1 //===-- CodeGenFunction.h - Per-Function state for LLVM CodeGen -*- C++ -*-===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This is the internal per-function state used for llvm translation. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #ifndef LLVM_CLANG_LIB_CODEGEN_CODEGENFUNCTION_H 15 #define LLVM_CLANG_LIB_CODEGEN_CODEGENFUNCTION_H 16 17 #include "CGBuilder.h" 18 #include "CGDebugInfo.h" 19 #include "CGLoopInfo.h" 20 #include "CGValue.h" 21 #include "CodeGenModule.h" 22 #include "CodeGenPGO.h" 23 #include "EHScopeStack.h" 24 #include "VarBypassDetector.h" 25 #include "clang/AST/CharUnits.h" 26 #include "clang/AST/ExprCXX.h" 27 #include "clang/AST/ExprObjC.h" 28 #include "clang/AST/ExprOpenMP.h" 29 #include "clang/AST/Type.h" 30 #include "clang/Basic/ABI.h" 31 #include "clang/Basic/CapturedStmt.h" 32 #include "clang/Basic/OpenMPKinds.h" 33 #include "clang/Basic/TargetInfo.h" 34 #include "clang/Frontend/CodeGenOptions.h" 35 #include "llvm/ADT/ArrayRef.h" 36 #include "llvm/ADT/DenseMap.h" 37 #include "llvm/ADT/SmallVector.h" 38 #include "llvm/IR/ValueHandle.h" 39 #include "llvm/Support/Debug.h" 40 #include "llvm/Transforms/Utils/SanitizerStats.h" 41 42 namespace llvm { 43 class BasicBlock; 44 class LLVMContext; 45 class MDNode; 46 class Module; 47 class SwitchInst; 48 class Twine; 49 class Value; 50 class CallSite; 51 } 52 53 namespace clang { 54 class ASTContext; 55 class BlockDecl; 56 class CXXDestructorDecl; 57 class CXXForRangeStmt; 58 class CXXTryStmt; 59 class Decl; 60 class LabelDecl; 61 class EnumConstantDecl; 62 class FunctionDecl; 63 class FunctionProtoType; 64 class LabelStmt; 65 class ObjCContainerDecl; 66 class ObjCInterfaceDecl; 67 class ObjCIvarDecl; 68 class ObjCMethodDecl; 69 class ObjCImplementationDecl; 70 class ObjCPropertyImplDecl; 71 class TargetInfo; 72 class VarDecl; 73 class ObjCForCollectionStmt; 74 class ObjCAtTryStmt; 75 class ObjCAtThrowStmt; 76 class ObjCAtSynchronizedStmt; 77 class ObjCAutoreleasePoolStmt; 78 79 namespace CodeGen { 80 class CodeGenTypes; 81 class CGCallee; 82 class CGFunctionInfo; 83 class CGRecordLayout; 84 class CGBlockInfo; 85 class CGCXXABI; 86 class BlockByrefHelpers; 87 class BlockByrefInfo; 88 class BlockFlags; 89 class BlockFieldFlags; 90 class RegionCodeGenTy; 91 class TargetCodeGenInfo; 92 struct OMPTaskDataTy; 93 struct CGCoroData; 94 95 /// The kind of evaluation to perform on values of a particular 96 /// type. Basically, is the code in CGExprScalar, CGExprComplex, or 97 /// CGExprAgg? 98 /// 99 /// TODO: should vectors maybe be split out into their own thing? 100 enum TypeEvaluationKind { 101 TEK_Scalar, 102 TEK_Complex, 103 TEK_Aggregate 104 }; 105 106 #define LIST_SANITIZER_CHECKS \ 107 SANITIZER_CHECK(AddOverflow, add_overflow, 0) \ 108 SANITIZER_CHECK(BuiltinUnreachable, builtin_unreachable, 0) \ 109 SANITIZER_CHECK(CFICheckFail, cfi_check_fail, 0) \ 110 SANITIZER_CHECK(DivremOverflow, divrem_overflow, 0) \ 111 SANITIZER_CHECK(DynamicTypeCacheMiss, dynamic_type_cache_miss, 0) \ 112 SANITIZER_CHECK(FloatCastOverflow, float_cast_overflow, 0) \ 113 SANITIZER_CHECK(FunctionTypeMismatch, function_type_mismatch, 0) \ 114 SANITIZER_CHECK(LoadInvalidValue, load_invalid_value, 0) \ 115 SANITIZER_CHECK(MissingReturn, missing_return, 0) \ 116 SANITIZER_CHECK(MulOverflow, mul_overflow, 0) \ 117 SANITIZER_CHECK(NegateOverflow, negate_overflow, 0) \ 118 SANITIZER_CHECK(NonnullArg, nonnull_arg, 0) \ 119 SANITIZER_CHECK(NonnullReturn, nonnull_return, 0) \ 120 SANITIZER_CHECK(OutOfBounds, out_of_bounds, 0) \ 121 SANITIZER_CHECK(ShiftOutOfBounds, shift_out_of_bounds, 0) \ 122 SANITIZER_CHECK(SubOverflow, sub_overflow, 0) \ 123 SANITIZER_CHECK(TypeMismatch, type_mismatch, 1) \ 124 SANITIZER_CHECK(VLABoundNotPositive, vla_bound_not_positive, 0) 125 126 enum SanitizerHandler { 127 #define SANITIZER_CHECK(Enum, Name, Version) Enum, 128 LIST_SANITIZER_CHECKS 129 #undef SANITIZER_CHECK 130 }; 131 132 /// CodeGenFunction - This class organizes the per-function state that is used 133 /// while generating LLVM code. 134 class CodeGenFunction : public CodeGenTypeCache { 135 CodeGenFunction(const CodeGenFunction &) = delete; 136 void operator=(const CodeGenFunction &) = delete; 137 138 friend class CGCXXABI; 139 public: 140 /// A jump destination is an abstract label, branching to which may 141 /// require a jump out through normal cleanups. 142 struct JumpDest { 143 JumpDest() : Block(nullptr), ScopeDepth(), Index(0) {} 144 JumpDest(llvm::BasicBlock *Block, 145 EHScopeStack::stable_iterator Depth, 146 unsigned Index) 147 : Block(Block), ScopeDepth(Depth), Index(Index) {} 148 149 bool isValid() const { return Block != nullptr; } 150 llvm::BasicBlock *getBlock() const { return Block; } 151 EHScopeStack::stable_iterator getScopeDepth() const { return ScopeDepth; } 152 unsigned getDestIndex() const { return Index; } 153 154 // This should be used cautiously. 155 void setScopeDepth(EHScopeStack::stable_iterator depth) { 156 ScopeDepth = depth; 157 } 158 159 private: 160 llvm::BasicBlock *Block; 161 EHScopeStack::stable_iterator ScopeDepth; 162 unsigned Index; 163 }; 164 165 CodeGenModule &CGM; // Per-module state. 166 const TargetInfo &Target; 167 168 typedef std::pair<llvm::Value *, llvm::Value *> ComplexPairTy; 169 LoopInfoStack LoopStack; 170 CGBuilderTy Builder; 171 172 // Stores variables for which we can't generate correct lifetime markers 173 // because of jumps. 174 VarBypassDetector Bypasses; 175 176 /// \brief CGBuilder insert helper. This function is called after an 177 /// instruction is created using Builder. 178 void InsertHelper(llvm::Instruction *I, const llvm::Twine &Name, 179 llvm::BasicBlock *BB, 180 llvm::BasicBlock::iterator InsertPt) const; 181 182 /// CurFuncDecl - Holds the Decl for the current outermost 183 /// non-closure context. 184 const Decl *CurFuncDecl; 185 /// CurCodeDecl - This is the inner-most code context, which includes blocks. 186 const Decl *CurCodeDecl; 187 const CGFunctionInfo *CurFnInfo; 188 QualType FnRetTy; 189 llvm::Function *CurFn; 190 191 // Holds coroutine data if the current function is a coroutine. We use a 192 // wrapper to manage its lifetime, so that we don't have to define CGCoroData 193 // in this header. 194 struct CGCoroInfo { 195 std::unique_ptr<CGCoroData> Data; 196 CGCoroInfo(); 197 ~CGCoroInfo(); 198 }; 199 CGCoroInfo CurCoro; 200 201 /// CurGD - The GlobalDecl for the current function being compiled. 202 GlobalDecl CurGD; 203 204 /// PrologueCleanupDepth - The cleanup depth enclosing all the 205 /// cleanups associated with the parameters. 206 EHScopeStack::stable_iterator PrologueCleanupDepth; 207 208 /// ReturnBlock - Unified return block. 209 JumpDest ReturnBlock; 210 211 /// ReturnValue - The temporary alloca to hold the return 212 /// value. This is invalid iff the function has no return value. 213 Address ReturnValue; 214 215 /// Return true if a label was seen in the current scope. 216 bool hasLabelBeenSeenInCurrentScope() const { 217 if (CurLexicalScope) 218 return CurLexicalScope->hasLabels(); 219 return !LabelMap.empty(); 220 } 221 222 /// AllocaInsertPoint - This is an instruction in the entry block before which 223 /// we prefer to insert allocas. 224 llvm::AssertingVH<llvm::Instruction> AllocaInsertPt; 225 226 /// \brief API for captured statement code generation. 227 class CGCapturedStmtInfo { 228 public: 229 explicit CGCapturedStmtInfo(CapturedRegionKind K = CR_Default) 230 : Kind(K), ThisValue(nullptr), CXXThisFieldDecl(nullptr) {} 231 explicit CGCapturedStmtInfo(const CapturedStmt &S, 232 CapturedRegionKind K = CR_Default) 233 : Kind(K), ThisValue(nullptr), CXXThisFieldDecl(nullptr) { 234 235 RecordDecl::field_iterator Field = 236 S.getCapturedRecordDecl()->field_begin(); 237 for (CapturedStmt::const_capture_iterator I = S.capture_begin(), 238 E = S.capture_end(); 239 I != E; ++I, ++Field) { 240 if (I->capturesThis()) 241 CXXThisFieldDecl = *Field; 242 else if (I->capturesVariable()) 243 CaptureFields[I->getCapturedVar()] = *Field; 244 else if (I->capturesVariableByCopy()) 245 CaptureFields[I->getCapturedVar()] = *Field; 246 } 247 } 248 249 virtual ~CGCapturedStmtInfo(); 250 251 CapturedRegionKind getKind() const { return Kind; } 252 253 virtual void setContextValue(llvm::Value *V) { ThisValue = V; } 254 // \brief Retrieve the value of the context parameter. 255 virtual llvm::Value *getContextValue() const { return ThisValue; } 256 257 /// \brief Lookup the captured field decl for a variable. 258 virtual const FieldDecl *lookup(const VarDecl *VD) const { 259 return CaptureFields.lookup(VD); 260 } 261 262 bool isCXXThisExprCaptured() const { return getThisFieldDecl() != nullptr; } 263 virtual FieldDecl *getThisFieldDecl() const { return CXXThisFieldDecl; } 264 265 static bool classof(const CGCapturedStmtInfo *) { 266 return true; 267 } 268 269 /// \brief Emit the captured statement body. 270 virtual void EmitBody(CodeGenFunction &CGF, const Stmt *S) { 271 CGF.incrementProfileCounter(S); 272 CGF.EmitStmt(S); 273 } 274 275 /// \brief Get the name of the capture helper. 276 virtual StringRef getHelperName() const { return "__captured_stmt"; } 277 278 private: 279 /// \brief The kind of captured statement being generated. 280 CapturedRegionKind Kind; 281 282 /// \brief Keep the map between VarDecl and FieldDecl. 283 llvm::SmallDenseMap<const VarDecl *, FieldDecl *> CaptureFields; 284 285 /// \brief The base address of the captured record, passed in as the first 286 /// argument of the parallel region function. 287 llvm::Value *ThisValue; 288 289 /// \brief Captured 'this' type. 290 FieldDecl *CXXThisFieldDecl; 291 }; 292 CGCapturedStmtInfo *CapturedStmtInfo; 293 294 /// \brief RAII for correct setting/restoring of CapturedStmtInfo. 295 class CGCapturedStmtRAII { 296 private: 297 CodeGenFunction &CGF; 298 CGCapturedStmtInfo *PrevCapturedStmtInfo; 299 public: 300 CGCapturedStmtRAII(CodeGenFunction &CGF, 301 CGCapturedStmtInfo *NewCapturedStmtInfo) 302 : CGF(CGF), PrevCapturedStmtInfo(CGF.CapturedStmtInfo) { 303 CGF.CapturedStmtInfo = NewCapturedStmtInfo; 304 } 305 ~CGCapturedStmtRAII() { CGF.CapturedStmtInfo = PrevCapturedStmtInfo; } 306 }; 307 308 /// \brief Sanitizers enabled for this function. 309 SanitizerSet SanOpts; 310 311 /// \brief True if CodeGen currently emits code implementing sanitizer checks. 312 bool IsSanitizerScope; 313 314 /// \brief RAII object to set/unset CodeGenFunction::IsSanitizerScope. 315 class SanitizerScope { 316 CodeGenFunction *CGF; 317 public: 318 SanitizerScope(CodeGenFunction *CGF); 319 ~SanitizerScope(); 320 }; 321 322 /// In C++, whether we are code generating a thunk. This controls whether we 323 /// should emit cleanups. 324 bool CurFuncIsThunk; 325 326 /// In ARC, whether we should autorelease the return value. 327 bool AutoreleaseResult; 328 329 /// Whether we processed a Microsoft-style asm block during CodeGen. These can 330 /// potentially set the return value. 331 bool SawAsmBlock; 332 333 const FunctionDecl *CurSEHParent = nullptr; 334 335 /// True if the current function is an outlined SEH helper. This can be a 336 /// finally block or filter expression. 337 bool IsOutlinedSEHHelper; 338 339 const CodeGen::CGBlockInfo *BlockInfo; 340 llvm::Value *BlockPointer; 341 342 llvm::DenseMap<const VarDecl *, FieldDecl *> LambdaCaptureFields; 343 FieldDecl *LambdaThisCaptureField; 344 345 /// \brief A mapping from NRVO variables to the flags used to indicate 346 /// when the NRVO has been applied to this variable. 347 llvm::DenseMap<const VarDecl *, llvm::Value *> NRVOFlags; 348 349 EHScopeStack EHStack; 350 llvm::SmallVector<char, 256> LifetimeExtendedCleanupStack; 351 llvm::SmallVector<const JumpDest *, 2> SEHTryEpilogueStack; 352 353 llvm::Instruction *CurrentFuncletPad = nullptr; 354 355 class CallLifetimeEnd final : public EHScopeStack::Cleanup { 356 llvm::Value *Addr; 357 llvm::Value *Size; 358 359 public: 360 CallLifetimeEnd(Address addr, llvm::Value *size) 361 : Addr(addr.getPointer()), Size(size) {} 362 363 void Emit(CodeGenFunction &CGF, Flags flags) override { 364 CGF.EmitLifetimeEnd(Size, Addr); 365 } 366 }; 367 368 /// Header for data within LifetimeExtendedCleanupStack. 369 struct LifetimeExtendedCleanupHeader { 370 /// The size of the following cleanup object. 371 unsigned Size; 372 /// The kind of cleanup to push: a value from the CleanupKind enumeration. 373 CleanupKind Kind; 374 375 size_t getSize() const { return Size; } 376 CleanupKind getKind() const { return Kind; } 377 }; 378 379 /// i32s containing the indexes of the cleanup destinations. 380 llvm::AllocaInst *NormalCleanupDest; 381 382 unsigned NextCleanupDestIndex; 383 384 /// FirstBlockInfo - The head of a singly-linked-list of block layouts. 385 CGBlockInfo *FirstBlockInfo; 386 387 /// EHResumeBlock - Unified block containing a call to llvm.eh.resume. 388 llvm::BasicBlock *EHResumeBlock; 389 390 /// The exception slot. All landing pads write the current exception pointer 391 /// into this alloca. 392 llvm::Value *ExceptionSlot; 393 394 /// The selector slot. Under the MandatoryCleanup model, all landing pads 395 /// write the current selector value into this alloca. 396 llvm::AllocaInst *EHSelectorSlot; 397 398 /// A stack of exception code slots. Entering an __except block pushes a slot 399 /// on the stack and leaving pops one. The __exception_code() intrinsic loads 400 /// a value from the top of the stack. 401 SmallVector<Address, 1> SEHCodeSlotStack; 402 403 /// Value returned by __exception_info intrinsic. 404 llvm::Value *SEHInfo = nullptr; 405 406 /// Emits a landing pad for the current EH stack. 407 llvm::BasicBlock *EmitLandingPad(); 408 409 llvm::BasicBlock *getInvokeDestImpl(); 410 411 template <class T> 412 typename DominatingValue<T>::saved_type saveValueInCond(T value) { 413 return DominatingValue<T>::save(*this, value); 414 } 415 416 public: 417 /// ObjCEHValueStack - Stack of Objective-C exception values, used for 418 /// rethrows. 419 SmallVector<llvm::Value*, 8> ObjCEHValueStack; 420 421 /// A class controlling the emission of a finally block. 422 class FinallyInfo { 423 /// Where the catchall's edge through the cleanup should go. 424 JumpDest RethrowDest; 425 426 /// A function to call to enter the catch. 427 llvm::Constant *BeginCatchFn; 428 429 /// An i1 variable indicating whether or not the @finally is 430 /// running for an exception. 431 llvm::AllocaInst *ForEHVar; 432 433 /// An i8* variable into which the exception pointer to rethrow 434 /// has been saved. 435 llvm::AllocaInst *SavedExnVar; 436 437 public: 438 void enter(CodeGenFunction &CGF, const Stmt *Finally, 439 llvm::Constant *beginCatchFn, llvm::Constant *endCatchFn, 440 llvm::Constant *rethrowFn); 441 void exit(CodeGenFunction &CGF); 442 }; 443 444 /// Returns true inside SEH __try blocks. 445 bool isSEHTryScope() const { return !SEHTryEpilogueStack.empty(); } 446 447 /// Returns true while emitting a cleanuppad. 448 bool isCleanupPadScope() const { 449 return CurrentFuncletPad && isa<llvm::CleanupPadInst>(CurrentFuncletPad); 450 } 451 452 /// pushFullExprCleanup - Push a cleanup to be run at the end of the 453 /// current full-expression. Safe against the possibility that 454 /// we're currently inside a conditionally-evaluated expression. 455 template <class T, class... As> 456 void pushFullExprCleanup(CleanupKind kind, As... A) { 457 // If we're not in a conditional branch, or if none of the 458 // arguments requires saving, then use the unconditional cleanup. 459 if (!isInConditionalBranch()) 460 return EHStack.pushCleanup<T>(kind, A...); 461 462 // Stash values in a tuple so we can guarantee the order of saves. 463 typedef std::tuple<typename DominatingValue<As>::saved_type...> SavedTuple; 464 SavedTuple Saved{saveValueInCond(A)...}; 465 466 typedef EHScopeStack::ConditionalCleanup<T, As...> CleanupType; 467 EHStack.pushCleanupTuple<CleanupType>(kind, Saved); 468 initFullExprCleanup(); 469 } 470 471 /// \brief Queue a cleanup to be pushed after finishing the current 472 /// full-expression. 473 template <class T, class... As> 474 void pushCleanupAfterFullExpr(CleanupKind Kind, As... A) { 475 assert(!isInConditionalBranch() && "can't defer conditional cleanup"); 476 477 LifetimeExtendedCleanupHeader Header = { sizeof(T), Kind }; 478 479 size_t OldSize = LifetimeExtendedCleanupStack.size(); 480 LifetimeExtendedCleanupStack.resize( 481 LifetimeExtendedCleanupStack.size() + sizeof(Header) + Header.Size); 482 483 static_assert(sizeof(Header) % alignof(T) == 0, 484 "Cleanup will be allocated on misaligned address"); 485 char *Buffer = &LifetimeExtendedCleanupStack[OldSize]; 486 new (Buffer) LifetimeExtendedCleanupHeader(Header); 487 new (Buffer + sizeof(Header)) T(A...); 488 } 489 490 /// Set up the last cleaup that was pushed as a conditional 491 /// full-expression cleanup. 492 void initFullExprCleanup(); 493 494 /// PushDestructorCleanup - Push a cleanup to call the 495 /// complete-object destructor of an object of the given type at the 496 /// given address. Does nothing if T is not a C++ class type with a 497 /// non-trivial destructor. 498 void PushDestructorCleanup(QualType T, Address Addr); 499 500 /// PushDestructorCleanup - Push a cleanup to call the 501 /// complete-object variant of the given destructor on the object at 502 /// the given address. 503 void PushDestructorCleanup(const CXXDestructorDecl *Dtor, Address Addr); 504 505 /// PopCleanupBlock - Will pop the cleanup entry on the stack and 506 /// process all branch fixups. 507 void PopCleanupBlock(bool FallThroughIsBranchThrough = false); 508 509 /// DeactivateCleanupBlock - Deactivates the given cleanup block. 510 /// The block cannot be reactivated. Pops it if it's the top of the 511 /// stack. 512 /// 513 /// \param DominatingIP - An instruction which is known to 514 /// dominate the current IP (if set) and which lies along 515 /// all paths of execution between the current IP and the 516 /// the point at which the cleanup comes into scope. 517 void DeactivateCleanupBlock(EHScopeStack::stable_iterator Cleanup, 518 llvm::Instruction *DominatingIP); 519 520 /// ActivateCleanupBlock - Activates an initially-inactive cleanup. 521 /// Cannot be used to resurrect a deactivated cleanup. 522 /// 523 /// \param DominatingIP - An instruction which is known to 524 /// dominate the current IP (if set) and which lies along 525 /// all paths of execution between the current IP and the 526 /// the point at which the cleanup comes into scope. 527 void ActivateCleanupBlock(EHScopeStack::stable_iterator Cleanup, 528 llvm::Instruction *DominatingIP); 529 530 /// \brief Enters a new scope for capturing cleanups, all of which 531 /// will be executed once the scope is exited. 532 class RunCleanupsScope { 533 EHScopeStack::stable_iterator CleanupStackDepth; 534 size_t LifetimeExtendedCleanupStackSize; 535 bool OldDidCallStackSave; 536 protected: 537 bool PerformCleanup; 538 private: 539 540 RunCleanupsScope(const RunCleanupsScope &) = delete; 541 void operator=(const RunCleanupsScope &) = delete; 542 543 protected: 544 CodeGenFunction& CGF; 545 546 public: 547 /// \brief Enter a new cleanup scope. 548 explicit RunCleanupsScope(CodeGenFunction &CGF) 549 : PerformCleanup(true), CGF(CGF) 550 { 551 CleanupStackDepth = CGF.EHStack.stable_begin(); 552 LifetimeExtendedCleanupStackSize = 553 CGF.LifetimeExtendedCleanupStack.size(); 554 OldDidCallStackSave = CGF.DidCallStackSave; 555 CGF.DidCallStackSave = false; 556 } 557 558 /// \brief Exit this cleanup scope, emitting any accumulated 559 /// cleanups. 