1 //===-- CodeGenFunction.h - Per-Function state for LLVM CodeGen -*- C++ -*-===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This is the internal per-function state used for llvm translation.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #ifndef LLVM_CLANG_LIB_CODEGEN_CODEGENFUNCTION_H
15 #define LLVM_CLANG_LIB_CODEGEN_CODEGENFUNCTION_H
16 
17 #include "CGBuilder.h"
18 #include "CGDebugInfo.h"
19 #include "CGLoopInfo.h"
20 #include "CGValue.h"
21 #include "CodeGenModule.h"
22 #include "CodeGenPGO.h"
23 #include "EHScopeStack.h"
24 #include "clang/AST/CharUnits.h"
25 #include "clang/AST/ExprCXX.h"
26 #include "clang/AST/ExprObjC.h"
27 #include "clang/AST/ExprOpenMP.h"
28 #include "clang/AST/Type.h"
29 #include "clang/Basic/ABI.h"
30 #include "clang/Basic/CapturedStmt.h"
31 #include "clang/Basic/OpenMPKinds.h"
32 #include "clang/Basic/TargetInfo.h"
33 #include "clang/Frontend/CodeGenOptions.h"
34 #include "llvm/ADT/ArrayRef.h"
35 #include "llvm/ADT/DenseMap.h"
36 #include "llvm/ADT/SmallVector.h"
37 #include "llvm/IR/ValueHandle.h"
38 #include "llvm/Support/Debug.h"
39 #include "llvm/Transforms/Utils/SanitizerStats.h"
40 
41 namespace llvm {
42 class BasicBlock;
43 class LLVMContext;
44 class MDNode;
45 class Module;
46 class SwitchInst;
47 class Twine;
48 class Value;
49 class CallSite;
50 }
51 
52 namespace clang {
53 class ASTContext;
54 class BlockDecl;
55 class CXXDestructorDecl;
56 class CXXForRangeStmt;
57 class CXXTryStmt;
58 class Decl;
59 class LabelDecl;
60 class EnumConstantDecl;
61 class FunctionDecl;
62 class FunctionProtoType;
63 class LabelStmt;
64 class ObjCContainerDecl;
65 class ObjCInterfaceDecl;
66 class ObjCIvarDecl;
67 class ObjCMethodDecl;
68 class ObjCImplementationDecl;
69 class ObjCPropertyImplDecl;
70 class TargetInfo;
71 class VarDecl;
72 class ObjCForCollectionStmt;
73 class ObjCAtTryStmt;
74 class ObjCAtThrowStmt;
75 class ObjCAtSynchronizedStmt;
76 class ObjCAutoreleasePoolStmt;
77 
78 namespace CodeGen {
79 class CodeGenTypes;
80 class CGFunctionInfo;
81 class CGRecordLayout;
82 class CGBlockInfo;
83 class CGCXXABI;
84 class BlockByrefHelpers;
85 class BlockByrefInfo;
86 class BlockFlags;
87 class BlockFieldFlags;
88 class RegionCodeGenTy;
89 class TargetCodeGenInfo;
90 struct OMPTaskDataTy;
91 
92 /// The kind of evaluation to perform on values of a particular
93 /// type.  Basically, is the code in CGExprScalar, CGExprComplex, or
94 /// CGExprAgg?
95 ///
96 /// TODO: should vectors maybe be split out into their own thing?
97 enum TypeEvaluationKind {
98   TEK_Scalar,
99   TEK_Complex,
100   TEK_Aggregate
101 };
102 
103 /// CodeGenFunction - This class organizes the per-function state that is used
104 /// while generating LLVM code.
105 class CodeGenFunction : public CodeGenTypeCache {
106   CodeGenFunction(const CodeGenFunction &) = delete;
107   void operator=(const CodeGenFunction &) = delete;
108 
109   friend class CGCXXABI;
110 public:
111   /// A jump destination is an abstract label, branching to which may
112   /// require a jump out through normal cleanups.
113   struct JumpDest {
114     JumpDest() : Block(nullptr), ScopeDepth(), Index(0) {}
115     JumpDest(llvm::BasicBlock *Block,
116              EHScopeStack::stable_iterator Depth,
117              unsigned Index)
118       : Block(Block), ScopeDepth(Depth), Index(Index) {}
119 
120     bool isValid() const { return Block != nullptr; }
121     llvm::BasicBlock *getBlock() const { return Block; }
122     EHScopeStack::stable_iterator getScopeDepth() const { return ScopeDepth; }
123     unsigned getDestIndex() const { return Index; }
124 
125     // This should be used cautiously.
126     void setScopeDepth(EHScopeStack::stable_iterator depth) {
127       ScopeDepth = depth;
128     }
129 
130   private:
131     llvm::BasicBlock *Block;
132     EHScopeStack::stable_iterator ScopeDepth;
133     unsigned Index;
134   };
135 
136   CodeGenModule &CGM;  // Per-module state.
137   const TargetInfo &Target;
138 
139   typedef std::pair<llvm::Value *, llvm::Value *> ComplexPairTy;
140   LoopInfoStack LoopStack;
141   CGBuilderTy Builder;
142 
143   /// \brief CGBuilder insert helper. This function is called after an
144   /// instruction is created using Builder.
145   void InsertHelper(llvm::Instruction *I, const llvm::Twine &Name,
146                     llvm::BasicBlock *BB,
147                     llvm::BasicBlock::iterator InsertPt) const;
148 
149   /// CurFuncDecl - Holds the Decl for the current outermost
150   /// non-closure context.
151   const Decl *CurFuncDecl;
152   /// CurCodeDecl - This is the inner-most code context, which includes blocks.
153   const Decl *CurCodeDecl;
154   const CGFunctionInfo *CurFnInfo;
155   QualType FnRetTy;
156   llvm::Function *CurFn;
157 
158   /// CurGD - The GlobalDecl for the current function being compiled.
159   GlobalDecl CurGD;
160 
161   /// PrologueCleanupDepth - The cleanup depth enclosing all the
162   /// cleanups associated with the parameters.
163   EHScopeStack::stable_iterator PrologueCleanupDepth;
164 
165   /// ReturnBlock - Unified return block.
166   JumpDest ReturnBlock;
167 
168   /// ReturnValue - The temporary alloca to hold the return
169   /// value. This is invalid iff the function has no return value.
170   Address ReturnValue;
171 
172   /// AllocaInsertPoint - This is an instruction in the entry block before which
173   /// we prefer to insert allocas.
174   llvm::AssertingVH<llvm::Instruction> AllocaInsertPt;
175 
176   /// \brief API for captured statement code generation.
177   class CGCapturedStmtInfo {
178   public:
179     explicit CGCapturedStmtInfo(CapturedRegionKind K = CR_Default)
180         : Kind(K), ThisValue(nullptr), CXXThisFieldDecl(nullptr) {}
181     explicit CGCapturedStmtInfo(const CapturedStmt &S,
182                                 CapturedRegionKind K = CR_Default)
183       : Kind(K), ThisValue(nullptr), CXXThisFieldDecl(nullptr) {
184 
185       RecordDecl::field_iterator Field =
186         S.getCapturedRecordDecl()->field_begin();
187       for (CapturedStmt::const_capture_iterator I = S.capture_begin(),
188                                                 E = S.capture_end();
189            I != E; ++I, ++Field) {
190         if (I->capturesThis())
191           CXXThisFieldDecl = *Field;
192         else if (I->capturesVariable())
193           CaptureFields[I->getCapturedVar()] = *Field;
194         else if (I->capturesVariableByCopy())
195           CaptureFields[I->getCapturedVar()] = *Field;
196       }
197     }
198 
199     virtual ~CGCapturedStmtInfo();
200 
201     CapturedRegionKind getKind() const { return Kind; }
202 
203     virtual void setContextValue(llvm::Value *V) { ThisValue = V; }
204     // \brief Retrieve the value of the context parameter.
205     virtual llvm::Value *getContextValue() const { return ThisValue; }
206 
207     /// \brief Lookup the captured field decl for a variable.
208     virtual const FieldDecl *lookup(const VarDecl *VD) const {
209       return CaptureFields.lookup(VD);
210     }
211 
212     bool isCXXThisExprCaptured() const { return getThisFieldDecl() != nullptr; }
213     virtual FieldDecl *getThisFieldDecl() const { return CXXThisFieldDecl; }
214 
215     static bool classof(const CGCapturedStmtInfo *) {
216       return true;
217     }
218 
219     /// \brief Emit the captured statement body.
220     virtual void EmitBody(CodeGenFunction &CGF, const Stmt *S) {
221       CGF.incrementProfileCounter(S);
222       CGF.EmitStmt(S);
223     }
224 
225     /// \brief Get the name of the capture helper.
226     virtual StringRef getHelperName() const { return "__captured_stmt"; }
227 
228   private:
229     /// \brief The kind of captured statement being generated.
230     CapturedRegionKind Kind;
231 
232     /// \brief Keep the map between VarDecl and FieldDecl.
233     llvm::SmallDenseMap<const VarDecl *, FieldDecl *> CaptureFields;
234 
235     /// \brief The base address of the captured record, passed in as the first
236     /// argument of the parallel region function.
237     llvm::Value *ThisValue;
238 
239     /// \brief Captured 'this' type.
240     FieldDecl *CXXThisFieldDecl;
241   };
242   CGCapturedStmtInfo *CapturedStmtInfo;
243 
244   /// \brief RAII for correct setting/restoring of CapturedStmtInfo.
245   class CGCapturedStmtRAII {
246   private:
247     CodeGenFunction &CGF;
248     CGCapturedStmtInfo *PrevCapturedStmtInfo;
249   public:
250     CGCapturedStmtRAII(CodeGenFunction &CGF,
251                        CGCapturedStmtInfo *NewCapturedStmtInfo)
252         : CGF(CGF), PrevCapturedStmtInfo(CGF.CapturedStmtInfo) {
253       CGF.CapturedStmtInfo = NewCapturedStmtInfo;
254     }
255     ~CGCapturedStmtRAII() { CGF.CapturedStmtInfo = PrevCapturedStmtInfo; }
256   };
257 
258   /// \brief Sanitizers enabled for this function.
259   SanitizerSet SanOpts;
260 
261   /// \brief True if CodeGen currently emits code implementing sanitizer checks.
262   bool IsSanitizerScope;
263 
264   /// \brief RAII object to set/unset CodeGenFunction::IsSanitizerScope.
265   class SanitizerScope {
266     CodeGenFunction *CGF;
267   public:
268     SanitizerScope(CodeGenFunction *CGF);
269     ~SanitizerScope();
270   };
271 
272   /// In C++, whether we are code generating a thunk.  This controls whether we
273   /// should emit cleanups.
274   bool CurFuncIsThunk;
275 
276   /// In ARC, whether we should autorelease the return value.
277   bool AutoreleaseResult;
278 
279   /// Whether we processed a Microsoft-style asm block during CodeGen. These can
280   /// potentially set the return value.
281   bool SawAsmBlock;
282 
283   const FunctionDecl *CurSEHParent = nullptr;
284 
285   /// True if the current function is an outlined SEH helper. This can be a
286   /// finally block or filter expression.
287   bool IsOutlinedSEHHelper;
288 
289   const CodeGen::CGBlockInfo *BlockInfo;
290   llvm::Value *BlockPointer;
291 
292   llvm::DenseMap<const VarDecl *, FieldDecl *> LambdaCaptureFields;
293   FieldDecl *LambdaThisCaptureField;
294 
295   /// \brief A mapping from NRVO variables to the flags used to indicate
296   /// when the NRVO has been applied to this variable.
297   llvm::DenseMap<const VarDecl *, llvm::Value *> NRVOFlags;
298 
299   EHScopeStack EHStack;
300   llvm::SmallVector<char, 256> LifetimeExtendedCleanupStack;
301   llvm::SmallVector<const JumpDest *, 2> SEHTryEpilogueStack;
302 
303   llvm::Instruction *CurrentFuncletPad = nullptr;
304 
305   /// Header for data within LifetimeExtendedCleanupStack.
306   struct LifetimeExtendedCleanupHeader {
307     /// The size of the following cleanup object.
308     unsigned Size;
309     /// The kind of cleanup to push: a value from the CleanupKind enumeration.
310     CleanupKind Kind;
311 
312     size_t getSize() const { return Size; }
313     CleanupKind getKind() const { return Kind; }
314   };
315 
316   /// i32s containing the indexes of the cleanup destinations.
317   llvm::AllocaInst *NormalCleanupDest;
318 
319   unsigned NextCleanupDestIndex;
320 
321   /// FirstBlockInfo - The head of a singly-linked-list of block layouts.
322   CGBlockInfo *FirstBlockInfo;
323 
324   /// EHResumeBlock - Unified block containing a call to llvm.eh.resume.
325   llvm::BasicBlock *EHResumeBlock;
326 
327   /// The exception slot.  All landing pads write the current exception pointer
328   /// into this alloca.
329   llvm::Value *ExceptionSlot;
330 
331   /// The selector slot.  Under the MandatoryCleanup model, all landing pads
332   /// write the current selector value into this alloca.
333   llvm::AllocaInst *EHSelectorSlot;
334 
335   /// A stack of exception code slots. Entering an __except block pushes a slot
336   /// on the stack and leaving pops one. The __exception_code() intrinsic loads
337   /// a value from the top of the stack.
338   SmallVector<Address, 1> SEHCodeSlotStack;
339 
340   /// Value returned by __exception_info intrinsic.
341   llvm::Value *SEHInfo = nullptr;
342 
343   /// Emits a landing pad for the current EH stack.
344   llvm::BasicBlock *EmitLandingPad();
345 
346   llvm::BasicBlock *getInvokeDestImpl();
347 
348   template <class T>
349   typename DominatingValue<T>::saved_type saveValueInCond(T value) {
350     return DominatingValue<T>::save(*this, value);
351   }
352 
353 public:
354   /// ObjCEHValueStack - Stack of Objective-C exception values, used for
355   /// rethrows.
356   SmallVector<llvm::Value*, 8> ObjCEHValueStack;
357 
358   /// A class controlling the emission of a finally block.
359   class FinallyInfo {
360     /// Where the catchall's edge through the cleanup should go.
361     JumpDest RethrowDest;
362 
363     /// A function to call to enter the catch.
364     llvm::Constant *BeginCatchFn;
365 
366     /// An i1 variable indicating whether or not the @finally is
367     /// running for an exception.
368     llvm::AllocaInst *ForEHVar;
369 
370     /// An i8* variable into which the exception pointer to rethrow
371     /// has been saved.
372     llvm::AllocaInst *SavedExnVar;
373 
374   public:
375     void enter(CodeGenFunction &CGF, const Stmt *Finally,
376                llvm::Constant *beginCatchFn, llvm::Constant *endCatchFn,
377                llvm::Constant *rethrowFn);
378     void exit(CodeGenFunction &CGF);
379   };
380 
381   /// Returns true inside SEH __try blocks.
382   bool isSEHTryScope() const { return !SEHTryEpilogueStack.empty(); }
383 
384   /// Returns true while emitting a cleanuppad.
385   bool isCleanupPadScope() const {
386     return CurrentFuncletPad && isa<llvm::CleanupPadInst>(CurrentFuncletPad);
387   }
388 
389   /// pushFullExprCleanup - Push a cleanup to be run at the end of the
390   /// current full-expression.  Safe against the possibility that
391   /// we're currently inside a conditionally-evaluated expression.
392   template <class T, class... As>
393   void pushFullExprCleanup(CleanupKind kind, As... A) {
394     // If we're not in a conditional branch, or if none of the
395     // arguments requires saving, then use the unconditional cleanup.
396     if (!isInConditionalBranch())
397       return EHStack.pushCleanup<T>(kind, A...);
398 
399     // Stash values in a tuple so we can guarantee the order of saves.
400     typedef std::tuple<typename DominatingValue<As>::saved_type...> SavedTuple;
401     SavedTuple Saved{saveValueInCond(A)...};
402 
403     typedef EHScopeStack::ConditionalCleanup<T, As...> CleanupType;
404     EHStack.pushCleanupTuple<CleanupType>(kind, Saved);
405     initFullExprCleanup();
406   }
407 
408   /// \brief Queue a cleanup to be pushed after finishing the current
409   /// full-expression.
410   template <class T, class... As>
411   void pushCleanupAfterFullExpr(CleanupKind Kind, As... A) {
412     assert(!isInConditionalBranch() && "can't defer conditional cleanup");
413 
414     LifetimeExtendedCleanupHeader Header = { sizeof(T), Kind };
415 
416     size_t OldSize = LifetimeExtendedCleanupStack.size();
417     LifetimeExtendedCleanupStack.resize(
418         LifetimeExtendedCleanupStack.size() + sizeof(Header) + Header.Size);
419 
420     static_assert(sizeof(Header) % llvm::AlignOf<T>::Alignment == 0,
421                   "Cleanup will be allocated on misaligned address");
422     char *Buffer = &LifetimeExtendedCleanupStack[OldSize];
423     new (Buffer) LifetimeExtendedCleanupHeader(Header);
424     new (Buffer + sizeof(Header)) T(A...);
425   }
426 
427   /// Set up the last cleaup that was pushed as a conditional
428   /// full-expression cleanup.
429   void initFullExprCleanup();
430 
431   /// PushDestructorCleanup - Push a cleanup to call the
432   /// complete-object destructor of an object of the given type at the
433   /// given address.  Does nothing if T is not a C++ class type with a
434   /// non-trivial destructor.
435   void PushDestructorCleanup(QualType T, Address Addr);
436 
437   /// PushDestructorCleanup - Push a cleanup to call the
438   /// complete-object variant of the given destructor on the object at
439   /// the given address.
440   void PushDestructorCleanup(const CXXDestructorDecl *Dtor, Address Addr);
441 
442   /// PopCleanupBlock - Will pop the cleanup entry on the stack and
443   /// process all branch fixups.
444   void PopCleanupBlock(bool FallThroughIsBranchThrough = false);
445 
446   /// DeactivateCleanupBlock - Deactivates the given cleanup block.
447   /// The block cannot be reactivated.  Pops it if it's the top of the
448   /// stack.
449   ///
450   /// \param DominatingIP - An instruction which is known to
451   ///   dominate the current IP (if set) and which lies along
452   ///   all paths of execution between the current IP and the
453   ///   the point at which the cleanup comes into scope.
454   void DeactivateCleanupBlock(EHScopeStack::stable_iterator Cleanup,
455                               llvm::Instruction *DominatingIP);
456 
457   /// ActivateCleanupBlock - Activates an initially-inactive cleanup.
458   /// Cannot be used to resurrect a deactivated cleanup.
459   ///
460   /// \param DominatingIP - An instruction which is known to
461   ///   dominate the current IP (if set) and which lies along
462   ///   all paths of execution between the current IP and the
463   ///   the point at which the cleanup comes into scope.
464   void ActivateCleanupBlock(EHScopeStack::stable_iterator Cleanup,
465                             llvm::Instruction *DominatingIP);
466 
467   /// \brief Enters a new scope for capturing cleanups, all of which
468   /// will be executed once the scope is exited.
469   class RunCleanupsScope {
470     EHScopeStack::stable_iterator CleanupStackDepth;
471     size_t LifetimeExtendedCleanupStackSize;
472     bool OldDidCallStackSave;
473   protected:
474     bool PerformCleanup;
475   private:
476 
477     RunCleanupsScope(const RunCleanupsScope &) = delete;
478     void operator=(const RunCleanupsScope &) = delete;
479 
480   protected:
481     CodeGenFunction& CGF;
482 
483   public:
484     /// \brief Enter a new cleanup scope.
485     explicit RunCleanupsScope(CodeGenFunction &CGF)
486       : PerformCleanup(true), CGF(CGF)
487     {
488       CleanupStackDepth = CGF.EHStack.stable_begin();
489       LifetimeExtendedCleanupStackSize =
490           CGF.LifetimeExtendedCleanupStack.size();
491       OldDidCallStackSave = CGF.DidCallStackSave;
492       CGF.DidCallStackSave = false;
493     }
494 
495     /// \brief Exit this cleanup scope, emitting any accumulated
496     /// cleanups.
497     ~RunCleanupsScope() {
498       if (PerformCleanup) {
499         CGF.DidCallStackSave = OldDidCallStackSave;
500         CGF.PopCleanupBlocks(CleanupStackDepth,
501                              LifetimeExtendedCleanupStackSize);
502       }
503     }
504 
505     /// \brief Determine whether this scope requires any cleanups.
506     bool requiresCleanups() const {
507       return CGF.EHStack.stable_begin() != CleanupStackDepth;
508     }
509 
510     /// \brief Force the emission of cleanups now, instead of waiting
511     /// until this object is destroyed.
