1 //===-- CodeGenFunction.h - Per-Function state for LLVM CodeGen -*- C++ -*-===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This is the internal per-function state used for llvm translation. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #ifndef LLVM_CLANG_LIB_CODEGEN_CODEGENFUNCTION_H 15 #define LLVM_CLANG_LIB_CODEGEN_CODEGENFUNCTION_H 16 17 #include "CGBuilder.h" 18 #include "CGDebugInfo.h" 19 #include "CGLoopInfo.h" 20 #include "CGValue.h" 21 #include "CodeGenModule.h" 22 #include "CodeGenPGO.h" 23 #include "EHScopeStack.h" 24 #include "VarBypassDetector.h" 25 #include "clang/AST/CharUnits.h" 26 #include "clang/AST/ExprCXX.h" 27 #include "clang/AST/ExprObjC.h" 28 #include "clang/AST/ExprOpenMP.h" 29 #include "clang/AST/Type.h" 30 #include "clang/Basic/ABI.h" 31 #include "clang/Basic/CapturedStmt.h" 32 #include "clang/Basic/OpenMPKinds.h" 33 #include "clang/Basic/TargetInfo.h" 34 #include "clang/Frontend/CodeGenOptions.h" 35 #include "llvm/ADT/ArrayRef.h" 36 #include "llvm/ADT/DenseMap.h" 37 #include "llvm/ADT/SmallVector.h" 38 #include "llvm/IR/ValueHandle.h" 39 #include "llvm/Support/Debug.h" 40 #include "llvm/Transforms/Utils/SanitizerStats.h" 41 42 namespace llvm { 43 class BasicBlock; 44 class LLVMContext; 45 class MDNode; 46 class Module; 47 class SwitchInst; 48 class Twine; 49 class Value; 50 class CallSite; 51 } 52 53 namespace clang { 54 class ASTContext; 55 class BlockDecl; 56 class CXXDestructorDecl; 57 class CXXForRangeStmt; 58 class CXXTryStmt; 59 class Decl; 60 class LabelDecl; 61 class EnumConstantDecl; 62 class FunctionDecl; 63 class FunctionProtoType; 64 class LabelStmt; 65 class ObjCContainerDecl; 66 class ObjCInterfaceDecl; 67 class ObjCIvarDecl; 68 class ObjCMethodDecl; 69 class ObjCImplementationDecl; 70 class ObjCPropertyImplDecl; 71 class TargetInfo; 72 class VarDecl; 73 class ObjCForCollectionStmt; 74 class ObjCAtTryStmt; 75 class ObjCAtThrowStmt; 76 class ObjCAtSynchronizedStmt; 77 class ObjCAutoreleasePoolStmt; 78 79 namespace CodeGen { 80 class CodeGenTypes; 81 class CGCallee; 82 class CGFunctionInfo; 83 class CGRecordLayout; 84 class CGBlockInfo; 85 class CGCXXABI; 86 class BlockByrefHelpers; 87 class BlockByrefInfo; 88 class BlockFlags; 89 class BlockFieldFlags; 90 class RegionCodeGenTy; 91 class TargetCodeGenInfo; 92 struct OMPTaskDataTy; 93 struct CGCoroData; 94 95 /// The kind of evaluation to perform on values of a particular 96 /// type. Basically, is the code in CGExprScalar, CGExprComplex, or 97 /// CGExprAgg? 98 /// 99 /// TODO: should vectors maybe be split out into their own thing? 100 enum TypeEvaluationKind { 101 TEK_Scalar, 102 TEK_Complex, 103 TEK_Aggregate 104 }; 105 106 #define LIST_SANITIZER_CHECKS \ 107 SANITIZER_CHECK(AddOverflow, add_overflow, 0) \ 108 SANITIZER_CHECK(BuiltinUnreachable, builtin_unreachable, 0) \ 109 SANITIZER_CHECK(CFICheckFail, cfi_check_fail, 0) \ 110 SANITIZER_CHECK(DivremOverflow, divrem_overflow, 0) \ 111 SANITIZER_CHECK(DynamicTypeCacheMiss, dynamic_type_cache_miss, 0) \ 112 SANITIZER_CHECK(FloatCastOverflow, float_cast_overflow, 0) \ 113 SANITIZER_CHECK(FunctionTypeMismatch, function_type_mismatch, 0) \ 114 SANITIZER_CHECK(LoadInvalidValue, load_invalid_value, 0) \ 115 SANITIZER_CHECK(MissingReturn, missing_return, 0) \ 116 SANITIZER_CHECK(MulOverflow, mul_overflow, 0) \ 117 SANITIZER_CHECK(NegateOverflow, negate_overflow, 0) \ 118 SANITIZER_CHECK(NullabilityArg, nullability_arg, 0) \ 119 SANITIZER_CHECK(NullabilityReturn, nullability_return, 0) \ 120 SANITIZER_CHECK(NonnullArg, nonnull_arg, 0) \ 121 SANITIZER_CHECK(NonnullReturn, nonnull_return, 0) \ 122 SANITIZER_CHECK(OutOfBounds, out_of_bounds, 0) \ 123 SANITIZER_CHECK(ShiftOutOfBounds, shift_out_of_bounds, 0) \ 124 SANITIZER_CHECK(SubOverflow, sub_overflow, 0) \ 125 SANITIZER_CHECK(TypeMismatch, type_mismatch, 1) \ 126 SANITIZER_CHECK(VLABoundNotPositive, vla_bound_not_positive, 0) 127 128 enum SanitizerHandler { 129 #define SANITIZER_CHECK(Enum, Name, Version) Enum, 130 LIST_SANITIZER_CHECKS 131 #undef SANITIZER_CHECK 132 }; 133 134 /// CodeGenFunction - This class organizes the per-function state that is used 135 /// while generating LLVM code. 136 class CodeGenFunction : public CodeGenTypeCache { 137 CodeGenFunction(const CodeGenFunction &) = delete; 138 void operator=(const CodeGenFunction &) = delete; 139 140 friend class CGCXXABI; 141 public: 142 /// A jump destination is an abstract label, branching to which may 143 /// require a jump out through normal cleanups. 144 struct JumpDest { 145 JumpDest() : Block(nullptr), ScopeDepth(), Index(0) {} 146 JumpDest(llvm::BasicBlock *Block, 147 EHScopeStack::stable_iterator Depth, 148 unsigned Index) 149 : Block(Block), ScopeDepth(Depth), Index(Index) {} 150 151 bool isValid() const { return Block != nullptr; } 152 llvm::BasicBlock *getBlock() const { return Block; } 153 EHScopeStack::stable_iterator getScopeDepth() const { return ScopeDepth; } 154 unsigned getDestIndex() const { return Index; } 155 156 // This should be used cautiously. 157 void setScopeDepth(EHScopeStack::stable_iterator depth) { 158 ScopeDepth = depth; 159 } 160 161 private: 162 llvm::BasicBlock *Block; 163 EHScopeStack::stable_iterator ScopeDepth; 164 unsigned Index; 165 }; 166 167 CodeGenModule &CGM; // Per-module state. 168 const TargetInfo &Target; 169 170 typedef std::pair<llvm::Value *, llvm::Value *> ComplexPairTy; 171 LoopInfoStack LoopStack; 172 CGBuilderTy Builder; 173 174 // Stores variables for which we can't generate correct lifetime markers 175 // because of jumps. 176 VarBypassDetector Bypasses; 177 178 // CodeGen lambda for loops and support for ordered clause 179 typedef llvm::function_ref<void(CodeGenFunction &, const OMPLoopDirective &, 180 JumpDest)> 181 CodeGenLoopTy; 182 typedef llvm::function_ref<void(CodeGenFunction &, SourceLocation, 183 const unsigned, const bool)> 184 CodeGenOrderedTy; 185 186 // Codegen lambda for loop bounds in worksharing loop constructs 187 typedef llvm::function_ref<std::pair<LValue, LValue>( 188 CodeGenFunction &, const OMPExecutableDirective &S)> 189 CodeGenLoopBoundsTy; 190 191 // Codegen lambda for loop bounds in dispatch-based loop implementation 192 typedef llvm::function_ref<std::pair<llvm::Value *, llvm::Value *>( 193 CodeGenFunction &, const OMPExecutableDirective &S, Address LB, 194 Address UB)> 195 CodeGenDispatchBoundsTy; 196 197 /// \brief CGBuilder insert helper. This function is called after an 198 /// instruction is created using Builder. 199 void InsertHelper(llvm::Instruction *I, const llvm::Twine &Name, 200 llvm::BasicBlock *BB, 201 llvm::BasicBlock::iterator InsertPt) const; 202 203 /// CurFuncDecl - Holds the Decl for the current outermost 204 /// non-closure context. 205 const Decl *CurFuncDecl; 206 /// CurCodeDecl - This is the inner-most code context, which includes blocks. 207 const Decl *CurCodeDecl; 208 const CGFunctionInfo *CurFnInfo; 209 QualType FnRetTy; 210 llvm::Function *CurFn; 211 212 // Holds coroutine data if the current function is a coroutine. We use a 213 // wrapper to manage its lifetime, so that we don't have to define CGCoroData 214 // in this header. 215 struct CGCoroInfo { 216 std::unique_ptr<CGCoroData> Data; 217 CGCoroInfo(); 218 ~CGCoroInfo(); 219 }; 220 CGCoroInfo CurCoro; 221 222 /// CurGD - The GlobalDecl for the current function being compiled. 223 GlobalDecl CurGD; 224 225 /// PrologueCleanupDepth - The cleanup depth enclosing all the 226 /// cleanups associated with the parameters. 227 EHScopeStack::stable_iterator PrologueCleanupDepth; 228 229 /// ReturnBlock - Unified return block. 230 JumpDest ReturnBlock; 231 232 /// ReturnValue - The temporary alloca to hold the return 233 /// value. This is invalid iff the function has no return value. 234 Address ReturnValue; 235 236 /// Return true if a label was seen in the current scope. 237 bool hasLabelBeenSeenInCurrentScope() const { 238 if (CurLexicalScope) 239 return CurLexicalScope->hasLabels(); 240 return !LabelMap.empty(); 241 } 242 243 /// AllocaInsertPoint - This is an instruction in the entry block before which 244 /// we prefer to insert allocas. 245 llvm::AssertingVH<llvm::Instruction> AllocaInsertPt; 246 247 /// \brief API for captured statement code generation. 248 class CGCapturedStmtInfo { 249 public: 250 explicit CGCapturedStmtInfo(CapturedRegionKind K = CR_Default) 251 : Kind(K), ThisValue(nullptr), CXXThisFieldDecl(nullptr) {} 252 explicit CGCapturedStmtInfo(const CapturedStmt &S, 253 CapturedRegionKind K = CR_Default) 254 : Kind(K), ThisValue(nullptr), CXXThisFieldDecl(nullptr) { 255 256 RecordDecl::field_iterator Field = 257 S.getCapturedRecordDecl()->field_begin(); 258 for (CapturedStmt::const_capture_iterator I = S.capture_begin(), 259 E = S.capture_end(); 260 I != E; ++I, ++Field) { 261 if (I->capturesThis()) 262 CXXThisFieldDecl = *Field; 263 else if (I->capturesVariable()) 264 CaptureFields[I->getCapturedVar()] = *Field; 265 else if (I->capturesVariableByCopy()) 266 CaptureFields[I->getCapturedVar()] = *Field; 267 } 268 } 269 270 virtual ~CGCapturedStmtInfo(); 271 272 CapturedRegionKind getKind() const { return Kind; } 273 274 virtual void setContextValue(llvm::Value *V) { ThisValue = V; } 275 // \brief Retrieve the value of the context parameter. 276 virtual llvm::Value *getContextValue() const { return ThisValue; } 277 278 /// \brief Lookup the captured field decl for a variable. 279 virtual const FieldDecl *lookup(const VarDecl *VD) const { 280 return CaptureFields.lookup(VD); 281 } 282 283 bool isCXXThisExprCaptured() const { return getThisFieldDecl() != nullptr; } 284 virtual FieldDecl *getThisFieldDecl() const { return CXXThisFieldDecl; } 285 286 static bool classof(const CGCapturedStmtInfo *) { 287 return true; 288 } 289 290 /// \brief Emit the captured statement body. 291 virtual void EmitBody(CodeGenFunction &CGF, const Stmt *S) { 292 CGF.incrementProfileCounter(S); 293 CGF.EmitStmt(S); 294 } 295 296 /// \brief Get the name of the capture helper. 297 virtual StringRef getHelperName() const { return "__captured_stmt"; } 298 299 private: 300 /// \brief The kind of captured statement being generated. 301 CapturedRegionKind Kind; 302 303 /// \brief Keep the map between VarDecl and FieldDecl. 304 llvm::SmallDenseMap<const VarDecl *, FieldDecl *> CaptureFields; 305 306 /// \brief The base address of the captured record, passed in as the first 307 /// argument of the parallel region function. 308 llvm::Value *ThisValue; 309 310 /// \brief Captured 'this' type. 311 FieldDecl *CXXThisFieldDecl; 312 }; 313 CGCapturedStmtInfo *CapturedStmtInfo; 314 315 /// \brief RAII for correct setting/restoring of CapturedStmtInfo. 316 class CGCapturedStmtRAII { 317 private: 318 CodeGenFunction &CGF; 319 CGCapturedStmtInfo *PrevCapturedStmtInfo; 320 public: 321 CGCapturedStmtRAII(CodeGenFunction &CGF, 322 CGCapturedStmtInfo *NewCapturedStmtInfo) 323 : CGF(CGF), PrevCapturedStmtInfo(CGF.CapturedStmtInfo) { 324 CGF.CapturedStmtInfo = NewCapturedStmtInfo; 325 } 326 ~CGCapturedStmtRAII() { CGF.CapturedStmtInfo = PrevCapturedStmtInfo; } 327 }; 328 329 /// An abstract representation of regular/ObjC call/message targets. 330 class AbstractCallee { 331 /// The function declaration of the callee. 332 const Decl *CalleeDecl; 333 334 public: 335 AbstractCallee() : CalleeDecl(nullptr) {} 336 AbstractCallee(const FunctionDecl *FD) : CalleeDecl(FD) {} 337 AbstractCallee(const ObjCMethodDecl *OMD) : CalleeDecl(OMD) {} 338 bool hasFunctionDecl() const { 339 return dyn_cast_or_null<FunctionDecl>(CalleeDecl); 340 } 341 const Decl *getDecl() const { return CalleeDecl; } 342 unsigned getNumParams() const { 343 if (const auto *FD = dyn_cast<FunctionDecl>(CalleeDecl)) 344 return FD->getNumParams(); 345 return cast<ObjCMethodDecl>(CalleeDecl)->param_size(); 346 } 347 const ParmVarDecl *getParamDecl(unsigned I) const { 348 if (const auto *FD = dyn_cast<FunctionDecl>(CalleeDecl)) 349 return FD->getParamDecl(I); 350 return *(cast<ObjCMethodDecl>(CalleeDecl)->param_begin() + I); 351 } 352 }; 353 354 /// \brief Sanitizers enabled for this function. 355 SanitizerSet SanOpts; 356 357 /// \brief True if CodeGen currently emits code implementing sanitizer checks. 358 bool IsSanitizerScope; 359 360 /// \brief RAII object to set/unset CodeGenFunction::IsSanitizerScope. 361 class SanitizerScope { 362 CodeGenFunction *CGF; 363 public: 364 SanitizerScope(CodeGenFunction *CGF); 365 ~SanitizerScope(); 366 }; 367 368 /// In C++, whether we are code generating a thunk. This controls whether we 369 /// should emit cleanups. 370 bool CurFuncIsThunk; 371 372 /// In ARC, whether we should autorelease the return value. 373 bool AutoreleaseResult; 374 375 /// Whether we processed a Microsoft-style asm block during CodeGen. These can 376 /// potentially set the return value. 377 bool SawAsmBlock; 378 379 const FunctionDecl *CurSEHParent = nullptr; 380 381 /// True if the current function is an outlined SEH helper. This can be a 382 /// finally block or filter expression. 383 bool IsOutlinedSEHHelper; 384 385 const CodeGen::CGBlockInfo *BlockInfo; 386 llvm::Value *BlockPointer; 387 388 llvm::DenseMap<const VarDecl *, FieldDecl *> LambdaCaptureFields; 389 FieldDecl *LambdaThisCaptureField; 390 391 /// \brief A mapping from NRVO variables to the flags used to indicate 392 /// when the NRVO has been applied to this variable. 393 llvm::DenseMap<const VarDecl *, llvm::Value *> NRVOFlags; 394 395 EHScopeStack EHStack; 396 llvm::SmallVector<char, 256> LifetimeExtendedCleanupStack; 397 llvm::SmallVector<const JumpDest *, 2> SEHTryEpilogueStack; 398 399 llvm::Instruction *CurrentFuncletPad = nullptr; 400 401 class CallLifetimeEnd final : public EHScopeStack::Cleanup { 402 llvm::Value *Addr; 403 llvm::Value *Size; 404 405 public: 406 CallLifetimeEnd(Address addr, llvm::Value *size) 407 : Addr(addr.getPointer()), Size(size) {} 408 409 void Emit(CodeGenFunction &CGF, Flags flags) override { 410 CGF.EmitLifetimeEnd(Size, Addr); 411 } 412 }; 413 414 /// Header for data within LifetimeExtendedCleanupStack. 415 struct LifetimeExtendedCleanupHeader { 416 /// The size of the following cleanup object. 417 unsigned Size; 418 /// The kind of cleanup to push: a value from the CleanupKind enumeration. 419 CleanupKind Kind; 420 421 size_t getSize() const { return Size; } 422 CleanupKind getKind() const { return Kind; } 423 }; 424 425 /// i32s containing the indexes of the cleanup destinations. 426 llvm::AllocaInst *NormalCleanupDest; 427 428 unsigned NextCleanupDestIndex; 429 430 /// FirstBlockInfo - The head of a singly-linked-list of block layouts. 431 CGBlockInfo *FirstBlockInfo; 432 433 /// EHResumeBlock - Unified block containing a call to llvm.eh.resume. 434 llvm::BasicBlock *EHResumeBlock; 435 436 /// The exception slot. All landing pads write the current exception pointer 437 /// into this alloca. 438 llvm::Value *ExceptionSlot; 439 440 /// The selector slot. Under the MandatoryCleanup model, all landing pads 441 /// write the current selector value into this alloca. 442 llvm::AllocaInst *EHSelectorSlot; 443 444 /// A stack of exception code slots. Entering an __except block pushes a slot 445 /// on the stack and leaving pops one. The __exception_code() intrinsic loads 446 /// a value from the top of the stack. 447 SmallVector<Address, 1> SEHCodeSlotStack; 448 449 /// Value returned by __exception_info intrinsic. 450 llvm::Value *SEHInfo = nullptr; 451 452 /// Emits a landing pad for the current EH stack. 453 llvm::BasicBlock *EmitLandingPad(); 454 455 llvm::BasicBlock *getInvokeDestImpl(); 456 457 template <class T> 458 typename DominatingValue<T>::saved_type saveValueInCond(T value) { 459 return DominatingValue<T>::save(*this, value); 460 } 461 462 public: 463 /// ObjCEHValueStack - Stack of Objective-C exception values, used for 464 /// rethrows. 465 SmallVector<llvm::Value*, 8> ObjCEHValueStack; 466 467 /// A class controlling the emission of a finally block. 468 class FinallyInfo { 469 /// Where the catchall's edge through the cleanup should go. 470 JumpDest RethrowDest; 471 472 /// A function to call to enter the catch. 473 llvm::Constant *BeginCatchFn; 474 475 /// An i1 variable indicating whether or not the @finally is 476 /// running for an exception. 477 llvm::AllocaInst *ForEHVar; 478 479 /// An i8* variable into which the exception pointer to rethrow 480 /// has been saved. 481 llvm::AllocaInst *SavedExnVar; 482 483 public: 484 void enter(CodeGenFunction &CGF, const Stmt *Finally, 485 llvm::Constant *beginCatchFn, llvm::Constant *endCatchFn, 486 llvm::Constant *rethrowFn); 487 void exit(CodeGenFunction &CGF); 488 }; 489 490 /// Returns true inside SEH __try blocks. 491 bool isSEHTryScope() const { return !SEHTryEpilogueStack.empty(); } 492 493 /// Returns true while emitting a cleanuppad. 494 bool isCleanupPadScope() const { 495 return CurrentFuncletPad && isa<llvm::CleanupPadInst>(CurrentFuncletPad); 496 } 497 498 /// pushFullExprCleanup - Push a cleanup to be run at the end of the 499 /// current full-expression. Safe against the possibility that 500 /// we're currently inside a conditionally-evaluated expression. 501 template <class T, class... As> 502 void pushFullExprCleanup(CleanupKind kind, As... A) { 503 // If we're not in a conditional branch, or if none of the 504 // arguments requires saving, then use the unconditional cleanup. 505 if (!isInConditionalBranch()) 506 return EHStack.pushCleanup<T>(kind, A...); 507 508 // Stash values in a tuple so we can guarantee the order of saves. 509 typedef std::tuple<typename DominatingValue<As>::saved_type...> SavedTuple; 510 SavedTuple Saved{saveValueInCond(A)...}; 511 512 typedef EHScopeStack::ConditionalCleanup<T, As...> CleanupType; 513 EHStack.pushCleanupTuple<CleanupType>(kind, Saved); 514 initFullExprCleanup(); 515 } 516 517 /// \brief Queue a cleanup to be pushed after finishing the current 518 /// full-expression. 519 template <class T, class... As> 520 void pushCleanupAfterFullExpr(CleanupKind Kind, As... A) { 521 assert(!isInConditionalBranch() && "can't defer conditional cleanup"); 522 523 LifetimeExtendedCleanupHeader Header = { sizeof(T), Kind }; 524 525 size_t OldSize = LifetimeExtendedCleanupStack.size(); 526 LifetimeExtendedCleanupStack.resize( 527 LifetimeExtendedCleanupStack.size() + sizeof(Header) + Header.Size); 528 529 static_assert(sizeof(Header) % alignof(T) == 0, 530 "Cleanup will be allocated on misaligned address"); 531 char *Buffer = &LifetimeExtendedCleanupStack[OldSize]; 532 new (Buffer) LifetimeExtendedCleanupHeader(Header); 533 new (Buffer + sizeof(Header)) T(A...); 534 } 535 536 /// Set up the last cleaup that was pushed as a conditional 537 /// full-expression cleanup. 538 void initFullExprCleanup(); 539 540 /// PushDestructorCleanup - Push a cleanup to call the 541 /// complete-object destructor of an object of the given type at the 542 /// given address. Does nothing if T is not a C++ class type with a 543 /// non-trivial destructor. 544 void PushDestructorCleanup(QualType T, Address Addr); 545 546 /// PushDestructorCleanup - Push a cleanup to call the 547 /// complete-object variant of the given destructor on the object at 548 /// the given address. 549 void PushDestructorCleanup(const CXXDestructorDecl *Dtor, Address Addr); 550 551 /// PopCleanupBlock - Will pop the cleanup entry on the stack and 552 /// process all branch fixups. 553 void PopCleanupBlock(bool FallThroughIsBranchThrough = false); 554 555 /// DeactivateCleanupBlock - Deactivates the given cleanup block. 556 /// The block cannot be reactivated. Pops it if it's the top of the 557 /// stack. 558 /// 559 /// \param DominatingIP - An instruction which is known to 560 /// dominate the current IP (if set) and which lies along 561 /// all paths of execution between the current IP and the 562 /// the point at which the cleanup comes into scope. 563 void DeactivateCleanupBlock(EHScopeStack::stable_iterator Cleanup, 564 llvm::Instruction *DominatingIP); 565 566 /// ActivateCleanupBlock - Activates an initially-inactive cleanup. 567 /// Cannot be used to resurrect a deactivated cleanup. 568 /// 569 /// \param DominatingIP - An instruction which is known to 570 /// dominate the current IP (if set) and which lies along 571 /// all paths of execution between the current IP and the 572 /// the point at which the cleanup comes into scope. 