1 //===-- CodeGenFunction.h - Per-Function state for LLVM CodeGen -*- C++ -*-===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This is the internal per-function state used for llvm translation.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #ifndef LLVM_CLANG_LIB_CODEGEN_CODEGENFUNCTION_H
15 #define LLVM_CLANG_LIB_CODEGEN_CODEGENFUNCTION_H
16 
17 #include "CGBuilder.h"
18 #include "CGDebugInfo.h"
19 #include "CGLoopInfo.h"
20 #include "CGValue.h"
21 #include "CodeGenModule.h"
22 #include "CodeGenPGO.h"
23 #include "EHScopeStack.h"
24 #include "VarBypassDetector.h"
25 #include "clang/AST/CharUnits.h"
26 #include "clang/AST/ExprCXX.h"
27 #include "clang/AST/ExprObjC.h"
28 #include "clang/AST/ExprOpenMP.h"
29 #include "clang/AST/Type.h"
30 #include "clang/Basic/ABI.h"
31 #include "clang/Basic/CapturedStmt.h"
32 #include "clang/Basic/OpenMPKinds.h"
33 #include "clang/Basic/TargetInfo.h"
34 #include "clang/Frontend/CodeGenOptions.h"
35 #include "llvm/ADT/ArrayRef.h"
36 #include "llvm/ADT/DenseMap.h"
37 #include "llvm/ADT/SmallVector.h"
38 #include "llvm/IR/ValueHandle.h"
39 #include "llvm/Support/Debug.h"
40 #include "llvm/Transforms/Utils/SanitizerStats.h"
41 
42 namespace llvm {
43 class BasicBlock;
44 class LLVMContext;
45 class MDNode;
46 class Module;
47 class SwitchInst;
48 class Twine;
49 class Value;
50 class CallSite;
51 }
52 
53 namespace clang {
54 class ASTContext;
55 class BlockDecl;
56 class CXXDestructorDecl;
57 class CXXForRangeStmt;
58 class CXXTryStmt;
59 class Decl;
60 class LabelDecl;
61 class EnumConstantDecl;
62 class FunctionDecl;
63 class FunctionProtoType;
64 class LabelStmt;
65 class ObjCContainerDecl;
66 class ObjCInterfaceDecl;
67 class ObjCIvarDecl;
68 class ObjCMethodDecl;
69 class ObjCImplementationDecl;
70 class ObjCPropertyImplDecl;
71 class TargetInfo;
72 class VarDecl;
73 class ObjCForCollectionStmt;
74 class ObjCAtTryStmt;
75 class ObjCAtThrowStmt;
76 class ObjCAtSynchronizedStmt;
77 class ObjCAutoreleasePoolStmt;
78 
79 namespace CodeGen {
80 class CodeGenTypes;
81 class CGCallee;
82 class CGFunctionInfo;
83 class CGRecordLayout;
84 class CGBlockInfo;
85 class CGCXXABI;
86 class BlockByrefHelpers;
87 class BlockByrefInfo;
88 class BlockFlags;
89 class BlockFieldFlags;
90 class RegionCodeGenTy;
91 class TargetCodeGenInfo;
92 struct OMPTaskDataTy;
93 struct CGCoroData;
94 
95 /// The kind of evaluation to perform on values of a particular
96 /// type.  Basically, is the code in CGExprScalar, CGExprComplex, or
97 /// CGExprAgg?
98 ///
99 /// TODO: should vectors maybe be split out into their own thing?
100 enum TypeEvaluationKind {
101   TEK_Scalar,
102   TEK_Complex,
103   TEK_Aggregate
104 };
105 
106 #define LIST_SANITIZER_CHECKS                                                  \
107   SANITIZER_CHECK(AddOverflow, add_overflow, 0)                                \
108   SANITIZER_CHECK(BuiltinUnreachable, builtin_unreachable, 0)                  \
109   SANITIZER_CHECK(CFICheckFail, cfi_check_fail, 0)                             \
110   SANITIZER_CHECK(DivremOverflow, divrem_overflow, 0)                          \
111   SANITIZER_CHECK(DynamicTypeCacheMiss, dynamic_type_cache_miss, 0)            \
112   SANITIZER_CHECK(FloatCastOverflow, float_cast_overflow, 0)                   \
113   SANITIZER_CHECK(FunctionTypeMismatch, function_type_mismatch, 0)             \
114   SANITIZER_CHECK(LoadInvalidValue, load_invalid_value, 0)                     \
115   SANITIZER_CHECK(MissingReturn, missing_return, 0)                            \
116   SANITIZER_CHECK(MulOverflow, mul_overflow, 0)                                \
117   SANITIZER_CHECK(NegateOverflow, negate_overflow, 0)                          \
118   SANITIZER_CHECK(NonnullArg, nonnull_arg, 0)                                  \
119   SANITIZER_CHECK(NonnullReturn, nonnull_return, 0)                            \
120   SANITIZER_CHECK(OutOfBounds, out_of_bounds, 0)                               \
121   SANITIZER_CHECK(ShiftOutOfBounds, shift_out_of_bounds, 0)                    \
122   SANITIZER_CHECK(SubOverflow, sub_overflow, 0)                                \
123   SANITIZER_CHECK(TypeMismatch, type_mismatch, 1)                              \
124   SANITIZER_CHECK(VLABoundNotPositive, vla_bound_not_positive, 0)
125 
126 enum SanitizerHandler {
127 #define SANITIZER_CHECK(Enum, Name, Version) Enum,
128   LIST_SANITIZER_CHECKS
129 #undef SANITIZER_CHECK
130 };
131 
132 /// CodeGenFunction - This class organizes the per-function state that is used
133 /// while generating LLVM code.
134 class CodeGenFunction : public CodeGenTypeCache {
135   CodeGenFunction(const CodeGenFunction &) = delete;
136   void operator=(const CodeGenFunction &) = delete;
137 
138   friend class CGCXXABI;
139 public:
140   /// A jump destination is an abstract label, branching to which may
141   /// require a jump out through normal cleanups.
142   struct JumpDest {
143     JumpDest() : Block(nullptr), ScopeDepth(), Index(0) {}
144     JumpDest(llvm::BasicBlock *Block,
145              EHScopeStack::stable_iterator Depth,
146              unsigned Index)
147       : Block(Block), ScopeDepth(Depth), Index(Index) {}
148 
149     bool isValid() const { return Block != nullptr; }
150     llvm::BasicBlock *getBlock() const { return Block; }
151     EHScopeStack::stable_iterator getScopeDepth() const { return ScopeDepth; }
152     unsigned getDestIndex() const { return Index; }
153 
154     // This should be used cautiously.
155     void setScopeDepth(EHScopeStack::stable_iterator depth) {
156       ScopeDepth = depth;
157     }
158 
159   private:
160     llvm::BasicBlock *Block;
161     EHScopeStack::stable_iterator ScopeDepth;
162     unsigned Index;
163   };
164 
165   CodeGenModule &CGM;  // Per-module state.
166   const TargetInfo &Target;
167 
168   typedef std::pair<llvm::Value *, llvm::Value *> ComplexPairTy;
169   LoopInfoStack LoopStack;
170   CGBuilderTy Builder;
171 
172   // Stores variables for which we can't generate correct lifetime markers
173   // because of jumps.
174   VarBypassDetector Bypasses;
175 
176   /// \brief CGBuilder insert helper. This function is called after an
177   /// instruction is created using Builder.
178   void InsertHelper(llvm::Instruction *I, const llvm::Twine &Name,
179                     llvm::BasicBlock *BB,
180                     llvm::BasicBlock::iterator InsertPt) const;
181 
182   /// CurFuncDecl - Holds the Decl for the current outermost
183   /// non-closure context.
184   const Decl *CurFuncDecl;
185   /// CurCodeDecl - This is the inner-most code context, which includes blocks.
186   const Decl *CurCodeDecl;
187   const CGFunctionInfo *CurFnInfo;
188   QualType FnRetTy;
189   llvm::Function *CurFn;
190 
191   // Holds coroutine data if the current function is a coroutine. We use a
192   // wrapper to manage its lifetime, so that we don't have to define CGCoroData
193   // in this header.
194   struct CGCoroInfo {
195     std::unique_ptr<CGCoroData> Data;
196     CGCoroInfo();
197     ~CGCoroInfo();
198   };
199   CGCoroInfo CurCoro;
200 
201   /// CurGD - The GlobalDecl for the current function being compiled.
202   GlobalDecl CurGD;
203 
204   /// PrologueCleanupDepth - The cleanup depth enclosing all the
205   /// cleanups associated with the parameters.
206   EHScopeStack::stable_iterator PrologueCleanupDepth;
207 
208   /// ReturnBlock - Unified return block.
209   JumpDest ReturnBlock;
210 
211   /// ReturnValue - The temporary alloca to hold the return
212   /// value. This is invalid iff the function has no return value.
213   Address ReturnValue;
214 
215   /// Return true if a label was seen in the current scope.
216   bool hasLabelBeenSeenInCurrentScope() const {
217     if (CurLexicalScope)
218       return CurLexicalScope->hasLabels();
219     return !LabelMap.empty();
220   }
221 
222   /// AllocaInsertPoint - This is an instruction in the entry block before which
223   /// we prefer to insert allocas.
224   llvm::AssertingVH<llvm::Instruction> AllocaInsertPt;
225 
226   /// \brief API for captured statement code generation.
227   class CGCapturedStmtInfo {
228   public:
229     explicit CGCapturedStmtInfo(CapturedRegionKind K = CR_Default)
230         : Kind(K), ThisValue(nullptr), CXXThisFieldDecl(nullptr) {}
231     explicit CGCapturedStmtInfo(const CapturedStmt &S,
232                                 CapturedRegionKind K = CR_Default)
233       : Kind(K), ThisValue(nullptr), CXXThisFieldDecl(nullptr) {
234 
235       RecordDecl::field_iterator Field =
236         S.getCapturedRecordDecl()->field_begin();
237       for (CapturedStmt::const_capture_iterator I = S.capture_begin(),
238                                                 E = S.capture_end();
239            I != E; ++I, ++Field) {
240         if (I->capturesThis())
241           CXXThisFieldDecl = *Field;
242         else if (I->capturesVariable())
243           CaptureFields[I->getCapturedVar()] = *Field;
244         else if (I->capturesVariableByCopy())
245           CaptureFields[I->getCapturedVar()] = *Field;
246       }
247     }
248 
249     virtual ~CGCapturedStmtInfo();
250 
251     CapturedRegionKind getKind() const { return Kind; }
252 
253     virtual void setContextValue(llvm::Value *V) { ThisValue = V; }
254     // \brief Retrieve the value of the context parameter.
255     virtual llvm::Value *getContextValue() const { return ThisValue; }
256 
257     /// \brief Lookup the captured field decl for a variable.
258     virtual const FieldDecl *lookup(const VarDecl *VD) const {
259       return CaptureFields.lookup(VD);
260     }
261 
262     bool isCXXThisExprCaptured() const { return getThisFieldDecl() != nullptr; }
263     virtual FieldDecl *getThisFieldDecl() const { return CXXThisFieldDecl; }
264 
265     static bool classof(const CGCapturedStmtInfo *) {
266       return true;
267     }
268 
269     /// \brief Emit the captured statement body.
270     virtual void EmitBody(CodeGenFunction &CGF, const Stmt *S) {
271       CGF.incrementProfileCounter(S);
272       CGF.EmitStmt(S);
273     }
274 
275     /// \brief Get the name of the capture helper.
276     virtual StringRef getHelperName() const { return "__captured_stmt"; }
277 
278   private:
279     /// \brief The kind of captured statement being generated.
280     CapturedRegionKind Kind;
281 
282     /// \brief Keep the map between VarDecl and FieldDecl.
283     llvm::SmallDenseMap<const VarDecl *, FieldDecl *> CaptureFields;
284 
285     /// \brief The base address of the captured record, passed in as the first
286     /// argument of the parallel region function.
287     llvm::Value *ThisValue;
288 
289     /// \brief Captured 'this' type.
290     FieldDecl *CXXThisFieldDecl;
291   };
292   CGCapturedStmtInfo *CapturedStmtInfo;
293 
294   /// \brief RAII for correct setting/restoring of CapturedStmtInfo.
295   class CGCapturedStmtRAII {
296   private:
297     CodeGenFunction &CGF;
298     CGCapturedStmtInfo *PrevCapturedStmtInfo;
299   public:
300     CGCapturedStmtRAII(CodeGenFunction &CGF,
301                        CGCapturedStmtInfo *NewCapturedStmtInfo)
302         : CGF(CGF), PrevCapturedStmtInfo(CGF.CapturedStmtInfo) {
303       CGF.CapturedStmtInfo = NewCapturedStmtInfo;
304     }
305     ~CGCapturedStmtRAII() { CGF.CapturedStmtInfo = PrevCapturedStmtInfo; }
306   };
307 
308   /// \brief Sanitizers enabled for this function.
309   SanitizerSet SanOpts;
310 
311   /// \brief True if CodeGen currently emits code implementing sanitizer checks.
312   bool IsSanitizerScope;
313 
314   /// \brief RAII object to set/unset CodeGenFunction::IsSanitizerScope.
315   class SanitizerScope {
316     CodeGenFunction *CGF;
317   public:
318     SanitizerScope(CodeGenFunction *CGF);
319     ~SanitizerScope();
320   };
321 
322   /// In C++, whether we are code generating a thunk.  This controls whether we
323   /// should emit cleanups.
324   bool CurFuncIsThunk;
325 
326   /// In ARC, whether we should autorelease the return value.
327   bool AutoreleaseResult;
328 
329   /// Whether we processed a Microsoft-style asm block during CodeGen. These can
330   /// potentially set the return value.
331   bool SawAsmBlock;
332 
333   const FunctionDecl *CurSEHParent = nullptr;
334 
335   /// True if the current function is an outlined SEH helper. This can be a
336   /// finally block or filter expression.
337   bool IsOutlinedSEHHelper;
338 
339   const CodeGen::CGBlockInfo *BlockInfo;
340   llvm::Value *BlockPointer;
341 
342   llvm::DenseMap<const VarDecl *, FieldDecl *> LambdaCaptureFields;
343   FieldDecl *LambdaThisCaptureField;
344 
345   /// \brief A mapping from NRVO variables to the flags used to indicate
346   /// when the NRVO has been applied to this variable.
347   llvm::DenseMap<const VarDecl *, llvm::Value *> NRVOFlags;
348 
349   EHScopeStack EHStack;
350   llvm::SmallVector<char, 256> LifetimeExtendedCleanupStack;
351   llvm::SmallVector<const JumpDest *, 2> SEHTryEpilogueStack;
352 
353   llvm::Instruction *CurrentFuncletPad = nullptr;
354 
355   class CallLifetimeEnd final : public EHScopeStack::Cleanup {
356     llvm::Value *Addr;
357     llvm::Value *Size;
358 
359   public:
360     CallLifetimeEnd(Address addr, llvm::Value *size)
361         : Addr(addr.getPointer()), Size(size) {}
362 
363     void Emit(CodeGenFunction &CGF, Flags flags) override {
364       CGF.EmitLifetimeEnd(Size, Addr);
365     }
366   };
367 
368   /// Header for data within LifetimeExtendedCleanupStack.
369   struct LifetimeExtendedCleanupHeader {
370     /// The size of the following cleanup object.
371     unsigned Size;
372     /// The kind of cleanup to push: a value from the CleanupKind enumeration.
373     CleanupKind Kind;
374 
375     size_t getSize() const { return Size; }
376     CleanupKind getKind() const { return Kind; }
377   };
378 
379   /// i32s containing the indexes of the cleanup destinations.
380   llvm::AllocaInst *NormalCleanupDest;
381 
382   unsigned NextCleanupDestIndex;
383 
384   /// FirstBlockInfo - The head of a singly-linked-list of block layouts.
385   CGBlockInfo *FirstBlockInfo;
386 
387   /// EHResumeBlock - Unified block containing a call to llvm.eh.resume.
388   llvm::BasicBlock *EHResumeBlock;
389 
390   /// The exception slot.  All landing pads write the current exception pointer
391   /// into this alloca.
392   llvm::Value *ExceptionSlot;
393 
394   /// The selector slot.  Under the MandatoryCleanup model, all landing pads
395   /// write the current selector value into this alloca.
396   llvm::AllocaInst *EHSelectorSlot;
397 
398   /// A stack of exception code slots. Entering an __except block pushes a slot
399   /// on the stack and leaving pops one. The __exception_code() intrinsic loads
400   /// a value from the top of the stack.
401   SmallVector<Address, 1> SEHCodeSlotStack;
402 
403   /// Value returned by __exception_info intrinsic.
404   llvm::Value *SEHInfo = nullptr;
405 
406   /// Emits a landing pad for the current EH stack.
407   llvm::BasicBlock *EmitLandingPad();
408 
409   llvm::BasicBlock *getInvokeDestImpl();
410 
411   template <class T>
412   typename DominatingValue<T>::saved_type saveValueInCond(T value) {
413     return DominatingValue<T>::save(*this, value);
414   }
415 
416 public:
417   /// ObjCEHValueStack - Stack of Objective-C exception values, used for
418   /// rethrows.
419   SmallVector<llvm::Value*, 8> ObjCEHValueStack;
420 
421   /// A class controlling the emission of a finally block.
422   class FinallyInfo {
423     /// Where the catchall's edge through the cleanup should go.
424     JumpDest RethrowDest;
425 
426     /// A function to call to enter the catch.
427     llvm::Constant *BeginCatchFn;
428 
429     /// An i1 variable indicating whether or not the @finally is
430     /// running for an exception.
431     llvm::AllocaInst *ForEHVar;
432 
433     /// An i8* variable into which the exception pointer to rethrow
434     /// has been saved.
435     llvm::AllocaInst *SavedExnVar;
436 
437   public:
438     void enter(CodeGenFunction &CGF, const Stmt *Finally,
439                llvm::Constant *beginCatchFn, llvm::Constant *endCatchFn,
440                llvm::Constant *rethrowFn);
441     void exit(CodeGenFunction &CGF);
442   };
443 
444   /// Returns true inside SEH __try blocks.
445   bool isSEHTryScope() const { return !SEHTryEpilogueStack.empty(); }
446 
447   /// Returns true while emitting a cleanuppad.
448   bool isCleanupPadScope() const {
449     return CurrentFuncletPad && isa<llvm::CleanupPadInst>(CurrentFuncletPad);
450   }
451 
452   /// pushFullExprCleanup - Push a cleanup to be run at the end of the
453   /// current full-expression.  Safe against the possibility that
454   /// we're currently inside a conditionally-evaluated expression.
455   template <class T, class... As>
456   void pushFullExprCleanup(CleanupKind kind, As... A) {
457     // If we're not in a conditional branch, or if none of the
458     // arguments requires saving, then use the unconditional cleanup.
459     if (!isInConditionalBranch())
460       return EHStack.pushCleanup<T>(kind, A...);
461 
462     // Stash values in a tuple so we can guarantee the order of saves.
463     typedef std::tuple<typename DominatingValue<As>::saved_type...> SavedTuple;
464     SavedTuple Saved{saveValueInCond(A)...};
465 
466     typedef EHScopeStack::ConditionalCleanup<T, As...> CleanupType;
467     EHStack.pushCleanupTuple<CleanupType>(kind, Saved);
468     initFullExprCleanup();
469   }
470 
471   /// \brief Queue a cleanup to be pushed after finishing the current
472   /// full-expression.
473   template <class T, class... As>
474   void pushCleanupAfterFullExpr(CleanupKind Kind, As... A) {
475     assert(!isInConditionalBranch() && "can't defer conditional cleanup");
476 
477     LifetimeExtendedCleanupHeader Header = { sizeof(T), Kind };
478 
479     size_t OldSize = LifetimeExtendedCleanupStack.size();
480     LifetimeExtendedCleanupStack.resize(
481         LifetimeExtendedCleanupStack.size() + sizeof(Header) + Header.Size);
482 
483     static_assert(sizeof(Header) % alignof(T) == 0,
484                   "Cleanup will be allocated on misaligned address");
485     char *Buffer = &LifetimeExtendedCleanupStack[OldSize];
486     new (Buffer) LifetimeExtendedCleanupHeader(Header);
487     new (Buffer + sizeof(Header)) T(A...);
488   }
489 
490   /// Set up the last cleaup that was pushed as a conditional
491   /// full-expression cleanup.
492   void initFullExprCleanup();
493 
494   /// PushDestructorCleanup - Push a cleanup to call the
495   /// complete-object destructor of an object of the given type at the
496   /// given address.  Does nothing if T is not a C++ class type with a
497   /// non-trivial destructor.
498   void PushDestructorCleanup(QualType T, Address Addr);
499 
500   /// PushDestructorCleanup - Push a cleanup to call the
501   /// complete-object variant of the given destructor on the object at
502   /// the given address.
503   void PushDestructorCleanup(const CXXDestructorDecl *Dtor, Address Addr);
504 
505   /// PopCleanupBlock - Will pop the cleanup entry on the stack and
506   /// process all branch fixups.
507   void PopCleanupBlock(bool FallThroughIsBranchThrough = false);
508 
509   /// DeactivateCleanupBlock - Deactivates the given cleanup block.
510   /// The block cannot be reactivated.  Pops it if it's the top of the
511   /// stack.
512   ///
513   /// \param DominatingIP - An instruction which is known to
514   ///   dominate the current IP (if set) and which lies along
515   ///   all paths of execution between the current IP and the
516   ///   the point at which the cleanup comes into scope.
517   void DeactivateCleanupBlock(EHScopeStack::stable_iterator Cleanup,
518                               llvm::Instruction *DominatingIP);
519 
520   /// ActivateCleanupBlock - Activates an initially-inactive cleanup.
521   /// Cannot be used to resurrect a deactivated cleanup.
522   ///
523   /// \param DominatingIP - An instruction which is known to
524   ///   dominate the current IP (if set) and which lies along
525   ///   all paths of execution between the current IP and the
526   ///   the point at which the cleanup comes into scope.
527   void ActivateCleanupBlock(EHScopeStack::stable_iterator Cleanup,
528                             llvm::Instruction *DominatingIP);
529 
530   /// \brief Enters a new scope for capturing cleanups, all of which
531   /// will be executed once the scope is exited.
532   class RunCleanupsScope {
533     EHScopeStack::stable_iterator CleanupStackDepth;
534     size_t LifetimeExtendedCleanupStackSize;
535     bool OldDidCallStackSave;
536   protected:
537     bool PerformCleanup;
538   private:
539 
540     RunCleanupsScope(const RunCleanupsScope &) = delete;
541     void operator=(const RunCleanupsScope &) = delete;
542 
543   protected:
544     CodeGenFunction& CGF;
545 
546   public:
547     /// \brief Enter a new cleanup scope.
548     explicit RunCleanupsScope(CodeGenFunction &CGF)
549       : PerformCleanup(true), CGF(CGF)
550     {
551       CleanupStackDepth = CGF.EHStack.stable_begin();
552       LifetimeExtendedCleanupStackSize =
553           CGF.LifetimeExtendedCleanupStack.size();
554       OldDidCallStackSave = CGF.DidCallStackSave;
555       CGF.DidCallStackSave = false;
556     }
557 
558     /// \brief Exit this cleanup scope, emitting any accumulated
559     /// cleanups.
