1 //===-- CodeGenFunction.h - Per-Function state for LLVM CodeGen -*- C++ -*-===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This is the internal per-function state used for llvm translation.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #ifndef LLVM_CLANG_LIB_CODEGEN_CODEGENFUNCTION_H
15 #define LLVM_CLANG_LIB_CODEGEN_CODEGENFUNCTION_H
16 
17 #include "CGBuilder.h"
18 #include "CGDebugInfo.h"
19 #include "CGLoopInfo.h"
20 #include "CGValue.h"
21 #include "CodeGenModule.h"
22 #include "CodeGenPGO.h"
23 #include "EHScopeStack.h"
24 #include "clang/AST/CharUnits.h"
25 #include "clang/AST/ExprCXX.h"
26 #include "clang/AST/ExprObjC.h"
27 #include "clang/AST/Type.h"
28 #include "clang/Basic/ABI.h"
29 #include "clang/Basic/CapturedStmt.h"
30 #include "clang/Basic/OpenMPKinds.h"
31 #include "clang/Basic/TargetInfo.h"
32 #include "clang/Frontend/CodeGenOptions.h"
33 #include "llvm/ADT/ArrayRef.h"
34 #include "llvm/ADT/DenseMap.h"
35 #include "llvm/ADT/SmallVector.h"
36 #include "llvm/IR/ValueHandle.h"
37 #include "llvm/Support/Debug.h"
38 
39 namespace llvm {
40 class BasicBlock;
41 class LLVMContext;
42 class MDNode;
43 class Module;
44 class SwitchInst;
45 class Twine;
46 class Value;
47 class CallSite;
48 }
49 
50 namespace clang {
51 class ASTContext;
52 class BlockDecl;
53 class CXXDestructorDecl;
54 class CXXForRangeStmt;
55 class CXXTryStmt;
56 class Decl;
57 class LabelDecl;
58 class EnumConstantDecl;
59 class FunctionDecl;
60 class FunctionProtoType;
61 class LabelStmt;
62 class ObjCContainerDecl;
63 class ObjCInterfaceDecl;
64 class ObjCIvarDecl;
65 class ObjCMethodDecl;
66 class ObjCImplementationDecl;
67 class ObjCPropertyImplDecl;
68 class TargetInfo;
69 class TargetCodeGenInfo;
70 class VarDecl;
71 class ObjCForCollectionStmt;
72 class ObjCAtTryStmt;
73 class ObjCAtThrowStmt;
74 class ObjCAtSynchronizedStmt;
75 class ObjCAutoreleasePoolStmt;
76 
77 namespace CodeGen {
78 class CodeGenTypes;
79 class CGFunctionInfo;
80 class CGRecordLayout;
81 class CGBlockInfo;
82 class CGCXXABI;
83 class BlockFlags;
84 class BlockFieldFlags;
85 
86 /// The kind of evaluation to perform on values of a particular
87 /// type.  Basically, is the code in CGExprScalar, CGExprComplex, or
88 /// CGExprAgg?
89 ///
90 /// TODO: should vectors maybe be split out into their own thing?
91 enum TypeEvaluationKind {
92   TEK_Scalar,
93   TEK_Complex,
94   TEK_Aggregate
95 };
96 
97 /// CodeGenFunction - This class organizes the per-function state that is used
98 /// while generating LLVM code.
99 class CodeGenFunction : public CodeGenTypeCache {
100   CodeGenFunction(const CodeGenFunction &) LLVM_DELETED_FUNCTION;
101   void operator=(const CodeGenFunction &) LLVM_DELETED_FUNCTION;
102 
103   friend class CGCXXABI;
104 public:
105   /// A jump destination is an abstract label, branching to which may
106   /// require a jump out through normal cleanups.
107   struct JumpDest {
108     JumpDest() : Block(nullptr), ScopeDepth(), Index(0) {}
109     JumpDest(llvm::BasicBlock *Block,
110              EHScopeStack::stable_iterator Depth,
111              unsigned Index)
112       : Block(Block), ScopeDepth(Depth), Index(Index) {}
113 
114     bool isValid() const { return Block != nullptr; }
115     llvm::BasicBlock *getBlock() const { return Block; }
116     EHScopeStack::stable_iterator getScopeDepth() const { return ScopeDepth; }
117     unsigned getDestIndex() const { return Index; }
118 
119     // This should be used cautiously.
120     void setScopeDepth(EHScopeStack::stable_iterator depth) {
121       ScopeDepth = depth;
122     }
123 
124   private:
125     llvm::BasicBlock *Block;
126     EHScopeStack::stable_iterator ScopeDepth;
127     unsigned Index;
128   };
129 
130   CodeGenModule &CGM;  // Per-module state.
131   const TargetInfo &Target;
132 
133   typedef std::pair<llvm::Value *, llvm::Value *> ComplexPairTy;
134   LoopInfoStack LoopStack;
135   CGBuilderTy Builder;
136 
137   /// \brief CGBuilder insert helper. This function is called after an
138   /// instruction is created using Builder.
139   void InsertHelper(llvm::Instruction *I, const llvm::Twine &Name,
140                     llvm::BasicBlock *BB,
141                     llvm::BasicBlock::iterator InsertPt) const;
142 
143   /// CurFuncDecl - Holds the Decl for the current outermost
144   /// non-closure context.
145   const Decl *CurFuncDecl;
146   /// CurCodeDecl - This is the inner-most code context, which includes blocks.
147   const Decl *CurCodeDecl;
148   const CGFunctionInfo *CurFnInfo;
149   QualType FnRetTy;
150   llvm::Function *CurFn;
151 
152   /// CurGD - The GlobalDecl for the current function being compiled.
153   GlobalDecl CurGD;
154 
155   /// PrologueCleanupDepth - The cleanup depth enclosing all the
156   /// cleanups associated with the parameters.
157   EHScopeStack::stable_iterator PrologueCleanupDepth;
158 
159   /// ReturnBlock - Unified return block.
160   JumpDest ReturnBlock;
161 
162   /// ReturnValue - The temporary alloca to hold the return value. This is null
163   /// iff the function has no return value.
164   llvm::Value *ReturnValue;
165 
166   /// AllocaInsertPoint - This is an instruction in the entry block before which
167   /// we prefer to insert allocas.
168   llvm::AssertingVH<llvm::Instruction> AllocaInsertPt;
169 
170   /// \brief API for captured statement code generation.
171   class CGCapturedStmtInfo {
172   public:
173     explicit CGCapturedStmtInfo(CapturedRegionKind K = CR_Default)
174         : Kind(K), ThisValue(nullptr), CXXThisFieldDecl(nullptr) {}
175     explicit CGCapturedStmtInfo(const CapturedStmt &S,
176                                 CapturedRegionKind K = CR_Default)
177       : Kind(K), ThisValue(nullptr), CXXThisFieldDecl(nullptr) {
178 
179       RecordDecl::field_iterator Field =
180         S.getCapturedRecordDecl()->field_begin();
181       for (CapturedStmt::const_capture_iterator I = S.capture_begin(),
182                                                 E = S.capture_end();
183            I != E; ++I, ++Field) {
184         if (I->capturesThis())
185           CXXThisFieldDecl = *Field;
186         else if (I->capturesVariable())
187           CaptureFields[I->getCapturedVar()] = *Field;
188       }
189     }
190 
191     virtual ~CGCapturedStmtInfo();
192 
193     CapturedRegionKind getKind() const { return Kind; }
194 
195     void setContextValue(llvm::Value *V) { ThisValue = V; }
196     // \brief Retrieve the value of the context parameter.
197     llvm::Value *getContextValue() const { return ThisValue; }
198 
199     /// \brief Lookup the captured field decl for a variable.
200     const FieldDecl *lookup(const VarDecl *VD) const {
201       return CaptureFields.lookup(VD);
202     }
203 
204     bool isCXXThisExprCaptured() const { return CXXThisFieldDecl != nullptr; }
205     FieldDecl *getThisFieldDecl() const { return CXXThisFieldDecl; }
206 
207     static bool classof(const CGCapturedStmtInfo *) {
208       return true;
209     }
210 
211     /// \brief Emit the captured statement body.
212     virtual void EmitBody(CodeGenFunction &CGF, Stmt *S) {
213       RegionCounter Cnt = CGF.getPGORegionCounter(S);
214       Cnt.beginRegion(CGF.Builder);
215       CGF.EmitStmt(S);
216     }
217 
218     /// \brief Get the name of the capture helper.
219     virtual StringRef getHelperName() const { return "__captured_stmt"; }
220 
221   private:
222     /// \brief The kind of captured statement being generated.
223     CapturedRegionKind Kind;
224 
225     /// \brief Keep the map between VarDecl and FieldDecl.
226     llvm::SmallDenseMap<const VarDecl *, FieldDecl *> CaptureFields;
227 
228     /// \brief The base address of the captured record, passed in as the first
229     /// argument of the parallel region function.
230     llvm::Value *ThisValue;
231 
232     /// \brief Captured 'this' type.
233     FieldDecl *CXXThisFieldDecl;
234   };
235   CGCapturedStmtInfo *CapturedStmtInfo;
236 
237   /// BoundsChecking - Emit run-time bounds checks. Higher values mean
238   /// potentially higher performance penalties.
239   unsigned char BoundsChecking;
240 
241   /// \brief Sanitizers enabled for this function.
242   SanitizerSet SanOpts;
243 
244   /// \brief True if CodeGen currently emits code implementing sanitizer checks.
245   bool IsSanitizerScope;
246 
247   /// \brief RAII object to set/unset CodeGenFunction::IsSanitizerScope.
248   class SanitizerScope {
249     CodeGenFunction *CGF;
250   public:
251     SanitizerScope(CodeGenFunction *CGF);
252     ~SanitizerScope();
253   };
254 
255   /// In C++, whether we are code generating a thunk.  This controls whether we
256   /// should emit cleanups.
257   bool CurFuncIsThunk;
258 
259   /// In ARC, whether we should autorelease the return value.
260   bool AutoreleaseResult;
261 
262   /// Whether we processed a Microsoft-style asm block during CodeGen. These can
263   /// potentially set the return value.
264   bool SawAsmBlock;
265 
266   const CodeGen::CGBlockInfo *BlockInfo;
267   llvm::Value *BlockPointer;
268 
269   llvm::DenseMap<const VarDecl *, FieldDecl *> LambdaCaptureFields;
270   FieldDecl *LambdaThisCaptureField;
271 
272   /// \brief A mapping from NRVO variables to the flags used to indicate
273   /// when the NRVO has been applied to this variable.
274   llvm::DenseMap<const VarDecl *, llvm::Value *> NRVOFlags;
275 
276   EHScopeStack EHStack;
277   llvm::SmallVector<char, 256> LifetimeExtendedCleanupStack;
278 
279   /// Header for data within LifetimeExtendedCleanupStack.
280   struct LifetimeExtendedCleanupHeader {
281     /// The size of the following cleanup object.
282     unsigned Size : 29;
283     /// The kind of cleanup to push: a value from the CleanupKind enumeration.
284     unsigned Kind : 3;
285 
286     size_t getSize() const { return size_t(Size); }
287     CleanupKind getKind() const { return static_cast<CleanupKind>(Kind); }
288   };
289 
290   /// i32s containing the indexes of the cleanup destinations.
291   llvm::AllocaInst *NormalCleanupDest;
292 
293   unsigned NextCleanupDestIndex;
294 
295   /// FirstBlockInfo - The head of a singly-linked-list of block layouts.
296   CGBlockInfo *FirstBlockInfo;
297 
298   /// EHResumeBlock - Unified block containing a call to llvm.eh.resume.
299   llvm::BasicBlock *EHResumeBlock;
300 
301   /// The exception slot.  All landing pads write the current exception pointer
302   /// into this alloca.
303   llvm::Value *ExceptionSlot;
304 
305   /// The selector slot.  Under the MandatoryCleanup model, all landing pads
306   /// write the current selector value into this alloca.
307   llvm::AllocaInst *EHSelectorSlot;
308 
309   llvm::AllocaInst *AbnormalTerminationSlot;
310 
311   /// The implicit parameter to SEH filter functions of type
312   /// 'EXCEPTION_POINTERS*'.
313   ImplicitParamDecl *SEHPointersDecl;
314 
315   /// Emits a landing pad for the current EH stack.
316   llvm::BasicBlock *EmitLandingPad();
317 
318   llvm::BasicBlock *getInvokeDestImpl();
319 
320   template <class T>
321   typename DominatingValue<T>::saved_type saveValueInCond(T value) {
322     return DominatingValue<T>::save(*this, value);
323   }
324 
325 public:
326   /// ObjCEHValueStack - Stack of Objective-C exception values, used for
327   /// rethrows.
328   SmallVector<llvm::Value*, 8> ObjCEHValueStack;
329 
330   /// A class controlling the emission of a finally block.
331   class FinallyInfo {
332     /// Where the catchall's edge through the cleanup should go.
333     JumpDest RethrowDest;
334 
335     /// A function to call to enter the catch.
336     llvm::Constant *BeginCatchFn;
337 
338     /// An i1 variable indicating whether or not the @finally is
339     /// running for an exception.
340     llvm::AllocaInst *ForEHVar;
341 
342     /// An i8* variable into which the exception pointer to rethrow
343     /// has been saved.
344     llvm::AllocaInst *SavedExnVar;
345 
346   public:
347     void enter(CodeGenFunction &CGF, const Stmt *Finally,
348                llvm::Constant *beginCatchFn, llvm::Constant *endCatchFn,
349                llvm::Constant *rethrowFn);
350     void exit(CodeGenFunction &CGF);
351   };
352 
353   /// Cleanups can be emitted for two reasons: normal control leaving a region
354   /// exceptional control flow leaving a region.
355   struct SEHFinallyInfo {
356     SEHFinallyInfo()
357         : FinallyBB(nullptr), ContBB(nullptr), ResumeBB(nullptr) {}
358 
359     llvm::BasicBlock *FinallyBB;
360     llvm::BasicBlock *ContBB;
361     llvm::BasicBlock *ResumeBB;
362   };
363 
364   /// pushFullExprCleanup - Push a cleanup to be run at the end of the
365   /// current full-expression.  Safe against the possibility that
366   /// we're currently inside a conditionally-evaluated expression.
367   template <class T, class A0>
368   void pushFullExprCleanup(CleanupKind kind, A0 a0) {
369     // If we're not in a conditional branch, or if none of the
370     // arguments requires saving, then use the unconditional cleanup.
371     if (!isInConditionalBranch())
372       return EHStack.pushCleanup<T>(kind, a0);
373 
374     typename DominatingValue<A0>::saved_type a0_saved = saveValueInCond(a0);
375 
376     typedef EHScopeStack::ConditionalCleanup1<T, A0> CleanupType;
377     EHStack.pushCleanup<CleanupType>(kind, a0_saved);
378     initFullExprCleanup();
379   }
380 
381   /// pushFullExprCleanup - Push a cleanup to be run at the end of the
382   /// current full-expression.  Safe against the possibility that
383   /// we're currently inside a conditionally-evaluated expression.
384   template <class T, class A0, class A1>
385   void pushFullExprCleanup(CleanupKind kind, A0 a0, A1 a1) {
386     // If we're not in a conditional branch, or if none of the
387     // arguments requires saving, then use the unconditional cleanup.
388     if (!isInConditionalBranch())
389       return EHStack.pushCleanup<T>(kind, a0, a1);
390 
391     typename DominatingValue<A0>::saved_type a0_saved = saveValueInCond(a0);
392     typename DominatingValue<A1>::saved_type a1_saved = saveValueInCond(a1);
393 
394     typedef EHScopeStack::ConditionalCleanup2<T, A0, A1> CleanupType;
395     EHStack.pushCleanup<CleanupType>(kind, a0_saved, a1_saved);
396     initFullExprCleanup();
397   }
398 
399   /// pushFullExprCleanup - Push a cleanup to be run at the end of the
400   /// current full-expression.  Safe against the possibility that
401   /// we're currently inside a conditionally-evaluated expression.
402   template <class T, class A0, class A1, class A2>
403   void pushFullExprCleanup(CleanupKind kind, A0 a0, A1 a1, A2 a2) {
404     // If we're not in a conditional branch, or if none of the
405     // arguments requires saving, then use the unconditional cleanup.
406     if (!isInConditionalBranch()) {
407       return EHStack.pushCleanup<T>(kind, a0, a1, a2);
408     }
409 
410     typename DominatingValue<A0>::saved_type a0_saved = saveValueInCond(a0);
411     typename DominatingValue<A1>::saved_type a1_saved = saveValueInCond(a1);
412     typename DominatingValue<A2>::saved_type a2_saved = saveValueInCond(a2);
413 
414     typedef EHScopeStack::ConditionalCleanup3<T, A0, A1, A2> CleanupType;
415     EHStack.pushCleanup<CleanupType>(kind, a0_saved, a1_saved, a2_saved);
416     initFullExprCleanup();
417   }
418 
419   /// pushFullExprCleanup - Push a cleanup to be run at the end of the
420   /// current full-expression.  Safe against the possibility that
421   /// we're currently inside a conditionally-evaluated expression.
422   template <class T, class A0, class A1, class A2, class A3>
423   void pushFullExprCleanup(CleanupKind kind, A0 a0, A1 a1, A2 a2, A3 a3) {
424     // If we're not in a conditional branch, or if none of the
425     // arguments requires saving, then use the unconditional cleanup.
