1 //===-- CodeGenFunction.h - Per-Function state for LLVM CodeGen -*- C++ -*-===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This is the internal per-function state used for llvm translation. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #ifndef LLVM_CLANG_LIB_CODEGEN_CODEGENFUNCTION_H 15 #define LLVM_CLANG_LIB_CODEGEN_CODEGENFUNCTION_H 16 17 #include "CGBuilder.h" 18 #include "CGDebugInfo.h" 19 #include "CGLoopInfo.h" 20 #include "CGValue.h" 21 #include "CodeGenModule.h" 22 #include "CodeGenPGO.h" 23 #include "EHScopeStack.h" 24 #include "VarBypassDetector.h" 25 #include "clang/AST/CharUnits.h" 26 #include "clang/AST/ExprCXX.h" 27 #include "clang/AST/ExprObjC.h" 28 #include "clang/AST/ExprOpenMP.h" 29 #include "clang/AST/Type.h" 30 #include "clang/Basic/ABI.h" 31 #include "clang/Basic/CapturedStmt.h" 32 #include "clang/Basic/OpenMPKinds.h" 33 #include "clang/Basic/TargetInfo.h" 34 #include "clang/Frontend/CodeGenOptions.h" 35 #include "llvm/ADT/ArrayRef.h" 36 #include "llvm/ADT/DenseMap.h" 37 #include "llvm/ADT/MapVector.h" 38 #include "llvm/ADT/SmallVector.h" 39 #include "llvm/IR/ValueHandle.h" 40 #include "llvm/Support/Debug.h" 41 #include "llvm/Transforms/Utils/SanitizerStats.h" 42 43 namespace llvm { 44 class BasicBlock; 45 class LLVMContext; 46 class MDNode; 47 class Module; 48 class SwitchInst; 49 class Twine; 50 class Value; 51 class CallSite; 52 } 53 54 namespace clang { 55 class ASTContext; 56 class BlockDecl; 57 class CXXDestructorDecl; 58 class CXXForRangeStmt; 59 class CXXTryStmt; 60 class Decl; 61 class LabelDecl; 62 class EnumConstantDecl; 63 class FunctionDecl; 64 class FunctionProtoType; 65 class LabelStmt; 66 class ObjCContainerDecl; 67 class ObjCInterfaceDecl; 68 class ObjCIvarDecl; 69 class ObjCMethodDecl; 70 class ObjCImplementationDecl; 71 class ObjCPropertyImplDecl; 72 class TargetInfo; 73 class VarDecl; 74 class ObjCForCollectionStmt; 75 class ObjCAtTryStmt; 76 class ObjCAtThrowStmt; 77 class ObjCAtSynchronizedStmt; 78 class ObjCAutoreleasePoolStmt; 79 80 namespace analyze_os_log { 81 class OSLogBufferLayout; 82 } 83 84 namespace CodeGen { 85 class CodeGenTypes; 86 class CGCallee; 87 class CGFunctionInfo; 88 class CGRecordLayout; 89 class CGBlockInfo; 90 class CGCXXABI; 91 class BlockByrefHelpers; 92 class BlockByrefInfo; 93 class BlockFlags; 94 class BlockFieldFlags; 95 class RegionCodeGenTy; 96 class TargetCodeGenInfo; 97 struct OMPTaskDataTy; 98 struct CGCoroData; 99 100 /// The kind of evaluation to perform on values of a particular 101 /// type. Basically, is the code in CGExprScalar, CGExprComplex, or 102 /// CGExprAgg? 103 /// 104 /// TODO: should vectors maybe be split out into their own thing? 105 enum TypeEvaluationKind { 106 TEK_Scalar, 107 TEK_Complex, 108 TEK_Aggregate 109 }; 110 111 #define LIST_SANITIZER_CHECKS \ 112 SANITIZER_CHECK(AddOverflow, add_overflow, 0) \ 113 SANITIZER_CHECK(BuiltinUnreachable, builtin_unreachable, 0) \ 114 SANITIZER_CHECK(CFICheckFail, cfi_check_fail, 0) \ 115 SANITIZER_CHECK(DivremOverflow, divrem_overflow, 0) \ 116 SANITIZER_CHECK(DynamicTypeCacheMiss, dynamic_type_cache_miss, 0) \ 117 SANITIZER_CHECK(FloatCastOverflow, float_cast_overflow, 0) \ 118 SANITIZER_CHECK(FunctionTypeMismatch, function_type_mismatch, 0) \ 119 SANITIZER_CHECK(InvalidBuiltin, invalid_builtin, 0) \ 120 SANITIZER_CHECK(LoadInvalidValue, load_invalid_value, 0) \ 121 SANITIZER_CHECK(MissingReturn, missing_return, 0) \ 122 SANITIZER_CHECK(MulOverflow, mul_overflow, 0) \ 123 SANITIZER_CHECK(NegateOverflow, negate_overflow, 0) \ 124 SANITIZER_CHECK(NullabilityArg, nullability_arg, 0) \ 125 SANITIZER_CHECK(NullabilityReturn, nullability_return, 1) \ 126 SANITIZER_CHECK(NonnullArg, nonnull_arg, 0) \ 127 SANITIZER_CHECK(NonnullReturn, nonnull_return, 1) \ 128 SANITIZER_CHECK(OutOfBounds, out_of_bounds, 0) \ 129 SANITIZER_CHECK(PointerOverflow, pointer_overflow, 0) \ 130 SANITIZER_CHECK(ShiftOutOfBounds, shift_out_of_bounds, 0) \ 131 SANITIZER_CHECK(SubOverflow, sub_overflow, 0) \ 132 SANITIZER_CHECK(TypeMismatch, type_mismatch, 1) \ 133 SANITIZER_CHECK(VLABoundNotPositive, vla_bound_not_positive, 0) 134 135 enum SanitizerHandler { 136 #define SANITIZER_CHECK(Enum, Name, Version) Enum, 137 LIST_SANITIZER_CHECKS 138 #undef SANITIZER_CHECK 139 }; 140 141 /// CodeGenFunction - This class organizes the per-function state that is used 142 /// while generating LLVM code. 143 class CodeGenFunction : public CodeGenTypeCache { 144 CodeGenFunction(const CodeGenFunction &) = delete; 145 void operator=(const CodeGenFunction &) = delete; 146 147 friend class CGCXXABI; 148 public: 149 /// A jump destination is an abstract label, branching to which may 150 /// require a jump out through normal cleanups. 151 struct JumpDest { 152 JumpDest() : Block(nullptr), ScopeDepth(), Index(0) {} 153 JumpDest(llvm::BasicBlock *Block, 154 EHScopeStack::stable_iterator Depth, 155 unsigned Index) 156 : Block(Block), ScopeDepth(Depth), Index(Index) {} 157 158 bool isValid() const { return Block != nullptr; } 159 llvm::BasicBlock *getBlock() const { return Block; } 160 EHScopeStack::stable_iterator getScopeDepth() const { return ScopeDepth; } 161 unsigned getDestIndex() const { return Index; } 162 163 // This should be used cautiously. 164 void setScopeDepth(EHScopeStack::stable_iterator depth) { 165 ScopeDepth = depth; 166 } 167 168 private: 169 llvm::BasicBlock *Block; 170 EHScopeStack::stable_iterator ScopeDepth; 171 unsigned Index; 172 }; 173 174 CodeGenModule &CGM; // Per-module state. 175 const TargetInfo &Target; 176 177 typedef std::pair<llvm::Value *, llvm::Value *> ComplexPairTy; 178 LoopInfoStack LoopStack; 179 CGBuilderTy Builder; 180 181 // Stores variables for which we can't generate correct lifetime markers 182 // because of jumps. 183 VarBypassDetector Bypasses; 184 185 // CodeGen lambda for loops and support for ordered clause 186 typedef llvm::function_ref<void(CodeGenFunction &, const OMPLoopDirective &, 187 JumpDest)> 188 CodeGenLoopTy; 189 typedef llvm::function_ref<void(CodeGenFunction &, SourceLocation, 190 const unsigned, const bool)> 191 CodeGenOrderedTy; 192 193 // Codegen lambda for loop bounds in worksharing loop constructs 194 typedef llvm::function_ref<std::pair<LValue, LValue>( 195 CodeGenFunction &, const OMPExecutableDirective &S)> 196 CodeGenLoopBoundsTy; 197 198 // Codegen lambda for loop bounds in dispatch-based loop implementation 199 typedef llvm::function_ref<std::pair<llvm::Value *, llvm::Value *>( 200 CodeGenFunction &, const OMPExecutableDirective &S, Address LB, 201 Address UB)> 202 CodeGenDispatchBoundsTy; 203 204 /// CGBuilder insert helper. This function is called after an 205 /// instruction is created using Builder. 206 void InsertHelper(llvm::Instruction *I, const llvm::Twine &Name, 207 llvm::BasicBlock *BB, 208 llvm::BasicBlock::iterator InsertPt) const; 209 210 /// CurFuncDecl - Holds the Decl for the current outermost 211 /// non-closure context. 212 const Decl *CurFuncDecl; 213 /// CurCodeDecl - This is the inner-most code context, which includes blocks. 214 const Decl *CurCodeDecl; 215 const CGFunctionInfo *CurFnInfo; 216 QualType FnRetTy; 217 llvm::Function *CurFn; 218 219 // Holds coroutine data if the current function is a coroutine. We use a 220 // wrapper to manage its lifetime, so that we don't have to define CGCoroData 221 // in this header. 222 struct CGCoroInfo { 223 std::unique_ptr<CGCoroData> Data; 224 CGCoroInfo(); 225 ~CGCoroInfo(); 226 }; 227 CGCoroInfo CurCoro; 228 229 bool isCoroutine() const { 230 return CurCoro.Data != nullptr; 231 } 232 233 /// CurGD - The GlobalDecl for the current function being compiled. 234 GlobalDecl CurGD; 235 236 /// PrologueCleanupDepth - The cleanup depth enclosing all the 237 /// cleanups associated with the parameters. 238 EHScopeStack::stable_iterator PrologueCleanupDepth; 239 240 /// ReturnBlock - Unified return block. 241 JumpDest ReturnBlock; 242 243 /// ReturnValue - The temporary alloca to hold the return 244 /// value. This is invalid iff the function has no return value. 245 Address ReturnValue; 246 247 /// Return true if a label was seen in the current scope. 248 bool hasLabelBeenSeenInCurrentScope() const { 249 if (CurLexicalScope) 250 return CurLexicalScope->hasLabels(); 251 return !LabelMap.empty(); 252 } 253 254 /// AllocaInsertPoint - This is an instruction in the entry block before which 255 /// we prefer to insert allocas. 256 llvm::AssertingVH<llvm::Instruction> AllocaInsertPt; 257 258 /// API for captured statement code generation. 259 class CGCapturedStmtInfo { 260 public: 261 explicit CGCapturedStmtInfo(CapturedRegionKind K = CR_Default) 262 : Kind(K), ThisValue(nullptr), CXXThisFieldDecl(nullptr) {} 263 explicit CGCapturedStmtInfo(const CapturedStmt &S, 264 CapturedRegionKind K = CR_Default) 265 : Kind(K), ThisValue(nullptr), CXXThisFieldDecl(nullptr) { 266 267 RecordDecl::field_iterator Field = 268 S.getCapturedRecordDecl()->field_begin(); 269 for (CapturedStmt::const_capture_iterator I = S.capture_begin(), 270 E = S.capture_end(); 271 I != E; ++I, ++Field) { 272 if (I->capturesThis()) 273 CXXThisFieldDecl = *Field; 274 else if (I->capturesVariable()) 275 CaptureFields[I->getCapturedVar()->getCanonicalDecl()] = *Field; 276 else if (I->capturesVariableByCopy()) 277 CaptureFields[I->getCapturedVar()->getCanonicalDecl()] = *Field; 278 } 279 } 280 281 virtual ~CGCapturedStmtInfo(); 282 283 CapturedRegionKind getKind() const { return Kind; } 284 285 virtual void setContextValue(llvm::Value *V) { ThisValue = V; } 286 // Retrieve the value of the context parameter. 287 virtual llvm::Value *getContextValue() const { return ThisValue; } 288 289 /// Lookup the captured field decl for a variable. 290 virtual const FieldDecl *lookup(const VarDecl *VD) const { 291 return CaptureFields.lookup(VD->getCanonicalDecl()); 292 } 293 294 bool isCXXThisExprCaptured() const { return getThisFieldDecl() != nullptr; } 295 virtual FieldDecl *getThisFieldDecl() const { return CXXThisFieldDecl; } 296 297 static bool classof(const CGCapturedStmtInfo *) { 298 return true; 299 } 300 301 /// Emit the captured statement body. 302 virtual void EmitBody(CodeGenFunction &CGF, const Stmt *S) { 303 CGF.incrementProfileCounter(S); 304 CGF.EmitStmt(S); 305 } 306 307 /// Get the name of the capture helper. 308 virtual StringRef getHelperName() const { return "__captured_stmt"; } 309 310 private: 311 /// The kind of captured statement being generated. 312 CapturedRegionKind Kind; 313 314 /// Keep the map between VarDecl and FieldDecl. 315 llvm::SmallDenseMap<const VarDecl *, FieldDecl *> CaptureFields; 316 317 /// The base address of the captured record, passed in as the first 318 /// argument of the parallel region function. 319 llvm::Value *ThisValue; 320 321 /// Captured 'this' type. 322 FieldDecl *CXXThisFieldDecl; 323 }; 324 CGCapturedStmtInfo *CapturedStmtInfo; 325 326 /// RAII for correct setting/restoring of CapturedStmtInfo. 327 class CGCapturedStmtRAII { 328 private: 329 CodeGenFunction &CGF; 330 CGCapturedStmtInfo *PrevCapturedStmtInfo; 331 public: 332 CGCapturedStmtRAII(CodeGenFunction &CGF, 333 CGCapturedStmtInfo *NewCapturedStmtInfo) 334 : CGF(CGF), PrevCapturedStmtInfo(CGF.CapturedStmtInfo) { 335 CGF.CapturedStmtInfo = NewCapturedStmtInfo; 336 } 337 ~CGCapturedStmtRAII() { CGF.CapturedStmtInfo = PrevCapturedStmtInfo; } 338 }; 339 340 /// An abstract representation of regular/ObjC call/message targets. 341 class AbstractCallee { 342 /// The function declaration of the callee. 343 const Decl *CalleeDecl; 344 345 public: 346 AbstractCallee() : CalleeDecl(nullptr) {} 347 AbstractCallee(const FunctionDecl *FD) : CalleeDecl(FD) {} 348 AbstractCallee(const ObjCMethodDecl *OMD) : CalleeDecl(OMD) {} 349 bool hasFunctionDecl() const { 350 return dyn_cast_or_null<FunctionDecl>(CalleeDecl); 351 } 352 const Decl *getDecl() const { return CalleeDecl; } 353 unsigned getNumParams() const { 354 if (const auto *FD = dyn_cast<FunctionDecl>(CalleeDecl)) 355 return FD->getNumParams(); 356 return cast<ObjCMethodDecl>(CalleeDecl)->param_size(); 357 } 358 const ParmVarDecl *getParamDecl(unsigned I) const { 359 if (const auto *FD = dyn_cast<FunctionDecl>(CalleeDecl)) 360 return FD->getParamDecl(I); 361 return *(cast<ObjCMethodDecl>(CalleeDecl)->param_begin() + I); 362 } 363 }; 364 365 /// Sanitizers enabled for this function. 366 SanitizerSet SanOpts; 367 368 /// True if CodeGen currently emits code implementing sanitizer checks. 369 bool IsSanitizerScope; 370 371 /// RAII object to set/unset CodeGenFunction::IsSanitizerScope. 372 class SanitizerScope { 373 CodeGenFunction *CGF; 374 public: 375 SanitizerScope(CodeGenFunction *CGF); 376 ~SanitizerScope(); 377 }; 378 379 /// In C++, whether we are code generating a thunk. This controls whether we 380 /// should emit cleanups. 381 bool CurFuncIsThunk; 382 383 /// In ARC, whether we should autorelease the return value. 384 bool AutoreleaseResult; 385 386 /// Whether we processed a Microsoft-style asm block during CodeGen. These can 387 /// potentially set the return value. 388 bool SawAsmBlock; 389 390 const FunctionDecl *CurSEHParent = nullptr; 391 392 /// True if the current function is an outlined SEH helper. This can be a 393 /// finally block or filter expression. 394 bool IsOutlinedSEHHelper; 395 396 const CodeGen::CGBlockInfo *BlockInfo; 397 llvm::Value *BlockPointer; 398 399 llvm::DenseMap<const VarDecl *, FieldDecl *> LambdaCaptureFields; 400 FieldDecl *LambdaThisCaptureField; 401 402 /// A mapping from NRVO variables to the flags used to indicate 403 /// when the NRVO has been applied to this variable. 404 llvm::DenseMap<const VarDecl *, llvm::Value *> NRVOFlags; 405 406 EHScopeStack EHStack; 407 llvm::SmallVector<char, 256> LifetimeExtendedCleanupStack; 408 llvm::SmallVector<const JumpDest *, 2> SEHTryEpilogueStack; 409 410 llvm::Instruction *CurrentFuncletPad = nullptr; 411 412 class CallLifetimeEnd final : public EHScopeStack::Cleanup { 413 llvm::Value *Addr; 414 llvm::Value *Size; 415 416 public: 417 CallLifetimeEnd(Address addr, llvm::Value *size) 418 : Addr(addr.getPointer()), Size(size) {} 419 420 void Emit(CodeGenFunction &CGF, Flags flags) override { 421 CGF.EmitLifetimeEnd(Size, Addr); 422 } 423 }; 424 425 /// Header for data within LifetimeExtendedCleanupStack. 426 struct LifetimeExtendedCleanupHeader { 427 /// The size of the following cleanup object. 428 unsigned Size; 429 /// The kind of cleanup to push: a value from the CleanupKind enumeration. 430 CleanupKind Kind; 431 432 size_t getSize() const { return Size; } 433 CleanupKind getKind() const { return Kind; } 434 }; 435 436 /// i32s containing the indexes of the cleanup destinations. 437 Address NormalCleanupDest; 438 439 unsigned NextCleanupDestIndex; 440 441 /// FirstBlockInfo - The head of a singly-linked-list of block layouts. 442 CGBlockInfo *FirstBlockInfo; 443 444 /// EHResumeBlock - Unified block containing a call to llvm.eh.resume. 445 llvm::BasicBlock *EHResumeBlock; 446 447 /// The exception slot. All landing pads write the current exception pointer 448 /// into this alloca. 449 llvm::Value *ExceptionSlot; 450 451 /// The selector slot. Under the MandatoryCleanup model, all landing pads 452 /// write the current selector value into this alloca. 453 llvm::AllocaInst *EHSelectorSlot; 454 455 /// A stack of exception code slots. Entering an __except block pushes a slot 456 /// on the stack and leaving pops one. The __exception_code() intrinsic loads 457 /// a value from the top of the stack. 458 SmallVector<Address, 1> SEHCodeSlotStack; 459 460 /// Value returned by __exception_info intrinsic. 461 llvm::Value *SEHInfo = nullptr; 462 463 /// Emits a landing pad for the current EH stack. 464 llvm::BasicBlock *EmitLandingPad(); 465 466 llvm::BasicBlock *getInvokeDestImpl(); 467 468 template <class T> 469 typename DominatingValue<T>::saved_type saveValueInCond(T value) { 470 return DominatingValue<T>::save(*this, value); 471 } 472 473 public: 474 /// ObjCEHValueStack - Stack of Objective-C exception values, used for 475 /// rethrows. 476 SmallVector<llvm::Value*, 8> ObjCEHValueStack; 477 478 /// A class controlling the emission of a finally block. 479 class FinallyInfo { 480 /// Where the catchall's edge through the cleanup should go. 481 JumpDest RethrowDest; 482 483 /// A function to call to enter the catch. 484 llvm::Constant *BeginCatchFn; 485 486 /// An i1 variable indicating whether or not the @finally is 487 /// running for an exception. 488 llvm::AllocaInst *ForEHVar; 489 490 /// An i8* variable into which the exception pointer to rethrow 491 /// has been saved. 492 llvm::AllocaInst *SavedExnVar; 493 494 public: 495 void enter(CodeGenFunction &CGF, const Stmt *Finally, 496 llvm::Constant *beginCatchFn, llvm::Constant *endCatchFn, 497 llvm::Constant *rethrowFn); 498 void exit(CodeGenFunction &CGF); 499 }; 500 501 /// Returns true inside SEH __try blocks. 502 bool isSEHTryScope() const { return !SEHTryEpilogueStack.empty(); } 503 504 /// Returns true while emitting a cleanuppad. 505 bool isCleanupPadScope() const { 506 return CurrentFuncletPad && isa<llvm::CleanupPadInst>(CurrentFuncletPad); 507 } 508 509 /// pushFullExprCleanup - Push a cleanup to be run at the end of the 510 /// current full-expression. Safe against the possibility that 511 /// we're currently inside a conditionally-evaluated expression. 512 template <class T, class... As> 513 void pushFullExprCleanup(CleanupKind kind, As... A) { 514 // If we're not in a conditional branch, or if none of the 515 // arguments requires saving, then use the unconditional cleanup. 516 if (!isInConditionalBranch()) 517 return EHStack.pushCleanup<T>(kind, A...); 518 519 // Stash values in a tuple so we can guarantee the order of saves. 520 typedef std::tuple<typename DominatingValue<As>::saved_type...> SavedTuple; 521 SavedTuple Saved{saveValueInCond(A)...}; 522 523 typedef EHScopeStack::ConditionalCleanup<T, As...> CleanupType; 524 EHStack.pushCleanupTuple<CleanupType>(kind, Saved); 525 initFullExprCleanup(); 526 } 527 528 /// Queue a cleanup to be pushed after finishing the current 529 /// full-expression. 530 template <class T, class... As> 531 void pushCleanupAfterFullExpr(CleanupKind Kind, As... A) { 532 assert(!isInConditionalBranch() && "can't defer conditional cleanup"); 533 534 LifetimeExtendedCleanupHeader Header = { sizeof(T), Kind }; 535 536 size_t OldSize = LifetimeExtendedCleanupStack.size(); 537 LifetimeExtendedCleanupStack.resize( 538 LifetimeExtendedCleanupStack.size() + sizeof(Header) + Header.Size); 539 540 static_assert(sizeof(Header) % alignof(T) == 0, 541 "Cleanup will be allocated on misaligned address"); 542 char *Buffer = &LifetimeExtendedCleanupStack[OldSize]; 543 new (Buffer) LifetimeExtendedCleanupHeader(Header); 544 new (Buffer + sizeof(Header)) T(A...); 545 } 546 547 /// Set up the last cleaup that was pushed as a conditional 548 /// full-expression cleanup. 549 void initFullExprCleanup(); 550 551 /// PushDestructorCleanup - Push a cleanup to call the 552 /// complete-object destructor of an object of the given type at the 553 /// given address. Does nothing if T is not a C++ class type with a 554 /// non-trivial destructor. 555 void PushDestructorCleanup(QualType T, Address Addr); 556 557 /// PushDestructorCleanup - Push a cleanup to call the 558 /// complete-object variant of the given destructor on the object at 559 /// the given address. 560 void PushDestructorCleanup(const CXXDestructorDecl *Dtor, Address Addr); 561 562 /// PopCleanupBlock - Will pop the cleanup entry on the stack and 563 /// process all branch fixups. 564 void PopCleanupBlock(bool FallThroughIsBranchThrough = false); 565 566 /// DeactivateCleanupBlock - Deactivates the given cleanup block. 567 /// The block cannot be reactivated. Pops it if it's the top of the 568 /// stack. 569 /// 570 /// \param DominatingIP - An instruction which is known to 571 /// dominate the current IP (if set) and which lies along 572 /// all paths of execution between the current IP and the 573 /// the point at which the cleanup comes into scope. 574 void DeactivateCleanupBlock(EHScopeStack::stable_iterator Cleanup, 575 llvm::Instruction *DominatingIP); 576 577 /// ActivateCleanupBlock - Activates an initially-inactive cleanup. 578 /// Cannot be used to resurrect a deactivated cleanup. 579 /// 580 /// \param DominatingIP - An instruction which is known to 581 /// dominate the current IP (if set) and which lies along 582 /// all paths of execution between the current IP and the 583 /// the point at which the cleanup comes into scope. 584 void ActivateCleanupBlock(EHScopeStack::stable_iterator Cleanup, 585 llvm::Instruction *DominatingIP); 586 587 /// Enters a new scope for capturing cleanups, all of which 588 /// will be executed once the scope is exited. 589 class RunCleanupsScope { 590 EHScopeStack::stable_iterator CleanupStackDepth, OldCleanupScopeDepth; 591 size_t LifetimeExtendedCleanupStackSize; 592 bool OldDidCallStackSave; 593 protected: 594 bool PerformCleanup; 595 private: 596 597 RunCleanupsScope(const RunCleanupsScope &) = delete; 598 void operator=(const RunCleanupsScope &) = delete; 599 600 protected: 601 CodeGenFunction& CGF; 602 603 public: 604 /// Enter a new cleanup scope. 605 explicit RunCleanupsScope(CodeGenFunction &CGF) 606 : PerformCleanup(true), CGF(CGF) 607 { 608 CleanupStackDepth = CGF.EHStack.stable_begin(); 609 LifetimeExtendedCleanupStackSize = 610 CGF.LifetimeExtendedCleanupStack.size(); 611 OldDidCallStackSave = CGF.DidCallStackSave; 612 CGF.DidCallStackSave = false; 613 OldCleanupScopeDepth = CGF.CurrentCleanupScopeDepth; 614 CGF.CurrentCleanupScopeDepth = CleanupStackDepth; 615 } 616 617 /// Exit this cleanup scope, emitting any accumulated cleanups. 618 ~RunCleanupsScope() { 619 if (PerformCleanup) 620 ForceCleanup(); 621 } 622 623 /// Determine whether this scope requires any cleanups. 624 bool requiresCleanups() const { 625 return CGF.EHStack.stable_begin() != CleanupStackDepth; 626 } 627 628 /// Force the emission of cleanups now, instead of waiting 629 /// until this object is destroyed. 630 /// \param ValuesToReload - A list of values that need to be available at 631 /// the insertion point after cleanup emission. If cleanup emission created 632 /// a shared cleanup block, these value pointers will be rewritten. 