1 //===-- CodeGenFunction.h - Per-Function state for LLVM CodeGen -*- C++ -*-===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This is the internal per-function state used for llvm translation. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #ifndef LLVM_CLANG_LIB_CODEGEN_CODEGENFUNCTION_H 15 #define LLVM_CLANG_LIB_CODEGEN_CODEGENFUNCTION_H 16 17 #include "CGBuilder.h" 18 #include "CGDebugInfo.h" 19 #include "CGLoopInfo.h" 20 #include "CGValue.h" 21 #include "CodeGenModule.h" 22 #include "CodeGenPGO.h" 23 #include "EHScopeStack.h" 24 #include "VarBypassDetector.h" 25 #include "clang/AST/CharUnits.h" 26 #include "clang/AST/ExprCXX.h" 27 #include "clang/AST/ExprObjC.h" 28 #include "clang/AST/ExprOpenMP.h" 29 #include "clang/AST/Type.h" 30 #include "clang/Basic/ABI.h" 31 #include "clang/Basic/CapturedStmt.h" 32 #include "clang/Basic/OpenMPKinds.h" 33 #include "clang/Basic/TargetInfo.h" 34 #include "clang/Frontend/CodeGenOptions.h" 35 #include "llvm/ADT/ArrayRef.h" 36 #include "llvm/ADT/DenseMap.h" 37 #include "llvm/ADT/SmallVector.h" 38 #include "llvm/IR/ValueHandle.h" 39 #include "llvm/Support/Debug.h" 40 #include "llvm/Transforms/Utils/SanitizerStats.h" 41 42 namespace llvm { 43 class BasicBlock; 44 class LLVMContext; 45 class MDNode; 46 class Module; 47 class SwitchInst; 48 class Twine; 49 class Value; 50 class CallSite; 51 } 52 53 namespace clang { 54 class ASTContext; 55 class BlockDecl; 56 class CXXDestructorDecl; 57 class CXXForRangeStmt; 58 class CXXTryStmt; 59 class Decl; 60 class LabelDecl; 61 class EnumConstantDecl; 62 class FunctionDecl; 63 class FunctionProtoType; 64 class LabelStmt; 65 class ObjCContainerDecl; 66 class ObjCInterfaceDecl; 67 class ObjCIvarDecl; 68 class ObjCMethodDecl; 69 class ObjCImplementationDecl; 70 class ObjCPropertyImplDecl; 71 class TargetInfo; 72 class VarDecl; 73 class ObjCForCollectionStmt; 74 class ObjCAtTryStmt; 75 class ObjCAtThrowStmt; 76 class ObjCAtSynchronizedStmt; 77 class ObjCAutoreleasePoolStmt; 78 79 namespace CodeGen { 80 class CodeGenTypes; 81 class CGCallee; 82 class CGFunctionInfo; 83 class CGRecordLayout; 84 class CGBlockInfo; 85 class CGCXXABI; 86 class BlockByrefHelpers; 87 class BlockByrefInfo; 88 class BlockFlags; 89 class BlockFieldFlags; 90 class RegionCodeGenTy; 91 class TargetCodeGenInfo; 92 struct OMPTaskDataTy; 93 struct CGCoroData; 94 95 /// The kind of evaluation to perform on values of a particular 96 /// type. Basically, is the code in CGExprScalar, CGExprComplex, or 97 /// CGExprAgg? 98 /// 99 /// TODO: should vectors maybe be split out into their own thing? 100 enum TypeEvaluationKind { 101 TEK_Scalar, 102 TEK_Complex, 103 TEK_Aggregate 104 }; 105 106 #define LIST_SANITIZER_CHECKS \ 107 SANITIZER_CHECK(AddOverflow, add_overflow, 0) \ 108 SANITIZER_CHECK(BuiltinUnreachable, builtin_unreachable, 0) \ 109 SANITIZER_CHECK(CFICheckFail, cfi_check_fail, 0) \ 110 SANITIZER_CHECK(DivremOverflow, divrem_overflow, 0) \ 111 SANITIZER_CHECK(DynamicTypeCacheMiss, dynamic_type_cache_miss, 0) \ 112 SANITIZER_CHECK(FloatCastOverflow, float_cast_overflow, 0) \ 113 SANITIZER_CHECK(FunctionTypeMismatch, function_type_mismatch, 0) \ 114 SANITIZER_CHECK(LoadInvalidValue, load_invalid_value, 0) \ 115 SANITIZER_CHECK(MissingReturn, missing_return, 0) \ 116 SANITIZER_CHECK(MulOverflow, mul_overflow, 0) \ 117 SANITIZER_CHECK(NegateOverflow, negate_overflow, 0) \ 118 SANITIZER_CHECK(NullabilityArg, nullability_arg, 0) \ 119 SANITIZER_CHECK(NullabilityReturn, nullability_return, 0) \ 120 SANITIZER_CHECK(NonnullArg, nonnull_arg, 0) \ 121 SANITIZER_CHECK(NonnullReturn, nonnull_return, 0) \ 122 SANITIZER_CHECK(OutOfBounds, out_of_bounds, 0) \ 123 SANITIZER_CHECK(ShiftOutOfBounds, shift_out_of_bounds, 0) \ 124 SANITIZER_CHECK(SubOverflow, sub_overflow, 0) \ 125 SANITIZER_CHECK(TypeMismatch, type_mismatch, 1) \ 126 SANITIZER_CHECK(VLABoundNotPositive, vla_bound_not_positive, 0) 127 128 enum SanitizerHandler { 129 #define SANITIZER_CHECK(Enum, Name, Version) Enum, 130 LIST_SANITIZER_CHECKS 131 #undef SANITIZER_CHECK 132 }; 133 134 /// CodeGenFunction - This class organizes the per-function state that is used 135 /// while generating LLVM code. 136 class CodeGenFunction : public CodeGenTypeCache { 137 CodeGenFunction(const CodeGenFunction &) = delete; 138 void operator=(const CodeGenFunction &) = delete; 139 140 friend class CGCXXABI; 141 public: 142 /// A jump destination is an abstract label, branching to which may 143 /// require a jump out through normal cleanups. 144 struct JumpDest { 145 JumpDest() : Block(nullptr), ScopeDepth(), Index(0) {} 146 JumpDest(llvm::BasicBlock *Block, 147 EHScopeStack::stable_iterator Depth, 148 unsigned Index) 149 : Block(Block), ScopeDepth(Depth), Index(Index) {} 150 151 bool isValid() const { return Block != nullptr; } 152 llvm::BasicBlock *getBlock() const { return Block; } 153 EHScopeStack::stable_iterator getScopeDepth() const { return ScopeDepth; } 154 unsigned getDestIndex() const { return Index; } 155 156 // This should be used cautiously. 157 void setScopeDepth(EHScopeStack::stable_iterator depth) { 158 ScopeDepth = depth; 159 } 160 161 private: 162 llvm::BasicBlock *Block; 163 EHScopeStack::stable_iterator ScopeDepth; 164 unsigned Index; 165 }; 166 167 CodeGenModule &CGM; // Per-module state. 168 const TargetInfo &Target; 169 170 typedef std::pair<llvm::Value *, llvm::Value *> ComplexPairTy; 171 LoopInfoStack LoopStack; 172 CGBuilderTy Builder; 173 174 // Stores variables for which we can't generate correct lifetime markers 175 // because of jumps. 176 VarBypassDetector Bypasses; 177 178 // CodeGen lambda for loops and support for ordered clause 179 typedef llvm::function_ref<void(CodeGenFunction &, const OMPLoopDirective &, 180 JumpDest)> 181 CodeGenLoopTy; 182 typedef llvm::function_ref<void(CodeGenFunction &, SourceLocation, 183 const unsigned, const bool)> 184 CodeGenOrderedTy; 185 186 // Codegen lambda for loop bounds in worksharing loop constructs 187 typedef llvm::function_ref<std::pair<LValue, LValue>( 188 CodeGenFunction &, const OMPExecutableDirective &S)> 189 CodeGenLoopBoundsTy; 190 191 // Codegen lambda for loop bounds in dispatch-based loop implementation 192 typedef llvm::function_ref<std::pair<llvm::Value *, llvm::Value *>( 193 CodeGenFunction &, const OMPExecutableDirective &S, Address LB, 194 Address UB)> 195 CodeGenDispatchBoundsTy; 196 197 /// \brief CGBuilder insert helper. This function is called after an 198 /// instruction is created using Builder. 199 void InsertHelper(llvm::Instruction *I, const llvm::Twine &Name, 200 llvm::BasicBlock *BB, 201 llvm::BasicBlock::iterator InsertPt) const; 202 203 /// CurFuncDecl - Holds the Decl for the current outermost 204 /// non-closure context. 205 const Decl *CurFuncDecl; 206 /// CurCodeDecl - This is the inner-most code context, which includes blocks. 207 const Decl *CurCodeDecl; 208 const CGFunctionInfo *CurFnInfo; 209 QualType FnRetTy; 210 llvm::Function *CurFn; 211 212 // Holds coroutine data if the current function is a coroutine. We use a 213 // wrapper to manage its lifetime, so that we don't have to define CGCoroData 214 // in this header. 215 struct CGCoroInfo { 216 std::unique_ptr<CGCoroData> Data; 217 CGCoroInfo(); 218 ~CGCoroInfo(); 219 }; 220 CGCoroInfo CurCoro; 221 222 /// CurGD - The GlobalDecl for the current function being compiled. 223 GlobalDecl CurGD; 224 225 /// PrologueCleanupDepth - The cleanup depth enclosing all the 226 /// cleanups associated with the parameters. 227 EHScopeStack::stable_iterator PrologueCleanupDepth; 228 229 /// ReturnBlock - Unified return block. 230 JumpDest ReturnBlock; 231 232 /// ReturnValue - The temporary alloca to hold the return 233 /// value. This is invalid iff the function has no return value. 234 Address ReturnValue; 235 236 /// Return true if a label was seen in the current scope. 237 bool hasLabelBeenSeenInCurrentScope() const { 238 if (CurLexicalScope) 239 return CurLexicalScope->hasLabels(); 240 return !LabelMap.empty(); 241 } 242 243 /// AllocaInsertPoint - This is an instruction in the entry block before which 244 /// we prefer to insert allocas. 245 llvm::AssertingVH<llvm::Instruction> AllocaInsertPt; 246 247 /// \brief API for captured statement code generation. 248 class CGCapturedStmtInfo { 249 public: 250 explicit CGCapturedStmtInfo(CapturedRegionKind K = CR_Default) 251 : Kind(K), ThisValue(nullptr), CXXThisFieldDecl(nullptr) {} 252 explicit CGCapturedStmtInfo(const CapturedStmt &S, 253 CapturedRegionKind K = CR_Default) 254 : Kind(K), ThisValue(nullptr), CXXThisFieldDecl(nullptr) { 255 256 RecordDecl::field_iterator Field = 257 S.getCapturedRecordDecl()->field_begin(); 258 for (CapturedStmt::const_capture_iterator I = S.capture_begin(), 259 E = S.capture_end(); 260 I != E; ++I, ++Field) { 261 if (I->capturesThis()) 262 CXXThisFieldDecl = *Field; 263 else if (I->capturesVariable()) 264 CaptureFields[I->getCapturedVar()] = *Field; 265 else if (I->capturesVariableByCopy()) 266 CaptureFields[I->getCapturedVar()] = *Field; 267 } 268 } 269 270 virtual ~CGCapturedStmtInfo(); 271 272 CapturedRegionKind getKind() const { return Kind; } 273 274 virtual void setContextValue(llvm::Value *V) { ThisValue = V; } 275 // \brief Retrieve the value of the context parameter. 276 virtual llvm::Value *getContextValue() const { return ThisValue; } 277 278 /// \brief Lookup the captured field decl for a variable. 279 virtual const FieldDecl *lookup(const VarDecl *VD) const { 280 return CaptureFields.lookup(VD); 281 } 282 283 bool isCXXThisExprCaptured() const { return getThisFieldDecl() != nullptr; } 284 virtual FieldDecl *getThisFieldDecl() const { return CXXThisFieldDecl; } 285 286 static bool classof(const CGCapturedStmtInfo *) { 287 return true; 288 } 289 290 /// \brief Emit the captured statement body. 291 virtual void EmitBody(CodeGenFunction &CGF, const Stmt *S) { 292 CGF.incrementProfileCounter(S); 293 CGF.EmitStmt(S); 294 } 295 296 /// \brief Get the name of the capture helper. 297 virtual StringRef getHelperName() const { return "__captured_stmt"; } 298 299 private: 300 /// \brief The kind of captured statement being generated. 301 CapturedRegionKind Kind; 302 303 /// \brief Keep the map between VarDecl and FieldDecl. 304 llvm::SmallDenseMap<const VarDecl *, FieldDecl *> CaptureFields; 305 306 /// \brief The base address of the captured record, passed in as the first 307 /// argument of the parallel region function. 308 llvm::Value *ThisValue; 309 310 /// \brief Captured 'this' type. 311 FieldDecl *CXXThisFieldDecl; 312 }; 313 CGCapturedStmtInfo *CapturedStmtInfo; 314 315 /// \brief RAII for correct setting/restoring of CapturedStmtInfo. 316 class CGCapturedStmtRAII { 317 private: 318 CodeGenFunction &CGF; 319 CGCapturedStmtInfo *PrevCapturedStmtInfo; 320 public: 321 CGCapturedStmtRAII(CodeGenFunction &CGF, 322 CGCapturedStmtInfo *NewCapturedStmtInfo) 323 : CGF(CGF), PrevCapturedStmtInfo(CGF.CapturedStmtInfo) { 324 CGF.CapturedStmtInfo = NewCapturedStmtInfo; 325 } 326 ~CGCapturedStmtRAII() { CGF.CapturedStmtInfo = PrevCapturedStmtInfo; } 327 }; 328 329 /// An abstract representation of regular/ObjC call/message targets. 330 class AbstractCallee { 331 /// The function declaration of the callee. 332 const Decl *CalleeDecl; 333 334 public: 335 AbstractCallee() : CalleeDecl(nullptr) {} 336 AbstractCallee(const FunctionDecl *FD) : CalleeDecl(FD) {} 337 AbstractCallee(const ObjCMethodDecl *OMD) : CalleeDecl(OMD) {} 338 bool hasFunctionDecl() const { 339 return dyn_cast_or_null<FunctionDecl>(CalleeDecl); 340 } 341 const Decl *getDecl() const { return CalleeDecl; } 342 unsigned getNumParams() const { 343 if (const auto *FD = dyn_cast<FunctionDecl>(CalleeDecl)) 344 return FD->getNumParams(); 345 return cast<ObjCMethodDecl>(CalleeDecl)->param_size(); 346 } 347 const ParmVarDecl *getParamDecl(unsigned I) const { 348 if (const auto *FD = dyn_cast<FunctionDecl>(CalleeDecl)) 349 return FD->getParamDecl(I); 350 return *(cast<ObjCMethodDecl>(CalleeDecl)->param_begin() + I); 351 } 352 }; 353 354 /// \brief Sanitizers enabled for this function. 355 SanitizerSet SanOpts; 356 357 /// \brief True if CodeGen currently emits code implementing sanitizer checks. 358 bool IsSanitizerScope; 359 360 /// \brief RAII object to set/unset CodeGenFunction::IsSanitizerScope. 361 class SanitizerScope { 362 CodeGenFunction *CGF; 363 public: 364 SanitizerScope(CodeGenFunction *CGF); 365 ~SanitizerScope(); 366 }; 367 368 /// In C++, whether we are code generating a thunk. This controls whether we 369 /// should emit cleanups. 370 bool CurFuncIsThunk; 371 372 /// In ARC, whether we should autorelease the return value. 373 bool AutoreleaseResult; 374 375 /// Whether we processed a Microsoft-style asm block during CodeGen. These can 376 /// potentially set the return value. 377 bool SawAsmBlock; 378 379 const FunctionDecl *CurSEHParent = nullptr; 380 381 /// True if the current function is an outlined SEH helper. This can be a 382 /// finally block or filter expression. 383 bool IsOutlinedSEHHelper; 384 385 const CodeGen::CGBlockInfo *BlockInfo; 386 llvm::Value *BlockPointer; 387 388 llvm::DenseMap<const VarDecl *, FieldDecl *> LambdaCaptureFields; 389 FieldDecl *LambdaThisCaptureField; 390 391 /// \brief A mapping from NRVO variables to the flags used to indicate 392 /// when the NRVO has been applied to this variable. 393 llvm::DenseMap<const VarDecl *, llvm::Value *> NRVOFlags; 394 395 EHScopeStack EHStack; 396 llvm::SmallVector<char, 256> LifetimeExtendedCleanupStack; 397 llvm::SmallVector<const JumpDest *, 2> SEHTryEpilogueStack; 398 399 llvm::Instruction *CurrentFuncletPad = nullptr; 400 401 class CallLifetimeEnd final : public EHScopeStack::Cleanup { 402 llvm::Value *Addr; 403 llvm::Value *Size; 404 405 public: 406 CallLifetimeEnd(Address addr, llvm::Value *size) 407 : Addr(addr.getPointer()), Size(size) {} 408 409 void Emit(CodeGenFunction &CGF, Flags flags) override { 410 CGF.EmitLifetimeEnd(Size, Addr); 411 } 412 }; 413 414 /// Header for data within LifetimeExtendedCleanupStack. 415 struct LifetimeExtendedCleanupHeader { 416 /// The size of the following cleanup object. 417 unsigned Size; 418 /// The kind of cleanup to push: a value from the CleanupKind enumeration. 419 CleanupKind Kind; 420 421 size_t getSize() const { return Size; } 422 CleanupKind getKind() const { return Kind; } 423 }; 424 425 /// i32s containing the indexes of the cleanup destinations. 426 llvm::AllocaInst *NormalCleanupDest; 427 428 unsigned NextCleanupDestIndex; 429 430 /// FirstBlockInfo - The head of a singly-linked-list of block layouts. 431 CGBlockInfo *FirstBlockInfo; 432 433 /// EHResumeBlock - Unified block containing a call to llvm.eh.resume. 434 llvm::BasicBlock *EHResumeBlock; 435 436 /// The exception slot. All landing pads write the current exception pointer 437 /// into this alloca. 438 llvm::Value *ExceptionSlot; 439 440 /// The selector slot. Under the MandatoryCleanup model, all landing pads 441 /// write the current selector value into this alloca. 442 llvm::AllocaInst *EHSelectorSlot; 443 444 /// A stack of exception code slots. Entering an __except block pushes a slot 445 /// on the stack and leaving pops one. The __exception_code() intrinsic loads 446 /// a value from the top of the stack. 447 SmallVector<Address, 1> SEHCodeSlotStack; 448 449 /// Value returned by __exception_info intrinsic. 450 llvm::Value *SEHInfo = nullptr; 451 452 /// Emits a landing pad for the current EH stack. 453 llvm::BasicBlock *EmitLandingPad(); 454 455 llvm::BasicBlock *getInvokeDestImpl(); 456 457 template <class T> 458 typename DominatingValue<T>::saved_type saveValueInCond(T value) { 459 return DominatingValue<T>::save(*this, value); 460 } 461 462 public: 463 /// ObjCEHValueStack - Stack of Objective-C exception values, used for 464 /// rethrows. 465 SmallVector<llvm::Value*, 8> ObjCEHValueStack; 466 467 /// A class controlling the emission of a finally block. 468 class FinallyInfo { 469 /// Where the catchall's edge through the cleanup should go. 470 JumpDest RethrowDest; 471 472 /// A function to call to enter the catch. 473 llvm::Constant *BeginCatchFn; 474 475 /// An i1 variable indicating whether or not the @finally is 476 /// running for an exception. 477 llvm::AllocaInst *ForEHVar; 478 479 /// An i8* variable into which the exception pointer to rethrow 480 /// has been saved. 481 llvm::AllocaInst *SavedExnVar; 482 483 public: 484 void enter(CodeGenFunction &CGF, const Stmt *Finally, 485 llvm::Constant *beginCatchFn, llvm::Constant *endCatchFn, 486 llvm::Constant *rethrowFn); 487 void exit(CodeGenFunction &CGF); 488 }; 489 490 /// Returns true inside SEH __try blocks. 491 bool isSEHTryScope() const { return !SEHTryEpilogueStack.empty(); } 492 493 /// Returns true while emitting a cleanuppad. 494 bool isCleanupPadScope() const { 495 return CurrentFuncletPad && isa<llvm::CleanupPadInst>(CurrentFuncletPad); 496 } 497 498 /// pushFullExprCleanup - Push a cleanup to be run at the end of the 499 /// current full-expression. Safe against the possibility that 500 /// we're currently inside a conditionally-evaluated expression. 501 template <class T, class... As> 502 void pushFullExprCleanup(CleanupKind kind, As... A) { 503 // If we're not in a conditional branch, or if none of the 504 // arguments requires saving, then use the unconditional cleanup. 505 if (!isInConditionalBranch()) 506 return EHStack.pushCleanup<T>(kind, A...); 507 508 // Stash values in a tuple so we can guarantee the order of saves. 509 typedef std::tuple<typename DominatingValue<As>::saved_type...> SavedTuple; 510 SavedTuple Saved{saveValueInCond(A)...}; 511 512 typedef EHScopeStack::ConditionalCleanup<T, As...> CleanupType; 513 EHStack.pushCleanupTuple<CleanupType>(kind, Saved); 514 initFullExprCleanup(); 515 } 516 517 /// \brief Queue a cleanup to be pushed after finishing the current 518 /// full-expression. 519 template <class T, class... As> 520 void pushCleanupAfterFullExpr(CleanupKind Kind, As... A) { 521 assert(!isInConditionalBranch() && "can't defer conditional cleanup"); 522 523 LifetimeExtendedCleanupHeader Header = { sizeof(T), Kind }; 524 525 size_t OldSize = LifetimeExtendedCleanupStack.size(); 526 LifetimeExtendedCleanupStack.resize( 527 LifetimeExtendedCleanupStack.size() + sizeof(Header) + Header.Size); 528 529 static_assert(sizeof(Header) % alignof(T) == 0, 530 "Cleanup will be allocated on misaligned address"); 531 char *Buffer = &LifetimeExtendedCleanupStack[OldSize]; 532 new (Buffer) LifetimeExtendedCleanupHeader(Header); 533 new (Buffer + sizeof(Header)) T(A...); 534 } 535 536 /// Set up the last cleaup that was pushed as a conditional 537 /// full-expression cleanup. 538 void initFullExprCleanup(); 539 540 /// PushDestructorCleanup - Push a cleanup to call the 541 /// complete-object destructor of an object of the given type at the 542 /// given address. Does nothing if T is not a C++ class type with a 543 /// non-trivial destructor. 544 void PushDestructorCleanup(QualType T, Address Addr); 545 546 /// PushDestructorCleanup - Push a cleanup to call the 547 /// complete-object variant of the given destructor on the object at 548 /// the given address. 549 void PushDestructorCleanup(const CXXDestructorDecl *Dtor, Address Addr); 550 551 /// PopCleanupBlock - Will pop the cleanup entry on the stack and 552 /// process all branch fixups. 553 void PopCleanupBlock(bool FallThroughIsBranchThrough = false); 554 555 /// DeactivateCleanupBlock - Deactivates the given cleanup block. 556 /// The block cannot be reactivated. Pops it if it's the top of the 557 /// stack. 558 /// 559 /// \param DominatingIP - An instruction which is known to 560 /// dominate the current IP (if set) and which lies along 561 /// all paths of execution between the current IP and the 562 /// the point at which the cleanup comes into scope. 563 void DeactivateCleanupBlock(EHScopeStack::stable_iterator Cleanup, 564 llvm::Instruction *DominatingIP); 565 566 /// ActivateCleanupBlock - Activates an initially-inactive cleanup. 567 /// Cannot be used to resurrect a deactivated cleanup. 568 /// 569 /// \param DominatingIP - An instruction which is known to 570 /// dominate the current IP (if set) and which lies along 571 /// all paths of execution between the current IP and the 572 /// the point at which the cleanup comes into scope. 