1 //===-- CodeGenFunction.h - Per-Function state for LLVM CodeGen -*- C++ -*-===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This is the internal per-function state used for llvm translation.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #ifndef LLVM_CLANG_LIB_CODEGEN_CODEGENFUNCTION_H
15 #define LLVM_CLANG_LIB_CODEGEN_CODEGENFUNCTION_H
16 
17 #include "CGBuilder.h"
18 #include "CGDebugInfo.h"
19 #include "CGLoopInfo.h"
20 #include "CGValue.h"
21 #include "CodeGenModule.h"
22 #include "CodeGenPGO.h"
23 #include "EHScopeStack.h"
24 #include "clang/AST/CharUnits.h"
25 #include "clang/AST/ExprCXX.h"
26 #include "clang/AST/ExprObjC.h"
27 #include "clang/AST/ExprOpenMP.h"
28 #include "clang/AST/Type.h"
29 #include "clang/Basic/ABI.h"
30 #include "clang/Basic/CapturedStmt.h"
31 #include "clang/Basic/OpenMPKinds.h"
32 #include "clang/Basic/TargetInfo.h"
33 #include "clang/Frontend/CodeGenOptions.h"
34 #include "llvm/ADT/ArrayRef.h"
35 #include "llvm/ADT/DenseMap.h"
36 #include "llvm/ADT/SmallVector.h"
37 #include "llvm/IR/ValueHandle.h"
38 #include "llvm/Support/Debug.h"
39 
40 namespace llvm {
41 class BasicBlock;
42 class LLVMContext;
43 class MDNode;
44 class Module;
45 class SwitchInst;
46 class Twine;
47 class Value;
48 class CallSite;
49 }
50 
51 namespace clang {
52 class ASTContext;
53 class BlockDecl;
54 class CXXDestructorDecl;
55 class CXXForRangeStmt;
56 class CXXTryStmt;
57 class Decl;
58 class LabelDecl;
59 class EnumConstantDecl;
60 class FunctionDecl;
61 class FunctionProtoType;
62 class LabelStmt;
63 class ObjCContainerDecl;
64 class ObjCInterfaceDecl;
65 class ObjCIvarDecl;
66 class ObjCMethodDecl;
67 class ObjCImplementationDecl;
68 class ObjCPropertyImplDecl;
69 class TargetInfo;
70 class TargetCodeGenInfo;
71 class VarDecl;
72 class ObjCForCollectionStmt;
73 class ObjCAtTryStmt;
74 class ObjCAtThrowStmt;
75 class ObjCAtSynchronizedStmt;
76 class ObjCAutoreleasePoolStmt;
77 
78 namespace CodeGen {
79 class CodeGenTypes;
80 class CGFunctionInfo;
81 class CGRecordLayout;
82 class CGBlockInfo;
83 class CGCXXABI;
84 class BlockByrefHelpers;
85 class BlockByrefInfo;
86 class BlockFlags;
87 class BlockFieldFlags;
88 
89 /// The kind of evaluation to perform on values of a particular
90 /// type.  Basically, is the code in CGExprScalar, CGExprComplex, or
91 /// CGExprAgg?
92 ///
93 /// TODO: should vectors maybe be split out into their own thing?
94 enum TypeEvaluationKind {
95   TEK_Scalar,
96   TEK_Complex,
97   TEK_Aggregate
98 };
99 
100 /// CodeGenFunction - This class organizes the per-function state that is used
101 /// while generating LLVM code.
102 class CodeGenFunction : public CodeGenTypeCache {
103   CodeGenFunction(const CodeGenFunction &) = delete;
104   void operator=(const CodeGenFunction &) = delete;
105 
106   friend class CGCXXABI;
107 public:
108   /// A jump destination is an abstract label, branching to which may
109   /// require a jump out through normal cleanups.
110   struct JumpDest {
111     JumpDest() : Block(nullptr), ScopeDepth(), Index(0) {}
112     JumpDest(llvm::BasicBlock *Block,
113              EHScopeStack::stable_iterator Depth,
114              unsigned Index)
115       : Block(Block), ScopeDepth(Depth), Index(Index) {}
116 
117     bool isValid() const { return Block != nullptr; }
118     llvm::BasicBlock *getBlock() const { return Block; }
119     EHScopeStack::stable_iterator getScopeDepth() const { return ScopeDepth; }
120     unsigned getDestIndex() const { return Index; }
121 
122     // This should be used cautiously.
123     void setScopeDepth(EHScopeStack::stable_iterator depth) {
124       ScopeDepth = depth;
125     }
126 
127   private:
128     llvm::BasicBlock *Block;
129     EHScopeStack::stable_iterator ScopeDepth;
130     unsigned Index;
131   };
132 
133   CodeGenModule &CGM;  // Per-module state.
134   const TargetInfo &Target;
135 
136   typedef std::pair<llvm::Value *, llvm::Value *> ComplexPairTy;
137   LoopInfoStack LoopStack;
138   CGBuilderTy Builder;
139 
140   /// \brief CGBuilder insert helper. This function is called after an
141   /// instruction is created using Builder.
142   void InsertHelper(llvm::Instruction *I, const llvm::Twine &Name,
143                     llvm::BasicBlock *BB,
144                     llvm::BasicBlock::iterator InsertPt) const;
145 
146   /// CurFuncDecl - Holds the Decl for the current outermost
147   /// non-closure context.
148   const Decl *CurFuncDecl;
149   /// CurCodeDecl - This is the inner-most code context, which includes blocks.
150   const Decl *CurCodeDecl;
151   const CGFunctionInfo *CurFnInfo;
152   QualType FnRetTy;
153   llvm::Function *CurFn;
154 
155   /// CurGD - The GlobalDecl for the current function being compiled.
156   GlobalDecl CurGD;
157 
158   /// PrologueCleanupDepth - The cleanup depth enclosing all the
159   /// cleanups associated with the parameters.
160   EHScopeStack::stable_iterator PrologueCleanupDepth;
161 
162   /// ReturnBlock - Unified return block.
163   JumpDest ReturnBlock;
164 
165   /// ReturnValue - The temporary alloca to hold the return
166   /// value. This is invalid iff the function has no return value.
167   Address ReturnValue;
168 
169   /// AllocaInsertPoint - This is an instruction in the entry block before which
170   /// we prefer to insert allocas.
171   llvm::AssertingVH<llvm::Instruction> AllocaInsertPt;
172 
173   /// \brief API for captured statement code generation.
174   class CGCapturedStmtInfo {
175   public:
176     explicit CGCapturedStmtInfo(CapturedRegionKind K = CR_Default)
177         : Kind(K), ThisValue(nullptr), CXXThisFieldDecl(nullptr) {}
178     explicit CGCapturedStmtInfo(const CapturedStmt &S,
179                                 CapturedRegionKind K = CR_Default)
180       : Kind(K), ThisValue(nullptr), CXXThisFieldDecl(nullptr) {
181 
182       RecordDecl::field_iterator Field =
183         S.getCapturedRecordDecl()->field_begin();
184       for (CapturedStmt::const_capture_iterator I = S.capture_begin(),
185                                                 E = S.capture_end();
186            I != E; ++I, ++Field) {
187         if (I->capturesThis())
188           CXXThisFieldDecl = *Field;
189         else if (I->capturesVariable())
190           CaptureFields[I->getCapturedVar()] = *Field;
191       }
192     }
193 
194     virtual ~CGCapturedStmtInfo();
195 
196     CapturedRegionKind getKind() const { return Kind; }
197 
198     virtual void setContextValue(llvm::Value *V) { ThisValue = V; }
199     // \brief Retrieve the value of the context parameter.
200     virtual llvm::Value *getContextValue() const { return ThisValue; }
201 
202     /// \brief Lookup the captured field decl for a variable.
203     virtual const FieldDecl *lookup(const VarDecl *VD) const {
204       return CaptureFields.lookup(VD);
205     }
206 
207     bool isCXXThisExprCaptured() const { return getThisFieldDecl() != nullptr; }
208     virtual FieldDecl *getThisFieldDecl() const { return CXXThisFieldDecl; }
209 
210     static bool classof(const CGCapturedStmtInfo *) {
211       return true;
212     }
213 
214     /// \brief Emit the captured statement body.
215     virtual void EmitBody(CodeGenFunction &CGF, const Stmt *S) {
216       CGF.incrementProfileCounter(S);
217       CGF.EmitStmt(S);
218     }
219 
220     /// \brief Get the name of the capture helper.
221     virtual StringRef getHelperName() const { return "__captured_stmt"; }
222 
223   private:
224     /// \brief The kind of captured statement being generated.
225     CapturedRegionKind Kind;
226 
227     /// \brief Keep the map between VarDecl and FieldDecl.
228     llvm::SmallDenseMap<const VarDecl *, FieldDecl *> CaptureFields;
229 
230     /// \brief The base address of the captured record, passed in as the first
231     /// argument of the parallel region function.
232     llvm::Value *ThisValue;
233 
234     /// \brief Captured 'this' type.
235     FieldDecl *CXXThisFieldDecl;
236   };
237   CGCapturedStmtInfo *CapturedStmtInfo;
238 
239   /// \brief RAII for correct setting/restoring of CapturedStmtInfo.
240   class CGCapturedStmtRAII {
241   private:
242     CodeGenFunction &CGF;
243     CGCapturedStmtInfo *PrevCapturedStmtInfo;
244   public:
245     CGCapturedStmtRAII(CodeGenFunction &CGF,
246                        CGCapturedStmtInfo *NewCapturedStmtInfo)
247         : CGF(CGF), PrevCapturedStmtInfo(CGF.CapturedStmtInfo) {
248       CGF.CapturedStmtInfo = NewCapturedStmtInfo;
249     }
250     ~CGCapturedStmtRAII() { CGF.CapturedStmtInfo = PrevCapturedStmtInfo; }
251   };
252 
253   /// BoundsChecking - Emit run-time bounds checks. Higher values mean
254   /// potentially higher performance penalties.
255   unsigned char BoundsChecking;
256 
257   /// \brief Sanitizers enabled for this function.
258   SanitizerSet SanOpts;
259 
260   /// \brief True if CodeGen currently emits code implementing sanitizer checks.
261   bool IsSanitizerScope;
262 
263   /// \brief RAII object to set/unset CodeGenFunction::IsSanitizerScope.
264   class SanitizerScope {
265     CodeGenFunction *CGF;
266   public:
267     SanitizerScope(CodeGenFunction *CGF);
268     ~SanitizerScope();
269   };
270 
271   /// In C++, whether we are code generating a thunk.  This controls whether we
272   /// should emit cleanups.
273   bool CurFuncIsThunk;
274 
275   /// In ARC, whether we should autorelease the return value.
276   bool AutoreleaseResult;
277 
278   /// Whether we processed a Microsoft-style asm block during CodeGen. These can
279   /// potentially set the return value.
280   bool SawAsmBlock;
281 
282   /// True if the current function is an outlined SEH helper. This can be a
283   /// finally block or filter expression.
284   bool IsOutlinedSEHHelper;
285 
286   const CodeGen::CGBlockInfo *BlockInfo;
287   llvm::Value *BlockPointer;
288 
289   llvm::DenseMap<const VarDecl *, FieldDecl *> LambdaCaptureFields;
290   FieldDecl *LambdaThisCaptureField;
291 
292   /// \brief A mapping from NRVO variables to the flags used to indicate
293   /// when the NRVO has been applied to this variable.
294   llvm::DenseMap<const VarDecl *, llvm::Value *> NRVOFlags;
295 
296   EHScopeStack EHStack;
297   llvm::SmallVector<char, 256> LifetimeExtendedCleanupStack;
298   llvm::SmallVector<const JumpDest *, 2> SEHTryEpilogueStack;
299 
300   /// Header for data within LifetimeExtendedCleanupStack.
301   struct LifetimeExtendedCleanupHeader {
302     /// The size of the following cleanup object.
303     unsigned Size;
304     /// The kind of cleanup to push: a value from the CleanupKind enumeration.
305     CleanupKind Kind;
306 
307     size_t getSize() const { return Size; }
308     CleanupKind getKind() const { return Kind; }
309   };
310 
311   /// i32s containing the indexes of the cleanup destinations.
312   llvm::AllocaInst *NormalCleanupDest;
313 
314   unsigned NextCleanupDestIndex;
315 
316   /// FirstBlockInfo - The head of a singly-linked-list of block layouts.
317   CGBlockInfo *FirstBlockInfo;
318 
319   /// EHResumeBlock - Unified block containing a call to llvm.eh.resume.
320   llvm::BasicBlock *EHResumeBlock;
321 
322   /// The exception slot.  All landing pads write the current exception pointer
323   /// into this alloca.
324   llvm::Value *ExceptionSlot;
325 
326   /// The selector slot.  Under the MandatoryCleanup model, all landing pads
327   /// write the current selector value into this alloca.
328   llvm::AllocaInst *EHSelectorSlot;
329 
330   /// A stack of exception code slots. Entering an __except block pushes a slot
331   /// on the stack and leaving pops one. The __exception_code() intrinsic loads
332   /// a value from the top of the stack.
333   SmallVector<Address, 1> SEHCodeSlotStack;
334 
335   /// Value returned by __exception_info intrinsic.
336   llvm::Value *SEHInfo = nullptr;
337 
338   /// Emits a landing pad for the current EH stack.
339   llvm::BasicBlock *EmitLandingPad();
340 
341   llvm::BasicBlock *getInvokeDestImpl();
342 
343   template <class T>
344   typename DominatingValue<T>::saved_type saveValueInCond(T value) {
345     return DominatingValue<T>::save(*this, value);
346   }
347 
348 public:
349   /// ObjCEHValueStack - Stack of Objective-C exception values, used for
350   /// rethrows.
351   SmallVector<llvm::Value*, 8> ObjCEHValueStack;
352 
353   /// A class controlling the emission of a finally block.
354   class FinallyInfo {
355     /// Where the catchall's edge through the cleanup should go.
356     JumpDest RethrowDest;
357 
358     /// A function to call to enter the catch.
359     llvm::Constant *BeginCatchFn;
360 
361     /// An i1 variable indicating whether or not the @finally is
362     /// running for an exception.
363     llvm::AllocaInst *ForEHVar;
364 
365     /// An i8* variable into which the exception pointer to rethrow
366     /// has been saved.
367     llvm::AllocaInst *SavedExnVar;
368 
369   public:
370     void enter(CodeGenFunction &CGF, const Stmt *Finally,
371                llvm::Constant *beginCatchFn, llvm::Constant *endCatchFn,
372                llvm::Constant *rethrowFn);
373     void exit(CodeGenFunction &CGF);
374   };
375 
376   /// Returns true inside SEH __try blocks.
377   bool isSEHTryScope() const { return !SEHTryEpilogueStack.empty(); }
378 
379   /// pushFullExprCleanup - Push a cleanup to be run at the end of the
380   /// current full-expression.  Safe against the possibility that
381   /// we're currently inside a conditionally-evaluated expression.
382   template <class T, class... As>
383   void pushFullExprCleanup(CleanupKind kind, As... A) {
384     // If we're not in a conditional branch, or if none of the
385     // arguments requires saving, then use the unconditional cleanup.
386     if (!isInConditionalBranch())
387       return EHStack.pushCleanup<T>(kind, A...);
388 
389     // Stash values in a tuple so we can guarantee the order of saves.
390     typedef std::tuple<typename DominatingValue<As>::saved_type...> SavedTuple;
391     SavedTuple Saved{saveValueInCond(A)...};
392 
393     typedef EHScopeStack::ConditionalCleanup<T, As...> CleanupType;
394     EHStack.pushCleanupTuple<CleanupType>(kind, Saved);
395     initFullExprCleanup();
396   }
397 
398   /// \brief Queue a cleanup to be pushed after finishing the current
399   /// full-expression.
400   template <class T, class... As>
401   void pushCleanupAfterFullExpr(CleanupKind Kind, As... A) {
402     assert(!isInConditionalBranch() && "can't defer conditional cleanup");
403 
404     LifetimeExtendedCleanupHeader Header = { sizeof(T), Kind };
405 
406     size_t OldSize = LifetimeExtendedCleanupStack.size();
407     LifetimeExtendedCleanupStack.resize(
408         LifetimeExtendedCleanupStack.size() + sizeof(Header) + Header.Size);
409 
410     static_assert(sizeof(Header) % llvm::AlignOf<T>::Alignment == 0,
411                   "Cleanup will be allocated on misaligned address");
412     char *Buffer = &LifetimeExtendedCleanupStack[OldSize];
413     new (Buffer) LifetimeExtendedCleanupHeader(Header);
414     new (Buffer + sizeof(Header)) T(A...);
415   }
416 
417   /// Set up the last cleaup that was pushed as a conditional
418   /// full-expression cleanup.
419   void initFullExprCleanup();
420 
421   /// PushDestructorCleanup - Push a cleanup to call the
422   /// complete-object destructor of an object of the given type at the
423   /// given address.  Does nothing if T is not a C++ class type with a
424   /// non-trivial destructor.
425   void PushDestructorCleanup(QualType T, Address Addr);
426 
427   /// PushDestructorCleanup - Push a cleanup to call the
428   /// complete-object variant of the given destructor on the object at
429   /// the given address.
430   void PushDestructorCleanup(const CXXDestructorDecl *Dtor, Address Addr);
431 
432   /// PopCleanupBlock - Will pop the cleanup entry on the stack and
433   /// process all branch fixups.
434   void PopCleanupBlock(bool FallThroughIsBranchThrough = false);
435 
436   /// DeactivateCleanupBlock - Deactivates the given cleanup block.
437   /// The block cannot be reactivated.  Pops it if it's the top of the
438   /// stack.
439   ///
440   /// \param DominatingIP - An instruction which is known to
441   ///   dominate the current IP (if set) and which lies along
442   ///   all paths of execution between the current IP and the
443   ///   the point at which the cleanup comes into scope.
444   void DeactivateCleanupBlock(EHScopeStack::stable_iterator Cleanup,
445                               llvm::Instruction *DominatingIP);
446 
447   /// ActivateCleanupBlock - Activates an initially-inactive cleanup.
448   /// Cannot be used to resurrect a deactivated cleanup.
449   ///
450   /// \param DominatingIP - An instruction which is known to
451   ///   dominate the current IP (if set) and which lies along
452   ///   all paths of execution between the current IP and the
453   ///   the point at which the cleanup comes into scope.
454   void ActivateCleanupBlock(EHScopeStack::stable_iterator Cleanup,
455                             llvm::Instruction *DominatingIP);
456 
457   /// \brief Enters a new scope for capturing cleanups, all of which
458   /// will be executed once the scope is exited.
459   class RunCleanupsScope {
460     EHScopeStack::stable_iterator CleanupStackDepth;
461     size_t LifetimeExtendedCleanupStackSize;
462     bool OldDidCallStackSave;
463   protected:
464     bool PerformCleanup;
465   private:
466 
467     RunCleanupsScope(const RunCleanupsScope &) = delete;
468     void operator=(const RunCleanupsScope &) = delete;
469 
470   protected:
471     CodeGenFunction& CGF;
472 
473   public:
474     /// \brief Enter a new cleanup scope.
475     explicit RunCleanupsScope(CodeGenFunction &CGF)
476       : PerformCleanup(true), CGF(CGF)
477     {
478       CleanupStackDepth = CGF.EHStack.stable_begin();
479       LifetimeExtendedCleanupStackSize =
480           CGF.LifetimeExtendedCleanupStack.size();
481       OldDidCallStackSave = CGF.DidCallStackSave;
482       CGF.DidCallStackSave = false;
483     }
484 
485     /// \brief Exit this cleanup scope, emitting any accumulated
486     /// cleanups.
487     ~RunCleanupsScope() {
488       if (PerformCleanup) {
489         CGF.DidCallStackSave = OldDidCallStackSave;
490         CGF.PopCleanupBlocks(CleanupStackDepth,
491                              LifetimeExtendedCleanupStackSize);
492       }
493     }
494 
495     /// \brief Determine whether this scope requires any cleanups.
