1 //===-- CodeGenFunction.h - Per-Function state for LLVM CodeGen -*- C++ -*-===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This is the internal per-function state used for llvm translation. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #ifndef CLANG_CODEGEN_CODEGENFUNCTION_H 15 #define CLANG_CODEGEN_CODEGENFUNCTION_H 16 17 #include "clang/AST/Type.h" 18 #include "clang/AST/ExprCXX.h" 19 #include "clang/AST/ExprObjC.h" 20 #include "clang/AST/CharUnits.h" 21 #include "clang/Basic/ABI.h" 22 #include "clang/Basic/TargetInfo.h" 23 #include "llvm/ADT/DenseMap.h" 24 #include "llvm/ADT/SmallVector.h" 25 #include "llvm/Support/ValueHandle.h" 26 #include "CodeGenModule.h" 27 #include "CGBuilder.h" 28 #include "CGValue.h" 29 30 namespace llvm { 31 class BasicBlock; 32 class LLVMContext; 33 class MDNode; 34 class Module; 35 class SwitchInst; 36 class Twine; 37 class Value; 38 class CallSite; 39 } 40 41 namespace clang { 42 class APValue; 43 class ASTContext; 44 class CXXDestructorDecl; 45 class CXXForRangeStmt; 46 class CXXTryStmt; 47 class Decl; 48 class LabelDecl; 49 class EnumConstantDecl; 50 class FunctionDecl; 51 class FunctionProtoType; 52 class LabelStmt; 53 class ObjCContainerDecl; 54 class ObjCInterfaceDecl; 55 class ObjCIvarDecl; 56 class ObjCMethodDecl; 57 class ObjCImplementationDecl; 58 class ObjCPropertyImplDecl; 59 class TargetInfo; 60 class TargetCodeGenInfo; 61 class VarDecl; 62 class ObjCForCollectionStmt; 63 class ObjCAtTryStmt; 64 class ObjCAtThrowStmt; 65 class ObjCAtSynchronizedStmt; 66 67 namespace CodeGen { 68 class CodeGenTypes; 69 class CGDebugInfo; 70 class CGFunctionInfo; 71 class CGRecordLayout; 72 class CGBlockInfo; 73 class CGCXXABI; 74 class BlockFlags; 75 class BlockFieldFlags; 76 77 /// A branch fixup. These are required when emitting a goto to a 78 /// label which hasn't been emitted yet. The goto is optimistically 79 /// emitted as a branch to the basic block for the label, and (if it 80 /// occurs in a scope with non-trivial cleanups) a fixup is added to 81 /// the innermost cleanup. When a (normal) cleanup is popped, any 82 /// unresolved fixups in that scope are threaded through the cleanup. 83 struct BranchFixup { 84 /// The block containing the terminator which needs to be modified 85 /// into a switch if this fixup is resolved into the current scope. 86 /// If null, LatestBranch points directly to the destination. 87 llvm::BasicBlock *OptimisticBranchBlock; 88 89 /// The ultimate destination of the branch. 90 /// 91 /// This can be set to null to indicate that this fixup was 92 /// successfully resolved. 93 llvm::BasicBlock *Destination; 94 95 /// The destination index value. 96 unsigned DestinationIndex; 97 98 /// The initial branch of the fixup. 99 llvm::BranchInst *InitialBranch; 100 }; 101 102 template <class T> struct InvariantValue { 103 typedef T type; 104 typedef T saved_type; 105 static bool needsSaving(type value) { return false; } 106 static saved_type save(CodeGenFunction &CGF, type value) { return value; } 107 static type restore(CodeGenFunction &CGF, saved_type value) { return value; } 108 }; 109 110 /// A metaprogramming class for ensuring that a value will dominate an 111 /// arbitrary position in a function. 112 template <class T> struct DominatingValue : InvariantValue<T> {}; 113 114 template <class T, bool mightBeInstruction = 115 llvm::is_base_of<llvm::Value, T>::value && 116 !llvm::is_base_of<llvm::Constant, T>::value && 117 !llvm::is_base_of<llvm::BasicBlock, T>::value> 118 struct DominatingPointer; 119 template <class T> struct DominatingPointer<T,false> : InvariantValue<T*> {}; 120 // template <class T> struct DominatingPointer<T,true> at end of file 121 122 template <class T> struct DominatingValue<T*> : DominatingPointer<T> {}; 123 124 enum CleanupKind { 125 EHCleanup = 0x1, 126 NormalCleanup = 0x2, 127 NormalAndEHCleanup = EHCleanup | NormalCleanup, 128 129 InactiveCleanup = 0x4, 130 InactiveEHCleanup = EHCleanup | InactiveCleanup, 131 InactiveNormalCleanup = NormalCleanup | InactiveCleanup, 132 InactiveNormalAndEHCleanup = NormalAndEHCleanup | InactiveCleanup 133 }; 134 135 /// A stack of scopes which respond to exceptions, including cleanups 136 /// and catch blocks. 137 class EHScopeStack { 138 public: 139 /// A saved depth on the scope stack. This is necessary because 140 /// pushing scopes onto the stack invalidates iterators. 141 class stable_iterator { 142 friend class EHScopeStack; 143 144 /// Offset from StartOfData to EndOfBuffer. 145 ptrdiff_t Size; 146 147 stable_iterator(ptrdiff_t Size) : Size(Size) {} 148 149 public: 150 static stable_iterator invalid() { return stable_iterator(-1); } 151 stable_iterator() : Size(-1) {} 152 153 bool isValid() const { return Size >= 0; } 154 155 /// Returns true if this scope encloses I. 156 /// Returns false if I is invalid. 157 /// This scope must be valid. 158 bool encloses(stable_iterator I) const { return Size <= I.Size; } 159 160 /// Returns true if this scope strictly encloses I: that is, 161 /// if it encloses I and is not I. 162 /// Returns false is I is invalid. 163 /// This scope must be valid. 164 bool strictlyEncloses(stable_iterator I) const { return Size < I.Size; } 165 166 friend bool operator==(stable_iterator A, stable_iterator B) { 167 return A.Size == B.Size; 168 } 169 friend bool operator!=(stable_iterator A, stable_iterator B) { 170 return A.Size != B.Size; 171 } 172 }; 173 174 /// Information for lazily generating a cleanup. Subclasses must be 175 /// POD-like: cleanups will not be destructed, and they will be 176 /// allocated on the cleanup stack and freely copied and moved 177 /// around. 178 /// 179 /// Cleanup implementations should generally be declared in an 180 /// anonymous namespace. 181 class Cleanup { 182 public: 183 // Anchor the construction vtable. We use the destructor because 184 // gcc gives an obnoxious warning if there are virtual methods 185 // with an accessible non-virtual destructor. Unfortunately, 186 // declaring this destructor makes it non-trivial, but there 187 // doesn't seem to be any other way around this warning. 188 // 189 // This destructor will never be called. 190 virtual ~Cleanup(); 191 192 /// Emit the cleanup. For normal cleanups, this is run in the 193 /// same EH context as when the cleanup was pushed, i.e. the 194 /// immediately-enclosing context of the cleanup scope. For 195 /// EH cleanups, this is run in a terminate context. 196 /// 197 // \param IsForEHCleanup true if this is for an EH cleanup, false 198 /// if for a normal cleanup. 199 virtual void Emit(CodeGenFunction &CGF, bool IsForEHCleanup) = 0; 200 }; 201 202 /// UnconditionalCleanupN stores its N parameters and just passes 203 /// them to the real cleanup function. 204 template <class T, class A0> 205 class UnconditionalCleanup1 : public Cleanup { 206 A0 a0; 207 public: 208 UnconditionalCleanup1(A0 a0) : a0(a0) {} 209 void Emit(CodeGenFunction &CGF, bool IsForEHCleanup) { 210 T::Emit(CGF, IsForEHCleanup, a0); 211 } 212 }; 213 214 template <class T, class A0, class A1> 215 class UnconditionalCleanup2 : public Cleanup { 216 A0 a0; A1 a1; 217 public: 218 UnconditionalCleanup2(A0 a0, A1 a1) : a0(a0), a1(a1) {} 219 void Emit(CodeGenFunction &CGF, bool IsForEHCleanup) { 220 T::Emit(CGF, IsForEHCleanup, a0, a1); 221 } 222 }; 223 224 /// ConditionalCleanupN stores the saved form of its N parameters, 225 /// then restores them and performs the cleanup. 226 template <class T, class A0> 227 class ConditionalCleanup1 : public Cleanup { 228 typedef typename DominatingValue<A0>::saved_type A0_saved; 229 A0_saved a0_saved; 230 231 void Emit(CodeGenFunction &CGF, bool IsForEHCleanup) { 232 A0 a0 = DominatingValue<A0>::restore(CGF, a0_saved); 233 T::Emit(CGF, IsForEHCleanup, a0); 234 } 235 236 public: 237 ConditionalCleanup1(A0_saved a0) 238 : a0_saved(a0) {} 239 }; 240 241 template <class T, class A0, class A1> 242 class ConditionalCleanup2 : public Cleanup { 243 typedef typename DominatingValue<A0>::saved_type A0_saved; 244 typedef typename DominatingValue<A1>::saved_type A1_saved; 245 A0_saved a0_saved; 246 A1_saved a1_saved; 247 248 void Emit(CodeGenFunction &CGF, bool IsForEHCleanup) { 249 A0 a0 = DominatingValue<A0>::restore(CGF, a0_saved); 250 A1 a1 = DominatingValue<A1>::restore(CGF, a1_saved); 251 T::Emit(CGF, IsForEHCleanup, a0, a1); 252 } 253 254 public: 255 ConditionalCleanup2(A0_saved a0, A1_saved a1) 256 : a0_saved(a0), a1_saved(a1) {} 257 }; 258 259 private: 260 // The implementation for this class is in CGException.h and 261 // CGException.cpp; the definition is here because it's used as a 262 // member of CodeGenFunction. 263 264 /// The start of the scope-stack buffer, i.e. the allocated pointer 265 /// for the buffer. All of these pointers are either simultaneously 266 /// null or simultaneously valid. 267 char *StartOfBuffer; 268 269 /// The end of the buffer. 270 char *EndOfBuffer; 271 272 /// The first valid entry in the buffer. 273 char *StartOfData; 274 275 /// The innermost normal cleanup on the stack. 276 stable_iterator InnermostNormalCleanup; 277 278 /// The innermost EH cleanup on the stack. 279 stable_iterator InnermostEHCleanup; 280 281 /// The number of catches on the stack. 282 unsigned CatchDepth; 283 284 /// The current EH destination index. Reset to FirstCatchIndex 285 /// whenever the last EH cleanup is popped. 286 unsigned NextEHDestIndex; 287 enum { FirstEHDestIndex = 1 }; 288 289 /// The current set of branch fixups. A branch fixup is a jump to 290 /// an as-yet unemitted label, i.e. a label for which we don't yet 291 /// know the EH stack depth. Whenever we pop a cleanup, we have 292 /// to thread all the current branch fixups through it. 293 /// 294 /// Fixups are recorded as the Use of the respective branch or 295 /// switch statement. The use points to the final destination. 296 /// When popping out of a cleanup, these uses are threaded through 297 /// the cleanup and adjusted to point to the new cleanup. 298 /// 299 /// Note that branches are allowed to jump into protected scopes 300 /// in certain situations; e.g. the following code is legal: 301 /// struct A { ~A(); }; // trivial ctor, non-trivial dtor 302 /// goto foo; 303 /// A a; 304 /// foo: 305 /// bar(); 306 llvm::SmallVector<BranchFixup, 8> BranchFixups; 307 308 char *allocate(size_t Size); 309 310 void *pushCleanup(CleanupKind K, size_t DataSize); 311 312 public: 313 EHScopeStack() : StartOfBuffer(0), EndOfBuffer(0), StartOfData(0), 314 InnermostNormalCleanup(stable_end()), 315 InnermostEHCleanup(stable_end()), 316 CatchDepth(0), NextEHDestIndex(FirstEHDestIndex) {} 317 ~EHScopeStack() { delete[] StartOfBuffer; } 318 319 // Variadic templates would make this not terrible. 320 321 /// Push a lazily-created cleanup on the stack. 322 template <class T> 323 void pushCleanup(CleanupKind Kind) { 324 void *Buffer = pushCleanup(Kind, sizeof(T)); 325 Cleanup *Obj = new(Buffer) T(); 326 (void) Obj; 327 } 328 329 /// Push a lazily-created cleanup on the stack. 330 template <class T, class A0> 331 void pushCleanup(CleanupKind Kind, A0 a0) { 332 void *Buffer = pushCleanup(Kind, sizeof(T)); 333 Cleanup *Obj = new(Buffer) T(a0); 334 (void) Obj; 335 } 336 337 /// Push a lazily-created cleanup on the stack. 