1 //===-- CodeGenFunction.h - Per-Function state for LLVM CodeGen -*- C++ -*-===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This is the internal per-function state used for llvm translation. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #ifndef LLVM_CLANG_LIB_CODEGEN_CODEGENFUNCTION_H 15 #define LLVM_CLANG_LIB_CODEGEN_CODEGENFUNCTION_H 16 17 #include "CGBuilder.h" 18 #include "CGDebugInfo.h" 19 #include "CGLoopInfo.h" 20 #include "CGValue.h" 21 #include "CodeGenModule.h" 22 #include "CodeGenPGO.h" 23 #include "EHScopeStack.h" 24 #include "VarBypassDetector.h" 25 #include "clang/AST/CharUnits.h" 26 #include "clang/AST/ExprCXX.h" 27 #include "clang/AST/ExprObjC.h" 28 #include "clang/AST/ExprOpenMP.h" 29 #include "clang/AST/Type.h" 30 #include "clang/Basic/ABI.h" 31 #include "clang/Basic/CapturedStmt.h" 32 #include "clang/Basic/OpenMPKinds.h" 33 #include "clang/Basic/TargetInfo.h" 34 #include "clang/Frontend/CodeGenOptions.h" 35 #include "llvm/ADT/ArrayRef.h" 36 #include "llvm/ADT/DenseMap.h" 37 #include "llvm/ADT/MapVector.h" 38 #include "llvm/ADT/SmallVector.h" 39 #include "llvm/IR/ValueHandle.h" 40 #include "llvm/Support/Debug.h" 41 #include "llvm/Transforms/Utils/SanitizerStats.h" 42 43 namespace llvm { 44 class BasicBlock; 45 class LLVMContext; 46 class MDNode; 47 class Module; 48 class SwitchInst; 49 class Twine; 50 class Value; 51 class CallSite; 52 } 53 54 namespace clang { 55 class ASTContext; 56 class BlockDecl; 57 class CXXDestructorDecl; 58 class CXXForRangeStmt; 59 class CXXTryStmt; 60 class Decl; 61 class LabelDecl; 62 class EnumConstantDecl; 63 class FunctionDecl; 64 class FunctionProtoType; 65 class LabelStmt; 66 class ObjCContainerDecl; 67 class ObjCInterfaceDecl; 68 class ObjCIvarDecl; 69 class ObjCMethodDecl; 70 class ObjCImplementationDecl; 71 class ObjCPropertyImplDecl; 72 class TargetInfo; 73 class VarDecl; 74 class ObjCForCollectionStmt; 75 class ObjCAtTryStmt; 76 class ObjCAtThrowStmt; 77 class ObjCAtSynchronizedStmt; 78 class ObjCAutoreleasePoolStmt; 79 80 namespace analyze_os_log { 81 class OSLogBufferLayout; 82 } 83 84 namespace CodeGen { 85 class CodeGenTypes; 86 class CGCallee; 87 class CGFunctionInfo; 88 class CGRecordLayout; 89 class CGBlockInfo; 90 class CGCXXABI; 91 class BlockByrefHelpers; 92 class BlockByrefInfo; 93 class BlockFlags; 94 class BlockFieldFlags; 95 class RegionCodeGenTy; 96 class TargetCodeGenInfo; 97 struct OMPTaskDataTy; 98 struct CGCoroData; 99 100 /// The kind of evaluation to perform on values of a particular 101 /// type. Basically, is the code in CGExprScalar, CGExprComplex, or 102 /// CGExprAgg? 103 /// 104 /// TODO: should vectors maybe be split out into their own thing? 105 enum TypeEvaluationKind { 106 TEK_Scalar, 107 TEK_Complex, 108 TEK_Aggregate 109 }; 110 111 #define LIST_SANITIZER_CHECKS \ 112 SANITIZER_CHECK(AddOverflow, add_overflow, 0) \ 113 SANITIZER_CHECK(BuiltinUnreachable, builtin_unreachable, 0) \ 114 SANITIZER_CHECK(CFICheckFail, cfi_check_fail, 0) \ 115 SANITIZER_CHECK(DivremOverflow, divrem_overflow, 0) \ 116 SANITIZER_CHECK(DynamicTypeCacheMiss, dynamic_type_cache_miss, 0) \ 117 SANITIZER_CHECK(FloatCastOverflow, float_cast_overflow, 0) \ 118 SANITIZER_CHECK(FunctionTypeMismatch, function_type_mismatch, 0) \ 119 SANITIZER_CHECK(InvalidBuiltin, invalid_builtin, 0) \ 120 SANITIZER_CHECK(LoadInvalidValue, load_invalid_value, 0) \ 121 SANITIZER_CHECK(MissingReturn, missing_return, 0) \ 122 SANITIZER_CHECK(MulOverflow, mul_overflow, 0) \ 123 SANITIZER_CHECK(NegateOverflow, negate_overflow, 0) \ 124 SANITIZER_CHECK(NullabilityArg, nullability_arg, 0) \ 125 SANITIZER_CHECK(NullabilityReturn, nullability_return, 1) \ 126 SANITIZER_CHECK(NonnullArg, nonnull_arg, 0) \ 127 SANITIZER_CHECK(NonnullReturn, nonnull_return, 1) \ 128 SANITIZER_CHECK(OutOfBounds, out_of_bounds, 0) \ 129 SANITIZER_CHECK(PointerOverflow, pointer_overflow, 0) \ 130 SANITIZER_CHECK(ShiftOutOfBounds, shift_out_of_bounds, 0) \ 131 SANITIZER_CHECK(SubOverflow, sub_overflow, 0) \ 132 SANITIZER_CHECK(TypeMismatch, type_mismatch, 1) \ 133 SANITIZER_CHECK(VLABoundNotPositive, vla_bound_not_positive, 0) 134 135 enum SanitizerHandler { 136 #define SANITIZER_CHECK(Enum, Name, Version) Enum, 137 LIST_SANITIZER_CHECKS 138 #undef SANITIZER_CHECK 139 }; 140 141 /// CodeGenFunction - This class organizes the per-function state that is used 142 /// while generating LLVM code. 143 class CodeGenFunction : public CodeGenTypeCache { 144 CodeGenFunction(const CodeGenFunction &) = delete; 145 void operator=(const CodeGenFunction &) = delete; 146 147 friend class CGCXXABI; 148 public: 149 /// A jump destination is an abstract label, branching to which may 150 /// require a jump out through normal cleanups. 151 struct JumpDest { 152 JumpDest() : Block(nullptr), ScopeDepth(), Index(0) {} 153 JumpDest(llvm::BasicBlock *Block, 154 EHScopeStack::stable_iterator Depth, 155 unsigned Index) 156 : Block(Block), ScopeDepth(Depth), Index(Index) {} 157 158 bool isValid() const { return Block != nullptr; } 159 llvm::BasicBlock *getBlock() const { return Block; } 160 EHScopeStack::stable_iterator getScopeDepth() const { return ScopeDepth; } 161 unsigned getDestIndex() const { return Index; } 162 163 // This should be used cautiously. 164 void setScopeDepth(EHScopeStack::stable_iterator depth) { 165 ScopeDepth = depth; 166 } 167 168 private: 169 llvm::BasicBlock *Block; 170 EHScopeStack::stable_iterator ScopeDepth; 171 unsigned Index; 172 }; 173 174 CodeGenModule &CGM; // Per-module state. 175 const TargetInfo &Target; 176 177 typedef std::pair<llvm::Value *, llvm::Value *> ComplexPairTy; 178 LoopInfoStack LoopStack; 179 CGBuilderTy Builder; 180 181 // Stores variables for which we can't generate correct lifetime markers 182 // because of jumps. 183 VarBypassDetector Bypasses; 184 185 // CodeGen lambda for loops and support for ordered clause 186 typedef llvm::function_ref<void(CodeGenFunction &, const OMPLoopDirective &, 187 JumpDest)> 188 CodeGenLoopTy; 189 typedef llvm::function_ref<void(CodeGenFunction &, SourceLocation, 190 const unsigned, const bool)> 191 CodeGenOrderedTy; 192 193 // Codegen lambda for loop bounds in worksharing loop constructs 194 typedef llvm::function_ref<std::pair<LValue, LValue>( 195 CodeGenFunction &, const OMPExecutableDirective &S)> 196 CodeGenLoopBoundsTy; 197 198 // Codegen lambda for loop bounds in dispatch-based loop implementation 199 typedef llvm::function_ref<std::pair<llvm::Value *, llvm::Value *>( 200 CodeGenFunction &, const OMPExecutableDirective &S, Address LB, 201 Address UB)> 202 CodeGenDispatchBoundsTy; 203 204 /// \brief CGBuilder insert helper. This function is called after an 205 /// instruction is created using Builder. 206 void InsertHelper(llvm::Instruction *I, const llvm::Twine &Name, 207 llvm::BasicBlock *BB, 208 llvm::BasicBlock::iterator InsertPt) const; 209 210 /// CurFuncDecl - Holds the Decl for the current outermost 211 /// non-closure context. 212 const Decl *CurFuncDecl; 213 /// CurCodeDecl - This is the inner-most code context, which includes blocks. 214 const Decl *CurCodeDecl; 215 const CGFunctionInfo *CurFnInfo; 216 QualType FnRetTy; 217 llvm::Function *CurFn; 218 219 // Holds coroutine data if the current function is a coroutine. We use a 220 // wrapper to manage its lifetime, so that we don't have to define CGCoroData 221 // in this header. 222 struct CGCoroInfo { 223 std::unique_ptr<CGCoroData> Data; 224 CGCoroInfo(); 225 ~CGCoroInfo(); 226 }; 227 CGCoroInfo CurCoro; 228 229 bool isCoroutine() const { 230 return CurCoro.Data != nullptr; 231 } 232 233 /// CurGD - The GlobalDecl for the current function being compiled. 234 GlobalDecl CurGD; 235 236 /// PrologueCleanupDepth - The cleanup depth enclosing all the 237 /// cleanups associated with the parameters. 238 EHScopeStack::stable_iterator PrologueCleanupDepth; 239 240 /// ReturnBlock - Unified return block. 241 JumpDest ReturnBlock; 242 243 /// ReturnValue - The temporary alloca to hold the return 244 /// value. This is invalid iff the function has no return value. 245 Address ReturnValue; 246 247 /// Return true if a label was seen in the current scope. 248 bool hasLabelBeenSeenInCurrentScope() const { 249 if (CurLexicalScope) 250 return CurLexicalScope->hasLabels(); 251 return !LabelMap.empty(); 252 } 253 254 /// AllocaInsertPoint - This is an instruction in the entry block before which 255 /// we prefer to insert allocas. 256 llvm::AssertingVH<llvm::Instruction> AllocaInsertPt; 257 258 /// \brief API for captured statement code generation. 259 class CGCapturedStmtInfo { 260 public: 261 explicit CGCapturedStmtInfo(CapturedRegionKind K = CR_Default) 262 : Kind(K), ThisValue(nullptr), CXXThisFieldDecl(nullptr) {} 263 explicit CGCapturedStmtInfo(const CapturedStmt &S, 264 CapturedRegionKind K = CR_Default) 265 : Kind(K), ThisValue(nullptr), CXXThisFieldDecl(nullptr) { 266 267 RecordDecl::field_iterator Field = 268 S.getCapturedRecordDecl()->field_begin(); 269 for (CapturedStmt::const_capture_iterator I = S.capture_begin(), 270 E = S.capture_end(); 271 I != E; ++I, ++Field) { 272 if (I->capturesThis()) 273 CXXThisFieldDecl = *Field; 274 else if (I->capturesVariable()) 275 CaptureFields[I->getCapturedVar()->getCanonicalDecl()] = *Field; 276 else if (I->capturesVariableByCopy()) 277 CaptureFields[I->getCapturedVar()->getCanonicalDecl()] = *Field; 278 } 279 } 280 281 virtual ~CGCapturedStmtInfo(); 282 283 CapturedRegionKind getKind() const { return Kind; } 284 285 virtual void setContextValue(llvm::Value *V) { ThisValue = V; } 286 // \brief Retrieve the value of the context parameter. 287 virtual llvm::Value *getContextValue() const { return ThisValue; } 288 289 /// \brief Lookup the captured field decl for a variable. 290 virtual const FieldDecl *lookup(const VarDecl *VD) const { 291 return CaptureFields.lookup(VD->getCanonicalDecl()); 292 } 293 294 bool isCXXThisExprCaptured() const { return getThisFieldDecl() != nullptr; } 295 virtual FieldDecl *getThisFieldDecl() const { return CXXThisFieldDecl; } 296 297 static bool classof(const CGCapturedStmtInfo *) { 298 return true; 299 } 300 301 /// \brief Emit the captured statement body. 302 virtual void EmitBody(CodeGenFunction &CGF, const Stmt *S) { 303 CGF.incrementProfileCounter(S); 304 CGF.EmitStmt(S); 305 } 306 307 /// \brief Get the name of the capture helper. 308 virtual StringRef getHelperName() const { return "__captured_stmt"; } 309 310 private: 311 /// \brief The kind of captured statement being generated. 312 CapturedRegionKind Kind; 313 314 /// \brief Keep the map between VarDecl and FieldDecl. 315 llvm::SmallDenseMap<const VarDecl *, FieldDecl *> CaptureFields; 316 317 /// \brief The base address of the captured record, passed in as the first 318 /// argument of the parallel region function. 319 llvm::Value *ThisValue; 320 321 /// \brief Captured 'this' type. 322 FieldDecl *CXXThisFieldDecl; 323 }; 324 CGCapturedStmtInfo *CapturedStmtInfo; 325 326 /// \brief RAII for correct setting/restoring of CapturedStmtInfo. 327 class CGCapturedStmtRAII { 328 private: 329 CodeGenFunction &CGF; 330 CGCapturedStmtInfo *PrevCapturedStmtInfo; 331 public: 332 CGCapturedStmtRAII(CodeGenFunction &CGF, 333 CGCapturedStmtInfo *NewCapturedStmtInfo) 334 : CGF(CGF), PrevCapturedStmtInfo(CGF.CapturedStmtInfo) { 335 CGF.CapturedStmtInfo = NewCapturedStmtInfo; 336 } 337 ~CGCapturedStmtRAII() { CGF.CapturedStmtInfo = PrevCapturedStmtInfo; } 338 }; 339 340 /// An abstract representation of regular/ObjC call/message targets. 341 class AbstractCallee { 342 /// The function declaration of the callee. 343 const Decl *CalleeDecl; 344 345 public: 346 AbstractCallee() : CalleeDecl(nullptr) {} 347 AbstractCallee(const FunctionDecl *FD) : CalleeDecl(FD) {} 348 AbstractCallee(const ObjCMethodDecl *OMD) : CalleeDecl(OMD) {} 349 bool hasFunctionDecl() const { 350 return dyn_cast_or_null<FunctionDecl>(CalleeDecl); 351 } 352 const Decl *getDecl() const { return CalleeDecl; } 353 unsigned getNumParams() const { 354 if (const auto *FD = dyn_cast<FunctionDecl>(CalleeDecl)) 355 return FD->getNumParams(); 356 return cast<ObjCMethodDecl>(CalleeDecl)->param_size(); 357 } 358 const ParmVarDecl *getParamDecl(unsigned I) const { 359 if (const auto *FD = dyn_cast<FunctionDecl>(CalleeDecl)) 360 return FD->getParamDecl(I); 361 return *(cast<ObjCMethodDecl>(CalleeDecl)->param_begin() + I); 362 } 363 }; 364 365 /// \brief Sanitizers enabled for this function. 366 SanitizerSet SanOpts; 367 368 /// \brief True if CodeGen currently emits code implementing sanitizer checks. 369 bool IsSanitizerScope; 370 371 /// \brief RAII object to set/unset CodeGenFunction::IsSanitizerScope. 372 class SanitizerScope { 373 CodeGenFunction *CGF; 374 public: 375 SanitizerScope(CodeGenFunction *CGF); 376 ~SanitizerScope(); 377 }; 378 379 /// In C++, whether we are code generating a thunk. This controls whether we 380 /// should emit cleanups. 381 bool CurFuncIsThunk; 382 383 /// In ARC, whether we should autorelease the return value. 384 bool AutoreleaseResult; 385 386 /// Whether we processed a Microsoft-style asm block during CodeGen. These can 387 /// potentially set the return value. 388 bool SawAsmBlock; 389 390 const FunctionDecl *CurSEHParent = nullptr; 391 392 /// True if the current function is an outlined SEH helper. This can be a 393 /// finally block or filter expression. 394 bool IsOutlinedSEHHelper; 395 396 const CodeGen::CGBlockInfo *BlockInfo; 397 llvm::Value *BlockPointer; 398 399 llvm::DenseMap<const VarDecl *, FieldDecl *> LambdaCaptureFields; 400 FieldDecl *LambdaThisCaptureField; 401 402 /// \brief A mapping from NRVO variables to the flags used to indicate 403 /// when the NRVO has been applied to this variable. 404 llvm::DenseMap<const VarDecl *, llvm::Value *> NRVOFlags; 405 406 EHScopeStack EHStack; 407 llvm::SmallVector<char, 256> LifetimeExtendedCleanupStack; 408 llvm::SmallVector<const JumpDest *, 2> SEHTryEpilogueStack; 409 410 llvm::Instruction *CurrentFuncletPad = nullptr; 411 412 class CallLifetimeEnd final : public EHScopeStack::Cleanup { 413 llvm::Value *Addr; 414 llvm::Value *Size; 415 416 public: 417 CallLifetimeEnd(Address addr, llvm::Value *size) 418 : Addr(addr.getPointer()), Size(size) {} 419 420 void Emit(CodeGenFunction &CGF, Flags flags) override { 421 CGF.EmitLifetimeEnd(Size, Addr); 422 } 423 }; 424 425 /// Header for data within LifetimeExtendedCleanupStack. 426 struct LifetimeExtendedCleanupHeader { 427 /// The size of the following cleanup object. 428 unsigned Size; 429 /// The kind of cleanup to push: a value from the CleanupKind enumeration. 430 CleanupKind Kind; 431 432 size_t getSize() const { return Size; } 433 CleanupKind getKind() const { return Kind; } 434 }; 435 436 /// i32s containing the indexes of the cleanup destinations. 437 Address NormalCleanupDest; 438 439 unsigned NextCleanupDestIndex; 440 441 /// FirstBlockInfo - The head of a singly-linked-list of block layouts. 442 CGBlockInfo *FirstBlockInfo; 443 444 /// EHResumeBlock - Unified block containing a call to llvm.eh.resume. 445 llvm::BasicBlock *EHResumeBlock; 446 447 /// The exception slot. All landing pads write the current exception pointer 448 /// into this alloca. 449 llvm::Value *ExceptionSlot; 450 451 /// The selector slot. Under the MandatoryCleanup model, all landing pads 452 /// write the current selector value into this alloca. 453 llvm::AllocaInst *EHSelectorSlot; 454 455 /// A stack of exception code slots. Entering an __except block pushes a slot 456 /// on the stack and leaving pops one. The __exception_code() intrinsic loads 457 /// a value from the top of the stack. 458 SmallVector<Address, 1> SEHCodeSlotStack; 459 460 /// Value returned by __exception_info intrinsic. 461 llvm::Value *SEHInfo = nullptr; 462 463 /// Emits a landing pad for the current EH stack. 464 llvm::BasicBlock *EmitLandingPad(); 465 466 llvm::BasicBlock *getInvokeDestImpl(); 467 468 template <class T> 469 typename DominatingValue<T>::saved_type saveValueInCond(T value) { 470 return DominatingValue<T>::save(*this, value); 471 } 472 473 public: 474 /// ObjCEHValueStack - Stack of Objective-C exception values, used for 475 /// rethrows. 476 SmallVector<llvm::Value*, 8> ObjCEHValueStack; 477 478 /// A class controlling the emission of a finally block. 479 class FinallyInfo { 480 /// Where the catchall's edge through the cleanup should go. 481 JumpDest RethrowDest; 482 483 /// A function to call to enter the catch. 484 llvm::Constant *BeginCatchFn; 485 486 /// An i1 variable indicating whether or not the @finally is 487 /// running for an exception. 488 llvm::AllocaInst *ForEHVar; 489 490 /// An i8* variable into which the exception pointer to rethrow 491 /// has been saved. 492 llvm::AllocaInst *SavedExnVar; 493 494 public: 495 void enter(CodeGenFunction &CGF, const Stmt *Finally, 496 llvm::Constant *beginCatchFn, llvm::Constant *endCatchFn, 497 llvm::Constant *rethrowFn); 498 void exit(CodeGenFunction &CGF); 499 }; 500 501 /// Returns true inside SEH __try blocks. 502 bool isSEHTryScope() const { return !SEHTryEpilogueStack.empty(); } 503 504 /// Returns true while emitting a cleanuppad. 505 bool isCleanupPadScope() const { 506 return CurrentFuncletPad && isa<llvm::CleanupPadInst>(CurrentFuncletPad); 507 } 508 509 /// pushFullExprCleanup - Push a cleanup to be run at the end of the 510 /// current full-expression. Safe against the possibility that 511 /// we're currently inside a conditionally-evaluated expression. 512 template <class T, class... As> 513 void pushFullExprCleanup(CleanupKind kind, As... A) { 514 // If we're not in a conditional branch, or if none of the 515 // arguments requires saving, then use the unconditional cleanup. 516 if (!isInConditionalBranch()) 517 return EHStack.pushCleanup<T>(kind, A...); 518 519 // Stash values in a tuple so we can guarantee the order of saves. 520 typedef std::tuple<typename DominatingValue<As>::saved_type...> SavedTuple; 521 SavedTuple Saved{saveValueInCond(A)...}; 522 523 typedef EHScopeStack::ConditionalCleanup<T, As...> CleanupType; 524 EHStack.pushCleanupTuple<CleanupType>(kind, Saved); 525 initFullExprCleanup(); 526 } 527 528 /// \brief Queue a cleanup to be pushed after finishing the current 529 /// full-expression. 530 template <class T, class... As> 531 void pushCleanupAfterFullExpr(CleanupKind Kind, As... A) { 532 assert(!isInConditionalBranch() && "can't defer conditional cleanup"); 533 534 LifetimeExtendedCleanupHeader Header = { sizeof(T), Kind }; 535 536 size_t OldSize = LifetimeExtendedCleanupStack.size(); 537 LifetimeExtendedCleanupStack.resize( 538 LifetimeExtendedCleanupStack.size() + sizeof(Header) + Header.Size); 539 540 static_assert(sizeof(Header) % alignof(T) == 0, 541 "Cleanup will be allocated on misaligned address"); 542 char *Buffer = &LifetimeExtendedCleanupStack[OldSize]; 543 new (Buffer) LifetimeExtendedCleanupHeader(Header); 544 new (Buffer + sizeof(Header)) T(A...); 545 } 546 547 /// Set up the last cleaup that was pushed as a conditional 548 /// full-expression cleanup. 549 void initFullExprCleanup(); 550 551 /// PushDestructorCleanup - Push a cleanup to call the 552 /// complete-object destructor of an object of the given type at the 553 /// given address. Does nothing if T is not a C++ class type with a 554 /// non-trivial destructor. 555 void PushDestructorCleanup(QualType T, Address Addr); 556 557 /// PushDestructorCleanup - Push a cleanup to call the 558 /// complete-object variant of the given destructor on the object at 559 /// the given address. 560 void PushDestructorCleanup(const CXXDestructorDecl *Dtor, Address Addr); 561 562 /// PopCleanupBlock - Will pop the cleanup entry on the stack and 563 /// process all branch fixups. 564 void PopCleanupBlock(bool FallThroughIsBranchThrough = false); 565 566 /// DeactivateCleanupBlock - Deactivates the given cleanup block. 567 /// The block cannot be reactivated. Pops it if it's the top of the 568 /// stack. 569 /// 570 /// \param DominatingIP - An instruction which is known to 571 /// dominate the current IP (if set) and which lies along 572 /// all paths of execution between the current IP and the 573 /// the point at which the cleanup comes into scope. 574 void DeactivateCleanupBlock(EHScopeStack::stable_iterator Cleanup, 575 llvm::Instruction *DominatingIP); 576 577 /// ActivateCleanupBlock - Activates an initially-inactive cleanup. 578 /// Cannot be used to resurrect a deactivated cleanup. 579 /// 580 /// \param DominatingIP - An instruction which is known to 581 /// dominate the current IP (if set) and which lies along 582 /// all paths of execution between the current IP and the 583 /// the point at which the cleanup comes into scope. 584 void ActivateCleanupBlock(EHScopeStack::stable_iterator Cleanup, 585 llvm::Instruction *DominatingIP); 586 587 /// \brief Enters a new scope for capturing cleanups, all of which 588 /// will be executed once the scope is exited. 589 class RunCleanupsScope { 590 EHScopeStack::stable_iterator CleanupStackDepth; 591 size_t LifetimeExtendedCleanupStackSize; 592 bool OldDidCallStackSave; 593 protected: 594 bool PerformCleanup; 595 private: 596 597 RunCleanupsScope(const RunCleanupsScope &) = delete; 598 void operator=(const RunCleanupsScope &) = delete; 599 600 protected: 601 CodeGenFunction& CGF; 602 603 public: 604 /// \brief Enter a new cleanup scope. 605 explicit RunCleanupsScope(CodeGenFunction &CGF) 606 : PerformCleanup(true), CGF(CGF) 607 { 608 CleanupStackDepth = CGF.EHStack.stable_begin(); 609 LifetimeExtendedCleanupStackSize = 610 CGF.LifetimeExtendedCleanupStack.size(); 611 OldDidCallStackSave = CGF.DidCallStackSave; 612 CGF.DidCallStackSave = false; 613 } 614 615 /// \brief Exit this cleanup scope, emitting any accumulated cleanups. 616 ~RunCleanupsScope() { 617 if (PerformCleanup) 618 ForceCleanup(); 619 } 620 621 /// \brief Determine whether this scope requires any cleanups. 622 bool requiresCleanups() const { 623 return CGF.EHStack.stable_begin() != CleanupStackDepth; 624 } 625 626 /// \brief Force the emission of cleanups now, instead of waiting 627 /// until this object is destroyed. 