1 //===-- CodeGenFunction.h - Per-Function state for LLVM CodeGen -*- C++ -*-===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This is the internal per-function state used for llvm translation.
10 //
11 //===----------------------------------------------------------------------===//
12 
13 #ifndef LLVM_CLANG_LIB_CODEGEN_CODEGENFUNCTION_H
14 #define LLVM_CLANG_LIB_CODEGEN_CODEGENFUNCTION_H
15 
16 #include "CGBuilder.h"
17 #include "CGDebugInfo.h"
18 #include "CGLoopInfo.h"
19 #include "CGValue.h"
20 #include "CodeGenModule.h"
21 #include "CodeGenPGO.h"
22 #include "EHScopeStack.h"
23 #include "VarBypassDetector.h"
24 #include "clang/AST/CharUnits.h"
25 #include "clang/AST/CurrentSourceLocExprScope.h"
26 #include "clang/AST/ExprCXX.h"
27 #include "clang/AST/ExprObjC.h"
28 #include "clang/AST/ExprOpenMP.h"
29 #include "clang/AST/StmtOpenMP.h"
30 #include "clang/AST/Type.h"
31 #include "clang/Basic/ABI.h"
32 #include "clang/Basic/CapturedStmt.h"
33 #include "clang/Basic/CodeGenOptions.h"
34 #include "clang/Basic/OpenMPKinds.h"
35 #include "clang/Basic/TargetInfo.h"
36 #include "llvm/ADT/ArrayRef.h"
37 #include "llvm/ADT/DenseMap.h"
38 #include "llvm/ADT/MapVector.h"
39 #include "llvm/ADT/SmallVector.h"
40 #include "llvm/Frontend/OpenMP/OMPIRBuilder.h"
41 #include "llvm/IR/ValueHandle.h"
42 #include "llvm/Support/Debug.h"
43 #include "llvm/Transforms/Utils/SanitizerStats.h"
44 
45 namespace llvm {
46 class BasicBlock;
47 class LLVMContext;
48 class MDNode;
49 class SwitchInst;
50 class Twine;
51 class Value;
52 class CanonicalLoopInfo;
53 }
54 
55 namespace clang {
56 class ASTContext;
57 class CXXDestructorDecl;
58 class CXXForRangeStmt;
59 class CXXTryStmt;
60 class Decl;
61 class LabelDecl;
62 class FunctionDecl;
63 class FunctionProtoType;
64 class LabelStmt;
65 class ObjCContainerDecl;
66 class ObjCInterfaceDecl;
67 class ObjCIvarDecl;
68 class ObjCMethodDecl;
69 class ObjCImplementationDecl;
70 class ObjCPropertyImplDecl;
71 class TargetInfo;
72 class VarDecl;
73 class ObjCForCollectionStmt;
74 class ObjCAtTryStmt;
75 class ObjCAtThrowStmt;
76 class ObjCAtSynchronizedStmt;
77 class ObjCAutoreleasePoolStmt;
78 class OMPUseDevicePtrClause;
79 class OMPUseDeviceAddrClause;
80 class SVETypeFlags;
81 class OMPExecutableDirective;
82 
83 namespace analyze_os_log {
84 class OSLogBufferLayout;
85 }
86 
87 namespace CodeGen {
88 class CodeGenTypes;
89 class CGCallee;
90 class CGFunctionInfo;
91 class CGBlockInfo;
92 class CGCXXABI;
93 class BlockByrefHelpers;
94 class BlockByrefInfo;
95 class BlockFieldFlags;
96 class RegionCodeGenTy;
97 class TargetCodeGenInfo;
98 struct OMPTaskDataTy;
99 struct CGCoroData;
100 
101 /// The kind of evaluation to perform on values of a particular
102 /// type.  Basically, is the code in CGExprScalar, CGExprComplex, or
103 /// CGExprAgg?
104 ///
105 /// TODO: should vectors maybe be split out into their own thing?
106 enum TypeEvaluationKind {
107   TEK_Scalar,
108   TEK_Complex,
109   TEK_Aggregate
110 };
111 
112 #define LIST_SANITIZER_CHECKS                                                  \
113   SANITIZER_CHECK(AddOverflow, add_overflow, 0)                                \
114   SANITIZER_CHECK(BuiltinUnreachable, builtin_unreachable, 0)                  \
115   SANITIZER_CHECK(CFICheckFail, cfi_check_fail, 0)                             \
116   SANITIZER_CHECK(DivremOverflow, divrem_overflow, 0)                          \
117   SANITIZER_CHECK(DynamicTypeCacheMiss, dynamic_type_cache_miss, 0)            \
118   SANITIZER_CHECK(FloatCastOverflow, float_cast_overflow, 0)                   \
119   SANITIZER_CHECK(FunctionTypeMismatch, function_type_mismatch, 1)             \
120   SANITIZER_CHECK(ImplicitConversion, implicit_conversion, 0)                  \
121   SANITIZER_CHECK(InvalidBuiltin, invalid_builtin, 0)                          \
122   SANITIZER_CHECK(InvalidObjCCast, invalid_objc_cast, 0)                       \
123   SANITIZER_CHECK(LoadInvalidValue, load_invalid_value, 0)                     \
124   SANITIZER_CHECK(MissingReturn, missing_return, 0)                            \
125   SANITIZER_CHECK(MulOverflow, mul_overflow, 0)                                \
126   SANITIZER_CHECK(NegateOverflow, negate_overflow, 0)                          \
127   SANITIZER_CHECK(NullabilityArg, nullability_arg, 0)                          \
128   SANITIZER_CHECK(NullabilityReturn, nullability_return, 1)                    \
129   SANITIZER_CHECK(NonnullArg, nonnull_arg, 0)                                  \
130   SANITIZER_CHECK(NonnullReturn, nonnull_return, 1)                            \
131   SANITIZER_CHECK(OutOfBounds, out_of_bounds, 0)                               \
132   SANITIZER_CHECK(PointerOverflow, pointer_overflow, 0)                        \
133   SANITIZER_CHECK(ShiftOutOfBounds, shift_out_of_bounds, 0)                    \
134   SANITIZER_CHECK(SubOverflow, sub_overflow, 0)                                \
135   SANITIZER_CHECK(TypeMismatch, type_mismatch, 1)                              \
136   SANITIZER_CHECK(AlignmentAssumption, alignment_assumption, 0)                \
137   SANITIZER_CHECK(VLABoundNotPositive, vla_bound_not_positive, 0)
138 
139 enum SanitizerHandler {
140 #define SANITIZER_CHECK(Enum, Name, Version) Enum,
141   LIST_SANITIZER_CHECKS
142 #undef SANITIZER_CHECK
143 };
144 
145 /// Helper class with most of the code for saving a value for a
146 /// conditional expression cleanup.
147 struct DominatingLLVMValue {
148   typedef llvm::PointerIntPair<llvm::Value*, 1, bool> saved_type;
149 
150   /// Answer whether the given value needs extra work to be saved.
151   static bool needsSaving(llvm::Value *value) {
152     // If it's not an instruction, we don't need to save.
153     if (!isa<llvm::Instruction>(value)) return false;
154 
155     // If it's an instruction in the entry block, we don't need to save.
156     llvm::BasicBlock *block = cast<llvm::Instruction>(value)->getParent();
157     return (block != &block->getParent()->getEntryBlock());
158   }
159 
160   static saved_type save(CodeGenFunction &CGF, llvm::Value *value);
161   static llvm::Value *restore(CodeGenFunction &CGF, saved_type value);
162 };
163 
164 /// A partial specialization of DominatingValue for llvm::Values that
165 /// might be llvm::Instructions.
166 template <class T> struct DominatingPointer<T,true> : DominatingLLVMValue {
167   typedef T *type;
168   static type restore(CodeGenFunction &CGF, saved_type value) {
169     return static_cast<T*>(DominatingLLVMValue::restore(CGF, value));
170   }
171 };
172 
173 /// A specialization of DominatingValue for Address.
174 template <> struct DominatingValue<Address> {
175   typedef Address type;
176 
177   struct saved_type {
178     DominatingLLVMValue::saved_type SavedValue;
179     llvm::Type *ElementType;
180     CharUnits Alignment;
181   };
182 
183   static bool needsSaving(type value) {
184     return DominatingLLVMValue::needsSaving(value.getPointer());
185   }
186   static saved_type save(CodeGenFunction &CGF, type value) {
187     return { DominatingLLVMValue::save(CGF, value.getPointer()),
188              value.getElementType(), value.getAlignment() };
189   }
190   static type restore(CodeGenFunction &CGF, saved_type value) {
191     return Address(DominatingLLVMValue::restore(CGF, value.SavedValue),
192                    value.ElementType, value.Alignment);
193   }
194 };
195 
196 /// A specialization of DominatingValue for RValue.
197 template <> struct DominatingValue<RValue> {
198   typedef RValue type;
199   class saved_type {
200     enum Kind { ScalarLiteral, ScalarAddress, AggregateLiteral,
201                 AggregateAddress, ComplexAddress };
202 
203     llvm::Value *Value;
204     unsigned K : 3;
205     unsigned Align : 29;
206     saved_type(llvm::Value *v, Kind k, unsigned a = 0)
207       : Value(v), K(k), Align(a) {}
208 
209   public:
210     static bool needsSaving(RValue value);
211     static saved_type save(CodeGenFunction &CGF, RValue value);
212     RValue restore(CodeGenFunction &CGF);
213 
214     // implementations in CGCleanup.cpp
215   };
216 
217   static bool needsSaving(type value) {
218     return saved_type::needsSaving(value);
219   }
220   static saved_type save(CodeGenFunction &CGF, type value) {
221     return saved_type::save(CGF, value);
222   }
223   static type restore(CodeGenFunction &CGF, saved_type value) {
224     return value.restore(CGF);
225   }
226 };
227 
228 /// CodeGenFunction - This class organizes the per-function state that is used
229 /// while generating LLVM code.
230 class CodeGenFunction : public CodeGenTypeCache {
231   CodeGenFunction(const CodeGenFunction &) = delete;
232   void operator=(const CodeGenFunction &) = delete;
233 
234   friend class CGCXXABI;
235 public:
236   /// A jump destination is an abstract label, branching to which may
237   /// require a jump out through normal cleanups.
238   struct JumpDest {
239     JumpDest() : Block(nullptr), Index(0) {}
240     JumpDest(llvm::BasicBlock *Block, EHScopeStack::stable_iterator Depth,
241              unsigned Index)
242         : Block(Block), ScopeDepth(Depth), Index(Index) {}
243 
244     bool isValid() const { return Block != nullptr; }
245     llvm::BasicBlock *getBlock() const { return Block; }
246     EHScopeStack::stable_iterator getScopeDepth() const { return ScopeDepth; }
247     unsigned getDestIndex() const { return Index; }
248 
249     // This should be used cautiously.
250     void setScopeDepth(EHScopeStack::stable_iterator depth) {
251       ScopeDepth = depth;
252     }
253 
254   private:
255     llvm::BasicBlock *Block;
256     EHScopeStack::stable_iterator ScopeDepth;
257     unsigned Index;
258   };
259 
260   CodeGenModule &CGM;  // Per-module state.
261   const TargetInfo &Target;
262 
263   // For EH/SEH outlined funclets, this field points to parent's CGF
264   CodeGenFunction *ParentCGF = nullptr;
265 
266   typedef std::pair<llvm::Value *, llvm::Value *> ComplexPairTy;
267   LoopInfoStack LoopStack;
268   CGBuilderTy Builder;
269 
270   // Stores variables for which we can't generate correct lifetime markers
271   // because of jumps.
272   VarBypassDetector Bypasses;
273 
274   /// List of recently emitted OMPCanonicalLoops.
275   ///
276   /// Since OMPCanonicalLoops are nested inside other statements (in particular
277   /// CapturedStmt generated by OMPExecutableDirective and non-perfectly nested
278   /// loops), we cannot directly call OMPEmitOMPCanonicalLoop and receive its
279   /// llvm::CanonicalLoopInfo. Instead, we call EmitStmt and any
280   /// OMPEmitOMPCanonicalLoop called by it will add its CanonicalLoopInfo to
281   /// this stack when done. Entering a new loop requires clearing this list; it
282   /// either means we start parsing a new loop nest (in which case the previous
283   /// loop nest goes out of scope) or a second loop in the same level in which
284   /// case it would be ambiguous into which of the two (or more) loops the loop
285   /// nest would extend.
286   SmallVector<llvm::CanonicalLoopInfo *, 4> OMPLoopNestStack;
287 
288   /// Number of nested loop to be consumed by the last surrounding
289   /// loop-associated directive.
290   int ExpectedOMPLoopDepth = 0;
291 
292   // CodeGen lambda for loops and support for ordered clause
293   typedef llvm::function_ref<void(CodeGenFunction &, const OMPLoopDirective &,
294                                   JumpDest)>
295       CodeGenLoopTy;
296   typedef llvm::function_ref<void(CodeGenFunction &, SourceLocation,
297                                   const unsigned, const bool)>
298       CodeGenOrderedTy;
299 
300   // Codegen lambda for loop bounds in worksharing loop constructs
301   typedef llvm::function_ref<std::pair<LValue, LValue>(
302       CodeGenFunction &, const OMPExecutableDirective &S)>
303       CodeGenLoopBoundsTy;
304 
305   // Codegen lambda for loop bounds in dispatch-based loop implementation
306   typedef llvm::function_ref<std::pair<llvm::Value *, llvm::Value *>(
307       CodeGenFunction &, const OMPExecutableDirective &S, Address LB,
308       Address UB)>
309       CodeGenDispatchBoundsTy;
310 
311   /// CGBuilder insert helper. This function is called after an
312   /// instruction is created using Builder.
313   void InsertHelper(llvm::Instruction *I, const llvm::Twine &Name,
314                     llvm::BasicBlock *BB,
315                     llvm::BasicBlock::iterator InsertPt) const;
316 
317   /// CurFuncDecl - Holds the Decl for the current outermost
318   /// non-closure context.
319   const Decl *CurFuncDecl;
320   /// CurCodeDecl - This is the inner-most code context, which includes blocks.
321   const Decl *CurCodeDecl;
322   const CGFunctionInfo *CurFnInfo;
323   QualType FnRetTy;
324   llvm::Function *CurFn = nullptr;
325 
326   /// Save Parameter Decl for coroutine.
327   llvm::SmallVector<const ParmVarDecl *, 4> FnArgs;
328 
329   // Holds coroutine data if the current function is a coroutine. We use a
330   // wrapper to manage its lifetime, so that we don't have to define CGCoroData
331   // in this header.
332   struct CGCoroInfo {
333     std::unique_ptr<CGCoroData> Data;
334     CGCoroInfo();
335     ~CGCoroInfo();
336   };
337   CGCoroInfo CurCoro;
338 
339   bool isCoroutine() const {
340     return CurCoro.Data != nullptr;
341   }
342 
343   /// CurGD - The GlobalDecl for the current function being compiled.
344   GlobalDecl CurGD;
345 
346   /// PrologueCleanupDepth - The cleanup depth enclosing all the
347   /// cleanups associated with the parameters.
348   EHScopeStack::stable_iterator PrologueCleanupDepth;
349 
350   /// ReturnBlock - Unified return block.
351   JumpDest ReturnBlock;
352 
353   /// ReturnValue - The temporary alloca to hold the return
354   /// value. This is invalid iff the function has no return value.
355   Address ReturnValue = Address::invalid();
356 
357   /// ReturnValuePointer - The temporary alloca to hold a pointer to sret.
358   /// This is invalid if sret is not in use.
359   Address ReturnValuePointer = Address::invalid();
360 
361   /// If a return statement is being visited, this holds the return statment's
362   /// result expression.
363   const Expr *RetExpr = nullptr;
364 
365   /// Return true if a label was seen in the current scope.
366   bool hasLabelBeenSeenInCurrentScope() const {
367     if (CurLexicalScope)
368       return CurLexicalScope->hasLabels();
369     return !LabelMap.empty();
370   }
371 
372   /// AllocaInsertPoint - This is an instruction in the entry block before which
373   /// we prefer to insert allocas.
374   llvm::AssertingVH<llvm::Instruction> AllocaInsertPt;
375 
376 private:
377   /// PostAllocaInsertPt - This is a place in the prologue where code can be
378   /// inserted that will be dominated by all the static allocas. This helps
379   /// achieve two things:
380   ///   1. Contiguity of all static allocas (within the prologue) is maintained.
381   ///   2. All other prologue code (which are dominated by static allocas) do
382   ///      appear in the source order immediately after all static allocas.
383   ///
384   /// PostAllocaInsertPt will be lazily created when it is *really* required.
385   llvm::AssertingVH<llvm::Instruction> PostAllocaInsertPt = nullptr;
386 
387 public:
388   /// Return PostAllocaInsertPt. If it is not yet created, then insert it
389   /// immediately after AllocaInsertPt.
390   llvm::Instruction *getPostAllocaInsertPoint() {
391     if (!PostAllocaInsertPt) {
392       assert(AllocaInsertPt &&
393              "Expected static alloca insertion point at function prologue");
394       assert(AllocaInsertPt->getParent()->isEntryBlock() &&
395              "EBB should be entry block of the current code gen function");
396       PostAllocaInsertPt = AllocaInsertPt->clone();
397       PostAllocaInsertPt->setName("postallocapt");
398       PostAllocaInsertPt->insertAfter(AllocaInsertPt);
399     }
400 
401     return PostAllocaInsertPt;
402   }
403 
404   /// API for captured statement code generation.
405   class CGCapturedStmtInfo {
406   public:
407     explicit CGCapturedStmtInfo(CapturedRegionKind K = CR_Default)
408         : Kind(K), ThisValue(nullptr), CXXThisFieldDecl(nullptr) {}
409     explicit CGCapturedStmtInfo(const CapturedStmt &S,
410                                 CapturedRegionKind K = CR_Default)
411       : Kind(K), ThisValue(nullptr), CXXThisFieldDecl(nullptr) {
412 
413       RecordDecl::field_iterator Field =
414         S.getCapturedRecordDecl()->field_begin();
415       for (CapturedStmt::const_capture_iterator I = S.capture_begin(),
416                                                 E = S.capture_end();
417            I != E; ++I, ++Field) {
418         if (I->capturesThis())
419           CXXThisFieldDecl = *Field;
420         else if (I->capturesVariable())
421           CaptureFields[I->getCapturedVar()->getCanonicalDecl()] = *Field;
422         else if (I->capturesVariableByCopy())
423           CaptureFields[I->getCapturedVar()->getCanonicalDecl()] = *Field;
424       }
425     }
426 
427     virtual ~CGCapturedStmtInfo();
428 
429     CapturedRegionKind getKind() const { return Kind; }
430 
431     virtual void setContextValue(llvm::Value *V) { ThisValue = V; }
432     // Retrieve the value of the context parameter.
433     virtual llvm::Value *getContextValue() const { return ThisValue; }
434 
435     /// Lookup the captured field decl for a variable.
436     virtual const FieldDecl *lookup(const VarDecl *VD) const {
437       return CaptureFields.lookup(VD->getCanonicalDecl());
438     }
439 
440     bool isCXXThisExprCaptured() const { return getThisFieldDecl() != nullptr; }
441     virtual FieldDecl *getThisFieldDecl() const { return CXXThisFieldDecl; }
442 
443     static bool classof(const CGCapturedStmtInfo *) {
444       return true;
445     }
446 
447     /// Emit the captured statement body.
448     virtual void EmitBody(CodeGenFunction &CGF, const Stmt *S) {
449       CGF.incrementProfileCounter(S);
450       CGF.EmitStmt(S);
451     }
452 
453     /// Get the name of the capture helper.
454     virtual StringRef getHelperName() const { return "__captured_stmt"; }
455 
456     /// Get the CaptureFields
457     llvm::SmallDenseMap<const VarDecl *, FieldDecl *> getCaptureFields() {
458       return CaptureFields;
459     }
460 
461   private:
462     /// The kind of captured statement being generated.
463     CapturedRegionKind Kind;
464 
465     /// Keep the map between VarDecl and FieldDecl.
466     llvm::SmallDenseMap<const VarDecl *, FieldDecl *> CaptureFields;
467 
468     /// The base address of the captured record, passed in as the first
469     /// argument of the parallel region function.
470     llvm::Value *ThisValue;
471 
472     /// Captured 'this' type.
473     FieldDecl *CXXThisFieldDecl;
474   };
475   CGCapturedStmtInfo *CapturedStmtInfo = nullptr;
476 
477   /// RAII for correct setting/restoring of CapturedStmtInfo.
478   class CGCapturedStmtRAII {
479   private:
480     CodeGenFunction &CGF;
481     CGCapturedStmtInfo *PrevCapturedStmtInfo;
482   public:
483     CGCapturedStmtRAII(CodeGenFunction &CGF,
484                        CGCapturedStmtInfo *NewCapturedStmtInfo)
485         : CGF(CGF), PrevCapturedStmtInfo(CGF.CapturedStmtInfo) {
486       CGF.CapturedStmtInfo = NewCapturedStmtInfo;
487     }
488     ~CGCapturedStmtRAII() { CGF.CapturedStmtInfo = PrevCapturedStmtInfo; }
489   };
490 
491   /// An abstract representation of regular/ObjC call/message targets.
492   class AbstractCallee {
493     /// The function declaration of the callee.
494     const Decl *CalleeDecl;
495 
496   public:
497     AbstractCallee() : CalleeDecl(nullptr) {}
498     AbstractCallee(const FunctionDecl *FD) : CalleeDecl(FD) {}
499     AbstractCallee(const ObjCMethodDecl *OMD) : CalleeDecl(OMD) {}
500     bool hasFunctionDecl() const {
501       return isa_and_nonnull<FunctionDecl>(CalleeDecl);
502     }
503     const Decl *getDecl() const { return CalleeDecl; }
504     unsigned getNumParams() const {
505       if (const auto *FD = dyn_cast<FunctionDecl>(CalleeDecl))
506         return FD->getNumParams();
507       return cast<ObjCMethodDecl>(CalleeDecl)->param_size();
508     }
509     const ParmVarDecl *getParamDecl(unsigned I) const {
510       if (const auto *FD = dyn_cast<FunctionDecl>(CalleeDecl))
511         return FD->getParamDecl(I);
512       return *(cast<ObjCMethodDecl>(CalleeDecl)->param_begin() + I);
513     }
514   };
515 
516   /// Sanitizers enabled for this function.
517   SanitizerSet SanOpts;
518 
519   /// True if CodeGen currently emits code implementing sanitizer checks.
520   bool IsSanitizerScope = false;
521 
522   /// RAII object to set/unset CodeGenFunction::IsSanitizerScope.
523   class SanitizerScope {
524     CodeGenFunction *CGF;
525   public:
526     SanitizerScope(CodeGenFunction *CGF);
527     ~SanitizerScope();
528   };
529 
530   /// In C++, whether we are code generating a thunk.  This controls whether we
531   /// should emit cleanups.
532   bool CurFuncIsThunk = false;
533 
534   /// In ARC, whether we should autorelease the return value.
535   bool AutoreleaseResult = false;
536 
537   /// Whether we processed a Microsoft-style asm block during CodeGen. These can
538   /// potentially set the return value.
539   bool SawAsmBlock = false;
540 
541   const NamedDecl *CurSEHParent = nullptr;
542 
543   /// True if the current function is an outlined SEH helper. This can be a
544   /// finally block or filter expression.
545   bool IsOutlinedSEHHelper = false;
546 
547   /// True if CodeGen currently emits code inside presereved access index
548   /// region.
549   bool IsInPreservedAIRegion = false;
550 
551   /// True if the current statement has nomerge attribute.
552   bool InNoMergeAttributedStmt = false;
553 
554   /// True if the current statement has noinline attribute.
555   bool InNoInlineAttributedStmt = false;
556 
557   /// True if the current statement has always_inline attribute.
558   bool InAlwaysInlineAttributedStmt = false;
559 
560   // The CallExpr within the current statement that the musttail attribute
561   // applies to.  nullptr if there is no 'musttail' on the current statement.
562   const CallExpr *MustTailCall = nullptr;
563 
564   /// Returns true if a function must make progress, which means the
565   /// mustprogress attribute can be added.
566   bool checkIfFunctionMustProgress() {
567     if (CGM.getCodeGenOpts().getFiniteLoops() ==
568         CodeGenOptions::FiniteLoopsKind::Never)
569       return false;
570 
571     // C++11 and later guarantees that a thread eventually will do one of the
572     // following (6.9.2.3.1 in C++11):
573     // - terminate,
574     //  - make a call to a library I/O function,
575     //  - perform an access through a volatile glvalue, or
576     //  - perform a synchronization operation or an atomic operation.
577     //
578     // Hence each function is 'mustprogress' in C++11 or later.
579     return getLangOpts().CPlusPlus11;
580   }
581 
582   /// Returns true if a loop must make progress, which means the mustprogress
583   /// attribute can be added. \p HasConstantCond indicates whether the branch
584   /// condition is a known constant.
585   bool checkIfLoopMustProgress(bool HasConstantCond) {
586     if (CGM.getCodeGenOpts().getFiniteLoops() ==
587         CodeGenOptions::FiniteLoopsKind::Always)
588       return true;
589     if (CGM.getCodeGenOpts().getFiniteLoops() ==
590         CodeGenOptions::FiniteLoopsKind::Never)
591       return false;
592 
593     // If the containing function must make progress, loops also must make
594     // progress (as in C++11 and later).
595     if (checkIfFunctionMustProgress())
596       return true;
597 
598     // Now apply rules for plain C (see  6.8.5.6 in C11).
599     // Loops with constant conditions do not have to make progress in any C
600     // version.
601     if (HasConstantCond)
602       return false;
603 
604     // Loops with non-constant conditions must make progress in C11 and later.
605     return getLangOpts().C11;
606   }
607 
608   const CodeGen::CGBlockInfo *BlockInfo = nullptr;
609   llvm::Value *BlockPointer = nullptr;
610 
611   llvm::DenseMap<const VarDecl *, FieldDecl *> LambdaCaptureFields;
612   FieldDecl *LambdaThisCaptureField = nullptr;
613 
614   /// A mapping from NRVO variables to the flags used to indicate
615   /// when the NRVO has been applied to this variable.
616   llvm::DenseMap<const VarDecl *, llvm::Value *> NRVOFlags;
617 
618   EHScopeStack EHStack;
619   llvm::SmallVector<char, 256> LifetimeExtendedCleanupStack;
620   llvm::SmallVector<const JumpDest *, 2> SEHTryEpilogueStack;
621 
622   llvm::Instruction *CurrentFuncletPad = nullptr;
623 
624   class CallLifetimeEnd final : public EHScopeStack::Cleanup {
625     bool isRedundantBeforeReturn() override { return true; }
626 
627     llvm::Value *Addr;
628     llvm::Value *Size;
629 
630   public:
631     CallLifetimeEnd(Address addr, llvm::Value *size)
632         : Addr(addr.getPointer()), Size(size) {}
633 
634     void Emit(CodeGenFunction &CGF, Flags flags) override {
635       CGF.EmitLifetimeEnd(Size, Addr);
636     }
637   };
638 
639   /// Header for data within LifetimeExtendedCleanupStack.
640   struct LifetimeExtendedCleanupHeader {
641     /// The size of the following cleanup object.
642     unsigned Size;
643     /// The kind of cleanup to push: a value from the CleanupKind enumeration.
644     unsigned Kind : 31;
645     /// Whether this is a conditional cleanup.
646     unsigned IsConditional : 1;
647 
648     size_t getSize() const { return Size; }
649     CleanupKind getKind() const { return (CleanupKind)Kind; }
650     bool isConditional() const { return IsConditional; }
651   };
652 
653   /// i32s containing the indexes of the cleanup destinations.
654   Address NormalCleanupDest = Address::invalid();
655 
656   unsigned NextCleanupDestIndex = 1;
657 
658   /// EHResumeBlock - Unified block containing a call to llvm.eh.resume.
659   llvm::BasicBlock *EHResumeBlock = nullptr;
660 
661   /// The exception slot.  All landing pads write the current exception pointer
662   /// into this alloca.
663   llvm::Value *ExceptionSlot = nullptr;
664 
665   /// The selector slot.  Under the MandatoryCleanup model, all landing pads
666   /// write the current selector value into this alloca.
667   llvm::AllocaInst *EHSelectorSlot = nullptr;
668 
669   /// A stack of exception code slots. Entering an __except block pushes a slot
670   /// on the stack and leaving pops one. The __exception_code() intrinsic loads
671   /// a value from the top of the stack.
672   SmallVector<Address, 1> SEHCodeSlotStack;
673 
674   /// Value returned by __exception_info intrinsic.
675   llvm::Value *SEHInfo = nullptr;
676 
677   /// Emits a landing pad for the current EH stack.
678   llvm::BasicBlock *EmitLandingPad();
679 
680   llvm::BasicBlock *getInvokeDestImpl();
681 
682   /// Parent loop-based directive for scan directive.
683   const OMPExecutableDirective *OMPParentLoopDirectiveForScan = nullptr;
684   llvm::BasicBlock *OMPBeforeScanBlock = nullptr;
685   llvm::BasicBlock *OMPAfterScanBlock = nullptr;
686   llvm::BasicBlock *OMPScanExitBlock = nullptr;
687   llvm::BasicBlock *OMPScanDispatch = nullptr;
688   bool OMPFirstScanLoop = false;
689 
690   /// Manages parent directive for scan directives.
691   class ParentLoopDirectiveForScanRegion {
692     CodeGenFunction &CGF;
693     const OMPExecutableDirective *ParentLoopDirectiveForScan;
694 
695   public:
696     ParentLoopDirectiveForScanRegion(
697         CodeGenFunction &CGF,
698         const OMPExecutableDirective &ParentLoopDirectiveForScan)
699         : CGF(CGF),
700           ParentLoopDirectiveForScan(CGF.OMPParentLoopDirectiveForScan) {
701       CGF.OMPParentLoopDirectiveForScan = &ParentLoopDirectiveForScan;
702     }
703     ~ParentLoopDirectiveForScanRegion() {
704       CGF.OMPParentLoopDirectiveForScan = ParentLoopDirectiveForScan;
705     }
706   };
707 
708   template <class T>
709   typename DominatingValue<T>::saved_type saveValueInCond(T value) {
710     return DominatingValue<T>::save(*this, value);
711   }
712 
713   class CGFPOptionsRAII {
714   public:
715     CGFPOptionsRAII(CodeGenFunction &CGF, FPOptions FPFeatures);
716     CGFPOptionsRAII(CodeGenFunction &CGF, const Expr *E);
717     ~CGFPOptionsRAII();
718 
719   private:
720     void ConstructorHelper(FPOptions FPFeatures);
721     CodeGenFunction &CGF;
722     FPOptions OldFPFeatures;
723     llvm::fp::ExceptionBehavior OldExcept;
724     llvm::RoundingMode OldRounding;
725     Optional<CGBuilderTy::FastMathFlagGuard> FMFGuard;
726   };
727   FPOptions CurFPFeatures;
728 
729 public:
730   /// ObjCEHValueStack - Stack of Objective-C exception values, used for
731   /// rethrows.
