1 //===-- CodeGenFunction.h - Per-Function state for LLVM CodeGen -*- C++ -*-===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This is the internal per-function state used for llvm translation. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #ifndef LLVM_CLANG_LIB_CODEGEN_CODEGENFUNCTION_H 15 #define LLVM_CLANG_LIB_CODEGEN_CODEGENFUNCTION_H 16 17 #include "CGBuilder.h" 18 #include "CGDebugInfo.h" 19 #include "CGLoopInfo.h" 20 #include "CGValue.h" 21 #include "CodeGenModule.h" 22 #include "CodeGenPGO.h" 23 #include "EHScopeStack.h" 24 #include "VarBypassDetector.h" 25 #include "clang/AST/CharUnits.h" 26 #include "clang/AST/ExprCXX.h" 27 #include "clang/AST/ExprObjC.h" 28 #include "clang/AST/ExprOpenMP.h" 29 #include "clang/AST/Type.h" 30 #include "clang/Basic/ABI.h" 31 #include "clang/Basic/CapturedStmt.h" 32 #include "clang/Basic/CodeGenOptions.h" 33 #include "clang/Basic/OpenMPKinds.h" 34 #include "clang/Basic/TargetInfo.h" 35 #include "llvm/ADT/ArrayRef.h" 36 #include "llvm/ADT/DenseMap.h" 37 #include "llvm/ADT/MapVector.h" 38 #include "llvm/ADT/SmallVector.h" 39 #include "llvm/IR/ValueHandle.h" 40 #include "llvm/Support/Debug.h" 41 #include "llvm/Transforms/Utils/SanitizerStats.h" 42 43 namespace llvm { 44 class BasicBlock; 45 class LLVMContext; 46 class MDNode; 47 class Module; 48 class SwitchInst; 49 class Twine; 50 class Value; 51 class CallSite; 52 } 53 54 namespace clang { 55 class ASTContext; 56 class BlockDecl; 57 class CXXDestructorDecl; 58 class CXXForRangeStmt; 59 class CXXTryStmt; 60 class Decl; 61 class LabelDecl; 62 class EnumConstantDecl; 63 class FunctionDecl; 64 class FunctionProtoType; 65 class LabelStmt; 66 class ObjCContainerDecl; 67 class ObjCInterfaceDecl; 68 class ObjCIvarDecl; 69 class ObjCMethodDecl; 70 class ObjCImplementationDecl; 71 class ObjCPropertyImplDecl; 72 class TargetInfo; 73 class VarDecl; 74 class ObjCForCollectionStmt; 75 class ObjCAtTryStmt; 76 class ObjCAtThrowStmt; 77 class ObjCAtSynchronizedStmt; 78 class ObjCAutoreleasePoolStmt; 79 80 namespace analyze_os_log { 81 class OSLogBufferLayout; 82 } 83 84 namespace CodeGen { 85 class CodeGenTypes; 86 class CGCallee; 87 class CGFunctionInfo; 88 class CGRecordLayout; 89 class CGBlockInfo; 90 class CGCXXABI; 91 class BlockByrefHelpers; 92 class BlockByrefInfo; 93 class BlockFlags; 94 class BlockFieldFlags; 95 class RegionCodeGenTy; 96 class TargetCodeGenInfo; 97 struct OMPTaskDataTy; 98 struct CGCoroData; 99 100 /// The kind of evaluation to perform on values of a particular 101 /// type. Basically, is the code in CGExprScalar, CGExprComplex, or 102 /// CGExprAgg? 103 /// 104 /// TODO: should vectors maybe be split out into their own thing? 105 enum TypeEvaluationKind { 106 TEK_Scalar, 107 TEK_Complex, 108 TEK_Aggregate 109 }; 110 111 #define LIST_SANITIZER_CHECKS \ 112 SANITIZER_CHECK(AddOverflow, add_overflow, 0) \ 113 SANITIZER_CHECK(BuiltinUnreachable, builtin_unreachable, 0) \ 114 SANITIZER_CHECK(CFICheckFail, cfi_check_fail, 0) \ 115 SANITIZER_CHECK(DivremOverflow, divrem_overflow, 0) \ 116 SANITIZER_CHECK(DynamicTypeCacheMiss, dynamic_type_cache_miss, 0) \ 117 SANITIZER_CHECK(FloatCastOverflow, float_cast_overflow, 0) \ 118 SANITIZER_CHECK(FunctionTypeMismatch, function_type_mismatch, 0) \ 119 SANITIZER_CHECK(ImplicitConversion, implicit_conversion, 0) \ 120 SANITIZER_CHECK(InvalidBuiltin, invalid_builtin, 0) \ 121 SANITIZER_CHECK(LoadInvalidValue, load_invalid_value, 0) \ 122 SANITIZER_CHECK(MissingReturn, missing_return, 0) \ 123 SANITIZER_CHECK(MulOverflow, mul_overflow, 0) \ 124 SANITIZER_CHECK(NegateOverflow, negate_overflow, 0) \ 125 SANITIZER_CHECK(NullabilityArg, nullability_arg, 0) \ 126 SANITIZER_CHECK(NullabilityReturn, nullability_return, 1) \ 127 SANITIZER_CHECK(NonnullArg, nonnull_arg, 0) \ 128 SANITIZER_CHECK(NonnullReturn, nonnull_return, 1) \ 129 SANITIZER_CHECK(OutOfBounds, out_of_bounds, 0) \ 130 SANITIZER_CHECK(PointerOverflow, pointer_overflow, 0) \ 131 SANITIZER_CHECK(ShiftOutOfBounds, shift_out_of_bounds, 0) \ 132 SANITIZER_CHECK(SubOverflow, sub_overflow, 0) \ 133 SANITIZER_CHECK(TypeMismatch, type_mismatch, 1) \ 134 SANITIZER_CHECK(VLABoundNotPositive, vla_bound_not_positive, 0) 135 136 enum SanitizerHandler { 137 #define SANITIZER_CHECK(Enum, Name, Version) Enum, 138 LIST_SANITIZER_CHECKS 139 #undef SANITIZER_CHECK 140 }; 141 142 /// Helper class with most of the code for saving a value for a 143 /// conditional expression cleanup. 144 struct DominatingLLVMValue { 145 typedef llvm::PointerIntPair<llvm::Value*, 1, bool> saved_type; 146 147 /// Answer whether the given value needs extra work to be saved. 148 static bool needsSaving(llvm::Value *value) { 149 // If it's not an instruction, we don't need to save. 150 if (!isa<llvm::Instruction>(value)) return false; 151 152 // If it's an instruction in the entry block, we don't need to save. 153 llvm::BasicBlock *block = cast<llvm::Instruction>(value)->getParent(); 154 return (block != &block->getParent()->getEntryBlock()); 155 } 156 157 static saved_type save(CodeGenFunction &CGF, llvm::Value *value); 158 static llvm::Value *restore(CodeGenFunction &CGF, saved_type value); 159 }; 160 161 /// A partial specialization of DominatingValue for llvm::Values that 162 /// might be llvm::Instructions. 163 template <class T> struct DominatingPointer<T,true> : DominatingLLVMValue { 164 typedef T *type; 165 static type restore(CodeGenFunction &CGF, saved_type value) { 166 return static_cast<T*>(DominatingLLVMValue::restore(CGF, value)); 167 } 168 }; 169 170 /// A specialization of DominatingValue for Address. 171 template <> struct DominatingValue<Address> { 172 typedef Address type; 173 174 struct saved_type { 175 DominatingLLVMValue::saved_type SavedValue; 176 CharUnits Alignment; 177 }; 178 179 static bool needsSaving(type value) { 180 return DominatingLLVMValue::needsSaving(value.getPointer()); 181 } 182 static saved_type save(CodeGenFunction &CGF, type value) { 183 return { DominatingLLVMValue::save(CGF, value.getPointer()), 184 value.getAlignment() }; 185 } 186 static type restore(CodeGenFunction &CGF, saved_type value) { 187 return Address(DominatingLLVMValue::restore(CGF, value.SavedValue), 188 value.Alignment); 189 } 190 }; 191 192 /// A specialization of DominatingValue for RValue. 193 template <> struct DominatingValue<RValue> { 194 typedef RValue type; 195 class saved_type { 196 enum Kind { ScalarLiteral, ScalarAddress, AggregateLiteral, 197 AggregateAddress, ComplexAddress }; 198 199 llvm::Value *Value; 200 unsigned K : 3; 201 unsigned Align : 29; 202 saved_type(llvm::Value *v, Kind k, unsigned a = 0) 203 : Value(v), K(k), Align(a) {} 204 205 public: 206 static bool needsSaving(RValue value); 207 static saved_type save(CodeGenFunction &CGF, RValue value); 208 RValue restore(CodeGenFunction &CGF); 209 210 // implementations in CGCleanup.cpp 211 }; 212 213 static bool needsSaving(type value) { 214 return saved_type::needsSaving(value); 215 } 216 static saved_type save(CodeGenFunction &CGF, type value) { 217 return saved_type::save(CGF, value); 218 } 219 static type restore(CodeGenFunction &CGF, saved_type value) { 220 return value.restore(CGF); 221 } 222 }; 223 224 /// CodeGenFunction - This class organizes the per-function state that is used 225 /// while generating LLVM code. 226 class CodeGenFunction : public CodeGenTypeCache { 227 CodeGenFunction(const CodeGenFunction &) = delete; 228 void operator=(const CodeGenFunction &) = delete; 229 230 friend class CGCXXABI; 231 public: 232 /// A jump destination is an abstract label, branching to which may 233 /// require a jump out through normal cleanups. 234 struct JumpDest { 235 JumpDest() : Block(nullptr), ScopeDepth(), Index(0) {} 236 JumpDest(llvm::BasicBlock *Block, 237 EHScopeStack::stable_iterator Depth, 238 unsigned Index) 239 : Block(Block), ScopeDepth(Depth), Index(Index) {} 240 241 bool isValid() const { return Block != nullptr; } 242 llvm::BasicBlock *getBlock() const { return Block; } 243 EHScopeStack::stable_iterator getScopeDepth() const { return ScopeDepth; } 244 unsigned getDestIndex() const { return Index; } 245 246 // This should be used cautiously. 247 void setScopeDepth(EHScopeStack::stable_iterator depth) { 248 ScopeDepth = depth; 249 } 250 251 private: 252 llvm::BasicBlock *Block; 253 EHScopeStack::stable_iterator ScopeDepth; 254 unsigned Index; 255 }; 256 257 CodeGenModule &CGM; // Per-module state. 258 const TargetInfo &Target; 259 260 typedef std::pair<llvm::Value *, llvm::Value *> ComplexPairTy; 261 LoopInfoStack LoopStack; 262 CGBuilderTy Builder; 263 264 // Stores variables for which we can't generate correct lifetime markers 265 // because of jumps. 266 VarBypassDetector Bypasses; 267 268 // CodeGen lambda for loops and support for ordered clause 269 typedef llvm::function_ref<void(CodeGenFunction &, const OMPLoopDirective &, 270 JumpDest)> 271 CodeGenLoopTy; 272 typedef llvm::function_ref<void(CodeGenFunction &, SourceLocation, 273 const unsigned, const bool)> 274 CodeGenOrderedTy; 275 276 // Codegen lambda for loop bounds in worksharing loop constructs 277 typedef llvm::function_ref<std::pair<LValue, LValue>( 278 CodeGenFunction &, const OMPExecutableDirective &S)> 279 CodeGenLoopBoundsTy; 280 281 // Codegen lambda for loop bounds in dispatch-based loop implementation 282 typedef llvm::function_ref<std::pair<llvm::Value *, llvm::Value *>( 283 CodeGenFunction &, const OMPExecutableDirective &S, Address LB, 284 Address UB)> 285 CodeGenDispatchBoundsTy; 286 287 /// CGBuilder insert helper. This function is called after an 288 /// instruction is created using Builder. 289 void InsertHelper(llvm::Instruction *I, const llvm::Twine &Name, 290 llvm::BasicBlock *BB, 291 llvm::BasicBlock::iterator InsertPt) const; 292 293 /// CurFuncDecl - Holds the Decl for the current outermost 294 /// non-closure context. 295 const Decl *CurFuncDecl; 296 /// CurCodeDecl - This is the inner-most code context, which includes blocks. 297 const Decl *CurCodeDecl; 298 const CGFunctionInfo *CurFnInfo; 299 QualType FnRetTy; 300 llvm::Function *CurFn = nullptr; 301 302 // Holds coroutine data if the current function is a coroutine. We use a 303 // wrapper to manage its lifetime, so that we don't have to define CGCoroData 304 // in this header. 305 struct CGCoroInfo { 306 std::unique_ptr<CGCoroData> Data; 307 CGCoroInfo(); 308 ~CGCoroInfo(); 309 }; 310 CGCoroInfo CurCoro; 311 312 bool isCoroutine() const { 313 return CurCoro.Data != nullptr; 314 } 315 316 /// CurGD - The GlobalDecl for the current function being compiled. 317 GlobalDecl CurGD; 318 319 /// PrologueCleanupDepth - The cleanup depth enclosing all the 320 /// cleanups associated with the parameters. 321 EHScopeStack::stable_iterator PrologueCleanupDepth; 322 323 /// ReturnBlock - Unified return block. 324 JumpDest ReturnBlock; 325 326 /// ReturnValue - The temporary alloca to hold the return 327 /// value. This is invalid iff the function has no return value. 328 Address ReturnValue = Address::invalid(); 329 330 /// Return true if a label was seen in the current scope. 331 bool hasLabelBeenSeenInCurrentScope() const { 332 if (CurLexicalScope) 333 return CurLexicalScope->hasLabels(); 334 return !LabelMap.empty(); 335 } 336 337 /// AllocaInsertPoint - This is an instruction in the entry block before which 338 /// we prefer to insert allocas. 339 llvm::AssertingVH<llvm::Instruction> AllocaInsertPt; 340 341 /// API for captured statement code generation. 342 class CGCapturedStmtInfo { 343 public: 344 explicit CGCapturedStmtInfo(CapturedRegionKind K = CR_Default) 345 : Kind(K), ThisValue(nullptr), CXXThisFieldDecl(nullptr) {} 346 explicit CGCapturedStmtInfo(const CapturedStmt &S, 347 CapturedRegionKind K = CR_Default) 348 : Kind(K), ThisValue(nullptr), CXXThisFieldDecl(nullptr) { 349 350 RecordDecl::field_iterator Field = 351 S.getCapturedRecordDecl()->field_begin(); 352 for (CapturedStmt::const_capture_iterator I = S.capture_begin(), 353 E = S.capture_end(); 354 I != E; ++I, ++Field) { 355 if (I->capturesThis()) 356 CXXThisFieldDecl = *Field; 357 else if (I->capturesVariable()) 358 CaptureFields[I->getCapturedVar()->getCanonicalDecl()] = *Field; 359 else if (I->capturesVariableByCopy()) 360 CaptureFields[I->getCapturedVar()->getCanonicalDecl()] = *Field; 361 } 362 } 363 364 virtual ~CGCapturedStmtInfo(); 365 366 CapturedRegionKind getKind() const { return Kind; } 367 368 virtual void setContextValue(llvm::Value *V) { ThisValue = V; } 369 // Retrieve the value of the context parameter. 370 virtual llvm::Value *getContextValue() const { return ThisValue; } 371 372 /// Lookup the captured field decl for a variable. 373 virtual const FieldDecl *lookup(const VarDecl *VD) const { 374 return CaptureFields.lookup(VD->getCanonicalDecl()); 375 } 376 377 bool isCXXThisExprCaptured() const { return getThisFieldDecl() != nullptr; } 378 virtual FieldDecl *getThisFieldDecl() const { return CXXThisFieldDecl; } 379 380 static bool classof(const CGCapturedStmtInfo *) { 381 return true; 382 } 383 384 /// Emit the captured statement body. 385 virtual void EmitBody(CodeGenFunction &CGF, const Stmt *S) { 386 CGF.incrementProfileCounter(S); 387 CGF.EmitStmt(S); 388 } 389 390 /// Get the name of the capture helper. 391 virtual StringRef getHelperName() const { return "__captured_stmt"; } 392 393 private: 394 /// The kind of captured statement being generated. 395 CapturedRegionKind Kind; 396 397 /// Keep the map between VarDecl and FieldDecl. 398 llvm::SmallDenseMap<const VarDecl *, FieldDecl *> CaptureFields; 399 400 /// The base address of the captured record, passed in as the first 401 /// argument of the parallel region function. 402 llvm::Value *ThisValue; 403 404 /// Captured 'this' type. 405 FieldDecl *CXXThisFieldDecl; 406 }; 407 CGCapturedStmtInfo *CapturedStmtInfo = nullptr; 408 409 /// RAII for correct setting/restoring of CapturedStmtInfo. 410 class CGCapturedStmtRAII { 411 private: 412 CodeGenFunction &CGF; 413 CGCapturedStmtInfo *PrevCapturedStmtInfo; 414 public: 415 CGCapturedStmtRAII(CodeGenFunction &CGF, 416 CGCapturedStmtInfo *NewCapturedStmtInfo) 417 : CGF(CGF), PrevCapturedStmtInfo(CGF.CapturedStmtInfo) { 418 CGF.CapturedStmtInfo = NewCapturedStmtInfo; 419 } 420 ~CGCapturedStmtRAII() { CGF.CapturedStmtInfo = PrevCapturedStmtInfo; } 421 }; 422 423 /// An abstract representation of regular/ObjC call/message targets. 424 class AbstractCallee { 425 /// The function declaration of the callee. 426 const Decl *CalleeDecl; 427 428 public: 429 AbstractCallee() : CalleeDecl(nullptr) {} 430 AbstractCallee(const FunctionDecl *FD) : CalleeDecl(FD) {} 431 AbstractCallee(const ObjCMethodDecl *OMD) : CalleeDecl(OMD) {} 432 bool hasFunctionDecl() const { 433 return dyn_cast_or_null<FunctionDecl>(CalleeDecl); 434 } 435 const Decl *getDecl() const { return CalleeDecl; } 436 unsigned getNumParams() const { 437 if (const auto *FD = dyn_cast<FunctionDecl>(CalleeDecl)) 438 return FD->getNumParams(); 439 return cast<ObjCMethodDecl>(CalleeDecl)->param_size(); 440 } 441 const ParmVarDecl *getParamDecl(unsigned I) const { 442 if (const auto *FD = dyn_cast<FunctionDecl>(CalleeDecl)) 443 return FD->getParamDecl(I); 444 return *(cast<ObjCMethodDecl>(CalleeDecl)->param_begin() + I); 445 } 446 }; 447 448 /// Sanitizers enabled for this function. 449 SanitizerSet SanOpts; 450 451 /// True if CodeGen currently emits code implementing sanitizer checks. 452 bool IsSanitizerScope = false; 453 454 /// RAII object to set/unset CodeGenFunction::IsSanitizerScope. 455 class SanitizerScope { 456 CodeGenFunction *CGF; 457 public: 458 SanitizerScope(CodeGenFunction *CGF); 459 ~SanitizerScope(); 460 }; 461 462 /// In C++, whether we are code generating a thunk. This controls whether we 463 /// should emit cleanups. 464 bool CurFuncIsThunk = false; 465 466 /// In ARC, whether we should autorelease the return value. 467 bool AutoreleaseResult = false; 468 469 /// Whether we processed a Microsoft-style asm block during CodeGen. These can 470 /// potentially set the return value. 471 bool SawAsmBlock = false; 472 473 const NamedDecl *CurSEHParent = nullptr; 474 475 /// True if the current function is an outlined SEH helper. This can be a 476 /// finally block or filter expression. 477 bool IsOutlinedSEHHelper = false; 478 479 const CodeGen::CGBlockInfo *BlockInfo = nullptr; 480 llvm::Value *BlockPointer = nullptr; 481 482 llvm::DenseMap<const VarDecl *, FieldDecl *> LambdaCaptureFields; 483 FieldDecl *LambdaThisCaptureField = nullptr; 484 485 /// A mapping from NRVO variables to the flags used to indicate 486 /// when the NRVO has been applied to this variable. 487 llvm::DenseMap<const VarDecl *, llvm::Value *> NRVOFlags; 488 489 EHScopeStack EHStack; 490 llvm::SmallVector<char, 256> LifetimeExtendedCleanupStack; 491 llvm::SmallVector<const JumpDest *, 2> SEHTryEpilogueStack; 492 493 llvm::Instruction *CurrentFuncletPad = nullptr; 494 495 class CallLifetimeEnd final : public EHScopeStack::Cleanup { 496 llvm::Value *Addr; 497 llvm::Value *Size; 498 499 public: 500 CallLifetimeEnd(Address addr, llvm::Value *size) 501 : Addr(addr.getPointer()), Size(size) {} 502 503 void Emit(CodeGenFunction &CGF, Flags flags) override { 504 CGF.EmitLifetimeEnd(Size, Addr); 505 } 506 }; 507 508 /// Header for data within LifetimeExtendedCleanupStack. 509 struct LifetimeExtendedCleanupHeader { 510 /// The size of the following cleanup object. 511 unsigned Size; 512 /// The kind of cleanup to push: a value from the CleanupKind enumeration. 513 unsigned Kind : 31; 514 /// Whether this is a conditional cleanup. 515 unsigned IsConditional : 1; 516 517 size_t getSize() const { return Size; } 518 CleanupKind getKind() const { return (CleanupKind)Kind; } 519 bool isConditional() const { return IsConditional; } 520 }; 521 522 /// i32s containing the indexes of the cleanup destinations. 523 Address NormalCleanupDest = Address::invalid(); 524 525 unsigned NextCleanupDestIndex = 1; 526 527 /// FirstBlockInfo - The head of a singly-linked-list of block layouts. 528 CGBlockInfo *FirstBlockInfo = nullptr; 529 530 /// EHResumeBlock - Unified block containing a call to llvm.eh.resume. 531 llvm::BasicBlock *EHResumeBlock = nullptr; 532 533 /// The exception slot. All landing pads write the current exception pointer 534 /// into this alloca. 535 llvm::Value *ExceptionSlot = nullptr; 536 537 /// The selector slot. Under the MandatoryCleanup model, all landing pads 538 /// write the current selector value into this alloca. 539 llvm::AllocaInst *EHSelectorSlot = nullptr; 540 541 /// A stack of exception code slots. Entering an __except block pushes a slot 542 /// on the stack and leaving pops one. The __exception_code() intrinsic loads 543 /// a value from the top of the stack. 544 SmallVector<Address, 1> SEHCodeSlotStack; 545 546 /// Value returned by __exception_info intrinsic. 547 llvm::Value *SEHInfo = nullptr; 548 549 /// Emits a landing pad for the current EH stack. 550 llvm::BasicBlock *EmitLandingPad(); 551 552 llvm::BasicBlock *getInvokeDestImpl(); 553 554 template <class T> 555 typename DominatingValue<T>::saved_type saveValueInCond(T value) { 556 return DominatingValue<T>::save(*this, value); 557 } 558 559 public: 560 /// ObjCEHValueStack - Stack of Objective-C exception values, used for 561 /// rethrows. 562 SmallVector<llvm::Value*, 8> ObjCEHValueStack; 563 564 /// A class controlling the emission of a finally block. 565 class FinallyInfo { 566 /// Where the catchall's edge through the cleanup should go. 567 JumpDest RethrowDest; 568 569 /// A function to call to enter the catch. 570 llvm::Constant *BeginCatchFn; 571 572 /// An i1 variable indicating whether or not the @finally is 573 /// running for an exception. 574 llvm::AllocaInst *ForEHVar; 575 576 /// An i8* variable into which the exception pointer to rethrow 577 /// has been saved. 578 llvm::AllocaInst *SavedExnVar; 579 580 public: 581 void enter(CodeGenFunction &CGF, const Stmt *Finally, 582 llvm::Constant *beginCatchFn, llvm::Constant *endCatchFn, 583 llvm::Constant *rethrowFn); 584 void exit(CodeGenFunction &CGF); 585 }; 586 587 /// Returns true inside SEH __try blocks. 588 bool isSEHTryScope() const { return !SEHTryEpilogueStack.empty(); } 589 590 /// Returns true while emitting a cleanuppad. 591 bool isCleanupPadScope() const { 592 return CurrentFuncletPad && isa<llvm::CleanupPadInst>(CurrentFuncletPad); 593 } 594 595 /// pushFullExprCleanup - Push a cleanup to be run at the end of the 596 /// current full-expression. Safe against the possibility that 597 /// we're currently inside a conditionally-evaluated expression. 598 template <class T, class... As> 599 void pushFullExprCleanup(CleanupKind kind, As... A) { 600 // If we're not in a conditional branch, or if none of the 601 // arguments requires saving, then use the unconditional cleanup. 602 if (!isInConditionalBranch()) 603 return EHStack.pushCleanup<T>(kind, A...); 604 605 // Stash values in a tuple so we can guarantee the order of saves. 606 typedef std::tuple<typename DominatingValue<As>::saved_type...> SavedTuple; 607 SavedTuple Saved{saveValueInCond(A)...}; 608 609 typedef EHScopeStack::ConditionalCleanup<T, As...> CleanupType; 610 EHStack.pushCleanupTuple<CleanupType>(kind, Saved); 611 initFullExprCleanup(); 612 } 613 614 /// Queue a cleanup to be pushed after finishing the current 615 /// full-expression. 616 template <class T, class... As> 617 void pushCleanupAfterFullExpr(CleanupKind Kind, As... A) { 618 if (!isInConditionalBranch()) 619 return pushCleanupAfterFullExprImpl<T>(Kind, Address::invalid(), A...); 620 621 Address ActiveFlag = createCleanupActiveFlag(); 622 assert(!DominatingValue<Address>::needsSaving(ActiveFlag) && 623 "cleanup active flag should never need saving"); 624 625 typedef std::tuple<typename DominatingValue<As>::saved_type...> SavedTuple; 626 SavedTuple Saved{saveValueInCond(A)...}; 627 628 typedef EHScopeStack::ConditionalCleanup<T, As...> CleanupType; 629 pushCleanupAfterFullExprImpl<CleanupType>(Kind, ActiveFlag, Saved); 630 } 631 632 template <class T, class... As> 633 void pushCleanupAfterFullExprImpl(CleanupKind Kind, Address ActiveFlag, 634 As... A) { 635 LifetimeExtendedCleanupHeader Header = {sizeof(T), Kind, 636 ActiveFlag.isValid()}; 637 638 size_t OldSize = LifetimeExtendedCleanupStack.size(); 639 LifetimeExtendedCleanupStack.resize( 640 LifetimeExtendedCleanupStack.size() + sizeof(Header) + Header.Size + 641 (Header.IsConditional ? sizeof(ActiveFlag) : 0)); 642 643 static_assert(sizeof(Header) % alignof(T) == 0, 644 "Cleanup will be allocated on misaligned address"); 645 char *Buffer = &LifetimeExtendedCleanupStack[OldSize]; 646 new (Buffer) LifetimeExtendedCleanupHeader(Header); 647 new (Buffer + sizeof(Header)) T(A...); 648 if (Header.IsConditional) 649 new (Buffer + sizeof(Header) + sizeof(T)) Address(ActiveFlag); 650 } 651 652 /// Set up the last cleanup that was pushed as a conditional 653 /// full-expression cleanup. 