573 void ActivateCleanupBlock(EHScopeStack::stable_iterator Cleanup, 574 llvm::Instruction *DominatingIP); 575 576 /// \brief Enters a new scope for capturing cleanups, all of which 577 /// will be executed once the scope is exited. 578 class RunCleanupsScope { 579 EHScopeStack::stable_iterator CleanupStackDepth; 580 size_t LifetimeExtendedCleanupStackSize; 581 bool OldDidCallStackSave; 582 protected: 583 bool PerformCleanup; 584 private: 585 586 RunCleanupsScope(const RunCleanupsScope &) = delete; 587 void operator=(const RunCleanupsScope &) = delete; 588 589 protected: 590 CodeGenFunction& CGF; 591 592 public: 593 /// \brief Enter a new cleanup scope. 594 explicit RunCleanupsScope(CodeGenFunction &CGF) 595 : PerformCleanup(true), CGF(CGF) 596 { 597 CleanupStackDepth = CGF.EHStack.stable_begin(); 598 LifetimeExtendedCleanupStackSize = 599 CGF.LifetimeExtendedCleanupStack.size(); 600 OldDidCallStackSave = CGF.DidCallStackSave; 601 CGF.DidCallStackSave = false; 602 } 603 604 /// \brief Exit this cleanup scope, emitting any accumulated cleanups. 605 ~RunCleanupsScope() { 606 if (PerformCleanup) 607 ForceCleanup(); 608 } 609 610 /// \brief Determine whether this scope requires any cleanups. 611 bool requiresCleanups() const { 612 return CGF.EHStack.stable_begin() != CleanupStackDepth; 613 } 614 615 /// \brief Force the emission of cleanups now, instead of waiting 616 /// until this object is destroyed. 617 /// \param ValuesToReload - A list of values that need to be available at 618 /// the insertion point after cleanup emission. If cleanup emission created 619 /// a shared cleanup block, these value pointers will be rewritten. 620 /// Otherwise, they not will be modified. 621 void ForceCleanup(std::initializer_list<llvm::Value**> ValuesToReload = {}) { 622 assert(PerformCleanup && "Already forced cleanup"); 623 CGF.DidCallStackSave = OldDidCallStackSave; 624 CGF.PopCleanupBlocks(CleanupStackDepth, LifetimeExtendedCleanupStackSize, 625 ValuesToReload); 626 PerformCleanup = false; 627 } 628 }; 629 630 class LexicalScope : public RunCleanupsScope { 631 SourceRange Range; 632 SmallVector<const LabelDecl*, 4> Labels; 633 LexicalScope *ParentScope; 634 635 LexicalScope(const LexicalScope &) = delete; 636 void operator=(const LexicalScope &) = delete; 637 638 public: 639 /// \brief Enter a new cleanup scope. 640 explicit LexicalScope(CodeGenFunction &CGF, SourceRange Range) 641 : RunCleanupsScope(CGF), Range(Range), ParentScope(CGF.CurLexicalScope) { 642 CGF.CurLexicalScope = this; 643 if (CGDebugInfo *DI = CGF.getDebugInfo()) 644 DI->EmitLexicalBlockStart(CGF.Builder, Range.getBegin()); 645 } 646 647 void addLabel(const LabelDecl *label) { 648 assert(PerformCleanup && "adding label to dead scope?"); 649 Labels.push_back(label); 650 } 651 652 /// \brief Exit this cleanup scope, emitting any accumulated 653 /// cleanups. 654 ~LexicalScope() { 655 if (CGDebugInfo *DI = CGF.getDebugInfo()) 656 DI->EmitLexicalBlockEnd(CGF.Builder, Range.getEnd()); 657 658 // If we should perform a cleanup, force them now. Note that 659 // this ends the cleanup scope before rescoping any labels. 660 if (PerformCleanup) { 661 ApplyDebugLocation DL(CGF, Range.getEnd()); 662 ForceCleanup(); 663 } 664 } 665 666 /// \brief Force the emission of cleanups now, instead of waiting 667 /// until this object is destroyed. 668 void ForceCleanup() { 669 CGF.CurLexicalScope = ParentScope; 670 RunCleanupsScope::ForceCleanup(); 671 672 if (!Labels.empty()) 673 rescopeLabels(); 674 } 675 676 bool hasLabels() const { 677 return !Labels.empty(); 678 } 679 680 void rescopeLabels(); 681 }; 682 683 typedef llvm::DenseMap<const Decl *, Address> DeclMapTy; 684 685 /// \brief The scope used to remap some variables as private in the OpenMP 686 /// loop body (or other captured region emitted without outlining), and to 687 /// restore old vars back on exit. 688 class OMPPrivateScope : public RunCleanupsScope { 689 DeclMapTy SavedLocals; 690 DeclMapTy SavedPrivates; 691 692 private: 693 OMPPrivateScope(const OMPPrivateScope &) = delete; 694 void operator=(const OMPPrivateScope &) = delete; 695 696 public: 697 /// \brief Enter a new OpenMP private scope. 698 explicit OMPPrivateScope(CodeGenFunction &CGF) : RunCleanupsScope(CGF) {} 699 700 /// \brief Registers \a LocalVD variable as a private and apply \a 701 /// PrivateGen function for it to generate corresponding private variable. 702 /// \a PrivateGen returns an address of the generated private variable. 703 /// \return true if the variable is registered as private, false if it has 704 /// been privatized already. 705 bool 706 addPrivate(const VarDecl *LocalVD, 707 llvm::function_ref<Address()> PrivateGen) { 708 assert(PerformCleanup && "adding private to dead scope"); 709 710 // Only save it once. 711 if (SavedLocals.count(LocalVD)) return false; 712 713 // Copy the existing local entry to SavedLocals. 714 auto it = CGF.LocalDeclMap.find(LocalVD); 715 if (it != CGF.LocalDeclMap.end()) { 716 SavedLocals.insert({LocalVD, it->second}); 717 } else { 718 SavedLocals.insert({LocalVD, Address::invalid()}); 719 } 720 721 // Generate the private entry. 722 Address Addr = PrivateGen(); 723 QualType VarTy = LocalVD->getType(); 724 if (VarTy->isReferenceType()) { 725 Address Temp = CGF.CreateMemTemp(VarTy); 726 CGF.Builder.CreateStore(Addr.getPointer(), Temp); 727 Addr = Temp; 728 } 729 SavedPrivates.insert({LocalVD, Addr}); 730 731 return true; 732 } 733 734 /// \brief Privatizes local variables previously registered as private. 735 /// Registration is separate from the actual privatization to allow 736 /// initializers use values of the original variables, not the private one. 737 /// This is important, for example, if the private variable is a class 738 /// variable initialized by a constructor that references other private 739 /// variables. But at initialization original variables must be used, not 740 /// private copies. 741 /// \return true if at least one variable was privatized, false otherwise. 742 bool Privatize() { 743 copyInto(SavedPrivates, CGF.LocalDeclMap); 744 SavedPrivates.clear(); 745 return !SavedLocals.empty(); 746 } 747 748 void ForceCleanup() { 749 RunCleanupsScope::ForceCleanup(); 750 copyInto(SavedLocals, CGF.LocalDeclMap); 751 SavedLocals.clear(); 752 } 753 754 /// \brief Exit scope - all the mapped variables are restored. 755 ~OMPPrivateScope() { 756 if (PerformCleanup) 757 ForceCleanup(); 758 } 759 760 /// Checks if the global variable is captured in current function. 761 bool isGlobalVarCaptured(const VarDecl *VD) const { 762 return !VD->isLocalVarDeclOrParm() && CGF.LocalDeclMap.count(VD) > 0; 763 } 764 765 private: 766 /// Copy all the entries in the source map over the corresponding 767 /// entries in the destination, which must exist. 768 static void copyInto(const DeclMapTy &src, DeclMapTy &dest) { 769 for (auto &pair : src) { 770 if (!pair.second.isValid()) { 771 dest.erase(pair.first); 772 continue; 773 } 774 775 auto it = dest.find(pair.first); 776 if (it != dest.end()) { 777 it->second = pair.second; 778 } else { 779 dest.insert(pair); 780 } 781 } 782 } 783 }; 784 785 /// \brief Takes the old cleanup stack size and emits the cleanup blocks 786 /// that have been added. 787 void 788 PopCleanupBlocks(EHScopeStack::stable_iterator OldCleanupStackSize, 789 std::initializer_list<llvm::Value **> ValuesToReload = {}); 790 791 /// \brief Takes the old cleanup stack size and emits the cleanup blocks 792 /// that have been added, then adds all lifetime-extended cleanups from 793 /// the given position to the stack. 794 void 795 PopCleanupBlocks(EHScopeStack::stable_iterator OldCleanupStackSize, 796 size_t OldLifetimeExtendedStackSize, 797 std::initializer_list<llvm::Value **> ValuesToReload = {}); 798 799 void ResolveBranchFixups(llvm::BasicBlock *Target); 800 801 /// The given basic block lies in the current EH scope, but may be a 802 /// target of a potentially scope-crossing jump; get a stable handle 803 /// to which we can perform this jump later. 804 JumpDest getJumpDestInCurrentScope(llvm::BasicBlock *Target) { 805 return JumpDest(Target, 806 EHStack.getInnermostNormalCleanup(), 807 NextCleanupDestIndex++); 808 } 809 810 /// The given basic block lies in the current EH scope, but may be a 811 /// target of a potentially scope-crossing jump; get a stable handle 812 /// to which we can perform this jump later. 813 JumpDest getJumpDestInCurrentScope(StringRef Name = StringRef()) { 814 return getJumpDestInCurrentScope(createBasicBlock(Name)); 815 } 816 817 /// EmitBranchThroughCleanup - Emit a branch from the current insert 818 /// block through the normal cleanup handling code (if any) and then 819 /// on to \arg Dest. 820 void EmitBranchThroughCleanup(JumpDest Dest); 821 822 /// isObviouslyBranchWithoutCleanups - Return true if a branch to the 823 /// specified destination obviously has no cleanups to run. 'false' is always 824 /// a conservatively correct answer for this method. 825 bool isObviouslyBranchWithoutCleanups(JumpDest Dest) const; 826 827 /// popCatchScope - Pops the catch scope at the top of the EHScope 828 /// stack, emitting any required code (other than the catch handlers 829 /// themselves). 830 void popCatchScope(); 831 832 llvm::BasicBlock *getEHResumeBlock(bool isCleanup); 833 llvm::BasicBlock *getEHDispatchBlock(EHScopeStack::stable_iterator scope); 834 llvm::BasicBlock *getMSVCDispatchBlock(EHScopeStack::stable_iterator scope); 835 836 /// An object to manage conditionally-evaluated expressions. 837 class ConditionalEvaluation { 838 llvm::BasicBlock *StartBB; 839 840 public: 841 ConditionalEvaluation(CodeGenFunction &CGF) 842 : StartBB(CGF.Builder.GetInsertBlock()) {} 843 844 void begin(CodeGenFunction &CGF) { 845 assert(CGF.OutermostConditional != this); 846 if (!CGF.OutermostConditional) 847 CGF.OutermostConditional = this; 848 } 849 850 void end(CodeGenFunction &CGF) { 851 assert(CGF.OutermostConditional != nullptr); 852 if (CGF.OutermostConditional == this) 853 CGF.OutermostConditional = nullptr; 854 } 855 856 /// Returns a block which will be executed prior to each 857 /// evaluation of the conditional code. 858 llvm::BasicBlock *getStartingBlock() const { 859 return StartBB; 860 } 861 }; 862 863 /// isInConditionalBranch - Return true if we're currently emitting 864 /// one branch or the other of a conditional expression. 865 bool isInConditionalBranch() const { return OutermostConditional != nullptr; } 866 867 void setBeforeOutermostConditional(llvm::Value *value, Address addr) { 868 assert(isInConditionalBranch()); 869 llvm::BasicBlock *block = OutermostConditional->getStartingBlock(); 870 auto store = new llvm::StoreInst(value, addr.getPointer(), &block->back()); 871 store->setAlignment(addr.getAlignment().getQuantity()); 872 } 873 874 /// An RAII object to record that we're evaluating a statement 875 /// expression. 876 class StmtExprEvaluation { 877 CodeGenFunction &CGF; 878 879 /// We have to save the outermost conditional: cleanups in a 880 /// statement expression aren't conditional just because the 881 /// StmtExpr is. 882 ConditionalEvaluation *SavedOutermostConditional; 883 884 public: 885 StmtExprEvaluation(CodeGenFunction &CGF) 886 : CGF(CGF), SavedOutermostConditional(CGF.OutermostConditional) { 887 CGF.OutermostConditional = nullptr; 888 } 889 890 ~StmtExprEvaluation() { 891 CGF.OutermostConditional = SavedOutermostConditional; 892 CGF.EnsureInsertPoint(); 893 } 894 }; 895 896 /// An object which temporarily prevents a value from being 897 /// destroyed by aggressive peephole optimizations that assume that 898 /// all uses of a value have been realized in the IR. 899 class PeepholeProtection { 900 llvm::Instruction *Inst; 901 friend class CodeGenFunction; 902 903 public: 904 PeepholeProtection() : Inst(nullptr) {} 905 }; 906 907 /// A non-RAII class containing all the information about a bound 908 /// opaque value. OpaqueValueMapping, below, is a RAII wrapper for 909 /// this which makes individual mappings very simple; using this 910 /// class directly is useful when you have a variable number of 911 /// opaque values or don't want the RAII functionality for some 912 /// reason. 913 class OpaqueValueMappingData { 914 const OpaqueValueExpr *OpaqueValue; 915 bool BoundLValue; 916 CodeGenFunction::PeepholeProtection Protection; 917 918 OpaqueValueMappingData(const OpaqueValueExpr *ov, 919 bool boundLValue) 920 : OpaqueValue(ov), BoundLValue(boundLValue) {} 921 public: 922 OpaqueValueMappingData() : OpaqueValue(nullptr) {} 923 924 static bool shouldBindAsLValue(const Expr *expr) { 925 // gl-values should be bound as l-values for obvious reasons. 926 // Records should be bound as l-values because IR generation 927 // always keeps them in memory. Expressions of function type 928 // act exactly like l-values but are formally required to be 929 // r-values in C. 930 return expr->isGLValue() || 931 expr->getType()->isFunctionType() || 932 hasAggregateEvaluationKind(expr->getType()); 933 } 934 935 static OpaqueValueMappingData bind(CodeGenFunction &CGF, 936 const OpaqueValueExpr *ov, 937 const Expr *e) { 938 if (shouldBindAsLValue(ov)) 939 return bind(CGF, ov, CGF.EmitLValue(e)); 940 return bind(CGF, ov, CGF.EmitAnyExpr(e)); 941 } 942 943 static OpaqueValueMappingData bind(CodeGenFunction &CGF, 944 const OpaqueValueExpr *ov, 945 const LValue &lv) { 946 assert(shouldBindAsLValue(ov)); 947 CGF.OpaqueLValues.insert(std::make_pair(ov, lv)); 948 return OpaqueValueMappingData(ov, true); 949 } 950 951 static OpaqueValueMappingData bind(CodeGenFunction &CGF, 952 const OpaqueValueExpr *ov, 953 const RValue &rv) { 954 assert(!shouldBindAsLValue(ov)); 955 CGF.OpaqueRValues.insert(std::make_pair(ov, rv)); 956 957 OpaqueValueMappingData data(ov, false); 958 959 // Work around an extremely aggressive peephole optimization in 960 // EmitScalarConversion which assumes that all other uses of a 961 // value are extant. 962 data.Protection = CGF.protectFromPeepholes(rv); 963 964 return data; 965 } 966 967 bool isValid() const { return OpaqueValue != nullptr; } 968 void clear() { OpaqueValue = nullptr; } 969 970 void unbind(CodeGenFunction &CGF) { 971 assert(OpaqueValue && "no data to unbind!"); 972 973 if (BoundLValue) { 974 CGF.OpaqueLValues.erase(OpaqueValue); 975 } else { 976 CGF.OpaqueRValues.erase(OpaqueValue); 977 CGF.unprotectFromPeepholes(Protection); 978 } 979 } 980 }; 981 982 /// An RAII object to set (and then clear) a mapping for an OpaqueValueExpr. 983 class OpaqueValueMapping { 984 CodeGenFunction &CGF; 985 OpaqueValueMappingData Data; 986 987 public: 988 static bool shouldBindAsLValue(const Expr *expr) { 989 return OpaqueValueMappingData::shouldBindAsLValue(expr); 990 } 991 992 /// Build the opaque value mapping for the given conditional 993 /// operator if it's the GNU ?: extension. This is a common 994 /// enough pattern that the convenience operator is really 995 /// helpful. 996 /// 997 OpaqueValueMapping(CodeGenFunction &CGF, 998 const AbstractConditionalOperator *op) : CGF(CGF) { 999 if (isa<ConditionalOperator>(op)) 1000 // Leave Data empty. 1001 return; 1002 1003 const BinaryConditionalOperator *e = cast<BinaryConditionalOperator>(op); 1004 Data = OpaqueValueMappingData::bind(CGF, e->getOpaqueValue(), 1005 e->getCommon()); 1006 } 1007 1008 /// Build the opaque value mapping for an OpaqueValueExpr whose source 1009 /// expression is set to the expression the OVE represents. 1010 OpaqueValueMapping(CodeGenFunction &CGF, const OpaqueValueExpr *OV) 1011 : CGF(CGF) { 1012 if (OV) { 1013 assert(OV->getSourceExpr() && "wrong form of OpaqueValueMapping used " 1014 "for OVE with no source expression"); 1015 Data = OpaqueValueMappingData::bind(CGF, OV, OV->getSourceExpr()); 1016 } 1017 } 1018 1019 OpaqueValueMapping(CodeGenFunction &CGF, 1020 const OpaqueValueExpr *opaqueValue, 1021 LValue lvalue) 1022 : CGF(CGF), Data(OpaqueValueMappingData::bind(CGF, opaqueValue, lvalue)) { 1023 } 1024 1025 OpaqueValueMapping(CodeGenFunction &CGF, 1026 const OpaqueValueExpr *opaqueValue, 1027 RValue rvalue) 1028 : CGF(CGF), Data(OpaqueValueMappingData::bind(CGF, opaqueValue, rvalue)) { 1029 } 1030 1031 void pop() { 1032 Data.unbind(CGF); 1033 Data.clear(); 1034 } 1035 1036 ~OpaqueValueMapping() { 1037 if (Data.isValid()) Data.unbind(CGF); 1038 } 1039 }; 1040 1041 private: 1042 CGDebugInfo *DebugInfo; 1043 bool DisableDebugInfo; 1044 1045 /// DidCallStackSave - Whether llvm.stacksave has been called. Used to avoid 1046 /// calling llvm.stacksave for multiple VLAs in the same scope. 1047 bool DidCallStackSave; 1048 1049 /// IndirectBranch - The first time an indirect goto is seen we create a block 1050 /// with an indirect branch. Every time we see the address of a label taken, 1051 /// we add the label to the indirect goto. Every subsequent indirect goto is 1052 /// codegen'd as a jump to the IndirectBranch's basic block. 1053 llvm::IndirectBrInst *IndirectBranch; 1054 1055 /// LocalDeclMap - This keeps track of the LLVM allocas or globals for local C 1056 /// decls. 1057 DeclMapTy LocalDeclMap; 1058 1059 /// SizeArguments - If a ParmVarDecl had the pass_object_size attribute, this 1060 /// will contain a mapping from said ParmVarDecl to its implicit "object_size" 1061 /// parameter. 1062 llvm::SmallDenseMap<const ParmVarDecl *, const ImplicitParamDecl *, 2> 1063 SizeArguments; 1064 1065 /// Track escaped local variables with auto storage. Used during SEH 1066 /// outlining to produce a call to llvm.localescape. 1067 llvm::DenseMap<llvm::AllocaInst *, int> EscapedLocals; 1068 1069 /// LabelMap - This keeps track of the LLVM basic block for each C label. 1070 llvm::DenseMap<const LabelDecl*, JumpDest> LabelMap; 1071 1072 // BreakContinueStack - This keeps track of where break and continue 1073 // statements should jump to. 1074 struct BreakContinue { 1075 BreakContinue(JumpDest Break, JumpDest Continue) 1076 : BreakBlock(Break), ContinueBlock(Continue) {} 1077 1078 JumpDest BreakBlock; 1079 JumpDest ContinueBlock; 1080 }; 1081 SmallVector<BreakContinue, 8> BreakContinueStack; 1082 1083 /// Handles cancellation exit points in OpenMP-related constructs. 1084 class OpenMPCancelExitStack { 1085 /// Tracks cancellation exit point and join point for cancel-related exit 1086 /// and normal exit. 1087 struct CancelExit { 1088 CancelExit() = default; 1089 CancelExit(OpenMPDirectiveKind Kind, JumpDest ExitBlock, 1090 JumpDest ContBlock) 1091 : Kind(Kind), ExitBlock(ExitBlock), ContBlock(ContBlock) {} 1092 OpenMPDirectiveKind Kind = OMPD_unknown; 1093 /// true if the exit block has been emitted already by the special 1094 /// emitExit() call, false if the default codegen is used. 1095 bool HasBeenEmitted = false; 1096 JumpDest ExitBlock; 1097 JumpDest ContBlock; 1098 }; 1099 1100 SmallVector<CancelExit, 8> Stack; 1101 1102 public: 1103 OpenMPCancelExitStack() : Stack(1) {} 1104 ~OpenMPCancelExitStack() = default; 1105 /// Fetches the exit block for the current OpenMP construct. 1106 JumpDest getExitBlock() const { return Stack.back().ExitBlock; } 1107 /// Emits exit block with special codegen procedure specific for the related 1108 /// OpenMP construct + emits code for normal construct cleanup. 1109 void emitExit(CodeGenFunction &CGF, OpenMPDirectiveKind Kind, 1110 const llvm::function_ref<void(CodeGenFunction &)> &CodeGen) { 1111 if (Stack.back().Kind == Kind && getExitBlock().isValid()) { 1112 assert(CGF.getOMPCancelDestination(Kind).isValid()); 1113 assert(CGF.HaveInsertPoint()); 1114 assert(!Stack.back().HasBeenEmitted); 1115 auto IP = CGF.Builder.saveAndClearIP(); 1116 CGF.EmitBlock(Stack.back().ExitBlock.getBlock()); 1117 CodeGen(CGF); 1118 CGF.EmitBranchThroughCleanup(Stack.back().ContBlock); 1119 CGF.Builder.restoreIP(IP); 1120 Stack.back().HasBeenEmitted = true; 1121 } 1122 CodeGen(CGF); 1123 } 1124 /// Enter the cancel supporting \a Kind construct. 1125 /// \param Kind OpenMP directive that supports cancel constructs. 1126 /// \param HasCancel true, if the construct has inner cancel directive, 1127 /// false otherwise. 