628 /// \param ValuesToReload - A list of values that need to be available at 629 /// the insertion point after cleanup emission. If cleanup emission created 630 /// a shared cleanup block, these value pointers will be rewritten. 631 /// Otherwise, they not will be modified. 632 void ForceCleanup(std::initializer_list<llvm::Value**> ValuesToReload = {}) { 633 assert(PerformCleanup && "Already forced cleanup"); 634 CGF.DidCallStackSave = OldDidCallStackSave; 635 CGF.PopCleanupBlocks(CleanupStackDepth, LifetimeExtendedCleanupStackSize, 636 ValuesToReload); 637 PerformCleanup = false; 638 } 639 }; 640 641 class LexicalScope : public RunCleanupsScope { 642 SourceRange Range; 643 SmallVector<const LabelDecl*, 4> Labels; 644 LexicalScope *ParentScope; 645 646 LexicalScope(const LexicalScope &) = delete; 647 void operator=(const LexicalScope &) = delete; 648 649 public: 650 /// \brief Enter a new cleanup scope. 651 explicit LexicalScope(CodeGenFunction &CGF, SourceRange Range) 652 : RunCleanupsScope(CGF), Range(Range), ParentScope(CGF.CurLexicalScope) { 653 CGF.CurLexicalScope = this; 654 if (CGDebugInfo *DI = CGF.getDebugInfo()) 655 DI->EmitLexicalBlockStart(CGF.Builder, Range.getBegin()); 656 } 657 658 void addLabel(const LabelDecl *label) { 659 assert(PerformCleanup && "adding label to dead scope?"); 660 Labels.push_back(label); 661 } 662 663 /// \brief Exit this cleanup scope, emitting any accumulated 664 /// cleanups. 665 ~LexicalScope() { 666 if (CGDebugInfo *DI = CGF.getDebugInfo()) 667 DI->EmitLexicalBlockEnd(CGF.Builder, Range.getEnd()); 668 669 // If we should perform a cleanup, force them now. Note that 670 // this ends the cleanup scope before rescoping any labels. 671 if (PerformCleanup) { 672 ApplyDebugLocation DL(CGF, Range.getEnd()); 673 ForceCleanup(); 674 } 675 } 676 677 /// \brief Force the emission of cleanups now, instead of waiting 678 /// until this object is destroyed. 679 void ForceCleanup() { 680 CGF.CurLexicalScope = ParentScope; 681 RunCleanupsScope::ForceCleanup(); 682 683 if (!Labels.empty()) 684 rescopeLabels(); 685 } 686 687 bool hasLabels() const { 688 return !Labels.empty(); 689 } 690 691 void rescopeLabels(); 692 }; 693 694 typedef llvm::DenseMap<const Decl *, Address> DeclMapTy; 695 696 /// The class used to assign some variables some temporarily addresses. 697 class OMPMapVars { 698 DeclMapTy SavedLocals; 699 DeclMapTy SavedTempAddresses; 700 OMPMapVars(const OMPMapVars &) = delete; 701 void operator=(const OMPMapVars &) = delete; 702 703 public: 704 explicit OMPMapVars() = default; 705 ~OMPMapVars() { 706 assert(SavedLocals.empty() && "Did not restored original addresses."); 707 }; 708 709 /// Sets the address of the variable \p LocalVD to be \p TempAddr in 710 /// function \p CGF. 711 /// \return true if at least one variable was set already, false otherwise. 712 bool setVarAddr(CodeGenFunction &CGF, const VarDecl *LocalVD, 713 Address TempAddr) { 714 LocalVD = LocalVD->getCanonicalDecl(); 715 // Only save it once. 716 if (SavedLocals.count(LocalVD)) return false; 717 718 // Copy the existing local entry to SavedLocals. 719 auto it = CGF.LocalDeclMap.find(LocalVD); 720 if (it != CGF.LocalDeclMap.end()) 721 SavedLocals.try_emplace(LocalVD, it->second); 722 else 723 SavedLocals.try_emplace(LocalVD, Address::invalid()); 724 725 // Generate the private entry. 726 QualType VarTy = LocalVD->getType(); 727 if (VarTy->isReferenceType()) { 728 Address Temp = CGF.CreateMemTemp(VarTy); 729 CGF.Builder.CreateStore(TempAddr.getPointer(), Temp); 730 TempAddr = Temp; 731 } 732 SavedTempAddresses.try_emplace(LocalVD, TempAddr); 733 734 return true; 735 } 736 737 /// Applies new addresses to the list of the variables. 738 /// \return true if at least one variable is using new address, false 739 /// otherwise. 740 bool apply(CodeGenFunction &CGF) { 741 copyInto(SavedTempAddresses, CGF.LocalDeclMap); 742 SavedTempAddresses.clear(); 743 return !SavedLocals.empty(); 744 } 745 746 /// Restores original addresses of the variables. 747 void restore(CodeGenFunction &CGF) { 748 if (!SavedLocals.empty()) { 749 copyInto(SavedLocals, CGF.LocalDeclMap); 750 SavedLocals.clear(); 751 } 752 } 753 754 private: 755 /// Copy all the entries in the source map over the corresponding 756 /// entries in the destination, which must exist. 757 static void copyInto(const DeclMapTy &Src, DeclMapTy &Dest) { 758 for (auto &Pair : Src) { 759 if (!Pair.second.isValid()) { 760 Dest.erase(Pair.first); 761 continue; 762 } 763 764 auto I = Dest.find(Pair.first); 765 if (I != Dest.end()) 766 I->second = Pair.second; 767 else 768 Dest.insert(Pair); 769 } 770 } 771 }; 772 773 /// The scope used to remap some variables as private in the OpenMP loop body 774 /// (or other captured region emitted without outlining), and to restore old 775 /// vars back on exit. 776 class OMPPrivateScope : public RunCleanupsScope { 777 OMPMapVars MappedVars; 778 OMPPrivateScope(const OMPPrivateScope &) = delete; 779 void operator=(const OMPPrivateScope &) = delete; 780 781 public: 782 /// Enter a new OpenMP private scope. 783 explicit OMPPrivateScope(CodeGenFunction &CGF) : RunCleanupsScope(CGF) {} 784 785 /// Registers \p LocalVD variable as a private and apply \p PrivateGen 786 /// function for it to generate corresponding private variable. \p 787 /// PrivateGen returns an address of the generated private variable. 788 /// \return true if the variable is registered as private, false if it has 789 /// been privatized already. 790 bool addPrivate(const VarDecl *LocalVD, 791 llvm::function_ref<Address()> PrivateGen) { 792 assert(PerformCleanup && "adding private to dead scope"); 793 return MappedVars.setVarAddr(CGF, LocalVD, PrivateGen()); 794 } 795 796 /// Privatizes local variables previously registered as private. 797 /// Registration is separate from the actual privatization to allow 798 /// initializers use values of the original variables, not the private one. 799 /// This is important, for example, if the private variable is a class 800 /// variable initialized by a constructor that references other private 801 /// variables. But at initialization original variables must be used, not 802 /// private copies. 803 /// \return true if at least one variable was privatized, false otherwise. 804 bool Privatize() { return MappedVars.apply(CGF); } 805 806 void ForceCleanup() { 807 RunCleanupsScope::ForceCleanup(); 808 MappedVars.restore(CGF); 809 } 810 811 /// Exit scope - all the mapped variables are restored. 812 ~OMPPrivateScope() { 813 if (PerformCleanup) 814 ForceCleanup(); 815 } 816 817 /// Checks if the global variable is captured in current function. 818 bool isGlobalVarCaptured(const VarDecl *VD) const { 819 VD = VD->getCanonicalDecl(); 820 return !VD->isLocalVarDeclOrParm() && CGF.LocalDeclMap.count(VD) > 0; 821 } 822 }; 823 824 /// \brief Takes the old cleanup stack size and emits the cleanup blocks 825 /// that have been added. 826 void 827 PopCleanupBlocks(EHScopeStack::stable_iterator OldCleanupStackSize, 828 std::initializer_list<llvm::Value **> ValuesToReload = {}); 829 830 /// \brief Takes the old cleanup stack size and emits the cleanup blocks 831 /// that have been added, then adds all lifetime-extended cleanups from 832 /// the given position to the stack. 833 void 834 PopCleanupBlocks(EHScopeStack::stable_iterator OldCleanupStackSize, 835 size_t OldLifetimeExtendedStackSize, 836 std::initializer_list<llvm::Value **> ValuesToReload = {}); 837 838 void ResolveBranchFixups(llvm::BasicBlock *Target); 839 840 /// The given basic block lies in the current EH scope, but may be a 841 /// target of a potentially scope-crossing jump; get a stable handle 842 /// to which we can perform this jump later. 843 JumpDest getJumpDestInCurrentScope(llvm::BasicBlock *Target) { 844 return JumpDest(Target, 845 EHStack.getInnermostNormalCleanup(), 846 NextCleanupDestIndex++); 847 } 848 849 /// The given basic block lies in the current EH scope, but may be a 850 /// target of a potentially scope-crossing jump; get a stable handle 851 /// to which we can perform this jump later. 852 JumpDest getJumpDestInCurrentScope(StringRef Name = StringRef()) { 853 return getJumpDestInCurrentScope(createBasicBlock(Name)); 854 } 855 856 /// EmitBranchThroughCleanup - Emit a branch from the current insert 857 /// block through the normal cleanup handling code (if any) and then 858 /// on to \arg Dest. 859 void EmitBranchThroughCleanup(JumpDest Dest); 860 861 /// isObviouslyBranchWithoutCleanups - Return true if a branch to the 862 /// specified destination obviously has no cleanups to run. 'false' is always 863 /// a conservatively correct answer for this method. 864 bool isObviouslyBranchWithoutCleanups(JumpDest Dest) const; 865 866 /// popCatchScope - Pops the catch scope at the top of the EHScope 867 /// stack, emitting any required code (other than the catch handlers 868 /// themselves). 869 void popCatchScope(); 870 871 llvm::BasicBlock *getEHResumeBlock(bool isCleanup); 872 llvm::BasicBlock *getEHDispatchBlock(EHScopeStack::stable_iterator scope); 873 llvm::BasicBlock *getMSVCDispatchBlock(EHScopeStack::stable_iterator scope); 874 875 /// An object to manage conditionally-evaluated expressions. 876 class ConditionalEvaluation { 877 llvm::BasicBlock *StartBB; 878 879 public: 880 ConditionalEvaluation(CodeGenFunction &CGF) 881 : StartBB(CGF.Builder.GetInsertBlock()) {} 882 883 void begin(CodeGenFunction &CGF) { 884 assert(CGF.OutermostConditional != this); 885 if (!CGF.OutermostConditional) 886 CGF.OutermostConditional = this; 887 } 888 889 void end(CodeGenFunction &CGF) { 890 assert(CGF.OutermostConditional != nullptr); 891 if (CGF.OutermostConditional == this) 892 CGF.OutermostConditional = nullptr; 893 } 894 895 /// Returns a block which will be executed prior to each 896 /// evaluation of the conditional code. 897 llvm::BasicBlock *getStartingBlock() const { 898 return StartBB; 899 } 900 }; 901 902 /// isInConditionalBranch - Return true if we're currently emitting 903 /// one branch or the other of a conditional expression. 904 bool isInConditionalBranch() const { return OutermostConditional != nullptr; } 905 906 void setBeforeOutermostConditional(llvm::Value *value, Address addr) { 907 assert(isInConditionalBranch()); 908 llvm::BasicBlock *block = OutermostConditional->getStartingBlock(); 909 auto store = new llvm::StoreInst(value, addr.getPointer(), &block->back()); 910 store->setAlignment(addr.getAlignment().getQuantity()); 911 } 912 913 /// An RAII object to record that we're evaluating a statement 914 /// expression. 915 class StmtExprEvaluation { 916 CodeGenFunction &CGF; 917 918 /// We have to save the outermost conditional: cleanups in a 919 /// statement expression aren't conditional just because the 920 /// StmtExpr is. 921 ConditionalEvaluation *SavedOutermostConditional; 922 923 public: 924 StmtExprEvaluation(CodeGenFunction &CGF) 925 : CGF(CGF), SavedOutermostConditional(CGF.OutermostConditional) { 926 CGF.OutermostConditional = nullptr; 927 } 928 929 ~StmtExprEvaluation() { 930 CGF.OutermostConditional = SavedOutermostConditional; 931 CGF.EnsureInsertPoint(); 932 } 933 }; 934 935 /// An object which temporarily prevents a value from being 936 /// destroyed by aggressive peephole optimizations that assume that 937 /// all uses of a value have been realized in the IR. 938 class PeepholeProtection { 939 llvm::Instruction *Inst; 940 friend class CodeGenFunction; 941 942 public: 943 PeepholeProtection() : Inst(nullptr) {} 944 }; 945 946 /// A non-RAII class containing all the information about a bound 947 /// opaque value. OpaqueValueMapping, below, is a RAII wrapper for 948 /// this which makes individual mappings very simple; using this 949 /// class directly is useful when you have a variable number of 950 /// opaque values or don't want the RAII functionality for some 951 /// reason. 952 class OpaqueValueMappingData { 953 const OpaqueValueExpr *OpaqueValue; 954 bool BoundLValue; 955 CodeGenFunction::PeepholeProtection Protection; 956 957 OpaqueValueMappingData(const OpaqueValueExpr *ov, 958 bool boundLValue) 959 : OpaqueValue(ov), BoundLValue(boundLValue) {} 960 public: 961 OpaqueValueMappingData() : OpaqueValue(nullptr) {} 962 963 static bool shouldBindAsLValue(const Expr *expr) { 964 // gl-values should be bound as l-values for obvious reasons. 965 // Records should be bound as l-values because IR generation 966 // always keeps them in memory. Expressions of function type 967 // act exactly like l-values but are formally required to be 968 // r-values in C. 969 return expr->isGLValue() || 970 expr->getType()->isFunctionType() || 971 hasAggregateEvaluationKind(expr->getType()); 972 } 973 974 static OpaqueValueMappingData bind(CodeGenFunction &CGF, 975 const OpaqueValueExpr *ov, 976 const Expr *e) { 977 if (shouldBindAsLValue(ov)) 978 return bind(CGF, ov, CGF.EmitLValue(e)); 979 return bind(CGF, ov, CGF.EmitAnyExpr(e)); 980 } 981 982 static OpaqueValueMappingData bind(CodeGenFunction &CGF, 983 const OpaqueValueExpr *ov, 984 const LValue &lv) { 985 assert(shouldBindAsLValue(ov)); 986 CGF.OpaqueLValues.insert(std::make_pair(ov, lv)); 987 return OpaqueValueMappingData(ov, true); 988 } 989 990 static OpaqueValueMappingData bind(CodeGenFunction &CGF, 991 const OpaqueValueExpr *ov, 992 const RValue &rv) { 993 assert(!shouldBindAsLValue(ov)); 994 CGF.OpaqueRValues.insert(std::make_pair(ov, rv)); 995 996 OpaqueValueMappingData data(ov, false); 997 998 // Work around an extremely aggressive peephole optimization in 999 // EmitScalarConversion which assumes that all other uses of a 1000 // value are extant. 1001 data.Protection = CGF.protectFromPeepholes(rv); 1002 1003 return data; 1004 } 1005 1006 bool isValid() const { return OpaqueValue != nullptr; } 1007 void clear() { OpaqueValue = nullptr; } 1008 1009 void unbind(CodeGenFunction &CGF) { 1010 assert(OpaqueValue && "no data to unbind!"); 1011 1012 if (BoundLValue) { 1013 CGF.OpaqueLValues.erase(OpaqueValue); 1014 } else { 1015 CGF.OpaqueRValues.erase(OpaqueValue); 1016 CGF.unprotectFromPeepholes(Protection); 1017 } 1018 } 1019 }; 1020 1021 /// An RAII object to set (and then clear) a mapping for an OpaqueValueExpr. 1022 class OpaqueValueMapping { 1023 CodeGenFunction &CGF; 1024 OpaqueValueMappingData Data; 1025 1026 public: 1027 static bool shouldBindAsLValue(const Expr *expr) { 1028 return OpaqueValueMappingData::shouldBindAsLValue(expr); 1029 } 1030 1031 /// Build the opaque value mapping for the given conditional 1032 /// operator if it's the GNU ?: extension. This is a common 1033 /// enough pattern that the convenience operator is really 1034 /// helpful. 1035 /// 1036 OpaqueValueMapping(CodeGenFunction &CGF, 1037 const AbstractConditionalOperator *op) : CGF(CGF) { 1038 if (isa<ConditionalOperator>(op)) 1039 // Leave Data empty. 1040 return; 1041 1042 const BinaryConditionalOperator *e = cast<BinaryConditionalOperator>(op); 1043 Data = OpaqueValueMappingData::bind(CGF, e->getOpaqueValue(), 1044 e->getCommon()); 1045 } 1046 1047 /// Build the opaque value mapping for an OpaqueValueExpr whose source 1048 /// expression is set to the expression the OVE represents. 1049 OpaqueValueMapping(CodeGenFunction &CGF, const OpaqueValueExpr *OV) 1050 : CGF(CGF) { 1051 if (OV) { 1052 assert(OV->getSourceExpr() && "wrong form of OpaqueValueMapping used " 1053 "for OVE with no source expression"); 1054 Data = OpaqueValueMappingData::bind(CGF, OV, OV->getSourceExpr()); 1055 } 1056 } 1057 1058 OpaqueValueMapping(CodeGenFunction &CGF, 1059 const OpaqueValueExpr *opaqueValue, 1060 LValue lvalue) 1061 : CGF(CGF), Data(OpaqueValueMappingData::bind(CGF, opaqueValue, lvalue)) { 1062 } 1063 1064 OpaqueValueMapping(CodeGenFunction &CGF, 1065 const OpaqueValueExpr *opaqueValue, 1066 RValue rvalue) 1067 : CGF(CGF), Data(OpaqueValueMappingData::bind(CGF, opaqueValue, rvalue)) { 1068 } 1069 1070 void pop() { 1071 Data.unbind(CGF); 1072 Data.clear(); 1073 } 1074 1075 ~OpaqueValueMapping() { 1076 if (Data.isValid()) Data.unbind(CGF); 1077 } 1078 }; 1079 1080 private: 1081 CGDebugInfo *DebugInfo; 1082 bool DisableDebugInfo; 1083 1084 /// DidCallStackSave - Whether llvm.stacksave has been called. Used to avoid 1085 /// calling llvm.stacksave for multiple VLAs in the same scope. 1086 bool DidCallStackSave; 1087 1088 /// IndirectBranch - The first time an indirect goto is seen we create a block 1089 /// with an indirect branch. Every time we see the address of a label taken, 1090 /// we add the label to the indirect goto. Every subsequent indirect goto is 1091 /// codegen'd as a jump to the IndirectBranch's basic block. 1092 llvm::IndirectBrInst *IndirectBranch; 1093 1094 /// LocalDeclMap - This keeps track of the LLVM allocas or globals for local C 1095 /// decls. 1096 DeclMapTy LocalDeclMap; 1097 1098 /// SizeArguments - If a ParmVarDecl had the pass_object_size attribute, this 1099 /// will contain a mapping from said ParmVarDecl to its implicit "object_size" 1100 /// parameter. 1101 llvm::SmallDenseMap<const ParmVarDecl *, const ImplicitParamDecl *, 2> 1102 SizeArguments; 1103 1104 /// Track escaped local variables with auto storage. Used during SEH 1105 /// outlining to produce a call to llvm.localescape. 1106 llvm::DenseMap<llvm::AllocaInst *, int> EscapedLocals; 1107 1108 /// LabelMap - This keeps track of the LLVM basic block for each C label. 1109 llvm::DenseMap<const LabelDecl*, JumpDest> LabelMap; 1110 1111 // BreakContinueStack - This keeps track of where break and continue 1112 // statements should jump to. 1113 struct BreakContinue { 1114 BreakContinue(JumpDest Break, JumpDest Continue) 1115 : BreakBlock(Break), ContinueBlock(Continue) {} 1116 1117 JumpDest BreakBlock; 1118 JumpDest ContinueBlock; 1119 }; 1120 SmallVector<BreakContinue, 8> BreakContinueStack; 1121 1122 /// Handles cancellation exit points in OpenMP-related constructs. 1123 class OpenMPCancelExitStack { 1124 /// Tracks cancellation exit point and join point for cancel-related exit 1125 /// and normal exit. 1126 struct CancelExit { 1127 CancelExit() = default; 1128 CancelExit(OpenMPDirectiveKind Kind, JumpDest ExitBlock, 1129 JumpDest ContBlock) 1130 : Kind(Kind), ExitBlock(ExitBlock), ContBlock(ContBlock) {} 1131 OpenMPDirectiveKind Kind = OMPD_unknown; 1132 /// true if the exit block has been emitted already by the special 1133 /// emitExit() call, false if the default codegen is used. 1134 bool HasBeenEmitted = false; 1135 JumpDest ExitBlock; 1136 JumpDest ContBlock; 1137 }; 1138 1139 SmallVector<CancelExit, 8> Stack; 1140 1141 public: 1142 OpenMPCancelExitStack() : Stack(1) {} 1143 ~OpenMPCancelExitStack() = default; 1144 /// Fetches the exit block for the current OpenMP construct. 1145 JumpDest getExitBlock() const { return Stack.back().ExitBlock; } 1146 /// Emits exit block with special codegen procedure specific for the related 1147 /// OpenMP construct + emits code for normal construct cleanup. 1148 void emitExit(CodeGenFunction &CGF, OpenMPDirectiveKind Kind, 1149 const llvm::function_ref<void(CodeGenFunction &)> &CodeGen) { 1150 if (Stack.back().Kind == Kind && getExitBlock().isValid()) { 1151 assert(CGF.getOMPCancelDestination(Kind).isValid()); 1152 assert(CGF.HaveInsertPoint()); 1153 assert(!Stack.back().HasBeenEmitted); 1154 auto IP = CGF.Builder.saveAndClearIP(); 1155 CGF.EmitBlock(Stack.back().ExitBlock.getBlock()); 1156 CodeGen(CGF); 1157 CGF.EmitBranch(Stack.back().ContBlock.getBlock()); 1158 CGF.Builder.restoreIP(IP); 1159 Stack.back().HasBeenEmitted = true; 1160 } 1161 CodeGen(CGF); 1162 } 1163 /// Enter the cancel supporting \a Kind construct. 1164 /// \param Kind OpenMP directive that supports cancel constructs. 1165 /// \param HasCancel true, if the construct has inner cancel directive, 1166 /// false otherwise. 1167 void enter(CodeGenFunction &CGF, OpenMPDirectiveKind Kind, bool HasCancel) { 1168 Stack.push_back({Kind, 1169 HasCancel ? CGF.getJumpDestInCurrentScope("cancel.exit") 1170 : JumpDest(), 1171 HasCancel ? CGF.getJumpDestInCurrentScope("cancel.cont") 1172 : JumpDest()}); 1173 } 1174 /// Emits default exit point for the cancel construct (if the special one 1175 /// has not be used) + join point for cancel/normal exits. 1176 void exit(CodeGenFunction &CGF) { 1177 if (getExitBlock().isValid()) { 1178 assert(CGF.getOMPCancelDestination(Stack.back().Kind).isValid()); 1179 bool HaveIP = CGF.HaveInsertPoint(); 1180 if (!Stack.back().HasBeenEmitted) { 1181 if (HaveIP) 1182 CGF.EmitBranchThroughCleanup(Stack.back().ContBlock); 1183 CGF.EmitBlock(Stack.back().ExitBlock.getBlock()); 1184 CGF.EmitBranchThroughCleanup(Stack.back().ContBlock); 1185 } 1186 CGF.EmitBlock(Stack.back().ContBlock.getBlock()); 1187 if (!HaveIP) { 1188 CGF.Builder.CreateUnreachable(); 1189 CGF.Builder.ClearInsertionPoint(); 1190 } 1191 } 1192 Stack.pop_back(); 1193 } 1194 }; 1195 OpenMPCancelExitStack OMPCancelStack; 1196 1197 CodeGenPGO PGO; 1198 1199 /// Calculate branch weights appropriate for PGO data 1200 llvm::MDNode *createProfileWeights(uint64_t TrueCount, uint64_t FalseCount); 1201 llvm::MDNode *createProfileWeights(ArrayRef<uint64_t> Weights); 1202 llvm::MDNode *createProfileWeightsForLoop(const Stmt *Cond, 1203 uint64_t LoopCount); 1204 1205 public: 1206 /// Increment the profiler's counter for the given statement by \p StepV. 1207 /// If \p StepV is null, the default increment is 1. 1208 void incrementProfileCounter(const Stmt *S, llvm::Value *StepV = nullptr) { 1209 if (CGM.getCodeGenOpts().hasProfileClangInstr()) 1210 PGO.emitCounterIncrement(Builder, S, StepV); 1211 PGO.setCurrentStmt(S); 1212 } 1213 1214 /// Get the profiler's count for the given statement. 1215 uint64_t getProfileCount(const Stmt *S) { 1216 Optional<uint64_t> Count = PGO.getStmtCount(S); 1217 if (!Count.hasValue()) 1218 return 0; 1219 return *Count; 1220 } 1221 1222 /// Set the profiler's current count. 1223 void setCurrentProfileCount(uint64_t Count) { 1224 PGO.setCurrentRegionCount(Count); 1225 } 1226 1227 /// Get the profiler's current count. This is generally the count for the most 1228 /// recently incremented counter. 