1 //===-- CodeGenFunction.h - Per-Function state for LLVM CodeGen -*- C++ -*-===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This is the internal per-function state used for llvm translation. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #ifndef LLVM_CLANG_LIB_CODEGEN_CODEGENFUNCTION_H 15 #define LLVM_CLANG_LIB_CODEGEN_CODEGENFUNCTION_H 16 17 #include "CGBuilder.h" 18 #include "CGDebugInfo.h" 19 #include "CGLoopInfo.h" 20 #include "CGValue.h" 21 #include "CodeGenModule.h" 22 #include "CodeGenPGO.h" 23 #include "EHScopeStack.h" 24 #include "VarBypassDetector.h" 25 #include "clang/AST/CharUnits.h" 26 #include "clang/AST/ExprCXX.h" 27 #include "clang/AST/ExprObjC.h" 28 #include "clang/AST/ExprOpenMP.h" 29 #include "clang/AST/Type.h" 30 #include "clang/Basic/ABI.h" 31 #include "clang/Basic/CapturedStmt.h" 32 #include "clang/Basic/OpenMPKinds.h" 33 #include "clang/Basic/TargetInfo.h" 34 #include "clang/Frontend/CodeGenOptions.h" 35 #include "llvm/ADT/ArrayRef.h" 36 #include "llvm/ADT/DenseMap.h" 37 #include "llvm/ADT/MapVector.h" 38 #include "llvm/ADT/SmallVector.h" 39 #include "llvm/IR/ValueHandle.h" 40 #include "llvm/Support/Debug.h" 41 #include "llvm/Transforms/Utils/SanitizerStats.h" 42 43 namespace llvm { 44 class BasicBlock; 45 class LLVMContext; 46 class MDNode; 47 class Module; 48 class SwitchInst; 49 class Twine; 50 class Value; 51 class CallSite; 52 } 53 54 namespace clang { 55 class ASTContext; 56 class BlockDecl; 57 class CXXDestructorDecl; 58 class CXXForRangeStmt; 59 class CXXTryStmt; 60 class Decl; 61 class LabelDecl; 62 class EnumConstantDecl; 63 class FunctionDecl; 64 class FunctionProtoType; 65 class LabelStmt; 66 class ObjCContainerDecl; 67 class ObjCInterfaceDecl; 68 class ObjCIvarDecl; 69 class ObjCMethodDecl; 70 class ObjCImplementationDecl; 71 class ObjCPropertyImplDecl; 72 class TargetInfo; 73 class VarDecl; 74 class ObjCForCollectionStmt; 75 class ObjCAtTryStmt; 76 class ObjCAtThrowStmt; 77 class ObjCAtSynchronizedStmt; 78 class ObjCAutoreleasePoolStmt; 79 80 namespace analyze_os_log { 81 class OSLogBufferLayout; 82 } 83 84 namespace CodeGen { 85 class CodeGenTypes; 86 class CGCallee; 87 class CGFunctionInfo; 88 class CGRecordLayout; 89 class CGBlockInfo; 90 class CGCXXABI; 91 class BlockByrefHelpers; 92 class BlockByrefInfo; 93 class BlockFlags; 94 class BlockFieldFlags; 95 class RegionCodeGenTy; 96 class TargetCodeGenInfo; 97 struct OMPTaskDataTy; 98 struct CGCoroData; 99 100 /// The kind of evaluation to perform on values of a particular 101 /// type. Basically, is the code in CGExprScalar, CGExprComplex, or 102 /// CGExprAgg? 103 /// 104 /// TODO: should vectors maybe be split out into their own thing? 105 enum TypeEvaluationKind { 106 TEK_Scalar, 107 TEK_Complex, 108 TEK_Aggregate 109 }; 110 111 #define LIST_SANITIZER_CHECKS \ 112 SANITIZER_CHECK(AddOverflow, add_overflow, 0) \ 113 SANITIZER_CHECK(BuiltinUnreachable, builtin_unreachable, 0) \ 114 SANITIZER_CHECK(CFICheckFail, cfi_check_fail, 0) \ 115 SANITIZER_CHECK(DivremOverflow, divrem_overflow, 0) \ 116 SANITIZER_CHECK(DynamicTypeCacheMiss, dynamic_type_cache_miss, 0) \ 117 SANITIZER_CHECK(FloatCastOverflow, float_cast_overflow, 0) \ 118 SANITIZER_CHECK(FunctionTypeMismatch, function_type_mismatch, 0) \ 119 SANITIZER_CHECK(InvalidBuiltin, invalid_builtin, 0) \ 120 SANITIZER_CHECK(LoadInvalidValue, load_invalid_value, 0) \ 121 SANITIZER_CHECK(MissingReturn, missing_return, 0) \ 122 SANITIZER_CHECK(MulOverflow, mul_overflow, 0) \ 123 SANITIZER_CHECK(NegateOverflow, negate_overflow, 0) \ 124 SANITIZER_CHECK(NullabilityArg, nullability_arg, 0) \ 125 SANITIZER_CHECK(NullabilityReturn, nullability_return, 1) \ 126 SANITIZER_CHECK(NonnullArg, nonnull_arg, 0) \ 127 SANITIZER_CHECK(NonnullReturn, nonnull_return, 1) \ 128 SANITIZER_CHECK(OutOfBounds, out_of_bounds, 0) \ 129 SANITIZER_CHECK(PointerOverflow, pointer_overflow, 0) \ 130 SANITIZER_CHECK(ShiftOutOfBounds, shift_out_of_bounds, 0) \ 131 SANITIZER_CHECK(SubOverflow, sub_overflow, 0) \ 132 SANITIZER_CHECK(TypeMismatch, type_mismatch, 1) \ 133 SANITIZER_CHECK(VLABoundNotPositive, vla_bound_not_positive, 0) 134 135 enum SanitizerHandler { 136 #define SANITIZER_CHECK(Enum, Name, Version) Enum, 137 LIST_SANITIZER_CHECKS 138 #undef SANITIZER_CHECK 139 }; 140 141 /// CodeGenFunction - This class organizes the per-function state that is used 142 /// while generating LLVM code. 143 class CodeGenFunction : public CodeGenTypeCache { 144 CodeGenFunction(const CodeGenFunction &) = delete; 145 void operator=(const CodeGenFunction &) = delete; 146 147 friend class CGCXXABI; 148 public: 149 /// A jump destination is an abstract label, branching to which may 150 /// require a jump out through normal cleanups. 151 struct JumpDest { 152 JumpDest() : Block(nullptr), ScopeDepth(), Index(0) {} 153 JumpDest(llvm::BasicBlock *Block, 154 EHScopeStack::stable_iterator Depth, 155 unsigned Index) 156 : Block(Block), ScopeDepth(Depth), Index(Index) {} 157 158 bool isValid() const { return Block != nullptr; } 159 llvm::BasicBlock *getBlock() const { return Block; } 160 EHScopeStack::stable_iterator getScopeDepth() const { return ScopeDepth; } 161 unsigned getDestIndex() const { return Index; } 162 163 // This should be used cautiously. 164 void setScopeDepth(EHScopeStack::stable_iterator depth) { 165 ScopeDepth = depth; 166 } 167 168 private: 169 llvm::BasicBlock *Block; 170 EHScopeStack::stable_iterator ScopeDepth; 171 unsigned Index; 172 }; 173 174 CodeGenModule &CGM; // Per-module state. 175 const TargetInfo &Target; 176 177 typedef std::pair<llvm::Value *, llvm::Value *> ComplexPairTy; 178 LoopInfoStack LoopStack; 179 CGBuilderTy Builder; 180 181 // Stores variables for which we can't generate correct lifetime markers 182 // because of jumps. 183 VarBypassDetector Bypasses; 184 185 // CodeGen lambda for loops and support for ordered clause 186 typedef llvm::function_ref<void(CodeGenFunction &, const OMPLoopDirective &, 187 JumpDest)> 188 CodeGenLoopTy; 189 typedef llvm::function_ref<void(CodeGenFunction &, SourceLocation, 190 const unsigned, const bool)> 191 CodeGenOrderedTy; 192 193 // Codegen lambda for loop bounds in worksharing loop constructs 194 typedef llvm::function_ref<std::pair<LValue, LValue>( 195 CodeGenFunction &, const OMPExecutableDirective &S)> 196 CodeGenLoopBoundsTy; 197 198 // Codegen lambda for loop bounds in dispatch-based loop implementation 199 typedef llvm::function_ref<std::pair<llvm::Value *, llvm::Value *>( 200 CodeGenFunction &, const OMPExecutableDirective &S, Address LB, 201 Address UB)> 202 CodeGenDispatchBoundsTy; 203 204 /// \brief CGBuilder insert helper. This function is called after an 205 /// instruction is created using Builder. 206 void InsertHelper(llvm::Instruction *I, const llvm::Twine &Name, 207 llvm::BasicBlock *BB, 208 llvm::BasicBlock::iterator InsertPt) const; 209 210 /// CurFuncDecl - Holds the Decl for the current outermost 211 /// non-closure context. 212 const Decl *CurFuncDecl; 213 /// CurCodeDecl - This is the inner-most code context, which includes blocks. 214 const Decl *CurCodeDecl; 215 const CGFunctionInfo *CurFnInfo; 216 QualType FnRetTy; 217 llvm::Function *CurFn; 218 219 // Holds coroutine data if the current function is a coroutine. We use a 220 // wrapper to manage its lifetime, so that we don't have to define CGCoroData 221 // in this header. 222 struct CGCoroInfo { 223 std::unique_ptr<CGCoroData> Data; 224 CGCoroInfo(); 225 ~CGCoroInfo(); 226 }; 227 CGCoroInfo CurCoro; 228 229 bool isCoroutine() const { 230 return CurCoro.Data != nullptr; 231 } 232 233 /// CurGD - The GlobalDecl for the current function being compiled. 234 GlobalDecl CurGD; 235 236 /// PrologueCleanupDepth - The cleanup depth enclosing all the 237 /// cleanups associated with the parameters. 238 EHScopeStack::stable_iterator PrologueCleanupDepth; 239 240 /// ReturnBlock - Unified return block. 241 JumpDest ReturnBlock; 242 243 /// ReturnValue - The temporary alloca to hold the return 244 /// value. This is invalid iff the function has no return value. 245 Address ReturnValue; 246 247 /// Return true if a label was seen in the current scope. 248 bool hasLabelBeenSeenInCurrentScope() const { 249 if (CurLexicalScope) 250 return CurLexicalScope->hasLabels(); 251 return !LabelMap.empty(); 252 } 253 254 /// AllocaInsertPoint - This is an instruction in the entry block before which 255 /// we prefer to insert allocas. 256 llvm::AssertingVH<llvm::Instruction> AllocaInsertPt; 257 258 /// \brief API for captured statement code generation. 259 class CGCapturedStmtInfo { 260 public: 261 explicit CGCapturedStmtInfo(CapturedRegionKind K = CR_Default) 262 : Kind(K), ThisValue(nullptr), CXXThisFieldDecl(nullptr) {} 263 explicit CGCapturedStmtInfo(const CapturedStmt &S, 264 CapturedRegionKind K = CR_Default) 265 : Kind(K), ThisValue(nullptr), CXXThisFieldDecl(nullptr) { 266 267 RecordDecl::field_iterator Field = 268 S.getCapturedRecordDecl()->field_begin(); 269 for (CapturedStmt::const_capture_iterator I = S.capture_begin(), 270 E = S.capture_end(); 271 I != E; ++I, ++Field) { 272 if (I->capturesThis()) 273 CXXThisFieldDecl = *Field; 274 else if (I->capturesVariable()) 275 CaptureFields[I->getCapturedVar()->getCanonicalDecl()] = *Field; 276 else if (I->capturesVariableByCopy()) 277 CaptureFields[I->getCapturedVar()->getCanonicalDecl()] = *Field; 278 } 279 } 280 281 virtual ~CGCapturedStmtInfo(); 282 283 CapturedRegionKind getKind() const { return Kind; } 284 285 virtual void setContextValue(llvm::Value *V) { ThisValue = V; } 286 // \brief Retrieve the value of the context parameter. 287 virtual llvm::Value *getContextValue() const { return ThisValue; } 288 289 /// \brief Lookup the captured field decl for a variable. 290 virtual const FieldDecl *lookup(const VarDecl *VD) const { 291 return CaptureFields.lookup(VD->getCanonicalDecl()); 292 } 293 294 bool isCXXThisExprCaptured() const { return getThisFieldDecl() != nullptr; } 295 virtual FieldDecl *getThisFieldDecl() const { return CXXThisFieldDecl; } 296 297 static bool classof(const CGCapturedStmtInfo *) { 298 return true; 299 } 300 301 /// \brief Emit the captured statement body. 302 virtual void EmitBody(CodeGenFunction &CGF, const Stmt *S) { 303 CGF.incrementProfileCounter(S); 304 CGF.EmitStmt(S); 305 } 306 307 /// \brief Get the name of the capture helper. 308 virtual StringRef getHelperName() const { return "__captured_stmt"; } 309 310 private: 311 /// \brief The kind of captured statement being generated. 312 CapturedRegionKind Kind; 313 314 /// \brief Keep the map between VarDecl and FieldDecl. 315 llvm::SmallDenseMap<const VarDecl *, FieldDecl *> CaptureFields; 316 317 /// \brief The base address of the captured record, passed in as the first 318 /// argument of the parallel region function. 319 llvm::Value *ThisValue; 320 321 /// \brief Captured 'this' type. 322 FieldDecl *CXXThisFieldDecl; 323 }; 324 CGCapturedStmtInfo *CapturedStmtInfo; 325 326 /// \brief RAII for correct setting/restoring of CapturedStmtInfo. 327 class CGCapturedStmtRAII { 328 private: 329 CodeGenFunction &CGF; 330 CGCapturedStmtInfo *PrevCapturedStmtInfo; 331 public: 332 CGCapturedStmtRAII(CodeGenFunction &CGF, 333 CGCapturedStmtInfo *NewCapturedStmtInfo) 334 : CGF(CGF), PrevCapturedStmtInfo(CGF.CapturedStmtInfo) { 335 CGF.CapturedStmtInfo = NewCapturedStmtInfo; 336 } 337 ~CGCapturedStmtRAII() { CGF.CapturedStmtInfo = PrevCapturedStmtInfo; } 338 }; 339 340 /// An abstract representation of regular/ObjC call/message targets. 341 class AbstractCallee { 342 /// The function declaration of the callee. 343 const Decl *CalleeDecl; 344 345 public: 346 AbstractCallee() : CalleeDecl(nullptr) {} 347 AbstractCallee(const FunctionDecl *FD) : CalleeDecl(FD) {} 348 AbstractCallee(const ObjCMethodDecl *OMD) : CalleeDecl(OMD) {} 349 bool hasFunctionDecl() const { 350 return dyn_cast_or_null<FunctionDecl>(CalleeDecl); 351 } 352 const Decl *getDecl() const { return CalleeDecl; } 353 unsigned getNumParams() const { 354 if (const auto *FD = dyn_cast<FunctionDecl>(CalleeDecl)) 355 return FD->getNumParams(); 356 return cast<ObjCMethodDecl>(CalleeDecl)->param_size(); 357 } 358 const ParmVarDecl *getParamDecl(unsigned I) const { 359 if (const auto *FD = dyn_cast<FunctionDecl>(CalleeDecl)) 360 return FD->getParamDecl(I); 361 return *(cast<ObjCMethodDecl>(CalleeDecl)->param_begin() + I); 362 } 363 }; 364 365 /// \brief Sanitizers enabled for this function. 366 SanitizerSet SanOpts; 367 368 /// \brief True if CodeGen currently emits code implementing sanitizer checks. 369 bool IsSanitizerScope; 370 371 /// \brief RAII object to set/unset CodeGenFunction::IsSanitizerScope. 372 class SanitizerScope { 373 CodeGenFunction *CGF; 374 public: 375 SanitizerScope(CodeGenFunction *CGF); 376 ~SanitizerScope(); 377 }; 378 379 /// In C++, whether we are code generating a thunk. This controls whether we 380 /// should emit cleanups. 381 bool CurFuncIsThunk; 382 383 /// In ARC, whether we should autorelease the return value. 384 bool AutoreleaseResult; 385 386 /// Whether we processed a Microsoft-style asm block during CodeGen. These can 387 /// potentially set the return value. 388 bool SawAsmBlock; 389 390 const FunctionDecl *CurSEHParent = nullptr; 391 392 /// True if the current function is an outlined SEH helper. This can be a 393 /// finally block or filter expression. 394 bool IsOutlinedSEHHelper; 395 396 const CodeGen::CGBlockInfo *BlockInfo; 397 llvm::Value *BlockPointer; 398 399 llvm::DenseMap<const VarDecl *, FieldDecl *> LambdaCaptureFields; 400 FieldDecl *LambdaThisCaptureField; 401 402 /// \brief A mapping from NRVO variables to the flags used to indicate 403 /// when the NRVO has been applied to this variable. 404 llvm::DenseMap<const VarDecl *, llvm::Value *> NRVOFlags; 405 406 EHScopeStack EHStack; 407 llvm::SmallVector<char, 256> LifetimeExtendedCleanupStack; 408 llvm::SmallVector<const JumpDest *, 2> SEHTryEpilogueStack; 409 410 llvm::Instruction *CurrentFuncletPad = nullptr; 411 412 class CallLifetimeEnd final : public EHScopeStack::Cleanup { 413 llvm::Value *Addr; 414 llvm::Value *Size; 415 416 public: 417 CallLifetimeEnd(Address addr, llvm::Value *size) 418 : Addr(addr.getPointer()), Size(size) {} 419 420 void Emit(CodeGenFunction &CGF, Flags flags) override { 421 CGF.EmitLifetimeEnd(Size, Addr); 422 } 423 }; 424 425 /// Header for data within LifetimeExtendedCleanupStack. 426 struct LifetimeExtendedCleanupHeader { 427 /// The size of the following cleanup object. 428 unsigned Size; 429 /// The kind of cleanup to push: a value from the CleanupKind enumeration. 430 CleanupKind Kind; 431 432 size_t getSize() const { return Size; } 433 CleanupKind getKind() const { return Kind; } 434 }; 435 436 /// i32s containing the indexes of the cleanup destinations. 437 Address NormalCleanupDest; 438 439 unsigned NextCleanupDestIndex; 440 441 /// FirstBlockInfo - The head of a singly-linked-list of block layouts. 442 CGBlockInfo *FirstBlockInfo; 443 444 /// EHResumeBlock - Unified block containing a call to llvm.eh.resume. 445 llvm::BasicBlock *EHResumeBlock; 446 447 /// The exception slot. All landing pads write the current exception pointer 448 /// into this alloca. 449 llvm::Value *ExceptionSlot; 450 451 /// The selector slot. Under the MandatoryCleanup model, all landing pads 452 /// write the current selector value into this alloca. 453 llvm::AllocaInst *EHSelectorSlot; 454 455 /// A stack of exception code slots. Entering an __except block pushes a slot 456 /// on the stack and leaving pops one. The __exception_code() intrinsic loads 457 /// a value from the top of the stack. 458 SmallVector<Address, 1> SEHCodeSlotStack; 459 460 /// Value returned by __exception_info intrinsic. 461 llvm::Value *SEHInfo = nullptr; 462 463 /// Emits a landing pad for the current EH stack. 464 llvm::BasicBlock *EmitLandingPad(); 465 466 llvm::BasicBlock *getInvokeDestImpl(); 467 468 template <class T> 469 typename DominatingValue<T>::saved_type saveValueInCond(T value) { 470 return DominatingValue<T>::save(*this, value); 471 } 472 473 public: 474 /// ObjCEHValueStack - Stack of Objective-C exception values, used for 475 /// rethrows. 476 SmallVector<llvm::Value*, 8> ObjCEHValueStack; 477 478 /// A class controlling the emission of a finally block. 479 class FinallyInfo { 480 /// Where the catchall's edge through the cleanup should go. 481 JumpDest RethrowDest; 482 483 /// A function to call to enter the catch. 484 llvm::Constant *BeginCatchFn; 485 486 /// An i1 variable indicating whether or not the @finally is 487 /// running for an exception. 488 llvm::AllocaInst *ForEHVar; 489 490 /// An i8* variable into which the exception pointer to rethrow 491 /// has been saved. 492 llvm::AllocaInst *SavedExnVar; 493 494 public: 495 void enter(CodeGenFunction &CGF, const Stmt *Finally, 496 llvm::Constant *beginCatchFn, llvm::Constant *endCatchFn, 497 llvm::Constant *rethrowFn); 498 void exit(CodeGenFunction &CGF); 499 }; 500 501 /// Returns true inside SEH __try blocks. 502 bool isSEHTryScope() const { return !SEHTryEpilogueStack.empty(); } 503 504 /// Returns true while emitting a cleanuppad. 505 bool isCleanupPadScope() const { 506 return CurrentFuncletPad && isa<llvm::CleanupPadInst>(CurrentFuncletPad); 507 } 508 509 /// pushFullExprCleanup - Push a cleanup to be run at the end of the 510 /// current full-expression. Safe against the possibility that 511 /// we're currently inside a conditionally-evaluated expression. 512 template <class T, class... As> 513 void pushFullExprCleanup(CleanupKind kind, As... A) { 514 // If we're not in a conditional branch, or if none of the 515 // arguments requires saving, then use the unconditional cleanup. 516 if (!isInConditionalBranch()) 517 return EHStack.pushCleanup<T>(kind, A...); 518 519 // Stash values in a tuple so we can guarantee the order of saves. 520 typedef std::tuple<typename DominatingValue<As>::saved_type...> SavedTuple; 521 SavedTuple Saved{saveValueInCond(A)...}; 522 523 typedef EHScopeStack::ConditionalCleanup<T, As...> CleanupType; 524 EHStack.pushCleanupTuple<CleanupType>(kind, Saved); 525 initFullExprCleanup(); 526 } 527 528 /// \brief Queue a cleanup to be pushed after finishing the current 529 /// full-expression. 530 template <class T, class... As> 531 void pushCleanupAfterFullExpr(CleanupKind Kind, As... A) { 532 assert(!isInConditionalBranch() && "can't defer conditional cleanup"); 533 534 LifetimeExtendedCleanupHeader Header = { sizeof(T), Kind }; 535 536 size_t OldSize = LifetimeExtendedCleanupStack.size(); 537 LifetimeExtendedCleanupStack.resize( 538 LifetimeExtendedCleanupStack.size() + sizeof(Header) + Header.Size); 539 540 static_assert(sizeof(Header) % alignof(T) == 0, 541 "Cleanup will be allocated on misaligned address"); 542 char *Buffer = &LifetimeExtendedCleanupStack[OldSize]; 543 new (Buffer) LifetimeExtendedCleanupHeader(Header); 544 new (Buffer + sizeof(Header)) T(A...); 545 } 546 547 /// Set up the last cleaup that was pushed as a conditional 548 /// full-expression cleanup. 549 void initFullExprCleanup(); 550 551 /// PushDestructorCleanup - Push a cleanup to call the 552 /// complete-object destructor of an object of the given type at the 553 /// given address. Does nothing if T is not a C++ class type with a 554 /// non-trivial destructor. 555 void PushDestructorCleanup(QualType T, Address Addr); 556 557 /// PushDestructorCleanup - Push a cleanup to call the 558 /// complete-object variant of the given destructor on the object at 559 /// the given address. 560 void PushDestructorCleanup(const CXXDestructorDecl *Dtor, Address Addr); 561 562 /// PopCleanupBlock - Will pop the cleanup entry on the stack and 563 /// process all branch fixups. 564 void PopCleanupBlock(bool FallThroughIsBranchThrough = false); 565 566 /// DeactivateCleanupBlock - Deactivates the given cleanup block. 567 /// The block cannot be reactivated. Pops it if it's the top of the 568 /// stack. 569 /// 570 /// \param DominatingIP - An instruction which is known to 571 /// dominate the current IP (if set) and which lies along 572 /// all paths of execution between the current IP and the 573 /// the point at which the cleanup comes into scope. 574 void DeactivateCleanupBlock(EHScopeStack::stable_iterator Cleanup, 575 llvm::Instruction *DominatingIP); 576 577 /// ActivateCleanupBlock - Activates an initially-inactive cleanup. 578 /// Cannot be used to resurrect a deactivated cleanup. 579 /// 580 /// \param DominatingIP - An instruction which is known to 581 /// dominate the current IP (if set) and which lies along 582 /// all paths of execution between the current IP and the 583 /// the point at which the cleanup comes into scope. 584 void ActivateCleanupBlock(EHScopeStack::stable_iterator Cleanup, 585 llvm::Instruction *DominatingIP); 586 587 /// \brief Enters a new scope for capturing cleanups, all of which 588 /// will be executed once the scope is exited. 589 class RunCleanupsScope { 590 EHScopeStack::stable_iterator CleanupStackDepth; 591 size_t LifetimeExtendedCleanupStackSize; 592 bool OldDidCallStackSave; 593 protected: 594 bool PerformCleanup; 595 private: 596 597 RunCleanupsScope(const RunCleanupsScope &) = delete; 598 void operator=(const RunCleanupsScope &) = delete; 599 600 protected: 601 CodeGenFunction& CGF; 602 603 public: 604 /// \brief Enter a new cleanup scope. 605 explicit RunCleanupsScope(CodeGenFunction &CGF) 606 : PerformCleanup(true), CGF(CGF) 607 { 608 CleanupStackDepth = CGF.EHStack.stable_begin(); 609 LifetimeExtendedCleanupStackSize = 610 CGF.LifetimeExtendedCleanupStack.size(); 611 OldDidCallStackSave = CGF.DidCallStackSave; 612 CGF.DidCallStackSave = false; 613 } 614 615 /// \brief Exit this cleanup scope, emitting any accumulated cleanups. 616 ~RunCleanupsScope() { 617 if (PerformCleanup) 618 ForceCleanup(); 619 } 620 621 /// \brief Determine whether this scope requires any cleanups. 