496     bool requiresCleanups() const {
497       return CGF.EHStack.stable_begin() != CleanupStackDepth;
498     }
499 
500     /// \brief Force the emission of cleanups now, instead of waiting
501     /// until this object is destroyed.
502     void ForceCleanup() {
503       assert(PerformCleanup && "Already forced cleanup");
504       CGF.DidCallStackSave = OldDidCallStackSave;
505       CGF.PopCleanupBlocks(CleanupStackDepth,
506                            LifetimeExtendedCleanupStackSize);
507       PerformCleanup = false;
508     }
509   };
510 
511   class LexicalScope : public RunCleanupsScope {
512     SourceRange Range;
513     SmallVector<const LabelDecl*, 4> Labels;
514     LexicalScope *ParentScope;
515 
516     LexicalScope(const LexicalScope &) = delete;
517     void operator=(const LexicalScope &) = delete;
518 
519   public:
520     /// \brief Enter a new cleanup scope.
521     explicit LexicalScope(CodeGenFunction &CGF, SourceRange Range)
522       : RunCleanupsScope(CGF), Range(Range), ParentScope(CGF.CurLexicalScope) {
523       CGF.CurLexicalScope = this;
524       if (CGDebugInfo *DI = CGF.getDebugInfo())
525         DI->EmitLexicalBlockStart(CGF.Builder, Range.getBegin());
526     }
527 
528     void addLabel(const LabelDecl *label) {
529       assert(PerformCleanup && "adding label to dead scope?");
530       Labels.push_back(label);
531     }
532 
533     /// \brief Exit this cleanup scope, emitting any accumulated
534     /// cleanups.
535     ~LexicalScope() {
536       if (CGDebugInfo *DI = CGF.getDebugInfo())
537         DI->EmitLexicalBlockEnd(CGF.Builder, Range.getEnd());
538 
539       // If we should perform a cleanup, force them now.  Note that
540       // this ends the cleanup scope before rescoping any labels.
541       if (PerformCleanup) {
542         ApplyDebugLocation DL(CGF, Range.getEnd());
543         ForceCleanup();
544       }
545     }
546 
547     /// \brief Force the emission of cleanups now, instead of waiting
548     /// until this object is destroyed.
549     void ForceCleanup() {
550       CGF.CurLexicalScope = ParentScope;
551       RunCleanupsScope::ForceCleanup();
552 
553       if (!Labels.empty())
554         rescopeLabels();
555     }
556 
557     void rescopeLabels();
558   };
559 
560   typedef llvm::DenseMap<const Decl *, Address> DeclMapTy;
561 
562   /// \brief The scope used to remap some variables as private in the OpenMP
563   /// loop body (or other captured region emitted without outlining), and to
564   /// restore old vars back on exit.
565   class OMPPrivateScope : public RunCleanupsScope {
566     DeclMapTy SavedLocals;
567     DeclMapTy SavedPrivates;
568 
569   private:
570     OMPPrivateScope(const OMPPrivateScope &) = delete;
571     void operator=(const OMPPrivateScope &) = delete;
572 
573   public:
574     /// \brief Enter a new OpenMP private scope.
575     explicit OMPPrivateScope(CodeGenFunction &CGF) : RunCleanupsScope(CGF) {}
576 
577     /// \brief Registers \a LocalVD variable as a private and apply \a
578     /// PrivateGen function for it to generate corresponding private variable.
579     /// \a PrivateGen returns an address of the generated private variable.
580     /// \return true if the variable is registered as private, false if it has
581     /// been privatized already.
582     bool
583     addPrivate(const VarDecl *LocalVD,
584                llvm::function_ref<Address()> PrivateGen) {
585       assert(PerformCleanup && "adding private to dead scope");
586 
587       // Only save it once.
588       if (SavedLocals.count(LocalVD)) return false;
589 
590       // Copy the existing local entry to SavedLocals.
591       auto it = CGF.LocalDeclMap.find(LocalVD);
592       if (it != CGF.LocalDeclMap.end()) {
593         SavedLocals.insert({LocalVD, it->second});
594       } else {
595         SavedLocals.insert({LocalVD, Address::invalid()});
596       }
597 
598       // Generate the private entry.
599       Address Addr = PrivateGen();
600       QualType VarTy = LocalVD->getType();
601       if (VarTy->isReferenceType()) {
602         Address Temp = CGF.CreateMemTemp(VarTy);
603         CGF.Builder.CreateStore(Addr.getPointer(), Temp);
604         Addr = Temp;
605       }
606       SavedPrivates.insert({LocalVD, Addr});
607 
608       return true;
609     }
610 
611     /// \brief Privatizes local variables previously registered as private.
612     /// Registration is separate from the actual privatization to allow
613     /// initializers use values of the original variables, not the private one.
614     /// This is important, for example, if the private variable is a class
615     /// variable initialized by a constructor that references other private
616     /// variables. But at initialization original variables must be used, not
617     /// private copies.
618     /// \return true if at least one variable was privatized, false otherwise.
619     bool Privatize() {
620       copyInto(SavedPrivates, CGF.LocalDeclMap);
621       SavedPrivates.clear();
622       return !SavedLocals.empty();
623     }
624 
625     void ForceCleanup() {
626       RunCleanupsScope::ForceCleanup();
627       copyInto(SavedLocals, CGF.LocalDeclMap);
628       SavedLocals.clear();
629     }
630 
631     /// \brief Exit scope - all the mapped variables are restored.
632     ~OMPPrivateScope() {
633       if (PerformCleanup)
634         ForceCleanup();
635     }
636 
637   private:
638     /// Copy all the entries in the source map over the corresponding
639     /// entries in the destination, which must exist.
640     static void copyInto(const DeclMapTy &src, DeclMapTy &dest) {
641       for (auto &pair : src) {
642         if (!pair.second.isValid()) {
643           dest.erase(pair.first);
644           continue;
645         }
646 
647         auto it = dest.find(pair.first);
648         if (it != dest.end()) {
649           it->second = pair.second;
650         } else {
651           dest.insert(pair);
652         }
653       }
654     }
655   };
656 
657   /// \brief Takes the old cleanup stack size and emits the cleanup blocks
658   /// that have been added.
659   void PopCleanupBlocks(EHScopeStack::stable_iterator OldCleanupStackSize);
660 
661   /// \brief Takes the old cleanup stack size and emits the cleanup blocks
662   /// that have been added, then adds all lifetime-extended cleanups from
663   /// the given position to the stack.
664   void PopCleanupBlocks(EHScopeStack::stable_iterator OldCleanupStackSize,
665                         size_t OldLifetimeExtendedStackSize);
666 
667   void ResolveBranchFixups(llvm::BasicBlock *Target);
668 
669   /// The given basic block lies in the current EH scope, but may be a
670   /// target of a potentially scope-crossing jump; get a stable handle
671   /// to which we can perform this jump later.
672   JumpDest getJumpDestInCurrentScope(llvm::BasicBlock *Target) {
673     return JumpDest(Target,
674                     EHStack.getInnermostNormalCleanup(),
675                     NextCleanupDestIndex++);
676   }
677 
678   /// The given basic block lies in the current EH scope, but may be a
679   /// target of a potentially scope-crossing jump; get a stable handle
680   /// to which we can perform this jump later.
681   JumpDest getJumpDestInCurrentScope(StringRef Name = StringRef()) {
682     return getJumpDestInCurrentScope(createBasicBlock(Name));
683   }
684 
685   /// EmitBranchThroughCleanup - Emit a branch from the current insert
686   /// block through the normal cleanup handling code (if any) and then
687   /// on to \arg Dest.
688   void EmitBranchThroughCleanup(JumpDest Dest);
689 
690   /// isObviouslyBranchWithoutCleanups - Return true if a branch to the
691   /// specified destination obviously has no cleanups to run.  'false' is always
692   /// a conservatively correct answer for this method.
693   bool isObviouslyBranchWithoutCleanups(JumpDest Dest) const;
694 
695   /// popCatchScope - Pops the catch scope at the top of the EHScope
696   /// stack, emitting any required code (other than the catch handlers
697   /// themselves).
698   void popCatchScope();
699 
700   llvm::BasicBlock *getEHResumeBlock(bool isCleanup);
701   llvm::BasicBlock *getEHDispatchBlock(EHScopeStack::stable_iterator scope);
702   llvm::BasicBlock *getMSVCDispatchBlock(EHScopeStack::stable_iterator scope);
703 
704   /// An object to manage conditionally-evaluated expressions.
705   class ConditionalEvaluation {
706     llvm::BasicBlock *StartBB;
707 
708   public:
709     ConditionalEvaluation(CodeGenFunction &CGF)
710       : StartBB(CGF.Builder.GetInsertBlock()) {}
711 
712     void begin(CodeGenFunction &CGF) {
713       assert(CGF.OutermostConditional != this);
714       if (!CGF.OutermostConditional)
715         CGF.OutermostConditional = this;
716     }
717 
718     void end(CodeGenFunction &CGF) {
719       assert(CGF.OutermostConditional != nullptr);
720       if (CGF.OutermostConditional == this)
721         CGF.OutermostConditional = nullptr;
722     }
723 
724     /// Returns a block which will be executed prior to each
725     /// evaluation of the conditional code.
726     llvm::BasicBlock *getStartingBlock() const {
727       return StartBB;
728     }
729   };
730 
731   /// isInConditionalBranch - Return true if we're currently emitting
732   /// one branch or the other of a conditional expression.
733   bool isInConditionalBranch() const { return OutermostConditional != nullptr; }
734 
735   void setBeforeOutermostConditional(llvm::Value *value, Address addr) {
736     assert(isInConditionalBranch());
737     llvm::BasicBlock *block = OutermostConditional->getStartingBlock();
738     auto store = new llvm::StoreInst(value, addr.getPointer(), &block->back());
739     store->setAlignment(addr.getAlignment().getQuantity());
740   }
741 
742   /// An RAII object to record that we're evaluating a statement
743   /// expression.
744   class StmtExprEvaluation {
745     CodeGenFunction &CGF;
746 
747     /// We have to save the outermost conditional: cleanups in a
748     /// statement expression aren't conditional just because the
749     /// StmtExpr is.
750     ConditionalEvaluation *SavedOutermostConditional;
751 
752   public:
753     StmtExprEvaluation(CodeGenFunction &CGF)
754       : CGF(CGF), SavedOutermostConditional(CGF.OutermostConditional) {
755       CGF.OutermostConditional = nullptr;
756     }
757 
758     ~StmtExprEvaluation() {
759       CGF.OutermostConditional = SavedOutermostConditional;
760       CGF.EnsureInsertPoint();
761     }
762   };
763 
764   /// An object which temporarily prevents a value from being
765   /// destroyed by aggressive peephole optimizations that assume that
766   /// all uses of a value have been realized in the IR.
767   class PeepholeProtection {
768     llvm::Instruction *Inst;
769     friend class CodeGenFunction;
770 
771   public:
772     PeepholeProtection() : Inst(nullptr) {}
773   };
774 
775   /// A non-RAII class containing all the information about a bound
776   /// opaque value.  OpaqueValueMapping, below, is a RAII wrapper for
777   /// this which makes individual mappings very simple; using this
778   /// class directly is useful when you have a variable number of
779   /// opaque values or don't want the RAII functionality for some
780   /// reason.
781   class OpaqueValueMappingData {
782     const OpaqueValueExpr *OpaqueValue;
783     bool BoundLValue;
784     CodeGenFunction::PeepholeProtection Protection;
785 
786     OpaqueValueMappingData(const OpaqueValueExpr *ov,
787                            bool boundLValue)
788       : OpaqueValue(ov), BoundLValue(boundLValue) {}
789   public:
790     OpaqueValueMappingData() : OpaqueValue(nullptr) {}
791 
792     static bool shouldBindAsLValue(const Expr *expr) {
793       // gl-values should be bound as l-values for obvious reasons.
794       // Records should be bound as l-values because IR generation
795       // always keeps them in memory.  Expressions of function type
796       // act exactly like l-values but are formally required to be
797       // r-values in C.
798       return expr->isGLValue() ||
799              expr->getType()->isFunctionType() ||
800              hasAggregateEvaluationKind(expr->getType());
801     }
802 
803     static OpaqueValueMappingData bind(CodeGenFunction &CGF,
804                                        const OpaqueValueExpr *ov,
805                                        const Expr *e) {
806       if (shouldBindAsLValue(ov))
807         return bind(CGF, ov, CGF.EmitLValue(e));
808       return bind(CGF, ov, CGF.EmitAnyExpr(e));
809     }
810 
811     static OpaqueValueMappingData bind(CodeGenFunction &CGF,
812                                        const OpaqueValueExpr *ov,
813                                        const LValue &lv) {
814       assert(shouldBindAsLValue(ov));
815       CGF.OpaqueLValues.insert(std::make_pair(ov, lv));
816       return OpaqueValueMappingData(ov, true);
817     }
818 
819     static OpaqueValueMappingData bind(CodeGenFunction &CGF,
820                                        const OpaqueValueExpr *ov,
821                                        const RValue &rv) {
822       assert(!shouldBindAsLValue(ov));
823       CGF.OpaqueRValues.insert(std::make_pair(ov, rv));
824 
825       OpaqueValueMappingData data(ov, false);
826 
827       // Work around an extremely aggressive peephole optimization in
828       // EmitScalarConversion which assumes that all other uses of a
829       // value are extant.
830       data.Protection = CGF.protectFromPeepholes(rv);
831 
832       return data;
833     }
834 
835     bool isValid() const { return OpaqueValue != nullptr; }
836     void clear() { OpaqueValue = nullptr; }
837 
838     void unbind(CodeGenFunction &CGF) {
839       assert(OpaqueValue && "no data to unbind!");
840 
841       if (BoundLValue) {
842         CGF.OpaqueLValues.erase(OpaqueValue);
843       } else {
844         CGF.OpaqueRValues.erase(OpaqueValue);
845         CGF.unprotectFromPeepholes(Protection);
846       }
847     }
848   };
849 
850   /// An RAII object to set (and then clear) a mapping for an OpaqueValueExpr.
851   class OpaqueValueMapping {
852     CodeGenFunction &CGF;
853     OpaqueValueMappingData Data;
854 
855   public:
856     static bool shouldBindAsLValue(const Expr *expr) {
857       return OpaqueValueMappingData::shouldBindAsLValue(expr);
858     }
859 
860     /// Build the opaque value mapping for the given conditional
861     /// operator if it's the GNU ?: extension.  This is a common
862     /// enough pattern that the convenience operator is really
863     /// helpful.
864     ///
865     OpaqueValueMapping(CodeGenFunction &CGF,
866                        const AbstractConditionalOperator *op) : CGF(CGF) {
867       if (isa<ConditionalOperator>(op))
868         // Leave Data empty.
869         return;
870 
871       const BinaryConditionalOperator *e = cast<BinaryConditionalOperator>(op);
872       Data = OpaqueValueMappingData::bind(CGF, e->getOpaqueValue(),
873                                           e->getCommon());
874     }
875 
876     OpaqueValueMapping(CodeGenFunction &CGF,
877                        const OpaqueValueExpr *opaqueValue,
878                        LValue lvalue)
879       : CGF(CGF), Data(OpaqueValueMappingData::bind(CGF, opaqueValue, lvalue)) {
880     }
881 
882     OpaqueValueMapping(CodeGenFunction &CGF,
883                        const OpaqueValueExpr *opaqueValue,
884                        RValue rvalue)
885       : CGF(CGF), Data(OpaqueValueMappingData::bind(CGF, opaqueValue, rvalue)) {
886     }
887 
888     void pop() {
889       Data.unbind(CGF);
890       Data.clear();
891     }
892 
893     ~OpaqueValueMapping() {
894       if (Data.isValid()) Data.unbind(CGF);
895     }
896   };
897 
898 private:
899   CGDebugInfo *DebugInfo;
900   bool DisableDebugInfo;
901 
902   /// DidCallStackSave - Whether llvm.stacksave has been called. Used to avoid
903   /// calling llvm.stacksave for multiple VLAs in the same scope.
904   bool DidCallStackSave;
905 
906   /// IndirectBranch - The first time an indirect goto is seen we create a block
907   /// with an indirect branch.  Every time we see the address of a label taken,
908   /// we add the label to the indirect goto.  Every subsequent indirect goto is
909   /// codegen'd as a jump to the IndirectBranch's basic block.
910   llvm::IndirectBrInst *IndirectBranch;
911 
912   /// LocalDeclMap - This keeps track of the LLVM allocas or globals for local C
913   /// decls.
914   DeclMapTy LocalDeclMap;
915 
916   /// Track escaped local variables with auto storage. Used during SEH
917   /// outlining to produce a call to llvm.localescape.
918   llvm::DenseMap<llvm::AllocaInst *, int> EscapedLocals;
919 
920   /// LabelMap - This keeps track of the LLVM basic block for each C label.
921   llvm::DenseMap<const LabelDecl*, JumpDest> LabelMap;
922 
923   // BreakContinueStack - This keeps track of where break and continue
924   // statements should jump to.
925   struct BreakContinue {
926     BreakContinue(JumpDest Break, JumpDest Continue)
927       : BreakBlock(Break), ContinueBlock(Continue) {}
928 
929     JumpDest BreakBlock;
930     JumpDest ContinueBlock;
931   };
932   SmallVector<BreakContinue, 8> BreakContinueStack;
933 
934   CodeGenPGO PGO;
935 
936   /// Calculate branch weights appropriate for PGO data
937   llvm::MDNode *createProfileWeights(uint64_t TrueCount, uint64_t FalseCount);
938   llvm::MDNode *createProfileWeights(ArrayRef<uint64_t> Weights);
939   llvm::MDNode *createProfileWeightsForLoop(const Stmt *Cond,
940                                             uint64_t LoopCount);
941 
942 public:
943   /// Increment the profiler's counter for the given statement.
944   void incrementProfileCounter(const Stmt *S) {
945     if (CGM.getCodeGenOpts().ProfileInstrGenerate)
946       PGO.emitCounterIncrement(Builder, S);
947     PGO.setCurrentStmt(S);
948   }
949 
950   /// Get the profiler's count for the given statement.
951   uint64_t getProfileCount(const Stmt *S) {
952     Optional<uint64_t> Count = PGO.getStmtCount(S);
953     if (!Count.hasValue())
954       return 0;
955     return *Count;
956   }
957 
958   /// Set the profiler's current count.
959   void setCurrentProfileCount(uint64_t Count) {
960     PGO.setCurrentRegionCount(Count);
961   }
962 
963   /// Get the profiler's current count. This is generally the count for the most
964   /// recently incremented counter.
965   uint64_t getCurrentProfileCount() {
966     return PGO.getCurrentRegionCount();
967   }
968 
969 private:
970 
971   /// SwitchInsn - This is nearest current switch instruction. It is null if
972   /// current context is not in a switch.
973   llvm::SwitchInst *SwitchInsn;
974   /// The branch weights of SwitchInsn when doing instrumentation based PGO.
975   SmallVector<uint64_t, 16> *SwitchWeights;
976 
977   /// CaseRangeBlock - This block holds if condition check for last case
978   /// statement range in current switch instruction.
979   llvm::BasicBlock *CaseRangeBlock;
980 
981   /// OpaqueLValues - Keeps track of the current set of opaque value
982   /// expressions.
983   llvm::DenseMap<const OpaqueValueExpr *, LValue> OpaqueLValues;
984   llvm::DenseMap<const OpaqueValueExpr *, RValue> OpaqueRValues;
985 
986   // VLASizeMap - This keeps track of the associated size for each VLA type.
987   // We track this by the size expression rather than the type itself because
988   // in certain situations, like a const qualifier applied to an VLA typedef,
989   // multiple VLA types can share the same size expression.
990   // FIXME: Maybe this could be a stack of maps that is pushed/popped as we
991   // enter/leave scopes.
992   llvm::DenseMap<const Expr*, llvm::Value*> VLASizeMap;
993 
994   /// A block containing a single 'unreachable' instruction.  Created
995   /// lazily by getUnreachableBlock().
