1 //===-- CodeGenFunction.h - Per-Function state for LLVM CodeGen -*- C++ -*-===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This is the internal per-function state used for llvm translation.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #ifndef CLANG_CODEGEN_CODEGENFUNCTION_H
15 #define CLANG_CODEGEN_CODEGENFUNCTION_H
16 
17 #include "CGBuilder.h"
18 #include "CGDebugInfo.h"
19 #include "CGValue.h"
20 #include "CodeGenModule.h"
21 #include "CodeGenPGO.h"
22 #include "EHScopeStack.h"
23 #include "clang/AST/CharUnits.h"
24 #include "clang/AST/ExprCXX.h"
25 #include "clang/AST/ExprObjC.h"
26 #include "clang/AST/Type.h"
27 #include "clang/Basic/ABI.h"
28 #include "clang/Basic/CapturedStmt.h"
29 #include "clang/Basic/TargetInfo.h"
30 #include "clang/Frontend/CodeGenOptions.h"
31 #include "llvm/ADT/ArrayRef.h"
32 #include "llvm/ADT/DenseMap.h"
33 #include "llvm/ADT/SmallVector.h"
34 #include "llvm/Support/Debug.h"
35 #include "llvm/Support/ValueHandle.h"
36 
37 namespace llvm {
38   class BasicBlock;
39   class LLVMContext;
40   class MDNode;
41   class Module;
42   class SwitchInst;
43   class Twine;
44   class Value;
45   class CallSite;
46 }
47 
48 namespace clang {
49   class ASTContext;
50   class BlockDecl;
51   class CXXDestructorDecl;
52   class CXXForRangeStmt;
53   class CXXTryStmt;
54   class Decl;
55   class LabelDecl;
56   class EnumConstantDecl;
57   class FunctionDecl;
58   class FunctionProtoType;
59   class LabelStmt;
60   class ObjCContainerDecl;
61   class ObjCInterfaceDecl;
62   class ObjCIvarDecl;
63   class ObjCMethodDecl;
64   class ObjCImplementationDecl;
65   class ObjCPropertyImplDecl;
66   class TargetInfo;
67   class TargetCodeGenInfo;
68   class VarDecl;
69   class ObjCForCollectionStmt;
70   class ObjCAtTryStmt;
71   class ObjCAtThrowStmt;
72   class ObjCAtSynchronizedStmt;
73   class ObjCAutoreleasePoolStmt;
74 
75 namespace CodeGen {
76   class CodeGenTypes;
77   class CGFunctionInfo;
78   class CGRecordLayout;
79   class CGBlockInfo;
80   class CGCXXABI;
81   class BlockFlags;
82   class BlockFieldFlags;
83 
84 /// The kind of evaluation to perform on values of a particular
85 /// type.  Basically, is the code in CGExprScalar, CGExprComplex, or
86 /// CGExprAgg?
87 ///
88 /// TODO: should vectors maybe be split out into their own thing?
89 enum TypeEvaluationKind {
90   TEK_Scalar,
91   TEK_Complex,
92   TEK_Aggregate
93 };
94 
95 /// CodeGenFunction - This class organizes the per-function state that is used
96 /// while generating LLVM code.
97 class CodeGenFunction : public CodeGenTypeCache {
98   CodeGenFunction(const CodeGenFunction &) LLVM_DELETED_FUNCTION;
99   void operator=(const CodeGenFunction &) LLVM_DELETED_FUNCTION;
100 
101   friend class CGCXXABI;
102 public:
103   /// A jump destination is an abstract label, branching to which may
104   /// require a jump out through normal cleanups.
105   struct JumpDest {
106     JumpDest() : Block(0), ScopeDepth(), Index(0) {}
107     JumpDest(llvm::BasicBlock *Block,
108              EHScopeStack::stable_iterator Depth,
109              unsigned Index)
110       : Block(Block), ScopeDepth(Depth), Index(Index) {}
111 
112     bool isValid() const { return Block != 0; }
113     llvm::BasicBlock *getBlock() const { return Block; }
114     EHScopeStack::stable_iterator getScopeDepth() const { return ScopeDepth; }
115     unsigned getDestIndex() const { return Index; }
116 
117     // This should be used cautiously.
118     void setScopeDepth(EHScopeStack::stable_iterator depth) {
119       ScopeDepth = depth;
120     }
121 
122   private:
123     llvm::BasicBlock *Block;
124     EHScopeStack::stable_iterator ScopeDepth;
125     unsigned Index;
126   };
127 
128   CodeGenModule &CGM;  // Per-module state.
129   const TargetInfo &Target;
130 
131   typedef std::pair<llvm::Value *, llvm::Value *> ComplexPairTy;
132   CGBuilderTy Builder;
133 
134   /// CurFuncDecl - Holds the Decl for the current outermost
135   /// non-closure context.
136   const Decl *CurFuncDecl;
137   /// CurCodeDecl - This is the inner-most code context, which includes blocks.
138   const Decl *CurCodeDecl;
139   const CGFunctionInfo *CurFnInfo;
140   QualType FnRetTy;
141   llvm::Function *CurFn;
142 
143   /// CurGD - The GlobalDecl for the current function being compiled.
144   GlobalDecl CurGD;
145 
146   /// PrologueCleanupDepth - The cleanup depth enclosing all the
147   /// cleanups associated with the parameters.
148   EHScopeStack::stable_iterator PrologueCleanupDepth;
149 
150   /// ReturnBlock - Unified return block.
151   JumpDest ReturnBlock;
152 
153   /// ReturnValue - The temporary alloca to hold the return value. This is null
154   /// iff the function has no return value.
155   llvm::Value *ReturnValue;
156 
157   /// AllocaInsertPoint - This is an instruction in the entry block before which
158   /// we prefer to insert allocas.
159   llvm::AssertingVH<llvm::Instruction> AllocaInsertPt;
160 
161   /// \brief API for captured statement code generation.
162   class CGCapturedStmtInfo {
163   public:
164     explicit CGCapturedStmtInfo(const CapturedStmt &S,
165                                 CapturedRegionKind K = CR_Default)
166       : Kind(K), ThisValue(0), CXXThisFieldDecl(0) {
167 
168       RecordDecl::field_iterator Field =
169         S.getCapturedRecordDecl()->field_begin();
170       for (CapturedStmt::const_capture_iterator I = S.capture_begin(),
171                                                 E = S.capture_end();
172            I != E; ++I, ++Field) {
173         if (I->capturesThis())
174           CXXThisFieldDecl = *Field;
175         else
176           CaptureFields[I->getCapturedVar()] = *Field;
177       }
178     }
179 
180     virtual ~CGCapturedStmtInfo();
181 
182     CapturedRegionKind getKind() const { return Kind; }
183 
184     void setContextValue(llvm::Value *V) { ThisValue = V; }
185     // \brief Retrieve the value of the context parameter.
186     llvm::Value *getContextValue() const { return ThisValue; }
187 
188     /// \brief Lookup the captured field decl for a variable.
189     const FieldDecl *lookup(const VarDecl *VD) const {
190       return CaptureFields.lookup(VD);
191     }
192 
193     bool isCXXThisExprCaptured() const { return CXXThisFieldDecl != 0; }
194     FieldDecl *getThisFieldDecl() const { return CXXThisFieldDecl; }
195 
196     /// \brief Emit the captured statement body.
197     virtual void EmitBody(CodeGenFunction &CGF, Stmt *S) {
198       CGF.EmitStmt(S);
199     }
200 
201     /// \brief Get the name of the capture helper.
202     virtual StringRef getHelperName() const { return "__captured_stmt"; }
203 
204   private:
205     /// \brief The kind of captured statement being generated.
206     CapturedRegionKind Kind;
207 
208     /// \brief Keep the map between VarDecl and FieldDecl.
209     llvm::SmallDenseMap<const VarDecl *, FieldDecl *> CaptureFields;
210 
211     /// \brief The base address of the captured record, passed in as the first
212     /// argument of the parallel region function.
213     llvm::Value *ThisValue;
214 
215     /// \brief Captured 'this' type.
216     FieldDecl *CXXThisFieldDecl;
217   };
218   CGCapturedStmtInfo *CapturedStmtInfo;
219 
220   /// BoundsChecking - Emit run-time bounds checks. Higher values mean
221   /// potentially higher performance penalties.
222   unsigned char BoundsChecking;
223 
224   /// \brief Whether any type-checking sanitizers are enabled. If \c false,
225   /// calls to EmitTypeCheck can be skipped.
226   bool SanitizePerformTypeCheck;
227 
228   /// \brief Sanitizer options to use for this function.
229   const SanitizerOptions *SanOpts;
230 
231   /// In ARC, whether we should autorelease the return value.
232   bool AutoreleaseResult;
233 
234   const CodeGen::CGBlockInfo *BlockInfo;
235   llvm::Value *BlockPointer;
236 
237   llvm::DenseMap<const VarDecl *, FieldDecl *> LambdaCaptureFields;
238   FieldDecl *LambdaThisCaptureField;
239 
240   /// \brief A mapping from NRVO variables to the flags used to indicate
241   /// when the NRVO has been applied to this variable.
242   llvm::DenseMap<const VarDecl *, llvm::Value *> NRVOFlags;
243 
244   EHScopeStack EHStack;
245   llvm::SmallVector<char, 256> LifetimeExtendedCleanupStack;
246 
247   /// Header for data within LifetimeExtendedCleanupStack.
248   struct LifetimeExtendedCleanupHeader {
249     /// The size of the following cleanup object.
250     size_t Size : 29;
251     /// The kind of cleanup to push: a value from the CleanupKind enumeration.
252     unsigned Kind : 3;
253 
254     size_t getSize() const { return Size; }
255     CleanupKind getKind() const { return static_cast<CleanupKind>(Kind); }
256   };
257 
258   /// i32s containing the indexes of the cleanup destinations.
259   llvm::AllocaInst *NormalCleanupDest;
260 
261   unsigned NextCleanupDestIndex;
262 
263   /// FirstBlockInfo - The head of a singly-linked-list of block layouts.
264   CGBlockInfo *FirstBlockInfo;
265 
266   /// EHResumeBlock - Unified block containing a call to llvm.eh.resume.
267   llvm::BasicBlock *EHResumeBlock;
268 
269   /// The exception slot.  All landing pads write the current exception pointer
270   /// into this alloca.
271   llvm::Value *ExceptionSlot;
272 
273   /// The selector slot.  Under the MandatoryCleanup model, all landing pads
274   /// write the current selector value into this alloca.
275   llvm::AllocaInst *EHSelectorSlot;
276 
277   /// Emits a landing pad for the current EH stack.
278   llvm::BasicBlock *EmitLandingPad();
279 
280   llvm::BasicBlock *getInvokeDestImpl();
281 
282   template <class T>
283   typename DominatingValue<T>::saved_type saveValueInCond(T value) {
284     return DominatingValue<T>::save(*this, value);
285   }
286 
287 public:
288   /// ObjCEHValueStack - Stack of Objective-C exception values, used for
289   /// rethrows.
290   SmallVector<llvm::Value*, 8> ObjCEHValueStack;
291 
292   /// A class controlling the emission of a finally block.
293   class FinallyInfo {
294     /// Where the catchall's edge through the cleanup should go.
295     JumpDest RethrowDest;
296 
297     /// A function to call to enter the catch.
298     llvm::Constant *BeginCatchFn;
299 
300     /// An i1 variable indicating whether or not the @finally is
301     /// running for an exception.
302     llvm::AllocaInst *ForEHVar;
303 
304     /// An i8* variable into which the exception pointer to rethrow
305     /// has been saved.
306     llvm::AllocaInst *SavedExnVar;
307 
308   public:
309     void enter(CodeGenFunction &CGF, const Stmt *Finally,
310                llvm::Constant *beginCatchFn, llvm::Constant *endCatchFn,
311                llvm::Constant *rethrowFn);
312     void exit(CodeGenFunction &CGF);
313   };
314 
315   /// pushFullExprCleanup - Push a cleanup to be run at the end of the
316   /// current full-expression.  Safe against the possibility that
317   /// we're currently inside a conditionally-evaluated expression.
318   template <class T, class A0>
319   void pushFullExprCleanup(CleanupKind kind, A0 a0) {
320     // If we're not in a conditional branch, or if none of the
321     // arguments requires saving, then use the unconditional cleanup.
322     if (!isInConditionalBranch())
323       return EHStack.pushCleanup<T>(kind, a0);
324 
325     typename DominatingValue<A0>::saved_type a0_saved = saveValueInCond(a0);
326 
327     typedef EHScopeStack::ConditionalCleanup1<T, A0> CleanupType;
328     EHStack.pushCleanup<CleanupType>(kind, a0_saved);
329     initFullExprCleanup();
330   }
331 
332   /// pushFullExprCleanup - Push a cleanup to be run at the end of the
333   /// current full-expression.  Safe against the possibility that
334   /// we're currently inside a conditionally-evaluated expression.
335   template <class T, class A0, class A1>
336   void pushFullExprCleanup(CleanupKind kind, A0 a0, A1 a1) {
337     // If we're not in a conditional branch, or if none of the
338     // arguments requires saving, then use the unconditional cleanup.
339     if (!isInConditionalBranch())
340       return EHStack.pushCleanup<T>(kind, a0, a1);
341 
342     typename DominatingValue<A0>::saved_type a0_saved = saveValueInCond(a0);
343     typename DominatingValue<A1>::saved_type a1_saved = saveValueInCond(a1);
344 
345     typedef EHScopeStack::ConditionalCleanup2<T, A0, A1> CleanupType;
346     EHStack.pushCleanup<CleanupType>(kind, a0_saved, a1_saved);
347     initFullExprCleanup();
348   }
349 
350   /// pushFullExprCleanup - Push a cleanup to be run at the end of the
351   /// current full-expression.  Safe against the possibility that
352   /// we're currently inside a conditionally-evaluated expression.
353   template <class T, class A0, class A1, class A2>
354   void pushFullExprCleanup(CleanupKind kind, A0 a0, A1 a1, A2 a2) {
355     // If we're not in a conditional branch, or if none of the
356     // arguments requires saving, then use the unconditional cleanup.
357     if (!isInConditionalBranch()) {
358       return EHStack.pushCleanup<T>(kind, a0, a1, a2);
359     }
360 
361     typename DominatingValue<A0>::saved_type a0_saved = saveValueInCond(a0);
362     typename DominatingValue<A1>::saved_type a1_saved = saveValueInCond(a1);
363     typename DominatingValue<A2>::saved_type a2_saved = saveValueInCond(a2);
364 
365     typedef EHScopeStack::ConditionalCleanup3<T, A0, A1, A2> CleanupType;
366     EHStack.pushCleanup<CleanupType>(kind, a0_saved, a1_saved, a2_saved);
367     initFullExprCleanup();
368   }
369 
370   /// pushFullExprCleanup - Push a cleanup to be run at the end of the
371   /// current full-expression.  Safe against the possibility that
372   /// we're currently inside a conditionally-evaluated expression.
373   template <class T, class A0, class A1, class A2, class A3>
374   void pushFullExprCleanup(CleanupKind kind, A0 a0, A1 a1, A2 a2, A3 a3) {
375     // If we're not in a conditional branch, or if none of the
376     // arguments requires saving, then use the unconditional cleanup.
377     if (!isInConditionalBranch()) {
378       return EHStack.pushCleanup<T>(kind, a0, a1, a2, a3);
379     }
380 
381     typename DominatingValue<A0>::saved_type a0_saved = saveValueInCond(a0);
382     typename DominatingValue<A1>::saved_type a1_saved = saveValueInCond(a1);
383     typename DominatingValue<A2>::saved_type a2_saved = saveValueInCond(a2);
384     typename DominatingValue<A3>::saved_type a3_saved = saveValueInCond(a3);
385 
386     typedef EHScopeStack::ConditionalCleanup4<T, A0, A1, A2, A3> CleanupType;
387     EHStack.pushCleanup<CleanupType>(kind, a0_saved, a1_saved,
388                                      a2_saved, a3_saved);
389     initFullExprCleanup();
390   }
391 
392   /// \brief Queue a cleanup to be pushed after finishing the current
393   /// full-expression.
