchBlock(EHScopeStack::stable_iterator scope); 598 599 /// An object to manage conditionally-evaluated expressions. 600 class ConditionalEvaluation { 601 llvm::BasicBlock *StartBB; 602 603 public: 604 ConditionalEvaluation(CodeGenFunction &CGF) 605 : StartBB(CGF.Builder.GetInsertBlock()) {} 606 607 void begin(CodeGenFunction &CGF) { 608 assert(CGF.OutermostConditional != this); 609 if (!CGF.OutermostConditional) 610 CGF.OutermostConditional = this; 611 } 612 613 void end(CodeGenFunction &CGF) { 614 assert(CGF.OutermostConditional != 0); 615 if (CGF.OutermostConditional == this) 616 CGF.OutermostConditional = 0; 617 } 618 619 /// Returns a block which will be executed prior to each 620 /// evaluation of the conditional code. 621 llvm::BasicBlock *getStartingBlock() const { 622 return StartBB; 623 } 624 }; 625 626 /// isInConditionalBranch - Return true if we're currently emitting 627 /// one branch or the other of a conditional expression. 628 bool isInConditionalBranch() const { return OutermostConditional != 0; } 629 630 void setBeforeOutermostConditional(llvm::Value *value, llvm::Value *addr) { 631 assert(isInConditionalBranch()); 632 llvm::BasicBlock *block = OutermostConditional->getStartingBlock(); 633 new llvm::StoreInst(value, addr, &block->back()); 634 } 635 636 /// An RAII object to record that we're evaluating a statement 637 /// expression. 638 class StmtExprEvaluation { 639 CodeGenFunction &CGF; 640 641 /// We have to save the outermost conditional: cleanups in a 642 /// statement expression aren't conditional just because the 643 /// StmtExpr is. 644 ConditionalEvaluation *SavedOutermostConditional; 645 646 public: 647 StmtExprEvaluation(CodeGenFunction &CGF) 648 : CGF(CGF), SavedOutermostConditional(CGF.OutermostConditional) { 649 CGF.OutermostConditional = 0; 650 } 651 652 ~StmtExprEvaluation() { 653 CGF.OutermostConditional = SavedOutermostConditional; 654 CGF.EnsureInsertPoint(); 655 } 656 }; 657 658 /// An object which temporarily prevents a value from being 659 /// destroyed by aggressive peephole optimizations that assume that 660 /// all uses of a value have been realized in the IR. 661 class PeepholeProtection { 662 llvm::Instruction *Inst; 663 friend class CodeGenFunction; 664 665 public: 666 PeepholeProtection() : Inst(0) {} 667 }; 668 669 /// A non-RAII class containing all the information about a bound 670 /// opaque value. OpaqueValueMapping, below, is a RAII wrapper for 671 /// this which makes individual mappings very simple; using this 672 /// class directly is useful when you have a variable number of 673 /// opaque values or don't want the RAII functionality for some 674 /// reason. 675 class OpaqueValueMappingData { 676 const OpaqueValueExpr *OpaqueValue; 677 bool BoundLValue; 678 CodeGenFunction::PeepholeProtection Protection; 679 680 OpaqueValueMappingData(const OpaqueValueExpr *ov, 681 bool boundLValue) 682 : OpaqueValue(ov), BoundLValue(boundLValue) {} 683 public: 684 OpaqueValueMappingData() : OpaqueValue(0) {} 685 686 static bool shouldBindAsLValue(const Expr *expr) { 687 // gl-values should be bound as l-values for obvious reasons. 688 // Records should be bound as l-values because IR generation 689 // always keeps them in memory. Expressions of function type 690 // act exactly like l-values but are formally required to be 691 // r-values in C. 692 return expr->isGLValue() || 693 expr->getType()->isFunctionType() || 694 hasAggregateEvaluationKind(expr->getType()); 695 } 696 697 static OpaqueValueMappingData bind(CodeGenFunction &CGF, 698 const OpaqueValueExpr *ov, 699 const Expr *e) { 700 if (shouldBindAsLValue(ov)) 701 return bind(CGF, ov, CGF.EmitLValue(e)); 702 return bind(CGF, ov, CGF.EmitAnyExpr(e)); 703 } 704 705 static OpaqueValueMappingData bind(CodeGenFunction &CGF, 706 const OpaqueValueExpr *ov, 707 const LValue &lv) { 708 assert(shouldBindAsLValue(ov)); 709 CGF.OpaqueLValues.insert(std::make_pair(ov, lv)); 710 return OpaqueValueMappingData(ov, true); 711 } 712 713 static OpaqueValueMappingData bind(CodeGenFunction &CGF, 714 const OpaqueValueExpr *ov, 715 const RValue &rv) { 716 assert(!shouldBindAsLValue(ov)); 717 CGF.OpaqueRValues.insert(std::make_pair(ov, rv)); 718 719 OpaqueValueMappingData data(ov, false); 720 721 // Work around an extremely aggressive peephole optimization in 722 // EmitScalarConversion which assumes that all other uses of a 723 // value are extant. 724 data.Protection = CGF.protectFromPeepholes(rv); 725 726 return data; 727 } 728 729 bool isValid() const { return OpaqueValue != 0; } 730 void clear() { OpaqueValue = 0; } 731 732 void unbind(CodeGenFunction &CGF) { 733 assert(OpaqueValue && "no data to unbind!"); 734 735 if (BoundLValue) { 736 CGF.OpaqueLValues.erase(OpaqueValue); 737 } else { 738 CGF.OpaqueRValues.erase(OpaqueValue); 739 CGF.unprotectFromPeepholes(Protection); 740 } 741 } 742 }; 743 744 /// An RAII object to set (and then clear) a mapping for an OpaqueValueExpr. 745 class OpaqueValueMapping { 746 CodeGenFunction &CGF; 747 OpaqueValueMappingData Data; 748 749 public: 750 static bool shouldBindAsLValue(const Expr *expr) { 751 return OpaqueValueMappingData::shouldBindAsLValue(expr); 752 } 753 754 /// Build the opaque value mapping for the given conditional 755 /// operator if it's the GNU ?: extension. This is a common 756 /// enough pattern that the convenience operator is really 757 /// helpful. 758 /// 759 OpaqueValueMapping(CodeGenFunction &CGF, 760 const AbstractConditionalOperator *op) : CGF(CGF) { 761 if (isa<ConditionalOperator>(op)) 762 // Leave Data empty. 763 return; 764 765 const BinaryConditionalOperator *e = cast<BinaryConditionalOperator>(op); 766 Data = OpaqueValueMappingData::bind(CGF, e->getOpaqueValue(), 767 e->getCommon()); 768 } 769 770 OpaqueValueMapping(CodeGenFunction &CGF, 771 const OpaqueValueExpr *opaqueValue, 772 LValue lvalue) 773 : CGF(CGF), Data(OpaqueValueMappingData::bind(CGF, opaqueValue, lvalue)) { 774 } 775 776 OpaqueValueMapping(CodeGenFunction &CGF, 777 const OpaqueValueExpr *opaqueValue, 778 RValue rvalue) 779 : CGF(CGF), Data(OpaqueValueMappingData::bind(CGF, opaqueValue, rvalue)) { 780 } 781 782 void pop() { 783 Data.unbind(CGF); 784 Data.clear(); 785 } 786 787 ~OpaqueValueMapping() { 788 if (Data.isValid()) Data.unbind(CGF); 789 } 790 }; 791 792 /// getByrefValueFieldNumber - Given a declaration, returns the LLVM field 793 /// number that holds the value. 794 unsigned getByRefValueLLVMField(const ValueDecl *VD) const; 795 796 /// BuildBlockByrefAddress - Computes address location of the 797 /// variable which is declared as __block. 798 llvm::Value *BuildBlockByrefAddress(llvm::Value *BaseAddr, 799 const VarDecl *V); 800 private: 801 CGDebugInfo *DebugInfo; 802 bool DisableDebugInfo; 803 804 /// DidCallStackSave - Whether llvm.stacksave has been called. Used to avoid 805 /// calling llvm.stacksave for multiple VLAs in the same scope. 806 bool DidCallStackSave; 807 808 /// IndirectBranch - The first time an indirect goto is seen we create a block 809 /// with an indirect branch. Every time we see the address of a label taken, 810 /// we add the label to the indirect goto. Every subsequent indirect goto is 811 /// codegen'd as a jump to the IndirectBranch's basic block. 812 llvm::IndirectBrInst *IndirectBranch; 813 814 /// LocalDeclMap - This keeps track of the LLVM allocas or globals for local C 815 /// decls. 816 typedef llvm::DenseMap<const Decl*, llvm::Value*> DeclMapTy; 817 DeclMapTy LocalDeclMap; 818 819 /// LabelMap - This keeps track of the LLVM basic block for each C label. 820 llvm::DenseMap<const LabelDecl*, JumpDest> LabelMap; 821 822 // BreakContinueStack - This keeps track of where break and continue 823 // statements should jump to. 824 struct BreakContinue { 825 BreakContinue(JumpDest Break, JumpDest Continue) 826 : BreakBlock(Break), ContinueBlock(Continue) {} 827 828 JumpDest BreakBlock; 829 JumpDest ContinueBlock; 830 }; 831 SmallVector<BreakContinue, 8> BreakContinueStack; 832 833 CodeGenPGO PGO; 834 835 public: 836 /// Get a counter for instrumentation of the region associated with the given 837 /// statement. 838 RegionCounter getPGORegionCounter(const Stmt *S) { 839 return RegionCounter(PGO, S); 840 } 841 private: 842 843 /// SwitchInsn - This is nearest current switch instruction. It is null if 844 /// current context is not in a switch. 845 llvm::SwitchInst *SwitchInsn; 846 /// The branch weights of SwitchInsn when doing instrumentation based PGO. 847 SmallVector<uint64_t, 16> *SwitchWeights; 848 849 /// CaseRangeBlock - This block holds if condition check for last case 850 /// statement range in current switch instruction. 851 llvm::BasicBlock *CaseRangeBlock; 852 853 /// OpaqueLValues - Keeps track of the current set of opaque value 854 /// expressions. 855 llvm::DenseMap<const OpaqueValueExpr *, LValue> OpaqueLValues; 856 llvm::DenseMap<const OpaqueValueExpr *, RValue> OpaqueRValues; 857 858 // VLASizeMap - This keeps track of the associated size for each VLA type. 859 // We track this by the size expression rather than the type itself because 860 // in certain situations, like a const qualifier applied to an VLA typedef, 861 // multiple VLA types can share the same size expression. 862 // FIXME: Maybe this could be a stack of maps that is pushed/popped as we 863 // enter/leave scopes. 864 llvm::DenseMap<const Expr*, llvm::Value*> VLASizeMap; 865 866 /// A block containing a single 'unreachable' instruction. Created 867 /// lazily by getUnreachableBlock(). 868 llvm::BasicBlock *UnreachableBlock; 869 870 /// Counts of the number return expressions in the function. 871 unsigned NumReturnExprs; 872 873 /// Count the number of simple (constant) return expressions in the function. 874 unsigned NumSimpleReturnExprs; 875 876 /// The last regular (non-return) debug location (breakpoint) in the function. 877 SourceLocation LastStopPoint; 878 879 public: 880 /// A scope within which we are constructing the fields of an object which 881 /// might use a CXXDefaultInitExpr. This stashes away a 'this' value to use 882 /// if we need to evaluate a CXXDefaultInitExpr within the evaluation. 883 class FieldConstructionScope { 884 public: 885 FieldConstructionScope(CodeGenFunction &CGF, llvm::Value *This) 886 : CGF(CGF), OldCXXDefaultInitExprThis(CGF.CXXDefaultInitExprThis) { 887 CGF.CXXDefaultInitExprThis = This; 888 } 889 ~FieldConstructionScope() { 890 CGF.CXXDefaultInitExprThis = OldCXXDefaultInitExprThis; 891 } 892 893 private: 894 CodeGenFunction &CGF; 895 llvm::Value *OldCXXDefaultInitExprThis; 896 }; 897 898 /// The scope of a CXXDefaultInitExpr. Within this scope, the value of 'this' 899 /// is overridden to be the object under construction. 900 class CXXDefaultInitExprScope { 901 public: 902 CXXDefaultInitExprScope(CodeGenFunction &CGF) 903 : CGF(CGF), OldCXXThisValue(CGF.CXXThisValue) { 904 CGF.CXXThisValue = CGF.CXXDefaultInitExprThis; 905 } 906 ~CXXDefaultInitExprScope() { 907 CGF.CXXThisValue = OldCXXThisValue; 908 } 909 910 public: 911 CodeGenFunction &CGF; 912 llvm::Value *OldCXXThisValue; 913 }; 914 915 private: 916 /// CXXThisDecl - When generating code for a C++ member function, 917 /// this will hold the implicit 'this' declaration. 