1 //===-- CodeGenFunction.h - Per-Function state for LLVM CodeGen -*- C++ -*-===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This is the internal per-function state used for llvm translation. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #ifndef LLVM_CLANG_LIB_CODEGEN_CODEGENFUNCTION_H 15 #define LLVM_CLANG_LIB_CODEGEN_CODEGENFUNCTION_H 16 17 #include "CGBuilder.h" 18 #include "CGDebugInfo.h" 19 #include "CGLoopInfo.h" 20 #include "CGValue.h" 21 #include "CodeGenModule.h" 22 #include "CodeGenPGO.h" 23 #include "EHScopeStack.h" 24 #include "VarBypassDetector.h" 25 #include "clang/AST/CharUnits.h" 26 #include "clang/AST/ExprCXX.h" 27 #include "clang/AST/ExprObjC.h" 28 #include "clang/AST/ExprOpenMP.h" 29 #include "clang/AST/Type.h" 30 #include "clang/Basic/ABI.h" 31 #include "clang/Basic/CapturedStmt.h" 32 #include "clang/Basic/OpenMPKinds.h" 33 #include "clang/Basic/TargetInfo.h" 34 #include "clang/Frontend/CodeGenOptions.h" 35 #include "llvm/ADT/ArrayRef.h" 36 #include "llvm/ADT/DenseMap.h" 37 #include "llvm/ADT/MapVector.h" 38 #include "llvm/ADT/SmallVector.h" 39 #include "llvm/IR/ValueHandle.h" 40 #include "llvm/Support/Debug.h" 41 #include "llvm/Transforms/Utils/SanitizerStats.h" 42 43 namespace llvm { 44 class BasicBlock; 45 class LLVMContext; 46 class MDNode; 47 class Module; 48 class SwitchInst; 49 class Twine; 50 class Value; 51 class CallSite; 52 } 53 54 namespace clang { 55 class ASTContext; 56 class BlockDecl; 57 class CXXDestructorDecl; 58 class CXXForRangeStmt; 59 class CXXTryStmt; 60 class Decl; 61 class LabelDecl; 62 class EnumConstantDecl; 63 class FunctionDecl; 64 class FunctionProtoType; 65 class LabelStmt; 66 class ObjCContainerDecl; 67 class ObjCInterfaceDecl; 68 class ObjCIvarDecl; 69 class ObjCMethodDecl; 70 class ObjCImplementationDecl; 71 class ObjCPropertyImplDecl; 72 class TargetInfo; 73 class VarDecl; 74 class ObjCForCollectionStmt; 75 class ObjCAtTryStmt; 76 class ObjCAtThrowStmt; 77 class ObjCAtSynchronizedStmt; 78 class ObjCAutoreleasePoolStmt; 79 80 namespace analyze_os_log { 81 class OSLogBufferLayout; 82 } 83 84 namespace CodeGen { 85 class CodeGenTypes; 86 class CGCallee; 87 class CGFunctionInfo; 88 class CGRecordLayout; 89 class CGBlockInfo; 90 class CGCXXABI; 91 class BlockByrefHelpers; 92 class BlockByrefInfo; 93 class BlockFlags; 94 class BlockFieldFlags; 95 class RegionCodeGenTy; 96 class TargetCodeGenInfo; 97 struct OMPTaskDataTy; 98 struct CGCoroData; 99 100 /// The kind of evaluation to perform on values of a particular 101 /// type. Basically, is the code in CGExprScalar, CGExprComplex, or 102 /// CGExprAgg? 103 /// 104 /// TODO: should vectors maybe be split out into their own thing? 105 enum TypeEvaluationKind { 106 TEK_Scalar, 107 TEK_Complex, 108 TEK_Aggregate 109 }; 110 111 #define LIST_SANITIZER_CHECKS \ 112 SANITIZER_CHECK(AddOverflow, add_overflow, 0) \ 113 SANITIZER_CHECK(BuiltinUnreachable, builtin_unreachable, 0) \ 114 SANITIZER_CHECK(CFICheckFail, cfi_check_fail, 0) \ 115 SANITIZER_CHECK(DivremOverflow, divrem_overflow, 0) \ 116 SANITIZER_CHECK(DynamicTypeCacheMiss, dynamic_type_cache_miss, 0) \ 117 SANITIZER_CHECK(FloatCastOverflow, float_cast_overflow, 0) \ 118 SANITIZER_CHECK(FunctionTypeMismatch, function_type_mismatch, 0) \ 119 SANITIZER_CHECK(InvalidBuiltin, invalid_builtin, 0) \ 120 SANITIZER_CHECK(LoadInvalidValue, load_invalid_value, 0) \ 121 SANITIZER_CHECK(MissingReturn, missing_return, 0) \ 122 SANITIZER_CHECK(MulOverflow, mul_overflow, 0) \ 123 SANITIZER_CHECK(NegateOverflow, negate_overflow, 0) \ 124 SANITIZER_CHECK(NullabilityArg, nullability_arg, 0) \ 125 SANITIZER_CHECK(NullabilityReturn, nullability_return, 1) \ 126 SANITIZER_CHECK(NonnullArg, nonnull_arg, 0) \ 127 SANITIZER_CHECK(NonnullReturn, nonnull_return, 1) \ 128 SANITIZER_CHECK(OutOfBounds, out_of_bounds, 0) \ 129 SANITIZER_CHECK(PointerOverflow, pointer_overflow, 0) \ 130 SANITIZER_CHECK(ShiftOutOfBounds, shift_out_of_bounds, 0) \ 131 SANITIZER_CHECK(SubOverflow, sub_overflow, 0) \ 132 SANITIZER_CHECK(TypeMismatch, type_mismatch, 1) \ 133 SANITIZER_CHECK(VLABoundNotPositive, vla_bound_not_positive, 0) 134 135 enum SanitizerHandler { 136 #define SANITIZER_CHECK(Enum, Name, Version) Enum, 137 LIST_SANITIZER_CHECKS 138 #undef SANITIZER_CHECK 139 }; 140 141 /// CodeGenFunction - This class organizes the per-function state that is used 142 /// while generating LLVM code. 143 class CodeGenFunction : public CodeGenTypeCache { 144 CodeGenFunction(const CodeGenFunction &) = delete; 145 void operator=(const CodeGenFunction &) = delete; 146 147 friend class CGCXXABI; 148 public: 149 /// A jump destination is an abstract label, branching to which may 150 /// require a jump out through normal cleanups. 151 struct JumpDest { 152 JumpDest() : Block(nullptr), ScopeDepth(), Index(0) {} 153 JumpDest(llvm::BasicBlock *Block, 154 EHScopeStack::stable_iterator Depth, 155 unsigned Index) 156 : Block(Block), ScopeDepth(Depth), Index(Index) {} 157 158 bool isValid() const { return Block != nullptr; } 159 llvm::BasicBlock *getBlock() const { return Block; } 160 EHScopeStack::stable_iterator getScopeDepth() const { return ScopeDepth; } 161 unsigned getDestIndex() const { return Index; } 162 163 // This should be used cautiously. 164 void setScopeDepth(EHScopeStack::stable_iterator depth) { 165 ScopeDepth = depth; 166 } 167 168 private: 169 llvm::BasicBlock *Block; 170 EHScopeStack::stable_iterator ScopeDepth; 171 unsigned Index; 172 }; 173 174 CodeGenModule &CGM; // Per-module state. 175 const TargetInfo &Target; 176 177 typedef std::pair<llvm::Value *, llvm::Value *> ComplexPairTy; 178 LoopInfoStack LoopStack; 179 CGBuilderTy Builder; 180 181 // Stores variables for which we can't generate correct lifetime markers 182 // because of jumps. 183 VarBypassDetector Bypasses; 184 185 // CodeGen lambda for loops and support for ordered clause 186 typedef llvm::function_ref<void(CodeGenFunction &, const OMPLoopDirective &, 187 JumpDest)> 188 CodeGenLoopTy; 189 typedef llvm::function_ref<void(CodeGenFunction &, SourceLocation, 190 const unsigned, const bool)> 191 CodeGenOrderedTy; 192 193 // Codegen lambda for loop bounds in worksharing loop constructs 194 typedef llvm::function_ref<std::pair<LValue, LValue>( 195 CodeGenFunction &, const OMPExecutableDirective &S)> 196 CodeGenLoopBoundsTy; 197 198 // Codegen lambda for loop bounds in dispatch-based loop implementation 199 typedef llvm::function_ref<std::pair<llvm::Value *, llvm::Value *>( 200 CodeGenFunction &, const OMPExecutableDirective &S, Address LB, 201 Address UB)> 202 CodeGenDispatchBoundsTy; 203 204 /// CGBuilder insert helper. This function is called after an 205 /// instruction is created using Builder. 206 void InsertHelper(llvm::Instruction *I, const llvm::Twine &Name, 207 llvm::BasicBlock *BB, 208 llvm::BasicBlock::iterator InsertPt) const; 209 210 /// CurFuncDecl - Holds the Decl for the current outermost 211 /// non-closure context. 212 const Decl *CurFuncDecl; 213 /// CurCodeDecl - This is the inner-most code context, which includes blocks. 214 const Decl *CurCodeDecl; 215 const CGFunctionInfo *CurFnInfo; 216 QualType FnRetTy; 217 llvm::Function *CurFn; 218 219 // Holds coroutine data if the current function is a coroutine. We use a 220 // wrapper to manage its lifetime, so that we don't have to define CGCoroData 221 // in this header. 222 struct CGCoroInfo { 223 std::unique_ptr<CGCoroData> Data; 224 CGCoroInfo(); 225 ~CGCoroInfo(); 226 }; 227 CGCoroInfo CurCoro; 228 229 bool isCoroutine() const { 230 return CurCoro.Data != nullptr; 231 } 232 233 /// CurGD - The GlobalDecl for the current function being compiled. 234 GlobalDecl CurGD; 235 236 /// PrologueCleanupDepth - The cleanup depth enclosing all the 237 /// cleanups associated with the parameters. 238 EHScopeStack::stable_iterator PrologueCleanupDepth; 239 240 /// ReturnBlock - Unified return block. 241 JumpDest ReturnBlock; 242 243 /// ReturnValue - The temporary alloca to hold the return 244 /// value. This is invalid iff the function has no return value. 245 Address ReturnValue; 246 247 /// Return true if a label was seen in the current scope. 248 bool hasLabelBeenSeenInCurrentScope() const { 249 if (CurLexicalScope) 250 return CurLexicalScope->hasLabels(); 251 return !LabelMap.empty(); 252 } 253 254 /// AllocaInsertPoint - This is an instruction in the entry block before which 255 /// we prefer to insert allocas. 256 llvm::AssertingVH<llvm::Instruction> AllocaInsertPt; 257 258 /// API for captured statement code generation. 259 class CGCapturedStmtInfo { 260 public: 261 explicit CGCapturedStmtInfo(CapturedRegionKind K = CR_Default) 262 : Kind(K), ThisValue(nullptr), CXXThisFieldDecl(nullptr) {} 263 explicit CGCapturedStmtInfo(const CapturedStmt &S, 264 CapturedRegionKind K = CR_Default) 265 : Kind(K), ThisValue(nullptr), CXXThisFieldDecl(nullptr) { 266 267 RecordDecl::field_iterator Field = 268 S.getCapturedRecordDecl()->field_begin(); 269 for (CapturedStmt::const_capture_iterator I = S.capture_begin(), 270 E = S.capture_end(); 271 I != E; ++I, ++Field) { 272 if (I->capturesThis()) 273 CXXThisFieldDecl = *Field; 274 else if (I->capturesVariable()) 275 CaptureFields[I->getCapturedVar()->getCanonicalDecl()] = *Field; 276 else if (I->capturesVariableByCopy()) 277 CaptureFields[I->getCapturedVar()->getCanonicalDecl()] = *Field; 278 } 279 } 280 281 virtual ~CGCapturedStmtInfo(); 282 283 CapturedRegionKind getKind() const { return Kind; } 284 285 virtual void setContextValue(llvm::Value *V) { ThisValue = V; } 286 // Retrieve the value of the context parameter. 287 virtual llvm::Value *getContextValue() const { return ThisValue; } 288 289 /// Lookup the captured field decl for a variable. 290 virtual const FieldDecl *lookup(const VarDecl *VD) const { 291 return CaptureFields.lookup(VD->getCanonicalDecl()); 292 } 293 294 bool isCXXThisExprCaptured() const { return getThisFieldDecl() != nullptr; } 295 virtual FieldDecl *getThisFieldDecl() const { return CXXThisFieldDecl; } 296 297 static bool classof(const CGCapturedStmtInfo *) { 298 return true; 299 } 300 301 /// Emit the captured statement body. 302 virtual void EmitBody(CodeGenFunction &CGF, const Stmt *S) { 303 CGF.incrementProfileCounter(S); 304 CGF.EmitStmt(S); 305 } 306 307 /// Get the name of the capture helper. 308 virtual StringRef getHelperName() const { return "__captured_stmt"; } 309 310 private: 311 /// The kind of captured statement being generated. 312 CapturedRegionKind Kind; 313 314 /// Keep the map between VarDecl and FieldDecl. 315 llvm::SmallDenseMap<const VarDecl *, FieldDecl *> CaptureFields; 316 317 /// The base address of the captured record, passed in as the first 318 /// argument of the parallel region function. 319 llvm::Value *ThisValue; 320 321 /// Captured 'this' type. 322 FieldDecl *CXXThisFieldDecl; 323 }; 324 CGCapturedStmtInfo *CapturedStmtInfo; 325 326 /// RAII for correct setting/restoring of CapturedStmtInfo. 327 class CGCapturedStmtRAII { 328 private: 329 CodeGenFunction &CGF; 330 CGCapturedStmtInfo *PrevCapturedStmtInfo; 331 public: 332 CGCapturedStmtRAII(CodeGenFunction &CGF, 333 CGCapturedStmtInfo *NewCapturedStmtInfo) 334 : CGF(CGF), PrevCapturedStmtInfo(CGF.CapturedStmtInfo) { 335 CGF.CapturedStmtInfo = NewCapturedStmtInfo; 336 } 337 ~CGCapturedStmtRAII() { CGF.CapturedStmtInfo = PrevCapturedStmtInfo; } 338 }; 339 340 /// An abstract representation of regular/ObjC call/message targets. 341 class AbstractCallee { 342 /// The function declaration of the callee. 343 const Decl *CalleeDecl; 344 345 public: 346 AbstractCallee() : CalleeDecl(nullptr) {} 347 AbstractCallee(const FunctionDecl *FD) : CalleeDecl(FD) {} 348 AbstractCallee(const ObjCMethodDecl *OMD) : CalleeDecl(OMD) {} 349 bool hasFunctionDecl() const { 350 return dyn_cast_or_null<FunctionDecl>(CalleeDecl); 351 } 352 const Decl *getDecl() const { return CalleeDecl; } 353 unsigned getNumParams() const { 354 if (const auto *FD = dyn_cast<FunctionDecl>(CalleeDecl)) 355 return FD->getNumParams(); 356 return cast<ObjCMethodDecl>(CalleeDecl)->param_size(); 357 } 358 const ParmVarDecl *getParamDecl(unsigned I) const { 359 if (const auto *FD = dyn_cast<FunctionDecl>(CalleeDecl)) 360 return FD->getParamDecl(I); 361 return *(cast<ObjCMethodDecl>(CalleeDecl)->param_begin() + I); 362 } 363 }; 364 365 /// Sanitizers enabled for this function. 366 SanitizerSet SanOpts; 367 368 /// True if CodeGen currently emits code implementing sanitizer checks. 369 bool IsSanitizerScope; 370 371 /// RAII object to set/unset CodeGenFunction::IsSanitizerScope. 372 class SanitizerScope { 373 CodeGenFunction *CGF; 374 public: 375 SanitizerScope(CodeGenFunction *CGF); 376 ~SanitizerScope(); 377 }; 378 379 /// In C++, whether we are code generating a thunk. This controls whether we 380 /// should emit cleanups. 381 bool CurFuncIsThunk; 382 383 /// In ARC, whether we should autorelease the return value. 384 bool AutoreleaseResult; 385 386 /// Whether we processed a Microsoft-style asm block during CodeGen. These can 387 /// potentially set the return value. 388 bool SawAsmBlock; 389 390 const FunctionDecl *CurSEHParent = nullptr; 391 392 /// True if the current function is an outlined SEH helper. This can be a 393 /// finally block or filter expression. 394 bool IsOutlinedSEHHelper; 395 396 const CodeGen::CGBlockInfo *BlockInfo; 397 llvm::Value *BlockPointer; 398 399 llvm::DenseMap<const VarDecl *, FieldDecl *> LambdaCaptureFields; 400 FieldDecl *LambdaThisCaptureField; 401 402 /// A mapping from NRVO variables to the flags used to indicate 403 /// when the NRVO has been applied to this variable. 404 llvm::DenseMap<const VarDecl *, llvm::Value *> NRVOFlags; 405 406 EHScopeStack EHStack; 407 llvm::SmallVector<char, 256> LifetimeExtendedCleanupStack; 408 llvm::SmallVector<const JumpDest *, 2> SEHTryEpilogueStack; 409 410 llvm::Instruction *CurrentFuncletPad = nullptr; 411 412 class CallLifetimeEnd final : public EHScopeStack::Cleanup { 413 llvm::Value *Addr; 414 llvm::Value *Size; 415 416 public: 417 CallLifetimeEnd(Address addr, llvm::Value *size) 418 : Addr(addr.getPointer()), Size(size) {} 419 420 void Emit(CodeGenFunction &CGF, Flags flags) override { 421 CGF.EmitLifetimeEnd(Size, Addr); 422 } 423 }; 424 425 /// Header for data within LifetimeExtendedCleanupStack. 426 struct LifetimeExtendedCleanupHeader { 427 /// The size of the following cleanup object. 428 unsigned Size; 429 /// The kind of cleanup to push: a value from the CleanupKind enumeration. 430 CleanupKind Kind; 431 432 size_t getSize() const { return Size; } 433 CleanupKind getKind() const { return Kind; } 434 }; 435 436 /// i32s containing the indexes of the cleanup destinations. 437 Address NormalCleanupDest; 438 439 unsigned NextCleanupDestIndex; 440 441 /// FirstBlockInfo - The head of a singly-linked-list of block layouts. 442 CGBlockInfo *FirstBlockInfo; 443 444 /// EHResumeBlock - Unified block containing a call to llvm.eh.resume. 445 llvm::BasicBlock *EHResumeBlock; 446 447 /// The exception slot. All landing pads write the current exception pointer 448 /// into this alloca. 449 llvm::Value *ExceptionSlot; 450 451 /// The selector slot. Under the MandatoryCleanup model, all landing pads 452 /// write the current selector value into this alloca. 453 llvm::AllocaInst *EHSelectorSlot; 454 455 /// A stack of exception code slots. Entering an __except block pushes a slot 456 /// on the stack and leaving pops one. The __exception_code() intrinsic loads 457 /// a value from the top of the stack. 458 SmallVector<Address, 1> SEHCodeSlotStack; 459 460 /// Value returned by __exception_info intrinsic. 461 llvm::Value *SEHInfo = nullptr; 462 463 /// Emits a landing pad for the current EH stack. 464 llvm::BasicBlock *EmitLandingPad(); 465 466 llvm::BasicBlock *getInvokeDestImpl(); 467 468 template <class T> 469 typename DominatingValue<T>::saved_type saveValueInCond(T value) { 470 return DominatingValue<T>::save(*this, value); 471 } 472 473 public: 474 /// ObjCEHValueStack - Stack of Objective-C exception values, used for 475 /// rethrows. 476 SmallVector<llvm::Value*, 8> ObjCEHValueStack; 477 478 /// A class controlling the emission of a finally block. 479 class FinallyInfo { 480 /// Where the catchall's edge through the cleanup should go. 481 JumpDest RethrowDest; 482 483 /// A function to call to enter the catch. 484 llvm::Constant *BeginCatchFn; 485 486 /// An i1 variable indicating whether or not the @finally is 487 /// running for an exception. 488 llvm::AllocaInst *ForEHVar; 489 490 /// An i8* variable into which the exception pointer to rethrow 491 /// has been saved. 492 llvm::AllocaInst *SavedExnVar; 493 494 public: 495 void enter(CodeGenFunction &CGF, const Stmt *Finally, 496 llvm::Constant *beginCatchFn, llvm::Constant *endCatchFn, 497 llvm::Constant *rethrowFn); 498 void exit(CodeGenFunction &CGF); 499 }; 500 501 /// Returns true inside SEH __try blocks. 502 bool isSEHTryScope() const { return !SEHTryEpilogueStack.empty(); } 503 504 /// Returns true while emitting a cleanuppad. 505 bool isCleanupPadScope() const { 506 return CurrentFuncletPad && isa<llvm::CleanupPadInst>(CurrentFuncletPad); 507 } 508 509 /// pushFullExprCleanup - Push a cleanup to be run at the end of the 510 /// current full-expression. Safe against the possibility that 511 /// we're currently inside a conditionally-evaluated expression. 512 template <class T, class... As> 513 void pushFullExprCleanup(CleanupKind kind, As... A) { 514 // If we're not in a conditional branch, or if none of the 515 // arguments requires saving, then use the unconditional cleanup. 516 if (!isInConditionalBranch()) 517 return EHStack.pushCleanup<T>(kind, A...); 518 519 // Stash values in a tuple so we can guarantee the order of saves. 520 typedef std::tuple<typename DominatingValue<As>::saved_type...> SavedTuple; 521 SavedTuple Saved{saveValueInCond(A)...}; 522 523 typedef EHScopeStack::ConditionalCleanup<T, As...> CleanupType; 524 EHStack.pushCleanupTuple<CleanupType>(kind, Saved); 525 initFullExprCleanup(); 526 } 527 528 /// Queue a cleanup to be pushed after finishing the current 529 /// full-expression. 530 template <class T, class... As> 531 void pushCleanupAfterFullExpr(CleanupKind Kind, As... A) { 532 assert(!isInConditionalBranch() && "can't defer conditional cleanup"); 533 534 LifetimeExtendedCleanupHeader Header = { sizeof(T), Kind }; 535 536 size_t OldSize = LifetimeExtendedCleanupStack.size(); 537 LifetimeExtendedCleanupStack.resize( 538 LifetimeExtendedCleanupStack.size() + sizeof(Header) + Header.Size); 539 540 static_assert(sizeof(Header) % alignof(T) == 0, 541 "Cleanup will be allocated on misaligned address"); 542 char *Buffer = &LifetimeExtendedCleanupStack[OldSize]; 543 new (Buffer) LifetimeExtendedCleanupHeader(Header); 544 new (Buffer + sizeof(Header)) T(A...); 545 } 546 547 /// Set up the last cleaup that was pushed as a conditional 548 /// full-expression cleanup. 549 void initFullExprCleanup(); 550 551 /// PushDestructorCleanup - Push a cleanup to call the 552 /// complete-object destructor of an object of the given type at the 553 /// given address. Does nothing if T is not a C++ class type with a 554 /// non-trivial destructor. 555 void PushDestructorCleanup(QualType T, Address Addr); 556 557 /// PushDestructorCleanup - Push a cleanup to call the 558 /// complete-object variant of the given destructor on the object at 559 /// the given address. 560 void PushDestructorCleanup(const CXXDestructorDecl *Dtor, Address Addr); 561 562 /// PopCleanupBlock - Will pop the cleanup entry on the stack and 563 /// process all branch fixups. 564 void PopCleanupBlock(bool FallThroughIsBranchThrough = false); 565 566 /// DeactivateCleanupBlock - Deactivates the given cleanup block. 567 /// The block cannot be reactivated. Pops it if it's the top of the 568 /// stack. 569 /// 570 /// \param DominatingIP - An instruction which is known to 571 /// dominate the current IP (if set) and which lies along 572 /// all paths of execution between the current IP and the 573 /// the point at which the cleanup comes into scope. 574 void DeactivateCleanupBlock(EHScopeStack::stable_iterator Cleanup, 575 llvm::Instruction *DominatingIP); 576 577 /// ActivateCleanupBlock - Activates an initially-inactive cleanup. 578 /// Cannot be used to resurrect a deactivated cleanup. 579 /// 580 /// \param DominatingIP - An instruction which is known to 581 /// dominate the current IP (if set) and which lies along 582 /// all paths of execution between the current IP and the 583 /// the point at which the cleanup comes into scope. 584 void ActivateCleanupBlock(EHScopeStack::stable_iterator Cleanup, 585 llvm::Instruction *DominatingIP); 586 587 /// Enters a new scope for capturing cleanups, all of which 588 /// will be executed once the scope is exited. 589 class RunCleanupsScope { 590 EHScopeStack::stable_iterator CleanupStackDepth, OldCleanupScopeDepth; 591 size_t LifetimeExtendedCleanupStackSize; 592 bool OldDidCallStackSave; 593 protected: 594 bool PerformCleanup; 595 private: 596 597 RunCleanupsScope(const RunCleanupsScope &) = delete; 598 void operator=(const RunCleanupsScope &) = delete; 599 600 protected: 601 CodeGenFunction& CGF; 602 603 public: 604 /// Enter a new cleanup scope. 605 explicit RunCleanupsScope(CodeGenFunction &CGF) 606 : PerformCleanup(true), CGF(CGF) 607 { 608 CleanupStackDepth = CGF.EHStack.stable_begin(); 609 LifetimeExtendedCleanupStackSize = 610 CGF.LifetimeExtendedCleanupStack.size(); 611 OldDidCallStackSave = CGF.DidCallStackSave; 612 CGF.DidCallStackSave = false; 613 OldCleanupScopeDepth = CGF.CurrentCleanupScopeDepth; 614 CGF.CurrentCleanupScopeDepth = CleanupStackDepth; 615 } 616 617 /// Exit this cleanup scope, emitting any accumulated cleanups. 618 ~RunCleanupsScope() { 619 if (PerformCleanup) 620 ForceCleanup(); 621 } 622 623 /// Determine whether this scope requires any cleanups. 624 bool requiresCleanups() const { 625 return CGF.EHStack.stable_begin() != CleanupStackDepth; 626 } 627 628 /// Force the emission of cleanups now, instead of waiting 629 /// until this object is destroyed. 630 /// \param ValuesToReload - A list of values that need to be available at 631 /// the insertion point after cleanup emission. If cleanup emission created 632 /// a shared cleanup block, these value pointers will be rewritten. 