633 /// Otherwise, they not will be modified. 634 void ForceCleanup(std::initializer_list<llvm::Value**> ValuesToReload = {}) { 635 assert(PerformCleanup && "Already forced cleanup"); 636 CGF.DidCallStackSave = OldDidCallStackSave; 637 CGF.PopCleanupBlocks(CleanupStackDepth, LifetimeExtendedCleanupStackSize, 638 ValuesToReload); 639 PerformCleanup = false; 640 CGF.CurrentCleanupScopeDepth = OldCleanupScopeDepth; 641 } 642 }; 643 644 // Cleanup stack depth of the RunCleanupsScope that was pushed most recently. 645 EHScopeStack::stable_iterator CurrentCleanupScopeDepth = 646 EHScopeStack::stable_end(); 647 648 class LexicalScope : public RunCleanupsScope { 649 SourceRange Range; 650 SmallVector<const LabelDecl*, 4> Labels; 651 LexicalScope *ParentScope; 652 653 LexicalScope(const LexicalScope &) = delete; 654 void operator=(const LexicalScope &) = delete; 655 656 public: 657 /// Enter a new cleanup scope. 658 explicit LexicalScope(CodeGenFunction &CGF, SourceRange Range) 659 : RunCleanupsScope(CGF), Range(Range), ParentScope(CGF.CurLexicalScope) { 660 CGF.CurLexicalScope = this; 661 if (CGDebugInfo *DI = CGF.getDebugInfo()) 662 DI->EmitLexicalBlockStart(CGF.Builder, Range.getBegin()); 663 } 664 665 void addLabel(const LabelDecl *label) { 666 assert(PerformCleanup && "adding label to dead scope?"); 667 Labels.push_back(label); 668 } 669 670 /// Exit this cleanup scope, emitting any accumulated 671 /// cleanups. 672 ~LexicalScope() { 673 if (CGDebugInfo *DI = CGF.getDebugInfo()) 674 DI->EmitLexicalBlockEnd(CGF.Builder, Range.getEnd()); 675 676 // If we should perform a cleanup, force them now. Note that 677 // this ends the cleanup scope before rescoping any labels. 678 if (PerformCleanup) { 679 ApplyDebugLocation DL(CGF, Range.getEnd()); 680 ForceCleanup(); 681 } 682 } 683 684 /// Force the emission of cleanups now, instead of waiting 685 /// until this object is destroyed. 686 void ForceCleanup() { 687 CGF.CurLexicalScope = ParentScope; 688 RunCleanupsScope::ForceCleanup(); 689 690 if (!Labels.empty()) 691 rescopeLabels(); 692 } 693 694 bool hasLabels() const { 695 return !Labels.empty(); 696 } 697 698 void rescopeLabels(); 699 }; 700 701 typedef llvm::DenseMap<const Decl *, Address> DeclMapTy; 702 703 /// The class used to assign some variables some temporarily addresses. 704 class OMPMapVars { 705 DeclMapTy SavedLocals; 706 DeclMapTy SavedTempAddresses; 707 OMPMapVars(const OMPMapVars &) = delete; 708 void operator=(const OMPMapVars &) = delete; 709 710 public: 711 explicit OMPMapVars() = default; 712 ~OMPMapVars() { 713 assert(SavedLocals.empty() && "Did not restored original addresses."); 714 }; 715 716 /// Sets the address of the variable \p LocalVD to be \p TempAddr in 717 /// function \p CGF. 718 /// \return true if at least one variable was set already, false otherwise. 719 bool setVarAddr(CodeGenFunction &CGF, const VarDecl *LocalVD, 720 Address TempAddr) { 721 LocalVD = LocalVD->getCanonicalDecl(); 722 // Only save it once. 723 if (SavedLocals.count(LocalVD)) return false; 724 725 // Copy the existing local entry to SavedLocals. 726 auto it = CGF.LocalDeclMap.find(LocalVD); 727 if (it != CGF.LocalDeclMap.end()) 728 SavedLocals.try_emplace(LocalVD, it->second); 729 else 730 SavedLocals.try_emplace(LocalVD, Address::invalid()); 731 732 // Generate the private entry. 733 QualType VarTy = LocalVD->getType(); 734 if (VarTy->isReferenceType()) { 735 Address Temp = CGF.CreateMemTemp(VarTy); 736 CGF.Builder.CreateStore(TempAddr.getPointer(), Temp); 737 TempAddr = Temp; 738 } 739 SavedTempAddresses.try_emplace(LocalVD, TempAddr); 740 741 return true; 742 } 743 744 /// Applies new addresses to the list of the variables. 745 /// \return true if at least one variable is using new address, false 746 /// otherwise. 747 bool apply(CodeGenFunction &CGF) { 748 copyInto(SavedTempAddresses, CGF.LocalDeclMap); 749 SavedTempAddresses.clear(); 750 return !SavedLocals.empty(); 751 } 752 753 /// Restores original addresses of the variables. 754 void restore(CodeGenFunction &CGF) { 755 if (!SavedLocals.empty()) { 756 copyInto(SavedLocals, CGF.LocalDeclMap); 757 SavedLocals.clear(); 758 } 759 } 760 761 private: 762 /// Copy all the entries in the source map over the corresponding 763 /// entries in the destination, which must exist. 764 static void copyInto(const DeclMapTy &Src, DeclMapTy &Dest) { 765 for (auto &Pair : Src) { 766 if (!Pair.second.isValid()) { 767 Dest.erase(Pair.first); 768 continue; 769 } 770 771 auto I = Dest.find(Pair.first); 772 if (I != Dest.end()) 773 I->second = Pair.second; 774 else 775 Dest.insert(Pair); 776 } 777 } 778 }; 779 780 /// The scope used to remap some variables as private in the OpenMP loop body 781 /// (or other captured region emitted without outlining), and to restore old 782 /// vars back on exit. 783 class OMPPrivateScope : public RunCleanupsScope { 784 OMPMapVars MappedVars; 785 OMPPrivateScope(const OMPPrivateScope &) = delete; 786 void operator=(const OMPPrivateScope &) = delete; 787 788 public: 789 /// Enter a new OpenMP private scope. 790 explicit OMPPrivateScope(CodeGenFunction &CGF) : RunCleanupsScope(CGF) {} 791 792 /// Registers \p LocalVD variable as a private and apply \p PrivateGen 793 /// function for it to generate corresponding private variable. \p 794 /// PrivateGen returns an address of the generated private variable. 795 /// \return true if the variable is registered as private, false if it has 796 /// been privatized already. 797 bool addPrivate(const VarDecl *LocalVD, 798 const llvm::function_ref<Address()> PrivateGen) { 799 assert(PerformCleanup && "adding private to dead scope"); 800 return MappedVars.setVarAddr(CGF, LocalVD, PrivateGen()); 801 } 802 803 /// Privatizes local variables previously registered as private. 804 /// Registration is separate from the actual privatization to allow 805 /// initializers use values of the original variables, not the private one. 806 /// This is important, for example, if the private variable is a class 807 /// variable initialized by a constructor that references other private 808 /// variables. But at initialization original variables must be used, not 809 /// private copies. 810 /// \return true if at least one variable was privatized, false otherwise. 811 bool Privatize() { return MappedVars.apply(CGF); } 812 813 void ForceCleanup() { 814 RunCleanupsScope::ForceCleanup(); 815 MappedVars.restore(CGF); 816 } 817 818 /// Exit scope - all the mapped variables are restored. 819 ~OMPPrivateScope() { 820 if (PerformCleanup) 821 ForceCleanup(); 822 } 823 824 /// Checks if the global variable is captured in current function. 825 bool isGlobalVarCaptured(const VarDecl *VD) const { 826 VD = VD->getCanonicalDecl(); 827 return !VD->isLocalVarDeclOrParm() && CGF.LocalDeclMap.count(VD) > 0; 828 } 829 }; 830 831 /// Takes the old cleanup stack size and emits the cleanup blocks 832 /// that have been added. 833 void 834 PopCleanupBlocks(EHScopeStack::stable_iterator OldCleanupStackSize, 835 std::initializer_list<llvm::Value **> ValuesToReload = {}); 836 837 /// Takes the old cleanup stack size and emits the cleanup blocks 838 /// that have been added, then adds all lifetime-extended cleanups from 839 /// the given position to the stack. 840 void 841 PopCleanupBlocks(EHScopeStack::stable_iterator OldCleanupStackSize, 842 size_t OldLifetimeExtendedStackSize, 843 std::initializer_list<llvm::Value **> ValuesToReload = {}); 844 845 void ResolveBranchFixups(llvm::BasicBlock *Target); 846 847 /// The given basic block lies in the current EH scope, but may be a 848 /// target of a potentially scope-crossing jump; get a stable handle 849 /// to which we can perform this jump later. 850 JumpDest getJumpDestInCurrentScope(llvm::BasicBlock *Target) { 851 return JumpDest(Target, 852 EHStack.getInnermostNormalCleanup(), 853 NextCleanupDestIndex++); 854 } 855 856 /// The given basic block lies in the current EH scope, but may be a 857 /// target of a potentially scope-crossing jump; get a stable handle 858 /// to which we can perform this jump later. 859 JumpDest getJumpDestInCurrentScope(StringRef Name = StringRef()) { 860 return getJumpDestInCurrentScope(createBasicBlock(Name)); 861 } 862 863 /// EmitBranchThroughCleanup - Emit a branch from the current insert 864 /// block through the normal cleanup handling code (if any) and then 865 /// on to \arg Dest. 866 void EmitBranchThroughCleanup(JumpDest Dest); 867 868 /// isObviouslyBranchWithoutCleanups - Return true if a branch to the 869 /// specified destination obviously has no cleanups to run. 'false' is always 870 /// a conservatively correct answer for this method. 871 bool isObviouslyBranchWithoutCleanups(JumpDest Dest) const; 872 873 /// popCatchScope - Pops the catch scope at the top of the EHScope 874 /// stack, emitting any required code (other than the catch handlers 875 /// themselves). 876 void popCatchScope(); 877 878 llvm::BasicBlock *getEHResumeBlock(bool isCleanup); 879 llvm::BasicBlock *getEHDispatchBlock(EHScopeStack::stable_iterator scope); 880 llvm::BasicBlock *getMSVCDispatchBlock(EHScopeStack::stable_iterator scope); 881 882 /// An object to manage conditionally-evaluated expressions. 883 class ConditionalEvaluation { 884 llvm::BasicBlock *StartBB; 885 886 public: 887 ConditionalEvaluation(CodeGenFunction &CGF) 888 : StartBB(CGF.Builder.GetInsertBlock()) {} 889 890 void begin(CodeGenFunction &CGF) { 891 assert(CGF.OutermostConditional != this); 892 if (!CGF.OutermostConditional) 893 CGF.OutermostConditional = this; 894 } 895 896 void end(CodeGenFunction &CGF) { 897 assert(CGF.OutermostConditional != nullptr); 898 if (CGF.OutermostConditional == this) 899 CGF.OutermostConditional = nullptr; 900 } 901 902 /// Returns a block which will be executed prior to each 903 /// evaluation of the conditional code. 904 llvm::BasicBlock *getStartingBlock() const { 905 return StartBB; 906 } 907 }; 908 909 /// isInConditionalBranch - Return true if we're currently emitting 910 /// one branch or the other of a conditional expression. 911 bool isInConditionalBranch() const { return OutermostConditional != nullptr; } 912 913 void setBeforeOutermostConditional(llvm::Value *value, Address addr) { 914 assert(isInConditionalBranch()); 915 llvm::BasicBlock *block = OutermostConditional->getStartingBlock(); 916 auto store = new llvm::StoreInst(value, addr.getPointer(), &block->back()); 917 store->setAlignment(addr.getAlignment().getQuantity()); 918 } 919 920 /// An RAII object to record that we're evaluating a statement 921 /// expression. 922 class StmtExprEvaluation { 923 CodeGenFunction &CGF; 924 925 /// We have to save the outermost conditional: cleanups in a 926 /// statement expression aren't conditional just because the 927 /// StmtExpr is. 928 ConditionalEvaluation *SavedOutermostConditional; 929 930 public: 931 StmtExprEvaluation(CodeGenFunction &CGF) 932 : CGF(CGF), SavedOutermostConditional(CGF.OutermostConditional) { 933 CGF.OutermostConditional = nullptr; 934 } 935 936 ~StmtExprEvaluation() { 937 CGF.OutermostConditional = SavedOutermostConditional; 938 CGF.EnsureInsertPoint(); 939 } 940 }; 941 942 /// An object which temporarily prevents a value from being 943 /// destroyed by aggressive peephole optimizations that assume that 944 /// all uses of a value have been realized in the IR. 945 class PeepholeProtection { 946 llvm::Instruction *Inst; 947 friend class CodeGenFunction; 948 949 public: 950 PeepholeProtection() : Inst(nullptr) {} 951 }; 952 953 /// A non-RAII class containing all the information about a bound 954 /// opaque value. OpaqueValueMapping, below, is a RAII wrapper for 955 /// this which makes individual mappings very simple; using this 956 /// class directly is useful when you have a variable number of 957 /// opaque values or don't want the RAII functionality for some 958 /// reason. 959 class OpaqueValueMappingData { 960 const OpaqueValueExpr *OpaqueValue; 961 bool BoundLValue; 962 CodeGenFunction::PeepholeProtection Protection; 963 964 OpaqueValueMappingData(const OpaqueValueExpr *ov, 965 bool boundLValue) 966 : OpaqueValue(ov), BoundLValue(boundLValue) {} 967 public: 968 OpaqueValueMappingData() : OpaqueValue(nullptr) {} 969 970 static bool shouldBindAsLValue(const Expr *expr) { 971 // gl-values should be bound as l-values for obvious reasons. 972 // Records should be bound as l-values because IR generation 973 // always keeps them in memory. Expressions of function type 974 // act exactly like l-values but are formally required to be 975 // r-values in C. 976 return expr->isGLValue() || 977 expr->getType()->isFunctionType() || 978 hasAggregateEvaluationKind(expr->getType()); 979 } 980 981 static OpaqueValueMappingData bind(CodeGenFunction &CGF, 982 const OpaqueValueExpr *ov, 983 const Expr *e) { 984 if (shouldBindAsLValue(ov)) 985 return bind(CGF, ov, CGF.EmitLValue(e)); 986 return bind(CGF, ov, CGF.EmitAnyExpr(e)); 987 } 988 989 static OpaqueValueMappingData bind(CodeGenFunction &CGF, 990 const OpaqueValueExpr *ov, 991 const LValue &lv) { 992 assert(shouldBindAsLValue(ov)); 993 CGF.OpaqueLValues.insert(std::make_pair(ov, lv)); 994 return OpaqueValueMappingData(ov, true); 995 } 996 997 static OpaqueValueMappingData bind(CodeGenFunction &CGF, 998 const OpaqueValueExpr *ov, 999 const RValue &rv) { 1000 assert(!shouldBindAsLValue(ov)); 1001 CGF.OpaqueRValues.insert(std::make_pair(ov, rv)); 1002 1003 OpaqueValueMappingData data(ov, false); 1004 1005 // Work around an extremely aggressive peephole optimization in 1006 // EmitScalarConversion which assumes that all other uses of a 1007 // value are extant. 1008 data.Protection = CGF.protectFromPeepholes(rv); 1009 1010 return data; 1011 } 1012 1013 bool isValid() const { return OpaqueValue != nullptr; } 1014 void clear() { OpaqueValue = nullptr; } 1015 1016 void unbind(CodeGenFunction &CGF) { 1017 assert(OpaqueValue && "no data to unbind!"); 1018 1019 if (BoundLValue) { 1020 CGF.OpaqueLValues.erase(OpaqueValue); 1021 } else { 1022 CGF.OpaqueRValues.erase(OpaqueValue); 1023 CGF.unprotectFromPeepholes(Protection); 1024 } 1025 } 1026 }; 1027 1028 /// An RAII object to set (and then clear) a mapping for an OpaqueValueExpr. 1029 class OpaqueValueMapping { 1030 CodeGenFunction &CGF; 1031 OpaqueValueMappingData Data; 1032 1033 public: 1034 static bool shouldBindAsLValue(const Expr *expr) { 1035 return OpaqueValueMappingData::shouldBindAsLValue(expr); 1036 } 1037 1038 /// Build the opaque value mapping for the given conditional 1039 /// operator if it's the GNU ?: extension. This is a common 1040 /// enough pattern that the convenience operator is really 1041 /// helpful. 1042 /// 1043 OpaqueValueMapping(CodeGenFunction &CGF, 1044 const AbstractConditionalOperator *op) : CGF(CGF) { 1045 if (isa<ConditionalOperator>(op)) 1046 // Leave Data empty. 1047 return; 1048 1049 const BinaryConditionalOperator *e = cast<BinaryConditionalOperator>(op); 1050 Data = OpaqueValueMappingData::bind(CGF, e->getOpaqueValue(), 1051 e->getCommon()); 1052 } 1053 1054 /// Build the opaque value mapping for an OpaqueValueExpr whose source 1055 /// expression is set to the expression the OVE represents. 1056 OpaqueValueMapping(CodeGenFunction &CGF, const OpaqueValueExpr *OV) 1057 : CGF(CGF) { 1058 if (OV) { 1059 assert(OV->getSourceExpr() && "wrong form of OpaqueValueMapping used " 1060 "for OVE with no source expression"); 1061 Data = OpaqueValueMappingData::bind(CGF, OV, OV->getSourceExpr()); 1062 } 1063 } 1064 1065 OpaqueValueMapping(CodeGenFunction &CGF, 1066 const OpaqueValueExpr *opaqueValue, 1067 LValue lvalue) 1068 : CGF(CGF), Data(OpaqueValueMappingData::bind(CGF, opaqueValue, lvalue)) { 1069 } 1070 1071 OpaqueValueMapping(CodeGenFunction &CGF, 1072 const OpaqueValueExpr *opaqueValue, 1073 RValue rvalue) 1074 : CGF(CGF), Data(OpaqueValueMappingData::bind(CGF, opaqueValue, rvalue)) { 1075 } 1076 1077 void pop() { 1078 Data.unbind(CGF); 1079 Data.clear(); 1080 } 1081 1082 ~OpaqueValueMapping() { 1083 if (Data.isValid()) Data.unbind(CGF); 1084 } 1085 }; 1086 1087 private: 1088 CGDebugInfo *DebugInfo; 1089 bool DisableDebugInfo; 1090 1091 /// DidCallStackSave - Whether llvm.stacksave has been called. Used to avoid 1092 /// calling llvm.stacksave for multiple VLAs in the same scope. 1093 bool DidCallStackSave; 1094 1095 /// IndirectBranch - The first time an indirect goto is seen we create a block 1096 /// with an indirect branch. Every time we see the address of a label taken, 1097 /// we add the label to the indirect goto. Every subsequent indirect goto is 1098 /// codegen'd as a jump to the IndirectBranch's basic block. 1099 llvm::IndirectBrInst *IndirectBranch; 1100 1101 /// LocalDeclMap - This keeps track of the LLVM allocas or globals for local C 1102 /// decls. 1103 DeclMapTy LocalDeclMap; 1104 1105 // Keep track of the cleanups for callee-destructed parameters pushed to the 1106 // cleanup stack so that they can be deactivated later. 1107 llvm::DenseMap<const ParmVarDecl *, EHScopeStack::stable_iterator> 1108 CalleeDestructedParamCleanups; 1109 1110 /// SizeArguments - If a ParmVarDecl had the pass_object_size attribute, this 1111 /// will contain a mapping from said ParmVarDecl to its implicit "object_size" 1112 /// parameter. 1113 llvm::SmallDenseMap<const ParmVarDecl *, const ImplicitParamDecl *, 2> 1114 SizeArguments; 1115 1116 /// Track escaped local variables with auto storage. Used during SEH 1117 /// outlining to produce a call to llvm.localescape. 1118 llvm::DenseMap<llvm::AllocaInst *, int> EscapedLocals; 1119 1120 /// LabelMap - This keeps track of the LLVM basic block for each C label. 1121 llvm::DenseMap<const LabelDecl*, JumpDest> LabelMap; 1122 1123 // BreakContinueStack - This keeps track of where break and continue 1124 // statements should jump to. 1125 struct BreakContinue { 1126 BreakContinue(JumpDest Break, JumpDest Continue) 1127 : BreakBlock(Break), ContinueBlock(Continue) {} 1128 1129 JumpDest BreakBlock; 1130 JumpDest ContinueBlock; 1131 }; 1132 SmallVector<BreakContinue, 8> BreakContinueStack; 1133 1134 /// Handles cancellation exit points in OpenMP-related constructs. 1135 class OpenMPCancelExitStack { 1136 /// Tracks cancellation exit point and join point for cancel-related exit 1137 /// and normal exit. 1138 struct CancelExit { 1139 CancelExit() = default; 1140 CancelExit(OpenMPDirectiveKind Kind, JumpDest ExitBlock, 1141 JumpDest ContBlock) 1142 : Kind(Kind), ExitBlock(ExitBlock), ContBlock(ContBlock) {} 1143 OpenMPDirectiveKind Kind = OMPD_unknown; 1144 /// true if the exit block has been emitted already by the special 1145 /// emitExit() call, false if the default codegen is used. 1146 bool HasBeenEmitted = false; 1147 JumpDest ExitBlock; 1148 JumpDest ContBlock; 1149 }; 1150 1151 SmallVector<CancelExit, 8> Stack; 1152 1153 public: 1154 OpenMPCancelExitStack() : Stack(1) {} 1155 ~OpenMPCancelExitStack() = default; 1156 /// Fetches the exit block for the current OpenMP construct. 1157 JumpDest getExitBlock() const { return Stack.back().ExitBlock; } 1158 /// Emits exit block with special codegen procedure specific for the related 1159 /// OpenMP construct + emits code for normal construct cleanup. 1160 void emitExit(CodeGenFunction &CGF, OpenMPDirectiveKind Kind, 1161 const llvm::function_ref<void(CodeGenFunction &)> CodeGen) { 1162 if (Stack.back().Kind == Kind && getExitBlock().isValid()) { 1163 assert(CGF.getOMPCancelDestination(Kind).isValid()); 1164 assert(CGF.HaveInsertPoint()); 1165 assert(!Stack.back().HasBeenEmitted); 1166 auto IP = CGF.Builder.saveAndClearIP(); 1167 CGF.EmitBlock(Stack.back().ExitBlock.getBlock()); 1168 CodeGen(CGF); 1169 CGF.EmitBranch(Stack.back().ContBlock.getBlock()); 1170 CGF.Builder.restoreIP(IP); 1171 Stack.back().HasBeenEmitted = true; 1172 } 1173 CodeGen(CGF); 1174 } 1175 /// Enter the cancel supporting \a Kind construct. 1176 /// \param Kind OpenMP directive that supports cancel constructs. 1177 /// \param HasCancel true, if the construct has inner cancel directive, 1178 /// false otherwise. 1179 void enter(CodeGenFunction &CGF, OpenMPDirectiveKind Kind, bool HasCancel) { 1180 Stack.push_back({Kind, 1181 HasCancel ? CGF.getJumpDestInCurrentScope("cancel.exit") 1182 : JumpDest(), 1183 HasCancel ? CGF.getJumpDestInCurrentScope("cancel.cont") 1184 : JumpDest()}); 1185 } 1186 /// Emits default exit point for the cancel construct (if the special one 1187 /// has not be used) + join point for cancel/normal exits. 1188 void exit(CodeGenFunction &CGF) { 1189 if (getExitBlock().isValid()) { 1190 assert(CGF.getOMPCancelDestination(Stack.back().Kind).isValid()); 1191 bool HaveIP = CGF.HaveInsertPoint(); 1192 if (!Stack.back().HasBeenEmitted) { 1193 if (HaveIP) 1194 CGF.EmitBranchThroughCleanup(Stack.back().ContBlock); 1195 CGF.EmitBlock(Stack.back().ExitBlock.getBlock()); 1196 CGF.EmitBranchThroughCleanup(Stack.back().ContBlock); 1197 } 1198 CGF.EmitBlock(Stack.back().ContBlock.getBlock()); 1199 if (!HaveIP) { 1200 CGF.Builder.CreateUnreachable(); 1201 CGF.Builder.ClearInsertionPoint(); 1202 } 1203 } 1204 Stack.pop_back(); 1205 } 1206 }; 1207 OpenMPCancelExitStack OMPCancelStack; 1208 1209 CodeGenPGO PGO; 1210 1211 /// Calculate branch weights appropriate for PGO data 1212 llvm::MDNode *createProfileWeights(uint64_t TrueCount, uint64_t FalseCount); 1213 llvm::MDNode *createProfileWeights(ArrayRef<uint64_t> Weights); 1214 llvm::MDNode *createProfileWeightsForLoop(const Stmt *Cond, 1215 uint64_t LoopCount); 1216 1217 public: 1218 /// Increment the profiler's counter for the given statement by \p StepV. 1219 /// If \p StepV is null, the default increment is 1. 1220 void incrementProfileCounter(const Stmt *S, llvm::Value *StepV = nullptr) { 1221 if (CGM.getCodeGenOpts().hasProfileClangInstr()) 1222 PGO.emitCounterIncrement(Builder, S, StepV); 1223 PGO.setCurrentStmt(S); 1224 } 1225 1226 /// Get the profiler's count for the given statement. 1227 uint64_t getProfileCount(const Stmt *S) { 1228 Optional<uint64_t> Count = PGO.getStmtCount(S); 1229 if (!Count.hasValue()) 1230 return 0; 1231 return *Count; 1232 } 1233 1234 /// Set the profiler's current count. 1235 void setCurrentProfileCount(uint64_t Count) { 1236 PGO.setCurrentRegionCount(Count); 1237 } 1238 1239 /// Get the profiler's current count. This is generally the count for the most 1240 /// recently incremented counter. 