1229 uint64_t getCurrentProfileCount() { 1230 return PGO.getCurrentRegionCount(); 1231 } 1232 1233 private: 1234 1235 /// SwitchInsn - This is nearest current switch instruction. It is null if 1236 /// current context is not in a switch. 1237 llvm::SwitchInst *SwitchInsn; 1238 /// The branch weights of SwitchInsn when doing instrumentation based PGO. 1239 SmallVector<uint64_t, 16> *SwitchWeights; 1240 1241 /// CaseRangeBlock - This block holds if condition check for last case 1242 /// statement range in current switch instruction. 1243 llvm::BasicBlock *CaseRangeBlock; 1244 1245 /// OpaqueLValues - Keeps track of the current set of opaque value 1246 /// expressions. 1247 llvm::DenseMap<const OpaqueValueExpr *, LValue> OpaqueLValues; 1248 llvm::DenseMap<const OpaqueValueExpr *, RValue> OpaqueRValues; 1249 1250 // VLASizeMap - This keeps track of the associated size for each VLA type. 1251 // We track this by the size expression rather than the type itself because 1252 // in certain situations, like a const qualifier applied to an VLA typedef, 1253 // multiple VLA types can share the same size expression. 1254 // FIXME: Maybe this could be a stack of maps that is pushed/popped as we 1255 // enter/leave scopes. 1256 llvm::DenseMap<const Expr*, llvm::Value*> VLASizeMap; 1257 1258 /// A block containing a single 'unreachable' instruction. Created 1259 /// lazily by getUnreachableBlock(). 1260 llvm::BasicBlock *UnreachableBlock; 1261 1262 /// Counts of the number return expressions in the function. 1263 unsigned NumReturnExprs; 1264 1265 /// Count the number of simple (constant) return expressions in the function. 1266 unsigned NumSimpleReturnExprs; 1267 1268 /// The last regular (non-return) debug location (breakpoint) in the function. 1269 SourceLocation LastStopPoint; 1270 1271 public: 1272 /// A scope within which we are constructing the fields of an object which 1273 /// might use a CXXDefaultInitExpr. This stashes away a 'this' value to use 1274 /// if we need to evaluate a CXXDefaultInitExpr within the evaluation. 1275 class FieldConstructionScope { 1276 public: 1277 FieldConstructionScope(CodeGenFunction &CGF, Address This) 1278 : CGF(CGF), OldCXXDefaultInitExprThis(CGF.CXXDefaultInitExprThis) { 1279 CGF.CXXDefaultInitExprThis = This; 1280 } 1281 ~FieldConstructionScope() { 1282 CGF.CXXDefaultInitExprThis = OldCXXDefaultInitExprThis; 1283 } 1284 1285 private: 1286 CodeGenFunction &CGF; 1287 Address OldCXXDefaultInitExprThis; 1288 }; 1289 1290 /// The scope of a CXXDefaultInitExpr. Within this scope, the value of 'this' 1291 /// is overridden to be the object under construction. 1292 class CXXDefaultInitExprScope { 1293 public: 1294 CXXDefaultInitExprScope(CodeGenFunction &CGF) 1295 : CGF(CGF), OldCXXThisValue(CGF.CXXThisValue), 1296 OldCXXThisAlignment(CGF.CXXThisAlignment) { 1297 CGF.CXXThisValue = CGF.CXXDefaultInitExprThis.getPointer(); 1298 CGF.CXXThisAlignment = CGF.CXXDefaultInitExprThis.getAlignment(); 1299 } 1300 ~CXXDefaultInitExprScope() { 1301 CGF.CXXThisValue = OldCXXThisValue; 1302 CGF.CXXThisAlignment = OldCXXThisAlignment; 1303 } 1304 1305 public: 1306 CodeGenFunction &CGF; 1307 llvm::Value *OldCXXThisValue; 1308 CharUnits OldCXXThisAlignment; 1309 }; 1310 1311 /// The scope of an ArrayInitLoopExpr. Within this scope, the value of the 1312 /// current loop index is overridden. 1313 class ArrayInitLoopExprScope { 1314 public: 1315 ArrayInitLoopExprScope(CodeGenFunction &CGF, llvm::Value *Index) 1316 : CGF(CGF), OldArrayInitIndex(CGF.ArrayInitIndex) { 1317 CGF.ArrayInitIndex = Index; 1318 } 1319 ~ArrayInitLoopExprScope() { 1320 CGF.ArrayInitIndex = OldArrayInitIndex; 1321 } 1322 1323 private: 1324 CodeGenFunction &CGF; 1325 llvm::Value *OldArrayInitIndex; 1326 }; 1327 1328 class InlinedInheritingConstructorScope { 1329 public: 1330 InlinedInheritingConstructorScope(CodeGenFunction &CGF, GlobalDecl GD) 1331 : CGF(CGF), OldCurGD(CGF.CurGD), OldCurFuncDecl(CGF.CurFuncDecl), 1332 OldCurCodeDecl(CGF.CurCodeDecl), 1333 OldCXXABIThisDecl(CGF.CXXABIThisDecl), 1334 OldCXXABIThisValue(CGF.CXXABIThisValue), 1335 OldCXXThisValue(CGF.CXXThisValue), 1336 OldCXXABIThisAlignment(CGF.CXXABIThisAlignment), 1337 OldCXXThisAlignment(CGF.CXXThisAlignment), 1338 OldReturnValue(CGF.ReturnValue), OldFnRetTy(CGF.FnRetTy), 1339 OldCXXInheritedCtorInitExprArgs( 1340 std::move(CGF.CXXInheritedCtorInitExprArgs)) { 1341 CGF.CurGD = GD; 1342 CGF.CurFuncDecl = CGF.CurCodeDecl = 1343 cast<CXXConstructorDecl>(GD.getDecl()); 1344 CGF.CXXABIThisDecl = nullptr; 1345 CGF.CXXABIThisValue = nullptr; 1346 CGF.CXXThisValue = nullptr; 1347 CGF.CXXABIThisAlignment = CharUnits(); 1348 CGF.CXXThisAlignment = CharUnits(); 1349 CGF.ReturnValue = Address::invalid(); 1350 CGF.FnRetTy = QualType(); 1351 CGF.CXXInheritedCtorInitExprArgs.clear(); 1352 } 1353 ~InlinedInheritingConstructorScope() { 1354 CGF.CurGD = OldCurGD; 1355 CGF.CurFuncDecl = OldCurFuncDecl; 1356 CGF.CurCodeDecl = OldCurCodeDecl; 1357 CGF.CXXABIThisDecl = OldCXXABIThisDecl; 1358 CGF.CXXABIThisValue = OldCXXABIThisValue; 1359 CGF.CXXThisValue = OldCXXThisValue; 1360 CGF.CXXABIThisAlignment = OldCXXABIThisAlignment; 1361 CGF.CXXThisAlignment = OldCXXThisAlignment; 1362 CGF.ReturnValue = OldReturnValue; 1363 CGF.FnRetTy = OldFnRetTy; 1364 CGF.CXXInheritedCtorInitExprArgs = 1365 std::move(OldCXXInheritedCtorInitExprArgs); 1366 } 1367 1368 private: 1369 CodeGenFunction &CGF; 1370 GlobalDecl OldCurGD; 1371 const Decl *OldCurFuncDecl; 1372 const Decl *OldCurCodeDecl; 1373 ImplicitParamDecl *OldCXXABIThisDecl; 1374 llvm::Value *OldCXXABIThisValue; 1375 llvm::Value *OldCXXThisValue; 1376 CharUnits OldCXXABIThisAlignment; 1377 CharUnits OldCXXThisAlignment; 1378 Address OldReturnValue; 1379 QualType OldFnRetTy; 1380 CallArgList OldCXXInheritedCtorInitExprArgs; 1381 }; 1382 1383 private: 1384 /// CXXThisDecl - When generating code for a C++ member function, 1385 /// this will hold the implicit 'this' declaration. 1386 ImplicitParamDecl *CXXABIThisDecl; 1387 llvm::Value *CXXABIThisValue; 1388 llvm::Value *CXXThisValue; 1389 CharUnits CXXABIThisAlignment; 1390 CharUnits CXXThisAlignment; 1391 1392 /// The value of 'this' to use when evaluating CXXDefaultInitExprs within 1393 /// this expression. 1394 Address CXXDefaultInitExprThis = Address::invalid(); 1395 1396 /// The current array initialization index when evaluating an 1397 /// ArrayInitIndexExpr within an ArrayInitLoopExpr. 1398 llvm::Value *ArrayInitIndex = nullptr; 1399 1400 /// The values of function arguments to use when evaluating 1401 /// CXXInheritedCtorInitExprs within this context. 1402 CallArgList CXXInheritedCtorInitExprArgs; 1403 1404 /// CXXStructorImplicitParamDecl - When generating code for a constructor or 1405 /// destructor, this will hold the implicit argument (e.g. VTT). 1406 ImplicitParamDecl *CXXStructorImplicitParamDecl; 1407 llvm::Value *CXXStructorImplicitParamValue; 1408 1409 /// OutermostConditional - Points to the outermost active 1410 /// conditional control. This is used so that we know if a 1411 /// temporary should be destroyed conditionally. 1412 ConditionalEvaluation *OutermostConditional; 1413 1414 /// The current lexical scope. 1415 LexicalScope *CurLexicalScope; 1416 1417 /// The current source location that should be used for exception 1418 /// handling code. 1419 SourceLocation CurEHLocation; 1420 1421 /// BlockByrefInfos - For each __block variable, contains 1422 /// information about the layout of the variable. 1423 llvm::DenseMap<const ValueDecl *, BlockByrefInfo> BlockByrefInfos; 1424 1425 /// Used by -fsanitize=nullability-return to determine whether the return 1426 /// value can be checked. 1427 llvm::Value *RetValNullabilityPrecondition = nullptr; 1428 1429 /// Check if -fsanitize=nullability-return instrumentation is required for 1430 /// this function. 1431 bool requiresReturnValueNullabilityCheck() const { 1432 return RetValNullabilityPrecondition; 1433 } 1434 1435 /// Used to store precise source locations for return statements by the 1436 /// runtime return value checks. 1437 Address ReturnLocation = Address::invalid(); 1438 1439 /// Check if the return value of this function requires sanitization. 1440 bool requiresReturnValueCheck() const { 1441 return requiresReturnValueNullabilityCheck() || 1442 (SanOpts.has(SanitizerKind::ReturnsNonnullAttribute) && 1443 CurCodeDecl && CurCodeDecl->getAttr<ReturnsNonNullAttr>()); 1444 } 1445 1446 llvm::BasicBlock *TerminateLandingPad; 1447 llvm::BasicBlock *TerminateHandler; 1448 llvm::BasicBlock *TrapBB; 1449 1450 /// Terminate funclets keyed by parent funclet pad. 1451 llvm::MapVector<llvm::Value *, llvm::BasicBlock *> TerminateFunclets; 1452 1453 /// True if we need emit the life-time markers. 1454 const bool ShouldEmitLifetimeMarkers; 1455 1456 /// Add OpenCL kernel arg metadata and the kernel attribute metadata to 1457 /// the function metadata. 1458 void EmitOpenCLKernelMetadata(const FunctionDecl *FD, 1459 llvm::Function *Fn); 1460 1461 public: 1462 CodeGenFunction(CodeGenModule &cgm, bool suppressNewContext=false); 1463 ~CodeGenFunction(); 1464 1465 CodeGenTypes &getTypes() const { return CGM.getTypes(); } 1466 ASTContext &getContext() const { return CGM.getContext(); } 1467 CGDebugInfo *getDebugInfo() { 1468 if (DisableDebugInfo) 1469 return nullptr; 1470 return DebugInfo; 1471 } 1472 void disableDebugInfo() { DisableDebugInfo = true; } 1473 void enableDebugInfo() { DisableDebugInfo = false; } 1474 1475 bool shouldUseFusedARCCalls() { 1476 return CGM.getCodeGenOpts().OptimizationLevel == 0; 1477 } 1478 1479 const LangOptions &getLangOpts() const { return CGM.getLangOpts(); } 1480 1481 /// Returns a pointer to the function's exception object and selector slot, 1482 /// which is assigned in every landing pad. 1483 Address getExceptionSlot(); 1484 Address getEHSelectorSlot(); 1485 1486 /// Returns the contents of the function's exception object and selector 1487 /// slots. 1488 llvm::Value *getExceptionFromSlot(); 1489 llvm::Value *getSelectorFromSlot(); 1490 1491 Address getNormalCleanupDestSlot(); 1492 1493 llvm::BasicBlock *getUnreachableBlock() { 1494 if (!UnreachableBlock) { 1495 UnreachableBlock = createBasicBlock("unreachable"); 1496 new llvm::UnreachableInst(getLLVMContext(), UnreachableBlock); 1497 } 1498 return UnreachableBlock; 1499 } 1500 1501 llvm::BasicBlock *getInvokeDest() { 1502 if (!EHStack.requiresLandingPad()) return nullptr; 1503 return getInvokeDestImpl(); 1504 } 1505 1506 bool currentFunctionUsesSEHTry() const { return CurSEHParent != nullptr; } 1507 1508 const TargetInfo &getTarget() const { return Target; } 1509 llvm::LLVMContext &getLLVMContext() { return CGM.getLLVMContext(); } 1510 const TargetCodeGenInfo &getTargetHooks() const { 1511 return CGM.getTargetCodeGenInfo(); 1512 } 1513 1514 //===--------------------------------------------------------------------===// 1515 // Cleanups 1516 //===--------------------------------------------------------------------===// 1517 1518 typedef void Destroyer(CodeGenFunction &CGF, Address addr, QualType ty); 1519 1520 void pushIrregularPartialArrayCleanup(llvm::Value *arrayBegin, 1521 Address arrayEndPointer, 1522 QualType elementType, 1523 CharUnits elementAlignment, 1524 Destroyer *destroyer); 1525 void pushRegularPartialArrayCleanup(llvm::Value *arrayBegin, 1526 llvm::Value *arrayEnd, 1527 QualType elementType, 1528 CharUnits elementAlignment, 1529 Destroyer *destroyer); 1530 1531 void pushDestroy(QualType::DestructionKind dtorKind, 1532 Address addr, QualType type); 1533 void pushEHDestroy(QualType::DestructionKind dtorKind, 1534 Address addr, QualType type); 1535 void pushDestroy(CleanupKind kind, Address addr, QualType type, 1536 Destroyer *destroyer, bool useEHCleanupForArray); 1537 void pushLifetimeExtendedDestroy(CleanupKind kind, Address addr, 1538 QualType type, Destroyer *destroyer, 1539 bool useEHCleanupForArray); 1540 void pushCallObjectDeleteCleanup(const FunctionDecl *OperatorDelete, 1541 llvm::Value *CompletePtr, 1542 QualType ElementType); 1543 void pushStackRestore(CleanupKind kind, Address SPMem); 1544 void emitDestroy(Address addr, QualType type, Destroyer *destroyer, 1545 bool useEHCleanupForArray); 1546 llvm::Function *generateDestroyHelper(Address addr, QualType type, 1547 Destroyer *destroyer, 1548 bool useEHCleanupForArray, 1549 const VarDecl *VD); 1550 void emitArrayDestroy(llvm::Value *begin, llvm::Value *end, 1551 QualType elementType, CharUnits elementAlign, 1552 Destroyer *destroyer, 1553 bool checkZeroLength, bool useEHCleanup); 1554 1555 Destroyer *getDestroyer(QualType::DestructionKind destructionKind); 1556 1557 /// Determines whether an EH cleanup is required to destroy a type 1558 /// with the given destruction kind. 1559 bool needsEHCleanup(QualType::DestructionKind kind) { 1560 switch (kind) { 1561 case QualType::DK_none: 1562 return false; 1563 case QualType::DK_cxx_destructor: 1564 case QualType::DK_objc_weak_lifetime: 1565 case QualType::DK_nontrivial_c_struct: 1566 return getLangOpts().Exceptions; 1567 case QualType::DK_objc_strong_lifetime: 1568 return getLangOpts().Exceptions && 1569 CGM.getCodeGenOpts().ObjCAutoRefCountExceptions; 1570 } 1571 llvm_unreachable("bad destruction kind"); 1572 } 1573 1574 CleanupKind getCleanupKind(QualType::DestructionKind kind) { 1575 return (needsEHCleanup(kind) ? NormalAndEHCleanup : NormalCleanup); 1576 } 1577 1578 //===--------------------------------------------------------------------===// 1579 // Objective-C 1580 //===--------------------------------------------------------------------===// 1581 1582 void GenerateObjCMethod(const ObjCMethodDecl *OMD); 1583 1584 void StartObjCMethod(const ObjCMethodDecl *MD, const ObjCContainerDecl *CD); 1585 1586 /// GenerateObjCGetter - Synthesize an Objective-C property getter function. 1587 void GenerateObjCGetter(ObjCImplementationDecl *IMP, 1588 const ObjCPropertyImplDecl *PID); 1589 void generateObjCGetterBody(const ObjCImplementationDecl *classImpl, 1590 const ObjCPropertyImplDecl *propImpl, 1591 const ObjCMethodDecl *GetterMothodDecl, 1592 llvm::Constant *AtomicHelperFn); 1593 1594 void GenerateObjCCtorDtorMethod(ObjCImplementationDecl *IMP, 1595 ObjCMethodDecl *MD, bool ctor); 1596 1597 /// GenerateObjCSetter - Synthesize an Objective-C property setter function 1598 /// for the given property. 1599 void GenerateObjCSetter(ObjCImplementationDecl *IMP, 1600 const ObjCPropertyImplDecl *PID); 1601 void generateObjCSetterBody(const ObjCImplementationDecl *classImpl, 1602 const ObjCPropertyImplDecl *propImpl, 1603 llvm::Constant *AtomicHelperFn); 1604 1605 //===--------------------------------------------------------------------===// 1606 // Block Bits 1607 //===--------------------------------------------------------------------===// 1608 1609 /// Emit block literal. 1610 /// \return an LLVM value which is a pointer to a struct which contains 1611 /// information about the block, including the block invoke function, the 1612 /// captured variables, etc. 1613 llvm::Value *EmitBlockLiteral(const BlockExpr *); 1614 static void destroyBlockInfos(CGBlockInfo *info); 1615 1616 llvm::Function *GenerateBlockFunction(GlobalDecl GD, 1617 const CGBlockInfo &Info, 1618 const DeclMapTy &ldm, 1619 bool IsLambdaConversionToBlock, 1620 bool BuildGlobalBlock); 1621 1622 llvm::Constant *GenerateCopyHelperFunction(const CGBlockInfo &blockInfo); 1623 llvm::Constant *GenerateDestroyHelperFunction(const CGBlockInfo &blockInfo); 1624 llvm::Constant *GenerateObjCAtomicSetterCopyHelperFunction( 1625 const ObjCPropertyImplDecl *PID); 1626 llvm::Constant *GenerateObjCAtomicGetterCopyHelperFunction( 1627 const ObjCPropertyImplDecl *PID); 1628 llvm::Value *EmitBlockCopyAndAutorelease(llvm::Value *Block, QualType Ty); 1629 1630 void BuildBlockRelease(llvm::Value *DeclPtr, BlockFieldFlags flags); 1631 1632 class AutoVarEmission; 1633 1634 void emitByrefStructureInit(const AutoVarEmission &emission); 1635 void enterByrefCleanup(const AutoVarEmission &emission); 1636 1637 void setBlockContextParameter(const ImplicitParamDecl *D, unsigned argNum, 1638 llvm::Value *ptr); 1639 1640 Address LoadBlockStruct(); 1641 Address GetAddrOfBlockDecl(const VarDecl *var, bool ByRef); 1642 1643 /// BuildBlockByrefAddress - Computes the location of the 1644 /// data in a variable which is declared as __block. 1645 Address emitBlockByrefAddress(Address baseAddr, const VarDecl *V, 1646 bool followForward = true); 1647 Address emitBlockByrefAddress(Address baseAddr, 1648 const BlockByrefInfo &info, 1649 bool followForward, 1650 const llvm::Twine &name); 1651 1652 const BlockByrefInfo &getBlockByrefInfo(const VarDecl *var); 1653 1654 QualType BuildFunctionArgList(GlobalDecl GD, FunctionArgList &Args); 1655 1656 void GenerateCode(GlobalDecl GD, llvm::Function *Fn, 1657 const CGFunctionInfo &FnInfo); 1658 /// \brief Emit code for the start of a function. 1659 /// \param Loc The location to be associated with the function. 1660 /// \param StartLoc The location of the function body. 1661 void StartFunction(GlobalDecl GD, 1662 QualType RetTy, 1663 llvm::Function *Fn, 1664 const CGFunctionInfo &FnInfo, 1665 const FunctionArgList &Args, 1666 SourceLocation Loc = SourceLocation(), 1667 SourceLocation StartLoc = SourceLocation()); 1668 1669 static bool IsConstructorDelegationValid(const CXXConstructorDecl *Ctor); 1670 1671 void EmitConstructorBody(FunctionArgList &Args); 1672 void EmitDestructorBody(FunctionArgList &Args); 1673 void emitImplicitAssignmentOperatorBody(FunctionArgList &Args); 1674 void EmitFunctionBody(FunctionArgList &Args, const Stmt *Body); 1675 void EmitBlockWithFallThrough(llvm::BasicBlock *BB, const Stmt *S); 1676 1677 void EmitForwardingCallToLambda(const CXXMethodDecl *LambdaCallOperator, 1678 CallArgList &CallArgs); 1679 void EmitLambdaBlockInvokeBody(); 1680 void EmitLambdaDelegatingInvokeBody(const CXXMethodDecl *MD); 1681 void EmitLambdaStaticInvokeBody(const CXXMethodDecl *MD); 1682 void EmitAsanPrologueOrEpilogue(bool Prologue); 1683 1684 /// \brief Emit the unified return block, trying to avoid its emission when 1685 /// possible. 1686 /// \return The debug location of the user written return statement if the 1687 /// return block is is avoided. 1688 llvm::DebugLoc EmitReturnBlock(); 1689 1690 /// FinishFunction - Complete IR generation of the current function. It is 1691 /// legal to call this function even if there is no current insertion point. 1692 void FinishFunction(SourceLocation EndLoc=SourceLocation()); 1693 1694 void StartThunk(llvm::Function *Fn, GlobalDecl GD, 1695 const CGFunctionInfo &FnInfo, bool IsUnprototyped); 1696 1697 void EmitCallAndReturnForThunk(llvm::Constant *Callee, const ThunkInfo *Thunk, 1698 bool IsUnprototyped); 1699 1700 void FinishThunk(); 1701 1702 /// Emit a musttail call for a thunk with a potentially adjusted this pointer. 1703 void EmitMustTailThunk(const CXXMethodDecl *MD, llvm::Value *AdjustedThisPtr, 1704 llvm::Value *Callee); 1705 1706 /// Generate a thunk for the given method. 1707 void generateThunk(llvm::Function *Fn, const CGFunctionInfo &FnInfo, 1708 GlobalDecl GD, const ThunkInfo &Thunk, 1709 bool IsUnprototyped); 1710 1711 llvm::Function *GenerateVarArgsThunk(llvm::Function *Fn, 1712 const CGFunctionInfo &FnInfo, 1713 GlobalDecl GD, const ThunkInfo &Thunk); 1714 1715 void EmitCtorPrologue(const CXXConstructorDecl *CD, CXXCtorType Type, 1716 FunctionArgList &Args); 1717 1718 void EmitInitializerForField(FieldDecl *Field, LValue LHS, Expr *Init); 1719 1720 /// Struct with all information about dynamic [sub]class needed to set vptr. 1721 struct VPtr { 1722 BaseSubobject Base; 1723 const CXXRecordDecl *NearestVBase; 1724 CharUnits OffsetFromNearestVBase; 1725 const CXXRecordDecl *VTableClass; 1726 }; 1727 1728 /// Initialize the vtable pointer of the given subobject. 1729 void InitializeVTablePointer(const VPtr &vptr); 1730 1731 typedef llvm::SmallVector<VPtr, 4> VPtrsVector; 1732 1733 typedef llvm::SmallPtrSet<const CXXRecordDecl *, 4> VisitedVirtualBasesSetTy; 1734 VPtrsVector getVTablePointers(const CXXRecordDecl *VTableClass); 1735 1736 void getVTablePointers(BaseSubobject Base, const CXXRecordDecl *NearestVBase, 1737 CharUnits OffsetFromNearestVBase, 1738 bool BaseIsNonVirtualPrimaryBase, 1739 const CXXRecordDecl *VTableClass, 1740 VisitedVirtualBasesSetTy &VBases, VPtrsVector &vptrs); 1741 1742 void InitializeVTablePointers(const CXXRecordDecl *ClassDecl); 1743 1744 /// GetVTablePtr - Return the Value of the vtable pointer member pointed 1745 /// to by This. 1746 llvm::Value *GetVTablePtr(Address This, llvm::Type *VTableTy, 1747 const CXXRecordDecl *VTableClass); 1748 1749 enum CFITypeCheckKind { 1750 CFITCK_VCall, 1751 CFITCK_NVCall, 1752 CFITCK_DerivedCast, 1753 CFITCK_UnrelatedCast, 1754 CFITCK_ICall, 1755 }; 1756 1757 /// \brief Derived is the presumed address of an object of type T after a 1758 /// cast. If T is a polymorphic class type, emit a check that the virtual 1759 /// table for Derived belongs to a class derived from T. 1760 void EmitVTablePtrCheckForCast(QualType T, llvm::Value *Derived, 1761 bool MayBeNull, CFITypeCheckKind TCK, 1762 SourceLocation Loc); 1763 1764 /// EmitVTablePtrCheckForCall - Virtual method MD is being called via VTable. 1765 /// If vptr CFI is enabled, emit a check that VTable is valid. 1766 void EmitVTablePtrCheckForCall(const CXXRecordDecl *RD, llvm::Value *VTable, 1767 CFITypeCheckKind TCK, SourceLocation Loc); 1768 1769 /// EmitVTablePtrCheck - Emit a check that VTable is a valid virtual table for 1770 /// RD using llvm.type.test. 1771 void EmitVTablePtrCheck(const CXXRecordDecl *RD, llvm::Value *VTable, 1772 CFITypeCheckKind TCK, SourceLocation Loc); 1773 1774 /// If whole-program virtual table optimization is enabled, emit an assumption 1775 /// that VTable is a member of RD's type identifier. Or, if vptr CFI is 1776 /// enabled, emit a check that VTable is a member of RD's type identifier. 1777 void EmitTypeMetadataCodeForVCall(const CXXRecordDecl *RD, 1778 llvm::Value *VTable, SourceLocation Loc); 1779 1780 /// Returns whether we should perform a type checked load when loading a 1781 /// virtual function for virtual calls to members of RD. This is generally 1782 /// true when both vcall CFI and whole-program-vtables are enabled. 