1 //===-- CodeGenFunction.h - Per-Function state for LLVM CodeGen -*- C++ -*-===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This is the internal per-function state used for llvm translation.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #ifndef LLVM_CLANG_LIB_CODEGEN_CODEGENFUNCTION_H
15 #define LLVM_CLANG_LIB_CODEGEN_CODEGENFUNCTION_H
16 
17 #include "CGBuilder.h"
18 #include "CGDebugInfo.h"
19 #include "CGLoopInfo.h"
20 #include "CGValue.h"
21 #include "CodeGenModule.h"
22 #include "CodeGenPGO.h"
23 #include "EHScopeStack.h"
24 #include "VarBypassDetector.h"
25 #include "clang/AST/CharUnits.h"
26 #include "clang/AST/ExprCXX.h"
27 #include "clang/AST/ExprObjC.h"
28 #include "clang/AST/ExprOpenMP.h"
29 #include "clang/AST/Type.h"
30 #include "clang/Basic/ABI.h"
31 #include "clang/Basic/CapturedStmt.h"
32 #include "clang/Basic/OpenMPKinds.h"
33 #include "clang/Basic/TargetInfo.h"
34 #include "clang/Frontend/CodeGenOptions.h"
35 #include "llvm/ADT/ArrayRef.h"
36 #include "llvm/ADT/DenseMap.h"
37 #include "llvm/ADT/MapVector.h"
38 #include "llvm/ADT/SmallVector.h"
39 #include "llvm/IR/ValueHandle.h"
40 #include "llvm/Support/Debug.h"
41 #include "llvm/Transforms/Utils/SanitizerStats.h"
42 
43 namespace llvm {
44 class BasicBlock;
45 class LLVMContext;
46 class MDNode;
47 class Module;
48 class SwitchInst;
49 class Twine;
50 class Value;
51 class CallSite;
52 }
53 
54 namespace clang {
55 class ASTContext;
56 class BlockDecl;
57 class CXXDestructorDecl;
58 class CXXForRangeStmt;
59 class CXXTryStmt;
60 class Decl;
61 class LabelDecl;
62 class EnumConstantDecl;
63 class FunctionDecl;
64 class FunctionProtoType;
65 class LabelStmt;
66 class ObjCContainerDecl;
67 class ObjCInterfaceDecl;
68 class ObjCIvarDecl;
69 class ObjCMethodDecl;
70 class ObjCImplementationDecl;
71 class ObjCPropertyImplDecl;
72 class TargetInfo;
73 class VarDecl;
74 class ObjCForCollectionStmt;
75 class ObjCAtTryStmt;
76 class ObjCAtThrowStmt;
77 class ObjCAtSynchronizedStmt;
78 class ObjCAutoreleasePoolStmt;
79 
80 namespace analyze_os_log {
81 class OSLogBufferLayout;
82 }
83 
84 namespace CodeGen {
85 class CodeGenTypes;
86 class CGCallee;
87 class CGFunctionInfo;
88 class CGRecordLayout;
89 class CGBlockInfo;
90 class CGCXXABI;
91 class BlockByrefHelpers;
92 class BlockByrefInfo;
93 class BlockFlags;
94 class BlockFieldFlags;
95 class RegionCodeGenTy;
96 class TargetCodeGenInfo;
97 struct OMPTaskDataTy;
98 struct CGCoroData;
99 
100 /// The kind of evaluation to perform on values of a particular
101 /// type.  Basically, is the code in CGExprScalar, CGExprComplex, or
102 /// CGExprAgg?
103 ///
104 /// TODO: should vectors maybe be split out into their own thing?
105 enum TypeEvaluationKind {
106   TEK_Scalar,
107   TEK_Complex,
108   TEK_Aggregate
109 };
110 
111 #define LIST_SANITIZER_CHECKS                                                  \
112   SANITIZER_CHECK(AddOverflow, add_overflow, 0)                                \
113   SANITIZER_CHECK(BuiltinUnreachable, builtin_unreachable, 0)                  \
114   SANITIZER_CHECK(CFICheckFail, cfi_check_fail, 0)                             \
115   SANITIZER_CHECK(DivremOverflow, divrem_overflow, 0)                          \
116   SANITIZER_CHECK(DynamicTypeCacheMiss, dynamic_type_cache_miss, 0)            \
117   SANITIZER_CHECK(FloatCastOverflow, float_cast_overflow, 0)                   \
118   SANITIZER_CHECK(FunctionTypeMismatch, function_type_mismatch, 0)             \
119   SANITIZER_CHECK(InvalidBuiltin, invalid_builtin, 0)                          \
120   SANITIZER_CHECK(LoadInvalidValue, load_invalid_value, 0)                     \
121   SANITIZER_CHECK(MissingReturn, missing_return, 0)                            \
122   SANITIZER_CHECK(MulOverflow, mul_overflow, 0)                                \
123   SANITIZER_CHECK(NegateOverflow, negate_overflow, 0)                          \
124   SANITIZER_CHECK(NullabilityArg, nullability_arg, 0)                          \
125   SANITIZER_CHECK(NullabilityReturn, nullability_return, 1)                    \
126   SANITIZER_CHECK(NonnullArg, nonnull_arg, 0)                                  \
127   SANITIZER_CHECK(NonnullReturn, nonnull_return, 1)                            \
128   SANITIZER_CHECK(OutOfBounds, out_of_bounds, 0)                               \
129   SANITIZER_CHECK(PointerOverflow, pointer_overflow, 0)                        \
130   SANITIZER_CHECK(ShiftOutOfBounds, shift_out_of_bounds, 0)                    \
131   SANITIZER_CHECK(SubOverflow, sub_overflow, 0)                                \
132   SANITIZER_CHECK(TypeMismatch, type_mismatch, 1)                              \
133   SANITIZER_CHECK(VLABoundNotPositive, vla_bound_not_positive, 0)
134 
135 enum SanitizerHandler {
136 #define SANITIZER_CHECK(Enum, Name, Version) Enum,
137   LIST_SANITIZER_CHECKS
138 #undef SANITIZER_CHECK
139 };
140 
141 /// CodeGenFunction - This class organizes the per-function state that is used
142 /// while generating LLVM code.
143 class CodeGenFunction : public CodeGenTypeCache {
144   CodeGenFunction(const CodeGenFunction &) = delete;
145   void operator=(const CodeGenFunction &) = delete;
146 
147   friend class CGCXXABI;
148 public:
149   /// A jump destination is an abstract label, branching to which may
150   /// require a jump out through normal cleanups.
151   struct JumpDest {
152     JumpDest() : Block(nullptr), ScopeDepth(), Index(0) {}
153     JumpDest(llvm::BasicBlock *Block,
154              EHScopeStack::stable_iterator Depth,
155              unsigned Index)
156       : Block(Block), ScopeDepth(Depth), Index(Index) {}
157 
158     bool isValid() const { return Block != nullptr; }
159     llvm::BasicBlock *getBlock() const { return Block; }
160     EHScopeStack::stable_iterator getScopeDepth() const { return ScopeDepth; }
161     unsigned getDestIndex() const { return Index; }
162 
163     // This should be used cautiously.
164     void setScopeDepth(EHScopeStack::stable_iterator depth) {
165       ScopeDepth = depth;
166     }
167 
168   private:
169     llvm::BasicBlock *Block;
170     EHScopeStack::stable_iterator ScopeDepth;
171     unsigned Index;
172   };
173 
174   CodeGenModule &CGM;  // Per-module state.
175   const TargetInfo &Target;
176 
177   typedef std::pair<llvm::Value *, llvm::Value *> ComplexPairTy;
178   LoopInfoStack LoopStack;
179   CGBuilderTy Builder;
180 
181   // Stores variables for which we can't generate correct lifetime markers
182   // because of jumps.
183   VarBypassDetector Bypasses;
184 
185   // CodeGen lambda for loops and support for ordered clause
186   typedef llvm::function_ref<void(CodeGenFunction &, const OMPLoopDirective &,
187                                   JumpDest)>
188       CodeGenLoopTy;
189   typedef llvm::function_ref<void(CodeGenFunction &, SourceLocation,
190                                   const unsigned, const bool)>
191       CodeGenOrderedTy;
192 
193   // Codegen lambda for loop bounds in worksharing loop constructs
194   typedef llvm::function_ref<std::pair<LValue, LValue>(
195       CodeGenFunction &, const OMPExecutableDirective &S)>
196       CodeGenLoopBoundsTy;
197 
198   // Codegen lambda for loop bounds in dispatch-based loop implementation
199   typedef llvm::function_ref<std::pair<llvm::Value *, llvm::Value *>(
200       CodeGenFunction &, const OMPExecutableDirective &S, Address LB,
201       Address UB)>
202       CodeGenDispatchBoundsTy;
203 
204   /// CGBuilder insert helper. This function is called after an
205   /// instruction is created using Builder.
206   void InsertHelper(llvm::Instruction *I, const llvm::Twine &Name,
207                     llvm::BasicBlock *BB,
208                     llvm::BasicBlock::iterator InsertPt) const;
209 
210   /// CurFuncDecl - Holds the Decl for the current outermost
211   /// non-closure context.
212   const Decl *CurFuncDecl;
213   /// CurCodeDecl - This is the inner-most code context, which includes blocks.
214   const Decl *CurCodeDecl;
215   const CGFunctionInfo *CurFnInfo;
216   QualType FnRetTy;
217   llvm::Function *CurFn;
218 
219   // Holds coroutine data if the current function is a coroutine. We use a
220   // wrapper to manage its lifetime, so that we don't have to define CGCoroData
221   // in this header.
222   struct CGCoroInfo {
223     std::unique_ptr<CGCoroData> Data;
224     CGCoroInfo();
225     ~CGCoroInfo();
226   };
227   CGCoroInfo CurCoro;
228 
229   bool isCoroutine() const {
230     return CurCoro.Data != nullptr;
231   }
232 
233   /// CurGD - The GlobalDecl for the current function being compiled.
234   GlobalDecl CurGD;
235 
236   /// PrologueCleanupDepth - The cleanup depth enclosing all the
237   /// cleanups associated with the parameters.
238   EHScopeStack::stable_iterator PrologueCleanupDepth;
239 
240   /// ReturnBlock - Unified return block.
241   JumpDest ReturnBlock;
242 
243   /// ReturnValue - The temporary alloca to hold the return
244   /// value. This is invalid iff the function has no return value.
245   Address ReturnValue;
246 
247   /// Return true if a label was seen in the current scope.
248   bool hasLabelBeenSeenInCurrentScope() const {
249     if (CurLexicalScope)
250       return CurLexicalScope->hasLabels();
251     return !LabelMap.empty();
252   }
253 
254   /// AllocaInsertPoint - This is an instruction in the entry block before which
255   /// we prefer to insert allocas.
256   llvm::AssertingVH<llvm::Instruction> AllocaInsertPt;
257 
258   /// API for captured statement code generation.
259   class CGCapturedStmtInfo {
260   public:
261     explicit CGCapturedStmtInfo(CapturedRegionKind K = CR_Default)
262         : Kind(K), ThisValue(nullptr), CXXThisFieldDecl(nullptr) {}
263     explicit CGCapturedStmtInfo(const CapturedStmt &S,
264                                 CapturedRegionKind K = CR_Default)
265       : Kind(K), ThisValue(nullptr), CXXThisFieldDecl(nullptr) {
266 
267       RecordDecl::field_iterator Field =
268         S.getCapturedRecordDecl()->field_begin();
269       for (CapturedStmt::const_capture_iterator I = S.capture_begin(),
270                                                 E = S.capture_end();
271            I != E; ++I, ++Field) {
272         if (I->capturesThis())
273           CXXThisFieldDecl = *Field;
274         else if (I->capturesVariable())
275           CaptureFields[I->getCapturedVar()->getCanonicalDecl()] = *Field;
276         else if (I->capturesVariableByCopy())
277           CaptureFields[I->getCapturedVar()->getCanonicalDecl()] = *Field;
278       }
279     }
280 
281     virtual ~CGCapturedStmtInfo();
282 
283     CapturedRegionKind getKind() const { return Kind; }
284 
285     virtual void setContextValue(llvm::Value *V) { ThisValue = V; }
286     // Retrieve the value of the context parameter.
287     virtual llvm::Value *getContextValue() const { return ThisValue; }
288 
289     /// Lookup the captured field decl for a variable.
290     virtual const FieldDecl *lookup(const VarDecl *VD) const {
291       return CaptureFields.lookup(VD->getCanonicalDecl());
292     }
293 
294     bool isCXXThisExprCaptured() const { return getThisFieldDecl() != nullptr; }
295     virtual FieldDecl *getThisFieldDecl() const { return CXXThisFieldDecl; }
296 
297     static bool classof(const CGCapturedStmtInfo *) {
298       return true;
299     }
300 
301     /// Emit the captured statement body.
302     virtual void EmitBody(CodeGenFunction &CGF, const Stmt *S) {
303       CGF.incrementProfileCounter(S);
304       CGF.EmitStmt(S);
305     }
306 
307     /// Get the name of the capture helper.
308     virtual StringRef getHelperName() const { return "__captured_stmt"; }
309 
310   private:
311     /// The kind of captured statement being generated.
312     CapturedRegionKind Kind;
313 
314     /// Keep the map between VarDecl and FieldDecl.
315     llvm::SmallDenseMap<const VarDecl *, FieldDecl *> CaptureFields;
316 
317     /// The base address of the captured record, passed in as the first
318     /// argument of the parallel region function.
319     llvm::Value *ThisValue;
320 
321     /// Captured 'this' type.
322     FieldDecl *CXXThisFieldDecl;
323   };
324   CGCapturedStmtInfo *CapturedStmtInfo;
325 
326   /// RAII for correct setting/restoring of CapturedStmtInfo.
327   class CGCapturedStmtRAII {
328   private:
329     CodeGenFunction &CGF;
330     CGCapturedStmtInfo *PrevCapturedStmtInfo;
331   public:
332     CGCapturedStmtRAII(CodeGenFunction &CGF,
333                        CGCapturedStmtInfo *NewCapturedStmtInfo)
334         : CGF(CGF), PrevCapturedStmtInfo(CGF.CapturedStmtInfo) {
335       CGF.CapturedStmtInfo = NewCapturedStmtInfo;
336     }
337     ~CGCapturedStmtRAII() { CGF.CapturedStmtInfo = PrevCapturedStmtInfo; }
338   };
339 
340   /// An abstract representation of regular/ObjC call/message targets.
341   class AbstractCallee {
342     /// The function declaration of the callee.
343     const Decl *CalleeDecl;
344 
345   public:
346     AbstractCallee() : CalleeDecl(nullptr) {}
347     AbstractCallee(const FunctionDecl *FD) : CalleeDecl(FD) {}
348     AbstractCallee(const ObjCMethodDecl *OMD) : CalleeDecl(OMD) {}
349     bool hasFunctionDecl() const {
350       return dyn_cast_or_null<FunctionDecl>(CalleeDecl);
351     }
352     const Decl *getDecl() const { return CalleeDecl; }
353     unsigned getNumParams() const {
354       if (const auto *FD = dyn_cast<FunctionDecl>(CalleeDecl))
355         return FD->getNumParams();
356       return cast<ObjCMethodDecl>(CalleeDecl)->param_size();
357     }
358     const ParmVarDecl *getParamDecl(unsigned I) const {
359       if (const auto *FD = dyn_cast<FunctionDecl>(CalleeDecl))
360         return FD->getParamDecl(I);
361       return *(cast<ObjCMethodDecl>(CalleeDecl)->param_begin() + I);
362     }
363   };
364 
365   /// Sanitizers enabled for this function.
366   SanitizerSet SanOpts;
367 
368   /// True if CodeGen currently emits code implementing sanitizer checks.
369   bool IsSanitizerScope;
370 
371   /// RAII object to set/unset CodeGenFunction::IsSanitizerScope.
372   class SanitizerScope {
373     CodeGenFunction *CGF;
374   public:
375     SanitizerScope(CodeGenFunction *CGF);
376     ~SanitizerScope();
377   };
378 
379   /// In C++, whether we are code generating a thunk.  This controls whether we
380   /// should emit cleanups.
381   bool CurFuncIsThunk;
382 
383   /// In ARC, whether we should autorelease the return value.
384   bool AutoreleaseResult;
385 
386   /// Whether we processed a Microsoft-style asm block during CodeGen. These can
387   /// potentially set the return value.
388   bool SawAsmBlock;
389 
390   const FunctionDecl *CurSEHParent = nullptr;
391 
392   /// True if the current function is an outlined SEH helper. This can be a
393   /// finally block or filter expression.
394   bool IsOutlinedSEHHelper;
395 
396   const CodeGen::CGBlockInfo *BlockInfo;
397   llvm::Value *BlockPointer;
398 
399   llvm::DenseMap<const VarDecl *, FieldDecl *> LambdaCaptureFields;
400   FieldDecl *LambdaThisCaptureField;
401 
402   /// A mapping from NRVO variables to the flags used to indicate
403   /// when the NRVO has been applied to this variable.
404   llvm::DenseMap<const VarDecl *, llvm::Value *> NRVOFlags;
405 
406   EHScopeStack EHStack;
407   llvm::SmallVector<char, 256> LifetimeExtendedCleanupStack;
408   llvm::SmallVector<const JumpDest *, 2> SEHTryEpilogueStack;
409 
410   llvm::Instruction *CurrentFuncletPad = nullptr;
411 
412   class CallLifetimeEnd final : public EHScopeStack::Cleanup {
413     llvm::Value *Addr;
414     llvm::Value *Size;
415 
416   public:
417     CallLifetimeEnd(Address addr, llvm::Value *size)
418         : Addr(addr.getPointer()), Size(size) {}
419 
420     void Emit(CodeGenFunction &CGF, Flags flags) override {
421       CGF.EmitLifetimeEnd(Size, Addr);
422     }
423   };
424 
425   /// Header for data within LifetimeExtendedCleanupStack.
426   struct LifetimeExtendedCleanupHeader {
427     /// The size of the following cleanup object.
428     unsigned Size;
429     /// The kind of cleanup to push: a value from the CleanupKind enumeration.
430     CleanupKind Kind;
431 
432     size_t getSize() const { return Size; }
433     CleanupKind getKind() const { return Kind; }
434   };
435 
436   /// i32s containing the indexes of the cleanup destinations.
437   Address NormalCleanupDest;
438 
439   unsigned NextCleanupDestIndex;
440 
441   /// FirstBlockInfo - The head of a singly-linked-list of block layouts.
442   CGBlockInfo *FirstBlockInfo;
443 
444   /// EHResumeBlock - Unified block containing a call to llvm.eh.resume.
445   llvm::BasicBlock *EHResumeBlock;
446 
447   /// The exception slot.  All landing pads write the current exception pointer
448   /// into this alloca.
449   llvm::Value *ExceptionSlot;
450 
451   /// The selector slot.  Under the MandatoryCleanup model, all landing pads
452   /// write the current selector value into this alloca.
453   llvm::AllocaInst *EHSelectorSlot;
454 
455   /// A stack of exception code slots. Entering an __except block pushes a slot
456   /// on the stack and leaving pops one. The __exception_code() intrinsic loads
457   /// a value from the top of the stack.
458   SmallVector<Address, 1> SEHCodeSlotStack;
459 
460   /// Value returned by __exception_info intrinsic.
461   llvm::Value *SEHInfo = nullptr;
462 
463   /// Emits a landing pad for the current EH stack.
464   llvm::BasicBlock *EmitLandingPad();
465 
466   llvm::BasicBlock *getInvokeDestImpl();
467 
468   template <class T>
469   typename DominatingValue<T>::saved_type saveValueInCond(T value) {
470     return DominatingValue<T>::save(*this, value);
471   }
472 
473 public:
474   /// ObjCEHValueStack - Stack of Objective-C exception values, used for
475   /// rethrows.
476   SmallVector<llvm::Value*, 8> ObjCEHValueStack;
477 
478   /// A class controlling the emission of a finally block.
479   class FinallyInfo {
480     /// Where the catchall's edge through the cleanup should go.
481     JumpDest RethrowDest;
482 
483     /// A function to call to enter the catch.
484     llvm::Constant *BeginCatchFn;
485 
486     /// An i1 variable indicating whether or not the @finally is
487     /// running for an exception.
488     llvm::AllocaInst *ForEHVar;
489 
490     /// An i8* variable into which the exception pointer to rethrow
491     /// has been saved.
492     llvm::AllocaInst *SavedExnVar;
493 
494   public:
495     void enter(CodeGenFunction &CGF, const Stmt *Finally,
496                llvm::Constant *beginCatchFn, llvm::Constant *endCatchFn,
497                llvm::Constant *rethrowFn);
498     void exit(CodeGenFunction &CGF);
499   };
500 
501   /// Returns true inside SEH __try blocks.
502   bool isSEHTryScope() const { return !SEHTryEpilogueStack.empty(); }
503 
504   /// Returns true while emitting a cleanuppad.
505   bool isCleanupPadScope() const {
506     return CurrentFuncletPad && isa<llvm::CleanupPadInst>(CurrentFuncletPad);
507   }
508 
509   /// pushFullExprCleanup - Push a cleanup to be run at the end of the
510   /// current full-expression.  Safe against the possibility that
511   /// we're currently inside a conditionally-evaluated expression.
512   template <class T, class... As>
513   void pushFullExprCleanup(CleanupKind kind, As... A) {
514     // If we're not in a conditional branch, or if none of the
515     // arguments requires saving, then use the unconditional cleanup.
516     if (!isInConditionalBranch())
517       return EHStack.pushCleanup<T>(kind, A...);
518 
519     // Stash values in a tuple so we can guarantee the order of saves.
520     typedef std::tuple<typename DominatingValue<As>::saved_type...> SavedTuple;
521     SavedTuple Saved{saveValueInCond(A)...};
522 
523     typedef EHScopeStack::ConditionalCleanup<T, As...> CleanupType;
524     EHStack.pushCleanupTuple<CleanupType>(kind, Saved);
525     initFullExprCleanup();
526   }
527 
528   /// Queue a cleanup to be pushed after finishing the current
529   /// full-expression.
530   template <class T, class... As>
531   void pushCleanupAfterFullExpr(CleanupKind Kind, As... A) {
532     assert(!isInConditionalBranch() && "can't defer conditional cleanup");
533 
534     LifetimeExtendedCleanupHeader Header = { sizeof(T), Kind };
535 
536     size_t OldSize = LifetimeExtendedCleanupStack.size();
537     LifetimeExtendedCleanupStack.resize(
538         LifetimeExtendedCleanupStack.size() + sizeof(Header) + Header.Size);
539 
540     static_assert(sizeof(Header) % alignof(T) == 0,
541                   "Cleanup will be allocated on misaligned address");
542     char *Buffer = &LifetimeExtendedCleanupStack[OldSize];
543     new (Buffer) LifetimeExtendedCleanupHeader(Header);
544     new (Buffer + sizeof(Header)) T(A...);
545   }
546 
547   /// Set up the last cleaup that was pushed as a conditional
548   /// full-expression cleanup.
549   void initFullExprCleanup();
550 
551   /// PushDestructorCleanup - Push a cleanup to call the
552   /// complete-object destructor of an object of the given type at the
553   /// given address.  Does nothing if T is not a C++ class type with a
554   /// non-trivial destructor.
555   void PushDestructorCleanup(QualType T, Address Addr);
556 
557   /// PushDestructorCleanup - Push a cleanup to call the
558   /// complete-object variant of the given destructor on the object at
559   /// the given address.
560   void PushDestructorCleanup(const CXXDestructorDecl *Dtor, Address Addr);
561 
562   /// PopCleanupBlock - Will pop the cleanup entry on the stack and
563   /// process all branch fixups.
564   void PopCleanupBlock(bool FallThroughIsBranchThrough = false);
565 
566   /// DeactivateCleanupBlock - Deactivates the given cleanup block.
567   /// The block cannot be reactivated.  Pops it if it's the top of the
568   /// stack.
569   ///
570   /// \param DominatingIP - An instruction which is known to
571   ///   dominate the current IP (if set) and which lies along
572   ///   all paths of execution between the current IP and the
573   ///   the point at which the cleanup comes into scope.
574   void DeactivateCleanupBlock(EHScopeStack::stable_iterator Cleanup,
575                               llvm::Instruction *DominatingIP);
576 
577   /// ActivateCleanupBlock - Activates an initially-inactive cleanup.
578   /// Cannot be used to resurrect a deactivated cleanup.
579   ///
580   /// \param DominatingIP - An instruction which is known to
581   ///   dominate the current IP (if set) and which lies along
582   ///   all paths of execution between the current IP and the
583   ///   the point at which the cleanup comes into scope.
584   void ActivateCleanupBlock(EHScopeStack::stable_iterator Cleanup,
585                             llvm::Instruction *DominatingIP);
586 
587   /// Enters a new scope for capturing cleanups, all of which
588   /// will be executed once the scope is exited.
589   class RunCleanupsScope {
590     EHScopeStack::stable_iterator CleanupStackDepth, OldCleanupScopeDepth;
591     size_t LifetimeExtendedCleanupStackSize;
592     bool OldDidCallStackSave;
593   protected:
594     bool PerformCleanup;
595   private:
596 
597     RunCleanupsScope(const RunCleanupsScope &) = delete;
598     void operator=(const RunCleanupsScope &) = delete;
599 
600   protected:
601     CodeGenFunction& CGF;
602 
603   public:
604     /// Enter a new cleanup scope.
605     explicit RunCleanupsScope(CodeGenFunction &CGF)
606       : PerformCleanup(true), CGF(CGF)
607     {
608       CleanupStackDepth = CGF.EHStack.stable_begin();
609       LifetimeExtendedCleanupStackSize =
610           CGF.LifetimeExtendedCleanupStack.size();
611       OldDidCallStackSave = CGF.DidCallStackSave;
612       CGF.DidCallStackSave = false;
613       OldCleanupScopeDepth = CGF.CurrentCleanupScopeDepth;
614       CGF.CurrentCleanupScopeDepth = CleanupStackDepth;
615     }
616 
617     /// Exit this cleanup scope, emitting any accumulated cleanups.
618     ~RunCleanupsScope() {
619       if (PerformCleanup)
620         ForceCleanup();
621     }
622 
623     /// Determine whether this scope requires any cleanups.
