1 //===-- CodeGenFunction.h - Per-Function state for LLVM CodeGen -*- C++ -*-===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This is the internal per-function state used for llvm translation.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #ifndef LLVM_CLANG_LIB_CODEGEN_CODEGENFUNCTION_H
15 #define LLVM_CLANG_LIB_CODEGEN_CODEGENFUNCTION_H
16 
17 #include "CGBuilder.h"
18 #include "CGDebugInfo.h"
19 #include "CGLoopInfo.h"
20 #include "CGValue.h"
21 #include "CodeGenModule.h"
22 #include "CodeGenPGO.h"
23 #include "EHScopeStack.h"
24 #include "clang/AST/CharUnits.h"
25 #include "clang/AST/ExprCXX.h"
26 #include "clang/AST/ExprObjC.h"
27 #include "clang/AST/ExprOpenMP.h"
28 #include "clang/AST/Type.h"
29 #include "clang/Basic/ABI.h"
30 #include "clang/Basic/CapturedStmt.h"
31 #include "clang/Basic/OpenMPKinds.h"
32 #include "clang/Basic/TargetInfo.h"
33 #include "clang/Frontend/CodeGenOptions.h"
34 #include "llvm/ADT/ArrayRef.h"
35 #include "llvm/ADT/DenseMap.h"
36 #include "llvm/ADT/SmallVector.h"
37 #include "llvm/IR/ValueHandle.h"
38 #include "llvm/Support/Debug.h"
39 
40 namespace llvm {
41 class BasicBlock;
42 class LLVMContext;
43 class MDNode;
44 class Module;
45 class SwitchInst;
46 class Twine;
47 class Value;
48 class CallSite;
49 }
50 
51 namespace clang {
52 class ASTContext;
53 class BlockDecl;
54 class CXXDestructorDecl;
55 class CXXForRangeStmt;
56 class CXXTryStmt;
57 class Decl;
58 class LabelDecl;
59 class EnumConstantDecl;
60 class FunctionDecl;
61 class FunctionProtoType;
62 class LabelStmt;
63 class ObjCContainerDecl;
64 class ObjCInterfaceDecl;
65 class ObjCIvarDecl;
66 class ObjCMethodDecl;
67 class ObjCImplementationDecl;
68 class ObjCPropertyImplDecl;
69 class TargetInfo;
70 class TargetCodeGenInfo;
71 class VarDecl;
72 class ObjCForCollectionStmt;
73 class ObjCAtTryStmt;
74 class ObjCAtThrowStmt;
75 class ObjCAtSynchronizedStmt;
76 class ObjCAutoreleasePoolStmt;
77 
78 namespace CodeGen {
79 class CodeGenTypes;
80 class CGFunctionInfo;
81 class CGRecordLayout;
82 class CGBlockInfo;
83 class CGCXXABI;
84 class BlockByrefHelpers;
85 class BlockByrefInfo;
86 class BlockFlags;
87 class BlockFieldFlags;
88 
89 /// The kind of evaluation to perform on values of a particular
90 /// type.  Basically, is the code in CGExprScalar, CGExprComplex, or
91 /// CGExprAgg?
92 ///
93 /// TODO: should vectors maybe be split out into their own thing?
94 enum TypeEvaluationKind {
95   TEK_Scalar,
96   TEK_Complex,
97   TEK_Aggregate
98 };
99 
100 /// CodeGenFunction - This class organizes the per-function state that is used
101 /// while generating LLVM code.
102 class CodeGenFunction : public CodeGenTypeCache {
103   CodeGenFunction(const CodeGenFunction &) = delete;
104   void operator=(const CodeGenFunction &) = delete;
105 
106   friend class CGCXXABI;
107 public:
108   /// A jump destination is an abstract label, branching to which may
109   /// require a jump out through normal cleanups.
110   struct JumpDest {
111     JumpDest() : Block(nullptr), ScopeDepth(), Index(0) {}
112     JumpDest(llvm::BasicBlock *Block,
113              EHScopeStack::stable_iterator Depth,
114              unsigned Index)
115       : Block(Block), ScopeDepth(Depth), Index(Index) {}
116 
117     bool isValid() const { return Block != nullptr; }
118     llvm::BasicBlock *getBlock() const { return Block; }
119     EHScopeStack::stable_iterator getScopeDepth() const { return ScopeDepth; }
120     unsigned getDestIndex() const { return Index; }
121 
122     // This should be used cautiously.
123     void setScopeDepth(EHScopeStack::stable_iterator depth) {
124       ScopeDepth = depth;
125     }
126 
127   private:
128     llvm::BasicBlock *Block;
129     EHScopeStack::stable_iterator ScopeDepth;
130     unsigned Index;
131   };
132 
133   CodeGenModule &CGM;  // Per-module state.
134   const TargetInfo &Target;
135 
136   typedef std::pair<llvm::Value *, llvm::Value *> ComplexPairTy;
137   LoopInfoStack LoopStack;
138   CGBuilderTy Builder;
139 
140   /// \brief CGBuilder insert helper. This function is called after an
141   /// instruction is created using Builder.
142   void InsertHelper(llvm::Instruction *I, const llvm::Twine &Name,
143                     llvm::BasicBlock *BB,
144                     llvm::BasicBlock::iterator InsertPt) const;
145 
146   /// CurFuncDecl - Holds the Decl for the current outermost
147   /// non-closure context.
148   const Decl *CurFuncDecl;
149   /// CurCodeDecl - This is the inner-most code context, which includes blocks.
150   const Decl *CurCodeDecl;
151   const CGFunctionInfo *CurFnInfo;
152   QualType FnRetTy;
153   llvm::Function *CurFn;
154 
155   /// CurGD - The GlobalDecl for the current function being compiled.
156   GlobalDecl CurGD;
157 
158   /// PrologueCleanupDepth - The cleanup depth enclosing all the
159   /// cleanups associated with the parameters.
160   EHScopeStack::stable_iterator PrologueCleanupDepth;
161 
162   /// ReturnBlock - Unified return block.
163   JumpDest ReturnBlock;
164 
165   /// ReturnValue - The temporary alloca to hold the return
166   /// value. This is invalid iff the function has no return value.
167   Address ReturnValue;
168 
169   /// AllocaInsertPoint - This is an instruction in the entry block before which
170   /// we prefer to insert allocas.
171   llvm::AssertingVH<llvm::Instruction> AllocaInsertPt;
172 
173   /// \brief API for captured statement code generation.
174   class CGCapturedStmtInfo {
175   public:
176     explicit CGCapturedStmtInfo(CapturedRegionKind K = CR_Default)
177         : Kind(K), ThisValue(nullptr), CXXThisFieldDecl(nullptr) {}
178     explicit CGCapturedStmtInfo(const CapturedStmt &S,
179                                 CapturedRegionKind K = CR_Default)
180       : Kind(K), ThisValue(nullptr), CXXThisFieldDecl(nullptr) {
181 
182       RecordDecl::field_iterator Field =
183         S.getCapturedRecordDecl()->field_begin();
184       for (CapturedStmt::const_capture_iterator I = S.capture_begin(),
185                                                 E = S.capture_end();
186            I != E; ++I, ++Field) {
187         if (I->capturesThis())
188           CXXThisFieldDecl = *Field;
189         else if (I->capturesVariable())
190           CaptureFields[I->getCapturedVar()] = *Field;
191       }
192     }
193 
194     virtual ~CGCapturedStmtInfo();
195 
196     CapturedRegionKind getKind() const { return Kind; }
197 
198     virtual void setContextValue(llvm::Value *V) { ThisValue = V; }
199     // \brief Retrieve the value of the context parameter.
200     virtual llvm::Value *getContextValue() const { return ThisValue; }
201 
202     /// \brief Lookup the captured field decl for a variable.
203     virtual const FieldDecl *lookup(const VarDecl *VD) const {
204       return CaptureFields.lookup(VD);
205     }
206 
207     bool isCXXThisExprCaptured() const { return getThisFieldDecl() != nullptr; }
208     virtual FieldDecl *getThisFieldDecl() const { return CXXThisFieldDecl; }
209 
210     static bool classof(const CGCapturedStmtInfo *) {
211       return true;
212     }
213 
214     /// \brief Emit the captured statement body.
215     virtual void EmitBody(CodeGenFunction &CGF, const Stmt *S) {
216       CGF.incrementProfileCounter(S);
217       CGF.EmitStmt(S);
218     }
219 
220     /// \brief Get the name of the capture helper.
221     virtual StringRef getHelperName() const { return "__captured_stmt"; }
222 
223   private:
224     /// \brief The kind of captured statement being generated.
225     CapturedRegionKind Kind;
226 
227     /// \brief Keep the map between VarDecl and FieldDecl.
228     llvm::SmallDenseMap<const VarDecl *, FieldDecl *> CaptureFields;
229 
230     /// \brief The base address of the captured record, passed in as the first
231     /// argument of the parallel region function.
232     llvm::Value *ThisValue;
233 
234     /// \brief Captured 'this' type.
235     FieldDecl *CXXThisFieldDecl;
236   };
237   CGCapturedStmtInfo *CapturedStmtInfo;
238 
239   /// \brief RAII for correct setting/restoring of CapturedStmtInfo.
240   class CGCapturedStmtRAII {
241   private:
242     CodeGenFunction &CGF;
243     CGCapturedStmtInfo *PrevCapturedStmtInfo;
244   public:
245     CGCapturedStmtRAII(CodeGenFunction &CGF,
246                        CGCapturedStmtInfo *NewCapturedStmtInfo)
247         : CGF(CGF), PrevCapturedStmtInfo(CGF.CapturedStmtInfo) {
248       CGF.CapturedStmtInfo = NewCapturedStmtInfo;
249     }
250     ~CGCapturedStmtRAII() { CGF.CapturedStmtInfo = PrevCapturedStmtInfo; }
251   };
252 
253   /// \brief Sanitizers enabled for this function.
254   SanitizerSet SanOpts;
255 
256   /// \brief True if CodeGen currently emits code implementing sanitizer checks.
257   bool IsSanitizerScope;
258 
259   /// \brief RAII object to set/unset CodeGenFunction::IsSanitizerScope.
260   class SanitizerScope {
261     CodeGenFunction *CGF;
262   public:
263     SanitizerScope(CodeGenFunction *CGF);
264     ~SanitizerScope();
265   };
266 
267   /// In C++, whether we are code generating a thunk.  This controls whether we
268   /// should emit cleanups.
269   bool CurFuncIsThunk;
270 
271   /// In ARC, whether we should autorelease the return value.
272   bool AutoreleaseResult;
273 
274   /// Whether we processed a Microsoft-style asm block during CodeGen. These can
275   /// potentially set the return value.
276   bool SawAsmBlock;
277 
278   /// True if the current function is an outlined SEH helper. This can be a
279   /// finally block or filter expression.
280   bool IsOutlinedSEHHelper;
281 
282   const CodeGen::CGBlockInfo *BlockInfo;
283   llvm::Value *BlockPointer;
284 
285   llvm::DenseMap<const VarDecl *, FieldDecl *> LambdaCaptureFields;
286   FieldDecl *LambdaThisCaptureField;
287 
288   /// \brief A mapping from NRVO variables to the flags used to indicate
289   /// when the NRVO has been applied to this variable.
290   llvm::DenseMap<const VarDecl *, llvm::Value *> NRVOFlags;
291 
292   EHScopeStack EHStack;
293   llvm::SmallVector<char, 256> LifetimeExtendedCleanupStack;
294   llvm::SmallVector<const JumpDest *, 2> SEHTryEpilogueStack;
295 
296   /// Header for data within LifetimeExtendedCleanupStack.
297   struct LifetimeExtendedCleanupHeader {
298     /// The size of the following cleanup object.
299     unsigned Size;
300     /// The kind of cleanup to push: a value from the CleanupKind enumeration.
301     CleanupKind Kind;
302 
303     size_t getSize() const { return Size; }
304     CleanupKind getKind() const { return Kind; }
305   };
306 
307   /// i32s containing the indexes of the cleanup destinations.
308   llvm::AllocaInst *NormalCleanupDest;
309 
310   unsigned NextCleanupDestIndex;
311 
312   /// FirstBlockInfo - The head of a singly-linked-list of block layouts.
313   CGBlockInfo *FirstBlockInfo;
314 
315   /// EHResumeBlock - Unified block containing a call to llvm.eh.resume.
316   llvm::BasicBlock *EHResumeBlock;
317 
318   /// The exception slot.  All landing pads write the current exception pointer
319   /// into this alloca.
320   llvm::Value *ExceptionSlot;
321 
322   /// The selector slot.  Under the MandatoryCleanup model, all landing pads
323   /// write the current selector value into this alloca.
324   llvm::AllocaInst *EHSelectorSlot;
325 
326   /// A stack of exception code slots. Entering an __except block pushes a slot
327   /// on the stack and leaving pops one. The __exception_code() intrinsic loads
328   /// a value from the top of the stack.
329   SmallVector<Address, 1> SEHCodeSlotStack;
330 
331   /// Value returned by __exception_info intrinsic.
332   llvm::Value *SEHInfo = nullptr;
333 
334   /// Emits a landing pad for the current EH stack.
335   llvm::BasicBlock *EmitLandingPad();
336 
337   llvm::BasicBlock *getInvokeDestImpl();
338 
339   template <class T>
340   typename DominatingValue<T>::saved_type saveValueInCond(T value) {
341     return DominatingValue<T>::save(*this, value);
342   }
343 
344 public:
345   /// ObjCEHValueStack - Stack of Objective-C exception values, used for
346   /// rethrows.
347   SmallVector<llvm::Value*, 8> ObjCEHValueStack;
348 
349   /// A class controlling the emission of a finally block.
350   class FinallyInfo {
351     /// Where the catchall's edge through the cleanup should go.
352     JumpDest RethrowDest;
353 
354     /// A function to call to enter the catch.
355     llvm::Constant *BeginCatchFn;
356 
357     /// An i1 variable indicating whether or not the @finally is
358     /// running for an exception.
359     llvm::AllocaInst *ForEHVar;
360 
361     /// An i8* variable into which the exception pointer to rethrow
362     /// has been saved.
363     llvm::AllocaInst *SavedExnVar;
364 
365   public:
366     void enter(CodeGenFunction &CGF, const Stmt *Finally,
367                llvm::Constant *beginCatchFn, llvm::Constant *endCatchFn,
368                llvm::Constant *rethrowFn);
369     void exit(CodeGenFunction &CGF);
370   };
371 
372   /// Returns true inside SEH __try blocks.
373   bool isSEHTryScope() const { return !SEHTryEpilogueStack.empty(); }
374 
375   /// pushFullExprCleanup - Push a cleanup to be run at the end of the
376   /// current full-expression.  Safe against the possibility that
377   /// we're currently inside a conditionally-evaluated expression.
378   template <class T, class... As>
379   void pushFullExprCleanup(CleanupKind kind, As... A) {
380     // If we're not in a conditional branch, or if none of the
381     // arguments requires saving, then use the unconditional cleanup.
382     if (!isInConditionalBranch())
383       return EHStack.pushCleanup<T>(kind, A...);
384 
385     // Stash values in a tuple so we can guarantee the order of saves.
386     typedef std::tuple<typename DominatingValue<As>::saved_type...> SavedTuple;
387     SavedTuple Saved{saveValueInCond(A)...};
388 
389     typedef EHScopeStack::ConditionalCleanup<T, As...> CleanupType;
390     EHStack.pushCleanupTuple<CleanupType>(kind, Saved);
391     initFullExprCleanup();
392   }
393 
394   /// \brief Queue a cleanup to be pushed after finishing the current
395   /// full-expression.
396   template <class T, class... As>
397   void pushCleanupAfterFullExpr(CleanupKind Kind, As... A) {
398     assert(!isInConditionalBranch() && "can't defer conditional cleanup");
399 
400     LifetimeExtendedCleanupHeader Header = { sizeof(T), Kind };
401 
402     size_t OldSize = LifetimeExtendedCleanupStack.size();
403     LifetimeExtendedCleanupStack.resize(
404         LifetimeExtendedCleanupStack.size() + sizeof(Header) + Header.Size);
405 
406     static_assert(sizeof(Header) % llvm::AlignOf<T>::Alignment == 0,
407                   "Cleanup will be allocated on misaligned address");
408     char *Buffer = &LifetimeExtendedCleanupStack[OldSize];
409     new (Buffer) LifetimeExtendedCleanupHeader(Header);
410     new (Buffer + sizeof(Header)) T(A...);
411   }
412 
413   /// Set up the last cleaup that was pushed as a conditional
414   /// full-expression cleanup.
415   void initFullExprCleanup();
416 
417   /// PushDestructorCleanup - Push a cleanup to call the
418   /// complete-object destructor of an object of the given type at the
419   /// given address.  Does nothing if T is not a C++ class type with a
420   /// non-trivial destructor.
421   void PushDestructorCleanup(QualType T, Address Addr);
422 
423   /// PushDestructorCleanup - Push a cleanup to call the
424   /// complete-object variant of the given destructor on the object at
425   /// the given address.
426   void PushDestructorCleanup(const CXXDestructorDecl *Dtor, Address Addr);
427 
428   /// PopCleanupBlock - Will pop the cleanup entry on the stack and
429   /// process all branch fixups.
430   void PopCleanupBlock(bool FallThroughIsBranchThrough = false);
431 
432   /// DeactivateCleanupBlock - Deactivates the given cleanup block.
433   /// The block cannot be reactivated.  Pops it if it's the top of the
434   /// stack.
435   ///
436   /// \param DominatingIP - An instruction which is known to
437   ///   dominate the current IP (if set) and which lies along
438   ///   all paths of execution between the current IP and the
439   ///   the point at which the cleanup comes into scope.
440   void DeactivateCleanupBlock(EHScopeStack::stable_iterator Cleanup,
441                               llvm::Instruction *DominatingIP);
442 
443   /// ActivateCleanupBlock - Activates an initially-inactive cleanup.
444   /// Cannot be used to resurrect a deactivated cleanup.
445   ///
446   /// \param DominatingIP - An instruction which is known to
447   ///   dominate the current IP (if set) and which lies along
448   ///   all paths of execution between the current IP and the
449   ///   the point at which the cleanup comes into scope.
450   void ActivateCleanupBlock(EHScopeStack::stable_iterator Cleanup,
451                             llvm::Instruction *DominatingIP);
452 
453   /// \brief Enters a new scope for capturing cleanups, all of which
454   /// will be executed once the scope is exited.
455   class RunCleanupsScope {
456     EHScopeStack::stable_iterator CleanupStackDepth;
457     size_t LifetimeExtendedCleanupStackSize;
458     bool OldDidCallStackSave;
459   protected:
460     bool PerformCleanup;
461   private:
462 
463     RunCleanupsScope(const RunCleanupsScope &) = delete;
464     void operator=(const RunCleanupsScope &) = delete;
465 
466   protected:
467     CodeGenFunction& CGF;
468 
469   public:
470     /// \brief Enter a new cleanup scope.
471     explicit RunCleanupsScope(CodeGenFunction &CGF)
472       : PerformCleanup(true), CGF(CGF)
473     {
474       CleanupStackDepth = CGF.EHStack.stable_begin();
475       LifetimeExtendedCleanupStackSize =
476           CGF.LifetimeExtendedCleanupStack.size();
477       OldDidCallStackSave = CGF.DidCallStackSave;
478       CGF.DidCallStackSave = false;
479     }
480 
481     /// \brief Exit this cleanup scope, emitting any accumulated
482     /// cleanups.
483     ~RunCleanupsScope() {
484       if (PerformCleanup) {
485         CGF.DidCallStackSave = OldDidCallStackSave;
486         CGF.PopCleanupBlocks(CleanupStackDepth,
487                              LifetimeExtendedCleanupStackSize);
488       }
489     }
490 
491     /// \brief Determine whether this scope requires any cleanups.