1783 bool ShouldEmitVTableTypeCheckedLoad(const CXXRecordDecl *RD); 1784 1785 /// Emit a type checked load from the given vtable. 1786 llvm::Value *EmitVTableTypeCheckedLoad(const CXXRecordDecl *RD, llvm::Value *VTable, 1787 uint64_t VTableByteOffset); 1788 1789 /// EnterDtorCleanups - Enter the cleanups necessary to complete the 1790 /// given phase of destruction for a destructor. The end result 1791 /// should call destructors on members and base classes in reverse 1792 /// order of their construction. 1793 void EnterDtorCleanups(const CXXDestructorDecl *Dtor, CXXDtorType Type); 1794 1795 /// ShouldInstrumentFunction - Return true if the current function should be 1796 /// instrumented with __cyg_profile_func_* calls 1797 bool ShouldInstrumentFunction(); 1798 1799 /// ShouldXRayInstrument - Return true if the current function should be 1800 /// instrumented with XRay nop sleds. 1801 bool ShouldXRayInstrumentFunction() const; 1802 1803 /// AlwaysEmitXRayCustomEvents - Return true if we must unconditionally emit 1804 /// XRay custom event handling calls. 1805 bool AlwaysEmitXRayCustomEvents() const; 1806 1807 /// Encode an address into a form suitable for use in a function prologue. 1808 llvm::Constant *EncodeAddrForUseInPrologue(llvm::Function *F, 1809 llvm::Constant *Addr); 1810 1811 /// Decode an address used in a function prologue, encoded by \c 1812 /// EncodeAddrForUseInPrologue. 1813 llvm::Value *DecodeAddrUsedInPrologue(llvm::Value *F, 1814 llvm::Value *EncodedAddr); 1815 1816 /// EmitFunctionProlog - Emit the target specific LLVM code to load the 1817 /// arguments for the given function. This is also responsible for naming the 1818 /// LLVM function arguments. 1819 void EmitFunctionProlog(const CGFunctionInfo &FI, 1820 llvm::Function *Fn, 1821 const FunctionArgList &Args); 1822 1823 /// EmitFunctionEpilog - Emit the target specific LLVM code to return the 1824 /// given temporary. 1825 void EmitFunctionEpilog(const CGFunctionInfo &FI, bool EmitRetDbgLoc, 1826 SourceLocation EndLoc); 1827 1828 /// Emit a test that checks if the return value \p RV is nonnull. 1829 void EmitReturnValueCheck(llvm::Value *RV); 1830 1831 /// EmitStartEHSpec - Emit the start of the exception spec. 1832 void EmitStartEHSpec(const Decl *D); 1833 1834 /// EmitEndEHSpec - Emit the end of the exception spec. 1835 void EmitEndEHSpec(const Decl *D); 1836 1837 /// getTerminateLandingPad - Return a landing pad that just calls terminate. 1838 llvm::BasicBlock *getTerminateLandingPad(); 1839 1840 /// getTerminateLandingPad - Return a cleanup funclet that just calls 1841 /// terminate. 1842 llvm::BasicBlock *getTerminateFunclet(); 1843 1844 /// getTerminateHandler - Return a handler (not a landing pad, just 1845 /// a catch handler) that just calls terminate. This is used when 1846 /// a terminate scope encloses a try. 1847 llvm::BasicBlock *getTerminateHandler(); 1848 1849 llvm::Type *ConvertTypeForMem(QualType T); 1850 llvm::Type *ConvertType(QualType T); 1851 llvm::Type *ConvertType(const TypeDecl *T) { 1852 return ConvertType(getContext().getTypeDeclType(T)); 1853 } 1854 1855 /// LoadObjCSelf - Load the value of self. This function is only valid while 1856 /// generating code for an Objective-C method. 1857 llvm::Value *LoadObjCSelf(); 1858 1859 /// TypeOfSelfObject - Return type of object that this self represents. 1860 QualType TypeOfSelfObject(); 1861 1862 /// getEvaluationKind - Return the TypeEvaluationKind of QualType \c T. 1863 static TypeEvaluationKind getEvaluationKind(QualType T); 1864 1865 static bool hasScalarEvaluationKind(QualType T) { 1866 return getEvaluationKind(T) == TEK_Scalar; 1867 } 1868 1869 static bool hasAggregateEvaluationKind(QualType T) { 1870 return getEvaluationKind(T) == TEK_Aggregate; 1871 } 1872 1873 /// createBasicBlock - Create an LLVM basic block. 1874 llvm::BasicBlock *createBasicBlock(const Twine &name = "", 1875 llvm::Function *parent = nullptr, 1876 llvm::BasicBlock *before = nullptr) { 1877 return llvm::BasicBlock::Create(getLLVMContext(), name, parent, before); 1878 } 1879 1880 /// getBasicBlockForLabel - Return the LLVM basicblock that the specified 1881 /// label maps to. 1882 JumpDest getJumpDestForLabel(const LabelDecl *S); 1883 1884 /// SimplifyForwardingBlocks - If the given basic block is only a branch to 1885 /// another basic block, simplify it. This assumes that no other code could 1886 /// potentially reference the basic block. 1887 void SimplifyForwardingBlocks(llvm::BasicBlock *BB); 1888 1889 /// EmitBlock - Emit the given block \arg BB and set it as the insert point, 1890 /// adding a fall-through branch from the current insert block if 1891 /// necessary. It is legal to call this function even if there is no current 1892 /// insertion point. 1893 /// 1894 /// IsFinished - If true, indicates that the caller has finished emitting 1895 /// branches to the given block and does not expect to emit code into it. This 1896 /// means the block can be ignored if it is unreachable. 1897 void EmitBlock(llvm::BasicBlock *BB, bool IsFinished=false); 1898 1899 /// EmitBlockAfterUses - Emit the given block somewhere hopefully 1900 /// near its uses, and leave the insertion point in it. 1901 void EmitBlockAfterUses(llvm::BasicBlock *BB); 1902 1903 /// EmitBranch - Emit a branch to the specified basic block from the current 1904 /// insert block, taking care to avoid creation of branches from dummy 1905 /// blocks. It is legal to call this function even if there is no current 1906 /// insertion point. 1907 /// 1908 /// This function clears the current insertion point. The caller should follow 1909 /// calls to this function with calls to Emit*Block prior to generation new 1910 /// code. 1911 void EmitBranch(llvm::BasicBlock *Block); 1912 1913 /// HaveInsertPoint - True if an insertion point is defined. If not, this 1914 /// indicates that the current code being emitted is unreachable. 1915 bool HaveInsertPoint() const { 1916 return Builder.GetInsertBlock() != nullptr; 1917 } 1918 1919 /// EnsureInsertPoint - Ensure that an insertion point is defined so that 1920 /// emitted IR has a place to go. Note that by definition, if this function 1921 /// creates a block then that block is unreachable; callers may do better to 1922 /// detect when no insertion point is defined and simply skip IR generation. 1923 void EnsureInsertPoint() { 1924 if (!HaveInsertPoint()) 1925 EmitBlock(createBasicBlock()); 1926 } 1927 1928 /// ErrorUnsupported - Print out an error that codegen doesn't support the 1929 /// specified stmt yet. 1930 void ErrorUnsupported(const Stmt *S, const char *Type); 1931 1932 //===--------------------------------------------------------------------===// 1933 // Helpers 1934 //===--------------------------------------------------------------------===// 1935 1936 LValue MakeAddrLValue(Address Addr, QualType T, 1937 AlignmentSource Source = AlignmentSource::Type) { 1938 return LValue::MakeAddr(Addr, T, getContext(), LValueBaseInfo(Source), 1939 CGM.getTBAAAccessInfo(T)); 1940 } 1941 1942 LValue MakeAddrLValue(Address Addr, QualType T, LValueBaseInfo BaseInfo, 1943 TBAAAccessInfo TBAAInfo) { 1944 return LValue::MakeAddr(Addr, T, getContext(), BaseInfo, TBAAInfo); 1945 } 1946 1947 LValue MakeAddrLValue(llvm::Value *V, QualType T, CharUnits Alignment, 1948 AlignmentSource Source = AlignmentSource::Type) { 1949 return LValue::MakeAddr(Address(V, Alignment), T, getContext(), 1950 LValueBaseInfo(Source), CGM.getTBAAAccessInfo(T)); 1951 } 1952 1953 LValue MakeAddrLValue(llvm::Value *V, QualType T, CharUnits Alignment, 1954 LValueBaseInfo BaseInfo, TBAAAccessInfo TBAAInfo) { 1955 return LValue::MakeAddr(Address(V, Alignment), T, getContext(), 1956 BaseInfo, TBAAInfo); 1957 } 1958 1959 LValue MakeNaturalAlignPointeeAddrLValue(llvm::Value *V, QualType T); 1960 LValue MakeNaturalAlignAddrLValue(llvm::Value *V, QualType T); 1961 CharUnits getNaturalTypeAlignment(QualType T, 1962 LValueBaseInfo *BaseInfo = nullptr, 1963 TBAAAccessInfo *TBAAInfo = nullptr, 1964 bool forPointeeType = false); 1965 CharUnits getNaturalPointeeTypeAlignment(QualType T, 1966 LValueBaseInfo *BaseInfo = nullptr, 1967 TBAAAccessInfo *TBAAInfo = nullptr); 1968 1969 Address EmitLoadOfReference(LValue RefLVal, 1970 LValueBaseInfo *PointeeBaseInfo = nullptr, 1971 TBAAAccessInfo *PointeeTBAAInfo = nullptr); 1972 LValue EmitLoadOfReferenceLValue(LValue RefLVal); 1973 LValue EmitLoadOfReferenceLValue(Address RefAddr, QualType RefTy, 1974 AlignmentSource Source = 1975 AlignmentSource::Type) { 1976 LValue RefLVal = MakeAddrLValue(RefAddr, RefTy, LValueBaseInfo(Source), 1977 CGM.getTBAAAccessInfo(RefTy)); 1978 return EmitLoadOfReferenceLValue(RefLVal); 1979 } 1980 1981 Address EmitLoadOfPointer(Address Ptr, const PointerType *PtrTy, 1982 LValueBaseInfo *BaseInfo = nullptr, 1983 TBAAAccessInfo *TBAAInfo = nullptr); 1984 LValue EmitLoadOfPointerLValue(Address Ptr, const PointerType *PtrTy); 1985 1986 /// CreateTempAlloca - This creates an alloca and inserts it into the entry 1987 /// block if \p ArraySize is nullptr, otherwise inserts it at the current 1988 /// insertion point of the builder. The caller is responsible for setting an 1989 /// appropriate alignment on 1990 /// the alloca. 1991 /// 1992 /// \p ArraySize is the number of array elements to be allocated if it 1993 /// is not nullptr. 1994 /// 1995 /// LangAS::Default is the address space of pointers to local variables and 1996 /// temporaries, as exposed in the source language. In certain 1997 /// configurations, this is not the same as the alloca address space, and a 1998 /// cast is needed to lift the pointer from the alloca AS into 1999 /// LangAS::Default. This can happen when the target uses a restricted 2000 /// address space for the stack but the source language requires 2001 /// LangAS::Default to be a generic address space. The latter condition is 2002 /// common for most programming languages; OpenCL is an exception in that 2003 /// LangAS::Default is the private address space, which naturally maps 2004 /// to the stack. 2005 /// 2006 /// Because the address of a temporary is often exposed to the program in 2007 /// various ways, this function will perform the cast by default. The cast 2008 /// may be avoided by passing false as \p CastToDefaultAddrSpace; this is 2009 /// more efficient if the caller knows that the address will not be exposed. 2010 llvm::AllocaInst *CreateTempAlloca(llvm::Type *Ty, const Twine &Name = "tmp", 2011 llvm::Value *ArraySize = nullptr); 2012 Address CreateTempAlloca(llvm::Type *Ty, CharUnits align, 2013 const Twine &Name = "tmp", 2014 llvm::Value *ArraySize = nullptr, 2015 bool CastToDefaultAddrSpace = true); 2016 2017 /// CreateDefaultAlignedTempAlloca - This creates an alloca with the 2018 /// default ABI alignment of the given LLVM type. 2019 /// 2020 /// IMPORTANT NOTE: This is *not* generally the right alignment for 2021 /// any given AST type that happens to have been lowered to the 2022 /// given IR type. This should only ever be used for function-local, 2023 /// IR-driven manipulations like saving and restoring a value. Do 2024 /// not hand this address off to arbitrary IRGen routines, and especially 2025 /// do not pass it as an argument to a function that might expect a 2026 /// properly ABI-aligned value. 2027 Address CreateDefaultAlignTempAlloca(llvm::Type *Ty, 2028 const Twine &Name = "tmp"); 2029 2030 /// InitTempAlloca - Provide an initial value for the given alloca which 2031 /// will be observable at all locations in the function. 2032 /// 2033 /// The address should be something that was returned from one of 2034 /// the CreateTempAlloca or CreateMemTemp routines, and the 2035 /// initializer must be valid in the entry block (i.e. it must 2036 /// either be a constant or an argument value). 2037 void InitTempAlloca(Address Alloca, llvm::Value *Value); 2038 2039 /// CreateIRTemp - Create a temporary IR object of the given type, with 2040 /// appropriate alignment. This routine should only be used when an temporary 2041 /// value needs to be stored into an alloca (for example, to avoid explicit 2042 /// PHI construction), but the type is the IR type, not the type appropriate 2043 /// for storing in memory. 2044 /// 2045 /// That is, this is exactly equivalent to CreateMemTemp, but calling 2046 /// ConvertType instead of ConvertTypeForMem. 2047 Address CreateIRTemp(QualType T, const Twine &Name = "tmp"); 2048 2049 /// CreateMemTemp - Create a temporary memory object of the given type, with 2050 /// appropriate alignment. Cast it to the default address space if 2051 /// \p CastToDefaultAddrSpace is true. 2052 Address CreateMemTemp(QualType T, const Twine &Name = "tmp", 2053 bool CastToDefaultAddrSpace = true); 2054 Address CreateMemTemp(QualType T, CharUnits Align, const Twine &Name = "tmp", 2055 bool CastToDefaultAddrSpace = true); 2056 2057 /// CreateAggTemp - Create a temporary memory object for the given 2058 /// aggregate type. 2059 AggValueSlot CreateAggTemp(QualType T, const Twine &Name = "tmp") { 2060 return AggValueSlot::forAddr(CreateMemTemp(T, Name), 2061 T.getQualifiers(), 2062 AggValueSlot::IsNotDestructed, 2063 AggValueSlot::DoesNotNeedGCBarriers, 2064 AggValueSlot::IsNotAliased, 2065 AggValueSlot::DoesNotOverlap); 2066 } 2067 2068 /// Emit a cast to void* in the appropriate address space. 2069 llvm::Value *EmitCastToVoidPtr(llvm::Value *value); 2070 2071 /// EvaluateExprAsBool - Perform the usual unary conversions on the specified 2072 /// expression and compare the result against zero, returning an Int1Ty value. 2073 llvm::Value *EvaluateExprAsBool(const Expr *E); 2074 2075 /// EmitIgnoredExpr - Emit an expression in a context which ignores the result. 2076 void EmitIgnoredExpr(const Expr *E); 2077 2078 /// EmitAnyExpr - Emit code to compute the specified expression which can have 2079 /// any type. The result is returned as an RValue struct. If this is an 2080 /// aggregate expression, the aggloc/agglocvolatile arguments indicate where 2081 /// the result should be returned. 2082 /// 2083 /// \param ignoreResult True if the resulting value isn't used. 2084 RValue EmitAnyExpr(const Expr *E, 2085 AggValueSlot aggSlot = AggValueSlot::ignored(), 2086 bool ignoreResult = false); 2087 2088 // EmitVAListRef - Emit a "reference" to a va_list; this is either the address 2089 // or the value of the expression, depending on how va_list is defined. 2090 Address EmitVAListRef(const Expr *E); 2091 2092 /// Emit a "reference" to a __builtin_ms_va_list; this is 2093 /// always the value of the expression, because a __builtin_ms_va_list is a 2094 /// pointer to a char. 2095 Address EmitMSVAListRef(const Expr *E); 2096 2097 /// EmitAnyExprToTemp - Similarly to EmitAnyExpr(), however, the result will 2098 /// always be accessible even if no aggregate location is provided. 2099 RValue EmitAnyExprToTemp(const Expr *E); 2100 2101 /// EmitAnyExprToMem - Emits the code necessary to evaluate an 2102 /// arbitrary expression into the given memory location. 2103 void EmitAnyExprToMem(const Expr *E, Address Location, 2104 Qualifiers Quals, bool IsInitializer); 2105 2106 void EmitAnyExprToExn(const Expr *E, Address Addr); 2107 2108 /// EmitExprAsInit - Emits the code necessary to initialize a 2109 /// location in memory with the given initializer. 2110 void EmitExprAsInit(const Expr *init, const ValueDecl *D, LValue lvalue, 2111 bool capturedByInit); 2112 2113 /// hasVolatileMember - returns true if aggregate type has a volatile 2114 /// member. 2115 bool hasVolatileMember(QualType T) { 2116 if (const RecordType *RT = T->getAs<RecordType>()) { 2117 const RecordDecl *RD = cast<RecordDecl>(RT->getDecl()); 2118 return RD->hasVolatileMember(); 2119 } 2120 return false; 2121 } 2122 2123 /// Determine whether a return value slot may overlap some other object. 2124 AggValueSlot::Overlap_t overlapForReturnValue() { 2125 // FIXME: Assuming no overlap here breaks guaranteed copy elision for base 2126 // class subobjects. These cases may need to be revisited depending on the 2127 // resolution of the relevant core issue. 2128 return AggValueSlot::DoesNotOverlap; 2129 } 2130 2131 /// Determine whether a field initialization may overlap some other object. 2132 AggValueSlot::Overlap_t overlapForFieldInit(const FieldDecl *FD) { 2133 // FIXME: These cases can result in overlap as a result of P0840R0's 2134 // [[no_unique_address]] attribute. We can still infer NoOverlap in the 2135 // presence of that attribute if the field is within the nvsize of its 2136 // containing class, because non-virtual subobjects are initialized in 2137 // address order. 2138 return AggValueSlot::DoesNotOverlap; 2139 } 2140 2141 /// Determine whether a base class initialization may overlap some other 2142 /// object. 2143 AggValueSlot::Overlap_t overlapForBaseInit(const CXXRecordDecl *RD, 2144 const CXXRecordDecl *BaseRD, 2145 bool IsVirtual); 2146 2147 /// Emit an aggregate assignment. 2148 void EmitAggregateAssign(LValue Dest, LValue Src, QualType EltTy) { 2149 bool IsVolatile = hasVolatileMember(EltTy); 2150 EmitAggregateCopy(Dest, Src, EltTy, AggValueSlot::MayOverlap, IsVolatile); 2151 } 2152 2153 void EmitAggregateCopyCtor(LValue Dest, LValue Src, 2154 AggValueSlot::Overlap_t MayOverlap) { 2155 EmitAggregateCopy(Dest, Src, Src.getType(), MayOverlap); 2156 } 2157 2158 /// EmitAggregateCopy - Emit an aggregate copy. 2159 /// 2160 /// \param isVolatile \c true iff either the source or the destination is 2161 /// volatile. 2162 /// \param MayOverlap Whether the tail padding of the destination might be 2163 /// occupied by some other object. More efficient code can often be 2164 /// generated if not. 2165 void EmitAggregateCopy(LValue Dest, LValue Src, QualType EltTy, 2166 AggValueSlot::Overlap_t MayOverlap, 2167 bool isVolatile = false); 2168 2169 /// GetAddrOfLocalVar - Return the address of a local variable. 2170 Address GetAddrOfLocalVar(const VarDecl *VD) { 2171 auto it = LocalDeclMap.find(VD); 2172 assert(it != LocalDeclMap.end() && 2173 "Invalid argument to GetAddrOfLocalVar(), no decl!"); 2174 return it->second; 2175 } 2176 2177 /// Given an opaque value expression, return its LValue mapping if it exists, 2178 /// otherwise create one. 2179 LValue getOrCreateOpaqueLValueMapping(const OpaqueValueExpr *e); 2180 2181 /// Given an opaque value expression, return its RValue mapping if it exists, 2182 /// otherwise create one. 2183 RValue getOrCreateOpaqueRValueMapping(const OpaqueValueExpr *e); 2184 2185 /// Get the index of the current ArrayInitLoopExpr, if any. 2186 llvm::Value *getArrayInitIndex() { return ArrayInitIndex; } 2187 2188 /// getAccessedFieldNo - Given an encoded value and a result number, return 2189 /// the input field number being accessed. 2190 static unsigned getAccessedFieldNo(unsigned Idx, const llvm::Constant *Elts); 2191 2192 llvm::BlockAddress *GetAddrOfLabel(const LabelDecl *L); 2193 llvm::BasicBlock *GetIndirectGotoBlock(); 2194 2195 /// Check if \p E is a C++ "this" pointer wrapped in value-preserving casts. 2196 static bool IsWrappedCXXThis(const Expr *E); 2197 2198 /// EmitNullInitialization - Generate code to set a value of the given type to 2199 /// null, If the type contains data member pointers, they will be initialized 2200 /// to -1 in accordance with the Itanium C++ ABI. 2201 void EmitNullInitialization(Address DestPtr, QualType Ty); 2202 2203 /// Emits a call to an LLVM variable-argument intrinsic, either 2204 /// \c llvm.va_start or \c llvm.va_end. 2205 /// \param ArgValue A reference to the \c va_list as emitted by either 2206 /// \c EmitVAListRef or \c EmitMSVAListRef. 2207 /// \param IsStart If \c true, emits a call to \c llvm.va_start; otherwise, 2208 /// calls \c llvm.va_end. 2209 llvm::Value *EmitVAStartEnd(llvm::Value *ArgValue, bool IsStart); 2210 2211 /// Generate code to get an argument from the passed in pointer 2212 /// and update it accordingly. 2213 /// \param VE The \c VAArgExpr for which to generate code. 2214 /// \param VAListAddr Receives a reference to the \c va_list as emitted by 2215 /// either \c EmitVAListRef or \c EmitMSVAListRef. 2216 /// \returns A pointer to the argument. 2217 // FIXME: We should be able to get rid of this method and use the va_arg 2218 // instruction in LLVM instead once it works well enough. 2219 Address EmitVAArg(VAArgExpr *VE, Address &VAListAddr); 2220 2221 /// emitArrayLength - Compute the length of an array, even if it's a 2222 /// VLA, and drill down to the base element type. 2223 llvm::Value *emitArrayLength(const ArrayType *arrayType, 2224 QualType &baseType, 2225 Address &addr); 2226 2227 /// EmitVLASize - Capture all the sizes for the VLA expressions in 2228 /// the given variably-modified type and store them in the VLASizeMap. 2229 /// 2230 /// This function can be called with a null (unreachable) insert point. 2231 void EmitVariablyModifiedType(QualType Ty); 2232 2233 struct VlaSizePair { 2234 llvm::Value *NumElts; 2235 QualType Type; 2236 2237 VlaSizePair(llvm::Value *NE, QualType T) : NumElts(NE), Type(T) {} 2238 }; 2239 2240 /// Return the number of elements for a single dimension 2241 /// for the given array type. 2242 VlaSizePair getVLAElements1D(const VariableArrayType *vla); 2243 VlaSizePair getVLAElements1D(QualType vla); 2244 2245 /// Returns an LLVM value that corresponds to the size, 2246 /// in non-variably-sized elements, of a variable length array type, 2247 /// plus that largest non-variably-sized element type. Assumes that 2248 /// the type has already been emitted with EmitVariablyModifiedType. 2249 VlaSizePair getVLASize(const VariableArrayType *vla); 2250 VlaSizePair getVLASize(QualType vla); 2251 2252 /// LoadCXXThis - Load the value of 'this'. This function is only valid while 2253 /// generating code for an C++ member function. 