1 //===-- CodeGenFunction.h - Per-Function state for LLVM CodeGen -*- C++ -*-===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This is the internal per-function state used for llvm translation. 10 // 11 //===----------------------------------------------------------------------===// 12 13 #ifndef LLVM_CLANG_LIB_CODEGEN_CODEGENFUNCTION_H 14 #define LLVM_CLANG_LIB_CODEGEN_CODEGENFUNCTION_H 15 16 #include "CGBuilder.h" 17 #include "CGDebugInfo.h" 18 #include "CGLoopInfo.h" 19 #include "CGValue.h" 20 #include "CodeGenModule.h" 21 #include "CodeGenPGO.h" 22 #include "EHScopeStack.h" 23 #include "VarBypassDetector.h" 24 #include "clang/AST/CharUnits.h" 25 #include "clang/AST/CurrentSourceLocExprScope.h" 26 #include "clang/AST/ExprCXX.h" 27 #include "clang/AST/ExprObjC.h" 28 #include "clang/AST/ExprOpenMP.h" 29 #include "clang/AST/StmtOpenMP.h" 30 #include "clang/AST/Type.h" 31 #include "clang/Basic/ABI.h" 32 #include "clang/Basic/CapturedStmt.h" 33 #include "clang/Basic/CodeGenOptions.h" 34 #include "clang/Basic/OpenMPKinds.h" 35 #include "clang/Basic/TargetInfo.h" 36 #include "llvm/ADT/ArrayRef.h" 37 #include "llvm/ADT/DenseMap.h" 38 #include "llvm/ADT/MapVector.h" 39 #include "llvm/ADT/SmallVector.h" 40 #include "llvm/Frontend/OpenMP/OMPIRBuilder.h" 41 #include "llvm/IR/ValueHandle.h" 42 #include "llvm/Support/Debug.h" 43 #include "llvm/Transforms/Utils/SanitizerStats.h" 44 45 namespace llvm { 46 class BasicBlock; 47 class LLVMContext; 48 class MDNode; 49 class Module; 50 class SwitchInst; 51 class Twine; 52 class Value; 53 class CanonicalLoopInfo; 54 } 55 56 namespace clang { 57 class ASTContext; 58 class BlockDecl; 59 class CXXDestructorDecl; 60 class CXXForRangeStmt; 61 class CXXTryStmt; 62 class Decl; 63 class LabelDecl; 64 class EnumConstantDecl; 65 class FunctionDecl; 66 class FunctionProtoType; 67 class LabelStmt; 68 class ObjCContainerDecl; 69 class ObjCInterfaceDecl; 70 class ObjCIvarDecl; 71 class ObjCMethodDecl; 72 class ObjCImplementationDecl; 73 class ObjCPropertyImplDecl; 74 class TargetInfo; 75 class VarDecl; 76 class ObjCForCollectionStmt; 77 class ObjCAtTryStmt; 78 class ObjCAtThrowStmt; 79 class ObjCAtSynchronizedStmt; 80 class ObjCAutoreleasePoolStmt; 81 class OMPUseDevicePtrClause; 82 class OMPUseDeviceAddrClause; 83 class ReturnsNonNullAttr; 84 class SVETypeFlags; 85 class OMPExecutableDirective; 86 87 namespace analyze_os_log { 88 class OSLogBufferLayout; 89 } 90 91 namespace CodeGen { 92 class CodeGenTypes; 93 class CGCallee; 94 class CGFunctionInfo; 95 class CGRecordLayout; 96 class CGBlockInfo; 97 class CGCXXABI; 98 class BlockByrefHelpers; 99 class BlockByrefInfo; 100 class BlockFlags; 101 class BlockFieldFlags; 102 class RegionCodeGenTy; 103 class TargetCodeGenInfo; 104 struct OMPTaskDataTy; 105 struct CGCoroData; 106 107 /// The kind of evaluation to perform on values of a particular 108 /// type. Basically, is the code in CGExprScalar, CGExprComplex, or 109 /// CGExprAgg? 110 /// 111 /// TODO: should vectors maybe be split out into their own thing? 112 enum TypeEvaluationKind { 113 TEK_Scalar, 114 TEK_Complex, 115 TEK_Aggregate 116 }; 117 118 #define LIST_SANITIZER_CHECKS \ 119 SANITIZER_CHECK(AddOverflow, add_overflow, 0) \ 120 SANITIZER_CHECK(BuiltinUnreachable, builtin_unreachable, 0) \ 121 SANITIZER_CHECK(CFICheckFail, cfi_check_fail, 0) \ 122 SANITIZER_CHECK(DivremOverflow, divrem_overflow, 0) \ 123 SANITIZER_CHECK(DynamicTypeCacheMiss, dynamic_type_cache_miss, 0) \ 124 SANITIZER_CHECK(FloatCastOverflow, float_cast_overflow, 0) \ 125 SANITIZER_CHECK(FunctionTypeMismatch, function_type_mismatch, 1) \ 126 SANITIZER_CHECK(ImplicitConversion, implicit_conversion, 0) \ 127 SANITIZER_CHECK(InvalidBuiltin, invalid_builtin, 0) \ 128 SANITIZER_CHECK(InvalidObjCCast, invalid_objc_cast, 0) \ 129 SANITIZER_CHECK(LoadInvalidValue, load_invalid_value, 0) \ 130 SANITIZER_CHECK(MissingReturn, missing_return, 0) \ 131 SANITIZER_CHECK(MulOverflow, mul_overflow, 0) \ 132 SANITIZER_CHECK(NegateOverflow, negate_overflow, 0) \ 133 SANITIZER_CHECK(NullabilityArg, nullability_arg, 0) \ 134 SANITIZER_CHECK(NullabilityReturn, nullability_return, 1) \ 135 SANITIZER_CHECK(NonnullArg, nonnull_arg, 0) \ 136 SANITIZER_CHECK(NonnullReturn, nonnull_return, 1) \ 137 SANITIZER_CHECK(OutOfBounds, out_of_bounds, 0) \ 138 SANITIZER_CHECK(PointerOverflow, pointer_overflow, 0) \ 139 SANITIZER_CHECK(ShiftOutOfBounds, shift_out_of_bounds, 0) \ 140 SANITIZER_CHECK(SubOverflow, sub_overflow, 0) \ 141 SANITIZER_CHECK(TypeMismatch, type_mismatch, 1) \ 142 SANITIZER_CHECK(AlignmentAssumption, alignment_assumption, 0) \ 143 SANITIZER_CHECK(VLABoundNotPositive, vla_bound_not_positive, 0) 144 145 enum SanitizerHandler { 146 #define SANITIZER_CHECK(Enum, Name, Version) Enum, 147 LIST_SANITIZER_CHECKS 148 #undef SANITIZER_CHECK 149 }; 150 151 /// Helper class with most of the code for saving a value for a 152 /// conditional expression cleanup. 153 struct DominatingLLVMValue { 154 typedef llvm::PointerIntPair<llvm::Value*, 1, bool> saved_type; 155 156 /// Answer whether the given value needs extra work to be saved. 157 static bool needsSaving(llvm::Value *value) { 158 // If it's not an instruction, we don't need to save. 159 if (!isa<llvm::Instruction>(value)) return false; 160 161 // If it's an instruction in the entry block, we don't need to save. 162 llvm::BasicBlock *block = cast<llvm::Instruction>(value)->getParent(); 163 return (block != &block->getParent()->getEntryBlock()); 164 } 165 166 static saved_type save(CodeGenFunction &CGF, llvm::Value *value); 167 static llvm::Value *restore(CodeGenFunction &CGF, saved_type value); 168 }; 169 170 /// A partial specialization of DominatingValue for llvm::Values that 171 /// might be llvm::Instructions. 172 template <class T> struct DominatingPointer<T,true> : DominatingLLVMValue { 173 typedef T *type; 174 static type restore(CodeGenFunction &CGF, saved_type value) { 175 return static_cast<T*>(DominatingLLVMValue::restore(CGF, value)); 176 } 177 }; 178 179 /// A specialization of DominatingValue for Address. 180 template <> struct DominatingValue<Address> { 181 typedef Address type; 182 183 struct saved_type { 184 DominatingLLVMValue::saved_type SavedValue; 185 CharUnits Alignment; 186 }; 187 188 static bool needsSaving(type value) { 189 return DominatingLLVMValue::needsSaving(value.getPointer()); 190 } 191 static saved_type save(CodeGenFunction &CGF, type value) { 192 return { DominatingLLVMValue::save(CGF, value.getPointer()), 193 value.getAlignment() }; 194 } 195 static type restore(CodeGenFunction &CGF, saved_type value) { 196 return Address(DominatingLLVMValue::restore(CGF, value.SavedValue), 197 value.Alignment); 198 } 199 }; 200 201 /// A specialization of DominatingValue for RValue. 202 template <> struct DominatingValue<RValue> { 203 typedef RValue type; 204 class saved_type { 205 enum Kind { ScalarLiteral, ScalarAddress, AggregateLiteral, 206 AggregateAddress, ComplexAddress }; 207 208 llvm::Value *Value; 209 unsigned K : 3; 210 unsigned Align : 29; 211 saved_type(llvm::Value *v, Kind k, unsigned a = 0) 212 : Value(v), K(k), Align(a) {} 213 214 public: 215 static bool needsSaving(RValue value); 216 static saved_type save(CodeGenFunction &CGF, RValue value); 217 RValue restore(CodeGenFunction &CGF); 218 219 // implementations in CGCleanup.cpp 220 }; 221 222 static bool needsSaving(type value) { 223 return saved_type::needsSaving(value); 224 } 225 static saved_type save(CodeGenFunction &CGF, type value) { 226 return saved_type::save(CGF, value); 227 } 228 static type restore(CodeGenFunction &CGF, saved_type value) { 229 return value.restore(CGF); 230 } 231 }; 232 233 /// CodeGenFunction - This class organizes the per-function state that is used 234 /// while generating LLVM code. 235 class CodeGenFunction : public CodeGenTypeCache { 236 CodeGenFunction(const CodeGenFunction &) = delete; 237 void operator=(const CodeGenFunction &) = delete; 238 239 friend class CGCXXABI; 240 public: 241 /// A jump destination is an abstract label, branching to which may 242 /// require a jump out through normal cleanups. 243 struct JumpDest { 244 JumpDest() : Block(nullptr), ScopeDepth(), Index(0) {} 245 JumpDest(llvm::BasicBlock *Block, 246 EHScopeStack::stable_iterator Depth, 247 unsigned Index) 248 : Block(Block), ScopeDepth(Depth), Index(Index) {} 249 250 bool isValid() const { return Block != nullptr; } 251 llvm::BasicBlock *getBlock() const { return Block; } 252 EHScopeStack::stable_iterator getScopeDepth() const { return ScopeDepth; } 253 unsigned getDestIndex() const { return Index; } 254 255 // This should be used cautiously. 256 void setScopeDepth(EHScopeStack::stable_iterator depth) { 257 ScopeDepth = depth; 258 } 259 260 private: 261 llvm::BasicBlock *Block; 262 EHScopeStack::stable_iterator ScopeDepth; 263 unsigned Index; 264 }; 265 266 CodeGenModule &CGM; // Per-module state. 267 const TargetInfo &Target; 268 269 // For EH/SEH outlined funclets, this field points to parent's CGF 270 CodeGenFunction *ParentCGF = nullptr; 271 272 typedef std::pair<llvm::Value *, llvm::Value *> ComplexPairTy; 273 LoopInfoStack LoopStack; 274 CGBuilderTy Builder; 275 276 // Stores variables for which we can't generate correct lifetime markers 277 // because of jumps. 278 VarBypassDetector Bypasses; 279 280 /// List of recently emitted OMPCanonicalLoops. 281 /// 282 /// Since OMPCanonicalLoops are nested inside other statements (in particular 283 /// CapturedStmt generated by OMPExecutableDirective and non-perfectly nested 284 /// loops), we cannot directly call OMPEmitOMPCanonicalLoop and receive its 285 /// llvm::CanonicalLoopInfo. Instead, we call EmitStmt and any 286 /// OMPEmitOMPCanonicalLoop called by it will add its CanonicalLoopInfo to 287 /// this stack when done. Entering a new loop requires clearing this list; it 288 /// either means we start parsing a new loop nest (in which case the previous 289 /// loop nest goes out of scope) or a second loop in the same level in which 290 /// case it would be ambiguous into which of the two (or more) loops the loop 291 /// nest would extend. 292 SmallVector<llvm::CanonicalLoopInfo *, 4> OMPLoopNestStack; 293 294 // CodeGen lambda for loops and support for ordered clause 295 typedef llvm::function_ref<void(CodeGenFunction &, const OMPLoopDirective &, 296 JumpDest)> 297 CodeGenLoopTy; 298 typedef llvm::function_ref<void(CodeGenFunction &, SourceLocation, 299 const unsigned, const bool)> 300 CodeGenOrderedTy; 301 302 // Codegen lambda for loop bounds in worksharing loop constructs 303 typedef llvm::function_ref<std::pair<LValue, LValue>( 304 CodeGenFunction &, const OMPExecutableDirective &S)> 305 CodeGenLoopBoundsTy; 306 307 // Codegen lambda for loop bounds in dispatch-based loop implementation 308 typedef llvm::function_ref<std::pair<llvm::Value *, llvm::Value *>( 309 CodeGenFunction &, const OMPExecutableDirective &S, Address LB, 310 Address UB)> 311 CodeGenDispatchBoundsTy; 312 313 /// CGBuilder insert helper. This function is called after an 314 /// instruction is created using Builder. 315 void InsertHelper(llvm::Instruction *I, const llvm::Twine &Name, 316 llvm::BasicBlock *BB, 317 llvm::BasicBlock::iterator InsertPt) const; 318 319 /// CurFuncDecl - Holds the Decl for the current outermost 320 /// non-closure context. 321 const Decl *CurFuncDecl; 322 /// CurCodeDecl - This is the inner-most code context, which includes blocks. 323 const Decl *CurCodeDecl; 324 const CGFunctionInfo *CurFnInfo; 325 QualType FnRetTy; 326 llvm::Function *CurFn = nullptr; 327 328 // Holds coroutine data if the current function is a coroutine. We use a 329 // wrapper to manage its lifetime, so that we don't have to define CGCoroData 330 // in this header. 331 struct CGCoroInfo { 332 std::unique_ptr<CGCoroData> Data; 333 CGCoroInfo(); 334 ~CGCoroInfo(); 335 }; 336 CGCoroInfo CurCoro; 337 338 bool isCoroutine() const { 339 return CurCoro.Data != nullptr; 340 } 341 342 /// CurGD - The GlobalDecl for the current function being compiled. 343 GlobalDecl CurGD; 344 345 /// PrologueCleanupDepth - The cleanup depth enclosing all the 346 /// cleanups associated with the parameters. 347 EHScopeStack::stable_iterator PrologueCleanupDepth; 348 349 /// ReturnBlock - Unified return block. 350 JumpDest ReturnBlock; 351 352 /// ReturnValue - The temporary alloca to hold the return 353 /// value. This is invalid iff the function has no return value. 354 Address ReturnValue = Address::invalid(); 355 356 /// ReturnValuePointer - The temporary alloca to hold a pointer to sret. 357 /// This is invalid if sret is not in use. 358 Address ReturnValuePointer = Address::invalid(); 359 360 /// If a return statement is being visited, this holds the return statment's 361 /// result expression. 362 const Expr *RetExpr = nullptr; 363 364 /// Return true if a label was seen in the current scope. 365 bool hasLabelBeenSeenInCurrentScope() const { 366 if (CurLexicalScope) 367 return CurLexicalScope->hasLabels(); 368 return !LabelMap.empty(); 369 } 370 371 /// AllocaInsertPoint - This is an instruction in the entry block before which 372 /// we prefer to insert allocas. 373 llvm::AssertingVH<llvm::Instruction> AllocaInsertPt; 374 375 /// API for captured statement code generation. 376 class CGCapturedStmtInfo { 377 public: 378 explicit CGCapturedStmtInfo(CapturedRegionKind K = CR_Default) 379 : Kind(K), ThisValue(nullptr), CXXThisFieldDecl(nullptr) {} 380 explicit CGCapturedStmtInfo(const CapturedStmt &S, 381 CapturedRegionKind K = CR_Default) 382 : Kind(K), ThisValue(nullptr), CXXThisFieldDecl(nullptr) { 383 384 RecordDecl::field_iterator Field = 385 S.getCapturedRecordDecl()->field_begin(); 386 for (CapturedStmt::const_capture_iterator I = S.capture_begin(), 387 E = S.capture_end(); 388 I != E; ++I, ++Field) { 389 if (I->capturesThis()) 390 CXXThisFieldDecl = *Field; 391 else if (I->capturesVariable()) 392 CaptureFields[I->getCapturedVar()->getCanonicalDecl()] = *Field; 393 else if (I->capturesVariableByCopy()) 394 CaptureFields[I->getCapturedVar()->getCanonicalDecl()] = *Field; 395 } 396 } 397 398 virtual ~CGCapturedStmtInfo(); 399 400 CapturedRegionKind getKind() const { return Kind; } 401 402 virtual void setContextValue(llvm::Value *V) { ThisValue = V; } 403 // Retrieve the value of the context parameter. 404 virtual llvm::Value *getContextValue() const { return ThisValue; } 405 406 /// Lookup the captured field decl for a variable. 407 virtual const FieldDecl *lookup(const VarDecl *VD) const { 408 return CaptureFields.lookup(VD->getCanonicalDecl()); 409 } 410 411 bool isCXXThisExprCaptured() const { return getThisFieldDecl() != nullptr; } 412 virtual FieldDecl *getThisFieldDecl() const { return CXXThisFieldDecl; } 413 414 static bool classof(const CGCapturedStmtInfo *) { 415 return true; 416 } 417 418 /// Emit the captured statement body. 419 virtual void EmitBody(CodeGenFunction &CGF, const Stmt *S) { 420 CGF.incrementProfileCounter(S); 421 CGF.EmitStmt(S); 422 } 423 424 /// Get the name of the capture helper. 425 virtual StringRef getHelperName() const { return "__captured_stmt"; } 426 427 private: 428 /// The kind of captured statement being generated. 429 CapturedRegionKind Kind; 430 431 /// Keep the map between VarDecl and FieldDecl. 432 llvm::SmallDenseMap<const VarDecl *, FieldDecl *> CaptureFields; 433 434 /// The base address of the captured record, passed in as the first 435 /// argument of the parallel region function. 436 llvm::Value *ThisValue; 437 438 /// Captured 'this' type. 439 FieldDecl *CXXThisFieldDecl; 440 }; 441 CGCapturedStmtInfo *CapturedStmtInfo = nullptr; 442 443 /// RAII for correct setting/restoring of CapturedStmtInfo. 444 class CGCapturedStmtRAII { 445 private: 446 CodeGenFunction &CGF; 447 CGCapturedStmtInfo *PrevCapturedStmtInfo; 448 public: 449 CGCapturedStmtRAII(CodeGenFunction &CGF, 450 CGCapturedStmtInfo *NewCapturedStmtInfo) 451 : CGF(CGF), PrevCapturedStmtInfo(CGF.CapturedStmtInfo) { 452 CGF.CapturedStmtInfo = NewCapturedStmtInfo; 453 } 454 ~CGCapturedStmtRAII() { CGF.CapturedStmtInfo = PrevCapturedStmtInfo; } 455 }; 456 457 /// An abstract representation of regular/ObjC call/message targets. 458 class AbstractCallee { 459 /// The function declaration of the callee. 460 const Decl *CalleeDecl; 461 462 public: 463 AbstractCallee() : CalleeDecl(nullptr) {} 464 AbstractCallee(const FunctionDecl *FD) : CalleeDecl(FD) {} 465 AbstractCallee(const ObjCMethodDecl *OMD) : CalleeDecl(OMD) {} 466 bool hasFunctionDecl() const { 467 return dyn_cast_or_null<FunctionDecl>(CalleeDecl); 468 } 469 const Decl *getDecl() const { return CalleeDecl; } 470 unsigned getNumParams() const { 471 if (const auto *FD = dyn_cast<FunctionDecl>(CalleeDecl)) 472 return FD->getNumParams(); 473 return cast<ObjCMethodDecl>(CalleeDecl)->param_size(); 474 } 475 const ParmVarDecl *getParamDecl(unsigned I) const { 476 if (const auto *FD = dyn_cast<FunctionDecl>(CalleeDecl)) 477 return FD->getParamDecl(I); 478 return *(cast<ObjCMethodDecl>(CalleeDecl)->param_begin() + I); 479 } 480 }; 481 482 /// Sanitizers enabled for this function. 483 SanitizerSet SanOpts; 484 485 /// True if CodeGen currently emits code implementing sanitizer checks. 486 bool IsSanitizerScope = false; 487 488 /// RAII object to set/unset CodeGenFunction::IsSanitizerScope. 489 class SanitizerScope { 490 CodeGenFunction *CGF; 491 public: 492 SanitizerScope(CodeGenFunction *CGF); 493 ~SanitizerScope(); 494 }; 495 496 /// In C++, whether we are code generating a thunk. This controls whether we 497 /// should emit cleanups. 498 bool CurFuncIsThunk = false; 499 500 /// In ARC, whether we should autorelease the return value. 501 bool AutoreleaseResult = false; 502 503 /// Whether we processed a Microsoft-style asm block during CodeGen. These can 504 /// potentially set the return value. 505 bool SawAsmBlock = false; 506 507 const NamedDecl *CurSEHParent = nullptr; 508 509 /// True if the current function is an outlined SEH helper. This can be a 510 /// finally block or filter expression. 511 bool IsOutlinedSEHHelper = false; 512 513 /// True if CodeGen currently emits code inside presereved access index 514 /// region. 515 bool IsInPreservedAIRegion = false; 516 517 /// True if the current statement has nomerge attribute. 518 bool InNoMergeAttributedStmt = false; 519 520 /// True if the current function should be marked mustprogress. 521 bool FnIsMustProgress = false; 522 523 /// True if the C++ Standard Requires Progress. 524 bool CPlusPlusWithProgress() { 525 if (CGM.getCodeGenOpts().getFiniteLoops() == 526 CodeGenOptions::FiniteLoopsKind::Never) 527 return false; 528 529 return getLangOpts().CPlusPlus11 || getLangOpts().CPlusPlus14 || 530 getLangOpts().CPlusPlus17 || getLangOpts().CPlusPlus20; 531 } 532 533 /// True if the C Standard Requires Progress. 534 bool CWithProgress() { 535 if (CGM.getCodeGenOpts().getFiniteLoops() == 536 CodeGenOptions::FiniteLoopsKind::Always) 537 return true; 538 if (CGM.getCodeGenOpts().getFiniteLoops() == 539 CodeGenOptions::FiniteLoopsKind::Never) 540 return false; 541 542 return getLangOpts().C11 || getLangOpts().C17 || getLangOpts().C2x; 543 } 544 545 /// True if the language standard requires progress in functions or 546 /// in infinite loops with non-constant conditionals. 547 bool LanguageRequiresProgress() { 548 return CWithProgress() || CPlusPlusWithProgress(); 549 } 550 551 const CodeGen::CGBlockInfo *BlockInfo = nullptr; 552 llvm::Value *BlockPointer = nullptr; 553 554 llvm::DenseMap<const VarDecl *, FieldDecl *> LambdaCaptureFields; 555 FieldDecl *LambdaThisCaptureField = nullptr; 556 557 /// A mapping from NRVO variables to the flags used to indicate 558 /// when the NRVO has been applied to this variable. 559 llvm::DenseMap<const VarDecl *, llvm::Value *> NRVOFlags; 560 561 EHScopeStack EHStack; 562 llvm::SmallVector<char, 256> LifetimeExtendedCleanupStack; 563 llvm::SmallVector<const JumpDest *, 2> SEHTryEpilogueStack; 564 565 llvm::Instruction *CurrentFuncletPad = nullptr; 566 567 class CallLifetimeEnd final : public EHScopeStack::Cleanup { 568 llvm::Value *Addr; 569 llvm::Value *Size; 570 571 public: 572 CallLifetimeEnd(Address addr, llvm::Value *size) 573 : Addr(addr.getPointer()), Size(size) {} 574 575 void Emit(CodeGenFunction &CGF, Flags flags) override { 576 CGF.EmitLifetimeEnd(Size, Addr); 577 } 578 }; 579 580 /// Header for data within LifetimeExtendedCleanupStack. 581 struct LifetimeExtendedCleanupHeader { 582 /// The size of the following cleanup object. 583 unsigned Size; 584 /// The kind of cleanup to push: a value from the CleanupKind enumeration. 585 unsigned Kind : 31; 586 /// Whether this is a conditional cleanup. 587 unsigned IsConditional : 1; 588 589 size_t getSize() const { return Size; } 590 CleanupKind getKind() const { return (CleanupKind)Kind; } 591 bool isConditional() const { return IsConditional; } 592 }; 593 594 /// i32s containing the indexes of the cleanup destinations. 595 Address NormalCleanupDest = Address::invalid(); 596 597 unsigned NextCleanupDestIndex = 1; 598 599 /// EHResumeBlock - Unified block containing a call to llvm.eh.resume. 600 llvm::BasicBlock *EHResumeBlock = nullptr; 601 602 /// The exception slot. All landing pads write the current exception pointer 603 /// into this alloca. 604 llvm::Value *ExceptionSlot = nullptr; 605 606 /// The selector slot. Under the MandatoryCleanup model, all landing pads 607 /// write the current selector value into this alloca. 608 llvm::AllocaInst *EHSelectorSlot = nullptr; 609 610 /// A stack of exception code slots. Entering an __except block pushes a slot 611 /// on the stack and leaving pops one. The __exception_code() intrinsic loads 612 /// a value from the top of the stack. 613 SmallVector<Address, 1> SEHCodeSlotStack; 614 615 /// Value returned by __exception_info intrinsic. 616 llvm::Value *SEHInfo = nullptr; 617 618 /// Emits a landing pad for the current EH stack. 619 llvm::BasicBlock *EmitLandingPad(); 620 621 llvm::BasicBlock *getInvokeDestImpl(); 622 623 /// Parent loop-based directive for scan directive. 624 const OMPExecutableDirective *OMPParentLoopDirectiveForScan = nullptr; 625 llvm::BasicBlock *OMPBeforeScanBlock = nullptr; 626 llvm::BasicBlock *OMPAfterScanBlock = nullptr; 627 llvm::BasicBlock *OMPScanExitBlock = nullptr; 628 llvm::BasicBlock *OMPScanDispatch = nullptr; 629 bool OMPFirstScanLoop = false; 630 631 /// Manages parent directive for scan directives. 632 class ParentLoopDirectiveForScanRegion { 633 CodeGenFunction &CGF; 634 const OMPExecutableDirective *ParentLoopDirectiveForScan; 635 636 public: 637 ParentLoopDirectiveForScanRegion( 638 CodeGenFunction &CGF, 639 const OMPExecutableDirective &ParentLoopDirectiveForScan) 640 : CGF(CGF), 641 ParentLoopDirectiveForScan(CGF.OMPParentLoopDirectiveForScan) { 642 CGF.OMPParentLoopDirectiveForScan = &ParentLoopDirectiveForScan; 643 } 644 ~ParentLoopDirectiveForScanRegion() { 645 CGF.OMPParentLoopDirectiveForScan = ParentLoopDirectiveForScan; 646 } 647 }; 648 649 template <class T> 650 typename DominatingValue<T>::saved_type saveValueInCond(T value) { 651 return DominatingValue<T>::save(*this, value); 652 } 653 654 class CGFPOptionsRAII { 655 public: 656 CGFPOptionsRAII(CodeGenFunction &CGF, FPOptions FPFeatures); 657 CGFPOptionsRAII(CodeGenFunction &CGF, const Expr *E); 658 ~CGFPOptionsRAII(); 659 660 private: 661 void ConstructorHelper(FPOptions FPFeatures); 662 CodeGenFunction &CGF; 663 FPOptions OldFPFeatures; 664 llvm::fp::ExceptionBehavior OldExcept; 665 llvm::RoundingMode OldRounding; 666 Optional<CGBuilderTy::FastMathFlagGuard> FMFGuard; 667 }; 668 FPOptions CurFPFeatures; 669 670 public: 671 /// ObjCEHValueStack - Stack of Objective-C exception values, used for 672 /// rethrows. 673 SmallVector<llvm::Value*, 8> ObjCEHValueStack; 674 675 /// A class controlling the emission of a finally block. 676 class FinallyInfo { 677 /// Where the catchall's edge through the cleanup should go. 678 JumpDest RethrowDest; 679 680 /// A function to call to enter the catch. 681 llvm::FunctionCallee BeginCatchFn; 682 683 /// An i1 variable indicating whether or not the @finally is 684 /// running for an exception. 685 llvm::AllocaInst *ForEHVar; 686 687 /// An i8* variable into which the exception pointer to rethrow 688 /// has been saved. 689 llvm::AllocaInst *SavedExnVar; 690 691 public: 692 void enter(CodeGenFunction &CGF, const Stmt *Finally, 693 llvm::FunctionCallee beginCatchFn, 694 llvm::FunctionCallee endCatchFn, llvm::FunctionCallee rethrowFn); 695 void exit(CodeGenFunction &CGF); 696 }; 697 698 /// Returns true inside SEH __try blocks. 699 bool isSEHTryScope() const { return !SEHTryEpilogueStack.empty(); } 700 701 /// Returns true while emitting a cleanuppad. 702 bool isCleanupPadScope() const { 703 return CurrentFuncletPad && isa<llvm::CleanupPadInst>(CurrentFuncletPad); 704 } 705 706 /// pushFullExprCleanup - Push a cleanup to be run at the end of the 707 /// current full-expression. Safe against the possibility that 708 /// we're currently inside a conditionally-evaluated expression. 709 template <class T, class... As> 710 void pushFullExprCleanup(CleanupKind kind, As... A) { 711 // If we're not in a conditional branch, or if none of the 712 // arguments requires saving, then use the unconditional cleanup. 713 if (!isInConditionalBranch()) 714 return EHStack.pushCleanup<T>(kind, A...); 715 716 // Stash values in a tuple so we can guarantee the order of saves. 