1241 uint64_t getCurrentProfileCount() { 1242 return PGO.getCurrentRegionCount(); 1243 } 1244 1245 private: 1246 1247 /// SwitchInsn - This is nearest current switch instruction. It is null if 1248 /// current context is not in a switch. 1249 llvm::SwitchInst *SwitchInsn; 1250 /// The branch weights of SwitchInsn when doing instrumentation based PGO. 1251 SmallVector<uint64_t, 16> *SwitchWeights; 1252 1253 /// CaseRangeBlock - This block holds if condition check for last case 1254 /// statement range in current switch instruction. 1255 llvm::BasicBlock *CaseRangeBlock; 1256 1257 /// OpaqueLValues - Keeps track of the current set of opaque value 1258 /// expressions. 1259 llvm::DenseMap<const OpaqueValueExpr *, LValue> OpaqueLValues; 1260 llvm::DenseMap<const OpaqueValueExpr *, RValue> OpaqueRValues; 1261 1262 // VLASizeMap - This keeps track of the associated size for each VLA type. 1263 // We track this by the size expression rather than the type itself because 1264 // in certain situations, like a const qualifier applied to an VLA typedef, 1265 // multiple VLA types can share the same size expression. 1266 // FIXME: Maybe this could be a stack of maps that is pushed/popped as we 1267 // enter/leave scopes. 1268 llvm::DenseMap<const Expr*, llvm::Value*> VLASizeMap; 1269 1270 /// A block containing a single 'unreachable' instruction. Created 1271 /// lazily by getUnreachableBlock(). 1272 llvm::BasicBlock *UnreachableBlock; 1273 1274 /// Counts of the number return expressions in the function. 1275 unsigned NumReturnExprs; 1276 1277 /// Count the number of simple (constant) return expressions in the function. 1278 unsigned NumSimpleReturnExprs; 1279 1280 /// The last regular (non-return) debug location (breakpoint) in the function. 1281 SourceLocation LastStopPoint; 1282 1283 public: 1284 /// A scope within which we are constructing the fields of an object which 1285 /// might use a CXXDefaultInitExpr. This stashes away a 'this' value to use 1286 /// if we need to evaluate a CXXDefaultInitExpr within the evaluation. 1287 class FieldConstructionScope { 1288 public: 1289 FieldConstructionScope(CodeGenFunction &CGF, Address This) 1290 : CGF(CGF), OldCXXDefaultInitExprThis(CGF.CXXDefaultInitExprThis) { 1291 CGF.CXXDefaultInitExprThis = This; 1292 } 1293 ~FieldConstructionScope() { 1294 CGF.CXXDefaultInitExprThis = OldCXXDefaultInitExprThis; 1295 } 1296 1297 private: 1298 CodeGenFunction &CGF; 1299 Address OldCXXDefaultInitExprThis; 1300 }; 1301 1302 /// The scope of a CXXDefaultInitExpr. Within this scope, the value of 'this' 1303 /// is overridden to be the object under construction. 1304 class CXXDefaultInitExprScope { 1305 public: 1306 CXXDefaultInitExprScope(CodeGenFunction &CGF) 1307 : CGF(CGF), OldCXXThisValue(CGF.CXXThisValue), 1308 OldCXXThisAlignment(CGF.CXXThisAlignment) { 1309 CGF.CXXThisValue = CGF.CXXDefaultInitExprThis.getPointer(); 1310 CGF.CXXThisAlignment = CGF.CXXDefaultInitExprThis.getAlignment(); 1311 } 1312 ~CXXDefaultInitExprScope() { 1313 CGF.CXXThisValue = OldCXXThisValue; 1314 CGF.CXXThisAlignment = OldCXXThisAlignment; 1315 } 1316 1317 public: 1318 CodeGenFunction &CGF; 1319 llvm::Value *OldCXXThisValue; 1320 CharUnits OldCXXThisAlignment; 1321 }; 1322 1323 /// The scope of an ArrayInitLoopExpr. Within this scope, the value of the 1324 /// current loop index is overridden. 1325 class ArrayInitLoopExprScope { 1326 public: 1327 ArrayInitLoopExprScope(CodeGenFunction &CGF, llvm::Value *Index) 1328 : CGF(CGF), OldArrayInitIndex(CGF.ArrayInitIndex) { 1329 CGF.ArrayInitIndex = Index; 1330 } 1331 ~ArrayInitLoopExprScope() { 1332 CGF.ArrayInitIndex = OldArrayInitIndex; 1333 } 1334 1335 private: 1336 CodeGenFunction &CGF; 1337 llvm::Value *OldArrayInitIndex; 1338 }; 1339 1340 class InlinedInheritingConstructorScope { 1341 public: 1342 InlinedInheritingConstructorScope(CodeGenFunction &CGF, GlobalDecl GD) 1343 : CGF(CGF), OldCurGD(CGF.CurGD), OldCurFuncDecl(CGF.CurFuncDecl), 1344 OldCurCodeDecl(CGF.CurCodeDecl), 1345 OldCXXABIThisDecl(CGF.CXXABIThisDecl), 1346 OldCXXABIThisValue(CGF.CXXABIThisValue), 1347 OldCXXThisValue(CGF.CXXThisValue), 1348 OldCXXABIThisAlignment(CGF.CXXABIThisAlignment), 1349 OldCXXThisAlignment(CGF.CXXThisAlignment), 1350 OldReturnValue(CGF.ReturnValue), OldFnRetTy(CGF.FnRetTy), 1351 OldCXXInheritedCtorInitExprArgs( 1352 std::move(CGF.CXXInheritedCtorInitExprArgs)) { 1353 CGF.CurGD = GD; 1354 CGF.CurFuncDecl = CGF.CurCodeDecl = 1355 cast<CXXConstructorDecl>(GD.getDecl()); 1356 CGF.CXXABIThisDecl = nullptr; 1357 CGF.CXXABIThisValue = nullptr; 1358 CGF.CXXThisValue = nullptr; 1359 CGF.CXXABIThisAlignment = CharUnits(); 1360 CGF.CXXThisAlignment = CharUnits(); 1361 CGF.ReturnValue = Address::invalid(); 1362 CGF.FnRetTy = QualType(); 1363 CGF.CXXInheritedCtorInitExprArgs.clear(); 1364 } 1365 ~InlinedInheritingConstructorScope() { 1366 CGF.CurGD = OldCurGD; 1367 CGF.CurFuncDecl = OldCurFuncDecl; 1368 CGF.CurCodeDecl = OldCurCodeDecl; 1369 CGF.CXXABIThisDecl = OldCXXABIThisDecl; 1370 CGF.CXXABIThisValue = OldCXXABIThisValue; 1371 CGF.CXXThisValue = OldCXXThisValue; 1372 CGF.CXXABIThisAlignment = OldCXXABIThisAlignment; 1373 CGF.CXXThisAlignment = OldCXXThisAlignment; 1374 CGF.ReturnValue = OldReturnValue; 1375 CGF.FnRetTy = OldFnRetTy; 1376 CGF.CXXInheritedCtorInitExprArgs = 1377 std::move(OldCXXInheritedCtorInitExprArgs); 1378 } 1379 1380 private: 1381 CodeGenFunction &CGF; 1382 GlobalDecl OldCurGD; 1383 const Decl *OldCurFuncDecl; 1384 const Decl *OldCurCodeDecl; 1385 ImplicitParamDecl *OldCXXABIThisDecl; 1386 llvm::Value *OldCXXABIThisValue; 1387 llvm::Value *OldCXXThisValue; 1388 CharUnits OldCXXABIThisAlignment; 1389 CharUnits OldCXXThisAlignment; 1390 Address OldReturnValue; 1391 QualType OldFnRetTy; 1392 CallArgList OldCXXInheritedCtorInitExprArgs; 1393 }; 1394 1395 private: 1396 /// CXXThisDecl - When generating code for a C++ member function, 1397 /// this will hold the implicit 'this' declaration. 1398 ImplicitParamDecl *CXXABIThisDecl; 1399 llvm::Value *CXXABIThisValue; 1400 llvm::Value *CXXThisValue; 1401 CharUnits CXXABIThisAlignment; 1402 CharUnits CXXThisAlignment; 1403 1404 /// The value of 'this' to use when evaluating CXXDefaultInitExprs within 1405 /// this expression. 1406 Address CXXDefaultInitExprThis = Address::invalid(); 1407 1408 /// The current array initialization index when evaluating an 1409 /// ArrayInitIndexExpr within an ArrayInitLoopExpr. 1410 llvm::Value *ArrayInitIndex = nullptr; 1411 1412 /// The values of function arguments to use when evaluating 1413 /// CXXInheritedCtorInitExprs within this context. 1414 CallArgList CXXInheritedCtorInitExprArgs; 1415 1416 /// CXXStructorImplicitParamDecl - When generating code for a constructor or 1417 /// destructor, this will hold the implicit argument (e.g. VTT). 1418 ImplicitParamDecl *CXXStructorImplicitParamDecl; 1419 llvm::Value *CXXStructorImplicitParamValue; 1420 1421 /// OutermostConditional - Points to the outermost active 1422 /// conditional control. This is used so that we know if a 1423 /// temporary should be destroyed conditionally. 1424 ConditionalEvaluation *OutermostConditional; 1425 1426 /// The current lexical scope. 1427 LexicalScope *CurLexicalScope; 1428 1429 /// The current source location that should be used for exception 1430 /// handling code. 1431 SourceLocation CurEHLocation; 1432 1433 /// BlockByrefInfos - For each __block variable, contains 1434 /// information about the layout of the variable. 1435 llvm::DenseMap<const ValueDecl *, BlockByrefInfo> BlockByrefInfos; 1436 1437 /// Used by -fsanitize=nullability-return to determine whether the return 1438 /// value can be checked. 1439 llvm::Value *RetValNullabilityPrecondition = nullptr; 1440 1441 /// Check if -fsanitize=nullability-return instrumentation is required for 1442 /// this function. 1443 bool requiresReturnValueNullabilityCheck() const { 1444 return RetValNullabilityPrecondition; 1445 } 1446 1447 /// Used to store precise source locations for return statements by the 1448 /// runtime return value checks. 1449 Address ReturnLocation = Address::invalid(); 1450 1451 /// Check if the return value of this function requires sanitization. 1452 bool requiresReturnValueCheck() const { 1453 return requiresReturnValueNullabilityCheck() || 1454 (SanOpts.has(SanitizerKind::ReturnsNonnullAttribute) && 1455 CurCodeDecl && CurCodeDecl->getAttr<ReturnsNonNullAttr>()); 1456 } 1457 1458 llvm::BasicBlock *TerminateLandingPad; 1459 llvm::BasicBlock *TerminateHandler; 1460 llvm::BasicBlock *TrapBB; 1461 1462 /// Terminate funclets keyed by parent funclet pad. 1463 llvm::MapVector<llvm::Value *, llvm::BasicBlock *> TerminateFunclets; 1464 1465 /// True if we need emit the life-time markers. 1466 const bool ShouldEmitLifetimeMarkers; 1467 1468 /// Add OpenCL kernel arg metadata and the kernel attribute metadata to 1469 /// the function metadata. 1470 void EmitOpenCLKernelMetadata(const FunctionDecl *FD, 1471 llvm::Function *Fn); 1472 1473 public: 1474 CodeGenFunction(CodeGenModule &cgm, bool suppressNewContext=false); 1475 ~CodeGenFunction(); 1476 1477 CodeGenTypes &getTypes() const { return CGM.getTypes(); } 1478 ASTContext &getContext() const { return CGM.getContext(); } 1479 CGDebugInfo *getDebugInfo() { 1480 if (DisableDebugInfo) 1481 return nullptr; 1482 return DebugInfo; 1483 } 1484 void disableDebugInfo() { DisableDebugInfo = true; } 1485 void enableDebugInfo() { DisableDebugInfo = false; } 1486 1487 bool shouldUseFusedARCCalls() { 1488 return CGM.getCodeGenOpts().OptimizationLevel == 0; 1489 } 1490 1491 const LangOptions &getLangOpts() const { return CGM.getLangOpts(); } 1492 1493 /// Returns a pointer to the function's exception object and selector slot, 1494 /// which is assigned in every landing pad. 1495 Address getExceptionSlot(); 1496 Address getEHSelectorSlot(); 1497 1498 /// Returns the contents of the function's exception object and selector 1499 /// slots. 1500 llvm::Value *getExceptionFromSlot(); 1501 llvm::Value *getSelectorFromSlot(); 1502 1503 Address getNormalCleanupDestSlot(); 1504 1505 llvm::BasicBlock *getUnreachableBlock() { 1506 if (!UnreachableBlock) { 1507 UnreachableBlock = createBasicBlock("unreachable"); 1508 new llvm::UnreachableInst(getLLVMContext(), UnreachableBlock); 1509 } 1510 return UnreachableBlock; 1511 } 1512 1513 llvm::BasicBlock *getInvokeDest() { 1514 if (!EHStack.requiresLandingPad()) return nullptr; 1515 return getInvokeDestImpl(); 1516 } 1517 1518 bool currentFunctionUsesSEHTry() const { return CurSEHParent != nullptr; } 1519 1520 const TargetInfo &getTarget() const { return Target; } 1521 llvm::LLVMContext &getLLVMContext() { return CGM.getLLVMContext(); } 1522 const TargetCodeGenInfo &getTargetHooks() const { 1523 return CGM.getTargetCodeGenInfo(); 1524 } 1525 1526 //===--------------------------------------------------------------------===// 1527 // Cleanups 1528 //===--------------------------------------------------------------------===// 1529 1530 typedef void Destroyer(CodeGenFunction &CGF, Address addr, QualType ty); 1531 1532 void pushIrregularPartialArrayCleanup(llvm::Value *arrayBegin, 1533 Address arrayEndPointer, 1534 QualType elementType, 1535 CharUnits elementAlignment, 1536 Destroyer *destroyer); 1537 void pushRegularPartialArrayCleanup(llvm::Value *arrayBegin, 1538 llvm::Value *arrayEnd, 1539 QualType elementType, 1540 CharUnits elementAlignment, 1541 Destroyer *destroyer); 1542 1543 void pushDestroy(QualType::DestructionKind dtorKind, 1544 Address addr, QualType type); 1545 void pushEHDestroy(QualType::DestructionKind dtorKind, 1546 Address addr, QualType type); 1547 void pushDestroy(CleanupKind kind, Address addr, QualType type, 1548 Destroyer *destroyer, bool useEHCleanupForArray); 1549 void pushLifetimeExtendedDestroy(CleanupKind kind, Address addr, 1550 QualType type, Destroyer *destroyer, 1551 bool useEHCleanupForArray); 1552 void pushCallObjectDeleteCleanup(const FunctionDecl *OperatorDelete, 1553 llvm::Value *CompletePtr, 1554 QualType ElementType); 1555 void pushStackRestore(CleanupKind kind, Address SPMem); 1556 void emitDestroy(Address addr, QualType type, Destroyer *destroyer, 1557 bool useEHCleanupForArray); 1558 llvm::Function *generateDestroyHelper(Address addr, QualType type, 1559 Destroyer *destroyer, 1560 bool useEHCleanupForArray, 1561 const VarDecl *VD); 1562 void emitArrayDestroy(llvm::Value *begin, llvm::Value *end, 1563 QualType elementType, CharUnits elementAlign, 1564 Destroyer *destroyer, 1565 bool checkZeroLength, bool useEHCleanup); 1566 1567 Destroyer *getDestroyer(QualType::DestructionKind destructionKind); 1568 1569 /// Determines whether an EH cleanup is required to destroy a type 1570 /// with the given destruction kind. 1571 bool needsEHCleanup(QualType::DestructionKind kind) { 1572 switch (kind) { 1573 case QualType::DK_none: 1574 return false; 1575 case QualType::DK_cxx_destructor: 1576 case QualType::DK_objc_weak_lifetime: 1577 case QualType::DK_nontrivial_c_struct: 1578 return getLangOpts().Exceptions; 1579 case QualType::DK_objc_strong_lifetime: 1580 return getLangOpts().Exceptions && 1581 CGM.getCodeGenOpts().ObjCAutoRefCountExceptions; 1582 } 1583 llvm_unreachable("bad destruction kind"); 1584 } 1585 1586 CleanupKind getCleanupKind(QualType::DestructionKind kind) { 1587 return (needsEHCleanup(kind) ? NormalAndEHCleanup : NormalCleanup); 1588 } 1589 1590 //===--------------------------------------------------------------------===// 1591 // Objective-C 1592 //===--------------------------------------------------------------------===// 1593 1594 void GenerateObjCMethod(const ObjCMethodDecl *OMD); 1595 1596 void StartObjCMethod(const ObjCMethodDecl *MD, const ObjCContainerDecl *CD); 1597 1598 /// GenerateObjCGetter - Synthesize an Objective-C property getter function. 1599 void GenerateObjCGetter(ObjCImplementationDecl *IMP, 1600 const ObjCPropertyImplDecl *PID); 1601 void generateObjCGetterBody(const ObjCImplementationDecl *classImpl, 1602 const ObjCPropertyImplDecl *propImpl, 1603 const ObjCMethodDecl *GetterMothodDecl, 1604 llvm::Constant *AtomicHelperFn); 1605 1606 void GenerateObjCCtorDtorMethod(ObjCImplementationDecl *IMP, 1607 ObjCMethodDecl *MD, bool ctor); 1608 1609 /// GenerateObjCSetter - Synthesize an Objective-C property setter function 1610 /// for the given property. 1611 void GenerateObjCSetter(ObjCImplementationDecl *IMP, 1612 const ObjCPropertyImplDecl *PID); 1613 void generateObjCSetterBody(const ObjCImplementationDecl *classImpl, 1614 const ObjCPropertyImplDecl *propImpl, 1615 llvm::Constant *AtomicHelperFn); 1616 1617 //===--------------------------------------------------------------------===// 1618 // Block Bits 1619 //===--------------------------------------------------------------------===// 1620 1621 /// Emit block literal. 1622 /// \return an LLVM value which is a pointer to a struct which contains 1623 /// information about the block, including the block invoke function, the 1624 /// captured variables, etc. 1625 llvm::Value *EmitBlockLiteral(const BlockExpr *); 1626 static void destroyBlockInfos(CGBlockInfo *info); 1627 1628 llvm::Function *GenerateBlockFunction(GlobalDecl GD, 1629 const CGBlockInfo &Info, 1630 const DeclMapTy &ldm, 1631 bool IsLambdaConversionToBlock, 1632 bool BuildGlobalBlock); 1633 1634 llvm::Constant *GenerateCopyHelperFunction(const CGBlockInfo &blockInfo); 1635 llvm::Constant *GenerateDestroyHelperFunction(const CGBlockInfo &blockInfo); 1636 llvm::Constant *GenerateObjCAtomicSetterCopyHelperFunction( 1637 const ObjCPropertyImplDecl *PID); 1638 llvm::Constant *GenerateObjCAtomicGetterCopyHelperFunction( 1639 const ObjCPropertyImplDecl *PID); 1640 llvm::Value *EmitBlockCopyAndAutorelease(llvm::Value *Block, QualType Ty); 1641 1642 void BuildBlockRelease(llvm::Value *DeclPtr, BlockFieldFlags flags); 1643 1644 class AutoVarEmission; 1645 1646 void emitByrefStructureInit(const AutoVarEmission &emission); 1647 void enterByrefCleanup(const AutoVarEmission &emission); 1648 1649 void setBlockContextParameter(const ImplicitParamDecl *D, unsigned argNum, 1650 llvm::Value *ptr); 1651 1652 Address LoadBlockStruct(); 1653 Address GetAddrOfBlockDecl(const VarDecl *var, bool ByRef); 1654 1655 /// BuildBlockByrefAddress - Computes the location of the 1656 /// data in a variable which is declared as __block. 1657 Address emitBlockByrefAddress(Address baseAddr, const VarDecl *V, 1658 bool followForward = true); 1659 Address emitBlockByrefAddress(Address baseAddr, 1660 const BlockByrefInfo &info, 1661 bool followForward, 1662 const llvm::Twine &name); 1663 1664 const BlockByrefInfo &getBlockByrefInfo(const VarDecl *var); 1665 1666 QualType BuildFunctionArgList(GlobalDecl GD, FunctionArgList &Args); 1667 1668 void GenerateCode(GlobalDecl GD, llvm::Function *Fn, 1669 const CGFunctionInfo &FnInfo); 1670 /// Emit code for the start of a function. 1671 /// \param Loc The location to be associated with the function. 1672 /// \param StartLoc The location of the function body. 1673 void StartFunction(GlobalDecl GD, 1674 QualType RetTy, 1675 llvm::Function *Fn, 1676 const CGFunctionInfo &FnInfo, 1677 const FunctionArgList &Args, 1678 SourceLocation Loc = SourceLocation(), 1679 SourceLocation StartLoc = SourceLocation()); 1680 1681 static bool IsConstructorDelegationValid(const CXXConstructorDecl *Ctor); 1682 1683 void EmitConstructorBody(FunctionArgList &Args); 1684 void EmitDestructorBody(FunctionArgList &Args); 1685 void emitImplicitAssignmentOperatorBody(FunctionArgList &Args); 1686 void EmitFunctionBody(FunctionArgList &Args, const Stmt *Body); 1687 void EmitBlockWithFallThrough(llvm::BasicBlock *BB, const Stmt *S); 1688 1689 void EmitForwardingCallToLambda(const CXXMethodDecl *LambdaCallOperator, 1690 CallArgList &CallArgs); 1691 void EmitLambdaBlockInvokeBody(); 1692 void EmitLambdaDelegatingInvokeBody(const CXXMethodDecl *MD); 1693 void EmitLambdaStaticInvokeBody(const CXXMethodDecl *MD); 1694 void EmitAsanPrologueOrEpilogue(bool Prologue); 1695 1696 /// Emit the unified return block, trying to avoid its emission when 1697 /// possible. 1698 /// \return The debug location of the user written return statement if the 1699 /// return block is is avoided. 1700 llvm::DebugLoc EmitReturnBlock(); 1701 1702 /// FinishFunction - Complete IR generation of the current function. It is 1703 /// legal to call this function even if there is no current insertion point. 1704 void FinishFunction(SourceLocation EndLoc=SourceLocation()); 1705 1706 void StartThunk(llvm::Function *Fn, GlobalDecl GD, 1707 const CGFunctionInfo &FnInfo, bool IsUnprototyped); 1708 1709 void EmitCallAndReturnForThunk(llvm::Constant *Callee, const ThunkInfo *Thunk, 1710 bool IsUnprototyped); 1711 1712 void FinishThunk(); 1713 1714 /// Emit a musttail call for a thunk with a potentially adjusted this pointer. 1715 void EmitMustTailThunk(const CXXMethodDecl *MD, llvm::Value *AdjustedThisPtr, 1716 llvm::Value *Callee); 1717 1718 /// Generate a thunk for the given method. 1719 void generateThunk(llvm::Function *Fn, const CGFunctionInfo &FnInfo, 1720 GlobalDecl GD, const ThunkInfo &Thunk, 1721 bool IsUnprototyped); 1722 1723 llvm::Function *GenerateVarArgsThunk(llvm::Function *Fn, 1724 const CGFunctionInfo &FnInfo, 1725 GlobalDecl GD, const ThunkInfo &Thunk); 1726 1727 void EmitCtorPrologue(const CXXConstructorDecl *CD, CXXCtorType Type, 1728 FunctionArgList &Args); 1729 1730 void EmitInitializerForField(FieldDecl *Field, LValue LHS, Expr *Init); 1731 1732 /// Struct with all information about dynamic [sub]class needed to set vptr. 1733 struct VPtr { 1734 BaseSubobject Base; 1735 const CXXRecordDecl *NearestVBase; 1736 CharUnits OffsetFromNearestVBase; 1737 const CXXRecordDecl *VTableClass; 1738 }; 1739 1740 /// Initialize the vtable pointer of the given subobject. 1741 void InitializeVTablePointer(const VPtr &vptr); 1742 1743 typedef llvm::SmallVector<VPtr, 4> VPtrsVector; 1744 1745 typedef llvm::SmallPtrSet<const CXXRecordDecl *, 4> VisitedVirtualBasesSetTy; 1746 VPtrsVector getVTablePointers(const CXXRecordDecl *VTableClass); 1747 1748 void getVTablePointers(BaseSubobject Base, const CXXRecordDecl *NearestVBase, 1749 CharUnits OffsetFromNearestVBase, 1750 bool BaseIsNonVirtualPrimaryBase, 1751 const CXXRecordDecl *VTableClass, 1752 VisitedVirtualBasesSetTy &VBases, VPtrsVector &vptrs); 1753 1754 void InitializeVTablePointers(const CXXRecordDecl *ClassDecl); 1755 1756 /// GetVTablePtr - Return the Value of the vtable pointer member pointed 1757 /// to by This. 1758 llvm::Value *GetVTablePtr(Address This, llvm::Type *VTableTy, 1759 const CXXRecordDecl *VTableClass); 1760 1761 enum CFITypeCheckKind { 1762 CFITCK_VCall, 1763 CFITCK_NVCall, 1764 CFITCK_DerivedCast, 1765 CFITCK_UnrelatedCast, 1766 CFITCK_ICall, 1767 }; 1768 1769 /// Derived is the presumed address of an object of type T after a 1770 /// cast. If T is a polymorphic class type, emit a check that the virtual 1771 /// table for Derived belongs to a class derived from T. 1772 void EmitVTablePtrCheckForCast(QualType T, llvm::Value *Derived, 1773 bool MayBeNull, CFITypeCheckKind TCK, 1774 SourceLocation Loc); 1775 1776 /// EmitVTablePtrCheckForCall - Virtual method MD is being called via VTable. 1777 /// If vptr CFI is enabled, emit a check that VTable is valid. 1778 void EmitVTablePtrCheckForCall(const CXXRecordDecl *RD, llvm::Value *VTable, 1779 CFITypeCheckKind TCK, SourceLocation Loc); 1780 1781 /// EmitVTablePtrCheck - Emit a check that VTable is a valid virtual table for 1782 /// RD using llvm.type.test. 1783 void EmitVTablePtrCheck(const CXXRecordDecl *RD, llvm::Value *VTable, 1784 CFITypeCheckKind TCK, SourceLocation Loc); 1785 1786 /// If whole-program virtual table optimization is enabled, emit an assumption 1787 /// that VTable is a member of RD's type identifier. Or, if vptr CFI is 1788 /// enabled, emit a check that VTable is a member of RD's type identifier. 1789 void EmitTypeMetadataCodeForVCall(const CXXRecordDecl *RD, 1790 llvm::Value *VTable, SourceLocation Loc); 1791 1792 /// Returns whether we should perform a type checked load when loading a 1793 /// virtual function for virtual calls to members of RD. This is generally 1794 /// true when both vcall CFI and whole-program-vtables are enabled. 