1 //===-- CodeGenFunction.h - Per-Function state for LLVM CodeGen -*- C++ -*-===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This is the internal per-function state used for llvm translation.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #ifndef LLVM_CLANG_LIB_CODEGEN_CODEGENFUNCTION_H
15 #define LLVM_CLANG_LIB_CODEGEN_CODEGENFUNCTION_H
16 
17 #include "CGBuilder.h"
18 #include "CGDebugInfo.h"
19 #include "CGLoopInfo.h"
20 #include "CGValue.h"
21 #include "CodeGenModule.h"
22 #include "CodeGenPGO.h"
23 #include "EHScopeStack.h"
24 #include "VarBypassDetector.h"
25 #include "clang/AST/CharUnits.h"
26 #include "clang/AST/ExprCXX.h"
27 #include "clang/AST/ExprObjC.h"
28 #include "clang/AST/ExprOpenMP.h"
29 #include "clang/AST/Type.h"
30 #include "clang/Basic/ABI.h"
31 #include "clang/Basic/CapturedStmt.h"
32 #include "clang/Basic/OpenMPKinds.h"
33 #include "clang/Basic/TargetInfo.h"
34 #include "clang/Frontend/CodeGenOptions.h"
35 #include "llvm/ADT/ArrayRef.h"
36 #include "llvm/ADT/DenseMap.h"
37 #include "llvm/ADT/MapVector.h"
38 #include "llvm/ADT/SmallVector.h"
39 #include "llvm/IR/ValueHandle.h"
40 #include "llvm/Support/Debug.h"
41 #include "llvm/Transforms/Utils/SanitizerStats.h"
42 
43 namespace llvm {
44 class BasicBlock;
45 class LLVMContext;
46 class MDNode;
47 class Module;
48 class SwitchInst;
49 class Twine;
50 class Value;
51 class CallSite;
52 }
53 
54 namespace clang {
55 class ASTContext;
56 class BlockDecl;
57 class CXXDestructorDecl;
58 class CXXForRangeStmt;
59 class CXXTryStmt;
60 class Decl;
61 class LabelDecl;
62 class EnumConstantDecl;
63 class FunctionDecl;
64 class FunctionProtoType;
65 class LabelStmt;
66 class ObjCContainerDecl;
67 class ObjCInterfaceDecl;
68 class ObjCIvarDecl;
69 class ObjCMethodDecl;
70 class ObjCImplementationDecl;
71 class ObjCPropertyImplDecl;
72 class TargetInfo;
73 class VarDecl;
74 class ObjCForCollectionStmt;
75 class ObjCAtTryStmt;
76 class ObjCAtThrowStmt;
77 class ObjCAtSynchronizedStmt;
78 class ObjCAutoreleasePoolStmt;
79 
80 namespace analyze_os_log {
81 class OSLogBufferLayout;
82 }
83 
84 namespace CodeGen {
85 class CodeGenTypes;
86 class CGCallee;
87 class CGFunctionInfo;
88 class CGRecordLayout;
89 class CGBlockInfo;
90 class CGCXXABI;
91 class BlockByrefHelpers;
92 class BlockByrefInfo;
93 class BlockFlags;
94 class BlockFieldFlags;
95 class RegionCodeGenTy;
96 class TargetCodeGenInfo;
97 struct OMPTaskDataTy;
98 struct CGCoroData;
99 
100 /// The kind of evaluation to perform on values of a particular
101 /// type.  Basically, is the code in CGExprScalar, CGExprComplex, or
102 /// CGExprAgg?
103 ///
104 /// TODO: should vectors maybe be split out into their own thing?
105 enum TypeEvaluationKind {
106   TEK_Scalar,
107   TEK_Complex,
108   TEK_Aggregate
109 };
110 
111 #define LIST_SANITIZER_CHECKS                                                  \
112   SANITIZER_CHECK(AddOverflow, add_overflow, 0)                                \
113   SANITIZER_CHECK(BuiltinUnreachable, builtin_unreachable, 0)                  \
114   SANITIZER_CHECK(CFICheckFail, cfi_check_fail, 0)                             \
115   SANITIZER_CHECK(DivremOverflow, divrem_overflow, 0)                          \
116   SANITIZER_CHECK(DynamicTypeCacheMiss, dynamic_type_cache_miss, 0)            \
117   SANITIZER_CHECK(FloatCastOverflow, float_cast_overflow, 0)                   \
118   SANITIZER_CHECK(FunctionTypeMismatch, function_type_mismatch, 0)             \
119   SANITIZER_CHECK(InvalidBuiltin, invalid_builtin, 0)                          \
120   SANITIZER_CHECK(LoadInvalidValue, load_invalid_value, 0)                     \
121   SANITIZER_CHECK(MissingReturn, missing_return, 0)                            \
122   SANITIZER_CHECK(MulOverflow, mul_overflow, 0)                                \
123   SANITIZER_CHECK(NegateOverflow, negate_overflow, 0)                          \
124   SANITIZER_CHECK(NullabilityArg, nullability_arg, 0)                          \
125   SANITIZER_CHECK(NullabilityReturn, nullability_return, 1)                    \
126   SANITIZER_CHECK(NonnullArg, nonnull_arg, 0)                                  \
127   SANITIZER_CHECK(NonnullReturn, nonnull_return, 1)                            \
128   SANITIZER_CHECK(OutOfBounds, out_of_bounds, 0)                               \
129   SANITIZER_CHECK(PointerOverflow, pointer_overflow, 0)                        \
130   SANITIZER_CHECK(ShiftOutOfBounds, shift_out_of_bounds, 0)                    \
131   SANITIZER_CHECK(SubOverflow, sub_overflow, 0)                                \
132   SANITIZER_CHECK(TypeMismatch, type_mismatch, 1)                              \
133   SANITIZER_CHECK(VLABoundNotPositive, vla_bound_not_positive, 0)
134 
135 enum SanitizerHandler {
136 #define SANITIZER_CHECK(Enum, Name, Version) Enum,
137   LIST_SANITIZER_CHECKS
138 #undef SANITIZER_CHECK
139 };
140 
141 /// CodeGenFunction - This class organizes the per-function state that is used
142 /// while generating LLVM code.
143 class CodeGenFunction : public CodeGenTypeCache {
144   CodeGenFunction(const CodeGenFunction &) = delete;
145   void operator=(const CodeGenFunction &) = delete;
146 
147   friend class CGCXXABI;
148 public:
149   /// A jump destination is an abstract label, branching to which may
150   /// require a jump out through normal cleanups.
151   struct JumpDest {
152     JumpDest() : Block(nullptr), ScopeDepth(), Index(0) {}
153     JumpDest(llvm::BasicBlock *Block,
154              EHScopeStack::stable_iterator Depth,
155              unsigned Index)
156       : Block(Block), ScopeDepth(Depth), Index(Index) {}
157 
158     bool isValid() const { return Block != nullptr; }
159     llvm::BasicBlock *getBlock() const { return Block; }
160     EHScopeStack::stable_iterator getScopeDepth() const { return ScopeDepth; }
161     unsigned getDestIndex() const { return Index; }
162 
163     // This should be used cautiously.
164     void setScopeDepth(EHScopeStack::stable_iterator depth) {
165       ScopeDepth = depth;
166     }
167 
168   private:
169     llvm::BasicBlock *Block;
170     EHScopeStack::stable_iterator ScopeDepth;
171     unsigned Index;
172   };
173 
174   CodeGenModule &CGM;  // Per-module state.
175   const TargetInfo &Target;
176 
177   typedef std::pair<llvm::Value *, llvm::Value *> ComplexPairTy;
178   LoopInfoStack LoopStack;
179   CGBuilderTy Builder;
180 
181   // Stores variables for which we can't generate correct lifetime markers
182   // because of jumps.
183   VarBypassDetector Bypasses;
184 
185   // CodeGen lambda for loops and support for ordered clause
186   typedef llvm::function_ref<void(CodeGenFunction &, const OMPLoopDirective &,
187                                   JumpDest)>
188       CodeGenLoopTy;
189   typedef llvm::function_ref<void(CodeGenFunction &, SourceLocation,
190                                   const unsigned, const bool)>
191       CodeGenOrderedTy;
192 
193   // Codegen lambda for loop bounds in worksharing loop constructs
194   typedef llvm::function_ref<std::pair<LValue, LValue>(
195       CodeGenFunction &, const OMPExecutableDirective &S)>
196       CodeGenLoopBoundsTy;
197 
198   // Codegen lambda for loop bounds in dispatch-based loop implementation
199   typedef llvm::function_ref<std::pair<llvm::Value *, llvm::Value *>(
200       CodeGenFunction &, const OMPExecutableDirective &S, Address LB,
201       Address UB)>
202       CodeGenDispatchBoundsTy;
203 
204   /// \brief CGBuilder insert helper. This function is called after an
205   /// instruction is created using Builder.
206   void InsertHelper(llvm::Instruction *I, const llvm::Twine &Name,
207                     llvm::BasicBlock *BB,
208                     llvm::BasicBlock::iterator InsertPt) const;
209 
210   /// CurFuncDecl - Holds the Decl for the current outermost
211   /// non-closure context.
212   const Decl *CurFuncDecl;
213   /// CurCodeDecl - This is the inner-most code context, which includes blocks.
214   const Decl *CurCodeDecl;
215   const CGFunctionInfo *CurFnInfo;
216   QualType FnRetTy;
217   llvm::Function *CurFn;
218 
219   // Holds coroutine data if the current function is a coroutine. We use a
220   // wrapper to manage its lifetime, so that we don't have to define CGCoroData
221   // in this header.
222   struct CGCoroInfo {
223     std::unique_ptr<CGCoroData> Data;
224     CGCoroInfo();
225     ~CGCoroInfo();
226   };
227   CGCoroInfo CurCoro;
228 
229   bool isCoroutine() const {
230     return CurCoro.Data != nullptr;
231   }
232 
233   /// CurGD - The GlobalDecl for the current function being compiled.
234   GlobalDecl CurGD;
235 
236   /// PrologueCleanupDepth - The cleanup depth enclosing all the
237   /// cleanups associated with the parameters.
238   EHScopeStack::stable_iterator PrologueCleanupDepth;
239 
240   /// ReturnBlock - Unified return block.
241   JumpDest ReturnBlock;
242 
243   /// ReturnValue - The temporary alloca to hold the return
244   /// value. This is invalid iff the function has no return value.
245   Address ReturnValue;
246 
247   /// Return true if a label was seen in the current scope.
248   bool hasLabelBeenSeenInCurrentScope() const {
249     if (CurLexicalScope)
250       return CurLexicalScope->hasLabels();
251     return !LabelMap.empty();
252   }
253 
254   /// AllocaInsertPoint - This is an instruction in the entry block before which
255   /// we prefer to insert allocas.
256   llvm::AssertingVH<llvm::Instruction> AllocaInsertPt;
257 
258   /// \brief API for captured statement code generation.
259   class CGCapturedStmtInfo {
260   public:
261     explicit CGCapturedStmtInfo(CapturedRegionKind K = CR_Default)
262         : Kind(K), ThisValue(nullptr), CXXThisFieldDecl(nullptr) {}
263     explicit CGCapturedStmtInfo(const CapturedStmt &S,
264                                 CapturedRegionKind K = CR_Default)
265       : Kind(K), ThisValue(nullptr), CXXThisFieldDecl(nullptr) {
266 
267       RecordDecl::field_iterator Field =
268         S.getCapturedRecordDecl()->field_begin();
269       for (CapturedStmt::const_capture_iterator I = S.capture_begin(),
270                                                 E = S.capture_end();
271            I != E; ++I, ++Field) {
272         if (I->capturesThis())
273           CXXThisFieldDecl = *Field;
274         else if (I->capturesVariable())
275           CaptureFields[I->getCapturedVar()->getCanonicalDecl()] = *Field;
276         else if (I->capturesVariableByCopy())
277           CaptureFields[I->getCapturedVar()->getCanonicalDecl()] = *Field;
278       }
279     }
280 
281     virtual ~CGCapturedStmtInfo();
282 
283     CapturedRegionKind getKind() const { return Kind; }
284 
285     virtual void setContextValue(llvm::Value *V) { ThisValue = V; }
286     // \brief Retrieve the value of the context parameter.
287     virtual llvm::Value *getContextValue() const { return ThisValue; }
288 
289     /// \brief Lookup the captured field decl for a variable.
290     virtual const FieldDecl *lookup(const VarDecl *VD) const {
291       return CaptureFields.lookup(VD->getCanonicalDecl());
292     }
293 
294     bool isCXXThisExprCaptured() const { return getThisFieldDecl() != nullptr; }
295     virtual FieldDecl *getThisFieldDecl() const { return CXXThisFieldDecl; }
296 
297     static bool classof(const CGCapturedStmtInfo *) {
298       return true;
299     }
300 
301     /// \brief Emit the captured statement body.
302     virtual void EmitBody(CodeGenFunction &CGF, const Stmt *S) {
303       CGF.incrementProfileCounter(S);
304       CGF.EmitStmt(S);
305     }
306 
307     /// \brief Get the name of the capture helper.
308     virtual StringRef getHelperName() const { return "__captured_stmt"; }
309 
310   private:
311     /// \brief The kind of captured statement being generated.
312     CapturedRegionKind Kind;
313 
314     /// \brief Keep the map between VarDecl and FieldDecl.
315     llvm::SmallDenseMap<const VarDecl *, FieldDecl *> CaptureFields;
316 
317     /// \brief The base address of the captured record, passed in as the first
318     /// argument of the parallel region function.
319     llvm::Value *ThisValue;
320 
321     /// \brief Captured 'this' type.
322     FieldDecl *CXXThisFieldDecl;
323   };
324   CGCapturedStmtInfo *CapturedStmtInfo;
325 
326   /// \brief RAII for correct setting/restoring of CapturedStmtInfo.
327   class CGCapturedStmtRAII {
328   private:
329     CodeGenFunction &CGF;
330     CGCapturedStmtInfo *PrevCapturedStmtInfo;
331   public:
332     CGCapturedStmtRAII(CodeGenFunction &CGF,
333                        CGCapturedStmtInfo *NewCapturedStmtInfo)
334         : CGF(CGF), PrevCapturedStmtInfo(CGF.CapturedStmtInfo) {
335       CGF.CapturedStmtInfo = NewCapturedStmtInfo;
336     }
337     ~CGCapturedStmtRAII() { CGF.CapturedStmtInfo = PrevCapturedStmtInfo; }
338   };
339 
340   /// An abstract representation of regular/ObjC call/message targets.
341   class AbstractCallee {
342     /// The function declaration of the callee.
343     const Decl *CalleeDecl;
344 
345   public:
346     AbstractCallee() : CalleeDecl(nullptr) {}
347     AbstractCallee(const FunctionDecl *FD) : CalleeDecl(FD) {}
348     AbstractCallee(const ObjCMethodDecl *OMD) : CalleeDecl(OMD) {}
349     bool hasFunctionDecl() const {
350       return dyn_cast_or_null<FunctionDecl>(CalleeDecl);
351     }
352     const Decl *getDecl() const { return CalleeDecl; }
353     unsigned getNumParams() const {
354       if (const auto *FD = dyn_cast<FunctionDecl>(CalleeDecl))
355         return FD->getNumParams();
356       return cast<ObjCMethodDecl>(CalleeDecl)->param_size();
357     }
358     const ParmVarDecl *getParamDecl(unsigned I) const {
359       if (const auto *FD = dyn_cast<FunctionDecl>(CalleeDecl))
360         return FD->getParamDecl(I);
361       return *(cast<ObjCMethodDecl>(CalleeDecl)->param_begin() + I);
362     }
363   };
364 
365   /// \brief Sanitizers enabled for this function.
366   SanitizerSet SanOpts;
367 
368   /// \brief True if CodeGen currently emits code implementing sanitizer checks.
369   bool IsSanitizerScope;
370 
371   /// \brief RAII object to set/unset CodeGenFunction::IsSanitizerScope.
372   class SanitizerScope {
373     CodeGenFunction *CGF;
374   public:
375     SanitizerScope(CodeGenFunction *CGF);
376     ~SanitizerScope();
377   };
378 
379   /// In C++, whether we are code generating a thunk.  This controls whether we
380   /// should emit cleanups.
381   bool CurFuncIsThunk;
382 
383   /// In ARC, whether we should autorelease the return value.
384   bool AutoreleaseResult;
385 
386   /// Whether we processed a Microsoft-style asm block during CodeGen. These can
387   /// potentially set the return value.
388   bool SawAsmBlock;
389 
390   const FunctionDecl *CurSEHParent = nullptr;
391 
392   /// True if the current function is an outlined SEH helper. This can be a
393   /// finally block or filter expression.
394   bool IsOutlinedSEHHelper;
395 
396   const CodeGen::CGBlockInfo *BlockInfo;
397   llvm::Value *BlockPointer;
398 
399   llvm::DenseMap<const VarDecl *, FieldDecl *> LambdaCaptureFields;
400   FieldDecl *LambdaThisCaptureField;
401 
402   /// \brief A mapping from NRVO variables to the flags used to indicate
403   /// when the NRVO has been applied to this variable.
404   llvm::DenseMap<const VarDecl *, llvm::Value *> NRVOFlags;
405 
406   EHScopeStack EHStack;
407   llvm::SmallVector<char, 256> LifetimeExtendedCleanupStack;
408   llvm::SmallVector<const JumpDest *, 2> SEHTryEpilogueStack;
409 
410   llvm::Instruction *CurrentFuncletPad = nullptr;
411 
412   class CallLifetimeEnd final : public EHScopeStack::Cleanup {
413     llvm::Value *Addr;
414     llvm::Value *Size;
415 
416   public:
417     CallLifetimeEnd(Address addr, llvm::Value *size)
418         : Addr(addr.getPointer()), Size(size) {}
419 
420     void Emit(CodeGenFunction &CGF, Flags flags) override {
421       CGF.EmitLifetimeEnd(Size, Addr);
422     }
423   };
424 
425   /// Header for data within LifetimeExtendedCleanupStack.
426   struct LifetimeExtendedCleanupHeader {
427     /// The size of the following cleanup object.
428     unsigned Size;
429     /// The kind of cleanup to push: a value from the CleanupKind enumeration.
430     CleanupKind Kind;
431 
432     size_t getSize() const { return Size; }
433     CleanupKind getKind() const { return Kind; }
434   };
435 
436   /// i32s containing the indexes of the cleanup destinations.
437   Address NormalCleanupDest;
438 
439   unsigned NextCleanupDestIndex;
440 
441   /// FirstBlockInfo - The head of a singly-linked-list of block layouts.
442   CGBlockInfo *FirstBlockInfo;
443 
444   /// EHResumeBlock - Unified block containing a call to llvm.eh.resume.
445   llvm::BasicBlock *EHResumeBlock;
446 
447   /// The exception slot.  All landing pads write the current exception pointer
448   /// into this alloca.
449   llvm::Value *ExceptionSlot;
450 
451   /// The selector slot.  Under the MandatoryCleanup model, all landing pads
452   /// write the current selector value into this alloca.
453   llvm::AllocaInst *EHSelectorSlot;
454 
455   /// A stack of exception code slots. Entering an __except block pushes a slot
456   /// on the stack and leaving pops one. The __exception_code() intrinsic loads
457   /// a value from the top of the stack.
458   SmallVector<Address, 1> SEHCodeSlotStack;
459 
460   /// Value returned by __exception_info intrinsic.
461   llvm::Value *SEHInfo = nullptr;
462 
463   /// Emits a landing pad for the current EH stack.
464   llvm::BasicBlock *EmitLandingPad();
465 
466   llvm::BasicBlock *getInvokeDestImpl();
467 
468   template <class T>
469   typename DominatingValue<T>::saved_type saveValueInCond(T value) {
470     return DominatingValue<T>::save(*this, value);
471   }
472 
473 public:
474   /// ObjCEHValueStack - Stack of Objective-C exception values, used for
475   /// rethrows.
476   SmallVector<llvm::Value*, 8> ObjCEHValueStack;
477 
478   /// A class controlling the emission of a finally block.
479   class FinallyInfo {
480     /// Where the catchall's edge through the cleanup should go.
481     JumpDest RethrowDest;
482 
483     /// A function to call to enter the catch.
484     llvm::Constant *BeginCatchFn;
485 
486     /// An i1 variable indicating whether or not the @finally is
487     /// running for an exception.
488     llvm::AllocaInst *ForEHVar;
489 
490     /// An i8* variable into which the exception pointer to rethrow
491     /// has been saved.
492     llvm::AllocaInst *SavedExnVar;
493 
494   public:
495     void enter(CodeGenFunction &CGF, const Stmt *Finally,
496                llvm::Constant *beginCatchFn, llvm::Constant *endCatchFn,
497                llvm::Constant *rethrowFn);
498     void exit(CodeGenFunction &CGF);
499   };
500 
501   /// Returns true inside SEH __try blocks.
502   bool isSEHTryScope() const { return !SEHTryEpilogueStack.empty(); }
503 
504   /// Returns true while emitting a cleanuppad.
505   bool isCleanupPadScope() const {
506     return CurrentFuncletPad && isa<llvm::CleanupPadInst>(CurrentFuncletPad);
507   }
508 
509   /// pushFullExprCleanup - Push a cleanup to be run at the end of the
510   /// current full-expression.  Safe against the possibility that
511   /// we're currently inside a conditionally-evaluated expression.
512   template <class T, class... As>
513   void pushFullExprCleanup(CleanupKind kind, As... A) {
514     // If we're not in a conditional branch, or if none of the
515     // arguments requires saving, then use the unconditional cleanup.
516     if (!isInConditionalBranch())
517       return EHStack.pushCleanup<T>(kind, A...);
518 
519     // Stash values in a tuple so we can guarantee the order of saves.
520     typedef std::tuple<typename DominatingValue<As>::saved_type...> SavedTuple;
521     SavedTuple Saved{saveValueInCond(A)...};
522 
523     typedef EHScopeStack::ConditionalCleanup<T, As...> CleanupType;
524     EHStack.pushCleanupTuple<CleanupType>(kind, Saved);
525     initFullExprCleanup();
526   }
527 
528   /// \brief Queue a cleanup to be pushed after finishing the current
529   /// full-expression.
530   template <class T, class... As>
531   void pushCleanupAfterFullExpr(CleanupKind Kind, As... A) {
532     assert(!isInConditionalBranch() && "can't defer conditional cleanup");
533 
534     LifetimeExtendedCleanupHeader Header = { sizeof(T), Kind };
535 
536     size_t OldSize = LifetimeExtendedCleanupStack.size();
537     LifetimeExtendedCleanupStack.resize(
538         LifetimeExtendedCleanupStack.size() + sizeof(Header) + Header.Size);
539 
540     static_assert(sizeof(Header) % alignof(T) == 0,
541                   "Cleanup will be allocated on misaligned address");
542     char *Buffer = &LifetimeExtendedCleanupStack[OldSize];
543     new (Buffer) LifetimeExtendedCleanupHeader(Header);
544     new (Buffer + sizeof(Header)) T(A...);
545   }
546 
547   /// Set up the last cleaup that was pushed as a conditional
548   /// full-expression cleanup.
549   void initFullExprCleanup();
550 
551   /// PushDestructorCleanup - Push a cleanup to call the
552   /// complete-object destructor of an object of the given type at the
553   /// given address.  Does nothing if T is not a C++ class type with a
554   /// non-trivial destructor.
555   void PushDestructorCleanup(QualType T, Address Addr);
556 
557   /// PushDestructorCleanup - Push a cleanup to call the
558   /// complete-object variant of the given destructor on the object at
559   /// the given address.
560   void PushDestructorCleanup(const CXXDestructorDecl *Dtor, Address Addr);
561 
562   /// PopCleanupBlock - Will pop the cleanup entry on the stack and
563   /// process all branch fixups.
564   void PopCleanupBlock(bool FallThroughIsBranchThrough = false);
565 
566   /// DeactivateCleanupBlock - Deactivates the given cleanup block.
567   /// The block cannot be reactivated.  Pops it if it's the top of the
568   /// stack.
569   ///
570   /// \param DominatingIP - An instruction which is known to
571   ///   dominate the current IP (if set) and which lies along
572   ///   all paths of execution between the current IP and the
573   ///   the point at which the cleanup comes into scope.
574   void DeactivateCleanupBlock(EHScopeStack::stable_iterator Cleanup,
575                               llvm::Instruction *DominatingIP);
576 
577   /// ActivateCleanupBlock - Activates an initially-inactive cleanup.
578   /// Cannot be used to resurrect a deactivated cleanup.
579   ///
580   /// \param DominatingIP - An instruction which is known to
581   ///   dominate the current IP (if set) and which lies along
582   ///   all paths of execution between the current IP and the
583   ///   the point at which the cleanup comes into scope.
584   void ActivateCleanupBlock(EHScopeStack::stable_iterator Cleanup,
585                             llvm::Instruction *DominatingIP);
586 
587   /// \brief Enters a new scope for capturing cleanups, all of which
588   /// will be executed once the scope is exited.
589   class RunCleanupsScope {
590     EHScopeStack::stable_iterator CleanupStackDepth;
591     size_t LifetimeExtendedCleanupStackSize;
592     bool OldDidCallStackSave;
593   protected:
594     bool PerformCleanup;
595   private:
596 
597     RunCleanupsScope(const RunCleanupsScope &) = delete;
598     void operator=(const RunCleanupsScope &) = delete;
599 
600   protected:
601     CodeGenFunction& CGF;
602 
603   public:
604     /// \brief Enter a new cleanup scope.
605     explicit RunCleanupsScope(CodeGenFunction &CGF)
606       : PerformCleanup(true), CGF(CGF)
607     {
608       CleanupStackDepth = CGF.EHStack.stable_begin();
609       LifetimeExtendedCleanupStackSize =
610           CGF.LifetimeExtendedCleanupStack.size();
611       OldDidCallStackSave = CGF.DidCallStackSave;
612       CGF.DidCallStackSave = false;
613     }
614 
615     /// \brief Exit this cleanup scope, emitting any accumulated cleanups.