717 typedef std::tuple<typename DominatingValue<As>::saved_type...> SavedTuple; 718 SavedTuple Saved{saveValueInCond(A)...}; 719 720 typedef EHScopeStack::ConditionalCleanup<T, As...> CleanupType; 721 EHStack.pushCleanupTuple<CleanupType>(kind, Saved); 722 initFullExprCleanup(); 723 } 724 725 /// Queue a cleanup to be pushed after finishing the current full-expression, 726 /// potentially with an active flag. 727 template <class T, class... As> 728 void pushCleanupAfterFullExpr(CleanupKind Kind, As... A) { 729 if (!isInConditionalBranch()) 730 return pushCleanupAfterFullExprWithActiveFlag<T>(Kind, Address::invalid(), 731 A...); 732 733 Address ActiveFlag = createCleanupActiveFlag(); 734 assert(!DominatingValue<Address>::needsSaving(ActiveFlag) && 735 "cleanup active flag should never need saving"); 736 737 typedef std::tuple<typename DominatingValue<As>::saved_type...> SavedTuple; 738 SavedTuple Saved{saveValueInCond(A)...}; 739 740 typedef EHScopeStack::ConditionalCleanup<T, As...> CleanupType; 741 pushCleanupAfterFullExprWithActiveFlag<CleanupType>(Kind, ActiveFlag, Saved); 742 } 743 744 template <class T, class... As> 745 void pushCleanupAfterFullExprWithActiveFlag(CleanupKind Kind, 746 Address ActiveFlag, As... A) { 747 LifetimeExtendedCleanupHeader Header = {sizeof(T), Kind, 748 ActiveFlag.isValid()}; 749 750 size_t OldSize = LifetimeExtendedCleanupStack.size(); 751 LifetimeExtendedCleanupStack.resize( 752 LifetimeExtendedCleanupStack.size() + sizeof(Header) + Header.Size + 753 (Header.IsConditional ? sizeof(ActiveFlag) : 0)); 754 755 static_assert(sizeof(Header) % alignof(T) == 0, 756 "Cleanup will be allocated on misaligned address"); 757 char *Buffer = &LifetimeExtendedCleanupStack[OldSize]; 758 new (Buffer) LifetimeExtendedCleanupHeader(Header); 759 new (Buffer + sizeof(Header)) T(A...); 760 if (Header.IsConditional) 761 new (Buffer + sizeof(Header) + sizeof(T)) Address(ActiveFlag); 762 } 763 764 /// Set up the last cleanup that was pushed as a conditional 765 /// full-expression cleanup. 766 void initFullExprCleanup() { 767 initFullExprCleanupWithFlag(createCleanupActiveFlag()); 768 } 769 770 void initFullExprCleanupWithFlag(Address ActiveFlag); 771 Address createCleanupActiveFlag(); 772 773 /// PushDestructorCleanup - Push a cleanup to call the 774 /// complete-object destructor of an object of the given type at the 775 /// given address. Does nothing if T is not a C++ class type with a 776 /// non-trivial destructor. 777 void PushDestructorCleanup(QualType T, Address Addr); 778 779 /// PushDestructorCleanup - Push a cleanup to call the 780 /// complete-object variant of the given destructor on the object at 781 /// the given address. 782 void PushDestructorCleanup(const CXXDestructorDecl *Dtor, QualType T, 783 Address Addr); 784 785 /// PopCleanupBlock - Will pop the cleanup entry on the stack and 786 /// process all branch fixups. 787 void PopCleanupBlock(bool FallThroughIsBranchThrough = false); 788 789 /// DeactivateCleanupBlock - Deactivates the given cleanup block. 790 /// The block cannot be reactivated. Pops it if it's the top of the 791 /// stack. 792 /// 793 /// \param DominatingIP - An instruction which is known to 794 /// dominate the current IP (if set) and which lies along 795 /// all paths of execution between the current IP and the 796 /// the point at which the cleanup comes into scope. 797 void DeactivateCleanupBlock(EHScopeStack::stable_iterator Cleanup, 798 llvm::Instruction *DominatingIP); 799 800 /// ActivateCleanupBlock - Activates an initially-inactive cleanup. 801 /// Cannot be used to resurrect a deactivated cleanup. 802 /// 803 /// \param DominatingIP - An instruction which is known to 804 /// dominate the current IP (if set) and which lies along 805 /// all paths of execution between the current IP and the 806 /// the point at which the cleanup comes into scope. 807 void ActivateCleanupBlock(EHScopeStack::stable_iterator Cleanup, 808 llvm::Instruction *DominatingIP); 809 810 /// Enters a new scope for capturing cleanups, all of which 811 /// will be executed once the scope is exited. 812 class RunCleanupsScope { 813 EHScopeStack::stable_iterator CleanupStackDepth, OldCleanupScopeDepth; 814 size_t LifetimeExtendedCleanupStackSize; 815 bool OldDidCallStackSave; 816 protected: 817 bool PerformCleanup; 818 private: 819 820 RunCleanupsScope(const RunCleanupsScope &) = delete; 821 void operator=(const RunCleanupsScope &) = delete; 822 823 protected: 824 CodeGenFunction& CGF; 825 826 public: 827 /// Enter a new cleanup scope. 828 explicit RunCleanupsScope(CodeGenFunction &CGF) 829 : PerformCleanup(true), CGF(CGF) 830 { 831 CleanupStackDepth = CGF.EHStack.stable_begin(); 832 LifetimeExtendedCleanupStackSize = 833 CGF.LifetimeExtendedCleanupStack.size(); 834 OldDidCallStackSave = CGF.DidCallStackSave; 835 CGF.DidCallStackSave = false; 836 OldCleanupScopeDepth = CGF.CurrentCleanupScopeDepth; 837 CGF.CurrentCleanupScopeDepth = CleanupStackDepth; 838 } 839 840 /// Exit this cleanup scope, emitting any accumulated cleanups. 841 ~RunCleanupsScope() { 842 if (PerformCleanup) 843 ForceCleanup(); 844 } 845 846 /// Determine whether this scope requires any cleanups. 847 bool requiresCleanups() const { 848 return CGF.EHStack.stable_begin() != CleanupStackDepth; 849 } 850 851 /// Force the emission of cleanups now, instead of waiting 852 /// until this object is destroyed. 853 /// \param ValuesToReload - A list of values that need to be available at 854 /// the insertion point after cleanup emission. If cleanup emission created 855 /// a shared cleanup block, these value pointers will be rewritten. 856 /// Otherwise, they not will be modified. 857 void ForceCleanup(std::initializer_list<llvm::Value**> ValuesToReload = {}) { 858 assert(PerformCleanup && "Already forced cleanup"); 859 CGF.DidCallStackSave = OldDidCallStackSave; 860 CGF.PopCleanupBlocks(CleanupStackDepth, LifetimeExtendedCleanupStackSize, 861 ValuesToReload); 862 PerformCleanup = false; 863 CGF.CurrentCleanupScopeDepth = OldCleanupScopeDepth; 864 } 865 }; 866 867 // Cleanup stack depth of the RunCleanupsScope that was pushed most recently. 868 EHScopeStack::stable_iterator CurrentCleanupScopeDepth = 869 EHScopeStack::stable_end(); 870 871 class LexicalScope : public RunCleanupsScope { 872 SourceRange Range; 873 SmallVector<const LabelDecl*, 4> Labels; 874 LexicalScope *ParentScope; 875 876 LexicalScope(const LexicalScope &) = delete; 877 void operator=(const LexicalScope &) = delete; 878 879 public: 880 /// Enter a new cleanup scope. 881 explicit LexicalScope(CodeGenFunction &CGF, SourceRange Range) 882 : RunCleanupsScope(CGF), Range(Range), ParentScope(CGF.CurLexicalScope) { 883 CGF.CurLexicalScope = this; 884 if (CGDebugInfo *DI = CGF.getDebugInfo()) 885 DI->EmitLexicalBlockStart(CGF.Builder, Range.getBegin()); 886 } 887 888 void addLabel(const LabelDecl *label) { 889 assert(PerformCleanup && "adding label to dead scope?"); 890 Labels.push_back(label); 891 } 892 893 /// Exit this cleanup scope, emitting any accumulated 894 /// cleanups. 895 ~LexicalScope() { 896 if (CGDebugInfo *DI = CGF.getDebugInfo()) 897 DI->EmitLexicalBlockEnd(CGF.Builder, Range.getEnd()); 898 899 // If we should perform a cleanup, force them now. Note that 900 // this ends the cleanup scope before rescoping any labels. 901 if (PerformCleanup) { 902 ApplyDebugLocation DL(CGF, Range.getEnd()); 903 ForceCleanup(); 904 } 905 } 906 907 /// Force the emission of cleanups now, instead of waiting 908 /// until this object is destroyed. 909 void ForceCleanup() { 910 CGF.CurLexicalScope = ParentScope; 911 RunCleanupsScope::ForceCleanup(); 912 913 if (!Labels.empty()) 914 rescopeLabels(); 915 } 916 917 bool hasLabels() const { 918 return !Labels.empty(); 919 } 920 921 void rescopeLabels(); 922 }; 923 924 typedef llvm::DenseMap<const Decl *, Address> DeclMapTy; 925 926 /// The class used to assign some variables some temporarily addresses. 927 class OMPMapVars { 928 DeclMapTy SavedLocals; 929 DeclMapTy SavedTempAddresses; 930 OMPMapVars(const OMPMapVars &) = delete; 931 void operator=(const OMPMapVars &) = delete; 932 933 public: 934 explicit OMPMapVars() = default; 935 ~OMPMapVars() { 936 assert(SavedLocals.empty() && "Did not restored original addresses."); 937 }; 938 939 /// Sets the address of the variable \p LocalVD to be \p TempAddr in 940 /// function \p CGF. 941 /// \return true if at least one variable was set already, false otherwise. 942 bool setVarAddr(CodeGenFunction &CGF, const VarDecl *LocalVD, 943 Address TempAddr) { 944 LocalVD = LocalVD->getCanonicalDecl(); 945 // Only save it once. 946 if (SavedLocals.count(LocalVD)) return false; 947 948 // Copy the existing local entry to SavedLocals. 949 auto it = CGF.LocalDeclMap.find(LocalVD); 950 if (it != CGF.LocalDeclMap.end()) 951 SavedLocals.try_emplace(LocalVD, it->second); 952 else 953 SavedLocals.try_emplace(LocalVD, Address::invalid()); 954 955 // Generate the private entry. 956 QualType VarTy = LocalVD->getType(); 957 if (VarTy->isReferenceType()) { 958 Address Temp = CGF.CreateMemTemp(VarTy); 959 CGF.Builder.CreateStore(TempAddr.getPointer(), Temp); 960 TempAddr = Temp; 961 } 962 SavedTempAddresses.try_emplace(LocalVD, TempAddr); 963 964 return true; 965 } 966 967 /// Applies new addresses to the list of the variables. 968 /// \return true if at least one variable is using new address, false 969 /// otherwise. 970 bool apply(CodeGenFunction &CGF) { 971 copyInto(SavedTempAddresses, CGF.LocalDeclMap); 972 SavedTempAddresses.clear(); 973 return !SavedLocals.empty(); 974 } 975 976 /// Restores original addresses of the variables. 977 void restore(CodeGenFunction &CGF) { 978 if (!SavedLocals.empty()) { 979 copyInto(SavedLocals, CGF.LocalDeclMap); 980 SavedLocals.clear(); 981 } 982 } 983 984 private: 985 /// Copy all the entries in the source map over the corresponding 986 /// entries in the destination, which must exist. 987 static void copyInto(const DeclMapTy &Src, DeclMapTy &Dest) { 988 for (auto &Pair : Src) { 989 if (!Pair.second.isValid()) { 990 Dest.erase(Pair.first); 991 continue; 992 } 993 994 auto I = Dest.find(Pair.first); 995 if (I != Dest.end()) 996 I->second = Pair.second; 997 else 998 Dest.insert(Pair); 999 } 1000 } 1001 }; 1002 1003 /// The scope used to remap some variables as private in the OpenMP loop body 1004 /// (or other captured region emitted without outlining), and to restore old 1005 /// vars back on exit. 1006 class OMPPrivateScope : public RunCleanupsScope { 1007 OMPMapVars MappedVars; 1008 OMPPrivateScope(const OMPPrivateScope &) = delete; 1009 void operator=(const OMPPrivateScope &) = delete; 1010 1011 public: 1012 /// Enter a new OpenMP private scope. 1013 explicit OMPPrivateScope(CodeGenFunction &CGF) : RunCleanupsScope(CGF) {} 1014 1015 /// Registers \p LocalVD variable as a private and apply \p PrivateGen 1016 /// function for it to generate corresponding private variable. \p 1017 /// PrivateGen returns an address of the generated private variable. 1018 /// \return true if the variable is registered as private, false if it has 1019 /// been privatized already. 1020 bool addPrivate(const VarDecl *LocalVD, 1021 const llvm::function_ref<Address()> PrivateGen) { 1022 assert(PerformCleanup && "adding private to dead scope"); 1023 return MappedVars.setVarAddr(CGF, LocalVD, PrivateGen()); 1024 } 1025 1026 /// Privatizes local variables previously registered as private. 1027 /// Registration is separate from the actual privatization to allow 1028 /// initializers use values of the original variables, not the private one. 1029 /// This is important, for example, if the private variable is a class 1030 /// variable initialized by a constructor that references other private 1031 /// variables. But at initialization original variables must be used, not 1032 /// private copies. 1033 /// \return true if at least one variable was privatized, false otherwise. 1034 bool Privatize() { return MappedVars.apply(CGF); } 1035 1036 void ForceCleanup() { 1037 RunCleanupsScope::ForceCleanup(); 1038 MappedVars.restore(CGF); 1039 } 1040 1041 /// Exit scope - all the mapped variables are restored. 1042 ~OMPPrivateScope() { 1043 if (PerformCleanup) 1044 ForceCleanup(); 1045 } 1046 1047 /// Checks if the global variable is captured in current function. 1048 bool isGlobalVarCaptured(const VarDecl *VD) const { 1049 VD = VD->getCanonicalDecl(); 1050 return !VD->isLocalVarDeclOrParm() && CGF.LocalDeclMap.count(VD) > 0; 1051 } 1052 }; 1053 1054 /// Save/restore original map of previously emitted local vars in case when we 1055 /// need to duplicate emission of the same code several times in the same 1056 /// function for OpenMP code. 1057 class OMPLocalDeclMapRAII { 1058 CodeGenFunction &CGF; 1059 DeclMapTy SavedMap; 1060 1061 public: 1062 OMPLocalDeclMapRAII(CodeGenFunction &CGF) 1063 : CGF(CGF), SavedMap(CGF.LocalDeclMap) {} 1064 ~OMPLocalDeclMapRAII() { SavedMap.swap(CGF.LocalDeclMap); } 1065 }; 1066 1067 /// Takes the old cleanup stack size and emits the cleanup blocks 1068 /// that have been added. 1069 void 1070 PopCleanupBlocks(EHScopeStack::stable_iterator OldCleanupStackSize, 1071 std::initializer_list<llvm::Value **> ValuesToReload = {}); 1072 1073 /// Takes the old cleanup stack size and emits the cleanup blocks 1074 /// that have been added, then adds all lifetime-extended cleanups from 1075 /// the given position to the stack. 1076 void 1077 PopCleanupBlocks(EHScopeStack::stable_iterator OldCleanupStackSize, 1078 size_t OldLifetimeExtendedStackSize, 1079 std::initializer_list<llvm::Value **> ValuesToReload = {}); 1080 1081 void ResolveBranchFixups(llvm::BasicBlock *Target); 1082 1083 /// The given basic block lies in the current EH scope, but may be a 1084 /// target of a potentially scope-crossing jump; get a stable handle 1085 /// to which we can perform this jump later. 1086 JumpDest getJumpDestInCurrentScope(llvm::BasicBlock *Target) { 1087 return JumpDest(Target, 1088 EHStack.getInnermostNormalCleanup(), 1089 NextCleanupDestIndex++); 1090 } 1091 1092 /// The given basic block lies in the current EH scope, but may be a 1093 /// target of a potentially scope-crossing jump; get a stable handle 1094 /// to which we can perform this jump later. 1095 JumpDest getJumpDestInCurrentScope(StringRef Name = StringRef()) { 1096 return getJumpDestInCurrentScope(createBasicBlock(Name)); 1097 } 1098 1099 /// EmitBranchThroughCleanup - Emit a branch from the current insert 1100 /// block through the normal cleanup handling code (if any) and then 1101 /// on to \arg Dest. 1102 void EmitBranchThroughCleanup(JumpDest Dest); 1103 1104 /// isObviouslyBranchWithoutCleanups - Return true if a branch to the 1105 /// specified destination obviously has no cleanups to run. 'false' is always 1106 /// a conservatively correct answer for this method. 1107 bool isObviouslyBranchWithoutCleanups(JumpDest Dest) const; 1108 1109 /// popCatchScope - Pops the catch scope at the top of the EHScope 1110 /// stack, emitting any required code (other than the catch handlers 1111 /// themselves). 1112 void popCatchScope(); 1113 1114 llvm::BasicBlock *getEHResumeBlock(bool isCleanup); 1115 llvm::BasicBlock *getEHDispatchBlock(EHScopeStack::stable_iterator scope); 1116 llvm::BasicBlock * 1117 getFuncletEHDispatchBlock(EHScopeStack::stable_iterator scope); 1118 1119 /// An object to manage conditionally-evaluated expressions. 1120 class ConditionalEvaluation { 1121 llvm::BasicBlock *StartBB; 1122 1123 public: 1124 ConditionalEvaluation(CodeGenFunction &CGF) 1125 : StartBB(CGF.Builder.GetInsertBlock()) {} 1126 1127 void begin(CodeGenFunction &CGF) { 1128 assert(CGF.OutermostConditional != this); 1129 if (!CGF.OutermostConditional) 1130 CGF.OutermostConditional = this; 1131 } 1132 1133 void end(CodeGenFunction &CGF) { 1134 assert(CGF.OutermostConditional != nullptr); 1135 if (CGF.OutermostConditional == this) 1136 CGF.OutermostConditional = nullptr; 1137 } 1138 1139 /// Returns a block which will be executed prior to each 1140 /// evaluation of the conditional code. 1141 llvm::BasicBlock *getStartingBlock() const { 1142 return StartBB; 1143 } 1144 }; 1145 1146 /// isInConditionalBranch - Return true if we're currently emitting 1147 /// one branch or the other of a conditional expression. 1148 bool isInConditionalBranch() const { return OutermostConditional != nullptr; } 1149 1150 void setBeforeOutermostConditional(llvm::Value *value, Address addr) { 1151 assert(isInConditionalBranch()); 1152 llvm::BasicBlock *block = OutermostConditional->getStartingBlock(); 1153 auto store = new llvm::StoreInst(value, addr.getPointer(), &block->back()); 1154 store->setAlignment(addr.getAlignment().getAsAlign()); 1155 } 1156 1157 /// An RAII object to record that we're evaluating a statement 1158 /// expression. 1159 class StmtExprEvaluation { 1160 CodeGenFunction &CGF; 1161 1162 /// We have to save the outermost conditional: cleanups in a 1163 /// statement expression aren't conditional just because the 1164 /// StmtExpr is. 1165 ConditionalEvaluation *SavedOutermostConditional; 1166 1167 public: 1168 StmtExprEvaluation(CodeGenFunction &CGF) 1169 : CGF(CGF), SavedOutermostConditional(CGF.OutermostConditional) { 1170 CGF.OutermostConditional = nullptr; 1171 } 1172 1173 ~StmtExprEvaluation() { 1174 CGF.OutermostConditional = SavedOutermostConditional; 1175 CGF.EnsureInsertPoint(); 1176 } 1177 }; 1178 1179 /// An object which temporarily prevents a value from being 1180 /// destroyed by aggressive peephole optimizations that assume that 1181 /// all uses of a value have been realized in the IR. 1182 class PeepholeProtection { 1183 llvm::Instruction *Inst; 1184 friend class CodeGenFunction; 1185 1186 public: 1187 PeepholeProtection() : Inst(nullptr) {} 1188 }; 1189 1190 /// A non-RAII class containing all the information about a bound 1191 /// opaque value. OpaqueValueMapping, below, is a RAII wrapper for 1192 /// this which makes individual mappings very simple; using this 1193 /// class directly is useful when you have a variable number of 1194 /// opaque values or don't want the RAII functionality for some 1195 /// reason. 1196 class OpaqueValueMappingData { 1197 const OpaqueValueExpr *OpaqueValue; 1198 bool BoundLValue; 1199 CodeGenFunction::PeepholeProtection Protection; 1200 1201 OpaqueValueMappingData(const OpaqueValueExpr *ov, 1202 bool boundLValue) 1203 : OpaqueValue(ov), BoundLValue(boundLValue) {} 1204 public: 1205 OpaqueValueMappingData() : OpaqueValue(nullptr) {} 1206 1207 static bool shouldBindAsLValue(const Expr *expr) { 1208 // gl-values should be bound as l-values for obvious reasons. 1209 // Records should be bound as l-values because IR generation 1210 // always keeps them in memory. Expressions of function type 1211 // act exactly like l-values but are formally required to be 1212 // r-values in C. 1213 return expr->isGLValue() || 1214 expr->getType()->isFunctionType() || 1215 hasAggregateEvaluationKind(expr->getType()); 1216 } 1217 1218 static OpaqueValueMappingData bind(CodeGenFunction &CGF, 1219 const OpaqueValueExpr *ov, 1220 const Expr *e) { 1221 if (shouldBindAsLValue(ov)) 1222 return bind(CGF, ov, CGF.EmitLValue(e)); 1223 return bind(CGF, ov, CGF.EmitAnyExpr(e)); 1224 } 1225 1226 static OpaqueValueMappingData bind(CodeGenFunction &CGF, 1227 const OpaqueValueExpr *ov, 1228 const LValue &lv) { 1229 assert(shouldBindAsLValue(ov)); 1230 CGF.OpaqueLValues.insert(std::make_pair(ov, lv)); 1231 return OpaqueValueMappingData(ov, true); 1232 } 1233 1234 static OpaqueValueMappingData bind(CodeGenFunction &CGF, 1235 const OpaqueValueExpr *ov, 1236 const RValue &rv) { 1237 assert(!shouldBindAsLValue(ov)); 1238 CGF.OpaqueRValues.insert(std::make_pair(ov, rv)); 1239 1240 OpaqueValueMappingData data(ov, false); 1241 1242 // Work around an extremely aggressive peephole optimization in 1243 // EmitScalarConversion which assumes that all other uses of a 1244 // value are extant. 1245 data.Protection = CGF.protectFromPeepholes(rv); 1246 1247 return data; 1248 } 1249 1250 bool isValid() const { return OpaqueValue != nullptr; } 1251 void clear() { OpaqueValue = nullptr; } 1252 1253 void unbind(CodeGenFunction &CGF) { 1254 assert(OpaqueValue && "no data to unbind!"); 1255 1256 if (BoundLValue) { 1257 CGF.OpaqueLValues.erase(OpaqueValue); 1258 } else { 1259 CGF.OpaqueRValues.erase(OpaqueValue); 1260 CGF.unprotectFromPeepholes(Protection); 1261 } 1262 } 1263 }; 1264 1265 /// An RAII object to set (and then clear) a mapping for an OpaqueValueExpr. 1266 class OpaqueValueMapping { 1267 CodeGenFunction &CGF; 1268 OpaqueValueMappingData Data; 1269 1270 public: 1271 static bool shouldBindAsLValue(const Expr *expr) { 1272 return OpaqueValueMappingData::shouldBindAsLValue(expr); 1273 } 1274 1275 /// Build the opaque value mapping for the given conditional 1276 /// operator if it's the GNU ?: extension. This is a common 1277 /// enough pattern that the convenience operator is really 1278 /// helpful. 1279 /// 1280 OpaqueValueMapping(CodeGenFunction &CGF, 1281 const AbstractConditionalOperator *op) : CGF(CGF) { 1282 if (isa<ConditionalOperator>(op)) 1283 // Leave Data empty. 1284 return; 1285 1286 const BinaryConditionalOperator *e = cast<BinaryConditionalOperator>(op); 1287 Data = OpaqueValueMappingData::bind(CGF, e->getOpaqueValue(), 1288 e->getCommon()); 1289 } 1290 1291 /// Build the opaque value mapping for an OpaqueValueExpr whose source 1292 /// expression is set to the expression the OVE represents. 1293 OpaqueValueMapping(CodeGenFunction &CGF, const OpaqueValueExpr *OV) 1294 : CGF(CGF) { 1295 if (OV) { 1296 assert(OV->getSourceExpr() && "wrong form of OpaqueValueMapping used " 1297 "for OVE with no source expression"); 1298 Data = OpaqueValueMappingData::bind(CGF, OV, OV->getSourceExpr()); 1299 } 1300 } 1301 1302 OpaqueValueMapping(CodeGenFunction &CGF, 1303 const OpaqueValueExpr *opaqueValue, 1304 LValue lvalue) 1305 : CGF(CGF), Data(OpaqueValueMappingData::bind(CGF, opaqueValue, lvalue)) { 1306 } 1307 1308 OpaqueValueMapping(CodeGenFunction &CGF, 1309 const OpaqueValueExpr *opaqueValue, 1310 RValue rvalue) 1311 : CGF(CGF), Data(OpaqueValueMappingData::bind(CGF, opaqueValue, rvalue)) { 1312 } 1313 1314 void pop() { 1315 Data.unbind(CGF); 1316 Data.clear(); 1317 } 1318 1319 ~OpaqueValueMapping() { 1320 if (Data.isValid()) Data.unbind(CGF); 1321 } 1322 }; 1323 1324 private: 1325 CGDebugInfo *DebugInfo; 1326 /// Used to create unique names for artificial VLA size debug info variables. 1327 unsigned VLAExprCounter = 0; 1328 bool DisableDebugInfo = false; 1329 1330 /// DidCallStackSave - Whether llvm.stacksave has been called. Used to avoid 1331 /// calling llvm.stacksave for multiple VLAs in the same scope. 1332 bool DidCallStackSave = false; 1333 1334 /// IndirectBranch - The first time an indirect goto is seen we create a block 1335 /// with an indirect branch. Every time we see the address of a label taken, 1336 /// we add the label to the indirect goto. Every subsequent indirect goto is 1337 /// codegen'd as a jump to the IndirectBranch's basic block. 1338 llvm::IndirectBrInst *IndirectBranch = nullptr; 1339 1340 /// LocalDeclMap - This keeps track of the LLVM allocas or globals for local C 1341 /// decls. 1342 DeclMapTy LocalDeclMap; 1343 1344 // Keep track of the cleanups for callee-destructed parameters pushed to the 1345 // cleanup stack so that they can be deactivated later. 1346 llvm::DenseMap<const ParmVarDecl *, EHScopeStack::stable_iterator> 1347 CalleeDestructedParamCleanups; 1348 1349 /// SizeArguments - If a ParmVarDecl had the pass_object_size attribute, this 1350 /// will contain a mapping from said ParmVarDecl to its implicit "object_size" 1351 /// parameter. 1352 llvm::SmallDenseMap<const ParmVarDecl *, const ImplicitParamDecl *, 2> 1353 SizeArguments; 1354 1355 /// Track escaped local variables with auto storage. Used during SEH 1356 /// outlining to produce a call to llvm.localescape. 1357 llvm::DenseMap<llvm::AllocaInst *, int> EscapedLocals; 1358 1359 /// LabelMap - This keeps track of the LLVM basic block for each C label. 1360 llvm::DenseMap<const LabelDecl*, JumpDest> LabelMap; 1361 1362 // BreakContinueStack - This keeps track of where break and continue 1363 // statements should jump to. 1364 struct BreakContinue { 1365 BreakContinue(JumpDest Break, JumpDest Continue) 1366 : BreakBlock(Break), ContinueBlock(Continue) {} 1367 1368 JumpDest BreakBlock; 1369 JumpDest ContinueBlock; 1370 }; 1371 SmallVector<BreakContinue, 8> BreakContinueStack; 1372 1373 /// Handles cancellation exit points in OpenMP-related constructs. 1374 class OpenMPCancelExitStack { 1375 /// Tracks cancellation exit point and join point for cancel-related exit 1376 /// and normal exit. 1377 struct CancelExit { 1378 CancelExit() = default; 1379 CancelExit(OpenMPDirectiveKind Kind, JumpDest ExitBlock, 1380 JumpDest ContBlock) 1381 : Kind(Kind), ExitBlock(ExitBlock), ContBlock(ContBlock) {} 1382 OpenMPDirectiveKind Kind = llvm::omp::OMPD_unknown; 1383 /// true if the exit block has been emitted already by the special 1384 /// emitExit() call, false if the default codegen is used. 1385 bool HasBeenEmitted = false; 1386 JumpDest ExitBlock; 1387 JumpDest ContBlock; 1388 }; 1389 1390 SmallVector<CancelExit, 8> Stack; 1391 1392 public: 1393 OpenMPCancelExitStack() : Stack(1) {} 1394 ~OpenMPCancelExitStack() = default; 1395 /// Fetches the exit block for the current OpenMP construct. 