560 ~RunCleanupsScope() { 561 if (PerformCleanup) { 562 CGF.DidCallStackSave = OldDidCallStackSave; 563 CGF.PopCleanupBlocks(CleanupStackDepth, 564 LifetimeExtendedCleanupStackSize); 565 } 566 } 567 568 /// \brief Determine whether this scope requires any cleanups. 569 bool requiresCleanups() const { 570 return CGF.EHStack.stable_begin() != CleanupStackDepth; 571 } 572 573 /// \brief Force the emission of cleanups now, instead of waiting 574 /// until this object is destroyed. 575 void ForceCleanup() { 576 assert(PerformCleanup && "Already forced cleanup"); 577 CGF.DidCallStackSave = OldDidCallStackSave; 578 CGF.PopCleanupBlocks(CleanupStackDepth, 579 LifetimeExtendedCleanupStackSize); 580 PerformCleanup = false; 581 } 582 }; 583 584 class LexicalScope : public RunCleanupsScope { 585 SourceRange Range; 586 SmallVector<const LabelDecl*, 4> Labels; 587 LexicalScope *ParentScope; 588 589 LexicalScope(const LexicalScope &) = delete; 590 void operator=(const LexicalScope &) = delete; 591 592 public: 593 /// \brief Enter a new cleanup scope. 594 explicit LexicalScope(CodeGenFunction &CGF, SourceRange Range) 595 : RunCleanupsScope(CGF), Range(Range), ParentScope(CGF.CurLexicalScope) { 596 CGF.CurLexicalScope = this; 597 if (CGDebugInfo *DI = CGF.getDebugInfo()) 598 DI->EmitLexicalBlockStart(CGF.Builder, Range.getBegin()); 599 } 600 601 void addLabel(const LabelDecl *label) { 602 assert(PerformCleanup && "adding label to dead scope?"); 603 Labels.push_back(label); 604 } 605 606 /// \brief Exit this cleanup scope, emitting any accumulated 607 /// cleanups. 608 ~LexicalScope() { 609 if (CGDebugInfo *DI = CGF.getDebugInfo()) 610 DI->EmitLexicalBlockEnd(CGF.Builder, Range.getEnd()); 611 612 // If we should perform a cleanup, force them now. Note that 613 // this ends the cleanup scope before rescoping any labels. 614 if (PerformCleanup) { 615 ApplyDebugLocation DL(CGF, Range.getEnd()); 616 ForceCleanup(); 617 } 618 } 619 620 /// \brief Force the emission of cleanups now, instead of waiting 621 /// until this object is destroyed. 622 void ForceCleanup() { 623 CGF.CurLexicalScope = ParentScope; 624 RunCleanupsScope::ForceCleanup(); 625 626 if (!Labels.empty()) 627 rescopeLabels(); 628 } 629 630 bool hasLabels() const { 631 return !Labels.empty(); 632 } 633 634 void rescopeLabels(); 635 }; 636 637 typedef llvm::DenseMap<const Decl *, Address> DeclMapTy; 638 639 /// \brief The scope used to remap some variables as private in the OpenMP 640 /// loop body (or other captured region emitted without outlining), and to 641 /// restore old vars back on exit. 642 class OMPPrivateScope : public RunCleanupsScope { 643 DeclMapTy SavedLocals; 644 DeclMapTy SavedPrivates; 645 646 private: 647 OMPPrivateScope(const OMPPrivateScope &) = delete; 648 void operator=(const OMPPrivateScope &) = delete; 649 650 public: 651 /// \brief Enter a new OpenMP private scope. 652 explicit OMPPrivateScope(CodeGenFunction &CGF) : RunCleanupsScope(CGF) {} 653 654 /// \brief Registers \a LocalVD variable as a private and apply \a 655 /// PrivateGen function for it to generate corresponding private variable. 656 /// \a PrivateGen returns an address of the generated private variable. 657 /// \return true if the variable is registered as private, false if it has 658 /// been privatized already. 659 bool 660 addPrivate(const VarDecl *LocalVD, 661 llvm::function_ref<Address()> PrivateGen) { 662 assert(PerformCleanup && "adding private to dead scope"); 663 664 // Only save it once. 665 if (SavedLocals.count(LocalVD)) return false; 666 667 // Copy the existing local entry to SavedLocals. 668 auto it = CGF.LocalDeclMap.find(LocalVD); 669 if (it != CGF.LocalDeclMap.end()) { 670 SavedLocals.insert({LocalVD, it->second}); 671 } else { 672 SavedLocals.insert({LocalVD, Address::invalid()}); 673 } 674 675 // Generate the private entry. 676 Address Addr = PrivateGen(); 677 QualType VarTy = LocalVD->getType(); 678 if (VarTy->isReferenceType()) { 679 Address Temp = CGF.CreateMemTemp(VarTy); 680 CGF.Builder.CreateStore(Addr.getPointer(), Temp); 681 Addr = Temp; 682 } 683 SavedPrivates.insert({LocalVD, Addr}); 684 685 return true; 686 } 687 688 /// \brief Privatizes local variables previously registered as private. 689 /// Registration is separate from the actual privatization to allow 690 /// initializers use values of the original variables, not the private one. 691 /// This is important, for example, if the private variable is a class 692 /// variable initialized by a constructor that references other private 693 /// variables. But at initialization original variables must be used, not 694 /// private copies. 695 /// \return true if at least one variable was privatized, false otherwise. 696 bool Privatize() { 697 copyInto(SavedPrivates, CGF.LocalDeclMap); 698 SavedPrivates.clear(); 699 return !SavedLocals.empty(); 700 } 701 702 void ForceCleanup() { 703 RunCleanupsScope::ForceCleanup(); 704 copyInto(SavedLocals, CGF.LocalDeclMap); 705 SavedLocals.clear(); 706 } 707 708 /// \brief Exit scope - all the mapped variables are restored. 709 ~OMPPrivateScope() { 710 if (PerformCleanup) 711 ForceCleanup(); 712 } 713 714 /// Checks if the global variable is captured in current function. 715 bool isGlobalVarCaptured(const VarDecl *VD) const { 716 return !VD->isLocalVarDeclOrParm() && CGF.LocalDeclMap.count(VD) > 0; 717 } 718 719 private: 720 /// Copy all the entries in the source map over the corresponding 721 /// entries in the destination, which must exist. 722 static void copyInto(const DeclMapTy &src, DeclMapTy &dest) { 723 for (auto &pair : src) { 724 if (!pair.second.isValid()) { 725 dest.erase(pair.first); 726 continue; 727 } 728 729 auto it = dest.find(pair.first); 730 if (it != dest.end()) { 731 it->second = pair.second; 732 } else { 733 dest.insert(pair); 734 } 735 } 736 } 737 }; 738 739 /// \brief Takes the old cleanup stack size and emits the cleanup blocks 740 /// that have been added. 741 void PopCleanupBlocks(EHScopeStack::stable_iterator OldCleanupStackSize); 742 743 /// \brief Takes the old cleanup stack size and emits the cleanup blocks 744 /// that have been added, then adds all lifetime-extended cleanups from 745 /// the given position to the stack. 746 void PopCleanupBlocks(EHScopeStack::stable_iterator OldCleanupStackSize, 747 size_t OldLifetimeExtendedStackSize); 748 749 void ResolveBranchFixups(llvm::BasicBlock *Target); 750 751 /// The given basic block lies in the current EH scope, but may be a 752 /// target of a potentially scope-crossing jump; get a stable handle 753 /// to which we can perform this jump later. 754 JumpDest getJumpDestInCurrentScope(llvm::BasicBlock *Target) { 755 return JumpDest(Target, 756 EHStack.getInnermostNormalCleanup(), 757 NextCleanupDestIndex++); 758 } 759 760 /// The given basic block lies in the current EH scope, but may be a 761 /// target of a potentially scope-crossing jump; get a stable handle 762 /// to which we can perform this jump later. 763 JumpDest getJumpDestInCurrentScope(StringRef Name = StringRef()) { 764 return getJumpDestInCurrentScope(createBasicBlock(Name)); 765 } 766 767 /// EmitBranchThroughCleanup - Emit a branch from the current insert 768 /// block through the normal cleanup handling code (if any) and then 769 /// on to \arg Dest. 770 void EmitBranchThroughCleanup(JumpDest Dest); 771 772 /// isObviouslyBranchWithoutCleanups - Return true if a branch to the 773 /// specified destination obviously has no cleanups to run. 'false' is always 774 /// a conservatively correct answer for this method. 775 bool isObviouslyBranchWithoutCleanups(JumpDest Dest) const; 776 777 /// popCatchScope - Pops the catch scope at the top of the EHScope 778 /// stack, emitting any required code (other than the catch handlers 779 /// themselves). 780 void popCatchScope(); 781 782 llvm::BasicBlock *getEHResumeBlock(bool isCleanup); 783 llvm::BasicBlock *getEHDispatchBlock(EHScopeStack::stable_iterator scope); 784 llvm::BasicBlock *getMSVCDispatchBlock(EHScopeStack::stable_iterator scope); 785 786 /// An object to manage conditionally-evaluated expressions. 787 class ConditionalEvaluation { 788 llvm::BasicBlock *StartBB; 789 790 public: 791 ConditionalEvaluation(CodeGenFunction &CGF) 792 : StartBB(CGF.Builder.GetInsertBlock()) {} 793 794 void begin(CodeGenFunction &CGF) { 795 assert(CGF.OutermostConditional != this); 796 if (!CGF.OutermostConditional) 797 CGF.OutermostConditional = this; 798 } 799 800 void end(CodeGenFunction &CGF) { 801 assert(CGF.OutermostConditional != nullptr); 802 if (CGF.OutermostConditional == this) 803 CGF.OutermostConditional = nullptr; 804 } 805 806 /// Returns a block which will be executed prior to each 807 /// evaluation of the conditional code. 808 llvm::BasicBlock *getStartingBlock() const { 809 return StartBB; 810 } 811 }; 812 813 /// isInConditionalBranch - Return true if we're currently emitting 814 /// one branch or the other of a conditional expression. 815 bool isInConditionalBranch() const { return OutermostConditional != nullptr; } 816 817 void setBeforeOutermostConditional(llvm::Value *value, Address addr) { 818 assert(isInConditionalBranch()); 819 llvm::BasicBlock *block = OutermostConditional->getStartingBlock(); 820 auto store = new llvm::StoreInst(value, addr.getPointer(), &block->back()); 821 store->setAlignment(addr.getAlignment().getQuantity()); 822 } 823 824 /// An RAII object to record that we're evaluating a statement 825 /// expression. 826 class StmtExprEvaluation { 827 CodeGenFunction &CGF; 828 829 /// We have to save the outermost conditional: cleanups in a 830 /// statement expression aren't conditional just because the 831 /// StmtExpr is. 832 ConditionalEvaluation *SavedOutermostConditional; 833 834 public: 835 StmtExprEvaluation(CodeGenFunction &CGF) 836 : CGF(CGF), SavedOutermostConditional(CGF.OutermostConditional) { 837 CGF.OutermostConditional = nullptr; 838 } 839 840 ~StmtExprEvaluation() { 841 CGF.OutermostConditional = SavedOutermostConditional; 842 CGF.EnsureInsertPoint(); 843 } 844 }; 845 846 /// An object which temporarily prevents a value from being 847 /// destroyed by aggressive peephole optimizations that assume that 848 /// all uses of a value have been realized in the IR. 849 class PeepholeProtection { 850 llvm::Instruction *Inst; 851 friend class CodeGenFunction; 852 853 public: 854 PeepholeProtection() : Inst(nullptr) {} 855 }; 856 857 /// A non-RAII class containing all the information about a bound 858 /// opaque value. OpaqueValueMapping, below, is a RAII wrapper for 859 /// this which makes individual mappings very simple; using this 860 /// class directly is useful when you have a variable number of 861 /// opaque values or don't want the RAII functionality for some 862 /// reason. 863 class OpaqueValueMappingData { 864 const OpaqueValueExpr *OpaqueValue; 865 bool BoundLValue; 866 CodeGenFunction::PeepholeProtection Protection; 867 868 OpaqueValueMappingData(const OpaqueValueExpr *ov, 869 bool boundLValue) 870 : OpaqueValue(ov), BoundLValue(boundLValue) {} 871 public: 872 OpaqueValueMappingData() : OpaqueValue(nullptr) {} 873 874 static bool shouldBindAsLValue(const Expr *expr) { 875 // gl-values should be bound as l-values for obvious reasons. 876 // Records should be bound as l-values because IR generation 877 // always keeps them in memory. Expressions of function type 878 // act exactly like l-values but are formally required to be 879 // r-values in C. 880 return expr->isGLValue() || 881 expr->getType()->isFunctionType() || 882 hasAggregateEvaluationKind(expr->getType()); 883 } 884 885 static OpaqueValueMappingData bind(CodeGenFunction &CGF, 886 const OpaqueValueExpr *ov, 887 const Expr *e) { 888 if (shouldBindAsLValue(ov)) 889 return bind(CGF, ov, CGF.EmitLValue(e)); 890 return bind(CGF, ov, CGF.EmitAnyExpr(e)); 891 } 892 893 static OpaqueValueMappingData bind(CodeGenFunction &CGF, 894 const OpaqueValueExpr *ov, 895 const LValue &lv) { 896 assert(shouldBindAsLValue(ov)); 897 CGF.OpaqueLValues.insert(std::make_pair(ov, lv)); 898 return OpaqueValueMappingData(ov, true); 899 } 900 901 static OpaqueValueMappingData bind(CodeGenFunction &CGF, 902 const OpaqueValueExpr *ov, 903 const RValue &rv) { 904 assert(!shouldBindAsLValue(ov)); 905 CGF.OpaqueRValues.insert(std::make_pair(ov, rv)); 906 907 OpaqueValueMappingData data(ov, false); 908 909 // Work around an extremely aggressive peephole optimization in 910 // EmitScalarConversion which assumes that all other uses of a 911 // value are extant. 912 data.Protection = CGF.protectFromPeepholes(rv); 913 914 return data; 915 } 916 917 bool isValid() const { return OpaqueValue != nullptr; } 918 void clear() { OpaqueValue = nullptr; } 919 920 void unbind(CodeGenFunction &CGF) { 921 assert(OpaqueValue && "no data to unbind!"); 922 923 if (BoundLValue) { 924 CGF.OpaqueLValues.erase(OpaqueValue); 925 } else { 926 CGF.OpaqueRValues.erase(OpaqueValue); 927 CGF.unprotectFromPeepholes(Protection); 928 } 929 } 930 }; 931 932 /// An RAII object to set (and then clear) a mapping for an OpaqueValueExpr. 933 class OpaqueValueMapping { 934 CodeGenFunction &CGF; 935 OpaqueValueMappingData Data; 936 937 public: 938 static bool shouldBindAsLValue(const Expr *expr) { 939 return OpaqueValueMappingData::shouldBindAsLValue(expr); 940 } 941 942 /// Build the opaque value mapping for the given conditional 943 /// operator if it's the GNU ?: extension. This is a common 944 /// enough pattern that the convenience operator is really 945 /// helpful. 946 /// 947 OpaqueValueMapping(CodeGenFunction &CGF, 948 const AbstractConditionalOperator *op) : CGF(CGF) { 949 if (isa<ConditionalOperator>(op)) 950 // Leave Data empty. 951 return; 952 953 const BinaryConditionalOperator *e = cast<BinaryConditionalOperator>(op); 954 Data = OpaqueValueMappingData::bind(CGF, e->getOpaqueValue(), 955 e->getCommon()); 956 } 957 958 /// Build the opaque value mapping for an OpaqueValueExpr whose source 959 /// expression is set to the expression the OVE represents. 960 OpaqueValueMapping(CodeGenFunction &CGF, const OpaqueValueExpr *OV) 961 : CGF(CGF) { 962 if (OV) { 963 assert(OV->getSourceExpr() && "wrong form of OpaqueValueMapping used " 964 "for OVE with no source expression"); 965 Data = OpaqueValueMappingData::bind(CGF, OV, OV->getSourceExpr()); 966 } 967 } 968 969 OpaqueValueMapping(CodeGenFunction &CGF, 970 const OpaqueValueExpr *opaqueValue, 971 LValue lvalue) 972 : CGF(CGF), Data(OpaqueValueMappingData::bind(CGF, opaqueValue, lvalue)) { 973 } 974 975 OpaqueValueMapping(CodeGenFunction &CGF, 976 const OpaqueValueExpr *opaqueValue, 977 RValue rvalue) 978 : CGF(CGF), Data(OpaqueValueMappingData::bind(CGF, opaqueValue, rvalue)) { 979 } 980 981 void pop() { 982 Data.unbind(CGF); 983 Data.clear(); 984 } 985 986 ~OpaqueValueMapping() { 987 if (Data.isValid()) Data.unbind(CGF); 988 } 989 }; 990 991 private: 992 CGDebugInfo *DebugInfo; 993 bool DisableDebugInfo; 994 995 /// DidCallStackSave - Whether llvm.stacksave has been called. Used to avoid 996 /// calling llvm.stacksave for multiple VLAs in the same scope. 997 bool DidCallStackSave; 998 999 /// IndirectBranch - The first time an indirect goto is seen we create a block 1000 /// with an indirect branch. Every time we see the address of a label taken, 1001 /// we add the label to the indirect goto. Every subsequent indirect goto is 1002 /// codegen'd as a jump to the IndirectBranch's basic block. 1003 llvm::IndirectBrInst *IndirectBranch; 1004 1005 /// LocalDeclMap - This keeps track of the LLVM allocas or globals for local C 1006 /// decls. 1007 DeclMapTy LocalDeclMap; 1008 1009 /// SizeArguments - If a ParmVarDecl had the pass_object_size attribute, this 1010 /// will contain a mapping from said ParmVarDecl to its implicit "object_size" 1011 /// parameter. 1012 llvm::SmallDenseMap<const ParmVarDecl *, const ImplicitParamDecl *, 2> 1013 SizeArguments; 1014 1015 /// Track escaped local variables with auto storage. Used during SEH 1016 /// outlining to produce a call to llvm.localescape. 1017 llvm::DenseMap<llvm::AllocaInst *, int> EscapedLocals; 1018 1019 /// LabelMap - This keeps track of the LLVM basic block for each C label. 1020 llvm::DenseMap<const LabelDecl*, JumpDest> LabelMap; 1021 1022 // BreakContinueStack - This keeps track of where break and continue 1023 // statements should jump to. 1024 struct BreakContinue { 1025 BreakContinue(JumpDest Break, JumpDest Continue) 1026 : BreakBlock(Break), ContinueBlock(Continue) {} 1027 1028 JumpDest BreakBlock; 1029 JumpDest ContinueBlock; 1030 }; 1031 SmallVector<BreakContinue, 8> BreakContinueStack; 1032 1033 /// Handles cancellation exit points in OpenMP-related constructs. 1034 class OpenMPCancelExitStack { 1035 /// Tracks cancellation exit point and join point for cancel-related exit 1036 /// and normal exit. 1037 struct CancelExit { 1038 CancelExit() = default; 1039 CancelExit(OpenMPDirectiveKind Kind, JumpDest ExitBlock, 1040 JumpDest ContBlock) 1041 : Kind(Kind), ExitBlock(ExitBlock), ContBlock(ContBlock) {} 1042 OpenMPDirectiveKind Kind = OMPD_unknown; 1043 /// true if the exit block has been emitted already by the special 1044 /// emitExit() call, false if the default codegen is used. 1045 bool HasBeenEmitted = false; 1046 JumpDest ExitBlock; 1047 JumpDest ContBlock; 1048 }; 1049 1050 SmallVector<CancelExit, 8> Stack; 1051 1052 public: 1053 OpenMPCancelExitStack() : Stack(1) {} 1054 ~OpenMPCancelExitStack() = default; 1055 /// Fetches the exit block for the current OpenMP construct. 1056 JumpDest getExitBlock() const { return Stack.back().ExitBlock; } 1057 /// Emits exit block with special codegen procedure specific for the related 1058 /// OpenMP construct + emits code for normal construct cleanup. 1059 void emitExit(CodeGenFunction &CGF, OpenMPDirectiveKind Kind, 1060 const llvm::function_ref<void(CodeGenFunction &)> &CodeGen) { 1061 if (Stack.back().Kind == Kind && getExitBlock().isValid()) { 1062 assert(CGF.getOMPCancelDestination(Kind).isValid()); 1063 assert(CGF.HaveInsertPoint()); 1064 assert(!Stack.back().HasBeenEmitted); 1065 auto IP = CGF.Builder.saveAndClearIP(); 1066 CGF.EmitBlock(Stack.back().ExitBlock.getBlock()); 1067 CodeGen(CGF); 1068 CGF.EmitBranchThroughCleanup(Stack.back().ContBlock); 1069 CGF.Builder.restoreIP(IP); 1070 Stack.back().HasBeenEmitted = true; 1071 } 1072 CodeGen(CGF); 1073 } 1074 /// Enter the cancel supporting \a Kind construct. 1075 /// \param Kind OpenMP directive that supports cancel constructs. 1076 /// \param HasCancel true, if the construct has inner cancel directive, 1077 /// false otherwise. 1078 void enter(CodeGenFunction &CGF, OpenMPDirectiveKind Kind, bool HasCancel) { 1079 Stack.push_back({Kind, 1080 HasCancel ? CGF.getJumpDestInCurrentScope("cancel.exit") 1081 : JumpDest(), 1082 HasCancel ? CGF.getJumpDestInCurrentScope("cancel.cont") 1083 : JumpDest()}); 1084 } 1085 /// Emits default exit point for the cancel construct (if the special one 1086 /// has not be used) + join point for cancel/normal exits. 1087 void exit(CodeGenFunction &CGF) { 1088 if (getExitBlock().isValid()) { 1089 assert(CGF.getOMPCancelDestination(Stack.back().Kind).isValid()); 1090 bool HaveIP = CGF.HaveInsertPoint(); 1091 if (!Stack.back().HasBeenEmitted) { 1092 if (HaveIP) 1093 CGF.EmitBranchThroughCleanup(Stack.back().ContBlock); 1094 CGF.EmitBlock(Stack.back().ExitBlock.getBlock()); 1095 CGF.EmitBranchThroughCleanup(Stack.back().ContBlock); 1096 } 1097 CGF.EmitBlock(Stack.back().ContBlock.getBlock()); 1098 if (!HaveIP) { 1099 CGF.Builder.CreateUnreachable(); 1100 CGF.Builder.ClearInsertionPoint(); 1101 } 1102 } 1103 Stack.pop_back(); 1104 } 1105 }; 1106 OpenMPCancelExitStack OMPCancelStack; 1107 1108 /// Controls insertion of cancellation exit blocks in worksharing constructs. 