512     void ForceCleanup() {
513       assert(PerformCleanup && "Already forced cleanup");
514       CGF.DidCallStackSave = OldDidCallStackSave;
515       CGF.PopCleanupBlocks(CleanupStackDepth,
516                            LifetimeExtendedCleanupStackSize);
517       PerformCleanup = false;
518     }
519   };
520 
521   class LexicalScope : public RunCleanupsScope {
522     SourceRange Range;
523     SmallVector<const LabelDecl*, 4> Labels;
524     LexicalScope *ParentScope;
525 
526     LexicalScope(const LexicalScope &) = delete;
527     void operator=(const LexicalScope &) = delete;
528 
529   public:
530     /// \brief Enter a new cleanup scope.
531     explicit LexicalScope(CodeGenFunction &CGF, SourceRange Range)
532       : RunCleanupsScope(CGF), Range(Range), ParentScope(CGF.CurLexicalScope) {
533       CGF.CurLexicalScope = this;
534       if (CGDebugInfo *DI = CGF.getDebugInfo())
535         DI->EmitLexicalBlockStart(CGF.Builder, Range.getBegin());
536     }
537 
538     void addLabel(const LabelDecl *label) {
539       assert(PerformCleanup && "adding label to dead scope?");
540       Labels.push_back(label);
541     }
542 
543     /// \brief Exit this cleanup scope, emitting any accumulated
544     /// cleanups.
545     ~LexicalScope() {
546       if (CGDebugInfo *DI = CGF.getDebugInfo())
547         DI->EmitLexicalBlockEnd(CGF.Builder, Range.getEnd());
548 
549       // If we should perform a cleanup, force them now.  Note that
550       // this ends the cleanup scope before rescoping any labels.
551       if (PerformCleanup) {
552         ApplyDebugLocation DL(CGF, Range.getEnd());
553         ForceCleanup();
554       }
555     }
556 
557     /// \brief Force the emission of cleanups now, instead of waiting
558     /// until this object is destroyed.
559     void ForceCleanup() {
560       CGF.CurLexicalScope = ParentScope;
561       RunCleanupsScope::ForceCleanup();
562 
563       if (!Labels.empty())
564         rescopeLabels();
565     }
566 
567     void rescopeLabels();
568   };
569 
570   typedef llvm::DenseMap<const Decl *, Address> DeclMapTy;
571 
572   /// \brief The scope used to remap some variables as private in the OpenMP
573   /// loop body (or other captured region emitted without outlining), and to
574   /// restore old vars back on exit.
575   class OMPPrivateScope : public RunCleanupsScope {
576     DeclMapTy SavedLocals;
577     DeclMapTy SavedPrivates;
578 
579   private:
580     OMPPrivateScope(const OMPPrivateScope &) = delete;
581     void operator=(const OMPPrivateScope &) = delete;
582 
583   public:
584     /// \brief Enter a new OpenMP private scope.
585     explicit OMPPrivateScope(CodeGenFunction &CGF) : RunCleanupsScope(CGF) {}
586 
587     /// \brief Registers \a LocalVD variable as a private and apply \a
588     /// PrivateGen function for it to generate corresponding private variable.
589     /// \a PrivateGen returns an address of the generated private variable.
590     /// \return true if the variable is registered as private, false if it has
591     /// been privatized already.
592     bool
593     addPrivate(const VarDecl *LocalVD,
594                llvm::function_ref<Address()> PrivateGen) {
595       assert(PerformCleanup && "adding private to dead scope");
596 
597       // Only save it once.
598       if (SavedLocals.count(LocalVD)) return false;
599 
600       // Copy the existing local entry to SavedLocals.
601       auto it = CGF.LocalDeclMap.find(LocalVD);
602       if (it != CGF.LocalDeclMap.end()) {
603         SavedLocals.insert({LocalVD, it->second});
604       } else {
605         SavedLocals.insert({LocalVD, Address::invalid()});
606       }
607 
608       // Generate the private entry.
609       Address Addr = PrivateGen();
610       QualType VarTy = LocalVD->getType();
611       if (VarTy->isReferenceType()) {
612         Address Temp = CGF.CreateMemTemp(VarTy);
613         CGF.Builder.CreateStore(Addr.getPointer(), Temp);
614         Addr = Temp;
615       }
616       SavedPrivates.insert({LocalVD, Addr});
617 
618       return true;
619     }
620 
621     /// \brief Privatizes local variables previously registered as private.
622     /// Registration is separate from the actual privatization to allow
623     /// initializers use values of the original variables, not the private one.
624     /// This is important, for example, if the private variable is a class
625     /// variable initialized by a constructor that references other private
626     /// variables. But at initialization original variables must be used, not
627     /// private copies.
628     /// \return true if at least one variable was privatized, false otherwise.
629     bool Privatize() {
630       copyInto(SavedPrivates, CGF.LocalDeclMap);
631       SavedPrivates.clear();
632       return !SavedLocals.empty();
633     }
634 
635     void ForceCleanup() {
636       RunCleanupsScope::ForceCleanup();
637       copyInto(SavedLocals, CGF.LocalDeclMap);
638       SavedLocals.clear();
639     }
640 
641     /// \brief Exit scope - all the mapped variables are restored.
642     ~OMPPrivateScope() {
643       if (PerformCleanup)
644         ForceCleanup();
645     }
646 
647     /// Checks if the global variable is captured in current function.
648     bool isGlobalVarCaptured(const VarDecl *VD) const {
649       return !VD->isLocalVarDeclOrParm() && CGF.LocalDeclMap.count(VD) > 0;
650     }
651 
652   private:
653     /// Copy all the entries in the source map over the corresponding
654     /// entries in the destination, which must exist.
655     static void copyInto(const DeclMapTy &src, DeclMapTy &dest) {
656       for (auto &pair : src) {
657         if (!pair.second.isValid()) {
658           dest.erase(pair.first);
659           continue;
660         }
661 
662         auto it = dest.find(pair.first);
663         if (it != dest.end()) {
664           it->second = pair.second;
665         } else {
666           dest.insert(pair);
667         }
668       }
669     }
670   };
671 
672   /// \brief Takes the old cleanup stack size and emits the cleanup blocks
673   /// that have been added.
674   void PopCleanupBlocks(EHScopeStack::stable_iterator OldCleanupStackSize);
675 
676   /// \brief Takes the old cleanup stack size and emits the cleanup blocks
677   /// that have been added, then adds all lifetime-extended cleanups from
678   /// the given position to the stack.
679   void PopCleanupBlocks(EHScopeStack::stable_iterator OldCleanupStackSize,
680                         size_t OldLifetimeExtendedStackSize);
681 
682   void ResolveBranchFixups(llvm::BasicBlock *Target);
683 
684   /// The given basic block lies in the current EH scope, but may be a
685   /// target of a potentially scope-crossing jump; get a stable handle
686   /// to which we can perform this jump later.
687   JumpDest getJumpDestInCurrentScope(llvm::BasicBlock *Target) {
688     return JumpDest(Target,
689                     EHStack.getInnermostNormalCleanup(),
690                     NextCleanupDestIndex++);
691   }
692 
693   /// The given basic block lies in the current EH scope, but may be a
694   /// target of a potentially scope-crossing jump; get a stable handle
695   /// to which we can perform this jump later.
696   JumpDest getJumpDestInCurrentScope(StringRef Name = StringRef()) {
697     return getJumpDestInCurrentScope(createBasicBlock(Name));
698   }
699 
700   /// EmitBranchThroughCleanup - Emit a branch from the current insert
701   /// block through the normal cleanup handling code (if any) and then
702   /// on to \arg Dest.
703   void EmitBranchThroughCleanup(JumpDest Dest);
704 
705   /// isObviouslyBranchWithoutCleanups - Return true if a branch to the
706   /// specified destination obviously has no cleanups to run.  'false' is always
707   /// a conservatively correct answer for this method.
708   bool isObviouslyBranchWithoutCleanups(JumpDest Dest) const;
709 
710   /// popCatchScope - Pops the catch scope at the top of the EHScope
711   /// stack, emitting any required code (other than the catch handlers
712   /// themselves).
713   void popCatchScope();
714 
715   llvm::BasicBlock *getEHResumeBlock(bool isCleanup);
716   llvm::BasicBlock *getEHDispatchBlock(EHScopeStack::stable_iterator scope);
717   llvm::BasicBlock *getMSVCDispatchBlock(EHScopeStack::stable_iterator scope);
718 
719   /// An object to manage conditionally-evaluated expressions.
720   class ConditionalEvaluation {
721     llvm::BasicBlock *StartBB;
722 
723   public:
724     ConditionalEvaluation(CodeGenFunction &CGF)
725       : StartBB(CGF.Builder.GetInsertBlock()) {}
726 
727     void begin(CodeGenFunction &CGF) {
728       assert(CGF.OutermostConditional != this);
729       if (!CGF.OutermostConditional)
730         CGF.OutermostConditional = this;
731     }
732 
733     void end(CodeGenFunction &CGF) {
734       assert(CGF.OutermostConditional != nullptr);
735       if (CGF.OutermostConditional == this)
736         CGF.OutermostConditional = nullptr;
737     }
738 
739     /// Returns a block which will be executed prior to each
740     /// evaluation of the conditional code.
741     llvm::BasicBlock *getStartingBlock() const {
742       return StartBB;
743     }
744   };
745 
746   /// isInConditionalBranch - Return true if we're currently emitting
747   /// one branch or the other of a conditional expression.
748   bool isInConditionalBranch() const { return OutermostConditional != nullptr; }
749 
750   void setBeforeOutermostConditional(llvm::Value *value, Address addr) {
751     assert(isInConditionalBranch());
752     llvm::BasicBlock *block = OutermostConditional->getStartingBlock();
753     auto store = new llvm::StoreInst(value, addr.getPointer(), &block->back());
754     store->setAlignment(addr.getAlignment().getQuantity());
755   }
756 
757   /// An RAII object to record that we're evaluating a statement
758   /// expression.
759   class StmtExprEvaluation {
760     CodeGenFunction &CGF;
761 
762     /// We have to save the outermost conditional: cleanups in a
763     /// statement expression aren't conditional just because the
764     /// StmtExpr is.
765     ConditionalEvaluation *SavedOutermostConditional;
766 
767   public:
768     StmtExprEvaluation(CodeGenFunction &CGF)
769       : CGF(CGF), SavedOutermostConditional(CGF.OutermostConditional) {
770       CGF.OutermostConditional = nullptr;
771     }
772 
773     ~StmtExprEvaluation() {
774       CGF.OutermostConditional = SavedOutermostConditional;
775       CGF.EnsureInsertPoint();
776     }
777   };
778 
779   /// An object which temporarily prevents a value from being
780   /// destroyed by aggressive peephole optimizations that assume that
781   /// all uses of a value have been realized in the IR.
782   class PeepholeProtection {
783     llvm::Instruction *Inst;
784     friend class CodeGenFunction;
785 
786   public:
787     PeepholeProtection() : Inst(nullptr) {}
788   };
789 
790   /// A non-RAII class containing all the information about a bound
791   /// opaque value.  OpaqueValueMapping, below, is a RAII wrapper for
792   /// this which makes individual mappings very simple; using this
793   /// class directly is useful when you have a variable number of
794   /// opaque values or don't want the RAII functionality for some
795   /// reason.
796   class OpaqueValueMappingData {
797     const OpaqueValueExpr *OpaqueValue;
798     bool BoundLValue;
799     CodeGenFunction::PeepholeProtection Protection;
800 
801     OpaqueValueMappingData(const OpaqueValueExpr *ov,
802                            bool boundLValue)
803       : OpaqueValue(ov), BoundLValue(boundLValue) {}
804   public:
805     OpaqueValueMappingData() : OpaqueValue(nullptr) {}
806 
807     static bool shouldBindAsLValue(const Expr *expr) {
808       // gl-values should be bound as l-values for obvious reasons.
809       // Records should be bound as l-values because IR generation
810       // always keeps them in memory.  Expressions of function type
811       // act exactly like l-values but are formally required to be
812       // r-values in C.
813       return expr->isGLValue() ||
814              expr->getType()->isFunctionType() ||
815              hasAggregateEvaluationKind(expr->getType());
816     }
817 
818     static OpaqueValueMappingData bind(CodeGenFunction &CGF,
819                                        const OpaqueValueExpr *ov,
820                                        const Expr *e) {
821       if (shouldBindAsLValue(ov))
822         return bind(CGF, ov, CGF.EmitLValue(e));
823       return bind(CGF, ov, CGF.EmitAnyExpr(e));
824     }
825 
826     static OpaqueValueMappingData bind(CodeGenFunction &CGF,
827                                        const OpaqueValueExpr *ov,
828                                        const LValue &lv) {
829       assert(shouldBindAsLValue(ov));
830       CGF.OpaqueLValues.insert(std::make_pair(ov, lv));
831       return OpaqueValueMappingData(ov, true);
832     }
833 
834     static OpaqueValueMappingData bind(CodeGenFunction &CGF,
835                                        const OpaqueValueExpr *ov,
836                                        const RValue &rv) {
837       assert(!shouldBindAsLValue(ov));
838       CGF.OpaqueRValues.insert(std::make_pair(ov, rv));
839 
840       OpaqueValueMappingData data(ov, false);
841 
842       // Work around an extremely aggressive peephole optimization in
843       // EmitScalarConversion which assumes that all other uses of a
844       // value are extant.
845       data.Protection = CGF.protectFromPeepholes(rv);
846 
847       return data;
848     }
849 
850     bool isValid() const { return OpaqueValue != nullptr; }
851     void clear() { OpaqueValue = nullptr; }
852 
853     void unbind(CodeGenFunction &CGF) {
854       assert(OpaqueValue && "no data to unbind!");
855 
856       if (BoundLValue) {
857         CGF.OpaqueLValues.erase(OpaqueValue);
858       } else {
859         CGF.OpaqueRValues.erase(OpaqueValue);
860         CGF.unprotectFromPeepholes(Protection);
861       }
862     }
863   };
864 
865   /// An RAII object to set (and then clear) a mapping for an OpaqueValueExpr.
866   class OpaqueValueMapping {
867     CodeGenFunction &CGF;
868     OpaqueValueMappingData Data;
869 
870   public:
871     static bool shouldBindAsLValue(const Expr *expr) {
872       return OpaqueValueMappingData::shouldBindAsLValue(expr);
873     }
874 
875     /// Build the opaque value mapping for the given conditional
876     /// operator if it's the GNU ?: extension.  This is a common
877     /// enough pattern that the convenience operator is really
878     /// helpful.
879     ///
880     OpaqueValueMapping(CodeGenFunction &CGF,
881                        const AbstractConditionalOperator *op) : CGF(CGF) {
882       if (isa<ConditionalOperator>(op))
883         // Leave Data empty.
884         return;
885 
886       const BinaryConditionalOperator *e = cast<BinaryConditionalOperator>(op);
887       Data = OpaqueValueMappingData::bind(CGF, e->getOpaqueValue(),
888                                           e->getCommon());
889     }
890 
891     OpaqueValueMapping(CodeGenFunction &CGF,
892                        const OpaqueValueExpr *opaqueValue,
893                        LValue lvalue)
894       : CGF(CGF), Data(OpaqueValueMappingData::bind(CGF, opaqueValue, lvalue)) {
895     }
896 
897     OpaqueValueMapping(CodeGenFunction &CGF,
898                        const OpaqueValueExpr *opaqueValue,
899                        RValue rvalue)
900       : CGF(CGF), Data(OpaqueValueMappingData::bind(CGF, opaqueValue, rvalue)) {
901     }
902 
903     void pop() {
904       Data.unbind(CGF);
905       Data.clear();
906     }
907 
908     ~OpaqueValueMapping() {
909       if (Data.isValid()) Data.unbind(CGF);
910     }
911   };
912 
913 private:
914   CGDebugInfo *DebugInfo;
915   bool DisableDebugInfo;
916 
917   /// DidCallStackSave - Whether llvm.stacksave has been called. Used to avoid
918   /// calling llvm.stacksave for multiple VLAs in the same scope.
919   bool DidCallStackSave;
920 
921   /// IndirectBranch - The first time an indirect goto is seen we create a block
922   /// with an indirect branch.  Every time we see the address of a label taken,
923   /// we add the label to the indirect goto.  Every subsequent indirect goto is
924   /// codegen'd as a jump to the IndirectBranch's basic block.
925   llvm::IndirectBrInst *IndirectBranch;
926 
927   /// LocalDeclMap - This keeps track of the LLVM allocas or globals for local C
928   /// decls.
929   DeclMapTy LocalDeclMap;
930 
931   /// SizeArguments - If a ParmVarDecl had the pass_object_size attribute, this
932   /// will contain a mapping from said ParmVarDecl to its implicit "object_size"
933   /// parameter.
934   llvm::SmallDenseMap<const ParmVarDecl *, const ImplicitParamDecl *, 2>
935       SizeArguments;
936 
937   /// Track escaped local variables with auto storage. Used during SEH
938   /// outlining to produce a call to llvm.localescape.
939   llvm::DenseMap<llvm::AllocaInst *, int> EscapedLocals;
940 
941   /// LabelMap - This keeps track of the LLVM basic block for each C label.
942   llvm::DenseMap<const LabelDecl*, JumpDest> LabelMap;
943 
944   // BreakContinueStack - This keeps track of where break and continue
945   // statements should jump to.
946   struct BreakContinue {
947     BreakContinue(JumpDest Break, JumpDest Continue)
948       : BreakBlock(Break), ContinueBlock(Continue) {}
949 
950     JumpDest BreakBlock;
951     JumpDest ContinueBlock;
952   };
953   SmallVector<BreakContinue, 8> BreakContinueStack;
954 
955   CodeGenPGO PGO;
956 
957   /// Calculate branch weights appropriate for PGO data
958   llvm::MDNode *createProfileWeights(uint64_t TrueCount, uint64_t FalseCount);
959   llvm::MDNode *createProfileWeights(ArrayRef<uint64_t> Weights);
960   llvm::MDNode *createProfileWeightsForLoop(const Stmt *Cond,
961                                             uint64_t LoopCount);
962 
963 public:
964   /// Increment the profiler's counter for the given statement.
965   void incrementProfileCounter(const Stmt *S) {
966     if (CGM.getCodeGenOpts().hasProfileClangInstr())
967       PGO.emitCounterIncrement(Builder, S);
968     PGO.setCurrentStmt(S);
969   }
970 
971   /// Get the profiler's count for the given statement.
972   uint64_t getProfileCount(const Stmt *S) {
973     Optional<uint64_t> Count = PGO.getStmtCount(S);
974     if (!Count.hasValue())
975       return 0;
976     return *Count;
977   }
978 
979   /// Set the profiler's current count.
980   void setCurrentProfileCount(uint64_t Count) {
981     PGO.setCurrentRegionCount(Count);
982   }
983 
984   /// Get the profiler's current count. This is generally the count for the most
985   /// recently incremented counter.
986   uint64_t getCurrentProfileCount() {
987     return PGO.getCurrentRegionCount();
988   }
989 
990 private:
991 
992   /// SwitchInsn - This is nearest current switch instruction. It is null if
993   /// current context is not in a switch.
994   llvm::SwitchInst *SwitchInsn;
995   /// The branch weights of SwitchInsn when doing instrumentation based PGO.
996   SmallVector<uint64_t, 16> *SwitchWeights;
997 
998   /// CaseRangeBlock - This block holds if condition check for last case
999   /// statement range in current switch instruction.
1000   llvm::BasicBlock *CaseRangeBlock;
1001 
1002   /// OpaqueLValues - Keeps track of the current set of opaque value
1003   /// expressions.
1004   llvm::DenseMap<const OpaqueValueExpr *, LValue> OpaqueLValues;
1005   llvm::DenseMap<const OpaqueValueExpr *, RValue> OpaqueRValues;
1006 
1007   // VLASizeMap - This keeps track of the associated size for each VLA type.
1008   // We track this by the size expression rather than the type itself because
1009   // in certain situations, like a const qualifier applied to an VLA typedef,
1010   // multiple VLA types can share the same size expression.
1011   // FIXME: Maybe this could be a stack of maps that is pushed/popped as we
1012   // enter/leave scopes.
1013   llvm::DenseMap<const Expr*, llvm::Value*> VLASizeMap;
1014 
1015   /// A block containing a single 'unreachable' instruction.  Created
1016   /// lazily by getUnreachableBlock().
1017   llvm::BasicBlock *UnreachableBlock;
1018 
1019   /// Counts of the number return expressions in the function.
1020   unsigned NumReturnExprs;
1021 
1022   /// Count the number of simple (constant) return expressions in the function.
1023   unsigned NumSimpleReturnExprs;
1024 
1025   /// The last regular (non-return) debug location (breakpoint) in the function.