918 ImplicitParamDecl *CXXABIThisDecl; 919 llvm::Value *CXXABIThisValue; 920 llvm::Value *CXXThisValue; 921 922 /// The value of 'this' to use when evaluating CXXDefaultInitExprs within 923 /// this expression. 924 llvm::Value *CXXDefaultInitExprThis; 925 926 /// CXXStructorImplicitParamDecl - When generating code for a constructor or 927 /// destructor, this will hold the implicit argument (e.g. VTT). 928 ImplicitParamDecl *CXXStructorImplicitParamDecl; 929 llvm::Value *CXXStructorImplicitParamValue; 930 931 /// OutermostConditional - Points to the outermost active 932 /// conditional control. This is used so that we know if a 933 /// temporary should be destroyed conditionally. 934 ConditionalEvaluation *OutermostConditional; 935 936 /// The current lexical scope. 937 LexicalScope *CurLexicalScope; 938 939 /// The current source location that should be used for exception 940 /// handling code. 941 SourceLocation CurEHLocation; 942 943 /// ByrefValueInfoMap - For each __block variable, contains a pair of the LLVM 944 /// type as well as the field number that contains the actual data. 945 llvm::DenseMap<const ValueDecl *, std::pair<llvm::Type *, 946 unsigned> > ByRefValueInfo; 947 948 llvm::BasicBlock *TerminateLandingPad; 949 llvm::BasicBlock *TerminateHandler; 950 llvm::BasicBlock *TrapBB; 951 952 /// Add a kernel metadata node to the named metadata node 'opencl.kernels'. 953 /// In the kernel metadata node, reference the kernel function and metadata 954 /// nodes for its optional attribute qualifiers (OpenCL 1.1 6.7.2): 955 /// - A node for the vec_type_hint(<type>) qualifier contains string 956 /// "vec_type_hint", an undefined value of the <type> data type, 957 /// and a Boolean that is true if the <type> is integer and signed. 958 /// - A node for the work_group_size_hint(X,Y,Z) qualifier contains string 959 /// "work_group_size_hint", and three 32-bit integers X, Y and Z. 960 /// - A node for the reqd_work_group_size(X,Y,Z) qualifier contains string 961 /// "reqd_work_group_size", and three 32-bit integers X, Y and Z. 962 void EmitOpenCLKernelMetadata(const FunctionDecl *FD, 963 llvm::Function *Fn); 964 965 public: 966 CodeGenFunction(CodeGenModule &cgm, bool suppressNewContext=false); 967 ~CodeGenFunction(); 968 969 CodeGenTypes &getTypes() const { return CGM.getTypes(); } 970 ASTContext &getContext() const { return CGM.getContext(); } 971 CGDebugInfo *getDebugInfo() { 972 if (DisableDebugInfo) 973 return NULL; 974 return DebugInfo; 975 } 976 void disableDebugInfo() { DisableDebugInfo = true; } 977 void enableDebugInfo() { DisableDebugInfo = false; } 978 979 bool shouldUseFusedARCCalls() { 980 return CGM.getCodeGenOpts().OptimizationLevel == 0; 981 } 982 983 const LangOptions &getLangOpts() const { return CGM.getLangOpts(); } 984 985 /// Returns a pointer to the function's exception object and selector slot, 986 /// which is assigned in every landing pad. 987 llvm::Value *getExceptionSlot(); 988 llvm::Value *getEHSelectorSlot(); 989 990 /// Returns the contents of the function's exception object and selector 991 /// slots. 992 llvm::Value *getExceptionFromSlot(); 993 llvm::Value *getSelectorFromSlot(); 994 995 llvm::Value *getNormalCleanupDestSlot(); 996 997 llvm::BasicBlock *getUnreachableBlock() { 998 if (!UnreachableBlock) { 999 UnreachableBlock = createBasicBlock("unreachable"); 1000 new llvm::UnreachableInst(getLLVMContext(), UnreachableBlock); 1001 } 1002 return UnreachableBlock; 1003 } 1004 1005 llvm::BasicBlock *getInvokeDest() { 1006 if (!EHStack.requiresLandingPad()) return 0; 1007 return getInvokeDestImpl(); 1008 } 1009 1010 const TargetInfo &getTarget() const { return Target; } 1011 llvm::LLVMContext &getLLVMContext() { return CGM.getLLVMContext(); } 1012 1013 //===--------------------------------------------------------------------===// 1014 // Cleanups 1015 //===--------------------------------------------------------------------===// 1016 1017 typedef void Destroyer(CodeGenFunction &CGF, llvm::Value *addr, QualType ty); 1018 1019 void pushIrregularPartialArrayCleanup(llvm::Value *arrayBegin, 1020 llvm::Value *arrayEndPointer, 1021 QualType elementType, 1022 Destroyer *destroyer); 1023 void pushRegularPartialArrayCleanup(llvm::Value *arrayBegin, 1024 llvm::Value *arrayEnd, 1025 QualType elementType, 1026 Destroyer *destroyer); 1027 1028 void pushDestroy(QualType::DestructionKind dtorKind, 1029 llvm::Value *addr, QualType type); 1030 void pushEHDestroy(QualType::DestructionKind dtorKind, 1031 llvm::Value *addr, QualType type); 1032 void pushDestroy(CleanupKind kind, llvm::Value *addr, QualType type, 1033 Destroyer *destroyer, bool useEHCleanupForArray); 1034 void pushLifetimeExtendedDestroy(CleanupKind kind, llvm::Value *addr, 1035 QualType type, Destroyer *destroyer, 1036 bool useEHCleanupForArray); 1037 void pushStackRestore(CleanupKind kind, llvm::Value *SPMem); 1038 void emitDestroy(llvm::Value *addr, QualType type, Destroyer *destroyer, 1039 bool useEHCleanupForArray); 1040 llvm::Function *generateDestroyHelper(llvm::Constant *addr, QualType type, 1041 Destroyer *destroyer, 1042 bool useEHCleanupForArray, 1043 const VarDecl *VD); 1044 void emitArrayDestroy(llvm::Value *begin, llvm::Value *end, 1045 QualType type, Destroyer *destroyer, 1046 bool checkZeroLength, bool useEHCleanup); 1047 1048 Destroyer *getDestroyer(QualType::DestructionKind destructionKind); 1049 1050 /// Determines whether an EH cleanup is required to destroy a type 1051 /// with the given destruction kind. 1052 bool needsEHCleanup(QualType::DestructionKind kind) { 1053 switch (kind) { 1054 case QualType::DK_none: 1055 return false; 1056 case QualType::DK_cxx_destructor: 1057 case QualType::DK_objc_weak_lifetime: 1058 return getLangOpts().Exceptions; 1059 case QualType::DK_objc_strong_lifetime: 1060 return getLangOpts().Exceptions && 1061 CGM.getCodeGenOpts().ObjCAutoRefCountExceptions; 1062 } 1063 llvm_unreachable("bad destruction kind"); 1064 } 1065 1066 CleanupKind getCleanupKind(QualType::DestructionKind kind) { 1067 return (needsEHCleanup(kind) ? NormalAndEHCleanup : NormalCleanup); 1068 } 1069 1070 //===--------------------------------------------------------------------===// 1071 // Objective-C 1072 //===--------------------------------------------------------------------===// 1073 1074 void GenerateObjCMethod(const ObjCMethodDecl *OMD); 1075 1076 void StartObjCMethod(const ObjCMethodDecl *MD, 1077 const ObjCContainerDecl *CD, 1078 SourceLocation StartLoc); 1079 1080 /// GenerateObjCGetter - Synthesize an Objective-C property getter function. 1081 void GenerateObjCGetter(ObjCImplementationDecl *IMP, 1082 const ObjCPropertyImplDecl *PID); 1083 void generateObjCGetterBody(const ObjCImplementationDecl *classImpl, 1084 const ObjCPropertyImplDecl *propImpl, 1085 const ObjCMethodDecl *GetterMothodDecl, 1086 llvm::Constant *AtomicHelperFn); 1087 1088 void GenerateObjCCtorDtorMethod(ObjCImplementationDecl *IMP, 1089 ObjCMethodDecl *MD, bool ctor); 1090 1091 /// GenerateObjCSetter - Synthesize an Objective-C property setter function 1092 /// for the given property. 1093 void GenerateObjCSetter(ObjCImplementationDecl *IMP, 1094 const ObjCPropertyImplDecl *PID); 1095 void generateObjCSetterBody(const ObjCImplementationDecl *classImpl, 1096 const ObjCPropertyImplDecl *propImpl, 1097 llvm::Constant *AtomicHelperFn); 1098 bool IndirectObjCSetterArg(const CGFunctionInfo &FI); 1099 bool IvarTypeWithAggrGCObjects(QualType Ty); 1100 1101 //===--------------------------------------------------------------------===// 1102 // Block Bits 1103 //===--------------------------------------------------------------------===// 1104 1105 llvm::Value *EmitBlockLiteral(const BlockExpr *); 1106 llvm::Value *EmitBlockLiteral(const CGBlockInfo &Info); 1107 static void destroyBlockInfos(CGBlockInfo *info); 1108 llvm::Constant *BuildDescriptorBlockDecl(const BlockExpr *, 1109 const CGBlockInfo &Info, 1110 llvm::StructType *, 1111 llvm::Constant *BlockVarLayout); 1112 1113 llvm::Function *GenerateBlockFunction(GlobalDecl GD, 1114 const CGBlockInfo &Info, 1115 const DeclMapTy &ldm, 1116 bool IsLambdaConversionToBlock); 1117 1118 llvm::Constant *GenerateCopyHelperFunction(const CGBlockInfo &blockInfo); 1119 llvm::Constant *GenerateDestroyHelperFunction(const CGBlockInfo &blockInfo); 1120 llvm::Constant *GenerateObjCAtomicSetterCopyHelperFunction( 1121 const ObjCPropertyImplDecl *PID); 1122 llvm::Constant *GenerateObjCAtomicGetterCopyHelperFunction( 1123 const ObjCPropertyImplDecl *PID); 1124 llvm::Value *EmitBlockCopyAndAutorelease(llvm::Value *Block, QualType Ty); 1125 1126 void BuildBlockRelease(llvm::Value *DeclPtr, BlockFieldFlags flags); 1127 1128 class AutoVarEmission; 1129 1130 void emitByrefStructureInit(const AutoVarEmission &emission); 1131 void enterByrefCleanup(const AutoVarEmission &emission); 1132 1133 llvm::Value *LoadBlockStruct() { 1134 assert(BlockPointer && "no block pointer set!"); 1135 return BlockPointer; 1136 } 1137 1138 void AllocateBlockCXXThisPointer(const CXXThisExpr *E); 1139 void AllocateBlockDecl(const DeclRefExpr *E); 1140 llvm::Value *GetAddrOfBlockDecl(const VarDecl *var, bool ByRef); 1141 llvm::Type *BuildByRefType(const VarDecl *var); 1142 1143 void GenerateCode(GlobalDecl GD, llvm::Function *Fn, 1144 const CGFunctionInfo &FnInfo); 1145 /// \brief Emit code for the start of a function. 1146 /// \param Loc The location to be associated with the function. 1147 /// \param StartLoc The location of the function body. 1148 void StartFunction(GlobalDecl GD, 1149 QualType RetTy, 1150 llvm::Function *Fn, 1151 const CGFunctionInfo &FnInfo, 1152 const FunctionArgList &Args, 1153 SourceLocation Loc = SourceLocation(), 1154 SourceLocation StartLoc = SourceLocation()); 1155 1156 void EmitConstructorBody(FunctionArgList &Args); 1157 void EmitDestructorBody(FunctionArgList &Args); 1158 void emitImplicitAssignmentOperatorBody(FunctionArgList &Args); 1159 void EmitFunctionBody(FunctionArgList &Args, const Stmt *Body); 1160 void EmitBlockWithFallThrough(llvm::BasicBlock *BB, RegionCounter &Cnt); 1161 1162 void EmitForwardingCallToLambda(const CXXMethodDecl *LambdaCallOperator, 1163 CallArgList &CallArgs); 1164 void EmitLambdaToBlockPointerBody(FunctionArgList &Args); 1165 void EmitLambdaBlockInvokeBody(); 1166 void EmitLambdaDelegatingInvokeBody(const CXXMethodDecl *MD); 1167 void EmitLambdaStaticInvokeFunction(const CXXMethodDecl *MD); 1168 1169 /// EmitReturnBlock - Emit the unified return block, trying to avoid its 1170 /// emission when possible. 1171 void EmitReturnBlock(); 1172 1173 /// FinishFunction - Complete IR generation of the current function. It is 1174 /// legal to call this function even if there is no current insertion point. 1175 void FinishFunction(SourceLocation EndLoc=SourceLocation()); 1176 1177 void StartThunk(llvm::Function *Fn, GlobalDecl GD, const CGFunctionInfo &FnInfo); 1178 1179 void EmitCallAndReturnForThunk(GlobalDecl GD, llvm::Value *Callee, 1180 const ThunkInfo *Thunk); 1181 1182 /// GenerateThunk - Generate a thunk for the given method. 1183 void GenerateThunk(llvm::Function *Fn, const CGFunctionInfo &FnInfo, 1184 GlobalDecl GD, const ThunkInfo &Thunk); 1185 1186 void GenerateVarArgsThunk(llvm::Function *Fn, const CGFunctionInfo &FnInfo, 1187 GlobalDecl GD, const ThunkInfo &Thunk); 1188 1189 void EmitCtorPrologue(const CXXConstructorDecl *CD, CXXCtorType Type, 1190 FunctionArgList &Args); 1191 1192 void EmitInitializerForField(FieldDecl *Field, LValue LHS, Expr *Init, 1193 ArrayRef<VarDecl *> ArrayIndexes); 1194 1195 /// InitializeVTablePointer - Initialize the vtable pointer of the given 1196 /// subobject. 