1 //===-- CodeGenFunction.h - Per-Function state for LLVM CodeGen -*- C++ -*-===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This is the internal per-function state used for llvm translation.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #ifndef CLANG_CODEGEN_CODEGENFUNCTION_H
15 #define CLANG_CODEGEN_CODEGENFUNCTION_H
16 
17 #include "CGBuilder.h"
18 #include "CGDebugInfo.h"
19 #include "CGLoopInfo.h"
20 #include "CGValue.h"
21 #include "CodeGenModule.h"
22 #include "CodeGenPGO.h"
23 #include "EHScopeStack.h"
24 #include "clang/AST/CharUnits.h"
25 #include "clang/AST/ExprCXX.h"
26 #include "clang/AST/ExprObjC.h"
27 #include "clang/AST/Type.h"
28 #include "clang/Basic/ABI.h"
29 #include "clang/Basic/CapturedStmt.h"
30 #include "clang/Basic/TargetInfo.h"
31 #include "clang/Frontend/CodeGenOptions.h"
32 #include "llvm/ADT/ArrayRef.h"
33 #include "llvm/ADT/DenseMap.h"
34 #include "llvm/ADT/SmallVector.h"
35 #include "llvm/IR/ValueHandle.h"
36 #include "llvm/Support/Debug.h"
37 
38 namespace llvm {
39 class BasicBlock;
40 class LLVMContext;
41 class MDNode;
42 class Module;
43 class SwitchInst;
44 class Twine;
45 class Value;
46 class CallSite;
47 }
48 
49 namespace clang {
50 class ASTContext;
51 class BlockDecl;
52 class CXXDestructorDecl;
53 class CXXForRangeStmt;
54 class CXXTryStmt;
55 class Decl;
56 class LabelDecl;
57 class EnumConstantDecl;
58 class FunctionDecl;
59 class FunctionProtoType;
60 class LabelStmt;
61 class ObjCContainerDecl;
62 class ObjCInterfaceDecl;
63 class ObjCIvarDecl;
64 class ObjCMethodDecl;
65 class ObjCImplementationDecl;
66 class ObjCPropertyImplDecl;
67 class TargetInfo;
68 class TargetCodeGenInfo;
69 class VarDecl;
70 class ObjCForCollectionStmt;
71 class ObjCAtTryStmt;
72 class ObjCAtThrowStmt;
73 class ObjCAtSynchronizedStmt;
74 class ObjCAutoreleasePoolStmt;
75 
76 namespace CodeGen {
77 class CodeGenTypes;
78 class CGFunctionInfo;
79 class CGRecordLayout;
80 class CGBlockInfo;
81 class CGCXXABI;
82 class BlockFlags;
83 class BlockFieldFlags;
84 
85 /// The kind of evaluation to perform on values of a particular
86 /// type.  Basically, is the code in CGExprScalar, CGExprComplex, or
87 /// CGExprAgg?
88 ///
89 /// TODO: should vectors maybe be split out into their own thing?
90 enum TypeEvaluationKind {
91   TEK_Scalar,
92   TEK_Complex,
93   TEK_Aggregate
94 };
95 
96 class SuppressDebugLocation {
97   llvm::DebugLoc CurLoc;
98   llvm::IRBuilderBase &Builder;
99 public:
100   SuppressDebugLocation(llvm::IRBuilderBase &Builder)
101       : CurLoc(Builder.getCurrentDebugLocation()), Builder(Builder) {
102     Builder.SetCurrentDebugLocation(llvm::DebugLoc());
103   }
104   ~SuppressDebugLocation() {
105     Builder.SetCurrentDebugLocation(CurLoc);
106   }
107 };
108 
109 /// CodeGenFunction - This class organizes the per-function state that is used
110 /// while generating LLVM code.
111 class CodeGenFunction : public CodeGenTypeCache {
112   CodeGenFunction(const CodeGenFunction &) LLVM_DELETED_FUNCTION;
113   void operator=(const CodeGenFunction &) LLVM_DELETED_FUNCTION;
114 
115   friend class CGCXXABI;
116 public:
117   /// A jump destination is an abstract label, branching to which may
118   /// require a jump out through normal cleanups.
119   struct JumpDest {
120     JumpDest() : Block(nullptr), ScopeDepth(), Index(0) {}
121     JumpDest(llvm::BasicBlock *Block,
122              EHScopeStack::stable_iterator Depth,
123              unsigned Index)
124       : Block(Block), ScopeDepth(Depth), Index(Index) {}
125 
126     bool isValid() const { return Block != nullptr; }
127     llvm::BasicBlock *getBlock() const { return Block; }
128     EHScopeStack::stable_iterator getScopeDepth() const { return ScopeDepth; }
129     unsigned getDestIndex() const { return Index; }
130 
131     // This should be used cautiously.
132     void setScopeDepth(EHScopeStack::stable_iterator depth) {
133       ScopeDepth = depth;
134     }
135 
136   private:
137     llvm::BasicBlock *Block;
138     EHScopeStack::stable_iterator ScopeDepth;
139     unsigned Index;
140   };
141 
142   CodeGenModule &CGM;  // Per-module state.
143   const TargetInfo &Target;
144 
145   typedef std::pair<llvm::Value *, llvm::Value *> ComplexPairTy;
146   LoopInfoStack LoopStack;
147   CGBuilderTy Builder;
148 
149   /// \brief CGBuilder insert helper. This function is called after an
150   /// instruction is created using Builder.
151   void InsertHelper(llvm::Instruction *I, const llvm::Twine &Name,
152                     llvm::BasicBlock *BB,
153                     llvm::BasicBlock::iterator InsertPt) const;
154 
155   /// CurFuncDecl - Holds the Decl for the current outermost
156   /// non-closure context.
157   const Decl *CurFuncDecl;
158   /// CurCodeDecl - This is the inner-most code context, which includes blocks.
159   const Decl *CurCodeDecl;
160   const CGFunctionInfo *CurFnInfo;
161   QualType FnRetTy;
162   llvm::Function *CurFn;
163 
164   /// CurGD - The GlobalDecl for the current function being compiled.
165   GlobalDecl CurGD;
166 
167   /// PrologueCleanupDepth - The cleanup depth enclosing all the
168   /// cleanups associated with the parameters.
169   EHScopeStack::stable_iterator PrologueCleanupDepth;
170 
171   /// ReturnBlock - Unified return block.
172   JumpDest ReturnBlock;
173 
174   /// ReturnValue - The temporary alloca to hold the return value. This is null
175   /// iff the function has no return value.
176   llvm::Value *ReturnValue;
177 
178   /// AllocaInsertPoint - This is an instruction in the entry block before which
179   /// we prefer to insert allocas.
180   llvm::AssertingVH<llvm::Instruction> AllocaInsertPt;
181 
182   /// \brief API for captured statement code generation.
183   class CGCapturedStmtInfo {
184   public:
185     explicit CGCapturedStmtInfo(const CapturedStmt &S,
186                                 CapturedRegionKind K = CR_Default)
187       : Kind(K), ThisValue(nullptr), CXXThisFieldDecl(nullptr) {
188 
189       RecordDecl::field_iterator Field =
190         S.getCapturedRecordDecl()->field_begin();
191       for (CapturedStmt::const_capture_iterator I = S.capture_begin(),
192                                                 E = S.capture_end();
193            I != E; ++I, ++Field) {
194         if (I->capturesThis())
195           CXXThisFieldDecl = *Field;
196         else
197           CaptureFields[I->getCapturedVar()] = *Field;
198       }
199     }
200 
201     virtual ~CGCapturedStmtInfo();
202 
203     CapturedRegionKind getKind() const { return Kind; }
204 
205     void setContextValue(llvm::Value *V) { ThisValue = V; }
206     // \brief Retrieve the value of the context parameter.
207     llvm::Value *getContextValue() const { return ThisValue; }
208 
209     /// \brief Lookup the captured field decl for a variable.
210     const FieldDecl *lookup(const VarDecl *VD) const {
211       return CaptureFields.lookup(VD);
212     }
213 
214     bool isCXXThisExprCaptured() const { return CXXThisFieldDecl != nullptr; }
215     FieldDecl *getThisFieldDecl() const { return CXXThisFieldDecl; }
216 
217     /// \brief Emit the captured statement body.
218     virtual void EmitBody(CodeGenFunction &CGF, Stmt *S) {
219       RegionCounter Cnt = CGF.getPGORegionCounter(S);
220       Cnt.beginRegion(CGF.Builder);
221       CGF.EmitStmt(S);
222     }
223 
224     /// \brief Get the name of the capture helper.
225     virtual StringRef getHelperName() const { return "__captured_stmt"; }
226 
227   private:
228     /// \brief The kind of captured statement being generated.
229     CapturedRegionKind Kind;
230 
231     /// \brief Keep the map between VarDecl and FieldDecl.
232     llvm::SmallDenseMap<const VarDecl *, FieldDecl *> CaptureFields;
233 
234     /// \brief The base address of the captured record, passed in as the first
235     /// argument of the parallel region function.
236     llvm::Value *ThisValue;
237 
238     /// \brief Captured 'this' type.
239     FieldDecl *CXXThisFieldDecl;
240   };
241   CGCapturedStmtInfo *CapturedStmtInfo;
242 
243   /// BoundsChecking - Emit run-time bounds checks. Higher values mean
244   /// potentially higher performance penalties.
245   unsigned char BoundsChecking;
246 
247   /// \brief Sanitizer options to use for this function.
248   const SanitizerOptions *SanOpts;
249 
250   /// In ARC, whether we should autorelease the return value.
251   bool AutoreleaseResult;
252 
253   const CodeGen::CGBlockInfo *BlockInfo;
254   llvm::Value *BlockPointer;
255 
256   llvm::DenseMap<const VarDecl *, FieldDecl *> LambdaCaptureFields;
257   FieldDecl *LambdaThisCaptureField;
258 
259   /// \brief A mapping from NRVO variables to the flags used to indicate
260   /// when the NRVO has been applied to this variable.
261   llvm::DenseMap<const VarDecl *, llvm::Value *> NRVOFlags;
262 
263   EHScopeStack EHStack;
264   llvm::SmallVector<char, 256> LifetimeExtendedCleanupStack;
265 
266   /// Header for data within LifetimeExtendedCleanupStack.
267   struct LifetimeExtendedCleanupHeader {
268     /// The size of the following cleanup object.
269     size_t Size : 29;
270     /// The kind of cleanup to push: a value from the CleanupKind enumeration.
271     unsigned Kind : 3;
272 
273     size_t getSize() const { return Size; }
274     CleanupKind getKind() const { return static_cast<CleanupKind>(Kind); }
275   };
276 
277   /// i32s containing the indexes of the cleanup destinations.
278   llvm::AllocaInst *NormalCleanupDest;
279 
280   unsigned NextCleanupDestIndex;
281 
282   /// FirstBlockInfo - The head of a singly-linked-list of block layouts.
283   CGBlockInfo *FirstBlockInfo;
284 
285   /// EHResumeBlock - Unified block containing a call to llvm.eh.resume.
286   llvm::BasicBlock *EHResumeBlock;
287 
288   /// The exception slot.  All landing pads write the current exception pointer
289   /// into this alloca.
290   llvm::Value *ExceptionSlot;
291 
292   /// The selector slot.  Under the MandatoryCleanup model, all landing pads
293   /// write the current selector value into this alloca.
294   llvm::AllocaInst *EHSelectorSlot;
295 
296   /// Emits a landing pad for the current EH stack.
297   llvm::BasicBlock *EmitLandingPad();
298 
299   llvm::BasicBlock *getInvokeDestImpl();
300 
301   template <class T>
302   typename DominatingValue<T>::saved_type saveValueInCond(T value) {
303     return DominatingValue<T>::save(*this, value);
304   }
305 
306 public:
307   /// ObjCEHValueStack - Stack of Objective-C exception values, used for
308   /// rethrows.
309   SmallVector<llvm::Value*, 8> ObjCEHValueStack;
310 
311   /// A class controlling the emission of a finally block.
312   class FinallyInfo {
313     /// Where the catchall's edge through the cleanup should go.
314     JumpDest RethrowDest;
315 
316     /// A function to call to enter the catch.
317     llvm::Constant *BeginCatchFn;
318 
319     /// An i1 variable indicating whether or not the @finally is
320     /// running for an exception.
321     llvm::AllocaInst *ForEHVar;
322 
323     /// An i8* variable into which the exception pointer to rethrow
324     /// has been saved.
325     llvm::AllocaInst *SavedExnVar;
326 
327   public:
328     void enter(CodeGenFunction &CGF, const Stmt *Finally,
329                llvm::Constant *beginCatchFn, llvm::Constant *endCatchFn,
330                llvm::Constant *rethrowFn);
331     void exit(CodeGenFunction &CGF);
332   };
333 
334   /// pushFullExprCleanup - Push a cleanup to be run at the end of the
335   /// current full-expression.  Safe against the possibility that
336   /// we're currently inside a conditionally-evaluated expression.
337   template <class T, class A0>
338   void pushFullExprCleanup(CleanupKind kind, A0 a0) {
339     // If we're not in a conditional branch, or if none of the
340     // arguments requires saving, then use the unconditional cleanup.
341     if (!isInConditionalBranch())
342       return EHStack.pushCleanup<T>(kind, a0);
343 
344     typename DominatingValue<A0>::saved_type a0_saved = saveValueInCond(a0);
345 
346     typedef EHScopeStack::ConditionalCleanup1<T, A0> CleanupType;
347     EHStack.pushCleanup<CleanupType>(kind, a0_saved);
348     initFullExprCleanup();
349   }
350 
351   /// pushFullExprCleanup - Push a cleanup to be run at the end of the
352   /// current full-expression.  Safe against the possibility that
353   /// we're currently inside a conditionally-evaluated expression.
354   template <class T, class A0, class A1>
355   void pushFullExprCleanup(CleanupKind kind, A0 a0, A1 a1) {
356     // If we're not in a conditional branch, or if none of the
357     // arguments requires saving, then use the unconditional cleanup.
358     if (!isInConditionalBranch())
359       return EHStack.pushCleanup<T>(kind, a0, a1);
360 
361     typename DominatingValue<A0>::saved_type a0_saved = saveValueInCond(a0);
362     typename DominatingValue<A1>::saved_type a1_saved = saveValueInCond(a1);
363 
364     typedef EHScopeStack::ConditionalCleanup2<T, A0, A1> CleanupType;
365     EHStack.pushCleanup<CleanupType>(kind, a0_saved, a1_saved);
366     initFullExprCleanup();
367   }
368 
369   /// pushFullExprCleanup - Push a cleanup to be run at the end of the
370   /// current full-expression.  Safe against the possibility that
371   /// we're currently inside a conditionally-evaluated expression.
372   template <class T, class A0, class A1, class A2>
373   void pushFullExprCleanup(CleanupKind kind, A0 a0, A1 a1, A2 a2) {
374     // If we're not in a conditional branch, or if none of the
375     // arguments requires saving, then use the unconditional cleanup.
376     if (!isInConditionalBranch()) {
377       return EHStack.pushCleanup<T>(kind, a0, a1, a2);
378     }
379 
380     typename DominatingValue<A0>::saved_type a0_saved = saveValueInCond(a0);
381     typename DominatingValue<A1>::saved_type a1_saved = saveValueInCond(a1);
382     typename DominatingValue<A2>::saved_type a2_saved = saveValueInCond(a2);
383 
384     typedef EHScopeStack::ConditionalCleanup3<T, A0, A1, A2> CleanupType;
385     EHStack.pushCleanup<CleanupType>(kind, a0_saved, a1_saved, a2_saved);
386     initFullExprCleanup();
387   }
388 
389   /// pushFullExprCleanup - Push a cleanup to be run at the end of the
390   /// current full-expression.  Safe against the possibility that
391   /// we're currently inside a conditionally-evaluated expression.
392   template <class T, class A0, class A1, class A2, class A3>
393   void pushFullExprCleanup(CleanupKind kind, A0 a0, A1 a1, A2 a2, A3 a3) {
394     // If we're not in a conditional branch, or if none of the
395     // arguments requires saving, then use the unconditional cleanup.
396     if (!isInConditionalBranch()) {
397       return EHStack.pushCleanup<T>(kind, a0, a1, a2, a3);
398     }
399 
400     typename DominatingValue<A0>::saved_type a0_saved = saveValueInCond(a0);
401     typename DominatingValue<A1>::saved_type a1_saved = saveValueInCond(a1);
402     typename DominatingValue<A2>::saved_type a2_saved = saveValueInCond(a2);
403     typename DominatingValue<A3>::saved_type a3_saved = saveValueInCond(a3);
404 
405     typedef EHScopeStack::ConditionalCleanup4<T, A0, A1, A2, A3> CleanupType;
406     EHStack.pushCleanup<CleanupType>(kind, a0_saved, a1_saved,
407                                      a2_saved, a3_saved);
408     initFullExprCleanup();
409   }
410 
411   /// \brief Queue a cleanup to be pushed after finishing the current
412   /// full-expression.