654 void initFullExprCleanup() { 655 initFullExprCleanupWithFlag(createCleanupActiveFlag()); 656 } 657 658 void initFullExprCleanupWithFlag(Address ActiveFlag); 659 Address createCleanupActiveFlag(); 660 661 /// PushDestructorCleanup - Push a cleanup to call the 662 /// complete-object destructor of an object of the given type at the 663 /// given address. Does nothing if T is not a C++ class type with a 664 /// non-trivial destructor. 665 void PushDestructorCleanup(QualType T, Address Addr); 666 667 /// PushDestructorCleanup - Push a cleanup to call the 668 /// complete-object variant of the given destructor on the object at 669 /// the given address. 670 void PushDestructorCleanup(const CXXDestructorDecl *Dtor, Address Addr); 671 672 /// PopCleanupBlock - Will pop the cleanup entry on the stack and 673 /// process all branch fixups. 674 void PopCleanupBlock(bool FallThroughIsBranchThrough = false); 675 676 /// DeactivateCleanupBlock - Deactivates the given cleanup block. 677 /// The block cannot be reactivated. Pops it if it's the top of the 678 /// stack. 679 /// 680 /// \param DominatingIP - An instruction which is known to 681 /// dominate the current IP (if set) and which lies along 682 /// all paths of execution between the current IP and the 683 /// the point at which the cleanup comes into scope. 684 void DeactivateCleanupBlock(EHScopeStack::stable_iterator Cleanup, 685 llvm::Instruction *DominatingIP); 686 687 /// ActivateCleanupBlock - Activates an initially-inactive cleanup. 688 /// Cannot be used to resurrect a deactivated cleanup. 689 /// 690 /// \param DominatingIP - An instruction which is known to 691 /// dominate the current IP (if set) and which lies along 692 /// all paths of execution between the current IP and the 693 /// the point at which the cleanup comes into scope. 694 void ActivateCleanupBlock(EHScopeStack::stable_iterator Cleanup, 695 llvm::Instruction *DominatingIP); 696 697 /// Enters a new scope for capturing cleanups, all of which 698 /// will be executed once the scope is exited. 699 class RunCleanupsScope { 700 EHScopeStack::stable_iterator CleanupStackDepth, OldCleanupScopeDepth; 701 size_t LifetimeExtendedCleanupStackSize; 702 bool OldDidCallStackSave; 703 protected: 704 bool PerformCleanup; 705 private: 706 707 RunCleanupsScope(const RunCleanupsScope &) = delete; 708 void operator=(const RunCleanupsScope &) = delete; 709 710 protected: 711 CodeGenFunction& CGF; 712 713 public: 714 /// Enter a new cleanup scope. 715 explicit RunCleanupsScope(CodeGenFunction &CGF) 716 : PerformCleanup(true), CGF(CGF) 717 { 718 CleanupStackDepth = CGF.EHStack.stable_begin(); 719 LifetimeExtendedCleanupStackSize = 720 CGF.LifetimeExtendedCleanupStack.size(); 721 OldDidCallStackSave = CGF.DidCallStackSave; 722 CGF.DidCallStackSave = false; 723 OldCleanupScopeDepth = CGF.CurrentCleanupScopeDepth; 724 CGF.CurrentCleanupScopeDepth = CleanupStackDepth; 725 } 726 727 /// Exit this cleanup scope, emitting any accumulated cleanups. 728 ~RunCleanupsScope() { 729 if (PerformCleanup) 730 ForceCleanup(); 731 } 732 733 /// Determine whether this scope requires any cleanups. 734 bool requiresCleanups() const { 735 return CGF.EHStack.stable_begin() != CleanupStackDepth; 736 } 737 738 /// Force the emission of cleanups now, instead of waiting 739 /// until this object is destroyed. 740 /// \param ValuesToReload - A list of values that need to be available at 741 /// the insertion point after cleanup emission. If cleanup emission created 742 /// a shared cleanup block, these value pointers will be rewritten. 743 /// Otherwise, they not will be modified. 744 void ForceCleanup(std::initializer_list<llvm::Value**> ValuesToReload = {}) { 745 assert(PerformCleanup && "Already forced cleanup"); 746 CGF.DidCallStackSave = OldDidCallStackSave; 747 CGF.PopCleanupBlocks(CleanupStackDepth, LifetimeExtendedCleanupStackSize, 748 ValuesToReload); 749 PerformCleanup = false; 750 CGF.CurrentCleanupScopeDepth = OldCleanupScopeDepth; 751 } 752 }; 753 754 // Cleanup stack depth of the RunCleanupsScope that was pushed most recently. 755 EHScopeStack::stable_iterator CurrentCleanupScopeDepth = 756 EHScopeStack::stable_end(); 757 758 class LexicalScope : public RunCleanupsScope { 759 SourceRange Range; 760 SmallVector<const LabelDecl*, 4> Labels; 761 LexicalScope *ParentScope; 762 763 LexicalScope(const LexicalScope &) = delete; 764 void operator=(const LexicalScope &) = delete; 765 766 public: 767 /// Enter a new cleanup scope. 768 explicit LexicalScope(CodeGenFunction &CGF, SourceRange Range) 769 : RunCleanupsScope(CGF), Range(Range), ParentScope(CGF.CurLexicalScope) { 770 CGF.CurLexicalScope = this; 771 if (CGDebugInfo *DI = CGF.getDebugInfo()) 772 DI->EmitLexicalBlockStart(CGF.Builder, Range.getBegin()); 773 } 774 775 void addLabel(const LabelDecl *label) { 776 assert(PerformCleanup && "adding label to dead scope?"); 777 Labels.push_back(label); 778 } 779 780 /// Exit this cleanup scope, emitting any accumulated 781 /// cleanups. 782 ~LexicalScope() { 783 if (CGDebugInfo *DI = CGF.getDebugInfo()) 784 DI->EmitLexicalBlockEnd(CGF.Builder, Range.getEnd()); 785 786 // If we should perform a cleanup, force them now. Note that 787 // this ends the cleanup scope before rescoping any labels. 788 if (PerformCleanup) { 789 ApplyDebugLocation DL(CGF, Range.getEnd()); 790 ForceCleanup(); 791 } 792 } 793 794 /// Force the emission of cleanups now, instead of waiting 795 /// until this object is destroyed. 796 void ForceCleanup() { 797 CGF.CurLexicalScope = ParentScope; 798 RunCleanupsScope::ForceCleanup(); 799 800 if (!Labels.empty()) 801 rescopeLabels(); 802 } 803 804 bool hasLabels() const { 805 return !Labels.empty(); 806 } 807 808 void rescopeLabels(); 809 }; 810 811 typedef llvm::DenseMap<const Decl *, Address> DeclMapTy; 812 813 /// The class used to assign some variables some temporarily addresses. 814 class OMPMapVars { 815 DeclMapTy SavedLocals; 816 DeclMapTy SavedTempAddresses; 817 OMPMapVars(const OMPMapVars &) = delete; 818 void operator=(const OMPMapVars &) = delete; 819 820 public: 821 explicit OMPMapVars() = default; 822 ~OMPMapVars() { 823 assert(SavedLocals.empty() && "Did not restored original addresses."); 824 }; 825 826 /// Sets the address of the variable \p LocalVD to be \p TempAddr in 827 /// function \p CGF. 828 /// \return true if at least one variable was set already, false otherwise. 829 bool setVarAddr(CodeGenFunction &CGF, const VarDecl *LocalVD, 830 Address TempAddr) { 831 LocalVD = LocalVD->getCanonicalDecl(); 832 // Only save it once. 833 if (SavedLocals.count(LocalVD)) return false; 834 835 // Copy the existing local entry to SavedLocals. 836 auto it = CGF.LocalDeclMap.find(LocalVD); 837 if (it != CGF.LocalDeclMap.end()) 838 SavedLocals.try_emplace(LocalVD, it->second); 839 else 840 SavedLocals.try_emplace(LocalVD, Address::invalid()); 841 842 // Generate the private entry. 843 QualType VarTy = LocalVD->getType(); 844 if (VarTy->isReferenceType()) { 845 Address Temp = CGF.CreateMemTemp(VarTy); 846 CGF.Builder.CreateStore(TempAddr.getPointer(), Temp); 847 TempAddr = Temp; 848 } 849 SavedTempAddresses.try_emplace(LocalVD, TempAddr); 850 851 return true; 852 } 853 854 /// Applies new addresses to the list of the variables. 855 /// \return true if at least one variable is using new address, false 856 /// otherwise. 857 bool apply(CodeGenFunction &CGF) { 858 copyInto(SavedTempAddresses, CGF.LocalDeclMap); 859 SavedTempAddresses.clear(); 860 return !SavedLocals.empty(); 861 } 862 863 /// Restores original addresses of the variables. 864 void restore(CodeGenFunction &CGF) { 865 if (!SavedLocals.empty()) { 866 copyInto(SavedLocals, CGF.LocalDeclMap); 867 SavedLocals.clear(); 868 } 869 } 870 871 private: 872 /// Copy all the entries in the source map over the corresponding 873 /// entries in the destination, which must exist. 874 static void copyInto(const DeclMapTy &Src, DeclMapTy &Dest) { 875 for (auto &Pair : Src) { 876 if (!Pair.second.isValid()) { 877 Dest.erase(Pair.first); 878 continue; 879 } 880 881 auto I = Dest.find(Pair.first); 882 if (I != Dest.end()) 883 I->second = Pair.second; 884 else 885 Dest.insert(Pair); 886 } 887 } 888 }; 889 890 /// The scope used to remap some variables as private in the OpenMP loop body 891 /// (or other captured region emitted without outlining), and to restore old 892 /// vars back on exit. 893 class OMPPrivateScope : public RunCleanupsScope { 894 OMPMapVars MappedVars; 895 OMPPrivateScope(const OMPPrivateScope &) = delete; 896 void operator=(const OMPPrivateScope &) = delete; 897 898 public: 899 /// Enter a new OpenMP private scope. 900 explicit OMPPrivateScope(CodeGenFunction &CGF) : RunCleanupsScope(CGF) {} 901 902 /// Registers \p LocalVD variable as a private and apply \p PrivateGen 903 /// function for it to generate corresponding private variable. \p 904 /// PrivateGen returns an address of the generated private variable. 905 /// \return true if the variable is registered as private, false if it has 906 /// been privatized already. 907 bool addPrivate(const VarDecl *LocalVD, 908 const llvm::function_ref<Address()> PrivateGen) { 909 assert(PerformCleanup && "adding private to dead scope"); 910 return MappedVars.setVarAddr(CGF, LocalVD, PrivateGen()); 911 } 912 913 /// Privatizes local variables previously registered as private. 914 /// Registration is separate from the actual privatization to allow 915 /// initializers use values of the original variables, not the private one. 916 /// This is important, for example, if the private variable is a class 917 /// variable initialized by a constructor that references other private 918 /// variables. But at initialization original variables must be used, not 919 /// private copies. 920 /// \return true if at least one variable was privatized, false otherwise. 921 bool Privatize() { return MappedVars.apply(CGF); } 922 923 void ForceCleanup() { 924 RunCleanupsScope::ForceCleanup(); 925 MappedVars.restore(CGF); 926 } 927 928 /// Exit scope - all the mapped variables are restored. 929 ~OMPPrivateScope() { 930 if (PerformCleanup) 931 ForceCleanup(); 932 } 933 934 /// Checks if the global variable is captured in current function. 935 bool isGlobalVarCaptured(const VarDecl *VD) const { 936 VD = VD->getCanonicalDecl(); 937 return !VD->isLocalVarDeclOrParm() && CGF.LocalDeclMap.count(VD) > 0; 938 } 939 }; 940 941 /// Takes the old cleanup stack size and emits the cleanup blocks 942 /// that have been added. 943 void 944 PopCleanupBlocks(EHScopeStack::stable_iterator OldCleanupStackSize, 945 std::initializer_list<llvm::Value **> ValuesToReload = {}); 946 947 /// Takes the old cleanup stack size and emits the cleanup blocks 948 /// that have been added, then adds all lifetime-extended cleanups from 949 /// the given position to the stack. 950 void 951 PopCleanupBlocks(EHScopeStack::stable_iterator OldCleanupStackSize, 952 size_t OldLifetimeExtendedStackSize, 953 std::initializer_list<llvm::Value **> ValuesToReload = {}); 954 955 void ResolveBranchFixups(llvm::BasicBlock *Target); 956 957 /// The given basic block lies in the current EH scope, but may be a 958 /// target of a potentially scope-crossing jump; get a stable handle 959 /// to which we can perform this jump later. 960 JumpDest getJumpDestInCurrentScope(llvm::BasicBlock *Target) { 961 return JumpDest(Target, 962 EHStack.getInnermostNormalCleanup(), 963 NextCleanupDestIndex++); 964 } 965 966 /// The given basic block lies in the current EH scope, but may be a 967 /// target of a potentially scope-crossing jump; get a stable handle 968 /// to which we can perform this jump later. 969 JumpDest getJumpDestInCurrentScope(StringRef Name = StringRef()) { 970 return getJumpDestInCurrentScope(createBasicBlock(Name)); 971 } 972 973 /// EmitBranchThroughCleanup - Emit a branch from the current insert 974 /// block through the normal cleanup handling code (if any) and then 975 /// on to \arg Dest. 976 void EmitBranchThroughCleanup(JumpDest Dest); 977 978 /// isObviouslyBranchWithoutCleanups - Return true if a branch to the 979 /// specified destination obviously has no cleanups to run. 'false' is always 980 /// a conservatively correct answer for this method. 981 bool isObviouslyBranchWithoutCleanups(JumpDest Dest) const; 982 983 /// popCatchScope - Pops the catch scope at the top of the EHScope 984 /// stack, emitting any required code (other than the catch handlers 985 /// themselves). 986 void popCatchScope(); 987 988 llvm::BasicBlock *getEHResumeBlock(bool isCleanup); 989 llvm::BasicBlock *getEHDispatchBlock(EHScopeStack::stable_iterator scope); 990 llvm::BasicBlock * 991 getFuncletEHDispatchBlock(EHScopeStack::stable_iterator scope); 992 993 /// An object to manage conditionally-evaluated expressions. 994 class ConditionalEvaluation { 995 llvm::BasicBlock *StartBB; 996 997 public: 998 ConditionalEvaluation(CodeGenFunction &CGF) 999 : StartBB(CGF.Builder.GetInsertBlock()) {} 1000 1001 void begin(CodeGenFunction &CGF) { 1002 assert(CGF.OutermostConditional != this); 1003 if (!CGF.OutermostConditional) 1004 CGF.OutermostConditional = this; 1005 } 1006 1007 void end(CodeGenFunction &CGF) { 1008 assert(CGF.OutermostConditional != nullptr); 1009 if (CGF.OutermostConditional == this) 1010 CGF.OutermostConditional = nullptr; 1011 } 1012 1013 /// Returns a block which will be executed prior to each 1014 /// evaluation of the conditional code. 1015 llvm::BasicBlock *getStartingBlock() const { 1016 return StartBB; 1017 } 1018 }; 1019 1020 /// isInConditionalBranch - Return true if we're currently emitting 1021 /// one branch or the other of a conditional expression. 1022 bool isInConditionalBranch() const { return OutermostConditional != nullptr; } 1023 1024 void setBeforeOutermostConditional(llvm::Value *value, Address addr) { 1025 assert(isInConditionalBranch()); 1026 llvm::BasicBlock *block = OutermostConditional->getStartingBlock(); 1027 auto store = new llvm::StoreInst(value, addr.getPointer(), &block->back()); 1028 store->setAlignment(addr.getAlignment().getQuantity()); 1029 } 1030 1031 /// An RAII object to record that we're evaluating a statement 1032 /// expression. 1033 class StmtExprEvaluation { 1034 CodeGenFunction &CGF; 1035 1036 /// We have to save the outermost conditional: cleanups in a 1037 /// statement expression aren't conditional just because the 1038 /// StmtExpr is. 1039 ConditionalEvaluation *SavedOutermostConditional; 1040 1041 public: 1042 StmtExprEvaluation(CodeGenFunction &CGF) 1043 : CGF(CGF), SavedOutermostConditional(CGF.OutermostConditional) { 1044 CGF.OutermostConditional = nullptr; 1045 } 1046 1047 ~StmtExprEvaluation() { 1048 CGF.OutermostConditional = SavedOutermostConditional; 1049 CGF.EnsureInsertPoint(); 1050 } 1051 }; 1052 1053 /// An object which temporarily prevents a value from being 1054 /// destroyed by aggressive peephole optimizations that assume that 1055 /// all uses of a value have been realized in the IR. 1056 class PeepholeProtection { 1057 llvm::Instruction *Inst; 1058 friend class CodeGenFunction; 1059 1060 public: 1061 PeepholeProtection() : Inst(nullptr) {} 1062 }; 1063 1064 /// A non-RAII class containing all the information about a bound 1065 /// opaque value. OpaqueValueMapping, below, is a RAII wrapper for 1066 /// this which makes individual mappings very simple; using this 1067 /// class directly is useful when you have a variable number of 1068 /// opaque values or don't want the RAII functionality for some 1069 /// reason. 1070 class OpaqueValueMappingData { 1071 const OpaqueValueExpr *OpaqueValue; 1072 bool BoundLValue; 1073 CodeGenFunction::PeepholeProtection Protection; 1074 1075 OpaqueValueMappingData(const OpaqueValueExpr *ov, 1076 bool boundLValue) 1077 : OpaqueValue(ov), BoundLValue(boundLValue) {} 1078 public: 1079 OpaqueValueMappingData() : OpaqueValue(nullptr) {} 1080 1081 static bool shouldBindAsLValue(const Expr *expr) { 1082 // gl-values should be bound as l-values for obvious reasons. 1083 // Records should be bound as l-values because IR generation 1084 // always keeps them in memory. Expressions of function type 1085 // act exactly like l-values but are formally required to be 1086 // r-values in C. 1087 return expr->isGLValue() || 1088 expr->getType()->isFunctionType() || 1089 hasAggregateEvaluationKind(expr->getType()); 1090 } 1091 1092 static OpaqueValueMappingData bind(CodeGenFunction &CGF, 1093 const OpaqueValueExpr *ov, 1094 const Expr *e) { 1095 if (shouldBindAsLValue(ov)) 1096 return bind(CGF, ov, CGF.EmitLValue(e)); 1097 return bind(CGF, ov, CGF.EmitAnyExpr(e)); 1098 } 1099 1100 static OpaqueValueMappingData bind(CodeGenFunction &CGF, 1101 const OpaqueValueExpr *ov, 1102 const LValue &lv) { 1103 assert(shouldBindAsLValue(ov)); 1104 CGF.OpaqueLValues.insert(std::make_pair(ov, lv)); 1105 return OpaqueValueMappingData(ov, true); 1106 } 1107 1108 static OpaqueValueMappingData bind(CodeGenFunction &CGF, 1109 const OpaqueValueExpr *ov, 1110 const RValue &rv) { 1111 assert(!shouldBindAsLValue(ov)); 1112 CGF.OpaqueRValues.insert(std::make_pair(ov, rv)); 1113 1114 OpaqueValueMappingData data(ov, false); 1115 1116 // Work around an extremely aggressive peephole optimization in 1117 // EmitScalarConversion which assumes that all other uses of a 1118 // value are extant. 1119 data.Protection = CGF.protectFromPeepholes(rv); 1120 1121 return data; 1122 } 1123 1124 bool isValid() const { return OpaqueValue != nullptr; } 1125 void clear() { OpaqueValue = nullptr; } 1126 1127 void unbind(CodeGenFunction &CGF) { 1128 assert(OpaqueValue && "no data to unbind!"); 1129 1130 if (BoundLValue) { 1131 CGF.OpaqueLValues.erase(OpaqueValue); 1132 } else { 1133 CGF.OpaqueRValues.erase(OpaqueValue); 1134 CGF.unprotectFromPeepholes(Protection); 1135 } 1136 } 1137 }; 1138 1139 /// An RAII object to set (and then clear) a mapping for an OpaqueValueExpr. 1140 class OpaqueValueMapping { 1141 CodeGenFunction &CGF; 1142 OpaqueValueMappingData Data; 1143 1144 public: 1145 static bool shouldBindAsLValue(const Expr *expr) { 1146 return OpaqueValueMappingData::shouldBindAsLValue(expr); 1147 } 1148 1149 /// Build the opaque value mapping for the given conditional 1150 /// operator if it's the GNU ?: extension. This is a common 1151 /// enough pattern that the convenience operator is really 1152 /// helpful. 1153 /// 1154 OpaqueValueMapping(CodeGenFunction &CGF, 1155 const AbstractConditionalOperator *op) : CGF(CGF) { 1156 if (isa<ConditionalOperator>(op)) 1157 // Leave Data empty. 1158 return; 1159 1160 const BinaryConditionalOperator *e = cast<BinaryConditionalOperator>(op); 1161 Data = OpaqueValueMappingData::bind(CGF, e->getOpaqueValue(), 1162 e->getCommon()); 1163 } 1164 1165 /// Build the opaque value mapping for an OpaqueValueExpr whose source 1166 /// expression is set to the expression the OVE represents. 1167 OpaqueValueMapping(CodeGenFunction &CGF, const OpaqueValueExpr *OV) 1168 : CGF(CGF) { 1169 if (OV) { 1170 assert(OV->getSourceExpr() && "wrong form of OpaqueValueMapping used " 1171 "for OVE with no source expression"); 1172 Data = OpaqueValueMappingData::bind(CGF, OV, OV->getSourceExpr()); 1173 } 1174 } 1175 1176 OpaqueValueMapping(CodeGenFunction &CGF, 1177 const OpaqueValueExpr *opaqueValue, 1178 LValue lvalue) 1179 : CGF(CGF), Data(OpaqueValueMappingData::bind(CGF, opaqueValue, lvalue)) { 1180 } 1181 1182 OpaqueValueMapping(CodeGenFunction &CGF, 1183 const OpaqueValueExpr *opaqueValue, 1184 RValue rvalue) 1185 : CGF(CGF), Data(OpaqueValueMappingData::bind(CGF, opaqueValue, rvalue)) { 1186 } 1187 1188 void pop() { 1189 Data.unbind(CGF); 1190 Data.clear(); 1191 } 1192 1193 ~OpaqueValueMapping() { 1194 if (Data.isValid()) Data.unbind(CGF); 1195 } 1196 }; 1197 1198 private: 1199 CGDebugInfo *DebugInfo; 1200 /// Used to create unique names for artificial VLA size debug info variables. 1201 unsigned VLAExprCounter = 0; 1202 bool DisableDebugInfo = false; 1203 1204 /// DidCallStackSave - Whether llvm.stacksave has been called. Used to avoid 1205 /// calling llvm.stacksave for multiple VLAs in the same scope. 1206 bool DidCallStackSave = false; 1207 1208 /// IndirectBranch - The first time an indirect goto is seen we create a block 1209 /// with an indirect branch. Every time we see the address of a label taken, 1210 /// we add the label to the indirect goto. Every subsequent indirect goto is 1211 /// codegen'd as a jump to the IndirectBranch's basic block. 1212 llvm::IndirectBrInst *IndirectBranch = nullptr; 1213 1214 /// LocalDeclMap - This keeps track of the LLVM allocas or globals for local C 1215 /// decls. 1216 DeclMapTy LocalDeclMap; 1217 1218 // Keep track of the cleanups for callee-destructed parameters pushed to the 1219 // cleanup stack so that they can be deactivated later. 1220 llvm::DenseMap<const ParmVarDecl *, EHScopeStack::stable_iterator> 1221 CalleeDestructedParamCleanups; 1222 1223 /// SizeArguments - If a ParmVarDecl had the pass_object_size attribute, this 1224 /// will contain a mapping from said ParmVarDecl to its implicit "object_size" 1225 /// parameter. 1226 llvm::SmallDenseMap<const ParmVarDecl *, const ImplicitParamDecl *, 2> 1227 SizeArguments; 1228 1229 /// Track escaped local variables with auto storage. Used during SEH 1230 /// outlining to produce a call to llvm.localescape. 1231 llvm::DenseMap<llvm::AllocaInst *, int> EscapedLocals; 1232 1233 /// LabelMap - This keeps track of the LLVM basic block for each C label. 1234 llvm::DenseMap<const LabelDecl*, JumpDest> LabelMap; 1235 1236 // BreakContinueStack - This keeps track of where break and continue 1237 // statements should jump to. 1238 struct BreakContinue { 1239 BreakContinue(JumpDest Break, JumpDest Continue) 1240 : BreakBlock(Break), ContinueBlock(Continue) {} 1241 1242 JumpDest BreakBlock; 1243 JumpDest ContinueBlock; 1244 }; 1245 SmallVector<BreakContinue, 8> BreakContinueStack; 1246 1247 /// Handles cancellation exit points in OpenMP-related constructs. 1248 class OpenMPCancelExitStack { 1249 /// Tracks cancellation exit point and join point for cancel-related exit 1250 /// and normal exit. 1251 struct CancelExit { 1252 CancelExit() = default; 1253 CancelExit(OpenMPDirectiveKind Kind, JumpDest ExitBlock, 1254 JumpDest ContBlock) 1255 : Kind(Kind), ExitBlock(ExitBlock), ContBlock(ContBlock) {} 1256 OpenMPDirectiveKind Kind = OMPD_unknown; 1257 /// true if the exit block has been emitted already by the special 1258 /// emitExit() call, false if the default codegen is used. 1259 bool HasBeenEmitted = false; 1260 JumpDest ExitBlock; 1261 JumpDest ContBlock; 1262 }; 1263 1264 SmallVector<CancelExit, 8> Stack; 1265 1266 public: 1267 OpenMPCancelExitStack() : Stack(1) {} 1268 ~OpenMPCancelExitStack() = default; 1269 /// Fetches the exit block for the current OpenMP construct. 1270 JumpDest getExitBlock() const { return Stack.back().ExitBlock; } 1271 /// Emits exit block with special codegen procedure specific for the related 1272 /// OpenMP construct + emits code for normal construct cleanup. 