560     ~RunCleanupsScope() {
561       if (PerformCleanup) {
562         CGF.DidCallStackSave = OldDidCallStackSave;
563         CGF.PopCleanupBlocks(CleanupStackDepth,
564                              LifetimeExtendedCleanupStackSize);
565       }
566     }
567 
568     /// \brief Determine whether this scope requires any cleanups.
569     bool requiresCleanups() const {
570       return CGF.EHStack.stable_begin() != CleanupStackDepth;
571     }
572 
573     /// \brief Force the emission of cleanups now, instead of waiting
574     /// until this object is destroyed.
575     void ForceCleanup() {
576       assert(PerformCleanup && "Already forced cleanup");
577       CGF.DidCallStackSave = OldDidCallStackSave;
578       CGF.PopCleanupBlocks(CleanupStackDepth,
579                            LifetimeExtendedCleanupStackSize);
580       PerformCleanup = false;
581     }
582   };
583 
584   class LexicalScope : public RunCleanupsScope {
585     SourceRange Range;
586     SmallVector<const LabelDecl*, 4> Labels;
587     LexicalScope *ParentScope;
588 
589     LexicalScope(const LexicalScope &) = delete;
590     void operator=(const LexicalScope &) = delete;
591 
592   public:
593     /// \brief Enter a new cleanup scope.
594     explicit LexicalScope(CodeGenFunction &CGF, SourceRange Range)
595       : RunCleanupsScope(CGF), Range(Range), ParentScope(CGF.CurLexicalScope) {
596       CGF.CurLexicalScope = this;
597       if (CGDebugInfo *DI = CGF.getDebugInfo())
598         DI->EmitLexicalBlockStart(CGF.Builder, Range.getBegin());
599     }
600 
601     void addLabel(const LabelDecl *label) {
602       assert(PerformCleanup && "adding label to dead scope?");
603       Labels.push_back(label);
604     }
605 
606     /// \brief Exit this cleanup scope, emitting any accumulated
607     /// cleanups.
608     ~LexicalScope() {
609       if (CGDebugInfo *DI = CGF.getDebugInfo())
610         DI->EmitLexicalBlockEnd(CGF.Builder, Range.getEnd());
611 
612       // If we should perform a cleanup, force them now.  Note that
613       // this ends the cleanup scope before rescoping any labels.
614       if (PerformCleanup) {
615         ApplyDebugLocation DL(CGF, Range.getEnd());
616         ForceCleanup();
617       }
618     }
619 
620     /// \brief Force the emission of cleanups now, instead of waiting
621     /// until this object is destroyed.
622     void ForceCleanup() {
623       CGF.CurLexicalScope = ParentScope;
624       RunCleanupsScope::ForceCleanup();
625 
626       if (!Labels.empty())
627         rescopeLabels();
628     }
629 
630     bool hasLabels() const {
631       return !Labels.empty();
632     }
633 
634     void rescopeLabels();
635   };
636 
637   typedef llvm::DenseMap<const Decl *, Address> DeclMapTy;
638 
639   /// \brief The scope used to remap some variables as private in the OpenMP
640   /// loop body (or other captured region emitted without outlining), and to
641   /// restore old vars back on exit.
642   class OMPPrivateScope : public RunCleanupsScope {
643     DeclMapTy SavedLocals;
644     DeclMapTy SavedPrivates;
645 
646   private:
647     OMPPrivateScope(const OMPPrivateScope &) = delete;
648     void operator=(const OMPPrivateScope &) = delete;
649 
650   public:
651     /// \brief Enter a new OpenMP private scope.
652     explicit OMPPrivateScope(CodeGenFunction &CGF) : RunCleanupsScope(CGF) {}
653 
654     /// \brief Registers \a LocalVD variable as a private and apply \a
655     /// PrivateGen function for it to generate corresponding private variable.
656     /// \a PrivateGen returns an address of the generated private variable.
657     /// \return true if the variable is registered as private, false if it has
658     /// been privatized already.
659     bool
660     addPrivate(const VarDecl *LocalVD,
661                llvm::function_ref<Address()> PrivateGen) {
662       assert(PerformCleanup && "adding private to dead scope");
663 
664       // Only save it once.
665       if (SavedLocals.count(LocalVD)) return false;
666 
667       // Copy the existing local entry to SavedLocals.
668       auto it = CGF.LocalDeclMap.find(LocalVD);
669       if (it != CGF.LocalDeclMap.end()) {
670         SavedLocals.insert({LocalVD, it->second});
671       } else {
672         SavedLocals.insert({LocalVD, Address::invalid()});
673       }
674 
675       // Generate the private entry.
676       Address Addr = PrivateGen();
677       QualType VarTy = LocalVD->getType();
678       if (VarTy->isReferenceType()) {
679         Address Temp = CGF.CreateMemTemp(VarTy);
680         CGF.Builder.CreateStore(Addr.getPointer(), Temp);
681         Addr = Temp;
682       }
683       SavedPrivates.insert({LocalVD, Addr});
684 
685       return true;
686     }
687 
688     /// \brief Privatizes local variables previously registered as private.
689     /// Registration is separate from the actual privatization to allow
690     /// initializers use values of the original variables, not the private one.
691     /// This is important, for example, if the private variable is a class
692     /// variable initialized by a constructor that references other private
693     /// variables. But at initialization original variables must be used, not
694     /// private copies.
695     /// \return true if at least one variable was privatized, false otherwise.
696     bool Privatize() {
697       copyInto(SavedPrivates, CGF.LocalDeclMap);
698       SavedPrivates.clear();
699       return !SavedLocals.empty();
700     }
701 
702     void ForceCleanup() {
703       RunCleanupsScope::ForceCleanup();
704       copyInto(SavedLocals, CGF.LocalDeclMap);
705       SavedLocals.clear();
706     }
707 
708     /// \brief Exit scope - all the mapped variables are restored.
709     ~OMPPrivateScope() {
710       if (PerformCleanup)
711         ForceCleanup();
712     }
713 
714     /// Checks if the global variable is captured in current function.
715     bool isGlobalVarCaptured(const VarDecl *VD) const {
716       return !VD->isLocalVarDeclOrParm() && CGF.LocalDeclMap.count(VD) > 0;
717     }
718 
719   private:
720     /// Copy all the entries in the source map over the corresponding
721     /// entries in the destination, which must exist.
722     static void copyInto(const DeclMapTy &src, DeclMapTy &dest) {
723       for (auto &pair : src) {
724         if (!pair.second.isValid()) {
725           dest.erase(pair.first);
726           continue;
727         }
728 
729         auto it = dest.find(pair.first);
730         if (it != dest.end()) {
731           it->second = pair.second;
732         } else {
733           dest.insert(pair);
734         }
735       }
736     }
737   };
738 
739   /// \brief Takes the old cleanup stack size and emits the cleanup blocks
740   /// that have been added.
741   void PopCleanupBlocks(EHScopeStack::stable_iterator OldCleanupStackSize);
742 
743   /// \brief Takes the old cleanup stack size and emits the cleanup blocks
744   /// that have been added, then adds all lifetime-extended cleanups from
745   /// the given position to the stack.
746   void PopCleanupBlocks(EHScopeStack::stable_iterator OldCleanupStackSize,
747                         size_t OldLifetimeExtendedStackSize);
748 
749   void ResolveBranchFixups(llvm::BasicBlock *Target);
750 
751   /// The given basic block lies in the current EH scope, but may be a
752   /// target of a potentially scope-crossing jump; get a stable handle
753   /// to which we can perform this jump later.
754   JumpDest getJumpDestInCurrentScope(llvm::BasicBlock *Target) {
755     return JumpDest(Target,
756                     EHStack.getInnermostNormalCleanup(),
757                     NextCleanupDestIndex++);
758   }
759 
760   /// The given basic block lies in the current EH scope, but may be a
761   /// target of a potentially scope-crossing jump; get a stable handle
762   /// to which we can perform this jump later.
763   JumpDest getJumpDestInCurrentScope(StringRef Name = StringRef()) {
764     return getJumpDestInCurrentScope(createBasicBlock(Name));
765   }
766 
767   /// EmitBranchThroughCleanup - Emit a branch from the current insert
768   /// block through the normal cleanup handling code (if any) and then
769   /// on to \arg Dest.
770   void EmitBranchThroughCleanup(JumpDest Dest);
771 
772   /// isObviouslyBranchWithoutCleanups - Return true if a branch to the
773   /// specified destination obviously has no cleanups to run.  'false' is always
774   /// a conservatively correct answer for this method.
775   bool isObviouslyBranchWithoutCleanups(JumpDest Dest) const;
776 
777   /// popCatchScope - Pops the catch scope at the top of the EHScope
778   /// stack, emitting any required code (other than the catch handlers
779   /// themselves).
780   void popCatchScope();
781 
782   llvm::BasicBlock *getEHResumeBlock(bool isCleanup);
783   llvm::BasicBlock *getEHDispatchBlock(EHScopeStack::stable_iterator scope);
784   llvm::BasicBlock *getMSVCDispatchBlock(EHScopeStack::stable_iterator scope);
785 
786   /// An object to manage conditionally-evaluated expressions.
787   class ConditionalEvaluation {
788     llvm::BasicBlock *StartBB;
789 
790   public:
791     ConditionalEvaluation(CodeGenFunction &CGF)
792       : StartBB(CGF.Builder.GetInsertBlock()) {}
793 
794     void begin(CodeGenFunction &CGF) {
795       assert(CGF.OutermostConditional != this);
796       if (!CGF.OutermostConditional)
797         CGF.OutermostConditional = this;
798     }
799 
800     void end(CodeGenFunction &CGF) {
801       assert(CGF.OutermostConditional != nullptr);
802       if (CGF.OutermostConditional == this)
803         CGF.OutermostConditional = nullptr;
804     }
805 
806     /// Returns a block which will be executed prior to each
807     /// evaluation of the conditional code.
808     llvm::BasicBlock *getStartingBlock() const {
809       return StartBB;
810     }
811   };
812 
813   /// isInConditionalBranch - Return true if we're currently emitting
814   /// one branch or the other of a conditional expression.
815   bool isInConditionalBranch() const { return OutermostConditional != nullptr; }
816 
817   void setBeforeOutermostConditional(llvm::Value *value, Address addr) {
818     assert(isInConditionalBranch());
819     llvm::BasicBlock *block = OutermostConditional->getStartingBlock();
820     auto store = new llvm::StoreInst(value, addr.getPointer(), &block->back());
821     store->setAlignment(addr.getAlignment().getQuantity());
822   }
823 
824   /// An RAII object to record that we're evaluating a statement
825   /// expression.
826   class StmtExprEvaluation {
827     CodeGenFunction &CGF;
828 
829     /// We have to save the outermost conditional: cleanups in a
830     /// statement expression aren't conditional just because the
831     /// StmtExpr is.
832     ConditionalEvaluation *SavedOutermostConditional;
833 
834   public:
835     StmtExprEvaluation(CodeGenFunction &CGF)
836       : CGF(CGF), SavedOutermostConditional(CGF.OutermostConditional) {
837       CGF.OutermostConditional = nullptr;
838     }
839 
840     ~StmtExprEvaluation() {
841       CGF.OutermostConditional = SavedOutermostConditional;
842       CGF.EnsureInsertPoint();
843     }
844   };
845 
846   /// An object which temporarily prevents a value from being
847   /// destroyed by aggressive peephole optimizations that assume that
848   /// all uses of a value have been realized in the IR.
849   class PeepholeProtection {
850     llvm::Instruction *Inst;
851     friend class CodeGenFunction;
852 
853   public:
854     PeepholeProtection() : Inst(nullptr) {}
855   };
856 
857   /// A non-RAII class containing all the information about a bound
858   /// opaque value.  OpaqueValueMapping, below, is a RAII wrapper for
859   /// this which makes individual mappings very simple; using this
860   /// class directly is useful when you have a variable number of
861   /// opaque values or don't want the RAII functionality for some
862   /// reason.
863   class OpaqueValueMappingData {
864     const OpaqueValueExpr *OpaqueValue;
865     bool BoundLValue;
866     CodeGenFunction::PeepholeProtection Protection;
867 
868     OpaqueValueMappingData(const OpaqueValueExpr *ov,
869                            bool boundLValue)
870       : OpaqueValue(ov), BoundLValue(boundLValue) {}
871   public:
872     OpaqueValueMappingData() : OpaqueValue(nullptr) {}
873 
874     static bool shouldBindAsLValue(const Expr *expr) {
875       // gl-values should be bound as l-values for obvious reasons.
876       // Records should be bound as l-values because IR generation
877       // always keeps them in memory.  Expressions of function type
878       // act exactly like l-values but are formally required to be
879       // r-values in C.
880       return expr->isGLValue() ||
881              expr->getType()->isFunctionType() ||
882              hasAggregateEvaluationKind(expr->getType());
883     }
884 
885     static OpaqueValueMappingData bind(CodeGenFunction &CGF,
886                                        const OpaqueValueExpr *ov,
887                                        const Expr *e) {
888       if (shouldBindAsLValue(ov))
889         return bind(CGF, ov, CGF.EmitLValue(e));
890       return bind(CGF, ov, CGF.EmitAnyExpr(e));
891     }
892 
893     static OpaqueValueMappingData bind(CodeGenFunction &CGF,
894                                        const OpaqueValueExpr *ov,
895                                        const LValue &lv) {
896       assert(shouldBindAsLValue(ov));
897       CGF.OpaqueLValues.insert(std::make_pair(ov, lv));
898       return OpaqueValueMappingData(ov, true);
899     }
900 
901     static OpaqueValueMappingData bind(CodeGenFunction &CGF,
902                                        const OpaqueValueExpr *ov,
903                                        const RValue &rv) {
904       assert(!shouldBindAsLValue(ov));
905       CGF.OpaqueRValues.insert(std::make_pair(ov, rv));
906 
907       OpaqueValueMappingData data(ov, false);
908 
909       // Work around an extremely aggressive peephole optimization in
910       // EmitScalarConversion which assumes that all other uses of a
911       // value are extant.
912       data.Protection = CGF.protectFromPeepholes(rv);
913 
914       return data;
915     }
916 
917     bool isValid() const { return OpaqueValue != nullptr; }
918     void clear() { OpaqueValue = nullptr; }
919 
920     void unbind(CodeGenFunction &CGF) {
921       assert(OpaqueValue && "no data to unbind!");
922 
923       if (BoundLValue) {
924         CGF.OpaqueLValues.erase(OpaqueValue);
925       } else {
926         CGF.OpaqueRValues.erase(OpaqueValue);
927         CGF.unprotectFromPeepholes(Protection);
928       }
929     }
930   };
931 
932   /// An RAII object to set (and then clear) a mapping for an OpaqueValueExpr.
933   class OpaqueValueMapping {
934     CodeGenFunction &CGF;
935     OpaqueValueMappingData Data;
936 
937   public:
938     static bool shouldBindAsLValue(const Expr *expr) {
939       return OpaqueValueMappingData::shouldBindAsLValue(expr);
940     }
941 
942     /// Build the opaque value mapping for the given conditional
943     /// operator if it's the GNU ?: extension.  This is a common
944     /// enough pattern that the convenience operator is really
945     /// helpful.
946     ///
947     OpaqueValueMapping(CodeGenFunction &CGF,
948                        const AbstractConditionalOperator *op) : CGF(CGF) {
949       if (isa<ConditionalOperator>(op))
950         // Leave Data empty.
951         return;
952 
953       const BinaryConditionalOperator *e = cast<BinaryConditionalOperator>(op);
954       Data = OpaqueValueMappingData::bind(CGF, e->getOpaqueValue(),
955                                           e->getCommon());
956     }
957 
958     /// Build the opaque value mapping for an OpaqueValueExpr whose source
959     /// expression is set to the expression the OVE represents.
960     OpaqueValueMapping(CodeGenFunction &CGF, const OpaqueValueExpr *OV)
961         : CGF(CGF) {
962       if (OV) {
963         assert(OV->getSourceExpr() && "wrong form of OpaqueValueMapping used "
964                                       "for OVE with no source expression");
965         Data = OpaqueValueMappingData::bind(CGF, OV, OV->getSourceExpr());
966       }
967     }
968 
969     OpaqueValueMapping(CodeGenFunction &CGF,
970                        const OpaqueValueExpr *opaqueValue,
971                        LValue lvalue)
972       : CGF(CGF), Data(OpaqueValueMappingData::bind(CGF, opaqueValue, lvalue)) {
973     }
974 
975     OpaqueValueMapping(CodeGenFunction &CGF,
976                        const OpaqueValueExpr *opaqueValue,
977                        RValue rvalue)
978       : CGF(CGF), Data(OpaqueValueMappingData::bind(CGF, opaqueValue, rvalue)) {
979     }
980 
981     void pop() {
982       Data.unbind(CGF);
983       Data.clear();
984     }
985 
986     ~OpaqueValueMapping() {
987       if (Data.isValid()) Data.unbind(CGF);
988     }
989   };
990 
991 private:
992   CGDebugInfo *DebugInfo;
993   bool DisableDebugInfo;
994 
995   /// DidCallStackSave - Whether llvm.stacksave has been called. Used to avoid
996   /// calling llvm.stacksave for multiple VLAs in the same scope.
997   bool DidCallStackSave;
998 
999   /// IndirectBranch - The first time an indirect goto is seen we create a block
1000   /// with an indirect branch.  Every time we see the address of a label taken,
1001   /// we add the label to the indirect goto.  Every subsequent indirect goto is
1002   /// codegen'd as a jump to the IndirectBranch's basic block.
1003   llvm::IndirectBrInst *IndirectBranch;
1004 
1005   /// LocalDeclMap - This keeps track of the LLVM allocas or globals for local C
1006   /// decls.
1007   DeclMapTy LocalDeclMap;
1008 
1009   /// SizeArguments - If a ParmVarDecl had the pass_object_size attribute, this
1010   /// will contain a mapping from said ParmVarDecl to its implicit "object_size"
1011   /// parameter.
1012   llvm::SmallDenseMap<const ParmVarDecl *, const ImplicitParamDecl *, 2>
1013       SizeArguments;
1014 
1015   /// Track escaped local variables with auto storage. Used during SEH
1016   /// outlining to produce a call to llvm.localescape.
1017   llvm::DenseMap<llvm::AllocaInst *, int> EscapedLocals;
1018 
1019   /// LabelMap - This keeps track of the LLVM basic block for each C label.
1020   llvm::DenseMap<const LabelDecl*, JumpDest> LabelMap;
1021 
1022   // BreakContinueStack - This keeps track of where break and continue
1023   // statements should jump to.
1024   struct BreakContinue {
1025     BreakContinue(JumpDest Break, JumpDest Continue)
1026       : BreakBlock(Break), ContinueBlock(Continue) {}
1027 
1028     JumpDest BreakBlock;
1029     JumpDest ContinueBlock;
1030   };
1031   SmallVector<BreakContinue, 8> BreakContinueStack;
1032 
1033   /// Handles cancellation exit points in OpenMP-related constructs.
1034   class OpenMPCancelExitStack {
1035     /// Tracks cancellation exit point and join point for cancel-related exit
1036     /// and normal exit.
1037     struct CancelExit {
1038       CancelExit() = default;
1039       CancelExit(OpenMPDirectiveKind Kind, JumpDest ExitBlock,
1040                  JumpDest ContBlock)
1041           : Kind(Kind), ExitBlock(ExitBlock), ContBlock(ContBlock) {}
1042       OpenMPDirectiveKind Kind = OMPD_unknown;
1043       /// true if the exit block has been emitted already by the special
1044       /// emitExit() call, false if the default codegen is used.
1045       bool HasBeenEmitted = false;
1046       JumpDest ExitBlock;
1047       JumpDest ContBlock;
1048     };
1049 
1050     SmallVector<CancelExit, 8> Stack;
1051 
1052   public:
1053     OpenMPCancelExitStack() : Stack(1) {}
1054     ~OpenMPCancelExitStack() = default;
1055     /// Fetches the exit block for the current OpenMP construct.
1056     JumpDest getExitBlock() const { return Stack.back().ExitBlock; }
1057     /// Emits exit block with special codegen procedure specific for the related
1058     /// OpenMP construct + emits code for normal construct cleanup.
1059     void emitExit(CodeGenFunction &CGF, OpenMPDirectiveKind Kind,
1060                   const llvm::function_ref<void(CodeGenFunction &)> &CodeGen) {
1061       if (Stack.back().Kind == Kind && getExitBlock().isValid()) {
1062         assert(CGF.getOMPCancelDestination(Kind).isValid());
1063         assert(CGF.HaveInsertPoint());
1064         assert(!Stack.back().HasBeenEmitted);
1065         auto IP = CGF.Builder.saveAndClearIP();
1066         CGF.EmitBlock(Stack.back().ExitBlock.getBlock());
1067         CodeGen(CGF);
1068         CGF.EmitBranchThroughCleanup(Stack.back().ContBlock);
1069         CGF.Builder.restoreIP(IP);
1070         Stack.back().HasBeenEmitted = true;
1071       }
1072       CodeGen(CGF);
1073     }
1074     /// Enter the cancel supporting \a Kind construct.
1075     /// \param Kind OpenMP directive that supports cancel constructs.
1076     /// \param HasCancel true, if the construct has inner cancel directive,
1077     /// false otherwise.
1078     void enter(CodeGenFunction &CGF, OpenMPDirectiveKind Kind, bool HasCancel) {
1079       Stack.push_back({Kind,
1080                        HasCancel ? CGF.getJumpDestInCurrentScope("cancel.exit")
1081                                  : JumpDest(),
1082                        HasCancel ? CGF.getJumpDestInCurrentScope("cancel.cont")
1083                                  : JumpDest()});
1084     }
1085     /// Emits default exit point for the cancel construct (if the special one
1086     /// has not be used) + join point for cancel/normal exits.
1087     void exit(CodeGenFunction &CGF) {
1088       if (getExitBlock().isValid()) {
1089         assert(CGF.getOMPCancelDestination(Stack.back().Kind).isValid());
1090         bool HaveIP = CGF.HaveInsertPoint();
1091         if (!Stack.back().HasBeenEmitted) {
1092           if (HaveIP)
1093             CGF.EmitBranchThroughCleanup(Stack.back().ContBlock);
1094           CGF.EmitBlock(Stack.back().ExitBlock.getBlock());
1095           CGF.EmitBranchThroughCleanup(Stack.back().ContBlock);
1096         }
1097         CGF.EmitBlock(Stack.back().ContBlock.getBlock());
1098         if (!HaveIP) {
1099           CGF.Builder.CreateUnreachable();
1100           CGF.Builder.ClearInsertionPoint();
1101         }
1102       }
1103       Stack.pop_back();
1104     }
1105   };
1106   OpenMPCancelExitStack OMPCancelStack;
1107 
1108   /// Controls insertion of cancellation exit blocks in worksharing constructs.
