1 //===-- CodeGenFunction.h - Per-Function state for LLVM CodeGen -*- C++ -*-===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This is the internal per-function state used for llvm translation.
10 //
11 //===----------------------------------------------------------------------===//
12 
13 #ifndef LLVM_CLANG_LIB_CODEGEN_CODEGENFUNCTION_H
14 #define LLVM_CLANG_LIB_CODEGEN_CODEGENFUNCTION_H
15 
16 #include "CGBuilder.h"
17 #include "CGDebugInfo.h"
18 #include "CGLoopInfo.h"
19 #include "CGValue.h"
20 #include "CodeGenModule.h"
21 #include "CodeGenPGO.h"
22 #include "EHScopeStack.h"
23 #include "VarBypassDetector.h"
24 #include "clang/AST/CharUnits.h"
25 #include "clang/AST/CurrentSourceLocExprScope.h"
26 #include "clang/AST/ExprCXX.h"
27 #include "clang/AST/ExprObjC.h"
28 #include "clang/AST/ExprOpenMP.h"
29 #include "clang/AST/StmtOpenMP.h"
30 #include "clang/AST/Type.h"
31 #include "clang/Basic/ABI.h"
32 #include "clang/Basic/CapturedStmt.h"
33 #include "clang/Basic/CodeGenOptions.h"
34 #include "clang/Basic/OpenMPKinds.h"
35 #include "clang/Basic/TargetInfo.h"
36 #include "llvm/ADT/ArrayRef.h"
37 #include "llvm/ADT/DenseMap.h"
38 #include "llvm/ADT/MapVector.h"
39 #include "llvm/ADT/SmallVector.h"
40 #include "llvm/Frontend/OpenMP/OMPIRBuilder.h"
41 #include "llvm/IR/ValueHandle.h"
42 #include "llvm/Support/Debug.h"
43 #include "llvm/Transforms/Utils/SanitizerStats.h"
44 
45 namespace llvm {
46 class BasicBlock;
47 class LLVMContext;
48 class MDNode;
49 class Module;
50 class SwitchInst;
51 class Twine;
52 class Value;
53 class CanonicalLoopInfo;
54 }
55 
56 namespace clang {
57 class ASTContext;
58 class BlockDecl;
59 class CXXDestructorDecl;
60 class CXXForRangeStmt;
61 class CXXTryStmt;
62 class Decl;
63 class LabelDecl;
64 class EnumConstantDecl;
65 class FunctionDecl;
66 class FunctionProtoType;
67 class LabelStmt;
68 class ObjCContainerDecl;
69 class ObjCInterfaceDecl;
70 class ObjCIvarDecl;
71 class ObjCMethodDecl;
72 class ObjCImplementationDecl;
73 class ObjCPropertyImplDecl;
74 class TargetInfo;
75 class VarDecl;
76 class ObjCForCollectionStmt;
77 class ObjCAtTryStmt;
78 class ObjCAtThrowStmt;
79 class ObjCAtSynchronizedStmt;
80 class ObjCAutoreleasePoolStmt;
81 class OMPUseDevicePtrClause;
82 class OMPUseDeviceAddrClause;
83 class ReturnsNonNullAttr;
84 class SVETypeFlags;
85 class OMPExecutableDirective;
86 
87 namespace analyze_os_log {
88 class OSLogBufferLayout;
89 }
90 
91 namespace CodeGen {
92 class CodeGenTypes;
93 class CGCallee;
94 class CGFunctionInfo;
95 class CGRecordLayout;
96 class CGBlockInfo;
97 class CGCXXABI;
98 class BlockByrefHelpers;
99 class BlockByrefInfo;
100 class BlockFlags;
101 class BlockFieldFlags;
102 class RegionCodeGenTy;
103 class TargetCodeGenInfo;
104 struct OMPTaskDataTy;
105 struct CGCoroData;
106 
107 /// The kind of evaluation to perform on values of a particular
108 /// type.  Basically, is the code in CGExprScalar, CGExprComplex, or
109 /// CGExprAgg?
110 ///
111 /// TODO: should vectors maybe be split out into their own thing?
