1 //===-- CodeGenFunction.h - Per-Function state for LLVM CodeGen -*- C++ -*-===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This is the internal per-function state used for llvm translation. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #ifndef CLANG_CODEGEN_CODEGENFUNCTION_H 15 #define CLANG_CODEGEN_CODEGENFUNCTION_H 16 17 #include "CGBuilder.h" 18 #include "CGDebugInfo.h" 19 #include "CGValue.h" 20 #include "CodeGenModule.h" 21 #include "clang/AST/CharUnits.h" 22 #include "clang/AST/ExprCXX.h" 23 #include "clang/AST/ExprObjC.h" 24 #include "clang/AST/Type.h" 25 #include "clang/Basic/ABI.h" 26 #include "clang/Basic/TargetInfo.h" 27 #include "clang/Frontend/CodeGenOptions.h" 28 #include "llvm/ADT/ArrayRef.h" 29 #include "llvm/ADT/DenseMap.h" 30 #include "llvm/ADT/SmallVector.h" 31 #include "llvm/Support/Debug.h" 32 #include "llvm/Support/ValueHandle.h" 33 34 namespace llvm { 35 class BasicBlock; 36 class LLVMContext; 37 class MDNode; 38 class Module; 39 class SwitchInst; 40 class Twine; 41 class Value; 42 class CallSite; 43 } 44 45 namespace clang { 46 class ASTContext; 47 class BlockDecl; 48 class CXXDestructorDecl; 49 class CXXForRangeStmt; 50 class CXXTryStmt; 51 class Decl; 52 class LabelDecl; 53 class EnumConstantDecl; 54 class FunctionDecl; 55 class FunctionProtoType; 56 class LabelStmt; 57 class ObjCContainerDecl; 58 class ObjCInterfaceDecl; 59 class ObjCIvarDecl; 60 class ObjCMethodDecl; 61 class ObjCImplementationDecl; 62 class ObjCPropertyImplDecl; 63 class TargetInfo; 64 class TargetCodeGenInfo; 65 class VarDecl; 66 class ObjCForCollectionStmt; 67 class ObjCAtTryStmt; 68 class ObjCAtThrowStmt; 69 class ObjCAtSynchronizedStmt; 70 class ObjCAutoreleasePoolStmt; 71 72 namespace CodeGen { 73 class CodeGenTypes; 74 class CGFunctionInfo; 75 class CGRecordLayout; 76 class CGBlockInfo; 77 class CGCXXABI; 78 class BlockFlags; 79 class BlockFieldFlags; 80 81 /// The kind of evaluation to perform on values of a particular 82 /// type. Basically, is the code in CGExprScalar, CGExprComplex, or 83 /// CGExprAgg? 84 /// 85 /// TODO: should vectors maybe be split out into their own thing? 86 enum TypeEvaluationKind { 87 TEK_Scalar, 88 TEK_Complex, 89 TEK_Aggregate 90 }; 91 92 /// A branch fixup. These are required when emitting a goto to a 93 /// label which hasn't been emitted yet. The goto is optimistically 94 /// emitted as a branch to the basic block for the label, and (if it 95 /// occurs in a scope with non-trivial cleanups) a fixup is added to 96 /// the innermost cleanup. When a (normal) cleanup is popped, any 97 /// unresolved fixups in that scope are threaded through the cleanup. 98 struct BranchFixup { 99 /// The block containing the terminator which needs to be modified 100 /// into a switch if this fixup is resolved into the current scope. 101 /// If null, LatestBranch points directly to the destination. 102 llvm::BasicBlock *OptimisticBranchBlock; 103 104 /// The ultimate destination of the branch. 105 /// 106 /// This can be set to null to indicate that this fixup was 107 /// successfully resolved. 108 llvm::BasicBlock *Destination; 109 110 /// The destination index value. 111 unsigned DestinationIndex; 112 113 /// The initial branch of the fixup. 114 llvm::BranchInst *InitialBranch; 115 }; 116 117 template <class T> struct InvariantValue { 118 typedef T type; 119 typedef T saved_type; 120 static bool needsSaving(type value) { return false; } 121 static saved_type save(CodeGenFunction &CGF, type value) { return value; } 122 static type restore(CodeGenFunction &CGF, saved_type value) { return value; } 123 }; 124 125 /// A metaprogramming class for ensuring that a value will dominate an 126 /// arbitrary position in a function. 127 template <class T> struct DominatingValue : InvariantValue<T> {}; 128 129 template <class T, bool mightBeInstruction = 130 llvm::is_base_of<llvm::Value, T>::value && 131 !llvm::is_base_of<llvm::Constant, T>::value && 132 !llvm::is_base_of<llvm::BasicBlock, T>::value> 133 struct DominatingPointer; 134 template <class T> struct DominatingPointer<T,false> : InvariantValue<T*> {}; 135 // template <class T> struct DominatingPointer<T,true> at end of file 136 137 template <class T> struct DominatingValue<T*> : DominatingPointer<T> {}; 138 139 enum CleanupKind { 140 EHCleanup = 0x1, 141 NormalCleanup = 0x2, 142 NormalAndEHCleanup = EHCleanup | NormalCleanup, 143 144 InactiveCleanup = 0x4, 145 InactiveEHCleanup = EHCleanup | InactiveCleanup, 146 InactiveNormalCleanup = NormalCleanup | InactiveCleanup, 147 InactiveNormalAndEHCleanup = NormalAndEHCleanup | InactiveCleanup 148 }; 149 150 /// A stack of scopes which respond to exceptions, including cleanups 151 /// and catch blocks. 152 class EHScopeStack { 153 public: 154 /// A saved depth on the scope stack. This is necessary because 155 /// pushing scopes onto the stack invalidates iterators. 156 class stable_iterator { 157 friend class EHScopeStack; 158 159 /// Offset from StartOfData to EndOfBuffer. 160 ptrdiff_t Size; 161 162 stable_iterator(ptrdiff_t Size) : Size(Size) {} 163 164 public: 165 static stable_iterator invalid() { return stable_iterator(-1); } 166 stable_iterator() : Size(-1) {} 167 168 bool isValid() const { return Size >= 0; } 169 170 /// Returns true if this scope encloses I. 171 /// Returns false if I is invalid. 172 /// This scope must be valid. 173 bool encloses(stable_iterator I) const { return Size <= I.Size; } 174 175 /// Returns true if this scope strictly encloses I: that is, 176 /// if it encloses I and is not I. 177 /// Returns false is I is invalid. 178 /// This scope must be valid. 179 bool strictlyEncloses(stable_iterator I) const { return Size < I.Size; } 180 181 friend bool operator==(stable_iterator A, stable_iterator B) { 182 return A.Size == B.Size; 183 } 184 friend bool operator!=(stable_iterator A, stable_iterator B) { 185 return A.Size != B.Size; 186 } 187 }; 188 189 /// Information for lazily generating a cleanup. Subclasses must be 190 /// POD-like: cleanups will not be destructed, and they will be 191 /// allocated on the cleanup stack and freely copied and moved 192 /// around. 193 /// 194 /// Cleanup implementations should generally be declared in an 195 /// anonymous namespace. 196 class Cleanup { 197 // Anchor the construction vtable. 198 virtual void anchor(); 199 public: 200 /// Generation flags. 201 class Flags { 202 enum { 203 F_IsForEH = 0x1, 204 F_IsNormalCleanupKind = 0x2, 205 F_IsEHCleanupKind = 0x4 206 }; 207 unsigned flags; 208 209 public: 210 Flags() : flags(0) {} 211 212 /// isForEH - true if the current emission is for an EH cleanup. 213 bool isForEHCleanup() const { return flags & F_IsForEH; } 214 bool isForNormalCleanup() const { return !isForEHCleanup(); } 215 void setIsForEHCleanup() { flags |= F_IsForEH; } 216 217 bool isNormalCleanupKind() const { return flags & F_IsNormalCleanupKind; } 218 void setIsNormalCleanupKind() { flags |= F_IsNormalCleanupKind; } 219 220 /// isEHCleanupKind - true if the cleanup was pushed as an EH 221 /// cleanup. 222 bool isEHCleanupKind() const { return flags & F_IsEHCleanupKind; } 223 void setIsEHCleanupKind() { flags |= F_IsEHCleanupKind; } 224 }; 225 226 // Provide a virtual destructor to suppress a very common warning 227 // that unfortunately cannot be suppressed without this. Cleanups 228 // should not rely on this destructor ever being called. 229 virtual ~Cleanup() {} 230 231 /// Emit the cleanup. For normal cleanups, this is run in the 232 /// same EH context as when the cleanup was pushed, i.e. the 233 /// immediately-enclosing context of the cleanup scope. For 234 /// EH cleanups, this is run in a terminate context. 235 /// 236 // \param flags cleanup kind. 237 virtual void Emit(CodeGenFunction &CGF, Flags flags) = 0; 238 }; 239 240 /// ConditionalCleanupN stores the saved form of its N parameters, 241 /// then restores them and performs the cleanup. 242 template <class T, class A0> 243 class ConditionalCleanup1 : public Cleanup { 244 typedef typename DominatingValue<A0>::saved_type A0_saved; 245 A0_saved a0_saved; 246 247 void Emit(CodeGenFunction &CGF, Flags flags) { 248 A0 a0 = DominatingValue<A0>::restore(CGF, a0_saved); 249 T(a0).Emit(CGF, flags); 250 } 251 252 public: 253 ConditionalCleanup1(A0_saved a0) 254 : a0_saved(a0) {} 255 }; 256 257 template <class T, class A0, class A1> 258 class ConditionalCleanup2 : public Cleanup { 259 typedef typename DominatingValue<A0>::saved_type A0_saved; 260 typedef typename DominatingValue<A1>::saved_type A1_saved; 261 A0_saved a0_saved; 262 A1_saved a1_saved; 263 264 void Emit(CodeGenFunction &CGF, Flags flags) { 265 A0 a0 = DominatingValue<A0>::restore(CGF, a0_saved); 266 A1 a1 = DominatingValue<A1>::restore(CGF, a1_saved); 267 T(a0, a1).Emit(CGF, flags); 268 } 269 270 public: 271 ConditionalCleanup2(A0_saved a0, A1_saved a1) 272 : a0_saved(a0), a1_saved(a1) {} 273 }; 274 275 template <class T, class A0, class A1, class A2> 276 class ConditionalCleanup3 : public Cleanup { 277 typedef typename DominatingValue<A0>::saved_type A0_saved; 278 typedef typename DominatingValue<A1>::saved_type A1_saved; 279 typedef typename DominatingValue<A2>::saved_type A2_saved; 280 A0_saved a0_saved; 281 A1_saved a1_saved; 282 A2_saved a2_saved; 283 284 void Emit(CodeGenFunction &CGF, Flags flags) { 285 A0 a0 = DominatingValue<A0>::restore(CGF, a0_saved); 286 A1 a1 = DominatingValue<A1>::restore(CGF, a1_saved); 287 A2 a2 = DominatingValue<A2>::restore(CGF, a2_saved); 288 T(a0, a1, a2).Emit(CGF, flags); 289 } 290 291 public: 292 ConditionalCleanup3(A0_saved a0, A1_saved a1, A2_saved a2) 293 : a0_saved(a0), a1_saved(a1), a2_saved(a2) {} 294 }; 295 296 template <class T, class A0, class A1, class A2, class A3> 297 class ConditionalCleanup4 : public Cleanup { 298 typedef typename DominatingValue<A0>::saved_type A0_saved; 299 typedef typename DominatingValue<A1>::saved_type A1_saved; 300 typedef typename DominatingValue<A2>::saved_type A2_saved; 301 typedef typename DominatingValue<A3>::saved_type A3_saved; 302 A0_saved a0_saved; 303 A1_saved a1_saved; 304 A2_saved a2_saved; 305 A3_saved a3_saved; 306 307 void Emit(CodeGenFunction &CGF, Flags flags) { 308 A0 a0 = DominatingValue<A0>::restore(CGF, a0_saved); 309 A1 a1 = DominatingValue<A1>::restore(CGF, a1_saved); 310 A2 a2 = DominatingValue<A2>::restore(CGF, a2_saved); 311 A3 a3 = DominatingValue<A3>::restore(CGF, a3_saved); 312 T(a0, a1, a2, a3).Emit(CGF, flags); 313 } 314 315 public: 316 ConditionalCleanup4(A0_saved a0, A1_saved a1, A2_saved a2, A3_saved a3) 317 : a0_saved(a0), a1_saved(a1), a2_saved(a2), a3_saved(a3) {} 318 }; 319 320 private: 321 // The implementation for this class is in CGException.h and 322 // CGException.cpp; the definition is here because it's used as a 323 // member of CodeGenFunction. 324 325 /// The start of the scope-stack buffer, i.e. the allocated pointer 326 /// for the buffer. All of these pointers are either simultaneously 327 /// null or simultaneously valid. 328 char *StartOfBuffer; 329 330 /// The end of the buffer. 331 char *EndOfBuffer; 332 333 /// The first valid entry in the buffer. 334 char *StartOfData; 335 336 /// The innermost normal cleanup on the stack. 337 stable_iterator InnermostNormalCleanup; 338 339 /// The innermost EH scope on the stack. 340 stable_iterator InnermostEHScope; 341 342 /// The current set of branch fixups. A branch fixup is a jump to 343 /// an as-yet unemitted label, i.e. a label for which we don't yet 344 /// know the EH stack depth. Whenever we pop a cleanup, we have 345 /// to thread all the current branch fixups through it. 346 /// 347 /// Fixups are recorded as the Use of the respective branch or 348 /// switch statement. The use points to the final destination. 349 /// When popping out of a cleanup, these uses are threaded through 350 /// the cleanup and adjusted to point to the new cleanup. 351 /// 352 /// Note that branches are allowed to jump into protected scopes 353 /// in certain situations; e.g. the following code is legal: 354 /// struct A { ~A(); }; // trivial ctor, non-trivial dtor 355 /// goto foo; 356 /// A a; 357 /// foo: 358 /// bar(); 359 SmallVector<BranchFixup, 8> BranchFixups; 360 361 char *allocate(size_t Size); 362 363 void *pushCleanup(CleanupKind K, size_t DataSize); 364 365 public: 366 EHScopeStack() : StartOfBuffer(0), EndOfBuffer(0), StartOfData(0), 367 InnermostNormalCleanup(stable_end()), 368 InnermostEHScope(stable_end()) {} 369 ~EHScopeStack() { delete[] StartOfBuffer; } 370 371 // Variadic templates would make this not terrible. 372 373 /// Push a lazily-created cleanup on the stack. 374 template <class T> 375 void pushCleanup(CleanupKind Kind) { 376 void *Buffer = pushCleanup(Kind, sizeof(T)); 377 Cleanup *Obj = new(Buffer) T(); 378 (void) Obj; 379 } 380 381 /// Push a lazily-created cleanup on the stack. 382 template <class T, class A0> 383 void pushCleanup(CleanupKind Kind, A0 a0) { 384 void *Buffer = pushCleanup(Kind, sizeof(T)); 385 Cleanup *Obj = new(Buffer) T(a0); 386 (void) Obj; 387 } 388 389 /// Push a lazily-created cleanup on the stack. 390 template <class T, class A0, class A1> 391 void pushCleanup(CleanupKind Kind, A0 a0, A1 a1) { 392 void *Buffer = pushCleanup(Kind, sizeof(T)); 393 Cleanup *Obj = new(Buffer) T(a0, a1); 394 (void) Obj; 395 } 396 397 /// Push a lazily-created cleanup on the stack. 398 template <class T, class A0, class A1, class A2> 399 void pushCleanup(CleanupKind Kind, A0 a0, A1 a1, A2 a2) { 400 void *Buffer = pushCleanup(Kind, sizeof(T)); 401 Cleanup *Obj = new(Buffer) T(a0, a1, a2); 402 (void) Obj; 403 } 404 405 /// Push a lazily-created cleanup on the stack. 406 template <class T, class A0, class A1, class A2, class A3> 407 void pushCleanup(CleanupKind Kind, A0 a0, A1 a1, A2 a2, A3 a3) { 408 void *Buffer = pushCleanup(Kind, sizeof(T)); 409 Cleanup *Obj = new(Buffer) T(a0, a1, a2, a3); 410 (void) Obj; 411 } 412 413 /// Push a lazily-created cleanup on the stack. 414 template <class T, class A0, class A1, class A2, class A3, class A4> 415 void pushCleanup(CleanupKind Kind, A0 a0, A1 a1, A2 a2, A3 a3, A4 a4) { 416 void *Buffer = pushCleanup(Kind, sizeof(T)); 417 Cleanup *Obj = new(Buffer) T(a0, a1, a2, a3, a4); 418 (void) Obj; 419 } 420 421 // Feel free to add more variants of the following: 422 423 /// Push a cleanup with non-constant storage requirements on the 424 /// stack. The cleanup type must provide an additional static method: 425 /// static size_t getExtraSize(size_t); 426 /// The argument to this method will be the value N, which will also 427 /// be passed as the first argument to the constructor. 428 /// 429 /// The data stored in the extra storage must obey the same 430 /// restrictions as normal cleanup member data. 431 /// 432 /// The pointer returned from this method is valid until the cleanup 433 /// stack is modified. 