1 //===-- CodeGenFunction.h - Per-Function state for LLVM CodeGen -*- C++ -*-===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This is the internal per-function state used for llvm translation.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #ifndef CLANG_CODEGEN_CODEGENFUNCTION_H
15 #define CLANG_CODEGEN_CODEGENFUNCTION_H
16 
17 #include "CGBuilder.h"
18 #include "CGDebugInfo.h"
19 #include "CGValue.h"
20 #include "EHScopeStack.h"
21 #include "CodeGenModule.h"
22 #include "clang/AST/CharUnits.h"
23 #include "clang/AST/ExprCXX.h"
24 #include "clang/AST/ExprObjC.h"
25 #include "clang/AST/Type.h"
26 #include "clang/Basic/ABI.h"
27 #include "clang/Basic/CapturedStmt.h"
28 #include "clang/Basic/TargetInfo.h"
29 #include "clang/Frontend/CodeGenOptions.h"
30 #include "llvm/ADT/ArrayRef.h"
31 #include "llvm/ADT/DenseMap.h"
32 #include "llvm/ADT/SmallVector.h"
33 #include "llvm/Support/Debug.h"
34 #include "llvm/Support/ValueHandle.h"
35 
36 namespace llvm {
37   class BasicBlock;
38   class LLVMContext;
39   class MDNode;
40   class Module;
41   class SwitchInst;
42   class Twine;
43   class Value;
44   class CallSite;
45 }
46 
47 namespace clang {
48   class ASTContext;
49   class BlockDecl;
50   class CXXDestructorDecl;
51   class CXXForRangeStmt;
52   class CXXTryStmt;
53   class Decl;
54   class LabelDecl;
55   class EnumConstantDecl;
56   class FunctionDecl;
57   class FunctionProtoType;
58   class LabelStmt;
59   class ObjCContainerDecl;
60   class ObjCInterfaceDecl;
61   class ObjCIvarDecl;
62   class ObjCMethodDecl;
63   class ObjCImplementationDecl;
64   class ObjCPropertyImplDecl;
65   class TargetInfo;
66   class TargetCodeGenInfo;
67   class VarDecl;
68   class ObjCForCollectionStmt;
69   class ObjCAtTryStmt;
70   class ObjCAtThrowStmt;
71   class ObjCAtSynchronizedStmt;
72   class ObjCAutoreleasePoolStmt;
73 
74 namespace CodeGen {
75   class CodeGenTypes;
76   class CGFunctionInfo;
77   class CGRecordLayout;
78   class CGBlockInfo;
79   class CGCXXABI;
80   class BlockFlags;
81   class BlockFieldFlags;
82 
83 /// The kind of evaluation to perform on values of a particular
84 /// type.  Basically, is the code in CGExprScalar, CGExprComplex, or
85 /// CGExprAgg?
86 ///
87 /// TODO: should vectors maybe be split out into their own thing?
88 enum TypeEvaluationKind {
89   TEK_Scalar,
90   TEK_Complex,
91   TEK_Aggregate
92 };
93 
94 /// CodeGenFunction - This class organizes the per-function state that is used
95 /// while generating LLVM code.
96 class CodeGenFunction : public CodeGenTypeCache {
97   CodeGenFunction(const CodeGenFunction &) LLVM_DELETED_FUNCTION;
98   void operator=(const CodeGenFunction &) LLVM_DELETED_FUNCTION;
99 
100   friend class CGCXXABI;
101 public:
102   /// A jump destination is an abstract label, branching to which may
103   /// require a jump out through normal cleanups.
104   struct JumpDest {
105     JumpDest() : Block(0), ScopeDepth(), Index(0) {}
106     JumpDest(llvm::BasicBlock *Block,
107              EHScopeStack::stable_iterator Depth,
108              unsigned Index)
109       : Block(Block), ScopeDepth(Depth), Index(Index) {}
110 
111     bool isValid() const { return Block != 0; }
112     llvm::BasicBlock *getBlock() const { return Block; }
113     EHScopeStack::stable_iterator getScopeDepth() const { return ScopeDepth; }
114     unsigned getDestIndex() const { return Index; }
115 
116     // This should be used cautiously.
117     void setScopeDepth(EHScopeStack::stable_iterator depth) {
118       ScopeDepth = depth;
119     }
120 
121   private:
122     llvm::BasicBlock *Block;
123     EHScopeStack::stable_iterator ScopeDepth;
124     unsigned Index;
125   };
126 
127   CodeGenModule &CGM;  // Per-module state.
128   const TargetInfo &Target;
129 
130   typedef std::pair<llvm::Value *, llvm::Value *> ComplexPairTy;
131   CGBuilderTy Builder;
132 
133   /// CurFuncDecl - Holds the Decl for the current outermost
134   /// non-closure context.
135   const Decl *CurFuncDecl;
136   /// CurCodeDecl - This is the inner-most code context, which includes blocks.
137   const Decl *CurCodeDecl;
138   const CGFunctionInfo *CurFnInfo;
139   QualType FnRetTy;
140   llvm::Function *CurFn;
141 
142   /// CurGD - The GlobalDecl for the current function being compiled.
143   GlobalDecl CurGD;
144 
145   /// PrologueCleanupDepth - The cleanup depth enclosing all the
146   /// cleanups associated with the parameters.
147   EHScopeStack::stable_iterator PrologueCleanupDepth;
148 
149   /// ReturnBlock - Unified return block.
150   JumpDest ReturnBlock;
151 
152   /// ReturnValue - The temporary alloca to hold the return value. This is null
153   /// iff the function has no return value.
154   llvm::Value *ReturnValue;
155 
156   /// AllocaInsertPoint - This is an instruction in the entry block before which
157   /// we prefer to insert allocas.
158   llvm::AssertingVH<llvm::Instruction> AllocaInsertPt;
159 
160   /// \brief API for captured statement code generation.
161   class CGCapturedStmtInfo {
162   public:
163     explicit CGCapturedStmtInfo(const CapturedStmt &S,
164                                 CapturedRegionKind K = CR_Default)
165       : Kind(K), ThisValue(0), CXXThisFieldDecl(0) {
166 
167       RecordDecl::field_iterator Field =
168         S.getCapturedRecordDecl()->field_begin();
169       for (CapturedStmt::const_capture_iterator I = S.capture_begin(),
170                                                 E = S.capture_end();
171            I != E; ++I, ++Field) {
172         if (I->capturesThis())
173           CXXThisFieldDecl = *Field;
174         else
175           CaptureFields[I->getCapturedVar()] = *Field;
176       }
177     }
178 
179     virtual ~CGCapturedStmtInfo();
180 
181     CapturedRegionKind getKind() const { return Kind; }
182 
183     void setContextValue(llvm::Value *V) { ThisValue = V; }
184     // \brief Retrieve the value of the context parameter.
185     llvm::Value *getContextValue() const { return ThisValue; }
186 
187     /// \brief Lookup the captured field decl for a variable.
188     const FieldDecl *lookup(const VarDecl *VD) const {
189       return CaptureFields.lookup(VD);
190     }
191 
192     bool isCXXThisExprCaptured() const { return CXXThisFieldDecl != 0; }
193     FieldDecl *getThisFieldDecl() const { return CXXThisFieldDecl; }
194 
195     /// \brief Emit the captured statement body.
196     virtual void EmitBody(CodeGenFunction &CGF, Stmt *S) {
197       CGF.EmitStmt(S);
198     }
199 
200     /// \brief Get the name of the capture helper.
201     virtual StringRef getHelperName() const { return "__captured_stmt"; }
202 
203   private:
204     /// \brief The kind of captured statement being generated.
205     CapturedRegionKind Kind;
206 
207     /// \brief Keep the map between VarDecl and FieldDecl.
208     llvm::SmallDenseMap<const VarDecl *, FieldDecl *> CaptureFields;
209 
210     /// \brief The base address of the captured record, passed in as the first
211     /// argument of the parallel region function.
212     llvm::Value *ThisValue;
213 
214     /// \brief Captured 'this' type.
215     FieldDecl *CXXThisFieldDecl;
216   };
217   CGCapturedStmtInfo *CapturedStmtInfo;
218 
219   /// BoundsChecking - Emit run-time bounds checks. Higher values mean
220   /// potentially higher performance penalties.
221   unsigned char BoundsChecking;
222 
223   /// \brief Whether any type-checking sanitizers are enabled. If \c false,
224   /// calls to EmitTypeCheck can be skipped.
225   bool SanitizePerformTypeCheck;
226 
227   /// \brief Sanitizer options to use for this function.
228   const SanitizerOptions *SanOpts;
229 
230   /// In ARC, whether we should autorelease the return value.
231   bool AutoreleaseResult;
232 
233   const CodeGen::CGBlockInfo *BlockInfo;
234   llvm::Value *BlockPointer;
235 
236   llvm::DenseMap<const VarDecl *, FieldDecl *> LambdaCaptureFields;
237   FieldDecl *LambdaThisCaptureField;
238 
239   /// \brief A mapping from NRVO variables to the flags used to indicate
240   /// when the NRVO has been applied to this variable.
241   llvm::DenseMap<const VarDecl *, llvm::Value *> NRVOFlags;
242 
243   EHScopeStack EHStack;
244   llvm::SmallVector<char, 256> LifetimeExtendedCleanupStack;
245 
246   /// Header for data within LifetimeExtendedCleanupStack.
247   struct LifetimeExtendedCleanupHeader {
248     /// The size of the following cleanup object.
249     size_t Size : 29;
250     /// The kind of cleanup to push: a value from the CleanupKind enumeration.
251     unsigned Kind : 3;
252 
253     size_t getSize() const { return Size; }
254     CleanupKind getKind() const { return static_cast<CleanupKind>(Kind); }
255   };
256 
257   /// i32s containing the indexes of the cleanup destinations.
258   llvm::AllocaInst *NormalCleanupDest;
259 
260   unsigned NextCleanupDestIndex;
261 
262   /// FirstBlockInfo - The head of a singly-linked-list of block layouts.
263   CGBlockInfo *FirstBlockInfo;
264 
265   /// EHResumeBlock - Unified block containing a call to llvm.eh.resume.
266   llvm::BasicBlock *EHResumeBlock;
267 
268   /// The exception slot.  All landing pads write the current exception pointer
269   /// into this alloca.
270   llvm::Value *ExceptionSlot;
271 
272   /// The selector slot.  Under the MandatoryCleanup model, all landing pads
273   /// write the current selector value into this alloca.
274   llvm::AllocaInst *EHSelectorSlot;
275 
276   /// Emits a landing pad for the current EH stack.
277   llvm::BasicBlock *EmitLandingPad();
278 
279   llvm::BasicBlock *getInvokeDestImpl();
280 
281   template <class T>
282   typename DominatingValue<T>::saved_type saveValueInCond(T value) {
283     return DominatingValue<T>::save(*this, value);
284   }
285 
286 public:
287   /// ObjCEHValueStack - Stack of Objective-C exception values, used for
288   /// rethrows.
289   SmallVector<llvm::Value*, 8> ObjCEHValueStack;
290 
291   /// A class controlling the emission of a finally block.
292   class FinallyInfo {
293     /// Where the catchall's edge through the cleanup should go.
294     JumpDest RethrowDest;
295 
296     /// A function to call to enter the catch.
297     llvm::Constant *BeginCatchFn;
298 
299     /// An i1 variable indicating whether or not the @finally is
300     /// running for an exception.
301     llvm::AllocaInst *ForEHVar;
302 
303     /// An i8* variable into which the exception pointer to rethrow
304     /// has been saved.
305     llvm::AllocaInst *SavedExnVar;
306 
307   public:
308     void enter(CodeGenFunction &CGF, const Stmt *Finally,
309                llvm::Constant *beginCatchFn, llvm::Constant *endCatchFn,
310                llvm::Constant *rethrowFn);
311     void exit(CodeGenFunction &CGF);
312   };
313 
314   /// pushFullExprCleanup - Push a cleanup to be run at the end of the
315   /// current full-expression.  Safe against the possibility that
316   /// we're currently inside a conditionally-evaluated expression.
317   template <class T, class A0>
318   void pushFullExprCleanup(CleanupKind kind, A0 a0) {
319     // If we're not in a conditional branch, or if none of the
320     // arguments requires saving, then use the unconditional cleanup.
321     if (!isInConditionalBranch())
322       return EHStack.pushCleanup<T>(kind, a0);
323 
324     typename DominatingValue<A0>::saved_type a0_saved = saveValueInCond(a0);
325 
326     typedef EHScopeStack::ConditionalCleanup1<T, A0> CleanupType;
327     EHStack.pushCleanup<CleanupType>(kind, a0_saved);
328     initFullExprCleanup();
329   }
330 
331   /// pushFullExprCleanup - Push a cleanup to be run at the end of the
332   /// current full-expression.  Safe against the possibility that
333   /// we're currently inside a conditionally-evaluated expression.
334   template <class T, class A0, class A1>
335   void pushFullExprCleanup(CleanupKind kind, A0 a0, A1 a1) {
336     // If we're not in a conditional branch, or if none of the
337     // arguments requires saving, then use the unconditional cleanup.
338     if (!isInConditionalBranch())
339       return EHStack.pushCleanup<T>(kind, a0, a1);
340 
341     typename DominatingValue<A0>::saved_type a0_saved = saveValueInCond(a0);
342     typename DominatingValue<A1>::saved_type a1_saved = saveValueInCond(a1);
343 
344     typedef EHScopeStack::ConditionalCleanup2<T, A0, A1> CleanupType;
345     EHStack.pushCleanup<CleanupType>(kind, a0_saved, a1_saved);
346     initFullExprCleanup();
347   }
348 
349   /// pushFullExprCleanup - Push a cleanup to be run at the end of the
350   /// current full-expression.  Safe against the possibility that
351   /// we're currently inside a conditionally-evaluated expression.
352   template <class T, class A0, class A1, class A2>
353   void pushFullExprCleanup(CleanupKind kind, A0 a0, A1 a1, A2 a2) {
354     // If we're not in a conditional branch, or if none of the
355     // arguments requires saving, then use the unconditional cleanup.
356     if (!isInConditionalBranch()) {
357       return EHStack.pushCleanup<T>(kind, a0, a1, a2);
358     }
359 
360     typename DominatingValue<A0>::saved_type a0_saved = saveValueInCond(a0);
361     typename DominatingValue<A1>::saved_type a1_saved = saveValueInCond(a1);
362     typename DominatingValue<A2>::saved_type a2_saved = saveValueInCond(a2);
363 
364     typedef EHScopeStack::ConditionalCleanup3<T, A0, A1, A2> CleanupType;
365     EHStack.pushCleanup<CleanupType>(kind, a0_saved, a1_saved, a2_saved);
366     initFullExprCleanup();
367   }
368 
369   /// pushFullExprCleanup - Push a cleanup to be run at the end of the
370   /// current full-expression.  Safe against the possibility that
371   /// we're currently inside a conditionally-evaluated expression.
372   template <class T, class A0, class A1, class A2, class A3>
373   void pushFullExprCleanup(CleanupKind kind, A0 a0, A1 a1, A2 a2, A3 a3) {
374     // If we're not in a conditional branch, or if none of the
375     // arguments requires saving, then use the unconditional cleanup.
376     if (!isInConditionalBranch()) {
377       return EHStack.pushCleanup<T>(kind, a0, a1, a2, a3);
378     }
379 
380     typename DominatingValue<A0>::saved_type a0_saved = saveValueInCond(a0);
381     typename DominatingValue<A1>::saved_type a1_saved = saveValueInCond(a1);
382     typename DominatingValue<A2>::saved_type a2_saved = saveValueInCond(a2);
383     typename DominatingValue<A3>::saved_type a3_saved = saveValueInCond(a3);
384 
385     typedef EHScopeStack::ConditionalCleanup4<T, A0, A1, A2, A3> CleanupType;
386     EHStack.pushCleanup<CleanupType>(kind, a0_saved, a1_saved,
387                                      a2_saved, a3_saved);
388     initFullExprCleanup();
389   }
390 
391   /// \brief Queue a cleanup to be pushed after finishing the current
392   /// full-expression.