624     bool requiresCleanups() const {
625       return CGF.EHStack.stable_begin() != CleanupStackDepth;
626     }
627 
628     /// Force the emission of cleanups now, instead of waiting
629     /// until this object is destroyed.
630     /// \param ValuesToReload - A list of values that need to be available at
631     /// the insertion point after cleanup emission. If cleanup emission created
632     /// a shared cleanup block, these value pointers will be rewritten.
633     /// Otherwise, they not will be modified.
634     void ForceCleanup(std::initializer_list<llvm::Value**> ValuesToReload = {}) {
635       assert(PerformCleanup && "Already forced cleanup");
636       CGF.DidCallStackSave = OldDidCallStackSave;
637       CGF.PopCleanupBlocks(CleanupStackDepth, LifetimeExtendedCleanupStackSize,
638                            ValuesToReload);
639       PerformCleanup = false;
640       CGF.CurrentCleanupScopeDepth = OldCleanupScopeDepth;
641     }
642   };
643 
644   // Cleanup stack depth of the RunCleanupsScope that was pushed most recently.
645   EHScopeStack::stable_iterator CurrentCleanupScopeDepth =
646       EHScopeStack::stable_end();
647 
648   class LexicalScope : public RunCleanupsScope {
649     SourceRange Range;
650     SmallVector<const LabelDecl*, 4> Labels;
651     LexicalScope *ParentScope;
652 
653     LexicalScope(const LexicalScope &) = delete;
654     void operator=(const LexicalScope &) = delete;
655 
656   public:
657     /// Enter a new cleanup scope.
658     explicit LexicalScope(CodeGenFunction &CGF, SourceRange Range)
659       : RunCleanupsScope(CGF), Range(Range), ParentScope(CGF.CurLexicalScope) {
660       CGF.CurLexicalScope = this;
661       if (CGDebugInfo *DI = CGF.getDebugInfo())
662         DI->EmitLexicalBlockStart(CGF.Builder, Range.getBegin());
663     }
664 
665     void addLabel(const LabelDecl *label) {
666       assert(PerformCleanup && "adding label to dead scope?");
667       Labels.push_back(label);
668     }
669 
670     /// Exit this cleanup scope, emitting any accumulated
671     /// cleanups.
672     ~LexicalScope() {
673       if (CGDebugInfo *DI = CGF.getDebugInfo())
674         DI->EmitLexicalBlockEnd(CGF.Builder, Range.getEnd());
675 
676       // If we should perform a cleanup, force them now.  Note that
677       // this ends the cleanup scope before rescoping any labels.
678       if (PerformCleanup) {
679         ApplyDebugLocation DL(CGF, Range.getEnd());
680         ForceCleanup();
681       }
682     }
683 
684     /// Force the emission of cleanups now, instead of waiting
685     /// until this object is destroyed.
686     void ForceCleanup() {
687       CGF.CurLexicalScope = ParentScope;
688       RunCleanupsScope::ForceCleanup();
689 
690       if (!Labels.empty())
691         rescopeLabels();
692     }
693 
694     bool hasLabels() const {
695       return !Labels.empty();
696     }
697 
698     void rescopeLabels();
699   };
700 
701   typedef llvm::DenseMap<const Decl *, Address> DeclMapTy;
702 
703   /// The class used to assign some variables some temporarily addresses.
704   class OMPMapVars {
705     DeclMapTy SavedLocals;
706     DeclMapTy SavedTempAddresses;
707     OMPMapVars(const OMPMapVars &) = delete;
708     void operator=(const OMPMapVars &) = delete;
709 
710   public:
711     explicit OMPMapVars() = default;
712     ~OMPMapVars() {
713       assert(SavedLocals.empty() && "Did not restored original addresses.");
714     };
715 
716     /// Sets the address of the variable \p LocalVD to be \p TempAddr in
717     /// function \p CGF.
718     /// \return true if at least one variable was set already, false otherwise.
719     bool setVarAddr(CodeGenFunction &CGF, const VarDecl *LocalVD,
720                     Address TempAddr) {
721       LocalVD = LocalVD->getCanonicalDecl();
722       // Only save it once.
723       if (SavedLocals.count(LocalVD)) return false;
724 
725       // Copy the existing local entry to SavedLocals.
726       auto it = CGF.LocalDeclMap.find(LocalVD);
727       if (it != CGF.LocalDeclMap.end())
728         SavedLocals.try_emplace(LocalVD, it->second);
729       else
730         SavedLocals.try_emplace(LocalVD, Address::invalid());
731 
732       // Generate the private entry.
733       QualType VarTy = LocalVD->getType();
734       if (VarTy->isReferenceType()) {
735         Address Temp = CGF.CreateMemTemp(VarTy);
736         CGF.Builder.CreateStore(TempAddr.getPointer(), Temp);
737         TempAddr = Temp;
738       }
739       SavedTempAddresses.try_emplace(LocalVD, TempAddr);
740 
741       return true;
742     }
743 
744     /// Applies new addresses to the list of the variables.
745     /// \return true if at least one variable is using new address, false
746     /// otherwise.
747     bool apply(CodeGenFunction &CGF) {
748       copyInto(SavedTempAddresses, CGF.LocalDeclMap);
749       SavedTempAddresses.clear();
750       return !SavedLocals.empty();
751     }
752 
753     /// Restores original addresses of the variables.
754     void restore(CodeGenFunction &CGF) {
755       if (!SavedLocals.empty()) {
756         copyInto(SavedLocals, CGF.LocalDeclMap);
757         SavedLocals.clear();
758       }
759     }
760 
761   private:
762     /// Copy all the entries in the source map over the corresponding
763     /// entries in the destination, which must exist.
764     static void copyInto(const DeclMapTy &Src, DeclMapTy &Dest) {
765       for (auto &Pair : Src) {
766         if (!Pair.second.isValid()) {
767           Dest.erase(Pair.first);
768           continue;
769         }
770 
771         auto I = Dest.find(Pair.first);
772         if (I != Dest.end())
773           I->second = Pair.second;
774         else
775           Dest.insert(Pair);
776       }
777     }
778   };
779 
780   /// The scope used to remap some variables as private in the OpenMP loop body
781   /// (or other captured region emitted without outlining), and to restore old
782   /// vars back on exit.
783   class OMPPrivateScope : public RunCleanupsScope {
784     OMPMapVars MappedVars;
785     OMPPrivateScope(const OMPPrivateScope &) = delete;
786     void operator=(const OMPPrivateScope &) = delete;
787 
788   public:
789     /// Enter a new OpenMP private scope.
790     explicit OMPPrivateScope(CodeGenFunction &CGF) : RunCleanupsScope(CGF) {}
791 
792     /// Registers \p LocalVD variable as a private and apply \p PrivateGen
793     /// function for it to generate corresponding private variable. \p
794     /// PrivateGen returns an address of the generated private variable.
795     /// \return true if the variable is registered as private, false if it has
796     /// been privatized already.
797     bool addPrivate(const VarDecl *LocalVD,
798                     const llvm::function_ref<Address()> PrivateGen) {
799       assert(PerformCleanup && "adding private to dead scope");
800       return MappedVars.setVarAddr(CGF, LocalVD, PrivateGen());
801     }
802 
803     /// Privatizes local variables previously registered as private.
804     /// Registration is separate from the actual privatization to allow
805     /// initializers use values of the original variables, not the private one.
806     /// This is important, for example, if the private variable is a class
807     /// variable initialized by a constructor that references other private
808     /// variables. But at initialization original variables must be used, not
809     /// private copies.
810     /// \return true if at least one variable was privatized, false otherwise.
811     bool Privatize() { return MappedVars.apply(CGF); }
812 
813     void ForceCleanup() {
814       RunCleanupsScope::ForceCleanup();
815       MappedVars.restore(CGF);
816     }
817 
818     /// Exit scope - all the mapped variables are restored.
819     ~OMPPrivateScope() {
820       if (PerformCleanup)
821         ForceCleanup();
822     }
823 
824     /// Checks if the global variable is captured in current function.
825     bool isGlobalVarCaptured(const VarDecl *VD) const {
826       VD = VD->getCanonicalDecl();
827       return !VD->isLocalVarDeclOrParm() && CGF.LocalDeclMap.count(VD) > 0;
828     }
829   };
830 
831   /// Takes the old cleanup stack size and emits the cleanup blocks
832   /// that have been added.
833   void
834   PopCleanupBlocks(EHScopeStack::stable_iterator OldCleanupStackSize,
835                    std::initializer_list<llvm::Value **> ValuesToReload = {});
836 
837   /// Takes the old cleanup stack size and emits the cleanup blocks
838   /// that have been added, then adds all lifetime-extended cleanups from
839   /// the given position to the stack.
840   void
841   PopCleanupBlocks(EHScopeStack::stable_iterator OldCleanupStackSize,
842                    size_t OldLifetimeExtendedStackSize,
843                    std::initializer_list<llvm::Value **> ValuesToReload = {});
844 
845   void ResolveBranchFixups(llvm::BasicBlock *Target);
846 
847   /// The given basic block lies in the current EH scope, but may be a
848   /// target of a potentially scope-crossing jump; get a stable handle
849   /// to which we can perform this jump later.
850   JumpDest getJumpDestInCurrentScope(llvm::BasicBlock *Target) {
851     return JumpDest(Target,
852                     EHStack.getInnermostNormalCleanup(),
853                     NextCleanupDestIndex++);
854   }
855 
856   /// The given basic block lies in the current EH scope, but may be a
857   /// target of a potentially scope-crossing jump; get a stable handle
858   /// to which we can perform this jump later.
859   JumpDest getJumpDestInCurrentScope(StringRef Name = StringRef()) {
860     return getJumpDestInCurrentScope(createBasicBlock(Name));
861   }
862 
863   /// EmitBranchThroughCleanup - Emit a branch from the current insert
864   /// block through the normal cleanup handling code (if any) and then
865   /// on to \arg Dest.
866   void EmitBranchThroughCleanup(JumpDest Dest);
867 
868   /// isObviouslyBranchWithoutCleanups - Return true if a branch to the
869   /// specified destination obviously has no cleanups to run.  'false' is always
870   /// a conservatively correct answer for this method.
871   bool isObviouslyBranchWithoutCleanups(JumpDest Dest) const;
872 
873   /// popCatchScope - Pops the catch scope at the top of the EHScope
874   /// stack, emitting any required code (other than the catch handlers
875   /// themselves).
876   void popCatchScope();
877 
878   llvm::BasicBlock *getEHResumeBlock(bool isCleanup);
879   llvm::BasicBlock *getEHDispatchBlock(EHScopeStack::stable_iterator scope);
880   llvm::BasicBlock *getMSVCDispatchBlock(EHScopeStack::stable_iterator scope);
881 
882   /// An object to manage conditionally-evaluated expressions.
883   class ConditionalEvaluation {
884     llvm::BasicBlock *StartBB;
885 
886   public:
887     ConditionalEvaluation(CodeGenFunction &CGF)
888       : StartBB(CGF.Builder.GetInsertBlock()) {}
889 
890     void begin(CodeGenFunction &CGF) {
891       assert(CGF.OutermostConditional != this);
892       if (!CGF.OutermostConditional)
893         CGF.OutermostConditional = this;
894     }
895 
896     void end(CodeGenFunction &CGF) {
897       assert(CGF.OutermostConditional != nullptr);
898       if (CGF.OutermostConditional == this)
899         CGF.OutermostConditional = nullptr;
900     }
901 
902     /// Returns a block which will be executed prior to each
903     /// evaluation of the conditional code.
904     llvm::BasicBlock *getStartingBlock() const {
905       return StartBB;
906     }
907   };
908 
909   /// isInConditionalBranch - Return true if we're currently emitting
910   /// one branch or the other of a conditional expression.
911   bool isInConditionalBranch() const { return OutermostConditional != nullptr; }
912 
913   void setBeforeOutermostConditional(llvm::Value *value, Address addr) {
914     assert(isInConditionalBranch());
915     llvm::BasicBlock *block = OutermostConditional->getStartingBlock();
916     auto store = new llvm::StoreInst(value, addr.getPointer(), &block->back());
917     store->setAlignment(addr.getAlignment().getQuantity());
918   }
919 
920   /// An RAII object to record that we're evaluating a statement
921   /// expression.
922   class StmtExprEvaluation {
923     CodeGenFunction &CGF;
924 
925     /// We have to save the outermost conditional: cleanups in a
926     /// statement expression aren't conditional just because the
927     /// StmtExpr is.
928     ConditionalEvaluation *SavedOutermostConditional;
929 
930   public:
931     StmtExprEvaluation(CodeGenFunction &CGF)
932       : CGF(CGF), SavedOutermostConditional(CGF.OutermostConditional) {
933       CGF.OutermostConditional = nullptr;
934     }
935 
936     ~StmtExprEvaluation() {
937       CGF.OutermostConditional = SavedOutermostConditional;
938       CGF.EnsureInsertPoint();
939     }
940   };
941 
942   /// An object which temporarily prevents a value from being
943   /// destroyed by aggressive peephole optimizations that assume that
944   /// all uses of a value have been realized in the IR.
945   class PeepholeProtection {
946     llvm::Instruction *Inst;
947     friend class CodeGenFunction;
948 
949   public:
950     PeepholeProtection() : Inst(nullptr) {}
951   };
952 
953   /// A non-RAII class containing all the information about a bound
954   /// opaque value.  OpaqueValueMapping, below, is a RAII wrapper for
955   /// this which makes individual mappings very simple; using this
956   /// class directly is useful when you have a variable number of
957   /// opaque values or don't want the RAII functionality for some
958   /// reason.
959   class OpaqueValueMappingData {
960     const OpaqueValueExpr *OpaqueValue;
961     bool BoundLValue;
962     CodeGenFunction::PeepholeProtection Protection;
963 
964     OpaqueValueMappingData(const OpaqueValueExpr *ov,
965                            bool boundLValue)
966       : OpaqueValue(ov), BoundLValue(boundLValue) {}
967   public:
968     OpaqueValueMappingData() : OpaqueValue(nullptr) {}
969 
970     static bool shouldBindAsLValue(const Expr *expr) {
971       // gl-values should be bound as l-values for obvious reasons.
972       // Records should be bound as l-values because IR generation
973       // always keeps them in memory.  Expressions of function type
974       // act exactly like l-values but are formally required to be
975       // r-values in C.
976       return expr->isGLValue() ||
977              expr->getType()->isFunctionType() ||
978              hasAggregateEvaluationKind(expr->getType());
979     }
980 
981     static OpaqueValueMappingData bind(CodeGenFunction &CGF,
982                                        const OpaqueValueExpr *ov,
983                                        const Expr *e) {
984       if (shouldBindAsLValue(ov))
985         return bind(CGF, ov, CGF.EmitLValue(e));
986       return bind(CGF, ov, CGF.EmitAnyExpr(e));
987     }
988 
989     static OpaqueValueMappingData bind(CodeGenFunction &CGF,
990                                        const OpaqueValueExpr *ov,
991                                        const LValue &lv) {
992       assert(shouldBindAsLValue(ov));
993       CGF.OpaqueLValues.insert(std::make_pair(ov, lv));
994       return OpaqueValueMappingData(ov, true);
995     }
996 
997     static OpaqueValueMappingData bind(CodeGenFunction &CGF,
998                                        const OpaqueValueExpr *ov,
999                                        const RValue &rv) {
1000       assert(!shouldBindAsLValue(ov));
1001       CGF.OpaqueRValues.insert(std::make_pair(ov, rv));
1002 
1003       OpaqueValueMappingData data(ov, false);
1004 
1005       // Work around an extremely aggressive peephole optimization in
1006       // EmitScalarConversion which assumes that all other uses of a
1007       // value are extant.
1008       data.Protection = CGF.protectFromPeepholes(rv);
1009 
1010       return data;
1011     }
1012 
1013     bool isValid() const { return OpaqueValue != nullptr; }
1014     void clear() { OpaqueValue = nullptr; }
1015 
1016     void unbind(CodeGenFunction &CGF) {
1017       assert(OpaqueValue && "no data to unbind!");
1018 
1019       if (BoundLValue) {
1020         CGF.OpaqueLValues.erase(OpaqueValue);
1021       } else {
1022         CGF.OpaqueRValues.erase(OpaqueValue);
1023         CGF.unprotectFromPeepholes(Protection);
1024       }
1025     }
1026   };
1027 
1028   /// An RAII object to set (and then clear) a mapping for an OpaqueValueExpr.
1029   class OpaqueValueMapping {
1030     CodeGenFunction &CGF;
1031     OpaqueValueMappingData Data;
1032 
1033   public:
1034     static bool shouldBindAsLValue(const Expr *expr) {
1035       return OpaqueValueMappingData::shouldBindAsLValue(expr);
1036     }
1037 
1038     /// Build the opaque value mapping for the given conditional
1039     /// operator if it's the GNU ?: extension.  This is a common
1040     /// enough pattern that the convenience operator is really
1041     /// helpful.
1042     ///
1043     OpaqueValueMapping(CodeGenFunction &CGF,
1044                        const AbstractConditionalOperator *op) : CGF(CGF) {
1045       if (isa<ConditionalOperator>(op))
1046         // Leave Data empty.
1047         return;
1048 
1049       const BinaryConditionalOperator *e = cast<BinaryConditionalOperator>(op);
1050       Data = OpaqueValueMappingData::bind(CGF, e->getOpaqueValue(),
1051                                           e->getCommon());
1052     }
1053 
1054     /// Build the opaque value mapping for an OpaqueValueExpr whose source
1055     /// expression is set to the expression the OVE represents.
1056     OpaqueValueMapping(CodeGenFunction &CGF, const OpaqueValueExpr *OV)
1057         : CGF(CGF) {
1058       if (OV) {
1059         assert(OV->getSourceExpr() && "wrong form of OpaqueValueMapping used "
1060                                       "for OVE with no source expression");
1061         Data = OpaqueValueMappingData::bind(CGF, OV, OV->getSourceExpr());
1062       }
1063     }
1064 
1065     OpaqueValueMapping(CodeGenFunction &CGF,
1066                        const OpaqueValueExpr *opaqueValue,
1067                        LValue lvalue)
1068       : CGF(CGF), Data(OpaqueValueMappingData::bind(CGF, opaqueValue, lvalue)) {
1069     }
1070 
1071     OpaqueValueMapping(CodeGenFunction &CGF,
1072                        const OpaqueValueExpr *opaqueValue,
1073                        RValue rvalue)
1074       : CGF(CGF), Data(OpaqueValueMappingData::bind(CGF, opaqueValue, rvalue)) {
1075     }
1076 
1077     void pop() {
1078       Data.unbind(CGF);
1079       Data.clear();
1080     }
1081 
1082     ~OpaqueValueMapping() {
1083       if (Data.isValid()) Data.unbind(CGF);
1084     }
1085   };
1086 
1087 private:
1088   CGDebugInfo *DebugInfo;
1089   bool DisableDebugInfo;
1090 
1091   /// DidCallStackSave - Whether llvm.stacksave has been called. Used to avoid
1092   /// calling llvm.stacksave for multiple VLAs in the same scope.
1093   bool DidCallStackSave;
1094 
1095   /// IndirectBranch - The first time an indirect goto is seen we create a block
1096   /// with an indirect branch.  Every time we see the address of a label taken,
1097   /// we add the label to the indirect goto.  Every subsequent indirect goto is
1098   /// codegen'd as a jump to the IndirectBranch's basic block.
1099   llvm::IndirectBrInst *IndirectBranch;
1100 
1101   /// LocalDeclMap - This keeps track of the LLVM allocas or globals for local C
1102   /// decls.
1103   DeclMapTy LocalDeclMap;
1104 
1105   // Keep track of the cleanups for callee-destructed parameters pushed to the
1106   // cleanup stack so that they can be deactivated later.
1107   llvm::DenseMap<const ParmVarDecl *, EHScopeStack::stable_iterator>
1108       CalleeDestructedParamCleanups;
1109 
1110   /// SizeArguments - If a ParmVarDecl had the pass_object_size attribute, this
1111   /// will contain a mapping from said ParmVarDecl to its implicit "object_size"
1112   /// parameter.
1113   llvm::SmallDenseMap<const ParmVarDecl *, const ImplicitParamDecl *, 2>
1114       SizeArguments;
1115 
1116   /// Track escaped local variables with auto storage. Used during SEH
1117   /// outlining to produce a call to llvm.localescape.
1118   llvm::DenseMap<llvm::AllocaInst *, int> EscapedLocals;
1119 
1120   /// LabelMap - This keeps track of the LLVM basic block for each C label.
1121   llvm::DenseMap<const LabelDecl*, JumpDest> LabelMap;
1122 
1123   // BreakContinueStack - This keeps track of where break and continue
1124   // statements should jump to.
1125   struct BreakContinue {
1126     BreakContinue(JumpDest Break, JumpDest Continue)
1127       : BreakBlock(Break), ContinueBlock(Continue) {}
1128 
1129     JumpDest BreakBlock;
1130     JumpDest ContinueBlock;
1131   };
1132   SmallVector<BreakContinue, 8> BreakContinueStack;
1133 
1134   /// Handles cancellation exit points in OpenMP-related constructs.
1135   class OpenMPCancelExitStack {
1136     /// Tracks cancellation exit point and join point for cancel-related exit
1137     /// and normal exit.
1138     struct CancelExit {
1139       CancelExit() = default;
1140       CancelExit(OpenMPDirectiveKind Kind, JumpDest ExitBlock,
1141                  JumpDest ContBlock)
1142           : Kind(Kind), ExitBlock(ExitBlock), ContBlock(ContBlock) {}
1143       OpenMPDirectiveKind Kind = OMPD_unknown;
1144       /// true if the exit block has been emitted already by the special
1145       /// emitExit() call, false if the default codegen is used.
1146       bool HasBeenEmitted = false;
1147       JumpDest ExitBlock;
1148       JumpDest ContBlock;
1149     };
1150 
1151     SmallVector<CancelExit, 8> Stack;
1152 
1153   public:
1154     OpenMPCancelExitStack() : Stack(1) {}
1155     ~OpenMPCancelExitStack() = default;
1156     /// Fetches the exit block for the current OpenMP construct.
1157     JumpDest getExitBlock() const { return Stack.back().ExitBlock; }
1158     /// Emits exit block with special codegen procedure specific for the related
1159     /// OpenMP construct + emits code for normal construct cleanup.
1160     void emitExit(CodeGenFunction &CGF, OpenMPDirectiveKind Kind,
1161                   const llvm::function_ref<void(CodeGenFunction &)> CodeGen) {
1162       if (Stack.back().Kind == Kind && getExitBlock().isValid()) {
1163         assert(CGF.getOMPCancelDestination(Kind).isValid());
1164         assert(CGF.HaveInsertPoint());
1165         assert(!Stack.back().HasBeenEmitted);
1166         auto IP = CGF.Builder.saveAndClearIP();
1167         CGF.EmitBlock(Stack.back().ExitBlock.getBlock());
1168         CodeGen(CGF);
1169         CGF.EmitBranch(Stack.back().ContBlock.getBlock());
1170         CGF.Builder.restoreIP(IP);
1171         Stack.back().HasBeenEmitted = true;
1172       }
1173       CodeGen(CGF);
1174     }
1175     /// Enter the cancel supporting \a Kind construct.
1176     /// \param Kind OpenMP directive that supports cancel constructs.
1177     /// \param HasCancel true, if the construct has inner cancel directive,
1178     /// false otherwise.
1179     void enter(CodeGenFunction &CGF, OpenMPDirectiveKind Kind, bool HasCancel) {
1180       Stack.push_back({Kind,
1181                        HasCancel ? CGF.getJumpDestInCurrentScope("cancel.exit")
1182                                  : JumpDest(),
1183                        HasCancel ? CGF.getJumpDestInCurrentScope("cancel.cont")
1184                                  : JumpDest()});
1185     }
1186     /// Emits default exit point for the cancel construct (if the special one
1187     /// has not be used) + join point for cancel/normal exits.
1188     void exit(CodeGenFunction &CGF) {
1189       if (getExitBlock().isValid()) {
1190         assert(CGF.getOMPCancelDestination(Stack.back().Kind).isValid());
1191         bool HaveIP = CGF.HaveInsertPoint();
1192         if (!Stack.back().HasBeenEmitted) {
1193           if (HaveIP)
1194             CGF.EmitBranchThroughCleanup(Stack.back().ContBlock);
1195           CGF.EmitBlock(Stack.back().ExitBlock.getBlock());
1196           CGF.EmitBranchThroughCleanup(Stack.back().ContBlock);
1197         }
1198         CGF.EmitBlock(Stack.back().ContBlock.getBlock());
1199         if (!HaveIP) {
1200           CGF.Builder.CreateUnreachable();
1201           CGF.Builder.ClearInsertionPoint();
1202         }
1203       }
1204       Stack.pop_back();
1205     }
1206   };
1207   OpenMPCancelExitStack OMPCancelStack;
1208 
1209   CodeGenPGO PGO;
1210 
1211   /// Calculate branch weights appropriate for PGO data
1212   llvm::MDNode *createProfileWeights(uint64_t TrueCount, uint64_t FalseCount);
1213   llvm::MDNode *createProfileWeights(ArrayRef<uint64_t> Weights);
1214   llvm::MDNode *createProfileWeightsForLoop(const Stmt *Cond,
1215                                             uint64_t LoopCount);
1216 
1217 public:
1218   /// Increment the profiler's counter for the given statement by \p StepV.
1219   /// If \p StepV is null, the default increment is 1.
1220   void incrementProfileCounter(const Stmt *S, llvm::Value *StepV = nullptr) {
1221     if (CGM.getCodeGenOpts().hasProfileClangInstr())
1222       PGO.emitCounterIncrement(Builder, S, StepV);
1223     PGO.setCurrentStmt(S);
1224   }
1225 
1226   /// Get the profiler's count for the given statement.
1227   uint64_t getProfileCount(const Stmt *S) {
1228     Optional<uint64_t> Count = PGO.getStmtCount(S);
1229     if (!Count.hasValue())
1230       return 0;
1231     return *Count;
1232   }
1233 
1234   /// Set the profiler's current count.
1235   void setCurrentProfileCount(uint64_t Count) {
1236     PGO.setCurrentRegionCount(Count);
1237   }
1238 
1239   /// Get the profiler's current count. This is generally the count for the most
1240   /// recently incremented counter.