1128 void enter(CodeGenFunction &CGF, OpenMPDirectiveKind Kind, bool HasCancel) { 1129 Stack.push_back({Kind, 1130 HasCancel ? CGF.getJumpDestInCurrentScope("cancel.exit") 1131 : JumpDest(), 1132 HasCancel ? CGF.getJumpDestInCurrentScope("cancel.cont") 1133 : JumpDest()}); 1134 } 1135 /// Emits default exit point for the cancel construct (if the special one 1136 /// has not be used) + join point for cancel/normal exits. 1137 void exit(CodeGenFunction &CGF) { 1138 if (getExitBlock().isValid()) { 1139 assert(CGF.getOMPCancelDestination(Stack.back().Kind).isValid()); 1140 bool HaveIP = CGF.HaveInsertPoint(); 1141 if (!Stack.back().HasBeenEmitted) { 1142 if (HaveIP) 1143 CGF.EmitBranchThroughCleanup(Stack.back().ContBlock); 1144 CGF.EmitBlock(Stack.back().ExitBlock.getBlock()); 1145 CGF.EmitBranchThroughCleanup(Stack.back().ContBlock); 1146 } 1147 CGF.EmitBlock(Stack.back().ContBlock.getBlock()); 1148 if (!HaveIP) { 1149 CGF.Builder.CreateUnreachable(); 1150 CGF.Builder.ClearInsertionPoint(); 1151 } 1152 } 1153 Stack.pop_back(); 1154 } 1155 }; 1156 OpenMPCancelExitStack OMPCancelStack; 1157 1158 /// Controls insertion of cancellation exit blocks in worksharing constructs. 1159 class OMPCancelStackRAII { 1160 CodeGenFunction &CGF; 1161 1162 public: 1163 OMPCancelStackRAII(CodeGenFunction &CGF, OpenMPDirectiveKind Kind, 1164 bool HasCancel) 1165 : CGF(CGF) { 1166 CGF.OMPCancelStack.enter(CGF, Kind, HasCancel); 1167 } 1168 ~OMPCancelStackRAII() { CGF.OMPCancelStack.exit(CGF); } 1169 }; 1170 1171 CodeGenPGO PGO; 1172 1173 /// Calculate branch weights appropriate for PGO data 1174 llvm::MDNode *createProfileWeights(uint64_t TrueCount, uint64_t FalseCount); 1175 llvm::MDNode *createProfileWeights(ArrayRef<uint64_t> Weights); 1176 llvm::MDNode *createProfileWeightsForLoop(const Stmt *Cond, 1177 uint64_t LoopCount); 1178 1179 public: 1180 /// Increment the profiler's counter for the given statement by \p StepV. 1181 /// If \p StepV is null, the default increment is 1. 1182 void incrementProfileCounter(const Stmt *S, llvm::Value *StepV = nullptr) { 1183 if (CGM.getCodeGenOpts().hasProfileClangInstr()) 1184 PGO.emitCounterIncrement(Builder, S, StepV); 1185 PGO.setCurrentStmt(S); 1186 } 1187 1188 /// Get the profiler's count for the given statement. 1189 uint64_t getProfileCount(const Stmt *S) { 1190 Optional<uint64_t> Count = PGO.getStmtCount(S); 1191 if (!Count.hasValue()) 1192 return 0; 1193 return *Count; 1194 } 1195 1196 /// Set the profiler's current count. 1197 void setCurrentProfileCount(uint64_t Count) { 1198 PGO.setCurrentRegionCount(Count); 1199 } 1200 1201 /// Get the profiler's current count. This is generally the count for the most 1202 /// recently incremented counter. 1203 uint64_t getCurrentProfileCount() { 1204 return PGO.getCurrentRegionCount(); 1205 } 1206 1207 private: 1208 1209 /// SwitchInsn - This is nearest current switch instruction. It is null if 1210 /// current context is not in a switch. 1211 llvm::SwitchInst *SwitchInsn; 1212 /// The branch weights of SwitchInsn when doing instrumentation based PGO. 1213 SmallVector<uint64_t, 16> *SwitchWeights; 1214 1215 /// CaseRangeBlock - This block holds if condition check for last case 1216 /// statement range in current switch instruction. 1217 llvm::BasicBlock *CaseRangeBlock; 1218 1219 /// OpaqueLValues - Keeps track of the current set of opaque value 1220 /// expressions. 1221 llvm::DenseMap<const OpaqueValueExpr *, LValue> OpaqueLValues; 1222 llvm::DenseMap<const OpaqueValueExpr *, RValue> OpaqueRValues; 1223 1224 // VLASizeMap - This keeps track of the associated size for each VLA type. 1225 // We track this by the size expression rather than the type itself because 1226 // in certain situations, like a const qualifier applied to an VLA typedef, 1227 // multiple VLA types can share the same size expression. 1228 // FIXME: Maybe this could be a stack of maps that is pushed/popped as we 1229 // enter/leave scopes. 1230 llvm::DenseMap<const Expr*, llvm::Value*> VLASizeMap; 1231 1232 /// A block containing a single 'unreachable' instruction. Created 1233 /// lazily by getUnreachableBlock(). 1234 llvm::BasicBlock *UnreachableBlock; 1235 1236 /// Counts of the number return expressions in the function. 1237 unsigned NumReturnExprs; 1238 1239 /// Count the number of simple (constant) return expressions in the function. 1240 unsigned NumSimpleReturnExprs; 1241 1242 /// The last regular (non-return) debug location (breakpoint) in the function. 1243 SourceLocation LastStopPoint; 1244 1245 public: 1246 /// A scope within which we are constructing the fields of an object which 1247 /// might use a CXXDefaultInitExpr. This stashes away a 'this' value to use 1248 /// if we need to evaluate a CXXDefaultInitExpr within the evaluation. 1249 class FieldConstructionScope { 1250 public: 1251 FieldConstructionScope(CodeGenFunction &CGF, Address This) 1252 : CGF(CGF), OldCXXDefaultInitExprThis(CGF.CXXDefaultInitExprThis) { 1253 CGF.CXXDefaultInitExprThis = This; 1254 } 1255 ~FieldConstructionScope() { 1256 CGF.CXXDefaultInitExprThis = OldCXXDefaultInitExprThis; 1257 } 1258 1259 private: 1260 CodeGenFunction &CGF; 1261 Address OldCXXDefaultInitExprThis; 1262 }; 1263 1264 /// The scope of a CXXDefaultInitExpr. Within this scope, the value of 'this' 1265 /// is overridden to be the object under construction. 1266 class CXXDefaultInitExprScope { 1267 public: 1268 CXXDefaultInitExprScope(CodeGenFunction &CGF) 1269 : CGF(CGF), OldCXXThisValue(CGF.CXXThisValue), 1270 OldCXXThisAlignment(CGF.CXXThisAlignment) { 1271 CGF.CXXThisValue = CGF.CXXDefaultInitExprThis.getPointer(); 1272 CGF.CXXThisAlignment = CGF.CXXDefaultInitExprThis.getAlignment(); 1273 } 1274 ~CXXDefaultInitExprScope() { 1275 CGF.CXXThisValue = OldCXXThisValue; 1276 CGF.CXXThisAlignment = OldCXXThisAlignment; 1277 } 1278 1279 public: 1280 CodeGenFunction &CGF; 1281 llvm::Value *OldCXXThisValue; 1282 CharUnits OldCXXThisAlignment; 1283 }; 1284 1285 /// The scope of an ArrayInitLoopExpr. Within this scope, the value of the 1286 /// current loop index is overridden. 1287 class ArrayInitLoopExprScope { 1288 public: 1289 ArrayInitLoopExprScope(CodeGenFunction &CGF, llvm::Value *Index) 1290 : CGF(CGF), OldArrayInitIndex(CGF.ArrayInitIndex) { 1291 CGF.ArrayInitIndex = Index; 1292 } 1293 ~ArrayInitLoopExprScope() { 1294 CGF.ArrayInitIndex = OldArrayInitIndex; 1295 } 1296 1297 private: 1298 CodeGenFunction &CGF; 1299 llvm::Value *OldArrayInitIndex; 1300 }; 1301 1302 class InlinedInheritingConstructorScope { 1303 public: 1304 InlinedInheritingConstructorScope(CodeGenFunction &CGF, GlobalDecl GD) 1305 : CGF(CGF), OldCurGD(CGF.CurGD), OldCurFuncDecl(CGF.CurFuncDecl), 1306 OldCurCodeDecl(CGF.CurCodeDecl), 1307 OldCXXABIThisDecl(CGF.CXXABIThisDecl), 1308 OldCXXABIThisValue(CGF.CXXABIThisValue), 1309 OldCXXThisValue(CGF.CXXThisValue), 1310 OldCXXABIThisAlignment(CGF.CXXABIThisAlignment), 1311 OldCXXThisAlignment(CGF.CXXThisAlignment), 1312 OldReturnValue(CGF.ReturnValue), OldFnRetTy(CGF.FnRetTy), 1313 OldCXXInheritedCtorInitExprArgs( 1314 std::move(CGF.CXXInheritedCtorInitExprArgs)) { 1315 CGF.CurGD = GD; 1316 CGF.CurFuncDecl = CGF.CurCodeDecl = 1317 cast<CXXConstructorDecl>(GD.getDecl()); 1318 CGF.CXXABIThisDecl = nullptr; 1319 CGF.CXXABIThisValue = nullptr; 1320 CGF.CXXThisValue = nullptr; 1321 CGF.CXXABIThisAlignment = CharUnits(); 1322 CGF.CXXThisAlignment = CharUnits(); 1323 CGF.ReturnValue = Address::invalid(); 1324 CGF.FnRetTy = QualType(); 1325 CGF.CXXInheritedCtorInitExprArgs.clear(); 1326 } 1327 ~InlinedInheritingConstructorScope() { 1328 CGF.CurGD = OldCurGD; 1329 CGF.CurFuncDecl = OldCurFuncDecl; 1330 CGF.CurCodeDecl = OldCurCodeDecl; 1331 CGF.CXXABIThisDecl = OldCXXABIThisDecl; 1332 CGF.CXXABIThisValue = OldCXXABIThisValue; 1333 CGF.CXXThisValue = OldCXXThisValue; 1334 CGF.CXXABIThisAlignment = OldCXXABIThisAlignment; 1335 CGF.CXXThisAlignment = OldCXXThisAlignment; 1336 CGF.ReturnValue = OldReturnValue; 1337 CGF.FnRetTy = OldFnRetTy; 1338 CGF.CXXInheritedCtorInitExprArgs = 1339 std::move(OldCXXInheritedCtorInitExprArgs); 1340 } 1341 1342 private: 1343 CodeGenFunction &CGF; 1344 GlobalDecl OldCurGD; 1345 const Decl *OldCurFuncDecl; 1346 const Decl *OldCurCodeDecl; 1347 ImplicitParamDecl *OldCXXABIThisDecl; 1348 llvm::Value *OldCXXABIThisValue; 1349 llvm::Value *OldCXXThisValue; 1350 CharUnits OldCXXABIThisAlignment; 1351 CharUnits OldCXXThisAlignment; 1352 Address OldReturnValue; 1353 QualType OldFnRetTy; 1354 CallArgList OldCXXInheritedCtorInitExprArgs; 1355 }; 1356 1357 private: 1358 /// CXXThisDecl - When generating code for a C++ member function, 1359 /// this will hold the implicit 'this' declaration. 1360 ImplicitParamDecl *CXXABIThisDecl; 1361 llvm::Value *CXXABIThisValue; 1362 llvm::Value *CXXThisValue; 1363 CharUnits CXXABIThisAlignment; 1364 CharUnits CXXThisAlignment; 1365 1366 /// The value of 'this' to use when evaluating CXXDefaultInitExprs within 1367 /// this expression. 1368 Address CXXDefaultInitExprThis = Address::invalid(); 1369 1370 /// The current array initialization index when evaluating an 1371 /// ArrayInitIndexExpr within an ArrayInitLoopExpr. 1372 llvm::Value *ArrayInitIndex = nullptr; 1373 1374 /// The values of function arguments to use when evaluating 1375 /// CXXInheritedCtorInitExprs within this context. 1376 CallArgList CXXInheritedCtorInitExprArgs; 1377 1378 /// CXXStructorImplicitParamDecl - When generating code for a constructor or 1379 /// destructor, this will hold the implicit argument (e.g. VTT). 1380 ImplicitParamDecl *CXXStructorImplicitParamDecl; 1381 llvm::Value *CXXStructorImplicitParamValue; 1382 1383 /// OutermostConditional - Points to the outermost active 1384 /// conditional control. This is used so that we know if a 1385 /// temporary should be destroyed conditionally. 1386 ConditionalEvaluation *OutermostConditional; 1387 1388 /// The current lexical scope. 1389 LexicalScope *CurLexicalScope; 1390 1391 /// The current source location that should be used for exception 1392 /// handling code. 1393 SourceLocation CurEHLocation; 1394 1395 /// BlockByrefInfos - For each __block variable, contains 1396 /// information about the layout of the variable. 1397 llvm::DenseMap<const ValueDecl *, BlockByrefInfo> BlockByrefInfos; 1398 1399 /// Used by -fsanitize=nullability-return to determine whether the return 1400 /// value can be checked. 1401 llvm::Value *RetValNullabilityPrecondition = nullptr; 1402 1403 /// Check if -fsanitize=nullability-return instrumentation is required for 1404 /// this function. 1405 bool requiresReturnValueNullabilityCheck() const { 1406 return RetValNullabilityPrecondition; 1407 } 1408 1409 llvm::BasicBlock *TerminateLandingPad; 1410 llvm::BasicBlock *TerminateHandler; 1411 llvm::BasicBlock *TrapBB; 1412 1413 /// True if we need emit the life-time markers. 1414 const bool ShouldEmitLifetimeMarkers; 1415 1416 /// Add OpenCL kernel arg metadata and the kernel attribute meatadata to 1417 /// the function metadata. 1418 void EmitOpenCLKernelMetadata(const FunctionDecl *FD, 1419 llvm::Function *Fn); 1420 1421 public: 1422 CodeGenFunction(CodeGenModule &cgm, bool suppressNewContext=false); 1423 ~CodeGenFunction(); 1424 1425 CodeGenTypes &getTypes() const { return CGM.getTypes(); } 1426 ASTContext &getContext() const { return CGM.getContext(); } 1427 CGDebugInfo *getDebugInfo() { 1428 if (DisableDebugInfo) 1429 return nullptr; 1430 return DebugInfo; 1431 } 1432 void disableDebugInfo() { DisableDebugInfo = true; } 1433 void enableDebugInfo() { DisableDebugInfo = false; } 1434 1435 bool shouldUseFusedARCCalls() { 1436 return CGM.getCodeGenOpts().OptimizationLevel == 0; 1437 } 1438 1439 const LangOptions &getLangOpts() const { return CGM.getLangOpts(); } 1440 1441 /// Returns a pointer to the function's exception object and selector slot, 1442 /// which is assigned in every landing pad. 1443 Address getExceptionSlot(); 1444 Address getEHSelectorSlot(); 1445 1446 /// Returns the contents of the function's exception object and selector 1447 /// slots. 1448 llvm::Value *getExceptionFromSlot(); 1449 llvm::Value *getSelectorFromSlot(); 1450 1451 Address getNormalCleanupDestSlot(); 1452 1453 llvm::BasicBlock *getUnreachableBlock() { 1454 if (!UnreachableBlock) { 1455 UnreachableBlock = createBasicBlock("unreachable"); 1456 new llvm::UnreachableInst(getLLVMContext(), UnreachableBlock); 1457 } 1458 return UnreachableBlock; 1459 } 1460 1461 llvm::BasicBlock *getInvokeDest() { 1462 if (!EHStack.requiresLandingPad()) return nullptr; 1463 return getInvokeDestImpl(); 1464 } 1465 1466 bool currentFunctionUsesSEHTry() const { return CurSEHParent != nullptr; } 1467 1468 const TargetInfo &getTarget() const { return Target; } 1469 llvm::LLVMContext &getLLVMContext() { return CGM.getLLVMContext(); } 1470 1471 //===--------------------------------------------------------------------===// 1472 // Cleanups 1473 //===--------------------------------------------------------------------===// 1474 1475 typedef void Destroyer(CodeGenFunction &CGF, Address addr, QualType ty); 1476 1477 void pushIrregularPartialArrayCleanup(llvm::Value *arrayBegin, 1478 Address arrayEndPointer, 1479 QualType elementType, 1480 CharUnits elementAlignment, 1481 Destroyer *destroyer); 1482 void pushRegularPartialArrayCleanup(llvm::Value *arrayBegin, 1483 llvm::Value *arrayEnd, 1484 QualType elementType, 1485 CharUnits elementAlignment, 1486 Destroyer *destroyer); 1487 1488 void pushDestroy(QualType::DestructionKind dtorKind, 1489 Address addr, QualType type); 1490 void pushEHDestroy(QualType::DestructionKind dtorKind, 1491 Address addr, QualType type); 1492 void pushDestroy(CleanupKind kind, Address addr, QualType type, 1493 Destroyer *destroyer, bool useEHCleanupForArray); 1494 void pushLifetimeExtendedDestroy(CleanupKind kind, Address addr, 1495 QualType type, Destroyer *destroyer, 1496 bool useEHCleanupForArray); 1497 void pushCallObjectDeleteCleanup(const FunctionDecl *OperatorDelete, 1498 llvm::Value *CompletePtr, 1499 QualType ElementType); 1500 void pushStackRestore(CleanupKind kind, Address SPMem); 1501 void emitDestroy(Address addr, QualType type, Destroyer *destroyer, 1502 bool useEHCleanupForArray); 1503 llvm::Function *generateDestroyHelper(Address addr, QualType type, 1504 Destroyer *destroyer, 1505 bool useEHCleanupForArray, 1506 const VarDecl *VD); 1507 void emitArrayDestroy(llvm::Value *begin, llvm::Value *end, 1508 QualType elementType, CharUnits elementAlign, 1509 Destroyer *destroyer, 1510 bool checkZeroLength, bool useEHCleanup); 1511 1512 Destroyer *getDestroyer(QualType::DestructionKind destructionKind); 1513 1514 /// Determines whether an EH cleanup is required to destroy a type 1515 /// with the given destruction kind. 1516 bool needsEHCleanup(QualType::DestructionKind kind) { 1517 switch (kind) { 1518 case QualType::DK_none: 1519 return false; 1520 case QualType::DK_cxx_destructor: 1521 case QualType::DK_objc_weak_lifetime: 1522 return getLangOpts().Exceptions; 1523 case QualType::DK_objc_strong_lifetime: 1524 return getLangOpts().Exceptions && 1525 CGM.getCodeGenOpts().ObjCAutoRefCountExceptions; 1526 } 1527 llvm_unreachable("bad destruction kind"); 1528 } 1529 1530 CleanupKind getCleanupKind(QualType::DestructionKind kind) { 1531 return (needsEHCleanup(kind) ? NormalAndEHCleanup : NormalCleanup); 1532 } 1533 1534 //===--------------------------------------------------------------------===// 1535 // Objective-C 1536 //===--------------------------------------------------------------------===// 1537 1538 void GenerateObjCMethod(const ObjCMethodDecl *OMD); 1539 1540 void StartObjCMethod(const ObjCMethodDecl *MD, const ObjCContainerDecl *CD); 1541 1542 /// GenerateObjCGetter - Synthesize an Objective-C property getter function. 1543 void GenerateObjCGetter(ObjCImplementationDecl *IMP, 1544 const ObjCPropertyImplDecl *PID); 1545 void generateObjCGetterBody(const ObjCImplementationDecl *classImpl, 1546 const ObjCPropertyImplDecl *propImpl, 1547 const ObjCMethodDecl *GetterMothodDecl, 1548 llvm::Constant *AtomicHelperFn); 1549 1550 void GenerateObjCCtorDtorMethod(ObjCImplementationDecl *IMP, 1551 ObjCMethodDecl *MD, bool ctor); 1552 1553 /// GenerateObjCSetter - Synthesize an Objective-C property setter function 1554 /// for the given property. 1555 void GenerateObjCSetter(ObjCImplementationDecl *IMP, 1556 const ObjCPropertyImplDecl *PID); 1557 void generateObjCSetterBody(const ObjCImplementationDecl *classImpl, 1558 const ObjCPropertyImplDecl *propImpl, 1559 llvm::Constant *AtomicHelperFn); 1560 1561 //===--------------------------------------------------------------------===// 1562 // Block Bits 1563 //===--------------------------------------------------------------------===// 1564 1565 llvm::Value *EmitBlockLiteral(const BlockExpr *); 1566 static void destroyBlockInfos(CGBlockInfo *info); 1567 1568 llvm::Function *GenerateBlockFunction(GlobalDecl GD, 1569 const CGBlockInfo &Info, 1570 const DeclMapTy &ldm, 1571 bool IsLambdaConversionToBlock); 1572 1573 llvm::Constant *GenerateCopyHelperFunction(const CGBlockInfo &blockInfo); 1574 llvm::Constant *GenerateDestroyHelperFunction(const CGBlockInfo &blockInfo); 1575 llvm::Constant *GenerateObjCAtomicSetterCopyHelperFunction( 1576 const ObjCPropertyImplDecl *PID); 1577 llvm::Constant *GenerateObjCAtomicGetterCopyHelperFunction( 1578 const ObjCPropertyImplDecl *PID); 1579 llvm::Value *EmitBlockCopyAndAutorelease(llvm::Value *Block, QualType Ty); 1580 1581 void BuildBlockRelease(llvm::Value *DeclPtr, BlockFieldFlags flags); 1582 1583 class AutoVarEmission; 1584 1585 void emitByrefStructureInit(const AutoVarEmission &emission); 1586 void enterByrefCleanup(const AutoVarEmission &emission); 1587 1588 void setBlockContextParameter(const ImplicitParamDecl *D, unsigned argNum, 1589 llvm::Value *ptr); 1590 1591 Address LoadBlockStruct(); 1592 Address GetAddrOfBlockDecl(const VarDecl *var, bool ByRef); 1593 1594 /// BuildBlockByrefAddress - Computes the location of the 1595 /// data in a variable which is declared as __block. 1596 Address emitBlockByrefAddress(Address baseAddr, const VarDecl *V, 1597 bool followForward = true); 1598 Address emitBlockByrefAddress(Address baseAddr, 1599 const BlockByrefInfo &info, 1600 bool followForward, 1601 const llvm::Twine &name); 1602 1603 const BlockByrefInfo &getBlockByrefInfo(const VarDecl *var); 1604 1605 QualType BuildFunctionArgList(GlobalDecl GD, FunctionArgList &Args); 1606 1607 void GenerateCode(GlobalDecl GD, llvm::Function *Fn, 1608 const CGFunctionInfo &FnInfo); 1609 /// \brief Emit code for the start of a function. 1610 /// \param Loc The location to be associated with the function. 1611 /// \param StartLoc The location of the function body. 1612 void StartFunction(GlobalDecl GD, 1613 QualType RetTy, 1614 llvm::Function *Fn, 1615 const CGFunctionInfo &FnInfo, 1616 const FunctionArgList &Args, 1617 SourceLocation Loc = SourceLocation(), 1618 SourceLocation StartLoc = SourceLocation()); 1619 1620 static bool IsConstructorDelegationValid(const CXXConstructorDecl *Ctor); 1621 1622 void EmitConstructorBody(FunctionArgList &Args); 1623 void EmitDestructorBody(FunctionArgList &Args); 1624 void emitImplicitAssignmentOperatorBody(FunctionArgList &Args); 1625 void EmitFunctionBody(FunctionArgList &Args, const Stmt *Body); 1626 void EmitBlockWithFallThrough(llvm::BasicBlock *BB, const Stmt *S); 1627 1628 void EmitForwardingCallToLambda(const CXXMethodDecl *LambdaCallOperator, 1629 CallArgList &CallArgs); 1630 void EmitLambdaToBlockPointerBody(FunctionArgList &Args); 1631 void EmitLambdaBlockInvokeBody(); 1632 void EmitLambdaDelegatingInvokeBody(const CXXMethodDecl *MD); 1633 void EmitLambdaStaticInvokeFunction(const CXXMethodDecl *MD); 1634 void EmitAsanPrologueOrEpilogue(bool Prologue); 1635 1636 /// \brief Emit the unified return block, trying to avoid its emission when 1637 /// possible. 1638 /// \return The debug location of the user written return statement if the 1639 /// return block is is avoided. 1640 llvm::DebugLoc EmitReturnBlock(); 1641 1642 /// FinishFunction - Complete IR generation of the current function. It is 1643 /// legal to call this function even if there is no current insertion point. 