1 //===-- CodeGenFunction.h - Per-Function state for LLVM CodeGen -*- C++ -*-===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This is the internal per-function state used for llvm translation. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #ifndef LLVM_CLANG_LIB_CODEGEN_CODEGENFUNCTION_H 15 #define LLVM_CLANG_LIB_CODEGEN_CODEGENFUNCTION_H 16 17 #include "CGBuilder.h" 18 #include "CGDebugInfo.h" 19 #include "CGLoopInfo.h" 20 #include "CGValue.h" 21 #include "CodeGenModule.h" 22 #include "CodeGenPGO.h" 23 #include "EHScopeStack.h" 24 #include "VarBypassDetector.h" 25 #include "clang/AST/CharUnits.h" 26 #include "clang/AST/ExprCXX.h" 27 #include "clang/AST/ExprObjC.h" 28 #include "clang/AST/ExprOpenMP.h" 29 #include "clang/AST/Type.h" 30 #include "clang/Basic/ABI.h" 31 #include "clang/Basic/CapturedStmt.h" 32 #include "clang/Basic/OpenMPKinds.h" 33 #include "clang/Basic/TargetInfo.h" 34 #include "clang/Frontend/CodeGenOptions.h" 35 #include "llvm/ADT/ArrayRef.h" 36 #include "llvm/ADT/DenseMap.h" 37 #include "llvm/ADT/SmallVector.h" 38 #include "llvm/IR/ValueHandle.h" 39 #include "llvm/Support/Debug.h" 40 #include "llvm/Transforms/Utils/SanitizerStats.h" 41 42 namespace llvm { 43 class BasicBlock; 44 class LLVMContext; 45 class MDNode; 46 class Module; 47 class SwitchInst; 48 class Twine; 49 class Value; 50 class CallSite; 51 } 52 53 namespace clang { 54 class ASTContext; 55 class BlockDecl; 56 class CXXDestructorDecl; 57 class CXXForRangeStmt; 58 class CXXTryStmt; 59 class Decl; 60 class LabelDecl; 61 class EnumConstantDecl; 62 class FunctionDecl; 63 class FunctionProtoType; 64 class LabelStmt; 65 class ObjCContainerDecl; 66 class ObjCInterfaceDecl; 67 class ObjCIvarDecl; 68 class ObjCMethodDecl; 69 class ObjCImplementationDecl; 70 class ObjCPropertyImplDecl; 71 class TargetInfo; 72 class VarDecl; 73 class ObjCForCollectionStmt; 74 class ObjCAtTryStmt; 75 class ObjCAtThrowStmt; 76 class ObjCAtSynchronizedStmt; 77 class ObjCAutoreleasePoolStmt; 78 79 namespace analyze_os_log { 80 class OSLogBufferLayout; 81 } 82 83 namespace CodeGen { 84 class CodeGenTypes; 85 class CGCallee; 86 class CGFunctionInfo; 87 class CGRecordLayout; 88 class CGBlockInfo; 89 class CGCXXABI; 90 class BlockByrefHelpers; 91 class BlockByrefInfo; 92 class BlockFlags; 93 class BlockFieldFlags; 94 class RegionCodeGenTy; 95 class TargetCodeGenInfo; 96 struct OMPTaskDataTy; 97 struct CGCoroData; 98 99 /// The kind of evaluation to perform on values of a particular 100 /// type. Basically, is the code in CGExprScalar, CGExprComplex, or 101 /// CGExprAgg? 102 /// 103 /// TODO: should vectors maybe be split out into their own thing? 104 enum TypeEvaluationKind { 105 TEK_Scalar, 106 TEK_Complex, 107 TEK_Aggregate 108 }; 109 110 #define LIST_SANITIZER_CHECKS \ 111 SANITIZER_CHECK(AddOverflow, add_overflow, 0) \ 112 SANITIZER_CHECK(BuiltinUnreachable, builtin_unreachable, 0) \ 113 SANITIZER_CHECK(CFICheckFail, cfi_check_fail, 0) \ 114 SANITIZER_CHECK(DivremOverflow, divrem_overflow, 0) \ 115 SANITIZER_CHECK(DynamicTypeCacheMiss, dynamic_type_cache_miss, 0) \ 116 SANITIZER_CHECK(FloatCastOverflow, float_cast_overflow, 0) \ 117 SANITIZER_CHECK(FunctionTypeMismatch, function_type_mismatch, 0) \ 118 SANITIZER_CHECK(InvalidBuiltin, invalid_builtin, 0) \ 119 SANITIZER_CHECK(LoadInvalidValue, load_invalid_value, 0) \ 120 SANITIZER_CHECK(MissingReturn, missing_return, 0) \ 121 SANITIZER_CHECK(MulOverflow, mul_overflow, 0) \ 122 SANITIZER_CHECK(NegateOverflow, negate_overflow, 0) \ 123 SANITIZER_CHECK(NullabilityArg, nullability_arg, 0) \ 124 SANITIZER_CHECK(NullabilityReturn, nullability_return, 1) \ 125 SANITIZER_CHECK(NonnullArg, nonnull_arg, 0) \ 126 SANITIZER_CHECK(NonnullReturn, nonnull_return, 1) \ 127 SANITIZER_CHECK(OutOfBounds, out_of_bounds, 0) \ 128 SANITIZER_CHECK(PointerOverflow, pointer_overflow, 0) \ 129 SANITIZER_CHECK(ShiftOutOfBounds, shift_out_of_bounds, 0) \ 130 SANITIZER_CHECK(SubOverflow, sub_overflow, 0) \ 131 SANITIZER_CHECK(TypeMismatch, type_mismatch, 1) \ 132 SANITIZER_CHECK(VLABoundNotPositive, vla_bound_not_positive, 0) 133 134 enum SanitizerHandler { 135 #define SANITIZER_CHECK(Enum, Name, Version) Enum, 136 LIST_SANITIZER_CHECKS 137 #undef SANITIZER_CHECK 138 }; 139 140 /// CodeGenFunction - This class organizes the per-function state that is used 141 /// while generating LLVM code. 142 class CodeGenFunction : public CodeGenTypeCache { 143 CodeGenFunction(const CodeGenFunction &) = delete; 144 void operator=(const CodeGenFunction &) = delete; 145 146 friend class CGCXXABI; 147 public: 148 /// A jump destination is an abstract label, branching to which may 149 /// require a jump out through normal cleanups. 150 struct JumpDest { 151 JumpDest() : Block(nullptr), ScopeDepth(), Index(0) {} 152 JumpDest(llvm::BasicBlock *Block, 153 EHScopeStack::stable_iterator Depth, 154 unsigned Index) 155 : Block(Block), ScopeDepth(Depth), Index(Index) {} 156 157 bool isValid() const { return Block != nullptr; } 158 llvm::BasicBlock *getBlock() const { return Block; } 159 EHScopeStack::stable_iterator getScopeDepth() const { return ScopeDepth; } 160 unsigned getDestIndex() const { return Index; } 161 162 // This should be used cautiously. 163 void setScopeDepth(EHScopeStack::stable_iterator depth) { 164 ScopeDepth = depth; 165 } 166 167 private: 168 llvm::BasicBlock *Block; 169 EHScopeStack::stable_iterator ScopeDepth; 170 unsigned Index; 171 }; 172 173 CodeGenModule &CGM; // Per-module state. 174 const TargetInfo &Target; 175 176 typedef std::pair<llvm::Value *, llvm::Value *> ComplexPairTy; 177 LoopInfoStack LoopStack; 178 CGBuilderTy Builder; 179 180 // Stores variables for which we can't generate correct lifetime markers 181 // because of jumps. 182 VarBypassDetector Bypasses; 183 184 // CodeGen lambda for loops and support for ordered clause 185 typedef llvm::function_ref<void(CodeGenFunction &, const OMPLoopDirective &, 186 JumpDest)> 187 CodeGenLoopTy; 188 typedef llvm::function_ref<void(CodeGenFunction &, SourceLocation, 189 const unsigned, const bool)> 190 CodeGenOrderedTy; 191 192 // Codegen lambda for loop bounds in worksharing loop constructs 193 typedef llvm::function_ref<std::pair<LValue, LValue>( 194 CodeGenFunction &, const OMPExecutableDirective &S)> 195 CodeGenLoopBoundsTy; 196 197 // Codegen lambda for loop bounds in dispatch-based loop implementation 198 typedef llvm::function_ref<std::pair<llvm::Value *, llvm::Value *>( 199 CodeGenFunction &, const OMPExecutableDirective &S, Address LB, 200 Address UB)> 201 CodeGenDispatchBoundsTy; 202 203 /// \brief CGBuilder insert helper. This function is called after an 204 /// instruction is created using Builder. 205 void InsertHelper(llvm::Instruction *I, const llvm::Twine &Name, 206 llvm::BasicBlock *BB, 207 llvm::BasicBlock::iterator InsertPt) const; 208 209 /// CurFuncDecl - Holds the Decl for the current outermost 210 /// non-closure context. 211 const Decl *CurFuncDecl; 212 /// CurCodeDecl - This is the inner-most code context, which includes blocks. 213 const Decl *CurCodeDecl; 214 const CGFunctionInfo *CurFnInfo; 215 QualType FnRetTy; 216 llvm::Function *CurFn; 217 218 // Holds coroutine data if the current function is a coroutine. We use a 219 // wrapper to manage its lifetime, so that we don't have to define CGCoroData 220 // in this header. 221 struct CGCoroInfo { 222 std::unique_ptr<CGCoroData> Data; 223 CGCoroInfo(); 224 ~CGCoroInfo(); 225 }; 226 CGCoroInfo CurCoro; 227 228 bool isCoroutine() const { 229 return CurCoro.Data != nullptr; 230 } 231 232 /// CurGD - The GlobalDecl for the current function being compiled. 233 GlobalDecl CurGD; 234 235 /// PrologueCleanupDepth - The cleanup depth enclosing all the 236 /// cleanups associated with the parameters. 237 EHScopeStack::stable_iterator PrologueCleanupDepth; 238 239 /// ReturnBlock - Unified return block. 240 JumpDest ReturnBlock; 241 242 /// ReturnValue - The temporary alloca to hold the return 243 /// value. This is invalid iff the function has no return value. 244 Address ReturnValue; 245 246 /// Return true if a label was seen in the current scope. 247 bool hasLabelBeenSeenInCurrentScope() const { 248 if (CurLexicalScope) 249 return CurLexicalScope->hasLabels(); 250 return !LabelMap.empty(); 251 } 252 253 /// AllocaInsertPoint - This is an instruction in the entry block before which 254 /// we prefer to insert allocas. 255 llvm::AssertingVH<llvm::Instruction> AllocaInsertPt; 256 257 /// \brief API for captured statement code generation. 258 class CGCapturedStmtInfo { 259 public: 260 explicit CGCapturedStmtInfo(CapturedRegionKind K = CR_Default) 261 : Kind(K), ThisValue(nullptr), CXXThisFieldDecl(nullptr) {} 262 explicit CGCapturedStmtInfo(const CapturedStmt &S, 263 CapturedRegionKind K = CR_Default) 264 : Kind(K), ThisValue(nullptr), CXXThisFieldDecl(nullptr) { 265 266 RecordDecl::field_iterator Field = 267 S.getCapturedRecordDecl()->field_begin(); 268 for (CapturedStmt::const_capture_iterator I = S.capture_begin(), 269 E = S.capture_end(); 270 I != E; ++I, ++Field) { 271 if (I->capturesThis()) 272 CXXThisFieldDecl = *Field; 273 else if (I->capturesVariable()) 274 CaptureFields[I->getCapturedVar()->getCanonicalDecl()] = *Field; 275 else if (I->capturesVariableByCopy()) 276 CaptureFields[I->getCapturedVar()->getCanonicalDecl()] = *Field; 277 } 278 } 279 280 virtual ~CGCapturedStmtInfo(); 281 282 CapturedRegionKind getKind() const { return Kind; } 283 284 virtual void setContextValue(llvm::Value *V) { ThisValue = V; } 285 // \brief Retrieve the value of the context parameter. 286 virtual llvm::Value *getContextValue() const { return ThisValue; } 287 288 /// \brief Lookup the captured field decl for a variable. 289 virtual const FieldDecl *lookup(const VarDecl *VD) const { 290 return CaptureFields.lookup(VD->getCanonicalDecl()); 291 } 292 293 bool isCXXThisExprCaptured() const { return getThisFieldDecl() != nullptr; } 294 virtual FieldDecl *getThisFieldDecl() const { return CXXThisFieldDecl; } 295 296 static bool classof(const CGCapturedStmtInfo *) { 297 return true; 298 } 299 300 /// \brief Emit the captured statement body. 301 virtual void EmitBody(CodeGenFunction &CGF, const Stmt *S) { 302 CGF.incrementProfileCounter(S); 303 CGF.EmitStmt(S); 304 } 305 306 /// \brief Get the name of the capture helper. 307 virtual StringRef getHelperName() const { return "__captured_stmt"; } 308 309 private: 310 /// \brief The kind of captured statement being generated. 311 CapturedRegionKind Kind; 312 313 /// \brief Keep the map between VarDecl and FieldDecl. 314 llvm::SmallDenseMap<const VarDecl *, FieldDecl *> CaptureFields; 315 316 /// \brief The base address of the captured record, passed in as the first 317 /// argument of the parallel region function. 318 llvm::Value *ThisValue; 319 320 /// \brief Captured 'this' type. 321 FieldDecl *CXXThisFieldDecl; 322 }; 323 CGCapturedStmtInfo *CapturedStmtInfo; 324 325 /// \brief RAII for correct setting/restoring of CapturedStmtInfo. 326 class CGCapturedStmtRAII { 327 private: 328 CodeGenFunction &CGF; 329 CGCapturedStmtInfo *PrevCapturedStmtInfo; 330 public: 331 CGCapturedStmtRAII(CodeGenFunction &CGF, 332 CGCapturedStmtInfo *NewCapturedStmtInfo) 333 : CGF(CGF), PrevCapturedStmtInfo(CGF.CapturedStmtInfo) { 334 CGF.CapturedStmtInfo = NewCapturedStmtInfo; 335 } 336 ~CGCapturedStmtRAII() { CGF.CapturedStmtInfo = PrevCapturedStmtInfo; } 337 }; 338 339 /// An abstract representation of regular/ObjC call/message targets. 340 class AbstractCallee { 341 /// The function declaration of the callee. 342 const Decl *CalleeDecl; 343 344 public: 345 AbstractCallee() : CalleeDecl(nullptr) {} 346 AbstractCallee(const FunctionDecl *FD) : CalleeDecl(FD) {} 347 AbstractCallee(const ObjCMethodDecl *OMD) : CalleeDecl(OMD) {} 348 bool hasFunctionDecl() const { 349 return dyn_cast_or_null<FunctionDecl>(CalleeDecl); 350 } 351 const Decl *getDecl() const { return CalleeDecl; } 352 unsigned getNumParams() const { 353 if (const auto *FD = dyn_cast<FunctionDecl>(CalleeDecl)) 354 return FD->getNumParams(); 355 return cast<ObjCMethodDecl>(CalleeDecl)->param_size(); 356 } 357 const ParmVarDecl *getParamDecl(unsigned I) const { 358 if (const auto *FD = dyn_cast<FunctionDecl>(CalleeDecl)) 359 return FD->getParamDecl(I); 360 return *(cast<ObjCMethodDecl>(CalleeDecl)->param_begin() + I); 361 } 362 }; 363 364 /// \brief Sanitizers enabled for this function. 365 SanitizerSet SanOpts; 366 367 /// \brief True if CodeGen currently emits code implementing sanitizer checks. 368 bool IsSanitizerScope; 369 370 /// \brief RAII object to set/unset CodeGenFunction::IsSanitizerScope. 371 class SanitizerScope { 372 CodeGenFunction *CGF; 373 public: 374 SanitizerScope(CodeGenFunction *CGF); 375 ~SanitizerScope(); 376 }; 377 378 /// In C++, whether we are code generating a thunk. This controls whether we 379 /// should emit cleanups. 380 bool CurFuncIsThunk; 381 382 /// In ARC, whether we should autorelease the return value. 383 bool AutoreleaseResult; 384 385 /// Whether we processed a Microsoft-style asm block during CodeGen. These can 386 /// potentially set the return value. 387 bool SawAsmBlock; 388 389 const FunctionDecl *CurSEHParent = nullptr; 390 391 /// True if the current function is an outlined SEH helper. This can be a 392 /// finally block or filter expression. 393 bool IsOutlinedSEHHelper; 394 395 const CodeGen::CGBlockInfo *BlockInfo; 396 llvm::Value *BlockPointer; 397 398 llvm::DenseMap<const VarDecl *, FieldDecl *> LambdaCaptureFields; 399 FieldDecl *LambdaThisCaptureField; 400 401 /// \brief A mapping from NRVO variables to the flags used to indicate 402 /// when the NRVO has been applied to this variable. 403 llvm::DenseMap<const VarDecl *, llvm::Value *> NRVOFlags; 404 405 EHScopeStack EHStack; 406 llvm::SmallVector<char, 256> LifetimeExtendedCleanupStack; 407 llvm::SmallVector<const JumpDest *, 2> SEHTryEpilogueStack; 408 409 llvm::Instruction *CurrentFuncletPad = nullptr; 410 411 class CallLifetimeEnd final : public EHScopeStack::Cleanup { 412 llvm::Value *Addr; 413 llvm::Value *Size; 414 415 public: 416 CallLifetimeEnd(Address addr, llvm::Value *size) 417 : Addr(addr.getPointer()), Size(size) {} 418 419 void Emit(CodeGenFunction &CGF, Flags flags) override { 420 CGF.EmitLifetimeEnd(Size, Addr); 421 } 422 }; 423 424 /// Header for data within LifetimeExtendedCleanupStack. 425 struct LifetimeExtendedCleanupHeader { 426 /// The size of the following cleanup object. 427 unsigned Size; 428 /// The kind of cleanup to push: a value from the CleanupKind enumeration. 429 CleanupKind Kind; 430 431 size_t getSize() const { return Size; } 432 CleanupKind getKind() const { return Kind; } 433 }; 434 435 /// i32s containing the indexes of the cleanup destinations. 436 llvm::AllocaInst *NormalCleanupDest; 437 438 unsigned NextCleanupDestIndex; 439 440 /// FirstBlockInfo - The head of a singly-linked-list of block layouts. 441 CGBlockInfo *FirstBlockInfo; 442 443 /// EHResumeBlock - Unified block containing a call to llvm.eh.resume. 444 llvm::BasicBlock *EHResumeBlock; 445 446 /// The exception slot. All landing pads write the current exception pointer 447 /// into this alloca. 448 llvm::Value *ExceptionSlot; 449 450 /// The selector slot. Under the MandatoryCleanup model, all landing pads 451 /// write the current selector value into this alloca. 452 llvm::AllocaInst *EHSelectorSlot; 453 454 /// A stack of exception code slots. Entering an __except block pushes a slot 455 /// on the stack and leaving pops one. The __exception_code() intrinsic loads 456 /// a value from the top of the stack. 457 SmallVector<Address, 1> SEHCodeSlotStack; 458 459 /// Value returned by __exception_info intrinsic. 460 llvm::Value *SEHInfo = nullptr; 461 462 /// Emits a landing pad for the current EH stack. 463 llvm::BasicBlock *EmitLandingPad(); 464 465 llvm::BasicBlock *getInvokeDestImpl(); 466 467 template <class T> 468 typename DominatingValue<T>::saved_type saveValueInCond(T value) { 469 return DominatingValue<T>::save(*this, value); 470 } 471 472 public: 473 /// ObjCEHValueStack - Stack of Objective-C exception values, used for 474 /// rethrows. 475 SmallVector<llvm::Value*, 8> ObjCEHValueStack; 476 477 /// A class controlling the emission of a finally block. 478 class FinallyInfo { 479 /// Where the catchall's edge through the cleanup should go. 480 JumpDest RethrowDest; 481 482 /// A function to call to enter the catch. 483 llvm::Constant *BeginCatchFn; 484 485 /// An i1 variable indicating whether or not the @finally is 486 /// running for an exception. 487 llvm::AllocaInst *ForEHVar; 488 489 /// An i8* variable into which the exception pointer to rethrow 490 /// has been saved. 491 llvm::AllocaInst *SavedExnVar; 492 493 public: 494 void enter(CodeGenFunction &CGF, const Stmt *Finally, 495 llvm::Constant *beginCatchFn, llvm::Constant *endCatchFn, 496 llvm::Constant *rethrowFn); 497 void exit(CodeGenFunction &CGF); 498 }; 499 500 /// Returns true inside SEH __try blocks. 501 bool isSEHTryScope() const { return !SEHTryEpilogueStack.empty(); } 502 503 /// Returns true while emitting a cleanuppad. 504 bool isCleanupPadScope() const { 505 return CurrentFuncletPad && isa<llvm::CleanupPadInst>(CurrentFuncletPad); 506 } 507 508 /// pushFullExprCleanup - Push a cleanup to be run at the end of the 509 /// current full-expression. Safe against the possibility that 510 /// we're currently inside a conditionally-evaluated expression. 511 template <class T, class... As> 512 void pushFullExprCleanup(CleanupKind kind, As... A) { 513 // If we're not in a conditional branch, or if none of the 514 // arguments requires saving, then use the unconditional cleanup. 515 if (!isInConditionalBranch()) 516 return EHStack.pushCleanup<T>(kind, A...); 517 518 // Stash values in a tuple so we can guarantee the order of saves. 519 typedef std::tuple<typename DominatingValue<As>::saved_type...> SavedTuple; 520 SavedTuple Saved{saveValueInCond(A)...}; 521 522 typedef EHScopeStack::ConditionalCleanup<T, As...> CleanupType; 523 EHStack.pushCleanupTuple<CleanupType>(kind, Saved); 524 initFullExprCleanup(); 525 } 526 527 /// \brief Queue a cleanup to be pushed after finishing the current 528 /// full-expression. 529 template <class T, class... As> 530 void pushCleanupAfterFullExpr(CleanupKind Kind, As... A) { 531 assert(!isInConditionalBranch() && "can't defer conditional cleanup"); 532 533 LifetimeExtendedCleanupHeader Header = { sizeof(T), Kind }; 534 535 size_t OldSize = LifetimeExtendedCleanupStack.size(); 536 LifetimeExtendedCleanupStack.resize( 537 LifetimeExtendedCleanupStack.size() + sizeof(Header) + Header.Size); 538 539 static_assert(sizeof(Header) % alignof(T) == 0, 540 "Cleanup will be allocated on misaligned address"); 541 char *Buffer = &LifetimeExtendedCleanupStack[OldSize]; 542 new (Buffer) LifetimeExtendedCleanupHeader(Header); 543 new (Buffer + sizeof(Header)) T(A...); 544 } 545 546 /// Set up the last cleaup that was pushed as a conditional 547 /// full-expression cleanup. 548 void initFullExprCleanup(); 549 550 /// PushDestructorCleanup - Push a cleanup to call the 551 /// complete-object destructor of an object of the given type at the 552 /// given address. Does nothing if T is not a C++ class type with a 553 /// non-trivial destructor. 554 void PushDestructorCleanup(QualType T, Address Addr); 555 556 /// PushDestructorCleanup - Push a cleanup to call the 557 /// complete-object variant of the given destructor on the object at 558 /// the given address. 559 void PushDestructorCleanup(const CXXDestructorDecl *Dtor, Address Addr); 560 561 /// PopCleanupBlock - Will pop the cleanup entry on the stack and 562 /// process all branch fixups. 563 void PopCleanupBlock(bool FallThroughIsBranchThrough = false); 564 565 /// DeactivateCleanupBlock - Deactivates the given cleanup block. 566 /// The block cannot be reactivated. Pops it if it's the top of the 567 /// stack. 568 /// 569 /// \param DominatingIP - An instruction which is known to 570 /// dominate the current IP (if set) and which lies along 571 /// all paths of execution between the current IP and the 572 /// the point at which the cleanup comes into scope. 573 void DeactivateCleanupBlock(EHScopeStack::stable_iterator Cleanup, 574 llvm::Instruction *DominatingIP); 575 576 /// ActivateCleanupBlock - Activates an initially-inactive cleanup. 577 /// Cannot be used to resurrect a deactivated cleanup. 578 /// 579 /// \param DominatingIP - An instruction which is known to 580 /// dominate the current IP (if set) and which lies along 581 /// all paths of execution between the current IP and the 582 /// the point at which the cleanup comes into scope. 583 void ActivateCleanupBlock(EHScopeStack::stable_iterator Cleanup, 584 llvm::Instruction *DominatingIP); 585 586 /// \brief Enters a new scope for capturing cleanups, all of which 587 /// will be executed once the scope is exited. 588 class RunCleanupsScope { 589 EHScopeStack::stable_iterator CleanupStackDepth; 590 size_t LifetimeExtendedCleanupStackSize; 591 bool OldDidCallStackSave; 592 protected: 593 bool PerformCleanup; 594 private: 595 596 RunCleanupsScope(const RunCleanupsScope &) = delete; 597 void operator=(const RunCleanupsScope &) = delete; 598 599 protected: 600 CodeGenFunction& CGF; 601 602 public: 603 /// \brief Enter a new cleanup scope. 