338 template <class T, class A0, class A1> 339 void pushCleanup(CleanupKind Kind, A0 a0, A1 a1) { 340 void *Buffer = pushCleanup(Kind, sizeof(T)); 341 Cleanup *Obj = new(Buffer) T(a0, a1); 342 (void) Obj; 343 } 344 345 /// Push a lazily-created cleanup on the stack. 346 template <class T, class A0, class A1, class A2> 347 void pushCleanup(CleanupKind Kind, A0 a0, A1 a1, A2 a2) { 348 void *Buffer = pushCleanup(Kind, sizeof(T)); 349 Cleanup *Obj = new(Buffer) T(a0, a1, a2); 350 (void) Obj; 351 } 352 353 /// Push a lazily-created cleanup on the stack. 354 template <class T, class A0, class A1, class A2, class A3> 355 void pushCleanup(CleanupKind Kind, A0 a0, A1 a1, A2 a2, A3 a3) { 356 void *Buffer = pushCleanup(Kind, sizeof(T)); 357 Cleanup *Obj = new(Buffer) T(a0, a1, a2, a3); 358 (void) Obj; 359 } 360 361 /// Push a lazily-created cleanup on the stack. 362 template <class T, class A0, class A1, class A2, class A3, class A4> 363 void pushCleanup(CleanupKind Kind, A0 a0, A1 a1, A2 a2, A3 a3, A4 a4) { 364 void *Buffer = pushCleanup(Kind, sizeof(T)); 365 Cleanup *Obj = new(Buffer) T(a0, a1, a2, a3, a4); 366 (void) Obj; 367 } 368 369 // Feel free to add more variants of the following: 370 371 /// Push a cleanup with non-constant storage requirements on the 372 /// stack. The cleanup type must provide an additional static method: 373 /// static size_t getExtraSize(size_t); 374 /// The argument to this method will be the value N, which will also 375 /// be passed as the first argument to the constructor. 376 /// 377 /// The data stored in the extra storage must obey the same 378 /// restrictions as normal cleanup member data. 379 /// 380 /// The pointer returned from this method is valid until the cleanup 381 /// stack is modified. 382 template <class T, class A0, class A1, class A2> 383 T *pushCleanupWithExtra(CleanupKind Kind, size_t N, A0 a0, A1 a1, A2 a2) { 384 void *Buffer = pushCleanup(Kind, sizeof(T) + T::getExtraSize(N)); 385 return new (Buffer) T(N, a0, a1, a2); 386 } 387 388 /// Pops a cleanup scope off the stack. This should only be called 389 /// by CodeGenFunction::PopCleanupBlock. 390 void popCleanup(); 391 392 /// Push a set of catch handlers on the stack. The catch is 393 /// uninitialized and will need to have the given number of handlers 394 /// set on it. 395 class EHCatchScope *pushCatch(unsigned NumHandlers); 396 397 /// Pops a catch scope off the stack. 398 void popCatch(); 399 400 /// Push an exceptions filter on the stack. 401 class EHFilterScope *pushFilter(unsigned NumFilters); 402 403 /// Pops an exceptions filter off the stack. 404 void popFilter(); 405 406 /// Push a terminate handler on the stack. 407 void pushTerminate(); 408 409 /// Pops a terminate handler off the stack. 410 void popTerminate(); 411 412 /// Determines whether the exception-scopes stack is empty. 413 bool empty() const { return StartOfData == EndOfBuffer; } 414 415 bool requiresLandingPad() const { 416 return (CatchDepth || hasEHCleanups()); 417 } 418 419 /// Determines whether there are any normal cleanups on the stack. 420 bool hasNormalCleanups() const { 421 return InnermostNormalCleanup != stable_end(); 422 } 423 424 /// Returns the innermost normal cleanup on the stack, or 425 /// stable_end() if there are no normal cleanups. 426 stable_iterator getInnermostNormalCleanup() const { 427 return InnermostNormalCleanup; 428 } 429 stable_iterator getInnermostActiveNormalCleanup() const; // CGException.h 430 431 /// Determines whether there are any EH cleanups on the stack. 432 bool hasEHCleanups() const { 433 return InnermostEHCleanup != stable_end(); 434 } 435 436 /// Returns the innermost EH cleanup on the stack, or stable_end() 437 /// if there are no EH cleanups. 438 stable_iterator getInnermostEHCleanup() const { 439 return InnermostEHCleanup; 440 } 441 stable_iterator getInnermostActiveEHCleanup() const; // CGException.h 442 443 /// An unstable reference to a scope-stack depth. Invalidated by 444 /// pushes but not pops. 445 class iterator; 446 447 /// Returns an iterator pointing to the innermost EH scope. 448 iterator begin() const; 449 450 /// Returns an iterator pointing to the outermost EH scope. 451 iterator end() const; 452 453 /// Create a stable reference to the top of the EH stack. The 454 /// returned reference is valid until that scope is popped off the 455 /// stack. 456 stable_iterator stable_begin() const { 457 return stable_iterator(EndOfBuffer - StartOfData); 458 } 459 460 /// Create a stable reference to the bottom of the EH stack. 461 static stable_iterator stable_end() { 462 return stable_iterator(0); 463 } 464 465 /// Translates an iterator into a stable_iterator. 466 stable_iterator stabilize(iterator it) const; 467 468 /// Finds the nearest cleanup enclosing the given iterator. 469 /// Returns stable_iterator::invalid() if there are no such cleanups. 470 stable_iterator getEnclosingEHCleanup(iterator it) const; 471 472 /// Turn a stable reference to a scope depth into a unstable pointer 473 /// to the EH stack. 474 iterator find(stable_iterator save) const; 475 476 /// Removes the cleanup pointed to by the given stable_iterator. 477 void removeCleanup(stable_iterator save); 478 479 /// Add a branch fixup to the current cleanup scope. 480 BranchFixup &addBranchFixup() { 481 assert(hasNormalCleanups() && "adding fixup in scope without cleanups"); 482 BranchFixups.push_back(BranchFixup()); 483 return BranchFixups.back(); 484 } 485 486 unsigned getNumBranchFixups() const { return BranchFixups.size(); } 487 BranchFixup &getBranchFixup(unsigned I) { 488 assert(I < getNumBranchFixups()); 489 return BranchFixups[I]; 490 } 491 492 /// Pops lazily-removed fixups from the end of the list. This 493 /// should only be called by procedures which have just popped a 494 /// cleanup or resolved one or more fixups. 495 void popNullFixups(); 496 497 /// Clears the branch-fixups list. This should only be called by 498 /// ResolveAllBranchFixups. 499 void clearFixups() { BranchFixups.clear(); } 500 501 /// Gets the next EH destination index. 502 unsigned getNextEHDestIndex() { return NextEHDestIndex++; } 503 }; 504 505 /// CodeGenFunction - This class organizes the per-function state that is used 506 /// while generating LLVM code. 507 class CodeGenFunction : public CodeGenTypeCache { 508 CodeGenFunction(const CodeGenFunction&); // DO NOT IMPLEMENT 509 void operator=(const CodeGenFunction&); // DO NOT IMPLEMENT 510 511 friend class CGCXXABI; 512 public: 513 /// A jump destination is an abstract label, branching to which may 514 /// require a jump out through normal cleanups. 515 struct JumpDest { 516 JumpDest() : Block(0), ScopeDepth(), Index(0) {} 517 JumpDest(llvm::BasicBlock *Block, 518 EHScopeStack::stable_iterator Depth, 519 unsigned Index) 520 : Block(Block), ScopeDepth(Depth), Index(Index) {} 521 522 bool isValid() const { return Block != 0; } 523 llvm::BasicBlock *getBlock() const { return Block; } 524 EHScopeStack::stable_iterator getScopeDepth() const { return ScopeDepth; } 525 unsigned getDestIndex() const { return Index; } 526 527 private: 528 llvm::BasicBlock *Block; 529 EHScopeStack::stable_iterator ScopeDepth; 530 unsigned Index; 531 }; 532 533 /// An unwind destination is an abstract label, branching to which 534 /// may require a jump out through EH cleanups. 535 struct UnwindDest { 536 UnwindDest() : Block(0), ScopeDepth(), Index(0) {} 537 UnwindDest(llvm::BasicBlock *Block, 538 EHScopeStack::stable_iterator Depth, 539 unsigned Index) 540 : Block(Block), ScopeDepth(Depth), Index(Index) {} 541 542 bool isValid() const { return Block != 0; } 543 llvm::BasicBlock *getBlock() const { return Block; } 544 EHScopeStack::stable_iterator getScopeDepth() const { return ScopeDepth; } 545 unsigned getDestIndex() const { return Index; } 546 547 private: 548 llvm::BasicBlock *Block; 549 EHScopeStack::stable_iterator ScopeDepth; 550 unsigned Index; 551 }; 552 553 CodeGenModule &CGM; // Per-module state. 554 const TargetInfo &Target; 555 556 typedef std::pair<llvm::Value *, llvm::Value *> ComplexPairTy; 557 CGBuilderTy Builder; 558 559 /// CurFuncDecl - Holds the Decl for the current function or ObjC method. 560 /// This excludes BlockDecls. 561 const Decl *CurFuncDecl; 562 /// CurCodeDecl - This is the inner-most code context, which includes blocks. 563 const Decl *CurCodeDecl; 564 const CGFunctionInfo *CurFnInfo; 565 QualType FnRetTy; 566 llvm::Function *CurFn; 567 568 /// CurGD - The GlobalDecl for the current function being compiled. 569 GlobalDecl CurGD; 570 571 /// ReturnBlock - Unified return block. 572 JumpDest ReturnBlock; 573 574 /// ReturnValue - The temporary alloca to hold the return value. This is null 575 /// iff the function has no return value. 576 llvm::Value *ReturnValue; 577 578 /// RethrowBlock - Unified rethrow block. 579 UnwindDest RethrowBlock; 580 581 /// AllocaInsertPoint - This is an instruction in the entry block before which 582 /// we prefer to insert allocas. 583 llvm::AssertingVH<llvm::Instruction> AllocaInsertPt; 584 585 bool CatchUndefined; 586 587 const CodeGen::CGBlockInfo *BlockInfo; 588 llvm::Value *BlockPointer; 589 590 /// \brief A mapping from NRVO variables to the flags used to indicate 591 /// when the NRVO has been applied to this variable. 592 llvm::DenseMap<const VarDecl *, llvm::Value *> NRVOFlags; 593 594 EHScopeStack EHStack; 595 596 /// i32s containing the indexes of the cleanup destinations. 597 llvm::AllocaInst *NormalCleanupDest; 598 llvm::AllocaInst *EHCleanupDest; 599 600 unsigned NextCleanupDestIndex; 601 602 /// The exception slot. All landing pads write the current 603 /// exception pointer into this alloca. 604 llvm::Value *ExceptionSlot; 605 606 /// Emits a landing pad for the current EH stack. 607 llvm::BasicBlock *EmitLandingPad(); 608 609 llvm::BasicBlock *getInvokeDestImpl(); 610 611 /// Set up the last cleaup that was pushed as a conditional 612 /// full-expression cleanup. 613 void initFullExprCleanup(); 614 615 template <class T> 616 typename DominatingValue<T>::saved_type saveValueInCond(T value) { 617 return DominatingValue<T>::save(*this, value); 618 } 619 620 public: 621 /// ObjCEHValueStack - Stack of Objective-C exception values, used for 622 /// rethrows. 623 llvm::SmallVector<llvm::Value*, 8> ObjCEHValueStack; 624 625 // A struct holding information about a finally block's IR 626 // generation. For now, doesn't actually hold anything. 627 struct FinallyInfo { 628 }; 629 630 FinallyInfo EnterFinallyBlock(const Stmt *Stmt, 631 llvm::Constant *BeginCatchFn, 632 llvm::Constant *EndCatchFn, 633 llvm::Constant *RethrowFn); 634 void ExitFinallyBlock(FinallyInfo &FinallyInfo); 635 636 /// pushFullExprCleanup - Push a cleanup to be run at the end of the 637 /// current full-expression. Safe against the possibility that 638 /// we're currently inside a conditionally-evaluated expression. 639 template <class T, class A0> 640 void pushFullExprCleanup(CleanupKind kind, A0 a0) { 641 // If we're not in a conditional branch, or if none of the 642 // arguments requires saving, then use the unconditional cleanup. 