1197 /// 1198 void InitializeVTablePointer(BaseSubobject Base, 1199 const CXXRecordDecl *NearestVBase, 1200 CharUnits OffsetFromNearestVBase, 1201 const CXXRecordDecl *VTableClass); 1202 1203 typedef llvm::SmallPtrSet<const CXXRecordDecl *, 4> VisitedVirtualBasesSetTy; 1204 void InitializeVTablePointers(BaseSubobject Base, 1205 const CXXRecordDecl *NearestVBase, 1206 CharUnits OffsetFromNearestVBase, 1207 bool BaseIsNonVirtualPrimaryBase, 1208 const CXXRecordDecl *VTableClass, 1209 VisitedVirtualBasesSetTy& VBases); 1210 1211 void InitializeVTablePointers(const CXXRecordDecl *ClassDecl); 1212 1213 /// GetVTablePtr - Return the Value of the vtable pointer member pointed 1214 /// to by This. 1215 llvm::Value *GetVTablePtr(llvm::Value *This, llvm::Type *Ty); 1216 1217 1218 /// CanDevirtualizeMemberFunctionCalls - Checks whether virtual calls on given 1219 /// expr can be devirtualized. 1220 bool CanDevirtualizeMemberFunctionCall(const Expr *Base, 1221 const CXXMethodDecl *MD); 1222 1223 /// EnterDtorCleanups - Enter the cleanups necessary to complete the 1224 /// given phase of destruction for a destructor. The end result 1225 /// should call destructors on members and base classes in reverse 1226 /// order of their construction. 1227 void EnterDtorCleanups(const CXXDestructorDecl *Dtor, CXXDtorType Type); 1228 1229 /// ShouldInstrumentFunction - Return true if the current function should be 1230 /// instrumented with __cyg_profile_func_* calls 1231 bool ShouldInstrumentFunction(); 1232 1233 /// EmitFunctionInstrumentation - Emit LLVM code to call the specified 1234 /// instrumentation function with the current function and the call site, if 1235 /// function instrumentation is enabled. 1236 void EmitFunctionInstrumentation(const char *Fn); 1237 1238 /// EmitMCountInstrumentation - Emit call to .mcount. 1239 void EmitMCountInstrumentation(); 1240 1241 /// EmitFunctionProlog - Emit the target specific LLVM code to load the 1242 /// arguments for the given function. This is also responsible for naming the 1243 /// LLVM function arguments. 1244 void EmitFunctionProlog(const CGFunctionInfo &FI, 1245 llvm::Function *Fn, 1246 const FunctionArgList &Args); 1247 1248 /// EmitFunctionEpilog - Emit the target specific LLVM code to return the 1249 /// given temporary. 1250 void EmitFunctionEpilog(const CGFunctionInfo &FI, bool EmitRetDbgLoc, 1251 SourceLocation EndLoc); 1252 1253 /// EmitStartEHSpec - Emit the start of the exception spec. 1254 void EmitStartEHSpec(const Decl *D); 1255 1256 /// EmitEndEHSpec - Emit the end of the exception spec. 1257 void EmitEndEHSpec(const Decl *D); 1258 1259 /// getTerminateLandingPad - Return a landing pad that just calls terminate. 1260 llvm::BasicBlock *getTerminateLandingPad(); 1261 1262 /// getTerminateHandler - Return a handler (not a landing pad, just 1263 /// a catch handler) that just calls terminate. This is used when 1264 /// a terminate scope encloses a try. 1265 llvm::BasicBlock *getTerminateHandler(); 1266 1267 llvm::Type *ConvertTypeForMem(QualType T); 1268 llvm::Type *ConvertType(QualType T); 1269 llvm::Type *ConvertType(const TypeDecl *T) { 1270 return ConvertType(getContext().getTypeDeclType(T)); 1271 } 1272 1273 /// LoadObjCSelf - Load the value of self. This function is only valid while 1274 /// generating code for an Objective-C method. 1275 llvm::Value *LoadObjCSelf(); 1276 1277 /// TypeOfSelfObject - Return type of object that this self represents. 1278 QualType TypeOfSelfObject(); 1279 1280 /// hasAggregateLLVMType - Return true if the specified AST type will map into 1281 /// an aggregate LLVM type or is void. 1282 static TypeEvaluationKind getEvaluationKind(QualType T); 1283 1284 static bool hasScalarEvaluationKind(QualType T) { 1285 return getEvaluationKind(T) == TEK_Scalar; 1286 } 1287 1288 static bool hasAggregateEvaluationKind(QualType T) { 1289 return getEvaluationKind(T) == TEK_Aggregate; 1290 } 1291 1292 /// createBasicBlock - Create an LLVM basic block. 1293 llvm::BasicBlock *createBasicBlock(const Twine &name = "", 1294 llvm::Function *parent = 0, 1295 llvm::BasicBlock *before = 0) { 1296 #ifdef NDEBUG 1297 return llvm::BasicBlock::Create(getLLVMContext(), "", parent, before); 1298 #else 1299 return llvm::BasicBlock::Create(getLLVMContext(), name, parent, before); 1300 #endif 1301 } 1302 1303 /// getBasicBlockForLabel - Return the LLVM basicblock that the specified 1304 /// label maps to. 1305 JumpDest getJumpDestForLabel(const LabelDecl *S); 1306 1307 /// SimplifyForwardingBlocks - If the given basic block is only a branch to 1308 /// another basic block, simplify it. This assumes that no other code could 1309 /// potentially reference the basic block. 1310 void SimplifyForwardingBlocks(llvm::BasicBlock *BB); 1311 1312 /// EmitBlock - Emit the given block \arg BB and set it as the insert point, 1313 /// adding a fall-through branch from the current insert block if 1314 /// necessary. It is legal to call this function even if there is no current 1315 /// insertion point. 1316 /// 1317 /// IsFinished - If true, indicates that the caller has finished emitting 1318 /// branches to the given block and does not expect to emit code into it. This 1319 /// means the block can be ignored if it is unreachable. 1320 void EmitBlock(llvm::BasicBlock *BB, bool IsFinished=false); 1321 1322 /// EmitBlockAfterUses - Emit the given block somewhere hopefully 1323 /// near its uses, and leave the insertion point in it. 1324 void EmitBlockAfterUses(llvm::BasicBlock *BB); 1325 1326 /// EmitBranch - Emit a branch to the specified basic block from the current 1327 /// insert block, taking care to avoid creation of branches from dummy 1328 /// blocks. It is legal to call this function even if there is no current 1329 /// insertion point. 1330 /// 1331 /// This function clears the current insertion point. The caller should follow 1332 /// calls to this function with calls to Emit*Block prior to generation new 1333 /// code. 1334 void EmitBranch(llvm::BasicBlock *Block); 1335 1336 /// HaveInsertPoint - True if an insertion point is defined. If not, this 1337 /// indicates that the current code being emitted is unreachable. 1338 bool HaveInsertPoint() const { 1339 return Builder.GetInsertBlock() != 0; 1340 } 1341 1342 /// EnsureInsertPoint - Ensure that an insertion point is defined so that 1343 /// emitted IR has a place to go. Note that by definition, if this function 1344 /// creates a block then that block is unreachable; callers may do better to 1345 /// detect when no insertion point is defined and simply skip IR generation. 1346 void EnsureInsertPoint() { 1347 if (!HaveInsertPoint()) 1348 EmitBlock(createBasicBlock()); 1349 } 1350 1351 /// ErrorUnsupported - Print out an error that codegen doesn't support the 1352 /// specified stmt yet. 1353 void ErrorUnsupported(const Stmt *S, const char *Type); 1354 1355 //===--------------------------------------------------------------------===// 1356 // Helpers 1357 //===--------------------------------------------------------------------===// 1358 1359 LValue MakeAddrLValue(llvm::Value *V, QualType T, 1360 CharUnits Alignment = CharUnits()) { 1361 return LValue::MakeAddr(V, T, Alignment, getContext(), 1362 CGM.getTBAAInfo(T)); 1363 } 1364 1365 LValue MakeNaturalAlignAddrLValue(llvm::Value *V, QualType T) { 1366 CharUnits Alignment; 1367 if (!T->isIncompleteType()) 1368 Alignment = getContext().getTypeAlignInChars(T); 1369 return LValue::MakeAddr(V, T, Alignment, getContext(), 1370 CGM.getTBAAInfo(T)); 1371 } 1372 1373 /// CreateTempAlloca - This creates a alloca and inserts it into the entry 1374 /// block. The caller is responsible for setting an appropriate alignment on 1375 /// the alloca. 1376 llvm::AllocaInst *CreateTempAlloca(llvm::Type *Ty, 1377 const Twine &Name = "tmp"); 1378 1379 /// InitTempAlloca - Provide an initial value for the given alloca. 1380 void InitTempAlloca(llvm::AllocaInst *Alloca, llvm::Value *Value); 1381 1382 /// CreateIRTemp - Create a temporary IR object of the given type, with 1383 /// appropriate alignment. This routine should only be used when an temporary 1384 /// value needs to be stored into an alloca (for example, to avoid explicit 1385 /// PHI construction), but the type is the IR type, not the type appropriate 1386 /// for storing in memory. 1387 llvm::AllocaInst *CreateIRTemp(QualType T, const Twine &Name = "tmp"); 1388 1389 /// CreateMemTemp - Create a temporary memory object of the given type, with 1390 /// appropriate alignment. 1391 llvm::AllocaInst *CreateMemTemp(QualType T, const Twine &Name = "tmp"); 1392 1393 /// CreateAggTemp - Create a temporary memory object for the given 1394 /// aggregate type. 1395 AggValueSlot CreateAggTemp(QualType T, const Twine &Name = "tmp") { 1396 CharUnits Alignment = getContext().getTypeAlignInChars(T); 1397 return AggValueSlot::forAddr(CreateMemTemp(T, Name), Alignment, 1398 T.getQualifiers(), 1399 AggValueSlot::IsNotDestructed, 1400 AggValueSlot::DoesNotNeedGCBarriers, 1401 AggValueSlot::IsNotAliased); 1402 } 1403 1404 /// CreateInAllocaTmp - Create a temporary memory object for the given 1405 /// aggregate type. 1406 AggValueSlot CreateInAllocaTmp(QualType T, const Twine &Name = "inalloca"); 1407 1408 /// Emit a cast to void* in the appropriate address space. 1409 llvm::Value *EmitCastToVoidPtr(llvm::Value *value); 1410 1411 /// EvaluateExprAsBool - Perform the usual unary conversions on the specified 1412 /// expression and compare the result against zero, returning an Int1Ty value. 1413 llvm::Value *EvaluateExprAsBool(const Expr *E); 1414 1415 /// EmitIgnoredExpr - Emit an expression in a context which ignores the result. 1416 void EmitIgnoredExpr(const Expr *E); 1417 1418 /// EmitAnyExpr - Emit code to compute the specified expression which can have 1419 /// any type. The result is returned as an RValue struct. If this is an 1420 /// aggregate expression, the aggloc/agglocvolatile arguments indicate where 1421 /// the result should be returned. 1422 /// 1423 /// \param ignoreResult True if the resulting value isn't used. 1424 RValue EmitAnyExpr(const Expr *E, 1425 AggValueSlot aggSlot = AggValueSlot::ignored(), 1426 bool ignoreResult = false); 1427 1428 // EmitVAListRef - Emit a "reference" to a va_list; this is either the address 1429 // or the value of the expression, depending on how va_list is defined. 1430 llvm::Value *EmitVAListRef(const Expr *E); 1431 1432 /// EmitAnyExprToTemp - Similary to EmitAnyExpr(), however, the result will 1433 /// always be accessible even if no aggregate location is provided. 1434 RValue EmitAnyExprToTemp(const Expr *E); 1435 1436 /// EmitAnyExprToMem - Emits the code necessary to evaluate an 1437 /// arbitrary expression into the given memory location. 1438 void EmitAnyExprToMem(const Expr *E, llvm::Value *Location, 1439 Qualifiers Quals, bool IsInitializer); 1440 1441 /// EmitExprAsInit - Emits the code necessary to initialize a 1442 /// location in memory with the given initializer. 