492     bool requiresCleanups() const {
493       return CGF.EHStack.stable_begin() != CleanupStackDepth;
494     }
495 
496     /// \brief Force the emission of cleanups now, instead of waiting
497     /// until this object is destroyed.
498     void ForceCleanup() {
499       assert(PerformCleanup && "Already forced cleanup");
500       CGF.DidCallStackSave = OldDidCallStackSave;
501       CGF.PopCleanupBlocks(CleanupStackDepth,
502                            LifetimeExtendedCleanupStackSize);
503       PerformCleanup = false;
504     }
505   };
506 
507   class LexicalScope : public RunCleanupsScope {
508     SourceRange Range;
509     SmallVector<const LabelDecl*, 4> Labels;
510     LexicalScope *ParentScope;
511 
512     LexicalScope(const LexicalScope &) = delete;
513     void operator=(const LexicalScope &) = delete;
514 
515   public:
516     /// \brief Enter a new cleanup scope.
517     explicit LexicalScope(CodeGenFunction &CGF, SourceRange Range)
518       : RunCleanupsScope(CGF), Range(Range), ParentScope(CGF.CurLexicalScope) {
519       CGF.CurLexicalScope = this;
520       if (CGDebugInfo *DI = CGF.getDebugInfo())
521         DI->EmitLexicalBlockStart(CGF.Builder, Range.getBegin());
522     }
523 
524     void addLabel(const LabelDecl *label) {
525       assert(PerformCleanup && "adding label to dead scope?");
526       Labels.push_back(label);
527     }
528 
529     /// \brief Exit this cleanup scope, emitting any accumulated
530     /// cleanups.
531     ~LexicalScope() {
532       if (CGDebugInfo *DI = CGF.getDebugInfo())
533         DI->EmitLexicalBlockEnd(CGF.Builder, Range.getEnd());
534 
535       // If we should perform a cleanup, force them now.  Note that
536       // this ends the cleanup scope before rescoping any labels.
537       if (PerformCleanup) {
538         ApplyDebugLocation DL(CGF, Range.getEnd());
539         ForceCleanup();
540       }
541     }
542 
543     /// \brief Force the emission of cleanups now, instead of waiting
544     /// until this object is destroyed.
545     void ForceCleanup() {
546       CGF.CurLexicalScope = ParentScope;
547       RunCleanupsScope::ForceCleanup();
548 
549       if (!Labels.empty())
550         rescopeLabels();
551     }
552 
553     void rescopeLabels();
554   };
555 
556   typedef llvm::DenseMap<const Decl *, Address> DeclMapTy;
557 
558   /// \brief The scope used to remap some variables as private in the OpenMP
559   /// loop body (or other captured region emitted without outlining), and to
560   /// restore old vars back on exit.
561   class OMPPrivateScope : public RunCleanupsScope {
562     DeclMapTy SavedLocals;
563     DeclMapTy SavedPrivates;
564 
565   private:
566     OMPPrivateScope(const OMPPrivateScope &) = delete;
567     void operator=(const OMPPrivateScope &) = delete;
568 
569   public:
570     /// \brief Enter a new OpenMP private scope.
571     explicit OMPPrivateScope(CodeGenFunction &CGF) : RunCleanupsScope(CGF) {}
572 
573     /// \brief Registers \a LocalVD variable as a private and apply \a
574     /// PrivateGen function for it to generate corresponding private variable.
575     /// \a PrivateGen returns an address of the generated private variable.
576     /// \return true if the variable is registered as private, false if it has
577     /// been privatized already.
578     bool
579     addPrivate(const VarDecl *LocalVD,
580                llvm::function_ref<Address()> PrivateGen) {
581       assert(PerformCleanup && "adding private to dead scope");
582 
583       // Only save it once.
584       if (SavedLocals.count(LocalVD)) return false;
585 
586       // Copy the existing local entry to SavedLocals.
587       auto it = CGF.LocalDeclMap.find(LocalVD);
588       if (it != CGF.LocalDeclMap.end()) {
589         SavedLocals.insert({LocalVD, it->second});
590       } else {
591         SavedLocals.insert({LocalVD, Address::invalid()});
592       }
593 
594       // Generate the private entry.
595       Address Addr = PrivateGen();
596       QualType VarTy = LocalVD->getType();
597       if (VarTy->isReferenceType()) {
598         Address Temp = CGF.CreateMemTemp(VarTy);
599         CGF.Builder.CreateStore(Addr.getPointer(), Temp);
600         Addr = Temp;
601       }
602       SavedPrivates.insert({LocalVD, Addr});
603 
604       return true;
605     }
606 
607     /// \brief Privatizes local variables previously registered as private.
608     /// Registration is separate from the actual privatization to allow
609     /// initializers use values of the original variables, not the private one.
610     /// This is important, for example, if the private variable is a class
611     /// variable initialized by a constructor that references other private
612     /// variables. But at initialization original variables must be used, not
613     /// private copies.
614     /// \return true if at least one variable was privatized, false otherwise.
615     bool Privatize() {
616       copyInto(SavedPrivates, CGF.LocalDeclMap);
617       SavedPrivates.clear();
618       return !SavedLocals.empty();
619     }
620 
621     void ForceCleanup() {
622       RunCleanupsScope::ForceCleanup();
623       copyInto(SavedLocals, CGF.LocalDeclMap);
624       SavedLocals.clear();
625     }
626 
627     /// \brief Exit scope - all the mapped variables are restored.
628     ~OMPPrivateScope() {
629       if (PerformCleanup)
630         ForceCleanup();
631     }
632 
633   private:
634     /// Copy all the entries in the source map over the corresponding
635     /// entries in the destination, which must exist.
636     static void copyInto(const DeclMapTy &src, DeclMapTy &dest) {
637       for (auto &pair : src) {
638         if (!pair.second.isValid()) {
639           dest.erase(pair.first);
640           continue;
641         }
642 
643         auto it = dest.find(pair.first);
644         if (it != dest.end()) {
645           it->second = pair.second;
646         } else {
647           dest.insert(pair);
648         }
649       }
650     }
651   };
652 
653   /// \brief Takes the old cleanup stack size and emits the cleanup blocks
654   /// that have been added.
655   void PopCleanupBlocks(EHScopeStack::stable_iterator OldCleanupStackSize);
656 
657   /// \brief Takes the old cleanup stack size and emits the cleanup blocks
658   /// that have been added, then adds all lifetime-extended cleanups from
659   /// the given position to the stack.
660   void PopCleanupBlocks(EHScopeStack::stable_iterator OldCleanupStackSize,
661                         size_t OldLifetimeExtendedStackSize);
662 
663   void ResolveBranchFixups(llvm::BasicBlock *Target);
664 
665   /// The given basic block lies in the current EH scope, but may be a
666   /// target of a potentially scope-crossing jump; get a stable handle
667   /// to which we can perform this jump later.
668   JumpDest getJumpDestInCurrentScope(llvm::BasicBlock *Target) {
669     return JumpDest(Target,
670                     EHStack.getInnermostNormalCleanup(),
671                     NextCleanupDestIndex++);
672   }
673 
674   /// The given basic block lies in the current EH scope, but may be a
675   /// target of a potentially scope-crossing jump; get a stable handle
676   /// to which we can perform this jump later.
677   JumpDest getJumpDestInCurrentScope(StringRef Name = StringRef()) {
678     return getJumpDestInCurrentScope(createBasicBlock(Name));
679   }
680 
681   /// EmitBranchThroughCleanup - Emit a branch from the current insert
682   /// block through the normal cleanup handling code (if any) and then
683   /// on to \arg Dest.
684   void EmitBranchThroughCleanup(JumpDest Dest);
685 
686   /// isObviouslyBranchWithoutCleanups - Return true if a branch to the
687   /// specified destination obviously has no cleanups to run.  'false' is always
688   /// a conservatively correct answer for this method.
689   bool isObviouslyBranchWithoutCleanups(JumpDest Dest) const;
690 
691   /// popCatchScope - Pops the catch scope at the top of the EHScope
692   /// stack, emitting any required code (other than the catch handlers
693   /// themselves).
694   void popCatchScope();
695 
696   llvm::BasicBlock *getEHResumeBlock(bool isCleanup);
697   llvm::BasicBlock *getEHDispatchBlock(EHScopeStack::stable_iterator scope);
698   llvm::BasicBlock *getMSVCDispatchBlock(EHScopeStack::stable_iterator scope);
699 
700   /// An object to manage conditionally-evaluated expressions.
701   class ConditionalEvaluation {
702     llvm::BasicBlock *StartBB;
703 
704   public:
705     ConditionalEvaluation(CodeGenFunction &CGF)
706       : StartBB(CGF.Builder.GetInsertBlock()) {}
707 
708     void begin(CodeGenFunction &CGF) {
709       assert(CGF.OutermostConditional != this);
710       if (!CGF.OutermostConditional)
711         CGF.OutermostConditional = this;
712     }
713 
714     void end(CodeGenFunction &CGF) {
715       assert(CGF.OutermostConditional != nullptr);
716       if (CGF.OutermostConditional == this)
717         CGF.OutermostConditional = nullptr;
718     }
719 
720     /// Returns a block which will be executed prior to each
721     /// evaluation of the conditional code.
722     llvm::BasicBlock *getStartingBlock() const {
723       return StartBB;
724     }
725   };
726 
727   /// isInConditionalBranch - Return true if we're currently emitting
728   /// one branch or the other of a conditional expression.
729   bool isInConditionalBranch() const { return OutermostConditional != nullptr; }
730 
731   void setBeforeOutermostConditional(llvm::Value *value, Address addr) {
732     assert(isInConditionalBranch());
733     llvm::BasicBlock *block = OutermostConditional->getStartingBlock();
734     auto store = new llvm::StoreInst(value, addr.getPointer(), &block->back());
735     store->setAlignment(addr.getAlignment().getQuantity());
736   }
737 
738   /// An RAII object to record that we're evaluating a statement
739   /// expression.
740   class StmtExprEvaluation {
741     CodeGenFunction &CGF;
742 
743     /// We have to save the outermost conditional: cleanups in a
744     /// statement expression aren't conditional just because the
745     /// StmtExpr is.
746     ConditionalEvaluation *SavedOutermostConditional;
747 
748   public:
749     StmtExprEvaluation(CodeGenFunction &CGF)
750       : CGF(CGF), SavedOutermostConditional(CGF.OutermostConditional) {
751       CGF.OutermostConditional = nullptr;
752     }
753 
754     ~StmtExprEvaluation() {
755       CGF.OutermostConditional = SavedOutermostConditional;
756       CGF.EnsureInsertPoint();
757     }
758   };
759 
760   /// An object which temporarily prevents a value from being
761   /// destroyed by aggressive peephole optimizations that assume that
762   /// all uses of a value have been realized in the IR.
763   class PeepholeProtection {
764     llvm::Instruction *Inst;
765     friend class CodeGenFunction;
766 
767   public:
768     PeepholeProtection() : Inst(nullptr) {}
769   };
770 
771   /// A non-RAII class containing all the information about a bound
772   /// opaque value.  OpaqueValueMapping, below, is a RAII wrapper for
773   /// this which makes individual mappings very simple; using this
774   /// class directly is useful when you have a variable number of
775   /// opaque values or don't want the RAII functionality for some
776   /// reason.
777   class OpaqueValueMappingData {
778     const OpaqueValueExpr *OpaqueValue;
779     bool BoundLValue;
780     CodeGenFunction::PeepholeProtection Protection;
781 
782     OpaqueValueMappingData(const OpaqueValueExpr *ov,
783                            bool boundLValue)
784       : OpaqueValue(ov), BoundLValue(boundLValue) {}
785   public:
786     OpaqueValueMappingData() : OpaqueValue(nullptr) {}
787 
788     static bool shouldBindAsLValue(const Expr *expr) {
789       // gl-values should be bound as l-values for obvious reasons.
790       // Records should be bound as l-values because IR generation
791       // always keeps them in memory.  Expressions of function type
792       // act exactly like l-values but are formally required to be
793       // r-values in C.
794       return expr->isGLValue() ||
795              expr->getType()->isFunctionType() ||
796              hasAggregateEvaluationKind(expr->getType());
797     }
798 
799     static OpaqueValueMappingData bind(CodeGenFunction &CGF,
800                                        const OpaqueValueExpr *ov,
801                                        const Expr *e) {
802       if (shouldBindAsLValue(ov))
803         return bind(CGF, ov, CGF.EmitLValue(e));
804       return bind(CGF, ov, CGF.EmitAnyExpr(e));
805     }
806 
807     static OpaqueValueMappingData bind(CodeGenFunction &CGF,
808                                        const OpaqueValueExpr *ov,
809                                        const LValue &lv) {
810       assert(shouldBindAsLValue(ov));
811       CGF.OpaqueLValues.insert(std::make_pair(ov, lv));
812       return OpaqueValueMappingData(ov, true);
813     }
814 
815     static OpaqueValueMappingData bind(CodeGenFunction &CGF,
816                                        const OpaqueValueExpr *ov,
817                                        const RValue &rv) {
818       assert(!shouldBindAsLValue(ov));
819       CGF.OpaqueRValues.insert(std::make_pair(ov, rv));
820 
821       OpaqueValueMappingData data(ov, false);
822 
823       // Work around an extremely aggressive peephole optimization in
824       // EmitScalarConversion which assumes that all other uses of a
825       // value are extant.
826       data.Protection = CGF.protectFromPeepholes(rv);
827 
828       return data;
829     }
830 
831     bool isValid() const { return OpaqueValue != nullptr; }
832     void clear() { OpaqueValue = nullptr; }
833 
834     void unbind(CodeGenFunction &CGF) {
835       assert(OpaqueValue && "no data to unbind!");
836 
837       if (BoundLValue) {
838         CGF.OpaqueLValues.erase(OpaqueValue);
839       } else {
840         CGF.OpaqueRValues.erase(OpaqueValue);
841         CGF.unprotectFromPeepholes(Protection);
842       }
843     }
844   };
845 
846   /// An RAII object to set (and then clear) a mapping for an OpaqueValueExpr.
847   class OpaqueValueMapping {
848     CodeGenFunction &CGF;
849     OpaqueValueMappingData Data;
850 
851   public:
852     static bool shouldBindAsLValue(const Expr *expr) {
853       return OpaqueValueMappingData::shouldBindAsLValue(expr);
854     }
855 
856     /// Build the opaque value mapping for the given conditional
857     /// operator if it's the GNU ?: extension.  This is a common
858     /// enough pattern that the convenience operator is really
859     /// helpful.
860     ///
861     OpaqueValueMapping(CodeGenFunction &CGF,
862                        const AbstractConditionalOperator *op) : CGF(CGF) {
863       if (isa<ConditionalOperator>(op))
864         // Leave Data empty.
865         return;
866 
867       const BinaryConditionalOperator *e = cast<BinaryConditionalOperator>(op);
868       Data = OpaqueValueMappingData::bind(CGF, e->getOpaqueValue(),
869                                           e->getCommon());
870     }
871 
872     OpaqueValueMapping(CodeGenFunction &CGF,
873                        const OpaqueValueExpr *opaqueValue,
874                        LValue lvalue)
875       : CGF(CGF), Data(OpaqueValueMappingData::bind(CGF, opaqueValue, lvalue)) {
876     }
877 
878     OpaqueValueMapping(CodeGenFunction &CGF,
879                        const OpaqueValueExpr *opaqueValue,
880                        RValue rvalue)
881       : CGF(CGF), Data(OpaqueValueMappingData::bind(CGF, opaqueValue, rvalue)) {
882     }
883 
884     void pop() {
885       Data.unbind(CGF);
886       Data.clear();
887     }
888 
889     ~OpaqueValueMapping() {
890       if (Data.isValid()) Data.unbind(CGF);
891     }
892   };
893 
894 private:
895   CGDebugInfo *DebugInfo;
896   bool DisableDebugInfo;
897 
898   /// DidCallStackSave - Whether llvm.stacksave has been called. Used to avoid
899   /// calling llvm.stacksave for multiple VLAs in the same scope.
900   bool DidCallStackSave;
901 
902   /// IndirectBranch - The first time an indirect goto is seen we create a block
903   /// with an indirect branch.  Every time we see the address of a label taken,
904   /// we add the label to the indirect goto.  Every subsequent indirect goto is
905   /// codegen'd as a jump to the IndirectBranch's basic block.
906   llvm::IndirectBrInst *IndirectBranch;
907 
908   /// LocalDeclMap - This keeps track of the LLVM allocas or globals for local C
909   /// decls.
910   DeclMapTy LocalDeclMap;
911 
912   /// Track escaped local variables with auto storage. Used during SEH
913   /// outlining to produce a call to llvm.localescape.
914   llvm::DenseMap<llvm::AllocaInst *, int> EscapedLocals;
915 
916   /// LabelMap - This keeps track of the LLVM basic block for each C label.
917   llvm::DenseMap<const LabelDecl*, JumpDest> LabelMap;
918 
919   // BreakContinueStack - This keeps track of where break and continue
920   // statements should jump to.
921   struct BreakContinue {
922     BreakContinue(JumpDest Break, JumpDest Continue)
923       : BreakBlock(Break), ContinueBlock(Continue) {}
924 
925     JumpDest BreakBlock;
926     JumpDest ContinueBlock;
927   };
928   SmallVector<BreakContinue, 8> BreakContinueStack;
929 
930   CodeGenPGO PGO;
931 
932   /// Calculate branch weights appropriate for PGO data
933   llvm::MDNode *createProfileWeights(uint64_t TrueCount, uint64_t FalseCount);
934   llvm::MDNode *createProfileWeights(ArrayRef<uint64_t> Weights);
935   llvm::MDNode *createProfileWeightsForLoop(const Stmt *Cond,
936                                             uint64_t LoopCount);
937 
938 public:
939   /// Increment the profiler's counter for the given statement.
940   void incrementProfileCounter(const Stmt *S) {
941     if (CGM.getCodeGenOpts().ProfileInstrGenerate)
942       PGO.emitCounterIncrement(Builder, S);
943     PGO.setCurrentStmt(S);
944   }
945 
946   /// Get the profiler's count for the given statement.
947   uint64_t getProfileCount(const Stmt *S) {
948     Optional<uint64_t> Count = PGO.getStmtCount(S);
949     if (!Count.hasValue())
950       return 0;
951     return *Count;
952   }
953 
954   /// Set the profiler's current count.
955   void setCurrentProfileCount(uint64_t Count) {
956     PGO.setCurrentRegionCount(Count);
957   }
958 
959   /// Get the profiler's current count. This is generally the count for the most
960   /// recently incremented counter.
961   uint64_t getCurrentProfileCount() {
962     return PGO.getCurrentRegionCount();
963   }
964 
965 private:
966 
967   /// SwitchInsn - This is nearest current switch instruction. It is null if
968   /// current context is not in a switch.
969   llvm::SwitchInst *SwitchInsn;
970   /// The branch weights of SwitchInsn when doing instrumentation based PGO.
971   SmallVector<uint64_t, 16> *SwitchWeights;
972 
973   /// CaseRangeBlock - This block holds if condition check for last case
974   /// statement range in current switch instruction.
975   llvm::BasicBlock *CaseRangeBlock;
976 
977   /// OpaqueLValues - Keeps track of the current set of opaque value
978   /// expressions.
979   llvm::DenseMap<const OpaqueValueExpr *, LValue> OpaqueLValues;
980   llvm::DenseMap<const OpaqueValueExpr *, RValue> OpaqueRValues;
981 
982   // VLASizeMap - This keeps track of the associated size for each VLA type.
983   // We track this by the size expression rather than the type itself because
984   // in certain situations, like a const qualifier applied to an VLA typedef,
985   // multiple VLA types can share the same size expression.
986   // FIXME: Maybe this could be a stack of maps that is pushed/popped as we
987   // enter/leave scopes.
988   llvm::DenseMap<const Expr*, llvm::Value*> VLASizeMap;
989 
990   /// A block containing a single 'unreachable' instruction.  Created
991   /// lazily by getUnreachableBlock().