413   template <class T, class A0, class A1, class A2, class A3>
414   void pushCleanupAfterFullExpr(CleanupKind Kind, A0 a0, A1 a1, A2 a2, A3 a3) {
415     assert(!isInConditionalBranch() && "can't defer conditional cleanup");
416 
417     LifetimeExtendedCleanupHeader Header = { sizeof(T), Kind };
418 
419     size_t OldSize = LifetimeExtendedCleanupStack.size();
420     LifetimeExtendedCleanupStack.resize(
421         LifetimeExtendedCleanupStack.size() + sizeof(Header) + Header.Size);
422 
423     char *Buffer = &LifetimeExtendedCleanupStack[OldSize];
424     new (Buffer) LifetimeExtendedCleanupHeader(Header);
425     new (Buffer + sizeof(Header)) T(a0, a1, a2, a3);
426   }
427 
428   /// Set up the last cleaup that was pushed as a conditional
429   /// full-expression cleanup.
430   void initFullExprCleanup();
431 
432   /// PushDestructorCleanup - Push a cleanup to call the
433   /// complete-object destructor of an object of the given type at the
434   /// given address.  Does nothing if T is not a C++ class type with a
435   /// non-trivial destructor.
436   void PushDestructorCleanup(QualType T, llvm::Value *Addr);
437 
438   /// PushDestructorCleanup - Push a cleanup to call the
439   /// complete-object variant of the given destructor on the object at
440   /// the given address.
441   void PushDestructorCleanup(const CXXDestructorDecl *Dtor,
442                              llvm::Value *Addr);
443 
444   /// PopCleanupBlock - Will pop the cleanup entry on the stack and
445   /// process all branch fixups.
446   void PopCleanupBlock(bool FallThroughIsBranchThrough = false);
447 
448   /// DeactivateCleanupBlock - Deactivates the given cleanup block.
449   /// The block cannot be reactivated.  Pops it if it's the top of the
450   /// stack.
451   ///
452   /// \param DominatingIP - An instruction which is known to
453   ///   dominate the current IP (if set) and which lies along
454   ///   all paths of execution between the current IP and the
455   ///   the point at which the cleanup comes into scope.
456   void DeactivateCleanupBlock(EHScopeStack::stable_iterator Cleanup,
457                               llvm::Instruction *DominatingIP);
458 
459   /// ActivateCleanupBlock - Activates an initially-inactive cleanup.
460   /// Cannot be used to resurrect a deactivated cleanup.
461   ///
462   /// \param DominatingIP - An instruction which is known to
463   ///   dominate the current IP (if set) and which lies along
464   ///   all paths of execution between the current IP and the
465   ///   the point at which the cleanup comes into scope.
466   void ActivateCleanupBlock(EHScopeStack::stable_iterator Cleanup,
467                             llvm::Instruction *DominatingIP);
468 
469   /// \brief Enters a new scope for capturing cleanups, all of which
470   /// will be executed once the scope is exited.
471   class RunCleanupsScope {
472     EHScopeStack::stable_iterator CleanupStackDepth;
473     size_t LifetimeExtendedCleanupStackSize;
474     bool OldDidCallStackSave;
475   protected:
476     bool PerformCleanup;
477   private:
478 
479     RunCleanupsScope(const RunCleanupsScope &) LLVM_DELETED_FUNCTION;
480     void operator=(const RunCleanupsScope &) LLVM_DELETED_FUNCTION;
481 
482   protected:
483     CodeGenFunction& CGF;
484 
485   public:
486     /// \brief Enter a new cleanup scope.
487     explicit RunCleanupsScope(CodeGenFunction &CGF)
488       : PerformCleanup(true), CGF(CGF)
489     {
490       CleanupStackDepth = CGF.EHStack.stable_begin();
491       LifetimeExtendedCleanupStackSize =
492           CGF.LifetimeExtendedCleanupStack.size();
493       OldDidCallStackSave = CGF.DidCallStackSave;
494       CGF.DidCallStackSave = false;
495     }
496 
497     /// \brief Exit this cleanup scope, emitting any accumulated
498     /// cleanups.
499     ~RunCleanupsScope() {
500       if (PerformCleanup) {
501         CGF.DidCallStackSave = OldDidCallStackSave;
502         CGF.PopCleanupBlocks(CleanupStackDepth,
503                              LifetimeExtendedCleanupStackSize);
504       }
505     }
506 
507     /// \brief Determine whether this scope requires any cleanups.
508     bool requiresCleanups() const {
509       return CGF.EHStack.stable_begin() != CleanupStackDepth;
510     }
511 
512     /// \brief Force the emission of cleanups now, instead of waiting
513     /// until this object is destroyed.
514     void ForceCleanup() {
515       assert(PerformCleanup && "Already forced cleanup");
516       CGF.DidCallStackSave = OldDidCallStackSave;
517       CGF.PopCleanupBlocks(CleanupStackDepth,
518                            LifetimeExtendedCleanupStackSize);
519       PerformCleanup = false;
520     }
521   };
522 
523   class LexicalScope: protected RunCleanupsScope {
524     SourceRange Range;
525     SmallVector<const LabelDecl*, 4> Labels;
526     LexicalScope *ParentScope;
527 
528     LexicalScope(const LexicalScope &) LLVM_DELETED_FUNCTION;
529     void operator=(const LexicalScope &) LLVM_DELETED_FUNCTION;
530 
531   public:
532     /// \brief Enter a new cleanup scope.
533     explicit LexicalScope(CodeGenFunction &CGF, SourceRange Range)
534       : RunCleanupsScope(CGF), Range(Range), ParentScope(CGF.CurLexicalScope) {
535       CGF.CurLexicalScope = this;
536       if (CGDebugInfo *DI = CGF.getDebugInfo())
537         DI->EmitLexicalBlockStart(CGF.Builder, Range.getBegin());
538     }
539 
540     void addLabel(const LabelDecl *label) {
541       assert(PerformCleanup && "adding label to dead scope?");
542       Labels.push_back(label);
543     }
544 
545     /// \brief Exit this cleanup scope, emitting any accumulated
546     /// cleanups.
547     ~LexicalScope() {
548       if (CGDebugInfo *DI = CGF.getDebugInfo())
549         DI->EmitLexicalBlockEnd(CGF.Builder, Range.getEnd());
550 
551       // If we should perform a cleanup, force them now.  Note that
552       // this ends the cleanup scope before rescoping any labels.
553       if (PerformCleanup) ForceCleanup();
554     }
555 
556     /// \brief Force the emission of cleanups now, instead of waiting
557     /// until this object is destroyed.
558     void ForceCleanup() {
559       CGF.CurLexicalScope = ParentScope;
560       RunCleanupsScope::ForceCleanup();
561 
562       if (!Labels.empty())
563         rescopeLabels();
564     }
565 
566     void rescopeLabels();
567   };
568 
569 
570   /// \brief Takes the old cleanup stack size and emits the cleanup blocks
571   /// that have been added.
572   void PopCleanupBlocks(EHScopeStack::stable_iterator OldCleanupStackSize);
573 
574   /// \brief Takes the old cleanup stack size and emits the cleanup blocks
575   /// that have been added, then adds all lifetime-extended cleanups from
576   /// the given position to the stack.
577   void PopCleanupBlocks(EHScopeStack::stable_iterator OldCleanupStackSize,
578                         size_t OldLifetimeExtendedStackSize);
579 
580   void ResolveBranchFixups(llvm::BasicBlock *Target);
581 
582   /// The given basic block lies in the current EH scope, but may be a
583   /// target of a potentially scope-crossing jump; get a stable handle
584   /// to which we can perform this jump later.
585   JumpDest getJumpDestInCurrentScope(llvm::BasicBlock *Target) {
586     return JumpDest(Target,
587                     EHStack.getInnermostNormalCleanup(),
588                     NextCleanupDestIndex++);
589   }
590 
591   /// The given basic block lies in the current EH scope, but may be a
592   /// target of a potentially scope-crossing jump; get a stable handle
593   /// to which we can perform this jump later.
594   JumpDest getJumpDestInCurrentScope(StringRef Name = StringRef()) {
595     return getJumpDestInCurrentScope(createBasicBlock(Name));
596   }
597 
598   /// EmitBranchThroughCleanup - Emit a branch from the current insert
599   /// block through the normal cleanup handling code (if any) and then
600   /// on to \arg Dest.
601   void EmitBranchThroughCleanup(JumpDest Dest);
602 
603   /// isObviouslyBranchWithoutCleanups - Return true if a branch to the
604   /// specified destination obviously has no cleanups to run.  'false' is always
605   /// a conservatively correct answer for this method.
606   bool isObviouslyBranchWithoutCleanups(JumpDest Dest) const;
607 
608   /// popCatchScope - Pops the catch scope at the top of the EHScope
609   /// stack, emitting any required code (other than the catch handlers
610   /// themselves).
611   void popCatchScope();
612 
613   llvm::BasicBlock *getEHResumeBlock(bool isCleanup);
614   llvm::BasicBlock *getEHDispatchBlock(EHScopeStack::stable_iterator scope);
615 
616   /// An object to manage conditionally-evaluated expressions.
617   class ConditionalEvaluation {
618     llvm::BasicBlock *StartBB;
619 
620   public:
621     ConditionalEvaluation(CodeGenFunction &CGF)
622       : StartBB(CGF.Builder.GetInsertBlock()) {}
623 
624     void begin(CodeGenFunction &CGF) {
625       assert(CGF.OutermostConditional != this);
626       if (!CGF.OutermostConditional)
627         CGF.OutermostConditional = this;
628     }
629 
630     void end(CodeGenFunction &CGF) {
631       assert(CGF.OutermostConditional != nullptr);
632       if (CGF.OutermostConditional == this)
633         CGF.OutermostConditional = nullptr;
634     }
635 
636     /// Returns a block which will be executed prior to each
637     /// evaluation of the conditional code.
638     llvm::BasicBlock *getStartingBlock() const {
639       return StartBB;
640     }
641   };
642 
643   /// isInConditionalBranch - Return true if we're currently emitting
644   /// one branch or the other of a conditional expression.
645   bool isInConditionalBranch() const { return OutermostConditional != nullptr; }
646 
647   void setBeforeOutermostConditional(llvm::Value *value, llvm::Value *addr) {
648     assert(isInConditionalBranch());
649     llvm::BasicBlock *block = OutermostConditional->getStartingBlock();
650     new llvm::StoreInst(value, addr, &block->back());
651   }
652 
653   /// An RAII object to record that we're evaluating a statement
654   /// expression.
655   class StmtExprEvaluation {
656     CodeGenFunction &CGF;
657 
658     /// We have to save the outermost conditional: cleanups in a
659     /// statement expression aren't conditional just because the
660     /// StmtExpr is.
661     ConditionalEvaluation *SavedOutermostConditional;
662 
663   public:
664     StmtExprEvaluation(CodeGenFunction &CGF)
665       : CGF(CGF), SavedOutermostConditional(CGF.OutermostConditional) {
666       CGF.OutermostConditional = nullptr;
667     }
668 
669     ~StmtExprEvaluation() {
670       CGF.OutermostConditional = SavedOutermostConditional;
671       CGF.EnsureInsertPoint();
672     }
673   };
674 
675   /// An object which temporarily prevents a value from being
676   /// destroyed by aggressive peephole optimizations that assume that
677   /// all uses of a value have been realized in the IR.
678   class PeepholeProtection {
679     llvm::Instruction *Inst;
680     friend class CodeGenFunction;
681 
682   public:
683     PeepholeProtection() : Inst(nullptr) {}
684   };
685 
686   /// A non-RAII class containing all the information about a bound
687   /// opaque value.  OpaqueValueMapping, below, is a RAII wrapper for
688   /// this which makes individual mappings very simple; using this
689   /// class directly is useful when you have a variable number of
690   /// opaque values or don't want the RAII functionality for some
691   /// reason.
692   class OpaqueValueMappingData {
693     const OpaqueValueExpr *OpaqueValue;
694     bool BoundLValue;
695     CodeGenFunction::PeepholeProtection Protection;
696 
697     OpaqueValueMappingData(const OpaqueValueExpr *ov,
698                            bool boundLValue)
699       : OpaqueValue(ov), BoundLValue(boundLValue) {}
700   public:
701     OpaqueValueMappingData() : OpaqueValue(nullptr) {}
702 
703     static bool shouldBindAsLValue(const Expr *expr) {
704       // gl-values should be bound as l-values for obvious reasons.
705       // Records should be bound as l-values because IR generation
706       // always keeps them in memory.  Expressions of function type
707       // act exactly like l-values but are formally required to be
708       // r-values in C.
709       return expr->isGLValue() ||
710              expr->getType()->isFunctionType() ||
711              hasAggregateEvaluationKind(expr->getType());
712     }
713 
714     static OpaqueValueMappingData bind(CodeGenFunction &CGF,
715                                        const OpaqueValueExpr *ov,
716                                        const Expr *e) {
717       if (shouldBindAsLValue(ov))
718         return bind(CGF, ov, CGF.EmitLValue(e));
719       return bind(CGF, ov, CGF.EmitAnyExpr(e));
720     }
721 
722     static OpaqueValueMappingData bind(CodeGenFunction &CGF,
723                                        const OpaqueValueExpr *ov,
724                                        const LValue &lv) {
725       assert(shouldBindAsLValue(ov));
726       CGF.OpaqueLValues.insert(std::make_pair(ov, lv));
727       return OpaqueValueMappingData(ov, true);
728     }
729 
730     static OpaqueValueMappingData bind(CodeGenFunction &CGF,
731                                        const OpaqueValueExpr *ov,
732                                        const RValue &rv) {
733       assert(!shouldBindAsLValue(ov));
734       CGF.OpaqueRValues.insert(std::make_pair(ov, rv));
735 
736       OpaqueValueMappingData data(ov, false);
737 
738       // Work around an extremely aggressive peephole optimization in
739       // EmitScalarConversion which assumes that all other uses of a
740       // value are extant.
741       data.Protection = CGF.protectFromPeepholes(rv);
742 
743       return data;
744     }
745 
746     bool isValid() const { return OpaqueValue != nullptr; }
747     void clear() { OpaqueValue = nullptr; }
748 
749     void unbind(CodeGenFunction &CGF) {
750       assert(OpaqueValue && "no data to unbind!");
751 
752       if (BoundLValue) {
753         CGF.OpaqueLValues.erase(OpaqueValue);
754       } else {
755         CGF.OpaqueRValues.erase(OpaqueValue);
756         CGF.unprotectFromPeepholes(Protection);
757       }
758     }
759   };
760 
761   /// An RAII object to set (and then clear) a mapping for an OpaqueValueExpr.
762   class OpaqueValueMapping {
763     CodeGenFunction &CGF;
764     OpaqueValueMappingData Data;
765 
766   public:
767     static bool shouldBindAsLValue(const Expr *expr) {
768       return OpaqueValueMappingData::shouldBindAsLValue(expr);
769     }
770 
771     /// Build the opaque value mapping for the given conditional
772     /// operator if it's the GNU ?: extension.  This is a common
773     /// enough pattern that the convenience operator is really
774     /// helpful.
775     ///
776     OpaqueValueMapping(CodeGenFunction &CGF,
777                        const AbstractConditionalOperator *op) : CGF(CGF) {
778       if (isa<ConditionalOperator>(op))
779         // Leave Data empty.
780         return;
781 
782       const BinaryConditionalOperator *e = cast<BinaryConditionalOperator>(op);
783       Data = OpaqueValueMappingData::bind(CGF, e->getOpaqueValue(),
784                                           e->getCommon());
785     }
786 
787     OpaqueValueMapping(CodeGenFunction &CGF,
788                        const OpaqueValueExpr *opaqueValue,
789                        LValue lvalue)
790       : CGF(CGF), Data(OpaqueValueMappingData::bind(CGF, opaqueValue, lvalue)) {
791     }
792 
793     OpaqueValueMapping(CodeGenFunction &CGF,
794                        const OpaqueValueExpr *opaqueValue,
795                        RValue rvalue)
796       : CGF(CGF), Data(OpaqueValueMappingData::bind(CGF, opaqueValue, rvalue)) {
797     }
798 
799     void pop() {
800       Data.unbind(CGF);
801       Data.clear();
802     }
803 
804     ~OpaqueValueMapping() {
805       if (Data.isValid()) Data.unbind(CGF);
806     }
807   };
808 
809   /// getByrefValueFieldNumber - Given a declaration, returns the LLVM field
810   /// number that holds the value.