622 bool requiresCleanups() const { 623 return CGF.EHStack.stable_begin() != CleanupStackDepth; 624 } 625 626 /// \brief Force the emission of cleanups now, instead of waiting 627 /// until this object is destroyed. 628 /// \param ValuesToReload - A list of values that need to be available at 629 /// the insertion point after cleanup emission. If cleanup emission created 630 /// a shared cleanup block, these value pointers will be rewritten. 631 /// Otherwise, they not will be modified. 632 void ForceCleanup(std::initializer_list<llvm::Value**> ValuesToReload = {}) { 633 assert(PerformCleanup && "Already forced cleanup"); 634 CGF.DidCallStackSave = OldDidCallStackSave; 635 CGF.PopCleanupBlocks(CleanupStackDepth, LifetimeExtendedCleanupStackSize, 636 ValuesToReload); 637 PerformCleanup = false; 638 } 639 }; 640 641 class LexicalScope : public RunCleanupsScope { 642 SourceRange Range; 643 SmallVector<const LabelDecl*, 4> Labels; 644 LexicalScope *ParentScope; 645 646 LexicalScope(const LexicalScope &) = delete; 647 void operator=(const LexicalScope &) = delete; 648 649 public: 650 /// \brief Enter a new cleanup scope. 651 explicit LexicalScope(CodeGenFunction &CGF, SourceRange Range) 652 : RunCleanupsScope(CGF), Range(Range), ParentScope(CGF.CurLexicalScope) { 653 CGF.CurLexicalScope = this; 654 if (CGDebugInfo *DI = CGF.getDebugInfo()) 655 DI->EmitLexicalBlockStart(CGF.Builder, Range.getBegin()); 656 } 657 658 void addLabel(const LabelDecl *label) { 659 assert(PerformCleanup && "adding label to dead scope?"); 660 Labels.push_back(label); 661 } 662 663 /// \brief Exit this cleanup scope, emitting any accumulated 664 /// cleanups. 665 ~LexicalScope() { 666 if (CGDebugInfo *DI = CGF.getDebugInfo()) 667 DI->EmitLexicalBlockEnd(CGF.Builder, Range.getEnd()); 668 669 // If we should perform a cleanup, force them now. Note that 670 // this ends the cleanup scope before rescoping any labels. 671 if (PerformCleanup) { 672 ApplyDebugLocation DL(CGF, Range.getEnd()); 673 ForceCleanup(); 674 } 675 } 676 677 /// \brief Force the emission of cleanups now, instead of waiting 678 /// until this object is destroyed. 679 void ForceCleanup() { 680 CGF.CurLexicalScope = ParentScope; 681 RunCleanupsScope::ForceCleanup(); 682 683 if (!Labels.empty()) 684 rescopeLabels(); 685 } 686 687 bool hasLabels() const { 688 return !Labels.empty(); 689 } 690 691 void rescopeLabels(); 692 }; 693 694 typedef llvm::DenseMap<const Decl *, Address> DeclMapTy; 695 696 /// The class used to assign some variables some temporarily addresses. 697 class OMPMapVars { 698 DeclMapTy SavedLocals; 699 DeclMapTy SavedTempAddresses; 700 OMPMapVars(const OMPMapVars &) = delete; 701 void operator=(const OMPMapVars &) = delete; 702 703 public: 704 explicit OMPMapVars() = default; 705 ~OMPMapVars() { 706 assert(SavedLocals.empty() && "Did not restored original addresses."); 707 }; 708 709 /// Sets the address of the variable \p LocalVD to be \p TempAddr in 710 /// function \p CGF. 711 /// \return true if at least one variable was set already, false otherwise. 712 bool setVarAddr(CodeGenFunction &CGF, const VarDecl *LocalVD, 713 Address TempAddr) { 714 LocalVD = LocalVD->getCanonicalDecl(); 715 // Only save it once. 716 if (SavedLocals.count(LocalVD)) return false; 717 718 // Copy the existing local entry to SavedLocals. 719 auto it = CGF.LocalDeclMap.find(LocalVD); 720 if (it != CGF.LocalDeclMap.end()) 721 SavedLocals.try_emplace(LocalVD, it->second); 722 else 723 SavedLocals.try_emplace(LocalVD, Address::invalid()); 724 725 // Generate the private entry. 726 QualType VarTy = LocalVD->getType(); 727 if (VarTy->isReferenceType()) { 728 Address Temp = CGF.CreateMemTemp(VarTy); 729 CGF.Builder.CreateStore(TempAddr.getPointer(), Temp); 730 TempAddr = Temp; 731 } 732 SavedTempAddresses.try_emplace(LocalVD, TempAddr); 733 734 return true; 735 } 736 737 /// Applies new addresses to the list of the variables. 738 /// \return true if at least one variable is using new address, false 739 /// otherwise. 740 bool apply(CodeGenFunction &CGF) { 741 copyInto(SavedTempAddresses, CGF.LocalDeclMap); 742 SavedTempAddresses.clear(); 743 return !SavedLocals.empty(); 744 } 745 746 /// Restores original addresses of the variables. 747 void restore(CodeGenFunction &CGF) { 748 if (!SavedLocals.empty()) { 749 copyInto(SavedLocals, CGF.LocalDeclMap); 750 SavedLocals.clear(); 751 } 752 } 753 754 private: 755 /// Copy all the entries in the source map over the corresponding 756 /// entries in the destination, which must exist. 757 static void copyInto(const DeclMapTy &Src, DeclMapTy &Dest) { 758 for (auto &Pair : Src) { 759 if (!Pair.second.isValid()) { 760 Dest.erase(Pair.first); 761 continue; 762 } 763 764 auto I = Dest.find(Pair.first); 765 if (I != Dest.end()) 766 I->second = Pair.second; 767 else 768 Dest.insert(Pair); 769 } 770 } 771 }; 772 773 /// The scope used to remap some variables as private in the OpenMP loop body 774 /// (or other captured region emitted without outlining), and to restore old 775 /// vars back on exit. 776 class OMPPrivateScope : public RunCleanupsScope { 777 OMPMapVars MappedVars; 778 OMPPrivateScope(const OMPPrivateScope &) = delete; 779 void operator=(const OMPPrivateScope &) = delete; 780 781 public: 782 /// Enter a new OpenMP private scope. 783 explicit OMPPrivateScope(CodeGenFunction &CGF) : RunCleanupsScope(CGF) {} 784 785 /// Registers \p LocalVD variable as a private and apply \p PrivateGen 786 /// function for it to generate corresponding private variable. \p 787 /// PrivateGen returns an address of the generated private variable. 788 /// \return true if the variable is registered as private, false if it has 789 /// been privatized already. 790 bool addPrivate(const VarDecl *LocalVD, 791 llvm::function_ref<Address()> PrivateGen) { 792 assert(PerformCleanup && "adding private to dead scope"); 793 return MappedVars.setVarAddr(CGF, LocalVD, PrivateGen()); 794 } 795 796 /// Privatizes local variables previously registered as private. 797 /// Registration is separate from the actual privatization to allow 798 /// initializers use values of the original variables, not the private one. 799 /// This is important, for example, if the private variable is a class 800 /// variable initialized by a constructor that references other private 801 /// variables. But at initialization original variables must be used, not 802 /// private copies. 803 /// \return true if at least one variable was privatized, false otherwise. 804 bool Privatize() { return MappedVars.apply(CGF); } 805 806 void ForceCleanup() { 807 RunCleanupsScope::ForceCleanup(); 808 MappedVars.restore(CGF); 809 } 810 811 /// Exit scope - all the mapped variables are restored. 812 ~OMPPrivateScope() { 813 if (PerformCleanup) 814 ForceCleanup(); 815 } 816 817 /// Checks if the global variable is captured in current function. 818 bool isGlobalVarCaptured(const VarDecl *VD) const { 819 VD = VD->getCanonicalDecl(); 820 return !VD->isLocalVarDeclOrParm() && CGF.LocalDeclMap.count(VD) > 0; 821 } 822 }; 823 824 /// \brief Takes the old cleanup stack size and emits the cleanup blocks 825 /// that have been added. 826 void 827 PopCleanupBlocks(EHScopeStack::stable_iterator OldCleanupStackSize, 828 std::initializer_list<llvm::Value **> ValuesToReload = {}); 829 830 /// \brief Takes the old cleanup stack size and emits the cleanup blocks 831 /// that have been added, then adds all lifetime-extended cleanups from 832 /// the given position to the stack. 833 void 834 PopCleanupBlocks(EHScopeStack::stable_iterator OldCleanupStackSize, 835 size_t OldLifetimeExtendedStackSize, 836 std::initializer_list<llvm::Value **> ValuesToReload = {}); 837 838 void ResolveBranchFixups(llvm::BasicBlock *Target); 839 840 /// The given basic block lies in the current EH scope, but may be a 841 /// target of a potentially scope-crossing jump; get a stable handle 842 /// to which we can perform this jump later. 843 JumpDest getJumpDestInCurrentScope(llvm::BasicBlock *Target) { 844 return JumpDest(Target, 845 EHStack.getInnermostNormalCleanup(), 846 NextCleanupDestIndex++); 847 } 848 849 /// The given basic block lies in the current EH scope, but may be a 850 /// target of a potentially scope-crossing jump; get a stable handle 851 /// to which we can perform this jump later. 852 JumpDest getJumpDestInCurrentScope(StringRef Name = StringRef()) { 853 return getJumpDestInCurrentScope(createBasicBlock(Name)); 854 } 855 856 /// EmitBranchThroughCleanup - Emit a branch from the current insert 857 /// block through the normal cleanup handling code (if any) and then 858 /// on to \arg Dest. 859 void EmitBranchThroughCleanup(JumpDest Dest); 860 861 /// isObviouslyBranchWithoutCleanups - Return true if a branch to the 862 /// specified destination obviously has no cleanups to run. 'false' is always 863 /// a conservatively correct answer for this method. 864 bool isObviouslyBranchWithoutCleanups(JumpDest Dest) const; 865 866 /// popCatchScope - Pops the catch scope at the top of the EHScope 867 /// stack, emitting any required code (other than the catch handlers 868 /// themselves). 869 void popCatchScope(); 870 871 llvm::BasicBlock *getEHResumeBlock(bool isCleanup); 872 llvm::BasicBlock *getEHDispatchBlock(EHScopeStack::stable_iterator scope); 873 llvm::BasicBlock *getMSVCDispatchBlock(EHScopeStack::stable_iterator scope); 874 875 /// An object to manage conditionally-evaluated expressions. 876 class ConditionalEvaluation { 877 llvm::BasicBlock *StartBB; 878 879 public: 880 ConditionalEvaluation(CodeGenFunction &CGF) 881 : StartBB(CGF.Builder.GetInsertBlock()) {} 882 883 void begin(CodeGenFunction &CGF) { 884 assert(CGF.OutermostConditional != this); 885 if (!CGF.OutermostConditional) 886 CGF.OutermostConditional = this; 887 } 888 889 void end(CodeGenFunction &CGF) { 890 assert(CGF.OutermostConditional != nullptr); 891 if (CGF.OutermostConditional == this) 892 CGF.OutermostConditional = nullptr; 893 } 894 895 /// Returns a block which will be executed prior to each 896 /// evaluation of the conditional code. 897 llvm::BasicBlock *getStartingBlock() const { 898 return StartBB; 899 } 900 }; 901 902 /// isInConditionalBranch - Return true if we're currently emitting 903 /// one branch or the other of a conditional expression. 904 bool isInConditionalBranch() const { return OutermostConditional != nullptr; } 905 906 void setBeforeOutermostConditional(llvm::Value *value, Address addr) { 907 assert(isInConditionalBranch()); 908 llvm::BasicBlock *block = OutermostConditional->getStartingBlock(); 909 auto store = new llvm::StoreInst(value, addr.getPointer(), &block->back()); 910 store->setAlignment(addr.getAlignment().getQuantity()); 911 } 912 913 /// An RAII object to record that we're evaluating a statement 914 /// expression. 915 class StmtExprEvaluation { 916 CodeGenFunction &CGF; 917 918 /// We have to save the outermost conditional: cleanups in a 919 /// statement expression aren't conditional just because the 920 /// StmtExpr is. 921 ConditionalEvaluation *SavedOutermostConditional; 922 923 public: 924 StmtExprEvaluation(CodeGenFunction &CGF) 925 : CGF(CGF), SavedOutermostConditional(CGF.OutermostConditional) { 926 CGF.OutermostConditional = nullptr; 927 } 928 929 ~StmtExprEvaluation() { 930 CGF.OutermostConditional = SavedOutermostConditional; 931 CGF.EnsureInsertPoint(); 932 } 933 }; 934 935 /// An object which temporarily prevents a value from being 936 /// destroyed by aggressive peephole optimizations that assume that 937 /// all uses of a value have been realized in the IR. 938 class PeepholeProtection { 939 llvm::Instruction *Inst; 940 friend class CodeGenFunction; 941 942 public: 943 PeepholeProtection() : Inst(nullptr) {} 944 }; 945 946 /// A non-RAII class containing all the information about a bound 947 /// opaque value. OpaqueValueMapping, below, is a RAII wrapper for 948 /// this which makes individual mappings very simple; using this 949 /// class directly is useful when you have a variable number of 950 /// opaque values or don't want the RAII functionality for some 951 /// reason. 952 class OpaqueValueMappingData { 953 const OpaqueValueExpr *OpaqueValue; 954 bool BoundLValue; 955 CodeGenFunction::PeepholeProtection Protection; 956 957 OpaqueValueMappingData(const OpaqueValueExpr *ov, 958 bool boundLValue) 959 : OpaqueValue(ov), BoundLValue(boundLValue) {} 960 public: 961 OpaqueValueMappingData() : OpaqueValue(nullptr) {} 962 963 static bool shouldBindAsLValue(const Expr *expr) { 964 // gl-values should be bound as l-values for obvious reasons. 965 // Records should be bound as l-values because IR generation 966 // always keeps them in memory. Expressions of function type 967 // act exactly like l-values but are formally required to be 968 // r-values in C. 969 return expr->isGLValue() || 970 expr->getType()->isFunctionType() || 971 hasAggregateEvaluationKind(expr->getType()); 972 } 973 974 static OpaqueValueMappingData bind(CodeGenFunction &CGF, 975 const OpaqueValueExpr *ov, 976 const Expr *e) { 977 if (shouldBindAsLValue(ov)) 978 return bind(CGF, ov, CGF.EmitLValue(e)); 979 return bind(CGF, ov, CGF.EmitAnyExpr(e)); 980 } 981 982 static OpaqueValueMappingData bind(CodeGenFunction &CGF, 983 const OpaqueValueExpr *ov, 984 const LValue &lv) { 985 assert(shouldBindAsLValue(ov)); 986 CGF.OpaqueLValues.insert(std::make_pair(ov, lv)); 987 return OpaqueValueMappingData(ov, true); 988 } 989 990 static OpaqueValueMappingData bind(CodeGenFunction &CGF, 991 const OpaqueValueExpr *ov, 992 const RValue &rv) { 993 assert(!shouldBindAsLValue(ov)); 994 CGF.OpaqueRValues.insert(std::make_pair(ov, rv)); 995 996 OpaqueValueMappingData data(ov, false); 997 998 // Work around an extremely aggressive peephole optimization in 999 // EmitScalarConversion which assumes that all other uses of a 1000 // value are extant. 1001 data.Protection = CGF.protectFromPeepholes(rv); 1002 1003 return data; 1004 } 1005 1006 bool isValid() const { return OpaqueValue != nullptr; } 1007 void clear() { OpaqueValue = nullptr; } 1008 1009 void unbind(CodeGenFunction &CGF) { 1010 assert(OpaqueValue && "no data to unbind!"); 1011 1012 if (BoundLValue) { 1013 CGF.OpaqueLValues.erase(OpaqueValue); 1014 } else { 1015 CGF.OpaqueRValues.erase(OpaqueValue); 1016 CGF.unprotectFromPeepholes(Protection); 1017 } 1018 } 1019 }; 1020 1021 /// An RAII object to set (and then clear) a mapping for an OpaqueValueExpr. 1022 class OpaqueValueMapping { 1023 CodeGenFunction &CGF; 1024 OpaqueValueMappingData Data; 1025 1026 public: 1027 static bool shouldBindAsLValue(const Expr *expr) { 1028 return OpaqueValueMappingData::shouldBindAsLValue(expr); 1029 } 1030 1031 /// Build the opaque value mapping for the given conditional 1032 /// operator if it's the GNU ?: extension. This is a common 1033 /// enough pattern that the convenience operator is really 1034 /// helpful. 1035 /// 1036 OpaqueValueMapping(CodeGenFunction &CGF, 1037 const AbstractConditionalOperator *op) : CGF(CGF) { 1038 if (isa<ConditionalOperator>(op)) 1039 // Leave Data empty. 1040 return; 1041 1042 const BinaryConditionalOperator *e = cast<BinaryConditionalOperator>(op); 1043 Data = OpaqueValueMappingData::bind(CGF, e->getOpaqueValue(), 1044 e->getCommon()); 1045 } 1046 1047 /// Build the opaque value mapping for an OpaqueValueExpr whose source 1048 /// expression is set to the expression the OVE represents. 1049 OpaqueValueMapping(CodeGenFunction &CGF, const OpaqueValueExpr *OV) 1050 : CGF(CGF) { 1051 if (OV) { 1052 assert(OV->getSourceExpr() && "wrong form of OpaqueValueMapping used " 1053 "for OVE with no source expression"); 1054 Data = OpaqueValueMappingData::bind(CGF, OV, OV->getSourceExpr()); 1055 } 1056 } 1057 1058 OpaqueValueMapping(CodeGenFunction &CGF, 1059 const OpaqueValueExpr *opaqueValue, 1060 LValue lvalue) 1061 : CGF(CGF), Data(OpaqueValueMappingData::bind(CGF, opaqueValue, lvalue)) { 1062 } 1063 1064 OpaqueValueMapping(CodeGenFunction &CGF, 1065 const OpaqueValueExpr *opaqueValue, 1066 RValue rvalue) 1067 : CGF(CGF), Data(OpaqueValueMappingData::bind(CGF, opaqueValue, rvalue)) { 1068 } 1069 1070 void pop() { 1071 Data.unbind(CGF); 1072 Data.clear(); 1073 } 1074 1075 ~OpaqueValueMapping() { 1076 if (Data.isValid()) Data.unbind(CGF); 1077 } 1078 }; 1079 1080 private: 1081 CGDebugInfo *DebugInfo; 1082 bool DisableDebugInfo; 1083 1084 /// DidCallStackSave - Whether llvm.stacksave has been called. Used to avoid 1085 /// calling llvm.stacksave for multiple VLAs in the same scope. 1086 bool DidCallStackSave; 1087 1088 /// IndirectBranch - The first time an indirect goto is seen we create a block 1089 /// with an indirect branch. Every time we see the address of a label taken, 1090 /// we add the label to the indirect goto. Every subsequent indirect goto is 1091 /// codegen'd as a jump to the IndirectBranch's basic block. 1092 llvm::IndirectBrInst *IndirectBranch; 1093 1094 /// LocalDeclMap - This keeps track of the LLVM allocas or globals for local C 1095 /// decls. 1096 DeclMapTy LocalDeclMap; 1097 1098 /// SizeArguments - If a ParmVarDecl had the pass_object_size attribute, this 1099 /// will contain a mapping from said ParmVarDecl to its implicit "object_size" 1100 /// parameter. 1101 llvm::SmallDenseMap<const ParmVarDecl *, const ImplicitParamDecl *, 2> 1102 SizeArguments; 1103 1104 /// Track escaped local variables with auto storage. Used during SEH 1105 /// outlining to produce a call to llvm.localescape. 1106 llvm::DenseMap<llvm::AllocaInst *, int> EscapedLocals; 1107 1108 /// LabelMap - This keeps track of the LLVM basic block for each C label. 1109 llvm::DenseMap<const LabelDecl*, JumpDest> LabelMap; 1110 1111 // BreakContinueStack - This keeps track of where break and continue 1112 // statements should jump to. 1113 struct BreakContinue { 1114 BreakContinue(JumpDest Break, JumpDest Continue) 1115 : BreakBlock(Break), ContinueBlock(Continue) {} 1116 1117 JumpDest BreakBlock; 1118 JumpDest ContinueBlock; 1119 }; 1120 SmallVector<BreakContinue, 8> BreakContinueStack; 1121 1122 /// Handles cancellation exit points in OpenMP-related constructs. 1123 class OpenMPCancelExitStack { 1124 /// Tracks cancellation exit point and join point for cancel-related exit 1125 /// and normal exit. 1126 struct CancelExit { 1127 CancelExit() = default; 1128 CancelExit(OpenMPDirectiveKind Kind, JumpDest ExitBlock, 1129 JumpDest ContBlock) 1130 : Kind(Kind), ExitBlock(ExitBlock), ContBlock(ContBlock) {} 1131 OpenMPDirectiveKind Kind = OMPD_unknown; 1132 /// true if the exit block has been emitted already by the special 1133 /// emitExit() call, false if the default codegen is used. 1134 bool HasBeenEmitted = false; 1135 JumpDest ExitBlock; 1136 JumpDest ContBlock; 1137 }; 1138 1139 SmallVector<CancelExit, 8> Stack; 1140 1141 public: 1142 OpenMPCancelExitStack() : Stack(1) {} 1143 ~OpenMPCancelExitStack() = default; 1144 /// Fetches the exit block for the current OpenMP construct. 1145 JumpDest getExitBlock() const { return Stack.back().ExitBlock; } 1146 /// Emits exit block with special codegen procedure specific for the related 1147 /// OpenMP construct + emits code for normal construct cleanup. 1148 void emitExit(CodeGenFunction &CGF, OpenMPDirectiveKind Kind, 1149 const llvm::function_ref<void(CodeGenFunction &)> &CodeGen) { 1150 if (Stack.back().Kind == Kind && getExitBlock().isValid()) { 1151 assert(CGF.getOMPCancelDestination(Kind).isValid()); 1152 assert(CGF.HaveInsertPoint()); 1153 assert(!Stack.back().HasBeenEmitted); 1154 auto IP = CGF.Builder.saveAndClearIP(); 1155 CGF.EmitBlock(Stack.back().ExitBlock.getBlock()); 1156 CodeGen(CGF); 1157 CGF.EmitBranch(Stack.back().ContBlock.getBlock()); 1158 CGF.Builder.restoreIP(IP); 1159 Stack.back().HasBeenEmitted = true; 1160 } 1161 CodeGen(CGF); 1162 } 1163 /// Enter the cancel supporting \a Kind construct. 1164 /// \param Kind OpenMP directive that supports cancel constructs. 1165 /// \param HasCancel true, if the construct has inner cancel directive, 1166 /// false otherwise. 1167 void enter(CodeGenFunction &CGF, OpenMPDirectiveKind Kind, bool HasCancel) { 1168 Stack.push_back({Kind, 1169 HasCancel ? CGF.getJumpDestInCurrentScope("cancel.exit") 1170 : JumpDest(), 1171 HasCancel ? CGF.getJumpDestInCurrentScope("cancel.cont") 1172 : JumpDest()}); 1173 } 1174 /// Emits default exit point for the cancel construct (if the special one 1175 /// has not be used) + join point for cancel/normal exits. 1176 void exit(CodeGenFunction &CGF) { 1177 if (getExitBlock().isValid()) { 1178 assert(CGF.getOMPCancelDestination(Stack.back().Kind).isValid()); 1179 bool HaveIP = CGF.HaveInsertPoint(); 1180 if (!Stack.back().HasBeenEmitted) { 1181 if (HaveIP) 1182 CGF.EmitBranchThroughCleanup(Stack.back().ContBlock); 1183 CGF.EmitBlock(Stack.back().ExitBlock.getBlock()); 1184 CGF.EmitBranchThroughCleanup(Stack.back().ContBlock); 1185 } 1186 CGF.EmitBlock(Stack.back().ContBlock.getBlock()); 1187 if (!HaveIP) { 1188 CGF.Builder.CreateUnreachable(); 1189 CGF.Builder.ClearInsertionPoint(); 1190 } 1191 } 1192 Stack.pop_back(); 1193 } 1194 }; 1195 OpenMPCancelExitStack OMPCancelStack; 1196 1197 CodeGenPGO PGO; 1198 1199 /// Calculate branch weights appropriate for PGO data 1200 llvm::MDNode *createProfileWeights(uint64_t TrueCount, uint64_t FalseCount); 1201 llvm::MDNode *createProfileWeights(ArrayRef<uint64_t> Weights); 1202 llvm::MDNode *createProfileWeightsForLoop(const Stmt *Cond, 1203 uint64_t LoopCount); 1204 1205 public: 1206 /// Increment the profiler's counter for the given statement by \p StepV. 1207 /// If \p StepV is null, the default increment is 1. 1208 void incrementProfileCounter(const Stmt *S, llvm::Value *StepV = nullptr) { 1209 if (CGM.getCodeGenOpts().hasProfileClangInstr()) 1210 PGO.emitCounterIncrement(Builder, S, StepV); 1211 PGO.setCurrentStmt(S); 1212 } 1213 1214 /// Get the profiler's count for the given statement. 1215 uint64_t getProfileCount(const Stmt *S) { 1216 Optional<uint64_t> Count = PGO.getStmtCount(S); 1217 if (!Count.hasValue()) 1218 return 0; 1219 return *Count; 1220 } 1221 1222 /// Set the profiler's current count. 