992   llvm::BasicBlock *UnreachableBlock;
993 
994   /// Counts of the number return expressions in the function.
995   unsigned NumReturnExprs;
996 
997   /// Count the number of simple (constant) return expressions in the function.
998   unsigned NumSimpleReturnExprs;
999 
1000   /// The last regular (non-return) debug location (breakpoint) in the function.
1001   SourceLocation LastStopPoint;
1002 
1003 public:
1004   /// A scope within which we are constructing the fields of an object which
1005   /// might use a CXXDefaultInitExpr. This stashes away a 'this' value to use
1006   /// if we need to evaluate a CXXDefaultInitExpr within the evaluation.
1007   class FieldConstructionScope {
1008   public:
1009     FieldConstructionScope(CodeGenFunction &CGF, Address This)
1010         : CGF(CGF), OldCXXDefaultInitExprThis(CGF.CXXDefaultInitExprThis) {
1011       CGF.CXXDefaultInitExprThis = This;
1012     }
1013     ~FieldConstructionScope() {
1014       CGF.CXXDefaultInitExprThis = OldCXXDefaultInitExprThis;
1015     }
1016 
1017   private:
1018     CodeGenFunction &CGF;
1019     Address OldCXXDefaultInitExprThis;
1020   };
1021 
1022   /// The scope of a CXXDefaultInitExpr. Within this scope, the value of 'this'
1023   /// is overridden to be the object under construction.
1024   class CXXDefaultInitExprScope {
1025   public:
1026     CXXDefaultInitExprScope(CodeGenFunction &CGF)
1027       : CGF(CGF), OldCXXThisValue(CGF.CXXThisValue),
1028         OldCXXThisAlignment(CGF.CXXThisAlignment) {
1029       CGF.CXXThisValue = CGF.CXXDefaultInitExprThis.getPointer();
1030       CGF.CXXThisAlignment = CGF.CXXDefaultInitExprThis.getAlignment();
1031     }
1032     ~CXXDefaultInitExprScope() {
1033       CGF.CXXThisValue = OldCXXThisValue;
1034       CGF.CXXThisAlignment = OldCXXThisAlignment;
1035     }
1036 
1037   public:
1038     CodeGenFunction &CGF;
1039     llvm::Value *OldCXXThisValue;
1040     CharUnits OldCXXThisAlignment;
1041   };
1042 
1043 private:
1044   /// CXXThisDecl - When generating code for a C++ member function,
1045   /// this will hold the implicit 'this' declaration.
1046   ImplicitParamDecl *CXXABIThisDecl;
1047   llvm::Value *CXXABIThisValue;
1048   llvm::Value *CXXThisValue;
1049   CharUnits CXXABIThisAlignment;
1050   CharUnits CXXThisAlignment;
1051 
1052   /// The value of 'this' to use when evaluating CXXDefaultInitExprs within
1053   /// this expression.
1054   Address CXXDefaultInitExprThis = Address::invalid();
1055 
1056   /// CXXStructorImplicitParamDecl - When generating code for a constructor or
1057   /// destructor, this will hold the implicit argument (e.g. VTT).
1058   ImplicitParamDecl *CXXStructorImplicitParamDecl;
1059   llvm::Value *CXXStructorImplicitParamValue;
1060 
1061   /// OutermostConditional - Points to the outermost active
1062   /// conditional control.  This is used so that we know if a
1063   /// temporary should be destroyed conditionally.
1064   ConditionalEvaluation *OutermostConditional;
1065 
1066   /// The current lexical scope.
1067   LexicalScope *CurLexicalScope;
1068 
1069   /// The current source location that should be used for exception
1070   /// handling code.
1071   SourceLocation CurEHLocation;
1072 
1073   /// BlockByrefInfos - For each __block variable, contains
1074   /// information about the layout of the variable.
1075   llvm::DenseMap<const ValueDecl *, BlockByrefInfo> BlockByrefInfos;
1076 
1077   llvm::BasicBlock *TerminateLandingPad;
1078   llvm::BasicBlock *TerminateHandler;
1079   llvm::BasicBlock *TrapBB;
1080 
1081   /// Add a kernel metadata node to the named metadata node 'opencl.kernels'.
1082   /// In the kernel metadata node, reference the kernel function and metadata
1083   /// nodes for its optional attribute qualifiers (OpenCL 1.1 6.7.2):
1084   /// - A node for the vec_type_hint(<type>) qualifier contains string
1085   ///   "vec_type_hint", an undefined value of the <type> data type,
1086   ///   and a Boolean that is true if the <type> is integer and signed.
1087   /// - A node for the work_group_size_hint(X,Y,Z) qualifier contains string
1088   ///   "work_group_size_hint", and three 32-bit integers X, Y and Z.
1089   /// - A node for the reqd_work_group_size(X,Y,Z) qualifier contains string
1090   ///   "reqd_work_group_size", and three 32-bit integers X, Y and Z.
1091   void EmitOpenCLKernelMetadata(const FunctionDecl *FD,
1092                                 llvm::Function *Fn);
1093 
1094 public:
1095   CodeGenFunction(CodeGenModule &cgm, bool suppressNewContext=false);
1096   ~CodeGenFunction();
1097 
1098   CodeGenTypes &getTypes() const { return CGM.getTypes(); }
1099   ASTContext &getContext() const { return CGM.getContext(); }
1100   CGDebugInfo *getDebugInfo() {
1101     if (DisableDebugInfo)
1102       return nullptr;
1103     return DebugInfo;
1104   }
1105   void disableDebugInfo() { DisableDebugInfo = true; }
1106   void enableDebugInfo() { DisableDebugInfo = false; }
1107 
1108   bool shouldUseFusedARCCalls() {
1109     return CGM.getCodeGenOpts().OptimizationLevel == 0;
1110   }
1111 
1112   const LangOptions &getLangOpts() const { return CGM.getLangOpts(); }
1113 
1114   /// Returns a pointer to the function's exception object and selector slot,
1115   /// which is assigned in every landing pad.
1116   Address getExceptionSlot();
1117   Address getEHSelectorSlot();
1118 
1119   /// Returns the contents of the function's exception object and selector
1120   /// slots.
1121   llvm::Value *getExceptionFromSlot();
1122   llvm::Value *getSelectorFromSlot();
1123 
1124   Address getNormalCleanupDestSlot();
1125 
1126   llvm::BasicBlock *getUnreachableBlock() {
1127     if (!UnreachableBlock) {
1128       UnreachableBlock = createBasicBlock("unreachable");
1129       new llvm::UnreachableInst(getLLVMContext(), UnreachableBlock);
1130     }
1131     return UnreachableBlock;
1132   }
1133 
1134   llvm::BasicBlock *getInvokeDest() {
1135     if (!EHStack.requiresLandingPad()) return nullptr;
1136     return getInvokeDestImpl();
1137   }
1138 
1139   bool currentFunctionUsesSEHTry() const {
1140     const auto *FD = dyn_cast_or_null<FunctionDecl>(CurCodeDecl);
1141     return FD && FD->usesSEHTry();
1142   }
1143 
1144   const TargetInfo &getTarget() const { return Target; }
1145   llvm::LLVMContext &getLLVMContext() { return CGM.getLLVMContext(); }
1146 
1147   //===--------------------------------------------------------------------===//
1148   //                                  Cleanups
1149   //===--------------------------------------------------------------------===//
1150 
1151   typedef void Destroyer(CodeGenFunction &CGF, Address addr, QualType ty);
1152 
1153   void pushIrregularPartialArrayCleanup(llvm::Value *arrayBegin,
1154                                         Address arrayEndPointer,
1155                                         QualType elementType,
1156                                         CharUnits elementAlignment,
1157                                         Destroyer *destroyer);
1158   void pushRegularPartialArrayCleanup(llvm::Value *arrayBegin,
1159                                       llvm::Value *arrayEnd,
1160                                       QualType elementType,
1161                                       CharUnits elementAlignment,
1162                                       Destroyer *destroyer);
1163 
1164   void pushDestroy(QualType::DestructionKind dtorKind,
1165                    Address addr, QualType type);
1166   void pushEHDestroy(QualType::DestructionKind dtorKind,
1167                      Address addr, QualType type);
1168   void pushDestroy(CleanupKind kind, Address addr, QualType type,
1169                    Destroyer *destroyer, bool useEHCleanupForArray);
1170   void pushLifetimeExtendedDestroy(CleanupKind kind, Address addr,
1171                                    QualType type, Destroyer *destroyer,
1172                                    bool useEHCleanupForArray);
1173   void pushCallObjectDeleteCleanup(const FunctionDecl *OperatorDelete,
1174                                    llvm::Value *CompletePtr,
1175                                    QualType ElementType);
1176   void pushStackRestore(CleanupKind kind, Address SPMem);
1177   void emitDestroy(Address addr, QualType type, Destroyer *destroyer,
1178                    bool useEHCleanupForArray);
1179   llvm::Function *generateDestroyHelper(Address addr, QualType type,
1180                                         Destroyer *destroyer,
1181                                         bool useEHCleanupForArray,
1182                                         const VarDecl *VD);
1183   void emitArrayDestroy(llvm::Value *begin, llvm::Value *end,
1184                         QualType elementType, CharUnits elementAlign,
1185                         Destroyer *destroyer,
1186                         bool checkZeroLength, bool useEHCleanup);
1187 
1188   Destroyer *getDestroyer(QualType::DestructionKind destructionKind);
1189 
1190   /// Determines whether an EH cleanup is required to destroy a type
1191   /// with the given destruction kind.
1192   bool needsEHCleanup(QualType::DestructionKind kind) {
1193     switch (kind) {
1194     case QualType::DK_none:
1195       return false;
1196     case QualType::DK_cxx_destructor:
1197     case QualType::DK_objc_weak_lifetime:
1198       return getLangOpts().Exceptions;
1199     case QualType::DK_objc_strong_lifetime:
1200       return getLangOpts().Exceptions &&
1201              CGM.getCodeGenOpts().ObjCAutoRefCountExceptions;
1202     }
1203     llvm_unreachable("bad destruction kind");
1204   }
1205 
1206   CleanupKind getCleanupKind(QualType::DestructionKind kind) {
1207     return (needsEHCleanup(kind) ? NormalAndEHCleanup : NormalCleanup);
1208   }
1209 
1210   //===--------------------------------------------------------------------===//
1211   //                                  Objective-C
1212   //===--------------------------------------------------------------------===//
1213 
1214   void GenerateObjCMethod(const ObjCMethodDecl *OMD);
1215 
1216   void StartObjCMethod(const ObjCMethodDecl *MD, const ObjCContainerDecl *CD);
1217 
1218   /// GenerateObjCGetter - Synthesize an Objective-C property getter function.
1219   void GenerateObjCGetter(ObjCImplementationDecl *IMP,
1220                           const ObjCPropertyImplDecl *PID);
1221   void generateObjCGetterBody(const ObjCImplementationDecl *classImpl,
1222                               const ObjCPropertyImplDecl *propImpl,
1223                               const ObjCMethodDecl *GetterMothodDecl,
1224                               llvm::Constant *AtomicHelperFn);
1225 
1226   void GenerateObjCCtorDtorMethod(ObjCImplementationDecl *IMP,
1227                                   ObjCMethodDecl *MD, bool ctor);
1228 
1229   /// GenerateObjCSetter - Synthesize an Objective-C property setter function
1230   /// for the given property.
1231   void GenerateObjCSetter(ObjCImplementationDecl *IMP,
1232                           const ObjCPropertyImplDecl *PID);
1233   void generateObjCSetterBody(const ObjCImplementationDecl *classImpl,
1234                               const ObjCPropertyImplDecl *propImpl,
1235                               llvm::Constant *AtomicHelperFn);
1236 
1237   //===--------------------------------------------------------------------===//
1238   //                                  Block Bits
1239   //===--------------------------------------------------------------------===//
1240 
1241   llvm::Value *EmitBlockLiteral(const BlockExpr *);
1242   llvm::Value *EmitBlockLiteral(const CGBlockInfo &Info);
1243   static void destroyBlockInfos(CGBlockInfo *info);
1244 
1245   llvm::Function *GenerateBlockFunction(GlobalDecl GD,
1246                                         const CGBlockInfo &Info,
1247                                         const DeclMapTy &ldm,
1248                                         bool IsLambdaConversionToBlock);
1249 
1250   llvm::Constant *GenerateCopyHelperFunction(const CGBlockInfo &blockInfo);
1251   llvm::Constant *GenerateDestroyHelperFunction(const CGBlockInfo &blockInfo);
1252   llvm::Constant *GenerateObjCAtomicSetterCopyHelperFunction(
1253                                              const ObjCPropertyImplDecl *PID);
1254   llvm::Constant *GenerateObjCAtomicGetterCopyHelperFunction(
1255                                              const ObjCPropertyImplDecl *PID);
1256   llvm::Value *EmitBlockCopyAndAutorelease(llvm::Value *Block, QualType Ty);
1257 
1258   void BuildBlockRelease(llvm::Value *DeclPtr, BlockFieldFlags flags);
1259 
1260   class AutoVarEmission;
1261 
1262   void emitByrefStructureInit(const AutoVarEmission &emission);
1263   void enterByrefCleanup(const AutoVarEmission &emission);
1264 
1265   void setBlockContextParameter(const ImplicitParamDecl *D, unsigned argNum,
1266                                 llvm::Value *ptr);
1267 
1268   Address LoadBlockStruct();
1269   Address GetAddrOfBlockDecl(const VarDecl *var, bool ByRef);
1270 
1271   /// BuildBlockByrefAddress - Computes the location of the
1272   /// data in a variable which is declared as __block.
1273   Address emitBlockByrefAddress(Address baseAddr, const VarDecl *V,
1274                                 bool followForward = true);
1275   Address emitBlockByrefAddress(Address baseAddr,
1276                                 const BlockByrefInfo &info,
1277                                 bool followForward,
1278                                 const llvm::Twine &name);
1279 
1280   const BlockByrefInfo &getBlockByrefInfo(const VarDecl *var);
1281 
1282   void GenerateCode(GlobalDecl GD, llvm::Function *Fn,
1283                     const CGFunctionInfo &FnInfo);
1284   /// \brief Emit code for the start of a function.
1285   /// \param Loc       The location to be associated with the function.
1286   /// \param StartLoc  The location of the function body.
1287   void StartFunction(GlobalDecl GD,
1288                      QualType RetTy,
1289                      llvm::Function *Fn,
1290                      const CGFunctionInfo &FnInfo,
1291                      const FunctionArgList &Args,
1292                      SourceLocation Loc = SourceLocation(),
1293                      SourceLocation StartLoc = SourceLocation());
1294 
1295   void EmitConstructorBody(FunctionArgList &Args);
1296   void EmitDestructorBody(FunctionArgList &Args);
1297   void emitImplicitAssignmentOperatorBody(FunctionArgList &Args);
1298   void EmitFunctionBody(FunctionArgList &Args, const Stmt *Body);
1299   void EmitBlockWithFallThrough(llvm::BasicBlock *BB, const Stmt *S);
1300 
1301   void EmitForwardingCallToLambda(const CXXMethodDecl *LambdaCallOperator,
1302                                   CallArgList &CallArgs);
1303   void EmitLambdaToBlockPointerBody(FunctionArgList &Args);
1304   void EmitLambdaBlockInvokeBody();
1305   void EmitLambdaDelegatingInvokeBody(const CXXMethodDecl *MD);
1306   void EmitLambdaStaticInvokeFunction(const CXXMethodDecl *MD);
1307   void EmitAsanPrologueOrEpilogue(bool Prologue);
1308 
1309   /// \brief Emit the unified return block, trying to avoid its emission when
1310   /// possible.
1311   /// \return The debug location of the user written return statement if the
1312   /// return block is is avoided.
1313   llvm::DebugLoc EmitReturnBlock();
1314 
1315   /// FinishFunction - Complete IR generation of the current function. It is
1316   /// legal to call this function even if there is no current insertion point.
1317   void FinishFunction(SourceLocation EndLoc=SourceLocation());
1318 
1319   void StartThunk(llvm::Function *Fn, GlobalDecl GD,
1320                   const CGFunctionInfo &FnInfo);
1321 
1322   void EmitCallAndReturnForThunk(llvm::Value *Callee, const ThunkInfo *Thunk);
1323 
1324   void FinishThunk();
1325 
1326   /// Emit a musttail call for a thunk with a potentially adjusted this pointer.
1327   void EmitMustTailThunk(const CXXMethodDecl *MD, llvm::Value *AdjustedThisPtr,
1328                          llvm::Value *Callee);
1329 
1330   /// Generate a thunk for the given method.
1331   void generateThunk(llvm::Function *Fn, const CGFunctionInfo &FnInfo,
1332                      GlobalDecl GD, const ThunkInfo &Thunk);
1333 
1334   llvm::Function *GenerateVarArgsThunk(llvm::Function *Fn,
1335                                        const CGFunctionInfo &FnInfo,
1336                                        GlobalDecl GD, const ThunkInfo &Thunk);
1337 
1338   void EmitCtorPrologue(const CXXConstructorDecl *CD, CXXCtorType Type,
1339                         FunctionArgList &Args);
1340 
1341   void EmitInitializerForField(FieldDecl *Field, LValue LHS, Expr *Init,
1342                                ArrayRef<VarDecl *> ArrayIndexes);
1343 
1344   /// Struct with all informations about dynamic [sub]class needed to set vptr.
1345   struct VPtr {
1346     BaseSubobject Base;
1347     const CXXRecordDecl *NearestVBase;
1348     CharUnits OffsetFromNearestVBase;
1349     const CXXRecordDecl *VTableClass;
1350   };
1351 
1352   /// Initialize the vtable pointer of the given subobject.
1353   void InitializeVTablePointer(const VPtr &vptr);
1354 
1355   typedef llvm::SmallVector<VPtr, 4> VPtrsVector;
1356 
1357   typedef llvm::SmallPtrSet<const CXXRecordDecl *, 4> VisitedVirtualBasesSetTy;
1358   VPtrsVector getVTablePointers(const CXXRecordDecl *VTableClass);
1359 
1360   void getVTablePointers(BaseSubobject Base, const CXXRecordDecl *NearestVBase,
1361                          CharUnits OffsetFromNearestVBase,
1362                          bool BaseIsNonVirtualPrimaryBase,
1363                          const CXXRecordDecl *VTableClass,
1364                          VisitedVirtualBasesSetTy &VBases, VPtrsVector &vptrs);
1365 
1366   void InitializeVTablePointers(const CXXRecordDecl *ClassDecl);
1367 
1368   /// GetVTablePtr - Return the Value of the vtable pointer member pointed
1369   /// to by This.
1370   llvm::Value *GetVTablePtr(Address This, llvm::Type *VTableTy,
1371                             const CXXRecordDecl *VTableClass);
1372 
1373   enum CFITypeCheckKind {
1374     CFITCK_VCall,
1375     CFITCK_NVCall,
1376     CFITCK_DerivedCast,
1377     CFITCK_UnrelatedCast,
1378   };
1379 
1380   /// \brief Derived is the presumed address of an object of type T after a
1381   /// cast. If T is a polymorphic class type, emit a check that the virtual
1382   /// table for Derived belongs to a class derived from T.
1383   void EmitVTablePtrCheckForCast(QualType T, llvm::Value *Derived,
1384                                  bool MayBeNull, CFITypeCheckKind TCK,
1385                                  SourceLocation Loc);
1386 
1387   /// EmitVTablePtrCheckForCall - Virtual method MD is being called via VTable.
1388   /// If vptr CFI is enabled, emit a check that VTable is valid.
1389   void EmitVTablePtrCheckForCall(const CXXMethodDecl *MD, llvm::Value *VTable,
1390                                  CFITypeCheckKind TCK, SourceLocation Loc);
1391 
1392   /// EmitVTablePtrCheck - Emit a check that VTable is a valid virtual table for
1393   /// RD using llvm.bitset.test.