604 explicit RunCleanupsScope(CodeGenFunction &CGF) 605 : PerformCleanup(true), CGF(CGF) 606 { 607 CleanupStackDepth = CGF.EHStack.stable_begin(); 608 LifetimeExtendedCleanupStackSize = 609 CGF.LifetimeExtendedCleanupStack.size(); 610 OldDidCallStackSave = CGF.DidCallStackSave; 611 CGF.DidCallStackSave = false; 612 } 613 614 /// \brief Exit this cleanup scope, emitting any accumulated cleanups. 615 ~RunCleanupsScope() { 616 if (PerformCleanup) 617 ForceCleanup(); 618 } 619 620 /// \brief Determine whether this scope requires any cleanups. 621 bool requiresCleanups() const { 622 return CGF.EHStack.stable_begin() != CleanupStackDepth; 623 } 624 625 /// \brief Force the emission of cleanups now, instead of waiting 626 /// until this object is destroyed. 627 /// \param ValuesToReload - A list of values that need to be available at 628 /// the insertion point after cleanup emission. If cleanup emission created 629 /// a shared cleanup block, these value pointers will be rewritten. 630 /// Otherwise, they not will be modified. 631 void ForceCleanup(std::initializer_list<llvm::Value**> ValuesToReload = {}) { 632 assert(PerformCleanup && "Already forced cleanup"); 633 CGF.DidCallStackSave = OldDidCallStackSave; 634 CGF.PopCleanupBlocks(CleanupStackDepth, LifetimeExtendedCleanupStackSize, 635 ValuesToReload); 636 PerformCleanup = false; 637 } 638 }; 639 640 class LexicalScope : public RunCleanupsScope { 641 SourceRange Range; 642 SmallVector<const LabelDecl*, 4> Labels; 643 LexicalScope *ParentScope; 644 645 LexicalScope(const LexicalScope &) = delete; 646 void operator=(const LexicalScope &) = delete; 647 648 public: 649 /// \brief Enter a new cleanup scope. 650 explicit LexicalScope(CodeGenFunction &CGF, SourceRange Range) 651 : RunCleanupsScope(CGF), Range(Range), ParentScope(CGF.CurLexicalScope) { 652 CGF.CurLexicalScope = this; 653 if (CGDebugInfo *DI = CGF.getDebugInfo()) 654 DI->EmitLexicalBlockStart(CGF.Builder, Range.getBegin()); 655 } 656 657 void addLabel(const LabelDecl *label) { 658 assert(PerformCleanup && "adding label to dead scope?"); 659 Labels.push_back(label); 660 } 661 662 /// \brief Exit this cleanup scope, emitting any accumulated 663 /// cleanups. 664 ~LexicalScope() { 665 if (CGDebugInfo *DI = CGF.getDebugInfo()) 666 DI->EmitLexicalBlockEnd(CGF.Builder, Range.getEnd()); 667 668 // If we should perform a cleanup, force them now. Note that 669 // this ends the cleanup scope before rescoping any labels. 670 if (PerformCleanup) { 671 ApplyDebugLocation DL(CGF, Range.getEnd()); 672 ForceCleanup(); 673 } 674 } 675 676 /// \brief Force the emission of cleanups now, instead of waiting 677 /// until this object is destroyed. 678 void ForceCleanup() { 679 CGF.CurLexicalScope = ParentScope; 680 RunCleanupsScope::ForceCleanup(); 681 682 if (!Labels.empty()) 683 rescopeLabels(); 684 } 685 686 bool hasLabels() const { 687 return !Labels.empty(); 688 } 689 690 void rescopeLabels(); 691 }; 692 693 typedef llvm::DenseMap<const Decl *, Address> DeclMapTy; 694 695 /// \brief The scope used to remap some variables as private in the OpenMP 696 /// loop body (or other captured region emitted without outlining), and to 697 /// restore old vars back on exit. 698 class OMPPrivateScope : public RunCleanupsScope { 699 DeclMapTy SavedLocals; 700 DeclMapTy SavedPrivates; 701 702 private: 703 OMPPrivateScope(const OMPPrivateScope &) = delete; 704 void operator=(const OMPPrivateScope &) = delete; 705 706 public: 707 /// \brief Enter a new OpenMP private scope. 708 explicit OMPPrivateScope(CodeGenFunction &CGF) : RunCleanupsScope(CGF) {} 709 710 /// \brief Registers \a LocalVD variable as a private and apply \a 711 /// PrivateGen function for it to generate corresponding private variable. 712 /// \a PrivateGen returns an address of the generated private variable. 713 /// \return true if the variable is registered as private, false if it has 714 /// been privatized already. 715 bool 716 addPrivate(const VarDecl *LocalVD, 717 llvm::function_ref<Address()> PrivateGen) { 718 assert(PerformCleanup && "adding private to dead scope"); 719 720 LocalVD = LocalVD->getCanonicalDecl(); 721 // Only save it once. 722 if (SavedLocals.count(LocalVD)) return false; 723 724 // Copy the existing local entry to SavedLocals. 725 auto it = CGF.LocalDeclMap.find(LocalVD); 726 if (it != CGF.LocalDeclMap.end()) { 727 SavedLocals.insert({LocalVD, it->second}); 728 } else { 729 SavedLocals.insert({LocalVD, Address::invalid()}); 730 } 731 732 // Generate the private entry. 733 Address Addr = PrivateGen(); 734 QualType VarTy = LocalVD->getType(); 735 if (VarTy->isReferenceType()) { 736 Address Temp = CGF.CreateMemTemp(VarTy); 737 CGF.Builder.CreateStore(Addr.getPointer(), Temp); 738 Addr = Temp; 739 } 740 SavedPrivates.insert({LocalVD, Addr}); 741 742 return true; 743 } 744 745 /// \brief Privatizes local variables previously registered as private. 746 /// Registration is separate from the actual privatization to allow 747 /// initializers use values of the original variables, not the private one. 748 /// This is important, for example, if the private variable is a class 749 /// variable initialized by a constructor that references other private 750 /// variables. But at initialization original variables must be used, not 751 /// private copies. 752 /// \return true if at least one variable was privatized, false otherwise. 753 bool Privatize() { 754 copyInto(SavedPrivates, CGF.LocalDeclMap); 755 SavedPrivates.clear(); 756 return !SavedLocals.empty(); 757 } 758 759 void ForceCleanup() { 760 RunCleanupsScope::ForceCleanup(); 761 copyInto(SavedLocals, CGF.LocalDeclMap); 762 SavedLocals.clear(); 763 } 764 765 /// \brief Exit scope - all the mapped variables are restored. 766 ~OMPPrivateScope() { 767 if (PerformCleanup) 768 ForceCleanup(); 769 } 770 771 /// Checks if the global variable is captured in current function. 772 bool isGlobalVarCaptured(const VarDecl *VD) const { 773 VD = VD->getCanonicalDecl(); 774 return !VD->isLocalVarDeclOrParm() && CGF.LocalDeclMap.count(VD) > 0; 775 } 776 777 private: 778 /// Copy all the entries in the source map over the corresponding 779 /// entries in the destination, which must exist. 780 static void copyInto(const DeclMapTy &src, DeclMapTy &dest) { 781 for (auto &pair : src) { 782 if (!pair.second.isValid()) { 783 dest.erase(pair.first); 784 continue; 785 } 786 787 auto it = dest.find(pair.first); 788 if (it != dest.end()) { 789 it->second = pair.second; 790 } else { 791 dest.insert(pair); 792 } 793 } 794 } 795 }; 796 797 /// \brief Takes the old cleanup stack size and emits the cleanup blocks 798 /// that have been added. 799 void 800 PopCleanupBlocks(EHScopeStack::stable_iterator OldCleanupStackSize, 801 std::initializer_list<llvm::Value **> ValuesToReload = {}); 802 803 /// \brief Takes the old cleanup stack size and emits the cleanup blocks 804 /// that have been added, then adds all lifetime-extended cleanups from 805 /// the given position to the stack. 806 void 807 PopCleanupBlocks(EHScopeStack::stable_iterator OldCleanupStackSize, 808 size_t OldLifetimeExtendedStackSize, 809 std::initializer_list<llvm::Value **> ValuesToReload = {}); 810 811 void ResolveBranchFixups(llvm::BasicBlock *Target); 812 813 /// The given basic block lies in the current EH scope, but may be a 814 /// target of a potentially scope-crossing jump; get a stable handle 815 /// to which we can perform this jump later. 816 JumpDest getJumpDestInCurrentScope(llvm::BasicBlock *Target) { 817 return JumpDest(Target, 818 EHStack.getInnermostNormalCleanup(), 819 NextCleanupDestIndex++); 820 } 821 822 /// The given basic block lies in the current EH scope, but may be a 823 /// target of a potentially scope-crossing jump; get a stable handle 824 /// to which we can perform this jump later. 825 JumpDest getJumpDestInCurrentScope(StringRef Name = StringRef()) { 826 return getJumpDestInCurrentScope(createBasicBlock(Name)); 827 } 828 829 /// EmitBranchThroughCleanup - Emit a branch from the current insert 830 /// block through the normal cleanup handling code (if any) and then 831 /// on to \arg Dest. 832 void EmitBranchThroughCleanup(JumpDest Dest); 833 834 /// isObviouslyBranchWithoutCleanups - Return true if a branch to the 835 /// specified destination obviously has no cleanups to run. 'false' is always 836 /// a conservatively correct answer for this method. 837 bool isObviouslyBranchWithoutCleanups(JumpDest Dest) const; 838 839 /// popCatchScope - Pops the catch scope at the top of the EHScope 840 /// stack, emitting any required code (other than the catch handlers 841 /// themselves). 842 void popCatchScope(); 843 844 llvm::BasicBlock *getEHResumeBlock(bool isCleanup); 845 llvm::BasicBlock *getEHDispatchBlock(EHScopeStack::stable_iterator scope); 846 llvm::BasicBlock *getMSVCDispatchBlock(EHScopeStack::stable_iterator scope); 847 848 /// An object to manage conditionally-evaluated expressions. 849 class ConditionalEvaluation { 850 llvm::BasicBlock *StartBB; 851 852 public: 853 ConditionalEvaluation(CodeGenFunction &CGF) 854 : StartBB(CGF.Builder.GetInsertBlock()) {} 855 856 void begin(CodeGenFunction &CGF) { 857 assert(CGF.OutermostConditional != this); 858 if (!CGF.OutermostConditional) 859 CGF.OutermostConditional = this; 860 } 861 862 void end(CodeGenFunction &CGF) { 863 assert(CGF.OutermostConditional != nullptr); 864 if (CGF.OutermostConditional == this) 865 CGF.OutermostConditional = nullptr; 866 } 867 868 /// Returns a block which will be executed prior to each 869 /// evaluation of the conditional code. 870 llvm::BasicBlock *getStartingBlock() const { 871 return StartBB; 872 } 873 }; 874 875 /// isInConditionalBranch - Return true if we're currently emitting 876 /// one branch or the other of a conditional expression. 877 bool isInConditionalBranch() const { return OutermostConditional != nullptr; } 878 879 void setBeforeOutermostConditional(llvm::Value *value, Address addr) { 880 assert(isInConditionalBranch()); 881 llvm::BasicBlock *block = OutermostConditional->getStartingBlock(); 882 auto store = new llvm::StoreInst(value, addr.getPointer(), &block->back()); 883 store->setAlignment(addr.getAlignment().getQuantity()); 884 } 885 886 /// An RAII object to record that we're evaluating a statement 887 /// expression. 888 class StmtExprEvaluation { 889 CodeGenFunction &CGF; 890 891 /// We have to save the outermost conditional: cleanups in a 892 /// statement expression aren't conditional just because the 893 /// StmtExpr is. 894 ConditionalEvaluation *SavedOutermostConditional; 895 896 public: 897 StmtExprEvaluation(CodeGenFunction &CGF) 898 : CGF(CGF), SavedOutermostConditional(CGF.OutermostConditional) { 899 CGF.OutermostConditional = nullptr; 900 } 901 902 ~StmtExprEvaluation() { 903 CGF.OutermostConditional = SavedOutermostConditional; 904 CGF.EnsureInsertPoint(); 905 } 906 }; 907 908 /// An object which temporarily prevents a value from being 909 /// destroyed by aggressive peephole optimizations that assume that 910 /// all uses of a value have been realized in the IR. 911 class PeepholeProtection { 912 llvm::Instruction *Inst; 913 friend class CodeGenFunction; 914 915 public: 916 PeepholeProtection() : Inst(nullptr) {} 917 }; 918 919 /// A non-RAII class containing all the information about a bound 920 /// opaque value. OpaqueValueMapping, below, is a RAII wrapper for 921 /// this which makes individual mappings very simple; using this 922 /// class directly is useful when you have a variable number of 923 /// opaque values or don't want the RAII functionality for some 924 /// reason. 925 class OpaqueValueMappingData { 926 const OpaqueValueExpr *OpaqueValue; 927 bool BoundLValue; 928 CodeGenFunction::PeepholeProtection Protection; 929 930 OpaqueValueMappingData(const OpaqueValueExpr *ov, 931 bool boundLValue) 932 : OpaqueValue(ov), BoundLValue(boundLValue) {} 933 public: 934 OpaqueValueMappingData() : OpaqueValue(nullptr) {} 935 936 static bool shouldBindAsLValue(const Expr *expr) { 937 // gl-values should be bound as l-values for obvious reasons. 938 // Records should be bound as l-values because IR generation 939 // always keeps them in memory. Expressions of function type 940 // act exactly like l-values but are formally required to be 941 // r-values in C. 942 return expr->isGLValue() || 943 expr->getType()->isFunctionType() || 944 hasAggregateEvaluationKind(expr->getType()); 945 } 946 947 static OpaqueValueMappingData bind(CodeGenFunction &CGF, 948 const OpaqueValueExpr *ov, 949 const Expr *e) { 950 if (shouldBindAsLValue(ov)) 951 return bind(CGF, ov, CGF.EmitLValue(e)); 952 return bind(CGF, ov, CGF.EmitAnyExpr(e)); 953 } 954 955 static OpaqueValueMappingData bind(CodeGenFunction &CGF, 956 const OpaqueValueExpr *ov, 957 const LValue &lv) { 958 assert(shouldBindAsLValue(ov)); 959 CGF.OpaqueLValues.insert(std::make_pair(ov, lv)); 960 return OpaqueValueMappingData(ov, true); 961 } 962 963 static OpaqueValueMappingData bind(CodeGenFunction &CGF, 964 const OpaqueValueExpr *ov, 965 const RValue &rv) { 966 assert(!shouldBindAsLValue(ov)); 967 CGF.OpaqueRValues.insert(std::make_pair(ov, rv)); 968 969 OpaqueValueMappingData data(ov, false); 970 971 // Work around an extremely aggressive peephole optimization in 972 // EmitScalarConversion which assumes that all other uses of a 973 // value are extant. 974 data.Protection = CGF.protectFromPeepholes(rv); 975 976 return data; 977 } 978 979 bool isValid() const { return OpaqueValue != nullptr; } 980 void clear() { OpaqueValue = nullptr; } 981 982 void unbind(CodeGenFunction &CGF) { 983 assert(OpaqueValue && "no data to unbind!"); 984 985 if (BoundLValue) { 986 CGF.OpaqueLValues.erase(OpaqueValue); 987 } else { 988 CGF.OpaqueRValues.erase(OpaqueValue); 989 CGF.unprotectFromPeepholes(Protection); 990 } 991 } 992 }; 993 994 /// An RAII object to set (and then clear) a mapping for an OpaqueValueExpr. 995 class OpaqueValueMapping { 996 CodeGenFunction &CGF; 997 OpaqueValueMappingData Data; 998 999 public: 1000 static bool shouldBindAsLValue(const Expr *expr) { 1001 return OpaqueValueMappingData::shouldBindAsLValue(expr); 1002 } 1003 1004 /// Build the opaque value mapping for the given conditional 1005 /// operator if it's the GNU ?: extension. This is a common 1006 /// enough pattern that the convenience operator is really 1007 /// helpful. 1008 /// 1009 OpaqueValueMapping(CodeGenFunction &CGF, 1010 const AbstractConditionalOperator *op) : CGF(CGF) { 1011 if (isa<ConditionalOperator>(op)) 1012 // Leave Data empty. 1013 return; 1014 1015 const BinaryConditionalOperator *e = cast<BinaryConditionalOperator>(op); 1016 Data = OpaqueValueMappingData::bind(CGF, e->getOpaqueValue(), 1017 e->getCommon()); 1018 } 1019 1020 /// Build the opaque value mapping for an OpaqueValueExpr whose source 1021 /// expression is set to the expression the OVE represents. 1022 OpaqueValueMapping(CodeGenFunction &CGF, const OpaqueValueExpr *OV) 1023 : CGF(CGF) { 1024 if (OV) { 1025 assert(OV->getSourceExpr() && "wrong form of OpaqueValueMapping used " 1026 "for OVE with no source expression"); 1027 Data = OpaqueValueMappingData::bind(CGF, OV, OV->getSourceExpr()); 1028 } 1029 } 1030 1031 OpaqueValueMapping(CodeGenFunction &CGF, 1032 const OpaqueValueExpr *opaqueValue, 1033 LValue lvalue) 1034 : CGF(CGF), Data(OpaqueValueMappingData::bind(CGF, opaqueValue, lvalue)) { 1035 } 1036 1037 OpaqueValueMapping(CodeGenFunction &CGF, 1038 const OpaqueValueExpr *opaqueValue, 1039 RValue rvalue) 1040 : CGF(CGF), Data(OpaqueValueMappingData::bind(CGF, opaqueValue, rvalue)) { 1041 } 1042 1043 void pop() { 1044 Data.unbind(CGF); 1045 Data.clear(); 1046 } 1047 1048 ~OpaqueValueMapping() { 1049 if (Data.isValid()) Data.unbind(CGF); 1050 } 1051 }; 1052 1053 private: 1054 CGDebugInfo *DebugInfo; 1055 bool DisableDebugInfo; 1056 1057 /// DidCallStackSave - Whether llvm.stacksave has been called. Used to avoid 1058 /// calling llvm.stacksave for multiple VLAs in the same scope. 1059 bool DidCallStackSave; 1060 1061 /// IndirectBranch - The first time an indirect goto is seen we create a block 1062 /// with an indirect branch. Every time we see the address of a label taken, 1063 /// we add the label to the indirect goto. Every subsequent indirect goto is 1064 /// codegen'd as a jump to the IndirectBranch's basic block. 1065 llvm::IndirectBrInst *IndirectBranch; 1066 1067 /// LocalDeclMap - This keeps track of the LLVM allocas or globals for local C 1068 /// decls. 1069 DeclMapTy LocalDeclMap; 1070 1071 /// SizeArguments - If a ParmVarDecl had the pass_object_size attribute, this 1072 /// will contain a mapping from said ParmVarDecl to its implicit "object_size" 1073 /// parameter. 1074 llvm::SmallDenseMap<const ParmVarDecl *, const ImplicitParamDecl *, 2> 1075 SizeArguments; 1076 1077 /// Track escaped local variables with auto storage. Used during SEH 1078 /// outlining to produce a call to llvm.localescape. 1079 llvm::DenseMap<llvm::AllocaInst *, int> EscapedLocals; 1080 1081 /// LabelMap - This keeps track of the LLVM basic block for each C label. 1082 llvm::DenseMap<const LabelDecl*, JumpDest> LabelMap; 1083 1084 // BreakContinueStack - This keeps track of where break and continue 1085 // statements should jump to. 1086 struct BreakContinue { 1087 BreakContinue(JumpDest Break, JumpDest Continue) 1088 : BreakBlock(Break), ContinueBlock(Continue) {} 1089 1090 JumpDest BreakBlock; 1091 JumpDest ContinueBlock; 1092 }; 1093 SmallVector<BreakContinue, 8> BreakContinueStack; 1094 1095 /// Handles cancellation exit points in OpenMP-related constructs. 1096 class OpenMPCancelExitStack { 1097 /// Tracks cancellation exit point and join point for cancel-related exit 1098 /// and normal exit. 1099 struct CancelExit { 1100 CancelExit() = default; 1101 CancelExit(OpenMPDirectiveKind Kind, JumpDest ExitBlock, 1102 JumpDest ContBlock) 1103 : Kind(Kind), ExitBlock(ExitBlock), ContBlock(ContBlock) {} 1104 OpenMPDirectiveKind Kind = OMPD_unknown; 1105 /// true if the exit block has been emitted already by the special 1106 /// emitExit() call, false if the default codegen is used. 1107 bool HasBeenEmitted = false; 1108 JumpDest ExitBlock; 1109 JumpDest ContBlock; 1110 }; 1111 1112 SmallVector<CancelExit, 8> Stack; 1113 1114 public: 1115 OpenMPCancelExitStack() : Stack(1) {} 1116 ~OpenMPCancelExitStack() = default; 1117 /// Fetches the exit block for the current OpenMP construct. 1118 JumpDest getExitBlock() const { return Stack.back().ExitBlock; } 1119 /// Emits exit block with special codegen procedure specific for the related 1120 /// OpenMP construct + emits code for normal construct cleanup. 1121 void emitExit(CodeGenFunction &CGF, OpenMPDirectiveKind Kind, 1122 const llvm::function_ref<void(CodeGenFunction &)> &CodeGen) { 1123 if (Stack.back().Kind == Kind && getExitBlock().isValid()) { 1124 assert(CGF.getOMPCancelDestination(Kind).isValid()); 1125 assert(CGF.HaveInsertPoint()); 1126 assert(!Stack.back().HasBeenEmitted); 1127 auto IP = CGF.Builder.saveAndClearIP(); 1128 CGF.EmitBlock(Stack.back().ExitBlock.getBlock()); 1129 CodeGen(CGF); 1130 CGF.EmitBranch(Stack.back().ContBlock.getBlock()); 1131 CGF.Builder.restoreIP(IP); 1132 Stack.back().HasBeenEmitted = true; 1133 } 1134 CodeGen(CGF); 1135 } 1136 /// Enter the cancel supporting \a Kind construct. 1137 /// \param Kind OpenMP directive that supports cancel constructs. 1138 /// \param HasCancel true, if the construct has inner cancel directive, 1139 /// false otherwise. 1140 void enter(CodeGenFunction &CGF, OpenMPDirectiveKind Kind, bool HasCancel) { 1141 Stack.push_back({Kind, 1142 HasCancel ? CGF.getJumpDestInCurrentScope("cancel.exit") 1143 : JumpDest(), 1144 HasCancel ? CGF.getJumpDestInCurrentScope("cancel.cont") 1145 : JumpDest()}); 1146 } 1147 /// Emits default exit point for the cancel construct (if the special one 1148 /// has not be used) + join point for cancel/normal exits. 1149 void exit(CodeGenFunction &CGF) { 1150 if (getExitBlock().isValid()) { 1151 assert(CGF.getOMPCancelDestination(Stack.back().Kind).isValid()); 1152 bool HaveIP = CGF.HaveInsertPoint(); 1153 if (!Stack.back().HasBeenEmitted) { 1154 if (HaveIP) 1155 CGF.EmitBranchThroughCleanup(Stack.back().ContBlock); 1156 CGF.EmitBlock(Stack.back().ExitBlock.getBlock()); 1157 CGF.EmitBranchThroughCleanup(Stack.back().ContBlock); 1158 } 1159 CGF.EmitBlock(Stack.back().ContBlock.getBlock()); 1160 if (!HaveIP) { 1161 CGF.Builder.CreateUnreachable(); 1162 CGF.Builder.ClearInsertionPoint(); 1163 } 1164 } 1165 Stack.pop_back(); 1166 } 1167 }; 1168 OpenMPCancelExitStack OMPCancelStack; 1169 1170 CodeGenPGO PGO; 1171 1172 /// Calculate branch weights appropriate for PGO data 1173 llvm::MDNode *createProfileWeights(uint64_t TrueCount, uint64_t FalseCount); 1174 llvm::MDNode *createProfileWeights(ArrayRef<uint64_t> Weights); 1175 llvm::MDNode *createProfileWeightsForLoop(const Stmt *Cond, 1176 uint64_t LoopCount); 1177 1178 public: 1179 /// Increment the profiler's counter for the given statement by \p StepV. 1180 /// If \p StepV is null, the default increment is 1. 1181 void incrementProfileCounter(const Stmt *S, llvm::Value *StepV = nullptr) { 1182 if (CGM.getCodeGenOpts().hasProfileClangInstr()) 1183 PGO.emitCounterIncrement(Builder, S, StepV); 1184 PGO.setCurrentStmt(S); 1185 } 1186 1187 /// Get the profiler's count for the given statement. 