573 void ActivateCleanupBlock(EHScopeStack::stable_iterator Cleanup, 574 llvm::Instruction *DominatingIP); 575 576 /// \brief Enters a new scope for capturing cleanups, all of which 577 /// will be executed once the scope is exited. 578 class RunCleanupsScope { 579 EHScopeStack::stable_iterator CleanupStackDepth; 580 size_t LifetimeExtendedCleanupStackSize; 581 bool OldDidCallStackSave; 582 protected: 583 bool PerformCleanup; 584 private: 585 586 RunCleanupsScope(const RunCleanupsScope &) = delete; 587 void operator=(const RunCleanupsScope &) = delete; 588 589 protected: 590 CodeGenFunction& CGF; 591 592 public: 593 /// \brief Enter a new cleanup scope. 594 explicit RunCleanupsScope(CodeGenFunction &CGF) 595 : PerformCleanup(true), CGF(CGF) 596 { 597 CleanupStackDepth = CGF.EHStack.stable_begin(); 598 LifetimeExtendedCleanupStackSize = 599 CGF.LifetimeExtendedCleanupStack.size(); 600 OldDidCallStackSave = CGF.DidCallStackSave; 601 CGF.DidCallStackSave = false; 602 } 603 604 /// \brief Exit this cleanup scope, emitting any accumulated cleanups. 605 ~RunCleanupsScope() { 606 if (PerformCleanup) 607 ForceCleanup(); 608 } 609 610 /// \brief Determine whether this scope requires any cleanups. 611 bool requiresCleanups() const { 612 return CGF.EHStack.stable_begin() != CleanupStackDepth; 613 } 614 615 /// \brief Force the emission of cleanups now, instead of waiting 616 /// until this object is destroyed. 617 /// \param ValuesToReload - A list of values that need to be available at 618 /// the insertion point after cleanup emission. If cleanup emission created 619 /// a shared cleanup block, these value pointers will be rewritten. 620 /// Otherwise, they not will be modified. 621 void ForceCleanup(std::initializer_list<llvm::Value**> ValuesToReload = {}) { 622 assert(PerformCleanup && "Already forced cleanup"); 623 CGF.DidCallStackSave = OldDidCallStackSave; 624 CGF.PopCleanupBlocks(CleanupStackDepth, LifetimeExtendedCleanupStackSize, 625 ValuesToReload); 626 PerformCleanup = false; 627 } 628 }; 629 630 class LexicalScope : public RunCleanupsScope { 631 SourceRange Range; 632 SmallVector<const LabelDecl*, 4> Labels; 633 LexicalScope *ParentScope; 634 635 LexicalScope(const LexicalScope &) = delete; 636 void operator=(const LexicalScope &) = delete; 637 638 public: 639 /// \brief Enter a new cleanup scope. 640 explicit LexicalScope(CodeGenFunction &CGF, SourceRange Range) 641 : RunCleanupsScope(CGF), Range(Range), ParentScope(CGF.CurLexicalScope) { 642 CGF.CurLexicalScope = this; 643 if (CGDebugInfo *DI = CGF.getDebugInfo()) 644 DI->EmitLexicalBlockStart(CGF.Builder, Range.getBegin()); 645 } 646 647 void addLabel(const LabelDecl *label) { 648 assert(PerformCleanup && "adding label to dead scope?"); 649 Labels.push_back(label); 650 } 651 652 /// \brief Exit this cleanup scope, emitting any accumulated 653 /// cleanups. 654 ~LexicalScope() { 655 if (CGDebugInfo *DI = CGF.getDebugInfo()) 656 DI->EmitLexicalBlockEnd(CGF.Builder, Range.getEnd()); 657 658 // If we should perform a cleanup, force them now. Note that 659 // this ends the cleanup scope before rescoping any labels. 660 if (PerformCleanup) { 661 ApplyDebugLocation DL(CGF, Range.getEnd()); 662 ForceCleanup(); 663 } 664 } 665 666 /// \brief Force the emission of cleanups now, instead of waiting 667 /// until this object is destroyed. 668 void ForceCleanup() { 669 CGF.CurLexicalScope = ParentScope; 670 RunCleanupsScope::ForceCleanup(); 671 672 if (!Labels.empty()) 673 rescopeLabels(); 674 } 675 676 bool hasLabels() const { 677 return !Labels.empty(); 678 } 679 680 void rescopeLabels(); 681 }; 682 683 typedef llvm::DenseMap<const Decl *, Address> DeclMapTy; 684 685 /// \brief The scope used to remap some variables as private in the OpenMP 686 /// loop body (or other captured region emitted without outlining), and to 687 /// restore old vars back on exit. 688 class OMPPrivateScope : public RunCleanupsScope { 689 DeclMapTy SavedLocals; 690 DeclMapTy SavedPrivates; 691 692 private: 693 OMPPrivateScope(const OMPPrivateScope &) = delete; 694 void operator=(const OMPPrivateScope &) = delete; 695 696 public: 697 /// \brief Enter a new OpenMP private scope. 698 explicit OMPPrivateScope(CodeGenFunction &CGF) : RunCleanupsScope(CGF) {} 699 700 /// \brief Registers \a LocalVD variable as a private and apply \a 701 /// PrivateGen function for it to generate corresponding private variable. 702 /// \a PrivateGen returns an address of the generated private variable. 703 /// \return true if the variable is registered as private, false if it has 704 /// been privatized already. 705 bool 706 addPrivate(const VarDecl *LocalVD, 707 llvm::function_ref<Address()> PrivateGen) { 708 assert(PerformCleanup && "adding private to dead scope"); 709 710 // Only save it once. 711 if (SavedLocals.count(LocalVD)) return false; 712 713 // Copy the existing local entry to SavedLocals. 714 auto it = CGF.LocalDeclMap.find(LocalVD); 715 if (it != CGF.LocalDeclMap.end()) { 716 SavedLocals.insert({LocalVD, it->second}); 717 } else { 718 SavedLocals.insert({LocalVD, Address::invalid()}); 719 } 720 721 // Generate the private entry. 722 Address Addr = PrivateGen(); 723 QualType VarTy = LocalVD->getType(); 724 if (VarTy->isReferenceType()) { 725 Address Temp = CGF.CreateMemTemp(VarTy); 726 CGF.Builder.CreateStore(Addr.getPointer(), Temp); 727 Addr = Temp; 728 } 729 SavedPrivates.insert({LocalVD, Addr}); 730 731 return true; 732 } 733 734 /// \brief Privatizes local variables previously registered as private. 735 /// Registration is separate from the actual privatization to allow 736 /// initializers use values of the original variables, not the private one. 737 /// This is important, for example, if the private variable is a class 738 /// variable initialized by a constructor that references other private 739 /// variables. But at initialization original variables must be used, not 740 /// private copies. 741 /// \return true if at least one variable was privatized, false otherwise. 742 bool Privatize() { 743 copyInto(SavedPrivates, CGF.LocalDeclMap); 744 SavedPrivates.clear(); 745 return !SavedLocals.empty(); 746 } 747 748 void ForceCleanup() { 749 RunCleanupsScope::ForceCleanup(); 750 copyInto(SavedLocals, CGF.LocalDeclMap); 751 SavedLocals.clear(); 752 } 753 754 /// \brief Exit scope - all the mapped variables are restored. 755 ~OMPPrivateScope() { 756 if (PerformCleanup) 757 ForceCleanup(); 758 } 759 760 /// Checks if the global variable is captured in current function. 761 bool isGlobalVarCaptured(const VarDecl *VD) const { 762 return !VD->isLocalVarDeclOrParm() && CGF.LocalDeclMap.count(VD) > 0; 763 } 764 765 private: 766 /// Copy all the entries in the source map over the corresponding 767 /// entries in the destination, which must exist. 768 static void copyInto(const DeclMapTy &src, DeclMapTy &dest) { 769 for (auto &pair : src) { 770 if (!pair.second.isValid()) { 771 dest.erase(pair.first); 772 continue; 773 } 774 775 auto it = dest.find(pair.first); 776 if (it != dest.end()) { 777 it->second = pair.second; 778 } else { 779 dest.insert(pair); 780 } 781 } 782 } 783 }; 784 785 /// \brief Takes the old cleanup stack size and emits the cleanup blocks 786 /// that have been added. 787 void 788 PopCleanupBlocks(EHScopeStack::stable_iterator OldCleanupStackSize, 789 std::initializer_list<llvm::Value **> ValuesToReload = {}); 790 791 /// \brief Takes the old cleanup stack size and emits the cleanup blocks 792 /// that have been added, then adds all lifetime-extended cleanups from 793 /// the given position to the stack. 794 void 795 PopCleanupBlocks(EHScopeStack::stable_iterator OldCleanupStackSize, 796 size_t OldLifetimeExtendedStackSize, 797 std::initializer_list<llvm::Value **> ValuesToReload = {}); 798 799 void ResolveBranchFixups(llvm::BasicBlock *Target); 800 801 /// The given basic block lies in the current EH scope, but may be a 802 /// target of a potentially scope-crossing jump; get a stable handle 803 /// to which we can perform this jump later. 804 JumpDest getJumpDestInCurrentScope(llvm::BasicBlock *Target) { 805 return JumpDest(Target, 806 EHStack.getInnermostNormalCleanup(), 807 NextCleanupDestIndex++); 808 } 809 810 /// The given basic block lies in the current EH scope, but may be a 811 /// target of a potentially scope-crossing jump; get a stable handle 812 /// to which we can perform this jump later. 813 JumpDest getJumpDestInCurrentScope(StringRef Name = StringRef()) { 814 return getJumpDestInCurrentScope(createBasicBlock(Name)); 815 } 816 817 /// EmitBranchThroughCleanup - Emit a branch from the current insert 818 /// block through the normal cleanup handling code (if any) and then 819 /// on to \arg Dest. 820 void EmitBranchThroughCleanup(JumpDest Dest); 821 822 /// isObviouslyBranchWithoutCleanups - Return true if a branch to the 823 /// specified destination obviously has no cleanups to run. 'false' is always 824 /// a conservatively correct answer for this method. 825 bool isObviouslyBranchWithoutCleanups(JumpDest Dest) const; 826 827 /// popCatchScope - Pops the catch scope at the top of the EHScope 828 /// stack, emitting any required code (other than the catch handlers 829 /// themselves). 830 void popCatchScope(); 831 832 llvm::BasicBlock *getEHResumeBlock(bool isCleanup); 833 llvm::BasicBlock *getEHDispatchBlock(EHScopeStack::stable_iterator scope); 834 llvm::BasicBlock *getMSVCDispatchBlock(EHScopeStack::stable_iterator scope); 835 836 /// An object to manage conditionally-evaluated expressions. 837 class ConditionalEvaluation { 838 llvm::BasicBlock *StartBB; 839 840 public: 841 ConditionalEvaluation(CodeGenFunction &CGF) 842 : StartBB(CGF.Builder.GetInsertBlock()) {} 843 844 void begin(CodeGenFunction &CGF) { 845 assert(CGF.OutermostConditional != this); 846 if (!CGF.OutermostConditional) 847 CGF.OutermostConditional = this; 848 } 849 850 void end(CodeGenFunction &CGF) { 851 assert(CGF.OutermostConditional != nullptr); 852 if (CGF.OutermostConditional == this) 853 CGF.OutermostConditional = nullptr; 854 } 855 856 /// Returns a block which will be executed prior to each 857 /// evaluation of the conditional code. 858 llvm::BasicBlock *getStartingBlock() const { 859 return StartBB; 860 } 861 }; 862 863 /// isInConditionalBranch - Return true if we're currently emitting 864 /// one branch or the other of a conditional expression. 865 bool isInConditionalBranch() const { return OutermostConditional != nullptr; } 866 867 void setBeforeOutermostConditional(llvm::Value *value, Address addr) { 868 assert(isInConditionalBranch()); 869 llvm::BasicBlock *block = OutermostConditional->getStartingBlock(); 870 auto store = new llvm::StoreInst(value, addr.getPointer(), &block->back()); 871 store->setAlignment(addr.getAlignment().getQuantity()); 872 } 873 874 /// An RAII object to record that we're evaluating a statement 875 /// expression. 876 class StmtExprEvaluation { 877 CodeGenFunction &CGF; 878 879 /// We have to save the outermost conditional: cleanups in a 880 /// statement expression aren't conditional just because the 881 /// StmtExpr is. 882 ConditionalEvaluation *SavedOutermostConditional; 883 884 public: 885 StmtExprEvaluation(CodeGenFunction &CGF) 886 : CGF(CGF), SavedOutermostConditional(CGF.OutermostConditional) { 887 CGF.OutermostConditional = nullptr; 888 } 889 890 ~StmtExprEvaluation() { 891 CGF.OutermostConditional = SavedOutermostConditional; 892 CGF.EnsureInsertPoint(); 893 } 894 }; 895 896 /// An object which temporarily prevents a value from being 897 /// destroyed by aggressive peephole optimizations that assume that 898 /// all uses of a value have been realized in the IR. 899 class PeepholeProtection { 900 llvm::Instruction *Inst; 901 friend class CodeGenFunction; 902 903 public: 904 PeepholeProtection() : Inst(nullptr) {} 905 }; 906 907 /// A non-RAII class containing all the information about a bound 908 /// opaque value. OpaqueValueMapping, below, is a RAII wrapper for 909 /// this which makes individual mappings very simple; using this 910 /// class directly is useful when you have a variable number of 911 /// opaque values or don't want the RAII functionality for some 912 /// reason. 913 class OpaqueValueMappingData { 914 const OpaqueValueExpr *OpaqueValue; 915 bool BoundLValue; 916 CodeGenFunction::PeepholeProtection Protection; 917 918 OpaqueValueMappingData(const OpaqueValueExpr *ov, 919 bool boundLValue) 920 : OpaqueValue(ov), BoundLValue(boundLValue) {} 921 public: 922 OpaqueValueMappingData() : OpaqueValue(nullptr) {} 923 924 static bool shouldBindAsLValue(const Expr *expr) { 925 // gl-values should be bound as l-values for obvious reasons. 926 // Records should be bound as l-values because IR generation 927 // always keeps them in memory. Expressions of function type 928 // act exactly like l-values but are formally required to be 929 // r-values in C. 930 return expr->isGLValue() || 931 expr->getType()->isFunctionType() || 932 hasAggregateEvaluationKind(expr->getType()); 933 } 934 935 static OpaqueValueMappingData bind(CodeGenFunction &CGF, 936 const OpaqueValueExpr *ov, 937 const Expr *e) { 938 if (shouldBindAsLValue(ov)) 939 return bind(CGF, ov, CGF.EmitLValue(e)); 940 return bind(CGF, ov, CGF.EmitAnyExpr(e)); 941 } 942 943 static OpaqueValueMappingData bind(CodeGenFunction &CGF, 944 const OpaqueValueExpr *ov, 945 const LValue &lv) { 946 assert(shouldBindAsLValue(ov)); 947 CGF.OpaqueLValues.insert(std::make_pair(ov, lv)); 948 return OpaqueValueMappingData(ov, true); 949 } 950 951 static OpaqueValueMappingData bind(CodeGenFunction &CGF, 952 const OpaqueValueExpr *ov, 953 const RValue &rv) { 954 assert(!shouldBindAsLValue(ov)); 955 CGF.OpaqueRValues.insert(std::make_pair(ov, rv)); 956 957 OpaqueValueMappingData data(ov, false); 958 959 // Work around an extremely aggressive peephole optimization in 960 // EmitScalarConversion which assumes that all other uses of a 961 // value are extant. 962 data.Protection = CGF.protectFromPeepholes(rv); 963 964 return data; 965 } 966 967 bool isValid() const { return OpaqueValue != nullptr; } 968 void clear() { OpaqueValue = nullptr; } 969 970 void unbind(CodeGenFunction &CGF) { 971 assert(OpaqueValue && "no data to unbind!"); 972 973 if (BoundLValue) { 974 CGF.OpaqueLValues.erase(OpaqueValue); 975 } else { 976 CGF.OpaqueRValues.erase(OpaqueValue); 977 CGF.unprotectFromPeepholes(Protection); 978 } 979 } 980 }; 981 982 /// An RAII object to set (and then clear) a mapping for an OpaqueValueExpr. 983 class OpaqueValueMapping { 984 CodeGenFunction &CGF; 985 OpaqueValueMappingData Data; 986 987 public: 988 static bool shouldBindAsLValue(const Expr *expr) { 989 return OpaqueValueMappingData::shouldBindAsLValue(expr); 990 } 991 992 /// Build the opaque value mapping for the given conditional 993 /// operator if it's the GNU ?: extension. This is a common 994 /// enough pattern that the convenience operator is really 995 /// helpful. 996 /// 997 OpaqueValueMapping(CodeGenFunction &CGF, 998 const AbstractConditionalOperator *op) : CGF(CGF) { 999 if (isa<ConditionalOperator>(op)) 1000 // Leave Data empty. 1001 return; 1002 1003 const BinaryConditionalOperator *e = cast<BinaryConditionalOperator>(op); 1004 Data = OpaqueValueMappingData::bind(CGF, e->getOpaqueValue(), 1005 e->getCommon()); 1006 } 1007 1008 /// Build the opaque value mapping for an OpaqueValueExpr whose source 1009 /// expression is set to the expression the OVE represents. 1010 OpaqueValueMapping(CodeGenFunction &CGF, const OpaqueValueExpr *OV) 1011 : CGF(CGF) { 1012 if (OV) { 1013 assert(OV->getSourceExpr() && "wrong form of OpaqueValueMapping used " 1014 "for OVE with no source expression"); 1015 Data = OpaqueValueMappingData::bind(CGF, OV, OV->getSourceExpr()); 1016 } 1017 } 1018 1019 OpaqueValueMapping(CodeGenFunction &CGF, 1020 const OpaqueValueExpr *opaqueValue, 1021 LValue lvalue) 1022 : CGF(CGF), Data(OpaqueValueMappingData::bind(CGF, opaqueValue, lvalue)) { 1023 } 1024 1025 OpaqueValueMapping(CodeGenFunction &CGF, 1026 const OpaqueValueExpr *opaqueValue, 1027 RValue rvalue) 1028 : CGF(CGF), Data(OpaqueValueMappingData::bind(CGF, opaqueValue, rvalue)) { 1029 } 1030 1031 void pop() { 1032 Data.unbind(CGF); 1033 Data.clear(); 1034 } 1035 1036 ~OpaqueValueMapping() { 1037 if (Data.isValid()) Data.unbind(CGF); 1038 } 1039 }; 1040 1041 private: 1042 CGDebugInfo *DebugInfo; 1043 bool DisableDebugInfo; 1044 1045 /// DidCallStackSave - Whether llvm.stacksave has been called. Used to avoid 1046 /// calling llvm.stacksave for multiple VLAs in the same scope. 1047 bool DidCallStackSave; 1048 1049 /// IndirectBranch - The first time an indirect goto is seen we create a block 1050 /// with an indirect branch. Every time we see the address of a label taken, 1051 /// we add the label to the indirect goto. Every subsequent indirect goto is 1052 /// codegen'd as a jump to the IndirectBranch's basic block. 1053 llvm::IndirectBrInst *IndirectBranch; 1054 1055 /// LocalDeclMap - This keeps track of the LLVM allocas or globals for local C 1056 /// decls. 1057 DeclMapTy LocalDeclMap; 1058 1059 /// SizeArguments - If a ParmVarDecl had the pass_object_size attribute, this 1060 /// will contain a mapping from said ParmVarDecl to its implicit "object_size" 1061 /// parameter. 1062 llvm::SmallDenseMap<const ParmVarDecl *, const ImplicitParamDecl *, 2> 1063 SizeArguments; 1064 1065 /// Track escaped local variables with auto storage. Used during SEH 1066 /// outlining to produce a call to llvm.localescape. 1067 llvm::DenseMap<llvm::AllocaInst *, int> EscapedLocals; 1068 1069 /// LabelMap - This keeps track of the LLVM basic block for each C label. 1070 llvm::DenseMap<const LabelDecl*, JumpDest> LabelMap; 1071 1072 // BreakContinueStack - This keeps track of where break and continue 1073 // statements should jump to. 1074 struct BreakContinue { 1075 BreakContinue(JumpDest Break, JumpDest Continue) 1076 : BreakBlock(Break), ContinueBlock(Continue) {} 1077 1078 JumpDest BreakBlock; 1079 JumpDest ContinueBlock; 1080 }; 1081 SmallVector<BreakContinue, 8> BreakContinueStack; 1082 1083 /// Handles cancellation exit points in OpenMP-related constructs. 1084 class OpenMPCancelExitStack { 1085 /// Tracks cancellation exit point and join point for cancel-related exit 1086 /// and normal exit. 1087 struct CancelExit { 1088 CancelExit() = default; 1089 CancelExit(OpenMPDirectiveKind Kind, JumpDest ExitBlock, 1090 JumpDest ContBlock) 1091 : Kind(Kind), ExitBlock(ExitBlock), ContBlock(ContBlock) {} 1092 OpenMPDirectiveKind Kind = OMPD_unknown; 1093 /// true if the exit block has been emitted already by the special 1094 /// emitExit() call, false if the default codegen is used. 1095 bool HasBeenEmitted = false; 1096 JumpDest ExitBlock; 1097 JumpDest ContBlock; 1098 }; 1099 1100 SmallVector<CancelExit, 8> Stack; 1101 1102 public: 1103 OpenMPCancelExitStack() : Stack(1) {} 1104 ~OpenMPCancelExitStack() = default; 1105 /// Fetches the exit block for the current OpenMP construct. 1106 JumpDest getExitBlock() const { return Stack.back().ExitBlock; } 1107 /// Emits exit block with special codegen procedure specific for the related 1108 /// OpenMP construct + emits code for normal construct cleanup. 1109 void emitExit(CodeGenFunction &CGF, OpenMPDirectiveKind Kind, 1110 const llvm::function_ref<void(CodeGenFunction &)> &CodeGen) { 1111 if (Stack.back().Kind == Kind && getExitBlock().isValid()) { 1112 assert(CGF.getOMPCancelDestination(Kind).isValid()); 1113 assert(CGF.HaveInsertPoint()); 1114 assert(!Stack.back().HasBeenEmitted); 1115 auto IP = CGF.Builder.saveAndClearIP(); 1116 CGF.EmitBlock(Stack.back().ExitBlock.getBlock()); 1117 CodeGen(CGF); 1118 CGF.EmitBranchThroughCleanup(Stack.back().ContBlock); 1119 CGF.Builder.restoreIP(IP); 1120 Stack.back().HasBeenEmitted = true; 1121 } 1122 CodeGen(CGF); 1123 } 1124 /// Enter the cancel supporting \a Kind construct. 1125 /// \param Kind OpenMP directive that supports cancel constructs. 1126 /// \param HasCancel true, if the construct has inner cancel directive, 1127 /// false otherwise. 1128 void enter(CodeGenFunction &CGF, OpenMPDirectiveKind Kind, bool HasCancel) { 1129 Stack.push_back({Kind, 1130 HasCancel ? CGF.getJumpDestInCurrentScope("cancel.exit") 1131 : JumpDest(), 1132 HasCancel ? CGF.getJumpDestInCurrentScope("cancel.cont") 1133 : JumpDest()}); 1134 } 1135 /// Emits default exit point for the cancel construct (if the special one 1136 /// has not be used) + join point for cancel/normal exits. 