616     ~RunCleanupsScope() {
617       if (PerformCleanup)
618         ForceCleanup();
619     }
620 
621     /// \brief Determine whether this scope requires any cleanups.
622     bool requiresCleanups() const {
623       return CGF.EHStack.stable_begin() != CleanupStackDepth;
624     }
625 
626     /// \brief Force the emission of cleanups now, instead of waiting
627     /// until this object is destroyed.
628     /// \param ValuesToReload - A list of values that need to be available at
629     /// the insertion point after cleanup emission. If cleanup emission created
630     /// a shared cleanup block, these value pointers will be rewritten.
631     /// Otherwise, they not will be modified.
632     void ForceCleanup(std::initializer_list<llvm::Value**> ValuesToReload = {}) {
633       assert(PerformCleanup && "Already forced cleanup");
634       CGF.DidCallStackSave = OldDidCallStackSave;
635       CGF.PopCleanupBlocks(CleanupStackDepth, LifetimeExtendedCleanupStackSize,
636                            ValuesToReload);
637       PerformCleanup = false;
638     }
639   };
640 
641   class LexicalScope : public RunCleanupsScope {
642     SourceRange Range;
643     SmallVector<const LabelDecl*, 4> Labels;
644     LexicalScope *ParentScope;
645 
646     LexicalScope(const LexicalScope &) = delete;
647     void operator=(const LexicalScope &) = delete;
648 
649   public:
650     /// \brief Enter a new cleanup scope.
651     explicit LexicalScope(CodeGenFunction &CGF, SourceRange Range)
652       : RunCleanupsScope(CGF), Range(Range), ParentScope(CGF.CurLexicalScope) {
653       CGF.CurLexicalScope = this;
654       if (CGDebugInfo *DI = CGF.getDebugInfo())
655         DI->EmitLexicalBlockStart(CGF.Builder, Range.getBegin());
656     }
657 
658     void addLabel(const LabelDecl *label) {
659       assert(PerformCleanup && "adding label to dead scope?");
660       Labels.push_back(label);
661     }
662 
663     /// \brief Exit this cleanup scope, emitting any accumulated
664     /// cleanups.
665     ~LexicalScope() {
666       if (CGDebugInfo *DI = CGF.getDebugInfo())
667         DI->EmitLexicalBlockEnd(CGF.Builder, Range.getEnd());
668 
669       // If we should perform a cleanup, force them now.  Note that
670       // this ends the cleanup scope before rescoping any labels.
671       if (PerformCleanup) {
672         ApplyDebugLocation DL(CGF, Range.getEnd());
673         ForceCleanup();
674       }
675     }
676 
677     /// \brief Force the emission of cleanups now, instead of waiting
678     /// until this object is destroyed.
679     void ForceCleanup() {
680       CGF.CurLexicalScope = ParentScope;
681       RunCleanupsScope::ForceCleanup();
682 
683       if (!Labels.empty())
684         rescopeLabels();
685     }
686 
687     bool hasLabels() const {
688       return !Labels.empty();
689     }
690 
691     void rescopeLabels();
692   };
693 
694   typedef llvm::DenseMap<const Decl *, Address> DeclMapTy;
695 
696   /// The class used to assign some variables some temporarily addresses.
697   class OMPMapVars {
698     DeclMapTy SavedLocals;
699     DeclMapTy SavedTempAddresses;
700     OMPMapVars(const OMPMapVars &) = delete;
701     void operator=(const OMPMapVars &) = delete;
702 
703   public:
704     explicit OMPMapVars() = default;
705     ~OMPMapVars() {
706       assert(SavedLocals.empty() && "Did not restored original addresses.");
707     };
708 
709     /// Sets the address of the variable \p LocalVD to be \p TempAddr in
710     /// function \p CGF.
711     /// \return true if at least one variable was set already, false otherwise.
712     bool setVarAddr(CodeGenFunction &CGF, const VarDecl *LocalVD,
713                     Address TempAddr) {
714       LocalVD = LocalVD->getCanonicalDecl();
715       // Only save it once.
716       if (SavedLocals.count(LocalVD)) return false;
717 
718       // Copy the existing local entry to SavedLocals.
719       auto it = CGF.LocalDeclMap.find(LocalVD);
720       if (it != CGF.LocalDeclMap.end())
721         SavedLocals.try_emplace(LocalVD, it->second);
722       else
723         SavedLocals.try_emplace(LocalVD, Address::invalid());
724 
725       // Generate the private entry.
726       QualType VarTy = LocalVD->getType();
727       if (VarTy->isReferenceType()) {
728         Address Temp = CGF.CreateMemTemp(VarTy);
729         CGF.Builder.CreateStore(TempAddr.getPointer(), Temp);
730         TempAddr = Temp;
731       }
732       SavedTempAddresses.try_emplace(LocalVD, TempAddr);
733 
734       return true;
735     }
736 
737     /// Applies new addresses to the list of the variables.
738     /// \return true if at least one variable is using new address, false
739     /// otherwise.
740     bool apply(CodeGenFunction &CGF) {
741       copyInto(SavedTempAddresses, CGF.LocalDeclMap);
742       SavedTempAddresses.clear();
743       return !SavedLocals.empty();
744     }
745 
746     /// Restores original addresses of the variables.
747     void restore(CodeGenFunction &CGF) {
748       if (!SavedLocals.empty()) {
749         copyInto(SavedLocals, CGF.LocalDeclMap);
750         SavedLocals.clear();
751       }
752     }
753 
754   private:
755     /// Copy all the entries in the source map over the corresponding
756     /// entries in the destination, which must exist.
757     static void copyInto(const DeclMapTy &Src, DeclMapTy &Dest) {
758       for (auto &Pair : Src) {
759         if (!Pair.second.isValid()) {
760           Dest.erase(Pair.first);
761           continue;
762         }
763 
764         auto I = Dest.find(Pair.first);
765         if (I != Dest.end())
766           I->second = Pair.second;
767         else
768           Dest.insert(Pair);
769       }
770     }
771   };
772 
773   /// The scope used to remap some variables as private in the OpenMP loop body
774   /// (or other captured region emitted without outlining), and to restore old
775   /// vars back on exit.
776   class OMPPrivateScope : public RunCleanupsScope {
777     OMPMapVars MappedVars;
778     OMPPrivateScope(const OMPPrivateScope &) = delete;
779     void operator=(const OMPPrivateScope &) = delete;
780 
781   public:
782     /// Enter a new OpenMP private scope.
783     explicit OMPPrivateScope(CodeGenFunction &CGF) : RunCleanupsScope(CGF) {}
784 
785     /// Registers \p LocalVD variable as a private and apply \p PrivateGen
786     /// function for it to generate corresponding private variable. \p
787     /// PrivateGen returns an address of the generated private variable.
788     /// \return true if the variable is registered as private, false if it has
789     /// been privatized already.
790     bool addPrivate(const VarDecl *LocalVD,
791                     llvm::function_ref<Address()> PrivateGen) {
792       assert(PerformCleanup && "adding private to dead scope");
793       return MappedVars.setVarAddr(CGF, LocalVD, PrivateGen());
794     }
795 
796     /// Privatizes local variables previously registered as private.
797     /// Registration is separate from the actual privatization to allow
798     /// initializers use values of the original variables, not the private one.
799     /// This is important, for example, if the private variable is a class
800     /// variable initialized by a constructor that references other private
801     /// variables. But at initialization original variables must be used, not
802     /// private copies.
803     /// \return true if at least one variable was privatized, false otherwise.
804     bool Privatize() { return MappedVars.apply(CGF); }
805 
806     void ForceCleanup() {
807       RunCleanupsScope::ForceCleanup();
808       MappedVars.restore(CGF);
809     }
810 
811     /// Exit scope - all the mapped variables are restored.
812     ~OMPPrivateScope() {
813       if (PerformCleanup)
814         ForceCleanup();
815     }
816 
817     /// Checks if the global variable is captured in current function.
818     bool isGlobalVarCaptured(const VarDecl *VD) const {
819       VD = VD->getCanonicalDecl();
820       return !VD->isLocalVarDeclOrParm() && CGF.LocalDeclMap.count(VD) > 0;
821     }
822   };
823 
824   /// \brief Takes the old cleanup stack size and emits the cleanup blocks
825   /// that have been added.
826   void
827   PopCleanupBlocks(EHScopeStack::stable_iterator OldCleanupStackSize,
828                    std::initializer_list<llvm::Value **> ValuesToReload = {});
829 
830   /// \brief Takes the old cleanup stack size and emits the cleanup blocks
831   /// that have been added, then adds all lifetime-extended cleanups from
832   /// the given position to the stack.
833   void
834   PopCleanupBlocks(EHScopeStack::stable_iterator OldCleanupStackSize,
835                    size_t OldLifetimeExtendedStackSize,
836                    std::initializer_list<llvm::Value **> ValuesToReload = {});
837 
838   void ResolveBranchFixups(llvm::BasicBlock *Target);
839 
840   /// The given basic block lies in the current EH scope, but may be a
841   /// target of a potentially scope-crossing jump; get a stable handle
842   /// to which we can perform this jump later.
843   JumpDest getJumpDestInCurrentScope(llvm::BasicBlock *Target) {
844     return JumpDest(Target,
845                     EHStack.getInnermostNormalCleanup(),
846                     NextCleanupDestIndex++);
847   }
848 
849   /// The given basic block lies in the current EH scope, but may be a
850   /// target of a potentially scope-crossing jump; get a stable handle
851   /// to which we can perform this jump later.
852   JumpDest getJumpDestInCurrentScope(StringRef Name = StringRef()) {
853     return getJumpDestInCurrentScope(createBasicBlock(Name));
854   }
855 
856   /// EmitBranchThroughCleanup - Emit a branch from the current insert
857   /// block through the normal cleanup handling code (if any) and then
858   /// on to \arg Dest.
859   void EmitBranchThroughCleanup(JumpDest Dest);
860 
861   /// isObviouslyBranchWithoutCleanups - Return true if a branch to the
862   /// specified destination obviously has no cleanups to run.  'false' is always
863   /// a conservatively correct answer for this method.
864   bool isObviouslyBranchWithoutCleanups(JumpDest Dest) const;
865 
866   /// popCatchScope - Pops the catch scope at the top of the EHScope
867   /// stack, emitting any required code (other than the catch handlers
868   /// themselves).
869   void popCatchScope();
870 
871   llvm::BasicBlock *getEHResumeBlock(bool isCleanup);
872   llvm::BasicBlock *getEHDispatchBlock(EHScopeStack::stable_iterator scope);
873   llvm::BasicBlock *getMSVCDispatchBlock(EHScopeStack::stable_iterator scope);
874 
875   /// An object to manage conditionally-evaluated expressions.
876   class ConditionalEvaluation {
877     llvm::BasicBlock *StartBB;
878 
879   public:
880     ConditionalEvaluation(CodeGenFunction &CGF)
881       : StartBB(CGF.Builder.GetInsertBlock()) {}
882 
883     void begin(CodeGenFunction &CGF) {
884       assert(CGF.OutermostConditional != this);
885       if (!CGF.OutermostConditional)
886         CGF.OutermostConditional = this;
887     }
888 
889     void end(CodeGenFunction &CGF) {
890       assert(CGF.OutermostConditional != nullptr);
891       if (CGF.OutermostConditional == this)
892         CGF.OutermostConditional = nullptr;
893     }
894 
895     /// Returns a block which will be executed prior to each
896     /// evaluation of the conditional code.
897     llvm::BasicBlock *getStartingBlock() const {
898       return StartBB;
899     }
900   };
901 
902   /// isInConditionalBranch - Return true if we're currently emitting
903   /// one branch or the other of a conditional expression.
904   bool isInConditionalBranch() const { return OutermostConditional != nullptr; }
905 
906   void setBeforeOutermostConditional(llvm::Value *value, Address addr) {
907     assert(isInConditionalBranch());
908     llvm::BasicBlock *block = OutermostConditional->getStartingBlock();
909     auto store = new llvm::StoreInst(value, addr.getPointer(), &block->back());
910     store->setAlignment(addr.getAlignment().getQuantity());
911   }
912 
913   /// An RAII object to record that we're evaluating a statement
914   /// expression.
915   class StmtExprEvaluation {
916     CodeGenFunction &CGF;
917 
918     /// We have to save the outermost conditional: cleanups in a
919     /// statement expression aren't conditional just because the
920     /// StmtExpr is.
921     ConditionalEvaluation *SavedOutermostConditional;
922 
923   public:
924     StmtExprEvaluation(CodeGenFunction &CGF)
925       : CGF(CGF), SavedOutermostConditional(CGF.OutermostConditional) {
926       CGF.OutermostConditional = nullptr;
927     }
928 
929     ~StmtExprEvaluation() {
930       CGF.OutermostConditional = SavedOutermostConditional;
931       CGF.EnsureInsertPoint();
932     }
933   };
934 
935   /// An object which temporarily prevents a value from being
936   /// destroyed by aggressive peephole optimizations that assume that
937   /// all uses of a value have been realized in the IR.
938   class PeepholeProtection {
939     llvm::Instruction *Inst;
940     friend class CodeGenFunction;
941 
942   public:
943     PeepholeProtection() : Inst(nullptr) {}
944   };
945 
946   /// A non-RAII class containing all the information about a bound
947   /// opaque value.  OpaqueValueMapping, below, is a RAII wrapper for
948   /// this which makes individual mappings very simple; using this
949   /// class directly is useful when you have a variable number of
950   /// opaque values or don't want the RAII functionality for some
951   /// reason.
952   class OpaqueValueMappingData {
953     const OpaqueValueExpr *OpaqueValue;
954     bool BoundLValue;
955     CodeGenFunction::PeepholeProtection Protection;
956 
957     OpaqueValueMappingData(const OpaqueValueExpr *ov,
958                            bool boundLValue)
959       : OpaqueValue(ov), BoundLValue(boundLValue) {}
960   public:
961     OpaqueValueMappingData() : OpaqueValue(nullptr) {}
962 
963     static bool shouldBindAsLValue(const Expr *expr) {
964       // gl-values should be bound as l-values for obvious reasons.
965       // Records should be bound as l-values because IR generation
966       // always keeps them in memory.  Expressions of function type
967       // act exactly like l-values but are formally required to be
968       // r-values in C.
969       return expr->isGLValue() ||
970              expr->getType()->isFunctionType() ||
971              hasAggregateEvaluationKind(expr->getType());
972     }
973 
974     static OpaqueValueMappingData bind(CodeGenFunction &CGF,
975                                        const OpaqueValueExpr *ov,
976                                        const Expr *e) {
977       if (shouldBindAsLValue(ov))
978         return bind(CGF, ov, CGF.EmitLValue(e));
979       return bind(CGF, ov, CGF.EmitAnyExpr(e));
980     }
981 
982     static OpaqueValueMappingData bind(CodeGenFunction &CGF,
983                                        const OpaqueValueExpr *ov,
984                                        const LValue &lv) {
985       assert(shouldBindAsLValue(ov));
986       CGF.OpaqueLValues.insert(std::make_pair(ov, lv));
987       return OpaqueValueMappingData(ov, true);
988     }
989 
990     static OpaqueValueMappingData bind(CodeGenFunction &CGF,
991                                        const OpaqueValueExpr *ov,
992                                        const RValue &rv) {
993       assert(!shouldBindAsLValue(ov));
994       CGF.OpaqueRValues.insert(std::make_pair(ov, rv));
995 
996       OpaqueValueMappingData data(ov, false);
997 
998       // Work around an extremely aggressive peephole optimization in
999       // EmitScalarConversion which assumes that all other uses of a
1000       // value are extant.
1001       data.Protection = CGF.protectFromPeepholes(rv);
1002 
1003       return data;
1004     }
1005 
1006     bool isValid() const { return OpaqueValue != nullptr; }
1007     void clear() { OpaqueValue = nullptr; }
1008 
1009     void unbind(CodeGenFunction &CGF) {
1010       assert(OpaqueValue && "no data to unbind!");
1011 
1012       if (BoundLValue) {
1013         CGF.OpaqueLValues.erase(OpaqueValue);
1014       } else {
1015         CGF.OpaqueRValues.erase(OpaqueValue);
1016         CGF.unprotectFromPeepholes(Protection);
1017       }
1018     }
1019   };
1020 
1021   /// An RAII object to set (and then clear) a mapping for an OpaqueValueExpr.
1022   class OpaqueValueMapping {
1023     CodeGenFunction &CGF;
1024     OpaqueValueMappingData Data;
1025 
1026   public:
1027     static bool shouldBindAsLValue(const Expr *expr) {
1028       return OpaqueValueMappingData::shouldBindAsLValue(expr);
1029     }
1030 
1031     /// Build the opaque value mapping for the given conditional
1032     /// operator if it's the GNU ?: extension.  This is a common
1033     /// enough pattern that the convenience operator is really
1034     /// helpful.
1035     ///
1036     OpaqueValueMapping(CodeGenFunction &CGF,
1037                        const AbstractConditionalOperator *op) : CGF(CGF) {
1038       if (isa<ConditionalOperator>(op))
1039         // Leave Data empty.
1040         return;
1041 
1042       const BinaryConditionalOperator *e = cast<BinaryConditionalOperator>(op);
1043       Data = OpaqueValueMappingData::bind(CGF, e->getOpaqueValue(),
1044                                           e->getCommon());
1045     }
1046 
1047     /// Build the opaque value mapping for an OpaqueValueExpr whose source
1048     /// expression is set to the expression the OVE represents.
1049     OpaqueValueMapping(CodeGenFunction &CGF, const OpaqueValueExpr *OV)
1050         : CGF(CGF) {
1051       if (OV) {
1052         assert(OV->getSourceExpr() && "wrong form of OpaqueValueMapping used "
1053                                       "for OVE with no source expression");
1054         Data = OpaqueValueMappingData::bind(CGF, OV, OV->getSourceExpr());
1055       }
1056     }
1057 
1058     OpaqueValueMapping(CodeGenFunction &CGF,
1059                        const OpaqueValueExpr *opaqueValue,
1060                        LValue lvalue)
1061       : CGF(CGF), Data(OpaqueValueMappingData::bind(CGF, opaqueValue, lvalue)) {
1062     }
1063 
1064     OpaqueValueMapping(CodeGenFunction &CGF,
1065                        const OpaqueValueExpr *opaqueValue,
1066                        RValue rvalue)
1067       : CGF(CGF), Data(OpaqueValueMappingData::bind(CGF, opaqueValue, rvalue)) {
1068     }
1069 
1070     void pop() {
1071       Data.unbind(CGF);
1072       Data.clear();
1073     }
1074 
1075     ~OpaqueValueMapping() {
1076       if (Data.isValid()) Data.unbind(CGF);
1077     }
1078   };
1079 
1080 private:
1081   CGDebugInfo *DebugInfo;
1082   bool DisableDebugInfo;
1083 
1084   /// DidCallStackSave - Whether llvm.stacksave has been called. Used to avoid
1085   /// calling llvm.stacksave for multiple VLAs in the same scope.
1086   bool DidCallStackSave;
1087 
1088   /// IndirectBranch - The first time an indirect goto is seen we create a block
1089   /// with an indirect branch.  Every time we see the address of a label taken,
1090   /// we add the label to the indirect goto.  Every subsequent indirect goto is
1091   /// codegen'd as a jump to the IndirectBranch's basic block.
1092   llvm::IndirectBrInst *IndirectBranch;
1093 
1094   /// LocalDeclMap - This keeps track of the LLVM allocas or globals for local C
1095   /// decls.
1096   DeclMapTy LocalDeclMap;
1097 
1098   /// SizeArguments - If a ParmVarDecl had the pass_object_size attribute, this
1099   /// will contain a mapping from said ParmVarDecl to its implicit "object_size"
1100   /// parameter.
1101   llvm::SmallDenseMap<const ParmVarDecl *, const ImplicitParamDecl *, 2>
1102       SizeArguments;
1103 
1104   /// Track escaped local variables with auto storage. Used during SEH
1105   /// outlining to produce a call to llvm.localescape.
1106   llvm::DenseMap<llvm::AllocaInst *, int> EscapedLocals;
1107 
1108   /// LabelMap - This keeps track of the LLVM basic block for each C label.
1109   llvm::DenseMap<const LabelDecl*, JumpDest> LabelMap;
1110 
1111   // BreakContinueStack - This keeps track of where break and continue
1112   // statements should jump to.
1113   struct BreakContinue {
1114     BreakContinue(JumpDest Break, JumpDest Continue)
1115       : BreakBlock(Break), ContinueBlock(Continue) {}
1116 
1117     JumpDest BreakBlock;
1118     JumpDest ContinueBlock;
1119   };
1120   SmallVector<BreakContinue, 8> BreakContinueStack;
1121 
1122   /// Handles cancellation exit points in OpenMP-related constructs.
1123   class OpenMPCancelExitStack {
1124     /// Tracks cancellation exit point and join point for cancel-related exit
1125     /// and normal exit.
1126     struct CancelExit {
1127       CancelExit() = default;
1128       CancelExit(OpenMPDirectiveKind Kind, JumpDest ExitBlock,
1129                  JumpDest ContBlock)
1130           : Kind(Kind), ExitBlock(ExitBlock), ContBlock(ContBlock) {}
1131       OpenMPDirectiveKind Kind = OMPD_unknown;
1132       /// true if the exit block has been emitted already by the special
1133       /// emitExit() call, false if the default codegen is used.
1134       bool HasBeenEmitted = false;
1135       JumpDest ExitBlock;
1136       JumpDest ContBlock;
1137     };
1138 
1139     SmallVector<CancelExit, 8> Stack;
1140 
1141   public:
1142     OpenMPCancelExitStack() : Stack(1) {}
1143     ~OpenMPCancelExitStack() = default;
1144     /// Fetches the exit block for the current OpenMP construct.
1145     JumpDest getExitBlock() const { return Stack.back().ExitBlock; }
1146     /// Emits exit block with special codegen procedure specific for the related
1147     /// OpenMP construct + emits code for normal construct cleanup.
1148     void emitExit(CodeGenFunction &CGF, OpenMPDirectiveKind Kind,
1149                   const llvm::function_ref<void(CodeGenFunction &)> &CodeGen) {
1150       if (Stack.back().Kind == Kind && getExitBlock().isValid()) {
1151         assert(CGF.getOMPCancelDestination(Kind).isValid());
1152         assert(CGF.HaveInsertPoint());
1153         assert(!Stack.back().HasBeenEmitted);
1154         auto IP = CGF.Builder.saveAndClearIP();
1155         CGF.EmitBlock(Stack.back().ExitBlock.getBlock());
1156         CodeGen(CGF);
1157         CGF.EmitBranch(Stack.back().ContBlock.getBlock());
1158         CGF.Builder.restoreIP(IP);
1159         Stack.back().HasBeenEmitted = true;
1160       }
1161       CodeGen(CGF);
1162     }
1163     /// Enter the cancel supporting \a Kind construct.
1164     /// \param Kind OpenMP directive that supports cancel constructs.
1165     /// \param HasCancel true, if the construct has inner cancel directive,
1166     /// false otherwise.
1167     void enter(CodeGenFunction &CGF, OpenMPDirectiveKind Kind, bool HasCancel) {
1168       Stack.push_back({Kind,
1169                        HasCancel ? CGF.getJumpDestInCurrentScope("cancel.exit")
1170                                  : JumpDest(),
1171                        HasCancel ? CGF.getJumpDestInCurrentScope("cancel.cont")
1172                                  : JumpDest()});
1173     }
1174     /// Emits default exit point for the cancel construct (if the special one
1175     /// has not be used) + join point for cancel/normal exits.
1176     void exit(CodeGenFunction &CGF) {
1177       if (getExitBlock().isValid()) {
1178         assert(CGF.getOMPCancelDestination(Stack.back().Kind).isValid());
1179         bool HaveIP = CGF.HaveInsertPoint();
1180         if (!Stack.back().HasBeenEmitted) {
1181           if (HaveIP)
1182             CGF.EmitBranchThroughCleanup(Stack.back().ContBlock);
1183           CGF.EmitBlock(Stack.back().ExitBlock.getBlock());
1184           CGF.EmitBranchThroughCleanup(Stack.back().ContBlock);
1185         }
1186         CGF.EmitBlock(Stack.back().ContBlock.getBlock());
1187         if (!HaveIP) {
1188           CGF.Builder.CreateUnreachable();
1189           CGF.Builder.ClearInsertionPoint();
1190         }
1191       }
1192       Stack.pop_back();
1193     }
1194   };
1195   OpenMPCancelExitStack OMPCancelStack;
1196 
1197   CodeGenPGO PGO;
1198 
1199   /// Calculate branch weights appropriate for PGO data
1200   llvm::MDNode *createProfileWeights(uint64_t TrueCount, uint64_t FalseCount);
1201   llvm::MDNode *createProfileWeights(ArrayRef<uint64_t> Weights);
1202   llvm::MDNode *createProfileWeightsForLoop(const Stmt *Cond,
1203                                             uint64_t LoopCount);
1204 
1205 public:
1206   /// Increment the profiler's counter for the given statement by \p StepV.
1207   /// If \p StepV is null, the default increment is 1.
1208   void incrementProfileCounter(const Stmt *S, llvm::Value *StepV = nullptr) {
1209     if (CGM.getCodeGenOpts().hasProfileClangInstr())
1210       PGO.emitCounterIncrement(Builder, S, StepV);
1211     PGO.setCurrentStmt(S);
1212   }
1213 
1214   /// Get the profiler's count for the given statement.
1215   uint64_t getProfileCount(const Stmt *S) {
1216     Optional<uint64_t> Count = PGO.getStmtCount(S);
1217     if (!Count.hasValue())
1218       return 0;
1219     return *Count;
1220   }
1221 
1222   /// Set the profiler's current count.
1223   void setCurrentProfileCount(uint64_t Count) {
1224     PGO.setCurrentRegionCount(Count);
1225   }
1226 
1227   /// Get the profiler's current count. This is generally the count for the most
1228   /// recently incremented counter.
1229   uint64_t getCurrentProfileCount() {
1230     return PGO.getCurrentRegionCount();
1231   }
1232 
1233 private:
1234 
1235   /// SwitchInsn - This is nearest current switch instruction. It is null if
1236   /// current context is not in a switch.