1241   uint64_t getCurrentProfileCount() {
1242     return PGO.getCurrentRegionCount();
1243   }
1244 
1245 private:
1246 
1247   /// SwitchInsn - This is nearest current switch instruction. It is null if
1248   /// current context is not in a switch.
1249   llvm::SwitchInst *SwitchInsn;
1250   /// The branch weights of SwitchInsn when doing instrumentation based PGO.
1251   SmallVector<uint64_t, 16> *SwitchWeights;
1252 
1253   /// CaseRangeBlock - This block holds if condition check for last case
1254   /// statement range in current switch instruction.
1255   llvm::BasicBlock *CaseRangeBlock;
1256 
1257   /// OpaqueLValues - Keeps track of the current set of opaque value
1258   /// expressions.
1259   llvm::DenseMap<const OpaqueValueExpr *, LValue> OpaqueLValues;
1260   llvm::DenseMap<const OpaqueValueExpr *, RValue> OpaqueRValues;
1261 
1262   // VLASizeMap - This keeps track of the associated size for each VLA type.
1263   // We track this by the size expression rather than the type itself because
1264   // in certain situations, like a const qualifier applied to an VLA typedef,
1265   // multiple VLA types can share the same size expression.
1266   // FIXME: Maybe this could be a stack of maps that is pushed/popped as we
1267   // enter/leave scopes.
1268   llvm::DenseMap<const Expr*, llvm::Value*> VLASizeMap;
1269 
1270   /// A block containing a single 'unreachable' instruction.  Created
1271   /// lazily by getUnreachableBlock().
1272   llvm::BasicBlock *UnreachableBlock;
1273 
1274   /// Counts of the number return expressions in the function.
1275   unsigned NumReturnExprs;
1276 
1277   /// Count the number of simple (constant) return expressions in the function.
1278   unsigned NumSimpleReturnExprs;
1279 
1280   /// The last regular (non-return) debug location (breakpoint) in the function.
1281   SourceLocation LastStopPoint;
1282 
1283 public:
1284   /// A scope within which we are constructing the fields of an object which
1285   /// might use a CXXDefaultInitExpr. This stashes away a 'this' value to use
1286   /// if we need to evaluate a CXXDefaultInitExpr within the evaluation.
1287   class FieldConstructionScope {
1288   public:
1289     FieldConstructionScope(CodeGenFunction &CGF, Address This)
1290         : CGF(CGF), OldCXXDefaultInitExprThis(CGF.CXXDefaultInitExprThis) {
1291       CGF.CXXDefaultInitExprThis = This;
1292     }
1293     ~FieldConstructionScope() {
1294       CGF.CXXDefaultInitExprThis = OldCXXDefaultInitExprThis;
1295     }
1296 
1297   private:
1298     CodeGenFunction &CGF;
1299     Address OldCXXDefaultInitExprThis;
1300   };
1301 
1302   /// The scope of a CXXDefaultInitExpr. Within this scope, the value of 'this'
1303   /// is overridden to be the object under construction.
1304   class CXXDefaultInitExprScope {
1305   public:
1306     CXXDefaultInitExprScope(CodeGenFunction &CGF)
1307       : CGF(CGF), OldCXXThisValue(CGF.CXXThisValue),
1308         OldCXXThisAlignment(CGF.CXXThisAlignment) {
1309       CGF.CXXThisValue = CGF.CXXDefaultInitExprThis.getPointer();
1310       CGF.CXXThisAlignment = CGF.CXXDefaultInitExprThis.getAlignment();
1311     }
1312     ~CXXDefaultInitExprScope() {
1313       CGF.CXXThisValue = OldCXXThisValue;
1314       CGF.CXXThisAlignment = OldCXXThisAlignment;
1315     }
1316 
1317   public:
1318     CodeGenFunction &CGF;
1319     llvm::Value *OldCXXThisValue;
1320     CharUnits OldCXXThisAlignment;
1321   };
1322 
1323   /// The scope of an ArrayInitLoopExpr. Within this scope, the value of the
1324   /// current loop index is overridden.
1325   class ArrayInitLoopExprScope {
1326   public:
1327     ArrayInitLoopExprScope(CodeGenFunction &CGF, llvm::Value *Index)
1328       : CGF(CGF), OldArrayInitIndex(CGF.ArrayInitIndex) {
1329       CGF.ArrayInitIndex = Index;
1330     }
1331     ~ArrayInitLoopExprScope() {
1332       CGF.ArrayInitIndex = OldArrayInitIndex;
1333     }
1334 
1335   private:
1336     CodeGenFunction &CGF;
1337     llvm::Value *OldArrayInitIndex;
1338   };
1339 
1340   class InlinedInheritingConstructorScope {
1341   public:
1342     InlinedInheritingConstructorScope(CodeGenFunction &CGF, GlobalDecl GD)
1343         : CGF(CGF), OldCurGD(CGF.CurGD), OldCurFuncDecl(CGF.CurFuncDecl),
1344           OldCurCodeDecl(CGF.CurCodeDecl),
1345           OldCXXABIThisDecl(CGF.CXXABIThisDecl),
1346           OldCXXABIThisValue(CGF.CXXABIThisValue),
1347           OldCXXThisValue(CGF.CXXThisValue),
1348           OldCXXABIThisAlignment(CGF.CXXABIThisAlignment),
1349           OldCXXThisAlignment(CGF.CXXThisAlignment),
1350           OldReturnValue(CGF.ReturnValue), OldFnRetTy(CGF.FnRetTy),
1351           OldCXXInheritedCtorInitExprArgs(
1352               std::move(CGF.CXXInheritedCtorInitExprArgs)) {
1353       CGF.CurGD = GD;
1354       CGF.CurFuncDecl = CGF.CurCodeDecl =
1355           cast<CXXConstructorDecl>(GD.getDecl());
1356       CGF.CXXABIThisDecl = nullptr;
1357       CGF.CXXABIThisValue = nullptr;
1358       CGF.CXXThisValue = nullptr;
1359       CGF.CXXABIThisAlignment = CharUnits();
1360       CGF.CXXThisAlignment = CharUnits();
1361       CGF.ReturnValue = Address::invalid();
1362       CGF.FnRetTy = QualType();
1363       CGF.CXXInheritedCtorInitExprArgs.clear();
1364     }
1365     ~InlinedInheritingConstructorScope() {
1366       CGF.CurGD = OldCurGD;
1367       CGF.CurFuncDecl = OldCurFuncDecl;
1368       CGF.CurCodeDecl = OldCurCodeDecl;
1369       CGF.CXXABIThisDecl = OldCXXABIThisDecl;
1370       CGF.CXXABIThisValue = OldCXXABIThisValue;
1371       CGF.CXXThisValue = OldCXXThisValue;
1372       CGF.CXXABIThisAlignment = OldCXXABIThisAlignment;
1373       CGF.CXXThisAlignment = OldCXXThisAlignment;
1374       CGF.ReturnValue = OldReturnValue;
1375       CGF.FnRetTy = OldFnRetTy;
1376       CGF.CXXInheritedCtorInitExprArgs =
1377           std::move(OldCXXInheritedCtorInitExprArgs);
1378     }
1379 
1380   private:
1381     CodeGenFunction &CGF;
1382     GlobalDecl OldCurGD;
1383     const Decl *OldCurFuncDecl;
1384     const Decl *OldCurCodeDecl;
1385     ImplicitParamDecl *OldCXXABIThisDecl;
1386     llvm::Value *OldCXXABIThisValue;
1387     llvm::Value *OldCXXThisValue;
1388     CharUnits OldCXXABIThisAlignment;
1389     CharUnits OldCXXThisAlignment;
1390     Address OldReturnValue;
1391     QualType OldFnRetTy;
1392     CallArgList OldCXXInheritedCtorInitExprArgs;
1393   };
1394 
1395 private:
1396   /// CXXThisDecl - When generating code for a C++ member function,
1397   /// this will hold the implicit 'this' declaration.
1398   ImplicitParamDecl *CXXABIThisDecl;
1399   llvm::Value *CXXABIThisValue;
1400   llvm::Value *CXXThisValue;
1401   CharUnits CXXABIThisAlignment;
1402   CharUnits CXXThisAlignment;
1403 
1404   /// The value of 'this' to use when evaluating CXXDefaultInitExprs within
1405   /// this expression.
1406   Address CXXDefaultInitExprThis = Address::invalid();
1407 
1408   /// The current array initialization index when evaluating an
1409   /// ArrayInitIndexExpr within an ArrayInitLoopExpr.
1410   llvm::Value *ArrayInitIndex = nullptr;
1411 
1412   /// The values of function arguments to use when evaluating
1413   /// CXXInheritedCtorInitExprs within this context.
1414   CallArgList CXXInheritedCtorInitExprArgs;
1415 
1416   /// CXXStructorImplicitParamDecl - When generating code for a constructor or
1417   /// destructor, this will hold the implicit argument (e.g. VTT).
1418   ImplicitParamDecl *CXXStructorImplicitParamDecl;
1419   llvm::Value *CXXStructorImplicitParamValue;
1420 
1421   /// OutermostConditional - Points to the outermost active
1422   /// conditional control.  This is used so that we know if a
1423   /// temporary should be destroyed conditionally.
1424   ConditionalEvaluation *OutermostConditional;
1425 
1426   /// The current lexical scope.
1427   LexicalScope *CurLexicalScope;
1428 
1429   /// The current source location that should be used for exception
1430   /// handling code.
1431   SourceLocation CurEHLocation;
1432 
1433   /// BlockByrefInfos - For each __block variable, contains
1434   /// information about the layout of the variable.
1435   llvm::DenseMap<const ValueDecl *, BlockByrefInfo> BlockByrefInfos;
1436 
1437   /// Used by -fsanitize=nullability-return to determine whether the return
1438   /// value can be checked.
1439   llvm::Value *RetValNullabilityPrecondition = nullptr;
1440 
1441   /// Check if -fsanitize=nullability-return instrumentation is required for
1442   /// this function.
1443   bool requiresReturnValueNullabilityCheck() const {
1444     return RetValNullabilityPrecondition;
1445   }
1446 
1447   /// Used to store precise source locations for return statements by the
1448   /// runtime return value checks.
1449   Address ReturnLocation = Address::invalid();
1450 
1451   /// Check if the return value of this function requires sanitization.
1452   bool requiresReturnValueCheck() const {
1453     return requiresReturnValueNullabilityCheck() ||
1454            (SanOpts.has(SanitizerKind::ReturnsNonnullAttribute) &&
1455             CurCodeDecl && CurCodeDecl->getAttr<ReturnsNonNullAttr>());
1456   }
1457 
1458   llvm::BasicBlock *TerminateLandingPad;
1459   llvm::BasicBlock *TerminateHandler;
1460   llvm::BasicBlock *TrapBB;
1461 
1462   /// Terminate funclets keyed by parent funclet pad.
1463   llvm::MapVector<llvm::Value *, llvm::BasicBlock *> TerminateFunclets;
1464 
1465   /// True if we need emit the life-time markers.
1466   const bool ShouldEmitLifetimeMarkers;
1467 
1468   /// Add OpenCL kernel arg metadata and the kernel attribute metadata to
1469   /// the function metadata.
1470   void EmitOpenCLKernelMetadata(const FunctionDecl *FD,
1471                                 llvm::Function *Fn);
1472 
1473 public:
1474   CodeGenFunction(CodeGenModule &cgm, bool suppressNewContext=false);
1475   ~CodeGenFunction();
1476 
1477   CodeGenTypes &getTypes() const { return CGM.getTypes(); }
1478   ASTContext &getContext() const { return CGM.getContext(); }
1479   CGDebugInfo *getDebugInfo() {
1480     if (DisableDebugInfo)
1481       return nullptr;
1482     return DebugInfo;
1483   }
1484   void disableDebugInfo() { DisableDebugInfo = true; }
1485   void enableDebugInfo() { DisableDebugInfo = false; }
1486 
1487   bool shouldUseFusedARCCalls() {
1488     return CGM.getCodeGenOpts().OptimizationLevel == 0;
1489   }
1490 
1491   const LangOptions &getLangOpts() const { return CGM.getLangOpts(); }
1492 
1493   /// Returns a pointer to the function's exception object and selector slot,
1494   /// which is assigned in every landing pad.
1495   Address getExceptionSlot();
1496   Address getEHSelectorSlot();
1497 
1498   /// Returns the contents of the function's exception object and selector
1499   /// slots.
1500   llvm::Value *getExceptionFromSlot();
1501   llvm::Value *getSelectorFromSlot();
1502 
1503   Address getNormalCleanupDestSlot();
1504 
1505   llvm::BasicBlock *getUnreachableBlock() {
1506     if (!UnreachableBlock) {
1507       UnreachableBlock = createBasicBlock("unreachable");
1508       new llvm::UnreachableInst(getLLVMContext(), UnreachableBlock);
1509     }
1510     return UnreachableBlock;
1511   }
1512 
1513   llvm::BasicBlock *getInvokeDest() {
1514     if (!EHStack.requiresLandingPad()) return nullptr;
1515     return getInvokeDestImpl();
1516   }
1517 
1518   bool currentFunctionUsesSEHTry() const { return CurSEHParent != nullptr; }
1519 
1520   const TargetInfo &getTarget() const { return Target; }
1521   llvm::LLVMContext &getLLVMContext() { return CGM.getLLVMContext(); }
1522   const TargetCodeGenInfo &getTargetHooks() const {
1523     return CGM.getTargetCodeGenInfo();
1524   }
1525 
1526   //===--------------------------------------------------------------------===//
1527   //                                  Cleanups
1528   //===--------------------------------------------------------------------===//
1529 
1530   typedef void Destroyer(CodeGenFunction &CGF, Address addr, QualType ty);
1531 
1532   void pushIrregularPartialArrayCleanup(llvm::Value *arrayBegin,
1533                                         Address arrayEndPointer,
1534                                         QualType elementType,
1535                                         CharUnits elementAlignment,
1536                                         Destroyer *destroyer);
1537   void pushRegularPartialArrayCleanup(llvm::Value *arrayBegin,
1538                                       llvm::Value *arrayEnd,
1539                                       QualType elementType,
1540                                       CharUnits elementAlignment,
1541                                       Destroyer *destroyer);
1542 
1543   void pushDestroy(QualType::DestructionKind dtorKind,
1544                    Address addr, QualType type);
1545   void pushEHDestroy(QualType::DestructionKind dtorKind,
1546                      Address addr, QualType type);
1547   void pushDestroy(CleanupKind kind, Address addr, QualType type,
1548                    Destroyer *destroyer, bool useEHCleanupForArray);
1549   void pushLifetimeExtendedDestroy(CleanupKind kind, Address addr,
1550                                    QualType type, Destroyer *destroyer,
1551                                    bool useEHCleanupForArray);
1552   void pushCallObjectDeleteCleanup(const FunctionDecl *OperatorDelete,
1553                                    llvm::Value *CompletePtr,
1554                                    QualType ElementType);
1555   void pushStackRestore(CleanupKind kind, Address SPMem);
1556   void emitDestroy(Address addr, QualType type, Destroyer *destroyer,
1557                    bool useEHCleanupForArray);
1558   llvm::Function *generateDestroyHelper(Address addr, QualType type,
1559                                         Destroyer *destroyer,
1560                                         bool useEHCleanupForArray,
1561                                         const VarDecl *VD);
1562   void emitArrayDestroy(llvm::Value *begin, llvm::Value *end,
1563                         QualType elementType, CharUnits elementAlign,
1564                         Destroyer *destroyer,
1565                         bool checkZeroLength, bool useEHCleanup);
1566 
1567   Destroyer *getDestroyer(QualType::DestructionKind destructionKind);
1568 
1569   /// Determines whether an EH cleanup is required to destroy a type
1570   /// with the given destruction kind.
1571   bool needsEHCleanup(QualType::DestructionKind kind) {
1572     switch (kind) {
1573     case QualType::DK_none:
1574       return false;
1575     case QualType::DK_cxx_destructor:
1576     case QualType::DK_objc_weak_lifetime:
1577     case QualType::DK_nontrivial_c_struct:
1578       return getLangOpts().Exceptions;
1579     case QualType::DK_objc_strong_lifetime:
1580       return getLangOpts().Exceptions &&
1581              CGM.getCodeGenOpts().ObjCAutoRefCountExceptions;
1582     }
1583     llvm_unreachable("bad destruction kind");
1584   }
1585 
1586   CleanupKind getCleanupKind(QualType::DestructionKind kind) {
1587     return (needsEHCleanup(kind) ? NormalAndEHCleanup : NormalCleanup);
1588   }
1589 
1590   //===--------------------------------------------------------------------===//
1591   //                                  Objective-C
1592   //===--------------------------------------------------------------------===//
1593 
1594   void GenerateObjCMethod(const ObjCMethodDecl *OMD);
1595 
1596   void StartObjCMethod(const ObjCMethodDecl *MD, const ObjCContainerDecl *CD);
1597 
1598   /// GenerateObjCGetter - Synthesize an Objective-C property getter function.
1599   void GenerateObjCGetter(ObjCImplementationDecl *IMP,
1600                           const ObjCPropertyImplDecl *PID);
1601   void generateObjCGetterBody(const ObjCImplementationDecl *classImpl,
1602                               const ObjCPropertyImplDecl *propImpl,
1603                               const ObjCMethodDecl *GetterMothodDecl,
1604                               llvm::Constant *AtomicHelperFn);
1605 
1606   void GenerateObjCCtorDtorMethod(ObjCImplementationDecl *IMP,
1607                                   ObjCMethodDecl *MD, bool ctor);
1608 
1609   /// GenerateObjCSetter - Synthesize an Objective-C property setter function
1610   /// for the given property.
1611   void GenerateObjCSetter(ObjCImplementationDecl *IMP,
1612                           const ObjCPropertyImplDecl *PID);
1613   void generateObjCSetterBody(const ObjCImplementationDecl *classImpl,
1614                               const ObjCPropertyImplDecl *propImpl,
1615                               llvm::Constant *AtomicHelperFn);
1616 
1617   //===--------------------------------------------------------------------===//
1618   //                                  Block Bits
1619   //===--------------------------------------------------------------------===//
1620 
1621   /// Emit block literal.
1622   /// \return an LLVM value which is a pointer to a struct which contains
1623   /// information about the block, including the block invoke function, the
1624   /// captured variables, etc.
1625   llvm::Value *EmitBlockLiteral(const BlockExpr *);
1626   static void destroyBlockInfos(CGBlockInfo *info);
1627 
1628   llvm::Function *GenerateBlockFunction(GlobalDecl GD,
1629                                         const CGBlockInfo &Info,
1630                                         const DeclMapTy &ldm,
1631                                         bool IsLambdaConversionToBlock,
1632                                         bool BuildGlobalBlock);
1633 
1634   llvm::Constant *GenerateCopyHelperFunction(const CGBlockInfo &blockInfo);
1635   llvm::Constant *GenerateDestroyHelperFunction(const CGBlockInfo &blockInfo);
1636   llvm::Constant *GenerateObjCAtomicSetterCopyHelperFunction(
1637                                              const ObjCPropertyImplDecl *PID);
1638   llvm::Constant *GenerateObjCAtomicGetterCopyHelperFunction(
1639                                              const ObjCPropertyImplDecl *PID);
1640   llvm::Value *EmitBlockCopyAndAutorelease(llvm::Value *Block, QualType Ty);
1641 
1642   void BuildBlockRelease(llvm::Value *DeclPtr, BlockFieldFlags flags);
1643 
1644   class AutoVarEmission;
1645 
1646   void emitByrefStructureInit(const AutoVarEmission &emission);
1647   void enterByrefCleanup(const AutoVarEmission &emission);
1648 
1649   void setBlockContextParameter(const ImplicitParamDecl *D, unsigned argNum,
1650                                 llvm::Value *ptr);
1651 
1652   Address LoadBlockStruct();
1653   Address GetAddrOfBlockDecl(const VarDecl *var, bool ByRef);
1654 
1655   /// BuildBlockByrefAddress - Computes the location of the
1656   /// data in a variable which is declared as __block.
1657   Address emitBlockByrefAddress(Address baseAddr, const VarDecl *V,
1658                                 bool followForward = true);
1659   Address emitBlockByrefAddress(Address baseAddr,
1660                                 const BlockByrefInfo &info,
1661                                 bool followForward,
1662                                 const llvm::Twine &name);
1663 
1664   const BlockByrefInfo &getBlockByrefInfo(const VarDecl *var);
1665 
1666   QualType BuildFunctionArgList(GlobalDecl GD, FunctionArgList &Args);
1667 
1668   void GenerateCode(GlobalDecl GD, llvm::Function *Fn,
1669                     const CGFunctionInfo &FnInfo);
1670   /// Emit code for the start of a function.
1671   /// \param Loc       The location to be associated with the function.
1672   /// \param StartLoc  The location of the function body.
1673   void StartFunction(GlobalDecl GD,
1674                      QualType RetTy,
1675                      llvm::Function *Fn,
1676                      const CGFunctionInfo &FnInfo,
1677                      const FunctionArgList &Args,
1678                      SourceLocation Loc = SourceLocation(),
1679                      SourceLocation StartLoc = SourceLocation());
1680 
1681   static bool IsConstructorDelegationValid(const CXXConstructorDecl *Ctor);
1682 
1683   void EmitConstructorBody(FunctionArgList &Args);
1684   void EmitDestructorBody(FunctionArgList &Args);
1685   void emitImplicitAssignmentOperatorBody(FunctionArgList &Args);
1686   void EmitFunctionBody(FunctionArgList &Args, const Stmt *Body);
1687   void EmitBlockWithFallThrough(llvm::BasicBlock *BB, const Stmt *S);
1688 
1689   void EmitForwardingCallToLambda(const CXXMethodDecl *LambdaCallOperator,
1690                                   CallArgList &CallArgs);
1691   void EmitLambdaBlockInvokeBody();
1692   void EmitLambdaDelegatingInvokeBody(const CXXMethodDecl *MD);
1693   void EmitLambdaStaticInvokeBody(const CXXMethodDecl *MD);
1694   void EmitAsanPrologueOrEpilogue(bool Prologue);
1695 
1696   /// Emit the unified return block, trying to avoid its emission when
1697   /// possible.
1698   /// \return The debug location of the user written return statement if the
1699   /// return block is is avoided.
1700   llvm::DebugLoc EmitReturnBlock();
1701 
1702   /// FinishFunction - Complete IR generation of the current function. It is
1703   /// legal to call this function even if there is no current insertion point.
1704   void FinishFunction(SourceLocation EndLoc=SourceLocation());
1705 
1706   void StartThunk(llvm::Function *Fn, GlobalDecl GD,
1707                   const CGFunctionInfo &FnInfo, bool IsUnprototyped);
1708 
1709   void EmitCallAndReturnForThunk(llvm::Constant *Callee, const ThunkInfo *Thunk,
1710                                  bool IsUnprototyped);
1711 
1712   void FinishThunk();
1713 
1714   /// Emit a musttail call for a thunk with a potentially adjusted this pointer.
1715   void EmitMustTailThunk(const CXXMethodDecl *MD, llvm::Value *AdjustedThisPtr,
1716                          llvm::Value *Callee);
1717 
1718   /// Generate a thunk for the given method.
1719   void generateThunk(llvm::Function *Fn, const CGFunctionInfo &FnInfo,
1720                      GlobalDecl GD, const ThunkInfo &Thunk,
1721                      bool IsUnprototyped);
1722 
1723   llvm::Function *GenerateVarArgsThunk(llvm::Function *Fn,
1724                                        const CGFunctionInfo &FnInfo,
1725                                        GlobalDecl GD, const ThunkInfo &Thunk);
1726 
1727   void EmitCtorPrologue(const CXXConstructorDecl *CD, CXXCtorType Type,
1728                         FunctionArgList &Args);
1729 
1730   void EmitInitializerForField(FieldDecl *Field, LValue LHS, Expr *Init);
1731 
1732   /// Struct with all information about dynamic [sub]class needed to set vptr.
1733   struct VPtr {
1734     BaseSubobject Base;
1735     const CXXRecordDecl *NearestVBase;
1736     CharUnits OffsetFromNearestVBase;
1737     const CXXRecordDecl *VTableClass;
1738   };
1739 
1740   /// Initialize the vtable pointer of the given subobject.
1741   void InitializeVTablePointer(const VPtr &vptr);
1742 
1743   typedef llvm::SmallVector<VPtr, 4> VPtrsVector;
1744 
1745   typedef llvm::SmallPtrSet<const CXXRecordDecl *, 4> VisitedVirtualBasesSetTy;
1746   VPtrsVector getVTablePointers(const CXXRecordDecl *VTableClass);
1747 
1748   void getVTablePointers(BaseSubobject Base, const CXXRecordDecl *NearestVBase,
1749                          CharUnits OffsetFromNearestVBase,
1750                          bool BaseIsNonVirtualPrimaryBase,
1751                          const CXXRecordDecl *VTableClass,
1752                          VisitedVirtualBasesSetTy &VBases, VPtrsVector &vptrs);
1753 
1754   void InitializeVTablePointers(const CXXRecordDecl *ClassDecl);
1755 
1756   /// GetVTablePtr - Return the Value of the vtable pointer member pointed
1757   /// to by This.
1758   llvm::Value *GetVTablePtr(Address This, llvm::Type *VTableTy,
1759                             const CXXRecordDecl *VTableClass);
1760 
1761   enum CFITypeCheckKind {
1762     CFITCK_VCall,
1763     CFITCK_NVCall,
1764     CFITCK_DerivedCast,
1765     CFITCK_UnrelatedCast,
1766     CFITCK_ICall,
1767   };
1768 
1769   /// Derived is the presumed address of an object of type T after a
1770   /// cast. If T is a polymorphic class type, emit a check that the virtual
1771   /// table for Derived belongs to a class derived from T.
1772   void EmitVTablePtrCheckForCast(QualType T, llvm::Value *Derived,
1773                                  bool MayBeNull, CFITypeCheckKind TCK,
1774                                  SourceLocation Loc);
1775 
1776   /// EmitVTablePtrCheckForCall - Virtual method MD is being called via VTable.
1777   /// If vptr CFI is enabled, emit a check that VTable is valid.