1109   class OMPCancelStackRAII {
1110     CodeGenFunction &CGF;
1111 
1112   public:
1113     OMPCancelStackRAII(CodeGenFunction &CGF, OpenMPDirectiveKind Kind,
1114                        bool HasCancel)
1115         : CGF(CGF) {
1116       CGF.OMPCancelStack.enter(CGF, Kind, HasCancel);
1117     }
1118     ~OMPCancelStackRAII() { CGF.OMPCancelStack.exit(CGF); }
1119   };
1120 
1121   CodeGenPGO PGO;
1122 
1123   /// Calculate branch weights appropriate for PGO data
1124   llvm::MDNode *createProfileWeights(uint64_t TrueCount, uint64_t FalseCount);
1125   llvm::MDNode *createProfileWeights(ArrayRef<uint64_t> Weights);
1126   llvm::MDNode *createProfileWeightsForLoop(const Stmt *Cond,
1127                                             uint64_t LoopCount);
1128 
1129 public:
1130   /// Increment the profiler's counter for the given statement by \p StepV.
1131   /// If \p StepV is null, the default increment is 1.
1132   void incrementProfileCounter(const Stmt *S, llvm::Value *StepV = nullptr) {
1133     if (CGM.getCodeGenOpts().hasProfileClangInstr())
1134       PGO.emitCounterIncrement(Builder, S, StepV);
1135     PGO.setCurrentStmt(S);
1136   }
1137 
1138   /// Get the profiler's count for the given statement.
1139   uint64_t getProfileCount(const Stmt *S) {
1140     Optional<uint64_t> Count = PGO.getStmtCount(S);
1141     if (!Count.hasValue())
1142       return 0;
1143     return *Count;
1144   }
1145 
1146   /// Set the profiler's current count.
1147   void setCurrentProfileCount(uint64_t Count) {
1148     PGO.setCurrentRegionCount(Count);
1149   }
1150 
1151   /// Get the profiler's current count. This is generally the count for the most
1152   /// recently incremented counter.
1153   uint64_t getCurrentProfileCount() {
1154     return PGO.getCurrentRegionCount();
1155   }
1156 
1157 private:
1158 
1159   /// SwitchInsn - This is nearest current switch instruction. It is null if
1160   /// current context is not in a switch.
1161   llvm::SwitchInst *SwitchInsn;
1162   /// The branch weights of SwitchInsn when doing instrumentation based PGO.
1163   SmallVector<uint64_t, 16> *SwitchWeights;
1164 
1165   /// CaseRangeBlock - This block holds if condition check for last case
1166   /// statement range in current switch instruction.
1167   llvm::BasicBlock *CaseRangeBlock;
1168 
1169   /// OpaqueLValues - Keeps track of the current set of opaque value
1170   /// expressions.
1171   llvm::DenseMap<const OpaqueValueExpr *, LValue> OpaqueLValues;
1172   llvm::DenseMap<const OpaqueValueExpr *, RValue> OpaqueRValues;
1173 
1174   // VLASizeMap - This keeps track of the associated size for each VLA type.
1175   // We track this by the size expression rather than the type itself because
1176   // in certain situations, like a const qualifier applied to an VLA typedef,
1177   // multiple VLA types can share the same size expression.
1178   // FIXME: Maybe this could be a stack of maps that is pushed/popped as we
1179   // enter/leave scopes.
1180   llvm::DenseMap<const Expr*, llvm::Value*> VLASizeMap;
1181 
1182   /// A block containing a single 'unreachable' instruction.  Created
1183   /// lazily by getUnreachableBlock().
1184   llvm::BasicBlock *UnreachableBlock;
1185 
1186   /// Counts of the number return expressions in the function.
1187   unsigned NumReturnExprs;
1188 
1189   /// Count the number of simple (constant) return expressions in the function.
1190   unsigned NumSimpleReturnExprs;
1191 
1192   /// The last regular (non-return) debug location (breakpoint) in the function.
1193   SourceLocation LastStopPoint;
1194 
1195 public:
1196   /// A scope within which we are constructing the fields of an object which
1197   /// might use a CXXDefaultInitExpr. This stashes away a 'this' value to use
1198   /// if we need to evaluate a CXXDefaultInitExpr within the evaluation.
1199   class FieldConstructionScope {
1200   public:
1201     FieldConstructionScope(CodeGenFunction &CGF, Address This)
1202         : CGF(CGF), OldCXXDefaultInitExprThis(CGF.CXXDefaultInitExprThis) {
1203       CGF.CXXDefaultInitExprThis = This;
1204     }
1205     ~FieldConstructionScope() {
1206       CGF.CXXDefaultInitExprThis = OldCXXDefaultInitExprThis;
1207     }
1208 
1209   private:
1210     CodeGenFunction &CGF;
1211     Address OldCXXDefaultInitExprThis;
1212   };
1213 
1214   /// The scope of a CXXDefaultInitExpr. Within this scope, the value of 'this'
1215   /// is overridden to be the object under construction.
1216   class CXXDefaultInitExprScope {
1217   public:
1218     CXXDefaultInitExprScope(CodeGenFunction &CGF)
1219       : CGF(CGF), OldCXXThisValue(CGF.CXXThisValue),
1220         OldCXXThisAlignment(CGF.CXXThisAlignment) {
1221       CGF.CXXThisValue = CGF.CXXDefaultInitExprThis.getPointer();
1222       CGF.CXXThisAlignment = CGF.CXXDefaultInitExprThis.getAlignment();
1223     }
1224     ~CXXDefaultInitExprScope() {
1225       CGF.CXXThisValue = OldCXXThisValue;
1226       CGF.CXXThisAlignment = OldCXXThisAlignment;
1227     }
1228 
1229   public:
1230     CodeGenFunction &CGF;
1231     llvm::Value *OldCXXThisValue;
1232     CharUnits OldCXXThisAlignment;
1233   };
1234 
1235   /// The scope of an ArrayInitLoopExpr. Within this scope, the value of the
1236   /// current loop index is overridden.
1237   class ArrayInitLoopExprScope {
1238   public:
1239     ArrayInitLoopExprScope(CodeGenFunction &CGF, llvm::Value *Index)
1240       : CGF(CGF), OldArrayInitIndex(CGF.ArrayInitIndex) {
1241       CGF.ArrayInitIndex = Index;
1242     }
1243     ~ArrayInitLoopExprScope() {
1244       CGF.ArrayInitIndex = OldArrayInitIndex;
1245     }
1246 
1247   private:
1248     CodeGenFunction &CGF;
1249     llvm::Value *OldArrayInitIndex;
1250   };
1251 
1252   class InlinedInheritingConstructorScope {
1253   public:
1254     InlinedInheritingConstructorScope(CodeGenFunction &CGF, GlobalDecl GD)
1255         : CGF(CGF), OldCurGD(CGF.CurGD), OldCurFuncDecl(CGF.CurFuncDecl),
1256           OldCurCodeDecl(CGF.CurCodeDecl),
1257           OldCXXABIThisDecl(CGF.CXXABIThisDecl),
1258           OldCXXABIThisValue(CGF.CXXABIThisValue),
1259           OldCXXThisValue(CGF.CXXThisValue),
1260           OldCXXABIThisAlignment(CGF.CXXABIThisAlignment),
1261           OldCXXThisAlignment(CGF.CXXThisAlignment),
1262           OldReturnValue(CGF.ReturnValue), OldFnRetTy(CGF.FnRetTy),
1263           OldCXXInheritedCtorInitExprArgs(
1264               std::move(CGF.CXXInheritedCtorInitExprArgs)) {
1265       CGF.CurGD = GD;
1266       CGF.CurFuncDecl = CGF.CurCodeDecl =
1267           cast<CXXConstructorDecl>(GD.getDecl());
1268       CGF.CXXABIThisDecl = nullptr;
1269       CGF.CXXABIThisValue = nullptr;
1270       CGF.CXXThisValue = nullptr;
1271       CGF.CXXABIThisAlignment = CharUnits();
1272       CGF.CXXThisAlignment = CharUnits();
1273       CGF.ReturnValue = Address::invalid();
1274       CGF.FnRetTy = QualType();
1275       CGF.CXXInheritedCtorInitExprArgs.clear();
1276     }
1277     ~InlinedInheritingConstructorScope() {
1278       CGF.CurGD = OldCurGD;
1279       CGF.CurFuncDecl = OldCurFuncDecl;
1280       CGF.CurCodeDecl = OldCurCodeDecl;
1281       CGF.CXXABIThisDecl = OldCXXABIThisDecl;
1282       CGF.CXXABIThisValue = OldCXXABIThisValue;
1283       CGF.CXXThisValue = OldCXXThisValue;
1284       CGF.CXXABIThisAlignment = OldCXXABIThisAlignment;
1285       CGF.CXXThisAlignment = OldCXXThisAlignment;
1286       CGF.ReturnValue = OldReturnValue;
1287       CGF.FnRetTy = OldFnRetTy;
1288       CGF.CXXInheritedCtorInitExprArgs =
1289           std::move(OldCXXInheritedCtorInitExprArgs);
1290     }
1291 
1292   private:
1293     CodeGenFunction &CGF;
1294     GlobalDecl OldCurGD;
1295     const Decl *OldCurFuncDecl;
1296     const Decl *OldCurCodeDecl;
1297     ImplicitParamDecl *OldCXXABIThisDecl;
1298     llvm::Value *OldCXXABIThisValue;
1299     llvm::Value *OldCXXThisValue;
1300     CharUnits OldCXXABIThisAlignment;
1301     CharUnits OldCXXThisAlignment;
1302     Address OldReturnValue;
1303     QualType OldFnRetTy;
1304     CallArgList OldCXXInheritedCtorInitExprArgs;
1305   };
1306 
1307 private:
1308   /// CXXThisDecl - When generating code for a C++ member function,
1309   /// this will hold the implicit 'this' declaration.
1310   ImplicitParamDecl *CXXABIThisDecl;
1311   llvm::Value *CXXABIThisValue;
1312   llvm::Value *CXXThisValue;
1313   CharUnits CXXABIThisAlignment;
1314   CharUnits CXXThisAlignment;
1315 
1316   /// The value of 'this' to use when evaluating CXXDefaultInitExprs within
1317   /// this expression.
1318   Address CXXDefaultInitExprThis = Address::invalid();
1319 
1320   /// The current array initialization index when evaluating an
1321   /// ArrayInitIndexExpr within an ArrayInitLoopExpr.
1322   llvm::Value *ArrayInitIndex = nullptr;
1323 
1324   /// The values of function arguments to use when evaluating
1325   /// CXXInheritedCtorInitExprs within this context.
1326   CallArgList CXXInheritedCtorInitExprArgs;
1327 
1328   /// CXXStructorImplicitParamDecl - When generating code for a constructor or
1329   /// destructor, this will hold the implicit argument (e.g. VTT).
1330   ImplicitParamDecl *CXXStructorImplicitParamDecl;
1331   llvm::Value *CXXStructorImplicitParamValue;
1332 
1333   /// OutermostConditional - Points to the outermost active
1334   /// conditional control.  This is used so that we know if a
1335   /// temporary should be destroyed conditionally.
1336   ConditionalEvaluation *OutermostConditional;
1337 
1338   /// The current lexical scope.
1339   LexicalScope *CurLexicalScope;
1340 
1341   /// The current source location that should be used for exception
1342   /// handling code.
1343   SourceLocation CurEHLocation;
1344 
1345   /// BlockByrefInfos - For each __block variable, contains
1346   /// information about the layout of the variable.
1347   llvm::DenseMap<const ValueDecl *, BlockByrefInfo> BlockByrefInfos;
1348 
1349   llvm::BasicBlock *TerminateLandingPad;
1350   llvm::BasicBlock *TerminateHandler;
1351   llvm::BasicBlock *TrapBB;
1352 
1353   /// True if we need emit the life-time markers.
1354   const bool ShouldEmitLifetimeMarkers;
1355 
1356   /// Add a kernel metadata node to the named metadata node 'opencl.kernels'.
1357   /// In the kernel metadata node, reference the kernel function and metadata
1358   /// nodes for its optional attribute qualifiers (OpenCL 1.1 6.7.2):
1359   /// - A node for the vec_type_hint(<type>) qualifier contains string
1360   ///   "vec_type_hint", an undefined value of the <type> data type,
1361   ///   and a Boolean that is true if the <type> is integer and signed.
1362   /// - A node for the work_group_size_hint(X,Y,Z) qualifier contains string
1363   ///   "work_group_size_hint", and three 32-bit integers X, Y and Z.
1364   /// - A node for the reqd_work_group_size(X,Y,Z) qualifier contains string
1365   ///   "reqd_work_group_size", and three 32-bit integers X, Y and Z.
1366   void EmitOpenCLKernelMetadata(const FunctionDecl *FD,
1367                                 llvm::Function *Fn);
1368 
1369 public:
1370   CodeGenFunction(CodeGenModule &cgm, bool suppressNewContext=false);
1371   ~CodeGenFunction();
1372 
1373   CodeGenTypes &getTypes() const { return CGM.getTypes(); }
1374   ASTContext &getContext() const { return CGM.getContext(); }
1375   CGDebugInfo *getDebugInfo() {
1376     if (DisableDebugInfo)
1377       return nullptr;
1378     return DebugInfo;
1379   }
1380   void disableDebugInfo() { DisableDebugInfo = true; }
1381   void enableDebugInfo() { DisableDebugInfo = false; }
1382 
1383   bool shouldUseFusedARCCalls() {
1384     return CGM.getCodeGenOpts().OptimizationLevel == 0;
1385   }
1386 
1387   const LangOptions &getLangOpts() const { return CGM.getLangOpts(); }
1388 
1389   /// Returns a pointer to the function's exception object and selector slot,
1390   /// which is assigned in every landing pad.
1391   Address getExceptionSlot();
1392   Address getEHSelectorSlot();
1393 
1394   /// Returns the contents of the function's exception object and selector
1395   /// slots.
1396   llvm::Value *getExceptionFromSlot();
1397   llvm::Value *getSelectorFromSlot();
1398 
1399   Address getNormalCleanupDestSlot();
1400 
1401   llvm::BasicBlock *getUnreachableBlock() {
1402     if (!UnreachableBlock) {
1403       UnreachableBlock = createBasicBlock("unreachable");
1404       new llvm::UnreachableInst(getLLVMContext(), UnreachableBlock);
1405     }
1406     return UnreachableBlock;
1407   }
1408 
1409   llvm::BasicBlock *getInvokeDest() {
1410     if (!EHStack.requiresLandingPad()) return nullptr;
1411     return getInvokeDestImpl();
1412   }
1413 
1414   bool currentFunctionUsesSEHTry() const { return CurSEHParent != nullptr; }
1415 
1416   const TargetInfo &getTarget() const { return Target; }
1417   llvm::LLVMContext &getLLVMContext() { return CGM.getLLVMContext(); }
1418 
1419   //===--------------------------------------------------------------------===//
1420   //                                  Cleanups
1421   //===--------------------------------------------------------------------===//
1422 
1423   typedef void Destroyer(CodeGenFunction &CGF, Address addr, QualType ty);
1424 
1425   void pushIrregularPartialArrayCleanup(llvm::Value *arrayBegin,
1426                                         Address arrayEndPointer,
1427                                         QualType elementType,
1428                                         CharUnits elementAlignment,
1429                                         Destroyer *destroyer);
1430   void pushRegularPartialArrayCleanup(llvm::Value *arrayBegin,
1431                                       llvm::Value *arrayEnd,
1432                                       QualType elementType,
1433                                       CharUnits elementAlignment,
1434                                       Destroyer *destroyer);
1435 
1436   void pushDestroy(QualType::DestructionKind dtorKind,
1437                    Address addr, QualType type);
1438   void pushEHDestroy(QualType::DestructionKind dtorKind,
1439                      Address addr, QualType type);
1440   void pushDestroy(CleanupKind kind, Address addr, QualType type,
1441                    Destroyer *destroyer, bool useEHCleanupForArray);
1442   void pushLifetimeExtendedDestroy(CleanupKind kind, Address addr,
1443                                    QualType type, Destroyer *destroyer,
1444                                    bool useEHCleanupForArray);
1445   void pushCallObjectDeleteCleanup(const FunctionDecl *OperatorDelete,
1446                                    llvm::Value *CompletePtr,
1447                                    QualType ElementType);
1448   void pushStackRestore(CleanupKind kind, Address SPMem);
1449   void emitDestroy(Address addr, QualType type, Destroyer *destroyer,
1450                    bool useEHCleanupForArray);
1451   llvm::Function *generateDestroyHelper(Address addr, QualType type,
1452                                         Destroyer *destroyer,
1453                                         bool useEHCleanupForArray,
1454                                         const VarDecl *VD);
1455   void emitArrayDestroy(llvm::Value *begin, llvm::Value *end,
1456                         QualType elementType, CharUnits elementAlign,
1457                         Destroyer *destroyer,
1458                         bool checkZeroLength, bool useEHCleanup);
1459 
1460   Destroyer *getDestroyer(QualType::DestructionKind destructionKind);
1461 
1462   /// Determines whether an EH cleanup is required to destroy a type
1463   /// with the given destruction kind.
1464   bool needsEHCleanup(QualType::DestructionKind kind) {
1465     switch (kind) {
1466     case QualType::DK_none:
1467       return false;
1468     case QualType::DK_cxx_destructor:
1469     case QualType::DK_objc_weak_lifetime:
1470       return getLangOpts().Exceptions;
1471     case QualType::DK_objc_strong_lifetime:
1472       return getLangOpts().Exceptions &&
1473              CGM.getCodeGenOpts().ObjCAutoRefCountExceptions;
1474     }
1475     llvm_unreachable("bad destruction kind");
1476   }
1477 
1478   CleanupKind getCleanupKind(QualType::DestructionKind kind) {
1479     return (needsEHCleanup(kind) ? NormalAndEHCleanup : NormalCleanup);
1480   }
1481 
1482   //===--------------------------------------------------------------------===//
1483   //                                  Objective-C
1484   //===--------------------------------------------------------------------===//
1485 
1486   void GenerateObjCMethod(const ObjCMethodDecl *OMD);
1487 
1488   void StartObjCMethod(const ObjCMethodDecl *MD, const ObjCContainerDecl *CD);
1489 
1490   /// GenerateObjCGetter - Synthesize an Objective-C property getter function.
1491   void GenerateObjCGetter(ObjCImplementationDecl *IMP,
1492                           const ObjCPropertyImplDecl *PID);
1493   void generateObjCGetterBody(const ObjCImplementationDecl *classImpl,
1494                               const ObjCPropertyImplDecl *propImpl,
1495                               const ObjCMethodDecl *GetterMothodDecl,
1496                               llvm::Constant *AtomicHelperFn);
1497 
1498   void GenerateObjCCtorDtorMethod(ObjCImplementationDecl *IMP,
1499                                   ObjCMethodDecl *MD, bool ctor);
1500 
1501   /// GenerateObjCSetter - Synthesize an Objective-C property setter function
1502   /// for the given property.
1503   void GenerateObjCSetter(ObjCImplementationDecl *IMP,
1504                           const ObjCPropertyImplDecl *PID);
1505   void generateObjCSetterBody(const ObjCImplementationDecl *classImpl,
1506                               const ObjCPropertyImplDecl *propImpl,
1507                               llvm::Constant *AtomicHelperFn);
1508 
1509   //===--------------------------------------------------------------------===//
1510   //                                  Block Bits
1511   //===--------------------------------------------------------------------===//
1512 
1513   llvm::Value *EmitBlockLiteral(const BlockExpr *);
1514   static void destroyBlockInfos(CGBlockInfo *info);
1515 
1516   llvm::Function *GenerateBlockFunction(GlobalDecl GD,
1517                                         const CGBlockInfo &Info,
1518                                         const DeclMapTy &ldm,
1519                                         bool IsLambdaConversionToBlock);
1520 
1521   llvm::Constant *GenerateCopyHelperFunction(const CGBlockInfo &blockInfo);
1522   llvm::Constant *GenerateDestroyHelperFunction(const CGBlockInfo &blockInfo);
1523   llvm::Constant *GenerateObjCAtomicSetterCopyHelperFunction(
1524                                              const ObjCPropertyImplDecl *PID);
1525   llvm::Constant *GenerateObjCAtomicGetterCopyHelperFunction(
1526                                              const ObjCPropertyImplDecl *PID);
1527   llvm::Value *EmitBlockCopyAndAutorelease(llvm::Value *Block, QualType Ty);
1528 
1529   void BuildBlockRelease(llvm::Value *DeclPtr, BlockFieldFlags flags);
1530 
1531   class AutoVarEmission;
1532 
1533   void emitByrefStructureInit(const AutoVarEmission &emission);
1534   void enterByrefCleanup(const AutoVarEmission &emission);
1535 
1536   void setBlockContextParameter(const ImplicitParamDecl *D, unsigned argNum,
1537                                 llvm::Value *ptr);
1538 
1539   Address LoadBlockStruct();
1540   Address GetAddrOfBlockDecl(const VarDecl *var, bool ByRef);
1541 
1542   /// BuildBlockByrefAddress - Computes the location of the
1543   /// data in a variable which is declared as __block.
1544   Address emitBlockByrefAddress(Address baseAddr, const VarDecl *V,
1545                                 bool followForward = true);
1546   Address emitBlockByrefAddress(Address baseAddr,
1547                                 const BlockByrefInfo &info,
1548                                 bool followForward,
1549                                 const llvm::Twine &name);
1550 
1551   const BlockByrefInfo &getBlockByrefInfo(const VarDecl *var);
1552 
1553   QualType BuildFunctionArgList(GlobalDecl GD, FunctionArgList &Args);
1554 
1555   void GenerateCode(GlobalDecl GD, llvm::Function *Fn,
1556                     const CGFunctionInfo &FnInfo);
1557   /// \brief Emit code for the start of a function.
1558   /// \param Loc       The location to be associated with the function.
1559   /// \param StartLoc  The location of the function body.
1560   void StartFunction(GlobalDecl GD,
1561                      QualType RetTy,
1562                      llvm::Function *Fn,
1563                      const CGFunctionInfo &FnInfo,
1564                      const FunctionArgList &Args,
1565                      SourceLocation Loc = SourceLocation(),
1566                      SourceLocation StartLoc = SourceLocation());
1567 
1568   static bool IsConstructorDelegationValid(const CXXConstructorDecl *Ctor);
1569 
1570   void EmitConstructorBody(FunctionArgList &Args);
1571   void EmitDestructorBody(FunctionArgList &Args);
1572   void emitImplicitAssignmentOperatorBody(FunctionArgList &Args);
1573   void EmitFunctionBody(FunctionArgList &Args, const Stmt *Body);
1574   void EmitBlockWithFallThrough(llvm::BasicBlock *BB, const Stmt *S);
1575 
1576   void EmitForwardingCallToLambda(const CXXMethodDecl *LambdaCallOperator,
1577                                   CallArgList &CallArgs);
1578   void EmitLambdaToBlockPointerBody(FunctionArgList &Args);
1579   void EmitLambdaBlockInvokeBody();
1580   void EmitLambdaDelegatingInvokeBody(const CXXMethodDecl *MD);
1581   void EmitLambdaStaticInvokeFunction(const CXXMethodDecl *MD);
1582   void EmitAsanPrologueOrEpilogue(bool Prologue);
1583 
1584   /// \brief Emit the unified return block, trying to avoid its emission when
1585   /// possible.