426     if (!isInConditionalBranch()) {
427       return EHStack.pushCleanup<T>(kind, a0, a1, a2, a3);
428     }
429 
430     typename DominatingValue<A0>::saved_type a0_saved = saveValueInCond(a0);
431     typename DominatingValue<A1>::saved_type a1_saved = saveValueInCond(a1);
432     typename DominatingValue<A2>::saved_type a2_saved = saveValueInCond(a2);
433     typename DominatingValue<A3>::saved_type a3_saved = saveValueInCond(a3);
434 
435     typedef EHScopeStack::ConditionalCleanup4<T, A0, A1, A2, A3> CleanupType;
436     EHStack.pushCleanup<CleanupType>(kind, a0_saved, a1_saved,
437                                      a2_saved, a3_saved);
438     initFullExprCleanup();
439   }
440 
441   /// \brief Queue a cleanup to be pushed after finishing the current
442   /// full-expression.
443   template <class T, class A0, class A1, class A2, class A3>
444   void pushCleanupAfterFullExpr(CleanupKind Kind, A0 a0, A1 a1, A2 a2, A3 a3) {
445     assert(!isInConditionalBranch() && "can't defer conditional cleanup");
446 
447     LifetimeExtendedCleanupHeader Header = { sizeof(T), Kind };
448 
449     size_t OldSize = LifetimeExtendedCleanupStack.size();
450     LifetimeExtendedCleanupStack.resize(
451         LifetimeExtendedCleanupStack.size() + sizeof(Header) + Header.Size);
452 
453     char *Buffer = &LifetimeExtendedCleanupStack[OldSize];
454     new (Buffer) LifetimeExtendedCleanupHeader(Header);
455     new (Buffer + sizeof(Header)) T(a0, a1, a2, a3);
456   }
457 
458   /// Set up the last cleaup that was pushed as a conditional
459   /// full-expression cleanup.
460   void initFullExprCleanup();
461 
462   /// PushDestructorCleanup - Push a cleanup to call the
463   /// complete-object destructor of an object of the given type at the
464   /// given address.  Does nothing if T is not a C++ class type with a
465   /// non-trivial destructor.
466   void PushDestructorCleanup(QualType T, llvm::Value *Addr);
467 
468   /// PushDestructorCleanup - Push a cleanup to call the
469   /// complete-object variant of the given destructor on the object at
470   /// the given address.
471   void PushDestructorCleanup(const CXXDestructorDecl *Dtor,
472                              llvm::Value *Addr);
473 
474   /// PopCleanupBlock - Will pop the cleanup entry on the stack and
475   /// process all branch fixups.
476   void PopCleanupBlock(bool FallThroughIsBranchThrough = false);
477 
478   /// DeactivateCleanupBlock - Deactivates the given cleanup block.
479   /// The block cannot be reactivated.  Pops it if it's the top of the
480   /// stack.
481   ///
482   /// \param DominatingIP - An instruction which is known to
483   ///   dominate the current IP (if set) and which lies along
484   ///   all paths of execution between the current IP and the
485   ///   the point at which the cleanup comes into scope.
486   void DeactivateCleanupBlock(EHScopeStack::stable_iterator Cleanup,
487                               llvm::Instruction *DominatingIP);
488 
489   /// ActivateCleanupBlock - Activates an initially-inactive cleanup.
490   /// Cannot be used to resurrect a deactivated cleanup.
491   ///
492   /// \param DominatingIP - An instruction which is known to
493   ///   dominate the current IP (if set) and which lies along
494   ///   all paths of execution between the current IP and the
495   ///   the point at which the cleanup comes into scope.
496   void ActivateCleanupBlock(EHScopeStack::stable_iterator Cleanup,
497                             llvm::Instruction *DominatingIP);
498 
499   /// \brief Enters a new scope for capturing cleanups, all of which
500   /// will be executed once the scope is exited.
501   class RunCleanupsScope {
502     EHScopeStack::stable_iterator CleanupStackDepth;
503     size_t LifetimeExtendedCleanupStackSize;
504     bool OldDidCallStackSave;
505   protected:
506     bool PerformCleanup;
507   private:
508 
509     RunCleanupsScope(const RunCleanupsScope &) LLVM_DELETED_FUNCTION;
510     void operator=(const RunCleanupsScope &) LLVM_DELETED_FUNCTION;
511 
512   protected:
513     CodeGenFunction& CGF;
514 
515   public:
516     /// \brief Enter a new cleanup scope.
517     explicit RunCleanupsScope(CodeGenFunction &CGF)
518       : PerformCleanup(true), CGF(CGF)
519     {
520       CleanupStackDepth = CGF.EHStack.stable_begin();
521       LifetimeExtendedCleanupStackSize =
522           CGF.LifetimeExtendedCleanupStack.size();
523       OldDidCallStackSave = CGF.DidCallStackSave;
524       CGF.DidCallStackSave = false;
525     }
526 
527     /// \brief Exit this cleanup scope, emitting any accumulated
528     /// cleanups.
529     ~RunCleanupsScope() {
530       if (PerformCleanup) {
531         CGF.DidCallStackSave = OldDidCallStackSave;
532         CGF.PopCleanupBlocks(CleanupStackDepth,
533                              LifetimeExtendedCleanupStackSize);
534       }
535     }
536 
537     /// \brief Determine whether this scope requires any cleanups.
538     bool requiresCleanups() const {
539       return CGF.EHStack.stable_begin() != CleanupStackDepth;
540     }
541 
542     /// \brief Force the emission of cleanups now, instead of waiting
543     /// until this object is destroyed.
544     void ForceCleanup() {
545       assert(PerformCleanup && "Already forced cleanup");
546       CGF.DidCallStackSave = OldDidCallStackSave;
547       CGF.PopCleanupBlocks(CleanupStackDepth,
548                            LifetimeExtendedCleanupStackSize);
549       PerformCleanup = false;
550     }
551   };
552 
553   class LexicalScope : public RunCleanupsScope {
554     SourceRange Range;
555     SmallVector<const LabelDecl*, 4> Labels;
556     LexicalScope *ParentScope;
557 
558     LexicalScope(const LexicalScope &) LLVM_DELETED_FUNCTION;
559     void operator=(const LexicalScope &) LLVM_DELETED_FUNCTION;
560 
561   public:
562     /// \brief Enter a new cleanup scope.
563     explicit LexicalScope(CodeGenFunction &CGF, SourceRange Range)
564       : RunCleanupsScope(CGF), Range(Range), ParentScope(CGF.CurLexicalScope) {
565       CGF.CurLexicalScope = this;
566       if (CGDebugInfo *DI = CGF.getDebugInfo())
567         DI->EmitLexicalBlockStart(CGF.Builder, Range.getBegin());
568     }
569 
570     void addLabel(const LabelDecl *label) {
571       assert(PerformCleanup && "adding label to dead scope?");
572       Labels.push_back(label);
573     }
574 
575     /// \brief Exit this cleanup scope, emitting any accumulated
576     /// cleanups.
577     ~LexicalScope() {
578       if (CGDebugInfo *DI = CGF.getDebugInfo())
579         DI->EmitLexicalBlockEnd(CGF.Builder, Range.getEnd());
580 
581       // If we should perform a cleanup, force them now.  Note that
582       // this ends the cleanup scope before rescoping any labels.
583       if (PerformCleanup) {
584         ApplyDebugLocation DL(CGF, Range.getEnd());
585         ForceCleanup();
586       }
587     }
588 
589     /// \brief Force the emission of cleanups now, instead of waiting
590     /// until this object is destroyed.
591     void ForceCleanup() {
592       CGF.CurLexicalScope = ParentScope;
593       RunCleanupsScope::ForceCleanup();
594 
595       if (!Labels.empty())
596         rescopeLabels();
597     }
598 
599     void rescopeLabels();
600   };
601 
602   /// \brief The scope used to remap some variables as private in the OpenMP
603   /// loop body (or other captured region emitted without outlining), and to
604   /// restore old vars back on exit.
605   class OMPPrivateScope : public RunCleanupsScope {
606     typedef llvm::DenseMap<const VarDecl *, llvm::Value *> VarDeclMapTy;
607     VarDeclMapTy SavedLocals;
608     VarDeclMapTy SavedPrivates;
609 
610   private:
611     OMPPrivateScope(const OMPPrivateScope &) LLVM_DELETED_FUNCTION;
612     void operator=(const OMPPrivateScope &) LLVM_DELETED_FUNCTION;
613 
614   public:
615     /// \brief Enter a new OpenMP private scope.
616     explicit OMPPrivateScope(CodeGenFunction &CGF) : RunCleanupsScope(CGF) {}
617 
618     /// \brief Registers \a LocalVD variable as a private and apply \a
619     /// PrivateGen function for it to generate corresponding private variable.
620     /// \a PrivateGen returns an address of the generated private variable.
621     /// \return true if the variable is registered as private, false if it has
622     /// been privatized already.
623     bool
624     addPrivate(const VarDecl *LocalVD,
625                const std::function<llvm::Value *()> &PrivateGen) {
626       assert(PerformCleanup && "adding private to dead scope");
627       if (SavedLocals.count(LocalVD) > 0) return false;
628       SavedLocals[LocalVD] = CGF.LocalDeclMap.lookup(LocalVD);
629       CGF.LocalDeclMap.erase(LocalVD);
630       SavedPrivates[LocalVD] = PrivateGen();
631       CGF.LocalDeclMap[LocalVD] = SavedLocals[LocalVD];
632       return true;
633     }
634 
635     /// \brief Privatizes local variables previously registered as private.
636     /// Registration is separate from the actual privatization to allow
637     /// initializers use values of the original variables, not the private one.
638     /// This is important, for example, if the private variable is a class
639     /// variable initialized by a constructor that references other private
640     /// variables. But at initialization original variables must be used, not
641     /// private copies.
642     /// \return true if at least one variable was privatized, false otherwise.
643     bool Privatize() {
644       for (auto VDPair : SavedPrivates) {
645         CGF.LocalDeclMap[VDPair.first] = VDPair.second;
646       }
647       SavedPrivates.clear();
648       return !SavedLocals.empty();
649     }
650 
651     void ForceCleanup() {
652       RunCleanupsScope::ForceCleanup();
653       // Remap vars back to the original values.
654       for (auto I : SavedLocals) {
655         CGF.LocalDeclMap[I.first] = I.second;
656       }
657       SavedLocals.clear();
658     }
659 
660     /// \brief Exit scope - all the mapped variables are restored.
661     ~OMPPrivateScope() { ForceCleanup(); }
662   };
663 
664   /// \brief Takes the old cleanup stack size and emits the cleanup blocks
665   /// that have been added.
666   void PopCleanupBlocks(EHScopeStack::stable_iterator OldCleanupStackSize);
667 
668   /// \brief Takes the old cleanup stack size and emits the cleanup blocks
669   /// that have been added, then adds all lifetime-extended cleanups from
670   /// the given position to the stack.
671   void PopCleanupBlocks(EHScopeStack::stable_iterator OldCleanupStackSize,
672                         size_t OldLifetimeExtendedStackSize);
673 
674   void ResolveBranchFixups(llvm::BasicBlock *Target);
675 
676   /// The given basic block lies in the current EH scope, but may be a
677   /// target of a potentially scope-crossing jump; get a stable handle
678   /// to which we can perform this jump later.
679   JumpDest getJumpDestInCurrentScope(llvm::BasicBlock *Target) {
680     return JumpDest(Target,
681                     EHStack.getInnermostNormalCleanup(),
682                     NextCleanupDestIndex++);
683   }
684 
685   /// The given basic block lies in the current EH scope, but may be a
686   /// target of a potentially scope-crossing jump; get a stable handle
687   /// to which we can perform this jump later.
688   JumpDest getJumpDestInCurrentScope(StringRef Name = StringRef()) {
689     return getJumpDestInCurrentScope(createBasicBlock(Name));
690   }
691 
692   /// EmitBranchThroughCleanup - Emit a branch from the current insert
693   /// block through the normal cleanup handling code (if any) and then
694   /// on to \arg Dest.
695   void EmitBranchThroughCleanup(JumpDest Dest);
696 
697   /// isObviouslyBranchWithoutCleanups - Return true if a branch to the
698   /// specified destination obviously has no cleanups to run.  'false' is always
699   /// a conservatively correct answer for this method.
700   bool isObviouslyBranchWithoutCleanups(JumpDest Dest) const;
701 
702   /// popCatchScope - Pops the catch scope at the top of the EHScope
703   /// stack, emitting any required code (other than the catch handlers
704   /// themselves).
705   void popCatchScope();
706 
707   llvm::BasicBlock *getEHResumeBlock(bool isCleanup);
708   llvm::BasicBlock *getEHDispatchBlock(EHScopeStack::stable_iterator scope);
709 
710   /// An object to manage conditionally-evaluated expressions.
711   class ConditionalEvaluation {
712     llvm::BasicBlock *StartBB;
713 
714   public:
715     ConditionalEvaluation(CodeGenFunction &CGF)
716       : StartBB(CGF.Builder.GetInsertBlock()) {}
717 
718     void begin(CodeGenFunction &CGF) {
719       assert(CGF.OutermostConditional != this);
720       if (!CGF.OutermostConditional)
721         CGF.OutermostConditional = this;
722     }
723 
724     void end(CodeGenFunction &CGF) {
725       assert(CGF.OutermostConditional != nullptr);
726       if (CGF.OutermostConditional == this)
727         CGF.OutermostConditional = nullptr;
728     }
729 
730     /// Returns a block which will be executed prior to each
731     /// evaluation of the conditional code.
732     llvm::BasicBlock *getStartingBlock() const {
733       return StartBB;
734     }
735   };
736 
737   /// isInConditionalBranch - Return true if we're currently emitting
738   /// one branch or the other of a conditional expression.
739   bool isInConditionalBranch() const { return OutermostConditional != nullptr; }
740 
741   void setBeforeOutermostConditional(llvm::Value *value, llvm::Value *addr) {
742     assert(isInConditionalBranch());
743     llvm::BasicBlock *block = OutermostConditional->getStartingBlock();
744     new llvm::StoreInst(value, addr, &block->back());
745   }
746 
747   /// An RAII object to record that we're evaluating a statement
748   /// expression.
749   class StmtExprEvaluation {
750     CodeGenFunction &CGF;
751 
752     /// We have to save the outermost conditional: cleanups in a
753     /// statement expression aren't conditional just because the
754     /// StmtExpr is.
755     ConditionalEvaluation *SavedOutermostConditional;
756 
757   public:
758     StmtExprEvaluation(CodeGenFunction &CGF)
759       : CGF(CGF), SavedOutermostConditional(CGF.OutermostConditional) {
760       CGF.OutermostConditional = nullptr;
761     }
762 
763     ~StmtExprEvaluation() {
764       CGF.OutermostConditional = SavedOutermostConditional;
765       CGF.EnsureInsertPoint();
766     }
767   };
768 
769   /// An object which temporarily prevents a value from being
770   /// destroyed by aggressive peephole optimizations that assume that
771   /// all uses of a value have been realized in the IR.
772   class PeepholeProtection {
773     llvm::Instruction *Inst;
774     friend class CodeGenFunction;
775 
776   public:
777     PeepholeProtection() : Inst(nullptr) {}
778   };
779 
780   /// A non-RAII class containing all the information about a bound
781   /// opaque value.  OpaqueValueMapping, below, is a RAII wrapper for
782   /// this which makes individual mappings very simple; using this
783   /// class directly is useful when you have a variable number of
784   /// opaque values or don't want the RAII functionality for some
785   /// reason.
786   class OpaqueValueMappingData {
787     const OpaqueValueExpr *OpaqueValue;
788     bool BoundLValue;
789     CodeGenFunction::PeepholeProtection Protection;
790 
791     OpaqueValueMappingData(const OpaqueValueExpr *ov,
792                            bool boundLValue)
793       : OpaqueValue(ov), BoundLValue(boundLValue) {}
794   public:
795     OpaqueValueMappingData() : OpaqueValue(nullptr) {}
796 
797     static bool shouldBindAsLValue(const Expr *expr) {
798       // gl-values should be bound as l-values for obvious reasons.
799       // Records should be bound as l-values because IR generation
800       // always keeps them in memory.  Expressions of function type
801       // act exactly like l-values but are formally required to be
802       // r-values in C.
803       return expr->isGLValue() ||
804              expr->getType()->isFunctionType() ||
805              hasAggregateEvaluationKind(expr->getType());
806     }
807 
808     static OpaqueValueMappingData bind(CodeGenFunction &CGF,
809                                        const OpaqueValueExpr *ov,
810                                        const Expr *e) {
811       if (shouldBindAsLValue(ov))
812         return bind(CGF, ov, CGF.EmitLValue(e));
813       return bind(CGF, ov, CGF.EmitAnyExpr(e));
814     }
815 
816     static OpaqueValueMappingData bind(CodeGenFunction &CGF,
817                                        const OpaqueValueExpr *ov,
818                                        const LValue &lv) {
819       assert(shouldBindAsLValue(ov));
820       CGF.OpaqueLValues.insert(std::make_pair(ov, lv));
821       return OpaqueValueMappingData(ov, true);
822     }
823 
824     static OpaqueValueMappingData bind(CodeGenFunction &CGF,
825                                        const OpaqueValueExpr *ov,
826                                        const RValue &rv) {
827       assert(!shouldBindAsLValue(ov));
828       CGF.OpaqueRValues.insert(std::make_pair(ov, rv));
829 
830       OpaqueValueMappingData data(ov, false);
831 
832       // Work around an extremely aggressive peephole optimization in
833       // EmitScalarConversion which assumes that all other uses of a
834       // value are extant.
835       data.Protection = CGF.protectFromPeepholes(rv);
836 
837       return data;
838     }
839 
840     bool isValid() const { return OpaqueValue != nullptr; }
841     void clear() { OpaqueValue = nullptr; }
842 
843     void unbind(CodeGenFunction &CGF) {
844       assert(OpaqueValue && "no data to unbind!");
845 
846       if (BoundLValue) {
847         CGF.OpaqueLValues.erase(OpaqueValue);
848       } else {
849         CGF.OpaqueRValues.erase(OpaqueValue);
850         CGF.unprotectFromPeepholes(Protection);
851       }
852     }
853   };
854 
855   /// An RAII object to set (and then clear) a mapping for an OpaqueValueExpr.