732   SmallVector<llvm::Value*, 8> ObjCEHValueStack;
733 
734   /// A class controlling the emission of a finally block.
735   class FinallyInfo {
736     /// Where the catchall's edge through the cleanup should go.
737     JumpDest RethrowDest;
738 
739     /// A function to call to enter the catch.
740     llvm::FunctionCallee BeginCatchFn;
741 
742     /// An i1 variable indicating whether or not the @finally is
743     /// running for an exception.
744     llvm::AllocaInst *ForEHVar;
745 
746     /// An i8* variable into which the exception pointer to rethrow
747     /// has been saved.
748     llvm::AllocaInst *SavedExnVar;
749 
750   public:
751     void enter(CodeGenFunction &CGF, const Stmt *Finally,
752                llvm::FunctionCallee beginCatchFn,
753                llvm::FunctionCallee endCatchFn, llvm::FunctionCallee rethrowFn);
754     void exit(CodeGenFunction &CGF);
755   };
756 
757   /// Returns true inside SEH __try blocks.
758   bool isSEHTryScope() const { return !SEHTryEpilogueStack.empty(); }
759 
760   /// Returns true while emitting a cleanuppad.
761   bool isCleanupPadScope() const {
762     return CurrentFuncletPad && isa<llvm::CleanupPadInst>(CurrentFuncletPad);
763   }
764 
765   /// pushFullExprCleanup - Push a cleanup to be run at the end of the
766   /// current full-expression.  Safe against the possibility that
767   /// we're currently inside a conditionally-evaluated expression.
768   template <class T, class... As>
769   void pushFullExprCleanup(CleanupKind kind, As... A) {
770     // If we're not in a conditional branch, or if none of the
771     // arguments requires saving, then use the unconditional cleanup.
772     if (!isInConditionalBranch())
773       return EHStack.pushCleanup<T>(kind, A...);
774 
775     // Stash values in a tuple so we can guarantee the order of saves.
776     typedef std::tuple<typename DominatingValue<As>::saved_type...> SavedTuple;
777     SavedTuple Saved{saveValueInCond(A)...};
778 
779     typedef EHScopeStack::ConditionalCleanup<T, As...> CleanupType;
780     EHStack.pushCleanupTuple<CleanupType>(kind, Saved);
781     initFullExprCleanup();
782   }
783 
784   /// Queue a cleanup to be pushed after finishing the current full-expression,
785   /// potentially with an active flag.
786   template <class T, class... As>
787   void pushCleanupAfterFullExpr(CleanupKind Kind, As... A) {
788     if (!isInConditionalBranch())
789       return pushCleanupAfterFullExprWithActiveFlag<T>(Kind, Address::invalid(),
790                                                        A...);
791 
792     Address ActiveFlag = createCleanupActiveFlag();
793     assert(!DominatingValue<Address>::needsSaving(ActiveFlag) &&
794            "cleanup active flag should never need saving");
795 
796     typedef std::tuple<typename DominatingValue<As>::saved_type...> SavedTuple;
797     SavedTuple Saved{saveValueInCond(A)...};
798 
799     typedef EHScopeStack::ConditionalCleanup<T, As...> CleanupType;
800     pushCleanupAfterFullExprWithActiveFlag<CleanupType>(Kind, ActiveFlag, Saved);
801   }
802 
803   template <class T, class... As>
804   void pushCleanupAfterFullExprWithActiveFlag(CleanupKind Kind,
805                                               Address ActiveFlag, As... A) {
806     LifetimeExtendedCleanupHeader Header = {sizeof(T), Kind,
807                                             ActiveFlag.isValid()};
808 
809     size_t OldSize = LifetimeExtendedCleanupStack.size();
810     LifetimeExtendedCleanupStack.resize(
811         LifetimeExtendedCleanupStack.size() + sizeof(Header) + Header.Size +
812         (Header.IsConditional ? sizeof(ActiveFlag) : 0));
813 
814     static_assert(sizeof(Header) % alignof(T) == 0,
815                   "Cleanup will be allocated on misaligned address");
816     char *Buffer = &LifetimeExtendedCleanupStack[OldSize];
817     new (Buffer) LifetimeExtendedCleanupHeader(Header);
818     new (Buffer + sizeof(Header)) T(A...);
819     if (Header.IsConditional)
820       new (Buffer + sizeof(Header) + sizeof(T)) Address(ActiveFlag);
821   }
822 
823   /// Set up the last cleanup that was pushed as a conditional
824   /// full-expression cleanup.
825   void initFullExprCleanup() {
826     initFullExprCleanupWithFlag(createCleanupActiveFlag());
827   }
828 
829   void initFullExprCleanupWithFlag(Address ActiveFlag);
830   Address createCleanupActiveFlag();
831 
832   /// PushDestructorCleanup - Push a cleanup to call the
833   /// complete-object destructor of an object of the given type at the
834   /// given address.  Does nothing if T is not a C++ class type with a
835   /// non-trivial destructor.
836   void PushDestructorCleanup(QualType T, Address Addr);
837 
838   /// PushDestructorCleanup - Push a cleanup to call the
839   /// complete-object variant of the given destructor on the object at
840   /// the given address.
841   void PushDestructorCleanup(const CXXDestructorDecl *Dtor, QualType T,
842                              Address Addr);
843 
844   /// PopCleanupBlock - Will pop the cleanup entry on the stack and
845   /// process all branch fixups.
846   void PopCleanupBlock(bool FallThroughIsBranchThrough = false);
847 
848   /// DeactivateCleanupBlock - Deactivates the given cleanup block.
849   /// The block cannot be reactivated.  Pops it if it's the top of the
850   /// stack.
851   ///
852   /// \param DominatingIP - An instruction which is known to
853   ///   dominate the current IP (if set) and which lies along
854   ///   all paths of execution between the current IP and the
855   ///   the point at which the cleanup comes into scope.
856   void DeactivateCleanupBlock(EHScopeStack::stable_iterator Cleanup,
857                               llvm::Instruction *DominatingIP);
858 
859   /// ActivateCleanupBlock - Activates an initially-inactive cleanup.
860   /// Cannot be used to resurrect a deactivated cleanup.
861   ///
862   /// \param DominatingIP - An instruction which is known to
863   ///   dominate the current IP (if set) and which lies along
864   ///   all paths of execution between the current IP and the
865   ///   the point at which the cleanup comes into scope.
866   void ActivateCleanupBlock(EHScopeStack::stable_iterator Cleanup,
867                             llvm::Instruction *DominatingIP);
868 
869   /// Enters a new scope for capturing cleanups, all of which
870   /// will be executed once the scope is exited.
871   class RunCleanupsScope {
872     EHScopeStack::stable_iterator CleanupStackDepth, OldCleanupScopeDepth;
873     size_t LifetimeExtendedCleanupStackSize;
874     bool OldDidCallStackSave;
875   protected:
876     bool PerformCleanup;
877   private:
878 
879     RunCleanupsScope(const RunCleanupsScope &) = delete;
880     void operator=(const RunCleanupsScope &) = delete;
881 
882   protected:
883     CodeGenFunction& CGF;
884 
885   public:
886     /// Enter a new cleanup scope.
887     explicit RunCleanupsScope(CodeGenFunction &CGF)
888       : PerformCleanup(true), CGF(CGF)
889     {
890       CleanupStackDepth = CGF.EHStack.stable_begin();
891       LifetimeExtendedCleanupStackSize =
892           CGF.LifetimeExtendedCleanupStack.size();
893       OldDidCallStackSave = CGF.DidCallStackSave;
894       CGF.DidCallStackSave = false;
895       OldCleanupScopeDepth = CGF.CurrentCleanupScopeDepth;
896       CGF.CurrentCleanupScopeDepth = CleanupStackDepth;
897     }
898 
899     /// Exit this cleanup scope, emitting any accumulated cleanups.
900     ~RunCleanupsScope() {
901       if (PerformCleanup)
902         ForceCleanup();
903     }
904 
905     /// Determine whether this scope requires any cleanups.
906     bool requiresCleanups() const {
907       return CGF.EHStack.stable_begin() != CleanupStackDepth;
908     }
909 
910     /// Force the emission of cleanups now, instead of waiting
911     /// until this object is destroyed.
912     /// \param ValuesToReload - A list of values that need to be available at
913     /// the insertion point after cleanup emission. If cleanup emission created
914     /// a shared cleanup block, these value pointers will be rewritten.
915     /// Otherwise, they not will be modified.
916     void ForceCleanup(std::initializer_list<llvm::Value**> ValuesToReload = {}) {
917       assert(PerformCleanup && "Already forced cleanup");
918       CGF.DidCallStackSave = OldDidCallStackSave;
919       CGF.PopCleanupBlocks(CleanupStackDepth, LifetimeExtendedCleanupStackSize,
920                            ValuesToReload);
921       PerformCleanup = false;
922       CGF.CurrentCleanupScopeDepth = OldCleanupScopeDepth;
923     }
924   };
925 
926   // Cleanup stack depth of the RunCleanupsScope that was pushed most recently.
927   EHScopeStack::stable_iterator CurrentCleanupScopeDepth =
928       EHScopeStack::stable_end();
929 
930   class LexicalScope : public RunCleanupsScope {
931     SourceRange Range;
932     SmallVector<const LabelDecl*, 4> Labels;
933     LexicalScope *ParentScope;
934 
935     LexicalScope(const LexicalScope &) = delete;
936     void operator=(const LexicalScope &) = delete;
937 
938   public:
939     /// Enter a new cleanup scope.
940     explicit LexicalScope(CodeGenFunction &CGF, SourceRange Range)
941       : RunCleanupsScope(CGF), Range(Range), ParentScope(CGF.CurLexicalScope) {
942       CGF.CurLexicalScope = this;
943       if (CGDebugInfo *DI = CGF.getDebugInfo())
944         DI->EmitLexicalBlockStart(CGF.Builder, Range.getBegin());
945     }
946 
947     void addLabel(const LabelDecl *label) {
948       assert(PerformCleanup && "adding label to dead scope?");
949       Labels.push_back(label);
950     }
951 
952     /// Exit this cleanup scope, emitting any accumulated
953     /// cleanups.
954     ~LexicalScope() {
955       if (CGDebugInfo *DI = CGF.getDebugInfo())
956         DI->EmitLexicalBlockEnd(CGF.Builder, Range.getEnd());
957 
958       // If we should perform a cleanup, force them now.  Note that
959       // this ends the cleanup scope before rescoping any labels.
960       if (PerformCleanup) {
961         ApplyDebugLocation DL(CGF, Range.getEnd());
962         ForceCleanup();
963       }
964     }
965 
966     /// Force the emission of cleanups now, instead of waiting
967     /// until this object is destroyed.
968     void ForceCleanup() {
969       CGF.CurLexicalScope = ParentScope;
970       RunCleanupsScope::ForceCleanup();
971 
972       if (!Labels.empty())
973         rescopeLabels();
974     }
975 
976     bool hasLabels() const {
977       return !Labels.empty();
978     }
979 
980     void rescopeLabels();
981   };
982 
983   typedef llvm::DenseMap<const Decl *, Address> DeclMapTy;
984 
985   /// The class used to assign some variables some temporarily addresses.
986   class OMPMapVars {
987     DeclMapTy SavedLocals;
988     DeclMapTy SavedTempAddresses;
989     OMPMapVars(const OMPMapVars &) = delete;
990     void operator=(const OMPMapVars &) = delete;
991 
992   public:
993     explicit OMPMapVars() = default;
994     ~OMPMapVars() {
995       assert(SavedLocals.empty() && "Did not restored original addresses.");
996     };
997 
998     /// Sets the address of the variable \p LocalVD to be \p TempAddr in
999     /// function \p CGF.
1000     /// \return true if at least one variable was set already, false otherwise.
1001     bool setVarAddr(CodeGenFunction &CGF, const VarDecl *LocalVD,
1002                     Address TempAddr) {
1003       LocalVD = LocalVD->getCanonicalDecl();
1004       // Only save it once.
1005       if (SavedLocals.count(LocalVD)) return false;
1006 
1007       // Copy the existing local entry to SavedLocals.
1008       auto it = CGF.LocalDeclMap.find(LocalVD);
1009       if (it != CGF.LocalDeclMap.end())
1010         SavedLocals.try_emplace(LocalVD, it->second);
1011       else
1012         SavedLocals.try_emplace(LocalVD, Address::invalid());
1013 
1014       // Generate the private entry.
1015       QualType VarTy = LocalVD->getType();
1016       if (VarTy->isReferenceType()) {
1017         Address Temp = CGF.CreateMemTemp(VarTy);
1018         CGF.Builder.CreateStore(TempAddr.getPointer(), Temp);
1019         TempAddr = Temp;
1020       }
1021       SavedTempAddresses.try_emplace(LocalVD, TempAddr);
1022 
1023       return true;
1024     }
1025 
1026     /// Applies new addresses to the list of the variables.
1027     /// \return true if at least one variable is using new address, false
1028     /// otherwise.
1029     bool apply(CodeGenFunction &CGF) {
1030       copyInto(SavedTempAddresses, CGF.LocalDeclMap);
1031       SavedTempAddresses.clear();
1032       return !SavedLocals.empty();
1033     }
1034 
1035     /// Restores original addresses of the variables.
1036     void restore(CodeGenFunction &CGF) {
1037       if (!SavedLocals.empty()) {
1038         copyInto(SavedLocals, CGF.LocalDeclMap);
1039         SavedLocals.clear();
1040       }
1041     }
1042 
1043   private:
1044     /// Copy all the entries in the source map over the corresponding
1045     /// entries in the destination, which must exist.
1046     static void copyInto(const DeclMapTy &Src, DeclMapTy &Dest) {
1047       for (auto &Pair : Src) {
1048         if (!Pair.second.isValid()) {
1049           Dest.erase(Pair.first);
1050           continue;
1051         }
1052 
1053         auto I = Dest.find(Pair.first);
1054         if (I != Dest.end())
1055           I->second = Pair.second;
1056         else
1057           Dest.insert(Pair);
1058       }
1059     }
1060   };
1061 
1062   /// The scope used to remap some variables as private in the OpenMP loop body
1063   /// (or other captured region emitted without outlining), and to restore old
1064   /// vars back on exit.
1065   class OMPPrivateScope : public RunCleanupsScope {
1066     OMPMapVars MappedVars;
1067     OMPPrivateScope(const OMPPrivateScope &) = delete;
1068     void operator=(const OMPPrivateScope &) = delete;
1069 
1070   public:
1071     /// Enter a new OpenMP private scope.
1072     explicit OMPPrivateScope(CodeGenFunction &CGF) : RunCleanupsScope(CGF) {}
1073 
1074     /// Registers \p LocalVD variable as a private with \p Addr as the address
1075     /// of the corresponding private variable. \p
1076     /// PrivateGen is the address of the generated private variable.
1077     /// \return true if the variable is registered as private, false if it has
1078     /// been privatized already.
1079     bool addPrivate(const VarDecl *LocalVD, Address Addr) {
1080       assert(PerformCleanup && "adding private to dead scope");
1081       return MappedVars.setVarAddr(CGF, LocalVD, Addr);
1082     }
1083 
1084     /// Privatizes local variables previously registered as private.
1085     /// Registration is separate from the actual privatization to allow
1086     /// initializers use values of the original variables, not the private one.
1087     /// This is important, for example, if the private variable is a class
1088     /// variable initialized by a constructor that references other private
1089     /// variables. But at initialization original variables must be used, not
1090     /// private copies.
1091     /// \return true if at least one variable was privatized, false otherwise.
1092     bool Privatize() { return MappedVars.apply(CGF); }
1093 
1094     void ForceCleanup() {
1095       RunCleanupsScope::ForceCleanup();
1096       MappedVars.restore(CGF);
1097     }
1098 
1099     /// Exit scope - all the mapped variables are restored.
1100     ~OMPPrivateScope() {
1101       if (PerformCleanup)
1102         ForceCleanup();
1103     }
1104 
1105     /// Checks if the global variable is captured in current function.
1106     bool isGlobalVarCaptured(const VarDecl *VD) const {
1107       VD = VD->getCanonicalDecl();
1108       return !VD->isLocalVarDeclOrParm() && CGF.LocalDeclMap.count(VD) > 0;
1109     }
1110   };
1111 
1112   /// Save/restore original map of previously emitted local vars in case when we
1113   /// need to duplicate emission of the same code several times in the same
1114   /// function for OpenMP code.
1115   class OMPLocalDeclMapRAII {
1116     CodeGenFunction &CGF;
1117     DeclMapTy SavedMap;
1118 
1119   public:
1120     OMPLocalDeclMapRAII(CodeGenFunction &CGF)
1121         : CGF(CGF), SavedMap(CGF.LocalDeclMap) {}
1122     ~OMPLocalDeclMapRAII() { SavedMap.swap(CGF.LocalDeclMap); }
1123   };
1124 
1125   /// Takes the old cleanup stack size and emits the cleanup blocks
1126   /// that have been added.
1127   void
1128   PopCleanupBlocks(EHScopeStack::stable_iterator OldCleanupStackSize,
1129                    std::initializer_list<llvm::Value **> ValuesToReload = {});
1130 
1131   /// Takes the old cleanup stack size and emits the cleanup blocks
1132   /// that have been added, then adds all lifetime-extended cleanups from
1133   /// the given position to the stack.
1134   void
1135   PopCleanupBlocks(EHScopeStack::stable_iterator OldCleanupStackSize,
1136                    size_t OldLifetimeExtendedStackSize,
1137                    std::initializer_list<llvm::Value **> ValuesToReload = {});
1138 
1139   void ResolveBranchFixups(llvm::BasicBlock *Target);
1140 
1141   /// The given basic block lies in the current EH scope, but may be a
1142   /// target of a potentially scope-crossing jump; get a stable handle
1143   /// to which we can perform this jump later.
1144   JumpDest getJumpDestInCurrentScope(llvm::BasicBlock *Target) {
1145     return JumpDest(Target,
1146                     EHStack.getInnermostNormalCleanup(),
1147                     NextCleanupDestIndex++);
1148   }
1149 
1150   /// The given basic block lies in the current EH scope, but may be a
1151   /// target of a potentially scope-crossing jump; get a stable handle
1152   /// to which we can perform this jump later.
1153   JumpDest getJumpDestInCurrentScope(StringRef Name = StringRef()) {
1154     return getJumpDestInCurrentScope(createBasicBlock(Name));
1155   }
1156 
1157   /// EmitBranchThroughCleanup - Emit a branch from the current insert
1158   /// block through the normal cleanup handling code (if any) and then
1159   /// on to \arg Dest.
1160   void EmitBranchThroughCleanup(JumpDest Dest);
1161 
1162   /// isObviouslyBranchWithoutCleanups - Return true if a branch to the
1163   /// specified destination obviously has no cleanups to run.  'false' is always
1164   /// a conservatively correct answer for this method.
1165   bool isObviouslyBranchWithoutCleanups(JumpDest Dest) const;
1166 
1167   /// popCatchScope - Pops the catch scope at the top of the EHScope
1168   /// stack, emitting any required code (other than the catch handlers
1169   /// themselves).
1170   void popCatchScope();
1171 
1172   llvm::BasicBlock *getEHResumeBlock(bool isCleanup);
1173   llvm::BasicBlock *getEHDispatchBlock(EHScopeStack::stable_iterator scope);
1174   llvm::BasicBlock *
1175   getFuncletEHDispatchBlock(EHScopeStack::stable_iterator scope);
1176 
1177   /// An object to manage conditionally-evaluated expressions.
1178   class ConditionalEvaluation {
1179     llvm::BasicBlock *StartBB;
1180 
1181   public:
1182     ConditionalEvaluation(CodeGenFunction &CGF)
1183       : StartBB(CGF.Builder.GetInsertBlock()) {}
1184 
1185     void begin(CodeGenFunction &CGF) {
1186       assert(CGF.OutermostConditional != this);
1187       if (!CGF.OutermostConditional)
1188         CGF.OutermostConditional = this;
1189     }
1190 
1191     void end(CodeGenFunction &CGF) {
1192       assert(CGF.OutermostConditional != nullptr);
1193       if (CGF.OutermostConditional == this)
1194         CGF.OutermostConditional = nullptr;
1195     }
1196 
1197     /// Returns a block which will be executed prior to each
1198     /// evaluation of the conditional code.
1199     llvm::BasicBlock *getStartingBlock() const {
1200       return StartBB;
1201     }
1202   };
1203 
1204   /// isInConditionalBranch - Return true if we're currently emitting
1205   /// one branch or the other of a conditional expression.
1206   bool isInConditionalBranch() const { return OutermostConditional != nullptr; }
1207 
1208   void setBeforeOutermostConditional(llvm::Value *value, Address addr) {
1209     assert(isInConditionalBranch());
1210     llvm::BasicBlock *block = OutermostConditional->getStartingBlock();
1211     auto store = new llvm::StoreInst(value, addr.getPointer(), &block->back());
1212     store->setAlignment(addr.getAlignment().getAsAlign());
1213   }
1214 
1215   /// An RAII object to record that we're evaluating a statement
1216   /// expression.
1217   class StmtExprEvaluation {
1218     CodeGenFunction &CGF;
1219 
1220     /// We have to save the outermost conditional: cleanups in a
1221     /// statement expression aren't conditional just because the
1222     /// StmtExpr is.
1223     ConditionalEvaluation *SavedOutermostConditional;
1224 
1225   public:
1226     StmtExprEvaluation(CodeGenFunction &CGF)
1227       : CGF(CGF), SavedOutermostConditional(CGF.OutermostConditional) {
1228       CGF.OutermostConditional = nullptr;
1229     }
1230 
1231     ~StmtExprEvaluation() {
1232       CGF.OutermostConditional = SavedOutermostConditional;
1233       CGF.EnsureInsertPoint();
1234     }
1235   };
1236 
1237   /// An object which temporarily prevents a value from being
1238   /// destroyed by aggressive peephole optimizations that assume that
1239   /// all uses of a value have been realized in the IR.
1240   class PeepholeProtection {
1241     llvm::Instruction *Inst;
1242     friend class CodeGenFunction;
1243 
1244   public:
1245     PeepholeProtection() : Inst(nullptr) {}
1246   };
1247 
1248   /// A non-RAII class containing all the information about a bound
1249   /// opaque value.  OpaqueValueMapping, below, is a RAII wrapper for
1250   /// this which makes individual mappings very simple; using this
1251   /// class directly is useful when you have a variable number of
1252   /// opaque values or don't want the RAII functionality for some
1253   /// reason.
1254   class OpaqueValueMappingData {
1255     const OpaqueValueExpr *OpaqueValue;
1256     bool BoundLValue;
1257     CodeGenFunction::PeepholeProtection Protection;
1258 
1259     OpaqueValueMappingData(const OpaqueValueExpr *ov,
1260                            bool boundLValue)
1261       : OpaqueValue(ov), BoundLValue(boundLValue) {}
1262   public:
1263     OpaqueValueMappingData() : OpaqueValue(nullptr) {}
1264 
1265     static bool shouldBindAsLValue(const Expr *expr) {
1266       // gl-values should be bound as l-values for obvious reasons.
1267       // Records should be bound as l-values because IR generation
1268       // always keeps them in memory.  Expressions of function type
1269       // act exactly like l-values but are formally required to be
1270       // r-values in C.
1271       return expr->isGLValue() ||
1272              expr->getType()->isFunctionType() ||
1273              hasAggregateEvaluationKind(expr->getType());
1274     }
1275 
1276     static OpaqueValueMappingData bind(CodeGenFunction &CGF,
1277                                        const OpaqueValueExpr *ov,
1278                                        const Expr *e) {
1279       if (shouldBindAsLValue(ov))
1280         return bind(CGF, ov, CGF.EmitLValue(e));
1281       return bind(CGF, ov, CGF.EmitAnyExpr(e));
1282     }
1283 
1284     static OpaqueValueMappingData bind(CodeGenFunction &CGF,
1285                                        const OpaqueValueExpr *ov,
1286                                        const LValue &lv) {
1287       assert(shouldBindAsLValue(ov));
1288       CGF.OpaqueLValues.insert(std::make_pair(ov, lv));
1289       return OpaqueValueMappingData(ov, true);
1290     }
1291 
1292     static OpaqueValueMappingData bind(CodeGenFunction &CGF,
1293                                        const OpaqueValueExpr *ov,
1294                                        const RValue &rv) {
1295       assert(!shouldBindAsLValue(ov));
1296       CGF.OpaqueRValues.insert(std::make_pair(ov, rv));
1297 
1298       OpaqueValueMappingData data(ov, false);
1299 
1300       // Work around an extremely aggressive peephole optimization in
1301       // EmitScalarConversion which assumes that all other uses of a
1302       // value are extant.
1303       data.Protection = CGF.protectFromPeepholes(rv);
1304 
1305       return data;
1306     }
1307 
1308     bool isValid() const { return OpaqueValue != nullptr; }
1309     void clear() { OpaqueValue = nullptr; }
1310 
1311     void unbind(CodeGenFunction &CGF) {
1312       assert(OpaqueValue && "no data to unbind!");
1313 
1314       if (BoundLValue) {
1315         CGF.OpaqueLValues.erase(OpaqueValue);
1316       } else {
1317         CGF.OpaqueRValues.erase(OpaqueValue);
1318         CGF.unprotectFromPeepholes(Protection);
1319       }
1320     }
1321   };
1322 
1323   /// An RAII object to set (and then clear) a mapping for an OpaqueValueExpr.
1324   class OpaqueValueMapping {
1325     CodeGenFunction &CGF;
1326     OpaqueValueMappingData Data;
1327 
1328   public:
1329     static bool shouldBindAsLValue(const Expr *expr) {
1330       return OpaqueValueMappingData::shouldBindAsLValue(expr);
1331     }
1332 
1333     /// Build the opaque value mapping for the given conditional
1334     /// operator if it's the GNU ?: extension.  This is a common
1335     /// enough pattern that the convenience operator is really
1336     /// helpful.
1337     ///
1338     OpaqueValueMapping(CodeGenFunction &CGF,
1339                        const AbstractConditionalOperator *op) : CGF(CGF) {
1340       if (isa<ConditionalOperator>(op))
1341         // Leave Data empty.
1342         return;
1343 
1344       const BinaryConditionalOperator *e = cast<BinaryConditionalOperator>(op);
1345       Data = OpaqueValueMappingData::bind(CGF, e->getOpaqueValue(),
1346                                           e->getCommon());
1347     }
1348 
1349     /// Build the opaque value mapping for an OpaqueValueExpr whose source
1350     /// expression is set to the expression the OVE represents.
1351     OpaqueValueMapping(CodeGenFunction &CGF, const OpaqueValueExpr *OV)
1352         : CGF(CGF) {
1353       if (OV) {
1354         assert(OV->getSourceExpr() && "wrong form of OpaqueValueMapping used "
1355                                       "for OVE with no source expression");
1356         Data = OpaqueValueMappingData::bind(CGF, OV, OV->getSourceExpr());
1357       }
1358     }
1359 
1360     OpaqueValueMapping(CodeGenFunction &CGF,
1361                        const OpaqueValueExpr *opaqueValue,
1362                        LValue lvalue)
1363       : CGF(CGF), Data(OpaqueValueMappingData::bind(CGF, opaqueValue, lvalue)) {
1364     }
1365 
1366     OpaqueValueMapping(CodeGenFunction &CGF,
1367                        const OpaqueValueExpr *opaqueValue,
1368                        RValue rvalue)
1369       : CGF(CGF), Data(OpaqueValueMappingData::bind(CGF, opaqueValue, rvalue)) {
1370     }
1371 
1372     void pop() {
1373       Data.unbind(CGF);
1374       Data.clear();
1375     }
1376 
1377     ~OpaqueValueMapping() {
1378       if (Data.isValid()) Data.unbind(CGF);
1379     }
1380   };
1381 
1382 private:
1383   CGDebugInfo *DebugInfo;
1384   /// Used to create unique names for artificial VLA size debug info variables.
1385   unsigned VLAExprCounter = 0;
1386   bool DisableDebugInfo = false;
1387 
1388   /// DidCallStackSave - Whether llvm.stacksave has been called. Used to avoid
1389   /// calling llvm.stacksave for multiple VLAs in the same scope.
1390   bool DidCallStackSave = false;
1391 
1392   /// IndirectBranch - The first time an indirect goto is seen we create a block
1393   /// with an indirect branch.  Every time we see the address of a label taken,
1394   /// we add the label to the indirect goto.  Every subsequent indirect goto is
1395   /// codegen'd as a jump to the IndirectBranch's basic block.
1396   llvm::IndirectBrInst *IndirectBranch = nullptr;
1397 
1398   /// LocalDeclMap - This keeps track of the LLVM allocas or globals for local C
1399   /// decls.
1400   DeclMapTy LocalDeclMap;
1401 
1402   // Keep track of the cleanups for callee-destructed parameters pushed to the
1403   // cleanup stack so that they can be deactivated later.
1404   llvm::DenseMap<const ParmVarDecl *, EHScopeStack::stable_iterator>
1405       CalleeDestructedParamCleanups;
1406 
1407   /// SizeArguments - If a ParmVarDecl had the pass_object_size attribute, this
1408   /// will contain a mapping from said ParmVarDecl to its implicit "object_size"
1409   /// parameter.
1410   llvm::SmallDenseMap<const ParmVarDecl *, const ImplicitParamDecl *, 2>
1411       SizeArguments;
1412 
1413   /// Track escaped local variables with auto storage. Used during SEH
1414   /// outlining to produce a call to llvm.localescape.
1415   llvm::DenseMap<llvm::AllocaInst *, int> EscapedLocals;
1416 
1417   /// LabelMap - This keeps track of the LLVM basic block for each C label.
1418   llvm::DenseMap<const LabelDecl*, JumpDest> LabelMap;
1419 
1420   // BreakContinueStack - This keeps track of where break and continue
1421   // statements should jump to.
1422   struct BreakContinue {
1423     BreakContinue(JumpDest Break, JumpDest Continue)
1424       : BreakBlock(Break), ContinueBlock(Continue) {}
1425 
1426     JumpDest BreakBlock;
1427     JumpDest ContinueBlock;
1428   };
1429   SmallVector<BreakContinue, 8> BreakContinueStack;
1430 
1431   /// Handles cancellation exit points in OpenMP-related constructs.
1432   class OpenMPCancelExitStack {
1433     /// Tracks cancellation exit point and join point for cancel-related exit
1434     /// and normal exit.