633 /// Otherwise, they not will be modified. 634 void ForceCleanup(std::initializer_list<llvm::Value**> ValuesToReload = {}) { 635 assert(PerformCleanup && "Already forced cleanup"); 636 CGF.DidCallStackSave = OldDidCallStackSave; 637 CGF.PopCleanupBlocks(CleanupStackDepth, LifetimeExtendedCleanupStackSize, 638 ValuesToReload); 639 PerformCleanup = false; 640 CGF.CurrentCleanupScopeDepth = OldCleanupScopeDepth; 641 } 642 }; 643 644 // Cleanup stack depth of the RunCleanupsScope that was pushed most recently. 645 EHScopeStack::stable_iterator CurrentCleanupScopeDepth = 646 EHScopeStack::stable_end(); 647 648 class LexicalScope : public RunCleanupsScope { 649 SourceRange Range; 650 SmallVector<const LabelDecl*, 4> Labels; 651 LexicalScope *ParentScope; 652 653 LexicalScope(const LexicalScope &) = delete; 654 void operator=(const LexicalScope &) = delete; 655 656 public: 657 /// Enter a new cleanup scope. 658 explicit LexicalScope(CodeGenFunction &CGF, SourceRange Range) 659 : RunCleanupsScope(CGF), Range(Range), ParentScope(CGF.CurLexicalScope) { 660 CGF.CurLexicalScope = this; 661 if (CGDebugInfo *DI = CGF.getDebugInfo()) 662 DI->EmitLexicalBlockStart(CGF.Builder, Range.getBegin()); 663 } 664 665 void addLabel(const LabelDecl *label) { 666 assert(PerformCleanup && "adding label to dead scope?"); 667 Labels.push_back(label); 668 } 669 670 /// Exit this cleanup scope, emitting any accumulated 671 /// cleanups. 672 ~LexicalScope() { 673 if (CGDebugInfo *DI = CGF.getDebugInfo()) 674 DI->EmitLexicalBlockEnd(CGF.Builder, Range.getEnd()); 675 676 // If we should perform a cleanup, force them now. Note that 677 // this ends the cleanup scope before rescoping any labels. 678 if (PerformCleanup) { 679 ApplyDebugLocation DL(CGF, Range.getEnd()); 680 ForceCleanup(); 681 } 682 } 683 684 /// Force the emission of cleanups now, instead of waiting 685 /// until this object is destroyed. 686 void ForceCleanup() { 687 CGF.CurLexicalScope = ParentScope; 688 RunCleanupsScope::ForceCleanup(); 689 690 if (!Labels.empty()) 691 rescopeLabels(); 692 } 693 694 bool hasLabels() const { 695 return !Labels.empty(); 696 } 697 698 void rescopeLabels(); 699 }; 700 701 typedef llvm::DenseMap<const Decl *, Address> DeclMapTy; 702 703 /// The class used to assign some variables some temporarily addresses. 704 class OMPMapVars { 705 DeclMapTy SavedLocals; 706 DeclMapTy SavedTempAddresses; 707 OMPMapVars(const OMPMapVars &) = delete; 708 void operator=(const OMPMapVars &) = delete; 709 710 public: 711 explicit OMPMapVars() = default; 712 ~OMPMapVars() { 713 assert(SavedLocals.empty() && "Did not restored original addresses."); 714 }; 715 716 /// Sets the address of the variable \p LocalVD to be \p TempAddr in 717 /// function \p CGF. 718 /// \return true if at least one variable was set already, false otherwise. 719 bool setVarAddr(CodeGenFunction &CGF, const VarDecl *LocalVD, 720 Address TempAddr) { 721 LocalVD = LocalVD->getCanonicalDecl(); 722 // Only save it once. 723 if (SavedLocals.count(LocalVD)) return false; 724 725 // Copy the existing local entry to SavedLocals. 726 auto it = CGF.LocalDeclMap.find(LocalVD); 727 if (it != CGF.LocalDeclMap.end()) 728 SavedLocals.try_emplace(LocalVD, it->second); 729 else 730 SavedLocals.try_emplace(LocalVD, Address::invalid()); 731 732 // Generate the private entry. 733 QualType VarTy = LocalVD->getType(); 734 if (VarTy->isReferenceType()) { 735 Address Temp = CGF.CreateMemTemp(VarTy); 736 CGF.Builder.CreateStore(TempAddr.getPointer(), Temp); 737 TempAddr = Temp; 738 } 739 SavedTempAddresses.try_emplace(LocalVD, TempAddr); 740 741 return true; 742 } 743 744 /// Applies new addresses to the list of the variables. 745 /// \return true if at least one variable is using new address, false 746 /// otherwise. 747 bool apply(CodeGenFunction &CGF) { 748 copyInto(SavedTempAddresses, CGF.LocalDeclMap); 749 SavedTempAddresses.clear(); 750 return !SavedLocals.empty(); 751 } 752 753 /// Restores original addresses of the variables. 754 void restore(CodeGenFunction &CGF) { 755 if (!SavedLocals.empty()) { 756 copyInto(SavedLocals, CGF.LocalDeclMap); 757 SavedLocals.clear(); 758 } 759 } 760 761 private: 762 /// Copy all the entries in the source map over the corresponding 763 /// entries in the destination, which must exist. 764 static void copyInto(const DeclMapTy &Src, DeclMapTy &Dest) { 765 for (auto &Pair : Src) { 766 if (!Pair.second.isValid()) { 767 Dest.erase(Pair.first); 768 continue; 769 } 770 771 auto I = Dest.find(Pair.first); 772 if (I != Dest.end()) 773 I->second = Pair.second; 774 else 775 Dest.insert(Pair); 776 } 777 } 778 }; 779 780 /// The scope used to remap some variables as private in the OpenMP loop body 781 /// (or other captured region emitted without outlining), and to restore old 782 /// vars back on exit. 783 class OMPPrivateScope : public RunCleanupsScope { 784 OMPMapVars MappedVars; 785 OMPPrivateScope(const OMPPrivateScope &) = delete; 786 void operator=(const OMPPrivateScope &) = delete; 787 788 public: 789 /// Enter a new OpenMP private scope. 790 explicit OMPPrivateScope(CodeGenFunction &CGF) : RunCleanupsScope(CGF) {} 791 792 /// Registers \p LocalVD variable as a private and apply \p PrivateGen 793 /// function for it to generate corresponding private variable. \p 794 /// PrivateGen returns an address of the generated private variable. 795 /// \return true if the variable is registered as private, false if it has 796 /// been privatized already. 797 bool addPrivate(const VarDecl *LocalVD, 798 const llvm::function_ref<Address()> PrivateGen) { 799 assert(PerformCleanup && "adding private to dead scope"); 800 return MappedVars.setVarAddr(CGF, LocalVD, PrivateGen()); 801 } 802 803 /// Privatizes local variables previously registered as private. 804 /// Registration is separate from the actual privatization to allow 805 /// initializers use values of the original variables, not the private one. 806 /// This is important, for example, if the private variable is a class 807 /// variable initialized by a constructor that references other private 808 /// variables. But at initialization original variables must be used, not 809 /// private copies. 810 /// \return true if at least one variable was privatized, false otherwise. 811 bool Privatize() { return MappedVars.apply(CGF); } 812 813 void ForceCleanup() { 814 RunCleanupsScope::ForceCleanup(); 815 MappedVars.restore(CGF); 816 } 817 818 /// Exit scope - all the mapped variables are restored. 819 ~OMPPrivateScope() { 820 if (PerformCleanup) 821 ForceCleanup(); 822 } 823 824 /// Checks if the global variable is captured in current function. 825 bool isGlobalVarCaptured(const VarDecl *VD) const { 826 VD = VD->getCanonicalDecl(); 827 return !VD->isLocalVarDeclOrParm() && CGF.LocalDeclMap.count(VD) > 0; 828 } 829 }; 830 831 /// Takes the old cleanup stack size and emits the cleanup blocks 832 /// that have been added. 833 void 834 PopCleanupBlocks(EHScopeStack::stable_iterator OldCleanupStackSize, 835 std::initializer_list<llvm::Value **> ValuesToReload = {}); 836 837 /// Takes the old cleanup stack size and emits the cleanup blocks 838 /// that have been added, then adds all lifetime-extended cleanups from 839 /// the given position to the stack. 840 void 841 PopCleanupBlocks(EHScopeStack::stable_iterator OldCleanupStackSize, 842 size_t OldLifetimeExtendedStackSize, 843 std::initializer_list<llvm::Value **> ValuesToReload = {}); 844 845 void ResolveBranchFixups(llvm::BasicBlock *Target); 846 847 /// The given basic block lies in the current EH scope, but may be a 848 /// target of a potentially scope-crossing jump; get a stable handle 849 /// to which we can perform this jump later. 850 JumpDest getJumpDestInCurrentScope(llvm::BasicBlock *Target) { 851 return JumpDest(Target, 852 EHStack.getInnermostNormalCleanup(), 853 NextCleanupDestIndex++); 854 } 855 856 /// The given basic block lies in the current EH scope, but may be a 857 /// target of a potentially scope-crossing jump; get a stable handle 858 /// to which we can perform this jump later. 859 JumpDest getJumpDestInCurrentScope(StringRef Name = StringRef()) { 860 return getJumpDestInCurrentScope(createBasicBlock(Name)); 861 } 862 863 /// EmitBranchThroughCleanup - Emit a branch from the current insert 864 /// block through the normal cleanup handling code (if any) and then 865 /// on to \arg Dest. 866 void EmitBranchThroughCleanup(JumpDest Dest); 867 868 /// isObviouslyBranchWithoutCleanups - Return true if a branch to the 869 /// specified destination obviously has no cleanups to run. 'false' is always 870 /// a conservatively correct answer for this method. 871 bool isObviouslyBranchWithoutCleanups(JumpDest Dest) const; 872 873 /// popCatchScope - Pops the catch scope at the top of the EHScope 874 /// stack, emitting any required code (other than the catch handlers 875 /// themselves). 876 void popCatchScope(); 877 878 llvm::BasicBlock *getEHResumeBlock(bool isCleanup); 879 llvm::BasicBlock *getEHDispatchBlock(EHScopeStack::stable_iterator scope); 880 llvm::BasicBlock * 881 getFuncletEHDispatchBlock(EHScopeStack::stable_iterator scope); 882 883 /// An object to manage conditionally-evaluated expressions. 884 class ConditionalEvaluation { 885 llvm::BasicBlock *StartBB; 886 887 public: 888 ConditionalEvaluation(CodeGenFunction &CGF) 889 : StartBB(CGF.Builder.GetInsertBlock()) {} 890 891 void begin(CodeGenFunction &CGF) { 892 assert(CGF.OutermostConditional != this); 893 if (!CGF.OutermostConditional) 894 CGF.OutermostConditional = this; 895 } 896 897 void end(CodeGenFunction &CGF) { 898 assert(CGF.OutermostConditional != nullptr); 899 if (CGF.OutermostConditional == this) 900 CGF.OutermostConditional = nullptr; 901 } 902 903 /// Returns a block which will be executed prior to each 904 /// evaluation of the conditional code. 905 llvm::BasicBlock *getStartingBlock() const { 906 return StartBB; 907 } 908 }; 909 910 /// isInConditionalBranch - Return true if we're currently emitting 911 /// one branch or the other of a conditional expression. 912 bool isInConditionalBranch() const { return OutermostConditional != nullptr; } 913 914 void setBeforeOutermostConditional(llvm::Value *value, Address addr) { 915 assert(isInConditionalBranch()); 916 llvm::BasicBlock *block = OutermostConditional->getStartingBlock(); 917 auto store = new llvm::StoreInst(value, addr.getPointer(), &block->back()); 918 store->setAlignment(addr.getAlignment().getQuantity()); 919 } 920 921 /// An RAII object to record that we're evaluating a statement 922 /// expression. 923 class StmtExprEvaluation { 924 CodeGenFunction &CGF; 925 926 /// We have to save the outermost conditional: cleanups in a 927 /// statement expression aren't conditional just because the 928 /// StmtExpr is. 929 ConditionalEvaluation *SavedOutermostConditional; 930 931 public: 932 StmtExprEvaluation(CodeGenFunction &CGF) 933 : CGF(CGF), SavedOutermostConditional(CGF.OutermostConditional) { 934 CGF.OutermostConditional = nullptr; 935 } 936 937 ~StmtExprEvaluation() { 938 CGF.OutermostConditional = SavedOutermostConditional; 939 CGF.EnsureInsertPoint(); 940 } 941 }; 942 943 /// An object which temporarily prevents a value from being 944 /// destroyed by aggressive peephole optimizations that assume that 945 /// all uses of a value have been realized in the IR. 946 class PeepholeProtection { 947 llvm::Instruction *Inst; 948 friend class CodeGenFunction; 949 950 public: 951 PeepholeProtection() : Inst(nullptr) {} 952 }; 953 954 /// A non-RAII class containing all the information about a bound 955 /// opaque value. OpaqueValueMapping, below, is a RAII wrapper for 956 /// this which makes individual mappings very simple; using this 957 /// class directly is useful when you have a variable number of 958 /// opaque values or don't want the RAII functionality for some 959 /// reason. 960 class OpaqueValueMappingData { 961 const OpaqueValueExpr *OpaqueValue; 962 bool BoundLValue; 963 CodeGenFunction::PeepholeProtection Protection; 964 965 OpaqueValueMappingData(const OpaqueValueExpr *ov, 966 bool boundLValue) 967 : OpaqueValue(ov), BoundLValue(boundLValue) {} 968 public: 969 OpaqueValueMappingData() : OpaqueValue(nullptr) {} 970 971 static bool shouldBindAsLValue(const Expr *expr) { 972 // gl-values should be bound as l-values for obvious reasons. 973 // Records should be bound as l-values because IR generation 974 // always keeps them in memory. Expressions of function type 975 // act exactly like l-values but are formally required to be 976 // r-values in C. 977 return expr->isGLValue() || 978 expr->getType()->isFunctionType() || 979 hasAggregateEvaluationKind(expr->getType()); 980 } 981 982 static OpaqueValueMappingData bind(CodeGenFunction &CGF, 983 const OpaqueValueExpr *ov, 984 const Expr *e) { 985 if (shouldBindAsLValue(ov)) 986 return bind(CGF, ov, CGF.EmitLValue(e)); 987 return bind(CGF, ov, CGF.EmitAnyExpr(e)); 988 } 989 990 static OpaqueValueMappingData bind(CodeGenFunction &CGF, 991 const OpaqueValueExpr *ov, 992 const LValue &lv) { 993 assert(shouldBindAsLValue(ov)); 994 CGF.OpaqueLValues.insert(std::make_pair(ov, lv)); 995 return OpaqueValueMappingData(ov, true); 996 } 997 998 static OpaqueValueMappingData bind(CodeGenFunction &CGF, 999 const OpaqueValueExpr *ov, 1000 const RValue &rv) { 1001 assert(!shouldBindAsLValue(ov)); 1002 CGF.OpaqueRValues.insert(std::make_pair(ov, rv)); 1003 1004 OpaqueValueMappingData data(ov, false); 1005 1006 // Work around an extremely aggressive peephole optimization in 1007 // EmitScalarConversion which assumes that all other uses of a 1008 // value are extant. 1009 data.Protection = CGF.protectFromPeepholes(rv); 1010 1011 return data; 1012 } 1013 1014 bool isValid() const { return OpaqueValue != nullptr; } 1015 void clear() { OpaqueValue = nullptr; } 1016 1017 void unbind(CodeGenFunction &CGF) { 1018 assert(OpaqueValue && "no data to unbind!"); 1019 1020 if (BoundLValue) { 1021 CGF.OpaqueLValues.erase(OpaqueValue); 1022 } else { 1023 CGF.OpaqueRValues.erase(OpaqueValue); 1024 CGF.unprotectFromPeepholes(Protection); 1025 } 1026 } 1027 }; 1028 1029 /// An RAII object to set (and then clear) a mapping for an OpaqueValueExpr. 1030 class OpaqueValueMapping { 1031 CodeGenFunction &CGF; 1032 OpaqueValueMappingData Data; 1033 1034 public: 1035 static bool shouldBindAsLValue(const Expr *expr) { 1036 return OpaqueValueMappingData::shouldBindAsLValue(expr); 1037 } 1038 1039 /// Build the opaque value mapping for the given conditional 1040 /// operator if it's the GNU ?: extension. This is a common 1041 /// enough pattern that the convenience operator is really 1042 /// helpful. 1043 /// 1044 OpaqueValueMapping(CodeGenFunction &CGF, 1045 const AbstractConditionalOperator *op) : CGF(CGF) { 1046 if (isa<ConditionalOperator>(op)) 1047 // Leave Data empty. 1048 return; 1049 1050 const BinaryConditionalOperator *e = cast<BinaryConditionalOperator>(op); 1051 Data = OpaqueValueMappingData::bind(CGF, e->getOpaqueValue(), 1052 e->getCommon()); 1053 } 1054 1055 /// Build the opaque value mapping for an OpaqueValueExpr whose source 1056 /// expression is set to the expression the OVE represents. 1057 OpaqueValueMapping(CodeGenFunction &CGF, const OpaqueValueExpr *OV) 1058 : CGF(CGF) { 1059 if (OV) { 1060 assert(OV->getSourceExpr() && "wrong form of OpaqueValueMapping used " 1061 "for OVE with no source expression"); 1062 Data = OpaqueValueMappingData::bind(CGF, OV, OV->getSourceExpr()); 1063 } 1064 } 1065 1066 OpaqueValueMapping(CodeGenFunction &CGF, 1067 const OpaqueValueExpr *opaqueValue, 1068 LValue lvalue) 1069 : CGF(CGF), Data(OpaqueValueMappingData::bind(CGF, opaqueValue, lvalue)) { 1070 } 1071 1072 OpaqueValueMapping(CodeGenFunction &CGF, 1073 const OpaqueValueExpr *opaqueValue, 1074 RValue rvalue) 1075 : CGF(CGF), Data(OpaqueValueMappingData::bind(CGF, opaqueValue, rvalue)) { 1076 } 1077 1078 void pop() { 1079 Data.unbind(CGF); 1080 Data.clear(); 1081 } 1082 1083 ~OpaqueValueMapping() { 1084 if (Data.isValid()) Data.unbind(CGF); 1085 } 1086 }; 1087 1088 private: 1089 CGDebugInfo *DebugInfo; 1090 bool DisableDebugInfo; 1091 1092 /// DidCallStackSave - Whether llvm.stacksave has been called. Used to avoid 1093 /// calling llvm.stacksave for multiple VLAs in the same scope. 1094 bool DidCallStackSave; 1095 1096 /// IndirectBranch - The first time an indirect goto is seen we create a block 1097 /// with an indirect branch. Every time we see the address of a label taken, 1098 /// we add the label to the indirect goto. Every subsequent indirect goto is 1099 /// codegen'd as a jump to the IndirectBranch's basic block. 1100 llvm::IndirectBrInst *IndirectBranch; 1101 1102 /// LocalDeclMap - This keeps track of the LLVM allocas or globals for local C 1103 /// decls. 1104 DeclMapTy LocalDeclMap; 1105 1106 // Keep track of the cleanups for callee-destructed parameters pushed to the 1107 // cleanup stack so that they can be deactivated later. 1108 llvm::DenseMap<const ParmVarDecl *, EHScopeStack::stable_iterator> 1109 CalleeDestructedParamCleanups; 1110 1111 /// SizeArguments - If a ParmVarDecl had the pass_object_size attribute, this 1112 /// will contain a mapping from said ParmVarDecl to its implicit "object_size" 1113 /// parameter. 1114 llvm::SmallDenseMap<const ParmVarDecl *, const ImplicitParamDecl *, 2> 1115 SizeArguments; 1116 1117 /// Track escaped local variables with auto storage. Used during SEH 1118 /// outlining to produce a call to llvm.localescape. 1119 llvm::DenseMap<llvm::AllocaInst *, int> EscapedLocals; 1120 1121 /// LabelMap - This keeps track of the LLVM basic block for each C label. 1122 llvm::DenseMap<const LabelDecl*, JumpDest> LabelMap; 1123 1124 // BreakContinueStack - This keeps track of where break and continue 1125 // statements should jump to. 1126 struct BreakContinue { 1127 BreakContinue(JumpDest Break, JumpDest Continue) 1128 : BreakBlock(Break), ContinueBlock(Continue) {} 1129 1130 JumpDest BreakBlock; 1131 JumpDest ContinueBlock; 1132 }; 1133 SmallVector<BreakContinue, 8> BreakContinueStack; 1134 1135 /// Handles cancellation exit points in OpenMP-related constructs. 1136 class OpenMPCancelExitStack { 1137 /// Tracks cancellation exit point and join point for cancel-related exit 1138 /// and normal exit. 1139 struct CancelExit { 1140 CancelExit() = default; 1141 CancelExit(OpenMPDirectiveKind Kind, JumpDest ExitBlock, 1142 JumpDest ContBlock) 1143 : Kind(Kind), ExitBlock(ExitBlock), ContBlock(ContBlock) {} 1144 OpenMPDirectiveKind Kind = OMPD_unknown; 1145 /// true if the exit block has been emitted already by the special 1146 /// emitExit() call, false if the default codegen is used. 1147 bool HasBeenEmitted = false; 1148 JumpDest ExitBlock; 1149 JumpDest ContBlock; 1150 }; 1151 1152 SmallVector<CancelExit, 8> Stack; 1153 1154 public: 1155 OpenMPCancelExitStack() : Stack(1) {} 1156 ~OpenMPCancelExitStack() = default; 1157 /// Fetches the exit block for the current OpenMP construct. 1158 JumpDest getExitBlock() const { return Stack.back().ExitBlock; } 1159 /// Emits exit block with special codegen procedure specific for the related 1160 /// OpenMP construct + emits code for normal construct cleanup. 1161 void emitExit(CodeGenFunction &CGF, OpenMPDirectiveKind Kind, 1162 const llvm::function_ref<void(CodeGenFunction &)> CodeGen) { 1163 if (Stack.back().Kind == Kind && getExitBlock().isValid()) { 1164 assert(CGF.getOMPCancelDestination(Kind).isValid()); 1165 assert(CGF.HaveInsertPoint()); 1166 assert(!Stack.back().HasBeenEmitted); 1167 auto IP = CGF.Builder.saveAndClearIP(); 1168 CGF.EmitBlock(Stack.back().ExitBlock.getBlock()); 1169 CodeGen(CGF); 1170 CGF.EmitBranch(Stack.back().ContBlock.getBlock()); 1171 CGF.Builder.restoreIP(IP); 1172 Stack.back().HasBeenEmitted = true; 1173 } 1174 CodeGen(CGF); 1175 } 1176 /// Enter the cancel supporting \a Kind construct. 1177 /// \param Kind OpenMP directive that supports cancel constructs. 1178 /// \param HasCancel true, if the construct has inner cancel directive, 1179 /// false otherwise. 1180 void enter(CodeGenFunction &CGF, OpenMPDirectiveKind Kind, bool HasCancel) { 1181 Stack.push_back({Kind, 1182 HasCancel ? CGF.getJumpDestInCurrentScope("cancel.exit") 1183 : JumpDest(), 1184 HasCancel ? CGF.getJumpDestInCurrentScope("cancel.cont") 1185 : JumpDest()}); 1186 } 1187 /// Emits default exit point for the cancel construct (if the special one 1188 /// has not be used) + join point for cancel/normal exits. 1189 void exit(CodeGenFunction &CGF) { 1190 if (getExitBlock().isValid()) { 1191 assert(CGF.getOMPCancelDestination(Stack.back().Kind).isValid()); 1192 bool HaveIP = CGF.HaveInsertPoint(); 1193 if (!Stack.back().HasBeenEmitted) { 1194 if (HaveIP) 1195 CGF.EmitBranchThroughCleanup(Stack.back().ContBlock); 1196 CGF.EmitBlock(Stack.back().ExitBlock.getBlock()); 1197 CGF.EmitBranchThroughCleanup(Stack.back().ContBlock); 1198 } 1199 CGF.EmitBlock(Stack.back().ContBlock.getBlock()); 1200 if (!HaveIP) { 1201 CGF.Builder.CreateUnreachable(); 1202 CGF.Builder.ClearInsertionPoint(); 1203 } 1204 } 1205 Stack.pop_back(); 1206 } 1207 }; 1208 OpenMPCancelExitStack OMPCancelStack; 1209 1210 CodeGenPGO PGO; 1211 1212 /// Calculate branch weights appropriate for PGO data 1213 llvm::MDNode *createProfileWeights(uint64_t TrueCount, uint64_t FalseCount); 1214 llvm::MDNode *createProfileWeights(ArrayRef<uint64_t> Weights); 1215 llvm::MDNode *createProfileWeightsForLoop(const Stmt *Cond, 1216 uint64_t LoopCount); 1217 1218 public: 1219 /// Increment the profiler's counter for the given statement by \p StepV. 1220 /// If \p StepV is null, the default increment is 1. 1221 void incrementProfileCounter(const Stmt *S, llvm::Value *StepV = nullptr) { 1222 if (CGM.getCodeGenOpts().hasProfileClangInstr()) 1223 PGO.emitCounterIncrement(Builder, S, StepV); 1224 PGO.setCurrentStmt(S); 1225 } 1226 1227 /// Get the profiler's count for the given statement. 1228 uint64_t getProfileCount(const Stmt *S) { 1229 Optional<uint64_t> Count = PGO.getStmtCount(S); 1230 if (!Count.hasValue()) 1231 return 0; 1232 return *Count; 1233 } 1234 1235 /// Set the profiler's current count. 1236 void setCurrentProfileCount(uint64_t Count) { 1237 PGO.setCurrentRegionCount(Count); 1238 } 1239 1240 /// Get the profiler's current count. This is generally the count for the most 1241 /// recently incremented counter. 