112 enum TypeEvaluationKind {
113   TEK_Scalar,
114   TEK_Complex,
115   TEK_Aggregate
116 };
117 
118 #define LIST_SANITIZER_CHECKS                                                  \
119   SANITIZER_CHECK(AddOverflow, add_overflow, 0)                                \
120   SANITIZER_CHECK(BuiltinUnreachable, builtin_unreachable, 0)                  \
121   SANITIZER_CHECK(CFICheckFail, cfi_check_fail, 0)                             \
122   SANITIZER_CHECK(DivremOverflow, divrem_overflow, 0)                          \
123   SANITIZER_CHECK(DynamicTypeCacheMiss, dynamic_type_cache_miss, 0)            \
124   SANITIZER_CHECK(FloatCastOverflow, float_cast_overflow, 0)                   \
125   SANITIZER_CHECK(FunctionTypeMismatch, function_type_mismatch, 1)             \
126   SANITIZER_CHECK(ImplicitConversion, implicit_conversion, 0)                  \
127   SANITIZER_CHECK(InvalidBuiltin, invalid_builtin, 0)                          \
128   SANITIZER_CHECK(InvalidObjCCast, invalid_objc_cast, 0)                       \
129   SANITIZER_CHECK(LoadInvalidValue, load_invalid_value, 0)                     \
130   SANITIZER_CHECK(MissingReturn, missing_return, 0)                            \
131   SANITIZER_CHECK(MulOverflow, mul_overflow, 0)                                \
132   SANITIZER_CHECK(NegateOverflow, negate_overflow, 0)                          \
133   SANITIZER_CHECK(NullabilityArg, nullability_arg, 0)                          \
134   SANITIZER_CHECK(NullabilityReturn, nullability_return, 1)                    \
135   SANITIZER_CHECK(NonnullArg, nonnull_arg, 0)                                  \
136   SANITIZER_CHECK(NonnullReturn, nonnull_return, 1)                            \
137   SANITIZER_CHECK(OutOfBounds, out_of_bounds, 0)                               \
138   SANITIZER_CHECK(PointerOverflow, pointer_overflow, 0)                        \
139   SANITIZER_CHECK(ShiftOutOfBounds, shift_out_of_bounds, 0)                    \
140   SANITIZER_CHECK(SubOverflow, sub_overflow, 0)                                \
141   SANITIZER_CHECK(TypeMismatch, type_mismatch, 1)                              \
142   SANITIZER_CHECK(AlignmentAssumption, alignment_assumption, 0)                \
143   SANITIZER_CHECK(VLABoundNotPositive, vla_bound_not_positive, 0)
144 
145 enum SanitizerHandler {
146 #define SANITIZER_CHECK(Enum, Name, Version) Enum,
147   LIST_SANITIZER_CHECKS
148 #undef SANITIZER_CHECK
149 };
150 
151 /// Helper class with most of the code for saving a value for a
152 /// conditional expression cleanup.
153 struct DominatingLLVMValue {
154   typedef llvm::PointerIntPair<llvm::Value*, 1, bool> saved_type;
155 
156   /// Answer whether the given value needs extra work to be saved.
157   static bool needsSaving(llvm::Value *value) {
158     // If it's not an instruction, we don't need to save.
159     if (!isa<llvm::Instruction>(value)) return false;
160 
161     // If it's an instruction in the entry block, we don't need to save.
162     llvm::BasicBlock *block = cast<llvm::Instruction>(value)->getParent();
163     return (block != &block->getParent()->getEntryBlock());
164   }
165 
166   static saved_type save(CodeGenFunction &CGF, llvm::Value *value);
167   static llvm::Value *restore(CodeGenFunction &CGF, saved_type value);
168 };
169 
170 /// A partial specialization of DominatingValue for llvm::Values that
171 /// might be llvm::Instructions.
172 template <class T> struct DominatingPointer<T,true> : DominatingLLVMValue {
173   typedef T *type;
174   static type restore(CodeGenFunction &CGF, saved_type value) {
175     return static_cast<T*>(DominatingLLVMValue::restore(CGF, value));
176   }
177 };
178 
179 /// A specialization of DominatingValue for Address.