1778   void EmitVTablePtrCheckForCall(const CXXRecordDecl *RD, llvm::Value *VTable,
1779                                  CFITypeCheckKind TCK, SourceLocation Loc);
1780 
1781   /// EmitVTablePtrCheck - Emit a check that VTable is a valid virtual table for
1782   /// RD using llvm.type.test.
1783   void EmitVTablePtrCheck(const CXXRecordDecl *RD, llvm::Value *VTable,
1784                           CFITypeCheckKind TCK, SourceLocation Loc);
1785 
1786   /// If whole-program virtual table optimization is enabled, emit an assumption
1787   /// that VTable is a member of RD's type identifier. Or, if vptr CFI is
1788   /// enabled, emit a check that VTable is a member of RD's type identifier.
1789   void EmitTypeMetadataCodeForVCall(const CXXRecordDecl *RD,
1790                                     llvm::Value *VTable, SourceLocation Loc);
1791 
1792   /// Returns whether we should perform a type checked load when loading a
1793   /// virtual function for virtual calls to members of RD. This is generally
1794   /// true when both vcall CFI and whole-program-vtables are enabled.
1795   bool ShouldEmitVTableTypeCheckedLoad(const CXXRecordDecl *RD);
1796 
1797   /// Emit a type checked load from the given vtable.
1798   llvm::Value *EmitVTableTypeCheckedLoad(const CXXRecordDecl *RD, llvm::Value *VTable,
1799                                          uint64_t VTableByteOffset);
1800 
1801   /// EnterDtorCleanups - Enter the cleanups necessary to complete the
1802   /// given phase of destruction for a destructor.  The end result
1803   /// should call destructors on members and base classes in reverse
1804   /// order of their construction.
1805   void EnterDtorCleanups(const CXXDestructorDecl *Dtor, CXXDtorType Type);
1806 
1807   /// ShouldInstrumentFunction - Return true if the current function should be
1808   /// instrumented with __cyg_profile_func_* calls
1809   bool ShouldInstrumentFunction();
1810 
1811   /// ShouldXRayInstrument - Return true if the current function should be
1812   /// instrumented with XRay nop sleds.
1813   bool ShouldXRayInstrumentFunction() const;
1814 
1815   /// AlwaysEmitXRayCustomEvents - Return true if we must unconditionally emit
1816   /// XRay custom event handling calls.
1817   bool AlwaysEmitXRayCustomEvents() const;
1818 
1819   /// AlwaysEmitXRayTypedEvents - Return true if clang must unconditionally emit
1820   /// XRay typed event handling calls.
1821   bool AlwaysEmitXRayTypedEvents() const;
1822 
1823   /// Encode an address into a form suitable for use in a function prologue.
1824   llvm::Constant *EncodeAddrForUseInPrologue(llvm::Function *F,
1825                                              llvm::Constant *Addr);
1826 
1827   /// Decode an address used in a function prologue, encoded by \c
1828   /// EncodeAddrForUseInPrologue.
1829   llvm::Value *DecodeAddrUsedInPrologue(llvm::Value *F,
1830                                         llvm::Value *EncodedAddr);
1831 
1832   /// EmitFunctionProlog - Emit the target specific LLVM code to load the
1833   /// arguments for the given function. This is also responsible for naming the
1834   /// LLVM function arguments.
1835   void EmitFunctionProlog(const CGFunctionInfo &FI,
1836                           llvm::Function *Fn,
1837                           const FunctionArgList &Args);
1838 
1839   /// EmitFunctionEpilog - Emit the target specific LLVM code to return the
1840   /// given temporary.
1841   void EmitFunctionEpilog(const CGFunctionInfo &FI, bool EmitRetDbgLoc,
1842                           SourceLocation EndLoc);
1843 
1844   /// Emit a test that checks if the return value \p RV is nonnull.
1845   void EmitReturnValueCheck(llvm::Value *RV);
1846 
1847   /// EmitStartEHSpec - Emit the start of the exception spec.
1848   void EmitStartEHSpec(const Decl *D);
1849 
1850   /// EmitEndEHSpec - Emit the end of the exception spec.
1851   void EmitEndEHSpec(const Decl *D);
1852 
1853   /// getTerminateLandingPad - Return a landing pad that just calls terminate.
1854   llvm::BasicBlock *getTerminateLandingPad();
1855 
1856   /// getTerminateLandingPad - Return a cleanup funclet that just calls
1857   /// terminate.
1858   llvm::BasicBlock *getTerminateFunclet();
1859 
1860   /// getTerminateHandler - Return a handler (not a landing pad, just
1861   /// a catch handler) that just calls terminate.  This is used when
1862   /// a terminate scope encloses a try.
1863   llvm::BasicBlock *getTerminateHandler();
1864 
1865   llvm::Type *ConvertTypeForMem(QualType T);
1866   llvm::Type *ConvertType(QualType T);
1867   llvm::Type *ConvertType(const TypeDecl *T) {
1868     return ConvertType(getContext().getTypeDeclType(T));
1869   }
1870 
1871   /// LoadObjCSelf - Load the value of self. This function is only valid while
1872   /// generating code for an Objective-C method.
1873   llvm::Value *LoadObjCSelf();
1874 
1875   /// TypeOfSelfObject - Return type of object that this self represents.
1876   QualType TypeOfSelfObject();
1877 
1878   /// getEvaluationKind - Return the TypeEvaluationKind of QualType \c T.
1879   static TypeEvaluationKind getEvaluationKind(QualType T);
1880 
1881   static bool hasScalarEvaluationKind(QualType T) {
1882     return getEvaluationKind(T) == TEK_Scalar;
1883   }
1884 
1885   static bool hasAggregateEvaluationKind(QualType T) {
1886     return getEvaluationKind(T) == TEK_Aggregate;
1887   }
1888 
1889   /// createBasicBlock - Create an LLVM basic block.
1890   llvm::BasicBlock *createBasicBlock(const Twine &name = "",
1891                                      llvm::Function *parent = nullptr,
1892                                      llvm::BasicBlock *before = nullptr) {
1893     return llvm::BasicBlock::Create(getLLVMContext(), name, parent, before);
1894   }
1895 
1896   /// getBasicBlockForLabel - Return the LLVM basicblock that the specified
1897   /// label maps to.
1898   JumpDest getJumpDestForLabel(const LabelDecl *S);
1899 
1900   /// SimplifyForwardingBlocks - If the given basic block is only a branch to
1901   /// another basic block, simplify it. This assumes that no other code could
1902   /// potentially reference the basic block.
1903   void SimplifyForwardingBlocks(llvm::BasicBlock *BB);
1904 
1905   /// EmitBlock - Emit the given block \arg BB and set it as the insert point,
1906   /// adding a fall-through branch from the current insert block if
1907   /// necessary. It is legal to call this function even if there is no current
1908   /// insertion point.
1909   ///
1910   /// IsFinished - If true, indicates that the caller has finished emitting
1911   /// branches to the given block and does not expect to emit code into it. This
1912   /// means the block can be ignored if it is unreachable.
1913   void EmitBlock(llvm::BasicBlock *BB, bool IsFinished=false);
1914 
1915   /// EmitBlockAfterUses - Emit the given block somewhere hopefully
1916   /// near its uses, and leave the insertion point in it.
1917   void EmitBlockAfterUses(llvm::BasicBlock *BB);
1918 
1919   /// EmitBranch - Emit a branch to the specified basic block from the current
1920   /// insert block, taking care to avoid creation of branches from dummy
1921   /// blocks. It is legal to call this function even if there is no current
1922   /// insertion point.
1923   ///
1924   /// This function clears the current insertion point. The caller should follow
1925   /// calls to this function with calls to Emit*Block prior to generation new
1926   /// code.
1927   void EmitBranch(llvm::BasicBlock *Block);
1928 
1929   /// HaveInsertPoint - True if an insertion point is defined. If not, this
1930   /// indicates that the current code being emitted is unreachable.
1931   bool HaveInsertPoint() const {
1932     return Builder.GetInsertBlock() != nullptr;
1933   }
1934 
1935   /// EnsureInsertPoint - Ensure that an insertion point is defined so that
1936   /// emitted IR has a place to go. Note that by definition, if this function
1937   /// creates a block then that block is unreachable; callers may do better to
1938   /// detect when no insertion point is defined and simply skip IR generation.
1939   void EnsureInsertPoint() {
1940     if (!HaveInsertPoint())
1941       EmitBlock(createBasicBlock());
1942   }
1943 
1944   /// ErrorUnsupported - Print out an error that codegen doesn't support the
1945   /// specified stmt yet.
1946   void ErrorUnsupported(const Stmt *S, const char *Type);
1947 
1948   //===--------------------------------------------------------------------===//
1949   //                                  Helpers
1950   //===--------------------------------------------------------------------===//
1951 
1952   LValue MakeAddrLValue(Address Addr, QualType T,
1953                         AlignmentSource Source = AlignmentSource::Type) {
1954     return LValue::MakeAddr(Addr, T, getContext(), LValueBaseInfo(Source),
1955                             CGM.getTBAAAccessInfo(T));
1956   }
1957 
1958   LValue MakeAddrLValue(Address Addr, QualType T, LValueBaseInfo BaseInfo,
1959                         TBAAAccessInfo TBAAInfo) {
1960     return LValue::MakeAddr(Addr, T, getContext(), BaseInfo, TBAAInfo);
1961   }
1962 
1963   LValue MakeAddrLValue(llvm::Value *V, QualType T, CharUnits Alignment,
1964                         AlignmentSource Source = AlignmentSource::Type) {
1965     return LValue::MakeAddr(Address(V, Alignment), T, getContext(),
1966                             LValueBaseInfo(Source), CGM.getTBAAAccessInfo(T));
1967   }
1968 
1969   LValue MakeAddrLValue(llvm::Value *V, QualType T, CharUnits Alignment,
1970                         LValueBaseInfo BaseInfo, TBAAAccessInfo TBAAInfo) {
1971     return LValue::MakeAddr(Address(V, Alignment), T, getContext(),
1972                             BaseInfo, TBAAInfo);
1973   }
1974 
1975   LValue MakeNaturalAlignPointeeAddrLValue(llvm::Value *V, QualType T);
1976   LValue MakeNaturalAlignAddrLValue(llvm::Value *V, QualType T);
1977   CharUnits getNaturalTypeAlignment(QualType T,
1978                                     LValueBaseInfo *BaseInfo = nullptr,
1979                                     TBAAAccessInfo *TBAAInfo = nullptr,
1980                                     bool forPointeeType = false);
1981   CharUnits getNaturalPointeeTypeAlignment(QualType T,
1982                                            LValueBaseInfo *BaseInfo = nullptr,
1983                                            TBAAAccessInfo *TBAAInfo = nullptr);
1984 
1985   Address EmitLoadOfReference(LValue RefLVal,
1986                               LValueBaseInfo *PointeeBaseInfo = nullptr,
1987                               TBAAAccessInfo *PointeeTBAAInfo = nullptr);
1988   LValue EmitLoadOfReferenceLValue(LValue RefLVal);
1989   LValue EmitLoadOfReferenceLValue(Address RefAddr, QualType RefTy,
1990                                    AlignmentSource Source =
1991                                        AlignmentSource::Type) {
1992     LValue RefLVal = MakeAddrLValue(RefAddr, RefTy, LValueBaseInfo(Source),
1993                                     CGM.getTBAAAccessInfo(RefTy));
1994     return EmitLoadOfReferenceLValue(RefLVal);
1995   }
1996 
1997   Address EmitLoadOfPointer(Address Ptr, const PointerType *PtrTy,
1998                             LValueBaseInfo *BaseInfo = nullptr,
1999                             TBAAAccessInfo *TBAAInfo = nullptr);
2000   LValue EmitLoadOfPointerLValue(Address Ptr, const PointerType *PtrTy);
2001 
2002   /// CreateTempAlloca - This creates an alloca and inserts it into the entry
2003   /// block if \p ArraySize is nullptr, otherwise inserts it at the current
2004   /// insertion point of the builder. The caller is responsible for setting an
2005   /// appropriate alignment on
2006   /// the alloca.
2007   ///
2008   /// \p ArraySize is the number of array elements to be allocated if it
2009   ///    is not nullptr.
2010   ///
2011   /// LangAS::Default is the address space of pointers to local variables and
2012   /// temporaries, as exposed in the source language. In certain
2013   /// configurations, this is not the same as the alloca address space, and a
2014   /// cast is needed to lift the pointer from the alloca AS into
2015   /// LangAS::Default. This can happen when the target uses a restricted
2016   /// address space for the stack but the source language requires
2017   /// LangAS::Default to be a generic address space. The latter condition is
2018   /// common for most programming languages; OpenCL is an exception in that
2019   /// LangAS::Default is the private address space, which naturally maps
2020   /// to the stack.
2021   ///
2022   /// Because the address of a temporary is often exposed to the program in
2023   /// various ways, this function will perform the cast by default. The cast
2024   /// may be avoided by passing false as \p CastToDefaultAddrSpace; this is
2025   /// more efficient if the caller knows that the address will not be exposed.
2026   /// The original alloca instruction is returned through \p Alloca if it is
2027   /// not nullptr.
2028   llvm::AllocaInst *CreateTempAlloca(llvm::Type *Ty, const Twine &Name = "tmp",
2029                                      llvm::Value *ArraySize = nullptr);
2030   Address CreateTempAlloca(llvm::Type *Ty, CharUnits align,
2031                            const Twine &Name = "tmp",
2032                            llvm::Value *ArraySize = nullptr,
2033                            Address *Alloca = nullptr,
2034                            bool CastToDefaultAddrSpace = true);
2035 
2036   /// CreateDefaultAlignedTempAlloca - This creates an alloca with the
2037   /// default ABI alignment of the given LLVM type.
2038   ///
2039   /// IMPORTANT NOTE: This is *not* generally the right alignment for
2040   /// any given AST type that happens to have been lowered to the
2041   /// given IR type.  This should only ever be used for function-local,
2042   /// IR-driven manipulations like saving and restoring a value.  Do
2043   /// not hand this address off to arbitrary IRGen routines, and especially
2044   /// do not pass it as an argument to a function that might expect a
2045   /// properly ABI-aligned value.
2046   Address CreateDefaultAlignTempAlloca(llvm::Type *Ty,
2047                                        const Twine &Name = "tmp");
2048 
2049   /// InitTempAlloca - Provide an initial value for the given alloca which
2050   /// will be observable at all locations in the function.
2051   ///
2052   /// The address should be something that was returned from one of
2053   /// the CreateTempAlloca or CreateMemTemp routines, and the
2054   /// initializer must be valid in the entry block (i.e. it must
2055   /// either be a constant or an argument value).
2056   void InitTempAlloca(Address Alloca, llvm::Value *Value);
2057 
2058   /// CreateIRTemp - Create a temporary IR object of the given type, with
2059   /// appropriate alignment. This routine should only be used when an temporary
2060   /// value needs to be stored into an alloca (for example, to avoid explicit
2061   /// PHI construction), but the type is the IR type, not the type appropriate
2062   /// for storing in memory.
2063   ///
2064   /// That is, this is exactly equivalent to CreateMemTemp, but calling
2065   /// ConvertType instead of ConvertTypeForMem.
2066   Address CreateIRTemp(QualType T, const Twine &Name = "tmp");
2067 
2068   /// CreateMemTemp - Create a temporary memory object of the given type, with
2069   /// appropriate alignment. Cast it to the default address space if
2070   /// \p CastToDefaultAddrSpace is true. Returns the original alloca
2071   /// instruction by \p Alloca if it is not nullptr.
2072   Address CreateMemTemp(QualType T, const Twine &Name = "tmp",
2073                         Address *Alloca = nullptr,
2074                         bool CastToDefaultAddrSpace = true);
2075   Address CreateMemTemp(QualType T, CharUnits Align, const Twine &Name = "tmp",
2076                         Address *Alloca = nullptr,
2077                         bool CastToDefaultAddrSpace = true);
2078 
2079   /// CreateAggTemp - Create a temporary memory object for the given
2080   /// aggregate type.
2081   AggValueSlot CreateAggTemp(QualType T, const Twine &Name = "tmp") {
2082     return AggValueSlot::forAddr(CreateMemTemp(T, Name),
2083                                  T.getQualifiers(),
2084                                  AggValueSlot::IsNotDestructed,
2085                                  AggValueSlot::DoesNotNeedGCBarriers,
2086                                  AggValueSlot::IsNotAliased,
2087                                  AggValueSlot::DoesNotOverlap);
2088   }
2089 
2090   /// Emit a cast to void* in the appropriate address space.
2091   llvm::Value *EmitCastToVoidPtr(llvm::Value *value);
2092 
2093   /// EvaluateExprAsBool - Perform the usual unary conversions on the specified
2094   /// expression and compare the result against zero, returning an Int1Ty value.
2095   llvm::Value *EvaluateExprAsBool(const Expr *E);
2096 
2097   /// EmitIgnoredExpr - Emit an expression in a context which ignores the result.
2098   void EmitIgnoredExpr(const Expr *E);
2099 
2100   /// EmitAnyExpr - Emit code to compute the specified expression which can have
2101   /// any type.  The result is returned as an RValue struct.  If this is an
2102   /// aggregate expression, the aggloc/agglocvolatile arguments indicate where
2103   /// the result should be returned.
2104   ///
2105   /// \param ignoreResult True if the resulting value isn't used.
2106   RValue EmitAnyExpr(const Expr *E,
2107                      AggValueSlot aggSlot = AggValueSlot::ignored(),
2108                      bool ignoreResult = false);
2109 
2110   // EmitVAListRef - Emit a "reference" to a va_list; this is either the address
2111   // or the value of the expression, depending on how va_list is defined.
2112   Address EmitVAListRef(const Expr *E);
2113 
2114   /// Emit a "reference" to a __builtin_ms_va_list; this is
2115   /// always the value of the expression, because a __builtin_ms_va_list is a
2116   /// pointer to a char.
2117   Address EmitMSVAListRef(const Expr *E);
2118 
2119   /// EmitAnyExprToTemp - Similarly to EmitAnyExpr(), however, the result will
2120   /// always be accessible even if no aggregate location is provided.
2121   RValue EmitAnyExprToTemp(const Expr *E);
2122 
2123   /// EmitAnyExprToMem - Emits the code necessary to evaluate an
2124   /// arbitrary expression into the given memory location.
2125   void EmitAnyExprToMem(const Expr *E, Address Location,
2126                         Qualifiers Quals, bool IsInitializer);
2127 
2128   void EmitAnyExprToExn(const Expr *E, Address Addr);
2129 
2130   /// EmitExprAsInit - Emits the code necessary to initialize a
2131   /// location in memory with the given initializer.
2132   void EmitExprAsInit(const Expr *init, const ValueDecl *D, LValue lvalue,
2133                       bool capturedByInit);
2134 
2135   /// hasVolatileMember - returns true if aggregate type has a volatile
2136   /// member.
2137   bool hasVolatileMember(QualType T) {
2138     if (const RecordType *RT = T->getAs<RecordType>()) {
2139       const RecordDecl *RD = cast<RecordDecl>(RT->getDecl());
2140       return RD->hasVolatileMember();
2141     }
2142     return false;
2143   }
2144 
2145   /// Determine whether a return value slot may overlap some other object.
2146   AggValueSlot::Overlap_t overlapForReturnValue() {
2147     // FIXME: Assuming no overlap here breaks guaranteed copy elision for base
2148     // class subobjects. These cases may need to be revisited depending on the
2149     // resolution of the relevant core issue.
2150     return AggValueSlot::DoesNotOverlap;
2151   }
2152 
2153   /// Determine whether a field initialization may overlap some other object.
2154   AggValueSlot::Overlap_t overlapForFieldInit(const FieldDecl *FD) {
2155     // FIXME: These cases can result in overlap as a result of P0840R0's
2156     // [[no_unique_address]] attribute. We can still infer NoOverlap in the
2157     // presence of that attribute if the field is within the nvsize of its
2158     // containing class, because non-virtual subobjects are initialized in
2159     // address order.
2160     return AggValueSlot::DoesNotOverlap;
2161   }
2162 
2163   /// Determine whether a base class initialization may overlap some other
2164   /// object.
2165   AggValueSlot::Overlap_t overlapForBaseInit(const CXXRecordDecl *RD,
2166                                              const CXXRecordDecl *BaseRD,
2167                                              bool IsVirtual);
2168 
2169   /// Emit an aggregate assignment.
2170   void EmitAggregateAssign(LValue Dest, LValue Src, QualType EltTy) {
2171     bool IsVolatile = hasVolatileMember(EltTy);
2172     EmitAggregateCopy(Dest, Src, EltTy, AggValueSlot::MayOverlap, IsVolatile);
2173   }
2174 
2175   void EmitAggregateCopyCtor(LValue Dest, LValue Src,
2176                              AggValueSlot::Overlap_t MayOverlap) {
2177     EmitAggregateCopy(Dest, Src, Src.getType(), MayOverlap);
2178   }
2179 
2180   /// EmitAggregateCopy - Emit an aggregate copy.
2181   ///
2182   /// \param isVolatile \c true iff either the source or the destination is
2183   ///        volatile.
2184   /// \param MayOverlap Whether the tail padding of the destination might be
2185   ///        occupied by some other object. More efficient code can often be
2186   ///        generated if not.
2187   void EmitAggregateCopy(LValue Dest, LValue Src, QualType EltTy,
2188                          AggValueSlot::Overlap_t MayOverlap,
2189                          bool isVolatile = false);
2190 
2191   /// GetAddrOfLocalVar - Return the address of a local variable.
2192   Address GetAddrOfLocalVar(const VarDecl *VD) {
2193     auto it = LocalDeclMap.find(VD);
2194     assert(it != LocalDeclMap.end() &&
2195            "Invalid argument to GetAddrOfLocalVar(), no decl!");
2196     return it->second;
2197   }
2198 
2199   /// Given an opaque value expression, return its LValue mapping if it exists,
2200   /// otherwise create one.
2201   LValue getOrCreateOpaqueLValueMapping(const OpaqueValueExpr *e);
2202 
2203   /// Given an opaque value expression, return its RValue mapping if it exists,
2204   /// otherwise create one.
2205   RValue getOrCreateOpaqueRValueMapping(const OpaqueValueExpr *e);
2206 
2207   /// Get the index of the current ArrayInitLoopExpr, if any.
2208   llvm::Value *getArrayInitIndex() { return ArrayInitIndex; }
2209 
2210   /// getAccessedFieldNo - Given an encoded value and a result number, return
2211   /// the input field number being accessed.
2212   static unsigned getAccessedFieldNo(unsigned Idx, const llvm::Constant *Elts);
2213 
2214   llvm::BlockAddress *GetAddrOfLabel(const LabelDecl *L);
2215   llvm::BasicBlock *GetIndirectGotoBlock();
2216 
2217   /// Check if \p E is a C++ "this" pointer wrapped in value-preserving casts.
2218   static bool IsWrappedCXXThis(const Expr *E);
2219 
2220   /// EmitNullInitialization - Generate code to set a value of the given type to
2221   /// null, If the type contains data member pointers, they will be initialized
2222   /// to -1 in accordance with the Itanium C++ ABI.
2223   void EmitNullInitialization(Address DestPtr, QualType Ty);
2224 
2225   /// Emits a call to an LLVM variable-argument intrinsic, either
2226   /// \c llvm.va_start or \c llvm.va_end.
2227   /// \param ArgValue A reference to the \c va_list as emitted by either
2228   /// \c EmitVAListRef or \c EmitMSVAListRef.
2229   /// \param IsStart If \c true, emits a call to \c llvm.va_start; otherwise,
2230   /// calls \c llvm.va_end.
2231   llvm::Value *EmitVAStartEnd(llvm::Value *ArgValue, bool IsStart);
2232 
2233   /// Generate code to get an argument from the passed in pointer
2234   /// and update it accordingly.
2235   /// \param VE The \c VAArgExpr for which to generate code.
2236   /// \param VAListAddr Receives a reference to the \c va_list as emitted by
2237   /// either \c EmitVAListRef or \c EmitMSVAListRef.
2238   /// \returns A pointer to the argument.
2239   // FIXME: We should be able to get rid of this method and use the va_arg
2240   // instruction in LLVM instead once it works well enough.
2241   Address EmitVAArg(VAArgExpr *VE, Address &VAListAddr);
2242 
2243   /// emitArrayLength - Compute the length of an array, even if it's a
2244   /// VLA, and drill down to the base element type.
2245   llvm::Value *emitArrayLength(const ArrayType *arrayType,
2246                                QualType &baseType,
2247                                Address &addr);
2248 
2249   /// EmitVLASize - Capture all the sizes for the VLA expressions in
2250   /// the given variably-modified type and store them in the VLASizeMap.
2251   ///
2252   /// This function can be called with a null (unreachable) insert point.
2253   void EmitVariablyModifiedType(QualType Ty);
2254 
2255   struct VlaSizePair {
2256     llvm::Value *NumElts;
2257     QualType Type;
2258 
2259     VlaSizePair(llvm::Value *NE, QualType T) : NumElts(NE), Type(T) {}
2260   };
2261 
2262   /// Return the number of elements for a single dimension
2263   /// for the given array type.
2264   VlaSizePair getVLAElements1D(const VariableArrayType *vla);
2265   VlaSizePair getVLAElements1D(QualType vla);
2266 
2267   /// Returns an LLVM value that corresponds to the size,
2268   /// in non-variably-sized elements, of a variable length array type,
2269   /// plus that largest non-variably-sized element type.  Assumes that
2270   /// the type has already been emitted with EmitVariablyModifiedType.
2271   VlaSizePair getVLASize(const VariableArrayType *vla);
2272   VlaSizePair getVLASize(QualType vla);
2273 
2274   /// LoadCXXThis - Load the value of 'this'. This function is only valid while
2275   /// generating code for an C++ member function.
2276   llvm::Value *LoadCXXThis() {
2277     assert(CXXThisValue && "no 'this' value for this function");
2278     return CXXThisValue;
2279   }
2280   Address LoadCXXThisAddress();
2281 
2282   /// LoadCXXVTT - Load the VTT parameter to base constructors/destructors have
2283   /// virtual bases.
2284   // FIXME: Every place that calls LoadCXXVTT is something
2285   // that needs to be abstracted properly.
2286   llvm::Value *LoadCXXVTT() {
2287     assert(CXXStructorImplicitParamValue && "no VTT value for this function");
2288     return CXXStructorImplicitParamValue;
2289   }
2290 
2291   /// GetAddressOfBaseOfCompleteClass - Convert the given pointer to a
2292   /// complete class to the given direct base.