393   template <class T, class A0, class A1, class A2, class A3>
394   void pushCleanupAfterFullExpr(CleanupKind Kind, A0 a0, A1 a1, A2 a2, A3 a3) {
395     assert(!isInConditionalBranch() && "can't defer conditional cleanup");
396 
397     LifetimeExtendedCleanupHeader Header = { sizeof(T), Kind };
398 
399     size_t OldSize = LifetimeExtendedCleanupStack.size();
400     LifetimeExtendedCleanupStack.resize(
401         LifetimeExtendedCleanupStack.size() + sizeof(Header) + Header.Size);
402 
403     char *Buffer = &LifetimeExtendedCleanupStack[OldSize];
404     new (Buffer) LifetimeExtendedCleanupHeader(Header);
405     new (Buffer + sizeof(Header)) T(a0, a1, a2, a3);
406   }
407 
408   /// Set up the last cleaup that was pushed as a conditional
409   /// full-expression cleanup.
410   void initFullExprCleanup();
411 
412   /// PushDestructorCleanup - Push a cleanup to call the
413   /// complete-object destructor of an object of the given type at the
414   /// given address.  Does nothing if T is not a C++ class type with a
415   /// non-trivial destructor.
416   void PushDestructorCleanup(QualType T, llvm::Value *Addr);
417 
418   /// PushDestructorCleanup - Push a cleanup to call the
419   /// complete-object variant of the given destructor on the object at
420   /// the given address.
421   void PushDestructorCleanup(const CXXDestructorDecl *Dtor,
422                              llvm::Value *Addr);
423 
424   /// PopCleanupBlock - Will pop the cleanup entry on the stack and
425   /// process all branch fixups.
426   void PopCleanupBlock(bool FallThroughIsBranchThrough = false);
427 
428   /// DeactivateCleanupBlock - Deactivates the given cleanup block.
429   /// The block cannot be reactivated.  Pops it if it's the top of the
430   /// stack.
431   ///
432   /// \param DominatingIP - An instruction which is known to
433   ///   dominate the current IP (if set) and which lies along
434   ///   all paths of execution between the current IP and the
435   ///   the point at which the cleanup comes into scope.
436   void DeactivateCleanupBlock(EHScopeStack::stable_iterator Cleanup,
437                               llvm::Instruction *DominatingIP);
438 
439   /// ActivateCleanupBlock - Activates an initially-inactive cleanup.
440   /// Cannot be used to resurrect a deactivated cleanup.
441   ///
442   /// \param DominatingIP - An instruction which is known to
443   ///   dominate the current IP (if set) and which lies along
444   ///   all paths of execution between the current IP and the
445   ///   the point at which the cleanup comes into scope.
446   void ActivateCleanupBlock(EHScopeStack::stable_iterator Cleanup,
447                             llvm::Instruction *DominatingIP);
448 
449   /// \brief Enters a new scope for capturing cleanups, all of which
450   /// will be executed once the scope is exited.
451   class RunCleanupsScope {
452     EHScopeStack::stable_iterator CleanupStackDepth;
453     size_t LifetimeExtendedCleanupStackSize;
454     bool OldDidCallStackSave;
455   protected:
456     bool PerformCleanup;
457   private:
458 
459     RunCleanupsScope(const RunCleanupsScope &) LLVM_DELETED_FUNCTION;
460     void operator=(const RunCleanupsScope &) LLVM_DELETED_FUNCTION;
461 
462   protected:
463     CodeGenFunction& CGF;
464 
465   public:
466     /// \brief Enter a new cleanup scope.
467     explicit RunCleanupsScope(CodeGenFunction &CGF)
468       : PerformCleanup(true), CGF(CGF)
469     {
470       CleanupStackDepth = CGF.EHStack.stable_begin();
471       LifetimeExtendedCleanupStackSize =
472           CGF.LifetimeExtendedCleanupStack.size();
473       OldDidCallStackSave = CGF.DidCallStackSave;
474       CGF.DidCallStackSave = false;
475     }
476 
477     /// \brief Exit this cleanup scope, emitting any accumulated
478     /// cleanups.
479     ~RunCleanupsScope() {
480       if (PerformCleanup) {
481         CGF.DidCallStackSave = OldDidCallStackSave;
482         CGF.PopCleanupBlocks(CleanupStackDepth,
483                              LifetimeExtendedCleanupStackSize);
484       }
485     }
486 
487     /// \brief Determine whether this scope requires any cleanups.
488     bool requiresCleanups() const {
489       return CGF.EHStack.stable_begin() != CleanupStackDepth;
490     }
491 
492     /// \brief Force the emission of cleanups now, instead of waiting
493     /// until this object is destroyed.
494     void ForceCleanup() {
495       assert(PerformCleanup && "Already forced cleanup");
496       CGF.DidCallStackSave = OldDidCallStackSave;
497       CGF.PopCleanupBlocks(CleanupStackDepth,
498                            LifetimeExtendedCleanupStackSize);
499       PerformCleanup = false;
500     }
501   };
502 
503   class LexicalScope: protected RunCleanupsScope {
504     SourceRange Range;
505     SmallVector<const LabelDecl*, 4> Labels;
506     LexicalScope *ParentScope;
507 
508     LexicalScope(const LexicalScope &) LLVM_DELETED_FUNCTION;
509     void operator=(const LexicalScope &) LLVM_DELETED_FUNCTION;
510 
511   public:
512     /// \brief Enter a new cleanup scope.
513     explicit LexicalScope(CodeGenFunction &CGF, SourceRange Range)
514       : RunCleanupsScope(CGF), Range(Range), ParentScope(CGF.CurLexicalScope) {
515       CGF.CurLexicalScope = this;
516       if (CGDebugInfo *DI = CGF.getDebugInfo())
517         DI->EmitLexicalBlockStart(CGF.Builder, Range.getBegin());
518     }
519 
520     void addLabel(const LabelDecl *label) {
521       assert(PerformCleanup && "adding label to dead scope?");
522       Labels.push_back(label);
523     }
524 
525     /// \brief Exit this cleanup scope, emitting any accumulated
526     /// cleanups.
527     ~LexicalScope() {
528       if (CGDebugInfo *DI = CGF.getDebugInfo())
529         DI->EmitLexicalBlockEnd(CGF.Builder, Range.getEnd());
530 
531       // If we should perform a cleanup, force them now.  Note that
532       // this ends the cleanup scope before rescoping any labels.
533       if (PerformCleanup) ForceCleanup();
534     }
535 
536     /// \brief Force the emission of cleanups now, instead of waiting
537     /// until this object is destroyed.
538     void ForceCleanup() {
539       CGF.CurLexicalScope = ParentScope;
540       RunCleanupsScope::ForceCleanup();
541 
542       if (!Labels.empty())
543         rescopeLabels();
544     }
545 
546     void rescopeLabels();
547   };
548 
549 
550   /// \brief Takes the old cleanup stack size and emits the cleanup blocks
551   /// that have been added.
552   void PopCleanupBlocks(EHScopeStack::stable_iterator OldCleanupStackSize);
553 
554   /// \brief Takes the old cleanup stack size and emits the cleanup blocks
555   /// that have been added, then adds all lifetime-extended cleanups from
556   /// the given position to the stack.
557   void PopCleanupBlocks(EHScopeStack::stable_iterator OldCleanupStackSize,
558                         size_t OldLifetimeExtendedStackSize);
559 
560   void ResolveBranchFixups(llvm::BasicBlock *Target);
561 
562   /// The given basic block lies in the current EH scope, but may be a
563   /// target of a potentially scope-crossing jump; get a stable handle
564   /// to which we can perform this jump later.
565   JumpDest getJumpDestInCurrentScope(llvm::BasicBlock *Target) {
566     return JumpDest(Target,
567                     EHStack.getInnermostNormalCleanup(),
568                     NextCleanupDestIndex++);
569   }
570 
571   /// The given basic block lies in the current EH scope, but may be a
572   /// target of a potentially scope-crossing jump; get a stable handle
573   /// to which we can perform this jump later.
574   JumpDest getJumpDestInCurrentScope(StringRef Name = StringRef()) {
575     return getJumpDestInCurrentScope(createBasicBlock(Name));
576   }
577 
578   /// EmitBranchThroughCleanup - Emit a branch from the current insert
579   /// block through the normal cleanup handling code (if any) and then
580   /// on to \arg Dest.
581   void EmitBranchThroughCleanup(JumpDest Dest);
582 
583   /// isObviouslyBranchWithoutCleanups - Return true if a branch to the
584   /// specified destination obviously has no cleanups to run.  'false' is always
585   /// a conservatively correct answer for this method.
586   bool isObviouslyBranchWithoutCleanups(JumpDest Dest) const;
587 
588   /// popCatchScope - Pops the catch scope at the top of the EHScope
589   /// stack, emitting any required code (other than the catch handlers
590   /// themselves).
591   void popCatchScope();
592 
593   llvm::BasicBlock *getEHResumeBlock(bool isCleanup);
594   llvm::BasicBlock *getEHDispatchBlock(EHScopeStack::stable_iterator scope);
595 
596   /// An object to manage conditionally-evaluated expressions.
597   class ConditionalEvaluation {
598     llvm::BasicBlock *StartBB;
599 
600   public:
601     ConditionalEvaluation(CodeGenFunction &CGF)
602       : StartBB(CGF.Builder.GetInsertBlock()) {}
603 
604     void begin(CodeGenFunction &CGF) {
605       assert(CGF.OutermostConditional != this);
606       if (!CGF.OutermostConditional)
607         CGF.OutermostConditional = this;
608     }
609 
610     void end(CodeGenFunction &CGF) {
611       assert(CGF.OutermostConditional != 0);
612       if (CGF.OutermostConditional == this)
613         CGF.OutermostConditional = 0;
614     }
615 
616     /// Returns a block which will be executed prior to each
617     /// evaluation of the conditional code.
618     llvm::BasicBlock *getStartingBlock() const {
619       return StartBB;
620     }
621   };
622 
623   /// isInConditionalBranch - Return true if we're currently emitting
624   /// one branch or the other of a conditional expression.
625   bool isInConditionalBranch() const { return OutermostConditional != 0; }
626 
627   void setBeforeOutermostConditional(llvm::Value *value, llvm::Value *addr) {
628     assert(isInConditionalBranch());
629     llvm::BasicBlock *block = OutermostConditional->getStartingBlock();
630     new llvm::StoreInst(value, addr, &block->back());
631   }
632 
633   /// An RAII object to record that we're evaluating a statement
634   /// expression.
635   class StmtExprEvaluation {
636     CodeGenFunction &CGF;
637 
638     /// We have to save the outermost conditional: cleanups in a
639     /// statement expression aren't conditional just because the
640     /// StmtExpr is.
641     ConditionalEvaluation *SavedOutermostConditional;
642 
643   public:
644     StmtExprEvaluation(CodeGenFunction &CGF)
645       : CGF(CGF), SavedOutermostConditional(CGF.OutermostConditional) {
646       CGF.OutermostConditional = 0;
647     }
648 
649     ~StmtExprEvaluation() {
650       CGF.OutermostConditional = SavedOutermostConditional;
651       CGF.EnsureInsertPoint();
652     }
653   };
654 
655   /// An object which temporarily prevents a value from being
656   /// destroyed by aggressive peephole optimizations that assume that
657   /// all uses of a value have been realized in the IR.
658   class PeepholeProtection {
659     llvm::Instruction *Inst;
660     friend class CodeGenFunction;
661 
662   public:
663     PeepholeProtection() : Inst(0) {}
664   };
665 
666   /// A non-RAII class containing all the information about a bound
667   /// opaque value.  OpaqueValueMapping, below, is a RAII wrapper for
668   /// this which makes individual mappings very simple; using this
669   /// class directly is useful when you have a variable number of
670   /// opaque values or don't want the RAII functionality for some
671   /// reason.
672   class OpaqueValueMappingData {
673     const OpaqueValueExpr *OpaqueValue;
674     bool BoundLValue;
675     CodeGenFunction::PeepholeProtection Protection;
676 
677     OpaqueValueMappingData(const OpaqueValueExpr *ov,
678                            bool boundLValue)
679       : OpaqueValue(ov), BoundLValue(boundLValue) {}
680   public:
681     OpaqueValueMappingData() : OpaqueValue(0) {}
682 
683     static bool shouldBindAsLValue(const Expr *expr) {
684       // gl-values should be bound as l-values for obvious reasons.
685       // Records should be bound as l-values because IR generation
686       // always keeps them in memory.  Expressions of function type
687       // act exactly like l-values but are formally required to be
688       // r-values in C.
689       return expr->isGLValue() ||
690              expr->getType()->isRecordType() ||
691              expr->getType()->isFunctionType();
692     }
693 
694     static OpaqueValueMappingData bind(CodeGenFunction &CGF,
695                                        const OpaqueValueExpr *ov,
696                                        const Expr *e) {
697       if (shouldBindAsLValue(ov))
698         return bind(CGF, ov, CGF.EmitLValue(e));
699       return bind(CGF, ov, CGF.EmitAnyExpr(e));
700     }
701 
702     static OpaqueValueMappingData bind(CodeGenFunction &CGF,
703                                        const OpaqueValueExpr *ov,
704                                        const LValue &lv) {
705       assert(shouldBindAsLValue(ov));
706       CGF.OpaqueLValues.insert(std::make_pair(ov, lv));
707       return OpaqueValueMappingData(ov, true);
708     }
709 
710     static OpaqueValueMappingData bind(CodeGenFunction &CGF,
711                                        const OpaqueValueExpr *ov,
712                                        const RValue &rv) {
713       assert(!shouldBindAsLValue(ov));
714       CGF.OpaqueRValues.insert(std::make_pair(ov, rv));
715 
716       OpaqueValueMappingData data(ov, false);
717 
718       // Work around an extremely aggressive peephole optimization in
719       // EmitScalarConversion which assumes that all other uses of a
720       // value are extant.
721       data.Protection = CGF.protectFromPeepholes(rv);
722 
723       return data;
724     }
725 
726     bool isValid() const { return OpaqueValue != 0; }
727     void clear() { OpaqueValue = 0; }
728 
729     void unbind(CodeGenFunction &CGF) {
730       assert(OpaqueValue && "no data to unbind!");
731 
732       if (BoundLValue) {
733         CGF.OpaqueLValues.erase(OpaqueValue);
734       } else {
735         CGF.OpaqueRValues.erase(OpaqueValue);
736         CGF.unprotectFromPeepholes(Protection);
737       }
738     }
739   };
740 
741   /// An RAII object to set (and then clear) a mapping for an OpaqueValueExpr.
742   class OpaqueValueMapping {
743     CodeGenFunction &CGF;
744     OpaqueValueMappingData Data;
745 
746   public:
747     static bool shouldBindAsLValue(const Expr *expr) {
748       return OpaqueValueMappingData::shouldBindAsLValue(expr);
749     }
750 
751     /// Build the opaque value mapping for the given conditional
752     /// operator if it's the GNU ?: extension.  This is a common
753     /// enough pattern that the convenience operator is really
754     /// helpful.
755     ///
756     OpaqueValueMapping(CodeGenFunction &CGF,
757                        const AbstractConditionalOperator *op) : CGF(CGF) {
758       if (isa<ConditionalOperator>(op))
759         // Leave Data empty.