1026   SourceLocation LastStopPoint;
1027 
1028 public:
1029   /// A scope within which we are constructing the fields of an object which
1030   /// might use a CXXDefaultInitExpr. This stashes away a 'this' value to use
1031   /// if we need to evaluate a CXXDefaultInitExpr within the evaluation.
1032   class FieldConstructionScope {
1033   public:
1034     FieldConstructionScope(CodeGenFunction &CGF, Address This)
1035         : CGF(CGF), OldCXXDefaultInitExprThis(CGF.CXXDefaultInitExprThis) {
1036       CGF.CXXDefaultInitExprThis = This;
1037     }
1038     ~FieldConstructionScope() {
1039       CGF.CXXDefaultInitExprThis = OldCXXDefaultInitExprThis;
1040     }
1041 
1042   private:
1043     CodeGenFunction &CGF;
1044     Address OldCXXDefaultInitExprThis;
1045   };
1046 
1047   /// The scope of a CXXDefaultInitExpr. Within this scope, the value of 'this'
1048   /// is overridden to be the object under construction.
1049   class CXXDefaultInitExprScope {
1050   public:
1051     CXXDefaultInitExprScope(CodeGenFunction &CGF)
1052       : CGF(CGF), OldCXXThisValue(CGF.CXXThisValue),
1053         OldCXXThisAlignment(CGF.CXXThisAlignment) {
1054       CGF.CXXThisValue = CGF.CXXDefaultInitExprThis.getPointer();
1055       CGF.CXXThisAlignment = CGF.CXXDefaultInitExprThis.getAlignment();
1056     }
1057     ~CXXDefaultInitExprScope() {
1058       CGF.CXXThisValue = OldCXXThisValue;
1059       CGF.CXXThisAlignment = OldCXXThisAlignment;
1060     }
1061 
1062   public:
1063     CodeGenFunction &CGF;
1064     llvm::Value *OldCXXThisValue;
1065     CharUnits OldCXXThisAlignment;
1066   };
1067 
1068 private:
1069   /// CXXThisDecl - When generating code for a C++ member function,
1070   /// this will hold the implicit 'this' declaration.
1071   ImplicitParamDecl *CXXABIThisDecl;
1072   llvm::Value *CXXABIThisValue;
1073   llvm::Value *CXXThisValue;
1074   CharUnits CXXABIThisAlignment;
1075   CharUnits CXXThisAlignment;
1076 
1077   /// The value of 'this' to use when evaluating CXXDefaultInitExprs within
1078   /// this expression.
1079   Address CXXDefaultInitExprThis = Address::invalid();
1080 
1081   /// CXXStructorImplicitParamDecl - When generating code for a constructor or
1082   /// destructor, this will hold the implicit argument (e.g. VTT).
1083   ImplicitParamDecl *CXXStructorImplicitParamDecl;
1084   llvm::Value *CXXStructorImplicitParamValue;
1085 
1086   /// OutermostConditional - Points to the outermost active
1087   /// conditional control.  This is used so that we know if a
1088   /// temporary should be destroyed conditionally.
1089   ConditionalEvaluation *OutermostConditional;
1090 
1091   /// The current lexical scope.
1092   LexicalScope *CurLexicalScope;
1093 
1094   /// The current source location that should be used for exception
1095   /// handling code.
1096   SourceLocation CurEHLocation;
1097 
1098   /// BlockByrefInfos - For each __block variable, contains
1099   /// information about the layout of the variable.
1100   llvm::DenseMap<const ValueDecl *, BlockByrefInfo> BlockByrefInfos;
1101 
1102   llvm::BasicBlock *TerminateLandingPad;
1103   llvm::BasicBlock *TerminateHandler;
1104   llvm::BasicBlock *TrapBB;
1105 
1106   /// Add a kernel metadata node to the named metadata node 'opencl.kernels'.
1107   /// In the kernel metadata node, reference the kernel function and metadata
1108   /// nodes for its optional attribute qualifiers (OpenCL 1.1 6.7.2):
1109   /// - A node for the vec_type_hint(<type>) qualifier contains string
1110   ///   "vec_type_hint", an undefined value of the <type> data type,
1111   ///   and a Boolean that is true if the <type> is integer and signed.
1112   /// - A node for the work_group_size_hint(X,Y,Z) qualifier contains string
1113   ///   "work_group_size_hint", and three 32-bit integers X, Y and Z.
1114   /// - A node for the reqd_work_group_size(X,Y,Z) qualifier contains string
1115   ///   "reqd_work_group_size", and three 32-bit integers X, Y and Z.
1116   void EmitOpenCLKernelMetadata(const FunctionDecl *FD,
1117                                 llvm::Function *Fn);
1118 
1119 public:
1120   CodeGenFunction(CodeGenModule &cgm, bool suppressNewContext=false);
1121   ~CodeGenFunction();
1122 
1123   CodeGenTypes &getTypes() const { return CGM.getTypes(); }
1124   ASTContext &getContext() const { return CGM.getContext(); }
1125   CGDebugInfo *getDebugInfo() {
1126     if (DisableDebugInfo)
1127       return nullptr;
1128     return DebugInfo;
1129   }
1130   void disableDebugInfo() { DisableDebugInfo = true; }
1131   void enableDebugInfo() { DisableDebugInfo = false; }
1132 
1133   bool shouldUseFusedARCCalls() {
1134     return CGM.getCodeGenOpts().OptimizationLevel == 0;
1135   }
1136 
1137   const LangOptions &getLangOpts() const { return CGM.getLangOpts(); }
1138 
1139   /// Returns a pointer to the function's exception object and selector slot,
1140   /// which is assigned in every landing pad.
1141   Address getExceptionSlot();
1142   Address getEHSelectorSlot();
1143 
1144   /// Returns the contents of the function's exception object and selector
1145   /// slots.
1146   llvm::Value *getExceptionFromSlot();
1147   llvm::Value *getSelectorFromSlot();
1148 
1149   Address getNormalCleanupDestSlot();
1150 
1151   llvm::BasicBlock *getUnreachableBlock() {
1152     if (!UnreachableBlock) {
1153       UnreachableBlock = createBasicBlock("unreachable");
1154       new llvm::UnreachableInst(getLLVMContext(), UnreachableBlock);
1155     }
1156     return UnreachableBlock;
1157   }
1158 
1159   llvm::BasicBlock *getInvokeDest() {
1160     if (!EHStack.requiresLandingPad()) return nullptr;
1161     return getInvokeDestImpl();
1162   }
1163 
1164   bool currentFunctionUsesSEHTry() const { return CurSEHParent != nullptr; }
1165 
1166   const TargetInfo &getTarget() const { return Target; }
1167   llvm::LLVMContext &getLLVMContext() { return CGM.getLLVMContext(); }
1168 
1169   //===--------------------------------------------------------------------===//
1170   //                                  Cleanups
1171   //===--------------------------------------------------------------------===//
1172 
1173   typedef void Destroyer(CodeGenFunction &CGF, Address addr, QualType ty);
1174 
1175   void pushIrregularPartialArrayCleanup(llvm::Value *arrayBegin,
1176                                         Address arrayEndPointer,
1177                                         QualType elementType,
1178                                         CharUnits elementAlignment,
1179                                         Destroyer *destroyer);
1180   void pushRegularPartialArrayCleanup(llvm::Value *arrayBegin,
1181                                       llvm::Value *arrayEnd,
1182                                       QualType elementType,
1183                                       CharUnits elementAlignment,
1184                                       Destroyer *destroyer);
1185 
1186   void pushDestroy(QualType::DestructionKind dtorKind,
1187                    Address addr, QualType type);
1188   void pushEHDestroy(QualType::DestructionKind dtorKind,
1189                      Address addr, QualType type);
1190   void pushDestroy(CleanupKind kind, Address addr, QualType type,
1191                    Destroyer *destroyer, bool useEHCleanupForArray);
1192   void pushLifetimeExtendedDestroy(CleanupKind kind, Address addr,
1193                                    QualType type, Destroyer *destroyer,
1194                                    bool useEHCleanupForArray);
1195   void pushCallObjectDeleteCleanup(const FunctionDecl *OperatorDelete,
1196                                    llvm::Value *CompletePtr,
1197                                    QualType ElementType);
1198   void pushStackRestore(CleanupKind kind, Address SPMem);
1199   void emitDestroy(Address addr, QualType type, Destroyer *destroyer,
1200                    bool useEHCleanupForArray);
1201   llvm::Function *generateDestroyHelper(Address addr, QualType type,
1202                                         Destroyer *destroyer,
1203                                         bool useEHCleanupForArray,
1204                                         const VarDecl *VD);
1205   void emitArrayDestroy(llvm::Value *begin, llvm::Value *end,
1206                         QualType elementType, CharUnits elementAlign,
1207                         Destroyer *destroyer,
1208                         bool checkZeroLength, bool useEHCleanup);
1209 
1210   Destroyer *getDestroyer(QualType::DestructionKind destructionKind);
1211 
1212   /// Determines whether an EH cleanup is required to destroy a type
1213   /// with the given destruction kind.
1214   bool needsEHCleanup(QualType::DestructionKind kind) {
1215     switch (kind) {
1216     case QualType::DK_none:
1217       return false;
1218     case QualType::DK_cxx_destructor:
1219     case QualType::DK_objc_weak_lifetime:
1220       return getLangOpts().Exceptions;
1221     case QualType::DK_objc_strong_lifetime:
1222       return getLangOpts().Exceptions &&
1223              CGM.getCodeGenOpts().ObjCAutoRefCountExceptions;
1224     }
1225     llvm_unreachable("bad destruction kind");
1226   }
1227 
1228   CleanupKind getCleanupKind(QualType::DestructionKind kind) {
1229     return (needsEHCleanup(kind) ? NormalAndEHCleanup : NormalCleanup);
1230   }
1231 
1232   //===--------------------------------------------------------------------===//
1233   //                                  Objective-C
1234   //===--------------------------------------------------------------------===//
1235 
1236   void GenerateObjCMethod(const ObjCMethodDecl *OMD);
1237 
1238   void StartObjCMethod(const ObjCMethodDecl *MD, const ObjCContainerDecl *CD);
1239 
1240   /// GenerateObjCGetter - Synthesize an Objective-C property getter function.
1241   void GenerateObjCGetter(ObjCImplementationDecl *IMP,
1242                           const ObjCPropertyImplDecl *PID);
1243   void generateObjCGetterBody(const ObjCImplementationDecl *classImpl,
1244                               const ObjCPropertyImplDecl *propImpl,
1245                               const ObjCMethodDecl *GetterMothodDecl,
1246                               llvm::Constant *AtomicHelperFn);
1247 
1248   void GenerateObjCCtorDtorMethod(ObjCImplementationDecl *IMP,
1249                                   ObjCMethodDecl *MD, bool ctor);
1250 
1251   /// GenerateObjCSetter - Synthesize an Objective-C property setter function
1252   /// for the given property.
1253   void GenerateObjCSetter(ObjCImplementationDecl *IMP,
1254                           const ObjCPropertyImplDecl *PID);
1255   void generateObjCSetterBody(const ObjCImplementationDecl *classImpl,
1256                               const ObjCPropertyImplDecl *propImpl,
1257                               llvm::Constant *AtomicHelperFn);
1258 
1259   //===--------------------------------------------------------------------===//
1260   //                                  Block Bits
1261   //===--------------------------------------------------------------------===//
1262 
1263   llvm::Value *EmitBlockLiteral(const BlockExpr *);
1264   llvm::Value *EmitBlockLiteral(const CGBlockInfo &Info);
1265   static void destroyBlockInfos(CGBlockInfo *info);
1266 
1267   llvm::Function *GenerateBlockFunction(GlobalDecl GD,
1268                                         const CGBlockInfo &Info,
1269                                         const DeclMapTy &ldm,
1270                                         bool IsLambdaConversionToBlock);
1271 
1272   llvm::Constant *GenerateCopyHelperFunction(const CGBlockInfo &blockInfo);
1273   llvm::Constant *GenerateDestroyHelperFunction(const CGBlockInfo &blockInfo);
1274   llvm::Constant *GenerateObjCAtomicSetterCopyHelperFunction(
1275                                              const ObjCPropertyImplDecl *PID);
1276   llvm::Constant *GenerateObjCAtomicGetterCopyHelperFunction(
1277                                              const ObjCPropertyImplDecl *PID);
1278   llvm::Value *EmitBlockCopyAndAutorelease(llvm::Value *Block, QualType Ty);
1279 
1280   void BuildBlockRelease(llvm::Value *DeclPtr, BlockFieldFlags flags);
1281 
1282   class AutoVarEmission;
1283 
1284   void emitByrefStructureInit(const AutoVarEmission &emission);
1285   void enterByrefCleanup(const AutoVarEmission &emission);
1286 
1287   void setBlockContextParameter(const ImplicitParamDecl *D, unsigned argNum,
1288                                 llvm::Value *ptr);
1289 
1290   Address LoadBlockStruct();
1291   Address GetAddrOfBlockDecl(const VarDecl *var, bool ByRef);
1292 
1293   /// BuildBlockByrefAddress - Computes the location of the
1294   /// data in a variable which is declared as __block.
1295   Address emitBlockByrefAddress(Address baseAddr, const VarDecl *V,
1296                                 bool followForward = true);
1297   Address emitBlockByrefAddress(Address baseAddr,
1298                                 const BlockByrefInfo &info,
1299                                 bool followForward,
1300                                 const llvm::Twine &name);
1301 
1302   const BlockByrefInfo &getBlockByrefInfo(const VarDecl *var);
1303 
1304   void GenerateCode(GlobalDecl GD, llvm::Function *Fn,
1305                     const CGFunctionInfo &FnInfo);
1306   /// \brief Emit code for the start of a function.
1307   /// \param Loc       The location to be associated with the function.
1308   /// \param StartLoc  The location of the function body.
1309   void StartFunction(GlobalDecl GD,
1310                      QualType RetTy,
1311                      llvm::Function *Fn,
1312                      const CGFunctionInfo &FnInfo,
1313                      const FunctionArgList &Args,
1314                      SourceLocation Loc = SourceLocation(),
1315                      SourceLocation StartLoc = SourceLocation());
1316 
1317   void EmitConstructorBody(FunctionArgList &Args);
1318   void EmitDestructorBody(FunctionArgList &Args);
1319   void emitImplicitAssignmentOperatorBody(FunctionArgList &Args);
1320   void EmitFunctionBody(FunctionArgList &Args, const Stmt *Body);
1321   void EmitBlockWithFallThrough(llvm::BasicBlock *BB, const Stmt *S);
1322 
1323   void EmitForwardingCallToLambda(const CXXMethodDecl *LambdaCallOperator,
1324                                   CallArgList &CallArgs);
1325   void EmitLambdaToBlockPointerBody(FunctionArgList &Args);
1326   void EmitLambdaBlockInvokeBody();
1327   void EmitLambdaDelegatingInvokeBody(const CXXMethodDecl *MD);
1328   void EmitLambdaStaticInvokeFunction(const CXXMethodDecl *MD);
1329   void EmitAsanPrologueOrEpilogue(bool Prologue);
1330 
1331   /// \brief Emit the unified return block, trying to avoid its emission when
1332   /// possible.
1333   /// \return The debug location of the user written return statement if the
1334   /// return block is is avoided.
1335   llvm::DebugLoc EmitReturnBlock();
1336 
1337   /// FinishFunction - Complete IR generation of the current function. It is
1338   /// legal to call this function even if there is no current insertion point.
1339   void FinishFunction(SourceLocation EndLoc=SourceLocation());
1340 
1341   void StartThunk(llvm::Function *Fn, GlobalDecl GD,
1342                   const CGFunctionInfo &FnInfo);
1343 
1344   void EmitCallAndReturnForThunk(llvm::Value *Callee, const ThunkInfo *Thunk);
1345 
1346   void FinishThunk();
1347 
1348   /// Emit a musttail call for a thunk with a potentially adjusted this pointer.
1349   void EmitMustTailThunk(const CXXMethodDecl *MD, llvm::Value *AdjustedThisPtr,
1350                          llvm::Value *Callee);
1351 
1352   /// Generate a thunk for the given method.
1353   void generateThunk(llvm::Function *Fn, const CGFunctionInfo &FnInfo,
1354                      GlobalDecl GD, const ThunkInfo &Thunk);
1355 
1356   llvm::Function *GenerateVarArgsThunk(llvm::Function *Fn,
1357                                        const CGFunctionInfo &FnInfo,
1358                                        GlobalDecl GD, const ThunkInfo &Thunk);
1359 
1360   void EmitCtorPrologue(const CXXConstructorDecl *CD, CXXCtorType Type,
1361                         FunctionArgList &Args);
1362 
1363   void EmitInitializerForField(FieldDecl *Field, LValue LHS, Expr *Init,
1364                                ArrayRef<VarDecl *> ArrayIndexes);
1365 
1366   /// Struct with all informations about dynamic [sub]class needed to set vptr.
1367   struct VPtr {
1368     BaseSubobject Base;
1369     const CXXRecordDecl *NearestVBase;
1370     CharUnits OffsetFromNearestVBase;
1371     const CXXRecordDecl *VTableClass;
1372   };
1373 
1374   /// Initialize the vtable pointer of the given subobject.
1375   void InitializeVTablePointer(const VPtr &vptr);
1376 
1377   typedef llvm::SmallVector<VPtr, 4> VPtrsVector;
1378 
1379   typedef llvm::SmallPtrSet<const CXXRecordDecl *, 4> VisitedVirtualBasesSetTy;
1380   VPtrsVector getVTablePointers(const CXXRecordDecl *VTableClass);
1381 
1382   void getVTablePointers(BaseSubobject Base, const CXXRecordDecl *NearestVBase,
1383                          CharUnits OffsetFromNearestVBase,
1384                          bool BaseIsNonVirtualPrimaryBase,
1385                          const CXXRecordDecl *VTableClass,
1386                          VisitedVirtualBasesSetTy &VBases, VPtrsVector &vptrs);
1387 
1388   void InitializeVTablePointers(const CXXRecordDecl *ClassDecl);
1389 
1390   /// GetVTablePtr - Return the Value of the vtable pointer member pointed
1391   /// to by This.
1392   llvm::Value *GetVTablePtr(Address This, llvm::Type *VTableTy,
1393                             const CXXRecordDecl *VTableClass);
1394 
1395   enum CFITypeCheckKind {
1396     CFITCK_VCall,
1397     CFITCK_NVCall,
1398     CFITCK_DerivedCast,
1399     CFITCK_UnrelatedCast,
1400     CFITCK_ICall,
1401   };
1402 
1403   /// \brief Derived is the presumed address of an object of type T after a
1404   /// cast. If T is a polymorphic class type, emit a check that the virtual
1405   /// table for Derived belongs to a class derived from T.
1406   void EmitVTablePtrCheckForCast(QualType T, llvm::Value *Derived,
1407                                  bool MayBeNull, CFITypeCheckKind TCK,
1408                                  SourceLocation Loc);
1409 
1410   /// EmitVTablePtrCheckForCall - Virtual method MD is being called via VTable.
1411   /// If vptr CFI is enabled, emit a check that VTable is valid.
1412   void EmitVTablePtrCheckForCall(const CXXRecordDecl *RD, llvm::Value *VTable,
1413                                  CFITypeCheckKind TCK, SourceLocation Loc);
1414 
1415   /// EmitVTablePtrCheck - Emit a check that VTable is a valid virtual table for
1416   /// RD using llvm.bitset.test.
1417   void EmitVTablePtrCheck(const CXXRecordDecl *RD, llvm::Value *VTable,
1418                           CFITypeCheckKind TCK, SourceLocation Loc);
1419 
1420   /// If whole-program virtual table optimization is enabled, emit an assumption
1421   /// that VTable is a member of the type's bitset. Or, if vptr CFI is enabled,
1422   /// emit a check that VTable is a member of the type's bitset.
1423   void EmitBitSetCodeForVCall(const CXXRecordDecl *RD, llvm::Value *VTable,
1424                               SourceLocation Loc);
1425 
1426   /// CanDevirtualizeMemberFunctionCalls - Checks whether virtual calls on given
1427   /// expr can be devirtualized.
1428   bool CanDevirtualizeMemberFunctionCall(const Expr *Base,
1429                                          const CXXMethodDecl *MD);
1430 
1431   /// EnterDtorCleanups - Enter the cleanups necessary to complete the
1432   /// given phase of destruction for a destructor.  The end result
1433   /// should call destructors on members and base classes in reverse
1434   /// order of their construction.
1435   void EnterDtorCleanups(const CXXDestructorDecl *Dtor, CXXDtorType Type);
1436 
1437   /// ShouldInstrumentFunction - Return true if the current function should be
1438   /// instrumented with __cyg_profile_func_* calls
1439   bool ShouldInstrumentFunction();
1440 
1441   /// EmitFunctionInstrumentation - Emit LLVM code to call the specified
1442   /// instrumentation function with the current function and the call site, if
1443   /// function instrumentation is enabled.