996   llvm::BasicBlock *UnreachableBlock;
997 
998   /// Counts of the number return expressions in the function.
999   unsigned NumReturnExprs;
1000 
1001   /// Count the number of simple (constant) return expressions in the function.
1002   unsigned NumSimpleReturnExprs;
1003 
1004   /// The last regular (non-return) debug location (breakpoint) in the function.
1005   SourceLocation LastStopPoint;
1006 
1007 public:
1008   /// A scope within which we are constructing the fields of an object which
1009   /// might use a CXXDefaultInitExpr. This stashes away a 'this' value to use
1010   /// if we need to evaluate a CXXDefaultInitExpr within the evaluation.
1011   class FieldConstructionScope {
1012   public:
1013     FieldConstructionScope(CodeGenFunction &CGF, Address This)
1014         : CGF(CGF), OldCXXDefaultInitExprThis(CGF.CXXDefaultInitExprThis) {
1015       CGF.CXXDefaultInitExprThis = This;
1016     }
1017     ~FieldConstructionScope() {
1018       CGF.CXXDefaultInitExprThis = OldCXXDefaultInitExprThis;
1019     }
1020 
1021   private:
1022     CodeGenFunction &CGF;
1023     Address OldCXXDefaultInitExprThis;
1024   };
1025 
1026   /// The scope of a CXXDefaultInitExpr. Within this scope, the value of 'this'
1027   /// is overridden to be the object under construction.
1028   class CXXDefaultInitExprScope {
1029   public:
1030     CXXDefaultInitExprScope(CodeGenFunction &CGF)
1031       : CGF(CGF), OldCXXThisValue(CGF.CXXThisValue),
1032         OldCXXThisAlignment(CGF.CXXThisAlignment) {
1033       CGF.CXXThisValue = CGF.CXXDefaultInitExprThis.getPointer();
1034       CGF.CXXThisAlignment = CGF.CXXDefaultInitExprThis.getAlignment();
1035     }
1036     ~CXXDefaultInitExprScope() {
1037       CGF.CXXThisValue = OldCXXThisValue;
1038       CGF.CXXThisAlignment = OldCXXThisAlignment;
1039     }
1040 
1041   public:
1042     CodeGenFunction &CGF;
1043     llvm::Value *OldCXXThisValue;
1044     CharUnits OldCXXThisAlignment;
1045   };
1046 
1047 private:
1048   /// CXXThisDecl - When generating code for a C++ member function,
1049   /// this will hold the implicit 'this' declaration.
1050   ImplicitParamDecl *CXXABIThisDecl;
1051   llvm::Value *CXXABIThisValue;
1052   llvm::Value *CXXThisValue;
1053   CharUnits CXXABIThisAlignment;
1054   CharUnits CXXThisAlignment;
1055 
1056   /// The value of 'this' to use when evaluating CXXDefaultInitExprs within
1057   /// this expression.
1058   Address CXXDefaultInitExprThis = Address::invalid();
1059 
1060   /// CXXStructorImplicitParamDecl - When generating code for a constructor or
1061   /// destructor, this will hold the implicit argument (e.g. VTT).
1062   ImplicitParamDecl *CXXStructorImplicitParamDecl;
1063   llvm::Value *CXXStructorImplicitParamValue;
1064 
1065   /// OutermostConditional - Points to the outermost active
1066   /// conditional control.  This is used so that we know if a
1067   /// temporary should be destroyed conditionally.
1068   ConditionalEvaluation *OutermostConditional;
1069 
1070   /// The current lexical scope.
1071   LexicalScope *CurLexicalScope;
1072 
1073   /// The current source location that should be used for exception
1074   /// handling code.
1075   SourceLocation CurEHLocation;
1076 
1077   /// BlockByrefInfos - For each __block variable, contains
1078   /// information about the layout of the variable.
1079   llvm::DenseMap<const ValueDecl *, BlockByrefInfo> BlockByrefInfos;
1080 
1081   llvm::BasicBlock *TerminateLandingPad;
1082   llvm::BasicBlock *TerminateHandler;
1083   llvm::BasicBlock *TrapBB;
1084 
1085   /// Add a kernel metadata node to the named metadata node 'opencl.kernels'.
1086   /// In the kernel metadata node, reference the kernel function and metadata
1087   /// nodes for its optional attribute qualifiers (OpenCL 1.1 6.7.2):
1088   /// - A node for the vec_type_hint(<type>) qualifier contains string
1089   ///   "vec_type_hint", an undefined value of the <type> data type,
1090   ///   and a Boolean that is true if the <type> is integer and signed.
1091   /// - A node for the work_group_size_hint(X,Y,Z) qualifier contains string
1092   ///   "work_group_size_hint", and three 32-bit integers X, Y and Z.
1093   /// - A node for the reqd_work_group_size(X,Y,Z) qualifier contains string
1094   ///   "reqd_work_group_size", and three 32-bit integers X, Y and Z.
1095   void EmitOpenCLKernelMetadata(const FunctionDecl *FD,
1096                                 llvm::Function *Fn);
1097 
1098 public:
1099   CodeGenFunction(CodeGenModule &cgm, bool suppressNewContext=false);
1100   ~CodeGenFunction();
1101 
1102   CodeGenTypes &getTypes() const { return CGM.getTypes(); }
1103   ASTContext &getContext() const { return CGM.getContext(); }
1104   CGDebugInfo *getDebugInfo() {
1105     if (DisableDebugInfo)
1106       return nullptr;
1107     return DebugInfo;
1108   }
1109   void disableDebugInfo() { DisableDebugInfo = true; }
1110   void enableDebugInfo() { DisableDebugInfo = false; }
1111 
1112   bool shouldUseFusedARCCalls() {
1113     return CGM.getCodeGenOpts().OptimizationLevel == 0;
1114   }
1115 
1116   const LangOptions &getLangOpts() const { return CGM.getLangOpts(); }
1117 
1118   /// Returns a pointer to the function's exception object and selector slot,
1119   /// which is assigned in every landing pad.
1120   Address getExceptionSlot();
1121   Address getEHSelectorSlot();
1122 
1123   /// Returns the contents of the function's exception object and selector
1124   /// slots.
1125   llvm::Value *getExceptionFromSlot();
1126   llvm::Value *getSelectorFromSlot();
1127 
1128   Address getNormalCleanupDestSlot();
1129 
1130   llvm::BasicBlock *getUnreachableBlock() {
1131     if (!UnreachableBlock) {
1132       UnreachableBlock = createBasicBlock("unreachable");
1133       new llvm::UnreachableInst(getLLVMContext(), UnreachableBlock);
1134     }
1135     return UnreachableBlock;
1136   }
1137 
1138   llvm::BasicBlock *getInvokeDest() {
1139     if (!EHStack.requiresLandingPad()) return nullptr;
1140     return getInvokeDestImpl();
1141   }
1142 
1143   bool currentFunctionUsesSEHTry() const {
1144     const auto *FD = dyn_cast_or_null<FunctionDecl>(CurCodeDecl);
1145     return FD && FD->usesSEHTry();
1146   }
1147 
1148   const TargetInfo &getTarget() const { return Target; }
1149   llvm::LLVMContext &getLLVMContext() { return CGM.getLLVMContext(); }
1150 
1151   //===--------------------------------------------------------------------===//
1152   //                                  Cleanups
1153   //===--------------------------------------------------------------------===//
1154 
1155   typedef void Destroyer(CodeGenFunction &CGF, Address addr, QualType ty);
1156 
1157   void pushIrregularPartialArrayCleanup(llvm::Value *arrayBegin,
1158                                         Address arrayEndPointer,
1159                                         QualType elementType,
1160                                         CharUnits elementAlignment,
1161                                         Destroyer *destroyer);
1162   void pushRegularPartialArrayCleanup(llvm::Value *arrayBegin,
1163                                       llvm::Value *arrayEnd,
1164                                       QualType elementType,
1165                                       CharUnits elementAlignment,
1166                                       Destroyer *destroyer);
1167 
1168   void pushDestroy(QualType::DestructionKind dtorKind,
1169                    Address addr, QualType type);
1170   void pushEHDestroy(QualType::DestructionKind dtorKind,
1171                      Address addr, QualType type);
1172   void pushDestroy(CleanupKind kind, Address addr, QualType type,
1173                    Destroyer *destroyer, bool useEHCleanupForArray);
1174   void pushLifetimeExtendedDestroy(CleanupKind kind, Address addr,
1175                                    QualType type, Destroyer *destroyer,
1176                                    bool useEHCleanupForArray);
1177   void pushCallObjectDeleteCleanup(const FunctionDecl *OperatorDelete,
1178                                    llvm::Value *CompletePtr,
1179                                    QualType ElementType);
1180   void pushStackRestore(CleanupKind kind, Address SPMem);
1181   void emitDestroy(Address addr, QualType type, Destroyer *destroyer,
1182                    bool useEHCleanupForArray);
1183   llvm::Function *generateDestroyHelper(Address addr, QualType type,
1184                                         Destroyer *destroyer,
1185                                         bool useEHCleanupForArray,
1186                                         const VarDecl *VD);
1187   void emitArrayDestroy(llvm::Value *begin, llvm::Value *end,
1188                         QualType elementType, CharUnits elementAlign,
1189                         Destroyer *destroyer,
1190                         bool checkZeroLength, bool useEHCleanup);
1191 
1192   Destroyer *getDestroyer(QualType::DestructionKind destructionKind);
1193 
1194   /// Determines whether an EH cleanup is required to destroy a type
1195   /// with the given destruction kind.
1196   bool needsEHCleanup(QualType::DestructionKind kind) {
1197     switch (kind) {
1198     case QualType::DK_none:
1199       return false;
1200     case QualType::DK_cxx_destructor:
1201     case QualType::DK_objc_weak_lifetime:
1202       return getLangOpts().Exceptions;
1203     case QualType::DK_objc_strong_lifetime:
1204       return getLangOpts().Exceptions &&
1205              CGM.getCodeGenOpts().ObjCAutoRefCountExceptions;
1206     }
1207     llvm_unreachable("bad destruction kind");
1208   }
1209 
1210   CleanupKind getCleanupKind(QualType::DestructionKind kind) {
1211     return (needsEHCleanup(kind) ? NormalAndEHCleanup : NormalCleanup);
1212   }
1213 
1214   //===--------------------------------------------------------------------===//
1215   //                                  Objective-C
1216   //===--------------------------------------------------------------------===//
1217 
1218   void GenerateObjCMethod(const ObjCMethodDecl *OMD);
1219 
1220   void StartObjCMethod(const ObjCMethodDecl *MD, const ObjCContainerDecl *CD);
1221 
1222   /// GenerateObjCGetter - Synthesize an Objective-C property getter function.
1223   void GenerateObjCGetter(ObjCImplementationDecl *IMP,
1224                           const ObjCPropertyImplDecl *PID);
1225   void generateObjCGetterBody(const ObjCImplementationDecl *classImpl,
1226                               const ObjCPropertyImplDecl *propImpl,
1227                               const ObjCMethodDecl *GetterMothodDecl,
1228                               llvm::Constant *AtomicHelperFn);
1229 
1230   void GenerateObjCCtorDtorMethod(ObjCImplementationDecl *IMP,
1231                                   ObjCMethodDecl *MD, bool ctor);
1232 
1233   /// GenerateObjCSetter - Synthesize an Objective-C property setter function
1234   /// for the given property.
1235   void GenerateObjCSetter(ObjCImplementationDecl *IMP,
1236                           const ObjCPropertyImplDecl *PID);
1237   void generateObjCSetterBody(const ObjCImplementationDecl *classImpl,
1238                               const ObjCPropertyImplDecl *propImpl,
1239                               llvm::Constant *AtomicHelperFn);
1240   bool IndirectObjCSetterArg(const CGFunctionInfo &FI);
1241   bool IvarTypeWithAggrGCObjects(QualType Ty);
1242 
1243   //===--------------------------------------------------------------------===//
1244   //                                  Block Bits
1245   //===--------------------------------------------------------------------===//
1246 
1247   llvm::Value *EmitBlockLiteral(const BlockExpr *);
1248   llvm::Value *EmitBlockLiteral(const CGBlockInfo &Info);
1249   static void destroyBlockInfos(CGBlockInfo *info);
1250   llvm::Constant *BuildDescriptorBlockDecl(const BlockExpr *,
1251                                            const CGBlockInfo &Info,
1252                                            llvm::StructType *,
1253                                            llvm::Constant *BlockVarLayout);
1254 
1255   llvm::Function *GenerateBlockFunction(GlobalDecl GD,
1256                                         const CGBlockInfo &Info,
1257                                         const DeclMapTy &ldm,
1258                                         bool IsLambdaConversionToBlock);
1259 
1260   llvm::Constant *GenerateCopyHelperFunction(const CGBlockInfo &blockInfo);
1261   llvm::Constant *GenerateDestroyHelperFunction(const CGBlockInfo &blockInfo);
1262   llvm::Constant *GenerateObjCAtomicSetterCopyHelperFunction(
1263                                              const ObjCPropertyImplDecl *PID);
1264   llvm::Constant *GenerateObjCAtomicGetterCopyHelperFunction(
1265                                              const ObjCPropertyImplDecl *PID);
1266   llvm::Value *EmitBlockCopyAndAutorelease(llvm::Value *Block, QualType Ty);
1267 
1268   void BuildBlockRelease(llvm::Value *DeclPtr, BlockFieldFlags flags);
1269 
1270   class AutoVarEmission;
1271 
1272   void emitByrefStructureInit(const AutoVarEmission &emission);
1273   void enterByrefCleanup(const AutoVarEmission &emission);
1274 
1275   void setBlockContextParameter(const ImplicitParamDecl *D, unsigned argNum,
1276                                 llvm::Value *ptr);
1277 
1278   Address LoadBlockStruct();
1279 
1280   void AllocateBlockCXXThisPointer(const CXXThisExpr *E);
1281   void AllocateBlockDecl(const DeclRefExpr *E);
1282   Address GetAddrOfBlockDecl(const VarDecl *var, bool ByRef);
1283 
1284   /// BuildBlockByrefAddress - Computes the location of the
1285   /// data in a variable which is declared as __block.
1286   Address emitBlockByrefAddress(Address baseAddr, const VarDecl *V,
1287                                 bool followForward = true);
1288   Address emitBlockByrefAddress(Address baseAddr,
1289                                 const BlockByrefInfo &info,
1290                                 bool followForward,
1291                                 const llvm::Twine &name);
1292 
1293   const BlockByrefInfo &getBlockByrefInfo(const VarDecl *var);
1294 
1295   void GenerateCode(GlobalDecl GD, llvm::Function *Fn,
1296                     const CGFunctionInfo &FnInfo);
1297   /// \brief Emit code for the start of a function.
1298   /// \param Loc       The location to be associated with the function.
1299   /// \param StartLoc  The location of the function body.
1300   void StartFunction(GlobalDecl GD,
1301                      QualType RetTy,
1302                      llvm::Function *Fn,
1303                      const CGFunctionInfo &FnInfo,
1304                      const FunctionArgList &Args,
1305                      SourceLocation Loc = SourceLocation(),
1306                      SourceLocation StartLoc = SourceLocation());
1307 
1308   void EmitConstructorBody(FunctionArgList &Args);
1309   void EmitDestructorBody(FunctionArgList &Args);
1310   void emitImplicitAssignmentOperatorBody(FunctionArgList &Args);
1311   void EmitFunctionBody(FunctionArgList &Args, const Stmt *Body);
1312   void EmitBlockWithFallThrough(llvm::BasicBlock *BB, const Stmt *S);
1313 
1314   void EmitForwardingCallToLambda(const CXXMethodDecl *LambdaCallOperator,
1315                                   CallArgList &CallArgs);
1316   void EmitLambdaToBlockPointerBody(FunctionArgList &Args);
1317   void EmitLambdaBlockInvokeBody();
1318   void EmitLambdaDelegatingInvokeBody(const CXXMethodDecl *MD);
1319   void EmitLambdaStaticInvokeFunction(const CXXMethodDecl *MD);
1320   void EmitAsanPrologueOrEpilogue(bool Prologue);
1321 
1322   /// \brief Emit the unified return block, trying to avoid its emission when
1323   /// possible.
1324   /// \return The debug location of the user written return statement if the
1325   /// return block is is avoided.
1326   llvm::DebugLoc EmitReturnBlock();
1327 
1328   /// FinishFunction - Complete IR generation of the current function. It is
1329   /// legal to call this function even if there is no current insertion point.
1330   void FinishFunction(SourceLocation EndLoc=SourceLocation());
1331 
1332   void StartThunk(llvm::Function *Fn, GlobalDecl GD,
1333                   const CGFunctionInfo &FnInfo);
1334 
1335   void EmitCallAndReturnForThunk(llvm::Value *Callee, const ThunkInfo *Thunk);
1336 
1337   void FinishThunk();
1338 
1339   /// Emit a musttail call for a thunk with a potentially adjusted this pointer.
1340   void EmitMustTailThunk(const CXXMethodDecl *MD, llvm::Value *AdjustedThisPtr,
1341                          llvm::Value *Callee);
1342 
1343   /// Generate a thunk for the given method.
1344   void generateThunk(llvm::Function *Fn, const CGFunctionInfo &FnInfo,
1345                      GlobalDecl GD, const ThunkInfo &Thunk);
1346 
1347   llvm::Function *GenerateVarArgsThunk(llvm::Function *Fn,
1348                                        const CGFunctionInfo &FnInfo,
1349                                        GlobalDecl GD, const ThunkInfo &Thunk);
1350 
1351   void EmitCtorPrologue(const CXXConstructorDecl *CD, CXXCtorType Type,
1352                         FunctionArgList &Args);
1353 
1354   void EmitInitializerForField(FieldDecl *Field, LValue LHS, Expr *Init,
1355                                ArrayRef<VarDecl *> ArrayIndexes);
1356 
1357   /// Struct with all informations about dynamic [sub]class needed to set vptr.
1358   struct VPtr {
1359     BaseSubobject Base;
1360     const CXXRecordDecl *NearestVBase;
1361     CharUnits OffsetFromNearestVBase;
1362     const CXXRecordDecl *VTableClass;
1363   };
1364 
1365   /// Initialize the vtable pointer of the given subobject.
1366   void InitializeVTablePointer(const VPtr &vptr);
1367 
1368   typedef llvm::SmallVector<VPtr, 4> VPtrsVector;
1369 
1370   typedef llvm::SmallPtrSet<const CXXRecordDecl *, 4> VisitedVirtualBasesSetTy;
1371   VPtrsVector getVTablePointers(const CXXRecordDecl *VTableClass);
1372 
1373   void getVTablePointers(BaseSubobject Base, const CXXRecordDecl *NearestVBase,
1374                          CharUnits OffsetFromNearestVBase,
1375                          bool BaseIsNonVirtualPrimaryBase,
1376                          const CXXRecordDecl *VTableClass,
1377                          VisitedVirtualBasesSetTy &VBases, VPtrsVector &vptrs);
1378 
1379   void InitializeVTablePointers(const CXXRecordDecl *ClassDecl);
1380 
1381   /// GetVTablePtr - Return the Value of the vtable pointer member pointed
1382   /// to by This.
1383   llvm::Value *GetVTablePtr(Address This, llvm::Type *Ty);
1384 
1385   enum CFITypeCheckKind {
1386     CFITCK_VCall,
1387     CFITCK_NVCall,
1388     CFITCK_DerivedCast,
1389     CFITCK_UnrelatedCast,
1390   };
1391 
1392   /// \brief Derived is the presumed address of an object of type T after a
1393   /// cast. If T is a polymorphic class type, emit a check that the virtual
1394   /// table for Derived belongs to a class derived from T.
1395   void EmitVTablePtrCheckForCast(QualType T, llvm::Value *Derived,
1396                                  bool MayBeNull, CFITypeCheckKind TCK,
1397                                  SourceLocation Loc);
1398 
1399   /// EmitVTablePtrCheckForCall - Virtual method MD is being called via VTable.