1242 uint64_t getCurrentProfileCount() { 1243 return PGO.getCurrentRegionCount(); 1244 } 1245 1246 private: 1247 1248 /// SwitchInsn - This is nearest current switch instruction. It is null if 1249 /// current context is not in a switch. 1250 llvm::SwitchInst *SwitchInsn; 1251 /// The branch weights of SwitchInsn when doing instrumentation based PGO. 1252 SmallVector<uint64_t, 16> *SwitchWeights; 1253 1254 /// CaseRangeBlock - This block holds if condition check for last case 1255 /// statement range in current switch instruction. 1256 llvm::BasicBlock *CaseRangeBlock; 1257 1258 /// OpaqueLValues - Keeps track of the current set of opaque value 1259 /// expressions. 1260 llvm::DenseMap<const OpaqueValueExpr *, LValue> OpaqueLValues; 1261 llvm::DenseMap<const OpaqueValueExpr *, RValue> OpaqueRValues; 1262 1263 // VLASizeMap - This keeps track of the associated size for each VLA type. 1264 // We track this by the size expression rather than the type itself because 1265 // in certain situations, like a const qualifier applied to an VLA typedef, 1266 // multiple VLA types can share the same size expression. 1267 // FIXME: Maybe this could be a stack of maps that is pushed/popped as we 1268 // enter/leave scopes. 1269 llvm::DenseMap<const Expr*, llvm::Value*> VLASizeMap; 1270 1271 /// A block containing a single 'unreachable' instruction. Created 1272 /// lazily by getUnreachableBlock(). 1273 llvm::BasicBlock *UnreachableBlock; 1274 1275 /// Counts of the number return expressions in the function. 1276 unsigned NumReturnExprs; 1277 1278 /// Count the number of simple (constant) return expressions in the function. 1279 unsigned NumSimpleReturnExprs; 1280 1281 /// The last regular (non-return) debug location (breakpoint) in the function. 1282 SourceLocation LastStopPoint; 1283 1284 public: 1285 /// A scope within which we are constructing the fields of an object which 1286 /// might use a CXXDefaultInitExpr. This stashes away a 'this' value to use 1287 /// if we need to evaluate a CXXDefaultInitExpr within the evaluation. 1288 class FieldConstructionScope { 1289 public: 1290 FieldConstructionScope(CodeGenFunction &CGF, Address This) 1291 : CGF(CGF), OldCXXDefaultInitExprThis(CGF.CXXDefaultInitExprThis) { 1292 CGF.CXXDefaultInitExprThis = This; 1293 } 1294 ~FieldConstructionScope() { 1295 CGF.CXXDefaultInitExprThis = OldCXXDefaultInitExprThis; 1296 } 1297 1298 private: 1299 CodeGenFunction &CGF; 1300 Address OldCXXDefaultInitExprThis; 1301 }; 1302 1303 /// The scope of a CXXDefaultInitExpr. Within this scope, the value of 'this' 1304 /// is overridden to be the object under construction. 1305 class CXXDefaultInitExprScope { 1306 public: 1307 CXXDefaultInitExprScope(CodeGenFunction &CGF) 1308 : CGF(CGF), OldCXXThisValue(CGF.CXXThisValue), 1309 OldCXXThisAlignment(CGF.CXXThisAlignment) { 1310 CGF.CXXThisValue = CGF.CXXDefaultInitExprThis.getPointer(); 1311 CGF.CXXThisAlignment = CGF.CXXDefaultInitExprThis.getAlignment(); 1312 } 1313 ~CXXDefaultInitExprScope() { 1314 CGF.CXXThisValue = OldCXXThisValue; 1315 CGF.CXXThisAlignment = OldCXXThisAlignment; 1316 } 1317 1318 public: 1319 CodeGenFunction &CGF; 1320 llvm::Value *OldCXXThisValue; 1321 CharUnits OldCXXThisAlignment; 1322 }; 1323 1324 /// The scope of an ArrayInitLoopExpr. Within this scope, the value of the 1325 /// current loop index is overridden. 1326 class ArrayInitLoopExprScope { 1327 public: 1328 ArrayInitLoopExprScope(CodeGenFunction &CGF, llvm::Value *Index) 1329 : CGF(CGF), OldArrayInitIndex(CGF.ArrayInitIndex) { 1330 CGF.ArrayInitIndex = Index; 1331 } 1332 ~ArrayInitLoopExprScope() { 1333 CGF.ArrayInitIndex = OldArrayInitIndex; 1334 } 1335 1336 private: 1337 CodeGenFunction &CGF; 1338 llvm::Value *OldArrayInitIndex; 1339 }; 1340 1341 class InlinedInheritingConstructorScope { 1342 public: 1343 InlinedInheritingConstructorScope(CodeGenFunction &CGF, GlobalDecl GD) 1344 : CGF(CGF), OldCurGD(CGF.CurGD), OldCurFuncDecl(CGF.CurFuncDecl), 1345 OldCurCodeDecl(CGF.CurCodeDecl), 1346 OldCXXABIThisDecl(CGF.CXXABIThisDecl), 1347 OldCXXABIThisValue(CGF.CXXABIThisValue), 1348 OldCXXThisValue(CGF.CXXThisValue), 1349 OldCXXABIThisAlignment(CGF.CXXABIThisAlignment), 1350 OldCXXThisAlignment(CGF.CXXThisAlignment), 1351 OldReturnValue(CGF.ReturnValue), OldFnRetTy(CGF.FnRetTy), 1352 OldCXXInheritedCtorInitExprArgs( 1353 std::move(CGF.CXXInheritedCtorInitExprArgs)) { 1354 CGF.CurGD = GD; 1355 CGF.CurFuncDecl = CGF.CurCodeDecl = 1356 cast<CXXConstructorDecl>(GD.getDecl()); 1357 CGF.CXXABIThisDecl = nullptr; 1358 CGF.CXXABIThisValue = nullptr; 1359 CGF.CXXThisValue = nullptr; 1360 CGF.CXXABIThisAlignment = CharUnits(); 1361 CGF.CXXThisAlignment = CharUnits(); 1362 CGF.ReturnValue = Address::invalid(); 1363 CGF.FnRetTy = QualType(); 1364 CGF.CXXInheritedCtorInitExprArgs.clear(); 1365 } 1366 ~InlinedInheritingConstructorScope() { 1367 CGF.CurGD = OldCurGD; 1368 CGF.CurFuncDecl = OldCurFuncDecl; 1369 CGF.CurCodeDecl = OldCurCodeDecl; 1370 CGF.CXXABIThisDecl = OldCXXABIThisDecl; 1371 CGF.CXXABIThisValue = OldCXXABIThisValue; 1372 CGF.CXXThisValue = OldCXXThisValue; 1373 CGF.CXXABIThisAlignment = OldCXXABIThisAlignment; 1374 CGF.CXXThisAlignment = OldCXXThisAlignment; 1375 CGF.ReturnValue = OldReturnValue; 1376 CGF.FnRetTy = OldFnRetTy; 1377 CGF.CXXInheritedCtorInitExprArgs = 1378 std::move(OldCXXInheritedCtorInitExprArgs); 1379 } 1380 1381 private: 1382 CodeGenFunction &CGF; 1383 GlobalDecl OldCurGD; 1384 const Decl *OldCurFuncDecl; 1385 const Decl *OldCurCodeDecl; 1386 ImplicitParamDecl *OldCXXABIThisDecl; 1387 llvm::Value *OldCXXABIThisValue; 1388 llvm::Value *OldCXXThisValue; 1389 CharUnits OldCXXABIThisAlignment; 1390 CharUnits OldCXXThisAlignment; 1391 Address OldReturnValue; 1392 QualType OldFnRetTy; 1393 CallArgList OldCXXInheritedCtorInitExprArgs; 1394 }; 1395 1396 private: 1397 /// CXXThisDecl - When generating code for a C++ member function, 1398 /// this will hold the implicit 'this' declaration. 1399 ImplicitParamDecl *CXXABIThisDecl; 1400 llvm::Value *CXXABIThisValue; 1401 llvm::Value *CXXThisValue; 1402 CharUnits CXXABIThisAlignment; 1403 CharUnits CXXThisAlignment; 1404 1405 /// The value of 'this' to use when evaluating CXXDefaultInitExprs within 1406 /// this expression. 1407 Address CXXDefaultInitExprThis = Address::invalid(); 1408 1409 /// The current array initialization index when evaluating an 1410 /// ArrayInitIndexExpr within an ArrayInitLoopExpr. 1411 llvm::Value *ArrayInitIndex = nullptr; 1412 1413 /// The values of function arguments to use when evaluating 1414 /// CXXInheritedCtorInitExprs within this context. 1415 CallArgList CXXInheritedCtorInitExprArgs; 1416 1417 /// CXXStructorImplicitParamDecl - When generating code for a constructor or 1418 /// destructor, this will hold the implicit argument (e.g. VTT). 1419 ImplicitParamDecl *CXXStructorImplicitParamDecl; 1420 llvm::Value *CXXStructorImplicitParamValue; 1421 1422 /// OutermostConditional - Points to the outermost active 1423 /// conditional control. This is used so that we know if a 1424 /// temporary should be destroyed conditionally. 1425 ConditionalEvaluation *OutermostConditional; 1426 1427 /// The current lexical scope. 1428 LexicalScope *CurLexicalScope; 1429 1430 /// The current source location that should be used for exception 1431 /// handling code. 1432 SourceLocation CurEHLocation; 1433 1434 /// BlockByrefInfos - For each __block variable, contains 1435 /// information about the layout of the variable. 1436 llvm::DenseMap<const ValueDecl *, BlockByrefInfo> BlockByrefInfos; 1437 1438 /// Used by -fsanitize=nullability-return to determine whether the return 1439 /// value can be checked. 1440 llvm::Value *RetValNullabilityPrecondition = nullptr; 1441 1442 /// Check if -fsanitize=nullability-return instrumentation is required for 1443 /// this function. 1444 bool requiresReturnValueNullabilityCheck() const { 1445 return RetValNullabilityPrecondition; 1446 } 1447 1448 /// Used to store precise source locations for return statements by the 1449 /// runtime return value checks. 1450 Address ReturnLocation = Address::invalid(); 1451 1452 /// Check if the return value of this function requires sanitization. 1453 bool requiresReturnValueCheck() const { 1454 return requiresReturnValueNullabilityCheck() || 1455 (SanOpts.has(SanitizerKind::ReturnsNonnullAttribute) && 1456 CurCodeDecl && CurCodeDecl->getAttr<ReturnsNonNullAttr>()); 1457 } 1458 1459 llvm::BasicBlock *TerminateLandingPad; 1460 llvm::BasicBlock *TerminateHandler; 1461 llvm::BasicBlock *TrapBB; 1462 1463 /// Terminate funclets keyed by parent funclet pad. 1464 llvm::MapVector<llvm::Value *, llvm::BasicBlock *> TerminateFunclets; 1465 1466 /// True if we need emit the life-time markers. 1467 const bool ShouldEmitLifetimeMarkers; 1468 1469 /// Add OpenCL kernel arg metadata and the kernel attribute metadata to 1470 /// the function metadata. 1471 void EmitOpenCLKernelMetadata(const FunctionDecl *FD, 1472 llvm::Function *Fn); 1473 1474 public: 1475 CodeGenFunction(CodeGenModule &cgm, bool suppressNewContext=false); 1476 ~CodeGenFunction(); 1477 1478 CodeGenTypes &getTypes() const { return CGM.getTypes(); } 1479 ASTContext &getContext() const { return CGM.getContext(); } 1480 CGDebugInfo *getDebugInfo() { 1481 if (DisableDebugInfo) 1482 return nullptr; 1483 return DebugInfo; 1484 } 1485 void disableDebugInfo() { DisableDebugInfo = true; } 1486 void enableDebugInfo() { DisableDebugInfo = false; } 1487 1488 bool shouldUseFusedARCCalls() { 1489 return CGM.getCodeGenOpts().OptimizationLevel == 0; 1490 } 1491 1492 const LangOptions &getLangOpts() const { return CGM.getLangOpts(); } 1493 1494 /// Returns a pointer to the function's exception object and selector slot, 1495 /// which is assigned in every landing pad. 1496 Address getExceptionSlot(); 1497 Address getEHSelectorSlot(); 1498 1499 /// Returns the contents of the function's exception object and selector 1500 /// slots. 1501 llvm::Value *getExceptionFromSlot(); 1502 llvm::Value *getSelectorFromSlot(); 1503 1504 Address getNormalCleanupDestSlot(); 1505 1506 llvm::BasicBlock *getUnreachableBlock() { 1507 if (!UnreachableBlock) { 1508 UnreachableBlock = createBasicBlock("unreachable"); 1509 new llvm::UnreachableInst(getLLVMContext(), UnreachableBlock); 1510 } 1511 return UnreachableBlock; 1512 } 1513 1514 llvm::BasicBlock *getInvokeDest() { 1515 if (!EHStack.requiresLandingPad()) return nullptr; 1516 return getInvokeDestImpl(); 1517 } 1518 1519 bool currentFunctionUsesSEHTry() const { return CurSEHParent != nullptr; } 1520 1521 const TargetInfo &getTarget() const { return Target; } 1522 llvm::LLVMContext &getLLVMContext() { return CGM.getLLVMContext(); } 1523 const TargetCodeGenInfo &getTargetHooks() const { 1524 return CGM.getTargetCodeGenInfo(); 1525 } 1526 1527 //===--------------------------------------------------------------------===// 1528 // Cleanups 1529 //===--------------------------------------------------------------------===// 1530 1531 typedef void Destroyer(CodeGenFunction &CGF, Address addr, QualType ty); 1532 1533 void pushIrregularPartialArrayCleanup(llvm::Value *arrayBegin, 1534 Address arrayEndPointer, 1535 QualType elementType, 1536 CharUnits elementAlignment, 1537 Destroyer *destroyer); 1538 void pushRegularPartialArrayCleanup(llvm::Value *arrayBegin, 1539 llvm::Value *arrayEnd, 1540 QualType elementType, 1541 CharUnits elementAlignment, 1542 Destroyer *destroyer); 1543 1544 void pushDestroy(QualType::DestructionKind dtorKind, 1545 Address addr, QualType type); 1546 void pushEHDestroy(QualType::DestructionKind dtorKind, 1547 Address addr, QualType type); 1548 void pushDestroy(CleanupKind kind, Address addr, QualType type, 1549 Destroyer *destroyer, bool useEHCleanupForArray); 1550 void pushLifetimeExtendedDestroy(CleanupKind kind, Address addr, 1551 QualType type, Destroyer *destroyer, 1552 bool useEHCleanupForArray); 1553 void pushCallObjectDeleteCleanup(const FunctionDecl *OperatorDelete, 1554 llvm::Value *CompletePtr, 1555 QualType ElementType); 1556 void pushStackRestore(CleanupKind kind, Address SPMem); 1557 void emitDestroy(Address addr, QualType type, Destroyer *destroyer, 1558 bool useEHCleanupForArray); 1559 llvm::Function *generateDestroyHelper(Address addr, QualType type, 1560 Destroyer *destroyer, 1561 bool useEHCleanupForArray, 1562 const VarDecl *VD); 1563 void emitArrayDestroy(llvm::Value *begin, llvm::Value *end, 1564 QualType elementType, CharUnits elementAlign, 1565 Destroyer *destroyer, 1566 bool checkZeroLength, bool useEHCleanup); 1567 1568 Destroyer *getDestroyer(QualType::DestructionKind destructionKind); 1569 1570 /// Determines whether an EH cleanup is required to destroy a type 1571 /// with the given destruction kind. 1572 bool needsEHCleanup(QualType::DestructionKind kind) { 1573 switch (kind) { 1574 case QualType::DK_none: 1575 return false; 1576 case QualType::DK_cxx_destructor: 1577 case QualType::DK_objc_weak_lifetime: 1578 case QualType::DK_nontrivial_c_struct: 1579 return getLangOpts().Exceptions; 1580 case QualType::DK_objc_strong_lifetime: 1581 return getLangOpts().Exceptions && 1582 CGM.getCodeGenOpts().ObjCAutoRefCountExceptions; 1583 } 1584 llvm_unreachable("bad destruction kind"); 1585 } 1586 1587 CleanupKind getCleanupKind(QualType::DestructionKind kind) { 1588 return (needsEHCleanup(kind) ? NormalAndEHCleanup : NormalCleanup); 1589 } 1590 1591 //===--------------------------------------------------------------------===// 1592 // Objective-C 1593 //===--------------------------------------------------------------------===// 1594 1595 void GenerateObjCMethod(const ObjCMethodDecl *OMD); 1596 1597 void StartObjCMethod(const ObjCMethodDecl *MD, const ObjCContainerDecl *CD); 1598 1599 /// GenerateObjCGetter - Synthesize an Objective-C property getter function. 1600 void GenerateObjCGetter(ObjCImplementationDecl *IMP, 1601 const ObjCPropertyImplDecl *PID); 1602 void generateObjCGetterBody(const ObjCImplementationDecl *classImpl, 1603 const ObjCPropertyImplDecl *propImpl, 1604 const ObjCMethodDecl *GetterMothodDecl, 1605 llvm::Constant *AtomicHelperFn); 1606 1607 void GenerateObjCCtorDtorMethod(ObjCImplementationDecl *IMP, 1608 ObjCMethodDecl *MD, bool ctor); 1609 1610 /// GenerateObjCSetter - Synthesize an Objective-C property setter function 1611 /// for the given property. 1612 void GenerateObjCSetter(ObjCImplementationDecl *IMP, 1613 const ObjCPropertyImplDecl *PID); 1614 void generateObjCSetterBody(const ObjCImplementationDecl *classImpl, 1615 const ObjCPropertyImplDecl *propImpl, 1616 llvm::Constant *AtomicHelperFn); 1617 1618 //===--------------------------------------------------------------------===// 1619 // Block Bits 1620 //===--------------------------------------------------------------------===// 1621 1622 /// Emit block literal. 1623 /// \return an LLVM value which is a pointer to a struct which contains 1624 /// information about the block, including the block invoke function, the 1625 /// captured variables, etc. 1626 llvm::Value *EmitBlockLiteral(const BlockExpr *); 1627 static void destroyBlockInfos(CGBlockInfo *info); 1628 1629 llvm::Function *GenerateBlockFunction(GlobalDecl GD, 1630 const CGBlockInfo &Info, 1631 const DeclMapTy &ldm, 1632 bool IsLambdaConversionToBlock, 1633 bool BuildGlobalBlock); 1634 1635 llvm::Constant *GenerateCopyHelperFunction(const CGBlockInfo &blockInfo); 1636 llvm::Constant *GenerateDestroyHelperFunction(const CGBlockInfo &blockInfo); 1637 llvm::Constant *GenerateObjCAtomicSetterCopyHelperFunction( 1638 const ObjCPropertyImplDecl *PID); 1639 llvm::Constant *GenerateObjCAtomicGetterCopyHelperFunction( 1640 const ObjCPropertyImplDecl *PID); 1641 llvm::Value *EmitBlockCopyAndAutorelease(llvm::Value *Block, QualType Ty); 1642 1643 void BuildBlockRelease(llvm::Value *DeclPtr, BlockFieldFlags flags); 1644 1645 class AutoVarEmission; 1646 1647 void emitByrefStructureInit(const AutoVarEmission &emission); 1648 void enterByrefCleanup(const AutoVarEmission &emission); 1649 1650 void setBlockContextParameter(const ImplicitParamDecl *D, unsigned argNum, 1651 llvm::Value *ptr); 1652 1653 Address LoadBlockStruct(); 1654 Address GetAddrOfBlockDecl(const VarDecl *var, bool ByRef); 1655 1656 /// BuildBlockByrefAddress - Computes the location of the 1657 /// data in a variable which is declared as __block. 1658 Address emitBlockByrefAddress(Address baseAddr, const VarDecl *V, 1659 bool followForward = true); 1660 Address emitBlockByrefAddress(Address baseAddr, 1661 const BlockByrefInfo &info, 1662 bool followForward, 1663 const llvm::Twine &name); 1664 1665 const BlockByrefInfo &getBlockByrefInfo(const VarDecl *var); 1666 1667 QualType BuildFunctionArgList(GlobalDecl GD, FunctionArgList &Args); 1668 1669 void GenerateCode(GlobalDecl GD, llvm::Function *Fn, 1670 const CGFunctionInfo &FnInfo); 1671 /// Emit code for the start of a function. 1672 /// \param Loc The location to be associated with the function. 1673 /// \param StartLoc The location of the function body. 1674 void StartFunction(GlobalDecl GD, 1675 QualType RetTy, 1676 llvm::Function *Fn, 1677 const CGFunctionInfo &FnInfo, 1678 const FunctionArgList &Args, 1679 SourceLocation Loc = SourceLocation(), 1680 SourceLocation StartLoc = SourceLocation()); 1681 1682 static bool IsConstructorDelegationValid(const CXXConstructorDecl *Ctor); 1683 1684 void EmitConstructorBody(FunctionArgList &Args); 1685 void EmitDestructorBody(FunctionArgList &Args); 1686 void emitImplicitAssignmentOperatorBody(FunctionArgList &Args); 1687 void EmitFunctionBody(FunctionArgList &Args, const Stmt *Body); 1688 void EmitBlockWithFallThrough(llvm::BasicBlock *BB, const Stmt *S); 1689 1690 void EmitForwardingCallToLambda(const CXXMethodDecl *LambdaCallOperator, 1691 CallArgList &CallArgs); 1692 void EmitLambdaBlockInvokeBody(); 1693 void EmitLambdaDelegatingInvokeBody(const CXXMethodDecl *MD); 1694 void EmitLambdaStaticInvokeBody(const CXXMethodDecl *MD); 1695 void EmitAsanPrologueOrEpilogue(bool Prologue); 1696 1697 /// Emit the unified return block, trying to avoid its emission when 1698 /// possible. 1699 /// \return The debug location of the user written return statement if the 1700 /// return block is is avoided. 1701 llvm::DebugLoc EmitReturnBlock(); 1702 1703 /// FinishFunction - Complete IR generation of the current function. It is 1704 /// legal to call this function even if there is no current insertion point. 1705 void FinishFunction(SourceLocation EndLoc=SourceLocation()); 1706 1707 void StartThunk(llvm::Function *Fn, GlobalDecl GD, 1708 const CGFunctionInfo &FnInfo, bool IsUnprototyped); 1709 1710 void EmitCallAndReturnForThunk(llvm::Constant *Callee, const ThunkInfo *Thunk, 1711 bool IsUnprototyped); 1712 1713 void FinishThunk(); 1714 1715 /// Emit a musttail call for a thunk with a potentially adjusted this pointer. 1716 void EmitMustTailThunk(const CXXMethodDecl *MD, llvm::Value *AdjustedThisPtr, 1717 llvm::Value *Callee); 1718 1719 /// Generate a thunk for the given method. 1720 void generateThunk(llvm::Function *Fn, const CGFunctionInfo &FnInfo, 1721 GlobalDecl GD, const ThunkInfo &Thunk, 1722 bool IsUnprototyped); 1723 1724 llvm::Function *GenerateVarArgsThunk(llvm::Function *Fn, 1725 const CGFunctionInfo &FnInfo, 1726 GlobalDecl GD, const ThunkInfo &Thunk); 1727 1728 void EmitCtorPrologue(const CXXConstructorDecl *CD, CXXCtorType Type, 1729 FunctionArgList &Args); 1730 1731 void EmitInitializerForField(FieldDecl *Field, LValue LHS, Expr *Init); 1732 1733 /// Struct with all information about dynamic [sub]class needed to set vptr. 1734 struct VPtr { 1735 BaseSubobject Base; 1736 const CXXRecordDecl *NearestVBase; 1737 CharUnits OffsetFromNearestVBase; 1738 const CXXRecordDecl *VTableClass; 1739 }; 1740 1741 /// Initialize the vtable pointer of the given subobject. 1742 void InitializeVTablePointer(const VPtr &vptr); 1743 1744 typedef llvm::SmallVector<VPtr, 4> VPtrsVector; 1745 1746 typedef llvm::SmallPtrSet<const CXXRecordDecl *, 4> VisitedVirtualBasesSetTy; 1747 VPtrsVector getVTablePointers(const CXXRecordDecl *VTableClass); 1748 1749 void getVTablePointers(BaseSubobject Base, const CXXRecordDecl *NearestVBase, 1750 CharUnits OffsetFromNearestVBase, 1751 bool BaseIsNonVirtualPrimaryBase, 1752 const CXXRecordDecl *VTableClass, 1753 VisitedVirtualBasesSetTy &VBases, VPtrsVector &vptrs); 1754 1755 void InitializeVTablePointers(const CXXRecordDecl *ClassDecl); 1756 1757 /// GetVTablePtr - Return the Value of the vtable pointer member pointed 1758 /// to by This. 1759 llvm::Value *GetVTablePtr(Address This, llvm::Type *VTableTy, 1760 const CXXRecordDecl *VTableClass); 1761 1762 enum CFITypeCheckKind { 1763 CFITCK_VCall, 1764 CFITCK_NVCall, 1765 CFITCK_DerivedCast, 1766 CFITCK_UnrelatedCast, 1767 CFITCK_ICall, 1768 }; 1769 1770 /// Derived is the presumed address of an object of type T after a 1771 /// cast. If T is a polymorphic class type, emit a check that the virtual 1772 /// table for Derived belongs to a class derived from T. 1773 void EmitVTablePtrCheckForCast(QualType T, llvm::Value *Derived, 1774 bool MayBeNull, CFITypeCheckKind TCK, 1775 SourceLocation Loc); 1776 1777 /// EmitVTablePtrCheckForCall - Virtual method MD is being called via VTable. 1778 /// If vptr CFI is enabled, emit a check that VTable is valid. 1779 void EmitVTablePtrCheckForCall(const CXXRecordDecl *RD, llvm::Value *VTable, 1780 CFITypeCheckKind TCK, SourceLocation Loc); 1781 1782 /// EmitVTablePtrCheck - Emit a check that VTable is a valid virtual table for 1783 /// RD using llvm.type.test. 1784 void EmitVTablePtrCheck(const CXXRecordDecl *RD, llvm::Value *VTable, 1785 CFITypeCheckKind TCK, SourceLocation Loc); 1786 1787 /// If whole-program virtual table optimization is enabled, emit an assumption 1788 /// that VTable is a member of RD's type identifier. Or, if vptr CFI is 1789 /// enabled, emit a check that VTable is a member of RD's type identifier. 1790 void EmitTypeMetadataCodeForVCall(const CXXRecordDecl *RD, 1791 llvm::Value *VTable, SourceLocation Loc); 1792 1793 /// Returns whether we should perform a type checked load when loading a 1794 /// virtual function for virtual calls to members of RD. This is generally 1795 /// true when both vcall CFI and whole-program-vtables are enabled. 