1223 void setCurrentProfileCount(uint64_t Count) { 1224 PGO.setCurrentRegionCount(Count); 1225 } 1226 1227 /// Get the profiler's current count. This is generally the count for the most 1228 /// recently incremented counter. 1229 uint64_t getCurrentProfileCount() { 1230 return PGO.getCurrentRegionCount(); 1231 } 1232 1233 private: 1234 1235 /// SwitchInsn - This is nearest current switch instruction. It is null if 1236 /// current context is not in a switch. 1237 llvm::SwitchInst *SwitchInsn; 1238 /// The branch weights of SwitchInsn when doing instrumentation based PGO. 1239 SmallVector<uint64_t, 16> *SwitchWeights; 1240 1241 /// CaseRangeBlock - This block holds if condition check for last case 1242 /// statement range in current switch instruction. 1243 llvm::BasicBlock *CaseRangeBlock; 1244 1245 /// OpaqueLValues - Keeps track of the current set of opaque value 1246 /// expressions. 1247 llvm::DenseMap<const OpaqueValueExpr *, LValue> OpaqueLValues; 1248 llvm::DenseMap<const OpaqueValueExpr *, RValue> OpaqueRValues; 1249 1250 // VLASizeMap - This keeps track of the associated size for each VLA type. 1251 // We track this by the size expression rather than the type itself because 1252 // in certain situations, like a const qualifier applied to an VLA typedef, 1253 // multiple VLA types can share the same size expression. 1254 // FIXME: Maybe this could be a stack of maps that is pushed/popped as we 1255 // enter/leave scopes. 1256 llvm::DenseMap<const Expr*, llvm::Value*> VLASizeMap; 1257 1258 /// A block containing a single 'unreachable' instruction. Created 1259 /// lazily by getUnreachableBlock(). 1260 llvm::BasicBlock *UnreachableBlock; 1261 1262 /// Counts of the number return expressions in the function. 1263 unsigned NumReturnExprs; 1264 1265 /// Count the number of simple (constant) return expressions in the function. 1266 unsigned NumSimpleReturnExprs; 1267 1268 /// The last regular (non-return) debug location (breakpoint) in the function. 1269 SourceLocation LastStopPoint; 1270 1271 public: 1272 /// A scope within which we are constructing the fields of an object which 1273 /// might use a CXXDefaultInitExpr. This stashes away a 'this' value to use 1274 /// if we need to evaluate a CXXDefaultInitExpr within the evaluation. 1275 class FieldConstructionScope { 1276 public: 1277 FieldConstructionScope(CodeGenFunction &CGF, Address This) 1278 : CGF(CGF), OldCXXDefaultInitExprThis(CGF.CXXDefaultInitExprThis) { 1279 CGF.CXXDefaultInitExprThis = This; 1280 } 1281 ~FieldConstructionScope() { 1282 CGF.CXXDefaultInitExprThis = OldCXXDefaultInitExprThis; 1283 } 1284 1285 private: 1286 CodeGenFunction &CGF; 1287 Address OldCXXDefaultInitExprThis; 1288 }; 1289 1290 /// The scope of a CXXDefaultInitExpr. Within this scope, the value of 'this' 1291 /// is overridden to be the object under construction. 1292 class CXXDefaultInitExprScope { 1293 public: 1294 CXXDefaultInitExprScope(CodeGenFunction &CGF) 1295 : CGF(CGF), OldCXXThisValue(CGF.CXXThisValue), 1296 OldCXXThisAlignment(CGF.CXXThisAlignment) { 1297 CGF.CXXThisValue = CGF.CXXDefaultInitExprThis.getPointer(); 1298 CGF.CXXThisAlignment = CGF.CXXDefaultInitExprThis.getAlignment(); 1299 } 1300 ~CXXDefaultInitExprScope() { 1301 CGF.CXXThisValue = OldCXXThisValue; 1302 CGF.CXXThisAlignment = OldCXXThisAlignment; 1303 } 1304 1305 public: 1306 CodeGenFunction &CGF; 1307 llvm::Value *OldCXXThisValue; 1308 CharUnits OldCXXThisAlignment; 1309 }; 1310 1311 /// The scope of an ArrayInitLoopExpr. Within this scope, the value of the 1312 /// current loop index is overridden. 1313 class ArrayInitLoopExprScope { 1314 public: 1315 ArrayInitLoopExprScope(CodeGenFunction &CGF, llvm::Value *Index) 1316 : CGF(CGF), OldArrayInitIndex(CGF.ArrayInitIndex) { 1317 CGF.ArrayInitIndex = Index; 1318 } 1319 ~ArrayInitLoopExprScope() { 1320 CGF.ArrayInitIndex = OldArrayInitIndex; 1321 } 1322 1323 private: 1324 CodeGenFunction &CGF; 1325 llvm::Value *OldArrayInitIndex; 1326 }; 1327 1328 class InlinedInheritingConstructorScope { 1329 public: 1330 InlinedInheritingConstructorScope(CodeGenFunction &CGF, GlobalDecl GD) 1331 : CGF(CGF), OldCurGD(CGF.CurGD), OldCurFuncDecl(CGF.CurFuncDecl), 1332 OldCurCodeDecl(CGF.CurCodeDecl), 1333 OldCXXABIThisDecl(CGF.CXXABIThisDecl), 1334 OldCXXABIThisValue(CGF.CXXABIThisValue), 1335 OldCXXThisValue(CGF.CXXThisValue), 1336 OldCXXABIThisAlignment(CGF.CXXABIThisAlignment), 1337 OldCXXThisAlignment(CGF.CXXThisAlignment), 1338 OldReturnValue(CGF.ReturnValue), OldFnRetTy(CGF.FnRetTy), 1339 OldCXXInheritedCtorInitExprArgs( 1340 std::move(CGF.CXXInheritedCtorInitExprArgs)) { 1341 CGF.CurGD = GD; 1342 CGF.CurFuncDecl = CGF.CurCodeDecl = 1343 cast<CXXConstructorDecl>(GD.getDecl()); 1344 CGF.CXXABIThisDecl = nullptr; 1345 CGF.CXXABIThisValue = nullptr; 1346 CGF.CXXThisValue = nullptr; 1347 CGF.CXXABIThisAlignment = CharUnits(); 1348 CGF.CXXThisAlignment = CharUnits(); 1349 CGF.ReturnValue = Address::invalid(); 1350 CGF.FnRetTy = QualType(); 1351 CGF.CXXInheritedCtorInitExprArgs.clear(); 1352 } 1353 ~InlinedInheritingConstructorScope() { 1354 CGF.CurGD = OldCurGD; 1355 CGF.CurFuncDecl = OldCurFuncDecl; 1356 CGF.CurCodeDecl = OldCurCodeDecl; 1357 CGF.CXXABIThisDecl = OldCXXABIThisDecl; 1358 CGF.CXXABIThisValue = OldCXXABIThisValue; 1359 CGF.CXXThisValue = OldCXXThisValue; 1360 CGF.CXXABIThisAlignment = OldCXXABIThisAlignment; 1361 CGF.CXXThisAlignment = OldCXXThisAlignment; 1362 CGF.ReturnValue = OldReturnValue; 1363 CGF.FnRetTy = OldFnRetTy; 1364 CGF.CXXInheritedCtorInitExprArgs = 1365 std::move(OldCXXInheritedCtorInitExprArgs); 1366 } 1367 1368 private: 1369 CodeGenFunction &CGF; 1370 GlobalDecl OldCurGD; 1371 const Decl *OldCurFuncDecl; 1372 const Decl *OldCurCodeDecl; 1373 ImplicitParamDecl *OldCXXABIThisDecl; 1374 llvm::Value *OldCXXABIThisValue; 1375 llvm::Value *OldCXXThisValue; 1376 CharUnits OldCXXABIThisAlignment; 1377 CharUnits OldCXXThisAlignment; 1378 Address OldReturnValue; 1379 QualType OldFnRetTy; 1380 CallArgList OldCXXInheritedCtorInitExprArgs; 1381 }; 1382 1383 private: 1384 /// CXXThisDecl - When generating code for a C++ member function, 1385 /// this will hold the implicit 'this' declaration. 1386 ImplicitParamDecl *CXXABIThisDecl; 1387 llvm::Value *CXXABIThisValue; 1388 llvm::Value *CXXThisValue; 1389 CharUnits CXXABIThisAlignment; 1390 CharUnits CXXThisAlignment; 1391 1392 /// The value of 'this' to use when evaluating CXXDefaultInitExprs within 1393 /// this expression. 1394 Address CXXDefaultInitExprThis = Address::invalid(); 1395 1396 /// The current array initialization index when evaluating an 1397 /// ArrayInitIndexExpr within an ArrayInitLoopExpr. 1398 llvm::Value *ArrayInitIndex = nullptr; 1399 1400 /// The values of function arguments to use when evaluating 1401 /// CXXInheritedCtorInitExprs within this context. 1402 CallArgList CXXInheritedCtorInitExprArgs; 1403 1404 /// CXXStructorImplicitParamDecl - When generating code for a constructor or 1405 /// destructor, this will hold the implicit argument (e.g. VTT). 1406 ImplicitParamDecl *CXXStructorImplicitParamDecl; 1407 llvm::Value *CXXStructorImplicitParamValue; 1408 1409 /// OutermostConditional - Points to the outermost active 1410 /// conditional control. This is used so that we know if a 1411 /// temporary should be destroyed conditionally. 1412 ConditionalEvaluation *OutermostConditional; 1413 1414 /// The current lexical scope. 1415 LexicalScope *CurLexicalScope; 1416 1417 /// The current source location that should be used for exception 1418 /// handling code. 1419 SourceLocation CurEHLocation; 1420 1421 /// BlockByrefInfos - For each __block variable, contains 1422 /// information about the layout of the variable. 1423 llvm::DenseMap<const ValueDecl *, BlockByrefInfo> BlockByrefInfos; 1424 1425 /// Used by -fsanitize=nullability-return to determine whether the return 1426 /// value can be checked. 1427 llvm::Value *RetValNullabilityPrecondition = nullptr; 1428 1429 /// Check if -fsanitize=nullability-return instrumentation is required for 1430 /// this function. 1431 bool requiresReturnValueNullabilityCheck() const { 1432 return RetValNullabilityPrecondition; 1433 } 1434 1435 /// Used to store precise source locations for return statements by the 1436 /// runtime return value checks. 1437 Address ReturnLocation = Address::invalid(); 1438 1439 /// Check if the return value of this function requires sanitization. 1440 bool requiresReturnValueCheck() const { 1441 return requiresReturnValueNullabilityCheck() || 1442 (SanOpts.has(SanitizerKind::ReturnsNonnullAttribute) && 1443 CurCodeDecl && CurCodeDecl->getAttr<ReturnsNonNullAttr>()); 1444 } 1445 1446 llvm::BasicBlock *TerminateLandingPad; 1447 llvm::BasicBlock *TerminateHandler; 1448 llvm::BasicBlock *TrapBB; 1449 1450 /// Terminate funclets keyed by parent funclet pad. 1451 llvm::MapVector<llvm::Value *, llvm::BasicBlock *> TerminateFunclets; 1452 1453 /// True if we need emit the life-time markers. 1454 const bool ShouldEmitLifetimeMarkers; 1455 1456 /// Add OpenCL kernel arg metadata and the kernel attribute meatadata to 1457 /// the function metadata. 1458 void EmitOpenCLKernelMetadata(const FunctionDecl *FD, 1459 llvm::Function *Fn); 1460 1461 public: 1462 CodeGenFunction(CodeGenModule &cgm, bool suppressNewContext=false); 1463 ~CodeGenFunction(); 1464 1465 CodeGenTypes &getTypes() const { return CGM.getTypes(); } 1466 ASTContext &getContext() const { return CGM.getContext(); } 1467 CGDebugInfo *getDebugInfo() { 1468 if (DisableDebugInfo) 1469 return nullptr; 1470 return DebugInfo; 1471 } 1472 void disableDebugInfo() { DisableDebugInfo = true; } 1473 void enableDebugInfo() { DisableDebugInfo = false; } 1474 1475 bool shouldUseFusedARCCalls() { 1476 return CGM.getCodeGenOpts().OptimizationLevel == 0; 1477 } 1478 1479 const LangOptions &getLangOpts() const { return CGM.getLangOpts(); } 1480 1481 /// Returns a pointer to the function's exception object and selector slot, 1482 /// which is assigned in every landing pad. 1483 Address getExceptionSlot(); 1484 Address getEHSelectorSlot(); 1485 1486 /// Returns the contents of the function's exception object and selector 1487 /// slots. 1488 llvm::Value *getExceptionFromSlot(); 1489 llvm::Value *getSelectorFromSlot(); 1490 1491 Address getNormalCleanupDestSlot(); 1492 1493 llvm::BasicBlock *getUnreachableBlock() { 1494 if (!UnreachableBlock) { 1495 UnreachableBlock = createBasicBlock("unreachable"); 1496 new llvm::UnreachableInst(getLLVMContext(), UnreachableBlock); 1497 } 1498 return UnreachableBlock; 1499 } 1500 1501 llvm::BasicBlock *getInvokeDest() { 1502 if (!EHStack.requiresLandingPad()) return nullptr; 1503 return getInvokeDestImpl(); 1504 } 1505 1506 bool currentFunctionUsesSEHTry() const { return CurSEHParent != nullptr; } 1507 1508 const TargetInfo &getTarget() const { return Target; } 1509 llvm::LLVMContext &getLLVMContext() { return CGM.getLLVMContext(); } 1510 const TargetCodeGenInfo &getTargetHooks() const { 1511 return CGM.getTargetCodeGenInfo(); 1512 } 1513 1514 //===--------------------------------------------------------------------===// 1515 // Cleanups 1516 //===--------------------------------------------------------------------===// 1517 1518 typedef void Destroyer(CodeGenFunction &CGF, Address addr, QualType ty); 1519 1520 void pushIrregularPartialArrayCleanup(llvm::Value *arrayBegin, 1521 Address arrayEndPointer, 1522 QualType elementType, 1523 CharUnits elementAlignment, 1524 Destroyer *destroyer); 1525 void pushRegularPartialArrayCleanup(llvm::Value *arrayBegin, 1526 llvm::Value *arrayEnd, 1527 QualType elementType, 1528 CharUnits elementAlignment, 1529 Destroyer *destroyer); 1530 1531 void pushDestroy(QualType::DestructionKind dtorKind, 1532 Address addr, QualType type); 1533 void pushEHDestroy(QualType::DestructionKind dtorKind, 1534 Address addr, QualType type); 1535 void pushDestroy(CleanupKind kind, Address addr, QualType type, 1536 Destroyer *destroyer, bool useEHCleanupForArray); 1537 void pushLifetimeExtendedDestroy(CleanupKind kind, Address addr, 1538 QualType type, Destroyer *destroyer, 1539 bool useEHCleanupForArray); 1540 void pushCallObjectDeleteCleanup(const FunctionDecl *OperatorDelete, 1541 llvm::Value *CompletePtr, 1542 QualType ElementType); 1543 void pushStackRestore(CleanupKind kind, Address SPMem); 1544 void emitDestroy(Address addr, QualType type, Destroyer *destroyer, 1545 bool useEHCleanupForArray); 1546 llvm::Function *generateDestroyHelper(Address addr, QualType type, 1547 Destroyer *destroyer, 1548 bool useEHCleanupForArray, 1549 const VarDecl *VD); 1550 void emitArrayDestroy(llvm::Value *begin, llvm::Value *end, 1551 QualType elementType, CharUnits elementAlign, 1552 Destroyer *destroyer, 1553 bool checkZeroLength, bool useEHCleanup); 1554 1555 Destroyer *getDestroyer(QualType::DestructionKind destructionKind); 1556 1557 /// Determines whether an EH cleanup is required to destroy a type 1558 /// with the given destruction kind. 1559 bool needsEHCleanup(QualType::DestructionKind kind) { 1560 switch (kind) { 1561 case QualType::DK_none: 1562 return false; 1563 case QualType::DK_cxx_destructor: 1564 case QualType::DK_objc_weak_lifetime: 1565 case QualType::DK_nontrivial_c_struct: 1566 return getLangOpts().Exceptions; 1567 case QualType::DK_objc_strong_lifetime: 1568 return getLangOpts().Exceptions && 1569 CGM.getCodeGenOpts().ObjCAutoRefCountExceptions; 1570 } 1571 llvm_unreachable("bad destruction kind"); 1572 } 1573 1574 CleanupKind getCleanupKind(QualType::DestructionKind kind) { 1575 return (needsEHCleanup(kind) ? NormalAndEHCleanup : NormalCleanup); 1576 } 1577 1578 //===--------------------------------------------------------------------===// 1579 // Objective-C 1580 //===--------------------------------------------------------------------===// 1581 1582 void GenerateObjCMethod(const ObjCMethodDecl *OMD); 1583 1584 void StartObjCMethod(const ObjCMethodDecl *MD, const ObjCContainerDecl *CD); 1585 1586 /// GenerateObjCGetter - Synthesize an Objective-C property getter function. 1587 void GenerateObjCGetter(ObjCImplementationDecl *IMP, 1588 const ObjCPropertyImplDecl *PID); 1589 void generateObjCGetterBody(const ObjCImplementationDecl *classImpl, 1590 const ObjCPropertyImplDecl *propImpl, 1591 const ObjCMethodDecl *GetterMothodDecl, 1592 llvm::Constant *AtomicHelperFn); 1593 1594 void GenerateObjCCtorDtorMethod(ObjCImplementationDecl *IMP, 1595 ObjCMethodDecl *MD, bool ctor); 1596 1597 /// GenerateObjCSetter - Synthesize an Objective-C property setter function 1598 /// for the given property. 1599 void GenerateObjCSetter(ObjCImplementationDecl *IMP, 1600 const ObjCPropertyImplDecl *PID); 1601 void generateObjCSetterBody(const ObjCImplementationDecl *classImpl, 1602 const ObjCPropertyImplDecl *propImpl, 1603 llvm::Constant *AtomicHelperFn); 1604 1605 //===--------------------------------------------------------------------===// 1606 // Block Bits 1607 //===--------------------------------------------------------------------===// 1608 1609 /// Emit block literal. 1610 /// \return an LLVM value which is a pointer to a struct which contains 1611 /// information about the block, including the block invoke function, the 1612 /// captured variables, etc. 1613 llvm::Value *EmitBlockLiteral(const BlockExpr *); 1614 static void destroyBlockInfos(CGBlockInfo *info); 1615 1616 llvm::Function *GenerateBlockFunction(GlobalDecl GD, 1617 const CGBlockInfo &Info, 1618 const DeclMapTy &ldm, 1619 bool IsLambdaConversionToBlock, 1620 bool BuildGlobalBlock); 1621 1622 llvm::Constant *GenerateCopyHelperFunction(const CGBlockInfo &blockInfo); 1623 llvm::Constant *GenerateDestroyHelperFunction(const CGBlockInfo &blockInfo); 1624 llvm::Constant *GenerateObjCAtomicSetterCopyHelperFunction( 1625 const ObjCPropertyImplDecl *PID); 1626 llvm::Constant *GenerateObjCAtomicGetterCopyHelperFunction( 1627 const ObjCPropertyImplDecl *PID); 1628 llvm::Value *EmitBlockCopyAndAutorelease(llvm::Value *Block, QualType Ty); 1629 1630 void BuildBlockRelease(llvm::Value *DeclPtr, BlockFieldFlags flags); 1631 1632 class AutoVarEmission; 1633 1634 void emitByrefStructureInit(const AutoVarEmission &emission); 1635 void enterByrefCleanup(const AutoVarEmission &emission); 1636 1637 void setBlockContextParameter(const ImplicitParamDecl *D, unsigned argNum, 1638 llvm::Value *ptr); 1639 1640 Address LoadBlockStruct(); 1641 Address GetAddrOfBlockDecl(const VarDecl *var, bool ByRef); 1642 1643 /// BuildBlockByrefAddress - Computes the location of the 1644 /// data in a variable which is declared as __block. 1645 Address emitBlockByrefAddress(Address baseAddr, const VarDecl *V, 1646 bool followForward = true); 1647 Address emitBlockByrefAddress(Address baseAddr, 1648 const BlockByrefInfo &info, 1649 bool followForward, 1650 const llvm::Twine &name); 1651 1652 const BlockByrefInfo &getBlockByrefInfo(const VarDecl *var); 1653 1654 QualType BuildFunctionArgList(GlobalDecl GD, FunctionArgList &Args); 1655 1656 void GenerateCode(GlobalDecl GD, llvm::Function *Fn, 1657 const CGFunctionInfo &FnInfo); 1658 /// \brief Emit code for the start of a function. 1659 /// \param Loc The location to be associated with the function. 1660 /// \param StartLoc The location of the function body. 1661 void StartFunction(GlobalDecl GD, 1662 QualType RetTy, 1663 llvm::Function *Fn, 1664 const CGFunctionInfo &FnInfo, 1665 const FunctionArgList &Args, 1666 SourceLocation Loc = SourceLocation(), 1667 SourceLocation StartLoc = SourceLocation()); 1668 1669 static bool IsConstructorDelegationValid(const CXXConstructorDecl *Ctor); 1670 1671 void EmitConstructorBody(FunctionArgList &Args); 1672 void EmitDestructorBody(FunctionArgList &Args); 1673 void emitImplicitAssignmentOperatorBody(FunctionArgList &Args); 1674 void EmitFunctionBody(FunctionArgList &Args, const Stmt *Body); 1675 void EmitBlockWithFallThrough(llvm::BasicBlock *BB, const Stmt *S); 1676 1677 void EmitForwardingCallToLambda(const CXXMethodDecl *LambdaCallOperator, 1678 CallArgList &CallArgs); 1679 void EmitLambdaBlockInvokeBody(); 1680 void EmitLambdaDelegatingInvokeBody(const CXXMethodDecl *MD); 1681 void EmitLambdaStaticInvokeBody(const CXXMethodDecl *MD); 1682 void EmitAsanPrologueOrEpilogue(bool Prologue); 1683 1684 /// \brief Emit the unified return block, trying to avoid its emission when 1685 /// possible. 1686 /// \return The debug location of the user written return statement if the 1687 /// return block is is avoided. 1688 llvm::DebugLoc EmitReturnBlock(); 1689 1690 /// FinishFunction - Complete IR generation of the current function. It is 1691 /// legal to call this function even if there is no current insertion point. 1692 void FinishFunction(SourceLocation EndLoc=SourceLocation()); 1693 1694 void StartThunk(llvm::Function *Fn, GlobalDecl GD, 1695 const CGFunctionInfo &FnInfo); 1696 1697 void EmitCallAndReturnForThunk(llvm::Constant *Callee, 1698 const ThunkInfo *Thunk); 1699 1700 void FinishThunk(); 1701 1702 /// Emit a musttail call for a thunk with a potentially adjusted this pointer. 1703 void EmitMustTailThunk(const CXXMethodDecl *MD, llvm::Value *AdjustedThisPtr, 1704 llvm::Value *Callee); 1705 1706 /// Generate a thunk for the given method. 1707 void generateThunk(llvm::Function *Fn, const CGFunctionInfo &FnInfo, 1708 GlobalDecl GD, const ThunkInfo &Thunk); 1709 1710 llvm::Function *GenerateVarArgsThunk(llvm::Function *Fn, 1711 const CGFunctionInfo &FnInfo, 1712 GlobalDecl GD, const ThunkInfo &Thunk); 1713 1714 void EmitCtorPrologue(const CXXConstructorDecl *CD, CXXCtorType Type, 1715 FunctionArgList &Args); 1716 1717 void EmitInitializerForField(FieldDecl *Field, LValue LHS, Expr *Init); 1718 1719 /// Struct with all informations about dynamic [sub]class needed to set vptr. 1720 struct VPtr { 1721 BaseSubobject Base; 1722 const CXXRecordDecl *NearestVBase; 1723 CharUnits OffsetFromNearestVBase; 1724 const CXXRecordDecl *VTableClass; 1725 }; 1726 1727 /// Initialize the vtable pointer of the given subobject. 1728 void InitializeVTablePointer(const VPtr &vptr); 1729 1730 typedef llvm::SmallVector<VPtr, 4> VPtrsVector; 1731 1732 typedef llvm::SmallPtrSet<const CXXRecordDecl *, 4> VisitedVirtualBasesSetTy; 1733 VPtrsVector getVTablePointers(const CXXRecordDecl *VTableClass); 1734 1735 void getVTablePointers(BaseSubobject Base, const CXXRecordDecl *NearestVBase, 1736 CharUnits OffsetFromNearestVBase, 1737 bool BaseIsNonVirtualPrimaryBase, 1738 const CXXRecordDecl *VTableClass, 1739 VisitedVirtualBasesSetTy &VBases, VPtrsVector &vptrs); 1740 1741 void InitializeVTablePointers(const CXXRecordDecl *ClassDecl); 1742 1743 /// GetVTablePtr - Return the Value of the vtable pointer member pointed 1744 /// to by This. 1745 llvm::Value *GetVTablePtr(Address This, llvm::Type *VTableTy, 1746 const CXXRecordDecl *VTableClass); 1747 1748 enum CFITypeCheckKind { 1749 CFITCK_VCall, 1750 CFITCK_NVCall, 1751 CFITCK_DerivedCast, 1752 CFITCK_UnrelatedCast, 1753 CFITCK_ICall, 1754 }; 1755 1756 /// \brief Derived is the presumed address of an object of type T after a 1757 /// cast. If T is a polymorphic class type, emit a check that the virtual 1758 /// table for Derived belongs to a class derived from T. 1759 void EmitVTablePtrCheckForCast(QualType T, llvm::Value *Derived, 1760 bool MayBeNull, CFITypeCheckKind TCK, 1761 SourceLocation Loc); 1762 1763 /// EmitVTablePtrCheckForCall - Virtual method MD is being called via VTable. 1764 /// If vptr CFI is enabled, emit a check that VTable is valid. 1765 void EmitVTablePtrCheckForCall(const CXXRecordDecl *RD, llvm::Value *VTable, 1766 CFITypeCheckKind TCK, SourceLocation Loc); 1767 1768 /// EmitVTablePtrCheck - Emit a check that VTable is a valid virtual table for 1769 /// RD using llvm.type.test. 1770 void EmitVTablePtrCheck(const CXXRecordDecl *RD, llvm::Value *VTable, 1771 CFITypeCheckKind TCK, SourceLocation Loc); 1772 1773 /// If whole-program virtual table optimization is enabled, emit an assumption 1774 /// that VTable is a member of RD's type identifier. Or, if vptr CFI is 1775 /// enabled, emit a check that VTable is a member of RD's type identifier. 