1 //===-- CodeGenFunction.h - Per-Function state for LLVM CodeGen -*- C++ -*-===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This is the internal per-function state used for llvm translation.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #ifndef CLANG_CODEGEN_CODEGENFUNCTION_H
15 #define CLANG_CODEGEN_CODEGENFUNCTION_H
16 
17 #include "CGBuilder.h"
18 #include "CGDebugInfo.h"
19 #include "CGValue.h"
20 #include "CodeGenModule.h"
21 #include "clang/AST/CharUnits.h"
22 #include "clang/AST/ExprCXX.h"
23 #include "clang/AST/ExprObjC.h"
24 #include "clang/AST/Type.h"
25 #include "clang/Basic/ABI.h"
26 #include "clang/Basic/TargetInfo.h"
27 #include "clang/Frontend/CodeGenOptions.h"
28 #include "llvm/ADT/ArrayRef.h"
29 #include "llvm/ADT/DenseMap.h"
30 #include "llvm/ADT/SmallVector.h"
31 #include "llvm/Support/Debug.h"
32 #include "llvm/Support/ValueHandle.h"
33 
34 namespace llvm {
35   class BasicBlock;
36   class LLVMContext;
37   class MDNode;
38   class Module;
39   class SwitchInst;
40   class Twine;
41   class Value;
42   class CallSite;
43 }
44 
45 namespace clang {
46   class ASTContext;
47   class BlockDecl;
48   class CXXDestructorDecl;
49   class CXXForRangeStmt;
50   class CXXTryStmt;
51   class Decl;
52   class LabelDecl;
53   class EnumConstantDecl;
54   class FunctionDecl;
55   class FunctionProtoType;
56   class LabelStmt;
57   class ObjCContainerDecl;
58   class ObjCInterfaceDecl;
59   class ObjCIvarDecl;
60   class ObjCMethodDecl;
61   class ObjCImplementationDecl;
62   class ObjCPropertyImplDecl;
63   class TargetInfo;
64   class TargetCodeGenInfo;
65   class VarDecl;
66   class ObjCForCollectionStmt;
67   class ObjCAtTryStmt;
68   class ObjCAtThrowStmt;
69   class ObjCAtSynchronizedStmt;
70   class ObjCAutoreleasePoolStmt;
71 
72 namespace CodeGen {
73   class CodeGenTypes;
74   class CGFunctionInfo;
75   class CGRecordLayout;
76   class CGBlockInfo;
77   class CGCXXABI;
78   class BlockFlags;
79   class BlockFieldFlags;
80 
81 /// The kind of evaluation to perform on values of a particular
82 /// type.  Basically, is the code in CGExprScalar, CGExprComplex, or
83 /// CGExprAgg?
84 ///
85 /// TODO: should vectors maybe be split out into their own thing?
86 enum TypeEvaluationKind {
87   TEK_Scalar,
88   TEK_Complex,
89   TEK_Aggregate
90 };
91 
92 /// A branch fixup.  These are required when emitting a goto to a
93 /// label which hasn't been emitted yet.  The goto is optimistically
94 /// emitted as a branch to the basic block for the label, and (if it
95 /// occurs in a scope with non-trivial cleanups) a fixup is added to
96 /// the innermost cleanup.  When a (normal) cleanup is popped, any
97 /// unresolved fixups in that scope are threaded through the cleanup.
98 struct BranchFixup {
99   /// The block containing the terminator which needs to be modified
100   /// into a switch if this fixup is resolved into the current scope.
101   /// If null, LatestBranch points directly to the destination.
102   llvm::BasicBlock *OptimisticBranchBlock;
103 
104   /// The ultimate destination of the branch.
105   ///
106   /// This can be set to null to indicate that this fixup was
107   /// successfully resolved.
108   llvm::BasicBlock *Destination;
109 
110   /// The destination index value.
111   unsigned DestinationIndex;
112 
113   /// The initial branch of the fixup.
114   llvm::BranchInst *InitialBranch;
115 };
116 
117 template <class T> struct InvariantValue {
118   typedef T type;
119   typedef T saved_type;
120   static bool needsSaving(type value) { return false; }
121   static saved_type save(CodeGenFunction &CGF, type value) { return value; }
122   static type restore(CodeGenFunction &CGF, saved_type value) { return value; }
123 };
124 
125 /// A metaprogramming class for ensuring that a value will dominate an
126 /// arbitrary position in a function.
127 template <class T> struct DominatingValue : InvariantValue<T> {};
128 
129 template <class T, bool mightBeInstruction =
130             llvm::is_base_of<llvm::Value, T>::value &&
131             !llvm::is_base_of<llvm::Constant, T>::value &&
132             !llvm::is_base_of<llvm::BasicBlock, T>::value>
133 struct DominatingPointer;
134 template <class T> struct DominatingPointer<T,false> : InvariantValue<T*> {};
135 // template <class T> struct DominatingPointer<T,true> at end of file
136 
137 template <class T> struct DominatingValue<T*> : DominatingPointer<T> {};
138 
139 enum CleanupKind {
140   EHCleanup = 0x1,
141   NormalCleanup = 0x2,
142   NormalAndEHCleanup = EHCleanup | NormalCleanup,
143 
144   InactiveCleanup = 0x4,
145   InactiveEHCleanup = EHCleanup | InactiveCleanup,
146   InactiveNormalCleanup = NormalCleanup | InactiveCleanup,
147   InactiveNormalAndEHCleanup = NormalAndEHCleanup | InactiveCleanup
148 };
149 
150 /// A stack of scopes which respond to exceptions, including cleanups
151 /// and catch blocks.
152 class EHScopeStack {
153 public:
154   /// A saved depth on the scope stack.  This is necessary because
155   /// pushing scopes onto the stack invalidates iterators.
156   class stable_iterator {
157     friend class EHScopeStack;
158 
159     /// Offset from StartOfData to EndOfBuffer.
160     ptrdiff_t Size;
161 
162     stable_iterator(ptrdiff_t Size) : Size(Size) {}
163 
164   public:
165     static stable_iterator invalid() { return stable_iterator(-1); }
166     stable_iterator() : Size(-1) {}
167 
168     bool isValid() const { return Size >= 0; }
169 
170     /// Returns true if this scope encloses I.
171     /// Returns false if I is invalid.
172     /// This scope must be valid.
173     bool encloses(stable_iterator I) const { return Size <= I.Size; }
174 
175     /// Returns true if this scope strictly encloses I: that is,
176     /// if it encloses I and is not I.
177     /// Returns false is I is invalid.
178     /// This scope must be valid.
179     bool strictlyEncloses(stable_iterator I) const { return Size < I.Size; }
180 
181     friend bool operator==(stable_iterator A, stable_iterator B) {
182       return A.Size == B.Size;
183     }
184     friend bool operator!=(stable_iterator A, stable_iterator B) {
185       return A.Size != B.Size;
186     }
187   };
188 
189   /// Information for lazily generating a cleanup.  Subclasses must be
190   /// POD-like: cleanups will not be destructed, and they will be
191   /// allocated on the cleanup stack and freely copied and moved
192   /// around.
193   ///
194   /// Cleanup implementations should generally be declared in an
195   /// anonymous namespace.
196   class Cleanup {
197     // Anchor the construction vtable.
198     virtual void anchor();
199   public:
200     /// Generation flags.
201     class Flags {
202       enum {
203         F_IsForEH             = 0x1,
204         F_IsNormalCleanupKind = 0x2,
205         F_IsEHCleanupKind     = 0x4
206       };
207       unsigned flags;
208 
209     public:
210       Flags() : flags(0) {}
211 
212       /// isForEH - true if the current emission is for an EH cleanup.
213       bool isForEHCleanup() const { return flags & F_IsForEH; }
214       bool isForNormalCleanup() const { return !isForEHCleanup(); }
215       void setIsForEHCleanup() { flags |= F_IsForEH; }
216 
217       bool isNormalCleanupKind() const { return flags & F_IsNormalCleanupKind; }
218       void setIsNormalCleanupKind() { flags |= F_IsNormalCleanupKind; }
219 
220       /// isEHCleanupKind - true if the cleanup was pushed as an EH
221       /// cleanup.
222       bool isEHCleanupKind() const { return flags & F_IsEHCleanupKind; }
223       void setIsEHCleanupKind() { flags |= F_IsEHCleanupKind; }
224     };
225 
226     // Provide a virtual destructor to suppress a very common warning
227     // that unfortunately cannot be suppressed without this.  Cleanups
228     // should not rely on this destructor ever being called.
229     virtual ~Cleanup() {}
230 
231     /// Emit the cleanup.  For normal cleanups, this is run in the
232     /// same EH context as when the cleanup was pushed, i.e. the
233     /// immediately-enclosing context of the cleanup scope.  For
234     /// EH cleanups, this is run in a terminate context.
235     ///
236     // \param flags cleanup kind.
237     virtual void Emit(CodeGenFunction &CGF, Flags flags) = 0;
238   };
239 
240   /// ConditionalCleanupN stores the saved form of its N parameters,
241   /// then restores them and performs the cleanup.
242   template <class T, class A0>
243   class ConditionalCleanup1 : public Cleanup {
244     typedef typename DominatingValue<A0>::saved_type A0_saved;
245     A0_saved a0_saved;
246 
247     void Emit(CodeGenFunction &CGF, Flags flags) {
248       A0 a0 = DominatingValue<A0>::restore(CGF, a0_saved);
249       T(a0).Emit(CGF, flags);
250     }
251 
252   public:
253     ConditionalCleanup1(A0_saved a0)
254       : a0_saved(a0) {}
255   };
256 
257   template <class T, class A0, class A1>
258   class ConditionalCleanup2 : public Cleanup {
259     typedef typename DominatingValue<A0>::saved_type A0_saved;
260     typedef typename DominatingValue<A1>::saved_type A1_saved;
261     A0_saved a0_saved;
262     A1_saved a1_saved;
263 
264     void Emit(CodeGenFunction &CGF, Flags flags) {
265       A0 a0 = DominatingValue<A0>::restore(CGF, a0_saved);
266       A1 a1 = DominatingValue<A1>::restore(CGF, a1_saved);
267       T(a0, a1).Emit(CGF, flags);
268     }
269 
270   public:
271     ConditionalCleanup2(A0_saved a0, A1_saved a1)
272       : a0_saved(a0), a1_saved(a1) {}
273   };
274 
275   template <class T, class A0, class A1, class A2>
276   class ConditionalCleanup3 : public Cleanup {
277     typedef typename DominatingValue<A0>::saved_type A0_saved;
278     typedef typename DominatingValue<A1>::saved_type A1_saved;
279     typedef typename DominatingValue<A2>::saved_type A2_saved;
280     A0_saved a0_saved;
281     A1_saved a1_saved;
282     A2_saved a2_saved;
283 
284     void Emit(CodeGenFunction &CGF, Flags flags) {
285       A0 a0 = DominatingValue<A0>::restore(CGF, a0_saved);
286       A1 a1 = DominatingValue<A1>::restore(CGF, a1_saved);
287       A2 a2 = DominatingValue<A2>::restore(CGF, a2_saved);
288       T(a0, a1, a2).Emit(CGF, flags);
289     }
290 
291   public:
292     ConditionalCleanup3(A0_saved a0, A1_saved a1, A2_saved a2)
293       : a0_saved(a0), a1_saved(a1), a2_saved(a2) {}
294   };
295 
296   template <class T, class A0, class A1, class A2, class A3>
297   class ConditionalCleanup4 : public Cleanup {
298     typedef typename DominatingValue<A0>::saved_type A0_saved;
299     typedef typename DominatingValue<A1>::saved_type A1_saved;
300     typedef typename DominatingValue<A2>::saved_type A2_saved;
301     typedef typename DominatingValue<A3>::saved_type A3_saved;
302     A0_saved a0_saved;
303     A1_saved a1_saved;
304     A2_saved a2_saved;
305     A3_saved a3_saved;
306 
307     void Emit(CodeGenFunction &CGF, Flags flags) {
308       A0 a0 = DominatingValue<A0>::restore(CGF, a0_saved);
309       A1 a1 = DominatingValue<A1>::restore(CGF, a1_saved);
310       A2 a2 = DominatingValue<A2>::restore(CGF, a2_saved);
311       A3 a3 = DominatingValue<A3>::restore(CGF, a3_saved);
312       T(a0, a1, a2, a3).Emit(CGF, flags);
313     }
314 
315   public:
316     ConditionalCleanup4(A0_saved a0, A1_saved a1, A2_saved a2, A3_saved a3)
317       : a0_saved(a0), a1_saved(a1), a2_saved(a2), a3_saved(a3) {}
318   };
319 
320 private:
321   // The implementation for this class is in CGException.h and
322   // CGException.cpp; the definition is here because it's used as a
323   // member of CodeGenFunction.
324 
325   /// The start of the scope-stack buffer, i.e. the allocated pointer
326   /// for the buffer.  All of these pointers are either simultaneously
327   /// null or simultaneously valid.
328   char *StartOfBuffer;
329 
330   /// The end of the buffer.
331   char *EndOfBuffer;
332 
333   /// The first valid entry in the buffer.
334   char *StartOfData;
335 
336   /// The innermost normal cleanup on the stack.
337   stable_iterator InnermostNormalCleanup;
338 
339   /// The innermost EH scope on the stack.
340   stable_iterator InnermostEHScope;
341 
342   /// The current set of branch fixups.  A branch fixup is a jump to
343   /// an as-yet unemitted label, i.e. a label for which we don't yet
344   /// know the EH stack depth.  Whenever we pop a cleanup, we have
345   /// to thread all the current branch fixups through it.
346   ///
347   /// Fixups are recorded as the Use of the respective branch or
348   /// switch statement.  The use points to the final destination.
349   /// When popping out of a cleanup, these uses are threaded through
350   /// the cleanup and adjusted to point to the new cleanup.
351   ///
352   /// Note that branches are allowed to jump into protected scopes
353   /// in certain situations;  e.g. the following code is legal:
354   ///     struct A { ~A(); }; // trivial ctor, non-trivial dtor
355   ///     goto foo;
356   ///     A a;
357   ///    foo:
358   ///     bar();
359   SmallVector<BranchFixup, 8> BranchFixups;
360 
361   char *allocate(size_t Size);
362 
363   void *pushCleanup(CleanupKind K, size_t DataSize);
364 
365 public:
366   EHScopeStack() : StartOfBuffer(0), EndOfBuffer(0), StartOfData(0),
367                    InnermostNormalCleanup(stable_end()),
368                    InnermostEHScope(stable_end()) {}
369   ~EHScopeStack() { delete[] StartOfBuffer; }
370 
371   // Variadic templates would make this not terrible.
372 
373   /// Push a lazily-created cleanup on the stack.
374   template <class T>
375   void pushCleanup(CleanupKind Kind) {
376     void *Buffer = pushCleanup(Kind, sizeof(T));
377     Cleanup *Obj = new(Buffer) T();
378     (void) Obj;
379   }
380 
381   /// Push a lazily-created cleanup on the stack.
382   template <class T, class A0>
383   void pushCleanup(CleanupKind Kind, A0 a0) {
384     void *Buffer = pushCleanup(Kind, sizeof(T));
385     Cleanup *Obj = new(Buffer) T(a0);
386     (void) Obj;
387   }
388 
389   /// Push a lazily-created cleanup on the stack.
390   template <class T, class A0, class A1>
391   void pushCleanup(CleanupKind Kind, A0 a0, A1 a1) {
392     void *Buffer = pushCleanup(Kind, sizeof(T));
393     Cleanup *Obj = new(Buffer) T(a0, a1);
394     (void) Obj;
395   }
396 
397   /// Push a lazily-created cleanup on the stack.
398   template <class T, class A0, class A1, class A2>
399   void pushCleanup(CleanupKind Kind, A0 a0, A1 a1, A2 a2) {
400     void *Buffer = pushCleanup(Kind, sizeof(T));
401     Cleanup *Obj = new(Buffer) T(a0, a1, a2);
402     (void) Obj;
403   }
404 
405   /// Push a lazily-created cleanup on the stack.
406   template <class T, class A0, class A1, class A2, class A3>
407   void pushCleanup(CleanupKind Kind, A0 a0, A1 a1, A2 a2, A3 a3) {
408     void *Buffer = pushCleanup(Kind, sizeof(T));
409     Cleanup *Obj = new(Buffer) T(a0, a1, a2, a3);
410     (void) Obj;
411   }
412 
413   /// Push a lazily-created cleanup on the stack.
414   template <class T, class A0, class A1, class A2, class A3, class A4>
415   void pushCleanup(CleanupKind Kind, A0 a0, A1 a1, A2 a2, A3 a3, A4 a4) {
416     void *Buffer = pushCleanup(Kind, sizeof(T));
417     Cleanup *Obj = new(Buffer) T(a0, a1, a2, a3, a4);
418     (void) Obj;
419   }
420 
421   // Feel free to add more variants of the following:
422 
423   /// Push a cleanup with non-constant storage requirements on the
424   /// stack.  The cleanup type must provide an additional static method:
425   ///   static size_t getExtraSize(size_t);
426   /// The argument to this method will be the value N, which will also
427   /// be passed as the first argument to the constructor.
428   ///
429   /// The data stored in the extra storage must obey the same
430   /// restrictions as normal cleanup member data.