1188 uint64_t getProfileCount(const Stmt *S) { 1189 Optional<uint64_t> Count = PGO.getStmtCount(S); 1190 if (!Count.hasValue()) 1191 return 0; 1192 return *Count; 1193 } 1194 1195 /// Set the profiler's current count. 1196 void setCurrentProfileCount(uint64_t Count) { 1197 PGO.setCurrentRegionCount(Count); 1198 } 1199 1200 /// Get the profiler's current count. This is generally the count for the most 1201 /// recently incremented counter. 1202 uint64_t getCurrentProfileCount() { 1203 return PGO.getCurrentRegionCount(); 1204 } 1205 1206 private: 1207 1208 /// SwitchInsn - This is nearest current switch instruction. It is null if 1209 /// current context is not in a switch. 1210 llvm::SwitchInst *SwitchInsn; 1211 /// The branch weights of SwitchInsn when doing instrumentation based PGO. 1212 SmallVector<uint64_t, 16> *SwitchWeights; 1213 1214 /// CaseRangeBlock - This block holds if condition check for last case 1215 /// statement range in current switch instruction. 1216 llvm::BasicBlock *CaseRangeBlock; 1217 1218 /// OpaqueLValues - Keeps track of the current set of opaque value 1219 /// expressions. 1220 llvm::DenseMap<const OpaqueValueExpr *, LValue> OpaqueLValues; 1221 llvm::DenseMap<const OpaqueValueExpr *, RValue> OpaqueRValues; 1222 1223 // VLASizeMap - This keeps track of the associated size for each VLA type. 1224 // We track this by the size expression rather than the type itself because 1225 // in certain situations, like a const qualifier applied to an VLA typedef, 1226 // multiple VLA types can share the same size expression. 1227 // FIXME: Maybe this could be a stack of maps that is pushed/popped as we 1228 // enter/leave scopes. 1229 llvm::DenseMap<const Expr*, llvm::Value*> VLASizeMap; 1230 1231 /// A block containing a single 'unreachable' instruction. Created 1232 /// lazily by getUnreachableBlock(). 1233 llvm::BasicBlock *UnreachableBlock; 1234 1235 /// Counts of the number return expressions in the function. 1236 unsigned NumReturnExprs; 1237 1238 /// Count the number of simple (constant) return expressions in the function. 1239 unsigned NumSimpleReturnExprs; 1240 1241 /// The last regular (non-return) debug location (breakpoint) in the function. 1242 SourceLocation LastStopPoint; 1243 1244 public: 1245 /// A scope within which we are constructing the fields of an object which 1246 /// might use a CXXDefaultInitExpr. This stashes away a 'this' value to use 1247 /// if we need to evaluate a CXXDefaultInitExpr within the evaluation. 1248 class FieldConstructionScope { 1249 public: 1250 FieldConstructionScope(CodeGenFunction &CGF, Address This) 1251 : CGF(CGF), OldCXXDefaultInitExprThis(CGF.CXXDefaultInitExprThis) { 1252 CGF.CXXDefaultInitExprThis = This; 1253 } 1254 ~FieldConstructionScope() { 1255 CGF.CXXDefaultInitExprThis = OldCXXDefaultInitExprThis; 1256 } 1257 1258 private: 1259 CodeGenFunction &CGF; 1260 Address OldCXXDefaultInitExprThis; 1261 }; 1262 1263 /// The scope of a CXXDefaultInitExpr. Within this scope, the value of 'this' 1264 /// is overridden to be the object under construction. 1265 class CXXDefaultInitExprScope { 1266 public: 1267 CXXDefaultInitExprScope(CodeGenFunction &CGF) 1268 : CGF(CGF), OldCXXThisValue(CGF.CXXThisValue), 1269 OldCXXThisAlignment(CGF.CXXThisAlignment) { 1270 CGF.CXXThisValue = CGF.CXXDefaultInitExprThis.getPointer(); 1271 CGF.CXXThisAlignment = CGF.CXXDefaultInitExprThis.getAlignment(); 1272 } 1273 ~CXXDefaultInitExprScope() { 1274 CGF.CXXThisValue = OldCXXThisValue; 1275 CGF.CXXThisAlignment = OldCXXThisAlignment; 1276 } 1277 1278 public: 1279 CodeGenFunction &CGF; 1280 llvm::Value *OldCXXThisValue; 1281 CharUnits OldCXXThisAlignment; 1282 }; 1283 1284 /// The scope of an ArrayInitLoopExpr. Within this scope, the value of the 1285 /// current loop index is overridden. 1286 class ArrayInitLoopExprScope { 1287 public: 1288 ArrayInitLoopExprScope(CodeGenFunction &CGF, llvm::Value *Index) 1289 : CGF(CGF), OldArrayInitIndex(CGF.ArrayInitIndex) { 1290 CGF.ArrayInitIndex = Index; 1291 } 1292 ~ArrayInitLoopExprScope() { 1293 CGF.ArrayInitIndex = OldArrayInitIndex; 1294 } 1295 1296 private: 1297 CodeGenFunction &CGF; 1298 llvm::Value *OldArrayInitIndex; 1299 }; 1300 1301 class InlinedInheritingConstructorScope { 1302 public: 1303 InlinedInheritingConstructorScope(CodeGenFunction &CGF, GlobalDecl GD) 1304 : CGF(CGF), OldCurGD(CGF.CurGD), OldCurFuncDecl(CGF.CurFuncDecl), 1305 OldCurCodeDecl(CGF.CurCodeDecl), 1306 OldCXXABIThisDecl(CGF.CXXABIThisDecl), 1307 OldCXXABIThisValue(CGF.CXXABIThisValue), 1308 OldCXXThisValue(CGF.CXXThisValue), 1309 OldCXXABIThisAlignment(CGF.CXXABIThisAlignment), 1310 OldCXXThisAlignment(CGF.CXXThisAlignment), 1311 OldReturnValue(CGF.ReturnValue), OldFnRetTy(CGF.FnRetTy), 1312 OldCXXInheritedCtorInitExprArgs( 1313 std::move(CGF.CXXInheritedCtorInitExprArgs)) { 1314 CGF.CurGD = GD; 1315 CGF.CurFuncDecl = CGF.CurCodeDecl = 1316 cast<CXXConstructorDecl>(GD.getDecl()); 1317 CGF.CXXABIThisDecl = nullptr; 1318 CGF.CXXABIThisValue = nullptr; 1319 CGF.CXXThisValue = nullptr; 1320 CGF.CXXABIThisAlignment = CharUnits(); 1321 CGF.CXXThisAlignment = CharUnits(); 1322 CGF.ReturnValue = Address::invalid(); 1323 CGF.FnRetTy = QualType(); 1324 CGF.CXXInheritedCtorInitExprArgs.clear(); 1325 } 1326 ~InlinedInheritingConstructorScope() { 1327 CGF.CurGD = OldCurGD; 1328 CGF.CurFuncDecl = OldCurFuncDecl; 1329 CGF.CurCodeDecl = OldCurCodeDecl; 1330 CGF.CXXABIThisDecl = OldCXXABIThisDecl; 1331 CGF.CXXABIThisValue = OldCXXABIThisValue; 1332 CGF.CXXThisValue = OldCXXThisValue; 1333 CGF.CXXABIThisAlignment = OldCXXABIThisAlignment; 1334 CGF.CXXThisAlignment = OldCXXThisAlignment; 1335 CGF.ReturnValue = OldReturnValue; 1336 CGF.FnRetTy = OldFnRetTy; 1337 CGF.CXXInheritedCtorInitExprArgs = 1338 std::move(OldCXXInheritedCtorInitExprArgs); 1339 } 1340 1341 private: 1342 CodeGenFunction &CGF; 1343 GlobalDecl OldCurGD; 1344 const Decl *OldCurFuncDecl; 1345 const Decl *OldCurCodeDecl; 1346 ImplicitParamDecl *OldCXXABIThisDecl; 1347 llvm::Value *OldCXXABIThisValue; 1348 llvm::Value *OldCXXThisValue; 1349 CharUnits OldCXXABIThisAlignment; 1350 CharUnits OldCXXThisAlignment; 1351 Address OldReturnValue; 1352 QualType OldFnRetTy; 1353 CallArgList OldCXXInheritedCtorInitExprArgs; 1354 }; 1355 1356 private: 1357 /// CXXThisDecl - When generating code for a C++ member function, 1358 /// this will hold the implicit 'this' declaration. 1359 ImplicitParamDecl *CXXABIThisDecl; 1360 llvm::Value *CXXABIThisValue; 1361 llvm::Value *CXXThisValue; 1362 CharUnits CXXABIThisAlignment; 1363 CharUnits CXXThisAlignment; 1364 1365 /// The value of 'this' to use when evaluating CXXDefaultInitExprs within 1366 /// this expression. 1367 Address CXXDefaultInitExprThis = Address::invalid(); 1368 1369 /// The current array initialization index when evaluating an 1370 /// ArrayInitIndexExpr within an ArrayInitLoopExpr. 1371 llvm::Value *ArrayInitIndex = nullptr; 1372 1373 /// The values of function arguments to use when evaluating 1374 /// CXXInheritedCtorInitExprs within this context. 1375 CallArgList CXXInheritedCtorInitExprArgs; 1376 1377 /// CXXStructorImplicitParamDecl - When generating code for a constructor or 1378 /// destructor, this will hold the implicit argument (e.g. VTT). 1379 ImplicitParamDecl *CXXStructorImplicitParamDecl; 1380 llvm::Value *CXXStructorImplicitParamValue; 1381 1382 /// OutermostConditional - Points to the outermost active 1383 /// conditional control. This is used so that we know if a 1384 /// temporary should be destroyed conditionally. 1385 ConditionalEvaluation *OutermostConditional; 1386 1387 /// The current lexical scope. 1388 LexicalScope *CurLexicalScope; 1389 1390 /// The current source location that should be used for exception 1391 /// handling code. 1392 SourceLocation CurEHLocation; 1393 1394 /// BlockByrefInfos - For each __block variable, contains 1395 /// information about the layout of the variable. 1396 llvm::DenseMap<const ValueDecl *, BlockByrefInfo> BlockByrefInfos; 1397 1398 /// Used by -fsanitize=nullability-return to determine whether the return 1399 /// value can be checked. 1400 llvm::Value *RetValNullabilityPrecondition = nullptr; 1401 1402 /// Check if -fsanitize=nullability-return instrumentation is required for 1403 /// this function. 1404 bool requiresReturnValueNullabilityCheck() const { 1405 return RetValNullabilityPrecondition; 1406 } 1407 1408 /// Used to store precise source locations for return statements by the 1409 /// runtime return value checks. 1410 Address ReturnLocation = Address::invalid(); 1411 1412 /// Check if the return value of this function requires sanitization. 1413 bool requiresReturnValueCheck() const { 1414 return requiresReturnValueNullabilityCheck() || 1415 (SanOpts.has(SanitizerKind::ReturnsNonnullAttribute) && 1416 CurCodeDecl && CurCodeDecl->getAttr<ReturnsNonNullAttr>()); 1417 } 1418 1419 llvm::BasicBlock *TerminateLandingPad; 1420 llvm::BasicBlock *TerminateHandler; 1421 llvm::BasicBlock *TrapBB; 1422 1423 /// True if we need emit the life-time markers. 1424 const bool ShouldEmitLifetimeMarkers; 1425 1426 /// Add OpenCL kernel arg metadata and the kernel attribute meatadata to 1427 /// the function metadata. 1428 void EmitOpenCLKernelMetadata(const FunctionDecl *FD, 1429 llvm::Function *Fn); 1430 1431 public: 1432 CodeGenFunction(CodeGenModule &cgm, bool suppressNewContext=false); 1433 ~CodeGenFunction(); 1434 1435 CodeGenTypes &getTypes() const { return CGM.getTypes(); } 1436 ASTContext &getContext() const { return CGM.getContext(); } 1437 CGDebugInfo *getDebugInfo() { 1438 if (DisableDebugInfo) 1439 return nullptr; 1440 return DebugInfo; 1441 } 1442 void disableDebugInfo() { DisableDebugInfo = true; } 1443 void enableDebugInfo() { DisableDebugInfo = false; } 1444 1445 bool shouldUseFusedARCCalls() { 1446 return CGM.getCodeGenOpts().OptimizationLevel == 0; 1447 } 1448 1449 const LangOptions &getLangOpts() const { return CGM.getLangOpts(); } 1450 1451 /// Returns a pointer to the function's exception object and selector slot, 1452 /// which is assigned in every landing pad. 1453 Address getExceptionSlot(); 1454 Address getEHSelectorSlot(); 1455 1456 /// Returns the contents of the function's exception object and selector 1457 /// slots. 1458 llvm::Value *getExceptionFromSlot(); 1459 llvm::Value *getSelectorFromSlot(); 1460 1461 Address getNormalCleanupDestSlot(); 1462 1463 llvm::BasicBlock *getUnreachableBlock() { 1464 if (!UnreachableBlock) { 1465 UnreachableBlock = createBasicBlock("unreachable"); 1466 new llvm::UnreachableInst(getLLVMContext(), UnreachableBlock); 1467 } 1468 return UnreachableBlock; 1469 } 1470 1471 llvm::BasicBlock *getInvokeDest() { 1472 if (!EHStack.requiresLandingPad()) return nullptr; 1473 return getInvokeDestImpl(); 1474 } 1475 1476 bool currentFunctionUsesSEHTry() const { return CurSEHParent != nullptr; } 1477 1478 const TargetInfo &getTarget() const { return Target; } 1479 llvm::LLVMContext &getLLVMContext() { return CGM.getLLVMContext(); } 1480 const TargetCodeGenInfo &getTargetHooks() const { 1481 return CGM.getTargetCodeGenInfo(); 1482 } 1483 1484 //===--------------------------------------------------------------------===// 1485 // Cleanups 1486 //===--------------------------------------------------------------------===// 1487 1488 typedef void Destroyer(CodeGenFunction &CGF, Address addr, QualType ty); 1489 1490 void pushIrregularPartialArrayCleanup(llvm::Value *arrayBegin, 1491 Address arrayEndPointer, 1492 QualType elementType, 1493 CharUnits elementAlignment, 1494 Destroyer *destroyer); 1495 void pushRegularPartialArrayCleanup(llvm::Value *arrayBegin, 1496 llvm::Value *arrayEnd, 1497 QualType elementType, 1498 CharUnits elementAlignment, 1499 Destroyer *destroyer); 1500 1501 void pushDestroy(QualType::DestructionKind dtorKind, 1502 Address addr, QualType type); 1503 void pushEHDestroy(QualType::DestructionKind dtorKind, 1504 Address addr, QualType type); 1505 void pushDestroy(CleanupKind kind, Address addr, QualType type, 1506 Destroyer *destroyer, bool useEHCleanupForArray); 1507 void pushLifetimeExtendedDestroy(CleanupKind kind, Address addr, 1508 QualType type, Destroyer *destroyer, 1509 bool useEHCleanupForArray); 1510 void pushCallObjectDeleteCleanup(const FunctionDecl *OperatorDelete, 1511 llvm::Value *CompletePtr, 1512 QualType ElementType); 1513 void pushStackRestore(CleanupKind kind, Address SPMem); 1514 void emitDestroy(Address addr, QualType type, Destroyer *destroyer, 1515 bool useEHCleanupForArray); 1516 llvm::Function *generateDestroyHelper(Address addr, QualType type, 1517 Destroyer *destroyer, 1518 bool useEHCleanupForArray, 1519 const VarDecl *VD); 1520 void emitArrayDestroy(llvm::Value *begin, llvm::Value *end, 1521 QualType elementType, CharUnits elementAlign, 1522 Destroyer *destroyer, 1523 bool checkZeroLength, bool useEHCleanup); 1524 1525 Destroyer *getDestroyer(QualType::DestructionKind destructionKind); 1526 1527 /// Determines whether an EH cleanup is required to destroy a type 1528 /// with the given destruction kind. 1529 bool needsEHCleanup(QualType::DestructionKind kind) { 1530 switch (kind) { 1531 case QualType::DK_none: 1532 return false; 1533 case QualType::DK_cxx_destructor: 1534 case QualType::DK_objc_weak_lifetime: 1535 return getLangOpts().Exceptions; 1536 case QualType::DK_objc_strong_lifetime: 1537 return getLangOpts().Exceptions && 1538 CGM.getCodeGenOpts().ObjCAutoRefCountExceptions; 1539 } 1540 llvm_unreachable("bad destruction kind"); 1541 } 1542 1543 CleanupKind getCleanupKind(QualType::DestructionKind kind) { 1544 return (needsEHCleanup(kind) ? NormalAndEHCleanup : NormalCleanup); 1545 } 1546 1547 //===--------------------------------------------------------------------===// 1548 // Objective-C 1549 //===--------------------------------------------------------------------===// 1550 1551 void GenerateObjCMethod(const ObjCMethodDecl *OMD); 1552 1553 void StartObjCMethod(const ObjCMethodDecl *MD, const ObjCContainerDecl *CD); 1554 1555 /// GenerateObjCGetter - Synthesize an Objective-C property getter function. 1556 void GenerateObjCGetter(ObjCImplementationDecl *IMP, 1557 const ObjCPropertyImplDecl *PID); 1558 void generateObjCGetterBody(const ObjCImplementationDecl *classImpl, 1559 const ObjCPropertyImplDecl *propImpl, 1560 const ObjCMethodDecl *GetterMothodDecl, 1561 llvm::Constant *AtomicHelperFn); 1562 1563 void GenerateObjCCtorDtorMethod(ObjCImplementationDecl *IMP, 1564 ObjCMethodDecl *MD, bool ctor); 1565 1566 /// GenerateObjCSetter - Synthesize an Objective-C property setter function 1567 /// for the given property. 1568 void GenerateObjCSetter(ObjCImplementationDecl *IMP, 1569 const ObjCPropertyImplDecl *PID); 1570 void generateObjCSetterBody(const ObjCImplementationDecl *classImpl, 1571 const ObjCPropertyImplDecl *propImpl, 1572 llvm::Constant *AtomicHelperFn); 1573 1574 //===--------------------------------------------------------------------===// 1575 // Block Bits 1576 //===--------------------------------------------------------------------===// 1577 1578 /// Emit block literal. 1579 /// \return an LLVM value which is a pointer to a struct which contains 1580 /// information about the block, including the block invoke function, the 1581 /// captured variables, etc. 1582 /// \param InvokeF will contain the block invoke function if it is not 1583 /// nullptr. 1584 llvm::Value *EmitBlockLiteral(const BlockExpr *, 1585 llvm::Function **InvokeF = nullptr); 1586 static void destroyBlockInfos(CGBlockInfo *info); 1587 1588 llvm::Function *GenerateBlockFunction(GlobalDecl GD, 1589 const CGBlockInfo &Info, 1590 const DeclMapTy &ldm, 1591 bool IsLambdaConversionToBlock, 1592 bool BuildGlobalBlock); 1593 1594 llvm::Constant *GenerateCopyHelperFunction(const CGBlockInfo &blockInfo); 1595 llvm::Constant *GenerateDestroyHelperFunction(const CGBlockInfo &blockInfo); 1596 llvm::Constant *GenerateObjCAtomicSetterCopyHelperFunction( 1597 const ObjCPropertyImplDecl *PID); 1598 llvm::Constant *GenerateObjCAtomicGetterCopyHelperFunction( 1599 const ObjCPropertyImplDecl *PID); 1600 llvm::Value *EmitBlockCopyAndAutorelease(llvm::Value *Block, QualType Ty); 1601 1602 void BuildBlockRelease(llvm::Value *DeclPtr, BlockFieldFlags flags); 1603 1604 class AutoVarEmission; 1605 1606 void emitByrefStructureInit(const AutoVarEmission &emission); 1607 void enterByrefCleanup(const AutoVarEmission &emission); 1608 1609 void setBlockContextParameter(const ImplicitParamDecl *D, unsigned argNum, 1610 llvm::Value *ptr); 1611 1612 Address LoadBlockStruct(); 1613 Address GetAddrOfBlockDecl(const VarDecl *var, bool ByRef); 1614 1615 /// BuildBlockByrefAddress - Computes the location of the 1616 /// data in a variable which is declared as __block. 1617 Address emitBlockByrefAddress(Address baseAddr, const VarDecl *V, 1618 bool followForward = true); 1619 Address emitBlockByrefAddress(Address baseAddr, 1620 const BlockByrefInfo &info, 1621 bool followForward, 1622 const llvm::Twine &name); 1623 1624 const BlockByrefInfo &getBlockByrefInfo(const VarDecl *var); 1625 1626 QualType BuildFunctionArgList(GlobalDecl GD, FunctionArgList &Args); 1627 1628 void GenerateCode(GlobalDecl GD, llvm::Function *Fn, 1629 const CGFunctionInfo &FnInfo); 1630 /// \brief Emit code for the start of a function. 1631 /// \param Loc The location to be associated with the function. 1632 /// \param StartLoc The location of the function body. 1633 void StartFunction(GlobalDecl GD, 1634 QualType RetTy, 1635 llvm::Function *Fn, 1636 const CGFunctionInfo &FnInfo, 1637 const FunctionArgList &Args, 1638 SourceLocation Loc = SourceLocation(), 1639 SourceLocation StartLoc = SourceLocation()); 1640 1641 static bool IsConstructorDelegationValid(const CXXConstructorDecl *Ctor); 1642 1643 void EmitConstructorBody(FunctionArgList &Args); 1644 void EmitDestructorBody(FunctionArgList &Args); 1645 void emitImplicitAssignmentOperatorBody(FunctionArgList &Args); 1646 void EmitFunctionBody(FunctionArgList &Args, const Stmt *Body); 1647 void EmitBlockWithFallThrough(llvm::BasicBlock *BB, const Stmt *S); 1648 1649 void EmitForwardingCallToLambda(const CXXMethodDecl *LambdaCallOperator, 1650 CallArgList &CallArgs); 1651 void EmitLambdaBlockInvokeBody(); 1652 void EmitLambdaDelegatingInvokeBody(const CXXMethodDecl *MD); 1653 void EmitLambdaStaticInvokeBody(const CXXMethodDecl *MD); 1654 void EmitAsanPrologueOrEpilogue(bool Prologue); 1655 1656 /// \brief Emit the unified return block, trying to avoid its emission when 1657 /// possible. 1658 /// \return The debug location of the user written return statement if the 1659 /// return block is is avoided. 1660 llvm::DebugLoc EmitReturnBlock(); 1661 1662 /// FinishFunction - Complete IR generation of the current function. It is 1663 /// legal to call this function even if there is no current insertion point. 1664 void FinishFunction(SourceLocation EndLoc=SourceLocation()); 1665 1666 void StartThunk(llvm::Function *Fn, GlobalDecl GD, 1667 const CGFunctionInfo &FnInfo); 1668 1669 void EmitCallAndReturnForThunk(llvm::Constant *Callee, 1670 const ThunkInfo *Thunk); 1671 1672 void FinishThunk(); 1673 1674 /// Emit a musttail call for a thunk with a potentially adjusted this pointer. 1675 void EmitMustTailThunk(const CXXMethodDecl *MD, llvm::Value *AdjustedThisPtr, 1676 llvm::Value *Callee); 1677 1678 /// Generate a thunk for the given method. 1679 void generateThunk(llvm::Function *Fn, const CGFunctionInfo &FnInfo, 1680 GlobalDecl GD, const ThunkInfo &Thunk); 1681 1682 llvm::Function *GenerateVarArgsThunk(llvm::Function *Fn, 1683 const CGFunctionInfo &FnInfo, 1684 GlobalDecl GD, const ThunkInfo &Thunk); 1685 1686 void EmitCtorPrologue(const CXXConstructorDecl *CD, CXXCtorType Type, 1687 FunctionArgList &Args); 1688 1689 void EmitInitializerForField(FieldDecl *Field, LValue LHS, Expr *Init); 1690 1691 /// Struct with all informations about dynamic [sub]class needed to set vptr. 1692 struct VPtr { 1693 BaseSubobject Base; 1694 const CXXRecordDecl *NearestVBase; 1695 CharUnits OffsetFromNearestVBase; 1696 const CXXRecordDecl *VTableClass; 1697 }; 1698 1699 /// Initialize the vtable pointer of the given subobject. 1700 void InitializeVTablePointer(const VPtr &vptr); 1701 1702 typedef llvm::SmallVector<VPtr, 4> VPtrsVector; 1703 1704 typedef llvm::SmallPtrSet<const CXXRecordDecl *, 4> VisitedVirtualBasesSetTy; 1705 VPtrsVector getVTablePointers(const CXXRecordDecl *VTableClass); 1706 1707 void getVTablePointers(BaseSubobject Base, const CXXRecordDecl *NearestVBase, 1708 CharUnits OffsetFromNearestVBase, 1709 bool BaseIsNonVirtualPrimaryBase, 1710 const CXXRecordDecl *VTableClass, 1711 VisitedVirtualBasesSetTy &VBases, VPtrsVector &vptrs); 1712 1713 void InitializeVTablePointers(const CXXRecordDecl *ClassDecl); 1714 1715 /// GetVTablePtr - Return the Value of the vtable pointer member pointed 1716 /// to by This. 1717 llvm::Value *GetVTablePtr(Address This, llvm::Type *VTableTy, 1718 const CXXRecordDecl *VTableClass); 1719 1720 enum CFITypeCheckKind { 1721 CFITCK_VCall, 1722 CFITCK_NVCall, 1723 CFITCK_DerivedCast, 1724 CFITCK_UnrelatedCast, 1725 CFITCK_ICall, 1726 }; 1727 1728 /// \brief Derived is the presumed address of an object of type T after a 1729 /// cast. If T is a polymorphic class type, emit a check that the virtual 1730 /// table for Derived belongs to a class derived from T. 1731 void EmitVTablePtrCheckForCast(QualType T, llvm::Value *Derived, 1732 bool MayBeNull, CFITypeCheckKind TCK, 1733 SourceLocation Loc); 1734 1735 /// EmitVTablePtrCheckForCall - Virtual method MD is being called via VTable. 