1394   void EmitVTablePtrCheck(const CXXRecordDecl *RD, llvm::Value *VTable,
1395                           CFITypeCheckKind TCK, SourceLocation Loc);
1396 
1397   /// CanDevirtualizeMemberFunctionCalls - Checks whether virtual calls on given
1398   /// expr can be devirtualized.
1399   bool CanDevirtualizeMemberFunctionCall(const Expr *Base,
1400                                          const CXXMethodDecl *MD);
1401 
1402   /// EnterDtorCleanups - Enter the cleanups necessary to complete the
1403   /// given phase of destruction for a destructor.  The end result
1404   /// should call destructors on members and base classes in reverse
1405   /// order of their construction.
1406   void EnterDtorCleanups(const CXXDestructorDecl *Dtor, CXXDtorType Type);
1407 
1408   /// ShouldInstrumentFunction - Return true if the current function should be
1409   /// instrumented with __cyg_profile_func_* calls
1410   bool ShouldInstrumentFunction();
1411 
1412   /// EmitFunctionInstrumentation - Emit LLVM code to call the specified
1413   /// instrumentation function with the current function and the call site, if
1414   /// function instrumentation is enabled.
1415   void EmitFunctionInstrumentation(const char *Fn);
1416 
1417   /// EmitMCountInstrumentation - Emit call to .mcount.
1418   void EmitMCountInstrumentation();
1419 
1420   /// EmitFunctionProlog - Emit the target specific LLVM code to load the
1421   /// arguments for the given function. This is also responsible for naming the
1422   /// LLVM function arguments.
1423   void EmitFunctionProlog(const CGFunctionInfo &FI,
1424                           llvm::Function *Fn,
1425                           const FunctionArgList &Args);
1426 
1427   /// EmitFunctionEpilog - Emit the target specific LLVM code to return the
1428   /// given temporary.
1429   void EmitFunctionEpilog(const CGFunctionInfo &FI, bool EmitRetDbgLoc,
1430                           SourceLocation EndLoc);
1431 
1432   /// EmitStartEHSpec - Emit the start of the exception spec.
1433   void EmitStartEHSpec(const Decl *D);
1434 
1435   /// EmitEndEHSpec - Emit the end of the exception spec.
1436   void EmitEndEHSpec(const Decl *D);
1437 
1438   /// getTerminateLandingPad - Return a landing pad that just calls terminate.
1439   llvm::BasicBlock *getTerminateLandingPad();
1440 
1441   /// getTerminateHandler - Return a handler (not a landing pad, just
1442   /// a catch handler) that just calls terminate.  This is used when
1443   /// a terminate scope encloses a try.
1444   llvm::BasicBlock *getTerminateHandler();
1445 
1446   llvm::Type *ConvertTypeForMem(QualType T);
1447   llvm::Type *ConvertType(QualType T);
1448   llvm::Type *ConvertType(const TypeDecl *T) {
1449     return ConvertType(getContext().getTypeDeclType(T));
1450   }
1451 
1452   /// LoadObjCSelf - Load the value of self. This function is only valid while
1453   /// generating code for an Objective-C method.
1454   llvm::Value *LoadObjCSelf();
1455 
1456   /// TypeOfSelfObject - Return type of object that this self represents.
1457   QualType TypeOfSelfObject();
1458 
1459   /// hasAggregateLLVMType - Return true if the specified AST type will map into
1460   /// an aggregate LLVM type or is void.
1461   static TypeEvaluationKind getEvaluationKind(QualType T);
1462 
1463   static bool hasScalarEvaluationKind(QualType T) {
1464     return getEvaluationKind(T) == TEK_Scalar;
1465   }
1466 
1467   static bool hasAggregateEvaluationKind(QualType T) {
1468     return getEvaluationKind(T) == TEK_Aggregate;
1469   }
1470 
1471   /// createBasicBlock - Create an LLVM basic block.
1472   llvm::BasicBlock *createBasicBlock(const Twine &name = "",
1473                                      llvm::Function *parent = nullptr,
1474                                      llvm::BasicBlock *before = nullptr) {
1475 #ifdef NDEBUG
1476     return llvm::BasicBlock::Create(getLLVMContext(), "", parent, before);
1477 #else
1478     return llvm::BasicBlock::Create(getLLVMContext(), name, parent, before);
1479 #endif
1480   }
1481 
1482   /// getBasicBlockForLabel - Return the LLVM basicblock that the specified
1483   /// label maps to.
1484   JumpDest getJumpDestForLabel(const LabelDecl *S);
1485 
1486   /// SimplifyForwardingBlocks - If the given basic block is only a branch to
1487   /// another basic block, simplify it. This assumes that no other code could
1488   /// potentially reference the basic block.
1489   void SimplifyForwardingBlocks(llvm::BasicBlock *BB);
1490 
1491   /// EmitBlock - Emit the given block \arg BB and set it as the insert point,
1492   /// adding a fall-through branch from the current insert block if
1493   /// necessary. It is legal to call this function even if there is no current
1494   /// insertion point.
1495   ///
1496   /// IsFinished - If true, indicates that the caller has finished emitting
1497   /// branches to the given block and does not expect to emit code into it. This
1498   /// means the block can be ignored if it is unreachable.
1499   void EmitBlock(llvm::BasicBlock *BB, bool IsFinished=false);
1500 
1501   /// EmitBlockAfterUses - Emit the given block somewhere hopefully
1502   /// near its uses, and leave the insertion point in it.
1503   void EmitBlockAfterUses(llvm::BasicBlock *BB);
1504 
1505   /// EmitBranch - Emit a branch to the specified basic block from the current
1506   /// insert block, taking care to avoid creation of branches from dummy
1507   /// blocks. It is legal to call this function even if there is no current
1508   /// insertion point.
1509   ///
1510   /// This function clears the current insertion point. The caller should follow
1511   /// calls to this function with calls to Emit*Block prior to generation new
1512   /// code.
1513   void EmitBranch(llvm::BasicBlock *Block);
1514 
1515   /// HaveInsertPoint - True if an insertion point is defined. If not, this
1516   /// indicates that the current code being emitted is unreachable.
1517   bool HaveInsertPoint() const {
1518     return Builder.GetInsertBlock() != nullptr;
1519   }
1520 
1521   /// EnsureInsertPoint - Ensure that an insertion point is defined so that
1522   /// emitted IR has a place to go. Note that by definition, if this function
1523   /// creates a block then that block is unreachable; callers may do better to
1524   /// detect when no insertion point is defined and simply skip IR generation.
1525   void EnsureInsertPoint() {
1526     if (!HaveInsertPoint())
1527       EmitBlock(createBasicBlock());
1528   }
1529 
1530   /// ErrorUnsupported - Print out an error that codegen doesn't support the
1531   /// specified stmt yet.
1532   void ErrorUnsupported(const Stmt *S, const char *Type);
1533 
1534   //===--------------------------------------------------------------------===//
1535   //                                  Helpers
1536   //===--------------------------------------------------------------------===//
1537 
1538   LValue MakeAddrLValue(Address Addr, QualType T,
1539                         AlignmentSource AlignSource = AlignmentSource::Type) {
1540     return LValue::MakeAddr(Addr, T, getContext(), AlignSource,
1541                             CGM.getTBAAInfo(T));
1542   }
1543 
1544   LValue MakeAddrLValue(llvm::Value *V, QualType T, CharUnits Alignment,
1545                         AlignmentSource AlignSource = AlignmentSource::Type) {
1546     return LValue::MakeAddr(Address(V, Alignment), T, getContext(),
1547                             AlignSource, CGM.getTBAAInfo(T));
1548   }
1549 
1550   LValue MakeNaturalAlignPointeeAddrLValue(llvm::Value *V, QualType T);
1551   LValue MakeNaturalAlignAddrLValue(llvm::Value *V, QualType T);
1552   CharUnits getNaturalTypeAlignment(QualType T,
1553                                     AlignmentSource *Source = nullptr,
1554                                     bool forPointeeType = false);
1555   CharUnits getNaturalPointeeTypeAlignment(QualType T,
1556                                            AlignmentSource *Source = nullptr);
1557 
1558   Address EmitLoadOfReference(Address Ref, const ReferenceType *RefTy,
1559                               AlignmentSource *Source = nullptr);
1560   LValue EmitLoadOfReferenceLValue(Address Ref, const ReferenceType *RefTy);
1561 
1562   /// CreateTempAlloca - This creates a alloca and inserts it into the entry
1563   /// block. The caller is responsible for setting an appropriate alignment on
1564   /// the alloca.
1565   llvm::AllocaInst *CreateTempAlloca(llvm::Type *Ty,
1566                                      const Twine &Name = "tmp");
1567   Address CreateTempAlloca(llvm::Type *Ty, CharUnits align,
1568                            const Twine &Name = "tmp");
1569 
1570   /// CreateDefaultAlignedTempAlloca - This creates an alloca with the
1571   /// default ABI alignment of the given LLVM type.
1572   ///
1573   /// IMPORTANT NOTE: This is *not* generally the right alignment for
1574   /// any given AST type that happens to have been lowered to the
1575   /// given IR type.  This should only ever be used for function-local,
1576   /// IR-driven manipulations like saving and restoring a value.  Do
1577   /// not hand this address off to arbitrary IRGen routines, and especially
1578   /// do not pass it as an argument to a function that might expect a
1579   /// properly ABI-aligned value.
1580   Address CreateDefaultAlignTempAlloca(llvm::Type *Ty,
1581                                        const Twine &Name = "tmp");
1582 
1583   /// InitTempAlloca - Provide an initial value for the given alloca which
1584   /// will be observable at all locations in the function.
1585   ///
1586   /// The address should be something that was returned from one of
1587   /// the CreateTempAlloca or CreateMemTemp routines, and the
1588   /// initializer must be valid in the entry block (i.e. it must
1589   /// either be a constant or an argument value).
1590   void InitTempAlloca(Address Alloca, llvm::Value *Value);
1591 
1592   /// CreateIRTemp - Create a temporary IR object of the given type, with
1593   /// appropriate alignment. This routine should only be used when an temporary
1594   /// value needs to be stored into an alloca (for example, to avoid explicit
1595   /// PHI construction), but the type is the IR type, not the type appropriate
1596   /// for storing in memory.
1597   ///
1598   /// That is, this is exactly equivalent to CreateMemTemp, but calling
1599   /// ConvertType instead of ConvertTypeForMem.
1600   Address CreateIRTemp(QualType T, const Twine &Name = "tmp");
1601 
1602   /// CreateMemTemp - Create a temporary memory object of the given type, with
1603   /// appropriate alignment.
1604   Address CreateMemTemp(QualType T, const Twine &Name = "tmp");
1605   Address CreateMemTemp(QualType T, CharUnits Align, const Twine &Name = "tmp");
1606 
1607   /// CreateAggTemp - Create a temporary memory object for the given
1608   /// aggregate type.
1609   AggValueSlot CreateAggTemp(QualType T, const Twine &Name = "tmp") {
1610     return AggValueSlot::forAddr(CreateMemTemp(T, Name),
1611                                  T.getQualifiers(),
1612                                  AggValueSlot::IsNotDestructed,
1613                                  AggValueSlot::DoesNotNeedGCBarriers,
1614                                  AggValueSlot::IsNotAliased);
1615   }
1616 
1617   /// Emit a cast to void* in the appropriate address space.
1618   llvm::Value *EmitCastToVoidPtr(llvm::Value *value);
1619 
1620   /// EvaluateExprAsBool - Perform the usual unary conversions on the specified
1621   /// expression and compare the result against zero, returning an Int1Ty value.
1622   llvm::Value *EvaluateExprAsBool(const Expr *E);
1623 
1624   /// EmitIgnoredExpr - Emit an expression in a context which ignores the result.
1625   void EmitIgnoredExpr(const Expr *E);
1626 
1627   /// EmitAnyExpr - Emit code to compute the specified expression which can have
1628   /// any type.  The result is returned as an RValue struct.  If this is an
1629   /// aggregate expression, the aggloc/agglocvolatile arguments indicate where
1630   /// the result should be returned.
1631   ///
1632   /// \param ignoreResult True if the resulting value isn't used.
1633   RValue EmitAnyExpr(const Expr *E,
1634                      AggValueSlot aggSlot = AggValueSlot::ignored(),
1635                      bool ignoreResult = false);
1636 
1637   // EmitVAListRef - Emit a "reference" to a va_list; this is either the address
1638   // or the value of the expression, depending on how va_list is defined.
1639   Address EmitVAListRef(const Expr *E);
1640 
1641   /// Emit a "reference" to a __builtin_ms_va_list; this is
1642   /// always the value of the expression, because a __builtin_ms_va_list is a
1643   /// pointer to a char.
1644   Address EmitMSVAListRef(const Expr *E);
1645 
1646   /// EmitAnyExprToTemp - Similary to EmitAnyExpr(), however, the result will
1647   /// always be accessible even if no aggregate location is provided.
1648   RValue EmitAnyExprToTemp(const Expr *E);
1649 
1650   /// EmitAnyExprToMem - Emits the code necessary to evaluate an
1651   /// arbitrary expression into the given memory location.
1652   void EmitAnyExprToMem(const Expr *E, Address Location,
1653                         Qualifiers Quals, bool IsInitializer);
1654 
1655   void EmitAnyExprToExn(const Expr *E, Address Addr);
1656 
1657   /// EmitExprAsInit - Emits the code necessary to initialize a
1658   /// location in memory with the given initializer.
1659   void EmitExprAsInit(const Expr *init, const ValueDecl *D, LValue lvalue,
1660                       bool capturedByInit);
1661 
1662   /// hasVolatileMember - returns true if aggregate type has a volatile
1663   /// member.
1664   bool hasVolatileMember(QualType T) {
1665     if (const RecordType *RT = T->getAs<RecordType>()) {
1666       const RecordDecl *RD = cast<RecordDecl>(RT->getDecl());
1667       return RD->hasVolatileMember();
1668     }
1669     return false;
1670   }
1671   /// EmitAggregateCopy - Emit an aggregate assignment.
1672   ///
1673   /// The difference to EmitAggregateCopy is that tail padding is not copied.
1674   /// This is required for correctness when assigning non-POD structures in C++.
1675   void EmitAggregateAssign(Address DestPtr, Address SrcPtr,
1676                            QualType EltTy) {
1677     bool IsVolatile = hasVolatileMember(EltTy);
1678     EmitAggregateCopy(DestPtr, SrcPtr, EltTy, IsVolatile, true);
1679   }
1680 
1681   void EmitAggregateCopyCtor(Address DestPtr, Address SrcPtr,
1682                              QualType DestTy, QualType SrcTy) {
1683     EmitAggregateCopy(DestPtr, SrcPtr, SrcTy, /*IsVolatile=*/false,
1684                       /*IsAssignment=*/false);
1685   }
1686 
1687   /// EmitAggregateCopy - Emit an aggregate copy.
1688   ///
1689   /// \param isVolatile - True iff either the source or the destination is
1690   /// volatile.
1691   /// \param isAssignment - If false, allow padding to be copied.  This often
1692   /// yields more efficient.
1693   void EmitAggregateCopy(Address DestPtr, Address SrcPtr,
1694                          QualType EltTy, bool isVolatile=false,
1695                          bool isAssignment = false);
1696 
1697   /// GetAddrOfLocalVar - Return the address of a local variable.
1698   Address GetAddrOfLocalVar(const VarDecl *VD) {
1699     auto it = LocalDeclMap.find(VD);
1700     assert(it != LocalDeclMap.end() &&
1701            "Invalid argument to GetAddrOfLocalVar(), no decl!");
1702     return it->second;
1703   }
1704 
1705   /// getOpaqueLValueMapping - Given an opaque value expression (which
1706   /// must be mapped to an l-value), return its mapping.
1707   const LValue &getOpaqueLValueMapping(const OpaqueValueExpr *e) {
1708     assert(OpaqueValueMapping::shouldBindAsLValue(e));
1709 
1710     llvm::DenseMap<const OpaqueValueExpr*,LValue>::iterator
1711       it = OpaqueLValues.find(e);
1712     assert(it != OpaqueLValues.end() && "no mapping for opaque value!");
1713     return it->second;
1714   }
1715 
1716   /// getOpaqueRValueMapping - Given an opaque value expression (which
1717   /// must be mapped to an r-value), return its mapping.
1718   const RValue &getOpaqueRValueMapping(const OpaqueValueExpr *e) {
1719     assert(!OpaqueValueMapping::shouldBindAsLValue(e));
1720 
1721     llvm::DenseMap<const OpaqueValueExpr*,RValue>::iterator
1722       it = OpaqueRValues.find(e);
1723     assert(it != OpaqueRValues.end() && "no mapping for opaque value!");
1724     return it->second;
1725   }
1726 
1727   /// getAccessedFieldNo - Given an encoded value and a result number, return
1728   /// the input field number being accessed.
1729   static unsigned getAccessedFieldNo(unsigned Idx, const llvm::Constant *Elts);
1730 
1731   llvm::BlockAddress *GetAddrOfLabel(const LabelDecl *L);
1732   llvm::BasicBlock *GetIndirectGotoBlock();
1733 
1734   /// EmitNullInitialization - Generate code to set a value of the given type to
1735   /// null, If the type contains data member pointers, they will be initialized
1736   /// to -1 in accordance with the Itanium C++ ABI.
1737   void EmitNullInitialization(Address DestPtr, QualType Ty);
1738 
1739   /// Emits a call to an LLVM variable-argument intrinsic, either
1740   /// \c llvm.va_start or \c llvm.va_end.
1741   /// \param ArgValue A reference to the \c va_list as emitted by either
1742   /// \c EmitVAListRef or \c EmitMSVAListRef.
1743   /// \param IsStart If \c true, emits a call to \c llvm.va_start; otherwise,
1744   /// calls \c llvm.va_end.
1745   llvm::Value *EmitVAStartEnd(llvm::Value *ArgValue, bool IsStart);
1746 
1747   /// Generate code to get an argument from the passed in pointer
1748   /// and update it accordingly.
1749   /// \param VE The \c VAArgExpr for which to generate code.
1750   /// \param VAListAddr Receives a reference to the \c va_list as emitted by
1751   /// either \c EmitVAListRef or \c EmitMSVAListRef.
1752   /// \returns A pointer to the argument.
1753   // FIXME: We should be able to get rid of this method and use the va_arg
1754   // instruction in LLVM instead once it works well enough.
1755   Address EmitVAArg(VAArgExpr *VE, Address &VAListAddr);
1756 
1757   /// emitArrayLength - Compute the length of an array, even if it's a
1758   /// VLA, and drill down to the base element type.
1759   llvm::Value *emitArrayLength(const ArrayType *arrayType,
1760                                QualType &baseType,
1761                                Address &addr);
1762 
1763   /// EmitVLASize - Capture all the sizes for the VLA expressions in
1764   /// the given variably-modified type and store them in the VLASizeMap.
1765   ///
1766   /// This function can be called with a null (unreachable) insert point.
1767   void EmitVariablyModifiedType(QualType Ty);
1768 
1769   /// getVLASize - Returns an LLVM value that corresponds to the size,
1770   /// in non-variably-sized elements, of a variable length array type,
1771   /// plus that largest non-variably-sized element type.  Assumes that
1772   /// the type has already been emitted with EmitVariablyModifiedType.
1773   std::pair<llvm::Value*,QualType> getVLASize(const VariableArrayType *vla);
1774   std::pair<llvm::Value*,QualType> getVLASize(QualType vla);
1775 
1776   /// LoadCXXThis - Load the value of 'this'. This function is only valid while
1777   /// generating code for an C++ member function.
1778   llvm::Value *LoadCXXThis() {
1779     assert(CXXThisValue && "no 'this' value for this function");
1780     return CXXThisValue;
1781   }
1782   Address LoadCXXThisAddress();
1783 
1784   /// LoadCXXVTT - Load the VTT parameter to base constructors/destructors have
1785   /// virtual bases.