1273 void emitExit(CodeGenFunction &CGF, OpenMPDirectiveKind Kind, 1274 const llvm::function_ref<void(CodeGenFunction &)> CodeGen) { 1275 if (Stack.back().Kind == Kind && getExitBlock().isValid()) { 1276 assert(CGF.getOMPCancelDestination(Kind).isValid()); 1277 assert(CGF.HaveInsertPoint()); 1278 assert(!Stack.back().HasBeenEmitted); 1279 auto IP = CGF.Builder.saveAndClearIP(); 1280 CGF.EmitBlock(Stack.back().ExitBlock.getBlock()); 1281 CodeGen(CGF); 1282 CGF.EmitBranch(Stack.back().ContBlock.getBlock()); 1283 CGF.Builder.restoreIP(IP); 1284 Stack.back().HasBeenEmitted = true; 1285 } 1286 CodeGen(CGF); 1287 } 1288 /// Enter the cancel supporting \a Kind construct. 1289 /// \param Kind OpenMP directive that supports cancel constructs. 1290 /// \param HasCancel true, if the construct has inner cancel directive, 1291 /// false otherwise. 1292 void enter(CodeGenFunction &CGF, OpenMPDirectiveKind Kind, bool HasCancel) { 1293 Stack.push_back({Kind, 1294 HasCancel ? CGF.getJumpDestInCurrentScope("cancel.exit") 1295 : JumpDest(), 1296 HasCancel ? CGF.getJumpDestInCurrentScope("cancel.cont") 1297 : JumpDest()}); 1298 } 1299 /// Emits default exit point for the cancel construct (if the special one 1300 /// has not be used) + join point for cancel/normal exits. 1301 void exit(CodeGenFunction &CGF) { 1302 if (getExitBlock().isValid()) { 1303 assert(CGF.getOMPCancelDestination(Stack.back().Kind).isValid()); 1304 bool HaveIP = CGF.HaveInsertPoint(); 1305 if (!Stack.back().HasBeenEmitted) { 1306 if (HaveIP) 1307 CGF.EmitBranchThroughCleanup(Stack.back().ContBlock); 1308 CGF.EmitBlock(Stack.back().ExitBlock.getBlock()); 1309 CGF.EmitBranchThroughCleanup(Stack.back().ContBlock); 1310 } 1311 CGF.EmitBlock(Stack.back().ContBlock.getBlock()); 1312 if (!HaveIP) { 1313 CGF.Builder.CreateUnreachable(); 1314 CGF.Builder.ClearInsertionPoint(); 1315 } 1316 } 1317 Stack.pop_back(); 1318 } 1319 }; 1320 OpenMPCancelExitStack OMPCancelStack; 1321 1322 CodeGenPGO PGO; 1323 1324 /// Calculate branch weights appropriate for PGO data 1325 llvm::MDNode *createProfileWeights(uint64_t TrueCount, uint64_t FalseCount); 1326 llvm::MDNode *createProfileWeights(ArrayRef<uint64_t> Weights); 1327 llvm::MDNode *createProfileWeightsForLoop(const Stmt *Cond, 1328 uint64_t LoopCount); 1329 1330 public: 1331 /// Increment the profiler's counter for the given statement by \p StepV. 1332 /// If \p StepV is null, the default increment is 1. 1333 void incrementProfileCounter(const Stmt *S, llvm::Value *StepV = nullptr) { 1334 if (CGM.getCodeGenOpts().hasProfileClangInstr()) 1335 PGO.emitCounterIncrement(Builder, S, StepV); 1336 PGO.setCurrentStmt(S); 1337 } 1338 1339 /// Get the profiler's count for the given statement. 1340 uint64_t getProfileCount(const Stmt *S) { 1341 Optional<uint64_t> Count = PGO.getStmtCount(S); 1342 if (!Count.hasValue()) 1343 return 0; 1344 return *Count; 1345 } 1346 1347 /// Set the profiler's current count. 1348 void setCurrentProfileCount(uint64_t Count) { 1349 PGO.setCurrentRegionCount(Count); 1350 } 1351 1352 /// Get the profiler's current count. This is generally the count for the most 1353 /// recently incremented counter. 1354 uint64_t getCurrentProfileCount() { 1355 return PGO.getCurrentRegionCount(); 1356 } 1357 1358 private: 1359 1360 /// SwitchInsn - This is nearest current switch instruction. It is null if 1361 /// current context is not in a switch. 1362 llvm::SwitchInst *SwitchInsn = nullptr; 1363 /// The branch weights of SwitchInsn when doing instrumentation based PGO. 1364 SmallVector<uint64_t, 16> *SwitchWeights = nullptr; 1365 1366 /// CaseRangeBlock - This block holds if condition check for last case 1367 /// statement range in current switch instruction. 1368 llvm::BasicBlock *CaseRangeBlock = nullptr; 1369 1370 /// OpaqueLValues - Keeps track of the current set of opaque value 1371 /// expressions. 1372 llvm::DenseMap<const OpaqueValueExpr *, LValue> OpaqueLValues; 1373 llvm::DenseMap<const OpaqueValueExpr *, RValue> OpaqueRValues; 1374 1375 // VLASizeMap - This keeps track of the associated size for each VLA type. 1376 // We track this by the size expression rather than the type itself because 1377 // in certain situations, like a const qualifier applied to an VLA typedef, 1378 // multiple VLA types can share the same size expression. 1379 // FIXME: Maybe this could be a stack of maps that is pushed/popped as we 1380 // enter/leave scopes. 1381 llvm::DenseMap<const Expr*, llvm::Value*> VLASizeMap; 1382 1383 /// A block containing a single 'unreachable' instruction. Created 1384 /// lazily by getUnreachableBlock(). 1385 llvm::BasicBlock *UnreachableBlock = nullptr; 1386 1387 /// Counts of the number return expressions in the function. 1388 unsigned NumReturnExprs = 0; 1389 1390 /// Count the number of simple (constant) return expressions in the function. 1391 unsigned NumSimpleReturnExprs = 0; 1392 1393 /// The last regular (non-return) debug location (breakpoint) in the function. 1394 SourceLocation LastStopPoint; 1395 1396 public: 1397 /// A scope within which we are constructing the fields of an object which 1398 /// might use a CXXDefaultInitExpr. This stashes away a 'this' value to use 1399 /// if we need to evaluate a CXXDefaultInitExpr within the evaluation. 1400 class FieldConstructionScope { 1401 public: 1402 FieldConstructionScope(CodeGenFunction &CGF, Address This) 1403 : CGF(CGF), OldCXXDefaultInitExprThis(CGF.CXXDefaultInitExprThis) { 1404 CGF.CXXDefaultInitExprThis = This; 1405 } 1406 ~FieldConstructionScope() { 1407 CGF.CXXDefaultInitExprThis = OldCXXDefaultInitExprThis; 1408 } 1409 1410 private: 1411 CodeGenFunction &CGF; 1412 Address OldCXXDefaultInitExprThis; 1413 }; 1414 1415 /// The scope of a CXXDefaultInitExpr. Within this scope, the value of 'this' 1416 /// is overridden to be the object under construction. 1417 class CXXDefaultInitExprScope { 1418 public: 1419 CXXDefaultInitExprScope(CodeGenFunction &CGF) 1420 : CGF(CGF), OldCXXThisValue(CGF.CXXThisValue), 1421 OldCXXThisAlignment(CGF.CXXThisAlignment) { 1422 CGF.CXXThisValue = CGF.CXXDefaultInitExprThis.getPointer(); 1423 CGF.CXXThisAlignment = CGF.CXXDefaultInitExprThis.getAlignment(); 1424 } 1425 ~CXXDefaultInitExprScope() { 1426 CGF.CXXThisValue = OldCXXThisValue; 1427 CGF.CXXThisAlignment = OldCXXThisAlignment; 1428 } 1429 1430 public: 1431 CodeGenFunction &CGF; 1432 llvm::Value *OldCXXThisValue; 1433 CharUnits OldCXXThisAlignment; 1434 }; 1435 1436 /// The scope of an ArrayInitLoopExpr. Within this scope, the value of the 1437 /// current loop index is overridden. 1438 class ArrayInitLoopExprScope { 1439 public: 1440 ArrayInitLoopExprScope(CodeGenFunction &CGF, llvm::Value *Index) 1441 : CGF(CGF), OldArrayInitIndex(CGF.ArrayInitIndex) { 1442 CGF.ArrayInitIndex = Index; 1443 } 1444 ~ArrayInitLoopExprScope() { 1445 CGF.ArrayInitIndex = OldArrayInitIndex; 1446 } 1447 1448 private: 1449 CodeGenFunction &CGF; 1450 llvm::Value *OldArrayInitIndex; 1451 }; 1452 1453 class InlinedInheritingConstructorScope { 1454 public: 1455 InlinedInheritingConstructorScope(CodeGenFunction &CGF, GlobalDecl GD) 1456 : CGF(CGF), OldCurGD(CGF.CurGD), OldCurFuncDecl(CGF.CurFuncDecl), 1457 OldCurCodeDecl(CGF.CurCodeDecl), 1458 OldCXXABIThisDecl(CGF.CXXABIThisDecl), 1459 OldCXXABIThisValue(CGF.CXXABIThisValue), 1460 OldCXXThisValue(CGF.CXXThisValue), 1461 OldCXXABIThisAlignment(CGF.CXXABIThisAlignment), 1462 OldCXXThisAlignment(CGF.CXXThisAlignment), 1463 OldReturnValue(CGF.ReturnValue), OldFnRetTy(CGF.FnRetTy), 1464 OldCXXInheritedCtorInitExprArgs( 1465 std::move(CGF.CXXInheritedCtorInitExprArgs)) { 1466 CGF.CurGD = GD; 1467 CGF.CurFuncDecl = CGF.CurCodeDecl = 1468 cast<CXXConstructorDecl>(GD.getDecl()); 1469 CGF.CXXABIThisDecl = nullptr; 1470 CGF.CXXABIThisValue = nullptr; 1471 CGF.CXXThisValue = nullptr; 1472 CGF.CXXABIThisAlignment = CharUnits(); 1473 CGF.CXXThisAlignment = CharUnits(); 1474 CGF.ReturnValue = Address::invalid(); 1475 CGF.FnRetTy = QualType(); 1476 CGF.CXXInheritedCtorInitExprArgs.clear(); 1477 } 1478 ~InlinedInheritingConstructorScope() { 1479 CGF.CurGD = OldCurGD; 1480 CGF.CurFuncDecl = OldCurFuncDecl; 1481 CGF.CurCodeDecl = OldCurCodeDecl; 1482 CGF.CXXABIThisDecl = OldCXXABIThisDecl; 1483 CGF.CXXABIThisValue = OldCXXABIThisValue; 1484 CGF.CXXThisValue = OldCXXThisValue; 1485 CGF.CXXABIThisAlignment = OldCXXABIThisAlignment; 1486 CGF.CXXThisAlignment = OldCXXThisAlignment; 1487 CGF.ReturnValue = OldReturnValue; 1488 CGF.FnRetTy = OldFnRetTy; 1489 CGF.CXXInheritedCtorInitExprArgs = 1490 std::move(OldCXXInheritedCtorInitExprArgs); 1491 } 1492 1493 private: 1494 CodeGenFunction &CGF; 1495 GlobalDecl OldCurGD; 1496 const Decl *OldCurFuncDecl; 1497 const Decl *OldCurCodeDecl; 1498 ImplicitParamDecl *OldCXXABIThisDecl; 1499 llvm::Value *OldCXXABIThisValue; 1500 llvm::Value *OldCXXThisValue; 1501 CharUnits OldCXXABIThisAlignment; 1502 CharUnits OldCXXThisAlignment; 1503 Address OldReturnValue; 1504 QualType OldFnRetTy; 1505 CallArgList OldCXXInheritedCtorInitExprArgs; 1506 }; 1507 1508 private: 1509 /// CXXThisDecl - When generating code for a C++ member function, 1510 /// this will hold the implicit 'this' declaration. 1511 ImplicitParamDecl *CXXABIThisDecl = nullptr; 1512 llvm::Value *CXXABIThisValue = nullptr; 1513 llvm::Value *CXXThisValue = nullptr; 1514 CharUnits CXXABIThisAlignment; 1515 CharUnits CXXThisAlignment; 1516 1517 /// The value of 'this' to use when evaluating CXXDefaultInitExprs within 1518 /// this expression. 1519 Address CXXDefaultInitExprThis = Address::invalid(); 1520 1521 /// The current array initialization index when evaluating an 1522 /// ArrayInitIndexExpr within an ArrayInitLoopExpr. 1523 llvm::Value *ArrayInitIndex = nullptr; 1524 1525 /// The values of function arguments to use when evaluating 1526 /// CXXInheritedCtorInitExprs within this context. 1527 CallArgList CXXInheritedCtorInitExprArgs; 1528 1529 /// CXXStructorImplicitParamDecl - When generating code for a constructor or 1530 /// destructor, this will hold the implicit argument (e.g. VTT). 1531 ImplicitParamDecl *CXXStructorImplicitParamDecl = nullptr; 1532 llvm::Value *CXXStructorImplicitParamValue = nullptr; 1533 1534 /// OutermostConditional - Points to the outermost active 1535 /// conditional control. This is used so that we know if a 1536 /// temporary should be destroyed conditionally. 1537 ConditionalEvaluation *OutermostConditional = nullptr; 1538 1539 /// The current lexical scope. 1540 LexicalScope *CurLexicalScope = nullptr; 1541 1542 /// The current source location that should be used for exception 1543 /// handling code. 1544 SourceLocation CurEHLocation; 1545 1546 /// BlockByrefInfos - For each __block variable, contains 1547 /// information about the layout of the variable. 1548 llvm::DenseMap<const ValueDecl *, BlockByrefInfo> BlockByrefInfos; 1549 1550 /// Used by -fsanitize=nullability-return to determine whether the return 1551 /// value can be checked. 1552 llvm::Value *RetValNullabilityPrecondition = nullptr; 1553 1554 /// Check if -fsanitize=nullability-return instrumentation is required for 1555 /// this function. 1556 bool requiresReturnValueNullabilityCheck() const { 1557 return RetValNullabilityPrecondition; 1558 } 1559 1560 /// Used to store precise source locations for return statements by the 1561 /// runtime return value checks. 1562 Address ReturnLocation = Address::invalid(); 1563 1564 /// Check if the return value of this function requires sanitization. 1565 bool requiresReturnValueCheck() const { 1566 return requiresReturnValueNullabilityCheck() || 1567 (SanOpts.has(SanitizerKind::ReturnsNonnullAttribute) && 1568 CurCodeDecl && CurCodeDecl->getAttr<ReturnsNonNullAttr>()); 1569 } 1570 1571 llvm::BasicBlock *TerminateLandingPad = nullptr; 1572 llvm::BasicBlock *TerminateHandler = nullptr; 1573 llvm::BasicBlock *TrapBB = nullptr; 1574 1575 /// Terminate funclets keyed by parent funclet pad. 1576 llvm::MapVector<llvm::Value *, llvm::BasicBlock *> TerminateFunclets; 1577 1578 /// Largest vector width used in ths function. Will be used to create a 1579 /// function attribute. 1580 unsigned LargestVectorWidth = 0; 1581 1582 /// True if we need emit the life-time markers. 1583 const bool ShouldEmitLifetimeMarkers; 1584 1585 /// Add OpenCL kernel arg metadata and the kernel attribute metadata to 1586 /// the function metadata. 1587 void EmitOpenCLKernelMetadata(const FunctionDecl *FD, 1588 llvm::Function *Fn); 1589 1590 public: 1591 CodeGenFunction(CodeGenModule &cgm, bool suppressNewContext=false); 1592 ~CodeGenFunction(); 1593 1594 CodeGenTypes &getTypes() const { return CGM.getTypes(); } 1595 ASTContext &getContext() const { return CGM.getContext(); } 1596 CGDebugInfo *getDebugInfo() { 1597 if (DisableDebugInfo) 1598 return nullptr; 1599 return DebugInfo; 1600 } 1601 void disableDebugInfo() { DisableDebugInfo = true; } 1602 void enableDebugInfo() { DisableDebugInfo = false; } 1603 1604 bool shouldUseFusedARCCalls() { 1605 return CGM.getCodeGenOpts().OptimizationLevel == 0; 1606 } 1607 1608 const LangOptions &getLangOpts() const { return CGM.getLangOpts(); } 1609 1610 /// Returns a pointer to the function's exception object and selector slot, 1611 /// which is assigned in every landing pad. 1612 Address getExceptionSlot(); 1613 Address getEHSelectorSlot(); 1614 1615 /// Returns the contents of the function's exception object and selector 1616 /// slots. 1617 llvm::Value *getExceptionFromSlot(); 1618 llvm::Value *getSelectorFromSlot(); 1619 1620 Address getNormalCleanupDestSlot(); 1621 1622 llvm::BasicBlock *getUnreachableBlock() { 1623 if (!UnreachableBlock) { 1624 UnreachableBlock = createBasicBlock("unreachable"); 1625 new llvm::UnreachableInst(getLLVMContext(), UnreachableBlock); 1626 } 1627 return UnreachableBlock; 1628 } 1629 1630 llvm::BasicBlock *getInvokeDest() { 1631 if (!EHStack.requiresLandingPad()) return nullptr; 1632 return getInvokeDestImpl(); 1633 } 1634 1635 bool currentFunctionUsesSEHTry() const { return CurSEHParent != nullptr; } 1636 1637 const TargetInfo &getTarget() const { return Target; } 1638 llvm::LLVMContext &getLLVMContext() { return CGM.getLLVMContext(); } 1639 const TargetCodeGenInfo &getTargetHooks() const { 1640 return CGM.getTargetCodeGenInfo(); 1641 } 1642 1643 //===--------------------------------------------------------------------===// 1644 // Cleanups 1645 //===--------------------------------------------------------------------===// 1646 1647 typedef void Destroyer(CodeGenFunction &CGF, Address addr, QualType ty); 1648 1649 void pushIrregularPartialArrayCleanup(llvm::Value *arrayBegin, 1650 Address arrayEndPointer, 1651 QualType elementType, 1652 CharUnits elementAlignment, 1653 Destroyer *destroyer); 1654 void pushRegularPartialArrayCleanup(llvm::Value *arrayBegin, 1655 llvm::Value *arrayEnd, 1656 QualType elementType, 1657 CharUnits elementAlignment, 1658 Destroyer *destroyer); 1659 1660 void pushDestroy(QualType::DestructionKind dtorKind, 1661 Address addr, QualType type); 1662 void pushEHDestroy(QualType::DestructionKind dtorKind, 1663 Address addr, QualType type); 1664 void pushDestroy(CleanupKind kind, Address addr, QualType type, 1665 Destroyer *destroyer, bool useEHCleanupForArray); 1666 void pushLifetimeExtendedDestroy(CleanupKind kind, Address addr, 1667 QualType type, Destroyer *destroyer, 1668 bool useEHCleanupForArray); 1669 void pushCallObjectDeleteCleanup(const FunctionDecl *OperatorDelete, 1670 llvm::Value *CompletePtr, 1671 QualType ElementType); 1672 void pushStackRestore(CleanupKind kind, Address SPMem); 1673 void emitDestroy(Address addr, QualType type, Destroyer *destroyer, 1674 bool useEHCleanupForArray); 1675 llvm::Function *generateDestroyHelper(Address addr, QualType type, 1676 Destroyer *destroyer, 1677 bool useEHCleanupForArray, 1678 const VarDecl *VD); 1679 void emitArrayDestroy(llvm::Value *begin, llvm::Value *end, 1680 QualType elementType, CharUnits elementAlign, 1681 Destroyer *destroyer, 1682 bool checkZeroLength, bool useEHCleanup); 1683 1684 Destroyer *getDestroyer(QualType::DestructionKind destructionKind); 1685 1686 /// Determines whether an EH cleanup is required to destroy a type 1687 /// with the given destruction kind. 1688 bool needsEHCleanup(QualType::DestructionKind kind) { 1689 switch (kind) { 1690 case QualType::DK_none: 1691 return false; 1692 case QualType::DK_cxx_destructor: 1693 case QualType::DK_objc_weak_lifetime: 1694 case QualType::DK_nontrivial_c_struct: 1695 return getLangOpts().Exceptions; 1696 case QualType::DK_objc_strong_lifetime: 1697 return getLangOpts().Exceptions && 1698 CGM.getCodeGenOpts().ObjCAutoRefCountExceptions; 1699 } 1700 llvm_unreachable("bad destruction kind"); 1701 } 1702 1703 CleanupKind getCleanupKind(QualType::DestructionKind kind) { 1704 return (needsEHCleanup(kind) ? NormalAndEHCleanup : NormalCleanup); 1705 } 1706 1707 //===--------------------------------------------------------------------===// 1708 // Objective-C 1709 //===--------------------------------------------------------------------===// 1710 1711 void GenerateObjCMethod(const ObjCMethodDecl *OMD); 1712 1713 void StartObjCMethod(const ObjCMethodDecl *MD, const ObjCContainerDecl *CD); 1714 1715 /// GenerateObjCGetter - Synthesize an Objective-C property getter function. 1716 void GenerateObjCGetter(ObjCImplementationDecl *IMP, 1717 const ObjCPropertyImplDecl *PID); 1718 void generateObjCGetterBody(const ObjCImplementationDecl *classImpl, 1719 const ObjCPropertyImplDecl *propImpl, 1720 const ObjCMethodDecl *GetterMothodDecl, 1721 llvm::Constant *AtomicHelperFn); 1722 1723 void GenerateObjCCtorDtorMethod(ObjCImplementationDecl *IMP, 1724 ObjCMethodDecl *MD, bool ctor); 1725 1726 /// GenerateObjCSetter - Synthesize an Objective-C property setter function 1727 /// for the given property. 1728 void GenerateObjCSetter(ObjCImplementationDecl *IMP, 1729 const ObjCPropertyImplDecl *PID); 1730 void generateObjCSetterBody(const ObjCImplementationDecl *classImpl, 1731 const ObjCPropertyImplDecl *propImpl, 1732 llvm::Constant *AtomicHelperFn); 1733 1734 //===--------------------------------------------------------------------===// 1735 // Block Bits 1736 //===--------------------------------------------------------------------===// 1737 1738 /// Emit block literal. 1739 /// \return an LLVM value which is a pointer to a struct which contains 1740 /// information about the block, including the block invoke function, the 1741 /// captured variables, etc. 1742 llvm::Value *EmitBlockLiteral(const BlockExpr *); 1743 static void destroyBlockInfos(CGBlockInfo *info); 1744 1745 llvm::Function *GenerateBlockFunction(GlobalDecl GD, 1746 const CGBlockInfo &Info, 1747 const DeclMapTy &ldm, 1748 bool IsLambdaConversionToBlock, 1749 bool BuildGlobalBlock); 1750 1751 /// Check if \p T is a C++ class that has a destructor that can throw. 1752 static bool cxxDestructorCanThrow(QualType T); 1753 1754 llvm::Constant *GenerateCopyHelperFunction(const CGBlockInfo &blockInfo); 1755 llvm::Constant *GenerateDestroyHelperFunction(const CGBlockInfo &blockInfo); 1756 llvm::Constant *GenerateObjCAtomicSetterCopyHelperFunction( 1757 const ObjCPropertyImplDecl *PID); 1758 llvm::Constant *GenerateObjCAtomicGetterCopyHelperFunction( 1759 const ObjCPropertyImplDecl *PID); 1760 llvm::Value *EmitBlockCopyAndAutorelease(llvm::Value *Block, QualType Ty); 1761 1762 void BuildBlockRelease(llvm::Value *DeclPtr, BlockFieldFlags flags, 1763 bool CanThrow); 1764 1765 class AutoVarEmission; 1766 1767 void emitByrefStructureInit(const AutoVarEmission &emission); 1768 1769 /// Enter a cleanup to destroy a __block variable. Note that this 1770 /// cleanup should be a no-op if the variable hasn't left the stack 1771 /// yet; if a cleanup is required for the variable itself, that needs 1772 /// to be done externally. 1773 /// 1774 /// \param Kind Cleanup kind. 1775 /// 1776 /// \param Addr When \p LoadBlockVarAddr is false, the address of the __block 1777 /// structure that will be passed to _Block_object_dispose. When 1778 /// \p LoadBlockVarAddr is true, the address of the field of the block 1779 /// structure that holds the address of the __block structure. 1780 /// 1781 /// \param Flags The flag that will be passed to _Block_object_dispose. 1782 /// 1783 /// \param LoadBlockVarAddr Indicates whether we need to emit a load from 1784 /// \p Addr to get the address of the __block structure. 1785 void enterByrefCleanup(CleanupKind Kind, Address Addr, BlockFieldFlags Flags, 1786 bool LoadBlockVarAddr, bool CanThrow); 1787 1788 void setBlockContextParameter(const ImplicitParamDecl *D, unsigned argNum, 1789 llvm::Value *ptr); 1790 1791 Address LoadBlockStruct(); 1792 Address GetAddrOfBlockDecl(const VarDecl *var); 1793 1794 /// BuildBlockByrefAddress - Computes the location of the 1795 /// data in a variable which is declared as __block. 1796 Address emitBlockByrefAddress(Address baseAddr, const VarDecl *V, 1797 bool followForward = true); 1798 Address emitBlockByrefAddress(Address baseAddr, 1799 const BlockByrefInfo &info, 1800 bool followForward, 1801 const llvm::Twine &name); 1802 1803 const BlockByrefInfo &getBlockByrefInfo(const VarDecl *var); 1804 1805 QualType BuildFunctionArgList(GlobalDecl GD, FunctionArgList &Args); 1806 1807 void GenerateCode(GlobalDecl GD, llvm::Function *Fn, 1808 const CGFunctionInfo &FnInfo); 1809 1810 /// Annotate the function with an attribute that disables TSan checking at 1811 /// runtime. 1812 void markAsIgnoreThreadCheckingAtRuntime(llvm::Function *Fn); 1813 1814 /// Emit code for the start of a function. 1815 /// \param Loc The location to be associated with the function. 1816 /// \param StartLoc The location of the function body. 1817 void StartFunction(GlobalDecl GD, 1818 QualType RetTy, 1819 llvm::Function *Fn, 1820 const CGFunctionInfo &FnInfo, 1821 const FunctionArgList &Args, 1822 SourceLocation Loc = SourceLocation(), 1823 SourceLocation StartLoc = SourceLocation()); 1824 1825 static bool IsConstructorDelegationValid(const CXXConstructorDecl *Ctor); 1826 1827 void EmitConstructorBody(FunctionArgList &Args); 1828 void EmitDestructorBody(FunctionArgList &Args); 1829 void emitImplicitAssignmentOperatorBody(FunctionArgList &Args); 1830 void EmitFunctionBody(const Stmt *Body); 1831 void EmitBlockWithFallThrough(llvm::BasicBlock *BB, const Stmt *S); 1832 1833 void EmitForwardingCallToLambda(const CXXMethodDecl *LambdaCallOperator, 1834 CallArgList &CallArgs); 1835 void EmitLambdaBlockInvokeBody(); 1836 void EmitLambdaDelegatingInvokeBody(const CXXMethodDecl *MD); 1837 void EmitLambdaStaticInvokeBody(const CXXMethodDecl *MD); 1838 void EmitAsanPrologueOrEpilogue(bool Prologue); 1839 1840 /// Emit the unified return block, trying to avoid its emission when 1841 /// possible. 1842 /// \return The debug location of the user written return statement if the 1843 /// return block is is avoided. 