1586   /// \return The debug location of the user written return statement if the
1587   /// return block is is avoided.
1588   llvm::DebugLoc EmitReturnBlock();
1589 
1590   /// FinishFunction - Complete IR generation of the current function. It is
1591   /// legal to call this function even if there is no current insertion point.
1592   void FinishFunction(SourceLocation EndLoc=SourceLocation());
1593 
1594   void StartThunk(llvm::Function *Fn, GlobalDecl GD,
1595                   const CGFunctionInfo &FnInfo);
1596 
1597   void EmitCallAndReturnForThunk(llvm::Constant *Callee,
1598                                  const ThunkInfo *Thunk);
1599 
1600   void FinishThunk();
1601 
1602   /// Emit a musttail call for a thunk with a potentially adjusted this pointer.
1603   void EmitMustTailThunk(const CXXMethodDecl *MD, llvm::Value *AdjustedThisPtr,
1604                          llvm::Value *Callee);
1605 
1606   /// Generate a thunk for the given method.
1607   void generateThunk(llvm::Function *Fn, const CGFunctionInfo &FnInfo,
1608                      GlobalDecl GD, const ThunkInfo &Thunk);
1609 
1610   llvm::Function *GenerateVarArgsThunk(llvm::Function *Fn,
1611                                        const CGFunctionInfo &FnInfo,
1612                                        GlobalDecl GD, const ThunkInfo &Thunk);
1613 
1614   void EmitCtorPrologue(const CXXConstructorDecl *CD, CXXCtorType Type,
1615                         FunctionArgList &Args);
1616 
1617   void EmitInitializerForField(FieldDecl *Field, LValue LHS, Expr *Init);
1618 
1619   /// Struct with all informations about dynamic [sub]class needed to set vptr.
1620   struct VPtr {
1621     BaseSubobject Base;
1622     const CXXRecordDecl *NearestVBase;
1623     CharUnits OffsetFromNearestVBase;
1624     const CXXRecordDecl *VTableClass;
1625   };
1626 
1627   /// Initialize the vtable pointer of the given subobject.
1628   void InitializeVTablePointer(const VPtr &vptr);
1629 
1630   typedef llvm::SmallVector<VPtr, 4> VPtrsVector;
1631 
1632   typedef llvm::SmallPtrSet<const CXXRecordDecl *, 4> VisitedVirtualBasesSetTy;
1633   VPtrsVector getVTablePointers(const CXXRecordDecl *VTableClass);
1634 
1635   void getVTablePointers(BaseSubobject Base, const CXXRecordDecl *NearestVBase,
1636                          CharUnits OffsetFromNearestVBase,
1637                          bool BaseIsNonVirtualPrimaryBase,
1638                          const CXXRecordDecl *VTableClass,
1639                          VisitedVirtualBasesSetTy &VBases, VPtrsVector &vptrs);
1640 
1641   void InitializeVTablePointers(const CXXRecordDecl *ClassDecl);
1642 
1643   /// GetVTablePtr - Return the Value of the vtable pointer member pointed
1644   /// to by This.
1645   llvm::Value *GetVTablePtr(Address This, llvm::Type *VTableTy,
1646                             const CXXRecordDecl *VTableClass);
1647 
1648   enum CFITypeCheckKind {
1649     CFITCK_VCall,
1650     CFITCK_NVCall,
1651     CFITCK_DerivedCast,
1652     CFITCK_UnrelatedCast,
1653     CFITCK_ICall,
1654   };
1655 
1656   /// \brief Derived is the presumed address of an object of type T after a
1657   /// cast. If T is a polymorphic class type, emit a check that the virtual
1658   /// table for Derived belongs to a class derived from T.
1659   void EmitVTablePtrCheckForCast(QualType T, llvm::Value *Derived,
1660                                  bool MayBeNull, CFITypeCheckKind TCK,
1661                                  SourceLocation Loc);
1662 
1663   /// EmitVTablePtrCheckForCall - Virtual method MD is being called via VTable.
1664   /// If vptr CFI is enabled, emit a check that VTable is valid.
1665   void EmitVTablePtrCheckForCall(const CXXRecordDecl *RD, llvm::Value *VTable,
1666                                  CFITypeCheckKind TCK, SourceLocation Loc);
1667 
1668   /// EmitVTablePtrCheck - Emit a check that VTable is a valid virtual table for
1669   /// RD using llvm.type.test.
1670   void EmitVTablePtrCheck(const CXXRecordDecl *RD, llvm::Value *VTable,
1671                           CFITypeCheckKind TCK, SourceLocation Loc);
1672 
1673   /// If whole-program virtual table optimization is enabled, emit an assumption
1674   /// that VTable is a member of RD's type identifier. Or, if vptr CFI is
1675   /// enabled, emit a check that VTable is a member of RD's type identifier.
1676   void EmitTypeMetadataCodeForVCall(const CXXRecordDecl *RD,
1677                                     llvm::Value *VTable, SourceLocation Loc);
1678 
1679   /// Returns whether we should perform a type checked load when loading a
1680   /// virtual function for virtual calls to members of RD. This is generally
1681   /// true when both vcall CFI and whole-program-vtables are enabled.
1682   bool ShouldEmitVTableTypeCheckedLoad(const CXXRecordDecl *RD);
1683 
1684   /// Emit a type checked load from the given vtable.
1685   llvm::Value *EmitVTableTypeCheckedLoad(const CXXRecordDecl *RD, llvm::Value *VTable,
1686                                          uint64_t VTableByteOffset);
1687 
1688   /// CanDevirtualizeMemberFunctionCalls - Checks whether virtual calls on given
1689   /// expr can be devirtualized.
1690   bool CanDevirtualizeMemberFunctionCall(const Expr *Base,
1691                                          const CXXMethodDecl *MD);
1692 
1693   /// EnterDtorCleanups - Enter the cleanups necessary to complete the
1694   /// given phase of destruction for a destructor.  The end result
1695   /// should call destructors on members and base classes in reverse
1696   /// order of their construction.
1697   void EnterDtorCleanups(const CXXDestructorDecl *Dtor, CXXDtorType Type);
1698 
1699   /// ShouldInstrumentFunction - Return true if the current function should be
1700   /// instrumented with __cyg_profile_func_* calls
1701   bool ShouldInstrumentFunction();
1702 
1703   /// ShouldXRayInstrument - Return true if the current function should be
1704   /// instrumented with XRay nop sleds.
1705   bool ShouldXRayInstrumentFunction() const;
1706 
1707   /// EmitFunctionInstrumentation - Emit LLVM code to call the specified
1708   /// instrumentation function with the current function and the call site, if
1709   /// function instrumentation is enabled.
1710   void EmitFunctionInstrumentation(const char *Fn);
1711 
1712   /// EmitMCountInstrumentation - Emit call to .mcount.
1713   void EmitMCountInstrumentation();
1714 
1715   /// EmitFunctionProlog - Emit the target specific LLVM code to load the
1716   /// arguments for the given function. This is also responsible for naming the
1717   /// LLVM function arguments.
1718   void EmitFunctionProlog(const CGFunctionInfo &FI,
1719                           llvm::Function *Fn,
1720                           const FunctionArgList &Args);
1721 
1722   /// EmitFunctionEpilog - Emit the target specific LLVM code to return the
1723   /// given temporary.
1724   void EmitFunctionEpilog(const CGFunctionInfo &FI, bool EmitRetDbgLoc,
1725                           SourceLocation EndLoc);
1726 
1727   /// EmitStartEHSpec - Emit the start of the exception spec.
1728   void EmitStartEHSpec(const Decl *D);
1729 
1730   /// EmitEndEHSpec - Emit the end of the exception spec.
1731   void EmitEndEHSpec(const Decl *D);
1732 
1733   /// getTerminateLandingPad - Return a landing pad that just calls terminate.
1734   llvm::BasicBlock *getTerminateLandingPad();
1735 
1736   /// getTerminateHandler - Return a handler (not a landing pad, just
1737   /// a catch handler) that just calls terminate.  This is used when
1738   /// a terminate scope encloses a try.
1739   llvm::BasicBlock *getTerminateHandler();
1740 
1741   llvm::Type *ConvertTypeForMem(QualType T);
1742   llvm::Type *ConvertType(QualType T);
1743   llvm::Type *ConvertType(const TypeDecl *T) {
1744     return ConvertType(getContext().getTypeDeclType(T));
1745   }
1746 
1747   /// LoadObjCSelf - Load the value of self. This function is only valid while
1748   /// generating code for an Objective-C method.
1749   llvm::Value *LoadObjCSelf();
1750 
1751   /// TypeOfSelfObject - Return type of object that this self represents.
1752   QualType TypeOfSelfObject();
1753 
1754   /// hasAggregateLLVMType - Return true if the specified AST type will map into
1755   /// an aggregate LLVM type or is void.
1756   static TypeEvaluationKind getEvaluationKind(QualType T);
1757 
1758   static bool hasScalarEvaluationKind(QualType T) {
1759     return getEvaluationKind(T) == TEK_Scalar;
1760   }
1761 
1762   static bool hasAggregateEvaluationKind(QualType T) {
1763     return getEvaluationKind(T) == TEK_Aggregate;
1764   }
1765 
1766   /// createBasicBlock - Create an LLVM basic block.
1767   llvm::BasicBlock *createBasicBlock(const Twine &name = "",
1768                                      llvm::Function *parent = nullptr,
1769                                      llvm::BasicBlock *before = nullptr) {
1770 #ifdef NDEBUG
1771     return llvm::BasicBlock::Create(getLLVMContext(), "", parent, before);
1772 #else
1773     return llvm::BasicBlock::Create(getLLVMContext(), name, parent, before);
1774 #endif
1775   }
1776 
1777   /// getBasicBlockForLabel - Return the LLVM basicblock that the specified
1778   /// label maps to.
1779   JumpDest getJumpDestForLabel(const LabelDecl *S);
1780 
1781   /// SimplifyForwardingBlocks - If the given basic block is only a branch to
1782   /// another basic block, simplify it. This assumes that no other code could
1783   /// potentially reference the basic block.
1784   void SimplifyForwardingBlocks(llvm::BasicBlock *BB);
1785 
1786   /// EmitBlock - Emit the given block \arg BB and set it as the insert point,
1787   /// adding a fall-through branch from the current insert block if
1788   /// necessary. It is legal to call this function even if there is no current
1789   /// insertion point.
1790   ///
1791   /// IsFinished - If true, indicates that the caller has finished emitting
1792   /// branches to the given block and does not expect to emit code into it. This
1793   /// means the block can be ignored if it is unreachable.
1794   void EmitBlock(llvm::BasicBlock *BB, bool IsFinished=false);
1795 
1796   /// EmitBlockAfterUses - Emit the given block somewhere hopefully
1797   /// near its uses, and leave the insertion point in it.
1798   void EmitBlockAfterUses(llvm::BasicBlock *BB);
1799 
1800   /// EmitBranch - Emit a branch to the specified basic block from the current
1801   /// insert block, taking care to avoid creation of branches from dummy
1802   /// blocks. It is legal to call this function even if there is no current
1803   /// insertion point.
1804   ///
1805   /// This function clears the current insertion point. The caller should follow
1806   /// calls to this function with calls to Emit*Block prior to generation new
1807   /// code.
1808   void EmitBranch(llvm::BasicBlock *Block);
1809 
1810   /// HaveInsertPoint - True if an insertion point is defined. If not, this
1811   /// indicates that the current code being emitted is unreachable.
1812   bool HaveInsertPoint() const {
1813     return Builder.GetInsertBlock() != nullptr;
1814   }
1815 
1816   /// EnsureInsertPoint - Ensure that an insertion point is defined so that
1817   /// emitted IR has a place to go. Note that by definition, if this function
1818   /// creates a block then that block is unreachable; callers may do better to
1819   /// detect when no insertion point is defined and simply skip IR generation.
1820   void EnsureInsertPoint() {
1821     if (!HaveInsertPoint())
1822       EmitBlock(createBasicBlock());
1823   }
1824 
1825   /// ErrorUnsupported - Print out an error that codegen doesn't support the
1826   /// specified stmt yet.
1827   void ErrorUnsupported(const Stmt *S, const char *Type);
1828 
1829   //===--------------------------------------------------------------------===//
1830   //                                  Helpers
1831   //===--------------------------------------------------------------------===//
1832 
1833   LValue MakeAddrLValue(Address Addr, QualType T,
1834                         AlignmentSource AlignSource = AlignmentSource::Type) {
1835     return LValue::MakeAddr(Addr, T, getContext(), AlignSource,
1836                             CGM.getTBAAInfo(T));
1837   }
1838 
1839   LValue MakeAddrLValue(llvm::Value *V, QualType T, CharUnits Alignment,
1840                         AlignmentSource AlignSource = AlignmentSource::Type) {
1841     return LValue::MakeAddr(Address(V, Alignment), T, getContext(),
1842                             AlignSource, CGM.getTBAAInfo(T));
1843   }
1844 
1845   LValue MakeNaturalAlignPointeeAddrLValue(llvm::Value *V, QualType T);
1846   LValue MakeNaturalAlignAddrLValue(llvm::Value *V, QualType T);
1847   CharUnits getNaturalTypeAlignment(QualType T,
1848                                     AlignmentSource *Source = nullptr,
1849                                     bool forPointeeType = false);
1850   CharUnits getNaturalPointeeTypeAlignment(QualType T,
1851                                            AlignmentSource *Source = nullptr);
1852 
1853   Address EmitLoadOfReference(Address Ref, const ReferenceType *RefTy,
1854                               AlignmentSource *Source = nullptr);
1855   LValue EmitLoadOfReferenceLValue(Address Ref, const ReferenceType *RefTy);
1856 
1857   Address EmitLoadOfPointer(Address Ptr, const PointerType *PtrTy,
1858                             AlignmentSource *Source = nullptr);
1859   LValue EmitLoadOfPointerLValue(Address Ptr, const PointerType *PtrTy);
1860 
1861   /// CreateTempAlloca - This creates a alloca and inserts it into the entry
1862   /// block. The caller is responsible for setting an appropriate alignment on
1863   /// the alloca.
1864   llvm::AllocaInst *CreateTempAlloca(llvm::Type *Ty,
1865                                      const Twine &Name = "tmp");
1866   Address CreateTempAlloca(llvm::Type *Ty, CharUnits align,
1867                            const Twine &Name = "tmp");
1868 
1869   /// CreateDefaultAlignedTempAlloca - This creates an alloca with the
1870   /// default ABI alignment of the given LLVM type.
1871   ///
1872   /// IMPORTANT NOTE: This is *not* generally the right alignment for
1873   /// any given AST type that happens to have been lowered to the
1874   /// given IR type.  This should only ever be used for function-local,
1875   /// IR-driven manipulations like saving and restoring a value.  Do
1876   /// not hand this address off to arbitrary IRGen routines, and especially
1877   /// do not pass it as an argument to a function that might expect a
1878   /// properly ABI-aligned value.
1879   Address CreateDefaultAlignTempAlloca(llvm::Type *Ty,
1880                                        const Twine &Name = "tmp");
1881 
1882   /// InitTempAlloca - Provide an initial value for the given alloca which
1883   /// will be observable at all locations in the function.
1884   ///
1885   /// The address should be something that was returned from one of
1886   /// the CreateTempAlloca or CreateMemTemp routines, and the
1887   /// initializer must be valid in the entry block (i.e. it must
1888   /// either be a constant or an argument value).
1889   void InitTempAlloca(Address Alloca, llvm::Value *Value);
1890 
1891   /// CreateIRTemp - Create a temporary IR object of the given type, with
1892   /// appropriate alignment. This routine should only be used when an temporary
1893   /// value needs to be stored into an alloca (for example, to avoid explicit
1894   /// PHI construction), but the type is the IR type, not the type appropriate
1895   /// for storing in memory.
1896   ///
1897   /// That is, this is exactly equivalent to CreateMemTemp, but calling
1898   /// ConvertType instead of ConvertTypeForMem.
1899   Address CreateIRTemp(QualType T, const Twine &Name = "tmp");
1900 
1901   /// CreateMemTemp - Create a temporary memory object of the given type, with
1902   /// appropriate alignment.
1903   Address CreateMemTemp(QualType T, const Twine &Name = "tmp");
1904   Address CreateMemTemp(QualType T, CharUnits Align, const Twine &Name = "tmp");
1905 
1906   /// CreateAggTemp - Create a temporary memory object for the given
1907   /// aggregate type.
1908   AggValueSlot CreateAggTemp(QualType T, const Twine &Name = "tmp") {
1909     return AggValueSlot::forAddr(CreateMemTemp(T, Name),
1910                                  T.getQualifiers(),
1911                                  AggValueSlot::IsNotDestructed,
1912                                  AggValueSlot::DoesNotNeedGCBarriers,
1913                                  AggValueSlot::IsNotAliased);
1914   }
1915 
1916   /// Emit a cast to void* in the appropriate address space.
1917   llvm::Value *EmitCastToVoidPtr(llvm::Value *value);
1918 
1919   /// EvaluateExprAsBool - Perform the usual unary conversions on the specified
1920   /// expression and compare the result against zero, returning an Int1Ty value.
1921   llvm::Value *EvaluateExprAsBool(const Expr *E);
1922 
1923   /// EmitIgnoredExpr - Emit an expression in a context which ignores the result.
1924   void EmitIgnoredExpr(const Expr *E);
1925 
1926   /// EmitAnyExpr - Emit code to compute the specified expression which can have
1927   /// any type.  The result is returned as an RValue struct.  If this is an
1928   /// aggregate expression, the aggloc/agglocvolatile arguments indicate where
1929   /// the result should be returned.
1930   ///
1931   /// \param ignoreResult True if the resulting value isn't used.
1932   RValue EmitAnyExpr(const Expr *E,
1933                      AggValueSlot aggSlot = AggValueSlot::ignored(),
1934                      bool ignoreResult = false);
1935 
1936   // EmitVAListRef - Emit a "reference" to a va_list; this is either the address
1937   // or the value of the expression, depending on how va_list is defined.
1938   Address EmitVAListRef(const Expr *E);
1939 
1940   /// Emit a "reference" to a __builtin_ms_va_list; this is
1941   /// always the value of the expression, because a __builtin_ms_va_list is a
1942   /// pointer to a char.
1943   Address EmitMSVAListRef(const Expr *E);
1944 
1945   /// EmitAnyExprToTemp - Similary to EmitAnyExpr(), however, the result will
1946   /// always be accessible even if no aggregate location is provided.
1947   RValue EmitAnyExprToTemp(const Expr *E);
1948 
1949   /// EmitAnyExprToMem - Emits the code necessary to evaluate an
1950   /// arbitrary expression into the given memory location.
1951   void EmitAnyExprToMem(const Expr *E, Address Location,
1952                         Qualifiers Quals, bool IsInitializer);
1953 
1954   void EmitAnyExprToExn(const Expr *E, Address Addr);
1955 
1956   /// EmitExprAsInit - Emits the code necessary to initialize a
1957   /// location in memory with the given initializer.
1958   void EmitExprAsInit(const Expr *init, const ValueDecl *D, LValue lvalue,
1959                       bool capturedByInit);
1960 
1961   /// hasVolatileMember - returns true if aggregate type has a volatile
1962   /// member.
1963   bool hasVolatileMember(QualType T) {
1964     if (const RecordType *RT = T->getAs<RecordType>()) {
1965       const RecordDecl *RD = cast<RecordDecl>(RT->getDecl());
1966       return RD->hasVolatileMember();
1967     }
1968     return false;
1969   }
1970   /// EmitAggregateCopy - Emit an aggregate assignment.
1971   ///
1972   /// The difference to EmitAggregateCopy is that tail padding is not copied.
1973   /// This is required for correctness when assigning non-POD structures in C++.
1974   void EmitAggregateAssign(Address DestPtr, Address SrcPtr,
1975                            QualType EltTy) {
1976     bool IsVolatile = hasVolatileMember(EltTy);
1977     EmitAggregateCopy(DestPtr, SrcPtr, EltTy, IsVolatile, true);
1978   }
1979 
1980   void EmitAggregateCopyCtor(Address DestPtr, Address SrcPtr,
1981                              QualType DestTy, QualType SrcTy) {
1982     EmitAggregateCopy(DestPtr, SrcPtr, SrcTy, /*IsVolatile=*/false,
1983                       /*IsAssignment=*/false);
1984   }
1985 
1986   /// EmitAggregateCopy - Emit an aggregate copy.
1987   ///
1988   /// \param isVolatile - True iff either the source or the destination is
1989   /// volatile.
1990   /// \param isAssignment - If false, allow padding to be copied.  This often
1991   /// yields more efficient.
1992   void EmitAggregateCopy(Address DestPtr, Address SrcPtr,
1993                          QualType EltTy, bool isVolatile=false,
1994                          bool isAssignment = false);
1995 
1996   /// GetAddrOfLocalVar - Return the address of a local variable.
1997   Address GetAddrOfLocalVar(const VarDecl *VD) {
1998     auto it = LocalDeclMap.find(VD);
1999     assert(it != LocalDeclMap.end() &&
2000            "Invalid argument to GetAddrOfLocalVar(), no decl!");
2001     return it->second;
2002   }
2003 
2004   /// getOpaqueLValueMapping - Given an opaque value expression (which
2005   /// must be mapped to an l-value), return its mapping.
2006   const LValue &getOpaqueLValueMapping(const OpaqueValueExpr *e) {
2007     assert(OpaqueValueMapping::shouldBindAsLValue(e));
2008 
2009     llvm::DenseMap<const OpaqueValueExpr*,LValue>::iterator
2010       it = OpaqueLValues.find(e);
2011     assert(it != OpaqueLValues.end() && "no mapping for opaque value!");
2012     return it->second;
2013   }
2014 
2015   /// getOpaqueRValueMapping - Given an opaque value expression (which
2016   /// must be mapped to an r-value), return its mapping.
2017   const RValue &getOpaqueRValueMapping(const OpaqueValueExpr *e) {
2018     assert(!OpaqueValueMapping::shouldBindAsLValue(e));
2019 
2020     llvm::DenseMap<const OpaqueValueExpr*,RValue>::iterator
2021       it = OpaqueRValues.find(e);
2022     assert(it != OpaqueRValues.end() && "no mapping for opaque value!");
2023     return it->second;
2024   }
2025 
2026   /// Get the index of the current ArrayInitLoopExpr, if any.
2027   llvm::Value *getArrayInitIndex() { return ArrayInitIndex; }
2028 
2029   /// getAccessedFieldNo - Given an encoded value and a result number, return
2030   /// the input field number being accessed.
2031   static unsigned getAccessedFieldNo(unsigned Idx, const llvm::Constant *Elts);
2032 
2033   llvm::BlockAddress *GetAddrOfLabel(const LabelDecl *L);
2034   llvm::BasicBlock *GetIndirectGotoBlock();
2035 
2036   /// Check if \p E is a reference, or a C++ "this" pointer wrapped in value-
2037   /// preserving casts.
2038   static bool IsDeclRefOrWrappedCXXThis(const Expr *E);
2039 
2040   /// EmitNullInitialization - Generate code to set a value of the given type to
2041   /// null, If the type contains data member pointers, they will be initialized
2042   /// to -1 in accordance with the Itanium C++ ABI.