434 template <class T, class A0, class A1, class A2> 435 T *pushCleanupWithExtra(CleanupKind Kind, size_t N, A0 a0, A1 a1, A2 a2) { 436 void *Buffer = pushCleanup(Kind, sizeof(T) + T::getExtraSize(N)); 437 return new (Buffer) T(N, a0, a1, a2); 438 } 439 440 /// Pops a cleanup scope off the stack. This is private to CGCleanup.cpp. 441 void popCleanup(); 442 443 /// Push a set of catch handlers on the stack. The catch is 444 /// uninitialized and will need to have the given number of handlers 445 /// set on it. 446 class EHCatchScope *pushCatch(unsigned NumHandlers); 447 448 /// Pops a catch scope off the stack. This is private to CGException.cpp. 449 void popCatch(); 450 451 /// Push an exceptions filter on the stack. 452 class EHFilterScope *pushFilter(unsigned NumFilters); 453 454 /// Pops an exceptions filter off the stack. 455 void popFilter(); 456 457 /// Push a terminate handler on the stack. 458 void pushTerminate(); 459 460 /// Pops a terminate handler off the stack. 461 void popTerminate(); 462 463 /// Determines whether the exception-scopes stack is empty. 464 bool empty() const { return StartOfData == EndOfBuffer; } 465 466 bool requiresLandingPad() const { 467 return InnermostEHScope != stable_end(); 468 } 469 470 /// Determines whether there are any normal cleanups on the stack. 471 bool hasNormalCleanups() const { 472 return InnermostNormalCleanup != stable_end(); 473 } 474 475 /// Returns the innermost normal cleanup on the stack, or 476 /// stable_end() if there are no normal cleanups. 477 stable_iterator getInnermostNormalCleanup() const { 478 return InnermostNormalCleanup; 479 } 480 stable_iterator getInnermostActiveNormalCleanup() const; 481 482 stable_iterator getInnermostEHScope() const { 483 return InnermostEHScope; 484 } 485 486 stable_iterator getInnermostActiveEHScope() const; 487 488 /// An unstable reference to a scope-stack depth. Invalidated by 489 /// pushes but not pops. 490 class iterator; 491 492 /// Returns an iterator pointing to the innermost EH scope. 493 iterator begin() const; 494 495 /// Returns an iterator pointing to the outermost EH scope. 496 iterator end() const; 497 498 /// Create a stable reference to the top of the EH stack. The 499 /// returned reference is valid until that scope is popped off the 500 /// stack. 501 stable_iterator stable_begin() const { 502 return stable_iterator(EndOfBuffer - StartOfData); 503 } 504 505 /// Create a stable reference to the bottom of the EH stack. 506 static stable_iterator stable_end() { 507 return stable_iterator(0); 508 } 509 510 /// Translates an iterator into a stable_iterator. 511 stable_iterator stabilize(iterator it) const; 512 513 /// Turn a stable reference to a scope depth into a unstable pointer 514 /// to the EH stack. 515 iterator find(stable_iterator save) const; 516 517 /// Removes the cleanup pointed to by the given stable_iterator. 518 void removeCleanup(stable_iterator save); 519 520 /// Add a branch fixup to the current cleanup scope. 521 BranchFixup &addBranchFixup() { 522 assert(hasNormalCleanups() && "adding fixup in scope without cleanups"); 523 BranchFixups.push_back(BranchFixup()); 524 return BranchFixups.back(); 525 } 526 527 unsigned getNumBranchFixups() const { return BranchFixups.size(); } 528 BranchFixup &getBranchFixup(unsigned I) { 529 assert(I < getNumBranchFixups()); 530 return BranchFixups[I]; 531 } 532 533 /// Pops lazily-removed fixups from the end of the list. This 534 /// should only be called by procedures which have just popped a 535 /// cleanup or resolved one or more fixups. 536 void popNullFixups(); 537 538 /// Clears the branch-fixups list. This should only be called by 539 /// ResolveAllBranchFixups. 540 void clearFixups() { BranchFixups.clear(); } 541 }; 542 543 /// CodeGenFunction - This class organizes the per-function state that is used 544 /// while generating LLVM code. 545 class CodeGenFunction : public CodeGenTypeCache { 546 CodeGenFunction(const CodeGenFunction &) LLVM_DELETED_FUNCTION; 547 void operator=(const CodeGenFunction &) LLVM_DELETED_FUNCTION; 548 549 friend class CGCXXABI; 550 public: 551 /// A jump destination is an abstract label, branching to which may 552 /// require a jump out through normal cleanups. 553 struct JumpDest { 554 JumpDest() : Block(0), ScopeDepth(), Index(0) {} 555 JumpDest(llvm::BasicBlock *Block, 556 EHScopeStack::stable_iterator Depth, 557 unsigned Index) 558 : Block(Block), ScopeDepth(Depth), Index(Index) {} 559 560 bool isValid() const { return Block != 0; } 561 llvm::BasicBlock *getBlock() const { return Block; } 562 EHScopeStack::stable_iterator getScopeDepth() const { return ScopeDepth; } 563 unsigned getDestIndex() const { return Index; } 564 565 // This should be used cautiously. 566 void setScopeDepth(EHScopeStack::stable_iterator depth) { 567 ScopeDepth = depth; 568 } 569 570 private: 571 llvm::BasicBlock *Block; 572 EHScopeStack::stable_iterator ScopeDepth; 573 unsigned Index; 574 }; 575 576 CodeGenModule &CGM; // Per-module state. 577 const TargetInfo &Target; 578 579 typedef std::pair<llvm::Value *, llvm::Value *> ComplexPairTy; 580 CGBuilderTy Builder; 581 582 /// CurFuncDecl - Holds the Decl for the current function or ObjC method. 583 /// This excludes BlockDecls. 584 const Decl *CurFuncDecl; 585 /// CurCodeDecl - This is the inner-most code context, which includes blocks. 586 const Decl *CurCodeDecl; 587 const CGFunctionInfo *CurFnInfo; 588 QualType FnRetTy; 589 llvm::Function *CurFn; 590 591 /// CurGD - The GlobalDecl for the current function being compiled. 592 GlobalDecl CurGD; 593 594 /// PrologueCleanupDepth - The cleanup depth enclosing all the 595 /// cleanups associated with the parameters. 596 EHScopeStack::stable_iterator PrologueCleanupDepth; 597 598 /// ReturnBlock - Unified return block. 599 JumpDest ReturnBlock; 600 601 /// ReturnValue - The temporary alloca to hold the return value. This is null 602 /// iff the function has no return value. 603 llvm::Value *ReturnValue; 604 605 /// AllocaInsertPoint - This is an instruction in the entry block before which 606 /// we prefer to insert allocas. 607 llvm::AssertingVH<llvm::Instruction> AllocaInsertPt; 608 609 /// BoundsChecking - Emit run-time bounds checks. Higher values mean 610 /// potentially higher performance penalties. 611 unsigned char BoundsChecking; 612 613 /// \brief Whether any type-checking sanitizers are enabled. If \c false, 614 /// calls to EmitTypeCheck can be skipped. 615 bool SanitizePerformTypeCheck; 616 617 /// \brief Sanitizer options to use for this function. 618 const SanitizerOptions *SanOpts; 619 620 /// In ARC, whether we should autorelease the return value. 621 bool AutoreleaseResult; 622 623 const CodeGen::CGBlockInfo *BlockInfo; 624 llvm::Value *BlockPointer; 625 626 llvm::DenseMap<const VarDecl *, FieldDecl *> LambdaCaptureFields; 627 FieldDecl *LambdaThisCaptureField; 628 629 /// \brief A mapping from NRVO variables to the flags used to indicate 630 /// when the NRVO has been applied to this variable. 631 llvm::DenseMap<const VarDecl *, llvm::Value *> NRVOFlags; 632 633 EHScopeStack EHStack; 634 635 /// i32s containing the indexes of the cleanup destinations. 636 llvm::AllocaInst *NormalCleanupDest; 637 638 unsigned NextCleanupDestIndex; 639 640 /// FirstBlockInfo - The head of a singly-linked-list of block layouts. 641 CGBlockInfo *FirstBlockInfo; 642 643 /// EHResumeBlock - Unified block containing a call to llvm.eh.resume. 644 llvm::BasicBlock *EHResumeBlock; 645 646 /// The exception slot. All landing pads write the current exception pointer 647 /// into this alloca. 648 llvm::Value *ExceptionSlot; 649 650 /// The selector slot. Under the MandatoryCleanup model, all landing pads 651 /// write the current selector value into this alloca. 652 llvm::AllocaInst *EHSelectorSlot; 653 654 /// Emits a landing pad for the current EH stack. 655 llvm::BasicBlock *EmitLandingPad(); 656 657 llvm::BasicBlock *getInvokeDestImpl(); 658 659 template <class T> 660 typename DominatingValue<T>::saved_type saveValueInCond(T value) { 661 return DominatingValue<T>::save(*this, value); 662 } 663 664 public: 665 /// ObjCEHValueStack - Stack of Objective-C exception values, used for 666 /// rethrows. 667 SmallVector<llvm::Value*, 8> ObjCEHValueStack; 668 669 /// A class controlling the emission of a finally block. 670 class FinallyInfo { 671 /// Where the catchall's edge through the cleanup should go. 672 JumpDest RethrowDest; 673 674 /// A function to call to enter the catch. 675 llvm::Constant *BeginCatchFn; 676 677 /// An i1 variable indicating whether or not the @finally is 678 /// running for an exception. 679 llvm::AllocaInst *ForEHVar; 680 681 /// An i8* variable into which the exception pointer to rethrow 682 /// has been saved. 683 llvm::AllocaInst *SavedExnVar; 684 685 public: 686 void enter(CodeGenFunction &CGF, const Stmt *Finally, 687 llvm::Constant *beginCatchFn, llvm::Constant *endCatchFn, 688 llvm::Constant *rethrowFn); 689 void exit(CodeGenFunction &CGF); 690 }; 691 692 /// pushFullExprCleanup - Push a cleanup to be run at the end of the 693 /// current full-expression. Safe against the possibility that 694 /// we're currently inside a conditionally-evaluated expression. 695 template <class T, class A0> 696 void pushFullExprCleanup(CleanupKind kind, A0 a0) { 697 // If we're not in a conditional branch, or if none of the 698 // arguments requires saving, then use the unconditional cleanup. 699 if (!isInConditionalBranch()) 700 return EHStack.pushCleanup<T>(kind, a0); 701 702 typename DominatingValue<A0>::saved_type a0_saved = saveValueInCond(a0); 703 704 typedef EHScopeStack::ConditionalCleanup1<T, A0> CleanupType; 705 EHStack.pushCleanup<CleanupType>(kind, a0_saved); 706 initFullExprCleanup(); 707 } 708 709 /// pushFullExprCleanup - Push a cleanup to be run at the end of the 710 /// current full-expression. Safe against the possibility that 711 /// we're currently inside a conditionally-evaluated expression. 712 template <class T, class A0, class A1> 713 void pushFullExprCleanup(CleanupKind kind, A0 a0, A1 a1) { 714 // If we're not in a conditional branch, or if none of the 715 // arguments requires saving, then use the unconditional cleanup. 716 if (!isInConditionalBranch()) 717 return EHStack.pushCleanup<T>(kind, a0, a1); 718 719 typename DominatingValue<A0>::saved_type a0_saved = saveValueInCond(a0); 720 typename DominatingValue<A1>::saved_type a1_saved = saveValueInCond(a1); 721 722 typedef EHScopeStack::ConditionalCleanup2<T, A0, A1> CleanupType; 723 EHStack.pushCleanup<CleanupType>(kind, a0_saved, a1_saved); 724 initFullExprCleanup(); 725 } 726 727 /// pushFullExprCleanup - Push a cleanup to be run at the end of the 728 /// current full-expression. Safe against the possibility that 729 /// we're currently inside a conditionally-evaluated expression. 730 template <class T, class A0, class A1, class A2> 731 void pushFullExprCleanup(CleanupKind kind, A0 a0, A1 a1, A2 a2) { 732 // If we're not in a conditional branch, or if none of the 733 // arguments requires saving, then use the unconditional cleanup. 734 if (!isInConditionalBranch()) { 735 return EHStack.pushCleanup<T>(kind, a0, a1, a2); 736 } 737 738 typename DominatingValue<A0>::saved_type a0_saved = saveValueInCond(a0); 739 typename DominatingValue<A1>::saved_type a1_saved = saveValueInCond(a1); 740 typename DominatingValue<A2>::saved_type a2_saved = saveValueInCond(a2); 741 742 typedef EHScopeStack::ConditionalCleanup3<T, A0, A1, A2> CleanupType; 743 EHStack.pushCleanup<CleanupType>(kind, a0_saved, a1_saved, a2_saved); 744 initFullExprCleanup(); 745 } 746 747 /// pushFullExprCleanup - Push a cleanup to be run at the end of the 748 /// current full-expression. Safe against the possibility that 749 /// we're currently inside a conditionally-evaluated expression. 750 template <class T, class A0, class A1, class A2, class A3> 751 void pushFullExprCleanup(CleanupKind kind, A0 a0, A1 a1, A2 a2, A3 a3) { 752 // If we're not in a conditional branch, or if none of the 753 // arguments requires saving, then use the unconditional cleanup. 754 if (!isInConditionalBranch()) { 755 return EHStack.pushCleanup<T>(kind, a0, a1, a2, a3); 756 } 757 758 typename DominatingValue<A0>::saved_type a0_saved = saveValueInCond(a0); 759 typename DominatingValue<A1>::saved_type a1_saved = saveValueInCond(a1); 760 typename DominatingValue<A2>::saved_type a2_saved = saveValueInCond(a2); 761 typename DominatingValue<A3>::saved_type a3_saved = saveValueInCond(a3); 762 763 typedef EHScopeStack::ConditionalCleanup4<T, A0, A1, A2, A3> CleanupType; 764 EHStack.pushCleanup<CleanupType>(kind, a0_saved, a1_saved, 765 a2_saved, a3_saved); 766 initFullExprCleanup(); 767 } 768 769 /// Set up the last cleaup that was pushed as a conditional 770 /// full-expression cleanup. 771 void initFullExprCleanup(); 772 773 /// PushDestructorCleanup - Push a cleanup to call the 774 /// complete-object destructor of an object of the given type at the 775 /// given address. Does nothing if T is not a C++ class type with a 776 /// non-trivial destructor. 777 void PushDestructorCleanup(QualType T, llvm::Value *Addr); 778 779 /// PushDestructorCleanup - Push a cleanup to call the 780 /// complete-object variant of the given destructor on the object at 781 /// the given address. 782 void PushDestructorCleanup(const CXXDestructorDecl *Dtor, 783 llvm::Value *Addr); 784 785 /// PopCleanupBlock - Will pop the cleanup entry on the stack and 786 /// process all branch fixups. 787 void PopCleanupBlock(bool FallThroughIsBranchThrough = false); 788 789 /// DeactivateCleanupBlock - Deactivates the given cleanup block. 790 /// The block cannot be reactivated. Pops it if it's the top of the 791 /// stack. 792 /// 793 /// \param DominatingIP - An instruction which is known to 794 /// dominate the current IP (if set) and which lies along 795 /// all paths of execution between the current IP and the 796 /// the point at which the cleanup comes into scope. 797 void DeactivateCleanupBlock(EHScopeStack::stable_iterator Cleanup, 798 llvm::Instruction *DominatingIP); 799 800 /// ActivateCleanupBlock - Activates an initially-inactive cleanup. 801 /// Cannot be used to resurrect a deactivated cleanup. 802 /// 803 /// \param DominatingIP - An instruction which is known to 804 /// dominate the current IP (if set) and which lies along 805 /// all paths of execution between the current IP and the 806 /// the point at which the cleanup comes into scope. 807 void ActivateCleanupBlock(EHScopeStack::stable_iterator Cleanup, 808 llvm::Instruction *DominatingIP); 809 810 /// \brief Enters a new scope for capturing cleanups, all of which 811 /// will be executed once the scope is exited. 