1443 void EmitExprAsInit(const Expr *init, const ValueDecl *D, 1444 LValue lvalue, bool capturedByInit); 1445 1446 /// hasVolatileMember - returns true if aggregate type has a volatile 1447 /// member. 1448 bool hasVolatileMember(QualType T) { 1449 if (const RecordType *RT = T->getAs<RecordType>()) { 1450 const RecordDecl *RD = cast<RecordDecl>(RT->getDecl()); 1451 return RD->hasVolatileMember(); 1452 } 1453 return false; 1454 } 1455 /// EmitAggregateCopy - Emit an aggregate assignment. 1456 /// 1457 /// The difference to EmitAggregateCopy is that tail padding is not copied. 1458 /// This is required for correctness when assigning non-POD structures in C++. 1459 void EmitAggregateAssign(llvm::Value *DestPtr, llvm::Value *SrcPtr, 1460 QualType EltTy) { 1461 bool IsVolatile = hasVolatileMember(EltTy); 1462 EmitAggregateCopy(DestPtr, SrcPtr, EltTy, IsVolatile, CharUnits::Zero(), 1463 true); 1464 } 1465 1466 /// EmitAggregateCopy - Emit an aggregate copy. 1467 /// 1468 /// \param isVolatile - True iff either the source or the destination is 1469 /// volatile. 1470 /// \param isAssignment - If false, allow padding to be copied. This often 1471 /// yields more efficient. 1472 void EmitAggregateCopy(llvm::Value *DestPtr, llvm::Value *SrcPtr, 1473 QualType EltTy, bool isVolatile=false, 1474 CharUnits Alignment = CharUnits::Zero(), 1475 bool isAssignment = false); 1476 1477 /// StartBlock - Start new block named N. If insert block is a dummy block 1478 /// then reuse it. 1479 void StartBlock(const char *N); 1480 1481 /// GetAddrOfLocalVar - Return the address of a local variable. 1482 llvm::Value *GetAddrOfLocalVar(const VarDecl *VD) { 1483 llvm::Value *Res = LocalDeclMap[VD]; 1484 assert(Res && "Invalid argument to GetAddrOfLocalVar(), no decl!"); 1485 return Res; 1486 } 1487 1488 /// getOpaqueLValueMapping - Given an opaque value expression (which 1489 /// must be mapped to an l-value), return its mapping. 1490 const LValue &getOpaqueLValueMapping(const OpaqueValueExpr *e) { 1491 assert(OpaqueValueMapping::shouldBindAsLValue(e)); 1492 1493 llvm::DenseMap<const OpaqueValueExpr*,LValue>::iterator 1494 it = OpaqueLValues.find(e); 1495 assert(it != OpaqueLValues.end() && "no mapping for opaque value!"); 1496 return it->second; 1497 } 1498 1499 /// getOpaqueRValueMapping - Given an opaque value expression (which 1500 /// must be mapped to an r-value), return its mapping. 1501 const RValue &getOpaqueRValueMapping(const OpaqueValueExpr *e) { 1502 assert(!OpaqueValueMapping::shouldBindAsLValue(e)); 1503 1504 llvm::DenseMap<const OpaqueValueExpr*,RValue>::iterator 1505 it = OpaqueRValues.find(e); 1506 assert(it != OpaqueRValues.end() && "no mapping for opaque value!"); 1507 return it->second; 1508 } 1509 1510 /// getAccessedFieldNo - Given an encoded value and a result number, return 1511 /// the input field number being accessed. 1512 static unsigned getAccessedFieldNo(unsigned Idx, const llvm::Constant *Elts); 1513 1514 llvm::BlockAddress *GetAddrOfLabel(const LabelDecl *L); 1515 llvm::BasicBlock *GetIndirectGotoBlock(); 1516 1517 /// EmitNullInitialization - Generate code to set a value of the given type to 1518 /// null, If the type contains data member pointers, they will be initialized 1519 /// to -1 in accordance with the Itanium C++ ABI. 1520 void EmitNullInitialization(llvm::Value *DestPtr, QualType Ty); 1521 1522 // EmitVAArg - Generate code to get an argument from the passed in pointer 1523 // and update it accordingly. The return value is a pointer to the argument. 1524 // FIXME: We should be able to get rid of this method and use the va_arg 1525 // instruction in LLVM instead once it works well enough. 1526 llvm::Value *EmitVAArg(llvm::Value *VAListAddr, QualType Ty); 1527 1528 /// emitArrayLength - Compute the length of an array, even if it's a 1529 /// VLA, and drill down to the base element type. 1530 llvm::Value *emitArrayLength(const ArrayType *arrayType, 1531 QualType &baseType, 1532 llvm::Value *&addr); 1533 1534 /// EmitVLASize - Capture all the sizes for the VLA expressions in 1535 /// the given variably-modified type and store them in the VLASizeMap. 1536 /// 1537 /// This function can be called with a null (unreachable) insert point. 1538 void EmitVariablyModifiedType(QualType Ty); 1539 1540 /// getVLASize - Returns an LLVM value that corresponds to the size, 1541 /// in non-variably-sized elements, of a variable length array type, 1542 /// plus that largest non-variably-sized element type. Assumes that 1543 /// the type has already been emitted with EmitVariablyModifiedType. 1544 std::pair<llvm::Value*,QualType> getVLASize(const VariableArrayType *vla); 1545 std::pair<llvm::Value*,QualType> getVLASize(QualType vla); 1546 1547 /// LoadCXXThis - Load the value of 'this'. This function is only valid while 1548 /// generating code for an C++ member function. 1549 llvm::Value *LoadCXXThis() { 1550 assert(CXXThisValue && "no 'this' value for this function"); 1551 return CXXThisValue; 1552 } 1553 1554 /// LoadCXXVTT - Load the VTT parameter to base constructors/destructors have 1555 /// virtual bases. 1556 // FIXME: Every place that calls LoadCXXVTT is something 1557 // that needs to be abstracted properly. 1558 llvm::Value *LoadCXXVTT() { 1559 assert(CXXStructorImplicitParamValue && "no VTT value for this function"); 1560 return CXXStructorImplicitParamValue; 1561 } 1562 1563 /// LoadCXXStructorImplicitParam - Load the implicit parameter 1564 /// for a constructor/destructor. 1565 llvm::Value *LoadCXXStructorImplicitParam() { 1566 assert(CXXStructorImplicitParamValue && 1567 "no implicit argument value for this function"); 1568 return CXXStructorImplicitParamValue; 1569 } 1570 1571 /// GetAddressOfBaseOfCompleteClass - Convert the given pointer to a 1572 /// complete class to the given direct base. 1573 llvm::Value * 1574 GetAddressOfDirectBaseInCompleteClass(llvm::Value *Value, 1575 const CXXRecordDecl *Derived, 1576 const CXXRecordDecl *Base, 1577 bool BaseIsVirtual); 1578 1579 /// GetAddressOfBaseClass - This function will add the necessary delta to the 1580 /// load of 'this' and returns address of the base class. 1581 llvm::Value *GetAddressOfBaseClass(llvm::Value *Value, 1582 const CXXRecordDecl *Derived, 1583 CastExpr::path_const_iterator PathBegin, 1584 CastExpr::path_const_iterator PathEnd, 1585 bool NullCheckValue); 1586 1587 llvm::Value *GetAddressOfDerivedClass(llvm::Value *Value, 1588 const CXXRecordDecl *Derived, 1589 CastExpr::path_const_iterator PathBegin, 1590 CastExpr::path_const_iterator PathEnd, 1591 bool NullCheckValue); 1592 1593 /// GetVTTParameter - Return the VTT parameter that should be passed to a 1594 /// base constructor/destructor with virtual bases. 1595 /// FIXME: VTTs are Itanium ABI-specific, so the definition should move 1596 /// to ItaniumCXXABI.cpp together with all the references to VTT. 1597 llvm::Value *GetVTTParameter(GlobalDecl GD, bool ForVirtualBase, 1598 bool Delegating); 1599 1600 void EmitDelegateCXXConstructorCall(const CXXConstructorDecl *Ctor, 1601 CXXCtorType CtorType, 1602 const FunctionArgList &Args, 1603 SourceLocation Loc); 1604 // It's important not to confuse this and the previous function. Delegating 1605 // constructors are the C++0x feature. The constructor delegate optimization 1606 // is used to reduce duplication in the base and complete consturctors where 1607 // they are substantially the same. 1608 void EmitDelegatingCXXConstructorCall(const CXXConstructorDecl *Ctor, 1609 const FunctionArgList &Args); 1610 void EmitCXXConstructorCall(const CXXConstructorDecl *D, CXXCtorType Type, 1611 bool ForVirtualBase, bool Delegating, 1612 llvm::Value *This, 1613 CallExpr::const_arg_iterator ArgBeg, 1614 CallExpr::const_arg_iterator ArgEnd); 1615 1616 void EmitSynthesizedCXXCopyCtorCall(const CXXConstructorDecl *D, 1617 llvm::Value *This, llvm::Value *Src, 1618 CallExpr::const_arg_iterator ArgBeg, 1619 CallExpr::const_arg_iterator ArgEnd); 1620 1621 void EmitCXXAggrConstructorCall(const CXXConstructorDecl *D, 1622 const ConstantArrayType *ArrayTy, 1623 llvm::Value *ArrayPtr, 1624 CallExpr::const_arg_iterator ArgBeg, 1625 CallExpr::const_arg_iterator ArgEnd, 1626 bool ZeroInitialization = false); 1627 1628 void EmitCXXAggrConstructorCall(const CXXConstructorDecl *D, 1629 llvm::Value *NumElements, 1630 llvm::Value *ArrayPtr, 1631 CallExpr::const_arg_iterator ArgBeg, 1632 CallExpr::const_arg_iterator ArgEnd, 1633 bool ZeroInitialization = false); 1634 1635 static Destroyer destroyCXXObject; 1636 1637 void EmitCXXDestructorCall(const CXXDestructorDecl *D, CXXDtorType Type, 1638 bool ForVirtualBase, bool Delegating, 1639 llvm::Value *This); 1640 1641 void EmitNewArrayInitializer(const CXXNewExpr *E, QualType elementType, 1642 llvm::Value *NewPtr, llvm::Value *NumElements); 1643 1644 void EmitCXXTemporary(const CXXTemporary *Temporary, QualType TempType, 1645 llvm::Value *Ptr); 1646 1647 llvm::Value *EmitCXXNewExpr(const CXXNewExpr *E); 1648 void EmitCXXDeleteExpr(const CXXDeleteExpr *E); 1649 1650 void EmitDeleteCall(const FunctionDecl *DeleteFD, llvm::Value *Ptr, 1651 QualType DeleteTy); 1652 1653 llvm::Value* EmitCXXTypeidExpr(const CXXTypeidExpr *E); 1654 llvm::Value *EmitDynamicCast(llvm::Value *V, const CXXDynamicCastExpr *DCE); 1655 llvm::Value* EmitCXXUuidofExpr(const CXXUuidofExpr *E); 1656 1657 /// \brief Situations in which we might emit a check for the suitability of a 1658 /// pointer or glvalue. 1659 enum TypeCheckKind { 1660 /// Checking the operand of a load. Must be suitably sized and aligned. 1661 TCK_Load, 1662 /// Checking the destination of a store. Must be suitably sized and aligned. 1663 TCK_Store, 1664 /// Checking the bound value in a reference binding. Must be suitably sized 1665 /// and aligned, but is not required to refer to an object (until the 1666 /// reference is used), per core issue 453. 1667 TCK_ReferenceBinding, 1668 /// Checking the object expression in a non-static data member access. Must 1669 /// be an object within its lifetime. 1670 TCK_MemberAccess, 1671 /// Checking the 'this' pointer for a call to a non-static member function. 1672 /// Must be an object within its lifetime. 1673 TCK_MemberCall, 1674 /// Checking the 'this' pointer for a constructor call. 1675 TCK_ConstructorCall, 1676 /// Checking the operand of a static_cast to a derived pointer type. Must be 1677 /// null or an object within its lifetime. 1678 TCK_DowncastPointer, 1679 /// Checking the operand of a static_cast to a derived reference type. Must 1680 /// be an object within its lifetime. 1681 TCK_DowncastReference 1682 }; 1683 1684 /// \brief Emit a check that \p V is the address of storage of the 1685 /// appropriate size and alignment for an object of type \p Type. 1686 void EmitTypeCheck(TypeCheckKind TCK, SourceLocation Loc, llvm::Value *V, 1687 QualType Type, CharUnits Alignment = CharUnits::Zero()); 1688 1689 /// \brief Emit a check that \p Base points into an array object, which 1690 /// we can access at index \p Index. \p Accessed should be \c false if we 1691 /// this expression is used as an lvalue, for instance in "&Arr[Idx]". 