1795 bool ShouldEmitVTableTypeCheckedLoad(const CXXRecordDecl *RD); 1796 1797 /// Emit a type checked load from the given vtable. 1798 llvm::Value *EmitVTableTypeCheckedLoad(const CXXRecordDecl *RD, llvm::Value *VTable, 1799 uint64_t VTableByteOffset); 1800 1801 /// EnterDtorCleanups - Enter the cleanups necessary to complete the 1802 /// given phase of destruction for a destructor. The end result 1803 /// should call destructors on members and base classes in reverse 1804 /// order of their construction. 1805 void EnterDtorCleanups(const CXXDestructorDecl *Dtor, CXXDtorType Type); 1806 1807 /// ShouldInstrumentFunction - Return true if the current function should be 1808 /// instrumented with __cyg_profile_func_* calls 1809 bool ShouldInstrumentFunction(); 1810 1811 /// ShouldXRayInstrument - Return true if the current function should be 1812 /// instrumented with XRay nop sleds. 1813 bool ShouldXRayInstrumentFunction() const; 1814 1815 /// AlwaysEmitXRayCustomEvents - Return true if we must unconditionally emit 1816 /// XRay custom event handling calls. 1817 bool AlwaysEmitXRayCustomEvents() const; 1818 1819 /// AlwaysEmitXRayTypedEvents - Return true if clang must unconditionally emit 1820 /// XRay typed event handling calls. 1821 bool AlwaysEmitXRayTypedEvents() const; 1822 1823 /// Encode an address into a form suitable for use in a function prologue. 1824 llvm::Constant *EncodeAddrForUseInPrologue(llvm::Function *F, 1825 llvm::Constant *Addr); 1826 1827 /// Decode an address used in a function prologue, encoded by \c 1828 /// EncodeAddrForUseInPrologue. 1829 llvm::Value *DecodeAddrUsedInPrologue(llvm::Value *F, 1830 llvm::Value *EncodedAddr); 1831 1832 /// EmitFunctionProlog - Emit the target specific LLVM code to load the 1833 /// arguments for the given function. This is also responsible for naming the 1834 /// LLVM function arguments. 1835 void EmitFunctionProlog(const CGFunctionInfo &FI, 1836 llvm::Function *Fn, 1837 const FunctionArgList &Args); 1838 1839 /// EmitFunctionEpilog - Emit the target specific LLVM code to return the 1840 /// given temporary. 1841 void EmitFunctionEpilog(const CGFunctionInfo &FI, bool EmitRetDbgLoc, 1842 SourceLocation EndLoc); 1843 1844 /// Emit a test that checks if the return value \p RV is nonnull. 1845 void EmitReturnValueCheck(llvm::Value *RV); 1846 1847 /// EmitStartEHSpec - Emit the start of the exception spec. 1848 void EmitStartEHSpec(const Decl *D); 1849 1850 /// EmitEndEHSpec - Emit the end of the exception spec. 1851 void EmitEndEHSpec(const Decl *D); 1852 1853 /// getTerminateLandingPad - Return a landing pad that just calls terminate. 1854 llvm::BasicBlock *getTerminateLandingPad(); 1855 1856 /// getTerminateLandingPad - Return a cleanup funclet that just calls 1857 /// terminate. 1858 llvm::BasicBlock *getTerminateFunclet(); 1859 1860 /// getTerminateHandler - Return a handler (not a landing pad, just 1861 /// a catch handler) that just calls terminate. This is used when 1862 /// a terminate scope encloses a try. 1863 llvm::BasicBlock *getTerminateHandler(); 1864 1865 llvm::Type *ConvertTypeForMem(QualType T); 1866 llvm::Type *ConvertType(QualType T); 1867 llvm::Type *ConvertType(const TypeDecl *T) { 1868 return ConvertType(getContext().getTypeDeclType(T)); 1869 } 1870 1871 /// LoadObjCSelf - Load the value of self. This function is only valid while 1872 /// generating code for an Objective-C method. 1873 llvm::Value *LoadObjCSelf(); 1874 1875 /// TypeOfSelfObject - Return type of object that this self represents. 1876 QualType TypeOfSelfObject(); 1877 1878 /// getEvaluationKind - Return the TypeEvaluationKind of QualType \c T. 1879 static TypeEvaluationKind getEvaluationKind(QualType T); 1880 1881 static bool hasScalarEvaluationKind(QualType T) { 1882 return getEvaluationKind(T) == TEK_Scalar; 1883 } 1884 1885 static bool hasAggregateEvaluationKind(QualType T) { 1886 return getEvaluationKind(T) == TEK_Aggregate; 1887 } 1888 1889 /// createBasicBlock - Create an LLVM basic block. 1890 llvm::BasicBlock *createBasicBlock(const Twine &name = "", 1891 llvm::Function *parent = nullptr, 1892 llvm::BasicBlock *before = nullptr) { 1893 return llvm::BasicBlock::Create(getLLVMContext(), name, parent, before); 1894 } 1895 1896 /// getBasicBlockForLabel - Return the LLVM basicblock that the specified 1897 /// label maps to. 1898 JumpDest getJumpDestForLabel(const LabelDecl *S); 1899 1900 /// SimplifyForwardingBlocks - If the given basic block is only a branch to 1901 /// another basic block, simplify it. This assumes that no other code could 1902 /// potentially reference the basic block. 1903 void SimplifyForwardingBlocks(llvm::BasicBlock *BB); 1904 1905 /// EmitBlock - Emit the given block \arg BB and set it as the insert point, 1906 /// adding a fall-through branch from the current insert block if 1907 /// necessary. It is legal to call this function even if there is no current 1908 /// insertion point. 1909 /// 1910 /// IsFinished - If true, indicates that the caller has finished emitting 1911 /// branches to the given block and does not expect to emit code into it. This 1912 /// means the block can be ignored if it is unreachable. 1913 void EmitBlock(llvm::BasicBlock *BB, bool IsFinished=false); 1914 1915 /// EmitBlockAfterUses - Emit the given block somewhere hopefully 1916 /// near its uses, and leave the insertion point in it. 1917 void EmitBlockAfterUses(llvm::BasicBlock *BB); 1918 1919 /// EmitBranch - Emit a branch to the specified basic block from the current 1920 /// insert block, taking care to avoid creation of branches from dummy 1921 /// blocks. It is legal to call this function even if there is no current 1922 /// insertion point. 1923 /// 1924 /// This function clears the current insertion point. The caller should follow 1925 /// calls to this function with calls to Emit*Block prior to generation new 1926 /// code. 1927 void EmitBranch(llvm::BasicBlock *Block); 1928 1929 /// HaveInsertPoint - True if an insertion point is defined. If not, this 1930 /// indicates that the current code being emitted is unreachable. 1931 bool HaveInsertPoint() const { 1932 return Builder.GetInsertBlock() != nullptr; 1933 } 1934 1935 /// EnsureInsertPoint - Ensure that an insertion point is defined so that 1936 /// emitted IR has a place to go. Note that by definition, if this function 1937 /// creates a block then that block is unreachable; callers may do better to 1938 /// detect when no insertion point is defined and simply skip IR generation. 1939 void EnsureInsertPoint() { 1940 if (!HaveInsertPoint()) 1941 EmitBlock(createBasicBlock()); 1942 } 1943 1944 /// ErrorUnsupported - Print out an error that codegen doesn't support the 1945 /// specified stmt yet. 1946 void ErrorUnsupported(const Stmt *S, const char *Type); 1947 1948 //===--------------------------------------------------------------------===// 1949 // Helpers 1950 //===--------------------------------------------------------------------===// 1951 1952 LValue MakeAddrLValue(Address Addr, QualType T, 1953 AlignmentSource Source = AlignmentSource::Type) { 1954 return LValue::MakeAddr(Addr, T, getContext(), LValueBaseInfo(Source), 1955 CGM.getTBAAAccessInfo(T)); 1956 } 1957 1958 LValue MakeAddrLValue(Address Addr, QualType T, LValueBaseInfo BaseInfo, 1959 TBAAAccessInfo TBAAInfo) { 1960 return LValue::MakeAddr(Addr, T, getContext(), BaseInfo, TBAAInfo); 1961 } 1962 1963 LValue MakeAddrLValue(llvm::Value *V, QualType T, CharUnits Alignment, 1964 AlignmentSource Source = AlignmentSource::Type) { 1965 return LValue::MakeAddr(Address(V, Alignment), T, getContext(), 1966 LValueBaseInfo(Source), CGM.getTBAAAccessInfo(T)); 1967 } 1968 1969 LValue MakeAddrLValue(llvm::Value *V, QualType T, CharUnits Alignment, 1970 LValueBaseInfo BaseInfo, TBAAAccessInfo TBAAInfo) { 1971 return LValue::MakeAddr(Address(V, Alignment), T, getContext(), 1972 BaseInfo, TBAAInfo); 1973 } 1974 1975 LValue MakeNaturalAlignPointeeAddrLValue(llvm::Value *V, QualType T); 1976 LValue MakeNaturalAlignAddrLValue(llvm::Value *V, QualType T); 1977 CharUnits getNaturalTypeAlignment(QualType T, 1978 LValueBaseInfo *BaseInfo = nullptr, 1979 TBAAAccessInfo *TBAAInfo = nullptr, 1980 bool forPointeeType = false); 1981 CharUnits getNaturalPointeeTypeAlignment(QualType T, 1982 LValueBaseInfo *BaseInfo = nullptr, 1983 TBAAAccessInfo *TBAAInfo = nullptr); 1984 1985 Address EmitLoadOfReference(LValue RefLVal, 1986 LValueBaseInfo *PointeeBaseInfo = nullptr, 1987 TBAAAccessInfo *PointeeTBAAInfo = nullptr); 1988 LValue EmitLoadOfReferenceLValue(LValue RefLVal); 1989 LValue EmitLoadOfReferenceLValue(Address RefAddr, QualType RefTy, 1990 AlignmentSource Source = 1991 AlignmentSource::Type) { 1992 LValue RefLVal = MakeAddrLValue(RefAddr, RefTy, LValueBaseInfo(Source), 1993 CGM.getTBAAAccessInfo(RefTy)); 1994 return EmitLoadOfReferenceLValue(RefLVal); 1995 } 1996 1997 Address EmitLoadOfPointer(Address Ptr, const PointerType *PtrTy, 1998 LValueBaseInfo *BaseInfo = nullptr, 1999 TBAAAccessInfo *TBAAInfo = nullptr); 2000 LValue EmitLoadOfPointerLValue(Address Ptr, const PointerType *PtrTy); 2001 2002 /// CreateTempAlloca - This creates an alloca and inserts it into the entry 2003 /// block if \p ArraySize is nullptr, otherwise inserts it at the current 2004 /// insertion point of the builder. The caller is responsible for setting an 2005 /// appropriate alignment on 2006 /// the alloca. 2007 /// 2008 /// \p ArraySize is the number of array elements to be allocated if it 2009 /// is not nullptr. 2010 /// 2011 /// LangAS::Default is the address space of pointers to local variables and 2012 /// temporaries, as exposed in the source language. In certain 2013 /// configurations, this is not the same as the alloca address space, and a 2014 /// cast is needed to lift the pointer from the alloca AS into 2015 /// LangAS::Default. This can happen when the target uses a restricted 2016 /// address space for the stack but the source language requires 2017 /// LangAS::Default to be a generic address space. The latter condition is 2018 /// common for most programming languages; OpenCL is an exception in that 2019 /// LangAS::Default is the private address space, which naturally maps 2020 /// to the stack. 2021 /// 2022 /// Because the address of a temporary is often exposed to the program in 2023 /// various ways, this function will perform the cast by default. The cast 2024 /// may be avoided by passing false as \p CastToDefaultAddrSpace; this is 2025 /// more efficient if the caller knows that the address will not be exposed. 2026 /// The original alloca instruction is returned through \p Alloca if it is 2027 /// not nullptr. 2028 llvm::AllocaInst *CreateTempAlloca(llvm::Type *Ty, const Twine &Name = "tmp", 2029 llvm::Value *ArraySize = nullptr); 2030 Address CreateTempAlloca(llvm::Type *Ty, CharUnits align, 2031 const Twine &Name = "tmp", 2032 llvm::Value *ArraySize = nullptr, 2033 Address *Alloca = nullptr, 2034 bool CastToDefaultAddrSpace = true); 2035 2036 /// CreateDefaultAlignedTempAlloca - This creates an alloca with the 2037 /// default ABI alignment of the given LLVM type. 2038 /// 2039 /// IMPORTANT NOTE: This is *not* generally the right alignment for 2040 /// any given AST type that happens to have been lowered to the 2041 /// given IR type. This should only ever be used for function-local, 2042 /// IR-driven manipulations like saving and restoring a value. Do 2043 /// not hand this address off to arbitrary IRGen routines, and especially 2044 /// do not pass it as an argument to a function that might expect a 2045 /// properly ABI-aligned value. 2046 Address CreateDefaultAlignTempAlloca(llvm::Type *Ty, 2047 const Twine &Name = "tmp"); 2048 2049 /// InitTempAlloca - Provide an initial value for the given alloca which 2050 /// will be observable at all locations in the function. 2051 /// 2052 /// The address should be something that was returned from one of 2053 /// the CreateTempAlloca or CreateMemTemp routines, and the 2054 /// initializer must be valid in the entry block (i.e. it must 2055 /// either be a constant or an argument value). 2056 void InitTempAlloca(Address Alloca, llvm::Value *Value); 2057 2058 /// CreateIRTemp - Create a temporary IR object of the given type, with 2059 /// appropriate alignment. This routine should only be used when an temporary 2060 /// value needs to be stored into an alloca (for example, to avoid explicit 2061 /// PHI construction), but the type is the IR type, not the type appropriate 2062 /// for storing in memory. 2063 /// 2064 /// That is, this is exactly equivalent to CreateMemTemp, but calling 2065 /// ConvertType instead of ConvertTypeForMem. 2066 Address CreateIRTemp(QualType T, const Twine &Name = "tmp"); 2067 2068 /// CreateMemTemp - Create a temporary memory object of the given type, with 2069 /// appropriate alignment. Cast it to the default address space if 2070 /// \p CastToDefaultAddrSpace is true. Returns the original alloca 2071 /// instruction by \p Alloca if it is not nullptr. 2072 Address CreateMemTemp(QualType T, const Twine &Name = "tmp", 2073 Address *Alloca = nullptr, 2074 bool CastToDefaultAddrSpace = true); 2075 Address CreateMemTemp(QualType T, CharUnits Align, const Twine &Name = "tmp", 2076 Address *Alloca = nullptr, 2077 bool CastToDefaultAddrSpace = true); 2078 2079 /// CreateAggTemp - Create a temporary memory object for the given 2080 /// aggregate type. 2081 AggValueSlot CreateAggTemp(QualType T, const Twine &Name = "tmp") { 2082 return AggValueSlot::forAddr(CreateMemTemp(T, Name), 2083 T.getQualifiers(), 2084 AggValueSlot::IsNotDestructed, 2085 AggValueSlot::DoesNotNeedGCBarriers, 2086 AggValueSlot::IsNotAliased, 2087 AggValueSlot::DoesNotOverlap); 2088 } 2089 2090 /// Emit a cast to void* in the appropriate address space. 2091 llvm::Value *EmitCastToVoidPtr(llvm::Value *value); 2092 2093 /// EvaluateExprAsBool - Perform the usual unary conversions on the specified 2094 /// expression and compare the result against zero, returning an Int1Ty value. 2095 llvm::Value *EvaluateExprAsBool(const Expr *E); 2096 2097 /// EmitIgnoredExpr - Emit an expression in a context which ignores the result. 2098 void EmitIgnoredExpr(const Expr *E); 2099 2100 /// EmitAnyExpr - Emit code to compute the specified expression which can have 2101 /// any type. The result is returned as an RValue struct. If this is an 2102 /// aggregate expression, the aggloc/agglocvolatile arguments indicate where 2103 /// the result should be returned. 2104 /// 2105 /// \param ignoreResult True if the resulting value isn't used. 2106 RValue EmitAnyExpr(const Expr *E, 2107 AggValueSlot aggSlot = AggValueSlot::ignored(), 2108 bool ignoreResult = false); 2109 2110 // EmitVAListRef - Emit a "reference" to a va_list; this is either the address 2111 // or the value of the expression, depending on how va_list is defined. 2112 Address EmitVAListRef(const Expr *E); 2113 2114 /// Emit a "reference" to a __builtin_ms_va_list; this is 2115 /// always the value of the expression, because a __builtin_ms_va_list is a 2116 /// pointer to a char. 2117 Address EmitMSVAListRef(const Expr *E); 2118 2119 /// EmitAnyExprToTemp - Similarly to EmitAnyExpr(), however, the result will 2120 /// always be accessible even if no aggregate location is provided. 2121 RValue EmitAnyExprToTemp(const Expr *E); 2122 2123 /// EmitAnyExprToMem - Emits the code necessary to evaluate an 2124 /// arbitrary expression into the given memory location. 2125 void EmitAnyExprToMem(const Expr *E, Address Location, 2126 Qualifiers Quals, bool IsInitializer); 2127 2128 void EmitAnyExprToExn(const Expr *E, Address Addr); 2129 2130 /// EmitExprAsInit - Emits the code necessary to initialize a 2131 /// location in memory with the given initializer. 2132 void EmitExprAsInit(const Expr *init, const ValueDecl *D, LValue lvalue, 2133 bool capturedByInit); 2134 2135 /// hasVolatileMember - returns true if aggregate type has a volatile 2136 /// member. 2137 bool hasVolatileMember(QualType T) { 2138 if (const RecordType *RT = T->getAs<RecordType>()) { 2139 const RecordDecl *RD = cast<RecordDecl>(RT->getDecl()); 2140 return RD->hasVolatileMember(); 2141 } 2142 return false; 2143 } 2144 2145 /// Determine whether a return value slot may overlap some other object. 2146 AggValueSlot::Overlap_t overlapForReturnValue() { 2147 // FIXME: Assuming no overlap here breaks guaranteed copy elision for base 2148 // class subobjects. These cases may need to be revisited depending on the 2149 // resolution of the relevant core issue. 2150 return AggValueSlot::DoesNotOverlap; 2151 } 2152 2153 /// Determine whether a field initialization may overlap some other object. 2154 AggValueSlot::Overlap_t overlapForFieldInit(const FieldDecl *FD) { 2155 // FIXME: These cases can result in overlap as a result of P0840R0's 2156 // [[no_unique_address]] attribute. We can still infer NoOverlap in the 2157 // presence of that attribute if the field is within the nvsize of its 2158 // containing class, because non-virtual subobjects are initialized in 2159 // address order. 2160 return AggValueSlot::DoesNotOverlap; 2161 } 2162 2163 /// Determine whether a base class initialization may overlap some other 2164 /// object. 2165 AggValueSlot::Overlap_t overlapForBaseInit(const CXXRecordDecl *RD, 2166 const CXXRecordDecl *BaseRD, 2167 bool IsVirtual); 2168 2169 /// Emit an aggregate assignment. 2170 void EmitAggregateAssign(LValue Dest, LValue Src, QualType EltTy) { 2171 bool IsVolatile = hasVolatileMember(EltTy); 2172 EmitAggregateCopy(Dest, Src, EltTy, AggValueSlot::MayOverlap, IsVolatile); 2173 } 2174 2175 void EmitAggregateCopyCtor(LValue Dest, LValue Src, 2176 AggValueSlot::Overlap_t MayOverlap) { 2177 EmitAggregateCopy(Dest, Src, Src.getType(), MayOverlap); 2178 } 2179 2180 /// EmitAggregateCopy - Emit an aggregate copy. 2181 /// 2182 /// \param isVolatile \c true iff either the source or the destination is 2183 /// volatile. 2184 /// \param MayOverlap Whether the tail padding of the destination might be 2185 /// occupied by some other object. More efficient code can often be 2186 /// generated if not. 2187 void EmitAggregateCopy(LValue Dest, LValue Src, QualType EltTy, 2188 AggValueSlot::Overlap_t MayOverlap, 2189 bool isVolatile = false); 2190 2191 /// GetAddrOfLocalVar - Return the address of a local variable. 2192 Address GetAddrOfLocalVar(const VarDecl *VD) { 2193 auto it = LocalDeclMap.find(VD); 2194 assert(it != LocalDeclMap.end() && 2195 "Invalid argument to GetAddrOfLocalVar(), no decl!"); 2196 return it->second; 2197 } 2198 2199 /// Given an opaque value expression, return its LValue mapping if it exists, 2200 /// otherwise create one. 2201 LValue getOrCreateOpaqueLValueMapping(const OpaqueValueExpr *e); 2202 2203 /// Given an opaque value expression, return its RValue mapping if it exists, 2204 /// otherwise create one. 2205 RValue getOrCreateOpaqueRValueMapping(const OpaqueValueExpr *e); 2206 2207 /// Get the index of the current ArrayInitLoopExpr, if any. 2208 llvm::Value *getArrayInitIndex() { return ArrayInitIndex; } 2209 2210 /// getAccessedFieldNo - Given an encoded value and a result number, return 2211 /// the input field number being accessed. 2212 static unsigned getAccessedFieldNo(unsigned Idx, const llvm::Constant *Elts); 2213 2214 llvm::BlockAddress *GetAddrOfLabel(const LabelDecl *L); 2215 llvm::BasicBlock *GetIndirectGotoBlock(); 2216 2217 /// Check if \p E is a C++ "this" pointer wrapped in value-preserving casts. 2218 static bool IsWrappedCXXThis(const Expr *E); 2219 2220 /// EmitNullInitialization - Generate code to set a value of the given type to 2221 /// null, If the type contains data member pointers, they will be initialized 2222 /// to -1 in accordance with the Itanium C++ ABI. 2223 void EmitNullInitialization(Address DestPtr, QualType Ty); 2224 2225 /// Emits a call to an LLVM variable-argument intrinsic, either 2226 /// \c llvm.va_start or \c llvm.va_end. 2227 /// \param ArgValue A reference to the \c va_list as emitted by either 2228 /// \c EmitVAListRef or \c EmitMSVAListRef. 2229 /// \param IsStart If \c true, emits a call to \c llvm.va_start; otherwise, 2230 /// calls \c llvm.va_end. 2231 llvm::Value *EmitVAStartEnd(llvm::Value *ArgValue, bool IsStart); 2232 2233 /// Generate code to get an argument from the passed in pointer 2234 /// and update it accordingly. 2235 /// \param VE The \c VAArgExpr for which to generate code. 2236 /// \param VAListAddr Receives a reference to the \c va_list as emitted by 2237 /// either \c EmitVAListRef or \c EmitMSVAListRef. 2238 /// \returns A pointer to the argument. 2239 // FIXME: We should be able to get rid of this method and use the va_arg 2240 // instruction in LLVM instead once it works well enough. 2241 Address EmitVAArg(VAArgExpr *VE, Address &VAListAddr); 2242 2243 /// emitArrayLength - Compute the length of an array, even if it's a 2244 /// VLA, and drill down to the base element type. 2245 llvm::Value *emitArrayLength(const ArrayType *arrayType, 2246 QualType &baseType, 2247 Address &addr); 2248 2249 /// EmitVLASize - Capture all the sizes for the VLA expressions in 2250 /// the given variably-modified type and store them in the VLASizeMap. 2251 /// 2252 /// This function can be called with a null (unreachable) insert point. 2253 void EmitVariablyModifiedType(QualType Ty); 2254 2255 struct VlaSizePair { 2256 llvm::Value *NumElts; 2257 QualType Type; 2258 2259 VlaSizePair(llvm::Value *NE, QualType T) : NumElts(NE), Type(T) {} 2260 }; 2261 2262 /// Return the number of elements for a single dimension 2263 /// for the given array type. 2264 VlaSizePair getVLAElements1D(const VariableArrayType *vla); 2265 VlaSizePair getVLAElements1D(QualType vla); 2266 2267 /// Returns an LLVM value that corresponds to the size, 2268 /// in non-variably-sized elements, of a variable length array type, 2269 /// plus that largest non-variably-sized element type. Assumes that 2270 /// the type has already been emitted with EmitVariablyModifiedType. 2271 VlaSizePair getVLASize(const VariableArrayType *vla); 2272 VlaSizePair getVLASize(QualType vla); 2273 2274 /// LoadCXXThis - Load the value of 'this'. This function is only valid while 2275 /// generating code for an C++ member function. 