1796 bool ShouldEmitVTableTypeCheckedLoad(const CXXRecordDecl *RD); 1797 1798 /// Emit a type checked load from the given vtable. 1799 llvm::Value *EmitVTableTypeCheckedLoad(const CXXRecordDecl *RD, llvm::Value *VTable, 1800 uint64_t VTableByteOffset); 1801 1802 /// EnterDtorCleanups - Enter the cleanups necessary to complete the 1803 /// given phase of destruction for a destructor. The end result 1804 /// should call destructors on members and base classes in reverse 1805 /// order of their construction. 1806 void EnterDtorCleanups(const CXXDestructorDecl *Dtor, CXXDtorType Type); 1807 1808 /// ShouldInstrumentFunction - Return true if the current function should be 1809 /// instrumented with __cyg_profile_func_* calls 1810 bool ShouldInstrumentFunction(); 1811 1812 /// ShouldXRayInstrument - Return true if the current function should be 1813 /// instrumented with XRay nop sleds. 1814 bool ShouldXRayInstrumentFunction() const; 1815 1816 /// AlwaysEmitXRayCustomEvents - Return true if we must unconditionally emit 1817 /// XRay custom event handling calls. 1818 bool AlwaysEmitXRayCustomEvents() const; 1819 1820 /// AlwaysEmitXRayTypedEvents - Return true if clang must unconditionally emit 1821 /// XRay typed event handling calls. 1822 bool AlwaysEmitXRayTypedEvents() const; 1823 1824 /// Encode an address into a form suitable for use in a function prologue. 1825 llvm::Constant *EncodeAddrForUseInPrologue(llvm::Function *F, 1826 llvm::Constant *Addr); 1827 1828 /// Decode an address used in a function prologue, encoded by \c 1829 /// EncodeAddrForUseInPrologue. 1830 llvm::Value *DecodeAddrUsedInPrologue(llvm::Value *F, 1831 llvm::Value *EncodedAddr); 1832 1833 /// EmitFunctionProlog - Emit the target specific LLVM code to load the 1834 /// arguments for the given function. This is also responsible for naming the 1835 /// LLVM function arguments. 1836 void EmitFunctionProlog(const CGFunctionInfo &FI, 1837 llvm::Function *Fn, 1838 const FunctionArgList &Args); 1839 1840 /// EmitFunctionEpilog - Emit the target specific LLVM code to return the 1841 /// given temporary. 1842 void EmitFunctionEpilog(const CGFunctionInfo &FI, bool EmitRetDbgLoc, 1843 SourceLocation EndLoc); 1844 1845 /// Emit a test that checks if the return value \p RV is nonnull. 1846 void EmitReturnValueCheck(llvm::Value *RV); 1847 1848 /// EmitStartEHSpec - Emit the start of the exception spec. 1849 void EmitStartEHSpec(const Decl *D); 1850 1851 /// EmitEndEHSpec - Emit the end of the exception spec. 1852 void EmitEndEHSpec(const Decl *D); 1853 1854 /// getTerminateLandingPad - Return a landing pad that just calls terminate. 1855 llvm::BasicBlock *getTerminateLandingPad(); 1856 1857 /// getTerminateLandingPad - Return a cleanup funclet that just calls 1858 /// terminate. 1859 llvm::BasicBlock *getTerminateFunclet(); 1860 1861 /// getTerminateHandler - Return a handler (not a landing pad, just 1862 /// a catch handler) that just calls terminate. This is used when 1863 /// a terminate scope encloses a try. 1864 llvm::BasicBlock *getTerminateHandler(); 1865 1866 llvm::Type *ConvertTypeForMem(QualType T); 1867 llvm::Type *ConvertType(QualType T); 1868 llvm::Type *ConvertType(const TypeDecl *T) { 1869 return ConvertType(getContext().getTypeDeclType(T)); 1870 } 1871 1872 /// LoadObjCSelf - Load the value of self. This function is only valid while 1873 /// generating code for an Objective-C method. 1874 llvm::Value *LoadObjCSelf(); 1875 1876 /// TypeOfSelfObject - Return type of object that this self represents. 1877 QualType TypeOfSelfObject(); 1878 1879 /// getEvaluationKind - Return the TypeEvaluationKind of QualType \c T. 1880 static TypeEvaluationKind getEvaluationKind(QualType T); 1881 1882 static bool hasScalarEvaluationKind(QualType T) { 1883 return getEvaluationKind(T) == TEK_Scalar; 1884 } 1885 1886 static bool hasAggregateEvaluationKind(QualType T) { 1887 return getEvaluationKind(T) == TEK_Aggregate; 1888 } 1889 1890 /// createBasicBlock - Create an LLVM basic block. 1891 llvm::BasicBlock *createBasicBlock(const Twine &name = "", 1892 llvm::Function *parent = nullptr, 1893 llvm::BasicBlock *before = nullptr) { 1894 return llvm::BasicBlock::Create(getLLVMContext(), name, parent, before); 1895 } 1896 1897 /// getBasicBlockForLabel - Return the LLVM basicblock that the specified 1898 /// label maps to. 1899 JumpDest getJumpDestForLabel(const LabelDecl *S); 1900 1901 /// SimplifyForwardingBlocks - If the given basic block is only a branch to 1902 /// another basic block, simplify it. This assumes that no other code could 1903 /// potentially reference the basic block. 1904 void SimplifyForwardingBlocks(llvm::BasicBlock *BB); 1905 1906 /// EmitBlock - Emit the given block \arg BB and set it as the insert point, 1907 /// adding a fall-through branch from the current insert block if 1908 /// necessary. It is legal to call this function even if there is no current 1909 /// insertion point. 1910 /// 1911 /// IsFinished - If true, indicates that the caller has finished emitting 1912 /// branches to the given block and does not expect to emit code into it. This 1913 /// means the block can be ignored if it is unreachable. 1914 void EmitBlock(llvm::BasicBlock *BB, bool IsFinished=false); 1915 1916 /// EmitBlockAfterUses - Emit the given block somewhere hopefully 1917 /// near its uses, and leave the insertion point in it. 1918 void EmitBlockAfterUses(llvm::BasicBlock *BB); 1919 1920 /// EmitBranch - Emit a branch to the specified basic block from the current 1921 /// insert block, taking care to avoid creation of branches from dummy 1922 /// blocks. It is legal to call this function even if there is no current 1923 /// insertion point. 1924 /// 1925 /// This function clears the current insertion point. The caller should follow 1926 /// calls to this function with calls to Emit*Block prior to generation new 1927 /// code. 1928 void EmitBranch(llvm::BasicBlock *Block); 1929 1930 /// HaveInsertPoint - True if an insertion point is defined. If not, this 1931 /// indicates that the current code being emitted is unreachable. 1932 bool HaveInsertPoint() const { 1933 return Builder.GetInsertBlock() != nullptr; 1934 } 1935 1936 /// EnsureInsertPoint - Ensure that an insertion point is defined so that 1937 /// emitted IR has a place to go. Note that by definition, if this function 1938 /// creates a block then that block is unreachable; callers may do better to 1939 /// detect when no insertion point is defined and simply skip IR generation. 1940 void EnsureInsertPoint() { 1941 if (!HaveInsertPoint()) 1942 EmitBlock(createBasicBlock()); 1943 } 1944 1945 /// ErrorUnsupported - Print out an error that codegen doesn't support the 1946 /// specified stmt yet. 1947 void ErrorUnsupported(const Stmt *S, const char *Type); 1948 1949 //===--------------------------------------------------------------------===// 1950 // Helpers 1951 //===--------------------------------------------------------------------===// 1952 1953 LValue MakeAddrLValue(Address Addr, QualType T, 1954 AlignmentSource Source = AlignmentSource::Type) { 1955 return LValue::MakeAddr(Addr, T, getContext(), LValueBaseInfo(Source), 1956 CGM.getTBAAAccessInfo(T)); 1957 } 1958 1959 LValue MakeAddrLValue(Address Addr, QualType T, LValueBaseInfo BaseInfo, 1960 TBAAAccessInfo TBAAInfo) { 1961 return LValue::MakeAddr(Addr, T, getContext(), BaseInfo, TBAAInfo); 1962 } 1963 1964 LValue MakeAddrLValue(llvm::Value *V, QualType T, CharUnits Alignment, 1965 AlignmentSource Source = AlignmentSource::Type) { 1966 return LValue::MakeAddr(Address(V, Alignment), T, getContext(), 1967 LValueBaseInfo(Source), CGM.getTBAAAccessInfo(T)); 1968 } 1969 1970 LValue MakeAddrLValue(llvm::Value *V, QualType T, CharUnits Alignment, 1971 LValueBaseInfo BaseInfo, TBAAAccessInfo TBAAInfo) { 1972 return LValue::MakeAddr(Address(V, Alignment), T, getContext(), 1973 BaseInfo, TBAAInfo); 1974 } 1975 1976 LValue MakeNaturalAlignPointeeAddrLValue(llvm::Value *V, QualType T); 1977 LValue MakeNaturalAlignAddrLValue(llvm::Value *V, QualType T); 1978 CharUnits getNaturalTypeAlignment(QualType T, 1979 LValueBaseInfo *BaseInfo = nullptr, 1980 TBAAAccessInfo *TBAAInfo = nullptr, 1981 bool forPointeeType = false); 1982 CharUnits getNaturalPointeeTypeAlignment(QualType T, 1983 LValueBaseInfo *BaseInfo = nullptr, 1984 TBAAAccessInfo *TBAAInfo = nullptr); 1985 1986 Address EmitLoadOfReference(LValue RefLVal, 1987 LValueBaseInfo *PointeeBaseInfo = nullptr, 1988 TBAAAccessInfo *PointeeTBAAInfo = nullptr); 1989 LValue EmitLoadOfReferenceLValue(LValue RefLVal); 1990 LValue EmitLoadOfReferenceLValue(Address RefAddr, QualType RefTy, 1991 AlignmentSource Source = 1992 AlignmentSource::Type) { 1993 LValue RefLVal = MakeAddrLValue(RefAddr, RefTy, LValueBaseInfo(Source), 1994 CGM.getTBAAAccessInfo(RefTy)); 1995 return EmitLoadOfReferenceLValue(RefLVal); 1996 } 1997 1998 Address EmitLoadOfPointer(Address Ptr, const PointerType *PtrTy, 1999 LValueBaseInfo *BaseInfo = nullptr, 2000 TBAAAccessInfo *TBAAInfo = nullptr); 2001 LValue EmitLoadOfPointerLValue(Address Ptr, const PointerType *PtrTy); 2002 2003 /// CreateTempAlloca - This creates an alloca and inserts it into the entry 2004 /// block if \p ArraySize is nullptr, otherwise inserts it at the current 2005 /// insertion point of the builder. The caller is responsible for setting an 2006 /// appropriate alignment on 2007 /// the alloca. 2008 /// 2009 /// \p ArraySize is the number of array elements to be allocated if it 2010 /// is not nullptr. 2011 /// 2012 /// LangAS::Default is the address space of pointers to local variables and 2013 /// temporaries, as exposed in the source language. In certain 2014 /// configurations, this is not the same as the alloca address space, and a 2015 /// cast is needed to lift the pointer from the alloca AS into 2016 /// LangAS::Default. This can happen when the target uses a restricted 2017 /// address space for the stack but the source language requires 2018 /// LangAS::Default to be a generic address space. The latter condition is 2019 /// common for most programming languages; OpenCL is an exception in that 2020 /// LangAS::Default is the private address space, which naturally maps 2021 /// to the stack. 2022 /// 2023 /// Because the address of a temporary is often exposed to the program in 2024 /// various ways, this function will perform the cast by default. The cast 2025 /// may be avoided by passing false as \p CastToDefaultAddrSpace; this is 2026 /// more efficient if the caller knows that the address will not be exposed. 2027 /// The original alloca instruction is returned through \p Alloca if it is 2028 /// not nullptr. 2029 llvm::AllocaInst *CreateTempAlloca(llvm::Type *Ty, const Twine &Name = "tmp", 2030 llvm::Value *ArraySize = nullptr); 2031 Address CreateTempAlloca(llvm::Type *Ty, CharUnits align, 2032 const Twine &Name = "tmp", 2033 llvm::Value *ArraySize = nullptr, 2034 Address *Alloca = nullptr, 2035 bool CastToDefaultAddrSpace = true); 2036 2037 /// CreateDefaultAlignedTempAlloca - This creates an alloca with the 2038 /// default ABI alignment of the given LLVM type. 2039 /// 2040 /// IMPORTANT NOTE: This is *not* generally the right alignment for 2041 /// any given AST type that happens to have been lowered to the 2042 /// given IR type. This should only ever be used for function-local, 2043 /// IR-driven manipulations like saving and restoring a value. Do 2044 /// not hand this address off to arbitrary IRGen routines, and especially 2045 /// do not pass it as an argument to a function that might expect a 2046 /// properly ABI-aligned value. 2047 Address CreateDefaultAlignTempAlloca(llvm::Type *Ty, 2048 const Twine &Name = "tmp"); 2049 2050 /// InitTempAlloca - Provide an initial value for the given alloca which 2051 /// will be observable at all locations in the function. 2052 /// 2053 /// The address should be something that was returned from one of 2054 /// the CreateTempAlloca or CreateMemTemp routines, and the 2055 /// initializer must be valid in the entry block (i.e. it must 2056 /// either be a constant or an argument value). 2057 void InitTempAlloca(Address Alloca, llvm::Value *Value); 2058 2059 /// CreateIRTemp - Create a temporary IR object of the given type, with 2060 /// appropriate alignment. This routine should only be used when an temporary 2061 /// value needs to be stored into an alloca (for example, to avoid explicit 2062 /// PHI construction), but the type is the IR type, not the type appropriate 2063 /// for storing in memory. 2064 /// 2065 /// That is, this is exactly equivalent to CreateMemTemp, but calling 2066 /// ConvertType instead of ConvertTypeForMem. 2067 Address CreateIRTemp(QualType T, const Twine &Name = "tmp"); 2068 2069 /// CreateMemTemp - Create a temporary memory object of the given type, with 2070 /// appropriate alignment. Cast it to the default address space if 2071 /// \p CastToDefaultAddrSpace is true. Returns the original alloca 2072 /// instruction by \p Alloca if it is not nullptr. 2073 Address CreateMemTemp(QualType T, const Twine &Name = "tmp", 2074 Address *Alloca = nullptr, 2075 bool CastToDefaultAddrSpace = true); 2076 Address CreateMemTemp(QualType T, CharUnits Align, const Twine &Name = "tmp", 2077 Address *Alloca = nullptr, 2078 bool CastToDefaultAddrSpace = true); 2079 2080 /// CreateAggTemp - Create a temporary memory object for the given 2081 /// aggregate type. 2082 AggValueSlot CreateAggTemp(QualType T, const Twine &Name = "tmp") { 2083 return AggValueSlot::forAddr(CreateMemTemp(T, Name), 2084 T.getQualifiers(), 2085 AggValueSlot::IsNotDestructed, 2086 AggValueSlot::DoesNotNeedGCBarriers, 2087 AggValueSlot::IsNotAliased, 2088 AggValueSlot::DoesNotOverlap); 2089 } 2090 2091 /// Emit a cast to void* in the appropriate address space. 2092 llvm::Value *EmitCastToVoidPtr(llvm::Value *value); 2093 2094 /// EvaluateExprAsBool - Perform the usual unary conversions on the specified 2095 /// expression and compare the result against zero, returning an Int1Ty value. 2096 llvm::Value *EvaluateExprAsBool(const Expr *E); 2097 2098 /// EmitIgnoredExpr - Emit an expression in a context which ignores the result. 2099 void EmitIgnoredExpr(const Expr *E); 2100 2101 /// EmitAnyExpr - Emit code to compute the specified expression which can have 2102 /// any type. The result is returned as an RValue struct. If this is an 2103 /// aggregate expression, the aggloc/agglocvolatile arguments indicate where 2104 /// the result should be returned. 2105 /// 2106 /// \param ignoreResult True if the resulting value isn't used. 2107 RValue EmitAnyExpr(const Expr *E, 2108 AggValueSlot aggSlot = AggValueSlot::ignored(), 2109 bool ignoreResult = false); 2110 2111 // EmitVAListRef - Emit a "reference" to a va_list; this is either the address 2112 // or the value of the expression, depending on how va_list is defined. 2113 Address EmitVAListRef(const Expr *E); 2114 2115 /// Emit a "reference" to a __builtin_ms_va_list; this is 2116 /// always the value of the expression, because a __builtin_ms_va_list is a 2117 /// pointer to a char. 2118 Address EmitMSVAListRef(const Expr *E); 2119 2120 /// EmitAnyExprToTemp - Similarly to EmitAnyExpr(), however, the result will 2121 /// always be accessible even if no aggregate location is provided. 2122 RValue EmitAnyExprToTemp(const Expr *E); 2123 2124 /// EmitAnyExprToMem - Emits the code necessary to evaluate an 2125 /// arbitrary expression into the given memory location. 2126 void EmitAnyExprToMem(const Expr *E, Address Location, 2127 Qualifiers Quals, bool IsInitializer); 2128 2129 void EmitAnyExprToExn(const Expr *E, Address Addr); 2130 2131 /// EmitExprAsInit - Emits the code necessary to initialize a 2132 /// location in memory with the given initializer. 2133 void EmitExprAsInit(const Expr *init, const ValueDecl *D, LValue lvalue, 2134 bool capturedByInit); 2135 2136 /// hasVolatileMember - returns true if aggregate type has a volatile 2137 /// member. 2138 bool hasVolatileMember(QualType T) { 2139 if (const RecordType *RT = T->getAs<RecordType>()) { 2140 const RecordDecl *RD = cast<RecordDecl>(RT->getDecl()); 2141 return RD->hasVolatileMember(); 2142 } 2143 return false; 2144 } 2145 2146 /// Determine whether a return value slot may overlap some other object. 2147 AggValueSlot::Overlap_t overlapForReturnValue() { 2148 // FIXME: Assuming no overlap here breaks guaranteed copy elision for base 2149 // class subobjects. These cases may need to be revisited depending on the 2150 // resolution of the relevant core issue. 2151 return AggValueSlot::DoesNotOverlap; 2152 } 2153 2154 /// Determine whether a field initialization may overlap some other object. 2155 AggValueSlot::Overlap_t overlapForFieldInit(const FieldDecl *FD) { 2156 // FIXME: These cases can result in overlap as a result of P0840R0's 2157 // [[no_unique_address]] attribute. We can still infer NoOverlap in the 2158 // presence of that attribute if the field is within the nvsize of its 2159 // containing class, because non-virtual subobjects are initialized in 2160 // address order. 2161 return AggValueSlot::DoesNotOverlap; 2162 } 2163 2164 /// Determine whether a base class initialization may overlap some other 2165 /// object. 2166 AggValueSlot::Overlap_t overlapForBaseInit(const CXXRecordDecl *RD, 2167 const CXXRecordDecl *BaseRD, 2168 bool IsVirtual); 2169 2170 /// Emit an aggregate assignment. 2171 void EmitAggregateAssign(LValue Dest, LValue Src, QualType EltTy) { 2172 bool IsVolatile = hasVolatileMember(EltTy); 2173 EmitAggregateCopy(Dest, Src, EltTy, AggValueSlot::MayOverlap, IsVolatile); 2174 } 2175 2176 void EmitAggregateCopyCtor(LValue Dest, LValue Src, 2177 AggValueSlot::Overlap_t MayOverlap) { 2178 EmitAggregateCopy(Dest, Src, Src.getType(), MayOverlap); 2179 } 2180 2181 /// EmitAggregateCopy - Emit an aggregate copy. 2182 /// 2183 /// \param isVolatile \c true iff either the source or the destination is 2184 /// volatile. 2185 /// \param MayOverlap Whether the tail padding of the destination might be 2186 /// occupied by some other object. More efficient code can often be 2187 /// generated if not. 2188 void EmitAggregateCopy(LValue Dest, LValue Src, QualType EltTy, 2189 AggValueSlot::Overlap_t MayOverlap, 2190 bool isVolatile = false); 2191 2192 /// GetAddrOfLocalVar - Return the address of a local variable. 2193 Address GetAddrOfLocalVar(const VarDecl *VD) { 2194 auto it = LocalDeclMap.find(VD); 2195 assert(it != LocalDeclMap.end() && 2196 "Invalid argument to GetAddrOfLocalVar(), no decl!"); 2197 return it->second; 2198 } 2199 2200 /// Given an opaque value expression, return its LValue mapping if it exists, 2201 /// otherwise create one. 2202 LValue getOrCreateOpaqueLValueMapping(const OpaqueValueExpr *e); 2203 2204 /// Given an opaque value expression, return its RValue mapping if it exists, 2205 /// otherwise create one. 2206 RValue getOrCreateOpaqueRValueMapping(const OpaqueValueExpr *e); 2207 2208 /// Get the index of the current ArrayInitLoopExpr, if any. 2209 llvm::Value *getArrayInitIndex() { return ArrayInitIndex; } 2210 2211 /// getAccessedFieldNo - Given an encoded value and a result number, return 2212 /// the input field number being accessed. 2213 static unsigned getAccessedFieldNo(unsigned Idx, const llvm::Constant *Elts); 2214 2215 llvm::BlockAddress *GetAddrOfLabel(const LabelDecl *L); 2216 llvm::BasicBlock *GetIndirectGotoBlock(); 2217 2218 /// Check if \p E is a C++ "this" pointer wrapped in value-preserving casts. 2219 static bool IsWrappedCXXThis(const Expr *E); 2220 2221 /// EmitNullInitialization - Generate code to set a value of the given type to 2222 /// null, If the type contains data member pointers, they will be initialized 2223 /// to -1 in accordance with the Itanium C++ ABI. 2224 void EmitNullInitialization(Address DestPtr, QualType Ty); 2225 2226 /// Emits a call to an LLVM variable-argument intrinsic, either 2227 /// \c llvm.va_start or \c llvm.va_end. 2228 /// \param ArgValue A reference to the \c va_list as emitted by either 2229 /// \c EmitVAListRef or \c EmitMSVAListRef. 2230 /// \param IsStart If \c true, emits a call to \c llvm.va_start; otherwise, 2231 /// calls \c llvm.va_end. 2232 llvm::Value *EmitVAStartEnd(llvm::Value *ArgValue, bool IsStart); 2233 2234 /// Generate code to get an argument from the passed in pointer 2235 /// and update it accordingly. 2236 /// \param VE The \c VAArgExpr for which to generate code. 2237 /// \param VAListAddr Receives a reference to the \c va_list as emitted by 2238 /// either \c EmitVAListRef or \c EmitMSVAListRef. 2239 /// \returns A pointer to the argument. 2240 // FIXME: We should be able to get rid of this method and use the va_arg 2241 // instruction in LLVM instead once it works well enough. 2242 Address EmitVAArg(VAArgExpr *VE, Address &VAListAddr); 2243 2244 /// emitArrayLength - Compute the length of an array, even if it's a 2245 /// VLA, and drill down to the base element type. 2246 llvm::Value *emitArrayLength(const ArrayType *arrayType, 2247 QualType &baseType, 2248 Address &addr); 2249 2250 /// EmitVLASize - Capture all the sizes for the VLA expressions in 2251 /// the given variably-modified type and store them in the VLASizeMap. 2252 /// 2253 /// This function can be called with a null (unreachable) insert point. 2254 void EmitVariablyModifiedType(QualType Ty); 2255 2256 struct VlaSizePair { 2257 llvm::Value *NumElts; 2258 QualType Type; 2259 2260 VlaSizePair(llvm::Value *NE, QualType T) : NumElts(NE), Type(T) {} 2261 }; 2262 2263 /// Return the number of elements for a single dimension 2264 /// for the given array type. 2265 VlaSizePair getVLAElements1D(const VariableArrayType *vla); 2266 VlaSizePair getVLAElements1D(QualType vla); 2267 2268 /// Returns an LLVM value that corresponds to the size, 2269 /// in non-variably-sized elements, of a variable length array type, 2270 /// plus that largest non-variably-sized element type. Assumes that 2271 /// the type has already been emitted with EmitVariablyModifiedType. 2272 VlaSizePair getVLASize(const VariableArrayType *vla); 2273 VlaSizePair getVLASize(QualType vla); 2274 2275 /// LoadCXXThis - Load the value of 'this'. This function is only valid while 2276 /// generating code for an C++ member function. 