812 class RunCleanupsScope { 813 EHScopeStack::stable_iterator CleanupStackDepth; 814 bool OldDidCallStackSave; 815 protected: 816 bool PerformCleanup; 817 private: 818 819 RunCleanupsScope(const RunCleanupsScope &) LLVM_DELETED_FUNCTION; 820 void operator=(const RunCleanupsScope &) LLVM_DELETED_FUNCTION; 821 822 protected: 823 CodeGenFunction& CGF; 824 825 public: 826 /// \brief Enter a new cleanup scope. 827 explicit RunCleanupsScope(CodeGenFunction &CGF) 828 : PerformCleanup(true), CGF(CGF) 829 { 830 CleanupStackDepth = CGF.EHStack.stable_begin(); 831 OldDidCallStackSave = CGF.DidCallStackSave; 832 CGF.DidCallStackSave = false; 833 } 834 835 /// \brief Exit this cleanup scope, emitting any accumulated 836 /// cleanups. 837 ~RunCleanupsScope() { 838 if (PerformCleanup) { 839 CGF.DidCallStackSave = OldDidCallStackSave; 840 CGF.PopCleanupBlocks(CleanupStackDepth); 841 } 842 } 843 844 /// \brief Determine whether this scope requires any cleanups. 845 bool requiresCleanups() const { 846 return CGF.EHStack.stable_begin() != CleanupStackDepth; 847 } 848 849 /// \brief Force the emission of cleanups now, instead of waiting 850 /// until this object is destroyed. 851 void ForceCleanup() { 852 assert(PerformCleanup && "Already forced cleanup"); 853 CGF.DidCallStackSave = OldDidCallStackSave; 854 CGF.PopCleanupBlocks(CleanupStackDepth); 855 PerformCleanup = false; 856 } 857 }; 858 859 class LexicalScope: protected RunCleanupsScope { 860 SourceRange Range; 861 SmallVector<const LabelDecl*, 4> Labels; 862 LexicalScope *ParentScope; 863 864 LexicalScope(const LexicalScope &) LLVM_DELETED_FUNCTION; 865 void operator=(const LexicalScope &) LLVM_DELETED_FUNCTION; 866 867 public: 868 /// \brief Enter a new cleanup scope. 869 explicit LexicalScope(CodeGenFunction &CGF, SourceRange Range) 870 : RunCleanupsScope(CGF), Range(Range), ParentScope(CGF.CurLexicalScope) { 871 CGF.CurLexicalScope = this; 872 if (CGDebugInfo *DI = CGF.getDebugInfo()) 873 DI->EmitLexicalBlockStart(CGF.Builder, Range.getBegin()); 874 } 875 876 void addLabel(const LabelDecl *label) { 877 assert(PerformCleanup && "adding label to dead scope?"); 878 Labels.push_back(label); 879 } 880 881 /// \brief Exit this cleanup scope, emitting any accumulated 882 /// cleanups. 883 ~LexicalScope() { 884 // If we should perform a cleanup, force them now. Note that 885 // this ends the cleanup scope before rescoping any labels. 886 if (PerformCleanup) ForceCleanup(); 887 } 888 889 /// \brief Force the emission of cleanups now, instead of waiting 890 /// until this object is destroyed. 891 void ForceCleanup() { 892 RunCleanupsScope::ForceCleanup(); 893 endLexicalScope(); 894 } 895 896 private: 897 void endLexicalScope() { 898 CGF.CurLexicalScope = ParentScope; 899 if (CGDebugInfo *DI = CGF.getDebugInfo()) 900 DI->EmitLexicalBlockEnd(CGF.Builder, Range.getEnd()); 901 if (!Labels.empty()) 902 rescopeLabels(); 903 } 904 905 void rescopeLabels(); 906 }; 907 908 909 /// PopCleanupBlocks - Takes the old cleanup stack size and emits 910 /// the cleanup blocks that have been added. 911 void PopCleanupBlocks(EHScopeStack::stable_iterator OldCleanupStackSize); 912 913 void ResolveBranchFixups(llvm::BasicBlock *Target); 914 915 /// The given basic block lies in the current EH scope, but may be a 916 /// target of a potentially scope-crossing jump; get a stable handle 917 /// to which we can perform this jump later. 918 JumpDest getJumpDestInCurrentScope(llvm::BasicBlock *Target) { 919 return JumpDest(Target, 920 EHStack.getInnermostNormalCleanup(), 921 NextCleanupDestIndex++); 922 } 923 924 /// The given basic block lies in the current EH scope, but may be a 925 /// target of a potentially scope-crossing jump; get a stable handle 926 /// to which we can perform this jump later. 927 JumpDest getJumpDestInCurrentScope(StringRef Name = StringRef()) { 928 return getJumpDestInCurrentScope(createBasicBlock(Name)); 929 } 930 931 /// EmitBranchThroughCleanup - Emit a branch from the current insert 932 /// block through the normal cleanup handling code (if any) and then 933 /// on to \arg Dest. 934 void EmitBranchThroughCleanup(JumpDest Dest); 935 936 /// isObviouslyBranchWithoutCleanups - Return true if a branch to the 937 /// specified destination obviously has no cleanups to run. 'false' is always 938 /// a conservatively correct answer for this method. 939 bool isObviouslyBranchWithoutCleanups(JumpDest Dest) const; 940 941 /// popCatchScope - Pops the catch scope at the top of the EHScope 942 /// stack, emitting any required code (other than the catch handlers 943 /// themselves). 944 void popCatchScope(); 945 946 llvm::BasicBlock *getEHResumeBlock(bool isCleanup); 947 llvm::BasicBlock *getEHDispatchBlock(EHScopeStack::stable_iterator scope); 948 949 /// An object to manage conditionally-evaluated expressions. 950 class ConditionalEvaluation { 951 llvm::BasicBlock *StartBB; 952 953 public: 954 ConditionalEvaluation(CodeGenFunction &CGF) 955 : StartBB(CGF.Builder.GetInsertBlock()) {} 956 957 void begin(CodeGenFunction &CGF) { 958 assert(CGF.OutermostConditional != this); 959 if (!CGF.OutermostConditional) 960 CGF.OutermostConditional = this; 961 } 962 963 void end(CodeGenFunction &CGF) { 964 assert(CGF.OutermostConditional != 0); 965 if (CGF.OutermostConditional == this) 966 CGF.OutermostConditional = 0; 967 } 968 969 /// Returns a block which will be executed prior to each 970 /// evaluation of the conditional code. 971 llvm::BasicBlock *getStartingBlock() const { 972 return StartBB; 973 } 974 }; 975 976 /// isInConditionalBranch - Return true if we're currently emitting 977 /// one branch or the other of a conditional expression. 978 bool isInConditionalBranch() const { return OutermostConditional != 0; } 979 980 void setBeforeOutermostConditional(llvm::Value *value, llvm::Value *addr) { 981 assert(isInConditionalBranch()); 982 llvm::BasicBlock *block = OutermostConditional->getStartingBlock(); 983 new llvm::StoreInst(value, addr, &block->back()); 984 } 985 986 /// An RAII object to record that we're evaluating a statement 987 /// expression. 988 class StmtExprEvaluation { 989 CodeGenFunction &CGF; 990 991 /// We have to save the outermost conditional: cleanups in a 992 /// statement expression aren't conditional just because the 993 /// StmtExpr is. 994 ConditionalEvaluation *SavedOutermostConditional; 995 996 public: 997 StmtExprEvaluation(CodeGenFunction &CGF) 998 : CGF(CGF), SavedOutermostConditional(CGF.OutermostConditional) { 999 CGF.OutermostConditional = 0; 1000 } 1001 1002 ~StmtExprEvaluation() { 1003 CGF.OutermostConditional = SavedOutermostConditional; 1004 CGF.EnsureInsertPoint(); 1005 } 1006 }; 1007 1008 /// An object which temporarily prevents a value from being 1009 /// destroyed by aggressive peephole optimizations that assume that 1010 /// all uses of a value have been realized in the IR. 1011 class PeepholeProtection { 1012 llvm::Instruction *Inst; 1013 friend class CodeGenFunction; 1014 1015 public: 1016 PeepholeProtection() : Inst(0) {} 1017 }; 1018 1019 /// A non-RAII class containing all the information about a bound 1020 /// opaque value. OpaqueValueMapping, below, is a RAII wrapper for 1021 /// this which makes individual mappings very simple; using this 1022 /// class directly is useful when you have a variable number of 1023 /// opaque values or don't want the RAII functionality for some 1024 /// reason. 1025 class OpaqueValueMappingData { 1026 const OpaqueValueExpr *OpaqueValue; 1027 bool BoundLValue; 1028 CodeGenFunction::PeepholeProtection Protection; 1029 1030 OpaqueValueMappingData(const OpaqueValueExpr *ov, 1031 bool boundLValue) 1032 : OpaqueValue(ov), BoundLValue(boundLValue) {} 1033 public: 1034 OpaqueValueMappingData() : OpaqueValue(0) {} 1035 1036 static bool shouldBindAsLValue(const Expr *expr) { 1037 // gl-values should be bound as l-values for obvious reasons. 1038 // Records should be bound as l-values because IR generation 1039 // always keeps them in memory. Expressions of function type 1040 // act exactly like l-values but are formally required to be 1041 // r-values in C. 1042 return expr->isGLValue() || 1043 expr->getType()->isRecordType() || 1044 expr->getType()->isFunctionType(); 1045 } 1046 1047 static OpaqueValueMappingData bind(CodeGenFunction &CGF, 1048 const OpaqueValueExpr *ov, 1049 const Expr *e) { 1050 if (shouldBindAsLValue(ov)) 1051 return bind(CGF, ov, CGF.EmitLValue(e)); 1052 return bind(CGF, ov, CGF.EmitAnyExpr(e)); 1053 } 1054 1055 static OpaqueValueMappingData bind(CodeGenFunction &CGF, 1056 const OpaqueValueExpr *ov, 1057 const LValue &lv) { 1058 assert(shouldBindAsLValue(ov)); 1059 CGF.OpaqueLValues.insert(std::make_pair(ov, lv)); 1060 return OpaqueValueMappingData(ov, true); 1061 } 1062 1063 static OpaqueValueMappingData bind(CodeGenFunction &CGF, 1064 const OpaqueValueExpr *ov, 1065 const RValue &rv) { 1066 assert(!shouldBindAsLValue(ov)); 1067 CGF.OpaqueRValues.insert(std::make_pair(ov, rv)); 1068 1069 OpaqueValueMappingData data(ov, false); 1070 1071 // Work around an extremely aggressive peephole optimization in 1072 // EmitScalarConversion which assumes that all other uses of a 1073 // value are extant. 1074 data.Protection = CGF.protectFromPeepholes(rv); 1075 1076 return data; 1077 } 1078 1079 bool isValid() const { return OpaqueValue != 0; } 1080 void clear() { OpaqueValue = 0; } 1081 1082 void unbind(CodeGenFunction &CGF) { 1083 assert(OpaqueValue && "no data to unbind!"); 1084 1085 if (BoundLValue) { 1086 CGF.OpaqueLValues.erase(OpaqueValue); 1087 } else { 1088 CGF.OpaqueRValues.erase(OpaqueValue); 1089 CGF.unprotectFromPeepholes(Protection); 1090 } 1091 } 1092 }; 1093 1094 /// An RAII object to set (and then clear) a mapping for an OpaqueValueExpr. 1095 class OpaqueValueMapping { 1096 CodeGenFunction &CGF; 1097 OpaqueValueMappingData Data; 1098 1099 public: 1100 static bool shouldBindAsLValue(const Expr *expr) { 1101 return OpaqueValueMappingData::shouldBindAsLValue(expr); 1102 } 1103 1104 /// Build the opaque value mapping for the given conditional 1105 /// operator if it's the GNU ?: extension. This is a common 1106 /// enough pattern that the convenience operator is really 1107 /// helpful. 1108 /// 1109 OpaqueValueMapping(CodeGenFunction &CGF, 1110 const AbstractConditionalOperator *op) : CGF(CGF) { 1111 if (isa<ConditionalOperator>(op)) 1112 // Leave Data empty. 1113 return; 1114 1115 const BinaryConditionalOperator *e = cast<BinaryConditionalOperator>(op); 1116 Data = OpaqueValueMappingData::bind(CGF, e->getOpaqueValue(), 1117 e->getCommon()); 1118 } 1119 1120 OpaqueValueMapping(CodeGenFunction &CGF, 1121 const OpaqueValueExpr *opaqueValue, 1122 LValue lvalue) 1123 : CGF(CGF), Data(OpaqueValueMappingData::bind(CGF, opaqueValue, lvalue)) { 1124 } 1125 1126 OpaqueValueMapping(CodeGenFunction &CGF, 1127 const OpaqueValueExpr *opaqueValue, 1128 RValue rvalue) 1129 : CGF(CGF), Data(OpaqueValueMappingData::bind(CGF, opaqueValue, rvalue)) { 1130 } 1131 1132 void pop() { 1133 Data.unbind(CGF); 1134 Data.clear(); 1135 } 1136 1137 ~OpaqueValueMapping() { 1138 if (Data.isValid()) Data.unbind(CGF); 1139 } 1140 }; 1141 1142 /// getByrefValueFieldNumber - Given a declaration, returns the LLVM field 1143 /// number that holds the value. 1144 unsigned getByRefValueLLVMField(const ValueDecl *VD) const; 1145 1146 /// BuildBlockByrefAddress - Computes address location of the 1147 /// variable which is declared as __block. 1148 llvm::Value *BuildBlockByrefAddress(llvm::Value *BaseAddr, 1149 const VarDecl *V); 1150 private: 1151 CGDebugInfo *DebugInfo; 1152 bool DisableDebugInfo; 1153 1154 /// If the current function returns 'this', use the field to keep track of 1155 /// the callee that returns 'this'. 1156 llvm::Value *CalleeWithThisReturn; 1157 1158 /// DidCallStackSave - Whether llvm.stacksave has been called. Used to avoid 1159 /// calling llvm.stacksave for multiple VLAs in the same scope. 1160 bool DidCallStackSave; 1161 1162 /// IndirectBranch - The first time an indirect goto is seen we create a block 1163 /// with an indirect branch. Every time we see the address of a label taken, 1164 /// we add the label to the indirect goto. Every subsequent indirect goto is 1165 /// codegen'd as a jump to the IndirectBranch's basic block. 1166 llvm::IndirectBrInst *IndirectBranch; 1167 1168 /// LocalDeclMap - This keeps track of the LLVM allocas or globals for local C 1169 /// decls. 1170 typedef llvm::DenseMap<const Decl*, llvm::Value*> DeclMapTy; 1171 DeclMapTy LocalDeclMap; 1172 1173 /// LabelMap - This keeps track of the LLVM basic block for each C label. 1174 llvm::DenseMap<const LabelDecl*, JumpDest> LabelMap; 1175 1176 // BreakContinueStack - This keeps track of where break and continue 1177 // statements should jump to. 1178 struct BreakContinue { 1179 BreakContinue(JumpDest Break, JumpDest Continue) 1180 : BreakBlock(Break), ContinueBlock(Continue) {} 1181 1182 JumpDest BreakBlock; 1183 JumpDest ContinueBlock; 1184 }; 1185 SmallVector<BreakContinue, 8> BreakContinueStack; 1186 1187 /// SwitchInsn - This is nearest current switch instruction. It is null if 1188 /// current context is not in a switch. 1189 llvm::SwitchInst *SwitchInsn; 1190 1191 /// CaseRangeBlock - This block holds if condition check for last case 1192 /// statement range in current switch instruction. 1193 llvm::BasicBlock *CaseRangeBlock; 1194 1195 /// OpaqueLValues - Keeps track of the current set of opaque value 1196 /// expressions. 1197 llvm::DenseMap<const OpaqueValueExpr *, LValue> OpaqueLValues; 1198 llvm::DenseMap<const OpaqueValueExpr *, RValue> OpaqueRValues; 1199 1200 // VLASizeMap - This keeps track of the associated size for each VLA type. 1201 // We track this by the size expression rather than the type itself because 1202 // in certain situations, like a const qualifier applied to an VLA typedef, 1203 // multiple VLA types can share the same size expression. 1204 // FIXME: Maybe this could be a stack of maps that is pushed/popped as we 1205 // enter/leave scopes. 1206 llvm::DenseMap<const Expr*, llvm::Value*> VLASizeMap; 1207 1208 /// A block containing a single 'unreachable' instruction. Created 1209 /// lazily by getUnreachableBlock(). 1210 llvm::BasicBlock *UnreachableBlock; 1211 1212 /// CXXThisDecl - When generating code for a C++ member function, 1213 /// this will hold the implicit 'this' declaration. 1214 ImplicitParamDecl *CXXABIThisDecl; 1215 llvm::Value *CXXABIThisValue; 1216 llvm::Value *CXXThisValue; 1217 1218 /// CXXStructorImplicitParamDecl - When generating code for a constructor or 1219 /// destructor, this will hold the implicit argument (e.g. VTT). 1220 ImplicitParamDecl *CXXStructorImplicitParamDecl; 1221 llvm::Value *CXXStructorImplicitParamValue; 1222 1223 /// OutermostConditional - Points to the outermost active 1224 /// conditional control. This is used so that we know if a 1225 /// temporary should be destroyed conditionally. 