2043   void EmitNullInitialization(Address DestPtr, QualType Ty);
2044 
2045   /// Emits a call to an LLVM variable-argument intrinsic, either
2046   /// \c llvm.va_start or \c llvm.va_end.
2047   /// \param ArgValue A reference to the \c va_list as emitted by either
2048   /// \c EmitVAListRef or \c EmitMSVAListRef.
2049   /// \param IsStart If \c true, emits a call to \c llvm.va_start; otherwise,
2050   /// calls \c llvm.va_end.
2051   llvm::Value *EmitVAStartEnd(llvm::Value *ArgValue, bool IsStart);
2052 
2053   /// Generate code to get an argument from the passed in pointer
2054   /// and update it accordingly.
2055   /// \param VE The \c VAArgExpr for which to generate code.
2056   /// \param VAListAddr Receives a reference to the \c va_list as emitted by
2057   /// either \c EmitVAListRef or \c EmitMSVAListRef.
2058   /// \returns A pointer to the argument.
2059   // FIXME: We should be able to get rid of this method and use the va_arg
2060   // instruction in LLVM instead once it works well enough.
2061   Address EmitVAArg(VAArgExpr *VE, Address &VAListAddr);
2062 
2063   /// emitArrayLength - Compute the length of an array, even if it's a
2064   /// VLA, and drill down to the base element type.
2065   llvm::Value *emitArrayLength(const ArrayType *arrayType,
2066                                QualType &baseType,
2067                                Address &addr);
2068 
2069   /// EmitVLASize - Capture all the sizes for the VLA expressions in
2070   /// the given variably-modified type and store them in the VLASizeMap.
2071   ///
2072   /// This function can be called with a null (unreachable) insert point.
2073   void EmitVariablyModifiedType(QualType Ty);
2074 
2075   /// getVLASize - Returns an LLVM value that corresponds to the size,
2076   /// in non-variably-sized elements, of a variable length array type,
2077   /// plus that largest non-variably-sized element type.  Assumes that
2078   /// the type has already been emitted with EmitVariablyModifiedType.
2079   std::pair<llvm::Value*,QualType> getVLASize(const VariableArrayType *vla);
2080   std::pair<llvm::Value*,QualType> getVLASize(QualType vla);
2081 
2082   /// LoadCXXThis - Load the value of 'this'. This function is only valid while
2083   /// generating code for an C++ member function.
2084   llvm::Value *LoadCXXThis() {
2085     assert(CXXThisValue && "no 'this' value for this function");
2086     return CXXThisValue;
2087   }
2088   Address LoadCXXThisAddress();
2089 
2090   /// LoadCXXVTT - Load the VTT parameter to base constructors/destructors have
2091   /// virtual bases.
2092   // FIXME: Every place that calls LoadCXXVTT is something
2093   // that needs to be abstracted properly.
2094   llvm::Value *LoadCXXVTT() {
2095     assert(CXXStructorImplicitParamValue && "no VTT value for this function");
2096     return CXXStructorImplicitParamValue;
2097   }
2098 
2099   /// GetAddressOfBaseOfCompleteClass - Convert the given pointer to a
2100   /// complete class to the given direct base.
2101   Address
2102   GetAddressOfDirectBaseInCompleteClass(Address Value,
2103                                         const CXXRecordDecl *Derived,
2104                                         const CXXRecordDecl *Base,
2105                                         bool BaseIsVirtual);
2106 
2107   static bool ShouldNullCheckClassCastValue(const CastExpr *Cast);
2108 
2109   /// GetAddressOfBaseClass - This function will add the necessary delta to the
2110   /// load of 'this' and returns address of the base class.
2111   Address GetAddressOfBaseClass(Address Value,
2112                                 const CXXRecordDecl *Derived,
2113                                 CastExpr::path_const_iterator PathBegin,
2114                                 CastExpr::path_const_iterator PathEnd,
2115                                 bool NullCheckValue, SourceLocation Loc);
2116 
2117   Address GetAddressOfDerivedClass(Address Value,
2118                                    const CXXRecordDecl *Derived,
2119                                    CastExpr::path_const_iterator PathBegin,
2120                                    CastExpr::path_const_iterator PathEnd,
2121                                    bool NullCheckValue);
2122 
2123   /// GetVTTParameter - Return the VTT parameter that should be passed to a
2124   /// base constructor/destructor with virtual bases.
2125   /// FIXME: VTTs are Itanium ABI-specific, so the definition should move
2126   /// to ItaniumCXXABI.cpp together with all the references to VTT.
2127   llvm::Value *GetVTTParameter(GlobalDecl GD, bool ForVirtualBase,
2128                                bool Delegating);
2129 
2130   void EmitDelegateCXXConstructorCall(const CXXConstructorDecl *Ctor,
2131                                       CXXCtorType CtorType,
2132                                       const FunctionArgList &Args,
2133                                       SourceLocation Loc);
2134   // It's important not to confuse this and the previous function. Delegating
2135   // constructors are the C++0x feature. The constructor delegate optimization
2136   // is used to reduce duplication in the base and complete consturctors where
2137   // they are substantially the same.
2138   void EmitDelegatingCXXConstructorCall(const CXXConstructorDecl *Ctor,
2139                                         const FunctionArgList &Args);
2140 
2141   /// Emit a call to an inheriting constructor (that is, one that invokes a
2142   /// constructor inherited from a base class) by inlining its definition. This
2143   /// is necessary if the ABI does not support forwarding the arguments to the
2144   /// base class constructor (because they're variadic or similar).
2145   void EmitInlinedInheritingCXXConstructorCall(const CXXConstructorDecl *Ctor,
2146                                                CXXCtorType CtorType,
2147                                                bool ForVirtualBase,
2148                                                bool Delegating,
2149                                                CallArgList &Args);
2150 
2151   /// Emit a call to a constructor inherited from a base class, passing the
2152   /// current constructor's arguments along unmodified (without even making
2153   /// a copy).
2154   void EmitInheritedCXXConstructorCall(const CXXConstructorDecl *D,
2155                                        bool ForVirtualBase, Address This,
2156                                        bool InheritedFromVBase,
2157                                        const CXXInheritedCtorInitExpr *E);
2158 
2159   void EmitCXXConstructorCall(const CXXConstructorDecl *D, CXXCtorType Type,
2160                               bool ForVirtualBase, bool Delegating,
2161                               Address This, const CXXConstructExpr *E);
2162 
2163   void EmitCXXConstructorCall(const CXXConstructorDecl *D, CXXCtorType Type,
2164                               bool ForVirtualBase, bool Delegating,
2165                               Address This, CallArgList &Args);
2166 
2167   /// Emit assumption load for all bases. Requires to be be called only on
2168   /// most-derived class and not under construction of the object.
2169   void EmitVTableAssumptionLoads(const CXXRecordDecl *ClassDecl, Address This);
2170 
2171   /// Emit assumption that vptr load == global vtable.
2172   void EmitVTableAssumptionLoad(const VPtr &vptr, Address This);
2173 
2174   void EmitSynthesizedCXXCopyCtorCall(const CXXConstructorDecl *D,
2175                                       Address This, Address Src,
2176                                       const CXXConstructExpr *E);
2177 
2178   void EmitCXXAggrConstructorCall(const CXXConstructorDecl *D,
2179                                   const ArrayType *ArrayTy,
2180                                   Address ArrayPtr,
2181                                   const CXXConstructExpr *E,
2182                                   bool ZeroInitialization = false);
2183 
2184   void EmitCXXAggrConstructorCall(const CXXConstructorDecl *D,
2185                                   llvm::Value *NumElements,
2186                                   Address ArrayPtr,
2187                                   const CXXConstructExpr *E,
2188                                   bool ZeroInitialization = false);
2189 
2190   static Destroyer destroyCXXObject;
2191 
2192   void EmitCXXDestructorCall(const CXXDestructorDecl *D, CXXDtorType Type,
2193                              bool ForVirtualBase, bool Delegating,
2194                              Address This);
2195 
2196   void EmitNewArrayInitializer(const CXXNewExpr *E, QualType elementType,
2197                                llvm::Type *ElementTy, Address NewPtr,
2198                                llvm::Value *NumElements,
2199                                llvm::Value *AllocSizeWithoutCookie);
2200 
2201   void EmitCXXTemporary(const CXXTemporary *Temporary, QualType TempType,
2202                         Address Ptr);
2203 
2204   llvm::Value *EmitLifetimeStart(uint64_t Size, llvm::Value *Addr);
2205   void EmitLifetimeEnd(llvm::Value *Size, llvm::Value *Addr);
2206 
2207   llvm::Value *EmitCXXNewExpr(const CXXNewExpr *E);
2208   void EmitCXXDeleteExpr(const CXXDeleteExpr *E);
2209 
2210   void EmitDeleteCall(const FunctionDecl *DeleteFD, llvm::Value *Ptr,
2211                       QualType DeleteTy, llvm::Value *NumElements = nullptr,
2212                       CharUnits CookieSize = CharUnits());
2213 
2214   RValue EmitBuiltinNewDeleteCall(const FunctionProtoType *Type,
2215                                   const Expr *Arg, bool IsDelete);
2216 
2217   llvm::Value *EmitCXXTypeidExpr(const CXXTypeidExpr *E);
2218   llvm::Value *EmitDynamicCast(Address V, const CXXDynamicCastExpr *DCE);
2219   Address EmitCXXUuidofExpr(const CXXUuidofExpr *E);
2220 
2221   /// \brief Situations in which we might emit a check for the suitability of a
2222   ///        pointer or glvalue.
2223   enum TypeCheckKind {
2224     /// Checking the operand of a load. Must be suitably sized and aligned.
2225     TCK_Load,
2226     /// Checking the destination of a store. Must be suitably sized and aligned.
2227     TCK_Store,
2228     /// Checking the bound value in a reference binding. Must be suitably sized
2229     /// and aligned, but is not required to refer to an object (until the
2230     /// reference is used), per core issue 453.
2231     TCK_ReferenceBinding,
2232     /// Checking the object expression in a non-static data member access. Must
2233     /// be an object within its lifetime.
2234     TCK_MemberAccess,
2235     /// Checking the 'this' pointer for a call to a non-static member function.
2236     /// Must be an object within its lifetime.
2237     TCK_MemberCall,
2238     /// Checking the 'this' pointer for a constructor call.
2239     TCK_ConstructorCall,
2240     /// Checking the operand of a static_cast to a derived pointer type. Must be
2241     /// null or an object within its lifetime.
2242     TCK_DowncastPointer,
2243     /// Checking the operand of a static_cast to a derived reference type. Must
2244     /// be an object within its lifetime.
2245     TCK_DowncastReference,
2246     /// Checking the operand of a cast to a base object. Must be suitably sized
2247     /// and aligned.
2248     TCK_Upcast,
2249     /// Checking the operand of a cast to a virtual base object. Must be an
2250     /// object within its lifetime.
2251     TCK_UpcastToVirtualBase
2252   };
2253 
2254   /// \brief Whether any type-checking sanitizers are enabled. If \c false,
2255   /// calls to EmitTypeCheck can be skipped.
2256   bool sanitizePerformTypeCheck() const;
2257 
2258   /// \brief Emit a check that \p V is the address of storage of the
2259   /// appropriate size and alignment for an object of type \p Type.
2260   void EmitTypeCheck(TypeCheckKind TCK, SourceLocation Loc, llvm::Value *V,
2261                      QualType Type, CharUnits Alignment = CharUnits::Zero(),
2262                      SanitizerSet SkippedChecks = SanitizerSet());
2263 
2264   /// \brief Emit a check that \p Base points into an array object, which
2265   /// we can access at index \p Index. \p Accessed should be \c false if we
2266   /// this expression is used as an lvalue, for instance in "&Arr[Idx]".
2267   void EmitBoundsCheck(const Expr *E, const Expr *Base, llvm::Value *Index,
2268                        QualType IndexType, bool Accessed);
2269 
2270   llvm::Value *EmitScalarPrePostIncDec(const UnaryOperator *E, LValue LV,
2271                                        bool isInc, bool isPre);
2272   ComplexPairTy EmitComplexPrePostIncDec(const UnaryOperator *E, LValue LV,
2273                                          bool isInc, bool isPre);
2274 
2275   void EmitAlignmentAssumption(llvm::Value *PtrValue, unsigned Alignment,
2276                                llvm::Value *OffsetValue = nullptr) {
2277     Builder.CreateAlignmentAssumption(CGM.getDataLayout(), PtrValue, Alignment,
2278                                       OffsetValue);
2279   }
2280 
2281   /// Converts Location to a DebugLoc, if debug information is enabled.
2282   llvm::DebugLoc SourceLocToDebugLoc(SourceLocation Location);
2283 
2284 
2285   //===--------------------------------------------------------------------===//
2286   //                            Declaration Emission
2287   //===--------------------------------------------------------------------===//
2288 
2289   /// EmitDecl - Emit a declaration.
2290   ///
2291   /// This function can be called with a null (unreachable) insert point.
2292   void EmitDecl(const Decl &D);
2293 
2294   /// EmitVarDecl - Emit a local variable declaration.
2295   ///
2296   /// This function can be called with a null (unreachable) insert point.
2297   void EmitVarDecl(const VarDecl &D);
2298 
2299   void EmitScalarInit(const Expr *init, const ValueDecl *D, LValue lvalue,
2300                       bool capturedByInit);
2301 
2302   typedef void SpecialInitFn(CodeGenFunction &Init, const VarDecl &D,
2303                              llvm::Value *Address);
2304 
2305   /// \brief Determine whether the given initializer is trivial in the sense
2306   /// that it requires no code to be generated.
2307   bool isTrivialInitializer(const Expr *Init);
2308 
2309   /// EmitAutoVarDecl - Emit an auto variable declaration.
2310   ///
2311   /// This function can be called with a null (unreachable) insert point.
2312   void EmitAutoVarDecl(const VarDecl &D);
2313 
2314   class AutoVarEmission {
2315     friend class CodeGenFunction;
2316 
2317     const VarDecl *Variable;
2318 
2319     /// The address of the alloca.  Invalid if the variable was emitted
2320     /// as a global constant.
2321     Address Addr;
2322 
2323     llvm::Value *NRVOFlag;
2324 
2325     /// True if the variable is a __block variable.
2326     bool IsByRef;
2327 
2328     /// True if the variable is of aggregate type and has a constant
2329     /// initializer.
2330     bool IsConstantAggregate;
2331 
2332     /// Non-null if we should use lifetime annotations.
2333     llvm::Value *SizeForLifetimeMarkers;
2334 
2335     struct Invalid {};
2336     AutoVarEmission(Invalid) : Variable(nullptr), Addr(Address::invalid()) {}
2337 
2338     AutoVarEmission(const VarDecl &variable)
2339       : Variable(&variable), Addr(Address::invalid()), NRVOFlag(nullptr),
2340         IsByRef(false), IsConstantAggregate(false),
2341         SizeForLifetimeMarkers(nullptr) {}
2342 
2343     bool wasEmittedAsGlobal() const { return !Addr.isValid(); }
2344 
2345   public:
2346     static AutoVarEmission invalid() { return AutoVarEmission(Invalid()); }
2347 
2348     bool useLifetimeMarkers() const {
2349       return SizeForLifetimeMarkers != nullptr;
2350     }
2351     llvm::Value *getSizeForLifetimeMarkers() const {
2352       assert(useLifetimeMarkers());
2353       return SizeForLifetimeMarkers;
2354     }
2355 
2356     /// Returns the raw, allocated address, which is not necessarily
2357     /// the address of the object itself.
2358     Address getAllocatedAddress() const {
2359       return Addr;
2360     }
2361 
2362     /// Returns the address of the object within this declaration.
2363     /// Note that this does not chase the forwarding pointer for
2364     /// __block decls.
2365     Address getObjectAddress(CodeGenFunction &CGF) const {
2366       if (!IsByRef) return Addr;
2367 
2368       return CGF.emitBlockByrefAddress(Addr, Variable, /*forward*/ false);
2369     }
2370   };
2371   AutoVarEmission EmitAutoVarAlloca(const VarDecl &var);
2372   void EmitAutoVarInit(const AutoVarEmission &emission);
2373   void EmitAutoVarCleanups(const AutoVarEmission &emission);
2374   void emitAutoVarTypeCleanup(const AutoVarEmission &emission,
2375                               QualType::DestructionKind dtorKind);
2376 
2377   void EmitStaticVarDecl(const VarDecl &D,
2378                          llvm::GlobalValue::LinkageTypes Linkage);
2379 
2380   class ParamValue {
2381     llvm::Value *Value;
2382     unsigned Alignment;
2383     ParamValue(llvm::Value *V, unsigned A) : Value(V), Alignment(A) {}
2384   public:
2385     static ParamValue forDirect(llvm::Value *value) {
2386       return ParamValue(value, 0);
2387     }
2388     static ParamValue forIndirect(Address addr) {
2389       assert(!addr.getAlignment().isZero());
2390       return ParamValue(addr.getPointer(), addr.getAlignment().getQuantity());
2391     }
2392 
2393     bool isIndirect() const { return Alignment != 0; }
2394     llvm::Value *getAnyValue() const { return Value; }
2395 
2396     llvm::Value *getDirectValue() const {
2397       assert(!isIndirect());
2398       return Value;
2399     }
2400 
2401     Address getIndirectAddress() const {
2402       assert(isIndirect());
2403       return Address(Value, CharUnits::fromQuantity(Alignment));
2404     }
2405   };
2406 
2407   /// EmitParmDecl - Emit a ParmVarDecl or an ImplicitParamDecl.
2408   void EmitParmDecl(const VarDecl &D, ParamValue Arg, unsigned ArgNo);
2409 
2410   /// protectFromPeepholes - Protect a value that we're intending to
2411   /// store to the side, but which will probably be used later, from
2412   /// aggressive peepholing optimizations that might delete it.
2413   ///
2414   /// Pass the result to unprotectFromPeepholes to declare that
2415   /// protection is no longer required.
2416   ///
2417   /// There's no particular reason why this shouldn't apply to
2418   /// l-values, it's just that no existing peepholes work on pointers.
2419   PeepholeProtection protectFromPeepholes(RValue rvalue);
2420   void unprotectFromPeepholes(PeepholeProtection protection);
2421 
2422   //===--------------------------------------------------------------------===//
2423   //                             Statement Emission
2424   //===--------------------------------------------------------------------===//
2425 
2426   /// EmitStopPoint - Emit a debug stoppoint if we are emitting debug info.
2427   void EmitStopPoint(const Stmt *S);
2428 
2429   /// EmitStmt - Emit the code for the statement \arg S. It is legal to call
2430   /// this function even if there is no current insertion point.
2431   ///
2432   /// This function may clear the current insertion point; callers should use
2433   /// EnsureInsertPoint if they wish to subsequently generate code without first
2434   /// calling EmitBlock, EmitBranch, or EmitStmt.
2435   void EmitStmt(const Stmt *S);
2436 
2437   /// EmitSimpleStmt - Try to emit a "simple" statement which does not
2438   /// necessarily require an insertion point or debug information; typically
2439   /// because the statement amounts to a jump or a container of other
2440   /// statements.
2441   ///
2442   /// \return True if the statement was handled.
2443   bool EmitSimpleStmt(const Stmt *S);
2444 
2445   Address EmitCompoundStmt(const CompoundStmt &S, bool GetLast = false,
2446                            AggValueSlot AVS = AggValueSlot::ignored());
2447   Address EmitCompoundStmtWithoutScope(const CompoundStmt &S,
2448                                        bool GetLast = false,
2449                                        AggValueSlot AVS =
2450                                                 AggValueSlot::ignored());
2451 
2452   /// EmitLabel - Emit the block for the given label. It is legal to call this
2453   /// function even if there is no current insertion point.
2454   void EmitLabel(const LabelDecl *D); // helper for EmitLabelStmt.
2455 
2456   void EmitLabelStmt(const LabelStmt &S);
2457   void EmitAttributedStmt(const AttributedStmt &S);
2458   void EmitGotoStmt(const GotoStmt &S);
2459   void EmitIndirectGotoStmt(const IndirectGotoStmt &S);
2460   void EmitIfStmt(const IfStmt &S);
2461 
2462   void EmitWhileStmt(const WhileStmt &S,
2463                      ArrayRef<const Attr *> Attrs = None);
2464   void EmitDoStmt(const DoStmt &S, ArrayRef<const Attr *> Attrs = None);
2465   void EmitForStmt(const ForStmt &S,
2466                    ArrayRef<const Attr *> Attrs = None);
2467   void EmitReturnStmt(const ReturnStmt &S);
2468   void EmitDeclStmt(const DeclStmt &S);
2469   void EmitBreakStmt(const BreakStmt &S);
2470   void EmitContinueStmt(const ContinueStmt &S);
2471   void EmitSwitchStmt(const SwitchStmt &S);
2472   void EmitDefaultStmt(const DefaultStmt &S);
2473   void EmitCaseStmt(const CaseStmt &S);
2474   void EmitCaseStmtRange(const CaseStmt &S);
2475   void EmitAsmStmt(const AsmStmt &S);
2476 
2477   void EmitObjCForCollectionStmt(const ObjCForCollectionStmt &S);
2478   void EmitObjCAtTryStmt(const ObjCAtTryStmt &S);
2479   void EmitObjCAtThrowStmt(const ObjCAtThrowStmt &S);
2480   void EmitObjCAtSynchronizedStmt(const ObjCAtSynchronizedStmt &S);
2481   void EmitObjCAutoreleasePoolStmt(const ObjCAutoreleasePoolStmt &S);
2482 
2483   void EmitCoroutineBody(const CoroutineBodyStmt &S);
2484   RValue EmitCoroutineIntrinsic(const CallExpr *E, unsigned int IID);
2485 
2486   void EnterCXXTryStmt(const CXXTryStmt &S, bool IsFnTryBlock = false);
2487   void ExitCXXTryStmt(const CXXTryStmt &S, bool IsFnTryBlock = false);
2488 
2489   void EmitCXXTryStmt(const CXXTryStmt &S);
2490   void EmitSEHTryStmt(const SEHTryStmt &S);
2491   void EmitSEHLeaveStmt(const SEHLeaveStmt &S);
2492   void EnterSEHTryStmt(const SEHTryStmt &S);
2493   void ExitSEHTryStmt(const SEHTryStmt &S);
2494 
2495   void startOutlinedSEHHelper(CodeGenFunction &ParentCGF, bool IsFilter,
2496                               const Stmt *OutlinedStmt);
2497 
2498   llvm::Function *GenerateSEHFilterFunction(CodeGenFunction &ParentCGF,
2499                                             const SEHExceptStmt &Except);
2500 
2501   llvm::Function *GenerateSEHFinallyFunction(CodeGenFunction &ParentCGF,
2502                                              const SEHFinallyStmt &Finally);
2503 
2504   void EmitSEHExceptionCodeSave(CodeGenFunction &ParentCGF,
2505                                 llvm::Value *ParentFP,
2506                                 llvm::Value *EntryEBP);
2507   llvm::Value *EmitSEHExceptionCode();
2508   llvm::Value *EmitSEHExceptionInfo();
2509   llvm::Value *EmitSEHAbnormalTermination();
2510 
2511   /// Scan the outlined statement for captures from the parent function. For
2512   /// each capture, mark the capture as escaped and emit a call to
2513   /// llvm.localrecover. Insert the localrecover result into the LocalDeclMap.