1736 /// If vptr CFI is enabled, emit a check that VTable is valid. 1737 void EmitVTablePtrCheckForCall(const CXXRecordDecl *RD, llvm::Value *VTable, 1738 CFITypeCheckKind TCK, SourceLocation Loc); 1739 1740 /// EmitVTablePtrCheck - Emit a check that VTable is a valid virtual table for 1741 /// RD using llvm.type.test. 1742 void EmitVTablePtrCheck(const CXXRecordDecl *RD, llvm::Value *VTable, 1743 CFITypeCheckKind TCK, SourceLocation Loc); 1744 1745 /// If whole-program virtual table optimization is enabled, emit an assumption 1746 /// that VTable is a member of RD's type identifier. Or, if vptr CFI is 1747 /// enabled, emit a check that VTable is a member of RD's type identifier. 1748 void EmitTypeMetadataCodeForVCall(const CXXRecordDecl *RD, 1749 llvm::Value *VTable, SourceLocation Loc); 1750 1751 /// Returns whether we should perform a type checked load when loading a 1752 /// virtual function for virtual calls to members of RD. This is generally 1753 /// true when both vcall CFI and whole-program-vtables are enabled. 1754 bool ShouldEmitVTableTypeCheckedLoad(const CXXRecordDecl *RD); 1755 1756 /// Emit a type checked load from the given vtable. 1757 llvm::Value *EmitVTableTypeCheckedLoad(const CXXRecordDecl *RD, llvm::Value *VTable, 1758 uint64_t VTableByteOffset); 1759 1760 /// EnterDtorCleanups - Enter the cleanups necessary to complete the 1761 /// given phase of destruction for a destructor. The end result 1762 /// should call destructors on members and base classes in reverse 1763 /// order of their construction. 1764 void EnterDtorCleanups(const CXXDestructorDecl *Dtor, CXXDtorType Type); 1765 1766 /// ShouldInstrumentFunction - Return true if the current function should be 1767 /// instrumented with __cyg_profile_func_* calls 1768 bool ShouldInstrumentFunction(); 1769 1770 /// ShouldXRayInstrument - Return true if the current function should be 1771 /// instrumented with XRay nop sleds. 1772 bool ShouldXRayInstrumentFunction() const; 1773 1774 /// AlwaysEmitXRayCustomEvents - Return true if we must unconditionally emit 1775 /// XRay custom event handling calls. 1776 bool AlwaysEmitXRayCustomEvents() const; 1777 1778 /// Encode an address into a form suitable for use in a function prologue. 1779 llvm::Constant *EncodeAddrForUseInPrologue(llvm::Function *F, 1780 llvm::Constant *Addr); 1781 1782 /// Decode an address used in a function prologue, encoded by \c 1783 /// EncodeAddrForUseInPrologue. 1784 llvm::Value *DecodeAddrUsedInPrologue(llvm::Value *F, 1785 llvm::Value *EncodedAddr); 1786 1787 /// EmitFunctionProlog - Emit the target specific LLVM code to load the 1788 /// arguments for the given function. This is also responsible for naming the 1789 /// LLVM function arguments. 1790 void EmitFunctionProlog(const CGFunctionInfo &FI, 1791 llvm::Function *Fn, 1792 const FunctionArgList &Args); 1793 1794 /// EmitFunctionEpilog - Emit the target specific LLVM code to return the 1795 /// given temporary. 1796 void EmitFunctionEpilog(const CGFunctionInfo &FI, bool EmitRetDbgLoc, 1797 SourceLocation EndLoc); 1798 1799 /// Emit a test that checks if the return value \p RV is nonnull. 1800 void EmitReturnValueCheck(llvm::Value *RV); 1801 1802 /// EmitStartEHSpec - Emit the start of the exception spec. 1803 void EmitStartEHSpec(const Decl *D); 1804 1805 /// EmitEndEHSpec - Emit the end of the exception spec. 1806 void EmitEndEHSpec(const Decl *D); 1807 1808 /// getTerminateLandingPad - Return a landing pad that just calls terminate. 1809 llvm::BasicBlock *getTerminateLandingPad(); 1810 1811 /// getTerminateHandler - Return a handler (not a landing pad, just 1812 /// a catch handler) that just calls terminate. This is used when 1813 /// a terminate scope encloses a try. 1814 llvm::BasicBlock *getTerminateHandler(); 1815 1816 llvm::Type *ConvertTypeForMem(QualType T); 1817 llvm::Type *ConvertType(QualType T); 1818 llvm::Type *ConvertType(const TypeDecl *T) { 1819 return ConvertType(getContext().getTypeDeclType(T)); 1820 } 1821 1822 /// LoadObjCSelf - Load the value of self. This function is only valid while 1823 /// generating code for an Objective-C method. 1824 llvm::Value *LoadObjCSelf(); 1825 1826 /// TypeOfSelfObject - Return type of object that this self represents. 1827 QualType TypeOfSelfObject(); 1828 1829 /// getEvaluationKind - Return the TypeEvaluationKind of QualType \c T. 1830 static TypeEvaluationKind getEvaluationKind(QualType T); 1831 1832 static bool hasScalarEvaluationKind(QualType T) { 1833 return getEvaluationKind(T) == TEK_Scalar; 1834 } 1835 1836 static bool hasAggregateEvaluationKind(QualType T) { 1837 return getEvaluationKind(T) == TEK_Aggregate; 1838 } 1839 1840 /// createBasicBlock - Create an LLVM basic block. 1841 llvm::BasicBlock *createBasicBlock(const Twine &name = "", 1842 llvm::Function *parent = nullptr, 1843 llvm::BasicBlock *before = nullptr) { 1844 #ifdef NDEBUG 1845 return llvm::BasicBlock::Create(getLLVMContext(), "", parent, before); 1846 #else 1847 return llvm::BasicBlock::Create(getLLVMContext(), name, parent, before); 1848 #endif 1849 } 1850 1851 /// getBasicBlockForLabel - Return the LLVM basicblock that the specified 1852 /// label maps to. 1853 JumpDest getJumpDestForLabel(const LabelDecl *S); 1854 1855 /// SimplifyForwardingBlocks - If the given basic block is only a branch to 1856 /// another basic block, simplify it. This assumes that no other code could 1857 /// potentially reference the basic block. 1858 void SimplifyForwardingBlocks(llvm::BasicBlock *BB); 1859 1860 /// EmitBlock - Emit the given block \arg BB and set it as the insert point, 1861 /// adding a fall-through branch from the current insert block if 1862 /// necessary. It is legal to call this function even if there is no current 1863 /// insertion point. 1864 /// 1865 /// IsFinished - If true, indicates that the caller has finished emitting 1866 /// branches to the given block and does not expect to emit code into it. This 1867 /// means the block can be ignored if it is unreachable. 1868 void EmitBlock(llvm::BasicBlock *BB, bool IsFinished=false); 1869 1870 /// EmitBlockAfterUses - Emit the given block somewhere hopefully 1871 /// near its uses, and leave the insertion point in it. 1872 void EmitBlockAfterUses(llvm::BasicBlock *BB); 1873 1874 /// EmitBranch - Emit a branch to the specified basic block from the current 1875 /// insert block, taking care to avoid creation of branches from dummy 1876 /// blocks. It is legal to call this function even if there is no current 1877 /// insertion point. 1878 /// 1879 /// This function clears the current insertion point. The caller should follow 1880 /// calls to this function with calls to Emit*Block prior to generation new 1881 /// code. 1882 void EmitBranch(llvm::BasicBlock *Block); 1883 1884 /// HaveInsertPoint - True if an insertion point is defined. If not, this 1885 /// indicates that the current code being emitted is unreachable. 1886 bool HaveInsertPoint() const { 1887 return Builder.GetInsertBlock() != nullptr; 1888 } 1889 1890 /// EnsureInsertPoint - Ensure that an insertion point is defined so that 1891 /// emitted IR has a place to go. Note that by definition, if this function 1892 /// creates a block then that block is unreachable; callers may do better to 1893 /// detect when no insertion point is defined and simply skip IR generation. 1894 void EnsureInsertPoint() { 1895 if (!HaveInsertPoint()) 1896 EmitBlock(createBasicBlock()); 1897 } 1898 1899 /// ErrorUnsupported - Print out an error that codegen doesn't support the 1900 /// specified stmt yet. 1901 void ErrorUnsupported(const Stmt *S, const char *Type); 1902 1903 //===--------------------------------------------------------------------===// 1904 // Helpers 1905 //===--------------------------------------------------------------------===// 1906 1907 LValue MakeAddrLValue(Address Addr, QualType T, 1908 AlignmentSource Source = AlignmentSource::Type) { 1909 return LValue::MakeAddr(Addr, T, getContext(), LValueBaseInfo(Source), 1910 CGM.getTBAAAccessInfo(T)); 1911 } 1912 1913 LValue MakeAddrLValue(Address Addr, QualType T, LValueBaseInfo BaseInfo, 1914 TBAAAccessInfo TBAAInfo) { 1915 return LValue::MakeAddr(Addr, T, getContext(), BaseInfo, TBAAInfo); 1916 } 1917 1918 LValue MakeAddrLValue(llvm::Value *V, QualType T, CharUnits Alignment, 1919 AlignmentSource Source = AlignmentSource::Type) { 1920 return LValue::MakeAddr(Address(V, Alignment), T, getContext(), 1921 LValueBaseInfo(Source), CGM.getTBAAAccessInfo(T)); 1922 } 1923 1924 LValue MakeAddrLValue(llvm::Value *V, QualType T, CharUnits Alignment, 1925 LValueBaseInfo BaseInfo, TBAAAccessInfo TBAAInfo) { 1926 return LValue::MakeAddr(Address(V, Alignment), T, getContext(), 1927 BaseInfo, TBAAInfo); 1928 } 1929 1930 LValue MakeNaturalAlignPointeeAddrLValue(llvm::Value *V, QualType T); 1931 LValue MakeNaturalAlignAddrLValue(llvm::Value *V, QualType T); 1932 CharUnits getNaturalTypeAlignment(QualType T, 1933 LValueBaseInfo *BaseInfo = nullptr, 1934 TBAAAccessInfo *TBAAInfo = nullptr, 1935 bool forPointeeType = false); 1936 CharUnits getNaturalPointeeTypeAlignment(QualType T, 1937 LValueBaseInfo *BaseInfo = nullptr, 1938 TBAAAccessInfo *TBAAInfo = nullptr); 1939 1940 Address EmitLoadOfReference(LValue RefLVal, 1941 LValueBaseInfo *PointeeBaseInfo = nullptr, 1942 TBAAAccessInfo *PointeeTBAAInfo = nullptr); 1943 LValue EmitLoadOfReferenceLValue(LValue RefLVal); 1944 LValue EmitLoadOfReferenceLValue(Address RefAddr, QualType RefTy, 1945 AlignmentSource Source = 1946 AlignmentSource::Type) { 1947 LValue RefLVal = MakeAddrLValue(RefAddr, RefTy, LValueBaseInfo(Source), 1948 CGM.getTBAAAccessInfo(RefTy)); 1949 return EmitLoadOfReferenceLValue(RefLVal); 1950 } 1951 1952 Address EmitLoadOfPointer(Address Ptr, const PointerType *PtrTy, 1953 LValueBaseInfo *BaseInfo = nullptr, 1954 TBAAAccessInfo *TBAAInfo = nullptr); 1955 LValue EmitLoadOfPointerLValue(Address Ptr, const PointerType *PtrTy); 1956 1957 /// CreateTempAlloca - This creates an alloca and inserts it into the entry 1958 /// block if \p ArraySize is nullptr, otherwise inserts it at the current 1959 /// insertion point of the builder. The caller is responsible for setting an 1960 /// appropriate alignment on 1961 /// the alloca. 1962 /// 1963 /// \p ArraySize is the number of array elements to be allocated if it 1964 /// is not nullptr. 1965 /// 1966 /// LangAS::Default is the address space of pointers to local variables and 1967 /// temporaries, as exposed in the source language. In certain 1968 /// configurations, this is not the same as the alloca address space, and a 1969 /// cast is needed to lift the pointer from the alloca AS into 1970 /// LangAS::Default. This can happen when the target uses a restricted 1971 /// address space for the stack but the source language requires 1972 /// LangAS::Default to be a generic address space. The latter condition is 1973 /// common for most programming languages; OpenCL is an exception in that 1974 /// LangAS::Default is the private address space, which naturally maps 1975 /// to the stack. 1976 /// 1977 /// Because the address of a temporary is often exposed to the program in 1978 /// various ways, this function will perform the cast by default. The cast 1979 /// may be avoided by passing false as \p CastToDefaultAddrSpace; this is 1980 /// more efficient if the caller knows that the address will not be exposed. 1981 llvm::AllocaInst *CreateTempAlloca(llvm::Type *Ty, const Twine &Name = "tmp", 1982 llvm::Value *ArraySize = nullptr); 1983 Address CreateTempAlloca(llvm::Type *Ty, CharUnits align, 1984 const Twine &Name = "tmp", 1985 llvm::Value *ArraySize = nullptr, 1986 bool CastToDefaultAddrSpace = true); 1987 1988 /// CreateDefaultAlignedTempAlloca - This creates an alloca with the 1989 /// default ABI alignment of the given LLVM type. 1990 /// 1991 /// IMPORTANT NOTE: This is *not* generally the right alignment for 1992 /// any given AST type that happens to have been lowered to the 1993 /// given IR type. This should only ever be used for function-local, 1994 /// IR-driven manipulations like saving and restoring a value. Do 1995 /// not hand this address off to arbitrary IRGen routines, and especially 1996 /// do not pass it as an argument to a function that might expect a 1997 /// properly ABI-aligned value. 1998 Address CreateDefaultAlignTempAlloca(llvm::Type *Ty, 1999 const Twine &Name = "tmp"); 2000 2001 /// InitTempAlloca - Provide an initial value for the given alloca which 2002 /// will be observable at all locations in the function. 2003 /// 2004 /// The address should be something that was returned from one of 2005 /// the CreateTempAlloca or CreateMemTemp routines, and the 2006 /// initializer must be valid in the entry block (i.e. it must 2007 /// either be a constant or an argument value). 2008 void InitTempAlloca(Address Alloca, llvm::Value *Value); 2009 2010 /// CreateIRTemp - Create a temporary IR object of the given type, with 2011 /// appropriate alignment. This routine should only be used when an temporary 2012 /// value needs to be stored into an alloca (for example, to avoid explicit 2013 /// PHI construction), but the type is the IR type, not the type appropriate 2014 /// for storing in memory. 2015 /// 2016 /// That is, this is exactly equivalent to CreateMemTemp, but calling 2017 /// ConvertType instead of ConvertTypeForMem. 2018 Address CreateIRTemp(QualType T, const Twine &Name = "tmp"); 2019 2020 /// CreateMemTemp - Create a temporary memory object of the given type, with 2021 /// appropriate alignment. Cast it to the default address space if 2022 /// \p CastToDefaultAddrSpace is true. 2023 Address CreateMemTemp(QualType T, const Twine &Name = "tmp", 2024 bool CastToDefaultAddrSpace = true); 2025 Address CreateMemTemp(QualType T, CharUnits Align, const Twine &Name = "tmp", 2026 bool CastToDefaultAddrSpace = true); 2027 2028 /// CreateAggTemp - Create a temporary memory object for the given 2029 /// aggregate type. 2030 AggValueSlot CreateAggTemp(QualType T, const Twine &Name = "tmp") { 2031 return AggValueSlot::forAddr(CreateMemTemp(T, Name), 2032 T.getQualifiers(), 2033 AggValueSlot::IsNotDestructed, 2034 AggValueSlot::DoesNotNeedGCBarriers, 2035 AggValueSlot::IsNotAliased); 2036 } 2037 2038 /// Emit a cast to void* in the appropriate address space. 2039 llvm::Value *EmitCastToVoidPtr(llvm::Value *value); 2040 2041 /// EvaluateExprAsBool - Perform the usual unary conversions on the specified 2042 /// expression and compare the result against zero, returning an Int1Ty value. 2043 llvm::Value *EvaluateExprAsBool(const Expr *E); 2044 2045 /// EmitIgnoredExpr - Emit an expression in a context which ignores the result. 2046 void EmitIgnoredExpr(const Expr *E); 2047 2048 /// EmitAnyExpr - Emit code to compute the specified expression which can have 2049 /// any type. The result is returned as an RValue struct. If this is an 2050 /// aggregate expression, the aggloc/agglocvolatile arguments indicate where 2051 /// the result should be returned. 2052 /// 2053 /// \param ignoreResult True if the resulting value isn't used. 2054 RValue EmitAnyExpr(const Expr *E, 2055 AggValueSlot aggSlot = AggValueSlot::ignored(), 2056 bool ignoreResult = false); 2057 2058 // EmitVAListRef - Emit a "reference" to a va_list; this is either the address 2059 // or the value of the expression, depending on how va_list is defined. 2060 Address EmitVAListRef(const Expr *E); 2061 2062 /// Emit a "reference" to a __builtin_ms_va_list; this is 2063 /// always the value of the expression, because a __builtin_ms_va_list is a 2064 /// pointer to a char. 2065 Address EmitMSVAListRef(const Expr *E); 2066 2067 /// EmitAnyExprToTemp - Similarly to EmitAnyExpr(), however, the result will 2068 /// always be accessible even if no aggregate location is provided. 2069 RValue EmitAnyExprToTemp(const Expr *E); 2070 2071 /// EmitAnyExprToMem - Emits the code necessary to evaluate an 2072 /// arbitrary expression into the given memory location. 2073 void EmitAnyExprToMem(const Expr *E, Address Location, 2074 Qualifiers Quals, bool IsInitializer); 2075 2076 void EmitAnyExprToExn(const Expr *E, Address Addr); 2077 2078 /// EmitExprAsInit - Emits the code necessary to initialize a 2079 /// location in memory with the given initializer. 2080 void EmitExprAsInit(const Expr *init, const ValueDecl *D, LValue lvalue, 2081 bool capturedByInit); 2082 2083 /// hasVolatileMember - returns true if aggregate type has a volatile 2084 /// member. 2085 bool hasVolatileMember(QualType T) { 2086 if (const RecordType *RT = T->getAs<RecordType>()) { 2087 const RecordDecl *RD = cast<RecordDecl>(RT->getDecl()); 2088 return RD->hasVolatileMember(); 2089 } 2090 return false; 2091 } 2092 /// EmitAggregateCopy - Emit an aggregate assignment. 2093 /// 2094 /// The difference to EmitAggregateCopy is that tail padding is not copied. 2095 /// This is required for correctness when assigning non-POD structures in C++. 2096 void EmitAggregateAssign(Address DestPtr, Address SrcPtr, 2097 QualType EltTy) { 2098 bool IsVolatile = hasVolatileMember(EltTy); 2099 EmitAggregateCopy(DestPtr, SrcPtr, EltTy, IsVolatile, true); 2100 } 2101 2102 void EmitAggregateCopyCtor(Address DestPtr, Address SrcPtr, 2103 QualType DestTy, QualType SrcTy) { 2104 EmitAggregateCopy(DestPtr, SrcPtr, SrcTy, /*IsVolatile=*/false, 2105 /*IsAssignment=*/false); 2106 } 2107 2108 /// EmitAggregateCopy - Emit an aggregate copy. 2109 /// 2110 /// \param isVolatile - True iff either the source or the destination is 2111 /// volatile. 2112 /// \param isAssignment - If false, allow padding to be copied. This often 2113 /// yields more efficient. 2114 void EmitAggregateCopy(Address DestPtr, Address SrcPtr, 2115 QualType EltTy, bool isVolatile=false, 2116 bool isAssignment = false); 2117 2118 /// GetAddrOfLocalVar - Return the address of a local variable. 2119 Address GetAddrOfLocalVar(const VarDecl *VD) { 2120 auto it = LocalDeclMap.find(VD); 2121 assert(it != LocalDeclMap.end() && 2122 "Invalid argument to GetAddrOfLocalVar(), no decl!"); 2123 return it->second; 2124 } 2125 2126 /// getOpaqueLValueMapping - Given an opaque value expression (which 2127 /// must be mapped to an l-value), return its mapping. 2128 const LValue &getOpaqueLValueMapping(const OpaqueValueExpr *e) { 2129 assert(OpaqueValueMapping::shouldBindAsLValue(e)); 2130 2131 llvm::DenseMap<const OpaqueValueExpr*,LValue>::iterator 2132 it = OpaqueLValues.find(e); 2133 assert(it != OpaqueLValues.end() && "no mapping for opaque value!"); 2134 return it->second; 2135 } 2136 2137 /// getOpaqueRValueMapping - Given an opaque value expression (which 2138 /// must be mapped to an r-value), return its mapping. 2139 const RValue &getOpaqueRValueMapping(const OpaqueValueExpr *e) { 2140 assert(!OpaqueValueMapping::shouldBindAsLValue(e)); 2141 2142 llvm::DenseMap<const OpaqueValueExpr*,RValue>::iterator 2143 it = OpaqueRValues.find(e); 2144 assert(it != OpaqueRValues.end() && "no mapping for opaque value!"); 2145 return it->second; 2146 } 2147 2148 /// Get the index of the current ArrayInitLoopExpr, if any. 2149 llvm::Value *getArrayInitIndex() { return ArrayInitIndex; } 2150 2151 /// getAccessedFieldNo - Given an encoded value and a result number, return 2152 /// the input field number being accessed. 2153 static unsigned getAccessedFieldNo(unsigned Idx, const llvm::Constant *Elts); 2154 2155 llvm::BlockAddress *GetAddrOfLabel(const LabelDecl *L); 2156 llvm::BasicBlock *GetIndirectGotoBlock(); 2157 2158 /// Check if \p E is a C++ "this" pointer wrapped in value-preserving casts. 2159 static bool IsWrappedCXXThis(const Expr *E); 2160 2161 /// EmitNullInitialization - Generate code to set a value of the given type to 2162 /// null, If the type contains data member pointers, they will be initialized 2163 /// to -1 in accordance with the Itanium C++ ABI. 2164 void EmitNullInitialization(Address DestPtr, QualType Ty); 2165 2166 /// Emits a call to an LLVM variable-argument intrinsic, either 2167 /// \c llvm.va_start or \c llvm.va_end. 2168 /// \param ArgValue A reference to the \c va_list as emitted by either 2169 /// \c EmitVAListRef or \c EmitMSVAListRef. 2170 /// \param IsStart If \c true, emits a call to \c llvm.va_start; otherwise, 2171 /// calls \c llvm.va_end. 2172 llvm::Value *EmitVAStartEnd(llvm::Value *ArgValue, bool IsStart); 2173 2174 /// Generate code to get an argument from the passed in pointer 2175 /// and update it accordingly. 2176 /// \param VE The \c VAArgExpr for which to generate code. 2177 /// \param VAListAddr Receives a reference to the \c va_list as emitted by 2178 /// either \c EmitVAListRef or \c EmitMSVAListRef. 2179 /// \returns A pointer to the argument. 2180 // FIXME: We should be able to get rid of this method and use the va_arg 2181 // instruction in LLVM instead once it works well enough. 