1644 void FinishFunction(SourceLocation EndLoc=SourceLocation()); 1645 1646 void StartThunk(llvm::Function *Fn, GlobalDecl GD, 1647 const CGFunctionInfo &FnInfo); 1648 1649 void EmitCallAndReturnForThunk(llvm::Constant *Callee, 1650 const ThunkInfo *Thunk); 1651 1652 void FinishThunk(); 1653 1654 /// Emit a musttail call for a thunk with a potentially adjusted this pointer. 1655 void EmitMustTailThunk(const CXXMethodDecl *MD, llvm::Value *AdjustedThisPtr, 1656 llvm::Value *Callee); 1657 1658 /// Generate a thunk for the given method. 1659 void generateThunk(llvm::Function *Fn, const CGFunctionInfo &FnInfo, 1660 GlobalDecl GD, const ThunkInfo &Thunk); 1661 1662 llvm::Function *GenerateVarArgsThunk(llvm::Function *Fn, 1663 const CGFunctionInfo &FnInfo, 1664 GlobalDecl GD, const ThunkInfo &Thunk); 1665 1666 void EmitCtorPrologue(const CXXConstructorDecl *CD, CXXCtorType Type, 1667 FunctionArgList &Args); 1668 1669 void EmitInitializerForField(FieldDecl *Field, LValue LHS, Expr *Init); 1670 1671 /// Struct with all informations about dynamic [sub]class needed to set vptr. 1672 struct VPtr { 1673 BaseSubobject Base; 1674 const CXXRecordDecl *NearestVBase; 1675 CharUnits OffsetFromNearestVBase; 1676 const CXXRecordDecl *VTableClass; 1677 }; 1678 1679 /// Initialize the vtable pointer of the given subobject. 1680 void InitializeVTablePointer(const VPtr &vptr); 1681 1682 typedef llvm::SmallVector<VPtr, 4> VPtrsVector; 1683 1684 typedef llvm::SmallPtrSet<const CXXRecordDecl *, 4> VisitedVirtualBasesSetTy; 1685 VPtrsVector getVTablePointers(const CXXRecordDecl *VTableClass); 1686 1687 void getVTablePointers(BaseSubobject Base, const CXXRecordDecl *NearestVBase, 1688 CharUnits OffsetFromNearestVBase, 1689 bool BaseIsNonVirtualPrimaryBase, 1690 const CXXRecordDecl *VTableClass, 1691 VisitedVirtualBasesSetTy &VBases, VPtrsVector &vptrs); 1692 1693 void InitializeVTablePointers(const CXXRecordDecl *ClassDecl); 1694 1695 /// GetVTablePtr - Return the Value of the vtable pointer member pointed 1696 /// to by This. 1697 llvm::Value *GetVTablePtr(Address This, llvm::Type *VTableTy, 1698 const CXXRecordDecl *VTableClass); 1699 1700 enum CFITypeCheckKind { 1701 CFITCK_VCall, 1702 CFITCK_NVCall, 1703 CFITCK_DerivedCast, 1704 CFITCK_UnrelatedCast, 1705 CFITCK_ICall, 1706 }; 1707 1708 /// \brief Derived is the presumed address of an object of type T after a 1709 /// cast. If T is a polymorphic class type, emit a check that the virtual 1710 /// table for Derived belongs to a class derived from T. 1711 void EmitVTablePtrCheckForCast(QualType T, llvm::Value *Derived, 1712 bool MayBeNull, CFITypeCheckKind TCK, 1713 SourceLocation Loc); 1714 1715 /// EmitVTablePtrCheckForCall - Virtual method MD is being called via VTable. 1716 /// If vptr CFI is enabled, emit a check that VTable is valid. 1717 void EmitVTablePtrCheckForCall(const CXXRecordDecl *RD, llvm::Value *VTable, 1718 CFITypeCheckKind TCK, SourceLocation Loc); 1719 1720 /// EmitVTablePtrCheck - Emit a check that VTable is a valid virtual table for 1721 /// RD using llvm.type.test. 1722 void EmitVTablePtrCheck(const CXXRecordDecl *RD, llvm::Value *VTable, 1723 CFITypeCheckKind TCK, SourceLocation Loc); 1724 1725 /// If whole-program virtual table optimization is enabled, emit an assumption 1726 /// that VTable is a member of RD's type identifier. Or, if vptr CFI is 1727 /// enabled, emit a check that VTable is a member of RD's type identifier. 1728 void EmitTypeMetadataCodeForVCall(const CXXRecordDecl *RD, 1729 llvm::Value *VTable, SourceLocation Loc); 1730 1731 /// Returns whether we should perform a type checked load when loading a 1732 /// virtual function for virtual calls to members of RD. This is generally 1733 /// true when both vcall CFI and whole-program-vtables are enabled. 1734 bool ShouldEmitVTableTypeCheckedLoad(const CXXRecordDecl *RD); 1735 1736 /// Emit a type checked load from the given vtable. 1737 llvm::Value *EmitVTableTypeCheckedLoad(const CXXRecordDecl *RD, llvm::Value *VTable, 1738 uint64_t VTableByteOffset); 1739 1740 /// CanDevirtualizeMemberFunctionCalls - Checks whether virtual calls on given 1741 /// expr can be devirtualized. 1742 bool CanDevirtualizeMemberFunctionCall(const Expr *Base, 1743 const CXXMethodDecl *MD); 1744 1745 /// EnterDtorCleanups - Enter the cleanups necessary to complete the 1746 /// given phase of destruction for a destructor. The end result 1747 /// should call destructors on members and base classes in reverse 1748 /// order of their construction. 1749 void EnterDtorCleanups(const CXXDestructorDecl *Dtor, CXXDtorType Type); 1750 1751 /// ShouldInstrumentFunction - Return true if the current function should be 1752 /// instrumented with __cyg_profile_func_* calls 1753 bool ShouldInstrumentFunction(); 1754 1755 /// ShouldXRayInstrument - Return true if the current function should be 1756 /// instrumented with XRay nop sleds. 1757 bool ShouldXRayInstrumentFunction() const; 1758 1759 /// EmitFunctionInstrumentation - Emit LLVM code to call the specified 1760 /// instrumentation function with the current function and the call site, if 1761 /// function instrumentation is enabled. 1762 void EmitFunctionInstrumentation(const char *Fn); 1763 1764 /// EmitMCountInstrumentation - Emit call to .mcount. 1765 void EmitMCountInstrumentation(); 1766 1767 /// EmitFunctionProlog - Emit the target specific LLVM code to load the 1768 /// arguments for the given function. This is also responsible for naming the 1769 /// LLVM function arguments. 1770 void EmitFunctionProlog(const CGFunctionInfo &FI, 1771 llvm::Function *Fn, 1772 const FunctionArgList &Args); 1773 1774 /// EmitFunctionEpilog - Emit the target specific LLVM code to return the 1775 /// given temporary. 1776 void EmitFunctionEpilog(const CGFunctionInfo &FI, bool EmitRetDbgLoc, 1777 SourceLocation EndLoc); 1778 1779 /// Emit a test that checks if the return value \p RV is nonnull. 1780 void EmitReturnValueCheck(llvm::Value *RV, SourceLocation EndLoc); 1781 1782 /// EmitStartEHSpec - Emit the start of the exception spec. 1783 void EmitStartEHSpec(const Decl *D); 1784 1785 /// EmitEndEHSpec - Emit the end of the exception spec. 1786 void EmitEndEHSpec(const Decl *D); 1787 1788 /// getTerminateLandingPad - Return a landing pad that just calls terminate. 1789 llvm::BasicBlock *getTerminateLandingPad(); 1790 1791 /// getTerminateHandler - Return a handler (not a landing pad, just 1792 /// a catch handler) that just calls terminate. This is used when 1793 /// a terminate scope encloses a try. 1794 llvm::BasicBlock *getTerminateHandler(); 1795 1796 llvm::Type *ConvertTypeForMem(QualType T); 1797 llvm::Type *ConvertType(QualType T); 1798 llvm::Type *ConvertType(const TypeDecl *T) { 1799 return ConvertType(getContext().getTypeDeclType(T)); 1800 } 1801 1802 /// LoadObjCSelf - Load the value of self. This function is only valid while 1803 /// generating code for an Objective-C method. 1804 llvm::Value *LoadObjCSelf(); 1805 1806 /// TypeOfSelfObject - Return type of object that this self represents. 1807 QualType TypeOfSelfObject(); 1808 1809 /// hasAggregateLLVMType - Return true if the specified AST type will map into 1810 /// an aggregate LLVM type or is void. 1811 static TypeEvaluationKind getEvaluationKind(QualType T); 1812 1813 static bool hasScalarEvaluationKind(QualType T) { 1814 return getEvaluationKind(T) == TEK_Scalar; 1815 } 1816 1817 static bool hasAggregateEvaluationKind(QualType T) { 1818 return getEvaluationKind(T) == TEK_Aggregate; 1819 } 1820 1821 /// createBasicBlock - Create an LLVM basic block. 1822 llvm::BasicBlock *createBasicBlock(const Twine &name = "", 1823 llvm::Function *parent = nullptr, 1824 llvm::BasicBlock *before = nullptr) { 1825 #ifdef NDEBUG 1826 return llvm::BasicBlock::Create(getLLVMContext(), "", parent, before); 1827 #else 1828 return llvm::BasicBlock::Create(getLLVMContext(), name, parent, before); 1829 #endif 1830 } 1831 1832 /// getBasicBlockForLabel - Return the LLVM basicblock that the specified 1833 /// label maps to. 1834 JumpDest getJumpDestForLabel(const LabelDecl *S); 1835 1836 /// SimplifyForwardingBlocks - If the given basic block is only a branch to 1837 /// another basic block, simplify it. This assumes that no other code could 1838 /// potentially reference the basic block. 1839 void SimplifyForwardingBlocks(llvm::BasicBlock *BB); 1840 1841 /// EmitBlock - Emit the given block \arg BB and set it as the insert point, 1842 /// adding a fall-through branch from the current insert block if 1843 /// necessary. It is legal to call this function even if there is no current 1844 /// insertion point. 1845 /// 1846 /// IsFinished - If true, indicates that the caller has finished emitting 1847 /// branches to the given block and does not expect to emit code into it. This 1848 /// means the block can be ignored if it is unreachable. 1849 void EmitBlock(llvm::BasicBlock *BB, bool IsFinished=false); 1850 1851 /// EmitBlockAfterUses - Emit the given block somewhere hopefully 1852 /// near its uses, and leave the insertion point in it. 1853 void EmitBlockAfterUses(llvm::BasicBlock *BB); 1854 1855 /// EmitBranch - Emit a branch to the specified basic block from the current 1856 /// insert block, taking care to avoid creation of branches from dummy 1857 /// blocks. It is legal to call this function even if there is no current 1858 /// insertion point. 1859 /// 1860 /// This function clears the current insertion point. The caller should follow 1861 /// calls to this function with calls to Emit*Block prior to generation new 1862 /// code. 1863 void EmitBranch(llvm::BasicBlock *Block); 1864 1865 /// HaveInsertPoint - True if an insertion point is defined. If not, this 1866 /// indicates that the current code being emitted is unreachable. 1867 bool HaveInsertPoint() const { 1868 return Builder.GetInsertBlock() != nullptr; 1869 } 1870 1871 /// EnsureInsertPoint - Ensure that an insertion point is defined so that 1872 /// emitted IR has a place to go. Note that by definition, if this function 1873 /// creates a block then that block is unreachable; callers may do better to 1874 /// detect when no insertion point is defined and simply skip IR generation. 1875 void EnsureInsertPoint() { 1876 if (!HaveInsertPoint()) 1877 EmitBlock(createBasicBlock()); 1878 } 1879 1880 /// ErrorUnsupported - Print out an error that codegen doesn't support the 1881 /// specified stmt yet. 1882 void ErrorUnsupported(const Stmt *S, const char *Type); 1883 1884 //===--------------------------------------------------------------------===// 1885 // Helpers 1886 //===--------------------------------------------------------------------===// 1887 1888 LValue MakeAddrLValue(Address Addr, QualType T, 1889 AlignmentSource AlignSource = AlignmentSource::Type) { 1890 return LValue::MakeAddr(Addr, T, getContext(), AlignSource, 1891 CGM.getTBAAInfo(T)); 1892 } 1893 1894 LValue MakeAddrLValue(llvm::Value *V, QualType T, CharUnits Alignment, 1895 AlignmentSource AlignSource = AlignmentSource::Type) { 1896 return LValue::MakeAddr(Address(V, Alignment), T, getContext(), 1897 AlignSource, CGM.getTBAAInfo(T)); 1898 } 1899 1900 LValue MakeNaturalAlignPointeeAddrLValue(llvm::Value *V, QualType T); 1901 LValue MakeNaturalAlignAddrLValue(llvm::Value *V, QualType T); 1902 CharUnits getNaturalTypeAlignment(QualType T, 1903 AlignmentSource *Source = nullptr, 1904 bool forPointeeType = false); 1905 CharUnits getNaturalPointeeTypeAlignment(QualType T, 1906 AlignmentSource *Source = nullptr); 1907 1908 Address EmitLoadOfReference(Address Ref, const ReferenceType *RefTy, 1909 AlignmentSource *Source = nullptr); 1910 LValue EmitLoadOfReferenceLValue(Address Ref, const ReferenceType *RefTy); 1911 1912 Address EmitLoadOfPointer(Address Ptr, const PointerType *PtrTy, 1913 AlignmentSource *Source = nullptr); 1914 LValue EmitLoadOfPointerLValue(Address Ptr, const PointerType *PtrTy); 1915 1916 /// CreateTempAlloca - This creates a alloca and inserts it into the entry 1917 /// block. The caller is responsible for setting an appropriate alignment on 1918 /// the alloca. 1919 llvm::AllocaInst *CreateTempAlloca(llvm::Type *Ty, 1920 const Twine &Name = "tmp"); 1921 Address CreateTempAlloca(llvm::Type *Ty, CharUnits align, 1922 const Twine &Name = "tmp"); 1923 1924 /// CreateDefaultAlignedTempAlloca - This creates an alloca with the 1925 /// default ABI alignment of the given LLVM type. 1926 /// 1927 /// IMPORTANT NOTE: This is *not* generally the right alignment for 1928 /// any given AST type that happens to have been lowered to the 1929 /// given IR type. This should only ever be used for function-local, 1930 /// IR-driven manipulations like saving and restoring a value. Do 1931 /// not hand this address off to arbitrary IRGen routines, and especially 1932 /// do not pass it as an argument to a function that might expect a 1933 /// properly ABI-aligned value. 1934 Address CreateDefaultAlignTempAlloca(llvm::Type *Ty, 1935 const Twine &Name = "tmp"); 1936 1937 /// InitTempAlloca - Provide an initial value for the given alloca which 1938 /// will be observable at all locations in the function. 1939 /// 1940 /// The address should be something that was returned from one of 1941 /// the CreateTempAlloca or CreateMemTemp routines, and the 1942 /// initializer must be valid in the entry block (i.e. it must 1943 /// either be a constant or an argument value). 1944 void InitTempAlloca(Address Alloca, llvm::Value *Value); 1945 1946 /// CreateIRTemp - Create a temporary IR object of the given type, with 1947 /// appropriate alignment. This routine should only be used when an temporary 1948 /// value needs to be stored into an alloca (for example, to avoid explicit 1949 /// PHI construction), but the type is the IR type, not the type appropriate 1950 /// for storing in memory. 1951 /// 1952 /// That is, this is exactly equivalent to CreateMemTemp, but calling 1953 /// ConvertType instead of ConvertTypeForMem. 1954 Address CreateIRTemp(QualType T, const Twine &Name = "tmp"); 1955 1956 /// CreateMemTemp - Create a temporary memory object of the given type, with 1957 /// appropriate alignment. 1958 Address CreateMemTemp(QualType T, const Twine &Name = "tmp"); 1959 Address CreateMemTemp(QualType T, CharUnits Align, const Twine &Name = "tmp"); 1960 1961 /// CreateAggTemp - Create a temporary memory object for the given 1962 /// aggregate type. 1963 AggValueSlot CreateAggTemp(QualType T, const Twine &Name = "tmp") { 1964 return AggValueSlot::forAddr(CreateMemTemp(T, Name), 1965 T.getQualifiers(), 1966 AggValueSlot::IsNotDestructed, 1967 AggValueSlot::DoesNotNeedGCBarriers, 1968 AggValueSlot::IsNotAliased); 1969 } 1970 1971 /// Emit a cast to void* in the appropriate address space. 1972 llvm::Value *EmitCastToVoidPtr(llvm::Value *value); 1973 1974 /// EvaluateExprAsBool - Perform the usual unary conversions on the specified 1975 /// expression and compare the result against zero, returning an Int1Ty value. 1976 llvm::Value *EvaluateExprAsBool(const Expr *E); 1977 1978 /// EmitIgnoredExpr - Emit an expression in a context which ignores the result. 1979 void EmitIgnoredExpr(const Expr *E); 1980 1981 /// EmitAnyExpr - Emit code to compute the specified expression which can have 1982 /// any type. The result is returned as an RValue struct. If this is an 1983 /// aggregate expression, the aggloc/agglocvolatile arguments indicate where 1984 /// the result should be returned. 1985 /// 1986 /// \param ignoreResult True if the resulting value isn't used. 1987 RValue EmitAnyExpr(const Expr *E, 1988 AggValueSlot aggSlot = AggValueSlot::ignored(), 1989 bool ignoreResult = false); 1990 1991 // EmitVAListRef - Emit a "reference" to a va_list; this is either the address 1992 // or the value of the expression, depending on how va_list is defined. 1993 Address EmitVAListRef(const Expr *E); 1994 1995 /// Emit a "reference" to a __builtin_ms_va_list; this is 1996 /// always the value of the expression, because a __builtin_ms_va_list is a 1997 /// pointer to a char. 1998 Address EmitMSVAListRef(const Expr *E); 1999 2000 /// EmitAnyExprToTemp - Similarly to EmitAnyExpr(), however, the result will 2001 /// always be accessible even if no aggregate location is provided. 2002 RValue EmitAnyExprToTemp(const Expr *E); 2003 2004 /// EmitAnyExprToMem - Emits the code necessary to evaluate an 2005 /// arbitrary expression into the given memory location. 2006 void EmitAnyExprToMem(const Expr *E, Address Location, 2007 Qualifiers Quals, bool IsInitializer); 2008 2009 void EmitAnyExprToExn(const Expr *E, Address Addr); 2010 2011 /// EmitExprAsInit - Emits the code necessary to initialize a 2012 /// location in memory with the given initializer. 2013 void EmitExprAsInit(const Expr *init, const ValueDecl *D, LValue lvalue, 2014 bool capturedByInit); 2015 2016 /// hasVolatileMember - returns true if aggregate type has a volatile 2017 /// member. 2018 bool hasVolatileMember(QualType T) { 2019 if (const RecordType *RT = T->getAs<RecordType>()) { 2020 const RecordDecl *RD = cast<RecordDecl>(RT->getDecl()); 2021 return RD->hasVolatileMember(); 2022 } 2023 return false; 2024 } 2025 /// EmitAggregateCopy - Emit an aggregate assignment. 2026 /// 2027 /// The difference to EmitAggregateCopy is that tail padding is not copied. 2028 /// This is required for correctness when assigning non-POD structures in C++. 2029 void EmitAggregateAssign(Address DestPtr, Address SrcPtr, 2030 QualType EltTy) { 2031 bool IsVolatile = hasVolatileMember(EltTy); 2032 EmitAggregateCopy(DestPtr, SrcPtr, EltTy, IsVolatile, true); 2033 } 2034 2035 void EmitAggregateCopyCtor(Address DestPtr, Address SrcPtr, 2036 QualType DestTy, QualType SrcTy) { 2037 EmitAggregateCopy(DestPtr, SrcPtr, SrcTy, /*IsVolatile=*/false, 2038 /*IsAssignment=*/false); 2039 } 2040 2041 /// EmitAggregateCopy - Emit an aggregate copy. 2042 /// 2043 /// \param isVolatile - True iff either the source or the destination is 2044 /// volatile. 2045 /// \param isAssignment - If false, allow padding to be copied. This often 2046 /// yields more efficient. 2047 void EmitAggregateCopy(Address DestPtr, Address SrcPtr, 2048 QualType EltTy, bool isVolatile=false, 2049 bool isAssignment = false); 2050 2051 /// GetAddrOfLocalVar - Return the address of a local variable. 2052 Address GetAddrOfLocalVar(const VarDecl *VD) { 2053 auto it = LocalDeclMap.find(VD); 2054 assert(it != LocalDeclMap.end() && 2055 "Invalid argument to GetAddrOfLocalVar(), no decl!"); 2056 return it->second; 2057 } 2058 2059 /// getOpaqueLValueMapping - Given an opaque value expression (which 2060 /// must be mapped to an l-value), return its mapping. 2061 const LValue &getOpaqueLValueMapping(const OpaqueValueExpr *e) { 2062 assert(OpaqueValueMapping::shouldBindAsLValue(e)); 2063 2064 llvm::DenseMap<const OpaqueValueExpr*,LValue>::iterator 2065 it = OpaqueLValues.find(e); 2066 assert(it != OpaqueLValues.end() && "no mapping for opaque value!"); 2067 return it->second; 2068 } 2069 2070 /// getOpaqueRValueMapping - Given an opaque value expression (which 2071 /// must be mapped to an r-value), return its mapping. 2072 const RValue &getOpaqueRValueMapping(const OpaqueValueExpr *e) { 2073 assert(!OpaqueValueMapping::shouldBindAsLValue(e)); 2074 2075 llvm::DenseMap<const OpaqueValueExpr*,RValue>::iterator 2076 it = OpaqueRValues.find(e); 2077 assert(it != OpaqueRValues.end() && "no mapping for opaque value!"); 2078 return it->second; 2079 } 2080 2081 /// Get the index of the current ArrayInitLoopExpr, if any. 2082 llvm::Value *getArrayInitIndex() { return ArrayInitIndex; } 2083 2084 /// getAccessedFieldNo - Given an encoded value and a result number, return 2085 /// the input field number being accessed. 2086 static unsigned getAccessedFieldNo(unsigned Idx, const llvm::Constant *Elts); 2087 2088 llvm::BlockAddress *GetAddrOfLabel(const LabelDecl *L); 2089 llvm::BasicBlock *GetIndirectGotoBlock(); 2090 2091 /// Check if \p E is a C++ "this" pointer wrapped in value-preserving casts. 2092 static bool IsWrappedCXXThis(const Expr *E); 2093 2094 /// EmitNullInitialization - Generate code to set a value of the given type to 2095 /// null, If the type contains data member pointers, they will be initialized 2096 /// to -1 in accordance with the Itanium C++ ABI. 2097 void EmitNullInitialization(Address DestPtr, QualType Ty); 2098 2099 /// Emits a call to an LLVM variable-argument intrinsic, either 2100 /// \c llvm.va_start or \c llvm.va_end. 2101 /// \param ArgValue A reference to the \c va_list as emitted by either 2102 /// \c EmitVAListRef or \c EmitMSVAListRef. 