811   unsigned getByRefValueLLVMField(const ValueDecl *VD) const;
812 
813   /// BuildBlockByrefAddress - Computes address location of the
814   /// variable which is declared as __block.
815   llvm::Value *BuildBlockByrefAddress(llvm::Value *BaseAddr,
816                                       const VarDecl *V);
817 private:
818   CGDebugInfo *DebugInfo;
819   bool DisableDebugInfo;
820 
821   /// DidCallStackSave - Whether llvm.stacksave has been called. Used to avoid
822   /// calling llvm.stacksave for multiple VLAs in the same scope.
823   bool DidCallStackSave;
824 
825   /// IndirectBranch - The first time an indirect goto is seen we create a block
826   /// with an indirect branch.  Every time we see the address of a label taken,
827   /// we add the label to the indirect goto.  Every subsequent indirect goto is
828   /// codegen'd as a jump to the IndirectBranch's basic block.
829   llvm::IndirectBrInst *IndirectBranch;
830 
831   /// LocalDeclMap - This keeps track of the LLVM allocas or globals for local C
832   /// decls.
833   typedef llvm::DenseMap<const Decl*, llvm::Value*> DeclMapTy;
834   DeclMapTy LocalDeclMap;
835 
836   /// LabelMap - This keeps track of the LLVM basic block for each C label.
837   llvm::DenseMap<const LabelDecl*, JumpDest> LabelMap;
838 
839   // BreakContinueStack - This keeps track of where break and continue
840   // statements should jump to.
841   struct BreakContinue {
842     BreakContinue(JumpDest Break, JumpDest Continue)
843       : BreakBlock(Break), ContinueBlock(Continue) {}
844 
845     JumpDest BreakBlock;
846     JumpDest ContinueBlock;
847   };
848   SmallVector<BreakContinue, 8> BreakContinueStack;
849 
850   CodeGenPGO PGO;
851 
852 public:
853   /// Get a counter for instrumentation of the region associated with the given
854   /// statement.
855   RegionCounter getPGORegionCounter(const Stmt *S) {
856     return RegionCounter(PGO, S);
857   }
858 private:
859 
860   /// SwitchInsn - This is nearest current switch instruction. It is null if
861   /// current context is not in a switch.
862   llvm::SwitchInst *SwitchInsn;
863   /// The branch weights of SwitchInsn when doing instrumentation based PGO.
864   SmallVector<uint64_t, 16> *SwitchWeights;
865 
866   /// CaseRangeBlock - This block holds if condition check for last case
867   /// statement range in current switch instruction.
868   llvm::BasicBlock *CaseRangeBlock;
869 
870   /// OpaqueLValues - Keeps track of the current set of opaque value
871   /// expressions.
872   llvm::DenseMap<const OpaqueValueExpr *, LValue> OpaqueLValues;
873   llvm::DenseMap<const OpaqueValueExpr *, RValue> OpaqueRValues;
874 
875   // VLASizeMap - This keeps track of the associated size for each VLA type.
876   // We track this by the size expression rather than the type itself because
877   // in certain situations, like a const qualifier applied to an VLA typedef,
878   // multiple VLA types can share the same size expression.
879   // FIXME: Maybe this could be a stack of maps that is pushed/popped as we
880   // enter/leave scopes.
881   llvm::DenseMap<const Expr*, llvm::Value*> VLASizeMap;
882 
883   /// A block containing a single 'unreachable' instruction.  Created
884   /// lazily by getUnreachableBlock().
885   llvm::BasicBlock *UnreachableBlock;
886 
887   /// Counts of the number return expressions in the function.
888   unsigned NumReturnExprs;
889 
890   /// Count the number of simple (constant) return expressions in the function.
891   unsigned NumSimpleReturnExprs;
892 
893   /// The last regular (non-return) debug location (breakpoint) in the function.
894   SourceLocation LastStopPoint;
895 
896 public:
897   /// A scope within which we are constructing the fields of an object which
898   /// might use a CXXDefaultInitExpr. This stashes away a 'this' value to use
899   /// if we need to evaluate a CXXDefaultInitExpr within the evaluation.
900   class FieldConstructionScope {
901   public:
902     FieldConstructionScope(CodeGenFunction &CGF, llvm::Value *This)
903         : CGF(CGF), OldCXXDefaultInitExprThis(CGF.CXXDefaultInitExprThis) {
904       CGF.CXXDefaultInitExprThis = This;
905     }
906     ~FieldConstructionScope() {
907       CGF.CXXDefaultInitExprThis = OldCXXDefaultInitExprThis;
908     }
909 
910   private:
911     CodeGenFunction &CGF;
912     llvm::Value *OldCXXDefaultInitExprThis;
913   };
914 
915   /// The scope of a CXXDefaultInitExpr. Within this scope, the value of 'this'
916   /// is overridden to be the object under construction.
917   class CXXDefaultInitExprScope {
918   public:
919     CXXDefaultInitExprScope(CodeGenFunction &CGF)
920         : CGF(CGF), OldCXXThisValue(CGF.CXXThisValue) {
921       CGF.CXXThisValue = CGF.CXXDefaultInitExprThis;
922     }
923     ~CXXDefaultInitExprScope() {
924       CGF.CXXThisValue = OldCXXThisValue;
925     }
926 
927   public:
928     CodeGenFunction &CGF;
929     llvm::Value *OldCXXThisValue;
930   };
931 
932 private:
933   /// CXXThisDecl - When generating code for a C++ member function,
934   /// this will hold the implicit 'this' declaration.
935   ImplicitParamDecl *CXXABIThisDecl;
936   llvm::Value *CXXABIThisValue;
937   llvm::Value *CXXThisValue;
938 
939   /// The value of 'this' to use when evaluating CXXDefaultInitExprs within
940   /// this expression.
941   llvm::Value *CXXDefaultInitExprThis;
942 
943   /// CXXStructorImplicitParamDecl - When generating code for a constructor or
944   /// destructor, this will hold the implicit argument (e.g. VTT).
945   ImplicitParamDecl *CXXStructorImplicitParamDecl;
946   llvm::Value *CXXStructorImplicitParamValue;
947 
948   /// OutermostConditional - Points to the outermost active
949   /// conditional control.  This is used so that we know if a
950   /// temporary should be destroyed conditionally.
951   ConditionalEvaluation *OutermostConditional;
952 
953   /// The current lexical scope.
954   LexicalScope *CurLexicalScope;
955 
956   /// The current source location that should be used for exception
957   /// handling code.
958   SourceLocation CurEHLocation;
959 
960   /// ByrefValueInfoMap - For each __block variable, contains a pair of the LLVM
961   /// type as well as the field number that contains the actual data.
962   llvm::DenseMap<const ValueDecl *, std::pair<llvm::Type *,
963                                               unsigned> > ByRefValueInfo;
964 
965   llvm::BasicBlock *TerminateLandingPad;
966   llvm::BasicBlock *TerminateHandler;
967   llvm::BasicBlock *TrapBB;
968 
969   /// Add a kernel metadata node to the named metadata node 'opencl.kernels'.
970   /// In the kernel metadata node, reference the kernel function and metadata
971   /// nodes for its optional attribute qualifiers (OpenCL 1.1 6.7.2):
972   /// - A node for the vec_type_hint(<type>) qualifier contains string
973   ///   "vec_type_hint", an undefined value of the <type> data type,
974   ///   and a Boolean that is true if the <type> is integer and signed.
975   /// - A node for the work_group_size_hint(X,Y,Z) qualifier contains string
976   ///   "work_group_size_hint", and three 32-bit integers X, Y and Z.
977   /// - A node for the reqd_work_group_size(X,Y,Z) qualifier contains string
978   ///   "reqd_work_group_size", and three 32-bit integers X, Y and Z.
979   void EmitOpenCLKernelMetadata(const FunctionDecl *FD,
980                                 llvm::Function *Fn);
981 
982 public:
983   CodeGenFunction(CodeGenModule &cgm, bool suppressNewContext=false);
984   ~CodeGenFunction();
985 
986   CodeGenTypes &getTypes() const { return CGM.getTypes(); }
987   ASTContext &getContext() const { return CGM.getContext(); }
988   CGDebugInfo *getDebugInfo() {
989     if (DisableDebugInfo)
990       return nullptr;
991     return DebugInfo;
992   }
993   void disableDebugInfo() { DisableDebugInfo = true; }
994   void enableDebugInfo() { DisableDebugInfo = false; }
995 
996   bool shouldUseFusedARCCalls() {
997     return CGM.getCodeGenOpts().OptimizationLevel == 0;
998   }
999 
1000   const LangOptions &getLangOpts() const { return CGM.getLangOpts(); }
1001 
1002   /// Returns a pointer to the function's exception object and selector slot,
1003   /// which is assigned in every landing pad.
1004   llvm::Value *getExceptionSlot();
1005   llvm::Value *getEHSelectorSlot();
1006 
1007   /// Returns the contents of the function's exception object and selector
1008   /// slots.
1009   llvm::Value *getExceptionFromSlot();
1010   llvm::Value *getSelectorFromSlot();
1011 
1012   llvm::Value *getNormalCleanupDestSlot();
1013 
1014   llvm::BasicBlock *getUnreachableBlock() {
1015     if (!UnreachableBlock) {
1016       UnreachableBlock = createBasicBlock("unreachable");
1017       new llvm::UnreachableInst(getLLVMContext(), UnreachableBlock);
1018     }
1019     return UnreachableBlock;
1020   }
1021 
1022   llvm::BasicBlock *getInvokeDest() {
1023     if (!EHStack.requiresLandingPad()) return nullptr;
1024     return getInvokeDestImpl();
1025   }
1026 
1027   const TargetInfo &getTarget() const { return Target; }
1028   llvm::LLVMContext &getLLVMContext() { return CGM.getLLVMContext(); }
1029 
1030   //===--------------------------------------------------------------------===//
1031   //                                  Cleanups
1032   //===--------------------------------------------------------------------===//
1033 
1034   typedef void Destroyer(CodeGenFunction &CGF, llvm::Value *addr, QualType ty);
1035 
1036   void pushIrregularPartialArrayCleanup(llvm::Value *arrayBegin,
1037                                         llvm::Value *arrayEndPointer,
1038                                         QualType elementType,
1039                                         Destroyer *destroyer);
1040   void pushRegularPartialArrayCleanup(llvm::Value *arrayBegin,
1041                                       llvm::Value *arrayEnd,
1042                                       QualType elementType,
1043                                       Destroyer *destroyer);
1044 
1045   void pushDestroy(QualType::DestructionKind dtorKind,
1046                    llvm::Value *addr, QualType type);
1047   void pushEHDestroy(QualType::DestructionKind dtorKind,
1048                      llvm::Value *addr, QualType type);
1049   void pushDestroy(CleanupKind kind, llvm::Value *addr, QualType type,
1050                    Destroyer *destroyer, bool useEHCleanupForArray);
1051   void pushLifetimeExtendedDestroy(CleanupKind kind, llvm::Value *addr,
1052                                    QualType type, Destroyer *destroyer,
1053                                    bool useEHCleanupForArray);
1054   void pushStackRestore(CleanupKind kind, llvm::Value *SPMem);
1055   void emitDestroy(llvm::Value *addr, QualType type, Destroyer *destroyer,
1056                    bool useEHCleanupForArray);
1057   llvm::Function *generateDestroyHelper(llvm::Constant *addr, QualType type,
1058                                         Destroyer *destroyer,
1059                                         bool useEHCleanupForArray,
1060                                         const VarDecl *VD);
1061   void emitArrayDestroy(llvm::Value *begin, llvm::Value *end,
1062                         QualType type, Destroyer *destroyer,
1063                         bool checkZeroLength, bool useEHCleanup);
1064 
1065   Destroyer *getDestroyer(QualType::DestructionKind destructionKind);
1066 
1067   /// Determines whether an EH cleanup is required to destroy a type
1068   /// with the given destruction kind.
1069   bool needsEHCleanup(QualType::DestructionKind kind) {
1070     switch (kind) {
1071     case QualType::DK_none:
1072       return false;
1073     case QualType::DK_cxx_destructor:
1074     case QualType::DK_objc_weak_lifetime:
1075       return getLangOpts().Exceptions;
1076     case QualType::DK_objc_strong_lifetime:
1077       return getLangOpts().Exceptions &&
1078              CGM.getCodeGenOpts().ObjCAutoRefCountExceptions;
1079     }
1080     llvm_unreachable("bad destruction kind");
1081   }
1082 
1083   CleanupKind getCleanupKind(QualType::DestructionKind kind) {
1084     return (needsEHCleanup(kind) ? NormalAndEHCleanup : NormalCleanup);
1085   }
1086 
1087   //===--------------------------------------------------------------------===//
1088   //                                  Objective-C
1089   //===--------------------------------------------------------------------===//
1090 
1091   void GenerateObjCMethod(const ObjCMethodDecl *OMD);
1092 
1093   void StartObjCMethod(const ObjCMethodDecl *MD,
1094                        const ObjCContainerDecl *CD,
1095                        SourceLocation StartLoc);
1096 
1097   /// GenerateObjCGetter - Synthesize an Objective-C property getter function.
1098   void GenerateObjCGetter(ObjCImplementationDecl *IMP,
1099                           const ObjCPropertyImplDecl *PID);
1100   void generateObjCGetterBody(const ObjCImplementationDecl *classImpl,
1101                               const ObjCPropertyImplDecl *propImpl,
1102                               const ObjCMethodDecl *GetterMothodDecl,
1103                               llvm::Constant *AtomicHelperFn);
1104 
1105   void GenerateObjCCtorDtorMethod(ObjCImplementationDecl *IMP,
1106                                   ObjCMethodDecl *MD, bool ctor);
1107 
1108   /// GenerateObjCSetter - Synthesize an Objective-C property setter function
1109   /// for the given property.
1110   void GenerateObjCSetter(ObjCImplementationDecl *IMP,
1111                           const ObjCPropertyImplDecl *PID);
1112   void generateObjCSetterBody(const ObjCImplementationDecl *classImpl,
1113                               const ObjCPropertyImplDecl *propImpl,
1114                               llvm::Constant *AtomicHelperFn);
1115   bool IndirectObjCSetterArg(const CGFunctionInfo &FI);
1116   bool IvarTypeWithAggrGCObjects(QualType Ty);
1117 
1118   //===--------------------------------------------------------------------===//
1119   //                                  Block Bits
1120   //===--------------------------------------------------------------------===//
1121 
1122   llvm::Value *EmitBlockLiteral(const BlockExpr *);
1123   llvm::Value *EmitBlockLiteral(const CGBlockInfo &Info);
1124   static void destroyBlockInfos(CGBlockInfo *info);
1125   llvm::Constant *BuildDescriptorBlockDecl(const BlockExpr *,
1126                                            const CGBlockInfo &Info,
1127                                            llvm::StructType *,
1128                                            llvm::Constant *BlockVarLayout);
1129 
1130   llvm::Function *GenerateBlockFunction(GlobalDecl GD,
1131                                         const CGBlockInfo &Info,
1132                                         const DeclMapTy &ldm,
1133                                         bool IsLambdaConversionToBlock);
1134 
1135   llvm::Constant *GenerateCopyHelperFunction(const CGBlockInfo &blockInfo);
1136   llvm::Constant *GenerateDestroyHelperFunction(const CGBlockInfo &blockInfo);
1137   llvm::Constant *GenerateObjCAtomicSetterCopyHelperFunction(
1138                                              const ObjCPropertyImplDecl *PID);
1139   llvm::Constant *GenerateObjCAtomicGetterCopyHelperFunction(
1140                                              const ObjCPropertyImplDecl *PID);
1141   llvm::Value *EmitBlockCopyAndAutorelease(llvm::Value *Block, QualType Ty);
1142 
1143   void BuildBlockRelease(llvm::Value *DeclPtr, BlockFieldFlags flags);
1144 
1145   class AutoVarEmission;
1146 
1147   void emitByrefStructureInit(const AutoVarEmission &emission);
1148   void enterByrefCleanup(const AutoVarEmission &emission);
1149 
1150   llvm::Value *LoadBlockStruct() {
1151     assert(BlockPointer && "no block pointer set!");
1152     return BlockPointer;
1153   }
1154 
1155   void AllocateBlockCXXThisPointer(const CXXThisExpr *E);
1156   void AllocateBlockDecl(const DeclRefExpr *E);
1157   llvm::Value *GetAddrOfBlockDecl(const VarDecl *var, bool ByRef);
1158   llvm::Type *BuildByRefType(const VarDecl *var);
1159 
1160   void GenerateCode(GlobalDecl GD, llvm::Function *Fn,
1161                     const CGFunctionInfo &FnInfo);
1162   /// \brief Emit code for the start of a function.
1163   /// \param Loc       The location to be associated with the function.
1164   /// \param StartLoc  The location of the function body.