1400   /// If vptr CFI is enabled, emit a check that VTable is valid.
1401   void EmitVTablePtrCheckForCall(const CXXMethodDecl *MD, llvm::Value *VTable,
1402                                  CFITypeCheckKind TCK, SourceLocation Loc);
1403 
1404   /// EmitVTablePtrCheck - Emit a check that VTable is a valid virtual table for
1405   /// RD using llvm.bitset.test.
1406   void EmitVTablePtrCheck(const CXXRecordDecl *RD, llvm::Value *VTable,
1407                           CFITypeCheckKind TCK, SourceLocation Loc);
1408 
1409   /// CanDevirtualizeMemberFunctionCalls - Checks whether virtual calls on given
1410   /// expr can be devirtualized.
1411   bool CanDevirtualizeMemberFunctionCall(const Expr *Base,
1412                                          const CXXMethodDecl *MD);
1413 
1414   /// EnterDtorCleanups - Enter the cleanups necessary to complete the
1415   /// given phase of destruction for a destructor.  The end result
1416   /// should call destructors on members and base classes in reverse
1417   /// order of their construction.
1418   void EnterDtorCleanups(const CXXDestructorDecl *Dtor, CXXDtorType Type);
1419 
1420   /// ShouldInstrumentFunction - Return true if the current function should be
1421   /// instrumented with __cyg_profile_func_* calls
1422   bool ShouldInstrumentFunction();
1423 
1424   /// EmitFunctionInstrumentation - Emit LLVM code to call the specified
1425   /// instrumentation function with the current function and the call site, if
1426   /// function instrumentation is enabled.
1427   void EmitFunctionInstrumentation(const char *Fn);
1428 
1429   /// EmitMCountInstrumentation - Emit call to .mcount.
1430   void EmitMCountInstrumentation();
1431 
1432   /// EmitFunctionProlog - Emit the target specific LLVM code to load the
1433   /// arguments for the given function. This is also responsible for naming the
1434   /// LLVM function arguments.
1435   void EmitFunctionProlog(const CGFunctionInfo &FI,
1436                           llvm::Function *Fn,
1437                           const FunctionArgList &Args);
1438 
1439   /// EmitFunctionEpilog - Emit the target specific LLVM code to return the
1440   /// given temporary.
1441   void EmitFunctionEpilog(const CGFunctionInfo &FI, bool EmitRetDbgLoc,
1442                           SourceLocation EndLoc);
1443 
1444   /// EmitStartEHSpec - Emit the start of the exception spec.
1445   void EmitStartEHSpec(const Decl *D);
1446 
1447   /// EmitEndEHSpec - Emit the end of the exception spec.
1448   void EmitEndEHSpec(const Decl *D);
1449 
1450   /// getTerminateLandingPad - Return a landing pad that just calls terminate.
1451   llvm::BasicBlock *getTerminateLandingPad();
1452 
1453   /// getTerminateHandler - Return a handler (not a landing pad, just
1454   /// a catch handler) that just calls terminate.  This is used when
1455   /// a terminate scope encloses a try.
1456   llvm::BasicBlock *getTerminateHandler();
1457 
1458   llvm::Type *ConvertTypeForMem(QualType T);
1459   llvm::Type *ConvertType(QualType T);
1460   llvm::Type *ConvertType(const TypeDecl *T) {
1461     return ConvertType(getContext().getTypeDeclType(T));
1462   }
1463 
1464   /// LoadObjCSelf - Load the value of self. This function is only valid while
1465   /// generating code for an Objective-C method.
1466   llvm::Value *LoadObjCSelf();
1467 
1468   /// TypeOfSelfObject - Return type of object that this self represents.
1469   QualType TypeOfSelfObject();
1470 
1471   /// hasAggregateLLVMType - Return true if the specified AST type will map into
1472   /// an aggregate LLVM type or is void.
1473   static TypeEvaluationKind getEvaluationKind(QualType T);
1474 
1475   static bool hasScalarEvaluationKind(QualType T) {
1476     return getEvaluationKind(T) == TEK_Scalar;
1477   }
1478 
1479   static bool hasAggregateEvaluationKind(QualType T) {
1480     return getEvaluationKind(T) == TEK_Aggregate;
1481   }
1482 
1483   /// createBasicBlock - Create an LLVM basic block.
1484   llvm::BasicBlock *createBasicBlock(const Twine &name = "",
1485                                      llvm::Function *parent = nullptr,
1486                                      llvm::BasicBlock *before = nullptr) {
1487 #ifdef NDEBUG
1488     return llvm::BasicBlock::Create(getLLVMContext(), "", parent, before);
1489 #else
1490     return llvm::BasicBlock::Create(getLLVMContext(), name, parent, before);
1491 #endif
1492   }
1493 
1494   /// getBasicBlockForLabel - Return the LLVM basicblock that the specified
1495   /// label maps to.
1496   JumpDest getJumpDestForLabel(const LabelDecl *S);
1497 
1498   /// SimplifyForwardingBlocks - If the given basic block is only a branch to
1499   /// another basic block, simplify it. This assumes that no other code could
1500   /// potentially reference the basic block.
1501   void SimplifyForwardingBlocks(llvm::BasicBlock *BB);
1502 
1503   /// EmitBlock - Emit the given block \arg BB and set it as the insert point,
1504   /// adding a fall-through branch from the current insert block if
1505   /// necessary. It is legal to call this function even if there is no current
1506   /// insertion point.
1507   ///
1508   /// IsFinished - If true, indicates that the caller has finished emitting
1509   /// branches to the given block and does not expect to emit code into it. This
1510   /// means the block can be ignored if it is unreachable.
1511   void EmitBlock(llvm::BasicBlock *BB, bool IsFinished=false);
1512 
1513   /// EmitBlockAfterUses - Emit the given block somewhere hopefully
1514   /// near its uses, and leave the insertion point in it.
1515   void EmitBlockAfterUses(llvm::BasicBlock *BB);
1516 
1517   /// EmitBranch - Emit a branch to the specified basic block from the current
1518   /// insert block, taking care to avoid creation of branches from dummy
1519   /// blocks. It is legal to call this function even if there is no current
1520   /// insertion point.
1521   ///
1522   /// This function clears the current insertion point. The caller should follow
1523   /// calls to this function with calls to Emit*Block prior to generation new
1524   /// code.
1525   void EmitBranch(llvm::BasicBlock *Block);
1526 
1527   /// HaveInsertPoint - True if an insertion point is defined. If not, this
1528   /// indicates that the current code being emitted is unreachable.
1529   bool HaveInsertPoint() const {
1530     return Builder.GetInsertBlock() != nullptr;
1531   }
1532 
1533   /// EnsureInsertPoint - Ensure that an insertion point is defined so that
1534   /// emitted IR has a place to go. Note that by definition, if this function
1535   /// creates a block then that block is unreachable; callers may do better to
1536   /// detect when no insertion point is defined and simply skip IR generation.
1537   void EnsureInsertPoint() {
1538     if (!HaveInsertPoint())
1539       EmitBlock(createBasicBlock());
1540   }
1541 
1542   /// ErrorUnsupported - Print out an error that codegen doesn't support the
1543   /// specified stmt yet.
1544   void ErrorUnsupported(const Stmt *S, const char *Type);
1545 
1546   //===--------------------------------------------------------------------===//
1547   //                                  Helpers
1548   //===--------------------------------------------------------------------===//
1549 
1550   LValue MakeAddrLValue(Address Addr, QualType T,
1551                         AlignmentSource AlignSource = AlignmentSource::Type) {
1552     return LValue::MakeAddr(Addr, T, getContext(), AlignSource,
1553                             CGM.getTBAAInfo(T));
1554   }
1555 
1556   LValue MakeAddrLValue(llvm::Value *V, QualType T, CharUnits Alignment,
1557                         AlignmentSource AlignSource = AlignmentSource::Type) {
1558     return LValue::MakeAddr(Address(V, Alignment), T, getContext(),
1559                             AlignSource, CGM.getTBAAInfo(T));
1560   }
1561 
1562   LValue MakeNaturalAlignPointeeAddrLValue(llvm::Value *V, QualType T);
1563   LValue MakeNaturalAlignAddrLValue(llvm::Value *V, QualType T);
1564   CharUnits getNaturalTypeAlignment(QualType T,
1565                                     AlignmentSource *Source = nullptr,
1566                                     bool forPointeeType = false);
1567   CharUnits getNaturalPointeeTypeAlignment(QualType T,
1568                                            AlignmentSource *Source = nullptr);
1569 
1570   Address EmitLoadOfReference(Address Ref, const ReferenceType *RefTy,
1571                               AlignmentSource *Source = nullptr);
1572   LValue EmitLoadOfReferenceLValue(Address Ref, const ReferenceType *RefTy);
1573 
1574   /// CreateTempAlloca - This creates a alloca and inserts it into the entry
1575   /// block. The caller is responsible for setting an appropriate alignment on
1576   /// the alloca.
1577   llvm::AllocaInst *CreateTempAlloca(llvm::Type *Ty,
1578                                      const Twine &Name = "tmp");
1579   Address CreateTempAlloca(llvm::Type *Ty, CharUnits align,
1580                            const Twine &Name = "tmp");
1581 
1582   /// CreateDefaultAlignedTempAlloca - This creates an alloca with the
1583   /// default ABI alignment of the given LLVM type.
1584   ///
1585   /// IMPORTANT NOTE: This is *not* generally the right alignment for
1586   /// any given AST type that happens to have been lowered to the
1587   /// given IR type.  This should only ever be used for function-local,
1588   /// IR-driven manipulations like saving and restoring a value.  Do
1589   /// not hand this address off to arbitrary IRGen routines, and especially
1590   /// do not pass it as an argument to a function that might expect a
1591   /// properly ABI-aligned value.
1592   Address CreateDefaultAlignTempAlloca(llvm::Type *Ty,
1593                                        const Twine &Name = "tmp");
1594 
1595   /// InitTempAlloca - Provide an initial value for the given alloca which
1596   /// will be observable at all locations in the function.
1597   ///
1598   /// The address should be something that was returned from one of
1599   /// the CreateTempAlloca or CreateMemTemp routines, and the
1600   /// initializer must be valid in the entry block (i.e. it must
1601   /// either be a constant or an argument value).
1602   void InitTempAlloca(Address Alloca, llvm::Value *Value);
1603 
1604   /// CreateIRTemp - Create a temporary IR object of the given type, with
1605   /// appropriate alignment. This routine should only be used when an temporary
1606   /// value needs to be stored into an alloca (for example, to avoid explicit
1607   /// PHI construction), but the type is the IR type, not the type appropriate
1608   /// for storing in memory.
1609   ///
1610   /// That is, this is exactly equivalent to CreateMemTemp, but calling
1611   /// ConvertType instead of ConvertTypeForMem.
1612   Address CreateIRTemp(QualType T, const Twine &Name = "tmp");
1613 
1614   /// CreateMemTemp - Create a temporary memory object of the given type, with
1615   /// appropriate alignment.
1616   Address CreateMemTemp(QualType T, const Twine &Name = "tmp");
1617   Address CreateMemTemp(QualType T, CharUnits Align, const Twine &Name = "tmp");
1618 
1619   /// CreateAggTemp - Create a temporary memory object for the given
1620   /// aggregate type.
1621   AggValueSlot CreateAggTemp(QualType T, const Twine &Name = "tmp") {
1622     return AggValueSlot::forAddr(CreateMemTemp(T, Name),
1623                                  T.getQualifiers(),
1624                                  AggValueSlot::IsNotDestructed,
1625                                  AggValueSlot::DoesNotNeedGCBarriers,
1626                                  AggValueSlot::IsNotAliased);
1627   }
1628 
1629   /// CreateInAllocaTmp - Create a temporary memory object for the given
1630   /// aggregate type.
1631   AggValueSlot CreateInAllocaTmp(QualType T, const Twine &Name = "inalloca");
1632 
1633   /// Emit a cast to void* in the appropriate address space.
1634   llvm::Value *EmitCastToVoidPtr(llvm::Value *value);
1635 
1636   /// EvaluateExprAsBool - Perform the usual unary conversions on the specified
1637   /// expression and compare the result against zero, returning an Int1Ty value.
1638   llvm::Value *EvaluateExprAsBool(const Expr *E);
1639 
1640   /// EmitIgnoredExpr - Emit an expression in a context which ignores the result.
1641   void EmitIgnoredExpr(const Expr *E);
1642 
1643   /// EmitAnyExpr - Emit code to compute the specified expression which can have
1644   /// any type.  The result is returned as an RValue struct.  If this is an
1645   /// aggregate expression, the aggloc/agglocvolatile arguments indicate where
1646   /// the result should be returned.
1647   ///
1648   /// \param ignoreResult True if the resulting value isn't used.
1649   RValue EmitAnyExpr(const Expr *E,
1650                      AggValueSlot aggSlot = AggValueSlot::ignored(),
1651                      bool ignoreResult = false);
1652 
1653   // EmitVAListRef - Emit a "reference" to a va_list; this is either the address
1654   // or the value of the expression, depending on how va_list is defined.
1655   Address EmitVAListRef(const Expr *E);
1656 
1657   /// EmitAnyExprToTemp - Similary to EmitAnyExpr(), however, the result will
1658   /// always be accessible even if no aggregate location is provided.
1659   RValue EmitAnyExprToTemp(const Expr *E);
1660 
1661   /// EmitAnyExprToMem - Emits the code necessary to evaluate an
1662   /// arbitrary expression into the given memory location.
1663   void EmitAnyExprToMem(const Expr *E, Address Location,
1664                         Qualifiers Quals, bool IsInitializer);
1665 
1666   void EmitAnyExprToExn(const Expr *E, Address Addr);
1667 
1668   /// EmitExprAsInit - Emits the code necessary to initialize a
1669   /// location in memory with the given initializer.
1670   void EmitExprAsInit(const Expr *init, const ValueDecl *D, LValue lvalue,
1671                       bool capturedByInit);
1672 
1673   /// hasVolatileMember - returns true if aggregate type has a volatile
1674   /// member.
1675   bool hasVolatileMember(QualType T) {
1676     if (const RecordType *RT = T->getAs<RecordType>()) {
1677       const RecordDecl *RD = cast<RecordDecl>(RT->getDecl());
1678       return RD->hasVolatileMember();
1679     }
1680     return false;
1681   }
1682   /// EmitAggregateCopy - Emit an aggregate assignment.
1683   ///
1684   /// The difference to EmitAggregateCopy is that tail padding is not copied.
1685   /// This is required for correctness when assigning non-POD structures in C++.
1686   void EmitAggregateAssign(Address DestPtr, Address SrcPtr,
1687                            QualType EltTy) {
1688     bool IsVolatile = hasVolatileMember(EltTy);
1689     EmitAggregateCopy(DestPtr, SrcPtr, EltTy, IsVolatile, true);
1690   }
1691 
1692   void EmitAggregateCopyCtor(Address DestPtr, Address SrcPtr,
1693                              QualType DestTy, QualType SrcTy) {
1694     EmitAggregateCopy(DestPtr, SrcPtr, SrcTy, /*IsVolatile=*/false,
1695                       /*IsAssignment=*/false);
1696   }
1697 
1698   /// EmitAggregateCopy - Emit an aggregate copy.
1699   ///
1700   /// \param isVolatile - True iff either the source or the destination is
1701   /// volatile.
1702   /// \param isAssignment - If false, allow padding to be copied.  This often
1703   /// yields more efficient.
1704   void EmitAggregateCopy(Address DestPtr, Address SrcPtr,
1705                          QualType EltTy, bool isVolatile=false,
1706                          bool isAssignment = false);
1707 
1708   /// StartBlock - Start new block named N. If insert block is a dummy block
1709   /// then reuse it.
1710   void StartBlock(const char *N);
1711 
1712   /// GetAddrOfLocalVar - Return the address of a local variable.
1713   Address GetAddrOfLocalVar(const VarDecl *VD) {
1714     auto it = LocalDeclMap.find(VD);
1715     assert(it != LocalDeclMap.end() &&
1716            "Invalid argument to GetAddrOfLocalVar(), no decl!");
1717     return it->second;
1718   }
1719 
1720   /// getOpaqueLValueMapping - Given an opaque value expression (which
1721   /// must be mapped to an l-value), return its mapping.
1722   const LValue &getOpaqueLValueMapping(const OpaqueValueExpr *e) {
1723     assert(OpaqueValueMapping::shouldBindAsLValue(e));
1724 
1725     llvm::DenseMap<const OpaqueValueExpr*,LValue>::iterator
1726       it = OpaqueLValues.find(e);
1727     assert(it != OpaqueLValues.end() && "no mapping for opaque value!");
1728     return it->second;
1729   }
1730 
1731   /// getOpaqueRValueMapping - Given an opaque value expression (which
1732   /// must be mapped to an r-value), return its mapping.
1733   const RValue &getOpaqueRValueMapping(const OpaqueValueExpr *e) {
1734     assert(!OpaqueValueMapping::shouldBindAsLValue(e));
1735 
1736     llvm::DenseMap<const OpaqueValueExpr*,RValue>::iterator
1737       it = OpaqueRValues.find(e);
1738     assert(it != OpaqueRValues.end() && "no mapping for opaque value!");
1739     return it->second;
1740   }
1741 
1742   /// getAccessedFieldNo - Given an encoded value and a result number, return
1743   /// the input field number being accessed.
1744   static unsigned getAccessedFieldNo(unsigned Idx, const llvm::Constant *Elts);
1745 
1746   llvm::BlockAddress *GetAddrOfLabel(const LabelDecl *L);
1747   llvm::BasicBlock *GetIndirectGotoBlock();
1748 
1749   /// EmitNullInitialization - Generate code to set a value of the given type to
1750   /// null, If the type contains data member pointers, they will be initialized
1751   /// to -1 in accordance with the Itanium C++ ABI.
1752   void EmitNullInitialization(Address DestPtr, QualType Ty);
1753 
1754   // EmitVAArg - Generate code to get an argument from the passed in pointer
1755   // and update it accordingly. The return value is a pointer to the argument.
1756   // FIXME: We should be able to get rid of this method and use the va_arg
1757   // instruction in LLVM instead once it works well enough.
1758   Address EmitVAArg(Address VAListAddr, QualType Ty);
1759 
1760   /// emitArrayLength - Compute the length of an array, even if it's a
1761   /// VLA, and drill down to the base element type.
1762   llvm::Value *emitArrayLength(const ArrayType *arrayType,
1763                                QualType &baseType,
1764                                Address &addr);
1765 
1766   /// EmitVLASize - Capture all the sizes for the VLA expressions in
1767   /// the given variably-modified type and store them in the VLASizeMap.
1768   ///
1769   /// This function can be called with a null (unreachable) insert point.
1770   void EmitVariablyModifiedType(QualType Ty);
1771 
1772   /// getVLASize - Returns an LLVM value that corresponds to the size,
1773   /// in non-variably-sized elements, of a variable length array type,
1774   /// plus that largest non-variably-sized element type.  Assumes that
1775   /// the type has already been emitted with EmitVariablyModifiedType.
1776   std::pair<llvm::Value*,QualType> getVLASize(const VariableArrayType *vla);
1777   std::pair<llvm::Value*,QualType> getVLASize(QualType vla);
1778 
1779   /// LoadCXXThis - Load the value of 'this'. This function is only valid while
1780   /// generating code for an C++ member function.
1781   llvm::Value *LoadCXXThis() {
1782     assert(CXXThisValue && "no 'this' value for this function");
1783     return CXXThisValue;
1784   }
1785   Address LoadCXXThisAddress();
1786 
1787   /// LoadCXXVTT - Load the VTT parameter to base constructors/destructors have
1788   /// virtual bases.
1789   // FIXME: Every place that calls LoadCXXVTT is something
1790   // that needs to be abstracted properly.
1791   llvm::Value *LoadCXXVTT() {
1792     assert(CXXStructorImplicitParamValue && "no VTT value for this function");
1793     return CXXStructorImplicitParamValue;
1794   }
1795 
1796   /// LoadCXXStructorImplicitParam - Load the implicit parameter
1797   /// for a constructor/destructor.