760         return;
761 
762       const BinaryConditionalOperator *e = cast<BinaryConditionalOperator>(op);
763       Data = OpaqueValueMappingData::bind(CGF, e->getOpaqueValue(),
764                                           e->getCommon());
765     }
766 
767     OpaqueValueMapping(CodeGenFunction &CGF,
768                        const OpaqueValueExpr *opaqueValue,
769                        LValue lvalue)
770       : CGF(CGF), Data(OpaqueValueMappingData::bind(CGF, opaqueValue, lvalue)) {
771     }
772 
773     OpaqueValueMapping(CodeGenFunction &CGF,
774                        const OpaqueValueExpr *opaqueValue,
775                        RValue rvalue)
776       : CGF(CGF), Data(OpaqueValueMappingData::bind(CGF, opaqueValue, rvalue)) {
777     }
778 
779     void pop() {
780       Data.unbind(CGF);
781       Data.clear();
782     }
783 
784     ~OpaqueValueMapping() {
785       if (Data.isValid()) Data.unbind(CGF);
786     }
787   };
788 
789   /// getByrefValueFieldNumber - Given a declaration, returns the LLVM field
790   /// number that holds the value.
791   unsigned getByRefValueLLVMField(const ValueDecl *VD) const;
792 
793   /// BuildBlockByrefAddress - Computes address location of the
794   /// variable which is declared as __block.
795   llvm::Value *BuildBlockByrefAddress(llvm::Value *BaseAddr,
796                                       const VarDecl *V);
797 private:
798   CGDebugInfo *DebugInfo;
799   bool DisableDebugInfo;
800 
801   /// DidCallStackSave - Whether llvm.stacksave has been called. Used to avoid
802   /// calling llvm.stacksave for multiple VLAs in the same scope.
803   bool DidCallStackSave;
804 
805   /// IndirectBranch - The first time an indirect goto is seen we create a block
806   /// with an indirect branch.  Every time we see the address of a label taken,
807   /// we add the label to the indirect goto.  Every subsequent indirect goto is
808   /// codegen'd as a jump to the IndirectBranch's basic block.
809   llvm::IndirectBrInst *IndirectBranch;
810 
811   /// LocalDeclMap - This keeps track of the LLVM allocas or globals for local C
812   /// decls.
813   typedef llvm::DenseMap<const Decl*, llvm::Value*> DeclMapTy;
814   DeclMapTy LocalDeclMap;
815 
816   /// LabelMap - This keeps track of the LLVM basic block for each C label.
817   llvm::DenseMap<const LabelDecl*, JumpDest> LabelMap;
818 
819   // BreakContinueStack - This keeps track of where break and continue
820   // statements should jump to.
821   struct BreakContinue {
822     BreakContinue(JumpDest Break, JumpDest Continue)
823       : BreakBlock(Break), ContinueBlock(Continue) {}
824 
825     JumpDest BreakBlock;
826     JumpDest ContinueBlock;
827   };
828   SmallVector<BreakContinue, 8> BreakContinueStack;
829 
830   /// SwitchInsn - This is nearest current switch instruction. It is null if
831   /// current context is not in a switch.
832   llvm::SwitchInst *SwitchInsn;
833 
834   /// CaseRangeBlock - This block holds if condition check for last case
835   /// statement range in current switch instruction.
836   llvm::BasicBlock *CaseRangeBlock;
837 
838   /// OpaqueLValues - Keeps track of the current set of opaque value
839   /// expressions.
840   llvm::DenseMap<const OpaqueValueExpr *, LValue> OpaqueLValues;
841   llvm::DenseMap<const OpaqueValueExpr *, RValue> OpaqueRValues;
842 
843   // VLASizeMap - This keeps track of the associated size for each VLA type.
844   // We track this by the size expression rather than the type itself because
845   // in certain situations, like a const qualifier applied to an VLA typedef,
846   // multiple VLA types can share the same size expression.
847   // FIXME: Maybe this could be a stack of maps that is pushed/popped as we
848   // enter/leave scopes.
849   llvm::DenseMap<const Expr*, llvm::Value*> VLASizeMap;
850 
851   /// A block containing a single 'unreachable' instruction.  Created
852   /// lazily by getUnreachableBlock().
853   llvm::BasicBlock *UnreachableBlock;
854 
855   /// Counts of the number return expressions in the function.
856   unsigned NumReturnExprs;
857 
858   /// Count the number of simple (constant) return expressions in the function.
859   unsigned NumSimpleReturnExprs;
860 
861   /// The last regular (non-return) debug location (breakpoint) in the function.
862   SourceLocation LastStopPoint;
863 
864 public:
865   /// A scope within which we are constructing the fields of an object which
866   /// might use a CXXDefaultInitExpr. This stashes away a 'this' value to use
867   /// if we need to evaluate a CXXDefaultInitExpr within the evaluation.
868   class FieldConstructionScope {
869   public:
870     FieldConstructionScope(CodeGenFunction &CGF, llvm::Value *This)
871         : CGF(CGF), OldCXXDefaultInitExprThis(CGF.CXXDefaultInitExprThis) {
872       CGF.CXXDefaultInitExprThis = This;
873     }
874     ~FieldConstructionScope() {
875       CGF.CXXDefaultInitExprThis = OldCXXDefaultInitExprThis;
876     }
877 
878   private:
879     CodeGenFunction &CGF;
880     llvm::Value *OldCXXDefaultInitExprThis;
881   };
882 
883   /// The scope of a CXXDefaultInitExpr. Within this scope, the value of 'this'
884   /// is overridden to be the object under construction.
885   class CXXDefaultInitExprScope {
886   public:
887     CXXDefaultInitExprScope(CodeGenFunction &CGF)
888         : CGF(CGF), OldCXXThisValue(CGF.CXXThisValue) {
889       CGF.CXXThisValue = CGF.CXXDefaultInitExprThis;
890     }
891     ~CXXDefaultInitExprScope() {
892       CGF.CXXThisValue = OldCXXThisValue;
893     }
894 
895   public:
896     CodeGenFunction &CGF;
897     llvm::Value *OldCXXThisValue;
898   };
899 
900 private:
901   /// CXXThisDecl - When generating code for a C++ member function,
902   /// this will hold the implicit 'this' declaration.
903   ImplicitParamDecl *CXXABIThisDecl;
904   llvm::Value *CXXABIThisValue;
905   llvm::Value *CXXThisValue;
906 
907   /// The value of 'this' to use when evaluating CXXDefaultInitExprs within
908   /// this expression.
909   llvm::Value *CXXDefaultInitExprThis;
910 
911   /// CXXStructorImplicitParamDecl - When generating code for a constructor or
912   /// destructor, this will hold the implicit argument (e.g. VTT).
913   ImplicitParamDecl *CXXStructorImplicitParamDecl;
914   llvm::Value *CXXStructorImplicitParamValue;
915 
916   /// OutermostConditional - Points to the outermost active
917   /// conditional control.  This is used so that we know if a
918   /// temporary should be destroyed conditionally.
919   ConditionalEvaluation *OutermostConditional;
920 
921   /// The current lexical scope.
922   LexicalScope *CurLexicalScope;
923 
924   /// The current source location that should be used for exception
925   /// handling code.
926   SourceLocation CurEHLocation;
927 
928   /// ByrefValueInfoMap - For each __block variable, contains a pair of the LLVM
929   /// type as well as the field number that contains the actual data.
930   llvm::DenseMap<const ValueDecl *, std::pair<llvm::Type *,
931                                               unsigned> > ByRefValueInfo;
932 
933   llvm::BasicBlock *TerminateLandingPad;
934   llvm::BasicBlock *TerminateHandler;
935   llvm::BasicBlock *TrapBB;
936 
937   /// Add a kernel metadata node to the named metadata node 'opencl.kernels'.
938   /// In the kernel metadata node, reference the kernel function and metadata
939   /// nodes for its optional attribute qualifiers (OpenCL 1.1 6.7.2):
940   /// - A node for the vec_type_hint(<type>) qualifier contains string
941   ///   "vec_type_hint", an undefined value of the <type> data type,
942   ///   and a Boolean that is true if the <type> is integer and signed.
943   /// - A node for the work_group_size_hint(X,Y,Z) qualifier contains string
944   ///   "work_group_size_hint", and three 32-bit integers X, Y and Z.
945   /// - A node for the reqd_work_group_size(X,Y,Z) qualifier contains string
946   ///   "reqd_work_group_size", and three 32-bit integers X, Y and Z.
947   void EmitOpenCLKernelMetadata(const FunctionDecl *FD,
948                                 llvm::Function *Fn);
949 
950 public:
951   CodeGenFunction(CodeGenModule &cgm, bool suppressNewContext=false);
952   ~CodeGenFunction();
953 
954   CodeGenTypes &getTypes() const { return CGM.getTypes(); }
955   ASTContext &getContext() const { return CGM.getContext(); }
956   CGDebugInfo *getDebugInfo() {
957     if (DisableDebugInfo)
958       return NULL;
959     return DebugInfo;
960   }
961   void disableDebugInfo() { DisableDebugInfo = true; }
962   void enableDebugInfo() { DisableDebugInfo = false; }
963 
964   bool shouldUseFusedARCCalls() {
965     return CGM.getCodeGenOpts().OptimizationLevel == 0;
966   }
967 
968   const LangOptions &getLangOpts() const { return CGM.getLangOpts(); }
969 
970   /// Returns a pointer to the function's exception object and selector slot,
971   /// which is assigned in every landing pad.
972   llvm::Value *getExceptionSlot();
973   llvm::Value *getEHSelectorSlot();
974 
975   /// Returns the contents of the function's exception object and selector
976   /// slots.
977   llvm::Value *getExceptionFromSlot();
978   llvm::Value *getSelectorFromSlot();
979 
980   llvm::Value *getNormalCleanupDestSlot();
981 
982   llvm::BasicBlock *getUnreachableBlock() {
983     if (!UnreachableBlock) {
984       UnreachableBlock = createBasicBlock("unreachable");
985       new llvm::UnreachableInst(getLLVMContext(), UnreachableBlock);
986     }
987     return UnreachableBlock;
988   }
989 
990   llvm::BasicBlock *getInvokeDest() {
991     if (!EHStack.requiresLandingPad()) return 0;
992     return getInvokeDestImpl();
993   }
994 
995   const TargetInfo &getTarget() const { return Target; }
996   llvm::LLVMContext &getLLVMContext() { return CGM.getLLVMContext(); }
997 
998   //===--------------------------------------------------------------------===//
999   //                                  Cleanups
1000   //===--------------------------------------------------------------------===//
1001 
1002   typedef void Destroyer(CodeGenFunction &CGF, llvm::Value *addr, QualType ty);
1003 
1004   void pushIrregularPartialArrayCleanup(llvm::Value *arrayBegin,
1005                                         llvm::Value *arrayEndPointer,
1006                                         QualType elementType,
1007                                         Destroyer *destroyer);
1008   void pushRegularPartialArrayCleanup(llvm::Value *arrayBegin,
1009                                       llvm::Value *arrayEnd,
1010                                       QualType elementType,
1011                                       Destroyer *destroyer);
1012 
1013   void pushDestroy(QualType::DestructionKind dtorKind,
1014                    llvm::Value *addr, QualType type);
1015   void pushEHDestroy(QualType::DestructionKind dtorKind,
1016                      llvm::Value *addr, QualType type);
1017   void pushDestroy(CleanupKind kind, llvm::Value *addr, QualType type,
1018                    Destroyer *destroyer, bool useEHCleanupForArray);
1019   void pushLifetimeExtendedDestroy(CleanupKind kind, llvm::Value *addr,
1020                                    QualType type, Destroyer *destroyer,
1021                                    bool useEHCleanupForArray);
1022   void emitDestroy(llvm::Value *addr, QualType type, Destroyer *destroyer,
1023                    bool useEHCleanupForArray);
1024   llvm::Function *generateDestroyHelper(llvm::Constant *addr, QualType type,
1025                                         Destroyer *destroyer,
1026                                         bool useEHCleanupForArray,
1027                                         const VarDecl *VD);
1028   void emitArrayDestroy(llvm::Value *begin, llvm::Value *end,
1029                         QualType type, Destroyer *destroyer,
1030                         bool checkZeroLength, bool useEHCleanup);
1031 
1032   Destroyer *getDestroyer(QualType::DestructionKind destructionKind);
1033 
1034   /// Determines whether an EH cleanup is required to destroy a type
1035   /// with the given destruction kind.
1036   bool needsEHCleanup(QualType::DestructionKind kind) {
1037     switch (kind) {
1038     case QualType::DK_none:
1039       return false;
1040     case QualType::DK_cxx_destructor:
1041     case QualType::DK_objc_weak_lifetime:
1042       return getLangOpts().Exceptions;
1043     case QualType::DK_objc_strong_lifetime:
1044       return getLangOpts().Exceptions &&
1045              CGM.getCodeGenOpts().ObjCAutoRefCountExceptions;
1046     }
1047     llvm_unreachable("bad destruction kind");
1048   }
1049 
1050   CleanupKind getCleanupKind(QualType::DestructionKind kind) {
1051     return (needsEHCleanup(kind) ? NormalAndEHCleanup : NormalCleanup);
1052   }
1053 
1054   //===--------------------------------------------------------------------===//
1055   //                                  Objective-C
1056   //===--------------------------------------------------------------------===//
1057 
1058   void GenerateObjCMethod(const ObjCMethodDecl *OMD);
1059 
1060   void StartObjCMethod(const ObjCMethodDecl *MD,
1061                        const ObjCContainerDecl *CD,
1062                        SourceLocation StartLoc);
1063 
1064   /// GenerateObjCGetter - Synthesize an Objective-C property getter function.
1065   void GenerateObjCGetter(ObjCImplementationDecl *IMP,
1066                           const ObjCPropertyImplDecl *PID);
1067   void generateObjCGetterBody(const ObjCImplementationDecl *classImpl,
1068                               const ObjCPropertyImplDecl *propImpl,
1069                               const ObjCMethodDecl *GetterMothodDecl,
1070                               llvm::Constant *AtomicHelperFn);
1071 
1072   void GenerateObjCCtorDtorMethod(ObjCImplementationDecl *IMP,
1073                                   ObjCMethodDecl *MD, bool ctor);
1074 
1075   /// GenerateObjCSetter - Synthesize an Objective-C property setter function
1076   /// for the given property.