1137 void exit(CodeGenFunction &CGF) { 1138 if (getExitBlock().isValid()) { 1139 assert(CGF.getOMPCancelDestination(Stack.back().Kind).isValid()); 1140 bool HaveIP = CGF.HaveInsertPoint(); 1141 if (!Stack.back().HasBeenEmitted) { 1142 if (HaveIP) 1143 CGF.EmitBranchThroughCleanup(Stack.back().ContBlock); 1144 CGF.EmitBlock(Stack.back().ExitBlock.getBlock()); 1145 CGF.EmitBranchThroughCleanup(Stack.back().ContBlock); 1146 } 1147 CGF.EmitBlock(Stack.back().ContBlock.getBlock()); 1148 if (!HaveIP) { 1149 CGF.Builder.CreateUnreachable(); 1150 CGF.Builder.ClearInsertionPoint(); 1151 } 1152 } 1153 Stack.pop_back(); 1154 } 1155 }; 1156 OpenMPCancelExitStack OMPCancelStack; 1157 1158 /// Controls insertion of cancellation exit blocks in worksharing constructs. 1159 class OMPCancelStackRAII { 1160 CodeGenFunction &CGF; 1161 1162 public: 1163 OMPCancelStackRAII(CodeGenFunction &CGF, OpenMPDirectiveKind Kind, 1164 bool HasCancel) 1165 : CGF(CGF) { 1166 CGF.OMPCancelStack.enter(CGF, Kind, HasCancel); 1167 } 1168 ~OMPCancelStackRAII() { CGF.OMPCancelStack.exit(CGF); } 1169 }; 1170 1171 CodeGenPGO PGO; 1172 1173 /// Calculate branch weights appropriate for PGO data 1174 llvm::MDNode *createProfileWeights(uint64_t TrueCount, uint64_t FalseCount); 1175 llvm::MDNode *createProfileWeights(ArrayRef<uint64_t> Weights); 1176 llvm::MDNode *createProfileWeightsForLoop(const Stmt *Cond, 1177 uint64_t LoopCount); 1178 1179 public: 1180 /// Increment the profiler's counter for the given statement by \p StepV. 1181 /// If \p StepV is null, the default increment is 1. 1182 void incrementProfileCounter(const Stmt *S, llvm::Value *StepV = nullptr) { 1183 if (CGM.getCodeGenOpts().hasProfileClangInstr()) 1184 PGO.emitCounterIncrement(Builder, S, StepV); 1185 PGO.setCurrentStmt(S); 1186 } 1187 1188 /// Get the profiler's count for the given statement. 1189 uint64_t getProfileCount(const Stmt *S) { 1190 Optional<uint64_t> Count = PGO.getStmtCount(S); 1191 if (!Count.hasValue()) 1192 return 0; 1193 return *Count; 1194 } 1195 1196 /// Set the profiler's current count. 1197 void setCurrentProfileCount(uint64_t Count) { 1198 PGO.setCurrentRegionCount(Count); 1199 } 1200 1201 /// Get the profiler's current count. This is generally the count for the most 1202 /// recently incremented counter. 1203 uint64_t getCurrentProfileCount() { 1204 return PGO.getCurrentRegionCount(); 1205 } 1206 1207 private: 1208 1209 /// SwitchInsn - This is nearest current switch instruction. It is null if 1210 /// current context is not in a switch. 1211 llvm::SwitchInst *SwitchInsn; 1212 /// The branch weights of SwitchInsn when doing instrumentation based PGO. 1213 SmallVector<uint64_t, 16> *SwitchWeights; 1214 1215 /// CaseRangeBlock - This block holds if condition check for last case 1216 /// statement range in current switch instruction. 1217 llvm::BasicBlock *CaseRangeBlock; 1218 1219 /// OpaqueLValues - Keeps track of the current set of opaque value 1220 /// expressions. 1221 llvm::DenseMap<const OpaqueValueExpr *, LValue> OpaqueLValues; 1222 llvm::DenseMap<const OpaqueValueExpr *, RValue> OpaqueRValues; 1223 1224 // VLASizeMap - This keeps track of the associated size for each VLA type. 1225 // We track this by the size expression rather than the type itself because 1226 // in certain situations, like a const qualifier applied to an VLA typedef, 1227 // multiple VLA types can share the same size expression. 1228 // FIXME: Maybe this could be a stack of maps that is pushed/popped as we 1229 // enter/leave scopes. 1230 llvm::DenseMap<const Expr*, llvm::Value*> VLASizeMap; 1231 1232 /// A block containing a single 'unreachable' instruction. Created 1233 /// lazily by getUnreachableBlock(). 1234 llvm::BasicBlock *UnreachableBlock; 1235 1236 /// Counts of the number return expressions in the function. 1237 unsigned NumReturnExprs; 1238 1239 /// Count the number of simple (constant) return expressions in the function. 1240 unsigned NumSimpleReturnExprs; 1241 1242 /// The last regular (non-return) debug location (breakpoint) in the function. 1243 SourceLocation LastStopPoint; 1244 1245 public: 1246 /// A scope within which we are constructing the fields of an object which 1247 /// might use a CXXDefaultInitExpr. This stashes away a 'this' value to use 1248 /// if we need to evaluate a CXXDefaultInitExpr within the evaluation. 1249 class FieldConstructionScope { 1250 public: 1251 FieldConstructionScope(CodeGenFunction &CGF, Address This) 1252 : CGF(CGF), OldCXXDefaultInitExprThis(CGF.CXXDefaultInitExprThis) { 1253 CGF.CXXDefaultInitExprThis = This; 1254 } 1255 ~FieldConstructionScope() { 1256 CGF.CXXDefaultInitExprThis = OldCXXDefaultInitExprThis; 1257 } 1258 1259 private: 1260 CodeGenFunction &CGF; 1261 Address OldCXXDefaultInitExprThis; 1262 }; 1263 1264 /// The scope of a CXXDefaultInitExpr. Within this scope, the value of 'this' 1265 /// is overridden to be the object under construction. 1266 class CXXDefaultInitExprScope { 1267 public: 1268 CXXDefaultInitExprScope(CodeGenFunction &CGF) 1269 : CGF(CGF), OldCXXThisValue(CGF.CXXThisValue), 1270 OldCXXThisAlignment(CGF.CXXThisAlignment) { 1271 CGF.CXXThisValue = CGF.CXXDefaultInitExprThis.getPointer(); 1272 CGF.CXXThisAlignment = CGF.CXXDefaultInitExprThis.getAlignment(); 1273 } 1274 ~CXXDefaultInitExprScope() { 1275 CGF.CXXThisValue = OldCXXThisValue; 1276 CGF.CXXThisAlignment = OldCXXThisAlignment; 1277 } 1278 1279 public: 1280 CodeGenFunction &CGF; 1281 llvm::Value *OldCXXThisValue; 1282 CharUnits OldCXXThisAlignment; 1283 }; 1284 1285 /// The scope of an ArrayInitLoopExpr. Within this scope, the value of the 1286 /// current loop index is overridden. 1287 class ArrayInitLoopExprScope { 1288 public: 1289 ArrayInitLoopExprScope(CodeGenFunction &CGF, llvm::Value *Index) 1290 : CGF(CGF), OldArrayInitIndex(CGF.ArrayInitIndex) { 1291 CGF.ArrayInitIndex = Index; 1292 } 1293 ~ArrayInitLoopExprScope() { 1294 CGF.ArrayInitIndex = OldArrayInitIndex; 1295 } 1296 1297 private: 1298 CodeGenFunction &CGF; 1299 llvm::Value *OldArrayInitIndex; 1300 }; 1301 1302 class InlinedInheritingConstructorScope { 1303 public: 1304 InlinedInheritingConstructorScope(CodeGenFunction &CGF, GlobalDecl GD) 1305 : CGF(CGF), OldCurGD(CGF.CurGD), OldCurFuncDecl(CGF.CurFuncDecl), 1306 OldCurCodeDecl(CGF.CurCodeDecl), 1307 OldCXXABIThisDecl(CGF.CXXABIThisDecl), 1308 OldCXXABIThisValue(CGF.CXXABIThisValue), 1309 OldCXXThisValue(CGF.CXXThisValue), 1310 OldCXXABIThisAlignment(CGF.CXXABIThisAlignment), 1311 OldCXXThisAlignment(CGF.CXXThisAlignment), 1312 OldReturnValue(CGF.ReturnValue), OldFnRetTy(CGF.FnRetTy), 1313 OldCXXInheritedCtorInitExprArgs( 1314 std::move(CGF.CXXInheritedCtorInitExprArgs)) { 1315 CGF.CurGD = GD; 1316 CGF.CurFuncDecl = CGF.CurCodeDecl = 1317 cast<CXXConstructorDecl>(GD.getDecl()); 1318 CGF.CXXABIThisDecl = nullptr; 1319 CGF.CXXABIThisValue = nullptr; 1320 CGF.CXXThisValue = nullptr; 1321 CGF.CXXABIThisAlignment = CharUnits(); 1322 CGF.CXXThisAlignment = CharUnits(); 1323 CGF.ReturnValue = Address::invalid(); 1324 CGF.FnRetTy = QualType(); 1325 CGF.CXXInheritedCtorInitExprArgs.clear(); 1326 } 1327 ~InlinedInheritingConstructorScope() { 1328 CGF.CurGD = OldCurGD; 1329 CGF.CurFuncDecl = OldCurFuncDecl; 1330 CGF.CurCodeDecl = OldCurCodeDecl; 1331 CGF.CXXABIThisDecl = OldCXXABIThisDecl; 1332 CGF.CXXABIThisValue = OldCXXABIThisValue; 1333 CGF.CXXThisValue = OldCXXThisValue; 1334 CGF.CXXABIThisAlignment = OldCXXABIThisAlignment; 1335 CGF.CXXThisAlignment = OldCXXThisAlignment; 1336 CGF.ReturnValue = OldReturnValue; 1337 CGF.FnRetTy = OldFnRetTy; 1338 CGF.CXXInheritedCtorInitExprArgs = 1339 std::move(OldCXXInheritedCtorInitExprArgs); 1340 } 1341 1342 private: 1343 CodeGenFunction &CGF; 1344 GlobalDecl OldCurGD; 1345 const Decl *OldCurFuncDecl; 1346 const Decl *OldCurCodeDecl; 1347 ImplicitParamDecl *OldCXXABIThisDecl; 1348 llvm::Value *OldCXXABIThisValue; 1349 llvm::Value *OldCXXThisValue; 1350 CharUnits OldCXXABIThisAlignment; 1351 CharUnits OldCXXThisAlignment; 1352 Address OldReturnValue; 1353 QualType OldFnRetTy; 1354 CallArgList OldCXXInheritedCtorInitExprArgs; 1355 }; 1356 1357 private: 1358 /// CXXThisDecl - When generating code for a C++ member function, 1359 /// this will hold the implicit 'this' declaration. 1360 ImplicitParamDecl *CXXABIThisDecl; 1361 llvm::Value *CXXABIThisValue; 1362 llvm::Value *CXXThisValue; 1363 CharUnits CXXABIThisAlignment; 1364 CharUnits CXXThisAlignment; 1365 1366 /// The value of 'this' to use when evaluating CXXDefaultInitExprs within 1367 /// this expression. 1368 Address CXXDefaultInitExprThis = Address::invalid(); 1369 1370 /// The current array initialization index when evaluating an 1371 /// ArrayInitIndexExpr within an ArrayInitLoopExpr. 1372 llvm::Value *ArrayInitIndex = nullptr; 1373 1374 /// The values of function arguments to use when evaluating 1375 /// CXXInheritedCtorInitExprs within this context. 1376 CallArgList CXXInheritedCtorInitExprArgs; 1377 1378 /// CXXStructorImplicitParamDecl - When generating code for a constructor or 1379 /// destructor, this will hold the implicit argument (e.g. VTT). 1380 ImplicitParamDecl *CXXStructorImplicitParamDecl; 1381 llvm::Value *CXXStructorImplicitParamValue; 1382 1383 /// OutermostConditional - Points to the outermost active 1384 /// conditional control. This is used so that we know if a 1385 /// temporary should be destroyed conditionally. 1386 ConditionalEvaluation *OutermostConditional; 1387 1388 /// The current lexical scope. 1389 LexicalScope *CurLexicalScope; 1390 1391 /// The current source location that should be used for exception 1392 /// handling code. 1393 SourceLocation CurEHLocation; 1394 1395 /// BlockByrefInfos - For each __block variable, contains 1396 /// information about the layout of the variable. 1397 llvm::DenseMap<const ValueDecl *, BlockByrefInfo> BlockByrefInfos; 1398 1399 /// Used by -fsanitize=nullability-return to determine whether the return 1400 /// value can be checked. 1401 llvm::Value *RetValNullabilityPrecondition = nullptr; 1402 1403 /// Check if -fsanitize=nullability-return instrumentation is required for 1404 /// this function. 1405 bool requiresReturnValueNullabilityCheck() const { 1406 return RetValNullabilityPrecondition; 1407 } 1408 1409 llvm::BasicBlock *TerminateLandingPad; 1410 llvm::BasicBlock *TerminateHandler; 1411 llvm::BasicBlock *TrapBB; 1412 1413 /// True if we need emit the life-time markers. 1414 const bool ShouldEmitLifetimeMarkers; 1415 1416 /// Add a kernel metadata node to the named metadata node 'opencl.kernels'. 1417 /// In the kernel metadata node, reference the kernel function and metadata 1418 /// nodes for its optional attribute qualifiers (OpenCL 1.1 6.7.2): 1419 /// - A node for the vec_type_hint(<type>) qualifier contains string 1420 /// "vec_type_hint", an undefined value of the <type> data type, 1421 /// and a Boolean that is true if the <type> is integer and signed. 1422 /// - A node for the work_group_size_hint(X,Y,Z) qualifier contains string 1423 /// "work_group_size_hint", and three 32-bit integers X, Y and Z. 1424 /// - A node for the reqd_work_group_size(X,Y,Z) qualifier contains string 1425 /// "reqd_work_group_size", and three 32-bit integers X, Y and Z. 1426 void EmitOpenCLKernelMetadata(const FunctionDecl *FD, 1427 llvm::Function *Fn); 1428 1429 public: 1430 CodeGenFunction(CodeGenModule &cgm, bool suppressNewContext=false); 1431 ~CodeGenFunction(); 1432 1433 CodeGenTypes &getTypes() const { return CGM.getTypes(); } 1434 ASTContext &getContext() const { return CGM.getContext(); } 1435 CGDebugInfo *getDebugInfo() { 1436 if (DisableDebugInfo) 1437 return nullptr; 1438 return DebugInfo; 1439 } 1440 void disableDebugInfo() { DisableDebugInfo = true; } 1441 void enableDebugInfo() { DisableDebugInfo = false; } 1442 1443 bool shouldUseFusedARCCalls() { 1444 return CGM.getCodeGenOpts().OptimizationLevel == 0; 1445 } 1446 1447 const LangOptions &getLangOpts() const { return CGM.getLangOpts(); } 1448 1449 /// Returns a pointer to the function's exception object and selector slot, 1450 /// which is assigned in every landing pad. 1451 Address getExceptionSlot(); 1452 Address getEHSelectorSlot(); 1453 1454 /// Returns the contents of the function's exception object and selector 1455 /// slots. 1456 llvm::Value *getExceptionFromSlot(); 1457 llvm::Value *getSelectorFromSlot(); 1458 1459 Address getNormalCleanupDestSlot(); 1460 1461 llvm::BasicBlock *getUnreachableBlock() { 1462 if (!UnreachableBlock) { 1463 UnreachableBlock = createBasicBlock("unreachable"); 1464 new llvm::UnreachableInst(getLLVMContext(), UnreachableBlock); 1465 } 1466 return UnreachableBlock; 1467 } 1468 1469 llvm::BasicBlock *getInvokeDest() { 1470 if (!EHStack.requiresLandingPad()) return nullptr; 1471 return getInvokeDestImpl(); 1472 } 1473 1474 bool currentFunctionUsesSEHTry() const { return CurSEHParent != nullptr; } 1475 1476 const TargetInfo &getTarget() const { return Target; } 1477 llvm::LLVMContext &getLLVMContext() { return CGM.getLLVMContext(); } 1478 1479 //===--------------------------------------------------------------------===// 1480 // Cleanups 1481 //===--------------------------------------------------------------------===// 1482 1483 typedef void Destroyer(CodeGenFunction &CGF, Address addr, QualType ty); 1484 1485 void pushIrregularPartialArrayCleanup(llvm::Value *arrayBegin, 1486 Address arrayEndPointer, 1487 QualType elementType, 1488 CharUnits elementAlignment, 1489 Destroyer *destroyer); 1490 void pushRegularPartialArrayCleanup(llvm::Value *arrayBegin, 1491 llvm::Value *arrayEnd, 1492 QualType elementType, 1493 CharUnits elementAlignment, 1494 Destroyer *destroyer); 1495 1496 void pushDestroy(QualType::DestructionKind dtorKind, 1497 Address addr, QualType type); 1498 void pushEHDestroy(QualType::DestructionKind dtorKind, 1499 Address addr, QualType type); 1500 void pushDestroy(CleanupKind kind, Address addr, QualType type, 1501 Destroyer *destroyer, bool useEHCleanupForArray); 1502 void pushLifetimeExtendedDestroy(CleanupKind kind, Address addr, 1503 QualType type, Destroyer *destroyer, 1504 bool useEHCleanupForArray); 1505 void pushCallObjectDeleteCleanup(const FunctionDecl *OperatorDelete, 1506 llvm::Value *CompletePtr, 1507 QualType ElementType); 1508 void pushStackRestore(CleanupKind kind, Address SPMem); 1509 void emitDestroy(Address addr, QualType type, Destroyer *destroyer, 1510 bool useEHCleanupForArray); 1511 llvm::Function *generateDestroyHelper(Address addr, QualType type, 1512 Destroyer *destroyer, 1513 bool useEHCleanupForArray, 1514 const VarDecl *VD); 1515 void emitArrayDestroy(llvm::Value *begin, llvm::Value *end, 1516 QualType elementType, CharUnits elementAlign, 1517 Destroyer *destroyer, 1518 bool checkZeroLength, bool useEHCleanup); 1519 1520 Destroyer *getDestroyer(QualType::DestructionKind destructionKind); 1521 1522 /// Determines whether an EH cleanup is required to destroy a type 1523 /// with the given destruction kind. 1524 bool needsEHCleanup(QualType::DestructionKind kind) { 1525 switch (kind) { 1526 case QualType::DK_none: 1527 return false; 1528 case QualType::DK_cxx_destructor: 1529 case QualType::DK_objc_weak_lifetime: 1530 return getLangOpts().Exceptions; 1531 case QualType::DK_objc_strong_lifetime: 1532 return getLangOpts().Exceptions && 1533 CGM.getCodeGenOpts().ObjCAutoRefCountExceptions; 1534 } 1535 llvm_unreachable("bad destruction kind"); 1536 } 1537 1538 CleanupKind getCleanupKind(QualType::DestructionKind kind) { 1539 return (needsEHCleanup(kind) ? NormalAndEHCleanup : NormalCleanup); 1540 } 1541 1542 //===--------------------------------------------------------------------===// 1543 // Objective-C 1544 //===--------------------------------------------------------------------===// 1545 1546 void GenerateObjCMethod(const ObjCMethodDecl *OMD); 1547 1548 void StartObjCMethod(const ObjCMethodDecl *MD, const ObjCContainerDecl *CD); 1549 1550 /// GenerateObjCGetter - Synthesize an Objective-C property getter function. 1551 void GenerateObjCGetter(ObjCImplementationDecl *IMP, 1552 const ObjCPropertyImplDecl *PID); 1553 void generateObjCGetterBody(const ObjCImplementationDecl *classImpl, 1554 const ObjCPropertyImplDecl *propImpl, 1555 const ObjCMethodDecl *GetterMothodDecl, 1556 llvm::Constant *AtomicHelperFn); 1557 1558 void GenerateObjCCtorDtorMethod(ObjCImplementationDecl *IMP, 1559 ObjCMethodDecl *MD, bool ctor); 1560 1561 /// GenerateObjCSetter - Synthesize an Objective-C property setter function 1562 /// for the given property. 1563 void GenerateObjCSetter(ObjCImplementationDecl *IMP, 1564 const ObjCPropertyImplDecl *PID); 1565 void generateObjCSetterBody(const ObjCImplementationDecl *classImpl, 1566 const ObjCPropertyImplDecl *propImpl, 1567 llvm::Constant *AtomicHelperFn); 1568 1569 //===--------------------------------------------------------------------===// 1570 // Block Bits 1571 //===--------------------------------------------------------------------===// 1572 1573 llvm::Value *EmitBlockLiteral(const BlockExpr *); 1574 static void destroyBlockInfos(CGBlockInfo *info); 1575 1576 llvm::Function *GenerateBlockFunction(GlobalDecl GD, 1577 const CGBlockInfo &Info, 1578 const DeclMapTy &ldm, 1579 bool IsLambdaConversionToBlock); 1580 1581 llvm::Constant *GenerateCopyHelperFunction(const CGBlockInfo &blockInfo); 1582 llvm::Constant *GenerateDestroyHelperFunction(const CGBlockInfo &blockInfo); 1583 llvm::Constant *GenerateObjCAtomicSetterCopyHelperFunction( 1584 const ObjCPropertyImplDecl *PID); 1585 llvm::Constant *GenerateObjCAtomicGetterCopyHelperFunction( 1586 const ObjCPropertyImplDecl *PID); 1587 llvm::Value *EmitBlockCopyAndAutorelease(llvm::Value *Block, QualType Ty); 1588 1589 void BuildBlockRelease(llvm::Value *DeclPtr, BlockFieldFlags flags); 1590 1591 class AutoVarEmission; 1592 1593 void emitByrefStructureInit(const AutoVarEmission &emission); 1594 void enterByrefCleanup(const AutoVarEmission &emission); 1595 1596 void setBlockContextParameter(const ImplicitParamDecl *D, unsigned argNum, 1597 llvm::Value *ptr); 1598 1599 Address LoadBlockStruct(); 1600 Address GetAddrOfBlockDecl(const VarDecl *var, bool ByRef); 1601 1602 /// BuildBlockByrefAddress - Computes the location of the 1603 /// data in a variable which is declared as __block. 1604 Address emitBlockByrefAddress(Address baseAddr, const VarDecl *V, 1605 bool followForward = true); 1606 Address emitBlockByrefAddress(Address baseAddr, 1607 const BlockByrefInfo &info, 1608 bool followForward, 1609 const llvm::Twine &name); 1610 1611 const BlockByrefInfo &getBlockByrefInfo(const VarDecl *var); 1612 1613 QualType BuildFunctionArgList(GlobalDecl GD, FunctionArgList &Args); 1614 1615 void GenerateCode(GlobalDecl GD, llvm::Function *Fn, 1616 const CGFunctionInfo &FnInfo); 1617 /// \brief Emit code for the start of a function. 1618 /// \param Loc The location to be associated with the function. 1619 /// \param StartLoc The location of the function body. 1620 void StartFunction(GlobalDecl GD, 1621 QualType RetTy, 1622 llvm::Function *Fn, 1623 const CGFunctionInfo &FnInfo, 1624 const FunctionArgList &Args, 1625 SourceLocation Loc = SourceLocation(), 1626 SourceLocation StartLoc = SourceLocation()); 1627 1628 static bool IsConstructorDelegationValid(const CXXConstructorDecl *Ctor); 1629 1630 void EmitConstructorBody(FunctionArgList &Args); 1631 void EmitDestructorBody(FunctionArgList &Args); 1632 void emitImplicitAssignmentOperatorBody(FunctionArgList &Args); 1633 void EmitFunctionBody(FunctionArgList &Args, const Stmt *Body); 1634 void EmitBlockWithFallThrough(llvm::BasicBlock *BB, const Stmt *S); 1635 1636 void EmitForwardingCallToLambda(const CXXMethodDecl *LambdaCallOperator, 1637 CallArgList &CallArgs); 1638 void EmitLambdaToBlockPointerBody(FunctionArgList &Args); 1639 void EmitLambdaBlockInvokeBody(); 1640 void EmitLambdaDelegatingInvokeBody(const CXXMethodDecl *MD); 1641 void EmitLambdaStaticInvokeFunction(const CXXMethodDecl *MD); 1642 void EmitAsanPrologueOrEpilogue(bool Prologue); 1643 1644 /// \brief Emit the unified return block, trying to avoid its emission when 1645 /// possible. 1646 /// \return The debug location of the user written return statement if the 1647 /// return block is is avoided. 