2254 llvm::Value *LoadCXXThis() { 2255 assert(CXXThisValue && "no 'this' value for this function"); 2256 return CXXThisValue; 2257 } 2258 Address LoadCXXThisAddress(); 2259 2260 /// LoadCXXVTT - Load the VTT parameter to base constructors/destructors have 2261 /// virtual bases. 2262 // FIXME: Every place that calls LoadCXXVTT is something 2263 // that needs to be abstracted properly. 2264 llvm::Value *LoadCXXVTT() { 2265 assert(CXXStructorImplicitParamValue && "no VTT value for this function"); 2266 return CXXStructorImplicitParamValue; 2267 } 2268 2269 /// GetAddressOfBaseOfCompleteClass - Convert the given pointer to a 2270 /// complete class to the given direct base. 2271 Address 2272 GetAddressOfDirectBaseInCompleteClass(Address Value, 2273 const CXXRecordDecl *Derived, 2274 const CXXRecordDecl *Base, 2275 bool BaseIsVirtual); 2276 2277 static bool ShouldNullCheckClassCastValue(const CastExpr *Cast); 2278 2279 /// GetAddressOfBaseClass - This function will add the necessary delta to the 2280 /// load of 'this' and returns address of the base class. 2281 Address GetAddressOfBaseClass(Address Value, 2282 const CXXRecordDecl *Derived, 2283 CastExpr::path_const_iterator PathBegin, 2284 CastExpr::path_const_iterator PathEnd, 2285 bool NullCheckValue, SourceLocation Loc); 2286 2287 Address GetAddressOfDerivedClass(Address Value, 2288 const CXXRecordDecl *Derived, 2289 CastExpr::path_const_iterator PathBegin, 2290 CastExpr::path_const_iterator PathEnd, 2291 bool NullCheckValue); 2292 2293 /// GetVTTParameter - Return the VTT parameter that should be passed to a 2294 /// base constructor/destructor with virtual bases. 2295 /// FIXME: VTTs are Itanium ABI-specific, so the definition should move 2296 /// to ItaniumCXXABI.cpp together with all the references to VTT. 2297 llvm::Value *GetVTTParameter(GlobalDecl GD, bool ForVirtualBase, 2298 bool Delegating); 2299 2300 void EmitDelegateCXXConstructorCall(const CXXConstructorDecl *Ctor, 2301 CXXCtorType CtorType, 2302 const FunctionArgList &Args, 2303 SourceLocation Loc); 2304 // It's important not to confuse this and the previous function. Delegating 2305 // constructors are the C++0x feature. The constructor delegate optimization 2306 // is used to reduce duplication in the base and complete consturctors where 2307 // they are substantially the same. 2308 void EmitDelegatingCXXConstructorCall(const CXXConstructorDecl *Ctor, 2309 const FunctionArgList &Args); 2310 2311 /// Emit a call to an inheriting constructor (that is, one that invokes a 2312 /// constructor inherited from a base class) by inlining its definition. This 2313 /// is necessary if the ABI does not support forwarding the arguments to the 2314 /// base class constructor (because they're variadic or similar). 2315 void EmitInlinedInheritingCXXConstructorCall(const CXXConstructorDecl *Ctor, 2316 CXXCtorType CtorType, 2317 bool ForVirtualBase, 2318 bool Delegating, 2319 CallArgList &Args); 2320 2321 /// Emit a call to a constructor inherited from a base class, passing the 2322 /// current constructor's arguments along unmodified (without even making 2323 /// a copy). 2324 void EmitInheritedCXXConstructorCall(const CXXConstructorDecl *D, 2325 bool ForVirtualBase, Address This, 2326 bool InheritedFromVBase, 2327 const CXXInheritedCtorInitExpr *E); 2328 2329 void EmitCXXConstructorCall(const CXXConstructorDecl *D, CXXCtorType Type, 2330 bool ForVirtualBase, bool Delegating, 2331 Address This, const CXXConstructExpr *E, 2332 AggValueSlot::Overlap_t Overlap); 2333 2334 void EmitCXXConstructorCall(const CXXConstructorDecl *D, CXXCtorType Type, 2335 bool ForVirtualBase, bool Delegating, 2336 Address This, CallArgList &Args, 2337 AggValueSlot::Overlap_t Overlap); 2338 2339 /// Emit assumption load for all bases. Requires to be be called only on 2340 /// most-derived class and not under construction of the object. 2341 void EmitVTableAssumptionLoads(const CXXRecordDecl *ClassDecl, Address This); 2342 2343 /// Emit assumption that vptr load == global vtable. 2344 void EmitVTableAssumptionLoad(const VPtr &vptr, Address This); 2345 2346 void EmitSynthesizedCXXCopyCtorCall(const CXXConstructorDecl *D, 2347 Address This, Address Src, 2348 const CXXConstructExpr *E); 2349 2350 void EmitCXXAggrConstructorCall(const CXXConstructorDecl *D, 2351 const ArrayType *ArrayTy, 2352 Address ArrayPtr, 2353 const CXXConstructExpr *E, 2354 bool ZeroInitialization = false); 2355 2356 void EmitCXXAggrConstructorCall(const CXXConstructorDecl *D, 2357 llvm::Value *NumElements, 2358 Address ArrayPtr, 2359 const CXXConstructExpr *E, 2360 bool ZeroInitialization = false); 2361 2362 static Destroyer destroyCXXObject; 2363 2364 void EmitCXXDestructorCall(const CXXDestructorDecl *D, CXXDtorType Type, 2365 bool ForVirtualBase, bool Delegating, 2366 Address This); 2367 2368 void EmitNewArrayInitializer(const CXXNewExpr *E, QualType elementType, 2369 llvm::Type *ElementTy, Address NewPtr, 2370 llvm::Value *NumElements, 2371 llvm::Value *AllocSizeWithoutCookie); 2372 2373 void EmitCXXTemporary(const CXXTemporary *Temporary, QualType TempType, 2374 Address Ptr); 2375 2376 llvm::Value *EmitLifetimeStart(uint64_t Size, llvm::Value *Addr); 2377 void EmitLifetimeEnd(llvm::Value *Size, llvm::Value *Addr); 2378 2379 llvm::Value *EmitCXXNewExpr(const CXXNewExpr *E); 2380 void EmitCXXDeleteExpr(const CXXDeleteExpr *E); 2381 2382 void EmitDeleteCall(const FunctionDecl *DeleteFD, llvm::Value *Ptr, 2383 QualType DeleteTy, llvm::Value *NumElements = nullptr, 2384 CharUnits CookieSize = CharUnits()); 2385 2386 RValue EmitBuiltinNewDeleteCall(const FunctionProtoType *Type, 2387 const CallExpr *TheCallExpr, bool IsDelete); 2388 2389 llvm::Value *EmitCXXTypeidExpr(const CXXTypeidExpr *E); 2390 llvm::Value *EmitDynamicCast(Address V, const CXXDynamicCastExpr *DCE); 2391 Address EmitCXXUuidofExpr(const CXXUuidofExpr *E); 2392 2393 /// \brief Situations in which we might emit a check for the suitability of a 2394 /// pointer or glvalue. 2395 enum TypeCheckKind { 2396 /// Checking the operand of a load. Must be suitably sized and aligned. 2397 TCK_Load, 2398 /// Checking the destination of a store. Must be suitably sized and aligned. 2399 TCK_Store, 2400 /// Checking the bound value in a reference binding. Must be suitably sized 2401 /// and aligned, but is not required to refer to an object (until the 2402 /// reference is used), per core issue 453. 2403 TCK_ReferenceBinding, 2404 /// Checking the object expression in a non-static data member access. Must 2405 /// be an object within its lifetime. 2406 TCK_MemberAccess, 2407 /// Checking the 'this' pointer for a call to a non-static member function. 2408 /// Must be an object within its lifetime. 2409 TCK_MemberCall, 2410 /// Checking the 'this' pointer for a constructor call. 2411 TCK_ConstructorCall, 2412 /// Checking the operand of a static_cast to a derived pointer type. Must be 2413 /// null or an object within its lifetime. 2414 TCK_DowncastPointer, 2415 /// Checking the operand of a static_cast to a derived reference type. Must 2416 /// be an object within its lifetime. 2417 TCK_DowncastReference, 2418 /// Checking the operand of a cast to a base object. Must be suitably sized 2419 /// and aligned. 2420 TCK_Upcast, 2421 /// Checking the operand of a cast to a virtual base object. Must be an 2422 /// object within its lifetime. 2423 TCK_UpcastToVirtualBase, 2424 /// Checking the value assigned to a _Nonnull pointer. Must not be null. 2425 TCK_NonnullAssign, 2426 /// Checking the operand of a dynamic_cast or a typeid expression. Must be 2427 /// null or an object within its lifetime. 2428 TCK_DynamicOperation 2429 }; 2430 2431 /// Determine whether the pointer type check \p TCK permits null pointers. 2432 static bool isNullPointerAllowed(TypeCheckKind TCK); 2433 2434 /// Determine whether the pointer type check \p TCK requires a vptr check. 2435 static bool isVptrCheckRequired(TypeCheckKind TCK, QualType Ty); 2436 2437 /// \brief Whether any type-checking sanitizers are enabled. If \c false, 2438 /// calls to EmitTypeCheck can be skipped. 2439 bool sanitizePerformTypeCheck() const; 2440 2441 /// \brief Emit a check that \p V is the address of storage of the 2442 /// appropriate size and alignment for an object of type \p Type. 2443 void EmitTypeCheck(TypeCheckKind TCK, SourceLocation Loc, llvm::Value *V, 2444 QualType Type, CharUnits Alignment = CharUnits::Zero(), 2445 SanitizerSet SkippedChecks = SanitizerSet()); 2446 2447 /// \brief Emit a check that \p Base points into an array object, which 2448 /// we can access at index \p Index. \p Accessed should be \c false if we 2449 /// this expression is used as an lvalue, for instance in "&Arr[Idx]". 2450 void EmitBoundsCheck(const Expr *E, const Expr *Base, llvm::Value *Index, 2451 QualType IndexType, bool Accessed); 2452 2453 llvm::Value *EmitScalarPrePostIncDec(const UnaryOperator *E, LValue LV, 2454 bool isInc, bool isPre); 2455 ComplexPairTy EmitComplexPrePostIncDec(const UnaryOperator *E, LValue LV, 2456 bool isInc, bool isPre); 2457 2458 void EmitAlignmentAssumption(llvm::Value *PtrValue, unsigned Alignment, 2459 llvm::Value *OffsetValue = nullptr) { 2460 Builder.CreateAlignmentAssumption(CGM.getDataLayout(), PtrValue, Alignment, 2461 OffsetValue); 2462 } 2463 2464 /// Converts Location to a DebugLoc, if debug information is enabled. 2465 llvm::DebugLoc SourceLocToDebugLoc(SourceLocation Location); 2466 2467 2468 //===--------------------------------------------------------------------===// 2469 // Declaration Emission 2470 //===--------------------------------------------------------------------===// 2471 2472 /// EmitDecl - Emit a declaration. 2473 /// 2474 /// This function can be called with a null (unreachable) insert point. 2475 void EmitDecl(const Decl &D); 2476 2477 /// EmitVarDecl - Emit a local variable declaration. 2478 /// 2479 /// This function can be called with a null (unreachable) insert point. 2480 void EmitVarDecl(const VarDecl &D); 2481 2482 void EmitScalarInit(const Expr *init, const ValueDecl *D, LValue lvalue, 2483 bool capturedByInit); 2484 2485 typedef void SpecialInitFn(CodeGenFunction &Init, const VarDecl &D, 2486 llvm::Value *Address); 2487 2488 /// \brief Determine whether the given initializer is trivial in the sense 2489 /// that it requires no code to be generated. 2490 bool isTrivialInitializer(const Expr *Init); 2491 2492 /// EmitAutoVarDecl - Emit an auto variable declaration. 2493 /// 2494 /// This function can be called with a null (unreachable) insert point. 2495 void EmitAutoVarDecl(const VarDecl &D); 2496 2497 class AutoVarEmission { 2498 friend class CodeGenFunction; 2499 2500 const VarDecl *Variable; 2501 2502 /// The address of the alloca. Invalid if the variable was emitted 2503 /// as a global constant. 2504 Address Addr; 2505 2506 llvm::Value *NRVOFlag; 2507 2508 /// True if the variable is a __block variable. 2509 bool IsByRef; 2510 2511 /// True if the variable is of aggregate type and has a constant 2512 /// initializer. 2513 bool IsConstantAggregate; 2514 2515 /// Non-null if we should use lifetime annotations. 2516 llvm::Value *SizeForLifetimeMarkers; 2517 2518 struct Invalid {}; 2519 AutoVarEmission(Invalid) : Variable(nullptr), Addr(Address::invalid()) {} 2520 2521 AutoVarEmission(const VarDecl &variable) 2522 : Variable(&variable), Addr(Address::invalid()), NRVOFlag(nullptr), 2523 IsByRef(false), IsConstantAggregate(false), 2524 SizeForLifetimeMarkers(nullptr) {} 2525 2526 bool wasEmittedAsGlobal() const { return !Addr.isValid(); } 2527 2528 public: 2529 static AutoVarEmission invalid() { return AutoVarEmission(Invalid()); } 2530 2531 bool useLifetimeMarkers() const { 2532 return SizeForLifetimeMarkers != nullptr; 2533 } 2534 llvm::Value *getSizeForLifetimeMarkers() const { 2535 assert(useLifetimeMarkers()); 2536 return SizeForLifetimeMarkers; 2537 } 2538 2539 /// Returns the raw, allocated address, which is not necessarily 2540 /// the address of the object itself. 2541 Address getAllocatedAddress() const { 2542 return Addr; 2543 } 2544 2545 /// Returns the address of the object within this declaration. 2546 /// Note that this does not chase the forwarding pointer for 2547 /// __block decls. 2548 Address getObjectAddress(CodeGenFunction &CGF) const { 2549 if (!IsByRef) return Addr; 2550 2551 return CGF.emitBlockByrefAddress(Addr, Variable, /*forward*/ false); 2552 } 2553 }; 2554 AutoVarEmission EmitAutoVarAlloca(const VarDecl &var); 2555 void EmitAutoVarInit(const AutoVarEmission &emission); 2556 void EmitAutoVarCleanups(const AutoVarEmission &emission); 2557 void emitAutoVarTypeCleanup(const AutoVarEmission &emission, 2558 QualType::DestructionKind dtorKind); 2559 2560 /// Emits the alloca and debug information for the size expressions for each 2561 /// dimension of an array. It registers the association of its (1-dimensional) 2562 /// QualTypes and size expression's debug node, so that CGDebugInfo can 2563 /// reference this node when creating the DISubrange object to describe the 2564 /// array types. 2565 void EmitAndRegisterVariableArrayDimensions(CGDebugInfo *DI, 2566 const VarDecl &D, 2567 bool EmitDebugInfo); 2568 2569 void EmitStaticVarDecl(const VarDecl &D, 2570 llvm::GlobalValue::LinkageTypes Linkage); 2571 2572 class ParamValue { 2573 llvm::Value *Value; 2574 unsigned Alignment; 2575 ParamValue(llvm::Value *V, unsigned A) : Value(V), Alignment(A) {} 2576 public: 2577 static ParamValue forDirect(llvm::Value *value) { 2578 return ParamValue(value, 0); 2579 } 2580 static ParamValue forIndirect(Address addr) { 2581 assert(!addr.getAlignment().isZero()); 2582 return ParamValue(addr.getPointer(), addr.getAlignment().getQuantity()); 2583 } 2584 2585 bool isIndirect() const { return Alignment != 0; } 2586 llvm::Value *getAnyValue() const { return Value; } 2587 2588 llvm::Value *getDirectValue() const { 2589 assert(!isIndirect()); 2590 return Value; 2591 } 2592 2593 Address getIndirectAddress() const { 2594 assert(isIndirect()); 2595 return Address(Value, CharUnits::fromQuantity(Alignment)); 2596 } 2597 }; 2598 2599 /// EmitParmDecl - Emit a ParmVarDecl or an ImplicitParamDecl. 2600 void EmitParmDecl(const VarDecl &D, ParamValue Arg, unsigned ArgNo); 2601 2602 /// protectFromPeepholes - Protect a value that we're intending to 2603 /// store to the side, but which will probably be used later, from 2604 /// aggressive peepholing optimizations that might delete it. 2605 /// 2606 /// Pass the result to unprotectFromPeepholes to declare that 2607 /// protection is no longer required. 2608 /// 2609 /// There's no particular reason why this shouldn't apply to 2610 /// l-values, it's just that no existing peepholes work on pointers. 2611 PeepholeProtection protectFromPeepholes(RValue rvalue); 2612 void unprotectFromPeepholes(PeepholeProtection protection); 2613 2614 void EmitAlignmentAssumption(llvm::Value *PtrValue, llvm::Value *Alignment, 2615 llvm::Value *OffsetValue = nullptr) { 2616 Builder.CreateAlignmentAssumption(CGM.getDataLayout(), PtrValue, Alignment, 2617 OffsetValue); 2618 } 2619 2620 //===--------------------------------------------------------------------===// 2621 // Statement Emission 2622 //===--------------------------------------------------------------------===// 2623 2624 /// EmitStopPoint - Emit a debug stoppoint if we are emitting debug info. 2625 void EmitStopPoint(const Stmt *S); 2626 2627 /// EmitStmt - Emit the code for the statement \arg S. It is legal to call 2628 /// this function even if there is no current insertion point. 2629 /// 2630 /// This function may clear the current insertion point; callers should use 2631 /// EnsureInsertPoint if they wish to subsequently generate code without first 2632 /// calling EmitBlock, EmitBranch, or EmitStmt. 2633 void EmitStmt(const Stmt *S, ArrayRef<const Attr *> Attrs = None); 2634 2635 /// EmitSimpleStmt - Try to emit a "simple" statement which does not 2636 /// necessarily require an insertion point or debug information; typically 2637 /// because the statement amounts to a jump or a container of other 2638 /// statements. 2639 /// 2640 /// \return True if the statement was handled. 2641 bool EmitSimpleStmt(const Stmt *S); 2642 2643 Address EmitCompoundStmt(const CompoundStmt &S, bool GetLast = false, 2644 AggValueSlot AVS = AggValueSlot::ignored()); 2645 Address EmitCompoundStmtWithoutScope(const CompoundStmt &S, 2646 bool GetLast = false, 2647 AggValueSlot AVS = 2648 AggValueSlot::ignored()); 2649 2650 /// EmitLabel - Emit the block for the given label. It is legal to call this 2651 /// function even if there is no current insertion point. 2652 void EmitLabel(const LabelDecl *D); // helper for EmitLabelStmt. 2653 2654 void EmitLabelStmt(const LabelStmt &S); 2655 void EmitAttributedStmt(const AttributedStmt &S); 2656 void EmitGotoStmt(const GotoStmt &S); 2657 void EmitIndirectGotoStmt(const IndirectGotoStmt &S); 2658 void EmitIfStmt(const IfStmt &S); 2659 2660 void EmitWhileStmt(const WhileStmt &S, 2661 ArrayRef<const Attr *> Attrs = None); 2662 void EmitDoStmt(const DoStmt &S, ArrayRef<const Attr *> Attrs = None); 2663 void EmitForStmt(const ForStmt &S, 2664 ArrayRef<const Attr *> Attrs = None); 2665 void EmitReturnStmt(const ReturnStmt &S); 2666 void EmitDeclStmt(const DeclStmt &S); 2667 void EmitBreakStmt(const BreakStmt &S); 2668 void EmitContinueStmt(const ContinueStmt &S); 2669 void EmitSwitchStmt(const SwitchStmt &S); 2670 void EmitDefaultStmt(const DefaultStmt &S); 2671 void EmitCaseStmt(const CaseStmt &S); 2672 void EmitCaseStmtRange(const CaseStmt &S); 2673 void EmitAsmStmt(const AsmStmt &S); 2674 2675 void EmitObjCForCollectionStmt(const ObjCForCollectionStmt &S); 2676 void EmitObjCAtTryStmt(const ObjCAtTryStmt &S); 2677 void EmitObjCAtThrowStmt(const ObjCAtThrowStmt &S); 2678 void EmitObjCAtSynchronizedStmt(const ObjCAtSynchronizedStmt &S); 2679 void EmitObjCAutoreleasePoolStmt(const ObjCAutoreleasePoolStmt &S); 2680 2681 void EmitCoroutineBody(const CoroutineBodyStmt &S); 2682 void EmitCoreturnStmt(const CoreturnStmt &S); 2683 RValue EmitCoawaitExpr(const CoawaitExpr &E, 2684 AggValueSlot aggSlot = AggValueSlot::ignored(), 2685 bool ignoreResult = false); 2686 LValue EmitCoawaitLValue(const CoawaitExpr *E); 2687 RValue EmitCoyieldExpr(const CoyieldExpr &E, 2688 AggValueSlot aggSlot = AggValueSlot::ignored(), 2689 bool ignoreResult = false); 2690 LValue EmitCoyieldLValue(const CoyieldExpr *E); 2691 RValue EmitCoroutineIntrinsic(const CallExpr *E, unsigned int IID); 2692 2693 void EnterCXXTryStmt(const CXXTryStmt &S, bool IsFnTryBlock = false); 2694 void ExitCXXTryStmt(const CXXTryStmt &S, bool IsFnTryBlock = false); 2695 2696 void EmitCXXTryStmt(const CXXTryStmt &S); 2697 void EmitSEHTryStmt(const SEHTryStmt &S); 2698 void EmitSEHLeaveStmt(const SEHLeaveStmt &S); 2699 void EnterSEHTryStmt(const SEHTryStmt &S); 2700 void ExitSEHTryStmt(const SEHTryStmt &S); 2701 2702 void startOutlinedSEHHelper(CodeGenFunction &ParentCGF, bool IsFilter, 2703 const Stmt *OutlinedStmt); 2704 2705 llvm::Function *GenerateSEHFilterFunction(CodeGenFunction &ParentCGF, 2706 const SEHExceptStmt &Except); 2707 2708 llvm::Function *GenerateSEHFinallyFunction(CodeGenFunction &ParentCGF, 2709 const SEHFinallyStmt &Finally); 2710 2711 void EmitSEHExceptionCodeSave(CodeGenFunction &ParentCGF, 2712 llvm::Value *ParentFP, 2713 llvm::Value *EntryEBP); 2714 llvm::Value *EmitSEHExceptionCode(); 2715 llvm::Value *EmitSEHExceptionInfo(); 2716 llvm::Value *EmitSEHAbnormalTermination(); 2717 2718 /// Emit simple code for OpenMP directives in Simd-only mode. 2719 void EmitSimpleOMPExecutableDirective(const OMPExecutableDirective &D); 2720 2721 /// Scan the outlined statement for captures from the parent function. For 2722 /// each capture, mark the capture as escaped and emit a call to 2723 /// llvm.localrecover. Insert the localrecover result into the LocalDeclMap. 2724 void EmitCapturedLocals(CodeGenFunction &ParentCGF, const Stmt *OutlinedStmt, 2725 bool IsFilter); 2726 2727 /// Recovers the address of a local in a parent function. ParentVar is the 2728 /// address of the variable used in the immediate parent function. It can 2729 /// either be an alloca or a call to llvm.localrecover if there are nested 2730 /// outlined functions. ParentFP is the frame pointer of the outermost parent 2731 /// frame. 2732 Address recoverAddrOfEscapedLocal(CodeGenFunction &ParentCGF, 2733 Address ParentVar, 2734 llvm::Value *ParentFP); 2735 2736 void EmitCXXForRangeStmt(const CXXForRangeStmt &S, 2737 ArrayRef<const Attr *> Attrs = None); 2738 2739 /// Controls insertion of cancellation exit blocks in worksharing constructs. 2740 class OMPCancelStackRAII { 2741 CodeGenFunction &CGF; 2742 2743 public: 2744 OMPCancelStackRAII(CodeGenFunction &CGF, OpenMPDirectiveKind Kind, 2745 bool HasCancel) 2746 : CGF(CGF) { 2747 CGF.OMPCancelStack.enter(CGF, Kind, HasCancel); 2748 } 2749 ~OMPCancelStackRAII() { CGF.OMPCancelStack.exit(CGF); } 2750 }; 2751 2752 /// Returns calculated size of the specified type. 2753 llvm::Value *getTypeSize(QualType Ty); 2754 LValue InitCapturedStruct(const CapturedStmt &S); 2755 llvm::Function *EmitCapturedStmt(const CapturedStmt &S, CapturedRegionKind K); 2756 llvm::Function *GenerateCapturedStmtFunction(const CapturedStmt &S); 2757 Address GenerateCapturedStmtArgument(const CapturedStmt &S); 2758 llvm::Function *GenerateOpenMPCapturedStmtFunction(const CapturedStmt &S); 2759 void GenerateOpenMPCapturedVars(const CapturedStmt &S, 2760 SmallVectorImpl<llvm::Value *> &CapturedVars); 2761 void emitOMPSimpleStore(LValue LVal, RValue RVal, QualType RValTy, 2762 SourceLocation Loc); 2763 /// \brief Perform element by element copying of arrays with type \a 2764 /// OriginalType from \a SrcAddr to \a DestAddr using copying procedure 2765 /// generated by \a CopyGen. 2766 /// 2767 /// \param DestAddr Address of the destination array. 2768 /// \param SrcAddr Address of the source array. 2769 /// \param OriginalType Type of destination and source arrays. 2770 /// \param CopyGen Copying procedure that copies value of single array element 2771 /// to another single array element. 