2276 llvm::Value *LoadCXXThis() { 2277 assert(CXXThisValue && "no 'this' value for this function"); 2278 return CXXThisValue; 2279 } 2280 Address LoadCXXThisAddress(); 2281 2282 /// LoadCXXVTT - Load the VTT parameter to base constructors/destructors have 2283 /// virtual bases. 2284 // FIXME: Every place that calls LoadCXXVTT is something 2285 // that needs to be abstracted properly. 2286 llvm::Value *LoadCXXVTT() { 2287 assert(CXXStructorImplicitParamValue && "no VTT value for this function"); 2288 return CXXStructorImplicitParamValue; 2289 } 2290 2291 /// GetAddressOfBaseOfCompleteClass - Convert the given pointer to a 2292 /// complete class to the given direct base. 2293 Address 2294 GetAddressOfDirectBaseInCompleteClass(Address Value, 2295 const CXXRecordDecl *Derived, 2296 const CXXRecordDecl *Base, 2297 bool BaseIsVirtual); 2298 2299 static bool ShouldNullCheckClassCastValue(const CastExpr *Cast); 2300 2301 /// GetAddressOfBaseClass - This function will add the necessary delta to the 2302 /// load of 'this' and returns address of the base class. 2303 Address GetAddressOfBaseClass(Address Value, 2304 const CXXRecordDecl *Derived, 2305 CastExpr::path_const_iterator PathBegin, 2306 CastExpr::path_const_iterator PathEnd, 2307 bool NullCheckValue, SourceLocation Loc); 2308 2309 Address GetAddressOfDerivedClass(Address Value, 2310 const CXXRecordDecl *Derived, 2311 CastExpr::path_const_iterator PathBegin, 2312 CastExpr::path_const_iterator PathEnd, 2313 bool NullCheckValue); 2314 2315 /// GetVTTParameter - Return the VTT parameter that should be passed to a 2316 /// base constructor/destructor with virtual bases. 2317 /// FIXME: VTTs are Itanium ABI-specific, so the definition should move 2318 /// to ItaniumCXXABI.cpp together with all the references to VTT. 2319 llvm::Value *GetVTTParameter(GlobalDecl GD, bool ForVirtualBase, 2320 bool Delegating); 2321 2322 void EmitDelegateCXXConstructorCall(const CXXConstructorDecl *Ctor, 2323 CXXCtorType CtorType, 2324 const FunctionArgList &Args, 2325 SourceLocation Loc); 2326 // It's important not to confuse this and the previous function. Delegating 2327 // constructors are the C++0x feature. The constructor delegate optimization 2328 // is used to reduce duplication in the base and complete consturctors where 2329 // they are substantially the same. 2330 void EmitDelegatingCXXConstructorCall(const CXXConstructorDecl *Ctor, 2331 const FunctionArgList &Args); 2332 2333 /// Emit a call to an inheriting constructor (that is, one that invokes a 2334 /// constructor inherited from a base class) by inlining its definition. This 2335 /// is necessary if the ABI does not support forwarding the arguments to the 2336 /// base class constructor (because they're variadic or similar). 2337 void EmitInlinedInheritingCXXConstructorCall(const CXXConstructorDecl *Ctor, 2338 CXXCtorType CtorType, 2339 bool ForVirtualBase, 2340 bool Delegating, 2341 CallArgList &Args); 2342 2343 /// Emit a call to a constructor inherited from a base class, passing the 2344 /// current constructor's arguments along unmodified (without even making 2345 /// a copy). 2346 void EmitInheritedCXXConstructorCall(const CXXConstructorDecl *D, 2347 bool ForVirtualBase, Address This, 2348 bool InheritedFromVBase, 2349 const CXXInheritedCtorInitExpr *E); 2350 2351 void EmitCXXConstructorCall(const CXXConstructorDecl *D, CXXCtorType Type, 2352 bool ForVirtualBase, bool Delegating, 2353 Address This, const CXXConstructExpr *E, 2354 AggValueSlot::Overlap_t Overlap); 2355 2356 void EmitCXXConstructorCall(const CXXConstructorDecl *D, CXXCtorType Type, 2357 bool ForVirtualBase, bool Delegating, 2358 Address This, CallArgList &Args, 2359 AggValueSlot::Overlap_t Overlap); 2360 2361 /// Emit assumption load for all bases. Requires to be be called only on 2362 /// most-derived class and not under construction of the object. 2363 void EmitVTableAssumptionLoads(const CXXRecordDecl *ClassDecl, Address This); 2364 2365 /// Emit assumption that vptr load == global vtable. 2366 void EmitVTableAssumptionLoad(const VPtr &vptr, Address This); 2367 2368 void EmitSynthesizedCXXCopyCtorCall(const CXXConstructorDecl *D, 2369 Address This, Address Src, 2370 const CXXConstructExpr *E); 2371 2372 void EmitCXXAggrConstructorCall(const CXXConstructorDecl *D, 2373 const ArrayType *ArrayTy, 2374 Address ArrayPtr, 2375 const CXXConstructExpr *E, 2376 bool ZeroInitialization = false); 2377 2378 void EmitCXXAggrConstructorCall(const CXXConstructorDecl *D, 2379 llvm::Value *NumElements, 2380 Address ArrayPtr, 2381 const CXXConstructExpr *E, 2382 bool ZeroInitialization = false); 2383 2384 static Destroyer destroyCXXObject; 2385 2386 void EmitCXXDestructorCall(const CXXDestructorDecl *D, CXXDtorType Type, 2387 bool ForVirtualBase, bool Delegating, 2388 Address This); 2389 2390 void EmitNewArrayInitializer(const CXXNewExpr *E, QualType elementType, 2391 llvm::Type *ElementTy, Address NewPtr, 2392 llvm::Value *NumElements, 2393 llvm::Value *AllocSizeWithoutCookie); 2394 2395 void EmitCXXTemporary(const CXXTemporary *Temporary, QualType TempType, 2396 Address Ptr); 2397 2398 llvm::Value *EmitLifetimeStart(uint64_t Size, llvm::Value *Addr); 2399 void EmitLifetimeEnd(llvm::Value *Size, llvm::Value *Addr); 2400 2401 llvm::Value *EmitCXXNewExpr(const CXXNewExpr *E); 2402 void EmitCXXDeleteExpr(const CXXDeleteExpr *E); 2403 2404 void EmitDeleteCall(const FunctionDecl *DeleteFD, llvm::Value *Ptr, 2405 QualType DeleteTy, llvm::Value *NumElements = nullptr, 2406 CharUnits CookieSize = CharUnits()); 2407 2408 RValue EmitBuiltinNewDeleteCall(const FunctionProtoType *Type, 2409 const CallExpr *TheCallExpr, bool IsDelete); 2410 2411 llvm::Value *EmitCXXTypeidExpr(const CXXTypeidExpr *E); 2412 llvm::Value *EmitDynamicCast(Address V, const CXXDynamicCastExpr *DCE); 2413 Address EmitCXXUuidofExpr(const CXXUuidofExpr *E); 2414 2415 /// Situations in which we might emit a check for the suitability of a 2416 /// pointer or glvalue. 2417 enum TypeCheckKind { 2418 /// Checking the operand of a load. Must be suitably sized and aligned. 2419 TCK_Load, 2420 /// Checking the destination of a store. Must be suitably sized and aligned. 2421 TCK_Store, 2422 /// Checking the bound value in a reference binding. Must be suitably sized 2423 /// and aligned, but is not required to refer to an object (until the 2424 /// reference is used), per core issue 453. 2425 TCK_ReferenceBinding, 2426 /// Checking the object expression in a non-static data member access. Must 2427 /// be an object within its lifetime. 2428 TCK_MemberAccess, 2429 /// Checking the 'this' pointer for a call to a non-static member function. 2430 /// Must be an object within its lifetime. 2431 TCK_MemberCall, 2432 /// Checking the 'this' pointer for a constructor call. 2433 TCK_ConstructorCall, 2434 /// Checking the operand of a static_cast to a derived pointer type. Must be 2435 /// null or an object within its lifetime. 2436 TCK_DowncastPointer, 2437 /// Checking the operand of a static_cast to a derived reference type. Must 2438 /// be an object within its lifetime. 2439 TCK_DowncastReference, 2440 /// Checking the operand of a cast to a base object. Must be suitably sized 2441 /// and aligned. 2442 TCK_Upcast, 2443 /// Checking the operand of a cast to a virtual base object. Must be an 2444 /// object within its lifetime. 2445 TCK_UpcastToVirtualBase, 2446 /// Checking the value assigned to a _Nonnull pointer. Must not be null. 2447 TCK_NonnullAssign, 2448 /// Checking the operand of a dynamic_cast or a typeid expression. Must be 2449 /// null or an object within its lifetime. 2450 TCK_DynamicOperation 2451 }; 2452 2453 /// Determine whether the pointer type check \p TCK permits null pointers. 2454 static bool isNullPointerAllowed(TypeCheckKind TCK); 2455 2456 /// Determine whether the pointer type check \p TCK requires a vptr check. 2457 static bool isVptrCheckRequired(TypeCheckKind TCK, QualType Ty); 2458 2459 /// Whether any type-checking sanitizers are enabled. If \c false, 2460 /// calls to EmitTypeCheck can be skipped. 2461 bool sanitizePerformTypeCheck() const; 2462 2463 /// Emit a check that \p V is the address of storage of the 2464 /// appropriate size and alignment for an object of type \p Type. 2465 void EmitTypeCheck(TypeCheckKind TCK, SourceLocation Loc, llvm::Value *V, 2466 QualType Type, CharUnits Alignment = CharUnits::Zero(), 2467 SanitizerSet SkippedChecks = SanitizerSet()); 2468 2469 /// Emit a check that \p Base points into an array object, which 2470 /// we can access at index \p Index. \p Accessed should be \c false if we 2471 /// this expression is used as an lvalue, for instance in "&Arr[Idx]". 2472 void EmitBoundsCheck(const Expr *E, const Expr *Base, llvm::Value *Index, 2473 QualType IndexType, bool Accessed); 2474 2475 llvm::Value *EmitScalarPrePostIncDec(const UnaryOperator *E, LValue LV, 2476 bool isInc, bool isPre); 2477 ComplexPairTy EmitComplexPrePostIncDec(const UnaryOperator *E, LValue LV, 2478 bool isInc, bool isPre); 2479 2480 void EmitAlignmentAssumption(llvm::Value *PtrValue, unsigned Alignment, 2481 llvm::Value *OffsetValue = nullptr) { 2482 Builder.CreateAlignmentAssumption(CGM.getDataLayout(), PtrValue, Alignment, 2483 OffsetValue); 2484 } 2485 2486 /// Converts Location to a DebugLoc, if debug information is enabled. 2487 llvm::DebugLoc SourceLocToDebugLoc(SourceLocation Location); 2488 2489 2490 //===--------------------------------------------------------------------===// 2491 // Declaration Emission 2492 //===--------------------------------------------------------------------===// 2493 2494 /// EmitDecl - Emit a declaration. 2495 /// 2496 /// This function can be called with a null (unreachable) insert point. 2497 void EmitDecl(const Decl &D); 2498 2499 /// EmitVarDecl - Emit a local variable declaration. 2500 /// 2501 /// This function can be called with a null (unreachable) insert point. 2502 void EmitVarDecl(const VarDecl &D); 2503 2504 void EmitScalarInit(const Expr *init, const ValueDecl *D, LValue lvalue, 2505 bool capturedByInit); 2506 2507 typedef void SpecialInitFn(CodeGenFunction &Init, const VarDecl &D, 2508 llvm::Value *Address); 2509 2510 /// Determine whether the given initializer is trivial in the sense 2511 /// that it requires no code to be generated. 2512 bool isTrivialInitializer(const Expr *Init); 2513 2514 /// EmitAutoVarDecl - Emit an auto variable declaration. 2515 /// 2516 /// This function can be called with a null (unreachable) insert point. 2517 void EmitAutoVarDecl(const VarDecl &D); 2518 2519 class AutoVarEmission { 2520 friend class CodeGenFunction; 2521 2522 const VarDecl *Variable; 2523 2524 /// The address of the alloca for languages with explicit address space 2525 /// (e.g. OpenCL) or alloca casted to generic pointer for address space 2526 /// agnostic languages (e.g. C++). Invalid if the variable was emitted 2527 /// as a global constant. 2528 Address Addr; 2529 2530 llvm::Value *NRVOFlag; 2531 2532 /// True if the variable is a __block variable. 2533 bool IsByRef; 2534 2535 /// True if the variable is of aggregate type and has a constant 2536 /// initializer. 2537 bool IsConstantAggregate; 2538 2539 /// Non-null if we should use lifetime annotations. 2540 llvm::Value *SizeForLifetimeMarkers; 2541 2542 /// Address with original alloca instruction. Invalid if the variable was 2543 /// emitted as a global constant. 2544 Address AllocaAddr; 2545 2546 struct Invalid {}; 2547 AutoVarEmission(Invalid) 2548 : Variable(nullptr), Addr(Address::invalid()), 2549 AllocaAddr(Address::invalid()) {} 2550 2551 AutoVarEmission(const VarDecl &variable) 2552 : Variable(&variable), Addr(Address::invalid()), NRVOFlag(nullptr), 2553 IsByRef(false), IsConstantAggregate(false), 2554 SizeForLifetimeMarkers(nullptr), AllocaAddr(Address::invalid()) {} 2555 2556 bool wasEmittedAsGlobal() const { return !Addr.isValid(); } 2557 2558 public: 2559 static AutoVarEmission invalid() { return AutoVarEmission(Invalid()); } 2560 2561 bool useLifetimeMarkers() const { 2562 return SizeForLifetimeMarkers != nullptr; 2563 } 2564 llvm::Value *getSizeForLifetimeMarkers() const { 2565 assert(useLifetimeMarkers()); 2566 return SizeForLifetimeMarkers; 2567 } 2568 2569 /// Returns the raw, allocated address, which is not necessarily 2570 /// the address of the object itself. It is casted to default 2571 /// address space for address space agnostic languages. 2572 Address getAllocatedAddress() const { 2573 return Addr; 2574 } 2575 2576 /// Returns the address for the original alloca instruction. 2577 Address getOriginalAllocatedAddress() const { return AllocaAddr; } 2578 2579 /// Returns the address of the object within this declaration. 2580 /// Note that this does not chase the forwarding pointer for 2581 /// __block decls. 2582 Address getObjectAddress(CodeGenFunction &CGF) const { 2583 if (!IsByRef) return Addr; 2584 2585 return CGF.emitBlockByrefAddress(Addr, Variable, /*forward*/ false); 2586 } 2587 }; 2588 AutoVarEmission EmitAutoVarAlloca(const VarDecl &var); 2589 void EmitAutoVarInit(const AutoVarEmission &emission); 2590 void EmitAutoVarCleanups(const AutoVarEmission &emission); 2591 void emitAutoVarTypeCleanup(const AutoVarEmission &emission, 2592 QualType::DestructionKind dtorKind); 2593 2594 /// Emits the alloca and debug information for the size expressions for each 2595 /// dimension of an array. It registers the association of its (1-dimensional) 2596 /// QualTypes and size expression's debug node, so that CGDebugInfo can 2597 /// reference this node when creating the DISubrange object to describe the 2598 /// array types. 2599 void EmitAndRegisterVariableArrayDimensions(CGDebugInfo *DI, 2600 const VarDecl &D, 2601 bool EmitDebugInfo); 2602 2603 void EmitStaticVarDecl(const VarDecl &D, 2604 llvm::GlobalValue::LinkageTypes Linkage); 2605 2606 class ParamValue { 2607 llvm::Value *Value; 2608 unsigned Alignment; 2609 ParamValue(llvm::Value *V, unsigned A) : Value(V), Alignment(A) {} 2610 public: 2611 static ParamValue forDirect(llvm::Value *value) { 2612 return ParamValue(value, 0); 2613 } 2614 static ParamValue forIndirect(Address addr) { 2615 assert(!addr.getAlignment().isZero()); 2616 return ParamValue(addr.getPointer(), addr.getAlignment().getQuantity()); 2617 } 2618 2619 bool isIndirect() const { return Alignment != 0; } 2620 llvm::Value *getAnyValue() const { return Value; } 2621 2622 llvm::Value *getDirectValue() const { 2623 assert(!isIndirect()); 2624 return Value; 2625 } 2626 2627 Address getIndirectAddress() const { 2628 assert(isIndirect()); 2629 return Address(Value, CharUnits::fromQuantity(Alignment)); 2630 } 2631 }; 2632 2633 /// EmitParmDecl - Emit a ParmVarDecl or an ImplicitParamDecl. 2634 void EmitParmDecl(const VarDecl &D, ParamValue Arg, unsigned ArgNo); 2635 2636 /// protectFromPeepholes - Protect a value that we're intending to 2637 /// store to the side, but which will probably be used later, from 2638 /// aggressive peepholing optimizations that might delete it. 2639 /// 2640 /// Pass the result to unprotectFromPeepholes to declare that 2641 /// protection is no longer required. 2642 /// 2643 /// There's no particular reason why this shouldn't apply to 2644 /// l-values, it's just that no existing peepholes work on pointers. 2645 PeepholeProtection protectFromPeepholes(RValue rvalue); 2646 void unprotectFromPeepholes(PeepholeProtection protection); 2647 2648 void EmitAlignmentAssumption(llvm::Value *PtrValue, llvm::Value *Alignment, 2649 llvm::Value *OffsetValue = nullptr) { 2650 Builder.CreateAlignmentAssumption(CGM.getDataLayout(), PtrValue, Alignment, 2651 OffsetValue); 2652 } 2653 2654 //===--------------------------------------------------------------------===// 2655 // Statement Emission 2656 //===--------------------------------------------------------------------===// 2657 2658 /// EmitStopPoint - Emit a debug stoppoint if we are emitting debug info. 2659 void EmitStopPoint(const Stmt *S); 2660 2661 /// EmitStmt - Emit the code for the statement \arg S. It is legal to call 2662 /// this function even if there is no current insertion point. 2663 /// 2664 /// This function may clear the current insertion point; callers should use 2665 /// EnsureInsertPoint if they wish to subsequently generate code without first 2666 /// calling EmitBlock, EmitBranch, or EmitStmt. 2667 void EmitStmt(const Stmt *S, ArrayRef<const Attr *> Attrs = None); 2668 2669 /// EmitSimpleStmt - Try to emit a "simple" statement which does not 2670 /// necessarily require an insertion point or debug information; typically 2671 /// because the statement amounts to a jump or a container of other 2672 /// statements. 2673 /// 2674 /// \return True if the statement was handled. 2675 bool EmitSimpleStmt(const Stmt *S); 2676 2677 Address EmitCompoundStmt(const CompoundStmt &S, bool GetLast = false, 2678 AggValueSlot AVS = AggValueSlot::ignored()); 2679 Address EmitCompoundStmtWithoutScope(const CompoundStmt &S, 2680 bool GetLast = false, 2681 AggValueSlot AVS = 2682 AggValueSlot::ignored()); 2683 2684 /// EmitLabel - Emit the block for the given label. It is legal to call this 2685 /// function even if there is no current insertion point. 2686 void EmitLabel(const LabelDecl *D); // helper for EmitLabelStmt. 2687 2688 void EmitLabelStmt(const LabelStmt &S); 2689 void EmitAttributedStmt(const AttributedStmt &S); 2690 void EmitGotoStmt(const GotoStmt &S); 2691 void EmitIndirectGotoStmt(const IndirectGotoStmt &S); 2692 void EmitIfStmt(const IfStmt &S); 2693 2694 void EmitWhileStmt(const WhileStmt &S, 2695 ArrayRef<const Attr *> Attrs = None); 2696 void EmitDoStmt(const DoStmt &S, ArrayRef<const Attr *> Attrs = None); 2697 void EmitForStmt(const ForStmt &S, 2698 ArrayRef<const Attr *> Attrs = None); 2699 void EmitReturnStmt(const ReturnStmt &S); 2700 void EmitDeclStmt(const DeclStmt &S); 2701 void EmitBreakStmt(const BreakStmt &S); 2702 void EmitContinueStmt(const ContinueStmt &S); 2703 void EmitSwitchStmt(const SwitchStmt &S); 2704 void EmitDefaultStmt(const DefaultStmt &S); 2705 void EmitCaseStmt(const CaseStmt &S); 2706 void EmitCaseStmtRange(const CaseStmt &S); 2707 void EmitAsmStmt(const AsmStmt &S); 2708 2709 void EmitObjCForCollectionStmt(const ObjCForCollectionStmt &S); 2710 void EmitObjCAtTryStmt(const ObjCAtTryStmt &S); 2711 void EmitObjCAtThrowStmt(const ObjCAtThrowStmt &S); 2712 void EmitObjCAtSynchronizedStmt(const ObjCAtSynchronizedStmt &S); 2713 void EmitObjCAutoreleasePoolStmt(const ObjCAutoreleasePoolStmt &S); 2714 2715 void EmitCoroutineBody(const CoroutineBodyStmt &S); 2716 void EmitCoreturnStmt(const CoreturnStmt &S); 2717 RValue EmitCoawaitExpr(const CoawaitExpr &E, 2718 AggValueSlot aggSlot = AggValueSlot::ignored(), 2719 bool ignoreResult = false); 2720 LValue EmitCoawaitLValue(const CoawaitExpr *E); 2721 RValue EmitCoyieldExpr(const CoyieldExpr &E, 2722 AggValueSlot aggSlot = AggValueSlot::ignored(), 2723 bool ignoreResult = false); 2724 LValue EmitCoyieldLValue(const CoyieldExpr *E); 2725 RValue EmitCoroutineIntrinsic(const CallExpr *E, unsigned int IID); 2726 2727 void EnterCXXTryStmt(const CXXTryStmt &S, bool IsFnTryBlock = false); 2728 void ExitCXXTryStmt(const CXXTryStmt &S, bool IsFnTryBlock = false); 2729 2730 void EmitCXXTryStmt(const CXXTryStmt &S); 2731 void EmitSEHTryStmt(const SEHTryStmt &S); 2732 void EmitSEHLeaveStmt(const SEHLeaveStmt &S); 2733 void EnterSEHTryStmt(const SEHTryStmt &S); 2734 void ExitSEHTryStmt(const SEHTryStmt &S); 2735 2736 void startOutlinedSEHHelper(CodeGenFunction &ParentCGF, bool IsFilter, 2737 const Stmt *OutlinedStmt); 2738 2739 llvm::Function *GenerateSEHFilterFunction(CodeGenFunction &ParentCGF, 2740 const SEHExceptStmt &Except); 2741 2742 llvm::Function *GenerateSEHFinallyFunction(CodeGenFunction &ParentCGF, 2743 const SEHFinallyStmt &Finally); 2744 2745 void EmitSEHExceptionCodeSave(CodeGenFunction &ParentCGF, 2746 llvm::Value *ParentFP, 2747 llvm::Value *EntryEBP); 2748 llvm::Value *EmitSEHExceptionCode(); 2749 llvm::Value *EmitSEHExceptionInfo(); 2750 llvm::Value *EmitSEHAbnormalTermination(); 2751 2752 /// Emit simple code for OpenMP directives in Simd-only mode. 2753 void EmitSimpleOMPExecutableDirective(const OMPExecutableDirective &D); 2754 2755 /// Scan the outlined statement for captures from the parent function. For 2756 /// each capture, mark the capture as escaped and emit a call to 2757 /// llvm.localrecover. Insert the localrecover result into the LocalDeclMap. 2758 void EmitCapturedLocals(CodeGenFunction &ParentCGF, const Stmt *OutlinedStmt, 2759 bool IsFilter); 2760 2761 /// Recovers the address of a local in a parent function. ParentVar is the 2762 /// address of the variable used in the immediate parent function. It can 2763 /// either be an alloca or a call to llvm.localrecover if there are nested 2764 /// outlined functions. ParentFP is the frame pointer of the outermost parent 2765 /// frame. 2766 Address recoverAddrOfEscapedLocal(CodeGenFunction &ParentCGF, 2767 Address ParentVar, 2768 llvm::Value *ParentFP); 2769 2770 void EmitCXXForRangeStmt(const CXXForRangeStmt &S, 2771 ArrayRef<const Attr *> Attrs = None); 2772 2773 /// Controls insertion of cancellation exit blocks in worksharing constructs. 2774 class OMPCancelStackRAII { 2775 CodeGenFunction &CGF; 2776 2777 public: 2778 OMPCancelStackRAII(CodeGenFunction &CGF, OpenMPDirectiveKind Kind, 2779 bool HasCancel) 2780 : CGF(CGF) { 2781 CGF.OMPCancelStack.enter(CGF, Kind, HasCancel); 2782 } 2783 ~OMPCancelStackRAII() { CGF.OMPCancelStack.exit(CGF); } 2784 }; 2785 2786 /// Returns calculated size of the specified type. 2787 llvm::Value *getTypeSize(QualType Ty); 2788 LValue InitCapturedStruct(const CapturedStmt &S); 2789 llvm::Function *EmitCapturedStmt(const CapturedStmt &S, CapturedRegionKind K); 2790 llvm::Function *GenerateCapturedStmtFunction(const CapturedStmt &S); 2791 Address GenerateCapturedStmtArgument(const CapturedStmt &S); 2792 llvm::Function *GenerateOpenMPCapturedStmtFunction(const CapturedStmt &S); 2793 void GenerateOpenMPCapturedVars(const CapturedStmt &S, 2794 SmallVectorImpl<llvm::Value *> &CapturedVars); 2795 void emitOMPSimpleStore(LValue LVal, RValue RVal, QualType RValTy, 2796 SourceLocation Loc); 2797 /// Perform element by element copying of arrays with type \a 2798 /// OriginalType from \a SrcAddr to \a DestAddr using copying procedure 2799 /// generated by \a CopyGen. 