1692 void EmitBoundsCheck(const Expr *E, const Expr *Base, llvm::Value *Index, 1693 QualType IndexType, bool Accessed); 1694 1695 llvm::Value *EmitScalarPrePostIncDec(const UnaryOperator *E, LValue LV, 1696 bool isInc, bool isPre); 1697 ComplexPairTy EmitComplexPrePostIncDec(const UnaryOperator *E, LValue LV, 1698 bool isInc, bool isPre); 1699 //===--------------------------------------------------------------------===// 1700 // Declaration Emission 1701 //===--------------------------------------------------------------------===// 1702 1703 /// EmitDecl - Emit a declaration. 1704 /// 1705 /// This function can be called with a null (unreachable) insert point. 1706 void EmitDecl(const Decl &D); 1707 1708 /// EmitVarDecl - Emit a local variable declaration. 1709 /// 1710 /// This function can be called with a null (unreachable) insert point. 1711 void EmitVarDecl(const VarDecl &D); 1712 1713 void EmitScalarInit(const Expr *init, const ValueDecl *D, 1714 LValue lvalue, bool capturedByInit); 1715 void EmitScalarInit(llvm::Value *init, LValue lvalue); 1716 1717 typedef void SpecialInitFn(CodeGenFunction &Init, const VarDecl &D, 1718 llvm::Value *Address); 1719 1720 /// EmitAutoVarDecl - Emit an auto variable declaration. 1721 /// 1722 /// This function can be called with a null (unreachable) insert point. 1723 void EmitAutoVarDecl(const VarDecl &D); 1724 1725 class AutoVarEmission { 1726 friend class CodeGenFunction; 1727 1728 const VarDecl *Variable; 1729 1730 /// The alignment of the variable. 1731 CharUnits Alignment; 1732 1733 /// The address of the alloca. Null if the variable was emitted 1734 /// as a global constant. 1735 llvm::Value *Address; 1736 1737 llvm::Value *NRVOFlag; 1738 1739 /// True if the variable is a __block variable. 1740 bool IsByRef; 1741 1742 /// True if the variable is of aggregate type and has a constant 1743 /// initializer. 1744 bool IsConstantAggregate; 1745 1746 /// Non-null if we should use lifetime annotations. 1747 llvm::Value *SizeForLifetimeMarkers; 1748 1749 struct Invalid {}; 1750 AutoVarEmission(Invalid) : Variable(0) {} 1751 1752 AutoVarEmission(const VarDecl &variable) 1753 : Variable(&variable), Address(0), NRVOFlag(0), 1754 IsByRef(false), IsConstantAggregate(false), 1755 SizeForLifetimeMarkers(0) {} 1756 1757 bool wasEmittedAsGlobal() const { return Address == 0; } 1758 1759 public: 1760 static AutoVarEmission invalid() { return AutoVarEmission(Invalid()); } 1761 1762 bool useLifetimeMarkers() const { return SizeForLifetimeMarkers != 0; } 1763 llvm::Value *getSizeForLifetimeMarkers() const { 1764 assert(useLifetimeMarkers()); 1765 return SizeForLifetimeMarkers; 1766 } 1767 1768 /// Returns the raw, allocated address, which is not necessarily 1769 /// the address of the object itself. 1770 llvm::Value *getAllocatedAddress() const { 1771 return Address; 1772 } 1773 1774 /// Returns the address of the object within this declaration. 1775 /// Note that this does not chase the forwarding pointer for 1776 /// __block decls. 1777 llvm::Value *getObjectAddress(CodeGenFunction &CGF) const { 1778 if (!IsByRef) return Address; 1779 1780 return CGF.Builder.CreateStructGEP(Address, 1781 CGF.getByRefValueLLVMField(Variable), 1782 Variable->getNameAsString()); 1783 } 1784 }; 1785 AutoVarEmission EmitAutoVarAlloca(const VarDecl &var); 1786 void EmitAutoVarInit(const AutoVarEmission &emission); 1787 void EmitAutoVarCleanups(const AutoVarEmission &emission); 1788 void emitAutoVarTypeCleanup(const AutoVarEmission &emission, 1789 QualType::DestructionKind dtorKind); 1790 1791 void EmitStaticVarDecl(const VarDecl &D, 1792 llvm::GlobalValue::LinkageTypes Linkage); 1793 1794 /// EmitParmDecl - Emit a ParmVarDecl or an ImplicitParamDecl. 1795 void EmitParmDecl(const VarDecl &D, llvm::Value *Arg, bool ArgIsPointer, 1796 unsigned ArgNo); 1797 1798 /// protectFromPeepholes - Protect a value that we're intending to 1799 /// store to the side, but which will probably be used later, from 1800 /// aggressive peepholing optimizations that might delete it. 1801 /// 1802 /// Pass the result to unprotectFromPeepholes to declare that 1803 /// protection is no longer required. 1804 /// 1805 /// There's no particular reason why this shouldn't apply to 1806 /// l-values, it's just that no existing peepholes work on pointers. 1807 PeepholeProtection protectFromPeepholes(RValue rvalue); 1808 void unprotectFromPeepholes(PeepholeProtection protection); 1809 1810 //===--------------------------------------------------------------------===// 1811 // Statement Emission 1812 //===--------------------------------------------------------------------===// 1813 1814 /// EmitStopPoint - Emit a debug stoppoint if we are emitting debug info. 1815 void EmitStopPoint(const Stmt *S); 1816 1817 /// EmitStmt - Emit the code for the statement \arg S. It is legal to call 1818 /// this function even if there is no current insertion point. 1819 /// 1820 /// This function may clear the current insertion point; callers should use 1821 /// EnsureInsertPoint if they wish to subsequently generate code without first 1822 /// calling EmitBlock, EmitBranch, or EmitStmt. 1823 void EmitStmt(const Stmt *S); 1824 1825 /// EmitSimpleStmt - Try to emit a "simple" statement which does not 1826 /// necessarily require an insertion point or debug information; typically 1827 /// because the statement amounts to a jump or a container of other 1828 /// statements. 1829 /// 1830 /// \return True if the statement was handled. 1831 bool EmitSimpleStmt(const Stmt *S); 1832 1833 llvm::Value *EmitCompoundStmt(const CompoundStmt &S, bool GetLast = false, 1834 AggValueSlot AVS = AggValueSlot::ignored()); 1835 llvm::Value *EmitCompoundStmtWithoutScope(const CompoundStmt &S, 1836 bool GetLast = false, 1837 AggValueSlot AVS = 1838 AggValueSlot::ignored()); 1839 1840 /// EmitLabel - Emit the block for the given label. It is legal to call this 1841 /// function even if there is no current insertion point. 1842 void EmitLabel(const LabelDecl *D); // helper for EmitLabelStmt. 1843 1844 void EmitLabelStmt(const LabelStmt &S); 1845 void EmitAttributedStmt(const AttributedStmt &S); 1846 void EmitGotoStmt(const GotoStmt &S); 1847 void EmitIndirectGotoStmt(const IndirectGotoStmt &S); 1848 void EmitIfStmt(const IfStmt &S); 1849 void EmitWhileStmt(const WhileStmt &S); 1850 void EmitDoStmt(const DoStmt &S); 1851 void EmitForStmt(const ForStmt &S); 1852 void EmitReturnStmt(const ReturnStmt &S); 1853 void EmitDeclStmt(const DeclStmt &S); 1854 void EmitBreakStmt(const BreakStmt &S); 1855 void EmitContinueStmt(const ContinueStmt &S); 1856 void EmitSwitchStmt(const SwitchStmt &S); 1857 void EmitDefaultStmt(const DefaultStmt &S); 1858 void EmitCaseStmt(const CaseStmt &S); 1859 void EmitCaseStmtRange(const CaseStmt &S); 1860 void EmitAsmStmt(const AsmStmt &S); 1861 1862 void EmitObjCForCollectionStmt(const ObjCForCollectionStmt &S); 1863 void EmitObjCAtTryStmt(const ObjCAtTryStmt &S); 1864 void EmitObjCAtThrowStmt(const ObjCAtThrowStmt &S); 1865 void EmitObjCAtSynchronizedStmt(const ObjCAtSynchronizedStmt &S); 1866 void EmitObjCAutoreleasePoolStmt(const ObjCAutoreleasePoolStmt &S); 1867 1868 llvm::Constant *getUnwindResumeFn(); 1869 llvm::Constant *getUnwindResumeOrRethrowFn(); 1870 void EnterCXXTryStmt(const CXXTryStmt &S, bool IsFnTryBlock = false); 1871 void ExitCXXTryStmt(const CXXTryStmt &S, bool IsFnTryBlock = false); 1872 1873 void EmitCXXTryStmt(const CXXTryStmt &S); 1874 void EmitSEHTryStmt(const SEHTryStmt &S); 1875 void EmitCXXForRangeStmt(const CXXForRangeStmt &S); 1876 1877 llvm::Function *EmitCapturedStmt(const CapturedStmt &S, CapturedRegionKind K); 1878 llvm::Function *GenerateCapturedStmtFunction(const CapturedDecl *CD, 1879 const RecordDecl *RD, 1880 SourceLocation Loc); 1881 llvm::Value *GenerateCapturedStmtArgument(const CapturedStmt &S); 1882 1883 void EmitOMPParallelDirective(const OMPParallelDirective &S); 1884 1885 //===--------------------------------------------------------------------===// 1886 // LValue Expression Emission 1887 //===--------------------------------------------------------------------===// 1888 1889 /// GetUndefRValue - Get an appropriate 'undef' rvalue for the given type. 1890 RValue GetUndefRValue(QualType Ty); 1891 1892 /// EmitUnsupportedRValue - Emit a dummy r-value using the type of E 1893 /// and issue an ErrorUnsupported style diagnostic (using the 1894 /// provided Name). 1895 RValue EmitUnsupportedRValue(const Expr *E, 1896 const char *Name); 1897 1898 /// EmitUnsupportedLValue - Emit a dummy l-value using the type of E and issue 1899 /// an ErrorUnsupported style diagnostic (using the provided Name). 1900 LValue EmitUnsupportedLValue(const Expr *E, 1901 const char *Name); 1902 1903 /// EmitLValue - Emit code to compute a designator that specifies the location 1904 /// of the expression. 1905 /// 1906 /// This can return one of two things: a simple address or a bitfield 1907 /// reference. In either case, the LLVM Value* in the LValue structure is 1908 /// guaranteed to be an LLVM pointer type. 1909 /// 1910 /// If this returns a bitfield reference, nothing about the pointee type of 1911 /// the LLVM value is known: For example, it may not be a pointer to an 1912 /// integer. 1913 /// 1914 /// If this returns a normal address, and if the lvalue's C type is fixed 1915 /// size, this method guarantees that the returned pointer type will point to 1916 /// an LLVM type of the same size of the lvalue's type. If the lvalue has a 1917 /// variable length type, this is not possible. 1918 /// 1919 LValue EmitLValue(const Expr *E); 1920 1921 /// \brief Same as EmitLValue but additionally we generate checking code to 1922 /// guard against undefined behavior. This is only suitable when we know 1923 /// that the address will be used to access the object. 1924 LValue EmitCheckedLValue(const Expr *E, TypeCheckKind TCK); 1925 1926 RValue convertTempToRValue(llvm::Value *addr, QualType type, 1927 SourceLocation Loc); 1928 1929 void EmitAtomicInit(Expr *E, LValue lvalue); 1930 1931 RValue EmitAtomicLoad(LValue lvalue, SourceLocation loc, 1932 AggValueSlot slot = AggValueSlot::ignored()); 1933 1934 void EmitAtomicStore(RValue rvalue, LValue lvalue, bool isInit); 1935 1936 /// EmitToMemory - Change a scalar value from its value 1937 /// representation to its in-memory representation. 1938 llvm::Value *EmitToMemory(llvm::Value *Value, QualType Ty); 1939 1940 /// EmitFromMemory - Change a scalar value from its memory 1941 /// representation to its value representation. 1942 llvm::Value *EmitFromMemory(llvm::Value *Value, QualType Ty); 1943 1944 /// EmitLoadOfScalar - Load a scalar value from an address, taking 1945 /// care to appropriately convert from the memory representation to 1946 /// the LLVM value representation. 1947 llvm::Value *EmitLoadOfScalar(llvm::Value *Addr, bool Volatile, 1948 unsigned Alignment, QualType Ty, 1949 SourceLocation Loc, 1950 llvm::MDNode *TBAAInfo = 0, 1951 QualType TBAABaseTy = QualType(), 1952 uint64_t TBAAOffset = 0); 1953 1954 /// EmitLoadOfScalar - Load a scalar value from an address, taking 1955 /// care to appropriately convert from the memory representation to 1956 /// the LLVM value representation. The l-value must be a simple 1957 /// l-value. 1958 llvm::Value *EmitLoadOfScalar(LValue lvalue, SourceLocation Loc); 1959 1960 /// EmitStoreOfScalar - Store a scalar value to an address, taking 1961 /// care to appropriately convert from the memory representation to 1962 /// the LLVM value representation. 