1786   // FIXME: Every place that calls LoadCXXVTT is something
1787   // that needs to be abstracted properly.
1788   llvm::Value *LoadCXXVTT() {
1789     assert(CXXStructorImplicitParamValue && "no VTT value for this function");
1790     return CXXStructorImplicitParamValue;
1791   }
1792 
1793   /// GetAddressOfBaseOfCompleteClass - Convert the given pointer to a
1794   /// complete class to the given direct base.
1795   Address
1796   GetAddressOfDirectBaseInCompleteClass(Address Value,
1797                                         const CXXRecordDecl *Derived,
1798                                         const CXXRecordDecl *Base,
1799                                         bool BaseIsVirtual);
1800 
1801   static bool ShouldNullCheckClassCastValue(const CastExpr *Cast);
1802 
1803   /// GetAddressOfBaseClass - This function will add the necessary delta to the
1804   /// load of 'this' and returns address of the base class.
1805   Address GetAddressOfBaseClass(Address Value,
1806                                 const CXXRecordDecl *Derived,
1807                                 CastExpr::path_const_iterator PathBegin,
1808                                 CastExpr::path_const_iterator PathEnd,
1809                                 bool NullCheckValue, SourceLocation Loc);
1810 
1811   Address GetAddressOfDerivedClass(Address Value,
1812                                    const CXXRecordDecl *Derived,
1813                                    CastExpr::path_const_iterator PathBegin,
1814                                    CastExpr::path_const_iterator PathEnd,
1815                                    bool NullCheckValue);
1816 
1817   /// GetVTTParameter - Return the VTT parameter that should be passed to a
1818   /// base constructor/destructor with virtual bases.
1819   /// FIXME: VTTs are Itanium ABI-specific, so the definition should move
1820   /// to ItaniumCXXABI.cpp together with all the references to VTT.
1821   llvm::Value *GetVTTParameter(GlobalDecl GD, bool ForVirtualBase,
1822                                bool Delegating);
1823 
1824   void EmitDelegateCXXConstructorCall(const CXXConstructorDecl *Ctor,
1825                                       CXXCtorType CtorType,
1826                                       const FunctionArgList &Args,
1827                                       SourceLocation Loc);
1828   // It's important not to confuse this and the previous function. Delegating
1829   // constructors are the C++0x feature. The constructor delegate optimization
1830   // is used to reduce duplication in the base and complete consturctors where
1831   // they are substantially the same.
1832   void EmitDelegatingCXXConstructorCall(const CXXConstructorDecl *Ctor,
1833                                         const FunctionArgList &Args);
1834 
1835   void EmitCXXConstructorCall(const CXXConstructorDecl *D, CXXCtorType Type,
1836                               bool ForVirtualBase, bool Delegating,
1837                               Address This, const CXXConstructExpr *E);
1838 
1839   /// Emit assumption load for all bases. Requires to be be called only on
1840   /// most-derived class and not under construction of the object.
1841   void EmitVTableAssumptionLoads(const CXXRecordDecl *ClassDecl, Address This);
1842 
1843   /// Emit assumption that vptr load == global vtable.
1844   void EmitVTableAssumptionLoad(const VPtr &vptr, Address This);
1845 
1846   void EmitSynthesizedCXXCopyCtorCall(const CXXConstructorDecl *D,
1847                                       Address This, Address Src,
1848                                       const CXXConstructExpr *E);
1849 
1850   void EmitCXXAggrConstructorCall(const CXXConstructorDecl *D,
1851                                   const ConstantArrayType *ArrayTy,
1852                                   Address ArrayPtr,
1853                                   const CXXConstructExpr *E,
1854                                   bool ZeroInitialization = false);
1855 
1856   void EmitCXXAggrConstructorCall(const CXXConstructorDecl *D,
1857                                   llvm::Value *NumElements,
1858                                   Address ArrayPtr,
1859                                   const CXXConstructExpr *E,
1860                                   bool ZeroInitialization = false);
1861 
1862   static Destroyer destroyCXXObject;
1863 
1864   void EmitCXXDestructorCall(const CXXDestructorDecl *D, CXXDtorType Type,
1865                              bool ForVirtualBase, bool Delegating,
1866                              Address This);
1867 
1868   void EmitNewArrayInitializer(const CXXNewExpr *E, QualType elementType,
1869                                llvm::Type *ElementTy, Address NewPtr,
1870                                llvm::Value *NumElements,
1871                                llvm::Value *AllocSizeWithoutCookie);
1872 
1873   void EmitCXXTemporary(const CXXTemporary *Temporary, QualType TempType,
1874                         Address Ptr);
1875 
1876   llvm::Value *EmitLifetimeStart(uint64_t Size, llvm::Value *Addr);
1877   void EmitLifetimeEnd(llvm::Value *Size, llvm::Value *Addr);
1878 
1879   llvm::Value *EmitCXXNewExpr(const CXXNewExpr *E);
1880   void EmitCXXDeleteExpr(const CXXDeleteExpr *E);
1881 
1882   void EmitDeleteCall(const FunctionDecl *DeleteFD, llvm::Value *Ptr,
1883                       QualType DeleteTy);
1884 
1885   RValue EmitBuiltinNewDeleteCall(const FunctionProtoType *Type,
1886                                   const Expr *Arg, bool IsDelete);
1887 
1888   llvm::Value *EmitCXXTypeidExpr(const CXXTypeidExpr *E);
1889   llvm::Value *EmitDynamicCast(Address V, const CXXDynamicCastExpr *DCE);
1890   Address EmitCXXUuidofExpr(const CXXUuidofExpr *E);
1891 
1892   /// \brief Situations in which we might emit a check for the suitability of a
1893   ///        pointer or glvalue.
1894   enum TypeCheckKind {
1895     /// Checking the operand of a load. Must be suitably sized and aligned.
1896     TCK_Load,
1897     /// Checking the destination of a store. Must be suitably sized and aligned.
1898     TCK_Store,
1899     /// Checking the bound value in a reference binding. Must be suitably sized
1900     /// and aligned, but is not required to refer to an object (until the
1901     /// reference is used), per core issue 453.
1902     TCK_ReferenceBinding,
1903     /// Checking the object expression in a non-static data member access. Must
1904     /// be an object within its lifetime.
1905     TCK_MemberAccess,
1906     /// Checking the 'this' pointer for a call to a non-static member function.
1907     /// Must be an object within its lifetime.
1908     TCK_MemberCall,
1909     /// Checking the 'this' pointer for a constructor call.
1910     TCK_ConstructorCall,
1911     /// Checking the operand of a static_cast to a derived pointer type. Must be
1912     /// null or an object within its lifetime.
1913     TCK_DowncastPointer,
1914     /// Checking the operand of a static_cast to a derived reference type. Must
1915     /// be an object within its lifetime.
1916     TCK_DowncastReference,
1917     /// Checking the operand of a cast to a base object. Must be suitably sized
1918     /// and aligned.
1919     TCK_Upcast,
1920     /// Checking the operand of a cast to a virtual base object. Must be an
1921     /// object within its lifetime.
1922     TCK_UpcastToVirtualBase
1923   };
1924 
1925   /// \brief Whether any type-checking sanitizers are enabled. If \c false,
1926   /// calls to EmitTypeCheck can be skipped.
1927   bool sanitizePerformTypeCheck() const;
1928 
1929   /// \brief Emit a check that \p V is the address of storage of the
1930   /// appropriate size and alignment for an object of type \p Type.
1931   void EmitTypeCheck(TypeCheckKind TCK, SourceLocation Loc, llvm::Value *V,
1932                      QualType Type, CharUnits Alignment = CharUnits::Zero(),
1933                      bool SkipNullCheck = false);
1934 
1935   /// \brief Emit a check that \p Base points into an array object, which
1936   /// we can access at index \p Index. \p Accessed should be \c false if we
1937   /// this expression is used as an lvalue, for instance in "&Arr[Idx]".
1938   void EmitBoundsCheck(const Expr *E, const Expr *Base, llvm::Value *Index,
1939                        QualType IndexType, bool Accessed);
1940 
1941   llvm::Value *EmitScalarPrePostIncDec(const UnaryOperator *E, LValue LV,
1942                                        bool isInc, bool isPre);
1943   ComplexPairTy EmitComplexPrePostIncDec(const UnaryOperator *E, LValue LV,
1944                                          bool isInc, bool isPre);
1945 
1946   void EmitAlignmentAssumption(llvm::Value *PtrValue, unsigned Alignment,
1947                                llvm::Value *OffsetValue = nullptr) {
1948     Builder.CreateAlignmentAssumption(CGM.getDataLayout(), PtrValue, Alignment,
1949                                       OffsetValue);
1950   }
1951 
1952   //===--------------------------------------------------------------------===//
1953   //                            Declaration Emission
1954   //===--------------------------------------------------------------------===//
1955 
1956   /// EmitDecl - Emit a declaration.
1957   ///
1958   /// This function can be called with a null (unreachable) insert point.
1959   void EmitDecl(const Decl &D);
1960 
1961   /// EmitVarDecl - Emit a local variable declaration.
1962   ///
1963   /// This function can be called with a null (unreachable) insert point.
1964   void EmitVarDecl(const VarDecl &D);
1965 
1966   void EmitScalarInit(const Expr *init, const ValueDecl *D, LValue lvalue,
1967                       bool capturedByInit);
1968   void EmitScalarInit(llvm::Value *init, LValue lvalue);
1969 
1970   typedef void SpecialInitFn(CodeGenFunction &Init, const VarDecl &D,
1971                              llvm::Value *Address);
1972 
1973   /// \brief Determine whether the given initializer is trivial in the sense
1974   /// that it requires no code to be generated.
1975   bool isTrivialInitializer(const Expr *Init);
1976 
1977   /// EmitAutoVarDecl - Emit an auto variable declaration.
1978   ///
1979   /// This function can be called with a null (unreachable) insert point.
1980   void EmitAutoVarDecl(const VarDecl &D);
1981 
1982   class AutoVarEmission {
1983     friend class CodeGenFunction;
1984 
1985     const VarDecl *Variable;
1986 
1987     /// The address of the alloca.  Invalid if the variable was emitted
1988     /// as a global constant.
1989     Address Addr;
1990 
1991     llvm::Value *NRVOFlag;
1992 
1993     /// True if the variable is a __block variable.
1994     bool IsByRef;
1995 
1996     /// True if the variable is of aggregate type and has a constant
1997     /// initializer.
1998     bool IsConstantAggregate;
1999 
2000     /// Non-null if we should use lifetime annotations.
2001     llvm::Value *SizeForLifetimeMarkers;
2002 
2003     struct Invalid {};
2004     AutoVarEmission(Invalid) : Variable(nullptr), Addr(Address::invalid()) {}
2005 
2006     AutoVarEmission(const VarDecl &variable)
2007       : Variable(&variable), Addr(Address::invalid()), NRVOFlag(nullptr),
2008         IsByRef(false), IsConstantAggregate(false),
2009         SizeForLifetimeMarkers(nullptr) {}
2010 
2011     bool wasEmittedAsGlobal() const { return !Addr.isValid(); }
2012 
2013   public:
2014     static AutoVarEmission invalid() { return AutoVarEmission(Invalid()); }
2015 
2016     bool useLifetimeMarkers() const {
2017       return SizeForLifetimeMarkers != nullptr;
2018     }
2019     llvm::Value *getSizeForLifetimeMarkers() const {
2020       assert(useLifetimeMarkers());
2021       return SizeForLifetimeMarkers;
2022     }
2023 
2024     /// Returns the raw, allocated address, which is not necessarily
2025     /// the address of the object itself.
2026     Address getAllocatedAddress() const {
2027       return Addr;
2028     }
2029 
2030     /// Returns the address of the object within this declaration.
2031     /// Note that this does not chase the forwarding pointer for
2032     /// __block decls.
2033     Address getObjectAddress(CodeGenFunction &CGF) const {
2034       if (!IsByRef) return Addr;
2035 
2036       return CGF.emitBlockByrefAddress(Addr, Variable, /*forward*/ false);
2037     }
2038   };
2039   AutoVarEmission EmitAutoVarAlloca(const VarDecl &var);
2040   void EmitAutoVarInit(const AutoVarEmission &emission);
2041   void EmitAutoVarCleanups(const AutoVarEmission &emission);
2042   void emitAutoVarTypeCleanup(const AutoVarEmission &emission,
2043                               QualType::DestructionKind dtorKind);
2044 
2045   void EmitStaticVarDecl(const VarDecl &D,
2046                          llvm::GlobalValue::LinkageTypes Linkage);
2047 
2048   class ParamValue {
2049     llvm::Value *Value;
2050     unsigned Alignment;
2051     ParamValue(llvm::Value *V, unsigned A) : Value(V), Alignment(A) {}
2052   public:
2053     static ParamValue forDirect(llvm::Value *value) {
2054       return ParamValue(value, 0);
2055     }
2056     static ParamValue forIndirect(Address addr) {
2057       assert(!addr.getAlignment().isZero());
2058       return ParamValue(addr.getPointer(), addr.getAlignment().getQuantity());
2059     }
2060 
2061     bool isIndirect() const { return Alignment != 0; }
2062     llvm::Value *getAnyValue() const { return Value; }
2063 
2064     llvm::Value *getDirectValue() const {
2065       assert(!isIndirect());
2066       return Value;
2067     }
2068 
2069     Address getIndirectAddress() const {
2070       assert(isIndirect());
2071       return Address(Value, CharUnits::fromQuantity(Alignment));
2072     }
2073   };
2074 
2075   /// EmitParmDecl - Emit a ParmVarDecl or an ImplicitParamDecl.
2076   void EmitParmDecl(const VarDecl &D, ParamValue Arg, unsigned ArgNo);
2077 
2078   /// protectFromPeepholes - Protect a value that we're intending to
2079   /// store to the side, but which will probably be used later, from
2080   /// aggressive peepholing optimizations that might delete it.
2081   ///
2082   /// Pass the result to unprotectFromPeepholes to declare that
2083   /// protection is no longer required.
2084   ///
2085   /// There's no particular reason why this shouldn't apply to
2086   /// l-values, it's just that no existing peepholes work on pointers.
2087   PeepholeProtection protectFromPeepholes(RValue rvalue);
2088   void unprotectFromPeepholes(PeepholeProtection protection);
2089 
2090   //===--------------------------------------------------------------------===//
2091   //                             Statement Emission
2092   //===--------------------------------------------------------------------===//
2093 
2094   /// EmitStopPoint - Emit a debug stoppoint if we are emitting debug info.
2095   void EmitStopPoint(const Stmt *S);
2096 
2097   /// EmitStmt - Emit the code for the statement \arg S. It is legal to call
2098   /// this function even if there is no current insertion point.
2099   ///
2100   /// This function may clear the current insertion point; callers should use
2101   /// EnsureInsertPoint if they wish to subsequently generate code without first
2102   /// calling EmitBlock, EmitBranch, or EmitStmt.
2103   void EmitStmt(const Stmt *S);
2104 
2105   /// EmitSimpleStmt - Try to emit a "simple" statement which does not
2106   /// necessarily require an insertion point or debug information; typically
2107   /// because the statement amounts to a jump or a container of other
2108   /// statements.
2109   ///
2110   /// \return True if the statement was handled.
2111   bool EmitSimpleStmt(const Stmt *S);
2112 
2113   Address EmitCompoundStmt(const CompoundStmt &S, bool GetLast = false,
2114                            AggValueSlot AVS = AggValueSlot::ignored());
2115   Address EmitCompoundStmtWithoutScope(const CompoundStmt &S,
2116                                        bool GetLast = false,
2117                                        AggValueSlot AVS =
2118                                                 AggValueSlot::ignored());
2119 
2120   /// EmitLabel - Emit the block for the given label. It is legal to call this
2121   /// function even if there is no current insertion point.
2122   void EmitLabel(const LabelDecl *D); // helper for EmitLabelStmt.
2123 
2124   void EmitLabelStmt(const LabelStmt &S);
2125   void EmitAttributedStmt(const AttributedStmt &S);
2126   void EmitGotoStmt(const GotoStmt &S);
2127   void EmitIndirectGotoStmt(const IndirectGotoStmt &S);
2128   void EmitIfStmt(const IfStmt &S);
2129 
2130   void EmitWhileStmt(const WhileStmt &S,
2131                      ArrayRef<const Attr *> Attrs = None);
2132   void EmitDoStmt(const DoStmt &S, ArrayRef<const Attr *> Attrs = None);
2133   void EmitForStmt(const ForStmt &S,
2134                    ArrayRef<const Attr *> Attrs = None);
2135   void EmitReturnStmt(const ReturnStmt &S);
2136   void EmitDeclStmt(const DeclStmt &S);
2137   void EmitBreakStmt(const BreakStmt &S);
2138   void EmitContinueStmt(const ContinueStmt &S);
2139   void EmitSwitchStmt(const SwitchStmt &S);
2140   void EmitDefaultStmt(const DefaultStmt &S);
2141   void EmitCaseStmt(const CaseStmt &S);
2142   void EmitCaseStmtRange(const CaseStmt &S);
2143   void EmitAsmStmt(const AsmStmt &S);
2144 
2145   void EmitObjCForCollectionStmt(const ObjCForCollectionStmt &S);
2146   void EmitObjCAtTryStmt(const ObjCAtTryStmt &S);
2147   void EmitObjCAtThrowStmt(const ObjCAtThrowStmt &S);
2148   void EmitObjCAtSynchronizedStmt(const ObjCAtSynchronizedStmt &S);
2149   void EmitObjCAutoreleasePoolStmt(const ObjCAutoreleasePoolStmt &S);
2150 
2151   void EnterCXXTryStmt(const CXXTryStmt &S, bool IsFnTryBlock = false);
2152   void ExitCXXTryStmt(const CXXTryStmt &S, bool IsFnTryBlock = false);
2153 
2154   void EmitCXXTryStmt(const CXXTryStmt &S);
2155   void EmitSEHTryStmt(const SEHTryStmt &S);
2156   void EmitSEHLeaveStmt(const SEHLeaveStmt &S);
2157   void EnterSEHTryStmt(const SEHTryStmt &S);
2158   void ExitSEHTryStmt(const SEHTryStmt &S);
2159 
2160   void startOutlinedSEHHelper(CodeGenFunction &ParentCGF, bool IsFilter,
2161                               const Stmt *OutlinedStmt);
2162 
2163   llvm::Function *GenerateSEHFilterFunction(CodeGenFunction &ParentCGF,
2164                                             const SEHExceptStmt &Except);
2165 
2166   llvm::Function *GenerateSEHFinallyFunction(CodeGenFunction &ParentCGF,
2167                                              const SEHFinallyStmt &Finally);
2168 
2169   void EmitSEHExceptionCodeSave(CodeGenFunction &ParentCGF,
2170                                 llvm::Value *ParentFP,
2171                                 llvm::Value *EntryEBP);
2172   llvm::Value *EmitSEHExceptionCode();
2173   llvm::Value *EmitSEHExceptionInfo();
2174   llvm::Value *EmitSEHAbnormalTermination();
2175 
2176   /// Scan the outlined statement for captures from the parent function. For
2177   /// each capture, mark the capture as escaped and emit a call to
2178   /// llvm.localrecover. Insert the localrecover result into the LocalDeclMap.
2179   void EmitCapturedLocals(CodeGenFunction &ParentCGF, const Stmt *OutlinedStmt,
2180                           bool IsFilter);
2181 
2182   /// Recovers the address of a local in a parent function. ParentVar is the
2183   /// address of the variable used in the immediate parent function. It can
2184   /// either be an alloca or a call to llvm.localrecover if there are nested
2185   /// outlined functions. ParentFP is the frame pointer of the outermost parent
2186   /// frame.