394   template <class T, class A0, class A1, class A2, class A3>
395   void pushCleanupAfterFullExpr(CleanupKind Kind, A0 a0, A1 a1, A2 a2, A3 a3) {
396     assert(!isInConditionalBranch() && "can't defer conditional cleanup");
397 
398     LifetimeExtendedCleanupHeader Header = { sizeof(T), Kind };
399 
400     size_t OldSize = LifetimeExtendedCleanupStack.size();
401     LifetimeExtendedCleanupStack.resize(
402         LifetimeExtendedCleanupStack.size() + sizeof(Header) + Header.Size);
403 
404     char *Buffer = &LifetimeExtendedCleanupStack[OldSize];
405     new (Buffer) LifetimeExtendedCleanupHeader(Header);
406     new (Buffer + sizeof(Header)) T(a0, a1, a2, a3);
407   }
408 
409   /// Set up the last cleaup that was pushed as a conditional
410   /// full-expression cleanup.
411   void initFullExprCleanup();
412 
413   /// PushDestructorCleanup - Push a cleanup to call the
414   /// complete-object destructor of an object of the given type at the
415   /// given address.  Does nothing if T is not a C++ class type with a
416   /// non-trivial destructor.
417   void PushDestructorCleanup(QualType T, llvm::Value *Addr);
418 
419   /// PushDestructorCleanup - Push a cleanup to call the
420   /// complete-object variant of the given destructor on the object at
421   /// the given address.
422   void PushDestructorCleanup(const CXXDestructorDecl *Dtor,
423                              llvm::Value *Addr);
424 
425   /// PopCleanupBlock - Will pop the cleanup entry on the stack and
426   /// process all branch fixups.
427   void PopCleanupBlock(bool FallThroughIsBranchThrough = false);
428 
429   /// DeactivateCleanupBlock - Deactivates the given cleanup block.
430   /// The block cannot be reactivated.  Pops it if it's the top of the
431   /// stack.
432   ///
433   /// \param DominatingIP - An instruction which is known to
434   ///   dominate the current IP (if set) and which lies along
435   ///   all paths of execution between the current IP and the
436   ///   the point at which the cleanup comes into scope.
437   void DeactivateCleanupBlock(EHScopeStack::stable_iterator Cleanup,
438                               llvm::Instruction *DominatingIP);
439 
440   /// ActivateCleanupBlock - Activates an initially-inactive cleanup.
441   /// Cannot be used to resurrect a deactivated cleanup.
442   ///
443   /// \param DominatingIP - An instruction which is known to
444   ///   dominate the current IP (if set) and which lies along
445   ///   all paths of execution between the current IP and the
446   ///   the point at which the cleanup comes into scope.
447   void ActivateCleanupBlock(EHScopeStack::stable_iterator Cleanup,
448                             llvm::Instruction *DominatingIP);
449 
450   /// \brief Enters a new scope for capturing cleanups, all of which
451   /// will be executed once the scope is exited.
452   class RunCleanupsScope {
453     EHScopeStack::stable_iterator CleanupStackDepth;
454     size_t LifetimeExtendedCleanupStackSize;
455     bool OldDidCallStackSave;
456   protected:
457     bool PerformCleanup;
458   private:
459 
460     RunCleanupsScope(const RunCleanupsScope &) LLVM_DELETED_FUNCTION;
461     void operator=(const RunCleanupsScope &) LLVM_DELETED_FUNCTION;
462 
463   protected:
464     CodeGenFunction& CGF;
465 
466   public:
467     /// \brief Enter a new cleanup scope.
468     explicit RunCleanupsScope(CodeGenFunction &CGF)
469       : PerformCleanup(true), CGF(CGF)
470     {
471       CleanupStackDepth = CGF.EHStack.stable_begin();
472       LifetimeExtendedCleanupStackSize =
473           CGF.LifetimeExtendedCleanupStack.size();
474       OldDidCallStackSave = CGF.DidCallStackSave;
475       CGF.DidCallStackSave = false;
476     }
477 
478     /// \brief Exit this cleanup scope, emitting any accumulated
479     /// cleanups.
480     ~RunCleanupsScope() {
481       if (PerformCleanup) {
482         CGF.DidCallStackSave = OldDidCallStackSave;
483         CGF.PopCleanupBlocks(CleanupStackDepth,
484                              LifetimeExtendedCleanupStackSize);
485       }
486     }
487 
488     /// \brief Determine whether this scope requires any cleanups.
489     bool requiresCleanups() const {
490       return CGF.EHStack.stable_begin() != CleanupStackDepth;
491     }
492 
493     /// \brief Force the emission of cleanups now, instead of waiting
494     /// until this object is destroyed.
495     void ForceCleanup() {
496       assert(PerformCleanup && "Already forced cleanup");
497       CGF.DidCallStackSave = OldDidCallStackSave;
498       CGF.PopCleanupBlocks(CleanupStackDepth,
499                            LifetimeExtendedCleanupStackSize);
500       PerformCleanup = false;
501     }
502   };
503 
504   class LexicalScope: protected RunCleanupsScope {
505     SourceRange Range;
506     SmallVector<const LabelDecl*, 4> Labels;
507     LexicalScope *ParentScope;
508 
509     LexicalScope(const LexicalScope &) LLVM_DELETED_FUNCTION;
510     void operator=(const LexicalScope &) LLVM_DELETED_FUNCTION;
511 
512   public:
513     /// \brief Enter a new cleanup scope.
514     explicit LexicalScope(CodeGenFunction &CGF, SourceRange Range)
515       : RunCleanupsScope(CGF), Range(Range), ParentScope(CGF.CurLexicalScope) {
516       CGF.CurLexicalScope = this;
517       if (CGDebugInfo *DI = CGF.getDebugInfo())
518         DI->EmitLexicalBlockStart(CGF.Builder, Range.getBegin());
519     }
520 
521     void addLabel(const LabelDecl *label) {
522       assert(PerformCleanup && "adding label to dead scope?");
523       Labels.push_back(label);
524     }
525 
526     /// \brief Exit this cleanup scope, emitting any accumulated
527     /// cleanups.
528     ~LexicalScope() {
529       if (CGDebugInfo *DI = CGF.getDebugInfo())
530         DI->EmitLexicalBlockEnd(CGF.Builder, Range.getEnd());
531 
532       // If we should perform a cleanup, force them now.  Note that
533       // this ends the cleanup scope before rescoping any labels.
534       if (PerformCleanup) ForceCleanup();
535     }
536 
537     /// \brief Force the emission of cleanups now, instead of waiting
538     /// until this object is destroyed.
539     void ForceCleanup() {
540       CGF.CurLexicalScope = ParentScope;
541       RunCleanupsScope::ForceCleanup();
542 
543       if (!Labels.empty())
544         rescopeLabels();
545     }
546 
547     void rescopeLabels();
548   };
549 
550 
551   /// \brief Takes the old cleanup stack size and emits the cleanup blocks
552   /// that have been added.
553   void PopCleanupBlocks(EHScopeStack::stable_iterator OldCleanupStackSize);
554 
555   /// \brief Takes the old cleanup stack size and emits the cleanup blocks
556   /// that have been added, then adds all lifetime-extended cleanups from
557   /// the given position to the stack.
558   void PopCleanupBlocks(EHScopeStack::stable_iterator OldCleanupStackSize,
559                         size_t OldLifetimeExtendedStackSize);
560 
561   void ResolveBranchFixups(llvm::BasicBlock *Target);
562 
563   /// The given basic block lies in the current EH scope, but may be a
564   /// target of a potentially scope-crossing jump; get a stable handle
565   /// to which we can perform this jump later.
566   JumpDest getJumpDestInCurrentScope(llvm::BasicBlock *Target) {
567     return JumpDest(Target,
568                     EHStack.getInnermostNormalCleanup(),
569                     NextCleanupDestIndex++);
570   }
571 
572   /// The given basic block lies in the current EH scope, but may be a
573   /// target of a potentially scope-crossing jump; get a stable handle
574   /// to which we can perform this jump later.
575   JumpDest getJumpDestInCurrentScope(StringRef Name = StringRef()) {
576     return getJumpDestInCurrentScope(createBasicBlock(Name));
577   }
578 
579   /// EmitBranchThroughCleanup - Emit a branch from the current insert
580   /// block through the normal cleanup handling code (if any) and then
581   /// on to \arg Dest.
582   void EmitBranchThroughCleanup(JumpDest Dest);
583 
584   /// popCatchScope - Pops the catch scope at the top of the EHScope
585   /// stack, emitting any required code (other than the catch handlers
586   /// themselves).
587   void popCatchScope();
588 
589   llvm::BasicBlock *getEHResumeBlock(bool isCleanup);
590   llvm::BasicBlock *getEHDispatchBlock(EHScopeStack::stable_iterator scope);
591 
592   /// An object to manage conditionally-evaluated expressions.
593   class ConditionalEvaluation {
594     llvm::BasicBlock *StartBB;
595 
596   public:
597     ConditionalEvaluation(CodeGenFunction &CGF)
598       : StartBB(CGF.Builder.GetInsertBlock()) {}
599 
600     void begin(CodeGenFunction &CGF) {
601       assert(CGF.OutermostConditional != this);
602       if (!CGF.OutermostConditional)
603         CGF.OutermostConditional = this;
604     }
605 
606     void end(CodeGenFunction &CGF) {
607       assert(CGF.OutermostConditional != 0);
608       if (CGF.OutermostConditional == this)
609         CGF.OutermostConditional = 0;
610     }
611 
612     /// Returns a block which will be executed prior to each
613     /// evaluation of the conditional code.
614     llvm::BasicBlock *getStartingBlock() const {
615       return StartBB;
616     }
617   };
618 
619   /// isInConditionalBranch - Return true if we're currently emitting
620   /// one branch or the other of a conditional expression.
621   bool isInConditionalBranch() const { return OutermostConditional != 0; }
622 
623   void setBeforeOutermostConditional(llvm::Value *value, llvm::Value *addr) {
624     assert(isInConditionalBranch());
625     llvm::BasicBlock *block = OutermostConditional->getStartingBlock();
626     new llvm::StoreInst(value, addr, &block->back());
627   }
628 
629   /// An RAII object to record that we're evaluating a statement
630   /// expression.
631   class StmtExprEvaluation {
632     CodeGenFunction &CGF;
633 
634     /// We have to save the outermost conditional: cleanups in a
635     /// statement expression aren't conditional just because the
636     /// StmtExpr is.
637     ConditionalEvaluation *SavedOutermostConditional;
638 
639   public:
640     StmtExprEvaluation(CodeGenFunction &CGF)
641       : CGF(CGF), SavedOutermostConditional(CGF.OutermostConditional) {
642       CGF.OutermostConditional = 0;
643     }
644 
645     ~StmtExprEvaluation() {
646       CGF.OutermostConditional = SavedOutermostConditional;
647       CGF.EnsureInsertPoint();
648     }
649   };
650 
651   /// An object which temporarily prevents a value from being
652   /// destroyed by aggressive peephole optimizations that assume that
653   /// all uses of a value have been realized in the IR.
654   class PeepholeProtection {
655     llvm::Instruction *Inst;
656     friend class CodeGenFunction;
657 
658   public:
659     PeepholeProtection() : Inst(0) {}
660   };
661 
662   /// A non-RAII class containing all the information about a bound
663   /// opaque value.  OpaqueValueMapping, below, is a RAII wrapper for
664   /// this which makes individual mappings very simple; using this
665   /// class directly is useful when you have a variable number of
666   /// opaque values or don't want the RAII functionality for some
667   /// reason.
668   class OpaqueValueMappingData {
669     const OpaqueValueExpr *OpaqueValue;
670     bool BoundLValue;
671     CodeGenFunction::PeepholeProtection Protection;
672 
673     OpaqueValueMappingData(const OpaqueValueExpr *ov,
674                            bool boundLValue)
675       : OpaqueValue(ov), BoundLValue(boundLValue) {}
676   public:
677     OpaqueValueMappingData() : OpaqueValue(0) {}
678 
679     static bool shouldBindAsLValue(const Expr *expr) {
680       // gl-values should be bound as l-values for obvious reasons.
681       // Records should be bound as l-values because IR generation
682       // always keeps them in memory.  Expressions of function type
683       // act exactly like l-values but are formally required to be
684       // r-values in C.
685       return expr->isGLValue() ||
686              expr->getType()->isRecordType() ||
687              expr->getType()->isFunctionType();
688     }
689 
690     static OpaqueValueMappingData bind(CodeGenFunction &CGF,
691                                        const OpaqueValueExpr *ov,
692                                        const Expr *e) {
693       if (shouldBindAsLValue(ov))
694         return bind(CGF, ov, CGF.EmitLValue(e));
695       return bind(CGF, ov, CGF.EmitAnyExpr(e));
696     }
697 
698     static OpaqueValueMappingData bind(CodeGenFunction &CGF,
699                                        const OpaqueValueExpr *ov,
700                                        const LValue &lv) {
701       assert(shouldBindAsLValue(ov));
702       CGF.OpaqueLValues.insert(std::make_pair(ov, lv));
703       return OpaqueValueMappingData(ov, true);
704     }
705 
706     static OpaqueValueMappingData bind(CodeGenFunction &CGF,
707                                        const OpaqueValueExpr *ov,
708                                        const RValue &rv) {
709       assert(!shouldBindAsLValue(ov));
710       CGF.OpaqueRValues.insert(std::make_pair(ov, rv));
711 
712       OpaqueValueMappingData data(ov, false);
713 
714       // Work around an extremely aggressive peephole optimization in
715       // EmitScalarConversion which assumes that all other uses of a
716       // value are extant.
717       data.Protection = CGF.protectFromPeepholes(rv);
718 
719       return data;
720     }
721 
722     bool isValid() const { return OpaqueValue != 0; }
723     void clear() { OpaqueValue = 0; }
724 
725     void unbind(CodeGenFunction &CGF) {
726       assert(OpaqueValue && "no data to unbind!");
727 
728       if (BoundLValue) {
729         CGF.OpaqueLValues.erase(OpaqueValue);
730       } else {
731         CGF.OpaqueRValues.erase(OpaqueValue);
732         CGF.unprotectFromPeepholes(Protection);
733       }
734     }
735   };
736 
737   /// An RAII object to set (and then clear) a mapping for an OpaqueValueExpr.
738   class OpaqueValueMapping {
739     CodeGenFunction &CGF;
740     OpaqueValueMappingData Data;
741 
742   public:
743     static bool shouldBindAsLValue(const Expr *expr) {
744       return OpaqueValueMappingData::shouldBindAsLValue(expr);
745     }
746 
747     /// Build the opaque value mapping for the given conditional
748     /// operator if it's the GNU ?: extension.  This is a common
749     /// enough pattern that the convenience operator is really
750     /// helpful.
751     ///
752     OpaqueValueMapping(CodeGenFunction &CGF,
753                        const AbstractConditionalOperator *op) : CGF(CGF) {
754       if (isa<ConditionalOperator>(op))
755         // Leave Data empty.
756         return;
757 
758       const BinaryConditionalOperator *e = cast<BinaryConditionalOperator>(op);
759       Data = OpaqueValueMappingData::bind(CGF, e->getOpaqueValue(),
760                                           e->getCommon());
761     }
762 
763     OpaqueValueMapping(CodeGenFunction &CGF,
764                        const OpaqueValueExpr *opaqueValue,
765                        LValue lvalue)
766       : CGF(CGF), Data(OpaqueValueMappingData::bind(CGF, opaqueValue, lvalue)) {
767     }
768 
769     OpaqueValueMapping(CodeGenFunction &CGF,
770                        const OpaqueValueExpr *opaqueValue,
771                        RValue rvalue)
772       : CGF(CGF), Data(OpaqueValueMappingData::bind(CGF, opaqueValue, rvalue)) {
773     }
774 
775     void pop() {
776       Data.unbind(CGF);
777       Data.clear();
778     }
779 
780     ~OpaqueValueMapping() {
781       if (Data.isValid()) Data.unbind(CGF);
782     }
783   };
784 
785   /// getByrefValueFieldNumber - Given a declaration, returns the LLVM field
786   /// number that holds the value.