1776 void EmitTypeMetadataCodeForVCall(const CXXRecordDecl *RD, 1777 llvm::Value *VTable, SourceLocation Loc); 1778 1779 /// Returns whether we should perform a type checked load when loading a 1780 /// virtual function for virtual calls to members of RD. This is generally 1781 /// true when both vcall CFI and whole-program-vtables are enabled. 1782 bool ShouldEmitVTableTypeCheckedLoad(const CXXRecordDecl *RD); 1783 1784 /// Emit a type checked load from the given vtable. 1785 llvm::Value *EmitVTableTypeCheckedLoad(const CXXRecordDecl *RD, llvm::Value *VTable, 1786 uint64_t VTableByteOffset); 1787 1788 /// EnterDtorCleanups - Enter the cleanups necessary to complete the 1789 /// given phase of destruction for a destructor. The end result 1790 /// should call destructors on members and base classes in reverse 1791 /// order of their construction. 1792 void EnterDtorCleanups(const CXXDestructorDecl *Dtor, CXXDtorType Type); 1793 1794 /// ShouldInstrumentFunction - Return true if the current function should be 1795 /// instrumented with __cyg_profile_func_* calls 1796 bool ShouldInstrumentFunction(); 1797 1798 /// ShouldXRayInstrument - Return true if the current function should be 1799 /// instrumented with XRay nop sleds. 1800 bool ShouldXRayInstrumentFunction() const; 1801 1802 /// AlwaysEmitXRayCustomEvents - Return true if we must unconditionally emit 1803 /// XRay custom event handling calls. 1804 bool AlwaysEmitXRayCustomEvents() const; 1805 1806 /// Encode an address into a form suitable for use in a function prologue. 1807 llvm::Constant *EncodeAddrForUseInPrologue(llvm::Function *F, 1808 llvm::Constant *Addr); 1809 1810 /// Decode an address used in a function prologue, encoded by \c 1811 /// EncodeAddrForUseInPrologue. 1812 llvm::Value *DecodeAddrUsedInPrologue(llvm::Value *F, 1813 llvm::Value *EncodedAddr); 1814 1815 /// EmitFunctionProlog - Emit the target specific LLVM code to load the 1816 /// arguments for the given function. This is also responsible for naming the 1817 /// LLVM function arguments. 1818 void EmitFunctionProlog(const CGFunctionInfo &FI, 1819 llvm::Function *Fn, 1820 const FunctionArgList &Args); 1821 1822 /// EmitFunctionEpilog - Emit the target specific LLVM code to return the 1823 /// given temporary. 1824 void EmitFunctionEpilog(const CGFunctionInfo &FI, bool EmitRetDbgLoc, 1825 SourceLocation EndLoc); 1826 1827 /// Emit a test that checks if the return value \p RV is nonnull. 1828 void EmitReturnValueCheck(llvm::Value *RV); 1829 1830 /// EmitStartEHSpec - Emit the start of the exception spec. 1831 void EmitStartEHSpec(const Decl *D); 1832 1833 /// EmitEndEHSpec - Emit the end of the exception spec. 1834 void EmitEndEHSpec(const Decl *D); 1835 1836 /// getTerminateLandingPad - Return a landing pad that just calls terminate. 1837 llvm::BasicBlock *getTerminateLandingPad(); 1838 1839 /// getTerminateLandingPad - Return a cleanup funclet that just calls 1840 /// terminate. 1841 llvm::BasicBlock *getTerminateFunclet(); 1842 1843 /// getTerminateHandler - Return a handler (not a landing pad, just 1844 /// a catch handler) that just calls terminate. This is used when 1845 /// a terminate scope encloses a try. 1846 llvm::BasicBlock *getTerminateHandler(); 1847 1848 llvm::Type *ConvertTypeForMem(QualType T); 1849 llvm::Type *ConvertType(QualType T); 1850 llvm::Type *ConvertType(const TypeDecl *T) { 1851 return ConvertType(getContext().getTypeDeclType(T)); 1852 } 1853 1854 /// LoadObjCSelf - Load the value of self. This function is only valid while 1855 /// generating code for an Objective-C method. 1856 llvm::Value *LoadObjCSelf(); 1857 1858 /// TypeOfSelfObject - Return type of object that this self represents. 1859 QualType TypeOfSelfObject(); 1860 1861 /// getEvaluationKind - Return the TypeEvaluationKind of QualType \c T. 1862 static TypeEvaluationKind getEvaluationKind(QualType T); 1863 1864 static bool hasScalarEvaluationKind(QualType T) { 1865 return getEvaluationKind(T) == TEK_Scalar; 1866 } 1867 1868 static bool hasAggregateEvaluationKind(QualType T) { 1869 return getEvaluationKind(T) == TEK_Aggregate; 1870 } 1871 1872 /// createBasicBlock - Create an LLVM basic block. 1873 llvm::BasicBlock *createBasicBlock(const Twine &name = "", 1874 llvm::Function *parent = nullptr, 1875 llvm::BasicBlock *before = nullptr) { 1876 return llvm::BasicBlock::Create(getLLVMContext(), name, parent, before); 1877 } 1878 1879 /// getBasicBlockForLabel - Return the LLVM basicblock that the specified 1880 /// label maps to. 1881 JumpDest getJumpDestForLabel(const LabelDecl *S); 1882 1883 /// SimplifyForwardingBlocks - If the given basic block is only a branch to 1884 /// another basic block, simplify it. This assumes that no other code could 1885 /// potentially reference the basic block. 1886 void SimplifyForwardingBlocks(llvm::BasicBlock *BB); 1887 1888 /// EmitBlock - Emit the given block \arg BB and set it as the insert point, 1889 /// adding a fall-through branch from the current insert block if 1890 /// necessary. It is legal to call this function even if there is no current 1891 /// insertion point. 1892 /// 1893 /// IsFinished - If true, indicates that the caller has finished emitting 1894 /// branches to the given block and does not expect to emit code into it. This 1895 /// means the block can be ignored if it is unreachable. 1896 void EmitBlock(llvm::BasicBlock *BB, bool IsFinished=false); 1897 1898 /// EmitBlockAfterUses - Emit the given block somewhere hopefully 1899 /// near its uses, and leave the insertion point in it. 1900 void EmitBlockAfterUses(llvm::BasicBlock *BB); 1901 1902 /// EmitBranch - Emit a branch to the specified basic block from the current 1903 /// insert block, taking care to avoid creation of branches from dummy 1904 /// blocks. It is legal to call this function even if there is no current 1905 /// insertion point. 1906 /// 1907 /// This function clears the current insertion point. The caller should follow 1908 /// calls to this function with calls to Emit*Block prior to generation new 1909 /// code. 1910 void EmitBranch(llvm::BasicBlock *Block); 1911 1912 /// HaveInsertPoint - True if an insertion point is defined. If not, this 1913 /// indicates that the current code being emitted is unreachable. 1914 bool HaveInsertPoint() const { 1915 return Builder.GetInsertBlock() != nullptr; 1916 } 1917 1918 /// EnsureInsertPoint - Ensure that an insertion point is defined so that 1919 /// emitted IR has a place to go. Note that by definition, if this function 1920 /// creates a block then that block is unreachable; callers may do better to 1921 /// detect when no insertion point is defined and simply skip IR generation. 1922 void EnsureInsertPoint() { 1923 if (!HaveInsertPoint()) 1924 EmitBlock(createBasicBlock()); 1925 } 1926 1927 /// ErrorUnsupported - Print out an error that codegen doesn't support the 1928 /// specified stmt yet. 1929 void ErrorUnsupported(const Stmt *S, const char *Type); 1930 1931 //===--------------------------------------------------------------------===// 1932 // Helpers 1933 //===--------------------------------------------------------------------===// 1934 1935 LValue MakeAddrLValue(Address Addr, QualType T, 1936 AlignmentSource Source = AlignmentSource::Type) { 1937 return LValue::MakeAddr(Addr, T, getContext(), LValueBaseInfo(Source), 1938 CGM.getTBAAAccessInfo(T)); 1939 } 1940 1941 LValue MakeAddrLValue(Address Addr, QualType T, LValueBaseInfo BaseInfo, 1942 TBAAAccessInfo TBAAInfo) { 1943 return LValue::MakeAddr(Addr, T, getContext(), BaseInfo, TBAAInfo); 1944 } 1945 1946 LValue MakeAddrLValue(llvm::Value *V, QualType T, CharUnits Alignment, 1947 AlignmentSource Source = AlignmentSource::Type) { 1948 return LValue::MakeAddr(Address(V, Alignment), T, getContext(), 1949 LValueBaseInfo(Source), CGM.getTBAAAccessInfo(T)); 1950 } 1951 1952 LValue MakeAddrLValue(llvm::Value *V, QualType T, CharUnits Alignment, 1953 LValueBaseInfo BaseInfo, TBAAAccessInfo TBAAInfo) { 1954 return LValue::MakeAddr(Address(V, Alignment), T, getContext(), 1955 BaseInfo, TBAAInfo); 1956 } 1957 1958 LValue MakeNaturalAlignPointeeAddrLValue(llvm::Value *V, QualType T); 1959 LValue MakeNaturalAlignAddrLValue(llvm::Value *V, QualType T); 1960 CharUnits getNaturalTypeAlignment(QualType T, 1961 LValueBaseInfo *BaseInfo = nullptr, 1962 TBAAAccessInfo *TBAAInfo = nullptr, 1963 bool forPointeeType = false); 1964 CharUnits getNaturalPointeeTypeAlignment(QualType T, 1965 LValueBaseInfo *BaseInfo = nullptr, 1966 TBAAAccessInfo *TBAAInfo = nullptr); 1967 1968 Address EmitLoadOfReference(LValue RefLVal, 1969 LValueBaseInfo *PointeeBaseInfo = nullptr, 1970 TBAAAccessInfo *PointeeTBAAInfo = nullptr); 1971 LValue EmitLoadOfReferenceLValue(LValue RefLVal); 1972 LValue EmitLoadOfReferenceLValue(Address RefAddr, QualType RefTy, 1973 AlignmentSource Source = 1974 AlignmentSource::Type) { 1975 LValue RefLVal = MakeAddrLValue(RefAddr, RefTy, LValueBaseInfo(Source), 1976 CGM.getTBAAAccessInfo(RefTy)); 1977 return EmitLoadOfReferenceLValue(RefLVal); 1978 } 1979 1980 Address EmitLoadOfPointer(Address Ptr, const PointerType *PtrTy, 1981 LValueBaseInfo *BaseInfo = nullptr, 1982 TBAAAccessInfo *TBAAInfo = nullptr); 1983 LValue EmitLoadOfPointerLValue(Address Ptr, const PointerType *PtrTy); 1984 1985 /// CreateTempAlloca - This creates an alloca and inserts it into the entry 1986 /// block if \p ArraySize is nullptr, otherwise inserts it at the current 1987 /// insertion point of the builder. The caller is responsible for setting an 1988 /// appropriate alignment on 1989 /// the alloca. 1990 /// 1991 /// \p ArraySize is the number of array elements to be allocated if it 1992 /// is not nullptr. 1993 /// 1994 /// LangAS::Default is the address space of pointers to local variables and 1995 /// temporaries, as exposed in the source language. In certain 1996 /// configurations, this is not the same as the alloca address space, and a 1997 /// cast is needed to lift the pointer from the alloca AS into 1998 /// LangAS::Default. This can happen when the target uses a restricted 1999 /// address space for the stack but the source language requires 2000 /// LangAS::Default to be a generic address space. The latter condition is 2001 /// common for most programming languages; OpenCL is an exception in that 2002 /// LangAS::Default is the private address space, which naturally maps 2003 /// to the stack. 2004 /// 2005 /// Because the address of a temporary is often exposed to the program in 2006 /// various ways, this function will perform the cast by default. The cast 2007 /// may be avoided by passing false as \p CastToDefaultAddrSpace; this is 2008 /// more efficient if the caller knows that the address will not be exposed. 2009 llvm::AllocaInst *CreateTempAlloca(llvm::Type *Ty, const Twine &Name = "tmp", 2010 llvm::Value *ArraySize = nullptr); 2011 Address CreateTempAlloca(llvm::Type *Ty, CharUnits align, 2012 const Twine &Name = "tmp", 2013 llvm::Value *ArraySize = nullptr, 2014 bool CastToDefaultAddrSpace = true); 2015 2016 /// CreateDefaultAlignedTempAlloca - This creates an alloca with the 2017 /// default ABI alignment of the given LLVM type. 2018 /// 2019 /// IMPORTANT NOTE: This is *not* generally the right alignment for 2020 /// any given AST type that happens to have been lowered to the 2021 /// given IR type. This should only ever be used for function-local, 2022 /// IR-driven manipulations like saving and restoring a value. Do 2023 /// not hand this address off to arbitrary IRGen routines, and especially 2024 /// do not pass it as an argument to a function that might expect a 2025 /// properly ABI-aligned value. 2026 Address CreateDefaultAlignTempAlloca(llvm::Type *Ty, 2027 const Twine &Name = "tmp"); 2028 2029 /// InitTempAlloca - Provide an initial value for the given alloca which 2030 /// will be observable at all locations in the function. 2031 /// 2032 /// The address should be something that was returned from one of 2033 /// the CreateTempAlloca or CreateMemTemp routines, and the 2034 /// initializer must be valid in the entry block (i.e. it must 2035 /// either be a constant or an argument value). 2036 void InitTempAlloca(Address Alloca, llvm::Value *Value); 2037 2038 /// CreateIRTemp - Create a temporary IR object of the given type, with 2039 /// appropriate alignment. This routine should only be used when an temporary 2040 /// value needs to be stored into an alloca (for example, to avoid explicit 2041 /// PHI construction), but the type is the IR type, not the type appropriate 2042 /// for storing in memory. 2043 /// 2044 /// That is, this is exactly equivalent to CreateMemTemp, but calling 2045 /// ConvertType instead of ConvertTypeForMem. 2046 Address CreateIRTemp(QualType T, const Twine &Name = "tmp"); 2047 2048 /// CreateMemTemp - Create a temporary memory object of the given type, with 2049 /// appropriate alignment. Cast it to the default address space if 2050 /// \p CastToDefaultAddrSpace is true. 2051 Address CreateMemTemp(QualType T, const Twine &Name = "tmp", 2052 bool CastToDefaultAddrSpace = true); 2053 Address CreateMemTemp(QualType T, CharUnits Align, const Twine &Name = "tmp", 2054 bool CastToDefaultAddrSpace = true); 2055 2056 /// CreateAggTemp - Create a temporary memory object for the given 2057 /// aggregate type. 2058 AggValueSlot CreateAggTemp(QualType T, const Twine &Name = "tmp") { 2059 return AggValueSlot::forAddr(CreateMemTemp(T, Name), 2060 T.getQualifiers(), 2061 AggValueSlot::IsNotDestructed, 2062 AggValueSlot::DoesNotNeedGCBarriers, 2063 AggValueSlot::IsNotAliased); 2064 } 2065 2066 /// Emit a cast to void* in the appropriate address space. 2067 llvm::Value *EmitCastToVoidPtr(llvm::Value *value); 2068 2069 /// EvaluateExprAsBool - Perform the usual unary conversions on the specified 2070 /// expression and compare the result against zero, returning an Int1Ty value. 2071 llvm::Value *EvaluateExprAsBool(const Expr *E); 2072 2073 /// EmitIgnoredExpr - Emit an expression in a context which ignores the result. 2074 void EmitIgnoredExpr(const Expr *E); 2075 2076 /// EmitAnyExpr - Emit code to compute the specified expression which can have 2077 /// any type. The result is returned as an RValue struct. If this is an 2078 /// aggregate expression, the aggloc/agglocvolatile arguments indicate where 2079 /// the result should be returned. 2080 /// 2081 /// \param ignoreResult True if the resulting value isn't used. 2082 RValue EmitAnyExpr(const Expr *E, 2083 AggValueSlot aggSlot = AggValueSlot::ignored(), 2084 bool ignoreResult = false); 2085 2086 // EmitVAListRef - Emit a "reference" to a va_list; this is either the address 2087 // or the value of the expression, depending on how va_list is defined. 2088 Address EmitVAListRef(const Expr *E); 2089 2090 /// Emit a "reference" to a __builtin_ms_va_list; this is 2091 /// always the value of the expression, because a __builtin_ms_va_list is a 2092 /// pointer to a char. 2093 Address EmitMSVAListRef(const Expr *E); 2094 2095 /// EmitAnyExprToTemp - Similarly to EmitAnyExpr(), however, the result will 2096 /// always be accessible even if no aggregate location is provided. 2097 RValue EmitAnyExprToTemp(const Expr *E); 2098 2099 /// EmitAnyExprToMem - Emits the code necessary to evaluate an 2100 /// arbitrary expression into the given memory location. 2101 void EmitAnyExprToMem(const Expr *E, Address Location, 2102 Qualifiers Quals, bool IsInitializer); 2103 2104 void EmitAnyExprToExn(const Expr *E, Address Addr); 2105 2106 /// EmitExprAsInit - Emits the code necessary to initialize a 2107 /// location in memory with the given initializer. 2108 void EmitExprAsInit(const Expr *init, const ValueDecl *D, LValue lvalue, 2109 bool capturedByInit); 2110 2111 /// hasVolatileMember - returns true if aggregate type has a volatile 2112 /// member. 2113 bool hasVolatileMember(QualType T) { 2114 if (const RecordType *RT = T->getAs<RecordType>()) { 2115 const RecordDecl *RD = cast<RecordDecl>(RT->getDecl()); 2116 return RD->hasVolatileMember(); 2117 } 2118 return false; 2119 } 2120 /// EmitAggregateCopy - Emit an aggregate assignment. 2121 /// 2122 /// The difference to EmitAggregateCopy is that tail padding is not copied. 2123 /// This is required for correctness when assigning non-POD structures in C++. 2124 void EmitAggregateAssign(LValue Dest, LValue Src, QualType EltTy) { 2125 bool IsVolatile = hasVolatileMember(EltTy); 2126 EmitAggregateCopy(Dest, Src, EltTy, IsVolatile, /* isAssignment= */ true); 2127 } 2128 2129 void EmitAggregateCopyCtor(LValue Dest, LValue Src) { 2130 EmitAggregateCopy(Dest, Src, Src.getType(), 2131 /* IsVolatile= */ false, /* IsAssignment= */ false); 2132 } 2133 2134 /// EmitAggregateCopy - Emit an aggregate copy. 2135 /// 2136 /// \param isVolatile - True iff either the source or the destination is 2137 /// volatile. 2138 /// \param isAssignment - If false, allow padding to be copied. This often 2139 /// yields more efficient. 2140 void EmitAggregateCopy(LValue Dest, LValue Src, QualType EltTy, 2141 bool isVolatile = false, bool isAssignment = false); 2142 2143 /// GetAddrOfLocalVar - Return the address of a local variable. 2144 Address GetAddrOfLocalVar(const VarDecl *VD) { 2145 auto it = LocalDeclMap.find(VD); 2146 assert(it != LocalDeclMap.end() && 2147 "Invalid argument to GetAddrOfLocalVar(), no decl!"); 2148 return it->second; 2149 } 2150 2151 /// getOpaqueLValueMapping - Given an opaque value expression (which 2152 /// must be mapped to an l-value), return its mapping. 2153 const LValue &getOpaqueLValueMapping(const OpaqueValueExpr *e) { 2154 assert(OpaqueValueMapping::shouldBindAsLValue(e)); 2155 2156 llvm::DenseMap<const OpaqueValueExpr*,LValue>::iterator 2157 it = OpaqueLValues.find(e); 2158 assert(it != OpaqueLValues.end() && "no mapping for opaque value!"); 2159 return it->second; 2160 } 2161 2162 /// getOpaqueRValueMapping - Given an opaque value expression (which 2163 /// must be mapped to an r-value), return its mapping. 2164 const RValue &getOpaqueRValueMapping(const OpaqueValueExpr *e) { 2165 assert(!OpaqueValueMapping::shouldBindAsLValue(e)); 2166 2167 llvm::DenseMap<const OpaqueValueExpr*,RValue>::iterator 2168 it = OpaqueRValues.find(e); 2169 assert(it != OpaqueRValues.end() && "no mapping for opaque value!"); 2170 return it->second; 2171 } 2172 2173 /// Get the index of the current ArrayInitLoopExpr, if any. 2174 llvm::Value *getArrayInitIndex() { return ArrayInitIndex; } 2175 2176 /// getAccessedFieldNo - Given an encoded value and a result number, return 2177 /// the input field number being accessed. 2178 static unsigned getAccessedFieldNo(unsigned Idx, const llvm::Constant *Elts); 2179 2180 llvm::BlockAddress *GetAddrOfLabel(const LabelDecl *L); 2181 llvm::BasicBlock *GetIndirectGotoBlock(); 2182 2183 /// Check if \p E is a C++ "this" pointer wrapped in value-preserving casts. 2184 static bool IsWrappedCXXThis(const Expr *E); 2185 2186 /// EmitNullInitialization - Generate code to set a value of the given type to 2187 /// null, If the type contains data member pointers, they will be initialized 2188 /// to -1 in accordance with the Itanium C++ ABI. 2189 void EmitNullInitialization(Address DestPtr, QualType Ty); 2190 2191 /// Emits a call to an LLVM variable-argument intrinsic, either 2192 /// \c llvm.va_start or \c llvm.va_end. 2193 /// \param ArgValue A reference to the \c va_list as emitted by either 2194 /// \c EmitVAListRef or \c EmitMSVAListRef. 2195 /// \param IsStart If \c true, emits a call to \c llvm.va_start; otherwise, 2196 /// calls \c llvm.va_end. 2197 llvm::Value *EmitVAStartEnd(llvm::Value *ArgValue, bool IsStart); 2198 2199 /// Generate code to get an argument from the passed in pointer 2200 /// and update it accordingly. 2201 /// \param VE The \c VAArgExpr for which to generate code. 2202 /// \param VAListAddr Receives a reference to the \c va_list as emitted by 2203 /// either \c EmitVAListRef or \c EmitMSVAListRef. 2204 /// \returns A pointer to the argument. 2205 // FIXME: We should be able to get rid of this method and use the va_arg 2206 // instruction in LLVM instead once it works well enough. 2207 Address EmitVAArg(VAArgExpr *VE, Address &VAListAddr); 2208 2209 /// emitArrayLength - Compute the length of an array, even if it's a 2210 /// VLA, and drill down to the base element type. 2211 llvm::Value *emitArrayLength(const ArrayType *arrayType, 2212 QualType &baseType, 2213 Address &addr); 2214 2215 /// EmitVLASize - Capture all the sizes for the VLA expressions in 2216 /// the given variably-modified type and store them in the VLASizeMap. 2217 /// 2218 /// This function can be called with a null (unreachable) insert point. 2219 void EmitVariablyModifiedType(QualType Ty); 2220 2221 struct VlaSizePair { 2222 llvm::Value *NumElts; 2223 QualType Type; 2224 2225 VlaSizePair(llvm::Value *NE, QualType T) : NumElts(NE), Type(T) {} 2226 }; 2227 2228 /// Return the number of elements for a single dimension 2229 /// for the given array type. 2230 VlaSizePair getVLAElements1D(const VariableArrayType *vla); 2231 VlaSizePair getVLAElements1D(QualType vla); 2232 2233 /// Returns an LLVM value that corresponds to the size, 2234 /// in non-variably-sized elements, of a variable length array type, 2235 /// plus that largest non-variably-sized element type. Assumes that 2236 /// the type has already been emitted with EmitVariablyModifiedType. 2237 VlaSizePair getVLASize(const VariableArrayType *vla); 2238 VlaSizePair getVLASize(QualType vla); 2239 2240 /// LoadCXXThis - Load the value of 'this'. This function is only valid while 2241 /// generating code for an C++ member function. 2242 llvm::Value *LoadCXXThis() { 2243 assert(CXXThisValue && "no 'this' value for this function"); 2244 return CXXThisValue; 2245 } 2246 Address LoadCXXThisAddress(); 2247 2248 /// LoadCXXVTT - Load the VTT parameter to base constructors/destructors have 2249 /// virtual bases. 