1 //===-- CodeGenFunction.h - Per-Function state for LLVM CodeGen -*- C++ -*-===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This is the internal per-function state used for llvm translation.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #ifndef LLVM_CLANG_LIB_CODEGEN_CODEGENFUNCTION_H
15 #define LLVM_CLANG_LIB_CODEGEN_CODEGENFUNCTION_H
16 
17 #include "CGBuilder.h"
18 #include "CGDebugInfo.h"
19 #include "CGLoopInfo.h"
20 #include "CGValue.h"
21 #include "CodeGenModule.h"
22 #include "CodeGenPGO.h"
23 #include "EHScopeStack.h"
24 #include "clang/AST/CharUnits.h"
25 #include "clang/AST/ExprCXX.h"
26 #include "clang/AST/ExprObjC.h"
27 #include "clang/AST/ExprOpenMP.h"
28 #include "clang/AST/Type.h"
29 #include "clang/Basic/ABI.h"
30 #include "clang/Basic/CapturedStmt.h"
31 #include "clang/Basic/OpenMPKinds.h"
32 #include "clang/Basic/TargetInfo.h"
33 #include "clang/Frontend/CodeGenOptions.h"
34 #include "llvm/ADT/ArrayRef.h"
35 #include "llvm/ADT/DenseMap.h"
36 #include "llvm/ADT/SmallVector.h"
37 #include "llvm/IR/ValueHandle.h"
38 #include "llvm/Support/Debug.h"
39 #include "llvm/Transforms/Utils/SanitizerStats.h"
40 
41 namespace llvm {
42 class BasicBlock;
43 class LLVMContext;
44 class MDNode;
45 class Module;
46 class SwitchInst;
47 class Twine;
48 class Value;
49 class CallSite;
50 }
51 
52 namespace clang {
53 class ASTContext;
54 class BlockDecl;
55 class CXXDestructorDecl;
56 class CXXForRangeStmt;
57 class CXXTryStmt;
58 class Decl;
59 class LabelDecl;
60 class EnumConstantDecl;
61 class FunctionDecl;
62 class FunctionProtoType;
63 class LabelStmt;
64 class ObjCContainerDecl;
65 class ObjCInterfaceDecl;
66 class ObjCIvarDecl;
67 class ObjCMethodDecl;
68 class ObjCImplementationDecl;
69 class ObjCPropertyImplDecl;
70 class TargetInfo;
71 class VarDecl;
72 class ObjCForCollectionStmt;
73 class ObjCAtTryStmt;
74 class ObjCAtThrowStmt;
75 class ObjCAtSynchronizedStmt;
76 class ObjCAutoreleasePoolStmt;
77 
78 namespace CodeGen {
79 class CodeGenTypes;
80 class CGFunctionInfo;
81 class CGRecordLayout;
82 class CGBlockInfo;
83 class CGCXXABI;
84 class BlockByrefHelpers;
85 class BlockByrefInfo;
86 class BlockFlags;
87 class BlockFieldFlags;
88 class RegionCodeGenTy;
89 class TargetCodeGenInfo;
90 struct OMPTaskDataTy;
91 
92 /// The kind of evaluation to perform on values of a particular
93 /// type.  Basically, is the code in CGExprScalar, CGExprComplex, or
94 /// CGExprAgg?
95 ///
96 /// TODO: should vectors maybe be split out into their own thing?
97 enum TypeEvaluationKind {
98   TEK_Scalar,
99   TEK_Complex,
100   TEK_Aggregate
101 };
102 
103 /// CodeGenFunction - This class organizes the per-function state that is used
104 /// while generating LLVM code.
105 class CodeGenFunction : public CodeGenTypeCache {
106   CodeGenFunction(const CodeGenFunction &) = delete;
107   void operator=(const CodeGenFunction &) = delete;
108 
109   friend class CGCXXABI;
110 public:
111   /// A jump destination is an abstract label, branching to which may
112   /// require a jump out through normal cleanups.
113   struct JumpDest {
114     JumpDest() : Block(nullptr), ScopeDepth(), Index(0) {}
115     JumpDest(llvm::BasicBlock *Block,
116              EHScopeStack::stable_iterator Depth,
117              unsigned Index)
118       : Block(Block), ScopeDepth(Depth), Index(Index) {}
119 
120     bool isValid() const { return Block != nullptr; }
121     llvm::BasicBlock *getBlock() const { return Block; }
122     EHScopeStack::stable_iterator getScopeDepth() const { return ScopeDepth; }
123     unsigned getDestIndex() const { return Index; }
124 
125     // This should be used cautiously.
126     void setScopeDepth(EHScopeStack::stable_iterator depth) {
127       ScopeDepth = depth;
128     }
129 
130   private:
131     llvm::BasicBlock *Block;
132     EHScopeStack::stable_iterator ScopeDepth;
133     unsigned Index;
134   };
135 
136   CodeGenModule &CGM;  // Per-module state.
137   const TargetInfo &Target;
138 
139   typedef std::pair<llvm::Value *, llvm::Value *> ComplexPairTy;
140   LoopInfoStack LoopStack;
141   CGBuilderTy Builder;
142 
143   /// \brief CGBuilder insert helper. This function is called after an
144   /// instruction is created using Builder.
145   void InsertHelper(llvm::Instruction *I, const llvm::Twine &Name,
146                     llvm::BasicBlock *BB,
147                     llvm::BasicBlock::iterator InsertPt) const;
148 
149   /// CurFuncDecl - Holds the Decl for the current outermost
150   /// non-closure context.
151   const Decl *CurFuncDecl;
152   /// CurCodeDecl - This is the inner-most code context, which includes blocks.
153   const Decl *CurCodeDecl;
154   const CGFunctionInfo *CurFnInfo;
155   QualType FnRetTy;
156   llvm::Function *CurFn;
157 
158   /// CurGD - The GlobalDecl for the current function being compiled.
159   GlobalDecl CurGD;
160 
161   /// PrologueCleanupDepth - The cleanup depth enclosing all the
162   /// cleanups associated with the parameters.
163   EHScopeStack::stable_iterator PrologueCleanupDepth;
164 
165   /// ReturnBlock - Unified return block.
166   JumpDest ReturnBlock;
167 
168   /// ReturnValue - The temporary alloca to hold the return
169   /// value. This is invalid iff the function has no return value.
170   Address ReturnValue;
171 
172   /// AllocaInsertPoint - This is an instruction in the entry block before which
173   /// we prefer to insert allocas.
174   llvm::AssertingVH<llvm::Instruction> AllocaInsertPt;
175 
176   /// \brief API for captured statement code generation.
177   class CGCapturedStmtInfo {
178   public:
179     explicit CGCapturedStmtInfo(CapturedRegionKind K = CR_Default)
180         : Kind(K), ThisValue(nullptr), CXXThisFieldDecl(nullptr) {}
181     explicit CGCapturedStmtInfo(const CapturedStmt &S,
182                                 CapturedRegionKind K = CR_Default)
183       : Kind(K), ThisValue(nullptr), CXXThisFieldDecl(nullptr) {
184 
185       RecordDecl::field_iterator Field =
186         S.getCapturedRecordDecl()->field_begin();
187       for (CapturedStmt::const_capture_iterator I = S.capture_begin(),
188                                                 E = S.capture_end();
189            I != E; ++I, ++Field) {
190         if (I->capturesThis())
191           CXXThisFieldDecl = *Field;
192         else if (I->capturesVariable())
193           CaptureFields[I->getCapturedVar()] = *Field;
194       }
195     }
196 
197     virtual ~CGCapturedStmtInfo();
198 
199     CapturedRegionKind getKind() const { return Kind; }
200 
201     virtual void setContextValue(llvm::Value *V) { ThisValue = V; }
202     // \brief Retrieve the value of the context parameter.
203     virtual llvm::Value *getContextValue() const { return ThisValue; }
204 
205     /// \brief Lookup the captured field decl for a variable.
206     virtual const FieldDecl *lookup(const VarDecl *VD) const {
207       return CaptureFields.lookup(VD);
208     }
209 
210     bool isCXXThisExprCaptured() const { return getThisFieldDecl() != nullptr; }
211     virtual FieldDecl *getThisFieldDecl() const { return CXXThisFieldDecl; }
212 
213     static bool classof(const CGCapturedStmtInfo *) {
214       return true;
215     }
216 
217     /// \brief Emit the captured statement body.
218     virtual void EmitBody(CodeGenFunction &CGF, const Stmt *S) {
219       CGF.incrementProfileCounter(S);
220       CGF.EmitStmt(S);
221     }
222 
223     /// \brief Get the name of the capture helper.
224     virtual StringRef getHelperName() const { return "__captured_stmt"; }
225 
226   private:
227     /// \brief The kind of captured statement being generated.
228     CapturedRegionKind Kind;
229 
230     /// \brief Keep the map between VarDecl and FieldDecl.
231     llvm::SmallDenseMap<const VarDecl *, FieldDecl *> CaptureFields;
232 
233     /// \brief The base address of the captured record, passed in as the first
234     /// argument of the parallel region function.
235     llvm::Value *ThisValue;
236 
237     /// \brief Captured 'this' type.
238     FieldDecl *CXXThisFieldDecl;
239   };
240   CGCapturedStmtInfo *CapturedStmtInfo;
241 
242   /// \brief RAII for correct setting/restoring of CapturedStmtInfo.
243   class CGCapturedStmtRAII {
244   private:
245     CodeGenFunction &CGF;
246     CGCapturedStmtInfo *PrevCapturedStmtInfo;
247   public:
248     CGCapturedStmtRAII(CodeGenFunction &CGF,
249                        CGCapturedStmtInfo *NewCapturedStmtInfo)
250         : CGF(CGF), PrevCapturedStmtInfo(CGF.CapturedStmtInfo) {
251       CGF.CapturedStmtInfo = NewCapturedStmtInfo;
252     }
253     ~CGCapturedStmtRAII() { CGF.CapturedStmtInfo = PrevCapturedStmtInfo; }
254   };
255 
256   /// \brief Sanitizers enabled for this function.
257   SanitizerSet SanOpts;
258 
259   /// \brief True if CodeGen currently emits code implementing sanitizer checks.
260   bool IsSanitizerScope;
261 
262   /// \brief RAII object to set/unset CodeGenFunction::IsSanitizerScope.
263   class SanitizerScope {
264     CodeGenFunction *CGF;
265   public:
266     SanitizerScope(CodeGenFunction *CGF);
267     ~SanitizerScope();
268   };
269 
270   /// In C++, whether we are code generating a thunk.  This controls whether we
271   /// should emit cleanups.
272   bool CurFuncIsThunk;
273 
274   /// In ARC, whether we should autorelease the return value.
275   bool AutoreleaseResult;
276 
277   /// Whether we processed a Microsoft-style asm block during CodeGen. These can
278   /// potentially set the return value.
279   bool SawAsmBlock;
280 
281   const FunctionDecl *CurSEHParent = nullptr;
282 
283   /// True if the current function is an outlined SEH helper. This can be a
284   /// finally block or filter expression.
285   bool IsOutlinedSEHHelper;
286 
287   const CodeGen::CGBlockInfo *BlockInfo;
288   llvm::Value *BlockPointer;
289 
290   llvm::DenseMap<const VarDecl *, FieldDecl *> LambdaCaptureFields;
291   FieldDecl *LambdaThisCaptureField;
292 
293   /// \brief A mapping from NRVO variables to the flags used to indicate
294   /// when the NRVO has been applied to this variable.
295   llvm::DenseMap<const VarDecl *, llvm::Value *> NRVOFlags;
296 
297   EHScopeStack EHStack;
298   llvm::SmallVector<char, 256> LifetimeExtendedCleanupStack;
299   llvm::SmallVector<const JumpDest *, 2> SEHTryEpilogueStack;
300 
301   llvm::Instruction *CurrentFuncletPad = nullptr;
302 
303   /// Header for data within LifetimeExtendedCleanupStack.
304   struct LifetimeExtendedCleanupHeader {
305     /// The size of the following cleanup object.
306     unsigned Size;
307     /// The kind of cleanup to push: a value from the CleanupKind enumeration.
308     CleanupKind Kind;
309 
310     size_t getSize() const { return Size; }
311     CleanupKind getKind() const { return Kind; }
312   };
313 
314   /// i32s containing the indexes of the cleanup destinations.
315   llvm::AllocaInst *NormalCleanupDest;
316 
317   unsigned NextCleanupDestIndex;
318 
319   /// FirstBlockInfo - The head of a singly-linked-list of block layouts.
320   CGBlockInfo *FirstBlockInfo;
321 
322   /// EHResumeBlock - Unified block containing a call to llvm.eh.resume.
323   llvm::BasicBlock *EHResumeBlock;
324 
325   /// The exception slot.  All landing pads write the current exception pointer
326   /// into this alloca.
327   llvm::Value *ExceptionSlot;
328 
329   /// The selector slot.  Under the MandatoryCleanup model, all landing pads
330   /// write the current selector value into this alloca.
331   llvm::AllocaInst *EHSelectorSlot;
332 
333   /// A stack of exception code slots. Entering an __except block pushes a slot
334   /// on the stack and leaving pops one. The __exception_code() intrinsic loads
335   /// a value from the top of the stack.
336   SmallVector<Address, 1> SEHCodeSlotStack;
337 
338   /// Value returned by __exception_info intrinsic.
339   llvm::Value *SEHInfo = nullptr;
340 
341   /// Emits a landing pad for the current EH stack.
342   llvm::BasicBlock *EmitLandingPad();
343 
344   llvm::BasicBlock *getInvokeDestImpl();
345 
346   template <class T>
347   typename DominatingValue<T>::saved_type saveValueInCond(T value) {
348     return DominatingValue<T>::save(*this, value);
349   }
350 
351 public:
352   /// ObjCEHValueStack - Stack of Objective-C exception values, used for
353   /// rethrows.
354   SmallVector<llvm::Value*, 8> ObjCEHValueStack;
355 
356   /// A class controlling the emission of a finally block.
357   class FinallyInfo {
358     /// Where the catchall's edge through the cleanup should go.
359     JumpDest RethrowDest;
360 
361     /// A function to call to enter the catch.
362     llvm::Constant *BeginCatchFn;
363 
364     /// An i1 variable indicating whether or not the @finally is
365     /// running for an exception.
366     llvm::AllocaInst *ForEHVar;
367 
368     /// An i8* variable into which the exception pointer to rethrow
369     /// has been saved.
370     llvm::AllocaInst *SavedExnVar;
371 
372   public:
373     void enter(CodeGenFunction &CGF, const Stmt *Finally,
374                llvm::Constant *beginCatchFn, llvm::Constant *endCatchFn,
375                llvm::Constant *rethrowFn);
376     void exit(CodeGenFunction &CGF);
377   };
378 
379   /// Returns true inside SEH __try blocks.
380   bool isSEHTryScope() const { return !SEHTryEpilogueStack.empty(); }
381 
382   /// Returns true while emitting a cleanuppad.
383   bool isCleanupPadScope() const {
384     return CurrentFuncletPad && isa<llvm::CleanupPadInst>(CurrentFuncletPad);
385   }
386 
387   /// pushFullExprCleanup - Push a cleanup to be run at the end of the
388   /// current full-expression.  Safe against the possibility that
389   /// we're currently inside a conditionally-evaluated expression.
390   template <class T, class... As>
391   void pushFullExprCleanup(CleanupKind kind, As... A) {
392     // If we're not in a conditional branch, or if none of the
393     // arguments requires saving, then use the unconditional cleanup.
394     if (!isInConditionalBranch())
395       return EHStack.pushCleanup<T>(kind, A...);
396 
397     // Stash values in a tuple so we can guarantee the order of saves.
398     typedef std::tuple<typename DominatingValue<As>::saved_type...> SavedTuple;
399     SavedTuple Saved{saveValueInCond(A)...};
400 
401     typedef EHScopeStack::ConditionalCleanup<T, As...> CleanupType;
402     EHStack.pushCleanupTuple<CleanupType>(kind, Saved);
403     initFullExprCleanup();
404   }
405 
406   /// \brief Queue a cleanup to be pushed after finishing the current
407   /// full-expression.
408   template <class T, class... As>
409   void pushCleanupAfterFullExpr(CleanupKind Kind, As... A) {
410     assert(!isInConditionalBranch() && "can't defer conditional cleanup");
411 
412     LifetimeExtendedCleanupHeader Header = { sizeof(T), Kind };
413 
414     size_t OldSize = LifetimeExtendedCleanupStack.size();
415     LifetimeExtendedCleanupStack.resize(
416         LifetimeExtendedCleanupStack.size() + sizeof(Header) + Header.Size);
417 
418     static_assert(sizeof(Header) % llvm::AlignOf<T>::Alignment == 0,
419                   "Cleanup will be allocated on misaligned address");
420     char *Buffer = &LifetimeExtendedCleanupStack[OldSize];
421     new (Buffer) LifetimeExtendedCleanupHeader(Header);
422     new (Buffer + sizeof(Header)) T(A...);
423   }
424 
425   /// Set up the last cleaup that was pushed as a conditional
426   /// full-expression cleanup.
427   void initFullExprCleanup();
428 
429   /// PushDestructorCleanup - Push a cleanup to call the
430   /// complete-object destructor of an object of the given type at the
431   /// given address.  Does nothing if T is not a C++ class type with a
432   /// non-trivial destructor.
433   void PushDestructorCleanup(QualType T, Address Addr);
434 
435   /// PushDestructorCleanup - Push a cleanup to call the
436   /// complete-object variant of the given destructor on the object at
437   /// the given address.
438   void PushDestructorCleanup(const CXXDestructorDecl *Dtor, Address Addr);
439 
440   /// PopCleanupBlock - Will pop the cleanup entry on the stack and
441   /// process all branch fixups.
442   void PopCleanupBlock(bool FallThroughIsBranchThrough = false);
443 
444   /// DeactivateCleanupBlock - Deactivates the given cleanup block.
445   /// The block cannot be reactivated.  Pops it if it's the top of the
446   /// stack.
447   ///
448   /// \param DominatingIP - An instruction which is known to
449   ///   dominate the current IP (if set) and which lies along
450   ///   all paths of execution between the current IP and the
451   ///   the point at which the cleanup comes into scope.
452   void DeactivateCleanupBlock(EHScopeStack::stable_iterator Cleanup,
453                               llvm::Instruction *DominatingIP);
454 
455   /// ActivateCleanupBlock - Activates an initially-inactive cleanup.
456   /// Cannot be used to resurrect a deactivated cleanup.
457   ///
458   /// \param DominatingIP - An instruction which is known to
459   ///   dominate the current IP (if set) and which lies along
460   ///   all paths of execution between the current IP and the
461   ///   the point at which the cleanup comes into scope.
462   void ActivateCleanupBlock(EHScopeStack::stable_iterator Cleanup,
463                             llvm::Instruction *DominatingIP);
464 
465   /// \brief Enters a new scope for capturing cleanups, all of which
466   /// will be executed once the scope is exited.
467   class RunCleanupsScope {
468     EHScopeStack::stable_iterator CleanupStackDepth;
469     size_t LifetimeExtendedCleanupStackSize;
470     bool OldDidCallStackSave;
471   protected:
472     bool PerformCleanup;
473   private:
474 
475     RunCleanupsScope(const RunCleanupsScope &) = delete;
476     void operator=(const RunCleanupsScope &) = delete;
477 
478   protected:
479     CodeGenFunction& CGF;
480 
481   public:
482     /// \brief Enter a new cleanup scope.
483     explicit RunCleanupsScope(CodeGenFunction &CGF)
484       : PerformCleanup(true), CGF(CGF)
485     {
486       CleanupStackDepth = CGF.EHStack.stable_begin();
487       LifetimeExtendedCleanupStackSize =
488           CGF.LifetimeExtendedCleanupStack.size();
489       OldDidCallStackSave = CGF.DidCallStackSave;
490       CGF.DidCallStackSave = false;
491     }
492 
493     /// \brief Exit this cleanup scope, emitting any accumulated
494     /// cleanups.
495     ~RunCleanupsScope() {
496       if (PerformCleanup) {
497         CGF.DidCallStackSave = OldDidCallStackSave;
498         CGF.PopCleanupBlocks(CleanupStackDepth,
499                              LifetimeExtendedCleanupStackSize);
500       }
501     }
502 
503     /// \brief Determine whether this scope requires any cleanups.
504     bool requiresCleanups() const {
505       return CGF.EHStack.stable_begin() != CleanupStackDepth;
506     }
507 
508     /// \brief Force the emission of cleanups now, instead of waiting
509     /// until this object is destroyed.