431   ///
432   /// The pointer returned from this method is valid until the cleanup
433   /// stack is modified.
434   template <class T, class A0, class A1, class A2>
435   T *pushCleanupWithExtra(CleanupKind Kind, size_t N, A0 a0, A1 a1, A2 a2) {
436     void *Buffer = pushCleanup(Kind, sizeof(T) + T::getExtraSize(N));
437     return new (Buffer) T(N, a0, a1, a2);
438   }
439 
440   /// Pops a cleanup scope off the stack.  This is private to CGCleanup.cpp.
441   void popCleanup();
442 
443   /// Push a set of catch handlers on the stack.  The catch is
444   /// uninitialized and will need to have the given number of handlers
445   /// set on it.
446   class EHCatchScope *pushCatch(unsigned NumHandlers);
447 
448   /// Pops a catch scope off the stack.  This is private to CGException.cpp.
449   void popCatch();
450 
451   /// Push an exceptions filter on the stack.
452   class EHFilterScope *pushFilter(unsigned NumFilters);
453 
454   /// Pops an exceptions filter off the stack.
455   void popFilter();
456 
457   /// Push a terminate handler on the stack.
458   void pushTerminate();
459 
460   /// Pops a terminate handler off the stack.
461   void popTerminate();
462 
463   /// Determines whether the exception-scopes stack is empty.
464   bool empty() const { return StartOfData == EndOfBuffer; }
465 
466   bool requiresLandingPad() const {
467     return InnermostEHScope != stable_end();
468   }
469 
470   /// Determines whether there are any normal cleanups on the stack.
471   bool hasNormalCleanups() const {
472     return InnermostNormalCleanup != stable_end();
473   }
474 
475   /// Returns the innermost normal cleanup on the stack, or
476   /// stable_end() if there are no normal cleanups.
477   stable_iterator getInnermostNormalCleanup() const {
478     return InnermostNormalCleanup;
479   }
480   stable_iterator getInnermostActiveNormalCleanup() const;
481 
482   stable_iterator getInnermostEHScope() const {
483     return InnermostEHScope;
484   }
485 
486   stable_iterator getInnermostActiveEHScope() const;
487 
488   /// An unstable reference to a scope-stack depth.  Invalidated by
489   /// pushes but not pops.
490   class iterator;
491 
492   /// Returns an iterator pointing to the innermost EH scope.
493   iterator begin() const;
494 
495   /// Returns an iterator pointing to the outermost EH scope.
496   iterator end() const;
497 
498   /// Create a stable reference to the top of the EH stack.  The
499   /// returned reference is valid until that scope is popped off the
500   /// stack.
501   stable_iterator stable_begin() const {
502     return stable_iterator(EndOfBuffer - StartOfData);
503   }
504 
505   /// Create a stable reference to the bottom of the EH stack.
506   static stable_iterator stable_end() {
507     return stable_iterator(0);
508   }
509 
510   /// Translates an iterator into a stable_iterator.
511   stable_iterator stabilize(iterator it) const;
512 
513   /// Turn a stable reference to a scope depth into a unstable pointer
514   /// to the EH stack.
515   iterator find(stable_iterator save) const;
516 
517   /// Removes the cleanup pointed to by the given stable_iterator.
518   void removeCleanup(stable_iterator save);
519 
520   /// Add a branch fixup to the current cleanup scope.
521   BranchFixup &addBranchFixup() {
522     assert(hasNormalCleanups() && "adding fixup in scope without cleanups");
523     BranchFixups.push_back(BranchFixup());
524     return BranchFixups.back();
525   }
526 
527   unsigned getNumBranchFixups() const { return BranchFixups.size(); }
528   BranchFixup &getBranchFixup(unsigned I) {
529     assert(I < getNumBranchFixups());
530     return BranchFixups[I];
531   }
532 
533   /// Pops lazily-removed fixups from the end of the list.  This
534   /// should only be called by procedures which have just popped a
535   /// cleanup or resolved one or more fixups.
536   void popNullFixups();
537 
538   /// Clears the branch-fixups list.  This should only be called by
539   /// ResolveAllBranchFixups.
540   void clearFixups() { BranchFixups.clear(); }
541 };
542 
543 /// CodeGenFunction - This class organizes the per-function state that is used
544 /// while generating LLVM code.
545 class CodeGenFunction : public CodeGenTypeCache {
546   CodeGenFunction(const CodeGenFunction &) LLVM_DELETED_FUNCTION;
547   void operator=(const CodeGenFunction &) LLVM_DELETED_FUNCTION;
548 
549   friend class CGCXXABI;
550 public:
551   /// A jump destination is an abstract label, branching to which may
552   /// require a jump out through normal cleanups.
553   struct JumpDest {
554     JumpDest() : Block(0), ScopeDepth(), Index(0) {}
555     JumpDest(llvm::BasicBlock *Block,
556              EHScopeStack::stable_iterator Depth,
557              unsigned Index)
558       : Block(Block), ScopeDepth(Depth), Index(Index) {}
559 
560     bool isValid() const { return Block != 0; }
561     llvm::BasicBlock *getBlock() const { return Block; }
562     EHScopeStack::stable_iterator getScopeDepth() const { return ScopeDepth; }
563     unsigned getDestIndex() const { return Index; }
564 
565     // This should be used cautiously.
566     void setScopeDepth(EHScopeStack::stable_iterator depth) {
567       ScopeDepth = depth;
568     }
569 
570   private:
571     llvm::BasicBlock *Block;
572     EHScopeStack::stable_iterator ScopeDepth;
573     unsigned Index;
574   };
575 
576   CodeGenModule &CGM;  // Per-module state.
577   const TargetInfo &Target;
578 
579   typedef std::pair<llvm::Value *, llvm::Value *> ComplexPairTy;
580   CGBuilderTy Builder;
581 
582   /// CurFuncDecl - Holds the Decl for the current function or ObjC method.
583   /// This excludes BlockDecls.
584   const Decl *CurFuncDecl;
585   /// CurCodeDecl - This is the inner-most code context, which includes blocks.
586   const Decl *CurCodeDecl;
587   const CGFunctionInfo *CurFnInfo;
588   QualType FnRetTy;
589   llvm::Function *CurFn;
590 
591   /// CurGD - The GlobalDecl for the current function being compiled.
592   GlobalDecl CurGD;
593 
594   /// PrologueCleanupDepth - The cleanup depth enclosing all the
595   /// cleanups associated with the parameters.
596   EHScopeStack::stable_iterator PrologueCleanupDepth;
597 
598   /// ReturnBlock - Unified return block.
599   JumpDest ReturnBlock;
600 
601   /// ReturnValue - The temporary alloca to hold the return value. This is null
602   /// iff the function has no return value.
603   llvm::Value *ReturnValue;
604 
605   /// AllocaInsertPoint - This is an instruction in the entry block before which
606   /// we prefer to insert allocas.
607   llvm::AssertingVH<llvm::Instruction> AllocaInsertPt;
608 
609   /// BoundsChecking - Emit run-time bounds checks. Higher values mean
610   /// potentially higher performance penalties.
611   unsigned char BoundsChecking;
612 
613   /// \brief Whether any type-checking sanitizers are enabled. If \c false,
614   /// calls to EmitTypeCheck can be skipped.
615   bool SanitizePerformTypeCheck;
616 
617   /// \brief Sanitizer options to use for this function.
618   const SanitizerOptions *SanOpts;
619 
620   /// In ARC, whether we should autorelease the return value.
621   bool AutoreleaseResult;
622 
623   const CodeGen::CGBlockInfo *BlockInfo;
624   llvm::Value *BlockPointer;
625 
626   llvm::DenseMap<const VarDecl *, FieldDecl *> LambdaCaptureFields;
627   FieldDecl *LambdaThisCaptureField;
628 
629   /// \brief A mapping from NRVO variables to the flags used to indicate
630   /// when the NRVO has been applied to this variable.
631   llvm::DenseMap<const VarDecl *, llvm::Value *> NRVOFlags;
632 
633   EHScopeStack EHStack;
634 
635   /// i32s containing the indexes of the cleanup destinations.
636   llvm::AllocaInst *NormalCleanupDest;
637 
638   unsigned NextCleanupDestIndex;
639 
640   /// FirstBlockInfo - The head of a singly-linked-list of block layouts.
641   CGBlockInfo *FirstBlockInfo;
642 
643   /// EHResumeBlock - Unified block containing a call to llvm.eh.resume.
644   llvm::BasicBlock *EHResumeBlock;
645 
646   /// The exception slot.  All landing pads write the current exception pointer
647   /// into this alloca.
648   llvm::Value *ExceptionSlot;
649 
650   /// The selector slot.  Under the MandatoryCleanup model, all landing pads
651   /// write the current selector value into this alloca.
652   llvm::AllocaInst *EHSelectorSlot;
653 
654   /// Emits a landing pad for the current EH stack.
655   llvm::BasicBlock *EmitLandingPad();
656 
657   llvm::BasicBlock *getInvokeDestImpl();
658 
659   template <class T>
660   typename DominatingValue<T>::saved_type saveValueInCond(T value) {
661     return DominatingValue<T>::save(*this, value);
662   }
663 
664 public:
665   /// ObjCEHValueStack - Stack of Objective-C exception values, used for
666   /// rethrows.
667   SmallVector<llvm::Value*, 8> ObjCEHValueStack;
668 
669   /// A class controlling the emission of a finally block.
670   class FinallyInfo {
671     /// Where the catchall's edge through the cleanup should go.
672     JumpDest RethrowDest;
673 
674     /// A function to call to enter the catch.
675     llvm::Constant *BeginCatchFn;
676 
677     /// An i1 variable indicating whether or not the @finally is
678     /// running for an exception.
679     llvm::AllocaInst *ForEHVar;
680 
681     /// An i8* variable into which the exception pointer to rethrow
682     /// has been saved.
683     llvm::AllocaInst *SavedExnVar;
684 
685   public:
686     void enter(CodeGenFunction &CGF, const Stmt *Finally,
687                llvm::Constant *beginCatchFn, llvm::Constant *endCatchFn,
688                llvm::Constant *rethrowFn);
689     void exit(CodeGenFunction &CGF);
690   };
691 
692   /// pushFullExprCleanup - Push a cleanup to be run at the end of the
693   /// current full-expression.  Safe against the possibility that
694   /// we're currently inside a conditionally-evaluated expression.
695   template <class T, class A0>
696   void pushFullExprCleanup(CleanupKind kind, A0 a0) {
697     // If we're not in a conditional branch, or if none of the
698     // arguments requires saving, then use the unconditional cleanup.
699     if (!isInConditionalBranch())
700       return EHStack.pushCleanup<T>(kind, a0);
701 
702     typename DominatingValue<A0>::saved_type a0_saved = saveValueInCond(a0);
703 
704     typedef EHScopeStack::ConditionalCleanup1<T, A0> CleanupType;
705     EHStack.pushCleanup<CleanupType>(kind, a0_saved);
706     initFullExprCleanup();
707   }
708 
709   /// pushFullExprCleanup - Push a cleanup to be run at the end of the
710   /// current full-expression.  Safe against the possibility that
711   /// we're currently inside a conditionally-evaluated expression.
712   template <class T, class A0, class A1>
713   void pushFullExprCleanup(CleanupKind kind, A0 a0, A1 a1) {
714     // If we're not in a conditional branch, or if none of the
715     // arguments requires saving, then use the unconditional cleanup.
716     if (!isInConditionalBranch())
717       return EHStack.pushCleanup<T>(kind, a0, a1);
718 
719     typename DominatingValue<A0>::saved_type a0_saved = saveValueInCond(a0);
720     typename DominatingValue<A1>::saved_type a1_saved = saveValueInCond(a1);
721 
722     typedef EHScopeStack::ConditionalCleanup2<T, A0, A1> CleanupType;
723     EHStack.pushCleanup<CleanupType>(kind, a0_saved, a1_saved);
724     initFullExprCleanup();
725   }
726 
727   /// pushFullExprCleanup - Push a cleanup to be run at the end of the
728   /// current full-expression.  Safe against the possibility that
729   /// we're currently inside a conditionally-evaluated expression.
730   template <class T, class A0, class A1, class A2>
731   void pushFullExprCleanup(CleanupKind kind, A0 a0, A1 a1, A2 a2) {
732     // If we're not in a conditional branch, or if none of the
733     // arguments requires saving, then use the unconditional cleanup.
734     if (!isInConditionalBranch()) {
735       return EHStack.pushCleanup<T>(kind, a0, a1, a2);
736     }
737 
738     typename DominatingValue<A0>::saved_type a0_saved = saveValueInCond(a0);
739     typename DominatingValue<A1>::saved_type a1_saved = saveValueInCond(a1);
740     typename DominatingValue<A2>::saved_type a2_saved = saveValueInCond(a2);
741 
742     typedef EHScopeStack::ConditionalCleanup3<T, A0, A1, A2> CleanupType;
743     EHStack.pushCleanup<CleanupType>(kind, a0_saved, a1_saved, a2_saved);
744     initFullExprCleanup();
745   }
746 
747   /// pushFullExprCleanup - Push a cleanup to be run at the end of the
748   /// current full-expression.  Safe against the possibility that
749   /// we're currently inside a conditionally-evaluated expression.
750   template <class T, class A0, class A1, class A2, class A3>
751   void pushFullExprCleanup(CleanupKind kind, A0 a0, A1 a1, A2 a2, A3 a3) {
752     // If we're not in a conditional branch, or if none of the
753     // arguments requires saving, then use the unconditional cleanup.
754     if (!isInConditionalBranch()) {
755       return EHStack.pushCleanup<T>(kind, a0, a1, a2, a3);
756     }
757 
758     typename DominatingValue<A0>::saved_type a0_saved = saveValueInCond(a0);
759     typename DominatingValue<A1>::saved_type a1_saved = saveValueInCond(a1);
760     typename DominatingValue<A2>::saved_type a2_saved = saveValueInCond(a2);
761     typename DominatingValue<A3>::saved_type a3_saved = saveValueInCond(a3);
762 
763     typedef EHScopeStack::ConditionalCleanup4<T, A0, A1, A2, A3> CleanupType;
764     EHStack.pushCleanup<CleanupType>(kind, a0_saved, a1_saved,
765                                      a2_saved, a3_saved);
766     initFullExprCleanup();
767   }
768 
769   /// Set up the last cleaup that was pushed as a conditional
770   /// full-expression cleanup.
771   void initFullExprCleanup();
772 
773   /// PushDestructorCleanup - Push a cleanup to call the
774   /// complete-object destructor of an object of the given type at the
775   /// given address.  Does nothing if T is not a C++ class type with a
776   /// non-trivial destructor.
777   void PushDestructorCleanup(QualType T, llvm::Value *Addr);
778 
779   /// PushDestructorCleanup - Push a cleanup to call the
780   /// complete-object variant of the given destructor on the object at
781   /// the given address.
782   void PushDestructorCleanup(const CXXDestructorDecl *Dtor,
783                              llvm::Value *Addr);
784 
785   /// PopCleanupBlock - Will pop the cleanup entry on the stack and
786   /// process all branch fixups.
787   void PopCleanupBlock(bool FallThroughIsBranchThrough = false);
788 
789   /// DeactivateCleanupBlock - Deactivates the given cleanup block.
790   /// The block cannot be reactivated.  Pops it if it's the top of the
791   /// stack.
792   ///
793   /// \param DominatingIP - An instruction which is known to
794   ///   dominate the current IP (if set) and which lies along
795   ///   all paths of execution between the current IP and the
796   ///   the point at which the cleanup comes into scope.
797   void DeactivateCleanupBlock(EHScopeStack::stable_iterator Cleanup,
798                               llvm::Instruction *DominatingIP);
799 
800   /// ActivateCleanupBlock - Activates an initially-inactive cleanup.
801   /// Cannot be used to resurrect a deactivated cleanup.
802   ///
803   /// \param DominatingIP - An instruction which is known to
804   ///   dominate the current IP (if set) and which lies along
805   ///   all paths of execution between the current IP and the
806   ///   the point at which the cleanup comes into scope.
807   void ActivateCleanupBlock(EHScopeStack::stable_iterator Cleanup,
808                             llvm::Instruction *DominatingIP);
809 
810   /// \brief Enters a new scope for capturing cleanups, all of which
811   /// will be executed once the scope is exited.
812   class RunCleanupsScope {
813     EHScopeStack::stable_iterator CleanupStackDepth;
814     bool OldDidCallStackSave;
815   protected:
816     bool PerformCleanup;
817   private:
818 
819     RunCleanupsScope(const RunCleanupsScope &) LLVM_DELETED_FUNCTION;
820     void operator=(const RunCleanupsScope &) LLVM_DELETED_FUNCTION;
821 
822   protected:
823     CodeGenFunction& CGF;
824 
825   public:
826     /// \brief Enter a new cleanup scope.
827     explicit RunCleanupsScope(CodeGenFunction &CGF)
828       : PerformCleanup(true), CGF(CGF)
829     {
830       CleanupStackDepth = CGF.EHStack.stable_begin();
831       OldDidCallStackSave = CGF.DidCallStackSave;
832       CGF.DidCallStackSave = false;
833     }
834 
835     /// \brief Exit this cleanup scope, emitting any accumulated
836     /// cleanups.