2187   Address recoverAddrOfEscapedLocal(CodeGenFunction &ParentCGF,
2188                                     Address ParentVar,
2189                                     llvm::Value *ParentFP);
2190 
2191   void EmitCXXForRangeStmt(const CXXForRangeStmt &S,
2192                            ArrayRef<const Attr *> Attrs = None);
2193 
2194   LValue InitCapturedStruct(const CapturedStmt &S);
2195   llvm::Function *EmitCapturedStmt(const CapturedStmt &S, CapturedRegionKind K);
2196   llvm::Function *GenerateCapturedStmtFunction(const CapturedStmt &S);
2197   Address GenerateCapturedStmtArgument(const CapturedStmt &S);
2198   llvm::Function *
2199   GenerateOpenMPCapturedStmtFunction(const CapturedStmt &S,
2200                                      bool UseOnlyReferences = false);
2201   void GenerateOpenMPCapturedVars(const CapturedStmt &S,
2202                                   SmallVectorImpl<llvm::Value *> &CapturedVars,
2203                                   bool UseOnlyReferences = false);
2204   /// \brief Perform element by element copying of arrays with type \a
2205   /// OriginalType from \a SrcAddr to \a DestAddr using copying procedure
2206   /// generated by \a CopyGen.
2207   ///
2208   /// \param DestAddr Address of the destination array.
2209   /// \param SrcAddr Address of the source array.
2210   /// \param OriginalType Type of destination and source arrays.
2211   /// \param CopyGen Copying procedure that copies value of single array element
2212   /// to another single array element.
2213   void EmitOMPAggregateAssign(
2214       Address DestAddr, Address SrcAddr, QualType OriginalType,
2215       const llvm::function_ref<void(Address, Address)> &CopyGen);
2216   /// \brief Emit proper copying of data from one variable to another.
2217   ///
2218   /// \param OriginalType Original type of the copied variables.
2219   /// \param DestAddr Destination address.
2220   /// \param SrcAddr Source address.
2221   /// \param DestVD Destination variable used in \a CopyExpr (for arrays, has
2222   /// type of the base array element).
2223   /// \param SrcVD Source variable used in \a CopyExpr (for arrays, has type of
2224   /// the base array element).
2225   /// \param Copy Actual copygin expression for copying data from \a SrcVD to \a
2226   /// DestVD.
2227   void EmitOMPCopy(QualType OriginalType,
2228                    Address DestAddr, Address SrcAddr,
2229                    const VarDecl *DestVD, const VarDecl *SrcVD,
2230                    const Expr *Copy);
2231   /// \brief Emit atomic update code for constructs: \a X = \a X \a BO \a E or
2232   /// \a X = \a E \a BO \a E.
2233   ///
2234   /// \param X Value to be updated.
2235   /// \param E Update value.
2236   /// \param BO Binary operation for update operation.
2237   /// \param IsXLHSInRHSPart true if \a X is LHS in RHS part of the update
2238   /// expression, false otherwise.
2239   /// \param AO Atomic ordering of the generated atomic instructions.
2240   /// \param CommonGen Code generator for complex expressions that cannot be
2241   /// expressed through atomicrmw instruction.
2242   /// \returns <true, OldAtomicValue> if simple 'atomicrmw' instruction was
2243   /// generated, <false, RValue::get(nullptr)> otherwise.
2244   std::pair<bool, RValue> EmitOMPAtomicSimpleUpdateExpr(
2245       LValue X, RValue E, BinaryOperatorKind BO, bool IsXLHSInRHSPart,
2246       llvm::AtomicOrdering AO, SourceLocation Loc,
2247       const llvm::function_ref<RValue(RValue)> &CommonGen);
2248   bool EmitOMPFirstprivateClause(const OMPExecutableDirective &D,
2249                                  OMPPrivateScope &PrivateScope);
2250   void EmitOMPPrivateClause(const OMPExecutableDirective &D,
2251                             OMPPrivateScope &PrivateScope);
2252   /// \brief Emit code for copyin clause in \a D directive. The next code is
2253   /// generated at the start of outlined functions for directives:
2254   /// \code
2255   /// threadprivate_var1 = master_threadprivate_var1;
2256   /// operator=(threadprivate_var2, master_threadprivate_var2);
2257   /// ...
2258   /// __kmpc_barrier(&loc, global_tid);
2259   /// \endcode
2260   ///
2261   /// \param D OpenMP directive possibly with 'copyin' clause(s).
2262   /// \returns true if at least one copyin variable is found, false otherwise.
2263   bool EmitOMPCopyinClause(const OMPExecutableDirective &D);
2264   /// \brief Emit initial code for lastprivate variables. If some variable is
2265   /// not also firstprivate, then the default initialization is used. Otherwise
2266   /// initialization of this variable is performed by EmitOMPFirstprivateClause
2267   /// method.
2268   ///
2269   /// \param D Directive that may have 'lastprivate' directives.
2270   /// \param PrivateScope Private scope for capturing lastprivate variables for
2271   /// proper codegen in internal captured statement.
2272   ///
2273   /// \returns true if there is at least one lastprivate variable, false
2274   /// otherwise.
2275   bool EmitOMPLastprivateClauseInit(const OMPExecutableDirective &D,
2276                                     OMPPrivateScope &PrivateScope);
2277   /// \brief Emit final copying of lastprivate values to original variables at
2278   /// the end of the worksharing or simd directive.
2279   ///
2280   /// \param D Directive that has at least one 'lastprivate' directives.
2281   /// \param IsLastIterCond Boolean condition that must be set to 'i1 true' if
2282   /// it is the last iteration of the loop code in associated directive, or to
2283   /// 'i1 false' otherwise. If this item is nullptr, no final check is required.
2284   void EmitOMPLastprivateClauseFinal(const OMPExecutableDirective &D,
2285                                      llvm::Value *IsLastIterCond = nullptr);
2286   /// \brief Emit initial code for reduction variables. Creates reduction copies
2287   /// and initializes them with the values according to OpenMP standard.
2288   ///
2289   /// \param D Directive (possibly) with the 'reduction' clause.
2290   /// \param PrivateScope Private scope for capturing reduction variables for
2291   /// proper codegen in internal captured statement.
2292   ///
2293   void EmitOMPReductionClauseInit(const OMPExecutableDirective &D,
2294                                   OMPPrivateScope &PrivateScope);
2295   /// \brief Emit final update of reduction values to original variables at
2296   /// the end of the directive.
2297   ///
2298   /// \param D Directive that has at least one 'reduction' directives.
2299   void EmitOMPReductionClauseFinal(const OMPExecutableDirective &D);
2300   /// \brief Emit initial code for linear variables. Creates private copies
2301   /// and initializes them with the values according to OpenMP standard.
2302   ///
2303   /// \param D Directive (possibly) with the 'linear' clause.
2304   void EmitOMPLinearClauseInit(const OMPLoopDirective &D);
2305 
2306   void EmitOMPParallelDirective(const OMPParallelDirective &S);
2307   void EmitOMPSimdDirective(const OMPSimdDirective &S);
2308   void EmitOMPForDirective(const OMPForDirective &S);
2309   void EmitOMPForSimdDirective(const OMPForSimdDirective &S);
2310   void EmitOMPSectionsDirective(const OMPSectionsDirective &S);
2311   void EmitOMPSectionDirective(const OMPSectionDirective &S);
2312   void EmitOMPSingleDirective(const OMPSingleDirective &S);
2313   void EmitOMPMasterDirective(const OMPMasterDirective &S);
2314   void EmitOMPCriticalDirective(const OMPCriticalDirective &S);
2315   void EmitOMPParallelForDirective(const OMPParallelForDirective &S);
2316   void EmitOMPParallelForSimdDirective(const OMPParallelForSimdDirective &S);
2317   void EmitOMPParallelSectionsDirective(const OMPParallelSectionsDirective &S);
2318   void EmitOMPTaskDirective(const OMPTaskDirective &S);
2319   void EmitOMPTaskyieldDirective(const OMPTaskyieldDirective &S);
2320   void EmitOMPBarrierDirective(const OMPBarrierDirective &S);
2321   void EmitOMPTaskwaitDirective(const OMPTaskwaitDirective &S);
2322   void EmitOMPTaskgroupDirective(const OMPTaskgroupDirective &S);
2323   void EmitOMPFlushDirective(const OMPFlushDirective &S);
2324   void EmitOMPOrderedDirective(const OMPOrderedDirective &S);
2325   void EmitOMPAtomicDirective(const OMPAtomicDirective &S);
2326   void EmitOMPTargetDirective(const OMPTargetDirective &S);
2327   void EmitOMPTargetDataDirective(const OMPTargetDataDirective &S);
2328   void EmitOMPTeamsDirective(const OMPTeamsDirective &S);
2329   void
2330   EmitOMPCancellationPointDirective(const OMPCancellationPointDirective &S);
2331   void EmitOMPCancelDirective(const OMPCancelDirective &S);
2332 
2333   /// \brief Emit inner loop of the worksharing/simd construct.
2334   ///
2335   /// \param S Directive, for which the inner loop must be emitted.
2336   /// \param RequiresCleanup true, if directive has some associated private
2337   /// variables.
2338   /// \param LoopCond Bollean condition for loop continuation.
2339   /// \param IncExpr Increment expression for loop control variable.
2340   /// \param BodyGen Generator for the inner body of the inner loop.
2341   /// \param PostIncGen Genrator for post-increment code (required for ordered
2342   /// loop directvies).
2343   void EmitOMPInnerLoop(
2344       const Stmt &S, bool RequiresCleanup, const Expr *LoopCond,
2345       const Expr *IncExpr,
2346       const llvm::function_ref<void(CodeGenFunction &)> &BodyGen,
2347       const llvm::function_ref<void(CodeGenFunction &)> &PostIncGen);
2348 
2349   JumpDest getOMPCancelDestination(OpenMPDirectiveKind Kind);
2350 
2351 private:
2352 
2353   /// Helpers for the OpenMP loop directives.
2354   void EmitOMPLoopBody(const OMPLoopDirective &D, JumpDest LoopExit);
2355   void EmitOMPSimdInit(const OMPLoopDirective &D);
2356   void EmitOMPSimdFinal(const OMPLoopDirective &D);
2357   /// \brief Emit code for the worksharing loop-based directive.
2358   /// \return true, if this construct has any lastprivate clause, false -
2359   /// otherwise.
2360   bool EmitOMPWorksharingLoop(const OMPLoopDirective &S);
2361   void EmitOMPForOuterLoop(OpenMPScheduleClauseKind ScheduleKind,
2362                            const OMPLoopDirective &S,
2363                            OMPPrivateScope &LoopScope, bool Ordered,
2364                            Address LB, Address UB, Address ST,
2365                            Address IL, llvm::Value *Chunk);
2366   /// \brief Emit code for sections directive.
2367   OpenMPDirectiveKind EmitSections(const OMPExecutableDirective &S);
2368 
2369 public:
2370 
2371   //===--------------------------------------------------------------------===//
2372   //                         LValue Expression Emission
2373   //===--------------------------------------------------------------------===//
2374 
2375   /// GetUndefRValue - Get an appropriate 'undef' rvalue for the given type.
2376   RValue GetUndefRValue(QualType Ty);
2377 
2378   /// EmitUnsupportedRValue - Emit a dummy r-value using the type of E
2379   /// and issue an ErrorUnsupported style diagnostic (using the
2380   /// provided Name).
2381   RValue EmitUnsupportedRValue(const Expr *E,
2382                                const char *Name);
2383 
2384   /// EmitUnsupportedLValue - Emit a dummy l-value using the type of E and issue
2385   /// an ErrorUnsupported style diagnostic (using the provided Name).
2386   LValue EmitUnsupportedLValue(const Expr *E,
2387                                const char *Name);
2388 
2389   /// EmitLValue - Emit code to compute a designator that specifies the location
2390   /// of the expression.
2391   ///
2392   /// This can return one of two things: a simple address or a bitfield
2393   /// reference.  In either case, the LLVM Value* in the LValue structure is
2394   /// guaranteed to be an LLVM pointer type.
2395   ///
2396   /// If this returns a bitfield reference, nothing about the pointee type of
2397   /// the LLVM value is known: For example, it may not be a pointer to an
2398   /// integer.
2399   ///
2400   /// If this returns a normal address, and if the lvalue's C type is fixed
2401   /// size, this method guarantees that the returned pointer type will point to
2402   /// an LLVM type of the same size of the lvalue's type.  If the lvalue has a
2403   /// variable length type, this is not possible.
2404   ///
2405   LValue EmitLValue(const Expr *E);
2406 
2407   /// \brief Same as EmitLValue but additionally we generate checking code to
2408   /// guard against undefined behavior.  This is only suitable when we know
2409   /// that the address will be used to access the object.
2410   LValue EmitCheckedLValue(const Expr *E, TypeCheckKind TCK);
2411 
2412   RValue convertTempToRValue(Address addr, QualType type,
2413                              SourceLocation Loc);
2414 
2415   void EmitAtomicInit(Expr *E, LValue lvalue);
2416 
2417   bool LValueIsSuitableForInlineAtomic(LValue Src);
2418   bool typeIsSuitableForInlineAtomic(QualType Ty, bool IsVolatile) const;
2419 
2420   RValue EmitAtomicLoad(LValue LV, SourceLocation SL,
2421                         AggValueSlot Slot = AggValueSlot::ignored());
2422 
2423   RValue EmitAtomicLoad(LValue lvalue, SourceLocation loc,
2424                         llvm::AtomicOrdering AO, bool IsVolatile = false,
2425                         AggValueSlot slot = AggValueSlot::ignored());
2426 
2427   void EmitAtomicStore(RValue rvalue, LValue lvalue, bool isInit);
2428 
2429   void EmitAtomicStore(RValue rvalue, LValue lvalue, llvm::AtomicOrdering AO,
2430                        bool IsVolatile, bool isInit);
2431 
2432   std::pair<RValue, llvm::Value *> EmitAtomicCompareExchange(
2433       LValue Obj, RValue Expected, RValue Desired, SourceLocation Loc,
2434       llvm::AtomicOrdering Success = llvm::SequentiallyConsistent,
2435       llvm::AtomicOrdering Failure = llvm::SequentiallyConsistent,
2436       bool IsWeak = false, AggValueSlot Slot = AggValueSlot::ignored());
2437 
2438   void EmitAtomicUpdate(LValue LVal, llvm::AtomicOrdering AO,
2439                         const llvm::function_ref<RValue(RValue)> &UpdateOp,
2440                         bool IsVolatile);
2441 
2442   /// EmitToMemory - Change a scalar value from its value
2443   /// representation to its in-memory representation.
2444   llvm::Value *EmitToMemory(llvm::Value *Value, QualType Ty);
2445 
2446   /// EmitFromMemory - Change a scalar value from its memory
2447   /// representation to its value representation.
2448   llvm::Value *EmitFromMemory(llvm::Value *Value, QualType Ty);
2449 
2450   /// EmitLoadOfScalar - Load a scalar value from an address, taking
2451   /// care to appropriately convert from the memory representation to
2452   /// the LLVM value representation.
2453   llvm::Value *EmitLoadOfScalar(Address Addr, bool Volatile, QualType Ty,
2454                                 SourceLocation Loc,
2455                                 AlignmentSource AlignSource =
2456                                   AlignmentSource::Type,
2457                                 llvm::MDNode *TBAAInfo = nullptr,
2458                                 QualType TBAABaseTy = QualType(),
2459                                 uint64_t TBAAOffset = 0,
2460                                 bool isNontemporal = false);
2461 
2462   /// EmitLoadOfScalar - Load a scalar value from an address, taking
2463   /// care to appropriately convert from the memory representation to
2464   /// the LLVM value representation.  The l-value must be a simple
2465   /// l-value.
2466   llvm::Value *EmitLoadOfScalar(LValue lvalue, SourceLocation Loc);
2467 
2468   /// EmitStoreOfScalar - Store a scalar value to an address, taking
2469   /// care to appropriately convert from the memory representation to
2470   /// the LLVM value representation.
2471   void EmitStoreOfScalar(llvm::Value *Value, Address Addr,
2472                          bool Volatile, QualType Ty,
2473                          AlignmentSource AlignSource = AlignmentSource::Type,
2474                          llvm::MDNode *TBAAInfo = nullptr, bool isInit = false,
2475                          QualType TBAABaseTy = QualType(),
2476                          uint64_t TBAAOffset = 0, bool isNontemporal = false);
2477 
2478   /// EmitStoreOfScalar - Store a scalar value to an address, taking
2479   /// care to appropriately convert from the memory representation to
2480   /// the LLVM value representation.  The l-value must be a simple
2481   /// l-value.  The isInit flag indicates whether this is an initialization.
2482   /// If so, atomic qualifiers are ignored and the store is always non-atomic.
2483   void EmitStoreOfScalar(llvm::Value *value, LValue lvalue, bool isInit=false);
2484 
2485   /// EmitLoadOfLValue - Given an expression that represents a value lvalue,
2486   /// this method emits the address of the lvalue, then loads the result as an
2487   /// rvalue, returning the rvalue.
2488   RValue EmitLoadOfLValue(LValue V, SourceLocation Loc);
2489   RValue EmitLoadOfExtVectorElementLValue(LValue V);
2490   RValue EmitLoadOfBitfieldLValue(LValue LV);
2491   RValue EmitLoadOfGlobalRegLValue(LValue LV);
2492 
2493   /// EmitStoreThroughLValue - Store the specified rvalue into the specified
2494   /// lvalue, where both are guaranteed to the have the same type, and that type
2495   /// is 'Ty'.
2496   void EmitStoreThroughLValue(RValue Src, LValue Dst, bool isInit = false);
2497   void EmitStoreThroughExtVectorComponentLValue(RValue Src, LValue Dst);
2498   void EmitStoreThroughGlobalRegLValue(RValue Src, LValue Dst);
2499 
2500   /// EmitStoreThroughBitfieldLValue - Store Src into Dst with same constraints
2501   /// as EmitStoreThroughLValue.
2502   ///
2503   /// \param Result [out] - If non-null, this will be set to a Value* for the
2504   /// bit-field contents after the store, appropriate for use as the result of
2505   /// an assignment to the bit-field.
2506   void EmitStoreThroughBitfieldLValue(RValue Src, LValue Dst,
2507                                       llvm::Value **Result=nullptr);
2508 
2509   /// Emit an l-value for an assignment (simple or compound) of complex type.