2800 /// 2801 /// \param DestAddr Address of the destination array. 2802 /// \param SrcAddr Address of the source array. 2803 /// \param OriginalType Type of destination and source arrays. 2804 /// \param CopyGen Copying procedure that copies value of single array element 2805 /// to another single array element. 2806 void EmitOMPAggregateAssign( 2807 Address DestAddr, Address SrcAddr, QualType OriginalType, 2808 const llvm::function_ref<void(Address, Address)> CopyGen); 2809 /// Emit proper copying of data from one variable to another. 2810 /// 2811 /// \param OriginalType Original type of the copied variables. 2812 /// \param DestAddr Destination address. 2813 /// \param SrcAddr Source address. 2814 /// \param DestVD Destination variable used in \a CopyExpr (for arrays, has 2815 /// type of the base array element). 2816 /// \param SrcVD Source variable used in \a CopyExpr (for arrays, has type of 2817 /// the base array element). 2818 /// \param Copy Actual copygin expression for copying data from \a SrcVD to \a 2819 /// DestVD. 2820 void EmitOMPCopy(QualType OriginalType, 2821 Address DestAddr, Address SrcAddr, 2822 const VarDecl *DestVD, const VarDecl *SrcVD, 2823 const Expr *Copy); 2824 /// Emit atomic update code for constructs: \a X = \a X \a BO \a E or 2825 /// \a X = \a E \a BO \a E. 2826 /// 2827 /// \param X Value to be updated. 2828 /// \param E Update value. 2829 /// \param BO Binary operation for update operation. 2830 /// \param IsXLHSInRHSPart true if \a X is LHS in RHS part of the update 2831 /// expression, false otherwise. 2832 /// \param AO Atomic ordering of the generated atomic instructions. 2833 /// \param CommonGen Code generator for complex expressions that cannot be 2834 /// expressed through atomicrmw instruction. 2835 /// \returns <true, OldAtomicValue> if simple 'atomicrmw' instruction was 2836 /// generated, <false, RValue::get(nullptr)> otherwise. 2837 std::pair<bool, RValue> EmitOMPAtomicSimpleUpdateExpr( 2838 LValue X, RValue E, BinaryOperatorKind BO, bool IsXLHSInRHSPart, 2839 llvm::AtomicOrdering AO, SourceLocation Loc, 2840 const llvm::function_ref<RValue(RValue)> CommonGen); 2841 bool EmitOMPFirstprivateClause(const OMPExecutableDirective &D, 2842 OMPPrivateScope &PrivateScope); 2843 void EmitOMPPrivateClause(const OMPExecutableDirective &D, 2844 OMPPrivateScope &PrivateScope); 2845 void EmitOMPUseDevicePtrClause( 2846 const OMPClause &C, OMPPrivateScope &PrivateScope, 2847 const llvm::DenseMap<const ValueDecl *, Address> &CaptureDeviceAddrMap); 2848 /// Emit code for copyin clause in \a D directive. The next code is 2849 /// generated at the start of outlined functions for directives: 2850 /// \code 2851 /// threadprivate_var1 = master_threadprivate_var1; 2852 /// operator=(threadprivate_var2, master_threadprivate_var2); 2853 /// ... 2854 /// __kmpc_barrier(&loc, global_tid); 2855 /// \endcode 2856 /// 2857 /// \param D OpenMP directive possibly with 'copyin' clause(s). 2858 /// \returns true if at least one copyin variable is found, false otherwise. 2859 bool EmitOMPCopyinClause(const OMPExecutableDirective &D); 2860 /// Emit initial code for lastprivate variables. If some variable is 2861 /// not also firstprivate, then the default initialization is used. Otherwise 2862 /// initialization of this variable is performed by EmitOMPFirstprivateClause 2863 /// method. 2864 /// 2865 /// \param D Directive that may have 'lastprivate' directives. 2866 /// \param PrivateScope Private scope for capturing lastprivate variables for 2867 /// proper codegen in internal captured statement. 2868 /// 2869 /// \returns true if there is at least one lastprivate variable, false 2870 /// otherwise. 2871 bool EmitOMPLastprivateClauseInit(const OMPExecutableDirective &D, 2872 OMPPrivateScope &PrivateScope); 2873 /// Emit final copying of lastprivate values to original variables at 2874 /// the end of the worksharing or simd directive. 2875 /// 2876 /// \param D Directive that has at least one 'lastprivate' directives. 2877 /// \param IsLastIterCond Boolean condition that must be set to 'i1 true' if 2878 /// it is the last iteration of the loop code in associated directive, or to 2879 /// 'i1 false' otherwise. If this item is nullptr, no final check is required. 2880 void EmitOMPLastprivateClauseFinal(const OMPExecutableDirective &D, 2881 bool NoFinals, 2882 llvm::Value *IsLastIterCond = nullptr); 2883 /// Emit initial code for linear clauses. 2884 void EmitOMPLinearClause(const OMPLoopDirective &D, 2885 CodeGenFunction::OMPPrivateScope &PrivateScope); 2886 /// Emit final code for linear clauses. 2887 /// \param CondGen Optional conditional code for final part of codegen for 2888 /// linear clause. 2889 void EmitOMPLinearClauseFinal( 2890 const OMPLoopDirective &D, 2891 const llvm::function_ref<llvm::Value *(CodeGenFunction &)> CondGen); 2892 /// Emit initial code for reduction variables. Creates reduction copies 2893 /// and initializes them with the values according to OpenMP standard. 2894 /// 2895 /// \param D Directive (possibly) with the 'reduction' clause. 2896 /// \param PrivateScope Private scope for capturing reduction variables for 2897 /// proper codegen in internal captured statement. 2898 /// 2899 void EmitOMPReductionClauseInit(const OMPExecutableDirective &D, 2900 OMPPrivateScope &PrivateScope); 2901 /// Emit final update of reduction values to original variables at 2902 /// the end of the directive. 2903 /// 2904 /// \param D Directive that has at least one 'reduction' directives. 2905 /// \param ReductionKind The kind of reduction to perform. 2906 void EmitOMPReductionClauseFinal(const OMPExecutableDirective &D, 2907 const OpenMPDirectiveKind ReductionKind); 2908 /// Emit initial code for linear variables. Creates private copies 2909 /// and initializes them with the values according to OpenMP standard. 2910 /// 2911 /// \param D Directive (possibly) with the 'linear' clause. 2912 /// \return true if at least one linear variable is found that should be 2913 /// initialized with the value of the original variable, false otherwise. 2914 bool EmitOMPLinearClauseInit(const OMPLoopDirective &D); 2915 2916 typedef const llvm::function_ref<void(CodeGenFunction & /*CGF*/, 2917 llvm::Value * /*OutlinedFn*/, 2918 const OMPTaskDataTy & /*Data*/)> 2919 TaskGenTy; 2920 void EmitOMPTaskBasedDirective(const OMPExecutableDirective &S, 2921 const OpenMPDirectiveKind CapturedRegion, 2922 const RegionCodeGenTy &BodyGen, 2923 const TaskGenTy &TaskGen, OMPTaskDataTy &Data); 2924 struct OMPTargetDataInfo { 2925 Address BasePointersArray = Address::invalid(); 2926 Address PointersArray = Address::invalid(); 2927 Address SizesArray = Address::invalid(); 2928 unsigned NumberOfTargetItems = 0; 2929 explicit OMPTargetDataInfo() = default; 2930 OMPTargetDataInfo(Address BasePointersArray, Address PointersArray, 2931 Address SizesArray, unsigned NumberOfTargetItems) 2932 : BasePointersArray(BasePointersArray), PointersArray(PointersArray), 2933 SizesArray(SizesArray), NumberOfTargetItems(NumberOfTargetItems) {} 2934 }; 2935 void EmitOMPTargetTaskBasedDirective(const OMPExecutableDirective &S, 2936 const RegionCodeGenTy &BodyGen, 2937 OMPTargetDataInfo &InputInfo); 2938 2939 void EmitOMPParallelDirective(const OMPParallelDirective &S); 2940 void EmitOMPSimdDirective(const OMPSimdDirective &S); 2941 void EmitOMPForDirective(const OMPForDirective &S); 2942 void EmitOMPForSimdDirective(const OMPForSimdDirective &S); 2943 void EmitOMPSectionsDirective(const OMPSectionsDirective &S); 2944 void EmitOMPSectionDirective(const OMPSectionDirective &S); 2945 void EmitOMPSingleDirective(const OMPSingleDirective &S); 2946 void EmitOMPMasterDirective(const OMPMasterDirective &S); 2947 void EmitOMPCriticalDirective(const OMPCriticalDirective &S); 2948 void EmitOMPParallelForDirective(const OMPParallelForDirective &S); 2949 void EmitOMPParallelForSimdDirective(const OMPParallelForSimdDirective &S); 2950 void EmitOMPParallelSectionsDirective(const OMPParallelSectionsDirective &S); 2951 void EmitOMPTaskDirective(const OMPTaskDirective &S); 2952 void EmitOMPTaskyieldDirective(const OMPTaskyieldDirective &S); 2953 void EmitOMPBarrierDirective(const OMPBarrierDirective &S); 2954 void EmitOMPTaskwaitDirective(const OMPTaskwaitDirective &S); 2955 void EmitOMPTaskgroupDirective(const OMPTaskgroupDirective &S); 2956 void EmitOMPFlushDirective(const OMPFlushDirective &S); 2957 void EmitOMPOrderedDirective(const OMPOrderedDirective &S); 2958 void EmitOMPAtomicDirective(const OMPAtomicDirective &S); 2959 void EmitOMPTargetDirective(const OMPTargetDirective &S); 2960 void EmitOMPTargetDataDirective(const OMPTargetDataDirective &S); 2961 void EmitOMPTargetEnterDataDirective(const OMPTargetEnterDataDirective &S); 2962 void EmitOMPTargetExitDataDirective(const OMPTargetExitDataDirective &S); 2963 void EmitOMPTargetUpdateDirective(const OMPTargetUpdateDirective &S); 2964 void EmitOMPTargetParallelDirective(const OMPTargetParallelDirective &S); 2965 void 2966 EmitOMPTargetParallelForDirective(const OMPTargetParallelForDirective &S); 2967 void EmitOMPTeamsDirective(const OMPTeamsDirective &S); 2968 void 2969 EmitOMPCancellationPointDirective(const OMPCancellationPointDirective &S); 2970 void EmitOMPCancelDirective(const OMPCancelDirective &S); 2971 void EmitOMPTaskLoopBasedDirective(const OMPLoopDirective &S); 2972 void EmitOMPTaskLoopDirective(const OMPTaskLoopDirective &S); 2973 void EmitOMPTaskLoopSimdDirective(const OMPTaskLoopSimdDirective &S); 2974 void EmitOMPDistributeDirective(const OMPDistributeDirective &S); 2975 void EmitOMPDistributeParallelForDirective( 2976 const OMPDistributeParallelForDirective &S); 2977 void EmitOMPDistributeParallelForSimdDirective( 2978 const OMPDistributeParallelForSimdDirective &S); 2979 void EmitOMPDistributeSimdDirective(const OMPDistributeSimdDirective &S); 2980 void EmitOMPTargetParallelForSimdDirective( 2981 const OMPTargetParallelForSimdDirective &S); 2982 void EmitOMPTargetSimdDirective(const OMPTargetSimdDirective &S); 2983 void EmitOMPTeamsDistributeDirective(const OMPTeamsDistributeDirective &S); 2984 void 2985 EmitOMPTeamsDistributeSimdDirective(const OMPTeamsDistributeSimdDirective &S); 2986 void EmitOMPTeamsDistributeParallelForSimdDirective( 2987 const OMPTeamsDistributeParallelForSimdDirective &S); 2988 void EmitOMPTeamsDistributeParallelForDirective( 2989 const OMPTeamsDistributeParallelForDirective &S); 2990 void EmitOMPTargetTeamsDirective(const OMPTargetTeamsDirective &S); 2991 void EmitOMPTargetTeamsDistributeDirective( 2992 const OMPTargetTeamsDistributeDirective &S); 2993 void EmitOMPTargetTeamsDistributeParallelForDirective( 2994 const OMPTargetTeamsDistributeParallelForDirective &S); 2995 void EmitOMPTargetTeamsDistributeParallelForSimdDirective( 2996 const OMPTargetTeamsDistributeParallelForSimdDirective &S); 2997 void EmitOMPTargetTeamsDistributeSimdDirective( 2998 const OMPTargetTeamsDistributeSimdDirective &S); 2999 3000 /// Emit device code for the target directive. 3001 static void EmitOMPTargetDeviceFunction(CodeGenModule &CGM, 3002 StringRef ParentName, 3003 const OMPTargetDirective &S); 3004 static void 3005 EmitOMPTargetParallelDeviceFunction(CodeGenModule &CGM, StringRef ParentName, 3006 const OMPTargetParallelDirective &S); 3007 /// Emit device code for the target parallel for directive. 3008 static void EmitOMPTargetParallelForDeviceFunction( 3009 CodeGenModule &CGM, StringRef ParentName, 3010 const OMPTargetParallelForDirective &S); 3011 /// Emit device code for the target parallel for simd directive. 3012 static void EmitOMPTargetParallelForSimdDeviceFunction( 3013 CodeGenModule &CGM, StringRef ParentName, 3014 const OMPTargetParallelForSimdDirective &S); 3015 /// Emit device code for the target teams directive. 3016 static void 3017 EmitOMPTargetTeamsDeviceFunction(CodeGenModule &CGM, StringRef ParentName, 3018 const OMPTargetTeamsDirective &S); 3019 /// Emit device code for the target teams distribute directive. 3020 static void EmitOMPTargetTeamsDistributeDeviceFunction( 3021 CodeGenModule &CGM, StringRef ParentName, 3022 const OMPTargetTeamsDistributeDirective &S); 3023 /// Emit device code for the target teams distribute simd directive. 3024 static void EmitOMPTargetTeamsDistributeSimdDeviceFunction( 3025 CodeGenModule &CGM, StringRef ParentName, 3026 const OMPTargetTeamsDistributeSimdDirective &S); 3027 /// Emit device code for the target simd directive. 3028 static void EmitOMPTargetSimdDeviceFunction(CodeGenModule &CGM, 3029 StringRef ParentName, 3030 const OMPTargetSimdDirective &S); 3031 /// Emit device code for the target teams distribute parallel for simd 3032 /// directive. 3033 static void EmitOMPTargetTeamsDistributeParallelForSimdDeviceFunction( 3034 CodeGenModule &CGM, StringRef ParentName, 3035 const OMPTargetTeamsDistributeParallelForSimdDirective &S); 3036 3037 static void EmitOMPTargetTeamsDistributeParallelForDeviceFunction( 3038 CodeGenModule &CGM, StringRef ParentName, 3039 const OMPTargetTeamsDistributeParallelForDirective &S); 3040 /// Emit inner loop of the worksharing/simd construct. 3041 /// 3042 /// \param S Directive, for which the inner loop must be emitted. 3043 /// \param RequiresCleanup true, if directive has some associated private 3044 /// variables. 3045 /// \param LoopCond Bollean condition for loop continuation. 3046 /// \param IncExpr Increment expression for loop control variable. 3047 /// \param BodyGen Generator for the inner body of the inner loop. 3048 /// \param PostIncGen Genrator for post-increment code (required for ordered 3049 /// loop directvies). 3050 void EmitOMPInnerLoop( 3051 const Stmt &S, bool RequiresCleanup, const Expr *LoopCond, 3052 const Expr *IncExpr, 3053 const llvm::function_ref<void(CodeGenFunction &)> BodyGen, 3054 const llvm::function_ref<void(CodeGenFunction &)> PostIncGen); 3055 3056 JumpDest getOMPCancelDestination(OpenMPDirectiveKind Kind); 3057 /// Emit initial code for loop counters of loop-based directives. 3058 void EmitOMPPrivateLoopCounters(const OMPLoopDirective &S, 3059 OMPPrivateScope &LoopScope); 3060 3061 /// Helper for the OpenMP loop directives. 3062 void EmitOMPLoopBody(const OMPLoopDirective &D, JumpDest LoopExit); 3063 3064 /// Emit code for the worksharing loop-based directive. 3065 /// \return true, if this construct has any lastprivate clause, false - 3066 /// otherwise. 3067 bool EmitOMPWorksharingLoop(const OMPLoopDirective &S, Expr *EUB, 3068 const CodeGenLoopBoundsTy &CodeGenLoopBounds, 3069 const CodeGenDispatchBoundsTy &CGDispatchBounds); 3070 3071 /// Emit code for the distribute loop-based directive. 3072 void EmitOMPDistributeLoop(const OMPLoopDirective &S, 3073 const CodeGenLoopTy &CodeGenLoop, Expr *IncExpr); 3074 3075 /// Helpers for the OpenMP loop directives. 3076 void EmitOMPSimdInit(const OMPLoopDirective &D, bool IsMonotonic = false); 3077 void EmitOMPSimdFinal( 3078 const OMPLoopDirective &D, 3079 const llvm::function_ref<llvm::Value *(CodeGenFunction &)> CondGen); 3080 3081 /// Emits the lvalue for the expression with possibly captured variable. 3082 LValue EmitOMPSharedLValue(const Expr *E); 3083 3084 private: 3085 /// Helpers for blocks. 3086 llvm::Value *EmitBlockLiteral(const CGBlockInfo &Info); 3087 3088 /// struct with the values to be passed to the OpenMP loop-related functions 3089 struct OMPLoopArguments { 3090 /// loop lower bound 3091 Address LB = Address::invalid(); 3092 /// loop upper bound 3093 Address UB = Address::invalid(); 3094 /// loop stride 3095 Address ST = Address::invalid(); 3096 /// isLastIteration argument for runtime functions 3097 Address IL = Address::invalid(); 3098 /// Chunk value generated by sema 3099 llvm::Value *Chunk = nullptr; 3100 /// EnsureUpperBound 3101 Expr *EUB = nullptr; 3102 /// IncrementExpression 3103 Expr *IncExpr = nullptr; 3104 /// Loop initialization 3105 Expr *Init = nullptr; 3106 /// Loop exit condition 3107 Expr *Cond = nullptr; 3108 /// Update of LB after a whole chunk has been executed 3109 Expr *NextLB = nullptr; 3110 /// Update of UB after a whole chunk has been executed 3111 Expr *NextUB = nullptr; 3112 OMPLoopArguments() = default; 3113 OMPLoopArguments(Address LB, Address UB, Address ST, Address IL, 3114 llvm::Value *Chunk = nullptr, Expr *EUB = nullptr, 3115 Expr *IncExpr = nullptr, Expr *Init = nullptr, 3116 Expr *Cond = nullptr, Expr *NextLB = nullptr, 3117 Expr *NextUB = nullptr) 3118 : LB(LB), UB(UB), ST(ST), IL(IL), Chunk(Chunk), EUB(EUB), 3119 IncExpr(IncExpr), Init(Init), Cond(Cond), NextLB(NextLB), 3120 NextUB(NextUB) {} 3121 }; 3122 void EmitOMPOuterLoop(bool DynamicOrOrdered, bool IsMonotonic, 3123 const OMPLoopDirective &S, OMPPrivateScope &LoopScope, 3124 const OMPLoopArguments &LoopArgs, 3125 const CodeGenLoopTy &CodeGenLoop, 3126 const CodeGenOrderedTy &CodeGenOrdered); 3127 void EmitOMPForOuterLoop(const OpenMPScheduleTy &ScheduleKind, 3128 bool IsMonotonic, const OMPLoopDirective &S, 3129 OMPPrivateScope &LoopScope, bool Ordered, 3130 const OMPLoopArguments &LoopArgs, 3131 const CodeGenDispatchBoundsTy &CGDispatchBounds); 3132 void EmitOMPDistributeOuterLoop(OpenMPDistScheduleClauseKind ScheduleKind, 3133 const OMPLoopDirective &S, 3134 OMPPrivateScope &LoopScope, 3135 const OMPLoopArguments &LoopArgs, 3136 const CodeGenLoopTy &CodeGenLoopContent); 3137 /// Emit code for sections directive. 3138 void EmitSections(const OMPExecutableDirective &S); 3139 3140 public: 3141 3142 //===--------------------------------------------------------------------===// 3143 // LValue Expression Emission 3144 //===--------------------------------------------------------------------===// 3145 3146 /// GetUndefRValue - Get an appropriate 'undef' rvalue for the given type. 3147 RValue GetUndefRValue(QualType Ty); 3148 3149 /// EmitUnsupportedRValue - Emit a dummy r-value using the type of E 3150 /// and issue an ErrorUnsupported style diagnostic (using the 3151 /// provided Name). 3152 RValue EmitUnsupportedRValue(const Expr *E, 3153 const char *Name); 3154 3155 /// EmitUnsupportedLValue - Emit a dummy l-value using the type of E and issue 3156 /// an ErrorUnsupported style diagnostic (using the provided Name). 3157 LValue EmitUnsupportedLValue(const Expr *E, 3158 const char *Name); 3159 3160 /// EmitLValue - Emit code to compute a designator that specifies the location 3161 /// of the expression. 3162 /// 3163 /// This can return one of two things: a simple address or a bitfield 3164 /// reference. In either case, the LLVM Value* in the LValue structure is 3165 /// guaranteed to be an LLVM pointer type. 3166 /// 3167 /// If this returns a bitfield reference, nothing about the pointee type of 3168 /// the LLVM value is known: For example, it may not be a pointer to an 3169 /// integer. 3170 /// 3171 /// If this returns a normal address, and if the lvalue's C type is fixed 3172 /// size, this method guarantees that the returned pointer type will point to 3173 /// an LLVM type of the same size of the lvalue's type. If the lvalue has a 3174 /// variable length type, this is not possible. 3175 /// 3176 LValue EmitLValue(const Expr *E); 3177 3178 /// Same as EmitLValue but additionally we generate checking code to 3179 /// guard against undefined behavior. This is only suitable when we know 3180 /// that the address will be used to access the object. 3181 LValue EmitCheckedLValue(const Expr *E, TypeCheckKind TCK); 3182 3183 RValue convertTempToRValue(Address addr, QualType type, 3184 SourceLocation Loc); 3185 3186 void EmitAtomicInit(Expr *E, LValue lvalue); 3187 3188 bool LValueIsSuitableForInlineAtomic(LValue Src); 3189 3190 RValue EmitAtomicLoad(LValue LV, SourceLocation SL, 3191 AggValueSlot Slot = AggValueSlot::ignored()); 3192 3193 RValue EmitAtomicLoad(LValue lvalue, SourceLocation loc, 3194 llvm::AtomicOrdering AO, bool IsVolatile = false, 3195 AggValueSlot slot = AggValueSlot::ignored()); 3196 3197 void EmitAtomicStore(RValue rvalue, LValue lvalue, bool isInit); 3198 3199 void EmitAtomicStore(RValue rvalue, LValue lvalue, llvm::AtomicOrdering AO, 3200 bool IsVolatile, bool isInit); 3201 3202 std::pair<RValue, llvm::Value *> EmitAtomicCompareExchange( 3203 LValue Obj, RValue Expected, RValue Desired, SourceLocation Loc, 3204 llvm::AtomicOrdering Success = 3205 llvm::AtomicOrdering::SequentiallyConsistent, 3206 llvm::AtomicOrdering Failure = 3207 llvm::AtomicOrdering::SequentiallyConsistent, 3208 bool IsWeak = false, AggValueSlot Slot = AggValueSlot::ignored()); 3209 3210 void EmitAtomicUpdate(LValue LVal, llvm::AtomicOrdering AO, 3211 const llvm::function_ref<RValue(RValue)> &UpdateOp, 3212 bool IsVolatile); 3213 3214 /// EmitToMemory - Change a scalar value from its value 3215 /// representation to its in-memory representation. 3216 llvm::Value *EmitToMemory(llvm::Value *Value, QualType Ty); 3217 3218 /// EmitFromMemory - Change a scalar value from its memory 3219 /// representation to its value representation. 3220 llvm::Value *EmitFromMemory(llvm::Value *Value, QualType Ty); 3221 3222 /// Check if the scalar \p Value is within the valid range for the given 3223 /// type \p Ty. 3224 /// 3225 /// Returns true if a check is needed (even if the range is unknown). 3226 bool EmitScalarRangeCheck(llvm::Value *Value, QualType Ty, 3227 SourceLocation Loc); 3228 3229 /// EmitLoadOfScalar - Load a scalar value from an address, taking 3230 /// care to appropriately convert from the memory representation to 3231 /// the LLVM value representation. 3232 llvm::Value *EmitLoadOfScalar(Address Addr, bool Volatile, QualType Ty, 3233 SourceLocation Loc, 3234 AlignmentSource Source = AlignmentSource::Type, 3235 bool isNontemporal = false) { 3236 return EmitLoadOfScalar(Addr, Volatile, Ty, Loc, LValueBaseInfo(Source), 3237 CGM.getTBAAAccessInfo(Ty), isNontemporal); 3238 } 3239 3240 llvm::Value *EmitLoadOfScalar(Address Addr, bool Volatile, QualType Ty, 3241 SourceLocation Loc, LValueBaseInfo BaseInfo, 3242 TBAAAccessInfo TBAAInfo, 3243 bool isNontemporal = false); 3244 3245 /// EmitLoadOfScalar - Load a scalar value from an address, taking 3246 /// care to appropriately convert from the memory representation to 3247 /// the LLVM value representation. The l-value must be a simple 3248 /// l-value. 