837     ~RunCleanupsScope() {
838       if (PerformCleanup) {
839         CGF.DidCallStackSave = OldDidCallStackSave;
840         CGF.PopCleanupBlocks(CleanupStackDepth);
841       }
842     }
843 
844     /// \brief Determine whether this scope requires any cleanups.
845     bool requiresCleanups() const {
846       return CGF.EHStack.stable_begin() != CleanupStackDepth;
847     }
848 
849     /// \brief Force the emission of cleanups now, instead of waiting
850     /// until this object is destroyed.
851     void ForceCleanup() {
852       assert(PerformCleanup && "Already forced cleanup");
853       CGF.DidCallStackSave = OldDidCallStackSave;
854       CGF.PopCleanupBlocks(CleanupStackDepth);
855       PerformCleanup = false;
856     }
857   };
858 
859   class LexicalScope: protected RunCleanupsScope {
860     SourceRange Range;
861     SmallVector<const LabelDecl*, 4> Labels;
862     LexicalScope *ParentScope;
863 
864     LexicalScope(const LexicalScope &) LLVM_DELETED_FUNCTION;
865     void operator=(const LexicalScope &) LLVM_DELETED_FUNCTION;
866 
867   public:
868     /// \brief Enter a new cleanup scope.
869     explicit LexicalScope(CodeGenFunction &CGF, SourceRange Range)
870       : RunCleanupsScope(CGF), Range(Range), ParentScope(CGF.CurLexicalScope) {
871       CGF.CurLexicalScope = this;
872       if (CGDebugInfo *DI = CGF.getDebugInfo())
873         DI->EmitLexicalBlockStart(CGF.Builder, Range.getBegin());
874     }
875 
876     void addLabel(const LabelDecl *label) {
877       assert(PerformCleanup && "adding label to dead scope?");
878       Labels.push_back(label);
879     }
880 
881     /// \brief Exit this cleanup scope, emitting any accumulated
882     /// cleanups.
883     ~LexicalScope() {
884       // If we should perform a cleanup, force them now.  Note that
885       // this ends the cleanup scope before rescoping any labels.
886       if (PerformCleanup) ForceCleanup();
887     }
888 
889     /// \brief Force the emission of cleanups now, instead of waiting
890     /// until this object is destroyed.
891     void ForceCleanup() {
892       RunCleanupsScope::ForceCleanup();
893       endLexicalScope();
894     }
895 
896   private:
897     void endLexicalScope() {
898       CGF.CurLexicalScope = ParentScope;
899       if (CGDebugInfo *DI = CGF.getDebugInfo())
900         DI->EmitLexicalBlockEnd(CGF.Builder, Range.getEnd());
901       if (!Labels.empty())
902         rescopeLabels();
903     }
904 
905     void rescopeLabels();
906   };
907 
908 
909   /// PopCleanupBlocks - Takes the old cleanup stack size and emits
910   /// the cleanup blocks that have been added.
911   void PopCleanupBlocks(EHScopeStack::stable_iterator OldCleanupStackSize);
912 
913   void ResolveBranchFixups(llvm::BasicBlock *Target);
914 
915   /// The given basic block lies in the current EH scope, but may be a
916   /// target of a potentially scope-crossing jump; get a stable handle
917   /// to which we can perform this jump later.
918   JumpDest getJumpDestInCurrentScope(llvm::BasicBlock *Target) {
919     return JumpDest(Target,
920                     EHStack.getInnermostNormalCleanup(),
921                     NextCleanupDestIndex++);
922   }
923 
924   /// The given basic block lies in the current EH scope, but may be a
925   /// target of a potentially scope-crossing jump; get a stable handle
926   /// to which we can perform this jump later.
927   JumpDest getJumpDestInCurrentScope(StringRef Name = StringRef()) {
928     return getJumpDestInCurrentScope(createBasicBlock(Name));
929   }
930 
931   /// EmitBranchThroughCleanup - Emit a branch from the current insert
932   /// block through the normal cleanup handling code (if any) and then
933   /// on to \arg Dest.
934   void EmitBranchThroughCleanup(JumpDest Dest);
935 
936   /// isObviouslyBranchWithoutCleanups - Return true if a branch to the
937   /// specified destination obviously has no cleanups to run.  'false' is always
938   /// a conservatively correct answer for this method.
939   bool isObviouslyBranchWithoutCleanups(JumpDest Dest) const;
940 
941   /// popCatchScope - Pops the catch scope at the top of the EHScope
942   /// stack, emitting any required code (other than the catch handlers
943   /// themselves).
944   void popCatchScope();
945 
946   llvm::BasicBlock *getEHResumeBlock(bool isCleanup);
947   llvm::BasicBlock *getEHDispatchBlock(EHScopeStack::stable_iterator scope);
948 
949   /// An object to manage conditionally-evaluated expressions.
950   class ConditionalEvaluation {
951     llvm::BasicBlock *StartBB;
952 
953   public:
954     ConditionalEvaluation(CodeGenFunction &CGF)
955       : StartBB(CGF.Builder.GetInsertBlock()) {}
956 
957     void begin(CodeGenFunction &CGF) {
958       assert(CGF.OutermostConditional != this);
959       if (!CGF.OutermostConditional)
960         CGF.OutermostConditional = this;
961     }
962 
963     void end(CodeGenFunction &CGF) {
964       assert(CGF.OutermostConditional != 0);
965       if (CGF.OutermostConditional == this)
966         CGF.OutermostConditional = 0;
967     }
968 
969     /// Returns a block which will be executed prior to each
970     /// evaluation of the conditional code.
971     llvm::BasicBlock *getStartingBlock() const {
972       return StartBB;
973     }
974   };
975 
976   /// isInConditionalBranch - Return true if we're currently emitting
977   /// one branch or the other of a conditional expression.
978   bool isInConditionalBranch() const { return OutermostConditional != 0; }
979 
980   void setBeforeOutermostConditional(llvm::Value *value, llvm::Value *addr) {
981     assert(isInConditionalBranch());
982     llvm::BasicBlock *block = OutermostConditional->getStartingBlock();
983     new llvm::StoreInst(value, addr, &block->back());
984   }
985 
986   /// An RAII object to record that we're evaluating a statement
987   /// expression.
988   class StmtExprEvaluation {
989     CodeGenFunction &CGF;
990 
991     /// We have to save the outermost conditional: cleanups in a
992     /// statement expression aren't conditional just because the
993     /// StmtExpr is.
994     ConditionalEvaluation *SavedOutermostConditional;
995 
996   public:
997     StmtExprEvaluation(CodeGenFunction &CGF)
998       : CGF(CGF), SavedOutermostConditional(CGF.OutermostConditional) {
999       CGF.OutermostConditional = 0;
1000     }
1001 
1002     ~StmtExprEvaluation() {
1003       CGF.OutermostConditional = SavedOutermostConditional;
1004       CGF.EnsureInsertPoint();
1005     }
1006   };
1007 
1008   /// An object which temporarily prevents a value from being
1009   /// destroyed by aggressive peephole optimizations that assume that
1010   /// all uses of a value have been realized in the IR.
1011   class PeepholeProtection {
1012     llvm::Instruction *Inst;
1013     friend class CodeGenFunction;
1014 
1015   public:
1016     PeepholeProtection() : Inst(0) {}
1017   };
1018 
1019   /// A non-RAII class containing all the information about a bound
1020   /// opaque value.  OpaqueValueMapping, below, is a RAII wrapper for
1021   /// this which makes individual mappings very simple; using this
1022   /// class directly is useful when you have a variable number of
1023   /// opaque values or don't want the RAII functionality for some
1024   /// reason.
1025   class OpaqueValueMappingData {
1026     const OpaqueValueExpr *OpaqueValue;
1027     bool BoundLValue;
1028     CodeGenFunction::PeepholeProtection Protection;
1029 
1030     OpaqueValueMappingData(const OpaqueValueExpr *ov,
1031                            bool boundLValue)
1032       : OpaqueValue(ov), BoundLValue(boundLValue) {}
1033   public:
1034     OpaqueValueMappingData() : OpaqueValue(0) {}
1035 
1036     static bool shouldBindAsLValue(const Expr *expr) {
1037       // gl-values should be bound as l-values for obvious reasons.
1038       // Records should be bound as l-values because IR generation
1039       // always keeps them in memory.  Expressions of function type
1040       // act exactly like l-values but are formally required to be
1041       // r-values in C.
1042       return expr->isGLValue() ||
1043              expr->getType()->isRecordType() ||
1044              expr->getType()->isFunctionType();
1045     }
1046 
1047     static OpaqueValueMappingData bind(CodeGenFunction &CGF,
1048                                        const OpaqueValueExpr *ov,
1049                                        const Expr *e) {
1050       if (shouldBindAsLValue(ov))
1051         return bind(CGF, ov, CGF.EmitLValue(e));
1052       return bind(CGF, ov, CGF.EmitAnyExpr(e));
1053     }
1054 
1055     static OpaqueValueMappingData bind(CodeGenFunction &CGF,
1056                                        const OpaqueValueExpr *ov,
1057                                        const LValue &lv) {
1058       assert(shouldBindAsLValue(ov));
1059       CGF.OpaqueLValues.insert(std::make_pair(ov, lv));
1060       return OpaqueValueMappingData(ov, true);
1061     }
1062 
1063     static OpaqueValueMappingData bind(CodeGenFunction &CGF,
1064                                        const OpaqueValueExpr *ov,
1065                                        const RValue &rv) {
1066       assert(!shouldBindAsLValue(ov));
1067       CGF.OpaqueRValues.insert(std::make_pair(ov, rv));
1068 
1069       OpaqueValueMappingData data(ov, false);
1070 
1071       // Work around an extremely aggressive peephole optimization in
1072       // EmitScalarConversion which assumes that all other uses of a
1073       // value are extant.
1074       data.Protection = CGF.protectFromPeepholes(rv);
1075 
1076       return data;
1077     }
1078 
1079     bool isValid() const { return OpaqueValue != 0; }
1080     void clear() { OpaqueValue = 0; }
1081 
1082     void unbind(CodeGenFunction &CGF) {
1083       assert(OpaqueValue && "no data to unbind!");
1084 
1085       if (BoundLValue) {
1086         CGF.OpaqueLValues.erase(OpaqueValue);
1087       } else {
1088         CGF.OpaqueRValues.erase(OpaqueValue);
1089         CGF.unprotectFromPeepholes(Protection);
1090       }
1091     }
1092   };
1093 
1094   /// An RAII object to set (and then clear) a mapping for an OpaqueValueExpr.
1095   class OpaqueValueMapping {
1096     CodeGenFunction &CGF;
1097     OpaqueValueMappingData Data;
1098 
1099   public:
1100     static bool shouldBindAsLValue(const Expr *expr) {
1101       return OpaqueValueMappingData::shouldBindAsLValue(expr);
1102     }
1103 
1104     /// Build the opaque value mapping for the given conditional
1105     /// operator if it's the GNU ?: extension.  This is a common
1106     /// enough pattern that the convenience operator is really
1107     /// helpful.
1108     ///
1109     OpaqueValueMapping(CodeGenFunction &CGF,
1110                        const AbstractConditionalOperator *op) : CGF(CGF) {
1111       if (isa<ConditionalOperator>(op))
1112         // Leave Data empty.
1113         return;
1114 
1115       const BinaryConditionalOperator *e = cast<BinaryConditionalOperator>(op);
1116       Data = OpaqueValueMappingData::bind(CGF, e->getOpaqueValue(),
1117                                           e->getCommon());
1118     }
1119 
1120     OpaqueValueMapping(CodeGenFunction &CGF,
1121                        const OpaqueValueExpr *opaqueValue,
1122                        LValue lvalue)
1123       : CGF(CGF), Data(OpaqueValueMappingData::bind(CGF, opaqueValue, lvalue)) {
1124     }
1125 
1126     OpaqueValueMapping(CodeGenFunction &CGF,
1127                        const OpaqueValueExpr *opaqueValue,
1128                        RValue rvalue)
1129       : CGF(CGF), Data(OpaqueValueMappingData::bind(CGF, opaqueValue, rvalue)) {
1130     }
1131 
1132     void pop() {
1133       Data.unbind(CGF);
1134       Data.clear();
1135     }
1136 
1137     ~OpaqueValueMapping() {
1138       if (Data.isValid()) Data.unbind(CGF);
1139     }
1140   };
1141 
1142   /// getByrefValueFieldNumber - Given a declaration, returns the LLVM field
1143   /// number that holds the value.
1144   unsigned getByRefValueLLVMField(const ValueDecl *VD) const;
1145 
1146   /// BuildBlockByrefAddress - Computes address location of the
1147   /// variable which is declared as __block.
1148   llvm::Value *BuildBlockByrefAddress(llvm::Value *BaseAddr,
1149                                       const VarDecl *V);
1150 private:
1151   CGDebugInfo *DebugInfo;
1152   bool DisableDebugInfo;
1153 
1154   /// If the current function returns 'this', use the field to keep track of
1155   /// the callee that returns 'this'.
1156   llvm::Value *CalleeWithThisReturn;
1157 
1158   /// DidCallStackSave - Whether llvm.stacksave has been called. Used to avoid
1159   /// calling llvm.stacksave for multiple VLAs in the same scope.
1160   bool DidCallStackSave;
1161 
1162   /// IndirectBranch - The first time an indirect goto is seen we create a block
1163   /// with an indirect branch.  Every time we see the address of a label taken,
1164   /// we add the label to the indirect goto.  Every subsequent indirect goto is
1165   /// codegen'd as a jump to the IndirectBranch's basic block.
1166   llvm::IndirectBrInst *IndirectBranch;
1167 
1168   /// LocalDeclMap - This keeps track of the LLVM allocas or globals for local C
1169   /// decls.
1170   typedef llvm::DenseMap<const Decl*, llvm::Value*> DeclMapTy;
1171   DeclMapTy LocalDeclMap;
1172 
1173   /// LabelMap - This keeps track of the LLVM basic block for each C label.
1174   llvm::DenseMap<const LabelDecl*, JumpDest> LabelMap;
1175 
1176   // BreakContinueStack - This keeps track of where break and continue
1177   // statements should jump to.
1178   struct BreakContinue {
1179     BreakContinue(JumpDest Break, JumpDest Continue)
1180       : BreakBlock(Break), ContinueBlock(Continue) {}
1181 
1182     JumpDest BreakBlock;
1183     JumpDest ContinueBlock;
1184   };
1185   SmallVector<BreakContinue, 8> BreakContinueStack;
1186 
1187   /// SwitchInsn - This is nearest current switch instruction. It is null if
1188   /// current context is not in a switch.
1189   llvm::SwitchInst *SwitchInsn;
1190 
1191   /// CaseRangeBlock - This block holds if condition check for last case
1192   /// statement range in current switch instruction.
1193   llvm::BasicBlock *CaseRangeBlock;
1194 
1195   /// OpaqueLValues - Keeps track of the current set of opaque value
1196   /// expressions.
1197   llvm::DenseMap<const OpaqueValueExpr *, LValue> OpaqueLValues;
1198   llvm::DenseMap<const OpaqueValueExpr *, RValue> OpaqueRValues;
1199 
1200   // VLASizeMap - This keeps track of the associated size for each VLA type.
1201   // We track this by the size expression rather than the type itself because
1202   // in certain situations, like a const qualifier applied to an VLA typedef,
1203   // multiple VLA types can share the same size expression.
1204   // FIXME: Maybe this could be a stack of maps that is pushed/popped as we
1205   // enter/leave scopes.
1206   llvm::DenseMap<const Expr*, llvm::Value*> VLASizeMap;
1207 
1208   /// A block containing a single 'unreachable' instruction.  Created
1209   /// lazily by getUnreachableBlock().
1210   llvm::BasicBlock *UnreachableBlock;
1211 
1212   /// CXXThisDecl - When generating code for a C++ member function,
1213   /// this will hold the implicit 'this' declaration.
1214   ImplicitParamDecl *CXXABIThisDecl;
1215   llvm::Value *CXXABIThisValue;
1216   llvm::Value *CXXThisValue;
1217 
1218   /// CXXStructorImplicitParamDecl - When generating code for a constructor or
1219   /// destructor, this will hold the implicit argument (e.g. VTT).
1220   ImplicitParamDecl *CXXStructorImplicitParamDecl;
1221   llvm::Value *CXXStructorImplicitParamValue;
1222 
1223   /// OutermostConditional - Points to the outermost active
1224   /// conditional control.  This is used so that we know if a
1225   /// temporary should be destroyed conditionally.
1226   ConditionalEvaluation *OutermostConditional;
1227 
1228   /// The current lexical scope.
1229   LexicalScope *CurLexicalScope;
1230 
1231   /// ByrefValueInfoMap - For each __block variable, contains a pair of the LLVM
1232   /// type as well as the field number that contains the actual data.
1233   llvm::DenseMap<const ValueDecl *, std::pair<llvm::Type *,
1234                                               unsigned> > ByRefValueInfo;
1235 
1236   llvm::BasicBlock *TerminateLandingPad;
1237   llvm::BasicBlock *TerminateHandler;
1238   llvm::BasicBlock *TrapBB;
1239 
1240   /// Add a kernel metadata node to the named metadata node 'opencl.kernels'.