2772 void EmitOMPAggregateAssign( 2773 Address DestAddr, Address SrcAddr, QualType OriginalType, 2774 const llvm::function_ref<void(Address, Address)> &CopyGen); 2775 /// \brief Emit proper copying of data from one variable to another. 2776 /// 2777 /// \param OriginalType Original type of the copied variables. 2778 /// \param DestAddr Destination address. 2779 /// \param SrcAddr Source address. 2780 /// \param DestVD Destination variable used in \a CopyExpr (for arrays, has 2781 /// type of the base array element). 2782 /// \param SrcVD Source variable used in \a CopyExpr (for arrays, has type of 2783 /// the base array element). 2784 /// \param Copy Actual copygin expression for copying data from \a SrcVD to \a 2785 /// DestVD. 2786 void EmitOMPCopy(QualType OriginalType, 2787 Address DestAddr, Address SrcAddr, 2788 const VarDecl *DestVD, const VarDecl *SrcVD, 2789 const Expr *Copy); 2790 /// \brief Emit atomic update code for constructs: \a X = \a X \a BO \a E or 2791 /// \a X = \a E \a BO \a E. 2792 /// 2793 /// \param X Value to be updated. 2794 /// \param E Update value. 2795 /// \param BO Binary operation for update operation. 2796 /// \param IsXLHSInRHSPart true if \a X is LHS in RHS part of the update 2797 /// expression, false otherwise. 2798 /// \param AO Atomic ordering of the generated atomic instructions. 2799 /// \param CommonGen Code generator for complex expressions that cannot be 2800 /// expressed through atomicrmw instruction. 2801 /// \returns <true, OldAtomicValue> if simple 'atomicrmw' instruction was 2802 /// generated, <false, RValue::get(nullptr)> otherwise. 2803 std::pair<bool, RValue> EmitOMPAtomicSimpleUpdateExpr( 2804 LValue X, RValue E, BinaryOperatorKind BO, bool IsXLHSInRHSPart, 2805 llvm::AtomicOrdering AO, SourceLocation Loc, 2806 const llvm::function_ref<RValue(RValue)> &CommonGen); 2807 bool EmitOMPFirstprivateClause(const OMPExecutableDirective &D, 2808 OMPPrivateScope &PrivateScope); 2809 void EmitOMPPrivateClause(const OMPExecutableDirective &D, 2810 OMPPrivateScope &PrivateScope); 2811 void EmitOMPUseDevicePtrClause( 2812 const OMPClause &C, OMPPrivateScope &PrivateScope, 2813 const llvm::DenseMap<const ValueDecl *, Address> &CaptureDeviceAddrMap); 2814 /// \brief Emit code for copyin clause in \a D directive. The next code is 2815 /// generated at the start of outlined functions for directives: 2816 /// \code 2817 /// threadprivate_var1 = master_threadprivate_var1; 2818 /// operator=(threadprivate_var2, master_threadprivate_var2); 2819 /// ... 2820 /// __kmpc_barrier(&loc, global_tid); 2821 /// \endcode 2822 /// 2823 /// \param D OpenMP directive possibly with 'copyin' clause(s). 2824 /// \returns true if at least one copyin variable is found, false otherwise. 2825 bool EmitOMPCopyinClause(const OMPExecutableDirective &D); 2826 /// \brief Emit initial code for lastprivate variables. If some variable is 2827 /// not also firstprivate, then the default initialization is used. Otherwise 2828 /// initialization of this variable is performed by EmitOMPFirstprivateClause 2829 /// method. 2830 /// 2831 /// \param D Directive that may have 'lastprivate' directives. 2832 /// \param PrivateScope Private scope for capturing lastprivate variables for 2833 /// proper codegen in internal captured statement. 2834 /// 2835 /// \returns true if there is at least one lastprivate variable, false 2836 /// otherwise. 2837 bool EmitOMPLastprivateClauseInit(const OMPExecutableDirective &D, 2838 OMPPrivateScope &PrivateScope); 2839 /// \brief Emit final copying of lastprivate values to original variables at 2840 /// the end of the worksharing or simd directive. 2841 /// 2842 /// \param D Directive that has at least one 'lastprivate' directives. 2843 /// \param IsLastIterCond Boolean condition that must be set to 'i1 true' if 2844 /// it is the last iteration of the loop code in associated directive, or to 2845 /// 'i1 false' otherwise. If this item is nullptr, no final check is required. 2846 void EmitOMPLastprivateClauseFinal(const OMPExecutableDirective &D, 2847 bool NoFinals, 2848 llvm::Value *IsLastIterCond = nullptr); 2849 /// Emit initial code for linear clauses. 2850 void EmitOMPLinearClause(const OMPLoopDirective &D, 2851 CodeGenFunction::OMPPrivateScope &PrivateScope); 2852 /// Emit final code for linear clauses. 2853 /// \param CondGen Optional conditional code for final part of codegen for 2854 /// linear clause. 2855 void EmitOMPLinearClauseFinal( 2856 const OMPLoopDirective &D, 2857 const llvm::function_ref<llvm::Value *(CodeGenFunction &)> &CondGen); 2858 /// \brief Emit initial code for reduction variables. Creates reduction copies 2859 /// and initializes them with the values according to OpenMP standard. 2860 /// 2861 /// \param D Directive (possibly) with the 'reduction' clause. 2862 /// \param PrivateScope Private scope for capturing reduction variables for 2863 /// proper codegen in internal captured statement. 2864 /// 2865 void EmitOMPReductionClauseInit(const OMPExecutableDirective &D, 2866 OMPPrivateScope &PrivateScope); 2867 /// \brief Emit final update of reduction values to original variables at 2868 /// the end of the directive. 2869 /// 2870 /// \param D Directive that has at least one 'reduction' directives. 2871 /// \param ReductionKind The kind of reduction to perform. 2872 void EmitOMPReductionClauseFinal(const OMPExecutableDirective &D, 2873 const OpenMPDirectiveKind ReductionKind); 2874 /// \brief Emit initial code for linear variables. Creates private copies 2875 /// and initializes them with the values according to OpenMP standard. 2876 /// 2877 /// \param D Directive (possibly) with the 'linear' clause. 2878 /// \return true if at least one linear variable is found that should be 2879 /// initialized with the value of the original variable, false otherwise. 2880 bool EmitOMPLinearClauseInit(const OMPLoopDirective &D); 2881 2882 typedef const llvm::function_ref<void(CodeGenFunction & /*CGF*/, 2883 llvm::Value * /*OutlinedFn*/, 2884 const OMPTaskDataTy & /*Data*/)> 2885 TaskGenTy; 2886 void EmitOMPTaskBasedDirective(const OMPExecutableDirective &S, 2887 const OpenMPDirectiveKind CapturedRegion, 2888 const RegionCodeGenTy &BodyGen, 2889 const TaskGenTy &TaskGen, OMPTaskDataTy &Data); 2890 struct OMPTargetDataInfo { 2891 Address BasePointersArray = Address::invalid(); 2892 Address PointersArray = Address::invalid(); 2893 Address SizesArray = Address::invalid(); 2894 unsigned NumberOfTargetItems = 0; 2895 explicit OMPTargetDataInfo() = default; 2896 OMPTargetDataInfo(Address BasePointersArray, Address PointersArray, 2897 Address SizesArray, unsigned NumberOfTargetItems) 2898 : BasePointersArray(BasePointersArray), PointersArray(PointersArray), 2899 SizesArray(SizesArray), NumberOfTargetItems(NumberOfTargetItems) {} 2900 }; 2901 void EmitOMPTargetTaskBasedDirective(const OMPExecutableDirective &S, 2902 const RegionCodeGenTy &BodyGen, 2903 OMPTargetDataInfo &InputInfo); 2904 2905 void EmitOMPParallelDirective(const OMPParallelDirective &S); 2906 void EmitOMPSimdDirective(const OMPSimdDirective &S); 2907 void EmitOMPForDirective(const OMPForDirective &S); 2908 void EmitOMPForSimdDirective(const OMPForSimdDirective &S); 2909 void EmitOMPSectionsDirective(const OMPSectionsDirective &S); 2910 void EmitOMPSectionDirective(const OMPSectionDirective &S); 2911 void EmitOMPSingleDirective(const OMPSingleDirective &S); 2912 void EmitOMPMasterDirective(const OMPMasterDirective &S); 2913 void EmitOMPCriticalDirective(const OMPCriticalDirective &S); 2914 void EmitOMPParallelForDirective(const OMPParallelForDirective &S); 2915 void EmitOMPParallelForSimdDirective(const OMPParallelForSimdDirective &S); 2916 void EmitOMPParallelSectionsDirective(const OMPParallelSectionsDirective &S); 2917 void EmitOMPTaskDirective(const OMPTaskDirective &S); 2918 void EmitOMPTaskyieldDirective(const OMPTaskyieldDirective &S); 2919 void EmitOMPBarrierDirective(const OMPBarrierDirective &S); 2920 void EmitOMPTaskwaitDirective(const OMPTaskwaitDirective &S); 2921 void EmitOMPTaskgroupDirective(const OMPTaskgroupDirective &S); 2922 void EmitOMPFlushDirective(const OMPFlushDirective &S); 2923 void EmitOMPOrderedDirective(const OMPOrderedDirective &S); 2924 void EmitOMPAtomicDirective(const OMPAtomicDirective &S); 2925 void EmitOMPTargetDirective(const OMPTargetDirective &S); 2926 void EmitOMPTargetDataDirective(const OMPTargetDataDirective &S); 2927 void EmitOMPTargetEnterDataDirective(const OMPTargetEnterDataDirective &S); 2928 void EmitOMPTargetExitDataDirective(const OMPTargetExitDataDirective &S); 2929 void EmitOMPTargetUpdateDirective(const OMPTargetUpdateDirective &S); 2930 void EmitOMPTargetParallelDirective(const OMPTargetParallelDirective &S); 2931 void 2932 EmitOMPTargetParallelForDirective(const OMPTargetParallelForDirective &S); 2933 void EmitOMPTeamsDirective(const OMPTeamsDirective &S); 2934 void 2935 EmitOMPCancellationPointDirective(const OMPCancellationPointDirective &S); 2936 void EmitOMPCancelDirective(const OMPCancelDirective &S); 2937 void EmitOMPTaskLoopBasedDirective(const OMPLoopDirective &S); 2938 void EmitOMPTaskLoopDirective(const OMPTaskLoopDirective &S); 2939 void EmitOMPTaskLoopSimdDirective(const OMPTaskLoopSimdDirective &S); 2940 void EmitOMPDistributeDirective(const OMPDistributeDirective &S); 2941 void EmitOMPDistributeParallelForDirective( 2942 const OMPDistributeParallelForDirective &S); 2943 void EmitOMPDistributeParallelForSimdDirective( 2944 const OMPDistributeParallelForSimdDirective &S); 2945 void EmitOMPDistributeSimdDirective(const OMPDistributeSimdDirective &S); 2946 void EmitOMPTargetParallelForSimdDirective( 2947 const OMPTargetParallelForSimdDirective &S); 2948 void EmitOMPTargetSimdDirective(const OMPTargetSimdDirective &S); 2949 void EmitOMPTeamsDistributeDirective(const OMPTeamsDistributeDirective &S); 2950 void 2951 EmitOMPTeamsDistributeSimdDirective(const OMPTeamsDistributeSimdDirective &S); 2952 void EmitOMPTeamsDistributeParallelForSimdDirective( 2953 const OMPTeamsDistributeParallelForSimdDirective &S); 2954 void EmitOMPTeamsDistributeParallelForDirective( 2955 const OMPTeamsDistributeParallelForDirective &S); 2956 void EmitOMPTargetTeamsDirective(const OMPTargetTeamsDirective &S); 2957 void EmitOMPTargetTeamsDistributeDirective( 2958 const OMPTargetTeamsDistributeDirective &S); 2959 void EmitOMPTargetTeamsDistributeParallelForDirective( 2960 const OMPTargetTeamsDistributeParallelForDirective &S); 2961 void EmitOMPTargetTeamsDistributeParallelForSimdDirective( 2962 const OMPTargetTeamsDistributeParallelForSimdDirective &S); 2963 void EmitOMPTargetTeamsDistributeSimdDirective( 2964 const OMPTargetTeamsDistributeSimdDirective &S); 2965 2966 /// Emit device code for the target directive. 2967 static void EmitOMPTargetDeviceFunction(CodeGenModule &CGM, 2968 StringRef ParentName, 2969 const OMPTargetDirective &S); 2970 static void 2971 EmitOMPTargetParallelDeviceFunction(CodeGenModule &CGM, StringRef ParentName, 2972 const OMPTargetParallelDirective &S); 2973 /// Emit device code for the target parallel for directive. 2974 static void EmitOMPTargetParallelForDeviceFunction( 2975 CodeGenModule &CGM, StringRef ParentName, 2976 const OMPTargetParallelForDirective &S); 2977 /// Emit device code for the target parallel for simd directive. 2978 static void EmitOMPTargetParallelForSimdDeviceFunction( 2979 CodeGenModule &CGM, StringRef ParentName, 2980 const OMPTargetParallelForSimdDirective &S); 2981 /// Emit device code for the target teams directive. 2982 static void 2983 EmitOMPTargetTeamsDeviceFunction(CodeGenModule &CGM, StringRef ParentName, 2984 const OMPTargetTeamsDirective &S); 2985 /// Emit device code for the target teams distribute directive. 2986 static void EmitOMPTargetTeamsDistributeDeviceFunction( 2987 CodeGenModule &CGM, StringRef ParentName, 2988 const OMPTargetTeamsDistributeDirective &S); 2989 /// Emit device code for the target teams distribute simd directive. 2990 static void EmitOMPTargetTeamsDistributeSimdDeviceFunction( 2991 CodeGenModule &CGM, StringRef ParentName, 2992 const OMPTargetTeamsDistributeSimdDirective &S); 2993 /// Emit device code for the target simd directive. 2994 static void EmitOMPTargetSimdDeviceFunction(CodeGenModule &CGM, 2995 StringRef ParentName, 2996 const OMPTargetSimdDirective &S); 2997 /// Emit device code for the target teams distribute parallel for simd 2998 /// directive. 2999 static void EmitOMPTargetTeamsDistributeParallelForSimdDeviceFunction( 3000 CodeGenModule &CGM, StringRef ParentName, 3001 const OMPTargetTeamsDistributeParallelForSimdDirective &S); 3002 3003 static void EmitOMPTargetTeamsDistributeParallelForDeviceFunction( 3004 CodeGenModule &CGM, StringRef ParentName, 3005 const OMPTargetTeamsDistributeParallelForDirective &S); 3006 /// \brief Emit inner loop of the worksharing/simd construct. 3007 /// 3008 /// \param S Directive, for which the inner loop must be emitted. 3009 /// \param RequiresCleanup true, if directive has some associated private 3010 /// variables. 3011 /// \param LoopCond Bollean condition for loop continuation. 3012 /// \param IncExpr Increment expression for loop control variable. 3013 /// \param BodyGen Generator for the inner body of the inner loop. 3014 /// \param PostIncGen Genrator for post-increment code (required for ordered 3015 /// loop directvies). 3016 void EmitOMPInnerLoop( 3017 const Stmt &S, bool RequiresCleanup, const Expr *LoopCond, 3018 const Expr *IncExpr, 3019 const llvm::function_ref<void(CodeGenFunction &)> &BodyGen, 3020 const llvm::function_ref<void(CodeGenFunction &)> &PostIncGen); 3021 3022 JumpDest getOMPCancelDestination(OpenMPDirectiveKind Kind); 3023 /// Emit initial code for loop counters of loop-based directives. 3024 void EmitOMPPrivateLoopCounters(const OMPLoopDirective &S, 3025 OMPPrivateScope &LoopScope); 3026 3027 /// Helper for the OpenMP loop directives. 3028 void EmitOMPLoopBody(const OMPLoopDirective &D, JumpDest LoopExit); 3029 3030 /// \brief Emit code for the worksharing loop-based directive. 3031 /// \return true, if this construct has any lastprivate clause, false - 3032 /// otherwise. 3033 bool EmitOMPWorksharingLoop(const OMPLoopDirective &S, Expr *EUB, 3034 const CodeGenLoopBoundsTy &CodeGenLoopBounds, 3035 const CodeGenDispatchBoundsTy &CGDispatchBounds); 3036 3037 /// Emit code for the distribute loop-based directive. 3038 void EmitOMPDistributeLoop(const OMPLoopDirective &S, 3039 const CodeGenLoopTy &CodeGenLoop, Expr *IncExpr); 3040 3041 /// Helpers for the OpenMP loop directives. 3042 void EmitOMPSimdInit(const OMPLoopDirective &D, bool IsMonotonic = false); 3043 void EmitOMPSimdFinal( 3044 const OMPLoopDirective &D, 3045 const llvm::function_ref<llvm::Value *(CodeGenFunction &)> &CondGen); 3046 3047 /// Emits the lvalue for the expression with possibly captured variable. 3048 LValue EmitOMPSharedLValue(const Expr *E); 3049 3050 private: 3051 /// Helpers for blocks. 3052 llvm::Value *EmitBlockLiteral(const CGBlockInfo &Info); 3053 3054 /// struct with the values to be passed to the OpenMP loop-related functions 3055 struct OMPLoopArguments { 3056 /// loop lower bound 3057 Address LB = Address::invalid(); 3058 /// loop upper bound 3059 Address UB = Address::invalid(); 3060 /// loop stride 3061 Address ST = Address::invalid(); 3062 /// isLastIteration argument for runtime functions 3063 Address IL = Address::invalid(); 3064 /// Chunk value generated by sema 3065 llvm::Value *Chunk = nullptr; 3066 /// EnsureUpperBound 3067 Expr *EUB = nullptr; 3068 /// IncrementExpression 3069 Expr *IncExpr = nullptr; 3070 /// Loop initialization 3071 Expr *Init = nullptr; 3072 /// Loop exit condition 3073 Expr *Cond = nullptr; 3074 /// Update of LB after a whole chunk has been executed 3075 Expr *NextLB = nullptr; 3076 /// Update of UB after a whole chunk has been executed 3077 Expr *NextUB = nullptr; 3078 OMPLoopArguments() = default; 3079 OMPLoopArguments(Address LB, Address UB, Address ST, Address IL, 3080 llvm::Value *Chunk = nullptr, Expr *EUB = nullptr, 3081 Expr *IncExpr = nullptr, Expr *Init = nullptr, 3082 Expr *Cond = nullptr, Expr *NextLB = nullptr, 3083 Expr *NextUB = nullptr) 3084 : LB(LB), UB(UB), ST(ST), IL(IL), Chunk(Chunk), EUB(EUB), 3085 IncExpr(IncExpr), Init(Init), Cond(Cond), NextLB(NextLB), 3086 NextUB(NextUB) {} 3087 }; 3088 void EmitOMPOuterLoop(bool DynamicOrOrdered, bool IsMonotonic, 3089 const OMPLoopDirective &S, OMPPrivateScope &LoopScope, 3090 const OMPLoopArguments &LoopArgs, 3091 const CodeGenLoopTy &CodeGenLoop, 3092 const CodeGenOrderedTy &CodeGenOrdered); 3093 void EmitOMPForOuterLoop(const OpenMPScheduleTy &ScheduleKind, 3094 bool IsMonotonic, const OMPLoopDirective &S, 3095 OMPPrivateScope &LoopScope, bool Ordered, 3096 const OMPLoopArguments &LoopArgs, 3097 const CodeGenDispatchBoundsTy &CGDispatchBounds); 3098 void EmitOMPDistributeOuterLoop(OpenMPDistScheduleClauseKind ScheduleKind, 3099 const OMPLoopDirective &S, 3100 OMPPrivateScope &LoopScope, 3101 const OMPLoopArguments &LoopArgs, 3102 const CodeGenLoopTy &CodeGenLoopContent); 3103 /// \brief Emit code for sections directive. 3104 void EmitSections(const OMPExecutableDirective &S); 3105 3106 public: 3107 3108 //===--------------------------------------------------------------------===// 3109 // LValue Expression Emission 3110 //===--------------------------------------------------------------------===// 3111 3112 /// GetUndefRValue - Get an appropriate 'undef' rvalue for the given type. 3113 RValue GetUndefRValue(QualType Ty); 3114 3115 /// EmitUnsupportedRValue - Emit a dummy r-value using the type of E 3116 /// and issue an ErrorUnsupported style diagnostic (using the 3117 /// provided Name). 3118 RValue EmitUnsupportedRValue(const Expr *E, 3119 const char *Name); 3120 3121 /// EmitUnsupportedLValue - Emit a dummy l-value using the type of E and issue 3122 /// an ErrorUnsupported style diagnostic (using the provided Name). 3123 LValue EmitUnsupportedLValue(const Expr *E, 3124 const char *Name); 3125 3126 /// EmitLValue - Emit code to compute a designator that specifies the location 3127 /// of the expression. 3128 /// 3129 /// This can return one of two things: a simple address or a bitfield 3130 /// reference. In either case, the LLVM Value* in the LValue structure is 3131 /// guaranteed to be an LLVM pointer type. 3132 /// 3133 /// If this returns a bitfield reference, nothing about the pointee type of 3134 /// the LLVM value is known: For example, it may not be a pointer to an 3135 /// integer. 3136 /// 3137 /// If this returns a normal address, and if the lvalue's C type is fixed 3138 /// size, this method guarantees that the returned pointer type will point to 3139 /// an LLVM type of the same size of the lvalue's type. If the lvalue has a 3140 /// variable length type, this is not possible. 3141 /// 3142 LValue EmitLValue(const Expr *E); 3143 3144 /// \brief Same as EmitLValue but additionally we generate checking code to 3145 /// guard against undefined behavior. This is only suitable when we know 3146 /// that the address will be used to access the object. 3147 LValue EmitCheckedLValue(const Expr *E, TypeCheckKind TCK); 3148 3149 RValue convertTempToRValue(Address addr, QualType type, 3150 SourceLocation Loc); 3151 3152 void EmitAtomicInit(Expr *E, LValue lvalue); 3153 3154 bool LValueIsSuitableForInlineAtomic(LValue Src); 3155 3156 RValue EmitAtomicLoad(LValue LV, SourceLocation SL, 3157 AggValueSlot Slot = AggValueSlot::ignored()); 3158 3159 RValue EmitAtomicLoad(LValue lvalue, SourceLocation loc, 3160 llvm::AtomicOrdering AO, bool IsVolatile = false, 3161 AggValueSlot slot = AggValueSlot::ignored()); 3162 3163 void EmitAtomicStore(RValue rvalue, LValue lvalue, bool isInit); 3164 3165 void EmitAtomicStore(RValue rvalue, LValue lvalue, llvm::AtomicOrdering AO, 3166 bool IsVolatile, bool isInit); 3167 3168 std::pair<RValue, llvm::Value *> EmitAtomicCompareExchange( 3169 LValue Obj, RValue Expected, RValue Desired, SourceLocation Loc, 3170 llvm::AtomicOrdering Success = 3171 llvm::AtomicOrdering::SequentiallyConsistent, 3172 llvm::AtomicOrdering Failure = 3173 llvm::AtomicOrdering::SequentiallyConsistent, 3174 bool IsWeak = false, AggValueSlot Slot = AggValueSlot::ignored()); 3175 3176 void EmitAtomicUpdate(LValue LVal, llvm::AtomicOrdering AO, 3177 const llvm::function_ref<RValue(RValue)> &UpdateOp, 3178 bool IsVolatile); 3179 3180 /// EmitToMemory - Change a scalar value from its value 3181 /// representation to its in-memory representation. 3182 llvm::Value *EmitToMemory(llvm::Value *Value, QualType Ty); 3183 3184 /// EmitFromMemory - Change a scalar value from its memory 3185 /// representation to its value representation. 3186 llvm::Value *EmitFromMemory(llvm::Value *Value, QualType Ty); 3187 3188 /// Check if the scalar \p Value is within the valid range for the given 3189 /// type \p Ty. 3190 /// 3191 /// Returns true if a check is needed (even if the range is unknown). 3192 bool EmitScalarRangeCheck(llvm::Value *Value, QualType Ty, 3193 SourceLocation Loc); 3194 3195 /// EmitLoadOfScalar - Load a scalar value from an address, taking 3196 /// care to appropriately convert from the memory representation to 3197 /// the LLVM value representation. 3198 llvm::Value *EmitLoadOfScalar(Address Addr, bool Volatile, QualType Ty, 3199 SourceLocation Loc, 3200 AlignmentSource Source = AlignmentSource::Type, 3201 bool isNontemporal = false) { 3202 return EmitLoadOfScalar(Addr, Volatile, Ty, Loc, LValueBaseInfo(Source), 3203 CGM.getTBAAAccessInfo(Ty), isNontemporal); 3204 } 3205 3206 llvm::Value *EmitLoadOfScalar(Address Addr, bool Volatile, QualType Ty, 3207 SourceLocation Loc, LValueBaseInfo BaseInfo, 3208 TBAAAccessInfo TBAAInfo, 3209 bool isNontemporal = false); 3210 3211 /// EmitLoadOfScalar - Load a scalar value from an address, taking 3212 /// care to appropriately convert from the memory representation to 3213 /// the LLVM value representation. The l-value must be a simple 3214 /// l-value. 3215 llvm::Value *EmitLoadOfScalar(LValue lvalue, SourceLocation Loc); 3216 3217 /// EmitStoreOfScalar - Store a scalar value to an address, taking 3218 /// care to appropriately convert from the memory representation to 3219 /// the LLVM value representation. 