2510   LValue EmitComplexAssignmentLValue(const BinaryOperator *E);
2511   LValue EmitComplexCompoundAssignmentLValue(const CompoundAssignOperator *E);
2512   LValue EmitScalarCompoundAssignWithComplex(const CompoundAssignOperator *E,
2513                                              llvm::Value *&Result);
2514 
2515   // Note: only available for agg return types
2516   LValue EmitBinaryOperatorLValue(const BinaryOperator *E);
2517   LValue EmitCompoundAssignmentLValue(const CompoundAssignOperator *E);
2518   // Note: only available for agg return types
2519   LValue EmitCallExprLValue(const CallExpr *E);
2520   // Note: only available for agg return types
2521   LValue EmitVAArgExprLValue(const VAArgExpr *E);
2522   LValue EmitDeclRefLValue(const DeclRefExpr *E);
2523   LValue EmitStringLiteralLValue(const StringLiteral *E);
2524   LValue EmitObjCEncodeExprLValue(const ObjCEncodeExpr *E);
2525   LValue EmitPredefinedLValue(const PredefinedExpr *E);
2526   LValue EmitUnaryOpLValue(const UnaryOperator *E);
2527   LValue EmitArraySubscriptExpr(const ArraySubscriptExpr *E,
2528                                 bool Accessed = false);
2529   LValue EmitOMPArraySectionExpr(const OMPArraySectionExpr *E,
2530                                  bool IsLowerBound = true);
2531   LValue EmitExtVectorElementExpr(const ExtVectorElementExpr *E);
2532   LValue EmitMemberExpr(const MemberExpr *E);
2533   LValue EmitObjCIsaExpr(const ObjCIsaExpr *E);
2534   LValue EmitCompoundLiteralLValue(const CompoundLiteralExpr *E);
2535   LValue EmitInitListLValue(const InitListExpr *E);
2536   LValue EmitConditionalOperatorLValue(const AbstractConditionalOperator *E);
2537   LValue EmitCastLValue(const CastExpr *E);
2538   LValue EmitMaterializeTemporaryExpr(const MaterializeTemporaryExpr *E);
2539   LValue EmitOpaqueValueLValue(const OpaqueValueExpr *e);
2540 
2541   Address EmitExtVectorElementLValue(LValue V);
2542 
2543   RValue EmitRValueForField(LValue LV, const FieldDecl *FD, SourceLocation Loc);
2544 
2545   Address EmitArrayToPointerDecay(const Expr *Array,
2546                                   AlignmentSource *AlignSource = nullptr);
2547 
2548   class ConstantEmission {
2549     llvm::PointerIntPair<llvm::Constant*, 1, bool> ValueAndIsReference;
2550     ConstantEmission(llvm::Constant *C, bool isReference)
2551       : ValueAndIsReference(C, isReference) {}
2552   public:
2553     ConstantEmission() {}
2554     static ConstantEmission forReference(llvm::Constant *C) {
2555       return ConstantEmission(C, true);
2556     }
2557     static ConstantEmission forValue(llvm::Constant *C) {
2558       return ConstantEmission(C, false);
2559     }
2560 
2561     explicit operator bool() const {
2562       return ValueAndIsReference.getOpaqueValue() != nullptr;
2563     }
2564 
2565     bool isReference() const { return ValueAndIsReference.getInt(); }
2566     LValue getReferenceLValue(CodeGenFunction &CGF, Expr *refExpr) const {
2567       assert(isReference());
2568       return CGF.MakeNaturalAlignAddrLValue(ValueAndIsReference.getPointer(),
2569                                             refExpr->getType());
2570     }
2571 
2572     llvm::Constant *getValue() const {
2573       assert(!isReference());
2574       return ValueAndIsReference.getPointer();
2575     }
2576   };
2577 
2578   ConstantEmission tryEmitAsConstant(DeclRefExpr *refExpr);
2579 
2580   RValue EmitPseudoObjectRValue(const PseudoObjectExpr *e,
2581                                 AggValueSlot slot = AggValueSlot::ignored());
2582   LValue EmitPseudoObjectLValue(const PseudoObjectExpr *e);
2583 
2584   llvm::Value *EmitIvarOffset(const ObjCInterfaceDecl *Interface,
2585                               const ObjCIvarDecl *Ivar);
2586   LValue EmitLValueForField(LValue Base, const FieldDecl* Field);
2587   LValue EmitLValueForLambdaField(const FieldDecl *Field);
2588 
2589   /// EmitLValueForFieldInitialization - Like EmitLValueForField, except that
2590   /// if the Field is a reference, this will return the address of the reference
2591   /// and not the address of the value stored in the reference.
2592   LValue EmitLValueForFieldInitialization(LValue Base,
2593                                           const FieldDecl* Field);
2594 
2595   LValue EmitLValueForIvar(QualType ObjectTy,
2596                            llvm::Value* Base, const ObjCIvarDecl *Ivar,
2597                            unsigned CVRQualifiers);
2598 
2599   LValue EmitCXXConstructLValue(const CXXConstructExpr *E);
2600   LValue EmitCXXBindTemporaryLValue(const CXXBindTemporaryExpr *E);
2601   LValue EmitLambdaLValue(const LambdaExpr *E);
2602   LValue EmitCXXTypeidLValue(const CXXTypeidExpr *E);
2603   LValue EmitCXXUuidofLValue(const CXXUuidofExpr *E);
2604 
2605   LValue EmitObjCMessageExprLValue(const ObjCMessageExpr *E);
2606   LValue EmitObjCIvarRefLValue(const ObjCIvarRefExpr *E);
2607   LValue EmitStmtExprLValue(const StmtExpr *E);
2608   LValue EmitPointerToDataMemberBinaryExpr(const BinaryOperator *E);
2609   LValue EmitObjCSelectorLValue(const ObjCSelectorExpr *E);
2610   void   EmitDeclRefExprDbgValue(const DeclRefExpr *E, llvm::Constant *Init);
2611 
2612   //===--------------------------------------------------------------------===//
2613   //                         Scalar Expression Emission
2614   //===--------------------------------------------------------------------===//
2615 
2616   /// EmitCall - Generate a call of the given function, expecting the given
2617   /// result type, and using the given argument list which specifies both the
2618   /// LLVM arguments and the types they were derived from.
2619   ///
2620   /// \param TargetDecl - If given, the decl of the function in a direct call;
2621   /// used to set attributes on the call (noreturn, etc.).
2622   RValue EmitCall(const CGFunctionInfo &FnInfo,
2623                   llvm::Value *Callee,
2624                   ReturnValueSlot ReturnValue,
2625                   const CallArgList &Args,
2626                   const Decl *TargetDecl = nullptr,
2627                   llvm::Instruction **callOrInvoke = nullptr);
2628 
2629   RValue EmitCall(QualType FnType, llvm::Value *Callee, const CallExpr *E,
2630                   ReturnValueSlot ReturnValue,
2631                   const Decl *TargetDecl = nullptr,
2632                   llvm::Value *Chain = nullptr);
2633   RValue EmitCallExpr(const CallExpr *E,
2634                       ReturnValueSlot ReturnValue = ReturnValueSlot());
2635 
2636   bool checkBuiltinTargetFeatures(const FunctionDecl *TargetDecl);
2637 
2638   llvm::CallInst *EmitRuntimeCall(llvm::Value *callee,
2639                                   const Twine &name = "");
2640   llvm::CallInst *EmitRuntimeCall(llvm::Value *callee,
2641                                   ArrayRef<llvm::Value*> args,
2642                                   const Twine &name = "");
2643   llvm::CallInst *EmitNounwindRuntimeCall(llvm::Value *callee,
2644                                           const Twine &name = "");
2645   llvm::CallInst *EmitNounwindRuntimeCall(llvm::Value *callee,
2646                                           ArrayRef<llvm::Value*> args,
2647                                           const Twine &name = "");
2648 
2649   llvm::CallSite EmitCallOrInvoke(llvm::Value *Callee,
2650                                   ArrayRef<llvm::Value *> Args,
2651                                   const Twine &Name = "");
2652   llvm::CallSite EmitRuntimeCallOrInvoke(llvm::Value *callee,
2653                                          ArrayRef<llvm::Value*> args,
2654                                          const Twine &name = "");
2655   llvm::CallSite EmitRuntimeCallOrInvoke(llvm::Value *callee,
2656                                          const Twine &name = "");
2657   void EmitNoreturnRuntimeCallOrInvoke(llvm::Value *callee,
2658                                        ArrayRef<llvm::Value*> args);
2659 
2660   llvm::Value *BuildAppleKextVirtualCall(const CXXMethodDecl *MD,
2661                                          NestedNameSpecifier *Qual,
2662                                          llvm::Type *Ty);
2663 
2664   llvm::Value *BuildAppleKextVirtualDestructorCall(const CXXDestructorDecl *DD,
2665                                                    CXXDtorType Type,
2666                                                    const CXXRecordDecl *RD);
2667 
2668   RValue
2669   EmitCXXMemberOrOperatorCall(const CXXMethodDecl *MD, llvm::Value *Callee,
2670                               ReturnValueSlot ReturnValue, llvm::Value *This,
2671                               llvm::Value *ImplicitParam,
2672                               QualType ImplicitParamTy, const CallExpr *E);
2673   RValue EmitCXXStructorCall(const CXXMethodDecl *MD, llvm::Value *Callee,
2674                              ReturnValueSlot ReturnValue, llvm::Value *This,
2675                              llvm::Value *ImplicitParam,
2676                              QualType ImplicitParamTy, const CallExpr *E,
2677                              StructorType Type);
2678   RValue EmitCXXMemberCallExpr(const CXXMemberCallExpr *E,
2679                                ReturnValueSlot ReturnValue);
2680   RValue EmitCXXMemberOrOperatorMemberCallExpr(const CallExpr *CE,
2681                                                const CXXMethodDecl *MD,
2682                                                ReturnValueSlot ReturnValue,
2683                                                bool HasQualifier,
2684                                                NestedNameSpecifier *Qualifier,
2685                                                bool IsArrow, const Expr *Base);
2686   // Compute the object pointer.
2687   Address EmitCXXMemberDataPointerAddress(const Expr *E, Address base,
2688                                           llvm::Value *memberPtr,
2689                                           const MemberPointerType *memberPtrType,
2690                                           AlignmentSource *AlignSource = nullptr);
2691   RValue EmitCXXMemberPointerCallExpr(const CXXMemberCallExpr *E,
2692                                       ReturnValueSlot ReturnValue);
2693 
2694   RValue EmitCXXOperatorMemberCallExpr(const CXXOperatorCallExpr *E,
2695                                        const CXXMethodDecl *MD,
2696                                        ReturnValueSlot ReturnValue);
2697 
2698   RValue EmitCUDAKernelCallExpr(const CUDAKernelCallExpr *E,
2699                                 ReturnValueSlot ReturnValue);
2700 
2701 
2702   RValue EmitBuiltinExpr(const FunctionDecl *FD,
2703                          unsigned BuiltinID, const CallExpr *E,
2704                          ReturnValueSlot ReturnValue);
2705 
2706   RValue EmitBlockCallExpr(const CallExpr *E, ReturnValueSlot ReturnValue);
2707 
2708   /// EmitTargetBuiltinExpr - Emit the given builtin call. Returns 0 if the call
2709   /// is unhandled by the current target.
2710   llvm::Value *EmitTargetBuiltinExpr(unsigned BuiltinID, const CallExpr *E);
2711 
2712   llvm::Value *EmitAArch64CompareBuiltinExpr(llvm::Value *Op, llvm::Type *Ty,
2713                                              const llvm::CmpInst::Predicate Fp,
2714                                              const llvm::CmpInst::Predicate Ip,
2715                                              const llvm::Twine &Name = "");
2716   llvm::Value *EmitARMBuiltinExpr(unsigned BuiltinID, const CallExpr *E);
2717 
2718   llvm::Value *EmitCommonNeonBuiltinExpr(unsigned BuiltinID,
2719                                          unsigned LLVMIntrinsic,
2720                                          unsigned AltLLVMIntrinsic,
2721                                          const char *NameHint,
2722                                          unsigned Modifier,
2723                                          const CallExpr *E,
2724                                          SmallVectorImpl<llvm::Value *> &Ops,
2725                                          Address PtrOp0, Address PtrOp1);
2726   llvm::Function *LookupNeonLLVMIntrinsic(unsigned IntrinsicID,
2727                                           unsigned Modifier, llvm::Type *ArgTy,
2728                                           const CallExpr *E);
2729   llvm::Value *EmitNeonCall(llvm::Function *F,
2730                             SmallVectorImpl<llvm::Value*> &O,
2731                             const char *name,
2732                             unsigned shift = 0, bool rightshift = false);
2733   llvm::Value *EmitNeonSplat(llvm::Value *V, llvm::Constant *Idx);
2734   llvm::Value *EmitNeonShiftVector(llvm::Value *V, llvm::Type *Ty,
2735                                    bool negateForRightShift);
2736   llvm::Value *EmitNeonRShiftImm(llvm::Value *Vec, llvm::Value *Amt,
2737                                  llvm::Type *Ty, bool usgn, const char *name);
2738   llvm::Value *vectorWrapScalar16(llvm::Value *Op);
2739   llvm::Value *EmitAArch64BuiltinExpr(unsigned BuiltinID, const CallExpr *E);
2740 
2741   llvm::Value *BuildVector(ArrayRef<llvm::Value*> Ops);
2742   llvm::Value *EmitX86BuiltinExpr(unsigned BuiltinID, const CallExpr *E);
2743   llvm::Value *EmitPPCBuiltinExpr(unsigned BuiltinID, const CallExpr *E);
2744   llvm::Value *EmitAMDGPUBuiltinExpr(unsigned BuiltinID, const CallExpr *E);
2745   llvm::Value *EmitSystemZBuiltinExpr(unsigned BuiltinID, const CallExpr *E);
2746   llvm::Value *EmitNVPTXBuiltinExpr(unsigned BuiltinID, const CallExpr *E);
2747   llvm::Value *EmitWebAssemblyBuiltinExpr(unsigned BuiltinID,
2748                                           const CallExpr *E);
2749 
2750   llvm::Value *EmitObjCProtocolExpr(const ObjCProtocolExpr *E);
2751   llvm::Value *EmitObjCStringLiteral(const ObjCStringLiteral *E);
2752   llvm::Value *EmitObjCBoxedExpr(const ObjCBoxedExpr *E);
2753   llvm::Value *EmitObjCArrayLiteral(const ObjCArrayLiteral *E);
2754   llvm::Value *EmitObjCDictionaryLiteral(const ObjCDictionaryLiteral *E);
2755   llvm::Value *EmitObjCCollectionLiteral(const Expr *E,
2756                                 const ObjCMethodDecl *MethodWithObjects);
2757   llvm::Value *EmitObjCSelectorExpr(const ObjCSelectorExpr *E);
2758   RValue EmitObjCMessageExpr(const ObjCMessageExpr *E,
2759                              ReturnValueSlot Return = ReturnValueSlot());
2760 
2761   /// Retrieves the default cleanup kind for an ARC cleanup.
2762   /// Except under -fobjc-arc-eh, ARC cleanups are normal-only.
2763   CleanupKind getARCCleanupKind() {
2764     return CGM.getCodeGenOpts().ObjCAutoRefCountExceptions
2765              ? NormalAndEHCleanup : NormalCleanup;
2766   }
2767 
2768   // ARC primitives.
2769   void EmitARCInitWeak(Address addr, llvm::Value *value);
2770   void EmitARCDestroyWeak(Address addr);
2771   llvm::Value *EmitARCLoadWeakRetained(Address addr);
2772   llvm::Value *EmitARCStoreWeak(Address addr, llvm::Value *value, bool ignored);
2773   void EmitARCCopyWeak(Address dst, Address src);
2774   void EmitARCMoveWeak(Address dst, Address src);
2775   llvm::Value *EmitARCRetainAutorelease(QualType type, llvm::Value *value);
2776   llvm::Value *EmitARCRetainAutoreleaseNonBlock(llvm::Value *value);
2777   llvm::Value *EmitARCStoreStrong(LValue lvalue, llvm::Value *value,
2778                                   bool resultIgnored);
2779   llvm::Value *EmitARCStoreStrongCall(Address addr, llvm::Value *value,
2780                                       bool resultIgnored);
2781   llvm::Value *EmitARCRetain(QualType type, llvm::Value *value);
2782   llvm::Value *EmitARCRetainNonBlock(llvm::Value *value);
2783   llvm::Value *EmitARCRetainBlock(llvm::Value *value, bool mandatory);
2784   void EmitARCDestroyStrong(Address addr, ARCPreciseLifetime_t precise);
2785   void EmitARCRelease(llvm::Value *value, ARCPreciseLifetime_t precise);
2786   llvm::Value *EmitARCAutorelease(llvm::Value *value);
2787   llvm::Value *EmitARCAutoreleaseReturnValue(llvm::Value *value);
2788   llvm::Value *EmitARCRetainAutoreleaseReturnValue(llvm::Value *value);
2789   llvm::Value *EmitARCRetainAutoreleasedReturnValue(llvm::Value *value);
2790 
2791   std::pair<LValue,llvm::Value*>
2792   EmitARCStoreAutoreleasing(const BinaryOperator *e);
2793   std::pair<LValue,llvm::Value*>
2794   EmitARCStoreStrong(const BinaryOperator *e, bool ignored);
2795 
2796   llvm::Value *EmitObjCThrowOperand(const Expr *expr);
2797   llvm::Value *EmitObjCConsumeObject(QualType T, llvm::Value *Ptr);
2798   llvm::Value *EmitObjCExtendObjectLifetime(QualType T, llvm::Value *Ptr);
2799 
2800   llvm::Value *EmitARCExtendBlockObject(const Expr *expr);
2801   llvm::Value *EmitARCRetainScalarExpr(const Expr *expr);
2802   llvm::Value *EmitARCRetainAutoreleaseScalarExpr(const Expr *expr);
2803 
2804   void EmitARCIntrinsicUse(ArrayRef<llvm::Value*> values);
2805 
2806   static Destroyer destroyARCStrongImprecise;
2807   static Destroyer destroyARCStrongPrecise;
2808   static Destroyer destroyARCWeak;
2809 
2810   void EmitObjCAutoreleasePoolPop(llvm::Value *Ptr);
2811   llvm::Value *EmitObjCAutoreleasePoolPush();
2812   llvm::Value *EmitObjCMRRAutoreleasePoolPush();
2813   void EmitObjCAutoreleasePoolCleanup(llvm::Value *Ptr);
2814   void EmitObjCMRRAutoreleasePoolPop(llvm::Value *Ptr);
2815 
2816   /// \brief Emits a reference binding to the passed in expression.
2817   RValue EmitReferenceBindingToExpr(const Expr *E);
2818 
2819   //===--------------------------------------------------------------------===//
2820   //                           Expression Emission
2821   //===--------------------------------------------------------------------===//
2822 
2823   // Expressions are broken into three classes: scalar, complex, aggregate.
2824 
2825   /// EmitScalarExpr - Emit the computation of the specified expression of LLVM
2826   /// scalar type, returning the result.
2827   llvm::Value *EmitScalarExpr(const Expr *E , bool IgnoreResultAssign = false);
2828 
2829   /// Emit a conversion from the specified type to the specified destination
2830   /// type, both of which are LLVM scalar types.
2831   llvm::Value *EmitScalarConversion(llvm::Value *Src, QualType SrcTy,
2832                                     QualType DstTy, SourceLocation Loc);
2833 
2834   /// Emit a conversion from the specified complex type to the specified
2835   /// destination type, where the destination type is an LLVM scalar type.
2836   llvm::Value *EmitComplexToScalarConversion(ComplexPairTy Src, QualType SrcTy,
2837                                              QualType DstTy,
2838                                              SourceLocation Loc);
2839 
2840   /// EmitAggExpr - Emit the computation of the specified expression
2841   /// of aggregate type.  The result is computed into the given slot,
2842   /// which may be null to indicate that the value is not needed.
2843   void EmitAggExpr(const Expr *E, AggValueSlot AS);
2844 
2845   /// EmitAggExprToLValue - Emit the computation of the specified expression of
2846   /// aggregate type into a temporary LValue.
2847   LValue EmitAggExprToLValue(const Expr *E);
2848 
2849   /// EmitExtendGCLifetime - Given a pointer to an Objective-C object,
2850   /// make sure it survives garbage collection until this point.
2851   void EmitExtendGCLifetime(llvm::Value *object);
2852 
2853   /// EmitComplexExpr - Emit the computation of the specified expression of
2854   /// complex type, returning the result.
2855   ComplexPairTy EmitComplexExpr(const Expr *E,
2856                                 bool IgnoreReal = false,
2857                                 bool IgnoreImag = false);
2858 
2859   /// EmitComplexExprIntoLValue - Emit the given expression of complex
2860   /// type and place its result into the specified l-value.
2861   void EmitComplexExprIntoLValue(const Expr *E, LValue dest, bool isInit);
2862 
2863   /// EmitStoreOfComplex - Store a complex number into the specified l-value.
2864   void EmitStoreOfComplex(ComplexPairTy V, LValue dest, bool isInit);
2865 
2866   /// EmitLoadOfComplex - Load a complex number from the specified l-value.