787   unsigned getByRefValueLLVMField(const ValueDecl *VD) const;
788 
789   /// BuildBlockByrefAddress - Computes address location of the
790   /// variable which is declared as __block.
791   llvm::Value *BuildBlockByrefAddress(llvm::Value *BaseAddr,
792                                       const VarDecl *V);
793 private:
794   CGDebugInfo *DebugInfo;
795   bool DisableDebugInfo;
796 
797   /// DidCallStackSave - Whether llvm.stacksave has been called. Used to avoid
798   /// calling llvm.stacksave for multiple VLAs in the same scope.
799   bool DidCallStackSave;
800 
801   /// IndirectBranch - The first time an indirect goto is seen we create a block
802   /// with an indirect branch.  Every time we see the address of a label taken,
803   /// we add the label to the indirect goto.  Every subsequent indirect goto is
804   /// codegen'd as a jump to the IndirectBranch's basic block.
805   llvm::IndirectBrInst *IndirectBranch;
806 
807   /// LocalDeclMap - This keeps track of the LLVM allocas or globals for local C
808   /// decls.
809   typedef llvm::DenseMap<const Decl*, llvm::Value*> DeclMapTy;
810   DeclMapTy LocalDeclMap;
811 
812   /// LabelMap - This keeps track of the LLVM basic block for each C label.
813   llvm::DenseMap<const LabelDecl*, JumpDest> LabelMap;
814 
815   // BreakContinueStack - This keeps track of where break and continue
816   // statements should jump to and the associated base counter for
817   // instrumentation.
818   struct BreakContinue {
819     BreakContinue(JumpDest Break, JumpDest Continue, RegionCounter *LoopCnt,
820                   bool CountBreak = true)
821       : BreakBlock(Break), ContinueBlock(Continue), LoopCnt(LoopCnt),
822         CountBreak(CountBreak) {}
823 
824     JumpDest BreakBlock;
825     JumpDest ContinueBlock;
826     RegionCounter *LoopCnt;
827     bool CountBreak;
828   };
829   SmallVector<BreakContinue, 8> BreakContinueStack;
830 
831   CodeGenPGO PGO;
832 
833 public:
834   /// Get a counter for instrumentation of the region associated with the given
835   /// statement.
836   RegionCounter getPGORegionCounter(const Stmt *S) {
837     return RegionCounter(PGO, S);
838   }
839 private:
840 
841   /// SwitchInsn - This is nearest current switch instruction. It is null if
842   /// current context is not in a switch.
843   llvm::SwitchInst *SwitchInsn;
844   /// The branch weights of SwitchInsn when doing instrumentation based PGO.
845   SmallVector<uint64_t, 16> *SwitchWeights;
846 
847   /// CaseRangeBlock - This block holds if condition check for last case
848   /// statement range in current switch instruction.
849   llvm::BasicBlock *CaseRangeBlock;
850 
851   /// OpaqueLValues - Keeps track of the current set of opaque value
852   /// expressions.
853   llvm::DenseMap<const OpaqueValueExpr *, LValue> OpaqueLValues;
854   llvm::DenseMap<const OpaqueValueExpr *, RValue> OpaqueRValues;
855 
856   // VLASizeMap - This keeps track of the associated size for each VLA type.
857   // We track this by the size expression rather than the type itself because
858   // in certain situations, like a const qualifier applied to an VLA typedef,
859   // multiple VLA types can share the same size expression.
860   // FIXME: Maybe this could be a stack of maps that is pushed/popped as we
861   // enter/leave scopes.
862   llvm::DenseMap<const Expr*, llvm::Value*> VLASizeMap;
863 
864   /// A block containing a single 'unreachable' instruction.  Created
865   /// lazily by getUnreachableBlock().
866   llvm::BasicBlock *UnreachableBlock;
867 
868   /// Counts of the number return expressions in the function.
869   unsigned NumReturnExprs;
870 
871   /// Count the number of simple (constant) return expressions in the function.
872   unsigned NumSimpleReturnExprs;
873 
874   /// The last regular (non-return) debug location (breakpoint) in the function.
875   SourceLocation LastStopPoint;
876 
877 public:
878   /// A scope within which we are constructing the fields of an object which
879   /// might use a CXXDefaultInitExpr. This stashes away a 'this' value to use
880   /// if we need to evaluate a CXXDefaultInitExpr within the evaluation.
881   class FieldConstructionScope {
882   public:
883     FieldConstructionScope(CodeGenFunction &CGF, llvm::Value *This)
884         : CGF(CGF), OldCXXDefaultInitExprThis(CGF.CXXDefaultInitExprThis) {
885       CGF.CXXDefaultInitExprThis = This;
886     }
887     ~FieldConstructionScope() {
888       CGF.CXXDefaultInitExprThis = OldCXXDefaultInitExprThis;
889     }
890 
891   private:
892     CodeGenFunction &CGF;
893     llvm::Value *OldCXXDefaultInitExprThis;
894   };
895 
896   /// The scope of a CXXDefaultInitExpr. Within this scope, the value of 'this'
897   /// is overridden to be the object under construction.
898   class CXXDefaultInitExprScope {
899   public:
900     CXXDefaultInitExprScope(CodeGenFunction &CGF)
901         : CGF(CGF), OldCXXThisValue(CGF.CXXThisValue) {
902       CGF.CXXThisValue = CGF.CXXDefaultInitExprThis;
903     }
904     ~CXXDefaultInitExprScope() {
905       CGF.CXXThisValue = OldCXXThisValue;
906     }
907 
908   public:
909     CodeGenFunction &CGF;
910     llvm::Value *OldCXXThisValue;
911   };
912 
913 private:
914   /// CXXThisDecl - When generating code for a C++ member function,
915   /// this will hold the implicit 'this' declaration.
916   ImplicitParamDecl *CXXABIThisDecl;
917   llvm::Value *CXXABIThisValue;
918   llvm::Value *CXXThisValue;
919 
920   /// The value of 'this' to use when evaluating CXXDefaultInitExprs within
921   /// this expression.
922   llvm::Value *CXXDefaultInitExprThis;
923 
924   /// CXXStructorImplicitParamDecl - When generating code for a constructor or
925   /// destructor, this will hold the implicit argument (e.g. VTT).
926   ImplicitParamDecl *CXXStructorImplicitParamDecl;
927   llvm::Value *CXXStructorImplicitParamValue;
928 
929   /// OutermostConditional - Points to the outermost active
930   /// conditional control.  This is used so that we know if a
931   /// temporary should be destroyed conditionally.
932   ConditionalEvaluation *OutermostConditional;
933 
934   /// The current lexical scope.
935   LexicalScope *CurLexicalScope;
936 
937   /// The current source location that should be used for exception
938   /// handling code.
939   SourceLocation CurEHLocation;
940 
941   /// ByrefValueInfoMap - For each __block variable, contains a pair of the LLVM
942   /// type as well as the field number that contains the actual data.
943   llvm::DenseMap<const ValueDecl *, std::pair<llvm::Type *,
944                                               unsigned> > ByRefValueInfo;
945 
946   llvm::BasicBlock *TerminateLandingPad;
947   llvm::BasicBlock *TerminateHandler;
948   llvm::BasicBlock *TrapBB;
949 
950   /// Add a kernel metadata node to the named metadata node 'opencl.kernels'.
951   /// In the kernel metadata node, reference the kernel function and metadata
952   /// nodes for its optional attribute qualifiers (OpenCL 1.1 6.7.2):
953   /// - A node for the vec_type_hint(<type>) qualifier contains string
954   ///   "vec_type_hint", an undefined value of the <type> data type,
955   ///   and a Boolean that is true if the <type> is integer and signed.
956   /// - A node for the work_group_size_hint(X,Y,Z) qualifier contains string
957   ///   "work_group_size_hint", and three 32-bit integers X, Y and Z.
958   /// - A node for the reqd_work_group_size(X,Y,Z) qualifier contains string
959   ///   "reqd_work_group_size", and three 32-bit integers X, Y and Z.
960   void EmitOpenCLKernelMetadata(const FunctionDecl *FD,
961                                 llvm::Function *Fn);
962 
963 public:
964   CodeGenFunction(CodeGenModule &cgm, bool suppressNewContext=false);
965   ~CodeGenFunction();
966 
967   CodeGenTypes &getTypes() const { return CGM.getTypes(); }
968   ASTContext &getContext() const { return CGM.getContext(); }
969   CGDebugInfo *getDebugInfo() {
970     if (DisableDebugInfo)
971       return NULL;
972     return DebugInfo;
973   }
974   void disableDebugInfo() { DisableDebugInfo = true; }
975   void enableDebugInfo() { DisableDebugInfo = false; }
976 
977   bool shouldUseFusedARCCalls() {
978     return CGM.getCodeGenOpts().OptimizationLevel == 0;
979   }
980 
981   const LangOptions &getLangOpts() const { return CGM.getLangOpts(); }
982 
983   /// Returns a pointer to the function's exception object and selector slot,
984   /// which is assigned in every landing pad.
985   llvm::Value *getExceptionSlot();
986   llvm::Value *getEHSelectorSlot();
987 
988   /// Returns the contents of the function's exception object and selector
989   /// slots.
990   llvm::Value *getExceptionFromSlot();
991   llvm::Value *getSelectorFromSlot();
992 
993   llvm::Value *getNormalCleanupDestSlot();
994 
995   llvm::BasicBlock *getUnreachableBlock() {
996     if (!UnreachableBlock) {
997       UnreachableBlock = createBasicBlock("unreachable");
998       new llvm::UnreachableInst(getLLVMContext(), UnreachableBlock);
999     }
1000     return UnreachableBlock;
1001   }
1002 
1003   llvm::BasicBlock *getInvokeDest() {
1004     if (!EHStack.requiresLandingPad()) return 0;
1005     return getInvokeDestImpl();
1006   }
1007 
1008   const TargetInfo &getTarget() const { return Target; }
1009   llvm::LLVMContext &getLLVMContext() { return CGM.getLLVMContext(); }
1010 
1011   //===--------------------------------------------------------------------===//
1012   //                                  Cleanups
1013   //===--------------------------------------------------------------------===//
1014 
1015   typedef void Destroyer(CodeGenFunction &CGF, llvm::Value *addr, QualType ty);
1016 
1017   void pushIrregularPartialArrayCleanup(llvm::Value *arrayBegin,
1018                                         llvm::Value *arrayEndPointer,
1019                                         QualType elementType,
1020                                         Destroyer *destroyer);
1021   void pushRegularPartialArrayCleanup(llvm::Value *arrayBegin,
1022                                       llvm::Value *arrayEnd,
1023                                       QualType elementType,
1024                                       Destroyer *destroyer);
1025 
1026   void pushDestroy(QualType::DestructionKind dtorKind,
1027                    llvm::Value *addr, QualType type);
1028   void pushEHDestroy(QualType::DestructionKind dtorKind,
1029                      llvm::Value *addr, QualType type);
1030   void pushDestroy(CleanupKind kind, llvm::Value *addr, QualType type,
1031                    Destroyer *destroyer, bool useEHCleanupForArray);
1032   void pushLifetimeExtendedDestroy(CleanupKind kind, llvm::Value *addr,
1033                                    QualType type, Destroyer *destroyer,
1034                                    bool useEHCleanupForArray);
1035   void emitDestroy(llvm::Value *addr, QualType type, Destroyer *destroyer,
1036                    bool useEHCleanupForArray);
1037   llvm::Function *generateDestroyHelper(llvm::Constant *addr, QualType type,
1038                                         Destroyer *destroyer,
1039                                         bool useEHCleanupForArray,
1040                                         const VarDecl *VD);
1041   void emitArrayDestroy(llvm::Value *begin, llvm::Value *end,
1042                         QualType type, Destroyer *destroyer,
1043                         bool checkZeroLength, bool useEHCleanup);
1044 
1045   Destroyer *getDestroyer(QualType::DestructionKind destructionKind);
1046 
1047   /// Determines whether an EH cleanup is required to destroy a type
1048   /// with the given destruction kind.
1049   bool needsEHCleanup(QualType::DestructionKind kind) {
1050     switch (kind) {
1051     case QualType::DK_none:
1052       return false;
1053     case QualType::DK_cxx_destructor:
1054     case QualType::DK_objc_weak_lifetime:
1055       return getLangOpts().Exceptions;
1056     case QualType::DK_objc_strong_lifetime:
1057       return getLangOpts().Exceptions &&
1058              CGM.getCodeGenOpts().ObjCAutoRefCountExceptions;
1059     }
1060     llvm_unreachable("bad destruction kind");
1061   }
1062 
1063   CleanupKind getCleanupKind(QualType::DestructionKind kind) {
1064     return (needsEHCleanup(kind) ? NormalAndEHCleanup : NormalCleanup);
1065   }
1066 
1067   //===--------------------------------------------------------------------===//
1068   //                                  Objective-C
1069   //===--------------------------------------------------------------------===//
1070 
1071   void GenerateObjCMethod(const ObjCMethodDecl *OMD);
1072 
1073   void StartObjCMethod(const ObjCMethodDecl *MD,
1074                        const ObjCContainerDecl *CD,
1075                        SourceLocation StartLoc);
1076 
1077   /// GenerateObjCGetter - Synthesize an Objective-C property getter function.
1078   void GenerateObjCGetter(ObjCImplementationDecl *IMP,
1079                           const ObjCPropertyImplDecl *PID);
1080   void generateObjCGetterBody(const ObjCImplementationDecl *classImpl,
1081                               const ObjCPropertyImplDecl *propImpl,
1082                               const ObjCMethodDecl *GetterMothodDecl,
1083                               llvm::Constant *AtomicHelperFn);
1084 
1085   void GenerateObjCCtorDtorMethod(ObjCImplementationDecl *IMP,
1086                                   ObjCMethodDecl *MD, bool ctor);
1087 
1088   /// GenerateObjCSetter - Synthesize an Objective-C property setter function
1089   /// for the given property.
1090   void GenerateObjCSetter(ObjCImplementationDecl *IMP,
1091                           const ObjCPropertyImplDecl *PID);
1092   void generateObjCSetterBody(const ObjCImplementationDecl *classImpl,
1093                               const ObjCPropertyImplDecl *propImpl,
1094                               llvm::Constant *AtomicHelperFn);
1095   bool IndirectObjCSetterArg(const CGFunctionInfo &FI);
1096   bool IvarTypeWithAggrGCObjects(QualType Ty);
1097 
1098   //===--------------------------------------------------------------------===//
1099   //                                  Block Bits
1100   //===--------------------------------------------------------------------===//
1101 
1102   llvm::Value *EmitBlockLiteral(const BlockExpr *);
1103   llvm::Value *EmitBlockLiteral(const CGBlockInfo &Info);
1104   static void destroyBlockInfos(CGBlockInfo *info);
1105   llvm::Constant *BuildDescriptorBlockDecl(const BlockExpr *,
1106                                            const CGBlockInfo &Info,
1107                                            llvm::StructType *,
1108                                            llvm::Constant *BlockVarLayout);
1109 
1110   llvm::Function *GenerateBlockFunction(GlobalDecl GD,
1111                                         const CGBlockInfo &Info,
1112                                         const DeclMapTy &ldm,
1113                                         bool IsLambdaConversionToBlock);
1114 
1115   llvm::Constant *GenerateCopyHelperFunction(const CGBlockInfo &blockInfo);
1116   llvm::Constant *GenerateDestroyHelperFunction(const CGBlockInfo &blockInfo);
1117   llvm::Constant *GenerateObjCAtomicSetterCopyHelperFunction(
1118                                              const ObjCPropertyImplDecl *PID);
1119   llvm::Constant *GenerateObjCAtomicGetterCopyHelperFunction(
1120                                              const ObjCPropertyImplDecl *PID);
1121   llvm::Value *EmitBlockCopyAndAutorelease(llvm::Value *Block, QualType Ty);
1122 
1123   void BuildBlockRelease(llvm::Value *DeclPtr, BlockFieldFlags flags);
1124 
1125   class AutoVarEmission;
1126 
1127   void emitByrefStructureInit(const AutoVarEmission &emission);
1128   void enterByrefCleanup(const AutoVarEmission &emission);
1129 
1130   llvm::Value *LoadBlockStruct() {
1131     assert(BlockPointer && "no block pointer set!");
1132     return BlockPointer;
1133   }
1134 
1135   void AllocateBlockCXXThisPointer(const CXXThisExpr *E);
1136   void AllocateBlockDecl(const DeclRefExpr *E);
1137   llvm::Value *GetAddrOfBlockDecl(const VarDecl *var, bool ByRef);
1138   llvm::Type *BuildByRefType(const VarDecl *var);
1139 
1140   void GenerateCode(GlobalDecl GD, llvm::Function *Fn,
1141                     const CGFunctionInfo &FnInfo);
1142   void StartFunction(GlobalDecl GD,
1143                      QualType RetTy,
1144                      llvm::Function *Fn,
1145                      const CGFunctionInfo &FnInfo,
1146                      const FunctionArgList &Args,
1147                      SourceLocation StartLoc);
1148 
1149   void EmitConstructorBody(FunctionArgList &Args);
1150   void EmitDestructorBody(FunctionArgList &Args);
1151   void emitImplicitAssignmentOperatorBody(FunctionArgList &Args);
1152   void EmitFunctionBody(FunctionArgList &Args, const Stmt *Body);
1153 
1154   void EmitForwardingCallToLambda(const CXXMethodDecl *LambdaCallOperator,
1155                                   CallArgList &CallArgs);
1156   void EmitLambdaToBlockPointerBody(FunctionArgList &Args);
1157   void EmitLambdaBlockInvokeBody();
1158   void EmitLambdaDelegatingInvokeBody(const CXXMethodDecl *MD);
1159   void EmitLambdaStaticInvokeFunction(const CXXMethodDecl *MD);
1160 
1161   /// EmitReturnBlock - Emit the unified return block, trying to avoid its
1162   /// emission when possible.