1435     struct CancelExit {
1436       CancelExit() = default;
1437       CancelExit(OpenMPDirectiveKind Kind, JumpDest ExitBlock,
1438                  JumpDest ContBlock)
1439           : Kind(Kind), ExitBlock(ExitBlock), ContBlock(ContBlock) {}
1440       OpenMPDirectiveKind Kind = llvm::omp::OMPD_unknown;
1441       /// true if the exit block has been emitted already by the special
1442       /// emitExit() call, false if the default codegen is used.
1443       bool HasBeenEmitted = false;
1444       JumpDest ExitBlock;
1445       JumpDest ContBlock;
1446     };
1447 
1448     SmallVector<CancelExit, 8> Stack;
1449 
1450   public:
1451     OpenMPCancelExitStack() : Stack(1) {}
1452     ~OpenMPCancelExitStack() = default;
1453     /// Fetches the exit block for the current OpenMP construct.
1454     JumpDest getExitBlock() const { return Stack.back().ExitBlock; }
1455     /// Emits exit block with special codegen procedure specific for the related
1456     /// OpenMP construct + emits code for normal construct cleanup.
1457     void emitExit(CodeGenFunction &CGF, OpenMPDirectiveKind Kind,
1458                   const llvm::function_ref<void(CodeGenFunction &)> CodeGen) {
1459       if (Stack.back().Kind == Kind && getExitBlock().isValid()) {
1460         assert(CGF.getOMPCancelDestination(Kind).isValid());
1461         assert(CGF.HaveInsertPoint());
1462         assert(!Stack.back().HasBeenEmitted);
1463         auto IP = CGF.Builder.saveAndClearIP();
1464         CGF.EmitBlock(Stack.back().ExitBlock.getBlock());
1465         CodeGen(CGF);
1466         CGF.EmitBranch(Stack.back().ContBlock.getBlock());
1467         CGF.Builder.restoreIP(IP);
1468         Stack.back().HasBeenEmitted = true;
1469       }
1470       CodeGen(CGF);
1471     }
1472     /// Enter the cancel supporting \a Kind construct.
1473     /// \param Kind OpenMP directive that supports cancel constructs.
1474     /// \param HasCancel true, if the construct has inner cancel directive,
1475     /// false otherwise.
1476     void enter(CodeGenFunction &CGF, OpenMPDirectiveKind Kind, bool HasCancel) {
1477       Stack.push_back({Kind,
1478                        HasCancel ? CGF.getJumpDestInCurrentScope("cancel.exit")
1479                                  : JumpDest(),
1480                        HasCancel ? CGF.getJumpDestInCurrentScope("cancel.cont")
1481                                  : JumpDest()});
1482     }
1483     /// Emits default exit point for the cancel construct (if the special one
1484     /// has not be used) + join point for cancel/normal exits.
1485     void exit(CodeGenFunction &CGF) {
1486       if (getExitBlock().isValid()) {
1487         assert(CGF.getOMPCancelDestination(Stack.back().Kind).isValid());
1488         bool HaveIP = CGF.HaveInsertPoint();
1489         if (!Stack.back().HasBeenEmitted) {
1490           if (HaveIP)
1491             CGF.EmitBranchThroughCleanup(Stack.back().ContBlock);
1492           CGF.EmitBlock(Stack.back().ExitBlock.getBlock());
1493           CGF.EmitBranchThroughCleanup(Stack.back().ContBlock);
1494         }
1495         CGF.EmitBlock(Stack.back().ContBlock.getBlock());
1496         if (!HaveIP) {
1497           CGF.Builder.CreateUnreachable();
1498           CGF.Builder.ClearInsertionPoint();
1499         }
1500       }
1501       Stack.pop_back();
1502     }
1503   };
1504   OpenMPCancelExitStack OMPCancelStack;
1505 
1506   /// Lower the Likelihood knowledge about the \p Cond via llvm.expect intrin.
1507   llvm::Value *emitCondLikelihoodViaExpectIntrinsic(llvm::Value *Cond,
1508                                                     Stmt::Likelihood LH);
1509 
1510   CodeGenPGO PGO;
1511 
1512   /// Calculate branch weights appropriate for PGO data
1513   llvm::MDNode *createProfileWeights(uint64_t TrueCount,
1514                                      uint64_t FalseCount) const;
1515   llvm::MDNode *createProfileWeights(ArrayRef<uint64_t> Weights) const;
1516   llvm::MDNode *createProfileWeightsForLoop(const Stmt *Cond,
1517                                             uint64_t LoopCount) const;
1518 
1519 public:
1520   /// Increment the profiler's counter for the given statement by \p StepV.
1521   /// If \p StepV is null, the default increment is 1.
1522   void incrementProfileCounter(const Stmt *S, llvm::Value *StepV = nullptr) {
1523     if (CGM.getCodeGenOpts().hasProfileClangInstr() &&
1524         !CurFn->hasFnAttribute(llvm::Attribute::NoProfile))
1525       PGO.emitCounterIncrement(Builder, S, StepV);
1526     PGO.setCurrentStmt(S);
1527   }
1528 
1529   /// Get the profiler's count for the given statement.
1530   uint64_t getProfileCount(const Stmt *S) {
1531     Optional<uint64_t> Count = PGO.getStmtCount(S);
1532     if (!Count.hasValue())
1533       return 0;
1534     return *Count;
1535   }
1536 
1537   /// Set the profiler's current count.
1538   void setCurrentProfileCount(uint64_t Count) {
1539     PGO.setCurrentRegionCount(Count);
1540   }
1541 
1542   /// Get the profiler's current count. This is generally the count for the most
1543   /// recently incremented counter.
1544   uint64_t getCurrentProfileCount() {
1545     return PGO.getCurrentRegionCount();
1546   }
1547 
1548 private:
1549 
1550   /// SwitchInsn - This is nearest current switch instruction. It is null if
1551   /// current context is not in a switch.
1552   llvm::SwitchInst *SwitchInsn = nullptr;
1553   /// The branch weights of SwitchInsn when doing instrumentation based PGO.
1554   SmallVector<uint64_t, 16> *SwitchWeights = nullptr;
1555 
1556   /// The likelihood attributes of the SwitchCase.
1557   SmallVector<Stmt::Likelihood, 16> *SwitchLikelihood = nullptr;
1558 
1559   /// CaseRangeBlock - This block holds if condition check for last case
1560   /// statement range in current switch instruction.
1561   llvm::BasicBlock *CaseRangeBlock = nullptr;
1562 
1563   /// OpaqueLValues - Keeps track of the current set of opaque value
1564   /// expressions.
1565   llvm::DenseMap<const OpaqueValueExpr *, LValue> OpaqueLValues;
1566   llvm::DenseMap<const OpaqueValueExpr *, RValue> OpaqueRValues;
1567 
1568   // VLASizeMap - This keeps track of the associated size for each VLA type.
1569   // We track this by the size expression rather than the type itself because
1570   // in certain situations, like a const qualifier applied to an VLA typedef,
1571   // multiple VLA types can share the same size expression.
1572   // FIXME: Maybe this could be a stack of maps that is pushed/popped as we
1573   // enter/leave scopes.
1574   llvm::DenseMap<const Expr*, llvm::Value*> VLASizeMap;
1575 
1576   /// A block containing a single 'unreachable' instruction.  Created
1577   /// lazily by getUnreachableBlock().
1578   llvm::BasicBlock *UnreachableBlock = nullptr;
1579 
1580   /// Counts of the number return expressions in the function.
1581   unsigned NumReturnExprs = 0;
1582 
1583   /// Count the number of simple (constant) return expressions in the function.
1584   unsigned NumSimpleReturnExprs = 0;
1585 
1586   /// The last regular (non-return) debug location (breakpoint) in the function.
1587   SourceLocation LastStopPoint;
1588 
1589 public:
1590   /// Source location information about the default argument or member
1591   /// initializer expression we're evaluating, if any.
1592   CurrentSourceLocExprScope CurSourceLocExprScope;
1593   using SourceLocExprScopeGuard =
1594       CurrentSourceLocExprScope::SourceLocExprScopeGuard;
1595 
1596   /// A scope within which we are constructing the fields of an object which
1597   /// might use a CXXDefaultInitExpr. This stashes away a 'this' value to use
1598   /// if we need to evaluate a CXXDefaultInitExpr within the evaluation.
1599   class FieldConstructionScope {
1600   public:
1601     FieldConstructionScope(CodeGenFunction &CGF, Address This)
1602         : CGF(CGF), OldCXXDefaultInitExprThis(CGF.CXXDefaultInitExprThis) {
1603       CGF.CXXDefaultInitExprThis = This;
1604     }
1605     ~FieldConstructionScope() {
1606       CGF.CXXDefaultInitExprThis = OldCXXDefaultInitExprThis;
1607     }
1608 
1609   private:
1610     CodeGenFunction &CGF;
1611     Address OldCXXDefaultInitExprThis;
1612   };
1613 
1614   /// The scope of a CXXDefaultInitExpr. Within this scope, the value of 'this'
1615   /// is overridden to be the object under construction.
1616   class CXXDefaultInitExprScope  {
1617   public:
1618     CXXDefaultInitExprScope(CodeGenFunction &CGF, const CXXDefaultInitExpr *E)
1619         : CGF(CGF), OldCXXThisValue(CGF.CXXThisValue),
1620           OldCXXThisAlignment(CGF.CXXThisAlignment),
1621           SourceLocScope(E, CGF.CurSourceLocExprScope) {
1622       CGF.CXXThisValue = CGF.CXXDefaultInitExprThis.getPointer();
1623       CGF.CXXThisAlignment = CGF.CXXDefaultInitExprThis.getAlignment();
1624     }
1625     ~CXXDefaultInitExprScope() {
1626       CGF.CXXThisValue = OldCXXThisValue;
1627       CGF.CXXThisAlignment = OldCXXThisAlignment;
1628     }
1629 
1630   public:
1631     CodeGenFunction &CGF;
1632     llvm::Value *OldCXXThisValue;
1633     CharUnits OldCXXThisAlignment;
1634     SourceLocExprScopeGuard SourceLocScope;
1635   };
1636 
1637   struct CXXDefaultArgExprScope : SourceLocExprScopeGuard {
1638     CXXDefaultArgExprScope(CodeGenFunction &CGF, const CXXDefaultArgExpr *E)
1639         : SourceLocExprScopeGuard(E, CGF.CurSourceLocExprScope) {}
1640   };
1641 
1642   /// The scope of an ArrayInitLoopExpr. Within this scope, the value of the
1643   /// current loop index is overridden.
1644   class ArrayInitLoopExprScope {
1645   public:
1646     ArrayInitLoopExprScope(CodeGenFunction &CGF, llvm::Value *Index)
1647       : CGF(CGF), OldArrayInitIndex(CGF.ArrayInitIndex) {
1648       CGF.ArrayInitIndex = Index;
1649     }
1650     ~ArrayInitLoopExprScope() {
1651       CGF.ArrayInitIndex = OldArrayInitIndex;
1652     }
1653 
1654   private:
1655     CodeGenFunction &CGF;
1656     llvm::Value *OldArrayInitIndex;
1657   };
1658 
1659   class InlinedInheritingConstructorScope {
1660   public:
1661     InlinedInheritingConstructorScope(CodeGenFunction &CGF, GlobalDecl GD)
1662         : CGF(CGF), OldCurGD(CGF.CurGD), OldCurFuncDecl(CGF.CurFuncDecl),
1663           OldCurCodeDecl(CGF.CurCodeDecl),
1664           OldCXXABIThisDecl(CGF.CXXABIThisDecl),
1665           OldCXXABIThisValue(CGF.CXXABIThisValue),
1666           OldCXXThisValue(CGF.CXXThisValue),
1667           OldCXXABIThisAlignment(CGF.CXXABIThisAlignment),
1668           OldCXXThisAlignment(CGF.CXXThisAlignment),
1669           OldReturnValue(CGF.ReturnValue), OldFnRetTy(CGF.FnRetTy),
1670           OldCXXInheritedCtorInitExprArgs(
1671               std::move(CGF.CXXInheritedCtorInitExprArgs)) {
1672       CGF.CurGD = GD;
1673       CGF.CurFuncDecl = CGF.CurCodeDecl =
1674           cast<CXXConstructorDecl>(GD.getDecl());
1675       CGF.CXXABIThisDecl = nullptr;
1676       CGF.CXXABIThisValue = nullptr;
1677       CGF.CXXThisValue = nullptr;
1678       CGF.CXXABIThisAlignment = CharUnits();
1679       CGF.CXXThisAlignment = CharUnits();
1680       CGF.ReturnValue = Address::invalid();
1681       CGF.FnRetTy = QualType();
1682       CGF.CXXInheritedCtorInitExprArgs.clear();
1683     }
1684     ~InlinedInheritingConstructorScope() {
1685       CGF.CurGD = OldCurGD;
1686       CGF.CurFuncDecl = OldCurFuncDecl;
1687       CGF.CurCodeDecl = OldCurCodeDecl;
1688       CGF.CXXABIThisDecl = OldCXXABIThisDecl;
1689       CGF.CXXABIThisValue = OldCXXABIThisValue;
1690       CGF.CXXThisValue = OldCXXThisValue;
1691       CGF.CXXABIThisAlignment = OldCXXABIThisAlignment;
1692       CGF.CXXThisAlignment = OldCXXThisAlignment;
1693       CGF.ReturnValue = OldReturnValue;
1694       CGF.FnRetTy = OldFnRetTy;
1695       CGF.CXXInheritedCtorInitExprArgs =
1696           std::move(OldCXXInheritedCtorInitExprArgs);
1697     }
1698 
1699   private:
1700     CodeGenFunction &CGF;
1701     GlobalDecl OldCurGD;
1702     const Decl *OldCurFuncDecl;
1703     const Decl *OldCurCodeDecl;
1704     ImplicitParamDecl *OldCXXABIThisDecl;
1705     llvm::Value *OldCXXABIThisValue;
1706     llvm::Value *OldCXXThisValue;
1707     CharUnits OldCXXABIThisAlignment;
1708     CharUnits OldCXXThisAlignment;
1709     Address OldReturnValue;
1710     QualType OldFnRetTy;
1711     CallArgList OldCXXInheritedCtorInitExprArgs;
1712   };
1713 
1714   // Helper class for the OpenMP IR Builder. Allows reusability of code used for
1715   // region body, and finalization codegen callbacks. This will class will also
1716   // contain privatization functions used by the privatization call backs
1717   //
1718   // TODO: this is temporary class for things that are being moved out of
1719   // CGOpenMPRuntime, new versions of current CodeGenFunction methods, or
1720   // utility function for use with the OMPBuilder. Once that move to use the
1721   // OMPBuilder is done, everything here will either become part of CodeGenFunc.
1722   // directly, or a new helper class that will contain functions used by both
1723   // this and the OMPBuilder
1724 
1725   struct OMPBuilderCBHelpers {
1726 
1727     OMPBuilderCBHelpers() = delete;
1728     OMPBuilderCBHelpers(const OMPBuilderCBHelpers &) = delete;
1729     OMPBuilderCBHelpers &operator=(const OMPBuilderCBHelpers &) = delete;
1730 
1731     using InsertPointTy = llvm::OpenMPIRBuilder::InsertPointTy;
1732 
1733     /// Cleanup action for allocate support.
1734     class OMPAllocateCleanupTy final : public EHScopeStack::Cleanup {
1735 
1736     private:
1737       llvm::CallInst *RTLFnCI;
1738 
1739     public:
1740       OMPAllocateCleanupTy(llvm::CallInst *RLFnCI) : RTLFnCI(RLFnCI) {
1741         RLFnCI->removeFromParent();
1742       }
1743 
1744       void Emit(CodeGenFunction &CGF, Flags /*flags*/) override {
1745         if (!CGF.HaveInsertPoint())
1746           return;
1747         CGF.Builder.Insert(RTLFnCI);
1748       }
1749     };
1750 
1751     /// Returns address of the threadprivate variable for the current
1752     /// thread. This Also create any necessary OMP runtime calls.
1753     ///
1754     /// \param VD VarDecl for Threadprivate variable.
1755     /// \param VDAddr Address of the Vardecl
1756     /// \param Loc  The location where the barrier directive was encountered
1757     static Address getAddrOfThreadPrivate(CodeGenFunction &CGF,
1758                                           const VarDecl *VD, Address VDAddr,
1759                                           SourceLocation Loc);
1760 
1761     /// Gets the OpenMP-specific address of the local variable /p VD.
1762     static Address getAddressOfLocalVariable(CodeGenFunction &CGF,
1763                                              const VarDecl *VD);
1764     /// Get the platform-specific name separator.
1765     /// \param Parts different parts of the final name that needs separation
1766     /// \param FirstSeparator First separator used between the initial two
1767     ///        parts of the name.
1768     /// \param Separator separator used between all of the rest consecutinve
1769     ///        parts of the name
1770     static std::string getNameWithSeparators(ArrayRef<StringRef> Parts,
1771                                              StringRef FirstSeparator = ".",
1772                                              StringRef Separator = ".");
1773     /// Emit the Finalization for an OMP region
1774     /// \param CGF	The Codegen function this belongs to
1775     /// \param IP	Insertion point for generating the finalization code.
1776     static void FinalizeOMPRegion(CodeGenFunction &CGF, InsertPointTy IP) {
1777       CGBuilderTy::InsertPointGuard IPG(CGF.Builder);
1778       assert(IP.getBlock()->end() != IP.getPoint() &&
1779              "OpenMP IR Builder should cause terminated block!");
1780 
1781       llvm::BasicBlock *IPBB = IP.getBlock();
1782       llvm::BasicBlock *DestBB = IPBB->getUniqueSuccessor();
1783       assert(DestBB && "Finalization block should have one successor!");
1784 
1785       // erase and replace with cleanup branch.
1786       IPBB->getTerminator()->eraseFromParent();
1787       CGF.Builder.SetInsertPoint(IPBB);
1788       CodeGenFunction::JumpDest Dest = CGF.getJumpDestInCurrentScope(DestBB);
1789       CGF.EmitBranchThroughCleanup(Dest);
1790     }
1791 
1792     /// Emit the body of an OMP region
1793     /// \param CGF	The Codegen function this belongs to
1794     /// \param RegionBodyStmt	The body statement for the OpenMP region being
1795     /// 			 generated
1796     /// \param CodeGenIP	Insertion point for generating the body code.
1797     /// \param FiniBB	The finalization basic block
1798     static void EmitOMPRegionBody(CodeGenFunction &CGF,
1799                                   const Stmt *RegionBodyStmt,
1800                                   InsertPointTy CodeGenIP,
1801                                   llvm::BasicBlock &FiniBB) {
1802       llvm::BasicBlock *CodeGenIPBB = CodeGenIP.getBlock();
1803       if (llvm::Instruction *CodeGenIPBBTI = CodeGenIPBB->getTerminator())
1804         CodeGenIPBBTI->eraseFromParent();
1805 
1806       CGF.Builder.SetInsertPoint(CodeGenIPBB);
1807 
1808       CGF.EmitStmt(RegionBodyStmt);
1809 
1810       if (CGF.Builder.saveIP().isSet())
1811         CGF.Builder.CreateBr(&FiniBB);
1812     }
1813 
1814     static void EmitCaptureStmt(CodeGenFunction &CGF, InsertPointTy CodeGenIP,
1815                                 llvm::BasicBlock &FiniBB, llvm::Function *Fn,
1816                                 ArrayRef<llvm::Value *> Args) {
1817       llvm::BasicBlock *CodeGenIPBB = CodeGenIP.getBlock();
1818       if (llvm::Instruction *CodeGenIPBBTI = CodeGenIPBB->getTerminator())
1819         CodeGenIPBBTI->eraseFromParent();
1820 
1821       CGF.Builder.SetInsertPoint(CodeGenIPBB);
1822 
1823       if (Fn->doesNotThrow())
1824         CGF.EmitNounwindRuntimeCall(Fn, Args);
1825       else
1826         CGF.EmitRuntimeCall(Fn, Args);
1827 
1828       if (CGF.Builder.saveIP().isSet())
1829         CGF.Builder.CreateBr(&FiniBB);
1830     }
1831 
1832     /// RAII for preserving necessary info during Outlined region body codegen.
1833     class OutlinedRegionBodyRAII {
1834 
1835       llvm::AssertingVH<llvm::Instruction> OldAllocaIP;
1836       CodeGenFunction::JumpDest OldReturnBlock;
1837       CGBuilderTy::InsertPoint IP;
1838       CodeGenFunction &CGF;
1839 
1840     public:
1841       OutlinedRegionBodyRAII(CodeGenFunction &cgf, InsertPointTy &AllocaIP,
1842                              llvm::BasicBlock &RetBB)
1843           : CGF(cgf) {
1844         assert(AllocaIP.isSet() &&
1845                "Must specify Insertion point for allocas of outlined function");
1846         OldAllocaIP = CGF.AllocaInsertPt;
1847         CGF.AllocaInsertPt = &*AllocaIP.getPoint();
1848         IP = CGF.Builder.saveIP();
1849 
1850         OldReturnBlock = CGF.ReturnBlock;
1851         CGF.ReturnBlock = CGF.getJumpDestInCurrentScope(&RetBB);
1852       }
1853 
1854       ~OutlinedRegionBodyRAII() {
1855         CGF.AllocaInsertPt = OldAllocaIP;
1856         CGF.ReturnBlock = OldReturnBlock;
1857         CGF.Builder.restoreIP(IP);
1858       }
1859     };
1860 
1861     /// RAII for preserving necessary info during inlined region body codegen.
1862     class InlinedRegionBodyRAII {
1863 
1864       llvm::AssertingVH<llvm::Instruction> OldAllocaIP;
1865       CodeGenFunction &CGF;
1866 
1867     public:
1868       InlinedRegionBodyRAII(CodeGenFunction &cgf, InsertPointTy &AllocaIP,
1869                             llvm::BasicBlock &FiniBB)
1870           : CGF(cgf) {
1871         // Alloca insertion block should be in the entry block of the containing
1872         // function so it expects an empty AllocaIP in which case will reuse the
1873         // old alloca insertion point, or a new AllocaIP in the same block as
1874         // the old one
1875         assert((!AllocaIP.isSet() ||
1876                 CGF.AllocaInsertPt->getParent() == AllocaIP.getBlock()) &&
1877                "Insertion point should be in the entry block of containing "
1878                "function!");
1879         OldAllocaIP = CGF.AllocaInsertPt;
1880         if (AllocaIP.isSet())
1881           CGF.AllocaInsertPt = &*AllocaIP.getPoint();
1882 
1883         // TODO: Remove the call, after making sure the counter is not used by
1884         //       the EHStack.
1885         // Since this is an inlined region, it should not modify the
1886         // ReturnBlock, and should reuse the one for the enclosing outlined
1887         // region. So, the JumpDest being return by the function is discarded
1888         (void)CGF.getJumpDestInCurrentScope(&FiniBB);
1889       }
1890 
1891       ~InlinedRegionBodyRAII() { CGF.AllocaInsertPt = OldAllocaIP; }
1892     };
1893   };
1894 
1895 private:
1896   /// CXXThisDecl - When generating code for a C++ member function,
1897   /// this will hold the implicit 'this' declaration.
1898   ImplicitParamDecl *CXXABIThisDecl = nullptr;
1899   llvm::Value *CXXABIThisValue = nullptr;
1900   llvm::Value *CXXThisValue = nullptr;
1901   CharUnits CXXABIThisAlignment;
1902   CharUnits CXXThisAlignment;
1903 
1904   /// The value of 'this' to use when evaluating CXXDefaultInitExprs within
1905   /// this expression.
1906   Address CXXDefaultInitExprThis = Address::invalid();
1907 
1908   /// The current array initialization index when evaluating an
1909   /// ArrayInitIndexExpr within an ArrayInitLoopExpr.
1910   llvm::Value *ArrayInitIndex = nullptr;
1911 
1912   /// The values of function arguments to use when evaluating
1913   /// CXXInheritedCtorInitExprs within this context.
1914   CallArgList CXXInheritedCtorInitExprArgs;
1915 
1916   /// CXXStructorImplicitParamDecl - When generating code for a constructor or
1917   /// destructor, this will hold the implicit argument (e.g. VTT).
1918   ImplicitParamDecl *CXXStructorImplicitParamDecl = nullptr;
1919   llvm::Value *CXXStructorImplicitParamValue = nullptr;
1920 
1921   /// OutermostConditional - Points to the outermost active
1922   /// conditional control.  This is used so that we know if a
1923   /// temporary should be destroyed conditionally.
1924   ConditionalEvaluation *OutermostConditional = nullptr;
1925 
1926   /// The current lexical scope.
1927   LexicalScope *CurLexicalScope = nullptr;
1928 
1929   /// The current source location that should be used for exception
1930   /// handling code.
1931   SourceLocation CurEHLocation;
1932 
1933   /// BlockByrefInfos - For each __block variable, contains
1934   /// information about the layout of the variable.
1935   llvm::DenseMap<const ValueDecl *, BlockByrefInfo> BlockByrefInfos;
1936 
1937   /// Used by -fsanitize=nullability-return to determine whether the return
1938   /// value can be checked.
1939   llvm::Value *RetValNullabilityPrecondition = nullptr;
1940 
1941   /// Check if -fsanitize=nullability-return instrumentation is required for
1942   /// this function.
1943   bool requiresReturnValueNullabilityCheck() const {
1944     return RetValNullabilityPrecondition;
1945   }
1946 
1947   /// Used to store precise source locations for return statements by the
1948   /// runtime return value checks.
1949   Address ReturnLocation = Address::invalid();
1950 
1951   /// Check if the return value of this function requires sanitization.
1952   bool requiresReturnValueCheck() const;
1953 
1954   llvm::BasicBlock *TerminateLandingPad = nullptr;
1955   llvm::BasicBlock *TerminateHandler = nullptr;
1956   llvm::SmallVector<llvm::BasicBlock *, 2> TrapBBs;
1957 
1958   /// Terminate funclets keyed by parent funclet pad.
1959   llvm::MapVector<llvm::Value *, llvm::BasicBlock *> TerminateFunclets;
1960 
1961   /// Largest vector width used in ths function. Will be used to create a
1962   /// function attribute.
1963   unsigned LargestVectorWidth = 0;
1964 
1965   /// True if we need emit the life-time markers. This is initially set in
1966   /// the constructor, but could be overwritten to true if this is a coroutine.
1967   bool ShouldEmitLifetimeMarkers;
1968 
1969   /// Add OpenCL kernel arg metadata and the kernel attribute metadata to
1970   /// the function metadata.
1971   void EmitOpenCLKernelMetadata(const FunctionDecl *FD,
1972                                 llvm::Function *Fn);
1973 
1974 public:
1975   CodeGenFunction(CodeGenModule &cgm, bool suppressNewContext=false);
1976   ~CodeGenFunction();
1977 
1978   CodeGenTypes &getTypes() const { return CGM.getTypes(); }
1979   ASTContext &getContext() const { return CGM.getContext(); }
1980   CGDebugInfo *getDebugInfo() {
1981     if (DisableDebugInfo)
1982       return nullptr;
1983     return DebugInfo;
1984   }
1985   void disableDebugInfo() { DisableDebugInfo = true; }
1986   void enableDebugInfo() { DisableDebugInfo = false; }
1987 
1988   bool shouldUseFusedARCCalls() {
1989     return CGM.getCodeGenOpts().OptimizationLevel == 0;
1990   }
1991 
1992   const LangOptions &getLangOpts() const { return CGM.getLangOpts(); }
1993 
1994   /// Returns a pointer to the function's exception object and selector slot,
1995   /// which is assigned in every landing pad.
1996   Address getExceptionSlot();
1997   Address getEHSelectorSlot();
1998 
1999   /// Returns the contents of the function's exception object and selector
2000   /// slots.
2001   llvm::Value *getExceptionFromSlot();
2002   llvm::Value *getSelectorFromSlot();
2003 
2004   Address getNormalCleanupDestSlot();
2005 
2006   llvm::BasicBlock *getUnreachableBlock() {
2007     if (!UnreachableBlock) {
2008       UnreachableBlock = createBasicBlock("unreachable");
2009       new llvm::UnreachableInst(getLLVMContext(), UnreachableBlock);
2010     }
2011     return UnreachableBlock;
2012   }
2013 
2014   llvm::BasicBlock *getInvokeDest() {
2015     if (!EHStack.requiresLandingPad()) return nullptr;
2016     return getInvokeDestImpl();
2017   }
2018 
2019   bool currentFunctionUsesSEHTry() const { return CurSEHParent != nullptr; }
2020 
2021   const TargetInfo &getTarget() const { return Target; }
2022   llvm::LLVMContext &getLLVMContext() { return CGM.getLLVMContext(); }
2023   const TargetCodeGenInfo &getTargetHooks() const {
2024     return CGM.getTargetCodeGenInfo();
2025   }
2026 
2027   //===--------------------------------------------------------------------===//
2028   //                                  Cleanups
2029   //===--------------------------------------------------------------------===//
2030 
2031   typedef void Destroyer(CodeGenFunction &CGF, Address addr, QualType ty);
2032 
2033   void pushIrregularPartialArrayCleanup(llvm::Value *arrayBegin,
2034                                         Address arrayEndPointer,
2035                                         QualType elementType,
2036                                         CharUnits elementAlignment,
2037                                         Destroyer *destroyer);
2038   void pushRegularPartialArrayCleanup(llvm::Value *arrayBegin,
2039                                       llvm::Value *arrayEnd,
2040                                       QualType elementType,
2041                                       CharUnits elementAlignment,
2042                                       Destroyer *destroyer);
2043 
2044   void pushDestroy(QualType::DestructionKind dtorKind,
2045                    Address addr, QualType type);
2046   void pushEHDestroy(QualType::DestructionKind dtorKind,
2047                      Address addr, QualType type);
2048   void pushDestroy(CleanupKind kind, Address addr, QualType type,
2049                    Destroyer *destroyer, bool useEHCleanupForArray);
2050   void pushLifetimeExtendedDestroy(CleanupKind kind, Address addr,
2051                                    QualType type, Destroyer *destroyer,
2052                                    bool useEHCleanupForArray);
2053   void pushCallObjectDeleteCleanup(const FunctionDecl *OperatorDelete,
2054                                    llvm::Value *CompletePtr,
2055                                    QualType ElementType);
2056   void pushStackRestore(CleanupKind kind, Address SPMem);
2057   void emitDestroy(Address addr, QualType type, Destroyer *destroyer,
2058                    bool useEHCleanupForArray);
2059   llvm::Function *generateDestroyHelper(Address addr, QualType type,
2060                                         Destroyer *destroyer,
2061                                         bool useEHCleanupForArray,
2062                                         const VarDecl *VD);
2063   void emitArrayDestroy(llvm::Value *begin, llvm::Value *end,
2064                         QualType elementType, CharUnits elementAlign,
2065                         Destroyer *destroyer,
2066                         bool checkZeroLength, bool useEHCleanup);
2067 
2068   Destroyer *getDestroyer(QualType::DestructionKind destructionKind);
2069 
2070   /// Determines whether an EH cleanup is required to destroy a type
2071   /// with the given destruction kind.