1165   void StartFunction(GlobalDecl GD,
1166                      QualType RetTy,
1167                      llvm::Function *Fn,
1168                      const CGFunctionInfo &FnInfo,
1169                      const FunctionArgList &Args,
1170                      SourceLocation Loc = SourceLocation(),
1171                      SourceLocation StartLoc = SourceLocation());
1172 
1173   void EmitConstructorBody(FunctionArgList &Args);
1174   void EmitDestructorBody(FunctionArgList &Args);
1175   void emitImplicitAssignmentOperatorBody(FunctionArgList &Args);
1176   void EmitFunctionBody(FunctionArgList &Args, const Stmt *Body);
1177   void EmitBlockWithFallThrough(llvm::BasicBlock *BB, RegionCounter &Cnt);
1178 
1179   void EmitForwardingCallToLambda(const CXXMethodDecl *LambdaCallOperator,
1180                                   CallArgList &CallArgs);
1181   void EmitLambdaToBlockPointerBody(FunctionArgList &Args);
1182   void EmitLambdaBlockInvokeBody();
1183   void EmitLambdaDelegatingInvokeBody(const CXXMethodDecl *MD);
1184   void EmitLambdaStaticInvokeFunction(const CXXMethodDecl *MD);
1185 
1186   /// EmitReturnBlock - Emit the unified return block, trying to avoid its
1187   /// emission when possible.
1188   void EmitReturnBlock();
1189 
1190   /// FinishFunction - Complete IR generation of the current function. It is
1191   /// legal to call this function even if there is no current insertion point.
1192   void FinishFunction(SourceLocation EndLoc=SourceLocation());
1193 
1194   void StartThunk(llvm::Function *Fn, GlobalDecl GD, const CGFunctionInfo &FnInfo);
1195 
1196   void EmitCallAndReturnForThunk(GlobalDecl GD, llvm::Value *Callee,
1197                                  const ThunkInfo *Thunk);
1198 
1199   /// GenerateThunk - Generate a thunk for the given method.
1200   void GenerateThunk(llvm::Function *Fn, const CGFunctionInfo &FnInfo,
1201                      GlobalDecl GD, const ThunkInfo &Thunk);
1202 
1203   void GenerateVarArgsThunk(llvm::Function *Fn, const CGFunctionInfo &FnInfo,
1204                             GlobalDecl GD, const ThunkInfo &Thunk);
1205 
1206   void EmitCtorPrologue(const CXXConstructorDecl *CD, CXXCtorType Type,
1207                         FunctionArgList &Args);
1208 
1209   void EmitInitializerForField(FieldDecl *Field, LValue LHS, Expr *Init,
1210                                ArrayRef<VarDecl *> ArrayIndexes);
1211 
1212   /// InitializeVTablePointer - Initialize the vtable pointer of the given
1213   /// subobject.
1214   ///
1215   void InitializeVTablePointer(BaseSubobject Base,
1216                                const CXXRecordDecl *NearestVBase,
1217                                CharUnits OffsetFromNearestVBase,
1218                                const CXXRecordDecl *VTableClass);
1219 
1220   typedef llvm::SmallPtrSet<const CXXRecordDecl *, 4> VisitedVirtualBasesSetTy;
1221   void InitializeVTablePointers(BaseSubobject Base,
1222                                 const CXXRecordDecl *NearestVBase,
1223                                 CharUnits OffsetFromNearestVBase,
1224                                 bool BaseIsNonVirtualPrimaryBase,
1225                                 const CXXRecordDecl *VTableClass,
1226                                 VisitedVirtualBasesSetTy& VBases);
1227 
1228   void InitializeVTablePointers(const CXXRecordDecl *ClassDecl);
1229 
1230   /// GetVTablePtr - Return the Value of the vtable pointer member pointed
1231   /// to by This.
1232   llvm::Value *GetVTablePtr(llvm::Value *This, llvm::Type *Ty);
1233 
1234 
1235   /// CanDevirtualizeMemberFunctionCalls - Checks whether virtual calls on given
1236   /// expr can be devirtualized.
1237   bool CanDevirtualizeMemberFunctionCall(const Expr *Base,
1238                                          const CXXMethodDecl *MD);
1239 
1240   /// EnterDtorCleanups - Enter the cleanups necessary to complete the
1241   /// given phase of destruction for a destructor.  The end result
1242   /// should call destructors on members and base classes in reverse
1243   /// order of their construction.
1244   void EnterDtorCleanups(const CXXDestructorDecl *Dtor, CXXDtorType Type);
1245 
1246   /// ShouldInstrumentFunction - Return true if the current function should be
1247   /// instrumented with __cyg_profile_func_* calls
1248   bool ShouldInstrumentFunction();
1249 
1250   /// EmitFunctionInstrumentation - Emit LLVM code to call the specified
1251   /// instrumentation function with the current function and the call site, if
1252   /// function instrumentation is enabled.
1253   void EmitFunctionInstrumentation(const char *Fn);
1254 
1255   /// EmitMCountInstrumentation - Emit call to .mcount.
1256   void EmitMCountInstrumentation();
1257 
1258   /// EmitFunctionProlog - Emit the target specific LLVM code to load the
1259   /// arguments for the given function. This is also responsible for naming the
1260   /// LLVM function arguments.
1261   void EmitFunctionProlog(const CGFunctionInfo &FI,
1262                           llvm::Function *Fn,
1263                           const FunctionArgList &Args);
1264 
1265   /// EmitFunctionEpilog - Emit the target specific LLVM code to return the
1266   /// given temporary.
1267   void EmitFunctionEpilog(const CGFunctionInfo &FI, bool EmitRetDbgLoc,
1268                           SourceLocation EndLoc);
1269 
1270   /// EmitStartEHSpec - Emit the start of the exception spec.
1271   void EmitStartEHSpec(const Decl *D);
1272 
1273   /// EmitEndEHSpec - Emit the end of the exception spec.
1274   void EmitEndEHSpec(const Decl *D);
1275 
1276   /// getTerminateLandingPad - Return a landing pad that just calls terminate.
1277   llvm::BasicBlock *getTerminateLandingPad();
1278 
1279   /// getTerminateHandler - Return a handler (not a landing pad, just
1280   /// a catch handler) that just calls terminate.  This is used when
1281   /// a terminate scope encloses a try.
1282   llvm::BasicBlock *getTerminateHandler();
1283 
1284   llvm::Type *ConvertTypeForMem(QualType T);
1285   llvm::Type *ConvertType(QualType T);
1286   llvm::Type *ConvertType(const TypeDecl *T) {
1287     return ConvertType(getContext().getTypeDeclType(T));
1288   }
1289 
1290   /// LoadObjCSelf - Load the value of self. This function is only valid while
1291   /// generating code for an Objective-C method.
1292   llvm::Value *LoadObjCSelf();
1293 
1294   /// TypeOfSelfObject - Return type of object that this self represents.
1295   QualType TypeOfSelfObject();
1296 
1297   /// hasAggregateLLVMType - Return true if the specified AST type will map into
1298   /// an aggregate LLVM type or is void.
1299   static TypeEvaluationKind getEvaluationKind(QualType T);
1300 
1301   static bool hasScalarEvaluationKind(QualType T) {
1302     return getEvaluationKind(T) == TEK_Scalar;
1303   }
1304 
1305   static bool hasAggregateEvaluationKind(QualType T) {
1306     return getEvaluationKind(T) == TEK_Aggregate;
1307   }
1308 
1309   /// createBasicBlock - Create an LLVM basic block.
1310   llvm::BasicBlock *createBasicBlock(const Twine &name = "",
1311                                      llvm::Function *parent = nullptr,
1312                                      llvm::BasicBlock *before = nullptr) {
1313 #ifdef NDEBUG
1314     return llvm::BasicBlock::Create(getLLVMContext(), "", parent, before);
1315 #else
1316     return llvm::BasicBlock::Create(getLLVMContext(), name, parent, before);
1317 #endif
1318   }
1319 
1320   /// getBasicBlockForLabel - Return the LLVM basicblock that the specified
1321   /// label maps to.
1322   JumpDest getJumpDestForLabel(const LabelDecl *S);
1323 
1324   /// SimplifyForwardingBlocks - If the given basic block is only a branch to
1325   /// another basic block, simplify it. This assumes that no other code could
1326   /// potentially reference the basic block.
1327   void SimplifyForwardingBlocks(llvm::BasicBlock *BB);
1328 
1329   /// EmitBlock - Emit the given block \arg BB and set it as the insert point,
1330   /// adding a fall-through branch from the current insert block if
1331   /// necessary. It is legal to call this function even if there is no current
1332   /// insertion point.
1333   ///
1334   /// IsFinished - If true, indicates that the caller has finished emitting
1335   /// branches to the given block and does not expect to emit code into it. This
1336   /// means the block can be ignored if it is unreachable.
1337   void EmitBlock(llvm::BasicBlock *BB, bool IsFinished=false);
1338 
1339   /// EmitBlockAfterUses - Emit the given block somewhere hopefully
1340   /// near its uses, and leave the insertion point in it.
1341   void EmitBlockAfterUses(llvm::BasicBlock *BB);
1342 
1343   /// EmitBranch - Emit a branch to the specified basic block from the current
1344   /// insert block, taking care to avoid creation of branches from dummy
1345   /// blocks. It is legal to call this function even if there is no current
1346   /// insertion point.
1347   ///
1348   /// This function clears the current insertion point. The caller should follow
1349   /// calls to this function with calls to Emit*Block prior to generation new
1350   /// code.
1351   void EmitBranch(llvm::BasicBlock *Block);
1352 
1353   /// HaveInsertPoint - True if an insertion point is defined. If not, this
1354   /// indicates that the current code being emitted is unreachable.
1355   bool HaveInsertPoint() const {
1356     return Builder.GetInsertBlock() != nullptr;
1357   }
1358 
1359   /// EnsureInsertPoint - Ensure that an insertion point is defined so that
1360   /// emitted IR has a place to go. Note that by definition, if this function
1361   /// creates a block then that block is unreachable; callers may do better to
1362   /// detect when no insertion point is defined and simply skip IR generation.
1363   void EnsureInsertPoint() {
1364     if (!HaveInsertPoint())
1365       EmitBlock(createBasicBlock());
1366   }
1367 
1368   /// ErrorUnsupported - Print out an error that codegen doesn't support the
1369   /// specified stmt yet.
1370   void ErrorUnsupported(const Stmt *S, const char *Type);
1371 
1372   //===--------------------------------------------------------------------===//
1373   //                                  Helpers
1374   //===--------------------------------------------------------------------===//
1375 
1376   LValue MakeAddrLValue(llvm::Value *V, QualType T,
1377                         CharUnits Alignment = CharUnits()) {
1378     return LValue::MakeAddr(V, T, Alignment, getContext(),
1379                             CGM.getTBAAInfo(T));
1380   }
1381 
1382   LValue MakeNaturalAlignAddrLValue(llvm::Value *V, QualType T) {
1383     CharUnits Alignment;
1384     if (!T->isIncompleteType())
1385       Alignment = getContext().getTypeAlignInChars(T);
1386     return LValue::MakeAddr(V, T, Alignment, getContext(),
1387                             CGM.getTBAAInfo(T));
1388   }
1389 
1390   /// CreateTempAlloca - This creates a alloca and inserts it into the entry
1391   /// block. The caller is responsible for setting an appropriate alignment on
1392   /// the alloca.
1393   llvm::AllocaInst *CreateTempAlloca(llvm::Type *Ty,
1394                                      const Twine &Name = "tmp");
1395 
1396   /// InitTempAlloca - Provide an initial value for the given alloca.
1397   void InitTempAlloca(llvm::AllocaInst *Alloca, llvm::Value *Value);
1398 
1399   /// CreateIRTemp - Create a temporary IR object of the given type, with
1400   /// appropriate alignment. This routine should only be used when an temporary
1401   /// value needs to be stored into an alloca (for example, to avoid explicit
1402   /// PHI construction), but the type is the IR type, not the type appropriate
1403   /// for storing in memory.
1404   llvm::AllocaInst *CreateIRTemp(QualType T, const Twine &Name = "tmp");
1405 
1406   /// CreateMemTemp - Create a temporary memory object of the given type, with
1407   /// appropriate alignment.
1408   llvm::AllocaInst *CreateMemTemp(QualType T, const Twine &Name = "tmp");
1409 
1410   /// CreateAggTemp - Create a temporary memory object for the given
1411   /// aggregate type.
1412   AggValueSlot CreateAggTemp(QualType T, const Twine &Name = "tmp") {
1413     CharUnits Alignment = getContext().getTypeAlignInChars(T);
1414     return AggValueSlot::forAddr(CreateMemTemp(T, Name), Alignment,
1415                                  T.getQualifiers(),
1416                                  AggValueSlot::IsNotDestructed,
1417                                  AggValueSlot::DoesNotNeedGCBarriers,
1418                                  AggValueSlot::IsNotAliased);
1419   }
1420 
1421   /// CreateInAllocaTmp - Create a temporary memory object for the given
1422   /// aggregate type.
1423   AggValueSlot CreateInAllocaTmp(QualType T, const Twine &Name = "inalloca");
1424 
1425   /// Emit a cast to void* in the appropriate address space.
1426   llvm::Value *EmitCastToVoidPtr(llvm::Value *value);
1427 
1428   /// EvaluateExprAsBool - Perform the usual unary conversions on the specified
1429   /// expression and compare the result against zero, returning an Int1Ty value.
1430   llvm::Value *EvaluateExprAsBool(const Expr *E);
1431 
1432   /// EmitIgnoredExpr - Emit an expression in a context which ignores the result.
1433   void EmitIgnoredExpr(const Expr *E);
1434 
1435   /// EmitAnyExpr - Emit code to compute the specified expression which can have
1436   /// any type.  The result is returned as an RValue struct.  If this is an
1437   /// aggregate expression, the aggloc/agglocvolatile arguments indicate where
1438   /// the result should be returned.
1439   ///
1440   /// \param ignoreResult True if the resulting value isn't used.
1441   RValue EmitAnyExpr(const Expr *E,
1442                      AggValueSlot aggSlot = AggValueSlot::ignored(),
1443                      bool ignoreResult = false);
1444 
1445   // EmitVAListRef - Emit a "reference" to a va_list; this is either the address
1446   // or the value of the expression, depending on how va_list is defined.
1447   llvm::Value *EmitVAListRef(const Expr *E);
1448 
1449   /// EmitAnyExprToTemp - Similary to EmitAnyExpr(), however, the result will
1450   /// always be accessible even if no aggregate location is provided.
1451   RValue EmitAnyExprToTemp(const Expr *E);
1452 
1453   /// EmitAnyExprToMem - Emits the code necessary to evaluate an
1454   /// arbitrary expression into the given memory location.
1455   void EmitAnyExprToMem(const Expr *E, llvm::Value *Location,
1456                         Qualifiers Quals, bool IsInitializer);
1457 
1458   /// EmitExprAsInit - Emits the code necessary to initialize a
1459   /// location in memory with the given initializer.
1460   void EmitExprAsInit(const Expr *init, const ValueDecl *D,
1461                       LValue lvalue, bool capturedByInit);
1462 
1463   /// hasVolatileMember - returns true if aggregate type has a volatile
1464   /// member.
1465   bool hasVolatileMember(QualType T) {
1466     if (const RecordType *RT = T->getAs<RecordType>()) {
1467       const RecordDecl *RD = cast<RecordDecl>(RT->getDecl());
1468       return RD->hasVolatileMember();
1469     }
1470     return false;
1471   }
1472   /// EmitAggregateCopy - Emit an aggregate assignment.
1473   ///
1474   /// The difference to EmitAggregateCopy is that tail padding is not copied.
1475   /// This is required for correctness when assigning non-POD structures in C++.
1476   void EmitAggregateAssign(llvm::Value *DestPtr, llvm::Value *SrcPtr,
1477                            QualType EltTy) {
1478     bool IsVolatile = hasVolatileMember(EltTy);
1479     EmitAggregateCopy(DestPtr, SrcPtr, EltTy, IsVolatile, CharUnits::Zero(),
1480                       true);
1481   }
1482 
1483   /// EmitAggregateCopy - Emit an aggregate copy.
1484   ///
1485   /// \param isVolatile - True iff either the source or the destination is
1486   /// volatile.
1487   /// \param isAssignment - If false, allow padding to be copied.  This often
1488   /// yields more efficient.
1489   void EmitAggregateCopy(llvm::Value *DestPtr, llvm::Value *SrcPtr,
1490                          QualType EltTy, bool isVolatile=false,
1491                          CharUnits Alignment = CharUnits::Zero(),
1492                          bool isAssignment = false);
1493 
1494   /// StartBlock - Start new block named N. If insert block is a dummy block
1495   /// then reuse it.
1496   void StartBlock(const char *N);
1497 
1498   /// GetAddrOfLocalVar - Return the address of a local variable.