1163   void EmitReturnBlock();
1164 
1165   /// FinishFunction - Complete IR generation of the current function. It is
1166   /// legal to call this function even if there is no current insertion point.
1167   void FinishFunction(SourceLocation EndLoc=SourceLocation());
1168 
1169   void StartThunk(llvm::Function *Fn, GlobalDecl GD, const CGFunctionInfo &FnInfo);
1170 
1171   void EmitCallAndReturnForThunk(GlobalDecl GD, llvm::Value *Callee,
1172                                  const ThunkInfo *Thunk);
1173 
1174   /// GenerateThunk - Generate a thunk for the given method.
1175   void GenerateThunk(llvm::Function *Fn, const CGFunctionInfo &FnInfo,
1176                      GlobalDecl GD, const ThunkInfo &Thunk);
1177 
1178   void GenerateVarArgsThunk(llvm::Function *Fn, const CGFunctionInfo &FnInfo,
1179                             GlobalDecl GD, const ThunkInfo &Thunk);
1180 
1181   void EmitCtorPrologue(const CXXConstructorDecl *CD, CXXCtorType Type,
1182                         FunctionArgList &Args);
1183 
1184   void EmitInitializerForField(FieldDecl *Field, LValue LHS, Expr *Init,
1185                                ArrayRef<VarDecl *> ArrayIndexes);
1186 
1187   /// InitializeVTablePointer - Initialize the vtable pointer of the given
1188   /// subobject.
1189   ///
1190   void InitializeVTablePointer(BaseSubobject Base,
1191                                const CXXRecordDecl *NearestVBase,
1192                                CharUnits OffsetFromNearestVBase,
1193                                const CXXRecordDecl *VTableClass);
1194 
1195   typedef llvm::SmallPtrSet<const CXXRecordDecl *, 4> VisitedVirtualBasesSetTy;
1196   void InitializeVTablePointers(BaseSubobject Base,
1197                                 const CXXRecordDecl *NearestVBase,
1198                                 CharUnits OffsetFromNearestVBase,
1199                                 bool BaseIsNonVirtualPrimaryBase,
1200                                 const CXXRecordDecl *VTableClass,
1201                                 VisitedVirtualBasesSetTy& VBases);
1202 
1203   void InitializeVTablePointers(const CXXRecordDecl *ClassDecl);
1204 
1205   /// GetVTablePtr - Return the Value of the vtable pointer member pointed
1206   /// to by This.
1207   llvm::Value *GetVTablePtr(llvm::Value *This, llvm::Type *Ty);
1208 
1209 
1210   /// CanDevirtualizeMemberFunctionCalls - Checks whether virtual calls on given
1211   /// expr can be devirtualized.
1212   bool CanDevirtualizeMemberFunctionCall(const Expr *Base,
1213                                          const CXXMethodDecl *MD);
1214 
1215   /// EnterDtorCleanups - Enter the cleanups necessary to complete the
1216   /// given phase of destruction for a destructor.  The end result
1217   /// should call destructors on members and base classes in reverse
1218   /// order of their construction.
1219   void EnterDtorCleanups(const CXXDestructorDecl *Dtor, CXXDtorType Type);
1220 
1221   /// ShouldInstrumentFunction - Return true if the current function should be
1222   /// instrumented with __cyg_profile_func_* calls
1223   bool ShouldInstrumentFunction();
1224 
1225   /// EmitFunctionInstrumentation - Emit LLVM code to call the specified
1226   /// instrumentation function with the current function and the call site, if
1227   /// function instrumentation is enabled.
1228   void EmitFunctionInstrumentation(const char *Fn);
1229 
1230   /// EmitMCountInstrumentation - Emit call to .mcount.
1231   void EmitMCountInstrumentation();
1232 
1233   /// EmitFunctionProlog - Emit the target specific LLVM code to load the
1234   /// arguments for the given function. This is also responsible for naming the
1235   /// LLVM function arguments.
1236   void EmitFunctionProlog(const CGFunctionInfo &FI,
1237                           llvm::Function *Fn,
1238                           const FunctionArgList &Args);
1239 
1240   /// EmitFunctionEpilog - Emit the target specific LLVM code to return the
1241   /// given temporary.
1242   void EmitFunctionEpilog(const CGFunctionInfo &FI, bool EmitRetDbgLoc,
1243                           SourceLocation EndLoc);
1244 
1245   /// EmitStartEHSpec - Emit the start of the exception spec.
1246   void EmitStartEHSpec(const Decl *D);
1247 
1248   /// EmitEndEHSpec - Emit the end of the exception spec.
1249   void EmitEndEHSpec(const Decl *D);
1250 
1251   /// getTerminateLandingPad - Return a landing pad that just calls terminate.
1252   llvm::BasicBlock *getTerminateLandingPad();
1253 
1254   /// getTerminateHandler - Return a handler (not a landing pad, just
1255   /// a catch handler) that just calls terminate.  This is used when
1256   /// a terminate scope encloses a try.
1257   llvm::BasicBlock *getTerminateHandler();
1258 
1259   llvm::Type *ConvertTypeForMem(QualType T);
1260   llvm::Type *ConvertType(QualType T);
1261   llvm::Type *ConvertType(const TypeDecl *T) {
1262     return ConvertType(getContext().getTypeDeclType(T));
1263   }
1264 
1265   /// LoadObjCSelf - Load the value of self. This function is only valid while
1266   /// generating code for an Objective-C method.
1267   llvm::Value *LoadObjCSelf();
1268 
1269   /// TypeOfSelfObject - Return type of object that this self represents.
1270   QualType TypeOfSelfObject();
1271 
1272   /// hasAggregateLLVMType - Return true if the specified AST type will map into
1273   /// an aggregate LLVM type or is void.
1274   static TypeEvaluationKind getEvaluationKind(QualType T);
1275 
1276   static bool hasScalarEvaluationKind(QualType T) {
1277     return getEvaluationKind(T) == TEK_Scalar;
1278   }
1279 
1280   static bool hasAggregateEvaluationKind(QualType T) {
1281     return getEvaluationKind(T) == TEK_Aggregate;
1282   }
1283 
1284   /// createBasicBlock - Create an LLVM basic block.
1285   llvm::BasicBlock *createBasicBlock(const Twine &name = "",
1286                                      llvm::Function *parent = 0,
1287                                      llvm::BasicBlock *before = 0) {
1288 #ifdef NDEBUG
1289     return llvm::BasicBlock::Create(getLLVMContext(), "", parent, before);
1290 #else
1291     return llvm::BasicBlock::Create(getLLVMContext(), name, parent, before);
1292 #endif
1293   }
1294 
1295   /// getBasicBlockForLabel - Return the LLVM basicblock that the specified
1296   /// label maps to.
1297   JumpDest getJumpDestForLabel(const LabelDecl *S);
1298 
1299   /// SimplifyForwardingBlocks - If the given basic block is only a branch to
1300   /// another basic block, simplify it. This assumes that no other code could
1301   /// potentially reference the basic block.
1302   void SimplifyForwardingBlocks(llvm::BasicBlock *BB);
1303 
1304   /// EmitBlock - Emit the given block \arg BB and set it as the insert point,
1305   /// adding a fall-through branch from the current insert block if
1306   /// necessary. It is legal to call this function even if there is no current
1307   /// insertion point.
1308   ///
1309   /// IsFinished - If true, indicates that the caller has finished emitting
1310   /// branches to the given block and does not expect to emit code into it. This
1311   /// means the block can be ignored if it is unreachable.
1312   void EmitBlock(llvm::BasicBlock *BB, bool IsFinished=false);
1313 
1314   /// EmitBlockAfterUses - Emit the given block somewhere hopefully
1315   /// near its uses, and leave the insertion point in it.
1316   void EmitBlockAfterUses(llvm::BasicBlock *BB);
1317 
1318   /// EmitBranch - Emit a branch to the specified basic block from the current
1319   /// insert block, taking care to avoid creation of branches from dummy
1320   /// blocks. It is legal to call this function even if there is no current
1321   /// insertion point.
1322   ///
1323   /// This function clears the current insertion point. The caller should follow
1324   /// calls to this function with calls to Emit*Block prior to generation new
1325   /// code.
1326   void EmitBranch(llvm::BasicBlock *Block);
1327 
1328   /// HaveInsertPoint - True if an insertion point is defined. If not, this
1329   /// indicates that the current code being emitted is unreachable.
1330   bool HaveInsertPoint() const {
1331     return Builder.GetInsertBlock() != 0;
1332   }
1333 
1334   /// EnsureInsertPoint - Ensure that an insertion point is defined so that
1335   /// emitted IR has a place to go. Note that by definition, if this function
1336   /// creates a block then that block is unreachable; callers may do better to
1337   /// detect when no insertion point is defined and simply skip IR generation.
1338   void EnsureInsertPoint() {
1339     if (!HaveInsertPoint())
1340       EmitBlock(createBasicBlock());
1341   }
1342 
1343   /// ErrorUnsupported - Print out an error that codegen doesn't support the
1344   /// specified stmt yet.
1345   void ErrorUnsupported(const Stmt *S, const char *Type);
1346 
1347   //===--------------------------------------------------------------------===//
1348   //                                  Helpers
1349   //===--------------------------------------------------------------------===//
1350 
1351   LValue MakeAddrLValue(llvm::Value *V, QualType T,
1352                         CharUnits Alignment = CharUnits()) {
1353     return LValue::MakeAddr(V, T, Alignment, getContext(),
1354                             CGM.getTBAAInfo(T));
1355   }
1356 
1357   LValue MakeNaturalAlignAddrLValue(llvm::Value *V, QualType T) {
1358     CharUnits Alignment;
1359     if (!T->isIncompleteType())
1360       Alignment = getContext().getTypeAlignInChars(T);
1361     return LValue::MakeAddr(V, T, Alignment, getContext(),
1362                             CGM.getTBAAInfo(T));
1363   }
1364 
1365   /// CreateTempAlloca - This creates a alloca and inserts it into the entry
1366   /// block. The caller is responsible for setting an appropriate alignment on
1367   /// the alloca.
1368   llvm::AllocaInst *CreateTempAlloca(llvm::Type *Ty,
1369                                      const Twine &Name = "tmp");
1370 
1371   /// InitTempAlloca - Provide an initial value for the given alloca.
1372   void InitTempAlloca(llvm::AllocaInst *Alloca, llvm::Value *Value);
1373 
1374   /// CreateIRTemp - Create a temporary IR object of the given type, with
1375   /// appropriate alignment. This routine should only be used when an temporary
1376   /// value needs to be stored into an alloca (for example, to avoid explicit
1377   /// PHI construction), but the type is the IR type, not the type appropriate
1378   /// for storing in memory.
1379   llvm::AllocaInst *CreateIRTemp(QualType T, const Twine &Name = "tmp");
1380 
1381   /// CreateMemTemp - Create a temporary memory object of the given type, with
1382   /// appropriate alignment.
1383   llvm::AllocaInst *CreateMemTemp(QualType T, const Twine &Name = "tmp");
1384 
1385   /// CreateAggTemp - Create a temporary memory object for the given
1386   /// aggregate type.
1387   AggValueSlot CreateAggTemp(QualType T, const Twine &Name = "tmp") {
1388     CharUnits Alignment = getContext().getTypeAlignInChars(T);
1389     return AggValueSlot::forAddr(CreateMemTemp(T, Name), Alignment,
1390                                  T.getQualifiers(),
1391                                  AggValueSlot::IsNotDestructed,
1392                                  AggValueSlot::DoesNotNeedGCBarriers,
1393                                  AggValueSlot::IsNotAliased);
1394   }
1395 
1396   /// Emit a cast to void* in the appropriate address space.
1397   llvm::Value *EmitCastToVoidPtr(llvm::Value *value);
1398 
1399   /// EvaluateExprAsBool - Perform the usual unary conversions on the specified
1400   /// expression and compare the result against zero, returning an Int1Ty value.
1401   llvm::Value *EvaluateExprAsBool(const Expr *E);
1402 
1403   /// EmitIgnoredExpr - Emit an expression in a context which ignores the result.
1404   void EmitIgnoredExpr(const Expr *E);
1405 
1406   /// EmitAnyExpr - Emit code to compute the specified expression which can have
1407   /// any type.  The result is returned as an RValue struct.  If this is an
1408   /// aggregate expression, the aggloc/agglocvolatile arguments indicate where
1409   /// the result should be returned.
1410   ///
1411   /// \param ignoreResult True if the resulting value isn't used.
1412   RValue EmitAnyExpr(const Expr *E,
1413                      AggValueSlot aggSlot = AggValueSlot::ignored(),
1414                      bool ignoreResult = false);
1415 
1416   // EmitVAListRef - Emit a "reference" to a va_list; this is either the address
1417   // or the value of the expression, depending on how va_list is defined.
1418   llvm::Value *EmitVAListRef(const Expr *E);
1419 
1420   /// EmitAnyExprToTemp - Similary to EmitAnyExpr(), however, the result will
1421   /// always be accessible even if no aggregate location is provided.
1422   RValue EmitAnyExprToTemp(const Expr *E);
1423 
1424   /// EmitAnyExprToMem - Emits the code necessary to evaluate an
1425   /// arbitrary expression into the given memory location.
1426   void EmitAnyExprToMem(const Expr *E, llvm::Value *Location,
1427                         Qualifiers Quals, bool IsInitializer);
1428 
1429   /// EmitExprAsInit - Emits the code necessary to initialize a
1430   /// location in memory with the given initializer.
1431   void EmitExprAsInit(const Expr *init, const ValueDecl *D,
1432                       LValue lvalue, bool capturedByInit);
1433 
1434   /// hasVolatileMember - returns true if aggregate type has a volatile
1435   /// member.
1436   bool hasVolatileMember(QualType T) {
1437     if (const RecordType *RT = T->getAs<RecordType>()) {
1438       const RecordDecl *RD = cast<RecordDecl>(RT->getDecl());
1439       return RD->hasVolatileMember();
1440     }
1441     return false;
1442   }
1443   /// EmitAggregateCopy - Emit an aggregate assignment.
1444   ///
1445   /// The difference to EmitAggregateCopy is that tail padding is not copied.
1446   /// This is required for correctness when assigning non-POD structures in C++.