1444   void EmitFunctionInstrumentation(const char *Fn);
1445 
1446   /// EmitMCountInstrumentation - Emit call to .mcount.
1447   void EmitMCountInstrumentation();
1448 
1449   /// EmitFunctionProlog - Emit the target specific LLVM code to load the
1450   /// arguments for the given function. This is also responsible for naming the
1451   /// LLVM function arguments.
1452   void EmitFunctionProlog(const CGFunctionInfo &FI,
1453                           llvm::Function *Fn,
1454                           const FunctionArgList &Args);
1455 
1456   /// EmitFunctionEpilog - Emit the target specific LLVM code to return the
1457   /// given temporary.
1458   void EmitFunctionEpilog(const CGFunctionInfo &FI, bool EmitRetDbgLoc,
1459                           SourceLocation EndLoc);
1460 
1461   /// EmitStartEHSpec - Emit the start of the exception spec.
1462   void EmitStartEHSpec(const Decl *D);
1463 
1464   /// EmitEndEHSpec - Emit the end of the exception spec.
1465   void EmitEndEHSpec(const Decl *D);
1466 
1467   /// getTerminateLandingPad - Return a landing pad that just calls terminate.
1468   llvm::BasicBlock *getTerminateLandingPad();
1469 
1470   /// getTerminateHandler - Return a handler (not a landing pad, just
1471   /// a catch handler) that just calls terminate.  This is used when
1472   /// a terminate scope encloses a try.
1473   llvm::BasicBlock *getTerminateHandler();
1474 
1475   llvm::Type *ConvertTypeForMem(QualType T);
1476   llvm::Type *ConvertType(QualType T);
1477   llvm::Type *ConvertType(const TypeDecl *T) {
1478     return ConvertType(getContext().getTypeDeclType(T));
1479   }
1480 
1481   /// LoadObjCSelf - Load the value of self. This function is only valid while
1482   /// generating code for an Objective-C method.
1483   llvm::Value *LoadObjCSelf();
1484 
1485   /// TypeOfSelfObject - Return type of object that this self represents.
1486   QualType TypeOfSelfObject();
1487 
1488   /// hasAggregateLLVMType - Return true if the specified AST type will map into
1489   /// an aggregate LLVM type or is void.
1490   static TypeEvaluationKind getEvaluationKind(QualType T);
1491 
1492   static bool hasScalarEvaluationKind(QualType T) {
1493     return getEvaluationKind(T) == TEK_Scalar;
1494   }
1495 
1496   static bool hasAggregateEvaluationKind(QualType T) {
1497     return getEvaluationKind(T) == TEK_Aggregate;
1498   }
1499 
1500   /// createBasicBlock - Create an LLVM basic block.
1501   llvm::BasicBlock *createBasicBlock(const Twine &name = "",
1502                                      llvm::Function *parent = nullptr,
1503                                      llvm::BasicBlock *before = nullptr) {
1504 #ifdef NDEBUG
1505     return llvm::BasicBlock::Create(getLLVMContext(), "", parent, before);
1506 #else
1507     return llvm::BasicBlock::Create(getLLVMContext(), name, parent, before);
1508 #endif
1509   }
1510 
1511   /// getBasicBlockForLabel - Return the LLVM basicblock that the specified
1512   /// label maps to.
1513   JumpDest getJumpDestForLabel(const LabelDecl *S);
1514 
1515   /// SimplifyForwardingBlocks - If the given basic block is only a branch to
1516   /// another basic block, simplify it. This assumes that no other code could
1517   /// potentially reference the basic block.
1518   void SimplifyForwardingBlocks(llvm::BasicBlock *BB);
1519 
1520   /// EmitBlock - Emit the given block \arg BB and set it as the insert point,
1521   /// adding a fall-through branch from the current insert block if
1522   /// necessary. It is legal to call this function even if there is no current
1523   /// insertion point.
1524   ///
1525   /// IsFinished - If true, indicates that the caller has finished emitting
1526   /// branches to the given block and does not expect to emit code into it. This
1527   /// means the block can be ignored if it is unreachable.
1528   void EmitBlock(llvm::BasicBlock *BB, bool IsFinished=false);
1529 
1530   /// EmitBlockAfterUses - Emit the given block somewhere hopefully
1531   /// near its uses, and leave the insertion point in it.
1532   void EmitBlockAfterUses(llvm::BasicBlock *BB);
1533 
1534   /// EmitBranch - Emit a branch to the specified basic block from the current
1535   /// insert block, taking care to avoid creation of branches from dummy
1536   /// blocks. It is legal to call this function even if there is no current
1537   /// insertion point.
1538   ///
1539   /// This function clears the current insertion point. The caller should follow
1540   /// calls to this function with calls to Emit*Block prior to generation new
1541   /// code.
1542   void EmitBranch(llvm::BasicBlock *Block);
1543 
1544   /// HaveInsertPoint - True if an insertion point is defined. If not, this
1545   /// indicates that the current code being emitted is unreachable.
1546   bool HaveInsertPoint() const {
1547     return Builder.GetInsertBlock() != nullptr;
1548   }
1549 
1550   /// EnsureInsertPoint - Ensure that an insertion point is defined so that
1551   /// emitted IR has a place to go. Note that by definition, if this function
1552   /// creates a block then that block is unreachable; callers may do better to
1553   /// detect when no insertion point is defined and simply skip IR generation.
1554   void EnsureInsertPoint() {
1555     if (!HaveInsertPoint())
1556       EmitBlock(createBasicBlock());
1557   }
1558 
1559   /// ErrorUnsupported - Print out an error that codegen doesn't support the
1560   /// specified stmt yet.
1561   void ErrorUnsupported(const Stmt *S, const char *Type);
1562 
1563   //===--------------------------------------------------------------------===//
1564   //                                  Helpers
1565   //===--------------------------------------------------------------------===//
1566 
1567   LValue MakeAddrLValue(Address Addr, QualType T,
1568                         AlignmentSource AlignSource = AlignmentSource::Type) {
1569     return LValue::MakeAddr(Addr, T, getContext(), AlignSource,
1570                             CGM.getTBAAInfo(T));
1571   }
1572 
1573   LValue MakeAddrLValue(llvm::Value *V, QualType T, CharUnits Alignment,
1574                         AlignmentSource AlignSource = AlignmentSource::Type) {
1575     return LValue::MakeAddr(Address(V, Alignment), T, getContext(),
1576                             AlignSource, CGM.getTBAAInfo(T));
1577   }
1578 
1579   LValue MakeNaturalAlignPointeeAddrLValue(llvm::Value *V, QualType T);
1580   LValue MakeNaturalAlignAddrLValue(llvm::Value *V, QualType T);
1581   CharUnits getNaturalTypeAlignment(QualType T,
1582                                     AlignmentSource *Source = nullptr,
1583                                     bool forPointeeType = false);
1584   CharUnits getNaturalPointeeTypeAlignment(QualType T,
1585                                            AlignmentSource *Source = nullptr);
1586 
1587   Address EmitLoadOfReference(Address Ref, const ReferenceType *RefTy,
1588                               AlignmentSource *Source = nullptr);
1589   LValue EmitLoadOfReferenceLValue(Address Ref, const ReferenceType *RefTy);
1590 
1591   Address EmitLoadOfPointer(Address Ptr, const PointerType *PtrTy,
1592                             AlignmentSource *Source = nullptr);
1593   LValue EmitLoadOfPointerLValue(Address Ptr, const PointerType *PtrTy);
1594 
1595   /// CreateTempAlloca - This creates a alloca and inserts it into the entry
1596   /// block. The caller is responsible for setting an appropriate alignment on
1597   /// the alloca.
1598   llvm::AllocaInst *CreateTempAlloca(llvm::Type *Ty,
1599                                      const Twine &Name = "tmp");
1600   Address CreateTempAlloca(llvm::Type *Ty, CharUnits align,
1601                            const Twine &Name = "tmp");
1602 
1603   /// CreateDefaultAlignedTempAlloca - This creates an alloca with the
1604   /// default ABI alignment of the given LLVM type.
1605   ///
1606   /// IMPORTANT NOTE: This is *not* generally the right alignment for
1607   /// any given AST type that happens to have been lowered to the
1608   /// given IR type.  This should only ever be used for function-local,
1609   /// IR-driven manipulations like saving and restoring a value.  Do
1610   /// not hand this address off to arbitrary IRGen routines, and especially
1611   /// do not pass it as an argument to a function that might expect a
1612   /// properly ABI-aligned value.
1613   Address CreateDefaultAlignTempAlloca(llvm::Type *Ty,
1614                                        const Twine &Name = "tmp");
1615 
1616   /// InitTempAlloca - Provide an initial value for the given alloca which
1617   /// will be observable at all locations in the function.
1618   ///
1619   /// The address should be something that was returned from one of
1620   /// the CreateTempAlloca or CreateMemTemp routines, and the
1621   /// initializer must be valid in the entry block (i.e. it must
1622   /// either be a constant or an argument value).
1623   void InitTempAlloca(Address Alloca, llvm::Value *Value);
1624 
1625   /// CreateIRTemp - Create a temporary IR object of the given type, with
1626   /// appropriate alignment. This routine should only be used when an temporary
1627   /// value needs to be stored into an alloca (for example, to avoid explicit
1628   /// PHI construction), but the type is the IR type, not the type appropriate
1629   /// for storing in memory.
1630   ///
1631   /// That is, this is exactly equivalent to CreateMemTemp, but calling
1632   /// ConvertType instead of ConvertTypeForMem.
1633   Address CreateIRTemp(QualType T, const Twine &Name = "tmp");
1634 
1635   /// CreateMemTemp - Create a temporary memory object of the given type, with
1636   /// appropriate alignment.
1637   Address CreateMemTemp(QualType T, const Twine &Name = "tmp");
1638   Address CreateMemTemp(QualType T, CharUnits Align, const Twine &Name = "tmp");
1639 
1640   /// CreateAggTemp - Create a temporary memory object for the given
1641   /// aggregate type.
1642   AggValueSlot CreateAggTemp(QualType T, const Twine &Name = "tmp") {
1643     return AggValueSlot::forAddr(CreateMemTemp(T, Name),
1644                                  T.getQualifiers(),
1645                                  AggValueSlot::IsNotDestructed,
1646                                  AggValueSlot::DoesNotNeedGCBarriers,
1647                                  AggValueSlot::IsNotAliased);
1648   }
1649 
1650   /// Emit a cast to void* in the appropriate address space.
1651   llvm::Value *EmitCastToVoidPtr(llvm::Value *value);
1652 
1653   /// EvaluateExprAsBool - Perform the usual unary conversions on the specified
1654   /// expression and compare the result against zero, returning an Int1Ty value.
1655   llvm::Value *EvaluateExprAsBool(const Expr *E);
1656 
1657   /// EmitIgnoredExpr - Emit an expression in a context which ignores the result.
1658   void EmitIgnoredExpr(const Expr *E);
1659 
1660   /// EmitAnyExpr - Emit code to compute the specified expression which can have
1661   /// any type.  The result is returned as an RValue struct.  If this is an
1662   /// aggregate expression, the aggloc/agglocvolatile arguments indicate where
1663   /// the result should be returned.
1664   ///
1665   /// \param ignoreResult True if the resulting value isn't used.
1666   RValue EmitAnyExpr(const Expr *E,
1667                      AggValueSlot aggSlot = AggValueSlot::ignored(),
1668                      bool ignoreResult = false);
1669 
1670   // EmitVAListRef - Emit a "reference" to a va_list; this is either the address
1671   // or the value of the expression, depending on how va_list is defined.
1672   Address EmitVAListRef(const Expr *E);
1673 
1674   /// Emit a "reference" to a __builtin_ms_va_list; this is
1675   /// always the value of the expression, because a __builtin_ms_va_list is a
1676   /// pointer to a char.
1677   Address EmitMSVAListRef(const Expr *E);
1678 
1679   /// EmitAnyExprToTemp - Similary to EmitAnyExpr(), however, the result will
1680   /// always be accessible even if no aggregate location is provided.
1681   RValue EmitAnyExprToTemp(const Expr *E);
1682 
1683   /// EmitAnyExprToMem - Emits the code necessary to evaluate an
1684   /// arbitrary expression into the given memory location.
1685   void EmitAnyExprToMem(const Expr *E, Address Location,
1686                         Qualifiers Quals, bool IsInitializer);
1687 
1688   void EmitAnyExprToExn(const Expr *E, Address Addr);
1689 
1690   /// EmitExprAsInit - Emits the code necessary to initialize a
1691   /// location in memory with the given initializer.
1692   void EmitExprAsInit(const Expr *init, const ValueDecl *D, LValue lvalue,
1693                       bool capturedByInit);
1694 
1695   /// hasVolatileMember - returns true if aggregate type has a volatile
1696   /// member.
1697   bool hasVolatileMember(QualType T) {
1698     if (const RecordType *RT = T->getAs<RecordType>()) {
1699       const RecordDecl *RD = cast<RecordDecl>(RT->getDecl());
1700       return RD->hasVolatileMember();
1701     }
1702     return false;
1703   }
1704   /// EmitAggregateCopy - Emit an aggregate assignment.
1705   ///
1706   /// The difference to EmitAggregateCopy is that tail padding is not copied.
1707   /// This is required for correctness when assigning non-POD structures in C++.
1708   void EmitAggregateAssign(Address DestPtr, Address SrcPtr,
1709                            QualType EltTy) {
1710     bool IsVolatile = hasVolatileMember(EltTy);
1711     EmitAggregateCopy(DestPtr, SrcPtr, EltTy, IsVolatile, true);
1712   }
1713 
1714   void EmitAggregateCopyCtor(Address DestPtr, Address SrcPtr,
1715                              QualType DestTy, QualType SrcTy) {
1716     EmitAggregateCopy(DestPtr, SrcPtr, SrcTy, /*IsVolatile=*/false,
1717                       /*IsAssignment=*/false);
1718   }
1719 
1720   /// EmitAggregateCopy - Emit an aggregate copy.
1721   ///
1722   /// \param isVolatile - True iff either the source or the destination is
1723   /// volatile.
1724   /// \param isAssignment - If false, allow padding to be copied.  This often
1725   /// yields more efficient.
1726   void EmitAggregateCopy(Address DestPtr, Address SrcPtr,
1727                          QualType EltTy, bool isVolatile=false,
1728                          bool isAssignment = false);
1729 
1730   /// GetAddrOfLocalVar - Return the address of a local variable.
1731   Address GetAddrOfLocalVar(const VarDecl *VD) {
1732     auto it = LocalDeclMap.find(VD);
1733     assert(it != LocalDeclMap.end() &&
1734            "Invalid argument to GetAddrOfLocalVar(), no decl!");
1735     return it->second;
1736   }
1737 
1738   /// getOpaqueLValueMapping - Given an opaque value expression (which
1739   /// must be mapped to an l-value), return its mapping.
1740   const LValue &getOpaqueLValueMapping(const OpaqueValueExpr *e) {
1741     assert(OpaqueValueMapping::shouldBindAsLValue(e));
1742 
1743     llvm::DenseMap<const OpaqueValueExpr*,LValue>::iterator
1744       it = OpaqueLValues.find(e);
1745     assert(it != OpaqueLValues.end() && "no mapping for opaque value!");
1746     return it->second;
1747   }
1748 
1749   /// getOpaqueRValueMapping - Given an opaque value expression (which
1750   /// must be mapped to an r-value), return its mapping.
1751   const RValue &getOpaqueRValueMapping(const OpaqueValueExpr *e) {
1752     assert(!OpaqueValueMapping::shouldBindAsLValue(e));
1753 
1754     llvm::DenseMap<const OpaqueValueExpr*,RValue>::iterator
1755       it = OpaqueRValues.find(e);
1756     assert(it != OpaqueRValues.end() && "no mapping for opaque value!");
1757     return it->second;
1758   }
1759 
1760   /// getAccessedFieldNo - Given an encoded value and a result number, return
1761   /// the input field number being accessed.
1762   static unsigned getAccessedFieldNo(unsigned Idx, const llvm::Constant *Elts);
1763 
1764   llvm::BlockAddress *GetAddrOfLabel(const LabelDecl *L);
1765   llvm::BasicBlock *GetIndirectGotoBlock();
1766 
1767   /// EmitNullInitialization - Generate code to set a value of the given type to
1768   /// null, If the type contains data member pointers, they will be initialized
1769   /// to -1 in accordance with the Itanium C++ ABI.
1770   void EmitNullInitialization(Address DestPtr, QualType Ty);
1771 
1772   /// Emits a call to an LLVM variable-argument intrinsic, either
1773   /// \c llvm.va_start or \c llvm.va_end.
1774   /// \param ArgValue A reference to the \c va_list as emitted by either
1775   /// \c EmitVAListRef or \c EmitMSVAListRef.
1776   /// \param IsStart If \c true, emits a call to \c llvm.va_start; otherwise,
1777   /// calls \c llvm.va_end.
1778   llvm::Value *EmitVAStartEnd(llvm::Value *ArgValue, bool IsStart);
1779 
1780   /// Generate code to get an argument from the passed in pointer
1781   /// and update it accordingly.
1782   /// \param VE The \c VAArgExpr for which to generate code.
1783   /// \param VAListAddr Receives a reference to the \c va_list as emitted by
1784   /// either \c EmitVAListRef or \c EmitMSVAListRef.
1785   /// \returns A pointer to the argument.
1786   // FIXME: We should be able to get rid of this method and use the va_arg
1787   // instruction in LLVM instead once it works well enough.
1788   Address EmitVAArg(VAArgExpr *VE, Address &VAListAddr);
1789 
1790   /// emitArrayLength - Compute the length of an array, even if it's a
1791   /// VLA, and drill down to the base element type.
1792   llvm::Value *emitArrayLength(const ArrayType *arrayType,
1793                                QualType &baseType,
1794                                Address &addr);
1795 
1796   /// EmitVLASize - Capture all the sizes for the VLA expressions in
1797   /// the given variably-modified type and store them in the VLASizeMap.
1798   ///
1799   /// This function can be called with a null (unreachable) insert point.
1800   void EmitVariablyModifiedType(QualType Ty);
1801 
1802   /// getVLASize - Returns an LLVM value that corresponds to the size,
1803   /// in non-variably-sized elements, of a variable length array type,
1804   /// plus that largest non-variably-sized element type.  Assumes that
1805   /// the type has already been emitted with EmitVariablyModifiedType.
1806   std::pair<llvm::Value*,QualType> getVLASize(const VariableArrayType *vla);
1807   std::pair<llvm::Value*,QualType> getVLASize(QualType vla);
1808 
1809   /// LoadCXXThis - Load the value of 'this'. This function is only valid while
1810   /// generating code for an C++ member function.
1811   llvm::Value *LoadCXXThis() {
1812     assert(CXXThisValue && "no 'this' value for this function");
1813     return CXXThisValue;
1814   }
1815   Address LoadCXXThisAddress();
1816 
1817   /// LoadCXXVTT - Load the VTT parameter to base constructors/destructors have
1818   /// virtual bases.
1819   // FIXME: Every place that calls LoadCXXVTT is something
1820   // that needs to be abstracted properly.
1821   llvm::Value *LoadCXXVTT() {
1822     assert(CXXStructorImplicitParamValue && "no VTT value for this function");
1823     return CXXStructorImplicitParamValue;
1824   }
1825 
1826   /// GetAddressOfBaseOfCompleteClass - Convert the given pointer to a
1827   /// complete class to the given direct base.
1828   Address
1829   GetAddressOfDirectBaseInCompleteClass(Address Value,
1830                                         const CXXRecordDecl *Derived,
1831                                         const CXXRecordDecl *Base,
1832                                         bool BaseIsVirtual);
1833 
1834   static bool ShouldNullCheckClassCastValue(const CastExpr *Cast);
1835 
1836   /// GetAddressOfBaseClass - This function will add the necessary delta to the
1837   /// load of 'this' and returns address of the base class.
1838   Address GetAddressOfBaseClass(Address Value,
1839                                 const CXXRecordDecl *Derived,
1840                                 CastExpr::path_const_iterator PathBegin,
1841                                 CastExpr::path_const_iterator PathEnd,
1842                                 bool NullCheckValue, SourceLocation Loc);
1843 
1844   Address GetAddressOfDerivedClass(Address Value,
1845                                    const CXXRecordDecl *Derived,
1846                                    CastExpr::path_const_iterator PathBegin,
1847                                    CastExpr::path_const_iterator PathEnd,
1848                                    bool NullCheckValue);
1849 
1850   /// GetVTTParameter - Return the VTT parameter that should be passed to a
1851   /// base constructor/destructor with virtual bases.