1241   /// In the kernel metadata node, reference the kernel function and metadata
1242   /// nodes for its optional attribute qualifiers (OpenCL 1.1 6.7.2):
1243   /// - A node for the vec_type_hint(<type>) qualifier contains string
1244   ///   "vec_type_hint", an undefined value of the <type> data type,
1245   ///   and a Boolean that is true if the <type> is integer and signed.
1246   /// - A node for the work_group_size_hint(X,Y,Z) qualifier contains string
1247   ///   "work_group_size_hint", and three 32-bit integers X, Y and Z.
1248   /// - A node for the reqd_work_group_size(X,Y,Z) qualifier contains string
1249   ///   "reqd_work_group_size", and three 32-bit integers X, Y and Z.
1250   void EmitOpenCLKernelMetadata(const FunctionDecl *FD,
1251                                 llvm::Function *Fn);
1252 
1253 public:
1254   CodeGenFunction(CodeGenModule &cgm, bool suppressNewContext=false);
1255   ~CodeGenFunction();
1256 
1257   CodeGenTypes &getTypes() const { return CGM.getTypes(); }
1258   ASTContext &getContext() const { return CGM.getContext(); }
1259   /// Returns true if DebugInfo is actually initialized.
1260   bool maybeInitializeDebugInfo() {
1261     if (CGM.getModuleDebugInfo()) {
1262       DebugInfo = CGM.getModuleDebugInfo();
1263       return true;
1264     }
1265     return false;
1266   }
1267   CGDebugInfo *getDebugInfo() {
1268     if (DisableDebugInfo)
1269       return NULL;
1270     return DebugInfo;
1271   }
1272   void disableDebugInfo() { DisableDebugInfo = true; }
1273   void enableDebugInfo() { DisableDebugInfo = false; }
1274 
1275   bool shouldUseFusedARCCalls() {
1276     return CGM.getCodeGenOpts().OptimizationLevel == 0;
1277   }
1278 
1279   const LangOptions &getLangOpts() const { return CGM.getLangOpts(); }
1280 
1281   /// Returns a pointer to the function's exception object and selector slot,
1282   /// which is assigned in every landing pad.
1283   llvm::Value *getExceptionSlot();
1284   llvm::Value *getEHSelectorSlot();
1285 
1286   /// Returns the contents of the function's exception object and selector
1287   /// slots.
1288   llvm::Value *getExceptionFromSlot();
1289   llvm::Value *getSelectorFromSlot();
1290 
1291   llvm::Value *getNormalCleanupDestSlot();
1292 
1293   llvm::BasicBlock *getUnreachableBlock() {
1294     if (!UnreachableBlock) {
1295       UnreachableBlock = createBasicBlock("unreachable");
1296       new llvm::UnreachableInst(getLLVMContext(), UnreachableBlock);
1297     }
1298     return UnreachableBlock;
1299   }
1300 
1301   llvm::BasicBlock *getInvokeDest() {
1302     if (!EHStack.requiresLandingPad()) return 0;
1303     return getInvokeDestImpl();
1304   }
1305 
1306   llvm::LLVMContext &getLLVMContext() { return CGM.getLLVMContext(); }
1307 
1308   //===--------------------------------------------------------------------===//
1309   //                                  Cleanups
1310   //===--------------------------------------------------------------------===//
1311 
1312   typedef void Destroyer(CodeGenFunction &CGF, llvm::Value *addr, QualType ty);
1313 
1314   void pushIrregularPartialArrayCleanup(llvm::Value *arrayBegin,
1315                                         llvm::Value *arrayEndPointer,
1316                                         QualType elementType,
1317                                         Destroyer *destroyer);
1318   void pushRegularPartialArrayCleanup(llvm::Value *arrayBegin,
1319                                       llvm::Value *arrayEnd,
1320                                       QualType elementType,
1321                                       Destroyer *destroyer);
1322 
1323   void pushDestroy(QualType::DestructionKind dtorKind,
1324                    llvm::Value *addr, QualType type);
1325   void pushEHDestroy(QualType::DestructionKind dtorKind,
1326                      llvm::Value *addr, QualType type);
1327   void pushDestroy(CleanupKind kind, llvm::Value *addr, QualType type,
1328                    Destroyer *destroyer, bool useEHCleanupForArray);
1329   void emitDestroy(llvm::Value *addr, QualType type, Destroyer *destroyer,
1330                    bool useEHCleanupForArray);
1331   llvm::Function *generateDestroyHelper(llvm::Constant *addr,
1332                                         QualType type,
1333                                         Destroyer *destroyer,
1334                                         bool useEHCleanupForArray);
1335   void emitArrayDestroy(llvm::Value *begin, llvm::Value *end,
1336                         QualType type, Destroyer *destroyer,
1337                         bool checkZeroLength, bool useEHCleanup);
1338 
1339   Destroyer *getDestroyer(QualType::DestructionKind destructionKind);
1340 
1341   /// Determines whether an EH cleanup is required to destroy a type
1342   /// with the given destruction kind.
1343   bool needsEHCleanup(QualType::DestructionKind kind) {
1344     switch (kind) {
1345     case QualType::DK_none:
1346       return false;
1347     case QualType::DK_cxx_destructor:
1348     case QualType::DK_objc_weak_lifetime:
1349       return getLangOpts().Exceptions;
1350     case QualType::DK_objc_strong_lifetime:
1351       return getLangOpts().Exceptions &&
1352              CGM.getCodeGenOpts().ObjCAutoRefCountExceptions;
1353     }
1354     llvm_unreachable("bad destruction kind");
1355   }
1356 
1357   CleanupKind getCleanupKind(QualType::DestructionKind kind) {
1358     return (needsEHCleanup(kind) ? NormalAndEHCleanup : NormalCleanup);
1359   }
1360 
1361   //===--------------------------------------------------------------------===//
1362   //                                  Objective-C
1363   //===--------------------------------------------------------------------===//
1364 
1365   void GenerateObjCMethod(const ObjCMethodDecl *OMD);
1366 
1367   void StartObjCMethod(const ObjCMethodDecl *MD,
1368                        const ObjCContainerDecl *CD,
1369                        SourceLocation StartLoc);
1370 
1371   /// GenerateObjCGetter - Synthesize an Objective-C property getter function.
1372   void GenerateObjCGetter(ObjCImplementationDecl *IMP,
1373                           const ObjCPropertyImplDecl *PID);
1374   void generateObjCGetterBody(const ObjCImplementationDecl *classImpl,
1375                               const ObjCPropertyImplDecl *propImpl,
1376                               const ObjCMethodDecl *GetterMothodDecl,
1377                               llvm::Constant *AtomicHelperFn);
1378 
1379   void GenerateObjCCtorDtorMethod(ObjCImplementationDecl *IMP,
1380                                   ObjCMethodDecl *MD, bool ctor);
1381 
1382   /// GenerateObjCSetter - Synthesize an Objective-C property setter function
1383   /// for the given property.
1384   void GenerateObjCSetter(ObjCImplementationDecl *IMP,
1385                           const ObjCPropertyImplDecl *PID);
1386   void generateObjCSetterBody(const ObjCImplementationDecl *classImpl,
1387                               const ObjCPropertyImplDecl *propImpl,
1388                               llvm::Constant *AtomicHelperFn);
1389   bool IndirectObjCSetterArg(const CGFunctionInfo &FI);
1390   bool IvarTypeWithAggrGCObjects(QualType Ty);
1391 
1392   //===--------------------------------------------------------------------===//
1393   //                                  Block Bits
1394   //===--------------------------------------------------------------------===//
1395 
1396   llvm::Value *EmitBlockLiteral(const BlockExpr *);
1397   llvm::Value *EmitBlockLiteral(const CGBlockInfo &Info);
1398   static void destroyBlockInfos(CGBlockInfo *info);
1399   llvm::Constant *BuildDescriptorBlockDecl(const BlockExpr *,
1400                                            const CGBlockInfo &Info,
1401                                            llvm::StructType *,
1402                                            llvm::Constant *BlockVarLayout);
1403 
1404   llvm::Function *GenerateBlockFunction(GlobalDecl GD,
1405                                         const CGBlockInfo &Info,
1406                                         const Decl *OuterFuncDecl,
1407                                         const DeclMapTy &ldm,
1408                                         bool IsLambdaConversionToBlock);
1409 
1410   llvm::Constant *GenerateCopyHelperFunction(const CGBlockInfo &blockInfo);
1411   llvm::Constant *GenerateDestroyHelperFunction(const CGBlockInfo &blockInfo);
1412   llvm::Constant *GenerateObjCAtomicSetterCopyHelperFunction(
1413                                              const ObjCPropertyImplDecl *PID);
1414   llvm::Constant *GenerateObjCAtomicGetterCopyHelperFunction(
1415                                              const ObjCPropertyImplDecl *PID);
1416   llvm::Value *EmitBlockCopyAndAutorelease(llvm::Value *Block, QualType Ty);
1417 
1418   void BuildBlockRelease(llvm::Value *DeclPtr, BlockFieldFlags flags);
1419 
1420   class AutoVarEmission;
1421 
1422   void emitByrefStructureInit(const AutoVarEmission &emission);
1423   void enterByrefCleanup(const AutoVarEmission &emission);
1424 
1425   llvm::Value *LoadBlockStruct() {
1426     assert(BlockPointer && "no block pointer set!");
1427     return BlockPointer;
1428   }
1429 
1430   void AllocateBlockCXXThisPointer(const CXXThisExpr *E);
1431   void AllocateBlockDecl(const DeclRefExpr *E);
1432   llvm::Value *GetAddrOfBlockDecl(const VarDecl *var, bool ByRef);
1433   llvm::Type *BuildByRefType(const VarDecl *var);
1434 
1435   void GenerateCode(GlobalDecl GD, llvm::Function *Fn,
1436                     const CGFunctionInfo &FnInfo);
1437   void StartFunction(GlobalDecl GD, QualType RetTy,
1438                      llvm::Function *Fn,
1439                      const CGFunctionInfo &FnInfo,
1440                      const FunctionArgList &Args,
1441                      SourceLocation StartLoc);
1442 
1443   void EmitConstructorBody(FunctionArgList &Args);
1444   void EmitDestructorBody(FunctionArgList &Args);
1445   void emitImplicitAssignmentOperatorBody(FunctionArgList &Args);
1446   void EmitFunctionBody(FunctionArgList &Args);
1447 
1448   void EmitForwardingCallToLambda(const CXXRecordDecl *Lambda,
1449                                   CallArgList &CallArgs);
1450   void EmitLambdaToBlockPointerBody(FunctionArgList &Args);
1451   void EmitLambdaBlockInvokeBody();
1452   void EmitLambdaDelegatingInvokeBody(const CXXMethodDecl *MD);
1453   void EmitLambdaStaticInvokeFunction(const CXXMethodDecl *MD);
1454 
1455   /// EmitReturnBlock - Emit the unified return block, trying to avoid its
1456   /// emission when possible.
1457   void EmitReturnBlock();
1458 
1459   /// FinishFunction - Complete IR generation of the current function. It is
1460   /// legal to call this function even if there is no current insertion point.
1461   void FinishFunction(SourceLocation EndLoc=SourceLocation());
1462 
1463   /// GenerateThunk - Generate a thunk for the given method.
1464   void GenerateThunk(llvm::Function *Fn, const CGFunctionInfo &FnInfo,
1465                      GlobalDecl GD, const ThunkInfo &Thunk);
1466 
1467   void GenerateVarArgsThunk(llvm::Function *Fn, const CGFunctionInfo &FnInfo,
1468                             GlobalDecl GD, const ThunkInfo &Thunk);
1469 
1470   void EmitCtorPrologue(const CXXConstructorDecl *CD, CXXCtorType Type,
1471                         FunctionArgList &Args);
1472 
1473   void EmitInitializerForField(FieldDecl *Field, LValue LHS, Expr *Init,
1474                                ArrayRef<VarDecl *> ArrayIndexes);
1475 
1476   /// InitializeVTablePointer - Initialize the vtable pointer of the given
1477   /// subobject.
1478   ///
1479   void InitializeVTablePointer(BaseSubobject Base,
1480                                const CXXRecordDecl *NearestVBase,
1481                                CharUnits OffsetFromNearestVBase,
1482                                llvm::Constant *VTable,
1483                                const CXXRecordDecl *VTableClass);
1484 
1485   typedef llvm::SmallPtrSet<const CXXRecordDecl *, 4> VisitedVirtualBasesSetTy;
1486   void InitializeVTablePointers(BaseSubobject Base,
1487                                 const CXXRecordDecl *NearestVBase,
1488                                 CharUnits OffsetFromNearestVBase,
1489                                 bool BaseIsNonVirtualPrimaryBase,
1490                                 llvm::Constant *VTable,
1491                                 const CXXRecordDecl *VTableClass,
1492                                 VisitedVirtualBasesSetTy& VBases);
1493 
1494   void InitializeVTablePointers(const CXXRecordDecl *ClassDecl);
1495 
1496   /// GetVTablePtr - Return the Value of the vtable pointer member pointed
1497   /// to by This.
1498   llvm::Value *GetVTablePtr(llvm::Value *This, llvm::Type *Ty);
1499 
1500   /// EnterDtorCleanups - Enter the cleanups necessary to complete the
1501   /// given phase of destruction for a destructor.  The end result
1502   /// should call destructors on members and base classes in reverse
1503   /// order of their construction.
1504   void EnterDtorCleanups(const CXXDestructorDecl *Dtor, CXXDtorType Type);
1505 
1506   /// ShouldInstrumentFunction - Return true if the current function should be
1507   /// instrumented with __cyg_profile_func_* calls
1508   bool ShouldInstrumentFunction();
1509 
1510   /// EmitFunctionInstrumentation - Emit LLVM code to call the specified
1511   /// instrumentation function with the current function and the call site, if
1512   /// function instrumentation is enabled.
1513   void EmitFunctionInstrumentation(const char *Fn);
1514 
1515   /// EmitMCountInstrumentation - Emit call to .mcount.
1516   void EmitMCountInstrumentation();
1517 
1518   /// EmitFunctionProlog - Emit the target specific LLVM code to load the
1519   /// arguments for the given function. This is also responsible for naming the
1520   /// LLVM function arguments.
1521   void EmitFunctionProlog(const CGFunctionInfo &FI,
1522                           llvm::Function *Fn,
1523                           const FunctionArgList &Args);
1524 
1525   /// EmitFunctionEpilog - Emit the target specific LLVM code to return the
1526   /// given temporary.
1527   void EmitFunctionEpilog(const CGFunctionInfo &FI);
1528 
1529   /// EmitStartEHSpec - Emit the start of the exception spec.
1530   void EmitStartEHSpec(const Decl *D);
1531 
1532   /// EmitEndEHSpec - Emit the end of the exception spec.
1533   void EmitEndEHSpec(const Decl *D);
1534 
1535   /// getTerminateLandingPad - Return a landing pad that just calls terminate.
1536   llvm::BasicBlock *getTerminateLandingPad();
1537 
1538   /// getTerminateHandler - Return a handler (not a landing pad, just
1539   /// a catch handler) that just calls terminate.  This is used when
1540   /// a terminate scope encloses a try.
1541   llvm::BasicBlock *getTerminateHandler();
1542 
1543   llvm::Type *ConvertTypeForMem(QualType T);
1544   llvm::Type *ConvertType(QualType T);
1545   llvm::Type *ConvertType(const TypeDecl *T) {
1546     return ConvertType(getContext().getTypeDeclType(T));
1547   }
1548 
1549   /// LoadObjCSelf - Load the value of self. This function is only valid while
1550   /// generating code for an Objective-C method.
1551   llvm::Value *LoadObjCSelf();
1552 
1553   /// TypeOfSelfObject - Return type of object that this self represents.
1554   QualType TypeOfSelfObject();
1555 
1556   /// hasAggregateLLVMType - Return true if the specified AST type will map into
1557   /// an aggregate LLVM type or is void.
1558   static TypeEvaluationKind getEvaluationKind(QualType T);
1559 
1560   static bool hasScalarEvaluationKind(QualType T) {
1561     return getEvaluationKind(T) == TEK_Scalar;
1562   }
1563 
1564   static bool hasAggregateEvaluationKind(QualType T) {
1565     return getEvaluationKind(T) == TEK_Aggregate;
1566   }
1567 
1568   /// createBasicBlock - Create an LLVM basic block.
1569   llvm::BasicBlock *createBasicBlock(const Twine &name = "",
1570                                      llvm::Function *parent = 0,
1571                                      llvm::BasicBlock *before = 0) {
1572 #ifdef NDEBUG
1573     return llvm::BasicBlock::Create(getLLVMContext(), "", parent, before);
1574 #else
1575     return llvm::BasicBlock::Create(getLLVMContext(), name, parent, before);
1576 #endif
1577   }
1578 
1579   /// getBasicBlockForLabel - Return the LLVM basicblock that the specified
1580   /// label maps to.
1581   JumpDest getJumpDestForLabel(const LabelDecl *S);
1582 
1583   /// SimplifyForwardingBlocks - If the given basic block is only a branch to
1584   /// another basic block, simplify it. This assumes that no other code could
1585   /// potentially reference the basic block.
1586   void SimplifyForwardingBlocks(llvm::BasicBlock *BB);
1587 
1588   /// EmitBlock - Emit the given block \arg BB and set it as the insert point,
1589   /// adding a fall-through branch from the current insert block if
1590   /// necessary. It is legal to call this function even if there is no current
1591   /// insertion point.