2072   bool needsEHCleanup(QualType::DestructionKind kind) {
2073     switch (kind) {
2074     case QualType::DK_none:
2075       return false;
2076     case QualType::DK_cxx_destructor:
2077     case QualType::DK_objc_weak_lifetime:
2078     case QualType::DK_nontrivial_c_struct:
2079       return getLangOpts().Exceptions;
2080     case QualType::DK_objc_strong_lifetime:
2081       return getLangOpts().Exceptions &&
2082              CGM.getCodeGenOpts().ObjCAutoRefCountExceptions;
2083     }
2084     llvm_unreachable("bad destruction kind");
2085   }
2086 
2087   CleanupKind getCleanupKind(QualType::DestructionKind kind) {
2088     return (needsEHCleanup(kind) ? NormalAndEHCleanup : NormalCleanup);
2089   }
2090 
2091   //===--------------------------------------------------------------------===//
2092   //                                  Objective-C
2093   //===--------------------------------------------------------------------===//
2094 
2095   void GenerateObjCMethod(const ObjCMethodDecl *OMD);
2096 
2097   void StartObjCMethod(const ObjCMethodDecl *MD, const ObjCContainerDecl *CD);
2098 
2099   /// GenerateObjCGetter - Synthesize an Objective-C property getter function.
2100   void GenerateObjCGetter(ObjCImplementationDecl *IMP,
2101                           const ObjCPropertyImplDecl *PID);
2102   void generateObjCGetterBody(const ObjCImplementationDecl *classImpl,
2103                               const ObjCPropertyImplDecl *propImpl,
2104                               const ObjCMethodDecl *GetterMothodDecl,
2105                               llvm::Constant *AtomicHelperFn);
2106 
2107   void GenerateObjCCtorDtorMethod(ObjCImplementationDecl *IMP,
2108                                   ObjCMethodDecl *MD, bool ctor);
2109 
2110   /// GenerateObjCSetter - Synthesize an Objective-C property setter function
2111   /// for the given property.
2112   void GenerateObjCSetter(ObjCImplementationDecl *IMP,
2113                           const ObjCPropertyImplDecl *PID);
2114   void generateObjCSetterBody(const ObjCImplementationDecl *classImpl,
2115                               const ObjCPropertyImplDecl *propImpl,
2116                               llvm::Constant *AtomicHelperFn);
2117 
2118   //===--------------------------------------------------------------------===//
2119   //                                  Block Bits
2120   //===--------------------------------------------------------------------===//
2121 
2122   /// Emit block literal.
2123   /// \return an LLVM value which is a pointer to a struct which contains
2124   /// information about the block, including the block invoke function, the
2125   /// captured variables, etc.
2126   llvm::Value *EmitBlockLiteral(const BlockExpr *);
2127 
2128   llvm::Function *GenerateBlockFunction(GlobalDecl GD,
2129                                         const CGBlockInfo &Info,
2130                                         const DeclMapTy &ldm,
2131                                         bool IsLambdaConversionToBlock,
2132                                         bool BuildGlobalBlock);
2133 
2134   /// Check if \p T is a C++ class that has a destructor that can throw.
2135   static bool cxxDestructorCanThrow(QualType T);
2136 
2137   llvm::Constant *GenerateCopyHelperFunction(const CGBlockInfo &blockInfo);
2138   llvm::Constant *GenerateDestroyHelperFunction(const CGBlockInfo &blockInfo);
2139   llvm::Constant *GenerateObjCAtomicSetterCopyHelperFunction(
2140                                              const ObjCPropertyImplDecl *PID);
2141   llvm::Constant *GenerateObjCAtomicGetterCopyHelperFunction(
2142                                              const ObjCPropertyImplDecl *PID);
2143   llvm::Value *EmitBlockCopyAndAutorelease(llvm::Value *Block, QualType Ty);
2144 
2145   void BuildBlockRelease(llvm::Value *DeclPtr, BlockFieldFlags flags,
2146                          bool CanThrow);
2147 
2148   class AutoVarEmission;
2149 
2150   void emitByrefStructureInit(const AutoVarEmission &emission);
2151 
2152   /// Enter a cleanup to destroy a __block variable.  Note that this
2153   /// cleanup should be a no-op if the variable hasn't left the stack
2154   /// yet; if a cleanup is required for the variable itself, that needs
2155   /// to be done externally.
2156   ///
2157   /// \param Kind Cleanup kind.
2158   ///
2159   /// \param Addr When \p LoadBlockVarAddr is false, the address of the __block
2160   /// structure that will be passed to _Block_object_dispose. When
2161   /// \p LoadBlockVarAddr is true, the address of the field of the block
2162   /// structure that holds the address of the __block structure.
2163   ///
2164   /// \param Flags The flag that will be passed to _Block_object_dispose.
2165   ///
2166   /// \param LoadBlockVarAddr Indicates whether we need to emit a load from
2167   /// \p Addr to get the address of the __block structure.
2168   void enterByrefCleanup(CleanupKind Kind, Address Addr, BlockFieldFlags Flags,
2169                          bool LoadBlockVarAddr, bool CanThrow);
2170 
2171   void setBlockContextParameter(const ImplicitParamDecl *D, unsigned argNum,
2172                                 llvm::Value *ptr);
2173 
2174   Address LoadBlockStruct();
2175   Address GetAddrOfBlockDecl(const VarDecl *var);
2176 
2177   /// BuildBlockByrefAddress - Computes the location of the
2178   /// data in a variable which is declared as __block.
2179   Address emitBlockByrefAddress(Address baseAddr, const VarDecl *V,
2180                                 bool followForward = true);
2181   Address emitBlockByrefAddress(Address baseAddr,
2182                                 const BlockByrefInfo &info,
2183                                 bool followForward,
2184                                 const llvm::Twine &name);
2185 
2186   const BlockByrefInfo &getBlockByrefInfo(const VarDecl *var);
2187 
2188   QualType BuildFunctionArgList(GlobalDecl GD, FunctionArgList &Args);
2189 
2190   void GenerateCode(GlobalDecl GD, llvm::Function *Fn,
2191                     const CGFunctionInfo &FnInfo);
2192 
2193   /// Annotate the function with an attribute that disables TSan checking at
2194   /// runtime.
2195   void markAsIgnoreThreadCheckingAtRuntime(llvm::Function *Fn);
2196 
2197   /// Emit code for the start of a function.
2198   /// \param Loc       The location to be associated with the function.
2199   /// \param StartLoc  The location of the function body.
2200   void StartFunction(GlobalDecl GD,
2201                      QualType RetTy,
2202                      llvm::Function *Fn,
2203                      const CGFunctionInfo &FnInfo,
2204                      const FunctionArgList &Args,
2205                      SourceLocation Loc = SourceLocation(),
2206                      SourceLocation StartLoc = SourceLocation());
2207 
2208   static bool IsConstructorDelegationValid(const CXXConstructorDecl *Ctor);
2209 
2210   void EmitConstructorBody(FunctionArgList &Args);
2211   void EmitDestructorBody(FunctionArgList &Args);
2212   void emitImplicitAssignmentOperatorBody(FunctionArgList &Args);
2213   void EmitFunctionBody(const Stmt *Body);
2214   void EmitBlockWithFallThrough(llvm::BasicBlock *BB, const Stmt *S);
2215 
2216   void EmitForwardingCallToLambda(const CXXMethodDecl *LambdaCallOperator,
2217                                   CallArgList &CallArgs);
2218   void EmitLambdaBlockInvokeBody();
2219   void EmitLambdaDelegatingInvokeBody(const CXXMethodDecl *MD);
2220   void EmitLambdaStaticInvokeBody(const CXXMethodDecl *MD);
2221   void EmitLambdaVLACapture(const VariableArrayType *VAT, LValue LV) {
2222     EmitStoreThroughLValue(RValue::get(VLASizeMap[VAT->getSizeExpr()]), LV);
2223   }
2224   void EmitAsanPrologueOrEpilogue(bool Prologue);
2225 
2226   /// Emit the unified return block, trying to avoid its emission when
2227   /// possible.
2228   /// \return The debug location of the user written return statement if the
2229   /// return block is is avoided.
2230   llvm::DebugLoc EmitReturnBlock();
2231 
2232   /// FinishFunction - Complete IR generation of the current function. It is
2233   /// legal to call this function even if there is no current insertion point.
2234   void FinishFunction(SourceLocation EndLoc=SourceLocation());
2235 
2236   void StartThunk(llvm::Function *Fn, GlobalDecl GD,
2237                   const CGFunctionInfo &FnInfo, bool IsUnprototyped);
2238 
2239   void EmitCallAndReturnForThunk(llvm::FunctionCallee Callee,
2240                                  const ThunkInfo *Thunk, bool IsUnprototyped);
2241 
2242   void FinishThunk();
2243 
2244   /// Emit a musttail call for a thunk with a potentially adjusted this pointer.
2245   void EmitMustTailThunk(GlobalDecl GD, llvm::Value *AdjustedThisPtr,
2246                          llvm::FunctionCallee Callee);
2247 
2248   /// Generate a thunk for the given method.
2249   void generateThunk(llvm::Function *Fn, const CGFunctionInfo &FnInfo,
2250                      GlobalDecl GD, const ThunkInfo &Thunk,
2251                      bool IsUnprototyped);
2252 
2253   llvm::Function *GenerateVarArgsThunk(llvm::Function *Fn,
2254                                        const CGFunctionInfo &FnInfo,
2255                                        GlobalDecl GD, const ThunkInfo &Thunk);
2256 
2257   void EmitCtorPrologue(const CXXConstructorDecl *CD, CXXCtorType Type,
2258                         FunctionArgList &Args);
2259 
2260   void EmitInitializerForField(FieldDecl *Field, LValue LHS, Expr *Init);
2261 
2262   /// Struct with all information about dynamic [sub]class needed to set vptr.
2263   struct VPtr {
2264     BaseSubobject Base;
2265     const CXXRecordDecl *NearestVBase;
2266     CharUnits OffsetFromNearestVBase;
2267     const CXXRecordDecl *VTableClass;
2268   };
2269 
2270   /// Initialize the vtable pointer of the given subobject.
2271   void InitializeVTablePointer(const VPtr &vptr);
2272 
2273   typedef llvm::SmallVector<VPtr, 4> VPtrsVector;
2274 
2275   typedef llvm::SmallPtrSet<const CXXRecordDecl *, 4> VisitedVirtualBasesSetTy;
2276   VPtrsVector getVTablePointers(const CXXRecordDecl *VTableClass);
2277 
2278   void getVTablePointers(BaseSubobject Base, const CXXRecordDecl *NearestVBase,
2279                          CharUnits OffsetFromNearestVBase,
2280                          bool BaseIsNonVirtualPrimaryBase,
2281                          const CXXRecordDecl *VTableClass,
2282                          VisitedVirtualBasesSetTy &VBases, VPtrsVector &vptrs);
2283 
2284   void InitializeVTablePointers(const CXXRecordDecl *ClassDecl);
2285 
2286   /// GetVTablePtr - Return the Value of the vtable pointer member pointed
2287   /// to by This.
2288   llvm::Value *GetVTablePtr(Address This, llvm::Type *VTableTy,
2289                             const CXXRecordDecl *VTableClass);
2290 
2291   enum CFITypeCheckKind {
2292     CFITCK_VCall,
2293     CFITCK_NVCall,
2294     CFITCK_DerivedCast,
2295     CFITCK_UnrelatedCast,
2296     CFITCK_ICall,
2297     CFITCK_NVMFCall,
2298     CFITCK_VMFCall,
2299   };
2300 
2301   /// Derived is the presumed address of an object of type T after a
2302   /// cast. If T is a polymorphic class type, emit a check that the virtual
2303   /// table for Derived belongs to a class derived from T.
2304   void EmitVTablePtrCheckForCast(QualType T, Address Derived, bool MayBeNull,
2305                                  CFITypeCheckKind TCK, SourceLocation Loc);
2306 
2307   /// EmitVTablePtrCheckForCall - Virtual method MD is being called via VTable.
2308   /// If vptr CFI is enabled, emit a check that VTable is valid.
2309   void EmitVTablePtrCheckForCall(const CXXRecordDecl *RD, llvm::Value *VTable,
2310                                  CFITypeCheckKind TCK, SourceLocation Loc);
2311 
2312   /// EmitVTablePtrCheck - Emit a check that VTable is a valid virtual table for
2313   /// RD using llvm.type.test.
2314   void EmitVTablePtrCheck(const CXXRecordDecl *RD, llvm::Value *VTable,
2315                           CFITypeCheckKind TCK, SourceLocation Loc);
2316 
2317   /// If whole-program virtual table optimization is enabled, emit an assumption
2318   /// that VTable is a member of RD's type identifier. Or, if vptr CFI is
2319   /// enabled, emit a check that VTable is a member of RD's type identifier.
2320   void EmitTypeMetadataCodeForVCall(const CXXRecordDecl *RD,
2321                                     llvm::Value *VTable, SourceLocation Loc);
2322 
2323   /// Returns whether we should perform a type checked load when loading a
2324   /// virtual function for virtual calls to members of RD. This is generally
2325   /// true when both vcall CFI and whole-program-vtables are enabled.
2326   bool ShouldEmitVTableTypeCheckedLoad(const CXXRecordDecl *RD);
2327 
2328   /// Emit a type checked load from the given vtable.
2329   llvm::Value *EmitVTableTypeCheckedLoad(const CXXRecordDecl *RD,
2330                                          llvm::Value *VTable,
2331                                          llvm::Type *VTableTy,
2332                                          uint64_t VTableByteOffset);
2333 
2334   /// EnterDtorCleanups - Enter the cleanups necessary to complete the
2335   /// given phase of destruction for a destructor.  The end result
2336   /// should call destructors on members and base classes in reverse
2337   /// order of their construction.
2338   void EnterDtorCleanups(const CXXDestructorDecl *Dtor, CXXDtorType Type);
2339 
2340   /// ShouldInstrumentFunction - Return true if the current function should be
2341   /// instrumented with __cyg_profile_func_* calls
2342   bool ShouldInstrumentFunction();
2343 
2344   /// ShouldSkipSanitizerInstrumentation - Return true if the current function
2345   /// should not be instrumented with sanitizers.
2346   bool ShouldSkipSanitizerInstrumentation();
2347 
2348   /// ShouldXRayInstrument - Return true if the current function should be
2349   /// instrumented with XRay nop sleds.
2350   bool ShouldXRayInstrumentFunction() const;
2351 
2352   /// AlwaysEmitXRayCustomEvents - Return true if we must unconditionally emit
2353   /// XRay custom event handling calls.
2354   bool AlwaysEmitXRayCustomEvents() const;
2355 
2356   /// AlwaysEmitXRayTypedEvents - Return true if clang must unconditionally emit
2357   /// XRay typed event handling calls.
2358   bool AlwaysEmitXRayTypedEvents() const;
2359 
2360   /// Encode an address into a form suitable for use in a function prologue.
2361   llvm::Constant *EncodeAddrForUseInPrologue(llvm::Function *F,
2362                                              llvm::Constant *Addr);
2363 
2364   /// Decode an address used in a function prologue, encoded by \c
2365   /// EncodeAddrForUseInPrologue.
2366   llvm::Value *DecodeAddrUsedInPrologue(llvm::Value *F,
2367                                         llvm::Value *EncodedAddr);
2368 
2369   /// EmitFunctionProlog - Emit the target specific LLVM code to load the
2370   /// arguments for the given function. This is also responsible for naming the
2371   /// LLVM function arguments.
2372   void EmitFunctionProlog(const CGFunctionInfo &FI,
2373                           llvm::Function *Fn,
2374                           const FunctionArgList &Args);
2375 
2376   /// EmitFunctionEpilog - Emit the target specific LLVM code to return the
2377   /// given temporary.
2378   void EmitFunctionEpilog(const CGFunctionInfo &FI, bool EmitRetDbgLoc,
2379                           SourceLocation EndLoc);
2380 
2381   /// Emit a test that checks if the return value \p RV is nonnull.
2382   void EmitReturnValueCheck(llvm::Value *RV);
2383 
2384   /// EmitStartEHSpec - Emit the start of the exception spec.
2385   void EmitStartEHSpec(const Decl *D);
2386 
2387   /// EmitEndEHSpec - Emit the end of the exception spec.
2388   void EmitEndEHSpec(const Decl *D);
2389 
2390   /// getTerminateLandingPad - Return a landing pad that just calls terminate.
2391   llvm::BasicBlock *getTerminateLandingPad();
2392 
2393   /// getTerminateLandingPad - Return a cleanup funclet that just calls
2394   /// terminate.
2395   llvm::BasicBlock *getTerminateFunclet();
2396 
2397   /// getTerminateHandler - Return a handler (not a landing pad, just
2398   /// a catch handler) that just calls terminate.  This is used when
2399   /// a terminate scope encloses a try.
2400   llvm::BasicBlock *getTerminateHandler();
2401 
2402   llvm::Type *ConvertTypeForMem(QualType T);
2403   llvm::Type *ConvertType(QualType T);
2404   llvm::Type *ConvertType(const TypeDecl *T) {
2405     return ConvertType(getContext().getTypeDeclType(T));
2406   }
2407 
2408   /// LoadObjCSelf - Load the value of self. This function is only valid while
2409   /// generating code for an Objective-C method.
2410   llvm::Value *LoadObjCSelf();
2411 
2412   /// TypeOfSelfObject - Return type of object that this self represents.
2413   QualType TypeOfSelfObject();
2414 
2415   /// getEvaluationKind - Return the TypeEvaluationKind of QualType \c T.
2416   static TypeEvaluationKind getEvaluationKind(QualType T);
2417 
2418   static bool hasScalarEvaluationKind(QualType T) {
2419     return getEvaluationKind(T) == TEK_Scalar;
2420   }
2421 
2422   static bool hasAggregateEvaluationKind(QualType T) {
2423     return getEvaluationKind(T) == TEK_Aggregate;
2424   }
2425 
2426   /// createBasicBlock - Create an LLVM basic block.
2427   llvm::BasicBlock *createBasicBlock(const Twine &name = "",
2428                                      llvm::Function *parent = nullptr,
2429                                      llvm::BasicBlock *before = nullptr) {
2430     return llvm::BasicBlock::Create(getLLVMContext(), name, parent, before);
2431   }
2432 
2433   /// getBasicBlockForLabel - Return the LLVM basicblock that the specified
2434   /// label maps to.
2435   JumpDest getJumpDestForLabel(const LabelDecl *S);
2436 
2437   /// SimplifyForwardingBlocks - If the given basic block is only a branch to
2438   /// another basic block, simplify it. This assumes that no other code could
2439   /// potentially reference the basic block.
2440   void SimplifyForwardingBlocks(llvm::BasicBlock *BB);
2441 
2442   /// EmitBlock - Emit the given block \arg BB and set it as the insert point,
2443   /// adding a fall-through branch from the current insert block if
2444   /// necessary. It is legal to call this function even if there is no current
2445   /// insertion point.
2446   ///
2447   /// IsFinished - If true, indicates that the caller has finished emitting
2448   /// branches to the given block and does not expect to emit code into it. This
2449   /// means the block can be ignored if it is unreachable.
2450   void EmitBlock(llvm::BasicBlock *BB, bool IsFinished=false);
2451 
2452   /// EmitBlockAfterUses - Emit the given block somewhere hopefully
2453   /// near its uses, and leave the insertion point in it.
2454   void EmitBlockAfterUses(llvm::BasicBlock *BB);
2455 
2456   /// EmitBranch - Emit a branch to the specified basic block from the current
2457   /// insert block, taking care to avoid creation of branches from dummy
2458   /// blocks. It is legal to call this function even if there is no current
2459   /// insertion point.
2460   ///
2461   /// This function clears the current insertion point. The caller should follow
2462   /// calls to this function with calls to Emit*Block prior to generation new
2463   /// code.
2464   void EmitBranch(llvm::BasicBlock *Block);
2465 
2466   /// HaveInsertPoint - True if an insertion point is defined. If not, this
2467   /// indicates that the current code being emitted is unreachable.
2468   bool HaveInsertPoint() const {
2469     return Builder.GetInsertBlock() != nullptr;
2470   }
2471 
2472   /// EnsureInsertPoint - Ensure that an insertion point is defined so that
2473   /// emitted IR has a place to go. Note that by definition, if this function
2474   /// creates a block then that block is unreachable; callers may do better to
2475   /// detect when no insertion point is defined and simply skip IR generation.
2476   void EnsureInsertPoint() {
2477     if (!HaveInsertPoint())
2478       EmitBlock(createBasicBlock());
2479   }
2480 
2481   /// ErrorUnsupported - Print out an error that codegen doesn't support the
2482   /// specified stmt yet.
2483   void ErrorUnsupported(const Stmt *S, const char *Type);
2484 
2485   //===--------------------------------------------------------------------===//
2486   //                                  Helpers
2487   //===--------------------------------------------------------------------===//
2488 
2489   LValue MakeAddrLValue(Address Addr, QualType T,
2490                         AlignmentSource Source = AlignmentSource::Type) {
2491     return LValue::MakeAddr(Addr, T, getContext(), LValueBaseInfo(Source),
2492                             CGM.getTBAAAccessInfo(T));
2493   }
2494 
2495   LValue MakeAddrLValue(Address Addr, QualType T, LValueBaseInfo BaseInfo,
2496                         TBAAAccessInfo TBAAInfo) {
2497     return LValue::MakeAddr(Addr, T, getContext(), BaseInfo, TBAAInfo);
2498   }
2499 
2500   LValue MakeAddrLValue(llvm::Value *V, QualType T, CharUnits Alignment,
2501                         AlignmentSource Source = AlignmentSource::Type) {
2502     Address Addr(V, ConvertTypeForMem(T), Alignment);
2503     return LValue::MakeAddr(Addr, T, getContext(), LValueBaseInfo(Source),
2504                             CGM.getTBAAAccessInfo(T));
2505   }
2506 
2507   LValue
2508   MakeAddrLValueWithoutTBAA(Address Addr, QualType T,
2509                             AlignmentSource Source = AlignmentSource::Type) {
2510     return LValue::MakeAddr(Addr, T, getContext(), LValueBaseInfo(Source),
2511                             TBAAAccessInfo());
2512   }
2513 
2514   LValue MakeNaturalAlignPointeeAddrLValue(llvm::Value *V, QualType T);
2515   LValue MakeNaturalAlignAddrLValue(llvm::Value *V, QualType T);
2516 
2517   Address EmitLoadOfReference(LValue RefLVal,
2518                               LValueBaseInfo *PointeeBaseInfo = nullptr,
2519                               TBAAAccessInfo *PointeeTBAAInfo = nullptr);
2520   LValue EmitLoadOfReferenceLValue(LValue RefLVal);
2521   LValue EmitLoadOfReferenceLValue(Address RefAddr, QualType RefTy,
2522                                    AlignmentSource Source =
2523                                        AlignmentSource::Type) {
2524     LValue RefLVal = MakeAddrLValue(RefAddr, RefTy, LValueBaseInfo(Source),
2525                                     CGM.getTBAAAccessInfo(RefTy));
2526     return EmitLoadOfReferenceLValue(RefLVal);
2527   }
2528 
2529   Address EmitLoadOfPointer(Address Ptr, const PointerType *PtrTy,
2530                             LValueBaseInfo *BaseInfo = nullptr,
2531                             TBAAAccessInfo *TBAAInfo = nullptr);
2532   LValue EmitLoadOfPointerLValue(Address Ptr, const PointerType *PtrTy);
2533 
2534   /// CreateTempAlloca - This creates an alloca and inserts it into the entry
2535   /// block if \p ArraySize is nullptr, otherwise inserts it at the current
2536   /// insertion point of the builder. The caller is responsible for setting an
2537   /// appropriate alignment on
2538   /// the alloca.
2539   ///
2540   /// \p ArraySize is the number of array elements to be allocated if it
2541   ///    is not nullptr.
2542   ///
2543   /// LangAS::Default is the address space of pointers to local variables and
2544   /// temporaries, as exposed in the source language. In certain
2545   /// configurations, this is not the same as the alloca address space, and a
2546   /// cast is needed to lift the pointer from the alloca AS into
2547   /// LangAS::Default. This can happen when the target uses a restricted
2548   /// address space for the stack but the source language requires
2549   /// LangAS::Default to be a generic address space. The latter condition is
2550   /// common for most programming languages; OpenCL is an exception in that
2551   /// LangAS::Default is the private address space, which naturally maps
2552   /// to the stack.
2553   ///
2554   /// Because the address of a temporary is often exposed to the program in
2555   /// various ways, this function will perform the cast. The original alloca
2556   /// instruction is returned through \p Alloca if it is not nullptr.
2557   ///
2558   /// The cast is not performaed in CreateTempAllocaWithoutCast. This is
2559   /// more efficient if the caller knows that the address will not be exposed.
2560   llvm::AllocaInst *CreateTempAlloca(llvm::Type *Ty, const Twine &Name = "tmp",
2561                                      llvm::Value *ArraySize = nullptr);
2562   Address CreateTempAlloca(llvm::Type *Ty, CharUnits align,
2563                            const Twine &Name = "tmp",
2564                            llvm::Value *ArraySize = nullptr,
2565                            Address *Alloca = nullptr);
2566   Address CreateTempAllocaWithoutCast(llvm::Type *Ty, CharUnits align,
2567                                       const Twine &Name = "tmp",
2568                                       llvm::Value *ArraySize = nullptr);
2569 
2570   /// CreateDefaultAlignedTempAlloca - This creates an alloca with the
2571   /// default ABI alignment of the given LLVM type.
2572   ///
2573   /// IMPORTANT NOTE: This is *not* generally the right alignment for
2574   /// any given AST type that happens to have been lowered to the
2575   /// given IR type.  This should only ever be used for function-local,
2576   /// IR-driven manipulations like saving and restoring a value.  Do
2577   /// not hand this address off to arbitrary IRGen routines, and especially
2578   /// do not pass it as an argument to a function that might expect a
2579   /// properly ABI-aligned value.
2580   Address CreateDefaultAlignTempAlloca(llvm::Type *Ty,
2581                                        const Twine &Name = "tmp");
2582 
2583   /// CreateIRTemp - Create a temporary IR object of the given type, with
2584   /// appropriate alignment. This routine should only be used when an temporary
2585   /// value needs to be stored into an alloca (for example, to avoid explicit
2586   /// PHI construction), but the type is the IR type, not the type appropriate
2587   /// for storing in memory.
2588   ///
2589   /// That is, this is exactly equivalent to CreateMemTemp, but calling
2590   /// ConvertType instead of ConvertTypeForMem.
2591   Address CreateIRTemp(QualType T, const Twine &Name = "tmp");
2592 
2593   /// CreateMemTemp - Create a temporary memory object of the given type, with
2594   /// appropriate alignmen and cast it to the default address space. Returns
2595   /// the original alloca instruction by \p Alloca if it is not nullptr.
2596   Address CreateMemTemp(QualType T, const Twine &Name = "tmp",
2597                         Address *Alloca = nullptr);
2598   Address CreateMemTemp(QualType T, CharUnits Align, const Twine &Name = "tmp",
2599                         Address *Alloca = nullptr);
2600 
2601   /// CreateMemTemp - Create a temporary memory object of the given type, with
2602   /// appropriate alignmen without casting it to the default address space.
2603   Address CreateMemTempWithoutCast(QualType T, const Twine &Name = "tmp");
2604   Address CreateMemTempWithoutCast(QualType T, CharUnits Align,
2605                                    const Twine &Name = "tmp");
2606 
2607   /// CreateAggTemp - Create a temporary memory object for the given
2608   /// aggregate type.
2609   AggValueSlot CreateAggTemp(QualType T, const Twine &Name = "tmp",
2610                              Address *Alloca = nullptr) {
2611     return AggValueSlot::forAddr(CreateMemTemp(T, Name, Alloca),
2612                                  T.getQualifiers(),
2613                                  AggValueSlot::IsNotDestructed,
2614                                  AggValueSlot::DoesNotNeedGCBarriers,
2615                                  AggValueSlot::IsNotAliased,
2616                                  AggValueSlot::DoesNotOverlap);
2617   }
2618 
2619   /// Emit a cast to void* in the appropriate address space.
2620   llvm::Value *EmitCastToVoidPtr(llvm::Value *value);
2621 
2622   /// EvaluateExprAsBool - Perform the usual unary conversions on the specified
2623   /// expression and compare the result against zero, returning an Int1Ty value.
2624   llvm::Value *EvaluateExprAsBool(const Expr *E);
2625 
2626   /// EmitIgnoredExpr - Emit an expression in a context which ignores the result.
2627   void EmitIgnoredExpr(const Expr *E);
2628 
2629   /// EmitAnyExpr - Emit code to compute the specified expression which can have
2630   /// any type.  The result is returned as an RValue struct.  If this is an
2631   /// aggregate expression, the aggloc/agglocvolatile arguments indicate where
2632   /// the result should be returned.
2633   ///
2634   /// \param ignoreResult True if the resulting value isn't used.
2635   RValue EmitAnyExpr(const Expr *E,
2636                      AggValueSlot aggSlot = AggValueSlot::ignored(),
2637                      bool ignoreResult = false);
2638 
2639   // EmitVAListRef - Emit a "reference" to a va_list; this is either the address
2640   // or the value of the expression, depending on how va_list is defined.
2641   Address EmitVAListRef(const Expr *E);
2642 
2643   /// Emit a "reference" to a __builtin_ms_va_list; this is
2644   /// always the value of the expression, because a __builtin_ms_va_list is a
2645   /// pointer to a char.
2646   Address EmitMSVAListRef(const Expr *E);
2647 
2648   /// EmitAnyExprToTemp - Similarly to EmitAnyExpr(), however, the result will
2649   /// always be accessible even if no aggregate location is provided.
2650   RValue EmitAnyExprToTemp(const Expr *E);
2651 
2652   /// EmitAnyExprToMem - Emits the code necessary to evaluate an
2653   /// arbitrary expression into the given memory location.
2654   void EmitAnyExprToMem(const Expr *E, Address Location,
2655                         Qualifiers Quals, bool IsInitializer);
2656 
2657   void EmitAnyExprToExn(const Expr *E, Address Addr);
2658 
2659   /// EmitExprAsInit - Emits the code necessary to initialize a
2660   /// location in memory with the given initializer.