1844 llvm::DebugLoc EmitReturnBlock(); 1845 1846 /// FinishFunction - Complete IR generation of the current function. It is 1847 /// legal to call this function even if there is no current insertion point. 1848 void FinishFunction(SourceLocation EndLoc=SourceLocation()); 1849 1850 void StartThunk(llvm::Function *Fn, GlobalDecl GD, 1851 const CGFunctionInfo &FnInfo, bool IsUnprototyped); 1852 1853 void EmitCallAndReturnForThunk(llvm::Constant *Callee, const ThunkInfo *Thunk, 1854 bool IsUnprototyped); 1855 1856 void FinishThunk(); 1857 1858 /// Emit a musttail call for a thunk with a potentially adjusted this pointer. 1859 void EmitMustTailThunk(GlobalDecl GD, llvm::Value *AdjustedThisPtr, 1860 llvm::Value *Callee); 1861 1862 /// Generate a thunk for the given method. 1863 void generateThunk(llvm::Function *Fn, const CGFunctionInfo &FnInfo, 1864 GlobalDecl GD, const ThunkInfo &Thunk, 1865 bool IsUnprototyped); 1866 1867 llvm::Function *GenerateVarArgsThunk(llvm::Function *Fn, 1868 const CGFunctionInfo &FnInfo, 1869 GlobalDecl GD, const ThunkInfo &Thunk); 1870 1871 void EmitCtorPrologue(const CXXConstructorDecl *CD, CXXCtorType Type, 1872 FunctionArgList &Args); 1873 1874 void EmitInitializerForField(FieldDecl *Field, LValue LHS, Expr *Init); 1875 1876 /// Struct with all information about dynamic [sub]class needed to set vptr. 1877 struct VPtr { 1878 BaseSubobject Base; 1879 const CXXRecordDecl *NearestVBase; 1880 CharUnits OffsetFromNearestVBase; 1881 const CXXRecordDecl *VTableClass; 1882 }; 1883 1884 /// Initialize the vtable pointer of the given subobject. 1885 void InitializeVTablePointer(const VPtr &vptr); 1886 1887 typedef llvm::SmallVector<VPtr, 4> VPtrsVector; 1888 1889 typedef llvm::SmallPtrSet<const CXXRecordDecl *, 4> VisitedVirtualBasesSetTy; 1890 VPtrsVector getVTablePointers(const CXXRecordDecl *VTableClass); 1891 1892 void getVTablePointers(BaseSubobject Base, const CXXRecordDecl *NearestVBase, 1893 CharUnits OffsetFromNearestVBase, 1894 bool BaseIsNonVirtualPrimaryBase, 1895 const CXXRecordDecl *VTableClass, 1896 VisitedVirtualBasesSetTy &VBases, VPtrsVector &vptrs); 1897 1898 void InitializeVTablePointers(const CXXRecordDecl *ClassDecl); 1899 1900 /// GetVTablePtr - Return the Value of the vtable pointer member pointed 1901 /// to by This. 1902 llvm::Value *GetVTablePtr(Address This, llvm::Type *VTableTy, 1903 const CXXRecordDecl *VTableClass); 1904 1905 enum CFITypeCheckKind { 1906 CFITCK_VCall, 1907 CFITCK_NVCall, 1908 CFITCK_DerivedCast, 1909 CFITCK_UnrelatedCast, 1910 CFITCK_ICall, 1911 CFITCK_NVMFCall, 1912 CFITCK_VMFCall, 1913 }; 1914 1915 /// Derived is the presumed address of an object of type T after a 1916 /// cast. If T is a polymorphic class type, emit a check that the virtual 1917 /// table for Derived belongs to a class derived from T. 1918 void EmitVTablePtrCheckForCast(QualType T, llvm::Value *Derived, 1919 bool MayBeNull, CFITypeCheckKind TCK, 1920 SourceLocation Loc); 1921 1922 /// EmitVTablePtrCheckForCall - Virtual method MD is being called via VTable. 1923 /// If vptr CFI is enabled, emit a check that VTable is valid. 1924 void EmitVTablePtrCheckForCall(const CXXRecordDecl *RD, llvm::Value *VTable, 1925 CFITypeCheckKind TCK, SourceLocation Loc); 1926 1927 /// EmitVTablePtrCheck - Emit a check that VTable is a valid virtual table for 1928 /// RD using llvm.type.test. 1929 void EmitVTablePtrCheck(const CXXRecordDecl *RD, llvm::Value *VTable, 1930 CFITypeCheckKind TCK, SourceLocation Loc); 1931 1932 /// If whole-program virtual table optimization is enabled, emit an assumption 1933 /// that VTable is a member of RD's type identifier. Or, if vptr CFI is 1934 /// enabled, emit a check that VTable is a member of RD's type identifier. 1935 void EmitTypeMetadataCodeForVCall(const CXXRecordDecl *RD, 1936 llvm::Value *VTable, SourceLocation Loc); 1937 1938 /// Returns whether we should perform a type checked load when loading a 1939 /// virtual function for virtual calls to members of RD. This is generally 1940 /// true when both vcall CFI and whole-program-vtables are enabled. 1941 bool ShouldEmitVTableTypeCheckedLoad(const CXXRecordDecl *RD); 1942 1943 /// Emit a type checked load from the given vtable. 1944 llvm::Value *EmitVTableTypeCheckedLoad(const CXXRecordDecl *RD, llvm::Value *VTable, 1945 uint64_t VTableByteOffset); 1946 1947 /// EnterDtorCleanups - Enter the cleanups necessary to complete the 1948 /// given phase of destruction for a destructor. The end result 1949 /// should call destructors on members and base classes in reverse 1950 /// order of their construction. 1951 void EnterDtorCleanups(const CXXDestructorDecl *Dtor, CXXDtorType Type); 1952 1953 /// ShouldInstrumentFunction - Return true if the current function should be 1954 /// instrumented with __cyg_profile_func_* calls 1955 bool ShouldInstrumentFunction(); 1956 1957 /// ShouldXRayInstrument - Return true if the current function should be 1958 /// instrumented with XRay nop sleds. 1959 bool ShouldXRayInstrumentFunction() const; 1960 1961 /// AlwaysEmitXRayCustomEvents - Return true if we must unconditionally emit 1962 /// XRay custom event handling calls. 1963 bool AlwaysEmitXRayCustomEvents() const; 1964 1965 /// AlwaysEmitXRayTypedEvents - Return true if clang must unconditionally emit 1966 /// XRay typed event handling calls. 1967 bool AlwaysEmitXRayTypedEvents() const; 1968 1969 /// Encode an address into a form suitable for use in a function prologue. 1970 llvm::Constant *EncodeAddrForUseInPrologue(llvm::Function *F, 1971 llvm::Constant *Addr); 1972 1973 /// Decode an address used in a function prologue, encoded by \c 1974 /// EncodeAddrForUseInPrologue. 1975 llvm::Value *DecodeAddrUsedInPrologue(llvm::Value *F, 1976 llvm::Value *EncodedAddr); 1977 1978 /// EmitFunctionProlog - Emit the target specific LLVM code to load the 1979 /// arguments for the given function. This is also responsible for naming the 1980 /// LLVM function arguments. 1981 void EmitFunctionProlog(const CGFunctionInfo &FI, 1982 llvm::Function *Fn, 1983 const FunctionArgList &Args); 1984 1985 /// EmitFunctionEpilog - Emit the target specific LLVM code to return the 1986 /// given temporary. 1987 void EmitFunctionEpilog(const CGFunctionInfo &FI, bool EmitRetDbgLoc, 1988 SourceLocation EndLoc); 1989 1990 /// Emit a test that checks if the return value \p RV is nonnull. 1991 void EmitReturnValueCheck(llvm::Value *RV); 1992 1993 /// EmitStartEHSpec - Emit the start of the exception spec. 1994 void EmitStartEHSpec(const Decl *D); 1995 1996 /// EmitEndEHSpec - Emit the end of the exception spec. 1997 void EmitEndEHSpec(const Decl *D); 1998 1999 /// getTerminateLandingPad - Return a landing pad that just calls terminate. 2000 llvm::BasicBlock *getTerminateLandingPad(); 2001 2002 /// getTerminateLandingPad - Return a cleanup funclet that just calls 2003 /// terminate. 2004 llvm::BasicBlock *getTerminateFunclet(); 2005 2006 /// getTerminateHandler - Return a handler (not a landing pad, just 2007 /// a catch handler) that just calls terminate. This is used when 2008 /// a terminate scope encloses a try. 2009 llvm::BasicBlock *getTerminateHandler(); 2010 2011 llvm::Type *ConvertTypeForMem(QualType T); 2012 llvm::Type *ConvertType(QualType T); 2013 llvm::Type *ConvertType(const TypeDecl *T) { 2014 return ConvertType(getContext().getTypeDeclType(T)); 2015 } 2016 2017 /// LoadObjCSelf - Load the value of self. This function is only valid while 2018 /// generating code for an Objective-C method. 2019 llvm::Value *LoadObjCSelf(); 2020 2021 /// TypeOfSelfObject - Return type of object that this self represents. 2022 QualType TypeOfSelfObject(); 2023 2024 /// getEvaluationKind - Return the TypeEvaluationKind of QualType \c T. 2025 static TypeEvaluationKind getEvaluationKind(QualType T); 2026 2027 static bool hasScalarEvaluationKind(QualType T) { 2028 return getEvaluationKind(T) == TEK_Scalar; 2029 } 2030 2031 static bool hasAggregateEvaluationKind(QualType T) { 2032 return getEvaluationKind(T) == TEK_Aggregate; 2033 } 2034 2035 /// createBasicBlock - Create an LLVM basic block. 2036 llvm::BasicBlock *createBasicBlock(const Twine &name = "", 2037 llvm::Function *parent = nullptr, 2038 llvm::BasicBlock *before = nullptr) { 2039 return llvm::BasicBlock::Create(getLLVMContext(), name, parent, before); 2040 } 2041 2042 /// getBasicBlockForLabel - Return the LLVM basicblock that the specified 2043 /// label maps to. 2044 JumpDest getJumpDestForLabel(const LabelDecl *S); 2045 2046 /// SimplifyForwardingBlocks - If the given basic block is only a branch to 2047 /// another basic block, simplify it. This assumes that no other code could 2048 /// potentially reference the basic block. 2049 void SimplifyForwardingBlocks(llvm::BasicBlock *BB); 2050 2051 /// EmitBlock - Emit the given block \arg BB and set it as the insert point, 2052 /// adding a fall-through branch from the current insert block if 2053 /// necessary. It is legal to call this function even if there is no current 2054 /// insertion point. 2055 /// 2056 /// IsFinished - If true, indicates that the caller has finished emitting 2057 /// branches to the given block and does not expect to emit code into it. This 2058 /// means the block can be ignored if it is unreachable. 2059 void EmitBlock(llvm::BasicBlock *BB, bool IsFinished=false); 2060 2061 /// EmitBlockAfterUses - Emit the given block somewhere hopefully 2062 /// near its uses, and leave the insertion point in it. 2063 void EmitBlockAfterUses(llvm::BasicBlock *BB); 2064 2065 /// EmitBranch - Emit a branch to the specified basic block from the current 2066 /// insert block, taking care to avoid creation of branches from dummy 2067 /// blocks. It is legal to call this function even if there is no current 2068 /// insertion point. 2069 /// 2070 /// This function clears the current insertion point. The caller should follow 2071 /// calls to this function with calls to Emit*Block prior to generation new 2072 /// code. 2073 void EmitBranch(llvm::BasicBlock *Block); 2074 2075 /// HaveInsertPoint - True if an insertion point is defined. If not, this 2076 /// indicates that the current code being emitted is unreachable. 2077 bool HaveInsertPoint() const { 2078 return Builder.GetInsertBlock() != nullptr; 2079 } 2080 2081 /// EnsureInsertPoint - Ensure that an insertion point is defined so that 2082 /// emitted IR has a place to go. Note that by definition, if this function 2083 /// creates a block then that block is unreachable; callers may do better to 2084 /// detect when no insertion point is defined and simply skip IR generation. 2085 void EnsureInsertPoint() { 2086 if (!HaveInsertPoint()) 2087 EmitBlock(createBasicBlock()); 2088 } 2089 2090 /// ErrorUnsupported - Print out an error that codegen doesn't support the 2091 /// specified stmt yet. 2092 void ErrorUnsupported(const Stmt *S, const char *Type); 2093 2094 //===--------------------------------------------------------------------===// 2095 // Helpers 2096 //===--------------------------------------------------------------------===// 2097 2098 LValue MakeAddrLValue(Address Addr, QualType T, 2099 AlignmentSource Source = AlignmentSource::Type) { 2100 return LValue::MakeAddr(Addr, T, getContext(), LValueBaseInfo(Source), 2101 CGM.getTBAAAccessInfo(T)); 2102 } 2103 2104 LValue MakeAddrLValue(Address Addr, QualType T, LValueBaseInfo BaseInfo, 2105 TBAAAccessInfo TBAAInfo) { 2106 return LValue::MakeAddr(Addr, T, getContext(), BaseInfo, TBAAInfo); 2107 } 2108 2109 LValue MakeAddrLValue(llvm::Value *V, QualType T, CharUnits Alignment, 2110 AlignmentSource Source = AlignmentSource::Type) { 2111 return LValue::MakeAddr(Address(V, Alignment), T, getContext(), 2112 LValueBaseInfo(Source), CGM.getTBAAAccessInfo(T)); 2113 } 2114 2115 LValue MakeAddrLValue(llvm::Value *V, QualType T, CharUnits Alignment, 2116 LValueBaseInfo BaseInfo, TBAAAccessInfo TBAAInfo) { 2117 return LValue::MakeAddr(Address(V, Alignment), T, getContext(), 2118 BaseInfo, TBAAInfo); 2119 } 2120 2121 LValue MakeNaturalAlignPointeeAddrLValue(llvm::Value *V, QualType T); 2122 LValue MakeNaturalAlignAddrLValue(llvm::Value *V, QualType T); 2123 CharUnits getNaturalTypeAlignment(QualType T, 2124 LValueBaseInfo *BaseInfo = nullptr, 2125 TBAAAccessInfo *TBAAInfo = nullptr, 2126 bool forPointeeType = false); 2127 CharUnits getNaturalPointeeTypeAlignment(QualType T, 2128 LValueBaseInfo *BaseInfo = nullptr, 2129 TBAAAccessInfo *TBAAInfo = nullptr); 2130 2131 Address EmitLoadOfReference(LValue RefLVal, 2132 LValueBaseInfo *PointeeBaseInfo = nullptr, 2133 TBAAAccessInfo *PointeeTBAAInfo = nullptr); 2134 LValue EmitLoadOfReferenceLValue(LValue RefLVal); 2135 LValue EmitLoadOfReferenceLValue(Address RefAddr, QualType RefTy, 2136 AlignmentSource Source = 2137 AlignmentSource::Type) { 2138 LValue RefLVal = MakeAddrLValue(RefAddr, RefTy, LValueBaseInfo(Source), 2139 CGM.getTBAAAccessInfo(RefTy)); 2140 return EmitLoadOfReferenceLValue(RefLVal); 2141 } 2142 2143 Address EmitLoadOfPointer(Address Ptr, const PointerType *PtrTy, 2144 LValueBaseInfo *BaseInfo = nullptr, 2145 TBAAAccessInfo *TBAAInfo = nullptr); 2146 LValue EmitLoadOfPointerLValue(Address Ptr, const PointerType *PtrTy); 2147 2148 /// CreateTempAlloca - This creates an alloca and inserts it into the entry 2149 /// block if \p ArraySize is nullptr, otherwise inserts it at the current 2150 /// insertion point of the builder. The caller is responsible for setting an 2151 /// appropriate alignment on 2152 /// the alloca. 2153 /// 2154 /// \p ArraySize is the number of array elements to be allocated if it 2155 /// is not nullptr. 2156 /// 2157 /// LangAS::Default is the address space of pointers to local variables and 2158 /// temporaries, as exposed in the source language. In certain 2159 /// configurations, this is not the same as the alloca address space, and a 2160 /// cast is needed to lift the pointer from the alloca AS into 2161 /// LangAS::Default. This can happen when the target uses a restricted 2162 /// address space for the stack but the source language requires 2163 /// LangAS::Default to be a generic address space. The latter condition is 2164 /// common for most programming languages; OpenCL is an exception in that 2165 /// LangAS::Default is the private address space, which naturally maps 2166 /// to the stack. 2167 /// 2168 /// Because the address of a temporary is often exposed to the program in 2169 /// various ways, this function will perform the cast. The original alloca 2170 /// instruction is returned through \p Alloca if it is not nullptr. 2171 /// 2172 /// The cast is not performaed in CreateTempAllocaWithoutCast. This is 2173 /// more efficient if the caller knows that the address will not be exposed. 2174 llvm::AllocaInst *CreateTempAlloca(llvm::Type *Ty, const Twine &Name = "tmp", 2175 llvm::Value *ArraySize = nullptr); 2176 Address CreateTempAlloca(llvm::Type *Ty, CharUnits align, 2177 const Twine &Name = "tmp", 2178 llvm::Value *ArraySize = nullptr, 2179 Address *Alloca = nullptr); 2180 Address CreateTempAllocaWithoutCast(llvm::Type *Ty, CharUnits align, 2181 const Twine &Name = "tmp", 2182 llvm::Value *ArraySize = nullptr); 2183 2184 /// CreateDefaultAlignedTempAlloca - This creates an alloca with the 2185 /// default ABI alignment of the given LLVM type. 2186 /// 2187 /// IMPORTANT NOTE: This is *not* generally the right alignment for 2188 /// any given AST type that happens to have been lowered to the 2189 /// given IR type. This should only ever be used for function-local, 2190 /// IR-driven manipulations like saving and restoring a value. Do 2191 /// not hand this address off to arbitrary IRGen routines, and especially 2192 /// do not pass it as an argument to a function that might expect a 2193 /// properly ABI-aligned value. 2194 Address CreateDefaultAlignTempAlloca(llvm::Type *Ty, 2195 const Twine &Name = "tmp"); 2196 2197 /// InitTempAlloca - Provide an initial value for the given alloca which 2198 /// will be observable at all locations in the function. 2199 /// 2200 /// The address should be something that was returned from one of 2201 /// the CreateTempAlloca or CreateMemTemp routines, and the 2202 /// initializer must be valid in the entry block (i.e. it must 2203 /// either be a constant or an argument value). 2204 void InitTempAlloca(Address Alloca, llvm::Value *Value); 2205 2206 /// CreateIRTemp - Create a temporary IR object of the given type, with 2207 /// appropriate alignment. This routine should only be used when an temporary 2208 /// value needs to be stored into an alloca (for example, to avoid explicit 2209 /// PHI construction), but the type is the IR type, not the type appropriate 2210 /// for storing in memory. 2211 /// 2212 /// That is, this is exactly equivalent to CreateMemTemp, but calling 2213 /// ConvertType instead of ConvertTypeForMem. 2214 Address CreateIRTemp(QualType T, const Twine &Name = "tmp"); 2215 2216 /// CreateMemTemp - Create a temporary memory object of the given type, with 2217 /// appropriate alignmen and cast it to the default address space. Returns 2218 /// the original alloca instruction by \p Alloca if it is not nullptr. 2219 Address CreateMemTemp(QualType T, const Twine &Name = "tmp", 2220 Address *Alloca = nullptr); 2221 Address CreateMemTemp(QualType T, CharUnits Align, const Twine &Name = "tmp", 2222 Address *Alloca = nullptr); 2223 2224 /// CreateMemTemp - Create a temporary memory object of the given type, with 2225 /// appropriate alignmen without casting it to the default address space. 2226 Address CreateMemTempWithoutCast(QualType T, const Twine &Name = "tmp"); 2227 Address CreateMemTempWithoutCast(QualType T, CharUnits Align, 2228 const Twine &Name = "tmp"); 2229 2230 /// CreateAggTemp - Create a temporary memory object for the given 2231 /// aggregate type. 2232 AggValueSlot CreateAggTemp(QualType T, const Twine &Name = "tmp") { 2233 return AggValueSlot::forAddr(CreateMemTemp(T, Name), 2234 T.getQualifiers(), 2235 AggValueSlot::IsNotDestructed, 2236 AggValueSlot::DoesNotNeedGCBarriers, 2237 AggValueSlot::IsNotAliased, 2238 AggValueSlot::DoesNotOverlap); 2239 } 2240 2241 /// Emit a cast to void* in the appropriate address space. 2242 llvm::Value *EmitCastToVoidPtr(llvm::Value *value); 2243 2244 /// EvaluateExprAsBool - Perform the usual unary conversions on the specified 2245 /// expression and compare the result against zero, returning an Int1Ty value. 2246 llvm::Value *EvaluateExprAsBool(const Expr *E); 2247 2248 /// EmitIgnoredExpr - Emit an expression in a context which ignores the result. 2249 void EmitIgnoredExpr(const Expr *E); 2250 2251 /// EmitAnyExpr - Emit code to compute the specified expression which can have 2252 /// any type. The result is returned as an RValue struct. If this is an 2253 /// aggregate expression, the aggloc/agglocvolatile arguments indicate where 2254 /// the result should be returned. 2255 /// 2256 /// \param ignoreResult True if the resulting value isn't used. 2257 RValue EmitAnyExpr(const Expr *E, 2258 AggValueSlot aggSlot = AggValueSlot::ignored(), 2259 bool ignoreResult = false); 2260 2261 // EmitVAListRef - Emit a "reference" to a va_list; this is either the address 2262 // or the value of the expression, depending on how va_list is defined. 2263 Address EmitVAListRef(const Expr *E); 2264 2265 /// Emit a "reference" to a __builtin_ms_va_list; this is 2266 /// always the value of the expression, because a __builtin_ms_va_list is a 2267 /// pointer to a char. 2268 Address EmitMSVAListRef(const Expr *E); 2269 2270 /// EmitAnyExprToTemp - Similarly to EmitAnyExpr(), however, the result will 2271 /// always be accessible even if no aggregate location is provided. 2272 RValue EmitAnyExprToTemp(const Expr *E); 2273 2274 /// EmitAnyExprToMem - Emits the code necessary to evaluate an 2275 /// arbitrary expression into the given memory location. 2276 void EmitAnyExprToMem(const Expr *E, Address Location, 2277 Qualifiers Quals, bool IsInitializer); 2278 2279 void EmitAnyExprToExn(const Expr *E, Address Addr); 2280 2281 /// EmitExprAsInit - Emits the code necessary to initialize a 2282 /// location in memory with the given initializer. 2283 void EmitExprAsInit(const Expr *init, const ValueDecl *D, LValue lvalue, 2284 bool capturedByInit); 2285 2286 /// hasVolatileMember - returns true if aggregate type has a volatile 2287 /// member. 2288 bool hasVolatileMember(QualType T) { 2289 if (const RecordType *RT = T->getAs<RecordType>()) { 2290 const RecordDecl *RD = cast<RecordDecl>(RT->getDecl()); 2291 return RD->hasVolatileMember(); 2292 } 2293 return false; 2294 } 2295 2296 /// Determine whether a return value slot may overlap some other object. 2297 AggValueSlot::Overlap_t overlapForReturnValue() { 2298 // FIXME: Assuming no overlap here breaks guaranteed copy elision for base 2299 // class subobjects. These cases may need to be revisited depending on the 2300 // resolution of the relevant core issue. 2301 return AggValueSlot::DoesNotOverlap; 2302 } 2303 2304 /// Determine whether a field initialization may overlap some other object. 2305 AggValueSlot::Overlap_t overlapForFieldInit(const FieldDecl *FD) { 2306 // FIXME: These cases can result in overlap as a result of P0840R0's 2307 // [[no_unique_address]] attribute. We can still infer NoOverlap in the 2308 // presence of that attribute if the field is within the nvsize of its 2309 // containing class, because non-virtual subobjects are initialized in 2310 // address order. 2311 return AggValueSlot::DoesNotOverlap; 2312 } 2313 2314 /// Determine whether a base class initialization may overlap some other 2315 /// object. 2316 AggValueSlot::Overlap_t overlapForBaseInit(const CXXRecordDecl *RD, 2317 const CXXRecordDecl *BaseRD, 2318 bool IsVirtual); 2319 2320 /// Emit an aggregate assignment. 2321 void EmitAggregateAssign(LValue Dest, LValue Src, QualType EltTy) { 2322 bool IsVolatile = hasVolatileMember(EltTy); 2323 EmitAggregateCopy(Dest, Src, EltTy, AggValueSlot::MayOverlap, IsVolatile); 2324 } 2325 2326 void EmitAggregateCopyCtor(LValue Dest, LValue Src, 2327 AggValueSlot::Overlap_t MayOverlap) { 2328 EmitAggregateCopy(Dest, Src, Src.getType(), MayOverlap); 2329 } 2330 2331 /// EmitAggregateCopy - Emit an aggregate copy. 2332 /// 2333 /// \param isVolatile \c true iff either the source or the destination is 2334 /// volatile. 2335 /// \param MayOverlap Whether the tail padding of the destination might be 2336 /// occupied by some other object. More efficient code can often be 2337 /// generated if not. 2338 void EmitAggregateCopy(LValue Dest, LValue Src, QualType EltTy, 2339 AggValueSlot::Overlap_t MayOverlap, 2340 bool isVolatile = false); 2341 2342 /// GetAddrOfLocalVar - Return the address of a local variable. 