643 if (!isInConditionalBranch()) { 644 typedef EHScopeStack::UnconditionalCleanup1<T, A0> CleanupType; 645 return EHStack.pushCleanup<CleanupType>(kind, a0); 646 } 647 648 typename DominatingValue<A0>::saved_type a0_saved = saveValueInCond(a0); 649 650 typedef EHScopeStack::ConditionalCleanup1<T, A0> CleanupType; 651 EHStack.pushCleanup<CleanupType>(kind, a0_saved); 652 initFullExprCleanup(); 653 } 654 655 /// pushFullExprCleanup - Push a cleanup to be run at the end of the 656 /// current full-expression. Safe against the possibility that 657 /// we're currently inside a conditionally-evaluated expression. 658 template <class T, class A0, class A1> 659 void pushFullExprCleanup(CleanupKind kind, A0 a0, A1 a1) { 660 // If we're not in a conditional branch, or if none of the 661 // arguments requires saving, then use the unconditional cleanup. 662 if (!isInConditionalBranch()) { 663 typedef EHScopeStack::UnconditionalCleanup2<T, A0, A1> CleanupType; 664 return EHStack.pushCleanup<CleanupType>(kind, a0, a1); 665 } 666 667 typename DominatingValue<A0>::saved_type a0_saved = saveValueInCond(a0); 668 typename DominatingValue<A1>::saved_type a1_saved = saveValueInCond(a1); 669 670 typedef EHScopeStack::ConditionalCleanup2<T, A0, A1> CleanupType; 671 EHStack.pushCleanup<CleanupType>(kind, a0_saved, a1_saved); 672 initFullExprCleanup(); 673 } 674 675 /// PushDestructorCleanup - Push a cleanup to call the 676 /// complete-object destructor of an object of the given type at the 677 /// given address. Does nothing if T is not a C++ class type with a 678 /// non-trivial destructor. 679 void PushDestructorCleanup(QualType T, llvm::Value *Addr); 680 681 /// PushDestructorCleanup - Push a cleanup to call the 682 /// complete-object variant of the given destructor on the object at 683 /// the given address. 684 void PushDestructorCleanup(const CXXDestructorDecl *Dtor, 685 llvm::Value *Addr); 686 687 /// PopCleanupBlock - Will pop the cleanup entry on the stack and 688 /// process all branch fixups. 689 void PopCleanupBlock(bool FallThroughIsBranchThrough = false); 690 691 /// DeactivateCleanupBlock - Deactivates the given cleanup block. 692 /// The block cannot be reactivated. Pops it if it's the top of the 693 /// stack. 694 void DeactivateCleanupBlock(EHScopeStack::stable_iterator Cleanup); 695 696 /// ActivateCleanupBlock - Activates an initially-inactive cleanup. 697 /// Cannot be used to resurrect a deactivated cleanup. 698 void ActivateCleanupBlock(EHScopeStack::stable_iterator Cleanup); 699 700 /// \brief Enters a new scope for capturing cleanups, all of which 701 /// will be executed once the scope is exited. 702 class RunCleanupsScope { 703 CodeGenFunction& CGF; 704 EHScopeStack::stable_iterator CleanupStackDepth; 705 bool OldDidCallStackSave; 706 bool PerformCleanup; 707 708 RunCleanupsScope(const RunCleanupsScope &); // DO NOT IMPLEMENT 709 RunCleanupsScope &operator=(const RunCleanupsScope &); // DO NOT IMPLEMENT 710 711 public: 712 /// \brief Enter a new cleanup scope. 713 explicit RunCleanupsScope(CodeGenFunction &CGF) 714 : CGF(CGF), PerformCleanup(true) 715 { 716 CleanupStackDepth = CGF.EHStack.stable_begin(); 717 OldDidCallStackSave = CGF.DidCallStackSave; 718 CGF.DidCallStackSave = false; 719 } 720 721 /// \brief Exit this cleanup scope, emitting any accumulated 722 /// cleanups. 723 ~RunCleanupsScope() { 724 if (PerformCleanup) { 725 CGF.DidCallStackSave = OldDidCallStackSave; 726 CGF.PopCleanupBlocks(CleanupStackDepth); 727 } 728 } 729 730 /// \brief Determine whether this scope requires any cleanups. 731 bool requiresCleanups() const { 732 return CGF.EHStack.stable_begin() != CleanupStackDepth; 733 } 734 735 /// \brief Force the emission of cleanups now, instead of waiting 736 /// until this object is destroyed. 737 void ForceCleanup() { 738 assert(PerformCleanup && "Already forced cleanup"); 739 CGF.DidCallStackSave = OldDidCallStackSave; 740 CGF.PopCleanupBlocks(CleanupStackDepth); 741 PerformCleanup = false; 742 } 743 }; 744 745 746 /// PopCleanupBlocks - Takes the old cleanup stack size and emits 747 /// the cleanup blocks that have been added. 748 void PopCleanupBlocks(EHScopeStack::stable_iterator OldCleanupStackSize); 749 750 void ResolveBranchFixups(llvm::BasicBlock *Target); 751 752 /// The given basic block lies in the current EH scope, but may be a 753 /// target of a potentially scope-crossing jump; get a stable handle 754 /// to which we can perform this jump later. 755 JumpDest getJumpDestInCurrentScope(llvm::BasicBlock *Target) { 756 return JumpDest(Target, 757 EHStack.getInnermostNormalCleanup(), 758 NextCleanupDestIndex++); 759 } 760 761 /// The given basic block lies in the current EH scope, but may be a 762 /// target of a potentially scope-crossing jump; get a stable handle 763 /// to which we can perform this jump later. 764 JumpDest getJumpDestInCurrentScope(llvm::StringRef Name = llvm::StringRef()) { 765 return getJumpDestInCurrentScope(createBasicBlock(Name)); 766 } 767 768 /// EmitBranchThroughCleanup - Emit a branch from the current insert 769 /// block through the normal cleanup handling code (if any) and then 770 /// on to \arg Dest. 771 void EmitBranchThroughCleanup(JumpDest Dest); 772 773 /// isObviouslyBranchWithoutCleanups - Return true if a branch to the 774 /// specified destination obviously has no cleanups to run. 'false' is always 775 /// a conservatively correct answer for this method. 776 bool isObviouslyBranchWithoutCleanups(JumpDest Dest) const; 777 778 /// EmitBranchThroughEHCleanup - Emit a branch from the current 779 /// insert block through the EH cleanup handling code (if any) and 780 /// then on to \arg Dest. 781 void EmitBranchThroughEHCleanup(UnwindDest Dest); 782 783 /// getRethrowDest - Returns the unified outermost-scope rethrow 784 /// destination. 785 UnwindDest getRethrowDest(); 786 787 /// An object to manage conditionally-evaluated expressions. 788 class ConditionalEvaluation { 789 llvm::BasicBlock *StartBB; 790 791 public: 792 ConditionalEvaluation(CodeGenFunction &CGF) 793 : StartBB(CGF.Builder.GetInsertBlock()) {} 794 795 void begin(CodeGenFunction &CGF) { 796 assert(CGF.OutermostConditional != this); 797 if (!CGF.OutermostConditional) 798 CGF.OutermostConditional = this; 799 } 800 801 void end(CodeGenFunction &CGF) { 802 assert(CGF.OutermostConditional != 0); 803 if (CGF.OutermostConditional == this) 804 CGF.OutermostConditional = 0; 805 } 806 807 /// Returns a block which will be executed prior to each 808 /// evaluation of the conditional code. 809 llvm::BasicBlock *getStartingBlock() const { 810 return StartBB; 811 } 812 }; 813 814 /// isInConditionalBranch - Return true if we're currently emitting 815 /// one branch or the other of a conditional expression. 816 bool isInConditionalBranch() const { return OutermostConditional != 0; } 817 818 /// An RAII object to record that we're evaluating a statement 819 /// expression. 820 class StmtExprEvaluation { 821 CodeGenFunction &CGF; 822 823 /// We have to save the outermost conditional: cleanups in a 824 /// statement expression aren't conditional just because the 825 /// StmtExpr is. 826 ConditionalEvaluation *SavedOutermostConditional; 827 828 public: 829 StmtExprEvaluation(CodeGenFunction &CGF) 830 : CGF(CGF), SavedOutermostConditional(CGF.OutermostConditional) { 831 CGF.OutermostConditional = 0; 832 } 833 834 ~StmtExprEvaluation() { 835 CGF.OutermostConditional = SavedOutermostConditional; 836 CGF.EnsureInsertPoint(); 837 } 838 }; 839 840 /// An object which temporarily prevents a value from being 841 /// destroyed by aggressive peephole optimizations that assume that 842 /// all uses of a value have been realized in the IR. 843 class PeepholeProtection { 844 llvm::Instruction *Inst; 845 friend class CodeGenFunction; 846 847 public: 848 PeepholeProtection() : Inst(0) {} 849 }; 850 851 /// An RAII object to set (and then clear) a mapping for an OpaqueValueExpr. 852 class OpaqueValueMapping { 853 CodeGenFunction &CGF; 854 const OpaqueValueExpr *OpaqueValue; 855 bool BoundLValue; 856 CodeGenFunction::PeepholeProtection Protection; 857 858 public: 859 static bool shouldBindAsLValue(const Expr *expr) { 860 return expr->isGLValue() || expr->getType()->isRecordType(); 861 } 862 863 /// Build the opaque value mapping for the given conditional 864 /// operator if it's the GNU ?: extension. This is a common 865 /// enough pattern that the convenience operator is really 866 /// helpful. 867 /// 868 OpaqueValueMapping(CodeGenFunction &CGF, 869 const AbstractConditionalOperator *op) : CGF(CGF) { 870 if (isa<ConditionalOperator>(op)) { 871 OpaqueValue = 0; 872 BoundLValue = false; 873 return; 874 } 875 876 const BinaryConditionalOperator *e = cast<BinaryConditionalOperator>(op); 877 init(e->getOpaqueValue(), e->getCommon()); 878 } 879 880 OpaqueValueMapping(CodeGenFunction &CGF, 881 const OpaqueValueExpr *opaqueValue, 882 LValue lvalue) 883 : CGF(CGF), OpaqueValue(opaqueValue), BoundLValue(true) { 884 assert(opaqueValue && "no opaque value expression!"); 885 assert(shouldBindAsLValue(opaqueValue)); 886 initLValue(lvalue); 887 } 888 889 OpaqueValueMapping(CodeGenFunction &CGF, 890 const OpaqueValueExpr *opaqueValue, 891 RValue rvalue) 892 : CGF(CGF), OpaqueValue(opaqueValue), BoundLValue(false) { 893 assert(opaqueValue && "no opaque value expression!"); 894 assert(!shouldBindAsLValue(opaqueValue)); 895 initRValue(rvalue); 896 } 897 898 void pop() { 899 assert(OpaqueValue && "mapping already popped!"); 900 popImpl(); 901 OpaqueValue = 0; 902 } 903 904 ~OpaqueValueMapping() { 905 if (OpaqueValue) popImpl(); 906 } 907 908 private: 909 void popImpl() { 910 if (BoundLValue) 911 CGF.OpaqueLValues.erase(OpaqueValue); 912 else { 913 CGF.OpaqueRValues.erase(OpaqueValue); 914 CGF.unprotectFromPeepholes(Protection); 915 } 916 } 917 918 void init(const OpaqueValueExpr *ov, const Expr *e) { 919 OpaqueValue = ov; 920 BoundLValue = shouldBindAsLValue(ov); 921 assert(BoundLValue == shouldBindAsLValue(e) 922 && "inconsistent expression value kinds!"); 923 if (BoundLValue) 924 initLValue(CGF.EmitLValue(e)); 925 else 926 initRValue(CGF.EmitAnyExpr(e)); 927 } 928 929 void initLValue(const LValue &lv) { 930 CGF.OpaqueLValues.insert(std::make_pair(OpaqueValue, lv)); 931 } 932 933 void initRValue(const RValue &rv) { 934 // Work around an extremely aggressive peephole optimization in 935 // EmitScalarConversion which assumes that all other uses of a 936 // value are extant. 937 Protection = CGF.protectFromPeepholes(rv); 938 CGF.OpaqueRValues.insert(std::make_pair(OpaqueValue, rv)); 939 } 940 }; 941 942 /// getByrefValueFieldNumber - Given a declaration, returns the LLVM field 943 /// number that holds the value. 944 unsigned getByRefValueLLVMField(const ValueDecl *VD) const; 945 946 /// BuildBlockByrefAddress - Computes address location of the 947 /// variable which is declared as __block. 948 llvm::Value *BuildBlockByrefAddress(llvm::Value *BaseAddr, 949 const VarDecl *V); 950 private: 951 CGDebugInfo *DebugInfo; 952 bool DisableDebugInfo; 953 954 /// IndirectBranch - The first time an indirect goto is seen we create a block 955 /// with an indirect branch. Every time we see the address of a label taken, 956 /// we add the label to the indirect goto. Every subsequent indirect goto is 957 /// codegen'd as a jump to the IndirectBranch's basic block. 958 llvm::IndirectBrInst *IndirectBranch; 959 960 /// LocalDeclMap - This keeps track of the LLVM allocas or globals for local C 961 /// decls. 