2277 llvm::Value *LoadCXXThis() { 2278 assert(CXXThisValue && "no 'this' value for this function"); 2279 return CXXThisValue; 2280 } 2281 Address LoadCXXThisAddress(); 2282 2283 /// LoadCXXVTT - Load the VTT parameter to base constructors/destructors have 2284 /// virtual bases. 2285 // FIXME: Every place that calls LoadCXXVTT is something 2286 // that needs to be abstracted properly. 2287 llvm::Value *LoadCXXVTT() { 2288 assert(CXXStructorImplicitParamValue && "no VTT value for this function"); 2289 return CXXStructorImplicitParamValue; 2290 } 2291 2292 /// GetAddressOfBaseOfCompleteClass - Convert the given pointer to a 2293 /// complete class to the given direct base. 2294 Address 2295 GetAddressOfDirectBaseInCompleteClass(Address Value, 2296 const CXXRecordDecl *Derived, 2297 const CXXRecordDecl *Base, 2298 bool BaseIsVirtual); 2299 2300 static bool ShouldNullCheckClassCastValue(const CastExpr *Cast); 2301 2302 /// GetAddressOfBaseClass - This function will add the necessary delta to the 2303 /// load of 'this' and returns address of the base class. 2304 Address GetAddressOfBaseClass(Address Value, 2305 const CXXRecordDecl *Derived, 2306 CastExpr::path_const_iterator PathBegin, 2307 CastExpr::path_const_iterator PathEnd, 2308 bool NullCheckValue, SourceLocation Loc); 2309 2310 Address GetAddressOfDerivedClass(Address Value, 2311 const CXXRecordDecl *Derived, 2312 CastExpr::path_const_iterator PathBegin, 2313 CastExpr::path_const_iterator PathEnd, 2314 bool NullCheckValue); 2315 2316 /// GetVTTParameter - Return the VTT parameter that should be passed to a 2317 /// base constructor/destructor with virtual bases. 2318 /// FIXME: VTTs are Itanium ABI-specific, so the definition should move 2319 /// to ItaniumCXXABI.cpp together with all the references to VTT. 2320 llvm::Value *GetVTTParameter(GlobalDecl GD, bool ForVirtualBase, 2321 bool Delegating); 2322 2323 void EmitDelegateCXXConstructorCall(const CXXConstructorDecl *Ctor, 2324 CXXCtorType CtorType, 2325 const FunctionArgList &Args, 2326 SourceLocation Loc); 2327 // It's important not to confuse this and the previous function. Delegating 2328 // constructors are the C++0x feature. The constructor delegate optimization 2329 // is used to reduce duplication in the base and complete consturctors where 2330 // they are substantially the same. 2331 void EmitDelegatingCXXConstructorCall(const CXXConstructorDecl *Ctor, 2332 const FunctionArgList &Args); 2333 2334 /// Emit a call to an inheriting constructor (that is, one that invokes a 2335 /// constructor inherited from a base class) by inlining its definition. This 2336 /// is necessary if the ABI does not support forwarding the arguments to the 2337 /// base class constructor (because they're variadic or similar). 2338 void EmitInlinedInheritingCXXConstructorCall(const CXXConstructorDecl *Ctor, 2339 CXXCtorType CtorType, 2340 bool ForVirtualBase, 2341 bool Delegating, 2342 CallArgList &Args); 2343 2344 /// Emit a call to a constructor inherited from a base class, passing the 2345 /// current constructor's arguments along unmodified (without even making 2346 /// a copy). 2347 void EmitInheritedCXXConstructorCall(const CXXConstructorDecl *D, 2348 bool ForVirtualBase, Address This, 2349 bool InheritedFromVBase, 2350 const CXXInheritedCtorInitExpr *E); 2351 2352 void EmitCXXConstructorCall(const CXXConstructorDecl *D, CXXCtorType Type, 2353 bool ForVirtualBase, bool Delegating, 2354 Address This, const CXXConstructExpr *E, 2355 AggValueSlot::Overlap_t Overlap); 2356 2357 void EmitCXXConstructorCall(const CXXConstructorDecl *D, CXXCtorType Type, 2358 bool ForVirtualBase, bool Delegating, 2359 Address This, CallArgList &Args, 2360 AggValueSlot::Overlap_t Overlap); 2361 2362 /// Emit assumption load for all bases. Requires to be be called only on 2363 /// most-derived class and not under construction of the object. 2364 void EmitVTableAssumptionLoads(const CXXRecordDecl *ClassDecl, Address This); 2365 2366 /// Emit assumption that vptr load == global vtable. 2367 void EmitVTableAssumptionLoad(const VPtr &vptr, Address This); 2368 2369 void EmitSynthesizedCXXCopyCtorCall(const CXXConstructorDecl *D, 2370 Address This, Address Src, 2371 const CXXConstructExpr *E); 2372 2373 void EmitCXXAggrConstructorCall(const CXXConstructorDecl *D, 2374 const ArrayType *ArrayTy, 2375 Address ArrayPtr, 2376 const CXXConstructExpr *E, 2377 bool ZeroInitialization = false); 2378 2379 void EmitCXXAggrConstructorCall(const CXXConstructorDecl *D, 2380 llvm::Value *NumElements, 2381 Address ArrayPtr, 2382 const CXXConstructExpr *E, 2383 bool ZeroInitialization = false); 2384 2385 static Destroyer destroyCXXObject; 2386 2387 void EmitCXXDestructorCall(const CXXDestructorDecl *D, CXXDtorType Type, 2388 bool ForVirtualBase, bool Delegating, 2389 Address This); 2390 2391 void EmitNewArrayInitializer(const CXXNewExpr *E, QualType elementType, 2392 llvm::Type *ElementTy, Address NewPtr, 2393 llvm::Value *NumElements, 2394 llvm::Value *AllocSizeWithoutCookie); 2395 2396 void EmitCXXTemporary(const CXXTemporary *Temporary, QualType TempType, 2397 Address Ptr); 2398 2399 llvm::Value *EmitLifetimeStart(uint64_t Size, llvm::Value *Addr); 2400 void EmitLifetimeEnd(llvm::Value *Size, llvm::Value *Addr); 2401 2402 llvm::Value *EmitCXXNewExpr(const CXXNewExpr *E); 2403 void EmitCXXDeleteExpr(const CXXDeleteExpr *E); 2404 2405 void EmitDeleteCall(const FunctionDecl *DeleteFD, llvm::Value *Ptr, 2406 QualType DeleteTy, llvm::Value *NumElements = nullptr, 2407 CharUnits CookieSize = CharUnits()); 2408 2409 RValue EmitBuiltinNewDeleteCall(const FunctionProtoType *Type, 2410 const CallExpr *TheCallExpr, bool IsDelete); 2411 2412 llvm::Value *EmitCXXTypeidExpr(const CXXTypeidExpr *E); 2413 llvm::Value *EmitDynamicCast(Address V, const CXXDynamicCastExpr *DCE); 2414 Address EmitCXXUuidofExpr(const CXXUuidofExpr *E); 2415 2416 /// Situations in which we might emit a check for the suitability of a 2417 /// pointer or glvalue. 2418 enum TypeCheckKind { 2419 /// Checking the operand of a load. Must be suitably sized and aligned. 2420 TCK_Load, 2421 /// Checking the destination of a store. Must be suitably sized and aligned. 2422 TCK_Store, 2423 /// Checking the bound value in a reference binding. Must be suitably sized 2424 /// and aligned, but is not required to refer to an object (until the 2425 /// reference is used), per core issue 453. 2426 TCK_ReferenceBinding, 2427 /// Checking the object expression in a non-static data member access. Must 2428 /// be an object within its lifetime. 2429 TCK_MemberAccess, 2430 /// Checking the 'this' pointer for a call to a non-static member function. 2431 /// Must be an object within its lifetime. 2432 TCK_MemberCall, 2433 /// Checking the 'this' pointer for a constructor call. 2434 TCK_ConstructorCall, 2435 /// Checking the operand of a static_cast to a derived pointer type. Must be 2436 /// null or an object within its lifetime. 2437 TCK_DowncastPointer, 2438 /// Checking the operand of a static_cast to a derived reference type. Must 2439 /// be an object within its lifetime. 2440 TCK_DowncastReference, 2441 /// Checking the operand of a cast to a base object. Must be suitably sized 2442 /// and aligned. 2443 TCK_Upcast, 2444 /// Checking the operand of a cast to a virtual base object. Must be an 2445 /// object within its lifetime. 2446 TCK_UpcastToVirtualBase, 2447 /// Checking the value assigned to a _Nonnull pointer. Must not be null. 2448 TCK_NonnullAssign, 2449 /// Checking the operand of a dynamic_cast or a typeid expression. Must be 2450 /// null or an object within its lifetime. 2451 TCK_DynamicOperation 2452 }; 2453 2454 /// Determine whether the pointer type check \p TCK permits null pointers. 2455 static bool isNullPointerAllowed(TypeCheckKind TCK); 2456 2457 /// Determine whether the pointer type check \p TCK requires a vptr check. 2458 static bool isVptrCheckRequired(TypeCheckKind TCK, QualType Ty); 2459 2460 /// Whether any type-checking sanitizers are enabled. If \c false, 2461 /// calls to EmitTypeCheck can be skipped. 2462 bool sanitizePerformTypeCheck() const; 2463 2464 /// Emit a check that \p V is the address of storage of the 2465 /// appropriate size and alignment for an object of type \p Type. 2466 void EmitTypeCheck(TypeCheckKind TCK, SourceLocation Loc, llvm::Value *V, 2467 QualType Type, CharUnits Alignment = CharUnits::Zero(), 2468 SanitizerSet SkippedChecks = SanitizerSet()); 2469 2470 /// Emit a check that \p Base points into an array object, which 2471 /// we can access at index \p Index. \p Accessed should be \c false if we 2472 /// this expression is used as an lvalue, for instance in "&Arr[Idx]". 2473 void EmitBoundsCheck(const Expr *E, const Expr *Base, llvm::Value *Index, 2474 QualType IndexType, bool Accessed); 2475 2476 llvm::Value *EmitScalarPrePostIncDec(const UnaryOperator *E, LValue LV, 2477 bool isInc, bool isPre); 2478 ComplexPairTy EmitComplexPrePostIncDec(const UnaryOperator *E, LValue LV, 2479 bool isInc, bool isPre); 2480 2481 void EmitAlignmentAssumption(llvm::Value *PtrValue, unsigned Alignment, 2482 llvm::Value *OffsetValue = nullptr) { 2483 Builder.CreateAlignmentAssumption(CGM.getDataLayout(), PtrValue, Alignment, 2484 OffsetValue); 2485 } 2486 2487 /// Converts Location to a DebugLoc, if debug information is enabled. 2488 llvm::DebugLoc SourceLocToDebugLoc(SourceLocation Location); 2489 2490 2491 //===--------------------------------------------------------------------===// 2492 // Declaration Emission 2493 //===--------------------------------------------------------------------===// 2494 2495 /// EmitDecl - Emit a declaration. 2496 /// 2497 /// This function can be called with a null (unreachable) insert point. 2498 void EmitDecl(const Decl &D); 2499 2500 /// EmitVarDecl - Emit a local variable declaration. 2501 /// 2502 /// This function can be called with a null (unreachable) insert point. 2503 void EmitVarDecl(const VarDecl &D); 2504 2505 void EmitScalarInit(const Expr *init, const ValueDecl *D, LValue lvalue, 2506 bool capturedByInit); 2507 2508 typedef void SpecialInitFn(CodeGenFunction &Init, const VarDecl &D, 2509 llvm::Value *Address); 2510 2511 /// Determine whether the given initializer is trivial in the sense 2512 /// that it requires no code to be generated. 2513 bool isTrivialInitializer(const Expr *Init); 2514 2515 /// EmitAutoVarDecl - Emit an auto variable declaration. 2516 /// 2517 /// This function can be called with a null (unreachable) insert point. 2518 void EmitAutoVarDecl(const VarDecl &D); 2519 2520 class AutoVarEmission { 2521 friend class CodeGenFunction; 2522 2523 const VarDecl *Variable; 2524 2525 /// The address of the alloca for languages with explicit address space 2526 /// (e.g. OpenCL) or alloca casted to generic pointer for address space 2527 /// agnostic languages (e.g. C++). Invalid if the variable was emitted 2528 /// as a global constant. 2529 Address Addr; 2530 2531 llvm::Value *NRVOFlag; 2532 2533 /// True if the variable is a __block variable. 2534 bool IsByRef; 2535 2536 /// True if the variable is of aggregate type and has a constant 2537 /// initializer. 2538 bool IsConstantAggregate; 2539 2540 /// Non-null if we should use lifetime annotations. 2541 llvm::Value *SizeForLifetimeMarkers; 2542 2543 /// Address with original alloca instruction. Invalid if the variable was 2544 /// emitted as a global constant. 2545 Address AllocaAddr; 2546 2547 struct Invalid {}; 2548 AutoVarEmission(Invalid) 2549 : Variable(nullptr), Addr(Address::invalid()), 2550 AllocaAddr(Address::invalid()) {} 2551 2552 AutoVarEmission(const VarDecl &variable) 2553 : Variable(&variable), Addr(Address::invalid()), NRVOFlag(nullptr), 2554 IsByRef(false), IsConstantAggregate(false), 2555 SizeForLifetimeMarkers(nullptr), AllocaAddr(Address::invalid()) {} 2556 2557 bool wasEmittedAsGlobal() const { return !Addr.isValid(); } 2558 2559 public: 2560 static AutoVarEmission invalid() { return AutoVarEmission(Invalid()); } 2561 2562 bool useLifetimeMarkers() const { 2563 return SizeForLifetimeMarkers != nullptr; 2564 } 2565 llvm::Value *getSizeForLifetimeMarkers() const { 2566 assert(useLifetimeMarkers()); 2567 return SizeForLifetimeMarkers; 2568 } 2569 2570 /// Returns the raw, allocated address, which is not necessarily 2571 /// the address of the object itself. It is casted to default 2572 /// address space for address space agnostic languages. 2573 Address getAllocatedAddress() const { 2574 return Addr; 2575 } 2576 2577 /// Returns the address for the original alloca instruction. 2578 Address getOriginalAllocatedAddress() const { return AllocaAddr; } 2579 2580 /// Returns the address of the object within this declaration. 2581 /// Note that this does not chase the forwarding pointer for 2582 /// __block decls. 2583 Address getObjectAddress(CodeGenFunction &CGF) const { 2584 if (!IsByRef) return Addr; 2585 2586 return CGF.emitBlockByrefAddress(Addr, Variable, /*forward*/ false); 2587 } 2588 }; 2589 AutoVarEmission EmitAutoVarAlloca(const VarDecl &var); 2590 void EmitAutoVarInit(const AutoVarEmission &emission); 2591 void EmitAutoVarCleanups(const AutoVarEmission &emission); 2592 void emitAutoVarTypeCleanup(const AutoVarEmission &emission, 2593 QualType::DestructionKind dtorKind); 2594 2595 /// Emits the alloca and debug information for the size expressions for each 2596 /// dimension of an array. It registers the association of its (1-dimensional) 2597 /// QualTypes and size expression's debug node, so that CGDebugInfo can 2598 /// reference this node when creating the DISubrange object to describe the 2599 /// array types. 2600 void EmitAndRegisterVariableArrayDimensions(CGDebugInfo *DI, 2601 const VarDecl &D, 2602 bool EmitDebugInfo); 2603 2604 void EmitStaticVarDecl(const VarDecl &D, 2605 llvm::GlobalValue::LinkageTypes Linkage); 2606 2607 class ParamValue { 2608 llvm::Value *Value; 2609 unsigned Alignment; 2610 ParamValue(llvm::Value *V, unsigned A) : Value(V), Alignment(A) {} 2611 public: 2612 static ParamValue forDirect(llvm::Value *value) { 2613 return ParamValue(value, 0); 2614 } 2615 static ParamValue forIndirect(Address addr) { 2616 assert(!addr.getAlignment().isZero()); 2617 return ParamValue(addr.getPointer(), addr.getAlignment().getQuantity()); 2618 } 2619 2620 bool isIndirect() const { return Alignment != 0; } 2621 llvm::Value *getAnyValue() const { return Value; } 2622 2623 llvm::Value *getDirectValue() const { 2624 assert(!isIndirect()); 2625 return Value; 2626 } 2627 2628 Address getIndirectAddress() const { 2629 assert(isIndirect()); 2630 return Address(Value, CharUnits::fromQuantity(Alignment)); 2631 } 2632 }; 2633 2634 /// EmitParmDecl - Emit a ParmVarDecl or an ImplicitParamDecl. 2635 void EmitParmDecl(const VarDecl &D, ParamValue Arg, unsigned ArgNo); 2636 2637 /// protectFromPeepholes - Protect a value that we're intending to 2638 /// store to the side, but which will probably be used later, from 2639 /// aggressive peepholing optimizations that might delete it. 2640 /// 2641 /// Pass the result to unprotectFromPeepholes to declare that 2642 /// protection is no longer required. 2643 /// 2644 /// There's no particular reason why this shouldn't apply to 2645 /// l-values, it's just that no existing peepholes work on pointers. 2646 PeepholeProtection protectFromPeepholes(RValue rvalue); 2647 void unprotectFromPeepholes(PeepholeProtection protection); 2648 2649 void EmitAlignmentAssumption(llvm::Value *PtrValue, llvm::Value *Alignment, 2650 llvm::Value *OffsetValue = nullptr) { 2651 Builder.CreateAlignmentAssumption(CGM.getDataLayout(), PtrValue, Alignment, 2652 OffsetValue); 2653 } 2654 2655 //===--------------------------------------------------------------------===// 2656 // Statement Emission 2657 //===--------------------------------------------------------------------===// 2658 2659 /// EmitStopPoint - Emit a debug stoppoint if we are emitting debug info. 2660 void EmitStopPoint(const Stmt *S); 2661 2662 /// EmitStmt - Emit the code for the statement \arg S. It is legal to call 2663 /// this function even if there is no current insertion point. 2664 /// 2665 /// This function may clear the current insertion point; callers should use 2666 /// EnsureInsertPoint if they wish to subsequently generate code without first 2667 /// calling EmitBlock, EmitBranch, or EmitStmt. 2668 void EmitStmt(const Stmt *S, ArrayRef<const Attr *> Attrs = None); 2669 2670 /// EmitSimpleStmt - Try to emit a "simple" statement which does not 2671 /// necessarily require an insertion point or debug information; typically 2672 /// because the statement amounts to a jump or a container of other 2673 /// statements. 2674 /// 2675 /// \return True if the statement was handled. 2676 bool EmitSimpleStmt(const Stmt *S); 2677 2678 Address EmitCompoundStmt(const CompoundStmt &S, bool GetLast = false, 2679 AggValueSlot AVS = AggValueSlot::ignored()); 2680 Address EmitCompoundStmtWithoutScope(const CompoundStmt &S, 2681 bool GetLast = false, 2682 AggValueSlot AVS = 2683 AggValueSlot::ignored()); 2684 2685 /// EmitLabel - Emit the block for the given label. It is legal to call this 2686 /// function even if there is no current insertion point. 2687 void EmitLabel(const LabelDecl *D); // helper for EmitLabelStmt. 2688 2689 void EmitLabelStmt(const LabelStmt &S); 2690 void EmitAttributedStmt(const AttributedStmt &S); 2691 void EmitGotoStmt(const GotoStmt &S); 2692 void EmitIndirectGotoStmt(const IndirectGotoStmt &S); 2693 void EmitIfStmt(const IfStmt &S); 2694 2695 void EmitWhileStmt(const WhileStmt &S, 2696 ArrayRef<const Attr *> Attrs = None); 2697 void EmitDoStmt(const DoStmt &S, ArrayRef<const Attr *> Attrs = None); 2698 void EmitForStmt(const ForStmt &S, 2699 ArrayRef<const Attr *> Attrs = None); 2700 void EmitReturnStmt(const ReturnStmt &S); 2701 void EmitDeclStmt(const DeclStmt &S); 2702 void EmitBreakStmt(const BreakStmt &S); 2703 void EmitContinueStmt(const ContinueStmt &S); 2704 void EmitSwitchStmt(const SwitchStmt &S); 2705 void EmitDefaultStmt(const DefaultStmt &S); 2706 void EmitCaseStmt(const CaseStmt &S); 2707 void EmitCaseStmtRange(const CaseStmt &S); 2708 void EmitAsmStmt(const AsmStmt &S); 2709 2710 void EmitObjCForCollectionStmt(const ObjCForCollectionStmt &S); 2711 void EmitObjCAtTryStmt(const ObjCAtTryStmt &S); 2712 void EmitObjCAtThrowStmt(const ObjCAtThrowStmt &S); 2713 void EmitObjCAtSynchronizedStmt(const ObjCAtSynchronizedStmt &S); 2714 void EmitObjCAutoreleasePoolStmt(const ObjCAutoreleasePoolStmt &S); 2715 2716 void EmitCoroutineBody(const CoroutineBodyStmt &S); 2717 void EmitCoreturnStmt(const CoreturnStmt &S); 2718 RValue EmitCoawaitExpr(const CoawaitExpr &E, 2719 AggValueSlot aggSlot = AggValueSlot::ignored(), 2720 bool ignoreResult = false); 2721 LValue EmitCoawaitLValue(const CoawaitExpr *E); 2722 RValue EmitCoyieldExpr(const CoyieldExpr &E, 2723 AggValueSlot aggSlot = AggValueSlot::ignored(), 2724 bool ignoreResult = false); 2725 LValue EmitCoyieldLValue(const CoyieldExpr *E); 2726 RValue EmitCoroutineIntrinsic(const CallExpr *E, unsigned int IID); 2727 2728 void EnterCXXTryStmt(const CXXTryStmt &S, bool IsFnTryBlock = false); 2729 void ExitCXXTryStmt(const CXXTryStmt &S, bool IsFnTryBlock = false); 2730 2731 void EmitCXXTryStmt(const CXXTryStmt &S); 2732 void EmitSEHTryStmt(const SEHTryStmt &S); 2733 void EmitSEHLeaveStmt(const SEHLeaveStmt &S); 2734 void EnterSEHTryStmt(const SEHTryStmt &S); 2735 void ExitSEHTryStmt(const SEHTryStmt &S); 2736 2737 void startOutlinedSEHHelper(CodeGenFunction &ParentCGF, bool IsFilter, 2738 const Stmt *OutlinedStmt); 2739 2740 llvm::Function *GenerateSEHFilterFunction(CodeGenFunction &ParentCGF, 2741 const SEHExceptStmt &Except); 2742 2743 llvm::Function *GenerateSEHFinallyFunction(CodeGenFunction &ParentCGF, 2744 const SEHFinallyStmt &Finally); 2745 2746 void EmitSEHExceptionCodeSave(CodeGenFunction &ParentCGF, 2747 llvm::Value *ParentFP, 2748 llvm::Value *EntryEBP); 2749 llvm::Value *EmitSEHExceptionCode(); 2750 llvm::Value *EmitSEHExceptionInfo(); 2751 llvm::Value *EmitSEHAbnormalTermination(); 2752 2753 /// Emit simple code for OpenMP directives in Simd-only mode. 2754 void EmitSimpleOMPExecutableDirective(const OMPExecutableDirective &D); 2755 2756 /// Scan the outlined statement for captures from the parent function. For 2757 /// each capture, mark the capture as escaped and emit a call to 2758 /// llvm.localrecover. Insert the localrecover result into the LocalDeclMap. 2759 void EmitCapturedLocals(CodeGenFunction &ParentCGF, const Stmt *OutlinedStmt, 2760 bool IsFilter); 2761 2762 /// Recovers the address of a local in a parent function. ParentVar is the 2763 /// address of the variable used in the immediate parent function. It can 2764 /// either be an alloca or a call to llvm.localrecover if there are nested 2765 /// outlined functions. ParentFP is the frame pointer of the outermost parent 2766 /// frame. 2767 Address recoverAddrOfEscapedLocal(CodeGenFunction &ParentCGF, 2768 Address ParentVar, 2769 llvm::Value *ParentFP); 2770 2771 void EmitCXXForRangeStmt(const CXXForRangeStmt &S, 2772 ArrayRef<const Attr *> Attrs = None); 2773 2774 /// Controls insertion of cancellation exit blocks in worksharing constructs. 2775 class OMPCancelStackRAII { 2776 CodeGenFunction &CGF; 2777 2778 public: 2779 OMPCancelStackRAII(CodeGenFunction &CGF, OpenMPDirectiveKind Kind, 2780 bool HasCancel) 2781 : CGF(CGF) { 2782 CGF.OMPCancelStack.enter(CGF, Kind, HasCancel); 2783 } 2784 ~OMPCancelStackRAII() { CGF.OMPCancelStack.exit(CGF); } 2785 }; 2786 2787 /// Returns calculated size of the specified type. 2788 llvm::Value *getTypeSize(QualType Ty); 2789 LValue InitCapturedStruct(const CapturedStmt &S); 2790 llvm::Function *EmitCapturedStmt(const CapturedStmt &S, CapturedRegionKind K); 2791 llvm::Function *GenerateCapturedStmtFunction(const CapturedStmt &S); 2792 Address GenerateCapturedStmtArgument(const CapturedStmt &S); 2793 llvm::Function *GenerateOpenMPCapturedStmtFunction(const CapturedStmt &S); 2794 void GenerateOpenMPCapturedVars(const CapturedStmt &S, 2795 SmallVectorImpl<llvm::Value *> &CapturedVars); 2796 void emitOMPSimpleStore(LValue LVal, RValue RVal, QualType RValTy, 2797 SourceLocation Loc); 2798 /// Perform element by element copying of arrays with type \a 2799 /// OriginalType from \a SrcAddr to \a DestAddr using copying procedure 2800 /// generated by \a CopyGen. 