1109 class OMPCancelStackRAII { 1110 CodeGenFunction &CGF; 1111 1112 public: 1113 OMPCancelStackRAII(CodeGenFunction &CGF, OpenMPDirectiveKind Kind, 1114 bool HasCancel) 1115 : CGF(CGF) { 1116 CGF.OMPCancelStack.enter(CGF, Kind, HasCancel); 1117 } 1118 ~OMPCancelStackRAII() { CGF.OMPCancelStack.exit(CGF); } 1119 }; 1120 1121 CodeGenPGO PGO; 1122 1123 /// Calculate branch weights appropriate for PGO data 1124 llvm::MDNode *createProfileWeights(uint64_t TrueCount, uint64_t FalseCount); 1125 llvm::MDNode *createProfileWeights(ArrayRef<uint64_t> Weights); 1126 llvm::MDNode *createProfileWeightsForLoop(const Stmt *Cond, 1127 uint64_t LoopCount); 1128 1129 public: 1130 /// Increment the profiler's counter for the given statement by \p StepV. 1131 /// If \p StepV is null, the default increment is 1. 1132 void incrementProfileCounter(const Stmt *S, llvm::Value *StepV = nullptr) { 1133 if (CGM.getCodeGenOpts().hasProfileClangInstr()) 1134 PGO.emitCounterIncrement(Builder, S, StepV); 1135 PGO.setCurrentStmt(S); 1136 } 1137 1138 /// Get the profiler's count for the given statement. 1139 uint64_t getProfileCount(const Stmt *S) { 1140 Optional<uint64_t> Count = PGO.getStmtCount(S); 1141 if (!Count.hasValue()) 1142 return 0; 1143 return *Count; 1144 } 1145 1146 /// Set the profiler's current count. 1147 void setCurrentProfileCount(uint64_t Count) { 1148 PGO.setCurrentRegionCount(Count); 1149 } 1150 1151 /// Get the profiler's current count. This is generally the count for the most 1152 /// recently incremented counter. 1153 uint64_t getCurrentProfileCount() { 1154 return PGO.getCurrentRegionCount(); 1155 } 1156 1157 private: 1158 1159 /// SwitchInsn - This is nearest current switch instruction. It is null if 1160 /// current context is not in a switch. 1161 llvm::SwitchInst *SwitchInsn; 1162 /// The branch weights of SwitchInsn when doing instrumentation based PGO. 1163 SmallVector<uint64_t, 16> *SwitchWeights; 1164 1165 /// CaseRangeBlock - This block holds if condition check for last case 1166 /// statement range in current switch instruction. 1167 llvm::BasicBlock *CaseRangeBlock; 1168 1169 /// OpaqueLValues - Keeps track of the current set of opaque value 1170 /// expressions. 1171 llvm::DenseMap<const OpaqueValueExpr *, LValue> OpaqueLValues; 1172 llvm::DenseMap<const OpaqueValueExpr *, RValue> OpaqueRValues; 1173 1174 // VLASizeMap - This keeps track of the associated size for each VLA type. 1175 // We track this by the size expression rather than the type itself because 1176 // in certain situations, like a const qualifier applied to an VLA typedef, 1177 // multiple VLA types can share the same size expression. 1178 // FIXME: Maybe this could be a stack of maps that is pushed/popped as we 1179 // enter/leave scopes. 1180 llvm::DenseMap<const Expr*, llvm::Value*> VLASizeMap; 1181 1182 /// A block containing a single 'unreachable' instruction. Created 1183 /// lazily by getUnreachableBlock(). 1184 llvm::BasicBlock *UnreachableBlock; 1185 1186 /// Counts of the number return expressions in the function. 1187 unsigned NumReturnExprs; 1188 1189 /// Count the number of simple (constant) return expressions in the function. 1190 unsigned NumSimpleReturnExprs; 1191 1192 /// The last regular (non-return) debug location (breakpoint) in the function. 1193 SourceLocation LastStopPoint; 1194 1195 public: 1196 /// A scope within which we are constructing the fields of an object which 1197 /// might use a CXXDefaultInitExpr. This stashes away a 'this' value to use 1198 /// if we need to evaluate a CXXDefaultInitExpr within the evaluation. 1199 class FieldConstructionScope { 1200 public: 1201 FieldConstructionScope(CodeGenFunction &CGF, Address This) 1202 : CGF(CGF), OldCXXDefaultInitExprThis(CGF.CXXDefaultInitExprThis) { 1203 CGF.CXXDefaultInitExprThis = This; 1204 } 1205 ~FieldConstructionScope() { 1206 CGF.CXXDefaultInitExprThis = OldCXXDefaultInitExprThis; 1207 } 1208 1209 private: 1210 CodeGenFunction &CGF; 1211 Address OldCXXDefaultInitExprThis; 1212 }; 1213 1214 /// The scope of a CXXDefaultInitExpr. Within this scope, the value of 'this' 1215 /// is overridden to be the object under construction. 1216 class CXXDefaultInitExprScope { 1217 public: 1218 CXXDefaultInitExprScope(CodeGenFunction &CGF) 1219 : CGF(CGF), OldCXXThisValue(CGF.CXXThisValue), 1220 OldCXXThisAlignment(CGF.CXXThisAlignment) { 1221 CGF.CXXThisValue = CGF.CXXDefaultInitExprThis.getPointer(); 1222 CGF.CXXThisAlignment = CGF.CXXDefaultInitExprThis.getAlignment(); 1223 } 1224 ~CXXDefaultInitExprScope() { 1225 CGF.CXXThisValue = OldCXXThisValue; 1226 CGF.CXXThisAlignment = OldCXXThisAlignment; 1227 } 1228 1229 public: 1230 CodeGenFunction &CGF; 1231 llvm::Value *OldCXXThisValue; 1232 CharUnits OldCXXThisAlignment; 1233 }; 1234 1235 /// The scope of an ArrayInitLoopExpr. Within this scope, the value of the 1236 /// current loop index is overridden. 1237 class ArrayInitLoopExprScope { 1238 public: 1239 ArrayInitLoopExprScope(CodeGenFunction &CGF, llvm::Value *Index) 1240 : CGF(CGF), OldArrayInitIndex(CGF.ArrayInitIndex) { 1241 CGF.ArrayInitIndex = Index; 1242 } 1243 ~ArrayInitLoopExprScope() { 1244 CGF.ArrayInitIndex = OldArrayInitIndex; 1245 } 1246 1247 private: 1248 CodeGenFunction &CGF; 1249 llvm::Value *OldArrayInitIndex; 1250 }; 1251 1252 class InlinedInheritingConstructorScope { 1253 public: 1254 InlinedInheritingConstructorScope(CodeGenFunction &CGF, GlobalDecl GD) 1255 : CGF(CGF), OldCurGD(CGF.CurGD), OldCurFuncDecl(CGF.CurFuncDecl), 1256 OldCurCodeDecl(CGF.CurCodeDecl), 1257 OldCXXABIThisDecl(CGF.CXXABIThisDecl), 1258 OldCXXABIThisValue(CGF.CXXABIThisValue), 1259 OldCXXThisValue(CGF.CXXThisValue), 1260 OldCXXABIThisAlignment(CGF.CXXABIThisAlignment), 1261 OldCXXThisAlignment(CGF.CXXThisAlignment), 1262 OldReturnValue(CGF.ReturnValue), OldFnRetTy(CGF.FnRetTy), 1263 OldCXXInheritedCtorInitExprArgs( 1264 std::move(CGF.CXXInheritedCtorInitExprArgs)) { 1265 CGF.CurGD = GD; 1266 CGF.CurFuncDecl = CGF.CurCodeDecl = 1267 cast<CXXConstructorDecl>(GD.getDecl()); 1268 CGF.CXXABIThisDecl = nullptr; 1269 CGF.CXXABIThisValue = nullptr; 1270 CGF.CXXThisValue = nullptr; 1271 CGF.CXXABIThisAlignment = CharUnits(); 1272 CGF.CXXThisAlignment = CharUnits(); 1273 CGF.ReturnValue = Address::invalid(); 1274 CGF.FnRetTy = QualType(); 1275 CGF.CXXInheritedCtorInitExprArgs.clear(); 1276 } 1277 ~InlinedInheritingConstructorScope() { 1278 CGF.CurGD = OldCurGD; 1279 CGF.CurFuncDecl = OldCurFuncDecl; 1280 CGF.CurCodeDecl = OldCurCodeDecl; 1281 CGF.CXXABIThisDecl = OldCXXABIThisDecl; 1282 CGF.CXXABIThisValue = OldCXXABIThisValue; 1283 CGF.CXXThisValue = OldCXXThisValue; 1284 CGF.CXXABIThisAlignment = OldCXXABIThisAlignment; 1285 CGF.CXXThisAlignment = OldCXXThisAlignment; 1286 CGF.ReturnValue = OldReturnValue; 1287 CGF.FnRetTy = OldFnRetTy; 1288 CGF.CXXInheritedCtorInitExprArgs = 1289 std::move(OldCXXInheritedCtorInitExprArgs); 1290 } 1291 1292 private: 1293 CodeGenFunction &CGF; 1294 GlobalDecl OldCurGD; 1295 const Decl *OldCurFuncDecl; 1296 const Decl *OldCurCodeDecl; 1297 ImplicitParamDecl *OldCXXABIThisDecl; 1298 llvm::Value *OldCXXABIThisValue; 1299 llvm::Value *OldCXXThisValue; 1300 CharUnits OldCXXABIThisAlignment; 1301 CharUnits OldCXXThisAlignment; 1302 Address OldReturnValue; 1303 QualType OldFnRetTy; 1304 CallArgList OldCXXInheritedCtorInitExprArgs; 1305 }; 1306 1307 private: 1308 /// CXXThisDecl - When generating code for a C++ member function, 1309 /// this will hold the implicit 'this' declaration. 1310 ImplicitParamDecl *CXXABIThisDecl; 1311 llvm::Value *CXXABIThisValue; 1312 llvm::Value *CXXThisValue; 1313 CharUnits CXXABIThisAlignment; 1314 CharUnits CXXThisAlignment; 1315 1316 /// The value of 'this' to use when evaluating CXXDefaultInitExprs within 1317 /// this expression. 1318 Address CXXDefaultInitExprThis = Address::invalid(); 1319 1320 /// The current array initialization index when evaluating an 1321 /// ArrayInitIndexExpr within an ArrayInitLoopExpr. 1322 llvm::Value *ArrayInitIndex = nullptr; 1323 1324 /// The values of function arguments to use when evaluating 1325 /// CXXInheritedCtorInitExprs within this context. 1326 CallArgList CXXInheritedCtorInitExprArgs; 1327 1328 /// CXXStructorImplicitParamDecl - When generating code for a constructor or 1329 /// destructor, this will hold the implicit argument (e.g. VTT). 1330 ImplicitParamDecl *CXXStructorImplicitParamDecl; 1331 llvm::Value *CXXStructorImplicitParamValue; 1332 1333 /// OutermostConditional - Points to the outermost active 1334 /// conditional control. This is used so that we know if a 1335 /// temporary should be destroyed conditionally. 1336 ConditionalEvaluation *OutermostConditional; 1337 1338 /// The current lexical scope. 1339 LexicalScope *CurLexicalScope; 1340 1341 /// The current source location that should be used for exception 1342 /// handling code. 1343 SourceLocation CurEHLocation; 1344 1345 /// BlockByrefInfos - For each __block variable, contains 1346 /// information about the layout of the variable. 1347 llvm::DenseMap<const ValueDecl *, BlockByrefInfo> BlockByrefInfos; 1348 1349 llvm::BasicBlock *TerminateLandingPad; 1350 llvm::BasicBlock *TerminateHandler; 1351 llvm::BasicBlock *TrapBB; 1352 1353 /// True if we need emit the life-time markers. 1354 const bool ShouldEmitLifetimeMarkers; 1355 1356 /// Add a kernel metadata node to the named metadata node 'opencl.kernels'. 1357 /// In the kernel metadata node, reference the kernel function and metadata 1358 /// nodes for its optional attribute qualifiers (OpenCL 1.1 6.7.2): 1359 /// - A node for the vec_type_hint(<type>) qualifier contains string 1360 /// "vec_type_hint", an undefined value of the <type> data type, 1361 /// and a Boolean that is true if the <type> is integer and signed. 1362 /// - A node for the work_group_size_hint(X,Y,Z) qualifier contains string 1363 /// "work_group_size_hint", and three 32-bit integers X, Y and Z. 1364 /// - A node for the reqd_work_group_size(X,Y,Z) qualifier contains string 1365 /// "reqd_work_group_size", and three 32-bit integers X, Y and Z. 1366 void EmitOpenCLKernelMetadata(const FunctionDecl *FD, 1367 llvm::Function *Fn); 1368 1369 public: 1370 CodeGenFunction(CodeGenModule &cgm, bool suppressNewContext=false); 1371 ~CodeGenFunction(); 1372 1373 CodeGenTypes &getTypes() const { return CGM.getTypes(); } 1374 ASTContext &getContext() const { return CGM.getContext(); } 1375 CGDebugInfo *getDebugInfo() { 1376 if (DisableDebugInfo) 1377 return nullptr; 1378 return DebugInfo; 1379 } 1380 void disableDebugInfo() { DisableDebugInfo = true; } 1381 void enableDebugInfo() { DisableDebugInfo = false; } 1382 1383 bool shouldUseFusedARCCalls() { 1384 return CGM.getCodeGenOpts().OptimizationLevel == 0; 1385 } 1386 1387 const LangOptions &getLangOpts() const { return CGM.getLangOpts(); } 1388 1389 /// Returns a pointer to the function's exception object and selector slot, 1390 /// which is assigned in every landing pad. 1391 Address getExceptionSlot(); 1392 Address getEHSelectorSlot(); 1393 1394 /// Returns the contents of the function's exception object and selector 1395 /// slots. 1396 llvm::Value *getExceptionFromSlot(); 1397 llvm::Value *getSelectorFromSlot(); 1398 1399 Address getNormalCleanupDestSlot(); 1400 1401 llvm::BasicBlock *getUnreachableBlock() { 1402 if (!UnreachableBlock) { 1403 UnreachableBlock = createBasicBlock("unreachable"); 1404 new llvm::UnreachableInst(getLLVMContext(), UnreachableBlock); 1405 } 1406 return UnreachableBlock; 1407 } 1408 1409 llvm::BasicBlock *getInvokeDest() { 1410 if (!EHStack.requiresLandingPad()) return nullptr; 1411 return getInvokeDestImpl(); 1412 } 1413 1414 bool currentFunctionUsesSEHTry() const { return CurSEHParent != nullptr; } 1415 1416 const TargetInfo &getTarget() const { return Target; } 1417 llvm::LLVMContext &getLLVMContext() { return CGM.getLLVMContext(); } 1418 1419 //===--------------------------------------------------------------------===// 1420 // Cleanups 1421 //===--------------------------------------------------------------------===// 1422 1423 typedef void Destroyer(CodeGenFunction &CGF, Address addr, QualType ty); 1424 1425 void pushIrregularPartialArrayCleanup(llvm::Value *arrayBegin, 1426 Address arrayEndPointer, 1427 QualType elementType, 1428 CharUnits elementAlignment, 1429 Destroyer *destroyer); 1430 void pushRegularPartialArrayCleanup(llvm::Value *arrayBegin, 1431 llvm::Value *arrayEnd, 1432 QualType elementType, 1433 CharUnits elementAlignment, 1434 Destroyer *destroyer); 1435 1436 void pushDestroy(QualType::DestructionKind dtorKind, 1437 Address addr, QualType type); 1438 void pushEHDestroy(QualType::DestructionKind dtorKind, 1439 Address addr, QualType type); 1440 void pushDestroy(CleanupKind kind, Address addr, QualType type, 1441 Destroyer *destroyer, bool useEHCleanupForArray); 1442 void pushLifetimeExtendedDestroy(CleanupKind kind, Address addr, 1443 QualType type, Destroyer *destroyer, 1444 bool useEHCleanupForArray); 1445 void pushCallObjectDeleteCleanup(const FunctionDecl *OperatorDelete, 1446 llvm::Value *CompletePtr, 1447 QualType ElementType); 1448 void pushStackRestore(CleanupKind kind, Address SPMem); 1449 void emitDestroy(Address addr, QualType type, Destroyer *destroyer, 1450 bool useEHCleanupForArray); 1451 llvm::Function *generateDestroyHelper(Address addr, QualType type, 1452 Destroyer *destroyer, 1453 bool useEHCleanupForArray, 1454 const VarDecl *VD); 1455 void emitArrayDestroy(llvm::Value *begin, llvm::Value *end, 1456 QualType elementType, CharUnits elementAlign, 1457 Destroyer *destroyer, 1458 bool checkZeroLength, bool useEHCleanup); 1459 1460 Destroyer *getDestroyer(QualType::DestructionKind destructionKind); 1461 1462 /// Determines whether an EH cleanup is required to destroy a type 1463 /// with the given destruction kind. 1464 bool needsEHCleanup(QualType::DestructionKind kind) { 1465 switch (kind) { 1466 case QualType::DK_none: 1467 return false; 1468 case QualType::DK_cxx_destructor: 1469 case QualType::DK_objc_weak_lifetime: 1470 return getLangOpts().Exceptions; 1471 case QualType::DK_objc_strong_lifetime: 1472 return getLangOpts().Exceptions && 1473 CGM.getCodeGenOpts().ObjCAutoRefCountExceptions; 1474 } 1475 llvm_unreachable("bad destruction kind"); 1476 } 1477 1478 CleanupKind getCleanupKind(QualType::DestructionKind kind) { 1479 return (needsEHCleanup(kind) ? NormalAndEHCleanup : NormalCleanup); 1480 } 1481 1482 //===--------------------------------------------------------------------===// 1483 // Objective-C 1484 //===--------------------------------------------------------------------===// 1485 1486 void GenerateObjCMethod(const ObjCMethodDecl *OMD); 1487 1488 void StartObjCMethod(const ObjCMethodDecl *MD, const ObjCContainerDecl *CD); 1489 1490 /// GenerateObjCGetter - Synthesize an Objective-C property getter function. 1491 void GenerateObjCGetter(ObjCImplementationDecl *IMP, 1492 const ObjCPropertyImplDecl *PID); 1493 void generateObjCGetterBody(const ObjCImplementationDecl *classImpl, 1494 const ObjCPropertyImplDecl *propImpl, 1495 const ObjCMethodDecl *GetterMothodDecl, 1496 llvm::Constant *AtomicHelperFn); 1497 1498 void GenerateObjCCtorDtorMethod(ObjCImplementationDecl *IMP, 1499 ObjCMethodDecl *MD, bool ctor); 1500 1501 /// GenerateObjCSetter - Synthesize an Objective-C property setter function 1502 /// for the given property. 1503 void GenerateObjCSetter(ObjCImplementationDecl *IMP, 1504 const ObjCPropertyImplDecl *PID); 1505 void generateObjCSetterBody(const ObjCImplementationDecl *classImpl, 1506 const ObjCPropertyImplDecl *propImpl, 1507 llvm::Constant *AtomicHelperFn); 1508 1509 //===--------------------------------------------------------------------===// 1510 // Block Bits 1511 //===--------------------------------------------------------------------===// 1512 1513 llvm::Value *EmitBlockLiteral(const BlockExpr *); 1514 static void destroyBlockInfos(CGBlockInfo *info); 1515 1516 llvm::Function *GenerateBlockFunction(GlobalDecl GD, 1517 const CGBlockInfo &Info, 1518 const DeclMapTy &ldm, 1519 bool IsLambdaConversionToBlock); 1520 1521 llvm::Constant *GenerateCopyHelperFunction(const CGBlockInfo &blockInfo); 1522 llvm::Constant *GenerateDestroyHelperFunction(const CGBlockInfo &blockInfo); 1523 llvm::Constant *GenerateObjCAtomicSetterCopyHelperFunction( 1524 const ObjCPropertyImplDecl *PID); 1525 llvm::Constant *GenerateObjCAtomicGetterCopyHelperFunction( 1526 const ObjCPropertyImplDecl *PID); 1527 llvm::Value *EmitBlockCopyAndAutorelease(llvm::Value *Block, QualType Ty); 1528 1529 void BuildBlockRelease(llvm::Value *DeclPtr, BlockFieldFlags flags); 1530 1531 class AutoVarEmission; 1532 1533 void emitByrefStructureInit(const AutoVarEmission &emission); 1534 void enterByrefCleanup(const AutoVarEmission &emission); 1535 1536 void setBlockContextParameter(const ImplicitParamDecl *D, unsigned argNum, 1537 llvm::Value *ptr); 1538 1539 Address LoadBlockStruct(); 1540 Address GetAddrOfBlockDecl(const VarDecl *var, bool ByRef); 1541 1542 /// BuildBlockByrefAddress - Computes the location of the 1543 /// data in a variable which is declared as __block. 1544 Address emitBlockByrefAddress(Address baseAddr, const VarDecl *V, 1545 bool followForward = true); 1546 Address emitBlockByrefAddress(Address baseAddr, 1547 const BlockByrefInfo &info, 1548 bool followForward, 1549 const llvm::Twine &name); 1550 1551 const BlockByrefInfo &getBlockByrefInfo(const VarDecl *var); 1552 1553 QualType BuildFunctionArgList(GlobalDecl GD, FunctionArgList &Args); 1554 1555 void GenerateCode(GlobalDecl GD, llvm::Function *Fn, 1556 const CGFunctionInfo &FnInfo); 1557 /// \brief Emit code for the start of a function. 1558 /// \param Loc The location to be associated with the function. 1559 /// \param StartLoc The location of the function body. 1560 void StartFunction(GlobalDecl GD, 1561 QualType RetTy, 1562 llvm::Function *Fn, 1563 const CGFunctionInfo &FnInfo, 1564 const FunctionArgList &Args, 1565 SourceLocation Loc = SourceLocation(), 1566 SourceLocation StartLoc = SourceLocation()); 1567 1568 static bool IsConstructorDelegationValid(const CXXConstructorDecl *Ctor); 1569 1570 void EmitConstructorBody(FunctionArgList &Args); 1571 void EmitDestructorBody(FunctionArgList &Args); 1572 void emitImplicitAssignmentOperatorBody(FunctionArgList &Args); 1573 void EmitFunctionBody(FunctionArgList &Args, const Stmt *Body); 1574 void EmitBlockWithFallThrough(llvm::BasicBlock *BB, const Stmt *S); 1575 1576 void EmitForwardingCallToLambda(const CXXMethodDecl *LambdaCallOperator, 1577 CallArgList &CallArgs); 1578 void EmitLambdaToBlockPointerBody(FunctionArgList &Args); 1579 void EmitLambdaBlockInvokeBody(); 1580 void EmitLambdaDelegatingInvokeBody(const CXXMethodDecl *MD); 1581 void EmitLambdaStaticInvokeFunction(const CXXMethodDecl *MD); 1582 void EmitAsanPrologueOrEpilogue(bool Prologue); 1583 1584 /// \brief Emit the unified return block, trying to avoid its emission when 1585 /// possible. 1586 /// \return The debug location of the user written return statement if the 1587 /// return block is is avoided. 1588 llvm::DebugLoc EmitReturnBlock(); 1589 1590 /// FinishFunction - Complete IR generation of the current function. It is 1591 /// legal to call this function even if there is no current insertion point. 1592 void FinishFunction(SourceLocation EndLoc=SourceLocation()); 1593 1594 void StartThunk(llvm::Function *Fn, GlobalDecl GD, 1595 const CGFunctionInfo &FnInfo); 1596 1597 void EmitCallAndReturnForThunk(llvm::Constant *Callee, 1598 const ThunkInfo *Thunk); 1599 1600 void FinishThunk(); 1601 1602 /// Emit a musttail call for a thunk with a potentially adjusted this pointer. 