2343 Address GetAddrOfLocalVar(const VarDecl *VD) { 2344 auto it = LocalDeclMap.find(VD); 2345 assert(it != LocalDeclMap.end() && 2346 "Invalid argument to GetAddrOfLocalVar(), no decl!"); 2347 return it->second; 2348 } 2349 2350 /// Given an opaque value expression, return its LValue mapping if it exists, 2351 /// otherwise create one. 2352 LValue getOrCreateOpaqueLValueMapping(const OpaqueValueExpr *e); 2353 2354 /// Given an opaque value expression, return its RValue mapping if it exists, 2355 /// otherwise create one. 2356 RValue getOrCreateOpaqueRValueMapping(const OpaqueValueExpr *e); 2357 2358 /// Get the index of the current ArrayInitLoopExpr, if any. 2359 llvm::Value *getArrayInitIndex() { return ArrayInitIndex; } 2360 2361 /// getAccessedFieldNo - Given an encoded value and a result number, return 2362 /// the input field number being accessed. 2363 static unsigned getAccessedFieldNo(unsigned Idx, const llvm::Constant *Elts); 2364 2365 llvm::BlockAddress *GetAddrOfLabel(const LabelDecl *L); 2366 llvm::BasicBlock *GetIndirectGotoBlock(); 2367 2368 /// Check if \p E is a C++ "this" pointer wrapped in value-preserving casts. 2369 static bool IsWrappedCXXThis(const Expr *E); 2370 2371 /// EmitNullInitialization - Generate code to set a value of the given type to 2372 /// null, If the type contains data member pointers, they will be initialized 2373 /// to -1 in accordance with the Itanium C++ ABI. 2374 void EmitNullInitialization(Address DestPtr, QualType Ty); 2375 2376 /// Emits a call to an LLVM variable-argument intrinsic, either 2377 /// \c llvm.va_start or \c llvm.va_end. 2378 /// \param ArgValue A reference to the \c va_list as emitted by either 2379 /// \c EmitVAListRef or \c EmitMSVAListRef. 2380 /// \param IsStart If \c true, emits a call to \c llvm.va_start; otherwise, 2381 /// calls \c llvm.va_end. 2382 llvm::Value *EmitVAStartEnd(llvm::Value *ArgValue, bool IsStart); 2383 2384 /// Generate code to get an argument from the passed in pointer 2385 /// and update it accordingly. 2386 /// \param VE The \c VAArgExpr for which to generate code. 2387 /// \param VAListAddr Receives a reference to the \c va_list as emitted by 2388 /// either \c EmitVAListRef or \c EmitMSVAListRef. 2389 /// \returns A pointer to the argument. 2390 // FIXME: We should be able to get rid of this method and use the va_arg 2391 // instruction in LLVM instead once it works well enough. 2392 Address EmitVAArg(VAArgExpr *VE, Address &VAListAddr); 2393 2394 /// emitArrayLength - Compute the length of an array, even if it's a 2395 /// VLA, and drill down to the base element type. 2396 llvm::Value *emitArrayLength(const ArrayType *arrayType, 2397 QualType &baseType, 2398 Address &addr); 2399 2400 /// EmitVLASize - Capture all the sizes for the VLA expressions in 2401 /// the given variably-modified type and store them in the VLASizeMap. 2402 /// 2403 /// This function can be called with a null (unreachable) insert point. 2404 void EmitVariablyModifiedType(QualType Ty); 2405 2406 struct VlaSizePair { 2407 llvm::Value *NumElts; 2408 QualType Type; 2409 2410 VlaSizePair(llvm::Value *NE, QualType T) : NumElts(NE), Type(T) {} 2411 }; 2412 2413 /// Return the number of elements for a single dimension 2414 /// for the given array type. 2415 VlaSizePair getVLAElements1D(const VariableArrayType *vla); 2416 VlaSizePair getVLAElements1D(QualType vla); 2417 2418 /// Returns an LLVM value that corresponds to the size, 2419 /// in non-variably-sized elements, of a variable length array type, 2420 /// plus that largest non-variably-sized element type. Assumes that 2421 /// the type has already been emitted with EmitVariablyModifiedType. 2422 VlaSizePair getVLASize(const VariableArrayType *vla); 2423 VlaSizePair getVLASize(QualType vla); 2424 2425 /// LoadCXXThis - Load the value of 'this'. This function is only valid while 2426 /// generating code for an C++ member function. 2427 llvm::Value *LoadCXXThis() { 2428 assert(CXXThisValue && "no 'this' value for this function"); 2429 return CXXThisValue; 2430 } 2431 Address LoadCXXThisAddress(); 2432 2433 /// LoadCXXVTT - Load the VTT parameter to base constructors/destructors have 2434 /// virtual bases. 2435 // FIXME: Every place that calls LoadCXXVTT is something 2436 // that needs to be abstracted properly. 2437 llvm::Value *LoadCXXVTT() { 2438 assert(CXXStructorImplicitParamValue && "no VTT value for this function"); 2439 return CXXStructorImplicitParamValue; 2440 } 2441 2442 /// GetAddressOfBaseOfCompleteClass - Convert the given pointer to a 2443 /// complete class to the given direct base. 2444 Address 2445 GetAddressOfDirectBaseInCompleteClass(Address Value, 2446 const CXXRecordDecl *Derived, 2447 const CXXRecordDecl *Base, 2448 bool BaseIsVirtual); 2449 2450 static bool ShouldNullCheckClassCastValue(const CastExpr *Cast); 2451 2452 /// GetAddressOfBaseClass - This function will add the necessary delta to the 2453 /// load of 'this' and returns address of the base class. 2454 Address GetAddressOfBaseClass(Address Value, 2455 const CXXRecordDecl *Derived, 2456 CastExpr::path_const_iterator PathBegin, 2457 CastExpr::path_const_iterator PathEnd, 2458 bool NullCheckValue, SourceLocation Loc); 2459 2460 Address GetAddressOfDerivedClass(Address Value, 2461 const CXXRecordDecl *Derived, 2462 CastExpr::path_const_iterator PathBegin, 2463 CastExpr::path_const_iterator PathEnd, 2464 bool NullCheckValue); 2465 2466 /// GetVTTParameter - Return the VTT parameter that should be passed to a 2467 /// base constructor/destructor with virtual bases. 2468 /// FIXME: VTTs are Itanium ABI-specific, so the definition should move 2469 /// to ItaniumCXXABI.cpp together with all the references to VTT. 2470 llvm::Value *GetVTTParameter(GlobalDecl GD, bool ForVirtualBase, 2471 bool Delegating); 2472 2473 void EmitDelegateCXXConstructorCall(const CXXConstructorDecl *Ctor, 2474 CXXCtorType CtorType, 2475 const FunctionArgList &Args, 2476 SourceLocation Loc); 2477 // It's important not to confuse this and the previous function. Delegating 2478 // constructors are the C++0x feature. The constructor delegate optimization 2479 // is used to reduce duplication in the base and complete consturctors where 2480 // they are substantially the same. 2481 void EmitDelegatingCXXConstructorCall(const CXXConstructorDecl *Ctor, 2482 const FunctionArgList &Args); 2483 2484 /// Emit a call to an inheriting constructor (that is, one that invokes a 2485 /// constructor inherited from a base class) by inlining its definition. This 2486 /// is necessary if the ABI does not support forwarding the arguments to the 2487 /// base class constructor (because they're variadic or similar). 2488 void EmitInlinedInheritingCXXConstructorCall(const CXXConstructorDecl *Ctor, 2489 CXXCtorType CtorType, 2490 bool ForVirtualBase, 2491 bool Delegating, 2492 CallArgList &Args); 2493 2494 /// Emit a call to a constructor inherited from a base class, passing the 2495 /// current constructor's arguments along unmodified (without even making 2496 /// a copy). 2497 void EmitInheritedCXXConstructorCall(const CXXConstructorDecl *D, 2498 bool ForVirtualBase, Address This, 2499 bool InheritedFromVBase, 2500 const CXXInheritedCtorInitExpr *E); 2501 2502 void EmitCXXConstructorCall(const CXXConstructorDecl *D, CXXCtorType Type, 2503 bool ForVirtualBase, bool Delegating, 2504 Address This, const CXXConstructExpr *E, 2505 AggValueSlot::Overlap_t Overlap, 2506 bool NewPointerIsChecked); 2507 2508 void EmitCXXConstructorCall(const CXXConstructorDecl *D, CXXCtorType Type, 2509 bool ForVirtualBase, bool Delegating, 2510 Address This, CallArgList &Args, 2511 AggValueSlot::Overlap_t Overlap, 2512 SourceLocation Loc, 2513 bool NewPointerIsChecked); 2514 2515 /// Emit assumption load for all bases. Requires to be be called only on 2516 /// most-derived class and not under construction of the object. 2517 void EmitVTableAssumptionLoads(const CXXRecordDecl *ClassDecl, Address This); 2518 2519 /// Emit assumption that vptr load == global vtable. 2520 void EmitVTableAssumptionLoad(const VPtr &vptr, Address This); 2521 2522 void EmitSynthesizedCXXCopyCtorCall(const CXXConstructorDecl *D, 2523 Address This, Address Src, 2524 const CXXConstructExpr *E); 2525 2526 void EmitCXXAggrConstructorCall(const CXXConstructorDecl *D, 2527 const ArrayType *ArrayTy, 2528 Address ArrayPtr, 2529 const CXXConstructExpr *E, 2530 bool NewPointerIsChecked, 2531 bool ZeroInitialization = false); 2532 2533 void EmitCXXAggrConstructorCall(const CXXConstructorDecl *D, 2534 llvm::Value *NumElements, 2535 Address ArrayPtr, 2536 const CXXConstructExpr *E, 2537 bool NewPointerIsChecked, 2538 bool ZeroInitialization = false); 2539 2540 static Destroyer destroyCXXObject; 2541 2542 void EmitCXXDestructorCall(const CXXDestructorDecl *D, CXXDtorType Type, 2543 bool ForVirtualBase, bool Delegating, 2544 Address This); 2545 2546 void EmitNewArrayInitializer(const CXXNewExpr *E, QualType elementType, 2547 llvm::Type *ElementTy, Address NewPtr, 2548 llvm::Value *NumElements, 2549 llvm::Value *AllocSizeWithoutCookie); 2550 2551 void EmitCXXTemporary(const CXXTemporary *Temporary, QualType TempType, 2552 Address Ptr); 2553 2554 llvm::Value *EmitLifetimeStart(uint64_t Size, llvm::Value *Addr); 2555 void EmitLifetimeEnd(llvm::Value *Size, llvm::Value *Addr); 2556 2557 llvm::Value *EmitCXXNewExpr(const CXXNewExpr *E); 2558 void EmitCXXDeleteExpr(const CXXDeleteExpr *E); 2559 2560 void EmitDeleteCall(const FunctionDecl *DeleteFD, llvm::Value *Ptr, 2561 QualType DeleteTy, llvm::Value *NumElements = nullptr, 2562 CharUnits CookieSize = CharUnits()); 2563 2564 RValue EmitBuiltinNewDeleteCall(const FunctionProtoType *Type, 2565 const CallExpr *TheCallExpr, bool IsDelete); 2566 2567 llvm::Value *EmitCXXTypeidExpr(const CXXTypeidExpr *E); 2568 llvm::Value *EmitDynamicCast(Address V, const CXXDynamicCastExpr *DCE); 2569 Address EmitCXXUuidofExpr(const CXXUuidofExpr *E); 2570 2571 /// Situations in which we might emit a check for the suitability of a 2572 /// pointer or glvalue. 2573 enum TypeCheckKind { 2574 /// Checking the operand of a load. Must be suitably sized and aligned. 2575 TCK_Load, 2576 /// Checking the destination of a store. Must be suitably sized and aligned. 2577 TCK_Store, 2578 /// Checking the bound value in a reference binding. Must be suitably sized 2579 /// and aligned, but is not required to refer to an object (until the 2580 /// reference is used), per core issue 453. 2581 TCK_ReferenceBinding, 2582 /// Checking the object expression in a non-static data member access. Must 2583 /// be an object within its lifetime. 2584 TCK_MemberAccess, 2585 /// Checking the 'this' pointer for a call to a non-static member function. 2586 /// Must be an object within its lifetime. 2587 TCK_MemberCall, 2588 /// Checking the 'this' pointer for a constructor call. 2589 TCK_ConstructorCall, 2590 /// Checking the operand of a static_cast to a derived pointer type. Must be 2591 /// null or an object within its lifetime. 2592 TCK_DowncastPointer, 2593 /// Checking the operand of a static_cast to a derived reference type. Must 2594 /// be an object within its lifetime. 2595 TCK_DowncastReference, 2596 /// Checking the operand of a cast to a base object. Must be suitably sized 2597 /// and aligned. 2598 TCK_Upcast, 2599 /// Checking the operand of a cast to a virtual base object. Must be an 2600 /// object within its lifetime. 2601 TCK_UpcastToVirtualBase, 2602 /// Checking the value assigned to a _Nonnull pointer. Must not be null. 2603 TCK_NonnullAssign, 2604 /// Checking the operand of a dynamic_cast or a typeid expression. Must be 2605 /// null or an object within its lifetime. 2606 TCK_DynamicOperation 2607 }; 2608 2609 /// Determine whether the pointer type check \p TCK permits null pointers. 2610 static bool isNullPointerAllowed(TypeCheckKind TCK); 2611 2612 /// Determine whether the pointer type check \p TCK requires a vptr check. 2613 static bool isVptrCheckRequired(TypeCheckKind TCK, QualType Ty); 2614 2615 /// Whether any type-checking sanitizers are enabled. If \c false, 2616 /// calls to EmitTypeCheck can be skipped. 2617 bool sanitizePerformTypeCheck() const; 2618 2619 /// Emit a check that \p V is the address of storage of the 2620 /// appropriate size and alignment for an object of type \p Type. 2621 void EmitTypeCheck(TypeCheckKind TCK, SourceLocation Loc, llvm::Value *V, 2622 QualType Type, CharUnits Alignment = CharUnits::Zero(), 2623 SanitizerSet SkippedChecks = SanitizerSet()); 2624 2625 /// Emit a check that \p Base points into an array object, which 2626 /// we can access at index \p Index. \p Accessed should be \c false if we 2627 /// this expression is used as an lvalue, for instance in "&Arr[Idx]". 2628 void EmitBoundsCheck(const Expr *E, const Expr *Base, llvm::Value *Index, 2629 QualType IndexType, bool Accessed); 2630 2631 llvm::Value *EmitScalarPrePostIncDec(const UnaryOperator *E, LValue LV, 2632 bool isInc, bool isPre); 2633 ComplexPairTy EmitComplexPrePostIncDec(const UnaryOperator *E, LValue LV, 2634 bool isInc, bool isPre); 2635 2636 void EmitAlignmentAssumption(llvm::Value *PtrValue, unsigned Alignment, 2637 llvm::Value *OffsetValue = nullptr) { 2638 Builder.CreateAlignmentAssumption(CGM.getDataLayout(), PtrValue, Alignment, 2639 OffsetValue); 2640 } 2641 2642 /// Converts Location to a DebugLoc, if debug information is enabled. 2643 llvm::DebugLoc SourceLocToDebugLoc(SourceLocation Location); 2644 2645 2646 //===--------------------------------------------------------------------===// 2647 // Declaration Emission 2648 //===--------------------------------------------------------------------===// 2649 2650 /// EmitDecl - Emit a declaration. 2651 /// 2652 /// This function can be called with a null (unreachable) insert point. 2653 void EmitDecl(const Decl &D); 2654 2655 /// EmitVarDecl - Emit a local variable declaration. 2656 /// 2657 /// This function can be called with a null (unreachable) insert point. 2658 void EmitVarDecl(const VarDecl &D); 2659 2660 void EmitScalarInit(const Expr *init, const ValueDecl *D, LValue lvalue, 2661 bool capturedByInit); 2662 2663 typedef void SpecialInitFn(CodeGenFunction &Init, const VarDecl &D, 2664 llvm::Value *Address); 2665 2666 /// Determine whether the given initializer is trivial in the sense 2667 /// that it requires no code to be generated. 2668 bool isTrivialInitializer(const Expr *Init); 2669 2670 /// EmitAutoVarDecl - Emit an auto variable declaration. 2671 /// 2672 /// This function can be called with a null (unreachable) insert point. 2673 void EmitAutoVarDecl(const VarDecl &D); 2674 2675 class AutoVarEmission { 2676 friend class CodeGenFunction; 2677 2678 const VarDecl *Variable; 2679 2680 /// The address of the alloca for languages with explicit address space 2681 /// (e.g. OpenCL) or alloca casted to generic pointer for address space 2682 /// agnostic languages (e.g. C++). Invalid if the variable was emitted 2683 /// as a global constant. 2684 Address Addr; 2685 2686 llvm::Value *NRVOFlag; 2687 2688 /// True if the variable is a __block variable that is captured by an 2689 /// escaping block. 2690 bool IsEscapingByRef; 2691 2692 /// True if the variable is of aggregate type and has a constant 2693 /// initializer. 2694 bool IsConstantAggregate; 2695 2696 /// Non-null if we should use lifetime annotations. 2697 llvm::Value *SizeForLifetimeMarkers; 2698 2699 /// Address with original alloca instruction. Invalid if the variable was 2700 /// emitted as a global constant. 2701 Address AllocaAddr; 2702 2703 struct Invalid {}; 2704 AutoVarEmission(Invalid) 2705 : Variable(nullptr), Addr(Address::invalid()), 2706 AllocaAddr(Address::invalid()) {} 2707 2708 AutoVarEmission(const VarDecl &variable) 2709 : Variable(&variable), Addr(Address::invalid()), NRVOFlag(nullptr), 2710 IsEscapingByRef(false), IsConstantAggregate(false), 2711 SizeForLifetimeMarkers(nullptr), AllocaAddr(Address::invalid()) {} 2712 2713 bool wasEmittedAsGlobal() const { return !Addr.isValid(); } 2714 2715 public: 2716 static AutoVarEmission invalid() { return AutoVarEmission(Invalid()); } 2717 2718 bool useLifetimeMarkers() const { 2719 return SizeForLifetimeMarkers != nullptr; 2720 } 2721 llvm::Value *getSizeForLifetimeMarkers() const { 2722 assert(useLifetimeMarkers()); 2723 return SizeForLifetimeMarkers; 2724 } 2725 2726 /// Returns the raw, allocated address, which is not necessarily 2727 /// the address of the object itself. It is casted to default 2728 /// address space for address space agnostic languages. 2729 Address getAllocatedAddress() const { 2730 return Addr; 2731 } 2732 2733 /// Returns the address for the original alloca instruction. 2734 Address getOriginalAllocatedAddress() const { return AllocaAddr; } 2735 2736 /// Returns the address of the object within this declaration. 2737 /// Note that this does not chase the forwarding pointer for 2738 /// __block decls. 2739 Address getObjectAddress(CodeGenFunction &CGF) const { 2740 if (!IsEscapingByRef) return Addr; 2741 2742 return CGF.emitBlockByrefAddress(Addr, Variable, /*forward*/ false); 2743 } 2744 }; 2745 AutoVarEmission EmitAutoVarAlloca(const VarDecl &var); 2746 void EmitAutoVarInit(const AutoVarEmission &emission); 2747 void EmitAutoVarCleanups(const AutoVarEmission &emission); 2748 void emitAutoVarTypeCleanup(const AutoVarEmission &emission, 2749 QualType::DestructionKind dtorKind); 2750 2751 /// Emits the alloca and debug information for the size expressions for each 2752 /// dimension of an array. It registers the association of its (1-dimensional) 2753 /// QualTypes and size expression's debug node, so that CGDebugInfo can 2754 /// reference this node when creating the DISubrange object to describe the 2755 /// array types. 2756 void EmitAndRegisterVariableArrayDimensions(CGDebugInfo *DI, 2757 const VarDecl &D, 2758 bool EmitDebugInfo); 2759 2760 void EmitStaticVarDecl(const VarDecl &D, 2761 llvm::GlobalValue::LinkageTypes Linkage); 2762 2763 class ParamValue { 2764 llvm::Value *Value; 2765 unsigned Alignment; 2766 ParamValue(llvm::Value *V, unsigned A) : Value(V), Alignment(A) {} 2767 public: 2768 static ParamValue forDirect(llvm::Value *value) { 2769 return ParamValue(value, 0); 2770 } 2771 static ParamValue forIndirect(Address addr) { 2772 assert(!addr.getAlignment().isZero()); 2773 return ParamValue(addr.getPointer(), addr.getAlignment().getQuantity()); 2774 } 2775 2776 bool isIndirect() const { return Alignment != 0; } 2777 llvm::Value *getAnyValue() const { return Value; } 2778 2779 llvm::Value *getDirectValue() const { 2780 assert(!isIndirect()); 2781 return Value; 2782 } 2783 2784 Address getIndirectAddress() const { 2785 assert(isIndirect()); 2786 return Address(Value, CharUnits::fromQuantity(Alignment)); 2787 } 2788 }; 2789 2790 /// EmitParmDecl - Emit a ParmVarDecl or an ImplicitParamDecl. 2791 void EmitParmDecl(const VarDecl &D, ParamValue Arg, unsigned ArgNo); 2792 2793 /// protectFromPeepholes - Protect a value that we're intending to 2794 /// store to the side, but which will probably be used later, from 2795 /// aggressive peepholing optimizations that might delete it. 2796 /// 2797 /// Pass the result to unprotectFromPeepholes to declare that 2798 /// protection is no longer required. 2799 /// 2800 /// There's no particular reason why this shouldn't apply to 2801 /// l-values, it's just that no existing peepholes work on pointers. 2802 PeepholeProtection protectFromPeepholes(RValue rvalue); 2803 void unprotectFromPeepholes(PeepholeProtection protection); 2804 2805 void EmitAlignmentAssumption(llvm::Value *PtrValue, llvm::Value *Alignment, 2806 llvm::Value *OffsetValue = nullptr) { 2807 Builder.CreateAlignmentAssumption(CGM.getDataLayout(), PtrValue, Alignment, 2808 OffsetValue); 2809 } 2810 2811 //===--------------------------------------------------------------------===// 2812 // Statement Emission 2813 //===--------------------------------------------------------------------===// 2814 2815 /// EmitStopPoint - Emit a debug stoppoint if we are emitting debug info. 2816 void EmitStopPoint(const Stmt *S); 2817 2818 /// EmitStmt - Emit the code for the statement \arg S. It is legal to call 2819 /// this function even if there is no current insertion point. 2820 /// 2821 /// This function may clear the current insertion point; callers should use 2822 /// EnsureInsertPoint if they wish to subsequently generate code without first 2823 /// calling EmitBlock, EmitBranch, or EmitStmt. 2824 void EmitStmt(const Stmt *S, ArrayRef<const Attr *> Attrs = None); 2825 2826 /// EmitSimpleStmt - Try to emit a "simple" statement which does not 2827 /// necessarily require an insertion point or debug information; typically 2828 /// because the statement amounts to a jump or a container of other 2829 /// statements. 2830 /// 2831 /// \return True if the statement was handled. 2832 bool EmitSimpleStmt(const Stmt *S); 2833 2834 Address EmitCompoundStmt(const CompoundStmt &S, bool GetLast = false, 2835 AggValueSlot AVS = AggValueSlot::ignored()); 2836 Address EmitCompoundStmtWithoutScope(const CompoundStmt &S, 2837 bool GetLast = false, 2838 AggValueSlot AVS = 2839 AggValueSlot::ignored()); 2840 2841 /// EmitLabel - Emit the block for the given label. It is legal to call this 2842 /// function even if there is no current insertion point. 2843 void EmitLabel(const LabelDecl *D); // helper for EmitLabelStmt. 2844 2845 void EmitLabelStmt(const LabelStmt &S); 2846 void EmitAttributedStmt(const AttributedStmt &S); 2847 void EmitGotoStmt(const GotoStmt &S); 2848 void EmitIndirectGotoStmt(const IndirectGotoStmt &S); 2849 void EmitIfStmt(const IfStmt &S); 2850 2851 void EmitWhileStmt(const WhileStmt &S, 2852 ArrayRef<const Attr *> Attrs = None); 2853 void EmitDoStmt(const DoStmt &S, ArrayRef<const Attr *> Attrs = None); 2854 void EmitForStmt(const ForStmt &S, 2855 ArrayRef<const Attr *> Attrs = None); 2856 void EmitReturnStmt(const ReturnStmt &S); 2857 void EmitDeclStmt(const DeclStmt &S); 2858 void EmitBreakStmt(const BreakStmt &S); 2859 void EmitContinueStmt(const ContinueStmt &S); 2860 void EmitSwitchStmt(const SwitchStmt &S); 2861 void EmitDefaultStmt(const DefaultStmt &S); 2862 void EmitCaseStmt(const CaseStmt &S); 2863 void EmitCaseStmtRange(const CaseStmt &S); 2864 void EmitAsmStmt(const AsmStmt &S); 2865 2866 void EmitObjCForCollectionStmt(const ObjCForCollectionStmt &S); 2867 void EmitObjCAtTryStmt(const ObjCAtTryStmt &S); 2868 void EmitObjCAtThrowStmt(const ObjCAtThrowStmt &S); 2869 void EmitObjCAtSynchronizedStmt(const ObjCAtSynchronizedStmt &S); 2870 void EmitObjCAutoreleasePoolStmt(const ObjCAutoreleasePoolStmt &S); 2871 2872 void EmitCoroutineBody(const CoroutineBodyStmt &S); 2873 void EmitCoreturnStmt(const CoreturnStmt &S); 2874 RValue EmitCoawaitExpr(const CoawaitExpr &E, 2875 AggValueSlot aggSlot = AggValueSlot::ignored(), 2876 bool ignoreResult = false); 2877 LValue EmitCoawaitLValue(const CoawaitExpr *E); 2878 RValue EmitCoyieldExpr(const CoyieldExpr &E, 2879 AggValueSlot aggSlot = AggValueSlot::ignored(), 2880 bool ignoreResult = false); 2881 LValue EmitCoyieldLValue(const CoyieldExpr *E); 2882 RValue EmitCoroutineIntrinsic(const CallExpr *E, unsigned int IID); 2883 2884 void EnterCXXTryStmt(const CXXTryStmt &S, bool IsFnTryBlock = false); 2885 void ExitCXXTryStmt(const CXXTryStmt &S, bool IsFnTryBlock = false); 2886 2887 void EmitCXXTryStmt(const CXXTryStmt &S); 2888 void EmitSEHTryStmt(const SEHTryStmt &S); 2889 void EmitSEHLeaveStmt(const SEHLeaveStmt &S); 2890 void EnterSEHTryStmt(const SEHTryStmt &S); 2891 void ExitSEHTryStmt(const SEHTryStmt &S); 2892 2893 void pushSEHCleanup(CleanupKind kind, 2894 llvm::Function *FinallyFunc); 2895 void startOutlinedSEHHelper(CodeGenFunction &ParentCGF, bool IsFilter, 2896 const Stmt *OutlinedStmt); 2897 2898 llvm::Function *GenerateSEHFilterFunction(CodeGenFunction &ParentCGF, 2899 const SEHExceptStmt &Except); 2900 2901 llvm::Function *GenerateSEHFinallyFunction(CodeGenFunction &ParentCGF, 2902 const SEHFinallyStmt &Finally); 2903 2904 void EmitSEHExceptionCodeSave(CodeGenFunction &ParentCGF, 2905 llvm::Value *ParentFP, 2906 llvm::Value *EntryEBP); 2907 llvm::Value *EmitSEHExceptionCode(); 2908 llvm::Value *EmitSEHExceptionInfo(); 2909 llvm::Value *EmitSEHAbnormalTermination(); 2910 2911 /// Emit simple code for OpenMP directives in Simd-only mode. 2912 void EmitSimpleOMPExecutableDirective(const OMPExecutableDirective &D); 2913 2914 /// Scan the outlined statement for captures from the parent function. For 2915 /// each capture, mark the capture as escaped and emit a call to 2916 /// llvm.localrecover. Insert the localrecover result into the LocalDeclMap. 