2661   void EmitExprAsInit(const Expr *init, const ValueDecl *D, LValue lvalue,
2662                       bool capturedByInit);
2663 
2664   /// hasVolatileMember - returns true if aggregate type has a volatile
2665   /// member.
2666   bool hasVolatileMember(QualType T) {
2667     if (const RecordType *RT = T->getAs<RecordType>()) {
2668       const RecordDecl *RD = cast<RecordDecl>(RT->getDecl());
2669       return RD->hasVolatileMember();
2670     }
2671     return false;
2672   }
2673 
2674   /// Determine whether a return value slot may overlap some other object.
2675   AggValueSlot::Overlap_t getOverlapForReturnValue() {
2676     // FIXME: Assuming no overlap here breaks guaranteed copy elision for base
2677     // class subobjects. These cases may need to be revisited depending on the
2678     // resolution of the relevant core issue.
2679     return AggValueSlot::DoesNotOverlap;
2680   }
2681 
2682   /// Determine whether a field initialization may overlap some other object.
2683   AggValueSlot::Overlap_t getOverlapForFieldInit(const FieldDecl *FD);
2684 
2685   /// Determine whether a base class initialization may overlap some other
2686   /// object.
2687   AggValueSlot::Overlap_t getOverlapForBaseInit(const CXXRecordDecl *RD,
2688                                                 const CXXRecordDecl *BaseRD,
2689                                                 bool IsVirtual);
2690 
2691   /// Emit an aggregate assignment.
2692   void EmitAggregateAssign(LValue Dest, LValue Src, QualType EltTy) {
2693     bool IsVolatile = hasVolatileMember(EltTy);
2694     EmitAggregateCopy(Dest, Src, EltTy, AggValueSlot::MayOverlap, IsVolatile);
2695   }
2696 
2697   void EmitAggregateCopyCtor(LValue Dest, LValue Src,
2698                              AggValueSlot::Overlap_t MayOverlap) {
2699     EmitAggregateCopy(Dest, Src, Src.getType(), MayOverlap);
2700   }
2701 
2702   /// EmitAggregateCopy - Emit an aggregate copy.
2703   ///
2704   /// \param isVolatile \c true iff either the source or the destination is
2705   ///        volatile.
2706   /// \param MayOverlap Whether the tail padding of the destination might be
2707   ///        occupied by some other object. More efficient code can often be
2708   ///        generated if not.
2709   void EmitAggregateCopy(LValue Dest, LValue Src, QualType EltTy,
2710                          AggValueSlot::Overlap_t MayOverlap,
2711                          bool isVolatile = false);
2712 
2713   /// GetAddrOfLocalVar - Return the address of a local variable.
2714   Address GetAddrOfLocalVar(const VarDecl *VD) {
2715     auto it = LocalDeclMap.find(VD);
2716     assert(it != LocalDeclMap.end() &&
2717            "Invalid argument to GetAddrOfLocalVar(), no decl!");
2718     return it->second;
2719   }
2720 
2721   /// Given an opaque value expression, return its LValue mapping if it exists,
2722   /// otherwise create one.
2723   LValue getOrCreateOpaqueLValueMapping(const OpaqueValueExpr *e);
2724 
2725   /// Given an opaque value expression, return its RValue mapping if it exists,
2726   /// otherwise create one.
2727   RValue getOrCreateOpaqueRValueMapping(const OpaqueValueExpr *e);
2728 
2729   /// Get the index of the current ArrayInitLoopExpr, if any.
2730   llvm::Value *getArrayInitIndex() { return ArrayInitIndex; }
2731 
2732   /// getAccessedFieldNo - Given an encoded value and a result number, return
2733   /// the input field number being accessed.
2734   static unsigned getAccessedFieldNo(unsigned Idx, const llvm::Constant *Elts);
2735 
2736   llvm::BlockAddress *GetAddrOfLabel(const LabelDecl *L);
2737   llvm::BasicBlock *GetIndirectGotoBlock();
2738 
2739   /// Check if \p E is a C++ "this" pointer wrapped in value-preserving casts.
2740   static bool IsWrappedCXXThis(const Expr *E);
2741 
2742   /// EmitNullInitialization - Generate code to set a value of the given type to
2743   /// null, If the type contains data member pointers, they will be initialized
2744   /// to -1 in accordance with the Itanium C++ ABI.
2745   void EmitNullInitialization(Address DestPtr, QualType Ty);
2746 
2747   /// Emits a call to an LLVM variable-argument intrinsic, either
2748   /// \c llvm.va_start or \c llvm.va_end.
2749   /// \param ArgValue A reference to the \c va_list as emitted by either
2750   /// \c EmitVAListRef or \c EmitMSVAListRef.
2751   /// \param IsStart If \c true, emits a call to \c llvm.va_start; otherwise,
2752   /// calls \c llvm.va_end.
2753   llvm::Value *EmitVAStartEnd(llvm::Value *ArgValue, bool IsStart);
2754 
2755   /// Generate code to get an argument from the passed in pointer
2756   /// and update it accordingly.
2757   /// \param VE The \c VAArgExpr for which to generate code.
2758   /// \param VAListAddr Receives a reference to the \c va_list as emitted by
2759   /// either \c EmitVAListRef or \c EmitMSVAListRef.
2760   /// \returns A pointer to the argument.
2761   // FIXME: We should be able to get rid of this method and use the va_arg
2762   // instruction in LLVM instead once it works well enough.
2763   Address EmitVAArg(VAArgExpr *VE, Address &VAListAddr);
2764 
2765   /// emitArrayLength - Compute the length of an array, even if it's a
2766   /// VLA, and drill down to the base element type.
2767   llvm::Value *emitArrayLength(const ArrayType *arrayType,
2768                                QualType &baseType,
2769                                Address &addr);
2770 
2771   /// EmitVLASize - Capture all the sizes for the VLA expressions in
2772   /// the given variably-modified type and store them in the VLASizeMap.
2773   ///
2774   /// This function can be called with a null (unreachable) insert point.
2775   void EmitVariablyModifiedType(QualType Ty);
2776 
2777   struct VlaSizePair {
2778     llvm::Value *NumElts;
2779     QualType Type;
2780 
2781     VlaSizePair(llvm::Value *NE, QualType T) : NumElts(NE), Type(T) {}
2782   };
2783 
2784   /// Return the number of elements for a single dimension
2785   /// for the given array type.
2786   VlaSizePair getVLAElements1D(const VariableArrayType *vla);
2787   VlaSizePair getVLAElements1D(QualType vla);
2788 
2789   /// Returns an LLVM value that corresponds to the size,
2790   /// in non-variably-sized elements, of a variable length array type,
2791   /// plus that largest non-variably-sized element type.  Assumes that
2792   /// the type has already been emitted with EmitVariablyModifiedType.
2793   VlaSizePair getVLASize(const VariableArrayType *vla);
2794   VlaSizePair getVLASize(QualType vla);
2795 
2796   /// LoadCXXThis - Load the value of 'this'. This function is only valid while
2797   /// generating code for an C++ member function.
2798   llvm::Value *LoadCXXThis() {
2799     assert(CXXThisValue && "no 'this' value for this function");
2800     return CXXThisValue;
2801   }
2802   Address LoadCXXThisAddress();
2803 
2804   /// LoadCXXVTT - Load the VTT parameter to base constructors/destructors have
2805   /// virtual bases.
2806   // FIXME: Every place that calls LoadCXXVTT is something
2807   // that needs to be abstracted properly.
2808   llvm::Value *LoadCXXVTT() {
2809     assert(CXXStructorImplicitParamValue && "no VTT value for this function");
2810     return CXXStructorImplicitParamValue;
2811   }
2812 
2813   /// GetAddressOfBaseOfCompleteClass - Convert the given pointer to a
2814   /// complete class to the given direct base.
2815   Address
2816   GetAddressOfDirectBaseInCompleteClass(Address Value,
2817                                         const CXXRecordDecl *Derived,
2818                                         const CXXRecordDecl *Base,
2819                                         bool BaseIsVirtual);
2820 
2821   static bool ShouldNullCheckClassCastValue(const CastExpr *Cast);
2822 
2823   /// GetAddressOfBaseClass - This function will add the necessary delta to the
2824   /// load of 'this' and returns address of the base class.
2825   Address GetAddressOfBaseClass(Address Value,
2826                                 const CXXRecordDecl *Derived,
2827                                 CastExpr::path_const_iterator PathBegin,
2828                                 CastExpr::path_const_iterator PathEnd,
2829                                 bool NullCheckValue, SourceLocation Loc);
2830 
2831   Address GetAddressOfDerivedClass(Address Value,
2832                                    const CXXRecordDecl *Derived,
2833                                    CastExpr::path_const_iterator PathBegin,
2834                                    CastExpr::path_const_iterator PathEnd,
2835                                    bool NullCheckValue);
2836 
2837   /// GetVTTParameter - Return the VTT parameter that should be passed to a
2838   /// base constructor/destructor with virtual bases.
2839   /// FIXME: VTTs are Itanium ABI-specific, so the definition should move
2840   /// to ItaniumCXXABI.cpp together with all the references to VTT.
2841   llvm::Value *GetVTTParameter(GlobalDecl GD, bool ForVirtualBase,
2842                                bool Delegating);
2843 
2844   void EmitDelegateCXXConstructorCall(const CXXConstructorDecl *Ctor,
2845                                       CXXCtorType CtorType,
2846                                       const FunctionArgList &Args,
2847                                       SourceLocation Loc);
2848   // It's important not to confuse this and the previous function. Delegating
2849   // constructors are the C++0x feature. The constructor delegate optimization
2850   // is used to reduce duplication in the base and complete consturctors where
2851   // they are substantially the same.
2852   void EmitDelegatingCXXConstructorCall(const CXXConstructorDecl *Ctor,
2853                                         const FunctionArgList &Args);
2854 
2855   /// Emit a call to an inheriting constructor (that is, one that invokes a
2856   /// constructor inherited from a base class) by inlining its definition. This
2857   /// is necessary if the ABI does not support forwarding the arguments to the
2858   /// base class constructor (because they're variadic or similar).
2859   void EmitInlinedInheritingCXXConstructorCall(const CXXConstructorDecl *Ctor,
2860                                                CXXCtorType CtorType,
2861                                                bool ForVirtualBase,
2862                                                bool Delegating,
2863                                                CallArgList &Args);
2864 
2865   /// Emit a call to a constructor inherited from a base class, passing the
2866   /// current constructor's arguments along unmodified (without even making
2867   /// a copy).
2868   void EmitInheritedCXXConstructorCall(const CXXConstructorDecl *D,
2869                                        bool ForVirtualBase, Address This,
2870                                        bool InheritedFromVBase,
2871                                        const CXXInheritedCtorInitExpr *E);
2872 
2873   void EmitCXXConstructorCall(const CXXConstructorDecl *D, CXXCtorType Type,
2874                               bool ForVirtualBase, bool Delegating,
2875                               AggValueSlot ThisAVS, const CXXConstructExpr *E);
2876 
2877   void EmitCXXConstructorCall(const CXXConstructorDecl *D, CXXCtorType Type,
2878                               bool ForVirtualBase, bool Delegating,
2879                               Address This, CallArgList &Args,
2880                               AggValueSlot::Overlap_t Overlap,
2881                               SourceLocation Loc, bool NewPointerIsChecked);
2882 
2883   /// Emit assumption load for all bases. Requires to be be called only on
2884   /// most-derived class and not under construction of the object.
2885   void EmitVTableAssumptionLoads(const CXXRecordDecl *ClassDecl, Address This);
2886 
2887   /// Emit assumption that vptr load == global vtable.
2888   void EmitVTableAssumptionLoad(const VPtr &vptr, Address This);
2889 
2890   void EmitSynthesizedCXXCopyCtorCall(const CXXConstructorDecl *D,
2891                                       Address This, Address Src,
2892                                       const CXXConstructExpr *E);
2893 
2894   void EmitCXXAggrConstructorCall(const CXXConstructorDecl *D,
2895                                   const ArrayType *ArrayTy,
2896                                   Address ArrayPtr,
2897                                   const CXXConstructExpr *E,
2898                                   bool NewPointerIsChecked,
2899                                   bool ZeroInitialization = false);
2900 
2901   void EmitCXXAggrConstructorCall(const CXXConstructorDecl *D,
2902                                   llvm::Value *NumElements,
2903                                   Address ArrayPtr,
2904                                   const CXXConstructExpr *E,
2905                                   bool NewPointerIsChecked,
2906                                   bool ZeroInitialization = false);
2907 
2908   static Destroyer destroyCXXObject;
2909 
2910   void EmitCXXDestructorCall(const CXXDestructorDecl *D, CXXDtorType Type,
2911                              bool ForVirtualBase, bool Delegating, Address This,
2912                              QualType ThisTy);
2913 
2914   void EmitNewArrayInitializer(const CXXNewExpr *E, QualType elementType,
2915                                llvm::Type *ElementTy, Address NewPtr,
2916                                llvm::Value *NumElements,
2917                                llvm::Value *AllocSizeWithoutCookie);
2918 
2919   void EmitCXXTemporary(const CXXTemporary *Temporary, QualType TempType,
2920                         Address Ptr);
2921 
2922   void EmitSehCppScopeBegin();
2923   void EmitSehCppScopeEnd();
2924   void EmitSehTryScopeBegin();
2925   void EmitSehTryScopeEnd();
2926 
2927   llvm::Value *EmitLifetimeStart(llvm::TypeSize Size, llvm::Value *Addr);
2928   void EmitLifetimeEnd(llvm::Value *Size, llvm::Value *Addr);
2929 
2930   llvm::Value *EmitCXXNewExpr(const CXXNewExpr *E);
2931   void EmitCXXDeleteExpr(const CXXDeleteExpr *E);
2932 
2933   void EmitDeleteCall(const FunctionDecl *DeleteFD, llvm::Value *Ptr,
2934                       QualType DeleteTy, llvm::Value *NumElements = nullptr,
2935                       CharUnits CookieSize = CharUnits());
2936 
2937   RValue EmitBuiltinNewDeleteCall(const FunctionProtoType *Type,
2938                                   const CallExpr *TheCallExpr, bool IsDelete);
2939 
2940   llvm::Value *EmitCXXTypeidExpr(const CXXTypeidExpr *E);
2941   llvm::Value *EmitDynamicCast(Address V, const CXXDynamicCastExpr *DCE);
2942   Address EmitCXXUuidofExpr(const CXXUuidofExpr *E);
2943 
2944   /// Situations in which we might emit a check for the suitability of a
2945   /// pointer or glvalue. Needs to be kept in sync with ubsan_handlers.cpp in
2946   /// compiler-rt.
2947   enum TypeCheckKind {
2948     /// Checking the operand of a load. Must be suitably sized and aligned.
2949     TCK_Load,
2950     /// Checking the destination of a store. Must be suitably sized and aligned.
2951     TCK_Store,
2952     /// Checking the bound value in a reference binding. Must be suitably sized
2953     /// and aligned, but is not required to refer to an object (until the
2954     /// reference is used), per core issue 453.
2955     TCK_ReferenceBinding,
2956     /// Checking the object expression in a non-static data member access. Must
2957     /// be an object within its lifetime.
2958     TCK_MemberAccess,
2959     /// Checking the 'this' pointer for a call to a non-static member function.
2960     /// Must be an object within its lifetime.
2961     TCK_MemberCall,
2962     /// Checking the 'this' pointer for a constructor call.
2963     TCK_ConstructorCall,
2964     /// Checking the operand of a static_cast to a derived pointer type. Must be
2965     /// null or an object within its lifetime.
2966     TCK_DowncastPointer,
2967     /// Checking the operand of a static_cast to a derived reference type. Must
2968     /// be an object within its lifetime.
2969     TCK_DowncastReference,
2970     /// Checking the operand of a cast to a base object. Must be suitably sized
2971     /// and aligned.
2972     TCK_Upcast,
2973     /// Checking the operand of a cast to a virtual base object. Must be an
2974     /// object within its lifetime.
2975     TCK_UpcastToVirtualBase,
2976     /// Checking the value assigned to a _Nonnull pointer. Must not be null.
2977     TCK_NonnullAssign,
2978     /// Checking the operand of a dynamic_cast or a typeid expression.  Must be
2979     /// null or an object within its lifetime.
2980     TCK_DynamicOperation
2981   };
2982 
2983   /// Determine whether the pointer type check \p TCK permits null pointers.
2984   static bool isNullPointerAllowed(TypeCheckKind TCK);
2985 
2986   /// Determine whether the pointer type check \p TCK requires a vptr check.
2987   static bool isVptrCheckRequired(TypeCheckKind TCK, QualType Ty);
2988 
2989   /// Whether any type-checking sanitizers are enabled. If \c false,
2990   /// calls to EmitTypeCheck can be skipped.
2991   bool sanitizePerformTypeCheck() const;
2992 
2993   /// Emit a check that \p V is the address of storage of the
2994   /// appropriate size and alignment for an object of type \p Type
2995   /// (or if ArraySize is provided, for an array of that bound).
2996   void EmitTypeCheck(TypeCheckKind TCK, SourceLocation Loc, llvm::Value *V,
2997                      QualType Type, CharUnits Alignment = CharUnits::Zero(),
2998                      SanitizerSet SkippedChecks = SanitizerSet(),
2999                      llvm::Value *ArraySize = nullptr);
3000 
3001   /// Emit a check that \p Base points into an array object, which
3002   /// we can access at index \p Index. \p Accessed should be \c false if we
3003   /// this expression is used as an lvalue, for instance in "&Arr[Idx]".
3004   void EmitBoundsCheck(const Expr *E, const Expr *Base, llvm::Value *Index,
3005                        QualType IndexType, bool Accessed);
3006 
3007   llvm::Value *EmitScalarPrePostIncDec(const UnaryOperator *E, LValue LV,
3008                                        bool isInc, bool isPre);
3009   ComplexPairTy EmitComplexPrePostIncDec(const UnaryOperator *E, LValue LV,
3010                                          bool isInc, bool isPre);
3011 
3012   /// Converts Location to a DebugLoc, if debug information is enabled.
3013   llvm::DebugLoc SourceLocToDebugLoc(SourceLocation Location);
3014 
3015   /// Get the record field index as represented in debug info.
3016   unsigned getDebugInfoFIndex(const RecordDecl *Rec, unsigned FieldIndex);
3017 
3018 
3019   //===--------------------------------------------------------------------===//
3020   //                            Declaration Emission
3021   //===--------------------------------------------------------------------===//
3022 
3023   /// EmitDecl - Emit a declaration.
3024   ///
3025   /// This function can be called with a null (unreachable) insert point.
3026   void EmitDecl(const Decl &D);
3027 
3028   /// EmitVarDecl - Emit a local variable declaration.
3029   ///
3030   /// This function can be called with a null (unreachable) insert point.
3031   void EmitVarDecl(const VarDecl &D);
3032 
3033   void EmitScalarInit(const Expr *init, const ValueDecl *D, LValue lvalue,
3034                       bool capturedByInit);
3035 
3036   typedef void SpecialInitFn(CodeGenFunction &Init, const VarDecl &D,
3037                              llvm::Value *Address);
3038 
3039   /// Determine whether the given initializer is trivial in the sense
3040   /// that it requires no code to be generated.
3041   bool isTrivialInitializer(const Expr *Init);
3042 
3043   /// EmitAutoVarDecl - Emit an auto variable declaration.
3044   ///
3045   /// This function can be called with a null (unreachable) insert point.
3046   void EmitAutoVarDecl(const VarDecl &D);
3047 
3048   class AutoVarEmission {
3049     friend class CodeGenFunction;
3050 
3051     const VarDecl *Variable;
3052 
3053     /// The address of the alloca for languages with explicit address space
3054     /// (e.g. OpenCL) or alloca casted to generic pointer for address space
3055     /// agnostic languages (e.g. C++). Invalid if the variable was emitted
3056     /// as a global constant.
3057     Address Addr;
3058 
3059     llvm::Value *NRVOFlag;
3060 
3061     /// True if the variable is a __block variable that is captured by an
3062     /// escaping block.
3063     bool IsEscapingByRef;
3064 
3065     /// True if the variable is of aggregate type and has a constant
3066     /// initializer.
3067     bool IsConstantAggregate;
3068 
3069     /// Non-null if we should use lifetime annotations.
3070     llvm::Value *SizeForLifetimeMarkers;
3071 
3072     /// Address with original alloca instruction. Invalid if the variable was
3073     /// emitted as a global constant.
3074     Address AllocaAddr;
3075 
3076     struct Invalid {};
3077     AutoVarEmission(Invalid)
3078         : Variable(nullptr), Addr(Address::invalid()),
3079           AllocaAddr(Address::invalid()) {}
3080 
3081     AutoVarEmission(const VarDecl &variable)
3082         : Variable(&variable), Addr(Address::invalid()), NRVOFlag(nullptr),
3083           IsEscapingByRef(false), IsConstantAggregate(false),
3084           SizeForLifetimeMarkers(nullptr), AllocaAddr(Address::invalid()) {}
3085 
3086     bool wasEmittedAsGlobal() const { return !Addr.isValid(); }
3087 
3088   public:
3089     static AutoVarEmission invalid() { return AutoVarEmission(Invalid()); }
3090 
3091     bool useLifetimeMarkers() const {
3092       return SizeForLifetimeMarkers != nullptr;
3093     }
3094     llvm::Value *getSizeForLifetimeMarkers() const {
3095       assert(useLifetimeMarkers());
3096       return SizeForLifetimeMarkers;
3097     }
3098 
3099     /// Returns the raw, allocated address, which is not necessarily
3100     /// the address of the object itself. It is casted to default
3101     /// address space for address space agnostic languages.
3102     Address getAllocatedAddress() const {
3103       return Addr;
3104     }
3105 
3106     /// Returns the address for the original alloca instruction.
3107     Address getOriginalAllocatedAddress() const { return AllocaAddr; }
3108 
3109     /// Returns the address of the object within this declaration.
3110     /// Note that this does not chase the forwarding pointer for
3111     /// __block decls.
3112     Address getObjectAddress(CodeGenFunction &CGF) const {
3113       if (!IsEscapingByRef) return Addr;
3114 
3115       return CGF.emitBlockByrefAddress(Addr, Variable, /*forward*/ false);
3116     }
3117   };
3118   AutoVarEmission EmitAutoVarAlloca(const VarDecl &var);
3119   void EmitAutoVarInit(const AutoVarEmission &emission);
3120   void EmitAutoVarCleanups(const AutoVarEmission &emission);
3121   void emitAutoVarTypeCleanup(const AutoVarEmission &emission,
3122                               QualType::DestructionKind dtorKind);
3123 
3124   /// Emits the alloca and debug information for the size expressions for each
3125   /// dimension of an array. It registers the association of its (1-dimensional)
3126   /// QualTypes and size expression's debug node, so that CGDebugInfo can
3127   /// reference this node when creating the DISubrange object to describe the
3128   /// array types.
3129   void EmitAndRegisterVariableArrayDimensions(CGDebugInfo *DI,
3130                                               const VarDecl &D,
3131                                               bool EmitDebugInfo);
3132 
3133   void EmitStaticVarDecl(const VarDecl &D,
3134                          llvm::GlobalValue::LinkageTypes Linkage);
3135 
3136   class ParamValue {
3137     llvm::Value *Value;
3138     llvm::Type *ElementType;
3139     unsigned Alignment;
3140     ParamValue(llvm::Value *V, llvm::Type *T, unsigned A)
3141         : Value(V), ElementType(T), Alignment(A) {}
3142   public:
3143     static ParamValue forDirect(llvm::Value *value) {
3144       return ParamValue(value, nullptr, 0);
3145     }
3146     static ParamValue forIndirect(Address addr) {
3147       assert(!addr.getAlignment().isZero());
3148       return ParamValue(addr.getPointer(), addr.getElementType(),
3149                         addr.getAlignment().getQuantity());
3150     }
3151 
3152     bool isIndirect() const { return Alignment != 0; }
3153     llvm::Value *getAnyValue() const { return Value; }
3154 
3155     llvm::Value *getDirectValue() const {
3156       assert(!isIndirect());
3157       return Value;
3158     }
3159 
3160     Address getIndirectAddress() const {
3161       assert(isIndirect());
3162       return Address(Value, ElementType, CharUnits::fromQuantity(Alignment));
3163     }
3164   };
3165 
3166   /// EmitParmDecl - Emit a ParmVarDecl or an ImplicitParamDecl.
3167   void EmitParmDecl(const VarDecl &D, ParamValue Arg, unsigned ArgNo);
3168 
3169   /// protectFromPeepholes - Protect a value that we're intending to
3170   /// store to the side, but which will probably be used later, from
3171   /// aggressive peepholing optimizations that might delete it.
3172   ///
3173   /// Pass the result to unprotectFromPeepholes to declare that
3174   /// protection is no longer required.
3175   ///
3176   /// There's no particular reason why this shouldn't apply to
3177   /// l-values, it's just that no existing peepholes work on pointers.
3178   PeepholeProtection protectFromPeepholes(RValue rvalue);
3179   void unprotectFromPeepholes(PeepholeProtection protection);
3180 
3181   void emitAlignmentAssumptionCheck(llvm::Value *Ptr, QualType Ty,
3182                                     SourceLocation Loc,
3183                                     SourceLocation AssumptionLoc,
3184                                     llvm::Value *Alignment,
3185                                     llvm::Value *OffsetValue,
3186                                     llvm::Value *TheCheck,
3187                                     llvm::Instruction *Assumption);
3188 
3189   void emitAlignmentAssumption(llvm::Value *PtrValue, QualType Ty,
3190                                SourceLocation Loc, SourceLocation AssumptionLoc,
3191                                llvm::Value *Alignment,
3192                                llvm::Value *OffsetValue = nullptr);
3193 
3194   void emitAlignmentAssumption(llvm::Value *PtrValue, const Expr *E,
3195                                SourceLocation AssumptionLoc,
3196                                llvm::Value *Alignment,
3197                                llvm::Value *OffsetValue = nullptr);
3198 
3199   //===--------------------------------------------------------------------===//
3200   //                             Statement Emission
3201   //===--------------------------------------------------------------------===//
3202 
3203   /// EmitStopPoint - Emit a debug stoppoint if we are emitting debug info.
3204   void EmitStopPoint(const Stmt *S);
3205 
3206   /// EmitStmt - Emit the code for the statement \arg S. It is legal to call
3207   /// this function even if there is no current insertion point.
3208   ///
3209   /// This function may clear the current insertion point; callers should use
3210   /// EnsureInsertPoint if they wish to subsequently generate code without first
3211   /// calling EmitBlock, EmitBranch, or EmitStmt.
3212   void EmitStmt(const Stmt *S, ArrayRef<const Attr *> Attrs = None);
3213 
3214   /// EmitSimpleStmt - Try to emit a "simple" statement which does not
3215   /// necessarily require an insertion point or debug information; typically
3216   /// because the statement amounts to a jump or a container of other
3217   /// statements.
3218   ///
3219   /// \return True if the statement was handled.
3220   bool EmitSimpleStmt(const Stmt *S, ArrayRef<const Attr *> Attrs);
3221 
3222   Address EmitCompoundStmt(const CompoundStmt &S, bool GetLast = false,
3223                            AggValueSlot AVS = AggValueSlot::ignored());
3224   Address EmitCompoundStmtWithoutScope(const CompoundStmt &S,
3225                                        bool GetLast = false,
3226                                        AggValueSlot AVS =
3227                                                 AggValueSlot::ignored());
3228 
3229   /// EmitLabel - Emit the block for the given label. It is legal to call this
3230   /// function even if there is no current insertion point.
3231   void EmitLabel(const LabelDecl *D); // helper for EmitLabelStmt.
3232 
3233   void EmitLabelStmt(const LabelStmt &S);
3234   void EmitAttributedStmt(const AttributedStmt &S);
3235   void EmitGotoStmt(const GotoStmt &S);
3236   void EmitIndirectGotoStmt(const IndirectGotoStmt &S);
3237   void EmitIfStmt(const IfStmt &S);
3238 
3239   void EmitWhileStmt(const WhileStmt &S,
3240                      ArrayRef<const Attr *> Attrs = None);
3241   void EmitDoStmt(const DoStmt &S, ArrayRef<const Attr *> Attrs = None);
3242   void EmitForStmt(const ForStmt &S,
3243                    ArrayRef<const Attr *> Attrs = None);
3244   void EmitReturnStmt(const ReturnStmt &S);
3245   void EmitDeclStmt(const DeclStmt &S);
3246   void EmitBreakStmt(const BreakStmt &S);
3247   void EmitContinueStmt(const ContinueStmt &S);
3248   void EmitSwitchStmt(const SwitchStmt &S);
3249   void EmitDefaultStmt(const DefaultStmt &S, ArrayRef<const Attr *> Attrs);
3250   void EmitCaseStmt(const CaseStmt &S, ArrayRef<const Attr *> Attrs);
3251   void EmitCaseStmtRange(const CaseStmt &S, ArrayRef<const Attr *> Attrs);
3252   void EmitAsmStmt(const AsmStmt &S);
3253 
3254   void EmitObjCForCollectionStmt(const ObjCForCollectionStmt &S);
3255   void EmitObjCAtTryStmt(const ObjCAtTryStmt &S);
3256   void EmitObjCAtThrowStmt(const ObjCAtThrowStmt &S);
3257   void EmitObjCAtSynchronizedStmt(const ObjCAtSynchronizedStmt &S);
3258   void EmitObjCAutoreleasePoolStmt(const ObjCAutoreleasePoolStmt &S);
3259 
3260   void EmitCoroutineBody(const CoroutineBodyStmt &S);
3261   void EmitCoreturnStmt(const CoreturnStmt &S);
3262   RValue EmitCoawaitExpr(const CoawaitExpr &E,
3263                          AggValueSlot aggSlot = AggValueSlot::ignored(),
3264                          bool ignoreResult = false);
3265   LValue EmitCoawaitLValue(const CoawaitExpr *E);
3266   RValue EmitCoyieldExpr(const CoyieldExpr &E,
3267                          AggValueSlot aggSlot = AggValueSlot::ignored(),
3268                          bool ignoreResult = false);
3269   LValue EmitCoyieldLValue(const CoyieldExpr *E);
3270   RValue EmitCoroutineIntrinsic(const CallExpr *E, unsigned int IID);
3271 
3272   void EnterCXXTryStmt(const CXXTryStmt &S, bool IsFnTryBlock = false);
3273   void ExitCXXTryStmt(const CXXTryStmt &S, bool IsFnTryBlock = false);
3274 
3275   void EmitCXXTryStmt(const CXXTryStmt &S);
3276   void EmitSEHTryStmt(const SEHTryStmt &S);
3277   void EmitSEHLeaveStmt(const SEHLeaveStmt &S);
3278   void EnterSEHTryStmt(const SEHTryStmt &S);
3279   void ExitSEHTryStmt(const SEHTryStmt &S);
3280   void VolatilizeTryBlocks(llvm::BasicBlock *BB,
3281                            llvm::SmallPtrSet<llvm::BasicBlock *, 10> &V);
3282 
3283   void pushSEHCleanup(CleanupKind kind,
3284                       llvm::Function *FinallyFunc);
3285   void startOutlinedSEHHelper(CodeGenFunction &ParentCGF, bool IsFilter,
3286                               const Stmt *OutlinedStmt);
3287 
3288   llvm::Function *GenerateSEHFilterFunction(CodeGenFunction &ParentCGF,
3289                                             const SEHExceptStmt &Except);
3290 
3291   llvm::Function *GenerateSEHFinallyFunction(CodeGenFunction &ParentCGF,
3292                                              const SEHFinallyStmt &Finally);
3293 
3294   void EmitSEHExceptionCodeSave(CodeGenFunction &ParentCGF,
3295                                 llvm::Value *ParentFP,
3296                                 llvm::Value *EntryEBP);
3297   llvm::Value *EmitSEHExceptionCode();
3298   llvm::Value *EmitSEHExceptionInfo();
3299   llvm::Value *EmitSEHAbnormalTermination();
3300 
3301   /// Emit simple code for OpenMP directives in Simd-only mode.