1447   void EmitAggregateAssign(llvm::Value *DestPtr, llvm::Value *SrcPtr,
1448                            QualType EltTy) {
1449     bool IsVolatile = hasVolatileMember(EltTy);
1450     EmitAggregateCopy(DestPtr, SrcPtr, EltTy, IsVolatile, CharUnits::Zero(),
1451                       true);
1452   }
1453 
1454   /// EmitAggregateCopy - Emit an aggregate copy.
1455   ///
1456   /// \param isVolatile - True iff either the source or the destination is
1457   /// volatile.
1458   /// \param isAssignment - If false, allow padding to be copied.  This often
1459   /// yields more efficient.
1460   void EmitAggregateCopy(llvm::Value *DestPtr, llvm::Value *SrcPtr,
1461                          QualType EltTy, bool isVolatile=false,
1462                          CharUnits Alignment = CharUnits::Zero(),
1463                          bool isAssignment = false);
1464 
1465   /// StartBlock - Start new block named N. If insert block is a dummy block
1466   /// then reuse it.
1467   void StartBlock(const char *N);
1468 
1469   /// GetAddrOfLocalVar - Return the address of a local variable.
1470   llvm::Value *GetAddrOfLocalVar(const VarDecl *VD) {
1471     llvm::Value *Res = LocalDeclMap[VD];
1472     assert(Res && "Invalid argument to GetAddrOfLocalVar(), no decl!");
1473     return Res;
1474   }
1475 
1476   /// getOpaqueLValueMapping - Given an opaque value expression (which
1477   /// must be mapped to an l-value), return its mapping.
1478   const LValue &getOpaqueLValueMapping(const OpaqueValueExpr *e) {
1479     assert(OpaqueValueMapping::shouldBindAsLValue(e));
1480 
1481     llvm::DenseMap<const OpaqueValueExpr*,LValue>::iterator
1482       it = OpaqueLValues.find(e);
1483     assert(it != OpaqueLValues.end() && "no mapping for opaque value!");
1484     return it->second;
1485   }
1486 
1487   /// getOpaqueRValueMapping - Given an opaque value expression (which
1488   /// must be mapped to an r-value), return its mapping.
1489   const RValue &getOpaqueRValueMapping(const OpaqueValueExpr *e) {
1490     assert(!OpaqueValueMapping::shouldBindAsLValue(e));
1491 
1492     llvm::DenseMap<const OpaqueValueExpr*,RValue>::iterator
1493       it = OpaqueRValues.find(e);
1494     assert(it != OpaqueRValues.end() && "no mapping for opaque value!");
1495     return it->second;
1496   }
1497 
1498   /// getAccessedFieldNo - Given an encoded value and a result number, return
1499   /// the input field number being accessed.
1500   static unsigned getAccessedFieldNo(unsigned Idx, const llvm::Constant *Elts);
1501 
1502   llvm::BlockAddress *GetAddrOfLabel(const LabelDecl *L);
1503   llvm::BasicBlock *GetIndirectGotoBlock();
1504 
1505   /// EmitNullInitialization - Generate code to set a value of the given type to
1506   /// null, If the type contains data member pointers, they will be initialized
1507   /// to -1 in accordance with the Itanium C++ ABI.
1508   void EmitNullInitialization(llvm::Value *DestPtr, QualType Ty);
1509 
1510   // EmitVAArg - Generate code to get an argument from the passed in pointer
1511   // and update it accordingly. The return value is a pointer to the argument.
1512   // FIXME: We should be able to get rid of this method and use the va_arg
1513   // instruction in LLVM instead once it works well enough.
1514   llvm::Value *EmitVAArg(llvm::Value *VAListAddr, QualType Ty);
1515 
1516   /// emitArrayLength - Compute the length of an array, even if it's a
1517   /// VLA, and drill down to the base element type.
1518   llvm::Value *emitArrayLength(const ArrayType *arrayType,
1519                                QualType &baseType,
1520                                llvm::Value *&addr);
1521 
1522   /// EmitVLASize - Capture all the sizes for the VLA expressions in
1523   /// the given variably-modified type and store them in the VLASizeMap.
1524   ///
1525   /// This function can be called with a null (unreachable) insert point.
1526   void EmitVariablyModifiedType(QualType Ty);
1527 
1528   /// getVLASize - Returns an LLVM value that corresponds to the size,
1529   /// in non-variably-sized elements, of a variable length array type,
1530   /// plus that largest non-variably-sized element type.  Assumes that
1531   /// the type has already been emitted with EmitVariablyModifiedType.
1532   std::pair<llvm::Value*,QualType> getVLASize(const VariableArrayType *vla);
1533   std::pair<llvm::Value*,QualType> getVLASize(QualType vla);
1534 
1535   /// LoadCXXThis - Load the value of 'this'. This function is only valid while
1536   /// generating code for an C++ member function.
1537   llvm::Value *LoadCXXThis() {
1538     assert(CXXThisValue && "no 'this' value for this function");
1539     return CXXThisValue;
1540   }
1541 
1542   /// LoadCXXVTT - Load the VTT parameter to base constructors/destructors have
1543   /// virtual bases.
1544   // FIXME: Every place that calls LoadCXXVTT is something
1545   // that needs to be abstracted properly.
1546   llvm::Value *LoadCXXVTT() {
1547     assert(CXXStructorImplicitParamValue && "no VTT value for this function");
1548     return CXXStructorImplicitParamValue;
1549   }
1550 
1551   /// LoadCXXStructorImplicitParam - Load the implicit parameter
1552   /// for a constructor/destructor.
1553   llvm::Value *LoadCXXStructorImplicitParam() {
1554     assert(CXXStructorImplicitParamValue &&
1555            "no implicit argument value for this function");
1556     return CXXStructorImplicitParamValue;
1557   }
1558 
1559   /// GetAddressOfBaseOfCompleteClass - Convert the given pointer to a
1560   /// complete class to the given direct base.
1561   llvm::Value *
1562   GetAddressOfDirectBaseInCompleteClass(llvm::Value *Value,
1563                                         const CXXRecordDecl *Derived,
1564                                         const CXXRecordDecl *Base,
1565                                         bool BaseIsVirtual);
1566 
1567   /// GetAddressOfBaseClass - This function will add the necessary delta to the
1568   /// load of 'this' and returns address of the base class.
1569   llvm::Value *GetAddressOfBaseClass(llvm::Value *Value,
1570                                      const CXXRecordDecl *Derived,
1571                                      CastExpr::path_const_iterator PathBegin,
1572                                      CastExpr::path_const_iterator PathEnd,
1573                                      bool NullCheckValue);
1574 
1575   llvm::Value *GetAddressOfDerivedClass(llvm::Value *Value,
1576                                         const CXXRecordDecl *Derived,
1577                                         CastExpr::path_const_iterator PathBegin,
1578                                         CastExpr::path_const_iterator PathEnd,
1579                                         bool NullCheckValue);
1580 
1581   /// GetVTTParameter - Return the VTT parameter that should be passed to a
1582   /// base constructor/destructor with virtual bases.
1583   /// FIXME: VTTs are Itanium ABI-specific, so the definition should move
1584   /// to ItaniumCXXABI.cpp together with all the references to VTT.
1585   llvm::Value *GetVTTParameter(GlobalDecl GD, bool ForVirtualBase,
1586                                bool Delegating);
1587 
1588   void EmitDelegateCXXConstructorCall(const CXXConstructorDecl *Ctor,
1589                                       CXXCtorType CtorType,
1590                                       const FunctionArgList &Args,
1591                                       SourceLocation Loc);
1592   // It's important not to confuse this and the previous function. Delegating
1593   // constructors are the C++0x feature. The constructor delegate optimization
1594   // is used to reduce duplication in the base and complete consturctors where
1595   // they are substantially the same.
1596   void EmitDelegatingCXXConstructorCall(const CXXConstructorDecl *Ctor,
1597                                         const FunctionArgList &Args);
1598   void EmitCXXConstructorCall(const CXXConstructorDecl *D, CXXCtorType Type,
1599                               bool ForVirtualBase, bool Delegating,
1600                               llvm::Value *This,
1601                               CallExpr::const_arg_iterator ArgBeg,
1602                               CallExpr::const_arg_iterator ArgEnd);
1603 
1604   void EmitSynthesizedCXXCopyCtorCall(const CXXConstructorDecl *D,
1605                               llvm::Value *This, llvm::Value *Src,
1606                               CallExpr::const_arg_iterator ArgBeg,
1607                               CallExpr::const_arg_iterator ArgEnd);
1608 
1609   void EmitCXXAggrConstructorCall(const CXXConstructorDecl *D,
1610                                   const ConstantArrayType *ArrayTy,
1611                                   llvm::Value *ArrayPtr,
1612                                   CallExpr::const_arg_iterator ArgBeg,
1613                                   CallExpr::const_arg_iterator ArgEnd,
1614                                   bool ZeroInitialization = false);
1615 
1616   void EmitCXXAggrConstructorCall(const CXXConstructorDecl *D,
1617                                   llvm::Value *NumElements,
1618                                   llvm::Value *ArrayPtr,
1619                                   CallExpr::const_arg_iterator ArgBeg,
1620                                   CallExpr::const_arg_iterator ArgEnd,
1621                                   bool ZeroInitialization = false);
1622 
1623   static Destroyer destroyCXXObject;
1624 
1625   void EmitCXXDestructorCall(const CXXDestructorDecl *D, CXXDtorType Type,
1626                              bool ForVirtualBase, bool Delegating,
1627                              llvm::Value *This);
1628 
1629   void EmitNewArrayInitializer(const CXXNewExpr *E, QualType elementType,
1630                                llvm::Value *NewPtr, llvm::Value *NumElements);
1631 
1632   void EmitCXXTemporary(const CXXTemporary *Temporary, QualType TempType,
1633                         llvm::Value *Ptr);
1634 
1635   llvm::Value *EmitCXXNewExpr(const CXXNewExpr *E);
1636   void EmitCXXDeleteExpr(const CXXDeleteExpr *E);
1637 
1638   void EmitDeleteCall(const FunctionDecl *DeleteFD, llvm::Value *Ptr,
1639                       QualType DeleteTy);
1640 
1641   llvm::Value* EmitCXXTypeidExpr(const CXXTypeidExpr *E);
1642   llvm::Value *EmitDynamicCast(llvm::Value *V, const CXXDynamicCastExpr *DCE);
1643   llvm::Value* EmitCXXUuidofExpr(const CXXUuidofExpr *E);
1644 
1645   /// \brief Situations in which we might emit a check for the suitability of a
1646   ///        pointer or glvalue.
1647   enum TypeCheckKind {
1648     /// Checking the operand of a load. Must be suitably sized and aligned.
1649     TCK_Load,
1650     /// Checking the destination of a store. Must be suitably sized and aligned.
1651     TCK_Store,
1652     /// Checking the bound value in a reference binding. Must be suitably sized
1653     /// and aligned, but is not required to refer to an object (until the
1654     /// reference is used), per core issue 453.
1655     TCK_ReferenceBinding,
1656     /// Checking the object expression in a non-static data member access. Must
1657     /// be an object within its lifetime.
1658     TCK_MemberAccess,
1659     /// Checking the 'this' pointer for a call to a non-static member function.
1660     /// Must be an object within its lifetime.
1661     TCK_MemberCall,
1662     /// Checking the 'this' pointer for a constructor call.
1663     TCK_ConstructorCall,
1664     /// Checking the operand of a static_cast to a derived pointer type. Must be
1665     /// null or an object within its lifetime.
1666     TCK_DowncastPointer,
1667     /// Checking the operand of a static_cast to a derived reference type. Must
1668     /// be an object within its lifetime.
1669     TCK_DowncastReference
1670   };
1671 
1672   /// \brief Emit a check that \p V is the address of storage of the
1673   /// appropriate size and alignment for an object of type \p Type.
1674   void EmitTypeCheck(TypeCheckKind TCK, SourceLocation Loc, llvm::Value *V,
1675                      QualType Type, CharUnits Alignment = CharUnits::Zero());
1676 
1677   /// \brief Emit a check that \p Base points into an array object, which
1678   /// we can access at index \p Index. \p Accessed should be \c false if we
1679   /// this expression is used as an lvalue, for instance in "&Arr[Idx]".
1680   void EmitBoundsCheck(const Expr *E, const Expr *Base, llvm::Value *Index,
1681                        QualType IndexType, bool Accessed);
1682 
1683   llvm::Value *EmitScalarPrePostIncDec(const UnaryOperator *E, LValue LV,
1684                                        bool isInc, bool isPre);
1685   ComplexPairTy EmitComplexPrePostIncDec(const UnaryOperator *E, LValue LV,
1686                                          bool isInc, bool isPre);
1687   //===--------------------------------------------------------------------===//
1688   //                            Declaration Emission
1689   //===--------------------------------------------------------------------===//
1690 
1691   /// EmitDecl - Emit a declaration.
1692   ///
1693   /// This function can be called with a null (unreachable) insert point.
1694   void EmitDecl(const Decl &D);
1695 
1696   /// EmitVarDecl - Emit a local variable declaration.
1697   ///
1698   /// This function can be called with a null (unreachable) insert point.
1699   void EmitVarDecl(const VarDecl &D);
1700 
1701   void EmitScalarInit(const Expr *init, const ValueDecl *D,
1702                       LValue lvalue, bool capturedByInit);
1703   void EmitScalarInit(llvm::Value *init, LValue lvalue);
1704 
1705   typedef void SpecialInitFn(CodeGenFunction &Init, const VarDecl &D,
1706                              llvm::Value *Address);
1707 
1708   /// EmitAutoVarDecl - Emit an auto variable declaration.
1709   ///
1710   /// This function can be called with a null (unreachable) insert point.
1711   void EmitAutoVarDecl(const VarDecl &D);
1712 
1713   class AutoVarEmission {
1714     friend class CodeGenFunction;
1715 
1716     const VarDecl *Variable;
1717 
1718     /// The alignment of the variable.
1719     CharUnits Alignment;
1720 
1721     /// The address of the alloca.  Null if the variable was emitted
1722     /// as a global constant.
1723     llvm::Value *Address;
1724 
1725     llvm::Value *NRVOFlag;
1726 
1727     /// True if the variable is a __block variable.
1728     bool IsByRef;
1729 
1730     /// True if the variable is of aggregate type and has a constant
1731     /// initializer.
1732     bool IsConstantAggregate;
1733 
1734     /// Non-null if we should use lifetime annotations.
1735     llvm::Value *SizeForLifetimeMarkers;
1736 
1737     struct Invalid {};
1738     AutoVarEmission(Invalid) : Variable(0) {}
1739 
1740     AutoVarEmission(const VarDecl &variable)
1741       : Variable(&variable), Address(0), NRVOFlag(0),
1742         IsByRef(false), IsConstantAggregate(false),
1743         SizeForLifetimeMarkers(0) {}
1744 
1745     bool wasEmittedAsGlobal() const { return Address == 0; }
1746 
1747   public:
1748     static AutoVarEmission invalid() { return AutoVarEmission(Invalid()); }
1749 
1750     bool useLifetimeMarkers() const { return SizeForLifetimeMarkers != 0; }
1751     llvm::Value *getSizeForLifetimeMarkers() const {
1752       assert(useLifetimeMarkers());
1753       return SizeForLifetimeMarkers;
1754     }
1755 
1756     /// Returns the raw, allocated address, which is not necessarily
1757     /// the address of the object itself.
1758     llvm::Value *getAllocatedAddress() const {
1759       return Address;
1760     }
1761 
1762     /// Returns the address of the object within this declaration.
1763     /// Note that this does not chase the forwarding pointer for
1764     /// __block decls.
1765     llvm::Value *getObjectAddress(CodeGenFunction &CGF) const {
1766       if (!IsByRef) return Address;
1767 
1768       return CGF.Builder.CreateStructGEP(Address,
1769                                          CGF.getByRefValueLLVMField(Variable),
1770                                          Variable->getNameAsString());
1771     }
1772   };
1773   AutoVarEmission EmitAutoVarAlloca(const VarDecl &var);
1774   void EmitAutoVarInit(const AutoVarEmission &emission);
1775   void EmitAutoVarCleanups(const AutoVarEmission &emission);
1776   void emitAutoVarTypeCleanup(const AutoVarEmission &emission,
1777                               QualType::DestructionKind dtorKind);
1778 
1779   void EmitStaticVarDecl(const VarDecl &D,
1780                          llvm::GlobalValue::LinkageTypes Linkage);
1781 
1782   /// EmitParmDecl - Emit a ParmVarDecl or an ImplicitParamDecl.