2250 // FIXME: Every place that calls LoadCXXVTT is something 2251 // that needs to be abstracted properly. 2252 llvm::Value *LoadCXXVTT() { 2253 assert(CXXStructorImplicitParamValue && "no VTT value for this function"); 2254 return CXXStructorImplicitParamValue; 2255 } 2256 2257 /// GetAddressOfBaseOfCompleteClass - Convert the given pointer to a 2258 /// complete class to the given direct base. 2259 Address 2260 GetAddressOfDirectBaseInCompleteClass(Address Value, 2261 const CXXRecordDecl *Derived, 2262 const CXXRecordDecl *Base, 2263 bool BaseIsVirtual); 2264 2265 static bool ShouldNullCheckClassCastValue(const CastExpr *Cast); 2266 2267 /// GetAddressOfBaseClass - This function will add the necessary delta to the 2268 /// load of 'this' and returns address of the base class. 2269 Address GetAddressOfBaseClass(Address Value, 2270 const CXXRecordDecl *Derived, 2271 CastExpr::path_const_iterator PathBegin, 2272 CastExpr::path_const_iterator PathEnd, 2273 bool NullCheckValue, SourceLocation Loc); 2274 2275 Address GetAddressOfDerivedClass(Address Value, 2276 const CXXRecordDecl *Derived, 2277 CastExpr::path_const_iterator PathBegin, 2278 CastExpr::path_const_iterator PathEnd, 2279 bool NullCheckValue); 2280 2281 /// GetVTTParameter - Return the VTT parameter that should be passed to a 2282 /// base constructor/destructor with virtual bases. 2283 /// FIXME: VTTs are Itanium ABI-specific, so the definition should move 2284 /// to ItaniumCXXABI.cpp together with all the references to VTT. 2285 llvm::Value *GetVTTParameter(GlobalDecl GD, bool ForVirtualBase, 2286 bool Delegating); 2287 2288 void EmitDelegateCXXConstructorCall(const CXXConstructorDecl *Ctor, 2289 CXXCtorType CtorType, 2290 const FunctionArgList &Args, 2291 SourceLocation Loc); 2292 // It's important not to confuse this and the previous function. Delegating 2293 // constructors are the C++0x feature. The constructor delegate optimization 2294 // is used to reduce duplication in the base and complete consturctors where 2295 // they are substantially the same. 2296 void EmitDelegatingCXXConstructorCall(const CXXConstructorDecl *Ctor, 2297 const FunctionArgList &Args); 2298 2299 /// Emit a call to an inheriting constructor (that is, one that invokes a 2300 /// constructor inherited from a base class) by inlining its definition. This 2301 /// is necessary if the ABI does not support forwarding the arguments to the 2302 /// base class constructor (because they're variadic or similar). 2303 void EmitInlinedInheritingCXXConstructorCall(const CXXConstructorDecl *Ctor, 2304 CXXCtorType CtorType, 2305 bool ForVirtualBase, 2306 bool Delegating, 2307 CallArgList &Args); 2308 2309 /// Emit a call to a constructor inherited from a base class, passing the 2310 /// current constructor's arguments along unmodified (without even making 2311 /// a copy). 2312 void EmitInheritedCXXConstructorCall(const CXXConstructorDecl *D, 2313 bool ForVirtualBase, Address This, 2314 bool InheritedFromVBase, 2315 const CXXInheritedCtorInitExpr *E); 2316 2317 void EmitCXXConstructorCall(const CXXConstructorDecl *D, CXXCtorType Type, 2318 bool ForVirtualBase, bool Delegating, 2319 Address This, const CXXConstructExpr *E); 2320 2321 void EmitCXXConstructorCall(const CXXConstructorDecl *D, CXXCtorType Type, 2322 bool ForVirtualBase, bool Delegating, 2323 Address This, CallArgList &Args); 2324 2325 /// Emit assumption load for all bases. Requires to be be called only on 2326 /// most-derived class and not under construction of the object. 2327 void EmitVTableAssumptionLoads(const CXXRecordDecl *ClassDecl, Address This); 2328 2329 /// Emit assumption that vptr load == global vtable. 2330 void EmitVTableAssumptionLoad(const VPtr &vptr, Address This); 2331 2332 void EmitSynthesizedCXXCopyCtorCall(const CXXConstructorDecl *D, 2333 Address This, Address Src, 2334 const CXXConstructExpr *E); 2335 2336 void EmitCXXAggrConstructorCall(const CXXConstructorDecl *D, 2337 const ArrayType *ArrayTy, 2338 Address ArrayPtr, 2339 const CXXConstructExpr *E, 2340 bool ZeroInitialization = false); 2341 2342 void EmitCXXAggrConstructorCall(const CXXConstructorDecl *D, 2343 llvm::Value *NumElements, 2344 Address ArrayPtr, 2345 const CXXConstructExpr *E, 2346 bool ZeroInitialization = false); 2347 2348 static Destroyer destroyCXXObject; 2349 2350 void EmitCXXDestructorCall(const CXXDestructorDecl *D, CXXDtorType Type, 2351 bool ForVirtualBase, bool Delegating, 2352 Address This); 2353 2354 void EmitNewArrayInitializer(const CXXNewExpr *E, QualType elementType, 2355 llvm::Type *ElementTy, Address NewPtr, 2356 llvm::Value *NumElements, 2357 llvm::Value *AllocSizeWithoutCookie); 2358 2359 void EmitCXXTemporary(const CXXTemporary *Temporary, QualType TempType, 2360 Address Ptr); 2361 2362 llvm::Value *EmitLifetimeStart(uint64_t Size, llvm::Value *Addr); 2363 void EmitLifetimeEnd(llvm::Value *Size, llvm::Value *Addr); 2364 2365 llvm::Value *EmitCXXNewExpr(const CXXNewExpr *E); 2366 void EmitCXXDeleteExpr(const CXXDeleteExpr *E); 2367 2368 void EmitDeleteCall(const FunctionDecl *DeleteFD, llvm::Value *Ptr, 2369 QualType DeleteTy, llvm::Value *NumElements = nullptr, 2370 CharUnits CookieSize = CharUnits()); 2371 2372 RValue EmitBuiltinNewDeleteCall(const FunctionProtoType *Type, 2373 const Expr *Arg, bool IsDelete); 2374 2375 llvm::Value *EmitCXXTypeidExpr(const CXXTypeidExpr *E); 2376 llvm::Value *EmitDynamicCast(Address V, const CXXDynamicCastExpr *DCE); 2377 Address EmitCXXUuidofExpr(const CXXUuidofExpr *E); 2378 2379 /// \brief Situations in which we might emit a check for the suitability of a 2380 /// pointer or glvalue. 2381 enum TypeCheckKind { 2382 /// Checking the operand of a load. Must be suitably sized and aligned. 2383 TCK_Load, 2384 /// Checking the destination of a store. Must be suitably sized and aligned. 2385 TCK_Store, 2386 /// Checking the bound value in a reference binding. Must be suitably sized 2387 /// and aligned, but is not required to refer to an object (until the 2388 /// reference is used), per core issue 453. 2389 TCK_ReferenceBinding, 2390 /// Checking the object expression in a non-static data member access. Must 2391 /// be an object within its lifetime. 2392 TCK_MemberAccess, 2393 /// Checking the 'this' pointer for a call to a non-static member function. 2394 /// Must be an object within its lifetime. 2395 TCK_MemberCall, 2396 /// Checking the 'this' pointer for a constructor call. 2397 TCK_ConstructorCall, 2398 /// Checking the operand of a static_cast to a derived pointer type. Must be 2399 /// null or an object within its lifetime. 2400 TCK_DowncastPointer, 2401 /// Checking the operand of a static_cast to a derived reference type. Must 2402 /// be an object within its lifetime. 2403 TCK_DowncastReference, 2404 /// Checking the operand of a cast to a base object. Must be suitably sized 2405 /// and aligned. 2406 TCK_Upcast, 2407 /// Checking the operand of a cast to a virtual base object. Must be an 2408 /// object within its lifetime. 2409 TCK_UpcastToVirtualBase, 2410 /// Checking the value assigned to a _Nonnull pointer. Must not be null. 2411 TCK_NonnullAssign, 2412 /// Checking the operand of a dynamic_cast or a typeid expression. Must be 2413 /// null or an object within its lifetime. 2414 TCK_DynamicOperation 2415 }; 2416 2417 /// Determine whether the pointer type check \p TCK permits null pointers. 2418 static bool isNullPointerAllowed(TypeCheckKind TCK); 2419 2420 /// Determine whether the pointer type check \p TCK requires a vptr check. 2421 static bool isVptrCheckRequired(TypeCheckKind TCK, QualType Ty); 2422 2423 /// \brief Whether any type-checking sanitizers are enabled. If \c false, 2424 /// calls to EmitTypeCheck can be skipped. 2425 bool sanitizePerformTypeCheck() const; 2426 2427 /// \brief Emit a check that \p V is the address of storage of the 2428 /// appropriate size and alignment for an object of type \p Type. 2429 void EmitTypeCheck(TypeCheckKind TCK, SourceLocation Loc, llvm::Value *V, 2430 QualType Type, CharUnits Alignment = CharUnits::Zero(), 2431 SanitizerSet SkippedChecks = SanitizerSet()); 2432 2433 /// \brief Emit a check that \p Base points into an array object, which 2434 /// we can access at index \p Index. \p Accessed should be \c false if we 2435 /// this expression is used as an lvalue, for instance in "&Arr[Idx]". 2436 void EmitBoundsCheck(const Expr *E, const Expr *Base, llvm::Value *Index, 2437 QualType IndexType, bool Accessed); 2438 2439 llvm::Value *EmitScalarPrePostIncDec(const UnaryOperator *E, LValue LV, 2440 bool isInc, bool isPre); 2441 ComplexPairTy EmitComplexPrePostIncDec(const UnaryOperator *E, LValue LV, 2442 bool isInc, bool isPre); 2443 2444 void EmitAlignmentAssumption(llvm::Value *PtrValue, unsigned Alignment, 2445 llvm::Value *OffsetValue = nullptr) { 2446 Builder.CreateAlignmentAssumption(CGM.getDataLayout(), PtrValue, Alignment, 2447 OffsetValue); 2448 } 2449 2450 /// Converts Location to a DebugLoc, if debug information is enabled. 2451 llvm::DebugLoc SourceLocToDebugLoc(SourceLocation Location); 2452 2453 2454 //===--------------------------------------------------------------------===// 2455 // Declaration Emission 2456 //===--------------------------------------------------------------------===// 2457 2458 /// EmitDecl - Emit a declaration. 2459 /// 2460 /// This function can be called with a null (unreachable) insert point. 2461 void EmitDecl(const Decl &D); 2462 2463 /// EmitVarDecl - Emit a local variable declaration. 2464 /// 2465 /// This function can be called with a null (unreachable) insert point. 2466 void EmitVarDecl(const VarDecl &D); 2467 2468 void EmitScalarInit(const Expr *init, const ValueDecl *D, LValue lvalue, 2469 bool capturedByInit); 2470 2471 typedef void SpecialInitFn(CodeGenFunction &Init, const VarDecl &D, 2472 llvm::Value *Address); 2473 2474 /// \brief Determine whether the given initializer is trivial in the sense 2475 /// that it requires no code to be generated. 2476 bool isTrivialInitializer(const Expr *Init); 2477 2478 /// EmitAutoVarDecl - Emit an auto variable declaration. 2479 /// 2480 /// This function can be called with a null (unreachable) insert point. 2481 void EmitAutoVarDecl(const VarDecl &D); 2482 2483 class AutoVarEmission { 2484 friend class CodeGenFunction; 2485 2486 const VarDecl *Variable; 2487 2488 /// The address of the alloca. Invalid if the variable was emitted 2489 /// as a global constant. 2490 Address Addr; 2491 2492 llvm::Value *NRVOFlag; 2493 2494 /// True if the variable is a __block variable. 2495 bool IsByRef; 2496 2497 /// True if the variable is of aggregate type and has a constant 2498 /// initializer. 2499 bool IsConstantAggregate; 2500 2501 /// Non-null if we should use lifetime annotations. 2502 llvm::Value *SizeForLifetimeMarkers; 2503 2504 struct Invalid {}; 2505 AutoVarEmission(Invalid) : Variable(nullptr), Addr(Address::invalid()) {} 2506 2507 AutoVarEmission(const VarDecl &variable) 2508 : Variable(&variable), Addr(Address::invalid()), NRVOFlag(nullptr), 2509 IsByRef(false), IsConstantAggregate(false), 2510 SizeForLifetimeMarkers(nullptr) {} 2511 2512 bool wasEmittedAsGlobal() const { return !Addr.isValid(); } 2513 2514 public: 2515 static AutoVarEmission invalid() { return AutoVarEmission(Invalid()); } 2516 2517 bool useLifetimeMarkers() const { 2518 return SizeForLifetimeMarkers != nullptr; 2519 } 2520 llvm::Value *getSizeForLifetimeMarkers() const { 2521 assert(useLifetimeMarkers()); 2522 return SizeForLifetimeMarkers; 2523 } 2524 2525 /// Returns the raw, allocated address, which is not necessarily 2526 /// the address of the object itself. 2527 Address getAllocatedAddress() const { 2528 return Addr; 2529 } 2530 2531 /// Returns the address of the object within this declaration. 2532 /// Note that this does not chase the forwarding pointer for 2533 /// __block decls. 2534 Address getObjectAddress(CodeGenFunction &CGF) const { 2535 if (!IsByRef) return Addr; 2536 2537 return CGF.emitBlockByrefAddress(Addr, Variable, /*forward*/ false); 2538 } 2539 }; 2540 AutoVarEmission EmitAutoVarAlloca(const VarDecl &var); 2541 void EmitAutoVarInit(const AutoVarEmission &emission); 2542 void EmitAutoVarCleanups(const AutoVarEmission &emission); 2543 void emitAutoVarTypeCleanup(const AutoVarEmission &emission, 2544 QualType::DestructionKind dtorKind); 2545 2546 /// Emits the alloca and debug information for the size expressions for each 2547 /// dimension of an array. It registers the association of its (1-dimensional) 2548 /// QualTypes and size expression's debug node, so that CGDebugInfo can 2549 /// reference this node when creating the DISubrange object to describe the 2550 /// array types. 2551 void EmitAndRegisterVariableArrayDimensions(CGDebugInfo *DI, 2552 const VarDecl &D, 2553 bool EmitDebugInfo); 2554 2555 void EmitStaticVarDecl(const VarDecl &D, 2556 llvm::GlobalValue::LinkageTypes Linkage); 2557 2558 class ParamValue { 2559 llvm::Value *Value; 2560 unsigned Alignment; 2561 ParamValue(llvm::Value *V, unsigned A) : Value(V), Alignment(A) {} 2562 public: 2563 static ParamValue forDirect(llvm::Value *value) { 2564 return ParamValue(value, 0); 2565 } 2566 static ParamValue forIndirect(Address addr) { 2567 assert(!addr.getAlignment().isZero()); 2568 return ParamValue(addr.getPointer(), addr.getAlignment().getQuantity()); 2569 } 2570 2571 bool isIndirect() const { return Alignment != 0; } 2572 llvm::Value *getAnyValue() const { return Value; } 2573 2574 llvm::Value *getDirectValue() const { 2575 assert(!isIndirect()); 2576 return Value; 2577 } 2578 2579 Address getIndirectAddress() const { 2580 assert(isIndirect()); 2581 return Address(Value, CharUnits::fromQuantity(Alignment)); 2582 } 2583 }; 2584 2585 /// EmitParmDecl - Emit a ParmVarDecl or an ImplicitParamDecl. 2586 void EmitParmDecl(const VarDecl &D, ParamValue Arg, unsigned ArgNo); 2587 2588 /// protectFromPeepholes - Protect a value that we're intending to 2589 /// store to the side, but which will probably be used later, from 2590 /// aggressive peepholing optimizations that might delete it. 2591 /// 2592 /// Pass the result to unprotectFromPeepholes to declare that 2593 /// protection is no longer required. 2594 /// 2595 /// There's no particular reason why this shouldn't apply to 2596 /// l-values, it's just that no existing peepholes work on pointers. 2597 PeepholeProtection protectFromPeepholes(RValue rvalue); 2598 void unprotectFromPeepholes(PeepholeProtection protection); 2599 2600 void EmitAlignmentAssumption(llvm::Value *PtrValue, llvm::Value *Alignment, 2601 llvm::Value *OffsetValue = nullptr) { 2602 Builder.CreateAlignmentAssumption(CGM.getDataLayout(), PtrValue, Alignment, 2603 OffsetValue); 2604 } 2605 2606 //===--------------------------------------------------------------------===// 2607 // Statement Emission 2608 //===--------------------------------------------------------------------===// 2609 2610 /// EmitStopPoint - Emit a debug stoppoint if we are emitting debug info. 2611 void EmitStopPoint(const Stmt *S); 2612 2613 /// EmitStmt - Emit the code for the statement \arg S. It is legal to call 2614 /// this function even if there is no current insertion point. 2615 /// 2616 /// This function may clear the current insertion point; callers should use 2617 /// EnsureInsertPoint if they wish to subsequently generate code without first 2618 /// calling EmitBlock, EmitBranch, or EmitStmt. 2619 void EmitStmt(const Stmt *S, ArrayRef<const Attr *> Attrs = None); 2620 2621 /// EmitSimpleStmt - Try to emit a "simple" statement which does not 2622 /// necessarily require an insertion point or debug information; typically 2623 /// because the statement amounts to a jump or a container of other 2624 /// statements. 2625 /// 2626 /// \return True if the statement was handled. 2627 bool EmitSimpleStmt(const Stmt *S); 2628 2629 Address EmitCompoundStmt(const CompoundStmt &S, bool GetLast = false, 2630 AggValueSlot AVS = AggValueSlot::ignored()); 2631 Address EmitCompoundStmtWithoutScope(const CompoundStmt &S, 2632 bool GetLast = false, 2633 AggValueSlot AVS = 2634 AggValueSlot::ignored()); 2635 2636 /// EmitLabel - Emit the block for the given label. It is legal to call this 2637 /// function even if there is no current insertion point. 2638 void EmitLabel(const LabelDecl *D); // helper for EmitLabelStmt. 2639 2640 void EmitLabelStmt(const LabelStmt &S); 2641 void EmitAttributedStmt(const AttributedStmt &S); 2642 void EmitGotoStmt(const GotoStmt &S); 2643 void EmitIndirectGotoStmt(const IndirectGotoStmt &S); 2644 void EmitIfStmt(const IfStmt &S); 2645 2646 void EmitWhileStmt(const WhileStmt &S, 2647 ArrayRef<const Attr *> Attrs = None); 2648 void EmitDoStmt(const DoStmt &S, ArrayRef<const Attr *> Attrs = None); 2649 void EmitForStmt(const ForStmt &S, 2650 ArrayRef<const Attr *> Attrs = None); 2651 void EmitReturnStmt(const ReturnStmt &S); 2652 void EmitDeclStmt(const DeclStmt &S); 2653 void EmitBreakStmt(const BreakStmt &S); 2654 void EmitContinueStmt(const ContinueStmt &S); 2655 void EmitSwitchStmt(const SwitchStmt &S); 2656 void EmitDefaultStmt(const DefaultStmt &S); 2657 void EmitCaseStmt(const CaseStmt &S); 2658 void EmitCaseStmtRange(const CaseStmt &S); 2659 void EmitAsmStmt(const AsmStmt &S); 2660 2661 void EmitObjCForCollectionStmt(const ObjCForCollectionStmt &S); 2662 void EmitObjCAtTryStmt(const ObjCAtTryStmt &S); 2663 void EmitObjCAtThrowStmt(const ObjCAtThrowStmt &S); 2664 void EmitObjCAtSynchronizedStmt(const ObjCAtSynchronizedStmt &S); 2665 void EmitObjCAutoreleasePoolStmt(const ObjCAutoreleasePoolStmt &S); 2666 2667 void EmitCoroutineBody(const CoroutineBodyStmt &S); 2668 void EmitCoreturnStmt(const CoreturnStmt &S); 2669 RValue EmitCoawaitExpr(const CoawaitExpr &E, 2670 AggValueSlot aggSlot = AggValueSlot::ignored(), 2671 bool ignoreResult = false); 2672 LValue EmitCoawaitLValue(const CoawaitExpr *E); 2673 RValue EmitCoyieldExpr(const CoyieldExpr &E, 2674 AggValueSlot aggSlot = AggValueSlot::ignored(), 2675 bool ignoreResult = false); 2676 LValue EmitCoyieldLValue(const CoyieldExpr *E); 2677 RValue EmitCoroutineIntrinsic(const CallExpr *E, unsigned int IID); 2678 2679 void EnterCXXTryStmt(const CXXTryStmt &S, bool IsFnTryBlock = false); 2680 void ExitCXXTryStmt(const CXXTryStmt &S, bool IsFnTryBlock = false); 2681 2682 void EmitCXXTryStmt(const CXXTryStmt &S); 2683 void EmitSEHTryStmt(const SEHTryStmt &S); 2684 void EmitSEHLeaveStmt(const SEHLeaveStmt &S); 2685 void EnterSEHTryStmt(const SEHTryStmt &S); 2686 void ExitSEHTryStmt(const SEHTryStmt &S); 2687 2688 void startOutlinedSEHHelper(CodeGenFunction &ParentCGF, bool IsFilter, 2689 const Stmt *OutlinedStmt); 2690 2691 llvm::Function *GenerateSEHFilterFunction(CodeGenFunction &ParentCGF, 2692 const SEHExceptStmt &Except); 2693 2694 llvm::Function *GenerateSEHFinallyFunction(CodeGenFunction &ParentCGF, 2695 const SEHFinallyStmt &Finally); 2696 2697 void EmitSEHExceptionCodeSave(CodeGenFunction &ParentCGF, 2698 llvm::Value *ParentFP, 2699 llvm::Value *EntryEBP); 2700 llvm::Value *EmitSEHExceptionCode(); 2701 llvm::Value *EmitSEHExceptionInfo(); 2702 llvm::Value *EmitSEHAbnormalTermination(); 2703 2704 /// Emit simple code for OpenMP directives in Simd-only mode. 2705 void EmitSimpleOMPExecutableDirective(const OMPExecutableDirective &D); 2706 2707 /// Scan the outlined statement for captures from the parent function. For 2708 /// each capture, mark the capture as escaped and emit a call to 2709 /// llvm.localrecover. Insert the localrecover result into the LocalDeclMap. 2710 void EmitCapturedLocals(CodeGenFunction &ParentCGF, const Stmt *OutlinedStmt, 2711 bool IsFilter); 2712 2713 /// Recovers the address of a local in a parent function. ParentVar is the 2714 /// address of the variable used in the immediate parent function. It can 2715 /// either be an alloca or a call to llvm.localrecover if there are nested 2716 /// outlined functions. ParentFP is the frame pointer of the outermost parent 2717 /// frame. 2718 Address recoverAddrOfEscapedLocal(CodeGenFunction &ParentCGF, 2719 Address ParentVar, 2720 llvm::Value *ParentFP); 2721 2722 void EmitCXXForRangeStmt(const CXXForRangeStmt &S, 2723 ArrayRef<const Attr *> Attrs = None); 2724 2725 /// Controls insertion of cancellation exit blocks in worksharing constructs. 2726 class OMPCancelStackRAII { 2727 CodeGenFunction &CGF; 2728 2729 public: 2730 OMPCancelStackRAII(CodeGenFunction &CGF, OpenMPDirectiveKind Kind, 2731 bool HasCancel) 2732 : CGF(CGF) { 2733 CGF.OMPCancelStack.enter(CGF, Kind, HasCancel); 2734 } 2735 ~OMPCancelStackRAII() { CGF.OMPCancelStack.exit(CGF); } 2736 }; 2737 2738 /// Returns calculated size of the specified type. 2739 llvm::Value *getTypeSize(QualType Ty); 2740 LValue InitCapturedStruct(const CapturedStmt &S); 2741 llvm::Function *EmitCapturedStmt(const CapturedStmt &S, CapturedRegionKind K); 2742 llvm::Function *GenerateCapturedStmtFunction(const CapturedStmt &S); 2743 Address GenerateCapturedStmtArgument(const CapturedStmt &S); 2744 llvm::Function *GenerateOpenMPCapturedStmtFunction(const CapturedStmt &S); 2745 void GenerateOpenMPCapturedVars(const CapturedStmt &S, 2746 SmallVectorImpl<llvm::Value *> &CapturedVars); 2747 void emitOMPSimpleStore(LValue LVal, RValue RVal, QualType RValTy, 2748 SourceLocation Loc); 2749 /// \brief Perform element by element copying of arrays with type \a 2750 /// OriginalType from \a SrcAddr to \a DestAddr using copying procedure 2751 /// generated by \a CopyGen. 2752 /// 2753 /// \param DestAddr Address of the destination array. 2754 /// \param SrcAddr Address of the source array. 2755 /// \param OriginalType Type of destination and source arrays. 2756 /// \param CopyGen Copying procedure that copies value of single array element 2757 /// to another single array element. 2758 void EmitOMPAggregateAssign( 2759 Address DestAddr, Address SrcAddr, QualType OriginalType, 2760 const llvm::function_ref<void(Address, Address)> &CopyGen); 2761 /// \brief Emit proper copying of data from one variable to another. 