3302   void EmitSimpleOMPExecutableDirective(const OMPExecutableDirective &D);
3303 
3304   /// Scan the outlined statement for captures from the parent function. For
3305   /// each capture, mark the capture as escaped and emit a call to
3306   /// llvm.localrecover. Insert the localrecover result into the LocalDeclMap.
3307   void EmitCapturedLocals(CodeGenFunction &ParentCGF, const Stmt *OutlinedStmt,
3308                           bool IsFilter);
3309 
3310   /// Recovers the address of a local in a parent function. ParentVar is the
3311   /// address of the variable used in the immediate parent function. It can
3312   /// either be an alloca or a call to llvm.localrecover if there are nested
3313   /// outlined functions. ParentFP is the frame pointer of the outermost parent
3314   /// frame.
3315   Address recoverAddrOfEscapedLocal(CodeGenFunction &ParentCGF,
3316                                     Address ParentVar,
3317                                     llvm::Value *ParentFP);
3318 
3319   void EmitCXXForRangeStmt(const CXXForRangeStmt &S,
3320                            ArrayRef<const Attr *> Attrs = None);
3321 
3322   /// Controls insertion of cancellation exit blocks in worksharing constructs.
3323   class OMPCancelStackRAII {
3324     CodeGenFunction &CGF;
3325 
3326   public:
3327     OMPCancelStackRAII(CodeGenFunction &CGF, OpenMPDirectiveKind Kind,
3328                        bool HasCancel)
3329         : CGF(CGF) {
3330       CGF.OMPCancelStack.enter(CGF, Kind, HasCancel);
3331     }
3332     ~OMPCancelStackRAII() { CGF.OMPCancelStack.exit(CGF); }
3333   };
3334 
3335   /// Returns calculated size of the specified type.
3336   llvm::Value *getTypeSize(QualType Ty);
3337   LValue InitCapturedStruct(const CapturedStmt &S);
3338   llvm::Function *EmitCapturedStmt(const CapturedStmt &S, CapturedRegionKind K);
3339   llvm::Function *GenerateCapturedStmtFunction(const CapturedStmt &S);
3340   Address GenerateCapturedStmtArgument(const CapturedStmt &S);
3341   llvm::Function *GenerateOpenMPCapturedStmtFunction(const CapturedStmt &S,
3342                                                      SourceLocation Loc);
3343   void GenerateOpenMPCapturedVars(const CapturedStmt &S,
3344                                   SmallVectorImpl<llvm::Value *> &CapturedVars);
3345   void emitOMPSimpleStore(LValue LVal, RValue RVal, QualType RValTy,
3346                           SourceLocation Loc);
3347   /// Perform element by element copying of arrays with type \a
3348   /// OriginalType from \a SrcAddr to \a DestAddr using copying procedure
3349   /// generated by \a CopyGen.
3350   ///
3351   /// \param DestAddr Address of the destination array.
3352   /// \param SrcAddr Address of the source array.
3353   /// \param OriginalType Type of destination and source arrays.
3354   /// \param CopyGen Copying procedure that copies value of single array element
3355   /// to another single array element.
3356   void EmitOMPAggregateAssign(
3357       Address DestAddr, Address SrcAddr, QualType OriginalType,
3358       const llvm::function_ref<void(Address, Address)> CopyGen);
3359   /// Emit proper copying of data from one variable to another.
3360   ///
3361   /// \param OriginalType Original type of the copied variables.
3362   /// \param DestAddr Destination address.
3363   /// \param SrcAddr Source address.
3364   /// \param DestVD Destination variable used in \a CopyExpr (for arrays, has
3365   /// type of the base array element).
3366   /// \param SrcVD Source variable used in \a CopyExpr (for arrays, has type of
3367   /// the base array element).
3368   /// \param Copy Actual copygin expression for copying data from \a SrcVD to \a
3369   /// DestVD.
3370   void EmitOMPCopy(QualType OriginalType,
3371                    Address DestAddr, Address SrcAddr,
3372                    const VarDecl *DestVD, const VarDecl *SrcVD,
3373                    const Expr *Copy);
3374   /// Emit atomic update code for constructs: \a X = \a X \a BO \a E or
3375   /// \a X = \a E \a BO \a E.
3376   ///
3377   /// \param X Value to be updated.
3378   /// \param E Update value.
3379   /// \param BO Binary operation for update operation.
3380   /// \param IsXLHSInRHSPart true if \a X is LHS in RHS part of the update
3381   /// expression, false otherwise.
3382   /// \param AO Atomic ordering of the generated atomic instructions.
3383   /// \param CommonGen Code generator for complex expressions that cannot be
3384   /// expressed through atomicrmw instruction.
3385   /// \returns <true, OldAtomicValue> if simple 'atomicrmw' instruction was
3386   /// generated, <false, RValue::get(nullptr)> otherwise.
3387   std::pair<bool, RValue> EmitOMPAtomicSimpleUpdateExpr(
3388       LValue X, RValue E, BinaryOperatorKind BO, bool IsXLHSInRHSPart,
3389       llvm::AtomicOrdering AO, SourceLocation Loc,
3390       const llvm::function_ref<RValue(RValue)> CommonGen);
3391   bool EmitOMPFirstprivateClause(const OMPExecutableDirective &D,
3392                                  OMPPrivateScope &PrivateScope);
3393   void EmitOMPPrivateClause(const OMPExecutableDirective &D,
3394                             OMPPrivateScope &PrivateScope);
3395   void EmitOMPUseDevicePtrClause(
3396       const OMPUseDevicePtrClause &C, OMPPrivateScope &PrivateScope,
3397       const llvm::DenseMap<const ValueDecl *, Address> &CaptureDeviceAddrMap);
3398   void EmitOMPUseDeviceAddrClause(
3399       const OMPUseDeviceAddrClause &C, OMPPrivateScope &PrivateScope,
3400       const llvm::DenseMap<const ValueDecl *, Address> &CaptureDeviceAddrMap);
3401   /// Emit code for copyin clause in \a D directive. The next code is
3402   /// generated at the start of outlined functions for directives:
3403   /// \code
3404   /// threadprivate_var1 = master_threadprivate_var1;
3405   /// operator=(threadprivate_var2, master_threadprivate_var2);
3406   /// ...
3407   /// __kmpc_barrier(&loc, global_tid);
3408   /// \endcode
3409   ///
3410   /// \param D OpenMP directive possibly with 'copyin' clause(s).
3411   /// \returns true if at least one copyin variable is found, false otherwise.
3412   bool EmitOMPCopyinClause(const OMPExecutableDirective &D);
3413   /// Emit initial code for lastprivate variables. If some variable is
3414   /// not also firstprivate, then the default initialization is used. Otherwise
3415   /// initialization of this variable is performed by EmitOMPFirstprivateClause
3416   /// method.
3417   ///
3418   /// \param D Directive that may have 'lastprivate' directives.
3419   /// \param PrivateScope Private scope for capturing lastprivate variables for
3420   /// proper codegen in internal captured statement.
3421   ///
3422   /// \returns true if there is at least one lastprivate variable, false
3423   /// otherwise.
3424   bool EmitOMPLastprivateClauseInit(const OMPExecutableDirective &D,
3425                                     OMPPrivateScope &PrivateScope);
3426   /// Emit final copying of lastprivate values to original variables at
3427   /// the end of the worksharing or simd directive.
3428   ///
3429   /// \param D Directive that has at least one 'lastprivate' directives.
3430   /// \param IsLastIterCond Boolean condition that must be set to 'i1 true' if
3431   /// it is the last iteration of the loop code in associated directive, or to
3432   /// 'i1 false' otherwise. If this item is nullptr, no final check is required.
3433   void EmitOMPLastprivateClauseFinal(const OMPExecutableDirective &D,
3434                                      bool NoFinals,
3435                                      llvm::Value *IsLastIterCond = nullptr);
3436   /// Emit initial code for linear clauses.
3437   void EmitOMPLinearClause(const OMPLoopDirective &D,
3438                            CodeGenFunction::OMPPrivateScope &PrivateScope);
3439   /// Emit final code for linear clauses.
3440   /// \param CondGen Optional conditional code for final part of codegen for
3441   /// linear clause.
3442   void EmitOMPLinearClauseFinal(
3443       const OMPLoopDirective &D,
3444       const llvm::function_ref<llvm::Value *(CodeGenFunction &)> CondGen);
3445   /// Emit initial code for reduction variables. Creates reduction copies
3446   /// and initializes them with the values according to OpenMP standard.
3447   ///
3448   /// \param D Directive (possibly) with the 'reduction' clause.
3449   /// \param PrivateScope Private scope for capturing reduction variables for
3450   /// proper codegen in internal captured statement.
3451   ///
3452   void EmitOMPReductionClauseInit(const OMPExecutableDirective &D,
3453                                   OMPPrivateScope &PrivateScope,
3454                                   bool ForInscan = false);
3455   /// Emit final update of reduction values to original variables at
3456   /// the end of the directive.
3457   ///
3458   /// \param D Directive that has at least one 'reduction' directives.
3459   /// \param ReductionKind The kind of reduction to perform.
3460   void EmitOMPReductionClauseFinal(const OMPExecutableDirective &D,
3461                                    const OpenMPDirectiveKind ReductionKind);
3462   /// Emit initial code for linear variables. Creates private copies
3463   /// and initializes them with the values according to OpenMP standard.
3464   ///
3465   /// \param D Directive (possibly) with the 'linear' clause.
3466   /// \return true if at least one linear variable is found that should be
3467   /// initialized with the value of the original variable, false otherwise.
3468   bool EmitOMPLinearClauseInit(const OMPLoopDirective &D);
3469 
3470   typedef const llvm::function_ref<void(CodeGenFunction & /*CGF*/,
3471                                         llvm::Function * /*OutlinedFn*/,
3472                                         const OMPTaskDataTy & /*Data*/)>
3473       TaskGenTy;
3474   void EmitOMPTaskBasedDirective(const OMPExecutableDirective &S,
3475                                  const OpenMPDirectiveKind CapturedRegion,
3476                                  const RegionCodeGenTy &BodyGen,
3477                                  const TaskGenTy &TaskGen, OMPTaskDataTy &Data);
3478   struct OMPTargetDataInfo {
3479     Address BasePointersArray = Address::invalid();
3480     Address PointersArray = Address::invalid();
3481     Address SizesArray = Address::invalid();
3482     Address MappersArray = Address::invalid();
3483     unsigned NumberOfTargetItems = 0;
3484     explicit OMPTargetDataInfo() = default;
3485     OMPTargetDataInfo(Address BasePointersArray, Address PointersArray,
3486                       Address SizesArray, Address MappersArray,
3487                       unsigned NumberOfTargetItems)
3488         : BasePointersArray(BasePointersArray), PointersArray(PointersArray),
3489           SizesArray(SizesArray), MappersArray(MappersArray),
3490           NumberOfTargetItems(NumberOfTargetItems) {}
3491   };
3492   void EmitOMPTargetTaskBasedDirective(const OMPExecutableDirective &S,
3493                                        const RegionCodeGenTy &BodyGen,
3494                                        OMPTargetDataInfo &InputInfo);
3495 
3496   void EmitOMPMetaDirective(const OMPMetaDirective &S);
3497   void EmitOMPParallelDirective(const OMPParallelDirective &S);
3498   void EmitOMPSimdDirective(const OMPSimdDirective &S);
3499   void EmitOMPTileDirective(const OMPTileDirective &S);
3500   void EmitOMPUnrollDirective(const OMPUnrollDirective &S);
3501   void EmitOMPForDirective(const OMPForDirective &S);
3502   void EmitOMPForSimdDirective(const OMPForSimdDirective &S);
3503   void EmitOMPSectionsDirective(const OMPSectionsDirective &S);
3504   void EmitOMPSectionDirective(const OMPSectionDirective &S);
3505   void EmitOMPSingleDirective(const OMPSingleDirective &S);
3506   void EmitOMPMasterDirective(const OMPMasterDirective &S);
3507   void EmitOMPMaskedDirective(const OMPMaskedDirective &S);
3508   void EmitOMPCriticalDirective(const OMPCriticalDirective &S);
3509   void EmitOMPParallelForDirective(const OMPParallelForDirective &S);
3510   void EmitOMPParallelForSimdDirective(const OMPParallelForSimdDirective &S);
3511   void EmitOMPParallelSectionsDirective(const OMPParallelSectionsDirective &S);
3512   void EmitOMPParallelMasterDirective(const OMPParallelMasterDirective &S);
3513   void EmitOMPTaskDirective(const OMPTaskDirective &S);
3514   void EmitOMPTaskyieldDirective(const OMPTaskyieldDirective &S);
3515   void EmitOMPBarrierDirective(const OMPBarrierDirective &S);
3516   void EmitOMPTaskwaitDirective(const OMPTaskwaitDirective &S);
3517   void EmitOMPTaskgroupDirective(const OMPTaskgroupDirective &S);
3518   void EmitOMPFlushDirective(const OMPFlushDirective &S);
3519   void EmitOMPDepobjDirective(const OMPDepobjDirective &S);
3520   void EmitOMPScanDirective(const OMPScanDirective &S);
3521   void EmitOMPOrderedDirective(const OMPOrderedDirective &S);
3522   void EmitOMPAtomicDirective(const OMPAtomicDirective &S);
3523   void EmitOMPTargetDirective(const OMPTargetDirective &S);
3524   void EmitOMPTargetDataDirective(const OMPTargetDataDirective &S);
3525   void EmitOMPTargetEnterDataDirective(const OMPTargetEnterDataDirective &S);
3526   void EmitOMPTargetExitDataDirective(const OMPTargetExitDataDirective &S);
3527   void EmitOMPTargetUpdateDirective(const OMPTargetUpdateDirective &S);
3528   void EmitOMPTargetParallelDirective(const OMPTargetParallelDirective &S);
3529   void
3530   EmitOMPTargetParallelForDirective(const OMPTargetParallelForDirective &S);
3531   void EmitOMPTeamsDirective(const OMPTeamsDirective &S);
3532   void
3533   EmitOMPCancellationPointDirective(const OMPCancellationPointDirective &S);
3534   void EmitOMPCancelDirective(const OMPCancelDirective &S);
3535   void EmitOMPTaskLoopBasedDirective(const OMPLoopDirective &S);
3536   void EmitOMPTaskLoopDirective(const OMPTaskLoopDirective &S);
3537   void EmitOMPTaskLoopSimdDirective(const OMPTaskLoopSimdDirective &S);
3538   void EmitOMPMasterTaskLoopDirective(const OMPMasterTaskLoopDirective &S);
3539   void
3540   EmitOMPMasterTaskLoopSimdDirective(const OMPMasterTaskLoopSimdDirective &S);
3541   void EmitOMPParallelMasterTaskLoopDirective(
3542       const OMPParallelMasterTaskLoopDirective &S);
3543   void EmitOMPParallelMasterTaskLoopSimdDirective(
3544       const OMPParallelMasterTaskLoopSimdDirective &S);
3545   void EmitOMPDistributeDirective(const OMPDistributeDirective &S);
3546   void EmitOMPDistributeParallelForDirective(
3547       const OMPDistributeParallelForDirective &S);
3548   void EmitOMPDistributeParallelForSimdDirective(
3549       const OMPDistributeParallelForSimdDirective &S);
3550   void EmitOMPDistributeSimdDirective(const OMPDistributeSimdDirective &S);
3551   void EmitOMPTargetParallelForSimdDirective(
3552       const OMPTargetParallelForSimdDirective &S);
3553   void EmitOMPTargetSimdDirective(const OMPTargetSimdDirective &S);
3554   void EmitOMPTeamsDistributeDirective(const OMPTeamsDistributeDirective &S);
3555   void
3556   EmitOMPTeamsDistributeSimdDirective(const OMPTeamsDistributeSimdDirective &S);
3557   void EmitOMPTeamsDistributeParallelForSimdDirective(
3558       const OMPTeamsDistributeParallelForSimdDirective &S);
3559   void EmitOMPTeamsDistributeParallelForDirective(
3560       const OMPTeamsDistributeParallelForDirective &S);
3561   void EmitOMPTargetTeamsDirective(const OMPTargetTeamsDirective &S);
3562   void EmitOMPTargetTeamsDistributeDirective(
3563       const OMPTargetTeamsDistributeDirective &S);
3564   void EmitOMPTargetTeamsDistributeParallelForDirective(
3565       const OMPTargetTeamsDistributeParallelForDirective &S);
3566   void EmitOMPTargetTeamsDistributeParallelForSimdDirective(
3567       const OMPTargetTeamsDistributeParallelForSimdDirective &S);
3568   void EmitOMPTargetTeamsDistributeSimdDirective(
3569       const OMPTargetTeamsDistributeSimdDirective &S);
3570   void EmitOMPGenericLoopDirective(const OMPGenericLoopDirective &S);
3571   void EmitOMPInteropDirective(const OMPInteropDirective &S);
3572 
3573   /// Emit device code for the target directive.
3574   static void EmitOMPTargetDeviceFunction(CodeGenModule &CGM,
3575                                           StringRef ParentName,
3576                                           const OMPTargetDirective &S);
3577   static void
3578   EmitOMPTargetParallelDeviceFunction(CodeGenModule &CGM, StringRef ParentName,
3579                                       const OMPTargetParallelDirective &S);
3580   /// Emit device code for the target parallel for directive.
3581   static void EmitOMPTargetParallelForDeviceFunction(
3582       CodeGenModule &CGM, StringRef ParentName,
3583       const OMPTargetParallelForDirective &S);
3584   /// Emit device code for the target parallel for simd directive.
3585   static void EmitOMPTargetParallelForSimdDeviceFunction(
3586       CodeGenModule &CGM, StringRef ParentName,
3587       const OMPTargetParallelForSimdDirective &S);
3588   /// Emit device code for the target teams directive.
3589   static void
3590   EmitOMPTargetTeamsDeviceFunction(CodeGenModule &CGM, StringRef ParentName,
3591                                    const OMPTargetTeamsDirective &S);
3592   /// Emit device code for the target teams distribute directive.
3593   static void EmitOMPTargetTeamsDistributeDeviceFunction(
3594       CodeGenModule &CGM, StringRef ParentName,
3595       const OMPTargetTeamsDistributeDirective &S);
3596   /// Emit device code for the target teams distribute simd directive.
3597   static void EmitOMPTargetTeamsDistributeSimdDeviceFunction(
3598       CodeGenModule &CGM, StringRef ParentName,
3599       const OMPTargetTeamsDistributeSimdDirective &S);
3600   /// Emit device code for the target simd directive.
3601   static void EmitOMPTargetSimdDeviceFunction(CodeGenModule &CGM,
3602                                               StringRef ParentName,
3603                                               const OMPTargetSimdDirective &S);
3604   /// Emit device code for the target teams distribute parallel for simd
3605   /// directive.
3606   static void EmitOMPTargetTeamsDistributeParallelForSimdDeviceFunction(
3607       CodeGenModule &CGM, StringRef ParentName,
3608       const OMPTargetTeamsDistributeParallelForSimdDirective &S);
3609 
3610   static void EmitOMPTargetTeamsDistributeParallelForDeviceFunction(
3611       CodeGenModule &CGM, StringRef ParentName,
3612       const OMPTargetTeamsDistributeParallelForDirective &S);
3613 
3614   /// Emit the Stmt \p S and return its topmost canonical loop, if any.
3615   /// TODO: The \p Depth paramter is not yet implemented and must be 1. In the
3616   /// future it is meant to be the number of loops expected in the loop nests
3617   /// (usually specified by the "collapse" clause) that are collapsed to a
3618   /// single loop by this function.
3619   llvm::CanonicalLoopInfo *EmitOMPCollapsedCanonicalLoopNest(const Stmt *S,
3620                                                              int Depth);
3621 
3622   /// Emit an OMPCanonicalLoop using the OpenMPIRBuilder.
3623   void EmitOMPCanonicalLoop(const OMPCanonicalLoop *S);
3624 
3625   /// Emit inner loop of the worksharing/simd construct.
3626   ///
3627   /// \param S Directive, for which the inner loop must be emitted.
3628   /// \param RequiresCleanup true, if directive has some associated private
3629   /// variables.
3630   /// \param LoopCond Bollean condition for loop continuation.
3631   /// \param IncExpr Increment expression for loop control variable.
3632   /// \param BodyGen Generator for the inner body of the inner loop.
3633   /// \param PostIncGen Genrator for post-increment code (required for ordered
3634   /// loop directvies).
3635   void EmitOMPInnerLoop(
3636       const OMPExecutableDirective &S, bool RequiresCleanup,
3637       const Expr *LoopCond, const Expr *IncExpr,
3638       const llvm::function_ref<void(CodeGenFunction &)> BodyGen,
3639       const llvm::function_ref<void(CodeGenFunction &)> PostIncGen);
3640 
3641   JumpDest getOMPCancelDestination(OpenMPDirectiveKind Kind);
3642   /// Emit initial code for loop counters of loop-based directives.
3643   void EmitOMPPrivateLoopCounters(const OMPLoopDirective &S,
3644                                   OMPPrivateScope &LoopScope);
3645 
3646   /// Helper for the OpenMP loop directives.
3647   void EmitOMPLoopBody(const OMPLoopDirective &D, JumpDest LoopExit);
3648 
3649   /// Emit code for the worksharing loop-based directive.
3650   /// \return true, if this construct has any lastprivate clause, false -
3651   /// otherwise.
3652   bool EmitOMPWorksharingLoop(const OMPLoopDirective &S, Expr *EUB,
3653                               const CodeGenLoopBoundsTy &CodeGenLoopBounds,
3654                               const CodeGenDispatchBoundsTy &CGDispatchBounds);
3655 
3656   /// Emit code for the distribute loop-based directive.
3657   void EmitOMPDistributeLoop(const OMPLoopDirective &S,
3658                              const CodeGenLoopTy &CodeGenLoop, Expr *IncExpr);
3659 
3660   /// Helpers for the OpenMP loop directives.
3661   void EmitOMPSimdInit(const OMPLoopDirective &D);
3662   void EmitOMPSimdFinal(
3663       const OMPLoopDirective &D,
3664       const llvm::function_ref<llvm::Value *(CodeGenFunction &)> CondGen);
3665 
3666   /// Emits the lvalue for the expression with possibly captured variable.
3667   LValue EmitOMPSharedLValue(const Expr *E);
3668 
3669 private:
3670   /// Helpers for blocks.
3671   llvm::Value *EmitBlockLiteral(const CGBlockInfo &Info);
3672 
3673   /// struct with the values to be passed to the OpenMP loop-related functions
3674   struct OMPLoopArguments {
3675     /// loop lower bound
3676     Address LB = Address::invalid();
3677     /// loop upper bound
3678     Address UB = Address::invalid();
3679     /// loop stride
3680     Address ST = Address::invalid();
3681     /// isLastIteration argument for runtime functions
3682     Address IL = Address::invalid();
3683     /// Chunk value generated by sema
3684     llvm::Value *Chunk = nullptr;
3685     /// EnsureUpperBound
3686     Expr *EUB = nullptr;
3687     /// IncrementExpression
3688     Expr *IncExpr = nullptr;
3689     /// Loop initialization
3690     Expr *Init = nullptr;
3691     /// Loop exit condition
3692     Expr *Cond = nullptr;
3693     /// Update of LB after a whole chunk has been executed
3694     Expr *NextLB = nullptr;
3695     /// Update of UB after a whole chunk has been executed
3696     Expr *NextUB = nullptr;
3697     OMPLoopArguments() = default;
3698     OMPLoopArguments(Address LB, Address UB, Address ST, Address IL,
3699                      llvm::Value *Chunk = nullptr, Expr *EUB = nullptr,
3700                      Expr *IncExpr = nullptr, Expr *Init = nullptr,
3701                      Expr *Cond = nullptr, Expr *NextLB = nullptr,
3702                      Expr *NextUB = nullptr)
3703         : LB(LB), UB(UB), ST(ST), IL(IL), Chunk(Chunk), EUB(EUB),
3704           IncExpr(IncExpr), Init(Init), Cond(Cond), NextLB(NextLB),
3705           NextUB(NextUB) {}
3706   };
3707   void EmitOMPOuterLoop(bool DynamicOrOrdered, bool IsMonotonic,
3708                         const OMPLoopDirective &S, OMPPrivateScope &LoopScope,
3709                         const OMPLoopArguments &LoopArgs,
3710                         const CodeGenLoopTy &CodeGenLoop,
3711                         const CodeGenOrderedTy &CodeGenOrdered);
3712   void EmitOMPForOuterLoop(const OpenMPScheduleTy &ScheduleKind,
3713                            bool IsMonotonic, const OMPLoopDirective &S,
3714                            OMPPrivateScope &LoopScope, bool Ordered,
3715                            const OMPLoopArguments &LoopArgs,
3716                            const CodeGenDispatchBoundsTy &CGDispatchBounds);
3717   void EmitOMPDistributeOuterLoop(OpenMPDistScheduleClauseKind ScheduleKind,
3718                                   const OMPLoopDirective &S,
3719                                   OMPPrivateScope &LoopScope,
3720                                   const OMPLoopArguments &LoopArgs,
3721                                   const CodeGenLoopTy &CodeGenLoopContent);
3722   /// Emit code for sections directive.
3723   void EmitSections(const OMPExecutableDirective &S);
3724 
3725 public:
3726 
3727   //===--------------------------------------------------------------------===//
3728   //                         LValue Expression Emission
3729   //===--------------------------------------------------------------------===//
3730 
3731   /// Create a check that a scalar RValue is non-null.
3732   llvm::Value *EmitNonNullRValueCheck(RValue RV, QualType T);
3733 
3734   /// GetUndefRValue - Get an appropriate 'undef' rvalue for the given type.
3735   RValue GetUndefRValue(QualType Ty);
3736 
3737   /// EmitUnsupportedRValue - Emit a dummy r-value using the type of E
3738   /// and issue an ErrorUnsupported style diagnostic (using the
3739   /// provided Name).
3740   RValue EmitUnsupportedRValue(const Expr *E,
3741                                const char *Name);
3742 
3743   /// EmitUnsupportedLValue - Emit a dummy l-value using the type of E and issue
3744   /// an ErrorUnsupported style diagnostic (using the provided Name).
3745   LValue EmitUnsupportedLValue(const Expr *E,
3746                                const char *Name);
3747 
3748   /// EmitLValue - Emit code to compute a designator that specifies the location
3749   /// of the expression.
3750   ///
3751   /// This can return one of two things: a simple address or a bitfield
3752   /// reference.  In either case, the LLVM Value* in the LValue structure is
3753   /// guaranteed to be an LLVM pointer type.
3754   ///
3755   /// If this returns a bitfield reference, nothing about the pointee type of
3756   /// the LLVM value is known: For example, it may not be a pointer to an
3757   /// integer.
3758   ///
3759   /// If this returns a normal address, and if the lvalue's C type is fixed
3760   /// size, this method guarantees that the returned pointer type will point to
3761   /// an LLVM type of the same size of the lvalue's type.  If the lvalue has a
3762   /// variable length type, this is not possible.
3763   ///
3764   LValue EmitLValue(const Expr *E);
3765 
3766   /// Same as EmitLValue but additionally we generate checking code to
3767   /// guard against undefined behavior.  This is only suitable when we know
3768   /// that the address will be used to access the object.
3769   LValue EmitCheckedLValue(const Expr *E, TypeCheckKind TCK);
3770 
3771   RValue convertTempToRValue(Address addr, QualType type,
3772                              SourceLocation Loc);
3773 
3774   void EmitAtomicInit(Expr *E, LValue lvalue);
3775 
3776   bool LValueIsSuitableForInlineAtomic(LValue Src);
3777 
3778   RValue EmitAtomicLoad(LValue LV, SourceLocation SL,
3779                         AggValueSlot Slot = AggValueSlot::ignored());
3780 
3781   RValue EmitAtomicLoad(LValue lvalue, SourceLocation loc,
3782                         llvm::AtomicOrdering AO, bool IsVolatile = false,
3783                         AggValueSlot slot = AggValueSlot::ignored());
3784 
3785   void EmitAtomicStore(RValue rvalue, LValue lvalue, bool isInit);
3786 
3787   void EmitAtomicStore(RValue rvalue, LValue lvalue, llvm::AtomicOrdering AO,
3788                        bool IsVolatile, bool isInit);
3789 
3790   std::pair<RValue, llvm::Value *> EmitAtomicCompareExchange(
3791       LValue Obj, RValue Expected, RValue Desired, SourceLocation Loc,
3792       llvm::AtomicOrdering Success =
3793           llvm::AtomicOrdering::SequentiallyConsistent,
3794       llvm::AtomicOrdering Failure =
3795           llvm::AtomicOrdering::SequentiallyConsistent,
3796       bool IsWeak = false, AggValueSlot Slot = AggValueSlot::ignored());
3797 
3798   void EmitAtomicUpdate(LValue LVal, llvm::AtomicOrdering AO,
3799                         const llvm::function_ref<RValue(RValue)> &UpdateOp,
3800                         bool IsVolatile);
3801 
3802   /// EmitToMemory - Change a scalar value from its value
3803   /// representation to its in-memory representation.
3804   llvm::Value *EmitToMemory(llvm::Value *Value, QualType Ty);
3805 
3806   /// EmitFromMemory - Change a scalar value from its memory
3807   /// representation to its value representation.
3808   llvm::Value *EmitFromMemory(llvm::Value *Value, QualType Ty);
3809 
3810   /// Check if the scalar \p Value is within the valid range for the given
3811   /// type \p Ty.