2917 void EmitCapturedLocals(CodeGenFunction &ParentCGF, const Stmt *OutlinedStmt, 2918 bool IsFilter); 2919 2920 /// Recovers the address of a local in a parent function. ParentVar is the 2921 /// address of the variable used in the immediate parent function. It can 2922 /// either be an alloca or a call to llvm.localrecover if there are nested 2923 /// outlined functions. ParentFP is the frame pointer of the outermost parent 2924 /// frame. 2925 Address recoverAddrOfEscapedLocal(CodeGenFunction &ParentCGF, 2926 Address ParentVar, 2927 llvm::Value *ParentFP); 2928 2929 void EmitCXXForRangeStmt(const CXXForRangeStmt &S, 2930 ArrayRef<const Attr *> Attrs = None); 2931 2932 /// Controls insertion of cancellation exit blocks in worksharing constructs. 2933 class OMPCancelStackRAII { 2934 CodeGenFunction &CGF; 2935 2936 public: 2937 OMPCancelStackRAII(CodeGenFunction &CGF, OpenMPDirectiveKind Kind, 2938 bool HasCancel) 2939 : CGF(CGF) { 2940 CGF.OMPCancelStack.enter(CGF, Kind, HasCancel); 2941 } 2942 ~OMPCancelStackRAII() { CGF.OMPCancelStack.exit(CGF); } 2943 }; 2944 2945 /// Returns calculated size of the specified type. 2946 llvm::Value *getTypeSize(QualType Ty); 2947 LValue InitCapturedStruct(const CapturedStmt &S); 2948 llvm::Function *EmitCapturedStmt(const CapturedStmt &S, CapturedRegionKind K); 2949 llvm::Function *GenerateCapturedStmtFunction(const CapturedStmt &S); 2950 Address GenerateCapturedStmtArgument(const CapturedStmt &S); 2951 llvm::Function *GenerateOpenMPCapturedStmtFunction(const CapturedStmt &S); 2952 void GenerateOpenMPCapturedVars(const CapturedStmt &S, 2953 SmallVectorImpl<llvm::Value *> &CapturedVars); 2954 void emitOMPSimpleStore(LValue LVal, RValue RVal, QualType RValTy, 2955 SourceLocation Loc); 2956 /// Perform element by element copying of arrays with type \a 2957 /// OriginalType from \a SrcAddr to \a DestAddr using copying procedure 2958 /// generated by \a CopyGen. 2959 /// 2960 /// \param DestAddr Address of the destination array. 2961 /// \param SrcAddr Address of the source array. 2962 /// \param OriginalType Type of destination and source arrays. 2963 /// \param CopyGen Copying procedure that copies value of single array element 2964 /// to another single array element. 2965 void EmitOMPAggregateAssign( 2966 Address DestAddr, Address SrcAddr, QualType OriginalType, 2967 const llvm::function_ref<void(Address, Address)> CopyGen); 2968 /// Emit proper copying of data from one variable to another. 2969 /// 2970 /// \param OriginalType Original type of the copied variables. 2971 /// \param DestAddr Destination address. 2972 /// \param SrcAddr Source address. 2973 /// \param DestVD Destination variable used in \a CopyExpr (for arrays, has 2974 /// type of the base array element). 2975 /// \param SrcVD Source variable used in \a CopyExpr (for arrays, has type of 2976 /// the base array element). 2977 /// \param Copy Actual copygin expression for copying data from \a SrcVD to \a 2978 /// DestVD. 2979 void EmitOMPCopy(QualType OriginalType, 2980 Address DestAddr, Address SrcAddr, 2981 const VarDecl *DestVD, const VarDecl *SrcVD, 2982 const Expr *Copy); 2983 /// Emit atomic update code for constructs: \a X = \a X \a BO \a E or 2984 /// \a X = \a E \a BO \a E. 2985 /// 2986 /// \param X Value to be updated. 2987 /// \param E Update value. 2988 /// \param BO Binary operation for update operation. 2989 /// \param IsXLHSInRHSPart true if \a X is LHS in RHS part of the update 2990 /// expression, false otherwise. 2991 /// \param AO Atomic ordering of the generated atomic instructions. 2992 /// \param CommonGen Code generator for complex expressions that cannot be 2993 /// expressed through atomicrmw instruction. 2994 /// \returns <true, OldAtomicValue> if simple 'atomicrmw' instruction was 2995 /// generated, <false, RValue::get(nullptr)> otherwise. 2996 std::pair<bool, RValue> EmitOMPAtomicSimpleUpdateExpr( 2997 LValue X, RValue E, BinaryOperatorKind BO, bool IsXLHSInRHSPart, 2998 llvm::AtomicOrdering AO, SourceLocation Loc, 2999 const llvm::function_ref<RValue(RValue)> CommonGen); 3000 bool EmitOMPFirstprivateClause(const OMPExecutableDirective &D, 3001 OMPPrivateScope &PrivateScope); 3002 void EmitOMPPrivateClause(const OMPExecutableDirective &D, 3003 OMPPrivateScope &PrivateScope); 3004 void EmitOMPUseDevicePtrClause( 3005 const OMPClause &C, OMPPrivateScope &PrivateScope, 3006 const llvm::DenseMap<const ValueDecl *, Address> &CaptureDeviceAddrMap); 3007 /// Emit code for copyin clause in \a D directive. The next code is 3008 /// generated at the start of outlined functions for directives: 3009 /// \code 3010 /// threadprivate_var1 = master_threadprivate_var1; 3011 /// operator=(threadprivate_var2, master_threadprivate_var2); 3012 /// ... 3013 /// __kmpc_barrier(&loc, global_tid); 3014 /// \endcode 3015 /// 3016 /// \param D OpenMP directive possibly with 'copyin' clause(s). 3017 /// \returns true if at least one copyin variable is found, false otherwise. 3018 bool EmitOMPCopyinClause(const OMPExecutableDirective &D); 3019 /// Emit initial code for lastprivate variables. If some variable is 3020 /// not also firstprivate, then the default initialization is used. Otherwise 3021 /// initialization of this variable is performed by EmitOMPFirstprivateClause 3022 /// method. 3023 /// 3024 /// \param D Directive that may have 'lastprivate' directives. 3025 /// \param PrivateScope Private scope for capturing lastprivate variables for 3026 /// proper codegen in internal captured statement. 3027 /// 3028 /// \returns true if there is at least one lastprivate variable, false 3029 /// otherwise. 3030 bool EmitOMPLastprivateClauseInit(const OMPExecutableDirective &D, 3031 OMPPrivateScope &PrivateScope); 3032 /// Emit final copying of lastprivate values to original variables at 3033 /// the end of the worksharing or simd directive. 3034 /// 3035 /// \param D Directive that has at least one 'lastprivate' directives. 3036 /// \param IsLastIterCond Boolean condition that must be set to 'i1 true' if 3037 /// it is the last iteration of the loop code in associated directive, or to 3038 /// 'i1 false' otherwise. If this item is nullptr, no final check is required. 3039 void EmitOMPLastprivateClauseFinal(const OMPExecutableDirective &D, 3040 bool NoFinals, 3041 llvm::Value *IsLastIterCond = nullptr); 3042 /// Emit initial code for linear clauses. 3043 void EmitOMPLinearClause(const OMPLoopDirective &D, 3044 CodeGenFunction::OMPPrivateScope &PrivateScope); 3045 /// Emit final code for linear clauses. 3046 /// \param CondGen Optional conditional code for final part of codegen for 3047 /// linear clause. 3048 void EmitOMPLinearClauseFinal( 3049 const OMPLoopDirective &D, 3050 const llvm::function_ref<llvm::Value *(CodeGenFunction &)> CondGen); 3051 /// Emit initial code for reduction variables. Creates reduction copies 3052 /// and initializes them with the values according to OpenMP standard. 3053 /// 3054 /// \param D Directive (possibly) with the 'reduction' clause. 3055 /// \param PrivateScope Private scope for capturing reduction variables for 3056 /// proper codegen in internal captured statement. 3057 /// 3058 void EmitOMPReductionClauseInit(const OMPExecutableDirective &D, 3059 OMPPrivateScope &PrivateScope); 3060 /// Emit final update of reduction values to original variables at 3061 /// the end of the directive. 3062 /// 3063 /// \param D Directive that has at least one 'reduction' directives. 3064 /// \param ReductionKind The kind of reduction to perform. 3065 void EmitOMPReductionClauseFinal(const OMPExecutableDirective &D, 3066 const OpenMPDirectiveKind ReductionKind); 3067 /// Emit initial code for linear variables. Creates private copies 3068 /// and initializes them with the values according to OpenMP standard. 3069 /// 3070 /// \param D Directive (possibly) with the 'linear' clause. 3071 /// \return true if at least one linear variable is found that should be 3072 /// initialized with the value of the original variable, false otherwise. 3073 bool EmitOMPLinearClauseInit(const OMPLoopDirective &D); 3074 3075 typedef const llvm::function_ref<void(CodeGenFunction & /*CGF*/, 3076 llvm::Value * /*OutlinedFn*/, 3077 const OMPTaskDataTy & /*Data*/)> 3078 TaskGenTy; 3079 void EmitOMPTaskBasedDirective(const OMPExecutableDirective &S, 3080 const OpenMPDirectiveKind CapturedRegion, 3081 const RegionCodeGenTy &BodyGen, 3082 const TaskGenTy &TaskGen, OMPTaskDataTy &Data); 3083 struct OMPTargetDataInfo { 3084 Address BasePointersArray = Address::invalid(); 3085 Address PointersArray = Address::invalid(); 3086 Address SizesArray = Address::invalid(); 3087 unsigned NumberOfTargetItems = 0; 3088 explicit OMPTargetDataInfo() = default; 3089 OMPTargetDataInfo(Address BasePointersArray, Address PointersArray, 3090 Address SizesArray, unsigned NumberOfTargetItems) 3091 : BasePointersArray(BasePointersArray), PointersArray(PointersArray), 3092 SizesArray(SizesArray), NumberOfTargetItems(NumberOfTargetItems) {} 3093 }; 3094 void EmitOMPTargetTaskBasedDirective(const OMPExecutableDirective &S, 3095 const RegionCodeGenTy &BodyGen, 3096 OMPTargetDataInfo &InputInfo); 3097 3098 void EmitOMPParallelDirective(const OMPParallelDirective &S); 3099 void EmitOMPSimdDirective(const OMPSimdDirective &S); 3100 void EmitOMPForDirective(const OMPForDirective &S); 3101 void EmitOMPForSimdDirective(const OMPForSimdDirective &S); 3102 void EmitOMPSectionsDirective(const OMPSectionsDirective &S); 3103 void EmitOMPSectionDirective(const OMPSectionDirective &S); 3104 void EmitOMPSingleDirective(const OMPSingleDirective &S); 3105 void EmitOMPMasterDirective(const OMPMasterDirective &S); 3106 void EmitOMPCriticalDirective(const OMPCriticalDirective &S); 3107 void EmitOMPParallelForDirective(const OMPParallelForDirective &S); 3108 void EmitOMPParallelForSimdDirective(const OMPParallelForSimdDirective &S); 3109 void EmitOMPParallelSectionsDirective(const OMPParallelSectionsDirective &S); 3110 void EmitOMPTaskDirective(const OMPTaskDirective &S); 3111 void EmitOMPTaskyieldDirective(const OMPTaskyieldDirective &S); 3112 void EmitOMPBarrierDirective(const OMPBarrierDirective &S); 3113 void EmitOMPTaskwaitDirective(const OMPTaskwaitDirective &S); 3114 void EmitOMPTaskgroupDirective(const OMPTaskgroupDirective &S); 3115 void EmitOMPFlushDirective(const OMPFlushDirective &S); 3116 void EmitOMPOrderedDirective(const OMPOrderedDirective &S); 3117 void EmitOMPAtomicDirective(const OMPAtomicDirective &S); 3118 void EmitOMPTargetDirective(const OMPTargetDirective &S); 3119 void EmitOMPTargetDataDirective(const OMPTargetDataDirective &S); 3120 void EmitOMPTargetEnterDataDirective(const OMPTargetEnterDataDirective &S); 3121 void EmitOMPTargetExitDataDirective(const OMPTargetExitDataDirective &S); 3122 void EmitOMPTargetUpdateDirective(const OMPTargetUpdateDirective &S); 3123 void EmitOMPTargetParallelDirective(const OMPTargetParallelDirective &S); 3124 void 3125 EmitOMPTargetParallelForDirective(const OMPTargetParallelForDirective &S); 3126 void EmitOMPTeamsDirective(const OMPTeamsDirective &S); 3127 void 3128 EmitOMPCancellationPointDirective(const OMPCancellationPointDirective &S); 3129 void EmitOMPCancelDirective(const OMPCancelDirective &S); 3130 void EmitOMPTaskLoopBasedDirective(const OMPLoopDirective &S); 3131 void EmitOMPTaskLoopDirective(const OMPTaskLoopDirective &S); 3132 void EmitOMPTaskLoopSimdDirective(const OMPTaskLoopSimdDirective &S); 3133 void EmitOMPDistributeDirective(const OMPDistributeDirective &S); 3134 void EmitOMPDistributeParallelForDirective( 3135 const OMPDistributeParallelForDirective &S); 3136 void EmitOMPDistributeParallelForSimdDirective( 3137 const OMPDistributeParallelForSimdDirective &S); 3138 void EmitOMPDistributeSimdDirective(const OMPDistributeSimdDirective &S); 3139 void EmitOMPTargetParallelForSimdDirective( 3140 const OMPTargetParallelForSimdDirective &S); 3141 void EmitOMPTargetSimdDirective(const OMPTargetSimdDirective &S); 3142 void EmitOMPTeamsDistributeDirective(const OMPTeamsDistributeDirective &S); 3143 void 3144 EmitOMPTeamsDistributeSimdDirective(const OMPTeamsDistributeSimdDirective &S); 3145 void EmitOMPTeamsDistributeParallelForSimdDirective( 3146 const OMPTeamsDistributeParallelForSimdDirective &S); 3147 void EmitOMPTeamsDistributeParallelForDirective( 3148 const OMPTeamsDistributeParallelForDirective &S); 3149 void EmitOMPTargetTeamsDirective(const OMPTargetTeamsDirective &S); 3150 void EmitOMPTargetTeamsDistributeDirective( 3151 const OMPTargetTeamsDistributeDirective &S); 3152 void EmitOMPTargetTeamsDistributeParallelForDirective( 3153 const OMPTargetTeamsDistributeParallelForDirective &S); 3154 void EmitOMPTargetTeamsDistributeParallelForSimdDirective( 3155 const OMPTargetTeamsDistributeParallelForSimdDirective &S); 3156 void EmitOMPTargetTeamsDistributeSimdDirective( 3157 const OMPTargetTeamsDistributeSimdDirective &S); 3158 3159 /// Emit device code for the target directive. 3160 static void EmitOMPTargetDeviceFunction(CodeGenModule &CGM, 3161 StringRef ParentName, 3162 const OMPTargetDirective &S); 3163 static void 3164 EmitOMPTargetParallelDeviceFunction(CodeGenModule &CGM, StringRef ParentName, 3165 const OMPTargetParallelDirective &S); 3166 /// Emit device code for the target parallel for directive. 3167 static void EmitOMPTargetParallelForDeviceFunction( 3168 CodeGenModule &CGM, StringRef ParentName, 3169 const OMPTargetParallelForDirective &S); 3170 /// Emit device code for the target parallel for simd directive. 3171 static void EmitOMPTargetParallelForSimdDeviceFunction( 3172 CodeGenModule &CGM, StringRef ParentName, 3173 const OMPTargetParallelForSimdDirective &S); 3174 /// Emit device code for the target teams directive. 3175 static void 3176 EmitOMPTargetTeamsDeviceFunction(CodeGenModule &CGM, StringRef ParentName, 3177 const OMPTargetTeamsDirective &S); 3178 /// Emit device code for the target teams distribute directive. 3179 static void EmitOMPTargetTeamsDistributeDeviceFunction( 3180 CodeGenModule &CGM, StringRef ParentName, 3181 const OMPTargetTeamsDistributeDirective &S); 3182 /// Emit device code for the target teams distribute simd directive. 3183 static void EmitOMPTargetTeamsDistributeSimdDeviceFunction( 3184 CodeGenModule &CGM, StringRef ParentName, 3185 const OMPTargetTeamsDistributeSimdDirective &S); 3186 /// Emit device code for the target simd directive. 3187 static void EmitOMPTargetSimdDeviceFunction(CodeGenModule &CGM, 3188 StringRef ParentName, 3189 const OMPTargetSimdDirective &S); 3190 /// Emit device code for the target teams distribute parallel for simd 3191 /// directive. 3192 static void EmitOMPTargetTeamsDistributeParallelForSimdDeviceFunction( 3193 CodeGenModule &CGM, StringRef ParentName, 3194 const OMPTargetTeamsDistributeParallelForSimdDirective &S); 3195 3196 static void EmitOMPTargetTeamsDistributeParallelForDeviceFunction( 3197 CodeGenModule &CGM, StringRef ParentName, 3198 const OMPTargetTeamsDistributeParallelForDirective &S); 3199 /// Emit inner loop of the worksharing/simd construct. 3200 /// 3201 /// \param S Directive, for which the inner loop must be emitted. 3202 /// \param RequiresCleanup true, if directive has some associated private 3203 /// variables. 3204 /// \param LoopCond Bollean condition for loop continuation. 3205 /// \param IncExpr Increment expression for loop control variable. 3206 /// \param BodyGen Generator for the inner body of the inner loop. 3207 /// \param PostIncGen Genrator for post-increment code (required for ordered 3208 /// loop directvies). 3209 void EmitOMPInnerLoop( 3210 const Stmt &S, bool RequiresCleanup, const Expr *LoopCond, 3211 const Expr *IncExpr, 3212 const llvm::function_ref<void(CodeGenFunction &)> BodyGen, 3213 const llvm::function_ref<void(CodeGenFunction &)> PostIncGen); 3214 3215 JumpDest getOMPCancelDestination(OpenMPDirectiveKind Kind); 3216 /// Emit initial code for loop counters of loop-based directives. 3217 void EmitOMPPrivateLoopCounters(const OMPLoopDirective &S, 3218 OMPPrivateScope &LoopScope); 3219 3220 /// Helper for the OpenMP loop directives. 3221 void EmitOMPLoopBody(const OMPLoopDirective &D, JumpDest LoopExit); 3222 3223 /// Emit code for the worksharing loop-based directive. 3224 /// \return true, if this construct has any lastprivate clause, false - 3225 /// otherwise. 3226 bool EmitOMPWorksharingLoop(const OMPLoopDirective &S, Expr *EUB, 3227 const CodeGenLoopBoundsTy &CodeGenLoopBounds, 3228 const CodeGenDispatchBoundsTy &CGDispatchBounds); 3229 3230 /// Emit code for the distribute loop-based directive. 3231 void EmitOMPDistributeLoop(const OMPLoopDirective &S, 3232 const CodeGenLoopTy &CodeGenLoop, Expr *IncExpr); 3233 3234 /// Helpers for the OpenMP loop directives. 3235 void EmitOMPSimdInit(const OMPLoopDirective &D, bool IsMonotonic = false); 3236 void EmitOMPSimdFinal( 3237 const OMPLoopDirective &D, 3238 const llvm::function_ref<llvm::Value *(CodeGenFunction &)> CondGen); 3239 3240 /// Emits the lvalue for the expression with possibly captured variable. 3241 LValue EmitOMPSharedLValue(const Expr *E); 3242 3243 private: 3244 /// Helpers for blocks. 3245 llvm::Value *EmitBlockLiteral(const CGBlockInfo &Info); 3246 3247 /// struct with the values to be passed to the OpenMP loop-related functions 3248 struct OMPLoopArguments { 3249 /// loop lower bound 3250 Address LB = Address::invalid(); 3251 /// loop upper bound 3252 Address UB = Address::invalid(); 3253 /// loop stride 3254 Address ST = Address::invalid(); 3255 /// isLastIteration argument for runtime functions 3256 Address IL = Address::invalid(); 3257 /// Chunk value generated by sema 3258 llvm::Value *Chunk = nullptr; 3259 /// EnsureUpperBound 3260 Expr *EUB = nullptr; 3261 /// IncrementExpression 3262 Expr *IncExpr = nullptr; 3263 /// Loop initialization 3264 Expr *Init = nullptr; 3265 /// Loop exit condition 3266 Expr *Cond = nullptr; 3267 /// Update of LB after a whole chunk has been executed 3268 Expr *NextLB = nullptr; 3269 /// Update of UB after a whole chunk has been executed 3270 Expr *NextUB = nullptr; 3271 OMPLoopArguments() = default; 3272 OMPLoopArguments(Address LB, Address UB, Address ST, Address IL, 3273 llvm::Value *Chunk = nullptr, Expr *EUB = nullptr, 3274 Expr *IncExpr = nullptr, Expr *Init = nullptr, 3275 Expr *Cond = nullptr, Expr *NextLB = nullptr, 3276 Expr *NextUB = nullptr) 3277 : LB(LB), UB(UB), ST(ST), IL(IL), Chunk(Chunk), EUB(EUB), 3278 IncExpr(IncExpr), Init(Init), Cond(Cond), NextLB(NextLB), 3279 NextUB(NextUB) {} 3280 }; 3281 void EmitOMPOuterLoop(bool DynamicOrOrdered, bool IsMonotonic, 3282 const OMPLoopDirective &S, OMPPrivateScope &LoopScope, 3283 const OMPLoopArguments &LoopArgs, 3284 const CodeGenLoopTy &CodeGenLoop, 3285 const CodeGenOrderedTy &CodeGenOrdered); 3286 void EmitOMPForOuterLoop(const OpenMPScheduleTy &ScheduleKind, 3287 bool IsMonotonic, const OMPLoopDirective &S, 3288 OMPPrivateScope &LoopScope, bool Ordered, 3289 const OMPLoopArguments &LoopArgs, 3290 const CodeGenDispatchBoundsTy &CGDispatchBounds); 3291 void EmitOMPDistributeOuterLoop(OpenMPDistScheduleClauseKind ScheduleKind, 3292 const OMPLoopDirective &S, 3293 OMPPrivateScope &LoopScope, 3294 const OMPLoopArguments &LoopArgs, 3295 const CodeGenLoopTy &CodeGenLoopContent); 3296 /// Emit code for sections directive. 3297 void EmitSections(const OMPExecutableDirective &S); 3298 3299 public: 3300 3301 //===--------------------------------------------------------------------===// 3302 // LValue Expression Emission 3303 //===--------------------------------------------------------------------===// 3304 3305 /// GetUndefRValue - Get an appropriate 'undef' rvalue for the given type. 3306 RValue GetUndefRValue(QualType Ty); 3307 3308 /// EmitUnsupportedRValue - Emit a dummy r-value using the type of E 3309 /// and issue an ErrorUnsupported style diagnostic (using the 3310 /// provided Name). 3311 RValue EmitUnsupportedRValue(const Expr *E, 3312 const char *Name); 3313 3314 /// EmitUnsupportedLValue - Emit a dummy l-value using the type of E and issue 3315 /// an ErrorUnsupported style diagnostic (using the provided Name). 3316 LValue EmitUnsupportedLValue(const Expr *E, 3317 const char *Name); 3318 3319 /// EmitLValue - Emit code to compute a designator that specifies the location 3320 /// of the expression. 3321 /// 3322 /// This can return one of two things: a simple address or a bitfield 3323 /// reference. In either case, the LLVM Value* in the LValue structure is 3324 /// guaranteed to be an LLVM pointer type. 3325 /// 3326 /// If this returns a bitfield reference, nothing about the pointee type of 3327 /// the LLVM value is known: For example, it may not be a pointer to an 3328 /// integer. 3329 /// 3330 /// If this returns a normal address, and if the lvalue's C type is fixed 3331 /// size, this method guarantees that the returned pointer type will point to 3332 /// an LLVM type of the same size of the lvalue's type. If the lvalue has a 3333 /// variable length type, this is not possible. 3334 /// 3335 LValue EmitLValue(const Expr *E); 3336 3337 /// Same as EmitLValue but additionally we generate checking code to 3338 /// guard against undefined behavior. This is only suitable when we know 3339 /// that the address will be used to access the object. 