856   class OpaqueValueMapping {
857     CodeGenFunction &CGF;
858     OpaqueValueMappingData Data;
859 
860   public:
861     static bool shouldBindAsLValue(const Expr *expr) {
862       return OpaqueValueMappingData::shouldBindAsLValue(expr);
863     }
864 
865     /// Build the opaque value mapping for the given conditional
866     /// operator if it's the GNU ?: extension.  This is a common
867     /// enough pattern that the convenience operator is really
868     /// helpful.
869     ///
870     OpaqueValueMapping(CodeGenFunction &CGF,
871                        const AbstractConditionalOperator *op) : CGF(CGF) {
872       if (isa<ConditionalOperator>(op))
873         // Leave Data empty.
874         return;
875 
876       const BinaryConditionalOperator *e = cast<BinaryConditionalOperator>(op);
877       Data = OpaqueValueMappingData::bind(CGF, e->getOpaqueValue(),
878                                           e->getCommon());
879     }
880 
881     OpaqueValueMapping(CodeGenFunction &CGF,
882                        const OpaqueValueExpr *opaqueValue,
883                        LValue lvalue)
884       : CGF(CGF), Data(OpaqueValueMappingData::bind(CGF, opaqueValue, lvalue)) {
885     }
886 
887     OpaqueValueMapping(CodeGenFunction &CGF,
888                        const OpaqueValueExpr *opaqueValue,
889                        RValue rvalue)
890       : CGF(CGF), Data(OpaqueValueMappingData::bind(CGF, opaqueValue, rvalue)) {
891     }
892 
893     void pop() {
894       Data.unbind(CGF);
895       Data.clear();
896     }
897 
898     ~OpaqueValueMapping() {
899       if (Data.isValid()) Data.unbind(CGF);
900     }
901   };
902 
903   /// getByrefValueFieldNumber - Given a declaration, returns the LLVM field
904   /// number that holds the value.
905   unsigned getByRefValueLLVMField(const ValueDecl *VD) const;
906 
907   /// BuildBlockByrefAddress - Computes address location of the
908   /// variable which is declared as __block.
909   llvm::Value *BuildBlockByrefAddress(llvm::Value *BaseAddr,
910                                       const VarDecl *V);
911 private:
912   CGDebugInfo *DebugInfo;
913   bool DisableDebugInfo;
914 
915   /// DidCallStackSave - Whether llvm.stacksave has been called. Used to avoid
916   /// calling llvm.stacksave for multiple VLAs in the same scope.
917   bool DidCallStackSave;
918 
919   /// IndirectBranch - The first time an indirect goto is seen we create a block
920   /// with an indirect branch.  Every time we see the address of a label taken,
921   /// we add the label to the indirect goto.  Every subsequent indirect goto is
922   /// codegen'd as a jump to the IndirectBranch's basic block.
923   llvm::IndirectBrInst *IndirectBranch;
924 
925   /// LocalDeclMap - This keeps track of the LLVM allocas or globals for local C
926   /// decls.
927   typedef llvm::DenseMap<const Decl*, llvm::Value*> DeclMapTy;
928   DeclMapTy LocalDeclMap;
929 
930   /// LabelMap - This keeps track of the LLVM basic block for each C label.
931   llvm::DenseMap<const LabelDecl*, JumpDest> LabelMap;
932 
933   // BreakContinueStack - This keeps track of where break and continue
934   // statements should jump to.
935   struct BreakContinue {
936     BreakContinue(JumpDest Break, JumpDest Continue)
937       : BreakBlock(Break), ContinueBlock(Continue) {}
938 
939     JumpDest BreakBlock;
940     JumpDest ContinueBlock;
941   };
942   SmallVector<BreakContinue, 8> BreakContinueStack;
943 
944   CodeGenPGO PGO;
945 
946 public:
947   /// Get a counter for instrumentation of the region associated with the given
948   /// statement.
949   RegionCounter getPGORegionCounter(const Stmt *S) {
950     return RegionCounter(PGO, S);
951   }
952 private:
953 
954   /// SwitchInsn - This is nearest current switch instruction. It is null if
955   /// current context is not in a switch.
956   llvm::SwitchInst *SwitchInsn;
957   /// The branch weights of SwitchInsn when doing instrumentation based PGO.
958   SmallVector<uint64_t, 16> *SwitchWeights;
959 
960   /// CaseRangeBlock - This block holds if condition check for last case
961   /// statement range in current switch instruction.
962   llvm::BasicBlock *CaseRangeBlock;
963 
964   /// OpaqueLValues - Keeps track of the current set of opaque value
965   /// expressions.
966   llvm::DenseMap<const OpaqueValueExpr *, LValue> OpaqueLValues;
967   llvm::DenseMap<const OpaqueValueExpr *, RValue> OpaqueRValues;
968 
969   // VLASizeMap - This keeps track of the associated size for each VLA type.
970   // We track this by the size expression rather than the type itself because
971   // in certain situations, like a const qualifier applied to an VLA typedef,
972   // multiple VLA types can share the same size expression.
973   // FIXME: Maybe this could be a stack of maps that is pushed/popped as we
974   // enter/leave scopes.
975   llvm::DenseMap<const Expr*, llvm::Value*> VLASizeMap;
976 
977   /// A block containing a single 'unreachable' instruction.  Created
978   /// lazily by getUnreachableBlock().
979   llvm::BasicBlock *UnreachableBlock;
980 
981   /// Counts of the number return expressions in the function.
982   unsigned NumReturnExprs;
983 
984   /// Count the number of simple (constant) return expressions in the function.
985   unsigned NumSimpleReturnExprs;
986 
987   /// The last regular (non-return) debug location (breakpoint) in the function.
988   SourceLocation LastStopPoint;
989 
990 public:
991   /// A scope within which we are constructing the fields of an object which
992   /// might use a CXXDefaultInitExpr. This stashes away a 'this' value to use
993   /// if we need to evaluate a CXXDefaultInitExpr within the evaluation.
994   class FieldConstructionScope {
995   public:
996     FieldConstructionScope(CodeGenFunction &CGF, llvm::Value *This)
997         : CGF(CGF), OldCXXDefaultInitExprThis(CGF.CXXDefaultInitExprThis) {
998       CGF.CXXDefaultInitExprThis = This;
999     }
1000     ~FieldConstructionScope() {
1001       CGF.CXXDefaultInitExprThis = OldCXXDefaultInitExprThis;
1002     }
1003 
1004   private:
1005     CodeGenFunction &CGF;
1006     llvm::Value *OldCXXDefaultInitExprThis;
1007   };
1008 
1009   /// The scope of a CXXDefaultInitExpr. Within this scope, the value of 'this'
1010   /// is overridden to be the object under construction.
1011   class CXXDefaultInitExprScope {
1012   public:
1013     CXXDefaultInitExprScope(CodeGenFunction &CGF)
1014         : CGF(CGF), OldCXXThisValue(CGF.CXXThisValue) {
1015       CGF.CXXThisValue = CGF.CXXDefaultInitExprThis;
1016     }
1017     ~CXXDefaultInitExprScope() {
1018       CGF.CXXThisValue = OldCXXThisValue;
1019     }
1020 
1021   public:
1022     CodeGenFunction &CGF;
1023     llvm::Value *OldCXXThisValue;
1024   };
1025 
1026 private:
1027   /// CXXThisDecl - When generating code for a C++ member function,
1028   /// this will hold the implicit 'this' declaration.
1029   ImplicitParamDecl *CXXABIThisDecl;
1030   llvm::Value *CXXABIThisValue;
1031   llvm::Value *CXXThisValue;
1032 
1033   /// The value of 'this' to use when evaluating CXXDefaultInitExprs within
1034   /// this expression.
1035   llvm::Value *CXXDefaultInitExprThis;
1036 
1037   /// CXXStructorImplicitParamDecl - When generating code for a constructor or
1038   /// destructor, this will hold the implicit argument (e.g. VTT).
1039   ImplicitParamDecl *CXXStructorImplicitParamDecl;
1040   llvm::Value *CXXStructorImplicitParamValue;
1041 
1042   /// OutermostConditional - Points to the outermost active
1043   /// conditional control.  This is used so that we know if a
1044   /// temporary should be destroyed conditionally.
1045   ConditionalEvaluation *OutermostConditional;
1046 
1047   /// The current lexical scope.
1048   LexicalScope *CurLexicalScope;
1049 
1050   /// The current source location that should be used for exception
1051   /// handling code.
1052   SourceLocation CurEHLocation;
1053 
1054   /// ByrefValueInfoMap - For each __block variable, contains a pair of the LLVM
1055   /// type as well as the field number that contains the actual data.
1056   llvm::DenseMap<const ValueDecl *, std::pair<llvm::Type *,
1057                                               unsigned> > ByRefValueInfo;
1058 
1059   llvm::BasicBlock *TerminateLandingPad;
1060   llvm::BasicBlock *TerminateHandler;
1061   llvm::BasicBlock *TrapBB;
1062 
1063   /// Add a kernel metadata node to the named metadata node 'opencl.kernels'.
1064   /// In the kernel metadata node, reference the kernel function and metadata
1065   /// nodes for its optional attribute qualifiers (OpenCL 1.1 6.7.2):
1066   /// - A node for the vec_type_hint(<type>) qualifier contains string
1067   ///   "vec_type_hint", an undefined value of the <type> data type,
1068   ///   and a Boolean that is true if the <type> is integer and signed.
1069   /// - A node for the work_group_size_hint(X,Y,Z) qualifier contains string
1070   ///   "work_group_size_hint", and three 32-bit integers X, Y and Z.
1071   /// - A node for the reqd_work_group_size(X,Y,Z) qualifier contains string
1072   ///   "reqd_work_group_size", and three 32-bit integers X, Y and Z.
1073   void EmitOpenCLKernelMetadata(const FunctionDecl *FD,
1074                                 llvm::Function *Fn);
1075 
1076 public:
1077   CodeGenFunction(CodeGenModule &cgm, bool suppressNewContext=false);
1078   ~CodeGenFunction();
1079 
1080   CodeGenTypes &getTypes() const { return CGM.getTypes(); }
1081   ASTContext &getContext() const { return CGM.getContext(); }
1082   CGDebugInfo *getDebugInfo() {
1083     if (DisableDebugInfo)
1084       return nullptr;
1085     return DebugInfo;
1086   }
1087   void disableDebugInfo() { DisableDebugInfo = true; }
1088   void enableDebugInfo() { DisableDebugInfo = false; }
1089 
1090   bool shouldUseFusedARCCalls() {
1091     return CGM.getCodeGenOpts().OptimizationLevel == 0;
1092   }
1093 
1094   const LangOptions &getLangOpts() const { return CGM.getLangOpts(); }
1095 
1096   /// Returns a pointer to the function's exception object and selector slot,
1097   /// which is assigned in every landing pad.
1098   llvm::Value *getExceptionSlot();
1099   llvm::Value *getEHSelectorSlot();
1100 
1101   /// Stack slot that contains whether a __finally block is being executed as an
1102   /// EH cleanup or as a normal cleanup.
1103   llvm::Value *getAbnormalTerminationSlot();
1104 
1105   /// Returns the contents of the function's exception object and selector
1106   /// slots.
1107   llvm::Value *getExceptionFromSlot();
1108   llvm::Value *getSelectorFromSlot();
1109 
1110   llvm::Value *getNormalCleanupDestSlot();
1111 
1112   llvm::BasicBlock *getUnreachableBlock() {
1113     if (!UnreachableBlock) {
1114       UnreachableBlock = createBasicBlock("unreachable");
1115       new llvm::UnreachableInst(getLLVMContext(), UnreachableBlock);
1116     }
1117     return UnreachableBlock;
1118   }
1119 
1120   llvm::BasicBlock *getInvokeDest() {
1121     if (!EHStack.requiresLandingPad()) return nullptr;
1122     return getInvokeDestImpl();
1123   }
1124 
1125   const TargetInfo &getTarget() const { return Target; }
1126   llvm::LLVMContext &getLLVMContext() { return CGM.getLLVMContext(); }
1127 
1128   //===--------------------------------------------------------------------===//
1129   //                                  Cleanups
1130   //===--------------------------------------------------------------------===//
1131 
1132   typedef void Destroyer(CodeGenFunction &CGF, llvm::Value *addr, QualType ty);
1133 
1134   void pushIrregularPartialArrayCleanup(llvm::Value *arrayBegin,
1135                                         llvm::Value *arrayEndPointer,
1136                                         QualType elementType,
1137                                         Destroyer *destroyer);
1138   void pushRegularPartialArrayCleanup(llvm::Value *arrayBegin,
1139                                       llvm::Value *arrayEnd,
1140                                       QualType elementType,
1141                                       Destroyer *destroyer);
1142 
1143   void pushDestroy(QualType::DestructionKind dtorKind,
1144                    llvm::Value *addr, QualType type);
1145   void pushEHDestroy(QualType::DestructionKind dtorKind,
1146                      llvm::Value *addr, QualType type);
1147   void pushDestroy(CleanupKind kind, llvm::Value *addr, QualType type,
1148                    Destroyer *destroyer, bool useEHCleanupForArray);
1149   void pushLifetimeExtendedDestroy(CleanupKind kind, llvm::Value *addr,
1150                                    QualType type, Destroyer *destroyer,
1151                                    bool useEHCleanupForArray);
1152   void pushCallObjectDeleteCleanup(const FunctionDecl *OperatorDelete,
1153                                    llvm::Value *CompletePtr,
1154                                    QualType ElementType);
1155   void pushStackRestore(CleanupKind kind, llvm::Value *SPMem);
1156   void emitDestroy(llvm::Value *addr, QualType type, Destroyer *destroyer,
1157                    bool useEHCleanupForArray);
1158   llvm::Function *generateDestroyHelper(llvm::Constant *addr, QualType type,
1159                                         Destroyer *destroyer,
1160                                         bool useEHCleanupForArray,
1161                                         const VarDecl *VD);
1162   void emitArrayDestroy(llvm::Value *begin, llvm::Value *end,
1163                         QualType type, Destroyer *destroyer,
1164                         bool checkZeroLength, bool useEHCleanup);
1165 
1166   Destroyer *getDestroyer(QualType::DestructionKind destructionKind);
1167 
1168   /// Determines whether an EH cleanup is required to destroy a type
1169   /// with the given destruction kind.
1170   bool needsEHCleanup(QualType::DestructionKind kind) {
1171     switch (kind) {
1172     case QualType::DK_none:
1173       return false;
1174     case QualType::DK_cxx_destructor:
1175     case QualType::DK_objc_weak_lifetime:
1176       return getLangOpts().Exceptions;
1177     case QualType::DK_objc_strong_lifetime:
1178       return getLangOpts().Exceptions &&
1179              CGM.getCodeGenOpts().ObjCAutoRefCountExceptions;
1180     }
1181     llvm_unreachable("bad destruction kind");
1182   }
1183 
1184   CleanupKind getCleanupKind(QualType::DestructionKind kind) {
1185     return (needsEHCleanup(kind) ? NormalAndEHCleanup : NormalCleanup);
1186   }
1187 
1188   //===--------------------------------------------------------------------===//
1189   //                                  Objective-C
1190   //===--------------------------------------------------------------------===//
1191 
1192   void GenerateObjCMethod(const ObjCMethodDecl *OMD);
1193 
1194   void StartObjCMethod(const ObjCMethodDecl *MD, const ObjCContainerDecl *CD);
1195 
1196   /// GenerateObjCGetter - Synthesize an Objective-C property getter function.
1197   void GenerateObjCGetter(ObjCImplementationDecl *IMP,
1198                           const ObjCPropertyImplDecl *PID);
1199   void generateObjCGetterBody(const ObjCImplementationDecl *classImpl,
1200                               const ObjCPropertyImplDecl *propImpl,
1201                               const ObjCMethodDecl *GetterMothodDecl,
1202                               llvm::Constant *AtomicHelperFn);
1203 
1204   void GenerateObjCCtorDtorMethod(ObjCImplementationDecl *IMP,
1205                                   ObjCMethodDecl *MD, bool ctor);
1206 
1207   /// GenerateObjCSetter - Synthesize an Objective-C property setter function
1208   /// for the given property.
1209   void GenerateObjCSetter(ObjCImplementationDecl *IMP,
1210                           const ObjCPropertyImplDecl *PID);
1211   void generateObjCSetterBody(const ObjCImplementationDecl *classImpl,
1212                               const ObjCPropertyImplDecl *propImpl,
1213                               llvm::Constant *AtomicHelperFn);
1214   bool IndirectObjCSetterArg(const CGFunctionInfo &FI);
1215   bool IvarTypeWithAggrGCObjects(QualType Ty);
1216 
1217   //===--------------------------------------------------------------------===//
1218   //                                  Block Bits
1219   //===--------------------------------------------------------------------===//
1220 
1221   llvm::Value *EmitBlockLiteral(const BlockExpr *);
1222   llvm::Value *EmitBlockLiteral(const CGBlockInfo &Info);
1223   static void destroyBlockInfos(CGBlockInfo *info);
1224   llvm::Constant *BuildDescriptorBlockDecl(const BlockExpr *,
1225                                            const CGBlockInfo &Info,
1226                                            llvm::StructType *,
1227                                            llvm::Constant *BlockVarLayout);
1228 
1229   llvm::Function *GenerateBlockFunction(GlobalDecl GD,
1230                                         const CGBlockInfo &Info,
1231                                         const DeclMapTy &ldm,
1232                                         bool IsLambdaConversionToBlock);
1233 
1234   llvm::Constant *GenerateCopyHelperFunction(const CGBlockInfo &blockInfo);
1235   llvm::Constant *GenerateDestroyHelperFunction(const CGBlockInfo &blockInfo);
1236   llvm::Constant *GenerateObjCAtomicSetterCopyHelperFunction(
1237                                              const ObjCPropertyImplDecl *PID);
1238   llvm::Constant *GenerateObjCAtomicGetterCopyHelperFunction(
1239                                              const ObjCPropertyImplDecl *PID);
1240   llvm::Value *EmitBlockCopyAndAutorelease(llvm::Value *Block, QualType Ty);
1241 
1242   void BuildBlockRelease(llvm::Value *DeclPtr, BlockFieldFlags flags);
1243 
1244   class AutoVarEmission;
1245 
1246   void emitByrefStructureInit(const AutoVarEmission &emission);
1247   void enterByrefCleanup(const AutoVarEmission &emission);
1248 
1249   llvm::Value *LoadBlockStruct() {
1250     assert(BlockPointer && "no block pointer set!");
1251     return BlockPointer;
1252   }
1253 
1254   void AllocateBlockCXXThisPointer(const CXXThisExpr *E);
1255   void AllocateBlockDecl(const DeclRefExpr *E);
1256   llvm::Value *GetAddrOfBlockDecl(const VarDecl *var, bool ByRef);
1257   llvm::Type *BuildByRefType(const VarDecl *var);
1258 
1259   void GenerateCode(GlobalDecl GD, llvm::Function *Fn,
1260                     const CGFunctionInfo &FnInfo);
1261   /// \brief Emit code for the start of a function.