1226 ConditionalEvaluation *OutermostConditional; 1227 1228 /// The current lexical scope. 1229 LexicalScope *CurLexicalScope; 1230 1231 /// ByrefValueInfoMap - For each __block variable, contains a pair of the LLVM 1232 /// type as well as the field number that contains the actual data. 1233 llvm::DenseMap<const ValueDecl *, std::pair<llvm::Type *, 1234 unsigned> > ByRefValueInfo; 1235 1236 llvm::BasicBlock *TerminateLandingPad; 1237 llvm::BasicBlock *TerminateHandler; 1238 llvm::BasicBlock *TrapBB; 1239 1240 /// Add a kernel metadata node to the named metadata node 'opencl.kernels'. 1241 /// In the kernel metadata node, reference the kernel function and metadata 1242 /// nodes for its optional attribute qualifiers (OpenCL 1.1 6.7.2): 1243 /// - A node for the vec_type_hint(<type>) qualifier contains string 1244 /// "vec_type_hint", an undefined value of the <type> data type, 1245 /// and a Boolean that is true if the <type> is integer and signed. 1246 /// - A node for the work_group_size_hint(X,Y,Z) qualifier contains string 1247 /// "work_group_size_hint", and three 32-bit integers X, Y and Z. 1248 /// - A node for the reqd_work_group_size(X,Y,Z) qualifier contains string 1249 /// "reqd_work_group_size", and three 32-bit integers X, Y and Z. 1250 void EmitOpenCLKernelMetadata(const FunctionDecl *FD, 1251 llvm::Function *Fn); 1252 1253 public: 1254 CodeGenFunction(CodeGenModule &cgm, bool suppressNewContext=false); 1255 ~CodeGenFunction(); 1256 1257 CodeGenTypes &getTypes() const { return CGM.getTypes(); } 1258 ASTContext &getContext() const { return CGM.getContext(); } 1259 /// Returns true if DebugInfo is actually initialized. 1260 bool maybeInitializeDebugInfo() { 1261 if (CGM.getModuleDebugInfo()) { 1262 DebugInfo = CGM.getModuleDebugInfo(); 1263 return true; 1264 } 1265 return false; 1266 } 1267 CGDebugInfo *getDebugInfo() { 1268 if (DisableDebugInfo) 1269 return NULL; 1270 return DebugInfo; 1271 } 1272 void disableDebugInfo() { DisableDebugInfo = true; } 1273 void enableDebugInfo() { DisableDebugInfo = false; } 1274 1275 bool shouldUseFusedARCCalls() { 1276 return CGM.getCodeGenOpts().OptimizationLevel == 0; 1277 } 1278 1279 const LangOptions &getLangOpts() const { return CGM.getLangOpts(); } 1280 1281 /// Returns a pointer to the function's exception object and selector slot, 1282 /// which is assigned in every landing pad. 1283 llvm::Value *getExceptionSlot(); 1284 llvm::Value *getEHSelectorSlot(); 1285 1286 /// Returns the contents of the function's exception object and selector 1287 /// slots. 1288 llvm::Value *getExceptionFromSlot(); 1289 llvm::Value *getSelectorFromSlot(); 1290 1291 llvm::Value *getNormalCleanupDestSlot(); 1292 1293 llvm::BasicBlock *getUnreachableBlock() { 1294 if (!UnreachableBlock) { 1295 UnreachableBlock = createBasicBlock("unreachable"); 1296 new llvm::UnreachableInst(getLLVMContext(), UnreachableBlock); 1297 } 1298 return UnreachableBlock; 1299 } 1300 1301 llvm::BasicBlock *getInvokeDest() { 1302 if (!EHStack.requiresLandingPad()) return 0; 1303 return getInvokeDestImpl(); 1304 } 1305 1306 llvm::LLVMContext &getLLVMContext() { return CGM.getLLVMContext(); } 1307 1308 //===--------------------------------------------------------------------===// 1309 // Cleanups 1310 //===--------------------------------------------------------------------===// 1311 1312 typedef void Destroyer(CodeGenFunction &CGF, llvm::Value *addr, QualType ty); 1313 1314 void pushIrregularPartialArrayCleanup(llvm::Value *arrayBegin, 1315 llvm::Value *arrayEndPointer, 1316 QualType elementType, 1317 Destroyer *destroyer); 1318 void pushRegularPartialArrayCleanup(llvm::Value *arrayBegin, 1319 llvm::Value *arrayEnd, 1320 QualType elementType, 1321 Destroyer *destroyer); 1322 1323 void pushDestroy(QualType::DestructionKind dtorKind, 1324 llvm::Value *addr, QualType type); 1325 void pushEHDestroy(QualType::DestructionKind dtorKind, 1326 llvm::Value *addr, QualType type); 1327 void pushDestroy(CleanupKind kind, llvm::Value *addr, QualType type, 1328 Destroyer *destroyer, bool useEHCleanupForArray); 1329 void emitDestroy(llvm::Value *addr, QualType type, Destroyer *destroyer, 1330 bool useEHCleanupForArray); 1331 llvm::Function *generateDestroyHelper(llvm::Constant *addr, 1332 QualType type, 1333 Destroyer *destroyer, 1334 bool useEHCleanupForArray); 1335 void emitArrayDestroy(llvm::Value *begin, llvm::Value *end, 1336 QualType type, Destroyer *destroyer, 1337 bool checkZeroLength, bool useEHCleanup); 1338 1339 Destroyer *getDestroyer(QualType::DestructionKind destructionKind); 1340 1341 /// Determines whether an EH cleanup is required to destroy a type 1342 /// with the given destruction kind. 1343 bool needsEHCleanup(QualType::DestructionKind kind) { 1344 switch (kind) { 1345 case QualType::DK_none: 1346 return false; 1347 case QualType::DK_cxx_destructor: 1348 case QualType::DK_objc_weak_lifetime: 1349 return getLangOpts().Exceptions; 1350 case QualType::DK_objc_strong_lifetime: 1351 return getLangOpts().Exceptions && 1352 CGM.getCodeGenOpts().ObjCAutoRefCountExceptions; 1353 } 1354 llvm_unreachable("bad destruction kind"); 1355 } 1356 1357 CleanupKind getCleanupKind(QualType::DestructionKind kind) { 1358 return (needsEHCleanup(kind) ? NormalAndEHCleanup : NormalCleanup); 1359 } 1360 1361 //===--------------------------------------------------------------------===// 1362 // Objective-C 1363 //===--------------------------------------------------------------------===// 1364 1365 void GenerateObjCMethod(const ObjCMethodDecl *OMD); 1366 1367 void StartObjCMethod(const ObjCMethodDecl *MD, 1368 const ObjCContainerDecl *CD, 1369 SourceLocation StartLoc); 1370 1371 /// GenerateObjCGetter - Synthesize an Objective-C property getter function. 1372 void GenerateObjCGetter(ObjCImplementationDecl *IMP, 1373 const ObjCPropertyImplDecl *PID); 1374 void generateObjCGetterBody(const ObjCImplementationDecl *classImpl, 1375 const ObjCPropertyImplDecl *propImpl, 1376 const ObjCMethodDecl *GetterMothodDecl, 1377 llvm::Constant *AtomicHelperFn); 1378 1379 void GenerateObjCCtorDtorMethod(ObjCImplementationDecl *IMP, 1380 ObjCMethodDecl *MD, bool ctor); 1381 1382 /// GenerateObjCSetter - Synthesize an Objective-C property setter function 1383 /// for the given property. 1384 void GenerateObjCSetter(ObjCImplementationDecl *IMP, 1385 const ObjCPropertyImplDecl *PID); 1386 void generateObjCSetterBody(const ObjCImplementationDecl *classImpl, 1387 const ObjCPropertyImplDecl *propImpl, 1388 llvm::Constant *AtomicHelperFn); 1389 bool IndirectObjCSetterArg(const CGFunctionInfo &FI); 1390 bool IvarTypeWithAggrGCObjects(QualType Ty); 1391 1392 //===--------------------------------------------------------------------===// 1393 // Block Bits 1394 //===--------------------------------------------------------------------===// 1395 1396 llvm::Value *EmitBlockLiteral(const BlockExpr *); 1397 llvm::Value *EmitBlockLiteral(const CGBlockInfo &Info); 1398 static void destroyBlockInfos(CGBlockInfo *info); 1399 llvm::Constant *BuildDescriptorBlockDecl(const BlockExpr *, 1400 const CGBlockInfo &Info, 1401 llvm::StructType *, 1402 llvm::Constant *BlockVarLayout); 1403 1404 llvm::Function *GenerateBlockFunction(GlobalDecl GD, 1405 const CGBlockInfo &Info, 1406 const Decl *OuterFuncDecl, 1407 const DeclMapTy &ldm, 1408 bool IsLambdaConversionToBlock); 1409 1410 llvm::Constant *GenerateCopyHelperFunction(const CGBlockInfo &blockInfo); 1411 llvm::Constant *GenerateDestroyHelperFunction(const CGBlockInfo &blockInfo); 1412 llvm::Constant *GenerateObjCAtomicSetterCopyHelperFunction( 1413 const ObjCPropertyImplDecl *PID); 1414 llvm::Constant *GenerateObjCAtomicGetterCopyHelperFunction( 1415 const ObjCPropertyImplDecl *PID); 1416 llvm::Value *EmitBlockCopyAndAutorelease(llvm::Value *Block, QualType Ty); 1417 1418 void BuildBlockRelease(llvm::Value *DeclPtr, BlockFieldFlags flags); 1419 1420 class AutoVarEmission; 1421 1422 void emitByrefStructureInit(const AutoVarEmission &emission); 1423 void enterByrefCleanup(const AutoVarEmission &emission); 1424 1425 llvm::Value *LoadBlockStruct() { 1426 assert(BlockPointer && "no block pointer set!"); 1427 return BlockPointer; 1428 } 1429 1430 void AllocateBlockCXXThisPointer(const CXXThisExpr *E); 1431 void AllocateBlockDecl(const DeclRefExpr *E); 1432 llvm::Value *GetAddrOfBlockDecl(const VarDecl *var, bool ByRef); 1433 llvm::Type *BuildByRefType(const VarDecl *var); 1434 1435 void GenerateCode(GlobalDecl GD, llvm::Function *Fn, 1436 const CGFunctionInfo &FnInfo); 1437 void StartFunction(GlobalDecl GD, QualType RetTy, 1438 llvm::Function *Fn, 1439 const CGFunctionInfo &FnInfo, 1440 const FunctionArgList &Args, 1441 SourceLocation StartLoc); 1442 1443 void EmitConstructorBody(FunctionArgList &Args); 1444 void EmitDestructorBody(FunctionArgList &Args); 1445 void emitImplicitAssignmentOperatorBody(FunctionArgList &Args); 1446 void EmitFunctionBody(FunctionArgList &Args); 1447 1448 void EmitForwardingCallToLambda(const CXXRecordDecl *Lambda, 1449 CallArgList &CallArgs); 1450 void EmitLambdaToBlockPointerBody(FunctionArgList &Args); 1451 void EmitLambdaBlockInvokeBody(); 1452 void EmitLambdaDelegatingInvokeBody(const CXXMethodDecl *MD); 1453 void EmitLambdaStaticInvokeFunction(const CXXMethodDecl *MD); 1454 1455 /// EmitReturnBlock - Emit the unified return block, trying to avoid its 1456 /// emission when possible. 1457 void EmitReturnBlock(); 1458 1459 /// FinishFunction - Complete IR generation of the current function. It is 1460 /// legal to call this function even if there is no current insertion point. 1461 void FinishFunction(SourceLocation EndLoc=SourceLocation()); 1462 1463 /// GenerateThunk - Generate a thunk for the given method. 1464 void GenerateThunk(llvm::Function *Fn, const CGFunctionInfo &FnInfo, 1465 GlobalDecl GD, const ThunkInfo &Thunk); 1466 1467 void GenerateVarArgsThunk(llvm::Function *Fn, const CGFunctionInfo &FnInfo, 1468 GlobalDecl GD, const ThunkInfo &Thunk); 1469 1470 void EmitCtorPrologue(const CXXConstructorDecl *CD, CXXCtorType Type, 1471 FunctionArgList &Args); 1472 1473 void EmitInitializerForField(FieldDecl *Field, LValue LHS, Expr *Init, 1474 ArrayRef<VarDecl *> ArrayIndexes); 1475 1476 /// InitializeVTablePointer - Initialize the vtable pointer of the given 1477 /// subobject. 1478 /// 1479 void InitializeVTablePointer(BaseSubobject Base, 1480 const CXXRecordDecl *NearestVBase, 1481 CharUnits OffsetFromNearestVBase, 1482 llvm::Constant *VTable, 1483 const CXXRecordDecl *VTableClass); 1484 1485 typedef llvm::SmallPtrSet<const CXXRecordDecl *, 4> VisitedVirtualBasesSetTy; 1486 void InitializeVTablePointers(BaseSubobject Base, 1487 const CXXRecordDecl *NearestVBase, 1488 CharUnits OffsetFromNearestVBase, 1489 bool BaseIsNonVirtualPrimaryBase, 1490 llvm::Constant *VTable, 1491 const CXXRecordDecl *VTableClass, 1492 VisitedVirtualBasesSetTy& VBases); 1493 1494 void InitializeVTablePointers(const CXXRecordDecl *ClassDecl); 1495 1496 /// GetVTablePtr - Return the Value of the vtable pointer member pointed 1497 /// to by This. 1498 llvm::Value *GetVTablePtr(llvm::Value *This, llvm::Type *Ty); 1499 1500 /// EnterDtorCleanups - Enter the cleanups necessary to complete the 1501 /// given phase of destruction for a destructor. The end result 1502 /// should call destructors on members and base classes in reverse 1503 /// order of their construction. 1504 void EnterDtorCleanups(const CXXDestructorDecl *Dtor, CXXDtorType Type); 1505 1506 /// ShouldInstrumentFunction - Return true if the current function should be 1507 /// instrumented with __cyg_profile_func_* calls 1508 bool ShouldInstrumentFunction(); 1509 1510 /// EmitFunctionInstrumentation - Emit LLVM code to call the specified 1511 /// instrumentation function with the current function and the call site, if 1512 /// function instrumentation is enabled. 1513 void EmitFunctionInstrumentation(const char *Fn); 1514 1515 /// EmitMCountInstrumentation - Emit call to .mcount. 1516 void EmitMCountInstrumentation(); 1517 1518 /// EmitFunctionProlog - Emit the target specific LLVM code to load the 1519 /// arguments for the given function. This is also responsible for naming the 1520 /// LLVM function arguments. 1521 void EmitFunctionProlog(const CGFunctionInfo &FI, 1522 llvm::Function *Fn, 1523 const FunctionArgList &Args); 1524 1525 /// EmitFunctionEpilog - Emit the target specific LLVM code to return the 1526 /// given temporary. 1527 void EmitFunctionEpilog(const CGFunctionInfo &FI); 1528 1529 /// EmitStartEHSpec - Emit the start of the exception spec. 1530 void EmitStartEHSpec(const Decl *D); 1531 1532 /// EmitEndEHSpec - Emit the end of the exception spec. 1533 void EmitEndEHSpec(const Decl *D); 1534 1535 /// getTerminateLandingPad - Return a landing pad that just calls terminate. 1536 llvm::BasicBlock *getTerminateLandingPad(); 1537 1538 /// getTerminateHandler - Return a handler (not a landing pad, just 1539 /// a catch handler) that just calls terminate. This is used when 1540 /// a terminate scope encloses a try. 1541 llvm::BasicBlock *getTerminateHandler(); 1542 1543 llvm::Type *ConvertTypeForMem(QualType T); 1544 llvm::Type *ConvertType(QualType T); 1545 llvm::Type *ConvertType(const TypeDecl *T) { 1546 return ConvertType(getContext().getTypeDeclType(T)); 1547 } 1548 1549 /// LoadObjCSelf - Load the value of self. This function is only valid while 1550 /// generating code for an Objective-C method. 1551 llvm::Value *LoadObjCSelf(); 1552 1553 /// TypeOfSelfObject - Return type of object that this self represents. 1554 QualType TypeOfSelfObject(); 1555 1556 /// hasAggregateLLVMType - Return true if the specified AST type will map into 1557 /// an aggregate LLVM type or is void. 1558 static TypeEvaluationKind getEvaluationKind(QualType T); 1559 1560 static bool hasScalarEvaluationKind(QualType T) { 1561 return getEvaluationKind(T) == TEK_Scalar; 1562 } 1563 1564 static bool hasAggregateEvaluationKind(QualType T) { 1565 return getEvaluationKind(T) == TEK_Aggregate; 1566 } 1567 1568 /// createBasicBlock - Create an LLVM basic block. 1569 llvm::BasicBlock *createBasicBlock(const Twine &name = "", 1570 llvm::Function *parent = 0, 1571 llvm::BasicBlock *before = 0) { 1572 #ifdef NDEBUG 1573 return llvm::BasicBlock::Create(getLLVMContext(), "", parent, before); 1574 #else 1575 return llvm::BasicBlock::Create(getLLVMContext(), name, parent, before); 1576 #endif 1577 } 1578 1579 /// getBasicBlockForLabel - Return the LLVM basicblock that the specified 1580 /// label maps to. 1581 JumpDest getJumpDestForLabel(const LabelDecl *S); 1582 1583 /// SimplifyForwardingBlocks - If the given basic block is only a branch to 1584 /// another basic block, simplify it. This assumes that no other code could 1585 /// potentially reference the basic block. 