2182 Address EmitVAArg(VAArgExpr *VE, Address &VAListAddr); 2183 2184 /// emitArrayLength - Compute the length of an array, even if it's a 2185 /// VLA, and drill down to the base element type. 2186 llvm::Value *emitArrayLength(const ArrayType *arrayType, 2187 QualType &baseType, 2188 Address &addr); 2189 2190 /// EmitVLASize - Capture all the sizes for the VLA expressions in 2191 /// the given variably-modified type and store them in the VLASizeMap. 2192 /// 2193 /// This function can be called with a null (unreachable) insert point. 2194 void EmitVariablyModifiedType(QualType Ty); 2195 2196 /// getVLASize - Returns an LLVM value that corresponds to the size, 2197 /// in non-variably-sized elements, of a variable length array type, 2198 /// plus that largest non-variably-sized element type. Assumes that 2199 /// the type has already been emitted with EmitVariablyModifiedType. 2200 std::pair<llvm::Value*,QualType> getVLASize(const VariableArrayType *vla); 2201 std::pair<llvm::Value*,QualType> getVLASize(QualType vla); 2202 2203 /// LoadCXXThis - Load the value of 'this'. This function is only valid while 2204 /// generating code for an C++ member function. 2205 llvm::Value *LoadCXXThis() { 2206 assert(CXXThisValue && "no 'this' value for this function"); 2207 return CXXThisValue; 2208 } 2209 Address LoadCXXThisAddress(); 2210 2211 /// LoadCXXVTT - Load the VTT parameter to base constructors/destructors have 2212 /// virtual bases. 2213 // FIXME: Every place that calls LoadCXXVTT is something 2214 // that needs to be abstracted properly. 2215 llvm::Value *LoadCXXVTT() { 2216 assert(CXXStructorImplicitParamValue && "no VTT value for this function"); 2217 return CXXStructorImplicitParamValue; 2218 } 2219 2220 /// GetAddressOfBaseOfCompleteClass - Convert the given pointer to a 2221 /// complete class to the given direct base. 2222 Address 2223 GetAddressOfDirectBaseInCompleteClass(Address Value, 2224 const CXXRecordDecl *Derived, 2225 const CXXRecordDecl *Base, 2226 bool BaseIsVirtual); 2227 2228 static bool ShouldNullCheckClassCastValue(const CastExpr *Cast); 2229 2230 /// GetAddressOfBaseClass - This function will add the necessary delta to the 2231 /// load of 'this' and returns address of the base class. 2232 Address GetAddressOfBaseClass(Address Value, 2233 const CXXRecordDecl *Derived, 2234 CastExpr::path_const_iterator PathBegin, 2235 CastExpr::path_const_iterator PathEnd, 2236 bool NullCheckValue, SourceLocation Loc); 2237 2238 Address GetAddressOfDerivedClass(Address Value, 2239 const CXXRecordDecl *Derived, 2240 CastExpr::path_const_iterator PathBegin, 2241 CastExpr::path_const_iterator PathEnd, 2242 bool NullCheckValue); 2243 2244 /// GetVTTParameter - Return the VTT parameter that should be passed to a 2245 /// base constructor/destructor with virtual bases. 2246 /// FIXME: VTTs are Itanium ABI-specific, so the definition should move 2247 /// to ItaniumCXXABI.cpp together with all the references to VTT. 2248 llvm::Value *GetVTTParameter(GlobalDecl GD, bool ForVirtualBase, 2249 bool Delegating); 2250 2251 void EmitDelegateCXXConstructorCall(const CXXConstructorDecl *Ctor, 2252 CXXCtorType CtorType, 2253 const FunctionArgList &Args, 2254 SourceLocation Loc); 2255 // It's important not to confuse this and the previous function. Delegating 2256 // constructors are the C++0x feature. The constructor delegate optimization 2257 // is used to reduce duplication in the base and complete consturctors where 2258 // they are substantially the same. 2259 void EmitDelegatingCXXConstructorCall(const CXXConstructorDecl *Ctor, 2260 const FunctionArgList &Args); 2261 2262 /// Emit a call to an inheriting constructor (that is, one that invokes a 2263 /// constructor inherited from a base class) by inlining its definition. This 2264 /// is necessary if the ABI does not support forwarding the arguments to the 2265 /// base class constructor (because they're variadic or similar). 2266 void EmitInlinedInheritingCXXConstructorCall(const CXXConstructorDecl *Ctor, 2267 CXXCtorType CtorType, 2268 bool ForVirtualBase, 2269 bool Delegating, 2270 CallArgList &Args); 2271 2272 /// Emit a call to a constructor inherited from a base class, passing the 2273 /// current constructor's arguments along unmodified (without even making 2274 /// a copy). 2275 void EmitInheritedCXXConstructorCall(const CXXConstructorDecl *D, 2276 bool ForVirtualBase, Address This, 2277 bool InheritedFromVBase, 2278 const CXXInheritedCtorInitExpr *E); 2279 2280 void EmitCXXConstructorCall(const CXXConstructorDecl *D, CXXCtorType Type, 2281 bool ForVirtualBase, bool Delegating, 2282 Address This, const CXXConstructExpr *E); 2283 2284 void EmitCXXConstructorCall(const CXXConstructorDecl *D, CXXCtorType Type, 2285 bool ForVirtualBase, bool Delegating, 2286 Address This, CallArgList &Args); 2287 2288 /// Emit assumption load for all bases. Requires to be be called only on 2289 /// most-derived class and not under construction of the object. 2290 void EmitVTableAssumptionLoads(const CXXRecordDecl *ClassDecl, Address This); 2291 2292 /// Emit assumption that vptr load == global vtable. 2293 void EmitVTableAssumptionLoad(const VPtr &vptr, Address This); 2294 2295 void EmitSynthesizedCXXCopyCtorCall(const CXXConstructorDecl *D, 2296 Address This, Address Src, 2297 const CXXConstructExpr *E); 2298 2299 void EmitCXXAggrConstructorCall(const CXXConstructorDecl *D, 2300 const ArrayType *ArrayTy, 2301 Address ArrayPtr, 2302 const CXXConstructExpr *E, 2303 bool ZeroInitialization = false); 2304 2305 void EmitCXXAggrConstructorCall(const CXXConstructorDecl *D, 2306 llvm::Value *NumElements, 2307 Address ArrayPtr, 2308 const CXXConstructExpr *E, 2309 bool ZeroInitialization = false); 2310 2311 static Destroyer destroyCXXObject; 2312 2313 void EmitCXXDestructorCall(const CXXDestructorDecl *D, CXXDtorType Type, 2314 bool ForVirtualBase, bool Delegating, 2315 Address This); 2316 2317 void EmitNewArrayInitializer(const CXXNewExpr *E, QualType elementType, 2318 llvm::Type *ElementTy, Address NewPtr, 2319 llvm::Value *NumElements, 2320 llvm::Value *AllocSizeWithoutCookie); 2321 2322 void EmitCXXTemporary(const CXXTemporary *Temporary, QualType TempType, 2323 Address Ptr); 2324 2325 llvm::Value *EmitLifetimeStart(uint64_t Size, llvm::Value *Addr); 2326 void EmitLifetimeEnd(llvm::Value *Size, llvm::Value *Addr); 2327 2328 llvm::Value *EmitCXXNewExpr(const CXXNewExpr *E); 2329 void EmitCXXDeleteExpr(const CXXDeleteExpr *E); 2330 2331 void EmitDeleteCall(const FunctionDecl *DeleteFD, llvm::Value *Ptr, 2332 QualType DeleteTy, llvm::Value *NumElements = nullptr, 2333 CharUnits CookieSize = CharUnits()); 2334 2335 RValue EmitBuiltinNewDeleteCall(const FunctionProtoType *Type, 2336 const Expr *Arg, bool IsDelete); 2337 2338 llvm::Value *EmitCXXTypeidExpr(const CXXTypeidExpr *E); 2339 llvm::Value *EmitDynamicCast(Address V, const CXXDynamicCastExpr *DCE); 2340 Address EmitCXXUuidofExpr(const CXXUuidofExpr *E); 2341 2342 /// \brief Situations in which we might emit a check for the suitability of a 2343 /// pointer or glvalue. 2344 enum TypeCheckKind { 2345 /// Checking the operand of a load. Must be suitably sized and aligned. 2346 TCK_Load, 2347 /// Checking the destination of a store. Must be suitably sized and aligned. 2348 TCK_Store, 2349 /// Checking the bound value in a reference binding. Must be suitably sized 2350 /// and aligned, but is not required to refer to an object (until the 2351 /// reference is used), per core issue 453. 2352 TCK_ReferenceBinding, 2353 /// Checking the object expression in a non-static data member access. Must 2354 /// be an object within its lifetime. 2355 TCK_MemberAccess, 2356 /// Checking the 'this' pointer for a call to a non-static member function. 2357 /// Must be an object within its lifetime. 2358 TCK_MemberCall, 2359 /// Checking the 'this' pointer for a constructor call. 2360 TCK_ConstructorCall, 2361 /// Checking the operand of a static_cast to a derived pointer type. Must be 2362 /// null or an object within its lifetime. 2363 TCK_DowncastPointer, 2364 /// Checking the operand of a static_cast to a derived reference type. Must 2365 /// be an object within its lifetime. 2366 TCK_DowncastReference, 2367 /// Checking the operand of a cast to a base object. Must be suitably sized 2368 /// and aligned. 2369 TCK_Upcast, 2370 /// Checking the operand of a cast to a virtual base object. Must be an 2371 /// object within its lifetime. 2372 TCK_UpcastToVirtualBase, 2373 /// Checking the value assigned to a _Nonnull pointer. Must not be null. 2374 TCK_NonnullAssign 2375 }; 2376 2377 /// Determine whether the pointer type check \p TCK permits null pointers. 2378 static bool isNullPointerAllowed(TypeCheckKind TCK); 2379 2380 /// Determine whether the pointer type check \p TCK requires a vptr check. 2381 static bool isVptrCheckRequired(TypeCheckKind TCK, QualType Ty); 2382 2383 /// \brief Whether any type-checking sanitizers are enabled. If \c false, 2384 /// calls to EmitTypeCheck can be skipped. 2385 bool sanitizePerformTypeCheck() const; 2386 2387 /// \brief Emit a check that \p V is the address of storage of the 2388 /// appropriate size and alignment for an object of type \p Type. 2389 void EmitTypeCheck(TypeCheckKind TCK, SourceLocation Loc, llvm::Value *V, 2390 QualType Type, CharUnits Alignment = CharUnits::Zero(), 2391 SanitizerSet SkippedChecks = SanitizerSet()); 2392 2393 /// \brief Emit a check that \p Base points into an array object, which 2394 /// we can access at index \p Index. \p Accessed should be \c false if we 2395 /// this expression is used as an lvalue, for instance in "&Arr[Idx]". 2396 void EmitBoundsCheck(const Expr *E, const Expr *Base, llvm::Value *Index, 2397 QualType IndexType, bool Accessed); 2398 2399 llvm::Value *EmitScalarPrePostIncDec(const UnaryOperator *E, LValue LV, 2400 bool isInc, bool isPre); 2401 ComplexPairTy EmitComplexPrePostIncDec(const UnaryOperator *E, LValue LV, 2402 bool isInc, bool isPre); 2403 2404 void EmitAlignmentAssumption(llvm::Value *PtrValue, unsigned Alignment, 2405 llvm::Value *OffsetValue = nullptr) { 2406 Builder.CreateAlignmentAssumption(CGM.getDataLayout(), PtrValue, Alignment, 2407 OffsetValue); 2408 } 2409 2410 /// Converts Location to a DebugLoc, if debug information is enabled. 2411 llvm::DebugLoc SourceLocToDebugLoc(SourceLocation Location); 2412 2413 2414 //===--------------------------------------------------------------------===// 2415 // Declaration Emission 2416 //===--------------------------------------------------------------------===// 2417 2418 /// EmitDecl - Emit a declaration. 2419 /// 2420 /// This function can be called with a null (unreachable) insert point. 2421 void EmitDecl(const Decl &D); 2422 2423 /// EmitVarDecl - Emit a local variable declaration. 2424 /// 2425 /// This function can be called with a null (unreachable) insert point. 2426 void EmitVarDecl(const VarDecl &D); 2427 2428 void EmitScalarInit(const Expr *init, const ValueDecl *D, LValue lvalue, 2429 bool capturedByInit); 2430 2431 typedef void SpecialInitFn(CodeGenFunction &Init, const VarDecl &D, 2432 llvm::Value *Address); 2433 2434 /// \brief Determine whether the given initializer is trivial in the sense 2435 /// that it requires no code to be generated. 2436 bool isTrivialInitializer(const Expr *Init); 2437 2438 /// EmitAutoVarDecl - Emit an auto variable declaration. 2439 /// 2440 /// This function can be called with a null (unreachable) insert point. 2441 void EmitAutoVarDecl(const VarDecl &D); 2442 2443 class AutoVarEmission { 2444 friend class CodeGenFunction; 2445 2446 const VarDecl *Variable; 2447 2448 /// The address of the alloca. Invalid if the variable was emitted 2449 /// as a global constant. 2450 Address Addr; 2451 2452 llvm::Value *NRVOFlag; 2453 2454 /// True if the variable is a __block variable. 2455 bool IsByRef; 2456 2457 /// True if the variable is of aggregate type and has a constant 2458 /// initializer. 2459 bool IsConstantAggregate; 2460 2461 /// Non-null if we should use lifetime annotations. 2462 llvm::Value *SizeForLifetimeMarkers; 2463 2464 struct Invalid {}; 2465 AutoVarEmission(Invalid) : Variable(nullptr), Addr(Address::invalid()) {} 2466 2467 AutoVarEmission(const VarDecl &variable) 2468 : Variable(&variable), Addr(Address::invalid()), NRVOFlag(nullptr), 2469 IsByRef(false), IsConstantAggregate(false), 2470 SizeForLifetimeMarkers(nullptr) {} 2471 2472 bool wasEmittedAsGlobal() const { return !Addr.isValid(); } 2473 2474 public: 2475 static AutoVarEmission invalid() { return AutoVarEmission(Invalid()); } 2476 2477 bool useLifetimeMarkers() const { 2478 return SizeForLifetimeMarkers != nullptr; 2479 } 2480 llvm::Value *getSizeForLifetimeMarkers() const { 2481 assert(useLifetimeMarkers()); 2482 return SizeForLifetimeMarkers; 2483 } 2484 2485 /// Returns the raw, allocated address, which is not necessarily 2486 /// the address of the object itself. 2487 Address getAllocatedAddress() const { 2488 return Addr; 2489 } 2490 2491 /// Returns the address of the object within this declaration. 2492 /// Note that this does not chase the forwarding pointer for 2493 /// __block decls. 2494 Address getObjectAddress(CodeGenFunction &CGF) const { 2495 if (!IsByRef) return Addr; 2496 2497 return CGF.emitBlockByrefAddress(Addr, Variable, /*forward*/ false); 2498 } 2499 }; 2500 AutoVarEmission EmitAutoVarAlloca(const VarDecl &var); 2501 void EmitAutoVarInit(const AutoVarEmission &emission); 2502 void EmitAutoVarCleanups(const AutoVarEmission &emission); 2503 void emitAutoVarTypeCleanup(const AutoVarEmission &emission, 2504 QualType::DestructionKind dtorKind); 2505 2506 void EmitStaticVarDecl(const VarDecl &D, 2507 llvm::GlobalValue::LinkageTypes Linkage); 2508 2509 class ParamValue { 2510 llvm::Value *Value; 2511 unsigned Alignment; 2512 ParamValue(llvm::Value *V, unsigned A) : Value(V), Alignment(A) {} 2513 public: 2514 static ParamValue forDirect(llvm::Value *value) { 2515 return ParamValue(value, 0); 2516 } 2517 static ParamValue forIndirect(Address addr) { 2518 assert(!addr.getAlignment().isZero()); 2519 return ParamValue(addr.getPointer(), addr.getAlignment().getQuantity()); 2520 } 2521 2522 bool isIndirect() const { return Alignment != 0; } 2523 llvm::Value *getAnyValue() const { return Value; } 2524 2525 llvm::Value *getDirectValue() const { 2526 assert(!isIndirect()); 2527 return Value; 2528 } 2529 2530 Address getIndirectAddress() const { 2531 assert(isIndirect()); 2532 return Address(Value, CharUnits::fromQuantity(Alignment)); 2533 } 2534 }; 2535 2536 /// EmitParmDecl - Emit a ParmVarDecl or an ImplicitParamDecl. 2537 void EmitParmDecl(const VarDecl &D, ParamValue Arg, unsigned ArgNo); 2538 2539 /// protectFromPeepholes - Protect a value that we're intending to 2540 /// store to the side, but which will probably be used later, from 2541 /// aggressive peepholing optimizations that might delete it. 2542 /// 2543 /// Pass the result to unprotectFromPeepholes to declare that 2544 /// protection is no longer required. 2545 /// 2546 /// There's no particular reason why this shouldn't apply to 2547 /// l-values, it's just that no existing peepholes work on pointers. 2548 PeepholeProtection protectFromPeepholes(RValue rvalue); 2549 void unprotectFromPeepholes(PeepholeProtection protection); 2550 2551 void EmitAlignmentAssumption(llvm::Value *PtrValue, llvm::Value *Alignment, 2552 llvm::Value *OffsetValue = nullptr) { 2553 Builder.CreateAlignmentAssumption(CGM.getDataLayout(), PtrValue, Alignment, 2554 OffsetValue); 2555 } 2556 2557 //===--------------------------------------------------------------------===// 2558 // Statement Emission 2559 //===--------------------------------------------------------------------===// 2560 2561 /// EmitStopPoint - Emit a debug stoppoint if we are emitting debug info. 2562 void EmitStopPoint(const Stmt *S); 2563 2564 /// EmitStmt - Emit the code for the statement \arg S. It is legal to call 2565 /// this function even if there is no current insertion point. 2566 /// 2567 /// This function may clear the current insertion point; callers should use 2568 /// EnsureInsertPoint if they wish to subsequently generate code without first 2569 /// calling EmitBlock, EmitBranch, or EmitStmt. 2570 void EmitStmt(const Stmt *S, ArrayRef<const Attr *> Attrs = None); 2571 2572 /// EmitSimpleStmt - Try to emit a "simple" statement which does not 2573 /// necessarily require an insertion point or debug information; typically 2574 /// because the statement amounts to a jump or a container of other 2575 /// statements. 2576 /// 2577 /// \return True if the statement was handled. 2578 bool EmitSimpleStmt(const Stmt *S); 2579 2580 Address EmitCompoundStmt(const CompoundStmt &S, bool GetLast = false, 2581 AggValueSlot AVS = AggValueSlot::ignored()); 2582 Address EmitCompoundStmtWithoutScope(const CompoundStmt &S, 2583 bool GetLast = false, 2584 AggValueSlot AVS = 2585 AggValueSlot::ignored()); 2586 2587 /// EmitLabel - Emit the block for the given label. It is legal to call this 2588 /// function even if there is no current insertion point. 2589 void EmitLabel(const LabelDecl *D); // helper for EmitLabelStmt. 2590 2591 void EmitLabelStmt(const LabelStmt &S); 2592 void EmitAttributedStmt(const AttributedStmt &S); 2593 void EmitGotoStmt(const GotoStmt &S); 2594 void EmitIndirectGotoStmt(const IndirectGotoStmt &S); 2595 void EmitIfStmt(const IfStmt &S); 2596 2597 void EmitWhileStmt(const WhileStmt &S, 2598 ArrayRef<const Attr *> Attrs = None); 2599 void EmitDoStmt(const DoStmt &S, ArrayRef<const Attr *> Attrs = None); 2600 void EmitForStmt(const ForStmt &S, 2601 ArrayRef<const Attr *> Attrs = None); 2602 void EmitReturnStmt(const ReturnStmt &S); 2603 void EmitDeclStmt(const DeclStmt &S); 2604 void EmitBreakStmt(const BreakStmt &S); 2605 void EmitContinueStmt(const ContinueStmt &S); 2606 void EmitSwitchStmt(const SwitchStmt &S); 2607 void EmitDefaultStmt(const DefaultStmt &S); 2608 void EmitCaseStmt(const CaseStmt &S); 2609 void EmitCaseStmtRange(const CaseStmt &S); 2610 void EmitAsmStmt(const AsmStmt &S); 2611 2612 void EmitObjCForCollectionStmt(const ObjCForCollectionStmt &S); 2613 void EmitObjCAtTryStmt(const ObjCAtTryStmt &S); 2614 void EmitObjCAtThrowStmt(const ObjCAtThrowStmt &S); 2615 void EmitObjCAtSynchronizedStmt(const ObjCAtSynchronizedStmt &S); 2616 void EmitObjCAutoreleasePoolStmt(const ObjCAutoreleasePoolStmt &S); 2617 2618 void EmitCoroutineBody(const CoroutineBodyStmt &S); 2619 void EmitCoreturnStmt(const CoreturnStmt &S); 2620 RValue EmitCoawaitExpr(const CoawaitExpr &E, 2621 AggValueSlot aggSlot = AggValueSlot::ignored(), 2622 bool ignoreResult = false); 2623 LValue EmitCoawaitLValue(const CoawaitExpr *E); 2624 RValue EmitCoyieldExpr(const CoyieldExpr &E, 2625 AggValueSlot aggSlot = AggValueSlot::ignored(), 2626 bool ignoreResult = false); 2627 LValue EmitCoyieldLValue(const CoyieldExpr *E); 2628 RValue EmitCoroutineIntrinsic(const CallExpr *E, unsigned int IID); 2629 2630 void EnterCXXTryStmt(const CXXTryStmt &S, bool IsFnTryBlock = false); 2631 void ExitCXXTryStmt(const CXXTryStmt &S, bool IsFnTryBlock = false); 2632 2633 void EmitCXXTryStmt(const CXXTryStmt &S); 2634 void EmitSEHTryStmt(const SEHTryStmt &S); 2635 void EmitSEHLeaveStmt(const SEHLeaveStmt &S); 2636 void EnterSEHTryStmt(const SEHTryStmt &S); 2637 void ExitSEHTryStmt(const SEHTryStmt &S); 2638 2639 void startOutlinedSEHHelper(CodeGenFunction &ParentCGF, bool IsFilter, 2640 const Stmt *OutlinedStmt); 2641 2642 llvm::Function *GenerateSEHFilterFunction(CodeGenFunction &ParentCGF, 2643 const SEHExceptStmt &Except); 2644 2645 llvm::Function *GenerateSEHFinallyFunction(CodeGenFunction &ParentCGF, 2646 const SEHFinallyStmt &Finally); 2647 2648 void EmitSEHExceptionCodeSave(CodeGenFunction &ParentCGF, 2649 llvm::Value *ParentFP, 2650 llvm::Value *EntryEBP); 2651 llvm::Value *EmitSEHExceptionCode(); 2652 llvm::Value *EmitSEHExceptionInfo(); 2653 llvm::Value *EmitSEHAbnormalTermination(); 2654 2655 /// Scan the outlined statement for captures from the parent function. For 2656 /// each capture, mark the capture as escaped and emit a call to 2657 /// llvm.localrecover. Insert the localrecover result into the LocalDeclMap. 2658 void EmitCapturedLocals(CodeGenFunction &ParentCGF, const Stmt *OutlinedStmt, 2659 bool IsFilter); 2660 2661 /// Recovers the address of a local in a parent function. ParentVar is the 2662 /// address of the variable used in the immediate parent function. It can 2663 /// either be an alloca or a call to llvm.localrecover if there are nested 2664 /// outlined functions. ParentFP is the frame pointer of the outermost parent 2665 /// frame. 2666 Address recoverAddrOfEscapedLocal(CodeGenFunction &ParentCGF, 2667 Address ParentVar, 2668 llvm::Value *ParentFP); 2669 2670 void EmitCXXForRangeStmt(const CXXForRangeStmt &S, 2671 ArrayRef<const Attr *> Attrs = None); 2672 2673 /// Controls insertion of cancellation exit blocks in worksharing constructs. 