1963 void EmitStoreOfScalar(llvm::Value *Value, llvm::Value *Addr, 1964 bool Volatile, unsigned Alignment, QualType Ty, 1965 llvm::MDNode *TBAAInfo = 0, bool isInit = false, 1966 QualType TBAABaseTy = QualType(), 1967 uint64_t TBAAOffset = 0); 1968 1969 /// EmitStoreOfScalar - Store a scalar value to an address, taking 1970 /// care to appropriately convert from the memory representation to 1971 /// the LLVM value representation. The l-value must be a simple 1972 /// l-value. The isInit flag indicates whether this is an initialization. 1973 /// If so, atomic qualifiers are ignored and the store is always non-atomic. 1974 void EmitStoreOfScalar(llvm::Value *value, LValue lvalue, bool isInit=false); 1975 1976 /// EmitLoadOfLValue - Given an expression that represents a value lvalue, 1977 /// this method emits the address of the lvalue, then loads the result as an 1978 /// rvalue, returning the rvalue. 1979 RValue EmitLoadOfLValue(LValue V, SourceLocation Loc); 1980 RValue EmitLoadOfExtVectorElementLValue(LValue V); 1981 RValue EmitLoadOfBitfieldLValue(LValue LV); 1982 RValue EmitLoadOfGlobalRegLValue(LValue LV); 1983 1984 /// EmitStoreThroughLValue - Store the specified rvalue into the specified 1985 /// lvalue, where both are guaranteed to the have the same type, and that type 1986 /// is 'Ty'. 1987 void EmitStoreThroughLValue(RValue Src, LValue Dst, bool isInit=false); 1988 void EmitStoreThroughExtVectorComponentLValue(RValue Src, LValue Dst); 1989 void EmitStoreThroughGlobalRegLValue(RValue Src, LValue Dst); 1990 1991 /// EmitStoreThroughBitfieldLValue - Store Src into Dst with same constraints 1992 /// as EmitStoreThroughLValue. 1993 /// 1994 /// \param Result [out] - If non-null, this will be set to a Value* for the 1995 /// bit-field contents after the store, appropriate for use as the result of 1996 /// an assignment to the bit-field. 1997 void EmitStoreThroughBitfieldLValue(RValue Src, LValue Dst, 1998 llvm::Value **Result=0); 1999 2000 /// Emit an l-value for an assignment (simple or compound) of complex type. 2001 LValue EmitComplexAssignmentLValue(const BinaryOperator *E); 2002 LValue EmitComplexCompoundAssignmentLValue(const CompoundAssignOperator *E); 2003 LValue EmitScalarCompooundAssignWithComplex(const CompoundAssignOperator *E, 2004 llvm::Value *&Result); 2005 2006 // Note: only available for agg return types 2007 LValue EmitBinaryOperatorLValue(const BinaryOperator *E); 2008 LValue EmitCompoundAssignmentLValue(const CompoundAssignOperator *E); 2009 // Note: only available for agg return types 2010 LValue EmitCallExprLValue(const CallExpr *E); 2011 // Note: only available for agg return types 2012 LValue EmitVAArgExprLValue(const VAArgExpr *E); 2013 LValue EmitDeclRefLValue(const DeclRefExpr *E); 2014 LValue EmitReadRegister(const VarDecl *VD); 2015 LValue EmitStringLiteralLValue(const StringLiteral *E); 2016 LValue EmitObjCEncodeExprLValue(const ObjCEncodeExpr *E); 2017 LValue EmitPredefinedLValue(const PredefinedExpr *E); 2018 LValue EmitUnaryOpLValue(const UnaryOperator *E); 2019 LValue EmitArraySubscriptExpr(const ArraySubscriptExpr *E, 2020 bool Accessed = false); 2021 LValue EmitExtVectorElementExpr(const ExtVectorElementExpr *E); 2022 LValue EmitMemberExpr(const MemberExpr *E); 2023 LValue EmitObjCIsaExpr(const ObjCIsaExpr *E); 2024 LValue EmitCompoundLiteralLValue(const CompoundLiteralExpr *E); 2025 LValue EmitInitListLValue(const InitListExpr *E); 2026 LValue EmitConditionalOperatorLValue(const AbstractConditionalOperator *E); 2027 LValue EmitCastLValue(const CastExpr *E); 2028 LValue EmitMaterializeTemporaryExpr(const MaterializeTemporaryExpr *E); 2029 LValue EmitOpaqueValueLValue(const OpaqueValueExpr *e); 2030 2031 RValue EmitRValueForField(LValue LV, const FieldDecl *FD, SourceLocation Loc); 2032 2033 class ConstantEmission { 2034 llvm::PointerIntPair<llvm::Constant*, 1, bool> ValueAndIsReference; 2035 ConstantEmission(llvm::Constant *C, bool isReference) 2036 : ValueAndIsReference(C, isReference) {} 2037 public: 2038 ConstantEmission() {} 2039 static ConstantEmission forReference(llvm::Constant *C) { 2040 return ConstantEmission(C, true); 2041 } 2042 static ConstantEmission forValue(llvm::Constant *C) { 2043 return ConstantEmission(C, false); 2044 } 2045 2046 LLVM_EXPLICIT operator bool() const { return ValueAndIsReference.getOpaqueValue() != 0; } 2047 2048 bool isReference() const { return ValueAndIsReference.getInt(); } 2049 LValue getReferenceLValue(CodeGenFunction &CGF, Expr *refExpr) const { 2050 assert(isReference()); 2051 return CGF.MakeNaturalAlignAddrLValue(ValueAndIsReference.getPointer(), 2052 refExpr->getType()); 2053 } 2054 2055 llvm::Constant *getValue() const { 2056 assert(!isReference()); 2057 return ValueAndIsReference.getPointer(); 2058 } 2059 }; 2060 2061 ConstantEmission tryEmitAsConstant(DeclRefExpr *refExpr); 2062 2063 RValue EmitPseudoObjectRValue(const PseudoObjectExpr *e, 2064 AggValueSlot slot = AggValueSlot::ignored()); 2065 LValue EmitPseudoObjectLValue(const PseudoObjectExpr *e); 2066 2067 llvm::Value *EmitIvarOffset(const ObjCInterfaceDecl *Interface, 2068 const ObjCIvarDecl *Ivar); 2069 LValue EmitLValueForField(LValue Base, const FieldDecl* Field); 2070 LValue EmitLValueForLambdaField(const FieldDecl *Field); 2071 2072 /// EmitLValueForFieldInitialization - Like EmitLValueForField, except that 2073 /// if the Field is a reference, this will return the address of the reference 2074 /// and not the address of the value stored in the reference. 2075 LValue EmitLValueForFieldInitialization(LValue Base, 2076 const FieldDecl* Field); 2077 2078 LValue EmitLValueForIvar(QualType ObjectTy, 2079 llvm::Value* Base, const ObjCIvarDecl *Ivar, 2080 unsigned CVRQualifiers); 2081 2082 LValue EmitCXXConstructLValue(const CXXConstructExpr *E); 2083 LValue EmitCXXBindTemporaryLValue(const CXXBindTemporaryExpr *E); 2084 LValue EmitLambdaLValue(const LambdaExpr *E); 2085 LValue EmitCXXTypeidLValue(const CXXTypeidExpr *E); 2086 LValue EmitCXXUuidofLValue(const CXXUuidofExpr *E); 2087 2088 LValue EmitObjCMessageExprLValue(const ObjCMessageExpr *E); 2089 LValue EmitObjCIvarRefLValue(const ObjCIvarRefExpr *E); 2090 LValue EmitStmtExprLValue(const StmtExpr *E); 2091 LValue EmitPointerToDataMemberBinaryExpr(const BinaryOperator *E); 2092 LValue EmitObjCSelectorLValue(const ObjCSelectorExpr *E); 2093 void EmitDeclRefExprDbgValue(const DeclRefExpr *E, llvm::Constant *Init); 2094 2095 //===--------------------------------------------------------------------===// 2096 // Scalar Expression Emission 2097 //===--------------------------------------------------------------------===// 2098 2099 /// EmitCall - Generate a call of the given function, expecting the given 2100 /// result type, and using the given argument list which specifies both the 2101 /// LLVM arguments and the types they were derived from. 2102 /// 2103 /// \param TargetDecl - If given, the decl of the function in a direct call; 2104 /// used to set attributes on the call (noreturn, etc.). 2105 RValue EmitCall(const CGFunctionInfo &FnInfo, 2106 llvm::Value *Callee, 2107 ReturnValueSlot ReturnValue, 2108 const CallArgList &Args, 2109 const Decl *TargetDecl = 0, 2110 llvm::Instruction **callOrInvoke = 0); 2111 2112 RValue EmitCall(QualType FnType, llvm::Value *Callee, 2113 SourceLocation CallLoc, 2114 ReturnValueSlot ReturnValue, 2115 CallExpr::const_arg_iterator ArgBeg, 2116 CallExpr::const_arg_iterator ArgEnd, 2117 const Decl *TargetDecl = 0); 2118 RValue EmitCallExpr(const CallExpr *E, 2119 ReturnValueSlot ReturnValue = ReturnValueSlot()); 2120 2121 llvm::CallInst *EmitRuntimeCall(llvm::Value *callee, 2122 const Twine &name = ""); 2123 llvm::CallInst *EmitRuntimeCall(llvm::Value *callee, 2124 ArrayRef<llvm::Value*> args, 2125 const Twine &name = ""); 2126 llvm::CallInst *EmitNounwindRuntimeCall(llvm::Value *callee, 2127 const Twine &name = ""); 2128 llvm::CallInst *EmitNounwindRuntimeCall(llvm::Value *callee, 2129 ArrayRef<llvm::Value*> args, 2130 const Twine &name = ""); 2131 2132 llvm::CallSite EmitCallOrInvoke(llvm::Value *Callee, 2133 ArrayRef<llvm::Value *> Args, 2134 const Twine &Name = ""); 2135 llvm::CallSite EmitCallOrInvoke(llvm::Value *Callee, 2136 const Twine &Name = ""); 2137 llvm::CallSite EmitRuntimeCallOrInvoke(llvm::Value *callee, 2138 ArrayRef<llvm::Value*> args, 2139 const Twine &name = ""); 2140 llvm::CallSite EmitRuntimeCallOrInvoke(llvm::Value *callee, 2141 const Twine &name = ""); 2142 void EmitNoreturnRuntimeCallOrInvoke(llvm::Value *callee, 2143 ArrayRef<llvm::Value*> args); 2144 2145 llvm::Value *BuildAppleKextVirtualCall(const CXXMethodDecl *MD, 2146 NestedNameSpecifier *Qual, 2147 llvm::Type *Ty); 2148 2149 llvm::Value *BuildAppleKextVirtualDestructorCall(const CXXDestructorDecl *DD, 2150 CXXDtorType Type, 2151 const CXXRecordDecl *RD); 2152 2153 RValue EmitCXXMemberCall(const CXXMethodDecl *MD, 2154 SourceLocation CallLoc, 2155 llvm::Value *Callee, 2156 ReturnValueSlot ReturnValue, 2157 llvm::Value *This, 2158 llvm::Value *ImplicitParam, 2159 QualType ImplicitParamTy, 2160 CallExpr::const_arg_iterator ArgBeg, 2161 CallExpr::const_arg_iterator ArgEnd); 2162 RValue EmitCXXMemberCallExpr(const CXXMemberCallExpr *E, 2163 ReturnValueSlot ReturnValue); 2164 RValue EmitCXXMemberPointerCallExpr(const CXXMemberCallExpr *E, 2165 ReturnValueSlot ReturnValue); 2166 2167 llvm::Value *EmitCXXOperatorMemberCallee(const CXXOperatorCallExpr *E, 2168 const CXXMethodDecl *MD, 2169 llvm::Value *This); 2170 RValue EmitCXXOperatorMemberCallExpr(const CXXOperatorCallExpr *E, 2171 const CXXMethodDecl *MD, 2172 ReturnValueSlot ReturnValue); 2173 2174 RValue EmitCUDAKernelCallExpr(const CUDAKernelCallExpr *E, 2175 ReturnValueSlot ReturnValue); 2176 2177 2178 RValue EmitBuiltinExpr(const FunctionDecl *FD, 2179 unsigned BuiltinID, const CallExpr *E); 2180 2181 RValue EmitBlockCallExpr(const CallExpr *E, ReturnValueSlot ReturnValue); 2182 2183 /// EmitTargetBuiltinExpr - Emit the given builtin call. Returns 0 if the call 2184 /// is unhandled by the current target. 2185 llvm::Value *EmitTargetBuiltinExpr(unsigned BuiltinID, const CallExpr *E); 2186 2187 llvm::Value *EmitAArch64CompareBuiltinExpr(llvm::Value *Op, llvm::Type *Ty, 2188 const llvm::CmpInst::Predicate Fp, 2189 const llvm::CmpInst::Predicate Ip, 2190 const llvm::Twine &Name = ""); 2191 llvm::Value *EmitAArch64CompareBuiltinExpr(llvm::Value *Op, llvm::Type *Ty); 2192 llvm::Value *EmitAArch64BuiltinExpr(unsigned BuiltinID, const CallExpr *E); 2193 llvm::Value *EmitARMBuiltinExpr(unsigned BuiltinID, const CallExpr *E); 2194 2195 llvm::Value *EmitCommonNeonBuiltinExpr(unsigned BuiltinID, 2196 unsigned LLVMIntrinsic, 2197 unsigned AltLLVMIntrinsic, 2198 const char *NameHint, 2199 unsigned Modifier, 2200 const CallExpr *E, 2201 SmallVectorImpl<llvm::Value *> &Ops, 2202 llvm::Value *Align = 0); 2203 llvm::Function *LookupNeonLLVMIntrinsic(unsigned IntrinsicID, 2204 unsigned Modifier, llvm::Type *ArgTy, 2205 const CallExpr *E); 2206 llvm::Value *EmitNeonCall(llvm::Function *F, 2207 SmallVectorImpl<llvm::Value*> &O, 2208 const char *name, 2209 unsigned shift = 0, bool rightshift = false); 2210 llvm::Value *EmitNeonSplat(llvm::Value *V, llvm::Constant *Idx); 2211 llvm::Value *EmitNeonShiftVector(llvm::Value *V, llvm::Type *Ty, 2212 bool negateForRightShift); 2213 llvm::Value *EmitNeonRShiftImm(llvm::Value *Vec, llvm::Value *Amt, 2214 llvm::Type *Ty, bool usgn, const char *name); 2215 llvm::Value *EmitConcatVectors(llvm::Value *Lo, llvm::Value *Hi, 2216 llvm::Type *ArgTy); 2217 llvm::Value *EmitExtractHigh(llvm::Value *In, llvm::Type *ResTy); 2218 // Helper functions for EmitARM64BuiltinExpr. 