1499   llvm::Value *GetAddrOfLocalVar(const VarDecl *VD) {
1500     llvm::Value *Res = LocalDeclMap[VD];
1501     assert(Res && "Invalid argument to GetAddrOfLocalVar(), no decl!");
1502     return Res;
1503   }
1504 
1505   /// getOpaqueLValueMapping - Given an opaque value expression (which
1506   /// must be mapped to an l-value), return its mapping.
1507   const LValue &getOpaqueLValueMapping(const OpaqueValueExpr *e) {
1508     assert(OpaqueValueMapping::shouldBindAsLValue(e));
1509 
1510     llvm::DenseMap<const OpaqueValueExpr*,LValue>::iterator
1511       it = OpaqueLValues.find(e);
1512     assert(it != OpaqueLValues.end() && "no mapping for opaque value!");
1513     return it->second;
1514   }
1515 
1516   /// getOpaqueRValueMapping - Given an opaque value expression (which
1517   /// must be mapped to an r-value), return its mapping.
1518   const RValue &getOpaqueRValueMapping(const OpaqueValueExpr *e) {
1519     assert(!OpaqueValueMapping::shouldBindAsLValue(e));
1520 
1521     llvm::DenseMap<const OpaqueValueExpr*,RValue>::iterator
1522       it = OpaqueRValues.find(e);
1523     assert(it != OpaqueRValues.end() && "no mapping for opaque value!");
1524     return it->second;
1525   }
1526 
1527   /// getAccessedFieldNo - Given an encoded value and a result number, return
1528   /// the input field number being accessed.
1529   static unsigned getAccessedFieldNo(unsigned Idx, const llvm::Constant *Elts);
1530 
1531   llvm::BlockAddress *GetAddrOfLabel(const LabelDecl *L);
1532   llvm::BasicBlock *GetIndirectGotoBlock();
1533 
1534   /// EmitNullInitialization - Generate code to set a value of the given type to
1535   /// null, If the type contains data member pointers, they will be initialized
1536   /// to -1 in accordance with the Itanium C++ ABI.
1537   void EmitNullInitialization(llvm::Value *DestPtr, QualType Ty);
1538 
1539   // EmitVAArg - Generate code to get an argument from the passed in pointer
1540   // and update it accordingly. The return value is a pointer to the argument.
1541   // FIXME: We should be able to get rid of this method and use the va_arg
1542   // instruction in LLVM instead once it works well enough.
1543   llvm::Value *EmitVAArg(llvm::Value *VAListAddr, QualType Ty);
1544 
1545   /// emitArrayLength - Compute the length of an array, even if it's a
1546   /// VLA, and drill down to the base element type.
1547   llvm::Value *emitArrayLength(const ArrayType *arrayType,
1548                                QualType &baseType,
1549                                llvm::Value *&addr);
1550 
1551   /// EmitVLASize - Capture all the sizes for the VLA expressions in
1552   /// the given variably-modified type and store them in the VLASizeMap.
1553   ///
1554   /// This function can be called with a null (unreachable) insert point.
1555   void EmitVariablyModifiedType(QualType Ty);
1556 
1557   /// getVLASize - Returns an LLVM value that corresponds to the size,
1558   /// in non-variably-sized elements, of a variable length array type,
1559   /// plus that largest non-variably-sized element type.  Assumes that
1560   /// the type has already been emitted with EmitVariablyModifiedType.
1561   std::pair<llvm::Value*,QualType> getVLASize(const VariableArrayType *vla);
1562   std::pair<llvm::Value*,QualType> getVLASize(QualType vla);
1563 
1564   /// LoadCXXThis - Load the value of 'this'. This function is only valid while
1565   /// generating code for an C++ member function.
1566   llvm::Value *LoadCXXThis() {
1567     assert(CXXThisValue && "no 'this' value for this function");
1568     return CXXThisValue;
1569   }
1570 
1571   /// LoadCXXVTT - Load the VTT parameter to base constructors/destructors have
1572   /// virtual bases.
1573   // FIXME: Every place that calls LoadCXXVTT is something
1574   // that needs to be abstracted properly.
1575   llvm::Value *LoadCXXVTT() {
1576     assert(CXXStructorImplicitParamValue && "no VTT value for this function");
1577     return CXXStructorImplicitParamValue;
1578   }
1579 
1580   /// LoadCXXStructorImplicitParam - Load the implicit parameter
1581   /// for a constructor/destructor.
1582   llvm::Value *LoadCXXStructorImplicitParam() {
1583     assert(CXXStructorImplicitParamValue &&
1584            "no implicit argument value for this function");
1585     return CXXStructorImplicitParamValue;
1586   }
1587 
1588   /// GetAddressOfBaseOfCompleteClass - Convert the given pointer to a
1589   /// complete class to the given direct base.
1590   llvm::Value *
1591   GetAddressOfDirectBaseInCompleteClass(llvm::Value *Value,
1592                                         const CXXRecordDecl *Derived,
1593                                         const CXXRecordDecl *Base,
1594                                         bool BaseIsVirtual);
1595 
1596   /// GetAddressOfBaseClass - This function will add the necessary delta to the
1597   /// load of 'this' and returns address of the base class.
1598   llvm::Value *GetAddressOfBaseClass(llvm::Value *Value,
1599                                      const CXXRecordDecl *Derived,
1600                                      CastExpr::path_const_iterator PathBegin,
1601                                      CastExpr::path_const_iterator PathEnd,
1602                                      bool NullCheckValue);
1603 
1604   llvm::Value *GetAddressOfDerivedClass(llvm::Value *Value,
1605                                         const CXXRecordDecl *Derived,
1606                                         CastExpr::path_const_iterator PathBegin,
1607                                         CastExpr::path_const_iterator PathEnd,
1608                                         bool NullCheckValue);
1609 
1610   /// GetVTTParameter - Return the VTT parameter that should be passed to a
1611   /// base constructor/destructor with virtual bases.
1612   /// FIXME: VTTs are Itanium ABI-specific, so the definition should move
1613   /// to ItaniumCXXABI.cpp together with all the references to VTT.
1614   llvm::Value *GetVTTParameter(GlobalDecl GD, bool ForVirtualBase,
1615                                bool Delegating);
1616 
1617   void EmitDelegateCXXConstructorCall(const CXXConstructorDecl *Ctor,
1618                                       CXXCtorType CtorType,
1619                                       const FunctionArgList &Args,
1620                                       SourceLocation Loc);
1621   // It's important not to confuse this and the previous function. Delegating
1622   // constructors are the C++0x feature. The constructor delegate optimization
1623   // is used to reduce duplication in the base and complete consturctors where
1624   // they are substantially the same.
1625   void EmitDelegatingCXXConstructorCall(const CXXConstructorDecl *Ctor,
1626                                         const FunctionArgList &Args);
1627   void EmitCXXConstructorCall(const CXXConstructorDecl *D, CXXCtorType Type,
1628                               bool ForVirtualBase, bool Delegating,
1629                               llvm::Value *This,
1630                               CallExpr::const_arg_iterator ArgBeg,
1631                               CallExpr::const_arg_iterator ArgEnd);
1632 
1633   void EmitSynthesizedCXXCopyCtorCall(const CXXConstructorDecl *D,
1634                               llvm::Value *This, llvm::Value *Src,
1635                               CallExpr::const_arg_iterator ArgBeg,
1636                               CallExpr::const_arg_iterator ArgEnd);
1637 
1638   void EmitCXXAggrConstructorCall(const CXXConstructorDecl *D,
1639                                   const ConstantArrayType *ArrayTy,
1640                                   llvm::Value *ArrayPtr,
1641                                   CallExpr::const_arg_iterator ArgBeg,
1642                                   CallExpr::const_arg_iterator ArgEnd,
1643                                   bool ZeroInitialization = false);
1644 
1645   void EmitCXXAggrConstructorCall(const CXXConstructorDecl *D,
1646                                   llvm::Value *NumElements,
1647                                   llvm::Value *ArrayPtr,
1648                                   CallExpr::const_arg_iterator ArgBeg,
1649                                   CallExpr::const_arg_iterator ArgEnd,
1650                                   bool ZeroInitialization = false);
1651 
1652   static Destroyer destroyCXXObject;
1653 
1654   void EmitCXXDestructorCall(const CXXDestructorDecl *D, CXXDtorType Type,
1655                              bool ForVirtualBase, bool Delegating,
1656                              llvm::Value *This);
1657 
1658   void EmitNewArrayInitializer(const CXXNewExpr *E, QualType elementType,
1659                                llvm::Value *NewPtr, llvm::Value *NumElements,
1660                                llvm::Value *AllocSizeWithoutCookie);
1661 
1662   void EmitCXXTemporary(const CXXTemporary *Temporary, QualType TempType,
1663                         llvm::Value *Ptr);
1664 
1665   llvm::Value *EmitCXXNewExpr(const CXXNewExpr *E);
1666   void EmitCXXDeleteExpr(const CXXDeleteExpr *E);
1667 
1668   void EmitDeleteCall(const FunctionDecl *DeleteFD, llvm::Value *Ptr,
1669                       QualType DeleteTy);
1670 
1671   RValue EmitBuiltinNewDeleteCall(const FunctionProtoType *Type,
1672                                   const Expr *Arg, bool IsDelete);
1673 
1674   llvm::Value* EmitCXXTypeidExpr(const CXXTypeidExpr *E);
1675   llvm::Value *EmitDynamicCast(llvm::Value *V, const CXXDynamicCastExpr *DCE);
1676   llvm::Value* EmitCXXUuidofExpr(const CXXUuidofExpr *E);
1677 
1678   /// \brief Situations in which we might emit a check for the suitability of a
1679   ///        pointer or glvalue.
1680   enum TypeCheckKind {
1681     /// Checking the operand of a load. Must be suitably sized and aligned.
1682     TCK_Load,
1683     /// Checking the destination of a store. Must be suitably sized and aligned.
1684     TCK_Store,
1685     /// Checking the bound value in a reference binding. Must be suitably sized
1686     /// and aligned, but is not required to refer to an object (until the
1687     /// reference is used), per core issue 453.
1688     TCK_ReferenceBinding,
1689     /// Checking the object expression in a non-static data member access. Must
1690     /// be an object within its lifetime.
1691     TCK_MemberAccess,
1692     /// Checking the 'this' pointer for a call to a non-static member function.
1693     /// Must be an object within its lifetime.
1694     TCK_MemberCall,
1695     /// Checking the 'this' pointer for a constructor call.
1696     TCK_ConstructorCall,
1697     /// Checking the operand of a static_cast to a derived pointer type. Must be
1698     /// null or an object within its lifetime.
1699     TCK_DowncastPointer,
1700     /// Checking the operand of a static_cast to a derived reference type. Must
1701     /// be an object within its lifetime.
1702     TCK_DowncastReference
1703   };
1704 
1705   /// \brief Whether any type-checking sanitizers are enabled. If \c false,
1706   /// calls to EmitTypeCheck can be skipped.
1707   bool sanitizePerformTypeCheck() const;
1708 
1709   /// \brief Emit a check that \p V is the address of storage of the
1710   /// appropriate size and alignment for an object of type \p Type.
1711   void EmitTypeCheck(TypeCheckKind TCK, SourceLocation Loc, llvm::Value *V,
1712                      QualType Type, CharUnits Alignment = CharUnits::Zero());
1713 
1714   /// \brief Emit a check that \p Base points into an array object, which
1715   /// we can access at index \p Index. \p Accessed should be \c false if we
1716   /// this expression is used as an lvalue, for instance in "&Arr[Idx]".
1717   void EmitBoundsCheck(const Expr *E, const Expr *Base, llvm::Value *Index,
1718                        QualType IndexType, bool Accessed);
1719 
1720   llvm::Value *EmitScalarPrePostIncDec(const UnaryOperator *E, LValue LV,
1721                                        bool isInc, bool isPre);
1722   ComplexPairTy EmitComplexPrePostIncDec(const UnaryOperator *E, LValue LV,
1723                                          bool isInc, bool isPre);
1724   //===--------------------------------------------------------------------===//
1725   //                            Declaration Emission
1726   //===--------------------------------------------------------------------===//
1727 
1728   /// EmitDecl - Emit a declaration.
1729   ///
1730   /// This function can be called with a null (unreachable) insert point.
1731   void EmitDecl(const Decl &D);
1732 
1733   /// EmitVarDecl - Emit a local variable declaration.
1734   ///
1735   /// This function can be called with a null (unreachable) insert point.
1736   void EmitVarDecl(const VarDecl &D);
1737 
1738   void EmitScalarInit(const Expr *init, const ValueDecl *D,
1739                       LValue lvalue, bool capturedByInit);
1740   void EmitScalarInit(llvm::Value *init, LValue lvalue);
1741 
1742   typedef void SpecialInitFn(CodeGenFunction &Init, const VarDecl &D,
1743                              llvm::Value *Address);
1744 
1745   /// EmitAutoVarDecl - Emit an auto variable declaration.
1746   ///
1747   /// This function can be called with a null (unreachable) insert point.
1748   void EmitAutoVarDecl(const VarDecl &D);
1749 
1750   class AutoVarEmission {
1751     friend class CodeGenFunction;
1752 
1753     const VarDecl *Variable;
1754 
1755     /// The alignment of the variable.
1756     CharUnits Alignment;
1757 
1758     /// The address of the alloca.  Null if the variable was emitted
1759     /// as a global constant.
1760     llvm::Value *Address;
1761 
1762     llvm::Value *NRVOFlag;
1763 
1764     /// True if the variable is a __block variable.
1765     bool IsByRef;
1766 
1767     /// True if the variable is of aggregate type and has a constant
1768     /// initializer.
1769     bool IsConstantAggregate;
1770 
1771     /// Non-null if we should use lifetime annotations.
1772     llvm::Value *SizeForLifetimeMarkers;
1773 
1774     struct Invalid {};
1775     AutoVarEmission(Invalid) : Variable(nullptr) {}
1776 
1777     AutoVarEmission(const VarDecl &variable)
1778       : Variable(&variable), Address(nullptr), NRVOFlag(nullptr),
1779         IsByRef(false), IsConstantAggregate(false),
1780         SizeForLifetimeMarkers(nullptr) {}
1781 
1782     bool wasEmittedAsGlobal() const { return Address == nullptr; }
1783 
1784   public:
1785     static AutoVarEmission invalid() { return AutoVarEmission(Invalid()); }
1786 
1787     bool useLifetimeMarkers() const {
1788       return SizeForLifetimeMarkers != nullptr;
1789     }
1790     llvm::Value *getSizeForLifetimeMarkers() const {
1791       assert(useLifetimeMarkers());
1792       return SizeForLifetimeMarkers;
1793     }
1794 
1795     /// Returns the raw, allocated address, which is not necessarily
1796     /// the address of the object itself.
1797     llvm::Value *getAllocatedAddress() const {
1798       return Address;
1799     }
1800 
1801     /// Returns the address of the object within this declaration.
1802     /// Note that this does not chase the forwarding pointer for
1803     /// __block decls.
1804     llvm::Value *getObjectAddress(CodeGenFunction &CGF) const {
1805       if (!IsByRef) return Address;
1806 
1807       return CGF.Builder.CreateStructGEP(Address,
1808                                          CGF.getByRefValueLLVMField(Variable),
1809                                          Variable->getNameAsString());
1810     }
1811   };
1812   AutoVarEmission EmitAutoVarAlloca(const VarDecl &var);
1813   void EmitAutoVarInit(const AutoVarEmission &emission);
1814   void EmitAutoVarCleanups(const AutoVarEmission &emission);
1815   void emitAutoVarTypeCleanup(const AutoVarEmission &emission,
1816                               QualType::DestructionKind dtorKind);
1817 
1818   void EmitStaticVarDecl(const VarDecl &D,
1819                          llvm::GlobalValue::LinkageTypes Linkage);
1820 
1821   /// EmitParmDecl - Emit a ParmVarDecl or an ImplicitParamDecl.
1822   void EmitParmDecl(const VarDecl &D, llvm::Value *Arg, bool ArgIsPointer,
1823                     unsigned ArgNo);
1824 
1825   /// protectFromPeepholes - Protect a value that we're intending to
1826   /// store to the side, but which will probably be used later, from
1827   /// aggressive peepholing optimizations that might delete it.
1828   ///
1829   /// Pass the result to unprotectFromPeepholes to declare that
1830   /// protection is no longer required.
1831   ///
1832   /// There's no particular reason why this shouldn't apply to
1833   /// l-values, it's just that no existing peepholes work on pointers.
1834   PeepholeProtection protectFromPeepholes(RValue rvalue);
1835   void unprotectFromPeepholes(PeepholeProtection protection);
1836 
1837   //===--------------------------------------------------------------------===//
1838   //                             Statement Emission
1839   //===--------------------------------------------------------------------===//
1840 
1841   /// EmitStopPoint - Emit a debug stoppoint if we are emitting debug info.