1648 llvm::DebugLoc EmitReturnBlock(); 1649 1650 /// FinishFunction - Complete IR generation of the current function. It is 1651 /// legal to call this function even if there is no current insertion point. 1652 void FinishFunction(SourceLocation EndLoc=SourceLocation()); 1653 1654 void StartThunk(llvm::Function *Fn, GlobalDecl GD, 1655 const CGFunctionInfo &FnInfo); 1656 1657 void EmitCallAndReturnForThunk(llvm::Constant *Callee, 1658 const ThunkInfo *Thunk); 1659 1660 void FinishThunk(); 1661 1662 /// Emit a musttail call for a thunk with a potentially adjusted this pointer. 1663 void EmitMustTailThunk(const CXXMethodDecl *MD, llvm::Value *AdjustedThisPtr, 1664 llvm::Value *Callee); 1665 1666 /// Generate a thunk for the given method. 1667 void generateThunk(llvm::Function *Fn, const CGFunctionInfo &FnInfo, 1668 GlobalDecl GD, const ThunkInfo &Thunk); 1669 1670 llvm::Function *GenerateVarArgsThunk(llvm::Function *Fn, 1671 const CGFunctionInfo &FnInfo, 1672 GlobalDecl GD, const ThunkInfo &Thunk); 1673 1674 void EmitCtorPrologue(const CXXConstructorDecl *CD, CXXCtorType Type, 1675 FunctionArgList &Args); 1676 1677 void EmitInitializerForField(FieldDecl *Field, LValue LHS, Expr *Init); 1678 1679 /// Struct with all informations about dynamic [sub]class needed to set vptr. 1680 struct VPtr { 1681 BaseSubobject Base; 1682 const CXXRecordDecl *NearestVBase; 1683 CharUnits OffsetFromNearestVBase; 1684 const CXXRecordDecl *VTableClass; 1685 }; 1686 1687 /// Initialize the vtable pointer of the given subobject. 1688 void InitializeVTablePointer(const VPtr &vptr); 1689 1690 typedef llvm::SmallVector<VPtr, 4> VPtrsVector; 1691 1692 typedef llvm::SmallPtrSet<const CXXRecordDecl *, 4> VisitedVirtualBasesSetTy; 1693 VPtrsVector getVTablePointers(const CXXRecordDecl *VTableClass); 1694 1695 void getVTablePointers(BaseSubobject Base, const CXXRecordDecl *NearestVBase, 1696 CharUnits OffsetFromNearestVBase, 1697 bool BaseIsNonVirtualPrimaryBase, 1698 const CXXRecordDecl *VTableClass, 1699 VisitedVirtualBasesSetTy &VBases, VPtrsVector &vptrs); 1700 1701 void InitializeVTablePointers(const CXXRecordDecl *ClassDecl); 1702 1703 /// GetVTablePtr - Return the Value of the vtable pointer member pointed 1704 /// to by This. 1705 llvm::Value *GetVTablePtr(Address This, llvm::Type *VTableTy, 1706 const CXXRecordDecl *VTableClass); 1707 1708 enum CFITypeCheckKind { 1709 CFITCK_VCall, 1710 CFITCK_NVCall, 1711 CFITCK_DerivedCast, 1712 CFITCK_UnrelatedCast, 1713 CFITCK_ICall, 1714 }; 1715 1716 /// \brief Derived is the presumed address of an object of type T after a 1717 /// cast. If T is a polymorphic class type, emit a check that the virtual 1718 /// table for Derived belongs to a class derived from T. 1719 void EmitVTablePtrCheckForCast(QualType T, llvm::Value *Derived, 1720 bool MayBeNull, CFITypeCheckKind TCK, 1721 SourceLocation Loc); 1722 1723 /// EmitVTablePtrCheckForCall - Virtual method MD is being called via VTable. 1724 /// If vptr CFI is enabled, emit a check that VTable is valid. 1725 void EmitVTablePtrCheckForCall(const CXXRecordDecl *RD, llvm::Value *VTable, 1726 CFITypeCheckKind TCK, SourceLocation Loc); 1727 1728 /// EmitVTablePtrCheck - Emit a check that VTable is a valid virtual table for 1729 /// RD using llvm.type.test. 1730 void EmitVTablePtrCheck(const CXXRecordDecl *RD, llvm::Value *VTable, 1731 CFITypeCheckKind TCK, SourceLocation Loc); 1732 1733 /// If whole-program virtual table optimization is enabled, emit an assumption 1734 /// that VTable is a member of RD's type identifier. Or, if vptr CFI is 1735 /// enabled, emit a check that VTable is a member of RD's type identifier. 1736 void EmitTypeMetadataCodeForVCall(const CXXRecordDecl *RD, 1737 llvm::Value *VTable, SourceLocation Loc); 1738 1739 /// Returns whether we should perform a type checked load when loading a 1740 /// virtual function for virtual calls to members of RD. This is generally 1741 /// true when both vcall CFI and whole-program-vtables are enabled. 1742 bool ShouldEmitVTableTypeCheckedLoad(const CXXRecordDecl *RD); 1743 1744 /// Emit a type checked load from the given vtable. 1745 llvm::Value *EmitVTableTypeCheckedLoad(const CXXRecordDecl *RD, llvm::Value *VTable, 1746 uint64_t VTableByteOffset); 1747 1748 /// CanDevirtualizeMemberFunctionCalls - Checks whether virtual calls on given 1749 /// expr can be devirtualized. 1750 bool CanDevirtualizeMemberFunctionCall(const Expr *Base, 1751 const CXXMethodDecl *MD); 1752 1753 /// EnterDtorCleanups - Enter the cleanups necessary to complete the 1754 /// given phase of destruction for a destructor. The end result 1755 /// should call destructors on members and base classes in reverse 1756 /// order of their construction. 1757 void EnterDtorCleanups(const CXXDestructorDecl *Dtor, CXXDtorType Type); 1758 1759 /// ShouldInstrumentFunction - Return true if the current function should be 1760 /// instrumented with __cyg_profile_func_* calls 1761 bool ShouldInstrumentFunction(); 1762 1763 /// ShouldXRayInstrument - Return true if the current function should be 1764 /// instrumented with XRay nop sleds. 1765 bool ShouldXRayInstrumentFunction() const; 1766 1767 /// EmitFunctionInstrumentation - Emit LLVM code to call the specified 1768 /// instrumentation function with the current function and the call site, if 1769 /// function instrumentation is enabled. 1770 void EmitFunctionInstrumentation(const char *Fn); 1771 1772 /// EmitMCountInstrumentation - Emit call to .mcount. 1773 void EmitMCountInstrumentation(); 1774 1775 /// EmitFunctionProlog - Emit the target specific LLVM code to load the 1776 /// arguments for the given function. This is also responsible for naming the 1777 /// LLVM function arguments. 1778 void EmitFunctionProlog(const CGFunctionInfo &FI, 1779 llvm::Function *Fn, 1780 const FunctionArgList &Args); 1781 1782 /// EmitFunctionEpilog - Emit the target specific LLVM code to return the 1783 /// given temporary. 1784 void EmitFunctionEpilog(const CGFunctionInfo &FI, bool EmitRetDbgLoc, 1785 SourceLocation EndLoc); 1786 1787 /// Emit a test that checks if the return value \p RV is nonnull. 1788 void EmitReturnValueCheck(llvm::Value *RV, SourceLocation EndLoc); 1789 1790 /// EmitStartEHSpec - Emit the start of the exception spec. 1791 void EmitStartEHSpec(const Decl *D); 1792 1793 /// EmitEndEHSpec - Emit the end of the exception spec. 1794 void EmitEndEHSpec(const Decl *D); 1795 1796 /// getTerminateLandingPad - Return a landing pad that just calls terminate. 1797 llvm::BasicBlock *getTerminateLandingPad(); 1798 1799 /// getTerminateHandler - Return a handler (not a landing pad, just 1800 /// a catch handler) that just calls terminate. This is used when 1801 /// a terminate scope encloses a try. 1802 llvm::BasicBlock *getTerminateHandler(); 1803 1804 llvm::Type *ConvertTypeForMem(QualType T); 1805 llvm::Type *ConvertType(QualType T); 1806 llvm::Type *ConvertType(const TypeDecl *T) { 1807 return ConvertType(getContext().getTypeDeclType(T)); 1808 } 1809 1810 /// LoadObjCSelf - Load the value of self. This function is only valid while 1811 /// generating code for an Objective-C method. 1812 llvm::Value *LoadObjCSelf(); 1813 1814 /// TypeOfSelfObject - Return type of object that this self represents. 1815 QualType TypeOfSelfObject(); 1816 1817 /// hasAggregateLLVMType - Return true if the specified AST type will map into 1818 /// an aggregate LLVM type or is void. 1819 static TypeEvaluationKind getEvaluationKind(QualType T); 1820 1821 static bool hasScalarEvaluationKind(QualType T) { 1822 return getEvaluationKind(T) == TEK_Scalar; 1823 } 1824 1825 static bool hasAggregateEvaluationKind(QualType T) { 1826 return getEvaluationKind(T) == TEK_Aggregate; 1827 } 1828 1829 /// createBasicBlock - Create an LLVM basic block. 1830 llvm::BasicBlock *createBasicBlock(const Twine &name = "", 1831 llvm::Function *parent = nullptr, 1832 llvm::BasicBlock *before = nullptr) { 1833 #ifdef NDEBUG 1834 return llvm::BasicBlock::Create(getLLVMContext(), "", parent, before); 1835 #else 1836 return llvm::BasicBlock::Create(getLLVMContext(), name, parent, before); 1837 #endif 1838 } 1839 1840 /// getBasicBlockForLabel - Return the LLVM basicblock that the specified 1841 /// label maps to. 1842 JumpDest getJumpDestForLabel(const LabelDecl *S); 1843 1844 /// SimplifyForwardingBlocks - If the given basic block is only a branch to 1845 /// another basic block, simplify it. This assumes that no other code could 1846 /// potentially reference the basic block. 1847 void SimplifyForwardingBlocks(llvm::BasicBlock *BB); 1848 1849 /// EmitBlock - Emit the given block \arg BB and set it as the insert point, 1850 /// adding a fall-through branch from the current insert block if 1851 /// necessary. It is legal to call this function even if there is no current 1852 /// insertion point. 1853 /// 1854 /// IsFinished - If true, indicates that the caller has finished emitting 1855 /// branches to the given block and does not expect to emit code into it. This 1856 /// means the block can be ignored if it is unreachable. 1857 void EmitBlock(llvm::BasicBlock *BB, bool IsFinished=false); 1858 1859 /// EmitBlockAfterUses - Emit the given block somewhere hopefully 1860 /// near its uses, and leave the insertion point in it. 1861 void EmitBlockAfterUses(llvm::BasicBlock *BB); 1862 1863 /// EmitBranch - Emit a branch to the specified basic block from the current 1864 /// insert block, taking care to avoid creation of branches from dummy 1865 /// blocks. It is legal to call this function even if there is no current 1866 /// insertion point. 1867 /// 1868 /// This function clears the current insertion point. The caller should follow 1869 /// calls to this function with calls to Emit*Block prior to generation new 1870 /// code. 1871 void EmitBranch(llvm::BasicBlock *Block); 1872 1873 /// HaveInsertPoint - True if an insertion point is defined. If not, this 1874 /// indicates that the current code being emitted is unreachable. 1875 bool HaveInsertPoint() const { 1876 return Builder.GetInsertBlock() != nullptr; 1877 } 1878 1879 /// EnsureInsertPoint - Ensure that an insertion point is defined so that 1880 /// emitted IR has a place to go. Note that by definition, if this function 1881 /// creates a block then that block is unreachable; callers may do better to 1882 /// detect when no insertion point is defined and simply skip IR generation. 1883 void EnsureInsertPoint() { 1884 if (!HaveInsertPoint()) 1885 EmitBlock(createBasicBlock()); 1886 } 1887 1888 /// ErrorUnsupported - Print out an error that codegen doesn't support the 1889 /// specified stmt yet. 1890 void ErrorUnsupported(const Stmt *S, const char *Type); 1891 1892 //===--------------------------------------------------------------------===// 1893 // Helpers 1894 //===--------------------------------------------------------------------===// 1895 1896 LValue MakeAddrLValue(Address Addr, QualType T, 1897 AlignmentSource AlignSource = AlignmentSource::Type) { 1898 return LValue::MakeAddr(Addr, T, getContext(), AlignSource, 1899 CGM.getTBAAInfo(T)); 1900 } 1901 1902 LValue MakeAddrLValue(llvm::Value *V, QualType T, CharUnits Alignment, 1903 AlignmentSource AlignSource = AlignmentSource::Type) { 1904 return LValue::MakeAddr(Address(V, Alignment), T, getContext(), 1905 AlignSource, CGM.getTBAAInfo(T)); 1906 } 1907 1908 LValue MakeNaturalAlignPointeeAddrLValue(llvm::Value *V, QualType T); 1909 LValue MakeNaturalAlignAddrLValue(llvm::Value *V, QualType T); 1910 CharUnits getNaturalTypeAlignment(QualType T, 1911 AlignmentSource *Source = nullptr, 1912 bool forPointeeType = false); 1913 CharUnits getNaturalPointeeTypeAlignment(QualType T, 1914 AlignmentSource *Source = nullptr); 1915 1916 Address EmitLoadOfReference(Address Ref, const ReferenceType *RefTy, 1917 AlignmentSource *Source = nullptr); 1918 LValue EmitLoadOfReferenceLValue(Address Ref, const ReferenceType *RefTy); 1919 1920 Address EmitLoadOfPointer(Address Ptr, const PointerType *PtrTy, 1921 AlignmentSource *Source = nullptr); 1922 LValue EmitLoadOfPointerLValue(Address Ptr, const PointerType *PtrTy); 1923 1924 /// CreateTempAlloca - This creates a alloca and inserts it into the entry 1925 /// block. The caller is responsible for setting an appropriate alignment on 1926 /// the alloca. 1927 llvm::AllocaInst *CreateTempAlloca(llvm::Type *Ty, 1928 const Twine &Name = "tmp"); 1929 Address CreateTempAlloca(llvm::Type *Ty, CharUnits align, 1930 const Twine &Name = "tmp"); 1931 1932 /// CreateDefaultAlignedTempAlloca - This creates an alloca with the 1933 /// default ABI alignment of the given LLVM type. 1934 /// 1935 /// IMPORTANT NOTE: This is *not* generally the right alignment for 1936 /// any given AST type that happens to have been lowered to the 1937 /// given IR type. This should only ever be used for function-local, 1938 /// IR-driven manipulations like saving and restoring a value. Do 1939 /// not hand this address off to arbitrary IRGen routines, and especially 1940 /// do not pass it as an argument to a function that might expect a 1941 /// properly ABI-aligned value. 1942 Address CreateDefaultAlignTempAlloca(llvm::Type *Ty, 1943 const Twine &Name = "tmp"); 1944 1945 /// InitTempAlloca - Provide an initial value for the given alloca which 1946 /// will be observable at all locations in the function. 1947 /// 1948 /// The address should be something that was returned from one of 1949 /// the CreateTempAlloca or CreateMemTemp routines, and the 1950 /// initializer must be valid in the entry block (i.e. it must 1951 /// either be a constant or an argument value). 1952 void InitTempAlloca(Address Alloca, llvm::Value *Value); 1953 1954 /// CreateIRTemp - Create a temporary IR object of the given type, with 1955 /// appropriate alignment. This routine should only be used when an temporary 1956 /// value needs to be stored into an alloca (for example, to avoid explicit 1957 /// PHI construction), but the type is the IR type, not the type appropriate 1958 /// for storing in memory. 1959 /// 1960 /// That is, this is exactly equivalent to CreateMemTemp, but calling 1961 /// ConvertType instead of ConvertTypeForMem. 1962 Address CreateIRTemp(QualType T, const Twine &Name = "tmp"); 1963 1964 /// CreateMemTemp - Create a temporary memory object of the given type, with 1965 /// appropriate alignment. 1966 Address CreateMemTemp(QualType T, const Twine &Name = "tmp"); 1967 Address CreateMemTemp(QualType T, CharUnits Align, const Twine &Name = "tmp"); 1968 1969 /// CreateAggTemp - Create a temporary memory object for the given 1970 /// aggregate type. 1971 AggValueSlot CreateAggTemp(QualType T, const Twine &Name = "tmp") { 1972 return AggValueSlot::forAddr(CreateMemTemp(T, Name), 1973 T.getQualifiers(), 1974 AggValueSlot::IsNotDestructed, 1975 AggValueSlot::DoesNotNeedGCBarriers, 1976 AggValueSlot::IsNotAliased); 1977 } 1978 1979 /// Emit a cast to void* in the appropriate address space. 1980 llvm::Value *EmitCastToVoidPtr(llvm::Value *value); 1981 1982 /// EvaluateExprAsBool - Perform the usual unary conversions on the specified 1983 /// expression and compare the result against zero, returning an Int1Ty value. 1984 llvm::Value *EvaluateExprAsBool(const Expr *E); 1985 1986 /// EmitIgnoredExpr - Emit an expression in a context which ignores the result. 1987 void EmitIgnoredExpr(const Expr *E); 1988 1989 /// EmitAnyExpr - Emit code to compute the specified expression which can have 1990 /// any type. The result is returned as an RValue struct. If this is an 1991 /// aggregate expression, the aggloc/agglocvolatile arguments indicate where 1992 /// the result should be returned. 1993 /// 1994 /// \param ignoreResult True if the resulting value isn't used. 1995 RValue EmitAnyExpr(const Expr *E, 1996 AggValueSlot aggSlot = AggValueSlot::ignored(), 1997 bool ignoreResult = false); 1998 1999 // EmitVAListRef - Emit a "reference" to a va_list; this is either the address 2000 // or the value of the expression, depending on how va_list is defined. 2001 Address EmitVAListRef(const Expr *E); 2002 2003 /// Emit a "reference" to a __builtin_ms_va_list; this is 2004 /// always the value of the expression, because a __builtin_ms_va_list is a 2005 /// pointer to a char. 2006 Address EmitMSVAListRef(const Expr *E); 2007 2008 /// EmitAnyExprToTemp - Similarly to EmitAnyExpr(), however, the result will 2009 /// always be accessible even if no aggregate location is provided. 2010 RValue EmitAnyExprToTemp(const Expr *E); 2011 2012 /// EmitAnyExprToMem - Emits the code necessary to evaluate an 2013 /// arbitrary expression into the given memory location. 2014 void EmitAnyExprToMem(const Expr *E, Address Location, 2015 Qualifiers Quals, bool IsInitializer); 2016 2017 void EmitAnyExprToExn(const Expr *E, Address Addr); 2018 2019 /// EmitExprAsInit - Emits the code necessary to initialize a 2020 /// location in memory with the given initializer. 2021 void EmitExprAsInit(const Expr *init, const ValueDecl *D, LValue lvalue, 2022 bool capturedByInit); 2023 2024 /// hasVolatileMember - returns true if aggregate type has a volatile 2025 /// member. 2026 bool hasVolatileMember(QualType T) { 2027 if (const RecordType *RT = T->getAs<RecordType>()) { 2028 const RecordDecl *RD = cast<RecordDecl>(RT->getDecl()); 2029 return RD->hasVolatileMember(); 2030 } 2031 return false; 2032 } 2033 /// EmitAggregateCopy - Emit an aggregate assignment. 2034 /// 2035 /// The difference to EmitAggregateCopy is that tail padding is not copied. 2036 /// This is required for correctness when assigning non-POD structures in C++. 2037 void EmitAggregateAssign(Address DestPtr, Address SrcPtr, 2038 QualType EltTy) { 2039 bool IsVolatile = hasVolatileMember(EltTy); 2040 EmitAggregateCopy(DestPtr, SrcPtr, EltTy, IsVolatile, true); 2041 } 2042 2043 void EmitAggregateCopyCtor(Address DestPtr, Address SrcPtr, 2044 QualType DestTy, QualType SrcTy) { 2045 EmitAggregateCopy(DestPtr, SrcPtr, SrcTy, /*IsVolatile=*/false, 2046 /*IsAssignment=*/false); 2047 } 2048 2049 /// EmitAggregateCopy - Emit an aggregate copy. 2050 /// 2051 /// \param isVolatile - True iff either the source or the destination is 2052 /// volatile. 2053 /// \param isAssignment - If false, allow padding to be copied. This often 2054 /// yields more efficient. 2055 void EmitAggregateCopy(Address DestPtr, Address SrcPtr, 2056 QualType EltTy, bool isVolatile=false, 2057 bool isAssignment = false); 2058 2059 /// GetAddrOfLocalVar - Return the address of a local variable. 2060 Address GetAddrOfLocalVar(const VarDecl *VD) { 2061 auto it = LocalDeclMap.find(VD); 2062 assert(it != LocalDeclMap.end() && 2063 "Invalid argument to GetAddrOfLocalVar(), no decl!"); 2064 return it->second; 2065 } 2066 2067 /// getOpaqueLValueMapping - Given an opaque value expression (which 2068 /// must be mapped to an l-value), return its mapping. 2069 const LValue &getOpaqueLValueMapping(const OpaqueValueExpr *e) { 2070 assert(OpaqueValueMapping::shouldBindAsLValue(e)); 2071 2072 llvm::DenseMap<const OpaqueValueExpr*,LValue>::iterator 2073 it = OpaqueLValues.find(e); 2074 assert(it != OpaqueLValues.end() && "no mapping for opaque value!"); 2075 return it->second; 2076 } 2077 2078 /// getOpaqueRValueMapping - Given an opaque value expression (which 2079 /// must be mapped to an r-value), return its mapping. 2080 const RValue &getOpaqueRValueMapping(const OpaqueValueExpr *e) { 2081 assert(!OpaqueValueMapping::shouldBindAsLValue(e)); 2082 2083 llvm::DenseMap<const OpaqueValueExpr*,RValue>::iterator 2084 it = OpaqueRValues.find(e); 2085 assert(it != OpaqueRValues.end() && "no mapping for opaque value!"); 2086 return it->second; 2087 } 2088 2089 /// Get the index of the current ArrayInitLoopExpr, if any. 2090 llvm::Value *getArrayInitIndex() { return ArrayInitIndex; } 2091 2092 /// getAccessedFieldNo - Given an encoded value and a result number, return 2093 /// the input field number being accessed. 2094 static unsigned getAccessedFieldNo(unsigned Idx, const llvm::Constant *Elts); 2095 2096 llvm::BlockAddress *GetAddrOfLabel(const LabelDecl *L); 2097 llvm::BasicBlock *GetIndirectGotoBlock(); 2098 2099 /// Check if \p E is a C++ "this" pointer wrapped in value-preserving casts. 