2293   Address
2294   GetAddressOfDirectBaseInCompleteClass(Address Value,
2295                                         const CXXRecordDecl *Derived,
2296                                         const CXXRecordDecl *Base,
2297                                         bool BaseIsVirtual);
2298 
2299   static bool ShouldNullCheckClassCastValue(const CastExpr *Cast);
2300 
2301   /// GetAddressOfBaseClass - This function will add the necessary delta to the
2302   /// load of 'this' and returns address of the base class.
2303   Address GetAddressOfBaseClass(Address Value,
2304                                 const CXXRecordDecl *Derived,
2305                                 CastExpr::path_const_iterator PathBegin,
2306                                 CastExpr::path_const_iterator PathEnd,
2307                                 bool NullCheckValue, SourceLocation Loc);
2308 
2309   Address GetAddressOfDerivedClass(Address Value,
2310                                    const CXXRecordDecl *Derived,
2311                                    CastExpr::path_const_iterator PathBegin,
2312                                    CastExpr::path_const_iterator PathEnd,
2313                                    bool NullCheckValue);
2314 
2315   /// GetVTTParameter - Return the VTT parameter that should be passed to a
2316   /// base constructor/destructor with virtual bases.
2317   /// FIXME: VTTs are Itanium ABI-specific, so the definition should move
2318   /// to ItaniumCXXABI.cpp together with all the references to VTT.
2319   llvm::Value *GetVTTParameter(GlobalDecl GD, bool ForVirtualBase,
2320                                bool Delegating);
2321 
2322   void EmitDelegateCXXConstructorCall(const CXXConstructorDecl *Ctor,
2323                                       CXXCtorType CtorType,
2324                                       const FunctionArgList &Args,
2325                                       SourceLocation Loc);
2326   // It's important not to confuse this and the previous function. Delegating
2327   // constructors are the C++0x feature. The constructor delegate optimization
2328   // is used to reduce duplication in the base and complete consturctors where
2329   // they are substantially the same.
2330   void EmitDelegatingCXXConstructorCall(const CXXConstructorDecl *Ctor,
2331                                         const FunctionArgList &Args);
2332 
2333   /// Emit a call to an inheriting constructor (that is, one that invokes a
2334   /// constructor inherited from a base class) by inlining its definition. This
2335   /// is necessary if the ABI does not support forwarding the arguments to the
2336   /// base class constructor (because they're variadic or similar).
2337   void EmitInlinedInheritingCXXConstructorCall(const CXXConstructorDecl *Ctor,
2338                                                CXXCtorType CtorType,
2339                                                bool ForVirtualBase,
2340                                                bool Delegating,
2341                                                CallArgList &Args);
2342 
2343   /// Emit a call to a constructor inherited from a base class, passing the
2344   /// current constructor's arguments along unmodified (without even making
2345   /// a copy).
2346   void EmitInheritedCXXConstructorCall(const CXXConstructorDecl *D,
2347                                        bool ForVirtualBase, Address This,
2348                                        bool InheritedFromVBase,
2349                                        const CXXInheritedCtorInitExpr *E);
2350 
2351   void EmitCXXConstructorCall(const CXXConstructorDecl *D, CXXCtorType Type,
2352                               bool ForVirtualBase, bool Delegating,
2353                               Address This, const CXXConstructExpr *E,
2354                               AggValueSlot::Overlap_t Overlap);
2355 
2356   void EmitCXXConstructorCall(const CXXConstructorDecl *D, CXXCtorType Type,
2357                               bool ForVirtualBase, bool Delegating,
2358                               Address This, CallArgList &Args,
2359                               AggValueSlot::Overlap_t Overlap);
2360 
2361   /// Emit assumption load for all bases. Requires to be be called only on
2362   /// most-derived class and not under construction of the object.
2363   void EmitVTableAssumptionLoads(const CXXRecordDecl *ClassDecl, Address This);
2364 
2365   /// Emit assumption that vptr load == global vtable.
2366   void EmitVTableAssumptionLoad(const VPtr &vptr, Address This);
2367 
2368   void EmitSynthesizedCXXCopyCtorCall(const CXXConstructorDecl *D,
2369                                       Address This, Address Src,
2370                                       const CXXConstructExpr *E);
2371 
2372   void EmitCXXAggrConstructorCall(const CXXConstructorDecl *D,
2373                                   const ArrayType *ArrayTy,
2374                                   Address ArrayPtr,
2375                                   const CXXConstructExpr *E,
2376                                   bool ZeroInitialization = false);
2377 
2378   void EmitCXXAggrConstructorCall(const CXXConstructorDecl *D,
2379                                   llvm::Value *NumElements,
2380                                   Address ArrayPtr,
2381                                   const CXXConstructExpr *E,
2382                                   bool ZeroInitialization = false);
2383 
2384   static Destroyer destroyCXXObject;
2385 
2386   void EmitCXXDestructorCall(const CXXDestructorDecl *D, CXXDtorType Type,
2387                              bool ForVirtualBase, bool Delegating,
2388                              Address This);
2389 
2390   void EmitNewArrayInitializer(const CXXNewExpr *E, QualType elementType,
2391                                llvm::Type *ElementTy, Address NewPtr,
2392                                llvm::Value *NumElements,
2393                                llvm::Value *AllocSizeWithoutCookie);
2394 
2395   void EmitCXXTemporary(const CXXTemporary *Temporary, QualType TempType,
2396                         Address Ptr);
2397 
2398   llvm::Value *EmitLifetimeStart(uint64_t Size, llvm::Value *Addr);
2399   void EmitLifetimeEnd(llvm::Value *Size, llvm::Value *Addr);
2400 
2401   llvm::Value *EmitCXXNewExpr(const CXXNewExpr *E);
2402   void EmitCXXDeleteExpr(const CXXDeleteExpr *E);
2403 
2404   void EmitDeleteCall(const FunctionDecl *DeleteFD, llvm::Value *Ptr,
2405                       QualType DeleteTy, llvm::Value *NumElements = nullptr,
2406                       CharUnits CookieSize = CharUnits());
2407 
2408   RValue EmitBuiltinNewDeleteCall(const FunctionProtoType *Type,
2409                                   const CallExpr *TheCallExpr, bool IsDelete);
2410 
2411   llvm::Value *EmitCXXTypeidExpr(const CXXTypeidExpr *E);
2412   llvm::Value *EmitDynamicCast(Address V, const CXXDynamicCastExpr *DCE);
2413   Address EmitCXXUuidofExpr(const CXXUuidofExpr *E);
2414 
2415   /// Situations in which we might emit a check for the suitability of a
2416   ///        pointer or glvalue.
2417   enum TypeCheckKind {
2418     /// Checking the operand of a load. Must be suitably sized and aligned.
2419     TCK_Load,
2420     /// Checking the destination of a store. Must be suitably sized and aligned.
2421     TCK_Store,
2422     /// Checking the bound value in a reference binding. Must be suitably sized
2423     /// and aligned, but is not required to refer to an object (until the
2424     /// reference is used), per core issue 453.
2425     TCK_ReferenceBinding,
2426     /// Checking the object expression in a non-static data member access. Must
2427     /// be an object within its lifetime.
2428     TCK_MemberAccess,
2429     /// Checking the 'this' pointer for a call to a non-static member function.
2430     /// Must be an object within its lifetime.
2431     TCK_MemberCall,
2432     /// Checking the 'this' pointer for a constructor call.
2433     TCK_ConstructorCall,
2434     /// Checking the operand of a static_cast to a derived pointer type. Must be
2435     /// null or an object within its lifetime.
2436     TCK_DowncastPointer,
2437     /// Checking the operand of a static_cast to a derived reference type. Must
2438     /// be an object within its lifetime.
2439     TCK_DowncastReference,
2440     /// Checking the operand of a cast to a base object. Must be suitably sized
2441     /// and aligned.
2442     TCK_Upcast,
2443     /// Checking the operand of a cast to a virtual base object. Must be an
2444     /// object within its lifetime.
2445     TCK_UpcastToVirtualBase,
2446     /// Checking the value assigned to a _Nonnull pointer. Must not be null.
2447     TCK_NonnullAssign,
2448     /// Checking the operand of a dynamic_cast or a typeid expression.  Must be
2449     /// null or an object within its lifetime.
2450     TCK_DynamicOperation
2451   };
2452 
2453   /// Determine whether the pointer type check \p TCK permits null pointers.
2454   static bool isNullPointerAllowed(TypeCheckKind TCK);
2455 
2456   /// Determine whether the pointer type check \p TCK requires a vptr check.
2457   static bool isVptrCheckRequired(TypeCheckKind TCK, QualType Ty);
2458 
2459   /// Whether any type-checking sanitizers are enabled. If \c false,
2460   /// calls to EmitTypeCheck can be skipped.
2461   bool sanitizePerformTypeCheck() const;
2462 
2463   /// Emit a check that \p V is the address of storage of the
2464   /// appropriate size and alignment for an object of type \p Type.
2465   void EmitTypeCheck(TypeCheckKind TCK, SourceLocation Loc, llvm::Value *V,
2466                      QualType Type, CharUnits Alignment = CharUnits::Zero(),
2467                      SanitizerSet SkippedChecks = SanitizerSet());
2468 
2469   /// Emit a check that \p Base points into an array object, which
2470   /// we can access at index \p Index. \p Accessed should be \c false if we
2471   /// this expression is used as an lvalue, for instance in "&Arr[Idx]".
2472   void EmitBoundsCheck(const Expr *E, const Expr *Base, llvm::Value *Index,
2473                        QualType IndexType, bool Accessed);
2474 
2475   llvm::Value *EmitScalarPrePostIncDec(const UnaryOperator *E, LValue LV,
2476                                        bool isInc, bool isPre);
2477   ComplexPairTy EmitComplexPrePostIncDec(const UnaryOperator *E, LValue LV,
2478                                          bool isInc, bool isPre);
2479 
2480   void EmitAlignmentAssumption(llvm::Value *PtrValue, unsigned Alignment,
2481                                llvm::Value *OffsetValue = nullptr) {
2482     Builder.CreateAlignmentAssumption(CGM.getDataLayout(), PtrValue, Alignment,
2483                                       OffsetValue);
2484   }
2485 
2486   /// Converts Location to a DebugLoc, if debug information is enabled.
2487   llvm::DebugLoc SourceLocToDebugLoc(SourceLocation Location);
2488 
2489 
2490   //===--------------------------------------------------------------------===//
2491   //                            Declaration Emission
2492   //===--------------------------------------------------------------------===//
2493 
2494   /// EmitDecl - Emit a declaration.
2495   ///
2496   /// This function can be called with a null (unreachable) insert point.
2497   void EmitDecl(const Decl &D);
2498 
2499   /// EmitVarDecl - Emit a local variable declaration.
2500   ///
2501   /// This function can be called with a null (unreachable) insert point.
2502   void EmitVarDecl(const VarDecl &D);
2503 
2504   void EmitScalarInit(const Expr *init, const ValueDecl *D, LValue lvalue,
2505                       bool capturedByInit);
2506 
2507   typedef void SpecialInitFn(CodeGenFunction &Init, const VarDecl &D,
2508                              llvm::Value *Address);
2509 
2510   /// Determine whether the given initializer is trivial in the sense
2511   /// that it requires no code to be generated.
2512   bool isTrivialInitializer(const Expr *Init);
2513 
2514   /// EmitAutoVarDecl - Emit an auto variable declaration.
2515   ///
2516   /// This function can be called with a null (unreachable) insert point.
2517   void EmitAutoVarDecl(const VarDecl &D);
2518 
2519   class AutoVarEmission {
2520     friend class CodeGenFunction;
2521 
2522     const VarDecl *Variable;
2523 
2524     /// The address of the alloca for languages with explicit address space
2525     /// (e.g. OpenCL) or alloca casted to generic pointer for address space
2526     /// agnostic languages (e.g. C++). Invalid if the variable was emitted
2527     /// as a global constant.
2528     Address Addr;
2529 
2530     llvm::Value *NRVOFlag;
2531 
2532     /// True if the variable is a __block variable.
2533     bool IsByRef;
2534 
2535     /// True if the variable is of aggregate type and has a constant
2536     /// initializer.
2537     bool IsConstantAggregate;
2538 
2539     /// Non-null if we should use lifetime annotations.
2540     llvm::Value *SizeForLifetimeMarkers;
2541 
2542     /// Address with original alloca instruction. Invalid if the variable was
2543     /// emitted as a global constant.
2544     Address AllocaAddr;
2545 
2546     struct Invalid {};
2547     AutoVarEmission(Invalid)
2548         : Variable(nullptr), Addr(Address::invalid()),
2549           AllocaAddr(Address::invalid()) {}
2550 
2551     AutoVarEmission(const VarDecl &variable)
2552         : Variable(&variable), Addr(Address::invalid()), NRVOFlag(nullptr),
2553           IsByRef(false), IsConstantAggregate(false),
2554           SizeForLifetimeMarkers(nullptr), AllocaAddr(Address::invalid()) {}
2555 
2556     bool wasEmittedAsGlobal() const { return !Addr.isValid(); }
2557 
2558   public:
2559     static AutoVarEmission invalid() { return AutoVarEmission(Invalid()); }
2560 
2561     bool useLifetimeMarkers() const {
2562       return SizeForLifetimeMarkers != nullptr;
2563     }
2564     llvm::Value *getSizeForLifetimeMarkers() const {
2565       assert(useLifetimeMarkers());
2566       return SizeForLifetimeMarkers;
2567     }
2568 
2569     /// Returns the raw, allocated address, which is not necessarily
2570     /// the address of the object itself. It is casted to default
2571     /// address space for address space agnostic languages.
2572     Address getAllocatedAddress() const {
2573       return Addr;
2574     }
2575 
2576     /// Returns the address for the original alloca instruction.
2577     Address getOriginalAllocatedAddress() const { return AllocaAddr; }
2578 
2579     /// Returns the address of the object within this declaration.
2580     /// Note that this does not chase the forwarding pointer for
2581     /// __block decls.
2582     Address getObjectAddress(CodeGenFunction &CGF) const {
2583       if (!IsByRef) return Addr;
2584 
2585       return CGF.emitBlockByrefAddress(Addr, Variable, /*forward*/ false);
2586     }
2587   };
2588   AutoVarEmission EmitAutoVarAlloca(const VarDecl &var);
2589   void EmitAutoVarInit(const AutoVarEmission &emission);
2590   void EmitAutoVarCleanups(const AutoVarEmission &emission);
2591   void emitAutoVarTypeCleanup(const AutoVarEmission &emission,
2592                               QualType::DestructionKind dtorKind);
2593 
2594   /// Emits the alloca and debug information for the size expressions for each
2595   /// dimension of an array. It registers the association of its (1-dimensional)
2596   /// QualTypes and size expression's debug node, so that CGDebugInfo can
2597   /// reference this node when creating the DISubrange object to describe the
2598   /// array types.
2599   void EmitAndRegisterVariableArrayDimensions(CGDebugInfo *DI,
2600                                               const VarDecl &D,
2601                                               bool EmitDebugInfo);
2602 
2603   void EmitStaticVarDecl(const VarDecl &D,
2604                          llvm::GlobalValue::LinkageTypes Linkage);
2605 
2606   class ParamValue {
2607     llvm::Value *Value;
2608     unsigned Alignment;
2609     ParamValue(llvm::Value *V, unsigned A) : Value(V), Alignment(A) {}
2610   public:
2611     static ParamValue forDirect(llvm::Value *value) {
2612       return ParamValue(value, 0);
2613     }
2614     static ParamValue forIndirect(Address addr) {
2615       assert(!addr.getAlignment().isZero());
2616       return ParamValue(addr.getPointer(), addr.getAlignment().getQuantity());
2617     }
2618 
2619     bool isIndirect() const { return Alignment != 0; }
2620     llvm::Value *getAnyValue() const { return Value; }
2621 
2622     llvm::Value *getDirectValue() const {
2623       assert(!isIndirect());
2624       return Value;
2625     }
2626 
2627     Address getIndirectAddress() const {
2628       assert(isIndirect());
2629       return Address(Value, CharUnits::fromQuantity(Alignment));
2630     }
2631   };
2632 
2633   /// EmitParmDecl - Emit a ParmVarDecl or an ImplicitParamDecl.
2634   void EmitParmDecl(const VarDecl &D, ParamValue Arg, unsigned ArgNo);
2635 
2636   /// protectFromPeepholes - Protect a value that we're intending to
2637   /// store to the side, but which will probably be used later, from
2638   /// aggressive peepholing optimizations that might delete it.
2639   ///
2640   /// Pass the result to unprotectFromPeepholes to declare that
2641   /// protection is no longer required.
2642   ///
2643   /// There's no particular reason why this shouldn't apply to
2644   /// l-values, it's just that no existing peepholes work on pointers.
2645   PeepholeProtection protectFromPeepholes(RValue rvalue);
2646   void unprotectFromPeepholes(PeepholeProtection protection);
2647 
2648   void EmitAlignmentAssumption(llvm::Value *PtrValue, llvm::Value *Alignment,
2649                                llvm::Value *OffsetValue = nullptr) {
2650     Builder.CreateAlignmentAssumption(CGM.getDataLayout(), PtrValue, Alignment,
2651                                       OffsetValue);
2652   }
2653 
2654   //===--------------------------------------------------------------------===//
2655   //                             Statement Emission
2656   //===--------------------------------------------------------------------===//
2657 
2658   /// EmitStopPoint - Emit a debug stoppoint if we are emitting debug info.
2659   void EmitStopPoint(const Stmt *S);
2660 
2661   /// EmitStmt - Emit the code for the statement \arg S. It is legal to call
2662   /// this function even if there is no current insertion point.
2663   ///
2664   /// This function may clear the current insertion point; callers should use
2665   /// EnsureInsertPoint if they wish to subsequently generate code without first
2666   /// calling EmitBlock, EmitBranch, or EmitStmt.
2667   void EmitStmt(const Stmt *S, ArrayRef<const Attr *> Attrs = None);
2668 
2669   /// EmitSimpleStmt - Try to emit a "simple" statement which does not
2670   /// necessarily require an insertion point or debug information; typically
2671   /// because the statement amounts to a jump or a container of other
2672   /// statements.
2673   ///
2674   /// \return True if the statement was handled.
2675   bool EmitSimpleStmt(const Stmt *S);
2676 
2677   Address EmitCompoundStmt(const CompoundStmt &S, bool GetLast = false,
2678                            AggValueSlot AVS = AggValueSlot::ignored());
2679   Address EmitCompoundStmtWithoutScope(const CompoundStmt &S,
2680                                        bool GetLast = false,
2681                                        AggValueSlot AVS =
2682                                                 AggValueSlot::ignored());
2683 
2684   /// EmitLabel - Emit the block for the given label. It is legal to call this
2685   /// function even if there is no current insertion point.
2686   void EmitLabel(const LabelDecl *D); // helper for EmitLabelStmt.
2687 
2688   void EmitLabelStmt(const LabelStmt &S);
2689   void EmitAttributedStmt(const AttributedStmt &S);
2690   void EmitGotoStmt(const GotoStmt &S);
2691   void EmitIndirectGotoStmt(const IndirectGotoStmt &S);
2692   void EmitIfStmt(const IfStmt &S);
2693 
2694   void EmitWhileStmt(const WhileStmt &S,
2695                      ArrayRef<const Attr *> Attrs = None);
2696   void EmitDoStmt(const DoStmt &S, ArrayRef<const Attr *> Attrs = None);
2697   void EmitForStmt(const ForStmt &S,
2698                    ArrayRef<const Attr *> Attrs = None);
2699   void EmitReturnStmt(const ReturnStmt &S);
2700   void EmitDeclStmt(const DeclStmt &S);
2701   void EmitBreakStmt(const BreakStmt &S);
2702   void EmitContinueStmt(const ContinueStmt &S);
2703   void EmitSwitchStmt(const SwitchStmt &S);
2704   void EmitDefaultStmt(const DefaultStmt &S);
2705   void EmitCaseStmt(const CaseStmt &S);
2706   void EmitCaseStmtRange(const CaseStmt &S);
2707   void EmitAsmStmt(const AsmStmt &S);
2708 
2709   void EmitObjCForCollectionStmt(const ObjCForCollectionStmt &S);
2710   void EmitObjCAtTryStmt(const ObjCAtTryStmt &S);
2711   void EmitObjCAtThrowStmt(const ObjCAtThrowStmt &S);
2712   void EmitObjCAtSynchronizedStmt(const ObjCAtSynchronizedStmt &S);
2713   void EmitObjCAutoreleasePoolStmt(const ObjCAutoreleasePoolStmt &S);
2714 
2715   void EmitCoroutineBody(const CoroutineBodyStmt &S);
2716   void EmitCoreturnStmt(const CoreturnStmt &S);
2717   RValue EmitCoawaitExpr(const CoawaitExpr &E,
2718                          AggValueSlot aggSlot = AggValueSlot::ignored(),
2719                          bool ignoreResult = false);
2720   LValue EmitCoawaitLValue(const CoawaitExpr *E);
2721   RValue EmitCoyieldExpr(const CoyieldExpr &E,
2722                          AggValueSlot aggSlot = AggValueSlot::ignored(),
2723                          bool ignoreResult = false);
2724   LValue EmitCoyieldLValue(const CoyieldExpr *E);
2725   RValue EmitCoroutineIntrinsic(const CallExpr *E, unsigned int IID);
2726 
2727   void EnterCXXTryStmt(const CXXTryStmt &S, bool IsFnTryBlock = false);
2728   void ExitCXXTryStmt(const CXXTryStmt &S, bool IsFnTryBlock = false);
2729 
2730   void EmitCXXTryStmt(const CXXTryStmt &S);
2731   void EmitSEHTryStmt(const SEHTryStmt &S);
2732   void EmitSEHLeaveStmt(const SEHLeaveStmt &S);
2733   void EnterSEHTryStmt(const SEHTryStmt &S);
2734   void ExitSEHTryStmt(const SEHTryStmt &S);
2735 
2736   void startOutlinedSEHHelper(CodeGenFunction &ParentCGF, bool IsFilter,
2737                               const Stmt *OutlinedStmt);
2738 
2739   llvm::Function *GenerateSEHFilterFunction(CodeGenFunction &ParentCGF,
2740                                             const SEHExceptStmt &Except);
2741 
2742   llvm::Function *GenerateSEHFinallyFunction(CodeGenFunction &ParentCGF,
2743                                              const SEHFinallyStmt &Finally);
2744 
2745   void EmitSEHExceptionCodeSave(CodeGenFunction &ParentCGF,
2746                                 llvm::Value *ParentFP,
2747                                 llvm::Value *EntryEBP);
2748   llvm::Value *EmitSEHExceptionCode();
2749   llvm::Value *EmitSEHExceptionInfo();
2750   llvm::Value *EmitSEHAbnormalTermination();
2751 
2752   /// Emit simple code for OpenMP directives in Simd-only mode.
2753   void EmitSimpleOMPExecutableDirective(const OMPExecutableDirective &D);
2754 
2755   /// Scan the outlined statement for captures from the parent function. For
2756   /// each capture, mark the capture as escaped and emit a call to
2757   /// llvm.localrecover. Insert the localrecover result into the LocalDeclMap.
2758   void EmitCapturedLocals(CodeGenFunction &ParentCGF, const Stmt *OutlinedStmt,
2759                           bool IsFilter);
2760 
2761   /// Recovers the address of a local in a parent function. ParentVar is the
2762   /// address of the variable used in the immediate parent function. It can
2763   /// either be an alloca or a call to llvm.localrecover if there are nested
2764   /// outlined functions. ParentFP is the frame pointer of the outermost parent
2765   /// frame.
2766   Address recoverAddrOfEscapedLocal(CodeGenFunction &ParentCGF,
2767                                     Address ParentVar,
2768                                     llvm::Value *ParentFP);
2769 
2770   void EmitCXXForRangeStmt(const CXXForRangeStmt &S,
2771                            ArrayRef<const Attr *> Attrs = None);
2772 
2773   /// Controls insertion of cancellation exit blocks in worksharing constructs.
2774   class OMPCancelStackRAII {
2775     CodeGenFunction &CGF;
2776 
2777   public:
2778     OMPCancelStackRAII(CodeGenFunction &CGF, OpenMPDirectiveKind Kind,
2779                        bool HasCancel)
2780         : CGF(CGF) {
2781       CGF.OMPCancelStack.enter(CGF, Kind, HasCancel);
2782     }
2783     ~OMPCancelStackRAII() { CGF.OMPCancelStack.exit(CGF); }
2784   };
2785 
2786   /// Returns calculated size of the specified type.
2787   llvm::Value *getTypeSize(QualType Ty);
2788   LValue InitCapturedStruct(const CapturedStmt &S);
2789   llvm::Function *EmitCapturedStmt(const CapturedStmt &S, CapturedRegionKind K);
2790   llvm::Function *GenerateCapturedStmtFunction(const CapturedStmt &S);
2791   Address GenerateCapturedStmtArgument(const CapturedStmt &S);
2792   llvm::Function *GenerateOpenMPCapturedStmtFunction(const CapturedStmt &S);
2793   void GenerateOpenMPCapturedVars(const CapturedStmt &S,
2794                                   SmallVectorImpl<llvm::Value *> &CapturedVars);
2795   void emitOMPSimpleStore(LValue LVal, RValue RVal, QualType RValTy,
2796                           SourceLocation Loc);
2797   /// Perform element by element copying of arrays with type \a
2798   /// OriginalType from \a SrcAddr to \a DestAddr using copying procedure
2799   /// generated by \a CopyGen.
2800   ///
2801   /// \param DestAddr Address of the destination array.
2802   /// \param SrcAddr Address of the source array.
2803   /// \param OriginalType Type of destination and source arrays.
2804   /// \param CopyGen Copying procedure that copies value of single array element
2805   /// to another single array element.
2806   void EmitOMPAggregateAssign(
2807       Address DestAddr, Address SrcAddr, QualType OriginalType,
2808       const llvm::function_ref<void(Address, Address)> CopyGen);
2809   /// Emit proper copying of data from one variable to another.
2810   ///
2811   /// \param OriginalType Original type of the copied variables.