3812   ///
3813   /// Returns true if a check is needed (even if the range is unknown).
3814   bool EmitScalarRangeCheck(llvm::Value *Value, QualType Ty,
3815                             SourceLocation Loc);
3816 
3817   /// EmitLoadOfScalar - Load a scalar value from an address, taking
3818   /// care to appropriately convert from the memory representation to
3819   /// the LLVM value representation.
3820   llvm::Value *EmitLoadOfScalar(Address Addr, bool Volatile, QualType Ty,
3821                                 SourceLocation Loc,
3822                                 AlignmentSource Source = AlignmentSource::Type,
3823                                 bool isNontemporal = false) {
3824     return EmitLoadOfScalar(Addr, Volatile, Ty, Loc, LValueBaseInfo(Source),
3825                             CGM.getTBAAAccessInfo(Ty), isNontemporal);
3826   }
3827 
3828   llvm::Value *EmitLoadOfScalar(Address Addr, bool Volatile, QualType Ty,
3829                                 SourceLocation Loc, LValueBaseInfo BaseInfo,
3830                                 TBAAAccessInfo TBAAInfo,
3831                                 bool isNontemporal = false);
3832 
3833   /// EmitLoadOfScalar - Load a scalar value from an address, taking
3834   /// care to appropriately convert from the memory representation to
3835   /// the LLVM value representation.  The l-value must be a simple
3836   /// l-value.
3837   llvm::Value *EmitLoadOfScalar(LValue lvalue, SourceLocation Loc);
3838 
3839   /// EmitStoreOfScalar - Store a scalar value to an address, taking
3840   /// care to appropriately convert from the memory representation to
3841   /// the LLVM value representation.
3842   void EmitStoreOfScalar(llvm::Value *Value, Address Addr,
3843                          bool Volatile, QualType Ty,
3844                          AlignmentSource Source = AlignmentSource::Type,
3845                          bool isInit = false, bool isNontemporal = false) {
3846     EmitStoreOfScalar(Value, Addr, Volatile, Ty, LValueBaseInfo(Source),
3847                       CGM.getTBAAAccessInfo(Ty), isInit, isNontemporal);
3848   }
3849 
3850   void EmitStoreOfScalar(llvm::Value *Value, Address Addr,
3851                          bool Volatile, QualType Ty,
3852                          LValueBaseInfo BaseInfo, TBAAAccessInfo TBAAInfo,
3853                          bool isInit = false, bool isNontemporal = false);
3854 
3855   /// EmitStoreOfScalar - Store a scalar value to an address, taking
3856   /// care to appropriately convert from the memory representation to
3857   /// the LLVM value representation.  The l-value must be a simple
3858   /// l-value.  The isInit flag indicates whether this is an initialization.
3859   /// If so, atomic qualifiers are ignored and the store is always non-atomic.
3860   void EmitStoreOfScalar(llvm::Value *value, LValue lvalue, bool isInit=false);
3861 
3862   /// EmitLoadOfLValue - Given an expression that represents a value lvalue,
3863   /// this method emits the address of the lvalue, then loads the result as an
3864   /// rvalue, returning the rvalue.
3865   RValue EmitLoadOfLValue(LValue V, SourceLocation Loc);
3866   RValue EmitLoadOfExtVectorElementLValue(LValue V);
3867   RValue EmitLoadOfBitfieldLValue(LValue LV, SourceLocation Loc);
3868   RValue EmitLoadOfGlobalRegLValue(LValue LV);
3869 
3870   /// EmitStoreThroughLValue - Store the specified rvalue into the specified
3871   /// lvalue, where both are guaranteed to the have the same type, and that type
3872   /// is 'Ty'.
3873   void EmitStoreThroughLValue(RValue Src, LValue Dst, bool isInit = false);
3874   void EmitStoreThroughExtVectorComponentLValue(RValue Src, LValue Dst);
3875   void EmitStoreThroughGlobalRegLValue(RValue Src, LValue Dst);
3876 
3877   /// EmitStoreThroughBitfieldLValue - Store Src into Dst with same constraints
3878   /// as EmitStoreThroughLValue.
3879   ///
3880   /// \param Result [out] - If non-null, this will be set to a Value* for the
3881   /// bit-field contents after the store, appropriate for use as the result of
3882   /// an assignment to the bit-field.
3883   void EmitStoreThroughBitfieldLValue(RValue Src, LValue Dst,
3884                                       llvm::Value **Result=nullptr);
3885 
3886   /// Emit an l-value for an assignment (simple or compound) of complex type.
3887   LValue EmitComplexAssignmentLValue(const BinaryOperator *E);
3888   LValue EmitComplexCompoundAssignmentLValue(const CompoundAssignOperator *E);
3889   LValue EmitScalarCompoundAssignWithComplex(const CompoundAssignOperator *E,
3890                                              llvm::Value *&Result);
3891 
3892   // Note: only available for agg return types
3893   LValue EmitBinaryOperatorLValue(const BinaryOperator *E);
3894   LValue EmitCompoundAssignmentLValue(const CompoundAssignOperator *E);
3895   // Note: only available for agg return types
3896   LValue EmitCallExprLValue(const CallExpr *E);
3897   // Note: only available for agg return types
3898   LValue EmitVAArgExprLValue(const VAArgExpr *E);
3899   LValue EmitDeclRefLValue(const DeclRefExpr *E);
3900   LValue EmitStringLiteralLValue(const StringLiteral *E);
3901   LValue EmitObjCEncodeExprLValue(const ObjCEncodeExpr *E);
3902   LValue EmitPredefinedLValue(const PredefinedExpr *E);
3903   LValue EmitUnaryOpLValue(const UnaryOperator *E);
3904   LValue EmitArraySubscriptExpr(const ArraySubscriptExpr *E,
3905                                 bool Accessed = false);
3906   LValue EmitMatrixSubscriptExpr(const MatrixSubscriptExpr *E);
3907   LValue EmitOMPArraySectionExpr(const OMPArraySectionExpr *E,
3908                                  bool IsLowerBound = true);
3909   LValue EmitExtVectorElementExpr(const ExtVectorElementExpr *E);
3910   LValue EmitMemberExpr(const MemberExpr *E);
3911   LValue EmitObjCIsaExpr(const ObjCIsaExpr *E);
3912   LValue EmitCompoundLiteralLValue(const CompoundLiteralExpr *E);
3913   LValue EmitInitListLValue(const InitListExpr *E);
3914   LValue EmitConditionalOperatorLValue(const AbstractConditionalOperator *E);
3915   LValue EmitCastLValue(const CastExpr *E);
3916   LValue EmitMaterializeTemporaryExpr(const MaterializeTemporaryExpr *E);
3917   LValue EmitOpaqueValueLValue(const OpaqueValueExpr *e);
3918 
3919   Address EmitExtVectorElementLValue(LValue V);
3920 
3921   RValue EmitRValueForField(LValue LV, const FieldDecl *FD, SourceLocation Loc);
3922 
3923   Address EmitArrayToPointerDecay(const Expr *Array,
3924                                   LValueBaseInfo *BaseInfo = nullptr,
3925                                   TBAAAccessInfo *TBAAInfo = nullptr);
3926 
3927   class ConstantEmission {
3928     llvm::PointerIntPair<llvm::Constant*, 1, bool> ValueAndIsReference;
3929     ConstantEmission(llvm::Constant *C, bool isReference)
3930       : ValueAndIsReference(C, isReference) {}
3931   public:
3932     ConstantEmission() {}
3933     static ConstantEmission forReference(llvm::Constant *C) {
3934       return ConstantEmission(C, true);
3935     }
3936     static ConstantEmission forValue(llvm::Constant *C) {
3937       return ConstantEmission(C, false);
3938     }
3939 
3940     explicit operator bool() const {
3941       return ValueAndIsReference.getOpaqueValue() != nullptr;
3942     }
3943 
3944     bool isReference() const { return ValueAndIsReference.getInt(); }
3945     LValue getReferenceLValue(CodeGenFunction &CGF, Expr *refExpr) const {
3946       assert(isReference());
3947       return CGF.MakeNaturalAlignAddrLValue(ValueAndIsReference.getPointer(),
3948                                             refExpr->getType());
3949     }
3950 
3951     llvm::Constant *getValue() const {
3952       assert(!isReference());
3953       return ValueAndIsReference.getPointer();
3954     }
3955   };
3956 
3957   ConstantEmission tryEmitAsConstant(DeclRefExpr *refExpr);
3958   ConstantEmission tryEmitAsConstant(const MemberExpr *ME);
3959   llvm::Value *emitScalarConstant(const ConstantEmission &Constant, Expr *E);
3960 
3961   RValue EmitPseudoObjectRValue(const PseudoObjectExpr *e,
3962                                 AggValueSlot slot = AggValueSlot::ignored());
3963   LValue EmitPseudoObjectLValue(const PseudoObjectExpr *e);
3964 
3965   llvm::Value *EmitIvarOffset(const ObjCInterfaceDecl *Interface,
3966                               const ObjCIvarDecl *Ivar);
3967   LValue EmitLValueForField(LValue Base, const FieldDecl* Field);
3968   LValue EmitLValueForLambdaField(const FieldDecl *Field);
3969 
3970   /// EmitLValueForFieldInitialization - Like EmitLValueForField, except that
3971   /// if the Field is a reference, this will return the address of the reference
3972   /// and not the address of the value stored in the reference.
3973   LValue EmitLValueForFieldInitialization(LValue Base,
3974                                           const FieldDecl* Field);
3975 
3976   LValue EmitLValueForIvar(QualType ObjectTy,
3977                            llvm::Value* Base, const ObjCIvarDecl *Ivar,
3978                            unsigned CVRQualifiers);
3979 
3980   LValue EmitCXXConstructLValue(const CXXConstructExpr *E);
3981   LValue EmitCXXBindTemporaryLValue(const CXXBindTemporaryExpr *E);
3982   LValue EmitCXXTypeidLValue(const CXXTypeidExpr *E);
3983   LValue EmitCXXUuidofLValue(const CXXUuidofExpr *E);
3984 
3985   LValue EmitObjCMessageExprLValue(const ObjCMessageExpr *E);
3986   LValue EmitObjCIvarRefLValue(const ObjCIvarRefExpr *E);
3987   LValue EmitStmtExprLValue(const StmtExpr *E);
3988   LValue EmitPointerToDataMemberBinaryExpr(const BinaryOperator *E);
3989   LValue EmitObjCSelectorLValue(const ObjCSelectorExpr *E);
3990   void   EmitDeclRefExprDbgValue(const DeclRefExpr *E, const APValue &Init);
3991 
3992   //===--------------------------------------------------------------------===//
3993   //                         Scalar Expression Emission
3994   //===--------------------------------------------------------------------===//
3995 
3996   /// EmitCall - Generate a call of the given function, expecting the given
3997   /// result type, and using the given argument list which specifies both the
3998   /// LLVM arguments and the types they were derived from.
3999   RValue EmitCall(const CGFunctionInfo &CallInfo, const CGCallee &Callee,
4000                   ReturnValueSlot ReturnValue, const CallArgList &Args,
4001                   llvm::CallBase **callOrInvoke, bool IsMustTail,
4002                   SourceLocation Loc);
4003   RValue EmitCall(const CGFunctionInfo &CallInfo, const CGCallee &Callee,
4004                   ReturnValueSlot ReturnValue, const CallArgList &Args,
4005                   llvm::CallBase **callOrInvoke = nullptr,
4006                   bool IsMustTail = false) {
4007     return EmitCall(CallInfo, Callee, ReturnValue, Args, callOrInvoke,
4008                     IsMustTail, SourceLocation());
4009   }
4010   RValue EmitCall(QualType FnType, const CGCallee &Callee, const CallExpr *E,
4011                   ReturnValueSlot ReturnValue, llvm::Value *Chain = nullptr);
4012   RValue EmitCallExpr(const CallExpr *E,
4013                       ReturnValueSlot ReturnValue = ReturnValueSlot());
4014   RValue EmitSimpleCallExpr(const CallExpr *E, ReturnValueSlot ReturnValue);
4015   CGCallee EmitCallee(const Expr *E);
4016 
4017   void checkTargetFeatures(const CallExpr *E, const FunctionDecl *TargetDecl);
4018   void checkTargetFeatures(SourceLocation Loc, const FunctionDecl *TargetDecl);
4019 
4020   llvm::CallInst *EmitRuntimeCall(llvm::FunctionCallee callee,
4021                                   const Twine &name = "");
4022   llvm::CallInst *EmitRuntimeCall(llvm::FunctionCallee callee,
4023                                   ArrayRef<llvm::Value *> args,
4024                                   const Twine &name = "");
4025   llvm::CallInst *EmitNounwindRuntimeCall(llvm::FunctionCallee callee,
4026                                           const Twine &name = "");
4027   llvm::CallInst *EmitNounwindRuntimeCall(llvm::FunctionCallee callee,
4028                                           ArrayRef<llvm::Value *> args,
4029                                           const Twine &name = "");
4030 
4031   SmallVector<llvm::OperandBundleDef, 1>
4032   getBundlesForFunclet(llvm::Value *Callee);
4033 
4034   llvm::CallBase *EmitCallOrInvoke(llvm::FunctionCallee Callee,
4035                                    ArrayRef<llvm::Value *> Args,
4036                                    const Twine &Name = "");
4037   llvm::CallBase *EmitRuntimeCallOrInvoke(llvm::FunctionCallee callee,
4038                                           ArrayRef<llvm::Value *> args,
4039                                           const Twine &name = "");
4040   llvm::CallBase *EmitRuntimeCallOrInvoke(llvm::FunctionCallee callee,
4041                                           const Twine &name = "");
4042   void EmitNoreturnRuntimeCallOrInvoke(llvm::FunctionCallee callee,
4043                                        ArrayRef<llvm::Value *> args);
4044 
4045   CGCallee BuildAppleKextVirtualCall(const CXXMethodDecl *MD,
4046                                      NestedNameSpecifier *Qual,
4047                                      llvm::Type *Ty);
4048 
4049   CGCallee BuildAppleKextVirtualDestructorCall(const CXXDestructorDecl *DD,
4050                                                CXXDtorType Type,
4051                                                const CXXRecordDecl *RD);
4052 
4053   // Return the copy constructor name with the prefix "__copy_constructor_"
4054   // removed.
4055   static std::string getNonTrivialCopyConstructorStr(QualType QT,
4056                                                      CharUnits Alignment,
4057                                                      bool IsVolatile,
4058                                                      ASTContext &Ctx);
4059 
4060   // Return the destructor name with the prefix "__destructor_" removed.
4061   static std::string getNonTrivialDestructorStr(QualType QT,
4062                                                 CharUnits Alignment,
4063                                                 bool IsVolatile,
4064                                                 ASTContext &Ctx);
4065 
4066   // These functions emit calls to the special functions of non-trivial C
4067   // structs.
4068   void defaultInitNonTrivialCStructVar(LValue Dst);
4069   void callCStructDefaultConstructor(LValue Dst);
4070   void callCStructDestructor(LValue Dst);
4071   void callCStructCopyConstructor(LValue Dst, LValue Src);
4072   void callCStructMoveConstructor(LValue Dst, LValue Src);
4073   void callCStructCopyAssignmentOperator(LValue Dst, LValue Src);
4074   void callCStructMoveAssignmentOperator(LValue Dst, LValue Src);
4075 
4076   RValue
4077   EmitCXXMemberOrOperatorCall(const CXXMethodDecl *Method,
4078                               const CGCallee &Callee,
4079                               ReturnValueSlot ReturnValue, llvm::Value *This,
4080                               llvm::Value *ImplicitParam,
4081                               QualType ImplicitParamTy, const CallExpr *E,
4082                               CallArgList *RtlArgs);
4083   RValue EmitCXXDestructorCall(GlobalDecl Dtor, const CGCallee &Callee,
4084                                llvm::Value *This, QualType ThisTy,
4085                                llvm::Value *ImplicitParam,
4086                                QualType ImplicitParamTy, const CallExpr *E);
4087   RValue EmitCXXMemberCallExpr(const CXXMemberCallExpr *E,
4088                                ReturnValueSlot ReturnValue);
4089   RValue EmitCXXMemberOrOperatorMemberCallExpr(const CallExpr *CE,
4090                                                const CXXMethodDecl *MD,
4091                                                ReturnValueSlot ReturnValue,
4092                                                bool HasQualifier,
4093                                                NestedNameSpecifier *Qualifier,
4094                                                bool IsArrow, const Expr *Base);
4095   // Compute the object pointer.
4096   Address EmitCXXMemberDataPointerAddress(const Expr *E, Address base,
4097                                           llvm::Value *memberPtr,
4098                                           const MemberPointerType *memberPtrType,
4099                                           LValueBaseInfo *BaseInfo = nullptr,
4100                                           TBAAAccessInfo *TBAAInfo = nullptr);
4101   RValue EmitCXXMemberPointerCallExpr(const CXXMemberCallExpr *E,
4102                                       ReturnValueSlot ReturnValue);
4103 
4104   RValue EmitCXXOperatorMemberCallExpr(const CXXOperatorCallExpr *E,
4105                                        const CXXMethodDecl *MD,
4106                                        ReturnValueSlot ReturnValue);
4107   RValue EmitCXXPseudoDestructorExpr(const CXXPseudoDestructorExpr *E);
4108 
4109   RValue EmitCUDAKernelCallExpr(const CUDAKernelCallExpr *E,
4110                                 ReturnValueSlot ReturnValue);
4111 
4112   RValue EmitNVPTXDevicePrintfCallExpr(const CallExpr *E);
4113   RValue EmitAMDGPUDevicePrintfCallExpr(const CallExpr *E);
4114   RValue EmitOpenMPDevicePrintfCallExpr(const CallExpr *E);
4115 
4116   RValue EmitBuiltinExpr(const GlobalDecl GD, unsigned BuiltinID,
4117                          const CallExpr *E, ReturnValueSlot ReturnValue);
4118 
4119   RValue emitRotate(const CallExpr *E, bool IsRotateRight);
4120 
4121   /// Emit IR for __builtin_os_log_format.
4122   RValue emitBuiltinOSLogFormat(const CallExpr &E);
4123 
4124   /// Emit IR for __builtin_is_aligned.
4125   RValue EmitBuiltinIsAligned(const CallExpr *E);
4126   /// Emit IR for __builtin_align_up/__builtin_align_down.
4127   RValue EmitBuiltinAlignTo(const CallExpr *E, bool AlignUp);
4128 
4129   llvm::Function *generateBuiltinOSLogHelperFunction(
4130       const analyze_os_log::OSLogBufferLayout &Layout,
4131       CharUnits BufferAlignment);
4132 
4133   RValue EmitBlockCallExpr(const CallExpr *E, ReturnValueSlot ReturnValue);
4134 
4135   /// EmitTargetBuiltinExpr - Emit the given builtin call. Returns 0 if the call
4136   /// is unhandled by the current target.
4137   llvm::Value *EmitTargetBuiltinExpr(unsigned BuiltinID, const CallExpr *E,
4138                                      ReturnValueSlot ReturnValue);
4139 
4140   llvm::Value *EmitAArch64CompareBuiltinExpr(llvm::Value *Op, llvm::Type *Ty,
4141                                              const llvm::CmpInst::Predicate Fp,
4142                                              const llvm::CmpInst::Predicate Ip,
4143                                              const llvm::Twine &Name = "");
4144   llvm::Value *EmitARMBuiltinExpr(unsigned BuiltinID, const CallExpr *E,
4145                                   ReturnValueSlot ReturnValue,
4146                                   llvm::Triple::ArchType Arch);
4147   llvm::Value *EmitARMMVEBuiltinExpr(unsigned BuiltinID, const CallExpr *E,
4148                                      ReturnValueSlot ReturnValue,
4149                                      llvm::Triple::ArchType Arch);
4150   llvm::Value *EmitARMCDEBuiltinExpr(unsigned BuiltinID, const CallExpr *E,
4151                                      ReturnValueSlot ReturnValue,
4152                                      llvm::Triple::ArchType Arch);
4153   llvm::Value *EmitCMSEClearRecord(llvm::Value *V, llvm::IntegerType *ITy,
4154                                    QualType RTy);
4155   llvm::Value *EmitCMSEClearRecord(llvm::Value *V, llvm::ArrayType *ATy,
4156                                    QualType RTy);
4157 
4158   llvm::Value *EmitCommonNeonBuiltinExpr(unsigned BuiltinID,
4159                                          unsigned LLVMIntrinsic,
4160                                          unsigned AltLLVMIntrinsic,
4161                                          const char *NameHint,
4162                                          unsigned Modifier,
4163                                          const CallExpr *E,
4164                                          SmallVectorImpl<llvm::Value *> &Ops,
4165                                          Address PtrOp0, Address PtrOp1,
4166                                          llvm::Triple::ArchType Arch);
4167 
4168   llvm::Function *LookupNeonLLVMIntrinsic(unsigned IntrinsicID,
4169                                           unsigned Modifier, llvm::Type *ArgTy,
4170                                           const CallExpr *E);
4171   llvm::Value *EmitNeonCall(llvm::Function *F,
4172                             SmallVectorImpl<llvm::Value*> &O,
4173                             const char *name,
4174                             unsigned shift = 0, bool rightshift = false);
4175   llvm::Value *EmitNeonSplat(llvm::Value *V, llvm::Constant *Idx,
4176                              const llvm::ElementCount &Count);
4177   llvm::Value *EmitNeonSplat(llvm::Value *V, llvm::Constant *Idx);
4178   llvm::Value *EmitNeonShiftVector(llvm::Value *V, llvm::Type *Ty,
4179                                    bool negateForRightShift);
4180   llvm::Value *EmitNeonRShiftImm(llvm::Value *Vec, llvm::Value *Amt,
4181                                  llvm::Type *Ty, bool usgn, const char *name);
4182   llvm::Value *vectorWrapScalar16(llvm::Value *Op);
4183   /// SVEBuiltinMemEltTy - Returns the memory element type for this memory
4184   /// access builtin.  Only required if it can't be inferred from the base
4185   /// pointer operand.
4186   llvm::Type *SVEBuiltinMemEltTy(const SVETypeFlags &TypeFlags);
4187 
4188   SmallVector<llvm::Type *, 2>
4189   getSVEOverloadTypes(const SVETypeFlags &TypeFlags, llvm::Type *ReturnType,
4190                       ArrayRef<llvm::Value *> Ops);
4191   llvm::Type *getEltType(const SVETypeFlags &TypeFlags);
4192   llvm::ScalableVectorType *getSVEType(const SVETypeFlags &TypeFlags);
4193   llvm::ScalableVectorType *getSVEPredType(const SVETypeFlags &TypeFlags);
4194   llvm::Value *EmitSVEAllTruePred(const SVETypeFlags &TypeFlags);
4195   llvm::Value *EmitSVEDupX(llvm::Value *Scalar);
4196   llvm::Value *EmitSVEDupX(llvm::Value *Scalar, llvm::Type *Ty);
4197   llvm::Value *EmitSVEReinterpret(llvm::Value *Val, llvm::Type *Ty);
4198   llvm::Value *EmitSVEPMull(const SVETypeFlags &TypeFlags,
4199                             llvm::SmallVectorImpl<llvm::Value *> &Ops,
4200                             unsigned BuiltinID);
4201   llvm::Value *EmitSVEMovl(const SVETypeFlags &TypeFlags,
4202                            llvm::ArrayRef<llvm::Value *> Ops,
4203                            unsigned BuiltinID);
4204   llvm::Value *EmitSVEPredicateCast(llvm::Value *Pred,
4205                                     llvm::ScalableVectorType *VTy);
4206   llvm::Value *EmitSVEGatherLoad(const SVETypeFlags &TypeFlags,
4207                                  llvm::SmallVectorImpl<llvm::Value *> &Ops,
4208                                  unsigned IntID);
4209   llvm::Value *EmitSVEScatterStore(const SVETypeFlags &TypeFlags,
4210                                    llvm::SmallVectorImpl<llvm::Value *> &Ops,
4211                                    unsigned IntID);
4212   llvm::Value *EmitSVEMaskedLoad(const CallExpr *, llvm::Type *ReturnTy,
4213                                  SmallVectorImpl<llvm::Value *> &Ops,
4214                                  unsigned BuiltinID, bool IsZExtReturn);
4215   llvm::Value *EmitSVEMaskedStore(const CallExpr *,
4216                                   SmallVectorImpl<llvm::Value *> &Ops,
4217                                   unsigned BuiltinID);
4218   llvm::Value *EmitSVEPrefetchLoad(const SVETypeFlags &TypeFlags,
4219                                    SmallVectorImpl<llvm::Value *> &Ops,
4220                                    unsigned BuiltinID);
4221   llvm::Value *EmitSVEGatherPrefetch(const SVETypeFlags &TypeFlags,
4222                                      SmallVectorImpl<llvm::Value *> &Ops,
4223                                      unsigned IntID);
4224   llvm::Value *EmitSVEStructLoad(const SVETypeFlags &TypeFlags,
4225                                  SmallVectorImpl<llvm::Value *> &Ops,
4226                                  unsigned IntID);
4227   llvm::Value *EmitSVEStructStore(const SVETypeFlags &TypeFlags,
4228                                   SmallVectorImpl<llvm::Value *> &Ops,
4229                                   unsigned IntID);
4230   llvm::Value *EmitAArch64SVEBuiltinExpr(unsigned BuiltinID, const CallExpr *E);
4231 
4232   llvm::Value *EmitAArch64BuiltinExpr(unsigned BuiltinID, const CallExpr *E,
4233                                       llvm::Triple::ArchType Arch);
4234   llvm::Value *EmitBPFBuiltinExpr(unsigned BuiltinID, const CallExpr *E);
4235 
4236   llvm::Value *BuildVector(ArrayRef<llvm::Value*> Ops);
4237   llvm::Value *EmitX86BuiltinExpr(unsigned BuiltinID, const CallExpr *E);
4238   llvm::Value *EmitPPCBuiltinExpr(unsigned BuiltinID, const CallExpr *E);
4239   llvm::Value *EmitAMDGPUBuiltinExpr(unsigned BuiltinID, const CallExpr *E);
4240   llvm::Value *EmitSystemZBuiltinExpr(unsigned BuiltinID, const CallExpr *E);
4241   llvm::Value *EmitNVPTXBuiltinExpr(unsigned BuiltinID, const CallExpr *E);
4242   llvm::Value *EmitWebAssemblyBuiltinExpr(unsigned BuiltinID,
4243                                           const CallExpr *E);
4244   llvm::Value *EmitHexagonBuiltinExpr(unsigned BuiltinID, const CallExpr *E);
4245   llvm::Value *EmitRISCVBuiltinExpr(unsigned BuiltinID, const CallExpr *E,
4246                                     ReturnValueSlot ReturnValue);
4247   bool ProcessOrderScopeAMDGCN(llvm::Value *Order, llvm::Value *Scope,
4248                                llvm::AtomicOrdering &AO,
4249                                llvm::SyncScope::ID &SSID);
4250 
4251   enum class MSVCIntrin;
4252   llvm::Value *EmitMSVCBuiltinExpr(MSVCIntrin BuiltinID, const CallExpr *E);
4253 
4254   llvm::Value *EmitBuiltinAvailable(const VersionTuple &Version);
4255 
4256   llvm::Value *EmitObjCProtocolExpr(const ObjCProtocolExpr *E);
4257   llvm::Value *EmitObjCStringLiteral(const ObjCStringLiteral *E);
4258   llvm::Value *EmitObjCBoxedExpr(const ObjCBoxedExpr *E);
4259   llvm::Value *EmitObjCArrayLiteral(const ObjCArrayLiteral *E);
4260   llvm::Value *EmitObjCDictionaryLiteral(const ObjCDictionaryLiteral *E);
4261   llvm::Value *EmitObjCCollectionLiteral(const Expr *E,
4262                                 const ObjCMethodDecl *MethodWithObjects);
4263   llvm::Value *EmitObjCSelectorExpr(const ObjCSelectorExpr *E);
4264   RValue EmitObjCMessageExpr(const ObjCMessageExpr *E,
4265                              ReturnValueSlot Return = ReturnValueSlot());
4266 
4267   /// Retrieves the default cleanup kind for an ARC cleanup.
4268   /// Except under -fobjc-arc-eh, ARC cleanups are normal-only.
4269   CleanupKind getARCCleanupKind() {
4270     return CGM.getCodeGenOpts().ObjCAutoRefCountExceptions
4271              ? NormalAndEHCleanup : NormalCleanup;
4272   }
4273 
4274   // ARC primitives.