1237   llvm::SwitchInst *SwitchInsn;
1238   /// The branch weights of SwitchInsn when doing instrumentation based PGO.
1239   SmallVector<uint64_t, 16> *SwitchWeights;
1240 
1241   /// CaseRangeBlock - This block holds if condition check for last case
1242   /// statement range in current switch instruction.
1243   llvm::BasicBlock *CaseRangeBlock;
1244 
1245   /// OpaqueLValues - Keeps track of the current set of opaque value
1246   /// expressions.
1247   llvm::DenseMap<const OpaqueValueExpr *, LValue> OpaqueLValues;
1248   llvm::DenseMap<const OpaqueValueExpr *, RValue> OpaqueRValues;
1249 
1250   // VLASizeMap - This keeps track of the associated size for each VLA type.
1251   // We track this by the size expression rather than the type itself because
1252   // in certain situations, like a const qualifier applied to an VLA typedef,
1253   // multiple VLA types can share the same size expression.
1254   // FIXME: Maybe this could be a stack of maps that is pushed/popped as we
1255   // enter/leave scopes.
1256   llvm::DenseMap<const Expr*, llvm::Value*> VLASizeMap;
1257 
1258   /// A block containing a single 'unreachable' instruction.  Created
1259   /// lazily by getUnreachableBlock().
1260   llvm::BasicBlock *UnreachableBlock;
1261 
1262   /// Counts of the number return expressions in the function.
1263   unsigned NumReturnExprs;
1264 
1265   /// Count the number of simple (constant) return expressions in the function.
1266   unsigned NumSimpleReturnExprs;
1267 
1268   /// The last regular (non-return) debug location (breakpoint) in the function.
1269   SourceLocation LastStopPoint;
1270 
1271 public:
1272   /// A scope within which we are constructing the fields of an object which
1273   /// might use a CXXDefaultInitExpr. This stashes away a 'this' value to use
1274   /// if we need to evaluate a CXXDefaultInitExpr within the evaluation.
1275   class FieldConstructionScope {
1276   public:
1277     FieldConstructionScope(CodeGenFunction &CGF, Address This)
1278         : CGF(CGF), OldCXXDefaultInitExprThis(CGF.CXXDefaultInitExprThis) {
1279       CGF.CXXDefaultInitExprThis = This;
1280     }
1281     ~FieldConstructionScope() {
1282       CGF.CXXDefaultInitExprThis = OldCXXDefaultInitExprThis;
1283     }
1284 
1285   private:
1286     CodeGenFunction &CGF;
1287     Address OldCXXDefaultInitExprThis;
1288   };
1289 
1290   /// The scope of a CXXDefaultInitExpr. Within this scope, the value of 'this'
1291   /// is overridden to be the object under construction.
1292   class CXXDefaultInitExprScope {
1293   public:
1294     CXXDefaultInitExprScope(CodeGenFunction &CGF)
1295       : CGF(CGF), OldCXXThisValue(CGF.CXXThisValue),
1296         OldCXXThisAlignment(CGF.CXXThisAlignment) {
1297       CGF.CXXThisValue = CGF.CXXDefaultInitExprThis.getPointer();
1298       CGF.CXXThisAlignment = CGF.CXXDefaultInitExprThis.getAlignment();
1299     }
1300     ~CXXDefaultInitExprScope() {
1301       CGF.CXXThisValue = OldCXXThisValue;
1302       CGF.CXXThisAlignment = OldCXXThisAlignment;
1303     }
1304 
1305   public:
1306     CodeGenFunction &CGF;
1307     llvm::Value *OldCXXThisValue;
1308     CharUnits OldCXXThisAlignment;
1309   };
1310 
1311   /// The scope of an ArrayInitLoopExpr. Within this scope, the value of the
1312   /// current loop index is overridden.
1313   class ArrayInitLoopExprScope {
1314   public:
1315     ArrayInitLoopExprScope(CodeGenFunction &CGF, llvm::Value *Index)
1316       : CGF(CGF), OldArrayInitIndex(CGF.ArrayInitIndex) {
1317       CGF.ArrayInitIndex = Index;
1318     }
1319     ~ArrayInitLoopExprScope() {
1320       CGF.ArrayInitIndex = OldArrayInitIndex;
1321     }
1322 
1323   private:
1324     CodeGenFunction &CGF;
1325     llvm::Value *OldArrayInitIndex;
1326   };
1327 
1328   class InlinedInheritingConstructorScope {
1329   public:
1330     InlinedInheritingConstructorScope(CodeGenFunction &CGF, GlobalDecl GD)
1331         : CGF(CGF), OldCurGD(CGF.CurGD), OldCurFuncDecl(CGF.CurFuncDecl),
1332           OldCurCodeDecl(CGF.CurCodeDecl),
1333           OldCXXABIThisDecl(CGF.CXXABIThisDecl),
1334           OldCXXABIThisValue(CGF.CXXABIThisValue),
1335           OldCXXThisValue(CGF.CXXThisValue),
1336           OldCXXABIThisAlignment(CGF.CXXABIThisAlignment),
1337           OldCXXThisAlignment(CGF.CXXThisAlignment),
1338           OldReturnValue(CGF.ReturnValue), OldFnRetTy(CGF.FnRetTy),
1339           OldCXXInheritedCtorInitExprArgs(
1340               std::move(CGF.CXXInheritedCtorInitExprArgs)) {
1341       CGF.CurGD = GD;
1342       CGF.CurFuncDecl = CGF.CurCodeDecl =
1343           cast<CXXConstructorDecl>(GD.getDecl());
1344       CGF.CXXABIThisDecl = nullptr;
1345       CGF.CXXABIThisValue = nullptr;
1346       CGF.CXXThisValue = nullptr;
1347       CGF.CXXABIThisAlignment = CharUnits();
1348       CGF.CXXThisAlignment = CharUnits();
1349       CGF.ReturnValue = Address::invalid();
1350       CGF.FnRetTy = QualType();
1351       CGF.CXXInheritedCtorInitExprArgs.clear();
1352     }
1353     ~InlinedInheritingConstructorScope() {
1354       CGF.CurGD = OldCurGD;
1355       CGF.CurFuncDecl = OldCurFuncDecl;
1356       CGF.CurCodeDecl = OldCurCodeDecl;
1357       CGF.CXXABIThisDecl = OldCXXABIThisDecl;
1358       CGF.CXXABIThisValue = OldCXXABIThisValue;
1359       CGF.CXXThisValue = OldCXXThisValue;
1360       CGF.CXXABIThisAlignment = OldCXXABIThisAlignment;
1361       CGF.CXXThisAlignment = OldCXXThisAlignment;
1362       CGF.ReturnValue = OldReturnValue;
1363       CGF.FnRetTy = OldFnRetTy;
1364       CGF.CXXInheritedCtorInitExprArgs =
1365           std::move(OldCXXInheritedCtorInitExprArgs);
1366     }
1367 
1368   private:
1369     CodeGenFunction &CGF;
1370     GlobalDecl OldCurGD;
1371     const Decl *OldCurFuncDecl;
1372     const Decl *OldCurCodeDecl;
1373     ImplicitParamDecl *OldCXXABIThisDecl;
1374     llvm::Value *OldCXXABIThisValue;
1375     llvm::Value *OldCXXThisValue;
1376     CharUnits OldCXXABIThisAlignment;
1377     CharUnits OldCXXThisAlignment;
1378     Address OldReturnValue;
1379     QualType OldFnRetTy;
1380     CallArgList OldCXXInheritedCtorInitExprArgs;
1381   };
1382 
1383 private:
1384   /// CXXThisDecl - When generating code for a C++ member function,
1385   /// this will hold the implicit 'this' declaration.
1386   ImplicitParamDecl *CXXABIThisDecl;
1387   llvm::Value *CXXABIThisValue;
1388   llvm::Value *CXXThisValue;
1389   CharUnits CXXABIThisAlignment;
1390   CharUnits CXXThisAlignment;
1391 
1392   /// The value of 'this' to use when evaluating CXXDefaultInitExprs within
1393   /// this expression.
1394   Address CXXDefaultInitExprThis = Address::invalid();
1395 
1396   /// The current array initialization index when evaluating an
1397   /// ArrayInitIndexExpr within an ArrayInitLoopExpr.
1398   llvm::Value *ArrayInitIndex = nullptr;
1399 
1400   /// The values of function arguments to use when evaluating
1401   /// CXXInheritedCtorInitExprs within this context.
1402   CallArgList CXXInheritedCtorInitExprArgs;
1403 
1404   /// CXXStructorImplicitParamDecl - When generating code for a constructor or
1405   /// destructor, this will hold the implicit argument (e.g. VTT).
1406   ImplicitParamDecl *CXXStructorImplicitParamDecl;
1407   llvm::Value *CXXStructorImplicitParamValue;
1408 
1409   /// OutermostConditional - Points to the outermost active
1410   /// conditional control.  This is used so that we know if a
1411   /// temporary should be destroyed conditionally.
1412   ConditionalEvaluation *OutermostConditional;
1413 
1414   /// The current lexical scope.
1415   LexicalScope *CurLexicalScope;
1416 
1417   /// The current source location that should be used for exception
1418   /// handling code.
1419   SourceLocation CurEHLocation;
1420 
1421   /// BlockByrefInfos - For each __block variable, contains
1422   /// information about the layout of the variable.
1423   llvm::DenseMap<const ValueDecl *, BlockByrefInfo> BlockByrefInfos;
1424 
1425   /// Used by -fsanitize=nullability-return to determine whether the return
1426   /// value can be checked.
1427   llvm::Value *RetValNullabilityPrecondition = nullptr;
1428 
1429   /// Check if -fsanitize=nullability-return instrumentation is required for
1430   /// this function.
1431   bool requiresReturnValueNullabilityCheck() const {
1432     return RetValNullabilityPrecondition;
1433   }
1434 
1435   /// Used to store precise source locations for return statements by the
1436   /// runtime return value checks.
1437   Address ReturnLocation = Address::invalid();
1438 
1439   /// Check if the return value of this function requires sanitization.
1440   bool requiresReturnValueCheck() const {
1441     return requiresReturnValueNullabilityCheck() ||
1442            (SanOpts.has(SanitizerKind::ReturnsNonnullAttribute) &&
1443             CurCodeDecl && CurCodeDecl->getAttr<ReturnsNonNullAttr>());
1444   }
1445 
1446   llvm::BasicBlock *TerminateLandingPad;
1447   llvm::BasicBlock *TerminateHandler;
1448   llvm::BasicBlock *TrapBB;
1449 
1450   /// Terminate funclets keyed by parent funclet pad.
1451   llvm::MapVector<llvm::Value *, llvm::BasicBlock *> TerminateFunclets;
1452 
1453   /// True if we need emit the life-time markers.
1454   const bool ShouldEmitLifetimeMarkers;
1455 
1456   /// Add OpenCL kernel arg metadata and the kernel attribute metadata to
1457   /// the function metadata.
1458   void EmitOpenCLKernelMetadata(const FunctionDecl *FD,
1459                                 llvm::Function *Fn);
1460 
1461 public:
1462   CodeGenFunction(CodeGenModule &cgm, bool suppressNewContext=false);
1463   ~CodeGenFunction();
1464 
1465   CodeGenTypes &getTypes() const { return CGM.getTypes(); }
1466   ASTContext &getContext() const { return CGM.getContext(); }
1467   CGDebugInfo *getDebugInfo() {
1468     if (DisableDebugInfo)
1469       return nullptr;
1470     return DebugInfo;
1471   }
1472   void disableDebugInfo() { DisableDebugInfo = true; }
1473   void enableDebugInfo() { DisableDebugInfo = false; }
1474 
1475   bool shouldUseFusedARCCalls() {
1476     return CGM.getCodeGenOpts().OptimizationLevel == 0;
1477   }
1478 
1479   const LangOptions &getLangOpts() const { return CGM.getLangOpts(); }
1480 
1481   /// Returns a pointer to the function's exception object and selector slot,
1482   /// which is assigned in every landing pad.
1483   Address getExceptionSlot();
1484   Address getEHSelectorSlot();
1485 
1486   /// Returns the contents of the function's exception object and selector
1487   /// slots.
1488   llvm::Value *getExceptionFromSlot();
1489   llvm::Value *getSelectorFromSlot();
1490 
1491   Address getNormalCleanupDestSlot();
1492 
1493   llvm::BasicBlock *getUnreachableBlock() {
1494     if (!UnreachableBlock) {
1495       UnreachableBlock = createBasicBlock("unreachable");
1496       new llvm::UnreachableInst(getLLVMContext(), UnreachableBlock);
1497     }
1498     return UnreachableBlock;
1499   }
1500 
1501   llvm::BasicBlock *getInvokeDest() {
1502     if (!EHStack.requiresLandingPad()) return nullptr;
1503     return getInvokeDestImpl();
1504   }
1505 
1506   bool currentFunctionUsesSEHTry() const { return CurSEHParent != nullptr; }
1507 
1508   const TargetInfo &getTarget() const { return Target; }
1509   llvm::LLVMContext &getLLVMContext() { return CGM.getLLVMContext(); }
1510   const TargetCodeGenInfo &getTargetHooks() const {
1511     return CGM.getTargetCodeGenInfo();
1512   }
1513 
1514   //===--------------------------------------------------------------------===//
1515   //                                  Cleanups
1516   //===--------------------------------------------------------------------===//
1517 
1518   typedef void Destroyer(CodeGenFunction &CGF, Address addr, QualType ty);
1519 
1520   void pushIrregularPartialArrayCleanup(llvm::Value *arrayBegin,
1521                                         Address arrayEndPointer,
1522                                         QualType elementType,
1523                                         CharUnits elementAlignment,
1524                                         Destroyer *destroyer);
1525   void pushRegularPartialArrayCleanup(llvm::Value *arrayBegin,
1526                                       llvm::Value *arrayEnd,
1527                                       QualType elementType,
1528                                       CharUnits elementAlignment,
1529                                       Destroyer *destroyer);
1530 
1531   void pushDestroy(QualType::DestructionKind dtorKind,
1532                    Address addr, QualType type);
1533   void pushEHDestroy(QualType::DestructionKind dtorKind,
1534                      Address addr, QualType type);
1535   void pushDestroy(CleanupKind kind, Address addr, QualType type,
1536                    Destroyer *destroyer, bool useEHCleanupForArray);
1537   void pushLifetimeExtendedDestroy(CleanupKind kind, Address addr,
1538                                    QualType type, Destroyer *destroyer,
1539                                    bool useEHCleanupForArray);
1540   void pushCallObjectDeleteCleanup(const FunctionDecl *OperatorDelete,
1541                                    llvm::Value *CompletePtr,
1542                                    QualType ElementType);
1543   void pushStackRestore(CleanupKind kind, Address SPMem);
1544   void emitDestroy(Address addr, QualType type, Destroyer *destroyer,
1545                    bool useEHCleanupForArray);
1546   llvm::Function *generateDestroyHelper(Address addr, QualType type,
1547                                         Destroyer *destroyer,
1548                                         bool useEHCleanupForArray,
1549                                         const VarDecl *VD);
1550   void emitArrayDestroy(llvm::Value *begin, llvm::Value *end,
1551                         QualType elementType, CharUnits elementAlign,
1552                         Destroyer *destroyer,
1553                         bool checkZeroLength, bool useEHCleanup);
1554 
1555   Destroyer *getDestroyer(QualType::DestructionKind destructionKind);
1556 
1557   /// Determines whether an EH cleanup is required to destroy a type
1558   /// with the given destruction kind.
1559   bool needsEHCleanup(QualType::DestructionKind kind) {
1560     switch (kind) {
1561     case QualType::DK_none:
1562       return false;
1563     case QualType::DK_cxx_destructor:
1564     case QualType::DK_objc_weak_lifetime:
1565     case QualType::DK_nontrivial_c_struct:
1566       return getLangOpts().Exceptions;
1567     case QualType::DK_objc_strong_lifetime:
1568       return getLangOpts().Exceptions &&
1569              CGM.getCodeGenOpts().ObjCAutoRefCountExceptions;
1570     }
1571     llvm_unreachable("bad destruction kind");
1572   }
1573 
1574   CleanupKind getCleanupKind(QualType::DestructionKind kind) {
1575     return (needsEHCleanup(kind) ? NormalAndEHCleanup : NormalCleanup);
1576   }
1577 
1578   //===--------------------------------------------------------------------===//
1579   //                                  Objective-C
1580   //===--------------------------------------------------------------------===//
1581 
1582   void GenerateObjCMethod(const ObjCMethodDecl *OMD);
1583 
1584   void StartObjCMethod(const ObjCMethodDecl *MD, const ObjCContainerDecl *CD);
1585 
1586   /// GenerateObjCGetter - Synthesize an Objective-C property getter function.
1587   void GenerateObjCGetter(ObjCImplementationDecl *IMP,
1588                           const ObjCPropertyImplDecl *PID);
1589   void generateObjCGetterBody(const ObjCImplementationDecl *classImpl,
1590                               const ObjCPropertyImplDecl *propImpl,
1591                               const ObjCMethodDecl *GetterMothodDecl,
1592                               llvm::Constant *AtomicHelperFn);
1593 
1594   void GenerateObjCCtorDtorMethod(ObjCImplementationDecl *IMP,
1595                                   ObjCMethodDecl *MD, bool ctor);
1596 
1597   /// GenerateObjCSetter - Synthesize an Objective-C property setter function
1598   /// for the given property.
1599   void GenerateObjCSetter(ObjCImplementationDecl *IMP,
1600                           const ObjCPropertyImplDecl *PID);
1601   void generateObjCSetterBody(const ObjCImplementationDecl *classImpl,
1602                               const ObjCPropertyImplDecl *propImpl,
1603                               llvm::Constant *AtomicHelperFn);
1604 
1605   //===--------------------------------------------------------------------===//
1606   //                                  Block Bits
1607   //===--------------------------------------------------------------------===//
1608 
1609   /// Emit block literal.
1610   /// \return an LLVM value which is a pointer to a struct which contains
1611   /// information about the block, including the block invoke function, the
1612   /// captured variables, etc.
1613   llvm::Value *EmitBlockLiteral(const BlockExpr *);
1614   static void destroyBlockInfos(CGBlockInfo *info);
1615 
1616   llvm::Function *GenerateBlockFunction(GlobalDecl GD,
1617                                         const CGBlockInfo &Info,
1618                                         const DeclMapTy &ldm,
1619                                         bool IsLambdaConversionToBlock,
1620                                         bool BuildGlobalBlock);
1621 
1622   llvm::Constant *GenerateCopyHelperFunction(const CGBlockInfo &blockInfo);
1623   llvm::Constant *GenerateDestroyHelperFunction(const CGBlockInfo &blockInfo);
1624   llvm::Constant *GenerateObjCAtomicSetterCopyHelperFunction(
1625                                              const ObjCPropertyImplDecl *PID);
1626   llvm::Constant *GenerateObjCAtomicGetterCopyHelperFunction(
1627                                              const ObjCPropertyImplDecl *PID);
1628   llvm::Value *EmitBlockCopyAndAutorelease(llvm::Value *Block, QualType Ty);
1629 
1630   void BuildBlockRelease(llvm::Value *DeclPtr, BlockFieldFlags flags);
1631 
1632   class AutoVarEmission;
1633 
1634   void emitByrefStructureInit(const AutoVarEmission &emission);
1635   void enterByrefCleanup(const AutoVarEmission &emission);
1636 
1637   void setBlockContextParameter(const ImplicitParamDecl *D, unsigned argNum,
1638                                 llvm::Value *ptr);
1639 
1640   Address LoadBlockStruct();
1641   Address GetAddrOfBlockDecl(const VarDecl *var, bool ByRef);
1642 
1643   /// BuildBlockByrefAddress - Computes the location of the
1644   /// data in a variable which is declared as __block.
1645   Address emitBlockByrefAddress(Address baseAddr, const VarDecl *V,
1646                                 bool followForward = true);
1647   Address emitBlockByrefAddress(Address baseAddr,
1648                                 const BlockByrefInfo &info,
1649                                 bool followForward,
1650                                 const llvm::Twine &name);
1651 
1652   const BlockByrefInfo &getBlockByrefInfo(const VarDecl *var);
1653 
1654   QualType BuildFunctionArgList(GlobalDecl GD, FunctionArgList &Args);
1655 
1656   void GenerateCode(GlobalDecl GD, llvm::Function *Fn,
1657                     const CGFunctionInfo &FnInfo);
1658   /// \brief Emit code for the start of a function.
1659   /// \param Loc       The location to be associated with the function.
1660   /// \param StartLoc  The location of the function body.
1661   void StartFunction(GlobalDecl GD,
1662                      QualType RetTy,
1663                      llvm::Function *Fn,
1664                      const CGFunctionInfo &FnInfo,
1665                      const FunctionArgList &Args,
1666                      SourceLocation Loc = SourceLocation(),
1667                      SourceLocation StartLoc = SourceLocation());
1668 
1669   static bool IsConstructorDelegationValid(const CXXConstructorDecl *Ctor);
1670 
1671   void EmitConstructorBody(FunctionArgList &Args);
1672   void EmitDestructorBody(FunctionArgList &Args);
1673   void emitImplicitAssignmentOperatorBody(FunctionArgList &Args);
1674   void EmitFunctionBody(FunctionArgList &Args, const Stmt *Body);
1675   void EmitBlockWithFallThrough(llvm::BasicBlock *BB, const Stmt *S);
1676 
1677   void EmitForwardingCallToLambda(const CXXMethodDecl *LambdaCallOperator,
1678                                   CallArgList &CallArgs);
1679   void EmitLambdaBlockInvokeBody();
1680   void EmitLambdaDelegatingInvokeBody(const CXXMethodDecl *MD);
1681   void EmitLambdaStaticInvokeBody(const CXXMethodDecl *MD);
1682   void EmitAsanPrologueOrEpilogue(bool Prologue);
1683 
1684   /// \brief Emit the unified return block, trying to avoid its emission when
1685   /// possible.
1686   /// \return The debug location of the user written return statement if the
1687   /// return block is is avoided.
1688   llvm::DebugLoc EmitReturnBlock();
1689 
1690   /// FinishFunction - Complete IR generation of the current function. It is
1691   /// legal to call this function even if there is no current insertion point.
1692   void FinishFunction(SourceLocation EndLoc=SourceLocation());
1693 
1694   void StartThunk(llvm::Function *Fn, GlobalDecl GD,
1695                   const CGFunctionInfo &FnInfo, bool IsUnprototyped);
1696 
1697   void EmitCallAndReturnForThunk(llvm::Constant *Callee, const ThunkInfo *Thunk,
1698                                  bool IsUnprototyped);
1699 
1700   void FinishThunk();
1701 
1702   /// Emit a musttail call for a thunk with a potentially adjusted this pointer.
1703   void EmitMustTailThunk(const CXXMethodDecl *MD, llvm::Value *AdjustedThisPtr,
1704                          llvm::Value *Callee);
1705 
1706   /// Generate a thunk for the given method.
1707   void generateThunk(llvm::Function *Fn, const CGFunctionInfo &FnInfo,
1708                      GlobalDecl GD, const ThunkInfo &Thunk,
1709                      bool IsUnprototyped);
1710 
1711   llvm::Function *GenerateVarArgsThunk(llvm::Function *Fn,
1712                                        const CGFunctionInfo &FnInfo,
1713                                        GlobalDecl GD, const ThunkInfo &Thunk);
1714 
1715   void EmitCtorPrologue(const CXXConstructorDecl *CD, CXXCtorType Type,
1716                         FunctionArgList &Args);
1717 
1718   void EmitInitializerForField(FieldDecl *Field, LValue LHS, Expr *Init);
1719 
1720   /// Struct with all information about dynamic [sub]class needed to set vptr.
1721   struct VPtr {
1722     BaseSubobject Base;
1723     const CXXRecordDecl *NearestVBase;
1724     CharUnits OffsetFromNearestVBase;
1725     const CXXRecordDecl *VTableClass;
1726   };
1727 
1728   /// Initialize the vtable pointer of the given subobject.
1729   void InitializeVTablePointer(const VPtr &vptr);
1730 
1731   typedef llvm::SmallVector<VPtr, 4> VPtrsVector;
1732 
1733   typedef llvm::SmallPtrSet<const CXXRecordDecl *, 4> VisitedVirtualBasesSetTy;
1734   VPtrsVector getVTablePointers(const CXXRecordDecl *VTableClass);
1735 
1736   void getVTablePointers(BaseSubobject Base, const CXXRecordDecl *NearestVBase,
1737                          CharUnits OffsetFromNearestVBase,
1738                          bool BaseIsNonVirtualPrimaryBase,
1739                          const CXXRecordDecl *VTableClass,
1740                          VisitedVirtualBasesSetTy &VBases, VPtrsVector &vptrs);
1741 
1742   void InitializeVTablePointers(const CXXRecordDecl *ClassDecl);
1743 
1744   /// GetVTablePtr - Return the Value of the vtable pointer member pointed
1745   /// to by This.
1746   llvm::Value *GetVTablePtr(Address This, llvm::Type *VTableTy,
1747                             const CXXRecordDecl *VTableClass);
1748 
1749   enum CFITypeCheckKind {
1750     CFITCK_VCall,
1751     CFITCK_NVCall,
1752     CFITCK_DerivedCast,
1753     CFITCK_UnrelatedCast,
1754     CFITCK_ICall,
1755   };
1756 
1757   /// \brief Derived is the presumed address of an object of type T after a
1758   /// cast. If T is a polymorphic class type, emit a check that the virtual
1759   /// table for Derived belongs to a class derived from T.
1760   void EmitVTablePtrCheckForCast(QualType T, llvm::Value *Derived,
1761                                  bool MayBeNull, CFITypeCheckKind TCK,
1762                                  SourceLocation Loc);
1763 
1764   /// EmitVTablePtrCheckForCall - Virtual method MD is being called via VTable.
1765   /// If vptr CFI is enabled, emit a check that VTable is valid.