1077   void GenerateObjCSetter(ObjCImplementationDecl *IMP,
1078                           const ObjCPropertyImplDecl *PID);
1079   void generateObjCSetterBody(const ObjCImplementationDecl *classImpl,
1080                               const ObjCPropertyImplDecl *propImpl,
1081                               llvm::Constant *AtomicHelperFn);
1082   bool IndirectObjCSetterArg(const CGFunctionInfo &FI);
1083   bool IvarTypeWithAggrGCObjects(QualType Ty);
1084 
1085   //===--------------------------------------------------------------------===//
1086   //                                  Block Bits
1087   //===--------------------------------------------------------------------===//
1088 
1089   llvm::Value *EmitBlockLiteral(const BlockExpr *);
1090   llvm::Value *EmitBlockLiteral(const CGBlockInfo &Info);
1091   static void destroyBlockInfos(CGBlockInfo *info);
1092   llvm::Constant *BuildDescriptorBlockDecl(const BlockExpr *,
1093                                            const CGBlockInfo &Info,
1094                                            llvm::StructType *,
1095                                            llvm::Constant *BlockVarLayout);
1096 
1097   llvm::Function *GenerateBlockFunction(GlobalDecl GD,
1098                                         const CGBlockInfo &Info,
1099                                         const DeclMapTy &ldm,
1100                                         bool IsLambdaConversionToBlock);
1101 
1102   llvm::Constant *GenerateCopyHelperFunction(const CGBlockInfo &blockInfo);
1103   llvm::Constant *GenerateDestroyHelperFunction(const CGBlockInfo &blockInfo);
1104   llvm::Constant *GenerateObjCAtomicSetterCopyHelperFunction(
1105                                              const ObjCPropertyImplDecl *PID);
1106   llvm::Constant *GenerateObjCAtomicGetterCopyHelperFunction(
1107                                              const ObjCPropertyImplDecl *PID);
1108   llvm::Value *EmitBlockCopyAndAutorelease(llvm::Value *Block, QualType Ty);
1109 
1110   void BuildBlockRelease(llvm::Value *DeclPtr, BlockFieldFlags flags);
1111 
1112   class AutoVarEmission;
1113 
1114   void emitByrefStructureInit(const AutoVarEmission &emission);
1115   void enterByrefCleanup(const AutoVarEmission &emission);
1116 
1117   llvm::Value *LoadBlockStruct() {
1118     assert(BlockPointer && "no block pointer set!");
1119     return BlockPointer;
1120   }
1121 
1122   void AllocateBlockCXXThisPointer(const CXXThisExpr *E);
1123   void AllocateBlockDecl(const DeclRefExpr *E);
1124   llvm::Value *GetAddrOfBlockDecl(const VarDecl *var, bool ByRef);
1125   llvm::Type *BuildByRefType(const VarDecl *var);
1126 
1127   void GenerateCode(GlobalDecl GD, llvm::Function *Fn,
1128                     const CGFunctionInfo &FnInfo);
1129   void StartFunction(GlobalDecl GD,
1130                      QualType RetTy,
1131                      llvm::Function *Fn,
1132                      const CGFunctionInfo &FnInfo,
1133                      const FunctionArgList &Args,
1134                      SourceLocation StartLoc);
1135 
1136   void EmitConstructorBody(FunctionArgList &Args);
1137   void EmitDestructorBody(FunctionArgList &Args);
1138   void emitImplicitAssignmentOperatorBody(FunctionArgList &Args);
1139   void EmitFunctionBody(FunctionArgList &Args);
1140 
1141   void EmitForwardingCallToLambda(const CXXMethodDecl *LambdaCallOperator,
1142                                   CallArgList &CallArgs);
1143   void EmitLambdaToBlockPointerBody(FunctionArgList &Args);
1144   void EmitLambdaBlockInvokeBody();
1145   void EmitLambdaDelegatingInvokeBody(const CXXMethodDecl *MD);
1146   void EmitLambdaStaticInvokeFunction(const CXXMethodDecl *MD);
1147 
1148   /// EmitReturnBlock - Emit the unified return block, trying to avoid its
1149   /// emission when possible.
1150   void EmitReturnBlock();
1151 
1152   /// FinishFunction - Complete IR generation of the current function. It is
1153   /// legal to call this function even if there is no current insertion point.
1154   void FinishFunction(SourceLocation EndLoc=SourceLocation());
1155 
1156   /// GenerateThunk - Generate a thunk for the given method.
1157   void GenerateThunk(llvm::Function *Fn, const CGFunctionInfo &FnInfo,
1158                      GlobalDecl GD, const ThunkInfo &Thunk);
1159 
1160   void GenerateVarArgsThunk(llvm::Function *Fn, const CGFunctionInfo &FnInfo,
1161                             GlobalDecl GD, const ThunkInfo &Thunk);
1162 
1163   void EmitCtorPrologue(const CXXConstructorDecl *CD, CXXCtorType Type,
1164                         FunctionArgList &Args);
1165 
1166   void EmitInitializerForField(FieldDecl *Field, LValue LHS, Expr *Init,
1167                                ArrayRef<VarDecl *> ArrayIndexes);
1168 
1169   /// InitializeVTablePointer - Initialize the vtable pointer of the given
1170   /// subobject.
1171   ///
1172   void InitializeVTablePointer(BaseSubobject Base,
1173                                const CXXRecordDecl *NearestVBase,
1174                                CharUnits OffsetFromNearestVBase,
1175                                const CXXRecordDecl *VTableClass);
1176 
1177   typedef llvm::SmallPtrSet<const CXXRecordDecl *, 4> VisitedVirtualBasesSetTy;
1178   void InitializeVTablePointers(BaseSubobject Base,
1179                                 const CXXRecordDecl *NearestVBase,
1180                                 CharUnits OffsetFromNearestVBase,
1181                                 bool BaseIsNonVirtualPrimaryBase,
1182                                 const CXXRecordDecl *VTableClass,
1183                                 VisitedVirtualBasesSetTy& VBases);
1184 
1185   void InitializeVTablePointers(const CXXRecordDecl *ClassDecl);
1186 
1187   /// GetVTablePtr - Return the Value of the vtable pointer member pointed
1188   /// to by This.
1189   llvm::Value *GetVTablePtr(llvm::Value *This, llvm::Type *Ty);
1190 
1191 
1192   /// CanDevirtualizeMemberFunctionCalls - Checks whether virtual calls on given
1193   /// expr can be devirtualized.
1194   bool CanDevirtualizeMemberFunctionCall(const Expr *Base,
1195                                          const CXXMethodDecl *MD);
1196 
1197   /// EnterDtorCleanups - Enter the cleanups necessary to complete the
1198   /// given phase of destruction for a destructor.  The end result
1199   /// should call destructors on members and base classes in reverse
1200   /// order of their construction.
1201   void EnterDtorCleanups(const CXXDestructorDecl *Dtor, CXXDtorType Type);
1202 
1203   /// ShouldInstrumentFunction - Return true if the current function should be
1204   /// instrumented with __cyg_profile_func_* calls
1205   bool ShouldInstrumentFunction();
1206 
1207   /// EmitFunctionInstrumentation - Emit LLVM code to call the specified
1208   /// instrumentation function with the current function and the call site, if
1209   /// function instrumentation is enabled.
1210   void EmitFunctionInstrumentation(const char *Fn);
1211 
1212   /// EmitMCountInstrumentation - Emit call to .mcount.
1213   void EmitMCountInstrumentation();
1214 
1215   /// EmitFunctionProlog - Emit the target specific LLVM code to load the
1216   /// arguments for the given function. This is also responsible for naming the
1217   /// LLVM function arguments.
1218   void EmitFunctionProlog(const CGFunctionInfo &FI,
1219                           llvm::Function *Fn,
1220                           const FunctionArgList &Args);
1221 
1222   /// EmitFunctionEpilog - Emit the target specific LLVM code to return the
1223   /// given temporary.
1224   void EmitFunctionEpilog(const CGFunctionInfo &FI, bool EmitRetDbgLoc,
1225                           SourceLocation EndLoc);
1226 
1227   /// EmitStartEHSpec - Emit the start of the exception spec.
1228   void EmitStartEHSpec(const Decl *D);
1229 
1230   /// EmitEndEHSpec - Emit the end of the exception spec.
1231   void EmitEndEHSpec(const Decl *D);
1232 
1233   /// getTerminateLandingPad - Return a landing pad that just calls terminate.
1234   llvm::BasicBlock *getTerminateLandingPad();
1235 
1236   /// getTerminateHandler - Return a handler (not a landing pad, just
1237   /// a catch handler) that just calls terminate.  This is used when
1238   /// a terminate scope encloses a try.
1239   llvm::BasicBlock *getTerminateHandler();
1240 
1241   llvm::Type *ConvertTypeForMem(QualType T);
1242   llvm::Type *ConvertType(QualType T);
1243   llvm::Type *ConvertType(const TypeDecl *T) {
1244     return ConvertType(getContext().getTypeDeclType(T));
1245   }
1246 
1247   /// LoadObjCSelf - Load the value of self. This function is only valid while
1248   /// generating code for an Objective-C method.
1249   llvm::Value *LoadObjCSelf();
1250 
1251   /// TypeOfSelfObject - Return type of object that this self represents.
1252   QualType TypeOfSelfObject();
1253 
1254   /// hasAggregateLLVMType - Return true if the specified AST type will map into
1255   /// an aggregate LLVM type or is void.
1256   static TypeEvaluationKind getEvaluationKind(QualType T);
1257 
1258   static bool hasScalarEvaluationKind(QualType T) {
1259     return getEvaluationKind(T) == TEK_Scalar;
1260   }
1261 
1262   static bool hasAggregateEvaluationKind(QualType T) {
1263     return getEvaluationKind(T) == TEK_Aggregate;
1264   }
1265 
1266   /// createBasicBlock - Create an LLVM basic block.
1267   llvm::BasicBlock *createBasicBlock(const Twine &name = "",
1268                                      llvm::Function *parent = 0,
1269                                      llvm::BasicBlock *before = 0) {
1270 #ifdef NDEBUG
1271     return llvm::BasicBlock::Create(getLLVMContext(), "", parent, before);
1272 #else
1273     return llvm::BasicBlock::Create(getLLVMContext(), name, parent, before);
1274 #endif
1275   }
1276 
1277   /// getBasicBlockForLabel - Return the LLVM basicblock that the specified
1278   /// label maps to.
1279   JumpDest getJumpDestForLabel(const LabelDecl *S);
1280 
1281   /// SimplifyForwardingBlocks - If the given basic block is only a branch to
1282   /// another basic block, simplify it. This assumes that no other code could
1283   /// potentially reference the basic block.
1284   void SimplifyForwardingBlocks(llvm::BasicBlock *BB);
1285 
1286   /// EmitBlock - Emit the given block \arg BB and set it as the insert point,
1287   /// adding a fall-through branch from the current insert block if
1288   /// necessary. It is legal to call this function even if there is no current
1289   /// insertion point.
1290   ///
1291   /// IsFinished - If true, indicates that the caller has finished emitting
1292   /// branches to the given block and does not expect to emit code into it. This
1293   /// means the block can be ignored if it is unreachable.
1294   void EmitBlock(llvm::BasicBlock *BB, bool IsFinished=false);
1295 
1296   /// EmitBlockAfterUses - Emit the given block somewhere hopefully
1297   /// near its uses, and leave the insertion point in it.
1298   void EmitBlockAfterUses(llvm::BasicBlock *BB);
1299 
1300   /// EmitBranch - Emit a branch to the specified basic block from the current
1301   /// insert block, taking care to avoid creation of branches from dummy
1302   /// blocks. It is legal to call this function even if there is no current
1303   /// insertion point.
1304   ///
1305   /// This function clears the current insertion point. The caller should follow
1306   /// calls to this function with calls to Emit*Block prior to generation new
1307   /// code.
1308   void EmitBranch(llvm::BasicBlock *Block);
1309 
1310   /// HaveInsertPoint - True if an insertion point is defined. If not, this
1311   /// indicates that the current code being emitted is unreachable.
1312   bool HaveInsertPoint() const {
1313     return Builder.GetInsertBlock() != 0;
1314   }
1315 
1316   /// EnsureInsertPoint - Ensure that an insertion point is defined so that
1317   /// emitted IR has a place to go. Note that by definition, if this function
1318   /// creates a block then that block is unreachable; callers may do better to
1319   /// detect when no insertion point is defined and simply skip IR generation.
1320   void EnsureInsertPoint() {
1321     if (!HaveInsertPoint())
1322       EmitBlock(createBasicBlock());
1323   }
1324 
1325   /// ErrorUnsupported - Print out an error that codegen doesn't support the
1326   /// specified stmt yet.
1327   void ErrorUnsupported(const Stmt *S, const char *Type);
1328 
1329   //===--------------------------------------------------------------------===//
1330   //                                  Helpers
1331   //===--------------------------------------------------------------------===//
1332 
1333   LValue MakeAddrLValue(llvm::Value *V, QualType T,
1334                         CharUnits Alignment = CharUnits()) {
1335     return LValue::MakeAddr(V, T, Alignment, getContext(),
1336                             CGM.getTBAAInfo(T));
1337   }
1338 
1339   LValue MakeNaturalAlignAddrLValue(llvm::Value *V, QualType T) {
1340     CharUnits Alignment;
1341     if (!T->isIncompleteType())
1342       Alignment = getContext().getTypeAlignInChars(T);
1343     return LValue::MakeAddr(V, T, Alignment, getContext(),
1344                             CGM.getTBAAInfo(T));
1345   }
1346 
1347   /// CreateTempAlloca - This creates a alloca and inserts it into the entry
1348   /// block. The caller is responsible for setting an appropriate alignment on
1349   /// the alloca.
1350   llvm::AllocaInst *CreateTempAlloca(llvm::Type *Ty,
1351                                      const Twine &Name = "tmp");
1352 
1353   /// InitTempAlloca - Provide an initial value for the given alloca.
1354   void InitTempAlloca(llvm::AllocaInst *Alloca, llvm::Value *Value);
1355 
1356   /// CreateIRTemp - Create a temporary IR object of the given type, with
1357   /// appropriate alignment. This routine should only be used when an temporary
1358   /// value needs to be stored into an alloca (for example, to avoid explicit
1359   /// PHI construction), but the type is the IR type, not the type appropriate
1360   /// for storing in memory.
1361   llvm::AllocaInst *CreateIRTemp(QualType T, const Twine &Name = "tmp");
1362 
1363   /// CreateMemTemp - Create a temporary memory object of the given type, with
1364   /// appropriate alignment.
1365   llvm::AllocaInst *CreateMemTemp(QualType T, const Twine &Name = "tmp");
1366 
1367   /// CreateAggTemp - Create a temporary memory object for the given
1368   /// aggregate type.
1369   AggValueSlot CreateAggTemp(QualType T, const Twine &Name = "tmp") {
1370     CharUnits Alignment = getContext().getTypeAlignInChars(T);
1371     return AggValueSlot::forAddr(CreateMemTemp(T, Name), Alignment,
1372                                  T.getQualifiers(),
1373                                  AggValueSlot::IsNotDestructed,
1374                                  AggValueSlot::DoesNotNeedGCBarriers,
1375                                  AggValueSlot::IsNotAliased);
1376   }
1377 
1378   /// Emit a cast to void* in the appropriate address space.
1379   llvm::Value *EmitCastToVoidPtr(llvm::Value *value);
1380 
1381   /// EvaluateExprAsBool - Perform the usual unary conversions on the specified
1382   /// expression and compare the result against zero, returning an Int1Ty value.
1383   llvm::Value *EvaluateExprAsBool(const Expr *E);
1384 
1385   /// EmitIgnoredExpr - Emit an expression in a context which ignores the result.
1386   void EmitIgnoredExpr(const Expr *E);
1387 
1388   /// EmitAnyExpr - Emit code to compute the specified expression which can have
1389   /// any type.  The result is returned as an RValue struct.  If this is an
1390   /// aggregate expression, the aggloc/agglocvolatile arguments indicate where
1391   /// the result should be returned.
1392   ///
1393   /// \param ignoreResult True if the resulting value isn't used.
1394   RValue EmitAnyExpr(const Expr *E,
1395                      AggValueSlot aggSlot = AggValueSlot::ignored(),
1396                      bool ignoreResult = false);
1397 
1398   // EmitVAListRef - Emit a "reference" to a va_list; this is either the address
1399   // or the value of the expression, depending on how va_list is defined.
1400   llvm::Value *EmitVAListRef(const Expr *E);
1401 
1402   /// EmitAnyExprToTemp - Similary to EmitAnyExpr(), however, the result will
1403   /// always be accessible even if no aggregate location is provided.
1404   RValue EmitAnyExprToTemp(const Expr *E);
1405 
1406   /// EmitAnyExprToMem - Emits the code necessary to evaluate an
1407   /// arbitrary expression into the given memory location.
1408   void EmitAnyExprToMem(const Expr *E, llvm::Value *Location,
1409                         Qualifiers Quals, bool IsInitializer);
1410 
1411   /// EmitExprAsInit - Emits the code necessary to initialize a
1412   /// location in memory with the given initializer.
1413   void EmitExprAsInit(const Expr *init, const ValueDecl *D,
1414                       LValue lvalue, bool capturedByInit);
1415 
1416   /// hasVolatileMember - returns true if aggregate type has a volatile
1417   /// member.
1418   bool hasVolatileMember(QualType T) {
1419     if (const RecordType *RT = T->getAs<RecordType>()) {
1420       const RecordDecl *RD = cast<RecordDecl>(RT->getDecl());
1421       return RD->hasVolatileMember();
1422     }
1423     return false;
1424   }
1425   /// EmitAggregateCopy - Emit an aggregate assignment.