1396 JumpDest getExitBlock() const { return Stack.back().ExitBlock; } 1397 /// Emits exit block with special codegen procedure specific for the related 1398 /// OpenMP construct + emits code for normal construct cleanup. 1399 void emitExit(CodeGenFunction &CGF, OpenMPDirectiveKind Kind, 1400 const llvm::function_ref<void(CodeGenFunction &)> CodeGen) { 1401 if (Stack.back().Kind == Kind && getExitBlock().isValid()) { 1402 assert(CGF.getOMPCancelDestination(Kind).isValid()); 1403 assert(CGF.HaveInsertPoint()); 1404 assert(!Stack.back().HasBeenEmitted); 1405 auto IP = CGF.Builder.saveAndClearIP(); 1406 CGF.EmitBlock(Stack.back().ExitBlock.getBlock()); 1407 CodeGen(CGF); 1408 CGF.EmitBranch(Stack.back().ContBlock.getBlock()); 1409 CGF.Builder.restoreIP(IP); 1410 Stack.back().HasBeenEmitted = true; 1411 } 1412 CodeGen(CGF); 1413 } 1414 /// Enter the cancel supporting \a Kind construct. 1415 /// \param Kind OpenMP directive that supports cancel constructs. 1416 /// \param HasCancel true, if the construct has inner cancel directive, 1417 /// false otherwise. 1418 void enter(CodeGenFunction &CGF, OpenMPDirectiveKind Kind, bool HasCancel) { 1419 Stack.push_back({Kind, 1420 HasCancel ? CGF.getJumpDestInCurrentScope("cancel.exit") 1421 : JumpDest(), 1422 HasCancel ? CGF.getJumpDestInCurrentScope("cancel.cont") 1423 : JumpDest()}); 1424 } 1425 /// Emits default exit point for the cancel construct (if the special one 1426 /// has not be used) + join point for cancel/normal exits. 1427 void exit(CodeGenFunction &CGF) { 1428 if (getExitBlock().isValid()) { 1429 assert(CGF.getOMPCancelDestination(Stack.back().Kind).isValid()); 1430 bool HaveIP = CGF.HaveInsertPoint(); 1431 if (!Stack.back().HasBeenEmitted) { 1432 if (HaveIP) 1433 CGF.EmitBranchThroughCleanup(Stack.back().ContBlock); 1434 CGF.EmitBlock(Stack.back().ExitBlock.getBlock()); 1435 CGF.EmitBranchThroughCleanup(Stack.back().ContBlock); 1436 } 1437 CGF.EmitBlock(Stack.back().ContBlock.getBlock()); 1438 if (!HaveIP) { 1439 CGF.Builder.CreateUnreachable(); 1440 CGF.Builder.ClearInsertionPoint(); 1441 } 1442 } 1443 Stack.pop_back(); 1444 } 1445 }; 1446 OpenMPCancelExitStack OMPCancelStack; 1447 1448 /// Lower the Likelihood knowledge about the \p Cond via llvm.expect intrin. 1449 llvm::Value *emitCondLikelihoodViaExpectIntrinsic(llvm::Value *Cond, 1450 Stmt::Likelihood LH); 1451 1452 CodeGenPGO PGO; 1453 1454 /// Calculate branch weights appropriate for PGO data 1455 llvm::MDNode *createProfileWeights(uint64_t TrueCount, 1456 uint64_t FalseCount) const; 1457 llvm::MDNode *createProfileWeights(ArrayRef<uint64_t> Weights) const; 1458 llvm::MDNode *createProfileWeightsForLoop(const Stmt *Cond, 1459 uint64_t LoopCount) const; 1460 1461 public: 1462 /// Increment the profiler's counter for the given statement by \p StepV. 1463 /// If \p StepV is null, the default increment is 1. 1464 void incrementProfileCounter(const Stmt *S, llvm::Value *StepV = nullptr) { 1465 if (CGM.getCodeGenOpts().hasProfileClangInstr() && 1466 !CurFn->hasFnAttribute(llvm::Attribute::NoProfile)) 1467 PGO.emitCounterIncrement(Builder, S, StepV); 1468 PGO.setCurrentStmt(S); 1469 } 1470 1471 /// Get the profiler's count for the given statement. 1472 uint64_t getProfileCount(const Stmt *S) { 1473 Optional<uint64_t> Count = PGO.getStmtCount(S); 1474 if (!Count.hasValue()) 1475 return 0; 1476 return *Count; 1477 } 1478 1479 /// Set the profiler's current count. 1480 void setCurrentProfileCount(uint64_t Count) { 1481 PGO.setCurrentRegionCount(Count); 1482 } 1483 1484 /// Get the profiler's current count. This is generally the count for the most 1485 /// recently incremented counter. 1486 uint64_t getCurrentProfileCount() { 1487 return PGO.getCurrentRegionCount(); 1488 } 1489 1490 private: 1491 1492 /// SwitchInsn - This is nearest current switch instruction. It is null if 1493 /// current context is not in a switch. 1494 llvm::SwitchInst *SwitchInsn = nullptr; 1495 /// The branch weights of SwitchInsn when doing instrumentation based PGO. 1496 SmallVector<uint64_t, 16> *SwitchWeights = nullptr; 1497 1498 /// The likelihood attributes of the SwitchCase. 1499 SmallVector<Stmt::Likelihood, 16> *SwitchLikelihood = nullptr; 1500 1501 /// CaseRangeBlock - This block holds if condition check for last case 1502 /// statement range in current switch instruction. 1503 llvm::BasicBlock *CaseRangeBlock = nullptr; 1504 1505 /// OpaqueLValues - Keeps track of the current set of opaque value 1506 /// expressions. 1507 llvm::DenseMap<const OpaqueValueExpr *, LValue> OpaqueLValues; 1508 llvm::DenseMap<const OpaqueValueExpr *, RValue> OpaqueRValues; 1509 1510 // VLASizeMap - This keeps track of the associated size for each VLA type. 1511 // We track this by the size expression rather than the type itself because 1512 // in certain situations, like a const qualifier applied to an VLA typedef, 1513 // multiple VLA types can share the same size expression. 1514 // FIXME: Maybe this could be a stack of maps that is pushed/popped as we 1515 // enter/leave scopes. 1516 llvm::DenseMap<const Expr*, llvm::Value*> VLASizeMap; 1517 1518 /// A block containing a single 'unreachable' instruction. Created 1519 /// lazily by getUnreachableBlock(). 1520 llvm::BasicBlock *UnreachableBlock = nullptr; 1521 1522 /// Counts of the number return expressions in the function. 1523 unsigned NumReturnExprs = 0; 1524 1525 /// Count the number of simple (constant) return expressions in the function. 1526 unsigned NumSimpleReturnExprs = 0; 1527 1528 /// The last regular (non-return) debug location (breakpoint) in the function. 1529 SourceLocation LastStopPoint; 1530 1531 public: 1532 /// Source location information about the default argument or member 1533 /// initializer expression we're evaluating, if any. 1534 CurrentSourceLocExprScope CurSourceLocExprScope; 1535 using SourceLocExprScopeGuard = 1536 CurrentSourceLocExprScope::SourceLocExprScopeGuard; 1537 1538 /// A scope within which we are constructing the fields of an object which 1539 /// might use a CXXDefaultInitExpr. This stashes away a 'this' value to use 1540 /// if we need to evaluate a CXXDefaultInitExpr within the evaluation. 1541 class FieldConstructionScope { 1542 public: 1543 FieldConstructionScope(CodeGenFunction &CGF, Address This) 1544 : CGF(CGF), OldCXXDefaultInitExprThis(CGF.CXXDefaultInitExprThis) { 1545 CGF.CXXDefaultInitExprThis = This; 1546 } 1547 ~FieldConstructionScope() { 1548 CGF.CXXDefaultInitExprThis = OldCXXDefaultInitExprThis; 1549 } 1550 1551 private: 1552 CodeGenFunction &CGF; 1553 Address OldCXXDefaultInitExprThis; 1554 }; 1555 1556 /// The scope of a CXXDefaultInitExpr. Within this scope, the value of 'this' 1557 /// is overridden to be the object under construction. 1558 class CXXDefaultInitExprScope { 1559 public: 1560 CXXDefaultInitExprScope(CodeGenFunction &CGF, const CXXDefaultInitExpr *E) 1561 : CGF(CGF), OldCXXThisValue(CGF.CXXThisValue), 1562 OldCXXThisAlignment(CGF.CXXThisAlignment), 1563 SourceLocScope(E, CGF.CurSourceLocExprScope) { 1564 CGF.CXXThisValue = CGF.CXXDefaultInitExprThis.getPointer(); 1565 CGF.CXXThisAlignment = CGF.CXXDefaultInitExprThis.getAlignment(); 1566 } 1567 ~CXXDefaultInitExprScope() { 1568 CGF.CXXThisValue = OldCXXThisValue; 1569 CGF.CXXThisAlignment = OldCXXThisAlignment; 1570 } 1571 1572 public: 1573 CodeGenFunction &CGF; 1574 llvm::Value *OldCXXThisValue; 1575 CharUnits OldCXXThisAlignment; 1576 SourceLocExprScopeGuard SourceLocScope; 1577 }; 1578 1579 struct CXXDefaultArgExprScope : SourceLocExprScopeGuard { 1580 CXXDefaultArgExprScope(CodeGenFunction &CGF, const CXXDefaultArgExpr *E) 1581 : SourceLocExprScopeGuard(E, CGF.CurSourceLocExprScope) {} 1582 }; 1583 1584 /// The scope of an ArrayInitLoopExpr. Within this scope, the value of the 1585 /// current loop index is overridden. 1586 class ArrayInitLoopExprScope { 1587 public: 1588 ArrayInitLoopExprScope(CodeGenFunction &CGF, llvm::Value *Index) 1589 : CGF(CGF), OldArrayInitIndex(CGF.ArrayInitIndex) { 1590 CGF.ArrayInitIndex = Index; 1591 } 1592 ~ArrayInitLoopExprScope() { 1593 CGF.ArrayInitIndex = OldArrayInitIndex; 1594 } 1595 1596 private: 1597 CodeGenFunction &CGF; 1598 llvm::Value *OldArrayInitIndex; 1599 }; 1600 1601 class InlinedInheritingConstructorScope { 1602 public: 1603 InlinedInheritingConstructorScope(CodeGenFunction &CGF, GlobalDecl GD) 1604 : CGF(CGF), OldCurGD(CGF.CurGD), OldCurFuncDecl(CGF.CurFuncDecl), 1605 OldCurCodeDecl(CGF.CurCodeDecl), 1606 OldCXXABIThisDecl(CGF.CXXABIThisDecl), 1607 OldCXXABIThisValue(CGF.CXXABIThisValue), 1608 OldCXXThisValue(CGF.CXXThisValue), 1609 OldCXXABIThisAlignment(CGF.CXXABIThisAlignment), 1610 OldCXXThisAlignment(CGF.CXXThisAlignment), 1611 OldReturnValue(CGF.ReturnValue), OldFnRetTy(CGF.FnRetTy), 1612 OldCXXInheritedCtorInitExprArgs( 1613 std::move(CGF.CXXInheritedCtorInitExprArgs)) { 1614 CGF.CurGD = GD; 1615 CGF.CurFuncDecl = CGF.CurCodeDecl = 1616 cast<CXXConstructorDecl>(GD.getDecl()); 1617 CGF.CXXABIThisDecl = nullptr; 1618 CGF.CXXABIThisValue = nullptr; 1619 CGF.CXXThisValue = nullptr; 1620 CGF.CXXABIThisAlignment = CharUnits(); 1621 CGF.CXXThisAlignment = CharUnits(); 1622 CGF.ReturnValue = Address::invalid(); 1623 CGF.FnRetTy = QualType(); 1624 CGF.CXXInheritedCtorInitExprArgs.clear(); 1625 } 1626 ~InlinedInheritingConstructorScope() { 1627 CGF.CurGD = OldCurGD; 1628 CGF.CurFuncDecl = OldCurFuncDecl; 1629 CGF.CurCodeDecl = OldCurCodeDecl; 1630 CGF.CXXABIThisDecl = OldCXXABIThisDecl; 1631 CGF.CXXABIThisValue = OldCXXABIThisValue; 1632 CGF.CXXThisValue = OldCXXThisValue; 1633 CGF.CXXABIThisAlignment = OldCXXABIThisAlignment; 1634 CGF.CXXThisAlignment = OldCXXThisAlignment; 1635 CGF.ReturnValue = OldReturnValue; 1636 CGF.FnRetTy = OldFnRetTy; 1637 CGF.CXXInheritedCtorInitExprArgs = 1638 std::move(OldCXXInheritedCtorInitExprArgs); 1639 } 1640 1641 private: 1642 CodeGenFunction &CGF; 1643 GlobalDecl OldCurGD; 1644 const Decl *OldCurFuncDecl; 1645 const Decl *OldCurCodeDecl; 1646 ImplicitParamDecl *OldCXXABIThisDecl; 1647 llvm::Value *OldCXXABIThisValue; 1648 llvm::Value *OldCXXThisValue; 1649 CharUnits OldCXXABIThisAlignment; 1650 CharUnits OldCXXThisAlignment; 1651 Address OldReturnValue; 1652 QualType OldFnRetTy; 1653 CallArgList OldCXXInheritedCtorInitExprArgs; 1654 }; 1655 1656 // Helper class for the OpenMP IR Builder. Allows reusability of code used for 1657 // region body, and finalization codegen callbacks. This will class will also 1658 // contain privatization functions used by the privatization call backs 1659 // 1660 // TODO: this is temporary class for things that are being moved out of 1661 // CGOpenMPRuntime, new versions of current CodeGenFunction methods, or 1662 // utility function for use with the OMPBuilder. Once that move to use the 1663 // OMPBuilder is done, everything here will either become part of CodeGenFunc. 1664 // directly, or a new helper class that will contain functions used by both 1665 // this and the OMPBuilder 1666 1667 struct OMPBuilderCBHelpers { 1668 1669 OMPBuilderCBHelpers() = delete; 1670 OMPBuilderCBHelpers(const OMPBuilderCBHelpers &) = delete; 1671 OMPBuilderCBHelpers &operator=(const OMPBuilderCBHelpers &) = delete; 1672 1673 using InsertPointTy = llvm::OpenMPIRBuilder::InsertPointTy; 1674 1675 /// Cleanup action for allocate support. 1676 class OMPAllocateCleanupTy final : public EHScopeStack::Cleanup { 1677 1678 private: 1679 llvm::CallInst *RTLFnCI; 1680 1681 public: 1682 OMPAllocateCleanupTy(llvm::CallInst *RLFnCI) : RTLFnCI(RLFnCI) { 1683 RLFnCI->removeFromParent(); 1684 } 1685 1686 void Emit(CodeGenFunction &CGF, Flags /*flags*/) override { 1687 if (!CGF.HaveInsertPoint()) 1688 return; 1689 CGF.Builder.Insert(RTLFnCI); 1690 } 1691 }; 1692 1693 /// Returns address of the threadprivate variable for the current 1694 /// thread. This Also create any necessary OMP runtime calls. 1695 /// 1696 /// \param VD VarDecl for Threadprivate variable. 1697 /// \param VDAddr Address of the Vardecl 1698 /// \param Loc The location where the barrier directive was encountered 1699 static Address getAddrOfThreadPrivate(CodeGenFunction &CGF, 1700 const VarDecl *VD, Address VDAddr, 1701 SourceLocation Loc); 1702 1703 /// Gets the OpenMP-specific address of the local variable /p VD. 1704 static Address getAddressOfLocalVariable(CodeGenFunction &CGF, 1705 const VarDecl *VD); 1706 /// Get the platform-specific name separator. 1707 /// \param Parts different parts of the final name that needs separation 1708 /// \param FirstSeparator First separator used between the initial two 1709 /// parts of the name. 1710 /// \param Separator separator used between all of the rest consecutinve 1711 /// parts of the name 1712 static std::string getNameWithSeparators(ArrayRef<StringRef> Parts, 1713 StringRef FirstSeparator = ".", 1714 StringRef Separator = "."); 1715 /// Emit the Finalization for an OMP region 1716 /// \param CGF The Codegen function this belongs to 1717 /// \param IP Insertion point for generating the finalization code. 1718 static void FinalizeOMPRegion(CodeGenFunction &CGF, InsertPointTy IP) { 1719 CGBuilderTy::InsertPointGuard IPG(CGF.Builder); 1720 assert(IP.getBlock()->end() != IP.getPoint() && 1721 "OpenMP IR Builder should cause terminated block!"); 1722 1723 llvm::BasicBlock *IPBB = IP.getBlock(); 1724 llvm::BasicBlock *DestBB = IPBB->getUniqueSuccessor(); 1725 assert(DestBB && "Finalization block should have one successor!"); 1726 1727 // erase and replace with cleanup branch. 1728 IPBB->getTerminator()->eraseFromParent(); 1729 CGF.Builder.SetInsertPoint(IPBB); 1730 CodeGenFunction::JumpDest Dest = CGF.getJumpDestInCurrentScope(DestBB); 1731 CGF.EmitBranchThroughCleanup(Dest); 1732 } 1733 1734 /// Emit the body of an OMP region 1735 /// \param CGF The Codegen function this belongs to 1736 /// \param RegionBodyStmt The body statement for the OpenMP region being 1737 /// generated 1738 /// \param CodeGenIP Insertion point for generating the body code. 1739 /// \param FiniBB The finalization basic block 1740 static void EmitOMPRegionBody(CodeGenFunction &CGF, 1741 const Stmt *RegionBodyStmt, 1742 InsertPointTy CodeGenIP, 1743 llvm::BasicBlock &FiniBB) { 1744 llvm::BasicBlock *CodeGenIPBB = CodeGenIP.getBlock(); 1745 if (llvm::Instruction *CodeGenIPBBTI = CodeGenIPBB->getTerminator()) 1746 CodeGenIPBBTI->eraseFromParent(); 1747 1748 CGF.Builder.SetInsertPoint(CodeGenIPBB); 1749 1750 CGF.EmitStmt(RegionBodyStmt); 1751 1752 if (CGF.Builder.saveIP().isSet()) 1753 CGF.Builder.CreateBr(&FiniBB); 1754 } 1755 1756 /// RAII for preserving necessary info during Outlined region body codegen. 1757 class OutlinedRegionBodyRAII { 1758 1759 llvm::AssertingVH<llvm::Instruction> OldAllocaIP; 1760 CodeGenFunction::JumpDest OldReturnBlock; 1761 CGBuilderTy::InsertPoint IP; 1762 CodeGenFunction &CGF; 1763 1764 public: 1765 OutlinedRegionBodyRAII(CodeGenFunction &cgf, InsertPointTy &AllocaIP, 1766 llvm::BasicBlock &RetBB) 1767 : CGF(cgf) { 1768 assert(AllocaIP.isSet() && 1769 "Must specify Insertion point for allocas of outlined function"); 1770 OldAllocaIP = CGF.AllocaInsertPt; 1771 CGF.AllocaInsertPt = &*AllocaIP.getPoint(); 1772 IP = CGF.Builder.saveIP(); 1773 1774 OldReturnBlock = CGF.ReturnBlock; 1775 CGF.ReturnBlock = CGF.getJumpDestInCurrentScope(&RetBB); 1776 } 1777 1778 ~OutlinedRegionBodyRAII() { 1779 CGF.AllocaInsertPt = OldAllocaIP; 1780 CGF.ReturnBlock = OldReturnBlock; 1781 CGF.Builder.restoreIP(IP); 1782 } 1783 }; 1784 1785 /// RAII for preserving necessary info during inlined region body codegen. 1786 class InlinedRegionBodyRAII { 1787 1788 llvm::AssertingVH<llvm::Instruction> OldAllocaIP; 1789 CodeGenFunction &CGF; 1790 1791 public: 1792 InlinedRegionBodyRAII(CodeGenFunction &cgf, InsertPointTy &AllocaIP, 1793 llvm::BasicBlock &FiniBB) 1794 : CGF(cgf) { 1795 // Alloca insertion block should be in the entry block of the containing 1796 // function so it expects an empty AllocaIP in which case will reuse the 1797 // old alloca insertion point, or a new AllocaIP in the same block as 1798 // the old one 1799 assert((!AllocaIP.isSet() || 1800 CGF.AllocaInsertPt->getParent() == AllocaIP.getBlock()) && 1801 "Insertion point should be in the entry block of containing " 1802 "function!"); 1803 OldAllocaIP = CGF.AllocaInsertPt; 1804 if (AllocaIP.isSet()) 1805 CGF.AllocaInsertPt = &*AllocaIP.getPoint(); 1806 1807 // TODO: Remove the call, after making sure the counter is not used by 1808 // the EHStack. 1809 // Since this is an inlined region, it should not modify the 1810 // ReturnBlock, and should reuse the one for the enclosing outlined 1811 // region. So, the JumpDest being return by the function is discarded 1812 (void)CGF.getJumpDestInCurrentScope(&FiniBB); 1813 } 1814 1815 ~InlinedRegionBodyRAII() { CGF.AllocaInsertPt = OldAllocaIP; } 1816 }; 1817 }; 1818 1819 private: 1820 /// CXXThisDecl - When generating code for a C++ member function, 1821 /// this will hold the implicit 'this' declaration. 1822 ImplicitParamDecl *CXXABIThisDecl = nullptr; 1823 llvm::Value *CXXABIThisValue = nullptr; 1824 llvm::Value *CXXThisValue = nullptr; 1825 CharUnits CXXABIThisAlignment; 1826 CharUnits CXXThisAlignment; 1827 1828 /// The value of 'this' to use when evaluating CXXDefaultInitExprs within 1829 /// this expression. 1830 Address CXXDefaultInitExprThis = Address::invalid(); 1831 1832 /// The current array initialization index when evaluating an 1833 /// ArrayInitIndexExpr within an ArrayInitLoopExpr. 1834 llvm::Value *ArrayInitIndex = nullptr; 1835 1836 /// The values of function arguments to use when evaluating 1837 /// CXXInheritedCtorInitExprs within this context. 1838 CallArgList CXXInheritedCtorInitExprArgs; 1839 1840 /// CXXStructorImplicitParamDecl - When generating code for a constructor or 1841 /// destructor, this will hold the implicit argument (e.g. VTT). 1842 ImplicitParamDecl *CXXStructorImplicitParamDecl = nullptr; 1843 llvm::Value *CXXStructorImplicitParamValue = nullptr; 1844 1845 /// OutermostConditional - Points to the outermost active 1846 /// conditional control. This is used so that we know if a 1847 /// temporary should be destroyed conditionally. 1848 ConditionalEvaluation *OutermostConditional = nullptr; 1849 1850 /// The current lexical scope. 1851 LexicalScope *CurLexicalScope = nullptr; 1852 1853 /// The current source location that should be used for exception 1854 /// handling code. 1855 SourceLocation CurEHLocation; 1856 1857 /// BlockByrefInfos - For each __block variable, contains 1858 /// information about the layout of the variable. 1859 llvm::DenseMap<const ValueDecl *, BlockByrefInfo> BlockByrefInfos; 1860 1861 /// Used by -fsanitize=nullability-return to determine whether the return 1862 /// value can be checked. 1863 llvm::Value *RetValNullabilityPrecondition = nullptr; 1864 1865 /// Check if -fsanitize=nullability-return instrumentation is required for 1866 /// this function. 1867 bool requiresReturnValueNullabilityCheck() const { 1868 return RetValNullabilityPrecondition; 1869 } 1870 1871 /// Used to store precise source locations for return statements by the 1872 /// runtime return value checks. 1873 Address ReturnLocation = Address::invalid(); 1874 1875 /// Check if the return value of this function requires sanitization. 1876 bool requiresReturnValueCheck() const; 1877 1878 llvm::BasicBlock *TerminateLandingPad = nullptr; 1879 llvm::BasicBlock *TerminateHandler = nullptr; 1880 llvm::SmallVector<llvm::BasicBlock *, 2> TrapBBs; 1881 1882 /// Terminate funclets keyed by parent funclet pad. 1883 llvm::MapVector<llvm::Value *, llvm::BasicBlock *> TerminateFunclets; 1884 1885 /// Largest vector width used in ths function. Will be used to create a 1886 /// function attribute. 1887 unsigned LargestVectorWidth = 0; 1888 1889 /// True if we need emit the life-time markers. 1890 const bool ShouldEmitLifetimeMarkers; 1891 1892 /// Add OpenCL kernel arg metadata and the kernel attribute metadata to 1893 /// the function metadata. 1894 void EmitOpenCLKernelMetadata(const FunctionDecl *FD, 1895 llvm::Function *Fn); 1896 1897 public: 1898 CodeGenFunction(CodeGenModule &cgm, bool suppressNewContext=false); 1899 ~CodeGenFunction(); 1900 1901 CodeGenTypes &getTypes() const { return CGM.getTypes(); } 1902 ASTContext &getContext() const { return CGM.getContext(); } 1903 CGDebugInfo *getDebugInfo() { 1904 if (DisableDebugInfo) 1905 return nullptr; 1906 return DebugInfo; 1907 } 1908 void disableDebugInfo() { DisableDebugInfo = true; } 1909 void enableDebugInfo() { DisableDebugInfo = false; } 1910 1911 bool shouldUseFusedARCCalls() { 1912 return CGM.getCodeGenOpts().OptimizationLevel == 0; 1913 } 1914 1915 const LangOptions &getLangOpts() const { return CGM.getLangOpts(); } 1916 1917 /// Returns a pointer to the function's exception object and selector slot, 1918 /// which is assigned in every landing pad. 1919 Address getExceptionSlot(); 1920 Address getEHSelectorSlot(); 1921 1922 /// Returns the contents of the function's exception object and selector 1923 /// slots. 1924 llvm::Value *getExceptionFromSlot(); 1925 llvm::Value *getSelectorFromSlot(); 1926 1927 Address getNormalCleanupDestSlot(); 1928 1929 llvm::BasicBlock *getUnreachableBlock() { 1930 if (!UnreachableBlock) { 1931 UnreachableBlock = createBasicBlock("unreachable"); 1932 new llvm::UnreachableInst(getLLVMContext(), UnreachableBlock); 1933 } 1934 return UnreachableBlock; 1935 } 1936 1937 llvm::BasicBlock *getInvokeDest() { 1938 if (!EHStack.requiresLandingPad()) return nullptr; 1939 return getInvokeDestImpl(); 1940 } 1941 1942 bool currentFunctionUsesSEHTry() const { return CurSEHParent != nullptr; } 1943 1944 const TargetInfo &getTarget() const { return Target; } 1945 llvm::LLVMContext &getLLVMContext() { return CGM.getLLVMContext(); } 1946 const TargetCodeGenInfo &getTargetHooks() const { 1947 return CGM.getTargetCodeGenInfo(); 1948 } 1949 1950 //===--------------------------------------------------------------------===// 1951 // Cleanups 1952 //===--------------------------------------------------------------------===// 1953 1954 typedef void Destroyer(CodeGenFunction &CGF, Address addr, QualType ty); 1955 1956 void pushIrregularPartialArrayCleanup(llvm::Value *arrayBegin, 1957 Address arrayEndPointer, 1958 QualType elementType, 1959 CharUnits elementAlignment, 1960 Destroyer *destroyer); 1961 void pushRegularPartialArrayCleanup(llvm::Value *arrayBegin, 1962 llvm::Value *arrayEnd, 1963 QualType elementType, 1964 CharUnits elementAlignment, 1965 Destroyer *destroyer); 1966 1967 void pushDestroy(QualType::DestructionKind dtorKind, 1968 Address addr, QualType type); 1969 void pushEHDestroy(QualType::DestructionKind dtorKind, 1970 Address addr, QualType type); 1971 void pushDestroy(CleanupKind kind, Address addr, QualType type, 1972 Destroyer *destroyer, bool useEHCleanupForArray); 1973 void pushLifetimeExtendedDestroy(CleanupKind kind, Address addr, 1974 QualType type, Destroyer *destroyer, 1975 bool useEHCleanupForArray); 1976 void pushCallObjectDeleteCleanup(const FunctionDecl *OperatorDelete, 1977 llvm::Value *CompletePtr, 1978 QualType ElementType); 1979 void pushStackRestore(CleanupKind kind, Address SPMem); 1980 void emitDestroy(Address addr, QualType type, Destroyer *destroyer, 1981 bool useEHCleanupForArray); 1982 llvm::Function *generateDestroyHelper(Address addr, QualType type, 1983 Destroyer *destroyer, 1984 bool useEHCleanupForArray, 1985 const VarDecl *VD); 1986 void emitArrayDestroy(llvm::Value *begin, llvm::Value *end, 1987 QualType elementType, CharUnits elementAlign, 1988 Destroyer *destroyer, 1989 bool checkZeroLength, bool useEHCleanup); 1990 1991 Destroyer *getDestroyer(QualType::DestructionKind destructionKind); 1992 1993 /// Determines whether an EH cleanup is required to destroy a type 1994 /// with the given destruction kind. 1995 bool needsEHCleanup(QualType::DestructionKind kind) { 1996 switch (kind) { 1997 case QualType::DK_none: 1998 return false; 1999 case QualType::DK_cxx_destructor: 2000 case QualType::DK_objc_weak_lifetime: 2001 case QualType::DK_nontrivial_c_struct: 2002 return getLangOpts().Exceptions; 2003 case QualType::DK_objc_strong_lifetime: 2004 return getLangOpts().Exceptions && 2005 CGM.getCodeGenOpts().ObjCAutoRefCountExceptions; 2006 } 2007 llvm_unreachable("bad destruction kind"); 2008 } 2009 2010 CleanupKind getCleanupKind(QualType::DestructionKind kind) { 2011 return (needsEHCleanup(kind) ? NormalAndEHCleanup : NormalCleanup); 2012 } 2013 2014 //===--------------------------------------------------------------------===// 2015 // Objective-C 2016 //===--------------------------------------------------------------------===// 2017 2018 void GenerateObjCMethod(const ObjCMethodDecl *OMD); 2019 2020 void StartObjCMethod(const ObjCMethodDecl *MD, const ObjCContainerDecl *CD); 2021 2022 /// GenerateObjCGetter - Synthesize an Objective-C property getter function. 2023 void GenerateObjCGetter(ObjCImplementationDecl *IMP, 2024 const ObjCPropertyImplDecl *PID); 2025 void generateObjCGetterBody(const ObjCImplementationDecl *classImpl, 2026 const ObjCPropertyImplDecl *propImpl, 2027 const ObjCMethodDecl *GetterMothodDecl, 2028 llvm::Constant *AtomicHelperFn); 2029 2030 void GenerateObjCCtorDtorMethod(ObjCImplementationDecl *IMP, 2031 ObjCMethodDecl *MD, bool ctor); 2032 2033 /// GenerateObjCSetter - Synthesize an Objective-C property setter function 2034 /// for the given property. 