1603 void EmitMustTailThunk(const CXXMethodDecl *MD, llvm::Value *AdjustedThisPtr, 1604 llvm::Value *Callee); 1605 1606 /// Generate a thunk for the given method. 1607 void generateThunk(llvm::Function *Fn, const CGFunctionInfo &FnInfo, 1608 GlobalDecl GD, const ThunkInfo &Thunk); 1609 1610 llvm::Function *GenerateVarArgsThunk(llvm::Function *Fn, 1611 const CGFunctionInfo &FnInfo, 1612 GlobalDecl GD, const ThunkInfo &Thunk); 1613 1614 void EmitCtorPrologue(const CXXConstructorDecl *CD, CXXCtorType Type, 1615 FunctionArgList &Args); 1616 1617 void EmitInitializerForField(FieldDecl *Field, LValue LHS, Expr *Init); 1618 1619 /// Struct with all informations about dynamic [sub]class needed to set vptr. 1620 struct VPtr { 1621 BaseSubobject Base; 1622 const CXXRecordDecl *NearestVBase; 1623 CharUnits OffsetFromNearestVBase; 1624 const CXXRecordDecl *VTableClass; 1625 }; 1626 1627 /// Initialize the vtable pointer of the given subobject. 1628 void InitializeVTablePointer(const VPtr &vptr); 1629 1630 typedef llvm::SmallVector<VPtr, 4> VPtrsVector; 1631 1632 typedef llvm::SmallPtrSet<const CXXRecordDecl *, 4> VisitedVirtualBasesSetTy; 1633 VPtrsVector getVTablePointers(const CXXRecordDecl *VTableClass); 1634 1635 void getVTablePointers(BaseSubobject Base, const CXXRecordDecl *NearestVBase, 1636 CharUnits OffsetFromNearestVBase, 1637 bool BaseIsNonVirtualPrimaryBase, 1638 const CXXRecordDecl *VTableClass, 1639 VisitedVirtualBasesSetTy &VBases, VPtrsVector &vptrs); 1640 1641 void InitializeVTablePointers(const CXXRecordDecl *ClassDecl); 1642 1643 /// GetVTablePtr - Return the Value of the vtable pointer member pointed 1644 /// to by This. 1645 llvm::Value *GetVTablePtr(Address This, llvm::Type *VTableTy, 1646 const CXXRecordDecl *VTableClass); 1647 1648 enum CFITypeCheckKind { 1649 CFITCK_VCall, 1650 CFITCK_NVCall, 1651 CFITCK_DerivedCast, 1652 CFITCK_UnrelatedCast, 1653 CFITCK_ICall, 1654 }; 1655 1656 /// \brief Derived is the presumed address of an object of type T after a 1657 /// cast. If T is a polymorphic class type, emit a check that the virtual 1658 /// table for Derived belongs to a class derived from T. 1659 void EmitVTablePtrCheckForCast(QualType T, llvm::Value *Derived, 1660 bool MayBeNull, CFITypeCheckKind TCK, 1661 SourceLocation Loc); 1662 1663 /// EmitVTablePtrCheckForCall - Virtual method MD is being called via VTable. 1664 /// If vptr CFI is enabled, emit a check that VTable is valid. 1665 void EmitVTablePtrCheckForCall(const CXXRecordDecl *RD, llvm::Value *VTable, 1666 CFITypeCheckKind TCK, SourceLocation Loc); 1667 1668 /// EmitVTablePtrCheck - Emit a check that VTable is a valid virtual table for 1669 /// RD using llvm.type.test. 1670 void EmitVTablePtrCheck(const CXXRecordDecl *RD, llvm::Value *VTable, 1671 CFITypeCheckKind TCK, SourceLocation Loc); 1672 1673 /// If whole-program virtual table optimization is enabled, emit an assumption 1674 /// that VTable is a member of RD's type identifier. Or, if vptr CFI is 1675 /// enabled, emit a check that VTable is a member of RD's type identifier. 1676 void EmitTypeMetadataCodeForVCall(const CXXRecordDecl *RD, 1677 llvm::Value *VTable, SourceLocation Loc); 1678 1679 /// Returns whether we should perform a type checked load when loading a 1680 /// virtual function for virtual calls to members of RD. This is generally 1681 /// true when both vcall CFI and whole-program-vtables are enabled. 1682 bool ShouldEmitVTableTypeCheckedLoad(const CXXRecordDecl *RD); 1683 1684 /// Emit a type checked load from the given vtable. 1685 llvm::Value *EmitVTableTypeCheckedLoad(const CXXRecordDecl *RD, llvm::Value *VTable, 1686 uint64_t VTableByteOffset); 1687 1688 /// CanDevirtualizeMemberFunctionCalls - Checks whether virtual calls on given 1689 /// expr can be devirtualized. 1690 bool CanDevirtualizeMemberFunctionCall(const Expr *Base, 1691 const CXXMethodDecl *MD); 1692 1693 /// EnterDtorCleanups - Enter the cleanups necessary to complete the 1694 /// given phase of destruction for a destructor. The end result 1695 /// should call destructors on members and base classes in reverse 1696 /// order of their construction. 1697 void EnterDtorCleanups(const CXXDestructorDecl *Dtor, CXXDtorType Type); 1698 1699 /// ShouldInstrumentFunction - Return true if the current function should be 1700 /// instrumented with __cyg_profile_func_* calls 1701 bool ShouldInstrumentFunction(); 1702 1703 /// ShouldXRayInstrument - Return true if the current function should be 1704 /// instrumented with XRay nop sleds. 1705 bool ShouldXRayInstrumentFunction() const; 1706 1707 /// EmitFunctionInstrumentation - Emit LLVM code to call the specified 1708 /// instrumentation function with the current function and the call site, if 1709 /// function instrumentation is enabled. 1710 void EmitFunctionInstrumentation(const char *Fn); 1711 1712 /// EmitMCountInstrumentation - Emit call to .mcount. 1713 void EmitMCountInstrumentation(); 1714 1715 /// EmitFunctionProlog - Emit the target specific LLVM code to load the 1716 /// arguments for the given function. This is also responsible for naming the 1717 /// LLVM function arguments. 1718 void EmitFunctionProlog(const CGFunctionInfo &FI, 1719 llvm::Function *Fn, 1720 const FunctionArgList &Args); 1721 1722 /// EmitFunctionEpilog - Emit the target specific LLVM code to return the 1723 /// given temporary. 1724 void EmitFunctionEpilog(const CGFunctionInfo &FI, bool EmitRetDbgLoc, 1725 SourceLocation EndLoc); 1726 1727 /// EmitStartEHSpec - Emit the start of the exception spec. 1728 void EmitStartEHSpec(const Decl *D); 1729 1730 /// EmitEndEHSpec - Emit the end of the exception spec. 1731 void EmitEndEHSpec(const Decl *D); 1732 1733 /// getTerminateLandingPad - Return a landing pad that just calls terminate. 1734 llvm::BasicBlock *getTerminateLandingPad(); 1735 1736 /// getTerminateHandler - Return a handler (not a landing pad, just 1737 /// a catch handler) that just calls terminate. This is used when 1738 /// a terminate scope encloses a try. 1739 llvm::BasicBlock *getTerminateHandler(); 1740 1741 llvm::Type *ConvertTypeForMem(QualType T); 1742 llvm::Type *ConvertType(QualType T); 1743 llvm::Type *ConvertType(const TypeDecl *T) { 1744 return ConvertType(getContext().getTypeDeclType(T)); 1745 } 1746 1747 /// LoadObjCSelf - Load the value of self. This function is only valid while 1748 /// generating code for an Objective-C method. 1749 llvm::Value *LoadObjCSelf(); 1750 1751 /// TypeOfSelfObject - Return type of object that this self represents. 1752 QualType TypeOfSelfObject(); 1753 1754 /// hasAggregateLLVMType - Return true if the specified AST type will map into 1755 /// an aggregate LLVM type or is void. 1756 static TypeEvaluationKind getEvaluationKind(QualType T); 1757 1758 static bool hasScalarEvaluationKind(QualType T) { 1759 return getEvaluationKind(T) == TEK_Scalar; 1760 } 1761 1762 static bool hasAggregateEvaluationKind(QualType T) { 1763 return getEvaluationKind(T) == TEK_Aggregate; 1764 } 1765 1766 /// createBasicBlock - Create an LLVM basic block. 1767 llvm::BasicBlock *createBasicBlock(const Twine &name = "", 1768 llvm::Function *parent = nullptr, 1769 llvm::BasicBlock *before = nullptr) { 1770 #ifdef NDEBUG 1771 return llvm::BasicBlock::Create(getLLVMContext(), "", parent, before); 1772 #else 1773 return llvm::BasicBlock::Create(getLLVMContext(), name, parent, before); 1774 #endif 1775 } 1776 1777 /// getBasicBlockForLabel - Return the LLVM basicblock that the specified 1778 /// label maps to. 1779 JumpDest getJumpDestForLabel(const LabelDecl *S); 1780 1781 /// SimplifyForwardingBlocks - If the given basic block is only a branch to 1782 /// another basic block, simplify it. This assumes that no other code could 1783 /// potentially reference the basic block. 1784 void SimplifyForwardingBlocks(llvm::BasicBlock *BB); 1785 1786 /// EmitBlock - Emit the given block \arg BB and set it as the insert point, 1787 /// adding a fall-through branch from the current insert block if 1788 /// necessary. It is legal to call this function even if there is no current 1789 /// insertion point. 1790 /// 1791 /// IsFinished - If true, indicates that the caller has finished emitting 1792 /// branches to the given block and does not expect to emit code into it. This 1793 /// means the block can be ignored if it is unreachable. 1794 void EmitBlock(llvm::BasicBlock *BB, bool IsFinished=false); 1795 1796 /// EmitBlockAfterUses - Emit the given block somewhere hopefully 1797 /// near its uses, and leave the insertion point in it. 1798 void EmitBlockAfterUses(llvm::BasicBlock *BB); 1799 1800 /// EmitBranch - Emit a branch to the specified basic block from the current 1801 /// insert block, taking care to avoid creation of branches from dummy 1802 /// blocks. It is legal to call this function even if there is no current 1803 /// insertion point. 1804 /// 1805 /// This function clears the current insertion point. The caller should follow 1806 /// calls to this function with calls to Emit*Block prior to generation new 1807 /// code. 1808 void EmitBranch(llvm::BasicBlock *Block); 1809 1810 /// HaveInsertPoint - True if an insertion point is defined. If not, this 1811 /// indicates that the current code being emitted is unreachable. 1812 bool HaveInsertPoint() const { 1813 return Builder.GetInsertBlock() != nullptr; 1814 } 1815 1816 /// EnsureInsertPoint - Ensure that an insertion point is defined so that 1817 /// emitted IR has a place to go. Note that by definition, if this function 1818 /// creates a block then that block is unreachable; callers may do better to 1819 /// detect when no insertion point is defined and simply skip IR generation. 1820 void EnsureInsertPoint() { 1821 if (!HaveInsertPoint()) 1822 EmitBlock(createBasicBlock()); 1823 } 1824 1825 /// ErrorUnsupported - Print out an error that codegen doesn't support the 1826 /// specified stmt yet. 1827 void ErrorUnsupported(const Stmt *S, const char *Type); 1828 1829 //===--------------------------------------------------------------------===// 1830 // Helpers 1831 //===--------------------------------------------------------------------===// 1832 1833 LValue MakeAddrLValue(Address Addr, QualType T, 1834 AlignmentSource AlignSource = AlignmentSource::Type) { 1835 return LValue::MakeAddr(Addr, T, getContext(), AlignSource, 1836 CGM.getTBAAInfo(T)); 1837 } 1838 1839 LValue MakeAddrLValue(llvm::Value *V, QualType T, CharUnits Alignment, 1840 AlignmentSource AlignSource = AlignmentSource::Type) { 1841 return LValue::MakeAddr(Address(V, Alignment), T, getContext(), 1842 AlignSource, CGM.getTBAAInfo(T)); 1843 } 1844 1845 LValue MakeNaturalAlignPointeeAddrLValue(llvm::Value *V, QualType T); 1846 LValue MakeNaturalAlignAddrLValue(llvm::Value *V, QualType T); 1847 CharUnits getNaturalTypeAlignment(QualType T, 1848 AlignmentSource *Source = nullptr, 1849 bool forPointeeType = false); 1850 CharUnits getNaturalPointeeTypeAlignment(QualType T, 1851 AlignmentSource *Source = nullptr); 1852 1853 Address EmitLoadOfReference(Address Ref, const ReferenceType *RefTy, 1854 AlignmentSource *Source = nullptr); 1855 LValue EmitLoadOfReferenceLValue(Address Ref, const ReferenceType *RefTy); 1856 1857 Address EmitLoadOfPointer(Address Ptr, const PointerType *PtrTy, 1858 AlignmentSource *Source = nullptr); 1859 LValue EmitLoadOfPointerLValue(Address Ptr, const PointerType *PtrTy); 1860 1861 /// CreateTempAlloca - This creates a alloca and inserts it into the entry 1862 /// block. The caller is responsible for setting an appropriate alignment on 1863 /// the alloca. 1864 llvm::AllocaInst *CreateTempAlloca(llvm::Type *Ty, 1865 const Twine &Name = "tmp"); 1866 Address CreateTempAlloca(llvm::Type *Ty, CharUnits align, 1867 const Twine &Name = "tmp"); 1868 1869 /// CreateDefaultAlignedTempAlloca - This creates an alloca with the 1870 /// default ABI alignment of the given LLVM type. 1871 /// 1872 /// IMPORTANT NOTE: This is *not* generally the right alignment for 1873 /// any given AST type that happens to have been lowered to the 1874 /// given IR type. This should only ever be used for function-local, 1875 /// IR-driven manipulations like saving and restoring a value. Do 1876 /// not hand this address off to arbitrary IRGen routines, and especially 1877 /// do not pass it as an argument to a function that might expect a 1878 /// properly ABI-aligned value. 1879 Address CreateDefaultAlignTempAlloca(llvm::Type *Ty, 1880 const Twine &Name = "tmp"); 1881 1882 /// InitTempAlloca - Provide an initial value for the given alloca which 1883 /// will be observable at all locations in the function. 1884 /// 1885 /// The address should be something that was returned from one of 1886 /// the CreateTempAlloca or CreateMemTemp routines, and the 1887 /// initializer must be valid in the entry block (i.e. it must 1888 /// either be a constant or an argument value). 1889 void InitTempAlloca(Address Alloca, llvm::Value *Value); 1890 1891 /// CreateIRTemp - Create a temporary IR object of the given type, with 1892 /// appropriate alignment. This routine should only be used when an temporary 1893 /// value needs to be stored into an alloca (for example, to avoid explicit 1894 /// PHI construction), but the type is the IR type, not the type appropriate 1895 /// for storing in memory. 1896 /// 1897 /// That is, this is exactly equivalent to CreateMemTemp, but calling 1898 /// ConvertType instead of ConvertTypeForMem. 1899 Address CreateIRTemp(QualType T, const Twine &Name = "tmp"); 1900 1901 /// CreateMemTemp - Create a temporary memory object of the given type, with 1902 /// appropriate alignment. 1903 Address CreateMemTemp(QualType T, const Twine &Name = "tmp"); 1904 Address CreateMemTemp(QualType T, CharUnits Align, const Twine &Name = "tmp"); 1905 1906 /// CreateAggTemp - Create a temporary memory object for the given 1907 /// aggregate type. 1908 AggValueSlot CreateAggTemp(QualType T, const Twine &Name = "tmp") { 1909 return AggValueSlot::forAddr(CreateMemTemp(T, Name), 1910 T.getQualifiers(), 1911 AggValueSlot::IsNotDestructed, 1912 AggValueSlot::DoesNotNeedGCBarriers, 1913 AggValueSlot::IsNotAliased); 1914 } 1915 1916 /// Emit a cast to void* in the appropriate address space. 1917 llvm::Value *EmitCastToVoidPtr(llvm::Value *value); 1918 1919 /// EvaluateExprAsBool - Perform the usual unary conversions on the specified 1920 /// expression and compare the result against zero, returning an Int1Ty value. 1921 llvm::Value *EvaluateExprAsBool(const Expr *E); 1922 1923 /// EmitIgnoredExpr - Emit an expression in a context which ignores the result. 1924 void EmitIgnoredExpr(const Expr *E); 1925 1926 /// EmitAnyExpr - Emit code to compute the specified expression which can have 1927 /// any type. The result is returned as an RValue struct. If this is an 1928 /// aggregate expression, the aggloc/agglocvolatile arguments indicate where 1929 /// the result should be returned. 1930 /// 1931 /// \param ignoreResult True if the resulting value isn't used. 1932 RValue EmitAnyExpr(const Expr *E, 1933 AggValueSlot aggSlot = AggValueSlot::ignored(), 1934 bool ignoreResult = false); 1935 1936 // EmitVAListRef - Emit a "reference" to a va_list; this is either the address 1937 // or the value of the expression, depending on how va_list is defined. 1938 Address EmitVAListRef(const Expr *E); 1939 1940 /// Emit a "reference" to a __builtin_ms_va_list; this is 1941 /// always the value of the expression, because a __builtin_ms_va_list is a 1942 /// pointer to a char. 1943 Address EmitMSVAListRef(const Expr *E); 1944 1945 /// EmitAnyExprToTemp - Similary to EmitAnyExpr(), however, the result will 1946 /// always be accessible even if no aggregate location is provided. 1947 RValue EmitAnyExprToTemp(const Expr *E); 1948 1949 /// EmitAnyExprToMem - Emits the code necessary to evaluate an 1950 /// arbitrary expression into the given memory location. 1951 void EmitAnyExprToMem(const Expr *E, Address Location, 1952 Qualifiers Quals, bool IsInitializer); 1953 1954 void EmitAnyExprToExn(const Expr *E, Address Addr); 1955 1956 /// EmitExprAsInit - Emits the code necessary to initialize a 1957 /// location in memory with the given initializer. 1958 void EmitExprAsInit(const Expr *init, const ValueDecl *D, LValue lvalue, 1959 bool capturedByInit); 1960 1961 /// hasVolatileMember - returns true if aggregate type has a volatile 1962 /// member. 1963 bool hasVolatileMember(QualType T) { 1964 if (const RecordType *RT = T->getAs<RecordType>()) { 1965 const RecordDecl *RD = cast<RecordDecl>(RT->getDecl()); 1966 return RD->hasVolatileMember(); 1967 } 1968 return false; 1969 } 1970 /// EmitAggregateCopy - Emit an aggregate assignment. 1971 /// 1972 /// The difference to EmitAggregateCopy is that tail padding is not copied. 1973 /// This is required for correctness when assigning non-POD structures in C++. 1974 void EmitAggregateAssign(Address DestPtr, Address SrcPtr, 1975 QualType EltTy) { 1976 bool IsVolatile = hasVolatileMember(EltTy); 1977 EmitAggregateCopy(DestPtr, SrcPtr, EltTy, IsVolatile, true); 1978 } 1979 1980 void EmitAggregateCopyCtor(Address DestPtr, Address SrcPtr, 1981 QualType DestTy, QualType SrcTy) { 1982 EmitAggregateCopy(DestPtr, SrcPtr, SrcTy, /*IsVolatile=*/false, 1983 /*IsAssignment=*/false); 1984 } 1985 1986 /// EmitAggregateCopy - Emit an aggregate copy. 1987 /// 1988 /// \param isVolatile - True iff either the source or the destination is 1989 /// volatile. 1990 /// \param isAssignment - If false, allow padding to be copied. This often 1991 /// yields more efficient. 1992 void EmitAggregateCopy(Address DestPtr, Address SrcPtr, 1993 QualType EltTy, bool isVolatile=false, 1994 bool isAssignment = false); 1995 1996 /// GetAddrOfLocalVar - Return the address of a local variable. 1997 Address GetAddrOfLocalVar(const VarDecl *VD) { 1998 auto it = LocalDeclMap.find(VD); 1999 assert(it != LocalDeclMap.end() && 2000 "Invalid argument to GetAddrOfLocalVar(), no decl!"); 2001 return it->second; 2002 } 2003 2004 /// getOpaqueLValueMapping - Given an opaque value expression (which 2005 /// must be mapped to an l-value), return its mapping. 2006 const LValue &getOpaqueLValueMapping(const OpaqueValueExpr *e) { 2007 assert(OpaqueValueMapping::shouldBindAsLValue(e)); 2008 2009 llvm::DenseMap<const OpaqueValueExpr*,LValue>::iterator 2010 it = OpaqueLValues.find(e); 2011 assert(it != OpaqueLValues.end() && "no mapping for opaque value!"); 2012 return it->second; 2013 } 2014 2015 /// getOpaqueRValueMapping - Given an opaque value expression (which 2016 /// must be mapped to an r-value), return its mapping. 2017 const RValue &getOpaqueRValueMapping(const OpaqueValueExpr *e) { 2018 assert(!OpaqueValueMapping::shouldBindAsLValue(e)); 2019 2020 llvm::DenseMap<const OpaqueValueExpr*,RValue>::iterator 2021 it = OpaqueRValues.find(e); 2022 assert(it != OpaqueRValues.end() && "no mapping for opaque value!"); 2023 return it->second; 2024 } 2025 2026 /// Get the index of the current ArrayInitLoopExpr, if any. 2027 llvm::Value *getArrayInitIndex() { return ArrayInitIndex; } 2028 2029 /// getAccessedFieldNo - Given an encoded value and a result number, return 2030 /// the input field number being accessed. 2031 static unsigned getAccessedFieldNo(unsigned Idx, const llvm::Constant *Elts); 2032 2033 llvm::BlockAddress *GetAddrOfLabel(const LabelDecl *L); 2034 llvm::BasicBlock *GetIndirectGotoBlock(); 2035 2036 /// Check if \p E is a reference, or a C++ "this" pointer wrapped in value- 2037 /// preserving casts. 