1262   /// \param Loc       The location to be associated with the function.
1263   /// \param StartLoc  The location of the function body.
1264   void StartFunction(GlobalDecl GD,
1265                      QualType RetTy,
1266                      llvm::Function *Fn,
1267                      const CGFunctionInfo &FnInfo,
1268                      const FunctionArgList &Args,
1269                      SourceLocation Loc = SourceLocation(),
1270                      SourceLocation StartLoc = SourceLocation());
1271 
1272   void EmitConstructorBody(FunctionArgList &Args);
1273   void EmitDestructorBody(FunctionArgList &Args);
1274   void emitImplicitAssignmentOperatorBody(FunctionArgList &Args);
1275   void EmitFunctionBody(FunctionArgList &Args, const Stmt *Body);
1276   void EmitBlockWithFallThrough(llvm::BasicBlock *BB, RegionCounter &Cnt);
1277 
1278   void EmitForwardingCallToLambda(const CXXMethodDecl *LambdaCallOperator,
1279                                   CallArgList &CallArgs);
1280   void EmitLambdaToBlockPointerBody(FunctionArgList &Args);
1281   void EmitLambdaBlockInvokeBody();
1282   void EmitLambdaDelegatingInvokeBody(const CXXMethodDecl *MD);
1283   void EmitLambdaStaticInvokeFunction(const CXXMethodDecl *MD);
1284   void EmitAsanPrologueOrEpilogue(bool Prologue);
1285 
1286   /// \brief Emit the unified return block, trying to avoid its emission when
1287   /// possible.
1288   /// \return The debug location of the user written return statement if the
1289   /// return block is is avoided.
1290   llvm::DebugLoc EmitReturnBlock();
1291 
1292   /// FinishFunction - Complete IR generation of the current function. It is
1293   /// legal to call this function even if there is no current insertion point.
1294   void FinishFunction(SourceLocation EndLoc=SourceLocation());
1295 
1296   void StartThunk(llvm::Function *Fn, GlobalDecl GD, const CGFunctionInfo &FnInfo);
1297 
1298   void EmitCallAndReturnForThunk(llvm::Value *Callee, const ThunkInfo *Thunk);
1299 
1300   /// Emit a musttail call for a thunk with a potentially adjusted this pointer.
1301   void EmitMustTailThunk(const CXXMethodDecl *MD, llvm::Value *AdjustedThisPtr,
1302                          llvm::Value *Callee);
1303 
1304   /// GenerateThunk - Generate a thunk for the given method.
1305   void GenerateThunk(llvm::Function *Fn, const CGFunctionInfo &FnInfo,
1306                      GlobalDecl GD, const ThunkInfo &Thunk);
1307 
1308   void GenerateVarArgsThunk(llvm::Function *Fn, const CGFunctionInfo &FnInfo,
1309                             GlobalDecl GD, const ThunkInfo &Thunk);
1310 
1311   void EmitCtorPrologue(const CXXConstructorDecl *CD, CXXCtorType Type,
1312                         FunctionArgList &Args);
1313 
1314   void EmitInitializerForField(FieldDecl *Field, LValue LHS, Expr *Init,
1315                                ArrayRef<VarDecl *> ArrayIndexes);
1316 
1317   /// InitializeVTablePointer - Initialize the vtable pointer of the given
1318   /// subobject.
1319   ///
1320   void InitializeVTablePointer(BaseSubobject Base,
1321                                const CXXRecordDecl *NearestVBase,
1322                                CharUnits OffsetFromNearestVBase,
1323                                const CXXRecordDecl *VTableClass);
1324 
1325   typedef llvm::SmallPtrSet<const CXXRecordDecl *, 4> VisitedVirtualBasesSetTy;
1326   void InitializeVTablePointers(BaseSubobject Base,
1327                                 const CXXRecordDecl *NearestVBase,
1328                                 CharUnits OffsetFromNearestVBase,
1329                                 bool BaseIsNonVirtualPrimaryBase,
1330                                 const CXXRecordDecl *VTableClass,
1331                                 VisitedVirtualBasesSetTy& VBases);
1332 
1333   void InitializeVTablePointers(const CXXRecordDecl *ClassDecl);
1334 
1335   /// GetVTablePtr - Return the Value of the vtable pointer member pointed
1336   /// to by This.
1337   llvm::Value *GetVTablePtr(llvm::Value *This, llvm::Type *Ty);
1338 
1339 
1340   /// CanDevirtualizeMemberFunctionCalls - Checks whether virtual calls on given
1341   /// expr can be devirtualized.
1342   bool CanDevirtualizeMemberFunctionCall(const Expr *Base,
1343                                          const CXXMethodDecl *MD);
1344 
1345   /// EnterDtorCleanups - Enter the cleanups necessary to complete the
1346   /// given phase of destruction for a destructor.  The end result
1347   /// should call destructors on members and base classes in reverse
1348   /// order of their construction.
1349   void EnterDtorCleanups(const CXXDestructorDecl *Dtor, CXXDtorType Type);
1350 
1351   /// ShouldInstrumentFunction - Return true if the current function should be
1352   /// instrumented with __cyg_profile_func_* calls
1353   bool ShouldInstrumentFunction();
1354 
1355   /// EmitFunctionInstrumentation - Emit LLVM code to call the specified
1356   /// instrumentation function with the current function and the call site, if
1357   /// function instrumentation is enabled.
1358   void EmitFunctionInstrumentation(const char *Fn);
1359 
1360   /// EmitMCountInstrumentation - Emit call to .mcount.
1361   void EmitMCountInstrumentation();
1362 
1363   /// EmitFunctionProlog - Emit the target specific LLVM code to load the
1364   /// arguments for the given function. This is also responsible for naming the
1365   /// LLVM function arguments.
1366   void EmitFunctionProlog(const CGFunctionInfo &FI,
1367                           llvm::Function *Fn,
1368                           const FunctionArgList &Args);
1369 
1370   /// EmitFunctionEpilog - Emit the target specific LLVM code to return the
1371   /// given temporary.
1372   void EmitFunctionEpilog(const CGFunctionInfo &FI, bool EmitRetDbgLoc,
1373                           SourceLocation EndLoc);
1374 
1375   /// EmitStartEHSpec - Emit the start of the exception spec.
1376   void EmitStartEHSpec(const Decl *D);
1377 
1378   /// EmitEndEHSpec - Emit the end of the exception spec.
1379   void EmitEndEHSpec(const Decl *D);
1380 
1381   /// getTerminateLandingPad - Return a landing pad that just calls terminate.
1382   llvm::BasicBlock *getTerminateLandingPad();
1383 
1384   /// getTerminateHandler - Return a handler (not a landing pad, just
1385   /// a catch handler) that just calls terminate.  This is used when
1386   /// a terminate scope encloses a try.
1387   llvm::BasicBlock *getTerminateHandler();
1388 
1389   llvm::Type *ConvertTypeForMem(QualType T);
1390   llvm::Type *ConvertType(QualType T);
1391   llvm::Type *ConvertType(const TypeDecl *T) {
1392     return ConvertType(getContext().getTypeDeclType(T));
1393   }
1394 
1395   /// LoadObjCSelf - Load the value of self. This function is only valid while
1396   /// generating code for an Objective-C method.
1397   llvm::Value *LoadObjCSelf();
1398 
1399   /// TypeOfSelfObject - Return type of object that this self represents.
1400   QualType TypeOfSelfObject();
1401 
1402   /// hasAggregateLLVMType - Return true if the specified AST type will map into
1403   /// an aggregate LLVM type or is void.
1404   static TypeEvaluationKind getEvaluationKind(QualType T);
1405 
1406   static bool hasScalarEvaluationKind(QualType T) {
1407     return getEvaluationKind(T) == TEK_Scalar;
1408   }
1409 
1410   static bool hasAggregateEvaluationKind(QualType T) {
1411     return getEvaluationKind(T) == TEK_Aggregate;
1412   }
1413 
1414   /// createBasicBlock - Create an LLVM basic block.
1415   llvm::BasicBlock *createBasicBlock(const Twine &name = "",
1416                                      llvm::Function *parent = nullptr,
1417                                      llvm::BasicBlock *before = nullptr) {
1418 #ifdef NDEBUG
1419     return llvm::BasicBlock::Create(getLLVMContext(), "", parent, before);
1420 #else
1421     return llvm::BasicBlock::Create(getLLVMContext(), name, parent, before);
1422 #endif
1423   }
1424 
1425   /// getBasicBlockForLabel - Return the LLVM basicblock that the specified
1426   /// label maps to.
1427   JumpDest getJumpDestForLabel(const LabelDecl *S);
1428 
1429   /// SimplifyForwardingBlocks - If the given basic block is only a branch to
1430   /// another basic block, simplify it. This assumes that no other code could
1431   /// potentially reference the basic block.
1432   void SimplifyForwardingBlocks(llvm::BasicBlock *BB);
1433 
1434   /// EmitBlock - Emit the given block \arg BB and set it as the insert point,
1435   /// adding a fall-through branch from the current insert block if
1436   /// necessary. It is legal to call this function even if there is no current
1437   /// insertion point.
1438   ///
1439   /// IsFinished - If true, indicates that the caller has finished emitting
1440   /// branches to the given block and does not expect to emit code into it. This
1441   /// means the block can be ignored if it is unreachable.
1442   void EmitBlock(llvm::BasicBlock *BB, bool IsFinished=false);
1443 
1444   /// EmitBlockAfterUses - Emit the given block somewhere hopefully
1445   /// near its uses, and leave the insertion point in it.
1446   void EmitBlockAfterUses(llvm::BasicBlock *BB);
1447 
1448   /// EmitBranch - Emit a branch to the specified basic block from the current
1449   /// insert block, taking care to avoid creation of branches from dummy
1450   /// blocks. It is legal to call this function even if there is no current
1451   /// insertion point.
1452   ///
1453   /// This function clears the current insertion point. The caller should follow
1454   /// calls to this function with calls to Emit*Block prior to generation new
1455   /// code.
1456   void EmitBranch(llvm::BasicBlock *Block);
1457 
1458   /// HaveInsertPoint - True if an insertion point is defined. If not, this
1459   /// indicates that the current code being emitted is unreachable.
1460   bool HaveInsertPoint() const {
1461     return Builder.GetInsertBlock() != nullptr;
1462   }
1463 
1464   /// EnsureInsertPoint - Ensure that an insertion point is defined so that
1465   /// emitted IR has a place to go. Note that by definition, if this function
1466   /// creates a block then that block is unreachable; callers may do better to
1467   /// detect when no insertion point is defined and simply skip IR generation.
1468   void EnsureInsertPoint() {
1469     if (!HaveInsertPoint())
1470       EmitBlock(createBasicBlock());
1471   }
1472 
1473   /// ErrorUnsupported - Print out an error that codegen doesn't support the
1474   /// specified stmt yet.
1475   void ErrorUnsupported(const Stmt *S, const char *Type);
1476 
1477   //===--------------------------------------------------------------------===//
1478   //                                  Helpers
1479   //===--------------------------------------------------------------------===//
1480 
1481   LValue MakeAddrLValue(llvm::Value *V, QualType T,
1482                         CharUnits Alignment = CharUnits()) {
1483     return LValue::MakeAddr(V, T, Alignment, getContext(),
1484                             CGM.getTBAAInfo(T));
1485   }
1486 
1487   LValue MakeNaturalAlignAddrLValue(llvm::Value *V, QualType T);
1488 
1489   /// CreateTempAlloca - This creates a alloca and inserts it into the entry
1490   /// block. The caller is responsible for setting an appropriate alignment on
1491   /// the alloca.
1492   llvm::AllocaInst *CreateTempAlloca(llvm::Type *Ty,
1493                                      const Twine &Name = "tmp");
1494 
1495   /// InitTempAlloca - Provide an initial value for the given alloca.
1496   void InitTempAlloca(llvm::AllocaInst *Alloca, llvm::Value *Value);
1497 
1498   /// CreateIRTemp - Create a temporary IR object of the given type, with
1499   /// appropriate alignment. This routine should only be used when an temporary
1500   /// value needs to be stored into an alloca (for example, to avoid explicit
1501   /// PHI construction), but the type is the IR type, not the type appropriate
1502   /// for storing in memory.
1503   llvm::AllocaInst *CreateIRTemp(QualType T, const Twine &Name = "tmp");
1504 
1505   /// CreateMemTemp - Create a temporary memory object of the given type, with
1506   /// appropriate alignment.
1507   llvm::AllocaInst *CreateMemTemp(QualType T, const Twine &Name = "tmp");
1508 
1509   /// CreateAggTemp - Create a temporary memory object for the given
1510   /// aggregate type.
1511   AggValueSlot CreateAggTemp(QualType T, const Twine &Name = "tmp") {
1512     CharUnits Alignment = getContext().getTypeAlignInChars(T);
1513     return AggValueSlot::forAddr(CreateMemTemp(T, Name), Alignment,
1514                                  T.getQualifiers(),
1515                                  AggValueSlot::IsNotDestructed,
1516                                  AggValueSlot::DoesNotNeedGCBarriers,
1517                                  AggValueSlot::IsNotAliased);
1518   }
1519 
1520   /// CreateInAllocaTmp - Create a temporary memory object for the given
1521   /// aggregate type.
1522   AggValueSlot CreateInAllocaTmp(QualType T, const Twine &Name = "inalloca");
1523 
1524   /// Emit a cast to void* in the appropriate address space.
1525   llvm::Value *EmitCastToVoidPtr(llvm::Value *value);
1526 
1527   /// EvaluateExprAsBool - Perform the usual unary conversions on the specified
1528   /// expression and compare the result against zero, returning an Int1Ty value.
1529   llvm::Value *EvaluateExprAsBool(const Expr *E);
1530 
1531   /// EmitIgnoredExpr - Emit an expression in a context which ignores the result.
1532   void EmitIgnoredExpr(const Expr *E);
1533 
1534   /// EmitAnyExpr - Emit code to compute the specified expression which can have
1535   /// any type.  The result is returned as an RValue struct.  If this is an
1536   /// aggregate expression, the aggloc/agglocvolatile arguments indicate where
1537   /// the result should be returned.
1538   ///
1539   /// \param ignoreResult True if the resulting value isn't used.
1540   RValue EmitAnyExpr(const Expr *E,
1541                      AggValueSlot aggSlot = AggValueSlot::ignored(),
1542                      bool ignoreResult = false);
1543 
1544   // EmitVAListRef - Emit a "reference" to a va_list; this is either the address
1545   // or the value of the expression, depending on how va_list is defined.
1546   llvm::Value *EmitVAListRef(const Expr *E);
1547 
1548   /// EmitAnyExprToTemp - Similary to EmitAnyExpr(), however, the result will
1549   /// always be accessible even if no aggregate location is provided.
1550   RValue EmitAnyExprToTemp(const Expr *E);
1551 
1552   /// EmitAnyExprToMem - Emits the code necessary to evaluate an
1553   /// arbitrary expression into the given memory location.
1554   void EmitAnyExprToMem(const Expr *E, llvm::Value *Location,
1555                         Qualifiers Quals, bool IsInitializer);
1556 
1557   /// EmitExprAsInit - Emits the code necessary to initialize a
1558   /// location in memory with the given initializer.
1559   void EmitExprAsInit(const Expr *init, const ValueDecl *D, LValue lvalue,
1560                       bool capturedByInit);
1561 
1562   /// hasVolatileMember - returns true if aggregate type has a volatile
1563   /// member.
1564   bool hasVolatileMember(QualType T) {
1565     if (const RecordType *RT = T->getAs<RecordType>()) {
1566       const RecordDecl *RD = cast<RecordDecl>(RT->getDecl());
1567       return RD->hasVolatileMember();
1568     }
1569     return false;
1570   }
1571   /// EmitAggregateCopy - Emit an aggregate assignment.
1572   ///
1573   /// The difference to EmitAggregateCopy is that tail padding is not copied.
1574   /// This is required for correctness when assigning non-POD structures in C++.