510     void ForceCleanup() {
511       assert(PerformCleanup && "Already forced cleanup");
512       CGF.DidCallStackSave = OldDidCallStackSave;
513       CGF.PopCleanupBlocks(CleanupStackDepth,
514                            LifetimeExtendedCleanupStackSize);
515       PerformCleanup = false;
516     }
517   };
518 
519   class LexicalScope : public RunCleanupsScope {
520     SourceRange Range;
521     SmallVector<const LabelDecl*, 4> Labels;
522     LexicalScope *ParentScope;
523 
524     LexicalScope(const LexicalScope &) = delete;
525     void operator=(const LexicalScope &) = delete;
526 
527   public:
528     /// \brief Enter a new cleanup scope.
529     explicit LexicalScope(CodeGenFunction &CGF, SourceRange Range)
530       : RunCleanupsScope(CGF), Range(Range), ParentScope(CGF.CurLexicalScope) {
531       CGF.CurLexicalScope = this;
532       if (CGDebugInfo *DI = CGF.getDebugInfo())
533         DI->EmitLexicalBlockStart(CGF.Builder, Range.getBegin());
534     }
535 
536     void addLabel(const LabelDecl *label) {
537       assert(PerformCleanup && "adding label to dead scope?");
538       Labels.push_back(label);
539     }
540 
541     /// \brief Exit this cleanup scope, emitting any accumulated
542     /// cleanups.
543     ~LexicalScope() {
544       if (CGDebugInfo *DI = CGF.getDebugInfo())
545         DI->EmitLexicalBlockEnd(CGF.Builder, Range.getEnd());
546 
547       // If we should perform a cleanup, force them now.  Note that
548       // this ends the cleanup scope before rescoping any labels.
549       if (PerformCleanup) {
550         ApplyDebugLocation DL(CGF, Range.getEnd());
551         ForceCleanup();
552       }
553     }
554 
555     /// \brief Force the emission of cleanups now, instead of waiting
556     /// until this object is destroyed.
557     void ForceCleanup() {
558       CGF.CurLexicalScope = ParentScope;
559       RunCleanupsScope::ForceCleanup();
560 
561       if (!Labels.empty())
562         rescopeLabels();
563     }
564 
565     void rescopeLabels();
566   };
567 
568   typedef llvm::DenseMap<const Decl *, Address> DeclMapTy;
569 
570   /// \brief The scope used to remap some variables as private in the OpenMP
571   /// loop body (or other captured region emitted without outlining), and to
572   /// restore old vars back on exit.
573   class OMPPrivateScope : public RunCleanupsScope {
574     DeclMapTy SavedLocals;
575     DeclMapTy SavedPrivates;
576 
577   private:
578     OMPPrivateScope(const OMPPrivateScope &) = delete;
579     void operator=(const OMPPrivateScope &) = delete;
580 
581   public:
582     /// \brief Enter a new OpenMP private scope.
583     explicit OMPPrivateScope(CodeGenFunction &CGF) : RunCleanupsScope(CGF) {}
584 
585     /// \brief Registers \a LocalVD variable as a private and apply \a
586     /// PrivateGen function for it to generate corresponding private variable.
587     /// \a PrivateGen returns an address of the generated private variable.
588     /// \return true if the variable is registered as private, false if it has
589     /// been privatized already.
590     bool
591     addPrivate(const VarDecl *LocalVD,
592                llvm::function_ref<Address()> PrivateGen) {
593       assert(PerformCleanup && "adding private to dead scope");
594 
595       // Only save it once.
596       if (SavedLocals.count(LocalVD)) return false;
597 
598       // Copy the existing local entry to SavedLocals.
599       auto it = CGF.LocalDeclMap.find(LocalVD);
600       if (it != CGF.LocalDeclMap.end()) {
601         SavedLocals.insert({LocalVD, it->second});
602       } else {
603         SavedLocals.insert({LocalVD, Address::invalid()});
604       }
605 
606       // Generate the private entry.
607       Address Addr = PrivateGen();
608       QualType VarTy = LocalVD->getType();
609       if (VarTy->isReferenceType()) {
610         Address Temp = CGF.CreateMemTemp(VarTy);
611         CGF.Builder.CreateStore(Addr.getPointer(), Temp);
612         Addr = Temp;
613       }
614       SavedPrivates.insert({LocalVD, Addr});
615 
616       return true;
617     }
618 
619     /// \brief Privatizes local variables previously registered as private.
620     /// Registration is separate from the actual privatization to allow
621     /// initializers use values of the original variables, not the private one.
622     /// This is important, for example, if the private variable is a class
623     /// variable initialized by a constructor that references other private
624     /// variables. But at initialization original variables must be used, not
625     /// private copies.
626     /// \return true if at least one variable was privatized, false otherwise.
627     bool Privatize() {
628       copyInto(SavedPrivates, CGF.LocalDeclMap);
629       SavedPrivates.clear();
630       return !SavedLocals.empty();
631     }
632 
633     void ForceCleanup() {
634       RunCleanupsScope::ForceCleanup();
635       copyInto(SavedLocals, CGF.LocalDeclMap);
636       SavedLocals.clear();
637     }
638 
639     /// \brief Exit scope - all the mapped variables are restored.
640     ~OMPPrivateScope() {
641       if (PerformCleanup)
642         ForceCleanup();
643     }
644 
645     /// Checks if the global variable is captured in current function.
646     bool isGlobalVarCaptured(const VarDecl *VD) const {
647       return !VD->isLocalVarDeclOrParm() && CGF.LocalDeclMap.count(VD) > 0;
648     }
649 
650   private:
651     /// Copy all the entries in the source map over the corresponding
652     /// entries in the destination, which must exist.
653     static void copyInto(const DeclMapTy &src, DeclMapTy &dest) {
654       for (auto &pair : src) {
655         if (!pair.second.isValid()) {
656           dest.erase(pair.first);
657           continue;
658         }
659 
660         auto it = dest.find(pair.first);
661         if (it != dest.end()) {
662           it->second = pair.second;
663         } else {
664           dest.insert(pair);
665         }
666       }
667     }
668   };
669 
670   /// \brief Takes the old cleanup stack size and emits the cleanup blocks
671   /// that have been added.
672   void PopCleanupBlocks(EHScopeStack::stable_iterator OldCleanupStackSize);
673 
674   /// \brief Takes the old cleanup stack size and emits the cleanup blocks
675   /// that have been added, then adds all lifetime-extended cleanups from
676   /// the given position to the stack.
677   void PopCleanupBlocks(EHScopeStack::stable_iterator OldCleanupStackSize,
678                         size_t OldLifetimeExtendedStackSize);
679 
680   void ResolveBranchFixups(llvm::BasicBlock *Target);
681 
682   /// The given basic block lies in the current EH scope, but may be a
683   /// target of a potentially scope-crossing jump; get a stable handle
684   /// to which we can perform this jump later.
685   JumpDest getJumpDestInCurrentScope(llvm::BasicBlock *Target) {
686     return JumpDest(Target,
687                     EHStack.getInnermostNormalCleanup(),
688                     NextCleanupDestIndex++);
689   }
690 
691   /// The given basic block lies in the current EH scope, but may be a
692   /// target of a potentially scope-crossing jump; get a stable handle
693   /// to which we can perform this jump later.
694   JumpDest getJumpDestInCurrentScope(StringRef Name = StringRef()) {
695     return getJumpDestInCurrentScope(createBasicBlock(Name));
696   }
697 
698   /// EmitBranchThroughCleanup - Emit a branch from the current insert
699   /// block through the normal cleanup handling code (if any) and then
700   /// on to \arg Dest.
701   void EmitBranchThroughCleanup(JumpDest Dest);
702 
703   /// isObviouslyBranchWithoutCleanups - Return true if a branch to the
704   /// specified destination obviously has no cleanups to run.  'false' is always
705   /// a conservatively correct answer for this method.
706   bool isObviouslyBranchWithoutCleanups(JumpDest Dest) const;
707 
708   /// popCatchScope - Pops the catch scope at the top of the EHScope
709   /// stack, emitting any required code (other than the catch handlers
710   /// themselves).
711   void popCatchScope();
712 
713   llvm::BasicBlock *getEHResumeBlock(bool isCleanup);
714   llvm::BasicBlock *getEHDispatchBlock(EHScopeStack::stable_iterator scope);
715   llvm::BasicBlock *getMSVCDispatchBlock(EHScopeStack::stable_iterator scope);
716 
717   /// An object to manage conditionally-evaluated expressions.
718   class ConditionalEvaluation {
719     llvm::BasicBlock *StartBB;
720 
721   public:
722     ConditionalEvaluation(CodeGenFunction &CGF)
723       : StartBB(CGF.Builder.GetInsertBlock()) {}
724 
725     void begin(CodeGenFunction &CGF) {
726       assert(CGF.OutermostConditional != this);
727       if (!CGF.OutermostConditional)
728         CGF.OutermostConditional = this;
729     }
730 
731     void end(CodeGenFunction &CGF) {
732       assert(CGF.OutermostConditional != nullptr);
733       if (CGF.OutermostConditional == this)
734         CGF.OutermostConditional = nullptr;
735     }
736 
737     /// Returns a block which will be executed prior to each
738     /// evaluation of the conditional code.
739     llvm::BasicBlock *getStartingBlock() const {
740       return StartBB;
741     }
742   };
743 
744   /// isInConditionalBranch - Return true if we're currently emitting
745   /// one branch or the other of a conditional expression.
746   bool isInConditionalBranch() const { return OutermostConditional != nullptr; }
747 
748   void setBeforeOutermostConditional(llvm::Value *value, Address addr) {
749     assert(isInConditionalBranch());
750     llvm::BasicBlock *block = OutermostConditional->getStartingBlock();
751     auto store = new llvm::StoreInst(value, addr.getPointer(), &block->back());
752     store->setAlignment(addr.getAlignment().getQuantity());
753   }
754 
755   /// An RAII object to record that we're evaluating a statement
756   /// expression.
757   class StmtExprEvaluation {
758     CodeGenFunction &CGF;
759 
760     /// We have to save the outermost conditional: cleanups in a
761     /// statement expression aren't conditional just because the
762     /// StmtExpr is.
763     ConditionalEvaluation *SavedOutermostConditional;
764 
765   public:
766     StmtExprEvaluation(CodeGenFunction &CGF)
767       : CGF(CGF), SavedOutermostConditional(CGF.OutermostConditional) {
768       CGF.OutermostConditional = nullptr;
769     }
770 
771     ~StmtExprEvaluation() {
772       CGF.OutermostConditional = SavedOutermostConditional;
773       CGF.EnsureInsertPoint();
774     }
775   };
776 
777   /// An object which temporarily prevents a value from being
778   /// destroyed by aggressive peephole optimizations that assume that
779   /// all uses of a value have been realized in the IR.
780   class PeepholeProtection {
781     llvm::Instruction *Inst;
782     friend class CodeGenFunction;
783 
784   public:
785     PeepholeProtection() : Inst(nullptr) {}
786   };
787 
788   /// A non-RAII class containing all the information about a bound
789   /// opaque value.  OpaqueValueMapping, below, is a RAII wrapper for
790   /// this which makes individual mappings very simple; using this
791   /// class directly is useful when you have a variable number of
792   /// opaque values or don't want the RAII functionality for some
793   /// reason.
794   class OpaqueValueMappingData {
795     const OpaqueValueExpr *OpaqueValue;
796     bool BoundLValue;
797     CodeGenFunction::PeepholeProtection Protection;
798 
799     OpaqueValueMappingData(const OpaqueValueExpr *ov,
800                            bool boundLValue)
801       : OpaqueValue(ov), BoundLValue(boundLValue) {}
802   public:
803     OpaqueValueMappingData() : OpaqueValue(nullptr) {}
804 
805     static bool shouldBindAsLValue(const Expr *expr) {
806       // gl-values should be bound as l-values for obvious reasons.
807       // Records should be bound as l-values because IR generation
808       // always keeps them in memory.  Expressions of function type
809       // act exactly like l-values but are formally required to be
810       // r-values in C.
811       return expr->isGLValue() ||
812              expr->getType()->isFunctionType() ||
813              hasAggregateEvaluationKind(expr->getType());
814     }
815 
816     static OpaqueValueMappingData bind(CodeGenFunction &CGF,
817                                        const OpaqueValueExpr *ov,
818                                        const Expr *e) {
819       if (shouldBindAsLValue(ov))
820         return bind(CGF, ov, CGF.EmitLValue(e));
821       return bind(CGF, ov, CGF.EmitAnyExpr(e));
822     }
823 
824     static OpaqueValueMappingData bind(CodeGenFunction &CGF,
825                                        const OpaqueValueExpr *ov,
826                                        const LValue &lv) {
827       assert(shouldBindAsLValue(ov));
828       CGF.OpaqueLValues.insert(std::make_pair(ov, lv));
829       return OpaqueValueMappingData(ov, true);
830     }
831 
832     static OpaqueValueMappingData bind(CodeGenFunction &CGF,
833                                        const OpaqueValueExpr *ov,
834                                        const RValue &rv) {
835       assert(!shouldBindAsLValue(ov));
836       CGF.OpaqueRValues.insert(std::make_pair(ov, rv));
837 
838       OpaqueValueMappingData data(ov, false);
839 
840       // Work around an extremely aggressive peephole optimization in
841       // EmitScalarConversion which assumes that all other uses of a
842       // value are extant.
843       data.Protection = CGF.protectFromPeepholes(rv);
844 
845       return data;
846     }
847 
848     bool isValid() const { return OpaqueValue != nullptr; }
849     void clear() { OpaqueValue = nullptr; }
850 
851     void unbind(CodeGenFunction &CGF) {
852       assert(OpaqueValue && "no data to unbind!");
853 
854       if (BoundLValue) {
855         CGF.OpaqueLValues.erase(OpaqueValue);
856       } else {
857         CGF.OpaqueRValues.erase(OpaqueValue);
858         CGF.unprotectFromPeepholes(Protection);
859       }
860     }
861   };
862 
863   /// An RAII object to set (and then clear) a mapping for an OpaqueValueExpr.
864   class OpaqueValueMapping {
865     CodeGenFunction &CGF;
866     OpaqueValueMappingData Data;
867 
868   public:
869     static bool shouldBindAsLValue(const Expr *expr) {
870       return OpaqueValueMappingData::shouldBindAsLValue(expr);
871     }
872 
873     /// Build the opaque value mapping for the given conditional
874     /// operator if it's the GNU ?: extension.  This is a common
875     /// enough pattern that the convenience operator is really
876     /// helpful.
877     ///
878     OpaqueValueMapping(CodeGenFunction &CGF,
879                        const AbstractConditionalOperator *op) : CGF(CGF) {
880       if (isa<ConditionalOperator>(op))
881         // Leave Data empty.
882         return;
883 
884       const BinaryConditionalOperator *e = cast<BinaryConditionalOperator>(op);
885       Data = OpaqueValueMappingData::bind(CGF, e->getOpaqueValue(),
886                                           e->getCommon());
887     }
888 
889     OpaqueValueMapping(CodeGenFunction &CGF,
890                        const OpaqueValueExpr *opaqueValue,
891                        LValue lvalue)
892       : CGF(CGF), Data(OpaqueValueMappingData::bind(CGF, opaqueValue, lvalue)) {
893     }
894 
895     OpaqueValueMapping(CodeGenFunction &CGF,
896                        const OpaqueValueExpr *opaqueValue,
897                        RValue rvalue)
898       : CGF(CGF), Data(OpaqueValueMappingData::bind(CGF, opaqueValue, rvalue)) {
899     }
900 
901     void pop() {
902       Data.unbind(CGF);
903       Data.clear();
904     }
905 
906     ~OpaqueValueMapping() {
907       if (Data.isValid()) Data.unbind(CGF);
908     }
909   };
910 
911 private:
912   CGDebugInfo *DebugInfo;
913   bool DisableDebugInfo;
914 
915   /// DidCallStackSave - Whether llvm.stacksave has been called. Used to avoid
916   /// calling llvm.stacksave for multiple VLAs in the same scope.
917   bool DidCallStackSave;
918 
919   /// IndirectBranch - The first time an indirect goto is seen we create a block
920   /// with an indirect branch.  Every time we see the address of a label taken,
921   /// we add the label to the indirect goto.  Every subsequent indirect goto is
922   /// codegen'd as a jump to the IndirectBranch's basic block.
923   llvm::IndirectBrInst *IndirectBranch;
924 
925   /// LocalDeclMap - This keeps track of the LLVM allocas or globals for local C
926   /// decls.
927   DeclMapTy LocalDeclMap;
928 
929   /// SizeArguments - If a ParmVarDecl had the pass_object_size attribute, this
930   /// will contain a mapping from said ParmVarDecl to its implicit "object_size"
931   /// parameter.
932   llvm::SmallDenseMap<const ParmVarDecl *, const ImplicitParamDecl *, 2>
933       SizeArguments;
934 
935   /// Track escaped local variables with auto storage. Used during SEH
936   /// outlining to produce a call to llvm.localescape.
937   llvm::DenseMap<llvm::AllocaInst *, int> EscapedLocals;
938 
939   /// LabelMap - This keeps track of the LLVM basic block for each C label.
940   llvm::DenseMap<const LabelDecl*, JumpDest> LabelMap;
941 
942   // BreakContinueStack - This keeps track of where break and continue
943   // statements should jump to.
944   struct BreakContinue {
945     BreakContinue(JumpDest Break, JumpDest Continue)
946       : BreakBlock(Break), ContinueBlock(Continue) {}
947 
948     JumpDest BreakBlock;
949     JumpDest ContinueBlock;
950   };
951   SmallVector<BreakContinue, 8> BreakContinueStack;
952 
953   CodeGenPGO PGO;
954 
955   /// Calculate branch weights appropriate for PGO data
956   llvm::MDNode *createProfileWeights(uint64_t TrueCount, uint64_t FalseCount);
957   llvm::MDNode *createProfileWeights(ArrayRef<uint64_t> Weights);
958   llvm::MDNode *createProfileWeightsForLoop(const Stmt *Cond,
959                                             uint64_t LoopCount);
960 
961 public:
962   /// Increment the profiler's counter for the given statement.
963   void incrementProfileCounter(const Stmt *S) {
964     if (CGM.getCodeGenOpts().hasProfileClangInstr())
965       PGO.emitCounterIncrement(Builder, S);
966     PGO.setCurrentStmt(S);
967   }
968 
969   /// Get the profiler's count for the given statement.
970   uint64_t getProfileCount(const Stmt *S) {
971     Optional<uint64_t> Count = PGO.getStmtCount(S);
972     if (!Count.hasValue())
973       return 0;
974     return *Count;
975   }
976 
977   /// Set the profiler's current count.
978   void setCurrentProfileCount(uint64_t Count) {
979     PGO.setCurrentRegionCount(Count);
980   }
981 
982   /// Get the profiler's current count. This is generally the count for the most
983   /// recently incremented counter.
984   uint64_t getCurrentProfileCount() {
985     return PGO.getCurrentRegionCount();
986   }
987 
988 private:
989 
990   /// SwitchInsn - This is nearest current switch instruction. It is null if
991   /// current context is not in a switch.
992   llvm::SwitchInst *SwitchInsn;
993   /// The branch weights of SwitchInsn when doing instrumentation based PGO.
994   SmallVector<uint64_t, 16> *SwitchWeights;
995 
996   /// CaseRangeBlock - This block holds if condition check for last case
997   /// statement range in current switch instruction.
998   llvm::BasicBlock *CaseRangeBlock;
999 
1000   /// OpaqueLValues - Keeps track of the current set of opaque value
1001   /// expressions.
1002   llvm::DenseMap<const OpaqueValueExpr *, LValue> OpaqueLValues;
1003   llvm::DenseMap<const OpaqueValueExpr *, RValue> OpaqueRValues;
1004 
1005   // VLASizeMap - This keeps track of the associated size for each VLA type.
1006   // We track this by the size expression rather than the type itself because
1007   // in certain situations, like a const qualifier applied to an VLA typedef,
1008   // multiple VLA types can share the same size expression.
1009   // FIXME: Maybe this could be a stack of maps that is pushed/popped as we
1010   // enter/leave scopes.
1011   llvm::DenseMap<const Expr*, llvm::Value*> VLASizeMap;
1012 
1013   /// A block containing a single 'unreachable' instruction.  Created
1014   /// lazily by getUnreachableBlock().
1015   llvm::BasicBlock *UnreachableBlock;
1016 
1017   /// Counts of the number return expressions in the function.
1018   unsigned NumReturnExprs;
1019 
1020   /// Count the number of simple (constant) return expressions in the function.
1021   unsigned NumSimpleReturnExprs;
1022 
1023   /// The last regular (non-return) debug location (breakpoint) in the function.
1024   SourceLocation LastStopPoint;
1025 
1026 public:
1027   /// A scope within which we are constructing the fields of an object which
1028   /// might use a CXXDefaultInitExpr. This stashes away a 'this' value to use
1029   /// if we need to evaluate a CXXDefaultInitExpr within the evaluation.