2801 /// 2802 /// \param DestAddr Address of the destination array. 2803 /// \param SrcAddr Address of the source array. 2804 /// \param OriginalType Type of destination and source arrays. 2805 /// \param CopyGen Copying procedure that copies value of single array element 2806 /// to another single array element. 2807 void EmitOMPAggregateAssign( 2808 Address DestAddr, Address SrcAddr, QualType OriginalType, 2809 const llvm::function_ref<void(Address, Address)> CopyGen); 2810 /// Emit proper copying of data from one variable to another. 2811 /// 2812 /// \param OriginalType Original type of the copied variables. 2813 /// \param DestAddr Destination address. 2814 /// \param SrcAddr Source address. 2815 /// \param DestVD Destination variable used in \a CopyExpr (for arrays, has 2816 /// type of the base array element). 2817 /// \param SrcVD Source variable used in \a CopyExpr (for arrays, has type of 2818 /// the base array element). 2819 /// \param Copy Actual copygin expression for copying data from \a SrcVD to \a 2820 /// DestVD. 2821 void EmitOMPCopy(QualType OriginalType, 2822 Address DestAddr, Address SrcAddr, 2823 const VarDecl *DestVD, const VarDecl *SrcVD, 2824 const Expr *Copy); 2825 /// Emit atomic update code for constructs: \a X = \a X \a BO \a E or 2826 /// \a X = \a E \a BO \a E. 2827 /// 2828 /// \param X Value to be updated. 2829 /// \param E Update value. 2830 /// \param BO Binary operation for update operation. 2831 /// \param IsXLHSInRHSPart true if \a X is LHS in RHS part of the update 2832 /// expression, false otherwise. 2833 /// \param AO Atomic ordering of the generated atomic instructions. 2834 /// \param CommonGen Code generator for complex expressions that cannot be 2835 /// expressed through atomicrmw instruction. 2836 /// \returns <true, OldAtomicValue> if simple 'atomicrmw' instruction was 2837 /// generated, <false, RValue::get(nullptr)> otherwise. 2838 std::pair<bool, RValue> EmitOMPAtomicSimpleUpdateExpr( 2839 LValue X, RValue E, BinaryOperatorKind BO, bool IsXLHSInRHSPart, 2840 llvm::AtomicOrdering AO, SourceLocation Loc, 2841 const llvm::function_ref<RValue(RValue)> CommonGen); 2842 bool EmitOMPFirstprivateClause(const OMPExecutableDirective &D, 2843 OMPPrivateScope &PrivateScope); 2844 void EmitOMPPrivateClause(const OMPExecutableDirective &D, 2845 OMPPrivateScope &PrivateScope); 2846 void EmitOMPUseDevicePtrClause( 2847 const OMPClause &C, OMPPrivateScope &PrivateScope, 2848 const llvm::DenseMap<const ValueDecl *, Address> &CaptureDeviceAddrMap); 2849 /// Emit code for copyin clause in \a D directive. The next code is 2850 /// generated at the start of outlined functions for directives: 2851 /// \code 2852 /// threadprivate_var1 = master_threadprivate_var1; 2853 /// operator=(threadprivate_var2, master_threadprivate_var2); 2854 /// ... 2855 /// __kmpc_barrier(&loc, global_tid); 2856 /// \endcode 2857 /// 2858 /// \param D OpenMP directive possibly with 'copyin' clause(s). 2859 /// \returns true if at least one copyin variable is found, false otherwise. 2860 bool EmitOMPCopyinClause(const OMPExecutableDirective &D); 2861 /// Emit initial code for lastprivate variables. If some variable is 2862 /// not also firstprivate, then the default initialization is used. Otherwise 2863 /// initialization of this variable is performed by EmitOMPFirstprivateClause 2864 /// method. 2865 /// 2866 /// \param D Directive that may have 'lastprivate' directives. 2867 /// \param PrivateScope Private scope for capturing lastprivate variables for 2868 /// proper codegen in internal captured statement. 2869 /// 2870 /// \returns true if there is at least one lastprivate variable, false 2871 /// otherwise. 2872 bool EmitOMPLastprivateClauseInit(const OMPExecutableDirective &D, 2873 OMPPrivateScope &PrivateScope); 2874 /// Emit final copying of lastprivate values to original variables at 2875 /// the end of the worksharing or simd directive. 2876 /// 2877 /// \param D Directive that has at least one 'lastprivate' directives. 2878 /// \param IsLastIterCond Boolean condition that must be set to 'i1 true' if 2879 /// it is the last iteration of the loop code in associated directive, or to 2880 /// 'i1 false' otherwise. If this item is nullptr, no final check is required. 2881 void EmitOMPLastprivateClauseFinal(const OMPExecutableDirective &D, 2882 bool NoFinals, 2883 llvm::Value *IsLastIterCond = nullptr); 2884 /// Emit initial code for linear clauses. 2885 void EmitOMPLinearClause(const OMPLoopDirective &D, 2886 CodeGenFunction::OMPPrivateScope &PrivateScope); 2887 /// Emit final code for linear clauses. 2888 /// \param CondGen Optional conditional code for final part of codegen for 2889 /// linear clause. 2890 void EmitOMPLinearClauseFinal( 2891 const OMPLoopDirective &D, 2892 const llvm::function_ref<llvm::Value *(CodeGenFunction &)> CondGen); 2893 /// Emit initial code for reduction variables. Creates reduction copies 2894 /// and initializes them with the values according to OpenMP standard. 2895 /// 2896 /// \param D Directive (possibly) with the 'reduction' clause. 2897 /// \param PrivateScope Private scope for capturing reduction variables for 2898 /// proper codegen in internal captured statement. 2899 /// 2900 void EmitOMPReductionClauseInit(const OMPExecutableDirective &D, 2901 OMPPrivateScope &PrivateScope); 2902 /// Emit final update of reduction values to original variables at 2903 /// the end of the directive. 2904 /// 2905 /// \param D Directive that has at least one 'reduction' directives. 2906 /// \param ReductionKind The kind of reduction to perform. 2907 void EmitOMPReductionClauseFinal(const OMPExecutableDirective &D, 2908 const OpenMPDirectiveKind ReductionKind); 2909 /// Emit initial code for linear variables. Creates private copies 2910 /// and initializes them with the values according to OpenMP standard. 2911 /// 2912 /// \param D Directive (possibly) with the 'linear' clause. 2913 /// \return true if at least one linear variable is found that should be 2914 /// initialized with the value of the original variable, false otherwise. 2915 bool EmitOMPLinearClauseInit(const OMPLoopDirective &D); 2916 2917 typedef const llvm::function_ref<void(CodeGenFunction & /*CGF*/, 2918 llvm::Value * /*OutlinedFn*/, 2919 const OMPTaskDataTy & /*Data*/)> 2920 TaskGenTy; 2921 void EmitOMPTaskBasedDirective(const OMPExecutableDirective &S, 2922 const OpenMPDirectiveKind CapturedRegion, 2923 const RegionCodeGenTy &BodyGen, 2924 const TaskGenTy &TaskGen, OMPTaskDataTy &Data); 2925 struct OMPTargetDataInfo { 2926 Address BasePointersArray = Address::invalid(); 2927 Address PointersArray = Address::invalid(); 2928 Address SizesArray = Address::invalid(); 2929 unsigned NumberOfTargetItems = 0; 2930 explicit OMPTargetDataInfo() = default; 2931 OMPTargetDataInfo(Address BasePointersArray, Address PointersArray, 2932 Address SizesArray, unsigned NumberOfTargetItems) 2933 : BasePointersArray(BasePointersArray), PointersArray(PointersArray), 2934 SizesArray(SizesArray), NumberOfTargetItems(NumberOfTargetItems) {} 2935 }; 2936 void EmitOMPTargetTaskBasedDirective(const OMPExecutableDirective &S, 2937 const RegionCodeGenTy &BodyGen, 2938 OMPTargetDataInfo &InputInfo); 2939 2940 void EmitOMPParallelDirective(const OMPParallelDirective &S); 2941 void EmitOMPSimdDirective(const OMPSimdDirective &S); 2942 void EmitOMPForDirective(const OMPForDirective &S); 2943 void EmitOMPForSimdDirective(const OMPForSimdDirective &S); 2944 void EmitOMPSectionsDirective(const OMPSectionsDirective &S); 2945 void EmitOMPSectionDirective(const OMPSectionDirective &S); 2946 void EmitOMPSingleDirective(const OMPSingleDirective &S); 2947 void EmitOMPMasterDirective(const OMPMasterDirective &S); 2948 void EmitOMPCriticalDirective(const OMPCriticalDirective &S); 2949 void EmitOMPParallelForDirective(const OMPParallelForDirective &S); 2950 void EmitOMPParallelForSimdDirective(const OMPParallelForSimdDirective &S); 2951 void EmitOMPParallelSectionsDirective(const OMPParallelSectionsDirective &S); 2952 void EmitOMPTaskDirective(const OMPTaskDirective &S); 2953 void EmitOMPTaskyieldDirective(const OMPTaskyieldDirective &S); 2954 void EmitOMPBarrierDirective(const OMPBarrierDirective &S); 2955 void EmitOMPTaskwaitDirective(const OMPTaskwaitDirective &S); 2956 void EmitOMPTaskgroupDirective(const OMPTaskgroupDirective &S); 2957 void EmitOMPFlushDirective(const OMPFlushDirective &S); 2958 void EmitOMPOrderedDirective(const OMPOrderedDirective &S); 2959 void EmitOMPAtomicDirective(const OMPAtomicDirective &S); 2960 void EmitOMPTargetDirective(const OMPTargetDirective &S); 2961 void EmitOMPTargetDataDirective(const OMPTargetDataDirective &S); 2962 void EmitOMPTargetEnterDataDirective(const OMPTargetEnterDataDirective &S); 2963 void EmitOMPTargetExitDataDirective(const OMPTargetExitDataDirective &S); 2964 void EmitOMPTargetUpdateDirective(const OMPTargetUpdateDirective &S); 2965 void EmitOMPTargetParallelDirective(const OMPTargetParallelDirective &S); 2966 void 2967 EmitOMPTargetParallelForDirective(const OMPTargetParallelForDirective &S); 2968 void EmitOMPTeamsDirective(const OMPTeamsDirective &S); 2969 void 2970 EmitOMPCancellationPointDirective(const OMPCancellationPointDirective &S); 2971 void EmitOMPCancelDirective(const OMPCancelDirective &S); 2972 void EmitOMPTaskLoopBasedDirective(const OMPLoopDirective &S); 2973 void EmitOMPTaskLoopDirective(const OMPTaskLoopDirective &S); 2974 void EmitOMPTaskLoopSimdDirective(const OMPTaskLoopSimdDirective &S); 2975 void EmitOMPDistributeDirective(const OMPDistributeDirective &S); 2976 void EmitOMPDistributeParallelForDirective( 2977 const OMPDistributeParallelForDirective &S); 2978 void EmitOMPDistributeParallelForSimdDirective( 2979 const OMPDistributeParallelForSimdDirective &S); 2980 void EmitOMPDistributeSimdDirective(const OMPDistributeSimdDirective &S); 2981 void EmitOMPTargetParallelForSimdDirective( 2982 const OMPTargetParallelForSimdDirective &S); 2983 void EmitOMPTargetSimdDirective(const OMPTargetSimdDirective &S); 2984 void EmitOMPTeamsDistributeDirective(const OMPTeamsDistributeDirective &S); 2985 void 2986 EmitOMPTeamsDistributeSimdDirective(const OMPTeamsDistributeSimdDirective &S); 2987 void EmitOMPTeamsDistributeParallelForSimdDirective( 2988 const OMPTeamsDistributeParallelForSimdDirective &S); 2989 void EmitOMPTeamsDistributeParallelForDirective( 2990 const OMPTeamsDistributeParallelForDirective &S); 2991 void EmitOMPTargetTeamsDirective(const OMPTargetTeamsDirective &S); 2992 void EmitOMPTargetTeamsDistributeDirective( 2993 const OMPTargetTeamsDistributeDirective &S); 2994 void EmitOMPTargetTeamsDistributeParallelForDirective( 2995 const OMPTargetTeamsDistributeParallelForDirective &S); 2996 void EmitOMPTargetTeamsDistributeParallelForSimdDirective( 2997 const OMPTargetTeamsDistributeParallelForSimdDirective &S); 2998 void EmitOMPTargetTeamsDistributeSimdDirective( 2999 const OMPTargetTeamsDistributeSimdDirective &S); 3000 3001 /// Emit device code for the target directive. 3002 static void EmitOMPTargetDeviceFunction(CodeGenModule &CGM, 3003 StringRef ParentName, 3004 const OMPTargetDirective &S); 3005 static void 3006 EmitOMPTargetParallelDeviceFunction(CodeGenModule &CGM, StringRef ParentName, 3007 const OMPTargetParallelDirective &S); 3008 /// Emit device code for the target parallel for directive. 3009 static void EmitOMPTargetParallelForDeviceFunction( 3010 CodeGenModule &CGM, StringRef ParentName, 3011 const OMPTargetParallelForDirective &S); 3012 /// Emit device code for the target parallel for simd directive. 3013 static void EmitOMPTargetParallelForSimdDeviceFunction( 3014 CodeGenModule &CGM, StringRef ParentName, 3015 const OMPTargetParallelForSimdDirective &S); 3016 /// Emit device code for the target teams directive. 3017 static void 3018 EmitOMPTargetTeamsDeviceFunction(CodeGenModule &CGM, StringRef ParentName, 3019 const OMPTargetTeamsDirective &S); 3020 /// Emit device code for the target teams distribute directive. 3021 static void EmitOMPTargetTeamsDistributeDeviceFunction( 3022 CodeGenModule &CGM, StringRef ParentName, 3023 const OMPTargetTeamsDistributeDirective &S); 3024 /// Emit device code for the target teams distribute simd directive. 3025 static void EmitOMPTargetTeamsDistributeSimdDeviceFunction( 3026 CodeGenModule &CGM, StringRef ParentName, 3027 const OMPTargetTeamsDistributeSimdDirective &S); 3028 /// Emit device code for the target simd directive. 3029 static void EmitOMPTargetSimdDeviceFunction(CodeGenModule &CGM, 3030 StringRef ParentName, 3031 const OMPTargetSimdDirective &S); 3032 /// Emit device code for the target teams distribute parallel for simd 3033 /// directive. 3034 static void EmitOMPTargetTeamsDistributeParallelForSimdDeviceFunction( 3035 CodeGenModule &CGM, StringRef ParentName, 3036 const OMPTargetTeamsDistributeParallelForSimdDirective &S); 3037 3038 static void EmitOMPTargetTeamsDistributeParallelForDeviceFunction( 3039 CodeGenModule &CGM, StringRef ParentName, 3040 const OMPTargetTeamsDistributeParallelForDirective &S); 3041 /// Emit inner loop of the worksharing/simd construct. 3042 /// 3043 /// \param S Directive, for which the inner loop must be emitted. 3044 /// \param RequiresCleanup true, if directive has some associated private 3045 /// variables. 3046 /// \param LoopCond Bollean condition for loop continuation. 3047 /// \param IncExpr Increment expression for loop control variable. 3048 /// \param BodyGen Generator for the inner body of the inner loop. 3049 /// \param PostIncGen Genrator for post-increment code (required for ordered 3050 /// loop directvies). 3051 void EmitOMPInnerLoop( 3052 const Stmt &S, bool RequiresCleanup, const Expr *LoopCond, 3053 const Expr *IncExpr, 3054 const llvm::function_ref<void(CodeGenFunction &)> BodyGen, 3055 const llvm::function_ref<void(CodeGenFunction &)> PostIncGen); 3056 3057 JumpDest getOMPCancelDestination(OpenMPDirectiveKind Kind); 3058 /// Emit initial code for loop counters of loop-based directives. 3059 void EmitOMPPrivateLoopCounters(const OMPLoopDirective &S, 3060 OMPPrivateScope &LoopScope); 3061 3062 /// Helper for the OpenMP loop directives. 3063 void EmitOMPLoopBody(const OMPLoopDirective &D, JumpDest LoopExit); 3064 3065 /// Emit code for the worksharing loop-based directive. 3066 /// \return true, if this construct has any lastprivate clause, false - 3067 /// otherwise. 3068 bool EmitOMPWorksharingLoop(const OMPLoopDirective &S, Expr *EUB, 3069 const CodeGenLoopBoundsTy &CodeGenLoopBounds, 3070 const CodeGenDispatchBoundsTy &CGDispatchBounds); 3071 3072 /// Emit code for the distribute loop-based directive. 3073 void EmitOMPDistributeLoop(const OMPLoopDirective &S, 3074 const CodeGenLoopTy &CodeGenLoop, Expr *IncExpr); 3075 3076 /// Helpers for the OpenMP loop directives. 3077 void EmitOMPSimdInit(const OMPLoopDirective &D, bool IsMonotonic = false); 3078 void EmitOMPSimdFinal( 3079 const OMPLoopDirective &D, 3080 const llvm::function_ref<llvm::Value *(CodeGenFunction &)> CondGen); 3081 3082 /// Emits the lvalue for the expression with possibly captured variable. 3083 LValue EmitOMPSharedLValue(const Expr *E); 3084 3085 private: 3086 /// Helpers for blocks. 3087 llvm::Value *EmitBlockLiteral(const CGBlockInfo &Info); 3088 3089 /// struct with the values to be passed to the OpenMP loop-related functions 3090 struct OMPLoopArguments { 3091 /// loop lower bound 3092 Address LB = Address::invalid(); 3093 /// loop upper bound 3094 Address UB = Address::invalid(); 3095 /// loop stride 3096 Address ST = Address::invalid(); 3097 /// isLastIteration argument for runtime functions 3098 Address IL = Address::invalid(); 3099 /// Chunk value generated by sema 3100 llvm::Value *Chunk = nullptr; 3101 /// EnsureUpperBound 3102 Expr *EUB = nullptr; 3103 /// IncrementExpression 3104 Expr *IncExpr = nullptr; 3105 /// Loop initialization 3106 Expr *Init = nullptr; 3107 /// Loop exit condition 3108 Expr *Cond = nullptr; 3109 /// Update of LB after a whole chunk has been executed 3110 Expr *NextLB = nullptr; 3111 /// Update of UB after a whole chunk has been executed 3112 Expr *NextUB = nullptr; 3113 OMPLoopArguments() = default; 3114 OMPLoopArguments(Address LB, Address UB, Address ST, Address IL, 3115 llvm::Value *Chunk = nullptr, Expr *EUB = nullptr, 3116 Expr *IncExpr = nullptr, Expr *Init = nullptr, 3117 Expr *Cond = nullptr, Expr *NextLB = nullptr, 3118 Expr *NextUB = nullptr) 3119 : LB(LB), UB(UB), ST(ST), IL(IL), Chunk(Chunk), EUB(EUB), 3120 IncExpr(IncExpr), Init(Init), Cond(Cond), NextLB(NextLB), 3121 NextUB(NextUB) {} 3122 }; 3123 void EmitOMPOuterLoop(bool DynamicOrOrdered, bool IsMonotonic, 3124 const OMPLoopDirective &S, OMPPrivateScope &LoopScope, 3125 const OMPLoopArguments &LoopArgs, 3126 const CodeGenLoopTy &CodeGenLoop, 3127 const CodeGenOrderedTy &CodeGenOrdered); 3128 void EmitOMPForOuterLoop(const OpenMPScheduleTy &ScheduleKind, 3129 bool IsMonotonic, const OMPLoopDirective &S, 3130 OMPPrivateScope &LoopScope, bool Ordered, 3131 const OMPLoopArguments &LoopArgs, 3132 const CodeGenDispatchBoundsTy &CGDispatchBounds); 3133 void EmitOMPDistributeOuterLoop(OpenMPDistScheduleClauseKind ScheduleKind, 3134 const OMPLoopDirective &S, 3135 OMPPrivateScope &LoopScope, 3136 const OMPLoopArguments &LoopArgs, 3137 const CodeGenLoopTy &CodeGenLoopContent); 3138 /// Emit code for sections directive. 3139 void EmitSections(const OMPExecutableDirective &S); 3140 3141 public: 3142 3143 //===--------------------------------------------------------------------===// 3144 // LValue Expression Emission 3145 //===--------------------------------------------------------------------===// 3146 3147 /// GetUndefRValue - Get an appropriate 'undef' rvalue for the given type. 3148 RValue GetUndefRValue(QualType Ty); 3149 3150 /// EmitUnsupportedRValue - Emit a dummy r-value using the type of E 3151 /// and issue an ErrorUnsupported style diagnostic (using the 3152 /// provided Name). 3153 RValue EmitUnsupportedRValue(const Expr *E, 3154 const char *Name); 3155 3156 /// EmitUnsupportedLValue - Emit a dummy l-value using the type of E and issue 3157 /// an ErrorUnsupported style diagnostic (using the provided Name). 3158 LValue EmitUnsupportedLValue(const Expr *E, 3159 const char *Name); 3160 3161 /// EmitLValue - Emit code to compute a designator that specifies the location 3162 /// of the expression. 3163 /// 3164 /// This can return one of two things: a simple address or a bitfield 3165 /// reference. In either case, the LLVM Value* in the LValue structure is 3166 /// guaranteed to be an LLVM pointer type. 3167 /// 3168 /// If this returns a bitfield reference, nothing about the pointee type of 3169 /// the LLVM value is known: For example, it may not be a pointer to an 3170 /// integer. 3171 /// 3172 /// If this returns a normal address, and if the lvalue's C type is fixed 3173 /// size, this method guarantees that the returned pointer type will point to 3174 /// an LLVM type of the same size of the lvalue's type. If the lvalue has a 3175 /// variable length type, this is not possible. 3176 /// 3177 LValue EmitLValue(const Expr *E); 3178 3179 /// Same as EmitLValue but additionally we generate checking code to 3180 /// guard against undefined behavior. This is only suitable when we know 3181 /// that the address will be used to access the object. 3182 LValue EmitCheckedLValue(const Expr *E, TypeCheckKind TCK); 3183 3184 RValue convertTempToRValue(Address addr, QualType type, 3185 SourceLocation Loc); 3186 3187 void EmitAtomicInit(Expr *E, LValue lvalue); 3188 3189 bool LValueIsSuitableForInlineAtomic(LValue Src); 3190 3191 RValue EmitAtomicLoad(LValue LV, SourceLocation SL, 3192 AggValueSlot Slot = AggValueSlot::ignored()); 3193 3194 RValue EmitAtomicLoad(LValue lvalue, SourceLocation loc, 3195 llvm::AtomicOrdering AO, bool IsVolatile = false, 3196 AggValueSlot slot = AggValueSlot::ignored()); 3197 3198 void EmitAtomicStore(RValue rvalue, LValue lvalue, bool isInit); 3199 3200 void EmitAtomicStore(RValue rvalue, LValue lvalue, llvm::AtomicOrdering AO, 3201 bool IsVolatile, bool isInit); 3202 3203 std::pair<RValue, llvm::Value *> EmitAtomicCompareExchange( 3204 LValue Obj, RValue Expected, RValue Desired, SourceLocation Loc, 3205 llvm::AtomicOrdering Success = 3206 llvm::AtomicOrdering::SequentiallyConsistent, 3207 llvm::AtomicOrdering Failure = 3208 llvm::AtomicOrdering::SequentiallyConsistent, 3209 bool IsWeak = false, AggValueSlot Slot = AggValueSlot::ignored()); 3210 3211 void EmitAtomicUpdate(LValue LVal, llvm::AtomicOrdering AO, 3212 const llvm::function_ref<RValue(RValue)> &UpdateOp, 3213 bool IsVolatile); 3214 3215 /// EmitToMemory - Change a scalar value from its value 3216 /// representation to its in-memory representation. 3217 llvm::Value *EmitToMemory(llvm::Value *Value, QualType Ty); 3218 3219 /// EmitFromMemory - Change a scalar value from its memory 3220 /// representation to its value representation. 3221 llvm::Value *EmitFromMemory(llvm::Value *Value, QualType Ty); 3222 3223 /// Check if the scalar \p Value is within the valid range for the given 3224 /// type \p Ty. 3225 /// 3226 /// Returns true if a check is needed (even if the range is unknown). 3227 bool EmitScalarRangeCheck(llvm::Value *Value, QualType Ty, 3228 SourceLocation Loc); 3229 3230 /// EmitLoadOfScalar - Load a scalar value from an address, taking 3231 /// care to appropriately convert from the memory representation to 3232 /// the LLVM value representation. 3233 llvm::Value *EmitLoadOfScalar(Address Addr, bool Volatile, QualType Ty, 3234 SourceLocation Loc, 3235 AlignmentSource Source = AlignmentSource::Type, 3236 bool isNontemporal = false) { 3237 return EmitLoadOfScalar(Addr, Volatile, Ty, Loc, LValueBaseInfo(Source), 3238 CGM.getTBAAAccessInfo(Ty), isNontemporal); 3239 } 3240 3241 llvm::Value *EmitLoadOfScalar(Address Addr, bool Volatile, QualType Ty, 3242 SourceLocation Loc, LValueBaseInfo BaseInfo, 3243 TBAAAccessInfo TBAAInfo, 3244 bool isNontemporal = false); 3245 3246 /// EmitLoadOfScalar - Load a scalar value from an address, taking 3247 /// care to appropriately convert from the memory representation to 3248 /// the LLVM value representation. The l-value must be a simple 3249 /// l-value. 