2103 /// \param IsStart If \c true, emits a call to \c llvm.va_start; otherwise, 2104 /// calls \c llvm.va_end. 2105 llvm::Value *EmitVAStartEnd(llvm::Value *ArgValue, bool IsStart); 2106 2107 /// Generate code to get an argument from the passed in pointer 2108 /// and update it accordingly. 2109 /// \param VE The \c VAArgExpr for which to generate code. 2110 /// \param VAListAddr Receives a reference to the \c va_list as emitted by 2111 /// either \c EmitVAListRef or \c EmitMSVAListRef. 2112 /// \returns A pointer to the argument. 2113 // FIXME: We should be able to get rid of this method and use the va_arg 2114 // instruction in LLVM instead once it works well enough. 2115 Address EmitVAArg(VAArgExpr *VE, Address &VAListAddr); 2116 2117 /// emitArrayLength - Compute the length of an array, even if it's a 2118 /// VLA, and drill down to the base element type. 2119 llvm::Value *emitArrayLength(const ArrayType *arrayType, 2120 QualType &baseType, 2121 Address &addr); 2122 2123 /// EmitVLASize - Capture all the sizes for the VLA expressions in 2124 /// the given variably-modified type and store them in the VLASizeMap. 2125 /// 2126 /// This function can be called with a null (unreachable) insert point. 2127 void EmitVariablyModifiedType(QualType Ty); 2128 2129 /// getVLASize - Returns an LLVM value that corresponds to the size, 2130 /// in non-variably-sized elements, of a variable length array type, 2131 /// plus that largest non-variably-sized element type. Assumes that 2132 /// the type has already been emitted with EmitVariablyModifiedType. 2133 std::pair<llvm::Value*,QualType> getVLASize(const VariableArrayType *vla); 2134 std::pair<llvm::Value*,QualType> getVLASize(QualType vla); 2135 2136 /// LoadCXXThis - Load the value of 'this'. This function is only valid while 2137 /// generating code for an C++ member function. 2138 llvm::Value *LoadCXXThis() { 2139 assert(CXXThisValue && "no 'this' value for this function"); 2140 return CXXThisValue; 2141 } 2142 Address LoadCXXThisAddress(); 2143 2144 /// LoadCXXVTT - Load the VTT parameter to base constructors/destructors have 2145 /// virtual bases. 2146 // FIXME: Every place that calls LoadCXXVTT is something 2147 // that needs to be abstracted properly. 2148 llvm::Value *LoadCXXVTT() { 2149 assert(CXXStructorImplicitParamValue && "no VTT value for this function"); 2150 return CXXStructorImplicitParamValue; 2151 } 2152 2153 /// GetAddressOfBaseOfCompleteClass - Convert the given pointer to a 2154 /// complete class to the given direct base. 2155 Address 2156 GetAddressOfDirectBaseInCompleteClass(Address Value, 2157 const CXXRecordDecl *Derived, 2158 const CXXRecordDecl *Base, 2159 bool BaseIsVirtual); 2160 2161 static bool ShouldNullCheckClassCastValue(const CastExpr *Cast); 2162 2163 /// GetAddressOfBaseClass - This function will add the necessary delta to the 2164 /// load of 'this' and returns address of the base class. 2165 Address GetAddressOfBaseClass(Address Value, 2166 const CXXRecordDecl *Derived, 2167 CastExpr::path_const_iterator PathBegin, 2168 CastExpr::path_const_iterator PathEnd, 2169 bool NullCheckValue, SourceLocation Loc); 2170 2171 Address GetAddressOfDerivedClass(Address Value, 2172 const CXXRecordDecl *Derived, 2173 CastExpr::path_const_iterator PathBegin, 2174 CastExpr::path_const_iterator PathEnd, 2175 bool NullCheckValue); 2176 2177 /// GetVTTParameter - Return the VTT parameter that should be passed to a 2178 /// base constructor/destructor with virtual bases. 2179 /// FIXME: VTTs are Itanium ABI-specific, so the definition should move 2180 /// to ItaniumCXXABI.cpp together with all the references to VTT. 2181 llvm::Value *GetVTTParameter(GlobalDecl GD, bool ForVirtualBase, 2182 bool Delegating); 2183 2184 void EmitDelegateCXXConstructorCall(const CXXConstructorDecl *Ctor, 2185 CXXCtorType CtorType, 2186 const FunctionArgList &Args, 2187 SourceLocation Loc); 2188 // It's important not to confuse this and the previous function. Delegating 2189 // constructors are the C++0x feature. The constructor delegate optimization 2190 // is used to reduce duplication in the base and complete consturctors where 2191 // they are substantially the same. 2192 void EmitDelegatingCXXConstructorCall(const CXXConstructorDecl *Ctor, 2193 const FunctionArgList &Args); 2194 2195 /// Emit a call to an inheriting constructor (that is, one that invokes a 2196 /// constructor inherited from a base class) by inlining its definition. This 2197 /// is necessary if the ABI does not support forwarding the arguments to the 2198 /// base class constructor (because they're variadic or similar). 2199 void EmitInlinedInheritingCXXConstructorCall(const CXXConstructorDecl *Ctor, 2200 CXXCtorType CtorType, 2201 bool ForVirtualBase, 2202 bool Delegating, 2203 CallArgList &Args); 2204 2205 /// Emit a call to a constructor inherited from a base class, passing the 2206 /// current constructor's arguments along unmodified (without even making 2207 /// a copy). 2208 void EmitInheritedCXXConstructorCall(const CXXConstructorDecl *D, 2209 bool ForVirtualBase, Address This, 2210 bool InheritedFromVBase, 2211 const CXXInheritedCtorInitExpr *E); 2212 2213 void EmitCXXConstructorCall(const CXXConstructorDecl *D, CXXCtorType Type, 2214 bool ForVirtualBase, bool Delegating, 2215 Address This, const CXXConstructExpr *E); 2216 2217 void EmitCXXConstructorCall(const CXXConstructorDecl *D, CXXCtorType Type, 2218 bool ForVirtualBase, bool Delegating, 2219 Address This, CallArgList &Args); 2220 2221 /// Emit assumption load for all bases. Requires to be be called only on 2222 /// most-derived class and not under construction of the object. 2223 void EmitVTableAssumptionLoads(const CXXRecordDecl *ClassDecl, Address This); 2224 2225 /// Emit assumption that vptr load == global vtable. 2226 void EmitVTableAssumptionLoad(const VPtr &vptr, Address This); 2227 2228 void EmitSynthesizedCXXCopyCtorCall(const CXXConstructorDecl *D, 2229 Address This, Address Src, 2230 const CXXConstructExpr *E); 2231 2232 void EmitCXXAggrConstructorCall(const CXXConstructorDecl *D, 2233 const ArrayType *ArrayTy, 2234 Address ArrayPtr, 2235 const CXXConstructExpr *E, 2236 bool ZeroInitialization = false); 2237 2238 void EmitCXXAggrConstructorCall(const CXXConstructorDecl *D, 2239 llvm::Value *NumElements, 2240 Address ArrayPtr, 2241 const CXXConstructExpr *E, 2242 bool ZeroInitialization = false); 2243 2244 static Destroyer destroyCXXObject; 2245 2246 void EmitCXXDestructorCall(const CXXDestructorDecl *D, CXXDtorType Type, 2247 bool ForVirtualBase, bool Delegating, 2248 Address This); 2249 2250 void EmitNewArrayInitializer(const CXXNewExpr *E, QualType elementType, 2251 llvm::Type *ElementTy, Address NewPtr, 2252 llvm::Value *NumElements, 2253 llvm::Value *AllocSizeWithoutCookie); 2254 2255 void EmitCXXTemporary(const CXXTemporary *Temporary, QualType TempType, 2256 Address Ptr); 2257 2258 llvm::Value *EmitLifetimeStart(uint64_t Size, llvm::Value *Addr); 2259 void EmitLifetimeEnd(llvm::Value *Size, llvm::Value *Addr); 2260 2261 llvm::Value *EmitCXXNewExpr(const CXXNewExpr *E); 2262 void EmitCXXDeleteExpr(const CXXDeleteExpr *E); 2263 2264 void EmitDeleteCall(const FunctionDecl *DeleteFD, llvm::Value *Ptr, 2265 QualType DeleteTy, llvm::Value *NumElements = nullptr, 2266 CharUnits CookieSize = CharUnits()); 2267 2268 RValue EmitBuiltinNewDeleteCall(const FunctionProtoType *Type, 2269 const Expr *Arg, bool IsDelete); 2270 2271 llvm::Value *EmitCXXTypeidExpr(const CXXTypeidExpr *E); 2272 llvm::Value *EmitDynamicCast(Address V, const CXXDynamicCastExpr *DCE); 2273 Address EmitCXXUuidofExpr(const CXXUuidofExpr *E); 2274 2275 /// \brief Situations in which we might emit a check for the suitability of a 2276 /// pointer or glvalue. 2277 enum TypeCheckKind { 2278 /// Checking the operand of a load. Must be suitably sized and aligned. 2279 TCK_Load, 2280 /// Checking the destination of a store. Must be suitably sized and aligned. 2281 TCK_Store, 2282 /// Checking the bound value in a reference binding. Must be suitably sized 2283 /// and aligned, but is not required to refer to an object (until the 2284 /// reference is used), per core issue 453. 2285 TCK_ReferenceBinding, 2286 /// Checking the object expression in a non-static data member access. Must 2287 /// be an object within its lifetime. 2288 TCK_MemberAccess, 2289 /// Checking the 'this' pointer for a call to a non-static member function. 2290 /// Must be an object within its lifetime. 2291 TCK_MemberCall, 2292 /// Checking the 'this' pointer for a constructor call. 2293 TCK_ConstructorCall, 2294 /// Checking the operand of a static_cast to a derived pointer type. Must be 2295 /// null or an object within its lifetime. 2296 TCK_DowncastPointer, 2297 /// Checking the operand of a static_cast to a derived reference type. Must 2298 /// be an object within its lifetime. 2299 TCK_DowncastReference, 2300 /// Checking the operand of a cast to a base object. Must be suitably sized 2301 /// and aligned. 2302 TCK_Upcast, 2303 /// Checking the operand of a cast to a virtual base object. Must be an 2304 /// object within its lifetime. 2305 TCK_UpcastToVirtualBase, 2306 /// Checking the value assigned to a _Nonnull pointer. Must not be null. 2307 TCK_NonnullAssign 2308 }; 2309 2310 /// \brief Whether any type-checking sanitizers are enabled. If \c false, 2311 /// calls to EmitTypeCheck can be skipped. 2312 bool sanitizePerformTypeCheck() const; 2313 2314 /// \brief Emit a check that \p V is the address of storage of the 2315 /// appropriate size and alignment for an object of type \p Type. 2316 void EmitTypeCheck(TypeCheckKind TCK, SourceLocation Loc, llvm::Value *V, 2317 QualType Type, CharUnits Alignment = CharUnits::Zero(), 2318 SanitizerSet SkippedChecks = SanitizerSet()); 2319 2320 /// \brief Emit a check that \p Base points into an array object, which 2321 /// we can access at index \p Index. \p Accessed should be \c false if we 2322 /// this expression is used as an lvalue, for instance in "&Arr[Idx]". 2323 void EmitBoundsCheck(const Expr *E, const Expr *Base, llvm::Value *Index, 2324 QualType IndexType, bool Accessed); 2325 2326 llvm::Value *EmitScalarPrePostIncDec(const UnaryOperator *E, LValue LV, 2327 bool isInc, bool isPre); 2328 ComplexPairTy EmitComplexPrePostIncDec(const UnaryOperator *E, LValue LV, 2329 bool isInc, bool isPre); 2330 2331 void EmitAlignmentAssumption(llvm::Value *PtrValue, unsigned Alignment, 2332 llvm::Value *OffsetValue = nullptr) { 2333 Builder.CreateAlignmentAssumption(CGM.getDataLayout(), PtrValue, Alignment, 2334 OffsetValue); 2335 } 2336 2337 /// Converts Location to a DebugLoc, if debug information is enabled. 2338 llvm::DebugLoc SourceLocToDebugLoc(SourceLocation Location); 2339 2340 2341 //===--------------------------------------------------------------------===// 2342 // Declaration Emission 2343 //===--------------------------------------------------------------------===// 2344 2345 /// EmitDecl - Emit a declaration. 2346 /// 2347 /// This function can be called with a null (unreachable) insert point. 2348 void EmitDecl(const Decl &D); 2349 2350 /// EmitVarDecl - Emit a local variable declaration. 2351 /// 2352 /// This function can be called with a null (unreachable) insert point. 2353 void EmitVarDecl(const VarDecl &D); 2354 2355 void EmitScalarInit(const Expr *init, const ValueDecl *D, LValue lvalue, 2356 bool capturedByInit); 2357 2358 typedef void SpecialInitFn(CodeGenFunction &Init, const VarDecl &D, 2359 llvm::Value *Address); 2360 2361 /// \brief Determine whether the given initializer is trivial in the sense 2362 /// that it requires no code to be generated. 2363 bool isTrivialInitializer(const Expr *Init); 2364 2365 /// EmitAutoVarDecl - Emit an auto variable declaration. 2366 /// 2367 /// This function can be called with a null (unreachable) insert point. 2368 void EmitAutoVarDecl(const VarDecl &D); 2369 2370 class AutoVarEmission { 2371 friend class CodeGenFunction; 2372 2373 const VarDecl *Variable; 2374 2375 /// The address of the alloca. Invalid if the variable was emitted 2376 /// as a global constant. 2377 Address Addr; 2378 2379 llvm::Value *NRVOFlag; 2380 2381 /// True if the variable is a __block variable. 2382 bool IsByRef; 2383 2384 /// True if the variable is of aggregate type and has a constant 2385 /// initializer. 2386 bool IsConstantAggregate; 2387 2388 /// Non-null if we should use lifetime annotations. 2389 llvm::Value *SizeForLifetimeMarkers; 2390 2391 struct Invalid {}; 2392 AutoVarEmission(Invalid) : Variable(nullptr), Addr(Address::invalid()) {} 2393 2394 AutoVarEmission(const VarDecl &variable) 2395 : Variable(&variable), Addr(Address::invalid()), NRVOFlag(nullptr), 2396 IsByRef(false), IsConstantAggregate(false), 2397 SizeForLifetimeMarkers(nullptr) {} 2398 2399 bool wasEmittedAsGlobal() const { return !Addr.isValid(); } 2400 2401 public: 2402 static AutoVarEmission invalid() { return AutoVarEmission(Invalid()); } 2403 2404 bool useLifetimeMarkers() const { 2405 return SizeForLifetimeMarkers != nullptr; 2406 } 2407 llvm::Value *getSizeForLifetimeMarkers() const { 2408 assert(useLifetimeMarkers()); 2409 return SizeForLifetimeMarkers; 2410 } 2411 2412 /// Returns the raw, allocated address, which is not necessarily 2413 /// the address of the object itself. 2414 Address getAllocatedAddress() const { 2415 return Addr; 2416 } 2417 2418 /// Returns the address of the object within this declaration. 2419 /// Note that this does not chase the forwarding pointer for 2420 /// __block decls. 2421 Address getObjectAddress(CodeGenFunction &CGF) const { 2422 if (!IsByRef) return Addr; 2423 2424 return CGF.emitBlockByrefAddress(Addr, Variable, /*forward*/ false); 2425 } 2426 }; 2427 AutoVarEmission EmitAutoVarAlloca(const VarDecl &var); 2428 void EmitAutoVarInit(const AutoVarEmission &emission); 2429 void EmitAutoVarCleanups(const AutoVarEmission &emission); 2430 void emitAutoVarTypeCleanup(const AutoVarEmission &emission, 2431 QualType::DestructionKind dtorKind); 2432 2433 void EmitStaticVarDecl(const VarDecl &D, 2434 llvm::GlobalValue::LinkageTypes Linkage); 2435 2436 class ParamValue { 2437 llvm::Value *Value; 2438 unsigned Alignment; 2439 ParamValue(llvm::Value *V, unsigned A) : Value(V), Alignment(A) {} 2440 public: 2441 static ParamValue forDirect(llvm::Value *value) { 2442 return ParamValue(value, 0); 2443 } 2444 static ParamValue forIndirect(Address addr) { 2445 assert(!addr.getAlignment().isZero()); 2446 return ParamValue(addr.getPointer(), addr.getAlignment().getQuantity()); 2447 } 2448 2449 bool isIndirect() const { return Alignment != 0; } 2450 llvm::Value *getAnyValue() const { return Value; } 2451 2452 llvm::Value *getDirectValue() const { 2453 assert(!isIndirect()); 2454 return Value; 2455 } 2456 2457 Address getIndirectAddress() const { 2458 assert(isIndirect()); 2459 return Address(Value, CharUnits::fromQuantity(Alignment)); 2460 } 2461 }; 2462 2463 /// EmitParmDecl - Emit a ParmVarDecl or an ImplicitParamDecl. 2464 void EmitParmDecl(const VarDecl &D, ParamValue Arg, unsigned ArgNo); 2465 2466 /// protectFromPeepholes - Protect a value that we're intending to 2467 /// store to the side, but which will probably be used later, from 2468 /// aggressive peepholing optimizations that might delete it. 2469 /// 2470 /// Pass the result to unprotectFromPeepholes to declare that 2471 /// protection is no longer required. 2472 /// 2473 /// There's no particular reason why this shouldn't apply to 2474 /// l-values, it's just that no existing peepholes work on pointers. 2475 PeepholeProtection protectFromPeepholes(RValue rvalue); 2476 void unprotectFromPeepholes(PeepholeProtection protection); 2477 2478 void EmitAlignmentAssumption(llvm::Value *PtrValue, llvm::Value *Alignment, 2479 llvm::Value *OffsetValue = nullptr) { 2480 Builder.CreateAlignmentAssumption(CGM.getDataLayout(), PtrValue, Alignment, 2481 OffsetValue); 2482 } 2483 2484 //===--------------------------------------------------------------------===// 2485 // Statement Emission 2486 //===--------------------------------------------------------------------===// 2487 2488 /// EmitStopPoint - Emit a debug stoppoint if we are emitting debug info. 2489 void EmitStopPoint(const Stmt *S); 2490 2491 /// EmitStmt - Emit the code for the statement \arg S. It is legal to call 2492 /// this function even if there is no current insertion point. 2493 /// 2494 /// This function may clear the current insertion point; callers should use 2495 /// EnsureInsertPoint if they wish to subsequently generate code without first 2496 /// calling EmitBlock, EmitBranch, or EmitStmt. 2497 void EmitStmt(const Stmt *S); 2498 2499 /// EmitSimpleStmt - Try to emit a "simple" statement which does not 2500 /// necessarily require an insertion point or debug information; typically 2501 /// because the statement amounts to a jump or a container of other 2502 /// statements. 2503 /// 2504 /// \return True if the statement was handled. 2505 bool EmitSimpleStmt(const Stmt *S); 2506 2507 Address EmitCompoundStmt(const CompoundStmt &S, bool GetLast = false, 2508 AggValueSlot AVS = AggValueSlot::ignored()); 2509 Address EmitCompoundStmtWithoutScope(const CompoundStmt &S, 2510 bool GetLast = false, 2511 AggValueSlot AVS = 2512 AggValueSlot::ignored()); 2513 2514 /// EmitLabel - Emit the block for the given label. It is legal to call this 2515 /// function even if there is no current insertion point. 2516 void EmitLabel(const LabelDecl *D); // helper for EmitLabelStmt. 2517 2518 void EmitLabelStmt(const LabelStmt &S); 2519 void EmitAttributedStmt(const AttributedStmt &S); 2520 void EmitGotoStmt(const GotoStmt &S); 2521 void EmitIndirectGotoStmt(const IndirectGotoStmt &S); 2522 void EmitIfStmt(const IfStmt &S); 2523 2524 void EmitWhileStmt(const WhileStmt &S, 2525 ArrayRef<const Attr *> Attrs = None); 2526 void EmitDoStmt(const DoStmt &S, ArrayRef<const Attr *> Attrs = None); 2527 void EmitForStmt(const ForStmt &S, 2528 ArrayRef<const Attr *> Attrs = None); 2529 void EmitReturnStmt(const ReturnStmt &S); 2530 void EmitDeclStmt(const DeclStmt &S); 2531 void EmitBreakStmt(const BreakStmt &S); 2532 void EmitContinueStmt(const ContinueStmt &S); 2533 void EmitSwitchStmt(const SwitchStmt &S); 2534 void EmitDefaultStmt(const DefaultStmt &S); 2535 void EmitCaseStmt(const CaseStmt &S); 2536 void EmitCaseStmtRange(const CaseStmt &S); 2537 void EmitAsmStmt(const AsmStmt &S); 2538 2539 void EmitObjCForCollectionStmt(const ObjCForCollectionStmt &S); 2540 void EmitObjCAtTryStmt(const ObjCAtTryStmt &S); 2541 void EmitObjCAtThrowStmt(const ObjCAtThrowStmt &S); 2542 void EmitObjCAtSynchronizedStmt(const ObjCAtSynchronizedStmt &S); 2543 void EmitObjCAutoreleasePoolStmt(const ObjCAutoreleasePoolStmt &S); 2544 2545 void EmitCoroutineBody(const CoroutineBodyStmt &S); 2546 void EmitCoreturnStmt(const CoreturnStmt &S); 2547 RValue EmitCoawaitExpr(const CoawaitExpr &E, 2548 AggValueSlot aggSlot = AggValueSlot::ignored(), 2549 bool ignoreResult = false); 2550 RValue EmitCoyieldExpr(const CoyieldExpr &E, 2551 AggValueSlot aggSlot = AggValueSlot::ignored(), 2552 bool ignoreResult = false); 2553 RValue EmitCoroutineIntrinsic(const CallExpr *E, unsigned int IID); 2554 2555 void EnterCXXTryStmt(const CXXTryStmt &S, bool IsFnTryBlock = false); 2556 void ExitCXXTryStmt(const CXXTryStmt &S, bool IsFnTryBlock = false); 2557 2558 void EmitCXXTryStmt(const CXXTryStmt &S); 2559 void EmitSEHTryStmt(const SEHTryStmt &S); 2560 void EmitSEHLeaveStmt(const SEHLeaveStmt &S); 2561 void EnterSEHTryStmt(const SEHTryStmt &S); 2562 void ExitSEHTryStmt(const SEHTryStmt &S); 2563 2564 void startOutlinedSEHHelper(CodeGenFunction &ParentCGF, bool IsFilter, 2565 const Stmt *OutlinedStmt); 2566 2567 llvm::Function *GenerateSEHFilterFunction(CodeGenFunction &ParentCGF, 2568 const SEHExceptStmt &Except); 2569 2570 llvm::Function *GenerateSEHFinallyFunction(CodeGenFunction &ParentCGF, 2571 const SEHFinallyStmt &Finally); 2572 2573 void EmitSEHExceptionCodeSave(CodeGenFunction &ParentCGF, 2574 llvm::Value *ParentFP, 2575 llvm::Value *EntryEBP); 2576 llvm::Value *EmitSEHExceptionCode(); 2577 llvm::Value *EmitSEHExceptionInfo(); 2578 llvm::Value *EmitSEHAbnormalTermination(); 2579 2580 /// Scan the outlined statement for captures from the parent function. For 2581 /// each capture, mark the capture as escaped and emit a call to 2582 /// llvm.localrecover. Insert the localrecover result into the LocalDeclMap. 