2514   void EmitCapturedLocals(CodeGenFunction &ParentCGF, const Stmt *OutlinedStmt,
2515                           bool IsFilter);
2516 
2517   /// Recovers the address of a local in a parent function. ParentVar is the
2518   /// address of the variable used in the immediate parent function. It can
2519   /// either be an alloca or a call to llvm.localrecover if there are nested
2520   /// outlined functions. ParentFP is the frame pointer of the outermost parent
2521   /// frame.
2522   Address recoverAddrOfEscapedLocal(CodeGenFunction &ParentCGF,
2523                                     Address ParentVar,
2524                                     llvm::Value *ParentFP);
2525 
2526   void EmitCXXForRangeStmt(const CXXForRangeStmt &S,
2527                            ArrayRef<const Attr *> Attrs = None);
2528 
2529   /// Returns calculated size of the specified type.
2530   llvm::Value *getTypeSize(QualType Ty);
2531   LValue InitCapturedStruct(const CapturedStmt &S);
2532   llvm::Function *EmitCapturedStmt(const CapturedStmt &S, CapturedRegionKind K);
2533   llvm::Function *GenerateCapturedStmtFunction(const CapturedStmt &S);
2534   Address GenerateCapturedStmtArgument(const CapturedStmt &S);
2535   llvm::Function *GenerateOpenMPCapturedStmtFunction(const CapturedStmt &S);
2536   void GenerateOpenMPCapturedVars(const CapturedStmt &S,
2537                                   SmallVectorImpl<llvm::Value *> &CapturedVars);
2538   void emitOMPSimpleStore(LValue LVal, RValue RVal, QualType RValTy,
2539                           SourceLocation Loc);
2540   /// \brief Perform element by element copying of arrays with type \a
2541   /// OriginalType from \a SrcAddr to \a DestAddr using copying procedure
2542   /// generated by \a CopyGen.
2543   ///
2544   /// \param DestAddr Address of the destination array.
2545   /// \param SrcAddr Address of the source array.
2546   /// \param OriginalType Type of destination and source arrays.
2547   /// \param CopyGen Copying procedure that copies value of single array element
2548   /// to another single array element.
2549   void EmitOMPAggregateAssign(
2550       Address DestAddr, Address SrcAddr, QualType OriginalType,
2551       const llvm::function_ref<void(Address, Address)> &CopyGen);
2552   /// \brief Emit proper copying of data from one variable to another.
2553   ///
2554   /// \param OriginalType Original type of the copied variables.
2555   /// \param DestAddr Destination address.
2556   /// \param SrcAddr Source address.
2557   /// \param DestVD Destination variable used in \a CopyExpr (for arrays, has
2558   /// type of the base array element).
2559   /// \param SrcVD Source variable used in \a CopyExpr (for arrays, has type of
2560   /// the base array element).
2561   /// \param Copy Actual copygin expression for copying data from \a SrcVD to \a
2562   /// DestVD.
2563   void EmitOMPCopy(QualType OriginalType,
2564                    Address DestAddr, Address SrcAddr,
2565                    const VarDecl *DestVD, const VarDecl *SrcVD,
2566                    const Expr *Copy);
2567   /// \brief Emit atomic update code for constructs: \a X = \a X \a BO \a E or
2568   /// \a X = \a E \a BO \a E.
2569   ///
2570   /// \param X Value to be updated.
2571   /// \param E Update value.
2572   /// \param BO Binary operation for update operation.
2573   /// \param IsXLHSInRHSPart true if \a X is LHS in RHS part of the update
2574   /// expression, false otherwise.
2575   /// \param AO Atomic ordering of the generated atomic instructions.
2576   /// \param CommonGen Code generator for complex expressions that cannot be
2577   /// expressed through atomicrmw instruction.
2578   /// \returns <true, OldAtomicValue> if simple 'atomicrmw' instruction was
2579   /// generated, <false, RValue::get(nullptr)> otherwise.
2580   std::pair<bool, RValue> EmitOMPAtomicSimpleUpdateExpr(
2581       LValue X, RValue E, BinaryOperatorKind BO, bool IsXLHSInRHSPart,
2582       llvm::AtomicOrdering AO, SourceLocation Loc,
2583       const llvm::function_ref<RValue(RValue)> &CommonGen);
2584   bool EmitOMPFirstprivateClause(const OMPExecutableDirective &D,
2585                                  OMPPrivateScope &PrivateScope);
2586   void EmitOMPPrivateClause(const OMPExecutableDirective &D,
2587                             OMPPrivateScope &PrivateScope);
2588   void EmitOMPUseDevicePtrClause(
2589       const OMPClause &C, OMPPrivateScope &PrivateScope,
2590       const llvm::DenseMap<const ValueDecl *, Address> &CaptureDeviceAddrMap);
2591   /// \brief Emit code for copyin clause in \a D directive. The next code is
2592   /// generated at the start of outlined functions for directives:
2593   /// \code
2594   /// threadprivate_var1 = master_threadprivate_var1;
2595   /// operator=(threadprivate_var2, master_threadprivate_var2);
2596   /// ...
2597   /// __kmpc_barrier(&loc, global_tid);
2598   /// \endcode
2599   ///
2600   /// \param D OpenMP directive possibly with 'copyin' clause(s).
2601   /// \returns true if at least one copyin variable is found, false otherwise.
2602   bool EmitOMPCopyinClause(const OMPExecutableDirective &D);
2603   /// \brief Emit initial code for lastprivate variables. If some variable is
2604   /// not also firstprivate, then the default initialization is used. Otherwise
2605   /// initialization of this variable is performed by EmitOMPFirstprivateClause
2606   /// method.
2607   ///
2608   /// \param D Directive that may have 'lastprivate' directives.
2609   /// \param PrivateScope Private scope for capturing lastprivate variables for
2610   /// proper codegen in internal captured statement.
2611   ///
2612   /// \returns true if there is at least one lastprivate variable, false
2613   /// otherwise.
2614   bool EmitOMPLastprivateClauseInit(const OMPExecutableDirective &D,
2615                                     OMPPrivateScope &PrivateScope);
2616   /// \brief Emit final copying of lastprivate values to original variables at
2617   /// the end of the worksharing or simd directive.
2618   ///
2619   /// \param D Directive that has at least one 'lastprivate' directives.
2620   /// \param IsLastIterCond Boolean condition that must be set to 'i1 true' if
2621   /// it is the last iteration of the loop code in associated directive, or to
2622   /// 'i1 false' otherwise. If this item is nullptr, no final check is required.
2623   void EmitOMPLastprivateClauseFinal(const OMPExecutableDirective &D,
2624                                      bool NoFinals,
2625                                      llvm::Value *IsLastIterCond = nullptr);
2626   /// Emit initial code for linear clauses.
2627   void EmitOMPLinearClause(const OMPLoopDirective &D,
2628                            CodeGenFunction::OMPPrivateScope &PrivateScope);
2629   /// Emit final code for linear clauses.
2630   /// \param CondGen Optional conditional code for final part of codegen for
2631   /// linear clause.
2632   void EmitOMPLinearClauseFinal(
2633       const OMPLoopDirective &D,
2634       const llvm::function_ref<llvm::Value *(CodeGenFunction &)> &CondGen);
2635   /// \brief Emit initial code for reduction variables. Creates reduction copies
2636   /// and initializes them with the values according to OpenMP standard.
2637   ///
2638   /// \param D Directive (possibly) with the 'reduction' clause.
2639   /// \param PrivateScope Private scope for capturing reduction variables for
2640   /// proper codegen in internal captured statement.
2641   ///
2642   void EmitOMPReductionClauseInit(const OMPExecutableDirective &D,
2643                                   OMPPrivateScope &PrivateScope);
2644   /// \brief Emit final update of reduction values to original variables at
2645   /// the end of the directive.
2646   ///
2647   /// \param D Directive that has at least one 'reduction' directives.
2648   /// \param ReductionKind The kind of reduction to perform.
2649   void EmitOMPReductionClauseFinal(const OMPExecutableDirective &D,
2650                                    const OpenMPDirectiveKind ReductionKind);
2651   /// \brief Emit initial code for linear variables. Creates private copies
2652   /// and initializes them with the values according to OpenMP standard.
2653   ///
2654   /// \param D Directive (possibly) with the 'linear' clause.
2655   void EmitOMPLinearClauseInit(const OMPLoopDirective &D);
2656 
2657   typedef const llvm::function_ref<void(CodeGenFunction & /*CGF*/,
2658                                         llvm::Value * /*OutlinedFn*/,
2659                                         const OMPTaskDataTy & /*Data*/)>
2660       TaskGenTy;
2661   void EmitOMPTaskBasedDirective(const OMPExecutableDirective &S,
2662                                  const RegionCodeGenTy &BodyGen,
2663                                  const TaskGenTy &TaskGen, OMPTaskDataTy &Data);
2664 
2665   void EmitOMPParallelDirective(const OMPParallelDirective &S);
2666   void EmitOMPSimdDirective(const OMPSimdDirective &S);
2667   void EmitOMPForDirective(const OMPForDirective &S);
2668   void EmitOMPForSimdDirective(const OMPForSimdDirective &S);
2669   void EmitOMPSectionsDirective(const OMPSectionsDirective &S);
2670   void EmitOMPSectionDirective(const OMPSectionDirective &S);
2671   void EmitOMPSingleDirective(const OMPSingleDirective &S);
2672   void EmitOMPMasterDirective(const OMPMasterDirective &S);
2673   void EmitOMPCriticalDirective(const OMPCriticalDirective &S);
2674   void EmitOMPParallelForDirective(const OMPParallelForDirective &S);
2675   void EmitOMPParallelForSimdDirective(const OMPParallelForSimdDirective &S);
2676   void EmitOMPParallelSectionsDirective(const OMPParallelSectionsDirective &S);
2677   void EmitOMPTaskDirective(const OMPTaskDirective &S);
2678   void EmitOMPTaskyieldDirective(const OMPTaskyieldDirective &S);
2679   void EmitOMPBarrierDirective(const OMPBarrierDirective &S);
2680   void EmitOMPTaskwaitDirective(const OMPTaskwaitDirective &S);
2681   void EmitOMPTaskgroupDirective(const OMPTaskgroupDirective &S);
2682   void EmitOMPFlushDirective(const OMPFlushDirective &S);
2683   void EmitOMPOrderedDirective(const OMPOrderedDirective &S);
2684   void EmitOMPAtomicDirective(const OMPAtomicDirective &S);
2685   void EmitOMPTargetDirective(const OMPTargetDirective &S);
2686   void EmitOMPTargetDataDirective(const OMPTargetDataDirective &S);
2687   void EmitOMPTargetEnterDataDirective(const OMPTargetEnterDataDirective &S);
2688   void EmitOMPTargetExitDataDirective(const OMPTargetExitDataDirective &S);
2689   void EmitOMPTargetUpdateDirective(const OMPTargetUpdateDirective &S);
2690   void EmitOMPTargetParallelDirective(const OMPTargetParallelDirective &S);
2691   void
2692   EmitOMPTargetParallelForDirective(const OMPTargetParallelForDirective &S);
2693   void EmitOMPTeamsDirective(const OMPTeamsDirective &S);
2694   void
2695   EmitOMPCancellationPointDirective(const OMPCancellationPointDirective &S);
2696   void EmitOMPCancelDirective(const OMPCancelDirective &S);
2697   void EmitOMPTaskLoopBasedDirective(const OMPLoopDirective &S);
2698   void EmitOMPTaskLoopDirective(const OMPTaskLoopDirective &S);
2699   void EmitOMPTaskLoopSimdDirective(const OMPTaskLoopSimdDirective &S);
2700   void EmitOMPDistributeDirective(const OMPDistributeDirective &S);
2701   void EmitOMPDistributeLoop(const OMPDistributeDirective &S);
2702   void EmitOMPDistributeParallelForDirective(
2703       const OMPDistributeParallelForDirective &S);
2704   void EmitOMPDistributeParallelForSimdDirective(
2705       const OMPDistributeParallelForSimdDirective &S);
2706   void EmitOMPDistributeSimdDirective(const OMPDistributeSimdDirective &S);
2707   void EmitOMPTargetParallelForSimdDirective(
2708       const OMPTargetParallelForSimdDirective &S);
2709   void EmitOMPTargetSimdDirective(const OMPTargetSimdDirective &S);
2710   void EmitOMPTeamsDistributeDirective(const OMPTeamsDistributeDirective &S);
2711   void
2712   EmitOMPTeamsDistributeSimdDirective(const OMPTeamsDistributeSimdDirective &S);
2713   void EmitOMPTeamsDistributeParallelForSimdDirective(
2714       const OMPTeamsDistributeParallelForSimdDirective &S);
2715   void EmitOMPTeamsDistributeParallelForDirective(
2716       const OMPTeamsDistributeParallelForDirective &S);
2717   void EmitOMPTargetTeamsDirective(const OMPTargetTeamsDirective &S);
2718   void EmitOMPTargetTeamsDistributeDirective(
2719       const OMPTargetTeamsDistributeDirective &S);
2720   void EmitOMPTargetTeamsDistributeParallelForDirective(
2721       const OMPTargetTeamsDistributeParallelForDirective &S);
2722   void EmitOMPTargetTeamsDistributeParallelForSimdDirective(
2723       const OMPTargetTeamsDistributeParallelForSimdDirective &S);
2724   void EmitOMPTargetTeamsDistributeSimdDirective(
2725       const OMPTargetTeamsDistributeSimdDirective &S);
2726 
2727   /// Emit device code for the target directive.
2728   static void EmitOMPTargetDeviceFunction(CodeGenModule &CGM,
2729                                           StringRef ParentName,
2730                                           const OMPTargetDirective &S);
2731   static void
2732   EmitOMPTargetParallelDeviceFunction(CodeGenModule &CGM, StringRef ParentName,
2733                                       const OMPTargetParallelDirective &S);
2734   static void
2735   EmitOMPTargetTeamsDeviceFunction(CodeGenModule &CGM, StringRef ParentName,
2736                                    const OMPTargetTeamsDirective &S);
2737   /// \brief Emit inner loop of the worksharing/simd construct.
2738   ///
2739   /// \param S Directive, for which the inner loop must be emitted.
2740   /// \param RequiresCleanup true, if directive has some associated private
2741   /// variables.
2742   /// \param LoopCond Bollean condition for loop continuation.
2743   /// \param IncExpr Increment expression for loop control variable.
2744   /// \param BodyGen Generator for the inner body of the inner loop.
2745   /// \param PostIncGen Genrator for post-increment code (required for ordered
2746   /// loop directvies).
2747   void EmitOMPInnerLoop(
2748       const Stmt &S, bool RequiresCleanup, const Expr *LoopCond,
2749       const Expr *IncExpr,
2750       const llvm::function_ref<void(CodeGenFunction &)> &BodyGen,
2751       const llvm::function_ref<void(CodeGenFunction &)> &PostIncGen);
2752 
2753   JumpDest getOMPCancelDestination(OpenMPDirectiveKind Kind);
2754   /// Emit initial code for loop counters of loop-based directives.
2755   void EmitOMPPrivateLoopCounters(const OMPLoopDirective &S,
2756                                   OMPPrivateScope &LoopScope);
2757 
2758 private:
2759   /// Helpers for blocks
2760   llvm::Value *EmitBlockLiteral(const CGBlockInfo &Info);
2761 
2762   /// Helpers for the OpenMP loop directives.
2763   void EmitOMPLoopBody(const OMPLoopDirective &D, JumpDest LoopExit);
2764   void EmitOMPSimdInit(const OMPLoopDirective &D, bool IsMonotonic = false);
2765   void EmitOMPSimdFinal(
2766       const OMPLoopDirective &D,
2767       const llvm::function_ref<llvm::Value *(CodeGenFunction &)> &CondGen);
2768   /// \brief Emit code for the worksharing loop-based directive.
2769   /// \return true, if this construct has any lastprivate clause, false -
2770   /// otherwise.
2771   bool EmitOMPWorksharingLoop(const OMPLoopDirective &S);
2772   void EmitOMPOuterLoop(bool IsMonotonic, bool DynamicOrOrdered,
2773       const OMPLoopDirective &S, OMPPrivateScope &LoopScope, bool Ordered,
2774       Address LB, Address UB, Address ST, Address IL, llvm::Value *Chunk);
2775   void EmitOMPForOuterLoop(const OpenMPScheduleTy &ScheduleKind,
2776                            bool IsMonotonic, const OMPLoopDirective &S,
2777                            OMPPrivateScope &LoopScope, bool Ordered, Address LB,
2778                            Address UB, Address ST, Address IL,
2779                            llvm::Value *Chunk);
2780   void EmitOMPDistributeOuterLoop(
2781       OpenMPDistScheduleClauseKind ScheduleKind,
2782       const OMPDistributeDirective &S, OMPPrivateScope &LoopScope,
2783       Address LB, Address UB, Address ST, Address IL, llvm::Value *Chunk);
2784   /// \brief Emit code for sections directive.
2785   void EmitSections(const OMPExecutableDirective &S);
2786 
2787 public:
2788 
2789   //===--------------------------------------------------------------------===//
2790   //                         LValue Expression Emission
2791   //===--------------------------------------------------------------------===//
2792 
2793   /// GetUndefRValue - Get an appropriate 'undef' rvalue for the given type.
2794   RValue GetUndefRValue(QualType Ty);
2795 
2796   /// EmitUnsupportedRValue - Emit a dummy r-value using the type of E
2797   /// and issue an ErrorUnsupported style diagnostic (using the
2798   /// provided Name).
2799   RValue EmitUnsupportedRValue(const Expr *E,
2800                                const char *Name);
2801 
2802   /// EmitUnsupportedLValue - Emit a dummy l-value using the type of E and issue
2803   /// an ErrorUnsupported style diagnostic (using the provided Name).
2804   LValue EmitUnsupportedLValue(const Expr *E,
2805                                const char *Name);
2806 
2807   /// EmitLValue - Emit code to compute a designator that specifies the location
2808   /// of the expression.
2809   ///
2810   /// This can return one of two things: a simple address or a bitfield
2811   /// reference.  In either case, the LLVM Value* in the LValue structure is
2812   /// guaranteed to be an LLVM pointer type.
2813   ///
2814   /// If this returns a bitfield reference, nothing about the pointee type of
2815   /// the LLVM value is known: For example, it may not be a pointer to an
2816   /// integer.
2817   ///
2818   /// If this returns a normal address, and if the lvalue's C type is fixed
2819   /// size, this method guarantees that the returned pointer type will point to
2820   /// an LLVM type of the same size of the lvalue's type.  If the lvalue has a
2821   /// variable length type, this is not possible.
2822   ///
2823   LValue EmitLValue(const Expr *E);
2824 
2825   /// \brief Same as EmitLValue but additionally we generate checking code to
2826   /// guard against undefined behavior.  This is only suitable when we know
2827   /// that the address will be used to access the object.
2828   LValue EmitCheckedLValue(const Expr *E, TypeCheckKind TCK);
2829 
2830   RValue convertTempToRValue(Address addr, QualType type,
2831                              SourceLocation Loc);
2832 
2833   void EmitAtomicInit(Expr *E, LValue lvalue);
2834 
2835   bool LValueIsSuitableForInlineAtomic(LValue Src);
2836 
2837   RValue EmitAtomicLoad(LValue LV, SourceLocation SL,
2838                         AggValueSlot Slot = AggValueSlot::ignored());
2839 
2840   RValue EmitAtomicLoad(LValue lvalue, SourceLocation loc,
2841                         llvm::AtomicOrdering AO, bool IsVolatile = false,
2842                         AggValueSlot slot = AggValueSlot::ignored());
2843 
2844   void EmitAtomicStore(RValue rvalue, LValue lvalue, bool isInit);
2845 
2846   void EmitAtomicStore(RValue rvalue, LValue lvalue, llvm::AtomicOrdering AO,
2847                        bool IsVolatile, bool isInit);
2848 
2849   std::pair<RValue, llvm::Value *> EmitAtomicCompareExchange(
2850       LValue Obj, RValue Expected, RValue Desired, SourceLocation Loc,
2851       llvm::AtomicOrdering Success =
2852           llvm::AtomicOrdering::SequentiallyConsistent,
2853       llvm::AtomicOrdering Failure =
2854           llvm::AtomicOrdering::SequentiallyConsistent,
2855       bool IsWeak = false, AggValueSlot Slot = AggValueSlot::ignored());
2856 
2857   void EmitAtomicUpdate(LValue LVal, llvm::AtomicOrdering AO,
2858                         const llvm::function_ref<RValue(RValue)> &UpdateOp,
2859                         bool IsVolatile);
2860 
2861   /// EmitToMemory - Change a scalar value from its value
2862   /// representation to its in-memory representation.
2863   llvm::Value *EmitToMemory(llvm::Value *Value, QualType Ty);
2864 
2865   /// EmitFromMemory - Change a scalar value from its memory
2866   /// representation to its value representation.
2867   llvm::Value *EmitFromMemory(llvm::Value *Value, QualType Ty);
2868 
2869   /// Check if the scalar \p Value is within the valid range for the given
2870   /// type \p Ty.
2871   ///
2872   /// Returns true if a check is needed (even if the range is unknown).
2873   bool EmitScalarRangeCheck(llvm::Value *Value, QualType Ty,
2874                             SourceLocation Loc);
2875 
2876   /// EmitLoadOfScalar - Load a scalar value from an address, taking
2877   /// care to appropriately convert from the memory representation to
2878   /// the LLVM value representation.
2879   llvm::Value *EmitLoadOfScalar(Address Addr, bool Volatile, QualType Ty,
2880                                 SourceLocation Loc,
2881                                 AlignmentSource AlignSource =
2882                                   AlignmentSource::Type,
2883                                 llvm::MDNode *TBAAInfo = nullptr,
2884                                 QualType TBAABaseTy = QualType(),
2885                                 uint64_t TBAAOffset = 0,
2886                                 bool isNontemporal = false);
2887 
2888   /// EmitLoadOfScalar - Load a scalar value from an address, taking
2889   /// care to appropriately convert from the memory representation to
2890   /// the LLVM value representation.  The l-value must be a simple
2891   /// l-value.
2892   llvm::Value *EmitLoadOfScalar(LValue lvalue, SourceLocation Loc);
2893 
2894   /// EmitStoreOfScalar - Store a scalar value to an address, taking
2895   /// care to appropriately convert from the memory representation to
2896   /// the LLVM value representation.
2897   void EmitStoreOfScalar(llvm::Value *Value, Address Addr,
2898                          bool Volatile, QualType Ty,
2899                          AlignmentSource AlignSource = AlignmentSource::Type,
2900                          llvm::MDNode *TBAAInfo = nullptr, bool isInit = false,
2901                          QualType TBAABaseTy = QualType(),
2902                          uint64_t TBAAOffset = 0, bool isNontemporal = false);
2903 
2904   /// EmitStoreOfScalar - Store a scalar value to an address, taking
2905   /// care to appropriately convert from the memory representation to
2906   /// the LLVM value representation.  The l-value must be a simple
2907   /// l-value.  The isInit flag indicates whether this is an initialization.