1783   void EmitParmDecl(const VarDecl &D, llvm::Value *Arg, unsigned ArgNo);
1784 
1785   /// protectFromPeepholes - Protect a value that we're intending to
1786   /// store to the side, but which will probably be used later, from
1787   /// aggressive peepholing optimizations that might delete it.
1788   ///
1789   /// Pass the result to unprotectFromPeepholes to declare that
1790   /// protection is no longer required.
1791   ///
1792   /// There's no particular reason why this shouldn't apply to
1793   /// l-values, it's just that no existing peepholes work on pointers.
1794   PeepholeProtection protectFromPeepholes(RValue rvalue);
1795   void unprotectFromPeepholes(PeepholeProtection protection);
1796 
1797   //===--------------------------------------------------------------------===//
1798   //                             Statement Emission
1799   //===--------------------------------------------------------------------===//
1800 
1801   /// EmitStopPoint - Emit a debug stoppoint if we are emitting debug info.
1802   void EmitStopPoint(const Stmt *S);
1803 
1804   /// EmitStmt - Emit the code for the statement \arg S. It is legal to call
1805   /// this function even if there is no current insertion point.
1806   ///
1807   /// This function may clear the current insertion point; callers should use
1808   /// EnsureInsertPoint if they wish to subsequently generate code without first
1809   /// calling EmitBlock, EmitBranch, or EmitStmt.
1810   void EmitStmt(const Stmt *S);
1811 
1812   /// EmitSimpleStmt - Try to emit a "simple" statement which does not
1813   /// necessarily require an insertion point or debug information; typically
1814   /// because the statement amounts to a jump or a container of other
1815   /// statements.
1816   ///
1817   /// \return True if the statement was handled.
1818   bool EmitSimpleStmt(const Stmt *S);
1819 
1820   llvm::Value *EmitCompoundStmt(const CompoundStmt &S, bool GetLast = false,
1821                                 AggValueSlot AVS = AggValueSlot::ignored());
1822   llvm::Value *EmitCompoundStmtWithoutScope(const CompoundStmt &S,
1823                                             bool GetLast = false,
1824                                             AggValueSlot AVS =
1825                                                 AggValueSlot::ignored());
1826 
1827   /// EmitLabel - Emit the block for the given label. It is legal to call this
1828   /// function even if there is no current insertion point.
1829   void EmitLabel(const LabelDecl *D); // helper for EmitLabelStmt.
1830 
1831   void EmitLabelStmt(const LabelStmt &S);
1832   void EmitAttributedStmt(const AttributedStmt &S);
1833   void EmitGotoStmt(const GotoStmt &S);
1834   void EmitIndirectGotoStmt(const IndirectGotoStmt &S);
1835   void EmitIfStmt(const IfStmt &S);
1836   void EmitWhileStmt(const WhileStmt &S);
1837   void EmitDoStmt(const DoStmt &S);
1838   void EmitForStmt(const ForStmt &S);
1839   void EmitReturnStmt(const ReturnStmt &S);
1840   void EmitDeclStmt(const DeclStmt &S);
1841   void EmitBreakStmt(const BreakStmt &S);
1842   void EmitContinueStmt(const ContinueStmt &S);
1843   void EmitSwitchStmt(const SwitchStmt &S);
1844   void EmitDefaultStmt(const DefaultStmt &S);
1845   void EmitCaseStmt(const CaseStmt &S);
1846   void EmitCaseStmtRange(const CaseStmt &S);
1847   void EmitAsmStmt(const AsmStmt &S);
1848 
1849   void EmitObjCForCollectionStmt(const ObjCForCollectionStmt &S);
1850   void EmitObjCAtTryStmt(const ObjCAtTryStmt &S);
1851   void EmitObjCAtThrowStmt(const ObjCAtThrowStmt &S);
1852   void EmitObjCAtSynchronizedStmt(const ObjCAtSynchronizedStmt &S);
1853   void EmitObjCAutoreleasePoolStmt(const ObjCAutoreleasePoolStmt &S);
1854 
1855   llvm::Constant *getUnwindResumeFn();
1856   llvm::Constant *getUnwindResumeOrRethrowFn();
1857   void EnterCXXTryStmt(const CXXTryStmt &S, bool IsFnTryBlock = false);
1858   void ExitCXXTryStmt(const CXXTryStmt &S, bool IsFnTryBlock = false);
1859 
1860   void EmitCXXTryStmt(const CXXTryStmt &S);
1861   void EmitSEHTryStmt(const SEHTryStmt &S);
1862   void EmitCXXForRangeStmt(const CXXForRangeStmt &S);
1863 
1864   llvm::Function *EmitCapturedStmt(const CapturedStmt &S, CapturedRegionKind K);
1865   llvm::Function *GenerateCapturedStmtFunction(const CapturedDecl *CD,
1866                                                const RecordDecl *RD,
1867                                                SourceLocation Loc);
1868 
1869   //===--------------------------------------------------------------------===//
1870   //                         LValue Expression Emission
1871   //===--------------------------------------------------------------------===//
1872 
1873   /// GetUndefRValue - Get an appropriate 'undef' rvalue for the given type.
1874   RValue GetUndefRValue(QualType Ty);
1875 
1876   /// EmitUnsupportedRValue - Emit a dummy r-value using the type of E
1877   /// and issue an ErrorUnsupported style diagnostic (using the
1878   /// provided Name).
1879   RValue EmitUnsupportedRValue(const Expr *E,
1880                                const char *Name);
1881 
1882   /// EmitUnsupportedLValue - Emit a dummy l-value using the type of E and issue
1883   /// an ErrorUnsupported style diagnostic (using the provided Name).
1884   LValue EmitUnsupportedLValue(const Expr *E,
1885                                const char *Name);
1886 
1887   /// EmitLValue - Emit code to compute a designator that specifies the location
1888   /// of the expression.
1889   ///
1890   /// This can return one of two things: a simple address or a bitfield
1891   /// reference.  In either case, the LLVM Value* in the LValue structure is
1892   /// guaranteed to be an LLVM pointer type.
1893   ///
1894   /// If this returns a bitfield reference, nothing about the pointee type of
1895   /// the LLVM value is known: For example, it may not be a pointer to an
1896   /// integer.
1897   ///
1898   /// If this returns a normal address, and if the lvalue's C type is fixed
1899   /// size, this method guarantees that the returned pointer type will point to
1900   /// an LLVM type of the same size of the lvalue's type.  If the lvalue has a
1901   /// variable length type, this is not possible.
1902   ///
1903   LValue EmitLValue(const Expr *E);
1904 
1905   /// \brief Same as EmitLValue but additionally we generate checking code to
1906   /// guard against undefined behavior.  This is only suitable when we know
1907   /// that the address will be used to access the object.
1908   LValue EmitCheckedLValue(const Expr *E, TypeCheckKind TCK);
1909 
1910   RValue convertTempToRValue(llvm::Value *addr, QualType type,
1911                              SourceLocation Loc);
1912 
1913   void EmitAtomicInit(Expr *E, LValue lvalue);
1914 
1915   RValue EmitAtomicLoad(LValue lvalue, SourceLocation loc,
1916                         AggValueSlot slot = AggValueSlot::ignored());
1917 
1918   void EmitAtomicStore(RValue rvalue, LValue lvalue, bool isInit);
1919 
1920   /// EmitToMemory - Change a scalar value from its value
1921   /// representation to its in-memory representation.
1922   llvm::Value *EmitToMemory(llvm::Value *Value, QualType Ty);
1923 
1924   /// EmitFromMemory - Change a scalar value from its memory
1925   /// representation to its value representation.
1926   llvm::Value *EmitFromMemory(llvm::Value *Value, QualType Ty);
1927 
1928   /// EmitLoadOfScalar - Load a scalar value from an address, taking
1929   /// care to appropriately convert from the memory representation to
1930   /// the LLVM value representation.
1931   llvm::Value *EmitLoadOfScalar(llvm::Value *Addr, bool Volatile,
1932                                 unsigned Alignment, QualType Ty,
1933                                 SourceLocation Loc,
1934                                 llvm::MDNode *TBAAInfo = 0,
1935                                 QualType TBAABaseTy = QualType(),
1936                                 uint64_t TBAAOffset = 0);
1937 
1938   /// EmitLoadOfScalar - Load a scalar value from an address, taking
1939   /// care to appropriately convert from the memory representation to
1940   /// the LLVM value representation.  The l-value must be a simple
1941   /// l-value.
1942   llvm::Value *EmitLoadOfScalar(LValue lvalue, SourceLocation Loc);
1943 
1944   /// EmitStoreOfScalar - Store a scalar value to an address, taking
1945   /// care to appropriately convert from the memory representation to
1946   /// the LLVM value representation.
1947   void EmitStoreOfScalar(llvm::Value *Value, llvm::Value *Addr,
1948                          bool Volatile, unsigned Alignment, QualType Ty,
1949                          llvm::MDNode *TBAAInfo = 0, bool isInit = false,
1950                          QualType TBAABaseTy = QualType(),
1951                          uint64_t TBAAOffset = 0);
1952 
1953   /// EmitStoreOfScalar - Store a scalar value to an address, taking
1954   /// care to appropriately convert from the memory representation to
1955   /// the LLVM value representation.  The l-value must be a simple
1956   /// l-value.  The isInit flag indicates whether this is an initialization.
1957   /// If so, atomic qualifiers are ignored and the store is always non-atomic.
1958   void EmitStoreOfScalar(llvm::Value *value, LValue lvalue, bool isInit=false);
1959 
1960   /// EmitLoadOfLValue - Given an expression that represents a value lvalue,
1961   /// this method emits the address of the lvalue, then loads the result as an
1962   /// rvalue, returning the rvalue.
1963   RValue EmitLoadOfLValue(LValue V, SourceLocation Loc);
1964   RValue EmitLoadOfExtVectorElementLValue(LValue V);
1965   RValue EmitLoadOfBitfieldLValue(LValue LV);
1966 
1967   /// EmitStoreThroughLValue - Store the specified rvalue into the specified
1968   /// lvalue, where both are guaranteed to the have the same type, and that type
1969   /// is 'Ty'.
1970   void EmitStoreThroughLValue(RValue Src, LValue Dst, bool isInit=false);
1971   void EmitStoreThroughExtVectorComponentLValue(RValue Src, LValue Dst);
1972 
1973   /// EmitStoreThroughBitfieldLValue - Store Src into Dst with same constraints
1974   /// as EmitStoreThroughLValue.
1975   ///
1976   /// \param Result [out] - If non-null, this will be set to a Value* for the
1977   /// bit-field contents after the store, appropriate for use as the result of
1978   /// an assignment to the bit-field.
1979   void EmitStoreThroughBitfieldLValue(RValue Src, LValue Dst,
1980                                       llvm::Value **Result=0);
1981 
1982   /// Emit an l-value for an assignment (simple or compound) of complex type.
1983   LValue EmitComplexAssignmentLValue(const BinaryOperator *E);
1984   LValue EmitComplexCompoundAssignmentLValue(const CompoundAssignOperator *E);
1985   LValue EmitScalarCompooundAssignWithComplex(const CompoundAssignOperator *E,
1986                                               llvm::Value *&Result);
1987 
1988   // Note: only available for agg return types
1989   LValue EmitBinaryOperatorLValue(const BinaryOperator *E);
1990   LValue EmitCompoundAssignmentLValue(const CompoundAssignOperator *E);
1991   // Note: only available for agg return types
1992   LValue EmitCallExprLValue(const CallExpr *E);
1993   // Note: only available for agg return types
1994   LValue EmitVAArgExprLValue(const VAArgExpr *E);
1995   LValue EmitDeclRefLValue(const DeclRefExpr *E);
1996   LValue EmitStringLiteralLValue(const StringLiteral *E);
1997   LValue EmitObjCEncodeExprLValue(const ObjCEncodeExpr *E);
1998   LValue EmitPredefinedLValue(const PredefinedExpr *E);
1999   LValue EmitUnaryOpLValue(const UnaryOperator *E);
2000   LValue EmitArraySubscriptExpr(const ArraySubscriptExpr *E,
2001                                 bool Accessed = false);
2002   LValue EmitExtVectorElementExpr(const ExtVectorElementExpr *E);
2003   LValue EmitMemberExpr(const MemberExpr *E);
2004   LValue EmitObjCIsaExpr(const ObjCIsaExpr *E);
2005   LValue EmitCompoundLiteralLValue(const CompoundLiteralExpr *E);
2006   LValue EmitInitListLValue(const InitListExpr *E);
2007   LValue EmitConditionalOperatorLValue(const AbstractConditionalOperator *E);
2008   LValue EmitCastLValue(const CastExpr *E);
2009   LValue EmitMaterializeTemporaryExpr(const MaterializeTemporaryExpr *E);
2010   LValue EmitOpaqueValueLValue(const OpaqueValueExpr *e);
2011 
2012   RValue EmitRValueForField(LValue LV, const FieldDecl *FD, SourceLocation Loc);
2013 
2014   class ConstantEmission {
2015     llvm::PointerIntPair<llvm::Constant*, 1, bool> ValueAndIsReference;
2016     ConstantEmission(llvm::Constant *C, bool isReference)
2017       : ValueAndIsReference(C, isReference) {}
2018   public:
2019     ConstantEmission() {}
2020     static ConstantEmission forReference(llvm::Constant *C) {
2021       return ConstantEmission(C, true);
2022     }
2023     static ConstantEmission forValue(llvm::Constant *C) {
2024       return ConstantEmission(C, false);
2025     }
2026 
2027     LLVM_EXPLICIT operator bool() const { return ValueAndIsReference.getOpaqueValue() != 0; }
2028 
2029     bool isReference() const { return ValueAndIsReference.getInt(); }
2030     LValue getReferenceLValue(CodeGenFunction &CGF, Expr *refExpr) const {
2031       assert(isReference());
2032       return CGF.MakeNaturalAlignAddrLValue(ValueAndIsReference.getPointer(),
2033                                             refExpr->getType());
2034     }
2035 
2036     llvm::Constant *getValue() const {
2037       assert(!isReference());
2038       return ValueAndIsReference.getPointer();
2039     }
2040   };
2041 
2042   ConstantEmission tryEmitAsConstant(DeclRefExpr *refExpr);
2043 
2044   RValue EmitPseudoObjectRValue(const PseudoObjectExpr *e,
2045                                 AggValueSlot slot = AggValueSlot::ignored());
2046   LValue EmitPseudoObjectLValue(const PseudoObjectExpr *e);
2047 
2048   llvm::Value *EmitIvarOffset(const ObjCInterfaceDecl *Interface,
2049                               const ObjCIvarDecl *Ivar);
2050   LValue EmitLValueForField(LValue Base, const FieldDecl* Field);
2051   LValue EmitLValueForLambdaField(const FieldDecl *Field);
2052 
2053   /// EmitLValueForFieldInitialization - Like EmitLValueForField, except that
2054   /// if the Field is a reference, this will return the address of the reference
2055   /// and not the address of the value stored in the reference.
2056   LValue EmitLValueForFieldInitialization(LValue Base,
2057                                           const FieldDecl* Field);
2058 
2059   LValue EmitLValueForIvar(QualType ObjectTy,
2060                            llvm::Value* Base, const ObjCIvarDecl *Ivar,
2061                            unsigned CVRQualifiers);
2062 
2063   LValue EmitCXXConstructLValue(const CXXConstructExpr *E);
2064   LValue EmitCXXBindTemporaryLValue(const CXXBindTemporaryExpr *E);
2065   LValue EmitLambdaLValue(const LambdaExpr *E);
2066   LValue EmitCXXTypeidLValue(const CXXTypeidExpr *E);
2067   LValue EmitCXXUuidofLValue(const CXXUuidofExpr *E);
2068 
2069   LValue EmitObjCMessageExprLValue(const ObjCMessageExpr *E);
2070   LValue EmitObjCIvarRefLValue(const ObjCIvarRefExpr *E);
2071   LValue EmitStmtExprLValue(const StmtExpr *E);
2072   LValue EmitPointerToDataMemberBinaryExpr(const BinaryOperator *E);
2073   LValue EmitObjCSelectorLValue(const ObjCSelectorExpr *E);
2074   void   EmitDeclRefExprDbgValue(const DeclRefExpr *E, llvm::Constant *Init);
2075 
2076   //===--------------------------------------------------------------------===//
2077   //                         Scalar Expression Emission
2078   //===--------------------------------------------------------------------===//
2079 
2080   /// EmitCall - Generate a call of the given function, expecting the given
2081   /// result type, and using the given argument list which specifies both the
2082   /// LLVM arguments and the types they were derived from.