1426   ///
1427   /// The difference to EmitAggregateCopy is that tail padding is not copied.
1428   /// This is required for correctness when assigning non-POD structures in C++.
1429   void EmitAggregateAssign(llvm::Value *DestPtr, llvm::Value *SrcPtr,
1430                            QualType EltTy) {
1431     bool IsVolatile = hasVolatileMember(EltTy);
1432     EmitAggregateCopy(DestPtr, SrcPtr, EltTy, IsVolatile, CharUnits::Zero(),
1433                       true);
1434   }
1435 
1436   /// EmitAggregateCopy - Emit an aggregate copy.
1437   ///
1438   /// \param isVolatile - True iff either the source or the destination is
1439   /// volatile.
1440   /// \param isAssignment - If false, allow padding to be copied.  This often
1441   /// yields more efficient.
1442   void EmitAggregateCopy(llvm::Value *DestPtr, llvm::Value *SrcPtr,
1443                          QualType EltTy, bool isVolatile=false,
1444                          CharUnits Alignment = CharUnits::Zero(),
1445                          bool isAssignment = false);
1446 
1447   /// StartBlock - Start new block named N. If insert block is a dummy block
1448   /// then reuse it.
1449   void StartBlock(const char *N);
1450 
1451   /// GetAddrOfLocalVar - Return the address of a local variable.
1452   llvm::Value *GetAddrOfLocalVar(const VarDecl *VD) {
1453     llvm::Value *Res = LocalDeclMap[VD];
1454     assert(Res && "Invalid argument to GetAddrOfLocalVar(), no decl!");
1455     return Res;
1456   }
1457 
1458   /// getOpaqueLValueMapping - Given an opaque value expression (which
1459   /// must be mapped to an l-value), return its mapping.
1460   const LValue &getOpaqueLValueMapping(const OpaqueValueExpr *e) {
1461     assert(OpaqueValueMapping::shouldBindAsLValue(e));
1462 
1463     llvm::DenseMap<const OpaqueValueExpr*,LValue>::iterator
1464       it = OpaqueLValues.find(e);
1465     assert(it != OpaqueLValues.end() && "no mapping for opaque value!");
1466     return it->second;
1467   }
1468 
1469   /// getOpaqueRValueMapping - Given an opaque value expression (which
1470   /// must be mapped to an r-value), return its mapping.
1471   const RValue &getOpaqueRValueMapping(const OpaqueValueExpr *e) {
1472     assert(!OpaqueValueMapping::shouldBindAsLValue(e));
1473 
1474     llvm::DenseMap<const OpaqueValueExpr*,RValue>::iterator
1475       it = OpaqueRValues.find(e);
1476     assert(it != OpaqueRValues.end() && "no mapping for opaque value!");
1477     return it->second;
1478   }
1479 
1480   /// getAccessedFieldNo - Given an encoded value and a result number, return
1481   /// the input field number being accessed.
1482   static unsigned getAccessedFieldNo(unsigned Idx, const llvm::Constant *Elts);
1483 
1484   llvm::BlockAddress *GetAddrOfLabel(const LabelDecl *L);
1485   llvm::BasicBlock *GetIndirectGotoBlock();
1486 
1487   /// EmitNullInitialization - Generate code to set a value of the given type to
1488   /// null, If the type contains data member pointers, they will be initialized
1489   /// to -1 in accordance with the Itanium C++ ABI.
1490   void EmitNullInitialization(llvm::Value *DestPtr, QualType Ty);
1491 
1492   // EmitVAArg - Generate code to get an argument from the passed in pointer
1493   // and update it accordingly. The return value is a pointer to the argument.
1494   // FIXME: We should be able to get rid of this method and use the va_arg
1495   // instruction in LLVM instead once it works well enough.
1496   llvm::Value *EmitVAArg(llvm::Value *VAListAddr, QualType Ty);
1497 
1498   /// emitArrayLength - Compute the length of an array, even if it's a
1499   /// VLA, and drill down to the base element type.
1500   llvm::Value *emitArrayLength(const ArrayType *arrayType,
1501                                QualType &baseType,
1502                                llvm::Value *&addr);
1503 
1504   /// EmitVLASize - Capture all the sizes for the VLA expressions in
1505   /// the given variably-modified type and store them in the VLASizeMap.
1506   ///
1507   /// This function can be called with a null (unreachable) insert point.
1508   void EmitVariablyModifiedType(QualType Ty);
1509 
1510   /// getVLASize - Returns an LLVM value that corresponds to the size,
1511   /// in non-variably-sized elements, of a variable length array type,
1512   /// plus that largest non-variably-sized element type.  Assumes that
1513   /// the type has already been emitted with EmitVariablyModifiedType.
1514   std::pair<llvm::Value*,QualType> getVLASize(const VariableArrayType *vla);
1515   std::pair<llvm::Value*,QualType> getVLASize(QualType vla);
1516 
1517   /// LoadCXXThis - Load the value of 'this'. This function is only valid while
1518   /// generating code for an C++ member function.
1519   llvm::Value *LoadCXXThis() {
1520     assert(CXXThisValue && "no 'this' value for this function");
1521     return CXXThisValue;
1522   }
1523 
1524   /// LoadCXXVTT - Load the VTT parameter to base constructors/destructors have
1525   /// virtual bases.
1526   // FIXME: Every place that calls LoadCXXVTT is something
1527   // that needs to be abstracted properly.
1528   llvm::Value *LoadCXXVTT() {
1529     assert(CXXStructorImplicitParamValue && "no VTT value for this function");
1530     return CXXStructorImplicitParamValue;
1531   }
1532 
1533   /// LoadCXXStructorImplicitParam - Load the implicit parameter
1534   /// for a constructor/destructor.
1535   llvm::Value *LoadCXXStructorImplicitParam() {
1536     assert(CXXStructorImplicitParamValue &&
1537            "no implicit argument value for this function");
1538     return CXXStructorImplicitParamValue;
1539   }
1540 
1541   /// GetAddressOfBaseOfCompleteClass - Convert the given pointer to a
1542   /// complete class to the given direct base.
1543   llvm::Value *
1544   GetAddressOfDirectBaseInCompleteClass(llvm::Value *Value,
1545                                         const CXXRecordDecl *Derived,
1546                                         const CXXRecordDecl *Base,
1547                                         bool BaseIsVirtual);
1548 
1549   /// GetAddressOfBaseClass - This function will add the necessary delta to the
1550   /// load of 'this' and returns address of the base class.
1551   llvm::Value *GetAddressOfBaseClass(llvm::Value *Value,
1552                                      const CXXRecordDecl *Derived,
1553                                      CastExpr::path_const_iterator PathBegin,
1554                                      CastExpr::path_const_iterator PathEnd,
1555                                      bool NullCheckValue);
1556 
1557   llvm::Value *GetAddressOfDerivedClass(llvm::Value *Value,
1558                                         const CXXRecordDecl *Derived,
1559                                         CastExpr::path_const_iterator PathBegin,
1560                                         CastExpr::path_const_iterator PathEnd,
1561                                         bool NullCheckValue);
1562 
1563   /// GetVTTParameter - Return the VTT parameter that should be passed to a
1564   /// base constructor/destructor with virtual bases.
1565   /// FIXME: VTTs are Itanium ABI-specific, so the definition should move
1566   /// to ItaniumCXXABI.cpp together with all the references to VTT.
1567   llvm::Value *GetVTTParameter(GlobalDecl GD, bool ForVirtualBase,
1568                                bool Delegating);
1569 
1570   void EmitDelegateCXXConstructorCall(const CXXConstructorDecl *Ctor,
1571                                       CXXCtorType CtorType,
1572                                       const FunctionArgList &Args,
1573                                       SourceLocation Loc);
1574   // It's important not to confuse this and the previous function. Delegating
1575   // constructors are the C++0x feature. The constructor delegate optimization
1576   // is used to reduce duplication in the base and complete consturctors where
1577   // they are substantially the same.
1578   void EmitDelegatingCXXConstructorCall(const CXXConstructorDecl *Ctor,
1579                                         const FunctionArgList &Args);
1580   void EmitCXXConstructorCall(const CXXConstructorDecl *D, CXXCtorType Type,
1581                               bool ForVirtualBase, bool Delegating,
1582                               llvm::Value *This,
1583                               CallExpr::const_arg_iterator ArgBeg,
1584                               CallExpr::const_arg_iterator ArgEnd);
1585 
1586   void EmitSynthesizedCXXCopyCtorCall(const CXXConstructorDecl *D,
1587                               llvm::Value *This, llvm::Value *Src,
1588                               CallExpr::const_arg_iterator ArgBeg,
1589                               CallExpr::const_arg_iterator ArgEnd);
1590 
1591   void EmitCXXAggrConstructorCall(const CXXConstructorDecl *D,
1592                                   const ConstantArrayType *ArrayTy,
1593                                   llvm::Value *ArrayPtr,
1594                                   CallExpr::const_arg_iterator ArgBeg,
1595                                   CallExpr::const_arg_iterator ArgEnd,
1596                                   bool ZeroInitialization = false);
1597 
1598   void EmitCXXAggrConstructorCall(const CXXConstructorDecl *D,
1599                                   llvm::Value *NumElements,
1600                                   llvm::Value *ArrayPtr,
1601                                   CallExpr::const_arg_iterator ArgBeg,
1602                                   CallExpr::const_arg_iterator ArgEnd,
1603                                   bool ZeroInitialization = false);
1604 
1605   static Destroyer destroyCXXObject;
1606 
1607   void EmitCXXDestructorCall(const CXXDestructorDecl *D, CXXDtorType Type,
1608                              bool ForVirtualBase, bool Delegating,
1609                              llvm::Value *This);
1610 
1611   void EmitNewArrayInitializer(const CXXNewExpr *E, QualType elementType,
1612                                llvm::Value *NewPtr, llvm::Value *NumElements);
1613 
1614   void EmitCXXTemporary(const CXXTemporary *Temporary, QualType TempType,
1615                         llvm::Value *Ptr);
1616 
1617   llvm::Value *EmitCXXNewExpr(const CXXNewExpr *E);
1618   void EmitCXXDeleteExpr(const CXXDeleteExpr *E);
1619 
1620   void EmitDeleteCall(const FunctionDecl *DeleteFD, llvm::Value *Ptr,
1621                       QualType DeleteTy);
1622 
1623   llvm::Value* EmitCXXTypeidExpr(const CXXTypeidExpr *E);
1624   llvm::Value *EmitDynamicCast(llvm::Value *V, const CXXDynamicCastExpr *DCE);
1625   llvm::Value* EmitCXXUuidofExpr(const CXXUuidofExpr *E);
1626 
1627   /// \brief Situations in which we might emit a check for the suitability of a
1628   ///        pointer or glvalue.
1629   enum TypeCheckKind {
1630     /// Checking the operand of a load. Must be suitably sized and aligned.
1631     TCK_Load,
1632     /// Checking the destination of a store. Must be suitably sized and aligned.
1633     TCK_Store,
1634     /// Checking the bound value in a reference binding. Must be suitably sized
1635     /// and aligned, but is not required to refer to an object (until the
1636     /// reference is used), per core issue 453.
1637     TCK_ReferenceBinding,
1638     /// Checking the object expression in a non-static data member access. Must
1639     /// be an object within its lifetime.
1640     TCK_MemberAccess,
1641     /// Checking the 'this' pointer for a call to a non-static member function.
1642     /// Must be an object within its lifetime.
1643     TCK_MemberCall,
1644     /// Checking the 'this' pointer for a constructor call.
1645     TCK_ConstructorCall,
1646     /// Checking the operand of a static_cast to a derived pointer type. Must be
1647     /// null or an object within its lifetime.
1648     TCK_DowncastPointer,
1649     /// Checking the operand of a static_cast to a derived reference type. Must
1650     /// be an object within its lifetime.
1651     TCK_DowncastReference
1652   };
1653 
1654   /// \brief Emit a check that \p V is the address of storage of the
1655   /// appropriate size and alignment for an object of type \p Type.
1656   void EmitTypeCheck(TypeCheckKind TCK, SourceLocation Loc, llvm::Value *V,
1657                      QualType Type, CharUnits Alignment = CharUnits::Zero());
1658 
1659   /// \brief Emit a check that \p Base points into an array object, which
1660   /// we can access at index \p Index. \p Accessed should be \c false if we
1661   /// this expression is used as an lvalue, for instance in "&Arr[Idx]".
1662   void EmitBoundsCheck(const Expr *E, const Expr *Base, llvm::Value *Index,
1663                        QualType IndexType, bool Accessed);
1664 
1665   llvm::Value *EmitScalarPrePostIncDec(const UnaryOperator *E, LValue LV,
1666                                        bool isInc, bool isPre);
1667   ComplexPairTy EmitComplexPrePostIncDec(const UnaryOperator *E, LValue LV,
1668                                          bool isInc, bool isPre);
1669   //===--------------------------------------------------------------------===//
1670   //                            Declaration Emission
1671   //===--------------------------------------------------------------------===//
1672 
1673   /// EmitDecl - Emit a declaration.
1674   ///
1675   /// This function can be called with a null (unreachable) insert point.
1676   void EmitDecl(const Decl &D);
1677 
1678   /// EmitVarDecl - Emit a local variable declaration.
1679   ///
1680   /// This function can be called with a null (unreachable) insert point.
1681   void EmitVarDecl(const VarDecl &D);
1682 
1683   void EmitScalarInit(const Expr *init, const ValueDecl *D,
1684                       LValue lvalue, bool capturedByInit);
1685   void EmitScalarInit(llvm::Value *init, LValue lvalue);
1686 
1687   typedef void SpecialInitFn(CodeGenFunction &Init, const VarDecl &D,
1688                              llvm::Value *Address);
1689 
1690   /// EmitAutoVarDecl - Emit an auto variable declaration.
1691   ///
1692   /// This function can be called with a null (unreachable) insert point.
1693   void EmitAutoVarDecl(const VarDecl &D);
1694 
1695   class AutoVarEmission {
1696     friend class CodeGenFunction;
1697 
1698     const VarDecl *Variable;
1699 
1700     /// The alignment of the variable.
1701     CharUnits Alignment;
1702 
1703     /// The address of the alloca.  Null if the variable was emitted
1704     /// as a global constant.
1705     llvm::Value *Address;
1706 
1707     llvm::Value *NRVOFlag;
1708 
1709     /// True if the variable is a __block variable.
1710     bool IsByRef;
1711 
1712     /// True if the variable is of aggregate type and has a constant
1713     /// initializer.
1714     bool IsConstantAggregate;
1715 
1716     /// Non-null if we should use lifetime annotations.
1717     llvm::Value *SizeForLifetimeMarkers;
1718 
1719     struct Invalid {};
1720     AutoVarEmission(Invalid) : Variable(0) {}
1721 
1722     AutoVarEmission(const VarDecl &variable)
1723       : Variable(&variable), Address(0), NRVOFlag(0),
1724         IsByRef(false), IsConstantAggregate(false),
1725         SizeForLifetimeMarkers(0) {}
1726 
1727     bool wasEmittedAsGlobal() const { return Address == 0; }
1728 
1729   public:
1730     static AutoVarEmission invalid() { return AutoVarEmission(Invalid()); }
1731 
1732     bool useLifetimeMarkers() const { return SizeForLifetimeMarkers != 0; }
1733     llvm::Value *getSizeForLifetimeMarkers() const {
1734       assert(useLifetimeMarkers());
1735       return SizeForLifetimeMarkers;
1736     }
1737 
1738     /// Returns the raw, allocated address, which is not necessarily
1739     /// the address of the object itself.
1740     llvm::Value *getAllocatedAddress() const {
1741       return Address;
1742     }
1743 
1744     /// Returns the address of the object within this declaration.
1745     /// Note that this does not chase the forwarding pointer for
1746     /// __block decls.