1586 void SimplifyForwardingBlocks(llvm::BasicBlock *BB); 1587 1588 /// EmitBlock - Emit the given block \arg BB and set it as the insert point, 1589 /// adding a fall-through branch from the current insert block if 1590 /// necessary. It is legal to call this function even if there is no current 1591 /// insertion point. 1592 /// 1593 /// IsFinished - If true, indicates that the caller has finished emitting 1594 /// branches to the given block and does not expect to emit code into it. This 1595 /// means the block can be ignored if it is unreachable. 1596 void EmitBlock(llvm::BasicBlock *BB, bool IsFinished=false); 1597 1598 /// EmitBlockAfterUses - Emit the given block somewhere hopefully 1599 /// near its uses, and leave the insertion point in it. 1600 void EmitBlockAfterUses(llvm::BasicBlock *BB); 1601 1602 /// EmitBranch - Emit a branch to the specified basic block from the current 1603 /// insert block, taking care to avoid creation of branches from dummy 1604 /// blocks. It is legal to call this function even if there is no current 1605 /// insertion point. 1606 /// 1607 /// This function clears the current insertion point. The caller should follow 1608 /// calls to this function with calls to Emit*Block prior to generation new 1609 /// code. 1610 void EmitBranch(llvm::BasicBlock *Block); 1611 1612 /// HaveInsertPoint - True if an insertion point is defined. If not, this 1613 /// indicates that the current code being emitted is unreachable. 1614 bool HaveInsertPoint() const { 1615 return Builder.GetInsertBlock() != 0; 1616 } 1617 1618 /// EnsureInsertPoint - Ensure that an insertion point is defined so that 1619 /// emitted IR has a place to go. Note that by definition, if this function 1620 /// creates a block then that block is unreachable; callers may do better to 1621 /// detect when no insertion point is defined and simply skip IR generation. 1622 void EnsureInsertPoint() { 1623 if (!HaveInsertPoint()) 1624 EmitBlock(createBasicBlock()); 1625 } 1626 1627 /// ErrorUnsupported - Print out an error that codegen doesn't support the 1628 /// specified stmt yet. 1629 void ErrorUnsupported(const Stmt *S, const char *Type, 1630 bool OmitOnError=false); 1631 1632 //===--------------------------------------------------------------------===// 1633 // Helpers 1634 //===--------------------------------------------------------------------===// 1635 1636 LValue MakeAddrLValue(llvm::Value *V, QualType T, 1637 CharUnits Alignment = CharUnits()) { 1638 return LValue::MakeAddr(V, T, Alignment, getContext(), 1639 CGM.getTBAAInfo(T)); 1640 } 1641 1642 LValue MakeNaturalAlignAddrLValue(llvm::Value *V, QualType T) { 1643 CharUnits Alignment; 1644 if (!T->isIncompleteType()) 1645 Alignment = getContext().getTypeAlignInChars(T); 1646 return LValue::MakeAddr(V, T, Alignment, getContext(), 1647 CGM.getTBAAInfo(T)); 1648 } 1649 1650 /// CreateTempAlloca - This creates a alloca and inserts it into the entry 1651 /// block. The caller is responsible for setting an appropriate alignment on 1652 /// the alloca. 1653 llvm::AllocaInst *CreateTempAlloca(llvm::Type *Ty, 1654 const Twine &Name = "tmp"); 1655 1656 /// InitTempAlloca - Provide an initial value for the given alloca. 1657 void InitTempAlloca(llvm::AllocaInst *Alloca, llvm::Value *Value); 1658 1659 /// CreateIRTemp - Create a temporary IR object of the given type, with 1660 /// appropriate alignment. This routine should only be used when an temporary 1661 /// value needs to be stored into an alloca (for example, to avoid explicit 1662 /// PHI construction), but the type is the IR type, not the type appropriate 1663 /// for storing in memory. 1664 llvm::AllocaInst *CreateIRTemp(QualType T, const Twine &Name = "tmp"); 1665 1666 /// CreateMemTemp - Create a temporary memory object of the given type, with 1667 /// appropriate alignment. 1668 llvm::AllocaInst *CreateMemTemp(QualType T, const Twine &Name = "tmp"); 1669 1670 /// CreateAggTemp - Create a temporary memory object for the given 1671 /// aggregate type. 1672 AggValueSlot CreateAggTemp(QualType T, const Twine &Name = "tmp") { 1673 CharUnits Alignment = getContext().getTypeAlignInChars(T); 1674 return AggValueSlot::forAddr(CreateMemTemp(T, Name), Alignment, 1675 T.getQualifiers(), 1676 AggValueSlot::IsNotDestructed, 1677 AggValueSlot::DoesNotNeedGCBarriers, 1678 AggValueSlot::IsNotAliased); 1679 } 1680 1681 /// Emit a cast to void* in the appropriate address space. 1682 llvm::Value *EmitCastToVoidPtr(llvm::Value *value); 1683 1684 /// EvaluateExprAsBool - Perform the usual unary conversions on the specified 1685 /// expression and compare the result against zero, returning an Int1Ty value. 1686 llvm::Value *EvaluateExprAsBool(const Expr *E); 1687 1688 /// EmitIgnoredExpr - Emit an expression in a context which ignores the result. 1689 void EmitIgnoredExpr(const Expr *E); 1690 1691 /// EmitAnyExpr - Emit code to compute the specified expression which can have 1692 /// any type. The result is returned as an RValue struct. If this is an 1693 /// aggregate expression, the aggloc/agglocvolatile arguments indicate where 1694 /// the result should be returned. 1695 /// 1696 /// \param ignoreResult True if the resulting value isn't used. 1697 RValue EmitAnyExpr(const Expr *E, 1698 AggValueSlot aggSlot = AggValueSlot::ignored(), 1699 bool ignoreResult = false); 1700 1701 // EmitVAListRef - Emit a "reference" to a va_list; this is either the address 1702 // or the value of the expression, depending on how va_list is defined. 1703 llvm::Value *EmitVAListRef(const Expr *E); 1704 1705 /// EmitAnyExprToTemp - Similary to EmitAnyExpr(), however, the result will 1706 /// always be accessible even if no aggregate location is provided. 1707 RValue EmitAnyExprToTemp(const Expr *E); 1708 1709 /// EmitAnyExprToMem - Emits the code necessary to evaluate an 1710 /// arbitrary expression into the given memory location. 1711 void EmitAnyExprToMem(const Expr *E, llvm::Value *Location, 1712 Qualifiers Quals, bool IsInitializer); 1713 1714 /// EmitExprAsInit - Emits the code necessary to initialize a 1715 /// location in memory with the given initializer. 1716 void EmitExprAsInit(const Expr *init, const ValueDecl *D, 1717 LValue lvalue, bool capturedByInit); 1718 1719 /// hasVolatileMember - returns true if aggregate type has a volatile 1720 /// member. 1721 bool hasVolatileMember(QualType T) { 1722 if (const RecordType *RT = T->getAs<RecordType>()) { 1723 const RecordDecl *RD = cast<RecordDecl>(RT->getDecl()); 1724 return RD->hasVolatileMember(); 1725 } 1726 return false; 1727 } 1728 /// EmitAggregateCopy - Emit an aggregate assignment. 1729 /// 1730 /// The difference to EmitAggregateCopy is that tail padding is not copied. 1731 /// This is required for correctness when assigning non-POD structures in C++. 1732 void EmitAggregateAssign(llvm::Value *DestPtr, llvm::Value *SrcPtr, 1733 QualType EltTy) { 1734 bool IsVolatile = hasVolatileMember(EltTy); 1735 EmitAggregateCopy(DestPtr, SrcPtr, EltTy, IsVolatile, CharUnits::Zero(), 1736 true); 1737 } 1738 1739 /// EmitAggregateCopy - Emit an aggregate copy. 1740 /// 1741 /// \param isVolatile - True iff either the source or the destination is 1742 /// volatile. 1743 /// \param isAssignment - If false, allow padding to be copied. This often 1744 /// yields more efficient. 1745 void EmitAggregateCopy(llvm::Value *DestPtr, llvm::Value *SrcPtr, 1746 QualType EltTy, bool isVolatile=false, 1747 CharUnits Alignment = CharUnits::Zero(), 1748 bool isAssignment = false); 1749 1750 /// StartBlock - Start new block named N. If insert block is a dummy block 1751 /// then reuse it. 1752 void StartBlock(const char *N); 1753 1754 /// GetAddrOfLocalVar - Return the address of a local variable. 1755 llvm::Value *GetAddrOfLocalVar(const VarDecl *VD) { 1756 llvm::Value *Res = LocalDeclMap[VD]; 1757 assert(Res && "Invalid argument to GetAddrOfLocalVar(), no decl!"); 1758 return Res; 1759 } 1760 1761 /// getOpaqueLValueMapping - Given an opaque value expression (which 1762 /// must be mapped to an l-value), return its mapping. 1763 const LValue &getOpaqueLValueMapping(const OpaqueValueExpr *e) { 1764 assert(OpaqueValueMapping::shouldBindAsLValue(e)); 1765 1766 llvm::DenseMap<const OpaqueValueExpr*,LValue>::iterator 1767 it = OpaqueLValues.find(e); 1768 assert(it != OpaqueLValues.end() && "no mapping for opaque value!"); 1769 return it->second; 1770 } 1771 1772 /// getOpaqueRValueMapping - Given an opaque value expression (which 1773 /// must be mapped to an r-value), return its mapping. 1774 const RValue &getOpaqueRValueMapping(const OpaqueValueExpr *e) { 1775 assert(!OpaqueValueMapping::shouldBindAsLValue(e)); 1776 1777 llvm::DenseMap<const OpaqueValueExpr*,RValue>::iterator 1778 it = OpaqueRValues.find(e); 1779 assert(it != OpaqueRValues.end() && "no mapping for opaque value!"); 1780 return it->second; 1781 } 1782 1783 /// getAccessedFieldNo - Given an encoded value and a result number, return 1784 /// the input field number being accessed. 1785 static unsigned getAccessedFieldNo(unsigned Idx, const llvm::Constant *Elts); 1786 1787 llvm::BlockAddress *GetAddrOfLabel(const LabelDecl *L); 1788 llvm::BasicBlock *GetIndirectGotoBlock(); 1789 1790 /// EmitNullInitialization - Generate code to set a value of the given type to 1791 /// null, If the type contains data member pointers, they will be initialized 1792 /// to -1 in accordance with the Itanium C++ ABI. 1793 void EmitNullInitialization(llvm::Value *DestPtr, QualType Ty); 1794 1795 // EmitVAArg - Generate code to get an argument from the passed in pointer 1796 // and update it accordingly. The return value is a pointer to the argument. 1797 // FIXME: We should be able to get rid of this method and use the va_arg 1798 // instruction in LLVM instead once it works well enough. 1799 llvm::Value *EmitVAArg(llvm::Value *VAListAddr, QualType Ty); 1800 1801 /// emitArrayLength - Compute the length of an array, even if it's a 1802 /// VLA, and drill down to the base element type. 1803 llvm::Value *emitArrayLength(const ArrayType *arrayType, 1804 QualType &baseType, 1805 llvm::Value *&addr); 1806 1807 /// EmitVLASize - Capture all the sizes for the VLA expressions in 1808 /// the given variably-modified type and store them in the VLASizeMap. 1809 /// 1810 /// This function can be called with a null (unreachable) insert point. 1811 void EmitVariablyModifiedType(QualType Ty); 1812 1813 /// getVLASize - Returns an LLVM value that corresponds to the size, 1814 /// in non-variably-sized elements, of a variable length array type, 1815 /// plus that largest non-variably-sized element type. Assumes that 1816 /// the type has already been emitted with EmitVariablyModifiedType. 1817 std::pair<llvm::Value*,QualType> getVLASize(const VariableArrayType *vla); 1818 std::pair<llvm::Value*,QualType> getVLASize(QualType vla); 1819 1820 /// LoadCXXThis - Load the value of 'this'. This function is only valid while 1821 /// generating code for an C++ member function. 1822 llvm::Value *LoadCXXThis() { 1823 assert(CXXThisValue && "no 'this' value for this function"); 1824 return CXXThisValue; 1825 } 1826 1827 /// LoadCXXVTT - Load the VTT parameter to base constructors/destructors have 1828 /// virtual bases. 1829 // FIXME: Every place that calls LoadCXXVTT is something 1830 // that needs to be abstracted properly. 1831 llvm::Value *LoadCXXVTT() { 1832 assert(CXXStructorImplicitParamValue && "no VTT value for this function"); 1833 return CXXStructorImplicitParamValue; 1834 } 1835 1836 /// LoadCXXStructorImplicitParam - Load the implicit parameter 1837 /// for a constructor/destructor. 1838 llvm::Value *LoadCXXStructorImplicitParam() { 1839 assert(CXXStructorImplicitParamValue && 1840 "no implicit argument value for this function"); 1841 return CXXStructorImplicitParamValue; 1842 } 1843 1844 /// GetAddressOfBaseOfCompleteClass - Convert the given pointer to a 1845 /// complete class to the given direct base. 1846 llvm::Value * 1847 GetAddressOfDirectBaseInCompleteClass(llvm::Value *Value, 1848 const CXXRecordDecl *Derived, 1849 const CXXRecordDecl *Base, 1850 bool BaseIsVirtual); 1851 1852 /// GetAddressOfBaseClass - This function will add the necessary delta to the 1853 /// load of 'this' and returns address of the base class. 1854 llvm::Value *GetAddressOfBaseClass(llvm::Value *Value, 1855 const CXXRecordDecl *Derived, 1856 CastExpr::path_const_iterator PathBegin, 1857 CastExpr::path_const_iterator PathEnd, 1858 bool NullCheckValue); 1859 1860 llvm::Value *GetAddressOfDerivedClass(llvm::Value *Value, 1861 const CXXRecordDecl *Derived, 1862 CastExpr::path_const_iterator PathBegin, 1863 CastExpr::path_const_iterator PathEnd, 1864 bool NullCheckValue); 1865 1866 llvm::Value *GetVirtualBaseClassOffset(llvm::Value *This, 1867 const CXXRecordDecl *ClassDecl, 1868 const CXXRecordDecl *BaseClassDecl); 1869 1870 /// GetVTTParameter - Return the VTT parameter that should be passed to a 1871 /// base constructor/destructor with virtual bases. 1872 /// FIXME: VTTs are Itanium ABI-specific, so the definition should move 1873 /// to ItaniumCXXABI.cpp together with all the references to VTT. 1874 llvm::Value *GetVTTParameter(GlobalDecl GD, bool ForVirtualBase, 1875 bool Delegating); 1876 1877 void EmitDelegateCXXConstructorCall(const CXXConstructorDecl *Ctor, 1878 CXXCtorType CtorType, 1879 const FunctionArgList &Args); 1880 // It's important not to confuse this and the previous function. Delegating 1881 // constructors are the C++0x feature. The constructor delegate optimization 1882 // is used to reduce duplication in the base and complete consturctors where 1883 // they are substantially the same. 1884 void EmitDelegatingCXXConstructorCall(const CXXConstructorDecl *Ctor, 1885 const FunctionArgList &Args); 1886 void EmitCXXConstructorCall(const CXXConstructorDecl *D, CXXCtorType Type, 1887 bool ForVirtualBase, bool Delegating, 1888 llvm::Value *This, 1889 CallExpr::const_arg_iterator ArgBeg, 1890 CallExpr::const_arg_iterator ArgEnd); 1891 1892 void EmitSynthesizedCXXCopyCtorCall(const CXXConstructorDecl *D, 1893 llvm::Value *This, llvm::Value *Src, 1894 CallExpr::const_arg_iterator ArgBeg, 1895 CallExpr::const_arg_iterator ArgEnd); 1896 1897 void EmitCXXAggrConstructorCall(const CXXConstructorDecl *D, 1898 const ConstantArrayType *ArrayTy, 1899 llvm::Value *ArrayPtr, 1900 CallExpr::const_arg_iterator ArgBeg, 1901 CallExpr::const_arg_iterator ArgEnd, 1902 bool ZeroInitialization = false); 1903 1904 void EmitCXXAggrConstructorCall(const CXXConstructorDecl *D, 1905 llvm::Value *NumElements, 1906 llvm::Value *ArrayPtr, 1907 CallExpr::const_arg_iterator ArgBeg, 1908 CallExpr::const_arg_iterator ArgEnd, 1909 bool ZeroInitialization = false); 1910 1911 static Destroyer destroyCXXObject; 1912 1913 void EmitCXXDestructorCall(const CXXDestructorDecl *D, CXXDtorType Type, 1914 bool ForVirtualBase, bool Delegating, 1915 llvm::Value *This); 1916 1917 void EmitNewArrayInitializer(const CXXNewExpr *E, QualType elementType, 1918 llvm::Value *NewPtr, llvm::Value *NumElements); 1919 1920 void EmitCXXTemporary(const CXXTemporary *Temporary, QualType TempType, 1921 llvm::Value *Ptr); 1922 1923 llvm::Value *EmitCXXNewExpr(const CXXNewExpr *E); 1924 void EmitCXXDeleteExpr(const CXXDeleteExpr *E); 1925 1926 void EmitDeleteCall(const FunctionDecl *DeleteFD, llvm::Value *Ptr, 1927 QualType DeleteTy); 1928 1929 llvm::Value* EmitCXXTypeidExpr(const CXXTypeidExpr *E); 1930 llvm::Value *EmitDynamicCast(llvm::Value *V, const CXXDynamicCastExpr *DCE); 1931 llvm::Value* EmitCXXUuidofExpr(const CXXUuidofExpr *E); 1932 1933 void MaybeEmitStdInitializerListCleanup(llvm::Value *loc, const Expr *init); 1934 void EmitStdInitializerListCleanup(llvm::Value *loc, 1935 const InitListExpr *init); 1936 1937 /// \brief Situations in which we might emit a check for the suitability of a 1938 /// pointer or glvalue. 