1798   llvm::Value *LoadCXXStructorImplicitParam() {
1799     assert(CXXStructorImplicitParamValue &&
1800            "no implicit argument value for this function");
1801     return CXXStructorImplicitParamValue;
1802   }
1803 
1804   /// GetAddressOfBaseOfCompleteClass - Convert the given pointer to a
1805   /// complete class to the given direct base.
1806   Address
1807   GetAddressOfDirectBaseInCompleteClass(Address Value,
1808                                         const CXXRecordDecl *Derived,
1809                                         const CXXRecordDecl *Base,
1810                                         bool BaseIsVirtual);
1811 
1812   static bool ShouldNullCheckClassCastValue(const CastExpr *Cast);
1813 
1814   /// GetAddressOfBaseClass - This function will add the necessary delta to the
1815   /// load of 'this' and returns address of the base class.
1816   Address GetAddressOfBaseClass(Address Value,
1817                                 const CXXRecordDecl *Derived,
1818                                 CastExpr::path_const_iterator PathBegin,
1819                                 CastExpr::path_const_iterator PathEnd,
1820                                 bool NullCheckValue, SourceLocation Loc);
1821 
1822   Address GetAddressOfDerivedClass(Address Value,
1823                                    const CXXRecordDecl *Derived,
1824                                    CastExpr::path_const_iterator PathBegin,
1825                                    CastExpr::path_const_iterator PathEnd,
1826                                    bool NullCheckValue);
1827 
1828   /// GetVTTParameter - Return the VTT parameter that should be passed to a
1829   /// base constructor/destructor with virtual bases.
1830   /// FIXME: VTTs are Itanium ABI-specific, so the definition should move
1831   /// to ItaniumCXXABI.cpp together with all the references to VTT.
1832   llvm::Value *GetVTTParameter(GlobalDecl GD, bool ForVirtualBase,
1833                                bool Delegating);
1834 
1835   void EmitDelegateCXXConstructorCall(const CXXConstructorDecl *Ctor,
1836                                       CXXCtorType CtorType,
1837                                       const FunctionArgList &Args,
1838                                       SourceLocation Loc);
1839   // It's important not to confuse this and the previous function. Delegating
1840   // constructors are the C++0x feature. The constructor delegate optimization
1841   // is used to reduce duplication in the base and complete consturctors where
1842   // they are substantially the same.
1843   void EmitDelegatingCXXConstructorCall(const CXXConstructorDecl *Ctor,
1844                                         const FunctionArgList &Args);
1845 
1846   void EmitCXXConstructorCall(const CXXConstructorDecl *D, CXXCtorType Type,
1847                               bool ForVirtualBase, bool Delegating,
1848                               Address This, const CXXConstructExpr *E);
1849 
1850   /// Emit assumption load for all bases. Requires to be be called only on
1851   /// most-derived class and not under construction of the object.
1852   void EmitVTableAssumptionLoads(const CXXRecordDecl *ClassDecl, Address This);
1853 
1854   /// Emit assumption that vptr load == global vtable.
1855   void EmitVTableAssumptionLoad(const VPtr &vptr, Address This);
1856 
1857   void EmitSynthesizedCXXCopyCtorCall(const CXXConstructorDecl *D,
1858                                       Address This, Address Src,
1859                                       const CXXConstructExpr *E);
1860 
1861   void EmitCXXAggrConstructorCall(const CXXConstructorDecl *D,
1862                                   const ConstantArrayType *ArrayTy,
1863                                   Address ArrayPtr,
1864                                   const CXXConstructExpr *E,
1865                                   bool ZeroInitialization = false);
1866 
1867   void EmitCXXAggrConstructorCall(const CXXConstructorDecl *D,
1868                                   llvm::Value *NumElements,
1869                                   Address ArrayPtr,
1870                                   const CXXConstructExpr *E,
1871                                   bool ZeroInitialization = false);
1872 
1873   static Destroyer destroyCXXObject;
1874 
1875   void EmitCXXDestructorCall(const CXXDestructorDecl *D, CXXDtorType Type,
1876                              bool ForVirtualBase, bool Delegating,
1877                              Address This);
1878 
1879   void EmitNewArrayInitializer(const CXXNewExpr *E, QualType elementType,
1880                                llvm::Type *ElementTy, Address NewPtr,
1881                                llvm::Value *NumElements,
1882                                llvm::Value *AllocSizeWithoutCookie);
1883 
1884   void EmitCXXTemporary(const CXXTemporary *Temporary, QualType TempType,
1885                         Address Ptr);
1886 
1887   llvm::Value *EmitLifetimeStart(uint64_t Size, llvm::Value *Addr);
1888   void EmitLifetimeEnd(llvm::Value *Size, llvm::Value *Addr);
1889 
1890   llvm::Value *EmitCXXNewExpr(const CXXNewExpr *E);
1891   void EmitCXXDeleteExpr(const CXXDeleteExpr *E);
1892 
1893   void EmitDeleteCall(const FunctionDecl *DeleteFD, llvm::Value *Ptr,
1894                       QualType DeleteTy);
1895 
1896   RValue EmitBuiltinNewDeleteCall(const FunctionProtoType *Type,
1897                                   const Expr *Arg, bool IsDelete);
1898 
1899   llvm::Value *EmitCXXTypeidExpr(const CXXTypeidExpr *E);
1900   llvm::Value *EmitDynamicCast(Address V, const CXXDynamicCastExpr *DCE);
1901   Address EmitCXXUuidofExpr(const CXXUuidofExpr *E);
1902 
1903   /// \brief Situations in which we might emit a check for the suitability of a
1904   ///        pointer or glvalue.
1905   enum TypeCheckKind {
1906     /// Checking the operand of a load. Must be suitably sized and aligned.
1907     TCK_Load,
1908     /// Checking the destination of a store. Must be suitably sized and aligned.
1909     TCK_Store,
1910     /// Checking the bound value in a reference binding. Must be suitably sized
1911     /// and aligned, but is not required to refer to an object (until the
1912     /// reference is used), per core issue 453.
1913     TCK_ReferenceBinding,
1914     /// Checking the object expression in a non-static data member access. Must
1915     /// be an object within its lifetime.
1916     TCK_MemberAccess,
1917     /// Checking the 'this' pointer for a call to a non-static member function.
1918     /// Must be an object within its lifetime.
1919     TCK_MemberCall,
1920     /// Checking the 'this' pointer for a constructor call.
1921     TCK_ConstructorCall,
1922     /// Checking the operand of a static_cast to a derived pointer type. Must be
1923     /// null or an object within its lifetime.
1924     TCK_DowncastPointer,
1925     /// Checking the operand of a static_cast to a derived reference type. Must
1926     /// be an object within its lifetime.
1927     TCK_DowncastReference,
1928     /// Checking the operand of a cast to a base object. Must be suitably sized
1929     /// and aligned.
1930     TCK_Upcast,
1931     /// Checking the operand of a cast to a virtual base object. Must be an
1932     /// object within its lifetime.
1933     TCK_UpcastToVirtualBase
1934   };
1935 
1936   /// \brief Whether any type-checking sanitizers are enabled. If \c false,
1937   /// calls to EmitTypeCheck can be skipped.
1938   bool sanitizePerformTypeCheck() const;
1939 
1940   /// \brief Emit a check that \p V is the address of storage of the
1941   /// appropriate size and alignment for an object of type \p Type.
1942   void EmitTypeCheck(TypeCheckKind TCK, SourceLocation Loc, llvm::Value *V,
1943                      QualType Type, CharUnits Alignment = CharUnits::Zero(),
1944                      bool SkipNullCheck = false);
1945 
1946   /// \brief Emit a check that \p Base points into an array object, which
1947   /// we can access at index \p Index. \p Accessed should be \c false if we
1948   /// this expression is used as an lvalue, for instance in "&Arr[Idx]".
1949   void EmitBoundsCheck(const Expr *E, const Expr *Base, llvm::Value *Index,
1950                        QualType IndexType, bool Accessed);
1951 
1952   llvm::Value *EmitScalarPrePostIncDec(const UnaryOperator *E, LValue LV,
1953                                        bool isInc, bool isPre);
1954   ComplexPairTy EmitComplexPrePostIncDec(const UnaryOperator *E, LValue LV,
1955                                          bool isInc, bool isPre);
1956 
1957   void EmitAlignmentAssumption(llvm::Value *PtrValue, unsigned Alignment,
1958                                llvm::Value *OffsetValue = nullptr) {
1959     Builder.CreateAlignmentAssumption(CGM.getDataLayout(), PtrValue, Alignment,
1960                                       OffsetValue);
1961   }
1962 
1963   //===--------------------------------------------------------------------===//
1964   //                            Declaration Emission
1965   //===--------------------------------------------------------------------===//
1966 
1967   /// EmitDecl - Emit a declaration.
1968   ///
1969   /// This function can be called with a null (unreachable) insert point.
1970   void EmitDecl(const Decl &D);
1971 
1972   /// EmitVarDecl - Emit a local variable declaration.
1973   ///
1974   /// This function can be called with a null (unreachable) insert point.
1975   void EmitVarDecl(const VarDecl &D);
1976 
1977   void EmitScalarInit(const Expr *init, const ValueDecl *D, LValue lvalue,
1978                       bool capturedByInit);
1979   void EmitScalarInit(llvm::Value *init, LValue lvalue);
1980 
1981   typedef void SpecialInitFn(CodeGenFunction &Init, const VarDecl &D,
1982                              llvm::Value *Address);
1983 
1984   /// \brief Determine whether the given initializer is trivial in the sense
1985   /// that it requires no code to be generated.
1986   bool isTrivialInitializer(const Expr *Init);
1987 
1988   /// EmitAutoVarDecl - Emit an auto variable declaration.
1989   ///
1990   /// This function can be called with a null (unreachable) insert point.
1991   void EmitAutoVarDecl(const VarDecl &D);
1992 
1993   class AutoVarEmission {
1994     friend class CodeGenFunction;
1995 
1996     const VarDecl *Variable;
1997 
1998     /// The address of the alloca.  Invalid if the variable was emitted
1999     /// as a global constant.
2000     Address Addr;
2001 
2002     llvm::Value *NRVOFlag;
2003 
2004     /// True if the variable is a __block variable.
2005     bool IsByRef;
2006 
2007     /// True if the variable is of aggregate type and has a constant
2008     /// initializer.
2009     bool IsConstantAggregate;
2010 
2011     /// Non-null if we should use lifetime annotations.
2012     llvm::Value *SizeForLifetimeMarkers;
2013 
2014     struct Invalid {};
2015     AutoVarEmission(Invalid) : Variable(nullptr), Addr(Address::invalid()) {}
2016 
2017     AutoVarEmission(const VarDecl &variable)
2018       : Variable(&variable), Addr(Address::invalid()), NRVOFlag(nullptr),
2019         IsByRef(false), IsConstantAggregate(false),
2020         SizeForLifetimeMarkers(nullptr) {}
2021 
2022     bool wasEmittedAsGlobal() const { return !Addr.isValid(); }
2023 
2024   public:
2025     static AutoVarEmission invalid() { return AutoVarEmission(Invalid()); }
2026 
2027     bool useLifetimeMarkers() const {
2028       return SizeForLifetimeMarkers != nullptr;
2029     }
2030     llvm::Value *getSizeForLifetimeMarkers() const {
2031       assert(useLifetimeMarkers());
2032       return SizeForLifetimeMarkers;
2033     }
2034 
2035     /// Returns the raw, allocated address, which is not necessarily
2036     /// the address of the object itself.
2037     Address getAllocatedAddress() const {
2038       return Addr;
2039     }
2040 
2041     /// Returns the address of the object within this declaration.
2042     /// Note that this does not chase the forwarding pointer for
2043     /// __block decls.
2044     Address getObjectAddress(CodeGenFunction &CGF) const {
2045       if (!IsByRef) return Addr;
2046 
2047       return CGF.emitBlockByrefAddress(Addr, Variable, /*forward*/ false);
2048     }
2049   };
2050   AutoVarEmission EmitAutoVarAlloca(const VarDecl &var);
2051   void EmitAutoVarInit(const AutoVarEmission &emission);
2052   void EmitAutoVarCleanups(const AutoVarEmission &emission);
2053   void emitAutoVarTypeCleanup(const AutoVarEmission &emission,
2054                               QualType::DestructionKind dtorKind);
2055 
2056   void EmitStaticVarDecl(const VarDecl &D,
2057                          llvm::GlobalValue::LinkageTypes Linkage);
2058 
2059   class ParamValue {
2060     llvm::Value *Value;
2061     unsigned Alignment;
2062     ParamValue(llvm::Value *V, unsigned A) : Value(V), Alignment(A) {}
2063   public:
2064     static ParamValue forDirect(llvm::Value *value) {
2065       return ParamValue(value, 0);
2066     }
2067     static ParamValue forIndirect(Address addr) {
2068       assert(!addr.getAlignment().isZero());
2069       return ParamValue(addr.getPointer(), addr.getAlignment().getQuantity());
2070     }
2071 
2072     bool isIndirect() const { return Alignment != 0; }
2073     llvm::Value *getAnyValue() const { return Value; }
2074 
2075     llvm::Value *getDirectValue() const {
2076       assert(!isIndirect());
2077       return Value;
2078     }
2079 
2080     Address getIndirectAddress() const {
2081       assert(isIndirect());
2082       return Address(Value, CharUnits::fromQuantity(Alignment));
2083     }
2084   };
2085 
2086   /// EmitParmDecl - Emit a ParmVarDecl or an ImplicitParamDecl.
2087   void EmitParmDecl(const VarDecl &D, ParamValue Arg, unsigned ArgNo);
2088 
2089   /// protectFromPeepholes - Protect a value that we're intending to
2090   /// store to the side, but which will probably be used later, from
2091   /// aggressive peepholing optimizations that might delete it.
2092   ///
2093   /// Pass the result to unprotectFromPeepholes to declare that
2094   /// protection is no longer required.
2095   ///
2096   /// There's no particular reason why this shouldn't apply to
2097   /// l-values, it's just that no existing peepholes work on pointers.
2098   PeepholeProtection protectFromPeepholes(RValue rvalue);
2099   void unprotectFromPeepholes(PeepholeProtection protection);
2100 
2101   //===--------------------------------------------------------------------===//
2102   //                             Statement Emission
2103   //===--------------------------------------------------------------------===//
2104 
2105   /// EmitStopPoint - Emit a debug stoppoint if we are emitting debug info.
2106   void EmitStopPoint(const Stmt *S);
2107 
2108   /// EmitStmt - Emit the code for the statement \arg S. It is legal to call
2109   /// this function even if there is no current insertion point.
2110   ///
2111   /// This function may clear the current insertion point; callers should use
2112   /// EnsureInsertPoint if they wish to subsequently generate code without first
2113   /// calling EmitBlock, EmitBranch, or EmitStmt.
2114   void EmitStmt(const Stmt *S);
2115 
2116   /// EmitSimpleStmt - Try to emit a "simple" statement which does not
2117   /// necessarily require an insertion point or debug information; typically
2118   /// because the statement amounts to a jump or a container of other
2119   /// statements.
2120   ///
2121   /// \return True if the statement was handled.
2122   bool EmitSimpleStmt(const Stmt *S);
2123 
2124   Address EmitCompoundStmt(const CompoundStmt &S, bool GetLast = false,
2125                            AggValueSlot AVS = AggValueSlot::ignored());
2126   Address EmitCompoundStmtWithoutScope(const CompoundStmt &S,
2127                                        bool GetLast = false,
2128                                        AggValueSlot AVS =
2129                                                 AggValueSlot::ignored());
2130 
2131   /// EmitLabel - Emit the block for the given label. It is legal to call this
2132   /// function even if there is no current insertion point.
2133   void EmitLabel(const LabelDecl *D); // helper for EmitLabelStmt.
2134 
2135   void EmitLabelStmt(const LabelStmt &S);
2136   void EmitAttributedStmt(const AttributedStmt &S);
2137   void EmitGotoStmt(const GotoStmt &S);
2138   void EmitIndirectGotoStmt(const IndirectGotoStmt &S);
2139   void EmitIfStmt(const IfStmt &S);
2140 
2141   void EmitWhileStmt(const WhileStmt &S,
2142                      ArrayRef<const Attr *> Attrs = None);
2143   void EmitDoStmt(const DoStmt &S, ArrayRef<const Attr *> Attrs = None);
2144   void EmitForStmt(const ForStmt &S,
2145                    ArrayRef<const Attr *> Attrs = None);
2146   void EmitReturnStmt(const ReturnStmt &S);
2147   void EmitDeclStmt(const DeclStmt &S);
2148   void EmitBreakStmt(const BreakStmt &S);
2149   void EmitContinueStmt(const ContinueStmt &S);
2150   void EmitSwitchStmt(const SwitchStmt &S);
2151   void EmitDefaultStmt(const DefaultStmt &S);
2152   void EmitCaseStmt(const CaseStmt &S);
2153   void EmitCaseStmtRange(const CaseStmt &S);
2154   void EmitAsmStmt(const AsmStmt &S);
2155 
2156   void EmitObjCForCollectionStmt(const ObjCForCollectionStmt &S);
2157   void EmitObjCAtTryStmt(const ObjCAtTryStmt &S);
2158   void EmitObjCAtThrowStmt(const ObjCAtThrowStmt &S);
2159   void EmitObjCAtSynchronizedStmt(const ObjCAtSynchronizedStmt &S);
2160   void EmitObjCAutoreleasePoolStmt(const ObjCAutoreleasePoolStmt &S);
2161 
2162   void EnterCXXTryStmt(const CXXTryStmt &S, bool IsFnTryBlock = false);
2163   void ExitCXXTryStmt(const CXXTryStmt &S, bool IsFnTryBlock = false);
2164 
2165   void EmitCXXTryStmt(const CXXTryStmt &S);
2166   void EmitSEHTryStmt(const SEHTryStmt &S);
2167   void EmitSEHLeaveStmt(const SEHLeaveStmt &S);
2168   void EnterSEHTryStmt(const SEHTryStmt &S);
2169   void ExitSEHTryStmt(const SEHTryStmt &S);
2170 
2171   void startOutlinedSEHHelper(CodeGenFunction &ParentCGF, bool IsFilter,
2172                               const Stmt *OutlinedStmt);
2173 
2174   llvm::Function *GenerateSEHFilterFunction(CodeGenFunction &ParentCGF,
2175                                             const SEHExceptStmt &Except);
2176 
2177   llvm::Function *GenerateSEHFinallyFunction(CodeGenFunction &ParentCGF,
2178                                              const SEHFinallyStmt &Finally);
2179 
2180   void EmitSEHExceptionCodeSave(CodeGenFunction &ParentCGF,
2181                                 llvm::Value *ParentFP,
2182                                 llvm::Value *EntryEBP);
2183   llvm::Value *EmitSEHExceptionCode();
2184   llvm::Value *EmitSEHExceptionInfo();
2185   llvm::Value *EmitSEHAbnormalTermination();
2186 
2187   /// Scan the outlined statement for captures from the parent function. For
2188   /// each capture, mark the capture as escaped and emit a call to
2189   /// llvm.localrecover. Insert the localrecover result into the LocalDeclMap.
2190   void EmitCapturedLocals(CodeGenFunction &ParentCGF, const Stmt *OutlinedStmt,
2191                           bool IsFilter);
2192 
2193   /// Recovers the address of a local in a parent function. ParentVar is the
2194   /// address of the variable used in the immediate parent function. It can
2195   /// either be an alloca or a call to llvm.localrecover if there are nested
2196   /// outlined functions. ParentFP is the frame pointer of the outermost parent
2197   /// frame.