962 typedef llvm::DenseMap<const Decl*, llvm::Value*> DeclMapTy; 963 DeclMapTy LocalDeclMap; 964 965 /// LabelMap - This keeps track of the LLVM basic block for each C label. 966 llvm::DenseMap<const LabelDecl*, JumpDest> LabelMap; 967 968 // BreakContinueStack - This keeps track of where break and continue 969 // statements should jump to. 970 struct BreakContinue { 971 BreakContinue(JumpDest Break, JumpDest Continue) 972 : BreakBlock(Break), ContinueBlock(Continue) {} 973 974 JumpDest BreakBlock; 975 JumpDest ContinueBlock; 976 }; 977 llvm::SmallVector<BreakContinue, 8> BreakContinueStack; 978 979 /// SwitchInsn - This is nearest current switch instruction. It is null if if 980 /// current context is not in a switch. 981 llvm::SwitchInst *SwitchInsn; 982 983 /// CaseRangeBlock - This block holds if condition check for last case 984 /// statement range in current switch instruction. 985 llvm::BasicBlock *CaseRangeBlock; 986 987 /// OpaqueLValues - Keeps track of the current set of opaque value 988 /// expressions. 989 llvm::DenseMap<const OpaqueValueExpr *, LValue> OpaqueLValues; 990 llvm::DenseMap<const OpaqueValueExpr *, RValue> OpaqueRValues; 991 992 // VLASizeMap - This keeps track of the associated size for each VLA type. 993 // We track this by the size expression rather than the type itself because 994 // in certain situations, like a const qualifier applied to an VLA typedef, 995 // multiple VLA types can share the same size expression. 996 // FIXME: Maybe this could be a stack of maps that is pushed/popped as we 997 // enter/leave scopes. 998 llvm::DenseMap<const Expr*, llvm::Value*> VLASizeMap; 999 1000 /// DidCallStackSave - Whether llvm.stacksave has been called. Used to avoid 1001 /// calling llvm.stacksave for multiple VLAs in the same scope. 1002 bool DidCallStackSave; 1003 1004 /// A block containing a single 'unreachable' instruction. Created 1005 /// lazily by getUnreachableBlock(). 1006 llvm::BasicBlock *UnreachableBlock; 1007 1008 /// CXXThisDecl - When generating code for a C++ member function, 1009 /// this will hold the implicit 'this' declaration. 1010 ImplicitParamDecl *CXXThisDecl; 1011 llvm::Value *CXXThisValue; 1012 1013 /// CXXVTTDecl - When generating code for a base object constructor or 1014 /// base object destructor with virtual bases, this will hold the implicit 1015 /// VTT parameter. 1016 ImplicitParamDecl *CXXVTTDecl; 1017 llvm::Value *CXXVTTValue; 1018 1019 /// OutermostConditional - Points to the outermost active 1020 /// conditional control. This is used so that we know if a 1021 /// temporary should be destroyed conditionally. 1022 ConditionalEvaluation *OutermostConditional; 1023 1024 1025 /// ByrefValueInfoMap - For each __block variable, contains a pair of the LLVM 1026 /// type as well as the field number that contains the actual data. 1027 llvm::DenseMap<const ValueDecl *, std::pair<const llvm::Type *, 1028 unsigned> > ByRefValueInfo; 1029 1030 llvm::BasicBlock *TerminateLandingPad; 1031 llvm::BasicBlock *TerminateHandler; 1032 llvm::BasicBlock *TrapBB; 1033 1034 public: 1035 CodeGenFunction(CodeGenModule &cgm); 1036 1037 CodeGenTypes &getTypes() const { return CGM.getTypes(); } 1038 ASTContext &getContext() const; 1039 CGDebugInfo *getDebugInfo() { 1040 if (DisableDebugInfo) 1041 return NULL; 1042 return DebugInfo; 1043 } 1044 void disableDebugInfo() { DisableDebugInfo = true; } 1045 void enableDebugInfo() { DisableDebugInfo = false; } 1046 1047 1048 const LangOptions &getLangOptions() const { return CGM.getLangOptions(); } 1049 1050 /// Returns a pointer to the function's exception object slot, which 1051 /// is assigned in every landing pad. 1052 llvm::Value *getExceptionSlot(); 1053 1054 llvm::Value *getNormalCleanupDestSlot(); 1055 llvm::Value *getEHCleanupDestSlot(); 1056 1057 llvm::BasicBlock *getUnreachableBlock() { 1058 if (!UnreachableBlock) { 1059 UnreachableBlock = createBasicBlock("unreachable"); 1060 new llvm::UnreachableInst(getLLVMContext(), UnreachableBlock); 1061 } 1062 return UnreachableBlock; 1063 } 1064 1065 llvm::BasicBlock *getInvokeDest() { 1066 if (!EHStack.requiresLandingPad()) return 0; 1067 return getInvokeDestImpl(); 1068 } 1069 1070 llvm::LLVMContext &getLLVMContext() { return CGM.getLLVMContext(); } 1071 1072 //===--------------------------------------------------------------------===// 1073 // Objective-C 1074 //===--------------------------------------------------------------------===// 1075 1076 void GenerateObjCMethod(const ObjCMethodDecl *OMD); 1077 1078 void StartObjCMethod(const ObjCMethodDecl *MD, 1079 const ObjCContainerDecl *CD); 1080 1081 /// GenerateObjCGetter - Synthesize an Objective-C property getter function. 1082 void GenerateObjCGetter(ObjCImplementationDecl *IMP, 1083 const ObjCPropertyImplDecl *PID); 1084 void GenerateObjCGetterBody(ObjCIvarDecl *Ivar, bool IsAtomic, bool IsStrong); 1085 void GenerateObjCAtomicSetterBody(ObjCMethodDecl *OMD, 1086 ObjCIvarDecl *Ivar); 1087 1088 void GenerateObjCCtorDtorMethod(ObjCImplementationDecl *IMP, 1089 ObjCMethodDecl *MD, bool ctor); 1090 1091 /// GenerateObjCSetter - Synthesize an Objective-C property setter function 1092 /// for the given property. 1093 void GenerateObjCSetter(ObjCImplementationDecl *IMP, 1094 const ObjCPropertyImplDecl *PID); 1095 bool IndirectObjCSetterArg(const CGFunctionInfo &FI); 1096 bool IvarTypeWithAggrGCObjects(QualType Ty); 1097 1098 //===--------------------------------------------------------------------===// 1099 // Block Bits 1100 //===--------------------------------------------------------------------===// 1101 1102 llvm::Value *EmitBlockLiteral(const BlockExpr *); 1103 llvm::Constant *BuildDescriptorBlockDecl(const BlockExpr *, 1104 const CGBlockInfo &Info, 1105 const llvm::StructType *, 1106 llvm::Constant *BlockVarLayout); 1107 1108 llvm::Function *GenerateBlockFunction(GlobalDecl GD, 1109 const CGBlockInfo &Info, 1110 const Decl *OuterFuncDecl, 1111 const DeclMapTy &ldm); 1112 1113 llvm::Constant *GenerateCopyHelperFunction(const CGBlockInfo &blockInfo); 1114 llvm::Constant *GenerateDestroyHelperFunction(const CGBlockInfo &blockInfo); 1115 1116 void BuildBlockRelease(llvm::Value *DeclPtr, BlockFieldFlags flags); 1117 1118 class AutoVarEmission; 1119 1120 void emitByrefStructureInit(const AutoVarEmission &emission); 1121 void enterByrefCleanup(const AutoVarEmission &emission); 1122 1123 llvm::Value *LoadBlockStruct() { 1124 assert(BlockPointer && "no block pointer set!"); 1125 return BlockPointer; 1126 } 1127 1128 void AllocateBlockCXXThisPointer(const CXXThisExpr *E); 1129 void AllocateBlockDecl(const BlockDeclRefExpr *E); 1130 llvm::Value *GetAddrOfBlockDecl(const BlockDeclRefExpr *E) { 1131 return GetAddrOfBlockDecl(E->getDecl(), E->isByRef()); 1132 } 1133 llvm::Value *GetAddrOfBlockDecl(const VarDecl *var, bool ByRef); 1134 const llvm::Type *BuildByRefType(const VarDecl *var); 1135 1136 void GenerateCode(GlobalDecl GD, llvm::Function *Fn, 1137 const CGFunctionInfo &FnInfo); 1138 void StartFunction(GlobalDecl GD, QualType RetTy, 1139 llvm::Function *Fn, 1140 const CGFunctionInfo &FnInfo, 1141 const FunctionArgList &Args, 1142 SourceLocation StartLoc); 1143 1144 void EmitConstructorBody(FunctionArgList &Args); 1145 void EmitDestructorBody(FunctionArgList &Args); 1146 void EmitFunctionBody(FunctionArgList &Args); 1147 1148 /// EmitReturnBlock - Emit the unified return block, trying to avoid its 1149 /// emission when possible. 1150 void EmitReturnBlock(); 1151 1152 /// FinishFunction - Complete IR generation of the current function. It is 1153 /// legal to call this function even if there is no current insertion point. 1154 void FinishFunction(SourceLocation EndLoc=SourceLocation()); 1155 1156 /// GenerateThunk - Generate a thunk for the given method. 1157 void GenerateThunk(llvm::Function *Fn, const CGFunctionInfo &FnInfo, 1158 GlobalDecl GD, const ThunkInfo &Thunk); 1159 1160 void EmitCtorPrologue(const CXXConstructorDecl *CD, CXXCtorType Type, 1161 FunctionArgList &Args); 1162 1163 /// InitializeVTablePointer - Initialize the vtable pointer of the given 1164 /// subobject. 1165 /// 1166 void InitializeVTablePointer(BaseSubobject Base, 1167 const CXXRecordDecl *NearestVBase, 1168 CharUnits OffsetFromNearestVBase, 1169 llvm::Constant *VTable, 1170 const CXXRecordDecl *VTableClass); 1171 1172 typedef llvm::SmallPtrSet<const CXXRecordDecl *, 4> VisitedVirtualBasesSetTy; 1173 void InitializeVTablePointers(BaseSubobject Base, 1174 const CXXRecordDecl *NearestVBase, 1175 CharUnits OffsetFromNearestVBase, 1176 bool BaseIsNonVirtualPrimaryBase, 1177 llvm::Constant *VTable, 1178 const CXXRecordDecl *VTableClass, 1179 VisitedVirtualBasesSetTy& VBases); 1180 1181 void InitializeVTablePointers(const CXXRecordDecl *ClassDecl); 1182 1183 /// GetVTablePtr - Return the Value of the vtable pointer member pointed 1184 /// to by This. 1185 llvm::Value *GetVTablePtr(llvm::Value *This, const llvm::Type *Ty); 1186 1187 /// EnterDtorCleanups - Enter the cleanups necessary to complete the 1188 /// given phase of destruction for a destructor. The end result 1189 /// should call destructors on members and base classes in reverse 1190 /// order of their construction. 1191 void EnterDtorCleanups(const CXXDestructorDecl *Dtor, CXXDtorType Type); 1192 1193 /// ShouldInstrumentFunction - Return true if the current function should be 1194 /// instrumented with __cyg_profile_func_* calls 1195 bool ShouldInstrumentFunction(); 1196 1197 /// EmitFunctionInstrumentation - Emit LLVM code to call the specified 1198 /// instrumentation function with the current function and the call site, if 1199 /// function instrumentation is enabled. 1200 void EmitFunctionInstrumentation(const char *Fn); 1201 1202 /// EmitMCountInstrumentation - Emit call to .mcount. 1203 void EmitMCountInstrumentation(); 1204 1205 /// EmitFunctionProlog - Emit the target specific LLVM code to load the 1206 /// arguments for the given function. This is also responsible for naming the 1207 /// LLVM function arguments. 1208 void EmitFunctionProlog(const CGFunctionInfo &FI, 1209 llvm::Function *Fn, 1210 const FunctionArgList &Args); 1211 1212 /// EmitFunctionEpilog - Emit the target specific LLVM code to return the 1213 /// given temporary. 1214 void EmitFunctionEpilog(const CGFunctionInfo &FI); 1215 1216 /// EmitStartEHSpec - Emit the start of the exception spec. 1217 void EmitStartEHSpec(const Decl *D); 1218 1219 /// EmitEndEHSpec - Emit the end of the exception spec. 1220 void EmitEndEHSpec(const Decl *D); 1221 1222 /// getTerminateLandingPad - Return a landing pad that just calls terminate. 1223 llvm::BasicBlock *getTerminateLandingPad(); 1224 1225 /// getTerminateHandler - Return a handler (not a landing pad, just 1226 /// a catch handler) that just calls terminate. This is used when 1227 /// a terminate scope encloses a try. 1228 llvm::BasicBlock *getTerminateHandler(); 1229 1230 const llvm::Type *ConvertTypeForMem(QualType T); 1231 const llvm::Type *ConvertType(QualType T); 1232 const llvm::Type *ConvertType(const TypeDecl *T) { 1233 return ConvertType(getContext().getTypeDeclType(T)); 1234 } 1235 1236 /// LoadObjCSelf - Load the value of self. This function is only valid while 1237 /// generating code for an Objective-C method. 1238 llvm::Value *LoadObjCSelf(); 1239 1240 /// TypeOfSelfObject - Return type of object that this self represents. 