1939 enum TypeCheckKind { 1940 /// Checking the operand of a load. Must be suitably sized and aligned. 1941 TCK_Load, 1942 /// Checking the destination of a store. Must be suitably sized and aligned. 1943 TCK_Store, 1944 /// Checking the bound value in a reference binding. Must be suitably sized 1945 /// and aligned, but is not required to refer to an object (until the 1946 /// reference is used), per core issue 453. 1947 TCK_ReferenceBinding, 1948 /// Checking the object expression in a non-static data member access. Must 1949 /// be an object within its lifetime. 1950 TCK_MemberAccess, 1951 /// Checking the 'this' pointer for a call to a non-static member function. 1952 /// Must be an object within its lifetime. 1953 TCK_MemberCall, 1954 /// Checking the 'this' pointer for a constructor call. 1955 TCK_ConstructorCall, 1956 /// Checking the operand of a static_cast to a derived pointer type. Must be 1957 /// null or an object within its lifetime. 1958 TCK_DowncastPointer, 1959 /// Checking the operand of a static_cast to a derived reference type. Must 1960 /// be an object within its lifetime. 1961 TCK_DowncastReference 1962 }; 1963 1964 /// \brief Emit a check that \p V is the address of storage of the 1965 /// appropriate size and alignment for an object of type \p Type. 1966 void EmitTypeCheck(TypeCheckKind TCK, SourceLocation Loc, llvm::Value *V, 1967 QualType Type, CharUnits Alignment = CharUnits::Zero()); 1968 1969 /// \brief Emit a check that \p Base points into an array object, which 1970 /// we can access at index \p Index. \p Accessed should be \c false if we 1971 /// this expression is used as an lvalue, for instance in "&Arr[Idx]". 1972 void EmitBoundsCheck(const Expr *E, const Expr *Base, llvm::Value *Index, 1973 QualType IndexType, bool Accessed); 1974 1975 llvm::Value *EmitScalarPrePostIncDec(const UnaryOperator *E, LValue LV, 1976 bool isInc, bool isPre); 1977 ComplexPairTy EmitComplexPrePostIncDec(const UnaryOperator *E, LValue LV, 1978 bool isInc, bool isPre); 1979 //===--------------------------------------------------------------------===// 1980 // Declaration Emission 1981 //===--------------------------------------------------------------------===// 1982 1983 /// EmitDecl - Emit a declaration. 1984 /// 1985 /// This function can be called with a null (unreachable) insert point. 1986 void EmitDecl(const Decl &D); 1987 1988 /// EmitVarDecl - Emit a local variable declaration. 1989 /// 1990 /// This function can be called with a null (unreachable) insert point. 1991 void EmitVarDecl(const VarDecl &D); 1992 1993 void EmitScalarInit(const Expr *init, const ValueDecl *D, 1994 LValue lvalue, bool capturedByInit); 1995 void EmitScalarInit(llvm::Value *init, LValue lvalue); 1996 1997 typedef void SpecialInitFn(CodeGenFunction &Init, const VarDecl &D, 1998 llvm::Value *Address); 1999 2000 /// EmitAutoVarDecl - Emit an auto variable declaration. 2001 /// 2002 /// This function can be called with a null (unreachable) insert point. 2003 void EmitAutoVarDecl(const VarDecl &D); 2004 2005 class AutoVarEmission { 2006 friend class CodeGenFunction; 2007 2008 const VarDecl *Variable; 2009 2010 /// The alignment of the variable. 2011 CharUnits Alignment; 2012 2013 /// The address of the alloca. Null if the variable was emitted 2014 /// as a global constant. 2015 llvm::Value *Address; 2016 2017 llvm::Value *NRVOFlag; 2018 2019 /// True if the variable is a __block variable. 2020 bool IsByRef; 2021 2022 /// True if the variable is of aggregate type and has a constant 2023 /// initializer. 2024 bool IsConstantAggregate; 2025 2026 /// Non-null if we should use lifetime annotations. 2027 llvm::Value *SizeForLifetimeMarkers; 2028 2029 struct Invalid {}; 2030 AutoVarEmission(Invalid) : Variable(0) {} 2031 2032 AutoVarEmission(const VarDecl &variable) 2033 : Variable(&variable), Address(0), NRVOFlag(0), 2034 IsByRef(false), IsConstantAggregate(false), 2035 SizeForLifetimeMarkers(0) {} 2036 2037 bool wasEmittedAsGlobal() const { return Address == 0; } 2038 2039 public: 2040 static AutoVarEmission invalid() { return AutoVarEmission(Invalid()); } 2041 2042 bool useLifetimeMarkers() const { return SizeForLifetimeMarkers != 0; } 2043 llvm::Value *getSizeForLifetimeMarkers() const { 2044 assert(useLifetimeMarkers()); 2045 return SizeForLifetimeMarkers; 2046 } 2047 2048 /// Returns the raw, allocated address, which is not necessarily 2049 /// the address of the object itself. 2050 llvm::Value *getAllocatedAddress() const { 2051 return Address; 2052 } 2053 2054 /// Returns the address of the object within this declaration. 2055 /// Note that this does not chase the forwarding pointer for 2056 /// __block decls. 2057 llvm::Value *getObjectAddress(CodeGenFunction &CGF) const { 2058 if (!IsByRef) return Address; 2059 2060 return CGF.Builder.CreateStructGEP(Address, 2061 CGF.getByRefValueLLVMField(Variable), 2062 Variable->getNameAsString()); 2063 } 2064 }; 2065 AutoVarEmission EmitAutoVarAlloca(const VarDecl &var); 2066 void EmitAutoVarInit(const AutoVarEmission &emission); 2067 void EmitAutoVarCleanups(const AutoVarEmission &emission); 2068 void emitAutoVarTypeCleanup(const AutoVarEmission &emission, 2069 QualType::DestructionKind dtorKind); 2070 2071 void EmitStaticVarDecl(const VarDecl &D, 2072 llvm::GlobalValue::LinkageTypes Linkage); 2073 2074 /// EmitParmDecl - Emit a ParmVarDecl or an ImplicitParamDecl. 2075 void EmitParmDecl(const VarDecl &D, llvm::Value *Arg, unsigned ArgNo); 2076 2077 /// protectFromPeepholes - Protect a value that we're intending to 2078 /// store to the side, but which will probably be used later, from 2079 /// aggressive peepholing optimizations that might delete it. 2080 /// 2081 /// Pass the result to unprotectFromPeepholes to declare that 2082 /// protection is no longer required. 2083 /// 2084 /// There's no particular reason why this shouldn't apply to 2085 /// l-values, it's just that no existing peepholes work on pointers. 2086 PeepholeProtection protectFromPeepholes(RValue rvalue); 2087 void unprotectFromPeepholes(PeepholeProtection protection); 2088 2089 //===--------------------------------------------------------------------===// 2090 // Statement Emission 2091 //===--------------------------------------------------------------------===// 2092 2093 /// EmitStopPoint - Emit a debug stoppoint if we are emitting debug info. 2094 void EmitStopPoint(const Stmt *S); 2095 2096 /// EmitStmt - Emit the code for the statement \arg S. It is legal to call 2097 /// this function even if there is no current insertion point. 2098 /// 2099 /// This function may clear the current insertion point; callers should use 2100 /// EnsureInsertPoint if they wish to subsequently generate code without first 2101 /// calling EmitBlock, EmitBranch, or EmitStmt. 2102 void EmitStmt(const Stmt *S); 2103 2104 /// EmitSimpleStmt - Try to emit a "simple" statement which does not 2105 /// necessarily require an insertion point or debug information; typically 2106 /// because the statement amounts to a jump or a container of other 2107 /// statements. 2108 /// 2109 /// \return True if the statement was handled. 2110 bool EmitSimpleStmt(const Stmt *S); 2111 2112 RValue EmitCompoundStmt(const CompoundStmt &S, bool GetLast = false, 2113 AggValueSlot AVS = AggValueSlot::ignored()); 2114 RValue EmitCompoundStmtWithoutScope(const CompoundStmt &S, 2115 bool GetLast = false, AggValueSlot AVS = 2116 AggValueSlot::ignored()); 2117 2118 /// EmitLabel - Emit the block for the given label. It is legal to call this 2119 /// function even if there is no current insertion point. 2120 void EmitLabel(const LabelDecl *D); // helper for EmitLabelStmt. 2121 2122 void EmitLabelStmt(const LabelStmt &S); 2123 void EmitAttributedStmt(const AttributedStmt &S); 2124 void EmitGotoStmt(const GotoStmt &S); 2125 void EmitIndirectGotoStmt(const IndirectGotoStmt &S); 2126 void EmitIfStmt(const IfStmt &S); 2127 void EmitWhileStmt(const WhileStmt &S); 2128 void EmitDoStmt(const DoStmt &S); 2129 void EmitForStmt(const ForStmt &S); 2130 void EmitReturnStmt(const ReturnStmt &S); 2131 void EmitDeclStmt(const DeclStmt &S); 2132 void EmitBreakStmt(const BreakStmt &S); 2133 void EmitContinueStmt(const ContinueStmt &S); 2134 void EmitSwitchStmt(const SwitchStmt &S); 2135 void EmitDefaultStmt(const DefaultStmt &S); 2136 void EmitCaseStmt(const CaseStmt &S); 2137 void EmitCaseStmtRange(const CaseStmt &S); 2138 void EmitAsmStmt(const AsmStmt &S); 2139 2140 void EmitObjCForCollectionStmt(const ObjCForCollectionStmt &S); 2141 void EmitObjCAtTryStmt(const ObjCAtTryStmt &S); 2142 void EmitObjCAtThrowStmt(const ObjCAtThrowStmt &S); 2143 void EmitObjCAtSynchronizedStmt(const ObjCAtSynchronizedStmt &S); 2144 void EmitObjCAutoreleasePoolStmt(const ObjCAutoreleasePoolStmt &S); 2145 2146 llvm::Constant *getUnwindResumeFn(); 2147 llvm::Constant *getUnwindResumeOrRethrowFn(); 2148 void EnterCXXTryStmt(const CXXTryStmt &S, bool IsFnTryBlock = false); 2149 void ExitCXXTryStmt(const CXXTryStmt &S, bool IsFnTryBlock = false); 2150 2151 void EmitCXXTryStmt(const CXXTryStmt &S); 2152 void EmitCXXForRangeStmt(const CXXForRangeStmt &S); 2153 2154 //===--------------------------------------------------------------------===// 2155 // LValue Expression Emission 2156 //===--------------------------------------------------------------------===// 2157 2158 /// GetUndefRValue - Get an appropriate 'undef' rvalue for the given type. 2159 RValue GetUndefRValue(QualType Ty); 2160 2161 /// EmitUnsupportedRValue - Emit a dummy r-value using the type of E 2162 /// and issue an ErrorUnsupported style diagnostic (using the 2163 /// provided Name). 2164 RValue EmitUnsupportedRValue(const Expr *E, 2165 const char *Name); 2166 2167 /// EmitUnsupportedLValue - Emit a dummy l-value using the type of E and issue 2168 /// an ErrorUnsupported style diagnostic (using the provided Name). 2169 LValue EmitUnsupportedLValue(const Expr *E, 2170 const char *Name); 2171 2172 /// EmitLValue - Emit code to compute a designator that specifies the location 2173 /// of the expression. 2174 /// 2175 /// This can return one of two things: a simple address or a bitfield 2176 /// reference. In either case, the LLVM Value* in the LValue structure is 2177 /// guaranteed to be an LLVM pointer type. 2178 /// 2179 /// If this returns a bitfield reference, nothing about the pointee type of 2180 /// the LLVM value is known: For example, it may not be a pointer to an 2181 /// integer. 2182 /// 2183 /// If this returns a normal address, and if the lvalue's C type is fixed 2184 /// size, this method guarantees that the returned pointer type will point to 2185 /// an LLVM type of the same size of the lvalue's type. If the lvalue has a 2186 /// variable length type, this is not possible. 2187 /// 2188 LValue EmitLValue(const Expr *E); 2189 2190 /// \brief Same as EmitLValue but additionally we generate checking code to 2191 /// guard against undefined behavior. This is only suitable when we know 2192 /// that the address will be used to access the object. 2193 LValue EmitCheckedLValue(const Expr *E, TypeCheckKind TCK); 2194 2195 RValue convertTempToRValue(llvm::Value *addr, QualType type); 2196 2197 void EmitAtomicInit(Expr *E, LValue lvalue); 2198 2199 RValue EmitAtomicLoad(LValue lvalue, 2200 AggValueSlot slot = AggValueSlot::ignored()); 2201 2202 void EmitAtomicStore(RValue rvalue, LValue lvalue, bool isInit); 2203 2204 /// EmitToMemory - Change a scalar value from its value 2205 /// representation to its in-memory representation. 2206 llvm::Value *EmitToMemory(llvm::Value *Value, QualType Ty); 2207 2208 /// EmitFromMemory - Change a scalar value from its memory 2209 /// representation to its value representation. 2210 llvm::Value *EmitFromMemory(llvm::Value *Value, QualType Ty); 2211 2212 /// EmitLoadOfScalar - Load a scalar value from an address, taking 2213 /// care to appropriately convert from the memory representation to 2214 /// the LLVM value representation. 2215 llvm::Value *EmitLoadOfScalar(llvm::Value *Addr, bool Volatile, 2216 unsigned Alignment, QualType Ty, 2217 llvm::MDNode *TBAAInfo = 0); 2218 2219 /// EmitLoadOfScalar - Load a scalar value from an address, taking 2220 /// care to appropriately convert from the memory representation to 2221 /// the LLVM value representation. The l-value must be a simple 2222 /// l-value. 2223 llvm::Value *EmitLoadOfScalar(LValue lvalue); 2224 2225 /// EmitStoreOfScalar - Store a scalar value to an address, taking 2226 /// care to appropriately convert from the memory representation to 2227 /// the LLVM value representation. 2228 void EmitStoreOfScalar(llvm::Value *Value, llvm::Value *Addr, 2229 bool Volatile, unsigned Alignment, QualType Ty, 2230 llvm::MDNode *TBAAInfo = 0, bool isInit=false); 2231 2232 /// EmitStoreOfScalar - Store a scalar value to an address, taking 2233 /// care to appropriately convert from the memory representation to 2234 /// the LLVM value representation. The l-value must be a simple 2235 /// l-value. The isInit flag indicates whether this is an initialization. 2236 /// If so, atomic qualifiers are ignored and the store is always non-atomic. 2237 void EmitStoreOfScalar(llvm::Value *value, LValue lvalue, bool isInit=false); 2238 2239 /// EmitLoadOfLValue - Given an expression that represents a value lvalue, 2240 /// this method emits the address of the lvalue, then loads the result as an 2241 /// rvalue, returning the rvalue. 2242 RValue EmitLoadOfLValue(LValue V); 2243 RValue EmitLoadOfExtVectorElementLValue(LValue V); 2244 RValue EmitLoadOfBitfieldLValue(LValue LV); 2245 2246 /// EmitStoreThroughLValue - Store the specified rvalue into the specified 2247 /// lvalue, where both are guaranteed to the have the same type, and that type 2248 /// is 'Ty'. 