2219 llvm::Value *vectorWrapScalar8(llvm::Value *Op); 2220 llvm::Value *vectorWrapScalar16(llvm::Value *Op); 2221 llvm::Value *emitVectorWrappedScalar8Intrinsic( 2222 unsigned Int, SmallVectorImpl<llvm::Value *> &Ops, const char *Name); 2223 llvm::Value *emitVectorWrappedScalar16Intrinsic( 2224 unsigned Int, SmallVectorImpl<llvm::Value *> &Ops, const char *Name); 2225 llvm::Value *EmitARM64BuiltinExpr(unsigned BuiltinID, const CallExpr *E); 2226 llvm::Value *EmitNeon64Call(llvm::Function *F, 2227 llvm::SmallVectorImpl<llvm::Value *> &O, 2228 const char *name); 2229 2230 llvm::Value *BuildVector(ArrayRef<llvm::Value*> Ops); 2231 llvm::Value *EmitX86BuiltinExpr(unsigned BuiltinID, const CallExpr *E); 2232 llvm::Value *EmitPPCBuiltinExpr(unsigned BuiltinID, const CallExpr *E); 2233 2234 llvm::Value *EmitObjCProtocolExpr(const ObjCProtocolExpr *E); 2235 llvm::Value *EmitObjCStringLiteral(const ObjCStringLiteral *E); 2236 llvm::Value *EmitObjCBoxedExpr(const ObjCBoxedExpr *E); 2237 llvm::Value *EmitObjCArrayLiteral(const ObjCArrayLiteral *E); 2238 llvm::Value *EmitObjCDictionaryLiteral(const ObjCDictionaryLiteral *E); 2239 llvm::Value *EmitObjCCollectionLiteral(const Expr *E, 2240 const ObjCMethodDecl *MethodWithObjects); 2241 llvm::Value *EmitObjCSelectorExpr(const ObjCSelectorExpr *E); 2242 RValue EmitObjCMessageExpr(const ObjCMessageExpr *E, 2243 ReturnValueSlot Return = ReturnValueSlot()); 2244 2245 /// Retrieves the default cleanup kind for an ARC cleanup. 2246 /// Except under -fobjc-arc-eh, ARC cleanups are normal-only. 2247 CleanupKind getARCCleanupKind() { 2248 return CGM.getCodeGenOpts().ObjCAutoRefCountExceptions 2249 ? NormalAndEHCleanup : NormalCleanup; 2250 } 2251 2252 // ARC primitives. 2253 void EmitARCInitWeak(llvm::Value *value, llvm::Value *addr); 2254 void EmitARCDestroyWeak(llvm::Value *addr); 2255 llvm::Value *EmitARCLoadWeak(llvm::Value *addr); 2256 llvm::Value *EmitARCLoadWeakRetained(llvm::Value *addr); 2257 llvm::Value *EmitARCStoreWeak(llvm::Value *value, llvm::Value *addr, 2258 bool ignored); 2259 void EmitARCCopyWeak(llvm::Value *dst, llvm::Value *src); 2260 void EmitARCMoveWeak(llvm::Value *dst, llvm::Value *src); 2261 llvm::Value *EmitARCRetainAutorelease(QualType type, llvm::Value *value); 2262 llvm::Value *EmitARCRetainAutoreleaseNonBlock(llvm::Value *value); 2263 llvm::Value *EmitARCStoreStrong(LValue lvalue, llvm::Value *value, 2264 bool resultIgnored); 2265 llvm::Value *EmitARCStoreStrongCall(llvm::Value *addr, llvm::Value *value, 2266 bool resultIgnored); 2267 llvm::Value *EmitARCRetain(QualType type, llvm::Value *value); 2268 llvm::Value *EmitARCRetainNonBlock(llvm::Value *value); 2269 llvm::Value *EmitARCRetainBlock(llvm::Value *value, bool mandatory); 2270 void EmitARCDestroyStrong(llvm::Value *addr, ARCPreciseLifetime_t precise); 2271 void EmitARCRelease(llvm::Value *value, ARCPreciseLifetime_t precise); 2272 llvm::Value *EmitARCAutorelease(llvm::Value *value); 2273 llvm::Value *EmitARCAutoreleaseReturnValue(llvm::Value *value); 2274 llvm::Value *EmitARCRetainAutoreleaseReturnValue(llvm::Value *value); 2275 llvm::Value *EmitARCRetainAutoreleasedReturnValue(llvm::Value *value); 2276 2277 std::pair<LValue,llvm::Value*> 2278 EmitARCStoreAutoreleasing(const BinaryOperator *e); 2279 std::pair<LValue,llvm::Value*> 2280 EmitARCStoreStrong(const BinaryOperator *e, bool ignored); 2281 2282 llvm::Value *EmitObjCThrowOperand(const Expr *expr); 2283 2284 llvm::Value *EmitObjCProduceObject(QualType T, llvm::Value *Ptr); 2285 llvm::Value *EmitObjCConsumeObject(QualType T, llvm::Value *Ptr); 2286 llvm::Value *EmitObjCExtendObjectLifetime(QualType T, llvm::Value *Ptr); 2287 2288 llvm::Value *EmitARCExtendBlockObject(const Expr *expr); 2289 llvm::Value *EmitARCRetainScalarExpr(const Expr *expr); 2290 llvm::Value *EmitARCRetainAutoreleaseScalarExpr(const Expr *expr); 2291 2292 void EmitARCIntrinsicUse(llvm::ArrayRef<llvm::Value*> values); 2293 2294 static Destroyer destroyARCStrongImprecise; 2295 static Destroyer destroyARCStrongPrecise; 2296 static Destroyer destroyARCWeak; 2297 2298 void EmitObjCAutoreleasePoolPop(llvm::Value *Ptr); 2299 llvm::Value *EmitObjCAutoreleasePoolPush(); 2300 llvm::Value *EmitObjCMRRAutoreleasePoolPush(); 2301 void EmitObjCAutoreleasePoolCleanup(llvm::Value *Ptr); 2302 void EmitObjCMRRAutoreleasePoolPop(llvm::Value *Ptr); 2303 2304 /// \brief Emits a reference binding to the passed in expression. 2305 RValue EmitReferenceBindingToExpr(const Expr *E); 2306 2307 //===--------------------------------------------------------------------===// 2308 // Expression Emission 2309 //===--------------------------------------------------------------------===// 2310 2311 // Expressions are broken into three classes: scalar, complex, aggregate. 2312 2313 /// EmitScalarExpr - Emit the computation of the specified expression of LLVM 2314 /// scalar type, returning the result. 2315 llvm::Value *EmitScalarExpr(const Expr *E , bool IgnoreResultAssign = false); 2316 2317 /// EmitScalarConversion - Emit a conversion from the specified type to the 2318 /// specified destination type, both of which are LLVM scalar types. 2319 llvm::Value *EmitScalarConversion(llvm::Value *Src, QualType SrcTy, 2320 QualType DstTy); 2321 2322 /// EmitComplexToScalarConversion - Emit a conversion from the specified 2323 /// complex type to the specified destination type, where the destination type 2324 /// is an LLVM scalar type. 2325 llvm::Value *EmitComplexToScalarConversion(ComplexPairTy Src, QualType SrcTy, 2326 QualType DstTy); 2327 2328 2329 /// EmitAggExpr - Emit the computation of the specified expression 2330 /// of aggregate type. The result is computed into the given slot, 2331 /// which may be null to indicate that the value is not needed. 2332 void EmitAggExpr(const Expr *E, AggValueSlot AS); 2333 2334 /// EmitAggExprToLValue - Emit the computation of the specified expression of 2335 /// aggregate type into a temporary LValue. 2336 LValue EmitAggExprToLValue(const Expr *E); 2337 2338 /// EmitGCMemmoveCollectable - Emit special API for structs with object 2339 /// pointers. 2340 void EmitGCMemmoveCollectable(llvm::Value *DestPtr, llvm::Value *SrcPtr, 2341 QualType Ty); 2342 2343 /// EmitExtendGCLifetime - Given a pointer to an Objective-C object, 2344 /// make sure it survives garbage collection until this point. 2345 void EmitExtendGCLifetime(llvm::Value *object); 2346 2347 /// EmitComplexExpr - Emit the computation of the specified expression of 2348 /// complex type, returning the result. 2349 ComplexPairTy EmitComplexExpr(const Expr *E, 2350 bool IgnoreReal = false, 2351 bool IgnoreImag = false); 2352 2353 /// EmitComplexExprIntoLValue - Emit the given expression of complex 2354 /// type and place its result into the specified l-value. 2355 void EmitComplexExprIntoLValue(const Expr *E, LValue dest, bool isInit); 2356 2357 /// EmitStoreOfComplex - Store a complex number into the specified l-value. 2358 void EmitStoreOfComplex(ComplexPairTy V, LValue dest, bool isInit); 2359 2360 /// EmitLoadOfComplex - Load a complex number from the specified l-value. 2361 ComplexPairTy EmitLoadOfComplex(LValue src, SourceLocation loc); 2362 2363 /// CreateStaticVarDecl - Create a zero-initialized LLVM global for 2364 /// a static local variable. 2365 llvm::Constant *CreateStaticVarDecl(const VarDecl &D, 2366 const char *Separator, 2367 llvm::GlobalValue::LinkageTypes Linkage); 2368 2369 /// AddInitializerToStaticVarDecl - Add the initializer for 'D' to the 2370 /// global variable that has already been created for it. If the initializer 2371 /// has a different type than GV does, this may free GV and return a different 2372 /// one. Otherwise it just returns GV. 2373 llvm::GlobalVariable * 2374 AddInitializerToStaticVarDecl(const VarDecl &D, 2375 llvm::GlobalVariable *GV); 2376 2377 2378 /// EmitCXXGlobalVarDeclInit - Create the initializer for a C++ 2379 /// variable with global storage. 2380 void EmitCXXGlobalVarDeclInit(const VarDecl &D, llvm::Constant *DeclPtr, 2381 bool PerformInit); 2382 2383 /// Call atexit() with a function that passes the given argument to 2384 /// the given function. 2385 void registerGlobalDtorWithAtExit(const VarDecl &D, llvm::Constant *fn, 2386 llvm::Constant *addr); 2387 2388 /// Emit code in this function to perform a guarded variable 2389 /// initialization. Guarded initializations are used when it's not 2390 /// possible to prove that an initialization will be done exactly 2391 /// once, e.g. with a static local variable or a static data member 2392 /// of a class template. 2393 void EmitCXXGuardedInit(const VarDecl &D, llvm::GlobalVariable *DeclPtr, 2394 bool PerformInit); 2395 2396 /// GenerateCXXGlobalInitFunc - Generates code for initializing global 2397 /// variables. 2398 void GenerateCXXGlobalInitFunc(llvm::Function *Fn, 2399 ArrayRef<llvm::Constant *> Decls, 2400 llvm::GlobalVariable *Guard = 0); 2401 2402 /// GenerateCXXGlobalDtorsFunc - Generates code for destroying global 2403 /// variables. 2404 void GenerateCXXGlobalDtorsFunc(llvm::Function *Fn, 2405 const std::vector<std::pair<llvm::WeakVH, 2406 llvm::Constant*> > &DtorsAndObjects); 2407 2408 void GenerateCXXGlobalVarDeclInitFunc(llvm::Function *Fn, 2409 const VarDecl *D, 2410 llvm::GlobalVariable *Addr, 2411 bool PerformInit); 2412 2413 void EmitCXXConstructExpr(const CXXConstructExpr *E, AggValueSlot Dest); 2414 2415 void EmitSynthesizedCXXCopyCtor(llvm::Value *Dest, llvm::Value *Src, 2416 const Expr *Exp); 2417 2418 void enterFullExpression(const ExprWithCleanups *E) { 2419 if (E->getNumObjects() == 0) return; 2420 enterNonTrivialFullExpression(E); 2421 } 2422 void enterNonTrivialFullExpression(const ExprWithCleanups *E); 2423 2424 void EmitCXXThrowExpr(const CXXThrowExpr *E, bool KeepInsertionPoint = true); 2425 2426 void EmitLambdaExpr(const LambdaExpr *E, AggValueSlot Dest); 2427 2428 RValue EmitAtomicExpr(AtomicExpr *E, llvm::Value *Dest = 0); 2429 2430 //===--------------------------------------------------------------------===// 2431 // Annotations Emission 2432 //===--------------------------------------------------------------------===// 2433 2434 /// Emit an annotation call (intrinsic or builtin). 2435 llvm::Value *EmitAnnotationCall(llvm::Value *AnnotationFn, 2436 llvm::Value *AnnotatedVal, 2437 StringRef AnnotationStr, 2438 SourceLocation Location); 2439 2440 /// Emit local annotations for the local variable V, declared by D. 2441 void EmitVarAnnotations(const VarDecl *D, llvm::Value *V); 2442 2443 /// Emit field annotations for the given field & value. Returns the 2444 /// annotation result. 