1842   void EmitStopPoint(const Stmt *S);
1843 
1844   /// EmitStmt - Emit the code for the statement \arg S. It is legal to call
1845   /// this function even if there is no current insertion point.
1846   ///
1847   /// This function may clear the current insertion point; callers should use
1848   /// EnsureInsertPoint if they wish to subsequently generate code without first
1849   /// calling EmitBlock, EmitBranch, or EmitStmt.
1850   void EmitStmt(const Stmt *S);
1851 
1852   /// EmitSimpleStmt - Try to emit a "simple" statement which does not
1853   /// necessarily require an insertion point or debug information; typically
1854   /// because the statement amounts to a jump or a container of other
1855   /// statements.
1856   ///
1857   /// \return True if the statement was handled.
1858   bool EmitSimpleStmt(const Stmt *S);
1859 
1860   llvm::Value *EmitCompoundStmt(const CompoundStmt &S, bool GetLast = false,
1861                                 AggValueSlot AVS = AggValueSlot::ignored());
1862   llvm::Value *EmitCompoundStmtWithoutScope(const CompoundStmt &S,
1863                                             bool GetLast = false,
1864                                             AggValueSlot AVS =
1865                                                 AggValueSlot::ignored());
1866 
1867   /// EmitLabel - Emit the block for the given label. It is legal to call this
1868   /// function even if there is no current insertion point.
1869   void EmitLabel(const LabelDecl *D); // helper for EmitLabelStmt.
1870 
1871   void EmitLabelStmt(const LabelStmt &S);
1872   void EmitAttributedStmt(const AttributedStmt &S);
1873   void EmitGotoStmt(const GotoStmt &S);
1874   void EmitIndirectGotoStmt(const IndirectGotoStmt &S);
1875   void EmitIfStmt(const IfStmt &S);
1876 
1877   void EmitCondBrHints(llvm::LLVMContext &Context, llvm::BranchInst *CondBr,
1878                        const ArrayRef<const Attr *> &Attrs);
1879   void EmitWhileStmt(const WhileStmt &S,
1880                      const ArrayRef<const Attr *> &Attrs = None);
1881   void EmitDoStmt(const DoStmt &S, const ArrayRef<const Attr *> &Attrs = None);
1882   void EmitForStmt(const ForStmt &S,
1883                    const ArrayRef<const Attr *> &Attrs = None);
1884   void EmitReturnStmt(const ReturnStmt &S);
1885   void EmitDeclStmt(const DeclStmt &S);
1886   void EmitBreakStmt(const BreakStmt &S);
1887   void EmitContinueStmt(const ContinueStmt &S);
1888   void EmitSwitchStmt(const SwitchStmt &S);
1889   void EmitDefaultStmt(const DefaultStmt &S);
1890   void EmitCaseStmt(const CaseStmt &S);
1891   void EmitCaseStmtRange(const CaseStmt &S);
1892   void EmitAsmStmt(const AsmStmt &S);
1893 
1894   void EmitObjCForCollectionStmt(const ObjCForCollectionStmt &S);
1895   void EmitObjCAtTryStmt(const ObjCAtTryStmt &S);
1896   void EmitObjCAtThrowStmt(const ObjCAtThrowStmt &S);
1897   void EmitObjCAtSynchronizedStmt(const ObjCAtSynchronizedStmt &S);
1898   void EmitObjCAutoreleasePoolStmt(const ObjCAutoreleasePoolStmt &S);
1899 
1900   void EnterCXXTryStmt(const CXXTryStmt &S, bool IsFnTryBlock = false);
1901   void ExitCXXTryStmt(const CXXTryStmt &S, bool IsFnTryBlock = false);
1902 
1903   void EmitCXXTryStmt(const CXXTryStmt &S);
1904   void EmitSEHTryStmt(const SEHTryStmt &S);
1905   void EmitSEHLeaveStmt(const SEHLeaveStmt &S);
1906   void EmitCXXForRangeStmt(const CXXForRangeStmt &S,
1907                            const ArrayRef<const Attr *> &Attrs = None);
1908 
1909   llvm::Function *EmitCapturedStmt(const CapturedStmt &S, CapturedRegionKind K);
1910   llvm::Function *GenerateCapturedStmtFunction(const CapturedStmt &S);
1911   llvm::Value *GenerateCapturedStmtArgument(const CapturedStmt &S);
1912 
1913   void EmitOMPParallelDirective(const OMPParallelDirective &S);
1914   void EmitOMPSimdDirective(const OMPSimdDirective &S);
1915   void EmitOMPForDirective(const OMPForDirective &S);
1916   void EmitOMPSectionsDirective(const OMPSectionsDirective &S);
1917   void EmitOMPSectionDirective(const OMPSectionDirective &S);
1918   void EmitOMPSingleDirective(const OMPSingleDirective &S);
1919   void EmitOMPParallelForDirective(const OMPParallelForDirective &S);
1920   void EmitOMPParallelSectionsDirective(const OMPParallelSectionsDirective &S);
1921   void EmitOMPTaskDirective(const OMPTaskDirective &S);
1922 
1923   //===--------------------------------------------------------------------===//
1924   //                         LValue Expression Emission
1925   //===--------------------------------------------------------------------===//
1926 
1927   /// GetUndefRValue - Get an appropriate 'undef' rvalue for the given type.
1928   RValue GetUndefRValue(QualType Ty);
1929 
1930   /// EmitUnsupportedRValue - Emit a dummy r-value using the type of E
1931   /// and issue an ErrorUnsupported style diagnostic (using the
1932   /// provided Name).
1933   RValue EmitUnsupportedRValue(const Expr *E,
1934                                const char *Name);
1935 
1936   /// EmitUnsupportedLValue - Emit a dummy l-value using the type of E and issue
1937   /// an ErrorUnsupported style diagnostic (using the provided Name).
1938   LValue EmitUnsupportedLValue(const Expr *E,
1939                                const char *Name);
1940 
1941   /// EmitLValue - Emit code to compute a designator that specifies the location
1942   /// of the expression.
1943   ///
1944   /// This can return one of two things: a simple address or a bitfield
1945   /// reference.  In either case, the LLVM Value* in the LValue structure is
1946   /// guaranteed to be an LLVM pointer type.
1947   ///
1948   /// If this returns a bitfield reference, nothing about the pointee type of
1949   /// the LLVM value is known: For example, it may not be a pointer to an
1950   /// integer.
1951   ///
1952   /// If this returns a normal address, and if the lvalue's C type is fixed
1953   /// size, this method guarantees that the returned pointer type will point to
1954   /// an LLVM type of the same size of the lvalue's type.  If the lvalue has a
1955   /// variable length type, this is not possible.
1956   ///
1957   LValue EmitLValue(const Expr *E);
1958 
1959   /// \brief Same as EmitLValue but additionally we generate checking code to
1960   /// guard against undefined behavior.  This is only suitable when we know
1961   /// that the address will be used to access the object.
1962   LValue EmitCheckedLValue(const Expr *E, TypeCheckKind TCK);
1963 
1964   RValue convertTempToRValue(llvm::Value *addr, QualType type,
1965                              SourceLocation Loc);
1966 
1967   void EmitAtomicInit(Expr *E, LValue lvalue);
1968 
1969   RValue EmitAtomicLoad(LValue lvalue, SourceLocation loc,
1970                         AggValueSlot slot = AggValueSlot::ignored());
1971 
1972   void EmitAtomicStore(RValue rvalue, LValue lvalue, bool isInit);
1973 
1974   /// EmitToMemory - Change a scalar value from its value
1975   /// representation to its in-memory representation.
1976   llvm::Value *EmitToMemory(llvm::Value *Value, QualType Ty);
1977 
1978   /// EmitFromMemory - Change a scalar value from its memory
1979   /// representation to its value representation.
1980   llvm::Value *EmitFromMemory(llvm::Value *Value, QualType Ty);
1981 
1982   /// EmitLoadOfScalar - Load a scalar value from an address, taking
1983   /// care to appropriately convert from the memory representation to
1984   /// the LLVM value representation.
1985   llvm::Value *EmitLoadOfScalar(llvm::Value *Addr, bool Volatile,
1986                                 unsigned Alignment, QualType Ty,
1987                                 SourceLocation Loc,
1988                                 llvm::MDNode *TBAAInfo = nullptr,
1989                                 QualType TBAABaseTy = QualType(),
1990                                 uint64_t TBAAOffset = 0);
1991 
1992   /// EmitLoadOfScalar - Load a scalar value from an address, taking
1993   /// care to appropriately convert from the memory representation to
1994   /// the LLVM value representation.  The l-value must be a simple
1995   /// l-value.
1996   llvm::Value *EmitLoadOfScalar(LValue lvalue, SourceLocation Loc);
1997 
1998   /// EmitStoreOfScalar - Store a scalar value to an address, taking
1999   /// care to appropriately convert from the memory representation to
2000   /// the LLVM value representation.
2001   void EmitStoreOfScalar(llvm::Value *Value, llvm::Value *Addr,
2002                          bool Volatile, unsigned Alignment, QualType Ty,
2003                          llvm::MDNode *TBAAInfo = nullptr, bool isInit = false,
2004                          QualType TBAABaseTy = QualType(),
2005                          uint64_t TBAAOffset = 0);
2006 
2007   /// EmitStoreOfScalar - Store a scalar value to an address, taking
2008   /// care to appropriately convert from the memory representation to
2009   /// the LLVM value representation.  The l-value must be a simple
2010   /// l-value.  The isInit flag indicates whether this is an initialization.
2011   /// If so, atomic qualifiers are ignored and the store is always non-atomic.
2012   void EmitStoreOfScalar(llvm::Value *value, LValue lvalue, bool isInit=false);
2013 
2014   /// EmitLoadOfLValue - Given an expression that represents a value lvalue,
2015   /// this method emits the address of the lvalue, then loads the result as an
2016   /// rvalue, returning the rvalue.
2017   RValue EmitLoadOfLValue(LValue V, SourceLocation Loc);
2018   RValue EmitLoadOfExtVectorElementLValue(LValue V);
2019   RValue EmitLoadOfBitfieldLValue(LValue LV);
2020   RValue EmitLoadOfGlobalRegLValue(LValue LV);
2021 
2022   /// EmitStoreThroughLValue - Store the specified rvalue into the specified
2023   /// lvalue, where both are guaranteed to the have the same type, and that type
2024   /// is 'Ty'.
2025   void EmitStoreThroughLValue(RValue Src, LValue Dst, bool isInit=false);
2026   void EmitStoreThroughExtVectorComponentLValue(RValue Src, LValue Dst);
2027   void EmitStoreThroughGlobalRegLValue(RValue Src, LValue Dst);
2028 
2029   /// EmitStoreThroughBitfieldLValue - Store Src into Dst with same constraints
2030   /// as EmitStoreThroughLValue.
2031   ///
2032   /// \param Result [out] - If non-null, this will be set to a Value* for the
2033   /// bit-field contents after the store, appropriate for use as the result of
2034   /// an assignment to the bit-field.
2035   void EmitStoreThroughBitfieldLValue(RValue Src, LValue Dst,
2036                                       llvm::Value **Result=nullptr);
2037 
2038   /// Emit an l-value for an assignment (simple or compound) of complex type.
2039   LValue EmitComplexAssignmentLValue(const BinaryOperator *E);
2040   LValue EmitComplexCompoundAssignmentLValue(const CompoundAssignOperator *E);
2041   LValue EmitScalarCompooundAssignWithComplex(const CompoundAssignOperator *E,
2042                                               llvm::Value *&Result);
2043 
2044   // Note: only available for agg return types
2045   LValue EmitBinaryOperatorLValue(const BinaryOperator *E);
2046   LValue EmitCompoundAssignmentLValue(const CompoundAssignOperator *E);
2047   // Note: only available for agg return types
2048   LValue EmitCallExprLValue(const CallExpr *E);
2049   // Note: only available for agg return types
2050   LValue EmitVAArgExprLValue(const VAArgExpr *E);
2051   LValue EmitDeclRefLValue(const DeclRefExpr *E);
2052   LValue EmitReadRegister(const VarDecl *VD);
2053   LValue EmitStringLiteralLValue(const StringLiteral *E);
2054   LValue EmitObjCEncodeExprLValue(const ObjCEncodeExpr *E);
2055   LValue EmitPredefinedLValue(const PredefinedExpr *E);
2056   LValue EmitUnaryOpLValue(const UnaryOperator *E);
2057   LValue EmitArraySubscriptExpr(const ArraySubscriptExpr *E,
2058                                 bool Accessed = false);
2059   LValue EmitExtVectorElementExpr(const ExtVectorElementExpr *E);
2060   LValue EmitMemberExpr(const MemberExpr *E);
2061   LValue EmitObjCIsaExpr(const ObjCIsaExpr *E);
2062   LValue EmitCompoundLiteralLValue(const CompoundLiteralExpr *E);
2063   LValue EmitInitListLValue(const InitListExpr *E);
2064   LValue EmitConditionalOperatorLValue(const AbstractConditionalOperator *E);
2065   LValue EmitCastLValue(const CastExpr *E);
2066   LValue EmitMaterializeTemporaryExpr(const MaterializeTemporaryExpr *E);
2067   LValue EmitOpaqueValueLValue(const OpaqueValueExpr *e);
2068 
2069   RValue EmitRValueForField(LValue LV, const FieldDecl *FD, SourceLocation Loc);
2070 
2071   class ConstantEmission {
2072     llvm::PointerIntPair<llvm::Constant*, 1, bool> ValueAndIsReference;
2073     ConstantEmission(llvm::Constant *C, bool isReference)
2074       : ValueAndIsReference(C, isReference) {}
2075   public:
2076     ConstantEmission() {}
2077     static ConstantEmission forReference(llvm::Constant *C) {
2078       return ConstantEmission(C, true);
2079     }
2080     static ConstantEmission forValue(llvm::Constant *C) {
2081       return ConstantEmission(C, false);
2082     }
2083 
2084     LLVM_EXPLICIT operator bool() const {
2085       return ValueAndIsReference.getOpaqueValue() != nullptr;
2086     }
2087 
2088     bool isReference() const { return ValueAndIsReference.getInt(); }
2089     LValue getReferenceLValue(CodeGenFunction &CGF, Expr *refExpr) const {
2090       assert(isReference());
2091       return CGF.MakeNaturalAlignAddrLValue(ValueAndIsReference.getPointer(),
2092                                             refExpr->getType());
2093     }
2094 
2095     llvm::Constant *getValue() const {
2096       assert(!isReference());
2097       return ValueAndIsReference.getPointer();
2098     }
2099   };
2100 
2101   ConstantEmission tryEmitAsConstant(DeclRefExpr *refExpr);
2102 
2103   RValue EmitPseudoObjectRValue(const PseudoObjectExpr *e,
2104                                 AggValueSlot slot = AggValueSlot::ignored());
2105   LValue EmitPseudoObjectLValue(const PseudoObjectExpr *e);
2106 
2107   llvm::Value *EmitIvarOffset(const ObjCInterfaceDecl *Interface,
2108                               const ObjCIvarDecl *Ivar);
2109   LValue EmitLValueForField(LValue Base, const FieldDecl* Field);
2110   LValue EmitLValueForLambdaField(const FieldDecl *Field);
2111 
2112   /// EmitLValueForFieldInitialization - Like EmitLValueForField, except that
2113   /// if the Field is a reference, this will return the address of the reference
2114   /// and not the address of the value stored in the reference.
2115   LValue EmitLValueForFieldInitialization(LValue Base,
2116                                           const FieldDecl* Field);
2117 
2118   LValue EmitLValueForIvar(QualType ObjectTy,
2119                            llvm::Value* Base, const ObjCIvarDecl *Ivar,
2120                            unsigned CVRQualifiers);
2121 
2122   LValue EmitCXXConstructLValue(const CXXConstructExpr *E);
2123   LValue EmitCXXBindTemporaryLValue(const CXXBindTemporaryExpr *E);
2124   LValue EmitLambdaLValue(const LambdaExpr *E);
2125   LValue EmitCXXTypeidLValue(const CXXTypeidExpr *E);
2126   LValue EmitCXXUuidofLValue(const CXXUuidofExpr *E);
2127 
2128   LValue EmitObjCMessageExprLValue(const ObjCMessageExpr *E);
2129   LValue EmitObjCIvarRefLValue(const ObjCIvarRefExpr *E);
2130   LValue EmitStmtExprLValue(const StmtExpr *E);
2131   LValue EmitPointerToDataMemberBinaryExpr(const BinaryOperator *E);
2132   LValue EmitObjCSelectorLValue(const ObjCSelectorExpr *E);
2133   void   EmitDeclRefExprDbgValue(const DeclRefExpr *E, llvm::Constant *Init);
2134 
2135   //===--------------------------------------------------------------------===//
2136   //                         Scalar Expression Emission
2137   //===--------------------------------------------------------------------===//
2138 
2139   /// EmitCall - Generate a call of the given function, expecting the given
2140   /// result type, and using the given argument list which specifies both the
2141   /// LLVM arguments and the types they were derived from.