1030   class FieldConstructionScope {
1031   public:
1032     FieldConstructionScope(CodeGenFunction &CGF, Address This)
1033         : CGF(CGF), OldCXXDefaultInitExprThis(CGF.CXXDefaultInitExprThis) {
1034       CGF.CXXDefaultInitExprThis = This;
1035     }
1036     ~FieldConstructionScope() {
1037       CGF.CXXDefaultInitExprThis = OldCXXDefaultInitExprThis;
1038     }
1039 
1040   private:
1041     CodeGenFunction &CGF;
1042     Address OldCXXDefaultInitExprThis;
1043   };
1044 
1045   /// The scope of a CXXDefaultInitExpr. Within this scope, the value of 'this'
1046   /// is overridden to be the object under construction.
1047   class CXXDefaultInitExprScope {
1048   public:
1049     CXXDefaultInitExprScope(CodeGenFunction &CGF)
1050       : CGF(CGF), OldCXXThisValue(CGF.CXXThisValue),
1051         OldCXXThisAlignment(CGF.CXXThisAlignment) {
1052       CGF.CXXThisValue = CGF.CXXDefaultInitExprThis.getPointer();
1053       CGF.CXXThisAlignment = CGF.CXXDefaultInitExprThis.getAlignment();
1054     }
1055     ~CXXDefaultInitExprScope() {
1056       CGF.CXXThisValue = OldCXXThisValue;
1057       CGF.CXXThisAlignment = OldCXXThisAlignment;
1058     }
1059 
1060   public:
1061     CodeGenFunction &CGF;
1062     llvm::Value *OldCXXThisValue;
1063     CharUnits OldCXXThisAlignment;
1064   };
1065 
1066 private:
1067   /// CXXThisDecl - When generating code for a C++ member function,
1068   /// this will hold the implicit 'this' declaration.
1069   ImplicitParamDecl *CXXABIThisDecl;
1070   llvm::Value *CXXABIThisValue;
1071   llvm::Value *CXXThisValue;
1072   CharUnits CXXABIThisAlignment;
1073   CharUnits CXXThisAlignment;
1074 
1075   /// The value of 'this' to use when evaluating CXXDefaultInitExprs within
1076   /// this expression.
1077   Address CXXDefaultInitExprThis = Address::invalid();
1078 
1079   /// CXXStructorImplicitParamDecl - When generating code for a constructor or
1080   /// destructor, this will hold the implicit argument (e.g. VTT).
1081   ImplicitParamDecl *CXXStructorImplicitParamDecl;
1082   llvm::Value *CXXStructorImplicitParamValue;
1083 
1084   /// OutermostConditional - Points to the outermost active
1085   /// conditional control.  This is used so that we know if a
1086   /// temporary should be destroyed conditionally.
1087   ConditionalEvaluation *OutermostConditional;
1088 
1089   /// The current lexical scope.
1090   LexicalScope *CurLexicalScope;
1091 
1092   /// The current source location that should be used for exception
1093   /// handling code.
1094   SourceLocation CurEHLocation;
1095 
1096   /// BlockByrefInfos - For each __block variable, contains
1097   /// information about the layout of the variable.
1098   llvm::DenseMap<const ValueDecl *, BlockByrefInfo> BlockByrefInfos;
1099 
1100   llvm::BasicBlock *TerminateLandingPad;
1101   llvm::BasicBlock *TerminateHandler;
1102   llvm::BasicBlock *TrapBB;
1103 
1104   /// Add a kernel metadata node to the named metadata node 'opencl.kernels'.
1105   /// In the kernel metadata node, reference the kernel function and metadata
1106   /// nodes for its optional attribute qualifiers (OpenCL 1.1 6.7.2):
1107   /// - A node for the vec_type_hint(<type>) qualifier contains string
1108   ///   "vec_type_hint", an undefined value of the <type> data type,
1109   ///   and a Boolean that is true if the <type> is integer and signed.
1110   /// - A node for the work_group_size_hint(X,Y,Z) qualifier contains string
1111   ///   "work_group_size_hint", and three 32-bit integers X, Y and Z.
1112   /// - A node for the reqd_work_group_size(X,Y,Z) qualifier contains string
1113   ///   "reqd_work_group_size", and three 32-bit integers X, Y and Z.
1114   void EmitOpenCLKernelMetadata(const FunctionDecl *FD,
1115                                 llvm::Function *Fn);
1116 
1117 public:
1118   CodeGenFunction(CodeGenModule &cgm, bool suppressNewContext=false);
1119   ~CodeGenFunction();
1120 
1121   CodeGenTypes &getTypes() const { return CGM.getTypes(); }
1122   ASTContext &getContext() const { return CGM.getContext(); }
1123   CGDebugInfo *getDebugInfo() {
1124     if (DisableDebugInfo)
1125       return nullptr;
1126     return DebugInfo;
1127   }
1128   void disableDebugInfo() { DisableDebugInfo = true; }
1129   void enableDebugInfo() { DisableDebugInfo = false; }
1130 
1131   bool shouldUseFusedARCCalls() {
1132     return CGM.getCodeGenOpts().OptimizationLevel == 0;
1133   }
1134 
1135   const LangOptions &getLangOpts() const { return CGM.getLangOpts(); }
1136 
1137   /// Returns a pointer to the function's exception object and selector slot,
1138   /// which is assigned in every landing pad.
1139   Address getExceptionSlot();
1140   Address getEHSelectorSlot();
1141 
1142   /// Returns the contents of the function's exception object and selector
1143   /// slots.
1144   llvm::Value *getExceptionFromSlot();
1145   llvm::Value *getSelectorFromSlot();
1146 
1147   Address getNormalCleanupDestSlot();
1148 
1149   llvm::BasicBlock *getUnreachableBlock() {
1150     if (!UnreachableBlock) {
1151       UnreachableBlock = createBasicBlock("unreachable");
1152       new llvm::UnreachableInst(getLLVMContext(), UnreachableBlock);
1153     }
1154     return UnreachableBlock;
1155   }
1156 
1157   llvm::BasicBlock *getInvokeDest() {
1158     if (!EHStack.requiresLandingPad()) return nullptr;
1159     return getInvokeDestImpl();
1160   }
1161 
1162   bool currentFunctionUsesSEHTry() const { return CurSEHParent != nullptr; }
1163 
1164   const TargetInfo &getTarget() const { return Target; }
1165   llvm::LLVMContext &getLLVMContext() { return CGM.getLLVMContext(); }
1166 
1167   //===--------------------------------------------------------------------===//
1168   //                                  Cleanups
1169   //===--------------------------------------------------------------------===//
1170 
1171   typedef void Destroyer(CodeGenFunction &CGF, Address addr, QualType ty);
1172 
1173   void pushIrregularPartialArrayCleanup(llvm::Value *arrayBegin,
1174                                         Address arrayEndPointer,
1175                                         QualType elementType,
1176                                         CharUnits elementAlignment,
1177                                         Destroyer *destroyer);
1178   void pushRegularPartialArrayCleanup(llvm::Value *arrayBegin,
1179                                       llvm::Value *arrayEnd,
1180                                       QualType elementType,
1181                                       CharUnits elementAlignment,
1182                                       Destroyer *destroyer);
1183 
1184   void pushDestroy(QualType::DestructionKind dtorKind,
1185                    Address addr, QualType type);
1186   void pushEHDestroy(QualType::DestructionKind dtorKind,
1187                      Address addr, QualType type);
1188   void pushDestroy(CleanupKind kind, Address addr, QualType type,
1189                    Destroyer *destroyer, bool useEHCleanupForArray);
1190   void pushLifetimeExtendedDestroy(CleanupKind kind, Address addr,
1191                                    QualType type, Destroyer *destroyer,
1192                                    bool useEHCleanupForArray);
1193   void pushCallObjectDeleteCleanup(const FunctionDecl *OperatorDelete,
1194                                    llvm::Value *CompletePtr,
1195                                    QualType ElementType);
1196   void pushStackRestore(CleanupKind kind, Address SPMem);
1197   void emitDestroy(Address addr, QualType type, Destroyer *destroyer,
1198                    bool useEHCleanupForArray);
1199   llvm::Function *generateDestroyHelper(Address addr, QualType type,
1200                                         Destroyer *destroyer,
1201                                         bool useEHCleanupForArray,
1202                                         const VarDecl *VD);
1203   void emitArrayDestroy(llvm::Value *begin, llvm::Value *end,
1204                         QualType elementType, CharUnits elementAlign,
1205                         Destroyer *destroyer,
1206                         bool checkZeroLength, bool useEHCleanup);
1207 
1208   Destroyer *getDestroyer(QualType::DestructionKind destructionKind);
1209 
1210   /// Determines whether an EH cleanup is required to destroy a type
1211   /// with the given destruction kind.
1212   bool needsEHCleanup(QualType::DestructionKind kind) {
1213     switch (kind) {
1214     case QualType::DK_none:
1215       return false;
1216     case QualType::DK_cxx_destructor:
1217     case QualType::DK_objc_weak_lifetime:
1218       return getLangOpts().Exceptions;
1219     case QualType::DK_objc_strong_lifetime:
1220       return getLangOpts().Exceptions &&
1221              CGM.getCodeGenOpts().ObjCAutoRefCountExceptions;
1222     }
1223     llvm_unreachable("bad destruction kind");
1224   }
1225 
1226   CleanupKind getCleanupKind(QualType::DestructionKind kind) {
1227     return (needsEHCleanup(kind) ? NormalAndEHCleanup : NormalCleanup);
1228   }
1229 
1230   //===--------------------------------------------------------------------===//
1231   //                                  Objective-C
1232   //===--------------------------------------------------------------------===//
1233 
1234   void GenerateObjCMethod(const ObjCMethodDecl *OMD);
1235 
1236   void StartObjCMethod(const ObjCMethodDecl *MD, const ObjCContainerDecl *CD);
1237 
1238   /// GenerateObjCGetter - Synthesize an Objective-C property getter function.
1239   void GenerateObjCGetter(ObjCImplementationDecl *IMP,
1240                           const ObjCPropertyImplDecl *PID);
1241   void generateObjCGetterBody(const ObjCImplementationDecl *classImpl,
1242                               const ObjCPropertyImplDecl *propImpl,
1243                               const ObjCMethodDecl *GetterMothodDecl,
1244                               llvm::Constant *AtomicHelperFn);
1245 
1246   void GenerateObjCCtorDtorMethod(ObjCImplementationDecl *IMP,
1247                                   ObjCMethodDecl *MD, bool ctor);
1248 
1249   /// GenerateObjCSetter - Synthesize an Objective-C property setter function
1250   /// for the given property.
1251   void GenerateObjCSetter(ObjCImplementationDecl *IMP,
1252                           const ObjCPropertyImplDecl *PID);
1253   void generateObjCSetterBody(const ObjCImplementationDecl *classImpl,
1254                               const ObjCPropertyImplDecl *propImpl,
1255                               llvm::Constant *AtomicHelperFn);
1256 
1257   //===--------------------------------------------------------------------===//
1258   //                                  Block Bits
1259   //===--------------------------------------------------------------------===//
1260 
1261   llvm::Value *EmitBlockLiteral(const BlockExpr *);
1262   llvm::Value *EmitBlockLiteral(const CGBlockInfo &Info);
1263   static void destroyBlockInfos(CGBlockInfo *info);
1264 
1265   llvm::Function *GenerateBlockFunction(GlobalDecl GD,
1266                                         const CGBlockInfo &Info,
1267                                         const DeclMapTy &ldm,
1268                                         bool IsLambdaConversionToBlock);
1269 
1270   llvm::Constant *GenerateCopyHelperFunction(const CGBlockInfo &blockInfo);
1271   llvm::Constant *GenerateDestroyHelperFunction(const CGBlockInfo &blockInfo);
1272   llvm::Constant *GenerateObjCAtomicSetterCopyHelperFunction(
1273                                              const ObjCPropertyImplDecl *PID);
1274   llvm::Constant *GenerateObjCAtomicGetterCopyHelperFunction(
1275                                              const ObjCPropertyImplDecl *PID);
1276   llvm::Value *EmitBlockCopyAndAutorelease(llvm::Value *Block, QualType Ty);
1277 
1278   void BuildBlockRelease(llvm::Value *DeclPtr, BlockFieldFlags flags);
1279 
1280   class AutoVarEmission;
1281 
1282   void emitByrefStructureInit(const AutoVarEmission &emission);
1283   void enterByrefCleanup(const AutoVarEmission &emission);
1284 
1285   void setBlockContextParameter(const ImplicitParamDecl *D, unsigned argNum,
1286                                 llvm::Value *ptr);
1287 
1288   Address LoadBlockStruct();
1289   Address GetAddrOfBlockDecl(const VarDecl *var, bool ByRef);
1290 
1291   /// BuildBlockByrefAddress - Computes the location of the
1292   /// data in a variable which is declared as __block.
1293   Address emitBlockByrefAddress(Address baseAddr, const VarDecl *V,
1294                                 bool followForward = true);
1295   Address emitBlockByrefAddress(Address baseAddr,
1296                                 const BlockByrefInfo &info,
1297                                 bool followForward,
1298                                 const llvm::Twine &name);
1299 
1300   const BlockByrefInfo &getBlockByrefInfo(const VarDecl *var);
1301 
1302   void GenerateCode(GlobalDecl GD, llvm::Function *Fn,
1303                     const CGFunctionInfo &FnInfo);
1304   /// \brief Emit code for the start of a function.
1305   /// \param Loc       The location to be associated with the function.
1306   /// \param StartLoc  The location of the function body.
1307   void StartFunction(GlobalDecl GD,
1308                      QualType RetTy,
1309                      llvm::Function *Fn,
1310                      const CGFunctionInfo &FnInfo,
1311                      const FunctionArgList &Args,
1312                      SourceLocation Loc = SourceLocation(),
1313                      SourceLocation StartLoc = SourceLocation());
1314 
1315   void EmitConstructorBody(FunctionArgList &Args);
1316   void EmitDestructorBody(FunctionArgList &Args);
1317   void emitImplicitAssignmentOperatorBody(FunctionArgList &Args);
1318   void EmitFunctionBody(FunctionArgList &Args, const Stmt *Body);
1319   void EmitBlockWithFallThrough(llvm::BasicBlock *BB, const Stmt *S);
1320 
1321   void EmitForwardingCallToLambda(const CXXMethodDecl *LambdaCallOperator,
1322                                   CallArgList &CallArgs);
1323   void EmitLambdaToBlockPointerBody(FunctionArgList &Args);
1324   void EmitLambdaBlockInvokeBody();
1325   void EmitLambdaDelegatingInvokeBody(const CXXMethodDecl *MD);
1326   void EmitLambdaStaticInvokeFunction(const CXXMethodDecl *MD);
1327   void EmitAsanPrologueOrEpilogue(bool Prologue);
1328 
1329   /// \brief Emit the unified return block, trying to avoid its emission when
1330   /// possible.
1331   /// \return The debug location of the user written return statement if the
1332   /// return block is is avoided.
1333   llvm::DebugLoc EmitReturnBlock();
1334 
1335   /// FinishFunction - Complete IR generation of the current function. It is
1336   /// legal to call this function even if there is no current insertion point.
1337   void FinishFunction(SourceLocation EndLoc=SourceLocation());
1338 
1339   void StartThunk(llvm::Function *Fn, GlobalDecl GD,
1340                   const CGFunctionInfo &FnInfo);
1341 
1342   void EmitCallAndReturnForThunk(llvm::Value *Callee, const ThunkInfo *Thunk);
1343 
1344   void FinishThunk();
1345 
1346   /// Emit a musttail call for a thunk with a potentially adjusted this pointer.
1347   void EmitMustTailThunk(const CXXMethodDecl *MD, llvm::Value *AdjustedThisPtr,
1348                          llvm::Value *Callee);
1349 
1350   /// Generate a thunk for the given method.
1351   void generateThunk(llvm::Function *Fn, const CGFunctionInfo &FnInfo,
1352                      GlobalDecl GD, const ThunkInfo &Thunk);
1353 
1354   llvm::Function *GenerateVarArgsThunk(llvm::Function *Fn,
1355                                        const CGFunctionInfo &FnInfo,
1356                                        GlobalDecl GD, const ThunkInfo &Thunk);
1357 
1358   void EmitCtorPrologue(const CXXConstructorDecl *CD, CXXCtorType Type,
1359                         FunctionArgList &Args);
1360 
1361   void EmitInitializerForField(FieldDecl *Field, LValue LHS, Expr *Init,
1362                                ArrayRef<VarDecl *> ArrayIndexes);
1363 
1364   /// Struct with all informations about dynamic [sub]class needed to set vptr.
1365   struct VPtr {
1366     BaseSubobject Base;
1367     const CXXRecordDecl *NearestVBase;
1368     CharUnits OffsetFromNearestVBase;
1369     const CXXRecordDecl *VTableClass;
1370   };
1371 
1372   /// Initialize the vtable pointer of the given subobject.
1373   void InitializeVTablePointer(const VPtr &vptr);
1374 
1375   typedef llvm::SmallVector<VPtr, 4> VPtrsVector;
1376 
1377   typedef llvm::SmallPtrSet<const CXXRecordDecl *, 4> VisitedVirtualBasesSetTy;
1378   VPtrsVector getVTablePointers(const CXXRecordDecl *VTableClass);
1379 
1380   void getVTablePointers(BaseSubobject Base, const CXXRecordDecl *NearestVBase,
1381                          CharUnits OffsetFromNearestVBase,
1382                          bool BaseIsNonVirtualPrimaryBase,
1383                          const CXXRecordDecl *VTableClass,
1384                          VisitedVirtualBasesSetTy &VBases, VPtrsVector &vptrs);
1385 
1386   void InitializeVTablePointers(const CXXRecordDecl *ClassDecl);
1387 
1388   /// GetVTablePtr - Return the Value of the vtable pointer member pointed
1389   /// to by This.
1390   llvm::Value *GetVTablePtr(Address This, llvm::Type *VTableTy,
1391                             const CXXRecordDecl *VTableClass);
1392 
1393   enum CFITypeCheckKind {
1394     CFITCK_VCall,
1395     CFITCK_NVCall,
1396     CFITCK_DerivedCast,
1397     CFITCK_UnrelatedCast,
1398     CFITCK_ICall,
1399   };
1400 
1401   /// \brief Derived is the presumed address of an object of type T after a
1402   /// cast. If T is a polymorphic class type, emit a check that the virtual
1403   /// table for Derived belongs to a class derived from T.
1404   void EmitVTablePtrCheckForCast(QualType T, llvm::Value *Derived,
1405                                  bool MayBeNull, CFITypeCheckKind TCK,
1406                                  SourceLocation Loc);
1407 
1408   /// EmitVTablePtrCheckForCall - Virtual method MD is being called via VTable.
1409   /// If vptr CFI is enabled, emit a check that VTable is valid.
1410   void EmitVTablePtrCheckForCall(const CXXRecordDecl *RD, llvm::Value *VTable,
1411                                  CFITypeCheckKind TCK, SourceLocation Loc);
1412 
1413   /// EmitVTablePtrCheck - Emit a check that VTable is a valid virtual table for
1414   /// RD using llvm.bitset.test.
1415   void EmitVTablePtrCheck(const CXXRecordDecl *RD, llvm::Value *VTable,
1416                           CFITypeCheckKind TCK, SourceLocation Loc);
1417 
1418   /// If whole-program virtual table optimization is enabled, emit an assumption
1419   /// that VTable is a member of the type's bitset. Or, if vptr CFI is enabled,
1420   /// emit a check that VTable is a member of the type's bitset.
1421   void EmitBitSetCodeForVCall(const CXXRecordDecl *RD, llvm::Value *VTable,
1422                               SourceLocation Loc);
1423 
1424   /// CanDevirtualizeMemberFunctionCalls - Checks whether virtual calls on given
1425   /// expr can be devirtualized.
1426   bool CanDevirtualizeMemberFunctionCall(const Expr *Base,
1427                                          const CXXMethodDecl *MD);
1428 
1429   /// EnterDtorCleanups - Enter the cleanups necessary to complete the
1430   /// given phase of destruction for a destructor.  The end result
1431   /// should call destructors on members and base classes in reverse
1432   /// order of their construction.
1433   void EnterDtorCleanups(const CXXDestructorDecl *Dtor, CXXDtorType Type);
1434 
1435   /// ShouldInstrumentFunction - Return true if the current function should be
1436   /// instrumented with __cyg_profile_func_* calls
1437   bool ShouldInstrumentFunction();
1438 
1439   /// EmitFunctionInstrumentation - Emit LLVM code to call the specified
1440   /// instrumentation function with the current function and the call site, if
1441   /// function instrumentation is enabled.