1747     llvm::Value *getObjectAddress(CodeGenFunction &CGF) const {
1748       if (!IsByRef) return Address;
1749 
1750       return CGF.Builder.CreateStructGEP(Address,
1751                                          CGF.getByRefValueLLVMField(Variable),
1752                                          Variable->getNameAsString());
1753     }
1754   };
1755   AutoVarEmission EmitAutoVarAlloca(const VarDecl &var);
1756   void EmitAutoVarInit(const AutoVarEmission &emission);
1757   void EmitAutoVarCleanups(const AutoVarEmission &emission);
1758   void emitAutoVarTypeCleanup(const AutoVarEmission &emission,
1759                               QualType::DestructionKind dtorKind);
1760 
1761   void EmitStaticVarDecl(const VarDecl &D,
1762                          llvm::GlobalValue::LinkageTypes Linkage);
1763 
1764   /// EmitParmDecl - Emit a ParmVarDecl or an ImplicitParamDecl.
1765   void EmitParmDecl(const VarDecl &D, llvm::Value *Arg, unsigned ArgNo);
1766 
1767   /// protectFromPeepholes - Protect a value that we're intending to
1768   /// store to the side, but which will probably be used later, from
1769   /// aggressive peepholing optimizations that might delete it.
1770   ///
1771   /// Pass the result to unprotectFromPeepholes to declare that
1772   /// protection is no longer required.
1773   ///
1774   /// There's no particular reason why this shouldn't apply to
1775   /// l-values, it's just that no existing peepholes work on pointers.
1776   PeepholeProtection protectFromPeepholes(RValue rvalue);
1777   void unprotectFromPeepholes(PeepholeProtection protection);
1778 
1779   //===--------------------------------------------------------------------===//
1780   //                             Statement Emission
1781   //===--------------------------------------------------------------------===//
1782 
1783   /// EmitStopPoint - Emit a debug stoppoint if we are emitting debug info.
1784   void EmitStopPoint(const Stmt *S);
1785 
1786   /// EmitStmt - Emit the code for the statement \arg S. It is legal to call
1787   /// this function even if there is no current insertion point.
1788   ///
1789   /// This function may clear the current insertion point; callers should use
1790   /// EnsureInsertPoint if they wish to subsequently generate code without first
1791   /// calling EmitBlock, EmitBranch, or EmitStmt.
1792   void EmitStmt(const Stmt *S);
1793 
1794   /// EmitSimpleStmt - Try to emit a "simple" statement which does not
1795   /// necessarily require an insertion point or debug information; typically
1796   /// because the statement amounts to a jump or a container of other
1797   /// statements.
1798   ///
1799   /// \return True if the statement was handled.
1800   bool EmitSimpleStmt(const Stmt *S);
1801 
1802   llvm::Value *EmitCompoundStmt(const CompoundStmt &S, bool GetLast = false,
1803                                 AggValueSlot AVS = AggValueSlot::ignored());
1804   llvm::Value *EmitCompoundStmtWithoutScope(const CompoundStmt &S,
1805                                             bool GetLast = false,
1806                                             AggValueSlot AVS =
1807                                                 AggValueSlot::ignored());
1808 
1809   /// EmitLabel - Emit the block for the given label. It is legal to call this
1810   /// function even if there is no current insertion point.
1811   void EmitLabel(const LabelDecl *D); // helper for EmitLabelStmt.
1812 
1813   void EmitLabelStmt(const LabelStmt &S);
1814   void EmitAttributedStmt(const AttributedStmt &S);
1815   void EmitGotoStmt(const GotoStmt &S);
1816   void EmitIndirectGotoStmt(const IndirectGotoStmt &S);
1817   void EmitIfStmt(const IfStmt &S);
1818   void EmitWhileStmt(const WhileStmt &S);
1819   void EmitDoStmt(const DoStmt &S);
1820   void EmitForStmt(const ForStmt &S);
1821   void EmitReturnStmt(const ReturnStmt &S);
1822   void EmitDeclStmt(const DeclStmt &S);
1823   void EmitBreakStmt(const BreakStmt &S);
1824   void EmitContinueStmt(const ContinueStmt &S);
1825   void EmitSwitchStmt(const SwitchStmt &S);
1826   void EmitDefaultStmt(const DefaultStmt &S);
1827   void EmitCaseStmt(const CaseStmt &S);
1828   void EmitCaseStmtRange(const CaseStmt &S);
1829   void EmitAsmStmt(const AsmStmt &S);
1830 
1831   void EmitObjCForCollectionStmt(const ObjCForCollectionStmt &S);
1832   void EmitObjCAtTryStmt(const ObjCAtTryStmt &S);
1833   void EmitObjCAtThrowStmt(const ObjCAtThrowStmt &S);
1834   void EmitObjCAtSynchronizedStmt(const ObjCAtSynchronizedStmt &S);
1835   void EmitObjCAutoreleasePoolStmt(const ObjCAutoreleasePoolStmt &S);
1836 
1837   llvm::Constant *getUnwindResumeFn();
1838   llvm::Constant *getUnwindResumeOrRethrowFn();
1839   void EnterCXXTryStmt(const CXXTryStmt &S, bool IsFnTryBlock = false);
1840   void ExitCXXTryStmt(const CXXTryStmt &S, bool IsFnTryBlock = false);
1841 
1842   void EmitCXXTryStmt(const CXXTryStmt &S);
1843   void EmitSEHTryStmt(const SEHTryStmt &S);
1844   void EmitCXXForRangeStmt(const CXXForRangeStmt &S);
1845 
1846   llvm::Function *EmitCapturedStmt(const CapturedStmt &S, CapturedRegionKind K);
1847   llvm::Function *GenerateCapturedStmtFunction(const CapturedDecl *CD,
1848                                                const RecordDecl *RD,
1849                                                SourceLocation Loc);
1850 
1851   //===--------------------------------------------------------------------===//
1852   //                         LValue Expression Emission
1853   //===--------------------------------------------------------------------===//
1854 
1855   /// GetUndefRValue - Get an appropriate 'undef' rvalue for the given type.
1856   RValue GetUndefRValue(QualType Ty);
1857 
1858   /// EmitUnsupportedRValue - Emit a dummy r-value using the type of E
1859   /// and issue an ErrorUnsupported style diagnostic (using the
1860   /// provided Name).
1861   RValue EmitUnsupportedRValue(const Expr *E,
1862                                const char *Name);
1863 
1864   /// EmitUnsupportedLValue - Emit a dummy l-value using the type of E and issue
1865   /// an ErrorUnsupported style diagnostic (using the provided Name).
1866   LValue EmitUnsupportedLValue(const Expr *E,
1867                                const char *Name);
1868 
1869   /// EmitLValue - Emit code to compute a designator that specifies the location
1870   /// of the expression.
1871   ///
1872   /// This can return one of two things: a simple address or a bitfield
1873   /// reference.  In either case, the LLVM Value* in the LValue structure is
1874   /// guaranteed to be an LLVM pointer type.
1875   ///
1876   /// If this returns a bitfield reference, nothing about the pointee type of
1877   /// the LLVM value is known: For example, it may not be a pointer to an
1878   /// integer.
1879   ///
1880   /// If this returns a normal address, and if the lvalue's C type is fixed
1881   /// size, this method guarantees that the returned pointer type will point to
1882   /// an LLVM type of the same size of the lvalue's type.  If the lvalue has a
1883   /// variable length type, this is not possible.
1884   ///
1885   LValue EmitLValue(const Expr *E);
1886 
1887   /// \brief Same as EmitLValue but additionally we generate checking code to
1888   /// guard against undefined behavior.  This is only suitable when we know
1889   /// that the address will be used to access the object.
1890   LValue EmitCheckedLValue(const Expr *E, TypeCheckKind TCK);
1891 
1892   RValue convertTempToRValue(llvm::Value *addr, QualType type,
1893                              SourceLocation Loc);
1894 
1895   void EmitAtomicInit(Expr *E, LValue lvalue);
1896 
1897   RValue EmitAtomicLoad(LValue lvalue, SourceLocation loc,
1898                         AggValueSlot slot = AggValueSlot::ignored());
1899 
1900   void EmitAtomicStore(RValue rvalue, LValue lvalue, bool isInit);
1901 
1902   /// EmitToMemory - Change a scalar value from its value
1903   /// representation to its in-memory representation.
1904   llvm::Value *EmitToMemory(llvm::Value *Value, QualType Ty);
1905 
1906   /// EmitFromMemory - Change a scalar value from its memory
1907   /// representation to its value representation.
1908   llvm::Value *EmitFromMemory(llvm::Value *Value, QualType Ty);
1909 
1910   /// EmitLoadOfScalar - Load a scalar value from an address, taking
1911   /// care to appropriately convert from the memory representation to
1912   /// the LLVM value representation.
1913   llvm::Value *EmitLoadOfScalar(llvm::Value *Addr, bool Volatile,
1914                                 unsigned Alignment, QualType Ty,
1915                                 SourceLocation Loc,
1916                                 llvm::MDNode *TBAAInfo = 0,
1917                                 QualType TBAABaseTy = QualType(),
1918                                 uint64_t TBAAOffset = 0);
1919 
1920   /// EmitLoadOfScalar - Load a scalar value from an address, taking
1921   /// care to appropriately convert from the memory representation to
1922   /// the LLVM value representation.  The l-value must be a simple
1923   /// l-value.
1924   llvm::Value *EmitLoadOfScalar(LValue lvalue, SourceLocation Loc);
1925 
1926   /// EmitStoreOfScalar - Store a scalar value to an address, taking
1927   /// care to appropriately convert from the memory representation to
1928   /// the LLVM value representation.
1929   void EmitStoreOfScalar(llvm::Value *Value, llvm::Value *Addr,
1930                          bool Volatile, unsigned Alignment, QualType Ty,
1931                          llvm::MDNode *TBAAInfo = 0, bool isInit = false,
1932                          QualType TBAABaseTy = QualType(),
1933                          uint64_t TBAAOffset = 0);
1934 
1935   /// EmitStoreOfScalar - Store a scalar value to an address, taking
1936   /// care to appropriately convert from the memory representation to
1937   /// the LLVM value representation.  The l-value must be a simple
1938   /// l-value.  The isInit flag indicates whether this is an initialization.
1939   /// If so, atomic qualifiers are ignored and the store is always non-atomic.
1940   void EmitStoreOfScalar(llvm::Value *value, LValue lvalue, bool isInit=false);
1941 
1942   /// EmitLoadOfLValue - Given an expression that represents a value lvalue,
1943   /// this method emits the address of the lvalue, then loads the result as an
1944   /// rvalue, returning the rvalue.
1945   RValue EmitLoadOfLValue(LValue V, SourceLocation Loc);
1946   RValue EmitLoadOfExtVectorElementLValue(LValue V);
1947   RValue EmitLoadOfBitfieldLValue(LValue LV);
1948 
1949   /// EmitStoreThroughLValue - Store the specified rvalue into the specified
1950   /// lvalue, where both are guaranteed to the have the same type, and that type
1951   /// is 'Ty'.
1952   void EmitStoreThroughLValue(RValue Src, LValue Dst, bool isInit=false);
1953   void EmitStoreThroughExtVectorComponentLValue(RValue Src, LValue Dst);
1954 
1955   /// EmitStoreThroughBitfieldLValue - Store Src into Dst with same constraints
1956   /// as EmitStoreThroughLValue.
1957   ///
1958   /// \param Result [out] - If non-null, this will be set to a Value* for the
1959   /// bit-field contents after the store, appropriate for use as the result of
1960   /// an assignment to the bit-field.
1961   void EmitStoreThroughBitfieldLValue(RValue Src, LValue Dst,
1962                                       llvm::Value **Result=0);
1963 
1964   /// Emit an l-value for an assignment (simple or compound) of complex type.
1965   LValue EmitComplexAssignmentLValue(const BinaryOperator *E);
1966   LValue EmitComplexCompoundAssignmentLValue(const CompoundAssignOperator *E);
1967   LValue EmitScalarCompooundAssignWithComplex(const CompoundAssignOperator *E,
1968                                               llvm::Value *&Result);
1969 
1970   // Note: only available for agg return types
1971   LValue EmitBinaryOperatorLValue(const BinaryOperator *E);
1972   LValue EmitCompoundAssignmentLValue(const CompoundAssignOperator *E);
1973   // Note: only available for agg return types
1974   LValue EmitCallExprLValue(const CallExpr *E);
1975   // Note: only available for agg return types
1976   LValue EmitVAArgExprLValue(const VAArgExpr *E);
1977   LValue EmitDeclRefLValue(const DeclRefExpr *E);
1978   LValue EmitStringLiteralLValue(const StringLiteral *E);
1979   LValue EmitObjCEncodeExprLValue(const ObjCEncodeExpr *E);
1980   LValue EmitPredefinedLValue(const PredefinedExpr *E);
1981   LValue EmitUnaryOpLValue(const UnaryOperator *E);
1982   LValue EmitArraySubscriptExpr(const ArraySubscriptExpr *E,
1983                                 bool Accessed = false);
1984   LValue EmitExtVectorElementExpr(const ExtVectorElementExpr *E);
1985   LValue EmitMemberExpr(const MemberExpr *E);
1986   LValue EmitObjCIsaExpr(const ObjCIsaExpr *E);
1987   LValue EmitCompoundLiteralLValue(const CompoundLiteralExpr *E);
1988   LValue EmitInitListLValue(const InitListExpr *E);
1989   LValue EmitConditionalOperatorLValue(const AbstractConditionalOperator *E);
1990   LValue EmitCastLValue(const CastExpr *E);
1991   LValue EmitMaterializeTemporaryExpr(const MaterializeTemporaryExpr *E);
1992   LValue EmitOpaqueValueLValue(const OpaqueValueExpr *e);
1993 
1994   RValue EmitRValueForField(LValue LV, const FieldDecl *FD, SourceLocation Loc);
1995 
1996   class ConstantEmission {
1997     llvm::PointerIntPair<llvm::Constant*, 1, bool> ValueAndIsReference;
1998     ConstantEmission(llvm::Constant *C, bool isReference)
1999       : ValueAndIsReference(C, isReference) {}
2000   public:
2001     ConstantEmission() {}
2002     static ConstantEmission forReference(llvm::Constant *C) {
2003       return ConstantEmission(C, true);
2004     }
2005     static ConstantEmission forValue(llvm::Constant *C) {
2006       return ConstantEmission(C, false);
2007     }
2008 
2009     LLVM_EXPLICIT operator bool() const { return ValueAndIsReference.getOpaqueValue() != 0; }
2010 
2011     bool isReference() const { return ValueAndIsReference.getInt(); }
2012     LValue getReferenceLValue(CodeGenFunction &CGF, Expr *refExpr) const {
2013       assert(isReference());
2014       return CGF.MakeNaturalAlignAddrLValue(ValueAndIsReference.getPointer(),
2015                                             refExpr->getType());
2016     }
2017 
2018     llvm::Constant *getValue() const {
2019       assert(!isReference());
2020       return ValueAndIsReference.getPointer();
2021     }
2022   };
2023 
2024   ConstantEmission tryEmitAsConstant(DeclRefExpr *refExpr);
2025 
2026   RValue EmitPseudoObjectRValue(const PseudoObjectExpr *e,
2027                                 AggValueSlot slot = AggValueSlot::ignored());
2028   LValue EmitPseudoObjectLValue(const PseudoObjectExpr *e);
2029 
2030   llvm::Value *EmitIvarOffset(const ObjCInterfaceDecl *Interface,
2031                               const ObjCIvarDecl *Ivar);
2032   LValue EmitLValueForField(LValue Base, const FieldDecl* Field);
2033   LValue EmitLValueForLambdaField(const FieldDecl *Field);
2034 
2035   /// EmitLValueForFieldInitialization - Like EmitLValueForField, except that
2036   /// if the Field is a reference, this will return the address of the reference
2037   /// and not the address of the value stored in the reference.