2142   ///
2143   /// \param TargetDecl - If given, the decl of the function in a direct call;
2144   /// used to set attributes on the call (noreturn, etc.).
2145   RValue EmitCall(const CGFunctionInfo &FnInfo,
2146                   llvm::Value *Callee,
2147                   ReturnValueSlot ReturnValue,
2148                   const CallArgList &Args,
2149                   const Decl *TargetDecl = nullptr,
2150                   llvm::Instruction **callOrInvoke = nullptr);
2151 
2152   RValue EmitCall(QualType FnType, llvm::Value *Callee,
2153                   SourceLocation CallLoc,
2154                   ReturnValueSlot ReturnValue,
2155                   CallExpr::const_arg_iterator ArgBeg,
2156                   CallExpr::const_arg_iterator ArgEnd,
2157                   const Decl *TargetDecl = nullptr);
2158   RValue EmitCallExpr(const CallExpr *E,
2159                       ReturnValueSlot ReturnValue = ReturnValueSlot());
2160 
2161   llvm::CallInst *EmitRuntimeCall(llvm::Value *callee,
2162                                   const Twine &name = "");
2163   llvm::CallInst *EmitRuntimeCall(llvm::Value *callee,
2164                                   ArrayRef<llvm::Value*> args,
2165                                   const Twine &name = "");
2166   llvm::CallInst *EmitNounwindRuntimeCall(llvm::Value *callee,
2167                                           const Twine &name = "");
2168   llvm::CallInst *EmitNounwindRuntimeCall(llvm::Value *callee,
2169                                           ArrayRef<llvm::Value*> args,
2170                                           const Twine &name = "");
2171 
2172   llvm::CallSite EmitCallOrInvoke(llvm::Value *Callee,
2173                                   ArrayRef<llvm::Value *> Args,
2174                                   const Twine &Name = "");
2175   llvm::CallSite EmitCallOrInvoke(llvm::Value *Callee,
2176                                   const Twine &Name = "");
2177   llvm::CallSite EmitRuntimeCallOrInvoke(llvm::Value *callee,
2178                                          ArrayRef<llvm::Value*> args,
2179                                          const Twine &name = "");
2180   llvm::CallSite EmitRuntimeCallOrInvoke(llvm::Value *callee,
2181                                          const Twine &name = "");
2182   void EmitNoreturnRuntimeCallOrInvoke(llvm::Value *callee,
2183                                        ArrayRef<llvm::Value*> args);
2184 
2185   llvm::Value *BuildAppleKextVirtualCall(const CXXMethodDecl *MD,
2186                                          NestedNameSpecifier *Qual,
2187                                          llvm::Type *Ty);
2188 
2189   llvm::Value *BuildAppleKextVirtualDestructorCall(const CXXDestructorDecl *DD,
2190                                                    CXXDtorType Type,
2191                                                    const CXXRecordDecl *RD);
2192 
2193   RValue EmitCXXMemberCall(const CXXMethodDecl *MD,
2194                            SourceLocation CallLoc,
2195                            llvm::Value *Callee,
2196                            ReturnValueSlot ReturnValue,
2197                            llvm::Value *This,
2198                            llvm::Value *ImplicitParam,
2199                            QualType ImplicitParamTy,
2200                            CallExpr::const_arg_iterator ArgBeg,
2201                            CallExpr::const_arg_iterator ArgEnd);
2202   RValue EmitCXXMemberCallExpr(const CXXMemberCallExpr *E,
2203                                ReturnValueSlot ReturnValue);
2204   RValue EmitCXXMemberPointerCallExpr(const CXXMemberCallExpr *E,
2205                                       ReturnValueSlot ReturnValue);
2206 
2207   llvm::Value *EmitCXXOperatorMemberCallee(const CXXOperatorCallExpr *E,
2208                                            const CXXMethodDecl *MD,
2209                                            llvm::Value *This);
2210   RValue EmitCXXOperatorMemberCallExpr(const CXXOperatorCallExpr *E,
2211                                        const CXXMethodDecl *MD,
2212                                        ReturnValueSlot ReturnValue);
2213 
2214   RValue EmitCUDAKernelCallExpr(const CUDAKernelCallExpr *E,
2215                                 ReturnValueSlot ReturnValue);
2216 
2217 
2218   RValue EmitBuiltinExpr(const FunctionDecl *FD,
2219                          unsigned BuiltinID, const CallExpr *E);
2220 
2221   RValue EmitBlockCallExpr(const CallExpr *E, ReturnValueSlot ReturnValue);
2222 
2223   /// EmitTargetBuiltinExpr - Emit the given builtin call. Returns 0 if the call
2224   /// is unhandled by the current target.
2225   llvm::Value *EmitTargetBuiltinExpr(unsigned BuiltinID, const CallExpr *E);
2226 
2227   llvm::Value *EmitAArch64CompareBuiltinExpr(llvm::Value *Op, llvm::Type *Ty,
2228                                              const llvm::CmpInst::Predicate Fp,
2229                                              const llvm::CmpInst::Predicate Ip,
2230                                              const llvm::Twine &Name = "");
2231   llvm::Value *EmitARMBuiltinExpr(unsigned BuiltinID, const CallExpr *E);
2232 
2233   llvm::Value *EmitCommonNeonBuiltinExpr(unsigned BuiltinID,
2234                                          unsigned LLVMIntrinsic,
2235                                          unsigned AltLLVMIntrinsic,
2236                                          const char *NameHint,
2237                                          unsigned Modifier,
2238                                          const CallExpr *E,
2239                                          SmallVectorImpl<llvm::Value *> &Ops,
2240                                          llvm::Value *Align = nullptr);
2241   llvm::Function *LookupNeonLLVMIntrinsic(unsigned IntrinsicID,
2242                                           unsigned Modifier, llvm::Type *ArgTy,
2243                                           const CallExpr *E);
2244   llvm::Value *EmitNeonCall(llvm::Function *F,
2245                             SmallVectorImpl<llvm::Value*> &O,
2246                             const char *name,
2247                             unsigned shift = 0, bool rightshift = false);
2248   llvm::Value *EmitNeonSplat(llvm::Value *V, llvm::Constant *Idx);
2249   llvm::Value *EmitNeonShiftVector(llvm::Value *V, llvm::Type *Ty,
2250                                    bool negateForRightShift);
2251   llvm::Value *EmitNeonRShiftImm(llvm::Value *Vec, llvm::Value *Amt,
2252                                  llvm::Type *Ty, bool usgn, const char *name);
2253   // Helper functions for EmitAArch64BuiltinExpr.
2254   llvm::Value *vectorWrapScalar8(llvm::Value *Op);
2255   llvm::Value *vectorWrapScalar16(llvm::Value *Op);
2256   llvm::Value *emitVectorWrappedScalar8Intrinsic(
2257       unsigned Int, SmallVectorImpl<llvm::Value *> &Ops, const char *Name);
2258   llvm::Value *emitVectorWrappedScalar16Intrinsic(
2259       unsigned Int, SmallVectorImpl<llvm::Value *> &Ops, const char *Name);
2260   llvm::Value *EmitAArch64BuiltinExpr(unsigned BuiltinID, const CallExpr *E);
2261   llvm::Value *EmitNeon64Call(llvm::Function *F,
2262                               llvm::SmallVectorImpl<llvm::Value *> &O,
2263                               const char *name);
2264 
2265   llvm::Value *BuildVector(ArrayRef<llvm::Value*> Ops);
2266   llvm::Value *EmitX86BuiltinExpr(unsigned BuiltinID, const CallExpr *E);
2267   llvm::Value *EmitPPCBuiltinExpr(unsigned BuiltinID, const CallExpr *E);
2268   llvm::Value *EmitR600BuiltinExpr(unsigned BuiltinID, const CallExpr *E);
2269 
2270   llvm::Value *EmitObjCProtocolExpr(const ObjCProtocolExpr *E);
2271   llvm::Value *EmitObjCStringLiteral(const ObjCStringLiteral *E);
2272   llvm::Value *EmitObjCBoxedExpr(const ObjCBoxedExpr *E);
2273   llvm::Value *EmitObjCArrayLiteral(const ObjCArrayLiteral *E);
2274   llvm::Value *EmitObjCDictionaryLiteral(const ObjCDictionaryLiteral *E);
2275   llvm::Value *EmitObjCCollectionLiteral(const Expr *E,
2276                                 const ObjCMethodDecl *MethodWithObjects);
2277   llvm::Value *EmitObjCSelectorExpr(const ObjCSelectorExpr *E);
2278   RValue EmitObjCMessageExpr(const ObjCMessageExpr *E,
2279                              ReturnValueSlot Return = ReturnValueSlot());
2280 
2281   /// Retrieves the default cleanup kind for an ARC cleanup.
2282   /// Except under -fobjc-arc-eh, ARC cleanups are normal-only.
2283   CleanupKind getARCCleanupKind() {
2284     return CGM.getCodeGenOpts().ObjCAutoRefCountExceptions
2285              ? NormalAndEHCleanup : NormalCleanup;
2286   }
2287 
2288   // ARC primitives.
2289   void EmitARCInitWeak(llvm::Value *value, llvm::Value *addr);
2290   void EmitARCDestroyWeak(llvm::Value *addr);
2291   llvm::Value *EmitARCLoadWeak(llvm::Value *addr);
2292   llvm::Value *EmitARCLoadWeakRetained(llvm::Value *addr);
2293   llvm::Value *EmitARCStoreWeak(llvm::Value *value, llvm::Value *addr,
2294                                 bool ignored);
2295   void EmitARCCopyWeak(llvm::Value *dst, llvm::Value *src);
2296   void EmitARCMoveWeak(llvm::Value *dst, llvm::Value *src);
2297   llvm::Value *EmitARCRetainAutorelease(QualType type, llvm::Value *value);
2298   llvm::Value *EmitARCRetainAutoreleaseNonBlock(llvm::Value *value);
2299   llvm::Value *EmitARCStoreStrong(LValue lvalue, llvm::Value *value,
2300                                   bool resultIgnored);
2301   llvm::Value *EmitARCStoreStrongCall(llvm::Value *addr, llvm::Value *value,
2302                                       bool resultIgnored);
2303   llvm::Value *EmitARCRetain(QualType type, llvm::Value *value);
2304   llvm::Value *EmitARCRetainNonBlock(llvm::Value *value);
2305   llvm::Value *EmitARCRetainBlock(llvm::Value *value, bool mandatory);
2306   void EmitARCDestroyStrong(llvm::Value *addr, ARCPreciseLifetime_t precise);
2307   void EmitARCRelease(llvm::Value *value, ARCPreciseLifetime_t precise);
2308   llvm::Value *EmitARCAutorelease(llvm::Value *value);
2309   llvm::Value *EmitARCAutoreleaseReturnValue(llvm::Value *value);
2310   llvm::Value *EmitARCRetainAutoreleaseReturnValue(llvm::Value *value);
2311   llvm::Value *EmitARCRetainAutoreleasedReturnValue(llvm::Value *value);
2312 
2313   std::pair<LValue,llvm::Value*>
2314   EmitARCStoreAutoreleasing(const BinaryOperator *e);
2315   std::pair<LValue,llvm::Value*>
2316   EmitARCStoreStrong(const BinaryOperator *e, bool ignored);
2317 
2318   llvm::Value *EmitObjCThrowOperand(const Expr *expr);
2319 
2320   llvm::Value *EmitObjCProduceObject(QualType T, llvm::Value *Ptr);
2321   llvm::Value *EmitObjCConsumeObject(QualType T, llvm::Value *Ptr);
2322   llvm::Value *EmitObjCExtendObjectLifetime(QualType T, llvm::Value *Ptr);
2323 
2324   llvm::Value *EmitARCExtendBlockObject(const Expr *expr);
2325   llvm::Value *EmitARCRetainScalarExpr(const Expr *expr);
2326   llvm::Value *EmitARCRetainAutoreleaseScalarExpr(const Expr *expr);
2327 
2328   void EmitARCIntrinsicUse(ArrayRef<llvm::Value*> values);
2329 
2330   static Destroyer destroyARCStrongImprecise;
2331   static Destroyer destroyARCStrongPrecise;
2332   static Destroyer destroyARCWeak;
2333 
2334   void EmitObjCAutoreleasePoolPop(llvm::Value *Ptr);
2335   llvm::Value *EmitObjCAutoreleasePoolPush();
2336   llvm::Value *EmitObjCMRRAutoreleasePoolPush();
2337   void EmitObjCAutoreleasePoolCleanup(llvm::Value *Ptr);
2338   void EmitObjCMRRAutoreleasePoolPop(llvm::Value *Ptr);
2339 
2340   /// \brief Emits a reference binding to the passed in expression.
2341   RValue EmitReferenceBindingToExpr(const Expr *E);
2342 
2343   //===--------------------------------------------------------------------===//
2344   //                           Expression Emission
2345   //===--------------------------------------------------------------------===//
2346 
2347   // Expressions are broken into three classes: scalar, complex, aggregate.
2348 
2349   /// EmitScalarExpr - Emit the computation of the specified expression of LLVM
2350   /// scalar type, returning the result.
2351   llvm::Value *EmitScalarExpr(const Expr *E , bool IgnoreResultAssign = false);
2352 
2353   /// EmitScalarConversion - Emit a conversion from the specified type to the
2354   /// specified destination type, both of which are LLVM scalar types.
2355   llvm::Value *EmitScalarConversion(llvm::Value *Src, QualType SrcTy,
2356                                     QualType DstTy);
2357 
2358   /// EmitComplexToScalarConversion - Emit a conversion from the specified
2359   /// complex type to the specified destination type, where the destination type
2360   /// is an LLVM scalar type.
2361   llvm::Value *EmitComplexToScalarConversion(ComplexPairTy Src, QualType SrcTy,
2362                                              QualType DstTy);
2363 
2364 
2365   /// EmitAggExpr - Emit the computation of the specified expression
2366   /// of aggregate type.  The result is computed into the given slot,
2367   /// which may be null to indicate that the value is not needed.
2368   void EmitAggExpr(const Expr *E, AggValueSlot AS);
2369 
2370   /// EmitAggExprToLValue - Emit the computation of the specified expression of
2371   /// aggregate type into a temporary LValue.
2372   LValue EmitAggExprToLValue(const Expr *E);
2373 
2374   /// EmitGCMemmoveCollectable - Emit special API for structs with object
2375   /// pointers.
2376   void EmitGCMemmoveCollectable(llvm::Value *DestPtr, llvm::Value *SrcPtr,
2377                                 QualType Ty);
2378 
2379   /// EmitExtendGCLifetime - Given a pointer to an Objective-C object,
2380   /// make sure it survives garbage collection until this point.
2381   void EmitExtendGCLifetime(llvm::Value *object);
2382 
2383   /// EmitComplexExpr - Emit the computation of the specified expression of
2384   /// complex type, returning the result.
2385   ComplexPairTy EmitComplexExpr(const Expr *E,
2386                                 bool IgnoreReal = false,
2387                                 bool IgnoreImag = false);
2388 
2389   /// EmitComplexExprIntoLValue - Emit the given expression of complex
2390   /// type and place its result into the specified l-value.
2391   void EmitComplexExprIntoLValue(const Expr *E, LValue dest, bool isInit);
2392 
2393   /// EmitStoreOfComplex - Store a complex number into the specified l-value.
2394   void EmitStoreOfComplex(ComplexPairTy V, LValue dest, bool isInit);
2395 
2396   /// EmitLoadOfComplex - Load a complex number from the specified l-value.
2397   ComplexPairTy EmitLoadOfComplex(LValue src, SourceLocation loc);
2398 
2399   /// CreateStaticVarDecl - Create a zero-initialized LLVM global for
2400   /// a static local variable.
2401   llvm::Constant *CreateStaticVarDecl(const VarDecl &D,
2402                                       const char *Separator,
2403                                       llvm::GlobalValue::LinkageTypes Linkage);
2404 
2405   /// AddInitializerToStaticVarDecl - Add the initializer for 'D' to the
2406   /// global variable that has already been created for it.  If the initializer
2407   /// has a different type than GV does, this may free GV and return a different
2408   /// one.  Otherwise it just returns GV.
2409   llvm::GlobalVariable *
2410   AddInitializerToStaticVarDecl(const VarDecl &D,
2411                                 llvm::GlobalVariable *GV);
2412 
2413 
2414   /// EmitCXXGlobalVarDeclInit - Create the initializer for a C++
2415   /// variable with global storage.