2035 void GenerateObjCSetter(ObjCImplementationDecl *IMP, 2036 const ObjCPropertyImplDecl *PID); 2037 void generateObjCSetterBody(const ObjCImplementationDecl *classImpl, 2038 const ObjCPropertyImplDecl *propImpl, 2039 llvm::Constant *AtomicHelperFn); 2040 2041 //===--------------------------------------------------------------------===// 2042 // Block Bits 2043 //===--------------------------------------------------------------------===// 2044 2045 /// Emit block literal. 2046 /// \return an LLVM value which is a pointer to a struct which contains 2047 /// information about the block, including the block invoke function, the 2048 /// captured variables, etc. 2049 llvm::Value *EmitBlockLiteral(const BlockExpr *); 2050 2051 llvm::Function *GenerateBlockFunction(GlobalDecl GD, 2052 const CGBlockInfo &Info, 2053 const DeclMapTy &ldm, 2054 bool IsLambdaConversionToBlock, 2055 bool BuildGlobalBlock); 2056 2057 /// Check if \p T is a C++ class that has a destructor that can throw. 2058 static bool cxxDestructorCanThrow(QualType T); 2059 2060 llvm::Constant *GenerateCopyHelperFunction(const CGBlockInfo &blockInfo); 2061 llvm::Constant *GenerateDestroyHelperFunction(const CGBlockInfo &blockInfo); 2062 llvm::Constant *GenerateObjCAtomicSetterCopyHelperFunction( 2063 const ObjCPropertyImplDecl *PID); 2064 llvm::Constant *GenerateObjCAtomicGetterCopyHelperFunction( 2065 const ObjCPropertyImplDecl *PID); 2066 llvm::Value *EmitBlockCopyAndAutorelease(llvm::Value *Block, QualType Ty); 2067 2068 void BuildBlockRelease(llvm::Value *DeclPtr, BlockFieldFlags flags, 2069 bool CanThrow); 2070 2071 class AutoVarEmission; 2072 2073 void emitByrefStructureInit(const AutoVarEmission &emission); 2074 2075 /// Enter a cleanup to destroy a __block variable. Note that this 2076 /// cleanup should be a no-op if the variable hasn't left the stack 2077 /// yet; if a cleanup is required for the variable itself, that needs 2078 /// to be done externally. 2079 /// 2080 /// \param Kind Cleanup kind. 2081 /// 2082 /// \param Addr When \p LoadBlockVarAddr is false, the address of the __block 2083 /// structure that will be passed to _Block_object_dispose. When 2084 /// \p LoadBlockVarAddr is true, the address of the field of the block 2085 /// structure that holds the address of the __block structure. 2086 /// 2087 /// \param Flags The flag that will be passed to _Block_object_dispose. 2088 /// 2089 /// \param LoadBlockVarAddr Indicates whether we need to emit a load from 2090 /// \p Addr to get the address of the __block structure. 2091 void enterByrefCleanup(CleanupKind Kind, Address Addr, BlockFieldFlags Flags, 2092 bool LoadBlockVarAddr, bool CanThrow); 2093 2094 void setBlockContextParameter(const ImplicitParamDecl *D, unsigned argNum, 2095 llvm::Value *ptr); 2096 2097 Address LoadBlockStruct(); 2098 Address GetAddrOfBlockDecl(const VarDecl *var); 2099 2100 /// BuildBlockByrefAddress - Computes the location of the 2101 /// data in a variable which is declared as __block. 2102 Address emitBlockByrefAddress(Address baseAddr, const VarDecl *V, 2103 bool followForward = true); 2104 Address emitBlockByrefAddress(Address baseAddr, 2105 const BlockByrefInfo &info, 2106 bool followForward, 2107 const llvm::Twine &name); 2108 2109 const BlockByrefInfo &getBlockByrefInfo(const VarDecl *var); 2110 2111 QualType BuildFunctionArgList(GlobalDecl GD, FunctionArgList &Args); 2112 2113 void GenerateCode(GlobalDecl GD, llvm::Function *Fn, 2114 const CGFunctionInfo &FnInfo); 2115 2116 /// Annotate the function with an attribute that disables TSan checking at 2117 /// runtime. 2118 void markAsIgnoreThreadCheckingAtRuntime(llvm::Function *Fn); 2119 2120 /// Emit code for the start of a function. 2121 /// \param Loc The location to be associated with the function. 2122 /// \param StartLoc The location of the function body. 2123 void StartFunction(GlobalDecl GD, 2124 QualType RetTy, 2125 llvm::Function *Fn, 2126 const CGFunctionInfo &FnInfo, 2127 const FunctionArgList &Args, 2128 SourceLocation Loc = SourceLocation(), 2129 SourceLocation StartLoc = SourceLocation()); 2130 2131 static bool IsConstructorDelegationValid(const CXXConstructorDecl *Ctor); 2132 2133 void EmitConstructorBody(FunctionArgList &Args); 2134 void EmitDestructorBody(FunctionArgList &Args); 2135 void emitImplicitAssignmentOperatorBody(FunctionArgList &Args); 2136 void EmitFunctionBody(const Stmt *Body); 2137 void EmitBlockWithFallThrough(llvm::BasicBlock *BB, const Stmt *S); 2138 2139 void EmitForwardingCallToLambda(const CXXMethodDecl *LambdaCallOperator, 2140 CallArgList &CallArgs); 2141 void EmitLambdaBlockInvokeBody(); 2142 void EmitLambdaDelegatingInvokeBody(const CXXMethodDecl *MD); 2143 void EmitLambdaStaticInvokeBody(const CXXMethodDecl *MD); 2144 void EmitLambdaVLACapture(const VariableArrayType *VAT, LValue LV) { 2145 EmitStoreThroughLValue(RValue::get(VLASizeMap[VAT->getSizeExpr()]), LV); 2146 } 2147 void EmitAsanPrologueOrEpilogue(bool Prologue); 2148 2149 /// Emit the unified return block, trying to avoid its emission when 2150 /// possible. 2151 /// \return The debug location of the user written return statement if the 2152 /// return block is is avoided. 2153 llvm::DebugLoc EmitReturnBlock(); 2154 2155 /// FinishFunction - Complete IR generation of the current function. It is 2156 /// legal to call this function even if there is no current insertion point. 2157 void FinishFunction(SourceLocation EndLoc=SourceLocation()); 2158 2159 void StartThunk(llvm::Function *Fn, GlobalDecl GD, 2160 const CGFunctionInfo &FnInfo, bool IsUnprototyped); 2161 2162 void EmitCallAndReturnForThunk(llvm::FunctionCallee Callee, 2163 const ThunkInfo *Thunk, bool IsUnprototyped); 2164 2165 void FinishThunk(); 2166 2167 /// Emit a musttail call for a thunk with a potentially adjusted this pointer. 2168 void EmitMustTailThunk(GlobalDecl GD, llvm::Value *AdjustedThisPtr, 2169 llvm::FunctionCallee Callee); 2170 2171 /// Generate a thunk for the given method. 2172 void generateThunk(llvm::Function *Fn, const CGFunctionInfo &FnInfo, 2173 GlobalDecl GD, const ThunkInfo &Thunk, 2174 bool IsUnprototyped); 2175 2176 llvm::Function *GenerateVarArgsThunk(llvm::Function *Fn, 2177 const CGFunctionInfo &FnInfo, 2178 GlobalDecl GD, const ThunkInfo &Thunk); 2179 2180 void EmitCtorPrologue(const CXXConstructorDecl *CD, CXXCtorType Type, 2181 FunctionArgList &Args); 2182 2183 void EmitInitializerForField(FieldDecl *Field, LValue LHS, Expr *Init); 2184 2185 /// Struct with all information about dynamic [sub]class needed to set vptr. 2186 struct VPtr { 2187 BaseSubobject Base; 2188 const CXXRecordDecl *NearestVBase; 2189 CharUnits OffsetFromNearestVBase; 2190 const CXXRecordDecl *VTableClass; 2191 }; 2192 2193 /// Initialize the vtable pointer of the given subobject. 2194 void InitializeVTablePointer(const VPtr &vptr); 2195 2196 typedef llvm::SmallVector<VPtr, 4> VPtrsVector; 2197 2198 typedef llvm::SmallPtrSet<const CXXRecordDecl *, 4> VisitedVirtualBasesSetTy; 2199 VPtrsVector getVTablePointers(const CXXRecordDecl *VTableClass); 2200 2201 void getVTablePointers(BaseSubobject Base, const CXXRecordDecl *NearestVBase, 2202 CharUnits OffsetFromNearestVBase, 2203 bool BaseIsNonVirtualPrimaryBase, 2204 const CXXRecordDecl *VTableClass, 2205 VisitedVirtualBasesSetTy &VBases, VPtrsVector &vptrs); 2206 2207 void InitializeVTablePointers(const CXXRecordDecl *ClassDecl); 2208 2209 /// GetVTablePtr - Return the Value of the vtable pointer member pointed 2210 /// to by This. 2211 llvm::Value *GetVTablePtr(Address This, llvm::Type *VTableTy, 2212 const CXXRecordDecl *VTableClass); 2213 2214 enum CFITypeCheckKind { 2215 CFITCK_VCall, 2216 CFITCK_NVCall, 2217 CFITCK_DerivedCast, 2218 CFITCK_UnrelatedCast, 2219 CFITCK_ICall, 2220 CFITCK_NVMFCall, 2221 CFITCK_VMFCall, 2222 }; 2223 2224 /// Derived is the presumed address of an object of type T after a 2225 /// cast. If T is a polymorphic class type, emit a check that the virtual 2226 /// table for Derived belongs to a class derived from T. 2227 void EmitVTablePtrCheckForCast(QualType T, llvm::Value *Derived, 2228 bool MayBeNull, CFITypeCheckKind TCK, 2229 SourceLocation Loc); 2230 2231 /// EmitVTablePtrCheckForCall - Virtual method MD is being called via VTable. 2232 /// If vptr CFI is enabled, emit a check that VTable is valid. 2233 void EmitVTablePtrCheckForCall(const CXXRecordDecl *RD, llvm::Value *VTable, 2234 CFITypeCheckKind TCK, SourceLocation Loc); 2235 2236 /// EmitVTablePtrCheck - Emit a check that VTable is a valid virtual table for 2237 /// RD using llvm.type.test. 2238 void EmitVTablePtrCheck(const CXXRecordDecl *RD, llvm::Value *VTable, 2239 CFITypeCheckKind TCK, SourceLocation Loc); 2240 2241 /// If whole-program virtual table optimization is enabled, emit an assumption 2242 /// that VTable is a member of RD's type identifier. Or, if vptr CFI is 2243 /// enabled, emit a check that VTable is a member of RD's type identifier. 2244 void EmitTypeMetadataCodeForVCall(const CXXRecordDecl *RD, 2245 llvm::Value *VTable, SourceLocation Loc); 2246 2247 /// Returns whether we should perform a type checked load when loading a 2248 /// virtual function for virtual calls to members of RD. This is generally 2249 /// true when both vcall CFI and whole-program-vtables are enabled. 2250 bool ShouldEmitVTableTypeCheckedLoad(const CXXRecordDecl *RD); 2251 2252 /// Emit a type checked load from the given vtable. 2253 llvm::Value *EmitVTableTypeCheckedLoad(const CXXRecordDecl *RD, llvm::Value *VTable, 2254 uint64_t VTableByteOffset); 2255 2256 /// EnterDtorCleanups - Enter the cleanups necessary to complete the 2257 /// given phase of destruction for a destructor. The end result 2258 /// should call destructors on members and base classes in reverse 2259 /// order of their construction. 2260 void EnterDtorCleanups(const CXXDestructorDecl *Dtor, CXXDtorType Type); 2261 2262 /// ShouldInstrumentFunction - Return true if the current function should be 2263 /// instrumented with __cyg_profile_func_* calls 2264 bool ShouldInstrumentFunction(); 2265 2266 /// ShouldXRayInstrument - Return true if the current function should be 2267 /// instrumented with XRay nop sleds. 2268 bool ShouldXRayInstrumentFunction() const; 2269 2270 /// AlwaysEmitXRayCustomEvents - Return true if we must unconditionally emit 2271 /// XRay custom event handling calls. 2272 bool AlwaysEmitXRayCustomEvents() const; 2273 2274 /// AlwaysEmitXRayTypedEvents - Return true if clang must unconditionally emit 2275 /// XRay typed event handling calls. 2276 bool AlwaysEmitXRayTypedEvents() const; 2277 2278 /// Encode an address into a form suitable for use in a function prologue. 2279 llvm::Constant *EncodeAddrForUseInPrologue(llvm::Function *F, 2280 llvm::Constant *Addr); 2281 2282 /// Decode an address used in a function prologue, encoded by \c 2283 /// EncodeAddrForUseInPrologue. 2284 llvm::Value *DecodeAddrUsedInPrologue(llvm::Value *F, 2285 llvm::Value *EncodedAddr); 2286 2287 /// EmitFunctionProlog - Emit the target specific LLVM code to load the 2288 /// arguments for the given function. This is also responsible for naming the 2289 /// LLVM function arguments. 2290 void EmitFunctionProlog(const CGFunctionInfo &FI, 2291 llvm::Function *Fn, 2292 const FunctionArgList &Args); 2293 2294 /// EmitFunctionEpilog - Emit the target specific LLVM code to return the 2295 /// given temporary. 2296 void EmitFunctionEpilog(const CGFunctionInfo &FI, bool EmitRetDbgLoc, 2297 SourceLocation EndLoc); 2298 2299 /// Emit a test that checks if the return value \p RV is nonnull. 2300 void EmitReturnValueCheck(llvm::Value *RV); 2301 2302 /// EmitStartEHSpec - Emit the start of the exception spec. 2303 void EmitStartEHSpec(const Decl *D); 2304 2305 /// EmitEndEHSpec - Emit the end of the exception spec. 2306 void EmitEndEHSpec(const Decl *D); 2307 2308 /// getTerminateLandingPad - Return a landing pad that just calls terminate. 2309 llvm::BasicBlock *getTerminateLandingPad(); 2310 2311 /// getTerminateLandingPad - Return a cleanup funclet that just calls 2312 /// terminate. 2313 llvm::BasicBlock *getTerminateFunclet(); 2314 2315 /// getTerminateHandler - Return a handler (not a landing pad, just 2316 /// a catch handler) that just calls terminate. This is used when 2317 /// a terminate scope encloses a try. 2318 llvm::BasicBlock *getTerminateHandler(); 2319 2320 llvm::Type *ConvertTypeForMem(QualType T); 2321 llvm::Type *ConvertType(QualType T); 2322 llvm::Type *ConvertType(const TypeDecl *T) { 2323 return ConvertType(getContext().getTypeDeclType(T)); 2324 } 2325 2326 /// LoadObjCSelf - Load the value of self. This function is only valid while 2327 /// generating code for an Objective-C method. 2328 llvm::Value *LoadObjCSelf(); 2329 2330 /// TypeOfSelfObject - Return type of object that this self represents. 2331 QualType TypeOfSelfObject(); 2332 2333 /// getEvaluationKind - Return the TypeEvaluationKind of QualType \c T. 2334 static TypeEvaluationKind getEvaluationKind(QualType T); 2335 2336 static bool hasScalarEvaluationKind(QualType T) { 2337 return getEvaluationKind(T) == TEK_Scalar; 2338 } 2339 2340 static bool hasAggregateEvaluationKind(QualType T) { 2341 return getEvaluationKind(T) == TEK_Aggregate; 2342 } 2343 2344 /// createBasicBlock - Create an LLVM basic block. 2345 llvm::BasicBlock *createBasicBlock(const Twine &name = "", 2346 llvm::Function *parent = nullptr, 2347 llvm::BasicBlock *before = nullptr) { 2348 return llvm::BasicBlock::Create(getLLVMContext(), name, parent, before); 2349 } 2350 2351 /// getBasicBlockForLabel - Return the LLVM basicblock that the specified 2352 /// label maps to. 2353 JumpDest getJumpDestForLabel(const LabelDecl *S); 2354 2355 /// SimplifyForwardingBlocks - If the given basic block is only a branch to 2356 /// another basic block, simplify it. This assumes that no other code could 2357 /// potentially reference the basic block. 2358 void SimplifyForwardingBlocks(llvm::BasicBlock *BB); 2359 2360 /// EmitBlock - Emit the given block \arg BB and set it as the insert point, 2361 /// adding a fall-through branch from the current insert block if 2362 /// necessary. It is legal to call this function even if there is no current 2363 /// insertion point. 2364 /// 2365 /// IsFinished - If true, indicates that the caller has finished emitting 2366 /// branches to the given block and does not expect to emit code into it. This 2367 /// means the block can be ignored if it is unreachable. 2368 void EmitBlock(llvm::BasicBlock *BB, bool IsFinished=false); 2369 2370 /// EmitBlockAfterUses - Emit the given block somewhere hopefully 2371 /// near its uses, and leave the insertion point in it. 2372 void EmitBlockAfterUses(llvm::BasicBlock *BB); 2373 2374 /// EmitBranch - Emit a branch to the specified basic block from the current 2375 /// insert block, taking care to avoid creation of branches from dummy 2376 /// blocks. It is legal to call this function even if there is no current 2377 /// insertion point. 2378 /// 2379 /// This function clears the current insertion point. The caller should follow 2380 /// calls to this function with calls to Emit*Block prior to generation new 2381 /// code. 2382 void EmitBranch(llvm::BasicBlock *Block); 2383 2384 /// HaveInsertPoint - True if an insertion point is defined. If not, this 2385 /// indicates that the current code being emitted is unreachable. 2386 bool HaveInsertPoint() const { 2387 return Builder.GetInsertBlock() != nullptr; 2388 } 2389 2390 /// EnsureInsertPoint - Ensure that an insertion point is defined so that 2391 /// emitted IR has a place to go. Note that by definition, if this function 2392 /// creates a block then that block is unreachable; callers may do better to 2393 /// detect when no insertion point is defined and simply skip IR generation. 2394 void EnsureInsertPoint() { 2395 if (!HaveInsertPoint()) 2396 EmitBlock(createBasicBlock()); 2397 } 2398 2399 /// ErrorUnsupported - Print out an error that codegen doesn't support the 2400 /// specified stmt yet. 2401 void ErrorUnsupported(const Stmt *S, const char *Type); 2402 2403 //===--------------------------------------------------------------------===// 2404 // Helpers 2405 //===--------------------------------------------------------------------===// 2406 2407 LValue MakeAddrLValue(Address Addr, QualType T, 2408 AlignmentSource Source = AlignmentSource::Type) { 2409 return LValue::MakeAddr(Addr, T, getContext(), LValueBaseInfo(Source), 2410 CGM.getTBAAAccessInfo(T)); 2411 } 2412 2413 LValue MakeAddrLValue(Address Addr, QualType T, LValueBaseInfo BaseInfo, 2414 TBAAAccessInfo TBAAInfo) { 2415 return LValue::MakeAddr(Addr, T, getContext(), BaseInfo, TBAAInfo); 2416 } 2417 2418 LValue MakeAddrLValue(llvm::Value *V, QualType T, CharUnits Alignment, 2419 AlignmentSource Source = AlignmentSource::Type) { 2420 return LValue::MakeAddr(Address(V, Alignment), T, getContext(), 2421 LValueBaseInfo(Source), CGM.getTBAAAccessInfo(T)); 2422 } 2423 2424 LValue MakeAddrLValue(llvm::Value *V, QualType T, CharUnits Alignment, 2425 LValueBaseInfo BaseInfo, TBAAAccessInfo TBAAInfo) { 2426 return LValue::MakeAddr(Address(V, Alignment), T, getContext(), 2427 BaseInfo, TBAAInfo); 2428 } 2429 2430 LValue MakeNaturalAlignPointeeAddrLValue(llvm::Value *V, QualType T); 2431 LValue MakeNaturalAlignAddrLValue(llvm::Value *V, QualType T); 2432 2433 Address EmitLoadOfReference(LValue RefLVal, 2434 LValueBaseInfo *PointeeBaseInfo = nullptr, 2435 TBAAAccessInfo *PointeeTBAAInfo = nullptr); 2436 LValue EmitLoadOfReferenceLValue(LValue RefLVal); 2437 LValue EmitLoadOfReferenceLValue(Address RefAddr, QualType RefTy, 2438 AlignmentSource Source = 2439 AlignmentSource::Type) { 2440 LValue RefLVal = MakeAddrLValue(RefAddr, RefTy, LValueBaseInfo(Source), 2441 CGM.getTBAAAccessInfo(RefTy)); 2442 return EmitLoadOfReferenceLValue(RefLVal); 2443 } 2444 2445 Address EmitLoadOfPointer(Address Ptr, const PointerType *PtrTy, 2446 LValueBaseInfo *BaseInfo = nullptr, 2447 TBAAAccessInfo *TBAAInfo = nullptr); 2448 LValue EmitLoadOfPointerLValue(Address Ptr, const PointerType *PtrTy); 2449 2450 /// CreateTempAlloca - This creates an alloca and inserts it into the entry 2451 /// block if \p ArraySize is nullptr, otherwise inserts it at the current 2452 /// insertion point of the builder. The caller is responsible for setting an 2453 /// appropriate alignment on 2454 /// the alloca. 2455 /// 2456 /// \p ArraySize is the number of array elements to be allocated if it 2457 /// is not nullptr. 2458 /// 2459 /// LangAS::Default is the address space of pointers to local variables and 2460 /// temporaries, as exposed in the source language. In certain 2461 /// configurations, this is not the same as the alloca address space, and a 2462 /// cast is needed to lift the pointer from the alloca AS into 2463 /// LangAS::Default. This can happen when the target uses a restricted 2464 /// address space for the stack but the source language requires 2465 /// LangAS::Default to be a generic address space. The latter condition is 2466 /// common for most programming languages; OpenCL is an exception in that 2467 /// LangAS::Default is the private address space, which naturally maps 2468 /// to the stack. 2469 /// 2470 /// Because the address of a temporary is often exposed to the program in 2471 /// various ways, this function will perform the cast. The original alloca 2472 /// instruction is returned through \p Alloca if it is not nullptr. 2473 /// 2474 /// The cast is not performaed in CreateTempAllocaWithoutCast. This is 2475 /// more efficient if the caller knows that the address will not be exposed. 2476 llvm::AllocaInst *CreateTempAlloca(llvm::Type *Ty, const Twine &Name = "tmp", 2477 llvm::Value *ArraySize = nullptr); 2478 Address CreateTempAlloca(llvm::Type *Ty, CharUnits align, 2479 const Twine &Name = "tmp", 2480 llvm::Value *ArraySize = nullptr, 2481 Address *Alloca = nullptr); 2482 Address CreateTempAllocaWithoutCast(llvm::Type *Ty, CharUnits align, 2483 const Twine &Name = "tmp", 2484 llvm::Value *ArraySize = nullptr); 2485 2486 /// CreateDefaultAlignedTempAlloca - This creates an alloca with the 2487 /// default ABI alignment of the given LLVM type. 2488 /// 2489 /// IMPORTANT NOTE: This is *not* generally the right alignment for 2490 /// any given AST type that happens to have been lowered to the 2491 /// given IR type. This should only ever be used for function-local, 2492 /// IR-driven manipulations like saving and restoring a value. Do 2493 /// not hand this address off to arbitrary IRGen routines, and especially 2494 /// do not pass it as an argument to a function that might expect a 2495 /// properly ABI-aligned value. 2496 Address CreateDefaultAlignTempAlloca(llvm::Type *Ty, 2497 const Twine &Name = "tmp"); 2498 2499 /// InitTempAlloca - Provide an initial value for the given alloca which 2500 /// will be observable at all locations in the function. 2501 /// 2502 /// The address should be something that was returned from one of 2503 /// the CreateTempAlloca or CreateMemTemp routines, and the 2504 /// initializer must be valid in the entry block (i.e. it must 2505 /// either be a constant or an argument value). 2506 void InitTempAlloca(Address Alloca, llvm::Value *Value); 2507 2508 /// CreateIRTemp - Create a temporary IR object of the given type, with 2509 /// appropriate alignment. This routine should only be used when an temporary 2510 /// value needs to be stored into an alloca (for example, to avoid explicit 2511 /// PHI construction), but the type is the IR type, not the type appropriate 2512 /// for storing in memory. 2513 /// 2514 /// That is, this is exactly equivalent to CreateMemTemp, but calling 2515 /// ConvertType instead of ConvertTypeForMem. 2516 Address CreateIRTemp(QualType T, const Twine &Name = "tmp"); 2517 2518 /// CreateMemTemp - Create a temporary memory object of the given type, with 2519 /// appropriate alignmen and cast it to the default address space. Returns 2520 /// the original alloca instruction by \p Alloca if it is not nullptr. 2521 Address CreateMemTemp(QualType T, const Twine &Name = "tmp", 2522 Address *Alloca = nullptr); 2523 Address CreateMemTemp(QualType T, CharUnits Align, const Twine &Name = "tmp", 2524 Address *Alloca = nullptr); 2525 2526 /// CreateMemTemp - Create a temporary memory object of the given type, with 2527 /// appropriate alignmen without casting it to the default address space. 2528 Address CreateMemTempWithoutCast(QualType T, const Twine &Name = "tmp"); 2529 Address CreateMemTempWithoutCast(QualType T, CharUnits Align, 2530 const Twine &Name = "tmp"); 2531 2532 /// CreateAggTemp - Create a temporary memory object for the given 2533 /// aggregate type. 2534 AggValueSlot CreateAggTemp(QualType T, const Twine &Name = "tmp", 2535 Address *Alloca = nullptr) { 2536 return AggValueSlot::forAddr(CreateMemTemp(T, Name, Alloca), 2537 T.getQualifiers(), 2538 AggValueSlot::IsNotDestructed, 2539 AggValueSlot::DoesNotNeedGCBarriers, 2540 AggValueSlot::IsNotAliased, 2541 AggValueSlot::DoesNotOverlap); 2542 } 2543 2544 /// Emit a cast to void* in the appropriate address space. 2545 llvm::Value *EmitCastToVoidPtr(llvm::Value *value); 2546 2547 /// EvaluateExprAsBool - Perform the usual unary conversions on the specified 2548 /// expression and compare the result against zero, returning an Int1Ty value. 2549 llvm::Value *EvaluateExprAsBool(const Expr *E); 2550 2551 /// EmitIgnoredExpr - Emit an expression in a context which ignores the result. 2552 void EmitIgnoredExpr(const Expr *E); 2553 2554 /// EmitAnyExpr - Emit code to compute the specified expression which can have 2555 /// any type. The result is returned as an RValue struct. If this is an 2556 /// aggregate expression, the aggloc/agglocvolatile arguments indicate where 2557 /// the result should be returned. 2558 /// 2559 /// \param ignoreResult True if the resulting value isn't used. 2560 RValue EmitAnyExpr(const Expr *E, 2561 AggValueSlot aggSlot = AggValueSlot::ignored(), 2562 bool ignoreResult = false); 2563 2564 // EmitVAListRef - Emit a "reference" to a va_list; this is either the address 2565 // or the value of the expression, depending on how va_list is defined. 2566 Address EmitVAListRef(const Expr *E); 2567 2568 /// Emit a "reference" to a __builtin_ms_va_list; this is 2569 /// always the value of the expression, because a __builtin_ms_va_list is a 2570 /// pointer to a char. 2571 Address EmitMSVAListRef(const Expr *E); 2572 2573 /// EmitAnyExprToTemp - Similarly to EmitAnyExpr(), however, the result will 2574 /// always be accessible even if no aggregate location is provided. 2575 RValue EmitAnyExprToTemp(const Expr *E); 2576 2577 /// EmitAnyExprToMem - Emits the code necessary to evaluate an 2578 /// arbitrary expression into the given memory location. 2579 void EmitAnyExprToMem(const Expr *E, Address Location, 2580 Qualifiers Quals, bool IsInitializer); 2581 2582 void EmitAnyExprToExn(const Expr *E, Address Addr); 2583 2584 /// EmitExprAsInit - Emits the code necessary to initialize a 2585 /// location in memory with the given initializer. 2586 void EmitExprAsInit(const Expr *init, const ValueDecl *D, LValue lvalue, 2587 bool capturedByInit); 2588 2589 /// hasVolatileMember - returns true if aggregate type has a volatile 2590 /// member. 