1442   void EmitFunctionInstrumentation(const char *Fn);
1443 
1444   /// EmitMCountInstrumentation - Emit call to .mcount.
1445   void EmitMCountInstrumentation();
1446 
1447   /// EmitFunctionProlog - Emit the target specific LLVM code to load the
1448   /// arguments for the given function. This is also responsible for naming the
1449   /// LLVM function arguments.
1450   void EmitFunctionProlog(const CGFunctionInfo &FI,
1451                           llvm::Function *Fn,
1452                           const FunctionArgList &Args);
1453 
1454   /// EmitFunctionEpilog - Emit the target specific LLVM code to return the
1455   /// given temporary.
1456   void EmitFunctionEpilog(const CGFunctionInfo &FI, bool EmitRetDbgLoc,
1457                           SourceLocation EndLoc);
1458 
1459   /// EmitStartEHSpec - Emit the start of the exception spec.
1460   void EmitStartEHSpec(const Decl *D);
1461 
1462   /// EmitEndEHSpec - Emit the end of the exception spec.
1463   void EmitEndEHSpec(const Decl *D);
1464 
1465   /// getTerminateLandingPad - Return a landing pad that just calls terminate.
1466   llvm::BasicBlock *getTerminateLandingPad();
1467 
1468   /// getTerminateHandler - Return a handler (not a landing pad, just
1469   /// a catch handler) that just calls terminate.  This is used when
1470   /// a terminate scope encloses a try.
1471   llvm::BasicBlock *getTerminateHandler();
1472 
1473   llvm::Type *ConvertTypeForMem(QualType T);
1474   llvm::Type *ConvertType(QualType T);
1475   llvm::Type *ConvertType(const TypeDecl *T) {
1476     return ConvertType(getContext().getTypeDeclType(T));
1477   }
1478 
1479   /// LoadObjCSelf - Load the value of self. This function is only valid while
1480   /// generating code for an Objective-C method.
1481   llvm::Value *LoadObjCSelf();
1482 
1483   /// TypeOfSelfObject - Return type of object that this self represents.
1484   QualType TypeOfSelfObject();
1485 
1486   /// hasAggregateLLVMType - Return true if the specified AST type will map into
1487   /// an aggregate LLVM type or is void.
1488   static TypeEvaluationKind getEvaluationKind(QualType T);
1489 
1490   static bool hasScalarEvaluationKind(QualType T) {
1491     return getEvaluationKind(T) == TEK_Scalar;
1492   }
1493 
1494   static bool hasAggregateEvaluationKind(QualType T) {
1495     return getEvaluationKind(T) == TEK_Aggregate;
1496   }
1497 
1498   /// createBasicBlock - Create an LLVM basic block.
1499   llvm::BasicBlock *createBasicBlock(const Twine &name = "",
1500                                      llvm::Function *parent = nullptr,
1501                                      llvm::BasicBlock *before = nullptr) {
1502 #ifdef NDEBUG
1503     return llvm::BasicBlock::Create(getLLVMContext(), "", parent, before);
1504 #else
1505     return llvm::BasicBlock::Create(getLLVMContext(), name, parent, before);
1506 #endif
1507   }
1508 
1509   /// getBasicBlockForLabel - Return the LLVM basicblock that the specified
1510   /// label maps to.
1511   JumpDest getJumpDestForLabel(const LabelDecl *S);
1512 
1513   /// SimplifyForwardingBlocks - If the given basic block is only a branch to
1514   /// another basic block, simplify it. This assumes that no other code could
1515   /// potentially reference the basic block.
1516   void SimplifyForwardingBlocks(llvm::BasicBlock *BB);
1517 
1518   /// EmitBlock - Emit the given block \arg BB and set it as the insert point,
1519   /// adding a fall-through branch from the current insert block if
1520   /// necessary. It is legal to call this function even if there is no current
1521   /// insertion point.
1522   ///
1523   /// IsFinished - If true, indicates that the caller has finished emitting
1524   /// branches to the given block and does not expect to emit code into it. This
1525   /// means the block can be ignored if it is unreachable.
1526   void EmitBlock(llvm::BasicBlock *BB, bool IsFinished=false);
1527 
1528   /// EmitBlockAfterUses - Emit the given block somewhere hopefully
1529   /// near its uses, and leave the insertion point in it.
1530   void EmitBlockAfterUses(llvm::BasicBlock *BB);
1531 
1532   /// EmitBranch - Emit a branch to the specified basic block from the current
1533   /// insert block, taking care to avoid creation of branches from dummy
1534   /// blocks. It is legal to call this function even if there is no current
1535   /// insertion point.
1536   ///
1537   /// This function clears the current insertion point. The caller should follow
1538   /// calls to this function with calls to Emit*Block prior to generation new
1539   /// code.
1540   void EmitBranch(llvm::BasicBlock *Block);
1541 
1542   /// HaveInsertPoint - True if an insertion point is defined. If not, this
1543   /// indicates that the current code being emitted is unreachable.
1544   bool HaveInsertPoint() const {
1545     return Builder.GetInsertBlock() != nullptr;
1546   }
1547 
1548   /// EnsureInsertPoint - Ensure that an insertion point is defined so that
1549   /// emitted IR has a place to go. Note that by definition, if this function
1550   /// creates a block then that block is unreachable; callers may do better to
1551   /// detect when no insertion point is defined and simply skip IR generation.
1552   void EnsureInsertPoint() {
1553     if (!HaveInsertPoint())
1554       EmitBlock(createBasicBlock());
1555   }
1556 
1557   /// ErrorUnsupported - Print out an error that codegen doesn't support the
1558   /// specified stmt yet.
1559   void ErrorUnsupported(const Stmt *S, const char *Type);
1560 
1561   //===--------------------------------------------------------------------===//
1562   //                                  Helpers
1563   //===--------------------------------------------------------------------===//
1564 
1565   LValue MakeAddrLValue(Address Addr, QualType T,
1566                         AlignmentSource AlignSource = AlignmentSource::Type) {
1567     return LValue::MakeAddr(Addr, T, getContext(), AlignSource,
1568                             CGM.getTBAAInfo(T));
1569   }
1570 
1571   LValue MakeAddrLValue(llvm::Value *V, QualType T, CharUnits Alignment,
1572                         AlignmentSource AlignSource = AlignmentSource::Type) {
1573     return LValue::MakeAddr(Address(V, Alignment), T, getContext(),
1574                             AlignSource, CGM.getTBAAInfo(T));
1575   }
1576 
1577   LValue MakeNaturalAlignPointeeAddrLValue(llvm::Value *V, QualType T);
1578   LValue MakeNaturalAlignAddrLValue(llvm::Value *V, QualType T);
1579   CharUnits getNaturalTypeAlignment(QualType T,
1580                                     AlignmentSource *Source = nullptr,
1581                                     bool forPointeeType = false);
1582   CharUnits getNaturalPointeeTypeAlignment(QualType T,
1583                                            AlignmentSource *Source = nullptr);
1584 
1585   Address EmitLoadOfReference(Address Ref, const ReferenceType *RefTy,
1586                               AlignmentSource *Source = nullptr);
1587   LValue EmitLoadOfReferenceLValue(Address Ref, const ReferenceType *RefTy);
1588 
1589   Address EmitLoadOfPointer(Address Ptr, const PointerType *PtrTy,
1590                             AlignmentSource *Source = nullptr);
1591   LValue EmitLoadOfPointerLValue(Address Ptr, const PointerType *PtrTy);
1592 
1593   /// CreateTempAlloca - This creates a alloca and inserts it into the entry
1594   /// block. The caller is responsible for setting an appropriate alignment on
1595   /// the alloca.
1596   llvm::AllocaInst *CreateTempAlloca(llvm::Type *Ty,
1597                                      const Twine &Name = "tmp");
1598   Address CreateTempAlloca(llvm::Type *Ty, CharUnits align,
1599                            const Twine &Name = "tmp");
1600 
1601   /// CreateDefaultAlignedTempAlloca - This creates an alloca with the
1602   /// default ABI alignment of the given LLVM type.
1603   ///
1604   /// IMPORTANT NOTE: This is *not* generally the right alignment for
1605   /// any given AST type that happens to have been lowered to the
1606   /// given IR type.  This should only ever be used for function-local,
1607   /// IR-driven manipulations like saving and restoring a value.  Do
1608   /// not hand this address off to arbitrary IRGen routines, and especially
1609   /// do not pass it as an argument to a function that might expect a
1610   /// properly ABI-aligned value.
1611   Address CreateDefaultAlignTempAlloca(llvm::Type *Ty,
1612                                        const Twine &Name = "tmp");
1613 
1614   /// InitTempAlloca - Provide an initial value for the given alloca which
1615   /// will be observable at all locations in the function.
1616   ///
1617   /// The address should be something that was returned from one of
1618   /// the CreateTempAlloca or CreateMemTemp routines, and the
1619   /// initializer must be valid in the entry block (i.e. it must
1620   /// either be a constant or an argument value).
1621   void InitTempAlloca(Address Alloca, llvm::Value *Value);
1622 
1623   /// CreateIRTemp - Create a temporary IR object of the given type, with
1624   /// appropriate alignment. This routine should only be used when an temporary
1625   /// value needs to be stored into an alloca (for example, to avoid explicit
1626   /// PHI construction), but the type is the IR type, not the type appropriate
1627   /// for storing in memory.
1628   ///
1629   /// That is, this is exactly equivalent to CreateMemTemp, but calling
1630   /// ConvertType instead of ConvertTypeForMem.
1631   Address CreateIRTemp(QualType T, const Twine &Name = "tmp");
1632 
1633   /// CreateMemTemp - Create a temporary memory object of the given type, with
1634   /// appropriate alignment.
1635   Address CreateMemTemp(QualType T, const Twine &Name = "tmp");
1636   Address CreateMemTemp(QualType T, CharUnits Align, const Twine &Name = "tmp");
1637 
1638   /// CreateAggTemp - Create a temporary memory object for the given
1639   /// aggregate type.
1640   AggValueSlot CreateAggTemp(QualType T, const Twine &Name = "tmp") {
1641     return AggValueSlot::forAddr(CreateMemTemp(T, Name),
1642                                  T.getQualifiers(),
1643                                  AggValueSlot::IsNotDestructed,
1644                                  AggValueSlot::DoesNotNeedGCBarriers,
1645                                  AggValueSlot::IsNotAliased);
1646   }
1647 
1648   /// Emit a cast to void* in the appropriate address space.
1649   llvm::Value *EmitCastToVoidPtr(llvm::Value *value);
1650 
1651   /// EvaluateExprAsBool - Perform the usual unary conversions on the specified
1652   /// expression and compare the result against zero, returning an Int1Ty value.
1653   llvm::Value *EvaluateExprAsBool(const Expr *E);
1654 
1655   /// EmitIgnoredExpr - Emit an expression in a context which ignores the result.
1656   void EmitIgnoredExpr(const Expr *E);
1657 
1658   /// EmitAnyExpr - Emit code to compute the specified expression which can have
1659   /// any type.  The result is returned as an RValue struct.  If this is an
1660   /// aggregate expression, the aggloc/agglocvolatile arguments indicate where
1661   /// the result should be returned.
1662   ///
1663   /// \param ignoreResult True if the resulting value isn't used.
1664   RValue EmitAnyExpr(const Expr *E,
1665                      AggValueSlot aggSlot = AggValueSlot::ignored(),
1666                      bool ignoreResult = false);
1667 
1668   // EmitVAListRef - Emit a "reference" to a va_list; this is either the address
1669   // or the value of the expression, depending on how va_list is defined.
1670   Address EmitVAListRef(const Expr *E);
1671 
1672   /// Emit a "reference" to a __builtin_ms_va_list; this is
1673   /// always the value of the expression, because a __builtin_ms_va_list is a
1674   /// pointer to a char.
1675   Address EmitMSVAListRef(const Expr *E);
1676 
1677   /// EmitAnyExprToTemp - Similary to EmitAnyExpr(), however, the result will
1678   /// always be accessible even if no aggregate location is provided.
1679   RValue EmitAnyExprToTemp(const Expr *E);
1680 
1681   /// EmitAnyExprToMem - Emits the code necessary to evaluate an
1682   /// arbitrary expression into the given memory location.
1683   void EmitAnyExprToMem(const Expr *E, Address Location,
1684                         Qualifiers Quals, bool IsInitializer);
1685 
1686   void EmitAnyExprToExn(const Expr *E, Address Addr);
1687 
1688   /// EmitExprAsInit - Emits the code necessary to initialize a
1689   /// location in memory with the given initializer.
1690   void EmitExprAsInit(const Expr *init, const ValueDecl *D, LValue lvalue,
1691                       bool capturedByInit);
1692 
1693   /// hasVolatileMember - returns true if aggregate type has a volatile
1694   /// member.
1695   bool hasVolatileMember(QualType T) {
1696     if (const RecordType *RT = T->getAs<RecordType>()) {
1697       const RecordDecl *RD = cast<RecordDecl>(RT->getDecl());
1698       return RD->hasVolatileMember();
1699     }
1700     return false;
1701   }
1702   /// EmitAggregateCopy - Emit an aggregate assignment.
1703   ///
1704   /// The difference to EmitAggregateCopy is that tail padding is not copied.
1705   /// This is required for correctness when assigning non-POD structures in C++.
1706   void EmitAggregateAssign(Address DestPtr, Address SrcPtr,
1707                            QualType EltTy) {
1708     bool IsVolatile = hasVolatileMember(EltTy);
1709     EmitAggregateCopy(DestPtr, SrcPtr, EltTy, IsVolatile, true);
1710   }
1711 
1712   void EmitAggregateCopyCtor(Address DestPtr, Address SrcPtr,
1713                              QualType DestTy, QualType SrcTy) {
1714     EmitAggregateCopy(DestPtr, SrcPtr, SrcTy, /*IsVolatile=*/false,
1715                       /*IsAssignment=*/false);
1716   }
1717 
1718   /// EmitAggregateCopy - Emit an aggregate copy.
1719   ///
1720   /// \param isVolatile - True iff either the source or the destination is
1721   /// volatile.
1722   /// \param isAssignment - If false, allow padding to be copied.  This often
1723   /// yields more efficient.
1724   void EmitAggregateCopy(Address DestPtr, Address SrcPtr,
1725                          QualType EltTy, bool isVolatile=false,
1726                          bool isAssignment = false);
1727 
1728   /// GetAddrOfLocalVar - Return the address of a local variable.
1729   Address GetAddrOfLocalVar(const VarDecl *VD) {
1730     auto it = LocalDeclMap.find(VD);
1731     assert(it != LocalDeclMap.end() &&
1732            "Invalid argument to GetAddrOfLocalVar(), no decl!");
1733     return it->second;
1734   }
1735 
1736   /// getOpaqueLValueMapping - Given an opaque value expression (which
1737   /// must be mapped to an l-value), return its mapping.
1738   const LValue &getOpaqueLValueMapping(const OpaqueValueExpr *e) {
1739     assert(OpaqueValueMapping::shouldBindAsLValue(e));
1740 
1741     llvm::DenseMap<const OpaqueValueExpr*,LValue>::iterator
1742       it = OpaqueLValues.find(e);
1743     assert(it != OpaqueLValues.end() && "no mapping for opaque value!");
1744     return it->second;
1745   }
1746 
1747   /// getOpaqueRValueMapping - Given an opaque value expression (which
1748   /// must be mapped to an r-value), return its mapping.
1749   const RValue &getOpaqueRValueMapping(const OpaqueValueExpr *e) {
1750     assert(!OpaqueValueMapping::shouldBindAsLValue(e));
1751 
1752     llvm::DenseMap<const OpaqueValueExpr*,RValue>::iterator
1753       it = OpaqueRValues.find(e);
1754     assert(it != OpaqueRValues.end() && "no mapping for opaque value!");
1755     return it->second;
1756   }
1757 
1758   /// getAccessedFieldNo - Given an encoded value and a result number, return
1759   /// the input field number being accessed.
1760   static unsigned getAccessedFieldNo(unsigned Idx, const llvm::Constant *Elts);
1761 
1762   llvm::BlockAddress *GetAddrOfLabel(const LabelDecl *L);
1763   llvm::BasicBlock *GetIndirectGotoBlock();
1764 
1765   /// EmitNullInitialization - Generate code to set a value of the given type to
1766   /// null, If the type contains data member pointers, they will be initialized
1767   /// to -1 in accordance with the Itanium C++ ABI.
1768   void EmitNullInitialization(Address DestPtr, QualType Ty);
1769 
1770   /// Emits a call to an LLVM variable-argument intrinsic, either
1771   /// \c llvm.va_start or \c llvm.va_end.
1772   /// \param ArgValue A reference to the \c va_list as emitted by either
1773   /// \c EmitVAListRef or \c EmitMSVAListRef.
1774   /// \param IsStart If \c true, emits a call to \c llvm.va_start; otherwise,
1775   /// calls \c llvm.va_end.
1776   llvm::Value *EmitVAStartEnd(llvm::Value *ArgValue, bool IsStart);
1777 
1778   /// Generate code to get an argument from the passed in pointer
1779   /// and update it accordingly.
1780   /// \param VE The \c VAArgExpr for which to generate code.
1781   /// \param VAListAddr Receives a reference to the \c va_list as emitted by
1782   /// either \c EmitVAListRef or \c EmitMSVAListRef.
1783   /// \returns A pointer to the argument.
1784   // FIXME: We should be able to get rid of this method and use the va_arg
1785   // instruction in LLVM instead once it works well enough.
1786   Address EmitVAArg(VAArgExpr *VE, Address &VAListAddr);
1787 
1788   /// emitArrayLength - Compute the length of an array, even if it's a
1789   /// VLA, and drill down to the base element type.
1790   llvm::Value *emitArrayLength(const ArrayType *arrayType,
1791                                QualType &baseType,
1792                                Address &addr);
1793 
1794   /// EmitVLASize - Capture all the sizes for the VLA expressions in
1795   /// the given variably-modified type and store them in the VLASizeMap.
1796   ///
1797   /// This function can be called with a null (unreachable) insert point.
1798   void EmitVariablyModifiedType(QualType Ty);
1799 
1800   /// getVLASize - Returns an LLVM value that corresponds to the size,
1801   /// in non-variably-sized elements, of a variable length array type,
1802   /// plus that largest non-variably-sized element type.  Assumes that
1803   /// the type has already been emitted with EmitVariablyModifiedType.
1804   std::pair<llvm::Value*,QualType> getVLASize(const VariableArrayType *vla);
1805   std::pair<llvm::Value*,QualType> getVLASize(QualType vla);
1806 
1807   /// LoadCXXThis - Load the value of 'this'. This function is only valid while
1808   /// generating code for an C++ member function.
1809   llvm::Value *LoadCXXThis() {
1810     assert(CXXThisValue && "no 'this' value for this function");
1811     return CXXThisValue;
1812   }
1813   Address LoadCXXThisAddress();
1814 
1815   /// LoadCXXVTT - Load the VTT parameter to base constructors/destructors have
1816   /// virtual bases.
1817   // FIXME: Every place that calls LoadCXXVTT is something
1818   // that needs to be abstracted properly.
1819   llvm::Value *LoadCXXVTT() {
1820     assert(CXXStructorImplicitParamValue && "no VTT value for this function");
1821     return CXXStructorImplicitParamValue;
1822   }
1823 
1824   /// GetAddressOfBaseOfCompleteClass - Convert the given pointer to a
1825   /// complete class to the given direct base.
1826   Address
1827   GetAddressOfDirectBaseInCompleteClass(Address Value,
1828                                         const CXXRecordDecl *Derived,
1829                                         const CXXRecordDecl *Base,
1830                                         bool BaseIsVirtual);
1831 
1832   static bool ShouldNullCheckClassCastValue(const CastExpr *Cast);
1833 
1834   /// GetAddressOfBaseClass - This function will add the necessary delta to the
1835   /// load of 'this' and returns address of the base class.
1836   Address GetAddressOfBaseClass(Address Value,
1837                                 const CXXRecordDecl *Derived,
1838                                 CastExpr::path_const_iterator PathBegin,
1839                                 CastExpr::path_const_iterator PathEnd,
1840                                 bool NullCheckValue, SourceLocation Loc);
1841 
1842   Address GetAddressOfDerivedClass(Address Value,
1843                                    const CXXRecordDecl *Derived,
1844                                    CastExpr::path_const_iterator PathBegin,
1845                                    CastExpr::path_const_iterator PathEnd,
1846                                    bool NullCheckValue);
1847 
1848   /// GetVTTParameter - Return the VTT parameter that should be passed to a
1849   /// base constructor/destructor with virtual bases.
1850   /// FIXME: VTTs are Itanium ABI-specific, so the definition should move
1851   /// to ItaniumCXXABI.cpp together with all the references to VTT.