1575   void EmitAggregateAssign(llvm::Value *DestPtr, llvm::Value *SrcPtr,
1576                            QualType EltTy) {
1577     bool IsVolatile = hasVolatileMember(EltTy);
1578     EmitAggregateCopy(DestPtr, SrcPtr, EltTy, IsVolatile, CharUnits::Zero(),
1579                       true);
1580   }
1581 
1582   void EmitAggregateCopyCtor(llvm::Value *DestPtr, llvm::Value *SrcPtr,
1583                            QualType DestTy, QualType SrcTy) {
1584     CharUnits DestTypeAlign = getContext().getTypeAlignInChars(DestTy);
1585     CharUnits SrcTypeAlign = getContext().getTypeAlignInChars(SrcTy);
1586     EmitAggregateCopy(DestPtr, SrcPtr, SrcTy, /*IsVolatile=*/false,
1587                       std::min(DestTypeAlign, SrcTypeAlign),
1588                       /*IsAssignment=*/false);
1589   }
1590 
1591   /// EmitAggregateCopy - Emit an aggregate copy.
1592   ///
1593   /// \param isVolatile - True iff either the source or the destination is
1594   /// volatile.
1595   /// \param isAssignment - If false, allow padding to be copied.  This often
1596   /// yields more efficient.
1597   void EmitAggregateCopy(llvm::Value *DestPtr, llvm::Value *SrcPtr,
1598                          QualType EltTy, bool isVolatile=false,
1599                          CharUnits Alignment = CharUnits::Zero(),
1600                          bool isAssignment = false);
1601 
1602   /// StartBlock - Start new block named N. If insert block is a dummy block
1603   /// then reuse it.
1604   void StartBlock(const char *N);
1605 
1606   /// GetAddrOfLocalVar - Return the address of a local variable.
1607   llvm::Value *GetAddrOfLocalVar(const VarDecl *VD) {
1608     llvm::Value *Res = LocalDeclMap[VD];
1609     assert(Res && "Invalid argument to GetAddrOfLocalVar(), no decl!");
1610     return Res;
1611   }
1612 
1613   /// getOpaqueLValueMapping - Given an opaque value expression (which
1614   /// must be mapped to an l-value), return its mapping.
1615   const LValue &getOpaqueLValueMapping(const OpaqueValueExpr *e) {
1616     assert(OpaqueValueMapping::shouldBindAsLValue(e));
1617 
1618     llvm::DenseMap<const OpaqueValueExpr*,LValue>::iterator
1619       it = OpaqueLValues.find(e);
1620     assert(it != OpaqueLValues.end() && "no mapping for opaque value!");
1621     return it->second;
1622   }
1623 
1624   /// getOpaqueRValueMapping - Given an opaque value expression (which
1625   /// must be mapped to an r-value), return its mapping.
1626   const RValue &getOpaqueRValueMapping(const OpaqueValueExpr *e) {
1627     assert(!OpaqueValueMapping::shouldBindAsLValue(e));
1628 
1629     llvm::DenseMap<const OpaqueValueExpr*,RValue>::iterator
1630       it = OpaqueRValues.find(e);
1631     assert(it != OpaqueRValues.end() && "no mapping for opaque value!");
1632     return it->second;
1633   }
1634 
1635   /// getAccessedFieldNo - Given an encoded value and a result number, return
1636   /// the input field number being accessed.
1637   static unsigned getAccessedFieldNo(unsigned Idx, const llvm::Constant *Elts);
1638 
1639   llvm::BlockAddress *GetAddrOfLabel(const LabelDecl *L);
1640   llvm::BasicBlock *GetIndirectGotoBlock();
1641 
1642   /// EmitNullInitialization - Generate code to set a value of the given type to
1643   /// null, If the type contains data member pointers, they will be initialized
1644   /// to -1 in accordance with the Itanium C++ ABI.
1645   void EmitNullInitialization(llvm::Value *DestPtr, QualType Ty);
1646 
1647   // EmitVAArg - Generate code to get an argument from the passed in pointer
1648   // and update it accordingly. The return value is a pointer to the argument.
1649   // FIXME: We should be able to get rid of this method and use the va_arg
1650   // instruction in LLVM instead once it works well enough.
1651   llvm::Value *EmitVAArg(llvm::Value *VAListAddr, QualType Ty);
1652 
1653   /// emitArrayLength - Compute the length of an array, even if it's a
1654   /// VLA, and drill down to the base element type.
1655   llvm::Value *emitArrayLength(const ArrayType *arrayType,
1656                                QualType &baseType,
1657                                llvm::Value *&addr);
1658 
1659   /// EmitVLASize - Capture all the sizes for the VLA expressions in
1660   /// the given variably-modified type and store them in the VLASizeMap.
1661   ///
1662   /// This function can be called with a null (unreachable) insert point.
1663   void EmitVariablyModifiedType(QualType Ty);
1664 
1665   /// getVLASize - Returns an LLVM value that corresponds to the size,
1666   /// in non-variably-sized elements, of a variable length array type,
1667   /// plus that largest non-variably-sized element type.  Assumes that
1668   /// the type has already been emitted with EmitVariablyModifiedType.
1669   std::pair<llvm::Value*,QualType> getVLASize(const VariableArrayType *vla);
1670   std::pair<llvm::Value*,QualType> getVLASize(QualType vla);
1671 
1672   /// LoadCXXThis - Load the value of 'this'. This function is only valid while
1673   /// generating code for an C++ member function.
1674   llvm::Value *LoadCXXThis() {
1675     assert(CXXThisValue && "no 'this' value for this function");
1676     return CXXThisValue;
1677   }
1678 
1679   /// LoadCXXVTT - Load the VTT parameter to base constructors/destructors have
1680   /// virtual bases.
1681   // FIXME: Every place that calls LoadCXXVTT is something
1682   // that needs to be abstracted properly.
1683   llvm::Value *LoadCXXVTT() {
1684     assert(CXXStructorImplicitParamValue && "no VTT value for this function");
1685     return CXXStructorImplicitParamValue;
1686   }
1687 
1688   /// LoadCXXStructorImplicitParam - Load the implicit parameter
1689   /// for a constructor/destructor.
1690   llvm::Value *LoadCXXStructorImplicitParam() {
1691     assert(CXXStructorImplicitParamValue &&
1692            "no implicit argument value for this function");
1693     return CXXStructorImplicitParamValue;
1694   }
1695 
1696   /// GetAddressOfBaseOfCompleteClass - Convert the given pointer to a
1697   /// complete class to the given direct base.
1698   llvm::Value *
1699   GetAddressOfDirectBaseInCompleteClass(llvm::Value *Value,
1700                                         const CXXRecordDecl *Derived,
1701                                         const CXXRecordDecl *Base,
1702                                         bool BaseIsVirtual);
1703 
1704   /// GetAddressOfBaseClass - This function will add the necessary delta to the
1705   /// load of 'this' and returns address of the base class.
1706   llvm::Value *GetAddressOfBaseClass(llvm::Value *Value,
1707                                      const CXXRecordDecl *Derived,
1708                                      CastExpr::path_const_iterator PathBegin,
1709                                      CastExpr::path_const_iterator PathEnd,
1710                                      bool NullCheckValue, SourceLocation Loc);
1711 
1712   llvm::Value *GetAddressOfDerivedClass(llvm::Value *Value,
1713                                         const CXXRecordDecl *Derived,
1714                                         CastExpr::path_const_iterator PathBegin,
1715                                         CastExpr::path_const_iterator PathEnd,
1716                                         bool NullCheckValue);
1717 
1718   /// GetVTTParameter - Return the VTT parameter that should be passed to a
1719   /// base constructor/destructor with virtual bases.
1720   /// FIXME: VTTs are Itanium ABI-specific, so the definition should move
1721   /// to ItaniumCXXABI.cpp together with all the references to VTT.
1722   llvm::Value *GetVTTParameter(GlobalDecl GD, bool ForVirtualBase,
1723                                bool Delegating);
1724 
1725   void EmitDelegateCXXConstructorCall(const CXXConstructorDecl *Ctor,
1726                                       CXXCtorType CtorType,
1727                                       const FunctionArgList &Args,
1728                                       SourceLocation Loc);
1729   // It's important not to confuse this and the previous function. Delegating
1730   // constructors are the C++0x feature. The constructor delegate optimization
1731   // is used to reduce duplication in the base and complete consturctors where
1732   // they are substantially the same.
1733   void EmitDelegatingCXXConstructorCall(const CXXConstructorDecl *Ctor,
1734                                         const FunctionArgList &Args);
1735   void EmitCXXConstructorCall(const CXXConstructorDecl *D, CXXCtorType Type,
1736                               bool ForVirtualBase, bool Delegating,
1737                               llvm::Value *This, const CXXConstructExpr *E);
1738 
1739   void EmitSynthesizedCXXCopyCtorCall(const CXXConstructorDecl *D,
1740                               llvm::Value *This, llvm::Value *Src,
1741                               const CXXConstructExpr *E);
1742 
1743   void EmitCXXAggrConstructorCall(const CXXConstructorDecl *D,
1744                                   const ConstantArrayType *ArrayTy,
1745                                   llvm::Value *ArrayPtr,
1746                                   const CXXConstructExpr *E,
1747                                   bool ZeroInitialization = false);
1748 
1749   void EmitCXXAggrConstructorCall(const CXXConstructorDecl *D,
1750                                   llvm::Value *NumElements,
1751                                   llvm::Value *ArrayPtr,
1752                                   const CXXConstructExpr *E,
1753                                   bool ZeroInitialization = false);
1754 
1755   static Destroyer destroyCXXObject;
1756 
1757   void EmitCXXDestructorCall(const CXXDestructorDecl *D, CXXDtorType Type,
1758                              bool ForVirtualBase, bool Delegating,
1759                              llvm::Value *This);
1760 
1761   void EmitNewArrayInitializer(const CXXNewExpr *E, QualType elementType,
1762                                llvm::Value *NewPtr, llvm::Value *NumElements,
1763                                llvm::Value *AllocSizeWithoutCookie);
1764 
1765   void EmitCXXTemporary(const CXXTemporary *Temporary, QualType TempType,
1766                         llvm::Value *Ptr);
1767 
1768   llvm::Value *EmitCXXNewExpr(const CXXNewExpr *E);
1769   void EmitCXXDeleteExpr(const CXXDeleteExpr *E);
1770 
1771   void EmitDeleteCall(const FunctionDecl *DeleteFD, llvm::Value *Ptr,
1772                       QualType DeleteTy);
1773 
1774   RValue EmitBuiltinNewDeleteCall(const FunctionProtoType *Type,
1775                                   const Expr *Arg, bool IsDelete);
1776 
1777   llvm::Value* EmitCXXTypeidExpr(const CXXTypeidExpr *E);
1778   llvm::Value *EmitDynamicCast(llvm::Value *V, const CXXDynamicCastExpr *DCE);
1779   llvm::Value* EmitCXXUuidofExpr(const CXXUuidofExpr *E);
1780 
1781   /// \brief Situations in which we might emit a check for the suitability of a
1782   ///        pointer or glvalue.
1783   enum TypeCheckKind {
1784     /// Checking the operand of a load. Must be suitably sized and aligned.
1785     TCK_Load,
1786     /// Checking the destination of a store. Must be suitably sized and aligned.
1787     TCK_Store,
1788     /// Checking the bound value in a reference binding. Must be suitably sized
1789     /// and aligned, but is not required to refer to an object (until the
1790     /// reference is used), per core issue 453.
1791     TCK_ReferenceBinding,
1792     /// Checking the object expression in a non-static data member access. Must
1793     /// be an object within its lifetime.
1794     TCK_MemberAccess,
1795     /// Checking the 'this' pointer for a call to a non-static member function.
1796     /// Must be an object within its lifetime.
1797     TCK_MemberCall,
1798     /// Checking the 'this' pointer for a constructor call.
1799     TCK_ConstructorCall,
1800     /// Checking the operand of a static_cast to a derived pointer type. Must be
1801     /// null or an object within its lifetime.
1802     TCK_DowncastPointer,
1803     /// Checking the operand of a static_cast to a derived reference type. Must
1804     /// be an object within its lifetime.
1805     TCK_DowncastReference,
1806     /// Checking the operand of a cast to a base object. Must be suitably sized
1807     /// and aligned.
1808     TCK_Upcast,
1809     /// Checking the operand of a cast to a virtual base object. Must be an
1810     /// object within its lifetime.
1811     TCK_UpcastToVirtualBase
1812   };
1813 
1814   /// \brief Whether any type-checking sanitizers are enabled. If \c false,
1815   /// calls to EmitTypeCheck can be skipped.
1816   bool sanitizePerformTypeCheck() const;
1817 
1818   /// \brief Emit a check that \p V is the address of storage of the
1819   /// appropriate size and alignment for an object of type \p Type.
1820   void EmitTypeCheck(TypeCheckKind TCK, SourceLocation Loc, llvm::Value *V,
1821                      QualType Type, CharUnits Alignment = CharUnits::Zero(),
1822                      bool SkipNullCheck = false);
1823 
1824   /// \brief Emit a check that \p Base points into an array object, which
1825   /// we can access at index \p Index. \p Accessed should be \c false if we
1826   /// this expression is used as an lvalue, for instance in "&Arr[Idx]".
1827   void EmitBoundsCheck(const Expr *E, const Expr *Base, llvm::Value *Index,
1828                        QualType IndexType, bool Accessed);
1829 
1830   llvm::Value *EmitScalarPrePostIncDec(const UnaryOperator *E, LValue LV,
1831                                        bool isInc, bool isPre);
1832   ComplexPairTy EmitComplexPrePostIncDec(const UnaryOperator *E, LValue LV,
1833                                          bool isInc, bool isPre);
1834 
1835   void EmitAlignmentAssumption(llvm::Value *PtrValue, unsigned Alignment,
1836                                llvm::Value *OffsetValue = nullptr) {
1837     Builder.CreateAlignmentAssumption(CGM.getDataLayout(), PtrValue, Alignment,
1838                                       OffsetValue);
1839   }
1840 
1841   //===--------------------------------------------------------------------===//
1842   //                            Declaration Emission
1843   //===--------------------------------------------------------------------===//
1844 
1845   /// EmitDecl - Emit a declaration.
1846   ///
1847   /// This function can be called with a null (unreachable) insert point.
1848   void EmitDecl(const Decl &D);
1849 
1850   /// EmitVarDecl - Emit a local variable declaration.
1851   ///
1852   /// This function can be called with a null (unreachable) insert point.
1853   void EmitVarDecl(const VarDecl &D);
1854 
1855   void EmitScalarInit(const Expr *init, const ValueDecl *D, LValue lvalue,
1856                       bool capturedByInit);
1857   void EmitScalarInit(llvm::Value *init, LValue lvalue);
1858 
1859   typedef void SpecialInitFn(CodeGenFunction &Init, const VarDecl &D,
1860                              llvm::Value *Address);
1861 
1862   /// \brief Determine whether the given initializer is trivial in the sense
1863   /// that it requires no code to be generated.
1864   bool isTrivialInitializer(const Expr *Init);
1865 
1866   /// EmitAutoVarDecl - Emit an auto variable declaration.
1867   ///
1868   /// This function can be called with a null (unreachable) insert point.
1869   void EmitAutoVarDecl(const VarDecl &D);
1870 
1871   class AutoVarEmission {
1872     friend class CodeGenFunction;
1873 
1874     const VarDecl *Variable;
1875 
1876     /// The alignment of the variable.
1877     CharUnits Alignment;
1878 
1879     /// The address of the alloca.  Null if the variable was emitted
1880     /// as a global constant.
1881     llvm::Value *Address;
1882 
1883     llvm::Value *NRVOFlag;
1884 
1885     /// True if the variable is a __block variable.
1886     bool IsByRef;
1887 
1888     /// True if the variable is of aggregate type and has a constant
1889     /// initializer.
1890     bool IsConstantAggregate;
1891 
1892     /// Non-null if we should use lifetime annotations.
1893     llvm::Value *SizeForLifetimeMarkers;
1894 
1895     struct Invalid {};
1896     AutoVarEmission(Invalid) : Variable(nullptr) {}
1897 
1898     AutoVarEmission(const VarDecl &variable)
1899       : Variable(&variable), Address(nullptr), NRVOFlag(nullptr),
1900         IsByRef(false), IsConstantAggregate(false),
1901         SizeForLifetimeMarkers(nullptr) {}
1902 
1903     bool wasEmittedAsGlobal() const { return Address == nullptr; }
1904 
1905   public:
1906     static AutoVarEmission invalid() { return AutoVarEmission(Invalid()); }
1907 
1908     bool useLifetimeMarkers() const {
1909       return SizeForLifetimeMarkers != nullptr;
1910     }
1911     llvm::Value *getSizeForLifetimeMarkers() const {
1912       assert(useLifetimeMarkers());
1913       return SizeForLifetimeMarkers;
1914     }
1915 
1916     /// Returns the raw, allocated address, which is not necessarily
1917     /// the address of the object itself.
1918     llvm::Value *getAllocatedAddress() const {
1919       return Address;
1920     }
1921 
1922     /// Returns the address of the object within this declaration.
1923     /// Note that this does not chase the forwarding pointer for
1924     /// __block decls.
1925     llvm::Value *getObjectAddress(CodeGenFunction &CGF) const {
1926       if (!IsByRef) return Address;
1927 
1928       return CGF.Builder.CreateStructGEP(Address,
1929                                          CGF.getByRefValueLLVMField(Variable),
1930                                          Variable->getNameAsString());
1931     }
1932   };
1933   AutoVarEmission EmitAutoVarAlloca(const VarDecl &var);
1934   void EmitAutoVarInit(const AutoVarEmission &emission);
1935   void EmitAutoVarCleanups(const AutoVarEmission &emission);
1936   void emitAutoVarTypeCleanup(const AutoVarEmission &emission,
1937                               QualType::DestructionKind dtorKind);
1938 
1939   void EmitStaticVarDecl(const VarDecl &D,
1940                          llvm::GlobalValue::LinkageTypes Linkage);
1941 
1942   /// EmitParmDecl - Emit a ParmVarDecl or an ImplicitParamDecl.