1241 QualType TypeOfSelfObject(); 1242 1243 /// hasAggregateLLVMType - Return true if the specified AST type will map into 1244 /// an aggregate LLVM type or is void. 1245 static bool hasAggregateLLVMType(QualType T); 1246 1247 /// createBasicBlock - Create an LLVM basic block. 1248 llvm::BasicBlock *createBasicBlock(llvm::StringRef name = "", 1249 llvm::Function *parent = 0, 1250 llvm::BasicBlock *before = 0) { 1251 #ifdef NDEBUG 1252 return llvm::BasicBlock::Create(getLLVMContext(), "", parent, before); 1253 #else 1254 return llvm::BasicBlock::Create(getLLVMContext(), name, parent, before); 1255 #endif 1256 } 1257 1258 /// getBasicBlockForLabel - Return the LLVM basicblock that the specified 1259 /// label maps to. 1260 JumpDest getJumpDestForLabel(const LabelDecl *S); 1261 1262 /// SimplifyForwardingBlocks - If the given basic block is only a branch to 1263 /// another basic block, simplify it. This assumes that no other code could 1264 /// potentially reference the basic block. 1265 void SimplifyForwardingBlocks(llvm::BasicBlock *BB); 1266 1267 /// EmitBlock - Emit the given block \arg BB and set it as the insert point, 1268 /// adding a fall-through branch from the current insert block if 1269 /// necessary. It is legal to call this function even if there is no current 1270 /// insertion point. 1271 /// 1272 /// IsFinished - If true, indicates that the caller has finished emitting 1273 /// branches to the given block and does not expect to emit code into it. This 1274 /// means the block can be ignored if it is unreachable. 1275 void EmitBlock(llvm::BasicBlock *BB, bool IsFinished=false); 1276 1277 /// EmitBranch - Emit a branch to the specified basic block from the current 1278 /// insert block, taking care to avoid creation of branches from dummy 1279 /// blocks. It is legal to call this function even if there is no current 1280 /// insertion point. 1281 /// 1282 /// This function clears the current insertion point. The caller should follow 1283 /// calls to this function with calls to Emit*Block prior to generation new 1284 /// code. 1285 void EmitBranch(llvm::BasicBlock *Block); 1286 1287 /// HaveInsertPoint - True if an insertion point is defined. If not, this 1288 /// indicates that the current code being emitted is unreachable. 1289 bool HaveInsertPoint() const { 1290 return Builder.GetInsertBlock() != 0; 1291 } 1292 1293 /// EnsureInsertPoint - Ensure that an insertion point is defined so that 1294 /// emitted IR has a place to go. Note that by definition, if this function 1295 /// creates a block then that block is unreachable; callers may do better to 1296 /// detect when no insertion point is defined and simply skip IR generation. 1297 void EnsureInsertPoint() { 1298 if (!HaveInsertPoint()) 1299 EmitBlock(createBasicBlock()); 1300 } 1301 1302 /// ErrorUnsupported - Print out an error that codegen doesn't support the 1303 /// specified stmt yet. 1304 void ErrorUnsupported(const Stmt *S, const char *Type, 1305 bool OmitOnError=false); 1306 1307 //===--------------------------------------------------------------------===// 1308 // Helpers 1309 //===--------------------------------------------------------------------===// 1310 1311 LValue MakeAddrLValue(llvm::Value *V, QualType T, unsigned Alignment = 0) { 1312 return LValue::MakeAddr(V, T, Alignment, getContext(), 1313 CGM.getTBAAInfo(T)); 1314 } 1315 1316 /// CreateTempAlloca - This creates a alloca and inserts it into the entry 1317 /// block. The caller is responsible for setting an appropriate alignment on 1318 /// the alloca. 1319 llvm::AllocaInst *CreateTempAlloca(const llvm::Type *Ty, 1320 const llvm::Twine &Name = "tmp"); 1321 1322 /// InitTempAlloca - Provide an initial value for the given alloca. 1323 void InitTempAlloca(llvm::AllocaInst *Alloca, llvm::Value *Value); 1324 1325 /// CreateIRTemp - Create a temporary IR object of the given type, with 1326 /// appropriate alignment. This routine should only be used when an temporary 1327 /// value needs to be stored into an alloca (for example, to avoid explicit 1328 /// PHI construction), but the type is the IR type, not the type appropriate 1329 /// for storing in memory. 1330 llvm::AllocaInst *CreateIRTemp(QualType T, const llvm::Twine &Name = "tmp"); 1331 1332 /// CreateMemTemp - Create a temporary memory object of the given type, with 1333 /// appropriate alignment. 1334 llvm::AllocaInst *CreateMemTemp(QualType T, const llvm::Twine &Name = "tmp"); 1335 1336 /// CreateAggTemp - Create a temporary memory object for the given 1337 /// aggregate type. 1338 AggValueSlot CreateAggTemp(QualType T, const llvm::Twine &Name = "tmp") { 1339 return AggValueSlot::forAddr(CreateMemTemp(T, Name), false, false); 1340 } 1341 1342 /// Emit a cast to void* in the appropriate address space. 1343 llvm::Value *EmitCastToVoidPtr(llvm::Value *value); 1344 1345 /// EvaluateExprAsBool - Perform the usual unary conversions on the specified 1346 /// expression and compare the result against zero, returning an Int1Ty value. 1347 llvm::Value *EvaluateExprAsBool(const Expr *E); 1348 1349 /// EmitIgnoredExpr - Emit an expression in a context which ignores the result. 1350 void EmitIgnoredExpr(const Expr *E); 1351 1352 /// EmitAnyExpr - Emit code to compute the specified expression which can have 1353 /// any type. The result is returned as an RValue struct. If this is an 1354 /// aggregate expression, the aggloc/agglocvolatile arguments indicate where 1355 /// the result should be returned. 1356 /// 1357 /// \param IgnoreResult - True if the resulting value isn't used. 1358 RValue EmitAnyExpr(const Expr *E, 1359 AggValueSlot AggSlot = AggValueSlot::ignored(), 1360 bool IgnoreResult = false); 1361 1362 // EmitVAListRef - Emit a "reference" to a va_list; this is either the address 1363 // or the value of the expression, depending on how va_list is defined. 1364 llvm::Value *EmitVAListRef(const Expr *E); 1365 1366 /// EmitAnyExprToTemp - Similary to EmitAnyExpr(), however, the result will 1367 /// always be accessible even if no aggregate location is provided. 1368 RValue EmitAnyExprToTemp(const Expr *E); 1369 1370 /// EmitAnyExprToMem - Emits the code necessary to evaluate an 1371 /// arbitrary expression into the given memory location. 1372 void EmitAnyExprToMem(const Expr *E, llvm::Value *Location, 1373 bool IsLocationVolatile, 1374 bool IsInitializer); 1375 1376 /// EmitExprAsInit - Emits the code necessary to initialize a 1377 /// location in memory with the given initializer. 1378 void EmitExprAsInit(const Expr *init, const VarDecl *var, 1379 llvm::Value *loc, CharUnits alignment, 1380 bool capturedByInit); 1381 1382 /// EmitAggregateCopy - Emit an aggrate copy. 1383 /// 1384 /// \param isVolatile - True iff either the source or the destination is 1385 /// volatile. 1386 void EmitAggregateCopy(llvm::Value *DestPtr, llvm::Value *SrcPtr, 1387 QualType EltTy, bool isVolatile=false); 1388 1389 /// StartBlock - Start new block named N. If insert block is a dummy block 1390 /// then reuse it. 1391 void StartBlock(const char *N); 1392 1393 /// GetAddrOfStaticLocalVar - Return the address of a static local variable. 1394 llvm::Constant *GetAddrOfStaticLocalVar(const VarDecl *BVD) { 1395 return cast<llvm::Constant>(GetAddrOfLocalVar(BVD)); 1396 } 1397 1398 /// GetAddrOfLocalVar - Return the address of a local variable. 1399 llvm::Value *GetAddrOfLocalVar(const VarDecl *VD) { 1400 llvm::Value *Res = LocalDeclMap[VD]; 1401 assert(Res && "Invalid argument to GetAddrOfLocalVar(), no decl!"); 1402 return Res; 1403 } 1404 1405 /// getOpaqueLValueMapping - Given an opaque value expression (which 1406 /// must be mapped to an l-value), return its mapping. 1407 const LValue &getOpaqueLValueMapping(const OpaqueValueExpr *e) { 1408 assert(OpaqueValueMapping::shouldBindAsLValue(e)); 1409 1410 llvm::DenseMap<const OpaqueValueExpr*,LValue>::iterator 1411 it = OpaqueLValues.find(e); 1412 assert(it != OpaqueLValues.end() && "no mapping for opaque value!"); 1413 return it->second; 1414 } 1415 1416 /// getOpaqueRValueMapping - Given an opaque value expression (which 1417 /// must be mapped to an r-value), return its mapping. 1418 const RValue &getOpaqueRValueMapping(const OpaqueValueExpr *e) { 1419 assert(!OpaqueValueMapping::shouldBindAsLValue(e)); 1420 1421 llvm::DenseMap<const OpaqueValueExpr*,RValue>::iterator 1422 it = OpaqueRValues.find(e); 1423 assert(it != OpaqueRValues.end() && "no mapping for opaque value!"); 1424 return it->second; 1425 } 1426 1427 /// getAccessedFieldNo - Given an encoded value and a result number, return 1428 /// the input field number being accessed. 1429 static unsigned getAccessedFieldNo(unsigned Idx, const llvm::Constant *Elts); 1430 1431 llvm::BlockAddress *GetAddrOfLabel(const LabelDecl *L); 1432 llvm::BasicBlock *GetIndirectGotoBlock(); 1433 1434 /// EmitNullInitialization - Generate code to set a value of the given type to 1435 /// null, If the type contains data member pointers, they will be initialized 1436 /// to -1 in accordance with the Itanium C++ ABI. 1437 void EmitNullInitialization(llvm::Value *DestPtr, QualType Ty); 1438 1439 // EmitVAArg - Generate code to get an argument from the passed in pointer 1440 // and update it accordingly. The return value is a pointer to the argument. 1441 // FIXME: We should be able to get rid of this method and use the va_arg 1442 // instruction in LLVM instead once it works well enough. 1443 llvm::Value *EmitVAArg(llvm::Value *VAListAddr, QualType Ty); 1444 1445 /// EmitVLASize - Generate code for any VLA size expressions that might occur 1446 /// in a variably modified type. If Ty is a VLA, will return the value that 1447 /// corresponds to the size in bytes of the VLA type. Will return 0 otherwise. 1448 /// 1449 /// This function can be called with a null (unreachable) insert point. 1450 llvm::Value *EmitVLASize(QualType Ty); 1451 1452 // GetVLASize - Returns an LLVM value that corresponds to the size in bytes 1453 // of a variable length array type. 1454 llvm::Value *GetVLASize(const VariableArrayType *); 1455 1456 /// LoadCXXThis - Load the value of 'this'. This function is only valid while 1457 /// generating code for an C++ member function. 1458 llvm::Value *LoadCXXThis() { 1459 assert(CXXThisValue && "no 'this' value for this function"); 1460 return CXXThisValue; 1461 } 1462 1463 /// LoadCXXVTT - Load the VTT parameter to base constructors/destructors have 1464 /// virtual bases. 1465 llvm::Value *LoadCXXVTT() { 1466 assert(CXXVTTValue && "no VTT value for this function"); 1467 return CXXVTTValue; 1468 } 1469 1470 /// GetAddressOfBaseOfCompleteClass - Convert the given pointer to a 1471 /// complete class to the given direct base. 1472 llvm::Value * 1473 GetAddressOfDirectBaseInCompleteClass(llvm::Value *Value, 1474 const CXXRecordDecl *Derived, 1475 const CXXRecordDecl *Base, 1476 bool BaseIsVirtual); 1477 1478 /// GetAddressOfBaseClass - This function will add the necessary delta to the 1479 /// load of 'this' and returns address of the base class. 