2762 /// 2763 /// \param OriginalType Original type of the copied variables. 2764 /// \param DestAddr Destination address. 2765 /// \param SrcAddr Source address. 2766 /// \param DestVD Destination variable used in \a CopyExpr (for arrays, has 2767 /// type of the base array element). 2768 /// \param SrcVD Source variable used in \a CopyExpr (for arrays, has type of 2769 /// the base array element). 2770 /// \param Copy Actual copygin expression for copying data from \a SrcVD to \a 2771 /// DestVD. 2772 void EmitOMPCopy(QualType OriginalType, 2773 Address DestAddr, Address SrcAddr, 2774 const VarDecl *DestVD, const VarDecl *SrcVD, 2775 const Expr *Copy); 2776 /// \brief Emit atomic update code for constructs: \a X = \a X \a BO \a E or 2777 /// \a X = \a E \a BO \a E. 2778 /// 2779 /// \param X Value to be updated. 2780 /// \param E Update value. 2781 /// \param BO Binary operation for update operation. 2782 /// \param IsXLHSInRHSPart true if \a X is LHS in RHS part of the update 2783 /// expression, false otherwise. 2784 /// \param AO Atomic ordering of the generated atomic instructions. 2785 /// \param CommonGen Code generator for complex expressions that cannot be 2786 /// expressed through atomicrmw instruction. 2787 /// \returns <true, OldAtomicValue> if simple 'atomicrmw' instruction was 2788 /// generated, <false, RValue::get(nullptr)> otherwise. 2789 std::pair<bool, RValue> EmitOMPAtomicSimpleUpdateExpr( 2790 LValue X, RValue E, BinaryOperatorKind BO, bool IsXLHSInRHSPart, 2791 llvm::AtomicOrdering AO, SourceLocation Loc, 2792 const llvm::function_ref<RValue(RValue)> &CommonGen); 2793 bool EmitOMPFirstprivateClause(const OMPExecutableDirective &D, 2794 OMPPrivateScope &PrivateScope); 2795 void EmitOMPPrivateClause(const OMPExecutableDirective &D, 2796 OMPPrivateScope &PrivateScope); 2797 void EmitOMPUseDevicePtrClause( 2798 const OMPClause &C, OMPPrivateScope &PrivateScope, 2799 const llvm::DenseMap<const ValueDecl *, Address> &CaptureDeviceAddrMap); 2800 /// \brief Emit code for copyin clause in \a D directive. The next code is 2801 /// generated at the start of outlined functions for directives: 2802 /// \code 2803 /// threadprivate_var1 = master_threadprivate_var1; 2804 /// operator=(threadprivate_var2, master_threadprivate_var2); 2805 /// ... 2806 /// __kmpc_barrier(&loc, global_tid); 2807 /// \endcode 2808 /// 2809 /// \param D OpenMP directive possibly with 'copyin' clause(s). 2810 /// \returns true if at least one copyin variable is found, false otherwise. 2811 bool EmitOMPCopyinClause(const OMPExecutableDirective &D); 2812 /// \brief Emit initial code for lastprivate variables. If some variable is 2813 /// not also firstprivate, then the default initialization is used. Otherwise 2814 /// initialization of this variable is performed by EmitOMPFirstprivateClause 2815 /// method. 2816 /// 2817 /// \param D Directive that may have 'lastprivate' directives. 2818 /// \param PrivateScope Private scope for capturing lastprivate variables for 2819 /// proper codegen in internal captured statement. 2820 /// 2821 /// \returns true if there is at least one lastprivate variable, false 2822 /// otherwise. 2823 bool EmitOMPLastprivateClauseInit(const OMPExecutableDirective &D, 2824 OMPPrivateScope &PrivateScope); 2825 /// \brief Emit final copying of lastprivate values to original variables at 2826 /// the end of the worksharing or simd directive. 2827 /// 2828 /// \param D Directive that has at least one 'lastprivate' directives. 2829 /// \param IsLastIterCond Boolean condition that must be set to 'i1 true' if 2830 /// it is the last iteration of the loop code in associated directive, or to 2831 /// 'i1 false' otherwise. If this item is nullptr, no final check is required. 2832 void EmitOMPLastprivateClauseFinal(const OMPExecutableDirective &D, 2833 bool NoFinals, 2834 llvm::Value *IsLastIterCond = nullptr); 2835 /// Emit initial code for linear clauses. 2836 void EmitOMPLinearClause(const OMPLoopDirective &D, 2837 CodeGenFunction::OMPPrivateScope &PrivateScope); 2838 /// Emit final code for linear clauses. 2839 /// \param CondGen Optional conditional code for final part of codegen for 2840 /// linear clause. 2841 void EmitOMPLinearClauseFinal( 2842 const OMPLoopDirective &D, 2843 const llvm::function_ref<llvm::Value *(CodeGenFunction &)> &CondGen); 2844 /// \brief Emit initial code for reduction variables. Creates reduction copies 2845 /// and initializes them with the values according to OpenMP standard. 2846 /// 2847 /// \param D Directive (possibly) with the 'reduction' clause. 2848 /// \param PrivateScope Private scope for capturing reduction variables for 2849 /// proper codegen in internal captured statement. 2850 /// 2851 void EmitOMPReductionClauseInit(const OMPExecutableDirective &D, 2852 OMPPrivateScope &PrivateScope); 2853 /// \brief Emit final update of reduction values to original variables at 2854 /// the end of the directive. 2855 /// 2856 /// \param D Directive that has at least one 'reduction' directives. 2857 /// \param ReductionKind The kind of reduction to perform. 2858 void EmitOMPReductionClauseFinal(const OMPExecutableDirective &D, 2859 const OpenMPDirectiveKind ReductionKind); 2860 /// \brief Emit initial code for linear variables. Creates private copies 2861 /// and initializes them with the values according to OpenMP standard. 2862 /// 2863 /// \param D Directive (possibly) with the 'linear' clause. 2864 /// \return true if at least one linear variable is found that should be 2865 /// initialized with the value of the original variable, false otherwise. 2866 bool EmitOMPLinearClauseInit(const OMPLoopDirective &D); 2867 2868 typedef const llvm::function_ref<void(CodeGenFunction & /*CGF*/, 2869 llvm::Value * /*OutlinedFn*/, 2870 const OMPTaskDataTy & /*Data*/)> 2871 TaskGenTy; 2872 void EmitOMPTaskBasedDirective(const OMPExecutableDirective &S, 2873 const OpenMPDirectiveKind CapturedRegion, 2874 const RegionCodeGenTy &BodyGen, 2875 const TaskGenTy &TaskGen, OMPTaskDataTy &Data); 2876 struct OMPTargetDataInfo { 2877 Address BasePointersArray = Address::invalid(); 2878 Address PointersArray = Address::invalid(); 2879 Address SizesArray = Address::invalid(); 2880 unsigned NumberOfTargetItems = 0; 2881 explicit OMPTargetDataInfo() = default; 2882 OMPTargetDataInfo(Address BasePointersArray, Address PointersArray, 2883 Address SizesArray, unsigned NumberOfTargetItems) 2884 : BasePointersArray(BasePointersArray), PointersArray(PointersArray), 2885 SizesArray(SizesArray), NumberOfTargetItems(NumberOfTargetItems) {} 2886 }; 2887 void EmitOMPTargetTaskBasedDirective(const OMPExecutableDirective &S, 2888 const RegionCodeGenTy &BodyGen, 2889 OMPTargetDataInfo &InputInfo); 2890 2891 void EmitOMPParallelDirective(const OMPParallelDirective &S); 2892 void EmitOMPSimdDirective(const OMPSimdDirective &S); 2893 void EmitOMPForDirective(const OMPForDirective &S); 2894 void EmitOMPForSimdDirective(const OMPForSimdDirective &S); 2895 void EmitOMPSectionsDirective(const OMPSectionsDirective &S); 2896 void EmitOMPSectionDirective(const OMPSectionDirective &S); 2897 void EmitOMPSingleDirective(const OMPSingleDirective &S); 2898 void EmitOMPMasterDirective(const OMPMasterDirective &S); 2899 void EmitOMPCriticalDirective(const OMPCriticalDirective &S); 2900 void EmitOMPParallelForDirective(const OMPParallelForDirective &S); 2901 void EmitOMPParallelForSimdDirective(const OMPParallelForSimdDirective &S); 2902 void EmitOMPParallelSectionsDirective(const OMPParallelSectionsDirective &S); 2903 void EmitOMPTaskDirective(const OMPTaskDirective &S); 2904 void EmitOMPTaskyieldDirective(const OMPTaskyieldDirective &S); 2905 void EmitOMPBarrierDirective(const OMPBarrierDirective &S); 2906 void EmitOMPTaskwaitDirective(const OMPTaskwaitDirective &S); 2907 void EmitOMPTaskgroupDirective(const OMPTaskgroupDirective &S); 2908 void EmitOMPFlushDirective(const OMPFlushDirective &S); 2909 void EmitOMPOrderedDirective(const OMPOrderedDirective &S); 2910 void EmitOMPAtomicDirective(const OMPAtomicDirective &S); 2911 void EmitOMPTargetDirective(const OMPTargetDirective &S); 2912 void EmitOMPTargetDataDirective(const OMPTargetDataDirective &S); 2913 void EmitOMPTargetEnterDataDirective(const OMPTargetEnterDataDirective &S); 2914 void EmitOMPTargetExitDataDirective(const OMPTargetExitDataDirective &S); 2915 void EmitOMPTargetUpdateDirective(const OMPTargetUpdateDirective &S); 2916 void EmitOMPTargetParallelDirective(const OMPTargetParallelDirective &S); 2917 void 2918 EmitOMPTargetParallelForDirective(const OMPTargetParallelForDirective &S); 2919 void EmitOMPTeamsDirective(const OMPTeamsDirective &S); 2920 void 2921 EmitOMPCancellationPointDirective(const OMPCancellationPointDirective &S); 2922 void EmitOMPCancelDirective(const OMPCancelDirective &S); 2923 void EmitOMPTaskLoopBasedDirective(const OMPLoopDirective &S); 2924 void EmitOMPTaskLoopDirective(const OMPTaskLoopDirective &S); 2925 void EmitOMPTaskLoopSimdDirective(const OMPTaskLoopSimdDirective &S); 2926 void EmitOMPDistributeDirective(const OMPDistributeDirective &S); 2927 void EmitOMPDistributeParallelForDirective( 2928 const OMPDistributeParallelForDirective &S); 2929 void EmitOMPDistributeParallelForSimdDirective( 2930 const OMPDistributeParallelForSimdDirective &S); 2931 void EmitOMPDistributeSimdDirective(const OMPDistributeSimdDirective &S); 2932 void EmitOMPTargetParallelForSimdDirective( 2933 const OMPTargetParallelForSimdDirective &S); 2934 void EmitOMPTargetSimdDirective(const OMPTargetSimdDirective &S); 2935 void EmitOMPTeamsDistributeDirective(const OMPTeamsDistributeDirective &S); 2936 void 2937 EmitOMPTeamsDistributeSimdDirective(const OMPTeamsDistributeSimdDirective &S); 2938 void EmitOMPTeamsDistributeParallelForSimdDirective( 2939 const OMPTeamsDistributeParallelForSimdDirective &S); 2940 void EmitOMPTeamsDistributeParallelForDirective( 2941 const OMPTeamsDistributeParallelForDirective &S); 2942 void EmitOMPTargetTeamsDirective(const OMPTargetTeamsDirective &S); 2943 void EmitOMPTargetTeamsDistributeDirective( 2944 const OMPTargetTeamsDistributeDirective &S); 2945 void EmitOMPTargetTeamsDistributeParallelForDirective( 2946 const OMPTargetTeamsDistributeParallelForDirective &S); 2947 void EmitOMPTargetTeamsDistributeParallelForSimdDirective( 2948 const OMPTargetTeamsDistributeParallelForSimdDirective &S); 2949 void EmitOMPTargetTeamsDistributeSimdDirective( 2950 const OMPTargetTeamsDistributeSimdDirective &S); 2951 2952 /// Emit device code for the target directive. 2953 static void EmitOMPTargetDeviceFunction(CodeGenModule &CGM, 2954 StringRef ParentName, 2955 const OMPTargetDirective &S); 2956 static void 2957 EmitOMPTargetParallelDeviceFunction(CodeGenModule &CGM, StringRef ParentName, 2958 const OMPTargetParallelDirective &S); 2959 /// Emit device code for the target parallel for directive. 2960 static void EmitOMPTargetParallelForDeviceFunction( 2961 CodeGenModule &CGM, StringRef ParentName, 2962 const OMPTargetParallelForDirective &S); 2963 /// Emit device code for the target parallel for simd directive. 2964 static void EmitOMPTargetParallelForSimdDeviceFunction( 2965 CodeGenModule &CGM, StringRef ParentName, 2966 const OMPTargetParallelForSimdDirective &S); 2967 /// Emit device code for the target teams directive. 2968 static void 2969 EmitOMPTargetTeamsDeviceFunction(CodeGenModule &CGM, StringRef ParentName, 2970 const OMPTargetTeamsDirective &S); 2971 /// Emit device code for the target teams distribute directive. 2972 static void EmitOMPTargetTeamsDistributeDeviceFunction( 2973 CodeGenModule &CGM, StringRef ParentName, 2974 const OMPTargetTeamsDistributeDirective &S); 2975 /// Emit device code for the target teams distribute simd directive. 2976 static void EmitOMPTargetTeamsDistributeSimdDeviceFunction( 2977 CodeGenModule &CGM, StringRef ParentName, 2978 const OMPTargetTeamsDistributeSimdDirective &S); 2979 /// Emit device code for the target simd directive. 2980 static void EmitOMPTargetSimdDeviceFunction(CodeGenModule &CGM, 2981 StringRef ParentName, 2982 const OMPTargetSimdDirective &S); 2983 /// Emit device code for the target teams distribute parallel for simd 2984 /// directive. 2985 static void EmitOMPTargetTeamsDistributeParallelForSimdDeviceFunction( 2986 CodeGenModule &CGM, StringRef ParentName, 2987 const OMPTargetTeamsDistributeParallelForSimdDirective &S); 2988 2989 static void EmitOMPTargetTeamsDistributeParallelForDeviceFunction( 2990 CodeGenModule &CGM, StringRef ParentName, 2991 const OMPTargetTeamsDistributeParallelForDirective &S); 2992 /// \brief Emit inner loop of the worksharing/simd construct. 2993 /// 2994 /// \param S Directive, for which the inner loop must be emitted. 2995 /// \param RequiresCleanup true, if directive has some associated private 2996 /// variables. 2997 /// \param LoopCond Bollean condition for loop continuation. 2998 /// \param IncExpr Increment expression for loop control variable. 2999 /// \param BodyGen Generator for the inner body of the inner loop. 3000 /// \param PostIncGen Genrator for post-increment code (required for ordered 3001 /// loop directvies). 3002 void EmitOMPInnerLoop( 3003 const Stmt &S, bool RequiresCleanup, const Expr *LoopCond, 3004 const Expr *IncExpr, 3005 const llvm::function_ref<void(CodeGenFunction &)> &BodyGen, 3006 const llvm::function_ref<void(CodeGenFunction &)> &PostIncGen); 3007 3008 JumpDest getOMPCancelDestination(OpenMPDirectiveKind Kind); 3009 /// Emit initial code for loop counters of loop-based directives. 3010 void EmitOMPPrivateLoopCounters(const OMPLoopDirective &S, 3011 OMPPrivateScope &LoopScope); 3012 3013 /// Helper for the OpenMP loop directives. 3014 void EmitOMPLoopBody(const OMPLoopDirective &D, JumpDest LoopExit); 3015 3016 /// \brief Emit code for the worksharing loop-based directive. 3017 /// \return true, if this construct has any lastprivate clause, false - 3018 /// otherwise. 3019 bool EmitOMPWorksharingLoop(const OMPLoopDirective &S, Expr *EUB, 3020 const CodeGenLoopBoundsTy &CodeGenLoopBounds, 3021 const CodeGenDispatchBoundsTy &CGDispatchBounds); 3022 3023 /// Emit code for the distribute loop-based directive. 3024 void EmitOMPDistributeLoop(const OMPLoopDirective &S, 3025 const CodeGenLoopTy &CodeGenLoop, Expr *IncExpr); 3026 3027 /// Helpers for the OpenMP loop directives. 3028 void EmitOMPSimdInit(const OMPLoopDirective &D, bool IsMonotonic = false); 3029 void EmitOMPSimdFinal( 3030 const OMPLoopDirective &D, 3031 const llvm::function_ref<llvm::Value *(CodeGenFunction &)> &CondGen); 3032 3033 /// Emits the lvalue for the expression with possibly captured variable. 3034 LValue EmitOMPSharedLValue(const Expr *E); 3035 3036 private: 3037 /// Helpers for blocks. 3038 llvm::Value *EmitBlockLiteral(const CGBlockInfo &Info); 3039 3040 /// struct with the values to be passed to the OpenMP loop-related functions 3041 struct OMPLoopArguments { 3042 /// loop lower bound 3043 Address LB = Address::invalid(); 3044 /// loop upper bound 3045 Address UB = Address::invalid(); 3046 /// loop stride 3047 Address ST = Address::invalid(); 3048 /// isLastIteration argument for runtime functions 3049 Address IL = Address::invalid(); 3050 /// Chunk value generated by sema 3051 llvm::Value *Chunk = nullptr; 3052 /// EnsureUpperBound 3053 Expr *EUB = nullptr; 3054 /// IncrementExpression 3055 Expr *IncExpr = nullptr; 3056 /// Loop initialization 3057 Expr *Init = nullptr; 3058 /// Loop exit condition 3059 Expr *Cond = nullptr; 3060 /// Update of LB after a whole chunk has been executed 3061 Expr *NextLB = nullptr; 3062 /// Update of UB after a whole chunk has been executed 3063 Expr *NextUB = nullptr; 3064 OMPLoopArguments() = default; 3065 OMPLoopArguments(Address LB, Address UB, Address ST, Address IL, 3066 llvm::Value *Chunk = nullptr, Expr *EUB = nullptr, 3067 Expr *IncExpr = nullptr, Expr *Init = nullptr, 3068 Expr *Cond = nullptr, Expr *NextLB = nullptr, 3069 Expr *NextUB = nullptr) 3070 : LB(LB), UB(UB), ST(ST), IL(IL), Chunk(Chunk), EUB(EUB), 3071 IncExpr(IncExpr), Init(Init), Cond(Cond), NextLB(NextLB), 3072 NextUB(NextUB) {} 3073 }; 3074 void EmitOMPOuterLoop(bool DynamicOrOrdered, bool IsMonotonic, 3075 const OMPLoopDirective &S, OMPPrivateScope &LoopScope, 3076 const OMPLoopArguments &LoopArgs, 3077 const CodeGenLoopTy &CodeGenLoop, 3078 const CodeGenOrderedTy &CodeGenOrdered); 3079 void EmitOMPForOuterLoop(const OpenMPScheduleTy &ScheduleKind, 3080 bool IsMonotonic, const OMPLoopDirective &S, 3081 OMPPrivateScope &LoopScope, bool Ordered, 3082 const OMPLoopArguments &LoopArgs, 3083 const CodeGenDispatchBoundsTy &CGDispatchBounds); 3084 void EmitOMPDistributeOuterLoop(OpenMPDistScheduleClauseKind ScheduleKind, 3085 const OMPLoopDirective &S, 3086 OMPPrivateScope &LoopScope, 3087 const OMPLoopArguments &LoopArgs, 3088 const CodeGenLoopTy &CodeGenLoopContent); 3089 /// \brief Emit code for sections directive. 3090 void EmitSections(const OMPExecutableDirective &S); 3091 3092 public: 3093 3094 //===--------------------------------------------------------------------===// 3095 // LValue Expression Emission 3096 //===--------------------------------------------------------------------===// 3097 3098 /// GetUndefRValue - Get an appropriate 'undef' rvalue for the given type. 3099 RValue GetUndefRValue(QualType Ty); 3100 3101 /// EmitUnsupportedRValue - Emit a dummy r-value using the type of E 3102 /// and issue an ErrorUnsupported style diagnostic (using the 3103 /// provided Name). 3104 RValue EmitUnsupportedRValue(const Expr *E, 3105 const char *Name); 3106 3107 /// EmitUnsupportedLValue - Emit a dummy l-value using the type of E and issue 3108 /// an ErrorUnsupported style diagnostic (using the provided Name). 3109 LValue EmitUnsupportedLValue(const Expr *E, 3110 const char *Name); 3111 3112 /// EmitLValue - Emit code to compute a designator that specifies the location 3113 /// of the expression. 3114 /// 3115 /// This can return one of two things: a simple address or a bitfield 3116 /// reference. In either case, the LLVM Value* in the LValue structure is 3117 /// guaranteed to be an LLVM pointer type. 3118 /// 3119 /// If this returns a bitfield reference, nothing about the pointee type of 3120 /// the LLVM value is known: For example, it may not be a pointer to an 3121 /// integer. 3122 /// 3123 /// If this returns a normal address, and if the lvalue's C type is fixed 3124 /// size, this method guarantees that the returned pointer type will point to 3125 /// an LLVM type of the same size of the lvalue's type. If the lvalue has a 3126 /// variable length type, this is not possible. 3127 /// 3128 LValue EmitLValue(const Expr *E); 3129 3130 /// \brief Same as EmitLValue but additionally we generate checking code to 3131 /// guard against undefined behavior. This is only suitable when we know 3132 /// that the address will be used to access the object. 3133 LValue EmitCheckedLValue(const Expr *E, TypeCheckKind TCK); 3134 3135 RValue convertTempToRValue(Address addr, QualType type, 3136 SourceLocation Loc); 3137 3138 void EmitAtomicInit(Expr *E, LValue lvalue); 3139 3140 bool LValueIsSuitableForInlineAtomic(LValue Src); 3141 3142 RValue EmitAtomicLoad(LValue LV, SourceLocation SL, 3143 AggValueSlot Slot = AggValueSlot::ignored()); 3144 3145 RValue EmitAtomicLoad(LValue lvalue, SourceLocation loc, 3146 llvm::AtomicOrdering AO, bool IsVolatile = false, 3147 AggValueSlot slot = AggValueSlot::ignored()); 3148 3149 void EmitAtomicStore(RValue rvalue, LValue lvalue, bool isInit); 3150 3151 void EmitAtomicStore(RValue rvalue, LValue lvalue, llvm::AtomicOrdering AO, 3152 bool IsVolatile, bool isInit); 3153 3154 std::pair<RValue, llvm::Value *> EmitAtomicCompareExchange( 3155 LValue Obj, RValue Expected, RValue Desired, SourceLocation Loc, 3156 llvm::AtomicOrdering Success = 3157 llvm::AtomicOrdering::SequentiallyConsistent, 3158 llvm::AtomicOrdering Failure = 3159 llvm::AtomicOrdering::SequentiallyConsistent, 3160 bool IsWeak = false, AggValueSlot Slot = AggValueSlot::ignored()); 3161 3162 void EmitAtomicUpdate(LValue LVal, llvm::AtomicOrdering AO, 3163 const llvm::function_ref<RValue(RValue)> &UpdateOp, 3164 bool IsVolatile); 3165 3166 /// EmitToMemory - Change a scalar value from its value 3167 /// representation to its in-memory representation. 3168 llvm::Value *EmitToMemory(llvm::Value *Value, QualType Ty); 3169 3170 /// EmitFromMemory - Change a scalar value from its memory 3171 /// representation to its value representation. 3172 llvm::Value *EmitFromMemory(llvm::Value *Value, QualType Ty); 3173 3174 /// Check if the scalar \p Value is within the valid range for the given 3175 /// type \p Ty. 3176 /// 3177 /// Returns true if a check is needed (even if the range is unknown). 3178 bool EmitScalarRangeCheck(llvm::Value *Value, QualType Ty, 3179 SourceLocation Loc); 3180 3181 /// EmitLoadOfScalar - Load a scalar value from an address, taking 3182 /// care to appropriately convert from the memory representation to 3183 /// the LLVM value representation. 3184 llvm::Value *EmitLoadOfScalar(Address Addr, bool Volatile, QualType Ty, 3185 SourceLocation Loc, 3186 AlignmentSource Source = AlignmentSource::Type, 3187 bool isNontemporal = false) { 3188 return EmitLoadOfScalar(Addr, Volatile, Ty, Loc, LValueBaseInfo(Source), 3189 CGM.getTBAAAccessInfo(Ty), isNontemporal); 3190 } 3191 3192 llvm::Value *EmitLoadOfScalar(Address Addr, bool Volatile, QualType Ty, 3193 SourceLocation Loc, LValueBaseInfo BaseInfo, 3194 TBAAAccessInfo TBAAInfo, 3195 bool isNontemporal = false); 3196 3197 /// EmitLoadOfScalar - Load a scalar value from an address, taking 3198 /// care to appropriately convert from the memory representation to 3199 /// the LLVM value representation. The l-value must be a simple 3200 /// l-value. 3201 llvm::Value *EmitLoadOfScalar(LValue lvalue, SourceLocation Loc); 3202 3203 /// EmitStoreOfScalar - Store a scalar value to an address, taking 3204 /// care to appropriately convert from the memory representation to 3205 /// the LLVM value representation. 