3340 LValue EmitCheckedLValue(const Expr *E, TypeCheckKind TCK); 3341 3342 RValue convertTempToRValue(Address addr, QualType type, 3343 SourceLocation Loc); 3344 3345 void EmitAtomicInit(Expr *E, LValue lvalue); 3346 3347 bool LValueIsSuitableForInlineAtomic(LValue Src); 3348 3349 RValue EmitAtomicLoad(LValue LV, SourceLocation SL, 3350 AggValueSlot Slot = AggValueSlot::ignored()); 3351 3352 RValue EmitAtomicLoad(LValue lvalue, SourceLocation loc, 3353 llvm::AtomicOrdering AO, bool IsVolatile = false, 3354 AggValueSlot slot = AggValueSlot::ignored()); 3355 3356 void EmitAtomicStore(RValue rvalue, LValue lvalue, bool isInit); 3357 3358 void EmitAtomicStore(RValue rvalue, LValue lvalue, llvm::AtomicOrdering AO, 3359 bool IsVolatile, bool isInit); 3360 3361 std::pair<RValue, llvm::Value *> EmitAtomicCompareExchange( 3362 LValue Obj, RValue Expected, RValue Desired, SourceLocation Loc, 3363 llvm::AtomicOrdering Success = 3364 llvm::AtomicOrdering::SequentiallyConsistent, 3365 llvm::AtomicOrdering Failure = 3366 llvm::AtomicOrdering::SequentiallyConsistent, 3367 bool IsWeak = false, AggValueSlot Slot = AggValueSlot::ignored()); 3368 3369 void EmitAtomicUpdate(LValue LVal, llvm::AtomicOrdering AO, 3370 const llvm::function_ref<RValue(RValue)> &UpdateOp, 3371 bool IsVolatile); 3372 3373 /// EmitToMemory - Change a scalar value from its value 3374 /// representation to its in-memory representation. 3375 llvm::Value *EmitToMemory(llvm::Value *Value, QualType Ty); 3376 3377 /// EmitFromMemory - Change a scalar value from its memory 3378 /// representation to its value representation. 3379 llvm::Value *EmitFromMemory(llvm::Value *Value, QualType Ty); 3380 3381 /// Check if the scalar \p Value is within the valid range for the given 3382 /// type \p Ty. 3383 /// 3384 /// Returns true if a check is needed (even if the range is unknown). 3385 bool EmitScalarRangeCheck(llvm::Value *Value, QualType Ty, 3386 SourceLocation Loc); 3387 3388 /// EmitLoadOfScalar - Load a scalar value from an address, taking 3389 /// care to appropriately convert from the memory representation to 3390 /// the LLVM value representation. 3391 llvm::Value *EmitLoadOfScalar(Address Addr, bool Volatile, QualType Ty, 3392 SourceLocation Loc, 3393 AlignmentSource Source = AlignmentSource::Type, 3394 bool isNontemporal = false) { 3395 return EmitLoadOfScalar(Addr, Volatile, Ty, Loc, LValueBaseInfo(Source), 3396 CGM.getTBAAAccessInfo(Ty), isNontemporal); 3397 } 3398 3399 llvm::Value *EmitLoadOfScalar(Address Addr, bool Volatile, QualType Ty, 3400 SourceLocation Loc, LValueBaseInfo BaseInfo, 3401 TBAAAccessInfo TBAAInfo, 3402 bool isNontemporal = false); 3403 3404 /// EmitLoadOfScalar - Load a scalar value from an address, taking 3405 /// care to appropriately convert from the memory representation to 3406 /// the LLVM value representation. The l-value must be a simple 3407 /// l-value. 3408 llvm::Value *EmitLoadOfScalar(LValue lvalue, SourceLocation Loc); 3409 3410 /// EmitStoreOfScalar - Store a scalar value to an address, taking 3411 /// care to appropriately convert from the memory representation to 3412 /// the LLVM value representation. 3413 void EmitStoreOfScalar(llvm::Value *Value, Address Addr, 3414 bool Volatile, QualType Ty, 3415 AlignmentSource Source = AlignmentSource::Type, 3416 bool isInit = false, bool isNontemporal = false) { 3417 EmitStoreOfScalar(Value, Addr, Volatile, Ty, LValueBaseInfo(Source), 3418 CGM.getTBAAAccessInfo(Ty), isInit, isNontemporal); 3419 } 3420 3421 void EmitStoreOfScalar(llvm::Value *Value, Address Addr, 3422 bool Volatile, QualType Ty, 3423 LValueBaseInfo BaseInfo, TBAAAccessInfo TBAAInfo, 3424 bool isInit = false, bool isNontemporal = false); 3425 3426 /// EmitStoreOfScalar - Store a scalar value to an address, taking 3427 /// care to appropriately convert from the memory representation to 3428 /// the LLVM value representation. The l-value must be a simple 3429 /// l-value. The isInit flag indicates whether this is an initialization. 3430 /// If so, atomic qualifiers are ignored and the store is always non-atomic. 3431 void EmitStoreOfScalar(llvm::Value *value, LValue lvalue, bool isInit=false); 3432 3433 /// EmitLoadOfLValue - Given an expression that represents a value lvalue, 3434 /// this method emits the address of the lvalue, then loads the result as an 3435 /// rvalue, returning the rvalue. 3436 RValue EmitLoadOfLValue(LValue V, SourceLocation Loc); 3437 RValue EmitLoadOfExtVectorElementLValue(LValue V); 3438 RValue EmitLoadOfBitfieldLValue(LValue LV, SourceLocation Loc); 3439 RValue EmitLoadOfGlobalRegLValue(LValue LV); 3440 3441 /// EmitStoreThroughLValue - Store the specified rvalue into the specified 3442 /// lvalue, where both are guaranteed to the have the same type, and that type 3443 /// is 'Ty'. 3444 void EmitStoreThroughLValue(RValue Src, LValue Dst, bool isInit = false); 3445 void EmitStoreThroughExtVectorComponentLValue(RValue Src, LValue Dst); 3446 void EmitStoreThroughGlobalRegLValue(RValue Src, LValue Dst); 3447 3448 /// EmitStoreThroughBitfieldLValue - Store Src into Dst with same constraints 3449 /// as EmitStoreThroughLValue. 3450 /// 3451 /// \param Result [out] - If non-null, this will be set to a Value* for the 3452 /// bit-field contents after the store, appropriate for use as the result of 3453 /// an assignment to the bit-field. 3454 void EmitStoreThroughBitfieldLValue(RValue Src, LValue Dst, 3455 llvm::Value **Result=nullptr); 3456 3457 /// Emit an l-value for an assignment (simple or compound) of complex type. 3458 LValue EmitComplexAssignmentLValue(const BinaryOperator *E); 3459 LValue EmitComplexCompoundAssignmentLValue(const CompoundAssignOperator *E); 3460 LValue EmitScalarCompoundAssignWithComplex(const CompoundAssignOperator *E, 3461 llvm::Value *&Result); 3462 3463 // Note: only available for agg return types 3464 LValue EmitBinaryOperatorLValue(const BinaryOperator *E); 3465 LValue EmitCompoundAssignmentLValue(const CompoundAssignOperator *E); 3466 // Note: only available for agg return types 3467 LValue EmitCallExprLValue(const CallExpr *E); 3468 // Note: only available for agg return types 3469 LValue EmitVAArgExprLValue(const VAArgExpr *E); 3470 LValue EmitDeclRefLValue(const DeclRefExpr *E); 3471 LValue EmitStringLiteralLValue(const StringLiteral *E); 3472 LValue EmitObjCEncodeExprLValue(const ObjCEncodeExpr *E); 3473 LValue EmitPredefinedLValue(const PredefinedExpr *E); 3474 LValue EmitUnaryOpLValue(const UnaryOperator *E); 3475 LValue EmitArraySubscriptExpr(const ArraySubscriptExpr *E, 3476 bool Accessed = false); 3477 LValue EmitOMPArraySectionExpr(const OMPArraySectionExpr *E, 3478 bool IsLowerBound = true); 3479 LValue EmitExtVectorElementExpr(const ExtVectorElementExpr *E); 3480 LValue EmitMemberExpr(const MemberExpr *E); 3481 LValue EmitObjCIsaExpr(const ObjCIsaExpr *E); 3482 LValue EmitCompoundLiteralLValue(const CompoundLiteralExpr *E); 3483 LValue EmitInitListLValue(const InitListExpr *E); 3484 LValue EmitConditionalOperatorLValue(const AbstractConditionalOperator *E); 3485 LValue EmitCastLValue(const CastExpr *E); 3486 LValue EmitMaterializeTemporaryExpr(const MaterializeTemporaryExpr *E); 3487 LValue EmitOpaqueValueLValue(const OpaqueValueExpr *e); 3488 3489 Address EmitExtVectorElementLValue(LValue V); 3490 3491 RValue EmitRValueForField(LValue LV, const FieldDecl *FD, SourceLocation Loc); 3492 3493 Address EmitArrayToPointerDecay(const Expr *Array, 3494 LValueBaseInfo *BaseInfo = nullptr, 3495 TBAAAccessInfo *TBAAInfo = nullptr); 3496 3497 class ConstantEmission { 3498 llvm::PointerIntPair<llvm::Constant*, 1, bool> ValueAndIsReference; 3499 ConstantEmission(llvm::Constant *C, bool isReference) 3500 : ValueAndIsReference(C, isReference) {} 3501 public: 3502 ConstantEmission() {} 3503 static ConstantEmission forReference(llvm::Constant *C) { 3504 return ConstantEmission(C, true); 3505 } 3506 static ConstantEmission forValue(llvm::Constant *C) { 3507 return ConstantEmission(C, false); 3508 } 3509 3510 explicit operator bool() const { 3511 return ValueAndIsReference.getOpaqueValue() != nullptr; 3512 } 3513 3514 bool isReference() const { return ValueAndIsReference.getInt(); } 3515 LValue getReferenceLValue(CodeGenFunction &CGF, Expr *refExpr) const { 3516 assert(isReference()); 3517 return CGF.MakeNaturalAlignAddrLValue(ValueAndIsReference.getPointer(), 3518 refExpr->getType()); 3519 } 3520 3521 llvm::Constant *getValue() const { 3522 assert(!isReference()); 3523 return ValueAndIsReference.getPointer(); 3524 } 3525 }; 3526 3527 ConstantEmission tryEmitAsConstant(DeclRefExpr *refExpr); 3528 ConstantEmission tryEmitAsConstant(const MemberExpr *ME); 3529 llvm::Value *emitScalarConstant(const ConstantEmission &Constant, Expr *E); 3530 3531 RValue EmitPseudoObjectRValue(const PseudoObjectExpr *e, 3532 AggValueSlot slot = AggValueSlot::ignored()); 3533 LValue EmitPseudoObjectLValue(const PseudoObjectExpr *e); 3534 3535 llvm::Value *EmitIvarOffset(const ObjCInterfaceDecl *Interface, 3536 const ObjCIvarDecl *Ivar); 3537 LValue EmitLValueForField(LValue Base, const FieldDecl* Field); 3538 LValue EmitLValueForLambdaField(const FieldDecl *Field); 3539 3540 /// EmitLValueForFieldInitialization - Like EmitLValueForField, except that 3541 /// if the Field is a reference, this will return the address of the reference 3542 /// and not the address of the value stored in the reference. 3543 LValue EmitLValueForFieldInitialization(LValue Base, 3544 const FieldDecl* Field); 3545 3546 LValue EmitLValueForIvar(QualType ObjectTy, 3547 llvm::Value* Base, const ObjCIvarDecl *Ivar, 3548 unsigned CVRQualifiers); 3549 3550 LValue EmitCXXConstructLValue(const CXXConstructExpr *E); 3551 LValue EmitCXXBindTemporaryLValue(const CXXBindTemporaryExpr *E); 3552 LValue EmitLambdaLValue(const LambdaExpr *E); 3553 LValue EmitCXXTypeidLValue(const CXXTypeidExpr *E); 3554 LValue EmitCXXUuidofLValue(const CXXUuidofExpr *E); 3555 3556 LValue EmitObjCMessageExprLValue(const ObjCMessageExpr *E); 3557 LValue EmitObjCIvarRefLValue(const ObjCIvarRefExpr *E); 3558 LValue EmitStmtExprLValue(const StmtExpr *E); 3559 LValue EmitPointerToDataMemberBinaryExpr(const BinaryOperator *E); 3560 LValue EmitObjCSelectorLValue(const ObjCSelectorExpr *E); 3561 void EmitDeclRefExprDbgValue(const DeclRefExpr *E, const APValue &Init); 3562 3563 //===--------------------------------------------------------------------===// 3564 // Scalar Expression Emission 3565 //===--------------------------------------------------------------------===// 3566 3567 /// EmitCall - Generate a call of the given function, expecting the given 3568 /// result type, and using the given argument list which specifies both the 3569 /// LLVM arguments and the types they were derived from. 3570 RValue EmitCall(const CGFunctionInfo &CallInfo, const CGCallee &Callee, 3571 ReturnValueSlot ReturnValue, const CallArgList &Args, 3572 llvm::Instruction **callOrInvoke, SourceLocation Loc); 3573 RValue EmitCall(const CGFunctionInfo &CallInfo, const CGCallee &Callee, 3574 ReturnValueSlot ReturnValue, const CallArgList &Args, 3575 llvm::Instruction **callOrInvoke = nullptr) { 3576 return EmitCall(CallInfo, Callee, ReturnValue, Args, callOrInvoke, 3577 SourceLocation()); 3578 } 3579 RValue EmitCall(QualType FnType, const CGCallee &Callee, const CallExpr *E, 3580 ReturnValueSlot ReturnValue, llvm::Value *Chain = nullptr); 3581 RValue EmitCallExpr(const CallExpr *E, 3582 ReturnValueSlot ReturnValue = ReturnValueSlot()); 3583 RValue EmitSimpleCallExpr(const CallExpr *E, ReturnValueSlot ReturnValue); 3584 CGCallee EmitCallee(const Expr *E); 3585 3586 void checkTargetFeatures(const CallExpr *E, const FunctionDecl *TargetDecl); 3587 3588 llvm::CallInst *EmitRuntimeCall(llvm::Value *callee, 3589 const Twine &name = ""); 3590 llvm::CallInst *EmitRuntimeCall(llvm::Value *callee, 3591 ArrayRef<llvm::Value*> args, 3592 const Twine &name = ""); 3593 llvm::CallInst *EmitNounwindRuntimeCall(llvm::Value *callee, 3594 const Twine &name = ""); 3595 llvm::CallInst *EmitNounwindRuntimeCall(llvm::Value *callee, 3596 ArrayRef<llvm::Value*> args, 3597 const Twine &name = ""); 3598 3599 SmallVector<llvm::OperandBundleDef, 1> 3600 getBundlesForFunclet(llvm::Value *Callee); 3601 3602 llvm::CallSite EmitCallOrInvoke(llvm::Value *Callee, 3603 ArrayRef<llvm::Value *> Args, 3604 const Twine &Name = ""); 3605 llvm::CallSite EmitRuntimeCallOrInvoke(llvm::Value *callee, 3606 ArrayRef<llvm::Value*> args, 3607 const Twine &name = ""); 3608 llvm::CallSite EmitRuntimeCallOrInvoke(llvm::Value *callee, 3609 const Twine &name = ""); 3610 void EmitNoreturnRuntimeCallOrInvoke(llvm::Value *callee, 3611 ArrayRef<llvm::Value*> args); 3612 3613 CGCallee BuildAppleKextVirtualCall(const CXXMethodDecl *MD, 3614 NestedNameSpecifier *Qual, 3615 llvm::Type *Ty); 3616 3617 CGCallee BuildAppleKextVirtualDestructorCall(const CXXDestructorDecl *DD, 3618 CXXDtorType Type, 3619 const CXXRecordDecl *RD); 3620 3621 // Return the copy constructor name with the prefix "__copy_constructor_" 3622 // removed. 3623 static std::string getNonTrivialCopyConstructorStr(QualType QT, 3624 CharUnits Alignment, 3625 bool IsVolatile, 3626 ASTContext &Ctx); 3627 3628 // Return the destructor name with the prefix "__destructor_" removed. 3629 static std::string getNonTrivialDestructorStr(QualType QT, 3630 CharUnits Alignment, 3631 bool IsVolatile, 3632 ASTContext &Ctx); 3633 3634 // These functions emit calls to the special functions of non-trivial C 3635 // structs. 3636 void defaultInitNonTrivialCStructVar(LValue Dst); 3637 void callCStructDefaultConstructor(LValue Dst); 3638 void callCStructDestructor(LValue Dst); 3639 void callCStructCopyConstructor(LValue Dst, LValue Src); 3640 void callCStructMoveConstructor(LValue Dst, LValue Src); 3641 void callCStructCopyAssignmentOperator(LValue Dst, LValue Src); 3642 void callCStructMoveAssignmentOperator(LValue Dst, LValue Src); 3643 3644 RValue 3645 EmitCXXMemberOrOperatorCall(const CXXMethodDecl *Method, 3646 const CGCallee &Callee, 3647 ReturnValueSlot ReturnValue, llvm::Value *This, 3648 llvm::Value *ImplicitParam, 3649 QualType ImplicitParamTy, const CallExpr *E, 3650 CallArgList *RtlArgs); 3651 RValue EmitCXXDestructorCall(const CXXDestructorDecl *DD, 3652 const CGCallee &Callee, 3653 llvm::Value *This, llvm::Value *ImplicitParam, 3654 QualType ImplicitParamTy, const CallExpr *E, 3655 StructorType Type); 3656 RValue EmitCXXMemberCallExpr(const CXXMemberCallExpr *E, 3657 ReturnValueSlot ReturnValue); 3658 RValue EmitCXXMemberOrOperatorMemberCallExpr(const CallExpr *CE, 3659 const CXXMethodDecl *MD, 3660 ReturnValueSlot ReturnValue, 3661 bool HasQualifier, 3662 NestedNameSpecifier *Qualifier, 3663 bool IsArrow, const Expr *Base); 3664 // Compute the object pointer. 3665 Address EmitCXXMemberDataPointerAddress(const Expr *E, Address base, 3666 llvm::Value *memberPtr, 3667 const MemberPointerType *memberPtrType, 3668 LValueBaseInfo *BaseInfo = nullptr, 3669 TBAAAccessInfo *TBAAInfo = nullptr); 3670 RValue EmitCXXMemberPointerCallExpr(const CXXMemberCallExpr *E, 3671 ReturnValueSlot ReturnValue); 3672 3673 RValue EmitCXXOperatorMemberCallExpr(const CXXOperatorCallExpr *E, 3674 const CXXMethodDecl *MD, 3675 ReturnValueSlot ReturnValue); 3676 RValue EmitCXXPseudoDestructorExpr(const CXXPseudoDestructorExpr *E); 3677 3678 RValue EmitCUDAKernelCallExpr(const CUDAKernelCallExpr *E, 3679 ReturnValueSlot ReturnValue); 3680 3681 RValue EmitNVPTXDevicePrintfCallExpr(const CallExpr *E, 3682 ReturnValueSlot ReturnValue); 3683 3684 RValue EmitBuiltinExpr(const GlobalDecl GD, unsigned BuiltinID, 3685 const CallExpr *E, ReturnValueSlot ReturnValue); 3686 3687 RValue emitRotate(const CallExpr *E, bool IsRotateRight); 3688 3689 /// Emit IR for __builtin_os_log_format. 3690 RValue emitBuiltinOSLogFormat(const CallExpr &E); 3691 3692 llvm::Function *generateBuiltinOSLogHelperFunction( 3693 const analyze_os_log::OSLogBufferLayout &Layout, 3694 CharUnits BufferAlignment); 3695 3696 RValue EmitBlockCallExpr(const CallExpr *E, ReturnValueSlot ReturnValue); 3697 3698 /// EmitTargetBuiltinExpr - Emit the given builtin call. Returns 0 if the call 3699 /// is unhandled by the current target. 3700 llvm::Value *EmitTargetBuiltinExpr(unsigned BuiltinID, const CallExpr *E); 3701 3702 llvm::Value *EmitAArch64CompareBuiltinExpr(llvm::Value *Op, llvm::Type *Ty, 3703 const llvm::CmpInst::Predicate Fp, 3704 const llvm::CmpInst::Predicate Ip, 3705 const llvm::Twine &Name = ""); 3706 llvm::Value *EmitARMBuiltinExpr(unsigned BuiltinID, const CallExpr *E, 3707 llvm::Triple::ArchType Arch); 3708 3709 llvm::Value *EmitCommonNeonBuiltinExpr(unsigned BuiltinID, 3710 unsigned LLVMIntrinsic, 3711 unsigned AltLLVMIntrinsic, 3712 const char *NameHint, 3713 unsigned Modifier, 3714 const CallExpr *E, 3715 SmallVectorImpl<llvm::Value *> &Ops, 3716 Address PtrOp0, Address PtrOp1, 3717 llvm::Triple::ArchType Arch); 3718 3719 llvm::Value *EmitISOVolatileLoad(const CallExpr *E); 3720 llvm::Value *EmitISOVolatileStore(const CallExpr *E); 3721 3722 llvm::Function *LookupNeonLLVMIntrinsic(unsigned IntrinsicID, 3723 unsigned Modifier, llvm::Type *ArgTy, 3724 const CallExpr *E); 3725 llvm::Value *EmitNeonCall(llvm::Function *F, 3726 SmallVectorImpl<llvm::Value*> &O, 3727 const char *name, 3728 unsigned shift = 0, bool rightshift = false); 3729 llvm::Value *EmitNeonSplat(llvm::Value *V, llvm::Constant *Idx); 3730 llvm::Value *EmitNeonShiftVector(llvm::Value *V, llvm::Type *Ty, 3731 bool negateForRightShift); 3732 llvm::Value *EmitNeonRShiftImm(llvm::Value *Vec, llvm::Value *Amt, 3733 llvm::Type *Ty, bool usgn, const char *name); 3734 llvm::Value *vectorWrapScalar16(llvm::Value *Op); 3735 llvm::Value *EmitAArch64BuiltinExpr(unsigned BuiltinID, const CallExpr *E, 3736 llvm::Triple::ArchType Arch); 3737 3738 llvm::Value *BuildVector(ArrayRef<llvm::Value*> Ops); 3739 llvm::Value *EmitX86BuiltinExpr(unsigned BuiltinID, const CallExpr *E); 3740 llvm::Value *EmitPPCBuiltinExpr(unsigned BuiltinID, const CallExpr *E); 3741 llvm::Value *EmitAMDGPUBuiltinExpr(unsigned BuiltinID, const CallExpr *E); 3742 llvm::Value *EmitSystemZBuiltinExpr(unsigned BuiltinID, const CallExpr *E); 3743 llvm::Value *EmitNVPTXBuiltinExpr(unsigned BuiltinID, const CallExpr *E); 3744 llvm::Value *EmitWebAssemblyBuiltinExpr(unsigned BuiltinID, 3745 const CallExpr *E); 3746 llvm::Value *EmitHexagonBuiltinExpr(unsigned BuiltinID, const CallExpr *E); 3747 3748 private: 3749 enum class MSVCIntrin; 3750 3751 public: 3752 llvm::Value *EmitMSVCBuiltinExpr(MSVCIntrin BuiltinID, const CallExpr *E); 3753 3754 llvm::Value *EmitBuiltinAvailable(ArrayRef<llvm::Value *> Args); 3755 3756 llvm::Value *EmitObjCProtocolExpr(const ObjCProtocolExpr *E); 3757 llvm::Value *EmitObjCStringLiteral(const ObjCStringLiteral *E); 3758 llvm::Value *EmitObjCBoxedExpr(const ObjCBoxedExpr *E); 3759 llvm::Value *EmitObjCArrayLiteral(const ObjCArrayLiteral *E); 3760 llvm::Value *EmitObjCDictionaryLiteral(const ObjCDictionaryLiteral *E); 3761 llvm::Value *EmitObjCCollectionLiteral(const Expr *E, 3762 const ObjCMethodDecl *MethodWithObjects); 3763 llvm::Value *EmitObjCSelectorExpr(const ObjCSelectorExpr *E); 3764 RValue EmitObjCMessageExpr(const ObjCMessageExpr *E, 3765 ReturnValueSlot Return = ReturnValueSlot()); 3766 3767 /// Retrieves the default cleanup kind for an ARC cleanup. 3768 /// Except under -fobjc-arc-eh, ARC cleanups are normal-only. 3769 CleanupKind getARCCleanupKind() { 3770 return CGM.getCodeGenOpts().ObjCAutoRefCountExceptions 3771 ? NormalAndEHCleanup : NormalCleanup; 3772 } 3773 3774 // ARC primitives. 3775 void EmitARCInitWeak(Address addr, llvm::Value *value); 3776 void EmitARCDestroyWeak(Address addr); 3777 llvm::Value *EmitARCLoadWeak(Address addr); 3778 llvm::Value *EmitARCLoadWeakRetained(Address addr); 3779 llvm::Value *EmitARCStoreWeak(Address addr, llvm::Value *value, bool ignored); 3780 void emitARCCopyAssignWeak(QualType Ty, Address DstAddr, Address SrcAddr); 3781 void emitARCMoveAssignWeak(QualType Ty, Address DstAddr, Address SrcAddr); 3782 void EmitARCCopyWeak(Address dst, Address src); 3783 void EmitARCMoveWeak(Address dst, Address src); 3784 llvm::Value *EmitARCRetainAutorelease(QualType type, llvm::Value *value); 3785 llvm::Value *EmitARCRetainAutoreleaseNonBlock(llvm::Value *value); 3786 llvm::Value *EmitARCStoreStrong(LValue lvalue, llvm::Value *value, 3787 bool resultIgnored); 3788 llvm::Value *EmitARCStoreStrongCall(Address addr, llvm::Value *value, 3789 bool resultIgnored); 3790 llvm::Value *EmitARCRetain(QualType type, llvm::Value *value); 3791 llvm::Value *EmitARCRetainNonBlock(llvm::Value *value); 3792 llvm::Value *EmitARCRetainBlock(llvm::Value *value, bool mandatory); 3793 void EmitARCDestroyStrong(Address addr, ARCPreciseLifetime_t precise); 3794 void EmitARCRelease(llvm::Value *value, ARCPreciseLifetime_t precise); 3795 llvm::Value *EmitARCAutorelease(llvm::Value *value); 3796 llvm::Value *EmitARCAutoreleaseReturnValue(llvm::Value *value); 3797 llvm::Value *EmitARCRetainAutoreleaseReturnValue(llvm::Value *value); 3798 llvm::Value *EmitARCRetainAutoreleasedReturnValue(llvm::Value *value); 3799 llvm::Value *EmitARCUnsafeClaimAutoreleasedReturnValue(llvm::Value *value); 3800 3801 llvm::Value *EmitObjCAutorelease(llvm::Value *value, llvm::Type *returnType); 3802 llvm::Value *EmitObjCRetainNonBlock(llvm::Value *value, 3803 llvm::Type *returnType); 3804 void EmitObjCRelease(llvm::Value *value, ARCPreciseLifetime_t precise); 3805 3806 std::pair<LValue,llvm::Value*> 3807 EmitARCStoreAutoreleasing(const BinaryOperator *e); 3808 std::pair<LValue,llvm::Value*> 3809 EmitARCStoreStrong(const BinaryOperator *e, bool ignored); 3810 std::pair<LValue,llvm::Value*> 3811 EmitARCStoreUnsafeUnretained(const BinaryOperator *e, bool ignored); 3812 3813 llvm::Value *EmitObjCAlloc(llvm::Value *value, 3814 llvm::Type *returnType); 3815 llvm::Value *EmitObjCAllocWithZone(llvm::Value *value, 3816 llvm::Type *returnType); 3817 llvm::Value *EmitObjCThrowOperand(const Expr *expr); 3818 llvm::Value *EmitObjCConsumeObject(QualType T, llvm::Value *Ptr); 3819 llvm::Value *EmitObjCExtendObjectLifetime(QualType T, llvm::Value *Ptr); 3820 3821 llvm::Value *EmitARCExtendBlockObject(const Expr *expr); 3822 llvm::Value *EmitARCReclaimReturnedObject(const Expr *e, 3823 bool allowUnsafeClaim); 3824 llvm::Value *EmitARCRetainScalarExpr(const Expr *expr); 3825 llvm::Value *EmitARCRetainAutoreleaseScalarExpr(const Expr *expr); 3826 llvm::Value *EmitARCUnsafeUnretainedScalarExpr(const Expr *expr); 3827 3828 void EmitARCIntrinsicUse(ArrayRef<llvm::Value*> values); 3829 3830 static Destroyer destroyARCStrongImprecise; 3831 static Destroyer destroyARCStrongPrecise; 3832 static Destroyer destroyARCWeak; 3833 static Destroyer emitARCIntrinsicUse; 3834 static Destroyer destroyNonTrivialCStruct; 3835 3836 void EmitObjCAutoreleasePoolPop(llvm::Value *Ptr); 3837 llvm::Value *EmitObjCAutoreleasePoolPush(); 3838 llvm::Value *EmitObjCMRRAutoreleasePoolPush(); 3839 void EmitObjCAutoreleasePoolCleanup(llvm::Value *Ptr); 3840 void EmitObjCMRRAutoreleasePoolPop(llvm::Value *Ptr); 3841 3842 /// Emits a reference binding to the passed in expression. 