2198   Address recoverAddrOfEscapedLocal(CodeGenFunction &ParentCGF,
2199                                     Address ParentVar,
2200                                     llvm::Value *ParentFP);
2201 
2202   void EmitCXXForRangeStmt(const CXXForRangeStmt &S,
2203                            ArrayRef<const Attr *> Attrs = None);
2204 
2205   LValue InitCapturedStruct(const CapturedStmt &S);
2206   llvm::Function *EmitCapturedStmt(const CapturedStmt &S, CapturedRegionKind K);
2207   llvm::Function *GenerateCapturedStmtFunction(const CapturedStmt &S);
2208   Address GenerateCapturedStmtArgument(const CapturedStmt &S);
2209   llvm::Function *GenerateOpenMPCapturedStmtFunction(const CapturedStmt &S);
2210   void GenerateOpenMPCapturedVars(const CapturedStmt &S,
2211                                   SmallVectorImpl<llvm::Value *> &CapturedVars);
2212   /// \brief Perform element by element copying of arrays with type \a
2213   /// OriginalType from \a SrcAddr to \a DestAddr using copying procedure
2214   /// generated by \a CopyGen.
2215   ///
2216   /// \param DestAddr Address of the destination array.
2217   /// \param SrcAddr Address of the source array.
2218   /// \param OriginalType Type of destination and source arrays.
2219   /// \param CopyGen Copying procedure that copies value of single array element
2220   /// to another single array element.
2221   void EmitOMPAggregateAssign(
2222       Address DestAddr, Address SrcAddr, QualType OriginalType,
2223       const llvm::function_ref<void(Address, Address)> &CopyGen);
2224   /// \brief Emit proper copying of data from one variable to another.
2225   ///
2226   /// \param OriginalType Original type of the copied variables.
2227   /// \param DestAddr Destination address.
2228   /// \param SrcAddr Source address.
2229   /// \param DestVD Destination variable used in \a CopyExpr (for arrays, has
2230   /// type of the base array element).
2231   /// \param SrcVD Source variable used in \a CopyExpr (for arrays, has type of
2232   /// the base array element).
2233   /// \param Copy Actual copygin expression for copying data from \a SrcVD to \a
2234   /// DestVD.
2235   void EmitOMPCopy(QualType OriginalType,
2236                    Address DestAddr, Address SrcAddr,
2237                    const VarDecl *DestVD, const VarDecl *SrcVD,
2238                    const Expr *Copy);
2239   /// \brief Emit atomic update code for constructs: \a X = \a X \a BO \a E or
2240   /// \a X = \a E \a BO \a E.
2241   ///
2242   /// \param X Value to be updated.
2243   /// \param E Update value.
2244   /// \param BO Binary operation for update operation.
2245   /// \param IsXLHSInRHSPart true if \a X is LHS in RHS part of the update
2246   /// expression, false otherwise.
2247   /// \param AO Atomic ordering of the generated atomic instructions.
2248   /// \param CommonGen Code generator for complex expressions that cannot be
2249   /// expressed through atomicrmw instruction.
2250   /// \returns <true, OldAtomicValue> if simple 'atomicrmw' instruction was
2251   /// generated, <false, RValue::get(nullptr)> otherwise.
2252   std::pair<bool, RValue> EmitOMPAtomicSimpleUpdateExpr(
2253       LValue X, RValue E, BinaryOperatorKind BO, bool IsXLHSInRHSPart,
2254       llvm::AtomicOrdering AO, SourceLocation Loc,
2255       const llvm::function_ref<RValue(RValue)> &CommonGen);
2256   bool EmitOMPFirstprivateClause(const OMPExecutableDirective &D,
2257                                  OMPPrivateScope &PrivateScope);
2258   void EmitOMPPrivateClause(const OMPExecutableDirective &D,
2259                             OMPPrivateScope &PrivateScope);
2260   /// \brief Emit code for copyin clause in \a D directive. The next code is
2261   /// generated at the start of outlined functions for directives:
2262   /// \code
2263   /// threadprivate_var1 = master_threadprivate_var1;
2264   /// operator=(threadprivate_var2, master_threadprivate_var2);
2265   /// ...
2266   /// __kmpc_barrier(&loc, global_tid);
2267   /// \endcode
2268   ///
2269   /// \param D OpenMP directive possibly with 'copyin' clause(s).
2270   /// \returns true if at least one copyin variable is found, false otherwise.
2271   bool EmitOMPCopyinClause(const OMPExecutableDirective &D);
2272   /// \brief Emit initial code for lastprivate variables. If some variable is
2273   /// not also firstprivate, then the default initialization is used. Otherwise
2274   /// initialization of this variable is performed by EmitOMPFirstprivateClause
2275   /// method.
2276   ///
2277   /// \param D Directive that may have 'lastprivate' directives.
2278   /// \param PrivateScope Private scope for capturing lastprivate variables for
2279   /// proper codegen in internal captured statement.
2280   ///
2281   /// \returns true if there is at least one lastprivate variable, false
2282   /// otherwise.
2283   bool EmitOMPLastprivateClauseInit(const OMPExecutableDirective &D,
2284                                     OMPPrivateScope &PrivateScope);
2285   /// \brief Emit final copying of lastprivate values to original variables at
2286   /// the end of the worksharing or simd directive.
2287   ///
2288   /// \param D Directive that has at least one 'lastprivate' directives.
2289   /// \param IsLastIterCond Boolean condition that must be set to 'i1 true' if
2290   /// it is the last iteration of the loop code in associated directive, or to
2291   /// 'i1 false' otherwise. If this item is nullptr, no final check is required.
2292   void EmitOMPLastprivateClauseFinal(const OMPExecutableDirective &D,
2293                                      llvm::Value *IsLastIterCond = nullptr);
2294   /// \brief Emit initial code for reduction variables. Creates reduction copies
2295   /// and initializes them with the values according to OpenMP standard.
2296   ///
2297   /// \param D Directive (possibly) with the 'reduction' clause.
2298   /// \param PrivateScope Private scope for capturing reduction variables for
2299   /// proper codegen in internal captured statement.
2300   ///
2301   void EmitOMPReductionClauseInit(const OMPExecutableDirective &D,
2302                                   OMPPrivateScope &PrivateScope);
2303   /// \brief Emit final update of reduction values to original variables at
2304   /// the end of the directive.
2305   ///
2306   /// \param D Directive that has at least one 'reduction' directives.
2307   void EmitOMPReductionClauseFinal(const OMPExecutableDirective &D);
2308   /// \brief Emit initial code for linear variables. Creates private copies
2309   /// and initializes them with the values according to OpenMP standard.
2310   ///
2311   /// \param D Directive (possibly) with the 'linear' clause.
2312   void EmitOMPLinearClauseInit(const OMPLoopDirective &D);
2313 
2314   void EmitOMPParallelDirective(const OMPParallelDirective &S);
2315   void EmitOMPSimdDirective(const OMPSimdDirective &S);
2316   void EmitOMPForDirective(const OMPForDirective &S);
2317   void EmitOMPForSimdDirective(const OMPForSimdDirective &S);
2318   void EmitOMPSectionsDirective(const OMPSectionsDirective &S);
2319   void EmitOMPSectionDirective(const OMPSectionDirective &S);
2320   void EmitOMPSingleDirective(const OMPSingleDirective &S);
2321   void EmitOMPMasterDirective(const OMPMasterDirective &S);
2322   void EmitOMPCriticalDirective(const OMPCriticalDirective &S);
2323   void EmitOMPParallelForDirective(const OMPParallelForDirective &S);
2324   void EmitOMPParallelForSimdDirective(const OMPParallelForSimdDirective &S);
2325   void EmitOMPParallelSectionsDirective(const OMPParallelSectionsDirective &S);
2326   void EmitOMPTaskDirective(const OMPTaskDirective &S);
2327   void EmitOMPTaskyieldDirective(const OMPTaskyieldDirective &S);
2328   void EmitOMPBarrierDirective(const OMPBarrierDirective &S);
2329   void EmitOMPTaskwaitDirective(const OMPTaskwaitDirective &S);
2330   void EmitOMPTaskgroupDirective(const OMPTaskgroupDirective &S);
2331   void EmitOMPFlushDirective(const OMPFlushDirective &S);
2332   void EmitOMPOrderedDirective(const OMPOrderedDirective &S);
2333   void EmitOMPAtomicDirective(const OMPAtomicDirective &S);
2334   void EmitOMPTargetDirective(const OMPTargetDirective &S);
2335   void EmitOMPTargetDataDirective(const OMPTargetDataDirective &S);
2336   void EmitOMPTeamsDirective(const OMPTeamsDirective &S);
2337   void
2338   EmitOMPCancellationPointDirective(const OMPCancellationPointDirective &S);
2339   void EmitOMPCancelDirective(const OMPCancelDirective &S);
2340 
2341   /// \brief Emit inner loop of the worksharing/simd construct.
2342   ///
2343   /// \param S Directive, for which the inner loop must be emitted.
2344   /// \param RequiresCleanup true, if directive has some associated private
2345   /// variables.
2346   /// \param LoopCond Bollean condition for loop continuation.
2347   /// \param IncExpr Increment expression for loop control variable.
2348   /// \param BodyGen Generator for the inner body of the inner loop.
2349   /// \param PostIncGen Genrator for post-increment code (required for ordered
2350   /// loop directvies).
2351   void EmitOMPInnerLoop(
2352       const Stmt &S, bool RequiresCleanup, const Expr *LoopCond,
2353       const Expr *IncExpr,
2354       const llvm::function_ref<void(CodeGenFunction &)> &BodyGen,
2355       const llvm::function_ref<void(CodeGenFunction &)> &PostIncGen);
2356 
2357   JumpDest getOMPCancelDestination(OpenMPDirectiveKind Kind);
2358 
2359 private:
2360 
2361   /// Helpers for the OpenMP loop directives.
2362   void EmitOMPLoopBody(const OMPLoopDirective &D, JumpDest LoopExit);
2363   void EmitOMPSimdInit(const OMPLoopDirective &D);
2364   void EmitOMPSimdFinal(const OMPLoopDirective &D);
2365   /// \brief Emit code for the worksharing loop-based directive.
2366   /// \return true, if this construct has any lastprivate clause, false -
2367   /// otherwise.
2368   bool EmitOMPWorksharingLoop(const OMPLoopDirective &S);
2369   void EmitOMPForOuterLoop(OpenMPScheduleClauseKind ScheduleKind,
2370                            const OMPLoopDirective &S,
2371                            OMPPrivateScope &LoopScope, bool Ordered,
2372                            Address LB, Address UB, Address ST,
2373                            Address IL, llvm::Value *Chunk);
2374   /// \brief Emit code for sections directive.
2375   OpenMPDirectiveKind EmitSections(const OMPExecutableDirective &S);
2376 
2377 public:
2378 
2379   //===--------------------------------------------------------------------===//
2380   //                         LValue Expression Emission
2381   //===--------------------------------------------------------------------===//
2382 
2383   /// GetUndefRValue - Get an appropriate 'undef' rvalue for the given type.
2384   RValue GetUndefRValue(QualType Ty);
2385 
2386   /// EmitUnsupportedRValue - Emit a dummy r-value using the type of E
2387   /// and issue an ErrorUnsupported style diagnostic (using the
2388   /// provided Name).
2389   RValue EmitUnsupportedRValue(const Expr *E,
2390                                const char *Name);
2391 
2392   /// EmitUnsupportedLValue - Emit a dummy l-value using the type of E and issue
2393   /// an ErrorUnsupported style diagnostic (using the provided Name).
2394   LValue EmitUnsupportedLValue(const Expr *E,
2395                                const char *Name);
2396 
2397   /// EmitLValue - Emit code to compute a designator that specifies the location
2398   /// of the expression.
2399   ///
2400   /// This can return one of two things: a simple address or a bitfield
2401   /// reference.  In either case, the LLVM Value* in the LValue structure is
2402   /// guaranteed to be an LLVM pointer type.
2403   ///
2404   /// If this returns a bitfield reference, nothing about the pointee type of
2405   /// the LLVM value is known: For example, it may not be a pointer to an
2406   /// integer.
2407   ///
2408   /// If this returns a normal address, and if the lvalue's C type is fixed
2409   /// size, this method guarantees that the returned pointer type will point to
2410   /// an LLVM type of the same size of the lvalue's type.  If the lvalue has a
2411   /// variable length type, this is not possible.
2412   ///
2413   LValue EmitLValue(const Expr *E);
2414 
2415   /// \brief Same as EmitLValue but additionally we generate checking code to
2416   /// guard against undefined behavior.  This is only suitable when we know
2417   /// that the address will be used to access the object.
2418   LValue EmitCheckedLValue(const Expr *E, TypeCheckKind TCK);
2419 
2420   RValue convertTempToRValue(Address addr, QualType type,
2421                              SourceLocation Loc);
2422 
2423   void EmitAtomicInit(Expr *E, LValue lvalue);
2424 
2425   bool LValueIsSuitableForInlineAtomic(LValue Src);
2426   bool typeIsSuitableForInlineAtomic(QualType Ty, bool IsVolatile) const;
2427 
2428   RValue EmitAtomicLoad(LValue LV, SourceLocation SL,
2429                         AggValueSlot Slot = AggValueSlot::ignored());
2430 
2431   RValue EmitAtomicLoad(LValue lvalue, SourceLocation loc,
2432                         llvm::AtomicOrdering AO, bool IsVolatile = false,
2433                         AggValueSlot slot = AggValueSlot::ignored());
2434 
2435   void EmitAtomicStore(RValue rvalue, LValue lvalue, bool isInit);
2436 
2437   void EmitAtomicStore(RValue rvalue, LValue lvalue, llvm::AtomicOrdering AO,
2438                        bool IsVolatile, bool isInit);
2439 
2440   std::pair<RValue, llvm::Value *> EmitAtomicCompareExchange(
2441       LValue Obj, RValue Expected, RValue Desired, SourceLocation Loc,
2442       llvm::AtomicOrdering Success = llvm::SequentiallyConsistent,
2443       llvm::AtomicOrdering Failure = llvm::SequentiallyConsistent,
2444       bool IsWeak = false, AggValueSlot Slot = AggValueSlot::ignored());
2445 
2446   void EmitAtomicUpdate(LValue LVal, llvm::AtomicOrdering AO,
2447                         const llvm::function_ref<RValue(RValue)> &UpdateOp,
2448                         bool IsVolatile);
2449 
2450   /// EmitToMemory - Change a scalar value from its value
2451   /// representation to its in-memory representation.
2452   llvm::Value *EmitToMemory(llvm::Value *Value, QualType Ty);
2453 
2454   /// EmitFromMemory - Change a scalar value from its memory
2455   /// representation to its value representation.
2456   llvm::Value *EmitFromMemory(llvm::Value *Value, QualType Ty);
2457 
2458   /// EmitLoadOfScalar - Load a scalar value from an address, taking
2459   /// care to appropriately convert from the memory representation to
2460   /// the LLVM value representation.
2461   llvm::Value *EmitLoadOfScalar(Address Addr, bool Volatile, QualType Ty,
2462                                 SourceLocation Loc,
2463                                 AlignmentSource AlignSource =
2464                                   AlignmentSource::Type,
2465                                 llvm::MDNode *TBAAInfo = nullptr,
2466                                 QualType TBAABaseTy = QualType(),
2467                                 uint64_t TBAAOffset = 0,
2468                                 bool isNontemporal = false);
2469 
2470   /// EmitLoadOfScalar - Load a scalar value from an address, taking
2471   /// care to appropriately convert from the memory representation to
2472   /// the LLVM value representation.  The l-value must be a simple
2473   /// l-value.
2474   llvm::Value *EmitLoadOfScalar(LValue lvalue, SourceLocation Loc);
2475 
2476   /// EmitStoreOfScalar - Store a scalar value to an address, taking
2477   /// care to appropriately convert from the memory representation to
2478   /// the LLVM value representation.
2479   void EmitStoreOfScalar(llvm::Value *Value, Address Addr,
2480                          bool Volatile, QualType Ty,
2481                          AlignmentSource AlignSource = AlignmentSource::Type,
2482                          llvm::MDNode *TBAAInfo = nullptr, bool isInit = false,
2483                          QualType TBAABaseTy = QualType(),
2484                          uint64_t TBAAOffset = 0, bool isNontemporal = false);
2485 
2486   /// EmitStoreOfScalar - Store a scalar value to an address, taking
2487   /// care to appropriately convert from the memory representation to
2488   /// the LLVM value representation.  The l-value must be a simple
2489   /// l-value.  The isInit flag indicates whether this is an initialization.
2490   /// If so, atomic qualifiers are ignored and the store is always non-atomic.
2491   void EmitStoreOfScalar(llvm::Value *value, LValue lvalue, bool isInit=false);
2492 
2493   /// EmitLoadOfLValue - Given an expression that represents a value lvalue,
2494   /// this method emits the address of the lvalue, then loads the result as an
2495   /// rvalue, returning the rvalue.
2496   RValue EmitLoadOfLValue(LValue V, SourceLocation Loc);
2497   RValue EmitLoadOfExtVectorElementLValue(LValue V);
2498   RValue EmitLoadOfBitfieldLValue(LValue LV);
2499   RValue EmitLoadOfGlobalRegLValue(LValue LV);
2500 
2501   /// EmitStoreThroughLValue - Store the specified rvalue into the specified
2502   /// lvalue, where both are guaranteed to the have the same type, and that type
2503   /// is 'Ty'.
2504   void EmitStoreThroughLValue(RValue Src, LValue Dst, bool isInit = false);
2505   void EmitStoreThroughExtVectorComponentLValue(RValue Src, LValue Dst);
2506   void EmitStoreThroughGlobalRegLValue(RValue Src, LValue Dst);
2507 
2508   /// EmitStoreThroughBitfieldLValue - Store Src into Dst with same constraints
2509   /// as EmitStoreThroughLValue.
2510   ///
2511   /// \param Result [out] - If non-null, this will be set to a Value* for the
2512   /// bit-field contents after the store, appropriate for use as the result of
2513   /// an assignment to the bit-field.
2514   void EmitStoreThroughBitfieldLValue(RValue Src, LValue Dst,
2515                                       llvm::Value **Result=nullptr);
2516 
2517   /// Emit an l-value for an assignment (simple or compound) of complex type.