2674 class OMPCancelStackRAII { 2675 CodeGenFunction &CGF; 2676 2677 public: 2678 OMPCancelStackRAII(CodeGenFunction &CGF, OpenMPDirectiveKind Kind, 2679 bool HasCancel) 2680 : CGF(CGF) { 2681 CGF.OMPCancelStack.enter(CGF, Kind, HasCancel); 2682 } 2683 ~OMPCancelStackRAII() { CGF.OMPCancelStack.exit(CGF); } 2684 }; 2685 2686 /// Returns calculated size of the specified type. 2687 llvm::Value *getTypeSize(QualType Ty); 2688 LValue InitCapturedStruct(const CapturedStmt &S); 2689 llvm::Function *EmitCapturedStmt(const CapturedStmt &S, CapturedRegionKind K); 2690 llvm::Function *GenerateCapturedStmtFunction(const CapturedStmt &S); 2691 Address GenerateCapturedStmtArgument(const CapturedStmt &S); 2692 llvm::Function *GenerateOpenMPCapturedStmtFunction(const CapturedStmt &S); 2693 void GenerateOpenMPCapturedVars(const CapturedStmt &S, 2694 SmallVectorImpl<llvm::Value *> &CapturedVars); 2695 void emitOMPSimpleStore(LValue LVal, RValue RVal, QualType RValTy, 2696 SourceLocation Loc); 2697 /// \brief Perform element by element copying of arrays with type \a 2698 /// OriginalType from \a SrcAddr to \a DestAddr using copying procedure 2699 /// generated by \a CopyGen. 2700 /// 2701 /// \param DestAddr Address of the destination array. 2702 /// \param SrcAddr Address of the source array. 2703 /// \param OriginalType Type of destination and source arrays. 2704 /// \param CopyGen Copying procedure that copies value of single array element 2705 /// to another single array element. 2706 void EmitOMPAggregateAssign( 2707 Address DestAddr, Address SrcAddr, QualType OriginalType, 2708 const llvm::function_ref<void(Address, Address)> &CopyGen); 2709 /// \brief Emit proper copying of data from one variable to another. 2710 /// 2711 /// \param OriginalType Original type of the copied variables. 2712 /// \param DestAddr Destination address. 2713 /// \param SrcAddr Source address. 2714 /// \param DestVD Destination variable used in \a CopyExpr (for arrays, has 2715 /// type of the base array element). 2716 /// \param SrcVD Source variable used in \a CopyExpr (for arrays, has type of 2717 /// the base array element). 2718 /// \param Copy Actual copygin expression for copying data from \a SrcVD to \a 2719 /// DestVD. 2720 void EmitOMPCopy(QualType OriginalType, 2721 Address DestAddr, Address SrcAddr, 2722 const VarDecl *DestVD, const VarDecl *SrcVD, 2723 const Expr *Copy); 2724 /// \brief Emit atomic update code for constructs: \a X = \a X \a BO \a E or 2725 /// \a X = \a E \a BO \a E. 2726 /// 2727 /// \param X Value to be updated. 2728 /// \param E Update value. 2729 /// \param BO Binary operation for update operation. 2730 /// \param IsXLHSInRHSPart true if \a X is LHS in RHS part of the update 2731 /// expression, false otherwise. 2732 /// \param AO Atomic ordering of the generated atomic instructions. 2733 /// \param CommonGen Code generator for complex expressions that cannot be 2734 /// expressed through atomicrmw instruction. 2735 /// \returns <true, OldAtomicValue> if simple 'atomicrmw' instruction was 2736 /// generated, <false, RValue::get(nullptr)> otherwise. 2737 std::pair<bool, RValue> EmitOMPAtomicSimpleUpdateExpr( 2738 LValue X, RValue E, BinaryOperatorKind BO, bool IsXLHSInRHSPart, 2739 llvm::AtomicOrdering AO, SourceLocation Loc, 2740 const llvm::function_ref<RValue(RValue)> &CommonGen); 2741 bool EmitOMPFirstprivateClause(const OMPExecutableDirective &D, 2742 OMPPrivateScope &PrivateScope); 2743 void EmitOMPPrivateClause(const OMPExecutableDirective &D, 2744 OMPPrivateScope &PrivateScope); 2745 void EmitOMPUseDevicePtrClause( 2746 const OMPClause &C, OMPPrivateScope &PrivateScope, 2747 const llvm::DenseMap<const ValueDecl *, Address> &CaptureDeviceAddrMap); 2748 /// \brief Emit code for copyin clause in \a D directive. The next code is 2749 /// generated at the start of outlined functions for directives: 2750 /// \code 2751 /// threadprivate_var1 = master_threadprivate_var1; 2752 /// operator=(threadprivate_var2, master_threadprivate_var2); 2753 /// ... 2754 /// __kmpc_barrier(&loc, global_tid); 2755 /// \endcode 2756 /// 2757 /// \param D OpenMP directive possibly with 'copyin' clause(s). 2758 /// \returns true if at least one copyin variable is found, false otherwise. 2759 bool EmitOMPCopyinClause(const OMPExecutableDirective &D); 2760 /// \brief Emit initial code for lastprivate variables. If some variable is 2761 /// not also firstprivate, then the default initialization is used. Otherwise 2762 /// initialization of this variable is performed by EmitOMPFirstprivateClause 2763 /// method. 2764 /// 2765 /// \param D Directive that may have 'lastprivate' directives. 2766 /// \param PrivateScope Private scope for capturing lastprivate variables for 2767 /// proper codegen in internal captured statement. 2768 /// 2769 /// \returns true if there is at least one lastprivate variable, false 2770 /// otherwise. 2771 bool EmitOMPLastprivateClauseInit(const OMPExecutableDirective &D, 2772 OMPPrivateScope &PrivateScope); 2773 /// \brief Emit final copying of lastprivate values to original variables at 2774 /// the end of the worksharing or simd directive. 2775 /// 2776 /// \param D Directive that has at least one 'lastprivate' directives. 2777 /// \param IsLastIterCond Boolean condition that must be set to 'i1 true' if 2778 /// it is the last iteration of the loop code in associated directive, or to 2779 /// 'i1 false' otherwise. If this item is nullptr, no final check is required. 2780 void EmitOMPLastprivateClauseFinal(const OMPExecutableDirective &D, 2781 bool NoFinals, 2782 llvm::Value *IsLastIterCond = nullptr); 2783 /// Emit initial code for linear clauses. 2784 void EmitOMPLinearClause(const OMPLoopDirective &D, 2785 CodeGenFunction::OMPPrivateScope &PrivateScope); 2786 /// Emit final code for linear clauses. 2787 /// \param CondGen Optional conditional code for final part of codegen for 2788 /// linear clause. 2789 void EmitOMPLinearClauseFinal( 2790 const OMPLoopDirective &D, 2791 const llvm::function_ref<llvm::Value *(CodeGenFunction &)> &CondGen); 2792 /// \brief Emit initial code for reduction variables. Creates reduction copies 2793 /// and initializes them with the values according to OpenMP standard. 2794 /// 2795 /// \param D Directive (possibly) with the 'reduction' clause. 2796 /// \param PrivateScope Private scope for capturing reduction variables for 2797 /// proper codegen in internal captured statement. 2798 /// 2799 void EmitOMPReductionClauseInit(const OMPExecutableDirective &D, 2800 OMPPrivateScope &PrivateScope); 2801 /// \brief Emit final update of reduction values to original variables at 2802 /// the end of the directive. 2803 /// 2804 /// \param D Directive that has at least one 'reduction' directives. 2805 /// \param ReductionKind The kind of reduction to perform. 2806 void EmitOMPReductionClauseFinal(const OMPExecutableDirective &D, 2807 const OpenMPDirectiveKind ReductionKind); 2808 /// \brief Emit initial code for linear variables. Creates private copies 2809 /// and initializes them with the values according to OpenMP standard. 2810 /// 2811 /// \param D Directive (possibly) with the 'linear' clause. 2812 /// \return true if at least one linear variable is found that should be 2813 /// initialized with the value of the original variable, false otherwise. 2814 bool EmitOMPLinearClauseInit(const OMPLoopDirective &D); 2815 2816 typedef const llvm::function_ref<void(CodeGenFunction & /*CGF*/, 2817 llvm::Value * /*OutlinedFn*/, 2818 const OMPTaskDataTy & /*Data*/)> 2819 TaskGenTy; 2820 void EmitOMPTaskBasedDirective(const OMPExecutableDirective &S, 2821 const RegionCodeGenTy &BodyGen, 2822 const TaskGenTy &TaskGen, OMPTaskDataTy &Data); 2823 2824 void EmitOMPParallelDirective(const OMPParallelDirective &S); 2825 void EmitOMPSimdDirective(const OMPSimdDirective &S); 2826 void EmitOMPForDirective(const OMPForDirective &S); 2827 void EmitOMPForSimdDirective(const OMPForSimdDirective &S); 2828 void EmitOMPSectionsDirective(const OMPSectionsDirective &S); 2829 void EmitOMPSectionDirective(const OMPSectionDirective &S); 2830 void EmitOMPSingleDirective(const OMPSingleDirective &S); 2831 void EmitOMPMasterDirective(const OMPMasterDirective &S); 2832 void EmitOMPCriticalDirective(const OMPCriticalDirective &S); 2833 void EmitOMPParallelForDirective(const OMPParallelForDirective &S); 2834 void EmitOMPParallelForSimdDirective(const OMPParallelForSimdDirective &S); 2835 void EmitOMPParallelSectionsDirective(const OMPParallelSectionsDirective &S); 2836 void EmitOMPTaskDirective(const OMPTaskDirective &S); 2837 void EmitOMPTaskyieldDirective(const OMPTaskyieldDirective &S); 2838 void EmitOMPBarrierDirective(const OMPBarrierDirective &S); 2839 void EmitOMPTaskwaitDirective(const OMPTaskwaitDirective &S); 2840 void EmitOMPTaskgroupDirective(const OMPTaskgroupDirective &S); 2841 void EmitOMPFlushDirective(const OMPFlushDirective &S); 2842 void EmitOMPOrderedDirective(const OMPOrderedDirective &S); 2843 void EmitOMPAtomicDirective(const OMPAtomicDirective &S); 2844 void EmitOMPTargetDirective(const OMPTargetDirective &S); 2845 void EmitOMPTargetDataDirective(const OMPTargetDataDirective &S); 2846 void EmitOMPTargetEnterDataDirective(const OMPTargetEnterDataDirective &S); 2847 void EmitOMPTargetExitDataDirective(const OMPTargetExitDataDirective &S); 2848 void EmitOMPTargetUpdateDirective(const OMPTargetUpdateDirective &S); 2849 void EmitOMPTargetParallelDirective(const OMPTargetParallelDirective &S); 2850 void 2851 EmitOMPTargetParallelForDirective(const OMPTargetParallelForDirective &S); 2852 void EmitOMPTeamsDirective(const OMPTeamsDirective &S); 2853 void 2854 EmitOMPCancellationPointDirective(const OMPCancellationPointDirective &S); 2855 void EmitOMPCancelDirective(const OMPCancelDirective &S); 2856 void EmitOMPTaskLoopBasedDirective(const OMPLoopDirective &S); 2857 void EmitOMPTaskLoopDirective(const OMPTaskLoopDirective &S); 2858 void EmitOMPTaskLoopSimdDirective(const OMPTaskLoopSimdDirective &S); 2859 void EmitOMPDistributeDirective(const OMPDistributeDirective &S); 2860 void EmitOMPDistributeParallelForDirective( 2861 const OMPDistributeParallelForDirective &S); 2862 void EmitOMPDistributeParallelForSimdDirective( 2863 const OMPDistributeParallelForSimdDirective &S); 2864 void EmitOMPDistributeSimdDirective(const OMPDistributeSimdDirective &S); 2865 void EmitOMPTargetParallelForSimdDirective( 2866 const OMPTargetParallelForSimdDirective &S); 2867 void EmitOMPTargetSimdDirective(const OMPTargetSimdDirective &S); 2868 void EmitOMPTeamsDistributeDirective(const OMPTeamsDistributeDirective &S); 2869 void 2870 EmitOMPTeamsDistributeSimdDirective(const OMPTeamsDistributeSimdDirective &S); 2871 void EmitOMPTeamsDistributeParallelForSimdDirective( 2872 const OMPTeamsDistributeParallelForSimdDirective &S); 2873 void EmitOMPTeamsDistributeParallelForDirective( 2874 const OMPTeamsDistributeParallelForDirective &S); 2875 void EmitOMPTargetTeamsDirective(const OMPTargetTeamsDirective &S); 2876 void EmitOMPTargetTeamsDistributeDirective( 2877 const OMPTargetTeamsDistributeDirective &S); 2878 void EmitOMPTargetTeamsDistributeParallelForDirective( 2879 const OMPTargetTeamsDistributeParallelForDirective &S); 2880 void EmitOMPTargetTeamsDistributeParallelForSimdDirective( 2881 const OMPTargetTeamsDistributeParallelForSimdDirective &S); 2882 void EmitOMPTargetTeamsDistributeSimdDirective( 2883 const OMPTargetTeamsDistributeSimdDirective &S); 2884 2885 /// Emit device code for the target directive. 2886 static void EmitOMPTargetDeviceFunction(CodeGenModule &CGM, 2887 StringRef ParentName, 2888 const OMPTargetDirective &S); 2889 static void 2890 EmitOMPTargetParallelDeviceFunction(CodeGenModule &CGM, StringRef ParentName, 2891 const OMPTargetParallelDirective &S); 2892 /// Emit device code for the target parallel for directive. 2893 static void EmitOMPTargetParallelForDeviceFunction( 2894 CodeGenModule &CGM, StringRef ParentName, 2895 const OMPTargetParallelForDirective &S); 2896 /// Emit device code for the target parallel for simd directive. 2897 static void EmitOMPTargetParallelForSimdDeviceFunction( 2898 CodeGenModule &CGM, StringRef ParentName, 2899 const OMPTargetParallelForSimdDirective &S); 2900 /// Emit device code for the target teams directive. 2901 static void 2902 EmitOMPTargetTeamsDeviceFunction(CodeGenModule &CGM, StringRef ParentName, 2903 const OMPTargetTeamsDirective &S); 2904 /// Emit device code for the target teams distribute directive. 2905 static void EmitOMPTargetTeamsDistributeDeviceFunction( 2906 CodeGenModule &CGM, StringRef ParentName, 2907 const OMPTargetTeamsDistributeDirective &S); 2908 /// Emit device code for the target simd directive. 2909 static void EmitOMPTargetSimdDeviceFunction(CodeGenModule &CGM, 2910 StringRef ParentName, 2911 const OMPTargetSimdDirective &S); 2912 /// \brief Emit inner loop of the worksharing/simd construct. 2913 /// 2914 /// \param S Directive, for which the inner loop must be emitted. 2915 /// \param RequiresCleanup true, if directive has some associated private 2916 /// variables. 2917 /// \param LoopCond Bollean condition for loop continuation. 2918 /// \param IncExpr Increment expression for loop control variable. 2919 /// \param BodyGen Generator for the inner body of the inner loop. 2920 /// \param PostIncGen Genrator for post-increment code (required for ordered 2921 /// loop directvies). 2922 void EmitOMPInnerLoop( 2923 const Stmt &S, bool RequiresCleanup, const Expr *LoopCond, 2924 const Expr *IncExpr, 2925 const llvm::function_ref<void(CodeGenFunction &)> &BodyGen, 2926 const llvm::function_ref<void(CodeGenFunction &)> &PostIncGen); 2927 2928 JumpDest getOMPCancelDestination(OpenMPDirectiveKind Kind); 2929 /// Emit initial code for loop counters of loop-based directives. 2930 void EmitOMPPrivateLoopCounters(const OMPLoopDirective &S, 2931 OMPPrivateScope &LoopScope); 2932 2933 /// Helper for the OpenMP loop directives. 2934 void EmitOMPLoopBody(const OMPLoopDirective &D, JumpDest LoopExit); 2935 2936 /// \brief Emit code for the worksharing loop-based directive. 2937 /// \return true, if this construct has any lastprivate clause, false - 2938 /// otherwise. 2939 bool EmitOMPWorksharingLoop(const OMPLoopDirective &S, Expr *EUB, 2940 const CodeGenLoopBoundsTy &CodeGenLoopBounds, 2941 const CodeGenDispatchBoundsTy &CGDispatchBounds); 2942 2943 /// Emit code for the distribute loop-based directive. 2944 void EmitOMPDistributeLoop(const OMPLoopDirective &S, 2945 const CodeGenLoopTy &CodeGenLoop, Expr *IncExpr); 2946 2947 /// Helpers for the OpenMP loop directives. 2948 void EmitOMPSimdInit(const OMPLoopDirective &D, bool IsMonotonic = false); 2949 void EmitOMPSimdFinal( 2950 const OMPLoopDirective &D, 2951 const llvm::function_ref<llvm::Value *(CodeGenFunction &)> &CondGen); 2952 2953 /// Emits the lvalue for the expression with possibly captured variable. 2954 LValue EmitOMPSharedLValue(const Expr *E); 2955 2956 private: 2957 /// Helpers for blocks. Returns invoke function by \p InvokeF if it is not 2958 /// nullptr. It should be called without \p InvokeF if the caller does not 2959 /// need invoke function to be returned. 2960 llvm::Value *EmitBlockLiteral(const CGBlockInfo &Info, 2961 llvm::Function **InvokeF = nullptr); 2962 2963 /// struct with the values to be passed to the OpenMP loop-related functions 2964 struct OMPLoopArguments { 2965 /// loop lower bound 2966 Address LB = Address::invalid(); 2967 /// loop upper bound 2968 Address UB = Address::invalid(); 2969 /// loop stride 2970 Address ST = Address::invalid(); 2971 /// isLastIteration argument for runtime functions 2972 Address IL = Address::invalid(); 2973 /// Chunk value generated by sema 2974 llvm::Value *Chunk = nullptr; 2975 /// EnsureUpperBound 2976 Expr *EUB = nullptr; 2977 /// IncrementExpression 2978 Expr *IncExpr = nullptr; 2979 /// Loop initialization 2980 Expr *Init = nullptr; 2981 /// Loop exit condition 2982 Expr *Cond = nullptr; 2983 /// Update of LB after a whole chunk has been executed 2984 Expr *NextLB = nullptr; 2985 /// Update of UB after a whole chunk has been executed 2986 Expr *NextUB = nullptr; 2987 OMPLoopArguments() = default; 2988 OMPLoopArguments(Address LB, Address UB, Address ST, Address IL, 2989 llvm::Value *Chunk = nullptr, Expr *EUB = nullptr, 2990 Expr *IncExpr = nullptr, Expr *Init = nullptr, 2991 Expr *Cond = nullptr, Expr *NextLB = nullptr, 2992 Expr *NextUB = nullptr) 2993 : LB(LB), UB(UB), ST(ST), IL(IL), Chunk(Chunk), EUB(EUB), 2994 IncExpr(IncExpr), Init(Init), Cond(Cond), NextLB(NextLB), 2995 NextUB(NextUB) {} 2996 }; 2997 void EmitOMPOuterLoop(bool DynamicOrOrdered, bool IsMonotonic, 2998 const OMPLoopDirective &S, OMPPrivateScope &LoopScope, 2999 const OMPLoopArguments &LoopArgs, 3000 const CodeGenLoopTy &CodeGenLoop, 3001 const CodeGenOrderedTy &CodeGenOrdered); 3002 void EmitOMPForOuterLoop(const OpenMPScheduleTy &ScheduleKind, 3003 bool IsMonotonic, const OMPLoopDirective &S, 3004 OMPPrivateScope &LoopScope, bool Ordered, 3005 const OMPLoopArguments &LoopArgs, 3006 const CodeGenDispatchBoundsTy &CGDispatchBounds); 3007 void EmitOMPDistributeOuterLoop(OpenMPDistScheduleClauseKind ScheduleKind, 3008 const OMPLoopDirective &S, 3009 OMPPrivateScope &LoopScope, 3010 const OMPLoopArguments &LoopArgs, 3011 const CodeGenLoopTy &CodeGenLoopContent); 3012 /// \brief Emit code for sections directive. 3013 void EmitSections(const OMPExecutableDirective &S); 3014 3015 public: 3016 3017 //===--------------------------------------------------------------------===// 3018 // LValue Expression Emission 3019 //===--------------------------------------------------------------------===// 3020 3021 /// GetUndefRValue - Get an appropriate 'undef' rvalue for the given type. 3022 RValue GetUndefRValue(QualType Ty); 3023 3024 /// EmitUnsupportedRValue - Emit a dummy r-value using the type of E 3025 /// and issue an ErrorUnsupported style diagnostic (using the 3026 /// provided Name). 3027 RValue EmitUnsupportedRValue(const Expr *E, 3028 const char *Name); 3029 3030 /// EmitUnsupportedLValue - Emit a dummy l-value using the type of E and issue 3031 /// an ErrorUnsupported style diagnostic (using the provided Name). 3032 LValue EmitUnsupportedLValue(const Expr *E, 3033 const char *Name); 3034 3035 /// EmitLValue - Emit code to compute a designator that specifies the location 3036 /// of the expression. 3037 /// 3038 /// This can return one of two things: a simple address or a bitfield 3039 /// reference. In either case, the LLVM Value* in the LValue structure is 3040 /// guaranteed to be an LLVM pointer type. 3041 /// 3042 /// If this returns a bitfield reference, nothing about the pointee type of 3043 /// the LLVM value is known: For example, it may not be a pointer to an 3044 /// integer. 3045 /// 3046 /// If this returns a normal address, and if the lvalue's C type is fixed 3047 /// size, this method guarantees that the returned pointer type will point to 3048 /// an LLVM type of the same size of the lvalue's type. If the lvalue has a 3049 /// variable length type, this is not possible. 3050 /// 3051 LValue EmitLValue(const Expr *E); 3052 3053 /// \brief Same as EmitLValue but additionally we generate checking code to 3054 /// guard against undefined behavior. This is only suitable when we know 3055 /// that the address will be used to access the object. 3056 LValue EmitCheckedLValue(const Expr *E, TypeCheckKind TCK); 3057 3058 RValue convertTempToRValue(Address addr, QualType type, 3059 SourceLocation Loc); 3060 3061 void EmitAtomicInit(Expr *E, LValue lvalue); 3062 3063 bool LValueIsSuitableForInlineAtomic(LValue Src); 3064 3065 RValue EmitAtomicLoad(LValue LV, SourceLocation SL, 3066 AggValueSlot Slot = AggValueSlot::ignored()); 3067 3068 RValue EmitAtomicLoad(LValue lvalue, SourceLocation loc, 3069 llvm::AtomicOrdering AO, bool IsVolatile = false, 3070 AggValueSlot slot = AggValueSlot::ignored()); 3071 3072 void EmitAtomicStore(RValue rvalue, LValue lvalue, bool isInit); 3073 3074 void EmitAtomicStore(RValue rvalue, LValue lvalue, llvm::AtomicOrdering AO, 3075 bool IsVolatile, bool isInit); 3076 3077 std::pair<RValue, llvm::Value *> EmitAtomicCompareExchange( 3078 LValue Obj, RValue Expected, RValue Desired, SourceLocation Loc, 3079 llvm::AtomicOrdering Success = 3080 llvm::AtomicOrdering::SequentiallyConsistent, 3081 llvm::AtomicOrdering Failure = 3082 llvm::AtomicOrdering::SequentiallyConsistent, 3083 bool IsWeak = false, AggValueSlot Slot = AggValueSlot::ignored()); 3084 3085 void EmitAtomicUpdate(LValue LVal, llvm::AtomicOrdering AO, 3086 const llvm::function_ref<RValue(RValue)> &UpdateOp, 3087 bool IsVolatile); 3088 3089 /// EmitToMemory - Change a scalar value from its value 3090 /// representation to its in-memory representation. 3091 llvm::Value *EmitToMemory(llvm::Value *Value, QualType Ty); 3092 3093 /// EmitFromMemory - Change a scalar value from its memory 3094 /// representation to its value representation. 3095 llvm::Value *EmitFromMemory(llvm::Value *Value, QualType Ty); 3096 3097 /// Check if the scalar \p Value is within the valid range for the given 3098 /// type \p Ty. 3099 /// 3100 /// Returns true if a check is needed (even if the range is unknown). 3101 bool EmitScalarRangeCheck(llvm::Value *Value, QualType Ty, 3102 SourceLocation Loc); 3103 3104 /// EmitLoadOfScalar - Load a scalar value from an address, taking 3105 /// care to appropriately convert from the memory representation to 3106 /// the LLVM value representation. 