2908   /// If so, atomic qualifiers are ignored and the store is always non-atomic.
2909   void EmitStoreOfScalar(llvm::Value *value, LValue lvalue, bool isInit=false);
2910 
2911   /// EmitLoadOfLValue - Given an expression that represents a value lvalue,
2912   /// this method emits the address of the lvalue, then loads the result as an
2913   /// rvalue, returning the rvalue.
2914   RValue EmitLoadOfLValue(LValue V, SourceLocation Loc);
2915   RValue EmitLoadOfExtVectorElementLValue(LValue V);
2916   RValue EmitLoadOfBitfieldLValue(LValue LV);
2917   RValue EmitLoadOfGlobalRegLValue(LValue LV);
2918 
2919   /// EmitStoreThroughLValue - Store the specified rvalue into the specified
2920   /// lvalue, where both are guaranteed to the have the same type, and that type
2921   /// is 'Ty'.
2922   void EmitStoreThroughLValue(RValue Src, LValue Dst, bool isInit = false);
2923   void EmitStoreThroughExtVectorComponentLValue(RValue Src, LValue Dst);
2924   void EmitStoreThroughGlobalRegLValue(RValue Src, LValue Dst);
2925 
2926   /// EmitStoreThroughBitfieldLValue - Store Src into Dst with same constraints
2927   /// as EmitStoreThroughLValue.
2928   ///
2929   /// \param Result [out] - If non-null, this will be set to a Value* for the
2930   /// bit-field contents after the store, appropriate for use as the result of
2931   /// an assignment to the bit-field.
2932   void EmitStoreThroughBitfieldLValue(RValue Src, LValue Dst,
2933                                       llvm::Value **Result=nullptr);
2934 
2935   /// Emit an l-value for an assignment (simple or compound) of complex type.
2936   LValue EmitComplexAssignmentLValue(const BinaryOperator *E);
2937   LValue EmitComplexCompoundAssignmentLValue(const CompoundAssignOperator *E);
2938   LValue EmitScalarCompoundAssignWithComplex(const CompoundAssignOperator *E,
2939                                              llvm::Value *&Result);
2940 
2941   // Note: only available for agg return types
2942   LValue EmitBinaryOperatorLValue(const BinaryOperator *E);
2943   LValue EmitCompoundAssignmentLValue(const CompoundAssignOperator *E);
2944   // Note: only available for agg return types
2945   LValue EmitCallExprLValue(const CallExpr *E);
2946   // Note: only available for agg return types
2947   LValue EmitVAArgExprLValue(const VAArgExpr *E);
2948   LValue EmitDeclRefLValue(const DeclRefExpr *E);
2949   LValue EmitStringLiteralLValue(const StringLiteral *E);
2950   LValue EmitObjCEncodeExprLValue(const ObjCEncodeExpr *E);
2951   LValue EmitPredefinedLValue(const PredefinedExpr *E);
2952   LValue EmitUnaryOpLValue(const UnaryOperator *E);
2953   LValue EmitArraySubscriptExpr(const ArraySubscriptExpr *E,
2954                                 bool Accessed = false);
2955   LValue EmitOMPArraySectionExpr(const OMPArraySectionExpr *E,
2956                                  bool IsLowerBound = true);
2957   LValue EmitExtVectorElementExpr(const ExtVectorElementExpr *E);
2958   LValue EmitMemberExpr(const MemberExpr *E);
2959   LValue EmitObjCIsaExpr(const ObjCIsaExpr *E);
2960   LValue EmitCompoundLiteralLValue(const CompoundLiteralExpr *E);
2961   LValue EmitInitListLValue(const InitListExpr *E);
2962   LValue EmitConditionalOperatorLValue(const AbstractConditionalOperator *E);
2963   LValue EmitCastLValue(const CastExpr *E);
2964   LValue EmitMaterializeTemporaryExpr(const MaterializeTemporaryExpr *E);
2965   LValue EmitOpaqueValueLValue(const OpaqueValueExpr *e);
2966 
2967   Address EmitExtVectorElementLValue(LValue V);
2968 
2969   RValue EmitRValueForField(LValue LV, const FieldDecl *FD, SourceLocation Loc);
2970 
2971   Address EmitArrayToPointerDecay(const Expr *Array,
2972                                   AlignmentSource *AlignSource = nullptr);
2973 
2974   class ConstantEmission {
2975     llvm::PointerIntPair<llvm::Constant*, 1, bool> ValueAndIsReference;
2976     ConstantEmission(llvm::Constant *C, bool isReference)
2977       : ValueAndIsReference(C, isReference) {}
2978   public:
2979     ConstantEmission() {}
2980     static ConstantEmission forReference(llvm::Constant *C) {
2981       return ConstantEmission(C, true);
2982     }
2983     static ConstantEmission forValue(llvm::Constant *C) {
2984       return ConstantEmission(C, false);
2985     }
2986 
2987     explicit operator bool() const {
2988       return ValueAndIsReference.getOpaqueValue() != nullptr;
2989     }
2990 
2991     bool isReference() const { return ValueAndIsReference.getInt(); }
2992     LValue getReferenceLValue(CodeGenFunction &CGF, Expr *refExpr) const {
2993       assert(isReference());
2994       return CGF.MakeNaturalAlignAddrLValue(ValueAndIsReference.getPointer(),
2995                                             refExpr->getType());
2996     }
2997 
2998     llvm::Constant *getValue() const {
2999       assert(!isReference());
3000       return ValueAndIsReference.getPointer();
3001     }
3002   };
3003 
3004   ConstantEmission tryEmitAsConstant(DeclRefExpr *refExpr);
3005 
3006   RValue EmitPseudoObjectRValue(const PseudoObjectExpr *e,
3007                                 AggValueSlot slot = AggValueSlot::ignored());
3008   LValue EmitPseudoObjectLValue(const PseudoObjectExpr *e);
3009 
3010   llvm::Value *EmitIvarOffset(const ObjCInterfaceDecl *Interface,
3011                               const ObjCIvarDecl *Ivar);
3012   LValue EmitLValueForField(LValue Base, const FieldDecl* Field);
3013   LValue EmitLValueForLambdaField(const FieldDecl *Field);
3014 
3015   /// EmitLValueForFieldInitialization - Like EmitLValueForField, except that
3016   /// if the Field is a reference, this will return the address of the reference
3017   /// and not the address of the value stored in the reference.
3018   LValue EmitLValueForFieldInitialization(LValue Base,
3019                                           const FieldDecl* Field);
3020 
3021   LValue EmitLValueForIvar(QualType ObjectTy,
3022                            llvm::Value* Base, const ObjCIvarDecl *Ivar,
3023                            unsigned CVRQualifiers);
3024 
3025   LValue EmitCXXConstructLValue(const CXXConstructExpr *E);
3026   LValue EmitCXXBindTemporaryLValue(const CXXBindTemporaryExpr *E);
3027   LValue EmitLambdaLValue(const LambdaExpr *E);
3028   LValue EmitCXXTypeidLValue(const CXXTypeidExpr *E);
3029   LValue EmitCXXUuidofLValue(const CXXUuidofExpr *E);
3030 
3031   LValue EmitObjCMessageExprLValue(const ObjCMessageExpr *E);
3032   LValue EmitObjCIvarRefLValue(const ObjCIvarRefExpr *E);
3033   LValue EmitStmtExprLValue(const StmtExpr *E);
3034   LValue EmitPointerToDataMemberBinaryExpr(const BinaryOperator *E);
3035   LValue EmitObjCSelectorLValue(const ObjCSelectorExpr *E);
3036   void   EmitDeclRefExprDbgValue(const DeclRefExpr *E, const APValue &Init);
3037 
3038   //===--------------------------------------------------------------------===//
3039   //                         Scalar Expression Emission
3040   //===--------------------------------------------------------------------===//
3041 
3042   /// EmitCall - Generate a call of the given function, expecting the given
3043   /// result type, and using the given argument list which specifies both the
3044   /// LLVM arguments and the types they were derived from.
3045   RValue EmitCall(const CGFunctionInfo &CallInfo, const CGCallee &Callee,
3046                   ReturnValueSlot ReturnValue, const CallArgList &Args,
3047                   llvm::Instruction **callOrInvoke = nullptr);
3048 
3049   RValue EmitCall(QualType FnType, const CGCallee &Callee, const CallExpr *E,
3050                   ReturnValueSlot ReturnValue,
3051                   llvm::Value *Chain = nullptr);
3052   RValue EmitCallExpr(const CallExpr *E,
3053                       ReturnValueSlot ReturnValue = ReturnValueSlot());
3054   RValue EmitSimpleCallExpr(const CallExpr *E, ReturnValueSlot ReturnValue);
3055   CGCallee EmitCallee(const Expr *E);
3056 
3057   void checkTargetFeatures(const CallExpr *E, const FunctionDecl *TargetDecl);
3058 
3059   llvm::CallInst *EmitRuntimeCall(llvm::Value *callee,
3060                                   const Twine &name = "");
3061   llvm::CallInst *EmitRuntimeCall(llvm::Value *callee,
3062                                   ArrayRef<llvm::Value*> args,
3063                                   const Twine &name = "");
3064   llvm::CallInst *EmitNounwindRuntimeCall(llvm::Value *callee,
3065                                           const Twine &name = "");
3066   llvm::CallInst *EmitNounwindRuntimeCall(llvm::Value *callee,
3067                                           ArrayRef<llvm::Value*> args,
3068                                           const Twine &name = "");
3069 
3070   llvm::CallSite EmitCallOrInvoke(llvm::Value *Callee,
3071                                   ArrayRef<llvm::Value *> Args,
3072                                   const Twine &Name = "");
3073   llvm::CallSite EmitRuntimeCallOrInvoke(llvm::Value *callee,
3074                                          ArrayRef<llvm::Value*> args,
3075                                          const Twine &name = "");
3076   llvm::CallSite EmitRuntimeCallOrInvoke(llvm::Value *callee,
3077                                          const Twine &name = "");
3078   void EmitNoreturnRuntimeCallOrInvoke(llvm::Value *callee,
3079                                        ArrayRef<llvm::Value*> args);
3080 
3081   CGCallee BuildAppleKextVirtualCall(const CXXMethodDecl *MD,
3082                                      NestedNameSpecifier *Qual,
3083                                      llvm::Type *Ty);
3084 
3085   CGCallee BuildAppleKextVirtualDestructorCall(const CXXDestructorDecl *DD,
3086                                                CXXDtorType Type,
3087                                                const CXXRecordDecl *RD);
3088 
3089   RValue
3090   EmitCXXMemberOrOperatorCall(const CXXMethodDecl *Method,
3091                               const CGCallee &Callee,
3092                               ReturnValueSlot ReturnValue, llvm::Value *This,
3093                               llvm::Value *ImplicitParam,
3094                               QualType ImplicitParamTy, const CallExpr *E,
3095                               CallArgList *RtlArgs);
3096   RValue EmitCXXDestructorCall(const CXXDestructorDecl *DD,
3097                                const CGCallee &Callee,
3098                                llvm::Value *This, llvm::Value *ImplicitParam,
3099                                QualType ImplicitParamTy, const CallExpr *E,
3100                                StructorType Type);
3101   RValue EmitCXXMemberCallExpr(const CXXMemberCallExpr *E,
3102                                ReturnValueSlot ReturnValue);
3103   RValue EmitCXXMemberOrOperatorMemberCallExpr(const CallExpr *CE,
3104                                                const CXXMethodDecl *MD,
3105                                                ReturnValueSlot ReturnValue,
3106                                                bool HasQualifier,
3107                                                NestedNameSpecifier *Qualifier,
3108                                                bool IsArrow, const Expr *Base);
3109   // Compute the object pointer.
3110   Address EmitCXXMemberDataPointerAddress(const Expr *E, Address base,
3111                                           llvm::Value *memberPtr,
3112                                           const MemberPointerType *memberPtrType,
3113                                           AlignmentSource *AlignSource = nullptr);
3114   RValue EmitCXXMemberPointerCallExpr(const CXXMemberCallExpr *E,
3115                                       ReturnValueSlot ReturnValue);
3116 
3117   RValue EmitCXXOperatorMemberCallExpr(const CXXOperatorCallExpr *E,
3118                                        const CXXMethodDecl *MD,
3119                                        ReturnValueSlot ReturnValue);
3120   RValue EmitCXXPseudoDestructorExpr(const CXXPseudoDestructorExpr *E);
3121 
3122   RValue EmitCUDAKernelCallExpr(const CUDAKernelCallExpr *E,
3123                                 ReturnValueSlot ReturnValue);
3124 
3125   RValue EmitNVPTXDevicePrintfCallExpr(const CallExpr *E,
3126                                        ReturnValueSlot ReturnValue);
3127 
3128   RValue EmitBuiltinExpr(const FunctionDecl *FD,
3129                          unsigned BuiltinID, const CallExpr *E,
3130                          ReturnValueSlot ReturnValue);
3131 
3132   RValue EmitBlockCallExpr(const CallExpr *E, ReturnValueSlot ReturnValue);
3133 
3134   /// EmitTargetBuiltinExpr - Emit the given builtin call. Returns 0 if the call
3135   /// is unhandled by the current target.
3136   llvm::Value *EmitTargetBuiltinExpr(unsigned BuiltinID, const CallExpr *E);
3137 
3138   llvm::Value *EmitAArch64CompareBuiltinExpr(llvm::Value *Op, llvm::Type *Ty,
3139                                              const llvm::CmpInst::Predicate Fp,
3140                                              const llvm::CmpInst::Predicate Ip,
3141                                              const llvm::Twine &Name = "");
3142   llvm::Value *EmitARMBuiltinExpr(unsigned BuiltinID, const CallExpr *E);
3143 
3144   llvm::Value *EmitCommonNeonBuiltinExpr(unsigned BuiltinID,
3145                                          unsigned LLVMIntrinsic,
3146                                          unsigned AltLLVMIntrinsic,
3147                                          const char *NameHint,
3148                                          unsigned Modifier,
3149                                          const CallExpr *E,
3150                                          SmallVectorImpl<llvm::Value *> &Ops,
3151                                          Address PtrOp0, Address PtrOp1);
3152   llvm::Function *LookupNeonLLVMIntrinsic(unsigned IntrinsicID,
3153                                           unsigned Modifier, llvm::Type *ArgTy,
3154                                           const CallExpr *E);
3155   llvm::Value *EmitNeonCall(llvm::Function *F,
3156                             SmallVectorImpl<llvm::Value*> &O,
3157                             const char *name,
3158                             unsigned shift = 0, bool rightshift = false);
3159   llvm::Value *EmitNeonSplat(llvm::Value *V, llvm::Constant *Idx);
3160   llvm::Value *EmitNeonShiftVector(llvm::Value *V, llvm::Type *Ty,
3161                                    bool negateForRightShift);
3162   llvm::Value *EmitNeonRShiftImm(llvm::Value *Vec, llvm::Value *Amt,
3163                                  llvm::Type *Ty, bool usgn, const char *name);
3164   llvm::Value *vectorWrapScalar16(llvm::Value *Op);
3165   llvm::Value *EmitAArch64BuiltinExpr(unsigned BuiltinID, const CallExpr *E);
3166 
3167   llvm::Value *BuildVector(ArrayRef<llvm::Value*> Ops);
3168   llvm::Value *EmitX86BuiltinExpr(unsigned BuiltinID, const CallExpr *E);
3169   llvm::Value *EmitPPCBuiltinExpr(unsigned BuiltinID, const CallExpr *E);
3170   llvm::Value *EmitAMDGPUBuiltinExpr(unsigned BuiltinID, const CallExpr *E);
3171   llvm::Value *EmitSystemZBuiltinExpr(unsigned BuiltinID, const CallExpr *E);
3172   llvm::Value *EmitNVPTXBuiltinExpr(unsigned BuiltinID, const CallExpr *E);
3173   llvm::Value *EmitWebAssemblyBuiltinExpr(unsigned BuiltinID,
3174                                           const CallExpr *E);
3175 
3176 private:
3177   enum class MSVCIntrin;
3178 
3179 public:
3180   llvm::Value *EmitMSVCBuiltinExpr(MSVCIntrin BuiltinID, const CallExpr *E);
3181 
3182   llvm::Value *EmitBuiltinAvailable(ArrayRef<llvm::Value *> Args);
3183 
3184   llvm::Value *EmitObjCProtocolExpr(const ObjCProtocolExpr *E);
3185   llvm::Value *EmitObjCStringLiteral(const ObjCStringLiteral *E);
3186   llvm::Value *EmitObjCBoxedExpr(const ObjCBoxedExpr *E);
3187   llvm::Value *EmitObjCArrayLiteral(const ObjCArrayLiteral *E);
3188   llvm::Value *EmitObjCDictionaryLiteral(const ObjCDictionaryLiteral *E);
3189   llvm::Value *EmitObjCCollectionLiteral(const Expr *E,
3190                                 const ObjCMethodDecl *MethodWithObjects);
3191   llvm::Value *EmitObjCSelectorExpr(const ObjCSelectorExpr *E);
3192   RValue EmitObjCMessageExpr(const ObjCMessageExpr *E,
3193                              ReturnValueSlot Return = ReturnValueSlot());
3194 
3195   /// Retrieves the default cleanup kind for an ARC cleanup.
3196   /// Except under -fobjc-arc-eh, ARC cleanups are normal-only.
3197   CleanupKind getARCCleanupKind() {
3198     return CGM.getCodeGenOpts().ObjCAutoRefCountExceptions
3199              ? NormalAndEHCleanup : NormalCleanup;
3200   }
3201 
3202   // ARC primitives.
3203   void EmitARCInitWeak(Address addr, llvm::Value *value);
3204   void EmitARCDestroyWeak(Address addr);
3205   llvm::Value *EmitARCLoadWeak(Address addr);
3206   llvm::Value *EmitARCLoadWeakRetained(Address addr);
3207   llvm::Value *EmitARCStoreWeak(Address addr, llvm::Value *value, bool ignored);
3208   void EmitARCCopyWeak(Address dst, Address src);
3209   void EmitARCMoveWeak(Address dst, Address src);
3210   llvm::Value *EmitARCRetainAutorelease(QualType type, llvm::Value *value);
3211   llvm::Value *EmitARCRetainAutoreleaseNonBlock(llvm::Value *value);
3212   llvm::Value *EmitARCStoreStrong(LValue lvalue, llvm::Value *value,
3213                                   bool resultIgnored);
3214   llvm::Value *EmitARCStoreStrongCall(Address addr, llvm::Value *value,
3215                                       bool resultIgnored);
3216   llvm::Value *EmitARCRetain(QualType type, llvm::Value *value);
3217   llvm::Value *EmitARCRetainNonBlock(llvm::Value *value);
3218   llvm::Value *EmitARCRetainBlock(llvm::Value *value, bool mandatory);
3219   void EmitARCDestroyStrong(Address addr, ARCPreciseLifetime_t precise);
3220   void EmitARCRelease(llvm::Value *value, ARCPreciseLifetime_t precise);
3221   llvm::Value *EmitARCAutorelease(llvm::Value *value);
3222   llvm::Value *EmitARCAutoreleaseReturnValue(llvm::Value *value);
3223   llvm::Value *EmitARCRetainAutoreleaseReturnValue(llvm::Value *value);
3224   llvm::Value *EmitARCRetainAutoreleasedReturnValue(llvm::Value *value);
3225   llvm::Value *EmitARCUnsafeClaimAutoreleasedReturnValue(llvm::Value *value);
3226 
3227   std::pair<LValue,llvm::Value*>
3228   EmitARCStoreAutoreleasing(const BinaryOperator *e);
3229   std::pair<LValue,llvm::Value*>
3230   EmitARCStoreStrong(const BinaryOperator *e, bool ignored);
3231   std::pair<LValue,llvm::Value*>
3232   EmitARCStoreUnsafeUnretained(const BinaryOperator *e, bool ignored);
3233 
3234   llvm::Value *EmitObjCThrowOperand(const Expr *expr);
3235   llvm::Value *EmitObjCConsumeObject(QualType T, llvm::Value *Ptr);
3236   llvm::Value *EmitObjCExtendObjectLifetime(QualType T, llvm::Value *Ptr);
3237 
3238   llvm::Value *EmitARCExtendBlockObject(const Expr *expr);
3239   llvm::Value *EmitARCReclaimReturnedObject(const Expr *e,
3240                                             bool allowUnsafeClaim);
3241   llvm::Value *EmitARCRetainScalarExpr(const Expr *expr);
3242   llvm::Value *EmitARCRetainAutoreleaseScalarExpr(const Expr *expr);
3243   llvm::Value *EmitARCUnsafeUnretainedScalarExpr(const Expr *expr);
3244 
3245   void EmitARCIntrinsicUse(ArrayRef<llvm::Value*> values);
3246 
3247   static Destroyer destroyARCStrongImprecise;
3248   static Destroyer destroyARCStrongPrecise;
3249   static Destroyer destroyARCWeak;
3250 
3251   void EmitObjCAutoreleasePoolPop(llvm::Value *Ptr);
3252   llvm::Value *EmitObjCAutoreleasePoolPush();
3253   llvm::Value *EmitObjCMRRAutoreleasePoolPush();
3254   void EmitObjCAutoreleasePoolCleanup(llvm::Value *Ptr);
3255   void EmitObjCMRRAutoreleasePoolPop(llvm::Value *Ptr);
3256 
3257   /// \brief Emits a reference binding to the passed in expression.
3258   RValue EmitReferenceBindingToExpr(const Expr *E);
3259 
3260   //===--------------------------------------------------------------------===//
3261   //                           Expression Emission
3262   //===--------------------------------------------------------------------===//
3263 
3264   // Expressions are broken into three classes: scalar, complex, aggregate.
3265 
3266   /// EmitScalarExpr - Emit the computation of the specified expression of LLVM
3267   /// scalar type, returning the result.
3268   llvm::Value *EmitScalarExpr(const Expr *E , bool IgnoreResultAssign = false);
3269 
3270   /// Emit a conversion from the specified type to the specified destination
3271   /// type, both of which are LLVM scalar types.
3272   llvm::Value *EmitScalarConversion(llvm::Value *Src, QualType SrcTy,
3273                                     QualType DstTy, SourceLocation Loc);
3274 
3275   /// Emit a conversion from the specified complex type to the specified
3276   /// destination type, where the destination type is an LLVM scalar type.
3277   llvm::Value *EmitComplexToScalarConversion(ComplexPairTy Src, QualType SrcTy,
3278                                              QualType DstTy,
3279                                              SourceLocation Loc);
3280 
3281   /// EmitAggExpr - Emit the computation of the specified expression
3282   /// of aggregate type.  The result is computed into the given slot,
3283   /// which may be null to indicate that the value is not needed.
3284   void EmitAggExpr(const Expr *E, AggValueSlot AS);
3285 
3286   /// EmitAggExprToLValue - Emit the computation of the specified expression of
3287   /// aggregate type into a temporary LValue.
3288   LValue EmitAggExprToLValue(const Expr *E);
3289 
3290   /// EmitExtendGCLifetime - Given a pointer to an Objective-C object,
3291   /// make sure it survives garbage collection until this point.