1852   llvm::Value *GetVTTParameter(GlobalDecl GD, bool ForVirtualBase,
1853                                bool Delegating);
1854 
1855   void EmitDelegateCXXConstructorCall(const CXXConstructorDecl *Ctor,
1856                                       CXXCtorType CtorType,
1857                                       const FunctionArgList &Args,
1858                                       SourceLocation Loc);
1859   // It's important not to confuse this and the previous function. Delegating
1860   // constructors are the C++0x feature. The constructor delegate optimization
1861   // is used to reduce duplication in the base and complete consturctors where
1862   // they are substantially the same.
1863   void EmitDelegatingCXXConstructorCall(const CXXConstructorDecl *Ctor,
1864                                         const FunctionArgList &Args);
1865 
1866   void EmitCXXConstructorCall(const CXXConstructorDecl *D, CXXCtorType Type,
1867                               bool ForVirtualBase, bool Delegating,
1868                               Address This, const CXXConstructExpr *E);
1869 
1870   /// Emit assumption load for all bases. Requires to be be called only on
1871   /// most-derived class and not under construction of the object.
1872   void EmitVTableAssumptionLoads(const CXXRecordDecl *ClassDecl, Address This);
1873 
1874   /// Emit assumption that vptr load == global vtable.
1875   void EmitVTableAssumptionLoad(const VPtr &vptr, Address This);
1876 
1877   void EmitSynthesizedCXXCopyCtorCall(const CXXConstructorDecl *D,
1878                                       Address This, Address Src,
1879                                       const CXXConstructExpr *E);
1880 
1881   void EmitCXXAggrConstructorCall(const CXXConstructorDecl *D,
1882                                   const ArrayType *ArrayTy,
1883                                   Address ArrayPtr,
1884                                   const CXXConstructExpr *E,
1885                                   bool ZeroInitialization = false);
1886 
1887   void EmitCXXAggrConstructorCall(const CXXConstructorDecl *D,
1888                                   llvm::Value *NumElements,
1889                                   Address ArrayPtr,
1890                                   const CXXConstructExpr *E,
1891                                   bool ZeroInitialization = false);
1892 
1893   static Destroyer destroyCXXObject;
1894 
1895   void EmitCXXDestructorCall(const CXXDestructorDecl *D, CXXDtorType Type,
1896                              bool ForVirtualBase, bool Delegating,
1897                              Address This);
1898 
1899   void EmitNewArrayInitializer(const CXXNewExpr *E, QualType elementType,
1900                                llvm::Type *ElementTy, Address NewPtr,
1901                                llvm::Value *NumElements,
1902                                llvm::Value *AllocSizeWithoutCookie);
1903 
1904   void EmitCXXTemporary(const CXXTemporary *Temporary, QualType TempType,
1905                         Address Ptr);
1906 
1907   llvm::Value *EmitLifetimeStart(uint64_t Size, llvm::Value *Addr);
1908   void EmitLifetimeEnd(llvm::Value *Size, llvm::Value *Addr);
1909 
1910   llvm::Value *EmitCXXNewExpr(const CXXNewExpr *E);
1911   void EmitCXXDeleteExpr(const CXXDeleteExpr *E);
1912 
1913   void EmitDeleteCall(const FunctionDecl *DeleteFD, llvm::Value *Ptr,
1914                       QualType DeleteTy);
1915 
1916   RValue EmitBuiltinNewDeleteCall(const FunctionProtoType *Type,
1917                                   const Expr *Arg, bool IsDelete);
1918 
1919   llvm::Value *EmitCXXTypeidExpr(const CXXTypeidExpr *E);
1920   llvm::Value *EmitDynamicCast(Address V, const CXXDynamicCastExpr *DCE);
1921   Address EmitCXXUuidofExpr(const CXXUuidofExpr *E);
1922 
1923   /// \brief Situations in which we might emit a check for the suitability of a
1924   ///        pointer or glvalue.
1925   enum TypeCheckKind {
1926     /// Checking the operand of a load. Must be suitably sized and aligned.
1927     TCK_Load,
1928     /// Checking the destination of a store. Must be suitably sized and aligned.
1929     TCK_Store,
1930     /// Checking the bound value in a reference binding. Must be suitably sized
1931     /// and aligned, but is not required to refer to an object (until the
1932     /// reference is used), per core issue 453.
1933     TCK_ReferenceBinding,
1934     /// Checking the object expression in a non-static data member access. Must
1935     /// be an object within its lifetime.
1936     TCK_MemberAccess,
1937     /// Checking the 'this' pointer for a call to a non-static member function.
1938     /// Must be an object within its lifetime.
1939     TCK_MemberCall,
1940     /// Checking the 'this' pointer for a constructor call.
1941     TCK_ConstructorCall,
1942     /// Checking the operand of a static_cast to a derived pointer type. Must be
1943     /// null or an object within its lifetime.
1944     TCK_DowncastPointer,
1945     /// Checking the operand of a static_cast to a derived reference type. Must
1946     /// be an object within its lifetime.
1947     TCK_DowncastReference,
1948     /// Checking the operand of a cast to a base object. Must be suitably sized
1949     /// and aligned.
1950     TCK_Upcast,
1951     /// Checking the operand of a cast to a virtual base object. Must be an
1952     /// object within its lifetime.
1953     TCK_UpcastToVirtualBase
1954   };
1955 
1956   /// \brief Whether any type-checking sanitizers are enabled. If \c false,
1957   /// calls to EmitTypeCheck can be skipped.
1958   bool sanitizePerformTypeCheck() const;
1959 
1960   /// \brief Emit a check that \p V is the address of storage of the
1961   /// appropriate size and alignment for an object of type \p Type.
1962   void EmitTypeCheck(TypeCheckKind TCK, SourceLocation Loc, llvm::Value *V,
1963                      QualType Type, CharUnits Alignment = CharUnits::Zero(),
1964                      bool SkipNullCheck = false);
1965 
1966   /// \brief Emit a check that \p Base points into an array object, which
1967   /// we can access at index \p Index. \p Accessed should be \c false if we
1968   /// this expression is used as an lvalue, for instance in "&Arr[Idx]".
1969   void EmitBoundsCheck(const Expr *E, const Expr *Base, llvm::Value *Index,
1970                        QualType IndexType, bool Accessed);
1971 
1972   llvm::Value *EmitScalarPrePostIncDec(const UnaryOperator *E, LValue LV,
1973                                        bool isInc, bool isPre);
1974   ComplexPairTy EmitComplexPrePostIncDec(const UnaryOperator *E, LValue LV,
1975                                          bool isInc, bool isPre);
1976 
1977   void EmitAlignmentAssumption(llvm::Value *PtrValue, unsigned Alignment,
1978                                llvm::Value *OffsetValue = nullptr) {
1979     Builder.CreateAlignmentAssumption(CGM.getDataLayout(), PtrValue, Alignment,
1980                                       OffsetValue);
1981   }
1982 
1983   //===--------------------------------------------------------------------===//
1984   //                            Declaration Emission
1985   //===--------------------------------------------------------------------===//
1986 
1987   /// EmitDecl - Emit a declaration.
1988   ///
1989   /// This function can be called with a null (unreachable) insert point.
1990   void EmitDecl(const Decl &D);
1991 
1992   /// EmitVarDecl - Emit a local variable declaration.
1993   ///
1994   /// This function can be called with a null (unreachable) insert point.
1995   void EmitVarDecl(const VarDecl &D);
1996 
1997   void EmitScalarInit(const Expr *init, const ValueDecl *D, LValue lvalue,
1998                       bool capturedByInit);
1999   void EmitScalarInit(llvm::Value *init, LValue lvalue);
2000 
2001   typedef void SpecialInitFn(CodeGenFunction &Init, const VarDecl &D,
2002                              llvm::Value *Address);
2003 
2004   /// \brief Determine whether the given initializer is trivial in the sense
2005   /// that it requires no code to be generated.
2006   bool isTrivialInitializer(const Expr *Init);
2007 
2008   /// EmitAutoVarDecl - Emit an auto variable declaration.
2009   ///
2010   /// This function can be called with a null (unreachable) insert point.
2011   void EmitAutoVarDecl(const VarDecl &D);
2012 
2013   class AutoVarEmission {
2014     friend class CodeGenFunction;
2015 
2016     const VarDecl *Variable;
2017 
2018     /// The address of the alloca.  Invalid if the variable was emitted
2019     /// as a global constant.
2020     Address Addr;
2021 
2022     llvm::Value *NRVOFlag;
2023 
2024     /// True if the variable is a __block variable.
2025     bool IsByRef;
2026 
2027     /// True if the variable is of aggregate type and has a constant
2028     /// initializer.
2029     bool IsConstantAggregate;
2030 
2031     /// Non-null if we should use lifetime annotations.
2032     llvm::Value *SizeForLifetimeMarkers;
2033 
2034     struct Invalid {};
2035     AutoVarEmission(Invalid) : Variable(nullptr), Addr(Address::invalid()) {}
2036 
2037     AutoVarEmission(const VarDecl &variable)
2038       : Variable(&variable), Addr(Address::invalid()), NRVOFlag(nullptr),
2039         IsByRef(false), IsConstantAggregate(false),
2040         SizeForLifetimeMarkers(nullptr) {}
2041 
2042     bool wasEmittedAsGlobal() const { return !Addr.isValid(); }
2043 
2044   public:
2045     static AutoVarEmission invalid() { return AutoVarEmission(Invalid()); }
2046 
2047     bool useLifetimeMarkers() const {
2048       return SizeForLifetimeMarkers != nullptr;
2049     }
2050     llvm::Value *getSizeForLifetimeMarkers() const {
2051       assert(useLifetimeMarkers());
2052       return SizeForLifetimeMarkers;
2053     }
2054 
2055     /// Returns the raw, allocated address, which is not necessarily
2056     /// the address of the object itself.
2057     Address getAllocatedAddress() const {
2058       return Addr;
2059     }
2060 
2061     /// Returns the address of the object within this declaration.
2062     /// Note that this does not chase the forwarding pointer for
2063     /// __block decls.
2064     Address getObjectAddress(CodeGenFunction &CGF) const {
2065       if (!IsByRef) return Addr;
2066 
2067       return CGF.emitBlockByrefAddress(Addr, Variable, /*forward*/ false);
2068     }
2069   };
2070   AutoVarEmission EmitAutoVarAlloca(const VarDecl &var);
2071   void EmitAutoVarInit(const AutoVarEmission &emission);
2072   void EmitAutoVarCleanups(const AutoVarEmission &emission);
2073   void emitAutoVarTypeCleanup(const AutoVarEmission &emission,
2074                               QualType::DestructionKind dtorKind);
2075 
2076   void EmitStaticVarDecl(const VarDecl &D,
2077                          llvm::GlobalValue::LinkageTypes Linkage);
2078 
2079   class ParamValue {
2080     llvm::Value *Value;
2081     unsigned Alignment;
2082     ParamValue(llvm::Value *V, unsigned A) : Value(V), Alignment(A) {}
2083   public:
2084     static ParamValue forDirect(llvm::Value *value) {
2085       return ParamValue(value, 0);
2086     }
2087     static ParamValue forIndirect(Address addr) {
2088       assert(!addr.getAlignment().isZero());
2089       return ParamValue(addr.getPointer(), addr.getAlignment().getQuantity());
2090     }
2091 
2092     bool isIndirect() const { return Alignment != 0; }
2093     llvm::Value *getAnyValue() const { return Value; }
2094 
2095     llvm::Value *getDirectValue() const {
2096       assert(!isIndirect());
2097       return Value;
2098     }
2099 
2100     Address getIndirectAddress() const {
2101       assert(isIndirect());
2102       return Address(Value, CharUnits::fromQuantity(Alignment));
2103     }
2104   };
2105 
2106   /// EmitParmDecl - Emit a ParmVarDecl or an ImplicitParamDecl.
2107   void EmitParmDecl(const VarDecl &D, ParamValue Arg, unsigned ArgNo);
2108 
2109   /// protectFromPeepholes - Protect a value that we're intending to
2110   /// store to the side, but which will probably be used later, from
2111   /// aggressive peepholing optimizations that might delete it.
2112   ///
2113   /// Pass the result to unprotectFromPeepholes to declare that
2114   /// protection is no longer required.
2115   ///
2116   /// There's no particular reason why this shouldn't apply to
2117   /// l-values, it's just that no existing peepholes work on pointers.
2118   PeepholeProtection protectFromPeepholes(RValue rvalue);
2119   void unprotectFromPeepholes(PeepholeProtection protection);
2120 
2121   //===--------------------------------------------------------------------===//
2122   //                             Statement Emission
2123   //===--------------------------------------------------------------------===//
2124 
2125   /// EmitStopPoint - Emit a debug stoppoint if we are emitting debug info.
2126   void EmitStopPoint(const Stmt *S);
2127 
2128   /// EmitStmt - Emit the code for the statement \arg S. It is legal to call
2129   /// this function even if there is no current insertion point.
2130   ///
2131   /// This function may clear the current insertion point; callers should use
2132   /// EnsureInsertPoint if they wish to subsequently generate code without first
2133   /// calling EmitBlock, EmitBranch, or EmitStmt.
2134   void EmitStmt(const Stmt *S);
2135 
2136   /// EmitSimpleStmt - Try to emit a "simple" statement which does not
2137   /// necessarily require an insertion point or debug information; typically
2138   /// because the statement amounts to a jump or a container of other
2139   /// statements.
2140   ///
2141   /// \return True if the statement was handled.
2142   bool EmitSimpleStmt(const Stmt *S);
2143 
2144   Address EmitCompoundStmt(const CompoundStmt &S, bool GetLast = false,
2145                            AggValueSlot AVS = AggValueSlot::ignored());
2146   Address EmitCompoundStmtWithoutScope(const CompoundStmt &S,
2147                                        bool GetLast = false,
2148                                        AggValueSlot AVS =
2149                                                 AggValueSlot::ignored());
2150 
2151   /// EmitLabel - Emit the block for the given label. It is legal to call this
2152   /// function even if there is no current insertion point.
2153   void EmitLabel(const LabelDecl *D); // helper for EmitLabelStmt.
2154 
2155   void EmitLabelStmt(const LabelStmt &S);
2156   void EmitAttributedStmt(const AttributedStmt &S);
2157   void EmitGotoStmt(const GotoStmt &S);
2158   void EmitIndirectGotoStmt(const IndirectGotoStmt &S);
2159   void EmitIfStmt(const IfStmt &S);
2160 
2161   void EmitWhileStmt(const WhileStmt &S,
2162                      ArrayRef<const Attr *> Attrs = None);
2163   void EmitDoStmt(const DoStmt &S, ArrayRef<const Attr *> Attrs = None);
2164   void EmitForStmt(const ForStmt &S,
2165                    ArrayRef<const Attr *> Attrs = None);
2166   void EmitReturnStmt(const ReturnStmt &S);
2167   void EmitDeclStmt(const DeclStmt &S);
2168   void EmitBreakStmt(const BreakStmt &S);
2169   void EmitContinueStmt(const ContinueStmt &S);
2170   void EmitSwitchStmt(const SwitchStmt &S);
2171   void EmitDefaultStmt(const DefaultStmt &S);
2172   void EmitCaseStmt(const CaseStmt &S);
2173   void EmitCaseStmtRange(const CaseStmt &S);
2174   void EmitAsmStmt(const AsmStmt &S);
2175 
2176   void EmitObjCForCollectionStmt(const ObjCForCollectionStmt &S);
2177   void EmitObjCAtTryStmt(const ObjCAtTryStmt &S);
2178   void EmitObjCAtThrowStmt(const ObjCAtThrowStmt &S);
2179   void EmitObjCAtSynchronizedStmt(const ObjCAtSynchronizedStmt &S);
2180   void EmitObjCAutoreleasePoolStmt(const ObjCAutoreleasePoolStmt &S);
2181 
2182   void EnterCXXTryStmt(const CXXTryStmt &S, bool IsFnTryBlock = false);
2183   void ExitCXXTryStmt(const CXXTryStmt &S, bool IsFnTryBlock = false);
2184 
2185   void EmitCXXTryStmt(const CXXTryStmt &S);
2186   void EmitSEHTryStmt(const SEHTryStmt &S);
2187   void EmitSEHLeaveStmt(const SEHLeaveStmt &S);
2188   void EnterSEHTryStmt(const SEHTryStmt &S);
2189   void ExitSEHTryStmt(const SEHTryStmt &S);
2190 
2191   void startOutlinedSEHHelper(CodeGenFunction &ParentCGF, bool IsFilter,
2192                               const Stmt *OutlinedStmt);
2193 
2194   llvm::Function *GenerateSEHFilterFunction(CodeGenFunction &ParentCGF,
2195                                             const SEHExceptStmt &Except);
2196 
2197   llvm::Function *GenerateSEHFinallyFunction(CodeGenFunction &ParentCGF,
2198                                              const SEHFinallyStmt &Finally);
2199 
2200   void EmitSEHExceptionCodeSave(CodeGenFunction &ParentCGF,
2201                                 llvm::Value *ParentFP,
2202                                 llvm::Value *EntryEBP);
2203   llvm::Value *EmitSEHExceptionCode();
2204   llvm::Value *EmitSEHExceptionInfo();
2205   llvm::Value *EmitSEHAbnormalTermination();
2206 
2207   /// Scan the outlined statement for captures from the parent function. For
2208   /// each capture, mark the capture as escaped and emit a call to
2209   /// llvm.localrecover. Insert the localrecover result into the LocalDeclMap.
2210   void EmitCapturedLocals(CodeGenFunction &ParentCGF, const Stmt *OutlinedStmt,
2211                           bool IsFilter);
2212 
2213   /// Recovers the address of a local in a parent function. ParentVar is the
2214   /// address of the variable used in the immediate parent function. It can
2215   /// either be an alloca or a call to llvm.localrecover if there are nested
2216   /// outlined functions. ParentFP is the frame pointer of the outermost parent
2217   /// frame.
2218   Address recoverAddrOfEscapedLocal(CodeGenFunction &ParentCGF,
2219                                     Address ParentVar,
2220                                     llvm::Value *ParentFP);
2221 
2222   void EmitCXXForRangeStmt(const CXXForRangeStmt &S,
2223                            ArrayRef<const Attr *> Attrs = None);
2224 
2225   /// Returns calculated size of the specified type.
2226   llvm::Value *getTypeSize(QualType Ty);
2227   LValue InitCapturedStruct(const CapturedStmt &S);
2228   llvm::Function *EmitCapturedStmt(const CapturedStmt &S, CapturedRegionKind K);
2229   llvm::Function *GenerateCapturedStmtFunction(const CapturedStmt &S);
2230   Address GenerateCapturedStmtArgument(const CapturedStmt &S);
2231   llvm::Function *GenerateOpenMPCapturedStmtFunction(const CapturedStmt &S,
2232                                                      QualType ReturnQTy);
2233   llvm::Function *GenerateOpenMPCapturedStmtFunction(const CapturedStmt &S);
2234   void GenerateOpenMPCapturedVars(const CapturedStmt &S,
2235                                   SmallVectorImpl<llvm::Value *> &CapturedVars);
2236   void emitOMPSimpleStore(LValue LVal, RValue RVal, QualType RValTy,
2237                           SourceLocation Loc);
2238   /// \brief Perform element by element copying of arrays with type \a
2239   /// OriginalType from \a SrcAddr to \a DestAddr using copying procedure
2240   /// generated by \a CopyGen.
2241   ///
2242   /// \param DestAddr Address of the destination array.
2243   /// \param SrcAddr Address of the source array.
2244   /// \param OriginalType Type of destination and source arrays.
2245   /// \param CopyGen Copying procedure that copies value of single array element
2246   /// to another single array element.
2247   void EmitOMPAggregateAssign(
2248       Address DestAddr, Address SrcAddr, QualType OriginalType,
2249       const llvm::function_ref<void(Address, Address)> &CopyGen);
2250   /// \brief Emit proper copying of data from one variable to another.
2251   ///
2252   /// \param OriginalType Original type of the copied variables.
2253   /// \param DestAddr Destination address.
2254   /// \param SrcAddr Source address.
2255   /// \param DestVD Destination variable used in \a CopyExpr (for arrays, has
2256   /// type of the base array element).
2257   /// \param SrcVD Source variable used in \a CopyExpr (for arrays, has type of
2258   /// the base array element).
2259   /// \param Copy Actual copygin expression for copying data from \a SrcVD to \a
2260   /// DestVD.
2261   void EmitOMPCopy(QualType OriginalType,
2262                    Address DestAddr, Address SrcAddr,
2263                    const VarDecl *DestVD, const VarDecl *SrcVD,
2264                    const Expr *Copy);
2265   /// \brief Emit atomic update code for constructs: \a X = \a X \a BO \a E or
2266   /// \a X = \a E \a BO \a E.