1592   ///
1593   /// IsFinished - If true, indicates that the caller has finished emitting
1594   /// branches to the given block and does not expect to emit code into it. This
1595   /// means the block can be ignored if it is unreachable.
1596   void EmitBlock(llvm::BasicBlock *BB, bool IsFinished=false);
1597 
1598   /// EmitBlockAfterUses - Emit the given block somewhere hopefully
1599   /// near its uses, and leave the insertion point in it.
1600   void EmitBlockAfterUses(llvm::BasicBlock *BB);
1601 
1602   /// EmitBranch - Emit a branch to the specified basic block from the current
1603   /// insert block, taking care to avoid creation of branches from dummy
1604   /// blocks. It is legal to call this function even if there is no current
1605   /// insertion point.
1606   ///
1607   /// This function clears the current insertion point. The caller should follow
1608   /// calls to this function with calls to Emit*Block prior to generation new
1609   /// code.
1610   void EmitBranch(llvm::BasicBlock *Block);
1611 
1612   /// HaveInsertPoint - True if an insertion point is defined. If not, this
1613   /// indicates that the current code being emitted is unreachable.
1614   bool HaveInsertPoint() const {
1615     return Builder.GetInsertBlock() != 0;
1616   }
1617 
1618   /// EnsureInsertPoint - Ensure that an insertion point is defined so that
1619   /// emitted IR has a place to go. Note that by definition, if this function
1620   /// creates a block then that block is unreachable; callers may do better to
1621   /// detect when no insertion point is defined and simply skip IR generation.
1622   void EnsureInsertPoint() {
1623     if (!HaveInsertPoint())
1624       EmitBlock(createBasicBlock());
1625   }
1626 
1627   /// ErrorUnsupported - Print out an error that codegen doesn't support the
1628   /// specified stmt yet.
1629   void ErrorUnsupported(const Stmt *S, const char *Type,
1630                         bool OmitOnError=false);
1631 
1632   //===--------------------------------------------------------------------===//
1633   //                                  Helpers
1634   //===--------------------------------------------------------------------===//
1635 
1636   LValue MakeAddrLValue(llvm::Value *V, QualType T,
1637                         CharUnits Alignment = CharUnits()) {
1638     return LValue::MakeAddr(V, T, Alignment, getContext(),
1639                             CGM.getTBAAInfo(T));
1640   }
1641 
1642   LValue MakeNaturalAlignAddrLValue(llvm::Value *V, QualType T) {
1643     CharUnits Alignment;
1644     if (!T->isIncompleteType())
1645       Alignment = getContext().getTypeAlignInChars(T);
1646     return LValue::MakeAddr(V, T, Alignment, getContext(),
1647                             CGM.getTBAAInfo(T));
1648   }
1649 
1650   /// CreateTempAlloca - This creates a alloca and inserts it into the entry
1651   /// block. The caller is responsible for setting an appropriate alignment on
1652   /// the alloca.
1653   llvm::AllocaInst *CreateTempAlloca(llvm::Type *Ty,
1654                                      const Twine &Name = "tmp");
1655 
1656   /// InitTempAlloca - Provide an initial value for the given alloca.
1657   void InitTempAlloca(llvm::AllocaInst *Alloca, llvm::Value *Value);
1658 
1659   /// CreateIRTemp - Create a temporary IR object of the given type, with
1660   /// appropriate alignment. This routine should only be used when an temporary
1661   /// value needs to be stored into an alloca (for example, to avoid explicit
1662   /// PHI construction), but the type is the IR type, not the type appropriate
1663   /// for storing in memory.
1664   llvm::AllocaInst *CreateIRTemp(QualType T, const Twine &Name = "tmp");
1665 
1666   /// CreateMemTemp - Create a temporary memory object of the given type, with
1667   /// appropriate alignment.
1668   llvm::AllocaInst *CreateMemTemp(QualType T, const Twine &Name = "tmp");
1669 
1670   /// CreateAggTemp - Create a temporary memory object for the given
1671   /// aggregate type.
1672   AggValueSlot CreateAggTemp(QualType T, const Twine &Name = "tmp") {
1673     CharUnits Alignment = getContext().getTypeAlignInChars(T);
1674     return AggValueSlot::forAddr(CreateMemTemp(T, Name), Alignment,
1675                                  T.getQualifiers(),
1676                                  AggValueSlot::IsNotDestructed,
1677                                  AggValueSlot::DoesNotNeedGCBarriers,
1678                                  AggValueSlot::IsNotAliased);
1679   }
1680 
1681   /// Emit a cast to void* in the appropriate address space.
1682   llvm::Value *EmitCastToVoidPtr(llvm::Value *value);
1683 
1684   /// EvaluateExprAsBool - Perform the usual unary conversions on the specified
1685   /// expression and compare the result against zero, returning an Int1Ty value.
1686   llvm::Value *EvaluateExprAsBool(const Expr *E);
1687 
1688   /// EmitIgnoredExpr - Emit an expression in a context which ignores the result.
1689   void EmitIgnoredExpr(const Expr *E);
1690 
1691   /// EmitAnyExpr - Emit code to compute the specified expression which can have
1692   /// any type.  The result is returned as an RValue struct.  If this is an
1693   /// aggregate expression, the aggloc/agglocvolatile arguments indicate where
1694   /// the result should be returned.
1695   ///
1696   /// \param ignoreResult True if the resulting value isn't used.
1697   RValue EmitAnyExpr(const Expr *E,
1698                      AggValueSlot aggSlot = AggValueSlot::ignored(),
1699                      bool ignoreResult = false);
1700 
1701   // EmitVAListRef - Emit a "reference" to a va_list; this is either the address
1702   // or the value of the expression, depending on how va_list is defined.
1703   llvm::Value *EmitVAListRef(const Expr *E);
1704 
1705   /// EmitAnyExprToTemp - Similary to EmitAnyExpr(), however, the result will
1706   /// always be accessible even if no aggregate location is provided.
1707   RValue EmitAnyExprToTemp(const Expr *E);
1708 
1709   /// EmitAnyExprToMem - Emits the code necessary to evaluate an
1710   /// arbitrary expression into the given memory location.
1711   void EmitAnyExprToMem(const Expr *E, llvm::Value *Location,
1712                         Qualifiers Quals, bool IsInitializer);
1713 
1714   /// EmitExprAsInit - Emits the code necessary to initialize a
1715   /// location in memory with the given initializer.
1716   void EmitExprAsInit(const Expr *init, const ValueDecl *D,
1717                       LValue lvalue, bool capturedByInit);
1718 
1719   /// hasVolatileMember - returns true if aggregate type has a volatile
1720   /// member.
1721   bool hasVolatileMember(QualType T) {
1722     if (const RecordType *RT = T->getAs<RecordType>()) {
1723       const RecordDecl *RD = cast<RecordDecl>(RT->getDecl());
1724       return RD->hasVolatileMember();
1725     }
1726     return false;
1727   }
1728   /// EmitAggregateCopy - Emit an aggregate assignment.
1729   ///
1730   /// The difference to EmitAggregateCopy is that tail padding is not copied.
1731   /// This is required for correctness when assigning non-POD structures in C++.
1732   void EmitAggregateAssign(llvm::Value *DestPtr, llvm::Value *SrcPtr,
1733                            QualType EltTy) {
1734     bool IsVolatile = hasVolatileMember(EltTy);
1735     EmitAggregateCopy(DestPtr, SrcPtr, EltTy, IsVolatile, CharUnits::Zero(),
1736                       true);
1737   }
1738 
1739   /// EmitAggregateCopy - Emit an aggregate copy.
1740   ///
1741   /// \param isVolatile - True iff either the source or the destination is
1742   /// volatile.
1743   /// \param isAssignment - If false, allow padding to be copied.  This often
1744   /// yields more efficient.
1745   void EmitAggregateCopy(llvm::Value *DestPtr, llvm::Value *SrcPtr,
1746                          QualType EltTy, bool isVolatile=false,
1747                          CharUnits Alignment = CharUnits::Zero(),
1748                          bool isAssignment = false);
1749 
1750   /// StartBlock - Start new block named N. If insert block is a dummy block
1751   /// then reuse it.
1752   void StartBlock(const char *N);
1753 
1754   /// GetAddrOfLocalVar - Return the address of a local variable.
1755   llvm::Value *GetAddrOfLocalVar(const VarDecl *VD) {
1756     llvm::Value *Res = LocalDeclMap[VD];
1757     assert(Res && "Invalid argument to GetAddrOfLocalVar(), no decl!");
1758     return Res;
1759   }
1760 
1761   /// getOpaqueLValueMapping - Given an opaque value expression (which
1762   /// must be mapped to an l-value), return its mapping.
1763   const LValue &getOpaqueLValueMapping(const OpaqueValueExpr *e) {
1764     assert(OpaqueValueMapping::shouldBindAsLValue(e));
1765 
1766     llvm::DenseMap<const OpaqueValueExpr*,LValue>::iterator
1767       it = OpaqueLValues.find(e);
1768     assert(it != OpaqueLValues.end() && "no mapping for opaque value!");
1769     return it->second;
1770   }
1771 
1772   /// getOpaqueRValueMapping - Given an opaque value expression (which
1773   /// must be mapped to an r-value), return its mapping.
1774   const RValue &getOpaqueRValueMapping(const OpaqueValueExpr *e) {
1775     assert(!OpaqueValueMapping::shouldBindAsLValue(e));
1776 
1777     llvm::DenseMap<const OpaqueValueExpr*,RValue>::iterator
1778       it = OpaqueRValues.find(e);
1779     assert(it != OpaqueRValues.end() && "no mapping for opaque value!");
1780     return it->second;
1781   }
1782 
1783   /// getAccessedFieldNo - Given an encoded value and a result number, return
1784   /// the input field number being accessed.
1785   static unsigned getAccessedFieldNo(unsigned Idx, const llvm::Constant *Elts);
1786 
1787   llvm::BlockAddress *GetAddrOfLabel(const LabelDecl *L);
1788   llvm::BasicBlock *GetIndirectGotoBlock();
1789 
1790   /// EmitNullInitialization - Generate code to set a value of the given type to
1791   /// null, If the type contains data member pointers, they will be initialized
1792   /// to -1 in accordance with the Itanium C++ ABI.
1793   void EmitNullInitialization(llvm::Value *DestPtr, QualType Ty);
1794 
1795   // EmitVAArg - Generate code to get an argument from the passed in pointer
1796   // and update it accordingly. The return value is a pointer to the argument.
1797   // FIXME: We should be able to get rid of this method and use the va_arg
1798   // instruction in LLVM instead once it works well enough.
1799   llvm::Value *EmitVAArg(llvm::Value *VAListAddr, QualType Ty);
1800 
1801   /// emitArrayLength - Compute the length of an array, even if it's a
1802   /// VLA, and drill down to the base element type.
1803   llvm::Value *emitArrayLength(const ArrayType *arrayType,
1804                                QualType &baseType,
1805                                llvm::Value *&addr);
1806 
1807   /// EmitVLASize - Capture all the sizes for the VLA expressions in
1808   /// the given variably-modified type and store them in the VLASizeMap.
1809   ///
1810   /// This function can be called with a null (unreachable) insert point.
1811   void EmitVariablyModifiedType(QualType Ty);
1812 
1813   /// getVLASize - Returns an LLVM value that corresponds to the size,
1814   /// in non-variably-sized elements, of a variable length array type,
1815   /// plus that largest non-variably-sized element type.  Assumes that
1816   /// the type has already been emitted with EmitVariablyModifiedType.
1817   std::pair<llvm::Value*,QualType> getVLASize(const VariableArrayType *vla);
1818   std::pair<llvm::Value*,QualType> getVLASize(QualType vla);
1819 
1820   /// LoadCXXThis - Load the value of 'this'. This function is only valid while
1821   /// generating code for an C++ member function.
1822   llvm::Value *LoadCXXThis() {
1823     assert(CXXThisValue && "no 'this' value for this function");
1824     return CXXThisValue;
1825   }
1826 
1827   /// LoadCXXVTT - Load the VTT parameter to base constructors/destructors have
1828   /// virtual bases.
1829   // FIXME: Every place that calls LoadCXXVTT is something
1830   // that needs to be abstracted properly.
1831   llvm::Value *LoadCXXVTT() {
1832     assert(CXXStructorImplicitParamValue && "no VTT value for this function");
1833     return CXXStructorImplicitParamValue;
1834   }
1835 
1836   /// LoadCXXStructorImplicitParam - Load the implicit parameter
1837   /// for a constructor/destructor.
1838   llvm::Value *LoadCXXStructorImplicitParam() {
1839     assert(CXXStructorImplicitParamValue &&
1840            "no implicit argument value for this function");
1841     return CXXStructorImplicitParamValue;
1842   }
1843 
1844   /// GetAddressOfBaseOfCompleteClass - Convert the given pointer to a
1845   /// complete class to the given direct base.
1846   llvm::Value *
1847   GetAddressOfDirectBaseInCompleteClass(llvm::Value *Value,
1848                                         const CXXRecordDecl *Derived,
1849                                         const CXXRecordDecl *Base,
1850                                         bool BaseIsVirtual);
1851 
1852   /// GetAddressOfBaseClass - This function will add the necessary delta to the
1853   /// load of 'this' and returns address of the base class.
1854   llvm::Value *GetAddressOfBaseClass(llvm::Value *Value,
1855                                      const CXXRecordDecl *Derived,
1856                                      CastExpr::path_const_iterator PathBegin,
1857                                      CastExpr::path_const_iterator PathEnd,
1858                                      bool NullCheckValue);
1859 
1860   llvm::Value *GetAddressOfDerivedClass(llvm::Value *Value,
1861                                         const CXXRecordDecl *Derived,
1862                                         CastExpr::path_const_iterator PathBegin,
1863                                         CastExpr::path_const_iterator PathEnd,
1864                                         bool NullCheckValue);
1865 
1866   llvm::Value *GetVirtualBaseClassOffset(llvm::Value *This,
1867                                          const CXXRecordDecl *ClassDecl,
1868                                          const CXXRecordDecl *BaseClassDecl);
1869 
1870   /// GetVTTParameter - Return the VTT parameter that should be passed to a
1871   /// base constructor/destructor with virtual bases.
1872   /// FIXME: VTTs are Itanium ABI-specific, so the definition should move
1873   /// to ItaniumCXXABI.cpp together with all the references to VTT.
1874   llvm::Value *GetVTTParameter(GlobalDecl GD, bool ForVirtualBase,
1875                                bool Delegating);
1876 
1877   void EmitDelegateCXXConstructorCall(const CXXConstructorDecl *Ctor,
1878                                       CXXCtorType CtorType,
1879                                       const FunctionArgList &Args);
1880   // It's important not to confuse this and the previous function. Delegating
1881   // constructors are the C++0x feature. The constructor delegate optimization
1882   // is used to reduce duplication in the base and complete consturctors where
1883   // they are substantially the same.
1884   void EmitDelegatingCXXConstructorCall(const CXXConstructorDecl *Ctor,
1885                                         const FunctionArgList &Args);
1886   void EmitCXXConstructorCall(const CXXConstructorDecl *D, CXXCtorType Type,
1887                               bool ForVirtualBase, bool Delegating,
1888                               llvm::Value *This,
1889                               CallExpr::const_arg_iterator ArgBeg,
1890                               CallExpr::const_arg_iterator ArgEnd);
1891 
1892   void EmitSynthesizedCXXCopyCtorCall(const CXXConstructorDecl *D,
1893                               llvm::Value *This, llvm::Value *Src,
1894                               CallExpr::const_arg_iterator ArgBeg,
1895                               CallExpr::const_arg_iterator ArgEnd);
1896 
1897   void EmitCXXAggrConstructorCall(const CXXConstructorDecl *D,
1898                                   const ConstantArrayType *ArrayTy,
1899                                   llvm::Value *ArrayPtr,
1900                                   CallExpr::const_arg_iterator ArgBeg,
1901                                   CallExpr::const_arg_iterator ArgEnd,
1902                                   bool ZeroInitialization = false);
1903 
1904   void EmitCXXAggrConstructorCall(const CXXConstructorDecl *D,
1905                                   llvm::Value *NumElements,
1906                                   llvm::Value *ArrayPtr,
1907                                   CallExpr::const_arg_iterator ArgBeg,
1908                                   CallExpr::const_arg_iterator ArgEnd,
1909                                   bool ZeroInitialization = false);
1910 
1911   static Destroyer destroyCXXObject;
1912 
1913   void EmitCXXDestructorCall(const CXXDestructorDecl *D, CXXDtorType Type,
1914                              bool ForVirtualBase, bool Delegating,
1915                              llvm::Value *This);
1916 
1917   void EmitNewArrayInitializer(const CXXNewExpr *E, QualType elementType,
1918                                llvm::Value *NewPtr, llvm::Value *NumElements);
1919 
1920   void EmitCXXTemporary(const CXXTemporary *Temporary, QualType TempType,
1921                         llvm::Value *Ptr);
1922 
1923   llvm::Value *EmitCXXNewExpr(const CXXNewExpr *E);
1924   void EmitCXXDeleteExpr(const CXXDeleteExpr *E);
1925 
1926   void EmitDeleteCall(const FunctionDecl *DeleteFD, llvm::Value *Ptr,
1927                       QualType DeleteTy);
1928 
1929   llvm::Value* EmitCXXTypeidExpr(const CXXTypeidExpr *E);
1930   llvm::Value *EmitDynamicCast(llvm::Value *V, const CXXDynamicCastExpr *DCE);
1931   llvm::Value* EmitCXXUuidofExpr(const CXXUuidofExpr *E);
1932 
1933   void MaybeEmitStdInitializerListCleanup(llvm::Value *loc, const Expr *init);
1934   void EmitStdInitializerListCleanup(llvm::Value *loc,
1935                                      const InitListExpr *init);
1936 
1937   /// \brief Situations in which we might emit a check for the suitability of a
1938   ///        pointer or glvalue.