1766   void EmitVTablePtrCheckForCall(const CXXRecordDecl *RD, llvm::Value *VTable,
1767                                  CFITypeCheckKind TCK, SourceLocation Loc);
1768 
1769   /// EmitVTablePtrCheck - Emit a check that VTable is a valid virtual table for
1770   /// RD using llvm.type.test.
1771   void EmitVTablePtrCheck(const CXXRecordDecl *RD, llvm::Value *VTable,
1772                           CFITypeCheckKind TCK, SourceLocation Loc);
1773 
1774   /// If whole-program virtual table optimization is enabled, emit an assumption
1775   /// that VTable is a member of RD's type identifier. Or, if vptr CFI is
1776   /// enabled, emit a check that VTable is a member of RD's type identifier.
1777   void EmitTypeMetadataCodeForVCall(const CXXRecordDecl *RD,
1778                                     llvm::Value *VTable, SourceLocation Loc);
1779 
1780   /// Returns whether we should perform a type checked load when loading a
1781   /// virtual function for virtual calls to members of RD. This is generally
1782   /// true when both vcall CFI and whole-program-vtables are enabled.
1783   bool ShouldEmitVTableTypeCheckedLoad(const CXXRecordDecl *RD);
1784 
1785   /// Emit a type checked load from the given vtable.
1786   llvm::Value *EmitVTableTypeCheckedLoad(const CXXRecordDecl *RD, llvm::Value *VTable,
1787                                          uint64_t VTableByteOffset);
1788 
1789   /// EnterDtorCleanups - Enter the cleanups necessary to complete the
1790   /// given phase of destruction for a destructor.  The end result
1791   /// should call destructors on members and base classes in reverse
1792   /// order of their construction.
1793   void EnterDtorCleanups(const CXXDestructorDecl *Dtor, CXXDtorType Type);
1794 
1795   /// ShouldInstrumentFunction - Return true if the current function should be
1796   /// instrumented with __cyg_profile_func_* calls
1797   bool ShouldInstrumentFunction();
1798 
1799   /// ShouldXRayInstrument - Return true if the current function should be
1800   /// instrumented with XRay nop sleds.
1801   bool ShouldXRayInstrumentFunction() const;
1802 
1803   /// AlwaysEmitXRayCustomEvents - Return true if we must unconditionally emit
1804   /// XRay custom event handling calls.
1805   bool AlwaysEmitXRayCustomEvents() const;
1806 
1807   /// Encode an address into a form suitable for use in a function prologue.
1808   llvm::Constant *EncodeAddrForUseInPrologue(llvm::Function *F,
1809                                              llvm::Constant *Addr);
1810 
1811   /// Decode an address used in a function prologue, encoded by \c
1812   /// EncodeAddrForUseInPrologue.
1813   llvm::Value *DecodeAddrUsedInPrologue(llvm::Value *F,
1814                                         llvm::Value *EncodedAddr);
1815 
1816   /// EmitFunctionProlog - Emit the target specific LLVM code to load the
1817   /// arguments for the given function. This is also responsible for naming the
1818   /// LLVM function arguments.
1819   void EmitFunctionProlog(const CGFunctionInfo &FI,
1820                           llvm::Function *Fn,
1821                           const FunctionArgList &Args);
1822 
1823   /// EmitFunctionEpilog - Emit the target specific LLVM code to return the
1824   /// given temporary.
1825   void EmitFunctionEpilog(const CGFunctionInfo &FI, bool EmitRetDbgLoc,
1826                           SourceLocation EndLoc);
1827 
1828   /// Emit a test that checks if the return value \p RV is nonnull.
1829   void EmitReturnValueCheck(llvm::Value *RV);
1830 
1831   /// EmitStartEHSpec - Emit the start of the exception spec.
1832   void EmitStartEHSpec(const Decl *D);
1833 
1834   /// EmitEndEHSpec - Emit the end of the exception spec.
1835   void EmitEndEHSpec(const Decl *D);
1836 
1837   /// getTerminateLandingPad - Return a landing pad that just calls terminate.
1838   llvm::BasicBlock *getTerminateLandingPad();
1839 
1840   /// getTerminateLandingPad - Return a cleanup funclet that just calls
1841   /// terminate.
1842   llvm::BasicBlock *getTerminateFunclet();
1843 
1844   /// getTerminateHandler - Return a handler (not a landing pad, just
1845   /// a catch handler) that just calls terminate.  This is used when
1846   /// a terminate scope encloses a try.
1847   llvm::BasicBlock *getTerminateHandler();
1848 
1849   llvm::Type *ConvertTypeForMem(QualType T);
1850   llvm::Type *ConvertType(QualType T);
1851   llvm::Type *ConvertType(const TypeDecl *T) {
1852     return ConvertType(getContext().getTypeDeclType(T));
1853   }
1854 
1855   /// LoadObjCSelf - Load the value of self. This function is only valid while
1856   /// generating code for an Objective-C method.
1857   llvm::Value *LoadObjCSelf();
1858 
1859   /// TypeOfSelfObject - Return type of object that this self represents.
1860   QualType TypeOfSelfObject();
1861 
1862   /// getEvaluationKind - Return the TypeEvaluationKind of QualType \c T.
1863   static TypeEvaluationKind getEvaluationKind(QualType T);
1864 
1865   static bool hasScalarEvaluationKind(QualType T) {
1866     return getEvaluationKind(T) == TEK_Scalar;
1867   }
1868 
1869   static bool hasAggregateEvaluationKind(QualType T) {
1870     return getEvaluationKind(T) == TEK_Aggregate;
1871   }
1872 
1873   /// createBasicBlock - Create an LLVM basic block.
1874   llvm::BasicBlock *createBasicBlock(const Twine &name = "",
1875                                      llvm::Function *parent = nullptr,
1876                                      llvm::BasicBlock *before = nullptr) {
1877     return llvm::BasicBlock::Create(getLLVMContext(), name, parent, before);
1878   }
1879 
1880   /// getBasicBlockForLabel - Return the LLVM basicblock that the specified
1881   /// label maps to.
1882   JumpDest getJumpDestForLabel(const LabelDecl *S);
1883 
1884   /// SimplifyForwardingBlocks - If the given basic block is only a branch to
1885   /// another basic block, simplify it. This assumes that no other code could
1886   /// potentially reference the basic block.
1887   void SimplifyForwardingBlocks(llvm::BasicBlock *BB);
1888 
1889   /// EmitBlock - Emit the given block \arg BB and set it as the insert point,
1890   /// adding a fall-through branch from the current insert block if
1891   /// necessary. It is legal to call this function even if there is no current
1892   /// insertion point.
1893   ///
1894   /// IsFinished - If true, indicates that the caller has finished emitting
1895   /// branches to the given block and does not expect to emit code into it. This
1896   /// means the block can be ignored if it is unreachable.
1897   void EmitBlock(llvm::BasicBlock *BB, bool IsFinished=false);
1898 
1899   /// EmitBlockAfterUses - Emit the given block somewhere hopefully
1900   /// near its uses, and leave the insertion point in it.
1901   void EmitBlockAfterUses(llvm::BasicBlock *BB);
1902 
1903   /// EmitBranch - Emit a branch to the specified basic block from the current
1904   /// insert block, taking care to avoid creation of branches from dummy
1905   /// blocks. It is legal to call this function even if there is no current
1906   /// insertion point.
1907   ///
1908   /// This function clears the current insertion point. The caller should follow
1909   /// calls to this function with calls to Emit*Block prior to generation new
1910   /// code.
1911   void EmitBranch(llvm::BasicBlock *Block);
1912 
1913   /// HaveInsertPoint - True if an insertion point is defined. If not, this
1914   /// indicates that the current code being emitted is unreachable.
1915   bool HaveInsertPoint() const {
1916     return Builder.GetInsertBlock() != nullptr;
1917   }
1918 
1919   /// EnsureInsertPoint - Ensure that an insertion point is defined so that
1920   /// emitted IR has a place to go. Note that by definition, if this function
1921   /// creates a block then that block is unreachable; callers may do better to
1922   /// detect when no insertion point is defined and simply skip IR generation.
1923   void EnsureInsertPoint() {
1924     if (!HaveInsertPoint())
1925       EmitBlock(createBasicBlock());
1926   }
1927 
1928   /// ErrorUnsupported - Print out an error that codegen doesn't support the
1929   /// specified stmt yet.
1930   void ErrorUnsupported(const Stmt *S, const char *Type);
1931 
1932   //===--------------------------------------------------------------------===//
1933   //                                  Helpers
1934   //===--------------------------------------------------------------------===//
1935 
1936   LValue MakeAddrLValue(Address Addr, QualType T,
1937                         AlignmentSource Source = AlignmentSource::Type) {
1938     return LValue::MakeAddr(Addr, T, getContext(), LValueBaseInfo(Source),
1939                             CGM.getTBAAAccessInfo(T));
1940   }
1941 
1942   LValue MakeAddrLValue(Address Addr, QualType T, LValueBaseInfo BaseInfo,
1943                         TBAAAccessInfo TBAAInfo) {
1944     return LValue::MakeAddr(Addr, T, getContext(), BaseInfo, TBAAInfo);
1945   }
1946 
1947   LValue MakeAddrLValue(llvm::Value *V, QualType T, CharUnits Alignment,
1948                         AlignmentSource Source = AlignmentSource::Type) {
1949     return LValue::MakeAddr(Address(V, Alignment), T, getContext(),
1950                             LValueBaseInfo(Source), CGM.getTBAAAccessInfo(T));
1951   }
1952 
1953   LValue MakeAddrLValue(llvm::Value *V, QualType T, CharUnits Alignment,
1954                         LValueBaseInfo BaseInfo, TBAAAccessInfo TBAAInfo) {
1955     return LValue::MakeAddr(Address(V, Alignment), T, getContext(),
1956                             BaseInfo, TBAAInfo);
1957   }
1958 
1959   LValue MakeNaturalAlignPointeeAddrLValue(llvm::Value *V, QualType T);
1960   LValue MakeNaturalAlignAddrLValue(llvm::Value *V, QualType T);
1961   CharUnits getNaturalTypeAlignment(QualType T,
1962                                     LValueBaseInfo *BaseInfo = nullptr,
1963                                     TBAAAccessInfo *TBAAInfo = nullptr,
1964                                     bool forPointeeType = false);
1965   CharUnits getNaturalPointeeTypeAlignment(QualType T,
1966                                            LValueBaseInfo *BaseInfo = nullptr,
1967                                            TBAAAccessInfo *TBAAInfo = nullptr);
1968 
1969   Address EmitLoadOfReference(LValue RefLVal,
1970                               LValueBaseInfo *PointeeBaseInfo = nullptr,
1971                               TBAAAccessInfo *PointeeTBAAInfo = nullptr);
1972   LValue EmitLoadOfReferenceLValue(LValue RefLVal);
1973   LValue EmitLoadOfReferenceLValue(Address RefAddr, QualType RefTy,
1974                                    AlignmentSource Source =
1975                                        AlignmentSource::Type) {
1976     LValue RefLVal = MakeAddrLValue(RefAddr, RefTy, LValueBaseInfo(Source),
1977                                     CGM.getTBAAAccessInfo(RefTy));
1978     return EmitLoadOfReferenceLValue(RefLVal);
1979   }
1980 
1981   Address EmitLoadOfPointer(Address Ptr, const PointerType *PtrTy,
1982                             LValueBaseInfo *BaseInfo = nullptr,
1983                             TBAAAccessInfo *TBAAInfo = nullptr);
1984   LValue EmitLoadOfPointerLValue(Address Ptr, const PointerType *PtrTy);
1985 
1986   /// CreateTempAlloca - This creates an alloca and inserts it into the entry
1987   /// block if \p ArraySize is nullptr, otherwise inserts it at the current
1988   /// insertion point of the builder. The caller is responsible for setting an
1989   /// appropriate alignment on
1990   /// the alloca.
1991   ///
1992   /// \p ArraySize is the number of array elements to be allocated if it
1993   ///    is not nullptr.
1994   ///
1995   /// LangAS::Default is the address space of pointers to local variables and
1996   /// temporaries, as exposed in the source language. In certain
1997   /// configurations, this is not the same as the alloca address space, and a
1998   /// cast is needed to lift the pointer from the alloca AS into
1999   /// LangAS::Default. This can happen when the target uses a restricted
2000   /// address space for the stack but the source language requires
2001   /// LangAS::Default to be a generic address space. The latter condition is
2002   /// common for most programming languages; OpenCL is an exception in that
2003   /// LangAS::Default is the private address space, which naturally maps
2004   /// to the stack.
2005   ///
2006   /// Because the address of a temporary is often exposed to the program in
2007   /// various ways, this function will perform the cast by default. The cast
2008   /// may be avoided by passing false as \p CastToDefaultAddrSpace; this is
2009   /// more efficient if the caller knows that the address will not be exposed.
2010   llvm::AllocaInst *CreateTempAlloca(llvm::Type *Ty, const Twine &Name = "tmp",
2011                                      llvm::Value *ArraySize = nullptr);
2012   Address CreateTempAlloca(llvm::Type *Ty, CharUnits align,
2013                            const Twine &Name = "tmp",
2014                            llvm::Value *ArraySize = nullptr,
2015                            bool CastToDefaultAddrSpace = true);
2016 
2017   /// CreateDefaultAlignedTempAlloca - This creates an alloca with the
2018   /// default ABI alignment of the given LLVM type.
2019   ///
2020   /// IMPORTANT NOTE: This is *not* generally the right alignment for
2021   /// any given AST type that happens to have been lowered to the
2022   /// given IR type.  This should only ever be used for function-local,
2023   /// IR-driven manipulations like saving and restoring a value.  Do
2024   /// not hand this address off to arbitrary IRGen routines, and especially
2025   /// do not pass it as an argument to a function that might expect a
2026   /// properly ABI-aligned value.
2027   Address CreateDefaultAlignTempAlloca(llvm::Type *Ty,
2028                                        const Twine &Name = "tmp");
2029 
2030   /// InitTempAlloca - Provide an initial value for the given alloca which
2031   /// will be observable at all locations in the function.
2032   ///
2033   /// The address should be something that was returned from one of
2034   /// the CreateTempAlloca or CreateMemTemp routines, and the
2035   /// initializer must be valid in the entry block (i.e. it must
2036   /// either be a constant or an argument value).
2037   void InitTempAlloca(Address Alloca, llvm::Value *Value);
2038 
2039   /// CreateIRTemp - Create a temporary IR object of the given type, with
2040   /// appropriate alignment. This routine should only be used when an temporary
2041   /// value needs to be stored into an alloca (for example, to avoid explicit
2042   /// PHI construction), but the type is the IR type, not the type appropriate
2043   /// for storing in memory.
2044   ///
2045   /// That is, this is exactly equivalent to CreateMemTemp, but calling
2046   /// ConvertType instead of ConvertTypeForMem.
2047   Address CreateIRTemp(QualType T, const Twine &Name = "tmp");
2048 
2049   /// CreateMemTemp - Create a temporary memory object of the given type, with
2050   /// appropriate alignment. Cast it to the default address space if
2051   /// \p CastToDefaultAddrSpace is true.
2052   Address CreateMemTemp(QualType T, const Twine &Name = "tmp",
2053                         bool CastToDefaultAddrSpace = true);
2054   Address CreateMemTemp(QualType T, CharUnits Align, const Twine &Name = "tmp",
2055                         bool CastToDefaultAddrSpace = true);
2056 
2057   /// CreateAggTemp - Create a temporary memory object for the given
2058   /// aggregate type.
2059   AggValueSlot CreateAggTemp(QualType T, const Twine &Name = "tmp") {
2060     return AggValueSlot::forAddr(CreateMemTemp(T, Name),
2061                                  T.getQualifiers(),
2062                                  AggValueSlot::IsNotDestructed,
2063                                  AggValueSlot::DoesNotNeedGCBarriers,
2064                                  AggValueSlot::IsNotAliased,
2065                                  AggValueSlot::DoesNotOverlap);
2066   }
2067 
2068   /// Emit a cast to void* in the appropriate address space.
2069   llvm::Value *EmitCastToVoidPtr(llvm::Value *value);
2070 
2071   /// EvaluateExprAsBool - Perform the usual unary conversions on the specified
2072   /// expression and compare the result against zero, returning an Int1Ty value.
2073   llvm::Value *EvaluateExprAsBool(const Expr *E);
2074 
2075   /// EmitIgnoredExpr - Emit an expression in a context which ignores the result.
2076   void EmitIgnoredExpr(const Expr *E);
2077 
2078   /// EmitAnyExpr - Emit code to compute the specified expression which can have
2079   /// any type.  The result is returned as an RValue struct.  If this is an
2080   /// aggregate expression, the aggloc/agglocvolatile arguments indicate where
2081   /// the result should be returned.
2082   ///
2083   /// \param ignoreResult True if the resulting value isn't used.
2084   RValue EmitAnyExpr(const Expr *E,
2085                      AggValueSlot aggSlot = AggValueSlot::ignored(),
2086                      bool ignoreResult = false);
2087 
2088   // EmitVAListRef - Emit a "reference" to a va_list; this is either the address
2089   // or the value of the expression, depending on how va_list is defined.
2090   Address EmitVAListRef(const Expr *E);
2091 
2092   /// Emit a "reference" to a __builtin_ms_va_list; this is
2093   /// always the value of the expression, because a __builtin_ms_va_list is a
2094   /// pointer to a char.
2095   Address EmitMSVAListRef(const Expr *E);
2096 
2097   /// EmitAnyExprToTemp - Similarly to EmitAnyExpr(), however, the result will
2098   /// always be accessible even if no aggregate location is provided.
2099   RValue EmitAnyExprToTemp(const Expr *E);
2100 
2101   /// EmitAnyExprToMem - Emits the code necessary to evaluate an
2102   /// arbitrary expression into the given memory location.
2103   void EmitAnyExprToMem(const Expr *E, Address Location,
2104                         Qualifiers Quals, bool IsInitializer);
2105 
2106   void EmitAnyExprToExn(const Expr *E, Address Addr);
2107 
2108   /// EmitExprAsInit - Emits the code necessary to initialize a
2109   /// location in memory with the given initializer.
2110   void EmitExprAsInit(const Expr *init, const ValueDecl *D, LValue lvalue,
2111                       bool capturedByInit);
2112 
2113   /// hasVolatileMember - returns true if aggregate type has a volatile
2114   /// member.
2115   bool hasVolatileMember(QualType T) {
2116     if (const RecordType *RT = T->getAs<RecordType>()) {
2117       const RecordDecl *RD = cast<RecordDecl>(RT->getDecl());
2118       return RD->hasVolatileMember();
2119     }
2120     return false;
2121   }
2122 
2123   /// Determine whether a return value slot may overlap some other object.
2124   AggValueSlot::Overlap_t overlapForReturnValue() {
2125     // FIXME: Assuming no overlap here breaks guaranteed copy elision for base
2126     // class subobjects. These cases may need to be revisited depending on the
2127     // resolution of the relevant core issue.
2128     return AggValueSlot::DoesNotOverlap;
2129   }
2130 
2131   /// Determine whether a field initialization may overlap some other object.
2132   AggValueSlot::Overlap_t overlapForFieldInit(const FieldDecl *FD) {
2133     // FIXME: These cases can result in overlap as a result of P0840R0's
2134     // [[no_unique_address]] attribute. We can still infer NoOverlap in the
2135     // presence of that attribute if the field is within the nvsize of its
2136     // containing class, because non-virtual subobjects are initialized in
2137     // address order.
2138     return AggValueSlot::DoesNotOverlap;
2139   }
2140 
2141   /// Determine whether a base class initialization may overlap some other
2142   /// object.
2143   AggValueSlot::Overlap_t overlapForBaseInit(const CXXRecordDecl *RD,
2144                                              const CXXRecordDecl *BaseRD,
2145                                              bool IsVirtual);
2146 
2147   /// Emit an aggregate assignment.
2148   void EmitAggregateAssign(LValue Dest, LValue Src, QualType EltTy) {
2149     bool IsVolatile = hasVolatileMember(EltTy);
2150     EmitAggregateCopy(Dest, Src, EltTy, AggValueSlot::MayOverlap, IsVolatile);
2151   }
2152 
2153   void EmitAggregateCopyCtor(LValue Dest, LValue Src,
2154                              AggValueSlot::Overlap_t MayOverlap) {
2155     EmitAggregateCopy(Dest, Src, Src.getType(), MayOverlap);
2156   }
2157 
2158   /// EmitAggregateCopy - Emit an aggregate copy.
2159   ///
2160   /// \param isVolatile \c true iff either the source or the destination is
2161   ///        volatile.
2162   /// \param MayOverlap Whether the tail padding of the destination might be
2163   ///        occupied by some other object. More efficient code can often be
2164   ///        generated if not.
2165   void EmitAggregateCopy(LValue Dest, LValue Src, QualType EltTy,
2166                          AggValueSlot::Overlap_t MayOverlap,
2167                          bool isVolatile = false);
2168 
2169   /// GetAddrOfLocalVar - Return the address of a local variable.
2170   Address GetAddrOfLocalVar(const VarDecl *VD) {
2171     auto it = LocalDeclMap.find(VD);
2172     assert(it != LocalDeclMap.end() &&
2173            "Invalid argument to GetAddrOfLocalVar(), no decl!");
2174     return it->second;
2175   }
2176 
2177   /// Given an opaque value expression, return its LValue mapping if it exists,
2178   /// otherwise create one.
2179   LValue getOrCreateOpaqueLValueMapping(const OpaqueValueExpr *e);
2180 
2181   /// Given an opaque value expression, return its RValue mapping if it exists,
2182   /// otherwise create one.
2183   RValue getOrCreateOpaqueRValueMapping(const OpaqueValueExpr *e);
2184 
2185   /// Get the index of the current ArrayInitLoopExpr, if any.
2186   llvm::Value *getArrayInitIndex() { return ArrayInitIndex; }
2187 
2188   /// getAccessedFieldNo - Given an encoded value and a result number, return
2189   /// the input field number being accessed.
2190   static unsigned getAccessedFieldNo(unsigned Idx, const llvm::Constant *Elts);
2191 
2192   llvm::BlockAddress *GetAddrOfLabel(const LabelDecl *L);
2193   llvm::BasicBlock *GetIndirectGotoBlock();
2194 
2195   /// Check if \p E is a C++ "this" pointer wrapped in value-preserving casts.
2196   static bool IsWrappedCXXThis(const Expr *E);
2197 
2198   /// EmitNullInitialization - Generate code to set a value of the given type to
2199   /// null, If the type contains data member pointers, they will be initialized
2200   /// to -1 in accordance with the Itanium C++ ABI.
2201   void EmitNullInitialization(Address DestPtr, QualType Ty);
2202 
2203   /// Emits a call to an LLVM variable-argument intrinsic, either
2204   /// \c llvm.va_start or \c llvm.va_end.
2205   /// \param ArgValue A reference to the \c va_list as emitted by either
2206   /// \c EmitVAListRef or \c EmitMSVAListRef.
2207   /// \param IsStart If \c true, emits a call to \c llvm.va_start; otherwise,
2208   /// calls \c llvm.va_end.
2209   llvm::Value *EmitVAStartEnd(llvm::Value *ArgValue, bool IsStart);
2210 
2211   /// Generate code to get an argument from the passed in pointer
2212   /// and update it accordingly.
2213   /// \param VE The \c VAArgExpr for which to generate code.
2214   /// \param VAListAddr Receives a reference to the \c va_list as emitted by
2215   /// either \c EmitVAListRef or \c EmitMSVAListRef.
2216   /// \returns A pointer to the argument.
2217   // FIXME: We should be able to get rid of this method and use the va_arg
2218   // instruction in LLVM instead once it works well enough.
2219   Address EmitVAArg(VAArgExpr *VE, Address &VAListAddr);
2220 
2221   /// emitArrayLength - Compute the length of an array, even if it's a
2222   /// VLA, and drill down to the base element type.
2223   llvm::Value *emitArrayLength(const ArrayType *arrayType,
2224                                QualType &baseType,
2225                                Address &addr);
2226 
2227   /// EmitVLASize - Capture all the sizes for the VLA expressions in
2228   /// the given variably-modified type and store them in the VLASizeMap.
2229   ///
2230   /// This function can be called with a null (unreachable) insert point.
2231   void EmitVariablyModifiedType(QualType Ty);
2232 
2233   struct VlaSizePair {
2234     llvm::Value *NumElts;
2235     QualType Type;
2236 
2237     VlaSizePair(llvm::Value *NE, QualType T) : NumElts(NE), Type(T) {}
2238   };
2239 
2240   /// Return the number of elements for a single dimension
2241   /// for the given array type.
2242   VlaSizePair getVLAElements1D(const VariableArrayType *vla);
2243   VlaSizePair getVLAElements1D(QualType vla);
2244 
2245   /// Returns an LLVM value that corresponds to the size,
2246   /// in non-variably-sized elements, of a variable length array type,
2247   /// plus that largest non-variably-sized element type.  Assumes that
2248   /// the type has already been emitted with EmitVariablyModifiedType.
2249   VlaSizePair getVLASize(const VariableArrayType *vla);
2250   VlaSizePair getVLASize(QualType vla);
2251 
2252   /// LoadCXXThis - Load the value of 'this'. This function is only valid while
2253   /// generating code for an C++ member function.
2254   llvm::Value *LoadCXXThis() {
2255     assert(CXXThisValue && "no 'this' value for this function");
2256     return CXXThisValue;
2257   }
2258   Address LoadCXXThisAddress();
2259 
2260   /// LoadCXXVTT - Load the VTT parameter to base constructors/destructors have
2261   /// virtual bases.
2262   // FIXME: Every place that calls LoadCXXVTT is something
2263   // that needs to be abstracted properly.
2264   llvm::Value *LoadCXXVTT() {
2265     assert(CXXStructorImplicitParamValue && "no VTT value for this function");
2266     return CXXStructorImplicitParamValue;
2267   }
2268 
2269   /// GetAddressOfBaseOfCompleteClass - Convert the given pointer to a
2270   /// complete class to the given direct base.