3249 llvm::Value *EmitLoadOfScalar(LValue lvalue, SourceLocation Loc); 3250 3251 /// EmitStoreOfScalar - Store a scalar value to an address, taking 3252 /// care to appropriately convert from the memory representation to 3253 /// the LLVM value representation. 3254 void EmitStoreOfScalar(llvm::Value *Value, Address Addr, 3255 bool Volatile, QualType Ty, 3256 AlignmentSource Source = AlignmentSource::Type, 3257 bool isInit = false, bool isNontemporal = false) { 3258 EmitStoreOfScalar(Value, Addr, Volatile, Ty, LValueBaseInfo(Source), 3259 CGM.getTBAAAccessInfo(Ty), isInit, isNontemporal); 3260 } 3261 3262 void EmitStoreOfScalar(llvm::Value *Value, Address Addr, 3263 bool Volatile, QualType Ty, 3264 LValueBaseInfo BaseInfo, TBAAAccessInfo TBAAInfo, 3265 bool isInit = false, bool isNontemporal = false); 3266 3267 /// EmitStoreOfScalar - Store a scalar value to an address, taking 3268 /// care to appropriately convert from the memory representation to 3269 /// the LLVM value representation. The l-value must be a simple 3270 /// l-value. The isInit flag indicates whether this is an initialization. 3271 /// If so, atomic qualifiers are ignored and the store is always non-atomic. 3272 void EmitStoreOfScalar(llvm::Value *value, LValue lvalue, bool isInit=false); 3273 3274 /// EmitLoadOfLValue - Given an expression that represents a value lvalue, 3275 /// this method emits the address of the lvalue, then loads the result as an 3276 /// rvalue, returning the rvalue. 3277 RValue EmitLoadOfLValue(LValue V, SourceLocation Loc); 3278 RValue EmitLoadOfExtVectorElementLValue(LValue V); 3279 RValue EmitLoadOfBitfieldLValue(LValue LV, SourceLocation Loc); 3280 RValue EmitLoadOfGlobalRegLValue(LValue LV); 3281 3282 /// EmitStoreThroughLValue - Store the specified rvalue into the specified 3283 /// lvalue, where both are guaranteed to the have the same type, and that type 3284 /// is 'Ty'. 3285 void EmitStoreThroughLValue(RValue Src, LValue Dst, bool isInit = false); 3286 void EmitStoreThroughExtVectorComponentLValue(RValue Src, LValue Dst); 3287 void EmitStoreThroughGlobalRegLValue(RValue Src, LValue Dst); 3288 3289 /// EmitStoreThroughBitfieldLValue - Store Src into Dst with same constraints 3290 /// as EmitStoreThroughLValue. 3291 /// 3292 /// \param Result [out] - If non-null, this will be set to a Value* for the 3293 /// bit-field contents after the store, appropriate for use as the result of 3294 /// an assignment to the bit-field. 3295 void EmitStoreThroughBitfieldLValue(RValue Src, LValue Dst, 3296 llvm::Value **Result=nullptr); 3297 3298 /// Emit an l-value for an assignment (simple or compound) of complex type. 3299 LValue EmitComplexAssignmentLValue(const BinaryOperator *E); 3300 LValue EmitComplexCompoundAssignmentLValue(const CompoundAssignOperator *E); 3301 LValue EmitScalarCompoundAssignWithComplex(const CompoundAssignOperator *E, 3302 llvm::Value *&Result); 3303 3304 // Note: only available for agg return types 3305 LValue EmitBinaryOperatorLValue(const BinaryOperator *E); 3306 LValue EmitCompoundAssignmentLValue(const CompoundAssignOperator *E); 3307 // Note: only available for agg return types 3308 LValue EmitCallExprLValue(const CallExpr *E); 3309 // Note: only available for agg return types 3310 LValue EmitVAArgExprLValue(const VAArgExpr *E); 3311 LValue EmitDeclRefLValue(const DeclRefExpr *E); 3312 LValue EmitStringLiteralLValue(const StringLiteral *E); 3313 LValue EmitObjCEncodeExprLValue(const ObjCEncodeExpr *E); 3314 LValue EmitPredefinedLValue(const PredefinedExpr *E); 3315 LValue EmitUnaryOpLValue(const UnaryOperator *E); 3316 LValue EmitArraySubscriptExpr(const ArraySubscriptExpr *E, 3317 bool Accessed = false); 3318 LValue EmitOMPArraySectionExpr(const OMPArraySectionExpr *E, 3319 bool IsLowerBound = true); 3320 LValue EmitExtVectorElementExpr(const ExtVectorElementExpr *E); 3321 LValue EmitMemberExpr(const MemberExpr *E); 3322 LValue EmitObjCIsaExpr(const ObjCIsaExpr *E); 3323 LValue EmitCompoundLiteralLValue(const CompoundLiteralExpr *E); 3324 LValue EmitInitListLValue(const InitListExpr *E); 3325 LValue EmitConditionalOperatorLValue(const AbstractConditionalOperator *E); 3326 LValue EmitCastLValue(const CastExpr *E); 3327 LValue EmitMaterializeTemporaryExpr(const MaterializeTemporaryExpr *E); 3328 LValue EmitOpaqueValueLValue(const OpaqueValueExpr *e); 3329 3330 Address EmitExtVectorElementLValue(LValue V); 3331 3332 RValue EmitRValueForField(LValue LV, const FieldDecl *FD, SourceLocation Loc); 3333 3334 Address EmitArrayToPointerDecay(const Expr *Array, 3335 LValueBaseInfo *BaseInfo = nullptr, 3336 TBAAAccessInfo *TBAAInfo = nullptr); 3337 3338 class ConstantEmission { 3339 llvm::PointerIntPair<llvm::Constant*, 1, bool> ValueAndIsReference; 3340 ConstantEmission(llvm::Constant *C, bool isReference) 3341 : ValueAndIsReference(C, isReference) {} 3342 public: 3343 ConstantEmission() {} 3344 static ConstantEmission forReference(llvm::Constant *C) { 3345 return ConstantEmission(C, true); 3346 } 3347 static ConstantEmission forValue(llvm::Constant *C) { 3348 return ConstantEmission(C, false); 3349 } 3350 3351 explicit operator bool() const { 3352 return ValueAndIsReference.getOpaqueValue() != nullptr; 3353 } 3354 3355 bool isReference() const { return ValueAndIsReference.getInt(); } 3356 LValue getReferenceLValue(CodeGenFunction &CGF, Expr *refExpr) const { 3357 assert(isReference()); 3358 return CGF.MakeNaturalAlignAddrLValue(ValueAndIsReference.getPointer(), 3359 refExpr->getType()); 3360 } 3361 3362 llvm::Constant *getValue() const { 3363 assert(!isReference()); 3364 return ValueAndIsReference.getPointer(); 3365 } 3366 }; 3367 3368 ConstantEmission tryEmitAsConstant(DeclRefExpr *refExpr); 3369 ConstantEmission tryEmitAsConstant(const MemberExpr *ME); 3370 3371 RValue EmitPseudoObjectRValue(const PseudoObjectExpr *e, 3372 AggValueSlot slot = AggValueSlot::ignored()); 3373 LValue EmitPseudoObjectLValue(const PseudoObjectExpr *e); 3374 3375 llvm::Value *EmitIvarOffset(const ObjCInterfaceDecl *Interface, 3376 const ObjCIvarDecl *Ivar); 3377 LValue EmitLValueForField(LValue Base, const FieldDecl* Field); 3378 LValue EmitLValueForLambdaField(const FieldDecl *Field); 3379 3380 /// EmitLValueForFieldInitialization - Like EmitLValueForField, except that 3381 /// if the Field is a reference, this will return the address of the reference 3382 /// and not the address of the value stored in the reference. 3383 LValue EmitLValueForFieldInitialization(LValue Base, 3384 const FieldDecl* Field); 3385 3386 LValue EmitLValueForIvar(QualType ObjectTy, 3387 llvm::Value* Base, const ObjCIvarDecl *Ivar, 3388 unsigned CVRQualifiers); 3389 3390 LValue EmitCXXConstructLValue(const CXXConstructExpr *E); 3391 LValue EmitCXXBindTemporaryLValue(const CXXBindTemporaryExpr *E); 3392 LValue EmitLambdaLValue(const LambdaExpr *E); 3393 LValue EmitCXXTypeidLValue(const CXXTypeidExpr *E); 3394 LValue EmitCXXUuidofLValue(const CXXUuidofExpr *E); 3395 3396 LValue EmitObjCMessageExprLValue(const ObjCMessageExpr *E); 3397 LValue EmitObjCIvarRefLValue(const ObjCIvarRefExpr *E); 3398 LValue EmitStmtExprLValue(const StmtExpr *E); 3399 LValue EmitPointerToDataMemberBinaryExpr(const BinaryOperator *E); 3400 LValue EmitObjCSelectorLValue(const ObjCSelectorExpr *E); 3401 void EmitDeclRefExprDbgValue(const DeclRefExpr *E, const APValue &Init); 3402 3403 //===--------------------------------------------------------------------===// 3404 // Scalar Expression Emission 3405 //===--------------------------------------------------------------------===// 3406 3407 /// EmitCall - Generate a call of the given function, expecting the given 3408 /// result type, and using the given argument list which specifies both the 3409 /// LLVM arguments and the types they were derived from. 3410 RValue EmitCall(const CGFunctionInfo &CallInfo, const CGCallee &Callee, 3411 ReturnValueSlot ReturnValue, const CallArgList &Args, 3412 llvm::Instruction **callOrInvoke, SourceLocation Loc); 3413 RValue EmitCall(const CGFunctionInfo &CallInfo, const CGCallee &Callee, 3414 ReturnValueSlot ReturnValue, const CallArgList &Args, 3415 llvm::Instruction **callOrInvoke = nullptr) { 3416 return EmitCall(CallInfo, Callee, ReturnValue, Args, callOrInvoke, 3417 SourceLocation()); 3418 } 3419 RValue EmitCall(QualType FnType, const CGCallee &Callee, const CallExpr *E, 3420 ReturnValueSlot ReturnValue, llvm::Value *Chain = nullptr); 3421 RValue EmitCallExpr(const CallExpr *E, 3422 ReturnValueSlot ReturnValue = ReturnValueSlot()); 3423 RValue EmitSimpleCallExpr(const CallExpr *E, ReturnValueSlot ReturnValue); 3424 CGCallee EmitCallee(const Expr *E); 3425 3426 void checkTargetFeatures(const CallExpr *E, const FunctionDecl *TargetDecl); 3427 3428 llvm::CallInst *EmitRuntimeCall(llvm::Value *callee, 3429 const Twine &name = ""); 3430 llvm::CallInst *EmitRuntimeCall(llvm::Value *callee, 3431 ArrayRef<llvm::Value*> args, 3432 const Twine &name = ""); 3433 llvm::CallInst *EmitNounwindRuntimeCall(llvm::Value *callee, 3434 const Twine &name = ""); 3435 llvm::CallInst *EmitNounwindRuntimeCall(llvm::Value *callee, 3436 ArrayRef<llvm::Value*> args, 3437 const Twine &name = ""); 3438 3439 SmallVector<llvm::OperandBundleDef, 1> 3440 getBundlesForFunclet(llvm::Value *Callee); 3441 3442 llvm::CallSite EmitCallOrInvoke(llvm::Value *Callee, 3443 ArrayRef<llvm::Value *> Args, 3444 const Twine &Name = ""); 3445 llvm::CallSite EmitRuntimeCallOrInvoke(llvm::Value *callee, 3446 ArrayRef<llvm::Value*> args, 3447 const Twine &name = ""); 3448 llvm::CallSite EmitRuntimeCallOrInvoke(llvm::Value *callee, 3449 const Twine &name = ""); 3450 void EmitNoreturnRuntimeCallOrInvoke(llvm::Value *callee, 3451 ArrayRef<llvm::Value*> args); 3452 3453 CGCallee BuildAppleKextVirtualCall(const CXXMethodDecl *MD, 3454 NestedNameSpecifier *Qual, 3455 llvm::Type *Ty); 3456 3457 CGCallee BuildAppleKextVirtualDestructorCall(const CXXDestructorDecl *DD, 3458 CXXDtorType Type, 3459 const CXXRecordDecl *RD); 3460 3461 // These functions emit calls to the special functions of non-trivial C 3462 // structs. 3463 void defaultInitNonTrivialCStructVar(LValue Dst); 3464 void callCStructDefaultConstructor(LValue Dst); 3465 void callCStructDestructor(LValue Dst); 3466 void callCStructCopyConstructor(LValue Dst, LValue Src); 3467 void callCStructMoveConstructor(LValue Dst, LValue Src); 3468 void callCStructCopyAssignmentOperator(LValue Dst, LValue Src); 3469 void callCStructMoveAssignmentOperator(LValue Dst, LValue Src); 3470 3471 RValue 3472 EmitCXXMemberOrOperatorCall(const CXXMethodDecl *Method, 3473 const CGCallee &Callee, 3474 ReturnValueSlot ReturnValue, llvm::Value *This, 3475 llvm::Value *ImplicitParam, 3476 QualType ImplicitParamTy, const CallExpr *E, 3477 CallArgList *RtlArgs); 3478 RValue EmitCXXDestructorCall(const CXXDestructorDecl *DD, 3479 const CGCallee &Callee, 3480 llvm::Value *This, llvm::Value *ImplicitParam, 3481 QualType ImplicitParamTy, const CallExpr *E, 3482 StructorType Type); 3483 RValue EmitCXXMemberCallExpr(const CXXMemberCallExpr *E, 3484 ReturnValueSlot ReturnValue); 3485 RValue EmitCXXMemberOrOperatorMemberCallExpr(const CallExpr *CE, 3486 const CXXMethodDecl *MD, 3487 ReturnValueSlot ReturnValue, 3488 bool HasQualifier, 3489 NestedNameSpecifier *Qualifier, 3490 bool IsArrow, const Expr *Base); 3491 // Compute the object pointer. 3492 Address EmitCXXMemberDataPointerAddress(const Expr *E, Address base, 3493 llvm::Value *memberPtr, 3494 const MemberPointerType *memberPtrType, 3495 LValueBaseInfo *BaseInfo = nullptr, 3496 TBAAAccessInfo *TBAAInfo = nullptr); 3497 RValue EmitCXXMemberPointerCallExpr(const CXXMemberCallExpr *E, 3498 ReturnValueSlot ReturnValue); 3499 3500 RValue EmitCXXOperatorMemberCallExpr(const CXXOperatorCallExpr *E, 3501 const CXXMethodDecl *MD, 3502 ReturnValueSlot ReturnValue); 3503 RValue EmitCXXPseudoDestructorExpr(const CXXPseudoDestructorExpr *E); 3504 3505 RValue EmitCUDAKernelCallExpr(const CUDAKernelCallExpr *E, 3506 ReturnValueSlot ReturnValue); 3507 3508 RValue EmitNVPTXDevicePrintfCallExpr(const CallExpr *E, 3509 ReturnValueSlot ReturnValue); 3510 3511 RValue EmitBuiltinExpr(const FunctionDecl *FD, 3512 unsigned BuiltinID, const CallExpr *E, 3513 ReturnValueSlot ReturnValue); 3514 3515 /// Emit IR for __builtin_os_log_format. 3516 RValue emitBuiltinOSLogFormat(const CallExpr &E); 3517 3518 llvm::Function *generateBuiltinOSLogHelperFunction( 3519 const analyze_os_log::OSLogBufferLayout &Layout, 3520 CharUnits BufferAlignment); 3521 3522 RValue EmitBlockCallExpr(const CallExpr *E, ReturnValueSlot ReturnValue); 3523 3524 /// EmitTargetBuiltinExpr - Emit the given builtin call. Returns 0 if the call 3525 /// is unhandled by the current target. 3526 llvm::Value *EmitTargetBuiltinExpr(unsigned BuiltinID, const CallExpr *E); 3527 3528 llvm::Value *EmitAArch64CompareBuiltinExpr(llvm::Value *Op, llvm::Type *Ty, 3529 const llvm::CmpInst::Predicate Fp, 3530 const llvm::CmpInst::Predicate Ip, 3531 const llvm::Twine &Name = ""); 3532 llvm::Value *EmitARMBuiltinExpr(unsigned BuiltinID, const CallExpr *E, 3533 llvm::Triple::ArchType Arch); 3534 3535 llvm::Value *EmitCommonNeonBuiltinExpr(unsigned BuiltinID, 3536 unsigned LLVMIntrinsic, 3537 unsigned AltLLVMIntrinsic, 3538 const char *NameHint, 3539 unsigned Modifier, 3540 const CallExpr *E, 3541 SmallVectorImpl<llvm::Value *> &Ops, 3542 Address PtrOp0, Address PtrOp1, 3543 llvm::Triple::ArchType Arch); 3544 llvm::Function *LookupNeonLLVMIntrinsic(unsigned IntrinsicID, 3545 unsigned Modifier, llvm::Type *ArgTy, 3546 const CallExpr *E); 3547 llvm::Value *EmitNeonCall(llvm::Function *F, 3548 SmallVectorImpl<llvm::Value*> &O, 3549 const char *name, 3550 unsigned shift = 0, bool rightshift = false); 3551 llvm::Value *EmitNeonSplat(llvm::Value *V, llvm::Constant *Idx); 3552 llvm::Value *EmitNeonShiftVector(llvm::Value *V, llvm::Type *Ty, 3553 bool negateForRightShift); 3554 llvm::Value *EmitNeonRShiftImm(llvm::Value *Vec, llvm::Value *Amt, 3555 llvm::Type *Ty, bool usgn, const char *name); 3556 llvm::Value *vectorWrapScalar16(llvm::Value *Op); 3557 llvm::Value *EmitAArch64BuiltinExpr(unsigned BuiltinID, const CallExpr *E, 3558 llvm::Triple::ArchType Arch); 3559 3560 llvm::Value *BuildVector(ArrayRef<llvm::Value*> Ops); 3561 llvm::Value *EmitX86BuiltinExpr(unsigned BuiltinID, const CallExpr *E); 3562 llvm::Value *EmitPPCBuiltinExpr(unsigned BuiltinID, const CallExpr *E); 3563 llvm::Value *EmitAMDGPUBuiltinExpr(unsigned BuiltinID, const CallExpr *E); 3564 llvm::Value *EmitSystemZBuiltinExpr(unsigned BuiltinID, const CallExpr *E); 3565 llvm::Value *EmitNVPTXBuiltinExpr(unsigned BuiltinID, const CallExpr *E); 3566 llvm::Value *EmitWebAssemblyBuiltinExpr(unsigned BuiltinID, 3567 const CallExpr *E); 3568 llvm::Value *EmitHexagonBuiltinExpr(unsigned BuiltinID, const CallExpr *E); 3569 3570 private: 3571 enum class MSVCIntrin; 3572 3573 public: 3574 llvm::Value *EmitMSVCBuiltinExpr(MSVCIntrin BuiltinID, const CallExpr *E); 3575 3576 llvm::Value *EmitBuiltinAvailable(ArrayRef<llvm::Value *> Args); 3577 3578 llvm::Value *EmitObjCProtocolExpr(const ObjCProtocolExpr *E); 3579 llvm::Value *EmitObjCStringLiteral(const ObjCStringLiteral *E); 3580 llvm::Value *EmitObjCBoxedExpr(const ObjCBoxedExpr *E); 3581 llvm::Value *EmitObjCArrayLiteral(const ObjCArrayLiteral *E); 3582 llvm::Value *EmitObjCDictionaryLiteral(const ObjCDictionaryLiteral *E); 3583 llvm::Value *EmitObjCCollectionLiteral(const Expr *E, 3584 const ObjCMethodDecl *MethodWithObjects); 3585 llvm::Value *EmitObjCSelectorExpr(const ObjCSelectorExpr *E); 3586 RValue EmitObjCMessageExpr(const ObjCMessageExpr *E, 3587 ReturnValueSlot Return = ReturnValueSlot()); 3588 3589 /// Retrieves the default cleanup kind for an ARC cleanup. 3590 /// Except under -fobjc-arc-eh, ARC cleanups are normal-only. 3591 CleanupKind getARCCleanupKind() { 3592 return CGM.getCodeGenOpts().ObjCAutoRefCountExceptions 3593 ? NormalAndEHCleanup : NormalCleanup; 3594 } 3595 3596 // ARC primitives. 3597 void EmitARCInitWeak(Address addr, llvm::Value *value); 3598 void EmitARCDestroyWeak(Address addr); 3599 llvm::Value *EmitARCLoadWeak(Address addr); 3600 llvm::Value *EmitARCLoadWeakRetained(Address addr); 3601 llvm::Value *EmitARCStoreWeak(Address addr, llvm::Value *value, bool ignored); 3602 void emitARCCopyAssignWeak(QualType Ty, Address DstAddr, Address SrcAddr); 3603 void emitARCMoveAssignWeak(QualType Ty, Address DstAddr, Address SrcAddr); 3604 void EmitARCCopyWeak(Address dst, Address src); 3605 void EmitARCMoveWeak(Address dst, Address src); 3606 llvm::Value *EmitARCRetainAutorelease(QualType type, llvm::Value *value); 3607 llvm::Value *EmitARCRetainAutoreleaseNonBlock(llvm::Value *value); 3608 llvm::Value *EmitARCStoreStrong(LValue lvalue, llvm::Value *value, 3609 bool resultIgnored); 3610 llvm::Value *EmitARCStoreStrongCall(Address addr, llvm::Value *value, 3611 bool resultIgnored); 3612 llvm::Value *EmitARCRetain(QualType type, llvm::Value *value); 3613 llvm::Value *EmitARCRetainNonBlock(llvm::Value *value); 3614 llvm::Value *EmitARCRetainBlock(llvm::Value *value, bool mandatory); 3615 void EmitARCDestroyStrong(Address addr, ARCPreciseLifetime_t precise); 3616 void EmitARCRelease(llvm::Value *value, ARCPreciseLifetime_t precise); 3617 llvm::Value *EmitARCAutorelease(llvm::Value *value); 3618 llvm::Value *EmitARCAutoreleaseReturnValue(llvm::Value *value); 3619 llvm::Value *EmitARCRetainAutoreleaseReturnValue(llvm::Value *value); 3620 llvm::Value *EmitARCRetainAutoreleasedReturnValue(llvm::Value *value); 3621 llvm::Value *EmitARCUnsafeClaimAutoreleasedReturnValue(llvm::Value *value); 3622 3623 std::pair<LValue,llvm::Value*> 3624 EmitARCStoreAutoreleasing(const BinaryOperator *e); 3625 std::pair<LValue,llvm::Value*> 3626 EmitARCStoreStrong(const BinaryOperator *e, bool ignored); 3627 std::pair<LValue,llvm::Value*> 3628 EmitARCStoreUnsafeUnretained(const BinaryOperator *e, bool ignored); 3629 3630 llvm::Value *EmitObjCThrowOperand(const Expr *expr); 3631 llvm::Value *EmitObjCConsumeObject(QualType T, llvm::Value *Ptr); 3632 llvm::Value *EmitObjCExtendObjectLifetime(QualType T, llvm::Value *Ptr); 3633 3634 llvm::Value *EmitARCExtendBlockObject(const Expr *expr); 3635 llvm::Value *EmitARCReclaimReturnedObject(const Expr *e, 3636 bool allowUnsafeClaim); 3637 llvm::Value *EmitARCRetainScalarExpr(const Expr *expr); 3638 llvm::Value *EmitARCRetainAutoreleaseScalarExpr(const Expr *expr); 3639 llvm::Value *EmitARCUnsafeUnretainedScalarExpr(const Expr *expr); 3640 3641 void EmitARCIntrinsicUse(ArrayRef<llvm::Value*> values); 3642 3643 static Destroyer destroyARCStrongImprecise; 3644 static Destroyer destroyARCStrongPrecise; 3645 static Destroyer destroyARCWeak; 3646 static Destroyer emitARCIntrinsicUse; 3647 static Destroyer destroyNonTrivialCStruct; 3648 3649 void EmitObjCAutoreleasePoolPop(llvm::Value *Ptr); 3650 llvm::Value *EmitObjCAutoreleasePoolPush(); 3651 llvm::Value *EmitObjCMRRAutoreleasePoolPush(); 3652 void EmitObjCAutoreleasePoolCleanup(llvm::Value *Ptr); 3653 void EmitObjCMRRAutoreleasePoolPop(llvm::Value *Ptr); 3654 3655 /// Emits a reference binding to the passed in expression. 3656 RValue EmitReferenceBindingToExpr(const Expr *E); 3657 3658 //===--------------------------------------------------------------------===// 3659 // Expression Emission 3660 //===--------------------------------------------------------------------===// 3661 3662 // Expressions are broken into three classes: scalar, complex, aggregate. 3663 3664 /// EmitScalarExpr - Emit the computation of the specified expression of LLVM 3665 /// scalar type, returning the result. 3666 llvm::Value *EmitScalarExpr(const Expr *E , bool IgnoreResultAssign = false); 3667 3668 /// Emit a conversion from the specified type to the specified destination 3669 /// type, both of which are LLVM scalar types. 3670 llvm::Value *EmitScalarConversion(llvm::Value *Src, QualType SrcTy, 3671 QualType DstTy, SourceLocation Loc); 3672 3673 /// Emit a conversion from the specified complex type to the specified 3674 /// destination type, where the destination type is an LLVM scalar type. 3675 llvm::Value *EmitComplexToScalarConversion(ComplexPairTy Src, QualType SrcTy, 3676 QualType DstTy, 3677 SourceLocation Loc); 3678 3679 /// EmitAggExpr - Emit the computation of the specified expression 3680 /// of aggregate type. The result is computed into the given slot, 3681 /// which may be null to indicate that the value is not needed. 3682 void EmitAggExpr(const Expr *E, AggValueSlot AS); 3683 3684 /// EmitAggExprToLValue - Emit the computation of the specified expression of 3685 /// aggregate type into a temporary LValue. 3686 LValue EmitAggExprToLValue(const Expr *E); 3687 3688 /// EmitExtendGCLifetime - Given a pointer to an Objective-C object, 3689 /// make sure it survives garbage collection until this point. 3690 void EmitExtendGCLifetime(llvm::Value *object); 3691 3692 /// EmitComplexExpr - Emit the computation of the specified expression of 3693 /// complex type, returning the result. 3694 ComplexPairTy EmitComplexExpr(const Expr *E, 3695 bool IgnoreReal = false, 3696 bool IgnoreImag = false); 3697 3698 /// EmitComplexExprIntoLValue - Emit the given expression of complex 3699 /// type and place its result into the specified l-value. 3700 void EmitComplexExprIntoLValue(const Expr *E, LValue dest, bool isInit); 3701 3702 /// EmitStoreOfComplex - Store a complex number into the specified l-value. 3703 void EmitStoreOfComplex(ComplexPairTy V, LValue dest, bool isInit); 3704 3705 /// EmitLoadOfComplex - Load a complex number from the specified l-value. 3706 ComplexPairTy EmitLoadOfComplex(LValue src, SourceLocation loc); 3707 3708 Address emitAddrOfRealComponent(Address complex, QualType complexType); 3709 Address emitAddrOfImagComponent(Address complex, QualType complexType); 3710 3711 /// AddInitializerToStaticVarDecl - Add the initializer for 'D' to the 3712 /// global variable that has already been created for it. If the initializer 3713 /// has a different type than GV does, this may free GV and return a different 3714 /// one. Otherwise it just returns GV. 3715 llvm::GlobalVariable * 3716 AddInitializerToStaticVarDecl(const VarDecl &D, 3717 llvm::GlobalVariable *GV); 3718 3719 3720 /// EmitCXXGlobalVarDeclInit - Create the initializer for a C++ 3721 /// variable with global storage. 