2591 bool hasVolatileMember(QualType T) { 2592 if (const RecordType *RT = T->getAs<RecordType>()) { 2593 const RecordDecl *RD = cast<RecordDecl>(RT->getDecl()); 2594 return RD->hasVolatileMember(); 2595 } 2596 return false; 2597 } 2598 2599 /// Determine whether a return value slot may overlap some other object. 2600 AggValueSlot::Overlap_t getOverlapForReturnValue() { 2601 // FIXME: Assuming no overlap here breaks guaranteed copy elision for base 2602 // class subobjects. These cases may need to be revisited depending on the 2603 // resolution of the relevant core issue. 2604 return AggValueSlot::DoesNotOverlap; 2605 } 2606 2607 /// Determine whether a field initialization may overlap some other object. 2608 AggValueSlot::Overlap_t getOverlapForFieldInit(const FieldDecl *FD); 2609 2610 /// Determine whether a base class initialization may overlap some other 2611 /// object. 2612 AggValueSlot::Overlap_t getOverlapForBaseInit(const CXXRecordDecl *RD, 2613 const CXXRecordDecl *BaseRD, 2614 bool IsVirtual); 2615 2616 /// Emit an aggregate assignment. 2617 void EmitAggregateAssign(LValue Dest, LValue Src, QualType EltTy) { 2618 bool IsVolatile = hasVolatileMember(EltTy); 2619 EmitAggregateCopy(Dest, Src, EltTy, AggValueSlot::MayOverlap, IsVolatile); 2620 } 2621 2622 void EmitAggregateCopyCtor(LValue Dest, LValue Src, 2623 AggValueSlot::Overlap_t MayOverlap) { 2624 EmitAggregateCopy(Dest, Src, Src.getType(), MayOverlap); 2625 } 2626 2627 /// EmitAggregateCopy - Emit an aggregate copy. 2628 /// 2629 /// \param isVolatile \c true iff either the source or the destination is 2630 /// volatile. 2631 /// \param MayOverlap Whether the tail padding of the destination might be 2632 /// occupied by some other object. More efficient code can often be 2633 /// generated if not. 2634 void EmitAggregateCopy(LValue Dest, LValue Src, QualType EltTy, 2635 AggValueSlot::Overlap_t MayOverlap, 2636 bool isVolatile = false); 2637 2638 /// GetAddrOfLocalVar - Return the address of a local variable. 2639 Address GetAddrOfLocalVar(const VarDecl *VD) { 2640 auto it = LocalDeclMap.find(VD); 2641 assert(it != LocalDeclMap.end() && 2642 "Invalid argument to GetAddrOfLocalVar(), no decl!"); 2643 return it->second; 2644 } 2645 2646 /// Given an opaque value expression, return its LValue mapping if it exists, 2647 /// otherwise create one. 2648 LValue getOrCreateOpaqueLValueMapping(const OpaqueValueExpr *e); 2649 2650 /// Given an opaque value expression, return its RValue mapping if it exists, 2651 /// otherwise create one. 2652 RValue getOrCreateOpaqueRValueMapping(const OpaqueValueExpr *e); 2653 2654 /// Get the index of the current ArrayInitLoopExpr, if any. 2655 llvm::Value *getArrayInitIndex() { return ArrayInitIndex; } 2656 2657 /// getAccessedFieldNo - Given an encoded value and a result number, return 2658 /// the input field number being accessed. 2659 static unsigned getAccessedFieldNo(unsigned Idx, const llvm::Constant *Elts); 2660 2661 llvm::BlockAddress *GetAddrOfLabel(const LabelDecl *L); 2662 llvm::BasicBlock *GetIndirectGotoBlock(); 2663 2664 /// Check if \p E is a C++ "this" pointer wrapped in value-preserving casts. 2665 static bool IsWrappedCXXThis(const Expr *E); 2666 2667 /// EmitNullInitialization - Generate code to set a value of the given type to 2668 /// null, If the type contains data member pointers, they will be initialized 2669 /// to -1 in accordance with the Itanium C++ ABI. 2670 void EmitNullInitialization(Address DestPtr, QualType Ty); 2671 2672 /// Emits a call to an LLVM variable-argument intrinsic, either 2673 /// \c llvm.va_start or \c llvm.va_end. 2674 /// \param ArgValue A reference to the \c va_list as emitted by either 2675 /// \c EmitVAListRef or \c EmitMSVAListRef. 2676 /// \param IsStart If \c true, emits a call to \c llvm.va_start; otherwise, 2677 /// calls \c llvm.va_end. 2678 llvm::Value *EmitVAStartEnd(llvm::Value *ArgValue, bool IsStart); 2679 2680 /// Generate code to get an argument from the passed in pointer 2681 /// and update it accordingly. 2682 /// \param VE The \c VAArgExpr for which to generate code. 2683 /// \param VAListAddr Receives a reference to the \c va_list as emitted by 2684 /// either \c EmitVAListRef or \c EmitMSVAListRef. 2685 /// \returns A pointer to the argument. 2686 // FIXME: We should be able to get rid of this method and use the va_arg 2687 // instruction in LLVM instead once it works well enough. 2688 Address EmitVAArg(VAArgExpr *VE, Address &VAListAddr); 2689 2690 /// emitArrayLength - Compute the length of an array, even if it's a 2691 /// VLA, and drill down to the base element type. 2692 llvm::Value *emitArrayLength(const ArrayType *arrayType, 2693 QualType &baseType, 2694 Address &addr); 2695 2696 /// EmitVLASize - Capture all the sizes for the VLA expressions in 2697 /// the given variably-modified type and store them in the VLASizeMap. 2698 /// 2699 /// This function can be called with a null (unreachable) insert point. 2700 void EmitVariablyModifiedType(QualType Ty); 2701 2702 struct VlaSizePair { 2703 llvm::Value *NumElts; 2704 QualType Type; 2705 2706 VlaSizePair(llvm::Value *NE, QualType T) : NumElts(NE), Type(T) {} 2707 }; 2708 2709 /// Return the number of elements for a single dimension 2710 /// for the given array type. 2711 VlaSizePair getVLAElements1D(const VariableArrayType *vla); 2712 VlaSizePair getVLAElements1D(QualType vla); 2713 2714 /// Returns an LLVM value that corresponds to the size, 2715 /// in non-variably-sized elements, of a variable length array type, 2716 /// plus that largest non-variably-sized element type. Assumes that 2717 /// the type has already been emitted with EmitVariablyModifiedType. 2718 VlaSizePair getVLASize(const VariableArrayType *vla); 2719 VlaSizePair getVLASize(QualType vla); 2720 2721 /// LoadCXXThis - Load the value of 'this'. This function is only valid while 2722 /// generating code for an C++ member function. 2723 llvm::Value *LoadCXXThis() { 2724 assert(CXXThisValue && "no 'this' value for this function"); 2725 return CXXThisValue; 2726 } 2727 Address LoadCXXThisAddress(); 2728 2729 /// LoadCXXVTT - Load the VTT parameter to base constructors/destructors have 2730 /// virtual bases. 2731 // FIXME: Every place that calls LoadCXXVTT is something 2732 // that needs to be abstracted properly. 2733 llvm::Value *LoadCXXVTT() { 2734 assert(CXXStructorImplicitParamValue && "no VTT value for this function"); 2735 return CXXStructorImplicitParamValue; 2736 } 2737 2738 /// GetAddressOfBaseOfCompleteClass - Convert the given pointer to a 2739 /// complete class to the given direct base. 2740 Address 2741 GetAddressOfDirectBaseInCompleteClass(Address Value, 2742 const CXXRecordDecl *Derived, 2743 const CXXRecordDecl *Base, 2744 bool BaseIsVirtual); 2745 2746 static bool ShouldNullCheckClassCastValue(const CastExpr *Cast); 2747 2748 /// GetAddressOfBaseClass - This function will add the necessary delta to the 2749 /// load of 'this' and returns address of the base class. 2750 Address GetAddressOfBaseClass(Address Value, 2751 const CXXRecordDecl *Derived, 2752 CastExpr::path_const_iterator PathBegin, 2753 CastExpr::path_const_iterator PathEnd, 2754 bool NullCheckValue, SourceLocation Loc); 2755 2756 Address GetAddressOfDerivedClass(Address Value, 2757 const CXXRecordDecl *Derived, 2758 CastExpr::path_const_iterator PathBegin, 2759 CastExpr::path_const_iterator PathEnd, 2760 bool NullCheckValue); 2761 2762 /// GetVTTParameter - Return the VTT parameter that should be passed to a 2763 /// base constructor/destructor with virtual bases. 2764 /// FIXME: VTTs are Itanium ABI-specific, so the definition should move 2765 /// to ItaniumCXXABI.cpp together with all the references to VTT. 2766 llvm::Value *GetVTTParameter(GlobalDecl GD, bool ForVirtualBase, 2767 bool Delegating); 2768 2769 void EmitDelegateCXXConstructorCall(const CXXConstructorDecl *Ctor, 2770 CXXCtorType CtorType, 2771 const FunctionArgList &Args, 2772 SourceLocation Loc); 2773 // It's important not to confuse this and the previous function. Delegating 2774 // constructors are the C++0x feature. The constructor delegate optimization 2775 // is used to reduce duplication in the base and complete consturctors where 2776 // they are substantially the same. 2777 void EmitDelegatingCXXConstructorCall(const CXXConstructorDecl *Ctor, 2778 const FunctionArgList &Args); 2779 2780 /// Emit a call to an inheriting constructor (that is, one that invokes a 2781 /// constructor inherited from a base class) by inlining its definition. This 2782 /// is necessary if the ABI does not support forwarding the arguments to the 2783 /// base class constructor (because they're variadic or similar). 2784 void EmitInlinedInheritingCXXConstructorCall(const CXXConstructorDecl *Ctor, 2785 CXXCtorType CtorType, 2786 bool ForVirtualBase, 2787 bool Delegating, 2788 CallArgList &Args); 2789 2790 /// Emit a call to a constructor inherited from a base class, passing the 2791 /// current constructor's arguments along unmodified (without even making 2792 /// a copy). 2793 void EmitInheritedCXXConstructorCall(const CXXConstructorDecl *D, 2794 bool ForVirtualBase, Address This, 2795 bool InheritedFromVBase, 2796 const CXXInheritedCtorInitExpr *E); 2797 2798 void EmitCXXConstructorCall(const CXXConstructorDecl *D, CXXCtorType Type, 2799 bool ForVirtualBase, bool Delegating, 2800 AggValueSlot ThisAVS, const CXXConstructExpr *E); 2801 2802 void EmitCXXConstructorCall(const CXXConstructorDecl *D, CXXCtorType Type, 2803 bool ForVirtualBase, bool Delegating, 2804 Address This, CallArgList &Args, 2805 AggValueSlot::Overlap_t Overlap, 2806 SourceLocation Loc, bool NewPointerIsChecked); 2807 2808 /// Emit assumption load for all bases. Requires to be be called only on 2809 /// most-derived class and not under construction of the object. 2810 void EmitVTableAssumptionLoads(const CXXRecordDecl *ClassDecl, Address This); 2811 2812 /// Emit assumption that vptr load == global vtable. 2813 void EmitVTableAssumptionLoad(const VPtr &vptr, Address This); 2814 2815 void EmitSynthesizedCXXCopyCtorCall(const CXXConstructorDecl *D, 2816 Address This, Address Src, 2817 const CXXConstructExpr *E); 2818 2819 void EmitCXXAggrConstructorCall(const CXXConstructorDecl *D, 2820 const ArrayType *ArrayTy, 2821 Address ArrayPtr, 2822 const CXXConstructExpr *E, 2823 bool NewPointerIsChecked, 2824 bool ZeroInitialization = false); 2825 2826 void EmitCXXAggrConstructorCall(const CXXConstructorDecl *D, 2827 llvm::Value *NumElements, 2828 Address ArrayPtr, 2829 const CXXConstructExpr *E, 2830 bool NewPointerIsChecked, 2831 bool ZeroInitialization = false); 2832 2833 static Destroyer destroyCXXObject; 2834 2835 void EmitCXXDestructorCall(const CXXDestructorDecl *D, CXXDtorType Type, 2836 bool ForVirtualBase, bool Delegating, Address This, 2837 QualType ThisTy); 2838 2839 void EmitNewArrayInitializer(const CXXNewExpr *E, QualType elementType, 2840 llvm::Type *ElementTy, Address NewPtr, 2841 llvm::Value *NumElements, 2842 llvm::Value *AllocSizeWithoutCookie); 2843 2844 void EmitCXXTemporary(const CXXTemporary *Temporary, QualType TempType, 2845 Address Ptr); 2846 2847 llvm::Value *EmitLifetimeStart(uint64_t Size, llvm::Value *Addr); 2848 void EmitLifetimeEnd(llvm::Value *Size, llvm::Value *Addr); 2849 2850 llvm::Value *EmitCXXNewExpr(const CXXNewExpr *E); 2851 void EmitCXXDeleteExpr(const CXXDeleteExpr *E); 2852 2853 void EmitDeleteCall(const FunctionDecl *DeleteFD, llvm::Value *Ptr, 2854 QualType DeleteTy, llvm::Value *NumElements = nullptr, 2855 CharUnits CookieSize = CharUnits()); 2856 2857 RValue EmitBuiltinNewDeleteCall(const FunctionProtoType *Type, 2858 const CallExpr *TheCallExpr, bool IsDelete); 2859 2860 llvm::Value *EmitCXXTypeidExpr(const CXXTypeidExpr *E); 2861 llvm::Value *EmitDynamicCast(Address V, const CXXDynamicCastExpr *DCE); 2862 Address EmitCXXUuidofExpr(const CXXUuidofExpr *E); 2863 2864 /// Situations in which we might emit a check for the suitability of a 2865 /// pointer or glvalue. Needs to be kept in sync with ubsan_handlers.cpp in 2866 /// compiler-rt. 2867 enum TypeCheckKind { 2868 /// Checking the operand of a load. Must be suitably sized and aligned. 2869 TCK_Load, 2870 /// Checking the destination of a store. Must be suitably sized and aligned. 2871 TCK_Store, 2872 /// Checking the bound value in a reference binding. Must be suitably sized 2873 /// and aligned, but is not required to refer to an object (until the 2874 /// reference is used), per core issue 453. 2875 TCK_ReferenceBinding, 2876 /// Checking the object expression in a non-static data member access. Must 2877 /// be an object within its lifetime. 2878 TCK_MemberAccess, 2879 /// Checking the 'this' pointer for a call to a non-static member function. 2880 /// Must be an object within its lifetime. 2881 TCK_MemberCall, 2882 /// Checking the 'this' pointer for a constructor call. 2883 TCK_ConstructorCall, 2884 /// Checking the operand of a static_cast to a derived pointer type. Must be 2885 /// null or an object within its lifetime. 2886 TCK_DowncastPointer, 2887 /// Checking the operand of a static_cast to a derived reference type. Must 2888 /// be an object within its lifetime. 2889 TCK_DowncastReference, 2890 /// Checking the operand of a cast to a base object. Must be suitably sized 2891 /// and aligned. 2892 TCK_Upcast, 2893 /// Checking the operand of a cast to a virtual base object. Must be an 2894 /// object within its lifetime. 2895 TCK_UpcastToVirtualBase, 2896 /// Checking the value assigned to a _Nonnull pointer. Must not be null. 2897 TCK_NonnullAssign, 2898 /// Checking the operand of a dynamic_cast or a typeid expression. Must be 2899 /// null or an object within its lifetime. 2900 TCK_DynamicOperation 2901 }; 2902 2903 /// Determine whether the pointer type check \p TCK permits null pointers. 2904 static bool isNullPointerAllowed(TypeCheckKind TCK); 2905 2906 /// Determine whether the pointer type check \p TCK requires a vptr check. 2907 static bool isVptrCheckRequired(TypeCheckKind TCK, QualType Ty); 2908 2909 /// Whether any type-checking sanitizers are enabled. If \c false, 2910 /// calls to EmitTypeCheck can be skipped. 2911 bool sanitizePerformTypeCheck() const; 2912 2913 /// Emit a check that \p V is the address of storage of the 2914 /// appropriate size and alignment for an object of type \p Type 2915 /// (or if ArraySize is provided, for an array of that bound). 2916 void EmitTypeCheck(TypeCheckKind TCK, SourceLocation Loc, llvm::Value *V, 2917 QualType Type, CharUnits Alignment = CharUnits::Zero(), 2918 SanitizerSet SkippedChecks = SanitizerSet(), 2919 llvm::Value *ArraySize = nullptr); 2920 2921 /// Emit a check that \p Base points into an array object, which 2922 /// we can access at index \p Index. \p Accessed should be \c false if we 2923 /// this expression is used as an lvalue, for instance in "&Arr[Idx]". 2924 void EmitBoundsCheck(const Expr *E, const Expr *Base, llvm::Value *Index, 2925 QualType IndexType, bool Accessed); 2926 2927 llvm::Value *EmitScalarPrePostIncDec(const UnaryOperator *E, LValue LV, 2928 bool isInc, bool isPre); 2929 ComplexPairTy EmitComplexPrePostIncDec(const UnaryOperator *E, LValue LV, 2930 bool isInc, bool isPre); 2931 2932 /// Converts Location to a DebugLoc, if debug information is enabled. 2933 llvm::DebugLoc SourceLocToDebugLoc(SourceLocation Location); 2934 2935 /// Get the record field index as represented in debug info. 2936 unsigned getDebugInfoFIndex(const RecordDecl *Rec, unsigned FieldIndex); 2937 2938 2939 //===--------------------------------------------------------------------===// 2940 // Declaration Emission 2941 //===--------------------------------------------------------------------===// 2942 2943 /// EmitDecl - Emit a declaration. 2944 /// 2945 /// This function can be called with a null (unreachable) insert point. 2946 void EmitDecl(const Decl &D); 2947 2948 /// EmitVarDecl - Emit a local variable declaration. 2949 /// 2950 /// This function can be called with a null (unreachable) insert point. 2951 void EmitVarDecl(const VarDecl &D); 2952 2953 void EmitScalarInit(const Expr *init, const ValueDecl *D, LValue lvalue, 2954 bool capturedByInit); 2955 2956 typedef void SpecialInitFn(CodeGenFunction &Init, const VarDecl &D, 2957 llvm::Value *Address); 2958 2959 /// Determine whether the given initializer is trivial in the sense 2960 /// that it requires no code to be generated. 2961 bool isTrivialInitializer(const Expr *Init); 2962 2963 /// EmitAutoVarDecl - Emit an auto variable declaration. 2964 /// 2965 /// This function can be called with a null (unreachable) insert point. 2966 void EmitAutoVarDecl(const VarDecl &D); 2967 2968 class AutoVarEmission { 2969 friend class CodeGenFunction; 2970 2971 const VarDecl *Variable; 2972 2973 /// The address of the alloca for languages with explicit address space 2974 /// (e.g. OpenCL) or alloca casted to generic pointer for address space 2975 /// agnostic languages (e.g. C++). Invalid if the variable was emitted 2976 /// as a global constant. 2977 Address Addr; 2978 2979 llvm::Value *NRVOFlag; 2980 2981 /// True if the variable is a __block variable that is captured by an 2982 /// escaping block. 2983 bool IsEscapingByRef; 2984 2985 /// True if the variable is of aggregate type and has a constant 2986 /// initializer. 2987 bool IsConstantAggregate; 2988 2989 /// Non-null if we should use lifetime annotations. 2990 llvm::Value *SizeForLifetimeMarkers; 2991 2992 /// Address with original alloca instruction. Invalid if the variable was 2993 /// emitted as a global constant. 2994 Address AllocaAddr; 2995 2996 struct Invalid {}; 2997 AutoVarEmission(Invalid) 2998 : Variable(nullptr), Addr(Address::invalid()), 2999 AllocaAddr(Address::invalid()) {} 3000 3001 AutoVarEmission(const VarDecl &variable) 3002 : Variable(&variable), Addr(Address::invalid()), NRVOFlag(nullptr), 3003 IsEscapingByRef(false), IsConstantAggregate(false), 3004 SizeForLifetimeMarkers(nullptr), AllocaAddr(Address::invalid()) {} 3005 3006 bool wasEmittedAsGlobal() const { return !Addr.isValid(); } 3007 3008 public: 3009 static AutoVarEmission invalid() { return AutoVarEmission(Invalid()); } 3010 3011 bool useLifetimeMarkers() const { 3012 return SizeForLifetimeMarkers != nullptr; 3013 } 3014 llvm::Value *getSizeForLifetimeMarkers() const { 3015 assert(useLifetimeMarkers()); 3016 return SizeForLifetimeMarkers; 3017 } 3018 3019 /// Returns the raw, allocated address, which is not necessarily 3020 /// the address of the object itself. It is casted to default 3021 /// address space for address space agnostic languages. 3022 Address getAllocatedAddress() const { 3023 return Addr; 3024 } 3025 3026 /// Returns the address for the original alloca instruction. 3027 Address getOriginalAllocatedAddress() const { return AllocaAddr; } 3028 3029 /// Returns the address of the object within this declaration. 3030 /// Note that this does not chase the forwarding pointer for 3031 /// __block decls. 3032 Address getObjectAddress(CodeGenFunction &CGF) const { 3033 if (!IsEscapingByRef) return Addr; 3034 3035 return CGF.emitBlockByrefAddress(Addr, Variable, /*forward*/ false); 3036 } 3037 }; 3038 AutoVarEmission EmitAutoVarAlloca(const VarDecl &var); 3039 void EmitAutoVarInit(const AutoVarEmission &emission); 3040 void EmitAutoVarCleanups(const AutoVarEmission &emission); 3041 void emitAutoVarTypeCleanup(const AutoVarEmission &emission, 3042 QualType::DestructionKind dtorKind); 3043 3044 /// Emits the alloca and debug information for the size expressions for each 3045 /// dimension of an array. It registers the association of its (1-dimensional) 3046 /// QualTypes and size expression's debug node, so that CGDebugInfo can 3047 /// reference this node when creating the DISubrange object to describe the 3048 /// array types. 3049 void EmitAndRegisterVariableArrayDimensions(CGDebugInfo *DI, 3050 const VarDecl &D, 3051 bool EmitDebugInfo); 3052 3053 void EmitStaticVarDecl(const VarDecl &D, 3054 llvm::GlobalValue::LinkageTypes Linkage); 3055 3056 class ParamValue { 3057 llvm::Value *Value; 3058 unsigned Alignment; 3059 ParamValue(llvm::Value *V, unsigned A) : Value(V), Alignment(A) {} 3060 public: 3061 static ParamValue forDirect(llvm::Value *value) { 3062 return ParamValue(value, 0); 3063 } 3064 static ParamValue forIndirect(Address addr) { 3065 assert(!addr.getAlignment().isZero()); 3066 return ParamValue(addr.getPointer(), addr.getAlignment().getQuantity()); 3067 } 3068 3069 bool isIndirect() const { return Alignment != 0; } 3070 llvm::Value *getAnyValue() const { return Value; } 3071 3072 llvm::Value *getDirectValue() const { 3073 assert(!isIndirect()); 3074 return Value; 3075 } 3076 3077 Address getIndirectAddress() const { 3078 assert(isIndirect()); 3079 return Address(Value, CharUnits::fromQuantity(Alignment)); 3080 } 3081 }; 3082 3083 /// EmitParmDecl - Emit a ParmVarDecl or an ImplicitParamDecl. 3084 void EmitParmDecl(const VarDecl &D, ParamValue Arg, unsigned ArgNo); 3085 3086 /// protectFromPeepholes - Protect a value that we're intending to 3087 /// store to the side, but which will probably be used later, from 3088 /// aggressive peepholing optimizations that might delete it. 3089 /// 3090 /// Pass the result to unprotectFromPeepholes to declare that 3091 /// protection is no longer required. 3092 /// 3093 /// There's no particular reason why this shouldn't apply to 3094 /// l-values, it's just that no existing peepholes work on pointers. 3095 PeepholeProtection protectFromPeepholes(RValue rvalue); 3096 void unprotectFromPeepholes(PeepholeProtection protection); 3097 3098 void emitAlignmentAssumptionCheck(llvm::Value *Ptr, QualType Ty, 3099 SourceLocation Loc, 3100 SourceLocation AssumptionLoc, 3101 llvm::Value *Alignment, 3102 llvm::Value *OffsetValue, 3103 llvm::Value *TheCheck, 3104 llvm::Instruction *Assumption); 3105 3106 void emitAlignmentAssumption(llvm::Value *PtrValue, QualType Ty, 3107 SourceLocation Loc, SourceLocation AssumptionLoc, 3108 llvm::Value *Alignment, 3109 llvm::Value *OffsetValue = nullptr); 3110 3111 void emitAlignmentAssumption(llvm::Value *PtrValue, const Expr *E, 3112 SourceLocation AssumptionLoc, 3113 llvm::Value *Alignment, 3114 llvm::Value *OffsetValue = nullptr); 3115 3116 //===--------------------------------------------------------------------===// 3117 // Statement Emission 3118 //===--------------------------------------------------------------------===// 3119 3120 /// EmitStopPoint - Emit a debug stoppoint if we are emitting debug info. 3121 void EmitStopPoint(const Stmt *S); 3122 3123 /// EmitStmt - Emit the code for the statement \arg S. It is legal to call 3124 /// this function even if there is no current insertion point. 3125 /// 3126 /// This function may clear the current insertion point; callers should use 3127 /// EnsureInsertPoint if they wish to subsequently generate code without first 3128 /// calling EmitBlock, EmitBranch, or EmitStmt. 3129 void EmitStmt(const Stmt *S, ArrayRef<const Attr *> Attrs = None); 3130 3131 /// EmitSimpleStmt - Try to emit a "simple" statement which does not 3132 /// necessarily require an insertion point or debug information; typically 3133 /// because the statement amounts to a jump or a container of other 3134 /// statements. 3135 /// 3136 /// \return True if the statement was handled. 3137 bool EmitSimpleStmt(const Stmt *S, ArrayRef<const Attr *> Attrs); 3138 3139 Address EmitCompoundStmt(const CompoundStmt &S, bool GetLast = false, 3140 AggValueSlot AVS = AggValueSlot::ignored()); 3141 Address EmitCompoundStmtWithoutScope(const CompoundStmt &S, 3142 bool GetLast = false, 3143 AggValueSlot AVS = 3144 AggValueSlot::ignored()); 3145 3146 /// EmitLabel - Emit the block for the given label. It is legal to call this 3147 /// function even if there is no current insertion point. 3148 void EmitLabel(const LabelDecl *D); // helper for EmitLabelStmt. 