1939   enum TypeCheckKind {
1940     /// Checking the operand of a load. Must be suitably sized and aligned.
1941     TCK_Load,
1942     /// Checking the destination of a store. Must be suitably sized and aligned.
1943     TCK_Store,
1944     /// Checking the bound value in a reference binding. Must be suitably sized
1945     /// and aligned, but is not required to refer to an object (until the
1946     /// reference is used), per core issue 453.
1947     TCK_ReferenceBinding,
1948     /// Checking the object expression in a non-static data member access. Must
1949     /// be an object within its lifetime.
1950     TCK_MemberAccess,
1951     /// Checking the 'this' pointer for a call to a non-static member function.
1952     /// Must be an object within its lifetime.
1953     TCK_MemberCall,
1954     /// Checking the 'this' pointer for a constructor call.
1955     TCK_ConstructorCall,
1956     /// Checking the operand of a static_cast to a derived pointer type. Must be
1957     /// null or an object within its lifetime.
1958     TCK_DowncastPointer,
1959     /// Checking the operand of a static_cast to a derived reference type. Must
1960     /// be an object within its lifetime.
1961     TCK_DowncastReference
1962   };
1963 
1964   /// \brief Emit a check that \p V is the address of storage of the
1965   /// appropriate size and alignment for an object of type \p Type.
1966   void EmitTypeCheck(TypeCheckKind TCK, SourceLocation Loc, llvm::Value *V,
1967                      QualType Type, CharUnits Alignment = CharUnits::Zero());
1968 
1969   /// \brief Emit a check that \p Base points into an array object, which
1970   /// we can access at index \p Index. \p Accessed should be \c false if we
1971   /// this expression is used as an lvalue, for instance in "&Arr[Idx]".
1972   void EmitBoundsCheck(const Expr *E, const Expr *Base, llvm::Value *Index,
1973                        QualType IndexType, bool Accessed);
1974 
1975   llvm::Value *EmitScalarPrePostIncDec(const UnaryOperator *E, LValue LV,
1976                                        bool isInc, bool isPre);
1977   ComplexPairTy EmitComplexPrePostIncDec(const UnaryOperator *E, LValue LV,
1978                                          bool isInc, bool isPre);
1979   //===--------------------------------------------------------------------===//
1980   //                            Declaration Emission
1981   //===--------------------------------------------------------------------===//
1982 
1983   /// EmitDecl - Emit a declaration.
1984   ///
1985   /// This function can be called with a null (unreachable) insert point.
1986   void EmitDecl(const Decl &D);
1987 
1988   /// EmitVarDecl - Emit a local variable declaration.
1989   ///
1990   /// This function can be called with a null (unreachable) insert point.
1991   void EmitVarDecl(const VarDecl &D);
1992 
1993   void EmitScalarInit(const Expr *init, const ValueDecl *D,
1994                       LValue lvalue, bool capturedByInit);
1995   void EmitScalarInit(llvm::Value *init, LValue lvalue);
1996 
1997   typedef void SpecialInitFn(CodeGenFunction &Init, const VarDecl &D,
1998                              llvm::Value *Address);
1999 
2000   /// EmitAutoVarDecl - Emit an auto variable declaration.
2001   ///
2002   /// This function can be called with a null (unreachable) insert point.
2003   void EmitAutoVarDecl(const VarDecl &D);
2004 
2005   class AutoVarEmission {
2006     friend class CodeGenFunction;
2007 
2008     const VarDecl *Variable;
2009 
2010     /// The alignment of the variable.
2011     CharUnits Alignment;
2012 
2013     /// The address of the alloca.  Null if the variable was emitted
2014     /// as a global constant.
2015     llvm::Value *Address;
2016 
2017     llvm::Value *NRVOFlag;
2018 
2019     /// True if the variable is a __block variable.
2020     bool IsByRef;
2021 
2022     /// True if the variable is of aggregate type and has a constant
2023     /// initializer.
2024     bool IsConstantAggregate;
2025 
2026     /// Non-null if we should use lifetime annotations.
2027     llvm::Value *SizeForLifetimeMarkers;
2028 
2029     struct Invalid {};
2030     AutoVarEmission(Invalid) : Variable(0) {}
2031 
2032     AutoVarEmission(const VarDecl &variable)
2033       : Variable(&variable), Address(0), NRVOFlag(0),
2034         IsByRef(false), IsConstantAggregate(false),
2035         SizeForLifetimeMarkers(0) {}
2036 
2037     bool wasEmittedAsGlobal() const { return Address == 0; }
2038 
2039   public:
2040     static AutoVarEmission invalid() { return AutoVarEmission(Invalid()); }
2041 
2042     bool useLifetimeMarkers() const { return SizeForLifetimeMarkers != 0; }
2043     llvm::Value *getSizeForLifetimeMarkers() const {
2044       assert(useLifetimeMarkers());
2045       return SizeForLifetimeMarkers;
2046     }
2047 
2048     /// Returns the raw, allocated address, which is not necessarily
2049     /// the address of the object itself.
2050     llvm::Value *getAllocatedAddress() const {
2051       return Address;
2052     }
2053 
2054     /// Returns the address of the object within this declaration.
2055     /// Note that this does not chase the forwarding pointer for
2056     /// __block decls.
2057     llvm::Value *getObjectAddress(CodeGenFunction &CGF) const {
2058       if (!IsByRef) return Address;
2059 
2060       return CGF.Builder.CreateStructGEP(Address,
2061                                          CGF.getByRefValueLLVMField(Variable),
2062                                          Variable->getNameAsString());
2063     }
2064   };
2065   AutoVarEmission EmitAutoVarAlloca(const VarDecl &var);
2066   void EmitAutoVarInit(const AutoVarEmission &emission);
2067   void EmitAutoVarCleanups(const AutoVarEmission &emission);
2068   void emitAutoVarTypeCleanup(const AutoVarEmission &emission,
2069                               QualType::DestructionKind dtorKind);
2070 
2071   void EmitStaticVarDecl(const VarDecl &D,
2072                          llvm::GlobalValue::LinkageTypes Linkage);
2073 
2074   /// EmitParmDecl - Emit a ParmVarDecl or an ImplicitParamDecl.
2075   void EmitParmDecl(const VarDecl &D, llvm::Value *Arg, unsigned ArgNo);
2076 
2077   /// protectFromPeepholes - Protect a value that we're intending to
2078   /// store to the side, but which will probably be used later, from
2079   /// aggressive peepholing optimizations that might delete it.
2080   ///
2081   /// Pass the result to unprotectFromPeepholes to declare that
2082   /// protection is no longer required.
2083   ///
2084   /// There's no particular reason why this shouldn't apply to
2085   /// l-values, it's just that no existing peepholes work on pointers.
2086   PeepholeProtection protectFromPeepholes(RValue rvalue);
2087   void unprotectFromPeepholes(PeepholeProtection protection);
2088 
2089   //===--------------------------------------------------------------------===//
2090   //                             Statement Emission
2091   //===--------------------------------------------------------------------===//
2092 
2093   /// EmitStopPoint - Emit a debug stoppoint if we are emitting debug info.
2094   void EmitStopPoint(const Stmt *S);
2095 
2096   /// EmitStmt - Emit the code for the statement \arg S. It is legal to call
2097   /// this function even if there is no current insertion point.
2098   ///
2099   /// This function may clear the current insertion point; callers should use
2100   /// EnsureInsertPoint if they wish to subsequently generate code without first
2101   /// calling EmitBlock, EmitBranch, or EmitStmt.
2102   void EmitStmt(const Stmt *S);
2103 
2104   /// EmitSimpleStmt - Try to emit a "simple" statement which does not
2105   /// necessarily require an insertion point or debug information; typically
2106   /// because the statement amounts to a jump or a container of other
2107   /// statements.
2108   ///
2109   /// \return True if the statement was handled.
2110   bool EmitSimpleStmt(const Stmt *S);
2111 
2112   RValue EmitCompoundStmt(const CompoundStmt &S, bool GetLast = false,
2113                           AggValueSlot AVS = AggValueSlot::ignored());
2114   RValue EmitCompoundStmtWithoutScope(const CompoundStmt &S,
2115                                       bool GetLast = false, AggValueSlot AVS =
2116                                           AggValueSlot::ignored());
2117 
2118   /// EmitLabel - Emit the block for the given label. It is legal to call this
2119   /// function even if there is no current insertion point.
2120   void EmitLabel(const LabelDecl *D); // helper for EmitLabelStmt.
2121 
2122   void EmitLabelStmt(const LabelStmt &S);
2123   void EmitAttributedStmt(const AttributedStmt &S);
2124   void EmitGotoStmt(const GotoStmt &S);
2125   void EmitIndirectGotoStmt(const IndirectGotoStmt &S);
2126   void EmitIfStmt(const IfStmt &S);
2127   void EmitWhileStmt(const WhileStmt &S);
2128   void EmitDoStmt(const DoStmt &S);
2129   void EmitForStmt(const ForStmt &S);
2130   void EmitReturnStmt(const ReturnStmt &S);
2131   void EmitDeclStmt(const DeclStmt &S);
2132   void EmitBreakStmt(const BreakStmt &S);
2133   void EmitContinueStmt(const ContinueStmt &S);
2134   void EmitSwitchStmt(const SwitchStmt &S);
2135   void EmitDefaultStmt(const DefaultStmt &S);
2136   void EmitCaseStmt(const CaseStmt &S);
2137   void EmitCaseStmtRange(const CaseStmt &S);
2138   void EmitAsmStmt(const AsmStmt &S);
2139 
2140   void EmitObjCForCollectionStmt(const ObjCForCollectionStmt &S);
2141   void EmitObjCAtTryStmt(const ObjCAtTryStmt &S);
2142   void EmitObjCAtThrowStmt(const ObjCAtThrowStmt &S);
2143   void EmitObjCAtSynchronizedStmt(const ObjCAtSynchronizedStmt &S);
2144   void EmitObjCAutoreleasePoolStmt(const ObjCAutoreleasePoolStmt &S);
2145 
2146   llvm::Constant *getUnwindResumeFn();
2147   llvm::Constant *getUnwindResumeOrRethrowFn();
2148   void EnterCXXTryStmt(const CXXTryStmt &S, bool IsFnTryBlock = false);
2149   void ExitCXXTryStmt(const CXXTryStmt &S, bool IsFnTryBlock = false);
2150 
2151   void EmitCXXTryStmt(const CXXTryStmt &S);
2152   void EmitCXXForRangeStmt(const CXXForRangeStmt &S);
2153 
2154   //===--------------------------------------------------------------------===//
2155   //                         LValue Expression Emission
2156   //===--------------------------------------------------------------------===//
2157 
2158   /// GetUndefRValue - Get an appropriate 'undef' rvalue for the given type.
2159   RValue GetUndefRValue(QualType Ty);
2160 
2161   /// EmitUnsupportedRValue - Emit a dummy r-value using the type of E
2162   /// and issue an ErrorUnsupported style diagnostic (using the
2163   /// provided Name).
2164   RValue EmitUnsupportedRValue(const Expr *E,
2165                                const char *Name);
2166 
2167   /// EmitUnsupportedLValue - Emit a dummy l-value using the type of E and issue
2168   /// an ErrorUnsupported style diagnostic (using the provided Name).
2169   LValue EmitUnsupportedLValue(const Expr *E,
2170                                const char *Name);
2171 
2172   /// EmitLValue - Emit code to compute a designator that specifies the location
2173   /// of the expression.
2174   ///
2175   /// This can return one of two things: a simple address or a bitfield
2176   /// reference.  In either case, the LLVM Value* in the LValue structure is
2177   /// guaranteed to be an LLVM pointer type.
2178   ///
2179   /// If this returns a bitfield reference, nothing about the pointee type of
2180   /// the LLVM value is known: For example, it may not be a pointer to an
2181   /// integer.
2182   ///
2183   /// If this returns a normal address, and if the lvalue's C type is fixed
2184   /// size, this method guarantees that the returned pointer type will point to
2185   /// an LLVM type of the same size of the lvalue's type.  If the lvalue has a
2186   /// variable length type, this is not possible.
2187   ///
2188   LValue EmitLValue(const Expr *E);
2189 
2190   /// \brief Same as EmitLValue but additionally we generate checking code to
2191   /// guard against undefined behavior.  This is only suitable when we know
2192   /// that the address will be used to access the object.
2193   LValue EmitCheckedLValue(const Expr *E, TypeCheckKind TCK);
2194 
2195   RValue convertTempToRValue(llvm::Value *addr, QualType type);
2196 
2197   void EmitAtomicInit(Expr *E, LValue lvalue);
2198 
2199   RValue EmitAtomicLoad(LValue lvalue,
2200                         AggValueSlot slot = AggValueSlot::ignored());
2201 
2202   void EmitAtomicStore(RValue rvalue, LValue lvalue, bool isInit);
2203 
2204   /// EmitToMemory - Change a scalar value from its value
2205   /// representation to its in-memory representation.
2206   llvm::Value *EmitToMemory(llvm::Value *Value, QualType Ty);
2207 
2208   /// EmitFromMemory - Change a scalar value from its memory
2209   /// representation to its value representation.
2210   llvm::Value *EmitFromMemory(llvm::Value *Value, QualType Ty);
2211 
2212   /// EmitLoadOfScalar - Load a scalar value from an address, taking
2213   /// care to appropriately convert from the memory representation to
2214   /// the LLVM value representation.
2215   llvm::Value *EmitLoadOfScalar(llvm::Value *Addr, bool Volatile,
2216                                 unsigned Alignment, QualType Ty,
2217                                 llvm::MDNode *TBAAInfo = 0);
2218 
2219   /// EmitLoadOfScalar - Load a scalar value from an address, taking
2220   /// care to appropriately convert from the memory representation to
2221   /// the LLVM value representation.  The l-value must be a simple
2222   /// l-value.
2223   llvm::Value *EmitLoadOfScalar(LValue lvalue);
2224 
2225   /// EmitStoreOfScalar - Store a scalar value to an address, taking
2226   /// care to appropriately convert from the memory representation to
2227   /// the LLVM value representation.
2228   void EmitStoreOfScalar(llvm::Value *Value, llvm::Value *Addr,
2229                          bool Volatile, unsigned Alignment, QualType Ty,
2230                          llvm::MDNode *TBAAInfo = 0, bool isInit=false);
2231 
2232   /// EmitStoreOfScalar - Store a scalar value to an address, taking
2233   /// care to appropriately convert from the memory representation to
2234   /// the LLVM value representation.  The l-value must be a simple
2235   /// l-value.  The isInit flag indicates whether this is an initialization.
2236   /// If so, atomic qualifiers are ignored and the store is always non-atomic.
2237   void EmitStoreOfScalar(llvm::Value *value, LValue lvalue, bool isInit=false);
2238 
2239   /// EmitLoadOfLValue - Given an expression that represents a value lvalue,
2240   /// this method emits the address of the lvalue, then loads the result as an
2241   /// rvalue, returning the rvalue.
2242   RValue EmitLoadOfLValue(LValue V);
2243   RValue EmitLoadOfExtVectorElementLValue(LValue V);
2244   RValue EmitLoadOfBitfieldLValue(LValue LV);
2245 
2246   /// EmitStoreThroughLValue - Store the specified rvalue into the specified
2247   /// lvalue, where both are guaranteed to the have the same type, and that type
2248   /// is 'Ty'.
2249   void EmitStoreThroughLValue(RValue Src, LValue Dst, bool isInit=false);
2250   void EmitStoreThroughExtVectorComponentLValue(RValue Src, LValue Dst);
2251 
2252   /// EmitStoreThroughLValue - Store Src into Dst with same constraints as
2253   /// EmitStoreThroughLValue.
2254   ///
2255   /// \param Result [out] - If non-null, this will be set to a Value* for the
2256   /// bit-field contents after the store, appropriate for use as the result of
2257   /// an assignment to the bit-field.
2258   void EmitStoreThroughBitfieldLValue(RValue Src, LValue Dst,
2259                                       llvm::Value **Result=0);
2260 
2261   /// Emit an l-value for an assignment (simple or compound) of complex type.