2271   Address
2272   GetAddressOfDirectBaseInCompleteClass(Address Value,
2273                                         const CXXRecordDecl *Derived,
2274                                         const CXXRecordDecl *Base,
2275                                         bool BaseIsVirtual);
2276 
2277   static bool ShouldNullCheckClassCastValue(const CastExpr *Cast);
2278 
2279   /// GetAddressOfBaseClass - This function will add the necessary delta to the
2280   /// load of 'this' and returns address of the base class.
2281   Address GetAddressOfBaseClass(Address Value,
2282                                 const CXXRecordDecl *Derived,
2283                                 CastExpr::path_const_iterator PathBegin,
2284                                 CastExpr::path_const_iterator PathEnd,
2285                                 bool NullCheckValue, SourceLocation Loc);
2286 
2287   Address GetAddressOfDerivedClass(Address Value,
2288                                    const CXXRecordDecl *Derived,
2289                                    CastExpr::path_const_iterator PathBegin,
2290                                    CastExpr::path_const_iterator PathEnd,
2291                                    bool NullCheckValue);
2292 
2293   /// GetVTTParameter - Return the VTT parameter that should be passed to a
2294   /// base constructor/destructor with virtual bases.
2295   /// FIXME: VTTs are Itanium ABI-specific, so the definition should move
2296   /// to ItaniumCXXABI.cpp together with all the references to VTT.
2297   llvm::Value *GetVTTParameter(GlobalDecl GD, bool ForVirtualBase,
2298                                bool Delegating);
2299 
2300   void EmitDelegateCXXConstructorCall(const CXXConstructorDecl *Ctor,
2301                                       CXXCtorType CtorType,
2302                                       const FunctionArgList &Args,
2303                                       SourceLocation Loc);
2304   // It's important not to confuse this and the previous function. Delegating
2305   // constructors are the C++0x feature. The constructor delegate optimization
2306   // is used to reduce duplication in the base and complete consturctors where
2307   // they are substantially the same.
2308   void EmitDelegatingCXXConstructorCall(const CXXConstructorDecl *Ctor,
2309                                         const FunctionArgList &Args);
2310 
2311   /// Emit a call to an inheriting constructor (that is, one that invokes a
2312   /// constructor inherited from a base class) by inlining its definition. This
2313   /// is necessary if the ABI does not support forwarding the arguments to the
2314   /// base class constructor (because they're variadic or similar).
2315   void EmitInlinedInheritingCXXConstructorCall(const CXXConstructorDecl *Ctor,
2316                                                CXXCtorType CtorType,
2317                                                bool ForVirtualBase,
2318                                                bool Delegating,
2319                                                CallArgList &Args);
2320 
2321   /// Emit a call to a constructor inherited from a base class, passing the
2322   /// current constructor's arguments along unmodified (without even making
2323   /// a copy).
2324   void EmitInheritedCXXConstructorCall(const CXXConstructorDecl *D,
2325                                        bool ForVirtualBase, Address This,
2326                                        bool InheritedFromVBase,
2327                                        const CXXInheritedCtorInitExpr *E);
2328 
2329   void EmitCXXConstructorCall(const CXXConstructorDecl *D, CXXCtorType Type,
2330                               bool ForVirtualBase, bool Delegating,
2331                               Address This, const CXXConstructExpr *E,
2332                               AggValueSlot::Overlap_t Overlap);
2333 
2334   void EmitCXXConstructorCall(const CXXConstructorDecl *D, CXXCtorType Type,
2335                               bool ForVirtualBase, bool Delegating,
2336                               Address This, CallArgList &Args,
2337                               AggValueSlot::Overlap_t Overlap);
2338 
2339   /// Emit assumption load for all bases. Requires to be be called only on
2340   /// most-derived class and not under construction of the object.
2341   void EmitVTableAssumptionLoads(const CXXRecordDecl *ClassDecl, Address This);
2342 
2343   /// Emit assumption that vptr load == global vtable.
2344   void EmitVTableAssumptionLoad(const VPtr &vptr, Address This);
2345 
2346   void EmitSynthesizedCXXCopyCtorCall(const CXXConstructorDecl *D,
2347                                       Address This, Address Src,
2348                                       const CXXConstructExpr *E);
2349 
2350   void EmitCXXAggrConstructorCall(const CXXConstructorDecl *D,
2351                                   const ArrayType *ArrayTy,
2352                                   Address ArrayPtr,
2353                                   const CXXConstructExpr *E,
2354                                   bool ZeroInitialization = false);
2355 
2356   void EmitCXXAggrConstructorCall(const CXXConstructorDecl *D,
2357                                   llvm::Value *NumElements,
2358                                   Address ArrayPtr,
2359                                   const CXXConstructExpr *E,
2360                                   bool ZeroInitialization = false);
2361 
2362   static Destroyer destroyCXXObject;
2363 
2364   void EmitCXXDestructorCall(const CXXDestructorDecl *D, CXXDtorType Type,
2365                              bool ForVirtualBase, bool Delegating,
2366                              Address This);
2367 
2368   void EmitNewArrayInitializer(const CXXNewExpr *E, QualType elementType,
2369                                llvm::Type *ElementTy, Address NewPtr,
2370                                llvm::Value *NumElements,
2371                                llvm::Value *AllocSizeWithoutCookie);
2372 
2373   void EmitCXXTemporary(const CXXTemporary *Temporary, QualType TempType,
2374                         Address Ptr);
2375 
2376   llvm::Value *EmitLifetimeStart(uint64_t Size, llvm::Value *Addr);
2377   void EmitLifetimeEnd(llvm::Value *Size, llvm::Value *Addr);
2378 
2379   llvm::Value *EmitCXXNewExpr(const CXXNewExpr *E);
2380   void EmitCXXDeleteExpr(const CXXDeleteExpr *E);
2381 
2382   void EmitDeleteCall(const FunctionDecl *DeleteFD, llvm::Value *Ptr,
2383                       QualType DeleteTy, llvm::Value *NumElements = nullptr,
2384                       CharUnits CookieSize = CharUnits());
2385 
2386   RValue EmitBuiltinNewDeleteCall(const FunctionProtoType *Type,
2387                                   const CallExpr *TheCallExpr, bool IsDelete);
2388 
2389   llvm::Value *EmitCXXTypeidExpr(const CXXTypeidExpr *E);
2390   llvm::Value *EmitDynamicCast(Address V, const CXXDynamicCastExpr *DCE);
2391   Address EmitCXXUuidofExpr(const CXXUuidofExpr *E);
2392 
2393   /// \brief Situations in which we might emit a check for the suitability of a
2394   ///        pointer or glvalue.
2395   enum TypeCheckKind {
2396     /// Checking the operand of a load. Must be suitably sized and aligned.
2397     TCK_Load,
2398     /// Checking the destination of a store. Must be suitably sized and aligned.
2399     TCK_Store,
2400     /// Checking the bound value in a reference binding. Must be suitably sized
2401     /// and aligned, but is not required to refer to an object (until the
2402     /// reference is used), per core issue 453.
2403     TCK_ReferenceBinding,
2404     /// Checking the object expression in a non-static data member access. Must
2405     /// be an object within its lifetime.
2406     TCK_MemberAccess,
2407     /// Checking the 'this' pointer for a call to a non-static member function.
2408     /// Must be an object within its lifetime.
2409     TCK_MemberCall,
2410     /// Checking the 'this' pointer for a constructor call.
2411     TCK_ConstructorCall,
2412     /// Checking the operand of a static_cast to a derived pointer type. Must be
2413     /// null or an object within its lifetime.
2414     TCK_DowncastPointer,
2415     /// Checking the operand of a static_cast to a derived reference type. Must
2416     /// be an object within its lifetime.
2417     TCK_DowncastReference,
2418     /// Checking the operand of a cast to a base object. Must be suitably sized
2419     /// and aligned.
2420     TCK_Upcast,
2421     /// Checking the operand of a cast to a virtual base object. Must be an
2422     /// object within its lifetime.
2423     TCK_UpcastToVirtualBase,
2424     /// Checking the value assigned to a _Nonnull pointer. Must not be null.
2425     TCK_NonnullAssign,
2426     /// Checking the operand of a dynamic_cast or a typeid expression.  Must be
2427     /// null or an object within its lifetime.
2428     TCK_DynamicOperation
2429   };
2430 
2431   /// Determine whether the pointer type check \p TCK permits null pointers.
2432   static bool isNullPointerAllowed(TypeCheckKind TCK);
2433 
2434   /// Determine whether the pointer type check \p TCK requires a vptr check.
2435   static bool isVptrCheckRequired(TypeCheckKind TCK, QualType Ty);
2436 
2437   /// \brief Whether any type-checking sanitizers are enabled. If \c false,
2438   /// calls to EmitTypeCheck can be skipped.
2439   bool sanitizePerformTypeCheck() const;
2440 
2441   /// \brief Emit a check that \p V is the address of storage of the
2442   /// appropriate size and alignment for an object of type \p Type.
2443   void EmitTypeCheck(TypeCheckKind TCK, SourceLocation Loc, llvm::Value *V,
2444                      QualType Type, CharUnits Alignment = CharUnits::Zero(),
2445                      SanitizerSet SkippedChecks = SanitizerSet());
2446 
2447   /// \brief Emit a check that \p Base points into an array object, which
2448   /// we can access at index \p Index. \p Accessed should be \c false if we
2449   /// this expression is used as an lvalue, for instance in "&Arr[Idx]".
2450   void EmitBoundsCheck(const Expr *E, const Expr *Base, llvm::Value *Index,
2451                        QualType IndexType, bool Accessed);
2452 
2453   llvm::Value *EmitScalarPrePostIncDec(const UnaryOperator *E, LValue LV,
2454                                        bool isInc, bool isPre);
2455   ComplexPairTy EmitComplexPrePostIncDec(const UnaryOperator *E, LValue LV,
2456                                          bool isInc, bool isPre);
2457 
2458   void EmitAlignmentAssumption(llvm::Value *PtrValue, unsigned Alignment,
2459                                llvm::Value *OffsetValue = nullptr) {
2460     Builder.CreateAlignmentAssumption(CGM.getDataLayout(), PtrValue, Alignment,
2461                                       OffsetValue);
2462   }
2463 
2464   /// Converts Location to a DebugLoc, if debug information is enabled.
2465   llvm::DebugLoc SourceLocToDebugLoc(SourceLocation Location);
2466 
2467 
2468   //===--------------------------------------------------------------------===//
2469   //                            Declaration Emission
2470   //===--------------------------------------------------------------------===//
2471 
2472   /// EmitDecl - Emit a declaration.
2473   ///
2474   /// This function can be called with a null (unreachable) insert point.
2475   void EmitDecl(const Decl &D);
2476 
2477   /// EmitVarDecl - Emit a local variable declaration.
2478   ///
2479   /// This function can be called with a null (unreachable) insert point.
2480   void EmitVarDecl(const VarDecl &D);
2481 
2482   void EmitScalarInit(const Expr *init, const ValueDecl *D, LValue lvalue,
2483                       bool capturedByInit);
2484 
2485   typedef void SpecialInitFn(CodeGenFunction &Init, const VarDecl &D,
2486                              llvm::Value *Address);
2487 
2488   /// \brief Determine whether the given initializer is trivial in the sense
2489   /// that it requires no code to be generated.
2490   bool isTrivialInitializer(const Expr *Init);
2491 
2492   /// EmitAutoVarDecl - Emit an auto variable declaration.
2493   ///
2494   /// This function can be called with a null (unreachable) insert point.
2495   void EmitAutoVarDecl(const VarDecl &D);
2496 
2497   class AutoVarEmission {
2498     friend class CodeGenFunction;
2499 
2500     const VarDecl *Variable;
2501 
2502     /// The address of the alloca.  Invalid if the variable was emitted
2503     /// as a global constant.
2504     Address Addr;
2505 
2506     llvm::Value *NRVOFlag;
2507 
2508     /// True if the variable is a __block variable.
2509     bool IsByRef;
2510 
2511     /// True if the variable is of aggregate type and has a constant
2512     /// initializer.
2513     bool IsConstantAggregate;
2514 
2515     /// Non-null if we should use lifetime annotations.
2516     llvm::Value *SizeForLifetimeMarkers;
2517 
2518     struct Invalid {};
2519     AutoVarEmission(Invalid) : Variable(nullptr), Addr(Address::invalid()) {}
2520 
2521     AutoVarEmission(const VarDecl &variable)
2522       : Variable(&variable), Addr(Address::invalid()), NRVOFlag(nullptr),
2523         IsByRef(false), IsConstantAggregate(false),
2524         SizeForLifetimeMarkers(nullptr) {}
2525 
2526     bool wasEmittedAsGlobal() const { return !Addr.isValid(); }
2527 
2528   public:
2529     static AutoVarEmission invalid() { return AutoVarEmission(Invalid()); }
2530 
2531     bool useLifetimeMarkers() const {
2532       return SizeForLifetimeMarkers != nullptr;
2533     }
2534     llvm::Value *getSizeForLifetimeMarkers() const {
2535       assert(useLifetimeMarkers());
2536       return SizeForLifetimeMarkers;
2537     }
2538 
2539     /// Returns the raw, allocated address, which is not necessarily
2540     /// the address of the object itself.
2541     Address getAllocatedAddress() const {
2542       return Addr;
2543     }
2544 
2545     /// Returns the address of the object within this declaration.
2546     /// Note that this does not chase the forwarding pointer for
2547     /// __block decls.
2548     Address getObjectAddress(CodeGenFunction &CGF) const {
2549       if (!IsByRef) return Addr;
2550 
2551       return CGF.emitBlockByrefAddress(Addr, Variable, /*forward*/ false);
2552     }
2553   };
2554   AutoVarEmission EmitAutoVarAlloca(const VarDecl &var);
2555   void EmitAutoVarInit(const AutoVarEmission &emission);
2556   void EmitAutoVarCleanups(const AutoVarEmission &emission);
2557   void emitAutoVarTypeCleanup(const AutoVarEmission &emission,
2558                               QualType::DestructionKind dtorKind);
2559 
2560   /// Emits the alloca and debug information for the size expressions for each
2561   /// dimension of an array. It registers the association of its (1-dimensional)
2562   /// QualTypes and size expression's debug node, so that CGDebugInfo can
2563   /// reference this node when creating the DISubrange object to describe the
2564   /// array types.
2565   void EmitAndRegisterVariableArrayDimensions(CGDebugInfo *DI,
2566                                               const VarDecl &D,
2567                                               bool EmitDebugInfo);
2568 
2569   void EmitStaticVarDecl(const VarDecl &D,
2570                          llvm::GlobalValue::LinkageTypes Linkage);
2571 
2572   class ParamValue {
2573     llvm::Value *Value;
2574     unsigned Alignment;
2575     ParamValue(llvm::Value *V, unsigned A) : Value(V), Alignment(A) {}
2576   public:
2577     static ParamValue forDirect(llvm::Value *value) {
2578       return ParamValue(value, 0);
2579     }
2580     static ParamValue forIndirect(Address addr) {
2581       assert(!addr.getAlignment().isZero());
2582       return ParamValue(addr.getPointer(), addr.getAlignment().getQuantity());
2583     }
2584 
2585     bool isIndirect() const { return Alignment != 0; }
2586     llvm::Value *getAnyValue() const { return Value; }
2587 
2588     llvm::Value *getDirectValue() const {
2589       assert(!isIndirect());
2590       return Value;
2591     }
2592 
2593     Address getIndirectAddress() const {
2594       assert(isIndirect());
2595       return Address(Value, CharUnits::fromQuantity(Alignment));
2596     }
2597   };
2598 
2599   /// EmitParmDecl - Emit a ParmVarDecl or an ImplicitParamDecl.
2600   void EmitParmDecl(const VarDecl &D, ParamValue Arg, unsigned ArgNo);
2601 
2602   /// protectFromPeepholes - Protect a value that we're intending to
2603   /// store to the side, but which will probably be used later, from
2604   /// aggressive peepholing optimizations that might delete it.
2605   ///
2606   /// Pass the result to unprotectFromPeepholes to declare that
2607   /// protection is no longer required.
2608   ///
2609   /// There's no particular reason why this shouldn't apply to
2610   /// l-values, it's just that no existing peepholes work on pointers.
2611   PeepholeProtection protectFromPeepholes(RValue rvalue);
2612   void unprotectFromPeepholes(PeepholeProtection protection);
2613 
2614   void EmitAlignmentAssumption(llvm::Value *PtrValue, llvm::Value *Alignment,
2615                                llvm::Value *OffsetValue = nullptr) {
2616     Builder.CreateAlignmentAssumption(CGM.getDataLayout(), PtrValue, Alignment,
2617                                       OffsetValue);
2618   }
2619 
2620   //===--------------------------------------------------------------------===//
2621   //                             Statement Emission
2622   //===--------------------------------------------------------------------===//
2623 
2624   /// EmitStopPoint - Emit a debug stoppoint if we are emitting debug info.
2625   void EmitStopPoint(const Stmt *S);
2626 
2627   /// EmitStmt - Emit the code for the statement \arg S. It is legal to call
2628   /// this function even if there is no current insertion point.
2629   ///
2630   /// This function may clear the current insertion point; callers should use
2631   /// EnsureInsertPoint if they wish to subsequently generate code without first
2632   /// calling EmitBlock, EmitBranch, or EmitStmt.
2633   void EmitStmt(const Stmt *S, ArrayRef<const Attr *> Attrs = None);
2634 
2635   /// EmitSimpleStmt - Try to emit a "simple" statement which does not
2636   /// necessarily require an insertion point or debug information; typically
2637   /// because the statement amounts to a jump or a container of other
2638   /// statements.
2639   ///
2640   /// \return True if the statement was handled.
2641   bool EmitSimpleStmt(const Stmt *S);
2642 
2643   Address EmitCompoundStmt(const CompoundStmt &S, bool GetLast = false,
2644                            AggValueSlot AVS = AggValueSlot::ignored());
2645   Address EmitCompoundStmtWithoutScope(const CompoundStmt &S,
2646                                        bool GetLast = false,
2647                                        AggValueSlot AVS =
2648                                                 AggValueSlot::ignored());
2649 
2650   /// EmitLabel - Emit the block for the given label. It is legal to call this
2651   /// function even if there is no current insertion point.
2652   void EmitLabel(const LabelDecl *D); // helper for EmitLabelStmt.
2653 
2654   void EmitLabelStmt(const LabelStmt &S);
2655   void EmitAttributedStmt(const AttributedStmt &S);
2656   void EmitGotoStmt(const GotoStmt &S);
2657   void EmitIndirectGotoStmt(const IndirectGotoStmt &S);
2658   void EmitIfStmt(const IfStmt &S);
2659 
2660   void EmitWhileStmt(const WhileStmt &S,
2661                      ArrayRef<const Attr *> Attrs = None);
2662   void EmitDoStmt(const DoStmt &S, ArrayRef<const Attr *> Attrs = None);
2663   void EmitForStmt(const ForStmt &S,
2664                    ArrayRef<const Attr *> Attrs = None);
2665   void EmitReturnStmt(const ReturnStmt &S);
2666   void EmitDeclStmt(const DeclStmt &S);
2667   void EmitBreakStmt(const BreakStmt &S);
2668   void EmitContinueStmt(const ContinueStmt &S);
2669   void EmitSwitchStmt(const SwitchStmt &S);
2670   void EmitDefaultStmt(const DefaultStmt &S);
2671   void EmitCaseStmt(const CaseStmt &S);
2672   void EmitCaseStmtRange(const CaseStmt &S);
2673   void EmitAsmStmt(const AsmStmt &S);
2674 
2675   void EmitObjCForCollectionStmt(const ObjCForCollectionStmt &S);
2676   void EmitObjCAtTryStmt(const ObjCAtTryStmt &S);
2677   void EmitObjCAtThrowStmt(const ObjCAtThrowStmt &S);
2678   void EmitObjCAtSynchronizedStmt(const ObjCAtSynchronizedStmt &S);
2679   void EmitObjCAutoreleasePoolStmt(const ObjCAutoreleasePoolStmt &S);
2680 
2681   void EmitCoroutineBody(const CoroutineBodyStmt &S);
2682   void EmitCoreturnStmt(const CoreturnStmt &S);
2683   RValue EmitCoawaitExpr(const CoawaitExpr &E,
2684                          AggValueSlot aggSlot = AggValueSlot::ignored(),
2685                          bool ignoreResult = false);
2686   LValue EmitCoawaitLValue(const CoawaitExpr *E);
2687   RValue EmitCoyieldExpr(const CoyieldExpr &E,
2688                          AggValueSlot aggSlot = AggValueSlot::ignored(),
2689                          bool ignoreResult = false);
2690   LValue EmitCoyieldLValue(const CoyieldExpr *E);
2691   RValue EmitCoroutineIntrinsic(const CallExpr *E, unsigned int IID);
2692 
2693   void EnterCXXTryStmt(const CXXTryStmt &S, bool IsFnTryBlock = false);
2694   void ExitCXXTryStmt(const CXXTryStmt &S, bool IsFnTryBlock = false);
2695 
2696   void EmitCXXTryStmt(const CXXTryStmt &S);
2697   void EmitSEHTryStmt(const SEHTryStmt &S);
2698   void EmitSEHLeaveStmt(const SEHLeaveStmt &S);
2699   void EnterSEHTryStmt(const SEHTryStmt &S);
2700   void ExitSEHTryStmt(const SEHTryStmt &S);
2701 
2702   void startOutlinedSEHHelper(CodeGenFunction &ParentCGF, bool IsFilter,
2703                               const Stmt *OutlinedStmt);
2704 
2705   llvm::Function *GenerateSEHFilterFunction(CodeGenFunction &ParentCGF,
2706                                             const SEHExceptStmt &Except);
2707 
2708   llvm::Function *GenerateSEHFinallyFunction(CodeGenFunction &ParentCGF,
2709                                              const SEHFinallyStmt &Finally);
2710 
2711   void EmitSEHExceptionCodeSave(CodeGenFunction &ParentCGF,
2712                                 llvm::Value *ParentFP,
2713                                 llvm::Value *EntryEBP);
2714   llvm::Value *EmitSEHExceptionCode();
2715   llvm::Value *EmitSEHExceptionInfo();
2716   llvm::Value *EmitSEHAbnormalTermination();
2717 
2718   /// Emit simple code for OpenMP directives in Simd-only mode.
2719   void EmitSimpleOMPExecutableDirective(const OMPExecutableDirective &D);
2720 
2721   /// Scan the outlined statement for captures from the parent function. For
2722   /// each capture, mark the capture as escaped and emit a call to
2723   /// llvm.localrecover. Insert the localrecover result into the LocalDeclMap.
2724   void EmitCapturedLocals(CodeGenFunction &ParentCGF, const Stmt *OutlinedStmt,
2725                           bool IsFilter);
2726 
2727   /// Recovers the address of a local in a parent function. ParentVar is the
2728   /// address of the variable used in the immediate parent function. It can
2729   /// either be an alloca or a call to llvm.localrecover if there are nested
2730   /// outlined functions. ParentFP is the frame pointer of the outermost parent
2731   /// frame.
2732   Address recoverAddrOfEscapedLocal(CodeGenFunction &ParentCGF,
2733                                     Address ParentVar,
2734                                     llvm::Value *ParentFP);
2735 
2736   void EmitCXXForRangeStmt(const CXXForRangeStmt &S,
2737                            ArrayRef<const Attr *> Attrs = None);
2738 
2739   /// Controls insertion of cancellation exit blocks in worksharing constructs.
2740   class OMPCancelStackRAII {
2741     CodeGenFunction &CGF;
2742 
2743   public:
2744     OMPCancelStackRAII(CodeGenFunction &CGF, OpenMPDirectiveKind Kind,
2745                        bool HasCancel)
2746         : CGF(CGF) {
2747       CGF.OMPCancelStack.enter(CGF, Kind, HasCancel);
2748     }
2749     ~OMPCancelStackRAII() { CGF.OMPCancelStack.exit(CGF); }
2750   };
2751 
2752   /// Returns calculated size of the specified type.
2753   llvm::Value *getTypeSize(QualType Ty);
2754   LValue InitCapturedStruct(const CapturedStmt &S);
2755   llvm::Function *EmitCapturedStmt(const CapturedStmt &S, CapturedRegionKind K);
2756   llvm::Function *GenerateCapturedStmtFunction(const CapturedStmt &S);
2757   Address GenerateCapturedStmtArgument(const CapturedStmt &S);
2758   llvm::Function *GenerateOpenMPCapturedStmtFunction(const CapturedStmt &S);
2759   void GenerateOpenMPCapturedVars(const CapturedStmt &S,
2760                                   SmallVectorImpl<llvm::Value *> &CapturedVars);
2761   void emitOMPSimpleStore(LValue LVal, RValue RVal, QualType RValTy,
2762                           SourceLocation Loc);
2763   /// \brief Perform element by element copying of arrays with type \a
2764   /// OriginalType from \a SrcAddr to \a DestAddr using copying procedure
2765   /// generated by \a CopyGen.
2766   ///
2767   /// \param DestAddr Address of the destination array.
2768   /// \param SrcAddr Address of the source array.
2769   /// \param OriginalType Type of destination and source arrays.
2770   /// \param CopyGen Copying procedure that copies value of single array element
2771   /// to another single array element.
2772   void EmitOMPAggregateAssign(
2773       Address DestAddr, Address SrcAddr, QualType OriginalType,
2774       const llvm::function_ref<void(Address, Address)> &CopyGen);
2775   /// \brief Emit proper copying of data from one variable to another.
2776   ///
2777   /// \param OriginalType Original type of the copied variables.
2778   /// \param DestAddr Destination address.
2779   /// \param SrcAddr Source address.
2780   /// \param DestVD Destination variable used in \a CopyExpr (for arrays, has
2781   /// type of the base array element).
2782   /// \param SrcVD Source variable used in \a CopyExpr (for arrays, has type of
2783   /// the base array element).
2784   /// \param Copy Actual copygin expression for copying data from \a SrcVD to \a
2785   /// DestVD.
2786   void EmitOMPCopy(QualType OriginalType,
2787                    Address DestAddr, Address SrcAddr,
2788                    const VarDecl *DestVD, const VarDecl *SrcVD,
2789                    const Expr *Copy);
2790   /// \brief Emit atomic update code for constructs: \a X = \a X \a BO \a E or
2791   /// \a X = \a E \a BO \a E.