3107 llvm::Value *EmitLoadOfScalar(Address Addr, bool Volatile, QualType Ty, 3108 SourceLocation Loc, 3109 AlignmentSource Source = AlignmentSource::Type, 3110 bool isNontemporal = false) { 3111 return EmitLoadOfScalar(Addr, Volatile, Ty, Loc, LValueBaseInfo(Source), 3112 CGM.getTBAAAccessInfo(Ty), isNontemporal); 3113 } 3114 3115 llvm::Value *EmitLoadOfScalar(Address Addr, bool Volatile, QualType Ty, 3116 SourceLocation Loc, LValueBaseInfo BaseInfo, 3117 TBAAAccessInfo TBAAInfo, 3118 bool isNontemporal = false); 3119 3120 /// EmitLoadOfScalar - Load a scalar value from an address, taking 3121 /// care to appropriately convert from the memory representation to 3122 /// the LLVM value representation. The l-value must be a simple 3123 /// l-value. 3124 llvm::Value *EmitLoadOfScalar(LValue lvalue, SourceLocation Loc); 3125 3126 /// EmitStoreOfScalar - Store a scalar value to an address, taking 3127 /// care to appropriately convert from the memory representation to 3128 /// the LLVM value representation. 3129 void EmitStoreOfScalar(llvm::Value *Value, Address Addr, 3130 bool Volatile, QualType Ty, 3131 AlignmentSource Source = AlignmentSource::Type, 3132 bool isInit = false, bool isNontemporal = false) { 3133 EmitStoreOfScalar(Value, Addr, Volatile, Ty, LValueBaseInfo(Source), 3134 CGM.getTBAAAccessInfo(Ty), isInit, isNontemporal); 3135 } 3136 3137 void EmitStoreOfScalar(llvm::Value *Value, Address Addr, 3138 bool Volatile, QualType Ty, 3139 LValueBaseInfo BaseInfo, TBAAAccessInfo TBAAInfo, 3140 bool isInit = false, bool isNontemporal = false); 3141 3142 /// EmitStoreOfScalar - Store a scalar value to an address, taking 3143 /// care to appropriately convert from the memory representation to 3144 /// the LLVM value representation. The l-value must be a simple 3145 /// l-value. The isInit flag indicates whether this is an initialization. 3146 /// If so, atomic qualifiers are ignored and the store is always non-atomic. 3147 void EmitStoreOfScalar(llvm::Value *value, LValue lvalue, bool isInit=false); 3148 3149 /// EmitLoadOfLValue - Given an expression that represents a value lvalue, 3150 /// this method emits the address of the lvalue, then loads the result as an 3151 /// rvalue, returning the rvalue. 3152 RValue EmitLoadOfLValue(LValue V, SourceLocation Loc); 3153 RValue EmitLoadOfExtVectorElementLValue(LValue V); 3154 RValue EmitLoadOfBitfieldLValue(LValue LV, SourceLocation Loc); 3155 RValue EmitLoadOfGlobalRegLValue(LValue LV); 3156 3157 /// EmitStoreThroughLValue - Store the specified rvalue into the specified 3158 /// lvalue, where both are guaranteed to the have the same type, and that type 3159 /// is 'Ty'. 3160 void EmitStoreThroughLValue(RValue Src, LValue Dst, bool isInit = false); 3161 void EmitStoreThroughExtVectorComponentLValue(RValue Src, LValue Dst); 3162 void EmitStoreThroughGlobalRegLValue(RValue Src, LValue Dst); 3163 3164 /// EmitStoreThroughBitfieldLValue - Store Src into Dst with same constraints 3165 /// as EmitStoreThroughLValue. 3166 /// 3167 /// \param Result [out] - If non-null, this will be set to a Value* for the 3168 /// bit-field contents after the store, appropriate for use as the result of 3169 /// an assignment to the bit-field. 3170 void EmitStoreThroughBitfieldLValue(RValue Src, LValue Dst, 3171 llvm::Value **Result=nullptr); 3172 3173 /// Emit an l-value for an assignment (simple or compound) of complex type. 3174 LValue EmitComplexAssignmentLValue(const BinaryOperator *E); 3175 LValue EmitComplexCompoundAssignmentLValue(const CompoundAssignOperator *E); 3176 LValue EmitScalarCompoundAssignWithComplex(const CompoundAssignOperator *E, 3177 llvm::Value *&Result); 3178 3179 // Note: only available for agg return types 3180 LValue EmitBinaryOperatorLValue(const BinaryOperator *E); 3181 LValue EmitCompoundAssignmentLValue(const CompoundAssignOperator *E); 3182 // Note: only available for agg return types 3183 LValue EmitCallExprLValue(const CallExpr *E); 3184 // Note: only available for agg return types 3185 LValue EmitVAArgExprLValue(const VAArgExpr *E); 3186 LValue EmitDeclRefLValue(const DeclRefExpr *E); 3187 LValue EmitStringLiteralLValue(const StringLiteral *E); 3188 LValue EmitObjCEncodeExprLValue(const ObjCEncodeExpr *E); 3189 LValue EmitPredefinedLValue(const PredefinedExpr *E); 3190 LValue EmitUnaryOpLValue(const UnaryOperator *E); 3191 LValue EmitArraySubscriptExpr(const ArraySubscriptExpr *E, 3192 bool Accessed = false); 3193 LValue EmitOMPArraySectionExpr(const OMPArraySectionExpr *E, 3194 bool IsLowerBound = true); 3195 LValue EmitExtVectorElementExpr(const ExtVectorElementExpr *E); 3196 LValue EmitMemberExpr(const MemberExpr *E); 3197 LValue EmitObjCIsaExpr(const ObjCIsaExpr *E); 3198 LValue EmitCompoundLiteralLValue(const CompoundLiteralExpr *E); 3199 LValue EmitInitListLValue(const InitListExpr *E); 3200 LValue EmitConditionalOperatorLValue(const AbstractConditionalOperator *E); 3201 LValue EmitCastLValue(const CastExpr *E); 3202 LValue EmitMaterializeTemporaryExpr(const MaterializeTemporaryExpr *E); 3203 LValue EmitOpaqueValueLValue(const OpaqueValueExpr *e); 3204 3205 Address EmitExtVectorElementLValue(LValue V); 3206 3207 RValue EmitRValueForField(LValue LV, const FieldDecl *FD, SourceLocation Loc); 3208 3209 Address EmitArrayToPointerDecay(const Expr *Array, 3210 LValueBaseInfo *BaseInfo = nullptr, 3211 TBAAAccessInfo *TBAAInfo = nullptr); 3212 3213 class ConstantEmission { 3214 llvm::PointerIntPair<llvm::Constant*, 1, bool> ValueAndIsReference; 3215 ConstantEmission(llvm::Constant *C, bool isReference) 3216 : ValueAndIsReference(C, isReference) {} 3217 public: 3218 ConstantEmission() {} 3219 static ConstantEmission forReference(llvm::Constant *C) { 3220 return ConstantEmission(C, true); 3221 } 3222 static ConstantEmission forValue(llvm::Constant *C) { 3223 return ConstantEmission(C, false); 3224 } 3225 3226 explicit operator bool() const { 3227 return ValueAndIsReference.getOpaqueValue() != nullptr; 3228 } 3229 3230 bool isReference() const { return ValueAndIsReference.getInt(); } 3231 LValue getReferenceLValue(CodeGenFunction &CGF, Expr *refExpr) const { 3232 assert(isReference()); 3233 return CGF.MakeNaturalAlignAddrLValue(ValueAndIsReference.getPointer(), 3234 refExpr->getType()); 3235 } 3236 3237 llvm::Constant *getValue() const { 3238 assert(!isReference()); 3239 return ValueAndIsReference.getPointer(); 3240 } 3241 }; 3242 3243 ConstantEmission tryEmitAsConstant(DeclRefExpr *refExpr); 3244 ConstantEmission tryEmitAsConstant(const MemberExpr *ME); 3245 3246 RValue EmitPseudoObjectRValue(const PseudoObjectExpr *e, 3247 AggValueSlot slot = AggValueSlot::ignored()); 3248 LValue EmitPseudoObjectLValue(const PseudoObjectExpr *e); 3249 3250 llvm::Value *EmitIvarOffset(const ObjCInterfaceDecl *Interface, 3251 const ObjCIvarDecl *Ivar); 3252 LValue EmitLValueForField(LValue Base, const FieldDecl* Field); 3253 LValue EmitLValueForLambdaField(const FieldDecl *Field); 3254 3255 /// EmitLValueForFieldInitialization - Like EmitLValueForField, except that 3256 /// if the Field is a reference, this will return the address of the reference 3257 /// and not the address of the value stored in the reference. 3258 LValue EmitLValueForFieldInitialization(LValue Base, 3259 const FieldDecl* Field); 3260 3261 LValue EmitLValueForIvar(QualType ObjectTy, 3262 llvm::Value* Base, const ObjCIvarDecl *Ivar, 3263 unsigned CVRQualifiers); 3264 3265 LValue EmitCXXConstructLValue(const CXXConstructExpr *E); 3266 LValue EmitCXXBindTemporaryLValue(const CXXBindTemporaryExpr *E); 3267 LValue EmitLambdaLValue(const LambdaExpr *E); 3268 LValue EmitCXXTypeidLValue(const CXXTypeidExpr *E); 3269 LValue EmitCXXUuidofLValue(const CXXUuidofExpr *E); 3270 3271 LValue EmitObjCMessageExprLValue(const ObjCMessageExpr *E); 3272 LValue EmitObjCIvarRefLValue(const ObjCIvarRefExpr *E); 3273 LValue EmitStmtExprLValue(const StmtExpr *E); 3274 LValue EmitPointerToDataMemberBinaryExpr(const BinaryOperator *E); 3275 LValue EmitObjCSelectorLValue(const ObjCSelectorExpr *E); 3276 void EmitDeclRefExprDbgValue(const DeclRefExpr *E, const APValue &Init); 3277 3278 //===--------------------------------------------------------------------===// 3279 // Scalar Expression Emission 3280 //===--------------------------------------------------------------------===// 3281 3282 /// EmitCall - Generate a call of the given function, expecting the given 3283 /// result type, and using the given argument list which specifies both the 3284 /// LLVM arguments and the types they were derived from. 3285 RValue EmitCall(const CGFunctionInfo &CallInfo, const CGCallee &Callee, 3286 ReturnValueSlot ReturnValue, const CallArgList &Args, 3287 llvm::Instruction **callOrInvoke = nullptr); 3288 3289 RValue EmitCall(QualType FnType, const CGCallee &Callee, const CallExpr *E, 3290 ReturnValueSlot ReturnValue, 3291 llvm::Value *Chain = nullptr); 3292 RValue EmitCallExpr(const CallExpr *E, 3293 ReturnValueSlot ReturnValue = ReturnValueSlot()); 3294 RValue EmitSimpleCallExpr(const CallExpr *E, ReturnValueSlot ReturnValue); 3295 CGCallee EmitCallee(const Expr *E); 3296 3297 void checkTargetFeatures(const CallExpr *E, const FunctionDecl *TargetDecl); 3298 3299 llvm::CallInst *EmitRuntimeCall(llvm::Value *callee, 3300 const Twine &name = ""); 3301 llvm::CallInst *EmitRuntimeCall(llvm::Value *callee, 3302 ArrayRef<llvm::Value*> args, 3303 const Twine &name = ""); 3304 llvm::CallInst *EmitNounwindRuntimeCall(llvm::Value *callee, 3305 const Twine &name = ""); 3306 llvm::CallInst *EmitNounwindRuntimeCall(llvm::Value *callee, 3307 ArrayRef<llvm::Value*> args, 3308 const Twine &name = ""); 3309 3310 llvm::CallSite EmitCallOrInvoke(llvm::Value *Callee, 3311 ArrayRef<llvm::Value *> Args, 3312 const Twine &Name = ""); 3313 llvm::CallSite EmitRuntimeCallOrInvoke(llvm::Value *callee, 3314 ArrayRef<llvm::Value*> args, 3315 const Twine &name = ""); 3316 llvm::CallSite EmitRuntimeCallOrInvoke(llvm::Value *callee, 3317 const Twine &name = ""); 3318 void EmitNoreturnRuntimeCallOrInvoke(llvm::Value *callee, 3319 ArrayRef<llvm::Value*> args); 3320 3321 CGCallee BuildAppleKextVirtualCall(const CXXMethodDecl *MD, 3322 NestedNameSpecifier *Qual, 3323 llvm::Type *Ty); 3324 3325 CGCallee BuildAppleKextVirtualDestructorCall(const CXXDestructorDecl *DD, 3326 CXXDtorType Type, 3327 const CXXRecordDecl *RD); 3328 3329 RValue 3330 EmitCXXMemberOrOperatorCall(const CXXMethodDecl *Method, 3331 const CGCallee &Callee, 3332 ReturnValueSlot ReturnValue, llvm::Value *This, 3333 llvm::Value *ImplicitParam, 3334 QualType ImplicitParamTy, const CallExpr *E, 3335 CallArgList *RtlArgs); 3336 RValue EmitCXXDestructorCall(const CXXDestructorDecl *DD, 3337 const CGCallee &Callee, 3338 llvm::Value *This, llvm::Value *ImplicitParam, 3339 QualType ImplicitParamTy, const CallExpr *E, 3340 StructorType Type); 3341 RValue EmitCXXMemberCallExpr(const CXXMemberCallExpr *E, 3342 ReturnValueSlot ReturnValue); 3343 RValue EmitCXXMemberOrOperatorMemberCallExpr(const CallExpr *CE, 3344 const CXXMethodDecl *MD, 3345 ReturnValueSlot ReturnValue, 3346 bool HasQualifier, 3347 NestedNameSpecifier *Qualifier, 3348 bool IsArrow, const Expr *Base); 3349 // Compute the object pointer. 3350 Address EmitCXXMemberDataPointerAddress(const Expr *E, Address base, 3351 llvm::Value *memberPtr, 3352 const MemberPointerType *memberPtrType, 3353 LValueBaseInfo *BaseInfo = nullptr, 3354 TBAAAccessInfo *TBAAInfo = nullptr); 3355 RValue EmitCXXMemberPointerCallExpr(const CXXMemberCallExpr *E, 3356 ReturnValueSlot ReturnValue); 3357 3358 RValue EmitCXXOperatorMemberCallExpr(const CXXOperatorCallExpr *E, 3359 const CXXMethodDecl *MD, 3360 ReturnValueSlot ReturnValue); 3361 RValue EmitCXXPseudoDestructorExpr(const CXXPseudoDestructorExpr *E); 3362 3363 RValue EmitCUDAKernelCallExpr(const CUDAKernelCallExpr *E, 3364 ReturnValueSlot ReturnValue); 3365 3366 RValue EmitNVPTXDevicePrintfCallExpr(const CallExpr *E, 3367 ReturnValueSlot ReturnValue); 3368 3369 RValue EmitBuiltinExpr(const FunctionDecl *FD, 3370 unsigned BuiltinID, const CallExpr *E, 3371 ReturnValueSlot ReturnValue); 3372 3373 /// Emit IR for __builtin_os_log_format. 3374 RValue emitBuiltinOSLogFormat(const CallExpr &E); 3375 3376 llvm::Function *generateBuiltinOSLogHelperFunction( 3377 const analyze_os_log::OSLogBufferLayout &Layout, 3378 CharUnits BufferAlignment); 3379 3380 RValue EmitBlockCallExpr(const CallExpr *E, ReturnValueSlot ReturnValue); 3381 3382 /// EmitTargetBuiltinExpr - Emit the given builtin call. Returns 0 if the call 3383 /// is unhandled by the current target. 3384 llvm::Value *EmitTargetBuiltinExpr(unsigned BuiltinID, const CallExpr *E); 3385 3386 llvm::Value *EmitAArch64CompareBuiltinExpr(llvm::Value *Op, llvm::Type *Ty, 3387 const llvm::CmpInst::Predicate Fp, 3388 const llvm::CmpInst::Predicate Ip, 3389 const llvm::Twine &Name = ""); 3390 llvm::Value *EmitARMBuiltinExpr(unsigned BuiltinID, const CallExpr *E); 3391 3392 llvm::Value *EmitCommonNeonBuiltinExpr(unsigned BuiltinID, 3393 unsigned LLVMIntrinsic, 3394 unsigned AltLLVMIntrinsic, 3395 const char *NameHint, 3396 unsigned Modifier, 3397 const CallExpr *E, 3398 SmallVectorImpl<llvm::Value *> &Ops, 3399 Address PtrOp0, Address PtrOp1); 3400 llvm::Function *LookupNeonLLVMIntrinsic(unsigned IntrinsicID, 3401 unsigned Modifier, llvm::Type *ArgTy, 3402 const CallExpr *E); 3403 llvm::Value *EmitNeonCall(llvm::Function *F, 3404 SmallVectorImpl<llvm::Value*> &O, 3405 const char *name, 3406 unsigned shift = 0, bool rightshift = false); 3407 llvm::Value *EmitNeonSplat(llvm::Value *V, llvm::Constant *Idx); 3408 llvm::Value *EmitNeonShiftVector(llvm::Value *V, llvm::Type *Ty, 3409 bool negateForRightShift); 3410 llvm::Value *EmitNeonRShiftImm(llvm::Value *Vec, llvm::Value *Amt, 3411 llvm::Type *Ty, bool usgn, const char *name); 3412 llvm::Value *vectorWrapScalar16(llvm::Value *Op); 3413 llvm::Value *EmitAArch64BuiltinExpr(unsigned BuiltinID, const CallExpr *E); 3414 3415 llvm::Value *BuildVector(ArrayRef<llvm::Value*> Ops); 3416 llvm::Value *EmitX86BuiltinExpr(unsigned BuiltinID, const CallExpr *E); 3417 llvm::Value *EmitPPCBuiltinExpr(unsigned BuiltinID, const CallExpr *E); 3418 llvm::Value *EmitAMDGPUBuiltinExpr(unsigned BuiltinID, const CallExpr *E); 3419 llvm::Value *EmitSystemZBuiltinExpr(unsigned BuiltinID, const CallExpr *E); 3420 llvm::Value *EmitNVPTXBuiltinExpr(unsigned BuiltinID, const CallExpr *E); 3421 llvm::Value *EmitWebAssemblyBuiltinExpr(unsigned BuiltinID, 3422 const CallExpr *E); 3423 3424 private: 3425 enum class MSVCIntrin; 3426 3427 public: 3428 llvm::Value *EmitMSVCBuiltinExpr(MSVCIntrin BuiltinID, const CallExpr *E); 3429 3430 llvm::Value *EmitBuiltinAvailable(ArrayRef<llvm::Value *> Args); 3431 3432 llvm::Value *EmitObjCProtocolExpr(const ObjCProtocolExpr *E); 3433 llvm::Value *EmitObjCStringLiteral(const ObjCStringLiteral *E); 3434 llvm::Value *EmitObjCBoxedExpr(const ObjCBoxedExpr *E); 3435 llvm::Value *EmitObjCArrayLiteral(const ObjCArrayLiteral *E); 3436 llvm::Value *EmitObjCDictionaryLiteral(const ObjCDictionaryLiteral *E); 3437 llvm::Value *EmitObjCCollectionLiteral(const Expr *E, 3438 const ObjCMethodDecl *MethodWithObjects); 3439 llvm::Value *EmitObjCSelectorExpr(const ObjCSelectorExpr *E); 3440 RValue EmitObjCMessageExpr(const ObjCMessageExpr *E, 3441 ReturnValueSlot Return = ReturnValueSlot()); 3442 3443 /// Retrieves the default cleanup kind for an ARC cleanup. 3444 /// Except under -fobjc-arc-eh, ARC cleanups are normal-only. 3445 CleanupKind getARCCleanupKind() { 3446 return CGM.getCodeGenOpts().ObjCAutoRefCountExceptions 3447 ? NormalAndEHCleanup : NormalCleanup; 3448 } 3449 3450 // ARC primitives. 3451 void EmitARCInitWeak(Address addr, llvm::Value *value); 3452 void EmitARCDestroyWeak(Address addr); 3453 llvm::Value *EmitARCLoadWeak(Address addr); 3454 llvm::Value *EmitARCLoadWeakRetained(Address addr); 3455 llvm::Value *EmitARCStoreWeak(Address addr, llvm::Value *value, bool ignored); 3456 void EmitARCCopyWeak(Address dst, Address src); 3457 void EmitARCMoveWeak(Address dst, Address src); 3458 llvm::Value *EmitARCRetainAutorelease(QualType type, llvm::Value *value); 3459 llvm::Value *EmitARCRetainAutoreleaseNonBlock(llvm::Value *value); 3460 llvm::Value *EmitARCStoreStrong(LValue lvalue, llvm::Value *value, 3461 bool resultIgnored); 3462 llvm::Value *EmitARCStoreStrongCall(Address addr, llvm::Value *value, 3463 bool resultIgnored); 3464 llvm::Value *EmitARCRetain(QualType type, llvm::Value *value); 3465 llvm::Value *EmitARCRetainNonBlock(llvm::Value *value); 3466 llvm::Value *EmitARCRetainBlock(llvm::Value *value, bool mandatory); 3467 void EmitARCDestroyStrong(Address addr, ARCPreciseLifetime_t precise); 3468 void EmitARCRelease(llvm::Value *value, ARCPreciseLifetime_t precise); 3469 llvm::Value *EmitARCAutorelease(llvm::Value *value); 3470 llvm::Value *EmitARCAutoreleaseReturnValue(llvm::Value *value); 3471 llvm::Value *EmitARCRetainAutoreleaseReturnValue(llvm::Value *value); 3472 llvm::Value *EmitARCRetainAutoreleasedReturnValue(llvm::Value *value); 3473 llvm::Value *EmitARCUnsafeClaimAutoreleasedReturnValue(llvm::Value *value); 3474 3475 std::pair<LValue,llvm::Value*> 3476 EmitARCStoreAutoreleasing(const BinaryOperator *e); 3477 std::pair<LValue,llvm::Value*> 3478 EmitARCStoreStrong(const BinaryOperator *e, bool ignored); 3479 std::pair<LValue,llvm::Value*> 3480 EmitARCStoreUnsafeUnretained(const BinaryOperator *e, bool ignored); 3481 3482 llvm::Value *EmitObjCThrowOperand(const Expr *expr); 3483 llvm::Value *EmitObjCConsumeObject(QualType T, llvm::Value *Ptr); 3484 llvm::Value *EmitObjCExtendObjectLifetime(QualType T, llvm::Value *Ptr); 3485 3486 llvm::Value *EmitARCExtendBlockObject(const Expr *expr); 3487 llvm::Value *EmitARCReclaimReturnedObject(const Expr *e, 3488 bool allowUnsafeClaim); 3489 llvm::Value *EmitARCRetainScalarExpr(const Expr *expr); 3490 llvm::Value *EmitARCRetainAutoreleaseScalarExpr(const Expr *expr); 3491 llvm::Value *EmitARCUnsafeUnretainedScalarExpr(const Expr *expr); 3492 3493 void EmitARCIntrinsicUse(ArrayRef<llvm::Value*> values); 3494 3495 static Destroyer destroyARCStrongImprecise; 3496 static Destroyer destroyARCStrongPrecise; 3497 static Destroyer destroyARCWeak; 3498 static Destroyer emitARCIntrinsicUse; 3499 3500 void EmitObjCAutoreleasePoolPop(llvm::Value *Ptr); 3501 llvm::Value *EmitObjCAutoreleasePoolPush(); 3502 llvm::Value *EmitObjCMRRAutoreleasePoolPush(); 3503 void EmitObjCAutoreleasePoolCleanup(llvm::Value *Ptr); 3504 void EmitObjCMRRAutoreleasePoolPop(llvm::Value *Ptr); 3505 3506 /// \brief Emits a reference binding to the passed in expression. 3507 RValue EmitReferenceBindingToExpr(const Expr *E); 3508 3509 //===--------------------------------------------------------------------===// 3510 // Expression Emission 3511 //===--------------------------------------------------------------------===// 3512 3513 // Expressions are broken into three classes: scalar, complex, aggregate. 3514 3515 /// EmitScalarExpr - Emit the computation of the specified expression of LLVM 3516 /// scalar type, returning the result. 3517 llvm::Value *EmitScalarExpr(const Expr *E , bool IgnoreResultAssign = false); 3518 3519 /// Emit a conversion from the specified type to the specified destination 3520 /// type, both of which are LLVM scalar types. 3521 llvm::Value *EmitScalarConversion(llvm::Value *Src, QualType SrcTy, 3522 QualType DstTy, SourceLocation Loc); 3523 3524 /// Emit a conversion from the specified complex type to the specified 3525 /// destination type, where the destination type is an LLVM scalar type. 3526 llvm::Value *EmitComplexToScalarConversion(ComplexPairTy Src, QualType SrcTy, 3527 QualType DstTy, 3528 SourceLocation Loc); 3529 3530 /// EmitAggExpr - Emit the computation of the specified expression 3531 /// of aggregate type. The result is computed into the given slot, 3532 /// which may be null to indicate that the value is not needed. 3533 void EmitAggExpr(const Expr *E, AggValueSlot AS); 3534 3535 /// EmitAggExprToLValue - Emit the computation of the specified expression of 3536 /// aggregate type into a temporary LValue. 3537 LValue EmitAggExprToLValue(const Expr *E); 3538 3539 /// EmitExtendGCLifetime - Given a pointer to an Objective-C object, 3540 /// make sure it survives garbage collection until this point. 3541 void EmitExtendGCLifetime(llvm::Value *object); 3542 3543 /// EmitComplexExpr - Emit the computation of the specified expression of 3544 /// complex type, returning the result. 3545 ComplexPairTy EmitComplexExpr(const Expr *E, 3546 bool IgnoreReal = false, 3547 bool IgnoreImag = false); 3548 3549 /// EmitComplexExprIntoLValue - Emit the given expression of complex 3550 /// type and place its result into the specified l-value. 3551 void EmitComplexExprIntoLValue(const Expr *E, LValue dest, bool isInit); 3552 3553 /// EmitStoreOfComplex - Store a complex number into the specified l-value. 3554 void EmitStoreOfComplex(ComplexPairTy V, LValue dest, bool isInit); 3555 3556 /// EmitLoadOfComplex - Load a complex number from the specified l-value. 