3250 llvm::Value *EmitLoadOfScalar(LValue lvalue, SourceLocation Loc); 3251 3252 /// EmitStoreOfScalar - Store a scalar value to an address, taking 3253 /// care to appropriately convert from the memory representation to 3254 /// the LLVM value representation. 3255 void EmitStoreOfScalar(llvm::Value *Value, Address Addr, 3256 bool Volatile, QualType Ty, 3257 AlignmentSource Source = AlignmentSource::Type, 3258 bool isInit = false, bool isNontemporal = false) { 3259 EmitStoreOfScalar(Value, Addr, Volatile, Ty, LValueBaseInfo(Source), 3260 CGM.getTBAAAccessInfo(Ty), isInit, isNontemporal); 3261 } 3262 3263 void EmitStoreOfScalar(llvm::Value *Value, Address Addr, 3264 bool Volatile, QualType Ty, 3265 LValueBaseInfo BaseInfo, TBAAAccessInfo TBAAInfo, 3266 bool isInit = false, bool isNontemporal = false); 3267 3268 /// EmitStoreOfScalar - Store a scalar value to an address, taking 3269 /// care to appropriately convert from the memory representation to 3270 /// the LLVM value representation. The l-value must be a simple 3271 /// l-value. The isInit flag indicates whether this is an initialization. 3272 /// If so, atomic qualifiers are ignored and the store is always non-atomic. 3273 void EmitStoreOfScalar(llvm::Value *value, LValue lvalue, bool isInit=false); 3274 3275 /// EmitLoadOfLValue - Given an expression that represents a value lvalue, 3276 /// this method emits the address of the lvalue, then loads the result as an 3277 /// rvalue, returning the rvalue. 3278 RValue EmitLoadOfLValue(LValue V, SourceLocation Loc); 3279 RValue EmitLoadOfExtVectorElementLValue(LValue V); 3280 RValue EmitLoadOfBitfieldLValue(LValue LV, SourceLocation Loc); 3281 RValue EmitLoadOfGlobalRegLValue(LValue LV); 3282 3283 /// EmitStoreThroughLValue - Store the specified rvalue into the specified 3284 /// lvalue, where both are guaranteed to the have the same type, and that type 3285 /// is 'Ty'. 3286 void EmitStoreThroughLValue(RValue Src, LValue Dst, bool isInit = false); 3287 void EmitStoreThroughExtVectorComponentLValue(RValue Src, LValue Dst); 3288 void EmitStoreThroughGlobalRegLValue(RValue Src, LValue Dst); 3289 3290 /// EmitStoreThroughBitfieldLValue - Store Src into Dst with same constraints 3291 /// as EmitStoreThroughLValue. 3292 /// 3293 /// \param Result [out] - If non-null, this will be set to a Value* for the 3294 /// bit-field contents after the store, appropriate for use as the result of 3295 /// an assignment to the bit-field. 3296 void EmitStoreThroughBitfieldLValue(RValue Src, LValue Dst, 3297 llvm::Value **Result=nullptr); 3298 3299 /// Emit an l-value for an assignment (simple or compound) of complex type. 3300 LValue EmitComplexAssignmentLValue(const BinaryOperator *E); 3301 LValue EmitComplexCompoundAssignmentLValue(const CompoundAssignOperator *E); 3302 LValue EmitScalarCompoundAssignWithComplex(const CompoundAssignOperator *E, 3303 llvm::Value *&Result); 3304 3305 // Note: only available for agg return types 3306 LValue EmitBinaryOperatorLValue(const BinaryOperator *E); 3307 LValue EmitCompoundAssignmentLValue(const CompoundAssignOperator *E); 3308 // Note: only available for agg return types 3309 LValue EmitCallExprLValue(const CallExpr *E); 3310 // Note: only available for agg return types 3311 LValue EmitVAArgExprLValue(const VAArgExpr *E); 3312 LValue EmitDeclRefLValue(const DeclRefExpr *E); 3313 LValue EmitStringLiteralLValue(const StringLiteral *E); 3314 LValue EmitObjCEncodeExprLValue(const ObjCEncodeExpr *E); 3315 LValue EmitPredefinedLValue(const PredefinedExpr *E); 3316 LValue EmitUnaryOpLValue(const UnaryOperator *E); 3317 LValue EmitArraySubscriptExpr(const ArraySubscriptExpr *E, 3318 bool Accessed = false); 3319 LValue EmitOMPArraySectionExpr(const OMPArraySectionExpr *E, 3320 bool IsLowerBound = true); 3321 LValue EmitExtVectorElementExpr(const ExtVectorElementExpr *E); 3322 LValue EmitMemberExpr(const MemberExpr *E); 3323 LValue EmitObjCIsaExpr(const ObjCIsaExpr *E); 3324 LValue EmitCompoundLiteralLValue(const CompoundLiteralExpr *E); 3325 LValue EmitInitListLValue(const InitListExpr *E); 3326 LValue EmitConditionalOperatorLValue(const AbstractConditionalOperator *E); 3327 LValue EmitCastLValue(const CastExpr *E); 3328 LValue EmitMaterializeTemporaryExpr(const MaterializeTemporaryExpr *E); 3329 LValue EmitOpaqueValueLValue(const OpaqueValueExpr *e); 3330 3331 Address EmitExtVectorElementLValue(LValue V); 3332 3333 RValue EmitRValueForField(LValue LV, const FieldDecl *FD, SourceLocation Loc); 3334 3335 Address EmitArrayToPointerDecay(const Expr *Array, 3336 LValueBaseInfo *BaseInfo = nullptr, 3337 TBAAAccessInfo *TBAAInfo = nullptr); 3338 3339 class ConstantEmission { 3340 llvm::PointerIntPair<llvm::Constant*, 1, bool> ValueAndIsReference; 3341 ConstantEmission(llvm::Constant *C, bool isReference) 3342 : ValueAndIsReference(C, isReference) {} 3343 public: 3344 ConstantEmission() {} 3345 static ConstantEmission forReference(llvm::Constant *C) { 3346 return ConstantEmission(C, true); 3347 } 3348 static ConstantEmission forValue(llvm::Constant *C) { 3349 return ConstantEmission(C, false); 3350 } 3351 3352 explicit operator bool() const { 3353 return ValueAndIsReference.getOpaqueValue() != nullptr; 3354 } 3355 3356 bool isReference() const { return ValueAndIsReference.getInt(); } 3357 LValue getReferenceLValue(CodeGenFunction &CGF, Expr *refExpr) const { 3358 assert(isReference()); 3359 return CGF.MakeNaturalAlignAddrLValue(ValueAndIsReference.getPointer(), 3360 refExpr->getType()); 3361 } 3362 3363 llvm::Constant *getValue() const { 3364 assert(!isReference()); 3365 return ValueAndIsReference.getPointer(); 3366 } 3367 }; 3368 3369 ConstantEmission tryEmitAsConstant(DeclRefExpr *refExpr); 3370 ConstantEmission tryEmitAsConstant(const MemberExpr *ME); 3371 3372 RValue EmitPseudoObjectRValue(const PseudoObjectExpr *e, 3373 AggValueSlot slot = AggValueSlot::ignored()); 3374 LValue EmitPseudoObjectLValue(const PseudoObjectExpr *e); 3375 3376 llvm::Value *EmitIvarOffset(const ObjCInterfaceDecl *Interface, 3377 const ObjCIvarDecl *Ivar); 3378 LValue EmitLValueForField(LValue Base, const FieldDecl* Field); 3379 LValue EmitLValueForLambdaField(const FieldDecl *Field); 3380 3381 /// EmitLValueForFieldInitialization - Like EmitLValueForField, except that 3382 /// if the Field is a reference, this will return the address of the reference 3383 /// and not the address of the value stored in the reference. 3384 LValue EmitLValueForFieldInitialization(LValue Base, 3385 const FieldDecl* Field); 3386 3387 LValue EmitLValueForIvar(QualType ObjectTy, 3388 llvm::Value* Base, const ObjCIvarDecl *Ivar, 3389 unsigned CVRQualifiers); 3390 3391 LValue EmitCXXConstructLValue(const CXXConstructExpr *E); 3392 LValue EmitCXXBindTemporaryLValue(const CXXBindTemporaryExpr *E); 3393 LValue EmitLambdaLValue(const LambdaExpr *E); 3394 LValue EmitCXXTypeidLValue(const CXXTypeidExpr *E); 3395 LValue EmitCXXUuidofLValue(const CXXUuidofExpr *E); 3396 3397 LValue EmitObjCMessageExprLValue(const ObjCMessageExpr *E); 3398 LValue EmitObjCIvarRefLValue(const ObjCIvarRefExpr *E); 3399 LValue EmitStmtExprLValue(const StmtExpr *E); 3400 LValue EmitPointerToDataMemberBinaryExpr(const BinaryOperator *E); 3401 LValue EmitObjCSelectorLValue(const ObjCSelectorExpr *E); 3402 void EmitDeclRefExprDbgValue(const DeclRefExpr *E, const APValue &Init); 3403 3404 //===--------------------------------------------------------------------===// 3405 // Scalar Expression Emission 3406 //===--------------------------------------------------------------------===// 3407 3408 /// EmitCall - Generate a call of the given function, expecting the given 3409 /// result type, and using the given argument list which specifies both the 3410 /// LLVM arguments and the types they were derived from. 3411 RValue EmitCall(const CGFunctionInfo &CallInfo, const CGCallee &Callee, 3412 ReturnValueSlot ReturnValue, const CallArgList &Args, 3413 llvm::Instruction **callOrInvoke, SourceLocation Loc); 3414 RValue EmitCall(const CGFunctionInfo &CallInfo, const CGCallee &Callee, 3415 ReturnValueSlot ReturnValue, const CallArgList &Args, 3416 llvm::Instruction **callOrInvoke = nullptr) { 3417 return EmitCall(CallInfo, Callee, ReturnValue, Args, callOrInvoke, 3418 SourceLocation()); 3419 } 3420 RValue EmitCall(QualType FnType, const CGCallee &Callee, const CallExpr *E, 3421 ReturnValueSlot ReturnValue, llvm::Value *Chain = nullptr); 3422 RValue EmitCallExpr(const CallExpr *E, 3423 ReturnValueSlot ReturnValue = ReturnValueSlot()); 3424 RValue EmitSimpleCallExpr(const CallExpr *E, ReturnValueSlot ReturnValue); 3425 CGCallee EmitCallee(const Expr *E); 3426 3427 void checkTargetFeatures(const CallExpr *E, const FunctionDecl *TargetDecl); 3428 3429 llvm::CallInst *EmitRuntimeCall(llvm::Value *callee, 3430 const Twine &name = ""); 3431 llvm::CallInst *EmitRuntimeCall(llvm::Value *callee, 3432 ArrayRef<llvm::Value*> args, 3433 const Twine &name = ""); 3434 llvm::CallInst *EmitNounwindRuntimeCall(llvm::Value *callee, 3435 const Twine &name = ""); 3436 llvm::CallInst *EmitNounwindRuntimeCall(llvm::Value *callee, 3437 ArrayRef<llvm::Value*> args, 3438 const Twine &name = ""); 3439 3440 SmallVector<llvm::OperandBundleDef, 1> 3441 getBundlesForFunclet(llvm::Value *Callee); 3442 3443 llvm::CallSite EmitCallOrInvoke(llvm::Value *Callee, 3444 ArrayRef<llvm::Value *> Args, 3445 const Twine &Name = ""); 3446 llvm::CallSite EmitRuntimeCallOrInvoke(llvm::Value *callee, 3447 ArrayRef<llvm::Value*> args, 3448 const Twine &name = ""); 3449 llvm::CallSite EmitRuntimeCallOrInvoke(llvm::Value *callee, 3450 const Twine &name = ""); 3451 void EmitNoreturnRuntimeCallOrInvoke(llvm::Value *callee, 3452 ArrayRef<llvm::Value*> args); 3453 3454 CGCallee BuildAppleKextVirtualCall(const CXXMethodDecl *MD, 3455 NestedNameSpecifier *Qual, 3456 llvm::Type *Ty); 3457 3458 CGCallee BuildAppleKextVirtualDestructorCall(const CXXDestructorDecl *DD, 3459 CXXDtorType Type, 3460 const CXXRecordDecl *RD); 3461 3462 // These functions emit calls to the special functions of non-trivial C 3463 // structs. 3464 void defaultInitNonTrivialCStructVar(LValue Dst); 3465 void callCStructDefaultConstructor(LValue Dst); 3466 void callCStructDestructor(LValue Dst); 3467 void callCStructCopyConstructor(LValue Dst, LValue Src); 3468 void callCStructMoveConstructor(LValue Dst, LValue Src); 3469 void callCStructCopyAssignmentOperator(LValue Dst, LValue Src); 3470 void callCStructMoveAssignmentOperator(LValue Dst, LValue Src); 3471 3472 RValue 3473 EmitCXXMemberOrOperatorCall(const CXXMethodDecl *Method, 3474 const CGCallee &Callee, 3475 ReturnValueSlot ReturnValue, llvm::Value *This, 3476 llvm::Value *ImplicitParam, 3477 QualType ImplicitParamTy, const CallExpr *E, 3478 CallArgList *RtlArgs); 3479 RValue EmitCXXDestructorCall(const CXXDestructorDecl *DD, 3480 const CGCallee &Callee, 3481 llvm::Value *This, llvm::Value *ImplicitParam, 3482 QualType ImplicitParamTy, const CallExpr *E, 3483 StructorType Type); 3484 RValue EmitCXXMemberCallExpr(const CXXMemberCallExpr *E, 3485 ReturnValueSlot ReturnValue); 3486 RValue EmitCXXMemberOrOperatorMemberCallExpr(const CallExpr *CE, 3487 const CXXMethodDecl *MD, 3488 ReturnValueSlot ReturnValue, 3489 bool HasQualifier, 3490 NestedNameSpecifier *Qualifier, 3491 bool IsArrow, const Expr *Base); 3492 // Compute the object pointer. 3493 Address EmitCXXMemberDataPointerAddress(const Expr *E, Address base, 3494 llvm::Value *memberPtr, 3495 const MemberPointerType *memberPtrType, 3496 LValueBaseInfo *BaseInfo = nullptr, 3497 TBAAAccessInfo *TBAAInfo = nullptr); 3498 RValue EmitCXXMemberPointerCallExpr(const CXXMemberCallExpr *E, 3499 ReturnValueSlot ReturnValue); 3500 3501 RValue EmitCXXOperatorMemberCallExpr(const CXXOperatorCallExpr *E, 3502 const CXXMethodDecl *MD, 3503 ReturnValueSlot ReturnValue); 3504 RValue EmitCXXPseudoDestructorExpr(const CXXPseudoDestructorExpr *E); 3505 3506 RValue EmitCUDAKernelCallExpr(const CUDAKernelCallExpr *E, 3507 ReturnValueSlot ReturnValue); 3508 3509 RValue EmitNVPTXDevicePrintfCallExpr(const CallExpr *E, 3510 ReturnValueSlot ReturnValue); 3511 3512 RValue EmitBuiltinExpr(const FunctionDecl *FD, 3513 unsigned BuiltinID, const CallExpr *E, 3514 ReturnValueSlot ReturnValue); 3515 3516 /// Emit IR for __builtin_os_log_format. 3517 RValue emitBuiltinOSLogFormat(const CallExpr &E); 3518 3519 llvm::Function *generateBuiltinOSLogHelperFunction( 3520 const analyze_os_log::OSLogBufferLayout &Layout, 3521 CharUnits BufferAlignment); 3522 3523 RValue EmitBlockCallExpr(const CallExpr *E, ReturnValueSlot ReturnValue); 3524 3525 /// EmitTargetBuiltinExpr - Emit the given builtin call. Returns 0 if the call 3526 /// is unhandled by the current target. 3527 llvm::Value *EmitTargetBuiltinExpr(unsigned BuiltinID, const CallExpr *E); 3528 3529 llvm::Value *EmitAArch64CompareBuiltinExpr(llvm::Value *Op, llvm::Type *Ty, 3530 const llvm::CmpInst::Predicate Fp, 3531 const llvm::CmpInst::Predicate Ip, 3532 const llvm::Twine &Name = ""); 3533 llvm::Value *EmitARMBuiltinExpr(unsigned BuiltinID, const CallExpr *E, 3534 llvm::Triple::ArchType Arch); 3535 3536 llvm::Value *EmitCommonNeonBuiltinExpr(unsigned BuiltinID, 3537 unsigned LLVMIntrinsic, 3538 unsigned AltLLVMIntrinsic, 3539 const char *NameHint, 3540 unsigned Modifier, 3541 const CallExpr *E, 3542 SmallVectorImpl<llvm::Value *> &Ops, 3543 Address PtrOp0, Address PtrOp1, 3544 llvm::Triple::ArchType Arch); 3545 3546 llvm::Value *EmitISOVolatileLoad(const CallExpr *E); 3547 llvm::Value *EmitISOVolatileStore(const CallExpr *E); 3548 3549 llvm::Function *LookupNeonLLVMIntrinsic(unsigned IntrinsicID, 3550 unsigned Modifier, llvm::Type *ArgTy, 3551 const CallExpr *E); 3552 llvm::Value *EmitNeonCall(llvm::Function *F, 3553 SmallVectorImpl<llvm::Value*> &O, 3554 const char *name, 3555 unsigned shift = 0, bool rightshift = false); 3556 llvm::Value *EmitNeonSplat(llvm::Value *V, llvm::Constant *Idx); 3557 llvm::Value *EmitNeonShiftVector(llvm::Value *V, llvm::Type *Ty, 3558 bool negateForRightShift); 3559 llvm::Value *EmitNeonRShiftImm(llvm::Value *Vec, llvm::Value *Amt, 3560 llvm::Type *Ty, bool usgn, const char *name); 3561 llvm::Value *vectorWrapScalar16(llvm::Value *Op); 3562 llvm::Value *EmitAArch64BuiltinExpr(unsigned BuiltinID, const CallExpr *E, 3563 llvm::Triple::ArchType Arch); 3564 3565 llvm::Value *BuildVector(ArrayRef<llvm::Value*> Ops); 3566 llvm::Value *EmitX86BuiltinExpr(unsigned BuiltinID, const CallExpr *E); 3567 llvm::Value *EmitPPCBuiltinExpr(unsigned BuiltinID, const CallExpr *E); 3568 llvm::Value *EmitAMDGPUBuiltinExpr(unsigned BuiltinID, const CallExpr *E); 3569 llvm::Value *EmitSystemZBuiltinExpr(unsigned BuiltinID, const CallExpr *E); 3570 llvm::Value *EmitNVPTXBuiltinExpr(unsigned BuiltinID, const CallExpr *E); 3571 llvm::Value *EmitWebAssemblyBuiltinExpr(unsigned BuiltinID, 3572 const CallExpr *E); 3573 llvm::Value *EmitHexagonBuiltinExpr(unsigned BuiltinID, const CallExpr *E); 3574 3575 private: 3576 enum class MSVCIntrin; 3577 3578 public: 3579 llvm::Value *EmitMSVCBuiltinExpr(MSVCIntrin BuiltinID, const CallExpr *E); 3580 3581 llvm::Value *EmitBuiltinAvailable(ArrayRef<llvm::Value *> Args); 3582 3583 llvm::Value *EmitObjCProtocolExpr(const ObjCProtocolExpr *E); 3584 llvm::Value *EmitObjCStringLiteral(const ObjCStringLiteral *E); 3585 llvm::Value *EmitObjCBoxedExpr(const ObjCBoxedExpr *E); 3586 llvm::Value *EmitObjCArrayLiteral(const ObjCArrayLiteral *E); 3587 llvm::Value *EmitObjCDictionaryLiteral(const ObjCDictionaryLiteral *E); 3588 llvm::Value *EmitObjCCollectionLiteral(const Expr *E, 3589 const ObjCMethodDecl *MethodWithObjects); 3590 llvm::Value *EmitObjCSelectorExpr(const ObjCSelectorExpr *E); 3591 RValue EmitObjCMessageExpr(const ObjCMessageExpr *E, 3592 ReturnValueSlot Return = ReturnValueSlot()); 3593 3594 /// Retrieves the default cleanup kind for an ARC cleanup. 3595 /// Except under -fobjc-arc-eh, ARC cleanups are normal-only. 3596 CleanupKind getARCCleanupKind() { 3597 return CGM.getCodeGenOpts().ObjCAutoRefCountExceptions 3598 ? NormalAndEHCleanup : NormalCleanup; 3599 } 3600 3601 // ARC primitives. 3602 void EmitARCInitWeak(Address addr, llvm::Value *value); 3603 void EmitARCDestroyWeak(Address addr); 3604 llvm::Value *EmitARCLoadWeak(Address addr); 3605 llvm::Value *EmitARCLoadWeakRetained(Address addr); 3606 llvm::Value *EmitARCStoreWeak(Address addr, llvm::Value *value, bool ignored); 3607 void emitARCCopyAssignWeak(QualType Ty, Address DstAddr, Address SrcAddr); 3608 void emitARCMoveAssignWeak(QualType Ty, Address DstAddr, Address SrcAddr); 3609 void EmitARCCopyWeak(Address dst, Address src); 3610 void EmitARCMoveWeak(Address dst, Address src); 3611 llvm::Value *EmitARCRetainAutorelease(QualType type, llvm::Value *value); 3612 llvm::Value *EmitARCRetainAutoreleaseNonBlock(llvm::Value *value); 3613 llvm::Value *EmitARCStoreStrong(LValue lvalue, llvm::Value *value, 3614 bool resultIgnored); 3615 llvm::Value *EmitARCStoreStrongCall(Address addr, llvm::Value *value, 3616 bool resultIgnored); 3617 llvm::Value *EmitARCRetain(QualType type, llvm::Value *value); 3618 llvm::Value *EmitARCRetainNonBlock(llvm::Value *value); 3619 llvm::Value *EmitARCRetainBlock(llvm::Value *value, bool mandatory); 3620 void EmitARCDestroyStrong(Address addr, ARCPreciseLifetime_t precise); 3621 void EmitARCRelease(llvm::Value *value, ARCPreciseLifetime_t precise); 3622 llvm::Value *EmitARCAutorelease(llvm::Value *value); 3623 llvm::Value *EmitARCAutoreleaseReturnValue(llvm::Value *value); 3624 llvm::Value *EmitARCRetainAutoreleaseReturnValue(llvm::Value *value); 3625 llvm::Value *EmitARCRetainAutoreleasedReturnValue(llvm::Value *value); 3626 llvm::Value *EmitARCUnsafeClaimAutoreleasedReturnValue(llvm::Value *value); 3627 3628 std::pair<LValue,llvm::Value*> 3629 EmitARCStoreAutoreleasing(const BinaryOperator *e); 3630 std::pair<LValue,llvm::Value*> 3631 EmitARCStoreStrong(const BinaryOperator *e, bool ignored); 3632 std::pair<LValue,llvm::Value*> 3633 EmitARCStoreUnsafeUnretained(const BinaryOperator *e, bool ignored); 3634 3635 llvm::Value *EmitObjCThrowOperand(const Expr *expr); 3636 llvm::Value *EmitObjCConsumeObject(QualType T, llvm::Value *Ptr); 3637 llvm::Value *EmitObjCExtendObjectLifetime(QualType T, llvm::Value *Ptr); 3638 3639 llvm::Value *EmitARCExtendBlockObject(const Expr *expr); 3640 llvm::Value *EmitARCReclaimReturnedObject(const Expr *e, 3641 bool allowUnsafeClaim); 3642 llvm::Value *EmitARCRetainScalarExpr(const Expr *expr); 3643 llvm::Value *EmitARCRetainAutoreleaseScalarExpr(const Expr *expr); 3644 llvm::Value *EmitARCUnsafeUnretainedScalarExpr(const Expr *expr); 3645 3646 void EmitARCIntrinsicUse(ArrayRef<llvm::Value*> values); 3647 3648 static Destroyer destroyARCStrongImprecise; 3649 static Destroyer destroyARCStrongPrecise; 3650 static Destroyer destroyARCWeak; 3651 static Destroyer emitARCIntrinsicUse; 3652 static Destroyer destroyNonTrivialCStruct; 3653 3654 void EmitObjCAutoreleasePoolPop(llvm::Value *Ptr); 3655 llvm::Value *EmitObjCAutoreleasePoolPush(); 3656 llvm::Value *EmitObjCMRRAutoreleasePoolPush(); 3657 void EmitObjCAutoreleasePoolCleanup(llvm::Value *Ptr); 3658 void EmitObjCMRRAutoreleasePoolPop(llvm::Value *Ptr); 3659 3660 /// Emits a reference binding to the passed in expression. 3661 RValue EmitReferenceBindingToExpr(const Expr *E); 3662 3663 //===--------------------------------------------------------------------===// 3664 // Expression Emission 3665 //===--------------------------------------------------------------------===// 3666 3667 // Expressions are broken into three classes: scalar, complex, aggregate. 3668 3669 /// EmitScalarExpr - Emit the computation of the specified expression of LLVM 3670 /// scalar type, returning the result. 3671 llvm::Value *EmitScalarExpr(const Expr *E , bool IgnoreResultAssign = false); 3672 3673 /// Emit a conversion from the specified type to the specified destination 3674 /// type, both of which are LLVM scalar types. 3675 llvm::Value *EmitScalarConversion(llvm::Value *Src, QualType SrcTy, 3676 QualType DstTy, SourceLocation Loc); 3677 3678 /// Emit a conversion from the specified complex type to the specified 3679 /// destination type, where the destination type is an LLVM scalar type. 3680 llvm::Value *EmitComplexToScalarConversion(ComplexPairTy Src, QualType SrcTy, 3681 QualType DstTy, 3682 SourceLocation Loc); 3683 3684 /// EmitAggExpr - Emit the computation of the specified expression 3685 /// of aggregate type. The result is computed into the given slot, 3686 /// which may be null to indicate that the value is not needed. 3687 void EmitAggExpr(const Expr *E, AggValueSlot AS); 3688 3689 /// EmitAggExprToLValue - Emit the computation of the specified expression of 3690 /// aggregate type into a temporary LValue. 3691 LValue EmitAggExprToLValue(const Expr *E); 3692 3693 /// EmitExtendGCLifetime - Given a pointer to an Objective-C object, 3694 /// make sure it survives garbage collection until this point. 3695 void EmitExtendGCLifetime(llvm::Value *object); 3696 3697 /// EmitComplexExpr - Emit the computation of the specified expression of 3698 /// complex type, returning the result. 3699 ComplexPairTy EmitComplexExpr(const Expr *E, 3700 bool IgnoreReal = false, 3701 bool IgnoreImag = false); 3702 3703 /// EmitComplexExprIntoLValue - Emit the given expression of complex 3704 /// type and place its result into the specified l-value. 3705 void EmitComplexExprIntoLValue(const Expr *E, LValue dest, bool isInit); 3706 3707 /// EmitStoreOfComplex - Store a complex number into the specified l-value. 3708 void EmitStoreOfComplex(ComplexPairTy V, LValue dest, bool isInit); 3709 3710 /// EmitLoadOfComplex - Load a complex number from the specified l-value. 3711 ComplexPairTy EmitLoadOfComplex(LValue src, SourceLocation loc); 3712 3713 Address emitAddrOfRealComponent(Address complex, QualType complexType); 3714 Address emitAddrOfImagComponent(Address complex, QualType complexType); 3715 3716 /// AddInitializerToStaticVarDecl - Add the initializer for 'D' to the 3717 /// global variable that has already been created for it. If the initializer 3718 /// has a different type than GV does, this may free GV and return a different 3719 /// one. Otherwise it just returns GV. 3720 llvm::GlobalVariable * 3721 AddInitializerToStaticVarDecl(const VarDecl &D, 3722 llvm::GlobalVariable *GV); 3723 3724 3725 /// EmitCXXGlobalVarDeclInit - Create the initializer for a C++ 3726 /// variable with global storage. 