3220 void EmitStoreOfScalar(llvm::Value *Value, Address Addr, 3221 bool Volatile, QualType Ty, 3222 AlignmentSource Source = AlignmentSource::Type, 3223 bool isInit = false, bool isNontemporal = false) { 3224 EmitStoreOfScalar(Value, Addr, Volatile, Ty, LValueBaseInfo(Source), 3225 CGM.getTBAAAccessInfo(Ty), isInit, isNontemporal); 3226 } 3227 3228 void EmitStoreOfScalar(llvm::Value *Value, Address Addr, 3229 bool Volatile, QualType Ty, 3230 LValueBaseInfo BaseInfo, TBAAAccessInfo TBAAInfo, 3231 bool isInit = false, bool isNontemporal = false); 3232 3233 /// EmitStoreOfScalar - Store a scalar value to an address, taking 3234 /// care to appropriately convert from the memory representation to 3235 /// the LLVM value representation. The l-value must be a simple 3236 /// l-value. The isInit flag indicates whether this is an initialization. 3237 /// If so, atomic qualifiers are ignored and the store is always non-atomic. 3238 void EmitStoreOfScalar(llvm::Value *value, LValue lvalue, bool isInit=false); 3239 3240 /// EmitLoadOfLValue - Given an expression that represents a value lvalue, 3241 /// this method emits the address of the lvalue, then loads the result as an 3242 /// rvalue, returning the rvalue. 3243 RValue EmitLoadOfLValue(LValue V, SourceLocation Loc); 3244 RValue EmitLoadOfExtVectorElementLValue(LValue V); 3245 RValue EmitLoadOfBitfieldLValue(LValue LV, SourceLocation Loc); 3246 RValue EmitLoadOfGlobalRegLValue(LValue LV); 3247 3248 /// EmitStoreThroughLValue - Store the specified rvalue into the specified 3249 /// lvalue, where both are guaranteed to the have the same type, and that type 3250 /// is 'Ty'. 3251 void EmitStoreThroughLValue(RValue Src, LValue Dst, bool isInit = false); 3252 void EmitStoreThroughExtVectorComponentLValue(RValue Src, LValue Dst); 3253 void EmitStoreThroughGlobalRegLValue(RValue Src, LValue Dst); 3254 3255 /// EmitStoreThroughBitfieldLValue - Store Src into Dst with same constraints 3256 /// as EmitStoreThroughLValue. 3257 /// 3258 /// \param Result [out] - If non-null, this will be set to a Value* for the 3259 /// bit-field contents after the store, appropriate for use as the result of 3260 /// an assignment to the bit-field. 3261 void EmitStoreThroughBitfieldLValue(RValue Src, LValue Dst, 3262 llvm::Value **Result=nullptr); 3263 3264 /// Emit an l-value for an assignment (simple or compound) of complex type. 3265 LValue EmitComplexAssignmentLValue(const BinaryOperator *E); 3266 LValue EmitComplexCompoundAssignmentLValue(const CompoundAssignOperator *E); 3267 LValue EmitScalarCompoundAssignWithComplex(const CompoundAssignOperator *E, 3268 llvm::Value *&Result); 3269 3270 // Note: only available for agg return types 3271 LValue EmitBinaryOperatorLValue(const BinaryOperator *E); 3272 LValue EmitCompoundAssignmentLValue(const CompoundAssignOperator *E); 3273 // Note: only available for agg return types 3274 LValue EmitCallExprLValue(const CallExpr *E); 3275 // Note: only available for agg return types 3276 LValue EmitVAArgExprLValue(const VAArgExpr *E); 3277 LValue EmitDeclRefLValue(const DeclRefExpr *E); 3278 LValue EmitStringLiteralLValue(const StringLiteral *E); 3279 LValue EmitObjCEncodeExprLValue(const ObjCEncodeExpr *E); 3280 LValue EmitPredefinedLValue(const PredefinedExpr *E); 3281 LValue EmitUnaryOpLValue(const UnaryOperator *E); 3282 LValue EmitArraySubscriptExpr(const ArraySubscriptExpr *E, 3283 bool Accessed = false); 3284 LValue EmitOMPArraySectionExpr(const OMPArraySectionExpr *E, 3285 bool IsLowerBound = true); 3286 LValue EmitExtVectorElementExpr(const ExtVectorElementExpr *E); 3287 LValue EmitMemberExpr(const MemberExpr *E); 3288 LValue EmitObjCIsaExpr(const ObjCIsaExpr *E); 3289 LValue EmitCompoundLiteralLValue(const CompoundLiteralExpr *E); 3290 LValue EmitInitListLValue(const InitListExpr *E); 3291 LValue EmitConditionalOperatorLValue(const AbstractConditionalOperator *E); 3292 LValue EmitCastLValue(const CastExpr *E); 3293 LValue EmitMaterializeTemporaryExpr(const MaterializeTemporaryExpr *E); 3294 LValue EmitOpaqueValueLValue(const OpaqueValueExpr *e); 3295 3296 Address EmitExtVectorElementLValue(LValue V); 3297 3298 RValue EmitRValueForField(LValue LV, const FieldDecl *FD, SourceLocation Loc); 3299 3300 Address EmitArrayToPointerDecay(const Expr *Array, 3301 LValueBaseInfo *BaseInfo = nullptr, 3302 TBAAAccessInfo *TBAAInfo = nullptr); 3303 3304 class ConstantEmission { 3305 llvm::PointerIntPair<llvm::Constant*, 1, bool> ValueAndIsReference; 3306 ConstantEmission(llvm::Constant *C, bool isReference) 3307 : ValueAndIsReference(C, isReference) {} 3308 public: 3309 ConstantEmission() {} 3310 static ConstantEmission forReference(llvm::Constant *C) { 3311 return ConstantEmission(C, true); 3312 } 3313 static ConstantEmission forValue(llvm::Constant *C) { 3314 return ConstantEmission(C, false); 3315 } 3316 3317 explicit operator bool() const { 3318 return ValueAndIsReference.getOpaqueValue() != nullptr; 3319 } 3320 3321 bool isReference() const { return ValueAndIsReference.getInt(); } 3322 LValue getReferenceLValue(CodeGenFunction &CGF, Expr *refExpr) const { 3323 assert(isReference()); 3324 return CGF.MakeNaturalAlignAddrLValue(ValueAndIsReference.getPointer(), 3325 refExpr->getType()); 3326 } 3327 3328 llvm::Constant *getValue() const { 3329 assert(!isReference()); 3330 return ValueAndIsReference.getPointer(); 3331 } 3332 }; 3333 3334 ConstantEmission tryEmitAsConstant(DeclRefExpr *refExpr); 3335 ConstantEmission tryEmitAsConstant(const MemberExpr *ME); 3336 3337 RValue EmitPseudoObjectRValue(const PseudoObjectExpr *e, 3338 AggValueSlot slot = AggValueSlot::ignored()); 3339 LValue EmitPseudoObjectLValue(const PseudoObjectExpr *e); 3340 3341 llvm::Value *EmitIvarOffset(const ObjCInterfaceDecl *Interface, 3342 const ObjCIvarDecl *Ivar); 3343 LValue EmitLValueForField(LValue Base, const FieldDecl* Field); 3344 LValue EmitLValueForLambdaField(const FieldDecl *Field); 3345 3346 /// EmitLValueForFieldInitialization - Like EmitLValueForField, except that 3347 /// if the Field is a reference, this will return the address of the reference 3348 /// and not the address of the value stored in the reference. 3349 LValue EmitLValueForFieldInitialization(LValue Base, 3350 const FieldDecl* Field); 3351 3352 LValue EmitLValueForIvar(QualType ObjectTy, 3353 llvm::Value* Base, const ObjCIvarDecl *Ivar, 3354 unsigned CVRQualifiers); 3355 3356 LValue EmitCXXConstructLValue(const CXXConstructExpr *E); 3357 LValue EmitCXXBindTemporaryLValue(const CXXBindTemporaryExpr *E); 3358 LValue EmitLambdaLValue(const LambdaExpr *E); 3359 LValue EmitCXXTypeidLValue(const CXXTypeidExpr *E); 3360 LValue EmitCXXUuidofLValue(const CXXUuidofExpr *E); 3361 3362 LValue EmitObjCMessageExprLValue(const ObjCMessageExpr *E); 3363 LValue EmitObjCIvarRefLValue(const ObjCIvarRefExpr *E); 3364 LValue EmitStmtExprLValue(const StmtExpr *E); 3365 LValue EmitPointerToDataMemberBinaryExpr(const BinaryOperator *E); 3366 LValue EmitObjCSelectorLValue(const ObjCSelectorExpr *E); 3367 void EmitDeclRefExprDbgValue(const DeclRefExpr *E, const APValue &Init); 3368 3369 //===--------------------------------------------------------------------===// 3370 // Scalar Expression Emission 3371 //===--------------------------------------------------------------------===// 3372 3373 /// EmitCall - Generate a call of the given function, expecting the given 3374 /// result type, and using the given argument list which specifies both the 3375 /// LLVM arguments and the types they were derived from. 3376 RValue EmitCall(const CGFunctionInfo &CallInfo, const CGCallee &Callee, 3377 ReturnValueSlot ReturnValue, const CallArgList &Args, 3378 llvm::Instruction **callOrInvoke, SourceLocation Loc); 3379 RValue EmitCall(const CGFunctionInfo &CallInfo, const CGCallee &Callee, 3380 ReturnValueSlot ReturnValue, const CallArgList &Args, 3381 llvm::Instruction **callOrInvoke = nullptr) { 3382 return EmitCall(CallInfo, Callee, ReturnValue, Args, callOrInvoke, 3383 SourceLocation()); 3384 } 3385 RValue EmitCall(QualType FnType, const CGCallee &Callee, const CallExpr *E, 3386 ReturnValueSlot ReturnValue, llvm::Value *Chain = nullptr); 3387 RValue EmitCallExpr(const CallExpr *E, 3388 ReturnValueSlot ReturnValue = ReturnValueSlot()); 3389 RValue EmitSimpleCallExpr(const CallExpr *E, ReturnValueSlot ReturnValue); 3390 CGCallee EmitCallee(const Expr *E); 3391 3392 void checkTargetFeatures(const CallExpr *E, const FunctionDecl *TargetDecl); 3393 3394 llvm::CallInst *EmitRuntimeCall(llvm::Value *callee, 3395 const Twine &name = ""); 3396 llvm::CallInst *EmitRuntimeCall(llvm::Value *callee, 3397 ArrayRef<llvm::Value*> args, 3398 const Twine &name = ""); 3399 llvm::CallInst *EmitNounwindRuntimeCall(llvm::Value *callee, 3400 const Twine &name = ""); 3401 llvm::CallInst *EmitNounwindRuntimeCall(llvm::Value *callee, 3402 ArrayRef<llvm::Value*> args, 3403 const Twine &name = ""); 3404 3405 SmallVector<llvm::OperandBundleDef, 1> 3406 getBundlesForFunclet(llvm::Value *Callee); 3407 3408 llvm::CallSite EmitCallOrInvoke(llvm::Value *Callee, 3409 ArrayRef<llvm::Value *> Args, 3410 const Twine &Name = ""); 3411 llvm::CallSite EmitRuntimeCallOrInvoke(llvm::Value *callee, 3412 ArrayRef<llvm::Value*> args, 3413 const Twine &name = ""); 3414 llvm::CallSite EmitRuntimeCallOrInvoke(llvm::Value *callee, 3415 const Twine &name = ""); 3416 void EmitNoreturnRuntimeCallOrInvoke(llvm::Value *callee, 3417 ArrayRef<llvm::Value*> args); 3418 3419 CGCallee BuildAppleKextVirtualCall(const CXXMethodDecl *MD, 3420 NestedNameSpecifier *Qual, 3421 llvm::Type *Ty); 3422 3423 CGCallee BuildAppleKextVirtualDestructorCall(const CXXDestructorDecl *DD, 3424 CXXDtorType Type, 3425 const CXXRecordDecl *RD); 3426 3427 // These functions emit calls to the special functions of non-trivial C 3428 // structs. 3429 void defaultInitNonTrivialCStructVar(LValue Dst); 3430 void callCStructDefaultConstructor(LValue Dst); 3431 void callCStructDestructor(LValue Dst); 3432 void callCStructCopyConstructor(LValue Dst, LValue Src); 3433 void callCStructMoveConstructor(LValue Dst, LValue Src); 3434 void callCStructCopyAssignmentOperator(LValue Dst, LValue Src); 3435 void callCStructMoveAssignmentOperator(LValue Dst, LValue Src); 3436 3437 RValue 3438 EmitCXXMemberOrOperatorCall(const CXXMethodDecl *Method, 3439 const CGCallee &Callee, 3440 ReturnValueSlot ReturnValue, llvm::Value *This, 3441 llvm::Value *ImplicitParam, 3442 QualType ImplicitParamTy, const CallExpr *E, 3443 CallArgList *RtlArgs); 3444 RValue EmitCXXDestructorCall(const CXXDestructorDecl *DD, 3445 const CGCallee &Callee, 3446 llvm::Value *This, llvm::Value *ImplicitParam, 3447 QualType ImplicitParamTy, const CallExpr *E, 3448 StructorType Type); 3449 RValue EmitCXXMemberCallExpr(const CXXMemberCallExpr *E, 3450 ReturnValueSlot ReturnValue); 3451 RValue EmitCXXMemberOrOperatorMemberCallExpr(const CallExpr *CE, 3452 const CXXMethodDecl *MD, 3453 ReturnValueSlot ReturnValue, 3454 bool HasQualifier, 3455 NestedNameSpecifier *Qualifier, 3456 bool IsArrow, const Expr *Base); 3457 // Compute the object pointer. 3458 Address EmitCXXMemberDataPointerAddress(const Expr *E, Address base, 3459 llvm::Value *memberPtr, 3460 const MemberPointerType *memberPtrType, 3461 LValueBaseInfo *BaseInfo = nullptr, 3462 TBAAAccessInfo *TBAAInfo = nullptr); 3463 RValue EmitCXXMemberPointerCallExpr(const CXXMemberCallExpr *E, 3464 ReturnValueSlot ReturnValue); 3465 3466 RValue EmitCXXOperatorMemberCallExpr(const CXXOperatorCallExpr *E, 3467 const CXXMethodDecl *MD, 3468 ReturnValueSlot ReturnValue); 3469 RValue EmitCXXPseudoDestructorExpr(const CXXPseudoDestructorExpr *E); 3470 3471 RValue EmitCUDAKernelCallExpr(const CUDAKernelCallExpr *E, 3472 ReturnValueSlot ReturnValue); 3473 3474 RValue EmitNVPTXDevicePrintfCallExpr(const CallExpr *E, 3475 ReturnValueSlot ReturnValue); 3476 3477 RValue EmitBuiltinExpr(const FunctionDecl *FD, 3478 unsigned BuiltinID, const CallExpr *E, 3479 ReturnValueSlot ReturnValue); 3480 3481 /// Emit IR for __builtin_os_log_format. 3482 RValue emitBuiltinOSLogFormat(const CallExpr &E); 3483 3484 llvm::Function *generateBuiltinOSLogHelperFunction( 3485 const analyze_os_log::OSLogBufferLayout &Layout, 3486 CharUnits BufferAlignment); 3487 3488 RValue EmitBlockCallExpr(const CallExpr *E, ReturnValueSlot ReturnValue); 3489 3490 /// EmitTargetBuiltinExpr - Emit the given builtin call. Returns 0 if the call 3491 /// is unhandled by the current target. 3492 llvm::Value *EmitTargetBuiltinExpr(unsigned BuiltinID, const CallExpr *E); 3493 3494 llvm::Value *EmitAArch64CompareBuiltinExpr(llvm::Value *Op, llvm::Type *Ty, 3495 const llvm::CmpInst::Predicate Fp, 3496 const llvm::CmpInst::Predicate Ip, 3497 const llvm::Twine &Name = ""); 3498 llvm::Value *EmitARMBuiltinExpr(unsigned BuiltinID, const CallExpr *E, 3499 llvm::Triple::ArchType Arch); 3500 3501 llvm::Value *EmitCommonNeonBuiltinExpr(unsigned BuiltinID, 3502 unsigned LLVMIntrinsic, 3503 unsigned AltLLVMIntrinsic, 3504 const char *NameHint, 3505 unsigned Modifier, 3506 const CallExpr *E, 3507 SmallVectorImpl<llvm::Value *> &Ops, 3508 Address PtrOp0, Address PtrOp1, 3509 llvm::Triple::ArchType Arch); 3510 llvm::Function *LookupNeonLLVMIntrinsic(unsigned IntrinsicID, 3511 unsigned Modifier, llvm::Type *ArgTy, 3512 const CallExpr *E); 3513 llvm::Value *EmitNeonCall(llvm::Function *F, 3514 SmallVectorImpl<llvm::Value*> &O, 3515 const char *name, 3516 unsigned shift = 0, bool rightshift = false); 3517 llvm::Value *EmitNeonSplat(llvm::Value *V, llvm::Constant *Idx); 3518 llvm::Value *EmitNeonShiftVector(llvm::Value *V, llvm::Type *Ty, 3519 bool negateForRightShift); 3520 llvm::Value *EmitNeonRShiftImm(llvm::Value *Vec, llvm::Value *Amt, 3521 llvm::Type *Ty, bool usgn, const char *name); 3522 llvm::Value *vectorWrapScalar16(llvm::Value *Op); 3523 llvm::Value *EmitAArch64BuiltinExpr(unsigned BuiltinID, const CallExpr *E, 3524 llvm::Triple::ArchType Arch); 3525 3526 llvm::Value *BuildVector(ArrayRef<llvm::Value*> Ops); 3527 llvm::Value *EmitX86BuiltinExpr(unsigned BuiltinID, const CallExpr *E); 3528 llvm::Value *EmitPPCBuiltinExpr(unsigned BuiltinID, const CallExpr *E); 3529 llvm::Value *EmitAMDGPUBuiltinExpr(unsigned BuiltinID, const CallExpr *E); 3530 llvm::Value *EmitSystemZBuiltinExpr(unsigned BuiltinID, const CallExpr *E); 3531 llvm::Value *EmitNVPTXBuiltinExpr(unsigned BuiltinID, const CallExpr *E); 3532 llvm::Value *EmitWebAssemblyBuiltinExpr(unsigned BuiltinID, 3533 const CallExpr *E); 3534 llvm::Value *EmitHexagonBuiltinExpr(unsigned BuiltinID, const CallExpr *E); 3535 3536 private: 3537 enum class MSVCIntrin; 3538 3539 public: 3540 llvm::Value *EmitMSVCBuiltinExpr(MSVCIntrin BuiltinID, const CallExpr *E); 3541 3542 llvm::Value *EmitBuiltinAvailable(ArrayRef<llvm::Value *> Args); 3543 3544 llvm::Value *EmitObjCProtocolExpr(const ObjCProtocolExpr *E); 3545 llvm::Value *EmitObjCStringLiteral(const ObjCStringLiteral *E); 3546 llvm::Value *EmitObjCBoxedExpr(const ObjCBoxedExpr *E); 3547 llvm::Value *EmitObjCArrayLiteral(const ObjCArrayLiteral *E); 3548 llvm::Value *EmitObjCDictionaryLiteral(const ObjCDictionaryLiteral *E); 3549 llvm::Value *EmitObjCCollectionLiteral(const Expr *E, 3550 const ObjCMethodDecl *MethodWithObjects); 3551 llvm::Value *EmitObjCSelectorExpr(const ObjCSelectorExpr *E); 3552 RValue EmitObjCMessageExpr(const ObjCMessageExpr *E, 3553 ReturnValueSlot Return = ReturnValueSlot()); 3554 3555 /// Retrieves the default cleanup kind for an ARC cleanup. 3556 /// Except under -fobjc-arc-eh, ARC cleanups are normal-only. 3557 CleanupKind getARCCleanupKind() { 3558 return CGM.getCodeGenOpts().ObjCAutoRefCountExceptions 3559 ? NormalAndEHCleanup : NormalCleanup; 3560 } 3561 3562 // ARC primitives. 3563 void EmitARCInitWeak(Address addr, llvm::Value *value); 3564 void EmitARCDestroyWeak(Address addr); 3565 llvm::Value *EmitARCLoadWeak(Address addr); 3566 llvm::Value *EmitARCLoadWeakRetained(Address addr); 3567 llvm::Value *EmitARCStoreWeak(Address addr, llvm::Value *value, bool ignored); 3568 void emitARCCopyAssignWeak(QualType Ty, Address DstAddr, Address SrcAddr); 3569 void emitARCMoveAssignWeak(QualType Ty, Address DstAddr, Address SrcAddr); 3570 void EmitARCCopyWeak(Address dst, Address src); 3571 void EmitARCMoveWeak(Address dst, Address src); 3572 llvm::Value *EmitARCRetainAutorelease(QualType type, llvm::Value *value); 3573 llvm::Value *EmitARCRetainAutoreleaseNonBlock(llvm::Value *value); 3574 llvm::Value *EmitARCStoreStrong(LValue lvalue, llvm::Value *value, 3575 bool resultIgnored); 3576 llvm::Value *EmitARCStoreStrongCall(Address addr, llvm::Value *value, 3577 bool resultIgnored); 3578 llvm::Value *EmitARCRetain(QualType type, llvm::Value *value); 3579 llvm::Value *EmitARCRetainNonBlock(llvm::Value *value); 3580 llvm::Value *EmitARCRetainBlock(llvm::Value *value, bool mandatory); 3581 void EmitARCDestroyStrong(Address addr, ARCPreciseLifetime_t precise); 3582 void EmitARCRelease(llvm::Value *value, ARCPreciseLifetime_t precise); 3583 llvm::Value *EmitARCAutorelease(llvm::Value *value); 3584 llvm::Value *EmitARCAutoreleaseReturnValue(llvm::Value *value); 3585 llvm::Value *EmitARCRetainAutoreleaseReturnValue(llvm::Value *value); 3586 llvm::Value *EmitARCRetainAutoreleasedReturnValue(llvm::Value *value); 3587 llvm::Value *EmitARCUnsafeClaimAutoreleasedReturnValue(llvm::Value *value); 3588 3589 std::pair<LValue,llvm::Value*> 3590 EmitARCStoreAutoreleasing(const BinaryOperator *e); 3591 std::pair<LValue,llvm::Value*> 3592 EmitARCStoreStrong(const BinaryOperator *e, bool ignored); 3593 std::pair<LValue,llvm::Value*> 3594 EmitARCStoreUnsafeUnretained(const BinaryOperator *e, bool ignored); 3595 3596 llvm::Value *EmitObjCThrowOperand(const Expr *expr); 3597 llvm::Value *EmitObjCConsumeObject(QualType T, llvm::Value *Ptr); 3598 llvm::Value *EmitObjCExtendObjectLifetime(QualType T, llvm::Value *Ptr); 3599 3600 llvm::Value *EmitARCExtendBlockObject(const Expr *expr); 3601 llvm::Value *EmitARCReclaimReturnedObject(const Expr *e, 3602 bool allowUnsafeClaim); 3603 llvm::Value *EmitARCRetainScalarExpr(const Expr *expr); 3604 llvm::Value *EmitARCRetainAutoreleaseScalarExpr(const Expr *expr); 3605 llvm::Value *EmitARCUnsafeUnretainedScalarExpr(const Expr *expr); 3606 3607 void EmitARCIntrinsicUse(ArrayRef<llvm::Value*> values); 3608 3609 static Destroyer destroyARCStrongImprecise; 3610 static Destroyer destroyARCStrongPrecise; 3611 static Destroyer destroyARCWeak; 3612 static Destroyer emitARCIntrinsicUse; 3613 static Destroyer destroyNonTrivialCStruct; 3614 3615 void EmitObjCAutoreleasePoolPop(llvm::Value *Ptr); 3616 llvm::Value *EmitObjCAutoreleasePoolPush(); 3617 llvm::Value *EmitObjCMRRAutoreleasePoolPush(); 3618 void EmitObjCAutoreleasePoolCleanup(llvm::Value *Ptr); 3619 void EmitObjCMRRAutoreleasePoolPop(llvm::Value *Ptr); 3620 3621 /// \brief Emits a reference binding to the passed in expression. 3622 RValue EmitReferenceBindingToExpr(const Expr *E); 3623 3624 //===--------------------------------------------------------------------===// 3625 // Expression Emission 3626 //===--------------------------------------------------------------------===// 3627 3628 // Expressions are broken into three classes: scalar, complex, aggregate. 3629 3630 /// EmitScalarExpr - Emit the computation of the specified expression of LLVM 3631 /// scalar type, returning the result. 3632 llvm::Value *EmitScalarExpr(const Expr *E , bool IgnoreResultAssign = false); 3633 3634 /// Emit a conversion from the specified type to the specified destination 3635 /// type, both of which are LLVM scalar types. 3636 llvm::Value *EmitScalarConversion(llvm::Value *Src, QualType SrcTy, 3637 QualType DstTy, SourceLocation Loc); 3638 3639 /// Emit a conversion from the specified complex type to the specified 3640 /// destination type, where the destination type is an LLVM scalar type. 3641 llvm::Value *EmitComplexToScalarConversion(ComplexPairTy Src, QualType SrcTy, 3642 QualType DstTy, 3643 SourceLocation Loc); 3644 3645 /// EmitAggExpr - Emit the computation of the specified expression 3646 /// of aggregate type. The result is computed into the given slot, 3647 /// which may be null to indicate that the value is not needed. 3648 void EmitAggExpr(const Expr *E, AggValueSlot AS); 3649 3650 /// EmitAggExprToLValue - Emit the computation of the specified expression of 3651 /// aggregate type into a temporary LValue. 3652 LValue EmitAggExprToLValue(const Expr *E); 3653 3654 /// EmitExtendGCLifetime - Given a pointer to an Objective-C object, 3655 /// make sure it survives garbage collection until this point. 3656 void EmitExtendGCLifetime(llvm::Value *object); 3657 3658 /// EmitComplexExpr - Emit the computation of the specified expression of 3659 /// complex type, returning the result. 3660 ComplexPairTy EmitComplexExpr(const Expr *E, 3661 bool IgnoreReal = false, 3662 bool IgnoreImag = false); 3663 3664 /// EmitComplexExprIntoLValue - Emit the given expression of complex 3665 /// type and place its result into the specified l-value. 3666 void EmitComplexExprIntoLValue(const Expr *E, LValue dest, bool isInit); 3667 3668 /// EmitStoreOfComplex - Store a complex number into the specified l-value. 3669 void EmitStoreOfComplex(ComplexPairTy V, LValue dest, bool isInit); 3670 3671 /// EmitLoadOfComplex - Load a complex number from the specified l-value. 3672 ComplexPairTy EmitLoadOfComplex(LValue src, SourceLocation loc); 3673 3674 Address emitAddrOfRealComponent(Address complex, QualType complexType); 3675 Address emitAddrOfImagComponent(Address complex, QualType complexType); 3676 3677 /// AddInitializerToStaticVarDecl - Add the initializer for 'D' to the 3678 /// global variable that has already been created for it. If the initializer 3679 /// has a different type than GV does, this may free GV and return a different 3680 /// one. Otherwise it just returns GV. 3681 llvm::GlobalVariable * 3682 AddInitializerToStaticVarDecl(const VarDecl &D, 3683 llvm::GlobalVariable *GV); 3684 3685 3686 /// EmitCXXGlobalVarDeclInit - Create the initializer for a C++ 3687 /// variable with global storage. 