2100 static bool IsWrappedCXXThis(const Expr *E); 2101 2102 /// EmitNullInitialization - Generate code to set a value of the given type to 2103 /// null, If the type contains data member pointers, they will be initialized 2104 /// to -1 in accordance with the Itanium C++ ABI. 2105 void EmitNullInitialization(Address DestPtr, QualType Ty); 2106 2107 /// Emits a call to an LLVM variable-argument intrinsic, either 2108 /// \c llvm.va_start or \c llvm.va_end. 2109 /// \param ArgValue A reference to the \c va_list as emitted by either 2110 /// \c EmitVAListRef or \c EmitMSVAListRef. 2111 /// \param IsStart If \c true, emits a call to \c llvm.va_start; otherwise, 2112 /// calls \c llvm.va_end. 2113 llvm::Value *EmitVAStartEnd(llvm::Value *ArgValue, bool IsStart); 2114 2115 /// Generate code to get an argument from the passed in pointer 2116 /// and update it accordingly. 2117 /// \param VE The \c VAArgExpr for which to generate code. 2118 /// \param VAListAddr Receives a reference to the \c va_list as emitted by 2119 /// either \c EmitVAListRef or \c EmitMSVAListRef. 2120 /// \returns A pointer to the argument. 2121 // FIXME: We should be able to get rid of this method and use the va_arg 2122 // instruction in LLVM instead once it works well enough. 2123 Address EmitVAArg(VAArgExpr *VE, Address &VAListAddr); 2124 2125 /// emitArrayLength - Compute the length of an array, even if it's a 2126 /// VLA, and drill down to the base element type. 2127 llvm::Value *emitArrayLength(const ArrayType *arrayType, 2128 QualType &baseType, 2129 Address &addr); 2130 2131 /// EmitVLASize - Capture all the sizes for the VLA expressions in 2132 /// the given variably-modified type and store them in the VLASizeMap. 2133 /// 2134 /// This function can be called with a null (unreachable) insert point. 2135 void EmitVariablyModifiedType(QualType Ty); 2136 2137 /// getVLASize - Returns an LLVM value that corresponds to the size, 2138 /// in non-variably-sized elements, of a variable length array type, 2139 /// plus that largest non-variably-sized element type. Assumes that 2140 /// the type has already been emitted with EmitVariablyModifiedType. 2141 std::pair<llvm::Value*,QualType> getVLASize(const VariableArrayType *vla); 2142 std::pair<llvm::Value*,QualType> getVLASize(QualType vla); 2143 2144 /// LoadCXXThis - Load the value of 'this'. This function is only valid while 2145 /// generating code for an C++ member function. 2146 llvm::Value *LoadCXXThis() { 2147 assert(CXXThisValue && "no 'this' value for this function"); 2148 return CXXThisValue; 2149 } 2150 Address LoadCXXThisAddress(); 2151 2152 /// LoadCXXVTT - Load the VTT parameter to base constructors/destructors have 2153 /// virtual bases. 2154 // FIXME: Every place that calls LoadCXXVTT is something 2155 // that needs to be abstracted properly. 2156 llvm::Value *LoadCXXVTT() { 2157 assert(CXXStructorImplicitParamValue && "no VTT value for this function"); 2158 return CXXStructorImplicitParamValue; 2159 } 2160 2161 /// GetAddressOfBaseOfCompleteClass - Convert the given pointer to a 2162 /// complete class to the given direct base. 2163 Address 2164 GetAddressOfDirectBaseInCompleteClass(Address Value, 2165 const CXXRecordDecl *Derived, 2166 const CXXRecordDecl *Base, 2167 bool BaseIsVirtual); 2168 2169 static bool ShouldNullCheckClassCastValue(const CastExpr *Cast); 2170 2171 /// GetAddressOfBaseClass - This function will add the necessary delta to the 2172 /// load of 'this' and returns address of the base class. 2173 Address GetAddressOfBaseClass(Address Value, 2174 const CXXRecordDecl *Derived, 2175 CastExpr::path_const_iterator PathBegin, 2176 CastExpr::path_const_iterator PathEnd, 2177 bool NullCheckValue, SourceLocation Loc); 2178 2179 Address GetAddressOfDerivedClass(Address Value, 2180 const CXXRecordDecl *Derived, 2181 CastExpr::path_const_iterator PathBegin, 2182 CastExpr::path_const_iterator PathEnd, 2183 bool NullCheckValue); 2184 2185 /// GetVTTParameter - Return the VTT parameter that should be passed to a 2186 /// base constructor/destructor with virtual bases. 2187 /// FIXME: VTTs are Itanium ABI-specific, so the definition should move 2188 /// to ItaniumCXXABI.cpp together with all the references to VTT. 2189 llvm::Value *GetVTTParameter(GlobalDecl GD, bool ForVirtualBase, 2190 bool Delegating); 2191 2192 void EmitDelegateCXXConstructorCall(const CXXConstructorDecl *Ctor, 2193 CXXCtorType CtorType, 2194 const FunctionArgList &Args, 2195 SourceLocation Loc); 2196 // It's important not to confuse this and the previous function. Delegating 2197 // constructors are the C++0x feature. The constructor delegate optimization 2198 // is used to reduce duplication in the base and complete consturctors where 2199 // they are substantially the same. 2200 void EmitDelegatingCXXConstructorCall(const CXXConstructorDecl *Ctor, 2201 const FunctionArgList &Args); 2202 2203 /// Emit a call to an inheriting constructor (that is, one that invokes a 2204 /// constructor inherited from a base class) by inlining its definition. This 2205 /// is necessary if the ABI does not support forwarding the arguments to the 2206 /// base class constructor (because they're variadic or similar). 2207 void EmitInlinedInheritingCXXConstructorCall(const CXXConstructorDecl *Ctor, 2208 CXXCtorType CtorType, 2209 bool ForVirtualBase, 2210 bool Delegating, 2211 CallArgList &Args); 2212 2213 /// Emit a call to a constructor inherited from a base class, passing the 2214 /// current constructor's arguments along unmodified (without even making 2215 /// a copy). 2216 void EmitInheritedCXXConstructorCall(const CXXConstructorDecl *D, 2217 bool ForVirtualBase, Address This, 2218 bool InheritedFromVBase, 2219 const CXXInheritedCtorInitExpr *E); 2220 2221 void EmitCXXConstructorCall(const CXXConstructorDecl *D, CXXCtorType Type, 2222 bool ForVirtualBase, bool Delegating, 2223 Address This, const CXXConstructExpr *E); 2224 2225 void EmitCXXConstructorCall(const CXXConstructorDecl *D, CXXCtorType Type, 2226 bool ForVirtualBase, bool Delegating, 2227 Address This, CallArgList &Args); 2228 2229 /// Emit assumption load for all bases. Requires to be be called only on 2230 /// most-derived class and not under construction of the object. 2231 void EmitVTableAssumptionLoads(const CXXRecordDecl *ClassDecl, Address This); 2232 2233 /// Emit assumption that vptr load == global vtable. 2234 void EmitVTableAssumptionLoad(const VPtr &vptr, Address This); 2235 2236 void EmitSynthesizedCXXCopyCtorCall(const CXXConstructorDecl *D, 2237 Address This, Address Src, 2238 const CXXConstructExpr *E); 2239 2240 void EmitCXXAggrConstructorCall(const CXXConstructorDecl *D, 2241 const ArrayType *ArrayTy, 2242 Address ArrayPtr, 2243 const CXXConstructExpr *E, 2244 bool ZeroInitialization = false); 2245 2246 void EmitCXXAggrConstructorCall(const CXXConstructorDecl *D, 2247 llvm::Value *NumElements, 2248 Address ArrayPtr, 2249 const CXXConstructExpr *E, 2250 bool ZeroInitialization = false); 2251 2252 static Destroyer destroyCXXObject; 2253 2254 void EmitCXXDestructorCall(const CXXDestructorDecl *D, CXXDtorType Type, 2255 bool ForVirtualBase, bool Delegating, 2256 Address This); 2257 2258 void EmitNewArrayInitializer(const CXXNewExpr *E, QualType elementType, 2259 llvm::Type *ElementTy, Address NewPtr, 2260 llvm::Value *NumElements, 2261 llvm::Value *AllocSizeWithoutCookie); 2262 2263 void EmitCXXTemporary(const CXXTemporary *Temporary, QualType TempType, 2264 Address Ptr); 2265 2266 llvm::Value *EmitLifetimeStart(uint64_t Size, llvm::Value *Addr); 2267 void EmitLifetimeEnd(llvm::Value *Size, llvm::Value *Addr); 2268 2269 llvm::Value *EmitCXXNewExpr(const CXXNewExpr *E); 2270 void EmitCXXDeleteExpr(const CXXDeleteExpr *E); 2271 2272 void EmitDeleteCall(const FunctionDecl *DeleteFD, llvm::Value *Ptr, 2273 QualType DeleteTy, llvm::Value *NumElements = nullptr, 2274 CharUnits CookieSize = CharUnits()); 2275 2276 RValue EmitBuiltinNewDeleteCall(const FunctionProtoType *Type, 2277 const Expr *Arg, bool IsDelete); 2278 2279 llvm::Value *EmitCXXTypeidExpr(const CXXTypeidExpr *E); 2280 llvm::Value *EmitDynamicCast(Address V, const CXXDynamicCastExpr *DCE); 2281 Address EmitCXXUuidofExpr(const CXXUuidofExpr *E); 2282 2283 /// \brief Situations in which we might emit a check for the suitability of a 2284 /// pointer or glvalue. 2285 enum TypeCheckKind { 2286 /// Checking the operand of a load. Must be suitably sized and aligned. 2287 TCK_Load, 2288 /// Checking the destination of a store. Must be suitably sized and aligned. 2289 TCK_Store, 2290 /// Checking the bound value in a reference binding. Must be suitably sized 2291 /// and aligned, but is not required to refer to an object (until the 2292 /// reference is used), per core issue 453. 2293 TCK_ReferenceBinding, 2294 /// Checking the object expression in a non-static data member access. Must 2295 /// be an object within its lifetime. 2296 TCK_MemberAccess, 2297 /// Checking the 'this' pointer for a call to a non-static member function. 2298 /// Must be an object within its lifetime. 2299 TCK_MemberCall, 2300 /// Checking the 'this' pointer for a constructor call. 2301 TCK_ConstructorCall, 2302 /// Checking the operand of a static_cast to a derived pointer type. Must be 2303 /// null or an object within its lifetime. 2304 TCK_DowncastPointer, 2305 /// Checking the operand of a static_cast to a derived reference type. Must 2306 /// be an object within its lifetime. 2307 TCK_DowncastReference, 2308 /// Checking the operand of a cast to a base object. Must be suitably sized 2309 /// and aligned. 2310 TCK_Upcast, 2311 /// Checking the operand of a cast to a virtual base object. Must be an 2312 /// object within its lifetime. 2313 TCK_UpcastToVirtualBase, 2314 /// Checking the value assigned to a _Nonnull pointer. Must not be null. 2315 TCK_NonnullAssign 2316 }; 2317 2318 /// \brief Whether any type-checking sanitizers are enabled. If \c false, 2319 /// calls to EmitTypeCheck can be skipped. 2320 bool sanitizePerformTypeCheck() const; 2321 2322 /// \brief Emit a check that \p V is the address of storage of the 2323 /// appropriate size and alignment for an object of type \p Type. 2324 void EmitTypeCheck(TypeCheckKind TCK, SourceLocation Loc, llvm::Value *V, 2325 QualType Type, CharUnits Alignment = CharUnits::Zero(), 2326 SanitizerSet SkippedChecks = SanitizerSet()); 2327 2328 /// \brief Emit a check that \p Base points into an array object, which 2329 /// we can access at index \p Index. \p Accessed should be \c false if we 2330 /// this expression is used as an lvalue, for instance in "&Arr[Idx]". 2331 void EmitBoundsCheck(const Expr *E, const Expr *Base, llvm::Value *Index, 2332 QualType IndexType, bool Accessed); 2333 2334 llvm::Value *EmitScalarPrePostIncDec(const UnaryOperator *E, LValue LV, 2335 bool isInc, bool isPre); 2336 ComplexPairTy EmitComplexPrePostIncDec(const UnaryOperator *E, LValue LV, 2337 bool isInc, bool isPre); 2338 2339 void EmitAlignmentAssumption(llvm::Value *PtrValue, unsigned Alignment, 2340 llvm::Value *OffsetValue = nullptr) { 2341 Builder.CreateAlignmentAssumption(CGM.getDataLayout(), PtrValue, Alignment, 2342 OffsetValue); 2343 } 2344 2345 /// Converts Location to a DebugLoc, if debug information is enabled. 2346 llvm::DebugLoc SourceLocToDebugLoc(SourceLocation Location); 2347 2348 2349 //===--------------------------------------------------------------------===// 2350 // Declaration Emission 2351 //===--------------------------------------------------------------------===// 2352 2353 /// EmitDecl - Emit a declaration. 2354 /// 2355 /// This function can be called with a null (unreachable) insert point. 2356 void EmitDecl(const Decl &D); 2357 2358 /// EmitVarDecl - Emit a local variable declaration. 2359 /// 2360 /// This function can be called with a null (unreachable) insert point. 2361 void EmitVarDecl(const VarDecl &D); 2362 2363 void EmitScalarInit(const Expr *init, const ValueDecl *D, LValue lvalue, 2364 bool capturedByInit); 2365 2366 typedef void SpecialInitFn(CodeGenFunction &Init, const VarDecl &D, 2367 llvm::Value *Address); 2368 2369 /// \brief Determine whether the given initializer is trivial in the sense 2370 /// that it requires no code to be generated. 2371 bool isTrivialInitializer(const Expr *Init); 2372 2373 /// EmitAutoVarDecl - Emit an auto variable declaration. 2374 /// 2375 /// This function can be called with a null (unreachable) insert point. 2376 void EmitAutoVarDecl(const VarDecl &D); 2377 2378 class AutoVarEmission { 2379 friend class CodeGenFunction; 2380 2381 const VarDecl *Variable; 2382 2383 /// The address of the alloca. Invalid if the variable was emitted 2384 /// as a global constant. 2385 Address Addr; 2386 2387 llvm::Value *NRVOFlag; 2388 2389 /// True if the variable is a __block variable. 2390 bool IsByRef; 2391 2392 /// True if the variable is of aggregate type and has a constant 2393 /// initializer. 2394 bool IsConstantAggregate; 2395 2396 /// Non-null if we should use lifetime annotations. 2397 llvm::Value *SizeForLifetimeMarkers; 2398 2399 struct Invalid {}; 2400 AutoVarEmission(Invalid) : Variable(nullptr), Addr(Address::invalid()) {} 2401 2402 AutoVarEmission(const VarDecl &variable) 2403 : Variable(&variable), Addr(Address::invalid()), NRVOFlag(nullptr), 2404 IsByRef(false), IsConstantAggregate(false), 2405 SizeForLifetimeMarkers(nullptr) {} 2406 2407 bool wasEmittedAsGlobal() const { return !Addr.isValid(); } 2408 2409 public: 2410 static AutoVarEmission invalid() { return AutoVarEmission(Invalid()); } 2411 2412 bool useLifetimeMarkers() const { 2413 return SizeForLifetimeMarkers != nullptr; 2414 } 2415 llvm::Value *getSizeForLifetimeMarkers() const { 2416 assert(useLifetimeMarkers()); 2417 return SizeForLifetimeMarkers; 2418 } 2419 2420 /// Returns the raw, allocated address, which is not necessarily 2421 /// the address of the object itself. 2422 Address getAllocatedAddress() const { 2423 return Addr; 2424 } 2425 2426 /// Returns the address of the object within this declaration. 2427 /// Note that this does not chase the forwarding pointer for 2428 /// __block decls. 2429 Address getObjectAddress(CodeGenFunction &CGF) const { 2430 if (!IsByRef) return Addr; 2431 2432 return CGF.emitBlockByrefAddress(Addr, Variable, /*forward*/ false); 2433 } 2434 }; 2435 AutoVarEmission EmitAutoVarAlloca(const VarDecl &var); 2436 void EmitAutoVarInit(const AutoVarEmission &emission); 2437 void EmitAutoVarCleanups(const AutoVarEmission &emission); 2438 void emitAutoVarTypeCleanup(const AutoVarEmission &emission, 2439 QualType::DestructionKind dtorKind); 2440 2441 void EmitStaticVarDecl(const VarDecl &D, 2442 llvm::GlobalValue::LinkageTypes Linkage); 2443 2444 class ParamValue { 2445 llvm::Value *Value; 2446 unsigned Alignment; 2447 ParamValue(llvm::Value *V, unsigned A) : Value(V), Alignment(A) {} 2448 public: 2449 static ParamValue forDirect(llvm::Value *value) { 2450 return ParamValue(value, 0); 2451 } 2452 static ParamValue forIndirect(Address addr) { 2453 assert(!addr.getAlignment().isZero()); 2454 return ParamValue(addr.getPointer(), addr.getAlignment().getQuantity()); 2455 } 2456 2457 bool isIndirect() const { return Alignment != 0; } 2458 llvm::Value *getAnyValue() const { return Value; } 2459 2460 llvm::Value *getDirectValue() const { 2461 assert(!isIndirect()); 2462 return Value; 2463 } 2464 2465 Address getIndirectAddress() const { 2466 assert(isIndirect()); 2467 return Address(Value, CharUnits::fromQuantity(Alignment)); 2468 } 2469 }; 2470 2471 /// EmitParmDecl - Emit a ParmVarDecl or an ImplicitParamDecl. 2472 void EmitParmDecl(const VarDecl &D, ParamValue Arg, unsigned ArgNo); 2473 2474 /// protectFromPeepholes - Protect a value that we're intending to 2475 /// store to the side, but which will probably be used later, from 2476 /// aggressive peepholing optimizations that might delete it. 2477 /// 2478 /// Pass the result to unprotectFromPeepholes to declare that 2479 /// protection is no longer required. 2480 /// 2481 /// There's no particular reason why this shouldn't apply to 2482 /// l-values, it's just that no existing peepholes work on pointers. 2483 PeepholeProtection protectFromPeepholes(RValue rvalue); 2484 void unprotectFromPeepholes(PeepholeProtection protection); 2485 2486 void EmitAlignmentAssumption(llvm::Value *PtrValue, llvm::Value *Alignment, 2487 llvm::Value *OffsetValue = nullptr) { 2488 Builder.CreateAlignmentAssumption(CGM.getDataLayout(), PtrValue, Alignment, 2489 OffsetValue); 2490 } 2491 2492 //===--------------------------------------------------------------------===// 2493 // Statement Emission 2494 //===--------------------------------------------------------------------===// 2495 2496 /// EmitStopPoint - Emit a debug stoppoint if we are emitting debug info. 2497 void EmitStopPoint(const Stmt *S); 2498 2499 /// EmitStmt - Emit the code for the statement \arg S. It is legal to call 2500 /// this function even if there is no current insertion point. 2501 /// 2502 /// This function may clear the current insertion point; callers should use 2503 /// EnsureInsertPoint if they wish to subsequently generate code without first 2504 /// calling EmitBlock, EmitBranch, or EmitStmt. 2505 void EmitStmt(const Stmt *S); 2506 2507 /// EmitSimpleStmt - Try to emit a "simple" statement which does not 2508 /// necessarily require an insertion point or debug information; typically 2509 /// because the statement amounts to a jump or a container of other 2510 /// statements. 2511 /// 2512 /// \return True if the statement was handled. 2513 bool EmitSimpleStmt(const Stmt *S); 2514 2515 Address EmitCompoundStmt(const CompoundStmt &S, bool GetLast = false, 2516 AggValueSlot AVS = AggValueSlot::ignored()); 2517 Address EmitCompoundStmtWithoutScope(const CompoundStmt &S, 2518 bool GetLast = false, 2519 AggValueSlot AVS = 2520 AggValueSlot::ignored()); 2521 2522 /// EmitLabel - Emit the block for the given label. It is legal to call this 2523 /// function even if there is no current insertion point. 2524 void EmitLabel(const LabelDecl *D); // helper for EmitLabelStmt. 2525 2526 void EmitLabelStmt(const LabelStmt &S); 2527 void EmitAttributedStmt(const AttributedStmt &S); 2528 void EmitGotoStmt(const GotoStmt &S); 2529 void EmitIndirectGotoStmt(const IndirectGotoStmt &S); 2530 void EmitIfStmt(const IfStmt &S); 2531 2532 void EmitWhileStmt(const WhileStmt &S, 2533 ArrayRef<const Attr *> Attrs = None); 2534 void EmitDoStmt(const DoStmt &S, ArrayRef<const Attr *> Attrs = None); 2535 void EmitForStmt(const ForStmt &S, 2536 ArrayRef<const Attr *> Attrs = None); 2537 void EmitReturnStmt(const ReturnStmt &S); 2538 void EmitDeclStmt(const DeclStmt &S); 2539 void EmitBreakStmt(const BreakStmt &S); 2540 void EmitContinueStmt(const ContinueStmt &S); 2541 void EmitSwitchStmt(const SwitchStmt &S); 2542 void EmitDefaultStmt(const DefaultStmt &S); 2543 void EmitCaseStmt(const CaseStmt &S); 2544 void EmitCaseStmtRange(const CaseStmt &S); 2545 void EmitAsmStmt(const AsmStmt &S); 2546 2547 void EmitObjCForCollectionStmt(const ObjCForCollectionStmt &S); 2548 void EmitObjCAtTryStmt(const ObjCAtTryStmt &S); 2549 void EmitObjCAtThrowStmt(const ObjCAtThrowStmt &S); 2550 void EmitObjCAtSynchronizedStmt(const ObjCAtSynchronizedStmt &S); 2551 void EmitObjCAutoreleasePoolStmt(const ObjCAutoreleasePoolStmt &S); 2552 2553 void EmitCoroutineBody(const CoroutineBodyStmt &S); 2554 void EmitCoreturnStmt(const CoreturnStmt &S); 2555 RValue EmitCoawaitExpr(const CoawaitExpr &E, 2556 AggValueSlot aggSlot = AggValueSlot::ignored(), 2557 bool ignoreResult = false); 2558 RValue EmitCoyieldExpr(const CoyieldExpr &E, 2559 AggValueSlot aggSlot = AggValueSlot::ignored(), 2560 bool ignoreResult = false); 2561 RValue EmitCoroutineIntrinsic(const CallExpr *E, unsigned int IID); 2562 2563 void EnterCXXTryStmt(const CXXTryStmt &S, bool IsFnTryBlock = false); 2564 void ExitCXXTryStmt(const CXXTryStmt &S, bool IsFnTryBlock = false); 2565 2566 void EmitCXXTryStmt(const CXXTryStmt &S); 2567 void EmitSEHTryStmt(const SEHTryStmt &S); 2568 void EmitSEHLeaveStmt(const SEHLeaveStmt &S); 2569 void EnterSEHTryStmt(const SEHTryStmt &S); 2570 void ExitSEHTryStmt(const SEHTryStmt &S); 2571 2572 void startOutlinedSEHHelper(CodeGenFunction &ParentCGF, bool IsFilter, 2573 const Stmt *OutlinedStmt); 2574 2575 llvm::Function *GenerateSEHFilterFunction(CodeGenFunction &ParentCGF, 2576 const SEHExceptStmt &Except); 2577 2578 llvm::Function *GenerateSEHFinallyFunction(CodeGenFunction &ParentCGF, 2579 const SEHFinallyStmt &Finally); 2580 2581 void EmitSEHExceptionCodeSave(CodeGenFunction &ParentCGF, 2582 llvm::Value *ParentFP, 2583 llvm::Value *EntryEBP); 2584 llvm::Value *EmitSEHExceptionCode(); 2585 llvm::Value *EmitSEHExceptionInfo(); 2586 llvm::Value *EmitSEHAbnormalTermination(); 2587 2588 /// Scan the outlined statement for captures from the parent function. For 2589 /// each capture, mark the capture as escaped and emit a call to 2590 /// llvm.localrecover. Insert the localrecover result into the LocalDeclMap. 