2812   /// \param DestAddr Destination address.
2813   /// \param SrcAddr Source address.
2814   /// \param DestVD Destination variable used in \a CopyExpr (for arrays, has
2815   /// type of the base array element).
2816   /// \param SrcVD Source variable used in \a CopyExpr (for arrays, has type of
2817   /// the base array element).
2818   /// \param Copy Actual copygin expression for copying data from \a SrcVD to \a
2819   /// DestVD.
2820   void EmitOMPCopy(QualType OriginalType,
2821                    Address DestAddr, Address SrcAddr,
2822                    const VarDecl *DestVD, const VarDecl *SrcVD,
2823                    const Expr *Copy);
2824   /// Emit atomic update code for constructs: \a X = \a X \a BO \a E or
2825   /// \a X = \a E \a BO \a E.
2826   ///
2827   /// \param X Value to be updated.
2828   /// \param E Update value.
2829   /// \param BO Binary operation for update operation.
2830   /// \param IsXLHSInRHSPart true if \a X is LHS in RHS part of the update
2831   /// expression, false otherwise.
2832   /// \param AO Atomic ordering of the generated atomic instructions.
2833   /// \param CommonGen Code generator for complex expressions that cannot be
2834   /// expressed through atomicrmw instruction.
2835   /// \returns <true, OldAtomicValue> if simple 'atomicrmw' instruction was
2836   /// generated, <false, RValue::get(nullptr)> otherwise.
2837   std::pair<bool, RValue> EmitOMPAtomicSimpleUpdateExpr(
2838       LValue X, RValue E, BinaryOperatorKind BO, bool IsXLHSInRHSPart,
2839       llvm::AtomicOrdering AO, SourceLocation Loc,
2840       const llvm::function_ref<RValue(RValue)> CommonGen);
2841   bool EmitOMPFirstprivateClause(const OMPExecutableDirective &D,
2842                                  OMPPrivateScope &PrivateScope);
2843   void EmitOMPPrivateClause(const OMPExecutableDirective &D,
2844                             OMPPrivateScope &PrivateScope);
2845   void EmitOMPUseDevicePtrClause(
2846       const OMPClause &C, OMPPrivateScope &PrivateScope,
2847       const llvm::DenseMap<const ValueDecl *, Address> &CaptureDeviceAddrMap);
2848   /// Emit code for copyin clause in \a D directive. The next code is
2849   /// generated at the start of outlined functions for directives:
2850   /// \code
2851   /// threadprivate_var1 = master_threadprivate_var1;
2852   /// operator=(threadprivate_var2, master_threadprivate_var2);
2853   /// ...
2854   /// __kmpc_barrier(&loc, global_tid);
2855   /// \endcode
2856   ///
2857   /// \param D OpenMP directive possibly with 'copyin' clause(s).
2858   /// \returns true if at least one copyin variable is found, false otherwise.
2859   bool EmitOMPCopyinClause(const OMPExecutableDirective &D);
2860   /// Emit initial code for lastprivate variables. If some variable is
2861   /// not also firstprivate, then the default initialization is used. Otherwise
2862   /// initialization of this variable is performed by EmitOMPFirstprivateClause
2863   /// method.
2864   ///
2865   /// \param D Directive that may have 'lastprivate' directives.
2866   /// \param PrivateScope Private scope for capturing lastprivate variables for
2867   /// proper codegen in internal captured statement.
2868   ///
2869   /// \returns true if there is at least one lastprivate variable, false
2870   /// otherwise.
2871   bool EmitOMPLastprivateClauseInit(const OMPExecutableDirective &D,
2872                                     OMPPrivateScope &PrivateScope);
2873   /// Emit final copying of lastprivate values to original variables at
2874   /// the end of the worksharing or simd directive.
2875   ///
2876   /// \param D Directive that has at least one 'lastprivate' directives.
2877   /// \param IsLastIterCond Boolean condition that must be set to 'i1 true' if
2878   /// it is the last iteration of the loop code in associated directive, or to
2879   /// 'i1 false' otherwise. If this item is nullptr, no final check is required.
2880   void EmitOMPLastprivateClauseFinal(const OMPExecutableDirective &D,
2881                                      bool NoFinals,
2882                                      llvm::Value *IsLastIterCond = nullptr);
2883   /// Emit initial code for linear clauses.
2884   void EmitOMPLinearClause(const OMPLoopDirective &D,
2885                            CodeGenFunction::OMPPrivateScope &PrivateScope);
2886   /// Emit final code for linear clauses.
2887   /// \param CondGen Optional conditional code for final part of codegen for
2888   /// linear clause.
2889   void EmitOMPLinearClauseFinal(
2890       const OMPLoopDirective &D,
2891       const llvm::function_ref<llvm::Value *(CodeGenFunction &)> CondGen);
2892   /// Emit initial code for reduction variables. Creates reduction copies
2893   /// and initializes them with the values according to OpenMP standard.
2894   ///
2895   /// \param D Directive (possibly) with the 'reduction' clause.
2896   /// \param PrivateScope Private scope for capturing reduction variables for
2897   /// proper codegen in internal captured statement.
2898   ///
2899   void EmitOMPReductionClauseInit(const OMPExecutableDirective &D,
2900                                   OMPPrivateScope &PrivateScope);
2901   /// Emit final update of reduction values to original variables at
2902   /// the end of the directive.
2903   ///
2904   /// \param D Directive that has at least one 'reduction' directives.
2905   /// \param ReductionKind The kind of reduction to perform.
2906   void EmitOMPReductionClauseFinal(const OMPExecutableDirective &D,
2907                                    const OpenMPDirectiveKind ReductionKind);
2908   /// Emit initial code for linear variables. Creates private copies
2909   /// and initializes them with the values according to OpenMP standard.
2910   ///
2911   /// \param D Directive (possibly) with the 'linear' clause.
2912   /// \return true if at least one linear variable is found that should be
2913   /// initialized with the value of the original variable, false otherwise.
2914   bool EmitOMPLinearClauseInit(const OMPLoopDirective &D);
2915 
2916   typedef const llvm::function_ref<void(CodeGenFunction & /*CGF*/,
2917                                         llvm::Value * /*OutlinedFn*/,
2918                                         const OMPTaskDataTy & /*Data*/)>
2919       TaskGenTy;
2920   void EmitOMPTaskBasedDirective(const OMPExecutableDirective &S,
2921                                  const OpenMPDirectiveKind CapturedRegion,
2922                                  const RegionCodeGenTy &BodyGen,
2923                                  const TaskGenTy &TaskGen, OMPTaskDataTy &Data);
2924   struct OMPTargetDataInfo {
2925     Address BasePointersArray = Address::invalid();
2926     Address PointersArray = Address::invalid();
2927     Address SizesArray = Address::invalid();
2928     unsigned NumberOfTargetItems = 0;
2929     explicit OMPTargetDataInfo() = default;
2930     OMPTargetDataInfo(Address BasePointersArray, Address PointersArray,
2931                       Address SizesArray, unsigned NumberOfTargetItems)
2932         : BasePointersArray(BasePointersArray), PointersArray(PointersArray),
2933           SizesArray(SizesArray), NumberOfTargetItems(NumberOfTargetItems) {}
2934   };
2935   void EmitOMPTargetTaskBasedDirective(const OMPExecutableDirective &S,
2936                                        const RegionCodeGenTy &BodyGen,
2937                                        OMPTargetDataInfo &InputInfo);
2938 
2939   void EmitOMPParallelDirective(const OMPParallelDirective &S);
2940   void EmitOMPSimdDirective(const OMPSimdDirective &S);
2941   void EmitOMPForDirective(const OMPForDirective &S);
2942   void EmitOMPForSimdDirective(const OMPForSimdDirective &S);
2943   void EmitOMPSectionsDirective(const OMPSectionsDirective &S);
2944   void EmitOMPSectionDirective(const OMPSectionDirective &S);
2945   void EmitOMPSingleDirective(const OMPSingleDirective &S);
2946   void EmitOMPMasterDirective(const OMPMasterDirective &S);
2947   void EmitOMPCriticalDirective(const OMPCriticalDirective &S);
2948   void EmitOMPParallelForDirective(const OMPParallelForDirective &S);
2949   void EmitOMPParallelForSimdDirective(const OMPParallelForSimdDirective &S);
2950   void EmitOMPParallelSectionsDirective(const OMPParallelSectionsDirective &S);
2951   void EmitOMPTaskDirective(const OMPTaskDirective &S);
2952   void EmitOMPTaskyieldDirective(const OMPTaskyieldDirective &S);
2953   void EmitOMPBarrierDirective(const OMPBarrierDirective &S);
2954   void EmitOMPTaskwaitDirective(const OMPTaskwaitDirective &S);
2955   void EmitOMPTaskgroupDirective(const OMPTaskgroupDirective &S);
2956   void EmitOMPFlushDirective(const OMPFlushDirective &S);
2957   void EmitOMPOrderedDirective(const OMPOrderedDirective &S);
2958   void EmitOMPAtomicDirective(const OMPAtomicDirective &S);
2959   void EmitOMPTargetDirective(const OMPTargetDirective &S);
2960   void EmitOMPTargetDataDirective(const OMPTargetDataDirective &S);
2961   void EmitOMPTargetEnterDataDirective(const OMPTargetEnterDataDirective &S);
2962   void EmitOMPTargetExitDataDirective(const OMPTargetExitDataDirective &S);
2963   void EmitOMPTargetUpdateDirective(const OMPTargetUpdateDirective &S);
2964   void EmitOMPTargetParallelDirective(const OMPTargetParallelDirective &S);
2965   void
2966   EmitOMPTargetParallelForDirective(const OMPTargetParallelForDirective &S);
2967   void EmitOMPTeamsDirective(const OMPTeamsDirective &S);
2968   void
2969   EmitOMPCancellationPointDirective(const OMPCancellationPointDirective &S);
2970   void EmitOMPCancelDirective(const OMPCancelDirective &S);
2971   void EmitOMPTaskLoopBasedDirective(const OMPLoopDirective &S);
2972   void EmitOMPTaskLoopDirective(const OMPTaskLoopDirective &S);
2973   void EmitOMPTaskLoopSimdDirective(const OMPTaskLoopSimdDirective &S);
2974   void EmitOMPDistributeDirective(const OMPDistributeDirective &S);
2975   void EmitOMPDistributeParallelForDirective(
2976       const OMPDistributeParallelForDirective &S);
2977   void EmitOMPDistributeParallelForSimdDirective(
2978       const OMPDistributeParallelForSimdDirective &S);
2979   void EmitOMPDistributeSimdDirective(const OMPDistributeSimdDirective &S);
2980   void EmitOMPTargetParallelForSimdDirective(
2981       const OMPTargetParallelForSimdDirective &S);
2982   void EmitOMPTargetSimdDirective(const OMPTargetSimdDirective &S);
2983   void EmitOMPTeamsDistributeDirective(const OMPTeamsDistributeDirective &S);
2984   void
2985   EmitOMPTeamsDistributeSimdDirective(const OMPTeamsDistributeSimdDirective &S);
2986   void EmitOMPTeamsDistributeParallelForSimdDirective(
2987       const OMPTeamsDistributeParallelForSimdDirective &S);
2988   void EmitOMPTeamsDistributeParallelForDirective(
2989       const OMPTeamsDistributeParallelForDirective &S);
2990   void EmitOMPTargetTeamsDirective(const OMPTargetTeamsDirective &S);
2991   void EmitOMPTargetTeamsDistributeDirective(
2992       const OMPTargetTeamsDistributeDirective &S);
2993   void EmitOMPTargetTeamsDistributeParallelForDirective(
2994       const OMPTargetTeamsDistributeParallelForDirective &S);
2995   void EmitOMPTargetTeamsDistributeParallelForSimdDirective(
2996       const OMPTargetTeamsDistributeParallelForSimdDirective &S);
2997   void EmitOMPTargetTeamsDistributeSimdDirective(
2998       const OMPTargetTeamsDistributeSimdDirective &S);
2999 
3000   /// Emit device code for the target directive.
3001   static void EmitOMPTargetDeviceFunction(CodeGenModule &CGM,
3002                                           StringRef ParentName,
3003                                           const OMPTargetDirective &S);
3004   static void
3005   EmitOMPTargetParallelDeviceFunction(CodeGenModule &CGM, StringRef ParentName,
3006                                       const OMPTargetParallelDirective &S);
3007   /// Emit device code for the target parallel for directive.
3008   static void EmitOMPTargetParallelForDeviceFunction(
3009       CodeGenModule &CGM, StringRef ParentName,
3010       const OMPTargetParallelForDirective &S);
3011   /// Emit device code for the target parallel for simd directive.
3012   static void EmitOMPTargetParallelForSimdDeviceFunction(
3013       CodeGenModule &CGM, StringRef ParentName,
3014       const OMPTargetParallelForSimdDirective &S);
3015   /// Emit device code for the target teams directive.
3016   static void
3017   EmitOMPTargetTeamsDeviceFunction(CodeGenModule &CGM, StringRef ParentName,
3018                                    const OMPTargetTeamsDirective &S);
3019   /// Emit device code for the target teams distribute directive.
3020   static void EmitOMPTargetTeamsDistributeDeviceFunction(
3021       CodeGenModule &CGM, StringRef ParentName,
3022       const OMPTargetTeamsDistributeDirective &S);
3023   /// Emit device code for the target teams distribute simd directive.
3024   static void EmitOMPTargetTeamsDistributeSimdDeviceFunction(
3025       CodeGenModule &CGM, StringRef ParentName,
3026       const OMPTargetTeamsDistributeSimdDirective &S);
3027   /// Emit device code for the target simd directive.
3028   static void EmitOMPTargetSimdDeviceFunction(CodeGenModule &CGM,
3029                                               StringRef ParentName,
3030                                               const OMPTargetSimdDirective &S);
3031   /// Emit device code for the target teams distribute parallel for simd
3032   /// directive.
3033   static void EmitOMPTargetTeamsDistributeParallelForSimdDeviceFunction(
3034       CodeGenModule &CGM, StringRef ParentName,
3035       const OMPTargetTeamsDistributeParallelForSimdDirective &S);
3036 
3037   static void EmitOMPTargetTeamsDistributeParallelForDeviceFunction(
3038       CodeGenModule &CGM, StringRef ParentName,
3039       const OMPTargetTeamsDistributeParallelForDirective &S);
3040   /// Emit inner loop of the worksharing/simd construct.
3041   ///
3042   /// \param S Directive, for which the inner loop must be emitted.
3043   /// \param RequiresCleanup true, if directive has some associated private
3044   /// variables.
3045   /// \param LoopCond Bollean condition for loop continuation.
3046   /// \param IncExpr Increment expression for loop control variable.
3047   /// \param BodyGen Generator for the inner body of the inner loop.
3048   /// \param PostIncGen Genrator for post-increment code (required for ordered
3049   /// loop directvies).
3050   void EmitOMPInnerLoop(
3051       const Stmt &S, bool RequiresCleanup, const Expr *LoopCond,
3052       const Expr *IncExpr,
3053       const llvm::function_ref<void(CodeGenFunction &)> BodyGen,
3054       const llvm::function_ref<void(CodeGenFunction &)> PostIncGen);
3055 
3056   JumpDest getOMPCancelDestination(OpenMPDirectiveKind Kind);
3057   /// Emit initial code for loop counters of loop-based directives.
3058   void EmitOMPPrivateLoopCounters(const OMPLoopDirective &S,
3059                                   OMPPrivateScope &LoopScope);
3060 
3061   /// Helper for the OpenMP loop directives.
3062   void EmitOMPLoopBody(const OMPLoopDirective &D, JumpDest LoopExit);
3063 
3064   /// Emit code for the worksharing loop-based directive.
3065   /// \return true, if this construct has any lastprivate clause, false -
3066   /// otherwise.
3067   bool EmitOMPWorksharingLoop(const OMPLoopDirective &S, Expr *EUB,
3068                               const CodeGenLoopBoundsTy &CodeGenLoopBounds,
3069                               const CodeGenDispatchBoundsTy &CGDispatchBounds);
3070 
3071   /// Emit code for the distribute loop-based directive.
3072   void EmitOMPDistributeLoop(const OMPLoopDirective &S,
3073                              const CodeGenLoopTy &CodeGenLoop, Expr *IncExpr);
3074 
3075   /// Helpers for the OpenMP loop directives.
3076   void EmitOMPSimdInit(const OMPLoopDirective &D, bool IsMonotonic = false);
3077   void EmitOMPSimdFinal(
3078       const OMPLoopDirective &D,
3079       const llvm::function_ref<llvm::Value *(CodeGenFunction &)> CondGen);
3080 
3081   /// Emits the lvalue for the expression with possibly captured variable.
3082   LValue EmitOMPSharedLValue(const Expr *E);
3083 
3084 private:
3085   /// Helpers for blocks.
3086   llvm::Value *EmitBlockLiteral(const CGBlockInfo &Info);
3087 
3088   /// struct with the values to be passed to the OpenMP loop-related functions
3089   struct OMPLoopArguments {
3090     /// loop lower bound
3091     Address LB = Address::invalid();
3092     /// loop upper bound
3093     Address UB = Address::invalid();
3094     /// loop stride
3095     Address ST = Address::invalid();
3096     /// isLastIteration argument for runtime functions
3097     Address IL = Address::invalid();
3098     /// Chunk value generated by sema
3099     llvm::Value *Chunk = nullptr;
3100     /// EnsureUpperBound
3101     Expr *EUB = nullptr;
3102     /// IncrementExpression
3103     Expr *IncExpr = nullptr;
3104     /// Loop initialization
3105     Expr *Init = nullptr;
3106     /// Loop exit condition
3107     Expr *Cond = nullptr;
3108     /// Update of LB after a whole chunk has been executed
3109     Expr *NextLB = nullptr;
3110     /// Update of UB after a whole chunk has been executed
3111     Expr *NextUB = nullptr;
3112     OMPLoopArguments() = default;
3113     OMPLoopArguments(Address LB, Address UB, Address ST, Address IL,
3114                      llvm::Value *Chunk = nullptr, Expr *EUB = nullptr,
3115                      Expr *IncExpr = nullptr, Expr *Init = nullptr,
3116                      Expr *Cond = nullptr, Expr *NextLB = nullptr,
3117                      Expr *NextUB = nullptr)
3118         : LB(LB), UB(UB), ST(ST), IL(IL), Chunk(Chunk), EUB(EUB),
3119           IncExpr(IncExpr), Init(Init), Cond(Cond), NextLB(NextLB),
3120           NextUB(NextUB) {}
3121   };
3122   void EmitOMPOuterLoop(bool DynamicOrOrdered, bool IsMonotonic,
3123                         const OMPLoopDirective &S, OMPPrivateScope &LoopScope,
3124                         const OMPLoopArguments &LoopArgs,
3125                         const CodeGenLoopTy &CodeGenLoop,
3126                         const CodeGenOrderedTy &CodeGenOrdered);
3127   void EmitOMPForOuterLoop(const OpenMPScheduleTy &ScheduleKind,
3128                            bool IsMonotonic, const OMPLoopDirective &S,
3129                            OMPPrivateScope &LoopScope, bool Ordered,
3130                            const OMPLoopArguments &LoopArgs,
3131                            const CodeGenDispatchBoundsTy &CGDispatchBounds);
3132   void EmitOMPDistributeOuterLoop(OpenMPDistScheduleClauseKind ScheduleKind,
3133                                   const OMPLoopDirective &S,
3134                                   OMPPrivateScope &LoopScope,
3135                                   const OMPLoopArguments &LoopArgs,
3136                                   const CodeGenLoopTy &CodeGenLoopContent);
3137   /// Emit code for sections directive.
3138   void EmitSections(const OMPExecutableDirective &S);
3139 
3140 public:
3141 
3142   //===--------------------------------------------------------------------===//
3143   //                         LValue Expression Emission
3144   //===--------------------------------------------------------------------===//
3145 
3146   /// GetUndefRValue - Get an appropriate 'undef' rvalue for the given type.
3147   RValue GetUndefRValue(QualType Ty);
3148 
3149   /// EmitUnsupportedRValue - Emit a dummy r-value using the type of E
3150   /// and issue an ErrorUnsupported style diagnostic (using the
3151   /// provided Name).
3152   RValue EmitUnsupportedRValue(const Expr *E,
3153                                const char *Name);
3154 
3155   /// EmitUnsupportedLValue - Emit a dummy l-value using the type of E and issue
3156   /// an ErrorUnsupported style diagnostic (using the provided Name).
3157   LValue EmitUnsupportedLValue(const Expr *E,
3158                                const char *Name);
3159 
3160   /// EmitLValue - Emit code to compute a designator that specifies the location
3161   /// of the expression.
3162   ///
3163   /// This can return one of two things: a simple address or a bitfield
3164   /// reference.  In either case, the LLVM Value* in the LValue structure is
3165   /// guaranteed to be an LLVM pointer type.
3166   ///
3167   /// If this returns a bitfield reference, nothing about the pointee type of
3168   /// the LLVM value is known: For example, it may not be a pointer to an
3169   /// integer.
3170   ///
3171   /// If this returns a normal address, and if the lvalue's C type is fixed
3172   /// size, this method guarantees that the returned pointer type will point to
3173   /// an LLVM type of the same size of the lvalue's type.  If the lvalue has a
3174   /// variable length type, this is not possible.
3175   ///
3176   LValue EmitLValue(const Expr *E);
3177 
3178   /// Same as EmitLValue but additionally we generate checking code to
3179   /// guard against undefined behavior.  This is only suitable when we know
3180   /// that the address will be used to access the object.
3181   LValue EmitCheckedLValue(const Expr *E, TypeCheckKind TCK);
3182 
3183   RValue convertTempToRValue(Address addr, QualType type,
3184                              SourceLocation Loc);
3185 
3186   void EmitAtomicInit(Expr *E, LValue lvalue);
3187 
3188   bool LValueIsSuitableForInlineAtomic(LValue Src);
3189 
3190   RValue EmitAtomicLoad(LValue LV, SourceLocation SL,
3191                         AggValueSlot Slot = AggValueSlot::ignored());
3192 
3193   RValue EmitAtomicLoad(LValue lvalue, SourceLocation loc,
3194                         llvm::AtomicOrdering AO, bool IsVolatile = false,
3195                         AggValueSlot slot = AggValueSlot::ignored());
3196 
3197   void EmitAtomicStore(RValue rvalue, LValue lvalue, bool isInit);
3198 
3199   void EmitAtomicStore(RValue rvalue, LValue lvalue, llvm::AtomicOrdering AO,
3200                        bool IsVolatile, bool isInit);
3201 
3202   std::pair<RValue, llvm::Value *> EmitAtomicCompareExchange(
3203       LValue Obj, RValue Expected, RValue Desired, SourceLocation Loc,
3204       llvm::AtomicOrdering Success =
3205           llvm::AtomicOrdering::SequentiallyConsistent,
3206       llvm::AtomicOrdering Failure =
3207           llvm::AtomicOrdering::SequentiallyConsistent,
3208       bool IsWeak = false, AggValueSlot Slot = AggValueSlot::ignored());
3209 
3210   void EmitAtomicUpdate(LValue LVal, llvm::AtomicOrdering AO,
3211                         const llvm::function_ref<RValue(RValue)> &UpdateOp,
3212                         bool IsVolatile);
3213 
3214   /// EmitToMemory - Change a scalar value from its value
3215   /// representation to its in-memory representation.
3216   llvm::Value *EmitToMemory(llvm::Value *Value, QualType Ty);
3217 
3218   /// EmitFromMemory - Change a scalar value from its memory
3219   /// representation to its value representation.
3220   llvm::Value *EmitFromMemory(llvm::Value *Value, QualType Ty);
3221 
3222   /// Check if the scalar \p Value is within the valid range for the given
3223   /// type \p Ty.
3224   ///
3225   /// Returns true if a check is needed (even if the range is unknown).
3226   bool EmitScalarRangeCheck(llvm::Value *Value, QualType Ty,
3227                             SourceLocation Loc);
3228 
3229   /// EmitLoadOfScalar - Load a scalar value from an address, taking
3230   /// care to appropriately convert from the memory representation to
3231   /// the LLVM value representation.
3232   llvm::Value *EmitLoadOfScalar(Address Addr, bool Volatile, QualType Ty,
3233                                 SourceLocation Loc,
3234                                 AlignmentSource Source = AlignmentSource::Type,
3235                                 bool isNontemporal = false) {
3236     return EmitLoadOfScalar(Addr, Volatile, Ty, Loc, LValueBaseInfo(Source),
3237                             CGM.getTBAAAccessInfo(Ty), isNontemporal);
3238   }
3239 
3240   llvm::Value *EmitLoadOfScalar(Address Addr, bool Volatile, QualType Ty,
3241                                 SourceLocation Loc, LValueBaseInfo BaseInfo,
3242                                 TBAAAccessInfo TBAAInfo,
3243                                 bool isNontemporal = false);
3244 
3245   /// EmitLoadOfScalar - Load a scalar value from an address, taking
3246   /// care to appropriately convert from the memory representation to
3247   /// the LLVM value representation.  The l-value must be a simple
3248   /// l-value.
3249   llvm::Value *EmitLoadOfScalar(LValue lvalue, SourceLocation Loc);
3250 
3251   /// EmitStoreOfScalar - Store a scalar value to an address, taking
3252   /// care to appropriately convert from the memory representation to
3253   /// the LLVM value representation.
3254   void EmitStoreOfScalar(llvm::Value *Value, Address Addr,
3255                          bool Volatile, QualType Ty,
3256                          AlignmentSource Source = AlignmentSource::Type,
3257                          bool isInit = false, bool isNontemporal = false) {
3258     EmitStoreOfScalar(Value, Addr, Volatile, Ty, LValueBaseInfo(Source),
3259                       CGM.getTBAAAccessInfo(Ty), isInit, isNontemporal);
3260   }
3261 
3262   void EmitStoreOfScalar(llvm::Value *Value, Address Addr,
3263                          bool Volatile, QualType Ty,
3264                          LValueBaseInfo BaseInfo, TBAAAccessInfo TBAAInfo,
3265                          bool isInit = false, bool isNontemporal = false);
3266 
3267   /// EmitStoreOfScalar - Store a scalar value to an address, taking
3268   /// care to appropriately convert from the memory representation to
3269   /// the LLVM value representation.  The l-value must be a simple
3270   /// l-value.  The isInit flag indicates whether this is an initialization.