1480 llvm::Value *GetAddressOfBaseClass(llvm::Value *Value, 1481 const CXXRecordDecl *Derived, 1482 CastExpr::path_const_iterator PathBegin, 1483 CastExpr::path_const_iterator PathEnd, 1484 bool NullCheckValue); 1485 1486 llvm::Value *GetAddressOfDerivedClass(llvm::Value *Value, 1487 const CXXRecordDecl *Derived, 1488 CastExpr::path_const_iterator PathBegin, 1489 CastExpr::path_const_iterator PathEnd, 1490 bool NullCheckValue); 1491 1492 llvm::Value *GetVirtualBaseClassOffset(llvm::Value *This, 1493 const CXXRecordDecl *ClassDecl, 1494 const CXXRecordDecl *BaseClassDecl); 1495 1496 void EmitDelegateCXXConstructorCall(const CXXConstructorDecl *Ctor, 1497 CXXCtorType CtorType, 1498 const FunctionArgList &Args); 1499 void EmitCXXConstructorCall(const CXXConstructorDecl *D, CXXCtorType Type, 1500 bool ForVirtualBase, llvm::Value *This, 1501 CallExpr::const_arg_iterator ArgBeg, 1502 CallExpr::const_arg_iterator ArgEnd); 1503 1504 void EmitSynthesizedCXXCopyCtorCall(const CXXConstructorDecl *D, 1505 llvm::Value *This, llvm::Value *Src, 1506 CallExpr::const_arg_iterator ArgBeg, 1507 CallExpr::const_arg_iterator ArgEnd); 1508 1509 void EmitCXXAggrConstructorCall(const CXXConstructorDecl *D, 1510 const ConstantArrayType *ArrayTy, 1511 llvm::Value *ArrayPtr, 1512 CallExpr::const_arg_iterator ArgBeg, 1513 CallExpr::const_arg_iterator ArgEnd, 1514 bool ZeroInitialization = false); 1515 1516 void EmitCXXAggrConstructorCall(const CXXConstructorDecl *D, 1517 llvm::Value *NumElements, 1518 llvm::Value *ArrayPtr, 1519 CallExpr::const_arg_iterator ArgBeg, 1520 CallExpr::const_arg_iterator ArgEnd, 1521 bool ZeroInitialization = false); 1522 1523 void EmitCXXAggrDestructorCall(const CXXDestructorDecl *D, 1524 const ArrayType *Array, 1525 llvm::Value *This); 1526 1527 void EmitCXXAggrDestructorCall(const CXXDestructorDecl *D, 1528 llvm::Value *NumElements, 1529 llvm::Value *This); 1530 1531 llvm::Function *GenerateCXXAggrDestructorHelper(const CXXDestructorDecl *D, 1532 const ArrayType *Array, 1533 llvm::Value *This); 1534 1535 void EmitCXXDestructorCall(const CXXDestructorDecl *D, CXXDtorType Type, 1536 bool ForVirtualBase, llvm::Value *This); 1537 1538 void EmitNewArrayInitializer(const CXXNewExpr *E, llvm::Value *NewPtr, 1539 llvm::Value *NumElements); 1540 1541 void EmitCXXTemporary(const CXXTemporary *Temporary, llvm::Value *Ptr); 1542 1543 llvm::Value *EmitCXXNewExpr(const CXXNewExpr *E); 1544 void EmitCXXDeleteExpr(const CXXDeleteExpr *E); 1545 1546 void EmitDeleteCall(const FunctionDecl *DeleteFD, llvm::Value *Ptr, 1547 QualType DeleteTy); 1548 1549 llvm::Value* EmitCXXTypeidExpr(const CXXTypeidExpr *E); 1550 llvm::Value *EmitDynamicCast(llvm::Value *V, const CXXDynamicCastExpr *DCE); 1551 1552 void EmitCheck(llvm::Value *, unsigned Size); 1553 1554 llvm::Value *EmitScalarPrePostIncDec(const UnaryOperator *E, LValue LV, 1555 bool isInc, bool isPre); 1556 ComplexPairTy EmitComplexPrePostIncDec(const UnaryOperator *E, LValue LV, 1557 bool isInc, bool isPre); 1558 //===--------------------------------------------------------------------===// 1559 // Declaration Emission 1560 //===--------------------------------------------------------------------===// 1561 1562 /// EmitDecl - Emit a declaration. 1563 /// 1564 /// This function can be called with a null (unreachable) insert point. 1565 void EmitDecl(const Decl &D); 1566 1567 /// EmitVarDecl - Emit a local variable declaration. 1568 /// 1569 /// This function can be called with a null (unreachable) insert point. 1570 void EmitVarDecl(const VarDecl &D); 1571 1572 typedef void SpecialInitFn(CodeGenFunction &Init, const VarDecl &D, 1573 llvm::Value *Address); 1574 1575 /// EmitAutoVarDecl - Emit an auto variable declaration. 1576 /// 1577 /// This function can be called with a null (unreachable) insert point. 1578 void EmitAutoVarDecl(const VarDecl &D); 1579 1580 class AutoVarEmission { 1581 friend class CodeGenFunction; 1582 1583 const VarDecl *Variable; 1584 1585 /// The alignment of the variable. 1586 CharUnits Alignment; 1587 1588 /// The address of the alloca. Null if the variable was emitted 1589 /// as a global constant. 1590 llvm::Value *Address; 1591 1592 llvm::Value *NRVOFlag; 1593 1594 /// True if the variable is a __block variable. 1595 bool IsByRef; 1596 1597 /// True if the variable is of aggregate type and has a constant 1598 /// initializer. 1599 bool IsConstantAggregate; 1600 1601 struct Invalid {}; 1602 AutoVarEmission(Invalid) : Variable(0) {} 1603 1604 AutoVarEmission(const VarDecl &variable) 1605 : Variable(&variable), Address(0), NRVOFlag(0), 1606 IsByRef(false), IsConstantAggregate(false) {} 1607 1608 bool wasEmittedAsGlobal() const { return Address == 0; } 1609 1610 public: 1611 static AutoVarEmission invalid() { return AutoVarEmission(Invalid()); } 1612 1613 /// Returns the address of the object within this declaration. 1614 /// Note that this does not chase the forwarding pointer for 1615 /// __block decls. 1616 llvm::Value *getObjectAddress(CodeGenFunction &CGF) const { 1617 if (!IsByRef) return Address; 1618 1619 return CGF.Builder.CreateStructGEP(Address, 1620 CGF.getByRefValueLLVMField(Variable), 1621 Variable->getNameAsString()); 1622 } 1623 }; 1624 AutoVarEmission EmitAutoVarAlloca(const VarDecl &var); 1625 void EmitAutoVarInit(const AutoVarEmission &emission); 1626 void EmitAutoVarCleanups(const AutoVarEmission &emission); 1627 1628 void EmitStaticVarDecl(const VarDecl &D, 1629 llvm::GlobalValue::LinkageTypes Linkage); 1630 1631 /// EmitParmDecl - Emit a ParmVarDecl or an ImplicitParamDecl. 1632 void EmitParmDecl(const VarDecl &D, llvm::Value *Arg, unsigned ArgNo); 1633 1634 /// protectFromPeepholes - Protect a value that we're intending to 1635 /// store to the side, but which will probably be used later, from 1636 /// aggressive peepholing optimizations that might delete it. 1637 /// 1638 /// Pass the result to unprotectFromPeepholes to declare that 1639 /// protection is no longer required. 1640 /// 1641 /// There's no particular reason why this shouldn't apply to 1642 /// l-values, it's just that no existing peepholes work on pointers. 1643 PeepholeProtection protectFromPeepholes(RValue rvalue); 1644 void unprotectFromPeepholes(PeepholeProtection protection); 1645 1646 //===--------------------------------------------------------------------===// 1647 // Statement Emission 1648 //===--------------------------------------------------------------------===// 1649 1650 /// EmitStopPoint - Emit a debug stoppoint if we are emitting debug info. 1651 void EmitStopPoint(const Stmt *S); 1652 1653 /// EmitStmt - Emit the code for the statement \arg S. It is legal to call 1654 /// this function even if there is no current insertion point. 1655 /// 1656 /// This function may clear the current insertion point; callers should use 1657 /// EnsureInsertPoint if they wish to subsequently generate code without first 1658 /// calling EmitBlock, EmitBranch, or EmitStmt. 1659 void EmitStmt(const Stmt *S); 1660 1661 /// EmitSimpleStmt - Try to emit a "simple" statement which does not 1662 /// necessarily require an insertion point or debug information; typically 1663 /// because the statement amounts to a jump or a container of other 1664 /// statements. 1665 /// 1666 /// \return True if the statement was handled. 1667 bool EmitSimpleStmt(const Stmt *S); 1668 1669 RValue EmitCompoundStmt(const CompoundStmt &S, bool GetLast = false, 1670 AggValueSlot AVS = AggValueSlot::ignored()); 1671 1672 /// EmitLabel - Emit the block for the given label. It is legal to call this 1673 /// function even if there is no current insertion point. 1674 void EmitLabel(const LabelDecl *D); // helper for EmitLabelStmt. 1675 1676 void EmitLabelStmt(const LabelStmt &S); 1677 void EmitGotoStmt(const GotoStmt &S); 1678 void EmitIndirectGotoStmt(const IndirectGotoStmt &S); 1679 void EmitIfStmt(const IfStmt &S); 1680 void EmitWhileStmt(const WhileStmt &S); 1681 void EmitDoStmt(const DoStmt &S); 1682 void EmitForStmt(const ForStmt &S); 1683 void EmitReturnStmt(const ReturnStmt &S); 1684 void EmitDeclStmt(const DeclStmt &S); 1685 void EmitBreakStmt(const BreakStmt &S); 1686 void EmitContinueStmt(const ContinueStmt &S); 1687 void EmitSwitchStmt(const SwitchStmt &S); 1688 void EmitDefaultStmt(const DefaultStmt &S); 1689 void EmitCaseStmt(const CaseStmt &S); 1690 void EmitCaseStmtRange(const CaseStmt &S); 1691 void EmitAsmStmt(const AsmStmt &S); 1692 1693 void EmitObjCForCollectionStmt(const ObjCForCollectionStmt &S); 1694 void EmitObjCAtTryStmt(const ObjCAtTryStmt &S); 1695 void EmitObjCAtThrowStmt(const ObjCAtThrowStmt &S); 1696 void EmitObjCAtSynchronizedStmt(const ObjCAtSynchronizedStmt &S); 1697 1698 llvm::Constant *getUnwindResumeOrRethrowFn(); 1699 void EnterCXXTryStmt(const CXXTryStmt &S, bool IsFnTryBlock = false); 1700 void ExitCXXTryStmt(const CXXTryStmt &S, bool IsFnTryBlock = false); 1701 1702 void EmitCXXTryStmt(const CXXTryStmt &S); 1703 void EmitCXXForRangeStmt(const CXXForRangeStmt &S); 1704 1705 //===--------------------------------------------------------------------===// 1706 // LValue Expression Emission 1707 //===--------------------------------------------------------------------===// 1708 1709 /// GetUndefRValue - Get an appropriate 'undef' rvalue for the given type. 1710 RValue GetUndefRValue(QualType Ty); 1711 1712 /// EmitUnsupportedRValue - Emit a dummy r-value using the type of E 1713 /// and issue an ErrorUnsupported style diagnostic (using the 1714 /// provided Name). 1715 RValue EmitUnsupportedRValue(const Expr *E, 1716 const char *Name); 1717 1718 /// EmitUnsupportedLValue - Emit a dummy l-value using the type of E and issue 1719 /// an ErrorUnsupported style diagnostic (using the provided Name). 1720 LValue EmitUnsupportedLValue(const Expr *E, 1721 const char *Name); 1722 1723 /// EmitLValue - Emit code to compute a designator that specifies the location 1724 /// of the expression. 1725 /// 1726 /// This can return one of two things: a simple address or a bitfield 1727 /// reference. In either case, the LLVM Value* in the LValue structure is 1728 /// guaranteed to be an LLVM pointer type. 1729 /// 1730 /// If this returns a bitfield reference, nothing about the pointee type of 1731 /// the LLVM value is known: For example, it may not be a pointer to an 1732 /// integer. 1733 /// 1734 /// If this returns a normal address, and if the lvalue's C type is fixed 1735 /// size, this method guarantees that the returned pointer type will point to 1736 /// an LLVM type of the same size of the lvalue's type. If the lvalue has a 1737 /// variable length type, this is not possible. 1738 /// 1739 LValue EmitLValue(const Expr *E); 1740 1741 /// EmitCheckedLValue - Same as EmitLValue but additionally we generate 1742 /// checking code to guard against undefined behavior. This is only 1743 /// suitable when we know that the address will be used to access the 1744 /// object. 1745 LValue EmitCheckedLValue(const Expr *E); 1746 1747 /// EmitToMemory - Change a scalar value from its value 1748 /// representation to its in-memory representation. 1749 llvm::Value *EmitToMemory(llvm::Value *Value, QualType Ty); 1750 1751 /// EmitFromMemory - Change a scalar value from its memory 1752 /// representation to its value representation. 1753 llvm::Value *EmitFromMemory(llvm::Value *Value, QualType Ty); 1754 1755 /// EmitLoadOfScalar - Load a scalar value from an address, taking 1756 /// care to appropriately convert from the memory representation to 1757 /// the LLVM value representation. 