2591 void EmitCapturedLocals(CodeGenFunction &ParentCGF, const Stmt *OutlinedStmt, 2592 bool IsFilter); 2593 2594 /// Recovers the address of a local in a parent function. ParentVar is the 2595 /// address of the variable used in the immediate parent function. It can 2596 /// either be an alloca or a call to llvm.localrecover if there are nested 2597 /// outlined functions. ParentFP is the frame pointer of the outermost parent 2598 /// frame. 2599 Address recoverAddrOfEscapedLocal(CodeGenFunction &ParentCGF, 2600 Address ParentVar, 2601 llvm::Value *ParentFP); 2602 2603 void EmitCXXForRangeStmt(const CXXForRangeStmt &S, 2604 ArrayRef<const Attr *> Attrs = None); 2605 2606 /// Returns calculated size of the specified type. 2607 llvm::Value *getTypeSize(QualType Ty); 2608 LValue InitCapturedStruct(const CapturedStmt &S); 2609 llvm::Function *EmitCapturedStmt(const CapturedStmt &S, CapturedRegionKind K); 2610 llvm::Function *GenerateCapturedStmtFunction(const CapturedStmt &S); 2611 Address GenerateCapturedStmtArgument(const CapturedStmt &S); 2612 llvm::Function *GenerateOpenMPCapturedStmtFunction(const CapturedStmt &S); 2613 void GenerateOpenMPCapturedVars(const CapturedStmt &S, 2614 SmallVectorImpl<llvm::Value *> &CapturedVars); 2615 void emitOMPSimpleStore(LValue LVal, RValue RVal, QualType RValTy, 2616 SourceLocation Loc); 2617 /// \brief Perform element by element copying of arrays with type \a 2618 /// OriginalType from \a SrcAddr to \a DestAddr using copying procedure 2619 /// generated by \a CopyGen. 2620 /// 2621 /// \param DestAddr Address of the destination array. 2622 /// \param SrcAddr Address of the source array. 2623 /// \param OriginalType Type of destination and source arrays. 2624 /// \param CopyGen Copying procedure that copies value of single array element 2625 /// to another single array element. 2626 void EmitOMPAggregateAssign( 2627 Address DestAddr, Address SrcAddr, QualType OriginalType, 2628 const llvm::function_ref<void(Address, Address)> &CopyGen); 2629 /// \brief Emit proper copying of data from one variable to another. 2630 /// 2631 /// \param OriginalType Original type of the copied variables. 2632 /// \param DestAddr Destination address. 2633 /// \param SrcAddr Source address. 2634 /// \param DestVD Destination variable used in \a CopyExpr (for arrays, has 2635 /// type of the base array element). 2636 /// \param SrcVD Source variable used in \a CopyExpr (for arrays, has type of 2637 /// the base array element). 2638 /// \param Copy Actual copygin expression for copying data from \a SrcVD to \a 2639 /// DestVD. 2640 void EmitOMPCopy(QualType OriginalType, 2641 Address DestAddr, Address SrcAddr, 2642 const VarDecl *DestVD, const VarDecl *SrcVD, 2643 const Expr *Copy); 2644 /// \brief Emit atomic update code for constructs: \a X = \a X \a BO \a E or 2645 /// \a X = \a E \a BO \a E. 2646 /// 2647 /// \param X Value to be updated. 2648 /// \param E Update value. 2649 /// \param BO Binary operation for update operation. 2650 /// \param IsXLHSInRHSPart true if \a X is LHS in RHS part of the update 2651 /// expression, false otherwise. 2652 /// \param AO Atomic ordering of the generated atomic instructions. 2653 /// \param CommonGen Code generator for complex expressions that cannot be 2654 /// expressed through atomicrmw instruction. 2655 /// \returns <true, OldAtomicValue> if simple 'atomicrmw' instruction was 2656 /// generated, <false, RValue::get(nullptr)> otherwise. 2657 std::pair<bool, RValue> EmitOMPAtomicSimpleUpdateExpr( 2658 LValue X, RValue E, BinaryOperatorKind BO, bool IsXLHSInRHSPart, 2659 llvm::AtomicOrdering AO, SourceLocation Loc, 2660 const llvm::function_ref<RValue(RValue)> &CommonGen); 2661 bool EmitOMPFirstprivateClause(const OMPExecutableDirective &D, 2662 OMPPrivateScope &PrivateScope); 2663 void EmitOMPPrivateClause(const OMPExecutableDirective &D, 2664 OMPPrivateScope &PrivateScope); 2665 void EmitOMPUseDevicePtrClause( 2666 const OMPClause &C, OMPPrivateScope &PrivateScope, 2667 const llvm::DenseMap<const ValueDecl *, Address> &CaptureDeviceAddrMap); 2668 /// \brief Emit code for copyin clause in \a D directive. The next code is 2669 /// generated at the start of outlined functions for directives: 2670 /// \code 2671 /// threadprivate_var1 = master_threadprivate_var1; 2672 /// operator=(threadprivate_var2, master_threadprivate_var2); 2673 /// ... 2674 /// __kmpc_barrier(&loc, global_tid); 2675 /// \endcode 2676 /// 2677 /// \param D OpenMP directive possibly with 'copyin' clause(s). 2678 /// \returns true if at least one copyin variable is found, false otherwise. 2679 bool EmitOMPCopyinClause(const OMPExecutableDirective &D); 2680 /// \brief Emit initial code for lastprivate variables. If some variable is 2681 /// not also firstprivate, then the default initialization is used. Otherwise 2682 /// initialization of this variable is performed by EmitOMPFirstprivateClause 2683 /// method. 2684 /// 2685 /// \param D Directive that may have 'lastprivate' directives. 2686 /// \param PrivateScope Private scope for capturing lastprivate variables for 2687 /// proper codegen in internal captured statement. 2688 /// 2689 /// \returns true if there is at least one lastprivate variable, false 2690 /// otherwise. 2691 bool EmitOMPLastprivateClauseInit(const OMPExecutableDirective &D, 2692 OMPPrivateScope &PrivateScope); 2693 /// \brief Emit final copying of lastprivate values to original variables at 2694 /// the end of the worksharing or simd directive. 2695 /// 2696 /// \param D Directive that has at least one 'lastprivate' directives. 2697 /// \param IsLastIterCond Boolean condition that must be set to 'i1 true' if 2698 /// it is the last iteration of the loop code in associated directive, or to 2699 /// 'i1 false' otherwise. If this item is nullptr, no final check is required. 2700 void EmitOMPLastprivateClauseFinal(const OMPExecutableDirective &D, 2701 bool NoFinals, 2702 llvm::Value *IsLastIterCond = nullptr); 2703 /// Emit initial code for linear clauses. 2704 void EmitOMPLinearClause(const OMPLoopDirective &D, 2705 CodeGenFunction::OMPPrivateScope &PrivateScope); 2706 /// Emit final code for linear clauses. 2707 /// \param CondGen Optional conditional code for final part of codegen for 2708 /// linear clause. 2709 void EmitOMPLinearClauseFinal( 2710 const OMPLoopDirective &D, 2711 const llvm::function_ref<llvm::Value *(CodeGenFunction &)> &CondGen); 2712 /// \brief Emit initial code for reduction variables. Creates reduction copies 2713 /// and initializes them with the values according to OpenMP standard. 2714 /// 2715 /// \param D Directive (possibly) with the 'reduction' clause. 2716 /// \param PrivateScope Private scope for capturing reduction variables for 2717 /// proper codegen in internal captured statement. 2718 /// 2719 void EmitOMPReductionClauseInit(const OMPExecutableDirective &D, 2720 OMPPrivateScope &PrivateScope); 2721 /// \brief Emit final update of reduction values to original variables at 2722 /// the end of the directive. 2723 /// 2724 /// \param D Directive that has at least one 'reduction' directives. 2725 /// \param ReductionKind The kind of reduction to perform. 2726 void EmitOMPReductionClauseFinal(const OMPExecutableDirective &D, 2727 const OpenMPDirectiveKind ReductionKind); 2728 /// \brief Emit initial code for linear variables. Creates private copies 2729 /// and initializes them with the values according to OpenMP standard. 2730 /// 2731 /// \param D Directive (possibly) with the 'linear' clause. 2732 void EmitOMPLinearClauseInit(const OMPLoopDirective &D); 2733 2734 typedef const llvm::function_ref<void(CodeGenFunction & /*CGF*/, 2735 llvm::Value * /*OutlinedFn*/, 2736 const OMPTaskDataTy & /*Data*/)> 2737 TaskGenTy; 2738 void EmitOMPTaskBasedDirective(const OMPExecutableDirective &S, 2739 const RegionCodeGenTy &BodyGen, 2740 const TaskGenTy &TaskGen, OMPTaskDataTy &Data); 2741 2742 void EmitOMPParallelDirective(const OMPParallelDirective &S); 2743 void EmitOMPSimdDirective(const OMPSimdDirective &S); 2744 void EmitOMPForDirective(const OMPForDirective &S); 2745 void EmitOMPForSimdDirective(const OMPForSimdDirective &S); 2746 void EmitOMPSectionsDirective(const OMPSectionsDirective &S); 2747 void EmitOMPSectionDirective(const OMPSectionDirective &S); 2748 void EmitOMPSingleDirective(const OMPSingleDirective &S); 2749 void EmitOMPMasterDirective(const OMPMasterDirective &S); 2750 void EmitOMPCriticalDirective(const OMPCriticalDirective &S); 2751 void EmitOMPParallelForDirective(const OMPParallelForDirective &S); 2752 void EmitOMPParallelForSimdDirective(const OMPParallelForSimdDirective &S); 2753 void EmitOMPParallelSectionsDirective(const OMPParallelSectionsDirective &S); 2754 void EmitOMPTaskDirective(const OMPTaskDirective &S); 2755 void EmitOMPTaskyieldDirective(const OMPTaskyieldDirective &S); 2756 void EmitOMPBarrierDirective(const OMPBarrierDirective &S); 2757 void EmitOMPTaskwaitDirective(const OMPTaskwaitDirective &S); 2758 void EmitOMPTaskgroupDirective(const OMPTaskgroupDirective &S); 2759 void EmitOMPFlushDirective(const OMPFlushDirective &S); 2760 void EmitOMPOrderedDirective(const OMPOrderedDirective &S); 2761 void EmitOMPAtomicDirective(const OMPAtomicDirective &S); 2762 void EmitOMPTargetDirective(const OMPTargetDirective &S); 2763 void EmitOMPTargetDataDirective(const OMPTargetDataDirective &S); 2764 void EmitOMPTargetEnterDataDirective(const OMPTargetEnterDataDirective &S); 2765 void EmitOMPTargetExitDataDirective(const OMPTargetExitDataDirective &S); 2766 void EmitOMPTargetUpdateDirective(const OMPTargetUpdateDirective &S); 2767 void EmitOMPTargetParallelDirective(const OMPTargetParallelDirective &S); 2768 void 2769 EmitOMPTargetParallelForDirective(const OMPTargetParallelForDirective &S); 2770 void EmitOMPTeamsDirective(const OMPTeamsDirective &S); 2771 void 2772 EmitOMPCancellationPointDirective(const OMPCancellationPointDirective &S); 2773 void EmitOMPCancelDirective(const OMPCancelDirective &S); 2774 void EmitOMPTaskLoopBasedDirective(const OMPLoopDirective &S); 2775 void EmitOMPTaskLoopDirective(const OMPTaskLoopDirective &S); 2776 void EmitOMPTaskLoopSimdDirective(const OMPTaskLoopSimdDirective &S); 2777 void EmitOMPDistributeDirective(const OMPDistributeDirective &S); 2778 void EmitOMPDistributeParallelForDirective( 2779 const OMPDistributeParallelForDirective &S); 2780 void EmitOMPDistributeParallelForSimdDirective( 2781 const OMPDistributeParallelForSimdDirective &S); 2782 void EmitOMPDistributeSimdDirective(const OMPDistributeSimdDirective &S); 2783 void EmitOMPTargetParallelForSimdDirective( 2784 const OMPTargetParallelForSimdDirective &S); 2785 void EmitOMPTargetSimdDirective(const OMPTargetSimdDirective &S); 2786 void EmitOMPTeamsDistributeDirective(const OMPTeamsDistributeDirective &S); 2787 void 2788 EmitOMPTeamsDistributeSimdDirective(const OMPTeamsDistributeSimdDirective &S); 2789 void EmitOMPTeamsDistributeParallelForSimdDirective( 2790 const OMPTeamsDistributeParallelForSimdDirective &S); 2791 void EmitOMPTeamsDistributeParallelForDirective( 2792 const OMPTeamsDistributeParallelForDirective &S); 2793 void EmitOMPTargetTeamsDirective(const OMPTargetTeamsDirective &S); 2794 void EmitOMPTargetTeamsDistributeDirective( 2795 const OMPTargetTeamsDistributeDirective &S); 2796 void EmitOMPTargetTeamsDistributeParallelForDirective( 2797 const OMPTargetTeamsDistributeParallelForDirective &S); 2798 void EmitOMPTargetTeamsDistributeParallelForSimdDirective( 2799 const OMPTargetTeamsDistributeParallelForSimdDirective &S); 2800 void EmitOMPTargetTeamsDistributeSimdDirective( 2801 const OMPTargetTeamsDistributeSimdDirective &S); 2802 2803 /// Emit device code for the target directive. 2804 static void EmitOMPTargetDeviceFunction(CodeGenModule &CGM, 2805 StringRef ParentName, 2806 const OMPTargetDirective &S); 2807 static void 2808 EmitOMPTargetParallelDeviceFunction(CodeGenModule &CGM, StringRef ParentName, 2809 const OMPTargetParallelDirective &S); 2810 static void 2811 EmitOMPTargetTeamsDeviceFunction(CodeGenModule &CGM, StringRef ParentName, 2812 const OMPTargetTeamsDirective &S); 2813 /// \brief Emit inner loop of the worksharing/simd construct. 2814 /// 2815 /// \param S Directive, for which the inner loop must be emitted. 2816 /// \param RequiresCleanup true, if directive has some associated private 2817 /// variables. 2818 /// \param LoopCond Bollean condition for loop continuation. 2819 /// \param IncExpr Increment expression for loop control variable. 2820 /// \param BodyGen Generator for the inner body of the inner loop. 2821 /// \param PostIncGen Genrator for post-increment code (required for ordered 2822 /// loop directvies). 2823 void EmitOMPInnerLoop( 2824 const Stmt &S, bool RequiresCleanup, const Expr *LoopCond, 2825 const Expr *IncExpr, 2826 const llvm::function_ref<void(CodeGenFunction &)> &BodyGen, 2827 const llvm::function_ref<void(CodeGenFunction &)> &PostIncGen); 2828 2829 JumpDest getOMPCancelDestination(OpenMPDirectiveKind Kind); 2830 /// Emit initial code for loop counters of loop-based directives. 2831 void EmitOMPPrivateLoopCounters(const OMPLoopDirective &S, 2832 OMPPrivateScope &LoopScope); 2833 2834 /// Helper for the OpenMP loop directives. 2835 void EmitOMPLoopBody(const OMPLoopDirective &D, JumpDest LoopExit); 2836 2837 /// \brief Emit code for the worksharing loop-based directive. 2838 /// \return true, if this construct has any lastprivate clause, false - 2839 /// otherwise. 2840 bool EmitOMPWorksharingLoop(const OMPLoopDirective &S, Expr *EUB, 2841 const CodeGenLoopBoundsTy &CodeGenLoopBounds, 2842 const CodeGenDispatchBoundsTy &CGDispatchBounds); 2843 2844 private: 2845 /// Helpers for blocks 2846 llvm::Value *EmitBlockLiteral(const CGBlockInfo &Info); 2847 2848 /// Helpers for the OpenMP loop directives. 2849 void EmitOMPSimdInit(const OMPLoopDirective &D, bool IsMonotonic = false); 2850 void EmitOMPSimdFinal( 2851 const OMPLoopDirective &D, 2852 const llvm::function_ref<llvm::Value *(CodeGenFunction &)> &CondGen); 2853 2854 void EmitOMPDistributeLoop(const OMPLoopDirective &S, 2855 const CodeGenLoopTy &CodeGenLoop, Expr *IncExpr); 2856 2857 /// struct with the values to be passed to the OpenMP loop-related functions 2858 struct OMPLoopArguments { 2859 /// loop lower bound 2860 Address LB = Address::invalid(); 2861 /// loop upper bound 2862 Address UB = Address::invalid(); 2863 /// loop stride 2864 Address ST = Address::invalid(); 2865 /// isLastIteration argument for runtime functions 2866 Address IL = Address::invalid(); 2867 /// Chunk value generated by sema 2868 llvm::Value *Chunk = nullptr; 2869 /// EnsureUpperBound 2870 Expr *EUB = nullptr; 2871 /// IncrementExpression 2872 Expr *IncExpr = nullptr; 2873 /// Loop initialization 2874 Expr *Init = nullptr; 2875 /// Loop exit condition 2876 Expr *Cond = nullptr; 2877 /// Update of LB after a whole chunk has been executed 2878 Expr *NextLB = nullptr; 2879 /// Update of UB after a whole chunk has been executed 2880 Expr *NextUB = nullptr; 2881 OMPLoopArguments() = default; 2882 OMPLoopArguments(Address LB, Address UB, Address ST, Address IL, 2883 llvm::Value *Chunk = nullptr, Expr *EUB = nullptr, 2884 Expr *IncExpr = nullptr, Expr *Init = nullptr, 2885 Expr *Cond = nullptr, Expr *NextLB = nullptr, 2886 Expr *NextUB = nullptr) 2887 : LB(LB), UB(UB), ST(ST), IL(IL), Chunk(Chunk), EUB(EUB), 2888 IncExpr(IncExpr), Init(Init), Cond(Cond), NextLB(NextLB), 2889 NextUB(NextUB) {} 2890 }; 2891 void EmitOMPOuterLoop(bool DynamicOrOrdered, bool IsMonotonic, 2892 const OMPLoopDirective &S, OMPPrivateScope &LoopScope, 2893 const OMPLoopArguments &LoopArgs, 2894 const CodeGenLoopTy &CodeGenLoop, 2895 const CodeGenOrderedTy &CodeGenOrdered); 2896 void EmitOMPForOuterLoop(const OpenMPScheduleTy &ScheduleKind, 2897 bool IsMonotonic, const OMPLoopDirective &S, 2898 OMPPrivateScope &LoopScope, bool Ordered, 2899 const OMPLoopArguments &LoopArgs, 2900 const CodeGenDispatchBoundsTy &CGDispatchBounds); 2901 void EmitOMPDistributeOuterLoop(OpenMPDistScheduleClauseKind ScheduleKind, 2902 const OMPLoopDirective &S, 2903 OMPPrivateScope &LoopScope, 2904 const OMPLoopArguments &LoopArgs, 2905 const CodeGenLoopTy &CodeGenLoopContent); 2906 /// \brief Emit code for sections directive. 2907 void EmitSections(const OMPExecutableDirective &S); 2908 2909 public: 2910 2911 //===--------------------------------------------------------------------===// 2912 // LValue Expression Emission 2913 //===--------------------------------------------------------------------===// 2914 2915 /// GetUndefRValue - Get an appropriate 'undef' rvalue for the given type. 2916 RValue GetUndefRValue(QualType Ty); 2917 2918 /// EmitUnsupportedRValue - Emit a dummy r-value using the type of E 2919 /// and issue an ErrorUnsupported style diagnostic (using the 2920 /// provided Name). 2921 RValue EmitUnsupportedRValue(const Expr *E, 2922 const char *Name); 2923 2924 /// EmitUnsupportedLValue - Emit a dummy l-value using the type of E and issue 2925 /// an ErrorUnsupported style diagnostic (using the provided Name). 2926 LValue EmitUnsupportedLValue(const Expr *E, 2927 const char *Name); 2928 2929 /// EmitLValue - Emit code to compute a designator that specifies the location 2930 /// of the expression. 2931 /// 2932 /// This can return one of two things: a simple address or a bitfield 2933 /// reference. In either case, the LLVM Value* in the LValue structure is 2934 /// guaranteed to be an LLVM pointer type. 2935 /// 2936 /// If this returns a bitfield reference, nothing about the pointee type of 2937 /// the LLVM value is known: For example, it may not be a pointer to an 2938 /// integer. 2939 /// 2940 /// If this returns a normal address, and if the lvalue's C type is fixed 2941 /// size, this method guarantees that the returned pointer type will point to 2942 /// an LLVM type of the same size of the lvalue's type. If the lvalue has a 2943 /// variable length type, this is not possible. 2944 /// 2945 LValue EmitLValue(const Expr *E); 2946 2947 /// \brief Same as EmitLValue but additionally we generate checking code to 2948 /// guard against undefined behavior. This is only suitable when we know 2949 /// that the address will be used to access the object. 2950 LValue EmitCheckedLValue(const Expr *E, TypeCheckKind TCK); 2951 2952 RValue convertTempToRValue(Address addr, QualType type, 2953 SourceLocation Loc); 2954 2955 void EmitAtomicInit(Expr *E, LValue lvalue); 2956 2957 bool LValueIsSuitableForInlineAtomic(LValue Src); 2958 2959 RValue EmitAtomicLoad(LValue LV, SourceLocation SL, 2960 AggValueSlot Slot = AggValueSlot::ignored()); 2961 2962 RValue EmitAtomicLoad(LValue lvalue, SourceLocation loc, 2963 llvm::AtomicOrdering AO, bool IsVolatile = false, 2964 AggValueSlot slot = AggValueSlot::ignored()); 2965 2966 void EmitAtomicStore(RValue rvalue, LValue lvalue, bool isInit); 2967 2968 void EmitAtomicStore(RValue rvalue, LValue lvalue, llvm::AtomicOrdering AO, 2969 bool IsVolatile, bool isInit); 2970 2971 std::pair<RValue, llvm::Value *> EmitAtomicCompareExchange( 2972 LValue Obj, RValue Expected, RValue Desired, SourceLocation Loc, 2973 llvm::AtomicOrdering Success = 2974 llvm::AtomicOrdering::SequentiallyConsistent, 2975 llvm::AtomicOrdering Failure = 2976 llvm::AtomicOrdering::SequentiallyConsistent, 2977 bool IsWeak = false, AggValueSlot Slot = AggValueSlot::ignored()); 2978 2979 void EmitAtomicUpdate(LValue LVal, llvm::AtomicOrdering AO, 2980 const llvm::function_ref<RValue(RValue)> &UpdateOp, 2981 bool IsVolatile); 2982 2983 /// EmitToMemory - Change a scalar value from its value 2984 /// representation to its in-memory representation. 