2038   LValue EmitLValueForFieldInitialization(LValue Base,
2039                                           const FieldDecl* Field);
2040 
2041   LValue EmitLValueForIvar(QualType ObjectTy,
2042                            llvm::Value* Base, const ObjCIvarDecl *Ivar,
2043                            unsigned CVRQualifiers);
2044 
2045   LValue EmitCXXConstructLValue(const CXXConstructExpr *E);
2046   LValue EmitCXXBindTemporaryLValue(const CXXBindTemporaryExpr *E);
2047   LValue EmitLambdaLValue(const LambdaExpr *E);
2048   LValue EmitCXXTypeidLValue(const CXXTypeidExpr *E);
2049   LValue EmitCXXUuidofLValue(const CXXUuidofExpr *E);
2050 
2051   LValue EmitObjCMessageExprLValue(const ObjCMessageExpr *E);
2052   LValue EmitObjCIvarRefLValue(const ObjCIvarRefExpr *E);
2053   LValue EmitStmtExprLValue(const StmtExpr *E);
2054   LValue EmitPointerToDataMemberBinaryExpr(const BinaryOperator *E);
2055   LValue EmitObjCSelectorLValue(const ObjCSelectorExpr *E);
2056   void   EmitDeclRefExprDbgValue(const DeclRefExpr *E, llvm::Constant *Init);
2057 
2058   //===--------------------------------------------------------------------===//
2059   //                         Scalar Expression Emission
2060   //===--------------------------------------------------------------------===//
2061 
2062   /// EmitCall - Generate a call of the given function, expecting the given
2063   /// result type, and using the given argument list which specifies both the
2064   /// LLVM arguments and the types they were derived from.
2065   ///
2066   /// \param TargetDecl - If given, the decl of the function in a direct call;
2067   /// used to set attributes on the call (noreturn, etc.).
2068   RValue EmitCall(const CGFunctionInfo &FnInfo,
2069                   llvm::Value *Callee,
2070                   ReturnValueSlot ReturnValue,
2071                   const CallArgList &Args,
2072                   const Decl *TargetDecl = 0,
2073                   llvm::Instruction **callOrInvoke = 0);
2074 
2075   RValue EmitCall(QualType FnType, llvm::Value *Callee,
2076                   SourceLocation CallLoc,
2077                   ReturnValueSlot ReturnValue,
2078                   CallExpr::const_arg_iterator ArgBeg,
2079                   CallExpr::const_arg_iterator ArgEnd,
2080                   const Decl *TargetDecl = 0);
2081   RValue EmitCallExpr(const CallExpr *E,
2082                       ReturnValueSlot ReturnValue = ReturnValueSlot());
2083 
2084   llvm::CallInst *EmitRuntimeCall(llvm::Value *callee,
2085                                   const Twine &name = "");
2086   llvm::CallInst *EmitRuntimeCall(llvm::Value *callee,
2087                                   ArrayRef<llvm::Value*> args,
2088                                   const Twine &name = "");
2089   llvm::CallInst *EmitNounwindRuntimeCall(llvm::Value *callee,
2090                                           const Twine &name = "");
2091   llvm::CallInst *EmitNounwindRuntimeCall(llvm::Value *callee,
2092                                           ArrayRef<llvm::Value*> args,
2093                                           const Twine &name = "");
2094 
2095   llvm::CallSite EmitCallOrInvoke(llvm::Value *Callee,
2096                                   ArrayRef<llvm::Value *> Args,
2097                                   const Twine &Name = "");
2098   llvm::CallSite EmitCallOrInvoke(llvm::Value *Callee,
2099                                   const Twine &Name = "");
2100   llvm::CallSite EmitRuntimeCallOrInvoke(llvm::Value *callee,
2101                                          ArrayRef<llvm::Value*> args,
2102                                          const Twine &name = "");
2103   llvm::CallSite EmitRuntimeCallOrInvoke(llvm::Value *callee,
2104                                          const Twine &name = "");
2105   void EmitNoreturnRuntimeCallOrInvoke(llvm::Value *callee,
2106                                        ArrayRef<llvm::Value*> args);
2107 
2108   llvm::Value *BuildAppleKextVirtualCall(const CXXMethodDecl *MD,
2109                                          NestedNameSpecifier *Qual,
2110                                          llvm::Type *Ty);
2111 
2112   llvm::Value *BuildAppleKextVirtualDestructorCall(const CXXDestructorDecl *DD,
2113                                                    CXXDtorType Type,
2114                                                    const CXXRecordDecl *RD);
2115 
2116   RValue EmitCXXMemberCall(const CXXMethodDecl *MD,
2117                            SourceLocation CallLoc,
2118                            llvm::Value *Callee,
2119                            ReturnValueSlot ReturnValue,
2120                            llvm::Value *This,
2121                            llvm::Value *ImplicitParam,
2122                            QualType ImplicitParamTy,
2123                            CallExpr::const_arg_iterator ArgBeg,
2124                            CallExpr::const_arg_iterator ArgEnd);
2125   RValue EmitCXXMemberCallExpr(const CXXMemberCallExpr *E,
2126                                ReturnValueSlot ReturnValue);
2127   RValue EmitCXXMemberPointerCallExpr(const CXXMemberCallExpr *E,
2128                                       ReturnValueSlot ReturnValue);
2129 
2130   llvm::Value *EmitCXXOperatorMemberCallee(const CXXOperatorCallExpr *E,
2131                                            const CXXMethodDecl *MD,
2132                                            llvm::Value *This);
2133   RValue EmitCXXOperatorMemberCallExpr(const CXXOperatorCallExpr *E,
2134                                        const CXXMethodDecl *MD,
2135                                        ReturnValueSlot ReturnValue);
2136 
2137   RValue EmitCUDAKernelCallExpr(const CUDAKernelCallExpr *E,
2138                                 ReturnValueSlot ReturnValue);
2139 
2140 
2141   RValue EmitBuiltinExpr(const FunctionDecl *FD,
2142                          unsigned BuiltinID, const CallExpr *E);
2143 
2144   RValue EmitBlockCallExpr(const CallExpr *E, ReturnValueSlot ReturnValue);
2145 
2146   /// EmitTargetBuiltinExpr - Emit the given builtin call. Returns 0 if the call
2147   /// is unhandled by the current target.
2148   llvm::Value *EmitTargetBuiltinExpr(unsigned BuiltinID, const CallExpr *E);
2149 
2150   llvm::Value *EmitAArch64BuiltinExpr(unsigned BuiltinID, const CallExpr *E);
2151   llvm::Value *EmitARMBuiltinExpr(unsigned BuiltinID, const CallExpr *E);
2152   llvm::Value *EmitNeonCall(llvm::Function *F,
2153                             SmallVectorImpl<llvm::Value*> &O,
2154                             const char *name,
2155                             unsigned shift = 0, bool rightshift = false);
2156   llvm::Value *EmitNeonSplat(llvm::Value *V, llvm::Constant *Idx);
2157   llvm::Value *EmitNeonShiftVector(llvm::Value *V, llvm::Type *Ty,
2158                                    bool negateForRightShift);
2159   llvm::Value *EmitNeonRShiftImm(llvm::Value *Vec, llvm::Value *Amt,
2160                                  llvm::Type *Ty, bool usgn, const char *name);
2161 
2162   llvm::Value *BuildVector(ArrayRef<llvm::Value*> Ops);
2163   llvm::Value *EmitX86BuiltinExpr(unsigned BuiltinID, const CallExpr *E);
2164   llvm::Value *EmitPPCBuiltinExpr(unsigned BuiltinID, const CallExpr *E);
2165 
2166   llvm::Value *EmitObjCProtocolExpr(const ObjCProtocolExpr *E);
2167   llvm::Value *EmitObjCStringLiteral(const ObjCStringLiteral *E);
2168   llvm::Value *EmitObjCBoxedExpr(const ObjCBoxedExpr *E);
2169   llvm::Value *EmitObjCArrayLiteral(const ObjCArrayLiteral *E);
2170   llvm::Value *EmitObjCDictionaryLiteral(const ObjCDictionaryLiteral *E);
2171   llvm::Value *EmitObjCCollectionLiteral(const Expr *E,
2172                                 const ObjCMethodDecl *MethodWithObjects);
2173   llvm::Value *EmitObjCSelectorExpr(const ObjCSelectorExpr *E);
2174   RValue EmitObjCMessageExpr(const ObjCMessageExpr *E,
2175                              ReturnValueSlot Return = ReturnValueSlot());
2176 
2177   /// Retrieves the default cleanup kind for an ARC cleanup.
2178   /// Except under -fobjc-arc-eh, ARC cleanups are normal-only.
2179   CleanupKind getARCCleanupKind() {
2180     return CGM.getCodeGenOpts().ObjCAutoRefCountExceptions
2181              ? NormalAndEHCleanup : NormalCleanup;
2182   }
2183 
2184   // ARC primitives.
2185   void EmitARCInitWeak(llvm::Value *value, llvm::Value *addr);
2186   void EmitARCDestroyWeak(llvm::Value *addr);
2187   llvm::Value *EmitARCLoadWeak(llvm::Value *addr);
2188   llvm::Value *EmitARCLoadWeakRetained(llvm::Value *addr);
2189   llvm::Value *EmitARCStoreWeak(llvm::Value *value, llvm::Value *addr,
2190                                 bool ignored);
2191   void EmitARCCopyWeak(llvm::Value *dst, llvm::Value *src);
2192   void EmitARCMoveWeak(llvm::Value *dst, llvm::Value *src);
2193   llvm::Value *EmitARCRetainAutorelease(QualType type, llvm::Value *value);
2194   llvm::Value *EmitARCRetainAutoreleaseNonBlock(llvm::Value *value);
2195   llvm::Value *EmitARCStoreStrong(LValue lvalue, llvm::Value *value,
2196                                   bool resultIgnored);
2197   llvm::Value *EmitARCStoreStrongCall(llvm::Value *addr, llvm::Value *value,
2198                                       bool resultIgnored);
2199   llvm::Value *EmitARCRetain(QualType type, llvm::Value *value);
2200   llvm::Value *EmitARCRetainNonBlock(llvm::Value *value);
2201   llvm::Value *EmitARCRetainBlock(llvm::Value *value, bool mandatory);
2202   void EmitARCDestroyStrong(llvm::Value *addr, ARCPreciseLifetime_t precise);
2203   void EmitARCRelease(llvm::Value *value, ARCPreciseLifetime_t precise);
2204   llvm::Value *EmitARCAutorelease(llvm::Value *value);
2205   llvm::Value *EmitARCAutoreleaseReturnValue(llvm::Value *value);
2206   llvm::Value *EmitARCRetainAutoreleaseReturnValue(llvm::Value *value);
2207   llvm::Value *EmitARCRetainAutoreleasedReturnValue(llvm::Value *value);
2208 
2209   std::pair<LValue,llvm::Value*>
2210   EmitARCStoreAutoreleasing(const BinaryOperator *e);
2211   std::pair<LValue,llvm::Value*>
2212   EmitARCStoreStrong(const BinaryOperator *e, bool ignored);
2213 
2214   llvm::Value *EmitObjCThrowOperand(const Expr *expr);
2215 
2216   llvm::Value *EmitObjCProduceObject(QualType T, llvm::Value *Ptr);
2217   llvm::Value *EmitObjCConsumeObject(QualType T, llvm::Value *Ptr);
2218   llvm::Value *EmitObjCExtendObjectLifetime(QualType T, llvm::Value *Ptr);
2219 
2220   llvm::Value *EmitARCExtendBlockObject(const Expr *expr);
2221   llvm::Value *EmitARCRetainScalarExpr(const Expr *expr);
2222   llvm::Value *EmitARCRetainAutoreleaseScalarExpr(const Expr *expr);
2223 
2224   void EmitARCIntrinsicUse(llvm::ArrayRef<llvm::Value*> values);
2225 
2226   static Destroyer destroyARCStrongImprecise;
2227   static Destroyer destroyARCStrongPrecise;
2228   static Destroyer destroyARCWeak;
2229 
2230   void EmitObjCAutoreleasePoolPop(llvm::Value *Ptr);
2231   llvm::Value *EmitObjCAutoreleasePoolPush();
2232   llvm::Value *EmitObjCMRRAutoreleasePoolPush();
2233   void EmitObjCAutoreleasePoolCleanup(llvm::Value *Ptr);
2234   void EmitObjCMRRAutoreleasePoolPop(llvm::Value *Ptr);
2235 
2236   /// \brief Emits a reference binding to the passed in expression.
2237   RValue EmitReferenceBindingToExpr(const Expr *E);
2238 
2239   //===--------------------------------------------------------------------===//
2240   //                           Expression Emission
2241   //===--------------------------------------------------------------------===//
2242 
2243   // Expressions are broken into three classes: scalar, complex, aggregate.
2244 
2245   /// EmitScalarExpr - Emit the computation of the specified expression of LLVM
2246   /// scalar type, returning the result.
2247   llvm::Value *EmitScalarExpr(const Expr *E , bool IgnoreResultAssign = false);
2248 
2249   /// EmitScalarConversion - Emit a conversion from the specified type to the
2250   /// specified destination type, both of which are LLVM scalar types.
2251   llvm::Value *EmitScalarConversion(llvm::Value *Src, QualType SrcTy,
2252                                     QualType DstTy);
2253 
2254   /// EmitComplexToScalarConversion - Emit a conversion from the specified
2255   /// complex type to the specified destination type, where the destination type
2256   /// is an LLVM scalar type.
2257   llvm::Value *EmitComplexToScalarConversion(ComplexPairTy Src, QualType SrcTy,
2258                                              QualType DstTy);
2259 
2260 
2261   /// EmitAggExpr - Emit the computation of the specified expression
2262   /// of aggregate type.  The result is computed into the given slot,
2263   /// which may be null to indicate that the value is not needed.
2264   void EmitAggExpr(const Expr *E, AggValueSlot AS);
2265 
2266   /// EmitAggExprToLValue - Emit the computation of the specified expression of
2267   /// aggregate type into a temporary LValue.
2268   LValue EmitAggExprToLValue(const Expr *E);
2269 
2270   /// EmitGCMemmoveCollectable - Emit special API for structs with object
2271   /// pointers.
2272   void EmitGCMemmoveCollectable(llvm::Value *DestPtr, llvm::Value *SrcPtr,
2273                                 QualType Ty);
2274 
2275   /// EmitExtendGCLifetime - Given a pointer to an Objective-C object,
2276   /// make sure it survives garbage collection until this point.
2277   void EmitExtendGCLifetime(llvm::Value *object);
2278 
2279   /// EmitComplexExpr - Emit the computation of the specified expression of
2280   /// complex type, returning the result.
2281   ComplexPairTy EmitComplexExpr(const Expr *E,
2282                                 bool IgnoreReal = false,
2283                                 bool IgnoreImag = false);
2284 
2285   /// EmitComplexExprIntoLValue - Emit the given expression of complex
2286   /// type and place its result into the specified l-value.
2287   void EmitComplexExprIntoLValue(const Expr *E, LValue dest, bool isInit);
2288 
2289   /// EmitStoreOfComplex - Store a complex number into the specified l-value.
2290   void EmitStoreOfComplex(ComplexPairTy V, LValue dest, bool isInit);
2291 
2292   /// EmitLoadOfComplex - Load a complex number from the specified l-value.
2293   ComplexPairTy EmitLoadOfComplex(LValue src, SourceLocation loc);
2294 
2295   /// CreateStaticVarDecl - Create a zero-initialized LLVM global for
2296   /// a static local variable.
2297   llvm::GlobalVariable *CreateStaticVarDecl(const VarDecl &D,
2298                                             const char *Separator,
2299                                        llvm::GlobalValue::LinkageTypes Linkage);
2300 
2301   /// AddInitializerToStaticVarDecl - Add the initializer for 'D' to the
2302   /// global variable that has already been created for it.  If the initializer
2303   /// has a different type than GV does, this may free GV and return a different
2304   /// one.  Otherwise it just returns GV.