2262   LValue EmitComplexAssignmentLValue(const BinaryOperator *E);
2263   LValue EmitComplexCompoundAssignmentLValue(const CompoundAssignOperator *E);
2264 
2265   // Note: only available for agg return types
2266   LValue EmitBinaryOperatorLValue(const BinaryOperator *E);
2267   LValue EmitCompoundAssignmentLValue(const CompoundAssignOperator *E);
2268   // Note: only available for agg return types
2269   LValue EmitCallExprLValue(const CallExpr *E);
2270   // Note: only available for agg return types
2271   LValue EmitVAArgExprLValue(const VAArgExpr *E);
2272   LValue EmitDeclRefLValue(const DeclRefExpr *E);
2273   LValue EmitStringLiteralLValue(const StringLiteral *E);
2274   LValue EmitObjCEncodeExprLValue(const ObjCEncodeExpr *E);
2275   LValue EmitPredefinedLValue(const PredefinedExpr *E);
2276   LValue EmitUnaryOpLValue(const UnaryOperator *E);
2277   LValue EmitArraySubscriptExpr(const ArraySubscriptExpr *E,
2278                                 bool Accessed = false);
2279   LValue EmitExtVectorElementExpr(const ExtVectorElementExpr *E);
2280   LValue EmitMemberExpr(const MemberExpr *E);
2281   LValue EmitObjCIsaExpr(const ObjCIsaExpr *E);
2282   LValue EmitCompoundLiteralLValue(const CompoundLiteralExpr *E);
2283   LValue EmitInitListLValue(const InitListExpr *E);
2284   LValue EmitConditionalOperatorLValue(const AbstractConditionalOperator *E);
2285   LValue EmitCastLValue(const CastExpr *E);
2286   LValue EmitNullInitializationLValue(const CXXScalarValueInitExpr *E);
2287   LValue EmitMaterializeTemporaryExpr(const MaterializeTemporaryExpr *E);
2288   LValue EmitOpaqueValueLValue(const OpaqueValueExpr *e);
2289 
2290   RValue EmitRValueForField(LValue LV, const FieldDecl *FD);
2291 
2292   class ConstantEmission {
2293     llvm::PointerIntPair<llvm::Constant*, 1, bool> ValueAndIsReference;
2294     ConstantEmission(llvm::Constant *C, bool isReference)
2295       : ValueAndIsReference(C, isReference) {}
2296   public:
2297     ConstantEmission() {}
2298     static ConstantEmission forReference(llvm::Constant *C) {
2299       return ConstantEmission(C, true);
2300     }
2301     static ConstantEmission forValue(llvm::Constant *C) {
2302       return ConstantEmission(C, false);
2303     }
2304 
2305     operator bool() const { return ValueAndIsReference.getOpaqueValue() != 0; }
2306 
2307     bool isReference() const { return ValueAndIsReference.getInt(); }
2308     LValue getReferenceLValue(CodeGenFunction &CGF, Expr *refExpr) const {
2309       assert(isReference());
2310       return CGF.MakeNaturalAlignAddrLValue(ValueAndIsReference.getPointer(),
2311                                             refExpr->getType());
2312     }
2313 
2314     llvm::Constant *getValue() const {
2315       assert(!isReference());
2316       return ValueAndIsReference.getPointer();
2317     }
2318   };
2319 
2320   ConstantEmission tryEmitAsConstant(DeclRefExpr *refExpr);
2321 
2322   RValue EmitPseudoObjectRValue(const PseudoObjectExpr *e,
2323                                 AggValueSlot slot = AggValueSlot::ignored());
2324   LValue EmitPseudoObjectLValue(const PseudoObjectExpr *e);
2325 
2326   llvm::Value *EmitIvarOffset(const ObjCInterfaceDecl *Interface,
2327                               const ObjCIvarDecl *Ivar);
2328   LValue EmitLValueForField(LValue Base, const FieldDecl* Field);
2329 
2330   /// EmitLValueForFieldInitialization - Like EmitLValueForField, except that
2331   /// if the Field is a reference, this will return the address of the reference
2332   /// and not the address of the value stored in the reference.
2333   LValue EmitLValueForFieldInitialization(LValue Base,
2334                                           const FieldDecl* Field);
2335 
2336   LValue EmitLValueForIvar(QualType ObjectTy,
2337                            llvm::Value* Base, const ObjCIvarDecl *Ivar,
2338                            unsigned CVRQualifiers);
2339 
2340   LValue EmitCXXConstructLValue(const CXXConstructExpr *E);
2341   LValue EmitCXXBindTemporaryLValue(const CXXBindTemporaryExpr *E);
2342   LValue EmitLambdaLValue(const LambdaExpr *E);
2343   LValue EmitCXXTypeidLValue(const CXXTypeidExpr *E);
2344   LValue EmitCXXUuidofLValue(const CXXUuidofExpr *E);
2345 
2346   LValue EmitObjCMessageExprLValue(const ObjCMessageExpr *E);
2347   LValue EmitObjCIvarRefLValue(const ObjCIvarRefExpr *E);
2348   LValue EmitStmtExprLValue(const StmtExpr *E);
2349   LValue EmitPointerToDataMemberBinaryExpr(const BinaryOperator *E);
2350   LValue EmitObjCSelectorLValue(const ObjCSelectorExpr *E);
2351   void   EmitDeclRefExprDbgValue(const DeclRefExpr *E, llvm::Constant *Init);
2352 
2353   //===--------------------------------------------------------------------===//
2354   //                         Scalar Expression Emission
2355   //===--------------------------------------------------------------------===//
2356 
2357   /// EmitCall - Generate a call of the given function, expecting the given
2358   /// result type, and using the given argument list which specifies both the
2359   /// LLVM arguments and the types they were derived from.
2360   ///
2361   /// \param TargetDecl - If given, the decl of the function in a direct call;
2362   /// used to set attributes on the call (noreturn, etc.).
2363   RValue EmitCall(const CGFunctionInfo &FnInfo,
2364                   llvm::Value *Callee,
2365                   ReturnValueSlot ReturnValue,
2366                   const CallArgList &Args,
2367                   const Decl *TargetDecl = 0,
2368                   llvm::Instruction **callOrInvoke = 0);
2369 
2370   RValue EmitCall(QualType FnType, llvm::Value *Callee,
2371                   ReturnValueSlot ReturnValue,
2372                   CallExpr::const_arg_iterator ArgBeg,
2373                   CallExpr::const_arg_iterator ArgEnd,
2374                   const Decl *TargetDecl = 0);
2375   RValue EmitCallExpr(const CallExpr *E,
2376                       ReturnValueSlot ReturnValue = ReturnValueSlot());
2377 
2378   llvm::CallInst *EmitRuntimeCall(llvm::Value *callee,
2379                                   const Twine &name = "");
2380   llvm::CallInst *EmitRuntimeCall(llvm::Value *callee,
2381                                   ArrayRef<llvm::Value*> args,
2382                                   const Twine &name = "");
2383   llvm::CallInst *EmitNounwindRuntimeCall(llvm::Value *callee,
2384                                           const Twine &name = "");
2385   llvm::CallInst *EmitNounwindRuntimeCall(llvm::Value *callee,
2386                                           ArrayRef<llvm::Value*> args,
2387                                           const Twine &name = "");
2388 
2389   llvm::CallSite EmitCallOrInvoke(llvm::Value *Callee,
2390                                   ArrayRef<llvm::Value *> Args,
2391                                   const Twine &Name = "");
2392   llvm::CallSite EmitCallOrInvoke(llvm::Value *Callee,
2393                                   const Twine &Name = "");
2394   llvm::CallSite EmitRuntimeCallOrInvoke(llvm::Value *callee,
2395                                          ArrayRef<llvm::Value*> args,
2396                                          const Twine &name = "");
2397   llvm::CallSite EmitRuntimeCallOrInvoke(llvm::Value *callee,
2398                                          const Twine &name = "");
2399   void EmitNoreturnRuntimeCallOrInvoke(llvm::Value *callee,
2400                                        ArrayRef<llvm::Value*> args);
2401 
2402   llvm::Value *BuildVirtualCall(const CXXMethodDecl *MD, llvm::Value *This,
2403                                 llvm::Type *Ty);
2404   llvm::Value *BuildVirtualCall(const CXXDestructorDecl *DD, CXXDtorType Type,
2405                                 llvm::Value *This, llvm::Type *Ty);
2406   llvm::Value *BuildAppleKextVirtualCall(const CXXMethodDecl *MD,
2407                                          NestedNameSpecifier *Qual,
2408                                          llvm::Type *Ty);
2409 
2410   llvm::Value *BuildAppleKextVirtualDestructorCall(const CXXDestructorDecl *DD,
2411                                                    CXXDtorType Type,
2412                                                    const CXXRecordDecl *RD);
2413 
2414   RValue EmitCXXMemberCall(const CXXMethodDecl *MD,
2415                            SourceLocation CallLoc,
2416                            llvm::Value *Callee,
2417                            ReturnValueSlot ReturnValue,
2418                            llvm::Value *This,
2419                            llvm::Value *ImplicitParam,
2420                            QualType ImplicitParamTy,
2421                            CallExpr::const_arg_iterator ArgBeg,
2422                            CallExpr::const_arg_iterator ArgEnd);
2423   RValue EmitCXXMemberCallExpr(const CXXMemberCallExpr *E,
2424                                ReturnValueSlot ReturnValue);
2425   RValue EmitCXXMemberPointerCallExpr(const CXXMemberCallExpr *E,
2426                                       ReturnValueSlot ReturnValue);
2427 
2428   llvm::Value *EmitCXXOperatorMemberCallee(const CXXOperatorCallExpr *E,
2429                                            const CXXMethodDecl *MD,
2430                                            llvm::Value *This);
2431   RValue EmitCXXOperatorMemberCallExpr(const CXXOperatorCallExpr *E,
2432                                        const CXXMethodDecl *MD,
2433                                        ReturnValueSlot ReturnValue);
2434 
2435   RValue EmitCUDAKernelCallExpr(const CUDAKernelCallExpr *E,
2436                                 ReturnValueSlot ReturnValue);
2437 
2438 
2439   RValue EmitBuiltinExpr(const FunctionDecl *FD,
2440                          unsigned BuiltinID, const CallExpr *E);
2441 
2442   RValue EmitBlockCallExpr(const CallExpr *E, ReturnValueSlot ReturnValue);
2443 
2444   /// EmitTargetBuiltinExpr - Emit the given builtin call. Returns 0 if the call
2445   /// is unhandled by the current target.
2446   llvm::Value *EmitTargetBuiltinExpr(unsigned BuiltinID, const CallExpr *E);
2447 
2448   llvm::Value *EmitARMBuiltinExpr(unsigned BuiltinID, const CallExpr *E);
2449   llvm::Value *EmitNeonCall(llvm::Function *F,
2450                             SmallVectorImpl<llvm::Value*> &O,
2451                             const char *name,
2452                             unsigned shift = 0, bool rightshift = false);
2453   llvm::Value *EmitNeonSplat(llvm::Value *V, llvm::Constant *Idx);
2454   llvm::Value *EmitNeonShiftVector(llvm::Value *V, llvm::Type *Ty,
2455                                    bool negateForRightShift);
2456 
2457   llvm::Value *BuildVector(ArrayRef<llvm::Value*> Ops);
2458   llvm::Value *EmitX86BuiltinExpr(unsigned BuiltinID, const CallExpr *E);
2459   llvm::Value *EmitPPCBuiltinExpr(unsigned BuiltinID, const CallExpr *E);
2460 
2461   llvm::Value *EmitObjCProtocolExpr(const ObjCProtocolExpr *E);
2462   llvm::Value *EmitObjCStringLiteral(const ObjCStringLiteral *E);
2463   llvm::Value *EmitObjCBoxedExpr(const ObjCBoxedExpr *E);
2464   llvm::Value *EmitObjCArrayLiteral(const ObjCArrayLiteral *E);
2465   llvm::Value *EmitObjCDictionaryLiteral(const ObjCDictionaryLiteral *E);
2466   llvm::Value *EmitObjCCollectionLiteral(const Expr *E,
2467                                 const ObjCMethodDecl *MethodWithObjects);
2468   llvm::Value *EmitObjCSelectorExpr(const ObjCSelectorExpr *E);
2469   RValue EmitObjCMessageExpr(const ObjCMessageExpr *E,
2470                              ReturnValueSlot Return = ReturnValueSlot());
2471 
2472   /// Retrieves the default cleanup kind for an ARC cleanup.
2473   /// Except under -fobjc-arc-eh, ARC cleanups are normal-only.
2474   CleanupKind getARCCleanupKind() {
2475     return CGM.getCodeGenOpts().ObjCAutoRefCountExceptions
2476              ? NormalAndEHCleanup : NormalCleanup;
2477   }
2478 
2479   // ARC primitives.
2480   void EmitARCInitWeak(llvm::Value *value, llvm::Value *addr);
2481   void EmitARCDestroyWeak(llvm::Value *addr);
2482   llvm::Value *EmitARCLoadWeak(llvm::Value *addr);
2483   llvm::Value *EmitARCLoadWeakRetained(llvm::Value *addr);
2484   llvm::Value *EmitARCStoreWeak(llvm::Value *value, llvm::Value *addr,
2485                                 bool ignored);
2486   void EmitARCCopyWeak(llvm::Value *dst, llvm::Value *src);
2487   void EmitARCMoveWeak(llvm::Value *dst, llvm::Value *src);
2488   llvm::Value *EmitARCRetainAutorelease(QualType type, llvm::Value *value);
2489   llvm::Value *EmitARCRetainAutoreleaseNonBlock(llvm::Value *value);
2490   llvm::Value *EmitARCStoreStrong(LValue lvalue, llvm::Value *value,
2491                                   bool resultIgnored);
2492   llvm::Value *EmitARCStoreStrongCall(llvm::Value *addr, llvm::Value *value,
2493                                       bool resultIgnored);
2494   llvm::Value *EmitARCRetain(QualType type, llvm::Value *value);
2495   llvm::Value *EmitARCRetainNonBlock(llvm::Value *value);
2496   llvm::Value *EmitARCRetainBlock(llvm::Value *value, bool mandatory);
2497   void EmitARCDestroyStrong(llvm::Value *addr, ARCPreciseLifetime_t precise);
2498   void EmitARCRelease(llvm::Value *value, ARCPreciseLifetime_t precise);
2499   llvm::Value *EmitARCAutorelease(llvm::Value *value);
2500   llvm::Value *EmitARCAutoreleaseReturnValue(llvm::Value *value);
2501   llvm::Value *EmitARCRetainAutoreleaseReturnValue(llvm::Value *value);
2502   llvm::Value *EmitARCRetainAutoreleasedReturnValue(llvm::Value *value);
2503 
2504   std::pair<LValue,llvm::Value*>
2505   EmitARCStoreAutoreleasing(const BinaryOperator *e);
2506   std::pair<LValue,llvm::Value*>
2507   EmitARCStoreStrong(const BinaryOperator *e, bool ignored);
2508 
2509   llvm::Value *EmitObjCThrowOperand(const Expr *expr);
2510 
2511   llvm::Value *EmitObjCProduceObject(QualType T, llvm::Value *Ptr);
2512   llvm::Value *EmitObjCConsumeObject(QualType T, llvm::Value *Ptr);
2513   llvm::Value *EmitObjCExtendObjectLifetime(QualType T, llvm::Value *Ptr);
2514 
2515   llvm::Value *EmitARCExtendBlockObject(const Expr *expr);
2516   llvm::Value *EmitARCRetainScalarExpr(const Expr *expr);
2517   llvm::Value *EmitARCRetainAutoreleaseScalarExpr(const Expr *expr);
2518 
2519   void EmitARCIntrinsicUse(llvm::ArrayRef<llvm::Value*> values);
2520 
2521   static Destroyer destroyARCStrongImprecise;
2522   static Destroyer destroyARCStrongPrecise;
2523   static Destroyer destroyARCWeak;
2524 
2525   void EmitObjCAutoreleasePoolPop(llvm::Value *Ptr);
2526   llvm::Value *EmitObjCAutoreleasePoolPush();
2527   llvm::Value *EmitObjCMRRAutoreleasePoolPush();
2528   void EmitObjCAutoreleasePoolCleanup(llvm::Value *Ptr);
2529   void EmitObjCMRRAutoreleasePoolPop(llvm::Value *Ptr);
2530 
2531   /// EmitReferenceBindingToExpr - Emits a reference binding to the passed in
2532   /// expression. Will emit a temporary variable if E is not an LValue.
2533   RValue EmitReferenceBindingToExpr(const Expr* E,
2534                                     const NamedDecl *InitializedDecl);
2535 
2536   //===--------------------------------------------------------------------===//
2537   //                           Expression Emission
2538   //===--------------------------------------------------------------------===//
2539 
2540   // Expressions are broken into three classes: scalar, complex, aggregate.
2541 
2542   /// EmitScalarExpr - Emit the computation of the specified expression of LLVM
2543   /// scalar type, returning the result.
2544   llvm::Value *EmitScalarExpr(const Expr *E , bool IgnoreResultAssign = false);
2545 
2546   /// EmitScalarConversion - Emit a conversion from the specified type to the
2547   /// specified destination type, both of which are LLVM scalar types.
2548   llvm::Value *EmitScalarConversion(llvm::Value *Src, QualType SrcTy,
2549                                     QualType DstTy);
2550 
2551   /// EmitComplexToScalarConversion - Emit a conversion from the specified
2552   /// complex type to the specified destination type, where the destination type
2553   /// is an LLVM scalar type.
2554   llvm::Value *EmitComplexToScalarConversion(ComplexPairTy Src, QualType SrcTy,
2555                                              QualType DstTy);
2556 
2557 
2558   /// EmitAggExpr - Emit the computation of the specified expression
2559   /// of aggregate type.  The result is computed into the given slot,
2560   /// which may be null to indicate that the value is not needed.