3722 void EmitCXXGlobalVarDeclInit(const VarDecl &D, llvm::Constant *DeclPtr, 3723 bool PerformInit); 3724 3725 llvm::Constant *createAtExitStub(const VarDecl &VD, llvm::Constant *Dtor, 3726 llvm::Constant *Addr); 3727 3728 /// Call atexit() with a function that passes the given argument to 3729 /// the given function. 3730 void registerGlobalDtorWithAtExit(const VarDecl &D, llvm::Constant *fn, 3731 llvm::Constant *addr); 3732 3733 /// Call atexit() with function dtorStub. 3734 void registerGlobalDtorWithAtExit(llvm::Constant *dtorStub); 3735 3736 /// Emit code in this function to perform a guarded variable 3737 /// initialization. Guarded initializations are used when it's not 3738 /// possible to prove that an initialization will be done exactly 3739 /// once, e.g. with a static local variable or a static data member 3740 /// of a class template. 3741 void EmitCXXGuardedInit(const VarDecl &D, llvm::GlobalVariable *DeclPtr, 3742 bool PerformInit); 3743 3744 enum class GuardKind { VariableGuard, TlsGuard }; 3745 3746 /// Emit a branch to select whether or not to perform guarded initialization. 3747 void EmitCXXGuardedInitBranch(llvm::Value *NeedsInit, 3748 llvm::BasicBlock *InitBlock, 3749 llvm::BasicBlock *NoInitBlock, 3750 GuardKind Kind, const VarDecl *D); 3751 3752 /// GenerateCXXGlobalInitFunc - Generates code for initializing global 3753 /// variables. 3754 void GenerateCXXGlobalInitFunc(llvm::Function *Fn, 3755 ArrayRef<llvm::Function *> CXXThreadLocals, 3756 Address Guard = Address::invalid()); 3757 3758 /// GenerateCXXGlobalDtorsFunc - Generates code for destroying global 3759 /// variables. 3760 void GenerateCXXGlobalDtorsFunc( 3761 llvm::Function *Fn, 3762 const std::vector<std::pair<llvm::WeakTrackingVH, llvm::Constant *>> 3763 &DtorsAndObjects); 3764 3765 void GenerateCXXGlobalVarDeclInitFunc(llvm::Function *Fn, 3766 const VarDecl *D, 3767 llvm::GlobalVariable *Addr, 3768 bool PerformInit); 3769 3770 void EmitCXXConstructExpr(const CXXConstructExpr *E, AggValueSlot Dest); 3771 3772 void EmitSynthesizedCXXCopyCtor(Address Dest, Address Src, const Expr *Exp); 3773 3774 void enterFullExpression(const ExprWithCleanups *E) { 3775 if (E->getNumObjects() == 0) return; 3776 enterNonTrivialFullExpression(E); 3777 } 3778 void enterNonTrivialFullExpression(const ExprWithCleanups *E); 3779 3780 void EmitCXXThrowExpr(const CXXThrowExpr *E, bool KeepInsertionPoint = true); 3781 3782 void EmitLambdaExpr(const LambdaExpr *E, AggValueSlot Dest); 3783 3784 RValue EmitAtomicExpr(AtomicExpr *E); 3785 3786 //===--------------------------------------------------------------------===// 3787 // Annotations Emission 3788 //===--------------------------------------------------------------------===// 3789 3790 /// Emit an annotation call (intrinsic or builtin). 3791 llvm::Value *EmitAnnotationCall(llvm::Value *AnnotationFn, 3792 llvm::Value *AnnotatedVal, 3793 StringRef AnnotationStr, 3794 SourceLocation Location); 3795 3796 /// Emit local annotations for the local variable V, declared by D. 3797 void EmitVarAnnotations(const VarDecl *D, llvm::Value *V); 3798 3799 /// Emit field annotations for the given field & value. Returns the 3800 /// annotation result. 3801 Address EmitFieldAnnotations(const FieldDecl *D, Address V); 3802 3803 //===--------------------------------------------------------------------===// 3804 // Internal Helpers 3805 //===--------------------------------------------------------------------===// 3806 3807 /// ContainsLabel - Return true if the statement contains a label in it. If 3808 /// this statement is not executed normally, it not containing a label means 3809 /// that we can just remove the code. 3810 static bool ContainsLabel(const Stmt *S, bool IgnoreCaseStmts = false); 3811 3812 /// containsBreak - Return true if the statement contains a break out of it. 3813 /// If the statement (recursively) contains a switch or loop with a break 3814 /// inside of it, this is fine. 3815 static bool containsBreak(const Stmt *S); 3816 3817 /// Determine if the given statement might introduce a declaration into the 3818 /// current scope, by being a (possibly-labelled) DeclStmt. 3819 static bool mightAddDeclToScope(const Stmt *S); 3820 3821 /// ConstantFoldsToSimpleInteger - If the specified expression does not fold 3822 /// to a constant, or if it does but contains a label, return false. If it 3823 /// constant folds return true and set the boolean result in Result. 3824 bool ConstantFoldsToSimpleInteger(const Expr *Cond, bool &Result, 3825 bool AllowLabels = false); 3826 3827 /// ConstantFoldsToSimpleInteger - If the specified expression does not fold 3828 /// to a constant, or if it does but contains a label, return false. If it 3829 /// constant folds return true and set the folded value. 3830 bool ConstantFoldsToSimpleInteger(const Expr *Cond, llvm::APSInt &Result, 3831 bool AllowLabels = false); 3832 3833 /// EmitBranchOnBoolExpr - Emit a branch on a boolean condition (e.g. for an 3834 /// if statement) to the specified blocks. Based on the condition, this might 3835 /// try to simplify the codegen of the conditional based on the branch. 3836 /// TrueCount should be the number of times we expect the condition to 3837 /// evaluate to true based on PGO data. 3838 void EmitBranchOnBoolExpr(const Expr *Cond, llvm::BasicBlock *TrueBlock, 3839 llvm::BasicBlock *FalseBlock, uint64_t TrueCount); 3840 3841 /// Given an assignment `*LHS = RHS`, emit a test that checks if \p RHS is 3842 /// nonnull, if \p LHS is marked _Nonnull. 3843 void EmitNullabilityCheck(LValue LHS, llvm::Value *RHS, SourceLocation Loc); 3844 3845 /// An enumeration which makes it easier to specify whether or not an 3846 /// operation is a subtraction. 3847 enum { NotSubtraction = false, IsSubtraction = true }; 3848 3849 /// Same as IRBuilder::CreateInBoundsGEP, but additionally emits a check to 3850 /// detect undefined behavior when the pointer overflow sanitizer is enabled. 3851 /// \p SignedIndices indicates whether any of the GEP indices are signed. 3852 /// \p IsSubtraction indicates whether the expression used to form the GEP 3853 /// is a subtraction. 3854 llvm::Value *EmitCheckedInBoundsGEP(llvm::Value *Ptr, 3855 ArrayRef<llvm::Value *> IdxList, 3856 bool SignedIndices, 3857 bool IsSubtraction, 3858 SourceLocation Loc, 3859 const Twine &Name = ""); 3860 3861 /// Specifies which type of sanitizer check to apply when handling a 3862 /// particular builtin. 3863 enum BuiltinCheckKind { 3864 BCK_CTZPassedZero, 3865 BCK_CLZPassedZero, 3866 }; 3867 3868 /// Emits an argument for a call to a builtin. If the builtin sanitizer is 3869 /// enabled, a runtime check specified by \p Kind is also emitted. 3870 llvm::Value *EmitCheckedArgForBuiltin(const Expr *E, BuiltinCheckKind Kind); 3871 3872 /// Emit a description of a type in a format suitable for passing to 3873 /// a runtime sanitizer handler. 3874 llvm::Constant *EmitCheckTypeDescriptor(QualType T); 3875 3876 /// Convert a value into a format suitable for passing to a runtime 3877 /// sanitizer handler. 3878 llvm::Value *EmitCheckValue(llvm::Value *V); 3879 3880 /// Emit a description of a source location in a format suitable for 3881 /// passing to a runtime sanitizer handler. 3882 llvm::Constant *EmitCheckSourceLocation(SourceLocation Loc); 3883 3884 /// Create a basic block that will call a handler function in a 3885 /// sanitizer runtime with the provided arguments, and create a conditional 3886 /// branch to it. 3887 void EmitCheck(ArrayRef<std::pair<llvm::Value *, SanitizerMask>> Checked, 3888 SanitizerHandler Check, ArrayRef<llvm::Constant *> StaticArgs, 3889 ArrayRef<llvm::Value *> DynamicArgs); 3890 3891 /// Emit a slow path cross-DSO CFI check which calls __cfi_slowpath 3892 /// if Cond if false. 3893 void EmitCfiSlowPathCheck(SanitizerMask Kind, llvm::Value *Cond, 3894 llvm::ConstantInt *TypeId, llvm::Value *Ptr, 3895 ArrayRef<llvm::Constant *> StaticArgs); 3896 3897 /// Emit a reached-unreachable diagnostic if \p Loc is valid and runtime 3898 /// checking is enabled. Otherwise, just emit an unreachable instruction. 3899 void EmitUnreachable(SourceLocation Loc); 3900 3901 /// Create a basic block that will call the trap intrinsic, and emit a 3902 /// conditional branch to it, for the -ftrapv checks. 3903 void EmitTrapCheck(llvm::Value *Checked); 3904 3905 /// Emit a call to trap or debugtrap and attach function attribute 3906 /// "trap-func-name" if specified. 3907 llvm::CallInst *EmitTrapCall(llvm::Intrinsic::ID IntrID); 3908 3909 /// Emit a stub for the cross-DSO CFI check function. 3910 void EmitCfiCheckStub(); 3911 3912 /// Emit a cross-DSO CFI failure handling function. 3913 void EmitCfiCheckFail(); 3914 3915 /// Create a check for a function parameter that may potentially be 3916 /// declared as non-null. 3917 void EmitNonNullArgCheck(RValue RV, QualType ArgType, SourceLocation ArgLoc, 3918 AbstractCallee AC, unsigned ParmNum); 3919 3920 /// EmitCallArg - Emit a single call argument. 3921 void EmitCallArg(CallArgList &args, const Expr *E, QualType ArgType); 3922 3923 /// EmitDelegateCallArg - We are performing a delegate call; that 3924 /// is, the current function is delegating to another one. Produce 3925 /// a r-value suitable for passing the given parameter. 3926 void EmitDelegateCallArg(CallArgList &args, const VarDecl *param, 3927 SourceLocation loc); 3928 3929 /// SetFPAccuracy - Set the minimum required accuracy of the given floating 3930 /// point operation, expressed as the maximum relative error in ulp. 3931 void SetFPAccuracy(llvm::Value *Val, float Accuracy); 3932 3933 private: 3934 llvm::MDNode *getRangeForLoadFromType(QualType Ty); 3935 void EmitReturnOfRValue(RValue RV, QualType Ty); 3936 3937 void deferPlaceholderReplacement(llvm::Instruction *Old, llvm::Value *New); 3938 3939 llvm::SmallVector<std::pair<llvm::Instruction *, llvm::Value *>, 4> 3940 DeferredReplacements; 3941 3942 /// Set the address of a local variable. 3943 void setAddrOfLocalVar(const VarDecl *VD, Address Addr) { 3944 assert(!LocalDeclMap.count(VD) && "Decl already exists in LocalDeclMap!"); 3945 LocalDeclMap.insert({VD, Addr}); 3946 } 3947 3948 /// ExpandTypeFromArgs - Reconstruct a structure of type \arg Ty 3949 /// from function arguments into \arg Dst. See ABIArgInfo::Expand. 3950 /// 3951 /// \param AI - The first function argument of the expansion. 3952 void ExpandTypeFromArgs(QualType Ty, LValue Dst, 3953 SmallVectorImpl<llvm::Value *>::iterator &AI); 3954 3955 /// ExpandTypeToArgs - Expand an CallArg \arg Arg, with the LLVM type for \arg 3956 /// Ty, into individual arguments on the provided vector \arg IRCallArgs, 3957 /// starting at index \arg IRCallArgPos. See ABIArgInfo::Expand. 3958 void ExpandTypeToArgs(QualType Ty, CallArg Arg, llvm::FunctionType *IRFuncTy, 3959 SmallVectorImpl<llvm::Value *> &IRCallArgs, 3960 unsigned &IRCallArgPos); 3961 3962 llvm::Value* EmitAsmInput(const TargetInfo::ConstraintInfo &Info, 3963 const Expr *InputExpr, std::string &ConstraintStr); 3964 3965 llvm::Value* EmitAsmInputLValue(const TargetInfo::ConstraintInfo &Info, 3966 LValue InputValue, QualType InputType, 3967 std::string &ConstraintStr, 3968 SourceLocation Loc); 3969 3970 /// Attempts to statically evaluate the object size of E. If that 3971 /// fails, emits code to figure the size of E out for us. This is 3972 /// pass_object_size aware. 3973 /// 3974 /// If EmittedExpr is non-null, this will use that instead of re-emitting E. 3975 llvm::Value *evaluateOrEmitBuiltinObjectSize(const Expr *E, unsigned Type, 3976 llvm::IntegerType *ResType, 3977 llvm::Value *EmittedE); 3978 3979 /// Emits the size of E, as required by __builtin_object_size. This 3980 /// function is aware of pass_object_size parameters, and will act accordingly 3981 /// if E is a parameter with the pass_object_size attribute. 3982 llvm::Value *emitBuiltinObjectSize(const Expr *E, unsigned Type, 3983 llvm::IntegerType *ResType, 3984 llvm::Value *EmittedE); 3985 3986 public: 3987 #ifndef NDEBUG 3988 // Determine whether the given argument is an Objective-C method 3989 // that may have type parameters in its signature. 3990 static bool isObjCMethodWithTypeParams(const ObjCMethodDecl *method) { 3991 const DeclContext *dc = method->getDeclContext(); 3992 if (const ObjCInterfaceDecl *classDecl= dyn_cast<ObjCInterfaceDecl>(dc)) { 3993 return classDecl->getTypeParamListAsWritten(); 3994 } 3995 3996 if (const ObjCCategoryDecl *catDecl = dyn_cast<ObjCCategoryDecl>(dc)) { 3997 return catDecl->getTypeParamList(); 3998 } 3999 4000 return false; 4001 } 4002 4003 template<typename T> 4004 static bool isObjCMethodWithTypeParams(const T *) { return false; } 4005 #endif 4006 4007 enum class EvaluationOrder { 4008 ///! No language constraints on evaluation order. 4009 Default, 4010 ///! Language semantics require left-to-right evaluation. 4011 ForceLeftToRight, 4012 ///! Language semantics require right-to-left evaluation. 4013 ForceRightToLeft 4014 }; 4015 4016 /// EmitCallArgs - Emit call arguments for a function. 4017 template <typename T> 4018 void EmitCallArgs(CallArgList &Args, const T *CallArgTypeInfo, 4019 llvm::iterator_range<CallExpr::const_arg_iterator> ArgRange, 4020 AbstractCallee AC = AbstractCallee(), 4021 unsigned ParamsToSkip = 0, 4022 EvaluationOrder Order = EvaluationOrder::Default) { 4023 SmallVector<QualType, 16> ArgTypes; 4024 CallExpr::const_arg_iterator Arg = ArgRange.begin(); 4025 4026 assert((ParamsToSkip == 0 || CallArgTypeInfo) && 4027 "Can't skip parameters if type info is not provided"); 4028 if (CallArgTypeInfo) { 4029 #ifndef NDEBUG 4030 bool isGenericMethod = isObjCMethodWithTypeParams(CallArgTypeInfo); 4031 #endif 4032 4033 // First, use the argument types that the type info knows about 4034 for (auto I = CallArgTypeInfo->param_type_begin() + ParamsToSkip, 4035 E = CallArgTypeInfo->param_type_end(); 4036 I != E; ++I, ++Arg) { 4037 assert(Arg != ArgRange.end() && "Running over edge of argument list!"); 4038 assert((isGenericMethod || 4039 ((*I)->isVariablyModifiedType() || 4040 (*I).getNonReferenceType()->isObjCRetainableType() || 4041 getContext() 4042 .getCanonicalType((*I).getNonReferenceType()) 4043 .getTypePtr() == 4044 getContext() 4045 .getCanonicalType((*Arg)->getType()) 4046 .getTypePtr())) && 4047 "type mismatch in call argument!"); 4048 ArgTypes.push_back(*I); 4049 } 4050 } 4051 4052 // Either we've emitted all the call args, or we have a call to variadic 4053 // function. 4054 assert((Arg == ArgRange.end() || !CallArgTypeInfo || 4055 CallArgTypeInfo->isVariadic()) && 4056 "Extra arguments in non-variadic function!"); 4057 4058 // If we still have any arguments, emit them using the type of the argument. 4059 for (auto *A : llvm::make_range(Arg, ArgRange.end())) 4060 ArgTypes.push_back(CallArgTypeInfo ? getVarArgType(A) : A->getType()); 4061 4062 EmitCallArgs(Args, ArgTypes, ArgRange, AC, ParamsToSkip, Order); 4063 } 4064 4065 void EmitCallArgs(CallArgList &Args, ArrayRef<QualType> ArgTypes, 4066 llvm::iterator_range<CallExpr::const_arg_iterator> ArgRange, 4067 AbstractCallee AC = AbstractCallee(), 4068 unsigned ParamsToSkip = 0, 4069 EvaluationOrder Order = EvaluationOrder::Default); 4070 4071 /// EmitPointerWithAlignment - Given an expression with a pointer type, 4072 /// emit the value and compute our best estimate of the alignment of the 4073 /// pointee. 4074 /// 4075 /// \param BaseInfo - If non-null, this will be initialized with 4076 /// information about the source of the alignment and the may-alias 4077 /// attribute. Note that this function will conservatively fall back on 4078 /// the type when it doesn't recognize the expression and may-alias will 4079 /// be set to false. 4080 /// 4081 /// One reasonable way to use this information is when there's a language 4082 /// guarantee that the pointer must be aligned to some stricter value, and 4083 /// we're simply trying to ensure that sufficiently obvious uses of under- 4084 /// aligned objects don't get miscompiled; for example, a placement new 4085 /// into the address of a local variable. In such a case, it's quite 4086 /// reasonable to just ignore the returned alignment when it isn't from an 4087 /// explicit source. 4088 Address EmitPointerWithAlignment(const Expr *Addr, 4089 LValueBaseInfo *BaseInfo = nullptr, 4090 TBAAAccessInfo *TBAAInfo = nullptr); 4091 4092 /// If \p E references a parameter with pass_object_size info or a constant 4093 /// array size modifier, emit the object size divided by the size of \p EltTy. 4094 /// Otherwise return null. 4095 llvm::Value *LoadPassedObjectSize(const Expr *E, QualType EltTy); 4096 4097 void EmitSanitizerStatReport(llvm::SanitizerStatKind SSK); 4098 4099 struct MultiVersionResolverOption { 4100 llvm::Function *Function; 4101 TargetAttr::ParsedTargetAttr ParsedAttribute; 4102 unsigned Priority; 4103 MultiVersionResolverOption(const TargetInfo &TargInfo, llvm::Function *F, 4104 const clang::TargetAttr::ParsedTargetAttr &PT) 4105 : Function(F), ParsedAttribute(PT), Priority(0u) { 4106 for (StringRef Feat : PT.Features) 4107 Priority = std::max(Priority, 4108 TargInfo.multiVersionSortPriority(Feat.substr(1))); 4109 4110 if (!PT.Architecture.empty()) 4111 Priority = std::max(Priority, 4112 TargInfo.multiVersionSortPriority(PT.Architecture)); 4113 } 4114 4115 bool operator>(const MultiVersionResolverOption &Other) const { 4116 return Priority > Other.Priority; 4117 } 4118 }; 4119 void EmitMultiVersionResolver(llvm::Function *Resolver, 4120 ArrayRef<MultiVersionResolverOption> Options); 4121 4122 private: 4123 QualType getVarArgType(const Expr *Arg); 4124 4125 void EmitDeclMetadata(); 4126 4127 BlockByrefHelpers *buildByrefHelpers(llvm::StructType &byrefType, 4128 const AutoVarEmission &emission); 4129 4130 void AddObjCARCExceptionMetadata(llvm::Instruction *Inst); 4131 4132 llvm::Value *GetValueForARMHint(unsigned BuiltinID); 4133 llvm::Value *EmitX86CpuIs(const CallExpr *E); 4134 llvm::Value *EmitX86CpuIs(StringRef CPUStr); 4135 llvm::Value *EmitX86CpuSupports(const CallExpr *E); 4136 llvm::Value *EmitX86CpuSupports(ArrayRef<StringRef> FeatureStrs); 4137 llvm::Value *EmitX86CpuInit(); 4138 llvm::Value *FormResolverCondition(const MultiVersionResolverOption &RO); 4139 }; 4140 4141 /// Helper class with most of the code for saving a value for a 4142 /// conditional expression cleanup. 4143 struct DominatingLLVMValue { 4144 typedef llvm::PointerIntPair<llvm::Value*, 1, bool> saved_type; 4145 4146 /// Answer whether the given value needs extra work to be saved. 4147 static bool needsSaving(llvm::Value *value) { 4148 // If it's not an instruction, we don't need to save. 4149 if (!isa<llvm::Instruction>(value)) return false; 4150 4151 // If it's an instruction in the entry block, we don't need to save. 4152 llvm::BasicBlock *block = cast<llvm::Instruction>(value)->getParent(); 4153 return (block != &block->getParent()->getEntryBlock()); 4154 } 4155 4156 /// Try to save the given value. 4157 static saved_type save(CodeGenFunction &CGF, llvm::Value *value) { 4158 if (!needsSaving(value)) return saved_type(value, false); 4159 4160 // Otherwise, we need an alloca. 4161 auto align = CharUnits::fromQuantity( 4162 CGF.CGM.getDataLayout().getPrefTypeAlignment(value->getType())); 4163 Address alloca = 4164 CGF.CreateTempAlloca(value->getType(), align, "cond-cleanup.save"); 4165 CGF.Builder.CreateStore(value, alloca); 4166 4167 return saved_type(alloca.getPointer(), true); 4168 } 4169 4170 static llvm::Value *restore(CodeGenFunction &CGF, saved_type value) { 4171 // If the value says it wasn't saved, trust that it's still dominating. 4172 if (!value.getInt()) return value.getPointer(); 4173 4174 // Otherwise, it should be an alloca instruction, as set up in save(). 4175 auto alloca = cast<llvm::AllocaInst>(value.getPointer()); 4176 return CGF.Builder.CreateAlignedLoad(alloca, alloca->getAlignment()); 4177 } 4178 }; 4179 4180 /// A partial specialization of DominatingValue for llvm::Values that 4181 /// might be llvm::Instructions. 4182 template <class T> struct DominatingPointer<T,true> : DominatingLLVMValue { 4183 typedef T *type; 4184 static type restore(CodeGenFunction &CGF, saved_type value) { 4185 return static_cast<T*>(DominatingLLVMValue::restore(CGF, value)); 4186 } 4187 }; 4188 4189 /// A specialization of DominatingValue for Address. 4190 template <> struct DominatingValue<Address> { 4191 typedef Address type; 4192 4193 struct saved_type { 4194 DominatingLLVMValue::saved_type SavedValue; 4195 CharUnits Alignment; 4196 }; 4197 4198 static bool needsSaving(type value) { 4199 return DominatingLLVMValue::needsSaving(value.getPointer()); 4200 } 4201 static saved_type save(CodeGenFunction &CGF, type value) { 4202 return { DominatingLLVMValue::save(CGF, value.getPointer()), 4203 value.getAlignment() }; 4204 } 4205 static type restore(CodeGenFunction &CGF, saved_type value) { 4206 return Address(DominatingLLVMValue::restore(CGF, value.SavedValue), 4207 value.Alignment); 4208 } 4209 }; 4210 4211 /// A specialization of DominatingValue for RValue. 4212 template <> struct DominatingValue<RValue> { 4213 typedef RValue type; 4214 class saved_type { 4215 enum Kind { ScalarLiteral, ScalarAddress, AggregateLiteral, 4216 AggregateAddress, ComplexAddress }; 4217 4218 llvm::Value *Value; 4219 unsigned K : 3; 4220 unsigned Align : 29; 4221 saved_type(llvm::Value *v, Kind k, unsigned a = 0) 4222 : Value(v), K(k), Align(a) {} 4223 4224 public: 4225 static bool needsSaving(RValue value); 4226 static saved_type save(CodeGenFunction &CGF, RValue value); 4227 RValue restore(CodeGenFunction &CGF); 4228 4229 // implementations in CGCleanup.cpp 4230 }; 4231 4232 static bool needsSaving(type value) { 4233 return saved_type::needsSaving(value); 4234 } 4235 static saved_type save(CodeGenFunction &CGF, type value) { 4236 return saved_type::save(CGF, value); 4237 } 4238 static type restore(CodeGenFunction &CGF, saved_type value) { 4239 return value.restore(CGF); 4240 } 4241 }; 4242 4243 } // end namespace CodeGen 4244 } // end namespace clang 4245 4246 #endif 4247