1758 llvm::Value *EmitLoadOfScalar(llvm::Value *Addr, bool Volatile, 1759 unsigned Alignment, QualType Ty, 1760 llvm::MDNode *TBAAInfo = 0); 1761 1762 /// EmitStoreOfScalar - Store a scalar value to an address, taking 1763 /// care to appropriately convert from the memory representation to 1764 /// the LLVM value representation. 1765 void EmitStoreOfScalar(llvm::Value *Value, llvm::Value *Addr, 1766 bool Volatile, unsigned Alignment, QualType Ty, 1767 llvm::MDNode *TBAAInfo = 0); 1768 1769 /// EmitLoadOfLValue - Given an expression that represents a value lvalue, 1770 /// this method emits the address of the lvalue, then loads the result as an 1771 /// rvalue, returning the rvalue. 1772 RValue EmitLoadOfLValue(LValue V, QualType LVType); 1773 RValue EmitLoadOfExtVectorElementLValue(LValue V, QualType LVType); 1774 RValue EmitLoadOfBitfieldLValue(LValue LV, QualType ExprType); 1775 RValue EmitLoadOfPropertyRefLValue(LValue LV, 1776 ReturnValueSlot Return = ReturnValueSlot()); 1777 1778 /// EmitStoreThroughLValue - Store the specified rvalue into the specified 1779 /// lvalue, where both are guaranteed to the have the same type, and that type 1780 /// is 'Ty'. 1781 void EmitStoreThroughLValue(RValue Src, LValue Dst, QualType Ty); 1782 void EmitStoreThroughExtVectorComponentLValue(RValue Src, LValue Dst, 1783 QualType Ty); 1784 void EmitStoreThroughPropertyRefLValue(RValue Src, LValue Dst); 1785 1786 /// EmitStoreThroughLValue - Store Src into Dst with same constraints as 1787 /// EmitStoreThroughLValue. 1788 /// 1789 /// \param Result [out] - If non-null, this will be set to a Value* for the 1790 /// bit-field contents after the store, appropriate for use as the result of 1791 /// an assignment to the bit-field. 1792 void EmitStoreThroughBitfieldLValue(RValue Src, LValue Dst, QualType Ty, 1793 llvm::Value **Result=0); 1794 1795 /// Emit an l-value for an assignment (simple or compound) of complex type. 1796 LValue EmitComplexAssignmentLValue(const BinaryOperator *E); 1797 LValue EmitComplexCompoundAssignmentLValue(const CompoundAssignOperator *E); 1798 1799 // Note: only available for agg return types 1800 LValue EmitBinaryOperatorLValue(const BinaryOperator *E); 1801 LValue EmitCompoundAssignmentLValue(const CompoundAssignOperator *E); 1802 // Note: only available for agg return types 1803 LValue EmitCallExprLValue(const CallExpr *E); 1804 // Note: only available for agg return types 1805 LValue EmitVAArgExprLValue(const VAArgExpr *E); 1806 LValue EmitDeclRefLValue(const DeclRefExpr *E); 1807 LValue EmitStringLiteralLValue(const StringLiteral *E); 1808 LValue EmitObjCEncodeExprLValue(const ObjCEncodeExpr *E); 1809 LValue EmitPredefinedLValue(const PredefinedExpr *E); 1810 LValue EmitUnaryOpLValue(const UnaryOperator *E); 1811 LValue EmitArraySubscriptExpr(const ArraySubscriptExpr *E); 1812 LValue EmitExtVectorElementExpr(const ExtVectorElementExpr *E); 1813 LValue EmitMemberExpr(const MemberExpr *E); 1814 LValue EmitObjCIsaExpr(const ObjCIsaExpr *E); 1815 LValue EmitCompoundLiteralLValue(const CompoundLiteralExpr *E); 1816 LValue EmitConditionalOperatorLValue(const AbstractConditionalOperator *E); 1817 LValue EmitCastLValue(const CastExpr *E); 1818 LValue EmitNullInitializationLValue(const CXXScalarValueInitExpr *E); 1819 LValue EmitOpaqueValueLValue(const OpaqueValueExpr *e); 1820 1821 llvm::Value *EmitIvarOffset(const ObjCInterfaceDecl *Interface, 1822 const ObjCIvarDecl *Ivar); 1823 LValue EmitLValueForAnonRecordField(llvm::Value* Base, 1824 const IndirectFieldDecl* Field, 1825 unsigned CVRQualifiers); 1826 LValue EmitLValueForField(llvm::Value* Base, const FieldDecl* Field, 1827 unsigned CVRQualifiers); 1828 1829 /// EmitLValueForFieldInitialization - Like EmitLValueForField, except that 1830 /// if the Field is a reference, this will return the address of the reference 1831 /// and not the address of the value stored in the reference. 1832 LValue EmitLValueForFieldInitialization(llvm::Value* Base, 1833 const FieldDecl* Field, 1834 unsigned CVRQualifiers); 1835 1836 LValue EmitLValueForIvar(QualType ObjectTy, 1837 llvm::Value* Base, const ObjCIvarDecl *Ivar, 1838 unsigned CVRQualifiers); 1839 1840 LValue EmitLValueForBitfield(llvm::Value* Base, const FieldDecl* Field, 1841 unsigned CVRQualifiers); 1842 1843 LValue EmitBlockDeclRefLValue(const BlockDeclRefExpr *E); 1844 1845 LValue EmitCXXConstructLValue(const CXXConstructExpr *E); 1846 LValue EmitCXXBindTemporaryLValue(const CXXBindTemporaryExpr *E); 1847 LValue EmitExprWithCleanupsLValue(const ExprWithCleanups *E); 1848 LValue EmitCXXTypeidLValue(const CXXTypeidExpr *E); 1849 1850 LValue EmitObjCMessageExprLValue(const ObjCMessageExpr *E); 1851 LValue EmitObjCIvarRefLValue(const ObjCIvarRefExpr *E); 1852 LValue EmitObjCPropertyRefLValue(const ObjCPropertyRefExpr *E); 1853 LValue EmitStmtExprLValue(const StmtExpr *E); 1854 LValue EmitPointerToDataMemberBinaryExpr(const BinaryOperator *E); 1855 LValue EmitObjCSelectorLValue(const ObjCSelectorExpr *E); 1856 void EmitDeclRefExprDbgValue(const DeclRefExpr *E, llvm::Constant *Init); 1857 1858 //===--------------------------------------------------------------------===// 1859 // Scalar Expression Emission 1860 //===--------------------------------------------------------------------===// 1861 1862 /// EmitCall - Generate a call of the given function, expecting the given 1863 /// result type, and using the given argument list which specifies both the 1864 /// LLVM arguments and the types they were derived from. 1865 /// 1866 /// \param TargetDecl - If given, the decl of the function in a direct call; 1867 /// used to set attributes on the call (noreturn, etc.). 1868 RValue EmitCall(const CGFunctionInfo &FnInfo, 1869 llvm::Value *Callee, 1870 ReturnValueSlot ReturnValue, 1871 const CallArgList &Args, 1872 const Decl *TargetDecl = 0, 1873 llvm::Instruction **callOrInvoke = 0); 1874 1875 RValue EmitCall(QualType FnType, llvm::Value *Callee, 1876 ReturnValueSlot ReturnValue, 1877 CallExpr::const_arg_iterator ArgBeg, 1878 CallExpr::const_arg_iterator ArgEnd, 1879 const Decl *TargetDecl = 0); 1880 RValue EmitCallExpr(const CallExpr *E, 1881 ReturnValueSlot ReturnValue = ReturnValueSlot()); 1882 1883 llvm::CallSite EmitCallOrInvoke(llvm::Value *Callee, 1884 llvm::Value * const *ArgBegin, 1885 llvm::Value * const *ArgEnd, 1886 const llvm::Twine &Name = ""); 1887 1888 llvm::Value *BuildVirtualCall(const CXXMethodDecl *MD, llvm::Value *This, 1889 const llvm::Type *Ty); 1890 llvm::Value *BuildVirtualCall(const CXXDestructorDecl *DD, CXXDtorType Type, 1891 llvm::Value *This, const llvm::Type *Ty); 1892 llvm::Value *BuildAppleKextVirtualCall(const CXXMethodDecl *MD, 1893 NestedNameSpecifier *Qual, 1894 const llvm::Type *Ty); 1895 1896 llvm::Value *BuildAppleKextVirtualDestructorCall(const CXXDestructorDecl *DD, 1897 CXXDtorType Type, 1898 const CXXRecordDecl *RD); 1899 1900 RValue EmitCXXMemberCall(const CXXMethodDecl *MD, 1901 llvm::Value *Callee, 1902 ReturnValueSlot ReturnValue, 1903 llvm::Value *This, 1904 llvm::Value *VTT, 1905 CallExpr::const_arg_iterator ArgBeg, 1906 CallExpr::const_arg_iterator ArgEnd); 1907 RValue EmitCXXMemberCallExpr(const CXXMemberCallExpr *E, 1908 ReturnValueSlot ReturnValue); 1909 RValue EmitCXXMemberPointerCallExpr(const CXXMemberCallExpr *E, 1910 ReturnValueSlot ReturnValue); 1911 1912 RValue EmitCXXOperatorMemberCallExpr(const CXXOperatorCallExpr *E, 1913 const CXXMethodDecl *MD, 1914 ReturnValueSlot ReturnValue); 1915 1916 1917 RValue EmitBuiltinExpr(const FunctionDecl *FD, 1918 unsigned BuiltinID, const CallExpr *E); 1919 1920 RValue EmitBlockCallExpr(const CallExpr *E, ReturnValueSlot ReturnValue); 1921 1922 /// EmitTargetBuiltinExpr - Emit the given builtin call. Returns 0 if the call 1923 /// is unhandled by the current target. 1924 llvm::Value *EmitTargetBuiltinExpr(unsigned BuiltinID, const CallExpr *E); 1925 1926 llvm::Value *EmitARMBuiltinExpr(unsigned BuiltinID, const CallExpr *E); 1927 llvm::Value *EmitNeonCall(llvm::Function *F, 1928 llvm::SmallVectorImpl<llvm::Value*> &O, 1929 const char *name, 1930 unsigned shift = 0, bool rightshift = false); 1931 llvm::Value *EmitNeonSplat(llvm::Value *V, llvm::Constant *Idx); 1932 llvm::Value *EmitNeonShiftVector(llvm::Value *V, const llvm::Type *Ty, 1933 bool negateForRightShift); 1934 1935 llvm::Value *BuildVector(const llvm::SmallVectorImpl<llvm::Value*> &Ops); 1936 llvm::Value *EmitX86BuiltinExpr(unsigned BuiltinID, const CallExpr *E); 1937 llvm::Value *EmitPPCBuiltinExpr(unsigned BuiltinID, const CallExpr *E); 1938 1939 llvm::Value *EmitObjCProtocolExpr(const ObjCProtocolExpr *E); 1940 llvm::Value *EmitObjCStringLiteral(const ObjCStringLiteral *E); 1941 llvm::Value *EmitObjCSelectorExpr(const ObjCSelectorExpr *E); 1942 RValue EmitObjCMessageExpr(const ObjCMessageExpr *E, 1943 ReturnValueSlot Return = ReturnValueSlot()); 1944 1945 /// EmitReferenceBindingToExpr - Emits a reference binding to the passed in 1946 /// expression. Will emit a temporary variable if E is not an LValue. 1947 RValue EmitReferenceBindingToExpr(const Expr* E, 1948 const NamedDecl *InitializedDecl); 1949 1950 //===--------------------------------------------------------------------===// 1951 // Expression Emission 1952 //===--------------------------------------------------------------------===// 1953 1954 // Expressions are broken into three classes: scalar, complex, aggregate. 1955 1956 /// EmitScalarExpr - Emit the computation of the specified expression of LLVM 1957 /// scalar type, returning the result. 1958 llvm::Value *EmitScalarExpr(const Expr *E , bool IgnoreResultAssign = false); 1959 1960 /// EmitScalarConversion - Emit a conversion from the specified type to the 1961 /// specified destination type, both of which are LLVM scalar types. 1962 llvm::Value *EmitScalarConversion(llvm::Value *Src, QualType SrcTy, 1963 QualType DstTy); 1964 1965 /// EmitComplexToScalarConversion - Emit a conversion from the specified 1966 /// complex type to the specified destination type, where the destination type 1967 /// is an LLVM scalar type. 1968 llvm::Value *EmitComplexToScalarConversion(ComplexPairTy Src, QualType SrcTy, 1969 QualType DstTy); 1970 1971 1972 /// EmitAggExpr - Emit the computation of the specified expression 1973 /// of aggregate type. The result is computed into the given slot, 1974 /// which may be null to indicate that the value is not needed. 1975 void EmitAggExpr(const Expr *E, AggValueSlot AS, bool IgnoreResult = false); 1976 1977 /// EmitAggExprToLValue - Emit the computation of the specified expression of 1978 /// aggregate type into a temporary LValue. 1979 LValue EmitAggExprToLValue(const Expr *E); 1980 1981 /// EmitGCMemmoveCollectable - Emit special API for structs with object 1982 /// pointers. 1983 void EmitGCMemmoveCollectable(llvm::Value *DestPtr, llvm::Value *SrcPtr, 1984 QualType Ty); 1985 1986 /// EmitComplexExpr - Emit the computation of the specified expression of 1987 /// complex type, returning the result. 1988 ComplexPairTy EmitComplexExpr(const Expr *E, 1989 bool IgnoreReal = false, 1990 bool IgnoreImag = false); 1991 1992 /// EmitComplexExprIntoAddr - Emit the computation of the specified expression 1993 /// of complex type, storing into the specified Value*. 