1943   void EmitParmDecl(const VarDecl &D, llvm::Value *Arg, bool ArgIsPointer,
1944                     unsigned ArgNo);
1945 
1946   /// protectFromPeepholes - Protect a value that we're intending to
1947   /// store to the side, but which will probably be used later, from
1948   /// aggressive peepholing optimizations that might delete it.
1949   ///
1950   /// Pass the result to unprotectFromPeepholes to declare that
1951   /// protection is no longer required.
1952   ///
1953   /// There's no particular reason why this shouldn't apply to
1954   /// l-values, it's just that no existing peepholes work on pointers.
1955   PeepholeProtection protectFromPeepholes(RValue rvalue);
1956   void unprotectFromPeepholes(PeepholeProtection protection);
1957 
1958   //===--------------------------------------------------------------------===//
1959   //                             Statement Emission
1960   //===--------------------------------------------------------------------===//
1961 
1962   /// EmitStopPoint - Emit a debug stoppoint if we are emitting debug info.
1963   void EmitStopPoint(const Stmt *S);
1964 
1965   /// EmitStmt - Emit the code for the statement \arg S. It is legal to call
1966   /// this function even if there is no current insertion point.
1967   ///
1968   /// This function may clear the current insertion point; callers should use
1969   /// EnsureInsertPoint if they wish to subsequently generate code without first
1970   /// calling EmitBlock, EmitBranch, or EmitStmt.
1971   void EmitStmt(const Stmt *S);
1972 
1973   /// EmitSimpleStmt - Try to emit a "simple" statement which does not
1974   /// necessarily require an insertion point or debug information; typically
1975   /// because the statement amounts to a jump or a container of other
1976   /// statements.
1977   ///
1978   /// \return True if the statement was handled.
1979   bool EmitSimpleStmt(const Stmt *S);
1980 
1981   llvm::Value *EmitCompoundStmt(const CompoundStmt &S, bool GetLast = false,
1982                                 AggValueSlot AVS = AggValueSlot::ignored());
1983   llvm::Value *EmitCompoundStmtWithoutScope(const CompoundStmt &S,
1984                                             bool GetLast = false,
1985                                             AggValueSlot AVS =
1986                                                 AggValueSlot::ignored());
1987 
1988   /// EmitLabel - Emit the block for the given label. It is legal to call this
1989   /// function even if there is no current insertion point.
1990   void EmitLabel(const LabelDecl *D); // helper for EmitLabelStmt.
1991 
1992   void EmitLabelStmt(const LabelStmt &S);
1993   void EmitAttributedStmt(const AttributedStmt &S);
1994   void EmitGotoStmt(const GotoStmt &S);
1995   void EmitIndirectGotoStmt(const IndirectGotoStmt &S);
1996   void EmitIfStmt(const IfStmt &S);
1997 
1998   void EmitCondBrHints(llvm::LLVMContext &Context, llvm::BranchInst *CondBr,
1999                        ArrayRef<const Attr *> Attrs);
2000   void EmitWhileStmt(const WhileStmt &S,
2001                      ArrayRef<const Attr *> Attrs = None);
2002   void EmitDoStmt(const DoStmt &S, ArrayRef<const Attr *> Attrs = None);
2003   void EmitForStmt(const ForStmt &S,
2004                    ArrayRef<const Attr *> Attrs = None);
2005   void EmitReturnStmt(const ReturnStmt &S);
2006   void EmitDeclStmt(const DeclStmt &S);
2007   void EmitBreakStmt(const BreakStmt &S);
2008   void EmitContinueStmt(const ContinueStmt &S);
2009   void EmitSwitchStmt(const SwitchStmt &S);
2010   void EmitDefaultStmt(const DefaultStmt &S);
2011   void EmitCaseStmt(const CaseStmt &S);
2012   void EmitCaseStmtRange(const CaseStmt &S);
2013   void EmitAsmStmt(const AsmStmt &S);
2014 
2015   void EmitObjCForCollectionStmt(const ObjCForCollectionStmt &S);
2016   void EmitObjCAtTryStmt(const ObjCAtTryStmt &S);
2017   void EmitObjCAtThrowStmt(const ObjCAtThrowStmt &S);
2018   void EmitObjCAtSynchronizedStmt(const ObjCAtSynchronizedStmt &S);
2019   void EmitObjCAutoreleasePoolStmt(const ObjCAutoreleasePoolStmt &S);
2020 
2021   void EnterCXXTryStmt(const CXXTryStmt &S, bool IsFnTryBlock = false);
2022   void ExitCXXTryStmt(const CXXTryStmt &S, bool IsFnTryBlock = false);
2023 
2024   void EmitCXXTryStmt(const CXXTryStmt &S);
2025   void EmitSEHTryStmt(const SEHTryStmt &S);
2026   void EmitSEHLeaveStmt(const SEHLeaveStmt &S);
2027   void EnterSEHTryStmt(const SEHTryStmt &S, SEHFinallyInfo &FI);
2028   void ExitSEHTryStmt(const SEHTryStmt &S, SEHFinallyInfo &FI);
2029 
2030   llvm::Function *GenerateSEHFilterFunction(CodeGenFunction &ParentCGF,
2031                                             const SEHExceptStmt &Except);
2032 
2033   void EmitSEHExceptionCodeSave();
2034   llvm::Value *EmitSEHExceptionCode();
2035   llvm::Value *EmitSEHExceptionInfo();
2036   llvm::Value *EmitSEHAbnormalTermination();
2037 
2038   void EmitCXXForRangeStmt(const CXXForRangeStmt &S,
2039                            ArrayRef<const Attr *> Attrs = None);
2040 
2041   LValue InitCapturedStruct(const CapturedStmt &S);
2042   llvm::Function *EmitCapturedStmt(const CapturedStmt &S, CapturedRegionKind K);
2043   void GenerateCapturedStmtFunctionProlog(const CapturedStmt &S);
2044   llvm::Function *GenerateCapturedStmtFunctionEpilog(const CapturedStmt &S);
2045   llvm::Function *GenerateCapturedStmtFunction(const CapturedStmt &S);
2046   llvm::Value *GenerateCapturedStmtArgument(const CapturedStmt &S);
2047   void EmitOMPAggregateAssign(LValue OriginalAddr, llvm::Value *PrivateAddr,
2048                               const Expr *AssignExpr, QualType Type,
2049                               const VarDecl *VDInit);
2050   void EmitOMPFirstprivateClause(const OMPExecutableDirective &D,
2051                                  OMPPrivateScope &PrivateScope);
2052   void EmitOMPPrivateClause(const OMPExecutableDirective &D,
2053                             OMPPrivateScope &PrivateScope);
2054 
2055   void EmitOMPParallelDirective(const OMPParallelDirective &S);
2056   void EmitOMPSimdDirective(const OMPSimdDirective &S);
2057   void EmitOMPForDirective(const OMPForDirective &S);
2058   void EmitOMPForSimdDirective(const OMPForSimdDirective &S);
2059   void EmitOMPSectionsDirective(const OMPSectionsDirective &S);
2060   void EmitOMPSectionDirective(const OMPSectionDirective &S);
2061   void EmitOMPSingleDirective(const OMPSingleDirective &S);
2062   void EmitOMPMasterDirective(const OMPMasterDirective &S);
2063   void EmitOMPCriticalDirective(const OMPCriticalDirective &S);
2064   void EmitOMPParallelForDirective(const OMPParallelForDirective &S);
2065   void EmitOMPParallelForSimdDirective(const OMPParallelForSimdDirective &S);
2066   void EmitOMPParallelSectionsDirective(const OMPParallelSectionsDirective &S);
2067   void EmitOMPTaskDirective(const OMPTaskDirective &S);
2068   void EmitOMPTaskyieldDirective(const OMPTaskyieldDirective &S);
2069   void EmitOMPBarrierDirective(const OMPBarrierDirective &S);
2070   void EmitOMPTaskwaitDirective(const OMPTaskwaitDirective &S);
2071   void EmitOMPFlushDirective(const OMPFlushDirective &S);
2072   void EmitOMPOrderedDirective(const OMPOrderedDirective &S);
2073   void EmitOMPAtomicDirective(const OMPAtomicDirective &S);
2074   void EmitOMPTargetDirective(const OMPTargetDirective &S);
2075   void EmitOMPTeamsDirective(const OMPTeamsDirective &S);
2076 
2077 private:
2078 
2079   /// Helpers for the OpenMP loop directives.
2080   void EmitOMPLoopBody(const OMPLoopDirective &Directive,
2081                        bool SeparateIter = false);
2082   void EmitOMPInnerLoop(const OMPLoopDirective &S, OMPPrivateScope &LoopScope,
2083                         bool SeparateIter = false);
2084   void EmitOMPSimdFinal(const OMPLoopDirective &S);
2085   void EmitOMPWorksharingLoop(const OMPLoopDirective &S);
2086   void EmitOMPForOuterLoop(OpenMPScheduleClauseKind ScheduleKind,
2087                            const OMPLoopDirective &S,
2088                            OMPPrivateScope &LoopScope, llvm::Value *LB,
2089                            llvm::Value *UB, llvm::Value *ST, llvm::Value *IL,
2090                            llvm::Value *Chunk);
2091 
2092 public:
2093 
2094   //===--------------------------------------------------------------------===//
2095   //                         LValue Expression Emission
2096   //===--------------------------------------------------------------------===//
2097 
2098   /// GetUndefRValue - Get an appropriate 'undef' rvalue for the given type.
2099   RValue GetUndefRValue(QualType Ty);
2100 
2101   /// EmitUnsupportedRValue - Emit a dummy r-value using the type of E
2102   /// and issue an ErrorUnsupported style diagnostic (using the
2103   /// provided Name).
2104   RValue EmitUnsupportedRValue(const Expr *E,
2105                                const char *Name);
2106 
2107   /// EmitUnsupportedLValue - Emit a dummy l-value using the type of E and issue
2108   /// an ErrorUnsupported style diagnostic (using the provided Name).
2109   LValue EmitUnsupportedLValue(const Expr *E,
2110                                const char *Name);
2111 
2112   /// EmitLValue - Emit code to compute a designator that specifies the location
2113   /// of the expression.
2114   ///
2115   /// This can return one of two things: a simple address or a bitfield
2116   /// reference.  In either case, the LLVM Value* in the LValue structure is
2117   /// guaranteed to be an LLVM pointer type.
2118   ///
2119   /// If this returns a bitfield reference, nothing about the pointee type of
2120   /// the LLVM value is known: For example, it may not be a pointer to an
2121   /// integer.
2122   ///
2123   /// If this returns a normal address, and if the lvalue's C type is fixed
2124   /// size, this method guarantees that the returned pointer type will point to
2125   /// an LLVM type of the same size of the lvalue's type.  If the lvalue has a
2126   /// variable length type, this is not possible.
2127   ///
2128   LValue EmitLValue(const Expr *E);
2129 
2130   /// \brief Same as EmitLValue but additionally we generate checking code to
2131   /// guard against undefined behavior.  This is only suitable when we know
2132   /// that the address will be used to access the object.
2133   LValue EmitCheckedLValue(const Expr *E, TypeCheckKind TCK);
2134 
2135   RValue convertTempToRValue(llvm::Value *addr, QualType type,
2136                              SourceLocation Loc);
2137 
2138   void EmitAtomicInit(Expr *E, LValue lvalue);
2139 
2140   RValue EmitAtomicLoad(LValue lvalue, SourceLocation loc,
2141                         AggValueSlot slot = AggValueSlot::ignored());
2142 
2143   void EmitAtomicStore(RValue rvalue, LValue lvalue, bool isInit);
2144 
2145   std::pair<RValue, RValue> EmitAtomicCompareExchange(
2146       LValue Obj, RValue Expected, RValue Desired, SourceLocation Loc,
2147       llvm::AtomicOrdering Success = llvm::SequentiallyConsistent,
2148       llvm::AtomicOrdering Failure = llvm::SequentiallyConsistent,
2149       bool IsWeak = false, AggValueSlot Slot = AggValueSlot::ignored());
2150 
2151   /// EmitToMemory - Change a scalar value from its value
2152   /// representation to its in-memory representation.
2153   llvm::Value *EmitToMemory(llvm::Value *Value, QualType Ty);
2154 
2155   /// EmitFromMemory - Change a scalar value from its memory
2156   /// representation to its value representation.
2157   llvm::Value *EmitFromMemory(llvm::Value *Value, QualType Ty);
2158 
2159   /// EmitLoadOfScalar - Load a scalar value from an address, taking
2160   /// care to appropriately convert from the memory representation to
2161   /// the LLVM value representation.
2162   llvm::Value *EmitLoadOfScalar(llvm::Value *Addr, bool Volatile,
2163                                 unsigned Alignment, QualType Ty,
2164                                 SourceLocation Loc,
2165                                 llvm::MDNode *TBAAInfo = nullptr,
2166                                 QualType TBAABaseTy = QualType(),
2167                                 uint64_t TBAAOffset = 0);
2168 
2169   /// EmitLoadOfScalar - Load a scalar value from an address, taking
2170   /// care to appropriately convert from the memory representation to
2171   /// the LLVM value representation.  The l-value must be a simple
2172   /// l-value.
2173   llvm::Value *EmitLoadOfScalar(LValue lvalue, SourceLocation Loc);
2174 
2175   /// EmitStoreOfScalar - Store a scalar value to an address, taking
2176   /// care to appropriately convert from the memory representation to
2177   /// the LLVM value representation.
2178   void EmitStoreOfScalar(llvm::Value *Value, llvm::Value *Addr,
2179                          bool Volatile, unsigned Alignment, QualType Ty,
2180                          llvm::MDNode *TBAAInfo = nullptr, bool isInit = false,
2181                          QualType TBAABaseTy = QualType(),
2182                          uint64_t TBAAOffset = 0);
2183 
2184   /// EmitStoreOfScalar - Store a scalar value to an address, taking
2185   /// care to appropriately convert from the memory representation to
2186   /// the LLVM value representation.  The l-value must be a simple
2187   /// l-value.  The isInit flag indicates whether this is an initialization.
2188   /// If so, atomic qualifiers are ignored and the store is always non-atomic.
2189   void EmitStoreOfScalar(llvm::Value *value, LValue lvalue, bool isInit=false);
2190 
2191   /// EmitLoadOfLValue - Given an expression that represents a value lvalue,
2192   /// this method emits the address of the lvalue, then loads the result as an
2193   /// rvalue, returning the rvalue.
2194   RValue EmitLoadOfLValue(LValue V, SourceLocation Loc);
2195   RValue EmitLoadOfExtVectorElementLValue(LValue V);
2196   RValue EmitLoadOfBitfieldLValue(LValue LV);
2197   RValue EmitLoadOfGlobalRegLValue(LValue LV);
2198 
2199   /// EmitStoreThroughLValue - Store the specified rvalue into the specified
2200   /// lvalue, where both are guaranteed to the have the same type, and that type
2201   /// is 'Ty'.
2202   void EmitStoreThroughLValue(RValue Src, LValue Dst, bool isInit = false);
2203   void EmitStoreThroughExtVectorComponentLValue(RValue Src, LValue Dst);
2204   void EmitStoreThroughGlobalRegLValue(RValue Src, LValue Dst);
2205 
2206   /// EmitStoreThroughBitfieldLValue - Store Src into Dst with same constraints
2207   /// as EmitStoreThroughLValue.
2208   ///
2209   /// \param Result [out] - If non-null, this will be set to a Value* for the
2210   /// bit-field contents after the store, appropriate for use as the result of
2211   /// an assignment to the bit-field.
2212   void EmitStoreThroughBitfieldLValue(RValue Src, LValue Dst,
2213                                       llvm::Value **Result=nullptr);
2214 
2215   /// Emit an l-value for an assignment (simple or compound) of complex type.
2216   LValue EmitComplexAssignmentLValue(const BinaryOperator *E);
2217   LValue EmitComplexCompoundAssignmentLValue(const CompoundAssignOperator *E);
2218   LValue EmitScalarCompooundAssignWithComplex(const CompoundAssignOperator *E,
2219                                               llvm::Value *&Result);
2220 
2221   // Note: only available for agg return types
2222   LValue EmitBinaryOperatorLValue(const BinaryOperator *E);
2223   LValue EmitCompoundAssignmentLValue(const CompoundAssignOperator *E);
2224   // Note: only available for agg return types
2225   LValue EmitCallExprLValue(const CallExpr *E);
2226   // Note: only available for agg return types
2227   LValue EmitVAArgExprLValue(const VAArgExpr *E);
2228   LValue EmitDeclRefLValue(const DeclRefExpr *E);
2229   LValue EmitReadRegister(const VarDecl *VD);
2230   LValue EmitStringLiteralLValue(const StringLiteral *E);
2231   LValue EmitObjCEncodeExprLValue(const ObjCEncodeExpr *E);
2232   LValue EmitPredefinedLValue(const PredefinedExpr *E);
2233   LValue EmitUnaryOpLValue(const UnaryOperator *E);
2234   LValue EmitArraySubscriptExpr(const ArraySubscriptExpr *E,
2235                                 bool Accessed = false);
2236   LValue EmitExtVectorElementExpr(const ExtVectorElementExpr *E);
2237   LValue EmitMemberExpr(const MemberExpr *E);
2238   LValue EmitObjCIsaExpr(const ObjCIsaExpr *E);
2239   LValue EmitCompoundLiteralLValue(const CompoundLiteralExpr *E);
2240   LValue EmitInitListLValue(const InitListExpr *E);
2241   LValue EmitConditionalOperatorLValue(const AbstractConditionalOperator *E);
2242   LValue EmitCastLValue(const CastExpr *E);
2243   LValue EmitMaterializeTemporaryExpr(const MaterializeTemporaryExpr *E);
2244   LValue EmitOpaqueValueLValue(const OpaqueValueExpr *e);
2245 
2246   llvm::Value *EmitExtVectorElementLValue(LValue V);
2247 
2248   RValue EmitRValueForField(LValue LV, const FieldDecl *FD, SourceLocation Loc);
2249 
2250   class ConstantEmission {
2251     llvm::PointerIntPair<llvm::Constant*, 1, bool> ValueAndIsReference;
2252     ConstantEmission(llvm::Constant *C, bool isReference)
2253       : ValueAndIsReference(C, isReference) {}
2254   public:
2255     ConstantEmission() {}
2256     static ConstantEmission forReference(llvm::Constant *C) {
2257       return ConstantEmission(C, true);
2258     }
2259     static ConstantEmission forValue(llvm::Constant *C) {
2260       return ConstantEmission(C, false);
2261     }
2262 
2263     LLVM_EXPLICIT operator bool() const {
2264       return ValueAndIsReference.getOpaqueValue() != nullptr;
2265     }
2266 
2267     bool isReference() const { return ValueAndIsReference.getInt(); }
2268     LValue getReferenceLValue(CodeGenFunction &CGF, Expr *refExpr) const {
2269       assert(isReference());
2270       return CGF.MakeNaturalAlignAddrLValue(ValueAndIsReference.getPointer(),
2271                                             refExpr->getType());
2272     }
2273 
2274     llvm::Constant *getValue() const {
2275       assert(!isReference());
2276       return ValueAndIsReference.getPointer();
2277     }
2278   };
2279 
2280   ConstantEmission tryEmitAsConstant(DeclRefExpr *refExpr);
2281 
2282   RValue EmitPseudoObjectRValue(const PseudoObjectExpr *e,
2283                                 AggValueSlot slot = AggValueSlot::ignored());
2284   LValue EmitPseudoObjectLValue(const PseudoObjectExpr *e);
2285 
2286   llvm::Value *EmitIvarOffset(const ObjCInterfaceDecl *Interface,
2287                               const ObjCIvarDecl *Ivar);
2288   LValue EmitLValueForField(LValue Base, const FieldDecl* Field);
2289   LValue EmitLValueForLambdaField(const FieldDecl *Field);
2290 
2291   /// EmitLValueForFieldInitialization - Like EmitLValueForField, except that
2292   /// if the Field is a reference, this will return the address of the reference
2293   /// and not the address of the value stored in the reference.