3271   /// If so, atomic qualifiers are ignored and the store is always non-atomic.
3272   void EmitStoreOfScalar(llvm::Value *value, LValue lvalue, bool isInit=false);
3273 
3274   /// EmitLoadOfLValue - Given an expression that represents a value lvalue,
3275   /// this method emits the address of the lvalue, then loads the result as an
3276   /// rvalue, returning the rvalue.
3277   RValue EmitLoadOfLValue(LValue V, SourceLocation Loc);
3278   RValue EmitLoadOfExtVectorElementLValue(LValue V);
3279   RValue EmitLoadOfBitfieldLValue(LValue LV, SourceLocation Loc);
3280   RValue EmitLoadOfGlobalRegLValue(LValue LV);
3281 
3282   /// EmitStoreThroughLValue - Store the specified rvalue into the specified
3283   /// lvalue, where both are guaranteed to the have the same type, and that type
3284   /// is 'Ty'.
3285   void EmitStoreThroughLValue(RValue Src, LValue Dst, bool isInit = false);
3286   void EmitStoreThroughExtVectorComponentLValue(RValue Src, LValue Dst);
3287   void EmitStoreThroughGlobalRegLValue(RValue Src, LValue Dst);
3288 
3289   /// EmitStoreThroughBitfieldLValue - Store Src into Dst with same constraints
3290   /// as EmitStoreThroughLValue.
3291   ///
3292   /// \param Result [out] - If non-null, this will be set to a Value* for the
3293   /// bit-field contents after the store, appropriate for use as the result of
3294   /// an assignment to the bit-field.
3295   void EmitStoreThroughBitfieldLValue(RValue Src, LValue Dst,
3296                                       llvm::Value **Result=nullptr);
3297 
3298   /// Emit an l-value for an assignment (simple or compound) of complex type.
3299   LValue EmitComplexAssignmentLValue(const BinaryOperator *E);
3300   LValue EmitComplexCompoundAssignmentLValue(const CompoundAssignOperator *E);
3301   LValue EmitScalarCompoundAssignWithComplex(const CompoundAssignOperator *E,
3302                                              llvm::Value *&Result);
3303 
3304   // Note: only available for agg return types
3305   LValue EmitBinaryOperatorLValue(const BinaryOperator *E);
3306   LValue EmitCompoundAssignmentLValue(const CompoundAssignOperator *E);
3307   // Note: only available for agg return types
3308   LValue EmitCallExprLValue(const CallExpr *E);
3309   // Note: only available for agg return types
3310   LValue EmitVAArgExprLValue(const VAArgExpr *E);
3311   LValue EmitDeclRefLValue(const DeclRefExpr *E);
3312   LValue EmitStringLiteralLValue(const StringLiteral *E);
3313   LValue EmitObjCEncodeExprLValue(const ObjCEncodeExpr *E);
3314   LValue EmitPredefinedLValue(const PredefinedExpr *E);
3315   LValue EmitUnaryOpLValue(const UnaryOperator *E);
3316   LValue EmitArraySubscriptExpr(const ArraySubscriptExpr *E,
3317                                 bool Accessed = false);
3318   LValue EmitOMPArraySectionExpr(const OMPArraySectionExpr *E,
3319                                  bool IsLowerBound = true);
3320   LValue EmitExtVectorElementExpr(const ExtVectorElementExpr *E);
3321   LValue EmitMemberExpr(const MemberExpr *E);
3322   LValue EmitObjCIsaExpr(const ObjCIsaExpr *E);
3323   LValue EmitCompoundLiteralLValue(const CompoundLiteralExpr *E);
3324   LValue EmitInitListLValue(const InitListExpr *E);
3325   LValue EmitConditionalOperatorLValue(const AbstractConditionalOperator *E);
3326   LValue EmitCastLValue(const CastExpr *E);
3327   LValue EmitMaterializeTemporaryExpr(const MaterializeTemporaryExpr *E);
3328   LValue EmitOpaqueValueLValue(const OpaqueValueExpr *e);
3329 
3330   Address EmitExtVectorElementLValue(LValue V);
3331 
3332   RValue EmitRValueForField(LValue LV, const FieldDecl *FD, SourceLocation Loc);
3333 
3334   Address EmitArrayToPointerDecay(const Expr *Array,
3335                                   LValueBaseInfo *BaseInfo = nullptr,
3336                                   TBAAAccessInfo *TBAAInfo = nullptr);
3337 
3338   class ConstantEmission {
3339     llvm::PointerIntPair<llvm::Constant*, 1, bool> ValueAndIsReference;
3340     ConstantEmission(llvm::Constant *C, bool isReference)
3341       : ValueAndIsReference(C, isReference) {}
3342   public:
3343     ConstantEmission() {}
3344     static ConstantEmission forReference(llvm::Constant *C) {
3345       return ConstantEmission(C, true);
3346     }
3347     static ConstantEmission forValue(llvm::Constant *C) {
3348       return ConstantEmission(C, false);
3349     }
3350 
3351     explicit operator bool() const {
3352       return ValueAndIsReference.getOpaqueValue() != nullptr;
3353     }
3354 
3355     bool isReference() const { return ValueAndIsReference.getInt(); }
3356     LValue getReferenceLValue(CodeGenFunction &CGF, Expr *refExpr) const {
3357       assert(isReference());
3358       return CGF.MakeNaturalAlignAddrLValue(ValueAndIsReference.getPointer(),
3359                                             refExpr->getType());
3360     }
3361 
3362     llvm::Constant *getValue() const {
3363       assert(!isReference());
3364       return ValueAndIsReference.getPointer();
3365     }
3366   };
3367 
3368   ConstantEmission tryEmitAsConstant(DeclRefExpr *refExpr);
3369   ConstantEmission tryEmitAsConstant(const MemberExpr *ME);
3370 
3371   RValue EmitPseudoObjectRValue(const PseudoObjectExpr *e,
3372                                 AggValueSlot slot = AggValueSlot::ignored());
3373   LValue EmitPseudoObjectLValue(const PseudoObjectExpr *e);
3374 
3375   llvm::Value *EmitIvarOffset(const ObjCInterfaceDecl *Interface,
3376                               const ObjCIvarDecl *Ivar);
3377   LValue EmitLValueForField(LValue Base, const FieldDecl* Field);
3378   LValue EmitLValueForLambdaField(const FieldDecl *Field);
3379 
3380   /// EmitLValueForFieldInitialization - Like EmitLValueForField, except that
3381   /// if the Field is a reference, this will return the address of the reference
3382   /// and not the address of the value stored in the reference.
3383   LValue EmitLValueForFieldInitialization(LValue Base,
3384                                           const FieldDecl* Field);
3385 
3386   LValue EmitLValueForIvar(QualType ObjectTy,
3387                            llvm::Value* Base, const ObjCIvarDecl *Ivar,
3388                            unsigned CVRQualifiers);
3389 
3390   LValue EmitCXXConstructLValue(const CXXConstructExpr *E);
3391   LValue EmitCXXBindTemporaryLValue(const CXXBindTemporaryExpr *E);
3392   LValue EmitLambdaLValue(const LambdaExpr *E);
3393   LValue EmitCXXTypeidLValue(const CXXTypeidExpr *E);
3394   LValue EmitCXXUuidofLValue(const CXXUuidofExpr *E);
3395 
3396   LValue EmitObjCMessageExprLValue(const ObjCMessageExpr *E);
3397   LValue EmitObjCIvarRefLValue(const ObjCIvarRefExpr *E);
3398   LValue EmitStmtExprLValue(const StmtExpr *E);
3399   LValue EmitPointerToDataMemberBinaryExpr(const BinaryOperator *E);
3400   LValue EmitObjCSelectorLValue(const ObjCSelectorExpr *E);
3401   void   EmitDeclRefExprDbgValue(const DeclRefExpr *E, const APValue &Init);
3402 
3403   //===--------------------------------------------------------------------===//
3404   //                         Scalar Expression Emission
3405   //===--------------------------------------------------------------------===//
3406 
3407   /// EmitCall - Generate a call of the given function, expecting the given
3408   /// result type, and using the given argument list which specifies both the
3409   /// LLVM arguments and the types they were derived from.
3410   RValue EmitCall(const CGFunctionInfo &CallInfo, const CGCallee &Callee,
3411                   ReturnValueSlot ReturnValue, const CallArgList &Args,
3412                   llvm::Instruction **callOrInvoke, SourceLocation Loc);
3413   RValue EmitCall(const CGFunctionInfo &CallInfo, const CGCallee &Callee,
3414                   ReturnValueSlot ReturnValue, const CallArgList &Args,
3415                   llvm::Instruction **callOrInvoke = nullptr) {
3416     return EmitCall(CallInfo, Callee, ReturnValue, Args, callOrInvoke,
3417                     SourceLocation());
3418   }
3419   RValue EmitCall(QualType FnType, const CGCallee &Callee, const CallExpr *E,
3420                   ReturnValueSlot ReturnValue, llvm::Value *Chain = nullptr);
3421   RValue EmitCallExpr(const CallExpr *E,
3422                       ReturnValueSlot ReturnValue = ReturnValueSlot());
3423   RValue EmitSimpleCallExpr(const CallExpr *E, ReturnValueSlot ReturnValue);
3424   CGCallee EmitCallee(const Expr *E);
3425 
3426   void checkTargetFeatures(const CallExpr *E, const FunctionDecl *TargetDecl);
3427 
3428   llvm::CallInst *EmitRuntimeCall(llvm::Value *callee,
3429                                   const Twine &name = "");
3430   llvm::CallInst *EmitRuntimeCall(llvm::Value *callee,
3431                                   ArrayRef<llvm::Value*> args,
3432                                   const Twine &name = "");
3433   llvm::CallInst *EmitNounwindRuntimeCall(llvm::Value *callee,
3434                                           const Twine &name = "");
3435   llvm::CallInst *EmitNounwindRuntimeCall(llvm::Value *callee,
3436                                           ArrayRef<llvm::Value*> args,
3437                                           const Twine &name = "");
3438 
3439   SmallVector<llvm::OperandBundleDef, 1>
3440   getBundlesForFunclet(llvm::Value *Callee);
3441 
3442   llvm::CallSite EmitCallOrInvoke(llvm::Value *Callee,
3443                                   ArrayRef<llvm::Value *> Args,
3444                                   const Twine &Name = "");
3445   llvm::CallSite EmitRuntimeCallOrInvoke(llvm::Value *callee,
3446                                          ArrayRef<llvm::Value*> args,
3447                                          const Twine &name = "");
3448   llvm::CallSite EmitRuntimeCallOrInvoke(llvm::Value *callee,
3449                                          const Twine &name = "");
3450   void EmitNoreturnRuntimeCallOrInvoke(llvm::Value *callee,
3451                                        ArrayRef<llvm::Value*> args);
3452 
3453   CGCallee BuildAppleKextVirtualCall(const CXXMethodDecl *MD,
3454                                      NestedNameSpecifier *Qual,
3455                                      llvm::Type *Ty);
3456 
3457   CGCallee BuildAppleKextVirtualDestructorCall(const CXXDestructorDecl *DD,
3458                                                CXXDtorType Type,
3459                                                const CXXRecordDecl *RD);
3460 
3461   // These functions emit calls to the special functions of non-trivial C
3462   // structs.
3463   void defaultInitNonTrivialCStructVar(LValue Dst);
3464   void callCStructDefaultConstructor(LValue Dst);
3465   void callCStructDestructor(LValue Dst);
3466   void callCStructCopyConstructor(LValue Dst, LValue Src);
3467   void callCStructMoveConstructor(LValue Dst, LValue Src);
3468   void callCStructCopyAssignmentOperator(LValue Dst, LValue Src);
3469   void callCStructMoveAssignmentOperator(LValue Dst, LValue Src);
3470 
3471   RValue
3472   EmitCXXMemberOrOperatorCall(const CXXMethodDecl *Method,
3473                               const CGCallee &Callee,
3474                               ReturnValueSlot ReturnValue, llvm::Value *This,
3475                               llvm::Value *ImplicitParam,
3476                               QualType ImplicitParamTy, const CallExpr *E,
3477                               CallArgList *RtlArgs);
3478   RValue EmitCXXDestructorCall(const CXXDestructorDecl *DD,
3479                                const CGCallee &Callee,
3480                                llvm::Value *This, llvm::Value *ImplicitParam,
3481                                QualType ImplicitParamTy, const CallExpr *E,
3482                                StructorType Type);
3483   RValue EmitCXXMemberCallExpr(const CXXMemberCallExpr *E,
3484                                ReturnValueSlot ReturnValue);
3485   RValue EmitCXXMemberOrOperatorMemberCallExpr(const CallExpr *CE,
3486                                                const CXXMethodDecl *MD,
3487                                                ReturnValueSlot ReturnValue,
3488                                                bool HasQualifier,
3489                                                NestedNameSpecifier *Qualifier,
3490                                                bool IsArrow, const Expr *Base);
3491   // Compute the object pointer.
3492   Address EmitCXXMemberDataPointerAddress(const Expr *E, Address base,
3493                                           llvm::Value *memberPtr,
3494                                           const MemberPointerType *memberPtrType,
3495                                           LValueBaseInfo *BaseInfo = nullptr,
3496                                           TBAAAccessInfo *TBAAInfo = nullptr);
3497   RValue EmitCXXMemberPointerCallExpr(const CXXMemberCallExpr *E,
3498                                       ReturnValueSlot ReturnValue);
3499 
3500   RValue EmitCXXOperatorMemberCallExpr(const CXXOperatorCallExpr *E,
3501                                        const CXXMethodDecl *MD,
3502                                        ReturnValueSlot ReturnValue);
3503   RValue EmitCXXPseudoDestructorExpr(const CXXPseudoDestructorExpr *E);
3504 
3505   RValue EmitCUDAKernelCallExpr(const CUDAKernelCallExpr *E,
3506                                 ReturnValueSlot ReturnValue);
3507 
3508   RValue EmitNVPTXDevicePrintfCallExpr(const CallExpr *E,
3509                                        ReturnValueSlot ReturnValue);
3510 
3511   RValue EmitBuiltinExpr(const FunctionDecl *FD,
3512                          unsigned BuiltinID, const CallExpr *E,
3513                          ReturnValueSlot ReturnValue);
3514 
3515   /// Emit IR for __builtin_os_log_format.
3516   RValue emitBuiltinOSLogFormat(const CallExpr &E);
3517 
3518   llvm::Function *generateBuiltinOSLogHelperFunction(
3519       const analyze_os_log::OSLogBufferLayout &Layout,
3520       CharUnits BufferAlignment);
3521 
3522   RValue EmitBlockCallExpr(const CallExpr *E, ReturnValueSlot ReturnValue);
3523 
3524   /// EmitTargetBuiltinExpr - Emit the given builtin call. Returns 0 if the call
3525   /// is unhandled by the current target.
3526   llvm::Value *EmitTargetBuiltinExpr(unsigned BuiltinID, const CallExpr *E);
3527 
3528   llvm::Value *EmitAArch64CompareBuiltinExpr(llvm::Value *Op, llvm::Type *Ty,
3529                                              const llvm::CmpInst::Predicate Fp,
3530                                              const llvm::CmpInst::Predicate Ip,
3531                                              const llvm::Twine &Name = "");
3532   llvm::Value *EmitARMBuiltinExpr(unsigned BuiltinID, const CallExpr *E,
3533                                   llvm::Triple::ArchType Arch);
3534 
3535   llvm::Value *EmitCommonNeonBuiltinExpr(unsigned BuiltinID,
3536                                          unsigned LLVMIntrinsic,
3537                                          unsigned AltLLVMIntrinsic,
3538                                          const char *NameHint,
3539                                          unsigned Modifier,
3540                                          const CallExpr *E,
3541                                          SmallVectorImpl<llvm::Value *> &Ops,
3542                                          Address PtrOp0, Address PtrOp1,
3543                                          llvm::Triple::ArchType Arch);
3544   llvm::Function *LookupNeonLLVMIntrinsic(unsigned IntrinsicID,
3545                                           unsigned Modifier, llvm::Type *ArgTy,
3546                                           const CallExpr *E);
3547   llvm::Value *EmitNeonCall(llvm::Function *F,
3548                             SmallVectorImpl<llvm::Value*> &O,
3549                             const char *name,
3550                             unsigned shift = 0, bool rightshift = false);
3551   llvm::Value *EmitNeonSplat(llvm::Value *V, llvm::Constant *Idx);
3552   llvm::Value *EmitNeonShiftVector(llvm::Value *V, llvm::Type *Ty,
3553                                    bool negateForRightShift);
3554   llvm::Value *EmitNeonRShiftImm(llvm::Value *Vec, llvm::Value *Amt,
3555                                  llvm::Type *Ty, bool usgn, const char *name);
3556   llvm::Value *vectorWrapScalar16(llvm::Value *Op);
3557   llvm::Value *EmitAArch64BuiltinExpr(unsigned BuiltinID, const CallExpr *E,
3558                                       llvm::Triple::ArchType Arch);
3559 
3560   llvm::Value *BuildVector(ArrayRef<llvm::Value*> Ops);
3561   llvm::Value *EmitX86BuiltinExpr(unsigned BuiltinID, const CallExpr *E);
3562   llvm::Value *EmitPPCBuiltinExpr(unsigned BuiltinID, const CallExpr *E);
3563   llvm::Value *EmitAMDGPUBuiltinExpr(unsigned BuiltinID, const CallExpr *E);
3564   llvm::Value *EmitSystemZBuiltinExpr(unsigned BuiltinID, const CallExpr *E);
3565   llvm::Value *EmitNVPTXBuiltinExpr(unsigned BuiltinID, const CallExpr *E);
3566   llvm::Value *EmitWebAssemblyBuiltinExpr(unsigned BuiltinID,
3567                                           const CallExpr *E);
3568   llvm::Value *EmitHexagonBuiltinExpr(unsigned BuiltinID, const CallExpr *E);
3569 
3570 private:
3571   enum class MSVCIntrin;
3572 
3573 public:
3574   llvm::Value *EmitMSVCBuiltinExpr(MSVCIntrin BuiltinID, const CallExpr *E);
3575 
3576   llvm::Value *EmitBuiltinAvailable(ArrayRef<llvm::Value *> Args);
3577 
3578   llvm::Value *EmitObjCProtocolExpr(const ObjCProtocolExpr *E);
3579   llvm::Value *EmitObjCStringLiteral(const ObjCStringLiteral *E);
3580   llvm::Value *EmitObjCBoxedExpr(const ObjCBoxedExpr *E);
3581   llvm::Value *EmitObjCArrayLiteral(const ObjCArrayLiteral *E);
3582   llvm::Value *EmitObjCDictionaryLiteral(const ObjCDictionaryLiteral *E);
3583   llvm::Value *EmitObjCCollectionLiteral(const Expr *E,
3584                                 const ObjCMethodDecl *MethodWithObjects);
3585   llvm::Value *EmitObjCSelectorExpr(const ObjCSelectorExpr *E);
3586   RValue EmitObjCMessageExpr(const ObjCMessageExpr *E,
3587                              ReturnValueSlot Return = ReturnValueSlot());
3588 
3589   /// Retrieves the default cleanup kind for an ARC cleanup.
3590   /// Except under -fobjc-arc-eh, ARC cleanups are normal-only.
3591   CleanupKind getARCCleanupKind() {
3592     return CGM.getCodeGenOpts().ObjCAutoRefCountExceptions
3593              ? NormalAndEHCleanup : NormalCleanup;
3594   }
3595 
3596   // ARC primitives.
3597   void EmitARCInitWeak(Address addr, llvm::Value *value);
3598   void EmitARCDestroyWeak(Address addr);
3599   llvm::Value *EmitARCLoadWeak(Address addr);
3600   llvm::Value *EmitARCLoadWeakRetained(Address addr);
3601   llvm::Value *EmitARCStoreWeak(Address addr, llvm::Value *value, bool ignored);
3602   void emitARCCopyAssignWeak(QualType Ty, Address DstAddr, Address SrcAddr);
3603   void emitARCMoveAssignWeak(QualType Ty, Address DstAddr, Address SrcAddr);
3604   void EmitARCCopyWeak(Address dst, Address src);
3605   void EmitARCMoveWeak(Address dst, Address src);
3606   llvm::Value *EmitARCRetainAutorelease(QualType type, llvm::Value *value);
3607   llvm::Value *EmitARCRetainAutoreleaseNonBlock(llvm::Value *value);
3608   llvm::Value *EmitARCStoreStrong(LValue lvalue, llvm::Value *value,
3609                                   bool resultIgnored);
3610   llvm::Value *EmitARCStoreStrongCall(Address addr, llvm::Value *value,
3611                                       bool resultIgnored);
3612   llvm::Value *EmitARCRetain(QualType type, llvm::Value *value);
3613   llvm::Value *EmitARCRetainNonBlock(llvm::Value *value);
3614   llvm::Value *EmitARCRetainBlock(llvm::Value *value, bool mandatory);
3615   void EmitARCDestroyStrong(Address addr, ARCPreciseLifetime_t precise);
3616   void EmitARCRelease(llvm::Value *value, ARCPreciseLifetime_t precise);
3617   llvm::Value *EmitARCAutorelease(llvm::Value *value);
3618   llvm::Value *EmitARCAutoreleaseReturnValue(llvm::Value *value);
3619   llvm::Value *EmitARCRetainAutoreleaseReturnValue(llvm::Value *value);
3620   llvm::Value *EmitARCRetainAutoreleasedReturnValue(llvm::Value *value);
3621   llvm::Value *EmitARCUnsafeClaimAutoreleasedReturnValue(llvm::Value *value);
3622 
3623   std::pair<LValue,llvm::Value*>
3624   EmitARCStoreAutoreleasing(const BinaryOperator *e);
3625   std::pair<LValue,llvm::Value*>
3626   EmitARCStoreStrong(const BinaryOperator *e, bool ignored);
3627   std::pair<LValue,llvm::Value*>
3628   EmitARCStoreUnsafeUnretained(const BinaryOperator *e, bool ignored);
3629 
3630   llvm::Value *EmitObjCThrowOperand(const Expr *expr);
3631   llvm::Value *EmitObjCConsumeObject(QualType T, llvm::Value *Ptr);
3632   llvm::Value *EmitObjCExtendObjectLifetime(QualType T, llvm::Value *Ptr);
3633 
3634   llvm::Value *EmitARCExtendBlockObject(const Expr *expr);
3635   llvm::Value *EmitARCReclaimReturnedObject(const Expr *e,
3636                                             bool allowUnsafeClaim);
3637   llvm::Value *EmitARCRetainScalarExpr(const Expr *expr);
3638   llvm::Value *EmitARCRetainAutoreleaseScalarExpr(const Expr *expr);
3639   llvm::Value *EmitARCUnsafeUnretainedScalarExpr(const Expr *expr);
3640 
3641   void EmitARCIntrinsicUse(ArrayRef<llvm::Value*> values);
3642 
3643   static Destroyer destroyARCStrongImprecise;
3644   static Destroyer destroyARCStrongPrecise;
3645   static Destroyer destroyARCWeak;
3646   static Destroyer emitARCIntrinsicUse;
3647   static Destroyer destroyNonTrivialCStruct;
3648 
3649   void EmitObjCAutoreleasePoolPop(llvm::Value *Ptr);
3650   llvm::Value *EmitObjCAutoreleasePoolPush();
3651   llvm::Value *EmitObjCMRRAutoreleasePoolPush();
3652   void EmitObjCAutoreleasePoolCleanup(llvm::Value *Ptr);
3653   void EmitObjCMRRAutoreleasePoolPop(llvm::Value *Ptr);
3654 
3655   /// Emits a reference binding to the passed in expression.
3656   RValue EmitReferenceBindingToExpr(const Expr *E);
3657 
3658   //===--------------------------------------------------------------------===//
3659   //                           Expression Emission
3660   //===--------------------------------------------------------------------===//
3661 
3662   // Expressions are broken into three classes: scalar, complex, aggregate.
3663 
3664   /// EmitScalarExpr - Emit the computation of the specified expression of LLVM
3665   /// scalar type, returning the result.
3666   llvm::Value *EmitScalarExpr(const Expr *E , bool IgnoreResultAssign = false);
3667 
3668   /// Emit a conversion from the specified type to the specified destination
3669   /// type, both of which are LLVM scalar types.
3670   llvm::Value *EmitScalarConversion(llvm::Value *Src, QualType SrcTy,
3671                                     QualType DstTy, SourceLocation Loc);
3672 
3673   /// Emit a conversion from the specified complex type to the specified
3674   /// destination type, where the destination type is an LLVM scalar type.
3675   llvm::Value *EmitComplexToScalarConversion(ComplexPairTy Src, QualType SrcTy,
3676                                              QualType DstTy,
3677                                              SourceLocation Loc);
3678 
3679   /// EmitAggExpr - Emit the computation of the specified expression
3680   /// of aggregate type.  The result is computed into the given slot,
3681   /// which may be null to indicate that the value is not needed.
3682   void EmitAggExpr(const Expr *E, AggValueSlot AS);
3683 
3684   /// EmitAggExprToLValue - Emit the computation of the specified expression of
3685   /// aggregate type into a temporary LValue.
3686   LValue EmitAggExprToLValue(const Expr *E);
3687 
3688   /// EmitExtendGCLifetime - Given a pointer to an Objective-C object,
3689   /// make sure it survives garbage collection until this point.
3690   void EmitExtendGCLifetime(llvm::Value *object);
3691 
3692   /// EmitComplexExpr - Emit the computation of the specified expression of
3693   /// complex type, returning the result.
3694   ComplexPairTy EmitComplexExpr(const Expr *E,
3695                                 bool IgnoreReal = false,
3696                                 bool IgnoreImag = false);
3697 
3698   /// EmitComplexExprIntoLValue - Emit the given expression of complex
3699   /// type and place its result into the specified l-value.
3700   void EmitComplexExprIntoLValue(const Expr *E, LValue dest, bool isInit);
3701 
3702   /// EmitStoreOfComplex - Store a complex number into the specified l-value.
3703   void EmitStoreOfComplex(ComplexPairTy V, LValue dest, bool isInit);
3704 
3705   /// EmitLoadOfComplex - Load a complex number from the specified l-value.