3557 ComplexPairTy EmitLoadOfComplex(LValue src, SourceLocation loc); 3558 3559 Address emitAddrOfRealComponent(Address complex, QualType complexType); 3560 Address emitAddrOfImagComponent(Address complex, QualType complexType); 3561 3562 /// AddInitializerToStaticVarDecl - Add the initializer for 'D' to the 3563 /// global variable that has already been created for it. If the initializer 3564 /// has a different type than GV does, this may free GV and return a different 3565 /// one. Otherwise it just returns GV. 3566 llvm::GlobalVariable * 3567 AddInitializerToStaticVarDecl(const VarDecl &D, 3568 llvm::GlobalVariable *GV); 3569 3570 3571 /// EmitCXXGlobalVarDeclInit - Create the initializer for a C++ 3572 /// variable with global storage. 3573 void EmitCXXGlobalVarDeclInit(const VarDecl &D, llvm::Constant *DeclPtr, 3574 bool PerformInit); 3575 3576 llvm::Constant *createAtExitStub(const VarDecl &VD, llvm::Constant *Dtor, 3577 llvm::Constant *Addr); 3578 3579 /// Call atexit() with a function that passes the given argument to 3580 /// the given function. 3581 void registerGlobalDtorWithAtExit(const VarDecl &D, llvm::Constant *fn, 3582 llvm::Constant *addr); 3583 3584 /// Emit code in this function to perform a guarded variable 3585 /// initialization. Guarded initializations are used when it's not 3586 /// possible to prove that an initialization will be done exactly 3587 /// once, e.g. with a static local variable or a static data member 3588 /// of a class template. 3589 void EmitCXXGuardedInit(const VarDecl &D, llvm::GlobalVariable *DeclPtr, 3590 bool PerformInit); 3591 3592 enum class GuardKind { VariableGuard, TlsGuard }; 3593 3594 /// Emit a branch to select whether or not to perform guarded initialization. 3595 void EmitCXXGuardedInitBranch(llvm::Value *NeedsInit, 3596 llvm::BasicBlock *InitBlock, 3597 llvm::BasicBlock *NoInitBlock, 3598 GuardKind Kind, const VarDecl *D); 3599 3600 /// GenerateCXXGlobalInitFunc - Generates code for initializing global 3601 /// variables. 3602 void GenerateCXXGlobalInitFunc(llvm::Function *Fn, 3603 ArrayRef<llvm::Function *> CXXThreadLocals, 3604 Address Guard = Address::invalid()); 3605 3606 /// GenerateCXXGlobalDtorsFunc - Generates code for destroying global 3607 /// variables. 3608 void GenerateCXXGlobalDtorsFunc( 3609 llvm::Function *Fn, 3610 const std::vector<std::pair<llvm::WeakTrackingVH, llvm::Constant *>> 3611 &DtorsAndObjects); 3612 3613 void GenerateCXXGlobalVarDeclInitFunc(llvm::Function *Fn, 3614 const VarDecl *D, 3615 llvm::GlobalVariable *Addr, 3616 bool PerformInit); 3617 3618 void EmitCXXConstructExpr(const CXXConstructExpr *E, AggValueSlot Dest); 3619 3620 void EmitSynthesizedCXXCopyCtor(Address Dest, Address Src, const Expr *Exp); 3621 3622 void enterFullExpression(const ExprWithCleanups *E) { 3623 if (E->getNumObjects() == 0) return; 3624 enterNonTrivialFullExpression(E); 3625 } 3626 void enterNonTrivialFullExpression(const ExprWithCleanups *E); 3627 3628 void EmitCXXThrowExpr(const CXXThrowExpr *E, bool KeepInsertionPoint = true); 3629 3630 void EmitLambdaExpr(const LambdaExpr *E, AggValueSlot Dest); 3631 3632 RValue EmitAtomicExpr(AtomicExpr *E); 3633 3634 //===--------------------------------------------------------------------===// 3635 // Annotations Emission 3636 //===--------------------------------------------------------------------===// 3637 3638 /// Emit an annotation call (intrinsic or builtin). 3639 llvm::Value *EmitAnnotationCall(llvm::Value *AnnotationFn, 3640 llvm::Value *AnnotatedVal, 3641 StringRef AnnotationStr, 3642 SourceLocation Location); 3643 3644 /// Emit local annotations for the local variable V, declared by D. 3645 void EmitVarAnnotations(const VarDecl *D, llvm::Value *V); 3646 3647 /// Emit field annotations for the given field & value. Returns the 3648 /// annotation result. 3649 Address EmitFieldAnnotations(const FieldDecl *D, Address V); 3650 3651 //===--------------------------------------------------------------------===// 3652 // Internal Helpers 3653 //===--------------------------------------------------------------------===// 3654 3655 /// ContainsLabel - Return true if the statement contains a label in it. If 3656 /// this statement is not executed normally, it not containing a label means 3657 /// that we can just remove the code. 3658 static bool ContainsLabel(const Stmt *S, bool IgnoreCaseStmts = false); 3659 3660 /// containsBreak - Return true if the statement contains a break out of it. 3661 /// If the statement (recursively) contains a switch or loop with a break 3662 /// inside of it, this is fine. 3663 static bool containsBreak(const Stmt *S); 3664 3665 /// Determine if the given statement might introduce a declaration into the 3666 /// current scope, by being a (possibly-labelled) DeclStmt. 3667 static bool mightAddDeclToScope(const Stmt *S); 3668 3669 /// ConstantFoldsToSimpleInteger - If the specified expression does not fold 3670 /// to a constant, or if it does but contains a label, return false. If it 3671 /// constant folds return true and set the boolean result in Result. 3672 bool ConstantFoldsToSimpleInteger(const Expr *Cond, bool &Result, 3673 bool AllowLabels = false); 3674 3675 /// ConstantFoldsToSimpleInteger - If the specified expression does not fold 3676 /// to a constant, or if it does but contains a label, return false. If it 3677 /// constant folds return true and set the folded value. 3678 bool ConstantFoldsToSimpleInteger(const Expr *Cond, llvm::APSInt &Result, 3679 bool AllowLabels = false); 3680 3681 /// EmitBranchOnBoolExpr - Emit a branch on a boolean condition (e.g. for an 3682 /// if statement) to the specified blocks. Based on the condition, this might 3683 /// try to simplify the codegen of the conditional based on the branch. 3684 /// TrueCount should be the number of times we expect the condition to 3685 /// evaluate to true based on PGO data. 3686 void EmitBranchOnBoolExpr(const Expr *Cond, llvm::BasicBlock *TrueBlock, 3687 llvm::BasicBlock *FalseBlock, uint64_t TrueCount); 3688 3689 /// Given an assignment `*LHS = RHS`, emit a test that checks if \p RHS is 3690 /// nonnull, if \p LHS is marked _Nonnull. 3691 void EmitNullabilityCheck(LValue LHS, llvm::Value *RHS, SourceLocation Loc); 3692 3693 /// An enumeration which makes it easier to specify whether or not an 3694 /// operation is a subtraction. 3695 enum { NotSubtraction = false, IsSubtraction = true }; 3696 3697 /// Same as IRBuilder::CreateInBoundsGEP, but additionally emits a check to 3698 /// detect undefined behavior when the pointer overflow sanitizer is enabled. 3699 /// \p SignedIndices indicates whether any of the GEP indices are signed. 3700 /// \p IsSubtraction indicates whether the expression used to form the GEP 3701 /// is a subtraction. 3702 llvm::Value *EmitCheckedInBoundsGEP(llvm::Value *Ptr, 3703 ArrayRef<llvm::Value *> IdxList, 3704 bool SignedIndices, 3705 bool IsSubtraction, 3706 SourceLocation Loc, 3707 const Twine &Name = ""); 3708 3709 /// Specifies which type of sanitizer check to apply when handling a 3710 /// particular builtin. 3711 enum BuiltinCheckKind { 3712 BCK_CTZPassedZero, 3713 BCK_CLZPassedZero, 3714 }; 3715 3716 /// Emits an argument for a call to a builtin. If the builtin sanitizer is 3717 /// enabled, a runtime check specified by \p Kind is also emitted. 3718 llvm::Value *EmitCheckedArgForBuiltin(const Expr *E, BuiltinCheckKind Kind); 3719 3720 /// \brief Emit a description of a type in a format suitable for passing to 3721 /// a runtime sanitizer handler. 3722 llvm::Constant *EmitCheckTypeDescriptor(QualType T); 3723 3724 /// \brief Convert a value into a format suitable for passing to a runtime 3725 /// sanitizer handler. 3726 llvm::Value *EmitCheckValue(llvm::Value *V); 3727 3728 /// \brief Emit a description of a source location in a format suitable for 3729 /// passing to a runtime sanitizer handler. 3730 llvm::Constant *EmitCheckSourceLocation(SourceLocation Loc); 3731 3732 /// \brief Create a basic block that will call a handler function in a 3733 /// sanitizer runtime with the provided arguments, and create a conditional 3734 /// branch to it. 3735 void EmitCheck(ArrayRef<std::pair<llvm::Value *, SanitizerMask>> Checked, 3736 SanitizerHandler Check, ArrayRef<llvm::Constant *> StaticArgs, 3737 ArrayRef<llvm::Value *> DynamicArgs); 3738 3739 /// \brief Emit a slow path cross-DSO CFI check which calls __cfi_slowpath 3740 /// if Cond if false. 3741 void EmitCfiSlowPathCheck(SanitizerMask Kind, llvm::Value *Cond, 3742 llvm::ConstantInt *TypeId, llvm::Value *Ptr, 3743 ArrayRef<llvm::Constant *> StaticArgs); 3744 3745 /// \brief Create a basic block that will call the trap intrinsic, and emit a 3746 /// conditional branch to it, for the -ftrapv checks. 3747 void EmitTrapCheck(llvm::Value *Checked); 3748 3749 /// \brief Emit a call to trap or debugtrap and attach function attribute 3750 /// "trap-func-name" if specified. 3751 llvm::CallInst *EmitTrapCall(llvm::Intrinsic::ID IntrID); 3752 3753 /// \brief Emit a stub for the cross-DSO CFI check function. 3754 void EmitCfiCheckStub(); 3755 3756 /// \brief Emit a cross-DSO CFI failure handling function. 3757 void EmitCfiCheckFail(); 3758 3759 /// \brief Create a check for a function parameter that may potentially be 3760 /// declared as non-null. 3761 void EmitNonNullArgCheck(RValue RV, QualType ArgType, SourceLocation ArgLoc, 3762 AbstractCallee AC, unsigned ParmNum); 3763 3764 /// EmitCallArg - Emit a single call argument. 3765 void EmitCallArg(CallArgList &args, const Expr *E, QualType ArgType); 3766 3767 /// EmitDelegateCallArg - We are performing a delegate call; that 3768 /// is, the current function is delegating to another one. Produce 3769 /// a r-value suitable for passing the given parameter. 3770 void EmitDelegateCallArg(CallArgList &args, const VarDecl *param, 3771 SourceLocation loc); 3772 3773 /// SetFPAccuracy - Set the minimum required accuracy of the given floating 3774 /// point operation, expressed as the maximum relative error in ulp. 3775 void SetFPAccuracy(llvm::Value *Val, float Accuracy); 3776 3777 private: 3778 llvm::MDNode *getRangeForLoadFromType(QualType Ty); 3779 void EmitReturnOfRValue(RValue RV, QualType Ty); 3780 3781 void deferPlaceholderReplacement(llvm::Instruction *Old, llvm::Value *New); 3782 3783 llvm::SmallVector<std::pair<llvm::Instruction *, llvm::Value *>, 4> 3784 DeferredReplacements; 3785 3786 /// Set the address of a local variable. 3787 void setAddrOfLocalVar(const VarDecl *VD, Address Addr) { 3788 assert(!LocalDeclMap.count(VD) && "Decl already exists in LocalDeclMap!"); 3789 LocalDeclMap.insert({VD, Addr}); 3790 } 3791 3792 /// ExpandTypeFromArgs - Reconstruct a structure of type \arg Ty 3793 /// from function arguments into \arg Dst. See ABIArgInfo::Expand. 3794 /// 3795 /// \param AI - The first function argument of the expansion. 3796 void ExpandTypeFromArgs(QualType Ty, LValue Dst, 3797 SmallVectorImpl<llvm::Value *>::iterator &AI); 3798 3799 /// ExpandTypeToArgs - Expand an RValue \arg RV, with the LLVM type for \arg 3800 /// Ty, into individual arguments on the provided vector \arg IRCallArgs, 3801 /// starting at index \arg IRCallArgPos. See ABIArgInfo::Expand. 3802 void ExpandTypeToArgs(QualType Ty, RValue RV, llvm::FunctionType *IRFuncTy, 3803 SmallVectorImpl<llvm::Value *> &IRCallArgs, 3804 unsigned &IRCallArgPos); 3805 3806 llvm::Value* EmitAsmInput(const TargetInfo::ConstraintInfo &Info, 3807 const Expr *InputExpr, std::string &ConstraintStr); 3808 3809 llvm::Value* EmitAsmInputLValue(const TargetInfo::ConstraintInfo &Info, 3810 LValue InputValue, QualType InputType, 3811 std::string &ConstraintStr, 3812 SourceLocation Loc); 3813 3814 /// \brief Attempts to statically evaluate the object size of E. If that 3815 /// fails, emits code to figure the size of E out for us. This is 3816 /// pass_object_size aware. 3817 /// 3818 /// If EmittedExpr is non-null, this will use that instead of re-emitting E. 3819 llvm::Value *evaluateOrEmitBuiltinObjectSize(const Expr *E, unsigned Type, 3820 llvm::IntegerType *ResType, 3821 llvm::Value *EmittedE); 3822 3823 /// \brief Emits the size of E, as required by __builtin_object_size. This 3824 /// function is aware of pass_object_size parameters, and will act accordingly 3825 /// if E is a parameter with the pass_object_size attribute. 3826 llvm::Value *emitBuiltinObjectSize(const Expr *E, unsigned Type, 3827 llvm::IntegerType *ResType, 3828 llvm::Value *EmittedE); 3829 3830 public: 3831 #ifndef NDEBUG 3832 // Determine whether the given argument is an Objective-C method 3833 // that may have type parameters in its signature. 3834 static bool isObjCMethodWithTypeParams(const ObjCMethodDecl *method) { 3835 const DeclContext *dc = method->getDeclContext(); 3836 if (const ObjCInterfaceDecl *classDecl= dyn_cast<ObjCInterfaceDecl>(dc)) { 3837 return classDecl->getTypeParamListAsWritten(); 3838 } 3839 3840 if (const ObjCCategoryDecl *catDecl = dyn_cast<ObjCCategoryDecl>(dc)) { 3841 return catDecl->getTypeParamList(); 3842 } 3843 3844 return false; 3845 } 3846 3847 template<typename T> 3848 static bool isObjCMethodWithTypeParams(const T *) { return false; } 3849 #endif 3850 3851 enum class EvaluationOrder { 3852 ///! No language constraints on evaluation order. 3853 Default, 3854 ///! Language semantics require left-to-right evaluation. 3855 ForceLeftToRight, 3856 ///! Language semantics require right-to-left evaluation. 3857 ForceRightToLeft 3858 }; 3859 3860 /// EmitCallArgs - Emit call arguments for a function. 3861 template <typename T> 3862 void EmitCallArgs(CallArgList &Args, const T *CallArgTypeInfo, 3863 llvm::iterator_range<CallExpr::const_arg_iterator> ArgRange, 3864 AbstractCallee AC = AbstractCallee(), 3865 unsigned ParamsToSkip = 0, 3866 EvaluationOrder Order = EvaluationOrder::Default) { 3867 SmallVector<QualType, 16> ArgTypes; 3868 CallExpr::const_arg_iterator Arg = ArgRange.begin(); 3869 3870 assert((ParamsToSkip == 0 || CallArgTypeInfo) && 3871 "Can't skip parameters if type info is not provided"); 3872 if (CallArgTypeInfo) { 3873 #ifndef NDEBUG 3874 bool isGenericMethod = isObjCMethodWithTypeParams(CallArgTypeInfo); 3875 #endif 3876 3877 // First, use the argument types that the type info knows about 3878 for (auto I = CallArgTypeInfo->param_type_begin() + ParamsToSkip, 3879 E = CallArgTypeInfo->param_type_end(); 3880 I != E; ++I, ++Arg) { 3881 assert(Arg != ArgRange.end() && "Running over edge of argument list!"); 3882 assert((isGenericMethod || 3883 ((*I)->isVariablyModifiedType() || 3884 (*I).getNonReferenceType()->isObjCRetainableType() || 3885 getContext() 3886 .getCanonicalType((*I).getNonReferenceType()) 3887 .getTypePtr() == 3888 getContext() 3889 .getCanonicalType((*Arg)->getType()) 3890 .getTypePtr())) && 3891 "type mismatch in call argument!"); 3892 ArgTypes.push_back(*I); 3893 } 3894 } 3895 3896 // Either we've emitted all the call args, or we have a call to variadic 3897 // function. 3898 assert((Arg == ArgRange.end() || !CallArgTypeInfo || 3899 CallArgTypeInfo->isVariadic()) && 3900 "Extra arguments in non-variadic function!"); 3901 3902 // If we still have any arguments, emit them using the type of the argument. 3903 for (auto *A : llvm::make_range(Arg, ArgRange.end())) 3904 ArgTypes.push_back(CallArgTypeInfo ? getVarArgType(A) : A->getType()); 3905 3906 EmitCallArgs(Args, ArgTypes, ArgRange, AC, ParamsToSkip, Order); 3907 } 3908 3909 void EmitCallArgs(CallArgList &Args, ArrayRef<QualType> ArgTypes, 3910 llvm::iterator_range<CallExpr::const_arg_iterator> ArgRange, 3911 AbstractCallee AC = AbstractCallee(), 3912 unsigned ParamsToSkip = 0, 3913 EvaluationOrder Order = EvaluationOrder::Default); 3914 3915 /// EmitPointerWithAlignment - Given an expression with a pointer type, 3916 /// emit the value and compute our best estimate of the alignment of the 3917 /// pointee. 3918 /// 3919 /// \param BaseInfo - If non-null, this will be initialized with 3920 /// information about the source of the alignment and the may-alias 3921 /// attribute. Note that this function will conservatively fall back on 3922 /// the type when it doesn't recognize the expression and may-alias will 3923 /// be set to false. 3924 /// 3925 /// One reasonable way to use this information is when there's a language 3926 /// guarantee that the pointer must be aligned to some stricter value, and 3927 /// we're simply trying to ensure that sufficiently obvious uses of under- 3928 /// aligned objects don't get miscompiled; for example, a placement new 3929 /// into the address of a local variable. In such a case, it's quite 3930 /// reasonable to just ignore the returned alignment when it isn't from an 3931 /// explicit source. 3932 Address EmitPointerWithAlignment(const Expr *Addr, 3933 LValueBaseInfo *BaseInfo = nullptr, 3934 TBAAAccessInfo *TBAAInfo = nullptr); 3935 3936 /// If \p E references a parameter with pass_object_size info or a constant 3937 /// array size modifier, emit the object size divided by the size of \p EltTy. 3938 /// Otherwise return null. 3939 llvm::Value *LoadPassedObjectSize(const Expr *E, QualType EltTy); 3940 3941 void EmitSanitizerStatReport(llvm::SanitizerStatKind SSK); 3942 3943 private: 3944 QualType getVarArgType(const Expr *Arg); 3945 3946 void EmitDeclMetadata(); 3947 3948 BlockByrefHelpers *buildByrefHelpers(llvm::StructType &byrefType, 3949 const AutoVarEmission &emission); 3950 3951 void AddObjCARCExceptionMetadata(llvm::Instruction *Inst); 3952 3953 llvm::Value *GetValueForARMHint(unsigned BuiltinID); 3954 llvm::Value *EmitX86CpuIs(const CallExpr *E); 3955 llvm::Value *EmitX86CpuIs(StringRef CPUStr); 3956 llvm::Value *EmitX86CpuSupports(const CallExpr *E); 3957 llvm::Value *EmitX86CpuSupports(ArrayRef<StringRef> FeatureStrs); 3958 llvm::Value *EmitX86CpuInit(); 3959 }; 3960 3961 /// Helper class with most of the code for saving a value for a 3962 /// conditional expression cleanup. 3963 struct DominatingLLVMValue { 3964 typedef llvm::PointerIntPair<llvm::Value*, 1, bool> saved_type; 3965 3966 /// Answer whether the given value needs extra work to be saved. 3967 static bool needsSaving(llvm::Value *value) { 3968 // If it's not an instruction, we don't need to save. 3969 if (!isa<llvm::Instruction>(value)) return false; 3970 3971 // If it's an instruction in the entry block, we don't need to save. 3972 llvm::BasicBlock *block = cast<llvm::Instruction>(value)->getParent(); 3973 return (block != &block->getParent()->getEntryBlock()); 3974 } 3975 3976 /// Try to save the given value. 3977 static saved_type save(CodeGenFunction &CGF, llvm::Value *value) { 3978 if (!needsSaving(value)) return saved_type(value, false); 3979 3980 // Otherwise, we need an alloca. 3981 auto align = CharUnits::fromQuantity( 3982 CGF.CGM.getDataLayout().getPrefTypeAlignment(value->getType())); 3983 Address alloca = 3984 CGF.CreateTempAlloca(value->getType(), align, "cond-cleanup.save"); 3985 CGF.Builder.CreateStore(value, alloca); 3986 3987 return saved_type(alloca.getPointer(), true); 3988 } 3989 3990 static llvm::Value *restore(CodeGenFunction &CGF, saved_type value) { 3991 // If the value says it wasn't saved, trust that it's still dominating. 3992 if (!value.getInt()) return value.getPointer(); 3993 3994 // Otherwise, it should be an alloca instruction, as set up in save(). 3995 auto alloca = cast<llvm::AllocaInst>(value.getPointer()); 3996 return CGF.Builder.CreateAlignedLoad(alloca, alloca->getAlignment()); 3997 } 3998 }; 3999 4000 /// A partial specialization of DominatingValue for llvm::Values that 4001 /// might be llvm::Instructions. 4002 template <class T> struct DominatingPointer<T,true> : DominatingLLVMValue { 4003 typedef T *type; 4004 static type restore(CodeGenFunction &CGF, saved_type value) { 4005 return static_cast<T*>(DominatingLLVMValue::restore(CGF, value)); 4006 } 4007 }; 4008 4009 /// A specialization of DominatingValue for Address. 4010 template <> struct DominatingValue<Address> { 4011 typedef Address type; 4012 4013 struct saved_type { 4014 DominatingLLVMValue::saved_type SavedValue; 4015 CharUnits Alignment; 4016 }; 4017 4018 static bool needsSaving(type value) { 4019 return DominatingLLVMValue::needsSaving(value.getPointer()); 4020 } 4021 static saved_type save(CodeGenFunction &CGF, type value) { 4022 return { DominatingLLVMValue::save(CGF, value.getPointer()), 4023 value.getAlignment() }; 4024 } 4025 static type restore(CodeGenFunction &CGF, saved_type value) { 4026 return Address(DominatingLLVMValue::restore(CGF, value.SavedValue), 4027 value.Alignment); 4028 } 4029 }; 4030 4031 /// A specialization of DominatingValue for RValue. 4032 template <> struct DominatingValue<RValue> { 4033 typedef RValue type; 4034 class saved_type { 4035 enum Kind { ScalarLiteral, ScalarAddress, AggregateLiteral, 4036 AggregateAddress, ComplexAddress }; 4037 4038 llvm::Value *Value; 4039 unsigned K : 3; 4040 unsigned Align : 29; 4041 saved_type(llvm::Value *v, Kind k, unsigned a = 0) 4042 : Value(v), K(k), Align(a) {} 4043 4044 public: 4045 static bool needsSaving(RValue value); 4046 static saved_type save(CodeGenFunction &CGF, RValue value); 4047 RValue restore(CodeGenFunction &CGF); 4048 4049 // implementations in CGCleanup.cpp 4050 }; 4051 4052 static bool needsSaving(type value) { 4053 return saved_type::needsSaving(value); 4054 } 4055 static saved_type save(CodeGenFunction &CGF, type value) { 4056 return saved_type::save(CGF, value); 4057 } 4058 static type restore(CodeGenFunction &CGF, saved_type value) { 4059 return value.restore(CGF); 4060 } 4061 }; 4062 4063 } // end namespace CodeGen 4064 } // end namespace clang 4065 4066 #endif 4067