2294   LValue EmitLValueForFieldInitialization(LValue Base,
2295                                           const FieldDecl* Field);
2296 
2297   LValue EmitLValueForIvar(QualType ObjectTy,
2298                            llvm::Value* Base, const ObjCIvarDecl *Ivar,
2299                            unsigned CVRQualifiers);
2300 
2301   LValue EmitCXXConstructLValue(const CXXConstructExpr *E);
2302   LValue EmitCXXBindTemporaryLValue(const CXXBindTemporaryExpr *E);
2303   LValue EmitLambdaLValue(const LambdaExpr *E);
2304   LValue EmitCXXTypeidLValue(const CXXTypeidExpr *E);
2305   LValue EmitCXXUuidofLValue(const CXXUuidofExpr *E);
2306 
2307   LValue EmitObjCMessageExprLValue(const ObjCMessageExpr *E);
2308   LValue EmitObjCIvarRefLValue(const ObjCIvarRefExpr *E);
2309   LValue EmitStmtExprLValue(const StmtExpr *E);
2310   LValue EmitPointerToDataMemberBinaryExpr(const BinaryOperator *E);
2311   LValue EmitObjCSelectorLValue(const ObjCSelectorExpr *E);
2312   void   EmitDeclRefExprDbgValue(const DeclRefExpr *E, llvm::Constant *Init);
2313 
2314   //===--------------------------------------------------------------------===//
2315   //                         Scalar Expression Emission
2316   //===--------------------------------------------------------------------===//
2317 
2318   /// EmitCall - Generate a call of the given function, expecting the given
2319   /// result type, and using the given argument list which specifies both the
2320   /// LLVM arguments and the types they were derived from.
2321   ///
2322   /// \param TargetDecl - If given, the decl of the function in a direct call;
2323   /// used to set attributes on the call (noreturn, etc.).
2324   RValue EmitCall(const CGFunctionInfo &FnInfo,
2325                   llvm::Value *Callee,
2326                   ReturnValueSlot ReturnValue,
2327                   const CallArgList &Args,
2328                   const Decl *TargetDecl = nullptr,
2329                   llvm::Instruction **callOrInvoke = nullptr);
2330 
2331   RValue EmitCall(QualType FnType, llvm::Value *Callee, const CallExpr *E,
2332                   ReturnValueSlot ReturnValue,
2333                   const Decl *TargetDecl = nullptr,
2334                   llvm::Value *Chain = nullptr);
2335   RValue EmitCallExpr(const CallExpr *E,
2336                       ReturnValueSlot ReturnValue = ReturnValueSlot());
2337 
2338   llvm::CallInst *EmitRuntimeCall(llvm::Value *callee,
2339                                   const Twine &name = "");
2340   llvm::CallInst *EmitRuntimeCall(llvm::Value *callee,
2341                                   ArrayRef<llvm::Value*> args,
2342                                   const Twine &name = "");
2343   llvm::CallInst *EmitNounwindRuntimeCall(llvm::Value *callee,
2344                                           const Twine &name = "");
2345   llvm::CallInst *EmitNounwindRuntimeCall(llvm::Value *callee,
2346                                           ArrayRef<llvm::Value*> args,
2347                                           const Twine &name = "");
2348 
2349   llvm::CallSite EmitCallOrInvoke(llvm::Value *Callee,
2350                                   ArrayRef<llvm::Value *> Args,
2351                                   const Twine &Name = "");
2352   llvm::CallSite EmitCallOrInvoke(llvm::Value *Callee,
2353                                   const Twine &Name = "");
2354   llvm::CallSite EmitRuntimeCallOrInvoke(llvm::Value *callee,
2355                                          ArrayRef<llvm::Value*> args,
2356                                          const Twine &name = "");
2357   llvm::CallSite EmitRuntimeCallOrInvoke(llvm::Value *callee,
2358                                          const Twine &name = "");
2359   void EmitNoreturnRuntimeCallOrInvoke(llvm::Value *callee,
2360                                        ArrayRef<llvm::Value*> args);
2361 
2362   llvm::Value *BuildAppleKextVirtualCall(const CXXMethodDecl *MD,
2363                                          NestedNameSpecifier *Qual,
2364                                          llvm::Type *Ty);
2365 
2366   llvm::Value *BuildAppleKextVirtualDestructorCall(const CXXDestructorDecl *DD,
2367                                                    CXXDtorType Type,
2368                                                    const CXXRecordDecl *RD);
2369 
2370   RValue
2371   EmitCXXMemberOrOperatorCall(const CXXMethodDecl *MD, llvm::Value *Callee,
2372                               ReturnValueSlot ReturnValue, llvm::Value *This,
2373                               llvm::Value *ImplicitParam,
2374                               QualType ImplicitParamTy, const CallExpr *E);
2375   RValue EmitCXXStructorCall(const CXXMethodDecl *MD, llvm::Value *Callee,
2376                              ReturnValueSlot ReturnValue, llvm::Value *This,
2377                              llvm::Value *ImplicitParam,
2378                              QualType ImplicitParamTy, const CallExpr *E,
2379                              StructorType Type);
2380   RValue EmitCXXMemberCallExpr(const CXXMemberCallExpr *E,
2381                                ReturnValueSlot ReturnValue);
2382   RValue EmitCXXMemberOrOperatorMemberCallExpr(const CallExpr *CE,
2383                                                const CXXMethodDecl *MD,
2384                                                ReturnValueSlot ReturnValue,
2385                                                bool HasQualifier,
2386                                                NestedNameSpecifier *Qualifier,
2387                                                bool IsArrow, const Expr *Base);
2388   // Compute the object pointer.
2389   RValue EmitCXXMemberPointerCallExpr(const CXXMemberCallExpr *E,
2390                                       ReturnValueSlot ReturnValue);
2391 
2392   RValue EmitCXXOperatorMemberCallExpr(const CXXOperatorCallExpr *E,
2393                                        const CXXMethodDecl *MD,
2394                                        ReturnValueSlot ReturnValue);
2395 
2396   RValue EmitCUDAKernelCallExpr(const CUDAKernelCallExpr *E,
2397                                 ReturnValueSlot ReturnValue);
2398 
2399 
2400   RValue EmitBuiltinExpr(const FunctionDecl *FD,
2401                          unsigned BuiltinID, const CallExpr *E,
2402                          ReturnValueSlot ReturnValue);
2403 
2404   RValue EmitBlockCallExpr(const CallExpr *E, ReturnValueSlot ReturnValue);
2405 
2406   /// EmitTargetBuiltinExpr - Emit the given builtin call. Returns 0 if the call
2407   /// is unhandled by the current target.
2408   llvm::Value *EmitTargetBuiltinExpr(unsigned BuiltinID, const CallExpr *E);
2409 
2410   llvm::Value *EmitAArch64CompareBuiltinExpr(llvm::Value *Op, llvm::Type *Ty,
2411                                              const llvm::CmpInst::Predicate Fp,
2412                                              const llvm::CmpInst::Predicate Ip,
2413                                              const llvm::Twine &Name = "");
2414   llvm::Value *EmitARMBuiltinExpr(unsigned BuiltinID, const CallExpr *E);
2415 
2416   llvm::Value *EmitCommonNeonBuiltinExpr(unsigned BuiltinID,
2417                                          unsigned LLVMIntrinsic,
2418                                          unsigned AltLLVMIntrinsic,
2419                                          const char *NameHint,
2420                                          unsigned Modifier,
2421                                          const CallExpr *E,
2422                                          SmallVectorImpl<llvm::Value *> &Ops,
2423                                          llvm::Value *Align = nullptr);
2424   llvm::Function *LookupNeonLLVMIntrinsic(unsigned IntrinsicID,
2425                                           unsigned Modifier, llvm::Type *ArgTy,
2426                                           const CallExpr *E);
2427   llvm::Value *EmitNeonCall(llvm::Function *F,
2428                             SmallVectorImpl<llvm::Value*> &O,
2429                             const char *name,
2430                             unsigned shift = 0, bool rightshift = false);
2431   llvm::Value *EmitNeonSplat(llvm::Value *V, llvm::Constant *Idx);
2432   llvm::Value *EmitNeonShiftVector(llvm::Value *V, llvm::Type *Ty,
2433                                    bool negateForRightShift);
2434   llvm::Value *EmitNeonRShiftImm(llvm::Value *Vec, llvm::Value *Amt,
2435                                  llvm::Type *Ty, bool usgn, const char *name);
2436   // Helper functions for EmitAArch64BuiltinExpr.
2437   llvm::Value *vectorWrapScalar8(llvm::Value *Op);
2438   llvm::Value *vectorWrapScalar16(llvm::Value *Op);
2439   llvm::Value *emitVectorWrappedScalar8Intrinsic(
2440       unsigned Int, SmallVectorImpl<llvm::Value *> &Ops, const char *Name);
2441   llvm::Value *emitVectorWrappedScalar16Intrinsic(
2442       unsigned Int, SmallVectorImpl<llvm::Value *> &Ops, const char *Name);
2443   llvm::Value *EmitAArch64BuiltinExpr(unsigned BuiltinID, const CallExpr *E);
2444   llvm::Value *EmitNeon64Call(llvm::Function *F,
2445                               llvm::SmallVectorImpl<llvm::Value *> &O,
2446                               const char *name);
2447 
2448   llvm::Value *BuildVector(ArrayRef<llvm::Value*> Ops);
2449   llvm::Value *EmitX86BuiltinExpr(unsigned BuiltinID, const CallExpr *E);
2450   llvm::Value *EmitPPCBuiltinExpr(unsigned BuiltinID, const CallExpr *E);
2451   llvm::Value *EmitR600BuiltinExpr(unsigned BuiltinID, const CallExpr *E);
2452 
2453   llvm::Value *EmitObjCProtocolExpr(const ObjCProtocolExpr *E);
2454   llvm::Value *EmitObjCStringLiteral(const ObjCStringLiteral *E);
2455   llvm::Value *EmitObjCBoxedExpr(const ObjCBoxedExpr *E);
2456   llvm::Value *EmitObjCArrayLiteral(const ObjCArrayLiteral *E);
2457   llvm::Value *EmitObjCDictionaryLiteral(const ObjCDictionaryLiteral *E);
2458   llvm::Value *EmitObjCCollectionLiteral(const Expr *E,
2459                                 const ObjCMethodDecl *MethodWithObjects);
2460   llvm::Value *EmitObjCSelectorExpr(const ObjCSelectorExpr *E);
2461   RValue EmitObjCMessageExpr(const ObjCMessageExpr *E,
2462                              ReturnValueSlot Return = ReturnValueSlot());
2463 
2464   /// Retrieves the default cleanup kind for an ARC cleanup.
2465   /// Except under -fobjc-arc-eh, ARC cleanups are normal-only.
2466   CleanupKind getARCCleanupKind() {
2467     return CGM.getCodeGenOpts().ObjCAutoRefCountExceptions
2468              ? NormalAndEHCleanup : NormalCleanup;
2469   }
2470 
2471   // ARC primitives.
2472   void EmitARCInitWeak(llvm::Value *value, llvm::Value *addr);
2473   void EmitARCDestroyWeak(llvm::Value *addr);
2474   llvm::Value *EmitARCLoadWeak(llvm::Value *addr);
2475   llvm::Value *EmitARCLoadWeakRetained(llvm::Value *addr);
2476   llvm::Value *EmitARCStoreWeak(llvm::Value *value, llvm::Value *addr,
2477                                 bool ignored);
2478   void EmitARCCopyWeak(llvm::Value *dst, llvm::Value *src);
2479   void EmitARCMoveWeak(llvm::Value *dst, llvm::Value *src);
2480   llvm::Value *EmitARCRetainAutorelease(QualType type, llvm::Value *value);
2481   llvm::Value *EmitARCRetainAutoreleaseNonBlock(llvm::Value *value);
2482   llvm::Value *EmitARCStoreStrong(LValue lvalue, llvm::Value *value,
2483                                   bool resultIgnored);
2484   llvm::Value *EmitARCStoreStrongCall(llvm::Value *addr, llvm::Value *value,
2485                                       bool resultIgnored);
2486   llvm::Value *EmitARCRetain(QualType type, llvm::Value *value);
2487   llvm::Value *EmitARCRetainNonBlock(llvm::Value *value);
2488   llvm::Value *EmitARCRetainBlock(llvm::Value *value, bool mandatory);
2489   void EmitARCDestroyStrong(llvm::Value *addr, ARCPreciseLifetime_t precise);
2490   void EmitARCRelease(llvm::Value *value, ARCPreciseLifetime_t precise);
2491   llvm::Value *EmitARCAutorelease(llvm::Value *value);
2492   llvm::Value *EmitARCAutoreleaseReturnValue(llvm::Value *value);
2493   llvm::Value *EmitARCRetainAutoreleaseReturnValue(llvm::Value *value);
2494   llvm::Value *EmitARCRetainAutoreleasedReturnValue(llvm::Value *value);
2495 
2496   std::pair<LValue,llvm::Value*>
2497   EmitARCStoreAutoreleasing(const BinaryOperator *e);
2498   std::pair<LValue,llvm::Value*>
2499   EmitARCStoreStrong(const BinaryOperator *e, bool ignored);
2500 
2501   llvm::Value *EmitObjCThrowOperand(const Expr *expr);
2502 
2503   llvm::Value *EmitObjCProduceObject(QualType T, llvm::Value *Ptr);
2504   llvm::Value *EmitObjCConsumeObject(QualType T, llvm::Value *Ptr);
2505   llvm::Value *EmitObjCExtendObjectLifetime(QualType T, llvm::Value *Ptr);
2506 
2507   llvm::Value *EmitARCExtendBlockObject(const Expr *expr);
2508   llvm::Value *EmitARCRetainScalarExpr(const Expr *expr);
2509   llvm::Value *EmitARCRetainAutoreleaseScalarExpr(const Expr *expr);
2510 
2511   void EmitARCIntrinsicUse(ArrayRef<llvm::Value*> values);
2512 
2513   static Destroyer destroyARCStrongImprecise;
2514   static Destroyer destroyARCStrongPrecise;
2515   static Destroyer destroyARCWeak;
2516 
2517   void EmitObjCAutoreleasePoolPop(llvm::Value *Ptr);
2518   llvm::Value *EmitObjCAutoreleasePoolPush();
2519   llvm::Value *EmitObjCMRRAutoreleasePoolPush();
2520   void EmitObjCAutoreleasePoolCleanup(llvm::Value *Ptr);
2521   void EmitObjCMRRAutoreleasePoolPop(llvm::Value *Ptr);
2522 
2523   /// \brief Emits a reference binding to the passed in expression.
2524   RValue EmitReferenceBindingToExpr(const Expr *E);
2525 
2526   //===--------------------------------------------------------------------===//
2527   //                           Expression Emission
2528   //===--------------------------------------------------------------------===//
2529 
2530   // Expressions are broken into three classes: scalar, complex, aggregate.
2531 
2532   /// EmitScalarExpr - Emit the computation of the specified expression of LLVM
2533   /// scalar type, returning the result.
2534   llvm::Value *EmitScalarExpr(const Expr *E , bool IgnoreResultAssign = false);
2535 
2536   /// EmitScalarConversion - Emit a conversion from the specified type to the
2537   /// specified destination type, both of which are LLVM scalar types.
2538   llvm::Value *EmitScalarConversion(llvm::Value *Src, QualType SrcTy,
2539                                     QualType DstTy);
2540 
2541   /// EmitComplexToScalarConversion - Emit a conversion from the specified
2542   /// complex type to the specified destination type, where the destination type
2543   /// is an LLVM scalar type.