3149 3150 void EmitLabelStmt(const LabelStmt &S); 3151 void EmitAttributedStmt(const AttributedStmt &S); 3152 void EmitGotoStmt(const GotoStmt &S); 3153 void EmitIndirectGotoStmt(const IndirectGotoStmt &S); 3154 void EmitIfStmt(const IfStmt &S); 3155 3156 void EmitWhileStmt(const WhileStmt &S, 3157 ArrayRef<const Attr *> Attrs = None); 3158 void EmitDoStmt(const DoStmt &S, ArrayRef<const Attr *> Attrs = None); 3159 void EmitForStmt(const ForStmt &S, 3160 ArrayRef<const Attr *> Attrs = None); 3161 void EmitReturnStmt(const ReturnStmt &S); 3162 void EmitDeclStmt(const DeclStmt &S); 3163 void EmitBreakStmt(const BreakStmt &S); 3164 void EmitContinueStmt(const ContinueStmt &S); 3165 void EmitSwitchStmt(const SwitchStmt &S); 3166 void EmitDefaultStmt(const DefaultStmt &S, ArrayRef<const Attr *> Attrs); 3167 void EmitCaseStmt(const CaseStmt &S, ArrayRef<const Attr *> Attrs); 3168 void EmitCaseStmtRange(const CaseStmt &S, ArrayRef<const Attr *> Attrs); 3169 void EmitAsmStmt(const AsmStmt &S); 3170 3171 void EmitObjCForCollectionStmt(const ObjCForCollectionStmt &S); 3172 void EmitObjCAtTryStmt(const ObjCAtTryStmt &S); 3173 void EmitObjCAtThrowStmt(const ObjCAtThrowStmt &S); 3174 void EmitObjCAtSynchronizedStmt(const ObjCAtSynchronizedStmt &S); 3175 void EmitObjCAutoreleasePoolStmt(const ObjCAutoreleasePoolStmt &S); 3176 3177 void EmitCoroutineBody(const CoroutineBodyStmt &S); 3178 void EmitCoreturnStmt(const CoreturnStmt &S); 3179 RValue EmitCoawaitExpr(const CoawaitExpr &E, 3180 AggValueSlot aggSlot = AggValueSlot::ignored(), 3181 bool ignoreResult = false); 3182 LValue EmitCoawaitLValue(const CoawaitExpr *E); 3183 RValue EmitCoyieldExpr(const CoyieldExpr &E, 3184 AggValueSlot aggSlot = AggValueSlot::ignored(), 3185 bool ignoreResult = false); 3186 LValue EmitCoyieldLValue(const CoyieldExpr *E); 3187 RValue EmitCoroutineIntrinsic(const CallExpr *E, unsigned int IID); 3188 3189 void EnterCXXTryStmt(const CXXTryStmt &S, bool IsFnTryBlock = false); 3190 void ExitCXXTryStmt(const CXXTryStmt &S, bool IsFnTryBlock = false); 3191 3192 void EmitCXXTryStmt(const CXXTryStmt &S); 3193 void EmitSEHTryStmt(const SEHTryStmt &S); 3194 void EmitSEHLeaveStmt(const SEHLeaveStmt &S); 3195 void EnterSEHTryStmt(const SEHTryStmt &S); 3196 void ExitSEHTryStmt(const SEHTryStmt &S); 3197 3198 void pushSEHCleanup(CleanupKind kind, 3199 llvm::Function *FinallyFunc); 3200 void startOutlinedSEHHelper(CodeGenFunction &ParentCGF, bool IsFilter, 3201 const Stmt *OutlinedStmt); 3202 3203 llvm::Function *GenerateSEHFilterFunction(CodeGenFunction &ParentCGF, 3204 const SEHExceptStmt &Except); 3205 3206 llvm::Function *GenerateSEHFinallyFunction(CodeGenFunction &ParentCGF, 3207 const SEHFinallyStmt &Finally); 3208 3209 void EmitSEHExceptionCodeSave(CodeGenFunction &ParentCGF, 3210 llvm::Value *ParentFP, 3211 llvm::Value *EntryEBP); 3212 llvm::Value *EmitSEHExceptionCode(); 3213 llvm::Value *EmitSEHExceptionInfo(); 3214 llvm::Value *EmitSEHAbnormalTermination(); 3215 3216 /// Emit simple code for OpenMP directives in Simd-only mode. 3217 void EmitSimpleOMPExecutableDirective(const OMPExecutableDirective &D); 3218 3219 /// Scan the outlined statement for captures from the parent function. For 3220 /// each capture, mark the capture as escaped and emit a call to 3221 /// llvm.localrecover. Insert the localrecover result into the LocalDeclMap. 3222 void EmitCapturedLocals(CodeGenFunction &ParentCGF, const Stmt *OutlinedStmt, 3223 bool IsFilter); 3224 3225 /// Recovers the address of a local in a parent function. ParentVar is the 3226 /// address of the variable used in the immediate parent function. It can 3227 /// either be an alloca or a call to llvm.localrecover if there are nested 3228 /// outlined functions. ParentFP is the frame pointer of the outermost parent 3229 /// frame. 3230 Address recoverAddrOfEscapedLocal(CodeGenFunction &ParentCGF, 3231 Address ParentVar, 3232 llvm::Value *ParentFP); 3233 3234 void EmitCXXForRangeStmt(const CXXForRangeStmt &S, 3235 ArrayRef<const Attr *> Attrs = None); 3236 3237 /// Controls insertion of cancellation exit blocks in worksharing constructs. 3238 class OMPCancelStackRAII { 3239 CodeGenFunction &CGF; 3240 3241 public: 3242 OMPCancelStackRAII(CodeGenFunction &CGF, OpenMPDirectiveKind Kind, 3243 bool HasCancel) 3244 : CGF(CGF) { 3245 CGF.OMPCancelStack.enter(CGF, Kind, HasCancel); 3246 } 3247 ~OMPCancelStackRAII() { CGF.OMPCancelStack.exit(CGF); } 3248 }; 3249 3250 /// Returns calculated size of the specified type. 3251 llvm::Value *getTypeSize(QualType Ty); 3252 LValue InitCapturedStruct(const CapturedStmt &S); 3253 llvm::Function *EmitCapturedStmt(const CapturedStmt &S, CapturedRegionKind K); 3254 llvm::Function *GenerateCapturedStmtFunction(const CapturedStmt &S); 3255 Address GenerateCapturedStmtArgument(const CapturedStmt &S); 3256 llvm::Function *GenerateOpenMPCapturedStmtFunction(const CapturedStmt &S, 3257 SourceLocation Loc); 3258 void GenerateOpenMPCapturedVars(const CapturedStmt &S, 3259 SmallVectorImpl<llvm::Value *> &CapturedVars); 3260 void emitOMPSimpleStore(LValue LVal, RValue RVal, QualType RValTy, 3261 SourceLocation Loc); 3262 /// Perform element by element copying of arrays with type \a 3263 /// OriginalType from \a SrcAddr to \a DestAddr using copying procedure 3264 /// generated by \a CopyGen. 3265 /// 3266 /// \param DestAddr Address of the destination array. 3267 /// \param SrcAddr Address of the source array. 3268 /// \param OriginalType Type of destination and source arrays. 3269 /// \param CopyGen Copying procedure that copies value of single array element 3270 /// to another single array element. 3271 void EmitOMPAggregateAssign( 3272 Address DestAddr, Address SrcAddr, QualType OriginalType, 3273 const llvm::function_ref<void(Address, Address)> CopyGen); 3274 /// Emit proper copying of data from one variable to another. 3275 /// 3276 /// \param OriginalType Original type of the copied variables. 3277 /// \param DestAddr Destination address. 3278 /// \param SrcAddr Source address. 3279 /// \param DestVD Destination variable used in \a CopyExpr (for arrays, has 3280 /// type of the base array element). 3281 /// \param SrcVD Source variable used in \a CopyExpr (for arrays, has type of 3282 /// the base array element). 3283 /// \param Copy Actual copygin expression for copying data from \a SrcVD to \a 3284 /// DestVD. 3285 void EmitOMPCopy(QualType OriginalType, 3286 Address DestAddr, Address SrcAddr, 3287 const VarDecl *DestVD, const VarDecl *SrcVD, 3288 const Expr *Copy); 3289 /// Emit atomic update code for constructs: \a X = \a X \a BO \a E or 3290 /// \a X = \a E \a BO \a E. 3291 /// 3292 /// \param X Value to be updated. 3293 /// \param E Update value. 3294 /// \param BO Binary operation for update operation. 3295 /// \param IsXLHSInRHSPart true if \a X is LHS in RHS part of the update 3296 /// expression, false otherwise. 3297 /// \param AO Atomic ordering of the generated atomic instructions. 3298 /// \param CommonGen Code generator for complex expressions that cannot be 3299 /// expressed through atomicrmw instruction. 3300 /// \returns <true, OldAtomicValue> if simple 'atomicrmw' instruction was 3301 /// generated, <false, RValue::get(nullptr)> otherwise. 3302 std::pair<bool, RValue> EmitOMPAtomicSimpleUpdateExpr( 3303 LValue X, RValue E, BinaryOperatorKind BO, bool IsXLHSInRHSPart, 3304 llvm::AtomicOrdering AO, SourceLocation Loc, 3305 const llvm::function_ref<RValue(RValue)> CommonGen); 3306 bool EmitOMPFirstprivateClause(const OMPExecutableDirective &D, 3307 OMPPrivateScope &PrivateScope); 3308 void EmitOMPPrivateClause(const OMPExecutableDirective &D, 3309 OMPPrivateScope &PrivateScope); 3310 void EmitOMPUseDevicePtrClause( 3311 const OMPUseDevicePtrClause &C, OMPPrivateScope &PrivateScope, 3312 const llvm::DenseMap<const ValueDecl *, Address> &CaptureDeviceAddrMap); 3313 void EmitOMPUseDeviceAddrClause( 3314 const OMPUseDeviceAddrClause &C, OMPPrivateScope &PrivateScope, 3315 const llvm::DenseMap<const ValueDecl *, Address> &CaptureDeviceAddrMap); 3316 /// Emit code for copyin clause in \a D directive. The next code is 3317 /// generated at the start of outlined functions for directives: 3318 /// \code 3319 /// threadprivate_var1 = master_threadprivate_var1; 3320 /// operator=(threadprivate_var2, master_threadprivate_var2); 3321 /// ... 3322 /// __kmpc_barrier(&loc, global_tid); 3323 /// \endcode 3324 /// 3325 /// \param D OpenMP directive possibly with 'copyin' clause(s). 3326 /// \returns true if at least one copyin variable is found, false otherwise. 3327 bool EmitOMPCopyinClause(const OMPExecutableDirective &D); 3328 /// Emit initial code for lastprivate variables. If some variable is 3329 /// not also firstprivate, then the default initialization is used. Otherwise 3330 /// initialization of this variable is performed by EmitOMPFirstprivateClause 3331 /// method. 3332 /// 3333 /// \param D Directive that may have 'lastprivate' directives. 3334 /// \param PrivateScope Private scope for capturing lastprivate variables for 3335 /// proper codegen in internal captured statement. 3336 /// 3337 /// \returns true if there is at least one lastprivate variable, false 3338 /// otherwise. 3339 bool EmitOMPLastprivateClauseInit(const OMPExecutableDirective &D, 3340 OMPPrivateScope &PrivateScope); 3341 /// Emit final copying of lastprivate values to original variables at 3342 /// the end of the worksharing or simd directive. 3343 /// 3344 /// \param D Directive that has at least one 'lastprivate' directives. 3345 /// \param IsLastIterCond Boolean condition that must be set to 'i1 true' if 3346 /// it is the last iteration of the loop code in associated directive, or to 3347 /// 'i1 false' otherwise. If this item is nullptr, no final check is required. 3348 void EmitOMPLastprivateClauseFinal(const OMPExecutableDirective &D, 3349 bool NoFinals, 3350 llvm::Value *IsLastIterCond = nullptr); 3351 /// Emit initial code for linear clauses. 3352 void EmitOMPLinearClause(const OMPLoopDirective &D, 3353 CodeGenFunction::OMPPrivateScope &PrivateScope); 3354 /// Emit final code for linear clauses. 3355 /// \param CondGen Optional conditional code for final part of codegen for 3356 /// linear clause. 3357 void EmitOMPLinearClauseFinal( 3358 const OMPLoopDirective &D, 3359 const llvm::function_ref<llvm::Value *(CodeGenFunction &)> CondGen); 3360 /// Emit initial code for reduction variables. Creates reduction copies 3361 /// and initializes them with the values according to OpenMP standard. 3362 /// 3363 /// \param D Directive (possibly) with the 'reduction' clause. 3364 /// \param PrivateScope Private scope for capturing reduction variables for 3365 /// proper codegen in internal captured statement. 3366 /// 3367 void EmitOMPReductionClauseInit(const OMPExecutableDirective &D, 3368 OMPPrivateScope &PrivateScope, 3369 bool ForInscan = false); 3370 /// Emit final update of reduction values to original variables at 3371 /// the end of the directive. 3372 /// 3373 /// \param D Directive that has at least one 'reduction' directives. 3374 /// \param ReductionKind The kind of reduction to perform. 3375 void EmitOMPReductionClauseFinal(const OMPExecutableDirective &D, 3376 const OpenMPDirectiveKind ReductionKind); 3377 /// Emit initial code for linear variables. Creates private copies 3378 /// and initializes them with the values according to OpenMP standard. 3379 /// 3380 /// \param D Directive (possibly) with the 'linear' clause. 3381 /// \return true if at least one linear variable is found that should be 3382 /// initialized with the value of the original variable, false otherwise. 3383 bool EmitOMPLinearClauseInit(const OMPLoopDirective &D); 3384 3385 typedef const llvm::function_ref<void(CodeGenFunction & /*CGF*/, 3386 llvm::Function * /*OutlinedFn*/, 3387 const OMPTaskDataTy & /*Data*/)> 3388 TaskGenTy; 3389 void EmitOMPTaskBasedDirective(const OMPExecutableDirective &S, 3390 const OpenMPDirectiveKind CapturedRegion, 3391 const RegionCodeGenTy &BodyGen, 3392 const TaskGenTy &TaskGen, OMPTaskDataTy &Data); 3393 struct OMPTargetDataInfo { 3394 Address BasePointersArray = Address::invalid(); 3395 Address PointersArray = Address::invalid(); 3396 Address SizesArray = Address::invalid(); 3397 Address MappersArray = Address::invalid(); 3398 unsigned NumberOfTargetItems = 0; 3399 explicit OMPTargetDataInfo() = default; 3400 OMPTargetDataInfo(Address BasePointersArray, Address PointersArray, 3401 Address SizesArray, Address MappersArray, 3402 unsigned NumberOfTargetItems) 3403 : BasePointersArray(BasePointersArray), PointersArray(PointersArray), 3404 SizesArray(SizesArray), MappersArray(MappersArray), 3405 NumberOfTargetItems(NumberOfTargetItems) {} 3406 }; 3407 void EmitOMPTargetTaskBasedDirective(const OMPExecutableDirective &S, 3408 const RegionCodeGenTy &BodyGen, 3409 OMPTargetDataInfo &InputInfo); 3410 3411 void EmitOMPParallelDirective(const OMPParallelDirective &S); 3412 void EmitOMPSimdDirective(const OMPSimdDirective &S); 3413 void EmitOMPTileDirective(const OMPTileDirective &S); 3414 void EmitOMPForDirective(const OMPForDirective &S); 3415 void EmitOMPForSimdDirective(const OMPForSimdDirective &S); 3416 void EmitOMPSectionsDirective(const OMPSectionsDirective &S); 3417 void EmitOMPSectionDirective(const OMPSectionDirective &S); 3418 void EmitOMPSingleDirective(const OMPSingleDirective &S); 3419 void EmitOMPMasterDirective(const OMPMasterDirective &S); 3420 void EmitOMPCriticalDirective(const OMPCriticalDirective &S); 3421 void EmitOMPParallelForDirective(const OMPParallelForDirective &S); 3422 void EmitOMPParallelForSimdDirective(const OMPParallelForSimdDirective &S); 3423 void EmitOMPParallelSectionsDirective(const OMPParallelSectionsDirective &S); 3424 void EmitOMPParallelMasterDirective(const OMPParallelMasterDirective &S); 3425 void EmitOMPTaskDirective(const OMPTaskDirective &S); 3426 void EmitOMPTaskyieldDirective(const OMPTaskyieldDirective &S); 3427 void EmitOMPBarrierDirective(const OMPBarrierDirective &S); 3428 void EmitOMPTaskwaitDirective(const OMPTaskwaitDirective &S); 3429 void EmitOMPTaskgroupDirective(const OMPTaskgroupDirective &S); 3430 void EmitOMPFlushDirective(const OMPFlushDirective &S); 3431 void EmitOMPDepobjDirective(const OMPDepobjDirective &S); 3432 void EmitOMPScanDirective(const OMPScanDirective &S); 3433 void EmitOMPOrderedDirective(const OMPOrderedDirective &S); 3434 void EmitOMPAtomicDirective(const OMPAtomicDirective &S); 3435 void EmitOMPTargetDirective(const OMPTargetDirective &S); 3436 void EmitOMPTargetDataDirective(const OMPTargetDataDirective &S); 3437 void EmitOMPTargetEnterDataDirective(const OMPTargetEnterDataDirective &S); 3438 void EmitOMPTargetExitDataDirective(const OMPTargetExitDataDirective &S); 3439 void EmitOMPTargetUpdateDirective(const OMPTargetUpdateDirective &S); 3440 void EmitOMPTargetParallelDirective(const OMPTargetParallelDirective &S); 3441 void 3442 EmitOMPTargetParallelForDirective(const OMPTargetParallelForDirective &S); 3443 void EmitOMPTeamsDirective(const OMPTeamsDirective &S); 3444 void 3445 EmitOMPCancellationPointDirective(const OMPCancellationPointDirective &S); 3446 void EmitOMPCancelDirective(const OMPCancelDirective &S); 3447 void EmitOMPTaskLoopBasedDirective(const OMPLoopDirective &S); 3448 void EmitOMPTaskLoopDirective(const OMPTaskLoopDirective &S); 3449 void EmitOMPTaskLoopSimdDirective(const OMPTaskLoopSimdDirective &S); 3450 void EmitOMPMasterTaskLoopDirective(const OMPMasterTaskLoopDirective &S); 3451 void 3452 EmitOMPMasterTaskLoopSimdDirective(const OMPMasterTaskLoopSimdDirective &S); 3453 void EmitOMPParallelMasterTaskLoopDirective( 3454 const OMPParallelMasterTaskLoopDirective &S); 3455 void EmitOMPParallelMasterTaskLoopSimdDirective( 3456 const OMPParallelMasterTaskLoopSimdDirective &S); 3457 void EmitOMPDistributeDirective(const OMPDistributeDirective &S); 3458 void EmitOMPDistributeParallelForDirective( 3459 const OMPDistributeParallelForDirective &S); 3460 void EmitOMPDistributeParallelForSimdDirective( 3461 const OMPDistributeParallelForSimdDirective &S); 3462 void EmitOMPDistributeSimdDirective(const OMPDistributeSimdDirective &S); 3463 void EmitOMPTargetParallelForSimdDirective( 3464 const OMPTargetParallelForSimdDirective &S); 3465 void EmitOMPTargetSimdDirective(const OMPTargetSimdDirective &S); 3466 void EmitOMPTeamsDistributeDirective(const OMPTeamsDistributeDirective &S); 3467 void 3468 EmitOMPTeamsDistributeSimdDirective(const OMPTeamsDistributeSimdDirective &S); 3469 void EmitOMPTeamsDistributeParallelForSimdDirective( 3470 const OMPTeamsDistributeParallelForSimdDirective &S); 3471 void EmitOMPTeamsDistributeParallelForDirective( 3472 const OMPTeamsDistributeParallelForDirective &S); 3473 void EmitOMPTargetTeamsDirective(const OMPTargetTeamsDirective &S); 3474 void EmitOMPTargetTeamsDistributeDirective( 3475 const OMPTargetTeamsDistributeDirective &S); 3476 void EmitOMPTargetTeamsDistributeParallelForDirective( 3477 const OMPTargetTeamsDistributeParallelForDirective &S); 3478 void EmitOMPTargetTeamsDistributeParallelForSimdDirective( 3479 const OMPTargetTeamsDistributeParallelForSimdDirective &S); 3480 void EmitOMPTargetTeamsDistributeSimdDirective( 3481 const OMPTargetTeamsDistributeSimdDirective &S); 3482 3483 /// Emit device code for the target directive. 3484 static void EmitOMPTargetDeviceFunction(CodeGenModule &CGM, 3485 StringRef ParentName, 3486 const OMPTargetDirective &S); 3487 static void 3488 EmitOMPTargetParallelDeviceFunction(CodeGenModule &CGM, StringRef ParentName, 3489 const OMPTargetParallelDirective &S); 3490 /// Emit device code for the target parallel for directive. 3491 static void EmitOMPTargetParallelForDeviceFunction( 3492 CodeGenModule &CGM, StringRef ParentName, 3493 const OMPTargetParallelForDirective &S); 3494 /// Emit device code for the target parallel for simd directive. 3495 static void EmitOMPTargetParallelForSimdDeviceFunction( 3496 CodeGenModule &CGM, StringRef ParentName, 3497 const OMPTargetParallelForSimdDirective &S); 3498 /// Emit device code for the target teams directive. 3499 static void 3500 EmitOMPTargetTeamsDeviceFunction(CodeGenModule &CGM, StringRef ParentName, 3501 const OMPTargetTeamsDirective &S); 3502 /// Emit device code for the target teams distribute directive. 3503 static void EmitOMPTargetTeamsDistributeDeviceFunction( 3504 CodeGenModule &CGM, StringRef ParentName, 3505 const OMPTargetTeamsDistributeDirective &S); 3506 /// Emit device code for the target teams distribute simd directive. 3507 static void EmitOMPTargetTeamsDistributeSimdDeviceFunction( 3508 CodeGenModule &CGM, StringRef ParentName, 3509 const OMPTargetTeamsDistributeSimdDirective &S); 3510 /// Emit device code for the target simd directive. 3511 static void EmitOMPTargetSimdDeviceFunction(CodeGenModule &CGM, 3512 StringRef ParentName, 3513 const OMPTargetSimdDirective &S); 3514 /// Emit device code for the target teams distribute parallel for simd 3515 /// directive. 3516 static void EmitOMPTargetTeamsDistributeParallelForSimdDeviceFunction( 3517 CodeGenModule &CGM, StringRef ParentName, 3518 const OMPTargetTeamsDistributeParallelForSimdDirective &S); 3519 3520 static void EmitOMPTargetTeamsDistributeParallelForDeviceFunction( 3521 CodeGenModule &CGM, StringRef ParentName, 3522 const OMPTargetTeamsDistributeParallelForDirective &S); 3523 3524 /// Emit the Stmt \p S and return its topmost canonical loop, if any. 3525 /// TODO: The \p Depth paramter is not yet implemented and must be 1. In the 3526 /// future it is meant to be the number of loops expected in the loop nests 3527 /// (usually specified by the "collapse" clause) that are collapsed to a 3528 /// single loop by this function. 3529 llvm::CanonicalLoopInfo *EmitOMPCollapsedCanonicalLoopNest(const Stmt *S, 3530 int Depth); 3531 3532 /// Emit an OMPCanonicalLoop using the OpenMPIRBuilder. 3533 void EmitOMPCanonicalLoop(const OMPCanonicalLoop *S); 3534 3535 /// Emit inner loop of the worksharing/simd construct. 3536 /// 3537 /// \param S Directive, for which the inner loop must be emitted. 3538 /// \param RequiresCleanup true, if directive has some associated private 3539 /// variables. 3540 /// \param LoopCond Bollean condition for loop continuation. 3541 /// \param IncExpr Increment expression for loop control variable. 3542 /// \param BodyGen Generator for the inner body of the inner loop. 3543 /// \param PostIncGen Genrator for post-increment code (required for ordered 3544 /// loop directvies). 3545 void EmitOMPInnerLoop( 3546 const OMPExecutableDirective &S, bool RequiresCleanup, 3547 const Expr *LoopCond, const Expr *IncExpr, 3548 const llvm::function_ref<void(CodeGenFunction &)> BodyGen, 3549 const llvm::function_ref<void(CodeGenFunction &)> PostIncGen); 3550 3551 JumpDest getOMPCancelDestination(OpenMPDirectiveKind Kind); 3552 /// Emit initial code for loop counters of loop-based directives. 3553 void EmitOMPPrivateLoopCounters(const OMPLoopDirective &S, 3554 OMPPrivateScope &LoopScope); 3555 3556 /// Helper for the OpenMP loop directives. 3557 void EmitOMPLoopBody(const OMPLoopDirective &D, JumpDest LoopExit); 3558 3559 /// Emit code for the worksharing loop-based directive. 3560 /// \return true, if this construct has any lastprivate clause, false - 3561 /// otherwise. 3562 bool EmitOMPWorksharingLoop(const OMPLoopDirective &S, Expr *EUB, 3563 const CodeGenLoopBoundsTy &CodeGenLoopBounds, 3564 const CodeGenDispatchBoundsTy &CGDispatchBounds); 3565 3566 /// Emit code for the distribute loop-based directive. 3567 void EmitOMPDistributeLoop(const OMPLoopDirective &S, 3568 const CodeGenLoopTy &CodeGenLoop, Expr *IncExpr); 3569 3570 /// Helpers for the OpenMP loop directives. 3571 void EmitOMPSimdInit(const OMPLoopDirective &D, bool IsMonotonic = false); 3572 void EmitOMPSimdFinal( 3573 const OMPLoopDirective &D, 3574 const llvm::function_ref<llvm::Value *(CodeGenFunction &)> CondGen); 3575 3576 /// Emits the lvalue for the expression with possibly captured variable. 3577 LValue EmitOMPSharedLValue(const Expr *E); 3578 3579 private: 3580 /// Helpers for blocks. 3581 llvm::Value *EmitBlockLiteral(const CGBlockInfo &Info); 3582 3583 /// struct with the values to be passed to the OpenMP loop-related functions 3584 struct OMPLoopArguments { 3585 /// loop lower bound 3586 Address LB = Address::invalid(); 3587 /// loop upper bound 3588 Address UB = Address::invalid(); 3589 /// loop stride 3590 Address ST = Address::invalid(); 3591 /// isLastIteration argument for runtime functions 3592 Address IL = Address::invalid(); 3593 /// Chunk value generated by sema 3594 llvm::Value *Chunk = nullptr; 3595 /// EnsureUpperBound 3596 Expr *EUB = nullptr; 3597 /// IncrementExpression 3598 Expr *IncExpr = nullptr; 3599 /// Loop initialization 3600 Expr *Init = nullptr; 3601 /// Loop exit condition 3602 Expr *Cond = nullptr; 3603 /// Update of LB after a whole chunk has been executed 3604 Expr *NextLB = nullptr; 3605 /// Update of UB after a whole chunk has been executed 3606 Expr *NextUB = nullptr; 3607 OMPLoopArguments() = default; 3608 OMPLoopArguments(Address LB, Address UB, Address ST, Address IL, 3609 llvm::Value *Chunk = nullptr, Expr *EUB = nullptr, 3610 Expr *IncExpr = nullptr, Expr *Init = nullptr, 3611 Expr *Cond = nullptr, Expr *NextLB = nullptr, 3612 Expr *NextUB = nullptr) 3613 : LB(LB), UB(UB), ST(ST), IL(IL), Chunk(Chunk), EUB(EUB), 3614 IncExpr(IncExpr), Init(Init), Cond(Cond), NextLB(NextLB), 3615 NextUB(NextUB) {} 3616 }; 3617 void EmitOMPOuterLoop(bool DynamicOrOrdered, bool IsMonotonic, 3618 const OMPLoopDirective &S, OMPPrivateScope &LoopScope, 3619 const OMPLoopArguments &LoopArgs, 3620 const CodeGenLoopTy &CodeGenLoop, 3621 const CodeGenOrderedTy &CodeGenOrdered); 3622 void EmitOMPForOuterLoop(const OpenMPScheduleTy &ScheduleKind, 3623 bool IsMonotonic, const OMPLoopDirective &S, 3624 OMPPrivateScope &LoopScope, bool Ordered, 3625 const OMPLoopArguments &LoopArgs, 3626 const CodeGenDispatchBoundsTy &CGDispatchBounds); 3627 void EmitOMPDistributeOuterLoop(OpenMPDistScheduleClauseKind ScheduleKind, 3628 const OMPLoopDirective &S, 3629 OMPPrivateScope &LoopScope, 3630 const OMPLoopArguments &LoopArgs, 3631 const CodeGenLoopTy &CodeGenLoopContent); 3632 /// Emit code for sections directive. 3633 void EmitSections(const OMPExecutableDirective &S); 3634 3635 public: 3636 3637 //===--------------------------------------------------------------------===// 3638 // LValue Expression Emission 3639 //===--------------------------------------------------------------------===// 3640 3641 /// Create a check that a scalar RValue is non-null. 3642 llvm::Value *EmitNonNullRValueCheck(RValue RV, QualType T); 3643 3644 /// GetUndefRValue - Get an appropriate 'undef' rvalue for the given type. 3645 RValue GetUndefRValue(QualType Ty); 3646 3647 /// EmitUnsupportedRValue - Emit a dummy r-value using the type of E 3648 /// and issue an ErrorUnsupported style diagnostic (using the 3649 /// provided Name). 3650 RValue EmitUnsupportedRValue(const Expr *E, 3651 const char *Name); 3652 3653 /// EmitUnsupportedLValue - Emit a dummy l-value using the type of E and issue 3654 /// an ErrorUnsupported style diagnostic (using the provided Name). 3655 LValue EmitUnsupportedLValue(const Expr *E, 3656 const char *Name); 3657 3658 /// EmitLValue - Emit code to compute a designator that specifies the location 3659 /// of the expression. 3660 /// 3661 /// This can return one of two things: a simple address or a bitfield 3662 /// reference. In either case, the LLVM Value* in the LValue structure is 3663 /// guaranteed to be an LLVM pointer type. 3664 /// 3665 /// If this returns a bitfield reference, nothing about the pointee type of 3666 /// the LLVM value is known: For example, it may not be a pointer to an 3667 /// integer. 3668 /// 3669 /// If this returns a normal address, and if the lvalue's C type is fixed 3670 /// size, this method guarantees that the returned pointer type will point to 3671 /// an LLVM type of the same size of the lvalue's type. If the lvalue has a 3672 /// variable length type, this is not possible. 3673 /// 3674 LValue EmitLValue(const Expr *E); 3675 3676 /// Same as EmitLValue but additionally we generate checking code to 3677 /// guard against undefined behavior. This is only suitable when we know 3678 /// that the address will be used to access the object. 