2267   ///
2268   /// \param X Value to be updated.
2269   /// \param E Update value.
2270   /// \param BO Binary operation for update operation.
2271   /// \param IsXLHSInRHSPart true if \a X is LHS in RHS part of the update
2272   /// expression, false otherwise.
2273   /// \param AO Atomic ordering of the generated atomic instructions.
2274   /// \param CommonGen Code generator for complex expressions that cannot be
2275   /// expressed through atomicrmw instruction.
2276   /// \returns <true, OldAtomicValue> if simple 'atomicrmw' instruction was
2277   /// generated, <false, RValue::get(nullptr)> otherwise.
2278   std::pair<bool, RValue> EmitOMPAtomicSimpleUpdateExpr(
2279       LValue X, RValue E, BinaryOperatorKind BO, bool IsXLHSInRHSPart,
2280       llvm::AtomicOrdering AO, SourceLocation Loc,
2281       const llvm::function_ref<RValue(RValue)> &CommonGen);
2282   bool EmitOMPFirstprivateClause(const OMPExecutableDirective &D,
2283                                  OMPPrivateScope &PrivateScope);
2284   void EmitOMPPrivateClause(const OMPExecutableDirective &D,
2285                             OMPPrivateScope &PrivateScope);
2286   /// \brief Emit code for copyin clause in \a D directive. The next code is
2287   /// generated at the start of outlined functions for directives:
2288   /// \code
2289   /// threadprivate_var1 = master_threadprivate_var1;
2290   /// operator=(threadprivate_var2, master_threadprivate_var2);
2291   /// ...
2292   /// __kmpc_barrier(&loc, global_tid);
2293   /// \endcode
2294   ///
2295   /// \param D OpenMP directive possibly with 'copyin' clause(s).
2296   /// \returns true if at least one copyin variable is found, false otherwise.
2297   bool EmitOMPCopyinClause(const OMPExecutableDirective &D);
2298   /// \brief Emit initial code for lastprivate variables. If some variable is
2299   /// not also firstprivate, then the default initialization is used. Otherwise
2300   /// initialization of this variable is performed by EmitOMPFirstprivateClause
2301   /// method.
2302   ///
2303   /// \param D Directive that may have 'lastprivate' directives.
2304   /// \param PrivateScope Private scope for capturing lastprivate variables for
2305   /// proper codegen in internal captured statement.
2306   ///
2307   /// \returns true if there is at least one lastprivate variable, false
2308   /// otherwise.
2309   bool EmitOMPLastprivateClauseInit(const OMPExecutableDirective &D,
2310                                     OMPPrivateScope &PrivateScope);
2311   /// \brief Emit final copying of lastprivate values to original variables at
2312   /// the end of the worksharing or simd directive.
2313   ///
2314   /// \param D Directive that has at least one 'lastprivate' directives.
2315   /// \param IsLastIterCond Boolean condition that must be set to 'i1 true' if
2316   /// it is the last iteration of the loop code in associated directive, or to
2317   /// 'i1 false' otherwise. If this item is nullptr, no final check is required.
2318   void EmitOMPLastprivateClauseFinal(const OMPExecutableDirective &D,
2319                                      bool NoFinals,
2320                                      llvm::Value *IsLastIterCond = nullptr);
2321   /// Emit initial code for linear clauses.
2322   void EmitOMPLinearClause(const OMPLoopDirective &D,
2323                            CodeGenFunction::OMPPrivateScope &PrivateScope);
2324   /// Emit final code for linear clauses.
2325   /// \param CondGen Optional conditional code for final part of codegen for
2326   /// linear clause.
2327   void EmitOMPLinearClauseFinal(
2328       const OMPLoopDirective &D,
2329       const llvm::function_ref<llvm::Value *(CodeGenFunction &)> &CondGen);
2330   /// \brief Emit initial code for reduction variables. Creates reduction copies
2331   /// and initializes them with the values according to OpenMP standard.
2332   ///
2333   /// \param D Directive (possibly) with the 'reduction' clause.
2334   /// \param PrivateScope Private scope for capturing reduction variables for
2335   /// proper codegen in internal captured statement.
2336   ///
2337   void EmitOMPReductionClauseInit(const OMPExecutableDirective &D,
2338                                   OMPPrivateScope &PrivateScope);
2339   /// \brief Emit final update of reduction values to original variables at
2340   /// the end of the directive.
2341   ///
2342   /// \param D Directive that has at least one 'reduction' directives.
2343   void EmitOMPReductionClauseFinal(const OMPExecutableDirective &D);
2344   /// \brief Emit initial code for linear variables. Creates private copies
2345   /// and initializes them with the values according to OpenMP standard.
2346   ///
2347   /// \param D Directive (possibly) with the 'linear' clause.
2348   void EmitOMPLinearClauseInit(const OMPLoopDirective &D);
2349 
2350   typedef const llvm::function_ref<void(CodeGenFunction & /*CGF*/,
2351                                         llvm::Value * /*OutlinedFn*/,
2352                                         const OMPTaskDataTy & /*Data*/)>
2353       TaskGenTy;
2354   void EmitOMPTaskBasedDirective(const OMPExecutableDirective &S,
2355                                  const RegionCodeGenTy &BodyGen,
2356                                  const TaskGenTy &TaskGen, OMPTaskDataTy &Data);
2357 
2358   void EmitOMPParallelDirective(const OMPParallelDirective &S);
2359   void EmitOMPSimdDirective(const OMPSimdDirective &S);
2360   void EmitOMPForDirective(const OMPForDirective &S);
2361   void EmitOMPForSimdDirective(const OMPForSimdDirective &S);
2362   void EmitOMPSectionsDirective(const OMPSectionsDirective &S);
2363   void EmitOMPSectionDirective(const OMPSectionDirective &S);
2364   void EmitOMPSingleDirective(const OMPSingleDirective &S);
2365   void EmitOMPMasterDirective(const OMPMasterDirective &S);
2366   void EmitOMPCriticalDirective(const OMPCriticalDirective &S);
2367   void EmitOMPParallelForDirective(const OMPParallelForDirective &S);
2368   void EmitOMPParallelForSimdDirective(const OMPParallelForSimdDirective &S);
2369   void EmitOMPParallelSectionsDirective(const OMPParallelSectionsDirective &S);
2370   void EmitOMPTaskDirective(const OMPTaskDirective &S);
2371   void EmitOMPTaskyieldDirective(const OMPTaskyieldDirective &S);
2372   void EmitOMPBarrierDirective(const OMPBarrierDirective &S);
2373   void EmitOMPTaskwaitDirective(const OMPTaskwaitDirective &S);
2374   void EmitOMPTaskgroupDirective(const OMPTaskgroupDirective &S);
2375   void EmitOMPFlushDirective(const OMPFlushDirective &S);
2376   void EmitOMPOrderedDirective(const OMPOrderedDirective &S);
2377   void EmitOMPAtomicDirective(const OMPAtomicDirective &S);
2378   void EmitOMPTargetDirective(const OMPTargetDirective &S);
2379   void EmitOMPTargetDataDirective(const OMPTargetDataDirective &S);
2380   void EmitOMPTargetEnterDataDirective(const OMPTargetEnterDataDirective &S);
2381   void EmitOMPTargetExitDataDirective(const OMPTargetExitDataDirective &S);
2382   void EmitOMPTargetParallelDirective(const OMPTargetParallelDirective &S);
2383   void
2384   EmitOMPTargetParallelForDirective(const OMPTargetParallelForDirective &S);
2385   void EmitOMPTeamsDirective(const OMPTeamsDirective &S);
2386   void
2387   EmitOMPCancellationPointDirective(const OMPCancellationPointDirective &S);
2388   void EmitOMPCancelDirective(const OMPCancelDirective &S);
2389   void EmitOMPTaskLoopBasedDirective(const OMPLoopDirective &S);
2390   void EmitOMPTaskLoopDirective(const OMPTaskLoopDirective &S);
2391   void EmitOMPTaskLoopSimdDirective(const OMPTaskLoopSimdDirective &S);
2392   void EmitOMPDistributeDirective(const OMPDistributeDirective &S);
2393   void EmitOMPDistributeLoop(const OMPDistributeDirective &S);
2394 
2395   /// Emit outlined function for the target directive.
2396   static std::pair<llvm::Function * /*OutlinedFn*/,
2397                    llvm::Constant * /*OutlinedFnID*/>
2398   EmitOMPTargetDirectiveOutlinedFunction(CodeGenModule &CGM,
2399                                          const OMPTargetDirective &S,
2400                                          StringRef ParentName,
2401                                          bool IsOffloadEntry);
2402   /// \brief Emit inner loop of the worksharing/simd construct.
2403   ///
2404   /// \param S Directive, for which the inner loop must be emitted.
2405   /// \param RequiresCleanup true, if directive has some associated private
2406   /// variables.
2407   /// \param LoopCond Bollean condition for loop continuation.
2408   /// \param IncExpr Increment expression for loop control variable.
2409   /// \param BodyGen Generator for the inner body of the inner loop.
2410   /// \param PostIncGen Genrator for post-increment code (required for ordered
2411   /// loop directvies).
2412   void EmitOMPInnerLoop(
2413       const Stmt &S, bool RequiresCleanup, const Expr *LoopCond,
2414       const Expr *IncExpr,
2415       const llvm::function_ref<void(CodeGenFunction &)> &BodyGen,
2416       const llvm::function_ref<void(CodeGenFunction &)> &PostIncGen);
2417 
2418   JumpDest getOMPCancelDestination(OpenMPDirectiveKind Kind);
2419   /// Emit initial code for loop counters of loop-based directives.
2420   void EmitOMPPrivateLoopCounters(const OMPLoopDirective &S,
2421                                   OMPPrivateScope &LoopScope);
2422 
2423 private:
2424   /// Helpers for the OpenMP loop directives.
2425   void EmitOMPLoopBody(const OMPLoopDirective &D, JumpDest LoopExit);
2426   void EmitOMPSimdInit(const OMPLoopDirective &D, bool IsMonotonic = false);
2427   void EmitOMPSimdFinal(
2428       const OMPLoopDirective &D,
2429       const llvm::function_ref<llvm::Value *(CodeGenFunction &)> &CondGen);
2430   /// \brief Emit code for the worksharing loop-based directive.
2431   /// \return true, if this construct has any lastprivate clause, false -
2432   /// otherwise.
2433   bool EmitOMPWorksharingLoop(const OMPLoopDirective &S);
2434   void EmitOMPOuterLoop(bool IsMonotonic, bool DynamicOrOrdered,
2435       const OMPLoopDirective &S, OMPPrivateScope &LoopScope, bool Ordered,
2436       Address LB, Address UB, Address ST, Address IL, llvm::Value *Chunk);
2437   void EmitOMPForOuterLoop(OpenMPScheduleClauseKind ScheduleKind,
2438                            bool IsMonotonic, const OMPLoopDirective &S,
2439                            OMPPrivateScope &LoopScope, bool Ordered, Address LB,
2440                            Address UB, Address ST, Address IL,
2441                            llvm::Value *Chunk);
2442   void EmitOMPDistributeOuterLoop(
2443       OpenMPDistScheduleClauseKind ScheduleKind,
2444       const OMPDistributeDirective &S, OMPPrivateScope &LoopScope,
2445       Address LB, Address UB, Address ST, Address IL, llvm::Value *Chunk);
2446   /// \brief Emit code for sections directive.
2447   void EmitSections(const OMPExecutableDirective &S);
2448 
2449 public:
2450 
2451   //===--------------------------------------------------------------------===//
2452   //                         LValue Expression Emission
2453   //===--------------------------------------------------------------------===//
2454 
2455   /// GetUndefRValue - Get an appropriate 'undef' rvalue for the given type.
2456   RValue GetUndefRValue(QualType Ty);
2457 
2458   /// EmitUnsupportedRValue - Emit a dummy r-value using the type of E
2459   /// and issue an ErrorUnsupported style diagnostic (using the
2460   /// provided Name).
2461   RValue EmitUnsupportedRValue(const Expr *E,
2462                                const char *Name);
2463 
2464   /// EmitUnsupportedLValue - Emit a dummy l-value using the type of E and issue
2465   /// an ErrorUnsupported style diagnostic (using the provided Name).
2466   LValue EmitUnsupportedLValue(const Expr *E,
2467                                const char *Name);
2468 
2469   /// EmitLValue - Emit code to compute a designator that specifies the location
2470   /// of the expression.
2471   ///
2472   /// This can return one of two things: a simple address or a bitfield
2473   /// reference.  In either case, the LLVM Value* in the LValue structure is
2474   /// guaranteed to be an LLVM pointer type.
2475   ///
2476   /// If this returns a bitfield reference, nothing about the pointee type of
2477   /// the LLVM value is known: For example, it may not be a pointer to an
2478   /// integer.
2479   ///
2480   /// If this returns a normal address, and if the lvalue's C type is fixed
2481   /// size, this method guarantees that the returned pointer type will point to
2482   /// an LLVM type of the same size of the lvalue's type.  If the lvalue has a
2483   /// variable length type, this is not possible.
2484   ///
2485   LValue EmitLValue(const Expr *E);
2486 
2487   /// \brief Same as EmitLValue but additionally we generate checking code to
2488   /// guard against undefined behavior.  This is only suitable when we know
2489   /// that the address will be used to access the object.
2490   LValue EmitCheckedLValue(const Expr *E, TypeCheckKind TCK);
2491 
2492   RValue convertTempToRValue(Address addr, QualType type,
2493                              SourceLocation Loc);
2494 
2495   void EmitAtomicInit(Expr *E, LValue lvalue);
2496 
2497   bool LValueIsSuitableForInlineAtomic(LValue Src);
2498   bool typeIsSuitableForInlineAtomic(QualType Ty, bool IsVolatile) const;
2499 
2500   RValue EmitAtomicLoad(LValue LV, SourceLocation SL,
2501                         AggValueSlot Slot = AggValueSlot::ignored());
2502 
2503   RValue EmitAtomicLoad(LValue lvalue, SourceLocation loc,
2504                         llvm::AtomicOrdering AO, bool IsVolatile = false,
2505                         AggValueSlot slot = AggValueSlot::ignored());
2506 
2507   void EmitAtomicStore(RValue rvalue, LValue lvalue, bool isInit);
2508 
2509   void EmitAtomicStore(RValue rvalue, LValue lvalue, llvm::AtomicOrdering AO,
2510                        bool IsVolatile, bool isInit);
2511 
2512   std::pair<RValue, llvm::Value *> EmitAtomicCompareExchange(
2513       LValue Obj, RValue Expected, RValue Desired, SourceLocation Loc,
2514       llvm::AtomicOrdering Success =
2515           llvm::AtomicOrdering::SequentiallyConsistent,
2516       llvm::AtomicOrdering Failure =
2517           llvm::AtomicOrdering::SequentiallyConsistent,
2518       bool IsWeak = false, AggValueSlot Slot = AggValueSlot::ignored());
2519 
2520   void EmitAtomicUpdate(LValue LVal, llvm::AtomicOrdering AO,
2521                         const llvm::function_ref<RValue(RValue)> &UpdateOp,
2522                         bool IsVolatile);
2523 
2524   /// EmitToMemory - Change a scalar value from its value
2525   /// representation to its in-memory representation.
2526   llvm::Value *EmitToMemory(llvm::Value *Value, QualType Ty);
2527 
2528   /// EmitFromMemory - Change a scalar value from its memory
2529   /// representation to its value representation.
2530   llvm::Value *EmitFromMemory(llvm::Value *Value, QualType Ty);
2531 
2532   /// EmitLoadOfScalar - Load a scalar value from an address, taking
2533   /// care to appropriately convert from the memory representation to
2534   /// the LLVM value representation.
2535   llvm::Value *EmitLoadOfScalar(Address Addr, bool Volatile, QualType Ty,
2536                                 SourceLocation Loc,
2537                                 AlignmentSource AlignSource =
2538                                   AlignmentSource::Type,
2539                                 llvm::MDNode *TBAAInfo = nullptr,
2540                                 QualType TBAABaseTy = QualType(),
2541                                 uint64_t TBAAOffset = 0,
2542                                 bool isNontemporal = false);
2543 
2544   /// EmitLoadOfScalar - Load a scalar value from an address, taking
2545   /// care to appropriately convert from the memory representation to
2546   /// the LLVM value representation.  The l-value must be a simple
2547   /// l-value.
2548   llvm::Value *EmitLoadOfScalar(LValue lvalue, SourceLocation Loc);
2549 
2550   /// EmitStoreOfScalar - Store a scalar value to an address, taking
2551   /// care to appropriately convert from the memory representation to
2552   /// the LLVM value representation.
2553   void EmitStoreOfScalar(llvm::Value *Value, Address Addr,
2554                          bool Volatile, QualType Ty,
2555                          AlignmentSource AlignSource = AlignmentSource::Type,
2556                          llvm::MDNode *TBAAInfo = nullptr, bool isInit = false,
2557                          QualType TBAABaseTy = QualType(),
2558                          uint64_t TBAAOffset = 0, bool isNontemporal = false);
2559 
2560   /// EmitStoreOfScalar - Store a scalar value to an address, taking
2561   /// care to appropriately convert from the memory representation to
2562   /// the LLVM value representation.  The l-value must be a simple
2563   /// l-value.  The isInit flag indicates whether this is an initialization.
2564   /// If so, atomic qualifiers are ignored and the store is always non-atomic.
2565   void EmitStoreOfScalar(llvm::Value *value, LValue lvalue, bool isInit=false);
2566 
2567   /// EmitLoadOfLValue - Given an expression that represents a value lvalue,
2568   /// this method emits the address of the lvalue, then loads the result as an
2569   /// rvalue, returning the rvalue.
2570   RValue EmitLoadOfLValue(LValue V, SourceLocation Loc);
2571   RValue EmitLoadOfExtVectorElementLValue(LValue V);
2572   RValue EmitLoadOfBitfieldLValue(LValue LV);
2573   RValue EmitLoadOfGlobalRegLValue(LValue LV);
2574 
2575   /// EmitStoreThroughLValue - Store the specified rvalue into the specified
2576   /// lvalue, where both are guaranteed to the have the same type, and that type
2577   /// is 'Ty'.
2578   void EmitStoreThroughLValue(RValue Src, LValue Dst, bool isInit = false);
2579   void EmitStoreThroughExtVectorComponentLValue(RValue Src, LValue Dst);
2580   void EmitStoreThroughGlobalRegLValue(RValue Src, LValue Dst);
2581 
2582   /// EmitStoreThroughBitfieldLValue - Store Src into Dst with same constraints
2583   /// as EmitStoreThroughLValue.
2584   ///
2585   /// \param Result [out] - If non-null, this will be set to a Value* for the
2586   /// bit-field contents after the store, appropriate for use as the result of
2587   /// an assignment to the bit-field.
2588   void EmitStoreThroughBitfieldLValue(RValue Src, LValue Dst,
2589                                       llvm::Value **Result=nullptr);
2590 
2591   /// Emit an l-value for an assignment (simple or compound) of complex type.