2792   ///
2793   /// \param X Value to be updated.
2794   /// \param E Update value.
2795   /// \param BO Binary operation for update operation.
2796   /// \param IsXLHSInRHSPart true if \a X is LHS in RHS part of the update
2797   /// expression, false otherwise.
2798   /// \param AO Atomic ordering of the generated atomic instructions.
2799   /// \param CommonGen Code generator for complex expressions that cannot be
2800   /// expressed through atomicrmw instruction.
2801   /// \returns <true, OldAtomicValue> if simple 'atomicrmw' instruction was
2802   /// generated, <false, RValue::get(nullptr)> otherwise.
2803   std::pair<bool, RValue> EmitOMPAtomicSimpleUpdateExpr(
2804       LValue X, RValue E, BinaryOperatorKind BO, bool IsXLHSInRHSPart,
2805       llvm::AtomicOrdering AO, SourceLocation Loc,
2806       const llvm::function_ref<RValue(RValue)> &CommonGen);
2807   bool EmitOMPFirstprivateClause(const OMPExecutableDirective &D,
2808                                  OMPPrivateScope &PrivateScope);
2809   void EmitOMPPrivateClause(const OMPExecutableDirective &D,
2810                             OMPPrivateScope &PrivateScope);
2811   void EmitOMPUseDevicePtrClause(
2812       const OMPClause &C, OMPPrivateScope &PrivateScope,
2813       const llvm::DenseMap<const ValueDecl *, Address> &CaptureDeviceAddrMap);
2814   /// \brief Emit code for copyin clause in \a D directive. The next code is
2815   /// generated at the start of outlined functions for directives:
2816   /// \code
2817   /// threadprivate_var1 = master_threadprivate_var1;
2818   /// operator=(threadprivate_var2, master_threadprivate_var2);
2819   /// ...
2820   /// __kmpc_barrier(&loc, global_tid);
2821   /// \endcode
2822   ///
2823   /// \param D OpenMP directive possibly with 'copyin' clause(s).
2824   /// \returns true if at least one copyin variable is found, false otherwise.
2825   bool EmitOMPCopyinClause(const OMPExecutableDirective &D);
2826   /// \brief Emit initial code for lastprivate variables. If some variable is
2827   /// not also firstprivate, then the default initialization is used. Otherwise
2828   /// initialization of this variable is performed by EmitOMPFirstprivateClause
2829   /// method.
2830   ///
2831   /// \param D Directive that may have 'lastprivate' directives.
2832   /// \param PrivateScope Private scope for capturing lastprivate variables for
2833   /// proper codegen in internal captured statement.
2834   ///
2835   /// \returns true if there is at least one lastprivate variable, false
2836   /// otherwise.
2837   bool EmitOMPLastprivateClauseInit(const OMPExecutableDirective &D,
2838                                     OMPPrivateScope &PrivateScope);
2839   /// \brief Emit final copying of lastprivate values to original variables at
2840   /// the end of the worksharing or simd directive.
2841   ///
2842   /// \param D Directive that has at least one 'lastprivate' directives.
2843   /// \param IsLastIterCond Boolean condition that must be set to 'i1 true' if
2844   /// it is the last iteration of the loop code in associated directive, or to
2845   /// 'i1 false' otherwise. If this item is nullptr, no final check is required.
2846   void EmitOMPLastprivateClauseFinal(const OMPExecutableDirective &D,
2847                                      bool NoFinals,
2848                                      llvm::Value *IsLastIterCond = nullptr);
2849   /// Emit initial code for linear clauses.
2850   void EmitOMPLinearClause(const OMPLoopDirective &D,
2851                            CodeGenFunction::OMPPrivateScope &PrivateScope);
2852   /// Emit final code for linear clauses.
2853   /// \param CondGen Optional conditional code for final part of codegen for
2854   /// linear clause.
2855   void EmitOMPLinearClauseFinal(
2856       const OMPLoopDirective &D,
2857       const llvm::function_ref<llvm::Value *(CodeGenFunction &)> &CondGen);
2858   /// \brief Emit initial code for reduction variables. Creates reduction copies
2859   /// and initializes them with the values according to OpenMP standard.
2860   ///
2861   /// \param D Directive (possibly) with the 'reduction' clause.
2862   /// \param PrivateScope Private scope for capturing reduction variables for
2863   /// proper codegen in internal captured statement.
2864   ///
2865   void EmitOMPReductionClauseInit(const OMPExecutableDirective &D,
2866                                   OMPPrivateScope &PrivateScope);
2867   /// \brief Emit final update of reduction values to original variables at
2868   /// the end of the directive.
2869   ///
2870   /// \param D Directive that has at least one 'reduction' directives.
2871   /// \param ReductionKind The kind of reduction to perform.
2872   void EmitOMPReductionClauseFinal(const OMPExecutableDirective &D,
2873                                    const OpenMPDirectiveKind ReductionKind);
2874   /// \brief Emit initial code for linear variables. Creates private copies
2875   /// and initializes them with the values according to OpenMP standard.
2876   ///
2877   /// \param D Directive (possibly) with the 'linear' clause.
2878   /// \return true if at least one linear variable is found that should be
2879   /// initialized with the value of the original variable, false otherwise.
2880   bool EmitOMPLinearClauseInit(const OMPLoopDirective &D);
2881 
2882   typedef const llvm::function_ref<void(CodeGenFunction & /*CGF*/,
2883                                         llvm::Value * /*OutlinedFn*/,
2884                                         const OMPTaskDataTy & /*Data*/)>
2885       TaskGenTy;
2886   void EmitOMPTaskBasedDirective(const OMPExecutableDirective &S,
2887                                  const OpenMPDirectiveKind CapturedRegion,
2888                                  const RegionCodeGenTy &BodyGen,
2889                                  const TaskGenTy &TaskGen, OMPTaskDataTy &Data);
2890   struct OMPTargetDataInfo {
2891     Address BasePointersArray = Address::invalid();
2892     Address PointersArray = Address::invalid();
2893     Address SizesArray = Address::invalid();
2894     unsigned NumberOfTargetItems = 0;
2895     explicit OMPTargetDataInfo() = default;
2896     OMPTargetDataInfo(Address BasePointersArray, Address PointersArray,
2897                       Address SizesArray, unsigned NumberOfTargetItems)
2898         : BasePointersArray(BasePointersArray), PointersArray(PointersArray),
2899           SizesArray(SizesArray), NumberOfTargetItems(NumberOfTargetItems) {}
2900   };
2901   void EmitOMPTargetTaskBasedDirective(const OMPExecutableDirective &S,
2902                                        const RegionCodeGenTy &BodyGen,
2903                                        OMPTargetDataInfo &InputInfo);
2904 
2905   void EmitOMPParallelDirective(const OMPParallelDirective &S);
2906   void EmitOMPSimdDirective(const OMPSimdDirective &S);
2907   void EmitOMPForDirective(const OMPForDirective &S);
2908   void EmitOMPForSimdDirective(const OMPForSimdDirective &S);
2909   void EmitOMPSectionsDirective(const OMPSectionsDirective &S);
2910   void EmitOMPSectionDirective(const OMPSectionDirective &S);
2911   void EmitOMPSingleDirective(const OMPSingleDirective &S);
2912   void EmitOMPMasterDirective(const OMPMasterDirective &S);
2913   void EmitOMPCriticalDirective(const OMPCriticalDirective &S);
2914   void EmitOMPParallelForDirective(const OMPParallelForDirective &S);
2915   void EmitOMPParallelForSimdDirective(const OMPParallelForSimdDirective &S);
2916   void EmitOMPParallelSectionsDirective(const OMPParallelSectionsDirective &S);
2917   void EmitOMPTaskDirective(const OMPTaskDirective &S);
2918   void EmitOMPTaskyieldDirective(const OMPTaskyieldDirective &S);
2919   void EmitOMPBarrierDirective(const OMPBarrierDirective &S);
2920   void EmitOMPTaskwaitDirective(const OMPTaskwaitDirective &S);
2921   void EmitOMPTaskgroupDirective(const OMPTaskgroupDirective &S);
2922   void EmitOMPFlushDirective(const OMPFlushDirective &S);
2923   void EmitOMPOrderedDirective(const OMPOrderedDirective &S);
2924   void EmitOMPAtomicDirective(const OMPAtomicDirective &S);
2925   void EmitOMPTargetDirective(const OMPTargetDirective &S);
2926   void EmitOMPTargetDataDirective(const OMPTargetDataDirective &S);
2927   void EmitOMPTargetEnterDataDirective(const OMPTargetEnterDataDirective &S);
2928   void EmitOMPTargetExitDataDirective(const OMPTargetExitDataDirective &S);
2929   void EmitOMPTargetUpdateDirective(const OMPTargetUpdateDirective &S);
2930   void EmitOMPTargetParallelDirective(const OMPTargetParallelDirective &S);
2931   void
2932   EmitOMPTargetParallelForDirective(const OMPTargetParallelForDirective &S);
2933   void EmitOMPTeamsDirective(const OMPTeamsDirective &S);
2934   void
2935   EmitOMPCancellationPointDirective(const OMPCancellationPointDirective &S);
2936   void EmitOMPCancelDirective(const OMPCancelDirective &S);
2937   void EmitOMPTaskLoopBasedDirective(const OMPLoopDirective &S);
2938   void EmitOMPTaskLoopDirective(const OMPTaskLoopDirective &S);
2939   void EmitOMPTaskLoopSimdDirective(const OMPTaskLoopSimdDirective &S);
2940   void EmitOMPDistributeDirective(const OMPDistributeDirective &S);
2941   void EmitOMPDistributeParallelForDirective(
2942       const OMPDistributeParallelForDirective &S);
2943   void EmitOMPDistributeParallelForSimdDirective(
2944       const OMPDistributeParallelForSimdDirective &S);
2945   void EmitOMPDistributeSimdDirective(const OMPDistributeSimdDirective &S);
2946   void EmitOMPTargetParallelForSimdDirective(
2947       const OMPTargetParallelForSimdDirective &S);
2948   void EmitOMPTargetSimdDirective(const OMPTargetSimdDirective &S);
2949   void EmitOMPTeamsDistributeDirective(const OMPTeamsDistributeDirective &S);
2950   void
2951   EmitOMPTeamsDistributeSimdDirective(const OMPTeamsDistributeSimdDirective &S);
2952   void EmitOMPTeamsDistributeParallelForSimdDirective(
2953       const OMPTeamsDistributeParallelForSimdDirective &S);
2954   void EmitOMPTeamsDistributeParallelForDirective(
2955       const OMPTeamsDistributeParallelForDirective &S);
2956   void EmitOMPTargetTeamsDirective(const OMPTargetTeamsDirective &S);
2957   void EmitOMPTargetTeamsDistributeDirective(
2958       const OMPTargetTeamsDistributeDirective &S);
2959   void EmitOMPTargetTeamsDistributeParallelForDirective(
2960       const OMPTargetTeamsDistributeParallelForDirective &S);
2961   void EmitOMPTargetTeamsDistributeParallelForSimdDirective(
2962       const OMPTargetTeamsDistributeParallelForSimdDirective &S);
2963   void EmitOMPTargetTeamsDistributeSimdDirective(
2964       const OMPTargetTeamsDistributeSimdDirective &S);
2965 
2966   /// Emit device code for the target directive.
2967   static void EmitOMPTargetDeviceFunction(CodeGenModule &CGM,
2968                                           StringRef ParentName,
2969                                           const OMPTargetDirective &S);
2970   static void
2971   EmitOMPTargetParallelDeviceFunction(CodeGenModule &CGM, StringRef ParentName,
2972                                       const OMPTargetParallelDirective &S);
2973   /// Emit device code for the target parallel for directive.
2974   static void EmitOMPTargetParallelForDeviceFunction(
2975       CodeGenModule &CGM, StringRef ParentName,
2976       const OMPTargetParallelForDirective &S);
2977   /// Emit device code for the target parallel for simd directive.
2978   static void EmitOMPTargetParallelForSimdDeviceFunction(
2979       CodeGenModule &CGM, StringRef ParentName,
2980       const OMPTargetParallelForSimdDirective &S);
2981   /// Emit device code for the target teams directive.
2982   static void
2983   EmitOMPTargetTeamsDeviceFunction(CodeGenModule &CGM, StringRef ParentName,
2984                                    const OMPTargetTeamsDirective &S);
2985   /// Emit device code for the target teams distribute directive.
2986   static void EmitOMPTargetTeamsDistributeDeviceFunction(
2987       CodeGenModule &CGM, StringRef ParentName,
2988       const OMPTargetTeamsDistributeDirective &S);
2989   /// Emit device code for the target teams distribute simd directive.
2990   static void EmitOMPTargetTeamsDistributeSimdDeviceFunction(
2991       CodeGenModule &CGM, StringRef ParentName,
2992       const OMPTargetTeamsDistributeSimdDirective &S);
2993   /// Emit device code for the target simd directive.
2994   static void EmitOMPTargetSimdDeviceFunction(CodeGenModule &CGM,
2995                                               StringRef ParentName,
2996                                               const OMPTargetSimdDirective &S);
2997   /// Emit device code for the target teams distribute parallel for simd
2998   /// directive.
2999   static void EmitOMPTargetTeamsDistributeParallelForSimdDeviceFunction(
3000       CodeGenModule &CGM, StringRef ParentName,
3001       const OMPTargetTeamsDistributeParallelForSimdDirective &S);
3002 
3003   static void EmitOMPTargetTeamsDistributeParallelForDeviceFunction(
3004       CodeGenModule &CGM, StringRef ParentName,
3005       const OMPTargetTeamsDistributeParallelForDirective &S);
3006   /// \brief Emit inner loop of the worksharing/simd construct.
3007   ///
3008   /// \param S Directive, for which the inner loop must be emitted.
3009   /// \param RequiresCleanup true, if directive has some associated private
3010   /// variables.
3011   /// \param LoopCond Bollean condition for loop continuation.
3012   /// \param IncExpr Increment expression for loop control variable.
3013   /// \param BodyGen Generator for the inner body of the inner loop.
3014   /// \param PostIncGen Genrator for post-increment code (required for ordered
3015   /// loop directvies).
3016   void EmitOMPInnerLoop(
3017       const Stmt &S, bool RequiresCleanup, const Expr *LoopCond,
3018       const Expr *IncExpr,
3019       const llvm::function_ref<void(CodeGenFunction &)> &BodyGen,
3020       const llvm::function_ref<void(CodeGenFunction &)> &PostIncGen);
3021 
3022   JumpDest getOMPCancelDestination(OpenMPDirectiveKind Kind);
3023   /// Emit initial code for loop counters of loop-based directives.
3024   void EmitOMPPrivateLoopCounters(const OMPLoopDirective &S,
3025                                   OMPPrivateScope &LoopScope);
3026 
3027   /// Helper for the OpenMP loop directives.
3028   void EmitOMPLoopBody(const OMPLoopDirective &D, JumpDest LoopExit);
3029 
3030   /// \brief Emit code for the worksharing loop-based directive.
3031   /// \return true, if this construct has any lastprivate clause, false -
3032   /// otherwise.
3033   bool EmitOMPWorksharingLoop(const OMPLoopDirective &S, Expr *EUB,
3034                               const CodeGenLoopBoundsTy &CodeGenLoopBounds,
3035                               const CodeGenDispatchBoundsTy &CGDispatchBounds);
3036 
3037   /// Emit code for the distribute loop-based directive.
3038   void EmitOMPDistributeLoop(const OMPLoopDirective &S,
3039                              const CodeGenLoopTy &CodeGenLoop, Expr *IncExpr);
3040 
3041   /// Helpers for the OpenMP loop directives.
3042   void EmitOMPSimdInit(const OMPLoopDirective &D, bool IsMonotonic = false);
3043   void EmitOMPSimdFinal(
3044       const OMPLoopDirective &D,
3045       const llvm::function_ref<llvm::Value *(CodeGenFunction &)> &CondGen);
3046 
3047   /// Emits the lvalue for the expression with possibly captured variable.
3048   LValue EmitOMPSharedLValue(const Expr *E);
3049 
3050 private:
3051   /// Helpers for blocks.
3052   llvm::Value *EmitBlockLiteral(const CGBlockInfo &Info);
3053 
3054   /// struct with the values to be passed to the OpenMP loop-related functions
3055   struct OMPLoopArguments {
3056     /// loop lower bound
3057     Address LB = Address::invalid();
3058     /// loop upper bound
3059     Address UB = Address::invalid();
3060     /// loop stride
3061     Address ST = Address::invalid();
3062     /// isLastIteration argument for runtime functions
3063     Address IL = Address::invalid();
3064     /// Chunk value generated by sema
3065     llvm::Value *Chunk = nullptr;
3066     /// EnsureUpperBound
3067     Expr *EUB = nullptr;
3068     /// IncrementExpression
3069     Expr *IncExpr = nullptr;
3070     /// Loop initialization
3071     Expr *Init = nullptr;
3072     /// Loop exit condition
3073     Expr *Cond = nullptr;
3074     /// Update of LB after a whole chunk has been executed
3075     Expr *NextLB = nullptr;
3076     /// Update of UB after a whole chunk has been executed
3077     Expr *NextUB = nullptr;
3078     OMPLoopArguments() = default;
3079     OMPLoopArguments(Address LB, Address UB, Address ST, Address IL,
3080                      llvm::Value *Chunk = nullptr, Expr *EUB = nullptr,
3081                      Expr *IncExpr = nullptr, Expr *Init = nullptr,
3082                      Expr *Cond = nullptr, Expr *NextLB = nullptr,
3083                      Expr *NextUB = nullptr)
3084         : LB(LB), UB(UB), ST(ST), IL(IL), Chunk(Chunk), EUB(EUB),
3085           IncExpr(IncExpr), Init(Init), Cond(Cond), NextLB(NextLB),
3086           NextUB(NextUB) {}
3087   };
3088   void EmitOMPOuterLoop(bool DynamicOrOrdered, bool IsMonotonic,
3089                         const OMPLoopDirective &S, OMPPrivateScope &LoopScope,
3090                         const OMPLoopArguments &LoopArgs,
3091                         const CodeGenLoopTy &CodeGenLoop,
3092                         const CodeGenOrderedTy &CodeGenOrdered);
3093   void EmitOMPForOuterLoop(const OpenMPScheduleTy &ScheduleKind,
3094                            bool IsMonotonic, const OMPLoopDirective &S,
3095                            OMPPrivateScope &LoopScope, bool Ordered,
3096                            const OMPLoopArguments &LoopArgs,
3097                            const CodeGenDispatchBoundsTy &CGDispatchBounds);
3098   void EmitOMPDistributeOuterLoop(OpenMPDistScheduleClauseKind ScheduleKind,
3099                                   const OMPLoopDirective &S,
3100                                   OMPPrivateScope &LoopScope,
3101                                   const OMPLoopArguments &LoopArgs,
3102                                   const CodeGenLoopTy &CodeGenLoopContent);
3103   /// \brief Emit code for sections directive.
3104   void EmitSections(const OMPExecutableDirective &S);
3105 
3106 public:
3107 
3108   //===--------------------------------------------------------------------===//
3109   //                         LValue Expression Emission
3110   //===--------------------------------------------------------------------===//
3111 
3112   /// GetUndefRValue - Get an appropriate 'undef' rvalue for the given type.
3113   RValue GetUndefRValue(QualType Ty);
3114 
3115   /// EmitUnsupportedRValue - Emit a dummy r-value using the type of E
3116   /// and issue an ErrorUnsupported style diagnostic (using the
3117   /// provided Name).
3118   RValue EmitUnsupportedRValue(const Expr *E,
3119                                const char *Name);
3120 
3121   /// EmitUnsupportedLValue - Emit a dummy l-value using the type of E and issue
3122   /// an ErrorUnsupported style diagnostic (using the provided Name).
3123   LValue EmitUnsupportedLValue(const Expr *E,
3124                                const char *Name);
3125 
3126   /// EmitLValue - Emit code to compute a designator that specifies the location
3127   /// of the expression.
3128   ///
3129   /// This can return one of two things: a simple address or a bitfield
3130   /// reference.  In either case, the LLVM Value* in the LValue structure is
3131   /// guaranteed to be an LLVM pointer type.
3132   ///
3133   /// If this returns a bitfield reference, nothing about the pointee type of
3134   /// the LLVM value is known: For example, it may not be a pointer to an
3135   /// integer.
3136   ///
3137   /// If this returns a normal address, and if the lvalue's C type is fixed
3138   /// size, this method guarantees that the returned pointer type will point to
3139   /// an LLVM type of the same size of the lvalue's type.  If the lvalue has a
3140   /// variable length type, this is not possible.
3141   ///
3142   LValue EmitLValue(const Expr *E);
3143 
3144   /// \brief Same as EmitLValue but additionally we generate checking code to
3145   /// guard against undefined behavior.  This is only suitable when we know
3146   /// that the address will be used to access the object.
3147   LValue EmitCheckedLValue(const Expr *E, TypeCheckKind TCK);
3148 
3149   RValue convertTempToRValue(Address addr, QualType type,
3150                              SourceLocation Loc);
3151 
3152   void EmitAtomicInit(Expr *E, LValue lvalue);
3153 
3154   bool LValueIsSuitableForInlineAtomic(LValue Src);
3155 
3156   RValue EmitAtomicLoad(LValue LV, SourceLocation SL,
3157                         AggValueSlot Slot = AggValueSlot::ignored());
3158 
3159   RValue EmitAtomicLoad(LValue lvalue, SourceLocation loc,
3160                         llvm::AtomicOrdering AO, bool IsVolatile = false,
3161                         AggValueSlot slot = AggValueSlot::ignored());
3162 
3163   void EmitAtomicStore(RValue rvalue, LValue lvalue, bool isInit);
3164 
3165   void EmitAtomicStore(RValue rvalue, LValue lvalue, llvm::AtomicOrdering AO,
3166                        bool IsVolatile, bool isInit);
3167 
3168   std::pair<RValue, llvm::Value *> EmitAtomicCompareExchange(
3169       LValue Obj, RValue Expected, RValue Desired, SourceLocation Loc,
3170       llvm::AtomicOrdering Success =
3171           llvm::AtomicOrdering::SequentiallyConsistent,
3172       llvm::AtomicOrdering Failure =
3173           llvm::AtomicOrdering::SequentiallyConsistent,
3174       bool IsWeak = false, AggValueSlot Slot = AggValueSlot::ignored());
3175 
3176   void EmitAtomicUpdate(LValue LVal, llvm::AtomicOrdering AO,
3177                         const llvm::function_ref<RValue(RValue)> &UpdateOp,
3178                         bool IsVolatile);
3179 
3180   /// EmitToMemory - Change a scalar value from its value
3181   /// representation to its in-memory representation.
3182   llvm::Value *EmitToMemory(llvm::Value *Value, QualType Ty);
3183 
3184   /// EmitFromMemory - Change a scalar value from its memory
3185   /// representation to its value representation.
3186   llvm::Value *EmitFromMemory(llvm::Value *Value, QualType Ty);
3187 
3188   /// Check if the scalar \p Value is within the valid range for the given
3189   /// type \p Ty.
3190   ///
3191   /// Returns true if a check is needed (even if the range is unknown).
3192   bool EmitScalarRangeCheck(llvm::Value *Value, QualType Ty,
3193                             SourceLocation Loc);
3194 
3195   /// EmitLoadOfScalar - Load a scalar value from an address, taking
3196   /// care to appropriately convert from the memory representation to
3197   /// the LLVM value representation.
3198   llvm::Value *EmitLoadOfScalar(Address Addr, bool Volatile, QualType Ty,
3199                                 SourceLocation Loc,
3200                                 AlignmentSource Source = AlignmentSource::Type,
3201                                 bool isNontemporal = false) {
3202     return EmitLoadOfScalar(Addr, Volatile, Ty, Loc, LValueBaseInfo(Source),
3203                             CGM.getTBAAAccessInfo(Ty), isNontemporal);
3204   }
3205 
3206   llvm::Value *EmitLoadOfScalar(Address Addr, bool Volatile, QualType Ty,
3207                                 SourceLocation Loc, LValueBaseInfo BaseInfo,
3208                                 TBAAAccessInfo TBAAInfo,
3209                                 bool isNontemporal = false);
3210 
3211   /// EmitLoadOfScalar - Load a scalar value from an address, taking
3212   /// care to appropriately convert from the memory representation to
3213   /// the LLVM value representation.  The l-value must be a simple
3214   /// l-value.
3215   llvm::Value *EmitLoadOfScalar(LValue lvalue, SourceLocation Loc);
3216 
3217   /// EmitStoreOfScalar - Store a scalar value to an address, taking
3218   /// care to appropriately convert from the memory representation to
3219   /// the LLVM value representation.
3220   void EmitStoreOfScalar(llvm::Value *Value, Address Addr,
3221                          bool Volatile, QualType Ty,
3222                          AlignmentSource Source = AlignmentSource::Type,
3223                          bool isInit = false, bool isNontemporal = false) {
3224     EmitStoreOfScalar(Value, Addr, Volatile, Ty, LValueBaseInfo(Source),
3225                       CGM.getTBAAAccessInfo(Ty), isInit, isNontemporal);
3226   }
3227 
3228   void EmitStoreOfScalar(llvm::Value *Value, Address Addr,
3229                          bool Volatile, QualType Ty,
3230                          LValueBaseInfo BaseInfo, TBAAAccessInfo TBAAInfo,
3231                          bool isInit = false, bool isNontemporal = false);
3232 
3233   /// EmitStoreOfScalar - Store a scalar value to an address, taking
3234   /// care to appropriately convert from the memory representation to
3235   /// the LLVM value representation.  The l-value must be a simple
3236   /// l-value.  The isInit flag indicates whether this is an initialization.
3237   /// If so, atomic qualifiers are ignored and the store is always non-atomic.
3238   void EmitStoreOfScalar(llvm::Value *value, LValue lvalue, bool isInit=false);
3239 
3240   /// EmitLoadOfLValue - Given an expression that represents a value lvalue,
3241   /// this method emits the address of the lvalue, then loads the result as an
3242   /// rvalue, returning the rvalue.