2583 void EmitCapturedLocals(CodeGenFunction &ParentCGF, const Stmt *OutlinedStmt, 2584 bool IsFilter); 2585 2586 /// Recovers the address of a local in a parent function. ParentVar is the 2587 /// address of the variable used in the immediate parent function. It can 2588 /// either be an alloca or a call to llvm.localrecover if there are nested 2589 /// outlined functions. ParentFP is the frame pointer of the outermost parent 2590 /// frame. 2591 Address recoverAddrOfEscapedLocal(CodeGenFunction &ParentCGF, 2592 Address ParentVar, 2593 llvm::Value *ParentFP); 2594 2595 void EmitCXXForRangeStmt(const CXXForRangeStmt &S, 2596 ArrayRef<const Attr *> Attrs = None); 2597 2598 /// Returns calculated size of the specified type. 2599 llvm::Value *getTypeSize(QualType Ty); 2600 LValue InitCapturedStruct(const CapturedStmt &S); 2601 llvm::Function *EmitCapturedStmt(const CapturedStmt &S, CapturedRegionKind K); 2602 llvm::Function *GenerateCapturedStmtFunction(const CapturedStmt &S); 2603 Address GenerateCapturedStmtArgument(const CapturedStmt &S); 2604 llvm::Function *GenerateOpenMPCapturedStmtFunction(const CapturedStmt &S); 2605 void GenerateOpenMPCapturedVars(const CapturedStmt &S, 2606 SmallVectorImpl<llvm::Value *> &CapturedVars); 2607 void emitOMPSimpleStore(LValue LVal, RValue RVal, QualType RValTy, 2608 SourceLocation Loc); 2609 /// \brief Perform element by element copying of arrays with type \a 2610 /// OriginalType from \a SrcAddr to \a DestAddr using copying procedure 2611 /// generated by \a CopyGen. 2612 /// 2613 /// \param DestAddr Address of the destination array. 2614 /// \param SrcAddr Address of the source array. 2615 /// \param OriginalType Type of destination and source arrays. 2616 /// \param CopyGen Copying procedure that copies value of single array element 2617 /// to another single array element. 2618 void EmitOMPAggregateAssign( 2619 Address DestAddr, Address SrcAddr, QualType OriginalType, 2620 const llvm::function_ref<void(Address, Address)> &CopyGen); 2621 /// \brief Emit proper copying of data from one variable to another. 2622 /// 2623 /// \param OriginalType Original type of the copied variables. 2624 /// \param DestAddr Destination address. 2625 /// \param SrcAddr Source address. 2626 /// \param DestVD Destination variable used in \a CopyExpr (for arrays, has 2627 /// type of the base array element). 2628 /// \param SrcVD Source variable used in \a CopyExpr (for arrays, has type of 2629 /// the base array element). 2630 /// \param Copy Actual copygin expression for copying data from \a SrcVD to \a 2631 /// DestVD. 2632 void EmitOMPCopy(QualType OriginalType, 2633 Address DestAddr, Address SrcAddr, 2634 const VarDecl *DestVD, const VarDecl *SrcVD, 2635 const Expr *Copy); 2636 /// \brief Emit atomic update code for constructs: \a X = \a X \a BO \a E or 2637 /// \a X = \a E \a BO \a E. 2638 /// 2639 /// \param X Value to be updated. 2640 /// \param E Update value. 2641 /// \param BO Binary operation for update operation. 2642 /// \param IsXLHSInRHSPart true if \a X is LHS in RHS part of the update 2643 /// expression, false otherwise. 2644 /// \param AO Atomic ordering of the generated atomic instructions. 2645 /// \param CommonGen Code generator for complex expressions that cannot be 2646 /// expressed through atomicrmw instruction. 2647 /// \returns <true, OldAtomicValue> if simple 'atomicrmw' instruction was 2648 /// generated, <false, RValue::get(nullptr)> otherwise. 2649 std::pair<bool, RValue> EmitOMPAtomicSimpleUpdateExpr( 2650 LValue X, RValue E, BinaryOperatorKind BO, bool IsXLHSInRHSPart, 2651 llvm::AtomicOrdering AO, SourceLocation Loc, 2652 const llvm::function_ref<RValue(RValue)> &CommonGen); 2653 bool EmitOMPFirstprivateClause(const OMPExecutableDirective &D, 2654 OMPPrivateScope &PrivateScope); 2655 void EmitOMPPrivateClause(const OMPExecutableDirective &D, 2656 OMPPrivateScope &PrivateScope); 2657 void EmitOMPUseDevicePtrClause( 2658 const OMPClause &C, OMPPrivateScope &PrivateScope, 2659 const llvm::DenseMap<const ValueDecl *, Address> &CaptureDeviceAddrMap); 2660 /// \brief Emit code for copyin clause in \a D directive. The next code is 2661 /// generated at the start of outlined functions for directives: 2662 /// \code 2663 /// threadprivate_var1 = master_threadprivate_var1; 2664 /// operator=(threadprivate_var2, master_threadprivate_var2); 2665 /// ... 2666 /// __kmpc_barrier(&loc, global_tid); 2667 /// \endcode 2668 /// 2669 /// \param D OpenMP directive possibly with 'copyin' clause(s). 2670 /// \returns true if at least one copyin variable is found, false otherwise. 2671 bool EmitOMPCopyinClause(const OMPExecutableDirective &D); 2672 /// \brief Emit initial code for lastprivate variables. If some variable is 2673 /// not also firstprivate, then the default initialization is used. Otherwise 2674 /// initialization of this variable is performed by EmitOMPFirstprivateClause 2675 /// method. 2676 /// 2677 /// \param D Directive that may have 'lastprivate' directives. 2678 /// \param PrivateScope Private scope for capturing lastprivate variables for 2679 /// proper codegen in internal captured statement. 2680 /// 2681 /// \returns true if there is at least one lastprivate variable, false 2682 /// otherwise. 2683 bool EmitOMPLastprivateClauseInit(const OMPExecutableDirective &D, 2684 OMPPrivateScope &PrivateScope); 2685 /// \brief Emit final copying of lastprivate values to original variables at 2686 /// the end of the worksharing or simd directive. 2687 /// 2688 /// \param D Directive that has at least one 'lastprivate' directives. 2689 /// \param IsLastIterCond Boolean condition that must be set to 'i1 true' if 2690 /// it is the last iteration of the loop code in associated directive, or to 2691 /// 'i1 false' otherwise. If this item is nullptr, no final check is required. 2692 void EmitOMPLastprivateClauseFinal(const OMPExecutableDirective &D, 2693 bool NoFinals, 2694 llvm::Value *IsLastIterCond = nullptr); 2695 /// Emit initial code for linear clauses. 2696 void EmitOMPLinearClause(const OMPLoopDirective &D, 2697 CodeGenFunction::OMPPrivateScope &PrivateScope); 2698 /// Emit final code for linear clauses. 2699 /// \param CondGen Optional conditional code for final part of codegen for 2700 /// linear clause. 2701 void EmitOMPLinearClauseFinal( 2702 const OMPLoopDirective &D, 2703 const llvm::function_ref<llvm::Value *(CodeGenFunction &)> &CondGen); 2704 /// \brief Emit initial code for reduction variables. Creates reduction copies 2705 /// and initializes them with the values according to OpenMP standard. 2706 /// 2707 /// \param D Directive (possibly) with the 'reduction' clause. 2708 /// \param PrivateScope Private scope for capturing reduction variables for 2709 /// proper codegen in internal captured statement. 2710 /// 2711 void EmitOMPReductionClauseInit(const OMPExecutableDirective &D, 2712 OMPPrivateScope &PrivateScope); 2713 /// \brief Emit final update of reduction values to original variables at 2714 /// the end of the directive. 2715 /// 2716 /// \param D Directive that has at least one 'reduction' directives. 2717 /// \param ReductionKind The kind of reduction to perform. 2718 void EmitOMPReductionClauseFinal(const OMPExecutableDirective &D, 2719 const OpenMPDirectiveKind ReductionKind); 2720 /// \brief Emit initial code for linear variables. Creates private copies 2721 /// and initializes them with the values according to OpenMP standard. 2722 /// 2723 /// \param D Directive (possibly) with the 'linear' clause. 2724 void EmitOMPLinearClauseInit(const OMPLoopDirective &D); 2725 2726 typedef const llvm::function_ref<void(CodeGenFunction & /*CGF*/, 2727 llvm::Value * /*OutlinedFn*/, 2728 const OMPTaskDataTy & /*Data*/)> 2729 TaskGenTy; 2730 void EmitOMPTaskBasedDirective(const OMPExecutableDirective &S, 2731 const RegionCodeGenTy &BodyGen, 2732 const TaskGenTy &TaskGen, OMPTaskDataTy &Data); 2733 2734 void EmitOMPParallelDirective(const OMPParallelDirective &S); 2735 void EmitOMPSimdDirective(const OMPSimdDirective &S); 2736 void EmitOMPForDirective(const OMPForDirective &S); 2737 void EmitOMPForSimdDirective(const OMPForSimdDirective &S); 2738 void EmitOMPSectionsDirective(const OMPSectionsDirective &S); 2739 void EmitOMPSectionDirective(const OMPSectionDirective &S); 2740 void EmitOMPSingleDirective(const OMPSingleDirective &S); 2741 void EmitOMPMasterDirective(const OMPMasterDirective &S); 2742 void EmitOMPCriticalDirective(const OMPCriticalDirective &S); 2743 void EmitOMPParallelForDirective(const OMPParallelForDirective &S); 2744 void EmitOMPParallelForSimdDirective(const OMPParallelForSimdDirective &S); 2745 void EmitOMPParallelSectionsDirective(const OMPParallelSectionsDirective &S); 2746 void EmitOMPTaskDirective(const OMPTaskDirective &S); 2747 void EmitOMPTaskyieldDirective(const OMPTaskyieldDirective &S); 2748 void EmitOMPBarrierDirective(const OMPBarrierDirective &S); 2749 void EmitOMPTaskwaitDirective(const OMPTaskwaitDirective &S); 2750 void EmitOMPTaskgroupDirective(const OMPTaskgroupDirective &S); 2751 void EmitOMPFlushDirective(const OMPFlushDirective &S); 2752 void EmitOMPOrderedDirective(const OMPOrderedDirective &S); 2753 void EmitOMPAtomicDirective(const OMPAtomicDirective &S); 2754 void EmitOMPTargetDirective(const OMPTargetDirective &S); 2755 void EmitOMPTargetDataDirective(const OMPTargetDataDirective &S); 2756 void EmitOMPTargetEnterDataDirective(const OMPTargetEnterDataDirective &S); 2757 void EmitOMPTargetExitDataDirective(const OMPTargetExitDataDirective &S); 2758 void EmitOMPTargetUpdateDirective(const OMPTargetUpdateDirective &S); 2759 void EmitOMPTargetParallelDirective(const OMPTargetParallelDirective &S); 2760 void 2761 EmitOMPTargetParallelForDirective(const OMPTargetParallelForDirective &S); 2762 void EmitOMPTeamsDirective(const OMPTeamsDirective &S); 2763 void 2764 EmitOMPCancellationPointDirective(const OMPCancellationPointDirective &S); 2765 void EmitOMPCancelDirective(const OMPCancelDirective &S); 2766 void EmitOMPTaskLoopBasedDirective(const OMPLoopDirective &S); 2767 void EmitOMPTaskLoopDirective(const OMPTaskLoopDirective &S); 2768 void EmitOMPTaskLoopSimdDirective(const OMPTaskLoopSimdDirective &S); 2769 void EmitOMPDistributeDirective(const OMPDistributeDirective &S); 2770 void EmitOMPDistributeParallelForDirective( 2771 const OMPDistributeParallelForDirective &S); 2772 void EmitOMPDistributeParallelForSimdDirective( 2773 const OMPDistributeParallelForSimdDirective &S); 2774 void EmitOMPDistributeSimdDirective(const OMPDistributeSimdDirective &S); 2775 void EmitOMPTargetParallelForSimdDirective( 2776 const OMPTargetParallelForSimdDirective &S); 2777 void EmitOMPTargetSimdDirective(const OMPTargetSimdDirective &S); 2778 void EmitOMPTeamsDistributeDirective(const OMPTeamsDistributeDirective &S); 2779 void 2780 EmitOMPTeamsDistributeSimdDirective(const OMPTeamsDistributeSimdDirective &S); 2781 void EmitOMPTeamsDistributeParallelForSimdDirective( 2782 const OMPTeamsDistributeParallelForSimdDirective &S); 2783 void EmitOMPTeamsDistributeParallelForDirective( 2784 const OMPTeamsDistributeParallelForDirective &S); 2785 void EmitOMPTargetTeamsDirective(const OMPTargetTeamsDirective &S); 2786 void EmitOMPTargetTeamsDistributeDirective( 2787 const OMPTargetTeamsDistributeDirective &S); 2788 void EmitOMPTargetTeamsDistributeParallelForDirective( 2789 const OMPTargetTeamsDistributeParallelForDirective &S); 2790 void EmitOMPTargetTeamsDistributeParallelForSimdDirective( 2791 const OMPTargetTeamsDistributeParallelForSimdDirective &S); 2792 void EmitOMPTargetTeamsDistributeSimdDirective( 2793 const OMPTargetTeamsDistributeSimdDirective &S); 2794 2795 /// Emit device code for the target directive. 2796 static void EmitOMPTargetDeviceFunction(CodeGenModule &CGM, 2797 StringRef ParentName, 2798 const OMPTargetDirective &S); 2799 static void 2800 EmitOMPTargetParallelDeviceFunction(CodeGenModule &CGM, StringRef ParentName, 2801 const OMPTargetParallelDirective &S); 2802 static void 2803 EmitOMPTargetTeamsDeviceFunction(CodeGenModule &CGM, StringRef ParentName, 2804 const OMPTargetTeamsDirective &S); 2805 /// \brief Emit inner loop of the worksharing/simd construct. 2806 /// 2807 /// \param S Directive, for which the inner loop must be emitted. 2808 /// \param RequiresCleanup true, if directive has some associated private 2809 /// variables. 2810 /// \param LoopCond Bollean condition for loop continuation. 2811 /// \param IncExpr Increment expression for loop control variable. 2812 /// \param BodyGen Generator for the inner body of the inner loop. 2813 /// \param PostIncGen Genrator for post-increment code (required for ordered 2814 /// loop directvies). 2815 void EmitOMPInnerLoop( 2816 const Stmt &S, bool RequiresCleanup, const Expr *LoopCond, 2817 const Expr *IncExpr, 2818 const llvm::function_ref<void(CodeGenFunction &)> &BodyGen, 2819 const llvm::function_ref<void(CodeGenFunction &)> &PostIncGen); 2820 2821 JumpDest getOMPCancelDestination(OpenMPDirectiveKind Kind); 2822 /// Emit initial code for loop counters of loop-based directives. 2823 void EmitOMPPrivateLoopCounters(const OMPLoopDirective &S, 2824 OMPPrivateScope &LoopScope); 2825 2826 /// Helper for the OpenMP loop directives. 2827 void EmitOMPLoopBody(const OMPLoopDirective &D, JumpDest LoopExit); 2828 2829 /// \brief Emit code for the worksharing loop-based directive. 2830 /// \return true, if this construct has any lastprivate clause, false - 2831 /// otherwise. 2832 bool EmitOMPWorksharingLoop(const OMPLoopDirective &S, Expr *EUB, 2833 const CodeGenLoopBoundsTy &CodeGenLoopBounds, 2834 const CodeGenDispatchBoundsTy &CGDispatchBounds); 2835 2836 private: 2837 /// Helpers for blocks 2838 llvm::Value *EmitBlockLiteral(const CGBlockInfo &Info); 2839 2840 /// Helpers for the OpenMP loop directives. 2841 void EmitOMPSimdInit(const OMPLoopDirective &D, bool IsMonotonic = false); 2842 void EmitOMPSimdFinal( 2843 const OMPLoopDirective &D, 2844 const llvm::function_ref<llvm::Value *(CodeGenFunction &)> &CondGen); 2845 2846 void EmitOMPDistributeLoop(const OMPLoopDirective &S, 2847 const CodeGenLoopTy &CodeGenLoop, Expr *IncExpr); 2848 2849 /// struct with the values to be passed to the OpenMP loop-related functions 2850 struct OMPLoopArguments { 2851 /// loop lower bound 2852 Address LB = Address::invalid(); 2853 /// loop upper bound 2854 Address UB = Address::invalid(); 2855 /// loop stride 2856 Address ST = Address::invalid(); 2857 /// isLastIteration argument for runtime functions 2858 Address IL = Address::invalid(); 2859 /// Chunk value generated by sema 2860 llvm::Value *Chunk = nullptr; 2861 /// EnsureUpperBound 2862 Expr *EUB = nullptr; 2863 /// IncrementExpression 2864 Expr *IncExpr = nullptr; 2865 /// Loop initialization 2866 Expr *Init = nullptr; 2867 /// Loop exit condition 2868 Expr *Cond = nullptr; 2869 /// Update of LB after a whole chunk has been executed 2870 Expr *NextLB = nullptr; 2871 /// Update of UB after a whole chunk has been executed 2872 Expr *NextUB = nullptr; 2873 OMPLoopArguments() = default; 2874 OMPLoopArguments(Address LB, Address UB, Address ST, Address IL, 2875 llvm::Value *Chunk = nullptr, Expr *EUB = nullptr, 2876 Expr *IncExpr = nullptr, Expr *Init = nullptr, 2877 Expr *Cond = nullptr, Expr *NextLB = nullptr, 2878 Expr *NextUB = nullptr) 2879 : LB(LB), UB(UB), ST(ST), IL(IL), Chunk(Chunk), EUB(EUB), 2880 IncExpr(IncExpr), Init(Init), Cond(Cond), NextLB(NextLB), 2881 NextUB(NextUB) {} 2882 }; 2883 void EmitOMPOuterLoop(bool DynamicOrOrdered, bool IsMonotonic, 2884 const OMPLoopDirective &S, OMPPrivateScope &LoopScope, 2885 const OMPLoopArguments &LoopArgs, 2886 const CodeGenLoopTy &CodeGenLoop, 2887 const CodeGenOrderedTy &CodeGenOrdered); 2888 void EmitOMPForOuterLoop(const OpenMPScheduleTy &ScheduleKind, 2889 bool IsMonotonic, const OMPLoopDirective &S, 2890 OMPPrivateScope &LoopScope, bool Ordered, 2891 const OMPLoopArguments &LoopArgs, 2892 const CodeGenDispatchBoundsTy &CGDispatchBounds); 2893 void EmitOMPDistributeOuterLoop(OpenMPDistScheduleClauseKind ScheduleKind, 2894 const OMPLoopDirective &S, 2895 OMPPrivateScope &LoopScope, 2896 const OMPLoopArguments &LoopArgs, 2897 const CodeGenLoopTy &CodeGenLoopContent); 2898 /// \brief Emit code for sections directive. 2899 void EmitSections(const OMPExecutableDirective &S); 2900 2901 public: 2902 2903 //===--------------------------------------------------------------------===// 2904 // LValue Expression Emission 2905 //===--------------------------------------------------------------------===// 2906 2907 /// GetUndefRValue - Get an appropriate 'undef' rvalue for the given type. 2908 RValue GetUndefRValue(QualType Ty); 2909 2910 /// EmitUnsupportedRValue - Emit a dummy r-value using the type of E 2911 /// and issue an ErrorUnsupported style diagnostic (using the 2912 /// provided Name). 2913 RValue EmitUnsupportedRValue(const Expr *E, 2914 const char *Name); 2915 2916 /// EmitUnsupportedLValue - Emit a dummy l-value using the type of E and issue 2917 /// an ErrorUnsupported style diagnostic (using the provided Name). 2918 LValue EmitUnsupportedLValue(const Expr *E, 2919 const char *Name); 2920 2921 /// EmitLValue - Emit code to compute a designator that specifies the location 2922 /// of the expression. 2923 /// 2924 /// This can return one of two things: a simple address or a bitfield 2925 /// reference. In either case, the LLVM Value* in the LValue structure is 2926 /// guaranteed to be an LLVM pointer type. 2927 /// 2928 /// If this returns a bitfield reference, nothing about the pointee type of 2929 /// the LLVM value is known: For example, it may not be a pointer to an 2930 /// integer. 2931 /// 2932 /// If this returns a normal address, and if the lvalue's C type is fixed 2933 /// size, this method guarantees that the returned pointer type will point to 2934 /// an LLVM type of the same size of the lvalue's type. If the lvalue has a 2935 /// variable length type, this is not possible. 2936 /// 2937 LValue EmitLValue(const Expr *E); 2938 2939 /// \brief Same as EmitLValue but additionally we generate checking code to 2940 /// guard against undefined behavior. This is only suitable when we know 2941 /// that the address will be used to access the object. 2942 LValue EmitCheckedLValue(const Expr *E, TypeCheckKind TCK); 2943 2944 RValue convertTempToRValue(Address addr, QualType type, 2945 SourceLocation Loc); 2946 2947 void EmitAtomicInit(Expr *E, LValue lvalue); 2948 2949 bool LValueIsSuitableForInlineAtomic(LValue Src); 2950 2951 RValue EmitAtomicLoad(LValue LV, SourceLocation SL, 2952 AggValueSlot Slot = AggValueSlot::ignored()); 2953 2954 RValue EmitAtomicLoad(LValue lvalue, SourceLocation loc, 2955 llvm::AtomicOrdering AO, bool IsVolatile = false, 2956 AggValueSlot slot = AggValueSlot::ignored()); 2957 2958 void EmitAtomicStore(RValue rvalue, LValue lvalue, bool isInit); 2959 2960 void EmitAtomicStore(RValue rvalue, LValue lvalue, llvm::AtomicOrdering AO, 2961 bool IsVolatile, bool isInit); 2962 2963 std::pair<RValue, llvm::Value *> EmitAtomicCompareExchange( 2964 LValue Obj, RValue Expected, RValue Desired, SourceLocation Loc, 2965 llvm::AtomicOrdering Success = 2966 llvm::AtomicOrdering::SequentiallyConsistent, 2967 llvm::AtomicOrdering Failure = 2968 llvm::AtomicOrdering::SequentiallyConsistent, 2969 bool IsWeak = false, AggValueSlot Slot = AggValueSlot::ignored()); 2970 2971 void EmitAtomicUpdate(LValue LVal, llvm::AtomicOrdering AO, 2972 const llvm::function_ref<RValue(RValue)> &UpdateOp, 2973 bool IsVolatile); 2974 2975 /// EmitToMemory - Change a scalar value from its value 2976 /// representation to its in-memory representation. 2977 llvm::Value *EmitToMemory(llvm::Value *Value, QualType Ty); 2978 2979 /// EmitFromMemory - Change a scalar value from its memory 2980 /// representation to its value representation. 