3206 void EmitStoreOfScalar(llvm::Value *Value, Address Addr, 3207 bool Volatile, QualType Ty, 3208 AlignmentSource Source = AlignmentSource::Type, 3209 bool isInit = false, bool isNontemporal = false) { 3210 EmitStoreOfScalar(Value, Addr, Volatile, Ty, LValueBaseInfo(Source), 3211 CGM.getTBAAAccessInfo(Ty), isInit, isNontemporal); 3212 } 3213 3214 void EmitStoreOfScalar(llvm::Value *Value, Address Addr, 3215 bool Volatile, QualType Ty, 3216 LValueBaseInfo BaseInfo, TBAAAccessInfo TBAAInfo, 3217 bool isInit = false, bool isNontemporal = false); 3218 3219 /// EmitStoreOfScalar - Store a scalar value to an address, taking 3220 /// care to appropriately convert from the memory representation to 3221 /// the LLVM value representation. The l-value must be a simple 3222 /// l-value. The isInit flag indicates whether this is an initialization. 3223 /// If so, atomic qualifiers are ignored and the store is always non-atomic. 3224 void EmitStoreOfScalar(llvm::Value *value, LValue lvalue, bool isInit=false); 3225 3226 /// EmitLoadOfLValue - Given an expression that represents a value lvalue, 3227 /// this method emits the address of the lvalue, then loads the result as an 3228 /// rvalue, returning the rvalue. 3229 RValue EmitLoadOfLValue(LValue V, SourceLocation Loc); 3230 RValue EmitLoadOfExtVectorElementLValue(LValue V); 3231 RValue EmitLoadOfBitfieldLValue(LValue LV, SourceLocation Loc); 3232 RValue EmitLoadOfGlobalRegLValue(LValue LV); 3233 3234 /// EmitStoreThroughLValue - Store the specified rvalue into the specified 3235 /// lvalue, where both are guaranteed to the have the same type, and that type 3236 /// is 'Ty'. 3237 void EmitStoreThroughLValue(RValue Src, LValue Dst, bool isInit = false); 3238 void EmitStoreThroughExtVectorComponentLValue(RValue Src, LValue Dst); 3239 void EmitStoreThroughGlobalRegLValue(RValue Src, LValue Dst); 3240 3241 /// EmitStoreThroughBitfieldLValue - Store Src into Dst with same constraints 3242 /// as EmitStoreThroughLValue. 3243 /// 3244 /// \param Result [out] - If non-null, this will be set to a Value* for the 3245 /// bit-field contents after the store, appropriate for use as the result of 3246 /// an assignment to the bit-field. 3247 void EmitStoreThroughBitfieldLValue(RValue Src, LValue Dst, 3248 llvm::Value **Result=nullptr); 3249 3250 /// Emit an l-value for an assignment (simple or compound) of complex type. 3251 LValue EmitComplexAssignmentLValue(const BinaryOperator *E); 3252 LValue EmitComplexCompoundAssignmentLValue(const CompoundAssignOperator *E); 3253 LValue EmitScalarCompoundAssignWithComplex(const CompoundAssignOperator *E, 3254 llvm::Value *&Result); 3255 3256 // Note: only available for agg return types 3257 LValue EmitBinaryOperatorLValue(const BinaryOperator *E); 3258 LValue EmitCompoundAssignmentLValue(const CompoundAssignOperator *E); 3259 // Note: only available for agg return types 3260 LValue EmitCallExprLValue(const CallExpr *E); 3261 // Note: only available for agg return types 3262 LValue EmitVAArgExprLValue(const VAArgExpr *E); 3263 LValue EmitDeclRefLValue(const DeclRefExpr *E); 3264 LValue EmitStringLiteralLValue(const StringLiteral *E); 3265 LValue EmitObjCEncodeExprLValue(const ObjCEncodeExpr *E); 3266 LValue EmitPredefinedLValue(const PredefinedExpr *E); 3267 LValue EmitUnaryOpLValue(const UnaryOperator *E); 3268 LValue EmitArraySubscriptExpr(const ArraySubscriptExpr *E, 3269 bool Accessed = false); 3270 LValue EmitOMPArraySectionExpr(const OMPArraySectionExpr *E, 3271 bool IsLowerBound = true); 3272 LValue EmitExtVectorElementExpr(const ExtVectorElementExpr *E); 3273 LValue EmitMemberExpr(const MemberExpr *E); 3274 LValue EmitObjCIsaExpr(const ObjCIsaExpr *E); 3275 LValue EmitCompoundLiteralLValue(const CompoundLiteralExpr *E); 3276 LValue EmitInitListLValue(const InitListExpr *E); 3277 LValue EmitConditionalOperatorLValue(const AbstractConditionalOperator *E); 3278 LValue EmitCastLValue(const CastExpr *E); 3279 LValue EmitMaterializeTemporaryExpr(const MaterializeTemporaryExpr *E); 3280 LValue EmitOpaqueValueLValue(const OpaqueValueExpr *e); 3281 3282 Address EmitExtVectorElementLValue(LValue V); 3283 3284 RValue EmitRValueForField(LValue LV, const FieldDecl *FD, SourceLocation Loc); 3285 3286 Address EmitArrayToPointerDecay(const Expr *Array, 3287 LValueBaseInfo *BaseInfo = nullptr, 3288 TBAAAccessInfo *TBAAInfo = nullptr); 3289 3290 class ConstantEmission { 3291 llvm::PointerIntPair<llvm::Constant*, 1, bool> ValueAndIsReference; 3292 ConstantEmission(llvm::Constant *C, bool isReference) 3293 : ValueAndIsReference(C, isReference) {} 3294 public: 3295 ConstantEmission() {} 3296 static ConstantEmission forReference(llvm::Constant *C) { 3297 return ConstantEmission(C, true); 3298 } 3299 static ConstantEmission forValue(llvm::Constant *C) { 3300 return ConstantEmission(C, false); 3301 } 3302 3303 explicit operator bool() const { 3304 return ValueAndIsReference.getOpaqueValue() != nullptr; 3305 } 3306 3307 bool isReference() const { return ValueAndIsReference.getInt(); } 3308 LValue getReferenceLValue(CodeGenFunction &CGF, Expr *refExpr) const { 3309 assert(isReference()); 3310 return CGF.MakeNaturalAlignAddrLValue(ValueAndIsReference.getPointer(), 3311 refExpr->getType()); 3312 } 3313 3314 llvm::Constant *getValue() const { 3315 assert(!isReference()); 3316 return ValueAndIsReference.getPointer(); 3317 } 3318 }; 3319 3320 ConstantEmission tryEmitAsConstant(DeclRefExpr *refExpr); 3321 ConstantEmission tryEmitAsConstant(const MemberExpr *ME); 3322 3323 RValue EmitPseudoObjectRValue(const PseudoObjectExpr *e, 3324 AggValueSlot slot = AggValueSlot::ignored()); 3325 LValue EmitPseudoObjectLValue(const PseudoObjectExpr *e); 3326 3327 llvm::Value *EmitIvarOffset(const ObjCInterfaceDecl *Interface, 3328 const ObjCIvarDecl *Ivar); 3329 LValue EmitLValueForField(LValue Base, const FieldDecl* Field); 3330 LValue EmitLValueForLambdaField(const FieldDecl *Field); 3331 3332 /// EmitLValueForFieldInitialization - Like EmitLValueForField, except that 3333 /// if the Field is a reference, this will return the address of the reference 3334 /// and not the address of the value stored in the reference. 3335 LValue EmitLValueForFieldInitialization(LValue Base, 3336 const FieldDecl* Field); 3337 3338 LValue EmitLValueForIvar(QualType ObjectTy, 3339 llvm::Value* Base, const ObjCIvarDecl *Ivar, 3340 unsigned CVRQualifiers); 3341 3342 LValue EmitCXXConstructLValue(const CXXConstructExpr *E); 3343 LValue EmitCXXBindTemporaryLValue(const CXXBindTemporaryExpr *E); 3344 LValue EmitLambdaLValue(const LambdaExpr *E); 3345 LValue EmitCXXTypeidLValue(const CXXTypeidExpr *E); 3346 LValue EmitCXXUuidofLValue(const CXXUuidofExpr *E); 3347 3348 LValue EmitObjCMessageExprLValue(const ObjCMessageExpr *E); 3349 LValue EmitObjCIvarRefLValue(const ObjCIvarRefExpr *E); 3350 LValue EmitStmtExprLValue(const StmtExpr *E); 3351 LValue EmitPointerToDataMemberBinaryExpr(const BinaryOperator *E); 3352 LValue EmitObjCSelectorLValue(const ObjCSelectorExpr *E); 3353 void EmitDeclRefExprDbgValue(const DeclRefExpr *E, const APValue &Init); 3354 3355 //===--------------------------------------------------------------------===// 3356 // Scalar Expression Emission 3357 //===--------------------------------------------------------------------===// 3358 3359 /// EmitCall - Generate a call of the given function, expecting the given 3360 /// result type, and using the given argument list which specifies both the 3361 /// LLVM arguments and the types they were derived from. 3362 RValue EmitCall(const CGFunctionInfo &CallInfo, const CGCallee &Callee, 3363 ReturnValueSlot ReturnValue, const CallArgList &Args, 3364 llvm::Instruction **callOrInvoke, SourceLocation Loc); 3365 RValue EmitCall(const CGFunctionInfo &CallInfo, const CGCallee &Callee, 3366 ReturnValueSlot ReturnValue, const CallArgList &Args, 3367 llvm::Instruction **callOrInvoke = nullptr) { 3368 return EmitCall(CallInfo, Callee, ReturnValue, Args, callOrInvoke, 3369 SourceLocation()); 3370 } 3371 RValue EmitCall(QualType FnType, const CGCallee &Callee, const CallExpr *E, 3372 ReturnValueSlot ReturnValue, llvm::Value *Chain = nullptr); 3373 RValue EmitCallExpr(const CallExpr *E, 3374 ReturnValueSlot ReturnValue = ReturnValueSlot()); 3375 RValue EmitSimpleCallExpr(const CallExpr *E, ReturnValueSlot ReturnValue); 3376 CGCallee EmitCallee(const Expr *E); 3377 3378 void checkTargetFeatures(const CallExpr *E, const FunctionDecl *TargetDecl); 3379 3380 llvm::CallInst *EmitRuntimeCall(llvm::Value *callee, 3381 const Twine &name = ""); 3382 llvm::CallInst *EmitRuntimeCall(llvm::Value *callee, 3383 ArrayRef<llvm::Value*> args, 3384 const Twine &name = ""); 3385 llvm::CallInst *EmitNounwindRuntimeCall(llvm::Value *callee, 3386 const Twine &name = ""); 3387 llvm::CallInst *EmitNounwindRuntimeCall(llvm::Value *callee, 3388 ArrayRef<llvm::Value*> args, 3389 const Twine &name = ""); 3390 3391 SmallVector<llvm::OperandBundleDef, 1> 3392 getBundlesForFunclet(llvm::Value *Callee); 3393 3394 llvm::CallSite EmitCallOrInvoke(llvm::Value *Callee, 3395 ArrayRef<llvm::Value *> Args, 3396 const Twine &Name = ""); 3397 llvm::CallSite EmitRuntimeCallOrInvoke(llvm::Value *callee, 3398 ArrayRef<llvm::Value*> args, 3399 const Twine &name = ""); 3400 llvm::CallSite EmitRuntimeCallOrInvoke(llvm::Value *callee, 3401 const Twine &name = ""); 3402 void EmitNoreturnRuntimeCallOrInvoke(llvm::Value *callee, 3403 ArrayRef<llvm::Value*> args); 3404 3405 CGCallee BuildAppleKextVirtualCall(const CXXMethodDecl *MD, 3406 NestedNameSpecifier *Qual, 3407 llvm::Type *Ty); 3408 3409 CGCallee BuildAppleKextVirtualDestructorCall(const CXXDestructorDecl *DD, 3410 CXXDtorType Type, 3411 const CXXRecordDecl *RD); 3412 3413 // These functions emit calls to the special functions of non-trivial C 3414 // structs. 3415 void defaultInitNonTrivialCStructVar(LValue Dst); 3416 void callCStructDefaultConstructor(LValue Dst); 3417 void callCStructDestructor(LValue Dst); 3418 void callCStructCopyConstructor(LValue Dst, LValue Src); 3419 void callCStructMoveConstructor(LValue Dst, LValue Src); 3420 void callCStructCopyAssignmentOperator(LValue Dst, LValue Src); 3421 void callCStructMoveAssignmentOperator(LValue Dst, LValue Src); 3422 3423 RValue 3424 EmitCXXMemberOrOperatorCall(const CXXMethodDecl *Method, 3425 const CGCallee &Callee, 3426 ReturnValueSlot ReturnValue, llvm::Value *This, 3427 llvm::Value *ImplicitParam, 3428 QualType ImplicitParamTy, const CallExpr *E, 3429 CallArgList *RtlArgs); 3430 RValue EmitCXXDestructorCall(const CXXDestructorDecl *DD, 3431 const CGCallee &Callee, 3432 llvm::Value *This, llvm::Value *ImplicitParam, 3433 QualType ImplicitParamTy, const CallExpr *E, 3434 StructorType Type); 3435 RValue EmitCXXMemberCallExpr(const CXXMemberCallExpr *E, 3436 ReturnValueSlot ReturnValue); 3437 RValue EmitCXXMemberOrOperatorMemberCallExpr(const CallExpr *CE, 3438 const CXXMethodDecl *MD, 3439 ReturnValueSlot ReturnValue, 3440 bool HasQualifier, 3441 NestedNameSpecifier *Qualifier, 3442 bool IsArrow, const Expr *Base); 3443 // Compute the object pointer. 3444 Address EmitCXXMemberDataPointerAddress(const Expr *E, Address base, 3445 llvm::Value *memberPtr, 3446 const MemberPointerType *memberPtrType, 3447 LValueBaseInfo *BaseInfo = nullptr, 3448 TBAAAccessInfo *TBAAInfo = nullptr); 3449 RValue EmitCXXMemberPointerCallExpr(const CXXMemberCallExpr *E, 3450 ReturnValueSlot ReturnValue); 3451 3452 RValue EmitCXXOperatorMemberCallExpr(const CXXOperatorCallExpr *E, 3453 const CXXMethodDecl *MD, 3454 ReturnValueSlot ReturnValue); 3455 RValue EmitCXXPseudoDestructorExpr(const CXXPseudoDestructorExpr *E); 3456 3457 RValue EmitCUDAKernelCallExpr(const CUDAKernelCallExpr *E, 3458 ReturnValueSlot ReturnValue); 3459 3460 RValue EmitNVPTXDevicePrintfCallExpr(const CallExpr *E, 3461 ReturnValueSlot ReturnValue); 3462 3463 RValue EmitBuiltinExpr(const FunctionDecl *FD, 3464 unsigned BuiltinID, const CallExpr *E, 3465 ReturnValueSlot ReturnValue); 3466 3467 /// Emit IR for __builtin_os_log_format. 3468 RValue emitBuiltinOSLogFormat(const CallExpr &E); 3469 3470 llvm::Function *generateBuiltinOSLogHelperFunction( 3471 const analyze_os_log::OSLogBufferLayout &Layout, 3472 CharUnits BufferAlignment); 3473 3474 RValue EmitBlockCallExpr(const CallExpr *E, ReturnValueSlot ReturnValue); 3475 3476 /// EmitTargetBuiltinExpr - Emit the given builtin call. Returns 0 if the call 3477 /// is unhandled by the current target. 3478 llvm::Value *EmitTargetBuiltinExpr(unsigned BuiltinID, const CallExpr *E); 3479 3480 llvm::Value *EmitAArch64CompareBuiltinExpr(llvm::Value *Op, llvm::Type *Ty, 3481 const llvm::CmpInst::Predicate Fp, 3482 const llvm::CmpInst::Predicate Ip, 3483 const llvm::Twine &Name = ""); 3484 llvm::Value *EmitARMBuiltinExpr(unsigned BuiltinID, const CallExpr *E, 3485 llvm::Triple::ArchType Arch); 3486 3487 llvm::Value *EmitCommonNeonBuiltinExpr(unsigned BuiltinID, 3488 unsigned LLVMIntrinsic, 3489 unsigned AltLLVMIntrinsic, 3490 const char *NameHint, 3491 unsigned Modifier, 3492 const CallExpr *E, 3493 SmallVectorImpl<llvm::Value *> &Ops, 3494 Address PtrOp0, Address PtrOp1, 3495 llvm::Triple::ArchType Arch); 3496 llvm::Function *LookupNeonLLVMIntrinsic(unsigned IntrinsicID, 3497 unsigned Modifier, llvm::Type *ArgTy, 3498 const CallExpr *E); 3499 llvm::Value *EmitNeonCall(llvm::Function *F, 3500 SmallVectorImpl<llvm::Value*> &O, 3501 const char *name, 3502 unsigned shift = 0, bool rightshift = false); 3503 llvm::Value *EmitNeonSplat(llvm::Value *V, llvm::Constant *Idx); 3504 llvm::Value *EmitNeonShiftVector(llvm::Value *V, llvm::Type *Ty, 3505 bool negateForRightShift); 3506 llvm::Value *EmitNeonRShiftImm(llvm::Value *Vec, llvm::Value *Amt, 3507 llvm::Type *Ty, bool usgn, const char *name); 3508 llvm::Value *vectorWrapScalar16(llvm::Value *Op); 3509 llvm::Value *EmitAArch64BuiltinExpr(unsigned BuiltinID, const CallExpr *E, 3510 llvm::Triple::ArchType Arch); 3511 3512 llvm::Value *BuildVector(ArrayRef<llvm::Value*> Ops); 3513 llvm::Value *EmitX86BuiltinExpr(unsigned BuiltinID, const CallExpr *E); 3514 llvm::Value *EmitPPCBuiltinExpr(unsigned BuiltinID, const CallExpr *E); 3515 llvm::Value *EmitAMDGPUBuiltinExpr(unsigned BuiltinID, const CallExpr *E); 3516 llvm::Value *EmitSystemZBuiltinExpr(unsigned BuiltinID, const CallExpr *E); 3517 llvm::Value *EmitNVPTXBuiltinExpr(unsigned BuiltinID, const CallExpr *E); 3518 llvm::Value *EmitWebAssemblyBuiltinExpr(unsigned BuiltinID, 3519 const CallExpr *E); 3520 llvm::Value *EmitHexagonBuiltinExpr(unsigned BuiltinID, const CallExpr *E); 3521 3522 private: 3523 enum class MSVCIntrin; 3524 3525 public: 3526 llvm::Value *EmitMSVCBuiltinExpr(MSVCIntrin BuiltinID, const CallExpr *E); 3527 3528 llvm::Value *EmitBuiltinAvailable(ArrayRef<llvm::Value *> Args); 3529 3530 llvm::Value *EmitObjCProtocolExpr(const ObjCProtocolExpr *E); 3531 llvm::Value *EmitObjCStringLiteral(const ObjCStringLiteral *E); 3532 llvm::Value *EmitObjCBoxedExpr(const ObjCBoxedExpr *E); 3533 llvm::Value *EmitObjCArrayLiteral(const ObjCArrayLiteral *E); 3534 llvm::Value *EmitObjCDictionaryLiteral(const ObjCDictionaryLiteral *E); 3535 llvm::Value *EmitObjCCollectionLiteral(const Expr *E, 3536 const ObjCMethodDecl *MethodWithObjects); 3537 llvm::Value *EmitObjCSelectorExpr(const ObjCSelectorExpr *E); 3538 RValue EmitObjCMessageExpr(const ObjCMessageExpr *E, 3539 ReturnValueSlot Return = ReturnValueSlot()); 3540 3541 /// Retrieves the default cleanup kind for an ARC cleanup. 3542 /// Except under -fobjc-arc-eh, ARC cleanups are normal-only. 3543 CleanupKind getARCCleanupKind() { 3544 return CGM.getCodeGenOpts().ObjCAutoRefCountExceptions 3545 ? NormalAndEHCleanup : NormalCleanup; 3546 } 3547 3548 // ARC primitives. 3549 void EmitARCInitWeak(Address addr, llvm::Value *value); 3550 void EmitARCDestroyWeak(Address addr); 3551 llvm::Value *EmitARCLoadWeak(Address addr); 3552 llvm::Value *EmitARCLoadWeakRetained(Address addr); 3553 llvm::Value *EmitARCStoreWeak(Address addr, llvm::Value *value, bool ignored); 3554 void EmitARCCopyWeak(Address dst, Address src); 3555 void EmitARCMoveWeak(Address dst, Address src); 3556 llvm::Value *EmitARCRetainAutorelease(QualType type, llvm::Value *value); 3557 llvm::Value *EmitARCRetainAutoreleaseNonBlock(llvm::Value *value); 3558 llvm::Value *EmitARCStoreStrong(LValue lvalue, llvm::Value *value, 3559 bool resultIgnored); 3560 llvm::Value *EmitARCStoreStrongCall(Address addr, llvm::Value *value, 3561 bool resultIgnored); 3562 llvm::Value *EmitARCRetain(QualType type, llvm::Value *value); 3563 llvm::Value *EmitARCRetainNonBlock(llvm::Value *value); 3564 llvm::Value *EmitARCRetainBlock(llvm::Value *value, bool mandatory); 3565 void EmitARCDestroyStrong(Address addr, ARCPreciseLifetime_t precise); 3566 void EmitARCRelease(llvm::Value *value, ARCPreciseLifetime_t precise); 3567 llvm::Value *EmitARCAutorelease(llvm::Value *value); 3568 llvm::Value *EmitARCAutoreleaseReturnValue(llvm::Value *value); 3569 llvm::Value *EmitARCRetainAutoreleaseReturnValue(llvm::Value *value); 3570 llvm::Value *EmitARCRetainAutoreleasedReturnValue(llvm::Value *value); 3571 llvm::Value *EmitARCUnsafeClaimAutoreleasedReturnValue(llvm::Value *value); 3572 3573 std::pair<LValue,llvm::Value*> 3574 EmitARCStoreAutoreleasing(const BinaryOperator *e); 3575 std::pair<LValue,llvm::Value*> 3576 EmitARCStoreStrong(const BinaryOperator *e, bool ignored); 3577 std::pair<LValue,llvm::Value*> 3578 EmitARCStoreUnsafeUnretained(const BinaryOperator *e, bool ignored); 3579 3580 llvm::Value *EmitObjCThrowOperand(const Expr *expr); 3581 llvm::Value *EmitObjCConsumeObject(QualType T, llvm::Value *Ptr); 3582 llvm::Value *EmitObjCExtendObjectLifetime(QualType T, llvm::Value *Ptr); 3583 3584 llvm::Value *EmitARCExtendBlockObject(const Expr *expr); 3585 llvm::Value *EmitARCReclaimReturnedObject(const Expr *e, 3586 bool allowUnsafeClaim); 3587 llvm::Value *EmitARCRetainScalarExpr(const Expr *expr); 3588 llvm::Value *EmitARCRetainAutoreleaseScalarExpr(const Expr *expr); 3589 llvm::Value *EmitARCUnsafeUnretainedScalarExpr(const Expr *expr); 3590 3591 void EmitARCIntrinsicUse(ArrayRef<llvm::Value*> values); 3592 3593 static Destroyer destroyARCStrongImprecise; 3594 static Destroyer destroyARCStrongPrecise; 3595 static Destroyer destroyARCWeak; 3596 static Destroyer emitARCIntrinsicUse; 3597 static Destroyer destroyNonTrivialCStruct; 3598 3599 void EmitObjCAutoreleasePoolPop(llvm::Value *Ptr); 3600 llvm::Value *EmitObjCAutoreleasePoolPush(); 3601 llvm::Value *EmitObjCMRRAutoreleasePoolPush(); 3602 void EmitObjCAutoreleasePoolCleanup(llvm::Value *Ptr); 3603 void EmitObjCMRRAutoreleasePoolPop(llvm::Value *Ptr); 3604 3605 /// \brief Emits a reference binding to the passed in expression. 3606 RValue EmitReferenceBindingToExpr(const Expr *E); 3607 3608 //===--------------------------------------------------------------------===// 3609 // Expression Emission 3610 //===--------------------------------------------------------------------===// 3611 3612 // Expressions are broken into three classes: scalar, complex, aggregate. 3613 3614 /// EmitScalarExpr - Emit the computation of the specified expression of LLVM 3615 /// scalar type, returning the result. 3616 llvm::Value *EmitScalarExpr(const Expr *E , bool IgnoreResultAssign = false); 3617 3618 /// Emit a conversion from the specified type to the specified destination 3619 /// type, both of which are LLVM scalar types. 3620 llvm::Value *EmitScalarConversion(llvm::Value *Src, QualType SrcTy, 3621 QualType DstTy, SourceLocation Loc); 3622 3623 /// Emit a conversion from the specified complex type to the specified 3624 /// destination type, where the destination type is an LLVM scalar type. 3625 llvm::Value *EmitComplexToScalarConversion(ComplexPairTy Src, QualType SrcTy, 3626 QualType DstTy, 3627 SourceLocation Loc); 3628 3629 /// EmitAggExpr - Emit the computation of the specified expression 3630 /// of aggregate type. The result is computed into the given slot, 3631 /// which may be null to indicate that the value is not needed. 3632 void EmitAggExpr(const Expr *E, AggValueSlot AS); 3633 3634 /// EmitAggExprToLValue - Emit the computation of the specified expression of 3635 /// aggregate type into a temporary LValue. 3636 LValue EmitAggExprToLValue(const Expr *E); 3637 3638 /// EmitExtendGCLifetime - Given a pointer to an Objective-C object, 3639 /// make sure it survives garbage collection until this point. 3640 void EmitExtendGCLifetime(llvm::Value *object); 3641 3642 /// EmitComplexExpr - Emit the computation of the specified expression of 3643 /// complex type, returning the result. 3644 ComplexPairTy EmitComplexExpr(const Expr *E, 3645 bool IgnoreReal = false, 3646 bool IgnoreImag = false); 3647 3648 /// EmitComplexExprIntoLValue - Emit the given expression of complex 3649 /// type and place its result into the specified l-value. 3650 void EmitComplexExprIntoLValue(const Expr *E, LValue dest, bool isInit); 3651 3652 /// EmitStoreOfComplex - Store a complex number into the specified l-value. 3653 void EmitStoreOfComplex(ComplexPairTy V, LValue dest, bool isInit); 3654 3655 /// EmitLoadOfComplex - Load a complex number from the specified l-value. 3656 ComplexPairTy EmitLoadOfComplex(LValue src, SourceLocation loc); 3657 3658 Address emitAddrOfRealComponent(Address complex, QualType complexType); 3659 Address emitAddrOfImagComponent(Address complex, QualType complexType); 3660 3661 /// AddInitializerToStaticVarDecl - Add the initializer for 'D' to the 3662 /// global variable that has already been created for it. If the initializer 3663 /// has a different type than GV does, this may free GV and return a different 3664 /// one. Otherwise it just returns GV. 3665 llvm::GlobalVariable * 3666 AddInitializerToStaticVarDecl(const VarDecl &D, 3667 llvm::GlobalVariable *GV); 3668 3669 3670 /// EmitCXXGlobalVarDeclInit - Create the initializer for a C++ 3671 /// variable with global storage. 