2305   llvm::GlobalVariable *
2306   AddInitializerToStaticVarDecl(const VarDecl &D,
2307                                 llvm::GlobalVariable *GV);
2308 
2309 
2310   /// EmitCXXGlobalVarDeclInit - Create the initializer for a C++
2311   /// variable with global storage.
2312   void EmitCXXGlobalVarDeclInit(const VarDecl &D, llvm::Constant *DeclPtr,
2313                                 bool PerformInit);
2314 
2315   /// Call atexit() with a function that passes the given argument to
2316   /// the given function.
2317   void registerGlobalDtorWithAtExit(const VarDecl &D, llvm::Constant *fn,
2318                                     llvm::Constant *addr);
2319 
2320   /// Emit code in this function to perform a guarded variable
2321   /// initialization.  Guarded initializations are used when it's not
2322   /// possible to prove that an initialization will be done exactly
2323   /// once, e.g. with a static local variable or a static data member
2324   /// of a class template.
2325   void EmitCXXGuardedInit(const VarDecl &D, llvm::GlobalVariable *DeclPtr,
2326                           bool PerformInit);
2327 
2328   /// GenerateCXXGlobalInitFunc - Generates code for initializing global
2329   /// variables.
2330   void GenerateCXXGlobalInitFunc(llvm::Function *Fn,
2331                                  ArrayRef<llvm::Constant *> Decls,
2332                                  llvm::GlobalVariable *Guard = 0);
2333 
2334   /// GenerateCXXGlobalDtorsFunc - Generates code for destroying global
2335   /// variables.
2336   void GenerateCXXGlobalDtorsFunc(llvm::Function *Fn,
2337                                   const std::vector<std::pair<llvm::WeakVH,
2338                                   llvm::Constant*> > &DtorsAndObjects);
2339 
2340   void GenerateCXXGlobalVarDeclInitFunc(llvm::Function *Fn,
2341                                         const VarDecl *D,
2342                                         llvm::GlobalVariable *Addr,
2343                                         bool PerformInit);
2344 
2345   void EmitCXXConstructExpr(const CXXConstructExpr *E, AggValueSlot Dest);
2346 
2347   void EmitSynthesizedCXXCopyCtor(llvm::Value *Dest, llvm::Value *Src,
2348                                   const Expr *Exp);
2349 
2350   void enterFullExpression(const ExprWithCleanups *E) {
2351     if (E->getNumObjects() == 0) return;
2352     enterNonTrivialFullExpression(E);
2353   }
2354   void enterNonTrivialFullExpression(const ExprWithCleanups *E);
2355 
2356   void EmitCXXThrowExpr(const CXXThrowExpr *E, bool KeepInsertionPoint = true);
2357 
2358   void EmitLambdaExpr(const LambdaExpr *E, AggValueSlot Dest);
2359 
2360   RValue EmitAtomicExpr(AtomicExpr *E, llvm::Value *Dest = 0);
2361 
2362   //===--------------------------------------------------------------------===//
2363   //                         Annotations Emission
2364   //===--------------------------------------------------------------------===//
2365 
2366   /// Emit an annotation call (intrinsic or builtin).
2367   llvm::Value *EmitAnnotationCall(llvm::Value *AnnotationFn,
2368                                   llvm::Value *AnnotatedVal,
2369                                   StringRef AnnotationStr,
2370                                   SourceLocation Location);
2371 
2372   /// Emit local annotations for the local variable V, declared by D.
2373   void EmitVarAnnotations(const VarDecl *D, llvm::Value *V);
2374 
2375   /// Emit field annotations for the given field & value. Returns the
2376   /// annotation result.
2377   llvm::Value *EmitFieldAnnotations(const FieldDecl *D, llvm::Value *V);
2378 
2379   //===--------------------------------------------------------------------===//
2380   //                             Internal Helpers
2381   //===--------------------------------------------------------------------===//
2382 
2383   /// ContainsLabel - Return true if the statement contains a label in it.  If
2384   /// this statement is not executed normally, it not containing a label means
2385   /// that we can just remove the code.
2386   static bool ContainsLabel(const Stmt *S, bool IgnoreCaseStmts = false);
2387 
2388   /// containsBreak - Return true if the statement contains a break out of it.
2389   /// If the statement (recursively) contains a switch or loop with a break
2390   /// inside of it, this is fine.
2391   static bool containsBreak(const Stmt *S);
2392 
2393   /// ConstantFoldsToSimpleInteger - If the specified expression does not fold
2394   /// to a constant, or if it does but contains a label, return false.  If it
2395   /// constant folds return true and set the boolean result in Result.
2396   bool ConstantFoldsToSimpleInteger(const Expr *Cond, bool &Result);
2397 
2398   /// ConstantFoldsToSimpleInteger - If the specified expression does not fold
2399   /// to a constant, or if it does but contains a label, return false.  If it
2400   /// constant folds return true and set the folded value.
2401   bool ConstantFoldsToSimpleInteger(const Expr *Cond, llvm::APSInt &Result);
2402 
2403   /// EmitBranchOnBoolExpr - Emit a branch on a boolean condition (e.g. for an
2404   /// if statement) to the specified blocks.  Based on the condition, this might
2405   /// try to simplify the codegen of the conditional based on the branch.
2406   void EmitBranchOnBoolExpr(const Expr *Cond, llvm::BasicBlock *TrueBlock,
2407                             llvm::BasicBlock *FalseBlock);
2408 
2409   /// \brief Emit a description of a type in a format suitable for passing to
2410   /// a runtime sanitizer handler.
2411   llvm::Constant *EmitCheckTypeDescriptor(QualType T);
2412 
2413   /// \brief Convert a value into a format suitable for passing to a runtime
2414   /// sanitizer handler.
2415   llvm::Value *EmitCheckValue(llvm::Value *V);
2416 
2417   /// \brief Emit a description of a source location in a format suitable for
2418   /// passing to a runtime sanitizer handler.
2419   llvm::Constant *EmitCheckSourceLocation(SourceLocation Loc);
2420 
2421   /// \brief Specify under what conditions this check can be recovered
2422   enum CheckRecoverableKind {
2423     /// Always terminate program execution if this check fails
2424     CRK_Unrecoverable,
2425     /// Check supports recovering, allows user to specify which
2426     CRK_Recoverable,
2427     /// Runtime conditionally aborts, always need to support recovery.
2428     CRK_AlwaysRecoverable
2429   };
2430 
2431   /// \brief Create a basic block that will call a handler function in a
2432   /// sanitizer runtime with the provided arguments, and create a conditional
2433   /// branch to it.
2434   void EmitCheck(llvm::Value *Checked, StringRef CheckName,
2435                  ArrayRef<llvm::Constant *> StaticArgs,
2436                  ArrayRef<llvm::Value *> DynamicArgs,
2437                  CheckRecoverableKind Recoverable);
2438 
2439   /// \brief Create a basic block that will call the trap intrinsic, and emit a
2440   /// conditional branch to it, for the -ftrapv checks.
2441   void EmitTrapCheck(llvm::Value *Checked);
2442 
2443   /// EmitCallArg - Emit a single call argument.
2444   void EmitCallArg(CallArgList &args, const Expr *E, QualType ArgType);
2445 
2446   /// EmitDelegateCallArg - We are performing a delegate call; that
2447   /// is, the current function is delegating to another one.  Produce
2448   /// a r-value suitable for passing the given parameter.
2449   void EmitDelegateCallArg(CallArgList &args, const VarDecl *param,
2450                            SourceLocation loc);
2451 
2452   /// SetFPAccuracy - Set the minimum required accuracy of the given floating
2453   /// point operation, expressed as the maximum relative error in ulp.
2454   void SetFPAccuracy(llvm::Value *Val, float Accuracy);
2455 
2456 private:
2457   llvm::MDNode *getRangeForLoadFromType(QualType Ty);
2458   void EmitReturnOfRValue(RValue RV, QualType Ty);
2459 
2460   /// ExpandTypeFromArgs - Reconstruct a structure of type \arg Ty
2461   /// from function arguments into \arg Dst. See ABIArgInfo::Expand.
2462   ///
2463   /// \param AI - The first function argument of the expansion.
2464   /// \return The argument following the last expanded function
2465   /// argument.
2466   llvm::Function::arg_iterator
2467   ExpandTypeFromArgs(QualType Ty, LValue Dst,
2468                      llvm::Function::arg_iterator AI);
2469 
2470   /// ExpandTypeToArgs - Expand an RValue \arg Src, with the LLVM type for \arg
2471   /// Ty, into individual arguments on the provided vector \arg Args. See
2472   /// ABIArgInfo::Expand.
2473   void ExpandTypeToArgs(QualType Ty, RValue Src,
2474                         SmallVectorImpl<llvm::Value *> &Args,
2475                         llvm::FunctionType *IRFuncTy);
2476 
2477   llvm::Value* EmitAsmInput(const TargetInfo::ConstraintInfo &Info,
2478                             const Expr *InputExpr, std::string &ConstraintStr);
2479 
2480   llvm::Value* EmitAsmInputLValue(const TargetInfo::ConstraintInfo &Info,
2481                                   LValue InputValue, QualType InputType,
2482                                   std::string &ConstraintStr,
2483                                   SourceLocation Loc);
2484 
2485   /// EmitCallArgs - Emit call arguments for a function.
2486   /// The CallArgTypeInfo parameter is used for iterating over the known
2487   /// argument types of the function being called.
2488   template<typename T>
2489   void EmitCallArgs(CallArgList& Args, const T* CallArgTypeInfo,
2490                     CallExpr::const_arg_iterator ArgBeg,
2491                     CallExpr::const_arg_iterator ArgEnd,
2492                     bool ForceColumnInfo = false) {
2493     CGDebugInfo *DI = getDebugInfo();
2494     SourceLocation CallLoc;
2495     if (DI) CallLoc = DI->getLocation();
2496 
2497     CallExpr::const_arg_iterator Arg = ArgBeg;
2498 
2499     // First, use the argument types that the type info knows about
2500     if (CallArgTypeInfo) {
2501       for (typename T::arg_type_iterator I = CallArgTypeInfo->arg_type_begin(),
2502            E = CallArgTypeInfo->arg_type_end(); I != E; ++I, ++Arg) {
2503         assert(Arg != ArgEnd && "Running over edge of argument list!");
2504         QualType ArgType = *I;
2505 #ifndef NDEBUG
2506         QualType ActualArgType = Arg->getType();
2507         if (ArgType->isPointerType() && ActualArgType->isPointerType()) {
2508           QualType ActualBaseType =
2509             ActualArgType->getAs<PointerType>()->getPointeeType();
2510           QualType ArgBaseType =
2511             ArgType->getAs<PointerType>()->getPointeeType();
2512           if (ArgBaseType->isVariableArrayType()) {
2513             if (const VariableArrayType *VAT =
2514                 getContext().getAsVariableArrayType(ActualBaseType)) {
2515               if (!VAT->getSizeExpr())
2516                 ActualArgType = ArgType;
2517             }
2518           }
2519         }
2520         assert(getContext().getCanonicalType(ArgType.getNonReferenceType()).
2521                getTypePtr() ==
2522                getContext().getCanonicalType(ActualArgType).getTypePtr() &&
2523                "type mismatch in call argument!");
2524 #endif
2525         EmitCallArg(Args, *Arg, ArgType);
2526 
2527         // Each argument expression could modify the debug
2528         // location. Restore it.
2529         if (DI) DI->EmitLocation(Builder, CallLoc, ForceColumnInfo);
2530       }
2531 
2532       // Either we've emitted all the call args, or we have a call to a
2533       // variadic function.
2534       assert((Arg == ArgEnd || CallArgTypeInfo->isVariadic()) &&
2535              "Extra arguments in non-variadic function!");
2536 
2537     }
2538 
2539     // If we still have any arguments, emit them using the type of the argument.
2540     for (; Arg != ArgEnd; ++Arg) {
2541       EmitCallArg(Args, *Arg, Arg->getType());
2542 
2543       // Restore the debug location.
2544       if (DI) DI->EmitLocation(Builder, CallLoc, ForceColumnInfo);
2545     }
2546   }
2547 
2548   const TargetCodeGenInfo &getTargetHooks() const {
2549     return CGM.getTargetCodeGenInfo();
2550   }
2551 
2552   void EmitDeclMetadata();
2553 
2554   CodeGenModule::ByrefHelpers *
2555   buildByrefHelpers(llvm::StructType &byrefType,
2556                     const AutoVarEmission &emission);
2557 
2558   void AddObjCARCExceptionMetadata(llvm::Instruction *Inst);
2559 
2560   /// GetPointeeAlignment - Given an expression with a pointer type, emit the
2561   /// value and compute our best estimate of the alignment of the pointee.
2562   std::pair<llvm::Value*, unsigned> EmitPointerWithAlignment(const Expr *Addr);
2563 };
2564 
2565 /// Helper class with most of the code for saving a value for a
2566 /// conditional expression cleanup.
2567 struct DominatingLLVMValue {
2568   typedef llvm::PointerIntPair<llvm::Value*, 1, bool> saved_type;
2569 
2570   /// Answer whether the given value needs extra work to be saved.
2571   static bool needsSaving(llvm::Value *value) {
2572     // If it's not an instruction, we don't need to save.
2573     if (!isa<llvm::Instruction>(value)) return false;
2574 
2575     // If it's an instruction in the entry block, we don't need to save.
2576     llvm::BasicBlock *block = cast<llvm::Instruction>(value)->getParent();
2577     return (block != &block->getParent()->getEntryBlock());
2578   }
2579 
2580   /// Try to save the given value.
2581   static saved_type save(CodeGenFunction &CGF, llvm::Value *value) {
2582     if (!needsSaving(value)) return saved_type(value, false);
2583 
2584     // Otherwise we need an alloca.
2585     llvm::Value *alloca =
2586       CGF.CreateTempAlloca(value->getType(), "cond-cleanup.save");
2587     CGF.Builder.CreateStore(value, alloca);
2588 
2589     return saved_type(alloca, true);
2590   }
2591 
2592   static llvm::Value *restore(CodeGenFunction &CGF, saved_type value) {
2593     if (!value.getInt()) return value.getPointer();
2594     return CGF.Builder.CreateLoad(value.getPointer());
2595   }
2596 };
2597 
2598 /// A partial specialization of DominatingValue for llvm::Values that
2599 /// might be llvm::Instructions.
2600 template <class T> struct DominatingPointer<T,true> : DominatingLLVMValue {
2601   typedef T *type;
2602   static type restore(CodeGenFunction &CGF, saved_type value) {
2603     return static_cast<T*>(DominatingLLVMValue::restore(CGF, value));
2604   }
2605 };
2606 
2607 /// A specialization of DominatingValue for RValue.
2608 template <> struct DominatingValue<RValue> {
2609   typedef RValue type;
2610   class saved_type {
2611     enum Kind { ScalarLiteral, ScalarAddress, AggregateLiteral,
2612                 AggregateAddress, ComplexAddress };
2613 
2614     llvm::Value *Value;
2615     Kind K;
2616     saved_type(llvm::Value *v, Kind k) : Value(v), K(k) {}
2617 
2618   public:
2619     static bool needsSaving(RValue value);
2620     static saved_type save(CodeGenFunction &CGF, RValue value);
2621     RValue restore(CodeGenFunction &CGF);
2622 
2623     // implementations in CGExprCXX.cpp
2624   };
2625 
2626   static bool needsSaving(type value) {
2627     return saved_type::needsSaving(value);
2628   }
2629   static saved_type save(CodeGenFunction &CGF, type value) {
2630     return saved_type::save(CGF, value);
2631   }
2632   static type restore(CodeGenFunction &CGF, saved_type value) {
2633     return value.restore(CGF);
2634   }
2635 };
2636 
2637 }  // end namespace CodeGen
2638 }  // end namespace clang
2639 
2640 #endif
2641