2518   LValue EmitComplexAssignmentLValue(const BinaryOperator *E);
2519   LValue EmitComplexCompoundAssignmentLValue(const CompoundAssignOperator *E);
2520   LValue EmitScalarCompoundAssignWithComplex(const CompoundAssignOperator *E,
2521                                              llvm::Value *&Result);
2522 
2523   // Note: only available for agg return types
2524   LValue EmitBinaryOperatorLValue(const BinaryOperator *E);
2525   LValue EmitCompoundAssignmentLValue(const CompoundAssignOperator *E);
2526   // Note: only available for agg return types
2527   LValue EmitCallExprLValue(const CallExpr *E);
2528   // Note: only available for agg return types
2529   LValue EmitVAArgExprLValue(const VAArgExpr *E);
2530   LValue EmitDeclRefLValue(const DeclRefExpr *E);
2531   LValue EmitReadRegister(const VarDecl *VD);
2532   LValue EmitStringLiteralLValue(const StringLiteral *E);
2533   LValue EmitObjCEncodeExprLValue(const ObjCEncodeExpr *E);
2534   LValue EmitPredefinedLValue(const PredefinedExpr *E);
2535   LValue EmitUnaryOpLValue(const UnaryOperator *E);
2536   LValue EmitArraySubscriptExpr(const ArraySubscriptExpr *E,
2537                                 bool Accessed = false);
2538   LValue EmitOMPArraySectionExpr(const OMPArraySectionExpr *E,
2539                                  bool IsLowerBound = true);
2540   LValue EmitExtVectorElementExpr(const ExtVectorElementExpr *E);
2541   LValue EmitMemberExpr(const MemberExpr *E);
2542   LValue EmitObjCIsaExpr(const ObjCIsaExpr *E);
2543   LValue EmitCompoundLiteralLValue(const CompoundLiteralExpr *E);
2544   LValue EmitInitListLValue(const InitListExpr *E);
2545   LValue EmitConditionalOperatorLValue(const AbstractConditionalOperator *E);
2546   LValue EmitCastLValue(const CastExpr *E);
2547   LValue EmitMaterializeTemporaryExpr(const MaterializeTemporaryExpr *E);
2548   LValue EmitOpaqueValueLValue(const OpaqueValueExpr *e);
2549 
2550   Address EmitExtVectorElementLValue(LValue V);
2551 
2552   RValue EmitRValueForField(LValue LV, const FieldDecl *FD, SourceLocation Loc);
2553 
2554   Address EmitArrayToPointerDecay(const Expr *Array,
2555                                   AlignmentSource *AlignSource = nullptr);
2556 
2557   class ConstantEmission {
2558     llvm::PointerIntPair<llvm::Constant*, 1, bool> ValueAndIsReference;
2559     ConstantEmission(llvm::Constant *C, bool isReference)
2560       : ValueAndIsReference(C, isReference) {}
2561   public:
2562     ConstantEmission() {}
2563     static ConstantEmission forReference(llvm::Constant *C) {
2564       return ConstantEmission(C, true);
2565     }
2566     static ConstantEmission forValue(llvm::Constant *C) {
2567       return ConstantEmission(C, false);
2568     }
2569 
2570     explicit operator bool() const {
2571       return ValueAndIsReference.getOpaqueValue() != nullptr;
2572     }
2573 
2574     bool isReference() const { return ValueAndIsReference.getInt(); }
2575     LValue getReferenceLValue(CodeGenFunction &CGF, Expr *refExpr) const {
2576       assert(isReference());
2577       return CGF.MakeNaturalAlignAddrLValue(ValueAndIsReference.getPointer(),
2578                                             refExpr->getType());
2579     }
2580 
2581     llvm::Constant *getValue() const {
2582       assert(!isReference());
2583       return ValueAndIsReference.getPointer();
2584     }
2585   };
2586 
2587   ConstantEmission tryEmitAsConstant(DeclRefExpr *refExpr);
2588 
2589   RValue EmitPseudoObjectRValue(const PseudoObjectExpr *e,
2590                                 AggValueSlot slot = AggValueSlot::ignored());
2591   LValue EmitPseudoObjectLValue(const PseudoObjectExpr *e);
2592 
2593   llvm::Value *EmitIvarOffset(const ObjCInterfaceDecl *Interface,
2594                               const ObjCIvarDecl *Ivar);
2595   LValue EmitLValueForField(LValue Base, const FieldDecl* Field);
2596   LValue EmitLValueForLambdaField(const FieldDecl *Field);
2597 
2598   /// EmitLValueForFieldInitialization - Like EmitLValueForField, except that
2599   /// if the Field is a reference, this will return the address of the reference
2600   /// and not the address of the value stored in the reference.
2601   LValue EmitLValueForFieldInitialization(LValue Base,
2602                                           const FieldDecl* Field);
2603 
2604   LValue EmitLValueForIvar(QualType ObjectTy,
2605                            llvm::Value* Base, const ObjCIvarDecl *Ivar,
2606                            unsigned CVRQualifiers);
2607 
2608   LValue EmitCXXConstructLValue(const CXXConstructExpr *E);
2609   LValue EmitCXXBindTemporaryLValue(const CXXBindTemporaryExpr *E);
2610   LValue EmitLambdaLValue(const LambdaExpr *E);
2611   LValue EmitCXXTypeidLValue(const CXXTypeidExpr *E);
2612   LValue EmitCXXUuidofLValue(const CXXUuidofExpr *E);
2613 
2614   LValue EmitObjCMessageExprLValue(const ObjCMessageExpr *E);
2615   LValue EmitObjCIvarRefLValue(const ObjCIvarRefExpr *E);
2616   LValue EmitStmtExprLValue(const StmtExpr *E);
2617   LValue EmitPointerToDataMemberBinaryExpr(const BinaryOperator *E);
2618   LValue EmitObjCSelectorLValue(const ObjCSelectorExpr *E);
2619   void   EmitDeclRefExprDbgValue(const DeclRefExpr *E, llvm::Constant *Init);
2620 
2621   //===--------------------------------------------------------------------===//
2622   //                         Scalar Expression Emission
2623   //===--------------------------------------------------------------------===//
2624 
2625   /// EmitCall - Generate a call of the given function, expecting the given
2626   /// result type, and using the given argument list which specifies both the
2627   /// LLVM arguments and the types they were derived from.
2628   ///
2629   /// \param TargetDecl - If given, the decl of the function in a direct call;
2630   /// used to set attributes on the call (noreturn, etc.).
2631   RValue EmitCall(const CGFunctionInfo &FnInfo,
2632                   llvm::Value *Callee,
2633                   ReturnValueSlot ReturnValue,
2634                   const CallArgList &Args,
2635                   const Decl *TargetDecl = nullptr,
2636                   llvm::Instruction **callOrInvoke = nullptr);
2637 
2638   RValue EmitCall(QualType FnType, llvm::Value *Callee, const CallExpr *E,
2639                   ReturnValueSlot ReturnValue,
2640                   const Decl *TargetDecl = nullptr,
2641                   llvm::Value *Chain = nullptr);
2642   RValue EmitCallExpr(const CallExpr *E,
2643                       ReturnValueSlot ReturnValue = ReturnValueSlot());
2644 
2645   llvm::CallInst *EmitRuntimeCall(llvm::Value *callee,
2646                                   const Twine &name = "");
2647   llvm::CallInst *EmitRuntimeCall(llvm::Value *callee,
2648                                   ArrayRef<llvm::Value*> args,
2649                                   const Twine &name = "");
2650   llvm::CallInst *EmitNounwindRuntimeCall(llvm::Value *callee,
2651                                           const Twine &name = "");
2652   llvm::CallInst *EmitNounwindRuntimeCall(llvm::Value *callee,
2653                                           ArrayRef<llvm::Value*> args,
2654                                           const Twine &name = "");
2655 
2656   llvm::CallSite EmitCallOrInvoke(llvm::Value *Callee,
2657                                   ArrayRef<llvm::Value *> Args,
2658                                   const Twine &Name = "");
2659   llvm::CallSite EmitCallOrInvoke(llvm::Value *Callee,
2660                                   const Twine &Name = "");
2661   llvm::CallSite EmitRuntimeCallOrInvoke(llvm::Value *callee,
2662                                          ArrayRef<llvm::Value*> args,
2663                                          const Twine &name = "");
2664   llvm::CallSite EmitRuntimeCallOrInvoke(llvm::Value *callee,
2665                                          const Twine &name = "");
2666   void EmitNoreturnRuntimeCallOrInvoke(llvm::Value *callee,
2667                                        ArrayRef<llvm::Value*> args);
2668 
2669   llvm::Value *BuildAppleKextVirtualCall(const CXXMethodDecl *MD,
2670                                          NestedNameSpecifier *Qual,
2671                                          llvm::Type *Ty);
2672 
2673   llvm::Value *BuildAppleKextVirtualDestructorCall(const CXXDestructorDecl *DD,
2674                                                    CXXDtorType Type,
2675                                                    const CXXRecordDecl *RD);
2676 
2677   RValue
2678   EmitCXXMemberOrOperatorCall(const CXXMethodDecl *MD, llvm::Value *Callee,
2679                               ReturnValueSlot ReturnValue, llvm::Value *This,
2680                               llvm::Value *ImplicitParam,
2681                               QualType ImplicitParamTy, const CallExpr *E);
2682   RValue EmitCXXStructorCall(const CXXMethodDecl *MD, llvm::Value *Callee,
2683                              ReturnValueSlot ReturnValue, llvm::Value *This,
2684                              llvm::Value *ImplicitParam,
2685                              QualType ImplicitParamTy, const CallExpr *E,
2686                              StructorType Type);
2687   RValue EmitCXXMemberCallExpr(const CXXMemberCallExpr *E,
2688                                ReturnValueSlot ReturnValue);
2689   RValue EmitCXXMemberOrOperatorMemberCallExpr(const CallExpr *CE,
2690                                                const CXXMethodDecl *MD,
2691                                                ReturnValueSlot ReturnValue,
2692                                                bool HasQualifier,
2693                                                NestedNameSpecifier *Qualifier,
2694                                                bool IsArrow, const Expr *Base);
2695   // Compute the object pointer.
2696   Address EmitCXXMemberDataPointerAddress(const Expr *E, Address base,
2697                                           llvm::Value *memberPtr,
2698                                           const MemberPointerType *memberPtrType,
2699                                           AlignmentSource *AlignSource = nullptr);
2700   RValue EmitCXXMemberPointerCallExpr(const CXXMemberCallExpr *E,
2701                                       ReturnValueSlot ReturnValue);
2702 
2703   RValue EmitCXXOperatorMemberCallExpr(const CXXOperatorCallExpr *E,
2704                                        const CXXMethodDecl *MD,
2705                                        ReturnValueSlot ReturnValue);
2706 
2707   RValue EmitCUDAKernelCallExpr(const CUDAKernelCallExpr *E,
2708                                 ReturnValueSlot ReturnValue);
2709 
2710 
2711   RValue EmitBuiltinExpr(const FunctionDecl *FD,
2712                          unsigned BuiltinID, const CallExpr *E,
2713                          ReturnValueSlot ReturnValue);
2714 
2715   RValue EmitBlockCallExpr(const CallExpr *E, ReturnValueSlot ReturnValue);
2716 
2717   /// EmitTargetBuiltinExpr - Emit the given builtin call. Returns 0 if the call
2718   /// is unhandled by the current target.
2719   llvm::Value *EmitTargetBuiltinExpr(unsigned BuiltinID, const CallExpr *E);
2720 
2721   llvm::Value *EmitAArch64CompareBuiltinExpr(llvm::Value *Op, llvm::Type *Ty,
2722                                              const llvm::CmpInst::Predicate Fp,
2723                                              const llvm::CmpInst::Predicate Ip,
2724                                              const llvm::Twine &Name = "");
2725   llvm::Value *EmitARMBuiltinExpr(unsigned BuiltinID, const CallExpr *E);
2726 
2727   llvm::Value *EmitCommonNeonBuiltinExpr(unsigned BuiltinID,
2728                                          unsigned LLVMIntrinsic,
2729                                          unsigned AltLLVMIntrinsic,
2730                                          const char *NameHint,
2731                                          unsigned Modifier,
2732                                          const CallExpr *E,
2733                                          SmallVectorImpl<llvm::Value *> &Ops,
2734                                          Address PtrOp0, Address PtrOp1);
2735   llvm::Function *LookupNeonLLVMIntrinsic(unsigned IntrinsicID,
2736                                           unsigned Modifier, llvm::Type *ArgTy,
2737                                           const CallExpr *E);
2738   llvm::Value *EmitNeonCall(llvm::Function *F,
2739                             SmallVectorImpl<llvm::Value*> &O,
2740                             const char *name,
2741                             unsigned shift = 0, bool rightshift = false);
2742   llvm::Value *EmitNeonSplat(llvm::Value *V, llvm::Constant *Idx);
2743   llvm::Value *EmitNeonShiftVector(llvm::Value *V, llvm::Type *Ty,
2744                                    bool negateForRightShift);
2745   llvm::Value *EmitNeonRShiftImm(llvm::Value *Vec, llvm::Value *Amt,
2746                                  llvm::Type *Ty, bool usgn, const char *name);
2747   // Helper functions for EmitAArch64BuiltinExpr.
2748   llvm::Value *vectorWrapScalar8(llvm::Value *Op);
2749   llvm::Value *vectorWrapScalar16(llvm::Value *Op);
2750   llvm::Value *EmitAArch64BuiltinExpr(unsigned BuiltinID, const CallExpr *E);
2751 
2752   llvm::Value *BuildVector(ArrayRef<llvm::Value*> Ops);
2753   llvm::Value *EmitX86BuiltinExpr(unsigned BuiltinID, const CallExpr *E);
2754   llvm::Value *EmitPPCBuiltinExpr(unsigned BuiltinID, const CallExpr *E);
2755   llvm::Value *EmitAMDGPUBuiltinExpr(unsigned BuiltinID, const CallExpr *E);
2756   llvm::Value *EmitSystemZBuiltinExpr(unsigned BuiltinID, const CallExpr *E);
2757   llvm::Value *EmitNVPTXBuiltinExpr(unsigned BuiltinID, const CallExpr *E);
2758   llvm::Value *EmitWebAssemblyBuiltinExpr(unsigned BuiltinID,
2759                                           const CallExpr *E);
2760 
2761   llvm::Value *EmitObjCProtocolExpr(const ObjCProtocolExpr *E);
2762   llvm::Value *EmitObjCStringLiteral(const ObjCStringLiteral *E);
2763   llvm::Value *EmitObjCBoxedExpr(const ObjCBoxedExpr *E);
2764   llvm::Value *EmitObjCArrayLiteral(const ObjCArrayLiteral *E);
2765   llvm::Value *EmitObjCDictionaryLiteral(const ObjCDictionaryLiteral *E);
2766   llvm::Value *EmitObjCCollectionLiteral(const Expr *E,
2767                                 const ObjCMethodDecl *MethodWithObjects);
2768   llvm::Value *EmitObjCSelectorExpr(const ObjCSelectorExpr *E);
2769   RValue EmitObjCMessageExpr(const ObjCMessageExpr *E,
2770                              ReturnValueSlot Return = ReturnValueSlot());
2771 
2772   /// Retrieves the default cleanup kind for an ARC cleanup.
2773   /// Except under -fobjc-arc-eh, ARC cleanups are normal-only.
2774   CleanupKind getARCCleanupKind() {
2775     return CGM.getCodeGenOpts().ObjCAutoRefCountExceptions
2776              ? NormalAndEHCleanup : NormalCleanup;
2777   }
2778 
2779   // ARC primitives.
2780   void EmitARCInitWeak(Address addr, llvm::Value *value);
2781   void EmitARCDestroyWeak(Address addr);
2782   llvm::Value *EmitARCLoadWeak(Address addr);
2783   llvm::Value *EmitARCLoadWeakRetained(Address addr);
2784   llvm::Value *EmitARCStoreWeak(Address addr, llvm::Value *value, bool ignored);
2785   void EmitARCCopyWeak(Address dst, Address src);
2786   void EmitARCMoveWeak(Address dst, Address src);
2787   llvm::Value *EmitARCRetainAutorelease(QualType type, llvm::Value *value);
2788   llvm::Value *EmitARCRetainAutoreleaseNonBlock(llvm::Value *value);
2789   llvm::Value *EmitARCStoreStrong(LValue lvalue, llvm::Value *value,
2790                                   bool resultIgnored);
2791   llvm::Value *EmitARCStoreStrongCall(Address addr, llvm::Value *value,
2792                                       bool resultIgnored);
2793   llvm::Value *EmitARCRetain(QualType type, llvm::Value *value);
2794   llvm::Value *EmitARCRetainNonBlock(llvm::Value *value);
2795   llvm::Value *EmitARCRetainBlock(llvm::Value *value, bool mandatory);
2796   void EmitARCDestroyStrong(Address addr, ARCPreciseLifetime_t precise);
2797   void EmitARCRelease(llvm::Value *value, ARCPreciseLifetime_t precise);
2798   llvm::Value *EmitARCAutorelease(llvm::Value *value);
2799   llvm::Value *EmitARCAutoreleaseReturnValue(llvm::Value *value);
2800   llvm::Value *EmitARCRetainAutoreleaseReturnValue(llvm::Value *value);
2801   llvm::Value *EmitARCRetainAutoreleasedReturnValue(llvm::Value *value);
2802 
2803   std::pair<LValue,llvm::Value*>
2804   EmitARCStoreAutoreleasing(const BinaryOperator *e);
2805   std::pair<LValue,llvm::Value*>
2806   EmitARCStoreStrong(const BinaryOperator *e, bool ignored);
2807 
2808   llvm::Value *EmitObjCThrowOperand(const Expr *expr);
2809 
2810   llvm::Value *EmitObjCProduceObject(QualType T, llvm::Value *Ptr);
2811   llvm::Value *EmitObjCConsumeObject(QualType T, llvm::Value *Ptr);
2812   llvm::Value *EmitObjCExtendObjectLifetime(QualType T, llvm::Value *Ptr);
2813 
2814   llvm::Value *EmitARCExtendBlockObject(const Expr *expr);
2815   llvm::Value *EmitARCRetainScalarExpr(const Expr *expr);
2816   llvm::Value *EmitARCRetainAutoreleaseScalarExpr(const Expr *expr);
2817 
2818   void EmitARCIntrinsicUse(ArrayRef<llvm::Value*> values);
2819 
2820   static Destroyer destroyARCStrongImprecise;
2821   static Destroyer destroyARCStrongPrecise;
2822   static Destroyer destroyARCWeak;
2823 
2824   void EmitObjCAutoreleasePoolPop(llvm::Value *Ptr);
2825   llvm::Value *EmitObjCAutoreleasePoolPush();
2826   llvm::Value *EmitObjCMRRAutoreleasePoolPush();
2827   void EmitObjCAutoreleasePoolCleanup(llvm::Value *Ptr);
2828   void EmitObjCMRRAutoreleasePoolPop(llvm::Value *Ptr);
2829 
2830   /// \brief Emits a reference binding to the passed in expression.
2831   RValue EmitReferenceBindingToExpr(const Expr *E);
2832 
2833   //===--------------------------------------------------------------------===//
2834   //                           Expression Emission
2835   //===--------------------------------------------------------------------===//
2836 
2837   // Expressions are broken into three classes: scalar, complex, aggregate.
2838 
2839   /// EmitScalarExpr - Emit the computation of the specified expression of LLVM
2840   /// scalar type, returning the result.
2841   llvm::Value *EmitScalarExpr(const Expr *E , bool IgnoreResultAssign = false);
2842 
2843   /// Emit a conversion from the specified type to the specified destination
2844   /// type, both of which are LLVM scalar types.
2845   llvm::Value *EmitScalarConversion(llvm::Value *Src, QualType SrcTy,
2846                                     QualType DstTy, SourceLocation Loc);
2847 
2848   /// Emit a conversion from the specified complex type to the specified
2849   /// destination type, where the destination type is an LLVM scalar type.
2850   llvm::Value *EmitComplexToScalarConversion(ComplexPairTy Src, QualType SrcTy,
2851                                              QualType DstTy,
2852                                              SourceLocation Loc);
2853 
2854   /// EmitAggExpr - Emit the computation of the specified expression
2855   /// of aggregate type.  The result is computed into the given slot,
2856   /// which may be null to indicate that the value is not needed.
2857   void EmitAggExpr(const Expr *E, AggValueSlot AS);
2858 
2859   /// EmitAggExprToLValue - Emit the computation of the specified expression of
2860   /// aggregate type into a temporary LValue.
2861   LValue EmitAggExprToLValue(const Expr *E);
2862 
2863   /// EmitGCMemmoveCollectable - Emit special API for structs with object
2864   /// pointers.
2865   void EmitGCMemmoveCollectable(llvm::Value *DestPtr, llvm::Value *SrcPtr,
2866                                 QualType Ty);
2867 
2868   /// EmitExtendGCLifetime - Given a pointer to an Objective-C object,
2869   /// make sure it survives garbage collection until this point.
2870   void EmitExtendGCLifetime(llvm::Value *object);
2871 
2872   /// EmitComplexExpr - Emit the computation of the specified expression of
2873   /// complex type, returning the result.
2874   ComplexPairTy EmitComplexExpr(const Expr *E,
2875                                 bool IgnoreReal = false,
2876                                 bool IgnoreImag = false);
2877 
2878   /// EmitComplexExprIntoLValue - Emit the given expression of complex
2879   /// type and place its result into the specified l-value.
2880   void EmitComplexExprIntoLValue(const Expr *E, LValue dest, bool isInit);
2881 
2882   /// EmitStoreOfComplex - Store a complex number into the specified l-value.
2883   void EmitStoreOfComplex(ComplexPairTy V, LValue dest, bool isInit);
2884 
2885   /// EmitLoadOfComplex - Load a complex number from the specified l-value.