3688 void EmitCXXGlobalVarDeclInit(const VarDecl &D, llvm::Constant *DeclPtr, 3689 bool PerformInit); 3690 3691 llvm::Constant *createAtExitStub(const VarDecl &VD, llvm::Constant *Dtor, 3692 llvm::Constant *Addr); 3693 3694 /// Call atexit() with a function that passes the given argument to 3695 /// the given function. 3696 void registerGlobalDtorWithAtExit(const VarDecl &D, llvm::Constant *fn, 3697 llvm::Constant *addr); 3698 3699 /// Emit code in this function to perform a guarded variable 3700 /// initialization. Guarded initializations are used when it's not 3701 /// possible to prove that an initialization will be done exactly 3702 /// once, e.g. with a static local variable or a static data member 3703 /// of a class template. 3704 void EmitCXXGuardedInit(const VarDecl &D, llvm::GlobalVariable *DeclPtr, 3705 bool PerformInit); 3706 3707 enum class GuardKind { VariableGuard, TlsGuard }; 3708 3709 /// Emit a branch to select whether or not to perform guarded initialization. 3710 void EmitCXXGuardedInitBranch(llvm::Value *NeedsInit, 3711 llvm::BasicBlock *InitBlock, 3712 llvm::BasicBlock *NoInitBlock, 3713 GuardKind Kind, const VarDecl *D); 3714 3715 /// GenerateCXXGlobalInitFunc - Generates code for initializing global 3716 /// variables. 3717 void GenerateCXXGlobalInitFunc(llvm::Function *Fn, 3718 ArrayRef<llvm::Function *> CXXThreadLocals, 3719 Address Guard = Address::invalid()); 3720 3721 /// GenerateCXXGlobalDtorsFunc - Generates code for destroying global 3722 /// variables. 3723 void GenerateCXXGlobalDtorsFunc( 3724 llvm::Function *Fn, 3725 const std::vector<std::pair<llvm::WeakTrackingVH, llvm::Constant *>> 3726 &DtorsAndObjects); 3727 3728 void GenerateCXXGlobalVarDeclInitFunc(llvm::Function *Fn, 3729 const VarDecl *D, 3730 llvm::GlobalVariable *Addr, 3731 bool PerformInit); 3732 3733 void EmitCXXConstructExpr(const CXXConstructExpr *E, AggValueSlot Dest); 3734 3735 void EmitSynthesizedCXXCopyCtor(Address Dest, Address Src, const Expr *Exp); 3736 3737 void enterFullExpression(const ExprWithCleanups *E) { 3738 if (E->getNumObjects() == 0) return; 3739 enterNonTrivialFullExpression(E); 3740 } 3741 void enterNonTrivialFullExpression(const ExprWithCleanups *E); 3742 3743 void EmitCXXThrowExpr(const CXXThrowExpr *E, bool KeepInsertionPoint = true); 3744 3745 void EmitLambdaExpr(const LambdaExpr *E, AggValueSlot Dest); 3746 3747 RValue EmitAtomicExpr(AtomicExpr *E); 3748 3749 //===--------------------------------------------------------------------===// 3750 // Annotations Emission 3751 //===--------------------------------------------------------------------===// 3752 3753 /// Emit an annotation call (intrinsic or builtin). 3754 llvm::Value *EmitAnnotationCall(llvm::Value *AnnotationFn, 3755 llvm::Value *AnnotatedVal, 3756 StringRef AnnotationStr, 3757 SourceLocation Location); 3758 3759 /// Emit local annotations for the local variable V, declared by D. 3760 void EmitVarAnnotations(const VarDecl *D, llvm::Value *V); 3761 3762 /// Emit field annotations for the given field & value. Returns the 3763 /// annotation result. 3764 Address EmitFieldAnnotations(const FieldDecl *D, Address V); 3765 3766 //===--------------------------------------------------------------------===// 3767 // Internal Helpers 3768 //===--------------------------------------------------------------------===// 3769 3770 /// ContainsLabel - Return true if the statement contains a label in it. If 3771 /// this statement is not executed normally, it not containing a label means 3772 /// that we can just remove the code. 3773 static bool ContainsLabel(const Stmt *S, bool IgnoreCaseStmts = false); 3774 3775 /// containsBreak - Return true if the statement contains a break out of it. 3776 /// If the statement (recursively) contains a switch or loop with a break 3777 /// inside of it, this is fine. 3778 static bool containsBreak(const Stmt *S); 3779 3780 /// Determine if the given statement might introduce a declaration into the 3781 /// current scope, by being a (possibly-labelled) DeclStmt. 3782 static bool mightAddDeclToScope(const Stmt *S); 3783 3784 /// ConstantFoldsToSimpleInteger - If the specified expression does not fold 3785 /// to a constant, or if it does but contains a label, return false. If it 3786 /// constant folds return true and set the boolean result in Result. 3787 bool ConstantFoldsToSimpleInteger(const Expr *Cond, bool &Result, 3788 bool AllowLabels = false); 3789 3790 /// ConstantFoldsToSimpleInteger - If the specified expression does not fold 3791 /// to a constant, or if it does but contains a label, return false. If it 3792 /// constant folds return true and set the folded value. 3793 bool ConstantFoldsToSimpleInteger(const Expr *Cond, llvm::APSInt &Result, 3794 bool AllowLabels = false); 3795 3796 /// EmitBranchOnBoolExpr - Emit a branch on a boolean condition (e.g. for an 3797 /// if statement) to the specified blocks. Based on the condition, this might 3798 /// try to simplify the codegen of the conditional based on the branch. 3799 /// TrueCount should be the number of times we expect the condition to 3800 /// evaluate to true based on PGO data. 3801 void EmitBranchOnBoolExpr(const Expr *Cond, llvm::BasicBlock *TrueBlock, 3802 llvm::BasicBlock *FalseBlock, uint64_t TrueCount); 3803 3804 /// Given an assignment `*LHS = RHS`, emit a test that checks if \p RHS is 3805 /// nonnull, if \p LHS is marked _Nonnull. 3806 void EmitNullabilityCheck(LValue LHS, llvm::Value *RHS, SourceLocation Loc); 3807 3808 /// An enumeration which makes it easier to specify whether or not an 3809 /// operation is a subtraction. 3810 enum { NotSubtraction = false, IsSubtraction = true }; 3811 3812 /// Same as IRBuilder::CreateInBoundsGEP, but additionally emits a check to 3813 /// detect undefined behavior when the pointer overflow sanitizer is enabled. 3814 /// \p SignedIndices indicates whether any of the GEP indices are signed. 3815 /// \p IsSubtraction indicates whether the expression used to form the GEP 3816 /// is a subtraction. 3817 llvm::Value *EmitCheckedInBoundsGEP(llvm::Value *Ptr, 3818 ArrayRef<llvm::Value *> IdxList, 3819 bool SignedIndices, 3820 bool IsSubtraction, 3821 SourceLocation Loc, 3822 const Twine &Name = ""); 3823 3824 /// Specifies which type of sanitizer check to apply when handling a 3825 /// particular builtin. 3826 enum BuiltinCheckKind { 3827 BCK_CTZPassedZero, 3828 BCK_CLZPassedZero, 3829 }; 3830 3831 /// Emits an argument for a call to a builtin. If the builtin sanitizer is 3832 /// enabled, a runtime check specified by \p Kind is also emitted. 3833 llvm::Value *EmitCheckedArgForBuiltin(const Expr *E, BuiltinCheckKind Kind); 3834 3835 /// \brief Emit a description of a type in a format suitable for passing to 3836 /// a runtime sanitizer handler. 3837 llvm::Constant *EmitCheckTypeDescriptor(QualType T); 3838 3839 /// \brief Convert a value into a format suitable for passing to a runtime 3840 /// sanitizer handler. 3841 llvm::Value *EmitCheckValue(llvm::Value *V); 3842 3843 /// \brief Emit a description of a source location in a format suitable for 3844 /// passing to a runtime sanitizer handler. 3845 llvm::Constant *EmitCheckSourceLocation(SourceLocation Loc); 3846 3847 /// \brief Create a basic block that will call a handler function in a 3848 /// sanitizer runtime with the provided arguments, and create a conditional 3849 /// branch to it. 3850 void EmitCheck(ArrayRef<std::pair<llvm::Value *, SanitizerMask>> Checked, 3851 SanitizerHandler Check, ArrayRef<llvm::Constant *> StaticArgs, 3852 ArrayRef<llvm::Value *> DynamicArgs); 3853 3854 /// \brief Emit a slow path cross-DSO CFI check which calls __cfi_slowpath 3855 /// if Cond if false. 3856 void EmitCfiSlowPathCheck(SanitizerMask Kind, llvm::Value *Cond, 3857 llvm::ConstantInt *TypeId, llvm::Value *Ptr, 3858 ArrayRef<llvm::Constant *> StaticArgs); 3859 3860 /// Emit a reached-unreachable diagnostic if \p Loc is valid and runtime 3861 /// checking is enabled. Otherwise, just emit an unreachable instruction. 3862 void EmitUnreachable(SourceLocation Loc); 3863 3864 /// \brief Create a basic block that will call the trap intrinsic, and emit a 3865 /// conditional branch to it, for the -ftrapv checks. 3866 void EmitTrapCheck(llvm::Value *Checked); 3867 3868 /// \brief Emit a call to trap or debugtrap and attach function attribute 3869 /// "trap-func-name" if specified. 3870 llvm::CallInst *EmitTrapCall(llvm::Intrinsic::ID IntrID); 3871 3872 /// \brief Emit a stub for the cross-DSO CFI check function. 3873 void EmitCfiCheckStub(); 3874 3875 /// \brief Emit a cross-DSO CFI failure handling function. 3876 void EmitCfiCheckFail(); 3877 3878 /// \brief Create a check for a function parameter that may potentially be 3879 /// declared as non-null. 3880 void EmitNonNullArgCheck(RValue RV, QualType ArgType, SourceLocation ArgLoc, 3881 AbstractCallee AC, unsigned ParmNum); 3882 3883 /// EmitCallArg - Emit a single call argument. 3884 void EmitCallArg(CallArgList &args, const Expr *E, QualType ArgType); 3885 3886 /// EmitDelegateCallArg - We are performing a delegate call; that 3887 /// is, the current function is delegating to another one. Produce 3888 /// a r-value suitable for passing the given parameter. 3889 void EmitDelegateCallArg(CallArgList &args, const VarDecl *param, 3890 SourceLocation loc); 3891 3892 /// SetFPAccuracy - Set the minimum required accuracy of the given floating 3893 /// point operation, expressed as the maximum relative error in ulp. 3894 void SetFPAccuracy(llvm::Value *Val, float Accuracy); 3895 3896 private: 3897 llvm::MDNode *getRangeForLoadFromType(QualType Ty); 3898 void EmitReturnOfRValue(RValue RV, QualType Ty); 3899 3900 void deferPlaceholderReplacement(llvm::Instruction *Old, llvm::Value *New); 3901 3902 llvm::SmallVector<std::pair<llvm::Instruction *, llvm::Value *>, 4> 3903 DeferredReplacements; 3904 3905 /// Set the address of a local variable. 3906 void setAddrOfLocalVar(const VarDecl *VD, Address Addr) { 3907 assert(!LocalDeclMap.count(VD) && "Decl already exists in LocalDeclMap!"); 3908 LocalDeclMap.insert({VD, Addr}); 3909 } 3910 3911 /// ExpandTypeFromArgs - Reconstruct a structure of type \arg Ty 3912 /// from function arguments into \arg Dst. See ABIArgInfo::Expand. 3913 /// 3914 /// \param AI - The first function argument of the expansion. 3915 void ExpandTypeFromArgs(QualType Ty, LValue Dst, 3916 SmallVectorImpl<llvm::Value *>::iterator &AI); 3917 3918 /// ExpandTypeToArgs - Expand an CallArg \arg Arg, with the LLVM type for \arg 3919 /// Ty, into individual arguments on the provided vector \arg IRCallArgs, 3920 /// starting at index \arg IRCallArgPos. See ABIArgInfo::Expand. 3921 void ExpandTypeToArgs(QualType Ty, CallArg Arg, llvm::FunctionType *IRFuncTy, 3922 SmallVectorImpl<llvm::Value *> &IRCallArgs, 3923 unsigned &IRCallArgPos); 3924 3925 llvm::Value* EmitAsmInput(const TargetInfo::ConstraintInfo &Info, 3926 const Expr *InputExpr, std::string &ConstraintStr); 3927 3928 llvm::Value* EmitAsmInputLValue(const TargetInfo::ConstraintInfo &Info, 3929 LValue InputValue, QualType InputType, 3930 std::string &ConstraintStr, 3931 SourceLocation Loc); 3932 3933 /// \brief Attempts to statically evaluate the object size of E. If that 3934 /// fails, emits code to figure the size of E out for us. This is 3935 /// pass_object_size aware. 3936 /// 3937 /// If EmittedExpr is non-null, this will use that instead of re-emitting E. 3938 llvm::Value *evaluateOrEmitBuiltinObjectSize(const Expr *E, unsigned Type, 3939 llvm::IntegerType *ResType, 3940 llvm::Value *EmittedE); 3941 3942 /// \brief Emits the size of E, as required by __builtin_object_size. This 3943 /// function is aware of pass_object_size parameters, and will act accordingly 3944 /// if E is a parameter with the pass_object_size attribute. 3945 llvm::Value *emitBuiltinObjectSize(const Expr *E, unsigned Type, 3946 llvm::IntegerType *ResType, 3947 llvm::Value *EmittedE); 3948 3949 public: 3950 #ifndef NDEBUG 3951 // Determine whether the given argument is an Objective-C method 3952 // that may have type parameters in its signature. 3953 static bool isObjCMethodWithTypeParams(const ObjCMethodDecl *method) { 3954 const DeclContext *dc = method->getDeclContext(); 3955 if (const ObjCInterfaceDecl *classDecl= dyn_cast<ObjCInterfaceDecl>(dc)) { 3956 return classDecl->getTypeParamListAsWritten(); 3957 } 3958 3959 if (const ObjCCategoryDecl *catDecl = dyn_cast<ObjCCategoryDecl>(dc)) { 3960 return catDecl->getTypeParamList(); 3961 } 3962 3963 return false; 3964 } 3965 3966 template<typename T> 3967 static bool isObjCMethodWithTypeParams(const T *) { return false; } 3968 #endif 3969 3970 enum class EvaluationOrder { 3971 ///! No language constraints on evaluation order. 3972 Default, 3973 ///! Language semantics require left-to-right evaluation. 3974 ForceLeftToRight, 3975 ///! Language semantics require right-to-left evaluation. 3976 ForceRightToLeft 3977 }; 3978 3979 /// EmitCallArgs - Emit call arguments for a function. 3980 template <typename T> 3981 void EmitCallArgs(CallArgList &Args, const T *CallArgTypeInfo, 3982 llvm::iterator_range<CallExpr::const_arg_iterator> ArgRange, 3983 AbstractCallee AC = AbstractCallee(), 3984 unsigned ParamsToSkip = 0, 3985 EvaluationOrder Order = EvaluationOrder::Default) { 3986 SmallVector<QualType, 16> ArgTypes; 3987 CallExpr::const_arg_iterator Arg = ArgRange.begin(); 3988 3989 assert((ParamsToSkip == 0 || CallArgTypeInfo) && 3990 "Can't skip parameters if type info is not provided"); 3991 if (CallArgTypeInfo) { 3992 #ifndef NDEBUG 3993 bool isGenericMethod = isObjCMethodWithTypeParams(CallArgTypeInfo); 3994 #endif 3995 3996 // First, use the argument types that the type info knows about 3997 for (auto I = CallArgTypeInfo->param_type_begin() + ParamsToSkip, 3998 E = CallArgTypeInfo->param_type_end(); 3999 I != E; ++I, ++Arg) { 4000 assert(Arg != ArgRange.end() && "Running over edge of argument list!"); 4001 assert((isGenericMethod || 4002 ((*I)->isVariablyModifiedType() || 4003 (*I).getNonReferenceType()->isObjCRetainableType() || 4004 getContext() 4005 .getCanonicalType((*I).getNonReferenceType()) 4006 .getTypePtr() == 4007 getContext() 4008 .getCanonicalType((*Arg)->getType()) 4009 .getTypePtr())) && 4010 "type mismatch in call argument!"); 4011 ArgTypes.push_back(*I); 4012 } 4013 } 4014 4015 // Either we've emitted all the call args, or we have a call to variadic 4016 // function. 4017 assert((Arg == ArgRange.end() || !CallArgTypeInfo || 4018 CallArgTypeInfo->isVariadic()) && 4019 "Extra arguments in non-variadic function!"); 4020 4021 // If we still have any arguments, emit them using the type of the argument. 4022 for (auto *A : llvm::make_range(Arg, ArgRange.end())) 4023 ArgTypes.push_back(CallArgTypeInfo ? getVarArgType(A) : A->getType()); 4024 4025 EmitCallArgs(Args, ArgTypes, ArgRange, AC, ParamsToSkip, Order); 4026 } 4027 4028 void EmitCallArgs(CallArgList &Args, ArrayRef<QualType> ArgTypes, 4029 llvm::iterator_range<CallExpr::const_arg_iterator> ArgRange, 4030 AbstractCallee AC = AbstractCallee(), 4031 unsigned ParamsToSkip = 0, 4032 EvaluationOrder Order = EvaluationOrder::Default); 4033 4034 /// EmitPointerWithAlignment - Given an expression with a pointer type, 4035 /// emit the value and compute our best estimate of the alignment of the 4036 /// pointee. 4037 /// 4038 /// \param BaseInfo - If non-null, this will be initialized with 4039 /// information about the source of the alignment and the may-alias 4040 /// attribute. Note that this function will conservatively fall back on 4041 /// the type when it doesn't recognize the expression and may-alias will 4042 /// be set to false. 4043 /// 4044 /// One reasonable way to use this information is when there's a language 4045 /// guarantee that the pointer must be aligned to some stricter value, and 4046 /// we're simply trying to ensure that sufficiently obvious uses of under- 4047 /// aligned objects don't get miscompiled; for example, a placement new 4048 /// into the address of a local variable. In such a case, it's quite 4049 /// reasonable to just ignore the returned alignment when it isn't from an 4050 /// explicit source. 4051 Address EmitPointerWithAlignment(const Expr *Addr, 4052 LValueBaseInfo *BaseInfo = nullptr, 4053 TBAAAccessInfo *TBAAInfo = nullptr); 4054 4055 /// If \p E references a parameter with pass_object_size info or a constant 4056 /// array size modifier, emit the object size divided by the size of \p EltTy. 4057 /// Otherwise return null. 4058 llvm::Value *LoadPassedObjectSize(const Expr *E, QualType EltTy); 4059 4060 void EmitSanitizerStatReport(llvm::SanitizerStatKind SSK); 4061 4062 struct MultiVersionResolverOption { 4063 llvm::Function *Function; 4064 TargetAttr::ParsedTargetAttr ParsedAttribute; 4065 unsigned Priority; 4066 MultiVersionResolverOption(const TargetInfo &TargInfo, llvm::Function *F, 4067 const clang::TargetAttr::ParsedTargetAttr &PT) 4068 : Function(F), ParsedAttribute(PT), Priority(0u) { 4069 for (StringRef Feat : PT.Features) 4070 Priority = std::max(Priority, 4071 TargInfo.multiVersionSortPriority(Feat.substr(1))); 4072 4073 if (!PT.Architecture.empty()) 4074 Priority = std::max(Priority, 4075 TargInfo.multiVersionSortPriority(PT.Architecture)); 4076 } 4077 4078 bool operator>(const MultiVersionResolverOption &Other) const { 4079 return Priority > Other.Priority; 4080 } 4081 }; 4082 void EmitMultiVersionResolver(llvm::Function *Resolver, 4083 ArrayRef<MultiVersionResolverOption> Options); 4084 4085 private: 4086 QualType getVarArgType(const Expr *Arg); 4087 4088 void EmitDeclMetadata(); 4089 4090 BlockByrefHelpers *buildByrefHelpers(llvm::StructType &byrefType, 4091 const AutoVarEmission &emission); 4092 4093 void AddObjCARCExceptionMetadata(llvm::Instruction *Inst); 4094 4095 llvm::Value *GetValueForARMHint(unsigned BuiltinID); 4096 llvm::Value *EmitX86CpuIs(const CallExpr *E); 4097 llvm::Value *EmitX86CpuIs(StringRef CPUStr); 4098 llvm::Value *EmitX86CpuSupports(const CallExpr *E); 4099 llvm::Value *EmitX86CpuSupports(ArrayRef<StringRef> FeatureStrs); 4100 llvm::Value *EmitX86CpuInit(); 4101 llvm::Value *FormResolverCondition(const MultiVersionResolverOption &RO); 4102 }; 4103 4104 /// Helper class with most of the code for saving a value for a 4105 /// conditional expression cleanup. 4106 struct DominatingLLVMValue { 4107 typedef llvm::PointerIntPair<llvm::Value*, 1, bool> saved_type; 4108 4109 /// Answer whether the given value needs extra work to be saved. 4110 static bool needsSaving(llvm::Value *value) { 4111 // If it's not an instruction, we don't need to save. 4112 if (!isa<llvm::Instruction>(value)) return false; 4113 4114 // If it's an instruction in the entry block, we don't need to save. 4115 llvm::BasicBlock *block = cast<llvm::Instruction>(value)->getParent(); 4116 return (block != &block->getParent()->getEntryBlock()); 4117 } 4118 4119 /// Try to save the given value. 4120 static saved_type save(CodeGenFunction &CGF, llvm::Value *value) { 4121 if (!needsSaving(value)) return saved_type(value, false); 4122 4123 // Otherwise, we need an alloca. 4124 auto align = CharUnits::fromQuantity( 4125 CGF.CGM.getDataLayout().getPrefTypeAlignment(value->getType())); 4126 Address alloca = 4127 CGF.CreateTempAlloca(value->getType(), align, "cond-cleanup.save"); 4128 CGF.Builder.CreateStore(value, alloca); 4129 4130 return saved_type(alloca.getPointer(), true); 4131 } 4132 4133 static llvm::Value *restore(CodeGenFunction &CGF, saved_type value) { 4134 // If the value says it wasn't saved, trust that it's still dominating. 4135 if (!value.getInt()) return value.getPointer(); 4136 4137 // Otherwise, it should be an alloca instruction, as set up in save(). 4138 auto alloca = cast<llvm::AllocaInst>(value.getPointer()); 4139 return CGF.Builder.CreateAlignedLoad(alloca, alloca->getAlignment()); 4140 } 4141 }; 4142 4143 /// A partial specialization of DominatingValue for llvm::Values that 4144 /// might be llvm::Instructions. 4145 template <class T> struct DominatingPointer<T,true> : DominatingLLVMValue { 4146 typedef T *type; 4147 static type restore(CodeGenFunction &CGF, saved_type value) { 4148 return static_cast<T*>(DominatingLLVMValue::restore(CGF, value)); 4149 } 4150 }; 4151 4152 /// A specialization of DominatingValue for Address. 4153 template <> struct DominatingValue<Address> { 4154 typedef Address type; 4155 4156 struct saved_type { 4157 DominatingLLVMValue::saved_type SavedValue; 4158 CharUnits Alignment; 4159 }; 4160 4161 static bool needsSaving(type value) { 4162 return DominatingLLVMValue::needsSaving(value.getPointer()); 4163 } 4164 static saved_type save(CodeGenFunction &CGF, type value) { 4165 return { DominatingLLVMValue::save(CGF, value.getPointer()), 4166 value.getAlignment() }; 4167 } 4168 static type restore(CodeGenFunction &CGF, saved_type value) { 4169 return Address(DominatingLLVMValue::restore(CGF, value.SavedValue), 4170 value.Alignment); 4171 } 4172 }; 4173 4174 /// A specialization of DominatingValue for RValue. 4175 template <> struct DominatingValue<RValue> { 4176 typedef RValue type; 4177 class saved_type { 4178 enum Kind { ScalarLiteral, ScalarAddress, AggregateLiteral, 4179 AggregateAddress, ComplexAddress }; 4180 4181 llvm::Value *Value; 4182 unsigned K : 3; 4183 unsigned Align : 29; 4184 saved_type(llvm::Value *v, Kind k, unsigned a = 0) 4185 : Value(v), K(k), Align(a) {} 4186 4187 public: 4188 static bool needsSaving(RValue value); 4189 static saved_type save(CodeGenFunction &CGF, RValue value); 4190 RValue restore(CodeGenFunction &CGF); 4191 4192 // implementations in CGCleanup.cpp 4193 }; 4194 4195 static bool needsSaving(type value) { 4196 return saved_type::needsSaving(value); 4197 } 4198 static saved_type save(CodeGenFunction &CGF, type value) { 4199 return saved_type::save(CGF, value); 4200 } 4201 static type restore(CodeGenFunction &CGF, saved_type value) { 4202 return value.restore(CGF); 4203 } 4204 }; 4205 4206 } // end namespace CodeGen 4207 } // end namespace clang 4208 4209 #endif 4210