3243   RValue EmitLoadOfLValue(LValue V, SourceLocation Loc);
3244   RValue EmitLoadOfExtVectorElementLValue(LValue V);
3245   RValue EmitLoadOfBitfieldLValue(LValue LV, SourceLocation Loc);
3246   RValue EmitLoadOfGlobalRegLValue(LValue LV);
3247 
3248   /// EmitStoreThroughLValue - Store the specified rvalue into the specified
3249   /// lvalue, where both are guaranteed to the have the same type, and that type
3250   /// is 'Ty'.
3251   void EmitStoreThroughLValue(RValue Src, LValue Dst, bool isInit = false);
3252   void EmitStoreThroughExtVectorComponentLValue(RValue Src, LValue Dst);
3253   void EmitStoreThroughGlobalRegLValue(RValue Src, LValue Dst);
3254 
3255   /// EmitStoreThroughBitfieldLValue - Store Src into Dst with same constraints
3256   /// as EmitStoreThroughLValue.
3257   ///
3258   /// \param Result [out] - If non-null, this will be set to a Value* for the
3259   /// bit-field contents after the store, appropriate for use as the result of
3260   /// an assignment to the bit-field.
3261   void EmitStoreThroughBitfieldLValue(RValue Src, LValue Dst,
3262                                       llvm::Value **Result=nullptr);
3263 
3264   /// Emit an l-value for an assignment (simple or compound) of complex type.
3265   LValue EmitComplexAssignmentLValue(const BinaryOperator *E);
3266   LValue EmitComplexCompoundAssignmentLValue(const CompoundAssignOperator *E);
3267   LValue EmitScalarCompoundAssignWithComplex(const CompoundAssignOperator *E,
3268                                              llvm::Value *&Result);
3269 
3270   // Note: only available for agg return types
3271   LValue EmitBinaryOperatorLValue(const BinaryOperator *E);
3272   LValue EmitCompoundAssignmentLValue(const CompoundAssignOperator *E);
3273   // Note: only available for agg return types
3274   LValue EmitCallExprLValue(const CallExpr *E);
3275   // Note: only available for agg return types
3276   LValue EmitVAArgExprLValue(const VAArgExpr *E);
3277   LValue EmitDeclRefLValue(const DeclRefExpr *E);
3278   LValue EmitStringLiteralLValue(const StringLiteral *E);
3279   LValue EmitObjCEncodeExprLValue(const ObjCEncodeExpr *E);
3280   LValue EmitPredefinedLValue(const PredefinedExpr *E);
3281   LValue EmitUnaryOpLValue(const UnaryOperator *E);
3282   LValue EmitArraySubscriptExpr(const ArraySubscriptExpr *E,
3283                                 bool Accessed = false);
3284   LValue EmitOMPArraySectionExpr(const OMPArraySectionExpr *E,
3285                                  bool IsLowerBound = true);
3286   LValue EmitExtVectorElementExpr(const ExtVectorElementExpr *E);
3287   LValue EmitMemberExpr(const MemberExpr *E);
3288   LValue EmitObjCIsaExpr(const ObjCIsaExpr *E);
3289   LValue EmitCompoundLiteralLValue(const CompoundLiteralExpr *E);
3290   LValue EmitInitListLValue(const InitListExpr *E);
3291   LValue EmitConditionalOperatorLValue(const AbstractConditionalOperator *E);
3292   LValue EmitCastLValue(const CastExpr *E);
3293   LValue EmitMaterializeTemporaryExpr(const MaterializeTemporaryExpr *E);
3294   LValue EmitOpaqueValueLValue(const OpaqueValueExpr *e);
3295 
3296   Address EmitExtVectorElementLValue(LValue V);
3297 
3298   RValue EmitRValueForField(LValue LV, const FieldDecl *FD, SourceLocation Loc);
3299 
3300   Address EmitArrayToPointerDecay(const Expr *Array,
3301                                   LValueBaseInfo *BaseInfo = nullptr,
3302                                   TBAAAccessInfo *TBAAInfo = nullptr);
3303 
3304   class ConstantEmission {
3305     llvm::PointerIntPair<llvm::Constant*, 1, bool> ValueAndIsReference;
3306     ConstantEmission(llvm::Constant *C, bool isReference)
3307       : ValueAndIsReference(C, isReference) {}
3308   public:
3309     ConstantEmission() {}
3310     static ConstantEmission forReference(llvm::Constant *C) {
3311       return ConstantEmission(C, true);
3312     }
3313     static ConstantEmission forValue(llvm::Constant *C) {
3314       return ConstantEmission(C, false);
3315     }
3316 
3317     explicit operator bool() const {
3318       return ValueAndIsReference.getOpaqueValue() != nullptr;
3319     }
3320 
3321     bool isReference() const { return ValueAndIsReference.getInt(); }
3322     LValue getReferenceLValue(CodeGenFunction &CGF, Expr *refExpr) const {
3323       assert(isReference());
3324       return CGF.MakeNaturalAlignAddrLValue(ValueAndIsReference.getPointer(),
3325                                             refExpr->getType());
3326     }
3327 
3328     llvm::Constant *getValue() const {
3329       assert(!isReference());
3330       return ValueAndIsReference.getPointer();
3331     }
3332   };
3333 
3334   ConstantEmission tryEmitAsConstant(DeclRefExpr *refExpr);
3335   ConstantEmission tryEmitAsConstant(const MemberExpr *ME);
3336 
3337   RValue EmitPseudoObjectRValue(const PseudoObjectExpr *e,
3338                                 AggValueSlot slot = AggValueSlot::ignored());
3339   LValue EmitPseudoObjectLValue(const PseudoObjectExpr *e);
3340 
3341   llvm::Value *EmitIvarOffset(const ObjCInterfaceDecl *Interface,
3342                               const ObjCIvarDecl *Ivar);
3343   LValue EmitLValueForField(LValue Base, const FieldDecl* Field);
3344   LValue EmitLValueForLambdaField(const FieldDecl *Field);
3345 
3346   /// EmitLValueForFieldInitialization - Like EmitLValueForField, except that
3347   /// if the Field is a reference, this will return the address of the reference
3348   /// and not the address of the value stored in the reference.
3349   LValue EmitLValueForFieldInitialization(LValue Base,
3350                                           const FieldDecl* Field);
3351 
3352   LValue EmitLValueForIvar(QualType ObjectTy,
3353                            llvm::Value* Base, const ObjCIvarDecl *Ivar,
3354                            unsigned CVRQualifiers);
3355 
3356   LValue EmitCXXConstructLValue(const CXXConstructExpr *E);
3357   LValue EmitCXXBindTemporaryLValue(const CXXBindTemporaryExpr *E);
3358   LValue EmitLambdaLValue(const LambdaExpr *E);
3359   LValue EmitCXXTypeidLValue(const CXXTypeidExpr *E);
3360   LValue EmitCXXUuidofLValue(const CXXUuidofExpr *E);
3361 
3362   LValue EmitObjCMessageExprLValue(const ObjCMessageExpr *E);
3363   LValue EmitObjCIvarRefLValue(const ObjCIvarRefExpr *E);
3364   LValue EmitStmtExprLValue(const StmtExpr *E);
3365   LValue EmitPointerToDataMemberBinaryExpr(const BinaryOperator *E);
3366   LValue EmitObjCSelectorLValue(const ObjCSelectorExpr *E);
3367   void   EmitDeclRefExprDbgValue(const DeclRefExpr *E, const APValue &Init);
3368 
3369   //===--------------------------------------------------------------------===//
3370   //                         Scalar Expression Emission
3371   //===--------------------------------------------------------------------===//
3372 
3373   /// EmitCall - Generate a call of the given function, expecting the given
3374   /// result type, and using the given argument list which specifies both the
3375   /// LLVM arguments and the types they were derived from.
3376   RValue EmitCall(const CGFunctionInfo &CallInfo, const CGCallee &Callee,
3377                   ReturnValueSlot ReturnValue, const CallArgList &Args,
3378                   llvm::Instruction **callOrInvoke, SourceLocation Loc);
3379   RValue EmitCall(const CGFunctionInfo &CallInfo, const CGCallee &Callee,
3380                   ReturnValueSlot ReturnValue, const CallArgList &Args,
3381                   llvm::Instruction **callOrInvoke = nullptr) {
3382     return EmitCall(CallInfo, Callee, ReturnValue, Args, callOrInvoke,
3383                     SourceLocation());
3384   }
3385   RValue EmitCall(QualType FnType, const CGCallee &Callee, const CallExpr *E,
3386                   ReturnValueSlot ReturnValue, llvm::Value *Chain = nullptr);
3387   RValue EmitCallExpr(const CallExpr *E,
3388                       ReturnValueSlot ReturnValue = ReturnValueSlot());
3389   RValue EmitSimpleCallExpr(const CallExpr *E, ReturnValueSlot ReturnValue);
3390   CGCallee EmitCallee(const Expr *E);
3391 
3392   void checkTargetFeatures(const CallExpr *E, const FunctionDecl *TargetDecl);
3393 
3394   llvm::CallInst *EmitRuntimeCall(llvm::Value *callee,
3395                                   const Twine &name = "");
3396   llvm::CallInst *EmitRuntimeCall(llvm::Value *callee,
3397                                   ArrayRef<llvm::Value*> args,
3398                                   const Twine &name = "");
3399   llvm::CallInst *EmitNounwindRuntimeCall(llvm::Value *callee,
3400                                           const Twine &name = "");
3401   llvm::CallInst *EmitNounwindRuntimeCall(llvm::Value *callee,
3402                                           ArrayRef<llvm::Value*> args,
3403                                           const Twine &name = "");
3404 
3405   SmallVector<llvm::OperandBundleDef, 1>
3406   getBundlesForFunclet(llvm::Value *Callee);
3407 
3408   llvm::CallSite EmitCallOrInvoke(llvm::Value *Callee,
3409                                   ArrayRef<llvm::Value *> Args,
3410                                   const Twine &Name = "");
3411   llvm::CallSite EmitRuntimeCallOrInvoke(llvm::Value *callee,
3412                                          ArrayRef<llvm::Value*> args,
3413                                          const Twine &name = "");
3414   llvm::CallSite EmitRuntimeCallOrInvoke(llvm::Value *callee,
3415                                          const Twine &name = "");
3416   void EmitNoreturnRuntimeCallOrInvoke(llvm::Value *callee,
3417                                        ArrayRef<llvm::Value*> args);
3418 
3419   CGCallee BuildAppleKextVirtualCall(const CXXMethodDecl *MD,
3420                                      NestedNameSpecifier *Qual,
3421                                      llvm::Type *Ty);
3422 
3423   CGCallee BuildAppleKextVirtualDestructorCall(const CXXDestructorDecl *DD,
3424                                                CXXDtorType Type,
3425                                                const CXXRecordDecl *RD);
3426 
3427   // These functions emit calls to the special functions of non-trivial C
3428   // structs.
3429   void defaultInitNonTrivialCStructVar(LValue Dst);
3430   void callCStructDefaultConstructor(LValue Dst);
3431   void callCStructDestructor(LValue Dst);
3432   void callCStructCopyConstructor(LValue Dst, LValue Src);
3433   void callCStructMoveConstructor(LValue Dst, LValue Src);
3434   void callCStructCopyAssignmentOperator(LValue Dst, LValue Src);
3435   void callCStructMoveAssignmentOperator(LValue Dst, LValue Src);
3436 
3437   RValue
3438   EmitCXXMemberOrOperatorCall(const CXXMethodDecl *Method,
3439                               const CGCallee &Callee,
3440                               ReturnValueSlot ReturnValue, llvm::Value *This,
3441                               llvm::Value *ImplicitParam,
3442                               QualType ImplicitParamTy, const CallExpr *E,
3443                               CallArgList *RtlArgs);
3444   RValue EmitCXXDestructorCall(const CXXDestructorDecl *DD,
3445                                const CGCallee &Callee,
3446                                llvm::Value *This, llvm::Value *ImplicitParam,
3447                                QualType ImplicitParamTy, const CallExpr *E,
3448                                StructorType Type);
3449   RValue EmitCXXMemberCallExpr(const CXXMemberCallExpr *E,
3450                                ReturnValueSlot ReturnValue);
3451   RValue EmitCXXMemberOrOperatorMemberCallExpr(const CallExpr *CE,
3452                                                const CXXMethodDecl *MD,
3453                                                ReturnValueSlot ReturnValue,
3454                                                bool HasQualifier,
3455                                                NestedNameSpecifier *Qualifier,
3456                                                bool IsArrow, const Expr *Base);
3457   // Compute the object pointer.
3458   Address EmitCXXMemberDataPointerAddress(const Expr *E, Address base,
3459                                           llvm::Value *memberPtr,
3460                                           const MemberPointerType *memberPtrType,
3461                                           LValueBaseInfo *BaseInfo = nullptr,
3462                                           TBAAAccessInfo *TBAAInfo = nullptr);
3463   RValue EmitCXXMemberPointerCallExpr(const CXXMemberCallExpr *E,
3464                                       ReturnValueSlot ReturnValue);
3465 
3466   RValue EmitCXXOperatorMemberCallExpr(const CXXOperatorCallExpr *E,
3467                                        const CXXMethodDecl *MD,
3468                                        ReturnValueSlot ReturnValue);
3469   RValue EmitCXXPseudoDestructorExpr(const CXXPseudoDestructorExpr *E);
3470 
3471   RValue EmitCUDAKernelCallExpr(const CUDAKernelCallExpr *E,
3472                                 ReturnValueSlot ReturnValue);
3473 
3474   RValue EmitNVPTXDevicePrintfCallExpr(const CallExpr *E,
3475                                        ReturnValueSlot ReturnValue);
3476 
3477   RValue EmitBuiltinExpr(const FunctionDecl *FD,
3478                          unsigned BuiltinID, const CallExpr *E,
3479                          ReturnValueSlot ReturnValue);
3480 
3481   /// Emit IR for __builtin_os_log_format.
3482   RValue emitBuiltinOSLogFormat(const CallExpr &E);
3483 
3484   llvm::Function *generateBuiltinOSLogHelperFunction(
3485       const analyze_os_log::OSLogBufferLayout &Layout,
3486       CharUnits BufferAlignment);
3487 
3488   RValue EmitBlockCallExpr(const CallExpr *E, ReturnValueSlot ReturnValue);
3489 
3490   /// EmitTargetBuiltinExpr - Emit the given builtin call. Returns 0 if the call
3491   /// is unhandled by the current target.
3492   llvm::Value *EmitTargetBuiltinExpr(unsigned BuiltinID, const CallExpr *E);
3493 
3494   llvm::Value *EmitAArch64CompareBuiltinExpr(llvm::Value *Op, llvm::Type *Ty,
3495                                              const llvm::CmpInst::Predicate Fp,
3496                                              const llvm::CmpInst::Predicate Ip,
3497                                              const llvm::Twine &Name = "");
3498   llvm::Value *EmitARMBuiltinExpr(unsigned BuiltinID, const CallExpr *E,
3499                                   llvm::Triple::ArchType Arch);
3500 
3501   llvm::Value *EmitCommonNeonBuiltinExpr(unsigned BuiltinID,
3502                                          unsigned LLVMIntrinsic,
3503                                          unsigned AltLLVMIntrinsic,
3504                                          const char *NameHint,
3505                                          unsigned Modifier,
3506                                          const CallExpr *E,
3507                                          SmallVectorImpl<llvm::Value *> &Ops,
3508                                          Address PtrOp0, Address PtrOp1,
3509                                          llvm::Triple::ArchType Arch);
3510   llvm::Function *LookupNeonLLVMIntrinsic(unsigned IntrinsicID,
3511                                           unsigned Modifier, llvm::Type *ArgTy,
3512                                           const CallExpr *E);
3513   llvm::Value *EmitNeonCall(llvm::Function *F,
3514                             SmallVectorImpl<llvm::Value*> &O,
3515                             const char *name,
3516                             unsigned shift = 0, bool rightshift = false);
3517   llvm::Value *EmitNeonSplat(llvm::Value *V, llvm::Constant *Idx);
3518   llvm::Value *EmitNeonShiftVector(llvm::Value *V, llvm::Type *Ty,
3519                                    bool negateForRightShift);
3520   llvm::Value *EmitNeonRShiftImm(llvm::Value *Vec, llvm::Value *Amt,
3521                                  llvm::Type *Ty, bool usgn, const char *name);
3522   llvm::Value *vectorWrapScalar16(llvm::Value *Op);
3523   llvm::Value *EmitAArch64BuiltinExpr(unsigned BuiltinID, const CallExpr *E,
3524                                       llvm::Triple::ArchType Arch);
3525 
3526   llvm::Value *BuildVector(ArrayRef<llvm::Value*> Ops);
3527   llvm::Value *EmitX86BuiltinExpr(unsigned BuiltinID, const CallExpr *E);
3528   llvm::Value *EmitPPCBuiltinExpr(unsigned BuiltinID, const CallExpr *E);
3529   llvm::Value *EmitAMDGPUBuiltinExpr(unsigned BuiltinID, const CallExpr *E);
3530   llvm::Value *EmitSystemZBuiltinExpr(unsigned BuiltinID, const CallExpr *E);
3531   llvm::Value *EmitNVPTXBuiltinExpr(unsigned BuiltinID, const CallExpr *E);
3532   llvm::Value *EmitWebAssemblyBuiltinExpr(unsigned BuiltinID,
3533                                           const CallExpr *E);
3534   llvm::Value *EmitHexagonBuiltinExpr(unsigned BuiltinID, const CallExpr *E);
3535 
3536 private:
3537   enum class MSVCIntrin;
3538 
3539 public:
3540   llvm::Value *EmitMSVCBuiltinExpr(MSVCIntrin BuiltinID, const CallExpr *E);
3541 
3542   llvm::Value *EmitBuiltinAvailable(ArrayRef<llvm::Value *> Args);
3543 
3544   llvm::Value *EmitObjCProtocolExpr(const ObjCProtocolExpr *E);
3545   llvm::Value *EmitObjCStringLiteral(const ObjCStringLiteral *E);
3546   llvm::Value *EmitObjCBoxedExpr(const ObjCBoxedExpr *E);
3547   llvm::Value *EmitObjCArrayLiteral(const ObjCArrayLiteral *E);
3548   llvm::Value *EmitObjCDictionaryLiteral(const ObjCDictionaryLiteral *E);
3549   llvm::Value *EmitObjCCollectionLiteral(const Expr *E,
3550                                 const ObjCMethodDecl *MethodWithObjects);
3551   llvm::Value *EmitObjCSelectorExpr(const ObjCSelectorExpr *E);
3552   RValue EmitObjCMessageExpr(const ObjCMessageExpr *E,
3553                              ReturnValueSlot Return = ReturnValueSlot());
3554 
3555   /// Retrieves the default cleanup kind for an ARC cleanup.
3556   /// Except under -fobjc-arc-eh, ARC cleanups are normal-only.
3557   CleanupKind getARCCleanupKind() {
3558     return CGM.getCodeGenOpts().ObjCAutoRefCountExceptions
3559              ? NormalAndEHCleanup : NormalCleanup;
3560   }
3561 
3562   // ARC primitives.
3563   void EmitARCInitWeak(Address addr, llvm::Value *value);
3564   void EmitARCDestroyWeak(Address addr);
3565   llvm::Value *EmitARCLoadWeak(Address addr);
3566   llvm::Value *EmitARCLoadWeakRetained(Address addr);
3567   llvm::Value *EmitARCStoreWeak(Address addr, llvm::Value *value, bool ignored);
3568   void emitARCCopyAssignWeak(QualType Ty, Address DstAddr, Address SrcAddr);
3569   void emitARCMoveAssignWeak(QualType Ty, Address DstAddr, Address SrcAddr);
3570   void EmitARCCopyWeak(Address dst, Address src);
3571   void EmitARCMoveWeak(Address dst, Address src);
3572   llvm::Value *EmitARCRetainAutorelease(QualType type, llvm::Value *value);
3573   llvm::Value *EmitARCRetainAutoreleaseNonBlock(llvm::Value *value);
3574   llvm::Value *EmitARCStoreStrong(LValue lvalue, llvm::Value *value,
3575                                   bool resultIgnored);
3576   llvm::Value *EmitARCStoreStrongCall(Address addr, llvm::Value *value,
3577                                       bool resultIgnored);
3578   llvm::Value *EmitARCRetain(QualType type, llvm::Value *value);
3579   llvm::Value *EmitARCRetainNonBlock(llvm::Value *value);
3580   llvm::Value *EmitARCRetainBlock(llvm::Value *value, bool mandatory);
3581   void EmitARCDestroyStrong(Address addr, ARCPreciseLifetime_t precise);
3582   void EmitARCRelease(llvm::Value *value, ARCPreciseLifetime_t precise);
3583   llvm::Value *EmitARCAutorelease(llvm::Value *value);
3584   llvm::Value *EmitARCAutoreleaseReturnValue(llvm::Value *value);
3585   llvm::Value *EmitARCRetainAutoreleaseReturnValue(llvm::Value *value);
3586   llvm::Value *EmitARCRetainAutoreleasedReturnValue(llvm::Value *value);
3587   llvm::Value *EmitARCUnsafeClaimAutoreleasedReturnValue(llvm::Value *value);
3588 
3589   std::pair<LValue,llvm::Value*>
3590   EmitARCStoreAutoreleasing(const BinaryOperator *e);
3591   std::pair<LValue,llvm::Value*>
3592   EmitARCStoreStrong(const BinaryOperator *e, bool ignored);
3593   std::pair<LValue,llvm::Value*>
3594   EmitARCStoreUnsafeUnretained(const BinaryOperator *e, bool ignored);
3595 
3596   llvm::Value *EmitObjCThrowOperand(const Expr *expr);
3597   llvm::Value *EmitObjCConsumeObject(QualType T, llvm::Value *Ptr);
3598   llvm::Value *EmitObjCExtendObjectLifetime(QualType T, llvm::Value *Ptr);
3599 
3600   llvm::Value *EmitARCExtendBlockObject(const Expr *expr);
3601   llvm::Value *EmitARCReclaimReturnedObject(const Expr *e,
3602                                             bool allowUnsafeClaim);
3603   llvm::Value *EmitARCRetainScalarExpr(const Expr *expr);
3604   llvm::Value *EmitARCRetainAutoreleaseScalarExpr(const Expr *expr);
3605   llvm::Value *EmitARCUnsafeUnretainedScalarExpr(const Expr *expr);
3606 
3607   void EmitARCIntrinsicUse(ArrayRef<llvm::Value*> values);
3608 
3609   static Destroyer destroyARCStrongImprecise;
3610   static Destroyer destroyARCStrongPrecise;
3611   static Destroyer destroyARCWeak;
3612   static Destroyer emitARCIntrinsicUse;
3613   static Destroyer destroyNonTrivialCStruct;
3614 
3615   void EmitObjCAutoreleasePoolPop(llvm::Value *Ptr);
3616   llvm::Value *EmitObjCAutoreleasePoolPush();
3617   llvm::Value *EmitObjCMRRAutoreleasePoolPush();
3618   void EmitObjCAutoreleasePoolCleanup(llvm::Value *Ptr);
3619   void EmitObjCMRRAutoreleasePoolPop(llvm::Value *Ptr);
3620 
3621   /// \brief Emits a reference binding to the passed in expression.
3622   RValue EmitReferenceBindingToExpr(const Expr *E);
3623 
3624   //===--------------------------------------------------------------------===//
3625   //                           Expression Emission
3626   //===--------------------------------------------------------------------===//
3627 
3628   // Expressions are broken into three classes: scalar, complex, aggregate.
3629 
3630   /// EmitScalarExpr - Emit the computation of the specified expression of LLVM
3631   /// scalar type, returning the result.
3632   llvm::Value *EmitScalarExpr(const Expr *E , bool IgnoreResultAssign = false);
3633 
3634   /// Emit a conversion from the specified type to the specified destination
3635   /// type, both of which are LLVM scalar types.
3636   llvm::Value *EmitScalarConversion(llvm::Value *Src, QualType SrcTy,
3637                                     QualType DstTy, SourceLocation Loc);
3638 
3639   /// Emit a conversion from the specified complex type to the specified
3640   /// destination type, where the destination type is an LLVM scalar type.
3641   llvm::Value *EmitComplexToScalarConversion(ComplexPairTy Src, QualType SrcTy,
3642                                              QualType DstTy,
3643                                              SourceLocation Loc);
3644 
3645   /// EmitAggExpr - Emit the computation of the specified expression
3646   /// of aggregate type.  The result is computed into the given slot,
3647   /// which may be null to indicate that the value is not needed.
3648   void EmitAggExpr(const Expr *E, AggValueSlot AS);
3649 
3650   /// EmitAggExprToLValue - Emit the computation of the specified expression of
3651   /// aggregate type into a temporary LValue.
3652   LValue EmitAggExprToLValue(const Expr *E);
3653 
3654   /// EmitExtendGCLifetime - Given a pointer to an Objective-C object,
3655   /// make sure it survives garbage collection until this point.
3656   void EmitExtendGCLifetime(llvm::Value *object);
3657 
3658   /// EmitComplexExpr - Emit the computation of the specified expression of
3659   /// complex type, returning the result.
3660   ComplexPairTy EmitComplexExpr(const Expr *E,
3661                                 bool IgnoreReal = false,
3662                                 bool IgnoreImag = false);
3663 
3664   /// EmitComplexExprIntoLValue - Emit the given expression of complex
3665   /// type and place its result into the specified l-value.
3666   void EmitComplexExprIntoLValue(const Expr *E, LValue dest, bool isInit);
3667 
3668   /// EmitStoreOfComplex - Store a complex number into the specified l-value.
3669   void EmitStoreOfComplex(ComplexPairTy V, LValue dest, bool isInit);
3670 
3671   /// EmitLoadOfComplex - Load a complex number from the specified l-value.