2038 static bool IsDeclRefOrWrappedCXXThis(const Expr *E); 2039 2040 /// EmitNullInitialization - Generate code to set a value of the given type to 2041 /// null, If the type contains data member pointers, they will be initialized 2042 /// to -1 in accordance with the Itanium C++ ABI. 2043 void EmitNullInitialization(Address DestPtr, QualType Ty); 2044 2045 /// Emits a call to an LLVM variable-argument intrinsic, either 2046 /// \c llvm.va_start or \c llvm.va_end. 2047 /// \param ArgValue A reference to the \c va_list as emitted by either 2048 /// \c EmitVAListRef or \c EmitMSVAListRef. 2049 /// \param IsStart If \c true, emits a call to \c llvm.va_start; otherwise, 2050 /// calls \c llvm.va_end. 2051 llvm::Value *EmitVAStartEnd(llvm::Value *ArgValue, bool IsStart); 2052 2053 /// Generate code to get an argument from the passed in pointer 2054 /// and update it accordingly. 2055 /// \param VE The \c VAArgExpr for which to generate code. 2056 /// \param VAListAddr Receives a reference to the \c va_list as emitted by 2057 /// either \c EmitVAListRef or \c EmitMSVAListRef. 2058 /// \returns A pointer to the argument. 2059 // FIXME: We should be able to get rid of this method and use the va_arg 2060 // instruction in LLVM instead once it works well enough. 2061 Address EmitVAArg(VAArgExpr *VE, Address &VAListAddr); 2062 2063 /// emitArrayLength - Compute the length of an array, even if it's a 2064 /// VLA, and drill down to the base element type. 2065 llvm::Value *emitArrayLength(const ArrayType *arrayType, 2066 QualType &baseType, 2067 Address &addr); 2068 2069 /// EmitVLASize - Capture all the sizes for the VLA expressions in 2070 /// the given variably-modified type and store them in the VLASizeMap. 2071 /// 2072 /// This function can be called with a null (unreachable) insert point. 2073 void EmitVariablyModifiedType(QualType Ty); 2074 2075 /// getVLASize - Returns an LLVM value that corresponds to the size, 2076 /// in non-variably-sized elements, of a variable length array type, 2077 /// plus that largest non-variably-sized element type. Assumes that 2078 /// the type has already been emitted with EmitVariablyModifiedType. 2079 std::pair<llvm::Value*,QualType> getVLASize(const VariableArrayType *vla); 2080 std::pair<llvm::Value*,QualType> getVLASize(QualType vla); 2081 2082 /// LoadCXXThis - Load the value of 'this'. This function is only valid while 2083 /// generating code for an C++ member function. 2084 llvm::Value *LoadCXXThis() { 2085 assert(CXXThisValue && "no 'this' value for this function"); 2086 return CXXThisValue; 2087 } 2088 Address LoadCXXThisAddress(); 2089 2090 /// LoadCXXVTT - Load the VTT parameter to base constructors/destructors have 2091 /// virtual bases. 2092 // FIXME: Every place that calls LoadCXXVTT is something 2093 // that needs to be abstracted properly. 2094 llvm::Value *LoadCXXVTT() { 2095 assert(CXXStructorImplicitParamValue && "no VTT value for this function"); 2096 return CXXStructorImplicitParamValue; 2097 } 2098 2099 /// GetAddressOfBaseOfCompleteClass - Convert the given pointer to a 2100 /// complete class to the given direct base. 2101 Address 2102 GetAddressOfDirectBaseInCompleteClass(Address Value, 2103 const CXXRecordDecl *Derived, 2104 const CXXRecordDecl *Base, 2105 bool BaseIsVirtual); 2106 2107 static bool ShouldNullCheckClassCastValue(const CastExpr *Cast); 2108 2109 /// GetAddressOfBaseClass - This function will add the necessary delta to the 2110 /// load of 'this' and returns address of the base class. 2111 Address GetAddressOfBaseClass(Address Value, 2112 const CXXRecordDecl *Derived, 2113 CastExpr::path_const_iterator PathBegin, 2114 CastExpr::path_const_iterator PathEnd, 2115 bool NullCheckValue, SourceLocation Loc); 2116 2117 Address GetAddressOfDerivedClass(Address Value, 2118 const CXXRecordDecl *Derived, 2119 CastExpr::path_const_iterator PathBegin, 2120 CastExpr::path_const_iterator PathEnd, 2121 bool NullCheckValue); 2122 2123 /// GetVTTParameter - Return the VTT parameter that should be passed to a 2124 /// base constructor/destructor with virtual bases. 2125 /// FIXME: VTTs are Itanium ABI-specific, so the definition should move 2126 /// to ItaniumCXXABI.cpp together with all the references to VTT. 2127 llvm::Value *GetVTTParameter(GlobalDecl GD, bool ForVirtualBase, 2128 bool Delegating); 2129 2130 void EmitDelegateCXXConstructorCall(const CXXConstructorDecl *Ctor, 2131 CXXCtorType CtorType, 2132 const FunctionArgList &Args, 2133 SourceLocation Loc); 2134 // It's important not to confuse this and the previous function. Delegating 2135 // constructors are the C++0x feature. The constructor delegate optimization 2136 // is used to reduce duplication in the base and complete consturctors where 2137 // they are substantially the same. 2138 void EmitDelegatingCXXConstructorCall(const CXXConstructorDecl *Ctor, 2139 const FunctionArgList &Args); 2140 2141 /// Emit a call to an inheriting constructor (that is, one that invokes a 2142 /// constructor inherited from a base class) by inlining its definition. This 2143 /// is necessary if the ABI does not support forwarding the arguments to the 2144 /// base class constructor (because they're variadic or similar). 2145 void EmitInlinedInheritingCXXConstructorCall(const CXXConstructorDecl *Ctor, 2146 CXXCtorType CtorType, 2147 bool ForVirtualBase, 2148 bool Delegating, 2149 CallArgList &Args); 2150 2151 /// Emit a call to a constructor inherited from a base class, passing the 2152 /// current constructor's arguments along unmodified (without even making 2153 /// a copy). 2154 void EmitInheritedCXXConstructorCall(const CXXConstructorDecl *D, 2155 bool ForVirtualBase, Address This, 2156 bool InheritedFromVBase, 2157 const CXXInheritedCtorInitExpr *E); 2158 2159 void EmitCXXConstructorCall(const CXXConstructorDecl *D, CXXCtorType Type, 2160 bool ForVirtualBase, bool Delegating, 2161 Address This, const CXXConstructExpr *E); 2162 2163 void EmitCXXConstructorCall(const CXXConstructorDecl *D, CXXCtorType Type, 2164 bool ForVirtualBase, bool Delegating, 2165 Address This, CallArgList &Args); 2166 2167 /// Emit assumption load for all bases. Requires to be be called only on 2168 /// most-derived class and not under construction of the object. 2169 void EmitVTableAssumptionLoads(const CXXRecordDecl *ClassDecl, Address This); 2170 2171 /// Emit assumption that vptr load == global vtable. 2172 void EmitVTableAssumptionLoad(const VPtr &vptr, Address This); 2173 2174 void EmitSynthesizedCXXCopyCtorCall(const CXXConstructorDecl *D, 2175 Address This, Address Src, 2176 const CXXConstructExpr *E); 2177 2178 void EmitCXXAggrConstructorCall(const CXXConstructorDecl *D, 2179 const ArrayType *ArrayTy, 2180 Address ArrayPtr, 2181 const CXXConstructExpr *E, 2182 bool ZeroInitialization = false); 2183 2184 void EmitCXXAggrConstructorCall(const CXXConstructorDecl *D, 2185 llvm::Value *NumElements, 2186 Address ArrayPtr, 2187 const CXXConstructExpr *E, 2188 bool ZeroInitialization = false); 2189 2190 static Destroyer destroyCXXObject; 2191 2192 void EmitCXXDestructorCall(const CXXDestructorDecl *D, CXXDtorType Type, 2193 bool ForVirtualBase, bool Delegating, 2194 Address This); 2195 2196 void EmitNewArrayInitializer(const CXXNewExpr *E, QualType elementType, 2197 llvm::Type *ElementTy, Address NewPtr, 2198 llvm::Value *NumElements, 2199 llvm::Value *AllocSizeWithoutCookie); 2200 2201 void EmitCXXTemporary(const CXXTemporary *Temporary, QualType TempType, 2202 Address Ptr); 2203 2204 llvm::Value *EmitLifetimeStart(uint64_t Size, llvm::Value *Addr); 2205 void EmitLifetimeEnd(llvm::Value *Size, llvm::Value *Addr); 2206 2207 llvm::Value *EmitCXXNewExpr(const CXXNewExpr *E); 2208 void EmitCXXDeleteExpr(const CXXDeleteExpr *E); 2209 2210 void EmitDeleteCall(const FunctionDecl *DeleteFD, llvm::Value *Ptr, 2211 QualType DeleteTy, llvm::Value *NumElements = nullptr, 2212 CharUnits CookieSize = CharUnits()); 2213 2214 RValue EmitBuiltinNewDeleteCall(const FunctionProtoType *Type, 2215 const Expr *Arg, bool IsDelete); 2216 2217 llvm::Value *EmitCXXTypeidExpr(const CXXTypeidExpr *E); 2218 llvm::Value *EmitDynamicCast(Address V, const CXXDynamicCastExpr *DCE); 2219 Address EmitCXXUuidofExpr(const CXXUuidofExpr *E); 2220 2221 /// \brief Situations in which we might emit a check for the suitability of a 2222 /// pointer or glvalue. 2223 enum TypeCheckKind { 2224 /// Checking the operand of a load. Must be suitably sized and aligned. 2225 TCK_Load, 2226 /// Checking the destination of a store. Must be suitably sized and aligned. 2227 TCK_Store, 2228 /// Checking the bound value in a reference binding. Must be suitably sized 2229 /// and aligned, but is not required to refer to an object (until the 2230 /// reference is used), per core issue 453. 2231 TCK_ReferenceBinding, 2232 /// Checking the object expression in a non-static data member access. Must 2233 /// be an object within its lifetime. 2234 TCK_MemberAccess, 2235 /// Checking the 'this' pointer for a call to a non-static member function. 2236 /// Must be an object within its lifetime. 2237 TCK_MemberCall, 2238 /// Checking the 'this' pointer for a constructor call. 2239 TCK_ConstructorCall, 2240 /// Checking the operand of a static_cast to a derived pointer type. Must be 2241 /// null or an object within its lifetime. 2242 TCK_DowncastPointer, 2243 /// Checking the operand of a static_cast to a derived reference type. Must 2244 /// be an object within its lifetime. 2245 TCK_DowncastReference, 2246 /// Checking the operand of a cast to a base object. Must be suitably sized 2247 /// and aligned. 2248 TCK_Upcast, 2249 /// Checking the operand of a cast to a virtual base object. Must be an 2250 /// object within its lifetime. 2251 TCK_UpcastToVirtualBase 2252 }; 2253 2254 /// \brief Whether any type-checking sanitizers are enabled. If \c false, 2255 /// calls to EmitTypeCheck can be skipped. 2256 bool sanitizePerformTypeCheck() const; 2257 2258 /// \brief Emit a check that \p V is the address of storage of the 2259 /// appropriate size and alignment for an object of type \p Type. 2260 void EmitTypeCheck(TypeCheckKind TCK, SourceLocation Loc, llvm::Value *V, 2261 QualType Type, CharUnits Alignment = CharUnits::Zero(), 2262 SanitizerSet SkippedChecks = SanitizerSet()); 2263 2264 /// \brief Emit a check that \p Base points into an array object, which 2265 /// we can access at index \p Index. \p Accessed should be \c false if we 2266 /// this expression is used as an lvalue, for instance in "&Arr[Idx]". 2267 void EmitBoundsCheck(const Expr *E, const Expr *Base, llvm::Value *Index, 2268 QualType IndexType, bool Accessed); 2269 2270 llvm::Value *EmitScalarPrePostIncDec(const UnaryOperator *E, LValue LV, 2271 bool isInc, bool isPre); 2272 ComplexPairTy EmitComplexPrePostIncDec(const UnaryOperator *E, LValue LV, 2273 bool isInc, bool isPre); 2274 2275 void EmitAlignmentAssumption(llvm::Value *PtrValue, unsigned Alignment, 2276 llvm::Value *OffsetValue = nullptr) { 2277 Builder.CreateAlignmentAssumption(CGM.getDataLayout(), PtrValue, Alignment, 2278 OffsetValue); 2279 } 2280 2281 /// Converts Location to a DebugLoc, if debug information is enabled. 2282 llvm::DebugLoc SourceLocToDebugLoc(SourceLocation Location); 2283 2284 2285 //===--------------------------------------------------------------------===// 2286 // Declaration Emission 2287 //===--------------------------------------------------------------------===// 2288 2289 /// EmitDecl - Emit a declaration. 2290 /// 2291 /// This function can be called with a null (unreachable) insert point. 2292 void EmitDecl(const Decl &D); 2293 2294 /// EmitVarDecl - Emit a local variable declaration. 2295 /// 2296 /// This function can be called with a null (unreachable) insert point. 2297 void EmitVarDecl(const VarDecl &D); 2298 2299 void EmitScalarInit(const Expr *init, const ValueDecl *D, LValue lvalue, 2300 bool capturedByInit); 2301 2302 typedef void SpecialInitFn(CodeGenFunction &Init, const VarDecl &D, 2303 llvm::Value *Address); 2304 2305 /// \brief Determine whether the given initializer is trivial in the sense 2306 /// that it requires no code to be generated. 2307 bool isTrivialInitializer(const Expr *Init); 2308 2309 /// EmitAutoVarDecl - Emit an auto variable declaration. 2310 /// 2311 /// This function can be called with a null (unreachable) insert point. 2312 void EmitAutoVarDecl(const VarDecl &D); 2313 2314 class AutoVarEmission { 2315 friend class CodeGenFunction; 2316 2317 const VarDecl *Variable; 2318 2319 /// The address of the alloca. Invalid if the variable was emitted 2320 /// as a global constant. 2321 Address Addr; 2322 2323 llvm::Value *NRVOFlag; 2324 2325 /// True if the variable is a __block variable. 2326 bool IsByRef; 2327 2328 /// True if the variable is of aggregate type and has a constant 2329 /// initializer. 2330 bool IsConstantAggregate; 2331 2332 /// Non-null if we should use lifetime annotations. 2333 llvm::Value *SizeForLifetimeMarkers; 2334 2335 struct Invalid {}; 2336 AutoVarEmission(Invalid) : Variable(nullptr), Addr(Address::invalid()) {} 2337 2338 AutoVarEmission(const VarDecl &variable) 2339 : Variable(&variable), Addr(Address::invalid()), NRVOFlag(nullptr), 2340 IsByRef(false), IsConstantAggregate(false), 2341 SizeForLifetimeMarkers(nullptr) {} 2342 2343 bool wasEmittedAsGlobal() const { return !Addr.isValid(); } 2344 2345 public: 2346 static AutoVarEmission invalid() { return AutoVarEmission(Invalid()); } 2347 2348 bool useLifetimeMarkers() const { 2349 return SizeForLifetimeMarkers != nullptr; 2350 } 2351 llvm::Value *getSizeForLifetimeMarkers() const { 2352 assert(useLifetimeMarkers()); 2353 return SizeForLifetimeMarkers; 2354 } 2355 2356 /// Returns the raw, allocated address, which is not necessarily 2357 /// the address of the object itself. 2358 Address getAllocatedAddress() const { 2359 return Addr; 2360 } 2361 2362 /// Returns the address of the object within this declaration. 2363 /// Note that this does not chase the forwarding pointer for 2364 /// __block decls. 2365 Address getObjectAddress(CodeGenFunction &CGF) const { 2366 if (!IsByRef) return Addr; 2367 2368 return CGF.emitBlockByrefAddress(Addr, Variable, /*forward*/ false); 2369 } 2370 }; 2371 AutoVarEmission EmitAutoVarAlloca(const VarDecl &var); 2372 void EmitAutoVarInit(const AutoVarEmission &emission); 2373 void EmitAutoVarCleanups(const AutoVarEmission &emission); 2374 void emitAutoVarTypeCleanup(const AutoVarEmission &emission, 2375 QualType::DestructionKind dtorKind); 2376 2377 void EmitStaticVarDecl(const VarDecl &D, 2378 llvm::GlobalValue::LinkageTypes Linkage); 2379 2380 class ParamValue { 2381 llvm::Value *Value; 2382 unsigned Alignment; 2383 ParamValue(llvm::Value *V, unsigned A) : Value(V), Alignment(A) {} 2384 public: 2385 static ParamValue forDirect(llvm::Value *value) { 2386 return ParamValue(value, 0); 2387 } 2388 static ParamValue forIndirect(Address addr) { 2389 assert(!addr.getAlignment().isZero()); 2390 return ParamValue(addr.getPointer(), addr.getAlignment().getQuantity()); 2391 } 2392 2393 bool isIndirect() const { return Alignment != 0; } 2394 llvm::Value *getAnyValue() const { return Value; } 2395 2396 llvm::Value *getDirectValue() const { 2397 assert(!isIndirect()); 2398 return Value; 2399 } 2400 2401 Address getIndirectAddress() const { 2402 assert(isIndirect()); 2403 return Address(Value, CharUnits::fromQuantity(Alignment)); 2404 } 2405 }; 2406 2407 /// EmitParmDecl - Emit a ParmVarDecl or an ImplicitParamDecl. 2408 void EmitParmDecl(const VarDecl &D, ParamValue Arg, unsigned ArgNo); 2409 2410 /// protectFromPeepholes - Protect a value that we're intending to 2411 /// store to the side, but which will probably be used later, from 2412 /// aggressive peepholing optimizations that might delete it. 2413 /// 2414 /// Pass the result to unprotectFromPeepholes to declare that 2415 /// protection is no longer required. 2416 /// 2417 /// There's no particular reason why this shouldn't apply to 2418 /// l-values, it's just that no existing peepholes work on pointers. 2419 PeepholeProtection protectFromPeepholes(RValue rvalue); 2420 void unprotectFromPeepholes(PeepholeProtection protection); 2421 2422 //===--------------------------------------------------------------------===// 2423 // Statement Emission 2424 //===--------------------------------------------------------------------===// 2425 2426 /// EmitStopPoint - Emit a debug stoppoint if we are emitting debug info. 2427 void EmitStopPoint(const Stmt *S); 2428 2429 /// EmitStmt - Emit the code for the statement \arg S. It is legal to call 2430 /// this function even if there is no current insertion point. 2431 /// 2432 /// This function may clear the current insertion point; callers should use 2433 /// EnsureInsertPoint if they wish to subsequently generate code without first 2434 /// calling EmitBlock, EmitBranch, or EmitStmt. 2435 void EmitStmt(const Stmt *S); 2436 2437 /// EmitSimpleStmt - Try to emit a "simple" statement which does not 2438 /// necessarily require an insertion point or debug information; typically 2439 /// because the statement amounts to a jump or a container of other 2440 /// statements. 2441 /// 2442 /// \return True if the statement was handled. 2443 bool EmitSimpleStmt(const Stmt *S); 2444 2445 Address EmitCompoundStmt(const CompoundStmt &S, bool GetLast = false, 2446 AggValueSlot AVS = AggValueSlot::ignored()); 2447 Address EmitCompoundStmtWithoutScope(const CompoundStmt &S, 2448 bool GetLast = false, 2449 AggValueSlot AVS = 2450 AggValueSlot::ignored()); 2451 2452 /// EmitLabel - Emit the block for the given label. It is legal to call this 2453 /// function even if there is no current insertion point. 2454 void EmitLabel(const LabelDecl *D); // helper for EmitLabelStmt. 2455 2456 void EmitLabelStmt(const LabelStmt &S); 2457 void EmitAttributedStmt(const AttributedStmt &S); 2458 void EmitGotoStmt(const GotoStmt &S); 2459 void EmitIndirectGotoStmt(const IndirectGotoStmt &S); 2460 void EmitIfStmt(const IfStmt &S); 2461 2462 void EmitWhileStmt(const WhileStmt &S, 2463 ArrayRef<const Attr *> Attrs = None); 2464 void EmitDoStmt(const DoStmt &S, ArrayRef<const Attr *> Attrs = None); 2465 void EmitForStmt(const ForStmt &S, 2466 ArrayRef<const Attr *> Attrs = None); 2467 void EmitReturnStmt(const ReturnStmt &S); 2468 void EmitDeclStmt(const DeclStmt &S); 2469 void EmitBreakStmt(const BreakStmt &S); 2470 void EmitContinueStmt(const ContinueStmt &S); 2471 void EmitSwitchStmt(const SwitchStmt &S); 2472 void EmitDefaultStmt(const DefaultStmt &S); 2473 void EmitCaseStmt(const CaseStmt &S); 2474 void EmitCaseStmtRange(const CaseStmt &S); 2475 void EmitAsmStmt(const AsmStmt &S); 2476 2477 void EmitObjCForCollectionStmt(const ObjCForCollectionStmt &S); 2478 void EmitObjCAtTryStmt(const ObjCAtTryStmt &S); 2479 void EmitObjCAtThrowStmt(const ObjCAtThrowStmt &S); 2480 void EmitObjCAtSynchronizedStmt(const ObjCAtSynchronizedStmt &S); 2481 void EmitObjCAutoreleasePoolStmt(const ObjCAutoreleasePoolStmt &S); 2482 2483 void EmitCoroutineBody(const CoroutineBodyStmt &S); 2484 RValue EmitCoroutineIntrinsic(const CallExpr *E, unsigned int IID); 2485 2486 void EnterCXXTryStmt(const CXXTryStmt &S, bool IsFnTryBlock = false); 2487 void ExitCXXTryStmt(const CXXTryStmt &S, bool IsFnTryBlock = false); 2488 2489 void EmitCXXTryStmt(const CXXTryStmt &S); 2490 void EmitSEHTryStmt(const SEHTryStmt &S); 2491 void EmitSEHLeaveStmt(const SEHLeaveStmt &S); 2492 void EnterSEHTryStmt(const SEHTryStmt &S); 2493 void ExitSEHTryStmt(const SEHTryStmt &S); 2494 2495 void startOutlinedSEHHelper(CodeGenFunction &ParentCGF, bool IsFilter, 2496 const Stmt *OutlinedStmt); 2497 2498 llvm::Function *GenerateSEHFilterFunction(CodeGenFunction &ParentCGF, 2499 const SEHExceptStmt &Except); 2500 2501 llvm::Function *GenerateSEHFinallyFunction(CodeGenFunction &ParentCGF, 2502 const SEHFinallyStmt &Finally); 2503 2504 void EmitSEHExceptionCodeSave(CodeGenFunction &ParentCGF, 2505 llvm::Value *ParentFP, 2506 llvm::Value *EntryEBP); 2507 llvm::Value *EmitSEHExceptionCode(); 2508 llvm::Value *EmitSEHExceptionInfo(); 2509 llvm::Value *EmitSEHAbnormalTermination(); 2510 2511 /// Scan the outlined statement for captures from the parent function. For 2512 /// each capture, mark the capture as escaped and emit a call to 2513 /// llvm.localrecover. Insert the localrecover result into the LocalDeclMap. 