1852   /// FIXME: VTTs are Itanium ABI-specific, so the definition should move
1853   /// to ItaniumCXXABI.cpp together with all the references to VTT.
1854   llvm::Value *GetVTTParameter(GlobalDecl GD, bool ForVirtualBase,
1855                                bool Delegating);
1856 
1857   void EmitDelegateCXXConstructorCall(const CXXConstructorDecl *Ctor,
1858                                       CXXCtorType CtorType,
1859                                       const FunctionArgList &Args,
1860                                       SourceLocation Loc);
1861   // It's important not to confuse this and the previous function. Delegating
1862   // constructors are the C++0x feature. The constructor delegate optimization
1863   // is used to reduce duplication in the base and complete consturctors where
1864   // they are substantially the same.
1865   void EmitDelegatingCXXConstructorCall(const CXXConstructorDecl *Ctor,
1866                                         const FunctionArgList &Args);
1867 
1868   void EmitCXXConstructorCall(const CXXConstructorDecl *D, CXXCtorType Type,
1869                               bool ForVirtualBase, bool Delegating,
1870                               Address This, const CXXConstructExpr *E);
1871 
1872   /// Emit assumption load for all bases. Requires to be be called only on
1873   /// most-derived class and not under construction of the object.
1874   void EmitVTableAssumptionLoads(const CXXRecordDecl *ClassDecl, Address This);
1875 
1876   /// Emit assumption that vptr load == global vtable.
1877   void EmitVTableAssumptionLoad(const VPtr &vptr, Address This);
1878 
1879   void EmitSynthesizedCXXCopyCtorCall(const CXXConstructorDecl *D,
1880                                       Address This, Address Src,
1881                                       const CXXConstructExpr *E);
1882 
1883   void EmitCXXAggrConstructorCall(const CXXConstructorDecl *D,
1884                                   const ArrayType *ArrayTy,
1885                                   Address ArrayPtr,
1886                                   const CXXConstructExpr *E,
1887                                   bool ZeroInitialization = false);
1888 
1889   void EmitCXXAggrConstructorCall(const CXXConstructorDecl *D,
1890                                   llvm::Value *NumElements,
1891                                   Address ArrayPtr,
1892                                   const CXXConstructExpr *E,
1893                                   bool ZeroInitialization = false);
1894 
1895   static Destroyer destroyCXXObject;
1896 
1897   void EmitCXXDestructorCall(const CXXDestructorDecl *D, CXXDtorType Type,
1898                              bool ForVirtualBase, bool Delegating,
1899                              Address This);
1900 
1901   void EmitNewArrayInitializer(const CXXNewExpr *E, QualType elementType,
1902                                llvm::Type *ElementTy, Address NewPtr,
1903                                llvm::Value *NumElements,
1904                                llvm::Value *AllocSizeWithoutCookie);
1905 
1906   void EmitCXXTemporary(const CXXTemporary *Temporary, QualType TempType,
1907                         Address Ptr);
1908 
1909   llvm::Value *EmitLifetimeStart(uint64_t Size, llvm::Value *Addr);
1910   void EmitLifetimeEnd(llvm::Value *Size, llvm::Value *Addr);
1911 
1912   llvm::Value *EmitCXXNewExpr(const CXXNewExpr *E);
1913   void EmitCXXDeleteExpr(const CXXDeleteExpr *E);
1914 
1915   void EmitDeleteCall(const FunctionDecl *DeleteFD, llvm::Value *Ptr,
1916                       QualType DeleteTy);
1917 
1918   RValue EmitBuiltinNewDeleteCall(const FunctionProtoType *Type,
1919                                   const Expr *Arg, bool IsDelete);
1920 
1921   llvm::Value *EmitCXXTypeidExpr(const CXXTypeidExpr *E);
1922   llvm::Value *EmitDynamicCast(Address V, const CXXDynamicCastExpr *DCE);
1923   Address EmitCXXUuidofExpr(const CXXUuidofExpr *E);
1924 
1925   /// \brief Situations in which we might emit a check for the suitability of a
1926   ///        pointer or glvalue.
1927   enum TypeCheckKind {
1928     /// Checking the operand of a load. Must be suitably sized and aligned.
1929     TCK_Load,
1930     /// Checking the destination of a store. Must be suitably sized and aligned.
1931     TCK_Store,
1932     /// Checking the bound value in a reference binding. Must be suitably sized
1933     /// and aligned, but is not required to refer to an object (until the
1934     /// reference is used), per core issue 453.
1935     TCK_ReferenceBinding,
1936     /// Checking the object expression in a non-static data member access. Must
1937     /// be an object within its lifetime.
1938     TCK_MemberAccess,
1939     /// Checking the 'this' pointer for a call to a non-static member function.
1940     /// Must be an object within its lifetime.
1941     TCK_MemberCall,
1942     /// Checking the 'this' pointer for a constructor call.
1943     TCK_ConstructorCall,
1944     /// Checking the operand of a static_cast to a derived pointer type. Must be
1945     /// null or an object within its lifetime.
1946     TCK_DowncastPointer,
1947     /// Checking the operand of a static_cast to a derived reference type. Must
1948     /// be an object within its lifetime.
1949     TCK_DowncastReference,
1950     /// Checking the operand of a cast to a base object. Must be suitably sized
1951     /// and aligned.
1952     TCK_Upcast,
1953     /// Checking the operand of a cast to a virtual base object. Must be an
1954     /// object within its lifetime.
1955     TCK_UpcastToVirtualBase
1956   };
1957 
1958   /// \brief Whether any type-checking sanitizers are enabled. If \c false,
1959   /// calls to EmitTypeCheck can be skipped.
1960   bool sanitizePerformTypeCheck() const;
1961 
1962   /// \brief Emit a check that \p V is the address of storage of the
1963   /// appropriate size and alignment for an object of type \p Type.
1964   void EmitTypeCheck(TypeCheckKind TCK, SourceLocation Loc, llvm::Value *V,
1965                      QualType Type, CharUnits Alignment = CharUnits::Zero(),
1966                      bool SkipNullCheck = false);
1967 
1968   /// \brief Emit a check that \p Base points into an array object, which
1969   /// we can access at index \p Index. \p Accessed should be \c false if we
1970   /// this expression is used as an lvalue, for instance in "&Arr[Idx]".
1971   void EmitBoundsCheck(const Expr *E, const Expr *Base, llvm::Value *Index,
1972                        QualType IndexType, bool Accessed);
1973 
1974   llvm::Value *EmitScalarPrePostIncDec(const UnaryOperator *E, LValue LV,
1975                                        bool isInc, bool isPre);
1976   ComplexPairTy EmitComplexPrePostIncDec(const UnaryOperator *E, LValue LV,
1977                                          bool isInc, bool isPre);
1978 
1979   void EmitAlignmentAssumption(llvm::Value *PtrValue, unsigned Alignment,
1980                                llvm::Value *OffsetValue = nullptr) {
1981     Builder.CreateAlignmentAssumption(CGM.getDataLayout(), PtrValue, Alignment,
1982                                       OffsetValue);
1983   }
1984 
1985   //===--------------------------------------------------------------------===//
1986   //                            Declaration Emission
1987   //===--------------------------------------------------------------------===//
1988 
1989   /// EmitDecl - Emit a declaration.
1990   ///
1991   /// This function can be called with a null (unreachable) insert point.
1992   void EmitDecl(const Decl &D);
1993 
1994   /// EmitVarDecl - Emit a local variable declaration.
1995   ///
1996   /// This function can be called with a null (unreachable) insert point.
1997   void EmitVarDecl(const VarDecl &D);
1998 
1999   void EmitScalarInit(const Expr *init, const ValueDecl *D, LValue lvalue,
2000                       bool capturedByInit);
2001   void EmitScalarInit(llvm::Value *init, LValue lvalue);
2002 
2003   typedef void SpecialInitFn(CodeGenFunction &Init, const VarDecl &D,
2004                              llvm::Value *Address);
2005 
2006   /// \brief Determine whether the given initializer is trivial in the sense
2007   /// that it requires no code to be generated.
2008   bool isTrivialInitializer(const Expr *Init);
2009 
2010   /// EmitAutoVarDecl - Emit an auto variable declaration.
2011   ///
2012   /// This function can be called with a null (unreachable) insert point.
2013   void EmitAutoVarDecl(const VarDecl &D);
2014 
2015   class AutoVarEmission {
2016     friend class CodeGenFunction;
2017 
2018     const VarDecl *Variable;
2019 
2020     /// The address of the alloca.  Invalid if the variable was emitted
2021     /// as a global constant.
2022     Address Addr;
2023 
2024     llvm::Value *NRVOFlag;
2025 
2026     /// True if the variable is a __block variable.
2027     bool IsByRef;
2028 
2029     /// True if the variable is of aggregate type and has a constant
2030     /// initializer.
2031     bool IsConstantAggregate;
2032 
2033     /// Non-null if we should use lifetime annotations.
2034     llvm::Value *SizeForLifetimeMarkers;
2035 
2036     struct Invalid {};
2037     AutoVarEmission(Invalid) : Variable(nullptr), Addr(Address::invalid()) {}
2038 
2039     AutoVarEmission(const VarDecl &variable)
2040       : Variable(&variable), Addr(Address::invalid()), NRVOFlag(nullptr),
2041         IsByRef(false), IsConstantAggregate(false),
2042         SizeForLifetimeMarkers(nullptr) {}
2043 
2044     bool wasEmittedAsGlobal() const { return !Addr.isValid(); }
2045 
2046   public:
2047     static AutoVarEmission invalid() { return AutoVarEmission(Invalid()); }
2048 
2049     bool useLifetimeMarkers() const {
2050       return SizeForLifetimeMarkers != nullptr;
2051     }
2052     llvm::Value *getSizeForLifetimeMarkers() const {
2053       assert(useLifetimeMarkers());
2054       return SizeForLifetimeMarkers;
2055     }
2056 
2057     /// Returns the raw, allocated address, which is not necessarily
2058     /// the address of the object itself.
2059     Address getAllocatedAddress() const {
2060       return Addr;
2061     }
2062 
2063     /// Returns the address of the object within this declaration.
2064     /// Note that this does not chase the forwarding pointer for
2065     /// __block decls.
2066     Address getObjectAddress(CodeGenFunction &CGF) const {
2067       if (!IsByRef) return Addr;
2068 
2069       return CGF.emitBlockByrefAddress(Addr, Variable, /*forward*/ false);
2070     }
2071   };
2072   AutoVarEmission EmitAutoVarAlloca(const VarDecl &var);
2073   void EmitAutoVarInit(const AutoVarEmission &emission);
2074   void EmitAutoVarCleanups(const AutoVarEmission &emission);
2075   void emitAutoVarTypeCleanup(const AutoVarEmission &emission,
2076                               QualType::DestructionKind dtorKind);
2077 
2078   void EmitStaticVarDecl(const VarDecl &D,
2079                          llvm::GlobalValue::LinkageTypes Linkage);
2080 
2081   class ParamValue {
2082     llvm::Value *Value;
2083     unsigned Alignment;
2084     ParamValue(llvm::Value *V, unsigned A) : Value(V), Alignment(A) {}
2085   public:
2086     static ParamValue forDirect(llvm::Value *value) {
2087       return ParamValue(value, 0);
2088     }
2089     static ParamValue forIndirect(Address addr) {
2090       assert(!addr.getAlignment().isZero());
2091       return ParamValue(addr.getPointer(), addr.getAlignment().getQuantity());
2092     }
2093 
2094     bool isIndirect() const { return Alignment != 0; }
2095     llvm::Value *getAnyValue() const { return Value; }
2096 
2097     llvm::Value *getDirectValue() const {
2098       assert(!isIndirect());
2099       return Value;
2100     }
2101 
2102     Address getIndirectAddress() const {
2103       assert(isIndirect());
2104       return Address(Value, CharUnits::fromQuantity(Alignment));
2105     }
2106   };
2107 
2108   /// EmitParmDecl - Emit a ParmVarDecl or an ImplicitParamDecl.
2109   void EmitParmDecl(const VarDecl &D, ParamValue Arg, unsigned ArgNo);
2110 
2111   /// protectFromPeepholes - Protect a value that we're intending to
2112   /// store to the side, but which will probably be used later, from
2113   /// aggressive peepholing optimizations that might delete it.
2114   ///
2115   /// Pass the result to unprotectFromPeepholes to declare that
2116   /// protection is no longer required.
2117   ///
2118   /// There's no particular reason why this shouldn't apply to
2119   /// l-values, it's just that no existing peepholes work on pointers.
2120   PeepholeProtection protectFromPeepholes(RValue rvalue);
2121   void unprotectFromPeepholes(PeepholeProtection protection);
2122 
2123   //===--------------------------------------------------------------------===//
2124   //                             Statement Emission
2125   //===--------------------------------------------------------------------===//
2126 
2127   /// EmitStopPoint - Emit a debug stoppoint if we are emitting debug info.
2128   void EmitStopPoint(const Stmt *S);
2129 
2130   /// EmitStmt - Emit the code for the statement \arg S. It is legal to call
2131   /// this function even if there is no current insertion point.
2132   ///
2133   /// This function may clear the current insertion point; callers should use
2134   /// EnsureInsertPoint if they wish to subsequently generate code without first
2135   /// calling EmitBlock, EmitBranch, or EmitStmt.
2136   void EmitStmt(const Stmt *S);
2137 
2138   /// EmitSimpleStmt - Try to emit a "simple" statement which does not
2139   /// necessarily require an insertion point or debug information; typically
2140   /// because the statement amounts to a jump or a container of other
2141   /// statements.
2142   ///
2143   /// \return True if the statement was handled.
2144   bool EmitSimpleStmt(const Stmt *S);
2145 
2146   Address EmitCompoundStmt(const CompoundStmt &S, bool GetLast = false,
2147                            AggValueSlot AVS = AggValueSlot::ignored());
2148   Address EmitCompoundStmtWithoutScope(const CompoundStmt &S,
2149                                        bool GetLast = false,
2150                                        AggValueSlot AVS =
2151                                                 AggValueSlot::ignored());
2152 
2153   /// EmitLabel - Emit the block for the given label. It is legal to call this
2154   /// function even if there is no current insertion point.
2155   void EmitLabel(const LabelDecl *D); // helper for EmitLabelStmt.
2156 
2157   void EmitLabelStmt(const LabelStmt &S);
2158   void EmitAttributedStmt(const AttributedStmt &S);
2159   void EmitGotoStmt(const GotoStmt &S);
2160   void EmitIndirectGotoStmt(const IndirectGotoStmt &S);
2161   void EmitIfStmt(const IfStmt &S);
2162 
2163   void EmitWhileStmt(const WhileStmt &S,
2164                      ArrayRef<const Attr *> Attrs = None);
2165   void EmitDoStmt(const DoStmt &S, ArrayRef<const Attr *> Attrs = None);
2166   void EmitForStmt(const ForStmt &S,
2167                    ArrayRef<const Attr *> Attrs = None);
2168   void EmitReturnStmt(const ReturnStmt &S);
2169   void EmitDeclStmt(const DeclStmt &S);
2170   void EmitBreakStmt(const BreakStmt &S);
2171   void EmitContinueStmt(const ContinueStmt &S);
2172   void EmitSwitchStmt(const SwitchStmt &S);
2173   void EmitDefaultStmt(const DefaultStmt &S);
2174   void EmitCaseStmt(const CaseStmt &S);
2175   void EmitCaseStmtRange(const CaseStmt &S);
2176   void EmitAsmStmt(const AsmStmt &S);
2177 
2178   void EmitObjCForCollectionStmt(const ObjCForCollectionStmt &S);
2179   void EmitObjCAtTryStmt(const ObjCAtTryStmt &S);
2180   void EmitObjCAtThrowStmt(const ObjCAtThrowStmt &S);
2181   void EmitObjCAtSynchronizedStmt(const ObjCAtSynchronizedStmt &S);
2182   void EmitObjCAutoreleasePoolStmt(const ObjCAutoreleasePoolStmt &S);
2183 
2184   void EnterCXXTryStmt(const CXXTryStmt &S, bool IsFnTryBlock = false);
2185   void ExitCXXTryStmt(const CXXTryStmt &S, bool IsFnTryBlock = false);
2186 
2187   void EmitCXXTryStmt(const CXXTryStmt &S);
2188   void EmitSEHTryStmt(const SEHTryStmt &S);
2189   void EmitSEHLeaveStmt(const SEHLeaveStmt &S);
2190   void EnterSEHTryStmt(const SEHTryStmt &S);
2191   void ExitSEHTryStmt(const SEHTryStmt &S);
2192 
2193   void startOutlinedSEHHelper(CodeGenFunction &ParentCGF, bool IsFilter,
2194                               const Stmt *OutlinedStmt);
2195 
2196   llvm::Function *GenerateSEHFilterFunction(CodeGenFunction &ParentCGF,
2197                                             const SEHExceptStmt &Except);
2198 
2199   llvm::Function *GenerateSEHFinallyFunction(CodeGenFunction &ParentCGF,
2200                                              const SEHFinallyStmt &Finally);
2201 
2202   void EmitSEHExceptionCodeSave(CodeGenFunction &ParentCGF,
2203                                 llvm::Value *ParentFP,
2204                                 llvm::Value *EntryEBP);
2205   llvm::Value *EmitSEHExceptionCode();
2206   llvm::Value *EmitSEHExceptionInfo();
2207   llvm::Value *EmitSEHAbnormalTermination();
2208 
2209   /// Scan the outlined statement for captures from the parent function. For
2210   /// each capture, mark the capture as escaped and emit a call to
2211   /// llvm.localrecover. Insert the localrecover result into the LocalDeclMap.
2212   void EmitCapturedLocals(CodeGenFunction &ParentCGF, const Stmt *OutlinedStmt,
2213                           bool IsFilter);
2214 
2215   /// Recovers the address of a local in a parent function. ParentVar is the
2216   /// address of the variable used in the immediate parent function. It can
2217   /// either be an alloca or a call to llvm.localrecover if there are nested
2218   /// outlined functions. ParentFP is the frame pointer of the outermost parent
2219   /// frame.
2220   Address recoverAddrOfEscapedLocal(CodeGenFunction &ParentCGF,
2221                                     Address ParentVar,
2222                                     llvm::Value *ParentFP);
2223 
2224   void EmitCXXForRangeStmt(const CXXForRangeStmt &S,
2225                            ArrayRef<const Attr *> Attrs = None);
2226 
2227   /// Returns calculated size of the specified type.
2228   llvm::Value *getTypeSize(QualType Ty);
2229   LValue InitCapturedStruct(const CapturedStmt &S);
2230   llvm::Function *EmitCapturedStmt(const CapturedStmt &S, CapturedRegionKind K);
2231   llvm::Function *GenerateCapturedStmtFunction(const CapturedStmt &S);
2232   Address GenerateCapturedStmtArgument(const CapturedStmt &S);
2233   llvm::Function *GenerateOpenMPCapturedStmtFunction(const CapturedStmt &S,
2234                                                      bool CastValToPtr = false);
2235   void GenerateOpenMPCapturedVars(const CapturedStmt &S,
2236                                   SmallVectorImpl<llvm::Value *> &CapturedVars);
2237   void emitOMPSimpleStore(LValue LVal, RValue RVal, QualType RValTy,
2238                           SourceLocation Loc);
2239   /// \brief Perform element by element copying of arrays with type \a
2240   /// OriginalType from \a SrcAddr to \a DestAddr using copying procedure
2241   /// generated by \a CopyGen.
2242   ///
2243   /// \param DestAddr Address of the destination array.
2244   /// \param SrcAddr Address of the source array.
2245   /// \param OriginalType Type of destination and source arrays.
2246   /// \param CopyGen Copying procedure that copies value of single array element
2247   /// to another single array element.
2248   void EmitOMPAggregateAssign(
2249       Address DestAddr, Address SrcAddr, QualType OriginalType,
2250       const llvm::function_ref<void(Address, Address)> &CopyGen);
2251   /// \brief Emit proper copying of data from one variable to another.
2252   ///
2253   /// \param OriginalType Original type of the copied variables.
2254   /// \param DestAddr Destination address.
2255   /// \param SrcAddr Source address.
2256   /// \param DestVD Destination variable used in \a CopyExpr (for arrays, has
2257   /// type of the base array element).
2258   /// \param SrcVD Source variable used in \a CopyExpr (for arrays, has type of
2259   /// the base array element).
2260   /// \param Copy Actual copygin expression for copying data from \a SrcVD to \a
2261   /// DestVD.
2262   void EmitOMPCopy(QualType OriginalType,
2263                    Address DestAddr, Address SrcAddr,
2264                    const VarDecl *DestVD, const VarDecl *SrcVD,
2265                    const Expr *Copy);
2266   /// \brief Emit atomic update code for constructs: \a X = \a X \a BO \a E or
2267   /// \a X = \a E \a BO \a E.