3679 LValue EmitCheckedLValue(const Expr *E, TypeCheckKind TCK); 3680 3681 RValue convertTempToRValue(Address addr, QualType type, 3682 SourceLocation Loc); 3683 3684 void EmitAtomicInit(Expr *E, LValue lvalue); 3685 3686 bool LValueIsSuitableForInlineAtomic(LValue Src); 3687 3688 RValue EmitAtomicLoad(LValue LV, SourceLocation SL, 3689 AggValueSlot Slot = AggValueSlot::ignored()); 3690 3691 RValue EmitAtomicLoad(LValue lvalue, SourceLocation loc, 3692 llvm::AtomicOrdering AO, bool IsVolatile = false, 3693 AggValueSlot slot = AggValueSlot::ignored()); 3694 3695 void EmitAtomicStore(RValue rvalue, LValue lvalue, bool isInit); 3696 3697 void EmitAtomicStore(RValue rvalue, LValue lvalue, llvm::AtomicOrdering AO, 3698 bool IsVolatile, bool isInit); 3699 3700 std::pair<RValue, llvm::Value *> EmitAtomicCompareExchange( 3701 LValue Obj, RValue Expected, RValue Desired, SourceLocation Loc, 3702 llvm::AtomicOrdering Success = 3703 llvm::AtomicOrdering::SequentiallyConsistent, 3704 llvm::AtomicOrdering Failure = 3705 llvm::AtomicOrdering::SequentiallyConsistent, 3706 bool IsWeak = false, AggValueSlot Slot = AggValueSlot::ignored()); 3707 3708 void EmitAtomicUpdate(LValue LVal, llvm::AtomicOrdering AO, 3709 const llvm::function_ref<RValue(RValue)> &UpdateOp, 3710 bool IsVolatile); 3711 3712 /// EmitToMemory - Change a scalar value from its value 3713 /// representation to its in-memory representation. 3714 llvm::Value *EmitToMemory(llvm::Value *Value, QualType Ty); 3715 3716 /// EmitFromMemory - Change a scalar value from its memory 3717 /// representation to its value representation. 3718 llvm::Value *EmitFromMemory(llvm::Value *Value, QualType Ty); 3719 3720 /// Check if the scalar \p Value is within the valid range for the given 3721 /// type \p Ty. 3722 /// 3723 /// Returns true if a check is needed (even if the range is unknown). 3724 bool EmitScalarRangeCheck(llvm::Value *Value, QualType Ty, 3725 SourceLocation Loc); 3726 3727 /// EmitLoadOfScalar - Load a scalar value from an address, taking 3728 /// care to appropriately convert from the memory representation to 3729 /// the LLVM value representation. 3730 llvm::Value *EmitLoadOfScalar(Address Addr, bool Volatile, QualType Ty, 3731 SourceLocation Loc, 3732 AlignmentSource Source = AlignmentSource::Type, 3733 bool isNontemporal = false) { 3734 return EmitLoadOfScalar(Addr, Volatile, Ty, Loc, LValueBaseInfo(Source), 3735 CGM.getTBAAAccessInfo(Ty), isNontemporal); 3736 } 3737 3738 llvm::Value *EmitLoadOfScalar(Address Addr, bool Volatile, QualType Ty, 3739 SourceLocation Loc, LValueBaseInfo BaseInfo, 3740 TBAAAccessInfo TBAAInfo, 3741 bool isNontemporal = false); 3742 3743 /// EmitLoadOfScalar - Load a scalar value from an address, taking 3744 /// care to appropriately convert from the memory representation to 3745 /// the LLVM value representation. The l-value must be a simple 3746 /// l-value. 3747 llvm::Value *EmitLoadOfScalar(LValue lvalue, SourceLocation Loc); 3748 3749 /// EmitStoreOfScalar - Store a scalar value to an address, taking 3750 /// care to appropriately convert from the memory representation to 3751 /// the LLVM value representation. 3752 void EmitStoreOfScalar(llvm::Value *Value, Address Addr, 3753 bool Volatile, QualType Ty, 3754 AlignmentSource Source = AlignmentSource::Type, 3755 bool isInit = false, bool isNontemporal = false) { 3756 EmitStoreOfScalar(Value, Addr, Volatile, Ty, LValueBaseInfo(Source), 3757 CGM.getTBAAAccessInfo(Ty), isInit, isNontemporal); 3758 } 3759 3760 void EmitStoreOfScalar(llvm::Value *Value, Address Addr, 3761 bool Volatile, QualType Ty, 3762 LValueBaseInfo BaseInfo, TBAAAccessInfo TBAAInfo, 3763 bool isInit = false, bool isNontemporal = false); 3764 3765 /// EmitStoreOfScalar - Store a scalar value to an address, taking 3766 /// care to appropriately convert from the memory representation to 3767 /// the LLVM value representation. The l-value must be a simple 3768 /// l-value. The isInit flag indicates whether this is an initialization. 3769 /// If so, atomic qualifiers are ignored and the store is always non-atomic. 3770 void EmitStoreOfScalar(llvm::Value *value, LValue lvalue, bool isInit=false); 3771 3772 /// EmitLoadOfLValue - Given an expression that represents a value lvalue, 3773 /// this method emits the address of the lvalue, then loads the result as an 3774 /// rvalue, returning the rvalue. 3775 RValue EmitLoadOfLValue(LValue V, SourceLocation Loc); 3776 RValue EmitLoadOfExtVectorElementLValue(LValue V); 3777 RValue EmitLoadOfBitfieldLValue(LValue LV, SourceLocation Loc); 3778 RValue EmitLoadOfGlobalRegLValue(LValue LV); 3779 3780 /// EmitStoreThroughLValue - Store the specified rvalue into the specified 3781 /// lvalue, where both are guaranteed to the have the same type, and that type 3782 /// is 'Ty'. 3783 void EmitStoreThroughLValue(RValue Src, LValue Dst, bool isInit = false); 3784 void EmitStoreThroughExtVectorComponentLValue(RValue Src, LValue Dst); 3785 void EmitStoreThroughGlobalRegLValue(RValue Src, LValue Dst); 3786 3787 /// EmitStoreThroughBitfieldLValue - Store Src into Dst with same constraints 3788 /// as EmitStoreThroughLValue. 3789 /// 3790 /// \param Result [out] - If non-null, this will be set to a Value* for the 3791 /// bit-field contents after the store, appropriate for use as the result of 3792 /// an assignment to the bit-field. 3793 void EmitStoreThroughBitfieldLValue(RValue Src, LValue Dst, 3794 llvm::Value **Result=nullptr); 3795 3796 /// Emit an l-value for an assignment (simple or compound) of complex type. 3797 LValue EmitComplexAssignmentLValue(const BinaryOperator *E); 3798 LValue EmitComplexCompoundAssignmentLValue(const CompoundAssignOperator *E); 3799 LValue EmitScalarCompoundAssignWithComplex(const CompoundAssignOperator *E, 3800 llvm::Value *&Result); 3801 3802 // Note: only available for agg return types 3803 LValue EmitBinaryOperatorLValue(const BinaryOperator *E); 3804 LValue EmitCompoundAssignmentLValue(const CompoundAssignOperator *E); 3805 // Note: only available for agg return types 3806 LValue EmitCallExprLValue(const CallExpr *E); 3807 // Note: only available for agg return types 3808 LValue EmitVAArgExprLValue(const VAArgExpr *E); 3809 LValue EmitDeclRefLValue(const DeclRefExpr *E); 3810 LValue EmitStringLiteralLValue(const StringLiteral *E); 3811 LValue EmitObjCEncodeExprLValue(const ObjCEncodeExpr *E); 3812 LValue EmitPredefinedLValue(const PredefinedExpr *E); 3813 LValue EmitUnaryOpLValue(const UnaryOperator *E); 3814 LValue EmitArraySubscriptExpr(const ArraySubscriptExpr *E, 3815 bool Accessed = false); 3816 LValue EmitMatrixSubscriptExpr(const MatrixSubscriptExpr *E); 3817 LValue EmitOMPArraySectionExpr(const OMPArraySectionExpr *E, 3818 bool IsLowerBound = true); 3819 LValue EmitExtVectorElementExpr(const ExtVectorElementExpr *E); 3820 LValue EmitMemberExpr(const MemberExpr *E); 3821 LValue EmitObjCIsaExpr(const ObjCIsaExpr *E); 3822 LValue EmitCompoundLiteralLValue(const CompoundLiteralExpr *E); 3823 LValue EmitInitListLValue(const InitListExpr *E); 3824 LValue EmitConditionalOperatorLValue(const AbstractConditionalOperator *E); 3825 LValue EmitCastLValue(const CastExpr *E); 3826 LValue EmitMaterializeTemporaryExpr(const MaterializeTemporaryExpr *E); 3827 LValue EmitOpaqueValueLValue(const OpaqueValueExpr *e); 3828 3829 Address EmitExtVectorElementLValue(LValue V); 3830 3831 RValue EmitRValueForField(LValue LV, const FieldDecl *FD, SourceLocation Loc); 3832 3833 Address EmitArrayToPointerDecay(const Expr *Array, 3834 LValueBaseInfo *BaseInfo = nullptr, 3835 TBAAAccessInfo *TBAAInfo = nullptr); 3836 3837 class ConstantEmission { 3838 llvm::PointerIntPair<llvm::Constant*, 1, bool> ValueAndIsReference; 3839 ConstantEmission(llvm::Constant *C, bool isReference) 3840 : ValueAndIsReference(C, isReference) {} 3841 public: 3842 ConstantEmission() {} 3843 static ConstantEmission forReference(llvm::Constant *C) { 3844 return ConstantEmission(C, true); 3845 } 3846 static ConstantEmission forValue(llvm::Constant *C) { 3847 return ConstantEmission(C, false); 3848 } 3849 3850 explicit operator bool() const { 3851 return ValueAndIsReference.getOpaqueValue() != nullptr; 3852 } 3853 3854 bool isReference() const { return ValueAndIsReference.getInt(); } 3855 LValue getReferenceLValue(CodeGenFunction &CGF, Expr *refExpr) const { 3856 assert(isReference()); 3857 return CGF.MakeNaturalAlignAddrLValue(ValueAndIsReference.getPointer(), 3858 refExpr->getType()); 3859 } 3860 3861 llvm::Constant *getValue() const { 3862 assert(!isReference()); 3863 return ValueAndIsReference.getPointer(); 3864 } 3865 }; 3866 3867 ConstantEmission tryEmitAsConstant(DeclRefExpr *refExpr); 3868 ConstantEmission tryEmitAsConstant(const MemberExpr *ME); 3869 llvm::Value *emitScalarConstant(const ConstantEmission &Constant, Expr *E); 3870 3871 RValue EmitPseudoObjectRValue(const PseudoObjectExpr *e, 3872 AggValueSlot slot = AggValueSlot::ignored()); 3873 LValue EmitPseudoObjectLValue(const PseudoObjectExpr *e); 3874 3875 llvm::Value *EmitIvarOffset(const ObjCInterfaceDecl *Interface, 3876 const ObjCIvarDecl *Ivar); 3877 LValue EmitLValueForField(LValue Base, const FieldDecl* Field); 3878 LValue EmitLValueForLambdaField(const FieldDecl *Field); 3879 3880 /// EmitLValueForFieldInitialization - Like EmitLValueForField, except that 3881 /// if the Field is a reference, this will return the address of the reference 3882 /// and not the address of the value stored in the reference. 3883 LValue EmitLValueForFieldInitialization(LValue Base, 3884 const FieldDecl* Field); 3885 3886 LValue EmitLValueForIvar(QualType ObjectTy, 3887 llvm::Value* Base, const ObjCIvarDecl *Ivar, 3888 unsigned CVRQualifiers); 3889 3890 LValue EmitCXXConstructLValue(const CXXConstructExpr *E); 3891 LValue EmitCXXBindTemporaryLValue(const CXXBindTemporaryExpr *E); 3892 LValue EmitCXXTypeidLValue(const CXXTypeidExpr *E); 3893 LValue EmitCXXUuidofLValue(const CXXUuidofExpr *E); 3894 3895 LValue EmitObjCMessageExprLValue(const ObjCMessageExpr *E); 3896 LValue EmitObjCIvarRefLValue(const ObjCIvarRefExpr *E); 3897 LValue EmitStmtExprLValue(const StmtExpr *E); 3898 LValue EmitPointerToDataMemberBinaryExpr(const BinaryOperator *E); 3899 LValue EmitObjCSelectorLValue(const ObjCSelectorExpr *E); 3900 void EmitDeclRefExprDbgValue(const DeclRefExpr *E, const APValue &Init); 3901 3902 //===--------------------------------------------------------------------===// 3903 // Scalar Expression Emission 3904 //===--------------------------------------------------------------------===// 3905 3906 /// EmitCall - Generate a call of the given function, expecting the given 3907 /// result type, and using the given argument list which specifies both the 3908 /// LLVM arguments and the types they were derived from. 3909 RValue EmitCall(const CGFunctionInfo &CallInfo, const CGCallee &Callee, 3910 ReturnValueSlot ReturnValue, const CallArgList &Args, 3911 llvm::CallBase **callOrInvoke, SourceLocation Loc); 3912 RValue EmitCall(const CGFunctionInfo &CallInfo, const CGCallee &Callee, 3913 ReturnValueSlot ReturnValue, const CallArgList &Args, 3914 llvm::CallBase **callOrInvoke = nullptr) { 3915 return EmitCall(CallInfo, Callee, ReturnValue, Args, callOrInvoke, 3916 SourceLocation()); 3917 } 3918 RValue EmitCall(QualType FnType, const CGCallee &Callee, const CallExpr *E, 3919 ReturnValueSlot ReturnValue, llvm::Value *Chain = nullptr); 3920 RValue EmitCallExpr(const CallExpr *E, 3921 ReturnValueSlot ReturnValue = ReturnValueSlot()); 3922 RValue EmitSimpleCallExpr(const CallExpr *E, ReturnValueSlot ReturnValue); 3923 CGCallee EmitCallee(const Expr *E); 3924 3925 void checkTargetFeatures(const CallExpr *E, const FunctionDecl *TargetDecl); 3926 void checkTargetFeatures(SourceLocation Loc, const FunctionDecl *TargetDecl); 3927 3928 llvm::CallInst *EmitRuntimeCall(llvm::FunctionCallee callee, 3929 const Twine &name = ""); 3930 llvm::CallInst *EmitRuntimeCall(llvm::FunctionCallee callee, 3931 ArrayRef<llvm::Value *> args, 3932 const Twine &name = ""); 3933 llvm::CallInst *EmitNounwindRuntimeCall(llvm::FunctionCallee callee, 3934 const Twine &name = ""); 3935 llvm::CallInst *EmitNounwindRuntimeCall(llvm::FunctionCallee callee, 3936 ArrayRef<llvm::Value *> args, 3937 const Twine &name = ""); 3938 3939 SmallVector<llvm::OperandBundleDef, 1> 3940 getBundlesForFunclet(llvm::Value *Callee); 3941 3942 llvm::CallBase *EmitCallOrInvoke(llvm::FunctionCallee Callee, 3943 ArrayRef<llvm::Value *> Args, 3944 const Twine &Name = ""); 3945 llvm::CallBase *EmitRuntimeCallOrInvoke(llvm::FunctionCallee callee, 3946 ArrayRef<llvm::Value *> args, 3947 const Twine &name = ""); 3948 llvm::CallBase *EmitRuntimeCallOrInvoke(llvm::FunctionCallee callee, 3949 const Twine &name = ""); 3950 void EmitNoreturnRuntimeCallOrInvoke(llvm::FunctionCallee callee, 3951 ArrayRef<llvm::Value *> args); 3952 3953 CGCallee BuildAppleKextVirtualCall(const CXXMethodDecl *MD, 3954 NestedNameSpecifier *Qual, 3955 llvm::Type *Ty); 3956 3957 CGCallee BuildAppleKextVirtualDestructorCall(const CXXDestructorDecl *DD, 3958 CXXDtorType Type, 3959 const CXXRecordDecl *RD); 3960 3961 // Return the copy constructor name with the prefix "__copy_constructor_" 3962 // removed. 3963 static std::string getNonTrivialCopyConstructorStr(QualType QT, 3964 CharUnits Alignment, 3965 bool IsVolatile, 3966 ASTContext &Ctx); 3967 3968 // Return the destructor name with the prefix "__destructor_" removed. 3969 static std::string getNonTrivialDestructorStr(QualType QT, 3970 CharUnits Alignment, 3971 bool IsVolatile, 3972 ASTContext &Ctx); 3973 3974 // These functions emit calls to the special functions of non-trivial C 3975 // structs. 3976 void defaultInitNonTrivialCStructVar(LValue Dst); 3977 void callCStructDefaultConstructor(LValue Dst); 3978 void callCStructDestructor(LValue Dst); 3979 void callCStructCopyConstructor(LValue Dst, LValue Src); 3980 void callCStructMoveConstructor(LValue Dst, LValue Src); 3981 void callCStructCopyAssignmentOperator(LValue Dst, LValue Src); 3982 void callCStructMoveAssignmentOperator(LValue Dst, LValue Src); 3983 3984 RValue 3985 EmitCXXMemberOrOperatorCall(const CXXMethodDecl *Method, 3986 const CGCallee &Callee, 3987 ReturnValueSlot ReturnValue, llvm::Value *This, 3988 llvm::Value *ImplicitParam, 3989 QualType ImplicitParamTy, const CallExpr *E, 3990 CallArgList *RtlArgs); 3991 RValue EmitCXXDestructorCall(GlobalDecl Dtor, const CGCallee &Callee, 3992 llvm::Value *This, QualType ThisTy, 3993 llvm::Value *ImplicitParam, 3994 QualType ImplicitParamTy, const CallExpr *E); 3995 RValue EmitCXXMemberCallExpr(const CXXMemberCallExpr *E, 3996 ReturnValueSlot ReturnValue); 3997 RValue EmitCXXMemberOrOperatorMemberCallExpr(const CallExpr *CE, 3998 const CXXMethodDecl *MD, 3999 ReturnValueSlot ReturnValue, 4000 bool HasQualifier, 4001 NestedNameSpecifier *Qualifier, 4002 bool IsArrow, const Expr *Base); 4003 // Compute the object pointer. 4004 Address EmitCXXMemberDataPointerAddress(const Expr *E, Address base, 4005 llvm::Value *memberPtr, 4006 const MemberPointerType *memberPtrType, 4007 LValueBaseInfo *BaseInfo = nullptr, 4008 TBAAAccessInfo *TBAAInfo = nullptr); 4009 RValue EmitCXXMemberPointerCallExpr(const CXXMemberCallExpr *E, 4010 ReturnValueSlot ReturnValue); 4011 4012 RValue EmitCXXOperatorMemberCallExpr(const CXXOperatorCallExpr *E, 4013 const CXXMethodDecl *MD, 4014 ReturnValueSlot ReturnValue); 4015 RValue EmitCXXPseudoDestructorExpr(const CXXPseudoDestructorExpr *E); 4016 4017 RValue EmitCUDAKernelCallExpr(const CUDAKernelCallExpr *E, 4018 ReturnValueSlot ReturnValue); 4019 4020 RValue EmitNVPTXDevicePrintfCallExpr(const CallExpr *E, 4021 ReturnValueSlot ReturnValue); 4022 RValue EmitAMDGPUDevicePrintfCallExpr(const CallExpr *E, 4023 ReturnValueSlot ReturnValue); 4024 4025 RValue EmitBuiltinExpr(const GlobalDecl GD, unsigned BuiltinID, 4026 const CallExpr *E, ReturnValueSlot ReturnValue); 4027 4028 RValue emitRotate(const CallExpr *E, bool IsRotateRight); 4029 4030 /// Emit IR for __builtin_os_log_format. 4031 RValue emitBuiltinOSLogFormat(const CallExpr &E); 4032 4033 /// Emit IR for __builtin_is_aligned. 4034 RValue EmitBuiltinIsAligned(const CallExpr *E); 4035 /// Emit IR for __builtin_align_up/__builtin_align_down. 4036 RValue EmitBuiltinAlignTo(const CallExpr *E, bool AlignUp); 4037 4038 llvm::Function *generateBuiltinOSLogHelperFunction( 4039 const analyze_os_log::OSLogBufferLayout &Layout, 4040 CharUnits BufferAlignment); 4041 4042 RValue EmitBlockCallExpr(const CallExpr *E, ReturnValueSlot ReturnValue); 4043 4044 /// EmitTargetBuiltinExpr - Emit the given builtin call. Returns 0 if the call 4045 /// is unhandled by the current target. 4046 llvm::Value *EmitTargetBuiltinExpr(unsigned BuiltinID, const CallExpr *E, 4047 ReturnValueSlot ReturnValue); 4048 4049 llvm::Value *EmitAArch64CompareBuiltinExpr(llvm::Value *Op, llvm::Type *Ty, 4050 const llvm::CmpInst::Predicate Fp, 4051 const llvm::CmpInst::Predicate Ip, 4052 const llvm::Twine &Name = ""); 4053 llvm::Value *EmitARMBuiltinExpr(unsigned BuiltinID, const CallExpr *E, 4054 ReturnValueSlot ReturnValue, 4055 llvm::Triple::ArchType Arch); 4056 llvm::Value *EmitARMMVEBuiltinExpr(unsigned BuiltinID, const CallExpr *E, 4057 ReturnValueSlot ReturnValue, 4058 llvm::Triple::ArchType Arch); 4059 llvm::Value *EmitARMCDEBuiltinExpr(unsigned BuiltinID, const CallExpr *E, 4060 ReturnValueSlot ReturnValue, 4061 llvm::Triple::ArchType Arch); 4062 llvm::Value *EmitCMSEClearRecord(llvm::Value *V, llvm::IntegerType *ITy, 4063 QualType RTy); 4064 llvm::Value *EmitCMSEClearRecord(llvm::Value *V, llvm::ArrayType *ATy, 4065 QualType RTy); 4066 4067 llvm::Value *EmitCommonNeonBuiltinExpr(unsigned BuiltinID, 4068 unsigned LLVMIntrinsic, 4069 unsigned AltLLVMIntrinsic, 4070 const char *NameHint, 4071 unsigned Modifier, 4072 const CallExpr *E, 4073 SmallVectorImpl<llvm::Value *> &Ops, 4074 Address PtrOp0, Address PtrOp1, 4075 llvm::Triple::ArchType Arch); 4076 4077 llvm::Function *LookupNeonLLVMIntrinsic(unsigned IntrinsicID, 4078 unsigned Modifier, llvm::Type *ArgTy, 4079 const CallExpr *E); 4080 llvm::Value *EmitNeonCall(llvm::Function *F, 4081 SmallVectorImpl<llvm::Value*> &O, 4082 const char *name, 4083 unsigned shift = 0, bool rightshift = false); 4084 llvm::Value *EmitNeonSplat(llvm::Value *V, llvm::Constant *Idx, 4085 const llvm::ElementCount &Count); 4086 llvm::Value *EmitNeonSplat(llvm::Value *V, llvm::Constant *Idx); 4087 llvm::Value *EmitNeonShiftVector(llvm::Value *V, llvm::Type *Ty, 4088 bool negateForRightShift); 4089 llvm::Value *EmitNeonRShiftImm(llvm::Value *Vec, llvm::Value *Amt, 4090 llvm::Type *Ty, bool usgn, const char *name); 4091 llvm::Value *vectorWrapScalar16(llvm::Value *Op); 4092 /// SVEBuiltinMemEltTy - Returns the memory element type for this memory 4093 /// access builtin. Only required if it can't be inferred from the base 4094 /// pointer operand. 4095 llvm::Type *SVEBuiltinMemEltTy(SVETypeFlags TypeFlags); 4096 4097 SmallVector<llvm::Type *, 2> getSVEOverloadTypes(SVETypeFlags TypeFlags, 4098 llvm::Type *ReturnType, 4099 ArrayRef<llvm::Value *> Ops); 4100 llvm::Type *getEltType(SVETypeFlags TypeFlags); 4101 llvm::ScalableVectorType *getSVEType(const SVETypeFlags &TypeFlags); 4102 llvm::ScalableVectorType *getSVEPredType(SVETypeFlags TypeFlags); 4103 llvm::Value *EmitSVEAllTruePred(SVETypeFlags TypeFlags); 4104 llvm::Value *EmitSVEDupX(llvm::Value *Scalar); 4105 llvm::Value *EmitSVEDupX(llvm::Value *Scalar, llvm::Type *Ty); 4106 llvm::Value *EmitSVEReinterpret(llvm::Value *Val, llvm::Type *Ty); 4107 llvm::Value *EmitSVEPMull(SVETypeFlags TypeFlags, 4108 llvm::SmallVectorImpl<llvm::Value *> &Ops, 4109 unsigned BuiltinID); 4110 llvm::Value *EmitSVEMovl(SVETypeFlags TypeFlags, 4111 llvm::ArrayRef<llvm::Value *> Ops, 4112 unsigned BuiltinID); 4113 llvm::Value *EmitSVEPredicateCast(llvm::Value *Pred, 4114 llvm::ScalableVectorType *VTy); 4115 llvm::Value *EmitSVEGatherLoad(SVETypeFlags TypeFlags, 4116 llvm::SmallVectorImpl<llvm::Value *> &Ops, 4117 unsigned IntID); 4118 llvm::Value *EmitSVEScatterStore(SVETypeFlags TypeFlags, 4119 llvm::SmallVectorImpl<llvm::Value *> &Ops, 4120 unsigned IntID); 4121 llvm::Value *EmitSVEMaskedLoad(const CallExpr *, llvm::Type *ReturnTy, 4122 SmallVectorImpl<llvm::Value *> &Ops, 4123 unsigned BuiltinID, bool IsZExtReturn); 4124 llvm::Value *EmitSVEMaskedStore(const CallExpr *, 4125 SmallVectorImpl<llvm::Value *> &Ops, 4126 unsigned BuiltinID); 4127 llvm::Value *EmitSVEPrefetchLoad(SVETypeFlags TypeFlags, 4128 SmallVectorImpl<llvm::Value *> &Ops, 4129 unsigned BuiltinID); 4130 llvm::Value *EmitSVEGatherPrefetch(SVETypeFlags TypeFlags, 4131 SmallVectorImpl<llvm::Value *> &Ops, 4132 unsigned IntID); 4133 llvm::Value *EmitSVEStructLoad(SVETypeFlags TypeFlags, 4134 SmallVectorImpl<llvm::Value *> &Ops, unsigned IntID); 4135 llvm::Value *EmitSVEStructStore(SVETypeFlags TypeFlags, 4136 SmallVectorImpl<llvm::Value *> &Ops, 4137 unsigned IntID); 4138 llvm::Value *EmitAArch64SVEBuiltinExpr(unsigned BuiltinID, const CallExpr *E); 4139 4140 llvm::Value *EmitAArch64BuiltinExpr(unsigned BuiltinID, const CallExpr *E, 4141 llvm::Triple::ArchType Arch); 4142 llvm::Value *EmitBPFBuiltinExpr(unsigned BuiltinID, const CallExpr *E); 4143 4144 llvm::Value *BuildVector(ArrayRef<llvm::Value*> Ops); 4145 llvm::Value *EmitX86BuiltinExpr(unsigned BuiltinID, const CallExpr *E); 4146 llvm::Value *EmitPPCBuiltinExpr(unsigned BuiltinID, const CallExpr *E); 4147 llvm::Value *EmitAMDGPUBuiltinExpr(unsigned BuiltinID, const CallExpr *E); 4148 llvm::Value *EmitSystemZBuiltinExpr(unsigned BuiltinID, const CallExpr *E); 4149 llvm::Value *EmitNVPTXBuiltinExpr(unsigned BuiltinID, const CallExpr *E); 4150 llvm::Value *EmitWebAssemblyBuiltinExpr(unsigned BuiltinID, 4151 const CallExpr *E); 4152 llvm::Value *EmitHexagonBuiltinExpr(unsigned BuiltinID, const CallExpr *E); 4153 llvm::Value *EmitRISCVBuiltinExpr(unsigned BuiltinID, const CallExpr *E, 4154 ReturnValueSlot ReturnValue); 4155 bool ProcessOrderScopeAMDGCN(llvm::Value *Order, llvm::Value *Scope, 4156 llvm::AtomicOrdering &AO, 4157 llvm::SyncScope::ID &SSID); 4158 4159 enum class MSVCIntrin; 4160 llvm::Value *EmitMSVCBuiltinExpr(MSVCIntrin BuiltinID, const CallExpr *E); 4161 4162 llvm::Value *EmitBuiltinAvailable(const VersionTuple &Version); 4163 4164 llvm::Value *EmitObjCProtocolExpr(const ObjCProtocolExpr *E); 4165 llvm::Value *EmitObjCStringLiteral(const ObjCStringLiteral *E); 4166 llvm::Value *EmitObjCBoxedExpr(const ObjCBoxedExpr *E); 4167 llvm::Value *EmitObjCArrayLiteral(const ObjCArrayLiteral *E); 4168 llvm::Value *EmitObjCDictionaryLiteral(const ObjCDictionaryLiteral *E); 4169 llvm::Value *EmitObjCCollectionLiteral(const Expr *E, 4170 const ObjCMethodDecl *MethodWithObjects); 4171 llvm::Value *EmitObjCSelectorExpr(const ObjCSelectorExpr *E); 4172 RValue EmitObjCMessageExpr(const ObjCMessageExpr *E, 4173 ReturnValueSlot Return = ReturnValueSlot()); 4174 4175 /// Retrieves the default cleanup kind for an ARC cleanup. 4176 /// Except under -fobjc-arc-eh, ARC cleanups are normal-only. 4177 CleanupKind getARCCleanupKind() { 4178 return CGM.getCodeGenOpts().ObjCAutoRefCountExceptions 4179 ? NormalAndEHCleanup : NormalCleanup; 4180 } 4181 4182 // ARC primitives. 4183 void EmitARCInitWeak(Address addr, llvm::Value *value); 4184 void EmitARCDestroyWeak(Address addr); 4185 llvm::Value *EmitARCLoadWeak(Address addr); 4186 llvm::Value *EmitARCLoadWeakRetained(Address addr); 4187 llvm::Value *EmitARCStoreWeak(Address addr, llvm::Value *value, bool ignored); 4188 void emitARCCopyAssignWeak(QualType Ty, Address DstAddr, Address SrcAddr); 4189 void emitARCMoveAssignWeak(QualType Ty, Address DstAddr, Address SrcAddr); 4190 void EmitARCCopyWeak(Address dst, Address src); 4191 void EmitARCMoveWeak(Address dst, Address src); 4192 llvm::Value *EmitARCRetainAutorelease(QualType type, llvm::Value *value); 4193 llvm::Value *EmitARCRetainAutoreleaseNonBlock(llvm::Value *value); 4194 llvm::Value *EmitARCStoreStrong(LValue lvalue, llvm::Value *value, 4195 bool resultIgnored); 4196 llvm::Value *EmitARCStoreStrongCall(Address addr, llvm::Value *value, 4197 bool resultIgnored); 4198 llvm::Value *EmitARCRetain(QualType type, llvm::Value *value); 4199 llvm::Value *EmitARCRetainNonBlock(llvm::Value *value); 4200 llvm::Value *EmitARCRetainBlock(llvm::Value *value, bool mandatory); 4201 void EmitARCDestroyStrong(Address addr, ARCPreciseLifetime_t precise); 4202 void EmitARCRelease(llvm::Value *value, ARCPreciseLifetime_t precise); 4203 llvm::Value *EmitARCAutorelease(llvm::Value *value); 4204 llvm::Value *EmitARCAutoreleaseReturnValue(llvm::Value *value); 4205 llvm::Value *EmitARCRetainAutoreleaseReturnValue(llvm::Value *value); 4206 llvm::Value *EmitARCRetainAutoreleasedReturnValue(llvm::Value *value); 4207 llvm::Value *EmitARCUnsafeClaimAutoreleasedReturnValue(llvm::Value *value); 4208 4209 llvm::Value *EmitObjCAutorelease(llvm::Value *value, llvm::Type *returnType); 4210 llvm::Value *EmitObjCRetainNonBlock(llvm::Value *value, 4211 llvm::Type *returnType); 4212 void EmitObjCRelease(llvm::Value *value, ARCPreciseLifetime_t precise); 4213 4214 std::pair<LValue,llvm::Value*> 4215 EmitARCStoreAutoreleasing(const BinaryOperator *e); 4216 std::pair<LValue,llvm::Value*> 4217 EmitARCStoreStrong(const BinaryOperator *e, bool ignored); 4218 std::pair<LValue,llvm::Value*> 4219 EmitARCStoreUnsafeUnretained(const BinaryOperator *e, bool ignored); 4220 4221 llvm::Value *EmitObjCAlloc(llvm::Value *value, 4222 llvm::Type *returnType); 4223 llvm::Value *EmitObjCAllocWithZone(llvm::Value *value, 4224 llvm::Type *returnType); 4225 llvm::Value *EmitObjCAllocInit(llvm::Value *value, llvm::Type *resultType); 4226 4227 llvm::Value *EmitObjCThrowOperand(const Expr *expr); 4228 llvm::Value *EmitObjCConsumeObject(QualType T, llvm::Value *Ptr); 4229 llvm::Value *EmitObjCExtendObjectLifetime(QualType T, llvm::Value *Ptr); 4230 4231 llvm::Value *EmitARCExtendBlockObject(const Expr *expr); 4232 llvm::Value *EmitARCReclaimReturnedObject(const Expr *e, 4233 bool allowUnsafeClaim); 4234 llvm::Value *EmitARCRetainScalarExpr(const Expr *expr); 4235 llvm::Value *EmitARCRetainAutoreleaseScalarExpr(const Expr *expr); 4236 llvm::Value *EmitARCUnsafeUnretainedScalarExpr(const Expr *expr); 4237 4238 void EmitARCIntrinsicUse(ArrayRef<llvm::Value*> values); 4239 4240 void EmitARCNoopIntrinsicUse(ArrayRef<llvm::Value *> values); 4241 4242 static Destroyer destroyARCStrongImprecise; 4243 static Destroyer destroyARCStrongPrecise; 4244 static Destroyer destroyARCWeak; 4245 static Destroyer emitARCIntrinsicUse; 4246 static Destroyer destroyNonTrivialCStruct; 4247 4248 void EmitObjCAutoreleasePoolPop(llvm::Value *Ptr); 4249 llvm::Value *EmitObjCAutoreleasePoolPush(); 4250 llvm::Value *EmitObjCMRRAutoreleasePoolPush(); 4251 void EmitObjCAutoreleasePoolCleanup(llvm::Value *Ptr); 4252 void EmitObjCMRRAutoreleasePoolPop(llvm::Value *Ptr); 4253 4254 /// Emits a reference binding to the passed in expression. 