2083   ///
2084   /// \param TargetDecl - If given, the decl of the function in a direct call;
2085   /// used to set attributes on the call (noreturn, etc.).
2086   RValue EmitCall(const CGFunctionInfo &FnInfo,
2087                   llvm::Value *Callee,
2088                   ReturnValueSlot ReturnValue,
2089                   const CallArgList &Args,
2090                   const Decl *TargetDecl = 0,
2091                   llvm::Instruction **callOrInvoke = 0);
2092 
2093   RValue EmitCall(QualType FnType, llvm::Value *Callee,
2094                   SourceLocation CallLoc,
2095                   ReturnValueSlot ReturnValue,
2096                   CallExpr::const_arg_iterator ArgBeg,
2097                   CallExpr::const_arg_iterator ArgEnd,
2098                   const Decl *TargetDecl = 0);
2099   RValue EmitCallExpr(const CallExpr *E,
2100                       ReturnValueSlot ReturnValue = ReturnValueSlot());
2101 
2102   llvm::CallInst *EmitRuntimeCall(llvm::Value *callee,
2103                                   const Twine &name = "");
2104   llvm::CallInst *EmitRuntimeCall(llvm::Value *callee,
2105                                   ArrayRef<llvm::Value*> args,
2106                                   const Twine &name = "");
2107   llvm::CallInst *EmitNounwindRuntimeCall(llvm::Value *callee,
2108                                           const Twine &name = "");
2109   llvm::CallInst *EmitNounwindRuntimeCall(llvm::Value *callee,
2110                                           ArrayRef<llvm::Value*> args,
2111                                           const Twine &name = "");
2112 
2113   llvm::CallSite EmitCallOrInvoke(llvm::Value *Callee,
2114                                   ArrayRef<llvm::Value *> Args,
2115                                   const Twine &Name = "");
2116   llvm::CallSite EmitCallOrInvoke(llvm::Value *Callee,
2117                                   const Twine &Name = "");
2118   llvm::CallSite EmitRuntimeCallOrInvoke(llvm::Value *callee,
2119                                          ArrayRef<llvm::Value*> args,
2120                                          const Twine &name = "");
2121   llvm::CallSite EmitRuntimeCallOrInvoke(llvm::Value *callee,
2122                                          const Twine &name = "");
2123   void EmitNoreturnRuntimeCallOrInvoke(llvm::Value *callee,
2124                                        ArrayRef<llvm::Value*> args);
2125 
2126   llvm::Value *BuildAppleKextVirtualCall(const CXXMethodDecl *MD,
2127                                          NestedNameSpecifier *Qual,
2128                                          llvm::Type *Ty);
2129 
2130   llvm::Value *BuildAppleKextVirtualDestructorCall(const CXXDestructorDecl *DD,
2131                                                    CXXDtorType Type,
2132                                                    const CXXRecordDecl *RD);
2133 
2134   RValue EmitCXXMemberCall(const CXXMethodDecl *MD,
2135                            SourceLocation CallLoc,
2136                            llvm::Value *Callee,
2137                            ReturnValueSlot ReturnValue,
2138                            llvm::Value *This,
2139                            llvm::Value *ImplicitParam,
2140                            QualType ImplicitParamTy,
2141                            CallExpr::const_arg_iterator ArgBeg,
2142                            CallExpr::const_arg_iterator ArgEnd);
2143   RValue EmitCXXMemberCallExpr(const CXXMemberCallExpr *E,
2144                                ReturnValueSlot ReturnValue);
2145   RValue EmitCXXMemberPointerCallExpr(const CXXMemberCallExpr *E,
2146                                       ReturnValueSlot ReturnValue);
2147 
2148   llvm::Value *EmitCXXOperatorMemberCallee(const CXXOperatorCallExpr *E,
2149                                            const CXXMethodDecl *MD,
2150                                            llvm::Value *This);
2151   RValue EmitCXXOperatorMemberCallExpr(const CXXOperatorCallExpr *E,
2152                                        const CXXMethodDecl *MD,
2153                                        ReturnValueSlot ReturnValue);
2154 
2155   RValue EmitCUDAKernelCallExpr(const CUDAKernelCallExpr *E,
2156                                 ReturnValueSlot ReturnValue);
2157 
2158 
2159   RValue EmitBuiltinExpr(const FunctionDecl *FD,
2160                          unsigned BuiltinID, const CallExpr *E);
2161 
2162   RValue EmitBlockCallExpr(const CallExpr *E, ReturnValueSlot ReturnValue);
2163 
2164   /// EmitTargetBuiltinExpr - Emit the given builtin call. Returns 0 if the call
2165   /// is unhandled by the current target.
2166   llvm::Value *EmitTargetBuiltinExpr(unsigned BuiltinID, const CallExpr *E);
2167 
2168   llvm::Value *EmitAArch64CompareBuiltinExpr(llvm::Value *Op, llvm::Type *Ty,
2169                                              const llvm::CmpInst::Predicate Fp,
2170                                              const llvm::CmpInst::Predicate Ip,
2171                                              const llvm::Twine &Name = "");
2172   llvm::Value *EmitAArch64CompareBuiltinExpr(llvm::Value *Op, llvm::Type *Ty);
2173   llvm::Value *EmitAArch64BuiltinExpr(unsigned BuiltinID, const CallExpr *E);
2174   llvm::Value *EmitARMBuiltinExpr(unsigned BuiltinID, const CallExpr *E);
2175   llvm::Value *EmitNeonCall(llvm::Function *F,
2176                             SmallVectorImpl<llvm::Value*> &O,
2177                             const char *name,
2178                             unsigned shift = 0, bool rightshift = false);
2179   llvm::Value *EmitNeonSplat(llvm::Value *V, llvm::Constant *Idx);
2180   llvm::Value *EmitNeonShiftVector(llvm::Value *V, llvm::Type *Ty,
2181                                    bool negateForRightShift);
2182   llvm::Value *EmitNeonRShiftImm(llvm::Value *Vec, llvm::Value *Amt,
2183                                  llvm::Type *Ty, bool usgn, const char *name);
2184 
2185   llvm::Value *BuildVector(ArrayRef<llvm::Value*> Ops);
2186   llvm::Value *EmitX86BuiltinExpr(unsigned BuiltinID, const CallExpr *E);
2187   llvm::Value *EmitPPCBuiltinExpr(unsigned BuiltinID, const CallExpr *E);
2188 
2189   llvm::Value *EmitObjCProtocolExpr(const ObjCProtocolExpr *E);
2190   llvm::Value *EmitObjCStringLiteral(const ObjCStringLiteral *E);
2191   llvm::Value *EmitObjCBoxedExpr(const ObjCBoxedExpr *E);
2192   llvm::Value *EmitObjCArrayLiteral(const ObjCArrayLiteral *E);
2193   llvm::Value *EmitObjCDictionaryLiteral(const ObjCDictionaryLiteral *E);
2194   llvm::Value *EmitObjCCollectionLiteral(const Expr *E,
2195                                 const ObjCMethodDecl *MethodWithObjects);
2196   llvm::Value *EmitObjCSelectorExpr(const ObjCSelectorExpr *E);
2197   RValue EmitObjCMessageExpr(const ObjCMessageExpr *E,
2198                              ReturnValueSlot Return = ReturnValueSlot());
2199 
2200   /// Retrieves the default cleanup kind for an ARC cleanup.
2201   /// Except under -fobjc-arc-eh, ARC cleanups are normal-only.
2202   CleanupKind getARCCleanupKind() {
2203     return CGM.getCodeGenOpts().ObjCAutoRefCountExceptions
2204              ? NormalAndEHCleanup : NormalCleanup;
2205   }
2206 
2207   // ARC primitives.
2208   void EmitARCInitWeak(llvm::Value *value, llvm::Value *addr);
2209   void EmitARCDestroyWeak(llvm::Value *addr);
2210   llvm::Value *EmitARCLoadWeak(llvm::Value *addr);
2211   llvm::Value *EmitARCLoadWeakRetained(llvm::Value *addr);
2212   llvm::Value *EmitARCStoreWeak(llvm::Value *value, llvm::Value *addr,
2213                                 bool ignored);
2214   void EmitARCCopyWeak(llvm::Value *dst, llvm::Value *src);
2215   void EmitARCMoveWeak(llvm::Value *dst, llvm::Value *src);
2216   llvm::Value *EmitARCRetainAutorelease(QualType type, llvm::Value *value);
2217   llvm::Value *EmitARCRetainAutoreleaseNonBlock(llvm::Value *value);
2218   llvm::Value *EmitARCStoreStrong(LValue lvalue, llvm::Value *value,
2219                                   bool resultIgnored);
2220   llvm::Value *EmitARCStoreStrongCall(llvm::Value *addr, llvm::Value *value,
2221                                       bool resultIgnored);
2222   llvm::Value *EmitARCRetain(QualType type, llvm::Value *value);
2223   llvm::Value *EmitARCRetainNonBlock(llvm::Value *value);
2224   llvm::Value *EmitARCRetainBlock(llvm::Value *value, bool mandatory);
2225   void EmitARCDestroyStrong(llvm::Value *addr, ARCPreciseLifetime_t precise);
2226   void EmitARCRelease(llvm::Value *value, ARCPreciseLifetime_t precise);
2227   llvm::Value *EmitARCAutorelease(llvm::Value *value);
2228   llvm::Value *EmitARCAutoreleaseReturnValue(llvm::Value *value);
2229   llvm::Value *EmitARCRetainAutoreleaseReturnValue(llvm::Value *value);
2230   llvm::Value *EmitARCRetainAutoreleasedReturnValue(llvm::Value *value);
2231 
2232   std::pair<LValue,llvm::Value*>
2233   EmitARCStoreAutoreleasing(const BinaryOperator *e);
2234   std::pair<LValue,llvm::Value*>
2235   EmitARCStoreStrong(const BinaryOperator *e, bool ignored);
2236 
2237   llvm::Value *EmitObjCThrowOperand(const Expr *expr);
2238 
2239   llvm::Value *EmitObjCProduceObject(QualType T, llvm::Value *Ptr);
2240   llvm::Value *EmitObjCConsumeObject(QualType T, llvm::Value *Ptr);
2241   llvm::Value *EmitObjCExtendObjectLifetime(QualType T, llvm::Value *Ptr);
2242 
2243   llvm::Value *EmitARCExtendBlockObject(const Expr *expr);
2244   llvm::Value *EmitARCRetainScalarExpr(const Expr *expr);
2245   llvm::Value *EmitARCRetainAutoreleaseScalarExpr(const Expr *expr);
2246 
2247   void EmitARCIntrinsicUse(llvm::ArrayRef<llvm::Value*> values);
2248 
2249   static Destroyer destroyARCStrongImprecise;
2250   static Destroyer destroyARCStrongPrecise;
2251   static Destroyer destroyARCWeak;
2252 
2253   void EmitObjCAutoreleasePoolPop(llvm::Value *Ptr);
2254   llvm::Value *EmitObjCAutoreleasePoolPush();
2255   llvm::Value *EmitObjCMRRAutoreleasePoolPush();
2256   void EmitObjCAutoreleasePoolCleanup(llvm::Value *Ptr);
2257   void EmitObjCMRRAutoreleasePoolPop(llvm::Value *Ptr);
2258 
2259   /// \brief Emits a reference binding to the passed in expression.
2260   RValue EmitReferenceBindingToExpr(const Expr *E);
2261 
2262   //===--------------------------------------------------------------------===//
2263   //                           Expression Emission
2264   //===--------------------------------------------------------------------===//
2265 
2266   // Expressions are broken into three classes: scalar, complex, aggregate.
2267 
2268   /// EmitScalarExpr - Emit the computation of the specified expression of LLVM
2269   /// scalar type, returning the result.
2270   llvm::Value *EmitScalarExpr(const Expr *E , bool IgnoreResultAssign = false);
2271 
2272   /// EmitScalarConversion - Emit a conversion from the specified type to the
2273   /// specified destination type, both of which are LLVM scalar types.
2274   llvm::Value *EmitScalarConversion(llvm::Value *Src, QualType SrcTy,
2275                                     QualType DstTy);
2276 
2277   /// EmitComplexToScalarConversion - Emit a conversion from the specified
2278   /// complex type to the specified destination type, where the destination type
2279   /// is an LLVM scalar type.
2280   llvm::Value *EmitComplexToScalarConversion(ComplexPairTy Src, QualType SrcTy,
2281                                              QualType DstTy);
2282 
2283 
2284   /// EmitAggExpr - Emit the computation of the specified expression
2285   /// of aggregate type.  The result is computed into the given slot,
2286   /// which may be null to indicate that the value is not needed.
2287   void EmitAggExpr(const Expr *E, AggValueSlot AS);
2288 
2289   /// EmitAggExprToLValue - Emit the computation of the specified expression of
2290   /// aggregate type into a temporary LValue.
2291   LValue EmitAggExprToLValue(const Expr *E);
2292 
2293   /// EmitGCMemmoveCollectable - Emit special API for structs with object
2294   /// pointers.
2295   void EmitGCMemmoveCollectable(llvm::Value *DestPtr, llvm::Value *SrcPtr,
2296                                 QualType Ty);
2297 
2298   /// EmitExtendGCLifetime - Given a pointer to an Objective-C object,
2299   /// make sure it survives garbage collection until this point.
2300   void EmitExtendGCLifetime(llvm::Value *object);
2301 
2302   /// EmitComplexExpr - Emit the computation of the specified expression of
2303   /// complex type, returning the result.
2304   ComplexPairTy EmitComplexExpr(const Expr *E,
2305                                 bool IgnoreReal = false,
2306                                 bool IgnoreImag = false);
2307 
2308   /// EmitComplexExprIntoLValue - Emit the given expression of complex
2309   /// type and place its result into the specified l-value.
2310   void EmitComplexExprIntoLValue(const Expr *E, LValue dest, bool isInit);
2311 
2312   /// EmitStoreOfComplex - Store a complex number into the specified l-value.
2313   void EmitStoreOfComplex(ComplexPairTy V, LValue dest, bool isInit);
2314 
2315   /// EmitLoadOfComplex - Load a complex number from the specified l-value.
2316   ComplexPairTy EmitLoadOfComplex(LValue src, SourceLocation loc);
2317 
2318   /// CreateStaticVarDecl - Create a zero-initialized LLVM global for
2319   /// a static local variable.
2320   llvm::GlobalVariable *CreateStaticVarDecl(const VarDecl &D,
2321                                             const char *Separator,
2322                                        llvm::GlobalValue::LinkageTypes Linkage);
2323 
2324   /// AddInitializerToStaticVarDecl - Add the initializer for 'D' to the
2325   /// global variable that has already been created for it.  If the initializer
2326   /// has a different type than GV does, this may free GV and return a different
2327   /// one.  Otherwise it just returns GV.
2328   llvm::GlobalVariable *
2329   AddInitializerToStaticVarDecl(const VarDecl &D,
2330                                 llvm::GlobalVariable *GV);
2331 
2332 
2333   /// EmitCXXGlobalVarDeclInit - Create the initializer for a C++
2334   /// variable with global storage.
2335   void EmitCXXGlobalVarDeclInit(const VarDecl &D, llvm::Constant *DeclPtr,
2336                                 bool PerformInit);
2337 
2338   /// Call atexit() with a function that passes the given argument to
2339   /// the given function.