2886   ComplexPairTy EmitLoadOfComplex(LValue src, SourceLocation loc);
2887 
2888   Address emitAddrOfRealComponent(Address complex, QualType complexType);
2889   Address emitAddrOfImagComponent(Address complex, QualType complexType);
2890 
2891   /// AddInitializerToStaticVarDecl - Add the initializer for 'D' to the
2892   /// global variable that has already been created for it.  If the initializer
2893   /// has a different type than GV does, this may free GV and return a different
2894   /// one.  Otherwise it just returns GV.
2895   llvm::GlobalVariable *
2896   AddInitializerToStaticVarDecl(const VarDecl &D,
2897                                 llvm::GlobalVariable *GV);
2898 
2899 
2900   /// EmitCXXGlobalVarDeclInit - Create the initializer for a C++
2901   /// variable with global storage.
2902   void EmitCXXGlobalVarDeclInit(const VarDecl &D, llvm::Constant *DeclPtr,
2903                                 bool PerformInit);
2904 
2905   llvm::Constant *createAtExitStub(const VarDecl &VD, llvm::Constant *Dtor,
2906                                    llvm::Constant *Addr);
2907 
2908   /// Call atexit() with a function that passes the given argument to
2909   /// the given function.
2910   void registerGlobalDtorWithAtExit(const VarDecl &D, llvm::Constant *fn,
2911                                     llvm::Constant *addr);
2912 
2913   /// Emit code in this function to perform a guarded variable
2914   /// initialization.  Guarded initializations are used when it's not
2915   /// possible to prove that an initialization will be done exactly
2916   /// once, e.g. with a static local variable or a static data member
2917   /// of a class template.
2918   void EmitCXXGuardedInit(const VarDecl &D, llvm::GlobalVariable *DeclPtr,
2919                           bool PerformInit);
2920 
2921   /// GenerateCXXGlobalInitFunc - Generates code for initializing global
2922   /// variables.
2923   void GenerateCXXGlobalInitFunc(llvm::Function *Fn,
2924                                  ArrayRef<llvm::Function *> CXXThreadLocals,
2925                                  Address Guard = Address::invalid());
2926 
2927   /// GenerateCXXGlobalDtorsFunc - Generates code for destroying global
2928   /// variables.
2929   void GenerateCXXGlobalDtorsFunc(llvm::Function *Fn,
2930                                   const std::vector<std::pair<llvm::WeakVH,
2931                                   llvm::Constant*> > &DtorsAndObjects);
2932 
2933   void GenerateCXXGlobalVarDeclInitFunc(llvm::Function *Fn,
2934                                         const VarDecl *D,
2935                                         llvm::GlobalVariable *Addr,
2936                                         bool PerformInit);
2937 
2938   void EmitCXXConstructExpr(const CXXConstructExpr *E, AggValueSlot Dest);
2939 
2940   void EmitSynthesizedCXXCopyCtor(Address Dest, Address Src, const Expr *Exp);
2941 
2942   void enterFullExpression(const ExprWithCleanups *E) {
2943     if (E->getNumObjects() == 0) return;
2944     enterNonTrivialFullExpression(E);
2945   }
2946   void enterNonTrivialFullExpression(const ExprWithCleanups *E);
2947 
2948   void EmitCXXThrowExpr(const CXXThrowExpr *E, bool KeepInsertionPoint = true);
2949 
2950   void EmitLambdaExpr(const LambdaExpr *E, AggValueSlot Dest);
2951 
2952   RValue EmitAtomicExpr(AtomicExpr *E, Address Dest = Address::invalid());
2953 
2954   //===--------------------------------------------------------------------===//
2955   //                         Annotations Emission
2956   //===--------------------------------------------------------------------===//
2957 
2958   /// Emit an annotation call (intrinsic or builtin).
2959   llvm::Value *EmitAnnotationCall(llvm::Value *AnnotationFn,
2960                                   llvm::Value *AnnotatedVal,
2961                                   StringRef AnnotationStr,
2962                                   SourceLocation Location);
2963 
2964   /// Emit local annotations for the local variable V, declared by D.
2965   void EmitVarAnnotations(const VarDecl *D, llvm::Value *V);
2966 
2967   /// Emit field annotations for the given field & value. Returns the
2968   /// annotation result.
2969   Address EmitFieldAnnotations(const FieldDecl *D, Address V);
2970 
2971   //===--------------------------------------------------------------------===//
2972   //                             Internal Helpers
2973   //===--------------------------------------------------------------------===//
2974 
2975   /// ContainsLabel - Return true if the statement contains a label in it.  If
2976   /// this statement is not executed normally, it not containing a label means
2977   /// that we can just remove the code.
2978   static bool ContainsLabel(const Stmt *S, bool IgnoreCaseStmts = false);
2979 
2980   /// containsBreak - Return true if the statement contains a break out of it.
2981   /// If the statement (recursively) contains a switch or loop with a break
2982   /// inside of it, this is fine.
2983   static bool containsBreak(const Stmt *S);
2984 
2985   /// ConstantFoldsToSimpleInteger - If the specified expression does not fold
2986   /// to a constant, or if it does but contains a label, return false.  If it
2987   /// constant folds return true and set the boolean result in Result.
2988   bool ConstantFoldsToSimpleInteger(const Expr *Cond, bool &Result);
2989 
2990   /// ConstantFoldsToSimpleInteger - If the specified expression does not fold
2991   /// to a constant, or if it does but contains a label, return false.  If it
2992   /// constant folds return true and set the folded value.
2993   bool ConstantFoldsToSimpleInteger(const Expr *Cond, llvm::APSInt &Result);
2994 
2995   /// EmitBranchOnBoolExpr - Emit a branch on a boolean condition (e.g. for an
2996   /// if statement) to the specified blocks.  Based on the condition, this might
2997   /// try to simplify the codegen of the conditional based on the branch.
2998   /// TrueCount should be the number of times we expect the condition to
2999   /// evaluate to true based on PGO data.
3000   void EmitBranchOnBoolExpr(const Expr *Cond, llvm::BasicBlock *TrueBlock,
3001                             llvm::BasicBlock *FalseBlock, uint64_t TrueCount);
3002 
3003   /// \brief Emit a description of a type in a format suitable for passing to
3004   /// a runtime sanitizer handler.
3005   llvm::Constant *EmitCheckTypeDescriptor(QualType T);
3006 
3007   /// \brief Convert a value into a format suitable for passing to a runtime
3008   /// sanitizer handler.
3009   llvm::Value *EmitCheckValue(llvm::Value *V);
3010 
3011   /// \brief Emit a description of a source location in a format suitable for
3012   /// passing to a runtime sanitizer handler.
3013   llvm::Constant *EmitCheckSourceLocation(SourceLocation Loc);
3014 
3015   /// \brief Create a basic block that will call a handler function in a
3016   /// sanitizer runtime with the provided arguments, and create a conditional
3017   /// branch to it.
3018   void EmitCheck(ArrayRef<std::pair<llvm::Value *, SanitizerMask>> Checked,
3019                  StringRef CheckName, ArrayRef<llvm::Constant *> StaticArgs,
3020                  ArrayRef<llvm::Value *> DynamicArgs);
3021 
3022   /// \brief Create a basic block that will call the trap intrinsic, and emit a
3023   /// conditional branch to it, for the -ftrapv checks.
3024   void EmitTrapCheck(llvm::Value *Checked);
3025 
3026   /// \brief Emit a call to trap or debugtrap and attach function attribute
3027   /// "trap-func-name" if specified.
3028   llvm::CallInst *EmitTrapCall(llvm::Intrinsic::ID IntrID);
3029 
3030   /// \brief Create a check for a function parameter that may potentially be
3031   /// declared as non-null.
3032   void EmitNonNullArgCheck(RValue RV, QualType ArgType, SourceLocation ArgLoc,
3033                            const FunctionDecl *FD, unsigned ParmNum);
3034 
3035   /// EmitCallArg - Emit a single call argument.
3036   void EmitCallArg(CallArgList &args, const Expr *E, QualType ArgType);
3037 
3038   /// EmitDelegateCallArg - We are performing a delegate call; that
3039   /// is, the current function is delegating to another one.  Produce
3040   /// a r-value suitable for passing the given parameter.
3041   void EmitDelegateCallArg(CallArgList &args, const VarDecl *param,
3042                            SourceLocation loc);
3043 
3044   /// SetFPAccuracy - Set the minimum required accuracy of the given floating
3045   /// point operation, expressed as the maximum relative error in ulp.
3046   void SetFPAccuracy(llvm::Value *Val, float Accuracy);
3047 
3048 private:
3049   llvm::MDNode *getRangeForLoadFromType(QualType Ty);
3050   void EmitReturnOfRValue(RValue RV, QualType Ty);
3051 
3052   void deferPlaceholderReplacement(llvm::Instruction *Old, llvm::Value *New);
3053 
3054   llvm::SmallVector<std::pair<llvm::Instruction *, llvm::Value *>, 4>
3055   DeferredReplacements;
3056 
3057   /// Set the address of a local variable.
3058   void setAddrOfLocalVar(const VarDecl *VD, Address Addr) {
3059     assert(!LocalDeclMap.count(VD) && "Decl already exists in LocalDeclMap!");
3060     LocalDeclMap.insert({VD, Addr});
3061   }
3062 
3063   /// ExpandTypeFromArgs - Reconstruct a structure of type \arg Ty
3064   /// from function arguments into \arg Dst. See ABIArgInfo::Expand.
3065   ///
3066   /// \param AI - The first function argument of the expansion.
3067   void ExpandTypeFromArgs(QualType Ty, LValue Dst,
3068                           SmallVectorImpl<llvm::Argument *>::iterator &AI);
3069 
3070   /// ExpandTypeToArgs - Expand an RValue \arg RV, with the LLVM type for \arg
3071   /// Ty, into individual arguments on the provided vector \arg IRCallArgs,
3072   /// starting at index \arg IRCallArgPos. See ABIArgInfo::Expand.
3073   void ExpandTypeToArgs(QualType Ty, RValue RV, llvm::FunctionType *IRFuncTy,
3074                         SmallVectorImpl<llvm::Value *> &IRCallArgs,
3075                         unsigned &IRCallArgPos);
3076 
3077   llvm::Value* EmitAsmInput(const TargetInfo::ConstraintInfo &Info,
3078                             const Expr *InputExpr, std::string &ConstraintStr);
3079 
3080   llvm::Value* EmitAsmInputLValue(const TargetInfo::ConstraintInfo &Info,
3081                                   LValue InputValue, QualType InputType,
3082                                   std::string &ConstraintStr,
3083                                   SourceLocation Loc);
3084 
3085 public:
3086 #ifndef NDEBUG
3087   // Determine whether the given argument is an Objective-C method
3088   // that may have type parameters in its signature.
3089   static bool isObjCMethodWithTypeParams(const ObjCMethodDecl *method) {
3090     const DeclContext *dc = method->getDeclContext();
3091     if (const ObjCInterfaceDecl *classDecl= dyn_cast<ObjCInterfaceDecl>(dc)) {
3092       return classDecl->getTypeParamListAsWritten();
3093     }
3094 
3095     if (const ObjCCategoryDecl *catDecl = dyn_cast<ObjCCategoryDecl>(dc)) {
3096       return catDecl->getTypeParamList();
3097     }
3098 
3099     return false;
3100   }
3101 
3102   template<typename T>
3103   static bool isObjCMethodWithTypeParams(const T *) { return false; }
3104 #endif
3105 
3106   /// EmitCallArgs - Emit call arguments for a function.
3107   template <typename T>
3108   void EmitCallArgs(CallArgList &Args, const T *CallArgTypeInfo,
3109                     llvm::iterator_range<CallExpr::const_arg_iterator> ArgRange,
3110                     const FunctionDecl *CalleeDecl = nullptr,
3111                     unsigned ParamsToSkip = 0) {
3112     SmallVector<QualType, 16> ArgTypes;
3113     CallExpr::const_arg_iterator Arg = ArgRange.begin();
3114 
3115     assert((ParamsToSkip == 0 || CallArgTypeInfo) &&
3116            "Can't skip parameters if type info is not provided");
3117     if (CallArgTypeInfo) {
3118 #ifndef NDEBUG
3119       bool isGenericMethod = isObjCMethodWithTypeParams(CallArgTypeInfo);
3120 #endif
3121 
3122       // First, use the argument types that the type info knows about
3123       for (auto I = CallArgTypeInfo->param_type_begin() + ParamsToSkip,
3124                 E = CallArgTypeInfo->param_type_end();
3125            I != E; ++I, ++Arg) {
3126         assert(Arg != ArgRange.end() && "Running over edge of argument list!");
3127         assert((isGenericMethod ||
3128                 ((*I)->isVariablyModifiedType() ||
3129                  (*I).getNonReferenceType()->isObjCRetainableType() ||
3130                  getContext()
3131                          .getCanonicalType((*I).getNonReferenceType())
3132                          .getTypePtr() ==
3133                      getContext()
3134                          .getCanonicalType((*Arg)->getType())
3135                          .getTypePtr())) &&
3136                "type mismatch in call argument!");
3137         ArgTypes.push_back(*I);
3138       }
3139     }
3140 
3141     // Either we've emitted all the call args, or we have a call to variadic
3142     // function.
3143     assert((Arg == ArgRange.end() || !CallArgTypeInfo ||
3144             CallArgTypeInfo->isVariadic()) &&
3145            "Extra arguments in non-variadic function!");
3146 
3147     // If we still have any arguments, emit them using the type of the argument.
3148     for (auto *A : llvm::make_range(Arg, ArgRange.end()))
3149       ArgTypes.push_back(getVarArgType(A));
3150 
3151     EmitCallArgs(Args, ArgTypes, ArgRange, CalleeDecl, ParamsToSkip);
3152   }
3153 
3154   void EmitCallArgs(CallArgList &Args, ArrayRef<QualType> ArgTypes,
3155                     llvm::iterator_range<CallExpr::const_arg_iterator> ArgRange,
3156                     const FunctionDecl *CalleeDecl = nullptr,
3157                     unsigned ParamsToSkip = 0);
3158 
3159   /// EmitPointerWithAlignment - Given an expression with a pointer
3160   /// type, emit the value and compute our best estimate of the
3161   /// alignment of the pointee.
3162   ///
3163   /// Note that this function will conservatively fall back on the type
3164   /// when it doesn't
3165   ///
3166   /// \param Source - If non-null, this will be initialized with
3167   ///   information about the source of the alignment.  Note that this
3168   ///   function will conservatively fall back on the type when it
3169   ///   doesn't recognize the expression, which means that sometimes
3170   ///
3171   ///   a worst-case One
3172   ///   reasonable way to use this information is when there's a
3173   ///   language guarantee that the pointer must be aligned to some
3174   ///   stricter value, and we're simply trying to ensure that
3175   ///   sufficiently obvious uses of under-aligned objects don't get
3176   ///   miscompiled; for example, a placement new into the address of
3177   ///   a local variable.  In such a case, it's quite reasonable to
3178   ///   just ignore the returned alignment when it isn't from an
3179   ///   explicit source.
3180   Address EmitPointerWithAlignment(const Expr *Addr,
3181                                    AlignmentSource *Source = nullptr);
3182 
3183 private:
3184   QualType getVarArgType(const Expr *Arg);
3185 
3186   const TargetCodeGenInfo &getTargetHooks() const {
3187     return CGM.getTargetCodeGenInfo();
3188   }
3189 
3190   void EmitDeclMetadata();
3191 
3192   BlockByrefHelpers *buildByrefHelpers(llvm::StructType &byrefType,
3193                                   const AutoVarEmission &emission);
3194 
3195   void AddObjCARCExceptionMetadata(llvm::Instruction *Inst);
3196 
3197   llvm::Value *GetValueForARMHint(unsigned BuiltinID);
3198 };
3199 
3200 /// Helper class with most of the code for saving a value for a
3201 /// conditional expression cleanup.
3202 struct DominatingLLVMValue {
3203   typedef llvm::PointerIntPair<llvm::Value*, 1, bool> saved_type;
3204 
3205   /// Answer whether the given value needs extra work to be saved.
3206   static bool needsSaving(llvm::Value *value) {
3207     // If it's not an instruction, we don't need to save.
3208     if (!isa<llvm::Instruction>(value)) return false;
3209 
3210     // If it's an instruction in the entry block, we don't need to save.
3211     llvm::BasicBlock *block = cast<llvm::Instruction>(value)->getParent();
3212     return (block != &block->getParent()->getEntryBlock());
3213   }
3214 
3215   /// Try to save the given value.
3216   static saved_type save(CodeGenFunction &CGF, llvm::Value *value) {
3217     if (!needsSaving(value)) return saved_type(value, false);
3218 
3219     // Otherwise, we need an alloca.
3220     auto align = CharUnits::fromQuantity(
3221               CGF.CGM.getDataLayout().getPrefTypeAlignment(value->getType()));
3222     Address alloca =
3223       CGF.CreateTempAlloca(value->getType(), align, "cond-cleanup.save");
3224     CGF.Builder.CreateStore(value, alloca);
3225 
3226     return saved_type(alloca.getPointer(), true);
3227   }
3228 
3229   static llvm::Value *restore(CodeGenFunction &CGF, saved_type value) {
3230     // If the value says it wasn't saved, trust that it's still dominating.
3231     if (!value.getInt()) return value.getPointer();
3232 
3233     // Otherwise, it should be an alloca instruction, as set up in save().
3234     auto alloca = cast<llvm::AllocaInst>(value.getPointer());
3235     return CGF.Builder.CreateAlignedLoad(alloca, alloca->getAlignment());
3236   }
3237 };
3238 
3239 /// A partial specialization of DominatingValue for llvm::Values that
3240 /// might be llvm::Instructions.
3241 template <class T> struct DominatingPointer<T,true> : DominatingLLVMValue {
3242   typedef T *type;
3243   static type restore(CodeGenFunction &CGF, saved_type value) {
3244     return static_cast<T*>(DominatingLLVMValue::restore(CGF, value));
3245   }
3246 };
3247 
3248 /// A specialization of DominatingValue for Address.
3249 template <> struct DominatingValue<Address> {
3250   typedef Address type;
3251 
3252   struct saved_type {
3253     DominatingLLVMValue::saved_type SavedValue;
3254     CharUnits Alignment;
3255   };
3256 
3257   static bool needsSaving(type value) {
3258     return DominatingLLVMValue::needsSaving(value.getPointer());
3259   }
3260   static saved_type save(CodeGenFunction &CGF, type value) {
3261     return { DominatingLLVMValue::save(CGF, value.getPointer()),
3262              value.getAlignment() };
3263   }
3264   static type restore(CodeGenFunction &CGF, saved_type value) {
3265     return Address(DominatingLLVMValue::restore(CGF, value.SavedValue),
3266                    value.Alignment);
3267   }
3268 };
3269 
3270 /// A specialization of DominatingValue for RValue.
3271 template <> struct DominatingValue<RValue> {
3272   typedef RValue type;
3273   class saved_type {
3274     enum Kind { ScalarLiteral, ScalarAddress, AggregateLiteral,
3275                 AggregateAddress, ComplexAddress };
3276 
3277     llvm::Value *Value;
3278     unsigned K : 3;
3279     unsigned Align : 29;
3280     saved_type(llvm::Value *v, Kind k, unsigned a = 0)
3281       : Value(v), K(k), Align(a) {}
3282 
3283   public:
3284     static bool needsSaving(RValue value);
3285     static saved_type save(CodeGenFunction &CGF, RValue value);
3286     RValue restore(CodeGenFunction &CGF);
3287 
3288     // implementations in CGCleanup.cpp
3289   };
3290 
3291   static bool needsSaving(type value) {
3292     return saved_type::needsSaving(value);
3293   }
3294   static saved_type save(CodeGenFunction &CGF, type value) {
3295     return saved_type::save(CGF, value);
3296   }
3297   static type restore(CodeGenFunction &CGF, saved_type value) {
3298     return value.restore(CGF);
3299   }
3300 };
3301 
3302 }  // end namespace CodeGen
3303 }  // end namespace clang
3304 
3305 #endif
3306