2981 llvm::Value *EmitFromMemory(llvm::Value *Value, QualType Ty); 2982 2983 /// Check if the scalar \p Value is within the valid range for the given 2984 /// type \p Ty. 2985 /// 2986 /// Returns true if a check is needed (even if the range is unknown). 2987 bool EmitScalarRangeCheck(llvm::Value *Value, QualType Ty, 2988 SourceLocation Loc); 2989 2990 /// EmitLoadOfScalar - Load a scalar value from an address, taking 2991 /// care to appropriately convert from the memory representation to 2992 /// the LLVM value representation. 2993 llvm::Value *EmitLoadOfScalar(Address Addr, bool Volatile, QualType Ty, 2994 SourceLocation Loc, 2995 AlignmentSource AlignSource = 2996 AlignmentSource::Type, 2997 llvm::MDNode *TBAAInfo = nullptr, 2998 QualType TBAABaseTy = QualType(), 2999 uint64_t TBAAOffset = 0, 3000 bool isNontemporal = false); 3001 3002 /// EmitLoadOfScalar - Load a scalar value from an address, taking 3003 /// care to appropriately convert from the memory representation to 3004 /// the LLVM value representation. The l-value must be a simple 3005 /// l-value. 3006 llvm::Value *EmitLoadOfScalar(LValue lvalue, SourceLocation Loc); 3007 3008 /// EmitStoreOfScalar - Store a scalar value to an address, taking 3009 /// care to appropriately convert from the memory representation to 3010 /// the LLVM value representation. 3011 void EmitStoreOfScalar(llvm::Value *Value, Address Addr, 3012 bool Volatile, QualType Ty, 3013 AlignmentSource AlignSource = AlignmentSource::Type, 3014 llvm::MDNode *TBAAInfo = nullptr, bool isInit = false, 3015 QualType TBAABaseTy = QualType(), 3016 uint64_t TBAAOffset = 0, bool isNontemporal = false); 3017 3018 /// EmitStoreOfScalar - Store a scalar value to an address, taking 3019 /// care to appropriately convert from the memory representation to 3020 /// the LLVM value representation. The l-value must be a simple 3021 /// l-value. The isInit flag indicates whether this is an initialization. 3022 /// If so, atomic qualifiers are ignored and the store is always non-atomic. 3023 void EmitStoreOfScalar(llvm::Value *value, LValue lvalue, bool isInit=false); 3024 3025 /// EmitLoadOfLValue - Given an expression that represents a value lvalue, 3026 /// this method emits the address of the lvalue, then loads the result as an 3027 /// rvalue, returning the rvalue. 3028 RValue EmitLoadOfLValue(LValue V, SourceLocation Loc); 3029 RValue EmitLoadOfExtVectorElementLValue(LValue V); 3030 RValue EmitLoadOfBitfieldLValue(LValue LV, SourceLocation Loc); 3031 RValue EmitLoadOfGlobalRegLValue(LValue LV); 3032 3033 /// EmitStoreThroughLValue - Store the specified rvalue into the specified 3034 /// lvalue, where both are guaranteed to the have the same type, and that type 3035 /// is 'Ty'. 3036 void EmitStoreThroughLValue(RValue Src, LValue Dst, bool isInit = false); 3037 void EmitStoreThroughExtVectorComponentLValue(RValue Src, LValue Dst); 3038 void EmitStoreThroughGlobalRegLValue(RValue Src, LValue Dst); 3039 3040 /// EmitStoreThroughBitfieldLValue - Store Src into Dst with same constraints 3041 /// as EmitStoreThroughLValue. 3042 /// 3043 /// \param Result [out] - If non-null, this will be set to a Value* for the 3044 /// bit-field contents after the store, appropriate for use as the result of 3045 /// an assignment to the bit-field. 3046 void EmitStoreThroughBitfieldLValue(RValue Src, LValue Dst, 3047 llvm::Value **Result=nullptr); 3048 3049 /// Emit an l-value for an assignment (simple or compound) of complex type. 3050 LValue EmitComplexAssignmentLValue(const BinaryOperator *E); 3051 LValue EmitComplexCompoundAssignmentLValue(const CompoundAssignOperator *E); 3052 LValue EmitScalarCompoundAssignWithComplex(const CompoundAssignOperator *E, 3053 llvm::Value *&Result); 3054 3055 // Note: only available for agg return types 3056 LValue EmitBinaryOperatorLValue(const BinaryOperator *E); 3057 LValue EmitCompoundAssignmentLValue(const CompoundAssignOperator *E); 3058 // Note: only available for agg return types 3059 LValue EmitCallExprLValue(const CallExpr *E); 3060 // Note: only available for agg return types 3061 LValue EmitVAArgExprLValue(const VAArgExpr *E); 3062 LValue EmitDeclRefLValue(const DeclRefExpr *E); 3063 LValue EmitStringLiteralLValue(const StringLiteral *E); 3064 LValue EmitObjCEncodeExprLValue(const ObjCEncodeExpr *E); 3065 LValue EmitPredefinedLValue(const PredefinedExpr *E); 3066 LValue EmitUnaryOpLValue(const UnaryOperator *E); 3067 LValue EmitArraySubscriptExpr(const ArraySubscriptExpr *E, 3068 bool Accessed = false); 3069 LValue EmitOMPArraySectionExpr(const OMPArraySectionExpr *E, 3070 bool IsLowerBound = true); 3071 LValue EmitExtVectorElementExpr(const ExtVectorElementExpr *E); 3072 LValue EmitMemberExpr(const MemberExpr *E); 3073 LValue EmitObjCIsaExpr(const ObjCIsaExpr *E); 3074 LValue EmitCompoundLiteralLValue(const CompoundLiteralExpr *E); 3075 LValue EmitInitListLValue(const InitListExpr *E); 3076 LValue EmitConditionalOperatorLValue(const AbstractConditionalOperator *E); 3077 LValue EmitCastLValue(const CastExpr *E); 3078 LValue EmitMaterializeTemporaryExpr(const MaterializeTemporaryExpr *E); 3079 LValue EmitOpaqueValueLValue(const OpaqueValueExpr *e); 3080 3081 Address EmitExtVectorElementLValue(LValue V); 3082 3083 RValue EmitRValueForField(LValue LV, const FieldDecl *FD, SourceLocation Loc); 3084 3085 Address EmitArrayToPointerDecay(const Expr *Array, 3086 AlignmentSource *AlignSource = nullptr); 3087 3088 class ConstantEmission { 3089 llvm::PointerIntPair<llvm::Constant*, 1, bool> ValueAndIsReference; 3090 ConstantEmission(llvm::Constant *C, bool isReference) 3091 : ValueAndIsReference(C, isReference) {} 3092 public: 3093 ConstantEmission() {} 3094 static ConstantEmission forReference(llvm::Constant *C) { 3095 return ConstantEmission(C, true); 3096 } 3097 static ConstantEmission forValue(llvm::Constant *C) { 3098 return ConstantEmission(C, false); 3099 } 3100 3101 explicit operator bool() const { 3102 return ValueAndIsReference.getOpaqueValue() != nullptr; 3103 } 3104 3105 bool isReference() const { return ValueAndIsReference.getInt(); } 3106 LValue getReferenceLValue(CodeGenFunction &CGF, Expr *refExpr) const { 3107 assert(isReference()); 3108 return CGF.MakeNaturalAlignAddrLValue(ValueAndIsReference.getPointer(), 3109 refExpr->getType()); 3110 } 3111 3112 llvm::Constant *getValue() const { 3113 assert(!isReference()); 3114 return ValueAndIsReference.getPointer(); 3115 } 3116 }; 3117 3118 ConstantEmission tryEmitAsConstant(DeclRefExpr *refExpr); 3119 3120 RValue EmitPseudoObjectRValue(const PseudoObjectExpr *e, 3121 AggValueSlot slot = AggValueSlot::ignored()); 3122 LValue EmitPseudoObjectLValue(const PseudoObjectExpr *e); 3123 3124 llvm::Value *EmitIvarOffset(const ObjCInterfaceDecl *Interface, 3125 const ObjCIvarDecl *Ivar); 3126 LValue EmitLValueForField(LValue Base, const FieldDecl* Field); 3127 LValue EmitLValueForLambdaField(const FieldDecl *Field); 3128 3129 /// EmitLValueForFieldInitialization - Like EmitLValueForField, except that 3130 /// if the Field is a reference, this will return the address of the reference 3131 /// and not the address of the value stored in the reference. 3132 LValue EmitLValueForFieldInitialization(LValue Base, 3133 const FieldDecl* Field); 3134 3135 LValue EmitLValueForIvar(QualType ObjectTy, 3136 llvm::Value* Base, const ObjCIvarDecl *Ivar, 3137 unsigned CVRQualifiers); 3138 3139 LValue EmitCXXConstructLValue(const CXXConstructExpr *E); 3140 LValue EmitCXXBindTemporaryLValue(const CXXBindTemporaryExpr *E); 3141 LValue EmitLambdaLValue(const LambdaExpr *E); 3142 LValue EmitCXXTypeidLValue(const CXXTypeidExpr *E); 3143 LValue EmitCXXUuidofLValue(const CXXUuidofExpr *E); 3144 3145 LValue EmitObjCMessageExprLValue(const ObjCMessageExpr *E); 3146 LValue EmitObjCIvarRefLValue(const ObjCIvarRefExpr *E); 3147 LValue EmitStmtExprLValue(const StmtExpr *E); 3148 LValue EmitPointerToDataMemberBinaryExpr(const BinaryOperator *E); 3149 LValue EmitObjCSelectorLValue(const ObjCSelectorExpr *E); 3150 void EmitDeclRefExprDbgValue(const DeclRefExpr *E, const APValue &Init); 3151 3152 //===--------------------------------------------------------------------===// 3153 // Scalar Expression Emission 3154 //===--------------------------------------------------------------------===// 3155 3156 /// EmitCall - Generate a call of the given function, expecting the given 3157 /// result type, and using the given argument list which specifies both the 3158 /// LLVM arguments and the types they were derived from. 3159 RValue EmitCall(const CGFunctionInfo &CallInfo, const CGCallee &Callee, 3160 ReturnValueSlot ReturnValue, const CallArgList &Args, 3161 llvm::Instruction **callOrInvoke = nullptr); 3162 3163 RValue EmitCall(QualType FnType, const CGCallee &Callee, const CallExpr *E, 3164 ReturnValueSlot ReturnValue, 3165 llvm::Value *Chain = nullptr); 3166 RValue EmitCallExpr(const CallExpr *E, 3167 ReturnValueSlot ReturnValue = ReturnValueSlot()); 3168 RValue EmitSimpleCallExpr(const CallExpr *E, ReturnValueSlot ReturnValue); 3169 CGCallee EmitCallee(const Expr *E); 3170 3171 void checkTargetFeatures(const CallExpr *E, const FunctionDecl *TargetDecl); 3172 3173 llvm::CallInst *EmitRuntimeCall(llvm::Value *callee, 3174 const Twine &name = ""); 3175 llvm::CallInst *EmitRuntimeCall(llvm::Value *callee, 3176 ArrayRef<llvm::Value*> args, 3177 const Twine &name = ""); 3178 llvm::CallInst *EmitNounwindRuntimeCall(llvm::Value *callee, 3179 const Twine &name = ""); 3180 llvm::CallInst *EmitNounwindRuntimeCall(llvm::Value *callee, 3181 ArrayRef<llvm::Value*> args, 3182 const Twine &name = ""); 3183 3184 llvm::CallSite EmitCallOrInvoke(llvm::Value *Callee, 3185 ArrayRef<llvm::Value *> Args, 3186 const Twine &Name = ""); 3187 llvm::CallSite EmitRuntimeCallOrInvoke(llvm::Value *callee, 3188 ArrayRef<llvm::Value*> args, 3189 const Twine &name = ""); 3190 llvm::CallSite EmitRuntimeCallOrInvoke(llvm::Value *callee, 3191 const Twine &name = ""); 3192 void EmitNoreturnRuntimeCallOrInvoke(llvm::Value *callee, 3193 ArrayRef<llvm::Value*> args); 3194 3195 CGCallee BuildAppleKextVirtualCall(const CXXMethodDecl *MD, 3196 NestedNameSpecifier *Qual, 3197 llvm::Type *Ty); 3198 3199 CGCallee BuildAppleKextVirtualDestructorCall(const CXXDestructorDecl *DD, 3200 CXXDtorType Type, 3201 const CXXRecordDecl *RD); 3202 3203 RValue 3204 EmitCXXMemberOrOperatorCall(const CXXMethodDecl *Method, 3205 const CGCallee &Callee, 3206 ReturnValueSlot ReturnValue, llvm::Value *This, 3207 llvm::Value *ImplicitParam, 3208 QualType ImplicitParamTy, const CallExpr *E, 3209 CallArgList *RtlArgs); 3210 RValue EmitCXXDestructorCall(const CXXDestructorDecl *DD, 3211 const CGCallee &Callee, 3212 llvm::Value *This, llvm::Value *ImplicitParam, 3213 QualType ImplicitParamTy, const CallExpr *E, 3214 StructorType Type); 3215 RValue EmitCXXMemberCallExpr(const CXXMemberCallExpr *E, 3216 ReturnValueSlot ReturnValue); 3217 RValue EmitCXXMemberOrOperatorMemberCallExpr(const CallExpr *CE, 3218 const CXXMethodDecl *MD, 3219 ReturnValueSlot ReturnValue, 3220 bool HasQualifier, 3221 NestedNameSpecifier *Qualifier, 3222 bool IsArrow, const Expr *Base); 3223 // Compute the object pointer. 3224 Address EmitCXXMemberDataPointerAddress(const Expr *E, Address base, 3225 llvm::Value *memberPtr, 3226 const MemberPointerType *memberPtrType, 3227 AlignmentSource *AlignSource = nullptr); 3228 RValue EmitCXXMemberPointerCallExpr(const CXXMemberCallExpr *E, 3229 ReturnValueSlot ReturnValue); 3230 3231 RValue EmitCXXOperatorMemberCallExpr(const CXXOperatorCallExpr *E, 3232 const CXXMethodDecl *MD, 3233 ReturnValueSlot ReturnValue); 3234 RValue EmitCXXPseudoDestructorExpr(const CXXPseudoDestructorExpr *E); 3235 3236 RValue EmitCUDAKernelCallExpr(const CUDAKernelCallExpr *E, 3237 ReturnValueSlot ReturnValue); 3238 3239 RValue EmitNVPTXDevicePrintfCallExpr(const CallExpr *E, 3240 ReturnValueSlot ReturnValue); 3241 3242 RValue EmitBuiltinExpr(const FunctionDecl *FD, 3243 unsigned BuiltinID, const CallExpr *E, 3244 ReturnValueSlot ReturnValue); 3245 3246 RValue EmitBlockCallExpr(const CallExpr *E, ReturnValueSlot ReturnValue); 3247 3248 /// EmitTargetBuiltinExpr - Emit the given builtin call. Returns 0 if the call 3249 /// is unhandled by the current target. 3250 llvm::Value *EmitTargetBuiltinExpr(unsigned BuiltinID, const CallExpr *E); 3251 3252 llvm::Value *EmitAArch64CompareBuiltinExpr(llvm::Value *Op, llvm::Type *Ty, 3253 const llvm::CmpInst::Predicate Fp, 3254 const llvm::CmpInst::Predicate Ip, 3255 const llvm::Twine &Name = ""); 3256 llvm::Value *EmitARMBuiltinExpr(unsigned BuiltinID, const CallExpr *E); 3257 3258 llvm::Value *EmitCommonNeonBuiltinExpr(unsigned BuiltinID, 3259 unsigned LLVMIntrinsic, 3260 unsigned AltLLVMIntrinsic, 3261 const char *NameHint, 3262 unsigned Modifier, 3263 const CallExpr *E, 3264 SmallVectorImpl<llvm::Value *> &Ops, 3265 Address PtrOp0, Address PtrOp1); 3266 llvm::Function *LookupNeonLLVMIntrinsic(unsigned IntrinsicID, 3267 unsigned Modifier, llvm::Type *ArgTy, 3268 const CallExpr *E); 3269 llvm::Value *EmitNeonCall(llvm::Function *F, 3270 SmallVectorImpl<llvm::Value*> &O, 3271 const char *name, 3272 unsigned shift = 0, bool rightshift = false); 3273 llvm::Value *EmitNeonSplat(llvm::Value *V, llvm::Constant *Idx); 3274 llvm::Value *EmitNeonShiftVector(llvm::Value *V, llvm::Type *Ty, 3275 bool negateForRightShift); 3276 llvm::Value *EmitNeonRShiftImm(llvm::Value *Vec, llvm::Value *Amt, 3277 llvm::Type *Ty, bool usgn, const char *name); 3278 llvm::Value *vectorWrapScalar16(llvm::Value *Op); 3279 llvm::Value *EmitAArch64BuiltinExpr(unsigned BuiltinID, const CallExpr *E); 3280 3281 llvm::Value *BuildVector(ArrayRef<llvm::Value*> Ops); 3282 llvm::Value *EmitX86BuiltinExpr(unsigned BuiltinID, const CallExpr *E); 3283 llvm::Value *EmitPPCBuiltinExpr(unsigned BuiltinID, const CallExpr *E); 3284 llvm::Value *EmitAMDGPUBuiltinExpr(unsigned BuiltinID, const CallExpr *E); 3285 llvm::Value *EmitSystemZBuiltinExpr(unsigned BuiltinID, const CallExpr *E); 3286 llvm::Value *EmitNVPTXBuiltinExpr(unsigned BuiltinID, const CallExpr *E); 3287 llvm::Value *EmitWebAssemblyBuiltinExpr(unsigned BuiltinID, 3288 const CallExpr *E); 3289 3290 private: 3291 enum class MSVCIntrin; 3292 3293 public: 3294 llvm::Value *EmitMSVCBuiltinExpr(MSVCIntrin BuiltinID, const CallExpr *E); 3295 3296 llvm::Value *EmitBuiltinAvailable(ArrayRef<llvm::Value *> Args); 3297 3298 llvm::Value *EmitObjCProtocolExpr(const ObjCProtocolExpr *E); 3299 llvm::Value *EmitObjCStringLiteral(const ObjCStringLiteral *E); 3300 llvm::Value *EmitObjCBoxedExpr(const ObjCBoxedExpr *E); 3301 llvm::Value *EmitObjCArrayLiteral(const ObjCArrayLiteral *E); 3302 llvm::Value *EmitObjCDictionaryLiteral(const ObjCDictionaryLiteral *E); 3303 llvm::Value *EmitObjCCollectionLiteral(const Expr *E, 3304 const ObjCMethodDecl *MethodWithObjects); 3305 llvm::Value *EmitObjCSelectorExpr(const ObjCSelectorExpr *E); 3306 RValue EmitObjCMessageExpr(const ObjCMessageExpr *E, 3307 ReturnValueSlot Return = ReturnValueSlot()); 3308 3309 /// Retrieves the default cleanup kind for an ARC cleanup. 3310 /// Except under -fobjc-arc-eh, ARC cleanups are normal-only. 3311 CleanupKind getARCCleanupKind() { 3312 return CGM.getCodeGenOpts().ObjCAutoRefCountExceptions 3313 ? NormalAndEHCleanup : NormalCleanup; 3314 } 3315 3316 // ARC primitives. 3317 void EmitARCInitWeak(Address addr, llvm::Value *value); 3318 void EmitARCDestroyWeak(Address addr); 3319 llvm::Value *EmitARCLoadWeak(Address addr); 3320 llvm::Value *EmitARCLoadWeakRetained(Address addr); 3321 llvm::Value *EmitARCStoreWeak(Address addr, llvm::Value *value, bool ignored); 3322 void EmitARCCopyWeak(Address dst, Address src); 3323 void EmitARCMoveWeak(Address dst, Address src); 3324 llvm::Value *EmitARCRetainAutorelease(QualType type, llvm::Value *value); 3325 llvm::Value *EmitARCRetainAutoreleaseNonBlock(llvm::Value *value); 3326 llvm::Value *EmitARCStoreStrong(LValue lvalue, llvm::Value *value, 3327 bool resultIgnored); 3328 llvm::Value *EmitARCStoreStrongCall(Address addr, llvm::Value *value, 3329 bool resultIgnored); 3330 llvm::Value *EmitARCRetain(QualType type, llvm::Value *value); 3331 llvm::Value *EmitARCRetainNonBlock(llvm::Value *value); 3332 llvm::Value *EmitARCRetainBlock(llvm::Value *value, bool mandatory); 3333 void EmitARCDestroyStrong(Address addr, ARCPreciseLifetime_t precise); 3334 void EmitARCRelease(llvm::Value *value, ARCPreciseLifetime_t precise); 3335 llvm::Value *EmitARCAutorelease(llvm::Value *value); 3336 llvm::Value *EmitARCAutoreleaseReturnValue(llvm::Value *value); 3337 llvm::Value *EmitARCRetainAutoreleaseReturnValue(llvm::Value *value); 3338 llvm::Value *EmitARCRetainAutoreleasedReturnValue(llvm::Value *value); 3339 llvm::Value *EmitARCUnsafeClaimAutoreleasedReturnValue(llvm::Value *value); 3340 3341 std::pair<LValue,llvm::Value*> 3342 EmitARCStoreAutoreleasing(const BinaryOperator *e); 3343 std::pair<LValue,llvm::Value*> 3344 EmitARCStoreStrong(const BinaryOperator *e, bool ignored); 3345 std::pair<LValue,llvm::Value*> 3346 EmitARCStoreUnsafeUnretained(const BinaryOperator *e, bool ignored); 3347 3348 llvm::Value *EmitObjCThrowOperand(const Expr *expr); 3349 llvm::Value *EmitObjCConsumeObject(QualType T, llvm::Value *Ptr); 3350 llvm::Value *EmitObjCExtendObjectLifetime(QualType T, llvm::Value *Ptr); 3351 3352 llvm::Value *EmitARCExtendBlockObject(const Expr *expr); 3353 llvm::Value *EmitARCReclaimReturnedObject(const Expr *e, 3354 bool allowUnsafeClaim); 3355 llvm::Value *EmitARCRetainScalarExpr(const Expr *expr); 3356 llvm::Value *EmitARCRetainAutoreleaseScalarExpr(const Expr *expr); 3357 llvm::Value *EmitARCUnsafeUnretainedScalarExpr(const Expr *expr); 3358 3359 void EmitARCIntrinsicUse(ArrayRef<llvm::Value*> values); 3360 3361 static Destroyer destroyARCStrongImprecise; 3362 static Destroyer destroyARCStrongPrecise; 3363 static Destroyer destroyARCWeak; 3364 static Destroyer emitARCIntrinsicUse; 3365 3366 void EmitObjCAutoreleasePoolPop(llvm::Value *Ptr); 3367 llvm::Value *EmitObjCAutoreleasePoolPush(); 3368 llvm::Value *EmitObjCMRRAutoreleasePoolPush(); 3369 void EmitObjCAutoreleasePoolCleanup(llvm::Value *Ptr); 3370 void EmitObjCMRRAutoreleasePoolPop(llvm::Value *Ptr); 3371 3372 /// \brief Emits a reference binding to the passed in expression. 3373 RValue EmitReferenceBindingToExpr(const Expr *E); 3374 3375 //===--------------------------------------------------------------------===// 3376 // Expression Emission 3377 //===--------------------------------------------------------------------===// 3378 3379 // Expressions are broken into three classes: scalar, complex, aggregate. 3380 3381 /// EmitScalarExpr - Emit the computation of the specified expression of LLVM 3382 /// scalar type, returning the result. 3383 llvm::Value *EmitScalarExpr(const Expr *E , bool IgnoreResultAssign = false); 3384 3385 /// Emit a conversion from the specified type to the specified destination 3386 /// type, both of which are LLVM scalar types. 3387 llvm::Value *EmitScalarConversion(llvm::Value *Src, QualType SrcTy, 3388 QualType DstTy, SourceLocation Loc); 3389 3390 /// Emit a conversion from the specified complex type to the specified 3391 /// destination type, where the destination type is an LLVM scalar type. 3392 llvm::Value *EmitComplexToScalarConversion(ComplexPairTy Src, QualType SrcTy, 3393 QualType DstTy, 3394 SourceLocation Loc); 3395 3396 /// EmitAggExpr - Emit the computation of the specified expression 3397 /// of aggregate type. The result is computed into the given slot, 3398 /// which may be null to indicate that the value is not needed. 3399 void EmitAggExpr(const Expr *E, AggValueSlot AS); 3400 3401 /// EmitAggExprToLValue - Emit the computation of the specified expression of 3402 /// aggregate type into a temporary LValue. 3403 LValue EmitAggExprToLValue(const Expr *E); 3404 3405 /// EmitExtendGCLifetime - Given a pointer to an Objective-C object, 3406 /// make sure it survives garbage collection until this point. 3407 void EmitExtendGCLifetime(llvm::Value *object); 3408 3409 /// EmitComplexExpr - Emit the computation of the specified expression of 3410 /// complex type, returning the result. 