2268   ///
2269   /// \param X Value to be updated.
2270   /// \param E Update value.
2271   /// \param BO Binary operation for update operation.
2272   /// \param IsXLHSInRHSPart true if \a X is LHS in RHS part of the update
2273   /// expression, false otherwise.
2274   /// \param AO Atomic ordering of the generated atomic instructions.
2275   /// \param CommonGen Code generator for complex expressions that cannot be
2276   /// expressed through atomicrmw instruction.
2277   /// \returns <true, OldAtomicValue> if simple 'atomicrmw' instruction was
2278   /// generated, <false, RValue::get(nullptr)> otherwise.
2279   std::pair<bool, RValue> EmitOMPAtomicSimpleUpdateExpr(
2280       LValue X, RValue E, BinaryOperatorKind BO, bool IsXLHSInRHSPart,
2281       llvm::AtomicOrdering AO, SourceLocation Loc,
2282       const llvm::function_ref<RValue(RValue)> &CommonGen);
2283   bool EmitOMPFirstprivateClause(const OMPExecutableDirective &D,
2284                                  OMPPrivateScope &PrivateScope);
2285   void EmitOMPPrivateClause(const OMPExecutableDirective &D,
2286                             OMPPrivateScope &PrivateScope);
2287   /// \brief Emit code for copyin clause in \a D directive. The next code is
2288   /// generated at the start of outlined functions for directives:
2289   /// \code
2290   /// threadprivate_var1 = master_threadprivate_var1;
2291   /// operator=(threadprivate_var2, master_threadprivate_var2);
2292   /// ...
2293   /// __kmpc_barrier(&loc, global_tid);
2294   /// \endcode
2295   ///
2296   /// \param D OpenMP directive possibly with 'copyin' clause(s).
2297   /// \returns true if at least one copyin variable is found, false otherwise.
2298   bool EmitOMPCopyinClause(const OMPExecutableDirective &D);
2299   /// \brief Emit initial code for lastprivate variables. If some variable is
2300   /// not also firstprivate, then the default initialization is used. Otherwise
2301   /// initialization of this variable is performed by EmitOMPFirstprivateClause
2302   /// method.
2303   ///
2304   /// \param D Directive that may have 'lastprivate' directives.
2305   /// \param PrivateScope Private scope for capturing lastprivate variables for
2306   /// proper codegen in internal captured statement.
2307   ///
2308   /// \returns true if there is at least one lastprivate variable, false
2309   /// otherwise.
2310   bool EmitOMPLastprivateClauseInit(const OMPExecutableDirective &D,
2311                                     OMPPrivateScope &PrivateScope);
2312   /// \brief Emit final copying of lastprivate values to original variables at
2313   /// the end of the worksharing or simd directive.
2314   ///
2315   /// \param D Directive that has at least one 'lastprivate' directives.
2316   /// \param IsLastIterCond Boolean condition that must be set to 'i1 true' if
2317   /// it is the last iteration of the loop code in associated directive, or to
2318   /// 'i1 false' otherwise. If this item is nullptr, no final check is required.
2319   void EmitOMPLastprivateClauseFinal(const OMPExecutableDirective &D,
2320                                      bool NoFinals,
2321                                      llvm::Value *IsLastIterCond = nullptr);
2322   /// Emit initial code for linear clauses.
2323   void EmitOMPLinearClause(const OMPLoopDirective &D,
2324                            CodeGenFunction::OMPPrivateScope &PrivateScope);
2325   /// Emit final code for linear clauses.
2326   /// \param CondGen Optional conditional code for final part of codegen for
2327   /// linear clause.
2328   void EmitOMPLinearClauseFinal(
2329       const OMPLoopDirective &D,
2330       const llvm::function_ref<llvm::Value *(CodeGenFunction &)> &CondGen);
2331   /// \brief Emit initial code for reduction variables. Creates reduction copies
2332   /// and initializes them with the values according to OpenMP standard.
2333   ///
2334   /// \param D Directive (possibly) with the 'reduction' clause.
2335   /// \param PrivateScope Private scope for capturing reduction variables for
2336   /// proper codegen in internal captured statement.
2337   ///
2338   void EmitOMPReductionClauseInit(const OMPExecutableDirective &D,
2339                                   OMPPrivateScope &PrivateScope);
2340   /// \brief Emit final update of reduction values to original variables at
2341   /// the end of the directive.
2342   ///
2343   /// \param D Directive that has at least one 'reduction' directives.
2344   void EmitOMPReductionClauseFinal(const OMPExecutableDirective &D);
2345   /// \brief Emit initial code for linear variables. Creates private copies
2346   /// and initializes them with the values according to OpenMP standard.
2347   ///
2348   /// \param D Directive (possibly) with the 'linear' clause.
2349   void EmitOMPLinearClauseInit(const OMPLoopDirective &D);
2350 
2351   typedef const llvm::function_ref<void(CodeGenFunction & /*CGF*/,
2352                                         llvm::Value * /*OutlinedFn*/,
2353                                         const OMPTaskDataTy & /*Data*/)>
2354       TaskGenTy;
2355   void EmitOMPTaskBasedDirective(const OMPExecutableDirective &S,
2356                                  const RegionCodeGenTy &BodyGen,
2357                                  const TaskGenTy &TaskGen, OMPTaskDataTy &Data);
2358 
2359   void EmitOMPParallelDirective(const OMPParallelDirective &S);
2360   void EmitOMPSimdDirective(const OMPSimdDirective &S);
2361   void EmitOMPForDirective(const OMPForDirective &S);
2362   void EmitOMPForSimdDirective(const OMPForSimdDirective &S);
2363   void EmitOMPSectionsDirective(const OMPSectionsDirective &S);
2364   void EmitOMPSectionDirective(const OMPSectionDirective &S);
2365   void EmitOMPSingleDirective(const OMPSingleDirective &S);
2366   void EmitOMPMasterDirective(const OMPMasterDirective &S);
2367   void EmitOMPCriticalDirective(const OMPCriticalDirective &S);
2368   void EmitOMPParallelForDirective(const OMPParallelForDirective &S);
2369   void EmitOMPParallelForSimdDirective(const OMPParallelForSimdDirective &S);
2370   void EmitOMPParallelSectionsDirective(const OMPParallelSectionsDirective &S);
2371   void EmitOMPTaskDirective(const OMPTaskDirective &S);
2372   void EmitOMPTaskyieldDirective(const OMPTaskyieldDirective &S);
2373   void EmitOMPBarrierDirective(const OMPBarrierDirective &S);
2374   void EmitOMPTaskwaitDirective(const OMPTaskwaitDirective &S);
2375   void EmitOMPTaskgroupDirective(const OMPTaskgroupDirective &S);
2376   void EmitOMPFlushDirective(const OMPFlushDirective &S);
2377   void EmitOMPOrderedDirective(const OMPOrderedDirective &S);
2378   void EmitOMPAtomicDirective(const OMPAtomicDirective &S);
2379   void EmitOMPTargetDirective(const OMPTargetDirective &S);
2380   void EmitOMPTargetDataDirective(const OMPTargetDataDirective &S);
2381   void EmitOMPTargetEnterDataDirective(const OMPTargetEnterDataDirective &S);
2382   void EmitOMPTargetExitDataDirective(const OMPTargetExitDataDirective &S);
2383   void EmitOMPTargetUpdateDirective(const OMPTargetUpdateDirective &S);
2384   void EmitOMPTargetParallelDirective(const OMPTargetParallelDirective &S);
2385   void
2386   EmitOMPTargetParallelForDirective(const OMPTargetParallelForDirective &S);
2387   void EmitOMPTeamsDirective(const OMPTeamsDirective &S);
2388   void
2389   EmitOMPCancellationPointDirective(const OMPCancellationPointDirective &S);
2390   void EmitOMPCancelDirective(const OMPCancelDirective &S);
2391   void EmitOMPTaskLoopBasedDirective(const OMPLoopDirective &S);
2392   void EmitOMPTaskLoopDirective(const OMPTaskLoopDirective &S);
2393   void EmitOMPTaskLoopSimdDirective(const OMPTaskLoopSimdDirective &S);
2394   void EmitOMPDistributeDirective(const OMPDistributeDirective &S);
2395   void EmitOMPDistributeLoop(const OMPDistributeDirective &S);
2396 
2397   /// Emit outlined function for the target directive.
2398   static std::pair<llvm::Function * /*OutlinedFn*/,
2399                    llvm::Constant * /*OutlinedFnID*/>
2400   EmitOMPTargetDirectiveOutlinedFunction(CodeGenModule &CGM,
2401                                          const OMPTargetDirective &S,
2402                                          StringRef ParentName,
2403                                          bool IsOffloadEntry);
2404   /// \brief Emit inner loop of the worksharing/simd construct.
2405   ///
2406   /// \param S Directive, for which the inner loop must be emitted.
2407   /// \param RequiresCleanup true, if directive has some associated private
2408   /// variables.
2409   /// \param LoopCond Bollean condition for loop continuation.
2410   /// \param IncExpr Increment expression for loop control variable.
2411   /// \param BodyGen Generator for the inner body of the inner loop.
2412   /// \param PostIncGen Genrator for post-increment code (required for ordered
2413   /// loop directvies).
2414   void EmitOMPInnerLoop(
2415       const Stmt &S, bool RequiresCleanup, const Expr *LoopCond,
2416       const Expr *IncExpr,
2417       const llvm::function_ref<void(CodeGenFunction &)> &BodyGen,
2418       const llvm::function_ref<void(CodeGenFunction &)> &PostIncGen);
2419 
2420   JumpDest getOMPCancelDestination(OpenMPDirectiveKind Kind);
2421   /// Emit initial code for loop counters of loop-based directives.
2422   void EmitOMPPrivateLoopCounters(const OMPLoopDirective &S,
2423                                   OMPPrivateScope &LoopScope);
2424 
2425 private:
2426   /// Helpers for the OpenMP loop directives.
2427   void EmitOMPLoopBody(const OMPLoopDirective &D, JumpDest LoopExit);
2428   void EmitOMPSimdInit(const OMPLoopDirective &D, bool IsMonotonic = false);
2429   void EmitOMPSimdFinal(
2430       const OMPLoopDirective &D,
2431       const llvm::function_ref<llvm::Value *(CodeGenFunction &)> &CondGen);
2432   /// \brief Emit code for the worksharing loop-based directive.
2433   /// \return true, if this construct has any lastprivate clause, false -
2434   /// otherwise.
2435   bool EmitOMPWorksharingLoop(const OMPLoopDirective &S);
2436   void EmitOMPOuterLoop(bool IsMonotonic, bool DynamicOrOrdered,
2437       const OMPLoopDirective &S, OMPPrivateScope &LoopScope, bool Ordered,
2438       Address LB, Address UB, Address ST, Address IL, llvm::Value *Chunk);
2439   void EmitOMPForOuterLoop(const OpenMPScheduleTy &ScheduleKind,
2440                            bool IsMonotonic, const OMPLoopDirective &S,
2441                            OMPPrivateScope &LoopScope, bool Ordered, Address LB,
2442                            Address UB, Address ST, Address IL,
2443                            llvm::Value *Chunk);
2444   void EmitOMPDistributeOuterLoop(
2445       OpenMPDistScheduleClauseKind ScheduleKind,
2446       const OMPDistributeDirective &S, OMPPrivateScope &LoopScope,
2447       Address LB, Address UB, Address ST, Address IL, llvm::Value *Chunk);
2448   /// \brief Emit code for sections directive.
2449   void EmitSections(const OMPExecutableDirective &S);
2450 
2451 public:
2452 
2453   //===--------------------------------------------------------------------===//
2454   //                         LValue Expression Emission
2455   //===--------------------------------------------------------------------===//
2456 
2457   /// GetUndefRValue - Get an appropriate 'undef' rvalue for the given type.
2458   RValue GetUndefRValue(QualType Ty);
2459 
2460   /// EmitUnsupportedRValue - Emit a dummy r-value using the type of E
2461   /// and issue an ErrorUnsupported style diagnostic (using the
2462   /// provided Name).
2463   RValue EmitUnsupportedRValue(const Expr *E,
2464                                const char *Name);
2465 
2466   /// EmitUnsupportedLValue - Emit a dummy l-value using the type of E and issue
2467   /// an ErrorUnsupported style diagnostic (using the provided Name).
2468   LValue EmitUnsupportedLValue(const Expr *E,
2469                                const char *Name);
2470 
2471   /// EmitLValue - Emit code to compute a designator that specifies the location
2472   /// of the expression.
2473   ///
2474   /// This can return one of two things: a simple address or a bitfield
2475   /// reference.  In either case, the LLVM Value* in the LValue structure is
2476   /// guaranteed to be an LLVM pointer type.
2477   ///
2478   /// If this returns a bitfield reference, nothing about the pointee type of
2479   /// the LLVM value is known: For example, it may not be a pointer to an
2480   /// integer.
2481   ///
2482   /// If this returns a normal address, and if the lvalue's C type is fixed
2483   /// size, this method guarantees that the returned pointer type will point to
2484   /// an LLVM type of the same size of the lvalue's type.  If the lvalue has a
2485   /// variable length type, this is not possible.
2486   ///
2487   LValue EmitLValue(const Expr *E);
2488 
2489   /// \brief Same as EmitLValue but additionally we generate checking code to
2490   /// guard against undefined behavior.  This is only suitable when we know
2491   /// that the address will be used to access the object.
2492   LValue EmitCheckedLValue(const Expr *E, TypeCheckKind TCK);
2493 
2494   RValue convertTempToRValue(Address addr, QualType type,
2495                              SourceLocation Loc);
2496 
2497   void EmitAtomicInit(Expr *E, LValue lvalue);
2498 
2499   bool LValueIsSuitableForInlineAtomic(LValue Src);
2500 
2501   RValue EmitAtomicLoad(LValue LV, SourceLocation SL,
2502                         AggValueSlot Slot = AggValueSlot::ignored());
2503 
2504   RValue EmitAtomicLoad(LValue lvalue, SourceLocation loc,
2505                         llvm::AtomicOrdering AO, bool IsVolatile = false,
2506                         AggValueSlot slot = AggValueSlot::ignored());
2507 
2508   void EmitAtomicStore(RValue rvalue, LValue lvalue, bool isInit);
2509 
2510   void EmitAtomicStore(RValue rvalue, LValue lvalue, llvm::AtomicOrdering AO,
2511                        bool IsVolatile, bool isInit);
2512 
2513   std::pair<RValue, llvm::Value *> EmitAtomicCompareExchange(
2514       LValue Obj, RValue Expected, RValue Desired, SourceLocation Loc,
2515       llvm::AtomicOrdering Success =
2516           llvm::AtomicOrdering::SequentiallyConsistent,
2517       llvm::AtomicOrdering Failure =
2518           llvm::AtomicOrdering::SequentiallyConsistent,
2519       bool IsWeak = false, AggValueSlot Slot = AggValueSlot::ignored());
2520 
2521   void EmitAtomicUpdate(LValue LVal, llvm::AtomicOrdering AO,
2522                         const llvm::function_ref<RValue(RValue)> &UpdateOp,
2523                         bool IsVolatile);
2524 
2525   /// EmitToMemory - Change a scalar value from its value
2526   /// representation to its in-memory representation.
2527   llvm::Value *EmitToMemory(llvm::Value *Value, QualType Ty);
2528 
2529   /// EmitFromMemory - Change a scalar value from its memory
2530   /// representation to its value representation.
2531   llvm::Value *EmitFromMemory(llvm::Value *Value, QualType Ty);
2532 
2533   /// EmitLoadOfScalar - Load a scalar value from an address, taking
2534   /// care to appropriately convert from the memory representation to
2535   /// the LLVM value representation.
2536   llvm::Value *EmitLoadOfScalar(Address Addr, bool Volatile, QualType Ty,
2537                                 SourceLocation Loc,
2538                                 AlignmentSource AlignSource =
2539                                   AlignmentSource::Type,
2540                                 llvm::MDNode *TBAAInfo = nullptr,
2541                                 QualType TBAABaseTy = QualType(),
2542                                 uint64_t TBAAOffset = 0,
2543                                 bool isNontemporal = false);
2544 
2545   /// EmitLoadOfScalar - Load a scalar value from an address, taking
2546   /// care to appropriately convert from the memory representation to
2547   /// the LLVM value representation.  The l-value must be a simple
2548   /// l-value.
2549   llvm::Value *EmitLoadOfScalar(LValue lvalue, SourceLocation Loc);
2550 
2551   /// EmitStoreOfScalar - Store a scalar value to an address, taking
2552   /// care to appropriately convert from the memory representation to
2553   /// the LLVM value representation.
2554   void EmitStoreOfScalar(llvm::Value *Value, Address Addr,
2555                          bool Volatile, QualType Ty,
2556                          AlignmentSource AlignSource = AlignmentSource::Type,
2557                          llvm::MDNode *TBAAInfo = nullptr, bool isInit = false,
2558                          QualType TBAABaseTy = QualType(),
2559                          uint64_t TBAAOffset = 0, bool isNontemporal = false);
2560 
2561   /// EmitStoreOfScalar - Store a scalar value to an address, taking
2562   /// care to appropriately convert from the memory representation to
2563   /// the LLVM value representation.  The l-value must be a simple
2564   /// l-value.  The isInit flag indicates whether this is an initialization.
2565   /// If so, atomic qualifiers are ignored and the store is always non-atomic.
2566   void EmitStoreOfScalar(llvm::Value *value, LValue lvalue, bool isInit=false);
2567 
2568   /// EmitLoadOfLValue - Given an expression that represents a value lvalue,
2569   /// this method emits the address of the lvalue, then loads the result as an
2570   /// rvalue, returning the rvalue.
2571   RValue EmitLoadOfLValue(LValue V, SourceLocation Loc);
2572   RValue EmitLoadOfExtVectorElementLValue(LValue V);
2573   RValue EmitLoadOfBitfieldLValue(LValue LV);
2574   RValue EmitLoadOfGlobalRegLValue(LValue LV);
2575 
2576   /// EmitStoreThroughLValue - Store the specified rvalue into the specified
2577   /// lvalue, where both are guaranteed to the have the same type, and that type
2578   /// is 'Ty'.
2579   void EmitStoreThroughLValue(RValue Src, LValue Dst, bool isInit = false);
2580   void EmitStoreThroughExtVectorComponentLValue(RValue Src, LValue Dst);
2581   void EmitStoreThroughGlobalRegLValue(RValue Src, LValue Dst);
2582 
2583   /// EmitStoreThroughBitfieldLValue - Store Src into Dst with same constraints
2584   /// as EmitStoreThroughLValue.
2585   ///
2586   /// \param Result [out] - If non-null, this will be set to a Value* for the
2587   /// bit-field contents after the store, appropriate for use as the result of
2588   /// an assignment to the bit-field.
2589   void EmitStoreThroughBitfieldLValue(RValue Src, LValue Dst,
2590                                       llvm::Value **Result=nullptr);
2591 
2592   /// Emit an l-value for an assignment (simple or compound) of complex type.