3672   ComplexPairTy EmitLoadOfComplex(LValue src, SourceLocation loc);
3673 
3674   Address emitAddrOfRealComponent(Address complex, QualType complexType);
3675   Address emitAddrOfImagComponent(Address complex, QualType complexType);
3676 
3677   /// AddInitializerToStaticVarDecl - Add the initializer for 'D' to the
3678   /// global variable that has already been created for it.  If the initializer
3679   /// has a different type than GV does, this may free GV and return a different
3680   /// one.  Otherwise it just returns GV.
3681   llvm::GlobalVariable *
3682   AddInitializerToStaticVarDecl(const VarDecl &D,
3683                                 llvm::GlobalVariable *GV);
3684 
3685 
3686   /// EmitCXXGlobalVarDeclInit - Create the initializer for a C++
3687   /// variable with global storage.
3688   void EmitCXXGlobalVarDeclInit(const VarDecl &D, llvm::Constant *DeclPtr,
3689                                 bool PerformInit);
3690 
3691   llvm::Constant *createAtExitStub(const VarDecl &VD, llvm::Constant *Dtor,
3692                                    llvm::Constant *Addr);
3693 
3694   /// Call atexit() with a function that passes the given argument to
3695   /// the given function.
3696   void registerGlobalDtorWithAtExit(const VarDecl &D, llvm::Constant *fn,
3697                                     llvm::Constant *addr);
3698 
3699   /// Emit code in this function to perform a guarded variable
3700   /// initialization.  Guarded initializations are used when it's not
3701   /// possible to prove that an initialization will be done exactly
3702   /// once, e.g. with a static local variable or a static data member
3703   /// of a class template.
3704   void EmitCXXGuardedInit(const VarDecl &D, llvm::GlobalVariable *DeclPtr,
3705                           bool PerformInit);
3706 
3707   enum class GuardKind { VariableGuard, TlsGuard };
3708 
3709   /// Emit a branch to select whether or not to perform guarded initialization.
3710   void EmitCXXGuardedInitBranch(llvm::Value *NeedsInit,
3711                                 llvm::BasicBlock *InitBlock,
3712                                 llvm::BasicBlock *NoInitBlock,
3713                                 GuardKind Kind, const VarDecl *D);
3714 
3715   /// GenerateCXXGlobalInitFunc - Generates code for initializing global
3716   /// variables.
3717   void GenerateCXXGlobalInitFunc(llvm::Function *Fn,
3718                                  ArrayRef<llvm::Function *> CXXThreadLocals,
3719                                  Address Guard = Address::invalid());
3720 
3721   /// GenerateCXXGlobalDtorsFunc - Generates code for destroying global
3722   /// variables.
3723   void GenerateCXXGlobalDtorsFunc(
3724       llvm::Function *Fn,
3725       const std::vector<std::pair<llvm::WeakTrackingVH, llvm::Constant *>>
3726           &DtorsAndObjects);
3727 
3728   void GenerateCXXGlobalVarDeclInitFunc(llvm::Function *Fn,
3729                                         const VarDecl *D,
3730                                         llvm::GlobalVariable *Addr,
3731                                         bool PerformInit);
3732 
3733   void EmitCXXConstructExpr(const CXXConstructExpr *E, AggValueSlot Dest);
3734 
3735   void EmitSynthesizedCXXCopyCtor(Address Dest, Address Src, const Expr *Exp);
3736 
3737   void enterFullExpression(const ExprWithCleanups *E) {
3738     if (E->getNumObjects() == 0) return;
3739     enterNonTrivialFullExpression(E);
3740   }
3741   void enterNonTrivialFullExpression(const ExprWithCleanups *E);
3742 
3743   void EmitCXXThrowExpr(const CXXThrowExpr *E, bool KeepInsertionPoint = true);
3744 
3745   void EmitLambdaExpr(const LambdaExpr *E, AggValueSlot Dest);
3746 
3747   RValue EmitAtomicExpr(AtomicExpr *E);
3748 
3749   //===--------------------------------------------------------------------===//
3750   //                         Annotations Emission
3751   //===--------------------------------------------------------------------===//
3752 
3753   /// Emit an annotation call (intrinsic or builtin).
3754   llvm::Value *EmitAnnotationCall(llvm::Value *AnnotationFn,
3755                                   llvm::Value *AnnotatedVal,
3756                                   StringRef AnnotationStr,
3757                                   SourceLocation Location);
3758 
3759   /// Emit local annotations for the local variable V, declared by D.
3760   void EmitVarAnnotations(const VarDecl *D, llvm::Value *V);
3761 
3762   /// Emit field annotations for the given field & value. Returns the
3763   /// annotation result.
3764   Address EmitFieldAnnotations(const FieldDecl *D, Address V);
3765 
3766   //===--------------------------------------------------------------------===//
3767   //                             Internal Helpers
3768   //===--------------------------------------------------------------------===//
3769 
3770   /// ContainsLabel - Return true if the statement contains a label in it.  If
3771   /// this statement is not executed normally, it not containing a label means
3772   /// that we can just remove the code.
3773   static bool ContainsLabel(const Stmt *S, bool IgnoreCaseStmts = false);
3774 
3775   /// containsBreak - Return true if the statement contains a break out of it.
3776   /// If the statement (recursively) contains a switch or loop with a break
3777   /// inside of it, this is fine.
3778   static bool containsBreak(const Stmt *S);
3779 
3780   /// Determine if the given statement might introduce a declaration into the
3781   /// current scope, by being a (possibly-labelled) DeclStmt.
3782   static bool mightAddDeclToScope(const Stmt *S);
3783 
3784   /// ConstantFoldsToSimpleInteger - If the specified expression does not fold
3785   /// to a constant, or if it does but contains a label, return false.  If it
3786   /// constant folds return true and set the boolean result in Result.
3787   bool ConstantFoldsToSimpleInteger(const Expr *Cond, bool &Result,
3788                                     bool AllowLabels = false);
3789 
3790   /// ConstantFoldsToSimpleInteger - If the specified expression does not fold
3791   /// to a constant, or if it does but contains a label, return false.  If it
3792   /// constant folds return true and set the folded value.
3793   bool ConstantFoldsToSimpleInteger(const Expr *Cond, llvm::APSInt &Result,
3794                                     bool AllowLabels = false);
3795 
3796   /// EmitBranchOnBoolExpr - Emit a branch on a boolean condition (e.g. for an
3797   /// if statement) to the specified blocks.  Based on the condition, this might
3798   /// try to simplify the codegen of the conditional based on the branch.
3799   /// TrueCount should be the number of times we expect the condition to
3800   /// evaluate to true based on PGO data.
3801   void EmitBranchOnBoolExpr(const Expr *Cond, llvm::BasicBlock *TrueBlock,
3802                             llvm::BasicBlock *FalseBlock, uint64_t TrueCount);
3803 
3804   /// Given an assignment `*LHS = RHS`, emit a test that checks if \p RHS is
3805   /// nonnull, if \p LHS is marked _Nonnull.
3806   void EmitNullabilityCheck(LValue LHS, llvm::Value *RHS, SourceLocation Loc);
3807 
3808   /// An enumeration which makes it easier to specify whether or not an
3809   /// operation is a subtraction.
3810   enum { NotSubtraction = false, IsSubtraction = true };
3811 
3812   /// Same as IRBuilder::CreateInBoundsGEP, but additionally emits a check to
3813   /// detect undefined behavior when the pointer overflow sanitizer is enabled.
3814   /// \p SignedIndices indicates whether any of the GEP indices are signed.
3815   /// \p IsSubtraction indicates whether the expression used to form the GEP
3816   /// is a subtraction.
3817   llvm::Value *EmitCheckedInBoundsGEP(llvm::Value *Ptr,
3818                                       ArrayRef<llvm::Value *> IdxList,
3819                                       bool SignedIndices,
3820                                       bool IsSubtraction,
3821                                       SourceLocation Loc,
3822                                       const Twine &Name = "");
3823 
3824   /// Specifies which type of sanitizer check to apply when handling a
3825   /// particular builtin.
3826   enum BuiltinCheckKind {
3827     BCK_CTZPassedZero,
3828     BCK_CLZPassedZero,
3829   };
3830 
3831   /// Emits an argument for a call to a builtin. If the builtin sanitizer is
3832   /// enabled, a runtime check specified by \p Kind is also emitted.
3833   llvm::Value *EmitCheckedArgForBuiltin(const Expr *E, BuiltinCheckKind Kind);
3834 
3835   /// \brief Emit a description of a type in a format suitable for passing to
3836   /// a runtime sanitizer handler.
3837   llvm::Constant *EmitCheckTypeDescriptor(QualType T);
3838 
3839   /// \brief Convert a value into a format suitable for passing to a runtime
3840   /// sanitizer handler.
3841   llvm::Value *EmitCheckValue(llvm::Value *V);
3842 
3843   /// \brief Emit a description of a source location in a format suitable for
3844   /// passing to a runtime sanitizer handler.
3845   llvm::Constant *EmitCheckSourceLocation(SourceLocation Loc);
3846 
3847   /// \brief Create a basic block that will call a handler function in a
3848   /// sanitizer runtime with the provided arguments, and create a conditional
3849   /// branch to it.
3850   void EmitCheck(ArrayRef<std::pair<llvm::Value *, SanitizerMask>> Checked,
3851                  SanitizerHandler Check, ArrayRef<llvm::Constant *> StaticArgs,
3852                  ArrayRef<llvm::Value *> DynamicArgs);
3853 
3854   /// \brief Emit a slow path cross-DSO CFI check which calls __cfi_slowpath
3855   /// if Cond if false.
3856   void EmitCfiSlowPathCheck(SanitizerMask Kind, llvm::Value *Cond,
3857                             llvm::ConstantInt *TypeId, llvm::Value *Ptr,
3858                             ArrayRef<llvm::Constant *> StaticArgs);
3859 
3860   /// Emit a reached-unreachable diagnostic if \p Loc is valid and runtime
3861   /// checking is enabled. Otherwise, just emit an unreachable instruction.
3862   void EmitUnreachable(SourceLocation Loc);
3863 
3864   /// \brief Create a basic block that will call the trap intrinsic, and emit a
3865   /// conditional branch to it, for the -ftrapv checks.
3866   void EmitTrapCheck(llvm::Value *Checked);
3867 
3868   /// \brief Emit a call to trap or debugtrap and attach function attribute
3869   /// "trap-func-name" if specified.
3870   llvm::CallInst *EmitTrapCall(llvm::Intrinsic::ID IntrID);
3871 
3872   /// \brief Emit a stub for the cross-DSO CFI check function.
3873   void EmitCfiCheckStub();
3874 
3875   /// \brief Emit a cross-DSO CFI failure handling function.
3876   void EmitCfiCheckFail();
3877 
3878   /// \brief Create a check for a function parameter that may potentially be
3879   /// declared as non-null.
3880   void EmitNonNullArgCheck(RValue RV, QualType ArgType, SourceLocation ArgLoc,
3881                            AbstractCallee AC, unsigned ParmNum);
3882 
3883   /// EmitCallArg - Emit a single call argument.
3884   void EmitCallArg(CallArgList &args, const Expr *E, QualType ArgType);
3885 
3886   /// EmitDelegateCallArg - We are performing a delegate call; that
3887   /// is, the current function is delegating to another one.  Produce
3888   /// a r-value suitable for passing the given parameter.
3889   void EmitDelegateCallArg(CallArgList &args, const VarDecl *param,
3890                            SourceLocation loc);
3891 
3892   /// SetFPAccuracy - Set the minimum required accuracy of the given floating
3893   /// point operation, expressed as the maximum relative error in ulp.
3894   void SetFPAccuracy(llvm::Value *Val, float Accuracy);
3895 
3896 private:
3897   llvm::MDNode *getRangeForLoadFromType(QualType Ty);
3898   void EmitReturnOfRValue(RValue RV, QualType Ty);
3899 
3900   void deferPlaceholderReplacement(llvm::Instruction *Old, llvm::Value *New);
3901 
3902   llvm::SmallVector<std::pair<llvm::Instruction *, llvm::Value *>, 4>
3903   DeferredReplacements;
3904 
3905   /// Set the address of a local variable.
3906   void setAddrOfLocalVar(const VarDecl *VD, Address Addr) {
3907     assert(!LocalDeclMap.count(VD) && "Decl already exists in LocalDeclMap!");
3908     LocalDeclMap.insert({VD, Addr});
3909   }
3910 
3911   /// ExpandTypeFromArgs - Reconstruct a structure of type \arg Ty
3912   /// from function arguments into \arg Dst. See ABIArgInfo::Expand.
3913   ///
3914   /// \param AI - The first function argument of the expansion.
3915   void ExpandTypeFromArgs(QualType Ty, LValue Dst,
3916                           SmallVectorImpl<llvm::Value *>::iterator &AI);
3917 
3918   /// ExpandTypeToArgs - Expand an CallArg \arg Arg, with the LLVM type for \arg
3919   /// Ty, into individual arguments on the provided vector \arg IRCallArgs,
3920   /// starting at index \arg IRCallArgPos. See ABIArgInfo::Expand.
3921   void ExpandTypeToArgs(QualType Ty, CallArg Arg, llvm::FunctionType *IRFuncTy,
3922                         SmallVectorImpl<llvm::Value *> &IRCallArgs,
3923                         unsigned &IRCallArgPos);
3924 
3925   llvm::Value* EmitAsmInput(const TargetInfo::ConstraintInfo &Info,
3926                             const Expr *InputExpr, std::string &ConstraintStr);
3927 
3928   llvm::Value* EmitAsmInputLValue(const TargetInfo::ConstraintInfo &Info,
3929                                   LValue InputValue, QualType InputType,
3930                                   std::string &ConstraintStr,
3931                                   SourceLocation Loc);
3932 
3933   /// \brief Attempts to statically evaluate the object size of E. If that
3934   /// fails, emits code to figure the size of E out for us. This is
3935   /// pass_object_size aware.
3936   ///
3937   /// If EmittedExpr is non-null, this will use that instead of re-emitting E.
3938   llvm::Value *evaluateOrEmitBuiltinObjectSize(const Expr *E, unsigned Type,
3939                                                llvm::IntegerType *ResType,
3940                                                llvm::Value *EmittedE);
3941 
3942   /// \brief Emits the size of E, as required by __builtin_object_size. This
3943   /// function is aware of pass_object_size parameters, and will act accordingly
3944   /// if E is a parameter with the pass_object_size attribute.
3945   llvm::Value *emitBuiltinObjectSize(const Expr *E, unsigned Type,
3946                                      llvm::IntegerType *ResType,
3947                                      llvm::Value *EmittedE);
3948 
3949 public:
3950 #ifndef NDEBUG
3951   // Determine whether the given argument is an Objective-C method
3952   // that may have type parameters in its signature.
3953   static bool isObjCMethodWithTypeParams(const ObjCMethodDecl *method) {
3954     const DeclContext *dc = method->getDeclContext();
3955     if (const ObjCInterfaceDecl *classDecl= dyn_cast<ObjCInterfaceDecl>(dc)) {
3956       return classDecl->getTypeParamListAsWritten();
3957     }
3958 
3959     if (const ObjCCategoryDecl *catDecl = dyn_cast<ObjCCategoryDecl>(dc)) {
3960       return catDecl->getTypeParamList();
3961     }
3962 
3963     return false;
3964   }
3965 
3966   template<typename T>
3967   static bool isObjCMethodWithTypeParams(const T *) { return false; }
3968 #endif
3969 
3970   enum class EvaluationOrder {
3971     ///! No language constraints on evaluation order.
3972     Default,
3973     ///! Language semantics require left-to-right evaluation.
3974     ForceLeftToRight,
3975     ///! Language semantics require right-to-left evaluation.
3976     ForceRightToLeft
3977   };
3978 
3979   /// EmitCallArgs - Emit call arguments for a function.
3980   template <typename T>
3981   void EmitCallArgs(CallArgList &Args, const T *CallArgTypeInfo,
3982                     llvm::iterator_range<CallExpr::const_arg_iterator> ArgRange,
3983                     AbstractCallee AC = AbstractCallee(),
3984                     unsigned ParamsToSkip = 0,
3985                     EvaluationOrder Order = EvaluationOrder::Default) {
3986     SmallVector<QualType, 16> ArgTypes;
3987     CallExpr::const_arg_iterator Arg = ArgRange.begin();
3988 
3989     assert((ParamsToSkip == 0 || CallArgTypeInfo) &&
3990            "Can't skip parameters if type info is not provided");
3991     if (CallArgTypeInfo) {
3992 #ifndef NDEBUG
3993       bool isGenericMethod = isObjCMethodWithTypeParams(CallArgTypeInfo);
3994 #endif
3995 
3996       // First, use the argument types that the type info knows about
3997       for (auto I = CallArgTypeInfo->param_type_begin() + ParamsToSkip,
3998                 E = CallArgTypeInfo->param_type_end();
3999            I != E; ++I, ++Arg) {
4000         assert(Arg != ArgRange.end() && "Running over edge of argument list!");
4001         assert((isGenericMethod ||
4002                 ((*I)->isVariablyModifiedType() ||
4003                  (*I).getNonReferenceType()->isObjCRetainableType() ||
4004                  getContext()
4005                          .getCanonicalType((*I).getNonReferenceType())
4006                          .getTypePtr() ==
4007                      getContext()
4008                          .getCanonicalType((*Arg)->getType())
4009                          .getTypePtr())) &&
4010                "type mismatch in call argument!");
4011         ArgTypes.push_back(*I);
4012       }
4013     }
4014 
4015     // Either we've emitted all the call args, or we have a call to variadic
4016     // function.
4017     assert((Arg == ArgRange.end() || !CallArgTypeInfo ||
4018             CallArgTypeInfo->isVariadic()) &&
4019            "Extra arguments in non-variadic function!");
4020 
4021     // If we still have any arguments, emit them using the type of the argument.
4022     for (auto *A : llvm::make_range(Arg, ArgRange.end()))
4023       ArgTypes.push_back(CallArgTypeInfo ? getVarArgType(A) : A->getType());
4024 
4025     EmitCallArgs(Args, ArgTypes, ArgRange, AC, ParamsToSkip, Order);
4026   }
4027 
4028   void EmitCallArgs(CallArgList &Args, ArrayRef<QualType> ArgTypes,
4029                     llvm::iterator_range<CallExpr::const_arg_iterator> ArgRange,
4030                     AbstractCallee AC = AbstractCallee(),
4031                     unsigned ParamsToSkip = 0,
4032                     EvaluationOrder Order = EvaluationOrder::Default);
4033 
4034   /// EmitPointerWithAlignment - Given an expression with a pointer type,
4035   /// emit the value and compute our best estimate of the alignment of the
4036   /// pointee.
4037   ///
4038   /// \param BaseInfo - If non-null, this will be initialized with
4039   /// information about the source of the alignment and the may-alias
4040   /// attribute.  Note that this function will conservatively fall back on
4041   /// the type when it doesn't recognize the expression and may-alias will
4042   /// be set to false.
4043   ///
4044   /// One reasonable way to use this information is when there's a language
4045   /// guarantee that the pointer must be aligned to some stricter value, and
4046   /// we're simply trying to ensure that sufficiently obvious uses of under-
4047   /// aligned objects don't get miscompiled; for example, a placement new
4048   /// into the address of a local variable.  In such a case, it's quite
4049   /// reasonable to just ignore the returned alignment when it isn't from an
4050   /// explicit source.
4051   Address EmitPointerWithAlignment(const Expr *Addr,
4052                                    LValueBaseInfo *BaseInfo = nullptr,
4053                                    TBAAAccessInfo *TBAAInfo = nullptr);
4054 
4055   /// If \p E references a parameter with pass_object_size info or a constant
4056   /// array size modifier, emit the object size divided by the size of \p EltTy.
4057   /// Otherwise return null.
4058   llvm::Value *LoadPassedObjectSize(const Expr *E, QualType EltTy);
4059 
4060   void EmitSanitizerStatReport(llvm::SanitizerStatKind SSK);
4061 
4062   struct MultiVersionResolverOption {
4063     llvm::Function *Function;
4064     TargetAttr::ParsedTargetAttr ParsedAttribute;
4065     unsigned Priority;
4066     MultiVersionResolverOption(const TargetInfo &TargInfo, llvm::Function *F,
4067                                const clang::TargetAttr::ParsedTargetAttr &PT)
4068         : Function(F), ParsedAttribute(PT), Priority(0u) {
4069       for (StringRef Feat : PT.Features)
4070         Priority = std::max(Priority,
4071                             TargInfo.multiVersionSortPriority(Feat.substr(1)));
4072 
4073       if (!PT.Architecture.empty())
4074         Priority = std::max(Priority,
4075                             TargInfo.multiVersionSortPriority(PT.Architecture));
4076     }
4077 
4078     bool operator>(const MultiVersionResolverOption &Other) const {
4079       return Priority > Other.Priority;
4080     }
4081   };
4082   void EmitMultiVersionResolver(llvm::Function *Resolver,
4083                                 ArrayRef<MultiVersionResolverOption> Options);
4084 
4085 private:
4086   QualType getVarArgType(const Expr *Arg);
4087 
4088   void EmitDeclMetadata();
4089 
4090   BlockByrefHelpers *buildByrefHelpers(llvm::StructType &byrefType,
4091                                   const AutoVarEmission &emission);
4092 
4093   void AddObjCARCExceptionMetadata(llvm::Instruction *Inst);
4094 
4095   llvm::Value *GetValueForARMHint(unsigned BuiltinID);
4096   llvm::Value *EmitX86CpuIs(const CallExpr *E);
4097   llvm::Value *EmitX86CpuIs(StringRef CPUStr);
4098   llvm::Value *EmitX86CpuSupports(const CallExpr *E);
4099   llvm::Value *EmitX86CpuSupports(ArrayRef<StringRef> FeatureStrs);
4100   llvm::Value *EmitX86CpuInit();
4101   llvm::Value *FormResolverCondition(const MultiVersionResolverOption &RO);
4102 };
4103 
4104 /// Helper class with most of the code for saving a value for a
4105 /// conditional expression cleanup.
4106 struct DominatingLLVMValue {
4107   typedef llvm::PointerIntPair<llvm::Value*, 1, bool> saved_type;
4108 
4109   /// Answer whether the given value needs extra work to be saved.
4110   static bool needsSaving(llvm::Value *value) {
4111     // If it's not an instruction, we don't need to save.
4112     if (!isa<llvm::Instruction>(value)) return false;
4113 
4114     // If it's an instruction in the entry block, we don't need to save.
4115     llvm::BasicBlock *block = cast<llvm::Instruction>(value)->getParent();
4116     return (block != &block->getParent()->getEntryBlock());
4117   }
4118 
4119   /// Try to save the given value.
4120   static saved_type save(CodeGenFunction &CGF, llvm::Value *value) {
4121     if (!needsSaving(value)) return saved_type(value, false);
4122 
4123     // Otherwise, we need an alloca.
4124     auto align = CharUnits::fromQuantity(
4125               CGF.CGM.getDataLayout().getPrefTypeAlignment(value->getType()));
4126     Address alloca =
4127       CGF.CreateTempAlloca(value->getType(), align, "cond-cleanup.save");
4128     CGF.Builder.CreateStore(value, alloca);
4129 
4130     return saved_type(alloca.getPointer(), true);
4131   }
4132 
4133   static llvm::Value *restore(CodeGenFunction &CGF, saved_type value) {
4134     // If the value says it wasn't saved, trust that it's still dominating.
4135     if (!value.getInt()) return value.getPointer();
4136 
4137     // Otherwise, it should be an alloca instruction, as set up in save().
4138     auto alloca = cast<llvm::AllocaInst>(value.getPointer());
4139     return CGF.Builder.CreateAlignedLoad(alloca, alloca->getAlignment());
4140   }
4141 };
4142 
4143 /// A partial specialization of DominatingValue for llvm::Values that
4144 /// might be llvm::Instructions.
4145 template <class T> struct DominatingPointer<T,true> : DominatingLLVMValue {
4146   typedef T *type;
4147   static type restore(CodeGenFunction &CGF, saved_type value) {
4148     return static_cast<T*>(DominatingLLVMValue::restore(CGF, value));
4149   }
4150 };
4151 
4152 /// A specialization of DominatingValue for Address.
4153 template <> struct DominatingValue<Address> {
4154   typedef Address type;
4155 
4156   struct saved_type {
4157     DominatingLLVMValue::saved_type SavedValue;
4158     CharUnits Alignment;
4159   };
4160 
4161   static bool needsSaving(type value) {
4162     return DominatingLLVMValue::needsSaving(value.getPointer());
4163   }
4164   static saved_type save(CodeGenFunction &CGF, type value) {
4165     return { DominatingLLVMValue::save(CGF, value.getPointer()),
4166              value.getAlignment() };
4167   }
4168   static type restore(CodeGenFunction &CGF, saved_type value) {
4169     return Address(DominatingLLVMValue::restore(CGF, value.SavedValue),
4170                    value.Alignment);
4171   }
4172 };
4173 
4174 /// A specialization of DominatingValue for RValue.
4175 template <> struct DominatingValue<RValue> {
4176   typedef RValue type;
4177   class saved_type {
4178     enum Kind { ScalarLiteral, ScalarAddress, AggregateLiteral,
4179                 AggregateAddress, ComplexAddress };
4180 
4181     llvm::Value *Value;
4182     unsigned K : 3;
4183     unsigned Align : 29;
4184     saved_type(llvm::Value *v, Kind k, unsigned a = 0)
4185       : Value(v), K(k), Align(a) {}
4186 
4187   public:
4188     static bool needsSaving(RValue value);
4189     static saved_type save(CodeGenFunction &CGF, RValue value);
4190     RValue restore(CodeGenFunction &CGF);
4191 
4192     // implementations in CGCleanup.cpp
4193   };
4194 
4195   static bool needsSaving(type value) {
4196     return saved_type::needsSaving(value);
4197   }
4198   static saved_type save(CodeGenFunction &CGF, type value) {
4199     return saved_type::save(CGF, value);
4200   }
4201   static type restore(CodeGenFunction &CGF, saved_type value) {
4202     return value.restore(CGF);
4203   }
4204 };
4205 
4206 }  // end namespace CodeGen
4207 }  // end namespace clang
4208 
4209 #endif
4210