3706   ComplexPairTy EmitLoadOfComplex(LValue src, SourceLocation loc);
3707 
3708   Address emitAddrOfRealComponent(Address complex, QualType complexType);
3709   Address emitAddrOfImagComponent(Address complex, QualType complexType);
3710 
3711   /// AddInitializerToStaticVarDecl - Add the initializer for 'D' to the
3712   /// global variable that has already been created for it.  If the initializer
3713   /// has a different type than GV does, this may free GV and return a different
3714   /// one.  Otherwise it just returns GV.
3715   llvm::GlobalVariable *
3716   AddInitializerToStaticVarDecl(const VarDecl &D,
3717                                 llvm::GlobalVariable *GV);
3718 
3719 
3720   /// EmitCXXGlobalVarDeclInit - Create the initializer for a C++
3721   /// variable with global storage.
3722   void EmitCXXGlobalVarDeclInit(const VarDecl &D, llvm::Constant *DeclPtr,
3723                                 bool PerformInit);
3724 
3725   llvm::Constant *createAtExitStub(const VarDecl &VD, llvm::Constant *Dtor,
3726                                    llvm::Constant *Addr);
3727 
3728   /// Call atexit() with a function that passes the given argument to
3729   /// the given function.
3730   void registerGlobalDtorWithAtExit(const VarDecl &D, llvm::Constant *fn,
3731                                     llvm::Constant *addr);
3732 
3733   /// Call atexit() with function dtorStub.
3734   void registerGlobalDtorWithAtExit(llvm::Constant *dtorStub);
3735 
3736   /// Emit code in this function to perform a guarded variable
3737   /// initialization.  Guarded initializations are used when it's not
3738   /// possible to prove that an initialization will be done exactly
3739   /// once, e.g. with a static local variable or a static data member
3740   /// of a class template.
3741   void EmitCXXGuardedInit(const VarDecl &D, llvm::GlobalVariable *DeclPtr,
3742                           bool PerformInit);
3743 
3744   enum class GuardKind { VariableGuard, TlsGuard };
3745 
3746   /// Emit a branch to select whether or not to perform guarded initialization.
3747   void EmitCXXGuardedInitBranch(llvm::Value *NeedsInit,
3748                                 llvm::BasicBlock *InitBlock,
3749                                 llvm::BasicBlock *NoInitBlock,
3750                                 GuardKind Kind, const VarDecl *D);
3751 
3752   /// GenerateCXXGlobalInitFunc - Generates code for initializing global
3753   /// variables.
3754   void GenerateCXXGlobalInitFunc(llvm::Function *Fn,
3755                                  ArrayRef<llvm::Function *> CXXThreadLocals,
3756                                  Address Guard = Address::invalid());
3757 
3758   /// GenerateCXXGlobalDtorsFunc - Generates code for destroying global
3759   /// variables.
3760   void GenerateCXXGlobalDtorsFunc(
3761       llvm::Function *Fn,
3762       const std::vector<std::pair<llvm::WeakTrackingVH, llvm::Constant *>>
3763           &DtorsAndObjects);
3764 
3765   void GenerateCXXGlobalVarDeclInitFunc(llvm::Function *Fn,
3766                                         const VarDecl *D,
3767                                         llvm::GlobalVariable *Addr,
3768                                         bool PerformInit);
3769 
3770   void EmitCXXConstructExpr(const CXXConstructExpr *E, AggValueSlot Dest);
3771 
3772   void EmitSynthesizedCXXCopyCtor(Address Dest, Address Src, const Expr *Exp);
3773 
3774   void enterFullExpression(const ExprWithCleanups *E) {
3775     if (E->getNumObjects() == 0) return;
3776     enterNonTrivialFullExpression(E);
3777   }
3778   void enterNonTrivialFullExpression(const ExprWithCleanups *E);
3779 
3780   void EmitCXXThrowExpr(const CXXThrowExpr *E, bool KeepInsertionPoint = true);
3781 
3782   void EmitLambdaExpr(const LambdaExpr *E, AggValueSlot Dest);
3783 
3784   RValue EmitAtomicExpr(AtomicExpr *E);
3785 
3786   //===--------------------------------------------------------------------===//
3787   //                         Annotations Emission
3788   //===--------------------------------------------------------------------===//
3789 
3790   /// Emit an annotation call (intrinsic or builtin).
3791   llvm::Value *EmitAnnotationCall(llvm::Value *AnnotationFn,
3792                                   llvm::Value *AnnotatedVal,
3793                                   StringRef AnnotationStr,
3794                                   SourceLocation Location);
3795 
3796   /// Emit local annotations for the local variable V, declared by D.
3797   void EmitVarAnnotations(const VarDecl *D, llvm::Value *V);
3798 
3799   /// Emit field annotations for the given field & value. Returns the
3800   /// annotation result.
3801   Address EmitFieldAnnotations(const FieldDecl *D, Address V);
3802 
3803   //===--------------------------------------------------------------------===//
3804   //                             Internal Helpers
3805   //===--------------------------------------------------------------------===//
3806 
3807   /// ContainsLabel - Return true if the statement contains a label in it.  If
3808   /// this statement is not executed normally, it not containing a label means
3809   /// that we can just remove the code.
3810   static bool ContainsLabel(const Stmt *S, bool IgnoreCaseStmts = false);
3811 
3812   /// containsBreak - Return true if the statement contains a break out of it.
3813   /// If the statement (recursively) contains a switch or loop with a break
3814   /// inside of it, this is fine.
3815   static bool containsBreak(const Stmt *S);
3816 
3817   /// Determine if the given statement might introduce a declaration into the
3818   /// current scope, by being a (possibly-labelled) DeclStmt.
3819   static bool mightAddDeclToScope(const Stmt *S);
3820 
3821   /// ConstantFoldsToSimpleInteger - If the specified expression does not fold
3822   /// to a constant, or if it does but contains a label, return false.  If it
3823   /// constant folds return true and set the boolean result in Result.
3824   bool ConstantFoldsToSimpleInteger(const Expr *Cond, bool &Result,
3825                                     bool AllowLabels = false);
3826 
3827   /// ConstantFoldsToSimpleInteger - If the specified expression does not fold
3828   /// to a constant, or if it does but contains a label, return false.  If it
3829   /// constant folds return true and set the folded value.
3830   bool ConstantFoldsToSimpleInteger(const Expr *Cond, llvm::APSInt &Result,
3831                                     bool AllowLabels = false);
3832 
3833   /// EmitBranchOnBoolExpr - Emit a branch on a boolean condition (e.g. for an
3834   /// if statement) to the specified blocks.  Based on the condition, this might
3835   /// try to simplify the codegen of the conditional based on the branch.
3836   /// TrueCount should be the number of times we expect the condition to
3837   /// evaluate to true based on PGO data.
3838   void EmitBranchOnBoolExpr(const Expr *Cond, llvm::BasicBlock *TrueBlock,
3839                             llvm::BasicBlock *FalseBlock, uint64_t TrueCount);
3840 
3841   /// Given an assignment `*LHS = RHS`, emit a test that checks if \p RHS is
3842   /// nonnull, if \p LHS is marked _Nonnull.
3843   void EmitNullabilityCheck(LValue LHS, llvm::Value *RHS, SourceLocation Loc);
3844 
3845   /// An enumeration which makes it easier to specify whether or not an
3846   /// operation is a subtraction.
3847   enum { NotSubtraction = false, IsSubtraction = true };
3848 
3849   /// Same as IRBuilder::CreateInBoundsGEP, but additionally emits a check to
3850   /// detect undefined behavior when the pointer overflow sanitizer is enabled.
3851   /// \p SignedIndices indicates whether any of the GEP indices are signed.
3852   /// \p IsSubtraction indicates whether the expression used to form the GEP
3853   /// is a subtraction.
3854   llvm::Value *EmitCheckedInBoundsGEP(llvm::Value *Ptr,
3855                                       ArrayRef<llvm::Value *> IdxList,
3856                                       bool SignedIndices,
3857                                       bool IsSubtraction,
3858                                       SourceLocation Loc,
3859                                       const Twine &Name = "");
3860 
3861   /// Specifies which type of sanitizer check to apply when handling a
3862   /// particular builtin.
3863   enum BuiltinCheckKind {
3864     BCK_CTZPassedZero,
3865     BCK_CLZPassedZero,
3866   };
3867 
3868   /// Emits an argument for a call to a builtin. If the builtin sanitizer is
3869   /// enabled, a runtime check specified by \p Kind is also emitted.
3870   llvm::Value *EmitCheckedArgForBuiltin(const Expr *E, BuiltinCheckKind Kind);
3871 
3872   /// Emit a description of a type in a format suitable for passing to
3873   /// a runtime sanitizer handler.
3874   llvm::Constant *EmitCheckTypeDescriptor(QualType T);
3875 
3876   /// Convert a value into a format suitable for passing to a runtime
3877   /// sanitizer handler.
3878   llvm::Value *EmitCheckValue(llvm::Value *V);
3879 
3880   /// Emit a description of a source location in a format suitable for
3881   /// passing to a runtime sanitizer handler.
3882   llvm::Constant *EmitCheckSourceLocation(SourceLocation Loc);
3883 
3884   /// Create a basic block that will call a handler function in a
3885   /// sanitizer runtime with the provided arguments, and create a conditional
3886   /// branch to it.
3887   void EmitCheck(ArrayRef<std::pair<llvm::Value *, SanitizerMask>> Checked,
3888                  SanitizerHandler Check, ArrayRef<llvm::Constant *> StaticArgs,
3889                  ArrayRef<llvm::Value *> DynamicArgs);
3890 
3891   /// Emit a slow path cross-DSO CFI check which calls __cfi_slowpath
3892   /// if Cond if false.
3893   void EmitCfiSlowPathCheck(SanitizerMask Kind, llvm::Value *Cond,
3894                             llvm::ConstantInt *TypeId, llvm::Value *Ptr,
3895                             ArrayRef<llvm::Constant *> StaticArgs);
3896 
3897   /// Emit a reached-unreachable diagnostic if \p Loc is valid and runtime
3898   /// checking is enabled. Otherwise, just emit an unreachable instruction.
3899   void EmitUnreachable(SourceLocation Loc);
3900 
3901   /// Create a basic block that will call the trap intrinsic, and emit a
3902   /// conditional branch to it, for the -ftrapv checks.
3903   void EmitTrapCheck(llvm::Value *Checked);
3904 
3905   /// Emit a call to trap or debugtrap and attach function attribute
3906   /// "trap-func-name" if specified.
3907   llvm::CallInst *EmitTrapCall(llvm::Intrinsic::ID IntrID);
3908 
3909   /// Emit a stub for the cross-DSO CFI check function.
3910   void EmitCfiCheckStub();
3911 
3912   /// Emit a cross-DSO CFI failure handling function.
3913   void EmitCfiCheckFail();
3914 
3915   /// Create a check for a function parameter that may potentially be
3916   /// declared as non-null.
3917   void EmitNonNullArgCheck(RValue RV, QualType ArgType, SourceLocation ArgLoc,
3918                            AbstractCallee AC, unsigned ParmNum);
3919 
3920   /// EmitCallArg - Emit a single call argument.
3921   void EmitCallArg(CallArgList &args, const Expr *E, QualType ArgType);
3922 
3923   /// EmitDelegateCallArg - We are performing a delegate call; that
3924   /// is, the current function is delegating to another one.  Produce
3925   /// a r-value suitable for passing the given parameter.
3926   void EmitDelegateCallArg(CallArgList &args, const VarDecl *param,
3927                            SourceLocation loc);
3928 
3929   /// SetFPAccuracy - Set the minimum required accuracy of the given floating
3930   /// point operation, expressed as the maximum relative error in ulp.
3931   void SetFPAccuracy(llvm::Value *Val, float Accuracy);
3932 
3933 private:
3934   llvm::MDNode *getRangeForLoadFromType(QualType Ty);
3935   void EmitReturnOfRValue(RValue RV, QualType Ty);
3936 
3937   void deferPlaceholderReplacement(llvm::Instruction *Old, llvm::Value *New);
3938 
3939   llvm::SmallVector<std::pair<llvm::Instruction *, llvm::Value *>, 4>
3940   DeferredReplacements;
3941 
3942   /// Set the address of a local variable.
3943   void setAddrOfLocalVar(const VarDecl *VD, Address Addr) {
3944     assert(!LocalDeclMap.count(VD) && "Decl already exists in LocalDeclMap!");
3945     LocalDeclMap.insert({VD, Addr});
3946   }
3947 
3948   /// ExpandTypeFromArgs - Reconstruct a structure of type \arg Ty
3949   /// from function arguments into \arg Dst. See ABIArgInfo::Expand.
3950   ///
3951   /// \param AI - The first function argument of the expansion.
3952   void ExpandTypeFromArgs(QualType Ty, LValue Dst,
3953                           SmallVectorImpl<llvm::Value *>::iterator &AI);
3954 
3955   /// ExpandTypeToArgs - Expand an CallArg \arg Arg, with the LLVM type for \arg
3956   /// Ty, into individual arguments on the provided vector \arg IRCallArgs,
3957   /// starting at index \arg IRCallArgPos. See ABIArgInfo::Expand.
3958   void ExpandTypeToArgs(QualType Ty, CallArg Arg, llvm::FunctionType *IRFuncTy,
3959                         SmallVectorImpl<llvm::Value *> &IRCallArgs,
3960                         unsigned &IRCallArgPos);
3961 
3962   llvm::Value* EmitAsmInput(const TargetInfo::ConstraintInfo &Info,
3963                             const Expr *InputExpr, std::string &ConstraintStr);
3964 
3965   llvm::Value* EmitAsmInputLValue(const TargetInfo::ConstraintInfo &Info,
3966                                   LValue InputValue, QualType InputType,
3967                                   std::string &ConstraintStr,
3968                                   SourceLocation Loc);
3969 
3970   /// Attempts to statically evaluate the object size of E. If that
3971   /// fails, emits code to figure the size of E out for us. This is
3972   /// pass_object_size aware.
3973   ///
3974   /// If EmittedExpr is non-null, this will use that instead of re-emitting E.
3975   llvm::Value *evaluateOrEmitBuiltinObjectSize(const Expr *E, unsigned Type,
3976                                                llvm::IntegerType *ResType,
3977                                                llvm::Value *EmittedE);
3978 
3979   /// Emits the size of E, as required by __builtin_object_size. This
3980   /// function is aware of pass_object_size parameters, and will act accordingly
3981   /// if E is a parameter with the pass_object_size attribute.
3982   llvm::Value *emitBuiltinObjectSize(const Expr *E, unsigned Type,
3983                                      llvm::IntegerType *ResType,
3984                                      llvm::Value *EmittedE);
3985 
3986 public:
3987 #ifndef NDEBUG
3988   // Determine whether the given argument is an Objective-C method
3989   // that may have type parameters in its signature.
3990   static bool isObjCMethodWithTypeParams(const ObjCMethodDecl *method) {
3991     const DeclContext *dc = method->getDeclContext();
3992     if (const ObjCInterfaceDecl *classDecl= dyn_cast<ObjCInterfaceDecl>(dc)) {
3993       return classDecl->getTypeParamListAsWritten();
3994     }
3995 
3996     if (const ObjCCategoryDecl *catDecl = dyn_cast<ObjCCategoryDecl>(dc)) {
3997       return catDecl->getTypeParamList();
3998     }
3999 
4000     return false;
4001   }
4002 
4003   template<typename T>
4004   static bool isObjCMethodWithTypeParams(const T *) { return false; }
4005 #endif
4006 
4007   enum class EvaluationOrder {
4008     ///! No language constraints on evaluation order.
4009     Default,
4010     ///! Language semantics require left-to-right evaluation.
4011     ForceLeftToRight,
4012     ///! Language semantics require right-to-left evaluation.
4013     ForceRightToLeft
4014   };
4015 
4016   /// EmitCallArgs - Emit call arguments for a function.
4017   template <typename T>
4018   void EmitCallArgs(CallArgList &Args, const T *CallArgTypeInfo,
4019                     llvm::iterator_range<CallExpr::const_arg_iterator> ArgRange,
4020                     AbstractCallee AC = AbstractCallee(),
4021                     unsigned ParamsToSkip = 0,
4022                     EvaluationOrder Order = EvaluationOrder::Default) {
4023     SmallVector<QualType, 16> ArgTypes;
4024     CallExpr::const_arg_iterator Arg = ArgRange.begin();
4025 
4026     assert((ParamsToSkip == 0 || CallArgTypeInfo) &&
4027            "Can't skip parameters if type info is not provided");
4028     if (CallArgTypeInfo) {
4029 #ifndef NDEBUG
4030       bool isGenericMethod = isObjCMethodWithTypeParams(CallArgTypeInfo);
4031 #endif
4032 
4033       // First, use the argument types that the type info knows about
4034       for (auto I = CallArgTypeInfo->param_type_begin() + ParamsToSkip,
4035                 E = CallArgTypeInfo->param_type_end();
4036            I != E; ++I, ++Arg) {
4037         assert(Arg != ArgRange.end() && "Running over edge of argument list!");
4038         assert((isGenericMethod ||
4039                 ((*I)->isVariablyModifiedType() ||
4040                  (*I).getNonReferenceType()->isObjCRetainableType() ||
4041                  getContext()
4042                          .getCanonicalType((*I).getNonReferenceType())
4043                          .getTypePtr() ==
4044                      getContext()
4045                          .getCanonicalType((*Arg)->getType())
4046                          .getTypePtr())) &&
4047                "type mismatch in call argument!");
4048         ArgTypes.push_back(*I);
4049       }
4050     }
4051 
4052     // Either we've emitted all the call args, or we have a call to variadic
4053     // function.
4054     assert((Arg == ArgRange.end() || !CallArgTypeInfo ||
4055             CallArgTypeInfo->isVariadic()) &&
4056            "Extra arguments in non-variadic function!");
4057 
4058     // If we still have any arguments, emit them using the type of the argument.
4059     for (auto *A : llvm::make_range(Arg, ArgRange.end()))
4060       ArgTypes.push_back(CallArgTypeInfo ? getVarArgType(A) : A->getType());
4061 
4062     EmitCallArgs(Args, ArgTypes, ArgRange, AC, ParamsToSkip, Order);
4063   }
4064 
4065   void EmitCallArgs(CallArgList &Args, ArrayRef<QualType> ArgTypes,
4066                     llvm::iterator_range<CallExpr::const_arg_iterator> ArgRange,
4067                     AbstractCallee AC = AbstractCallee(),
4068                     unsigned ParamsToSkip = 0,
4069                     EvaluationOrder Order = EvaluationOrder::Default);
4070 
4071   /// EmitPointerWithAlignment - Given an expression with a pointer type,
4072   /// emit the value and compute our best estimate of the alignment of the
4073   /// pointee.
4074   ///
4075   /// \param BaseInfo - If non-null, this will be initialized with
4076   /// information about the source of the alignment and the may-alias
4077   /// attribute.  Note that this function will conservatively fall back on
4078   /// the type when it doesn't recognize the expression and may-alias will
4079   /// be set to false.
4080   ///
4081   /// One reasonable way to use this information is when there's a language
4082   /// guarantee that the pointer must be aligned to some stricter value, and
4083   /// we're simply trying to ensure that sufficiently obvious uses of under-
4084   /// aligned objects don't get miscompiled; for example, a placement new
4085   /// into the address of a local variable.  In such a case, it's quite
4086   /// reasonable to just ignore the returned alignment when it isn't from an
4087   /// explicit source.
4088   Address EmitPointerWithAlignment(const Expr *Addr,
4089                                    LValueBaseInfo *BaseInfo = nullptr,
4090                                    TBAAAccessInfo *TBAAInfo = nullptr);
4091 
4092   /// If \p E references a parameter with pass_object_size info or a constant
4093   /// array size modifier, emit the object size divided by the size of \p EltTy.
4094   /// Otherwise return null.
4095   llvm::Value *LoadPassedObjectSize(const Expr *E, QualType EltTy);
4096 
4097   void EmitSanitizerStatReport(llvm::SanitizerStatKind SSK);
4098 
4099   struct MultiVersionResolverOption {
4100     llvm::Function *Function;
4101     TargetAttr::ParsedTargetAttr ParsedAttribute;
4102     unsigned Priority;
4103     MultiVersionResolverOption(const TargetInfo &TargInfo, llvm::Function *F,
4104                                const clang::TargetAttr::ParsedTargetAttr &PT)
4105         : Function(F), ParsedAttribute(PT), Priority(0u) {
4106       for (StringRef Feat : PT.Features)
4107         Priority = std::max(Priority,
4108                             TargInfo.multiVersionSortPriority(Feat.substr(1)));
4109 
4110       if (!PT.Architecture.empty())
4111         Priority = std::max(Priority,
4112                             TargInfo.multiVersionSortPriority(PT.Architecture));
4113     }
4114 
4115     bool operator>(const MultiVersionResolverOption &Other) const {
4116       return Priority > Other.Priority;
4117     }
4118   };
4119   void EmitMultiVersionResolver(llvm::Function *Resolver,
4120                                 ArrayRef<MultiVersionResolverOption> Options);
4121 
4122 private:
4123   QualType getVarArgType(const Expr *Arg);
4124 
4125   void EmitDeclMetadata();
4126 
4127   BlockByrefHelpers *buildByrefHelpers(llvm::StructType &byrefType,
4128                                   const AutoVarEmission &emission);
4129 
4130   void AddObjCARCExceptionMetadata(llvm::Instruction *Inst);
4131 
4132   llvm::Value *GetValueForARMHint(unsigned BuiltinID);
4133   llvm::Value *EmitX86CpuIs(const CallExpr *E);
4134   llvm::Value *EmitX86CpuIs(StringRef CPUStr);
4135   llvm::Value *EmitX86CpuSupports(const CallExpr *E);
4136   llvm::Value *EmitX86CpuSupports(ArrayRef<StringRef> FeatureStrs);
4137   llvm::Value *EmitX86CpuInit();
4138   llvm::Value *FormResolverCondition(const MultiVersionResolverOption &RO);
4139 };
4140 
4141 /// Helper class with most of the code for saving a value for a
4142 /// conditional expression cleanup.
4143 struct DominatingLLVMValue {
4144   typedef llvm::PointerIntPair<llvm::Value*, 1, bool> saved_type;
4145 
4146   /// Answer whether the given value needs extra work to be saved.
4147   static bool needsSaving(llvm::Value *value) {
4148     // If it's not an instruction, we don't need to save.
4149     if (!isa<llvm::Instruction>(value)) return false;
4150 
4151     // If it's an instruction in the entry block, we don't need to save.
4152     llvm::BasicBlock *block = cast<llvm::Instruction>(value)->getParent();
4153     return (block != &block->getParent()->getEntryBlock());
4154   }
4155 
4156   /// Try to save the given value.
4157   static saved_type save(CodeGenFunction &CGF, llvm::Value *value) {
4158     if (!needsSaving(value)) return saved_type(value, false);
4159 
4160     // Otherwise, we need an alloca.
4161     auto align = CharUnits::fromQuantity(
4162               CGF.CGM.getDataLayout().getPrefTypeAlignment(value->getType()));
4163     Address alloca =
4164       CGF.CreateTempAlloca(value->getType(), align, "cond-cleanup.save");
4165     CGF.Builder.CreateStore(value, alloca);
4166 
4167     return saved_type(alloca.getPointer(), true);
4168   }
4169 
4170   static llvm::Value *restore(CodeGenFunction &CGF, saved_type value) {
4171     // If the value says it wasn't saved, trust that it's still dominating.
4172     if (!value.getInt()) return value.getPointer();
4173 
4174     // Otherwise, it should be an alloca instruction, as set up in save().
4175     auto alloca = cast<llvm::AllocaInst>(value.getPointer());
4176     return CGF.Builder.CreateAlignedLoad(alloca, alloca->getAlignment());
4177   }
4178 };
4179 
4180 /// A partial specialization of DominatingValue for llvm::Values that
4181 /// might be llvm::Instructions.
4182 template <class T> struct DominatingPointer<T,true> : DominatingLLVMValue {
4183   typedef T *type;
4184   static type restore(CodeGenFunction &CGF, saved_type value) {
4185     return static_cast<T*>(DominatingLLVMValue::restore(CGF, value));
4186   }
4187 };
4188 
4189 /// A specialization of DominatingValue for Address.
4190 template <> struct DominatingValue<Address> {
4191   typedef Address type;
4192 
4193   struct saved_type {
4194     DominatingLLVMValue::saved_type SavedValue;
4195     CharUnits Alignment;
4196   };
4197 
4198   static bool needsSaving(type value) {
4199     return DominatingLLVMValue::needsSaving(value.getPointer());
4200   }
4201   static saved_type save(CodeGenFunction &CGF, type value) {
4202     return { DominatingLLVMValue::save(CGF, value.getPointer()),
4203              value.getAlignment() };
4204   }
4205   static type restore(CodeGenFunction &CGF, saved_type value) {
4206     return Address(DominatingLLVMValue::restore(CGF, value.SavedValue),
4207                    value.Alignment);
4208   }
4209 };
4210 
4211 /// A specialization of DominatingValue for RValue.
4212 template <> struct DominatingValue<RValue> {
4213   typedef RValue type;
4214   class saved_type {
4215     enum Kind { ScalarLiteral, ScalarAddress, AggregateLiteral,
4216                 AggregateAddress, ComplexAddress };
4217 
4218     llvm::Value *Value;
4219     unsigned K : 3;
4220     unsigned Align : 29;
4221     saved_type(llvm::Value *v, Kind k, unsigned a = 0)
4222       : Value(v), K(k), Align(a) {}
4223 
4224   public:
4225     static bool needsSaving(RValue value);
4226     static saved_type save(CodeGenFunction &CGF, RValue value);
4227     RValue restore(CodeGenFunction &CGF);
4228 
4229     // implementations in CGCleanup.cpp
4230   };
4231 
4232   static bool needsSaving(type value) {
4233     return saved_type::needsSaving(value);
4234   }
4235   static saved_type save(CodeGenFunction &CGF, type value) {
4236     return saved_type::save(CGF, value);
4237   }
4238   static type restore(CodeGenFunction &CGF, saved_type value) {
4239     return value.restore(CGF);
4240   }
4241 };
4242 
4243 }  // end namespace CodeGen
4244 }  // end namespace clang
4245 
4246 #endif
4247