2593   LValue EmitComplexAssignmentLValue(const BinaryOperator *E);
2594   LValue EmitComplexCompoundAssignmentLValue(const CompoundAssignOperator *E);
2595   LValue EmitScalarCompoundAssignWithComplex(const CompoundAssignOperator *E,
2596                                              llvm::Value *&Result);
2597 
2598   // Note: only available for agg return types
2599   LValue EmitBinaryOperatorLValue(const BinaryOperator *E);
2600   LValue EmitCompoundAssignmentLValue(const CompoundAssignOperator *E);
2601   // Note: only available for agg return types
2602   LValue EmitCallExprLValue(const CallExpr *E);
2603   // Note: only available for agg return types
2604   LValue EmitVAArgExprLValue(const VAArgExpr *E);
2605   LValue EmitDeclRefLValue(const DeclRefExpr *E);
2606   LValue EmitStringLiteralLValue(const StringLiteral *E);
2607   LValue EmitObjCEncodeExprLValue(const ObjCEncodeExpr *E);
2608   LValue EmitPredefinedLValue(const PredefinedExpr *E);
2609   LValue EmitUnaryOpLValue(const UnaryOperator *E);
2610   LValue EmitArraySubscriptExpr(const ArraySubscriptExpr *E,
2611                                 bool Accessed = false);
2612   LValue EmitOMPArraySectionExpr(const OMPArraySectionExpr *E,
2613                                  bool IsLowerBound = true);
2614   LValue EmitExtVectorElementExpr(const ExtVectorElementExpr *E);
2615   LValue EmitMemberExpr(const MemberExpr *E);
2616   LValue EmitObjCIsaExpr(const ObjCIsaExpr *E);
2617   LValue EmitCompoundLiteralLValue(const CompoundLiteralExpr *E);
2618   LValue EmitInitListLValue(const InitListExpr *E);
2619   LValue EmitConditionalOperatorLValue(const AbstractConditionalOperator *E);
2620   LValue EmitCastLValue(const CastExpr *E);
2621   LValue EmitMaterializeTemporaryExpr(const MaterializeTemporaryExpr *E);
2622   LValue EmitOpaqueValueLValue(const OpaqueValueExpr *e);
2623 
2624   Address EmitExtVectorElementLValue(LValue V);
2625 
2626   RValue EmitRValueForField(LValue LV, const FieldDecl *FD, SourceLocation Loc);
2627 
2628   Address EmitArrayToPointerDecay(const Expr *Array,
2629                                   AlignmentSource *AlignSource = nullptr);
2630 
2631   class ConstantEmission {
2632     llvm::PointerIntPair<llvm::Constant*, 1, bool> ValueAndIsReference;
2633     ConstantEmission(llvm::Constant *C, bool isReference)
2634       : ValueAndIsReference(C, isReference) {}
2635   public:
2636     ConstantEmission() {}
2637     static ConstantEmission forReference(llvm::Constant *C) {
2638       return ConstantEmission(C, true);
2639     }
2640     static ConstantEmission forValue(llvm::Constant *C) {
2641       return ConstantEmission(C, false);
2642     }
2643 
2644     explicit operator bool() const {
2645       return ValueAndIsReference.getOpaqueValue() != nullptr;
2646     }
2647 
2648     bool isReference() const { return ValueAndIsReference.getInt(); }
2649     LValue getReferenceLValue(CodeGenFunction &CGF, Expr *refExpr) const {
2650       assert(isReference());
2651       return CGF.MakeNaturalAlignAddrLValue(ValueAndIsReference.getPointer(),
2652                                             refExpr->getType());
2653     }
2654 
2655     llvm::Constant *getValue() const {
2656       assert(!isReference());
2657       return ValueAndIsReference.getPointer();
2658     }
2659   };
2660 
2661   ConstantEmission tryEmitAsConstant(DeclRefExpr *refExpr);
2662 
2663   RValue EmitPseudoObjectRValue(const PseudoObjectExpr *e,
2664                                 AggValueSlot slot = AggValueSlot::ignored());
2665   LValue EmitPseudoObjectLValue(const PseudoObjectExpr *e);
2666 
2667   llvm::Value *EmitIvarOffset(const ObjCInterfaceDecl *Interface,
2668                               const ObjCIvarDecl *Ivar);
2669   LValue EmitLValueForField(LValue Base, const FieldDecl* Field);
2670   LValue EmitLValueForLambdaField(const FieldDecl *Field);
2671 
2672   /// EmitLValueForFieldInitialization - Like EmitLValueForField, except that
2673   /// if the Field is a reference, this will return the address of the reference
2674   /// and not the address of the value stored in the reference.
2675   LValue EmitLValueForFieldInitialization(LValue Base,
2676                                           const FieldDecl* Field);
2677 
2678   LValue EmitLValueForIvar(QualType ObjectTy,
2679                            llvm::Value* Base, const ObjCIvarDecl *Ivar,
2680                            unsigned CVRQualifiers);
2681 
2682   LValue EmitCXXConstructLValue(const CXXConstructExpr *E);
2683   LValue EmitCXXBindTemporaryLValue(const CXXBindTemporaryExpr *E);
2684   LValue EmitLambdaLValue(const LambdaExpr *E);
2685   LValue EmitCXXTypeidLValue(const CXXTypeidExpr *E);
2686   LValue EmitCXXUuidofLValue(const CXXUuidofExpr *E);
2687 
2688   LValue EmitObjCMessageExprLValue(const ObjCMessageExpr *E);
2689   LValue EmitObjCIvarRefLValue(const ObjCIvarRefExpr *E);
2690   LValue EmitStmtExprLValue(const StmtExpr *E);
2691   LValue EmitPointerToDataMemberBinaryExpr(const BinaryOperator *E);
2692   LValue EmitObjCSelectorLValue(const ObjCSelectorExpr *E);
2693   void   EmitDeclRefExprDbgValue(const DeclRefExpr *E, llvm::Constant *Init);
2694 
2695   //===--------------------------------------------------------------------===//
2696   //                         Scalar Expression Emission
2697   //===--------------------------------------------------------------------===//
2698 
2699   /// EmitCall - Generate a call of the given function, expecting the given
2700   /// result type, and using the given argument list which specifies both the
2701   /// LLVM arguments and the types they were derived from.
2702   RValue EmitCall(const CGFunctionInfo &FnInfo, llvm::Value *Callee,
2703                   ReturnValueSlot ReturnValue, const CallArgList &Args,
2704                   CGCalleeInfo CalleeInfo = CGCalleeInfo(),
2705                   llvm::Instruction **callOrInvoke = nullptr);
2706 
2707   RValue EmitCall(QualType FnType, llvm::Value *Callee, const CallExpr *E,
2708                   ReturnValueSlot ReturnValue,
2709                   CGCalleeInfo CalleeInfo = CGCalleeInfo(),
2710                   llvm::Value *Chain = nullptr);
2711   RValue EmitCallExpr(const CallExpr *E,
2712                       ReturnValueSlot ReturnValue = ReturnValueSlot());
2713 
2714   void checkTargetFeatures(const CallExpr *E, const FunctionDecl *TargetDecl);
2715 
2716   llvm::CallInst *EmitRuntimeCall(llvm::Value *callee,
2717                                   const Twine &name = "");
2718   llvm::CallInst *EmitRuntimeCall(llvm::Value *callee,
2719                                   ArrayRef<llvm::Value*> args,
2720                                   const Twine &name = "");
2721   llvm::CallInst *EmitNounwindRuntimeCall(llvm::Value *callee,
2722                                           const Twine &name = "");
2723   llvm::CallInst *EmitNounwindRuntimeCall(llvm::Value *callee,
2724                                           ArrayRef<llvm::Value*> args,
2725                                           const Twine &name = "");
2726 
2727   llvm::CallSite EmitCallOrInvoke(llvm::Value *Callee,
2728                                   ArrayRef<llvm::Value *> Args,
2729                                   const Twine &Name = "");
2730   llvm::CallSite EmitRuntimeCallOrInvoke(llvm::Value *callee,
2731                                          ArrayRef<llvm::Value*> args,
2732                                          const Twine &name = "");
2733   llvm::CallSite EmitRuntimeCallOrInvoke(llvm::Value *callee,
2734                                          const Twine &name = "");
2735   void EmitNoreturnRuntimeCallOrInvoke(llvm::Value *callee,
2736                                        ArrayRef<llvm::Value*> args);
2737 
2738   llvm::Value *BuildAppleKextVirtualCall(const CXXMethodDecl *MD,
2739                                          NestedNameSpecifier *Qual,
2740                                          llvm::Type *Ty);
2741 
2742   llvm::Value *BuildAppleKextVirtualDestructorCall(const CXXDestructorDecl *DD,
2743                                                    CXXDtorType Type,
2744                                                    const CXXRecordDecl *RD);
2745 
2746   RValue
2747   EmitCXXMemberOrOperatorCall(const CXXMethodDecl *MD, llvm::Value *Callee,
2748                               ReturnValueSlot ReturnValue, llvm::Value *This,
2749                               llvm::Value *ImplicitParam,
2750                               QualType ImplicitParamTy, const CallExpr *E);
2751   RValue EmitCXXDestructorCall(const CXXDestructorDecl *DD, llvm::Value *Callee,
2752                                llvm::Value *This, llvm::Value *ImplicitParam,
2753                                QualType ImplicitParamTy, const CallExpr *E,
2754                                StructorType Type);
2755   RValue EmitCXXMemberCallExpr(const CXXMemberCallExpr *E,
2756                                ReturnValueSlot ReturnValue);
2757   RValue EmitCXXMemberOrOperatorMemberCallExpr(const CallExpr *CE,
2758                                                const CXXMethodDecl *MD,
2759                                                ReturnValueSlot ReturnValue,
2760                                                bool HasQualifier,
2761                                                NestedNameSpecifier *Qualifier,
2762                                                bool IsArrow, const Expr *Base);
2763   // Compute the object pointer.
2764   Address EmitCXXMemberDataPointerAddress(const Expr *E, Address base,
2765                                           llvm::Value *memberPtr,
2766                                           const MemberPointerType *memberPtrType,
2767                                           AlignmentSource *AlignSource = nullptr);
2768   RValue EmitCXXMemberPointerCallExpr(const CXXMemberCallExpr *E,
2769                                       ReturnValueSlot ReturnValue);
2770 
2771   RValue EmitCXXOperatorMemberCallExpr(const CXXOperatorCallExpr *E,
2772                                        const CXXMethodDecl *MD,
2773                                        ReturnValueSlot ReturnValue);
2774 
2775   RValue EmitCUDAKernelCallExpr(const CUDAKernelCallExpr *E,
2776                                 ReturnValueSlot ReturnValue);
2777 
2778   RValue EmitCUDADevicePrintfCallExpr(const CallExpr *E,
2779                                       ReturnValueSlot ReturnValue);
2780 
2781   RValue EmitBuiltinExpr(const FunctionDecl *FD,
2782                          unsigned BuiltinID, const CallExpr *E,
2783                          ReturnValueSlot ReturnValue);
2784 
2785   RValue EmitBlockCallExpr(const CallExpr *E, ReturnValueSlot ReturnValue);
2786 
2787   /// EmitTargetBuiltinExpr - Emit the given builtin call. Returns 0 if the call
2788   /// is unhandled by the current target.
2789   llvm::Value *EmitTargetBuiltinExpr(unsigned BuiltinID, const CallExpr *E);
2790 
2791   llvm::Value *EmitAArch64CompareBuiltinExpr(llvm::Value *Op, llvm::Type *Ty,
2792                                              const llvm::CmpInst::Predicate Fp,
2793                                              const llvm::CmpInst::Predicate Ip,
2794                                              const llvm::Twine &Name = "");
2795   llvm::Value *EmitARMBuiltinExpr(unsigned BuiltinID, const CallExpr *E);
2796 
2797   llvm::Value *EmitCommonNeonBuiltinExpr(unsigned BuiltinID,
2798                                          unsigned LLVMIntrinsic,
2799                                          unsigned AltLLVMIntrinsic,
2800                                          const char *NameHint,
2801                                          unsigned Modifier,
2802                                          const CallExpr *E,
2803                                          SmallVectorImpl<llvm::Value *> &Ops,
2804                                          Address PtrOp0, Address PtrOp1);
2805   llvm::Function *LookupNeonLLVMIntrinsic(unsigned IntrinsicID,
2806                                           unsigned Modifier, llvm::Type *ArgTy,
2807                                           const CallExpr *E);
2808   llvm::Value *EmitNeonCall(llvm::Function *F,
2809                             SmallVectorImpl<llvm::Value*> &O,
2810                             const char *name,
2811                             unsigned shift = 0, bool rightshift = false);
2812   llvm::Value *EmitNeonSplat(llvm::Value *V, llvm::Constant *Idx);
2813   llvm::Value *EmitNeonShiftVector(llvm::Value *V, llvm::Type *Ty,
2814                                    bool negateForRightShift);
2815   llvm::Value *EmitNeonRShiftImm(llvm::Value *Vec, llvm::Value *Amt,
2816                                  llvm::Type *Ty, bool usgn, const char *name);
2817   llvm::Value *vectorWrapScalar16(llvm::Value *Op);
2818   llvm::Value *EmitAArch64BuiltinExpr(unsigned BuiltinID, const CallExpr *E);
2819 
2820   llvm::Value *BuildVector(ArrayRef<llvm::Value*> Ops);
2821   llvm::Value *EmitX86BuiltinExpr(unsigned BuiltinID, const CallExpr *E);
2822   llvm::Value *EmitPPCBuiltinExpr(unsigned BuiltinID, const CallExpr *E);
2823   llvm::Value *EmitAMDGPUBuiltinExpr(unsigned BuiltinID, const CallExpr *E);
2824   llvm::Value *EmitSystemZBuiltinExpr(unsigned BuiltinID, const CallExpr *E);
2825   llvm::Value *EmitNVPTXBuiltinExpr(unsigned BuiltinID, const CallExpr *E);
2826   llvm::Value *EmitWebAssemblyBuiltinExpr(unsigned BuiltinID,
2827                                           const CallExpr *E);
2828 
2829   llvm::Value *EmitObjCProtocolExpr(const ObjCProtocolExpr *E);
2830   llvm::Value *EmitObjCStringLiteral(const ObjCStringLiteral *E);
2831   llvm::Value *EmitObjCBoxedExpr(const ObjCBoxedExpr *E);
2832   llvm::Value *EmitObjCArrayLiteral(const ObjCArrayLiteral *E);
2833   llvm::Value *EmitObjCDictionaryLiteral(const ObjCDictionaryLiteral *E);
2834   llvm::Value *EmitObjCCollectionLiteral(const Expr *E,
2835                                 const ObjCMethodDecl *MethodWithObjects);
2836   llvm::Value *EmitObjCSelectorExpr(const ObjCSelectorExpr *E);
2837   RValue EmitObjCMessageExpr(const ObjCMessageExpr *E,
2838                              ReturnValueSlot Return = ReturnValueSlot());
2839 
2840   /// Retrieves the default cleanup kind for an ARC cleanup.
2841   /// Except under -fobjc-arc-eh, ARC cleanups are normal-only.
2842   CleanupKind getARCCleanupKind() {
2843     return CGM.getCodeGenOpts().ObjCAutoRefCountExceptions
2844              ? NormalAndEHCleanup : NormalCleanup;
2845   }
2846 
2847   // ARC primitives.
2848   void EmitARCInitWeak(Address addr, llvm::Value *value);
2849   void EmitARCDestroyWeak(Address addr);
2850   llvm::Value *EmitARCLoadWeak(Address addr);
2851   llvm::Value *EmitARCLoadWeakRetained(Address addr);
2852   llvm::Value *EmitARCStoreWeak(Address addr, llvm::Value *value, bool ignored);
2853   void EmitARCCopyWeak(Address dst, Address src);
2854   void EmitARCMoveWeak(Address dst, Address src);
2855   llvm::Value *EmitARCRetainAutorelease(QualType type, llvm::Value *value);
2856   llvm::Value *EmitARCRetainAutoreleaseNonBlock(llvm::Value *value);
2857   llvm::Value *EmitARCStoreStrong(LValue lvalue, llvm::Value *value,
2858                                   bool resultIgnored);
2859   llvm::Value *EmitARCStoreStrongCall(Address addr, llvm::Value *value,
2860                                       bool resultIgnored);
2861   llvm::Value *EmitARCRetain(QualType type, llvm::Value *value);
2862   llvm::Value *EmitARCRetainNonBlock(llvm::Value *value);
2863   llvm::Value *EmitARCRetainBlock(llvm::Value *value, bool mandatory);
2864   void EmitARCDestroyStrong(Address addr, ARCPreciseLifetime_t precise);
2865   void EmitARCRelease(llvm::Value *value, ARCPreciseLifetime_t precise);
2866   llvm::Value *EmitARCAutorelease(llvm::Value *value);
2867   llvm::Value *EmitARCAutoreleaseReturnValue(llvm::Value *value);
2868   llvm::Value *EmitARCRetainAutoreleaseReturnValue(llvm::Value *value);
2869   llvm::Value *EmitARCRetainAutoreleasedReturnValue(llvm::Value *value);
2870   llvm::Value *EmitARCUnsafeClaimAutoreleasedReturnValue(llvm::Value *value);
2871 
2872   std::pair<LValue,llvm::Value*>
2873   EmitARCStoreAutoreleasing(const BinaryOperator *e);
2874   std::pair<LValue,llvm::Value*>
2875   EmitARCStoreStrong(const BinaryOperator *e, bool ignored);
2876   std::pair<LValue,llvm::Value*>
2877   EmitARCStoreUnsafeUnretained(const BinaryOperator *e, bool ignored);
2878 
2879   llvm::Value *EmitObjCThrowOperand(const Expr *expr);
2880   llvm::Value *EmitObjCConsumeObject(QualType T, llvm::Value *Ptr);
2881   llvm::Value *EmitObjCExtendObjectLifetime(QualType T, llvm::Value *Ptr);
2882 
2883   llvm::Value *EmitARCExtendBlockObject(const Expr *expr);
2884   llvm::Value *EmitARCReclaimReturnedObject(const Expr *e,
2885                                             bool allowUnsafeClaim);
2886   llvm::Value *EmitARCRetainScalarExpr(const Expr *expr);
2887   llvm::Value *EmitARCRetainAutoreleaseScalarExpr(const Expr *expr);
2888   llvm::Value *EmitARCUnsafeUnretainedScalarExpr(const Expr *expr);
2889 
2890   void EmitARCIntrinsicUse(ArrayRef<llvm::Value*> values);
2891 
2892   static Destroyer destroyARCStrongImprecise;
2893   static Destroyer destroyARCStrongPrecise;
2894   static Destroyer destroyARCWeak;
2895 
2896   void EmitObjCAutoreleasePoolPop(llvm::Value *Ptr);
2897   llvm::Value *EmitObjCAutoreleasePoolPush();
2898   llvm::Value *EmitObjCMRRAutoreleasePoolPush();
2899   void EmitObjCAutoreleasePoolCleanup(llvm::Value *Ptr);
2900   void EmitObjCMRRAutoreleasePoolPop(llvm::Value *Ptr);
2901 
2902   /// \brief Emits a reference binding to the passed in expression.
2903   RValue EmitReferenceBindingToExpr(const Expr *E);
2904 
2905   //===--------------------------------------------------------------------===//
2906   //                           Expression Emission
2907   //===--------------------------------------------------------------------===//
2908 
2909   // Expressions are broken into three classes: scalar, complex, aggregate.
2910 
2911   /// EmitScalarExpr - Emit the computation of the specified expression of LLVM
2912   /// scalar type, returning the result.
2913   llvm::Value *EmitScalarExpr(const Expr *E , bool IgnoreResultAssign = false);
2914 
2915   /// Emit a conversion from the specified type to the specified destination
2916   /// type, both of which are LLVM scalar types.
2917   llvm::Value *EmitScalarConversion(llvm::Value *Src, QualType SrcTy,
2918                                     QualType DstTy, SourceLocation Loc);
2919 
2920   /// Emit a conversion from the specified complex type to the specified
2921   /// destination type, where the destination type is an LLVM scalar type.
2922   llvm::Value *EmitComplexToScalarConversion(ComplexPairTy Src, QualType SrcTy,
2923                                              QualType DstTy,
2924                                              SourceLocation Loc);
2925 
2926   /// EmitAggExpr - Emit the computation of the specified expression
2927   /// of aggregate type.  The result is computed into the given slot,
2928   /// which may be null to indicate that the value is not needed.
2929   void EmitAggExpr(const Expr *E, AggValueSlot AS);
2930 
2931   /// EmitAggExprToLValue - Emit the computation of the specified expression of
2932   /// aggregate type into a temporary LValue.
2933   LValue EmitAggExprToLValue(const Expr *E);
2934 
2935   /// EmitExtendGCLifetime - Given a pointer to an Objective-C object,
2936   /// make sure it survives garbage collection until this point.
2937   void EmitExtendGCLifetime(llvm::Value *object);
2938 
2939   /// EmitComplexExpr - Emit the computation of the specified expression of
2940   /// complex type, returning the result.
2941   ComplexPairTy EmitComplexExpr(const Expr *E,
2942                                 bool IgnoreReal = false,
2943                                 bool IgnoreImag = false);
2944 
2945   /// EmitComplexExprIntoLValue - Emit the given expression of complex
2946   /// type and place its result into the specified l-value.
2947   void EmitComplexExprIntoLValue(const Expr *E, LValue dest, bool isInit);
2948 
2949   /// EmitStoreOfComplex - Store a complex number into the specified l-value.
2950   void EmitStoreOfComplex(ComplexPairTy V, LValue dest, bool isInit);
2951 
2952   /// EmitLoadOfComplex - Load a complex number from the specified l-value.
2953   ComplexPairTy EmitLoadOfComplex(LValue src, SourceLocation loc);
2954 
2955   Address emitAddrOfRealComponent(Address complex, QualType complexType);
2956   Address emitAddrOfImagComponent(Address complex, QualType complexType);
2957 
2958   /// AddInitializerToStaticVarDecl - Add the initializer for 'D' to the
2959   /// global variable that has already been created for it.  If the initializer
2960   /// has a different type than GV does, this may free GV and return a different
2961   /// one.  Otherwise it just returns GV.