2592   LValue EmitComplexAssignmentLValue(const BinaryOperator *E);
2593   LValue EmitComplexCompoundAssignmentLValue(const CompoundAssignOperator *E);
2594   LValue EmitScalarCompoundAssignWithComplex(const CompoundAssignOperator *E,
2595                                              llvm::Value *&Result);
2596 
2597   // Note: only available for agg return types
2598   LValue EmitBinaryOperatorLValue(const BinaryOperator *E);
2599   LValue EmitCompoundAssignmentLValue(const CompoundAssignOperator *E);
2600   // Note: only available for agg return types
2601   LValue EmitCallExprLValue(const CallExpr *E);
2602   // Note: only available for agg return types
2603   LValue EmitVAArgExprLValue(const VAArgExpr *E);
2604   LValue EmitDeclRefLValue(const DeclRefExpr *E);
2605   LValue EmitStringLiteralLValue(const StringLiteral *E);
2606   LValue EmitObjCEncodeExprLValue(const ObjCEncodeExpr *E);
2607   LValue EmitPredefinedLValue(const PredefinedExpr *E);
2608   LValue EmitUnaryOpLValue(const UnaryOperator *E);
2609   LValue EmitArraySubscriptExpr(const ArraySubscriptExpr *E,
2610                                 bool Accessed = false);
2611   LValue EmitOMPArraySectionExpr(const OMPArraySectionExpr *E,
2612                                  bool IsLowerBound = true);
2613   LValue EmitExtVectorElementExpr(const ExtVectorElementExpr *E);
2614   LValue EmitMemberExpr(const MemberExpr *E);
2615   LValue EmitObjCIsaExpr(const ObjCIsaExpr *E);
2616   LValue EmitCompoundLiteralLValue(const CompoundLiteralExpr *E);
2617   LValue EmitInitListLValue(const InitListExpr *E);
2618   LValue EmitConditionalOperatorLValue(const AbstractConditionalOperator *E);
2619   LValue EmitCastLValue(const CastExpr *E);
2620   LValue EmitMaterializeTemporaryExpr(const MaterializeTemporaryExpr *E);
2621   LValue EmitOpaqueValueLValue(const OpaqueValueExpr *e);
2622 
2623   Address EmitExtVectorElementLValue(LValue V);
2624 
2625   RValue EmitRValueForField(LValue LV, const FieldDecl *FD, SourceLocation Loc);
2626 
2627   Address EmitArrayToPointerDecay(const Expr *Array,
2628                                   AlignmentSource *AlignSource = nullptr);
2629 
2630   class ConstantEmission {
2631     llvm::PointerIntPair<llvm::Constant*, 1, bool> ValueAndIsReference;
2632     ConstantEmission(llvm::Constant *C, bool isReference)
2633       : ValueAndIsReference(C, isReference) {}
2634   public:
2635     ConstantEmission() {}
2636     static ConstantEmission forReference(llvm::Constant *C) {
2637       return ConstantEmission(C, true);
2638     }
2639     static ConstantEmission forValue(llvm::Constant *C) {
2640       return ConstantEmission(C, false);
2641     }
2642 
2643     explicit operator bool() const {
2644       return ValueAndIsReference.getOpaqueValue() != nullptr;
2645     }
2646 
2647     bool isReference() const { return ValueAndIsReference.getInt(); }
2648     LValue getReferenceLValue(CodeGenFunction &CGF, Expr *refExpr) const {
2649       assert(isReference());
2650       return CGF.MakeNaturalAlignAddrLValue(ValueAndIsReference.getPointer(),
2651                                             refExpr->getType());
2652     }
2653 
2654     llvm::Constant *getValue() const {
2655       assert(!isReference());
2656       return ValueAndIsReference.getPointer();
2657     }
2658   };
2659 
2660   ConstantEmission tryEmitAsConstant(DeclRefExpr *refExpr);
2661 
2662   RValue EmitPseudoObjectRValue(const PseudoObjectExpr *e,
2663                                 AggValueSlot slot = AggValueSlot::ignored());
2664   LValue EmitPseudoObjectLValue(const PseudoObjectExpr *e);
2665 
2666   llvm::Value *EmitIvarOffset(const ObjCInterfaceDecl *Interface,
2667                               const ObjCIvarDecl *Ivar);
2668   LValue EmitLValueForField(LValue Base, const FieldDecl* Field);
2669   LValue EmitLValueForLambdaField(const FieldDecl *Field);
2670 
2671   /// EmitLValueForFieldInitialization - Like EmitLValueForField, except that
2672   /// if the Field is a reference, this will return the address of the reference
2673   /// and not the address of the value stored in the reference.
2674   LValue EmitLValueForFieldInitialization(LValue Base,
2675                                           const FieldDecl* Field);
2676 
2677   LValue EmitLValueForIvar(QualType ObjectTy,
2678                            llvm::Value* Base, const ObjCIvarDecl *Ivar,
2679                            unsigned CVRQualifiers);
2680 
2681   LValue EmitCXXConstructLValue(const CXXConstructExpr *E);
2682   LValue EmitCXXBindTemporaryLValue(const CXXBindTemporaryExpr *E);
2683   LValue EmitLambdaLValue(const LambdaExpr *E);
2684   LValue EmitCXXTypeidLValue(const CXXTypeidExpr *E);
2685   LValue EmitCXXUuidofLValue(const CXXUuidofExpr *E);
2686 
2687   LValue EmitObjCMessageExprLValue(const ObjCMessageExpr *E);
2688   LValue EmitObjCIvarRefLValue(const ObjCIvarRefExpr *E);
2689   LValue EmitStmtExprLValue(const StmtExpr *E);
2690   LValue EmitPointerToDataMemberBinaryExpr(const BinaryOperator *E);
2691   LValue EmitObjCSelectorLValue(const ObjCSelectorExpr *E);
2692   void   EmitDeclRefExprDbgValue(const DeclRefExpr *E, llvm::Constant *Init);
2693 
2694   //===--------------------------------------------------------------------===//
2695   //                         Scalar Expression Emission
2696   //===--------------------------------------------------------------------===//
2697 
2698   /// EmitCall - Generate a call of the given function, expecting the given
2699   /// result type, and using the given argument list which specifies both the
2700   /// LLVM arguments and the types they were derived from.
2701   RValue EmitCall(const CGFunctionInfo &FnInfo, llvm::Value *Callee,
2702                   ReturnValueSlot ReturnValue, const CallArgList &Args,
2703                   CGCalleeInfo CalleeInfo = CGCalleeInfo(),
2704                   llvm::Instruction **callOrInvoke = nullptr);
2705 
2706   RValue EmitCall(QualType FnType, llvm::Value *Callee, const CallExpr *E,
2707                   ReturnValueSlot ReturnValue,
2708                   CGCalleeInfo CalleeInfo = CGCalleeInfo(),
2709                   llvm::Value *Chain = nullptr);
2710   RValue EmitCallExpr(const CallExpr *E,
2711                       ReturnValueSlot ReturnValue = ReturnValueSlot());
2712 
2713   void checkTargetFeatures(const CallExpr *E, const FunctionDecl *TargetDecl);
2714 
2715   llvm::CallInst *EmitRuntimeCall(llvm::Value *callee,
2716                                   const Twine &name = "");
2717   llvm::CallInst *EmitRuntimeCall(llvm::Value *callee,
2718                                   ArrayRef<llvm::Value*> args,
2719                                   const Twine &name = "");
2720   llvm::CallInst *EmitNounwindRuntimeCall(llvm::Value *callee,
2721                                           const Twine &name = "");
2722   llvm::CallInst *EmitNounwindRuntimeCall(llvm::Value *callee,
2723                                           ArrayRef<llvm::Value*> args,
2724                                           const Twine &name = "");
2725 
2726   llvm::CallSite EmitCallOrInvoke(llvm::Value *Callee,
2727                                   ArrayRef<llvm::Value *> Args,
2728                                   const Twine &Name = "");
2729   llvm::CallSite EmitRuntimeCallOrInvoke(llvm::Value *callee,
2730                                          ArrayRef<llvm::Value*> args,
2731                                          const Twine &name = "");
2732   llvm::CallSite EmitRuntimeCallOrInvoke(llvm::Value *callee,
2733                                          const Twine &name = "");
2734   void EmitNoreturnRuntimeCallOrInvoke(llvm::Value *callee,
2735                                        ArrayRef<llvm::Value*> args);
2736 
2737   llvm::Value *BuildAppleKextVirtualCall(const CXXMethodDecl *MD,
2738                                          NestedNameSpecifier *Qual,
2739                                          llvm::Type *Ty);
2740 
2741   llvm::Value *BuildAppleKextVirtualDestructorCall(const CXXDestructorDecl *DD,
2742                                                    CXXDtorType Type,
2743                                                    const CXXRecordDecl *RD);
2744 
2745   RValue
2746   EmitCXXMemberOrOperatorCall(const CXXMethodDecl *MD, llvm::Value *Callee,
2747                               ReturnValueSlot ReturnValue, llvm::Value *This,
2748                               llvm::Value *ImplicitParam,
2749                               QualType ImplicitParamTy, const CallExpr *E);
2750   RValue EmitCXXDestructorCall(const CXXDestructorDecl *DD, llvm::Value *Callee,
2751                                llvm::Value *This, llvm::Value *ImplicitParam,
2752                                QualType ImplicitParamTy, const CallExpr *E,
2753                                StructorType Type);
2754   RValue EmitCXXMemberCallExpr(const CXXMemberCallExpr *E,
2755                                ReturnValueSlot ReturnValue);
2756   RValue EmitCXXMemberOrOperatorMemberCallExpr(const CallExpr *CE,
2757                                                const CXXMethodDecl *MD,
2758                                                ReturnValueSlot ReturnValue,
2759                                                bool HasQualifier,
2760                                                NestedNameSpecifier *Qualifier,
2761                                                bool IsArrow, const Expr *Base);
2762   // Compute the object pointer.
2763   Address EmitCXXMemberDataPointerAddress(const Expr *E, Address base,
2764                                           llvm::Value *memberPtr,
2765                                           const MemberPointerType *memberPtrType,
2766                                           AlignmentSource *AlignSource = nullptr);
2767   RValue EmitCXXMemberPointerCallExpr(const CXXMemberCallExpr *E,
2768                                       ReturnValueSlot ReturnValue);
2769 
2770   RValue EmitCXXOperatorMemberCallExpr(const CXXOperatorCallExpr *E,
2771                                        const CXXMethodDecl *MD,
2772                                        ReturnValueSlot ReturnValue);
2773 
2774   RValue EmitCUDAKernelCallExpr(const CUDAKernelCallExpr *E,
2775                                 ReturnValueSlot ReturnValue);
2776 
2777   RValue EmitCUDADevicePrintfCallExpr(const CallExpr *E,
2778                                       ReturnValueSlot ReturnValue);
2779 
2780   RValue EmitBuiltinExpr(const FunctionDecl *FD,
2781                          unsigned BuiltinID, const CallExpr *E,
2782                          ReturnValueSlot ReturnValue);
2783 
2784   RValue EmitBlockCallExpr(const CallExpr *E, ReturnValueSlot ReturnValue);
2785 
2786   /// EmitTargetBuiltinExpr - Emit the given builtin call. Returns 0 if the call
2787   /// is unhandled by the current target.
2788   llvm::Value *EmitTargetBuiltinExpr(unsigned BuiltinID, const CallExpr *E);
2789 
2790   llvm::Value *EmitAArch64CompareBuiltinExpr(llvm::Value *Op, llvm::Type *Ty,
2791                                              const llvm::CmpInst::Predicate Fp,
2792                                              const llvm::CmpInst::Predicate Ip,
2793                                              const llvm::Twine &Name = "");
2794   llvm::Value *EmitARMBuiltinExpr(unsigned BuiltinID, const CallExpr *E);
2795 
2796   llvm::Value *EmitCommonNeonBuiltinExpr(unsigned BuiltinID,
2797                                          unsigned LLVMIntrinsic,
2798                                          unsigned AltLLVMIntrinsic,
2799                                          const char *NameHint,
2800                                          unsigned Modifier,
2801                                          const CallExpr *E,
2802                                          SmallVectorImpl<llvm::Value *> &Ops,
2803                                          Address PtrOp0, Address PtrOp1);
2804   llvm::Function *LookupNeonLLVMIntrinsic(unsigned IntrinsicID,
2805                                           unsigned Modifier, llvm::Type *ArgTy,
2806                                           const CallExpr *E);
2807   llvm::Value *EmitNeonCall(llvm::Function *F,
2808                             SmallVectorImpl<llvm::Value*> &O,
2809                             const char *name,
2810                             unsigned shift = 0, bool rightshift = false);
2811   llvm::Value *EmitNeonSplat(llvm::Value *V, llvm::Constant *Idx);
2812   llvm::Value *EmitNeonShiftVector(llvm::Value *V, llvm::Type *Ty,
2813                                    bool negateForRightShift);
2814   llvm::Value *EmitNeonRShiftImm(llvm::Value *Vec, llvm::Value *Amt,
2815                                  llvm::Type *Ty, bool usgn, const char *name);
2816   llvm::Value *vectorWrapScalar16(llvm::Value *Op);
2817   llvm::Value *EmitAArch64BuiltinExpr(unsigned BuiltinID, const CallExpr *E);
2818 
2819   llvm::Value *BuildVector(ArrayRef<llvm::Value*> Ops);
2820   llvm::Value *EmitX86BuiltinExpr(unsigned BuiltinID, const CallExpr *E);
2821   llvm::Value *EmitPPCBuiltinExpr(unsigned BuiltinID, const CallExpr *E);
2822   llvm::Value *EmitAMDGPUBuiltinExpr(unsigned BuiltinID, const CallExpr *E);
2823   llvm::Value *EmitSystemZBuiltinExpr(unsigned BuiltinID, const CallExpr *E);
2824   llvm::Value *EmitNVPTXBuiltinExpr(unsigned BuiltinID, const CallExpr *E);
2825   llvm::Value *EmitWebAssemblyBuiltinExpr(unsigned BuiltinID,
2826                                           const CallExpr *E);
2827 
2828   llvm::Value *EmitObjCProtocolExpr(const ObjCProtocolExpr *E);
2829   llvm::Value *EmitObjCStringLiteral(const ObjCStringLiteral *E);
2830   llvm::Value *EmitObjCBoxedExpr(const ObjCBoxedExpr *E);
2831   llvm::Value *EmitObjCArrayLiteral(const ObjCArrayLiteral *E);
2832   llvm::Value *EmitObjCDictionaryLiteral(const ObjCDictionaryLiteral *E);
2833   llvm::Value *EmitObjCCollectionLiteral(const Expr *E,
2834                                 const ObjCMethodDecl *MethodWithObjects);
2835   llvm::Value *EmitObjCSelectorExpr(const ObjCSelectorExpr *E);
2836   RValue EmitObjCMessageExpr(const ObjCMessageExpr *E,
2837                              ReturnValueSlot Return = ReturnValueSlot());
2838 
2839   /// Retrieves the default cleanup kind for an ARC cleanup.
2840   /// Except under -fobjc-arc-eh, ARC cleanups are normal-only.
2841   CleanupKind getARCCleanupKind() {
2842     return CGM.getCodeGenOpts().ObjCAutoRefCountExceptions
2843              ? NormalAndEHCleanup : NormalCleanup;
2844   }
2845 
2846   // ARC primitives.
2847   void EmitARCInitWeak(Address addr, llvm::Value *value);
2848   void EmitARCDestroyWeak(Address addr);
2849   llvm::Value *EmitARCLoadWeak(Address addr);
2850   llvm::Value *EmitARCLoadWeakRetained(Address addr);
2851   llvm::Value *EmitARCStoreWeak(Address addr, llvm::Value *value, bool ignored);
2852   void EmitARCCopyWeak(Address dst, Address src);
2853   void EmitARCMoveWeak(Address dst, Address src);
2854   llvm::Value *EmitARCRetainAutorelease(QualType type, llvm::Value *value);
2855   llvm::Value *EmitARCRetainAutoreleaseNonBlock(llvm::Value *value);
2856   llvm::Value *EmitARCStoreStrong(LValue lvalue, llvm::Value *value,
2857                                   bool resultIgnored);
2858   llvm::Value *EmitARCStoreStrongCall(Address addr, llvm::Value *value,
2859                                       bool resultIgnored);
2860   llvm::Value *EmitARCRetain(QualType type, llvm::Value *value);
2861   llvm::Value *EmitARCRetainNonBlock(llvm::Value *value);
2862   llvm::Value *EmitARCRetainBlock(llvm::Value *value, bool mandatory);
2863   void EmitARCDestroyStrong(Address addr, ARCPreciseLifetime_t precise);
2864   void EmitARCRelease(llvm::Value *value, ARCPreciseLifetime_t precise);
2865   llvm::Value *EmitARCAutorelease(llvm::Value *value);
2866   llvm::Value *EmitARCAutoreleaseReturnValue(llvm::Value *value);
2867   llvm::Value *EmitARCRetainAutoreleaseReturnValue(llvm::Value *value);
2868   llvm::Value *EmitARCRetainAutoreleasedReturnValue(llvm::Value *value);
2869   llvm::Value *EmitARCUnsafeClaimAutoreleasedReturnValue(llvm::Value *value);
2870 
2871   std::pair<LValue,llvm::Value*>
2872   EmitARCStoreAutoreleasing(const BinaryOperator *e);
2873   std::pair<LValue,llvm::Value*>
2874   EmitARCStoreStrong(const BinaryOperator *e, bool ignored);
2875   std::pair<LValue,llvm::Value*>
2876   EmitARCStoreUnsafeUnretained(const BinaryOperator *e, bool ignored);
2877 
2878   llvm::Value *EmitObjCThrowOperand(const Expr *expr);
2879   llvm::Value *EmitObjCConsumeObject(QualType T, llvm::Value *Ptr);
2880   llvm::Value *EmitObjCExtendObjectLifetime(QualType T, llvm::Value *Ptr);
2881 
2882   llvm::Value *EmitARCExtendBlockObject(const Expr *expr);
2883   llvm::Value *EmitARCReclaimReturnedObject(const Expr *e,
2884                                             bool allowUnsafeClaim);
2885   llvm::Value *EmitARCRetainScalarExpr(const Expr *expr);
2886   llvm::Value *EmitARCRetainAutoreleaseScalarExpr(const Expr *expr);
2887   llvm::Value *EmitARCUnsafeUnretainedScalarExpr(const Expr *expr);
2888 
2889   void EmitARCIntrinsicUse(ArrayRef<llvm::Value*> values);
2890 
2891   static Destroyer destroyARCStrongImprecise;
2892   static Destroyer destroyARCStrongPrecise;
2893   static Destroyer destroyARCWeak;
2894 
2895   void EmitObjCAutoreleasePoolPop(llvm::Value *Ptr);
2896   llvm::Value *EmitObjCAutoreleasePoolPush();
2897   llvm::Value *EmitObjCMRRAutoreleasePoolPush();
2898   void EmitObjCAutoreleasePoolCleanup(llvm::Value *Ptr);
2899   void EmitObjCMRRAutoreleasePoolPop(llvm::Value *Ptr);
2900 
2901   /// \brief Emits a reference binding to the passed in expression.
2902   RValue EmitReferenceBindingToExpr(const Expr *E);
2903 
2904   //===--------------------------------------------------------------------===//
2905   //                           Expression Emission
2906   //===--------------------------------------------------------------------===//
2907 
2908   // Expressions are broken into three classes: scalar, complex, aggregate.
2909 
2910   /// EmitScalarExpr - Emit the computation of the specified expression of LLVM
2911   /// scalar type, returning the result.
2912   llvm::Value *EmitScalarExpr(const Expr *E , bool IgnoreResultAssign = false);
2913 
2914   /// Emit a conversion from the specified type to the specified destination
2915   /// type, both of which are LLVM scalar types.
2916   llvm::Value *EmitScalarConversion(llvm::Value *Src, QualType SrcTy,
2917                                     QualType DstTy, SourceLocation Loc);
2918 
2919   /// Emit a conversion from the specified complex type to the specified
2920   /// destination type, where the destination type is an LLVM scalar type.
2921   llvm::Value *EmitComplexToScalarConversion(ComplexPairTy Src, QualType SrcTy,
2922                                              QualType DstTy,
2923                                              SourceLocation Loc);
2924 
2925   /// EmitAggExpr - Emit the computation of the specified expression
2926   /// of aggregate type.  The result is computed into the given slot,
2927   /// which may be null to indicate that the value is not needed.
2928   void EmitAggExpr(const Expr *E, AggValueSlot AS);
2929 
2930   /// EmitAggExprToLValue - Emit the computation of the specified expression of
2931   /// aggregate type into a temporary LValue.
2932   LValue EmitAggExprToLValue(const Expr *E);
2933 
2934   /// EmitExtendGCLifetime - Given a pointer to an Objective-C object,
2935   /// make sure it survives garbage collection until this point.
2936   void EmitExtendGCLifetime(llvm::Value *object);
2937 
2938   /// EmitComplexExpr - Emit the computation of the specified expression of
2939   /// complex type, returning the result.
2940   ComplexPairTy EmitComplexExpr(const Expr *E,
2941                                 bool IgnoreReal = false,
2942                                 bool IgnoreImag = false);
2943 
2944   /// EmitComplexExprIntoLValue - Emit the given expression of complex
2945   /// type and place its result into the specified l-value.
2946   void EmitComplexExprIntoLValue(const Expr *E, LValue dest, bool isInit);
2947 
2948   /// EmitStoreOfComplex - Store a complex number into the specified l-value.
2949   void EmitStoreOfComplex(ComplexPairTy V, LValue dest, bool isInit);
2950 
2951   /// EmitLoadOfComplex - Load a complex number from the specified l-value.
2952   ComplexPairTy EmitLoadOfComplex(LValue src, SourceLocation loc);
2953 
2954   Address emitAddrOfRealComponent(Address complex, QualType complexType);
2955   Address emitAddrOfImagComponent(Address complex, QualType complexType);
2956 
2957   /// AddInitializerToStaticVarDecl - Add the initializer for 'D' to the
2958   /// global variable that has already been created for it.  If the initializer
2959   /// has a different type than GV does, this may free GV and return a different
2960   /// one.  Otherwise it just returns GV.