1994 void EmitComplexExprIntoAddr(const Expr *E, llvm::Value *DestAddr, 1995 bool DestIsVolatile); 1996 1997 /// StoreComplexToAddr - Store a complex number into the specified address. 1998 void StoreComplexToAddr(ComplexPairTy V, llvm::Value *DestAddr, 1999 bool DestIsVolatile); 2000 /// LoadComplexFromAddr - Load a complex number from the specified address. 2001 ComplexPairTy LoadComplexFromAddr(llvm::Value *SrcAddr, bool SrcIsVolatile); 2002 2003 /// CreateStaticVarDecl - Create a zero-initialized LLVM global for 2004 /// a static local variable. 2005 llvm::GlobalVariable *CreateStaticVarDecl(const VarDecl &D, 2006 const char *Separator, 2007 llvm::GlobalValue::LinkageTypes Linkage); 2008 2009 /// AddInitializerToStaticVarDecl - Add the initializer for 'D' to the 2010 /// global variable that has already been created for it. If the initializer 2011 /// has a different type than GV does, this may free GV and return a different 2012 /// one. Otherwise it just returns GV. 2013 llvm::GlobalVariable * 2014 AddInitializerToStaticVarDecl(const VarDecl &D, 2015 llvm::GlobalVariable *GV); 2016 2017 2018 /// EmitCXXGlobalVarDeclInit - Create the initializer for a C++ 2019 /// variable with global storage. 2020 void EmitCXXGlobalVarDeclInit(const VarDecl &D, llvm::Constant *DeclPtr); 2021 2022 /// EmitCXXGlobalDtorRegistration - Emits a call to register the global ptr 2023 /// with the C++ runtime so that its destructor will be called at exit. 2024 void EmitCXXGlobalDtorRegistration(llvm::Constant *DtorFn, 2025 llvm::Constant *DeclPtr); 2026 2027 /// Emit code in this function to perform a guarded variable 2028 /// initialization. Guarded initializations are used when it's not 2029 /// possible to prove that an initialization will be done exactly 2030 /// once, e.g. with a static local variable or a static data member 2031 /// of a class template. 2032 void EmitCXXGuardedInit(const VarDecl &D, llvm::GlobalVariable *DeclPtr); 2033 2034 /// GenerateCXXGlobalInitFunc - Generates code for initializing global 2035 /// variables. 2036 void GenerateCXXGlobalInitFunc(llvm::Function *Fn, 2037 llvm::Constant **Decls, 2038 unsigned NumDecls); 2039 2040 /// GenerateCXXGlobalDtorFunc - Generates code for destroying global 2041 /// variables. 2042 void GenerateCXXGlobalDtorFunc(llvm::Function *Fn, 2043 const std::vector<std::pair<llvm::WeakVH, 2044 llvm::Constant*> > &DtorsAndObjects); 2045 2046 void GenerateCXXGlobalVarDeclInitFunc(llvm::Function *Fn, 2047 const VarDecl *D, 2048 llvm::GlobalVariable *Addr); 2049 2050 void EmitCXXConstructExpr(const CXXConstructExpr *E, AggValueSlot Dest); 2051 2052 void EmitSynthesizedCXXCopyCtor(llvm::Value *Dest, llvm::Value *Src, 2053 const Expr *Exp); 2054 2055 RValue EmitExprWithCleanups(const ExprWithCleanups *E, 2056 AggValueSlot Slot =AggValueSlot::ignored()); 2057 2058 void EmitCXXThrowExpr(const CXXThrowExpr *E); 2059 2060 //===--------------------------------------------------------------------===// 2061 // Internal Helpers 2062 //===--------------------------------------------------------------------===// 2063 2064 /// ContainsLabel - Return true if the statement contains a label in it. If 2065 /// this statement is not executed normally, it not containing a label means 2066 /// that we can just remove the code. 2067 static bool ContainsLabel(const Stmt *S, bool IgnoreCaseStmts = false); 2068 2069 /// containsBreak - Return true if the statement contains a break out of it. 2070 /// If the statement (recursively) contains a switch or loop with a break 2071 /// inside of it, this is fine. 2072 static bool containsBreak(const Stmt *S); 2073 2074 /// ConstantFoldsToSimpleInteger - If the specified expression does not fold 2075 /// to a constant, or if it does but contains a label, return false. If it 2076 /// constant folds return true and set the boolean result in Result. 2077 bool ConstantFoldsToSimpleInteger(const Expr *Cond, bool &Result); 2078 2079 /// ConstantFoldsToSimpleInteger - If the specified expression does not fold 2080 /// to a constant, or if it does but contains a label, return false. If it 2081 /// constant folds return true and set the folded value. 2082 bool ConstantFoldsToSimpleInteger(const Expr *Cond, llvm::APInt &Result); 2083 2084 /// EmitBranchOnBoolExpr - Emit a branch on a boolean condition (e.g. for an 2085 /// if statement) to the specified blocks. Based on the condition, this might 2086 /// try to simplify the codegen of the conditional based on the branch. 2087 void EmitBranchOnBoolExpr(const Expr *Cond, llvm::BasicBlock *TrueBlock, 2088 llvm::BasicBlock *FalseBlock); 2089 2090 /// getTrapBB - Create a basic block that will call the trap intrinsic. We'll 2091 /// generate a branch around the created basic block as necessary. 2092 llvm::BasicBlock *getTrapBB(); 2093 2094 /// EmitCallArg - Emit a single call argument. 2095 void EmitCallArg(CallArgList &args, const Expr *E, QualType ArgType); 2096 2097 /// EmitDelegateCallArg - We are performing a delegate call; that 2098 /// is, the current function is delegating to another one. Produce 2099 /// a r-value suitable for passing the given parameter. 2100 void EmitDelegateCallArg(CallArgList &args, const VarDecl *param); 2101 2102 private: 2103 void EmitReturnOfRValue(RValue RV, QualType Ty); 2104 2105 /// ExpandTypeFromArgs - Reconstruct a structure of type \arg Ty 2106 /// from function arguments into \arg Dst. See ABIArgInfo::Expand. 2107 /// 2108 /// \param AI - The first function argument of the expansion. 2109 /// \return The argument following the last expanded function 2110 /// argument. 2111 llvm::Function::arg_iterator 2112 ExpandTypeFromArgs(QualType Ty, LValue Dst, 2113 llvm::Function::arg_iterator AI); 2114 2115 /// ExpandTypeToArgs - Expand an RValue \arg Src, with the LLVM type for \arg 2116 /// Ty, into individual arguments on the provided vector \arg Args. See 2117 /// ABIArgInfo::Expand. 2118 void ExpandTypeToArgs(QualType Ty, RValue Src, 2119 llvm::SmallVector<llvm::Value*, 16> &Args); 2120 2121 llvm::Value* EmitAsmInput(const AsmStmt &S, 2122 const TargetInfo::ConstraintInfo &Info, 2123 const Expr *InputExpr, std::string &ConstraintStr); 2124 2125 llvm::Value* EmitAsmInputLValue(const AsmStmt &S, 2126 const TargetInfo::ConstraintInfo &Info, 2127 LValue InputValue, QualType InputType, 2128 std::string &ConstraintStr); 2129 2130 /// EmitCallArgs - Emit call arguments for a function. 2131 /// The CallArgTypeInfo parameter is used for iterating over the known 2132 /// argument types of the function being called. 2133 template<typename T> 2134 void EmitCallArgs(CallArgList& Args, const T* CallArgTypeInfo, 2135 CallExpr::const_arg_iterator ArgBeg, 2136 CallExpr::const_arg_iterator ArgEnd) { 2137 CallExpr::const_arg_iterator Arg = ArgBeg; 2138 2139 // First, use the argument types that the type info knows about 2140 if (CallArgTypeInfo) { 2141 for (typename T::arg_type_iterator I = CallArgTypeInfo->arg_type_begin(), 2142 E = CallArgTypeInfo->arg_type_end(); I != E; ++I, ++Arg) { 2143 assert(Arg != ArgEnd && "Running over edge of argument list!"); 2144 QualType ArgType = *I; 2145 #ifndef NDEBUG 2146 QualType ActualArgType = Arg->getType(); 2147 if (ArgType->isPointerType() && ActualArgType->isPointerType()) { 2148 QualType ActualBaseType = 2149 ActualArgType->getAs<PointerType>()->getPointeeType(); 2150 QualType ArgBaseType = 2151 ArgType->getAs<PointerType>()->getPointeeType(); 2152 if (ArgBaseType->isVariableArrayType()) { 2153 if (const VariableArrayType *VAT = 2154 getContext().getAsVariableArrayType(ActualBaseType)) { 2155 if (!VAT->getSizeExpr()) 2156 ActualArgType = ArgType; 2157 } 2158 } 2159 } 2160 assert(getContext().getCanonicalType(ArgType.getNonReferenceType()). 2161 getTypePtr() == 2162 getContext().getCanonicalType(ActualArgType).getTypePtr() && 2163 "type mismatch in call argument!"); 2164 #endif 2165 EmitCallArg(Args, *Arg, ArgType); 2166 } 2167 2168 // Either we've emitted all the call args, or we have a call to a 2169 // variadic function. 2170 assert((Arg == ArgEnd || CallArgTypeInfo->isVariadic()) && 2171 "Extra arguments in non-variadic function!"); 2172 2173 } 2174 2175 // If we still have any arguments, emit them using the type of the argument. 2176 for (; Arg != ArgEnd; ++Arg) 2177 EmitCallArg(Args, *Arg, Arg->getType()); 2178 } 2179 2180 const TargetCodeGenInfo &getTargetHooks() const { 2181 return CGM.getTargetCodeGenInfo(); 2182 } 2183 2184 void EmitDeclMetadata(); 2185 2186 CodeGenModule::ByrefHelpers * 2187 buildByrefHelpers(const llvm::StructType &byrefType, 2188 const AutoVarEmission &emission); 2189 }; 2190 2191 /// Helper class with most of the code for saving a value for a 2192 /// conditional expression cleanup. 2193 struct DominatingLLVMValue { 2194 typedef llvm::PointerIntPair<llvm::Value*, 1, bool> saved_type; 2195 2196 /// Answer whether the given value needs extra work to be saved. 2197 static bool needsSaving(llvm::Value *value) { 2198 // If it's not an instruction, we don't need to save. 2199 if (!isa<llvm::Instruction>(value)) return false; 2200 2201 // If it's an instruction in the entry block, we don't need to save. 2202 llvm::BasicBlock *block = cast<llvm::Instruction>(value)->getParent(); 2203 return (block != &block->getParent()->getEntryBlock()); 2204 } 2205 2206 /// Try to save the given value. 2207 static saved_type save(CodeGenFunction &CGF, llvm::Value *value) { 2208 if (!needsSaving(value)) return saved_type(value, false); 2209 2210 // Otherwise we need an alloca. 2211 llvm::Value *alloca = 2212 CGF.CreateTempAlloca(value->getType(), "cond-cleanup.save"); 2213 CGF.Builder.CreateStore(value, alloca); 2214 2215 return saved_type(alloca, true); 2216 } 2217 2218 static llvm::Value *restore(CodeGenFunction &CGF, saved_type value) { 2219 if (!value.getInt()) return value.getPointer(); 2220 return CGF.Builder.CreateLoad(value.getPointer()); 2221 } 2222 }; 2223 2224 /// A partial specialization of DominatingValue for llvm::Values that 2225 /// might be llvm::Instructions. 2226 template <class T> struct DominatingPointer<T,true> : DominatingLLVMValue { 2227 typedef T *type; 2228 static type restore(CodeGenFunction &CGF, saved_type value) { 2229 return static_cast<T*>(DominatingLLVMValue::restore(CGF, value)); 2230 } 2231 }; 2232 2233 /// A specialization of DominatingValue for RValue. 2234 template <> struct DominatingValue<RValue> { 2235 typedef RValue type; 2236 class saved_type { 2237 enum Kind { ScalarLiteral, ScalarAddress, AggregateLiteral, 2238 AggregateAddress, ComplexAddress }; 2239 2240 llvm::Value *Value; 2241 Kind K; 2242 saved_type(llvm::Value *v, Kind k) : Value(v), K(k) {} 2243 2244 public: 2245 static bool needsSaving(RValue value); 2246 static saved_type save(CodeGenFunction &CGF, RValue value); 2247 RValue restore(CodeGenFunction &CGF); 2248 2249 // implementations in CGExprCXX.cpp 2250 }; 2251 2252 static bool needsSaving(type value) { 2253 return saved_type::needsSaving(value); 2254 } 2255 static saved_type save(CodeGenFunction &CGF, type value) { 2256 return saved_type::save(CGF, value); 2257 } 2258 static type restore(CodeGenFunction &CGF, saved_type value) { 2259 return value.restore(CGF); 2260 } 2261 }; 2262 2263 } // end namespace CodeGen 2264 } // end namespace clang 2265 2266 #endif 2267