2985 llvm::Value *EmitToMemory(llvm::Value *Value, QualType Ty); 2986 2987 /// EmitFromMemory - Change a scalar value from its memory 2988 /// representation to its value representation. 2989 llvm::Value *EmitFromMemory(llvm::Value *Value, QualType Ty); 2990 2991 /// Check if the scalar \p Value is within the valid range for the given 2992 /// type \p Ty. 2993 /// 2994 /// Returns true if a check is needed (even if the range is unknown). 2995 bool EmitScalarRangeCheck(llvm::Value *Value, QualType Ty, 2996 SourceLocation Loc); 2997 2998 /// EmitLoadOfScalar - Load a scalar value from an address, taking 2999 /// care to appropriately convert from the memory representation to 3000 /// the LLVM value representation. 3001 llvm::Value *EmitLoadOfScalar(Address Addr, bool Volatile, QualType Ty, 3002 SourceLocation Loc, 3003 AlignmentSource AlignSource = 3004 AlignmentSource::Type, 3005 llvm::MDNode *TBAAInfo = nullptr, 3006 QualType TBAABaseTy = QualType(), 3007 uint64_t TBAAOffset = 0, 3008 bool isNontemporal = false); 3009 3010 /// EmitLoadOfScalar - Load a scalar value from an address, taking 3011 /// care to appropriately convert from the memory representation to 3012 /// the LLVM value representation. The l-value must be a simple 3013 /// l-value. 3014 llvm::Value *EmitLoadOfScalar(LValue lvalue, SourceLocation Loc); 3015 3016 /// EmitStoreOfScalar - Store a scalar value to an address, taking 3017 /// care to appropriately convert from the memory representation to 3018 /// the LLVM value representation. 3019 void EmitStoreOfScalar(llvm::Value *Value, Address Addr, 3020 bool Volatile, QualType Ty, 3021 AlignmentSource AlignSource = AlignmentSource::Type, 3022 llvm::MDNode *TBAAInfo = nullptr, bool isInit = false, 3023 QualType TBAABaseTy = QualType(), 3024 uint64_t TBAAOffset = 0, bool isNontemporal = false); 3025 3026 /// EmitStoreOfScalar - Store a scalar value to an address, taking 3027 /// care to appropriately convert from the memory representation to 3028 /// the LLVM value representation. The l-value must be a simple 3029 /// l-value. The isInit flag indicates whether this is an initialization. 3030 /// If so, atomic qualifiers are ignored and the store is always non-atomic. 3031 void EmitStoreOfScalar(llvm::Value *value, LValue lvalue, bool isInit=false); 3032 3033 /// EmitLoadOfLValue - Given an expression that represents a value lvalue, 3034 /// this method emits the address of the lvalue, then loads the result as an 3035 /// rvalue, returning the rvalue. 3036 RValue EmitLoadOfLValue(LValue V, SourceLocation Loc); 3037 RValue EmitLoadOfExtVectorElementLValue(LValue V); 3038 RValue EmitLoadOfBitfieldLValue(LValue LV, SourceLocation Loc); 3039 RValue EmitLoadOfGlobalRegLValue(LValue LV); 3040 3041 /// EmitStoreThroughLValue - Store the specified rvalue into the specified 3042 /// lvalue, where both are guaranteed to the have the same type, and that type 3043 /// is 'Ty'. 3044 void EmitStoreThroughLValue(RValue Src, LValue Dst, bool isInit = false); 3045 void EmitStoreThroughExtVectorComponentLValue(RValue Src, LValue Dst); 3046 void EmitStoreThroughGlobalRegLValue(RValue Src, LValue Dst); 3047 3048 /// EmitStoreThroughBitfieldLValue - Store Src into Dst with same constraints 3049 /// as EmitStoreThroughLValue. 3050 /// 3051 /// \param Result [out] - If non-null, this will be set to a Value* for the 3052 /// bit-field contents after the store, appropriate for use as the result of 3053 /// an assignment to the bit-field. 3054 void EmitStoreThroughBitfieldLValue(RValue Src, LValue Dst, 3055 llvm::Value **Result=nullptr); 3056 3057 /// Emit an l-value for an assignment (simple or compound) of complex type. 3058 LValue EmitComplexAssignmentLValue(const BinaryOperator *E); 3059 LValue EmitComplexCompoundAssignmentLValue(const CompoundAssignOperator *E); 3060 LValue EmitScalarCompoundAssignWithComplex(const CompoundAssignOperator *E, 3061 llvm::Value *&Result); 3062 3063 // Note: only available for agg return types 3064 LValue EmitBinaryOperatorLValue(const BinaryOperator *E); 3065 LValue EmitCompoundAssignmentLValue(const CompoundAssignOperator *E); 3066 // Note: only available for agg return types 3067 LValue EmitCallExprLValue(const CallExpr *E); 3068 // Note: only available for agg return types 3069 LValue EmitVAArgExprLValue(const VAArgExpr *E); 3070 LValue EmitDeclRefLValue(const DeclRefExpr *E); 3071 LValue EmitStringLiteralLValue(const StringLiteral *E); 3072 LValue EmitObjCEncodeExprLValue(const ObjCEncodeExpr *E); 3073 LValue EmitPredefinedLValue(const PredefinedExpr *E); 3074 LValue EmitUnaryOpLValue(const UnaryOperator *E); 3075 LValue EmitArraySubscriptExpr(const ArraySubscriptExpr *E, 3076 bool Accessed = false); 3077 LValue EmitOMPArraySectionExpr(const OMPArraySectionExpr *E, 3078 bool IsLowerBound = true); 3079 LValue EmitExtVectorElementExpr(const ExtVectorElementExpr *E); 3080 LValue EmitMemberExpr(const MemberExpr *E); 3081 LValue EmitObjCIsaExpr(const ObjCIsaExpr *E); 3082 LValue EmitCompoundLiteralLValue(const CompoundLiteralExpr *E); 3083 LValue EmitInitListLValue(const InitListExpr *E); 3084 LValue EmitConditionalOperatorLValue(const AbstractConditionalOperator *E); 3085 LValue EmitCastLValue(const CastExpr *E); 3086 LValue EmitMaterializeTemporaryExpr(const MaterializeTemporaryExpr *E); 3087 LValue EmitOpaqueValueLValue(const OpaqueValueExpr *e); 3088 3089 Address EmitExtVectorElementLValue(LValue V); 3090 3091 RValue EmitRValueForField(LValue LV, const FieldDecl *FD, SourceLocation Loc); 3092 3093 Address EmitArrayToPointerDecay(const Expr *Array, 3094 AlignmentSource *AlignSource = nullptr); 3095 3096 class ConstantEmission { 3097 llvm::PointerIntPair<llvm::Constant*, 1, bool> ValueAndIsReference; 3098 ConstantEmission(llvm::Constant *C, bool isReference) 3099 : ValueAndIsReference(C, isReference) {} 3100 public: 3101 ConstantEmission() {} 3102 static ConstantEmission forReference(llvm::Constant *C) { 3103 return ConstantEmission(C, true); 3104 } 3105 static ConstantEmission forValue(llvm::Constant *C) { 3106 return ConstantEmission(C, false); 3107 } 3108 3109 explicit operator bool() const { 3110 return ValueAndIsReference.getOpaqueValue() != nullptr; 3111 } 3112 3113 bool isReference() const { return ValueAndIsReference.getInt(); } 3114 LValue getReferenceLValue(CodeGenFunction &CGF, Expr *refExpr) const { 3115 assert(isReference()); 3116 return CGF.MakeNaturalAlignAddrLValue(ValueAndIsReference.getPointer(), 3117 refExpr->getType()); 3118 } 3119 3120 llvm::Constant *getValue() const { 3121 assert(!isReference()); 3122 return ValueAndIsReference.getPointer(); 3123 } 3124 }; 3125 3126 ConstantEmission tryEmitAsConstant(DeclRefExpr *refExpr); 3127 3128 RValue EmitPseudoObjectRValue(const PseudoObjectExpr *e, 3129 AggValueSlot slot = AggValueSlot::ignored()); 3130 LValue EmitPseudoObjectLValue(const PseudoObjectExpr *e); 3131 3132 llvm::Value *EmitIvarOffset(const ObjCInterfaceDecl *Interface, 3133 const ObjCIvarDecl *Ivar); 3134 LValue EmitLValueForField(LValue Base, const FieldDecl* Field); 3135 LValue EmitLValueForLambdaField(const FieldDecl *Field); 3136 3137 /// EmitLValueForFieldInitialization - Like EmitLValueForField, except that 3138 /// if the Field is a reference, this will return the address of the reference 3139 /// and not the address of the value stored in the reference. 3140 LValue EmitLValueForFieldInitialization(LValue Base, 3141 const FieldDecl* Field); 3142 3143 LValue EmitLValueForIvar(QualType ObjectTy, 3144 llvm::Value* Base, const ObjCIvarDecl *Ivar, 3145 unsigned CVRQualifiers); 3146 3147 LValue EmitCXXConstructLValue(const CXXConstructExpr *E); 3148 LValue EmitCXXBindTemporaryLValue(const CXXBindTemporaryExpr *E); 3149 LValue EmitLambdaLValue(const LambdaExpr *E); 3150 LValue EmitCXXTypeidLValue(const CXXTypeidExpr *E); 3151 LValue EmitCXXUuidofLValue(const CXXUuidofExpr *E); 3152 3153 LValue EmitObjCMessageExprLValue(const ObjCMessageExpr *E); 3154 LValue EmitObjCIvarRefLValue(const ObjCIvarRefExpr *E); 3155 LValue EmitStmtExprLValue(const StmtExpr *E); 3156 LValue EmitPointerToDataMemberBinaryExpr(const BinaryOperator *E); 3157 LValue EmitObjCSelectorLValue(const ObjCSelectorExpr *E); 3158 void EmitDeclRefExprDbgValue(const DeclRefExpr *E, const APValue &Init); 3159 3160 //===--------------------------------------------------------------------===// 3161 // Scalar Expression Emission 3162 //===--------------------------------------------------------------------===// 3163 3164 /// EmitCall - Generate a call of the given function, expecting the given 3165 /// result type, and using the given argument list which specifies both the 3166 /// LLVM arguments and the types they were derived from. 3167 RValue EmitCall(const CGFunctionInfo &CallInfo, const CGCallee &Callee, 3168 ReturnValueSlot ReturnValue, const CallArgList &Args, 3169 llvm::Instruction **callOrInvoke = nullptr); 3170 3171 RValue EmitCall(QualType FnType, const CGCallee &Callee, const CallExpr *E, 3172 ReturnValueSlot ReturnValue, 3173 llvm::Value *Chain = nullptr); 3174 RValue EmitCallExpr(const CallExpr *E, 3175 ReturnValueSlot ReturnValue = ReturnValueSlot()); 3176 RValue EmitSimpleCallExpr(const CallExpr *E, ReturnValueSlot ReturnValue); 3177 CGCallee EmitCallee(const Expr *E); 3178 3179 void checkTargetFeatures(const CallExpr *E, const FunctionDecl *TargetDecl); 3180 3181 llvm::CallInst *EmitRuntimeCall(llvm::Value *callee, 3182 const Twine &name = ""); 3183 llvm::CallInst *EmitRuntimeCall(llvm::Value *callee, 3184 ArrayRef<llvm::Value*> args, 3185 const Twine &name = ""); 3186 llvm::CallInst *EmitNounwindRuntimeCall(llvm::Value *callee, 3187 const Twine &name = ""); 3188 llvm::CallInst *EmitNounwindRuntimeCall(llvm::Value *callee, 3189 ArrayRef<llvm::Value*> args, 3190 const Twine &name = ""); 3191 3192 llvm::CallSite EmitCallOrInvoke(llvm::Value *Callee, 3193 ArrayRef<llvm::Value *> Args, 3194 const Twine &Name = ""); 3195 llvm::CallSite EmitRuntimeCallOrInvoke(llvm::Value *callee, 3196 ArrayRef<llvm::Value*> args, 3197 const Twine &name = ""); 3198 llvm::CallSite EmitRuntimeCallOrInvoke(llvm::Value *callee, 3199 const Twine &name = ""); 3200 void EmitNoreturnRuntimeCallOrInvoke(llvm::Value *callee, 3201 ArrayRef<llvm::Value*> args); 3202 3203 CGCallee BuildAppleKextVirtualCall(const CXXMethodDecl *MD, 3204 NestedNameSpecifier *Qual, 3205 llvm::Type *Ty); 3206 3207 CGCallee BuildAppleKextVirtualDestructorCall(const CXXDestructorDecl *DD, 3208 CXXDtorType Type, 3209 const CXXRecordDecl *RD); 3210 3211 RValue 3212 EmitCXXMemberOrOperatorCall(const CXXMethodDecl *Method, 3213 const CGCallee &Callee, 3214 ReturnValueSlot ReturnValue, llvm::Value *This, 3215 llvm::Value *ImplicitParam, 3216 QualType ImplicitParamTy, const CallExpr *E, 3217 CallArgList *RtlArgs); 3218 RValue EmitCXXDestructorCall(const CXXDestructorDecl *DD, 3219 const CGCallee &Callee, 3220 llvm::Value *This, llvm::Value *ImplicitParam, 3221 QualType ImplicitParamTy, const CallExpr *E, 3222 StructorType Type); 3223 RValue EmitCXXMemberCallExpr(const CXXMemberCallExpr *E, 3224 ReturnValueSlot ReturnValue); 3225 RValue EmitCXXMemberOrOperatorMemberCallExpr(const CallExpr *CE, 3226 const CXXMethodDecl *MD, 3227 ReturnValueSlot ReturnValue, 3228 bool HasQualifier, 3229 NestedNameSpecifier *Qualifier, 3230 bool IsArrow, const Expr *Base); 3231 // Compute the object pointer. 3232 Address EmitCXXMemberDataPointerAddress(const Expr *E, Address base, 3233 llvm::Value *memberPtr, 3234 const MemberPointerType *memberPtrType, 3235 AlignmentSource *AlignSource = nullptr); 3236 RValue EmitCXXMemberPointerCallExpr(const CXXMemberCallExpr *E, 3237 ReturnValueSlot ReturnValue); 3238 3239 RValue EmitCXXOperatorMemberCallExpr(const CXXOperatorCallExpr *E, 3240 const CXXMethodDecl *MD, 3241 ReturnValueSlot ReturnValue); 3242 RValue EmitCXXPseudoDestructorExpr(const CXXPseudoDestructorExpr *E); 3243 3244 RValue EmitCUDAKernelCallExpr(const CUDAKernelCallExpr *E, 3245 ReturnValueSlot ReturnValue); 3246 3247 RValue EmitNVPTXDevicePrintfCallExpr(const CallExpr *E, 3248 ReturnValueSlot ReturnValue); 3249 3250 RValue EmitBuiltinExpr(const FunctionDecl *FD, 3251 unsigned BuiltinID, const CallExpr *E, 3252 ReturnValueSlot ReturnValue); 3253 3254 RValue EmitBlockCallExpr(const CallExpr *E, ReturnValueSlot ReturnValue); 3255 3256 /// EmitTargetBuiltinExpr - Emit the given builtin call. Returns 0 if the call 3257 /// is unhandled by the current target. 3258 llvm::Value *EmitTargetBuiltinExpr(unsigned BuiltinID, const CallExpr *E); 3259 3260 llvm::Value *EmitAArch64CompareBuiltinExpr(llvm::Value *Op, llvm::Type *Ty, 3261 const llvm::CmpInst::Predicate Fp, 3262 const llvm::CmpInst::Predicate Ip, 3263 const llvm::Twine &Name = ""); 3264 llvm::Value *EmitARMBuiltinExpr(unsigned BuiltinID, const CallExpr *E); 3265 3266 llvm::Value *EmitCommonNeonBuiltinExpr(unsigned BuiltinID, 3267 unsigned LLVMIntrinsic, 3268 unsigned AltLLVMIntrinsic, 3269 const char *NameHint, 3270 unsigned Modifier, 3271 const CallExpr *E, 3272 SmallVectorImpl<llvm::Value *> &Ops, 3273 Address PtrOp0, Address PtrOp1); 3274 llvm::Function *LookupNeonLLVMIntrinsic(unsigned IntrinsicID, 3275 unsigned Modifier, llvm::Type *ArgTy, 3276 const CallExpr *E); 3277 llvm::Value *EmitNeonCall(llvm::Function *F, 3278 SmallVectorImpl<llvm::Value*> &O, 3279 const char *name, 3280 unsigned shift = 0, bool rightshift = false); 3281 llvm::Value *EmitNeonSplat(llvm::Value *V, llvm::Constant *Idx); 3282 llvm::Value *EmitNeonShiftVector(llvm::Value *V, llvm::Type *Ty, 3283 bool negateForRightShift); 3284 llvm::Value *EmitNeonRShiftImm(llvm::Value *Vec, llvm::Value *Amt, 3285 llvm::Type *Ty, bool usgn, const char *name); 3286 llvm::Value *vectorWrapScalar16(llvm::Value *Op); 3287 llvm::Value *EmitAArch64BuiltinExpr(unsigned BuiltinID, const CallExpr *E); 3288 3289 llvm::Value *BuildVector(ArrayRef<llvm::Value*> Ops); 3290 llvm::Value *EmitX86BuiltinExpr(unsigned BuiltinID, const CallExpr *E); 3291 llvm::Value *EmitPPCBuiltinExpr(unsigned BuiltinID, const CallExpr *E); 3292 llvm::Value *EmitAMDGPUBuiltinExpr(unsigned BuiltinID, const CallExpr *E); 3293 llvm::Value *EmitSystemZBuiltinExpr(unsigned BuiltinID, const CallExpr *E); 3294 llvm::Value *EmitNVPTXBuiltinExpr(unsigned BuiltinID, const CallExpr *E); 3295 llvm::Value *EmitWebAssemblyBuiltinExpr(unsigned BuiltinID, 3296 const CallExpr *E); 3297 3298 private: 3299 enum class MSVCIntrin; 3300 3301 public: 3302 llvm::Value *EmitMSVCBuiltinExpr(MSVCIntrin BuiltinID, const CallExpr *E); 3303 3304 llvm::Value *EmitBuiltinAvailable(ArrayRef<llvm::Value *> Args); 3305 3306 llvm::Value *EmitObjCProtocolExpr(const ObjCProtocolExpr *E); 3307 llvm::Value *EmitObjCStringLiteral(const ObjCStringLiteral *E); 3308 llvm::Value *EmitObjCBoxedExpr(const ObjCBoxedExpr *E); 3309 llvm::Value *EmitObjCArrayLiteral(const ObjCArrayLiteral *E); 3310 llvm::Value *EmitObjCDictionaryLiteral(const ObjCDictionaryLiteral *E); 3311 llvm::Value *EmitObjCCollectionLiteral(const Expr *E, 3312 const ObjCMethodDecl *MethodWithObjects); 3313 llvm::Value *EmitObjCSelectorExpr(const ObjCSelectorExpr *E); 3314 RValue EmitObjCMessageExpr(const ObjCMessageExpr *E, 3315 ReturnValueSlot Return = ReturnValueSlot()); 3316 3317 /// Retrieves the default cleanup kind for an ARC cleanup. 3318 /// Except under -fobjc-arc-eh, ARC cleanups are normal-only. 3319 CleanupKind getARCCleanupKind() { 3320 return CGM.getCodeGenOpts().ObjCAutoRefCountExceptions 3321 ? NormalAndEHCleanup : NormalCleanup; 3322 } 3323 3324 // ARC primitives. 3325 void EmitARCInitWeak(Address addr, llvm::Value *value); 3326 void EmitARCDestroyWeak(Address addr); 3327 llvm::Value *EmitARCLoadWeak(Address addr); 3328 llvm::Value *EmitARCLoadWeakRetained(Address addr); 3329 llvm::Value *EmitARCStoreWeak(Address addr, llvm::Value *value, bool ignored); 3330 void EmitARCCopyWeak(Address dst, Address src); 3331 void EmitARCMoveWeak(Address dst, Address src); 3332 llvm::Value *EmitARCRetainAutorelease(QualType type, llvm::Value *value); 3333 llvm::Value *EmitARCRetainAutoreleaseNonBlock(llvm::Value *value); 3334 llvm::Value *EmitARCStoreStrong(LValue lvalue, llvm::Value *value, 3335 bool resultIgnored); 3336 llvm::Value *EmitARCStoreStrongCall(Address addr, llvm::Value *value, 3337 bool resultIgnored); 3338 llvm::Value *EmitARCRetain(QualType type, llvm::Value *value); 3339 llvm::Value *EmitARCRetainNonBlock(llvm::Value *value); 3340 llvm::Value *EmitARCRetainBlock(llvm::Value *value, bool mandatory); 3341 void EmitARCDestroyStrong(Address addr, ARCPreciseLifetime_t precise); 3342 void EmitARCRelease(llvm::Value *value, ARCPreciseLifetime_t precise); 3343 llvm::Value *EmitARCAutorelease(llvm::Value *value); 3344 llvm::Value *EmitARCAutoreleaseReturnValue(llvm::Value *value); 3345 llvm::Value *EmitARCRetainAutoreleaseReturnValue(llvm::Value *value); 3346 llvm::Value *EmitARCRetainAutoreleasedReturnValue(llvm::Value *value); 3347 llvm::Value *EmitARCUnsafeClaimAutoreleasedReturnValue(llvm::Value *value); 3348 3349 std::pair<LValue,llvm::Value*> 3350 EmitARCStoreAutoreleasing(const BinaryOperator *e); 3351 std::pair<LValue,llvm::Value*> 3352 EmitARCStoreStrong(const BinaryOperator *e, bool ignored); 3353 std::pair<LValue,llvm::Value*> 3354 EmitARCStoreUnsafeUnretained(const BinaryOperator *e, bool ignored); 3355 3356 llvm::Value *EmitObjCThrowOperand(const Expr *expr); 3357 llvm::Value *EmitObjCConsumeObject(QualType T, llvm::Value *Ptr); 3358 llvm::Value *EmitObjCExtendObjectLifetime(QualType T, llvm::Value *Ptr); 3359 3360 llvm::Value *EmitARCExtendBlockObject(const Expr *expr); 3361 llvm::Value *EmitARCReclaimReturnedObject(const Expr *e, 3362 bool allowUnsafeClaim); 3363 llvm::Value *EmitARCRetainScalarExpr(const Expr *expr); 3364 llvm::Value *EmitARCRetainAutoreleaseScalarExpr(const Expr *expr); 3365 llvm::Value *EmitARCUnsafeUnretainedScalarExpr(const Expr *expr); 3366 3367 void EmitARCIntrinsicUse(ArrayRef<llvm::Value*> values); 3368 3369 static Destroyer destroyARCStrongImprecise; 3370 static Destroyer destroyARCStrongPrecise; 3371 static Destroyer destroyARCWeak; 3372 static Destroyer emitARCIntrinsicUse; 3373 3374 void EmitObjCAutoreleasePoolPop(llvm::Value *Ptr); 3375 llvm::Value *EmitObjCAutoreleasePoolPush(); 3376 llvm::Value *EmitObjCMRRAutoreleasePoolPush(); 3377 void EmitObjCAutoreleasePoolCleanup(llvm::Value *Ptr); 3378 void EmitObjCMRRAutoreleasePoolPop(llvm::Value *Ptr); 3379 3380 /// \brief Emits a reference binding to the passed in expression. 3381 RValue EmitReferenceBindingToExpr(const Expr *E); 3382 3383 //===--------------------------------------------------------------------===// 3384 // Expression Emission 3385 //===--------------------------------------------------------------------===// 3386 3387 // Expressions are broken into three classes: scalar, complex, aggregate. 3388 3389 /// EmitScalarExpr - Emit the computation of the specified expression of LLVM 3390 /// scalar type, returning the result. 3391 llvm::Value *EmitScalarExpr(const Expr *E , bool IgnoreResultAssign = false); 3392 3393 /// Emit a conversion from the specified type to the specified destination 3394 /// type, both of which are LLVM scalar types. 3395 llvm::Value *EmitScalarConversion(llvm::Value *Src, QualType SrcTy, 3396 QualType DstTy, SourceLocation Loc); 3397 3398 /// Emit a conversion from the specified complex type to the specified 3399 /// destination type, where the destination type is an LLVM scalar type. 3400 llvm::Value *EmitComplexToScalarConversion(ComplexPairTy Src, QualType SrcTy, 3401 QualType DstTy, 3402 SourceLocation Loc); 3403 3404 /// EmitAggExpr - Emit the computation of the specified expression 3405 /// of aggregate type. The result is computed into the given slot, 3406 /// which may be null to indicate that the value is not needed. 3407 void EmitAggExpr(const Expr *E, AggValueSlot AS); 3408 3409 /// EmitAggExprToLValue - Emit the computation of the specified expression of 3410 /// aggregate type into a temporary LValue. 3411 LValue EmitAggExprToLValue(const Expr *E); 3412 3413 /// EmitExtendGCLifetime - Given a pointer to an Objective-C object, 3414 /// make sure it survives garbage collection until this point. 3415 void EmitExtendGCLifetime(llvm::Value *object); 3416 3417 /// EmitComplexExpr - Emit the computation of the specified expression of 3418 /// complex type, returning the result. 