3411 ComplexPairTy EmitComplexExpr(const Expr *E, 3412 bool IgnoreReal = false, 3413 bool IgnoreImag = false); 3414 3415 /// EmitComplexExprIntoLValue - Emit the given expression of complex 3416 /// type and place its result into the specified l-value. 3417 void EmitComplexExprIntoLValue(const Expr *E, LValue dest, bool isInit); 3418 3419 /// EmitStoreOfComplex - Store a complex number into the specified l-value. 3420 void EmitStoreOfComplex(ComplexPairTy V, LValue dest, bool isInit); 3421 3422 /// EmitLoadOfComplex - Load a complex number from the specified l-value. 3423 ComplexPairTy EmitLoadOfComplex(LValue src, SourceLocation loc); 3424 3425 Address emitAddrOfRealComponent(Address complex, QualType complexType); 3426 Address emitAddrOfImagComponent(Address complex, QualType complexType); 3427 3428 /// AddInitializerToStaticVarDecl - Add the initializer for 'D' to the 3429 /// global variable that has already been created for it. If the initializer 3430 /// has a different type than GV does, this may free GV and return a different 3431 /// one. Otherwise it just returns GV. 3432 llvm::GlobalVariable * 3433 AddInitializerToStaticVarDecl(const VarDecl &D, 3434 llvm::GlobalVariable *GV); 3435 3436 3437 /// EmitCXXGlobalVarDeclInit - Create the initializer for a C++ 3438 /// variable with global storage. 3439 void EmitCXXGlobalVarDeclInit(const VarDecl &D, llvm::Constant *DeclPtr, 3440 bool PerformInit); 3441 3442 llvm::Constant *createAtExitStub(const VarDecl &VD, llvm::Constant *Dtor, 3443 llvm::Constant *Addr); 3444 3445 /// Call atexit() with a function that passes the given argument to 3446 /// the given function. 3447 void registerGlobalDtorWithAtExit(const VarDecl &D, llvm::Constant *fn, 3448 llvm::Constant *addr); 3449 3450 /// Emit code in this function to perform a guarded variable 3451 /// initialization. Guarded initializations are used when it's not 3452 /// possible to prove that an initialization will be done exactly 3453 /// once, e.g. with a static local variable or a static data member 3454 /// of a class template. 3455 void EmitCXXGuardedInit(const VarDecl &D, llvm::GlobalVariable *DeclPtr, 3456 bool PerformInit); 3457 3458 /// GenerateCXXGlobalInitFunc - Generates code for initializing global 3459 /// variables. 3460 void GenerateCXXGlobalInitFunc(llvm::Function *Fn, 3461 ArrayRef<llvm::Function *> CXXThreadLocals, 3462 Address Guard = Address::invalid()); 3463 3464 /// GenerateCXXGlobalDtorsFunc - Generates code for destroying global 3465 /// variables. 3466 void GenerateCXXGlobalDtorsFunc( 3467 llvm::Function *Fn, 3468 const std::vector<std::pair<llvm::WeakTrackingVH, llvm::Constant *>> 3469 &DtorsAndObjects); 3470 3471 void GenerateCXXGlobalVarDeclInitFunc(llvm::Function *Fn, 3472 const VarDecl *D, 3473 llvm::GlobalVariable *Addr, 3474 bool PerformInit); 3475 3476 void EmitCXXConstructExpr(const CXXConstructExpr *E, AggValueSlot Dest); 3477 3478 void EmitSynthesizedCXXCopyCtor(Address Dest, Address Src, const Expr *Exp); 3479 3480 void enterFullExpression(const ExprWithCleanups *E) { 3481 if (E->getNumObjects() == 0) return; 3482 enterNonTrivialFullExpression(E); 3483 } 3484 void enterNonTrivialFullExpression(const ExprWithCleanups *E); 3485 3486 void EmitCXXThrowExpr(const CXXThrowExpr *E, bool KeepInsertionPoint = true); 3487 3488 void EmitLambdaExpr(const LambdaExpr *E, AggValueSlot Dest); 3489 3490 RValue EmitAtomicExpr(AtomicExpr *E); 3491 3492 //===--------------------------------------------------------------------===// 3493 // Annotations Emission 3494 //===--------------------------------------------------------------------===// 3495 3496 /// Emit an annotation call (intrinsic or builtin). 3497 llvm::Value *EmitAnnotationCall(llvm::Value *AnnotationFn, 3498 llvm::Value *AnnotatedVal, 3499 StringRef AnnotationStr, 3500 SourceLocation Location); 3501 3502 /// Emit local annotations for the local variable V, declared by D. 3503 void EmitVarAnnotations(const VarDecl *D, llvm::Value *V); 3504 3505 /// Emit field annotations for the given field & value. Returns the 3506 /// annotation result. 3507 Address EmitFieldAnnotations(const FieldDecl *D, Address V); 3508 3509 //===--------------------------------------------------------------------===// 3510 // Internal Helpers 3511 //===--------------------------------------------------------------------===// 3512 3513 /// ContainsLabel - Return true if the statement contains a label in it. If 3514 /// this statement is not executed normally, it not containing a label means 3515 /// that we can just remove the code. 3516 static bool ContainsLabel(const Stmt *S, bool IgnoreCaseStmts = false); 3517 3518 /// containsBreak - Return true if the statement contains a break out of it. 3519 /// If the statement (recursively) contains a switch or loop with a break 3520 /// inside of it, this is fine. 3521 static bool containsBreak(const Stmt *S); 3522 3523 /// Determine if the given statement might introduce a declaration into the 3524 /// current scope, by being a (possibly-labelled) DeclStmt. 3525 static bool mightAddDeclToScope(const Stmt *S); 3526 3527 /// ConstantFoldsToSimpleInteger - If the specified expression does not fold 3528 /// to a constant, or if it does but contains a label, return false. If it 3529 /// constant folds return true and set the boolean result in Result. 3530 bool ConstantFoldsToSimpleInteger(const Expr *Cond, bool &Result, 3531 bool AllowLabels = false); 3532 3533 /// ConstantFoldsToSimpleInteger - If the specified expression does not fold 3534 /// to a constant, or if it does but contains a label, return false. If it 3535 /// constant folds return true and set the folded value. 3536 bool ConstantFoldsToSimpleInteger(const Expr *Cond, llvm::APSInt &Result, 3537 bool AllowLabels = false); 3538 3539 /// EmitBranchOnBoolExpr - Emit a branch on a boolean condition (e.g. for an 3540 /// if statement) to the specified blocks. Based on the condition, this might 3541 /// try to simplify the codegen of the conditional based on the branch. 3542 /// TrueCount should be the number of times we expect the condition to 3543 /// evaluate to true based on PGO data. 3544 void EmitBranchOnBoolExpr(const Expr *Cond, llvm::BasicBlock *TrueBlock, 3545 llvm::BasicBlock *FalseBlock, uint64_t TrueCount); 3546 3547 /// Given an assignment `*LHS = RHS`, emit a test that checks if \p RHS is 3548 /// nonnull, if \p LHS is marked _Nonnull. 3549 void EmitNullabilityCheck(LValue LHS, llvm::Value *RHS, SourceLocation Loc); 3550 3551 /// \brief Emit a description of a type in a format suitable for passing to 3552 /// a runtime sanitizer handler. 3553 llvm::Constant *EmitCheckTypeDescriptor(QualType T); 3554 3555 /// \brief Convert a value into a format suitable for passing to a runtime 3556 /// sanitizer handler. 3557 llvm::Value *EmitCheckValue(llvm::Value *V); 3558 3559 /// \brief Emit a description of a source location in a format suitable for 3560 /// passing to a runtime sanitizer handler. 3561 llvm::Constant *EmitCheckSourceLocation(SourceLocation Loc); 3562 3563 /// \brief Create a basic block that will call a handler function in a 3564 /// sanitizer runtime with the provided arguments, and create a conditional 3565 /// branch to it. 3566 void EmitCheck(ArrayRef<std::pair<llvm::Value *, SanitizerMask>> Checked, 3567 SanitizerHandler Check, ArrayRef<llvm::Constant *> StaticArgs, 3568 ArrayRef<llvm::Value *> DynamicArgs); 3569 3570 /// \brief Emit a slow path cross-DSO CFI check which calls __cfi_slowpath 3571 /// if Cond if false. 3572 void EmitCfiSlowPathCheck(SanitizerMask Kind, llvm::Value *Cond, 3573 llvm::ConstantInt *TypeId, llvm::Value *Ptr, 3574 ArrayRef<llvm::Constant *> StaticArgs); 3575 3576 /// \brief Create a basic block that will call the trap intrinsic, and emit a 3577 /// conditional branch to it, for the -ftrapv checks. 3578 void EmitTrapCheck(llvm::Value *Checked); 3579 3580 /// \brief Emit a call to trap or debugtrap and attach function attribute 3581 /// "trap-func-name" if specified. 3582 llvm::CallInst *EmitTrapCall(llvm::Intrinsic::ID IntrID); 3583 3584 /// \brief Emit a stub for the cross-DSO CFI check function. 3585 void EmitCfiCheckStub(); 3586 3587 /// \brief Emit a cross-DSO CFI failure handling function. 3588 void EmitCfiCheckFail(); 3589 3590 /// \brief Create a check for a function parameter that may potentially be 3591 /// declared as non-null. 3592 void EmitNonNullArgCheck(RValue RV, QualType ArgType, SourceLocation ArgLoc, 3593 AbstractCallee AC, unsigned ParmNum); 3594 3595 /// EmitCallArg - Emit a single call argument. 3596 void EmitCallArg(CallArgList &args, const Expr *E, QualType ArgType); 3597 3598 /// EmitDelegateCallArg - We are performing a delegate call; that 3599 /// is, the current function is delegating to another one. Produce 3600 /// a r-value suitable for passing the given parameter. 3601 void EmitDelegateCallArg(CallArgList &args, const VarDecl *param, 3602 SourceLocation loc); 3603 3604 /// SetFPAccuracy - Set the minimum required accuracy of the given floating 3605 /// point operation, expressed as the maximum relative error in ulp. 3606 void SetFPAccuracy(llvm::Value *Val, float Accuracy); 3607 3608 private: 3609 llvm::MDNode *getRangeForLoadFromType(QualType Ty); 3610 void EmitReturnOfRValue(RValue RV, QualType Ty); 3611 3612 void deferPlaceholderReplacement(llvm::Instruction *Old, llvm::Value *New); 3613 3614 llvm::SmallVector<std::pair<llvm::Instruction *, llvm::Value *>, 4> 3615 DeferredReplacements; 3616 3617 /// Set the address of a local variable. 3618 void setAddrOfLocalVar(const VarDecl *VD, Address Addr) { 3619 assert(!LocalDeclMap.count(VD) && "Decl already exists in LocalDeclMap!"); 3620 LocalDeclMap.insert({VD, Addr}); 3621 } 3622 3623 /// ExpandTypeFromArgs - Reconstruct a structure of type \arg Ty 3624 /// from function arguments into \arg Dst. See ABIArgInfo::Expand. 3625 /// 3626 /// \param AI - The first function argument of the expansion. 3627 void ExpandTypeFromArgs(QualType Ty, LValue Dst, 3628 SmallVectorImpl<llvm::Value *>::iterator &AI); 3629 3630 /// ExpandTypeToArgs - Expand an RValue \arg RV, with the LLVM type for \arg 3631 /// Ty, into individual arguments on the provided vector \arg IRCallArgs, 3632 /// starting at index \arg IRCallArgPos. See ABIArgInfo::Expand. 3633 void ExpandTypeToArgs(QualType Ty, RValue RV, llvm::FunctionType *IRFuncTy, 3634 SmallVectorImpl<llvm::Value *> &IRCallArgs, 3635 unsigned &IRCallArgPos); 3636 3637 llvm::Value* EmitAsmInput(const TargetInfo::ConstraintInfo &Info, 3638 const Expr *InputExpr, std::string &ConstraintStr); 3639 3640 llvm::Value* EmitAsmInputLValue(const TargetInfo::ConstraintInfo &Info, 3641 LValue InputValue, QualType InputType, 3642 std::string &ConstraintStr, 3643 SourceLocation Loc); 3644 3645 /// \brief Attempts to statically evaluate the object size of E. If that 3646 /// fails, emits code to figure the size of E out for us. This is 3647 /// pass_object_size aware. 3648 /// 3649 /// If EmittedExpr is non-null, this will use that instead of re-emitting E. 3650 llvm::Value *evaluateOrEmitBuiltinObjectSize(const Expr *E, unsigned Type, 3651 llvm::IntegerType *ResType, 3652 llvm::Value *EmittedE); 3653 3654 /// \brief Emits the size of E, as required by __builtin_object_size. This 3655 /// function is aware of pass_object_size parameters, and will act accordingly 3656 /// if E is a parameter with the pass_object_size attribute. 3657 llvm::Value *emitBuiltinObjectSize(const Expr *E, unsigned Type, 3658 llvm::IntegerType *ResType, 3659 llvm::Value *EmittedE); 3660 3661 public: 3662 #ifndef NDEBUG 3663 // Determine whether the given argument is an Objective-C method 3664 // that may have type parameters in its signature. 3665 static bool isObjCMethodWithTypeParams(const ObjCMethodDecl *method) { 3666 const DeclContext *dc = method->getDeclContext(); 3667 if (const ObjCInterfaceDecl *classDecl= dyn_cast<ObjCInterfaceDecl>(dc)) { 3668 return classDecl->getTypeParamListAsWritten(); 3669 } 3670 3671 if (const ObjCCategoryDecl *catDecl = dyn_cast<ObjCCategoryDecl>(dc)) { 3672 return catDecl->getTypeParamList(); 3673 } 3674 3675 return false; 3676 } 3677 3678 template<typename T> 3679 static bool isObjCMethodWithTypeParams(const T *) { return false; } 3680 #endif 3681 3682 enum class EvaluationOrder { 3683 ///! No language constraints on evaluation order. 3684 Default, 3685 ///! Language semantics require left-to-right evaluation. 3686 ForceLeftToRight, 3687 ///! Language semantics require right-to-left evaluation. 3688 ForceRightToLeft 3689 }; 3690 3691 /// EmitCallArgs - Emit call arguments for a function. 3692 template <typename T> 3693 void EmitCallArgs(CallArgList &Args, const T *CallArgTypeInfo, 3694 llvm::iterator_range<CallExpr::const_arg_iterator> ArgRange, 3695 AbstractCallee AC = AbstractCallee(), 3696 unsigned ParamsToSkip = 0, 3697 EvaluationOrder Order = EvaluationOrder::Default) { 3698 SmallVector<QualType, 16> ArgTypes; 3699 CallExpr::const_arg_iterator Arg = ArgRange.begin(); 3700 3701 assert((ParamsToSkip == 0 || CallArgTypeInfo) && 3702 "Can't skip parameters if type info is not provided"); 3703 if (CallArgTypeInfo) { 3704 #ifndef NDEBUG 3705 bool isGenericMethod = isObjCMethodWithTypeParams(CallArgTypeInfo); 3706 #endif 3707 3708 // First, use the argument types that the type info knows about 3709 for (auto I = CallArgTypeInfo->param_type_begin() + ParamsToSkip, 3710 E = CallArgTypeInfo->param_type_end(); 3711 I != E; ++I, ++Arg) { 3712 assert(Arg != ArgRange.end() && "Running over edge of argument list!"); 3713 assert((isGenericMethod || 3714 ((*I)->isVariablyModifiedType() || 3715 (*I).getNonReferenceType()->isObjCRetainableType() || 3716 getContext() 3717 .getCanonicalType((*I).getNonReferenceType()) 3718 .getTypePtr() == 3719 getContext() 3720 .getCanonicalType((*Arg)->getType()) 3721 .getTypePtr())) && 3722 "type mismatch in call argument!"); 3723 ArgTypes.push_back(*I); 3724 } 3725 } 3726 3727 // Either we've emitted all the call args, or we have a call to variadic 3728 // function. 3729 assert((Arg == ArgRange.end() || !CallArgTypeInfo || 3730 CallArgTypeInfo->isVariadic()) && 3731 "Extra arguments in non-variadic function!"); 3732 3733 // If we still have any arguments, emit them using the type of the argument. 3734 for (auto *A : llvm::make_range(Arg, ArgRange.end())) 3735 ArgTypes.push_back(CallArgTypeInfo ? getVarArgType(A) : A->getType()); 3736 3737 EmitCallArgs(Args, ArgTypes, ArgRange, AC, ParamsToSkip, Order); 3738 } 3739 3740 void EmitCallArgs(CallArgList &Args, ArrayRef<QualType> ArgTypes, 3741 llvm::iterator_range<CallExpr::const_arg_iterator> ArgRange, 3742 AbstractCallee AC = AbstractCallee(), 3743 unsigned ParamsToSkip = 0, 3744 EvaluationOrder Order = EvaluationOrder::Default); 3745 3746 /// EmitPointerWithAlignment - Given an expression with a pointer 3747 /// type, emit the value and compute our best estimate of the 3748 /// alignment of the pointee. 3749 /// 3750 /// Note that this function will conservatively fall back on the type 3751 /// when it doesn't 3752 /// 3753 /// \param Source - If non-null, this will be initialized with 3754 /// information about the source of the alignment. Note that this 3755 /// function will conservatively fall back on the type when it 3756 /// doesn't recognize the expression, which means that sometimes 3757 /// 3758 /// a worst-case One 3759 /// reasonable way to use this information is when there's a 3760 /// language guarantee that the pointer must be aligned to some 3761 /// stricter value, and we're simply trying to ensure that 3762 /// sufficiently obvious uses of under-aligned objects don't get 3763 /// miscompiled; for example, a placement new into the address of 3764 /// a local variable. In such a case, it's quite reasonable to 3765 /// just ignore the returned alignment when it isn't from an 3766 /// explicit source. 3767 Address EmitPointerWithAlignment(const Expr *Addr, 3768 AlignmentSource *Source = nullptr); 3769 3770 void EmitSanitizerStatReport(llvm::SanitizerStatKind SSK); 3771 3772 private: 3773 QualType getVarArgType(const Expr *Arg); 3774 3775 const TargetCodeGenInfo &getTargetHooks() const { 3776 return CGM.getTargetCodeGenInfo(); 3777 } 3778 3779 void EmitDeclMetadata(); 3780 3781 BlockByrefHelpers *buildByrefHelpers(llvm::StructType &byrefType, 3782 const AutoVarEmission &emission); 3783 3784 void AddObjCARCExceptionMetadata(llvm::Instruction *Inst); 3785 3786 llvm::Value *GetValueForARMHint(unsigned BuiltinID); 3787 }; 3788 3789 /// Helper class with most of the code for saving a value for a 3790 /// conditional expression cleanup. 3791 struct DominatingLLVMValue { 3792 typedef llvm::PointerIntPair<llvm::Value*, 1, bool> saved_type; 3793 3794 /// Answer whether the given value needs extra work to be saved. 3795 static bool needsSaving(llvm::Value *value) { 3796 // If it's not an instruction, we don't need to save. 3797 if (!isa<llvm::Instruction>(value)) return false; 3798 3799 // If it's an instruction in the entry block, we don't need to save. 3800 llvm::BasicBlock *block = cast<llvm::Instruction>(value)->getParent(); 3801 return (block != &block->getParent()->getEntryBlock()); 3802 } 3803 3804 /// Try to save the given value. 3805 static saved_type save(CodeGenFunction &CGF, llvm::Value *value) { 3806 if (!needsSaving(value)) return saved_type(value, false); 3807 3808 // Otherwise, we need an alloca. 3809 auto align = CharUnits::fromQuantity( 3810 CGF.CGM.getDataLayout().getPrefTypeAlignment(value->getType())); 3811 Address alloca = 3812 CGF.CreateTempAlloca(value->getType(), align, "cond-cleanup.save"); 3813 CGF.Builder.CreateStore(value, alloca); 3814 3815 return saved_type(alloca.getPointer(), true); 3816 } 3817 3818 static llvm::Value *restore(CodeGenFunction &CGF, saved_type value) { 3819 // If the value says it wasn't saved, trust that it's still dominating. 3820 if (!value.getInt()) return value.getPointer(); 3821 3822 // Otherwise, it should be an alloca instruction, as set up in save(). 3823 auto alloca = cast<llvm::AllocaInst>(value.getPointer()); 3824 return CGF.Builder.CreateAlignedLoad(alloca, alloca->getAlignment()); 3825 } 3826 }; 3827 3828 /// A partial specialization of DominatingValue for llvm::Values that 3829 /// might be llvm::Instructions. 3830 template <class T> struct DominatingPointer<T,true> : DominatingLLVMValue { 3831 typedef T *type; 3832 static type restore(CodeGenFunction &CGF, saved_type value) { 3833 return static_cast<T*>(DominatingLLVMValue::restore(CGF, value)); 3834 } 3835 }; 3836 3837 /// A specialization of DominatingValue for Address. 3838 template <> struct DominatingValue<Address> { 3839 typedef Address type; 3840 3841 struct saved_type { 3842 DominatingLLVMValue::saved_type SavedValue; 3843 CharUnits Alignment; 3844 }; 3845 3846 static bool needsSaving(type value) { 3847 return DominatingLLVMValue::needsSaving(value.getPointer()); 3848 } 3849 static saved_type save(CodeGenFunction &CGF, type value) { 3850 return { DominatingLLVMValue::save(CGF, value.getPointer()), 3851 value.getAlignment() }; 3852 } 3853 static type restore(CodeGenFunction &CGF, saved_type value) { 3854 return Address(DominatingLLVMValue::restore(CGF, value.SavedValue), 3855 value.Alignment); 3856 } 3857 }; 3858 3859 /// A specialization of DominatingValue for RValue. 3860 template <> struct DominatingValue<RValue> { 3861 typedef RValue type; 3862 class saved_type { 3863 enum Kind { ScalarLiteral, ScalarAddress, AggregateLiteral, 3864 AggregateAddress, ComplexAddress }; 3865 3866 llvm::Value *Value; 3867 unsigned K : 3; 3868 unsigned Align : 29; 3869 saved_type(llvm::Value *v, Kind k, unsigned a = 0) 3870 : Value(v), K(k), Align(a) {} 3871 3872 public: 3873 static bool needsSaving(RValue value); 3874 static saved_type save(CodeGenFunction &CGF, RValue value); 3875 RValue restore(CodeGenFunction &CGF); 3876 3877 // implementations in CGCleanup.cpp 3878 }; 3879 3880 static bool needsSaving(type value) { 3881 return saved_type::needsSaving(value); 3882 } 3883 static saved_type save(CodeGenFunction &CGF, type value) { 3884 return saved_type::save(CGF, value); 3885 } 3886 static type restore(CodeGenFunction &CGF, saved_type value) { 3887 return value.restore(CGF); 3888 } 3889 }; 3890 3891 } // end namespace CodeGen 3892 } // end namespace clang 3893 3894 #endif 3895