3843 RValue EmitReferenceBindingToExpr(const Expr *E); 3844 3845 //===--------------------------------------------------------------------===// 3846 // Expression Emission 3847 //===--------------------------------------------------------------------===// 3848 3849 // Expressions are broken into three classes: scalar, complex, aggregate. 3850 3851 /// EmitScalarExpr - Emit the computation of the specified expression of LLVM 3852 /// scalar type, returning the result. 3853 llvm::Value *EmitScalarExpr(const Expr *E , bool IgnoreResultAssign = false); 3854 3855 /// Emit a conversion from the specified type to the specified destination 3856 /// type, both of which are LLVM scalar types. 3857 llvm::Value *EmitScalarConversion(llvm::Value *Src, QualType SrcTy, 3858 QualType DstTy, SourceLocation Loc); 3859 3860 /// Emit a conversion from the specified complex type to the specified 3861 /// destination type, where the destination type is an LLVM scalar type. 3862 llvm::Value *EmitComplexToScalarConversion(ComplexPairTy Src, QualType SrcTy, 3863 QualType DstTy, 3864 SourceLocation Loc); 3865 3866 /// EmitAggExpr - Emit the computation of the specified expression 3867 /// of aggregate type. The result is computed into the given slot, 3868 /// which may be null to indicate that the value is not needed. 3869 void EmitAggExpr(const Expr *E, AggValueSlot AS); 3870 3871 /// EmitAggExprToLValue - Emit the computation of the specified expression of 3872 /// aggregate type into a temporary LValue. 3873 LValue EmitAggExprToLValue(const Expr *E); 3874 3875 /// EmitExtendGCLifetime - Given a pointer to an Objective-C object, 3876 /// make sure it survives garbage collection until this point. 3877 void EmitExtendGCLifetime(llvm::Value *object); 3878 3879 /// EmitComplexExpr - Emit the computation of the specified expression of 3880 /// complex type, returning the result. 3881 ComplexPairTy EmitComplexExpr(const Expr *E, 3882 bool IgnoreReal = false, 3883 bool IgnoreImag = false); 3884 3885 /// EmitComplexExprIntoLValue - Emit the given expression of complex 3886 /// type and place its result into the specified l-value. 3887 void EmitComplexExprIntoLValue(const Expr *E, LValue dest, bool isInit); 3888 3889 /// EmitStoreOfComplex - Store a complex number into the specified l-value. 3890 void EmitStoreOfComplex(ComplexPairTy V, LValue dest, bool isInit); 3891 3892 /// EmitLoadOfComplex - Load a complex number from the specified l-value. 3893 ComplexPairTy EmitLoadOfComplex(LValue src, SourceLocation loc); 3894 3895 Address emitAddrOfRealComponent(Address complex, QualType complexType); 3896 Address emitAddrOfImagComponent(Address complex, QualType complexType); 3897 3898 /// AddInitializerToStaticVarDecl - Add the initializer for 'D' to the 3899 /// global variable that has already been created for it. If the initializer 3900 /// has a different type than GV does, this may free GV and return a different 3901 /// one. Otherwise it just returns GV. 3902 llvm::GlobalVariable * 3903 AddInitializerToStaticVarDecl(const VarDecl &D, 3904 llvm::GlobalVariable *GV); 3905 3906 // Emit an @llvm.invariant.start call for the given memory region. 3907 void EmitInvariantStart(llvm::Constant *Addr, CharUnits Size); 3908 3909 /// EmitCXXGlobalVarDeclInit - Create the initializer for a C++ 3910 /// variable with global storage. 3911 void EmitCXXGlobalVarDeclInit(const VarDecl &D, llvm::Constant *DeclPtr, 3912 bool PerformInit); 3913 3914 llvm::Constant *createAtExitStub(const VarDecl &VD, llvm::Constant *Dtor, 3915 llvm::Constant *Addr); 3916 3917 /// Call atexit() with a function that passes the given argument to 3918 /// the given function. 3919 void registerGlobalDtorWithAtExit(const VarDecl &D, llvm::Constant *fn, 3920 llvm::Constant *addr); 3921 3922 /// Call atexit() with function dtorStub. 3923 void registerGlobalDtorWithAtExit(llvm::Constant *dtorStub); 3924 3925 /// Emit code in this function to perform a guarded variable 3926 /// initialization. Guarded initializations are used when it's not 3927 /// possible to prove that an initialization will be done exactly 3928 /// once, e.g. with a static local variable or a static data member 3929 /// of a class template. 3930 void EmitCXXGuardedInit(const VarDecl &D, llvm::GlobalVariable *DeclPtr, 3931 bool PerformInit); 3932 3933 enum class GuardKind { VariableGuard, TlsGuard }; 3934 3935 /// Emit a branch to select whether or not to perform guarded initialization. 3936 void EmitCXXGuardedInitBranch(llvm::Value *NeedsInit, 3937 llvm::BasicBlock *InitBlock, 3938 llvm::BasicBlock *NoInitBlock, 3939 GuardKind Kind, const VarDecl *D); 3940 3941 /// GenerateCXXGlobalInitFunc - Generates code for initializing global 3942 /// variables. 3943 void 3944 GenerateCXXGlobalInitFunc(llvm::Function *Fn, 3945 ArrayRef<llvm::Function *> CXXThreadLocals, 3946 ConstantAddress Guard = ConstantAddress::invalid()); 3947 3948 /// GenerateCXXGlobalDtorsFunc - Generates code for destroying global 3949 /// variables. 3950 void GenerateCXXGlobalDtorsFunc( 3951 llvm::Function *Fn, 3952 const std::vector<std::pair<llvm::WeakTrackingVH, llvm::Constant *>> 3953 &DtorsAndObjects); 3954 3955 void GenerateCXXGlobalVarDeclInitFunc(llvm::Function *Fn, 3956 const VarDecl *D, 3957 llvm::GlobalVariable *Addr, 3958 bool PerformInit); 3959 3960 void EmitCXXConstructExpr(const CXXConstructExpr *E, AggValueSlot Dest); 3961 3962 void EmitSynthesizedCXXCopyCtor(Address Dest, Address Src, const Expr *Exp); 3963 3964 void enterFullExpression(const FullExpr *E) { 3965 if (const auto *EWC = dyn_cast<ExprWithCleanups>(E)) 3966 if (EWC->getNumObjects() == 0) 3967 return; 3968 enterNonTrivialFullExpression(E); 3969 } 3970 void enterNonTrivialFullExpression(const FullExpr *E); 3971 3972 void EmitCXXThrowExpr(const CXXThrowExpr *E, bool KeepInsertionPoint = true); 3973 3974 void EmitLambdaExpr(const LambdaExpr *E, AggValueSlot Dest); 3975 3976 RValue EmitAtomicExpr(AtomicExpr *E); 3977 3978 //===--------------------------------------------------------------------===// 3979 // Annotations Emission 3980 //===--------------------------------------------------------------------===// 3981 3982 /// Emit an annotation call (intrinsic or builtin). 3983 llvm::Value *EmitAnnotationCall(llvm::Value *AnnotationFn, 3984 llvm::Value *AnnotatedVal, 3985 StringRef AnnotationStr, 3986 SourceLocation Location); 3987 3988 /// Emit local annotations for the local variable V, declared by D. 3989 void EmitVarAnnotations(const VarDecl *D, llvm::Value *V); 3990 3991 /// Emit field annotations for the given field & value. Returns the 3992 /// annotation result. 3993 Address EmitFieldAnnotations(const FieldDecl *D, Address V); 3994 3995 //===--------------------------------------------------------------------===// 3996 // Internal Helpers 3997 //===--------------------------------------------------------------------===// 3998 3999 /// ContainsLabel - Return true if the statement contains a label in it. If 4000 /// this statement is not executed normally, it not containing a label means 4001 /// that we can just remove the code. 4002 static bool ContainsLabel(const Stmt *S, bool IgnoreCaseStmts = false); 4003 4004 /// containsBreak - Return true if the statement contains a break out of it. 4005 /// If the statement (recursively) contains a switch or loop with a break 4006 /// inside of it, this is fine. 4007 static bool containsBreak(const Stmt *S); 4008 4009 /// Determine if the given statement might introduce a declaration into the 4010 /// current scope, by being a (possibly-labelled) DeclStmt. 4011 static bool mightAddDeclToScope(const Stmt *S); 4012 4013 /// ConstantFoldsToSimpleInteger - If the specified expression does not fold 4014 /// to a constant, or if it does but contains a label, return false. If it 4015 /// constant folds return true and set the boolean result in Result. 4016 bool ConstantFoldsToSimpleInteger(const Expr *Cond, bool &Result, 4017 bool AllowLabels = false); 4018 4019 /// ConstantFoldsToSimpleInteger - If the specified expression does not fold 4020 /// to a constant, or if it does but contains a label, return false. If it 4021 /// constant folds return true and set the folded value. 4022 bool ConstantFoldsToSimpleInteger(const Expr *Cond, llvm::APSInt &Result, 4023 bool AllowLabels = false); 4024 4025 /// EmitBranchOnBoolExpr - Emit a branch on a boolean condition (e.g. for an 4026 /// if statement) to the specified blocks. Based on the condition, this might 4027 /// try to simplify the codegen of the conditional based on the branch. 4028 /// TrueCount should be the number of times we expect the condition to 4029 /// evaluate to true based on PGO data. 4030 void EmitBranchOnBoolExpr(const Expr *Cond, llvm::BasicBlock *TrueBlock, 4031 llvm::BasicBlock *FalseBlock, uint64_t TrueCount); 4032 4033 /// Given an assignment `*LHS = RHS`, emit a test that checks if \p RHS is 4034 /// nonnull, if \p LHS is marked _Nonnull. 4035 void EmitNullabilityCheck(LValue LHS, llvm::Value *RHS, SourceLocation Loc); 4036 4037 /// An enumeration which makes it easier to specify whether or not an 4038 /// operation is a subtraction. 4039 enum { NotSubtraction = false, IsSubtraction = true }; 4040 4041 /// Same as IRBuilder::CreateInBoundsGEP, but additionally emits a check to 4042 /// detect undefined behavior when the pointer overflow sanitizer is enabled. 4043 /// \p SignedIndices indicates whether any of the GEP indices are signed. 4044 /// \p IsSubtraction indicates whether the expression used to form the GEP 4045 /// is a subtraction. 4046 llvm::Value *EmitCheckedInBoundsGEP(llvm::Value *Ptr, 4047 ArrayRef<llvm::Value *> IdxList, 4048 bool SignedIndices, 4049 bool IsSubtraction, 4050 SourceLocation Loc, 4051 const Twine &Name = ""); 4052 4053 /// Specifies which type of sanitizer check to apply when handling a 4054 /// particular builtin. 4055 enum BuiltinCheckKind { 4056 BCK_CTZPassedZero, 4057 BCK_CLZPassedZero, 4058 }; 4059 4060 /// Emits an argument for a call to a builtin. If the builtin sanitizer is 4061 /// enabled, a runtime check specified by \p Kind is also emitted. 4062 llvm::Value *EmitCheckedArgForBuiltin(const Expr *E, BuiltinCheckKind Kind); 4063 4064 /// Emit a description of a type in a format suitable for passing to 4065 /// a runtime sanitizer handler. 4066 llvm::Constant *EmitCheckTypeDescriptor(QualType T); 4067 4068 /// Convert a value into a format suitable for passing to a runtime 4069 /// sanitizer handler. 4070 llvm::Value *EmitCheckValue(llvm::Value *V); 4071 4072 /// Emit a description of a source location in a format suitable for 4073 /// passing to a runtime sanitizer handler. 4074 llvm::Constant *EmitCheckSourceLocation(SourceLocation Loc); 4075 4076 /// Create a basic block that will call a handler function in a 4077 /// sanitizer runtime with the provided arguments, and create a conditional 4078 /// branch to it. 4079 void EmitCheck(ArrayRef<std::pair<llvm::Value *, SanitizerMask>> Checked, 4080 SanitizerHandler Check, ArrayRef<llvm::Constant *> StaticArgs, 4081 ArrayRef<llvm::Value *> DynamicArgs); 4082 4083 /// Emit a slow path cross-DSO CFI check which calls __cfi_slowpath 4084 /// if Cond if false. 4085 void EmitCfiSlowPathCheck(SanitizerMask Kind, llvm::Value *Cond, 4086 llvm::ConstantInt *TypeId, llvm::Value *Ptr, 4087 ArrayRef<llvm::Constant *> StaticArgs); 4088 4089 /// Emit a reached-unreachable diagnostic if \p Loc is valid and runtime 4090 /// checking is enabled. Otherwise, just emit an unreachable instruction. 4091 void EmitUnreachable(SourceLocation Loc); 4092 4093 /// Create a basic block that will call the trap intrinsic, and emit a 4094 /// conditional branch to it, for the -ftrapv checks. 4095 void EmitTrapCheck(llvm::Value *Checked); 4096 4097 /// Emit a call to trap or debugtrap and attach function attribute 4098 /// "trap-func-name" if specified. 4099 llvm::CallInst *EmitTrapCall(llvm::Intrinsic::ID IntrID); 4100 4101 /// Emit a stub for the cross-DSO CFI check function. 4102 void EmitCfiCheckStub(); 4103 4104 /// Emit a cross-DSO CFI failure handling function. 4105 void EmitCfiCheckFail(); 4106 4107 /// Create a check for a function parameter that may potentially be 4108 /// declared as non-null. 4109 void EmitNonNullArgCheck(RValue RV, QualType ArgType, SourceLocation ArgLoc, 4110 AbstractCallee AC, unsigned ParmNum); 4111 4112 /// EmitCallArg - Emit a single call argument. 4113 void EmitCallArg(CallArgList &args, const Expr *E, QualType ArgType); 4114 4115 /// EmitDelegateCallArg - We are performing a delegate call; that 4116 /// is, the current function is delegating to another one. Produce 4117 /// a r-value suitable for passing the given parameter. 4118 void EmitDelegateCallArg(CallArgList &args, const VarDecl *param, 4119 SourceLocation loc); 4120 4121 /// SetFPAccuracy - Set the minimum required accuracy of the given floating 4122 /// point operation, expressed as the maximum relative error in ulp. 4123 void SetFPAccuracy(llvm::Value *Val, float Accuracy); 4124 4125 private: 4126 llvm::MDNode *getRangeForLoadFromType(QualType Ty); 4127 void EmitReturnOfRValue(RValue RV, QualType Ty); 4128 4129 void deferPlaceholderReplacement(llvm::Instruction *Old, llvm::Value *New); 4130 4131 llvm::SmallVector<std::pair<llvm::Instruction *, llvm::Value *>, 4> 4132 DeferredReplacements; 4133 4134 /// Set the address of a local variable. 4135 void setAddrOfLocalVar(const VarDecl *VD, Address Addr) { 4136 assert(!LocalDeclMap.count(VD) && "Decl already exists in LocalDeclMap!"); 4137 LocalDeclMap.insert({VD, Addr}); 4138 } 4139 4140 /// ExpandTypeFromArgs - Reconstruct a structure of type \arg Ty 4141 /// from function arguments into \arg Dst. See ABIArgInfo::Expand. 4142 /// 4143 /// \param AI - The first function argument of the expansion. 4144 void ExpandTypeFromArgs(QualType Ty, LValue Dst, 4145 SmallVectorImpl<llvm::Value *>::iterator &AI); 4146 4147 /// ExpandTypeToArgs - Expand an CallArg \arg Arg, with the LLVM type for \arg 4148 /// Ty, into individual arguments on the provided vector \arg IRCallArgs, 4149 /// starting at index \arg IRCallArgPos. See ABIArgInfo::Expand. 4150 void ExpandTypeToArgs(QualType Ty, CallArg Arg, llvm::FunctionType *IRFuncTy, 4151 SmallVectorImpl<llvm::Value *> &IRCallArgs, 4152 unsigned &IRCallArgPos); 4153 4154 llvm::Value* EmitAsmInput(const TargetInfo::ConstraintInfo &Info, 4155 const Expr *InputExpr, std::string &ConstraintStr); 4156 4157 llvm::Value* EmitAsmInputLValue(const TargetInfo::ConstraintInfo &Info, 4158 LValue InputValue, QualType InputType, 4159 std::string &ConstraintStr, 4160 SourceLocation Loc); 4161 4162 /// Attempts to statically evaluate the object size of E. If that 4163 /// fails, emits code to figure the size of E out for us. This is 4164 /// pass_object_size aware. 4165 /// 4166 /// If EmittedExpr is non-null, this will use that instead of re-emitting E. 4167 llvm::Value *evaluateOrEmitBuiltinObjectSize(const Expr *E, unsigned Type, 4168 llvm::IntegerType *ResType, 4169 llvm::Value *EmittedE); 4170 4171 /// Emits the size of E, as required by __builtin_object_size. This 4172 /// function is aware of pass_object_size parameters, and will act accordingly 4173 /// if E is a parameter with the pass_object_size attribute. 4174 llvm::Value *emitBuiltinObjectSize(const Expr *E, unsigned Type, 4175 llvm::IntegerType *ResType, 4176 llvm::Value *EmittedE); 4177 4178 public: 4179 #ifndef NDEBUG 4180 // Determine whether the given argument is an Objective-C method 4181 // that may have type parameters in its signature. 4182 static bool isObjCMethodWithTypeParams(const ObjCMethodDecl *method) { 4183 const DeclContext *dc = method->getDeclContext(); 4184 if (const ObjCInterfaceDecl *classDecl= dyn_cast<ObjCInterfaceDecl>(dc)) { 4185 return classDecl->getTypeParamListAsWritten(); 4186 } 4187 4188 if (const ObjCCategoryDecl *catDecl = dyn_cast<ObjCCategoryDecl>(dc)) { 4189 return catDecl->getTypeParamList(); 4190 } 4191 4192 return false; 4193 } 4194 4195 template<typename T> 4196 static bool isObjCMethodWithTypeParams(const T *) { return false; } 4197 #endif 4198 4199 enum class EvaluationOrder { 4200 ///! No language constraints on evaluation order. 4201 Default, 4202 ///! Language semantics require left-to-right evaluation. 4203 ForceLeftToRight, 4204 ///! Language semantics require right-to-left evaluation. 4205 ForceRightToLeft 4206 }; 4207 4208 /// EmitCallArgs - Emit call arguments for a function. 4209 template <typename T> 4210 void EmitCallArgs(CallArgList &Args, const T *CallArgTypeInfo, 4211 llvm::iterator_range<CallExpr::const_arg_iterator> ArgRange, 4212 AbstractCallee AC = AbstractCallee(), 4213 unsigned ParamsToSkip = 0, 4214 EvaluationOrder Order = EvaluationOrder::Default) { 4215 SmallVector<QualType, 16> ArgTypes; 4216 CallExpr::const_arg_iterator Arg = ArgRange.begin(); 4217 4218 assert((ParamsToSkip == 0 || CallArgTypeInfo) && 4219 "Can't skip parameters if type info is not provided"); 4220 if (CallArgTypeInfo) { 4221 #ifndef NDEBUG 4222 bool isGenericMethod = isObjCMethodWithTypeParams(CallArgTypeInfo); 4223 #endif 4224 4225 // First, use the argument types that the type info knows about 4226 for (auto I = CallArgTypeInfo->param_type_begin() + ParamsToSkip, 4227 E = CallArgTypeInfo->param_type_end(); 4228 I != E; ++I, ++Arg) { 4229 assert(Arg != ArgRange.end() && "Running over edge of argument list!"); 4230 assert((isGenericMethod || 4231 ((*I)->isVariablyModifiedType() || 4232 (*I).getNonReferenceType()->isObjCRetainableType() || 4233 getContext() 4234 .getCanonicalType((*I).getNonReferenceType()) 4235 .getTypePtr() == 4236 getContext() 4237 .getCanonicalType((*Arg)->getType()) 4238 .getTypePtr())) && 4239 "type mismatch in call argument!"); 4240 ArgTypes.push_back(*I); 4241 } 4242 } 4243 4244 // Either we've emitted all the call args, or we have a call to variadic 4245 // function. 4246 assert((Arg == ArgRange.end() || !CallArgTypeInfo || 4247 CallArgTypeInfo->isVariadic()) && 4248 "Extra arguments in non-variadic function!"); 4249 4250 // If we still have any arguments, emit them using the type of the argument. 4251 for (auto *A : llvm::make_range(Arg, ArgRange.end())) 4252 ArgTypes.push_back(CallArgTypeInfo ? getVarArgType(A) : A->getType()); 4253 4254 EmitCallArgs(Args, ArgTypes, ArgRange, AC, ParamsToSkip, Order); 4255 } 4256 4257 void EmitCallArgs(CallArgList &Args, ArrayRef<QualType> ArgTypes, 4258 llvm::iterator_range<CallExpr::const_arg_iterator> ArgRange, 4259 AbstractCallee AC = AbstractCallee(), 4260 unsigned ParamsToSkip = 0, 4261 EvaluationOrder Order = EvaluationOrder::Default); 4262 4263 /// EmitPointerWithAlignment - Given an expression with a pointer type, 4264 /// emit the value and compute our best estimate of the alignment of the 4265 /// pointee. 4266 /// 4267 /// \param BaseInfo - If non-null, this will be initialized with 4268 /// information about the source of the alignment and the may-alias 4269 /// attribute. Note that this function will conservatively fall back on 4270 /// the type when it doesn't recognize the expression and may-alias will 4271 /// be set to false. 4272 /// 4273 /// One reasonable way to use this information is when there's a language 4274 /// guarantee that the pointer must be aligned to some stricter value, and 4275 /// we're simply trying to ensure that sufficiently obvious uses of under- 4276 /// aligned objects don't get miscompiled; for example, a placement new 4277 /// into the address of a local variable. In such a case, it's quite 4278 /// reasonable to just ignore the returned alignment when it isn't from an 4279 /// explicit source. 4280 Address EmitPointerWithAlignment(const Expr *Addr, 4281 LValueBaseInfo *BaseInfo = nullptr, 4282 TBAAAccessInfo *TBAAInfo = nullptr); 4283 4284 /// If \p E references a parameter with pass_object_size info or a constant 4285 /// array size modifier, emit the object size divided by the size of \p EltTy. 4286 /// Otherwise return null. 4287 llvm::Value *LoadPassedObjectSize(const Expr *E, QualType EltTy); 4288 4289 void EmitSanitizerStatReport(llvm::SanitizerStatKind SSK); 4290 4291 struct MultiVersionResolverOption { 4292 llvm::Function *Function; 4293 FunctionDecl *FD; 4294 struct Conds { 4295 StringRef Architecture; 4296 llvm::SmallVector<StringRef, 8> Features; 4297 4298 Conds(StringRef Arch, ArrayRef<StringRef> Feats) 4299 : Architecture(Arch), Features(Feats.begin(), Feats.end()) {} 4300 } Conditions; 4301 4302 MultiVersionResolverOption(llvm::Function *F, StringRef Arch, 4303 ArrayRef<StringRef> Feats) 4304 : Function(F), Conditions(Arch, Feats) {} 4305 }; 4306 4307 // Emits the body of a multiversion function's resolver. Assumes that the 4308 // options are already sorted in the proper order, with the 'default' option 4309 // last (if it exists). 4310 void EmitMultiVersionResolver(llvm::Function *Resolver, 4311 ArrayRef<MultiVersionResolverOption> Options); 4312 4313 static uint64_t GetX86CpuSupportsMask(ArrayRef<StringRef> FeatureStrs); 4314 4315 private: 4316 QualType getVarArgType(const Expr *Arg); 4317 4318 void EmitDeclMetadata(); 4319 4320 BlockByrefHelpers *buildByrefHelpers(llvm::StructType &byrefType, 4321 const AutoVarEmission &emission); 4322 4323 void AddObjCARCExceptionMetadata(llvm::Instruction *Inst); 4324 4325 llvm::Value *GetValueForARMHint(unsigned BuiltinID); 4326 llvm::Value *EmitX86CpuIs(const CallExpr *E); 4327 llvm::Value *EmitX86CpuIs(StringRef CPUStr); 4328 llvm::Value *EmitX86CpuSupports(const CallExpr *E); 4329 llvm::Value *EmitX86CpuSupports(ArrayRef<StringRef> FeatureStrs); 4330 llvm::Value *EmitX86CpuSupports(uint64_t Mask); 4331 llvm::Value *EmitX86CpuInit(); 4332 llvm::Value *FormResolverCondition(const MultiVersionResolverOption &RO); 4333 }; 4334 4335 inline DominatingLLVMValue::saved_type 4336 DominatingLLVMValue::save(CodeGenFunction &CGF, llvm::Value *value) { 4337 if (!needsSaving(value)) return saved_type(value, false); 4338 4339 // Otherwise, we need an alloca. 4340 auto align = CharUnits::fromQuantity( 4341 CGF.CGM.getDataLayout().getPrefTypeAlignment(value->getType())); 4342 Address alloca = 4343 CGF.CreateTempAlloca(value->getType(), align, "cond-cleanup.save"); 4344 CGF.Builder.CreateStore(value, alloca); 4345 4346 return saved_type(alloca.getPointer(), true); 4347 } 4348 4349 inline llvm::Value *DominatingLLVMValue::restore(CodeGenFunction &CGF, 4350 saved_type value) { 4351 // If the value says it wasn't saved, trust that it's still dominating. 4352 if (!value.getInt()) return value.getPointer(); 4353 4354 // Otherwise, it should be an alloca instruction, as set up in save(). 4355 auto alloca = cast<llvm::AllocaInst>(value.getPointer()); 4356 return CGF.Builder.CreateAlignedLoad(alloca, alloca->getAlignment()); 4357 } 4358 4359 } // end namespace CodeGen 4360 } // end namespace clang 4361 4362 #endif 4363