2561   void EmitAggExpr(const Expr *E, AggValueSlot AS);
2562 
2563   /// EmitAggExprToLValue - Emit the computation of the specified expression of
2564   /// aggregate type into a temporary LValue.
2565   LValue EmitAggExprToLValue(const Expr *E);
2566 
2567   /// EmitGCMemmoveCollectable - Emit special API for structs with object
2568   /// pointers.
2569   void EmitGCMemmoveCollectable(llvm::Value *DestPtr, llvm::Value *SrcPtr,
2570                                 QualType Ty);
2571 
2572   /// EmitExtendGCLifetime - Given a pointer to an Objective-C object,
2573   /// make sure it survives garbage collection until this point.
2574   void EmitExtendGCLifetime(llvm::Value *object);
2575 
2576   /// EmitComplexExpr - Emit the computation of the specified expression of
2577   /// complex type, returning the result.
2578   ComplexPairTy EmitComplexExpr(const Expr *E,
2579                                 bool IgnoreReal = false,
2580                                 bool IgnoreImag = false);
2581 
2582   /// EmitComplexExprIntoLValue - Emit the given expression of complex
2583   /// type and place its result into the specified l-value.
2584   void EmitComplexExprIntoLValue(const Expr *E, LValue dest, bool isInit);
2585 
2586   /// EmitStoreOfComplex - Store a complex number into the specified l-value.
2587   void EmitStoreOfComplex(ComplexPairTy V, LValue dest, bool isInit);
2588 
2589   /// EmitLoadOfComplex - Load a complex number from the specified l-value.
2590   ComplexPairTy EmitLoadOfComplex(LValue src);
2591 
2592   /// CreateStaticVarDecl - Create a zero-initialized LLVM global for
2593   /// a static local variable.
2594   llvm::GlobalVariable *CreateStaticVarDecl(const VarDecl &D,
2595                                             const char *Separator,
2596                                        llvm::GlobalValue::LinkageTypes Linkage);
2597 
2598   /// AddInitializerToStaticVarDecl - Add the initializer for 'D' to the
2599   /// global variable that has already been created for it.  If the initializer
2600   /// has a different type than GV does, this may free GV and return a different
2601   /// one.  Otherwise it just returns GV.
2602   llvm::GlobalVariable *
2603   AddInitializerToStaticVarDecl(const VarDecl &D,
2604                                 llvm::GlobalVariable *GV);
2605 
2606 
2607   /// EmitCXXGlobalVarDeclInit - Create the initializer for a C++
2608   /// variable with global storage.
2609   void EmitCXXGlobalVarDeclInit(const VarDecl &D, llvm::Constant *DeclPtr,
2610                                 bool PerformInit);
2611 
2612   /// Call atexit() with a function that passes the given argument to
2613   /// the given function.
2614   void registerGlobalDtorWithAtExit(llvm::Constant *fn, llvm::Constant *addr);
2615 
2616   /// Emit code in this function to perform a guarded variable
2617   /// initialization.  Guarded initializations are used when it's not
2618   /// possible to prove that an initialization will be done exactly
2619   /// once, e.g. with a static local variable or a static data member
2620   /// of a class template.
2621   void EmitCXXGuardedInit(const VarDecl &D, llvm::GlobalVariable *DeclPtr,
2622                           bool PerformInit);
2623 
2624   /// GenerateCXXGlobalInitFunc - Generates code for initializing global
2625   /// variables.
2626   void GenerateCXXGlobalInitFunc(llvm::Function *Fn,
2627                                  llvm::Constant **Decls,
2628                                  unsigned NumDecls);
2629 
2630   /// GenerateCXXGlobalDtorsFunc - Generates code for destroying global
2631   /// variables.
2632   void GenerateCXXGlobalDtorsFunc(llvm::Function *Fn,
2633                                   const std::vector<std::pair<llvm::WeakVH,
2634                                   llvm::Constant*> > &DtorsAndObjects);
2635 
2636   void GenerateCXXGlobalVarDeclInitFunc(llvm::Function *Fn,
2637                                         const VarDecl *D,
2638                                         llvm::GlobalVariable *Addr,
2639                                         bool PerformInit);
2640 
2641   void EmitCXXConstructExpr(const CXXConstructExpr *E, AggValueSlot Dest);
2642 
2643   void EmitSynthesizedCXXCopyCtor(llvm::Value *Dest, llvm::Value *Src,
2644                                   const Expr *Exp);
2645 
2646   void enterFullExpression(const ExprWithCleanups *E) {
2647     if (E->getNumObjects() == 0) return;
2648     enterNonTrivialFullExpression(E);
2649   }
2650   void enterNonTrivialFullExpression(const ExprWithCleanups *E);
2651 
2652   void EmitCXXThrowExpr(const CXXThrowExpr *E);
2653 
2654   void EmitLambdaExpr(const LambdaExpr *E, AggValueSlot Dest);
2655 
2656   RValue EmitAtomicExpr(AtomicExpr *E, llvm::Value *Dest = 0);
2657 
2658   //===--------------------------------------------------------------------===//
2659   //                         Annotations Emission
2660   //===--------------------------------------------------------------------===//
2661 
2662   /// Emit an annotation call (intrinsic or builtin).
2663   llvm::Value *EmitAnnotationCall(llvm::Value *AnnotationFn,
2664                                   llvm::Value *AnnotatedVal,
2665                                   StringRef AnnotationStr,
2666                                   SourceLocation Location);
2667 
2668   /// Emit local annotations for the local variable V, declared by D.
2669   void EmitVarAnnotations(const VarDecl *D, llvm::Value *V);
2670 
2671   /// Emit field annotations for the given field & value. Returns the
2672   /// annotation result.
2673   llvm::Value *EmitFieldAnnotations(const FieldDecl *D, llvm::Value *V);
2674 
2675   //===--------------------------------------------------------------------===//
2676   //                             Internal Helpers
2677   //===--------------------------------------------------------------------===//
2678 
2679   /// ContainsLabel - Return true if the statement contains a label in it.  If
2680   /// this statement is not executed normally, it not containing a label means
2681   /// that we can just remove the code.
2682   static bool ContainsLabel(const Stmt *S, bool IgnoreCaseStmts = false);
2683 
2684   /// containsBreak - Return true if the statement contains a break out of it.
2685   /// If the statement (recursively) contains a switch or loop with a break
2686   /// inside of it, this is fine.
2687   static bool containsBreak(const Stmt *S);
2688 
2689   /// ConstantFoldsToSimpleInteger - If the specified expression does not fold
2690   /// to a constant, or if it does but contains a label, return false.  If it
2691   /// constant folds return true and set the boolean result in Result.
2692   bool ConstantFoldsToSimpleInteger(const Expr *Cond, bool &Result);
2693 
2694   /// ConstantFoldsToSimpleInteger - If the specified expression does not fold
2695   /// to a constant, or if it does but contains a label, return false.  If it
2696   /// constant folds return true and set the folded value.
2697   bool ConstantFoldsToSimpleInteger(const Expr *Cond, llvm::APSInt &Result);
2698 
2699   /// EmitBranchOnBoolExpr - Emit a branch on a boolean condition (e.g. for an
2700   /// if statement) to the specified blocks.  Based on the condition, this might
2701   /// try to simplify the codegen of the conditional based on the branch.
2702   void EmitBranchOnBoolExpr(const Expr *Cond, llvm::BasicBlock *TrueBlock,
2703                             llvm::BasicBlock *FalseBlock);
2704 
2705   /// \brief Emit a description of a type in a format suitable for passing to
2706   /// a runtime sanitizer handler.
2707   llvm::Constant *EmitCheckTypeDescriptor(QualType T);
2708 
2709   /// \brief Convert a value into a format suitable for passing to a runtime
2710   /// sanitizer handler.
2711   llvm::Value *EmitCheckValue(llvm::Value *V);
2712 
2713   /// \brief Emit a description of a source location in a format suitable for
2714   /// passing to a runtime sanitizer handler.
2715   llvm::Constant *EmitCheckSourceLocation(SourceLocation Loc);
2716 
2717   /// \brief Specify under what conditions this check can be recovered
2718   enum CheckRecoverableKind {
2719     /// Always terminate program execution if this check fails
2720     CRK_Unrecoverable,
2721     /// Check supports recovering, allows user to specify which
2722     CRK_Recoverable,
2723     /// Runtime conditionally aborts, always need to support recovery.
2724     CRK_AlwaysRecoverable
2725   };
2726 
2727   /// \brief Create a basic block that will call a handler function in a
2728   /// sanitizer runtime with the provided arguments, and create a conditional
2729   /// branch to it.
2730   void EmitCheck(llvm::Value *Checked, StringRef CheckName,
2731                  ArrayRef<llvm::Constant *> StaticArgs,
2732                  ArrayRef<llvm::Value *> DynamicArgs,
2733                  CheckRecoverableKind Recoverable);
2734 
2735   /// \brief Create a basic block that will call the trap intrinsic, and emit a
2736   /// conditional branch to it, for the -ftrapv checks.
2737   void EmitTrapCheck(llvm::Value *Checked);
2738 
2739   /// EmitCallArg - Emit a single call argument.
2740   void EmitCallArg(CallArgList &args, const Expr *E, QualType ArgType);
2741 
2742   /// EmitDelegateCallArg - We are performing a delegate call; that
2743   /// is, the current function is delegating to another one.  Produce
2744   /// a r-value suitable for passing the given parameter.
2745   void EmitDelegateCallArg(CallArgList &args, const VarDecl *param);
2746 
2747   /// SetFPAccuracy - Set the minimum required accuracy of the given floating
2748   /// point operation, expressed as the maximum relative error in ulp.
2749   void SetFPAccuracy(llvm::Value *Val, float Accuracy);
2750 
2751 private:
2752   llvm::MDNode *getRangeForLoadFromType(QualType Ty);
2753   void EmitReturnOfRValue(RValue RV, QualType Ty);
2754 
2755   /// ExpandTypeFromArgs - Reconstruct a structure of type \arg Ty
2756   /// from function arguments into \arg Dst. See ABIArgInfo::Expand.
2757   ///
2758   /// \param AI - The first function argument of the expansion.
2759   /// \return The argument following the last expanded function
2760   /// argument.
2761   llvm::Function::arg_iterator
2762   ExpandTypeFromArgs(QualType Ty, LValue Dst,
2763                      llvm::Function::arg_iterator AI);
2764 
2765   /// ExpandTypeToArgs - Expand an RValue \arg Src, with the LLVM type for \arg
2766   /// Ty, into individual arguments on the provided vector \arg Args. See
2767   /// ABIArgInfo::Expand.
2768   void ExpandTypeToArgs(QualType Ty, RValue Src,
2769                         SmallVector<llvm::Value*, 16> &Args,
2770                         llvm::FunctionType *IRFuncTy);
2771 
2772   llvm::Value* EmitAsmInput(const TargetInfo::ConstraintInfo &Info,
2773                             const Expr *InputExpr, std::string &ConstraintStr);
2774 
2775   llvm::Value* EmitAsmInputLValue(const TargetInfo::ConstraintInfo &Info,
2776                                   LValue InputValue, QualType InputType,
2777                                   std::string &ConstraintStr);
2778 
2779   /// EmitCallArgs - Emit call arguments for a function.
2780   /// The CallArgTypeInfo parameter is used for iterating over the known
2781   /// argument types of the function being called.
2782   template<typename T>
2783   void EmitCallArgs(CallArgList& Args, const T* CallArgTypeInfo,
2784                     CallExpr::const_arg_iterator ArgBeg,
2785                     CallExpr::const_arg_iterator ArgEnd) {
2786       CallExpr::const_arg_iterator Arg = ArgBeg;
2787 
2788     // First, use the argument types that the type info knows about
2789     if (CallArgTypeInfo) {
2790       for (typename T::arg_type_iterator I = CallArgTypeInfo->arg_type_begin(),
2791            E = CallArgTypeInfo->arg_type_end(); I != E; ++I, ++Arg) {
2792         assert(Arg != ArgEnd && "Running over edge of argument list!");
2793         QualType ArgType = *I;
2794 #ifndef NDEBUG
2795         QualType ActualArgType = Arg->getType();
2796         if (ArgType->isPointerType() && ActualArgType->isPointerType()) {
2797           QualType ActualBaseType =
2798             ActualArgType->getAs<PointerType>()->getPointeeType();
2799           QualType ArgBaseType =
2800             ArgType->getAs<PointerType>()->getPointeeType();
2801           if (ArgBaseType->isVariableArrayType()) {
2802             if (const VariableArrayType *VAT =
2803                 getContext().getAsVariableArrayType(ActualBaseType)) {
2804               if (!VAT->getSizeExpr())
2805                 ActualArgType = ArgType;
2806             }
2807           }
2808         }
2809         assert(getContext().getCanonicalType(ArgType.getNonReferenceType()).
2810                getTypePtr() ==
2811                getContext().getCanonicalType(ActualArgType).getTypePtr() &&
2812                "type mismatch in call argument!");
2813 #endif
2814         EmitCallArg(Args, *Arg, ArgType);
2815       }
2816 
2817       // Either we've emitted all the call args, or we have a call to a
2818       // variadic function.
2819       assert((Arg == ArgEnd || CallArgTypeInfo->isVariadic()) &&
2820              "Extra arguments in non-variadic function!");
2821 
2822     }
2823 
2824     // If we still have any arguments, emit them using the type of the argument.
2825     for (; Arg != ArgEnd; ++Arg)
2826       EmitCallArg(Args, *Arg, Arg->getType());
2827   }
2828 
2829   const TargetCodeGenInfo &getTargetHooks() const {
2830     return CGM.getTargetCodeGenInfo();
2831   }
2832 
2833   void EmitDeclMetadata();
2834 
2835   CodeGenModule::ByrefHelpers *
2836   buildByrefHelpers(llvm::StructType &byrefType,
2837                     const AutoVarEmission &emission);
2838 
2839   void AddObjCARCExceptionMetadata(llvm::Instruction *Inst);
2840 
2841   /// GetPointeeAlignment - Given an expression with a pointer type, emit the
2842   /// value and compute our best estimate of the alignment of the pointee.
2843   std::pair<llvm::Value*, unsigned> EmitPointerWithAlignment(const Expr *Addr);
2844 };
2845 
2846 /// Helper class with most of the code for saving a value for a
2847 /// conditional expression cleanup.
2848 struct DominatingLLVMValue {
2849   typedef llvm::PointerIntPair<llvm::Value*, 1, bool> saved_type;
2850 
2851   /// Answer whether the given value needs extra work to be saved.
2852   static bool needsSaving(llvm::Value *value) {
2853     // If it's not an instruction, we don't need to save.
2854     if (!isa<llvm::Instruction>(value)) return false;
2855 
2856     // If it's an instruction in the entry block, we don't need to save.
2857     llvm::BasicBlock *block = cast<llvm::Instruction>(value)->getParent();
2858     return (block != &block->getParent()->getEntryBlock());
2859   }
2860 
2861   /// Try to save the given value.
2862   static saved_type save(CodeGenFunction &CGF, llvm::Value *value) {
2863     if (!needsSaving(value)) return saved_type(value, false);
2864 
2865     // Otherwise we need an alloca.
2866     llvm::Value *alloca =
2867       CGF.CreateTempAlloca(value->getType(), "cond-cleanup.save");
2868     CGF.Builder.CreateStore(value, alloca);
2869 
2870     return saved_type(alloca, true);
2871   }
2872 
2873   static llvm::Value *restore(CodeGenFunction &CGF, saved_type value) {
2874     if (!value.getInt()) return value.getPointer();
2875     return CGF.Builder.CreateLoad(value.getPointer());
2876   }
2877 };
2878 
2879 /// A partial specialization of DominatingValue for llvm::Values that
2880 /// might be llvm::Instructions.
2881 template <class T> struct DominatingPointer<T,true> : DominatingLLVMValue {
2882   typedef T *type;
2883   static type restore(CodeGenFunction &CGF, saved_type value) {
2884     return static_cast<T*>(DominatingLLVMValue::restore(CGF, value));
2885   }
2886 };
2887 
2888 /// A specialization of DominatingValue for RValue.
2889 template <> struct DominatingValue<RValue> {
2890   typedef RValue type;
2891   class saved_type {
2892     enum Kind { ScalarLiteral, ScalarAddress, AggregateLiteral,
2893                 AggregateAddress, ComplexAddress };
2894 
2895     llvm::Value *Value;
2896     Kind K;
2897     saved_type(llvm::Value *v, Kind k) : Value(v), K(k) {}
2898 
2899   public:
2900     static bool needsSaving(RValue value);
2901     static saved_type save(CodeGenFunction &CGF, RValue value);
2902     RValue restore(CodeGenFunction &CGF);
2903 
2904     // implementations in CGExprCXX.cpp
2905   };
2906 
2907   static bool needsSaving(type value) {
2908     return saved_type::needsSaving(value);
2909   }
2910   static saved_type save(CodeGenFunction &CGF, type value) {
2911     return saved_type::save(CGF, value);
2912   }
2913   static type restore(CodeGenFunction &CGF, saved_type value) {
2914     return value.restore(CGF);
2915   }
2916 };
2917 
2918 }  // end namespace CodeGen
2919 }  // end namespace clang
2920 
2921 #endif
2922