3727 void EmitCXXGlobalVarDeclInit(const VarDecl &D, llvm::Constant *DeclPtr, 3728 bool PerformInit); 3729 3730 llvm::Constant *createAtExitStub(const VarDecl &VD, llvm::Constant *Dtor, 3731 llvm::Constant *Addr); 3732 3733 /// Call atexit() with a function that passes the given argument to 3734 /// the given function. 3735 void registerGlobalDtorWithAtExit(const VarDecl &D, llvm::Constant *fn, 3736 llvm::Constant *addr); 3737 3738 /// Call atexit() with function dtorStub. 3739 void registerGlobalDtorWithAtExit(llvm::Constant *dtorStub); 3740 3741 /// Emit code in this function to perform a guarded variable 3742 /// initialization. Guarded initializations are used when it's not 3743 /// possible to prove that an initialization will be done exactly 3744 /// once, e.g. with a static local variable or a static data member 3745 /// of a class template. 3746 void EmitCXXGuardedInit(const VarDecl &D, llvm::GlobalVariable *DeclPtr, 3747 bool PerformInit); 3748 3749 enum class GuardKind { VariableGuard, TlsGuard }; 3750 3751 /// Emit a branch to select whether or not to perform guarded initialization. 3752 void EmitCXXGuardedInitBranch(llvm::Value *NeedsInit, 3753 llvm::BasicBlock *InitBlock, 3754 llvm::BasicBlock *NoInitBlock, 3755 GuardKind Kind, const VarDecl *D); 3756 3757 /// GenerateCXXGlobalInitFunc - Generates code for initializing global 3758 /// variables. 3759 void GenerateCXXGlobalInitFunc(llvm::Function *Fn, 3760 ArrayRef<llvm::Function *> CXXThreadLocals, 3761 Address Guard = Address::invalid()); 3762 3763 /// GenerateCXXGlobalDtorsFunc - Generates code for destroying global 3764 /// variables. 3765 void GenerateCXXGlobalDtorsFunc( 3766 llvm::Function *Fn, 3767 const std::vector<std::pair<llvm::WeakTrackingVH, llvm::Constant *>> 3768 &DtorsAndObjects); 3769 3770 void GenerateCXXGlobalVarDeclInitFunc(llvm::Function *Fn, 3771 const VarDecl *D, 3772 llvm::GlobalVariable *Addr, 3773 bool PerformInit); 3774 3775 void EmitCXXConstructExpr(const CXXConstructExpr *E, AggValueSlot Dest); 3776 3777 void EmitSynthesizedCXXCopyCtor(Address Dest, Address Src, const Expr *Exp); 3778 3779 void enterFullExpression(const ExprWithCleanups *E) { 3780 if (E->getNumObjects() == 0) return; 3781 enterNonTrivialFullExpression(E); 3782 } 3783 void enterNonTrivialFullExpression(const ExprWithCleanups *E); 3784 3785 void EmitCXXThrowExpr(const CXXThrowExpr *E, bool KeepInsertionPoint = true); 3786 3787 void EmitLambdaExpr(const LambdaExpr *E, AggValueSlot Dest); 3788 3789 RValue EmitAtomicExpr(AtomicExpr *E); 3790 3791 //===--------------------------------------------------------------------===// 3792 // Annotations Emission 3793 //===--------------------------------------------------------------------===// 3794 3795 /// Emit an annotation call (intrinsic or builtin). 3796 llvm::Value *EmitAnnotationCall(llvm::Value *AnnotationFn, 3797 llvm::Value *AnnotatedVal, 3798 StringRef AnnotationStr, 3799 SourceLocation Location); 3800 3801 /// Emit local annotations for the local variable V, declared by D. 3802 void EmitVarAnnotations(const VarDecl *D, llvm::Value *V); 3803 3804 /// Emit field annotations for the given field & value. Returns the 3805 /// annotation result. 3806 Address EmitFieldAnnotations(const FieldDecl *D, Address V); 3807 3808 //===--------------------------------------------------------------------===// 3809 // Internal Helpers 3810 //===--------------------------------------------------------------------===// 3811 3812 /// ContainsLabel - Return true if the statement contains a label in it. If 3813 /// this statement is not executed normally, it not containing a label means 3814 /// that we can just remove the code. 3815 static bool ContainsLabel(const Stmt *S, bool IgnoreCaseStmts = false); 3816 3817 /// containsBreak - Return true if the statement contains a break out of it. 3818 /// If the statement (recursively) contains a switch or loop with a break 3819 /// inside of it, this is fine. 3820 static bool containsBreak(const Stmt *S); 3821 3822 /// Determine if the given statement might introduce a declaration into the 3823 /// current scope, by being a (possibly-labelled) DeclStmt. 3824 static bool mightAddDeclToScope(const Stmt *S); 3825 3826 /// ConstantFoldsToSimpleInteger - If the specified expression does not fold 3827 /// to a constant, or if it does but contains a label, return false. If it 3828 /// constant folds return true and set the boolean result in Result. 3829 bool ConstantFoldsToSimpleInteger(const Expr *Cond, bool &Result, 3830 bool AllowLabels = false); 3831 3832 /// ConstantFoldsToSimpleInteger - If the specified expression does not fold 3833 /// to a constant, or if it does but contains a label, return false. If it 3834 /// constant folds return true and set the folded value. 3835 bool ConstantFoldsToSimpleInteger(const Expr *Cond, llvm::APSInt &Result, 3836 bool AllowLabels = false); 3837 3838 /// EmitBranchOnBoolExpr - Emit a branch on a boolean condition (e.g. for an 3839 /// if statement) to the specified blocks. Based on the condition, this might 3840 /// try to simplify the codegen of the conditional based on the branch. 3841 /// TrueCount should be the number of times we expect the condition to 3842 /// evaluate to true based on PGO data. 3843 void EmitBranchOnBoolExpr(const Expr *Cond, llvm::BasicBlock *TrueBlock, 3844 llvm::BasicBlock *FalseBlock, uint64_t TrueCount); 3845 3846 /// Given an assignment `*LHS = RHS`, emit a test that checks if \p RHS is 3847 /// nonnull, if \p LHS is marked _Nonnull. 3848 void EmitNullabilityCheck(LValue LHS, llvm::Value *RHS, SourceLocation Loc); 3849 3850 /// An enumeration which makes it easier to specify whether or not an 3851 /// operation is a subtraction. 3852 enum { NotSubtraction = false, IsSubtraction = true }; 3853 3854 /// Same as IRBuilder::CreateInBoundsGEP, but additionally emits a check to 3855 /// detect undefined behavior when the pointer overflow sanitizer is enabled. 3856 /// \p SignedIndices indicates whether any of the GEP indices are signed. 3857 /// \p IsSubtraction indicates whether the expression used to form the GEP 3858 /// is a subtraction. 3859 llvm::Value *EmitCheckedInBoundsGEP(llvm::Value *Ptr, 3860 ArrayRef<llvm::Value *> IdxList, 3861 bool SignedIndices, 3862 bool IsSubtraction, 3863 SourceLocation Loc, 3864 const Twine &Name = ""); 3865 3866 /// Specifies which type of sanitizer check to apply when handling a 3867 /// particular builtin. 3868 enum BuiltinCheckKind { 3869 BCK_CTZPassedZero, 3870 BCK_CLZPassedZero, 3871 }; 3872 3873 /// Emits an argument for a call to a builtin. If the builtin sanitizer is 3874 /// enabled, a runtime check specified by \p Kind is also emitted. 3875 llvm::Value *EmitCheckedArgForBuiltin(const Expr *E, BuiltinCheckKind Kind); 3876 3877 /// Emit a description of a type in a format suitable for passing to 3878 /// a runtime sanitizer handler. 3879 llvm::Constant *EmitCheckTypeDescriptor(QualType T); 3880 3881 /// Convert a value into a format suitable for passing to a runtime 3882 /// sanitizer handler. 3883 llvm::Value *EmitCheckValue(llvm::Value *V); 3884 3885 /// Emit a description of a source location in a format suitable for 3886 /// passing to a runtime sanitizer handler. 3887 llvm::Constant *EmitCheckSourceLocation(SourceLocation Loc); 3888 3889 /// Create a basic block that will call a handler function in a 3890 /// sanitizer runtime with the provided arguments, and create a conditional 3891 /// branch to it. 3892 void EmitCheck(ArrayRef<std::pair<llvm::Value *, SanitizerMask>> Checked, 3893 SanitizerHandler Check, ArrayRef<llvm::Constant *> StaticArgs, 3894 ArrayRef<llvm::Value *> DynamicArgs); 3895 3896 /// Emit a slow path cross-DSO CFI check which calls __cfi_slowpath 3897 /// if Cond if false. 3898 void EmitCfiSlowPathCheck(SanitizerMask Kind, llvm::Value *Cond, 3899 llvm::ConstantInt *TypeId, llvm::Value *Ptr, 3900 ArrayRef<llvm::Constant *> StaticArgs); 3901 3902 /// Emit a reached-unreachable diagnostic if \p Loc is valid and runtime 3903 /// checking is enabled. Otherwise, just emit an unreachable instruction. 3904 void EmitUnreachable(SourceLocation Loc); 3905 3906 /// Create a basic block that will call the trap intrinsic, and emit a 3907 /// conditional branch to it, for the -ftrapv checks. 3908 void EmitTrapCheck(llvm::Value *Checked); 3909 3910 /// Emit a call to trap or debugtrap and attach function attribute 3911 /// "trap-func-name" if specified. 3912 llvm::CallInst *EmitTrapCall(llvm::Intrinsic::ID IntrID); 3913 3914 /// Emit a stub for the cross-DSO CFI check function. 3915 void EmitCfiCheckStub(); 3916 3917 /// Emit a cross-DSO CFI failure handling function. 3918 void EmitCfiCheckFail(); 3919 3920 /// Create a check for a function parameter that may potentially be 3921 /// declared as non-null. 3922 void EmitNonNullArgCheck(RValue RV, QualType ArgType, SourceLocation ArgLoc, 3923 AbstractCallee AC, unsigned ParmNum); 3924 3925 /// EmitCallArg - Emit a single call argument. 3926 void EmitCallArg(CallArgList &args, const Expr *E, QualType ArgType); 3927 3928 /// EmitDelegateCallArg - We are performing a delegate call; that 3929 /// is, the current function is delegating to another one. Produce 3930 /// a r-value suitable for passing the given parameter. 3931 void EmitDelegateCallArg(CallArgList &args, const VarDecl *param, 3932 SourceLocation loc); 3933 3934 /// SetFPAccuracy - Set the minimum required accuracy of the given floating 3935 /// point operation, expressed as the maximum relative error in ulp. 3936 void SetFPAccuracy(llvm::Value *Val, float Accuracy); 3937 3938 private: 3939 llvm::MDNode *getRangeForLoadFromType(QualType Ty); 3940 void EmitReturnOfRValue(RValue RV, QualType Ty); 3941 3942 void deferPlaceholderReplacement(llvm::Instruction *Old, llvm::Value *New); 3943 3944 llvm::SmallVector<std::pair<llvm::Instruction *, llvm::Value *>, 4> 3945 DeferredReplacements; 3946 3947 /// Set the address of a local variable. 3948 void setAddrOfLocalVar(const VarDecl *VD, Address Addr) { 3949 assert(!LocalDeclMap.count(VD) && "Decl already exists in LocalDeclMap!"); 3950 LocalDeclMap.insert({VD, Addr}); 3951 } 3952 3953 /// ExpandTypeFromArgs - Reconstruct a structure of type \arg Ty 3954 /// from function arguments into \arg Dst. See ABIArgInfo::Expand. 3955 /// 3956 /// \param AI - The first function argument of the expansion. 3957 void ExpandTypeFromArgs(QualType Ty, LValue Dst, 3958 SmallVectorImpl<llvm::Value *>::iterator &AI); 3959 3960 /// ExpandTypeToArgs - Expand an CallArg \arg Arg, with the LLVM type for \arg 3961 /// Ty, into individual arguments on the provided vector \arg IRCallArgs, 3962 /// starting at index \arg IRCallArgPos. See ABIArgInfo::Expand. 3963 void ExpandTypeToArgs(QualType Ty, CallArg Arg, llvm::FunctionType *IRFuncTy, 3964 SmallVectorImpl<llvm::Value *> &IRCallArgs, 3965 unsigned &IRCallArgPos); 3966 3967 llvm::Value* EmitAsmInput(const TargetInfo::ConstraintInfo &Info, 3968 const Expr *InputExpr, std::string &ConstraintStr); 3969 3970 llvm::Value* EmitAsmInputLValue(const TargetInfo::ConstraintInfo &Info, 3971 LValue InputValue, QualType InputType, 3972 std::string &ConstraintStr, 3973 SourceLocation Loc); 3974 3975 /// Attempts to statically evaluate the object size of E. If that 3976 /// fails, emits code to figure the size of E out for us. This is 3977 /// pass_object_size aware. 3978 /// 3979 /// If EmittedExpr is non-null, this will use that instead of re-emitting E. 3980 llvm::Value *evaluateOrEmitBuiltinObjectSize(const Expr *E, unsigned Type, 3981 llvm::IntegerType *ResType, 3982 llvm::Value *EmittedE); 3983 3984 /// Emits the size of E, as required by __builtin_object_size. This 3985 /// function is aware of pass_object_size parameters, and will act accordingly 3986 /// if E is a parameter with the pass_object_size attribute. 3987 llvm::Value *emitBuiltinObjectSize(const Expr *E, unsigned Type, 3988 llvm::IntegerType *ResType, 3989 llvm::Value *EmittedE); 3990 3991 public: 3992 #ifndef NDEBUG 3993 // Determine whether the given argument is an Objective-C method 3994 // that may have type parameters in its signature. 3995 static bool isObjCMethodWithTypeParams(const ObjCMethodDecl *method) { 3996 const DeclContext *dc = method->getDeclContext(); 3997 if (const ObjCInterfaceDecl *classDecl= dyn_cast<ObjCInterfaceDecl>(dc)) { 3998 return classDecl->getTypeParamListAsWritten(); 3999 } 4000 4001 if (const ObjCCategoryDecl *catDecl = dyn_cast<ObjCCategoryDecl>(dc)) { 4002 return catDecl->getTypeParamList(); 4003 } 4004 4005 return false; 4006 } 4007 4008 template<typename T> 4009 static bool isObjCMethodWithTypeParams(const T *) { return false; } 4010 #endif 4011 4012 enum class EvaluationOrder { 4013 ///! No language constraints on evaluation order. 4014 Default, 4015 ///! Language semantics require left-to-right evaluation. 4016 ForceLeftToRight, 4017 ///! Language semantics require right-to-left evaluation. 4018 ForceRightToLeft 4019 }; 4020 4021 /// EmitCallArgs - Emit call arguments for a function. 4022 template <typename T> 4023 void EmitCallArgs(CallArgList &Args, const T *CallArgTypeInfo, 4024 llvm::iterator_range<CallExpr::const_arg_iterator> ArgRange, 4025 AbstractCallee AC = AbstractCallee(), 4026 unsigned ParamsToSkip = 0, 4027 EvaluationOrder Order = EvaluationOrder::Default) { 4028 SmallVector<QualType, 16> ArgTypes; 4029 CallExpr::const_arg_iterator Arg = ArgRange.begin(); 4030 4031 assert((ParamsToSkip == 0 || CallArgTypeInfo) && 4032 "Can't skip parameters if type info is not provided"); 4033 if (CallArgTypeInfo) { 4034 #ifndef NDEBUG 4035 bool isGenericMethod = isObjCMethodWithTypeParams(CallArgTypeInfo); 4036 #endif 4037 4038 // First, use the argument types that the type info knows about 4039 for (auto I = CallArgTypeInfo->param_type_begin() + ParamsToSkip, 4040 E = CallArgTypeInfo->param_type_end(); 4041 I != E; ++I, ++Arg) { 4042 assert(Arg != ArgRange.end() && "Running over edge of argument list!"); 4043 assert((isGenericMethod || 4044 ((*I)->isVariablyModifiedType() || 4045 (*I).getNonReferenceType()->isObjCRetainableType() || 4046 getContext() 4047 .getCanonicalType((*I).getNonReferenceType()) 4048 .getTypePtr() == 4049 getContext() 4050 .getCanonicalType((*Arg)->getType()) 4051 .getTypePtr())) && 4052 "type mismatch in call argument!"); 4053 ArgTypes.push_back(*I); 4054 } 4055 } 4056 4057 // Either we've emitted all the call args, or we have a call to variadic 4058 // function. 4059 assert((Arg == ArgRange.end() || !CallArgTypeInfo || 4060 CallArgTypeInfo->isVariadic()) && 4061 "Extra arguments in non-variadic function!"); 4062 4063 // If we still have any arguments, emit them using the type of the argument. 4064 for (auto *A : llvm::make_range(Arg, ArgRange.end())) 4065 ArgTypes.push_back(CallArgTypeInfo ? getVarArgType(A) : A->getType()); 4066 4067 EmitCallArgs(Args, ArgTypes, ArgRange, AC, ParamsToSkip, Order); 4068 } 4069 4070 void EmitCallArgs(CallArgList &Args, ArrayRef<QualType> ArgTypes, 4071 llvm::iterator_range<CallExpr::const_arg_iterator> ArgRange, 4072 AbstractCallee AC = AbstractCallee(), 4073 unsigned ParamsToSkip = 0, 4074 EvaluationOrder Order = EvaluationOrder::Default); 4075 4076 /// EmitPointerWithAlignment - Given an expression with a pointer type, 4077 /// emit the value and compute our best estimate of the alignment of the 4078 /// pointee. 4079 /// 4080 /// \param BaseInfo - If non-null, this will be initialized with 4081 /// information about the source of the alignment and the may-alias 4082 /// attribute. Note that this function will conservatively fall back on 4083 /// the type when it doesn't recognize the expression and may-alias will 4084 /// be set to false. 4085 /// 4086 /// One reasonable way to use this information is when there's a language 4087 /// guarantee that the pointer must be aligned to some stricter value, and 4088 /// we're simply trying to ensure that sufficiently obvious uses of under- 4089 /// aligned objects don't get miscompiled; for example, a placement new 4090 /// into the address of a local variable. In such a case, it's quite 4091 /// reasonable to just ignore the returned alignment when it isn't from an 4092 /// explicit source. 4093 Address EmitPointerWithAlignment(const Expr *Addr, 4094 LValueBaseInfo *BaseInfo = nullptr, 4095 TBAAAccessInfo *TBAAInfo = nullptr); 4096 4097 /// If \p E references a parameter with pass_object_size info or a constant 4098 /// array size modifier, emit the object size divided by the size of \p EltTy. 4099 /// Otherwise return null. 4100 llvm::Value *LoadPassedObjectSize(const Expr *E, QualType EltTy); 4101 4102 void EmitSanitizerStatReport(llvm::SanitizerStatKind SSK); 4103 4104 struct MultiVersionResolverOption { 4105 llvm::Function *Function; 4106 TargetAttr::ParsedTargetAttr ParsedAttribute; 4107 unsigned Priority; 4108 MultiVersionResolverOption(const TargetInfo &TargInfo, llvm::Function *F, 4109 const clang::TargetAttr::ParsedTargetAttr &PT) 4110 : Function(F), ParsedAttribute(PT), Priority(0u) { 4111 for (StringRef Feat : PT.Features) 4112 Priority = std::max(Priority, 4113 TargInfo.multiVersionSortPriority(Feat.substr(1))); 4114 4115 if (!PT.Architecture.empty()) 4116 Priority = std::max(Priority, 4117 TargInfo.multiVersionSortPriority(PT.Architecture)); 4118 } 4119 4120 bool operator>(const MultiVersionResolverOption &Other) const { 4121 return Priority > Other.Priority; 4122 } 4123 }; 4124 void EmitMultiVersionResolver(llvm::Function *Resolver, 4125 ArrayRef<MultiVersionResolverOption> Options); 4126 4127 private: 4128 QualType getVarArgType(const Expr *Arg); 4129 4130 void EmitDeclMetadata(); 4131 4132 BlockByrefHelpers *buildByrefHelpers(llvm::StructType &byrefType, 4133 const AutoVarEmission &emission); 4134 4135 void AddObjCARCExceptionMetadata(llvm::Instruction *Inst); 4136 4137 llvm::Value *GetValueForARMHint(unsigned BuiltinID); 4138 llvm::Value *EmitX86CpuIs(const CallExpr *E); 4139 llvm::Value *EmitX86CpuIs(StringRef CPUStr); 4140 llvm::Value *EmitX86CpuSupports(const CallExpr *E); 4141 llvm::Value *EmitX86CpuSupports(ArrayRef<StringRef> FeatureStrs); 4142 llvm::Value *EmitX86CpuInit(); 4143 llvm::Value *FormResolverCondition(const MultiVersionResolverOption &RO); 4144 }; 4145 4146 /// Helper class with most of the code for saving a value for a 4147 /// conditional expression cleanup. 4148 struct DominatingLLVMValue { 4149 typedef llvm::PointerIntPair<llvm::Value*, 1, bool> saved_type; 4150 4151 /// Answer whether the given value needs extra work to be saved. 4152 static bool needsSaving(llvm::Value *value) { 4153 // If it's not an instruction, we don't need to save. 4154 if (!isa<llvm::Instruction>(value)) return false; 4155 4156 // If it's an instruction in the entry block, we don't need to save. 4157 llvm::BasicBlock *block = cast<llvm::Instruction>(value)->getParent(); 4158 return (block != &block->getParent()->getEntryBlock()); 4159 } 4160 4161 /// Try to save the given value. 4162 static saved_type save(CodeGenFunction &CGF, llvm::Value *value) { 4163 if (!needsSaving(value)) return saved_type(value, false); 4164 4165 // Otherwise, we need an alloca. 4166 auto align = CharUnits::fromQuantity( 4167 CGF.CGM.getDataLayout().getPrefTypeAlignment(value->getType())); 4168 Address alloca = 4169 CGF.CreateTempAlloca(value->getType(), align, "cond-cleanup.save"); 4170 CGF.Builder.CreateStore(value, alloca); 4171 4172 return saved_type(alloca.getPointer(), true); 4173 } 4174 4175 static llvm::Value *restore(CodeGenFunction &CGF, saved_type value) { 4176 // If the value says it wasn't saved, trust that it's still dominating. 4177 if (!value.getInt()) return value.getPointer(); 4178 4179 // Otherwise, it should be an alloca instruction, as set up in save(). 4180 auto alloca = cast<llvm::AllocaInst>(value.getPointer()); 4181 return CGF.Builder.CreateAlignedLoad(alloca, alloca->getAlignment()); 4182 } 4183 }; 4184 4185 /// A partial specialization of DominatingValue for llvm::Values that 4186 /// might be llvm::Instructions. 4187 template <class T> struct DominatingPointer<T,true> : DominatingLLVMValue { 4188 typedef T *type; 4189 static type restore(CodeGenFunction &CGF, saved_type value) { 4190 return static_cast<T*>(DominatingLLVMValue::restore(CGF, value)); 4191 } 4192 }; 4193 4194 /// A specialization of DominatingValue for Address. 4195 template <> struct DominatingValue<Address> { 4196 typedef Address type; 4197 4198 struct saved_type { 4199 DominatingLLVMValue::saved_type SavedValue; 4200 CharUnits Alignment; 4201 }; 4202 4203 static bool needsSaving(type value) { 4204 return DominatingLLVMValue::needsSaving(value.getPointer()); 4205 } 4206 static saved_type save(CodeGenFunction &CGF, type value) { 4207 return { DominatingLLVMValue::save(CGF, value.getPointer()), 4208 value.getAlignment() }; 4209 } 4210 static type restore(CodeGenFunction &CGF, saved_type value) { 4211 return Address(DominatingLLVMValue::restore(CGF, value.SavedValue), 4212 value.Alignment); 4213 } 4214 }; 4215 4216 /// A specialization of DominatingValue for RValue. 4217 template <> struct DominatingValue<RValue> { 4218 typedef RValue type; 4219 class saved_type { 4220 enum Kind { ScalarLiteral, ScalarAddress, AggregateLiteral, 4221 AggregateAddress, ComplexAddress }; 4222 4223 llvm::Value *Value; 4224 unsigned K : 3; 4225 unsigned Align : 29; 4226 saved_type(llvm::Value *v, Kind k, unsigned a = 0) 4227 : Value(v), K(k), Align(a) {} 4228 4229 public: 4230 static bool needsSaving(RValue value); 4231 static saved_type save(CodeGenFunction &CGF, RValue value); 4232 RValue restore(CodeGenFunction &CGF); 4233 4234 // implementations in CGCleanup.cpp 4235 }; 4236 4237 static bool needsSaving(type value) { 4238 return saved_type::needsSaving(value); 4239 } 4240 static saved_type save(CodeGenFunction &CGF, type value) { 4241 return saved_type::save(CGF, value); 4242 } 4243 static type restore(CodeGenFunction &CGF, saved_type value) { 4244 return value.restore(CGF); 4245 } 4246 }; 4247 4248 } // end namespace CodeGen 4249 } // end namespace clang 4250 4251 #endif 4252