2514 void EmitCapturedLocals(CodeGenFunction &ParentCGF, const Stmt *OutlinedStmt, 2515 bool IsFilter); 2516 2517 /// Recovers the address of a local in a parent function. ParentVar is the 2518 /// address of the variable used in the immediate parent function. It can 2519 /// either be an alloca or a call to llvm.localrecover if there are nested 2520 /// outlined functions. ParentFP is the frame pointer of the outermost parent 2521 /// frame. 2522 Address recoverAddrOfEscapedLocal(CodeGenFunction &ParentCGF, 2523 Address ParentVar, 2524 llvm::Value *ParentFP); 2525 2526 void EmitCXXForRangeStmt(const CXXForRangeStmt &S, 2527 ArrayRef<const Attr *> Attrs = None); 2528 2529 /// Returns calculated size of the specified type. 2530 llvm::Value *getTypeSize(QualType Ty); 2531 LValue InitCapturedStruct(const CapturedStmt &S); 2532 llvm::Function *EmitCapturedStmt(const CapturedStmt &S, CapturedRegionKind K); 2533 llvm::Function *GenerateCapturedStmtFunction(const CapturedStmt &S); 2534 Address GenerateCapturedStmtArgument(const CapturedStmt &S); 2535 llvm::Function *GenerateOpenMPCapturedStmtFunction(const CapturedStmt &S); 2536 void GenerateOpenMPCapturedVars(const CapturedStmt &S, 2537 SmallVectorImpl<llvm::Value *> &CapturedVars); 2538 void emitOMPSimpleStore(LValue LVal, RValue RVal, QualType RValTy, 2539 SourceLocation Loc); 2540 /// \brief Perform element by element copying of arrays with type \a 2541 /// OriginalType from \a SrcAddr to \a DestAddr using copying procedure 2542 /// generated by \a CopyGen. 2543 /// 2544 /// \param DestAddr Address of the destination array. 2545 /// \param SrcAddr Address of the source array. 2546 /// \param OriginalType Type of destination and source arrays. 2547 /// \param CopyGen Copying procedure that copies value of single array element 2548 /// to another single array element. 2549 void EmitOMPAggregateAssign( 2550 Address DestAddr, Address SrcAddr, QualType OriginalType, 2551 const llvm::function_ref<void(Address, Address)> &CopyGen); 2552 /// \brief Emit proper copying of data from one variable to another. 2553 /// 2554 /// \param OriginalType Original type of the copied variables. 2555 /// \param DestAddr Destination address. 2556 /// \param SrcAddr Source address. 2557 /// \param DestVD Destination variable used in \a CopyExpr (for arrays, has 2558 /// type of the base array element). 2559 /// \param SrcVD Source variable used in \a CopyExpr (for arrays, has type of 2560 /// the base array element). 2561 /// \param Copy Actual copygin expression for copying data from \a SrcVD to \a 2562 /// DestVD. 2563 void EmitOMPCopy(QualType OriginalType, 2564 Address DestAddr, Address SrcAddr, 2565 const VarDecl *DestVD, const VarDecl *SrcVD, 2566 const Expr *Copy); 2567 /// \brief Emit atomic update code for constructs: \a X = \a X \a BO \a E or 2568 /// \a X = \a E \a BO \a E. 2569 /// 2570 /// \param X Value to be updated. 2571 /// \param E Update value. 2572 /// \param BO Binary operation for update operation. 2573 /// \param IsXLHSInRHSPart true if \a X is LHS in RHS part of the update 2574 /// expression, false otherwise. 2575 /// \param AO Atomic ordering of the generated atomic instructions. 2576 /// \param CommonGen Code generator for complex expressions that cannot be 2577 /// expressed through atomicrmw instruction. 2578 /// \returns <true, OldAtomicValue> if simple 'atomicrmw' instruction was 2579 /// generated, <false, RValue::get(nullptr)> otherwise. 2580 std::pair<bool, RValue> EmitOMPAtomicSimpleUpdateExpr( 2581 LValue X, RValue E, BinaryOperatorKind BO, bool IsXLHSInRHSPart, 2582 llvm::AtomicOrdering AO, SourceLocation Loc, 2583 const llvm::function_ref<RValue(RValue)> &CommonGen); 2584 bool EmitOMPFirstprivateClause(const OMPExecutableDirective &D, 2585 OMPPrivateScope &PrivateScope); 2586 void EmitOMPPrivateClause(const OMPExecutableDirective &D, 2587 OMPPrivateScope &PrivateScope); 2588 void EmitOMPUseDevicePtrClause( 2589 const OMPClause &C, OMPPrivateScope &PrivateScope, 2590 const llvm::DenseMap<const ValueDecl *, Address> &CaptureDeviceAddrMap); 2591 /// \brief Emit code for copyin clause in \a D directive. The next code is 2592 /// generated at the start of outlined functions for directives: 2593 /// \code 2594 /// threadprivate_var1 = master_threadprivate_var1; 2595 /// operator=(threadprivate_var2, master_threadprivate_var2); 2596 /// ... 2597 /// __kmpc_barrier(&loc, global_tid); 2598 /// \endcode 2599 /// 2600 /// \param D OpenMP directive possibly with 'copyin' clause(s). 2601 /// \returns true if at least one copyin variable is found, false otherwise. 2602 bool EmitOMPCopyinClause(const OMPExecutableDirective &D); 2603 /// \brief Emit initial code for lastprivate variables. If some variable is 2604 /// not also firstprivate, then the default initialization is used. Otherwise 2605 /// initialization of this variable is performed by EmitOMPFirstprivateClause 2606 /// method. 2607 /// 2608 /// \param D Directive that may have 'lastprivate' directives. 2609 /// \param PrivateScope Private scope for capturing lastprivate variables for 2610 /// proper codegen in internal captured statement. 2611 /// 2612 /// \returns true if there is at least one lastprivate variable, false 2613 /// otherwise. 2614 bool EmitOMPLastprivateClauseInit(const OMPExecutableDirective &D, 2615 OMPPrivateScope &PrivateScope); 2616 /// \brief Emit final copying of lastprivate values to original variables at 2617 /// the end of the worksharing or simd directive. 2618 /// 2619 /// \param D Directive that has at least one 'lastprivate' directives. 2620 /// \param IsLastIterCond Boolean condition that must be set to 'i1 true' if 2621 /// it is the last iteration of the loop code in associated directive, or to 2622 /// 'i1 false' otherwise. If this item is nullptr, no final check is required. 2623 void EmitOMPLastprivateClauseFinal(const OMPExecutableDirective &D, 2624 bool NoFinals, 2625 llvm::Value *IsLastIterCond = nullptr); 2626 /// Emit initial code for linear clauses. 2627 void EmitOMPLinearClause(const OMPLoopDirective &D, 2628 CodeGenFunction::OMPPrivateScope &PrivateScope); 2629 /// Emit final code for linear clauses. 2630 /// \param CondGen Optional conditional code for final part of codegen for 2631 /// linear clause. 2632 void EmitOMPLinearClauseFinal( 2633 const OMPLoopDirective &D, 2634 const llvm::function_ref<llvm::Value *(CodeGenFunction &)> &CondGen); 2635 /// \brief Emit initial code for reduction variables. Creates reduction copies 2636 /// and initializes them with the values according to OpenMP standard. 2637 /// 2638 /// \param D Directive (possibly) with the 'reduction' clause. 2639 /// \param PrivateScope Private scope for capturing reduction variables for 2640 /// proper codegen in internal captured statement. 2641 /// 2642 void EmitOMPReductionClauseInit(const OMPExecutableDirective &D, 2643 OMPPrivateScope &PrivateScope); 2644 /// \brief Emit final update of reduction values to original variables at 2645 /// the end of the directive. 2646 /// 2647 /// \param D Directive that has at least one 'reduction' directives. 2648 /// \param ReductionKind The kind of reduction to perform. 2649 void EmitOMPReductionClauseFinal(const OMPExecutableDirective &D, 2650 const OpenMPDirectiveKind ReductionKind); 2651 /// \brief Emit initial code for linear variables. Creates private copies 2652 /// and initializes them with the values according to OpenMP standard. 2653 /// 2654 /// \param D Directive (possibly) with the 'linear' clause. 2655 void EmitOMPLinearClauseInit(const OMPLoopDirective &D); 2656 2657 typedef const llvm::function_ref<void(CodeGenFunction & /*CGF*/, 2658 llvm::Value * /*OutlinedFn*/, 2659 const OMPTaskDataTy & /*Data*/)> 2660 TaskGenTy; 2661 void EmitOMPTaskBasedDirective(const OMPExecutableDirective &S, 2662 const RegionCodeGenTy &BodyGen, 2663 const TaskGenTy &TaskGen, OMPTaskDataTy &Data); 2664 2665 void EmitOMPParallelDirective(const OMPParallelDirective &S); 2666 void EmitOMPSimdDirective(const OMPSimdDirective &S); 2667 void EmitOMPForDirective(const OMPForDirective &S); 2668 void EmitOMPForSimdDirective(const OMPForSimdDirective &S); 2669 void EmitOMPSectionsDirective(const OMPSectionsDirective &S); 2670 void EmitOMPSectionDirective(const OMPSectionDirective &S); 2671 void EmitOMPSingleDirective(const OMPSingleDirective &S); 2672 void EmitOMPMasterDirective(const OMPMasterDirective &S); 2673 void EmitOMPCriticalDirective(const OMPCriticalDirective &S); 2674 void EmitOMPParallelForDirective(const OMPParallelForDirective &S); 2675 void EmitOMPParallelForSimdDirective(const OMPParallelForSimdDirective &S); 2676 void EmitOMPParallelSectionsDirective(const OMPParallelSectionsDirective &S); 2677 void EmitOMPTaskDirective(const OMPTaskDirective &S); 2678 void EmitOMPTaskyieldDirective(const OMPTaskyieldDirective &S); 2679 void EmitOMPBarrierDirective(const OMPBarrierDirective &S); 2680 void EmitOMPTaskwaitDirective(const OMPTaskwaitDirective &S); 2681 void EmitOMPTaskgroupDirective(const OMPTaskgroupDirective &S); 2682 void EmitOMPFlushDirective(const OMPFlushDirective &S); 2683 void EmitOMPOrderedDirective(const OMPOrderedDirective &S); 2684 void EmitOMPAtomicDirective(const OMPAtomicDirective &S); 2685 void EmitOMPTargetDirective(const OMPTargetDirective &S); 2686 void EmitOMPTargetDataDirective(const OMPTargetDataDirective &S); 2687 void EmitOMPTargetEnterDataDirective(const OMPTargetEnterDataDirective &S); 2688 void EmitOMPTargetExitDataDirective(const OMPTargetExitDataDirective &S); 2689 void EmitOMPTargetUpdateDirective(const OMPTargetUpdateDirective &S); 2690 void EmitOMPTargetParallelDirective(const OMPTargetParallelDirective &S); 2691 void 2692 EmitOMPTargetParallelForDirective(const OMPTargetParallelForDirective &S); 2693 void EmitOMPTeamsDirective(const OMPTeamsDirective &S); 2694 void 2695 EmitOMPCancellationPointDirective(const OMPCancellationPointDirective &S); 2696 void EmitOMPCancelDirective(const OMPCancelDirective &S); 2697 void EmitOMPTaskLoopBasedDirective(const OMPLoopDirective &S); 2698 void EmitOMPTaskLoopDirective(const OMPTaskLoopDirective &S); 2699 void EmitOMPTaskLoopSimdDirective(const OMPTaskLoopSimdDirective &S); 2700 void EmitOMPDistributeDirective(const OMPDistributeDirective &S); 2701 void EmitOMPDistributeLoop(const OMPDistributeDirective &S); 2702 void EmitOMPDistributeParallelForDirective( 2703 const OMPDistributeParallelForDirective &S); 2704 void EmitOMPDistributeParallelForSimdDirective( 2705 const OMPDistributeParallelForSimdDirective &S); 2706 void EmitOMPDistributeSimdDirective(const OMPDistributeSimdDirective &S); 2707 void EmitOMPTargetParallelForSimdDirective( 2708 const OMPTargetParallelForSimdDirective &S); 2709 void EmitOMPTargetSimdDirective(const OMPTargetSimdDirective &S); 2710 void EmitOMPTeamsDistributeDirective(const OMPTeamsDistributeDirective &S); 2711 void 2712 EmitOMPTeamsDistributeSimdDirective(const OMPTeamsDistributeSimdDirective &S); 2713 void EmitOMPTeamsDistributeParallelForSimdDirective( 2714 const OMPTeamsDistributeParallelForSimdDirective &S); 2715 void EmitOMPTeamsDistributeParallelForDirective( 2716 const OMPTeamsDistributeParallelForDirective &S); 2717 void EmitOMPTargetTeamsDirective(const OMPTargetTeamsDirective &S); 2718 void EmitOMPTargetTeamsDistributeDirective( 2719 const OMPTargetTeamsDistributeDirective &S); 2720 void EmitOMPTargetTeamsDistributeParallelForDirective( 2721 const OMPTargetTeamsDistributeParallelForDirective &S); 2722 void EmitOMPTargetTeamsDistributeParallelForSimdDirective( 2723 const OMPTargetTeamsDistributeParallelForSimdDirective &S); 2724 void EmitOMPTargetTeamsDistributeSimdDirective( 2725 const OMPTargetTeamsDistributeSimdDirective &S); 2726 2727 /// Emit device code for the target directive. 2728 static void EmitOMPTargetDeviceFunction(CodeGenModule &CGM, 2729 StringRef ParentName, 2730 const OMPTargetDirective &S); 2731 static void 2732 EmitOMPTargetParallelDeviceFunction(CodeGenModule &CGM, StringRef ParentName, 2733 const OMPTargetParallelDirective &S); 2734 static void 2735 EmitOMPTargetTeamsDeviceFunction(CodeGenModule &CGM, StringRef ParentName, 2736 const OMPTargetTeamsDirective &S); 2737 /// \brief Emit inner loop of the worksharing/simd construct. 2738 /// 2739 /// \param S Directive, for which the inner loop must be emitted. 2740 /// \param RequiresCleanup true, if directive has some associated private 2741 /// variables. 2742 /// \param LoopCond Bollean condition for loop continuation. 2743 /// \param IncExpr Increment expression for loop control variable. 2744 /// \param BodyGen Generator for the inner body of the inner loop. 2745 /// \param PostIncGen Genrator for post-increment code (required for ordered 2746 /// loop directvies). 2747 void EmitOMPInnerLoop( 2748 const Stmt &S, bool RequiresCleanup, const Expr *LoopCond, 2749 const Expr *IncExpr, 2750 const llvm::function_ref<void(CodeGenFunction &)> &BodyGen, 2751 const llvm::function_ref<void(CodeGenFunction &)> &PostIncGen); 2752 2753 JumpDest getOMPCancelDestination(OpenMPDirectiveKind Kind); 2754 /// Emit initial code for loop counters of loop-based directives. 2755 void EmitOMPPrivateLoopCounters(const OMPLoopDirective &S, 2756 OMPPrivateScope &LoopScope); 2757 2758 private: 2759 /// Helpers for blocks 2760 llvm::Value *EmitBlockLiteral(const CGBlockInfo &Info); 2761 2762 /// Helpers for the OpenMP loop directives. 2763 void EmitOMPLoopBody(const OMPLoopDirective &D, JumpDest LoopExit); 2764 void EmitOMPSimdInit(const OMPLoopDirective &D, bool IsMonotonic = false); 2765 void EmitOMPSimdFinal( 2766 const OMPLoopDirective &D, 2767 const llvm::function_ref<llvm::Value *(CodeGenFunction &)> &CondGen); 2768 /// \brief Emit code for the worksharing loop-based directive. 2769 /// \return true, if this construct has any lastprivate clause, false - 2770 /// otherwise. 2771 bool EmitOMPWorksharingLoop(const OMPLoopDirective &S); 2772 void EmitOMPOuterLoop(bool IsMonotonic, bool DynamicOrOrdered, 2773 const OMPLoopDirective &S, OMPPrivateScope &LoopScope, bool Ordered, 2774 Address LB, Address UB, Address ST, Address IL, llvm::Value *Chunk); 2775 void EmitOMPForOuterLoop(const OpenMPScheduleTy &ScheduleKind, 2776 bool IsMonotonic, const OMPLoopDirective &S, 2777 OMPPrivateScope &LoopScope, bool Ordered, Address LB, 2778 Address UB, Address ST, Address IL, 2779 llvm::Value *Chunk); 2780 void EmitOMPDistributeOuterLoop( 2781 OpenMPDistScheduleClauseKind ScheduleKind, 2782 const OMPDistributeDirective &S, OMPPrivateScope &LoopScope, 2783 Address LB, Address UB, Address ST, Address IL, llvm::Value *Chunk); 2784 /// \brief Emit code for sections directive. 2785 void EmitSections(const OMPExecutableDirective &S); 2786 2787 public: 2788 2789 //===--------------------------------------------------------------------===// 2790 // LValue Expression Emission 2791 //===--------------------------------------------------------------------===// 2792 2793 /// GetUndefRValue - Get an appropriate 'undef' rvalue for the given type. 2794 RValue GetUndefRValue(QualType Ty); 2795 2796 /// EmitUnsupportedRValue - Emit a dummy r-value using the type of E 2797 /// and issue an ErrorUnsupported style diagnostic (using the 2798 /// provided Name). 2799 RValue EmitUnsupportedRValue(const Expr *E, 2800 const char *Name); 2801 2802 /// EmitUnsupportedLValue - Emit a dummy l-value using the type of E and issue 2803 /// an ErrorUnsupported style diagnostic (using the provided Name). 2804 LValue EmitUnsupportedLValue(const Expr *E, 2805 const char *Name); 2806 2807 /// EmitLValue - Emit code to compute a designator that specifies the location 2808 /// of the expression. 2809 /// 2810 /// This can return one of two things: a simple address or a bitfield 2811 /// reference. In either case, the LLVM Value* in the LValue structure is 2812 /// guaranteed to be an LLVM pointer type. 2813 /// 2814 /// If this returns a bitfield reference, nothing about the pointee type of 2815 /// the LLVM value is known: For example, it may not be a pointer to an 2816 /// integer. 2817 /// 2818 /// If this returns a normal address, and if the lvalue's C type is fixed 2819 /// size, this method guarantees that the returned pointer type will point to 2820 /// an LLVM type of the same size of the lvalue's type. If the lvalue has a 2821 /// variable length type, this is not possible. 2822 /// 2823 LValue EmitLValue(const Expr *E); 2824 2825 /// \brief Same as EmitLValue but additionally we generate checking code to 2826 /// guard against undefined behavior. This is only suitable when we know 2827 /// that the address will be used to access the object. 2828 LValue EmitCheckedLValue(const Expr *E, TypeCheckKind TCK); 2829 2830 RValue convertTempToRValue(Address addr, QualType type, 2831 SourceLocation Loc); 2832 2833 void EmitAtomicInit(Expr *E, LValue lvalue); 2834 2835 bool LValueIsSuitableForInlineAtomic(LValue Src); 2836 2837 RValue EmitAtomicLoad(LValue LV, SourceLocation SL, 2838 AggValueSlot Slot = AggValueSlot::ignored()); 2839 2840 RValue EmitAtomicLoad(LValue lvalue, SourceLocation loc, 2841 llvm::AtomicOrdering AO, bool IsVolatile = false, 2842 AggValueSlot slot = AggValueSlot::ignored()); 2843 2844 void EmitAtomicStore(RValue rvalue, LValue lvalue, bool isInit); 2845 2846 void EmitAtomicStore(RValue rvalue, LValue lvalue, llvm::AtomicOrdering AO, 2847 bool IsVolatile, bool isInit); 2848 2849 std::pair<RValue, llvm::Value *> EmitAtomicCompareExchange( 2850 LValue Obj, RValue Expected, RValue Desired, SourceLocation Loc, 2851 llvm::AtomicOrdering Success = 2852 llvm::AtomicOrdering::SequentiallyConsistent, 2853 llvm::AtomicOrdering Failure = 2854 llvm::AtomicOrdering::SequentiallyConsistent, 2855 bool IsWeak = false, AggValueSlot Slot = AggValueSlot::ignored()); 2856 2857 void EmitAtomicUpdate(LValue LVal, llvm::AtomicOrdering AO, 2858 const llvm::function_ref<RValue(RValue)> &UpdateOp, 2859 bool IsVolatile); 2860 2861 /// EmitToMemory - Change a scalar value from its value 2862 /// representation to its in-memory representation. 2863 llvm::Value *EmitToMemory(llvm::Value *Value, QualType Ty); 2864 2865 /// EmitFromMemory - Change a scalar value from its memory 2866 /// representation to its value representation. 2867 llvm::Value *EmitFromMemory(llvm::Value *Value, QualType Ty); 2868 2869 /// Check if the scalar \p Value is within the valid range for the given 2870 /// type \p Ty. 2871 /// 2872 /// Returns true if a check is needed (even if the range is unknown). 2873 bool EmitScalarRangeCheck(llvm::Value *Value, QualType Ty, 2874 SourceLocation Loc); 2875 2876 /// EmitLoadOfScalar - Load a scalar value from an address, taking 2877 /// care to appropriately convert from the memory representation to 2878 /// the LLVM value representation. 2879 llvm::Value *EmitLoadOfScalar(Address Addr, bool Volatile, QualType Ty, 2880 SourceLocation Loc, 2881 AlignmentSource AlignSource = 2882 AlignmentSource::Type, 2883 llvm::MDNode *TBAAInfo = nullptr, 2884 QualType TBAABaseTy = QualType(), 2885 uint64_t TBAAOffset = 0, 2886 bool isNontemporal = false); 2887 2888 /// EmitLoadOfScalar - Load a scalar value from an address, taking 2889 /// care to appropriately convert from the memory representation to 2890 /// the LLVM value representation. The l-value must be a simple 2891 /// l-value. 