2340   void registerGlobalDtorWithAtExit(const VarDecl &D, llvm::Constant *fn,
2341                                     llvm::Constant *addr);
2342 
2343   /// Emit code in this function to perform a guarded variable
2344   /// initialization.  Guarded initializations are used when it's not
2345   /// possible to prove that an initialization will be done exactly
2346   /// once, e.g. with a static local variable or a static data member
2347   /// of a class template.
2348   void EmitCXXGuardedInit(const VarDecl &D, llvm::GlobalVariable *DeclPtr,
2349                           bool PerformInit);
2350 
2351   /// GenerateCXXGlobalInitFunc - Generates code for initializing global
2352   /// variables.
2353   void GenerateCXXGlobalInitFunc(llvm::Function *Fn,
2354                                  ArrayRef<llvm::Constant *> Decls,
2355                                  llvm::GlobalVariable *Guard = 0);
2356 
2357   /// GenerateCXXGlobalDtorsFunc - Generates code for destroying global
2358   /// variables.
2359   void GenerateCXXGlobalDtorsFunc(llvm::Function *Fn,
2360                                   const std::vector<std::pair<llvm::WeakVH,
2361                                   llvm::Constant*> > &DtorsAndObjects);
2362 
2363   void GenerateCXXGlobalVarDeclInitFunc(llvm::Function *Fn,
2364                                         const VarDecl *D,
2365                                         llvm::GlobalVariable *Addr,
2366                                         bool PerformInit);
2367 
2368   void EmitCXXConstructExpr(const CXXConstructExpr *E, AggValueSlot Dest);
2369 
2370   void EmitSynthesizedCXXCopyCtor(llvm::Value *Dest, llvm::Value *Src,
2371                                   const Expr *Exp);
2372 
2373   void enterFullExpression(const ExprWithCleanups *E) {
2374     if (E->getNumObjects() == 0) return;
2375     enterNonTrivialFullExpression(E);
2376   }
2377   void enterNonTrivialFullExpression(const ExprWithCleanups *E);
2378 
2379   void EmitCXXThrowExpr(const CXXThrowExpr *E, bool KeepInsertionPoint = true);
2380 
2381   void EmitLambdaExpr(const LambdaExpr *E, AggValueSlot Dest);
2382 
2383   RValue EmitAtomicExpr(AtomicExpr *E, llvm::Value *Dest = 0);
2384 
2385   //===--------------------------------------------------------------------===//
2386   //                         Annotations Emission
2387   //===--------------------------------------------------------------------===//
2388 
2389   /// Emit an annotation call (intrinsic or builtin).
2390   llvm::Value *EmitAnnotationCall(llvm::Value *AnnotationFn,
2391                                   llvm::Value *AnnotatedVal,
2392                                   StringRef AnnotationStr,
2393                                   SourceLocation Location);
2394 
2395   /// Emit local annotations for the local variable V, declared by D.
2396   void EmitVarAnnotations(const VarDecl *D, llvm::Value *V);
2397 
2398   /// Emit field annotations for the given field & value. Returns the
2399   /// annotation result.
2400   llvm::Value *EmitFieldAnnotations(const FieldDecl *D, llvm::Value *V);
2401 
2402   //===--------------------------------------------------------------------===//
2403   //                             Internal Helpers
2404   //===--------------------------------------------------------------------===//
2405 
2406   /// ContainsLabel - Return true if the statement contains a label in it.  If
2407   /// this statement is not executed normally, it not containing a label means
2408   /// that we can just remove the code.
2409   static bool ContainsLabel(const Stmt *S, bool IgnoreCaseStmts = false);
2410 
2411   /// containsBreak - Return true if the statement contains a break out of it.
2412   /// If the statement (recursively) contains a switch or loop with a break
2413   /// inside of it, this is fine.
2414   static bool containsBreak(const Stmt *S);
2415 
2416   /// ConstantFoldsToSimpleInteger - If the specified expression does not fold
2417   /// to a constant, or if it does but contains a label, return false.  If it
2418   /// constant folds return true and set the boolean result in Result.
2419   bool ConstantFoldsToSimpleInteger(const Expr *Cond, bool &Result);
2420 
2421   /// ConstantFoldsToSimpleInteger - If the specified expression does not fold
2422   /// to a constant, or if it does but contains a label, return false.  If it
2423   /// constant folds return true and set the folded value.
2424   bool ConstantFoldsToSimpleInteger(const Expr *Cond, llvm::APSInt &Result);
2425 
2426   /// EmitBranchOnBoolExpr - Emit a branch on a boolean condition (e.g. for an
2427   /// if statement) to the specified blocks.  Based on the condition, this might
2428   /// try to simplify the codegen of the conditional based on the branch.
2429   /// TrueCount should be the number of times we expect the condition to
2430   /// evaluate to true based on PGO data.
2431   void EmitBranchOnBoolExpr(const Expr *Cond, llvm::BasicBlock *TrueBlock,
2432                             llvm::BasicBlock *FalseBlock, uint64_t TrueCount);
2433 
2434   /// \brief Emit a description of a type in a format suitable for passing to
2435   /// a runtime sanitizer handler.
2436   llvm::Constant *EmitCheckTypeDescriptor(QualType T);
2437 
2438   /// \brief Convert a value into a format suitable for passing to a runtime
2439   /// sanitizer handler.
2440   llvm::Value *EmitCheckValue(llvm::Value *V);
2441 
2442   /// \brief Emit a description of a source location in a format suitable for
2443   /// passing to a runtime sanitizer handler.
2444   llvm::Constant *EmitCheckSourceLocation(SourceLocation Loc);
2445 
2446   /// \brief Specify under what conditions this check can be recovered
2447   enum CheckRecoverableKind {
2448     /// Always terminate program execution if this check fails
2449     CRK_Unrecoverable,
2450     /// Check supports recovering, allows user to specify which
2451     CRK_Recoverable,
2452     /// Runtime conditionally aborts, always need to support recovery.
2453     CRK_AlwaysRecoverable
2454   };
2455 
2456   /// \brief Create a basic block that will call a handler function in a
2457   /// sanitizer runtime with the provided arguments, and create a conditional
2458   /// branch to it.
2459   void EmitCheck(llvm::Value *Checked, StringRef CheckName,
2460                  ArrayRef<llvm::Constant *> StaticArgs,
2461                  ArrayRef<llvm::Value *> DynamicArgs,
2462                  CheckRecoverableKind Recoverable);
2463 
2464   /// \brief Create a basic block that will call the trap intrinsic, and emit a
2465   /// conditional branch to it, for the -ftrapv checks.
2466   void EmitTrapCheck(llvm::Value *Checked);
2467 
2468   /// EmitCallArg - Emit a single call argument.
2469   void EmitCallArg(CallArgList &args, const Expr *E, QualType ArgType);
2470 
2471   /// EmitDelegateCallArg - We are performing a delegate call; that
2472   /// is, the current function is delegating to another one.  Produce
2473   /// a r-value suitable for passing the given parameter.
2474   void EmitDelegateCallArg(CallArgList &args, const VarDecl *param,
2475                            SourceLocation loc);
2476 
2477   /// SetFPAccuracy - Set the minimum required accuracy of the given floating
2478   /// point operation, expressed as the maximum relative error in ulp.
2479   void SetFPAccuracy(llvm::Value *Val, float Accuracy);
2480 
2481 private:
2482   llvm::MDNode *getRangeForLoadFromType(QualType Ty);
2483   void EmitReturnOfRValue(RValue RV, QualType Ty);
2484 
2485   /// ExpandTypeFromArgs - Reconstruct a structure of type \arg Ty
2486   /// from function arguments into \arg Dst. See ABIArgInfo::Expand.
2487   ///
2488   /// \param AI - The first function argument of the expansion.
2489   /// \return The argument following the last expanded function
2490   /// argument.
2491   llvm::Function::arg_iterator
2492   ExpandTypeFromArgs(QualType Ty, LValue Dst,
2493                      llvm::Function::arg_iterator AI);
2494 
2495   /// ExpandTypeToArgs - Expand an RValue \arg Src, with the LLVM type for \arg
2496   /// Ty, into individual arguments on the provided vector \arg Args. See
2497   /// ABIArgInfo::Expand.
2498   void ExpandTypeToArgs(QualType Ty, RValue Src,
2499                         SmallVectorImpl<llvm::Value *> &Args,
2500                         llvm::FunctionType *IRFuncTy);
2501 
2502   llvm::Value* EmitAsmInput(const TargetInfo::ConstraintInfo &Info,
2503                             const Expr *InputExpr, std::string &ConstraintStr);
2504 
2505   llvm::Value* EmitAsmInputLValue(const TargetInfo::ConstraintInfo &Info,
2506                                   LValue InputValue, QualType InputType,
2507                                   std::string &ConstraintStr,
2508                                   SourceLocation Loc);
2509 
2510 public:
2511   /// EmitCallArgs - Emit call arguments for a function.
2512   template <typename T>
2513   void EmitCallArgs(CallArgList &Args, const T *CallArgTypeInfo,
2514                     CallExpr::const_arg_iterator ArgBeg,
2515                     CallExpr::const_arg_iterator ArgEnd,
2516                     bool ForceColumnInfo = false) {
2517     if (CallArgTypeInfo) {
2518       EmitCallArgs(Args, CallArgTypeInfo->isVariadic(),
2519                    CallArgTypeInfo->arg_type_begin(),
2520                    CallArgTypeInfo->arg_type_end(), ArgBeg, ArgEnd,
2521                    ForceColumnInfo);
2522     } else {
2523       // T::arg_type_iterator might not have a default ctor.
2524       const QualType *NoIter = 0;
2525       EmitCallArgs(Args, /*AllowExtraArguments=*/true, NoIter, NoIter, ArgBeg,
2526                    ArgEnd, ForceColumnInfo);
2527     }
2528   }
2529 
2530   template<typename ArgTypeIterator>
2531   void EmitCallArgs(CallArgList& Args,
2532                     bool AllowExtraArguments,
2533                     ArgTypeIterator ArgTypeBeg,
2534                     ArgTypeIterator ArgTypeEnd,
2535                     CallExpr::const_arg_iterator ArgBeg,
2536                     CallExpr::const_arg_iterator ArgEnd,
2537                     bool ForceColumnInfo = false) {
2538     SmallVector<QualType, 16> ArgTypes;
2539     CallExpr::const_arg_iterator Arg = ArgBeg;
2540 
2541     // First, use the argument types that the type info knows about
2542     for (ArgTypeIterator I = ArgTypeBeg, E = ArgTypeEnd; I != E; ++I, ++Arg) {
2543       assert(Arg != ArgEnd && "Running over edge of argument list!");
2544 #ifndef NDEBUG
2545       QualType ArgType = *I;
2546       QualType ActualArgType = Arg->getType();
2547       if (ArgType->isPointerType() && ActualArgType->isPointerType()) {
2548         QualType ActualBaseType =
2549             ActualArgType->getAs<PointerType>()->getPointeeType();
2550         QualType ArgBaseType =
2551             ArgType->getAs<PointerType>()->getPointeeType();
2552         if (ArgBaseType->isVariableArrayType()) {
2553           if (const VariableArrayType *VAT =
2554               getContext().getAsVariableArrayType(ActualBaseType)) {
2555             if (!VAT->getSizeExpr())
2556               ActualArgType = ArgType;
2557           }
2558         }
2559       }
2560       assert(getContext().getCanonicalType(ArgType.getNonReferenceType()).
2561              getTypePtr() ==
2562              getContext().getCanonicalType(ActualArgType).getTypePtr() &&
2563              "type mismatch in call argument!");
2564 #endif
2565       ArgTypes.push_back(*I);
2566     }
2567 
2568     // Either we've emitted all the call args, or we have a call to variadic
2569     // function or some other call that allows extra arguments.
2570     assert((Arg == ArgEnd || AllowExtraArguments) &&
2571            "Extra arguments in non-variadic function!");
2572 
2573     // If we still have any arguments, emit them using the type of the argument.
2574     for (; Arg != ArgEnd; ++Arg)
2575       ArgTypes.push_back(Arg->getType());
2576 
2577     EmitCallArgs(Args, ArgTypes, ArgBeg, ArgEnd, ForceColumnInfo);
2578   }
2579 
2580   void EmitCallArgs(CallArgList &Args, ArrayRef<QualType> ArgTypes,
2581                     CallExpr::const_arg_iterator ArgBeg,
2582                     CallExpr::const_arg_iterator ArgEnd, bool ForceColumnInfo);
2583 
2584 private:
2585   const TargetCodeGenInfo &getTargetHooks() const {
2586     return CGM.getTargetCodeGenInfo();
2587   }
2588 
2589   void EmitDeclMetadata();
2590 
2591   CodeGenModule::ByrefHelpers *
2592   buildByrefHelpers(llvm::StructType &byrefType,
2593                     const AutoVarEmission &emission);
2594 
2595   void AddObjCARCExceptionMetadata(llvm::Instruction *Inst);
2596 
2597   /// GetPointeeAlignment - Given an expression with a pointer type, emit the
2598   /// value and compute our best estimate of the alignment of the pointee.
2599   std::pair<llvm::Value*, unsigned> EmitPointerWithAlignment(const Expr *Addr);
2600 };
2601 
2602 /// Helper class with most of the code for saving a value for a
2603 /// conditional expression cleanup.
2604 struct DominatingLLVMValue {
2605   typedef llvm::PointerIntPair<llvm::Value*, 1, bool> saved_type;
2606 
2607   /// Answer whether the given value needs extra work to be saved.
2608   static bool needsSaving(llvm::Value *value) {
2609     // If it's not an instruction, we don't need to save.
2610     if (!isa<llvm::Instruction>(value)) return false;
2611 
2612     // If it's an instruction in the entry block, we don't need to save.
2613     llvm::BasicBlock *block = cast<llvm::Instruction>(value)->getParent();
2614     return (block != &block->getParent()->getEntryBlock());
2615   }
2616 
2617   /// Try to save the given value.
2618   static saved_type save(CodeGenFunction &CGF, llvm::Value *value) {
2619     if (!needsSaving(value)) return saved_type(value, false);
2620 
2621     // Otherwise we need an alloca.
2622     llvm::Value *alloca =
2623       CGF.CreateTempAlloca(value->getType(), "cond-cleanup.save");
2624     CGF.Builder.CreateStore(value, alloca);
2625 
2626     return saved_type(alloca, true);
2627   }
2628 
2629   static llvm::Value *restore(CodeGenFunction &CGF, saved_type value) {
2630     if (!value.getInt()) return value.getPointer();
2631     return CGF.Builder.CreateLoad(value.getPointer());
2632   }
2633 };
2634 
2635 /// A partial specialization of DominatingValue for llvm::Values that
2636 /// might be llvm::Instructions.
2637 template <class T> struct DominatingPointer<T,true> : DominatingLLVMValue {
2638   typedef T *type;
2639   static type restore(CodeGenFunction &CGF, saved_type value) {
2640     return static_cast<T*>(DominatingLLVMValue::restore(CGF, value));
2641   }
2642 };
2643 
2644 /// A specialization of DominatingValue for RValue.
2645 template <> struct DominatingValue<RValue> {
2646   typedef RValue type;
2647   class saved_type {
2648     enum Kind { ScalarLiteral, ScalarAddress, AggregateLiteral,
2649                 AggregateAddress, ComplexAddress };
2650 
2651     llvm::Value *Value;
2652     Kind K;
2653     saved_type(llvm::Value *v, Kind k) : Value(v), K(k) {}
2654 
2655   public:
2656     static bool needsSaving(RValue value);
2657     static saved_type save(CodeGenFunction &CGF, RValue value);
2658     RValue restore(CodeGenFunction &CGF);
2659 
2660     // implementations in CGExprCXX.cpp
2661   };
2662 
2663   static bool needsSaving(type value) {
2664     return saved_type::needsSaving(value);
2665   }
2666   static saved_type save(CodeGenFunction &CGF, type value) {
2667     return saved_type::save(CGF, value);
2668   }
2669   static type restore(CodeGenFunction &CGF, saved_type value) {
2670     return value.restore(CGF);
2671   }
2672 };
2673 
2674 }  // end namespace CodeGen
2675 }  // end namespace clang
2676 
2677 #endif
2678