4275   void EmitARCInitWeak(Address addr, llvm::Value *value);
4276   void EmitARCDestroyWeak(Address addr);
4277   llvm::Value *EmitARCLoadWeak(Address addr);
4278   llvm::Value *EmitARCLoadWeakRetained(Address addr);
4279   llvm::Value *EmitARCStoreWeak(Address addr, llvm::Value *value, bool ignored);
4280   void emitARCCopyAssignWeak(QualType Ty, Address DstAddr, Address SrcAddr);
4281   void emitARCMoveAssignWeak(QualType Ty, Address DstAddr, Address SrcAddr);
4282   void EmitARCCopyWeak(Address dst, Address src);
4283   void EmitARCMoveWeak(Address dst, Address src);
4284   llvm::Value *EmitARCRetainAutorelease(QualType type, llvm::Value *value);
4285   llvm::Value *EmitARCRetainAutoreleaseNonBlock(llvm::Value *value);
4286   llvm::Value *EmitARCStoreStrong(LValue lvalue, llvm::Value *value,
4287                                   bool resultIgnored);
4288   llvm::Value *EmitARCStoreStrongCall(Address addr, llvm::Value *value,
4289                                       bool resultIgnored);
4290   llvm::Value *EmitARCRetain(QualType type, llvm::Value *value);
4291   llvm::Value *EmitARCRetainNonBlock(llvm::Value *value);
4292   llvm::Value *EmitARCRetainBlock(llvm::Value *value, bool mandatory);
4293   void EmitARCDestroyStrong(Address addr, ARCPreciseLifetime_t precise);
4294   void EmitARCRelease(llvm::Value *value, ARCPreciseLifetime_t precise);
4295   llvm::Value *EmitARCAutorelease(llvm::Value *value);
4296   llvm::Value *EmitARCAutoreleaseReturnValue(llvm::Value *value);
4297   llvm::Value *EmitARCRetainAutoreleaseReturnValue(llvm::Value *value);
4298   llvm::Value *EmitARCRetainAutoreleasedReturnValue(llvm::Value *value);
4299   llvm::Value *EmitARCUnsafeClaimAutoreleasedReturnValue(llvm::Value *value);
4300 
4301   llvm::Value *EmitObjCAutorelease(llvm::Value *value, llvm::Type *returnType);
4302   llvm::Value *EmitObjCRetainNonBlock(llvm::Value *value,
4303                                       llvm::Type *returnType);
4304   void EmitObjCRelease(llvm::Value *value, ARCPreciseLifetime_t precise);
4305 
4306   std::pair<LValue,llvm::Value*>
4307   EmitARCStoreAutoreleasing(const BinaryOperator *e);
4308   std::pair<LValue,llvm::Value*>
4309   EmitARCStoreStrong(const BinaryOperator *e, bool ignored);
4310   std::pair<LValue,llvm::Value*>
4311   EmitARCStoreUnsafeUnretained(const BinaryOperator *e, bool ignored);
4312 
4313   llvm::Value *EmitObjCAlloc(llvm::Value *value,
4314                              llvm::Type *returnType);
4315   llvm::Value *EmitObjCAllocWithZone(llvm::Value *value,
4316                                      llvm::Type *returnType);
4317   llvm::Value *EmitObjCAllocInit(llvm::Value *value, llvm::Type *resultType);
4318 
4319   llvm::Value *EmitObjCThrowOperand(const Expr *expr);
4320   llvm::Value *EmitObjCConsumeObject(QualType T, llvm::Value *Ptr);
4321   llvm::Value *EmitObjCExtendObjectLifetime(QualType T, llvm::Value *Ptr);
4322 
4323   llvm::Value *EmitARCExtendBlockObject(const Expr *expr);
4324   llvm::Value *EmitARCReclaimReturnedObject(const Expr *e,
4325                                             bool allowUnsafeClaim);
4326   llvm::Value *EmitARCRetainScalarExpr(const Expr *expr);
4327   llvm::Value *EmitARCRetainAutoreleaseScalarExpr(const Expr *expr);
4328   llvm::Value *EmitARCUnsafeUnretainedScalarExpr(const Expr *expr);
4329 
4330   void EmitARCIntrinsicUse(ArrayRef<llvm::Value*> values);
4331 
4332   void EmitARCNoopIntrinsicUse(ArrayRef<llvm::Value *> values);
4333 
4334   static Destroyer destroyARCStrongImprecise;
4335   static Destroyer destroyARCStrongPrecise;
4336   static Destroyer destroyARCWeak;
4337   static Destroyer emitARCIntrinsicUse;
4338   static Destroyer destroyNonTrivialCStruct;
4339 
4340   void EmitObjCAutoreleasePoolPop(llvm::Value *Ptr);
4341   llvm::Value *EmitObjCAutoreleasePoolPush();
4342   llvm::Value *EmitObjCMRRAutoreleasePoolPush();
4343   void EmitObjCAutoreleasePoolCleanup(llvm::Value *Ptr);
4344   void EmitObjCMRRAutoreleasePoolPop(llvm::Value *Ptr);
4345 
4346   /// Emits a reference binding to the passed in expression.
4347   RValue EmitReferenceBindingToExpr(const Expr *E);
4348 
4349   //===--------------------------------------------------------------------===//
4350   //                           Expression Emission
4351   //===--------------------------------------------------------------------===//
4352 
4353   // Expressions are broken into three classes: scalar, complex, aggregate.
4354 
4355   /// EmitScalarExpr - Emit the computation of the specified expression of LLVM
4356   /// scalar type, returning the result.
4357   llvm::Value *EmitScalarExpr(const Expr *E , bool IgnoreResultAssign = false);
4358 
4359   /// Emit a conversion from the specified type to the specified destination
4360   /// type, both of which are LLVM scalar types.
4361   llvm::Value *EmitScalarConversion(llvm::Value *Src, QualType SrcTy,
4362                                     QualType DstTy, SourceLocation Loc);
4363 
4364   /// Emit a conversion from the specified complex type to the specified
4365   /// destination type, where the destination type is an LLVM scalar type.
4366   llvm::Value *EmitComplexToScalarConversion(ComplexPairTy Src, QualType SrcTy,
4367                                              QualType DstTy,
4368                                              SourceLocation Loc);
4369 
4370   /// EmitAggExpr - Emit the computation of the specified expression
4371   /// of aggregate type.  The result is computed into the given slot,
4372   /// which may be null to indicate that the value is not needed.
4373   void EmitAggExpr(const Expr *E, AggValueSlot AS);
4374 
4375   /// EmitAggExprToLValue - Emit the computation of the specified expression of
4376   /// aggregate type into a temporary LValue.
4377   LValue EmitAggExprToLValue(const Expr *E);
4378 
4379   /// Build all the stores needed to initialize an aggregate at Dest with the
4380   /// value Val.
4381   void EmitAggregateStore(llvm::Value *Val, Address Dest, bool DestIsVolatile);
4382 
4383   /// EmitExtendGCLifetime - Given a pointer to an Objective-C object,
4384   /// make sure it survives garbage collection until this point.
4385   void EmitExtendGCLifetime(llvm::Value *object);
4386 
4387   /// EmitComplexExpr - Emit the computation of the specified expression of
4388   /// complex type, returning the result.
4389   ComplexPairTy EmitComplexExpr(const Expr *E,
4390                                 bool IgnoreReal = false,
4391                                 bool IgnoreImag = false);
4392 
4393   /// EmitComplexExprIntoLValue - Emit the given expression of complex
4394   /// type and place its result into the specified l-value.
4395   void EmitComplexExprIntoLValue(const Expr *E, LValue dest, bool isInit);
4396 
4397   /// EmitStoreOfComplex - Store a complex number into the specified l-value.
4398   void EmitStoreOfComplex(ComplexPairTy V, LValue dest, bool isInit);
4399 
4400   /// EmitLoadOfComplex - Load a complex number from the specified l-value.
4401   ComplexPairTy EmitLoadOfComplex(LValue src, SourceLocation loc);
4402 
4403   Address emitAddrOfRealComponent(Address complex, QualType complexType);
4404   Address emitAddrOfImagComponent(Address complex, QualType complexType);
4405 
4406   /// AddInitializerToStaticVarDecl - Add the initializer for 'D' to the
4407   /// global variable that has already been created for it.  If the initializer
4408   /// has a different type than GV does, this may free GV and return a different
4409   /// one.  Otherwise it just returns GV.
4410   llvm::GlobalVariable *
4411   AddInitializerToStaticVarDecl(const VarDecl &D,
4412                                 llvm::GlobalVariable *GV);
4413 
4414   // Emit an @llvm.invariant.start call for the given memory region.
4415   void EmitInvariantStart(llvm::Constant *Addr, CharUnits Size);
4416 
4417   /// EmitCXXGlobalVarDeclInit - Create the initializer for a C++
4418   /// variable with global storage.
4419   void EmitCXXGlobalVarDeclInit(const VarDecl &D, llvm::GlobalVariable *GV,
4420                                 bool PerformInit);
4421 
4422   llvm::Function *createAtExitStub(const VarDecl &VD, llvm::FunctionCallee Dtor,
4423                                    llvm::Constant *Addr);
4424 
4425   llvm::Function *createTLSAtExitStub(const VarDecl &VD,
4426                                       llvm::FunctionCallee Dtor,
4427                                       llvm::Constant *Addr,
4428                                       llvm::FunctionCallee &AtExit);
4429 
4430   /// Call atexit() with a function that passes the given argument to
4431   /// the given function.
4432   void registerGlobalDtorWithAtExit(const VarDecl &D, llvm::FunctionCallee fn,
4433                                     llvm::Constant *addr);
4434 
4435   /// Call atexit() with function dtorStub.
4436   void registerGlobalDtorWithAtExit(llvm::Constant *dtorStub);
4437 
4438   /// Call unatexit() with function dtorStub.
4439   llvm::Value *unregisterGlobalDtorWithUnAtExit(llvm::Constant *dtorStub);
4440 
4441   /// Emit code in this function to perform a guarded variable
4442   /// initialization.  Guarded initializations are used when it's not
4443   /// possible to prove that an initialization will be done exactly
4444   /// once, e.g. with a static local variable or a static data member
4445   /// of a class template.
4446   void EmitCXXGuardedInit(const VarDecl &D, llvm::GlobalVariable *DeclPtr,
4447                           bool PerformInit);
4448 
4449   enum class GuardKind { VariableGuard, TlsGuard };
4450 
4451   /// Emit a branch to select whether or not to perform guarded initialization.
4452   void EmitCXXGuardedInitBranch(llvm::Value *NeedsInit,
4453                                 llvm::BasicBlock *InitBlock,
4454                                 llvm::BasicBlock *NoInitBlock,
4455                                 GuardKind Kind, const VarDecl *D);
4456 
4457   /// GenerateCXXGlobalInitFunc - Generates code for initializing global
4458   /// variables.
4459   void
4460   GenerateCXXGlobalInitFunc(llvm::Function *Fn,
4461                             ArrayRef<llvm::Function *> CXXThreadLocals,
4462                             ConstantAddress Guard = ConstantAddress::invalid());
4463 
4464   /// GenerateCXXGlobalCleanUpFunc - Generates code for cleaning up global
4465   /// variables.
4466   void GenerateCXXGlobalCleanUpFunc(
4467       llvm::Function *Fn,
4468       ArrayRef<std::tuple<llvm::FunctionType *, llvm::WeakTrackingVH,
4469                           llvm::Constant *>>
4470           DtorsOrStermFinalizers);
4471 
4472   void GenerateCXXGlobalVarDeclInitFunc(llvm::Function *Fn,
4473                                         const VarDecl *D,
4474                                         llvm::GlobalVariable *Addr,
4475                                         bool PerformInit);
4476 
4477   void EmitCXXConstructExpr(const CXXConstructExpr *E, AggValueSlot Dest);
4478 
4479   void EmitSynthesizedCXXCopyCtor(Address Dest, Address Src, const Expr *Exp);
4480 
4481   void EmitCXXThrowExpr(const CXXThrowExpr *E, bool KeepInsertionPoint = true);
4482 
4483   RValue EmitAtomicExpr(AtomicExpr *E);
4484 
4485   //===--------------------------------------------------------------------===//
4486   //                         Annotations Emission
4487   //===--------------------------------------------------------------------===//
4488 
4489   /// Emit an annotation call (intrinsic).
4490   llvm::Value *EmitAnnotationCall(llvm::Function *AnnotationFn,
4491                                   llvm::Value *AnnotatedVal,
4492                                   StringRef AnnotationStr,
4493                                   SourceLocation Location,
4494                                   const AnnotateAttr *Attr);
4495 
4496   /// Emit local annotations for the local variable V, declared by D.
4497   void EmitVarAnnotations(const VarDecl *D, llvm::Value *V);
4498 
4499   /// Emit field annotations for the given field & value. Returns the
4500   /// annotation result.
4501   Address EmitFieldAnnotations(const FieldDecl *D, Address V);
4502 
4503   //===--------------------------------------------------------------------===//
4504   //                             Internal Helpers
4505   //===--------------------------------------------------------------------===//
4506 
4507   /// ContainsLabel - Return true if the statement contains a label in it.  If
4508   /// this statement is not executed normally, it not containing a label means
4509   /// that we can just remove the code.
4510   static bool ContainsLabel(const Stmt *S, bool IgnoreCaseStmts = false);
4511 
4512   /// containsBreak - Return true if the statement contains a break out of it.
4513   /// If the statement (recursively) contains a switch or loop with a break
4514   /// inside of it, this is fine.
4515   static bool containsBreak(const Stmt *S);
4516 
4517   /// Determine if the given statement might introduce a declaration into the
4518   /// current scope, by being a (possibly-labelled) DeclStmt.
4519   static bool mightAddDeclToScope(const Stmt *S);
4520 
4521   /// ConstantFoldsToSimpleInteger - If the specified expression does not fold
4522   /// to a constant, or if it does but contains a label, return false.  If it
4523   /// constant folds return true and set the boolean result in Result.
4524   bool ConstantFoldsToSimpleInteger(const Expr *Cond, bool &Result,
4525                                     bool AllowLabels = false);
4526 
4527   /// ConstantFoldsToSimpleInteger - If the specified expression does not fold
4528   /// to a constant, or if it does but contains a label, return false.  If it
4529   /// constant folds return true and set the folded value.
4530   bool ConstantFoldsToSimpleInteger(const Expr *Cond, llvm::APSInt &Result,
4531                                     bool AllowLabels = false);
4532 
4533   /// isInstrumentedCondition - Determine whether the given condition is an
4534   /// instrumentable condition (i.e. no "&&" or "||").
4535   static bool isInstrumentedCondition(const Expr *C);
4536 
4537   /// EmitBranchToCounterBlock - Emit a conditional branch to a new block that
4538   /// increments a profile counter based on the semantics of the given logical
4539   /// operator opcode.  This is used to instrument branch condition coverage
4540   /// for logical operators.
4541   void EmitBranchToCounterBlock(const Expr *Cond, BinaryOperator::Opcode LOp,
4542                                 llvm::BasicBlock *TrueBlock,
4543                                 llvm::BasicBlock *FalseBlock,
4544                                 uint64_t TrueCount = 0,
4545                                 Stmt::Likelihood LH = Stmt::LH_None,
4546                                 const Expr *CntrIdx = nullptr);
4547 
4548   /// EmitBranchOnBoolExpr - Emit a branch on a boolean condition (e.g. for an
4549   /// if statement) to the specified blocks.  Based on the condition, this might
4550   /// try to simplify the codegen of the conditional based on the branch.
4551   /// TrueCount should be the number of times we expect the condition to
4552   /// evaluate to true based on PGO data.
4553   void EmitBranchOnBoolExpr(const Expr *Cond, llvm::BasicBlock *TrueBlock,
4554                             llvm::BasicBlock *FalseBlock, uint64_t TrueCount,
4555                             Stmt::Likelihood LH = Stmt::LH_None);
4556 
4557   /// Given an assignment `*LHS = RHS`, emit a test that checks if \p RHS is
4558   /// nonnull, if \p LHS is marked _Nonnull.
4559   void EmitNullabilityCheck(LValue LHS, llvm::Value *RHS, SourceLocation Loc);
4560 
4561   /// An enumeration which makes it easier to specify whether or not an
4562   /// operation is a subtraction.
4563   enum { NotSubtraction = false, IsSubtraction = true };
4564 
4565   /// Same as IRBuilder::CreateInBoundsGEP, but additionally emits a check to
4566   /// detect undefined behavior when the pointer overflow sanitizer is enabled.
4567   /// \p SignedIndices indicates whether any of the GEP indices are signed.
4568   /// \p IsSubtraction indicates whether the expression used to form the GEP
4569   /// is a subtraction.
4570   llvm::Value *EmitCheckedInBoundsGEP(llvm::Type *ElemTy, llvm::Value *Ptr,
4571                                       ArrayRef<llvm::Value *> IdxList,
4572                                       bool SignedIndices,
4573                                       bool IsSubtraction,
4574                                       SourceLocation Loc,
4575                                       const Twine &Name = "");
4576 
4577   /// Specifies which type of sanitizer check to apply when handling a
4578   /// particular builtin.
4579   enum BuiltinCheckKind {
4580     BCK_CTZPassedZero,
4581     BCK_CLZPassedZero,
4582   };
4583 
4584   /// Emits an argument for a call to a builtin. If the builtin sanitizer is
4585   /// enabled, a runtime check specified by \p Kind is also emitted.
4586   llvm::Value *EmitCheckedArgForBuiltin(const Expr *E, BuiltinCheckKind Kind);
4587 
4588   /// Emit a description of a type in a format suitable for passing to
4589   /// a runtime sanitizer handler.
4590   llvm::Constant *EmitCheckTypeDescriptor(QualType T);
4591 
4592   /// Convert a value into a format suitable for passing to a runtime
4593   /// sanitizer handler.
4594   llvm::Value *EmitCheckValue(llvm::Value *V);
4595 
4596   /// Emit a description of a source location in a format suitable for
4597   /// passing to a runtime sanitizer handler.
4598   llvm::Constant *EmitCheckSourceLocation(SourceLocation Loc);
4599 
4600   /// Create a basic block that will either trap or call a handler function in
4601   /// the UBSan runtime with the provided arguments, and create a conditional
4602   /// branch to it.
4603   void EmitCheck(ArrayRef<std::pair<llvm::Value *, SanitizerMask>> Checked,
4604                  SanitizerHandler Check, ArrayRef<llvm::Constant *> StaticArgs,
4605                  ArrayRef<llvm::Value *> DynamicArgs);
4606 
4607   /// Emit a slow path cross-DSO CFI check which calls __cfi_slowpath
4608   /// if Cond if false.
4609   void EmitCfiSlowPathCheck(SanitizerMask Kind, llvm::Value *Cond,
4610                             llvm::ConstantInt *TypeId, llvm::Value *Ptr,
4611                             ArrayRef<llvm::Constant *> StaticArgs);
4612 
4613   /// Emit a reached-unreachable diagnostic if \p Loc is valid and runtime
4614   /// checking is enabled. Otherwise, just emit an unreachable instruction.
4615   void EmitUnreachable(SourceLocation Loc);
4616 
4617   /// Create a basic block that will call the trap intrinsic, and emit a
4618   /// conditional branch to it, for the -ftrapv checks.
4619   void EmitTrapCheck(llvm::Value *Checked, SanitizerHandler CheckHandlerID);
4620 
4621   /// Emit a call to trap or debugtrap and attach function attribute
4622   /// "trap-func-name" if specified.
4623   llvm::CallInst *EmitTrapCall(llvm::Intrinsic::ID IntrID);
4624 
4625   /// Emit a stub for the cross-DSO CFI check function.
4626   void EmitCfiCheckStub();
4627 
4628   /// Emit a cross-DSO CFI failure handling function.
4629   void EmitCfiCheckFail();
4630 
4631   /// Create a check for a function parameter that may potentially be
4632   /// declared as non-null.
4633   void EmitNonNullArgCheck(RValue RV, QualType ArgType, SourceLocation ArgLoc,
4634                            AbstractCallee AC, unsigned ParmNum);
4635 
4636   /// EmitCallArg - Emit a single call argument.
4637   void EmitCallArg(CallArgList &args, const Expr *E, QualType ArgType);
4638 
4639   /// EmitDelegateCallArg - We are performing a delegate call; that
4640   /// is, the current function is delegating to another one.  Produce
4641   /// a r-value suitable for passing the given parameter.
4642   void EmitDelegateCallArg(CallArgList &args, const VarDecl *param,
4643                            SourceLocation loc);
4644 
4645   /// SetFPAccuracy - Set the minimum required accuracy of the given floating
4646   /// point operation, expressed as the maximum relative error in ulp.
4647   void SetFPAccuracy(llvm::Value *Val, float Accuracy);
4648 
4649   /// Set the codegen fast-math flags.
4650   void SetFastMathFlags(FPOptions FPFeatures);
4651 
4652 private:
4653   llvm::MDNode *getRangeForLoadFromType(QualType Ty);
4654   void EmitReturnOfRValue(RValue RV, QualType Ty);
4655 
4656   void deferPlaceholderReplacement(llvm::Instruction *Old, llvm::Value *New);
4657 
4658   llvm::SmallVector<std::pair<llvm::WeakTrackingVH, llvm::Value *>, 4>
4659       DeferredReplacements;
4660 
4661   /// Set the address of a local variable.
4662   void setAddrOfLocalVar(const VarDecl *VD, Address Addr) {
4663     assert(!LocalDeclMap.count(VD) && "Decl already exists in LocalDeclMap!");
4664     LocalDeclMap.insert({VD, Addr});
4665   }
4666 
4667   /// ExpandTypeFromArgs - Reconstruct a structure of type \arg Ty
4668   /// from function arguments into \arg Dst. See ABIArgInfo::Expand.
4669   ///
4670   /// \param AI - The first function argument of the expansion.
4671   void ExpandTypeFromArgs(QualType Ty, LValue Dst,
4672                           llvm::Function::arg_iterator &AI);
4673 
4674   /// ExpandTypeToArgs - Expand an CallArg \arg Arg, with the LLVM type for \arg
4675   /// Ty, into individual arguments on the provided vector \arg IRCallArgs,
4676   /// starting at index \arg IRCallArgPos. See ABIArgInfo::Expand.
4677   void ExpandTypeToArgs(QualType Ty, CallArg Arg, llvm::FunctionType *IRFuncTy,
4678                         SmallVectorImpl<llvm::Value *> &IRCallArgs,
4679                         unsigned &IRCallArgPos);
4680 
4681   std::pair<llvm::Value *, llvm::Type *>
4682   EmitAsmInput(const TargetInfo::ConstraintInfo &Info, const Expr *InputExpr,
4683                std::string &ConstraintStr);
4684 
4685   std::pair<llvm::Value *, llvm::Type *>
4686   EmitAsmInputLValue(const TargetInfo::ConstraintInfo &Info, LValue InputValue,
4687                      QualType InputType, std::string &ConstraintStr,
4688                      SourceLocation Loc);
4689 
4690   /// Attempts to statically evaluate the object size of E. If that
4691   /// fails, emits code to figure the size of E out for us. This is
4692   /// pass_object_size aware.
4693   ///
4694   /// If EmittedExpr is non-null, this will use that instead of re-emitting E.
4695   llvm::Value *evaluateOrEmitBuiltinObjectSize(const Expr *E, unsigned Type,
4696                                                llvm::IntegerType *ResType,
4697                                                llvm::Value *EmittedE,
4698                                                bool IsDynamic);
4699 
4700   /// Emits the size of E, as required by __builtin_object_size. This
4701   /// function is aware of pass_object_size parameters, and will act accordingly
4702   /// if E is a parameter with the pass_object_size attribute.
4703   llvm::Value *emitBuiltinObjectSize(const Expr *E, unsigned Type,
4704                                      llvm::IntegerType *ResType,
4705                                      llvm::Value *EmittedE,
4706                                      bool IsDynamic);
4707 
4708   void emitZeroOrPatternForAutoVarInit(QualType type, const VarDecl &D,
4709                                        Address Loc);
4710 
4711 public:
4712   enum class EvaluationOrder {
4713     ///! No language constraints on evaluation order.
4714     Default,
4715     ///! Language semantics require left-to-right evaluation.
4716     ForceLeftToRight,
4717     ///! Language semantics require right-to-left evaluation.
4718     ForceRightToLeft
4719   };
4720 
4721   // Wrapper for function prototype sources. Wraps either a FunctionProtoType or
4722   // an ObjCMethodDecl.
4723   struct PrototypeWrapper {
4724     llvm::PointerUnion<const FunctionProtoType *, const ObjCMethodDecl *> P;
4725 
4726     PrototypeWrapper(const FunctionProtoType *FT) : P(FT) {}
4727     PrototypeWrapper(const ObjCMethodDecl *MD) : P(MD) {}
4728   };
4729 
4730   void EmitCallArgs(CallArgList &Args, PrototypeWrapper Prototype,
4731                     llvm::iterator_range<CallExpr::const_arg_iterator> ArgRange,
4732                     AbstractCallee AC = AbstractCallee(),
4733                     unsigned ParamsToSkip = 0,
4734                     EvaluationOrder Order = EvaluationOrder::Default);
4735 
4736   /// EmitPointerWithAlignment - Given an expression with a pointer type,
4737   /// emit the value and compute our best estimate of the alignment of the
4738   /// pointee.
4739   ///
4740   /// \param BaseInfo - If non-null, this will be initialized with
4741   /// information about the source of the alignment and the may-alias
4742   /// attribute.  Note that this function will conservatively fall back on
4743   /// the type when it doesn't recognize the expression and may-alias will
4744   /// be set to false.
4745   ///
4746   /// One reasonable way to use this information is when there's a language
4747   /// guarantee that the pointer must be aligned to some stricter value, and
4748   /// we're simply trying to ensure that sufficiently obvious uses of under-
4749   /// aligned objects don't get miscompiled; for example, a placement new
4750   /// into the address of a local variable.  In such a case, it's quite
4751   /// reasonable to just ignore the returned alignment when it isn't from an
4752   /// explicit source.
4753   Address EmitPointerWithAlignment(const Expr *Addr,
4754                                    LValueBaseInfo *BaseInfo = nullptr,
4755                                    TBAAAccessInfo *TBAAInfo = nullptr);
4756 
4757   /// If \p E references a parameter with pass_object_size info or a constant
4758   /// array size modifier, emit the object size divided by the size of \p EltTy.
4759   /// Otherwise return null.
4760   llvm::Value *LoadPassedObjectSize(const Expr *E, QualType EltTy);
4761 
4762   void EmitSanitizerStatReport(llvm::SanitizerStatKind SSK);
4763 
4764   struct MultiVersionResolverOption {
4765     llvm::Function *Function;
4766     struct Conds {
4767       StringRef Architecture;
4768       llvm::SmallVector<StringRef, 8> Features;
4769 
4770       Conds(StringRef Arch, ArrayRef<StringRef> Feats)
4771           : Architecture(Arch), Features(Feats.begin(), Feats.end()) {}
4772     } Conditions;
4773 
4774     MultiVersionResolverOption(llvm::Function *F, StringRef Arch,
4775                                ArrayRef<StringRef> Feats)
4776         : Function(F), Conditions(Arch, Feats) {}
4777   };
4778 
4779   // Emits the body of a multiversion function's resolver. Assumes that the
4780   // options are already sorted in the proper order, with the 'default' option
4781   // last (if it exists).
4782   void EmitMultiVersionResolver(llvm::Function *Resolver,
4783                                 ArrayRef<MultiVersionResolverOption> Options);
4784 
4785 private:
4786   QualType getVarArgType(const Expr *Arg);
4787 
4788   void EmitDeclMetadata();
4789 
4790   BlockByrefHelpers *buildByrefHelpers(llvm::StructType &byrefType,
4791                                   const AutoVarEmission &emission);
4792 
4793   void AddObjCARCExceptionMetadata(llvm::Instruction *Inst);
4794 
4795   llvm::Value *GetValueForARMHint(unsigned BuiltinID);
4796   llvm::Value *EmitX86CpuIs(const CallExpr *E);
4797   llvm::Value *EmitX86CpuIs(StringRef CPUStr);
4798   llvm::Value *EmitX86CpuSupports(const CallExpr *E);
4799   llvm::Value *EmitX86CpuSupports(ArrayRef<StringRef> FeatureStrs);
4800   llvm::Value *EmitX86CpuSupports(uint64_t Mask);
4801   llvm::Value *EmitX86CpuInit();
4802   llvm::Value *FormResolverCondition(const MultiVersionResolverOption &RO);
4803 };
4804 
4805 /// TargetFeatures - This class is used to check whether the builtin function
4806 /// has the required tagert specific features. It is able to support the
4807 /// combination of ','(and), '|'(or), and '()'. By default, the priority of
4808 /// ',' is higher than that of '|' .
4809 /// E.g:
4810 /// A,B|C means the builtin function requires both A and B, or C.
4811 /// If we want the builtin function requires both A and B, or both A and C,
4812 /// there are two ways: A,B|A,C or A,(B|C).
4813 /// The FeaturesList should not contain spaces, and brackets must appear in
4814 /// pairs.
4815 class TargetFeatures {
4816   struct FeatureListStatus {
4817     bool HasFeatures;
4818     StringRef CurFeaturesList;
4819   };
4820 
4821   const llvm::StringMap<bool> &CallerFeatureMap;
4822 
4823   FeatureListStatus getAndFeatures(StringRef FeatureList) {
4824     int InParentheses = 0;
4825     bool HasFeatures = true;
4826     size_t SubexpressionStart = 0;
4827     for (size_t i = 0, e = FeatureList.size(); i < e; ++i) {
4828       char CurrentToken = FeatureList[i];
4829       switch (CurrentToken) {
4830       default:
4831         break;
4832       case '(':
4833         if (InParentheses == 0)
4834           SubexpressionStart = i + 1;
4835         ++InParentheses;
4836         break;
4837       case ')':
4838         --InParentheses;
4839         assert(InParentheses >= 0 && "Parentheses are not in pair");
4840         LLVM_FALLTHROUGH;
4841       case '|':
4842       case ',':
4843         if (InParentheses == 0) {
4844           if (HasFeatures && i != SubexpressionStart) {
4845             StringRef F = FeatureList.slice(SubexpressionStart, i);
4846             HasFeatures = CurrentToken == ')' ? hasRequiredFeatures(F)
4847                                               : CallerFeatureMap.lookup(F);
4848           }
4849           SubexpressionStart = i + 1;
4850           if (CurrentToken == '|') {
4851             return {HasFeatures, FeatureList.substr(SubexpressionStart)};
4852           }
4853         }
4854         break;
4855       }
4856     }
4857     assert(InParentheses == 0 && "Parentheses are not in pair");
4858     if (HasFeatures && SubexpressionStart != FeatureList.size())
4859       HasFeatures =
4860           CallerFeatureMap.lookup(FeatureList.substr(SubexpressionStart));
4861     return {HasFeatures, StringRef()};
4862   }
4863 
4864 public:
4865   bool hasRequiredFeatures(StringRef FeatureList) {
4866     FeatureListStatus FS = {false, FeatureList};
4867     while (!FS.HasFeatures && !FS.CurFeaturesList.empty())
4868       FS = getAndFeatures(FS.CurFeaturesList);
4869     return FS.HasFeatures;
4870   }
4871 
4872   TargetFeatures(const llvm::StringMap<bool> &CallerFeatureMap)
4873       : CallerFeatureMap(CallerFeatureMap) {}
4874 };
4875 
4876 inline DominatingLLVMValue::saved_type
4877 DominatingLLVMValue::save(CodeGenFunction &CGF, llvm::Value *value) {
4878   if (!needsSaving(value)) return saved_type(value, false);
4879 
4880   // Otherwise, we need an alloca.
4881   auto align = CharUnits::fromQuantity(
4882             CGF.CGM.getDataLayout().getPrefTypeAlignment(value->getType()));
4883   Address alloca =
4884     CGF.CreateTempAlloca(value->getType(), align, "cond-cleanup.save");
4885   CGF.Builder.CreateStore(value, alloca);
4886 
4887   return saved_type(alloca.getPointer(), true);
4888 }
4889 
4890 inline llvm::Value *DominatingLLVMValue::restore(CodeGenFunction &CGF,
4891                                                  saved_type value) {
4892   // If the value says it wasn't saved, trust that it's still dominating.
4893   if (!value.getInt()) return value.getPointer();
4894 
4895   // Otherwise, it should be an alloca instruction, as set up in save().
4896   auto alloca = cast<llvm::AllocaInst>(value.getPointer());
4897   return CGF.Builder.CreateAlignedLoad(alloca->getAllocatedType(), alloca,
4898                                        alloca->getAlign());
4899 }
4900 
4901 }  // end namespace CodeGen
4902 
4903 // Map the LangOption for floating point exception behavior into
4904 // the corresponding enum in the IR.
4905 llvm::fp::ExceptionBehavior
4906 ToConstrainedExceptMD(LangOptions::FPExceptionModeKind Kind);
4907 }  // end namespace clang
4908 
4909 #endif
4910