2892 llvm::Value *EmitLoadOfScalar(LValue lvalue, SourceLocation Loc); 2893 2894 /// EmitStoreOfScalar - Store a scalar value to an address, taking 2895 /// care to appropriately convert from the memory representation to 2896 /// the LLVM value representation. 2897 void EmitStoreOfScalar(llvm::Value *Value, Address Addr, 2898 bool Volatile, QualType Ty, 2899 AlignmentSource AlignSource = AlignmentSource::Type, 2900 llvm::MDNode *TBAAInfo = nullptr, bool isInit = false, 2901 QualType TBAABaseTy = QualType(), 2902 uint64_t TBAAOffset = 0, bool isNontemporal = false); 2903 2904 /// EmitStoreOfScalar - Store a scalar value to an address, taking 2905 /// care to appropriately convert from the memory representation to 2906 /// the LLVM value representation. The l-value must be a simple 2907 /// l-value. The isInit flag indicates whether this is an initialization. 2908 /// If so, atomic qualifiers are ignored and the store is always non-atomic. 2909 void EmitStoreOfScalar(llvm::Value *value, LValue lvalue, bool isInit=false); 2910 2911 /// EmitLoadOfLValue - Given an expression that represents a value lvalue, 2912 /// this method emits the address of the lvalue, then loads the result as an 2913 /// rvalue, returning the rvalue. 2914 RValue EmitLoadOfLValue(LValue V, SourceLocation Loc); 2915 RValue EmitLoadOfExtVectorElementLValue(LValue V); 2916 RValue EmitLoadOfBitfieldLValue(LValue LV); 2917 RValue EmitLoadOfGlobalRegLValue(LValue LV); 2918 2919 /// EmitStoreThroughLValue - Store the specified rvalue into the specified 2920 /// lvalue, where both are guaranteed to the have the same type, and that type 2921 /// is 'Ty'. 2922 void EmitStoreThroughLValue(RValue Src, LValue Dst, bool isInit = false); 2923 void EmitStoreThroughExtVectorComponentLValue(RValue Src, LValue Dst); 2924 void EmitStoreThroughGlobalRegLValue(RValue Src, LValue Dst); 2925 2926 /// EmitStoreThroughBitfieldLValue - Store Src into Dst with same constraints 2927 /// as EmitStoreThroughLValue. 2928 /// 2929 /// \param Result [out] - If non-null, this will be set to a Value* for the 2930 /// bit-field contents after the store, appropriate for use as the result of 2931 /// an assignment to the bit-field. 2932 void EmitStoreThroughBitfieldLValue(RValue Src, LValue Dst, 2933 llvm::Value **Result=nullptr); 2934 2935 /// Emit an l-value for an assignment (simple or compound) of complex type. 2936 LValue EmitComplexAssignmentLValue(const BinaryOperator *E); 2937 LValue EmitComplexCompoundAssignmentLValue(const CompoundAssignOperator *E); 2938 LValue EmitScalarCompoundAssignWithComplex(const CompoundAssignOperator *E, 2939 llvm::Value *&Result); 2940 2941 // Note: only available for agg return types 2942 LValue EmitBinaryOperatorLValue(const BinaryOperator *E); 2943 LValue EmitCompoundAssignmentLValue(const CompoundAssignOperator *E); 2944 // Note: only available for agg return types 2945 LValue EmitCallExprLValue(const CallExpr *E); 2946 // Note: only available for agg return types 2947 LValue EmitVAArgExprLValue(const VAArgExpr *E); 2948 LValue EmitDeclRefLValue(const DeclRefExpr *E); 2949 LValue EmitStringLiteralLValue(const StringLiteral *E); 2950 LValue EmitObjCEncodeExprLValue(const ObjCEncodeExpr *E); 2951 LValue EmitPredefinedLValue(const PredefinedExpr *E); 2952 LValue EmitUnaryOpLValue(const UnaryOperator *E); 2953 LValue EmitArraySubscriptExpr(const ArraySubscriptExpr *E, 2954 bool Accessed = false); 2955 LValue EmitOMPArraySectionExpr(const OMPArraySectionExpr *E, 2956 bool IsLowerBound = true); 2957 LValue EmitExtVectorElementExpr(const ExtVectorElementExpr *E); 2958 LValue EmitMemberExpr(const MemberExpr *E); 2959 LValue EmitObjCIsaExpr(const ObjCIsaExpr *E); 2960 LValue EmitCompoundLiteralLValue(const CompoundLiteralExpr *E); 2961 LValue EmitInitListLValue(const InitListExpr *E); 2962 LValue EmitConditionalOperatorLValue(const AbstractConditionalOperator *E); 2963 LValue EmitCastLValue(const CastExpr *E); 2964 LValue EmitMaterializeTemporaryExpr(const MaterializeTemporaryExpr *E); 2965 LValue EmitOpaqueValueLValue(const OpaqueValueExpr *e); 2966 2967 Address EmitExtVectorElementLValue(LValue V); 2968 2969 RValue EmitRValueForField(LValue LV, const FieldDecl *FD, SourceLocation Loc); 2970 2971 Address EmitArrayToPointerDecay(const Expr *Array, 2972 AlignmentSource *AlignSource = nullptr); 2973 2974 class ConstantEmission { 2975 llvm::PointerIntPair<llvm::Constant*, 1, bool> ValueAndIsReference; 2976 ConstantEmission(llvm::Constant *C, bool isReference) 2977 : ValueAndIsReference(C, isReference) {} 2978 public: 2979 ConstantEmission() {} 2980 static ConstantEmission forReference(llvm::Constant *C) { 2981 return ConstantEmission(C, true); 2982 } 2983 static ConstantEmission forValue(llvm::Constant *C) { 2984 return ConstantEmission(C, false); 2985 } 2986 2987 explicit operator bool() const { 2988 return ValueAndIsReference.getOpaqueValue() != nullptr; 2989 } 2990 2991 bool isReference() const { return ValueAndIsReference.getInt(); } 2992 LValue getReferenceLValue(CodeGenFunction &CGF, Expr *refExpr) const { 2993 assert(isReference()); 2994 return CGF.MakeNaturalAlignAddrLValue(ValueAndIsReference.getPointer(), 2995 refExpr->getType()); 2996 } 2997 2998 llvm::Constant *getValue() const { 2999 assert(!isReference()); 3000 return ValueAndIsReference.getPointer(); 3001 } 3002 }; 3003 3004 ConstantEmission tryEmitAsConstant(DeclRefExpr *refExpr); 3005 3006 RValue EmitPseudoObjectRValue(const PseudoObjectExpr *e, 3007 AggValueSlot slot = AggValueSlot::ignored()); 3008 LValue EmitPseudoObjectLValue(const PseudoObjectExpr *e); 3009 3010 llvm::Value *EmitIvarOffset(const ObjCInterfaceDecl *Interface, 3011 const ObjCIvarDecl *Ivar); 3012 LValue EmitLValueForField(LValue Base, const FieldDecl* Field); 3013 LValue EmitLValueForLambdaField(const FieldDecl *Field); 3014 3015 /// EmitLValueForFieldInitialization - Like EmitLValueForField, except that 3016 /// if the Field is a reference, this will return the address of the reference 3017 /// and not the address of the value stored in the reference. 3018 LValue EmitLValueForFieldInitialization(LValue Base, 3019 const FieldDecl* Field); 3020 3021 LValue EmitLValueForIvar(QualType ObjectTy, 3022 llvm::Value* Base, const ObjCIvarDecl *Ivar, 3023 unsigned CVRQualifiers); 3024 3025 LValue EmitCXXConstructLValue(const CXXConstructExpr *E); 3026 LValue EmitCXXBindTemporaryLValue(const CXXBindTemporaryExpr *E); 3027 LValue EmitLambdaLValue(const LambdaExpr *E); 3028 LValue EmitCXXTypeidLValue(const CXXTypeidExpr *E); 3029 LValue EmitCXXUuidofLValue(const CXXUuidofExpr *E); 3030 3031 LValue EmitObjCMessageExprLValue(const ObjCMessageExpr *E); 3032 LValue EmitObjCIvarRefLValue(const ObjCIvarRefExpr *E); 3033 LValue EmitStmtExprLValue(const StmtExpr *E); 3034 LValue EmitPointerToDataMemberBinaryExpr(const BinaryOperator *E); 3035 LValue EmitObjCSelectorLValue(const ObjCSelectorExpr *E); 3036 void EmitDeclRefExprDbgValue(const DeclRefExpr *E, const APValue &Init); 3037 3038 //===--------------------------------------------------------------------===// 3039 // Scalar Expression Emission 3040 //===--------------------------------------------------------------------===// 3041 3042 /// EmitCall - Generate a call of the given function, expecting the given 3043 /// result type, and using the given argument list which specifies both the 3044 /// LLVM arguments and the types they were derived from. 3045 RValue EmitCall(const CGFunctionInfo &CallInfo, const CGCallee &Callee, 3046 ReturnValueSlot ReturnValue, const CallArgList &Args, 3047 llvm::Instruction **callOrInvoke = nullptr); 3048 3049 RValue EmitCall(QualType FnType, const CGCallee &Callee, const CallExpr *E, 3050 ReturnValueSlot ReturnValue, 3051 llvm::Value *Chain = nullptr); 3052 RValue EmitCallExpr(const CallExpr *E, 3053 ReturnValueSlot ReturnValue = ReturnValueSlot()); 3054 RValue EmitSimpleCallExpr(const CallExpr *E, ReturnValueSlot ReturnValue); 3055 CGCallee EmitCallee(const Expr *E); 3056 3057 void checkTargetFeatures(const CallExpr *E, const FunctionDecl *TargetDecl); 3058 3059 llvm::CallInst *EmitRuntimeCall(llvm::Value *callee, 3060 const Twine &name = ""); 3061 llvm::CallInst *EmitRuntimeCall(llvm::Value *callee, 3062 ArrayRef<llvm::Value*> args, 3063 const Twine &name = ""); 3064 llvm::CallInst *EmitNounwindRuntimeCall(llvm::Value *callee, 3065 const Twine &name = ""); 3066 llvm::CallInst *EmitNounwindRuntimeCall(llvm::Value *callee, 3067 ArrayRef<llvm::Value*> args, 3068 const Twine &name = ""); 3069 3070 llvm::CallSite EmitCallOrInvoke(llvm::Value *Callee, 3071 ArrayRef<llvm::Value *> Args, 3072 const Twine &Name = ""); 3073 llvm::CallSite EmitRuntimeCallOrInvoke(llvm::Value *callee, 3074 ArrayRef<llvm::Value*> args, 3075 const Twine &name = ""); 3076 llvm::CallSite EmitRuntimeCallOrInvoke(llvm::Value *callee, 3077 const Twine &name = ""); 3078 void EmitNoreturnRuntimeCallOrInvoke(llvm::Value *callee, 3079 ArrayRef<llvm::Value*> args); 3080 3081 CGCallee BuildAppleKextVirtualCall(const CXXMethodDecl *MD, 3082 NestedNameSpecifier *Qual, 3083 llvm::Type *Ty); 3084 3085 CGCallee BuildAppleKextVirtualDestructorCall(const CXXDestructorDecl *DD, 3086 CXXDtorType Type, 3087 const CXXRecordDecl *RD); 3088 3089 RValue 3090 EmitCXXMemberOrOperatorCall(const CXXMethodDecl *Method, 3091 const CGCallee &Callee, 3092 ReturnValueSlot ReturnValue, llvm::Value *This, 3093 llvm::Value *ImplicitParam, 3094 QualType ImplicitParamTy, const CallExpr *E, 3095 CallArgList *RtlArgs); 3096 RValue EmitCXXDestructorCall(const CXXDestructorDecl *DD, 3097 const CGCallee &Callee, 3098 llvm::Value *This, llvm::Value *ImplicitParam, 3099 QualType ImplicitParamTy, const CallExpr *E, 3100 StructorType Type); 3101 RValue EmitCXXMemberCallExpr(const CXXMemberCallExpr *E, 3102 ReturnValueSlot ReturnValue); 3103 RValue EmitCXXMemberOrOperatorMemberCallExpr(const CallExpr *CE, 3104 const CXXMethodDecl *MD, 3105 ReturnValueSlot ReturnValue, 3106 bool HasQualifier, 3107 NestedNameSpecifier *Qualifier, 3108 bool IsArrow, const Expr *Base); 3109 // Compute the object pointer. 3110 Address EmitCXXMemberDataPointerAddress(const Expr *E, Address base, 3111 llvm::Value *memberPtr, 3112 const MemberPointerType *memberPtrType, 3113 AlignmentSource *AlignSource = nullptr); 3114 RValue EmitCXXMemberPointerCallExpr(const CXXMemberCallExpr *E, 3115 ReturnValueSlot ReturnValue); 3116 3117 RValue EmitCXXOperatorMemberCallExpr(const CXXOperatorCallExpr *E, 3118 const CXXMethodDecl *MD, 3119 ReturnValueSlot ReturnValue); 3120 RValue EmitCXXPseudoDestructorExpr(const CXXPseudoDestructorExpr *E); 3121 3122 RValue EmitCUDAKernelCallExpr(const CUDAKernelCallExpr *E, 3123 ReturnValueSlot ReturnValue); 3124 3125 RValue EmitNVPTXDevicePrintfCallExpr(const CallExpr *E, 3126 ReturnValueSlot ReturnValue); 3127 3128 RValue EmitBuiltinExpr(const FunctionDecl *FD, 3129 unsigned BuiltinID, const CallExpr *E, 3130 ReturnValueSlot ReturnValue); 3131 3132 RValue EmitBlockCallExpr(const CallExpr *E, ReturnValueSlot ReturnValue); 3133 3134 /// EmitTargetBuiltinExpr - Emit the given builtin call. Returns 0 if the call 3135 /// is unhandled by the current target. 3136 llvm::Value *EmitTargetBuiltinExpr(unsigned BuiltinID, const CallExpr *E); 3137 3138 llvm::Value *EmitAArch64CompareBuiltinExpr(llvm::Value *Op, llvm::Type *Ty, 3139 const llvm::CmpInst::Predicate Fp, 3140 const llvm::CmpInst::Predicate Ip, 3141 const llvm::Twine &Name = ""); 3142 llvm::Value *EmitARMBuiltinExpr(unsigned BuiltinID, const CallExpr *E); 3143 3144 llvm::Value *EmitCommonNeonBuiltinExpr(unsigned BuiltinID, 3145 unsigned LLVMIntrinsic, 3146 unsigned AltLLVMIntrinsic, 3147 const char *NameHint, 3148 unsigned Modifier, 3149 const CallExpr *E, 3150 SmallVectorImpl<llvm::Value *> &Ops, 3151 Address PtrOp0, Address PtrOp1); 3152 llvm::Function *LookupNeonLLVMIntrinsic(unsigned IntrinsicID, 3153 unsigned Modifier, llvm::Type *ArgTy, 3154 const CallExpr *E); 3155 llvm::Value *EmitNeonCall(llvm::Function *F, 3156 SmallVectorImpl<llvm::Value*> &O, 3157 const char *name, 3158 unsigned shift = 0, bool rightshift = false); 3159 llvm::Value *EmitNeonSplat(llvm::Value *V, llvm::Constant *Idx); 3160 llvm::Value *EmitNeonShiftVector(llvm::Value *V, llvm::Type *Ty, 3161 bool negateForRightShift); 3162 llvm::Value *EmitNeonRShiftImm(llvm::Value *Vec, llvm::Value *Amt, 3163 llvm::Type *Ty, bool usgn, const char *name); 3164 llvm::Value *vectorWrapScalar16(llvm::Value *Op); 3165 llvm::Value *EmitAArch64BuiltinExpr(unsigned BuiltinID, const CallExpr *E); 3166 3167 llvm::Value *BuildVector(ArrayRef<llvm::Value*> Ops); 3168 llvm::Value *EmitX86BuiltinExpr(unsigned BuiltinID, const CallExpr *E); 3169 llvm::Value *EmitPPCBuiltinExpr(unsigned BuiltinID, const CallExpr *E); 3170 llvm::Value *EmitAMDGPUBuiltinExpr(unsigned BuiltinID, const CallExpr *E); 3171 llvm::Value *EmitSystemZBuiltinExpr(unsigned BuiltinID, const CallExpr *E); 3172 llvm::Value *EmitNVPTXBuiltinExpr(unsigned BuiltinID, const CallExpr *E); 3173 llvm::Value *EmitWebAssemblyBuiltinExpr(unsigned BuiltinID, 3174 const CallExpr *E); 3175 3176 private: 3177 enum class MSVCIntrin; 3178 3179 public: 3180 llvm::Value *EmitMSVCBuiltinExpr(MSVCIntrin BuiltinID, const CallExpr *E); 3181 3182 llvm::Value *EmitBuiltinAvailable(ArrayRef<llvm::Value *> Args); 3183 3184 llvm::Value *EmitObjCProtocolExpr(const ObjCProtocolExpr *E); 3185 llvm::Value *EmitObjCStringLiteral(const ObjCStringLiteral *E); 3186 llvm::Value *EmitObjCBoxedExpr(const ObjCBoxedExpr *E); 3187 llvm::Value *EmitObjCArrayLiteral(const ObjCArrayLiteral *E); 3188 llvm::Value *EmitObjCDictionaryLiteral(const ObjCDictionaryLiteral *E); 3189 llvm::Value *EmitObjCCollectionLiteral(const Expr *E, 3190 const ObjCMethodDecl *MethodWithObjects); 3191 llvm::Value *EmitObjCSelectorExpr(const ObjCSelectorExpr *E); 3192 RValue EmitObjCMessageExpr(const ObjCMessageExpr *E, 3193 ReturnValueSlot Return = ReturnValueSlot()); 3194 3195 /// Retrieves the default cleanup kind for an ARC cleanup. 3196 /// Except under -fobjc-arc-eh, ARC cleanups are normal-only. 3197 CleanupKind getARCCleanupKind() { 3198 return CGM.getCodeGenOpts().ObjCAutoRefCountExceptions 3199 ? NormalAndEHCleanup : NormalCleanup; 3200 } 3201 3202 // ARC primitives. 3203 void EmitARCInitWeak(Address addr, llvm::Value *value); 3204 void EmitARCDestroyWeak(Address addr); 3205 llvm::Value *EmitARCLoadWeak(Address addr); 3206 llvm::Value *EmitARCLoadWeakRetained(Address addr); 3207 llvm::Value *EmitARCStoreWeak(Address addr, llvm::Value *value, bool ignored); 3208 void EmitARCCopyWeak(Address dst, Address src); 3209 void EmitARCMoveWeak(Address dst, Address src); 3210 llvm::Value *EmitARCRetainAutorelease(QualType type, llvm::Value *value); 3211 llvm::Value *EmitARCRetainAutoreleaseNonBlock(llvm::Value *value); 3212 llvm::Value *EmitARCStoreStrong(LValue lvalue, llvm::Value *value, 3213 bool resultIgnored); 3214 llvm::Value *EmitARCStoreStrongCall(Address addr, llvm::Value *value, 3215 bool resultIgnored); 3216 llvm::Value *EmitARCRetain(QualType type, llvm::Value *value); 3217 llvm::Value *EmitARCRetainNonBlock(llvm::Value *value); 3218 llvm::Value *EmitARCRetainBlock(llvm::Value *value, bool mandatory); 3219 void EmitARCDestroyStrong(Address addr, ARCPreciseLifetime_t precise); 3220 void EmitARCRelease(llvm::Value *value, ARCPreciseLifetime_t precise); 3221 llvm::Value *EmitARCAutorelease(llvm::Value *value); 3222 llvm::Value *EmitARCAutoreleaseReturnValue(llvm::Value *value); 3223 llvm::Value *EmitARCRetainAutoreleaseReturnValue(llvm::Value *value); 3224 llvm::Value *EmitARCRetainAutoreleasedReturnValue(llvm::Value *value); 3225 llvm::Value *EmitARCUnsafeClaimAutoreleasedReturnValue(llvm::Value *value); 3226 3227 std::pair<LValue,llvm::Value*> 3228 EmitARCStoreAutoreleasing(const BinaryOperator *e); 3229 std::pair<LValue,llvm::Value*> 3230 EmitARCStoreStrong(const BinaryOperator *e, bool ignored); 3231 std::pair<LValue,llvm::Value*> 3232 EmitARCStoreUnsafeUnretained(const BinaryOperator *e, bool ignored); 3233 3234 llvm::Value *EmitObjCThrowOperand(const Expr *expr); 3235 llvm::Value *EmitObjCConsumeObject(QualType T, llvm::Value *Ptr); 3236 llvm::Value *EmitObjCExtendObjectLifetime(QualType T, llvm::Value *Ptr); 3237 3238 llvm::Value *EmitARCExtendBlockObject(const Expr *expr); 3239 llvm::Value *EmitARCReclaimReturnedObject(const Expr *e, 3240 bool allowUnsafeClaim); 3241 llvm::Value *EmitARCRetainScalarExpr(const Expr *expr); 3242 llvm::Value *EmitARCRetainAutoreleaseScalarExpr(const Expr *expr); 3243 llvm::Value *EmitARCUnsafeUnretainedScalarExpr(const Expr *expr); 3244 3245 void EmitARCIntrinsicUse(ArrayRef<llvm::Value*> values); 3246 3247 static Destroyer destroyARCStrongImprecise; 3248 static Destroyer destroyARCStrongPrecise; 3249 static Destroyer destroyARCWeak; 3250 3251 void EmitObjCAutoreleasePoolPop(llvm::Value *Ptr); 3252 llvm::Value *EmitObjCAutoreleasePoolPush(); 3253 llvm::Value *EmitObjCMRRAutoreleasePoolPush(); 3254 void EmitObjCAutoreleasePoolCleanup(llvm::Value *Ptr); 3255 void EmitObjCMRRAutoreleasePoolPop(llvm::Value *Ptr); 3256 3257 /// \brief Emits a reference binding to the passed in expression. 3258 RValue EmitReferenceBindingToExpr(const Expr *E); 3259 3260 //===--------------------------------------------------------------------===// 3261 // Expression Emission 3262 //===--------------------------------------------------------------------===// 3263 3264 // Expressions are broken into three classes: scalar, complex, aggregate. 3265 3266 /// EmitScalarExpr - Emit the computation of the specified expression of LLVM 3267 /// scalar type, returning the result. 3268 llvm::Value *EmitScalarExpr(const Expr *E , bool IgnoreResultAssign = false); 3269 3270 /// Emit a conversion from the specified type to the specified destination 3271 /// type, both of which are LLVM scalar types. 3272 llvm::Value *EmitScalarConversion(llvm::Value *Src, QualType SrcTy, 3273 QualType DstTy, SourceLocation Loc); 3274 3275 /// Emit a conversion from the specified complex type to the specified 3276 /// destination type, where the destination type is an LLVM scalar type. 3277 llvm::Value *EmitComplexToScalarConversion(ComplexPairTy Src, QualType SrcTy, 3278 QualType DstTy, 3279 SourceLocation Loc); 3280 3281 /// EmitAggExpr - Emit the computation of the specified expression 3282 /// of aggregate type. The result is computed into the given slot, 3283 /// which may be null to indicate that the value is not needed. 3284 void EmitAggExpr(const Expr *E, AggValueSlot AS); 3285 3286 /// EmitAggExprToLValue - Emit the computation of the specified expression of 3287 /// aggregate type into a temporary LValue. 3288 LValue EmitAggExprToLValue(const Expr *E); 3289 3290 /// EmitExtendGCLifetime - Given a pointer to an Objective-C object, 3291 /// make sure it survives garbage collection until this point. 3292 void EmitExtendGCLifetime(llvm::Value *object); 3293 3294 /// EmitComplexExpr - Emit the computation of the specified expression of 3295 /// complex type, returning the result. 3296 ComplexPairTy EmitComplexExpr(const Expr *E, 3297 bool IgnoreReal = false, 3298 bool IgnoreImag = false); 3299 3300 /// EmitComplexExprIntoLValue - Emit the given expression of complex 3301 /// type and place its result into the specified l-value. 3302 void EmitComplexExprIntoLValue(const Expr *E, LValue dest, bool isInit); 3303 3304 /// EmitStoreOfComplex - Store a complex number into the specified l-value. 