2416   void EmitCXXGlobalVarDeclInit(const VarDecl &D, llvm::Constant *DeclPtr,
2417                                 bool PerformInit);
2418 
2419   /// Call atexit() with a function that passes the given argument to
2420   /// the given function.
2421   void registerGlobalDtorWithAtExit(const VarDecl &D, llvm::Constant *fn,
2422                                     llvm::Constant *addr);
2423 
2424   /// Emit code in this function to perform a guarded variable
2425   /// initialization.  Guarded initializations are used when it's not
2426   /// possible to prove that an initialization will be done exactly
2427   /// once, e.g. with a static local variable or a static data member
2428   /// of a class template.
2429   void EmitCXXGuardedInit(const VarDecl &D, llvm::GlobalVariable *DeclPtr,
2430                           bool PerformInit);
2431 
2432   /// GenerateCXXGlobalInitFunc - Generates code for initializing global
2433   /// variables.
2434   void GenerateCXXGlobalInitFunc(llvm::Function *Fn,
2435                                  ArrayRef<llvm::Constant *> Decls,
2436                                  llvm::GlobalVariable *Guard = nullptr);
2437 
2438   /// GenerateCXXGlobalDtorsFunc - Generates code for destroying global
2439   /// variables.
2440   void GenerateCXXGlobalDtorsFunc(llvm::Function *Fn,
2441                                   const std::vector<std::pair<llvm::WeakVH,
2442                                   llvm::Constant*> > &DtorsAndObjects);
2443 
2444   void GenerateCXXGlobalVarDeclInitFunc(llvm::Function *Fn,
2445                                         const VarDecl *D,
2446                                         llvm::GlobalVariable *Addr,
2447                                         bool PerformInit);
2448 
2449   void EmitCXXConstructExpr(const CXXConstructExpr *E, AggValueSlot Dest);
2450 
2451   void EmitSynthesizedCXXCopyCtor(llvm::Value *Dest, llvm::Value *Src,
2452                                   const Expr *Exp);
2453 
2454   void enterFullExpression(const ExprWithCleanups *E) {
2455     if (E->getNumObjects() == 0) return;
2456     enterNonTrivialFullExpression(E);
2457   }
2458   void enterNonTrivialFullExpression(const ExprWithCleanups *E);
2459 
2460   void EmitCXXThrowExpr(const CXXThrowExpr *E, bool KeepInsertionPoint = true);
2461 
2462   void EmitLambdaExpr(const LambdaExpr *E, AggValueSlot Dest);
2463 
2464   RValue EmitAtomicExpr(AtomicExpr *E, llvm::Value *Dest = nullptr);
2465 
2466   //===--------------------------------------------------------------------===//
2467   //                         Annotations Emission
2468   //===--------------------------------------------------------------------===//
2469 
2470   /// Emit an annotation call (intrinsic or builtin).
2471   llvm::Value *EmitAnnotationCall(llvm::Value *AnnotationFn,
2472                                   llvm::Value *AnnotatedVal,
2473                                   StringRef AnnotationStr,
2474                                   SourceLocation Location);
2475 
2476   /// Emit local annotations for the local variable V, declared by D.
2477   void EmitVarAnnotations(const VarDecl *D, llvm::Value *V);
2478 
2479   /// Emit field annotations for the given field & value. Returns the
2480   /// annotation result.
2481   llvm::Value *EmitFieldAnnotations(const FieldDecl *D, llvm::Value *V);
2482 
2483   //===--------------------------------------------------------------------===//
2484   //                             Internal Helpers
2485   //===--------------------------------------------------------------------===//
2486 
2487   /// ContainsLabel - Return true if the statement contains a label in it.  If
2488   /// this statement is not executed normally, it not containing a label means
2489   /// that we can just remove the code.
2490   static bool ContainsLabel(const Stmt *S, bool IgnoreCaseStmts = false);
2491 
2492   /// containsBreak - Return true if the statement contains a break out of it.
2493   /// If the statement (recursively) contains a switch or loop with a break
2494   /// inside of it, this is fine.
2495   static bool containsBreak(const Stmt *S);
2496 
2497   /// ConstantFoldsToSimpleInteger - If the specified expression does not fold
2498   /// to a constant, or if it does but contains a label, return false.  If it
2499   /// constant folds return true and set the boolean result in Result.
2500   bool ConstantFoldsToSimpleInteger(const Expr *Cond, bool &Result);
2501 
2502   /// ConstantFoldsToSimpleInteger - If the specified expression does not fold
2503   /// to a constant, or if it does but contains a label, return false.  If it
2504   /// constant folds return true and set the folded value.
2505   bool ConstantFoldsToSimpleInteger(const Expr *Cond, llvm::APSInt &Result);
2506 
2507   /// EmitBranchOnBoolExpr - Emit a branch on a boolean condition (e.g. for an
2508   /// if statement) to the specified blocks.  Based on the condition, this might
2509   /// try to simplify the codegen of the conditional based on the branch.
2510   /// TrueCount should be the number of times we expect the condition to
2511   /// evaluate to true based on PGO data.
2512   void EmitBranchOnBoolExpr(const Expr *Cond, llvm::BasicBlock *TrueBlock,
2513                             llvm::BasicBlock *FalseBlock, uint64_t TrueCount);
2514 
2515   /// \brief Emit a description of a type in a format suitable for passing to
2516   /// a runtime sanitizer handler.
2517   llvm::Constant *EmitCheckTypeDescriptor(QualType T);
2518 
2519   /// \brief Convert a value into a format suitable for passing to a runtime
2520   /// sanitizer handler.
2521   llvm::Value *EmitCheckValue(llvm::Value *V);
2522 
2523   /// \brief Emit a description of a source location in a format suitable for
2524   /// passing to a runtime sanitizer handler.
2525   llvm::Constant *EmitCheckSourceLocation(SourceLocation Loc);
2526 
2527   /// \brief Specify under what conditions this check can be recovered
2528   enum CheckRecoverableKind {
2529     /// Always terminate program execution if this check fails
2530     CRK_Unrecoverable,
2531     /// Check supports recovering, allows user to specify which
2532     CRK_Recoverable,
2533     /// Runtime conditionally aborts, always need to support recovery.
2534     CRK_AlwaysRecoverable
2535   };
2536 
2537   /// \brief Create a basic block that will call a handler function in a
2538   /// sanitizer runtime with the provided arguments, and create a conditional
2539   /// branch to it.
2540   void EmitCheck(llvm::Value *Checked, StringRef CheckName,
2541                  ArrayRef<llvm::Constant *> StaticArgs,
2542                  ArrayRef<llvm::Value *> DynamicArgs,
2543                  CheckRecoverableKind Recoverable);
2544 
2545   /// \brief Create a basic block that will call the trap intrinsic, and emit a
2546   /// conditional branch to it, for the -ftrapv checks.
2547   void EmitTrapCheck(llvm::Value *Checked);
2548 
2549   /// EmitCallArg - Emit a single call argument.
2550   void EmitCallArg(CallArgList &args, const Expr *E, QualType ArgType);
2551 
2552   /// EmitDelegateCallArg - We are performing a delegate call; that
2553   /// is, the current function is delegating to another one.  Produce
2554   /// a r-value suitable for passing the given parameter.
2555   void EmitDelegateCallArg(CallArgList &args, const VarDecl *param,
2556                            SourceLocation loc);
2557 
2558   /// SetFPAccuracy - Set the minimum required accuracy of the given floating
2559   /// point operation, expressed as the maximum relative error in ulp.
2560   void SetFPAccuracy(llvm::Value *Val, float Accuracy);
2561 
2562 private:
2563   llvm::MDNode *getRangeForLoadFromType(QualType Ty);
2564   void EmitReturnOfRValue(RValue RV, QualType Ty);
2565 
2566   void deferPlaceholderReplacement(llvm::Instruction *Old, llvm::Value *New);
2567 
2568   llvm::SmallVector<std::pair<llvm::Instruction *, llvm::Value *>, 4>
2569   DeferredReplacements;
2570 
2571   /// ExpandTypeFromArgs - Reconstruct a structure of type \arg Ty
2572   /// from function arguments into \arg Dst. See ABIArgInfo::Expand.
2573   ///
2574   /// \param AI - The first function argument of the expansion.
2575   /// \return The argument following the last expanded function
2576   /// argument.
2577   llvm::Function::arg_iterator
2578   ExpandTypeFromArgs(QualType Ty, LValue Dst,
2579                      llvm::Function::arg_iterator AI);
2580 
2581   /// ExpandTypeToArgs - Expand an RValue \arg Src, with the LLVM type for \arg
2582   /// Ty, into individual arguments on the provided vector \arg Args. See
2583   /// ABIArgInfo::Expand.
2584   void ExpandTypeToArgs(QualType Ty, RValue Src,
2585                         SmallVectorImpl<llvm::Value *> &Args,
2586                         llvm::FunctionType *IRFuncTy);
2587 
2588   llvm::Value* EmitAsmInput(const TargetInfo::ConstraintInfo &Info,
2589                             const Expr *InputExpr, std::string &ConstraintStr);
2590 
2591   llvm::Value* EmitAsmInputLValue(const TargetInfo::ConstraintInfo &Info,
2592                                   LValue InputValue, QualType InputType,
2593                                   std::string &ConstraintStr,
2594                                   SourceLocation Loc);
2595 
2596 public:
2597   /// EmitCallArgs - Emit call arguments for a function.
2598   template <typename T>
2599   void EmitCallArgs(CallArgList &Args, const T *CallArgTypeInfo,
2600                     CallExpr::const_arg_iterator ArgBeg,
2601                     CallExpr::const_arg_iterator ArgEnd,
2602                     bool ForceColumnInfo = false) {
2603     if (CallArgTypeInfo) {
2604       EmitCallArgs(Args, CallArgTypeInfo->isVariadic(),
2605                    CallArgTypeInfo->param_type_begin(),
2606                    CallArgTypeInfo->param_type_end(), ArgBeg, ArgEnd,
2607                    ForceColumnInfo);
2608     } else {
2609       // T::param_type_iterator might not have a default ctor.
2610       const QualType *NoIter = nullptr;
2611       EmitCallArgs(Args, /*AllowExtraArguments=*/true, NoIter, NoIter, ArgBeg,
2612                    ArgEnd, ForceColumnInfo);
2613     }
2614   }
2615 
2616   template<typename ArgTypeIterator>
2617   void EmitCallArgs(CallArgList& Args,
2618                     bool AllowExtraArguments,
2619                     ArgTypeIterator ArgTypeBeg,
2620                     ArgTypeIterator ArgTypeEnd,
2621                     CallExpr::const_arg_iterator ArgBeg,
2622                     CallExpr::const_arg_iterator ArgEnd,
2623                     bool ForceColumnInfo = false) {
2624     SmallVector<QualType, 16> ArgTypes;
2625     CallExpr::const_arg_iterator Arg = ArgBeg;
2626 
2627     // First, use the argument types that the type info knows about
2628     for (ArgTypeIterator I = ArgTypeBeg, E = ArgTypeEnd; I != E; ++I, ++Arg) {
2629       assert(Arg != ArgEnd && "Running over edge of argument list!");
2630 #ifndef NDEBUG
2631       QualType ArgType = *I;
2632       QualType ActualArgType = Arg->getType();
2633       if (ArgType->isPointerType() && ActualArgType->isPointerType()) {
2634         QualType ActualBaseType =
2635             ActualArgType->getAs<PointerType>()->getPointeeType();
2636         QualType ArgBaseType =
2637             ArgType->getAs<PointerType>()->getPointeeType();
2638         if (ArgBaseType->isVariableArrayType()) {
2639           if (const VariableArrayType *VAT =
2640               getContext().getAsVariableArrayType(ActualBaseType)) {
2641             if (!VAT->getSizeExpr())
2642               ActualArgType = ArgType;
2643           }
2644         }
2645       }
2646       assert(getContext().getCanonicalType(ArgType.getNonReferenceType()).
2647              getTypePtr() ==
2648              getContext().getCanonicalType(ActualArgType).getTypePtr() &&
2649              "type mismatch in call argument!");
2650 #endif
2651       ArgTypes.push_back(*I);
2652     }
2653 
2654     // Either we've emitted all the call args, or we have a call to variadic
2655     // function or some other call that allows extra arguments.
2656     assert((Arg == ArgEnd || AllowExtraArguments) &&
2657            "Extra arguments in non-variadic function!");
2658 
2659     // If we still have any arguments, emit them using the type of the argument.
2660     for (; Arg != ArgEnd; ++Arg)
2661       ArgTypes.push_back(Arg->getType());
2662 
2663     EmitCallArgs(Args, ArgTypes, ArgBeg, ArgEnd, ForceColumnInfo);
2664   }
2665 
2666   void EmitCallArgs(CallArgList &Args, ArrayRef<QualType> ArgTypes,
2667                     CallExpr::const_arg_iterator ArgBeg,
2668                     CallExpr::const_arg_iterator ArgEnd,
2669                     bool ForceColumnInfo = false);
2670 
2671 private:
2672   const TargetCodeGenInfo &getTargetHooks() const {
2673     return CGM.getTargetCodeGenInfo();
2674   }
2675 
2676   void EmitDeclMetadata();
2677 
2678   CodeGenModule::ByrefHelpers *
2679   buildByrefHelpers(llvm::StructType &byrefType,
2680                     const AutoVarEmission &emission);
2681 
2682   void AddObjCARCExceptionMetadata(llvm::Instruction *Inst);
2683 
2684   /// GetPointeeAlignment - Given an expression with a pointer type, emit the
2685   /// value and compute our best estimate of the alignment of the pointee.
2686   std::pair<llvm::Value*, unsigned> EmitPointerWithAlignment(const Expr *Addr);
2687 };
2688 
2689 /// Helper class with most of the code for saving a value for a
2690 /// conditional expression cleanup.
2691 struct DominatingLLVMValue {
2692   typedef llvm::PointerIntPair<llvm::Value*, 1, bool> saved_type;
2693 
2694   /// Answer whether the given value needs extra work to be saved.
2695   static bool needsSaving(llvm::Value *value) {
2696     // If it's not an instruction, we don't need to save.
2697     if (!isa<llvm::Instruction>(value)) return false;
2698 
2699     // If it's an instruction in the entry block, we don't need to save.
2700     llvm::BasicBlock *block = cast<llvm::Instruction>(value)->getParent();
2701     return (block != &block->getParent()->getEntryBlock());
2702   }
2703 
2704   /// Try to save the given value.
2705   static saved_type save(CodeGenFunction &CGF, llvm::Value *value) {
2706     if (!needsSaving(value)) return saved_type(value, false);
2707 
2708     // Otherwise we need an alloca.
2709     llvm::Value *alloca =
2710       CGF.CreateTempAlloca(value->getType(), "cond-cleanup.save");
2711     CGF.Builder.CreateStore(value, alloca);
2712 
2713     return saved_type(alloca, true);
2714   }
2715 
2716   static llvm::Value *restore(CodeGenFunction &CGF, saved_type value) {
2717     if (!value.getInt()) return value.getPointer();
2718     return CGF.Builder.CreateLoad(value.getPointer());
2719   }
2720 };
2721 
2722 /// A partial specialization of DominatingValue for llvm::Values that
2723 /// might be llvm::Instructions.
2724 template <class T> struct DominatingPointer<T,true> : DominatingLLVMValue {
2725   typedef T *type;
2726   static type restore(CodeGenFunction &CGF, saved_type value) {
2727     return static_cast<T*>(DominatingLLVMValue::restore(CGF, value));
2728   }
2729 };
2730 
2731 /// A specialization of DominatingValue for RValue.
2732 template <> struct DominatingValue<RValue> {
2733   typedef RValue type;
2734   class saved_type {
2735     enum Kind { ScalarLiteral, ScalarAddress, AggregateLiteral,
2736                 AggregateAddress, ComplexAddress };
2737 
2738     llvm::Value *Value;
2739     Kind K;
2740     saved_type(llvm::Value *v, Kind k) : Value(v), K(k) {}
2741 
2742   public:
2743     static bool needsSaving(RValue value);
2744     static saved_type save(CodeGenFunction &CGF, RValue value);
2745     RValue restore(CodeGenFunction &CGF);
2746 
2747     // implementations in CGExprCXX.cpp
2748   };
2749 
2750   static bool needsSaving(type value) {
2751     return saved_type::needsSaving(value);
2752   }
2753   static saved_type save(CodeGenFunction &CGF, type value) {
2754     return saved_type::save(CGF, value);
2755   }
2756   static type restore(CodeGenFunction &CGF, saved_type value) {
2757     return value.restore(CGF);
2758   }
2759 };
2760 
2761 }  // end namespace CodeGen
2762 }  // end namespace clang
2763 
2764 #endif
2765