2249 void EmitStoreThroughLValue(RValue Src, LValue Dst, bool isInit=false); 2250 void EmitStoreThroughExtVectorComponentLValue(RValue Src, LValue Dst); 2251 2252 /// EmitStoreThroughLValue - Store Src into Dst with same constraints as 2253 /// EmitStoreThroughLValue. 2254 /// 2255 /// \param Result [out] - If non-null, this will be set to a Value* for the 2256 /// bit-field contents after the store, appropriate for use as the result of 2257 /// an assignment to the bit-field. 2258 void EmitStoreThroughBitfieldLValue(RValue Src, LValue Dst, 2259 llvm::Value **Result=0); 2260 2261 /// Emit an l-value for an assignment (simple or compound) of complex type. 2262 LValue EmitComplexAssignmentLValue(const BinaryOperator *E); 2263 LValue EmitComplexCompoundAssignmentLValue(const CompoundAssignOperator *E); 2264 2265 // Note: only available for agg return types 2266 LValue EmitBinaryOperatorLValue(const BinaryOperator *E); 2267 LValue EmitCompoundAssignmentLValue(const CompoundAssignOperator *E); 2268 // Note: only available for agg return types 2269 LValue EmitCallExprLValue(const CallExpr *E); 2270 // Note: only available for agg return types 2271 LValue EmitVAArgExprLValue(const VAArgExpr *E); 2272 LValue EmitDeclRefLValue(const DeclRefExpr *E); 2273 LValue EmitStringLiteralLValue(const StringLiteral *E); 2274 LValue EmitObjCEncodeExprLValue(const ObjCEncodeExpr *E); 2275 LValue EmitPredefinedLValue(const PredefinedExpr *E); 2276 LValue EmitUnaryOpLValue(const UnaryOperator *E); 2277 LValue EmitArraySubscriptExpr(const ArraySubscriptExpr *E, 2278 bool Accessed = false); 2279 LValue EmitExtVectorElementExpr(const ExtVectorElementExpr *E); 2280 LValue EmitMemberExpr(const MemberExpr *E); 2281 LValue EmitObjCIsaExpr(const ObjCIsaExpr *E); 2282 LValue EmitCompoundLiteralLValue(const CompoundLiteralExpr *E); 2283 LValue EmitInitListLValue(const InitListExpr *E); 2284 LValue EmitConditionalOperatorLValue(const AbstractConditionalOperator *E); 2285 LValue EmitCastLValue(const CastExpr *E); 2286 LValue EmitNullInitializationLValue(const CXXScalarValueInitExpr *E); 2287 LValue EmitMaterializeTemporaryExpr(const MaterializeTemporaryExpr *E); 2288 LValue EmitOpaqueValueLValue(const OpaqueValueExpr *e); 2289 2290 RValue EmitRValueForField(LValue LV, const FieldDecl *FD); 2291 2292 class ConstantEmission { 2293 llvm::PointerIntPair<llvm::Constant*, 1, bool> ValueAndIsReference; 2294 ConstantEmission(llvm::Constant *C, bool isReference) 2295 : ValueAndIsReference(C, isReference) {} 2296 public: 2297 ConstantEmission() {} 2298 static ConstantEmission forReference(llvm::Constant *C) { 2299 return ConstantEmission(C, true); 2300 } 2301 static ConstantEmission forValue(llvm::Constant *C) { 2302 return ConstantEmission(C, false); 2303 } 2304 2305 operator bool() const { return ValueAndIsReference.getOpaqueValue() != 0; } 2306 2307 bool isReference() const { return ValueAndIsReference.getInt(); } 2308 LValue getReferenceLValue(CodeGenFunction &CGF, Expr *refExpr) const { 2309 assert(isReference()); 2310 return CGF.MakeNaturalAlignAddrLValue(ValueAndIsReference.getPointer(), 2311 refExpr->getType()); 2312 } 2313 2314 llvm::Constant *getValue() const { 2315 assert(!isReference()); 2316 return ValueAndIsReference.getPointer(); 2317 } 2318 }; 2319 2320 ConstantEmission tryEmitAsConstant(DeclRefExpr *refExpr); 2321 2322 RValue EmitPseudoObjectRValue(const PseudoObjectExpr *e, 2323 AggValueSlot slot = AggValueSlot::ignored()); 2324 LValue EmitPseudoObjectLValue(const PseudoObjectExpr *e); 2325 2326 llvm::Value *EmitIvarOffset(const ObjCInterfaceDecl *Interface, 2327 const ObjCIvarDecl *Ivar); 2328 LValue EmitLValueForField(LValue Base, const FieldDecl* Field); 2329 2330 /// EmitLValueForFieldInitialization - Like EmitLValueForField, except that 2331 /// if the Field is a reference, this will return the address of the reference 2332 /// and not the address of the value stored in the reference. 2333 LValue EmitLValueForFieldInitialization(LValue Base, 2334 const FieldDecl* Field); 2335 2336 LValue EmitLValueForIvar(QualType ObjectTy, 2337 llvm::Value* Base, const ObjCIvarDecl *Ivar, 2338 unsigned CVRQualifiers); 2339 2340 LValue EmitCXXConstructLValue(const CXXConstructExpr *E); 2341 LValue EmitCXXBindTemporaryLValue(const CXXBindTemporaryExpr *E); 2342 LValue EmitLambdaLValue(const LambdaExpr *E); 2343 LValue EmitCXXTypeidLValue(const CXXTypeidExpr *E); 2344 LValue EmitCXXUuidofLValue(const CXXUuidofExpr *E); 2345 2346 LValue EmitObjCMessageExprLValue(const ObjCMessageExpr *E); 2347 LValue EmitObjCIvarRefLValue(const ObjCIvarRefExpr *E); 2348 LValue EmitStmtExprLValue(const StmtExpr *E); 2349 LValue EmitPointerToDataMemberBinaryExpr(const BinaryOperator *E); 2350 LValue EmitObjCSelectorLValue(const ObjCSelectorExpr *E); 2351 void EmitDeclRefExprDbgValue(const DeclRefExpr *E, llvm::Constant *Init); 2352 2353 //===--------------------------------------------------------------------===// 2354 // Scalar Expression Emission 2355 //===--------------------------------------------------------------------===// 2356 2357 /// EmitCall - Generate a call of the given function, expecting the given 2358 /// result type, and using the given argument list which specifies both the 2359 /// LLVM arguments and the types they were derived from. 2360 /// 2361 /// \param TargetDecl - If given, the decl of the function in a direct call; 2362 /// used to set attributes on the call (noreturn, etc.). 2363 RValue EmitCall(const CGFunctionInfo &FnInfo, 2364 llvm::Value *Callee, 2365 ReturnValueSlot ReturnValue, 2366 const CallArgList &Args, 2367 const Decl *TargetDecl = 0, 2368 llvm::Instruction **callOrInvoke = 0); 2369 2370 RValue EmitCall(QualType FnType, llvm::Value *Callee, 2371 ReturnValueSlot ReturnValue, 2372 CallExpr::const_arg_iterator ArgBeg, 2373 CallExpr::const_arg_iterator ArgEnd, 2374 const Decl *TargetDecl = 0); 2375 RValue EmitCallExpr(const CallExpr *E, 2376 ReturnValueSlot ReturnValue = ReturnValueSlot()); 2377 2378 llvm::CallInst *EmitRuntimeCall(llvm::Value *callee, 2379 const Twine &name = ""); 2380 llvm::CallInst *EmitRuntimeCall(llvm::Value *callee, 2381 ArrayRef<llvm::Value*> args, 2382 const Twine &name = ""); 2383 llvm::CallInst *EmitNounwindRuntimeCall(llvm::Value *callee, 2384 const Twine &name = ""); 2385 llvm::CallInst *EmitNounwindRuntimeCall(llvm::Value *callee, 2386 ArrayRef<llvm::Value*> args, 2387 const Twine &name = ""); 2388 2389 llvm::CallSite EmitCallOrInvoke(llvm::Value *Callee, 2390 ArrayRef<llvm::Value *> Args, 2391 const Twine &Name = ""); 2392 llvm::CallSite EmitCallOrInvoke(llvm::Value *Callee, 2393 const Twine &Name = ""); 2394 llvm::CallSite EmitRuntimeCallOrInvoke(llvm::Value *callee, 2395 ArrayRef<llvm::Value*> args, 2396 const Twine &name = ""); 2397 llvm::CallSite EmitRuntimeCallOrInvoke(llvm::Value *callee, 2398 const Twine &name = ""); 2399 void EmitNoreturnRuntimeCallOrInvoke(llvm::Value *callee, 2400 ArrayRef<llvm::Value*> args); 2401 2402 llvm::Value *BuildVirtualCall(const CXXMethodDecl *MD, llvm::Value *This, 2403 llvm::Type *Ty); 2404 llvm::Value *BuildVirtualCall(const CXXDestructorDecl *DD, CXXDtorType Type, 2405 llvm::Value *This, llvm::Type *Ty); 2406 llvm::Value *BuildAppleKextVirtualCall(const CXXMethodDecl *MD, 2407 NestedNameSpecifier *Qual, 2408 llvm::Type *Ty); 2409 2410 llvm::Value *BuildAppleKextVirtualDestructorCall(const CXXDestructorDecl *DD, 2411 CXXDtorType Type, 2412 const CXXRecordDecl *RD); 2413 2414 RValue EmitCXXMemberCall(const CXXMethodDecl *MD, 2415 SourceLocation CallLoc, 2416 llvm::Value *Callee, 2417 ReturnValueSlot ReturnValue, 2418 llvm::Value *This, 2419 llvm::Value *ImplicitParam, 2420 QualType ImplicitParamTy, 2421 CallExpr::const_arg_iterator ArgBeg, 2422 CallExpr::const_arg_iterator ArgEnd); 2423 RValue EmitCXXMemberCallExpr(const CXXMemberCallExpr *E, 2424 ReturnValueSlot ReturnValue); 2425 RValue EmitCXXMemberPointerCallExpr(const CXXMemberCallExpr *E, 2426 ReturnValueSlot ReturnValue); 2427 2428 llvm::Value *EmitCXXOperatorMemberCallee(const CXXOperatorCallExpr *E, 2429 const CXXMethodDecl *MD, 2430 llvm::Value *This); 2431 RValue EmitCXXOperatorMemberCallExpr(const CXXOperatorCallExpr *E, 2432 const CXXMethodDecl *MD, 2433 ReturnValueSlot ReturnValue); 2434 2435 RValue EmitCUDAKernelCallExpr(const CUDAKernelCallExpr *E, 2436 ReturnValueSlot ReturnValue); 2437 2438 2439 RValue EmitBuiltinExpr(const FunctionDecl *FD, 2440 unsigned BuiltinID, const CallExpr *E); 2441 2442 RValue EmitBlockCallExpr(const CallExpr *E, ReturnValueSlot ReturnValue); 2443 2444 /// EmitTargetBuiltinExpr - Emit the given builtin call. Returns 0 if the call 2445 /// is unhandled by the current target. 2446 llvm::Value *EmitTargetBuiltinExpr(unsigned BuiltinID, const CallExpr *E); 2447 2448 llvm::Value *EmitARMBuiltinExpr(unsigned BuiltinID, const CallExpr *E); 2449 llvm::Value *EmitNeonCall(llvm::Function *F, 2450 SmallVectorImpl<llvm::Value*> &O, 2451 const char *name, 2452 unsigned shift = 0, bool rightshift = false); 2453 llvm::Value *EmitNeonSplat(llvm::Value *V, llvm::Constant *Idx); 2454 llvm::Value *EmitNeonShiftVector(llvm::Value *V, llvm::Type *Ty, 2455 bool negateForRightShift); 2456 2457 llvm::Value *BuildVector(ArrayRef<llvm::Value*> Ops); 2458 llvm::Value *EmitX86BuiltinExpr(unsigned BuiltinID, const CallExpr *E); 2459 llvm::Value *EmitPPCBuiltinExpr(unsigned BuiltinID, const CallExpr *E); 2460 2461 llvm::Value *EmitObjCProtocolExpr(const ObjCProtocolExpr *E); 2462 llvm::Value *EmitObjCStringLiteral(const ObjCStringLiteral *E); 2463 llvm::Value *EmitObjCBoxedExpr(const ObjCBoxedExpr *E); 2464 llvm::Value *EmitObjCArrayLiteral(const ObjCArrayLiteral *E); 2465 llvm::Value *EmitObjCDictionaryLiteral(const ObjCDictionaryLiteral *E); 2466 llvm::Value *EmitObjCCollectionLiteral(const Expr *E, 2467 const ObjCMethodDecl *MethodWithObjects); 2468 llvm::Value *EmitObjCSelectorExpr(const ObjCSelectorExpr *E); 2469 RValue EmitObjCMessageExpr(const ObjCMessageExpr *E, 2470 ReturnValueSlot Return = ReturnValueSlot()); 2471 2472 /// Retrieves the default cleanup kind for an ARC cleanup. 2473 /// Except under -fobjc-arc-eh, ARC cleanups are normal-only. 2474 CleanupKind getARCCleanupKind() { 2475 return CGM.getCodeGenOpts().ObjCAutoRefCountExceptions 2476 ? NormalAndEHCleanup : NormalCleanup; 2477 } 2478 2479 // ARC primitives. 2480 void EmitARCInitWeak(llvm::Value *value, llvm::Value *addr); 2481 void EmitARCDestroyWeak(llvm::Value *addr); 2482 llvm::Value *EmitARCLoadWeak(llvm::Value *addr); 2483 llvm::Value *EmitARCLoadWeakRetained(llvm::Value *addr); 2484 llvm::Value *EmitARCStoreWeak(llvm::Value *value, llvm::Value *addr, 2485 bool ignored); 2486 void EmitARCCopyWeak(llvm::Value *dst, llvm::Value *src); 2487 void EmitARCMoveWeak(llvm::Value *dst, llvm::Value *src); 2488 llvm::Value *EmitARCRetainAutorelease(QualType type, llvm::Value *value); 2489 llvm::Value *EmitARCRetainAutoreleaseNonBlock(llvm::Value *value); 2490 llvm::Value *EmitARCStoreStrong(LValue lvalue, llvm::Value *value, 2491 bool resultIgnored); 2492 llvm::Value *EmitARCStoreStrongCall(llvm::Value *addr, llvm::Value *value, 2493 bool resultIgnored); 2494 llvm::Value *EmitARCRetain(QualType type, llvm::Value *value); 2495 llvm::Value *EmitARCRetainNonBlock(llvm::Value *value); 2496 llvm::Value *EmitARCRetainBlock(llvm::Value *value, bool mandatory); 2497 void EmitARCDestroyStrong(llvm::Value *addr, ARCPreciseLifetime_t precise); 2498 void EmitARCRelease(llvm::Value *value, ARCPreciseLifetime_t precise); 2499 llvm::Value *EmitARCAutorelease(llvm::Value *value); 2500 llvm::Value *EmitARCAutoreleaseReturnValue(llvm::Value *value); 2501 llvm::Value *EmitARCRetainAutoreleaseReturnValue(llvm::Value *value); 2502 llvm::Value *EmitARCRetainAutoreleasedReturnValue(llvm::Value *value); 2503 2504 std::pair<LValue,llvm::Value*> 2505 EmitARCStoreAutoreleasing(const BinaryOperator *e); 2506 std::pair<LValue,llvm::Value*> 2507 EmitARCStoreStrong(const BinaryOperator *e, bool ignored); 2508 2509 llvm::Value *EmitObjCThrowOperand(const Expr *expr); 2510 2511 llvm::Value *EmitObjCProduceObject(QualType T, llvm::Value *Ptr); 2512 llvm::Value *EmitObjCConsumeObject(QualType T, llvm::Value *Ptr); 2513 llvm::Value *EmitObjCExtendObjectLifetime(QualType T, llvm::Value *Ptr); 2514 2515 llvm::Value *EmitARCExtendBlockObject(const Expr *expr); 2516 llvm::Value *EmitARCRetainScalarExpr(const Expr *expr); 2517 llvm::Value *EmitARCRetainAutoreleaseScalarExpr(const Expr *expr); 2518 2519 void EmitARCIntrinsicUse(llvm::ArrayRef<llvm::Value*> values); 2520 2521 static Destroyer destroyARCStrongImprecise; 2522 static Destroyer destroyARCStrongPrecise; 2523 static Destroyer destroyARCWeak; 2524 2525 void EmitObjCAutoreleasePoolPop(llvm::Value *Ptr); 2526 llvm::Value *EmitObjCAutoreleasePoolPush(); 2527 llvm::Value *EmitObjCMRRAutoreleasePoolPush(); 2528 void EmitObjCAutoreleasePoolCleanup(llvm::Value *Ptr); 2529 void EmitObjCMRRAutoreleasePoolPop(llvm::Value *Ptr); 2530 2531 /// EmitReferenceBindingToExpr - Emits a reference binding to the passed in 2532 /// expression. Will emit a temporary variable if E is not an LValue. 2533 RValue EmitReferenceBindingToExpr(const Expr* E, 2534 const NamedDecl *InitializedDecl); 2535 2536 //===--------------------------------------------------------------------===// 2537 // Expression Emission 2538 //===--------------------------------------------------------------------===// 2539 2540 // Expressions are broken into three classes: scalar, complex, aggregate. 2541 2542 /// EmitScalarExpr - Emit the computation of the specified expression of LLVM 2543 /// scalar type, returning the result. 2544 llvm::Value *EmitScalarExpr(const Expr *E , bool IgnoreResultAssign = false); 2545 2546 /// EmitScalarConversion - Emit a conversion from the specified type to the 2547 /// specified destination type, both of which are LLVM scalar types. 2548 llvm::Value *EmitScalarConversion(llvm::Value *Src, QualType SrcTy, 2549 QualType DstTy); 2550 2551 /// EmitComplexToScalarConversion - Emit a conversion from the specified 2552 /// complex type to the specified destination type, where the destination type 2553 /// is an LLVM scalar type. 2554 llvm::Value *EmitComplexToScalarConversion(ComplexPairTy Src, QualType SrcTy, 2555 QualType DstTy); 2556 2557 2558 /// EmitAggExpr - Emit the computation of the specified expression 2559 /// of aggregate type. The result is computed into the given slot, 2560 /// which may be null to indicate that the value is not needed. 2561 void EmitAggExpr(const Expr *E, AggValueSlot AS); 2562 2563 /// EmitAggExprToLValue - Emit the computation of the specified expression of 2564 /// aggregate type into a temporary LValue. 2565 LValue EmitAggExprToLValue(const Expr *E); 2566 2567 /// EmitGCMemmoveCollectable - Emit special API for structs with object 2568 /// pointers. 