3419 ComplexPairTy EmitComplexExpr(const Expr *E, 3420 bool IgnoreReal = false, 3421 bool IgnoreImag = false); 3422 3423 /// EmitComplexExprIntoLValue - Emit the given expression of complex 3424 /// type and place its result into the specified l-value. 3425 void EmitComplexExprIntoLValue(const Expr *E, LValue dest, bool isInit); 3426 3427 /// EmitStoreOfComplex - Store a complex number into the specified l-value. 3428 void EmitStoreOfComplex(ComplexPairTy V, LValue dest, bool isInit); 3429 3430 /// EmitLoadOfComplex - Load a complex number from the specified l-value. 3431 ComplexPairTy EmitLoadOfComplex(LValue src, SourceLocation loc); 3432 3433 Address emitAddrOfRealComponent(Address complex, QualType complexType); 3434 Address emitAddrOfImagComponent(Address complex, QualType complexType); 3435 3436 /// AddInitializerToStaticVarDecl - Add the initializer for 'D' to the 3437 /// global variable that has already been created for it. If the initializer 3438 /// has a different type than GV does, this may free GV and return a different 3439 /// one. Otherwise it just returns GV. 3440 llvm::GlobalVariable * 3441 AddInitializerToStaticVarDecl(const VarDecl &D, 3442 llvm::GlobalVariable *GV); 3443 3444 3445 /// EmitCXXGlobalVarDeclInit - Create the initializer for a C++ 3446 /// variable with global storage. 3447 void EmitCXXGlobalVarDeclInit(const VarDecl &D, llvm::Constant *DeclPtr, 3448 bool PerformInit); 3449 3450 llvm::Constant *createAtExitStub(const VarDecl &VD, llvm::Constant *Dtor, 3451 llvm::Constant *Addr); 3452 3453 /// Call atexit() with a function that passes the given argument to 3454 /// the given function. 3455 void registerGlobalDtorWithAtExit(const VarDecl &D, llvm::Constant *fn, 3456 llvm::Constant *addr); 3457 3458 /// Emit code in this function to perform a guarded variable 3459 /// initialization. Guarded initializations are used when it's not 3460 /// possible to prove that an initialization will be done exactly 3461 /// once, e.g. with a static local variable or a static data member 3462 /// of a class template. 3463 void EmitCXXGuardedInit(const VarDecl &D, llvm::GlobalVariable *DeclPtr, 3464 bool PerformInit); 3465 3466 /// GenerateCXXGlobalInitFunc - Generates code for initializing global 3467 /// variables. 3468 void GenerateCXXGlobalInitFunc(llvm::Function *Fn, 3469 ArrayRef<llvm::Function *> CXXThreadLocals, 3470 Address Guard = Address::invalid()); 3471 3472 /// GenerateCXXGlobalDtorsFunc - Generates code for destroying global 3473 /// variables. 3474 void GenerateCXXGlobalDtorsFunc( 3475 llvm::Function *Fn, 3476 const std::vector<std::pair<llvm::WeakTrackingVH, llvm::Constant *>> 3477 &DtorsAndObjects); 3478 3479 void GenerateCXXGlobalVarDeclInitFunc(llvm::Function *Fn, 3480 const VarDecl *D, 3481 llvm::GlobalVariable *Addr, 3482 bool PerformInit); 3483 3484 void EmitCXXConstructExpr(const CXXConstructExpr *E, AggValueSlot Dest); 3485 3486 void EmitSynthesizedCXXCopyCtor(Address Dest, Address Src, const Expr *Exp); 3487 3488 void enterFullExpression(const ExprWithCleanups *E) { 3489 if (E->getNumObjects() == 0) return; 3490 enterNonTrivialFullExpression(E); 3491 } 3492 void enterNonTrivialFullExpression(const ExprWithCleanups *E); 3493 3494 void EmitCXXThrowExpr(const CXXThrowExpr *E, bool KeepInsertionPoint = true); 3495 3496 void EmitLambdaExpr(const LambdaExpr *E, AggValueSlot Dest); 3497 3498 RValue EmitAtomicExpr(AtomicExpr *E); 3499 3500 //===--------------------------------------------------------------------===// 3501 // Annotations Emission 3502 //===--------------------------------------------------------------------===// 3503 3504 /// Emit an annotation call (intrinsic or builtin). 3505 llvm::Value *EmitAnnotationCall(llvm::Value *AnnotationFn, 3506 llvm::Value *AnnotatedVal, 3507 StringRef AnnotationStr, 3508 SourceLocation Location); 3509 3510 /// Emit local annotations for the local variable V, declared by D. 3511 void EmitVarAnnotations(const VarDecl *D, llvm::Value *V); 3512 3513 /// Emit field annotations for the given field & value. Returns the 3514 /// annotation result. 3515 Address EmitFieldAnnotations(const FieldDecl *D, Address V); 3516 3517 //===--------------------------------------------------------------------===// 3518 // Internal Helpers 3519 //===--------------------------------------------------------------------===// 3520 3521 /// ContainsLabel - Return true if the statement contains a label in it. If 3522 /// this statement is not executed normally, it not containing a label means 3523 /// that we can just remove the code. 3524 static bool ContainsLabel(const Stmt *S, bool IgnoreCaseStmts = false); 3525 3526 /// containsBreak - Return true if the statement contains a break out of it. 3527 /// If the statement (recursively) contains a switch or loop with a break 3528 /// inside of it, this is fine. 3529 static bool containsBreak(const Stmt *S); 3530 3531 /// Determine if the given statement might introduce a declaration into the 3532 /// current scope, by being a (possibly-labelled) DeclStmt. 3533 static bool mightAddDeclToScope(const Stmt *S); 3534 3535 /// ConstantFoldsToSimpleInteger - If the specified expression does not fold 3536 /// to a constant, or if it does but contains a label, return false. If it 3537 /// constant folds return true and set the boolean result in Result. 3538 bool ConstantFoldsToSimpleInteger(const Expr *Cond, bool &Result, 3539 bool AllowLabels = false); 3540 3541 /// ConstantFoldsToSimpleInteger - If the specified expression does not fold 3542 /// to a constant, or if it does but contains a label, return false. If it 3543 /// constant folds return true and set the folded value. 3544 bool ConstantFoldsToSimpleInteger(const Expr *Cond, llvm::APSInt &Result, 3545 bool AllowLabels = false); 3546 3547 /// EmitBranchOnBoolExpr - Emit a branch on a boolean condition (e.g. for an 3548 /// if statement) to the specified blocks. Based on the condition, this might 3549 /// try to simplify the codegen of the conditional based on the branch. 3550 /// TrueCount should be the number of times we expect the condition to 3551 /// evaluate to true based on PGO data. 3552 void EmitBranchOnBoolExpr(const Expr *Cond, llvm::BasicBlock *TrueBlock, 3553 llvm::BasicBlock *FalseBlock, uint64_t TrueCount); 3554 3555 /// Given an assignment `*LHS = RHS`, emit a test that checks if \p RHS is 3556 /// nonnull, if \p LHS is marked _Nonnull. 3557 void EmitNullabilityCheck(LValue LHS, llvm::Value *RHS, SourceLocation Loc); 3558 3559 /// \brief Emit a description of a type in a format suitable for passing to 3560 /// a runtime sanitizer handler. 3561 llvm::Constant *EmitCheckTypeDescriptor(QualType T); 3562 3563 /// \brief Convert a value into a format suitable for passing to a runtime 3564 /// sanitizer handler. 3565 llvm::Value *EmitCheckValue(llvm::Value *V); 3566 3567 /// \brief Emit a description of a source location in a format suitable for 3568 /// passing to a runtime sanitizer handler. 3569 llvm::Constant *EmitCheckSourceLocation(SourceLocation Loc); 3570 3571 /// \brief Create a basic block that will call a handler function in a 3572 /// sanitizer runtime with the provided arguments, and create a conditional 3573 /// branch to it. 3574 void EmitCheck(ArrayRef<std::pair<llvm::Value *, SanitizerMask>> Checked, 3575 SanitizerHandler Check, ArrayRef<llvm::Constant *> StaticArgs, 3576 ArrayRef<llvm::Value *> DynamicArgs); 3577 3578 /// \brief Emit a slow path cross-DSO CFI check which calls __cfi_slowpath 3579 /// if Cond if false. 3580 void EmitCfiSlowPathCheck(SanitizerMask Kind, llvm::Value *Cond, 3581 llvm::ConstantInt *TypeId, llvm::Value *Ptr, 3582 ArrayRef<llvm::Constant *> StaticArgs); 3583 3584 /// \brief Create a basic block that will call the trap intrinsic, and emit a 3585 /// conditional branch to it, for the -ftrapv checks. 3586 void EmitTrapCheck(llvm::Value *Checked); 3587 3588 /// \brief Emit a call to trap or debugtrap and attach function attribute 3589 /// "trap-func-name" if specified. 3590 llvm::CallInst *EmitTrapCall(llvm::Intrinsic::ID IntrID); 3591 3592 /// \brief Emit a stub for the cross-DSO CFI check function. 3593 void EmitCfiCheckStub(); 3594 3595 /// \brief Emit a cross-DSO CFI failure handling function. 3596 void EmitCfiCheckFail(); 3597 3598 /// \brief Create a check for a function parameter that may potentially be 3599 /// declared as non-null. 3600 void EmitNonNullArgCheck(RValue RV, QualType ArgType, SourceLocation ArgLoc, 3601 AbstractCallee AC, unsigned ParmNum); 3602 3603 /// EmitCallArg - Emit a single call argument. 3604 void EmitCallArg(CallArgList &args, const Expr *E, QualType ArgType); 3605 3606 /// EmitDelegateCallArg - We are performing a delegate call; that 3607 /// is, the current function is delegating to another one. Produce 3608 /// a r-value suitable for passing the given parameter. 3609 void EmitDelegateCallArg(CallArgList &args, const VarDecl *param, 3610 SourceLocation loc); 3611 3612 /// SetFPAccuracy - Set the minimum required accuracy of the given floating 3613 /// point operation, expressed as the maximum relative error in ulp. 3614 void SetFPAccuracy(llvm::Value *Val, float Accuracy); 3615 3616 private: 3617 llvm::MDNode *getRangeForLoadFromType(QualType Ty); 3618 void EmitReturnOfRValue(RValue RV, QualType Ty); 3619 3620 void deferPlaceholderReplacement(llvm::Instruction *Old, llvm::Value *New); 3621 3622 llvm::SmallVector<std::pair<llvm::Instruction *, llvm::Value *>, 4> 3623 DeferredReplacements; 3624 3625 /// Set the address of a local variable. 3626 void setAddrOfLocalVar(const VarDecl *VD, Address Addr) { 3627 assert(!LocalDeclMap.count(VD) && "Decl already exists in LocalDeclMap!"); 3628 LocalDeclMap.insert({VD, Addr}); 3629 } 3630 3631 /// ExpandTypeFromArgs - Reconstruct a structure of type \arg Ty 3632 /// from function arguments into \arg Dst. See ABIArgInfo::Expand. 3633 /// 3634 /// \param AI - The first function argument of the expansion. 3635 void ExpandTypeFromArgs(QualType Ty, LValue Dst, 3636 SmallVectorImpl<llvm::Value *>::iterator &AI); 3637 3638 /// ExpandTypeToArgs - Expand an RValue \arg RV, with the LLVM type for \arg 3639 /// Ty, into individual arguments on the provided vector \arg IRCallArgs, 3640 /// starting at index \arg IRCallArgPos. See ABIArgInfo::Expand. 3641 void ExpandTypeToArgs(QualType Ty, RValue RV, llvm::FunctionType *IRFuncTy, 3642 SmallVectorImpl<llvm::Value *> &IRCallArgs, 3643 unsigned &IRCallArgPos); 3644 3645 llvm::Value* EmitAsmInput(const TargetInfo::ConstraintInfo &Info, 3646 const Expr *InputExpr, std::string &ConstraintStr); 3647 3648 llvm::Value* EmitAsmInputLValue(const TargetInfo::ConstraintInfo &Info, 3649 LValue InputValue, QualType InputType, 3650 std::string &ConstraintStr, 3651 SourceLocation Loc); 3652 3653 /// \brief Attempts to statically evaluate the object size of E. If that 3654 /// fails, emits code to figure the size of E out for us. This is 3655 /// pass_object_size aware. 3656 /// 3657 /// If EmittedExpr is non-null, this will use that instead of re-emitting E. 3658 llvm::Value *evaluateOrEmitBuiltinObjectSize(const Expr *E, unsigned Type, 3659 llvm::IntegerType *ResType, 3660 llvm::Value *EmittedE); 3661 3662 /// \brief Emits the size of E, as required by __builtin_object_size. This 3663 /// function is aware of pass_object_size parameters, and will act accordingly 3664 /// if E is a parameter with the pass_object_size attribute. 3665 llvm::Value *emitBuiltinObjectSize(const Expr *E, unsigned Type, 3666 llvm::IntegerType *ResType, 3667 llvm::Value *EmittedE); 3668 3669 public: 3670 #ifndef NDEBUG 3671 // Determine whether the given argument is an Objective-C method 3672 // that may have type parameters in its signature. 3673 static bool isObjCMethodWithTypeParams(const ObjCMethodDecl *method) { 3674 const DeclContext *dc = method->getDeclContext(); 3675 if (const ObjCInterfaceDecl *classDecl= dyn_cast<ObjCInterfaceDecl>(dc)) { 3676 return classDecl->getTypeParamListAsWritten(); 3677 } 3678 3679 if (const ObjCCategoryDecl *catDecl = dyn_cast<ObjCCategoryDecl>(dc)) { 3680 return catDecl->getTypeParamList(); 3681 } 3682 3683 return false; 3684 } 3685 3686 template<typename T> 3687 static bool isObjCMethodWithTypeParams(const T *) { return false; } 3688 #endif 3689 3690 enum class EvaluationOrder { 3691 ///! No language constraints on evaluation order. 3692 Default, 3693 ///! Language semantics require left-to-right evaluation. 3694 ForceLeftToRight, 3695 ///! Language semantics require right-to-left evaluation. 3696 ForceRightToLeft 3697 }; 3698 3699 /// EmitCallArgs - Emit call arguments for a function. 3700 template <typename T> 3701 void EmitCallArgs(CallArgList &Args, const T *CallArgTypeInfo, 3702 llvm::iterator_range<CallExpr::const_arg_iterator> ArgRange, 3703 AbstractCallee AC = AbstractCallee(), 3704 unsigned ParamsToSkip = 0, 3705 EvaluationOrder Order = EvaluationOrder::Default) { 3706 SmallVector<QualType, 16> ArgTypes; 3707 CallExpr::const_arg_iterator Arg = ArgRange.begin(); 3708 3709 assert((ParamsToSkip == 0 || CallArgTypeInfo) && 3710 "Can't skip parameters if type info is not provided"); 3711 if (CallArgTypeInfo) { 3712 #ifndef NDEBUG 3713 bool isGenericMethod = isObjCMethodWithTypeParams(CallArgTypeInfo); 3714 #endif 3715 3716 // First, use the argument types that the type info knows about 3717 for (auto I = CallArgTypeInfo->param_type_begin() + ParamsToSkip, 3718 E = CallArgTypeInfo->param_type_end(); 3719 I != E; ++I, ++Arg) { 3720 assert(Arg != ArgRange.end() && "Running over edge of argument list!"); 3721 assert((isGenericMethod || 3722 ((*I)->isVariablyModifiedType() || 3723 (*I).getNonReferenceType()->isObjCRetainableType() || 3724 getContext() 3725 .getCanonicalType((*I).getNonReferenceType()) 3726 .getTypePtr() == 3727 getContext() 3728 .getCanonicalType((*Arg)->getType()) 3729 .getTypePtr())) && 3730 "type mismatch in call argument!"); 3731 ArgTypes.push_back(*I); 3732 } 3733 } 3734 3735 // Either we've emitted all the call args, or we have a call to variadic 3736 // function. 3737 assert((Arg == ArgRange.end() || !CallArgTypeInfo || 3738 CallArgTypeInfo->isVariadic()) && 3739 "Extra arguments in non-variadic function!"); 3740 3741 // If we still have any arguments, emit them using the type of the argument. 3742 for (auto *A : llvm::make_range(Arg, ArgRange.end())) 3743 ArgTypes.push_back(CallArgTypeInfo ? getVarArgType(A) : A->getType()); 3744 3745 EmitCallArgs(Args, ArgTypes, ArgRange, AC, ParamsToSkip, Order); 3746 } 3747 3748 void EmitCallArgs(CallArgList &Args, ArrayRef<QualType> ArgTypes, 3749 llvm::iterator_range<CallExpr::const_arg_iterator> ArgRange, 3750 AbstractCallee AC = AbstractCallee(), 3751 unsigned ParamsToSkip = 0, 3752 EvaluationOrder Order = EvaluationOrder::Default); 3753 3754 /// EmitPointerWithAlignment - Given an expression with a pointer 3755 /// type, emit the value and compute our best estimate of the 3756 /// alignment of the pointee. 3757 /// 3758 /// Note that this function will conservatively fall back on the type 3759 /// when it doesn't 3760 /// 3761 /// \param Source - If non-null, this will be initialized with 3762 /// information about the source of the alignment. Note that this 3763 /// function will conservatively fall back on the type when it 3764 /// doesn't recognize the expression, which means that sometimes 3765 /// 3766 /// a worst-case One 3767 /// reasonable way to use this information is when there's a 3768 /// language guarantee that the pointer must be aligned to some 3769 /// stricter value, and we're simply trying to ensure that 3770 /// sufficiently obvious uses of under-aligned objects don't get 3771 /// miscompiled; for example, a placement new into the address of 3772 /// a local variable. In such a case, it's quite reasonable to 3773 /// just ignore the returned alignment when it isn't from an 3774 /// explicit source. 3775 Address EmitPointerWithAlignment(const Expr *Addr, 3776 AlignmentSource *Source = nullptr); 3777 3778 void EmitSanitizerStatReport(llvm::SanitizerStatKind SSK); 3779 3780 private: 3781 QualType getVarArgType(const Expr *Arg); 3782 3783 const TargetCodeGenInfo &getTargetHooks() const { 3784 return CGM.getTargetCodeGenInfo(); 3785 } 3786 3787 void EmitDeclMetadata(); 3788 3789 BlockByrefHelpers *buildByrefHelpers(llvm::StructType &byrefType, 3790 const AutoVarEmission &emission); 3791 3792 void AddObjCARCExceptionMetadata(llvm::Instruction *Inst); 3793 3794 llvm::Value *GetValueForARMHint(unsigned BuiltinID); 3795 }; 3796 3797 /// Helper class with most of the code for saving a value for a 3798 /// conditional expression cleanup. 3799 struct DominatingLLVMValue { 3800 typedef llvm::PointerIntPair<llvm::Value*, 1, bool> saved_type; 3801 3802 /// Answer whether the given value needs extra work to be saved. 3803 static bool needsSaving(llvm::Value *value) { 3804 // If it's not an instruction, we don't need to save. 3805 if (!isa<llvm::Instruction>(value)) return false; 3806 3807 // If it's an instruction in the entry block, we don't need to save. 3808 llvm::BasicBlock *block = cast<llvm::Instruction>(value)->getParent(); 3809 return (block != &block->getParent()->getEntryBlock()); 3810 } 3811 3812 /// Try to save the given value. 3813 static saved_type save(CodeGenFunction &CGF, llvm::Value *value) { 3814 if (!needsSaving(value)) return saved_type(value, false); 3815 3816 // Otherwise, we need an alloca. 3817 auto align = CharUnits::fromQuantity( 3818 CGF.CGM.getDataLayout().getPrefTypeAlignment(value->getType())); 3819 Address alloca = 3820 CGF.CreateTempAlloca(value->getType(), align, "cond-cleanup.save"); 3821 CGF.Builder.CreateStore(value, alloca); 3822 3823 return saved_type(alloca.getPointer(), true); 3824 } 3825 3826 static llvm::Value *restore(CodeGenFunction &CGF, saved_type value) { 3827 // If the value says it wasn't saved, trust that it's still dominating. 3828 if (!value.getInt()) return value.getPointer(); 3829 3830 // Otherwise, it should be an alloca instruction, as set up in save(). 3831 auto alloca = cast<llvm::AllocaInst>(value.getPointer()); 3832 return CGF.Builder.CreateAlignedLoad(alloca, alloca->getAlignment()); 3833 } 3834 }; 3835 3836 /// A partial specialization of DominatingValue for llvm::Values that 3837 /// might be llvm::Instructions. 3838 template <class T> struct DominatingPointer<T,true> : DominatingLLVMValue { 3839 typedef T *type; 3840 static type restore(CodeGenFunction &CGF, saved_type value) { 3841 return static_cast<T*>(DominatingLLVMValue::restore(CGF, value)); 3842 } 3843 }; 3844 3845 /// A specialization of DominatingValue for Address. 3846 template <> struct DominatingValue<Address> { 3847 typedef Address type; 3848 3849 struct saved_type { 3850 DominatingLLVMValue::saved_type SavedValue; 3851 CharUnits Alignment; 3852 }; 3853 3854 static bool needsSaving(type value) { 3855 return DominatingLLVMValue::needsSaving(value.getPointer()); 3856 } 3857 static saved_type save(CodeGenFunction &CGF, type value) { 3858 return { DominatingLLVMValue::save(CGF, value.getPointer()), 3859 value.getAlignment() }; 3860 } 3861 static type restore(CodeGenFunction &CGF, saved_type value) { 3862 return Address(DominatingLLVMValue::restore(CGF, value.SavedValue), 3863 value.Alignment); 3864 } 3865 }; 3866 3867 /// A specialization of DominatingValue for RValue. 3868 template <> struct DominatingValue<RValue> { 3869 typedef RValue type; 3870 class saved_type { 3871 enum Kind { ScalarLiteral, ScalarAddress, AggregateLiteral, 3872 AggregateAddress, ComplexAddress }; 3873 3874 llvm::Value *Value; 3875 unsigned K : 3; 3876 unsigned Align : 29; 3877 saved_type(llvm::Value *v, Kind k, unsigned a = 0) 3878 : Value(v), K(k), Align(a) {} 3879 3880 public: 3881 static bool needsSaving(RValue value); 3882 static saved_type save(CodeGenFunction &CGF, RValue value); 3883 RValue restore(CodeGenFunction &CGF); 3884 3885 // implementations in CGCleanup.cpp 3886 }; 3887 3888 static bool needsSaving(type value) { 3889 return saved_type::needsSaving(value); 3890 } 3891 static saved_type save(CodeGenFunction &CGF, type value) { 3892 return saved_type::save(CGF, value); 3893 } 3894 static type restore(CodeGenFunction &CGF, saved_type value) { 3895 return value.restore(CGF); 3896 } 3897 }; 3898 3899 } // end namespace CodeGen 3900 } // end namespace clang 3901 3902 #endif 3903