2961   llvm::GlobalVariable *
2962   AddInitializerToStaticVarDecl(const VarDecl &D,
2963                                 llvm::GlobalVariable *GV);
2964 
2965 
2966   /// EmitCXXGlobalVarDeclInit - Create the initializer for a C++
2967   /// variable with global storage.
2968   void EmitCXXGlobalVarDeclInit(const VarDecl &D, llvm::Constant *DeclPtr,
2969                                 bool PerformInit);
2970 
2971   llvm::Constant *createAtExitStub(const VarDecl &VD, llvm::Constant *Dtor,
2972                                    llvm::Constant *Addr);
2973 
2974   /// Call atexit() with a function that passes the given argument to
2975   /// the given function.
2976   void registerGlobalDtorWithAtExit(const VarDecl &D, llvm::Constant *fn,
2977                                     llvm::Constant *addr);
2978 
2979   /// Emit code in this function to perform a guarded variable
2980   /// initialization.  Guarded initializations are used when it's not
2981   /// possible to prove that an initialization will be done exactly
2982   /// once, e.g. with a static local variable or a static data member
2983   /// of a class template.
2984   void EmitCXXGuardedInit(const VarDecl &D, llvm::GlobalVariable *DeclPtr,
2985                           bool PerformInit);
2986 
2987   /// GenerateCXXGlobalInitFunc - Generates code for initializing global
2988   /// variables.
2989   void GenerateCXXGlobalInitFunc(llvm::Function *Fn,
2990                                  ArrayRef<llvm::Function *> CXXThreadLocals,
2991                                  Address Guard = Address::invalid());
2992 
2993   /// GenerateCXXGlobalDtorsFunc - Generates code for destroying global
2994   /// variables.
2995   void GenerateCXXGlobalDtorsFunc(llvm::Function *Fn,
2996                                   const std::vector<std::pair<llvm::WeakVH,
2997                                   llvm::Constant*> > &DtorsAndObjects);
2998 
2999   void GenerateCXXGlobalVarDeclInitFunc(llvm::Function *Fn,
3000                                         const VarDecl *D,
3001                                         llvm::GlobalVariable *Addr,
3002                                         bool PerformInit);
3003 
3004   void EmitCXXConstructExpr(const CXXConstructExpr *E, AggValueSlot Dest);
3005 
3006   void EmitSynthesizedCXXCopyCtor(Address Dest, Address Src, const Expr *Exp);
3007 
3008   void enterFullExpression(const ExprWithCleanups *E) {
3009     if (E->getNumObjects() == 0) return;
3010     enterNonTrivialFullExpression(E);
3011   }
3012   void enterNonTrivialFullExpression(const ExprWithCleanups *E);
3013 
3014   void EmitCXXThrowExpr(const CXXThrowExpr *E, bool KeepInsertionPoint = true);
3015 
3016   void EmitLambdaExpr(const LambdaExpr *E, AggValueSlot Dest);
3017 
3018   RValue EmitAtomicExpr(AtomicExpr *E);
3019 
3020   //===--------------------------------------------------------------------===//
3021   //                         Annotations Emission
3022   //===--------------------------------------------------------------------===//
3023 
3024   /// Emit an annotation call (intrinsic or builtin).
3025   llvm::Value *EmitAnnotationCall(llvm::Value *AnnotationFn,
3026                                   llvm::Value *AnnotatedVal,
3027                                   StringRef AnnotationStr,
3028                                   SourceLocation Location);
3029 
3030   /// Emit local annotations for the local variable V, declared by D.
3031   void EmitVarAnnotations(const VarDecl *D, llvm::Value *V);
3032 
3033   /// Emit field annotations for the given field & value. Returns the
3034   /// annotation result.
3035   Address EmitFieldAnnotations(const FieldDecl *D, Address V);
3036 
3037   //===--------------------------------------------------------------------===//
3038   //                             Internal Helpers
3039   //===--------------------------------------------------------------------===//
3040 
3041   /// ContainsLabel - Return true if the statement contains a label in it.  If
3042   /// this statement is not executed normally, it not containing a label means
3043   /// that we can just remove the code.
3044   static bool ContainsLabel(const Stmt *S, bool IgnoreCaseStmts = false);
3045 
3046   /// containsBreak - Return true if the statement contains a break out of it.
3047   /// If the statement (recursively) contains a switch or loop with a break
3048   /// inside of it, this is fine.
3049   static bool containsBreak(const Stmt *S);
3050 
3051   /// ConstantFoldsToSimpleInteger - If the specified expression does not fold
3052   /// to a constant, or if it does but contains a label, return false.  If it
3053   /// constant folds return true and set the boolean result in Result.
3054   bool ConstantFoldsToSimpleInteger(const Expr *Cond, bool &Result);
3055 
3056   /// ConstantFoldsToSimpleInteger - If the specified expression does not fold
3057   /// to a constant, or if it does but contains a label, return false.  If it
3058   /// constant folds return true and set the folded value.
3059   bool ConstantFoldsToSimpleInteger(const Expr *Cond, llvm::APSInt &Result);
3060 
3061   /// EmitBranchOnBoolExpr - Emit a branch on a boolean condition (e.g. for an
3062   /// if statement) to the specified blocks.  Based on the condition, this might
3063   /// try to simplify the codegen of the conditional based on the branch.
3064   /// TrueCount should be the number of times we expect the condition to
3065   /// evaluate to true based on PGO data.
3066   void EmitBranchOnBoolExpr(const Expr *Cond, llvm::BasicBlock *TrueBlock,
3067                             llvm::BasicBlock *FalseBlock, uint64_t TrueCount);
3068 
3069   /// \brief Emit a description of a type in a format suitable for passing to
3070   /// a runtime sanitizer handler.
3071   llvm::Constant *EmitCheckTypeDescriptor(QualType T);
3072 
3073   /// \brief Convert a value into a format suitable for passing to a runtime
3074   /// sanitizer handler.
3075   llvm::Value *EmitCheckValue(llvm::Value *V);
3076 
3077   /// \brief Emit a description of a source location in a format suitable for
3078   /// passing to a runtime sanitizer handler.
3079   llvm::Constant *EmitCheckSourceLocation(SourceLocation Loc);
3080 
3081   /// \brief Create a basic block that will call a handler function in a
3082   /// sanitizer runtime with the provided arguments, and create a conditional
3083   /// branch to it.
3084   void EmitCheck(ArrayRef<std::pair<llvm::Value *, SanitizerMask>> Checked,
3085                  StringRef CheckName, ArrayRef<llvm::Constant *> StaticArgs,
3086                  ArrayRef<llvm::Value *> DynamicArgs);
3087 
3088   /// \brief Emit a slow path cross-DSO CFI check which calls __cfi_slowpath
3089   /// if Cond if false.
3090   void EmitCfiSlowPathCheck(SanitizerMask Kind, llvm::Value *Cond,
3091                             llvm::ConstantInt *TypeId, llvm::Value *Ptr,
3092                             ArrayRef<llvm::Constant *> StaticArgs);
3093 
3094   /// \brief Create a basic block that will call the trap intrinsic, and emit a
3095   /// conditional branch to it, for the -ftrapv checks.
3096   void EmitTrapCheck(llvm::Value *Checked);
3097 
3098   /// \brief Emit a call to trap or debugtrap and attach function attribute
3099   /// "trap-func-name" if specified.
3100   llvm::CallInst *EmitTrapCall(llvm::Intrinsic::ID IntrID);
3101 
3102   /// \brief Emit a cross-DSO CFI failure handling function.
3103   void EmitCfiCheckFail();
3104 
3105   /// \brief Create a check for a function parameter that may potentially be
3106   /// declared as non-null.
3107   void EmitNonNullArgCheck(RValue RV, QualType ArgType, SourceLocation ArgLoc,
3108                            const FunctionDecl *FD, unsigned ParmNum);
3109 
3110   /// EmitCallArg - Emit a single call argument.
3111   void EmitCallArg(CallArgList &args, const Expr *E, QualType ArgType);
3112 
3113   /// EmitDelegateCallArg - We are performing a delegate call; that
3114   /// is, the current function is delegating to another one.  Produce
3115   /// a r-value suitable for passing the given parameter.
3116   void EmitDelegateCallArg(CallArgList &args, const VarDecl *param,
3117                            SourceLocation loc);
3118 
3119   /// SetFPAccuracy - Set the minimum required accuracy of the given floating
3120   /// point operation, expressed as the maximum relative error in ulp.
3121   void SetFPAccuracy(llvm::Value *Val, float Accuracy);
3122 
3123 private:
3124   llvm::MDNode *getRangeForLoadFromType(QualType Ty);
3125   void EmitReturnOfRValue(RValue RV, QualType Ty);
3126 
3127   void deferPlaceholderReplacement(llvm::Instruction *Old, llvm::Value *New);
3128 
3129   llvm::SmallVector<std::pair<llvm::Instruction *, llvm::Value *>, 4>
3130   DeferredReplacements;
3131 
3132   /// Set the address of a local variable.
3133   void setAddrOfLocalVar(const VarDecl *VD, Address Addr) {
3134     assert(!LocalDeclMap.count(VD) && "Decl already exists in LocalDeclMap!");
3135     LocalDeclMap.insert({VD, Addr});
3136   }
3137 
3138   /// ExpandTypeFromArgs - Reconstruct a structure of type \arg Ty
3139   /// from function arguments into \arg Dst. See ABIArgInfo::Expand.
3140   ///
3141   /// \param AI - The first function argument of the expansion.
3142   void ExpandTypeFromArgs(QualType Ty, LValue Dst,
3143                           SmallVectorImpl<llvm::Value *>::iterator &AI);
3144 
3145   /// ExpandTypeToArgs - Expand an RValue \arg RV, with the LLVM type for \arg
3146   /// Ty, into individual arguments on the provided vector \arg IRCallArgs,
3147   /// starting at index \arg IRCallArgPos. See ABIArgInfo::Expand.
3148   void ExpandTypeToArgs(QualType Ty, RValue RV, llvm::FunctionType *IRFuncTy,
3149                         SmallVectorImpl<llvm::Value *> &IRCallArgs,
3150                         unsigned &IRCallArgPos);
3151 
3152   llvm::Value* EmitAsmInput(const TargetInfo::ConstraintInfo &Info,
3153                             const Expr *InputExpr, std::string &ConstraintStr);
3154 
3155   llvm::Value* EmitAsmInputLValue(const TargetInfo::ConstraintInfo &Info,
3156                                   LValue InputValue, QualType InputType,
3157                                   std::string &ConstraintStr,
3158                                   SourceLocation Loc);
3159 
3160   /// \brief Attempts to statically evaluate the object size of E. If that
3161   /// fails, emits code to figure the size of E out for us. This is
3162   /// pass_object_size aware.
3163   llvm::Value *evaluateOrEmitBuiltinObjectSize(const Expr *E, unsigned Type,
3164                                                llvm::IntegerType *ResType);
3165 
3166   /// \brief Emits the size of E, as required by __builtin_object_size. This
3167   /// function is aware of pass_object_size parameters, and will act accordingly
3168   /// if E is a parameter with the pass_object_size attribute.
3169   llvm::Value *emitBuiltinObjectSize(const Expr *E, unsigned Type,
3170                                      llvm::IntegerType *ResType);
3171 
3172 public:
3173 #ifndef NDEBUG
3174   // Determine whether the given argument is an Objective-C method
3175   // that may have type parameters in its signature.
3176   static bool isObjCMethodWithTypeParams(const ObjCMethodDecl *method) {
3177     const DeclContext *dc = method->getDeclContext();
3178     if (const ObjCInterfaceDecl *classDecl= dyn_cast<ObjCInterfaceDecl>(dc)) {
3179       return classDecl->getTypeParamListAsWritten();
3180     }
3181 
3182     if (const ObjCCategoryDecl *catDecl = dyn_cast<ObjCCategoryDecl>(dc)) {
3183       return catDecl->getTypeParamList();
3184     }
3185 
3186     return false;
3187   }
3188 
3189   template<typename T>
3190   static bool isObjCMethodWithTypeParams(const T *) { return false; }
3191 #endif
3192 
3193   /// EmitCallArgs - Emit call arguments for a function.
3194   template <typename T>
3195   void EmitCallArgs(CallArgList &Args, const T *CallArgTypeInfo,
3196                     llvm::iterator_range<CallExpr::const_arg_iterator> ArgRange,
3197                     const FunctionDecl *CalleeDecl = nullptr,
3198                     unsigned ParamsToSkip = 0) {
3199     SmallVector<QualType, 16> ArgTypes;
3200     CallExpr::const_arg_iterator Arg = ArgRange.begin();
3201 
3202     assert((ParamsToSkip == 0 || CallArgTypeInfo) &&
3203            "Can't skip parameters if type info is not provided");
3204     if (CallArgTypeInfo) {
3205 #ifndef NDEBUG
3206       bool isGenericMethod = isObjCMethodWithTypeParams(CallArgTypeInfo);
3207 #endif
3208 
3209       // First, use the argument types that the type info knows about
3210       for (auto I = CallArgTypeInfo->param_type_begin() + ParamsToSkip,
3211                 E = CallArgTypeInfo->param_type_end();
3212            I != E; ++I, ++Arg) {
3213         assert(Arg != ArgRange.end() && "Running over edge of argument list!");
3214         assert((isGenericMethod ||
3215                 ((*I)->isVariablyModifiedType() ||
3216                  (*I).getNonReferenceType()->isObjCRetainableType() ||
3217                  getContext()
3218                          .getCanonicalType((*I).getNonReferenceType())
3219                          .getTypePtr() ==
3220                      getContext()
3221                          .getCanonicalType((*Arg)->getType())
3222                          .getTypePtr())) &&
3223                "type mismatch in call argument!");
3224         ArgTypes.push_back(*I);
3225       }
3226     }
3227 
3228     // Either we've emitted all the call args, or we have a call to variadic
3229     // function.
3230     assert((Arg == ArgRange.end() || !CallArgTypeInfo ||
3231             CallArgTypeInfo->isVariadic()) &&
3232            "Extra arguments in non-variadic function!");
3233 
3234     // If we still have any arguments, emit them using the type of the argument.
3235     for (auto *A : llvm::make_range(Arg, ArgRange.end()))
3236       ArgTypes.push_back(getVarArgType(A));
3237 
3238     EmitCallArgs(Args, ArgTypes, ArgRange, CalleeDecl, ParamsToSkip);
3239   }
3240 
3241   void EmitCallArgs(CallArgList &Args, ArrayRef<QualType> ArgTypes,
3242                     llvm::iterator_range<CallExpr::const_arg_iterator> ArgRange,
3243                     const FunctionDecl *CalleeDecl = nullptr,
3244                     unsigned ParamsToSkip = 0);
3245 
3246   /// EmitPointerWithAlignment - Given an expression with a pointer
3247   /// type, emit the value and compute our best estimate of the
3248   /// alignment of the pointee.
3249   ///
3250   /// Note that this function will conservatively fall back on the type
3251   /// when it doesn't
3252   ///
3253   /// \param Source - If non-null, this will be initialized with
3254   ///   information about the source of the alignment.  Note that this
3255   ///   function will conservatively fall back on the type when it
3256   ///   doesn't recognize the expression, which means that sometimes
3257   ///
3258   ///   a worst-case One
3259   ///   reasonable way to use this information is when there's a
3260   ///   language guarantee that the pointer must be aligned to some
3261   ///   stricter value, and we're simply trying to ensure that
3262   ///   sufficiently obvious uses of under-aligned objects don't get
3263   ///   miscompiled; for example, a placement new into the address of
3264   ///   a local variable.  In such a case, it's quite reasonable to
3265   ///   just ignore the returned alignment when it isn't from an
3266   ///   explicit source.
3267   Address EmitPointerWithAlignment(const Expr *Addr,
3268                                    AlignmentSource *Source = nullptr);
3269 
3270   void EmitSanitizerStatReport(llvm::SanitizerStatKind SSK);
3271 
3272 private:
3273   QualType getVarArgType(const Expr *Arg);
3274 
3275   const TargetCodeGenInfo &getTargetHooks() const {
3276     return CGM.getTargetCodeGenInfo();
3277   }
3278 
3279   void EmitDeclMetadata();
3280 
3281   BlockByrefHelpers *buildByrefHelpers(llvm::StructType &byrefType,
3282                                   const AutoVarEmission &emission);
3283 
3284   void AddObjCARCExceptionMetadata(llvm::Instruction *Inst);
3285 
3286   llvm::Value *GetValueForARMHint(unsigned BuiltinID);
3287 };
3288 
3289 /// Helper class with most of the code for saving a value for a
3290 /// conditional expression cleanup.
3291 struct DominatingLLVMValue {
3292   typedef llvm::PointerIntPair<llvm::Value*, 1, bool> saved_type;
3293 
3294   /// Answer whether the given value needs extra work to be saved.
3295   static bool needsSaving(llvm::Value *value) {
3296     // If it's not an instruction, we don't need to save.
3297     if (!isa<llvm::Instruction>(value)) return false;
3298 
3299     // If it's an instruction in the entry block, we don't need to save.
3300     llvm::BasicBlock *block = cast<llvm::Instruction>(value)->getParent();
3301     return (block != &block->getParent()->getEntryBlock());
3302   }
3303 
3304   /// Try to save the given value.
3305   static saved_type save(CodeGenFunction &CGF, llvm::Value *value) {
3306     if (!needsSaving(value)) return saved_type(value, false);
3307 
3308     // Otherwise, we need an alloca.
3309     auto align = CharUnits::fromQuantity(
3310               CGF.CGM.getDataLayout().getPrefTypeAlignment(value->getType()));
3311     Address alloca =
3312       CGF.CreateTempAlloca(value->getType(), align, "cond-cleanup.save");
3313     CGF.Builder.CreateStore(value, alloca);
3314 
3315     return saved_type(alloca.getPointer(), true);
3316   }
3317 
3318   static llvm::Value *restore(CodeGenFunction &CGF, saved_type value) {
3319     // If the value says it wasn't saved, trust that it's still dominating.
3320     if (!value.getInt()) return value.getPointer();
3321 
3322     // Otherwise, it should be an alloca instruction, as set up in save().
3323     auto alloca = cast<llvm::AllocaInst>(value.getPointer());
3324     return CGF.Builder.CreateAlignedLoad(alloca, alloca->getAlignment());
3325   }
3326 };
3327 
3328 /// A partial specialization of DominatingValue for llvm::Values that
3329 /// might be llvm::Instructions.
3330 template <class T> struct DominatingPointer<T,true> : DominatingLLVMValue {
3331   typedef T *type;
3332   static type restore(CodeGenFunction &CGF, saved_type value) {
3333     return static_cast<T*>(DominatingLLVMValue::restore(CGF, value));
3334   }
3335 };
3336 
3337 /// A specialization of DominatingValue for Address.
3338 template <> struct DominatingValue<Address> {
3339   typedef Address type;
3340 
3341   struct saved_type {
3342     DominatingLLVMValue::saved_type SavedValue;
3343     CharUnits Alignment;
3344   };
3345 
3346   static bool needsSaving(type value) {
3347     return DominatingLLVMValue::needsSaving(value.getPointer());
3348   }
3349   static saved_type save(CodeGenFunction &CGF, type value) {
3350     return { DominatingLLVMValue::save(CGF, value.getPointer()),
3351              value.getAlignment() };
3352   }
3353   static type restore(CodeGenFunction &CGF, saved_type value) {
3354     return Address(DominatingLLVMValue::restore(CGF, value.SavedValue),
3355                    value.Alignment);
3356   }
3357 };
3358 
3359 /// A specialization of DominatingValue for RValue.
3360 template <> struct DominatingValue<RValue> {
3361   typedef RValue type;
3362   class saved_type {
3363     enum Kind { ScalarLiteral, ScalarAddress, AggregateLiteral,
3364                 AggregateAddress, ComplexAddress };
3365 
3366     llvm::Value *Value;
3367     unsigned K : 3;
3368     unsigned Align : 29;
3369     saved_type(llvm::Value *v, Kind k, unsigned a = 0)
3370       : Value(v), K(k), Align(a) {}
3371 
3372   public:
3373     static bool needsSaving(RValue value);
3374     static saved_type save(CodeGenFunction &CGF, RValue value);
3375     RValue restore(CodeGenFunction &CGF);
3376 
3377     // implementations in CGCleanup.cpp
3378   };
3379 
3380   static bool needsSaving(type value) {
3381     return saved_type::needsSaving(value);
3382   }
3383   static saved_type save(CodeGenFunction &CGF, type value) {
3384     return saved_type::save(CGF, value);
3385   }
3386   static type restore(CodeGenFunction &CGF, saved_type value) {
3387     return value.restore(CGF);
3388   }
3389 };
3390 
3391 }  // end namespace CodeGen
3392 }  // end namespace clang
3393 
3394 #endif
3395