3672 void EmitCXXGlobalVarDeclInit(const VarDecl &D, llvm::Constant *DeclPtr, 3673 bool PerformInit); 3674 3675 llvm::Constant *createAtExitStub(const VarDecl &VD, llvm::Constant *Dtor, 3676 llvm::Constant *Addr); 3677 3678 /// Call atexit() with a function that passes the given argument to 3679 /// the given function. 3680 void registerGlobalDtorWithAtExit(const VarDecl &D, llvm::Constant *fn, 3681 llvm::Constant *addr); 3682 3683 /// Emit code in this function to perform a guarded variable 3684 /// initialization. Guarded initializations are used when it's not 3685 /// possible to prove that an initialization will be done exactly 3686 /// once, e.g. with a static local variable or a static data member 3687 /// of a class template. 3688 void EmitCXXGuardedInit(const VarDecl &D, llvm::GlobalVariable *DeclPtr, 3689 bool PerformInit); 3690 3691 enum class GuardKind { VariableGuard, TlsGuard }; 3692 3693 /// Emit a branch to select whether or not to perform guarded initialization. 3694 void EmitCXXGuardedInitBranch(llvm::Value *NeedsInit, 3695 llvm::BasicBlock *InitBlock, 3696 llvm::BasicBlock *NoInitBlock, 3697 GuardKind Kind, const VarDecl *D); 3698 3699 /// GenerateCXXGlobalInitFunc - Generates code for initializing global 3700 /// variables. 3701 void GenerateCXXGlobalInitFunc(llvm::Function *Fn, 3702 ArrayRef<llvm::Function *> CXXThreadLocals, 3703 Address Guard = Address::invalid()); 3704 3705 /// GenerateCXXGlobalDtorsFunc - Generates code for destroying global 3706 /// variables. 3707 void GenerateCXXGlobalDtorsFunc( 3708 llvm::Function *Fn, 3709 const std::vector<std::pair<llvm::WeakTrackingVH, llvm::Constant *>> 3710 &DtorsAndObjects); 3711 3712 void GenerateCXXGlobalVarDeclInitFunc(llvm::Function *Fn, 3713 const VarDecl *D, 3714 llvm::GlobalVariable *Addr, 3715 bool PerformInit); 3716 3717 void EmitCXXConstructExpr(const CXXConstructExpr *E, AggValueSlot Dest); 3718 3719 void EmitSynthesizedCXXCopyCtor(Address Dest, Address Src, const Expr *Exp); 3720 3721 void enterFullExpression(const ExprWithCleanups *E) { 3722 if (E->getNumObjects() == 0) return; 3723 enterNonTrivialFullExpression(E); 3724 } 3725 void enterNonTrivialFullExpression(const ExprWithCleanups *E); 3726 3727 void EmitCXXThrowExpr(const CXXThrowExpr *E, bool KeepInsertionPoint = true); 3728 3729 void EmitLambdaExpr(const LambdaExpr *E, AggValueSlot Dest); 3730 3731 RValue EmitAtomicExpr(AtomicExpr *E); 3732 3733 //===--------------------------------------------------------------------===// 3734 // Annotations Emission 3735 //===--------------------------------------------------------------------===// 3736 3737 /// Emit an annotation call (intrinsic or builtin). 3738 llvm::Value *EmitAnnotationCall(llvm::Value *AnnotationFn, 3739 llvm::Value *AnnotatedVal, 3740 StringRef AnnotationStr, 3741 SourceLocation Location); 3742 3743 /// Emit local annotations for the local variable V, declared by D. 3744 void EmitVarAnnotations(const VarDecl *D, llvm::Value *V); 3745 3746 /// Emit field annotations for the given field & value. Returns the 3747 /// annotation result. 3748 Address EmitFieldAnnotations(const FieldDecl *D, Address V); 3749 3750 //===--------------------------------------------------------------------===// 3751 // Internal Helpers 3752 //===--------------------------------------------------------------------===// 3753 3754 /// ContainsLabel - Return true if the statement contains a label in it. If 3755 /// this statement is not executed normally, it not containing a label means 3756 /// that we can just remove the code. 3757 static bool ContainsLabel(const Stmt *S, bool IgnoreCaseStmts = false); 3758 3759 /// containsBreak - Return true if the statement contains a break out of it. 3760 /// If the statement (recursively) contains a switch or loop with a break 3761 /// inside of it, this is fine. 3762 static bool containsBreak(const Stmt *S); 3763 3764 /// Determine if the given statement might introduce a declaration into the 3765 /// current scope, by being a (possibly-labelled) DeclStmt. 3766 static bool mightAddDeclToScope(const Stmt *S); 3767 3768 /// ConstantFoldsToSimpleInteger - If the specified expression does not fold 3769 /// to a constant, or if it does but contains a label, return false. If it 3770 /// constant folds return true and set the boolean result in Result. 3771 bool ConstantFoldsToSimpleInteger(const Expr *Cond, bool &Result, 3772 bool AllowLabels = false); 3773 3774 /// ConstantFoldsToSimpleInteger - If the specified expression does not fold 3775 /// to a constant, or if it does but contains a label, return false. If it 3776 /// constant folds return true and set the folded value. 3777 bool ConstantFoldsToSimpleInteger(const Expr *Cond, llvm::APSInt &Result, 3778 bool AllowLabels = false); 3779 3780 /// EmitBranchOnBoolExpr - Emit a branch on a boolean condition (e.g. for an 3781 /// if statement) to the specified blocks. Based on the condition, this might 3782 /// try to simplify the codegen of the conditional based on the branch. 3783 /// TrueCount should be the number of times we expect the condition to 3784 /// evaluate to true based on PGO data. 3785 void EmitBranchOnBoolExpr(const Expr *Cond, llvm::BasicBlock *TrueBlock, 3786 llvm::BasicBlock *FalseBlock, uint64_t TrueCount); 3787 3788 /// Given an assignment `*LHS = RHS`, emit a test that checks if \p RHS is 3789 /// nonnull, if \p LHS is marked _Nonnull. 3790 void EmitNullabilityCheck(LValue LHS, llvm::Value *RHS, SourceLocation Loc); 3791 3792 /// An enumeration which makes it easier to specify whether or not an 3793 /// operation is a subtraction. 3794 enum { NotSubtraction = false, IsSubtraction = true }; 3795 3796 /// Same as IRBuilder::CreateInBoundsGEP, but additionally emits a check to 3797 /// detect undefined behavior when the pointer overflow sanitizer is enabled. 3798 /// \p SignedIndices indicates whether any of the GEP indices are signed. 3799 /// \p IsSubtraction indicates whether the expression used to form the GEP 3800 /// is a subtraction. 3801 llvm::Value *EmitCheckedInBoundsGEP(llvm::Value *Ptr, 3802 ArrayRef<llvm::Value *> IdxList, 3803 bool SignedIndices, 3804 bool IsSubtraction, 3805 SourceLocation Loc, 3806 const Twine &Name = ""); 3807 3808 /// Specifies which type of sanitizer check to apply when handling a 3809 /// particular builtin. 3810 enum BuiltinCheckKind { 3811 BCK_CTZPassedZero, 3812 BCK_CLZPassedZero, 3813 }; 3814 3815 /// Emits an argument for a call to a builtin. If the builtin sanitizer is 3816 /// enabled, a runtime check specified by \p Kind is also emitted. 3817 llvm::Value *EmitCheckedArgForBuiltin(const Expr *E, BuiltinCheckKind Kind); 3818 3819 /// \brief Emit a description of a type in a format suitable for passing to 3820 /// a runtime sanitizer handler. 3821 llvm::Constant *EmitCheckTypeDescriptor(QualType T); 3822 3823 /// \brief Convert a value into a format suitable for passing to a runtime 3824 /// sanitizer handler. 3825 llvm::Value *EmitCheckValue(llvm::Value *V); 3826 3827 /// \brief Emit a description of a source location in a format suitable for 3828 /// passing to a runtime sanitizer handler. 3829 llvm::Constant *EmitCheckSourceLocation(SourceLocation Loc); 3830 3831 /// \brief Create a basic block that will call a handler function in a 3832 /// sanitizer runtime with the provided arguments, and create a conditional 3833 /// branch to it. 3834 void EmitCheck(ArrayRef<std::pair<llvm::Value *, SanitizerMask>> Checked, 3835 SanitizerHandler Check, ArrayRef<llvm::Constant *> StaticArgs, 3836 ArrayRef<llvm::Value *> DynamicArgs); 3837 3838 /// \brief Emit a slow path cross-DSO CFI check which calls __cfi_slowpath 3839 /// if Cond if false. 3840 void EmitCfiSlowPathCheck(SanitizerMask Kind, llvm::Value *Cond, 3841 llvm::ConstantInt *TypeId, llvm::Value *Ptr, 3842 ArrayRef<llvm::Constant *> StaticArgs); 3843 3844 /// Emit a reached-unreachable diagnostic if \p Loc is valid and runtime 3845 /// checking is enabled. Otherwise, just emit an unreachable instruction. 3846 void EmitUnreachable(SourceLocation Loc); 3847 3848 /// \brief Create a basic block that will call the trap intrinsic, and emit a 3849 /// conditional branch to it, for the -ftrapv checks. 3850 void EmitTrapCheck(llvm::Value *Checked); 3851 3852 /// \brief Emit a call to trap or debugtrap and attach function attribute 3853 /// "trap-func-name" if specified. 3854 llvm::CallInst *EmitTrapCall(llvm::Intrinsic::ID IntrID); 3855 3856 /// \brief Emit a stub for the cross-DSO CFI check function. 3857 void EmitCfiCheckStub(); 3858 3859 /// \brief Emit a cross-DSO CFI failure handling function. 3860 void EmitCfiCheckFail(); 3861 3862 /// \brief Create a check for a function parameter that may potentially be 3863 /// declared as non-null. 3864 void EmitNonNullArgCheck(RValue RV, QualType ArgType, SourceLocation ArgLoc, 3865 AbstractCallee AC, unsigned ParmNum); 3866 3867 /// EmitCallArg - Emit a single call argument. 3868 void EmitCallArg(CallArgList &args, const Expr *E, QualType ArgType); 3869 3870 /// EmitDelegateCallArg - We are performing a delegate call; that 3871 /// is, the current function is delegating to another one. Produce 3872 /// a r-value suitable for passing the given parameter. 3873 void EmitDelegateCallArg(CallArgList &args, const VarDecl *param, 3874 SourceLocation loc); 3875 3876 /// SetFPAccuracy - Set the minimum required accuracy of the given floating 3877 /// point operation, expressed as the maximum relative error in ulp. 3878 void SetFPAccuracy(llvm::Value *Val, float Accuracy); 3879 3880 private: 3881 llvm::MDNode *getRangeForLoadFromType(QualType Ty); 3882 void EmitReturnOfRValue(RValue RV, QualType Ty); 3883 3884 void deferPlaceholderReplacement(llvm::Instruction *Old, llvm::Value *New); 3885 3886 llvm::SmallVector<std::pair<llvm::Instruction *, llvm::Value *>, 4> 3887 DeferredReplacements; 3888 3889 /// Set the address of a local variable. 3890 void setAddrOfLocalVar(const VarDecl *VD, Address Addr) { 3891 assert(!LocalDeclMap.count(VD) && "Decl already exists in LocalDeclMap!"); 3892 LocalDeclMap.insert({VD, Addr}); 3893 } 3894 3895 /// ExpandTypeFromArgs - Reconstruct a structure of type \arg Ty 3896 /// from function arguments into \arg Dst. See ABIArgInfo::Expand. 3897 /// 3898 /// \param AI - The first function argument of the expansion. 3899 void ExpandTypeFromArgs(QualType Ty, LValue Dst, 3900 SmallVectorImpl<llvm::Value *>::iterator &AI); 3901 3902 /// ExpandTypeToArgs - Expand an CallArg \arg Arg, with the LLVM type for \arg 3903 /// Ty, into individual arguments on the provided vector \arg IRCallArgs, 3904 /// starting at index \arg IRCallArgPos. See ABIArgInfo::Expand. 3905 void ExpandTypeToArgs(QualType Ty, CallArg Arg, llvm::FunctionType *IRFuncTy, 3906 SmallVectorImpl<llvm::Value *> &IRCallArgs, 3907 unsigned &IRCallArgPos); 3908 3909 llvm::Value* EmitAsmInput(const TargetInfo::ConstraintInfo &Info, 3910 const Expr *InputExpr, std::string &ConstraintStr); 3911 3912 llvm::Value* EmitAsmInputLValue(const TargetInfo::ConstraintInfo &Info, 3913 LValue InputValue, QualType InputType, 3914 std::string &ConstraintStr, 3915 SourceLocation Loc); 3916 3917 /// \brief Attempts to statically evaluate the object size of E. If that 3918 /// fails, emits code to figure the size of E out for us. This is 3919 /// pass_object_size aware. 3920 /// 3921 /// If EmittedExpr is non-null, this will use that instead of re-emitting E. 3922 llvm::Value *evaluateOrEmitBuiltinObjectSize(const Expr *E, unsigned Type, 3923 llvm::IntegerType *ResType, 3924 llvm::Value *EmittedE); 3925 3926 /// \brief Emits the size of E, as required by __builtin_object_size. This 3927 /// function is aware of pass_object_size parameters, and will act accordingly 3928 /// if E is a parameter with the pass_object_size attribute. 3929 llvm::Value *emitBuiltinObjectSize(const Expr *E, unsigned Type, 3930 llvm::IntegerType *ResType, 3931 llvm::Value *EmittedE); 3932 3933 public: 3934 #ifndef NDEBUG 3935 // Determine whether the given argument is an Objective-C method 3936 // that may have type parameters in its signature. 3937 static bool isObjCMethodWithTypeParams(const ObjCMethodDecl *method) { 3938 const DeclContext *dc = method->getDeclContext(); 3939 if (const ObjCInterfaceDecl *classDecl= dyn_cast<ObjCInterfaceDecl>(dc)) { 3940 return classDecl->getTypeParamListAsWritten(); 3941 } 3942 3943 if (const ObjCCategoryDecl *catDecl = dyn_cast<ObjCCategoryDecl>(dc)) { 3944 return catDecl->getTypeParamList(); 3945 } 3946 3947 return false; 3948 } 3949 3950 template<typename T> 3951 static bool isObjCMethodWithTypeParams(const T *) { return false; } 3952 #endif 3953 3954 enum class EvaluationOrder { 3955 ///! No language constraints on evaluation order. 3956 Default, 3957 ///! Language semantics require left-to-right evaluation. 3958 ForceLeftToRight, 3959 ///! Language semantics require right-to-left evaluation. 3960 ForceRightToLeft 3961 }; 3962 3963 /// EmitCallArgs - Emit call arguments for a function. 3964 template <typename T> 3965 void EmitCallArgs(CallArgList &Args, const T *CallArgTypeInfo, 3966 llvm::iterator_range<CallExpr::const_arg_iterator> ArgRange, 3967 AbstractCallee AC = AbstractCallee(), 3968 unsigned ParamsToSkip = 0, 3969 EvaluationOrder Order = EvaluationOrder::Default) { 3970 SmallVector<QualType, 16> ArgTypes; 3971 CallExpr::const_arg_iterator Arg = ArgRange.begin(); 3972 3973 assert((ParamsToSkip == 0 || CallArgTypeInfo) && 3974 "Can't skip parameters if type info is not provided"); 3975 if (CallArgTypeInfo) { 3976 #ifndef NDEBUG 3977 bool isGenericMethod = isObjCMethodWithTypeParams(CallArgTypeInfo); 3978 #endif 3979 3980 // First, use the argument types that the type info knows about 3981 for (auto I = CallArgTypeInfo->param_type_begin() + ParamsToSkip, 3982 E = CallArgTypeInfo->param_type_end(); 3983 I != E; ++I, ++Arg) { 3984 assert(Arg != ArgRange.end() && "Running over edge of argument list!"); 3985 assert((isGenericMethod || 3986 ((*I)->isVariablyModifiedType() || 3987 (*I).getNonReferenceType()->isObjCRetainableType() || 3988 getContext() 3989 .getCanonicalType((*I).getNonReferenceType()) 3990 .getTypePtr() == 3991 getContext() 3992 .getCanonicalType((*Arg)->getType()) 3993 .getTypePtr())) && 3994 "type mismatch in call argument!"); 3995 ArgTypes.push_back(*I); 3996 } 3997 } 3998 3999 // Either we've emitted all the call args, or we have a call to variadic 4000 // function. 4001 assert((Arg == ArgRange.end() || !CallArgTypeInfo || 4002 CallArgTypeInfo->isVariadic()) && 4003 "Extra arguments in non-variadic function!"); 4004 4005 // If we still have any arguments, emit them using the type of the argument. 4006 for (auto *A : llvm::make_range(Arg, ArgRange.end())) 4007 ArgTypes.push_back(CallArgTypeInfo ? getVarArgType(A) : A->getType()); 4008 4009 EmitCallArgs(Args, ArgTypes, ArgRange, AC, ParamsToSkip, Order); 4010 } 4011 4012 void EmitCallArgs(CallArgList &Args, ArrayRef<QualType> ArgTypes, 4013 llvm::iterator_range<CallExpr::const_arg_iterator> ArgRange, 4014 AbstractCallee AC = AbstractCallee(), 4015 unsigned ParamsToSkip = 0, 4016 EvaluationOrder Order = EvaluationOrder::Default); 4017 4018 /// EmitPointerWithAlignment - Given an expression with a pointer type, 4019 /// emit the value and compute our best estimate of the alignment of the 4020 /// pointee. 4021 /// 4022 /// \param BaseInfo - If non-null, this will be initialized with 4023 /// information about the source of the alignment and the may-alias 4024 /// attribute. Note that this function will conservatively fall back on 4025 /// the type when it doesn't recognize the expression and may-alias will 4026 /// be set to false. 4027 /// 4028 /// One reasonable way to use this information is when there's a language 4029 /// guarantee that the pointer must be aligned to some stricter value, and 4030 /// we're simply trying to ensure that sufficiently obvious uses of under- 4031 /// aligned objects don't get miscompiled; for example, a placement new 4032 /// into the address of a local variable. In such a case, it's quite 4033 /// reasonable to just ignore the returned alignment when it isn't from an 4034 /// explicit source. 4035 Address EmitPointerWithAlignment(const Expr *Addr, 4036 LValueBaseInfo *BaseInfo = nullptr, 4037 TBAAAccessInfo *TBAAInfo = nullptr); 4038 4039 /// If \p E references a parameter with pass_object_size info or a constant 4040 /// array size modifier, emit the object size divided by the size of \p EltTy. 4041 /// Otherwise return null. 4042 llvm::Value *LoadPassedObjectSize(const Expr *E, QualType EltTy); 4043 4044 void EmitSanitizerStatReport(llvm::SanitizerStatKind SSK); 4045 4046 struct MultiVersionResolverOption { 4047 llvm::Function *Function; 4048 TargetAttr::ParsedTargetAttr ParsedAttribute; 4049 unsigned Priority; 4050 MultiVersionResolverOption(const TargetInfo &TargInfo, llvm::Function *F, 4051 const clang::TargetAttr::ParsedTargetAttr &PT) 4052 : Function(F), ParsedAttribute(PT), Priority(0u) { 4053 for (StringRef Feat : PT.Features) 4054 Priority = std::max(Priority, 4055 TargInfo.multiVersionSortPriority(Feat.substr(1))); 4056 4057 if (!PT.Architecture.empty()) 4058 Priority = std::max(Priority, 4059 TargInfo.multiVersionSortPriority(PT.Architecture)); 4060 } 4061 4062 bool operator>(const MultiVersionResolverOption &Other) const { 4063 return Priority > Other.Priority; 4064 } 4065 }; 4066 void EmitMultiVersionResolver(llvm::Function *Resolver, 4067 ArrayRef<MultiVersionResolverOption> Options); 4068 4069 private: 4070 QualType getVarArgType(const Expr *Arg); 4071 4072 void EmitDeclMetadata(); 4073 4074 BlockByrefHelpers *buildByrefHelpers(llvm::StructType &byrefType, 4075 const AutoVarEmission &emission); 4076 4077 void AddObjCARCExceptionMetadata(llvm::Instruction *Inst); 4078 4079 llvm::Value *GetValueForARMHint(unsigned BuiltinID); 4080 llvm::Value *EmitX86CpuIs(const CallExpr *E); 4081 llvm::Value *EmitX86CpuIs(StringRef CPUStr); 4082 llvm::Value *EmitX86CpuSupports(const CallExpr *E); 4083 llvm::Value *EmitX86CpuSupports(ArrayRef<StringRef> FeatureStrs); 4084 llvm::Value *EmitX86CpuInit(); 4085 llvm::Value *FormResolverCondition(const MultiVersionResolverOption &RO); 4086 }; 4087 4088 /// Helper class with most of the code for saving a value for a 4089 /// conditional expression cleanup. 4090 struct DominatingLLVMValue { 4091 typedef llvm::PointerIntPair<llvm::Value*, 1, bool> saved_type; 4092 4093 /// Answer whether the given value needs extra work to be saved. 4094 static bool needsSaving(llvm::Value *value) { 4095 // If it's not an instruction, we don't need to save. 4096 if (!isa<llvm::Instruction>(value)) return false; 4097 4098 // If it's an instruction in the entry block, we don't need to save. 4099 llvm::BasicBlock *block = cast<llvm::Instruction>(value)->getParent(); 4100 return (block != &block->getParent()->getEntryBlock()); 4101 } 4102 4103 /// Try to save the given value. 4104 static saved_type save(CodeGenFunction &CGF, llvm::Value *value) { 4105 if (!needsSaving(value)) return saved_type(value, false); 4106 4107 // Otherwise, we need an alloca. 4108 auto align = CharUnits::fromQuantity( 4109 CGF.CGM.getDataLayout().getPrefTypeAlignment(value->getType())); 4110 Address alloca = 4111 CGF.CreateTempAlloca(value->getType(), align, "cond-cleanup.save"); 4112 CGF.Builder.CreateStore(value, alloca); 4113 4114 return saved_type(alloca.getPointer(), true); 4115 } 4116 4117 static llvm::Value *restore(CodeGenFunction &CGF, saved_type value) { 4118 // If the value says it wasn't saved, trust that it's still dominating. 4119 if (!value.getInt()) return value.getPointer(); 4120 4121 // Otherwise, it should be an alloca instruction, as set up in save(). 4122 auto alloca = cast<llvm::AllocaInst>(value.getPointer()); 4123 return CGF.Builder.CreateAlignedLoad(alloca, alloca->getAlignment()); 4124 } 4125 }; 4126 4127 /// A partial specialization of DominatingValue for llvm::Values that 4128 /// might be llvm::Instructions. 4129 template <class T> struct DominatingPointer<T,true> : DominatingLLVMValue { 4130 typedef T *type; 4131 static type restore(CodeGenFunction &CGF, saved_type value) { 4132 return static_cast<T*>(DominatingLLVMValue::restore(CGF, value)); 4133 } 4134 }; 4135 4136 /// A specialization of DominatingValue for Address. 4137 template <> struct DominatingValue<Address> { 4138 typedef Address type; 4139 4140 struct saved_type { 4141 DominatingLLVMValue::saved_type SavedValue; 4142 CharUnits Alignment; 4143 }; 4144 4145 static bool needsSaving(type value) { 4146 return DominatingLLVMValue::needsSaving(value.getPointer()); 4147 } 4148 static saved_type save(CodeGenFunction &CGF, type value) { 4149 return { DominatingLLVMValue::save(CGF, value.getPointer()), 4150 value.getAlignment() }; 4151 } 4152 static type restore(CodeGenFunction &CGF, saved_type value) { 4153 return Address(DominatingLLVMValue::restore(CGF, value.SavedValue), 4154 value.Alignment); 4155 } 4156 }; 4157 4158 /// A specialization of DominatingValue for RValue. 4159 template <> struct DominatingValue<RValue> { 4160 typedef RValue type; 4161 class saved_type { 4162 enum Kind { ScalarLiteral, ScalarAddress, AggregateLiteral, 4163 AggregateAddress, ComplexAddress }; 4164 4165 llvm::Value *Value; 4166 unsigned K : 3; 4167 unsigned Align : 29; 4168 saved_type(llvm::Value *v, Kind k, unsigned a = 0) 4169 : Value(v), K(k), Align(a) {} 4170 4171 public: 4172 static bool needsSaving(RValue value); 4173 static saved_type save(CodeGenFunction &CGF, RValue value); 4174 RValue restore(CodeGenFunction &CGF); 4175 4176 // implementations in CGCleanup.cpp 4177 }; 4178 4179 static bool needsSaving(type value) { 4180 return saved_type::needsSaving(value); 4181 } 4182 static saved_type save(CodeGenFunction &CGF, type value) { 4183 return saved_type::save(CGF, value); 4184 } 4185 static type restore(CodeGenFunction &CGF, saved_type value) { 4186 return value.restore(CGF); 4187 } 4188 }; 4189 4190 } // end namespace CodeGen 4191 } // end namespace clang 4192 4193 #endif 4194