2569 void EmitGCMemmoveCollectable(llvm::Value *DestPtr, llvm::Value *SrcPtr, 2570 QualType Ty); 2571 2572 /// EmitExtendGCLifetime - Given a pointer to an Objective-C object, 2573 /// make sure it survives garbage collection until this point. 2574 void EmitExtendGCLifetime(llvm::Value *object); 2575 2576 /// EmitComplexExpr - Emit the computation of the specified expression of 2577 /// complex type, returning the result. 2578 ComplexPairTy EmitComplexExpr(const Expr *E, 2579 bool IgnoreReal = false, 2580 bool IgnoreImag = false); 2581 2582 /// EmitComplexExprIntoLValue - Emit the given expression of complex 2583 /// type and place its result into the specified l-value. 2584 void EmitComplexExprIntoLValue(const Expr *E, LValue dest, bool isInit); 2585 2586 /// EmitStoreOfComplex - Store a complex number into the specified l-value. 2587 void EmitStoreOfComplex(ComplexPairTy V, LValue dest, bool isInit); 2588 2589 /// EmitLoadOfComplex - Load a complex number from the specified l-value. 2590 ComplexPairTy EmitLoadOfComplex(LValue src); 2591 2592 /// CreateStaticVarDecl - Create a zero-initialized LLVM global for 2593 /// a static local variable. 2594 llvm::GlobalVariable *CreateStaticVarDecl(const VarDecl &D, 2595 const char *Separator, 2596 llvm::GlobalValue::LinkageTypes Linkage); 2597 2598 /// AddInitializerToStaticVarDecl - Add the initializer for 'D' to the 2599 /// global variable that has already been created for it. If the initializer 2600 /// has a different type than GV does, this may free GV and return a different 2601 /// one. Otherwise it just returns GV. 2602 llvm::GlobalVariable * 2603 AddInitializerToStaticVarDecl(const VarDecl &D, 2604 llvm::GlobalVariable *GV); 2605 2606 2607 /// EmitCXXGlobalVarDeclInit - Create the initializer for a C++ 2608 /// variable with global storage. 2609 void EmitCXXGlobalVarDeclInit(const VarDecl &D, llvm::Constant *DeclPtr, 2610 bool PerformInit); 2611 2612 /// Call atexit() with a function that passes the given argument to 2613 /// the given function. 2614 void registerGlobalDtorWithAtExit(llvm::Constant *fn, llvm::Constant *addr); 2615 2616 /// Emit code in this function to perform a guarded variable 2617 /// initialization. Guarded initializations are used when it's not 2618 /// possible to prove that an initialization will be done exactly 2619 /// once, e.g. with a static local variable or a static data member 2620 /// of a class template. 2621 void EmitCXXGuardedInit(const VarDecl &D, llvm::GlobalVariable *DeclPtr, 2622 bool PerformInit); 2623 2624 /// GenerateCXXGlobalInitFunc - Generates code for initializing global 2625 /// variables. 2626 void GenerateCXXGlobalInitFunc(llvm::Function *Fn, 2627 llvm::Constant **Decls, 2628 unsigned NumDecls); 2629 2630 /// GenerateCXXGlobalDtorsFunc - Generates code for destroying global 2631 /// variables. 2632 void GenerateCXXGlobalDtorsFunc(llvm::Function *Fn, 2633 const std::vector<std::pair<llvm::WeakVH, 2634 llvm::Constant*> > &DtorsAndObjects); 2635 2636 void GenerateCXXGlobalVarDeclInitFunc(llvm::Function *Fn, 2637 const VarDecl *D, 2638 llvm::GlobalVariable *Addr, 2639 bool PerformInit); 2640 2641 void EmitCXXConstructExpr(const CXXConstructExpr *E, AggValueSlot Dest); 2642 2643 void EmitSynthesizedCXXCopyCtor(llvm::Value *Dest, llvm::Value *Src, 2644 const Expr *Exp); 2645 2646 void enterFullExpression(const ExprWithCleanups *E) { 2647 if (E->getNumObjects() == 0) return; 2648 enterNonTrivialFullExpression(E); 2649 } 2650 void enterNonTrivialFullExpression(const ExprWithCleanups *E); 2651 2652 void EmitCXXThrowExpr(const CXXThrowExpr *E); 2653 2654 void EmitLambdaExpr(const LambdaExpr *E, AggValueSlot Dest); 2655 2656 RValue EmitAtomicExpr(AtomicExpr *E, llvm::Value *Dest = 0); 2657 2658 //===--------------------------------------------------------------------===// 2659 // Annotations Emission 2660 //===--------------------------------------------------------------------===// 2661 2662 /// Emit an annotation call (intrinsic or builtin). 2663 llvm::Value *EmitAnnotationCall(llvm::Value *AnnotationFn, 2664 llvm::Value *AnnotatedVal, 2665 StringRef AnnotationStr, 2666 SourceLocation Location); 2667 2668 /// Emit local annotations for the local variable V, declared by D. 2669 void EmitVarAnnotations(const VarDecl *D, llvm::Value *V); 2670 2671 /// Emit field annotations for the given field & value. Returns the 2672 /// annotation result. 2673 llvm::Value *EmitFieldAnnotations(const FieldDecl *D, llvm::Value *V); 2674 2675 //===--------------------------------------------------------------------===// 2676 // Internal Helpers 2677 //===--------------------------------------------------------------------===// 2678 2679 /// ContainsLabel - Return true if the statement contains a label in it. If 2680 /// this statement is not executed normally, it not containing a label means 2681 /// that we can just remove the code. 2682 static bool ContainsLabel(const Stmt *S, bool IgnoreCaseStmts = false); 2683 2684 /// containsBreak - Return true if the statement contains a break out of it. 2685 /// If the statement (recursively) contains a switch or loop with a break 2686 /// inside of it, this is fine. 2687 static bool containsBreak(const Stmt *S); 2688 2689 /// ConstantFoldsToSimpleInteger - If the specified expression does not fold 2690 /// to a constant, or if it does but contains a label, return false. If it 2691 /// constant folds return true and set the boolean result in Result. 2692 bool ConstantFoldsToSimpleInteger(const Expr *Cond, bool &Result); 2693 2694 /// ConstantFoldsToSimpleInteger - If the specified expression does not fold 2695 /// to a constant, or if it does but contains a label, return false. If it 2696 /// constant folds return true and set the folded value. 2697 bool ConstantFoldsToSimpleInteger(const Expr *Cond, llvm::APSInt &Result); 2698 2699 /// EmitBranchOnBoolExpr - Emit a branch on a boolean condition (e.g. for an 2700 /// if statement) to the specified blocks. Based on the condition, this might 2701 /// try to simplify the codegen of the conditional based on the branch. 2702 void EmitBranchOnBoolExpr(const Expr *Cond, llvm::BasicBlock *TrueBlock, 2703 llvm::BasicBlock *FalseBlock); 2704 2705 /// \brief Emit a description of a type in a format suitable for passing to 2706 /// a runtime sanitizer handler. 2707 llvm::Constant *EmitCheckTypeDescriptor(QualType T); 2708 2709 /// \brief Convert a value into a format suitable for passing to a runtime 2710 /// sanitizer handler. 2711 llvm::Value *EmitCheckValue(llvm::Value *V); 2712 2713 /// \brief Emit a description of a source location in a format suitable for 2714 /// passing to a runtime sanitizer handler. 2715 llvm::Constant *EmitCheckSourceLocation(SourceLocation Loc); 2716 2717 /// \brief Specify under what conditions this check can be recovered 2718 enum CheckRecoverableKind { 2719 /// Always terminate program execution if this check fails 2720 CRK_Unrecoverable, 2721 /// Check supports recovering, allows user to specify which 2722 CRK_Recoverable, 2723 /// Runtime conditionally aborts, always need to support recovery. 2724 CRK_AlwaysRecoverable 2725 }; 2726 2727 /// \brief Create a basic block that will call a handler function in a 2728 /// sanitizer runtime with the provided arguments, and create a conditional 2729 /// branch to it. 2730 void EmitCheck(llvm::Value *Checked, StringRef CheckName, 2731 ArrayRef<llvm::Constant *> StaticArgs, 2732 ArrayRef<llvm::Value *> DynamicArgs, 2733 CheckRecoverableKind Recoverable); 2734 2735 /// \brief Create a basic block that will call the trap intrinsic, and emit a 2736 /// conditional branch to it, for the -ftrapv checks. 2737 void EmitTrapCheck(llvm::Value *Checked); 2738 2739 /// EmitCallArg - Emit a single call argument. 2740 void EmitCallArg(CallArgList &args, const Expr *E, QualType ArgType); 2741 2742 /// EmitDelegateCallArg - We are performing a delegate call; that 2743 /// is, the current function is delegating to another one. Produce 2744 /// a r-value suitable for passing the given parameter. 2745 void EmitDelegateCallArg(CallArgList &args, const VarDecl *param); 2746 2747 /// SetFPAccuracy - Set the minimum required accuracy of the given floating 2748 /// point operation, expressed as the maximum relative error in ulp. 2749 void SetFPAccuracy(llvm::Value *Val, float Accuracy); 2750 2751 private: 2752 llvm::MDNode *getRangeForLoadFromType(QualType Ty); 2753 void EmitReturnOfRValue(RValue RV, QualType Ty); 2754 2755 /// ExpandTypeFromArgs - Reconstruct a structure of type \arg Ty 2756 /// from function arguments into \arg Dst. See ABIArgInfo::Expand. 2757 /// 2758 /// \param AI - The first function argument of the expansion. 2759 /// \return The argument following the last expanded function 2760 /// argument. 2761 llvm::Function::arg_iterator 2762 ExpandTypeFromArgs(QualType Ty, LValue Dst, 2763 llvm::Function::arg_iterator AI); 2764 2765 /// ExpandTypeToArgs - Expand an RValue \arg Src, with the LLVM type for \arg 2766 /// Ty, into individual arguments on the provided vector \arg Args. See 2767 /// ABIArgInfo::Expand. 2768 void ExpandTypeToArgs(QualType Ty, RValue Src, 2769 SmallVector<llvm::Value*, 16> &Args, 2770 llvm::FunctionType *IRFuncTy); 2771 2772 llvm::Value* EmitAsmInput(const TargetInfo::ConstraintInfo &Info, 2773 const Expr *InputExpr, std::string &ConstraintStr); 2774 2775 llvm::Value* EmitAsmInputLValue(const TargetInfo::ConstraintInfo &Info, 2776 LValue InputValue, QualType InputType, 2777 std::string &ConstraintStr); 2778 2779 /// EmitCallArgs - Emit call arguments for a function. 2780 /// The CallArgTypeInfo parameter is used for iterating over the known 2781 /// argument types of the function being called. 2782 template<typename T> 2783 void EmitCallArgs(CallArgList& Args, const T* CallArgTypeInfo, 2784 CallExpr::const_arg_iterator ArgBeg, 2785 CallExpr::const_arg_iterator ArgEnd) { 2786 CallExpr::const_arg_iterator Arg = ArgBeg; 2787 2788 // First, use the argument types that the type info knows about 2789 if (CallArgTypeInfo) { 2790 for (typename T::arg_type_iterator I = CallArgTypeInfo->arg_type_begin(), 2791 E = CallArgTypeInfo->arg_type_end(); I != E; ++I, ++Arg) { 2792 assert(Arg != ArgEnd && "Running over edge of argument list!"); 2793 QualType ArgType = *I; 2794 #ifndef NDEBUG 2795 QualType ActualArgType = Arg->getType(); 2796 if (ArgType->isPointerType() && ActualArgType->isPointerType()) { 2797 QualType ActualBaseType = 2798 ActualArgType->getAs<PointerType>()->getPointeeType(); 2799 QualType ArgBaseType = 2800 ArgType->getAs<PointerType>()->getPointeeType(); 2801 if (ArgBaseType->isVariableArrayType()) { 2802 if (const VariableArrayType *VAT = 2803 getContext().getAsVariableArrayType(ActualBaseType)) { 2804 if (!VAT->getSizeExpr()) 2805 ActualArgType = ArgType; 2806 } 2807 } 2808 } 2809 assert(getContext().getCanonicalType(ArgType.getNonReferenceType()). 2810 getTypePtr() == 2811 getContext().getCanonicalType(ActualArgType).getTypePtr() && 2812 "type mismatch in call argument!"); 2813 #endif 2814 EmitCallArg(Args, *Arg, ArgType); 2815 } 2816 2817 // Either we've emitted all the call args, or we have a call to a 2818 // variadic function. 2819 assert((Arg == ArgEnd || CallArgTypeInfo->isVariadic()) && 2820 "Extra arguments in non-variadic function!"); 2821 2822 } 2823 2824 // If we still have any arguments, emit them using the type of the argument. 2825 for (; Arg != ArgEnd; ++Arg) 2826 EmitCallArg(Args, *Arg, Arg->getType()); 2827 } 2828 2829 const TargetCodeGenInfo &getTargetHooks() const { 2830 return CGM.getTargetCodeGenInfo(); 2831 } 2832 2833 void EmitDeclMetadata(); 2834 2835 CodeGenModule::ByrefHelpers * 2836 buildByrefHelpers(llvm::StructType &byrefType, 2837 const AutoVarEmission &emission); 2838 2839 void AddObjCARCExceptionMetadata(llvm::Instruction *Inst); 2840 2841 /// GetPointeeAlignment - Given an expression with a pointer type, emit the 2842 /// value and compute our best estimate of the alignment of the pointee. 2843 std::pair<llvm::Value*, unsigned> EmitPointerWithAlignment(const Expr *Addr); 2844 }; 2845 2846 /// Helper class with most of the code for saving a value for a 2847 /// conditional expression cleanup. 2848 struct DominatingLLVMValue { 2849 typedef llvm::PointerIntPair<llvm::Value*, 1, bool> saved_type; 2850 2851 /// Answer whether the given value needs extra work to be saved. 2852 static bool needsSaving(llvm::Value *value) { 2853 // If it's not an instruction, we don't need to save. 2854 if (!isa<llvm::Instruction>(value)) return false; 2855 2856 // If it's an instruction in the entry block, we don't need to save. 2857 llvm::BasicBlock *block = cast<llvm::Instruction>(value)->getParent(); 2858 return (block != &block->getParent()->getEntryBlock()); 2859 } 2860 2861 /// Try to save the given value. 2862 static saved_type save(CodeGenFunction &CGF, llvm::Value *value) { 2863 if (!needsSaving(value)) return saved_type(value, false); 2864 2865 // Otherwise we need an alloca. 2866 llvm::Value *alloca = 2867 CGF.CreateTempAlloca(value->getType(), "cond-cleanup.save"); 2868 CGF.Builder.CreateStore(value, alloca); 2869 2870 return saved_type(alloca, true); 2871 } 2872 2873 static llvm::Value *restore(CodeGenFunction &CGF, saved_type value) { 2874 if (!value.getInt()) return value.getPointer(); 2875 return CGF.Builder.CreateLoad(value.getPointer()); 2876 } 2877 }; 2878 2879 /// A partial specialization of DominatingValue for llvm::Values that 2880 /// might be llvm::Instructions. 2881 template <class T> struct DominatingPointer<T,true> : DominatingLLVMValue { 2882 typedef T *type; 2883 static type restore(CodeGenFunction &CGF, saved_type value) { 2884 return static_cast<T*>(DominatingLLVMValue::restore(CGF, value)); 2885 } 2886 }; 2887 2888 /// A specialization of DominatingValue for RValue. 2889 template <> struct DominatingValue<RValue> { 2890 typedef RValue type; 2891 class saved_type { 2892 enum Kind { ScalarLiteral, ScalarAddress, AggregateLiteral, 2893 AggregateAddress, ComplexAddress }; 2894 2895 llvm::Value *Value; 2896 Kind K; 2897 saved_type(llvm::Value *v, Kind k) : Value(v), K(k) {} 2898 2899 public: 2900 static bool needsSaving(RValue value); 2901 static saved_type save(CodeGenFunction &CGF, RValue value); 2902 RValue restore(CodeGenFunction &CGF); 2903 2904 // implementations in CGExprCXX.cpp 2905 }; 2906 2907 static bool needsSaving(type value) { 2908 return saved_type::needsSaving(value); 2909 } 2910 static saved_type save(CodeGenFunction &CGF, type value) { 2911 return saved_type::save(CGF, value); 2912 } 2913 static type restore(CodeGenFunction &CGF, saved_type value) { 2914 return value.restore(CGF); 2915 } 2916 }; 2917 2918 } // end namespace CodeGen 2919 } // end namespace clang 2920 2921 #endif 2922