3305 void EmitStoreOfComplex(ComplexPairTy V, LValue dest, bool isInit); 3306 3307 /// EmitLoadOfComplex - Load a complex number from the specified l-value. 3308 ComplexPairTy EmitLoadOfComplex(LValue src, SourceLocation loc); 3309 3310 Address emitAddrOfRealComponent(Address complex, QualType complexType); 3311 Address emitAddrOfImagComponent(Address complex, QualType complexType); 3312 3313 /// AddInitializerToStaticVarDecl - Add the initializer for 'D' to the 3314 /// global variable that has already been created for it. If the initializer 3315 /// has a different type than GV does, this may free GV and return a different 3316 /// one. Otherwise it just returns GV. 3317 llvm::GlobalVariable * 3318 AddInitializerToStaticVarDecl(const VarDecl &D, 3319 llvm::GlobalVariable *GV); 3320 3321 3322 /// EmitCXXGlobalVarDeclInit - Create the initializer for a C++ 3323 /// variable with global storage. 3324 void EmitCXXGlobalVarDeclInit(const VarDecl &D, llvm::Constant *DeclPtr, 3325 bool PerformInit); 3326 3327 llvm::Constant *createAtExitStub(const VarDecl &VD, llvm::Constant *Dtor, 3328 llvm::Constant *Addr); 3329 3330 /// Call atexit() with a function that passes the given argument to 3331 /// the given function. 3332 void registerGlobalDtorWithAtExit(const VarDecl &D, llvm::Constant *fn, 3333 llvm::Constant *addr); 3334 3335 /// Emit code in this function to perform a guarded variable 3336 /// initialization. Guarded initializations are used when it's not 3337 /// possible to prove that an initialization will be done exactly 3338 /// once, e.g. with a static local variable or a static data member 3339 /// of a class template. 3340 void EmitCXXGuardedInit(const VarDecl &D, llvm::GlobalVariable *DeclPtr, 3341 bool PerformInit); 3342 3343 /// GenerateCXXGlobalInitFunc - Generates code for initializing global 3344 /// variables. 3345 void GenerateCXXGlobalInitFunc(llvm::Function *Fn, 3346 ArrayRef<llvm::Function *> CXXThreadLocals, 3347 Address Guard = Address::invalid()); 3348 3349 /// GenerateCXXGlobalDtorsFunc - Generates code for destroying global 3350 /// variables. 3351 void GenerateCXXGlobalDtorsFunc(llvm::Function *Fn, 3352 const std::vector<std::pair<llvm::WeakVH, 3353 llvm::Constant*> > &DtorsAndObjects); 3354 3355 void GenerateCXXGlobalVarDeclInitFunc(llvm::Function *Fn, 3356 const VarDecl *D, 3357 llvm::GlobalVariable *Addr, 3358 bool PerformInit); 3359 3360 void EmitCXXConstructExpr(const CXXConstructExpr *E, AggValueSlot Dest); 3361 3362 void EmitSynthesizedCXXCopyCtor(Address Dest, Address Src, const Expr *Exp); 3363 3364 void enterFullExpression(const ExprWithCleanups *E) { 3365 if (E->getNumObjects() == 0) return; 3366 enterNonTrivialFullExpression(E); 3367 } 3368 void enterNonTrivialFullExpression(const ExprWithCleanups *E); 3369 3370 void EmitCXXThrowExpr(const CXXThrowExpr *E, bool KeepInsertionPoint = true); 3371 3372 void EmitLambdaExpr(const LambdaExpr *E, AggValueSlot Dest); 3373 3374 RValue EmitAtomicExpr(AtomicExpr *E); 3375 3376 //===--------------------------------------------------------------------===// 3377 // Annotations Emission 3378 //===--------------------------------------------------------------------===// 3379 3380 /// Emit an annotation call (intrinsic or builtin). 3381 llvm::Value *EmitAnnotationCall(llvm::Value *AnnotationFn, 3382 llvm::Value *AnnotatedVal, 3383 StringRef AnnotationStr, 3384 SourceLocation Location); 3385 3386 /// Emit local annotations for the local variable V, declared by D. 3387 void EmitVarAnnotations(const VarDecl *D, llvm::Value *V); 3388 3389 /// Emit field annotations for the given field & value. Returns the 3390 /// annotation result. 3391 Address EmitFieldAnnotations(const FieldDecl *D, Address V); 3392 3393 //===--------------------------------------------------------------------===// 3394 // Internal Helpers 3395 //===--------------------------------------------------------------------===// 3396 3397 /// ContainsLabel - Return true if the statement contains a label in it. If 3398 /// this statement is not executed normally, it not containing a label means 3399 /// that we can just remove the code. 3400 static bool ContainsLabel(const Stmt *S, bool IgnoreCaseStmts = false); 3401 3402 /// containsBreak - Return true if the statement contains a break out of it. 3403 /// If the statement (recursively) contains a switch or loop with a break 3404 /// inside of it, this is fine. 3405 static bool containsBreak(const Stmt *S); 3406 3407 /// Determine if the given statement might introduce a declaration into the 3408 /// current scope, by being a (possibly-labelled) DeclStmt. 3409 static bool mightAddDeclToScope(const Stmt *S); 3410 3411 /// ConstantFoldsToSimpleInteger - If the specified expression does not fold 3412 /// to a constant, or if it does but contains a label, return false. If it 3413 /// constant folds return true and set the boolean result in Result. 3414 bool ConstantFoldsToSimpleInteger(const Expr *Cond, bool &Result, 3415 bool AllowLabels = false); 3416 3417 /// ConstantFoldsToSimpleInteger - If the specified expression does not fold 3418 /// to a constant, or if it does but contains a label, return false. If it 3419 /// constant folds return true and set the folded value. 3420 bool ConstantFoldsToSimpleInteger(const Expr *Cond, llvm::APSInt &Result, 3421 bool AllowLabels = false); 3422 3423 /// EmitBranchOnBoolExpr - Emit a branch on a boolean condition (e.g. for an 3424 /// if statement) to the specified blocks. Based on the condition, this might 3425 /// try to simplify the codegen of the conditional based on the branch. 3426 /// TrueCount should be the number of times we expect the condition to 3427 /// evaluate to true based on PGO data. 3428 void EmitBranchOnBoolExpr(const Expr *Cond, llvm::BasicBlock *TrueBlock, 3429 llvm::BasicBlock *FalseBlock, uint64_t TrueCount); 3430 3431 /// \brief Emit a description of a type in a format suitable for passing to 3432 /// a runtime sanitizer handler. 3433 llvm::Constant *EmitCheckTypeDescriptor(QualType T); 3434 3435 /// \brief Convert a value into a format suitable for passing to a runtime 3436 /// sanitizer handler. 3437 llvm::Value *EmitCheckValue(llvm::Value *V); 3438 3439 /// \brief Emit a description of a source location in a format suitable for 3440 /// passing to a runtime sanitizer handler. 3441 llvm::Constant *EmitCheckSourceLocation(SourceLocation Loc); 3442 3443 /// \brief Create a basic block that will call a handler function in a 3444 /// sanitizer runtime with the provided arguments, and create a conditional 3445 /// branch to it. 3446 void EmitCheck(ArrayRef<std::pair<llvm::Value *, SanitizerMask>> Checked, 3447 SanitizerHandler Check, ArrayRef<llvm::Constant *> StaticArgs, 3448 ArrayRef<llvm::Value *> DynamicArgs); 3449 3450 /// \brief Emit a slow path cross-DSO CFI check which calls __cfi_slowpath 3451 /// if Cond if false. 3452 void EmitCfiSlowPathCheck(SanitizerMask Kind, llvm::Value *Cond, 3453 llvm::ConstantInt *TypeId, llvm::Value *Ptr, 3454 ArrayRef<llvm::Constant *> StaticArgs); 3455 3456 /// \brief Create a basic block that will call the trap intrinsic, and emit a 3457 /// conditional branch to it, for the -ftrapv checks. 3458 void EmitTrapCheck(llvm::Value *Checked); 3459 3460 /// \brief Emit a call to trap or debugtrap and attach function attribute 3461 /// "trap-func-name" if specified. 3462 llvm::CallInst *EmitTrapCall(llvm::Intrinsic::ID IntrID); 3463 3464 /// \brief Emit a cross-DSO CFI failure handling function. 3465 void EmitCfiCheckFail(); 3466 3467 /// \brief Create a check for a function parameter that may potentially be 3468 /// declared as non-null. 3469 void EmitNonNullArgCheck(RValue RV, QualType ArgType, SourceLocation ArgLoc, 3470 const FunctionDecl *FD, unsigned ParmNum); 3471 3472 /// EmitCallArg - Emit a single call argument. 3473 void EmitCallArg(CallArgList &args, const Expr *E, QualType ArgType); 3474 3475 /// EmitDelegateCallArg - We are performing a delegate call; that 3476 /// is, the current function is delegating to another one. Produce 3477 /// a r-value suitable for passing the given parameter. 3478 void EmitDelegateCallArg(CallArgList &args, const VarDecl *param, 3479 SourceLocation loc); 3480 3481 /// SetFPAccuracy - Set the minimum required accuracy of the given floating 3482 /// point operation, expressed as the maximum relative error in ulp. 3483 void SetFPAccuracy(llvm::Value *Val, float Accuracy); 3484 3485 private: 3486 llvm::MDNode *getRangeForLoadFromType(QualType Ty); 3487 void EmitReturnOfRValue(RValue RV, QualType Ty); 3488 3489 void deferPlaceholderReplacement(llvm::Instruction *Old, llvm::Value *New); 3490 3491 llvm::SmallVector<std::pair<llvm::Instruction *, llvm::Value *>, 4> 3492 DeferredReplacements; 3493 3494 /// Set the address of a local variable. 3495 void setAddrOfLocalVar(const VarDecl *VD, Address Addr) { 3496 assert(!LocalDeclMap.count(VD) && "Decl already exists in LocalDeclMap!"); 3497 LocalDeclMap.insert({VD, Addr}); 3498 } 3499 3500 /// ExpandTypeFromArgs - Reconstruct a structure of type \arg Ty 3501 /// from function arguments into \arg Dst. See ABIArgInfo::Expand. 3502 /// 3503 /// \param AI - The first function argument of the expansion. 3504 void ExpandTypeFromArgs(QualType Ty, LValue Dst, 3505 SmallVectorImpl<llvm::Value *>::iterator &AI); 3506 3507 /// ExpandTypeToArgs - Expand an RValue \arg RV, with the LLVM type for \arg 3508 /// Ty, into individual arguments on the provided vector \arg IRCallArgs, 3509 /// starting at index \arg IRCallArgPos. See ABIArgInfo::Expand. 3510 void ExpandTypeToArgs(QualType Ty, RValue RV, llvm::FunctionType *IRFuncTy, 3511 SmallVectorImpl<llvm::Value *> &IRCallArgs, 3512 unsigned &IRCallArgPos); 3513 3514 llvm::Value* EmitAsmInput(const TargetInfo::ConstraintInfo &Info, 3515 const Expr *InputExpr, std::string &ConstraintStr); 3516 3517 llvm::Value* EmitAsmInputLValue(const TargetInfo::ConstraintInfo &Info, 3518 LValue InputValue, QualType InputType, 3519 std::string &ConstraintStr, 3520 SourceLocation Loc); 3521 3522 /// \brief Attempts to statically evaluate the object size of E. If that 3523 /// fails, emits code to figure the size of E out for us. This is 3524 /// pass_object_size aware. 3525 /// 3526 /// If EmittedExpr is non-null, this will use that instead of re-emitting E. 3527 llvm::Value *evaluateOrEmitBuiltinObjectSize(const Expr *E, unsigned Type, 3528 llvm::IntegerType *ResType, 3529 llvm::Value *EmittedE); 3530 3531 /// \brief Emits the size of E, as required by __builtin_object_size. This 3532 /// function is aware of pass_object_size parameters, and will act accordingly 3533 /// if E is a parameter with the pass_object_size attribute. 3534 llvm::Value *emitBuiltinObjectSize(const Expr *E, unsigned Type, 3535 llvm::IntegerType *ResType, 3536 llvm::Value *EmittedE); 3537 3538 public: 3539 #ifndef NDEBUG 3540 // Determine whether the given argument is an Objective-C method 3541 // that may have type parameters in its signature. 3542 static bool isObjCMethodWithTypeParams(const ObjCMethodDecl *method) { 3543 const DeclContext *dc = method->getDeclContext(); 3544 if (const ObjCInterfaceDecl *classDecl= dyn_cast<ObjCInterfaceDecl>(dc)) { 3545 return classDecl->getTypeParamListAsWritten(); 3546 } 3547 3548 if (const ObjCCategoryDecl *catDecl = dyn_cast<ObjCCategoryDecl>(dc)) { 3549 return catDecl->getTypeParamList(); 3550 } 3551 3552 return false; 3553 } 3554 3555 template<typename T> 3556 static bool isObjCMethodWithTypeParams(const T *) { return false; } 3557 #endif 3558 3559 enum class EvaluationOrder { 3560 ///! No language constraints on evaluation order. 3561 Default, 3562 ///! Language semantics require left-to-right evaluation. 3563 ForceLeftToRight, 3564 ///! Language semantics require right-to-left evaluation. 3565 ForceRightToLeft 3566 }; 3567 3568 /// EmitCallArgs - Emit call arguments for a function. 3569 template <typename T> 3570 void EmitCallArgs(CallArgList &Args, const T *CallArgTypeInfo, 3571 llvm::iterator_range<CallExpr::const_arg_iterator> ArgRange, 3572 const FunctionDecl *CalleeDecl = nullptr, 3573 unsigned ParamsToSkip = 0, 3574 EvaluationOrder Order = EvaluationOrder::Default) { 3575 SmallVector<QualType, 16> ArgTypes; 3576 CallExpr::const_arg_iterator Arg = ArgRange.begin(); 3577 3578 assert((ParamsToSkip == 0 || CallArgTypeInfo) && 3579 "Can't skip parameters if type info is not provided"); 3580 if (CallArgTypeInfo) { 3581 #ifndef NDEBUG 3582 bool isGenericMethod = isObjCMethodWithTypeParams(CallArgTypeInfo); 3583 #endif 3584 3585 // First, use the argument types that the type info knows about 3586 for (auto I = CallArgTypeInfo->param_type_begin() + ParamsToSkip, 3587 E = CallArgTypeInfo->param_type_end(); 3588 I != E; ++I, ++Arg) { 3589 assert(Arg != ArgRange.end() && "Running over edge of argument list!"); 3590 assert((isGenericMethod || 3591 ((*I)->isVariablyModifiedType() || 3592 (*I).getNonReferenceType()->isObjCRetainableType() || 3593 getContext() 3594 .getCanonicalType((*I).getNonReferenceType()) 3595 .getTypePtr() == 3596 getContext() 3597 .getCanonicalType((*Arg)->getType()) 3598 .getTypePtr())) && 3599 "type mismatch in call argument!"); 3600 ArgTypes.push_back(*I); 3601 } 3602 } 3603 3604 // Either we've emitted all the call args, or we have a call to variadic 3605 // function. 3606 assert((Arg == ArgRange.end() || !CallArgTypeInfo || 3607 CallArgTypeInfo->isVariadic()) && 3608 "Extra arguments in non-variadic function!"); 3609 3610 // If we still have any arguments, emit them using the type of the argument. 3611 for (auto *A : llvm::make_range(Arg, ArgRange.end())) 3612 ArgTypes.push_back(CallArgTypeInfo ? getVarArgType(A) : A->getType()); 3613 3614 EmitCallArgs(Args, ArgTypes, ArgRange, CalleeDecl, ParamsToSkip, Order); 3615 } 3616 3617 void EmitCallArgs(CallArgList &Args, ArrayRef<QualType> ArgTypes, 3618 llvm::iterator_range<CallExpr::const_arg_iterator> ArgRange, 3619 const FunctionDecl *CalleeDecl = nullptr, 3620 unsigned ParamsToSkip = 0, 3621 EvaluationOrder Order = EvaluationOrder::Default); 3622 3623 /// EmitPointerWithAlignment - Given an expression with a pointer 3624 /// type, emit the value and compute our best estimate of the 3625 /// alignment of the pointee. 3626 /// 3627 /// Note that this function will conservatively fall back on the type 3628 /// when it doesn't 3629 /// 3630 /// \param Source - If non-null, this will be initialized with 3631 /// information about the source of the alignment. Note that this 3632 /// function will conservatively fall back on the type when it 3633 /// doesn't recognize the expression, which means that sometimes 3634 /// 3635 /// a worst-case One 3636 /// reasonable way to use this information is when there's a 3637 /// language guarantee that the pointer must be aligned to some 3638 /// stricter value, and we're simply trying to ensure that 3639 /// sufficiently obvious uses of under-aligned objects don't get 3640 /// miscompiled; for example, a placement new into the address of 3641 /// a local variable. In such a case, it's quite reasonable to 3642 /// just ignore the returned alignment when it isn't from an 3643 /// explicit source. 3644 Address EmitPointerWithAlignment(const Expr *Addr, 3645 AlignmentSource *Source = nullptr); 3646 3647 void EmitSanitizerStatReport(llvm::SanitizerStatKind SSK); 3648 3649 private: 3650 QualType getVarArgType(const Expr *Arg); 3651 3652 const TargetCodeGenInfo &getTargetHooks() const { 3653 return CGM.getTargetCodeGenInfo(); 3654 } 3655 3656 void EmitDeclMetadata(); 3657 3658 BlockByrefHelpers *buildByrefHelpers(llvm::StructType &byrefType, 3659 const AutoVarEmission &emission); 3660 3661 void AddObjCARCExceptionMetadata(llvm::Instruction *Inst); 3662 3663 llvm::Value *GetValueForARMHint(unsigned BuiltinID); 3664 }; 3665 3666 /// Helper class with most of the code for saving a value for a 3667 /// conditional expression cleanup. 3668 struct DominatingLLVMValue { 3669 typedef llvm::PointerIntPair<llvm::Value*, 1, bool> saved_type; 3670 3671 /// Answer whether the given value needs extra work to be saved. 3672 static bool needsSaving(llvm::Value *value) { 3673 // If it's not an instruction, we don't need to save. 3674 if (!isa<llvm::Instruction>(value)) return false; 3675 3676 // If it's an instruction in the entry block, we don't need to save. 3677 llvm::BasicBlock *block = cast<llvm::Instruction>(value)->getParent(); 3678 return (block != &block->getParent()->getEntryBlock()); 3679 } 3680 3681 /// Try to save the given value. 3682 static saved_type save(CodeGenFunction &CGF, llvm::Value *value) { 3683 if (!needsSaving(value)) return saved_type(value, false); 3684 3685 // Otherwise, we need an alloca. 3686 auto align = CharUnits::fromQuantity( 3687 CGF.CGM.getDataLayout().getPrefTypeAlignment(value->getType())); 3688 Address alloca = 3689 CGF.CreateTempAlloca(value->getType(), align, "cond-cleanup.save"); 3690 CGF.Builder.CreateStore(value, alloca); 3691 3692 return saved_type(alloca.getPointer(), true); 3693 } 3694 3695 static llvm::Value *restore(CodeGenFunction &CGF, saved_type value) { 3696 // If the value says it wasn't saved, trust that it's still dominating. 3697 if (!value.getInt()) return value.getPointer(); 3698 3699 // Otherwise, it should be an alloca instruction, as set up in save(). 3700 auto alloca = cast<llvm::AllocaInst>(value.getPointer()); 3701 return CGF.Builder.CreateAlignedLoad(alloca, alloca->getAlignment()); 3702 } 3703 }; 3704 3705 /// A partial specialization of DominatingValue for llvm::Values that 3706 /// might be llvm::Instructions. 3707 template <class T> struct DominatingPointer<T,true> : DominatingLLVMValue { 3708 typedef T *type; 3709 static type restore(CodeGenFunction &CGF, saved_type value) { 3710 return static_cast<T*>(DominatingLLVMValue::restore(CGF, value)); 3711 } 3712 }; 3713 3714 /// A specialization of DominatingValue for Address. 3715 template <> struct DominatingValue<Address> { 3716 typedef Address type; 3717 3718 struct saved_type { 3719 DominatingLLVMValue::saved_type SavedValue; 3720 CharUnits Alignment; 3721 }; 3722 3723 static bool needsSaving(type value) { 3724 return DominatingLLVMValue::needsSaving(value.getPointer()); 3725 } 3726 static saved_type save(CodeGenFunction &CGF, type value) { 3727 return { DominatingLLVMValue::save(CGF, value.getPointer()), 3728 value.getAlignment() }; 3729 } 3730 static type restore(CodeGenFunction &CGF, saved_type value) { 3731 return Address(DominatingLLVMValue::restore(CGF, value.SavedValue), 3732 value.Alignment); 3733 } 3734 }; 3735 3736 /// A specialization of DominatingValue for RValue. 3737 template <> struct DominatingValue<RValue> { 3738 typedef RValue type; 3739 class saved_type { 3740 enum Kind { ScalarLiteral, ScalarAddress, AggregateLiteral, 3741 AggregateAddress, ComplexAddress }; 3742 3743 llvm::Value *Value; 3744 unsigned K : 3; 3745 unsigned Align : 29; 3746 saved_type(llvm::Value *v, Kind k, unsigned a = 0) 3747 : Value(v), K(k), Align(a) {} 3748 3749 public: 3750 static bool needsSaving(RValue value); 3751 static saved_type save(CodeGenFunction &CGF, RValue value); 3752 RValue restore(CodeGenFunction &CGF); 3753 3754 // implementations in CGCleanup.cpp 3755 }; 3756 3757 static bool needsSaving(type value) { 3758 return saved_type::needsSaving(value); 3759 } 3760 static saved_type save(CodeGenFunction &CGF, type value) { 3761 return saved_type::save(CGF, value); 3762 } 3763 static type restore(CodeGenFunction &CGF, saved_type value) { 3764 return value.restore(CGF); 3765 } 3766 }; 3767 3768 } // end namespace CodeGen 3769 } // end namespace clang 3770 3771 #endif 3772