2544   llvm::Value *EmitComplexToScalarConversion(ComplexPairTy Src, QualType SrcTy,
2545                                              QualType DstTy);
2546 
2547 
2548   /// EmitAggExpr - Emit the computation of the specified expression
2549   /// of aggregate type.  The result is computed into the given slot,
2550   /// which may be null to indicate that the value is not needed.
2551   void EmitAggExpr(const Expr *E, AggValueSlot AS);
2552 
2553   /// EmitAggExprToLValue - Emit the computation of the specified expression of
2554   /// aggregate type into a temporary LValue.
2555   LValue EmitAggExprToLValue(const Expr *E);
2556 
2557   /// EmitGCMemmoveCollectable - Emit special API for structs with object
2558   /// pointers.
2559   void EmitGCMemmoveCollectable(llvm::Value *DestPtr, llvm::Value *SrcPtr,
2560                                 QualType Ty);
2561 
2562   /// EmitExtendGCLifetime - Given a pointer to an Objective-C object,
2563   /// make sure it survives garbage collection until this point.
2564   void EmitExtendGCLifetime(llvm::Value *object);
2565 
2566   /// EmitComplexExpr - Emit the computation of the specified expression of
2567   /// complex type, returning the result.
2568   ComplexPairTy EmitComplexExpr(const Expr *E,
2569                                 bool IgnoreReal = false,
2570                                 bool IgnoreImag = false);
2571 
2572   /// EmitComplexExprIntoLValue - Emit the given expression of complex
2573   /// type and place its result into the specified l-value.
2574   void EmitComplexExprIntoLValue(const Expr *E, LValue dest, bool isInit);
2575 
2576   /// EmitStoreOfComplex - Store a complex number into the specified l-value.
2577   void EmitStoreOfComplex(ComplexPairTy V, LValue dest, bool isInit);
2578 
2579   /// EmitLoadOfComplex - Load a complex number from the specified l-value.
2580   ComplexPairTy EmitLoadOfComplex(LValue src, SourceLocation loc);
2581 
2582   /// AddInitializerToStaticVarDecl - Add the initializer for 'D' to the
2583   /// global variable that has already been created for it.  If the initializer
2584   /// has a different type than GV does, this may free GV and return a different
2585   /// one.  Otherwise it just returns GV.
2586   llvm::GlobalVariable *
2587   AddInitializerToStaticVarDecl(const VarDecl &D,
2588                                 llvm::GlobalVariable *GV);
2589 
2590 
2591   /// EmitCXXGlobalVarDeclInit - Create the initializer for a C++
2592   /// variable with global storage.
2593   void EmitCXXGlobalVarDeclInit(const VarDecl &D, llvm::Constant *DeclPtr,
2594                                 bool PerformInit);
2595 
2596   llvm::Constant *createAtExitStub(const VarDecl &VD, llvm::Constant *Dtor,
2597                                    llvm::Constant *Addr);
2598 
2599   /// Call atexit() with a function that passes the given argument to
2600   /// the given function.
2601   void registerGlobalDtorWithAtExit(const VarDecl &D, llvm::Constant *fn,
2602                                     llvm::Constant *addr);
2603 
2604   /// Emit code in this function to perform a guarded variable
2605   /// initialization.  Guarded initializations are used when it's not
2606   /// possible to prove that an initialization will be done exactly
2607   /// once, e.g. with a static local variable or a static data member
2608   /// of a class template.
2609   void EmitCXXGuardedInit(const VarDecl &D, llvm::GlobalVariable *DeclPtr,
2610                           bool PerformInit);
2611 
2612   /// GenerateCXXGlobalInitFunc - Generates code for initializing global
2613   /// variables.
2614   void GenerateCXXGlobalInitFunc(llvm::Function *Fn,
2615                                  ArrayRef<llvm::Function *> CXXThreadLocals,
2616                                  llvm::GlobalVariable *Guard = nullptr);
2617 
2618   /// GenerateCXXGlobalDtorsFunc - Generates code for destroying global
2619   /// variables.
2620   void GenerateCXXGlobalDtorsFunc(llvm::Function *Fn,
2621                                   const std::vector<std::pair<llvm::WeakVH,
2622                                   llvm::Constant*> > &DtorsAndObjects);
2623 
2624   void GenerateCXXGlobalVarDeclInitFunc(llvm::Function *Fn,
2625                                         const VarDecl *D,
2626                                         llvm::GlobalVariable *Addr,
2627                                         bool PerformInit);
2628 
2629   void EmitCXXConstructExpr(const CXXConstructExpr *E, AggValueSlot Dest);
2630 
2631   void EmitSynthesizedCXXCopyCtor(llvm::Value *Dest, llvm::Value *Src,
2632                                   const Expr *Exp);
2633 
2634   void enterFullExpression(const ExprWithCleanups *E) {
2635     if (E->getNumObjects() == 0) return;
2636     enterNonTrivialFullExpression(E);
2637   }
2638   void enterNonTrivialFullExpression(const ExprWithCleanups *E);
2639 
2640   void EmitCXXThrowExpr(const CXXThrowExpr *E, bool KeepInsertionPoint = true);
2641 
2642   void EmitLambdaExpr(const LambdaExpr *E, AggValueSlot Dest);
2643 
2644   RValue EmitAtomicExpr(AtomicExpr *E, llvm::Value *Dest = nullptr);
2645 
2646   //===--------------------------------------------------------------------===//
2647   //                         Annotations Emission
2648   //===--------------------------------------------------------------------===//
2649 
2650   /// Emit an annotation call (intrinsic or builtin).
2651   llvm::Value *EmitAnnotationCall(llvm::Value *AnnotationFn,
2652                                   llvm::Value *AnnotatedVal,
2653                                   StringRef AnnotationStr,
2654                                   SourceLocation Location);
2655 
2656   /// Emit local annotations for the local variable V, declared by D.
2657   void EmitVarAnnotations(const VarDecl *D, llvm::Value *V);
2658 
2659   /// Emit field annotations for the given field & value. Returns the
2660   /// annotation result.
2661   llvm::Value *EmitFieldAnnotations(const FieldDecl *D, llvm::Value *V);
2662 
2663   //===--------------------------------------------------------------------===//
2664   //                             Internal Helpers
2665   //===--------------------------------------------------------------------===//
2666 
2667   /// ContainsLabel - Return true if the statement contains a label in it.  If
2668   /// this statement is not executed normally, it not containing a label means
2669   /// that we can just remove the code.
2670   static bool ContainsLabel(const Stmt *S, bool IgnoreCaseStmts = false);
2671 
2672   /// containsBreak - Return true if the statement contains a break out of it.
2673   /// If the statement (recursively) contains a switch or loop with a break
2674   /// inside of it, this is fine.
2675   static bool containsBreak(const Stmt *S);
2676 
2677   /// ConstantFoldsToSimpleInteger - If the specified expression does not fold
2678   /// to a constant, or if it does but contains a label, return false.  If it
2679   /// constant folds return true and set the boolean result in Result.
2680   bool ConstantFoldsToSimpleInteger(const Expr *Cond, bool &Result);
2681 
2682   /// ConstantFoldsToSimpleInteger - If the specified expression does not fold
2683   /// to a constant, or if it does but contains a label, return false.  If it
2684   /// constant folds return true and set the folded value.
2685   bool ConstantFoldsToSimpleInteger(const Expr *Cond, llvm::APSInt &Result);
2686 
2687   /// EmitBranchOnBoolExpr - Emit a branch on a boolean condition (e.g. for an
2688   /// if statement) to the specified blocks.  Based on the condition, this might
2689   /// try to simplify the codegen of the conditional based on the branch.
2690   /// TrueCount should be the number of times we expect the condition to
2691   /// evaluate to true based on PGO data.
2692   void EmitBranchOnBoolExpr(const Expr *Cond, llvm::BasicBlock *TrueBlock,
2693                             llvm::BasicBlock *FalseBlock, uint64_t TrueCount);
2694 
2695   /// \brief Emit a description of a type in a format suitable for passing to
2696   /// a runtime sanitizer handler.
2697   llvm::Constant *EmitCheckTypeDescriptor(QualType T);
2698 
2699   /// \brief Convert a value into a format suitable for passing to a runtime
2700   /// sanitizer handler.
2701   llvm::Value *EmitCheckValue(llvm::Value *V);
2702 
2703   /// \brief Emit a description of a source location in a format suitable for
2704   /// passing to a runtime sanitizer handler.
2705   llvm::Constant *EmitCheckSourceLocation(SourceLocation Loc);
2706 
2707   /// \brief Create a basic block that will call a handler function in a
2708   /// sanitizer runtime with the provided arguments, and create a conditional
2709   /// branch to it.
2710   void EmitCheck(ArrayRef<std::pair<llvm::Value *, SanitizerKind>> Checked,
2711                  StringRef CheckName, ArrayRef<llvm::Constant *> StaticArgs,
2712                  ArrayRef<llvm::Value *> DynamicArgs);
2713 
2714   /// \brief Create a basic block that will call the trap intrinsic, and emit a
2715   /// conditional branch to it, for the -ftrapv checks.
2716   void EmitTrapCheck(llvm::Value *Checked);
2717 
2718   /// EmitCallArg - Emit a single call argument.
2719   void EmitCallArg(CallArgList &args, const Expr *E, QualType ArgType);
2720 
2721   /// EmitDelegateCallArg - We are performing a delegate call; that
2722   /// is, the current function is delegating to another one.  Produce
2723   /// a r-value suitable for passing the given parameter.
2724   void EmitDelegateCallArg(CallArgList &args, const VarDecl *param,
2725                            SourceLocation loc);
2726 
2727   /// SetFPAccuracy - Set the minimum required accuracy of the given floating
2728   /// point operation, expressed as the maximum relative error in ulp.
2729   void SetFPAccuracy(llvm::Value *Val, float Accuracy);
2730 
2731 private:
2732   llvm::MDNode *getRangeForLoadFromType(QualType Ty);
2733   void EmitReturnOfRValue(RValue RV, QualType Ty);
2734 
2735   void deferPlaceholderReplacement(llvm::Instruction *Old, llvm::Value *New);
2736 
2737   llvm::SmallVector<std::pair<llvm::Instruction *, llvm::Value *>, 4>
2738   DeferredReplacements;
2739 
2740   /// ExpandTypeFromArgs - Reconstruct a structure of type \arg Ty
2741   /// from function arguments into \arg Dst. See ABIArgInfo::Expand.
2742   ///
2743   /// \param AI - The first function argument of the expansion.
2744   void ExpandTypeFromArgs(QualType Ty, LValue Dst,
2745                           SmallVectorImpl<llvm::Argument *>::iterator &AI);
2746 
2747   /// ExpandTypeToArgs - Expand an RValue \arg RV, with the LLVM type for \arg
2748   /// Ty, into individual arguments on the provided vector \arg IRCallArgs,
2749   /// starting at index \arg IRCallArgPos. See ABIArgInfo::Expand.
2750   void ExpandTypeToArgs(QualType Ty, RValue RV, llvm::FunctionType *IRFuncTy,
2751                         SmallVectorImpl<llvm::Value *> &IRCallArgs,
2752                         unsigned &IRCallArgPos);
2753 
2754   llvm::Value* EmitAsmInput(const TargetInfo::ConstraintInfo &Info,
2755                             const Expr *InputExpr, std::string &ConstraintStr);
2756 
2757   llvm::Value* EmitAsmInputLValue(const TargetInfo::ConstraintInfo &Info,
2758                                   LValue InputValue, QualType InputType,
2759                                   std::string &ConstraintStr,
2760                                   SourceLocation Loc);
2761 
2762 public:
2763   /// EmitCallArgs - Emit call arguments for a function.
2764   template <typename T>
2765   void EmitCallArgs(CallArgList &Args, const T *CallArgTypeInfo,
2766                     CallExpr::const_arg_iterator ArgBeg,
2767                     CallExpr::const_arg_iterator ArgEnd,
2768                     const FunctionDecl *CalleeDecl = nullptr,
2769                     unsigned ParamsToSkip = 0) {
2770     SmallVector<QualType, 16> ArgTypes;
2771     CallExpr::const_arg_iterator Arg = ArgBeg;
2772 
2773     assert((ParamsToSkip == 0 || CallArgTypeInfo) &&
2774            "Can't skip parameters if type info is not provided");
2775     if (CallArgTypeInfo) {
2776       // First, use the argument types that the type info knows about
2777       for (auto I = CallArgTypeInfo->param_type_begin() + ParamsToSkip,
2778                 E = CallArgTypeInfo->param_type_end();
2779            I != E; ++I, ++Arg) {
2780         assert(Arg != ArgEnd && "Running over edge of argument list!");
2781         assert(
2782             ((*I)->isVariablyModifiedType() ||
2783              getContext()
2784                      .getCanonicalType((*I).getNonReferenceType())
2785                      .getTypePtr() ==
2786                  getContext().getCanonicalType(Arg->getType()).getTypePtr()) &&
2787             "type mismatch in call argument!");
2788         ArgTypes.push_back(*I);
2789       }
2790     }
2791 
2792     // Either we've emitted all the call args, or we have a call to variadic
2793     // function.
2794     assert(
2795         (Arg == ArgEnd || !CallArgTypeInfo || CallArgTypeInfo->isVariadic()) &&
2796         "Extra arguments in non-variadic function!");
2797 
2798     // If we still have any arguments, emit them using the type of the argument.
2799     for (; Arg != ArgEnd; ++Arg)
2800       ArgTypes.push_back(getVarArgType(*Arg));
2801 
2802     EmitCallArgs(Args, ArgTypes, ArgBeg, ArgEnd, CalleeDecl, ParamsToSkip);
2803   }
2804 
2805   void EmitCallArgs(CallArgList &Args, ArrayRef<QualType> ArgTypes,
2806                     CallExpr::const_arg_iterator ArgBeg,
2807                     CallExpr::const_arg_iterator ArgEnd,
2808                     const FunctionDecl *CalleeDecl = nullptr,
2809                     unsigned ParamsToSkip = 0);
2810 
2811 private:
2812   QualType getVarArgType(const Expr *Arg);
2813 
2814   const TargetCodeGenInfo &getTargetHooks() const {
2815     return CGM.getTargetCodeGenInfo();
2816   }
2817 
2818   void EmitDeclMetadata();
2819 
2820   CodeGenModule::ByrefHelpers *
2821   buildByrefHelpers(llvm::StructType &byrefType,
2822                     const AutoVarEmission &emission);
2823 
2824   void AddObjCARCExceptionMetadata(llvm::Instruction *Inst);
2825 
2826   /// GetPointeeAlignment - Given an expression with a pointer type, emit the
2827   /// value and compute our best estimate of the alignment of the pointee.
2828   std::pair<llvm::Value*, unsigned> EmitPointerWithAlignment(const Expr *Addr);
2829 
2830   llvm::Value *GetValueForARMHint(unsigned BuiltinID);
2831 };
2832 
2833 /// Helper class with most of the code for saving a value for a
2834 /// conditional expression cleanup.
2835 struct DominatingLLVMValue {
2836   typedef llvm::PointerIntPair<llvm::Value*, 1, bool> saved_type;
2837 
2838   /// Answer whether the given value needs extra work to be saved.
2839   static bool needsSaving(llvm::Value *value) {
2840     // If it's not an instruction, we don't need to save.
2841     if (!isa<llvm::Instruction>(value)) return false;
2842 
2843     // If it's an instruction in the entry block, we don't need to save.
2844     llvm::BasicBlock *block = cast<llvm::Instruction>(value)->getParent();
2845     return (block != &block->getParent()->getEntryBlock());
2846   }
2847 
2848   /// Try to save the given value.
2849   static saved_type save(CodeGenFunction &CGF, llvm::Value *value) {
2850     if (!needsSaving(value)) return saved_type(value, false);
2851 
2852     // Otherwise we need an alloca.
2853     llvm::Value *alloca =
2854       CGF.CreateTempAlloca(value->getType(), "cond-cleanup.save");
2855     CGF.Builder.CreateStore(value, alloca);
2856 
2857     return saved_type(alloca, true);
2858   }
2859 
2860   static llvm::Value *restore(CodeGenFunction &CGF, saved_type value) {
2861     if (!value.getInt()) return value.getPointer();
2862     return CGF.Builder.CreateLoad(value.getPointer());
2863   }
2864 };
2865 
2866 /// A partial specialization of DominatingValue for llvm::Values that
2867 /// might be llvm::Instructions.
2868 template <class T> struct DominatingPointer<T,true> : DominatingLLVMValue {
2869   typedef T *type;
2870   static type restore(CodeGenFunction &CGF, saved_type value) {
2871     return static_cast<T*>(DominatingLLVMValue::restore(CGF, value));
2872   }
2873 };
2874 
2875 /// A specialization of DominatingValue for RValue.
2876 template <> struct DominatingValue<RValue> {
2877   typedef RValue type;
2878   class saved_type {
2879     enum Kind { ScalarLiteral, ScalarAddress, AggregateLiteral,
2880                 AggregateAddress, ComplexAddress };
2881 
2882     llvm::Value *Value;
2883     Kind K;
2884     saved_type(llvm::Value *v, Kind k) : Value(v), K(k) {}
2885 
2886   public:
2887     static bool needsSaving(RValue value);
2888     static saved_type save(CodeGenFunction &CGF, RValue value);
2889     RValue restore(CodeGenFunction &CGF);
2890 
2891     // implementations in CGExprCXX.cpp
2892   };
2893 
2894   static bool needsSaving(type value) {
2895     return saved_type::needsSaving(value);
2896   }
2897   static saved_type save(CodeGenFunction &CGF, type value) {
2898     return saved_type::save(CGF, value);
2899   }
2900   static type restore(CodeGenFunction &CGF, saved_type value) {
2901     return value.restore(CGF);
2902   }
2903 };
2904 
2905 }  // end namespace CodeGen
2906 }  // end namespace clang
2907 
2908 #endif
2909