3292   void EmitExtendGCLifetime(llvm::Value *object);
3293 
3294   /// EmitComplexExpr - Emit the computation of the specified expression of
3295   /// complex type, returning the result.
3296   ComplexPairTy EmitComplexExpr(const Expr *E,
3297                                 bool IgnoreReal = false,
3298                                 bool IgnoreImag = false);
3299 
3300   /// EmitComplexExprIntoLValue - Emit the given expression of complex
3301   /// type and place its result into the specified l-value.
3302   void EmitComplexExprIntoLValue(const Expr *E, LValue dest, bool isInit);
3303 
3304   /// EmitStoreOfComplex - Store a complex number into the specified l-value.
3305   void EmitStoreOfComplex(ComplexPairTy V, LValue dest, bool isInit);
3306 
3307   /// EmitLoadOfComplex - Load a complex number from the specified l-value.
3308   ComplexPairTy EmitLoadOfComplex(LValue src, SourceLocation loc);
3309 
3310   Address emitAddrOfRealComponent(Address complex, QualType complexType);
3311   Address emitAddrOfImagComponent(Address complex, QualType complexType);
3312 
3313   /// AddInitializerToStaticVarDecl - Add the initializer for 'D' to the
3314   /// global variable that has already been created for it.  If the initializer
3315   /// has a different type than GV does, this may free GV and return a different
3316   /// one.  Otherwise it just returns GV.
3317   llvm::GlobalVariable *
3318   AddInitializerToStaticVarDecl(const VarDecl &D,
3319                                 llvm::GlobalVariable *GV);
3320 
3321 
3322   /// EmitCXXGlobalVarDeclInit - Create the initializer for a C++
3323   /// variable with global storage.
3324   void EmitCXXGlobalVarDeclInit(const VarDecl &D, llvm::Constant *DeclPtr,
3325                                 bool PerformInit);
3326 
3327   llvm::Constant *createAtExitStub(const VarDecl &VD, llvm::Constant *Dtor,
3328                                    llvm::Constant *Addr);
3329 
3330   /// Call atexit() with a function that passes the given argument to
3331   /// the given function.
3332   void registerGlobalDtorWithAtExit(const VarDecl &D, llvm::Constant *fn,
3333                                     llvm::Constant *addr);
3334 
3335   /// Emit code in this function to perform a guarded variable
3336   /// initialization.  Guarded initializations are used when it's not
3337   /// possible to prove that an initialization will be done exactly
3338   /// once, e.g. with a static local variable or a static data member
3339   /// of a class template.
3340   void EmitCXXGuardedInit(const VarDecl &D, llvm::GlobalVariable *DeclPtr,
3341                           bool PerformInit);
3342 
3343   /// GenerateCXXGlobalInitFunc - Generates code for initializing global
3344   /// variables.
3345   void GenerateCXXGlobalInitFunc(llvm::Function *Fn,
3346                                  ArrayRef<llvm::Function *> CXXThreadLocals,
3347                                  Address Guard = Address::invalid());
3348 
3349   /// GenerateCXXGlobalDtorsFunc - Generates code for destroying global
3350   /// variables.
3351   void GenerateCXXGlobalDtorsFunc(llvm::Function *Fn,
3352                                   const std::vector<std::pair<llvm::WeakVH,
3353                                   llvm::Constant*> > &DtorsAndObjects);
3354 
3355   void GenerateCXXGlobalVarDeclInitFunc(llvm::Function *Fn,
3356                                         const VarDecl *D,
3357                                         llvm::GlobalVariable *Addr,
3358                                         bool PerformInit);
3359 
3360   void EmitCXXConstructExpr(const CXXConstructExpr *E, AggValueSlot Dest);
3361 
3362   void EmitSynthesizedCXXCopyCtor(Address Dest, Address Src, const Expr *Exp);
3363 
3364   void enterFullExpression(const ExprWithCleanups *E) {
3365     if (E->getNumObjects() == 0) return;
3366     enterNonTrivialFullExpression(E);
3367   }
3368   void enterNonTrivialFullExpression(const ExprWithCleanups *E);
3369 
3370   void EmitCXXThrowExpr(const CXXThrowExpr *E, bool KeepInsertionPoint = true);
3371 
3372   void EmitLambdaExpr(const LambdaExpr *E, AggValueSlot Dest);
3373 
3374   RValue EmitAtomicExpr(AtomicExpr *E);
3375 
3376   //===--------------------------------------------------------------------===//
3377   //                         Annotations Emission
3378   //===--------------------------------------------------------------------===//
3379 
3380   /// Emit an annotation call (intrinsic or builtin).
3381   llvm::Value *EmitAnnotationCall(llvm::Value *AnnotationFn,
3382                                   llvm::Value *AnnotatedVal,
3383                                   StringRef AnnotationStr,
3384                                   SourceLocation Location);
3385 
3386   /// Emit local annotations for the local variable V, declared by D.
3387   void EmitVarAnnotations(const VarDecl *D, llvm::Value *V);
3388 
3389   /// Emit field annotations for the given field & value. Returns the
3390   /// annotation result.
3391   Address EmitFieldAnnotations(const FieldDecl *D, Address V);
3392 
3393   //===--------------------------------------------------------------------===//
3394   //                             Internal Helpers
3395   //===--------------------------------------------------------------------===//
3396 
3397   /// ContainsLabel - Return true if the statement contains a label in it.  If
3398   /// this statement is not executed normally, it not containing a label means
3399   /// that we can just remove the code.
3400   static bool ContainsLabel(const Stmt *S, bool IgnoreCaseStmts = false);
3401 
3402   /// containsBreak - Return true if the statement contains a break out of it.
3403   /// If the statement (recursively) contains a switch or loop with a break
3404   /// inside of it, this is fine.
3405   static bool containsBreak(const Stmt *S);
3406 
3407   /// Determine if the given statement might introduce a declaration into the
3408   /// current scope, by being a (possibly-labelled) DeclStmt.
3409   static bool mightAddDeclToScope(const Stmt *S);
3410 
3411   /// ConstantFoldsToSimpleInteger - If the specified expression does not fold
3412   /// to a constant, or if it does but contains a label, return false.  If it
3413   /// constant folds return true and set the boolean result in Result.
3414   bool ConstantFoldsToSimpleInteger(const Expr *Cond, bool &Result,
3415                                     bool AllowLabels = false);
3416 
3417   /// ConstantFoldsToSimpleInteger - If the specified expression does not fold
3418   /// to a constant, or if it does but contains a label, return false.  If it
3419   /// constant folds return true and set the folded value.
3420   bool ConstantFoldsToSimpleInteger(const Expr *Cond, llvm::APSInt &Result,
3421                                     bool AllowLabels = false);
3422 
3423   /// EmitBranchOnBoolExpr - Emit a branch on a boolean condition (e.g. for an
3424   /// if statement) to the specified blocks.  Based on the condition, this might
3425   /// try to simplify the codegen of the conditional based on the branch.
3426   /// TrueCount should be the number of times we expect the condition to
3427   /// evaluate to true based on PGO data.
3428   void EmitBranchOnBoolExpr(const Expr *Cond, llvm::BasicBlock *TrueBlock,
3429                             llvm::BasicBlock *FalseBlock, uint64_t TrueCount);
3430 
3431   /// \brief Emit a description of a type in a format suitable for passing to
3432   /// a runtime sanitizer handler.
3433   llvm::Constant *EmitCheckTypeDescriptor(QualType T);
3434 
3435   /// \brief Convert a value into a format suitable for passing to a runtime
3436   /// sanitizer handler.
3437   llvm::Value *EmitCheckValue(llvm::Value *V);
3438 
3439   /// \brief Emit a description of a source location in a format suitable for
3440   /// passing to a runtime sanitizer handler.
3441   llvm::Constant *EmitCheckSourceLocation(SourceLocation Loc);
3442 
3443   /// \brief Create a basic block that will call a handler function in a
3444   /// sanitizer runtime with the provided arguments, and create a conditional
3445   /// branch to it.
3446   void EmitCheck(ArrayRef<std::pair<llvm::Value *, SanitizerMask>> Checked,
3447                  SanitizerHandler Check, ArrayRef<llvm::Constant *> StaticArgs,
3448                  ArrayRef<llvm::Value *> DynamicArgs);
3449 
3450   /// \brief Emit a slow path cross-DSO CFI check which calls __cfi_slowpath
3451   /// if Cond if false.
3452   void EmitCfiSlowPathCheck(SanitizerMask Kind, llvm::Value *Cond,
3453                             llvm::ConstantInt *TypeId, llvm::Value *Ptr,
3454                             ArrayRef<llvm::Constant *> StaticArgs);
3455 
3456   /// \brief Create a basic block that will call the trap intrinsic, and emit a
3457   /// conditional branch to it, for the -ftrapv checks.
3458   void EmitTrapCheck(llvm::Value *Checked);
3459 
3460   /// \brief Emit a call to trap or debugtrap and attach function attribute
3461   /// "trap-func-name" if specified.
3462   llvm::CallInst *EmitTrapCall(llvm::Intrinsic::ID IntrID);
3463 
3464   /// \brief Emit a cross-DSO CFI failure handling function.
3465   void EmitCfiCheckFail();
3466 
3467   /// \brief Create a check for a function parameter that may potentially be
3468   /// declared as non-null.
3469   void EmitNonNullArgCheck(RValue RV, QualType ArgType, SourceLocation ArgLoc,
3470                            const FunctionDecl *FD, unsigned ParmNum);
3471 
3472   /// EmitCallArg - Emit a single call argument.
3473   void EmitCallArg(CallArgList &args, const Expr *E, QualType ArgType);
3474 
3475   /// EmitDelegateCallArg - We are performing a delegate call; that
3476   /// is, the current function is delegating to another one.  Produce
3477   /// a r-value suitable for passing the given parameter.
3478   void EmitDelegateCallArg(CallArgList &args, const VarDecl *param,
3479                            SourceLocation loc);
3480 
3481   /// SetFPAccuracy - Set the minimum required accuracy of the given floating
3482   /// point operation, expressed as the maximum relative error in ulp.
3483   void SetFPAccuracy(llvm::Value *Val, float Accuracy);
3484 
3485 private:
3486   llvm::MDNode *getRangeForLoadFromType(QualType Ty);
3487   void EmitReturnOfRValue(RValue RV, QualType Ty);
3488 
3489   void deferPlaceholderReplacement(llvm::Instruction *Old, llvm::Value *New);
3490 
3491   llvm::SmallVector<std::pair<llvm::Instruction *, llvm::Value *>, 4>
3492   DeferredReplacements;
3493 
3494   /// Set the address of a local variable.
3495   void setAddrOfLocalVar(const VarDecl *VD, Address Addr) {
3496     assert(!LocalDeclMap.count(VD) && "Decl already exists in LocalDeclMap!");
3497     LocalDeclMap.insert({VD, Addr});
3498   }
3499 
3500   /// ExpandTypeFromArgs - Reconstruct a structure of type \arg Ty
3501   /// from function arguments into \arg Dst. See ABIArgInfo::Expand.
3502   ///
3503   /// \param AI - The first function argument of the expansion.
3504   void ExpandTypeFromArgs(QualType Ty, LValue Dst,
3505                           SmallVectorImpl<llvm::Value *>::iterator &AI);
3506 
3507   /// ExpandTypeToArgs - Expand an RValue \arg RV, with the LLVM type for \arg
3508   /// Ty, into individual arguments on the provided vector \arg IRCallArgs,
3509   /// starting at index \arg IRCallArgPos. See ABIArgInfo::Expand.
3510   void ExpandTypeToArgs(QualType Ty, RValue RV, llvm::FunctionType *IRFuncTy,
3511                         SmallVectorImpl<llvm::Value *> &IRCallArgs,
3512                         unsigned &IRCallArgPos);
3513 
3514   llvm::Value* EmitAsmInput(const TargetInfo::ConstraintInfo &Info,
3515                             const Expr *InputExpr, std::string &ConstraintStr);
3516 
3517   llvm::Value* EmitAsmInputLValue(const TargetInfo::ConstraintInfo &Info,
3518                                   LValue InputValue, QualType InputType,
3519                                   std::string &ConstraintStr,
3520                                   SourceLocation Loc);
3521 
3522   /// \brief Attempts to statically evaluate the object size of E. If that
3523   /// fails, emits code to figure the size of E out for us. This is
3524   /// pass_object_size aware.
3525   ///
3526   /// If EmittedExpr is non-null, this will use that instead of re-emitting E.
3527   llvm::Value *evaluateOrEmitBuiltinObjectSize(const Expr *E, unsigned Type,
3528                                                llvm::IntegerType *ResType,
3529                                                llvm::Value *EmittedE);
3530 
3531   /// \brief Emits the size of E, as required by __builtin_object_size. This
3532   /// function is aware of pass_object_size parameters, and will act accordingly
3533   /// if E is a parameter with the pass_object_size attribute.
3534   llvm::Value *emitBuiltinObjectSize(const Expr *E, unsigned Type,
3535                                      llvm::IntegerType *ResType,
3536                                      llvm::Value *EmittedE);
3537 
3538 public:
3539 #ifndef NDEBUG
3540   // Determine whether the given argument is an Objective-C method
3541   // that may have type parameters in its signature.
3542   static bool isObjCMethodWithTypeParams(const ObjCMethodDecl *method) {
3543     const DeclContext *dc = method->getDeclContext();
3544     if (const ObjCInterfaceDecl *classDecl= dyn_cast<ObjCInterfaceDecl>(dc)) {
3545       return classDecl->getTypeParamListAsWritten();
3546     }
3547 
3548     if (const ObjCCategoryDecl *catDecl = dyn_cast<ObjCCategoryDecl>(dc)) {
3549       return catDecl->getTypeParamList();
3550     }
3551 
3552     return false;
3553   }
3554 
3555   template<typename T>
3556   static bool isObjCMethodWithTypeParams(const T *) { return false; }
3557 #endif
3558 
3559   enum class EvaluationOrder {
3560     ///! No language constraints on evaluation order.
3561     Default,
3562     ///! Language semantics require left-to-right evaluation.
3563     ForceLeftToRight,
3564     ///! Language semantics require right-to-left evaluation.
3565     ForceRightToLeft
3566   };
3567 
3568   /// EmitCallArgs - Emit call arguments for a function.
3569   template <typename T>
3570   void EmitCallArgs(CallArgList &Args, const T *CallArgTypeInfo,
3571                     llvm::iterator_range<CallExpr::const_arg_iterator> ArgRange,
3572                     const FunctionDecl *CalleeDecl = nullptr,
3573                     unsigned ParamsToSkip = 0,
3574                     EvaluationOrder Order = EvaluationOrder::Default) {
3575     SmallVector<QualType, 16> ArgTypes;
3576     CallExpr::const_arg_iterator Arg = ArgRange.begin();
3577 
3578     assert((ParamsToSkip == 0 || CallArgTypeInfo) &&
3579            "Can't skip parameters if type info is not provided");
3580     if (CallArgTypeInfo) {
3581 #ifndef NDEBUG
3582       bool isGenericMethod = isObjCMethodWithTypeParams(CallArgTypeInfo);
3583 #endif
3584 
3585       // First, use the argument types that the type info knows about
3586       for (auto I = CallArgTypeInfo->param_type_begin() + ParamsToSkip,
3587                 E = CallArgTypeInfo->param_type_end();
3588            I != E; ++I, ++Arg) {
3589         assert(Arg != ArgRange.end() && "Running over edge of argument list!");
3590         assert((isGenericMethod ||
3591                 ((*I)->isVariablyModifiedType() ||
3592                  (*I).getNonReferenceType()->isObjCRetainableType() ||
3593                  getContext()
3594                          .getCanonicalType((*I).getNonReferenceType())
3595                          .getTypePtr() ==
3596                      getContext()
3597                          .getCanonicalType((*Arg)->getType())
3598                          .getTypePtr())) &&
3599                "type mismatch in call argument!");
3600         ArgTypes.push_back(*I);
3601       }
3602     }
3603 
3604     // Either we've emitted all the call args, or we have a call to variadic
3605     // function.
3606     assert((Arg == ArgRange.end() || !CallArgTypeInfo ||
3607             CallArgTypeInfo->isVariadic()) &&
3608            "Extra arguments in non-variadic function!");
3609 
3610     // If we still have any arguments, emit them using the type of the argument.
3611     for (auto *A : llvm::make_range(Arg, ArgRange.end()))
3612       ArgTypes.push_back(CallArgTypeInfo ? getVarArgType(A) : A->getType());
3613 
3614     EmitCallArgs(Args, ArgTypes, ArgRange, CalleeDecl, ParamsToSkip, Order);
3615   }
3616 
3617   void EmitCallArgs(CallArgList &Args, ArrayRef<QualType> ArgTypes,
3618                     llvm::iterator_range<CallExpr::const_arg_iterator> ArgRange,
3619                     const FunctionDecl *CalleeDecl = nullptr,
3620                     unsigned ParamsToSkip = 0,
3621                     EvaluationOrder Order = EvaluationOrder::Default);
3622 
3623   /// EmitPointerWithAlignment - Given an expression with a pointer
3624   /// type, emit the value and compute our best estimate of the
3625   /// alignment of the pointee.
3626   ///
3627   /// Note that this function will conservatively fall back on the type
3628   /// when it doesn't
3629   ///
3630   /// \param Source - If non-null, this will be initialized with
3631   ///   information about the source of the alignment.  Note that this
3632   ///   function will conservatively fall back on the type when it
3633   ///   doesn't recognize the expression, which means that sometimes
3634   ///
3635   ///   a worst-case One
3636   ///   reasonable way to use this information is when there's a
3637   ///   language guarantee that the pointer must be aligned to some
3638   ///   stricter value, and we're simply trying to ensure that
3639   ///   sufficiently obvious uses of under-aligned objects don't get
3640   ///   miscompiled; for example, a placement new into the address of
3641   ///   a local variable.  In such a case, it's quite reasonable to
3642   ///   just ignore the returned alignment when it isn't from an
3643   ///   explicit source.
3644   Address EmitPointerWithAlignment(const Expr *Addr,
3645                                    AlignmentSource *Source = nullptr);
3646 
3647   void EmitSanitizerStatReport(llvm::SanitizerStatKind SSK);
3648 
3649 private:
3650   QualType getVarArgType(const Expr *Arg);
3651 
3652   const TargetCodeGenInfo &getTargetHooks() const {
3653     return CGM.getTargetCodeGenInfo();
3654   }
3655 
3656   void EmitDeclMetadata();
3657 
3658   BlockByrefHelpers *buildByrefHelpers(llvm::StructType &byrefType,
3659                                   const AutoVarEmission &emission);
3660 
3661   void AddObjCARCExceptionMetadata(llvm::Instruction *Inst);
3662 
3663   llvm::Value *GetValueForARMHint(unsigned BuiltinID);
3664 };
3665 
3666 /// Helper class with most of the code for saving a value for a
3667 /// conditional expression cleanup.
3668 struct DominatingLLVMValue {
3669   typedef llvm::PointerIntPair<llvm::Value*, 1, bool> saved_type;
3670 
3671   /// Answer whether the given value needs extra work to be saved.
3672   static bool needsSaving(llvm::Value *value) {
3673     // If it's not an instruction, we don't need to save.
3674     if (!isa<llvm::Instruction>(value)) return false;
3675 
3676     // If it's an instruction in the entry block, we don't need to save.
3677     llvm::BasicBlock *block = cast<llvm::Instruction>(value)->getParent();
3678     return (block != &block->getParent()->getEntryBlock());
3679   }
3680 
3681   /// Try to save the given value.
3682   static saved_type save(CodeGenFunction &CGF, llvm::Value *value) {
3683     if (!needsSaving(value)) return saved_type(value, false);
3684 
3685     // Otherwise, we need an alloca.
3686     auto align = CharUnits::fromQuantity(
3687               CGF.CGM.getDataLayout().getPrefTypeAlignment(value->getType()));
3688     Address alloca =
3689       CGF.CreateTempAlloca(value->getType(), align, "cond-cleanup.save");
3690     CGF.Builder.CreateStore(value, alloca);
3691 
3692     return saved_type(alloca.getPointer(), true);
3693   }
3694 
3695   static llvm::Value *restore(CodeGenFunction &CGF, saved_type value) {
3696     // If the value says it wasn't saved, trust that it's still dominating.
3697     if (!value.getInt()) return value.getPointer();
3698 
3699     // Otherwise, it should be an alloca instruction, as set up in save().
3700     auto alloca = cast<llvm::AllocaInst>(value.getPointer());
3701     return CGF.Builder.CreateAlignedLoad(alloca, alloca->getAlignment());
3702   }
3703 };
3704 
3705 /// A partial specialization of DominatingValue for llvm::Values that
3706 /// might be llvm::Instructions.
3707 template <class T> struct DominatingPointer<T,true> : DominatingLLVMValue {
3708   typedef T *type;
3709   static type restore(CodeGenFunction &CGF, saved_type value) {
3710     return static_cast<T*>(DominatingLLVMValue::restore(CGF, value));
3711   }
3712 };
3713 
3714 /// A specialization of DominatingValue for Address.
3715 template <> struct DominatingValue<Address> {
3716   typedef Address type;
3717 
3718   struct saved_type {
3719     DominatingLLVMValue::saved_type SavedValue;
3720     CharUnits Alignment;
3721   };
3722 
3723   static bool needsSaving(type value) {
3724     return DominatingLLVMValue::needsSaving(value.getPointer());
3725   }
3726   static saved_type save(CodeGenFunction &CGF, type value) {
3727     return { DominatingLLVMValue::save(CGF, value.getPointer()),
3728              value.getAlignment() };
3729   }
3730   static type restore(CodeGenFunction &CGF, saved_type value) {
3731     return Address(DominatingLLVMValue::restore(CGF, value.SavedValue),
3732                    value.Alignment);
3733   }
3734 };
3735 
3736 /// A specialization of DominatingValue for RValue.
3737 template <> struct DominatingValue<RValue> {
3738   typedef RValue type;
3739   class saved_type {
3740     enum Kind { ScalarLiteral, ScalarAddress, AggregateLiteral,
3741                 AggregateAddress, ComplexAddress };
3742 
3743     llvm::Value *Value;
3744     unsigned K : 3;
3745     unsigned Align : 29;
3746     saved_type(llvm::Value *v, Kind k, unsigned a = 0)
3747       : Value(v), K(k), Align(a) {}
3748 
3749   public:
3750     static bool needsSaving(RValue value);
3751     static saved_type save(CodeGenFunction &CGF, RValue value);
3752     RValue restore(CodeGenFunction &CGF);
3753 
3754     // implementations in CGCleanup.cpp
3755   };
3756 
3757   static bool needsSaving(type value) {
3758     return saved_type::needsSaving(value);
3759   }
3760   static saved_type save(CodeGenFunction &CGF, type value) {
3761     return saved_type::save(CGF, value);
3762   }
3763   static type restore(CodeGenFunction &CGF, saved_type value) {
3764     return value.restore(CGF);
3765   }
3766 };
3767 
3768 }  // end namespace CodeGen
3769 }  // end namespace clang
3770 
3771 #endif
3772