2867   ComplexPairTy EmitLoadOfComplex(LValue src, SourceLocation loc);
2868 
2869   Address emitAddrOfRealComponent(Address complex, QualType complexType);
2870   Address emitAddrOfImagComponent(Address complex, QualType complexType);
2871 
2872   /// AddInitializerToStaticVarDecl - Add the initializer for 'D' to the
2873   /// global variable that has already been created for it.  If the initializer
2874   /// has a different type than GV does, this may free GV and return a different
2875   /// one.  Otherwise it just returns GV.
2876   llvm::GlobalVariable *
2877   AddInitializerToStaticVarDecl(const VarDecl &D,
2878                                 llvm::GlobalVariable *GV);
2879 
2880 
2881   /// EmitCXXGlobalVarDeclInit - Create the initializer for a C++
2882   /// variable with global storage.
2883   void EmitCXXGlobalVarDeclInit(const VarDecl &D, llvm::Constant *DeclPtr,
2884                                 bool PerformInit);
2885 
2886   llvm::Constant *createAtExitStub(const VarDecl &VD, llvm::Constant *Dtor,
2887                                    llvm::Constant *Addr);
2888 
2889   /// Call atexit() with a function that passes the given argument to
2890   /// the given function.
2891   void registerGlobalDtorWithAtExit(const VarDecl &D, llvm::Constant *fn,
2892                                     llvm::Constant *addr);
2893 
2894   /// Emit code in this function to perform a guarded variable
2895   /// initialization.  Guarded initializations are used when it's not
2896   /// possible to prove that an initialization will be done exactly
2897   /// once, e.g. with a static local variable or a static data member
2898   /// of a class template.
2899   void EmitCXXGuardedInit(const VarDecl &D, llvm::GlobalVariable *DeclPtr,
2900                           bool PerformInit);
2901 
2902   /// GenerateCXXGlobalInitFunc - Generates code for initializing global
2903   /// variables.
2904   void GenerateCXXGlobalInitFunc(llvm::Function *Fn,
2905                                  ArrayRef<llvm::Function *> CXXThreadLocals,
2906                                  Address Guard = Address::invalid());
2907 
2908   /// GenerateCXXGlobalDtorsFunc - Generates code for destroying global
2909   /// variables.
2910   void GenerateCXXGlobalDtorsFunc(llvm::Function *Fn,
2911                                   const std::vector<std::pair<llvm::WeakVH,
2912                                   llvm::Constant*> > &DtorsAndObjects);
2913 
2914   void GenerateCXXGlobalVarDeclInitFunc(llvm::Function *Fn,
2915                                         const VarDecl *D,
2916                                         llvm::GlobalVariable *Addr,
2917                                         bool PerformInit);
2918 
2919   void EmitCXXConstructExpr(const CXXConstructExpr *E, AggValueSlot Dest);
2920 
2921   void EmitSynthesizedCXXCopyCtor(Address Dest, Address Src, const Expr *Exp);
2922 
2923   void enterFullExpression(const ExprWithCleanups *E) {
2924     if (E->getNumObjects() == 0) return;
2925     enterNonTrivialFullExpression(E);
2926   }
2927   void enterNonTrivialFullExpression(const ExprWithCleanups *E);
2928 
2929   void EmitCXXThrowExpr(const CXXThrowExpr *E, bool KeepInsertionPoint = true);
2930 
2931   void EmitLambdaExpr(const LambdaExpr *E, AggValueSlot Dest);
2932 
2933   RValue EmitAtomicExpr(AtomicExpr *E, Address Dest = Address::invalid());
2934 
2935   //===--------------------------------------------------------------------===//
2936   //                         Annotations Emission
2937   //===--------------------------------------------------------------------===//
2938 
2939   /// Emit an annotation call (intrinsic or builtin).
2940   llvm::Value *EmitAnnotationCall(llvm::Value *AnnotationFn,
2941                                   llvm::Value *AnnotatedVal,
2942                                   StringRef AnnotationStr,
2943                                   SourceLocation Location);
2944 
2945   /// Emit local annotations for the local variable V, declared by D.
2946   void EmitVarAnnotations(const VarDecl *D, llvm::Value *V);
2947 
2948   /// Emit field annotations for the given field & value. Returns the
2949   /// annotation result.
2950   Address EmitFieldAnnotations(const FieldDecl *D, Address V);
2951 
2952   //===--------------------------------------------------------------------===//
2953   //                             Internal Helpers
2954   //===--------------------------------------------------------------------===//
2955 
2956   /// ContainsLabel - Return true if the statement contains a label in it.  If
2957   /// this statement is not executed normally, it not containing a label means
2958   /// that we can just remove the code.
2959   static bool ContainsLabel(const Stmt *S, bool IgnoreCaseStmts = false);
2960 
2961   /// containsBreak - Return true if the statement contains a break out of it.
2962   /// If the statement (recursively) contains a switch or loop with a break
2963   /// inside of it, this is fine.
2964   static bool containsBreak(const Stmt *S);
2965 
2966   /// ConstantFoldsToSimpleInteger - If the specified expression does not fold
2967   /// to a constant, or if it does but contains a label, return false.  If it
2968   /// constant folds return true and set the boolean result in Result.
2969   bool ConstantFoldsToSimpleInteger(const Expr *Cond, bool &Result);
2970 
2971   /// ConstantFoldsToSimpleInteger - If the specified expression does not fold
2972   /// to a constant, or if it does but contains a label, return false.  If it
2973   /// constant folds return true and set the folded value.
2974   bool ConstantFoldsToSimpleInteger(const Expr *Cond, llvm::APSInt &Result);
2975 
2976   /// EmitBranchOnBoolExpr - Emit a branch on a boolean condition (e.g. for an
2977   /// if statement) to the specified blocks.  Based on the condition, this might
2978   /// try to simplify the codegen of the conditional based on the branch.
2979   /// TrueCount should be the number of times we expect the condition to
2980   /// evaluate to true based on PGO data.
2981   void EmitBranchOnBoolExpr(const Expr *Cond, llvm::BasicBlock *TrueBlock,
2982                             llvm::BasicBlock *FalseBlock, uint64_t TrueCount);
2983 
2984   /// \brief Emit a description of a type in a format suitable for passing to
2985   /// a runtime sanitizer handler.
2986   llvm::Constant *EmitCheckTypeDescriptor(QualType T);
2987 
2988   /// \brief Convert a value into a format suitable for passing to a runtime
2989   /// sanitizer handler.
2990   llvm::Value *EmitCheckValue(llvm::Value *V);
2991 
2992   /// \brief Emit a description of a source location in a format suitable for
2993   /// passing to a runtime sanitizer handler.
2994   llvm::Constant *EmitCheckSourceLocation(SourceLocation Loc);
2995 
2996   /// \brief Create a basic block that will call a handler function in a
2997   /// sanitizer runtime with the provided arguments, and create a conditional
2998   /// branch to it.
2999   void EmitCheck(ArrayRef<std::pair<llvm::Value *, SanitizerMask>> Checked,
3000                  StringRef CheckName, ArrayRef<llvm::Constant *> StaticArgs,
3001                  ArrayRef<llvm::Value *> DynamicArgs);
3002 
3003   /// \brief Create a basic block that will call the trap intrinsic, and emit a
3004   /// conditional branch to it, for the -ftrapv checks.
3005   void EmitTrapCheck(llvm::Value *Checked);
3006 
3007   /// \brief Emit a call to trap or debugtrap and attach function attribute
3008   /// "trap-func-name" if specified.
3009   llvm::CallInst *EmitTrapCall(llvm::Intrinsic::ID IntrID);
3010 
3011   /// \brief Create a check for a function parameter that may potentially be
3012   /// declared as non-null.
3013   void EmitNonNullArgCheck(RValue RV, QualType ArgType, SourceLocation ArgLoc,
3014                            const FunctionDecl *FD, unsigned ParmNum);
3015 
3016   /// EmitCallArg - Emit a single call argument.
3017   void EmitCallArg(CallArgList &args, const Expr *E, QualType ArgType);
3018 
3019   /// EmitDelegateCallArg - We are performing a delegate call; that
3020   /// is, the current function is delegating to another one.  Produce
3021   /// a r-value suitable for passing the given parameter.
3022   void EmitDelegateCallArg(CallArgList &args, const VarDecl *param,
3023                            SourceLocation loc);
3024 
3025   /// SetFPAccuracy - Set the minimum required accuracy of the given floating
3026   /// point operation, expressed as the maximum relative error in ulp.
3027   void SetFPAccuracy(llvm::Value *Val, float Accuracy);
3028 
3029 private:
3030   llvm::MDNode *getRangeForLoadFromType(QualType Ty);
3031   void EmitReturnOfRValue(RValue RV, QualType Ty);
3032 
3033   void deferPlaceholderReplacement(llvm::Instruction *Old, llvm::Value *New);
3034 
3035   llvm::SmallVector<std::pair<llvm::Instruction *, llvm::Value *>, 4>
3036   DeferredReplacements;
3037 
3038   /// Set the address of a local variable.
3039   void setAddrOfLocalVar(const VarDecl *VD, Address Addr) {
3040     assert(!LocalDeclMap.count(VD) && "Decl already exists in LocalDeclMap!");
3041     LocalDeclMap.insert({VD, Addr});
3042   }
3043 
3044   /// ExpandTypeFromArgs - Reconstruct a structure of type \arg Ty
3045   /// from function arguments into \arg Dst. See ABIArgInfo::Expand.
3046   ///
3047   /// \param AI - The first function argument of the expansion.
3048   void ExpandTypeFromArgs(QualType Ty, LValue Dst,
3049                           SmallVectorImpl<llvm::Argument *>::iterator &AI);
3050 
3051   /// ExpandTypeToArgs - Expand an RValue \arg RV, with the LLVM type for \arg
3052   /// Ty, into individual arguments on the provided vector \arg IRCallArgs,
3053   /// starting at index \arg IRCallArgPos. See ABIArgInfo::Expand.
3054   void ExpandTypeToArgs(QualType Ty, RValue RV, llvm::FunctionType *IRFuncTy,
3055                         SmallVectorImpl<llvm::Value *> &IRCallArgs,
3056                         unsigned &IRCallArgPos);
3057 
3058   llvm::Value* EmitAsmInput(const TargetInfo::ConstraintInfo &Info,
3059                             const Expr *InputExpr, std::string &ConstraintStr);
3060 
3061   llvm::Value* EmitAsmInputLValue(const TargetInfo::ConstraintInfo &Info,
3062                                   LValue InputValue, QualType InputType,
3063                                   std::string &ConstraintStr,
3064                                   SourceLocation Loc);
3065 
3066 public:
3067 #ifndef NDEBUG
3068   // Determine whether the given argument is an Objective-C method
3069   // that may have type parameters in its signature.
3070   static bool isObjCMethodWithTypeParams(const ObjCMethodDecl *method) {
3071     const DeclContext *dc = method->getDeclContext();
3072     if (const ObjCInterfaceDecl *classDecl= dyn_cast<ObjCInterfaceDecl>(dc)) {
3073       return classDecl->getTypeParamListAsWritten();
3074     }
3075 
3076     if (const ObjCCategoryDecl *catDecl = dyn_cast<ObjCCategoryDecl>(dc)) {
3077       return catDecl->getTypeParamList();
3078     }
3079 
3080     return false;
3081   }
3082 
3083   template<typename T>
3084   static bool isObjCMethodWithTypeParams(const T *) { return false; }
3085 #endif
3086 
3087   /// EmitCallArgs - Emit call arguments for a function.
3088   template <typename T>
3089   void EmitCallArgs(CallArgList &Args, const T *CallArgTypeInfo,
3090                     llvm::iterator_range<CallExpr::const_arg_iterator> ArgRange,
3091                     const FunctionDecl *CalleeDecl = nullptr,
3092                     unsigned ParamsToSkip = 0) {
3093     SmallVector<QualType, 16> ArgTypes;
3094     CallExpr::const_arg_iterator Arg = ArgRange.begin();
3095 
3096     assert((ParamsToSkip == 0 || CallArgTypeInfo) &&
3097            "Can't skip parameters if type info is not provided");
3098     if (CallArgTypeInfo) {
3099 #ifndef NDEBUG
3100       bool isGenericMethod = isObjCMethodWithTypeParams(CallArgTypeInfo);
3101 #endif
3102 
3103       // First, use the argument types that the type info knows about
3104       for (auto I = CallArgTypeInfo->param_type_begin() + ParamsToSkip,
3105                 E = CallArgTypeInfo->param_type_end();
3106            I != E; ++I, ++Arg) {
3107         assert(Arg != ArgRange.end() && "Running over edge of argument list!");
3108         assert((isGenericMethod ||
3109                 ((*I)->isVariablyModifiedType() ||
3110                  (*I).getNonReferenceType()->isObjCRetainableType() ||
3111                  getContext()
3112                          .getCanonicalType((*I).getNonReferenceType())
3113                          .getTypePtr() ==
3114                      getContext()
3115                          .getCanonicalType((*Arg)->getType())
3116                          .getTypePtr())) &&
3117                "type mismatch in call argument!");
3118         ArgTypes.push_back(*I);
3119       }
3120     }
3121 
3122     // Either we've emitted all the call args, or we have a call to variadic
3123     // function.
3124     assert((Arg == ArgRange.end() || !CallArgTypeInfo ||
3125             CallArgTypeInfo->isVariadic()) &&
3126            "Extra arguments in non-variadic function!");
3127 
3128     // If we still have any arguments, emit them using the type of the argument.
3129     for (auto *A : llvm::make_range(Arg, ArgRange.end()))
3130       ArgTypes.push_back(getVarArgType(A));
3131 
3132     EmitCallArgs(Args, ArgTypes, ArgRange, CalleeDecl, ParamsToSkip);
3133   }
3134 
3135   void EmitCallArgs(CallArgList &Args, ArrayRef<QualType> ArgTypes,
3136                     llvm::iterator_range<CallExpr::const_arg_iterator> ArgRange,
3137                     const FunctionDecl *CalleeDecl = nullptr,
3138                     unsigned ParamsToSkip = 0);
3139 
3140   /// EmitPointerWithAlignment - Given an expression with a pointer
3141   /// type, emit the value and compute our best estimate of the
3142   /// alignment of the pointee.
3143   ///
3144   /// Note that this function will conservatively fall back on the type
3145   /// when it doesn't
3146   ///
3147   /// \param Source - If non-null, this will be initialized with
3148   ///   information about the source of the alignment.  Note that this
3149   ///   function will conservatively fall back on the type when it
3150   ///   doesn't recognize the expression, which means that sometimes
3151   ///
3152   ///   a worst-case One
3153   ///   reasonable way to use this information is when there's a
3154   ///   language guarantee that the pointer must be aligned to some
3155   ///   stricter value, and we're simply trying to ensure that
3156   ///   sufficiently obvious uses of under-aligned objects don't get
3157   ///   miscompiled; for example, a placement new into the address of
3158   ///   a local variable.  In such a case, it's quite reasonable to
3159   ///   just ignore the returned alignment when it isn't from an
3160   ///   explicit source.
3161   Address EmitPointerWithAlignment(const Expr *Addr,
3162                                    AlignmentSource *Source = nullptr);
3163 
3164 private:
3165   QualType getVarArgType(const Expr *Arg);
3166 
3167   const TargetCodeGenInfo &getTargetHooks() const {
3168     return CGM.getTargetCodeGenInfo();
3169   }
3170 
3171   void EmitDeclMetadata();
3172 
3173   BlockByrefHelpers *buildByrefHelpers(llvm::StructType &byrefType,
3174                                   const AutoVarEmission &emission);
3175 
3176   void AddObjCARCExceptionMetadata(llvm::Instruction *Inst);
3177 
3178   llvm::Value *GetValueForARMHint(unsigned BuiltinID);
3179 };
3180 
3181 /// Helper class with most of the code for saving a value for a
3182 /// conditional expression cleanup.
3183 struct DominatingLLVMValue {
3184   typedef llvm::PointerIntPair<llvm::Value*, 1, bool> saved_type;
3185 
3186   /// Answer whether the given value needs extra work to be saved.
3187   static bool needsSaving(llvm::Value *value) {
3188     // If it's not an instruction, we don't need to save.
3189     if (!isa<llvm::Instruction>(value)) return false;
3190 
3191     // If it's an instruction in the entry block, we don't need to save.
3192     llvm::BasicBlock *block = cast<llvm::Instruction>(value)->getParent();
3193     return (block != &block->getParent()->getEntryBlock());
3194   }
3195 
3196   /// Try to save the given value.
3197   static saved_type save(CodeGenFunction &CGF, llvm::Value *value) {
3198     if (!needsSaving(value)) return saved_type(value, false);
3199 
3200     // Otherwise, we need an alloca.
3201     auto align = CharUnits::fromQuantity(
3202               CGF.CGM.getDataLayout().getPrefTypeAlignment(value->getType()));
3203     Address alloca =
3204       CGF.CreateTempAlloca(value->getType(), align, "cond-cleanup.save");
3205     CGF.Builder.CreateStore(value, alloca);
3206 
3207     return saved_type(alloca.getPointer(), true);
3208   }
3209 
3210   static llvm::Value *restore(CodeGenFunction &CGF, saved_type value) {
3211     // If the value says it wasn't saved, trust that it's still dominating.
3212     if (!value.getInt()) return value.getPointer();
3213 
3214     // Otherwise, it should be an alloca instruction, as set up in save().
3215     auto alloca = cast<llvm::AllocaInst>(value.getPointer());
3216     return CGF.Builder.CreateAlignedLoad(alloca, alloca->getAlignment());
3217   }
3218 };
3219 
3220 /// A partial specialization of DominatingValue for llvm::Values that
3221 /// might be llvm::Instructions.
3222 template <class T> struct DominatingPointer<T,true> : DominatingLLVMValue {
3223   typedef T *type;
3224   static type restore(CodeGenFunction &CGF, saved_type value) {
3225     return static_cast<T*>(DominatingLLVMValue::restore(CGF, value));
3226   }
3227 };
3228 
3229 /// A specialization of DominatingValue for Address.
3230 template <> struct DominatingValue<Address> {
3231   typedef Address type;
3232 
3233   struct saved_type {
3234     DominatingLLVMValue::saved_type SavedValue;
3235     CharUnits Alignment;
3236   };
3237 
3238   static bool needsSaving(type value) {
3239     return DominatingLLVMValue::needsSaving(value.getPointer());
3240   }
3241   static saved_type save(CodeGenFunction &CGF, type value) {
3242     return { DominatingLLVMValue::save(CGF, value.getPointer()),
3243              value.getAlignment() };
3244   }
3245   static type restore(CodeGenFunction &CGF, saved_type value) {
3246     return Address(DominatingLLVMValue::restore(CGF, value.SavedValue),
3247                    value.Alignment);
3248   }
3249 };
3250 
3251 /// A specialization of DominatingValue for RValue.
3252 template <> struct DominatingValue<RValue> {
3253   typedef RValue type;
3254   class saved_type {
3255     enum Kind { ScalarLiteral, ScalarAddress, AggregateLiteral,
3256                 AggregateAddress, ComplexAddress };
3257 
3258     llvm::Value *Value;
3259     unsigned K : 3;
3260     unsigned Align : 29;
3261     saved_type(llvm::Value *v, Kind k, unsigned a = 0)
3262       : Value(v), K(k), Align(a) {}
3263 
3264   public:
3265     static bool needsSaving(RValue value);
3266     static saved_type save(CodeGenFunction &CGF, RValue value);
3267     RValue restore(CodeGenFunction &CGF);
3268 
3269     // implementations in CGCleanup.cpp
3270   };
3271 
3272   static bool needsSaving(type value) {
3273     return saved_type::needsSaving(value);
3274   }
3275   static saved_type save(CodeGenFunction &CGF, type value) {
3276     return saved_type::save(CGF, value);
3277   }
3278   static type restore(CodeGenFunction &CGF, saved_type value) {
3279     return value.restore(CGF);
3280   }
3281 };
3282 
3283 }  // end namespace CodeGen
3284 }  // end namespace clang
3285 
3286 #endif
3287