2962   llvm::GlobalVariable *
2963   AddInitializerToStaticVarDecl(const VarDecl &D,
2964                                 llvm::GlobalVariable *GV);
2965 
2966 
2967   /// EmitCXXGlobalVarDeclInit - Create the initializer for a C++
2968   /// variable with global storage.
2969   void EmitCXXGlobalVarDeclInit(const VarDecl &D, llvm::Constant *DeclPtr,
2970                                 bool PerformInit);
2971 
2972   llvm::Constant *createAtExitStub(const VarDecl &VD, llvm::Constant *Dtor,
2973                                    llvm::Constant *Addr);
2974 
2975   /// Call atexit() with a function that passes the given argument to
2976   /// the given function.
2977   void registerGlobalDtorWithAtExit(const VarDecl &D, llvm::Constant *fn,
2978                                     llvm::Constant *addr);
2979 
2980   /// Emit code in this function to perform a guarded variable
2981   /// initialization.  Guarded initializations are used when it's not
2982   /// possible to prove that an initialization will be done exactly
2983   /// once, e.g. with a static local variable or a static data member
2984   /// of a class template.
2985   void EmitCXXGuardedInit(const VarDecl &D, llvm::GlobalVariable *DeclPtr,
2986                           bool PerformInit);
2987 
2988   /// GenerateCXXGlobalInitFunc - Generates code for initializing global
2989   /// variables.
2990   void GenerateCXXGlobalInitFunc(llvm::Function *Fn,
2991                                  ArrayRef<llvm::Function *> CXXThreadLocals,
2992                                  Address Guard = Address::invalid());
2993 
2994   /// GenerateCXXGlobalDtorsFunc - Generates code for destroying global
2995   /// variables.
2996   void GenerateCXXGlobalDtorsFunc(llvm::Function *Fn,
2997                                   const std::vector<std::pair<llvm::WeakVH,
2998                                   llvm::Constant*> > &DtorsAndObjects);
2999 
3000   void GenerateCXXGlobalVarDeclInitFunc(llvm::Function *Fn,
3001                                         const VarDecl *D,
3002                                         llvm::GlobalVariable *Addr,
3003                                         bool PerformInit);
3004 
3005   void EmitCXXConstructExpr(const CXXConstructExpr *E, AggValueSlot Dest);
3006 
3007   void EmitSynthesizedCXXCopyCtor(Address Dest, Address Src, const Expr *Exp);
3008 
3009   void enterFullExpression(const ExprWithCleanups *E) {
3010     if (E->getNumObjects() == 0) return;
3011     enterNonTrivialFullExpression(E);
3012   }
3013   void enterNonTrivialFullExpression(const ExprWithCleanups *E);
3014 
3015   void EmitCXXThrowExpr(const CXXThrowExpr *E, bool KeepInsertionPoint = true);
3016 
3017   void EmitLambdaExpr(const LambdaExpr *E, AggValueSlot Dest);
3018 
3019   RValue EmitAtomicExpr(AtomicExpr *E);
3020 
3021   //===--------------------------------------------------------------------===//
3022   //                         Annotations Emission
3023   //===--------------------------------------------------------------------===//
3024 
3025   /// Emit an annotation call (intrinsic or builtin).
3026   llvm::Value *EmitAnnotationCall(llvm::Value *AnnotationFn,
3027                                   llvm::Value *AnnotatedVal,
3028                                   StringRef AnnotationStr,
3029                                   SourceLocation Location);
3030 
3031   /// Emit local annotations for the local variable V, declared by D.
3032   void EmitVarAnnotations(const VarDecl *D, llvm::Value *V);
3033 
3034   /// Emit field annotations for the given field & value. Returns the
3035   /// annotation result.
3036   Address EmitFieldAnnotations(const FieldDecl *D, Address V);
3037 
3038   //===--------------------------------------------------------------------===//
3039   //                             Internal Helpers
3040   //===--------------------------------------------------------------------===//
3041 
3042   /// ContainsLabel - Return true if the statement contains a label in it.  If
3043   /// this statement is not executed normally, it not containing a label means
3044   /// that we can just remove the code.
3045   static bool ContainsLabel(const Stmt *S, bool IgnoreCaseStmts = false);
3046 
3047   /// containsBreak - Return true if the statement contains a break out of it.
3048   /// If the statement (recursively) contains a switch or loop with a break
3049   /// inside of it, this is fine.
3050   static bool containsBreak(const Stmt *S);
3051 
3052   /// ConstantFoldsToSimpleInteger - If the specified expression does not fold
3053   /// to a constant, or if it does but contains a label, return false.  If it
3054   /// constant folds return true and set the boolean result in Result.
3055   bool ConstantFoldsToSimpleInteger(const Expr *Cond, bool &Result);
3056 
3057   /// ConstantFoldsToSimpleInteger - If the specified expression does not fold
3058   /// to a constant, or if it does but contains a label, return false.  If it
3059   /// constant folds return true and set the folded value.
3060   bool ConstantFoldsToSimpleInteger(const Expr *Cond, llvm::APSInt &Result);
3061 
3062   /// EmitBranchOnBoolExpr - Emit a branch on a boolean condition (e.g. for an
3063   /// if statement) to the specified blocks.  Based on the condition, this might
3064   /// try to simplify the codegen of the conditional based on the branch.
3065   /// TrueCount should be the number of times we expect the condition to
3066   /// evaluate to true based on PGO data.
3067   void EmitBranchOnBoolExpr(const Expr *Cond, llvm::BasicBlock *TrueBlock,
3068                             llvm::BasicBlock *FalseBlock, uint64_t TrueCount);
3069 
3070   /// \brief Emit a description of a type in a format suitable for passing to
3071   /// a runtime sanitizer handler.
3072   llvm::Constant *EmitCheckTypeDescriptor(QualType T);
3073 
3074   /// \brief Convert a value into a format suitable for passing to a runtime
3075   /// sanitizer handler.
3076   llvm::Value *EmitCheckValue(llvm::Value *V);
3077 
3078   /// \brief Emit a description of a source location in a format suitable for
3079   /// passing to a runtime sanitizer handler.
3080   llvm::Constant *EmitCheckSourceLocation(SourceLocation Loc);
3081 
3082   /// \brief Create a basic block that will call a handler function in a
3083   /// sanitizer runtime with the provided arguments, and create a conditional
3084   /// branch to it.
3085   void EmitCheck(ArrayRef<std::pair<llvm::Value *, SanitizerMask>> Checked,
3086                  StringRef CheckName, ArrayRef<llvm::Constant *> StaticArgs,
3087                  ArrayRef<llvm::Value *> DynamicArgs);
3088 
3089   /// \brief Emit a slow path cross-DSO CFI check which calls __cfi_slowpath
3090   /// if Cond if false.
3091   void EmitCfiSlowPathCheck(SanitizerMask Kind, llvm::Value *Cond,
3092                             llvm::ConstantInt *TypeId, llvm::Value *Ptr,
3093                             ArrayRef<llvm::Constant *> StaticArgs);
3094 
3095   /// \brief Create a basic block that will call the trap intrinsic, and emit a
3096   /// conditional branch to it, for the -ftrapv checks.
3097   void EmitTrapCheck(llvm::Value *Checked);
3098 
3099   /// \brief Emit a call to trap or debugtrap and attach function attribute
3100   /// "trap-func-name" if specified.
3101   llvm::CallInst *EmitTrapCall(llvm::Intrinsic::ID IntrID);
3102 
3103   /// \brief Emit a cross-DSO CFI failure handling function.
3104   void EmitCfiCheckFail();
3105 
3106   /// \brief Create a check for a function parameter that may potentially be
3107   /// declared as non-null.
3108   void EmitNonNullArgCheck(RValue RV, QualType ArgType, SourceLocation ArgLoc,
3109                            const FunctionDecl *FD, unsigned ParmNum);
3110 
3111   /// EmitCallArg - Emit a single call argument.
3112   void EmitCallArg(CallArgList &args, const Expr *E, QualType ArgType);
3113 
3114   /// EmitDelegateCallArg - We are performing a delegate call; that
3115   /// is, the current function is delegating to another one.  Produce
3116   /// a r-value suitable for passing the given parameter.
3117   void EmitDelegateCallArg(CallArgList &args, const VarDecl *param,
3118                            SourceLocation loc);
3119 
3120   /// SetFPAccuracy - Set the minimum required accuracy of the given floating
3121   /// point operation, expressed as the maximum relative error in ulp.
3122   void SetFPAccuracy(llvm::Value *Val, float Accuracy);
3123 
3124 private:
3125   llvm::MDNode *getRangeForLoadFromType(QualType Ty);
3126   void EmitReturnOfRValue(RValue RV, QualType Ty);
3127 
3128   void deferPlaceholderReplacement(llvm::Instruction *Old, llvm::Value *New);
3129 
3130   llvm::SmallVector<std::pair<llvm::Instruction *, llvm::Value *>, 4>
3131   DeferredReplacements;
3132 
3133   /// Set the address of a local variable.
3134   void setAddrOfLocalVar(const VarDecl *VD, Address Addr) {
3135     assert(!LocalDeclMap.count(VD) && "Decl already exists in LocalDeclMap!");
3136     LocalDeclMap.insert({VD, Addr});
3137   }
3138 
3139   /// ExpandTypeFromArgs - Reconstruct a structure of type \arg Ty
3140   /// from function arguments into \arg Dst. See ABIArgInfo::Expand.
3141   ///
3142   /// \param AI - The first function argument of the expansion.
3143   void ExpandTypeFromArgs(QualType Ty, LValue Dst,
3144                           SmallVectorImpl<llvm::Value *>::iterator &AI);
3145 
3146   /// ExpandTypeToArgs - Expand an RValue \arg RV, with the LLVM type for \arg
3147   /// Ty, into individual arguments on the provided vector \arg IRCallArgs,
3148   /// starting at index \arg IRCallArgPos. See ABIArgInfo::Expand.
3149   void ExpandTypeToArgs(QualType Ty, RValue RV, llvm::FunctionType *IRFuncTy,
3150                         SmallVectorImpl<llvm::Value *> &IRCallArgs,
3151                         unsigned &IRCallArgPos);
3152 
3153   llvm::Value* EmitAsmInput(const TargetInfo::ConstraintInfo &Info,
3154                             const Expr *InputExpr, std::string &ConstraintStr);
3155 
3156   llvm::Value* EmitAsmInputLValue(const TargetInfo::ConstraintInfo &Info,
3157                                   LValue InputValue, QualType InputType,
3158                                   std::string &ConstraintStr,
3159                                   SourceLocation Loc);
3160 
3161   /// \brief Attempts to statically evaluate the object size of E. If that
3162   /// fails, emits code to figure the size of E out for us. This is
3163   /// pass_object_size aware.
3164   llvm::Value *evaluateOrEmitBuiltinObjectSize(const Expr *E, unsigned Type,
3165                                                llvm::IntegerType *ResType);
3166 
3167   /// \brief Emits the size of E, as required by __builtin_object_size. This
3168   /// function is aware of pass_object_size parameters, and will act accordingly
3169   /// if E is a parameter with the pass_object_size attribute.
3170   llvm::Value *emitBuiltinObjectSize(const Expr *E, unsigned Type,
3171                                      llvm::IntegerType *ResType);
3172 
3173 public:
3174 #ifndef NDEBUG
3175   // Determine whether the given argument is an Objective-C method
3176   // that may have type parameters in its signature.
3177   static bool isObjCMethodWithTypeParams(const ObjCMethodDecl *method) {
3178     const DeclContext *dc = method->getDeclContext();
3179     if (const ObjCInterfaceDecl *classDecl= dyn_cast<ObjCInterfaceDecl>(dc)) {
3180       return classDecl->getTypeParamListAsWritten();
3181     }
3182 
3183     if (const ObjCCategoryDecl *catDecl = dyn_cast<ObjCCategoryDecl>(dc)) {
3184       return catDecl->getTypeParamList();
3185     }
3186 
3187     return false;
3188   }
3189 
3190   template<typename T>
3191   static bool isObjCMethodWithTypeParams(const T *) { return false; }
3192 #endif
3193 
3194   /// EmitCallArgs - Emit call arguments for a function.
3195   template <typename T>
3196   void EmitCallArgs(CallArgList &Args, const T *CallArgTypeInfo,
3197                     llvm::iterator_range<CallExpr::const_arg_iterator> ArgRange,
3198                     const FunctionDecl *CalleeDecl = nullptr,
3199                     unsigned ParamsToSkip = 0) {
3200     SmallVector<QualType, 16> ArgTypes;
3201     CallExpr::const_arg_iterator Arg = ArgRange.begin();
3202 
3203     assert((ParamsToSkip == 0 || CallArgTypeInfo) &&
3204            "Can't skip parameters if type info is not provided");
3205     if (CallArgTypeInfo) {
3206 #ifndef NDEBUG
3207       bool isGenericMethod = isObjCMethodWithTypeParams(CallArgTypeInfo);
3208 #endif
3209 
3210       // First, use the argument types that the type info knows about
3211       for (auto I = CallArgTypeInfo->param_type_begin() + ParamsToSkip,
3212                 E = CallArgTypeInfo->param_type_end();
3213            I != E; ++I, ++Arg) {
3214         assert(Arg != ArgRange.end() && "Running over edge of argument list!");
3215         assert((isGenericMethod ||
3216                 ((*I)->isVariablyModifiedType() ||
3217                  (*I).getNonReferenceType()->isObjCRetainableType() ||
3218                  getContext()
3219                          .getCanonicalType((*I).getNonReferenceType())
3220                          .getTypePtr() ==
3221                      getContext()
3222                          .getCanonicalType((*Arg)->getType())
3223                          .getTypePtr())) &&
3224                "type mismatch in call argument!");
3225         ArgTypes.push_back(*I);
3226       }
3227     }
3228 
3229     // Either we've emitted all the call args, or we have a call to variadic
3230     // function.
3231     assert((Arg == ArgRange.end() || !CallArgTypeInfo ||
3232             CallArgTypeInfo->isVariadic()) &&
3233            "Extra arguments in non-variadic function!");
3234 
3235     // If we still have any arguments, emit them using the type of the argument.
3236     for (auto *A : llvm::make_range(Arg, ArgRange.end()))
3237       ArgTypes.push_back(getVarArgType(A));
3238 
3239     EmitCallArgs(Args, ArgTypes, ArgRange, CalleeDecl, ParamsToSkip);
3240   }
3241 
3242   void EmitCallArgs(CallArgList &Args, ArrayRef<QualType> ArgTypes,
3243                     llvm::iterator_range<CallExpr::const_arg_iterator> ArgRange,
3244                     const FunctionDecl *CalleeDecl = nullptr,
3245                     unsigned ParamsToSkip = 0);
3246 
3247   /// EmitPointerWithAlignment - Given an expression with a pointer
3248   /// type, emit the value and compute our best estimate of the
3249   /// alignment of the pointee.
3250   ///
3251   /// Note that this function will conservatively fall back on the type
3252   /// when it doesn't
3253   ///
3254   /// \param Source - If non-null, this will be initialized with
3255   ///   information about the source of the alignment.  Note that this
3256   ///   function will conservatively fall back on the type when it
3257   ///   doesn't recognize the expression, which means that sometimes
3258   ///
3259   ///   a worst-case One
3260   ///   reasonable way to use this information is when there's a
3261   ///   language guarantee that the pointer must be aligned to some
3262   ///   stricter value, and we're simply trying to ensure that
3263   ///   sufficiently obvious uses of under-aligned objects don't get
3264   ///   miscompiled; for example, a placement new into the address of
3265   ///   a local variable.  In such a case, it's quite reasonable to
3266   ///   just ignore the returned alignment when it isn't from an
3267   ///   explicit source.
3268   Address EmitPointerWithAlignment(const Expr *Addr,
3269                                    AlignmentSource *Source = nullptr);
3270 
3271   void EmitSanitizerStatReport(llvm::SanitizerStatKind SSK);
3272 
3273 private:
3274   QualType getVarArgType(const Expr *Arg);
3275 
3276   const TargetCodeGenInfo &getTargetHooks() const {
3277     return CGM.getTargetCodeGenInfo();
3278   }
3279 
3280   void EmitDeclMetadata();
3281 
3282   BlockByrefHelpers *buildByrefHelpers(llvm::StructType &byrefType,
3283                                   const AutoVarEmission &emission);
3284 
3285   void AddObjCARCExceptionMetadata(llvm::Instruction *Inst);
3286 
3287   llvm::Value *GetValueForARMHint(unsigned BuiltinID);
3288 };
3289 
3290 /// Helper class with most of the code for saving a value for a
3291 /// conditional expression cleanup.
3292 struct DominatingLLVMValue {
3293   typedef llvm::PointerIntPair<llvm::Value*, 1, bool> saved_type;
3294 
3295   /// Answer whether the given value needs extra work to be saved.
3296   static bool needsSaving(llvm::Value *value) {
3297     // If it's not an instruction, we don't need to save.
3298     if (!isa<llvm::Instruction>(value)) return false;
3299 
3300     // If it's an instruction in the entry block, we don't need to save.
3301     llvm::BasicBlock *block = cast<llvm::Instruction>(value)->getParent();
3302     return (block != &block->getParent()->getEntryBlock());
3303   }
3304 
3305   /// Try to save the given value.
3306   static saved_type save(CodeGenFunction &CGF, llvm::Value *value) {
3307     if (!needsSaving(value)) return saved_type(value, false);
3308 
3309     // Otherwise, we need an alloca.
3310     auto align = CharUnits::fromQuantity(
3311               CGF.CGM.getDataLayout().getPrefTypeAlignment(value->getType()));
3312     Address alloca =
3313       CGF.CreateTempAlloca(value->getType(), align, "cond-cleanup.save");
3314     CGF.Builder.CreateStore(value, alloca);
3315 
3316     return saved_type(alloca.getPointer(), true);
3317   }
3318 
3319   static llvm::Value *restore(CodeGenFunction &CGF, saved_type value) {
3320     // If the value says it wasn't saved, trust that it's still dominating.
3321     if (!value.getInt()) return value.getPointer();
3322 
3323     // Otherwise, it should be an alloca instruction, as set up in save().
3324     auto alloca = cast<llvm::AllocaInst>(value.getPointer());
3325     return CGF.Builder.CreateAlignedLoad(alloca, alloca->getAlignment());
3326   }
3327 };
3328 
3329 /// A partial specialization of DominatingValue for llvm::Values that
3330 /// might be llvm::Instructions.
3331 template <class T> struct DominatingPointer<T,true> : DominatingLLVMValue {
3332   typedef T *type;
3333   static type restore(CodeGenFunction &CGF, saved_type value) {
3334     return static_cast<T*>(DominatingLLVMValue::restore(CGF, value));
3335   }
3336 };
3337 
3338 /// A specialization of DominatingValue for Address.
3339 template <> struct DominatingValue<Address> {
3340   typedef Address type;
3341 
3342   struct saved_type {
3343     DominatingLLVMValue::saved_type SavedValue;
3344     CharUnits Alignment;
3345   };
3346 
3347   static bool needsSaving(type value) {
3348     return DominatingLLVMValue::needsSaving(value.getPointer());
3349   }
3350   static saved_type save(CodeGenFunction &CGF, type value) {
3351     return { DominatingLLVMValue::save(CGF, value.getPointer()),
3352              value.getAlignment() };
3353   }
3354   static type restore(CodeGenFunction &CGF, saved_type value) {
3355     return Address(DominatingLLVMValue::restore(CGF, value.SavedValue),
3356                    value.Alignment);
3357   }
3358 };
3359 
3360 /// A specialization of DominatingValue for RValue.
3361 template <> struct DominatingValue<RValue> {
3362   typedef RValue type;
3363   class saved_type {
3364     enum Kind { ScalarLiteral, ScalarAddress, AggregateLiteral,
3365                 AggregateAddress, ComplexAddress };
3366 
3367     llvm::Value *Value;
3368     unsigned K : 3;
3369     unsigned Align : 29;
3370     saved_type(llvm::Value *v, Kind k, unsigned a = 0)
3371       : Value(v), K(k), Align(a) {}
3372 
3373   public:
3374     static bool needsSaving(RValue value);
3375     static saved_type save(CodeGenFunction &CGF, RValue value);
3376     RValue restore(CodeGenFunction &CGF);
3377 
3378     // implementations in CGCleanup.cpp
3379   };
3380 
3381   static bool needsSaving(type value) {
3382     return saved_type::needsSaving(value);
3383   }
3384   static saved_type save(CodeGenFunction &CGF, type value) {
3385     return saved_type::save(CGF, value);
3386   }
3387   static type restore(CodeGenFunction &CGF, saved_type value) {
3388     return value.restore(CGF);
3389   }
3390 };
3391 
3392 }  // end namespace CodeGen
3393 }  // end namespace clang
3394 
3395 #endif
3396