4255 RValue EmitReferenceBindingToExpr(const Expr *E); 4256 4257 //===--------------------------------------------------------------------===// 4258 // Expression Emission 4259 //===--------------------------------------------------------------------===// 4260 4261 // Expressions are broken into three classes: scalar, complex, aggregate. 4262 4263 /// EmitScalarExpr - Emit the computation of the specified expression of LLVM 4264 /// scalar type, returning the result. 4265 llvm::Value *EmitScalarExpr(const Expr *E , bool IgnoreResultAssign = false); 4266 4267 /// Emit a conversion from the specified type to the specified destination 4268 /// type, both of which are LLVM scalar types. 4269 llvm::Value *EmitScalarConversion(llvm::Value *Src, QualType SrcTy, 4270 QualType DstTy, SourceLocation Loc); 4271 4272 /// Emit a conversion from the specified complex type to the specified 4273 /// destination type, where the destination type is an LLVM scalar type. 4274 llvm::Value *EmitComplexToScalarConversion(ComplexPairTy Src, QualType SrcTy, 4275 QualType DstTy, 4276 SourceLocation Loc); 4277 4278 /// EmitAggExpr - Emit the computation of the specified expression 4279 /// of aggregate type. The result is computed into the given slot, 4280 /// which may be null to indicate that the value is not needed. 4281 void EmitAggExpr(const Expr *E, AggValueSlot AS); 4282 4283 /// EmitAggExprToLValue - Emit the computation of the specified expression of 4284 /// aggregate type into a temporary LValue. 4285 LValue EmitAggExprToLValue(const Expr *E); 4286 4287 /// Build all the stores needed to initialize an aggregate at Dest with the 4288 /// value Val. 4289 void EmitAggregateStore(llvm::Value *Val, Address Dest, bool DestIsVolatile); 4290 4291 /// EmitExtendGCLifetime - Given a pointer to an Objective-C object, 4292 /// make sure it survives garbage collection until this point. 4293 void EmitExtendGCLifetime(llvm::Value *object); 4294 4295 /// EmitComplexExpr - Emit the computation of the specified expression of 4296 /// complex type, returning the result. 4297 ComplexPairTy EmitComplexExpr(const Expr *E, 4298 bool IgnoreReal = false, 4299 bool IgnoreImag = false); 4300 4301 /// EmitComplexExprIntoLValue - Emit the given expression of complex 4302 /// type and place its result into the specified l-value. 4303 void EmitComplexExprIntoLValue(const Expr *E, LValue dest, bool isInit); 4304 4305 /// EmitStoreOfComplex - Store a complex number into the specified l-value. 4306 void EmitStoreOfComplex(ComplexPairTy V, LValue dest, bool isInit); 4307 4308 /// EmitLoadOfComplex - Load a complex number from the specified l-value. 4309 ComplexPairTy EmitLoadOfComplex(LValue src, SourceLocation loc); 4310 4311 Address emitAddrOfRealComponent(Address complex, QualType complexType); 4312 Address emitAddrOfImagComponent(Address complex, QualType complexType); 4313 4314 /// AddInitializerToStaticVarDecl - Add the initializer for 'D' to the 4315 /// global variable that has already been created for it. If the initializer 4316 /// has a different type than GV does, this may free GV and return a different 4317 /// one. Otherwise it just returns GV. 4318 llvm::GlobalVariable * 4319 AddInitializerToStaticVarDecl(const VarDecl &D, 4320 llvm::GlobalVariable *GV); 4321 4322 // Emit an @llvm.invariant.start call for the given memory region. 4323 void EmitInvariantStart(llvm::Constant *Addr, CharUnits Size); 4324 4325 /// EmitCXXGlobalVarDeclInit - Create the initializer for a C++ 4326 /// variable with global storage. 4327 void EmitCXXGlobalVarDeclInit(const VarDecl &D, llvm::Constant *DeclPtr, 4328 bool PerformInit); 4329 4330 llvm::Function *createAtExitStub(const VarDecl &VD, llvm::FunctionCallee Dtor, 4331 llvm::Constant *Addr); 4332 4333 /// Call atexit() with a function that passes the given argument to 4334 /// the given function. 4335 void registerGlobalDtorWithAtExit(const VarDecl &D, llvm::FunctionCallee fn, 4336 llvm::Constant *addr); 4337 4338 /// Call atexit() with function dtorStub. 4339 void registerGlobalDtorWithAtExit(llvm::Constant *dtorStub); 4340 4341 /// Call unatexit() with function dtorStub. 4342 llvm::Value *unregisterGlobalDtorWithUnAtExit(llvm::Constant *dtorStub); 4343 4344 /// Emit code in this function to perform a guarded variable 4345 /// initialization. Guarded initializations are used when it's not 4346 /// possible to prove that an initialization will be done exactly 4347 /// once, e.g. with a static local variable or a static data member 4348 /// of a class template. 4349 void EmitCXXGuardedInit(const VarDecl &D, llvm::GlobalVariable *DeclPtr, 4350 bool PerformInit); 4351 4352 enum class GuardKind { VariableGuard, TlsGuard }; 4353 4354 /// Emit a branch to select whether or not to perform guarded initialization. 4355 void EmitCXXGuardedInitBranch(llvm::Value *NeedsInit, 4356 llvm::BasicBlock *InitBlock, 4357 llvm::BasicBlock *NoInitBlock, 4358 GuardKind Kind, const VarDecl *D); 4359 4360 /// GenerateCXXGlobalInitFunc - Generates code for initializing global 4361 /// variables. 4362 void 4363 GenerateCXXGlobalInitFunc(llvm::Function *Fn, 4364 ArrayRef<llvm::Function *> CXXThreadLocals, 4365 ConstantAddress Guard = ConstantAddress::invalid()); 4366 4367 /// GenerateCXXGlobalCleanUpFunc - Generates code for cleaning up global 4368 /// variables. 4369 void GenerateCXXGlobalCleanUpFunc( 4370 llvm::Function *Fn, 4371 const std::vector<std::tuple<llvm::FunctionType *, llvm::WeakTrackingVH, 4372 llvm::Constant *>> &DtorsOrStermFinalizers); 4373 4374 void GenerateCXXGlobalVarDeclInitFunc(llvm::Function *Fn, 4375 const VarDecl *D, 4376 llvm::GlobalVariable *Addr, 4377 bool PerformInit); 4378 4379 void EmitCXXConstructExpr(const CXXConstructExpr *E, AggValueSlot Dest); 4380 4381 void EmitSynthesizedCXXCopyCtor(Address Dest, Address Src, const Expr *Exp); 4382 4383 void EmitCXXThrowExpr(const CXXThrowExpr *E, bool KeepInsertionPoint = true); 4384 4385 RValue EmitAtomicExpr(AtomicExpr *E); 4386 4387 //===--------------------------------------------------------------------===// 4388 // Annotations Emission 4389 //===--------------------------------------------------------------------===// 4390 4391 /// Emit an annotation call (intrinsic). 4392 llvm::Value *EmitAnnotationCall(llvm::Function *AnnotationFn, 4393 llvm::Value *AnnotatedVal, 4394 StringRef AnnotationStr, 4395 SourceLocation Location, 4396 const AnnotateAttr *Attr); 4397 4398 /// Emit local annotations for the local variable V, declared by D. 4399 void EmitVarAnnotations(const VarDecl *D, llvm::Value *V); 4400 4401 /// Emit field annotations for the given field & value. Returns the 4402 /// annotation result. 4403 Address EmitFieldAnnotations(const FieldDecl *D, Address V); 4404 4405 //===--------------------------------------------------------------------===// 4406 // Internal Helpers 4407 //===--------------------------------------------------------------------===// 4408 4409 /// ContainsLabel - Return true if the statement contains a label in it. If 4410 /// this statement is not executed normally, it not containing a label means 4411 /// that we can just remove the code. 4412 static bool ContainsLabel(const Stmt *S, bool IgnoreCaseStmts = false); 4413 4414 /// containsBreak - Return true if the statement contains a break out of it. 4415 /// If the statement (recursively) contains a switch or loop with a break 4416 /// inside of it, this is fine. 4417 static bool containsBreak(const Stmt *S); 4418 4419 /// Determine if the given statement might introduce a declaration into the 4420 /// current scope, by being a (possibly-labelled) DeclStmt. 4421 static bool mightAddDeclToScope(const Stmt *S); 4422 4423 /// ConstantFoldsToSimpleInteger - If the specified expression does not fold 4424 /// to a constant, or if it does but contains a label, return false. If it 4425 /// constant folds return true and set the boolean result in Result. 4426 bool ConstantFoldsToSimpleInteger(const Expr *Cond, bool &Result, 4427 bool AllowLabels = false); 4428 4429 /// ConstantFoldsToSimpleInteger - If the specified expression does not fold 4430 /// to a constant, or if it does but contains a label, return false. If it 4431 /// constant folds return true and set the folded value. 4432 bool ConstantFoldsToSimpleInteger(const Expr *Cond, llvm::APSInt &Result, 4433 bool AllowLabels = false); 4434 4435 /// isInstrumentedCondition - Determine whether the given condition is an 4436 /// instrumentable condition (i.e. no "&&" or "||"). 4437 static bool isInstrumentedCondition(const Expr *C); 4438 4439 /// EmitBranchToCounterBlock - Emit a conditional branch to a new block that 4440 /// increments a profile counter based on the semantics of the given logical 4441 /// operator opcode. This is used to instrument branch condition coverage 4442 /// for logical operators. 4443 void EmitBranchToCounterBlock(const Expr *Cond, BinaryOperator::Opcode LOp, 4444 llvm::BasicBlock *TrueBlock, 4445 llvm::BasicBlock *FalseBlock, 4446 uint64_t TrueCount = 0, 4447 Stmt::Likelihood LH = Stmt::LH_None, 4448 const Expr *CntrIdx = nullptr); 4449 4450 /// EmitBranchOnBoolExpr - Emit a branch on a boolean condition (e.g. for an 4451 /// if statement) to the specified blocks. Based on the condition, this might 4452 /// try to simplify the codegen of the conditional based on the branch. 4453 /// TrueCount should be the number of times we expect the condition to 4454 /// evaluate to true based on PGO data. 4455 void EmitBranchOnBoolExpr(const Expr *Cond, llvm::BasicBlock *TrueBlock, 4456 llvm::BasicBlock *FalseBlock, uint64_t TrueCount, 4457 Stmt::Likelihood LH = Stmt::LH_None); 4458 4459 /// Given an assignment `*LHS = RHS`, emit a test that checks if \p RHS is 4460 /// nonnull, if \p LHS is marked _Nonnull. 4461 void EmitNullabilityCheck(LValue LHS, llvm::Value *RHS, SourceLocation Loc); 4462 4463 /// An enumeration which makes it easier to specify whether or not an 4464 /// operation is a subtraction. 4465 enum { NotSubtraction = false, IsSubtraction = true }; 4466 4467 /// Same as IRBuilder::CreateInBoundsGEP, but additionally emits a check to 4468 /// detect undefined behavior when the pointer overflow sanitizer is enabled. 4469 /// \p SignedIndices indicates whether any of the GEP indices are signed. 4470 /// \p IsSubtraction indicates whether the expression used to form the GEP 4471 /// is a subtraction. 4472 llvm::Value *EmitCheckedInBoundsGEP(llvm::Value *Ptr, 4473 ArrayRef<llvm::Value *> IdxList, 4474 bool SignedIndices, 4475 bool IsSubtraction, 4476 SourceLocation Loc, 4477 const Twine &Name = ""); 4478 4479 /// Specifies which type of sanitizer check to apply when handling a 4480 /// particular builtin. 4481 enum BuiltinCheckKind { 4482 BCK_CTZPassedZero, 4483 BCK_CLZPassedZero, 4484 }; 4485 4486 /// Emits an argument for a call to a builtin. If the builtin sanitizer is 4487 /// enabled, a runtime check specified by \p Kind is also emitted. 4488 llvm::Value *EmitCheckedArgForBuiltin(const Expr *E, BuiltinCheckKind Kind); 4489 4490 /// Emit a description of a type in a format suitable for passing to 4491 /// a runtime sanitizer handler. 4492 llvm::Constant *EmitCheckTypeDescriptor(QualType T); 4493 4494 /// Convert a value into a format suitable for passing to a runtime 4495 /// sanitizer handler. 4496 llvm::Value *EmitCheckValue(llvm::Value *V); 4497 4498 /// Emit a description of a source location in a format suitable for 4499 /// passing to a runtime sanitizer handler. 4500 llvm::Constant *EmitCheckSourceLocation(SourceLocation Loc); 4501 4502 /// Create a basic block that will either trap or call a handler function in 4503 /// the UBSan runtime with the provided arguments, and create a conditional 4504 /// branch to it. 4505 void EmitCheck(ArrayRef<std::pair<llvm::Value *, SanitizerMask>> Checked, 4506 SanitizerHandler Check, ArrayRef<llvm::Constant *> StaticArgs, 4507 ArrayRef<llvm::Value *> DynamicArgs); 4508 4509 /// Emit a slow path cross-DSO CFI check which calls __cfi_slowpath 4510 /// if Cond if false. 4511 void EmitCfiSlowPathCheck(SanitizerMask Kind, llvm::Value *Cond, 4512 llvm::ConstantInt *TypeId, llvm::Value *Ptr, 4513 ArrayRef<llvm::Constant *> StaticArgs); 4514 4515 /// Emit a reached-unreachable diagnostic if \p Loc is valid and runtime 4516 /// checking is enabled. Otherwise, just emit an unreachable instruction. 4517 void EmitUnreachable(SourceLocation Loc); 4518 4519 /// Create a basic block that will call the trap intrinsic, and emit a 4520 /// conditional branch to it, for the -ftrapv checks. 4521 void EmitTrapCheck(llvm::Value *Checked, SanitizerHandler CheckHandlerID); 4522 4523 /// Emit a call to trap or debugtrap and attach function attribute 4524 /// "trap-func-name" if specified. 4525 llvm::CallInst *EmitTrapCall(llvm::Intrinsic::ID IntrID); 4526 4527 /// Emit a stub for the cross-DSO CFI check function. 4528 void EmitCfiCheckStub(); 4529 4530 /// Emit a cross-DSO CFI failure handling function. 4531 void EmitCfiCheckFail(); 4532 4533 /// Create a check for a function parameter that may potentially be 4534 /// declared as non-null. 4535 void EmitNonNullArgCheck(RValue RV, QualType ArgType, SourceLocation ArgLoc, 4536 AbstractCallee AC, unsigned ParmNum); 4537 4538 /// EmitCallArg - Emit a single call argument. 4539 void EmitCallArg(CallArgList &args, const Expr *E, QualType ArgType); 4540 4541 /// EmitDelegateCallArg - We are performing a delegate call; that 4542 /// is, the current function is delegating to another one. Produce 4543 /// a r-value suitable for passing the given parameter. 4544 void EmitDelegateCallArg(CallArgList &args, const VarDecl *param, 4545 SourceLocation loc); 4546 4547 /// SetFPAccuracy - Set the minimum required accuracy of the given floating 4548 /// point operation, expressed as the maximum relative error in ulp. 4549 void SetFPAccuracy(llvm::Value *Val, float Accuracy); 4550 4551 /// SetFPModel - Control floating point behavior via fp-model settings. 4552 void SetFPModel(); 4553 4554 /// Set the codegen fast-math flags. 4555 void SetFastMathFlags(FPOptions FPFeatures); 4556 4557 private: 4558 llvm::MDNode *getRangeForLoadFromType(QualType Ty); 4559 void EmitReturnOfRValue(RValue RV, QualType Ty); 4560 4561 void deferPlaceholderReplacement(llvm::Instruction *Old, llvm::Value *New); 4562 4563 llvm::SmallVector<std::pair<llvm::WeakTrackingVH, llvm::Value *>, 4> 4564 DeferredReplacements; 4565 4566 /// Set the address of a local variable. 4567 void setAddrOfLocalVar(const VarDecl *VD, Address Addr) { 4568 assert(!LocalDeclMap.count(VD) && "Decl already exists in LocalDeclMap!"); 4569 LocalDeclMap.insert({VD, Addr}); 4570 } 4571 4572 /// ExpandTypeFromArgs - Reconstruct a structure of type \arg Ty 4573 /// from function arguments into \arg Dst. See ABIArgInfo::Expand. 4574 /// 4575 /// \param AI - The first function argument of the expansion. 4576 void ExpandTypeFromArgs(QualType Ty, LValue Dst, 4577 llvm::Function::arg_iterator &AI); 4578 4579 /// ExpandTypeToArgs - Expand an CallArg \arg Arg, with the LLVM type for \arg 4580 /// Ty, into individual arguments on the provided vector \arg IRCallArgs, 4581 /// starting at index \arg IRCallArgPos. See ABIArgInfo::Expand. 4582 void ExpandTypeToArgs(QualType Ty, CallArg Arg, llvm::FunctionType *IRFuncTy, 4583 SmallVectorImpl<llvm::Value *> &IRCallArgs, 4584 unsigned &IRCallArgPos); 4585 4586 llvm::Value* EmitAsmInput(const TargetInfo::ConstraintInfo &Info, 4587 const Expr *InputExpr, std::string &ConstraintStr); 4588 4589 llvm::Value* EmitAsmInputLValue(const TargetInfo::ConstraintInfo &Info, 4590 LValue InputValue, QualType InputType, 4591 std::string &ConstraintStr, 4592 SourceLocation Loc); 4593 4594 /// Attempts to statically evaluate the object size of E. If that 4595 /// fails, emits code to figure the size of E out for us. This is 4596 /// pass_object_size aware. 4597 /// 4598 /// If EmittedExpr is non-null, this will use that instead of re-emitting E. 4599 llvm::Value *evaluateOrEmitBuiltinObjectSize(const Expr *E, unsigned Type, 4600 llvm::IntegerType *ResType, 4601 llvm::Value *EmittedE, 4602 bool IsDynamic); 4603 4604 /// Emits the size of E, as required by __builtin_object_size. This 4605 /// function is aware of pass_object_size parameters, and will act accordingly 4606 /// if E is a parameter with the pass_object_size attribute. 4607 llvm::Value *emitBuiltinObjectSize(const Expr *E, unsigned Type, 4608 llvm::IntegerType *ResType, 4609 llvm::Value *EmittedE, 4610 bool IsDynamic); 4611 4612 void emitZeroOrPatternForAutoVarInit(QualType type, const VarDecl &D, 4613 Address Loc); 4614 4615 public: 4616 enum class EvaluationOrder { 4617 ///! No language constraints on evaluation order. 4618 Default, 4619 ///! Language semantics require left-to-right evaluation. 4620 ForceLeftToRight, 4621 ///! Language semantics require right-to-left evaluation. 4622 ForceRightToLeft 4623 }; 4624 4625 // Wrapper for function prototype sources. Wraps either a FunctionProtoType or 4626 // an ObjCMethodDecl. 4627 struct PrototypeWrapper { 4628 llvm::PointerUnion<const FunctionProtoType *, const ObjCMethodDecl *> P; 4629 4630 PrototypeWrapper(const FunctionProtoType *FT) : P(FT) {} 4631 PrototypeWrapper(const ObjCMethodDecl *MD) : P(MD) {} 4632 }; 4633 4634 void EmitCallArgs(CallArgList &Args, PrototypeWrapper Prototype, 4635 llvm::iterator_range<CallExpr::const_arg_iterator> ArgRange, 4636 AbstractCallee AC = AbstractCallee(), 4637 unsigned ParamsToSkip = 0, 4638 EvaluationOrder Order = EvaluationOrder::Default); 4639 4640 /// EmitPointerWithAlignment - Given an expression with a pointer type, 4641 /// emit the value and compute our best estimate of the alignment of the 4642 /// pointee. 4643 /// 4644 /// \param BaseInfo - If non-null, this will be initialized with 4645 /// information about the source of the alignment and the may-alias 4646 /// attribute. Note that this function will conservatively fall back on 4647 /// the type when it doesn't recognize the expression and may-alias will 4648 /// be set to false. 4649 /// 4650 /// One reasonable way to use this information is when there's a language 4651 /// guarantee that the pointer must be aligned to some stricter value, and 4652 /// we're simply trying to ensure that sufficiently obvious uses of under- 4653 /// aligned objects don't get miscompiled; for example, a placement new 4654 /// into the address of a local variable. In such a case, it's quite 4655 /// reasonable to just ignore the returned alignment when it isn't from an 4656 /// explicit source. 4657 Address EmitPointerWithAlignment(const Expr *Addr, 4658 LValueBaseInfo *BaseInfo = nullptr, 4659 TBAAAccessInfo *TBAAInfo = nullptr); 4660 4661 /// If \p E references a parameter with pass_object_size info or a constant 4662 /// array size modifier, emit the object size divided by the size of \p EltTy. 4663 /// Otherwise return null. 4664 llvm::Value *LoadPassedObjectSize(const Expr *E, QualType EltTy); 4665 4666 void EmitSanitizerStatReport(llvm::SanitizerStatKind SSK); 4667 4668 struct MultiVersionResolverOption { 4669 llvm::Function *Function; 4670 struct Conds { 4671 StringRef Architecture; 4672 llvm::SmallVector<StringRef, 8> Features; 4673 4674 Conds(StringRef Arch, ArrayRef<StringRef> Feats) 4675 : Architecture(Arch), Features(Feats.begin(), Feats.end()) {} 4676 } Conditions; 4677 4678 MultiVersionResolverOption(llvm::Function *F, StringRef Arch, 4679 ArrayRef<StringRef> Feats) 4680 : Function(F), Conditions(Arch, Feats) {} 4681 }; 4682 4683 // Emits the body of a multiversion function's resolver. Assumes that the 4684 // options are already sorted in the proper order, with the 'default' option 4685 // last (if it exists). 4686 void EmitMultiVersionResolver(llvm::Function *Resolver, 4687 ArrayRef<MultiVersionResolverOption> Options); 4688 4689 static uint64_t GetX86CpuSupportsMask(ArrayRef<StringRef> FeatureStrs); 4690 4691 private: 4692 QualType getVarArgType(const Expr *Arg); 4693 4694 void EmitDeclMetadata(); 4695 4696 BlockByrefHelpers *buildByrefHelpers(llvm::StructType &byrefType, 4697 const AutoVarEmission &emission); 4698 4699 void AddObjCARCExceptionMetadata(llvm::Instruction *Inst); 4700 4701 llvm::Value *GetValueForARMHint(unsigned BuiltinID); 4702 llvm::Value *EmitX86CpuIs(const CallExpr *E); 4703 llvm::Value *EmitX86CpuIs(StringRef CPUStr); 4704 llvm::Value *EmitX86CpuSupports(const CallExpr *E); 4705 llvm::Value *EmitX86CpuSupports(ArrayRef<StringRef> FeatureStrs); 4706 llvm::Value *EmitX86CpuSupports(uint64_t Mask); 4707 llvm::Value *EmitX86CpuInit(); 4708 llvm::Value *FormResolverCondition(const MultiVersionResolverOption &RO); 4709 }; 4710 4711 /// TargetFeatures - This class is used to check whether the builtin function 4712 /// has the required tagert specific features. It is able to support the 4713 /// combination of ','(and), '|'(or), and '()'. By default, the priority of 4714 /// ',' is higher than that of '|' . 4715 /// E.g: 4716 /// A,B|C means the builtin function requires both A and B, or C. 4717 /// If we want the builtin function requires both A and B, or both A and C, 4718 /// there are two ways: A,B|A,C or A,(B|C). 4719 /// The FeaturesList should not contain spaces, and brackets must appear in 4720 /// pairs. 4721 class TargetFeatures { 4722 struct FeatureListStatus { 4723 bool HasFeatures; 4724 StringRef CurFeaturesList; 4725 }; 4726 4727 const llvm::StringMap<bool> &CallerFeatureMap; 4728 4729 FeatureListStatus getAndFeatures(StringRef FeatureList) { 4730 int InParentheses = 0; 4731 bool HasFeatures = true; 4732 size_t SubexpressionStart = 0; 4733 for (size_t i = 0, e = FeatureList.size(); i < e; ++i) { 4734 char CurrentToken = FeatureList[i]; 4735 switch (CurrentToken) { 4736 default: 4737 break; 4738 case '(': 4739 if (InParentheses == 0) 4740 SubexpressionStart = i + 1; 4741 ++InParentheses; 4742 break; 4743 case ')': 4744 --InParentheses; 4745 assert(InParentheses >= 0 && "Parentheses are not in pair"); 4746 LLVM_FALLTHROUGH; 4747 case '|': 4748 case ',': 4749 if (InParentheses == 0) { 4750 if (HasFeatures && i != SubexpressionStart) { 4751 StringRef F = FeatureList.slice(SubexpressionStart, i); 4752 HasFeatures = CurrentToken == ')' ? hasRequiredFeatures(F) 4753 : CallerFeatureMap.lookup(F); 4754 } 4755 SubexpressionStart = i + 1; 4756 if (CurrentToken == '|') { 4757 return {HasFeatures, FeatureList.substr(SubexpressionStart)}; 4758 } 4759 } 4760 break; 4761 } 4762 } 4763 assert(InParentheses == 0 && "Parentheses are not in pair"); 4764 if (HasFeatures && SubexpressionStart != FeatureList.size()) 4765 HasFeatures = 4766 CallerFeatureMap.lookup(FeatureList.substr(SubexpressionStart)); 4767 return {HasFeatures, StringRef()}; 4768 } 4769 4770 public: 4771 bool hasRequiredFeatures(StringRef FeatureList) { 4772 FeatureListStatus FS = {false, FeatureList}; 4773 while (!FS.HasFeatures && !FS.CurFeaturesList.empty()) 4774 FS = getAndFeatures(FS.CurFeaturesList); 4775 return FS.HasFeatures; 4776 } 4777 4778 TargetFeatures(const llvm::StringMap<bool> &CallerFeatureMap) 4779 : CallerFeatureMap(CallerFeatureMap) {} 4780 }; 4781 4782 inline DominatingLLVMValue::saved_type 4783 DominatingLLVMValue::save(CodeGenFunction &CGF, llvm::Value *value) { 4784 if (!needsSaving(value)) return saved_type(value, false); 4785 4786 // Otherwise, we need an alloca. 4787 auto align = CharUnits::fromQuantity( 4788 CGF.CGM.getDataLayout().getPrefTypeAlignment(value->getType())); 4789 Address alloca = 4790 CGF.CreateTempAlloca(value->getType(), align, "cond-cleanup.save"); 4791 CGF.Builder.CreateStore(value, alloca); 4792 4793 return saved_type(alloca.getPointer(), true); 4794 } 4795 4796 inline llvm::Value *DominatingLLVMValue::restore(CodeGenFunction &CGF, 4797 saved_type value) { 4798 // If the value says it wasn't saved, trust that it's still dominating. 4799 if (!value.getInt()) return value.getPointer(); 4800 4801 // Otherwise, it should be an alloca instruction, as set up in save(). 4802 auto alloca = cast<llvm::AllocaInst>(value.getPointer()); 4803 return CGF.Builder.CreateAlignedLoad(alloca->getAllocatedType(), alloca, 4804 alloca->getAlign()); 4805 } 4806 4807 } // end namespace CodeGen 4808 4809 // Map the LangOption for floating point exception behavior into 4810 // the corresponding enum in the IR. 4811 llvm::fp::ExceptionBehavior 4812 ToConstrainedExceptMD(LangOptions::FPExceptionModeKind Kind); 4813 } // end namespace clang 4814 4815 #endif 4816