2445 llvm::Value *EmitFieldAnnotations(const FieldDecl *D, llvm::Value *V); 2446 2447 //===--------------------------------------------------------------------===// 2448 // Internal Helpers 2449 //===--------------------------------------------------------------------===// 2450 2451 /// ContainsLabel - Return true if the statement contains a label in it. If 2452 /// this statement is not executed normally, it not containing a label means 2453 /// that we can just remove the code. 2454 static bool ContainsLabel(const Stmt *S, bool IgnoreCaseStmts = false); 2455 2456 /// containsBreak - Return true if the statement contains a break out of it. 2457 /// If the statement (recursively) contains a switch or loop with a break 2458 /// inside of it, this is fine. 2459 static bool containsBreak(const Stmt *S); 2460 2461 /// ConstantFoldsToSimpleInteger - If the specified expression does not fold 2462 /// to a constant, or if it does but contains a label, return false. If it 2463 /// constant folds return true and set the boolean result in Result. 2464 bool ConstantFoldsToSimpleInteger(const Expr *Cond, bool &Result); 2465 2466 /// ConstantFoldsToSimpleInteger - If the specified expression does not fold 2467 /// to a constant, or if it does but contains a label, return false. If it 2468 /// constant folds return true and set the folded value. 2469 bool ConstantFoldsToSimpleInteger(const Expr *Cond, llvm::APSInt &Result); 2470 2471 /// EmitBranchOnBoolExpr - Emit a branch on a boolean condition (e.g. for an 2472 /// if statement) to the specified blocks. Based on the condition, this might 2473 /// try to simplify the codegen of the conditional based on the branch. 2474 /// TrueCount should be the number of times we expect the condition to 2475 /// evaluate to true based on PGO data. 2476 void EmitBranchOnBoolExpr(const Expr *Cond, llvm::BasicBlock *TrueBlock, 2477 llvm::BasicBlock *FalseBlock, uint64_t TrueCount); 2478 2479 /// \brief Emit a description of a type in a format suitable for passing to 2480 /// a runtime sanitizer handler. 2481 llvm::Constant *EmitCheckTypeDescriptor(QualType T); 2482 2483 /// \brief Convert a value into a format suitable for passing to a runtime 2484 /// sanitizer handler. 2485 llvm::Value *EmitCheckValue(llvm::Value *V); 2486 2487 /// \brief Emit a description of a source location in a format suitable for 2488 /// passing to a runtime sanitizer handler. 2489 llvm::Constant *EmitCheckSourceLocation(SourceLocation Loc); 2490 2491 /// \brief Specify under what conditions this check can be recovered 2492 enum CheckRecoverableKind { 2493 /// Always terminate program execution if this check fails 2494 CRK_Unrecoverable, 2495 /// Check supports recovering, allows user to specify which 2496 CRK_Recoverable, 2497 /// Runtime conditionally aborts, always need to support recovery. 2498 CRK_AlwaysRecoverable 2499 }; 2500 2501 /// \brief Create a basic block that will call a handler function in a 2502 /// sanitizer runtime with the provided arguments, and create a conditional 2503 /// branch to it. 2504 void EmitCheck(llvm::Value *Checked, StringRef CheckName, 2505 ArrayRef<llvm::Constant *> StaticArgs, 2506 ArrayRef<llvm::Value *> DynamicArgs, 2507 CheckRecoverableKind Recoverable); 2508 2509 /// \brief Create a basic block that will call the trap intrinsic, and emit a 2510 /// conditional branch to it, for the -ftrapv checks. 2511 void EmitTrapCheck(llvm::Value *Checked); 2512 2513 /// EmitCallArg - Emit a single call argument. 2514 void EmitCallArg(CallArgList &args, const Expr *E, QualType ArgType); 2515 2516 /// EmitDelegateCallArg - We are performing a delegate call; that 2517 /// is, the current function is delegating to another one. Produce 2518 /// a r-value suitable for passing the given parameter. 2519 void EmitDelegateCallArg(CallArgList &args, const VarDecl *param, 2520 SourceLocation loc); 2521 2522 /// SetFPAccuracy - Set the minimum required accuracy of the given floating 2523 /// point operation, expressed as the maximum relative error in ulp. 2524 void SetFPAccuracy(llvm::Value *Val, float Accuracy); 2525 2526 private: 2527 llvm::MDNode *getRangeForLoadFromType(QualType Ty); 2528 void EmitReturnOfRValue(RValue RV, QualType Ty); 2529 2530 void deferPlaceholderReplacement(llvm::Instruction *Old, llvm::Value *New); 2531 2532 llvm::SmallVector<std::pair<llvm::Instruction *, llvm::Value *>, 4> 2533 DeferredReplacements; 2534 2535 /// ExpandTypeFromArgs - Reconstruct a structure of type \arg Ty 2536 /// from function arguments into \arg Dst. See ABIArgInfo::Expand. 2537 /// 2538 /// \param AI - The first function argument of the expansion. 2539 /// \return The argument following the last expanded function 2540 /// argument. 2541 llvm::Function::arg_iterator 2542 ExpandTypeFromArgs(QualType Ty, LValue Dst, 2543 llvm::Function::arg_iterator AI); 2544 2545 /// ExpandTypeToArgs - Expand an RValue \arg Src, with the LLVM type for \arg 2546 /// Ty, into individual arguments on the provided vector \arg Args. See 2547 /// ABIArgInfo::Expand. 2548 void ExpandTypeToArgs(QualType Ty, RValue Src, 2549 SmallVectorImpl<llvm::Value *> &Args, 2550 llvm::FunctionType *IRFuncTy); 2551 2552 llvm::Value* EmitAsmInput(const TargetInfo::ConstraintInfo &Info, 2553 const Expr *InputExpr, std::string &ConstraintStr); 2554 2555 llvm::Value* EmitAsmInputLValue(const TargetInfo::ConstraintInfo &Info, 2556 LValue InputValue, QualType InputType, 2557 std::string &ConstraintStr, 2558 SourceLocation Loc); 2559 2560 public: 2561 /// EmitCallArgs - Emit call arguments for a function. 2562 template <typename T> 2563 void EmitCallArgs(CallArgList &Args, const T *CallArgTypeInfo, 2564 CallExpr::const_arg_iterator ArgBeg, 2565 CallExpr::const_arg_iterator ArgEnd, 2566 bool ForceColumnInfo = false) { 2567 if (CallArgTypeInfo) { 2568 EmitCallArgs(Args, CallArgTypeInfo->isVariadic(), 2569 CallArgTypeInfo->param_type_begin(), 2570 CallArgTypeInfo->param_type_end(), ArgBeg, ArgEnd, 2571 ForceColumnInfo); 2572 } else { 2573 // T::param_type_iterator might not have a default ctor. 2574 const QualType *NoIter = 0; 2575 EmitCallArgs(Args, /*AllowExtraArguments=*/true, NoIter, NoIter, ArgBeg, 2576 ArgEnd, ForceColumnInfo); 2577 } 2578 } 2579 2580 template<typename ArgTypeIterator> 2581 void EmitCallArgs(CallArgList& Args, 2582 bool AllowExtraArguments, 2583 ArgTypeIterator ArgTypeBeg, 2584 ArgTypeIterator ArgTypeEnd, 2585 CallExpr::const_arg_iterator ArgBeg, 2586 CallExpr::const_arg_iterator ArgEnd, 2587 bool ForceColumnInfo = false) { 2588 SmallVector<QualType, 16> ArgTypes; 2589 CallExpr::const_arg_iterator Arg = ArgBeg; 2590 2591 // First, use the argument types that the type info knows about 2592 for (ArgTypeIterator I = ArgTypeBeg, E = ArgTypeEnd; I != E; ++I, ++Arg) { 2593 assert(Arg != ArgEnd && "Running over edge of argument list!"); 2594 #ifndef NDEBUG 2595 QualType ArgType = *I; 2596 QualType ActualArgType = Arg->getType(); 2597 if (ArgType->isPointerType() && ActualArgType->isPointerType()) { 2598 QualType ActualBaseType = 2599 ActualArgType->getAs<PointerType>()->getPointeeType(); 2600 QualType ArgBaseType = 2601 ArgType->getAs<PointerType>()->getPointeeType(); 2602 if (ArgBaseType->isVariableArrayType()) { 2603 if (const VariableArrayType *VAT = 2604 getContext().getAsVariableArrayType(ActualBaseType)) { 2605 if (!VAT->getSizeExpr()) 2606 ActualArgType = ArgType; 2607 } 2608 } 2609 } 2610 assert(getContext().getCanonicalType(ArgType.getNonReferenceType()). 2611 getTypePtr() == 2612 getContext().getCanonicalType(ActualArgType).getTypePtr() && 2613 "type mismatch in call argument!"); 2614 #endif 2615 ArgTypes.push_back(*I); 2616 } 2617 2618 // Either we've emitted all the call args, or we have a call to variadic 2619 // function or some other call that allows extra arguments. 2620 assert((Arg == ArgEnd || AllowExtraArguments) && 2621 "Extra arguments in non-variadic function!"); 2622 2623 // If we still have any arguments, emit them using the type of the argument. 2624 for (; Arg != ArgEnd; ++Arg) 2625 ArgTypes.push_back(Arg->getType()); 2626 2627 EmitCallArgs(Args, ArgTypes, ArgBeg, ArgEnd, ForceColumnInfo); 2628 } 2629 2630 void EmitCallArgs(CallArgList &Args, ArrayRef<QualType> ArgTypes, 2631 CallExpr::const_arg_iterator ArgBeg, 2632 CallExpr::const_arg_iterator ArgEnd, bool ForceColumnInfo); 2633 2634 private: 2635 const TargetCodeGenInfo &getTargetHooks() const { 2636 return CGM.getTargetCodeGenInfo(); 2637 } 2638 2639 void EmitDeclMetadata(); 2640 2641 CodeGenModule::ByrefHelpers * 2642 buildByrefHelpers(llvm::StructType &byrefType, 2643 const AutoVarEmission &emission); 2644 2645 void AddObjCARCExceptionMetadata(llvm::Instruction *Inst); 2646 2647 /// GetPointeeAlignment - Given an expression with a pointer type, emit the 2648 /// value and compute our best estimate of the alignment of the pointee. 2649 std::pair<llvm::Value*, unsigned> EmitPointerWithAlignment(const Expr *Addr); 2650 }; 2651 2652 /// Helper class with most of the code for saving a value for a 2653 /// conditional expression cleanup. 2654 struct DominatingLLVMValue { 2655 typedef llvm::PointerIntPair<llvm::Value*, 1, bool> saved_type; 2656 2657 /// Answer whether the given value needs extra work to be saved. 2658 static bool needsSaving(llvm::Value *value) { 2659 // If it's not an instruction, we don't need to save. 2660 if (!isa<llvm::Instruction>(value)) return false; 2661 2662 // If it's an instruction in the entry block, we don't need to save. 2663 llvm::BasicBlock *block = cast<llvm::Instruction>(value)->getParent(); 2664 return (block != &block->getParent()->getEntryBlock()); 2665 } 2666 2667 /// Try to save the given value. 2668 static saved_type save(CodeGenFunction &CGF, llvm::Value *value) { 2669 if (!needsSaving(value)) return saved_type(value, false); 2670 2671 // Otherwise we need an alloca. 2672 llvm::Value *alloca = 2673 CGF.CreateTempAlloca(value->getType(), "cond-cleanup.save"); 2674 CGF.Builder.CreateStore(value, alloca); 2675 2676 return saved_type(alloca, true); 2677 } 2678 2679 static llvm::Value *restore(CodeGenFunction &CGF, saved_type value) { 2680 if (!value.getInt()) return value.getPointer(); 2681 return CGF.Builder.CreateLoad(value.getPointer()); 2682 } 2683 }; 2684 2685 /// A partial specialization of DominatingValue for llvm::Values that 2686 /// might be llvm::Instructions. 2687 template <class T> struct DominatingPointer<T,true> : DominatingLLVMValue { 2688 typedef T *type; 2689 static type restore(CodeGenFunction &CGF, saved_type value) { 2690 return static_cast<T*>(DominatingLLVMValue::restore(CGF, value)); 2691 } 2692 }; 2693 2694 /// A specialization of DominatingValue for RValue. 2695 template <> struct DominatingValue<RValue> { 2696 typedef RValue type; 2697 class saved_type { 2698 enum Kind { ScalarLiteral, ScalarAddress, AggregateLiteral, 2699 AggregateAddress, ComplexAddress }; 2700 2701 llvm::Value *Value; 2702 Kind K; 2703 saved_type(llvm::Value *v, Kind k) : Value(v), K(k) {} 2704 2705 public: 2706 static bool needsSaving(RValue value); 2707 static saved_type save(CodeGenFunction &CGF, RValue value); 2708 RValue restore(CodeGenFunction &CGF); 2709 2710 // implementations in CGExprCXX.cpp 2711 }; 2712 2713 static bool needsSaving(type value) { 2714 return saved_type::needsSaving(value); 2715 } 2716 static saved_type save(CodeGenFunction &CGF, type value) { 2717 return saved_type::save(CGF, value); 2718 } 2719 static type restore(CodeGenFunction &CGF, saved_type value) { 2720 return value.restore(CGF); 2721 } 2722 }; 2723 2724 } // end namespace CodeGen 2725 } // end namespace clang 2726 2727 #endif 2728