180 template <> struct DominatingValue<Address> {
181   typedef Address type;
182 
183   struct saved_type {
184     DominatingLLVMValue::saved_type SavedValue;
185     CharUnits Alignment;
186   };
187 
188   static bool needsSaving(type value) {
189     return DominatingLLVMValue::needsSaving(value.getPointer());
190   }
191   static saved_type save(CodeGenFunction &CGF, type value) {
192     return { DominatingLLVMValue::save(CGF, value.getPointer()),
193              value.getAlignment() };
194   }
195   static type restore(CodeGenFunction &CGF, saved_type value) {
196     return Address(DominatingLLVMValue::restore(CGF, value.SavedValue),
197                    value.Alignment);
198   }
199 };
200 
201 /// A specialization of DominatingValue for RValue.
202 template <> struct DominatingValue<RValue> {
203   typedef RValue type;
204   class saved_type {
205     enum Kind { ScalarLiteral, ScalarAddress, AggregateLiteral,
206                 AggregateAddress, ComplexAddress };
207 
208     llvm::Value *Value;
209     unsigned K : 3;
210     unsigned Align : 29;
211     saved_type(llvm::Value *v, Kind k, unsigned a = 0)
212       : Value(v), K(k), Align(a) {}
213 
214   public:
215     static bool needsSaving(RValue value);
216     static saved_type save(CodeGenFunction &CGF, RValue value);
217     RValue restore(CodeGenFunction &CGF);
218 
219     // implementations in CGCleanup.cpp
220   };
221 
222   static bool needsSaving(type value) {
223     return saved_type::needsSaving(value);
224   }
225   static saved_type save(CodeGenFunction &CGF, type value) {
226     return saved_type::save(CGF, value);
227   }
228   static type restore(CodeGenFunction &CGF, saved_type value) {
229     return value.restore(CGF);
230   }
231 };
232 
233 /// CodeGenFunction - This class organizes the per-function state that is used
234 /// while generating LLVM code.
235 class CodeGenFunction : public CodeGenTypeCache {
236   CodeGenFunction(const CodeGenFunction &) = delete;
237   void operator=(const CodeGenFunction &) = delete;
238 
239   friend class CGCXXABI;
240 public:
241   /// A jump destination is an abstract label, branching to which may
242   /// require a jump out through normal cleanups.
243   struct JumpDest {
244     JumpDest() : Block(nullptr), ScopeDepth(), Index(0) {}
245     JumpDest(llvm::BasicBlock *Block,
246              EHScopeStack::stable_iterator Depth,
247              unsigned Index)
248       : Block(Block), ScopeDepth(Depth), Index(Index) {}
249 
250     bool isValid() const { return Block != nullptr; }
251     llvm::BasicBlock *getBlock() const { return Block; }
252     EHScopeStack::stable_iterator getScopeDepth() const { return ScopeDepth; }
253     unsigned getDestIndex() const { return Index; }
254 
255     // This should be used cautiously.
256     void setScopeDepth(EHScopeStack::stable_iterator depth) {
257       ScopeDepth = depth;
258     }
259 
260   private:
261     llvm::BasicBlock *Block;
262     EHScopeStack::stable_iterator ScopeDepth;
263     unsigned Index;
264   };
265 
266   CodeGenModule &CGM;  // Per-module state.
267   const TargetInfo &Target;
268 
269   // For EH/SEH outlined funclets, this field points to parent's CGF
270   CodeGenFunction *ParentCGF = nullptr;
271 
272   typedef std::pair<llvm::Value *, llvm::Value *> ComplexPairTy;
273   LoopInfoStack LoopStack;
274   CGBuilderTy Builder;
275 
276   // Stores variables for which we can't generate correct lifetime markers
277   // because of jumps.
278   VarBypassDetector Bypasses;
279 
280   /// List of recently emitted OMPCanonicalLoops.
281   ///
282   /// Since OMPCanonicalLoops are nested inside other statements (in particular
283   /// CapturedStmt generated by OMPExecutableDirective and non-perfectly nested
284   /// loops), we cannot directly call OMPEmitOMPCanonicalLoop and receive its
285   /// llvm::CanonicalLoopInfo. Instead, we call EmitStmt and any
286   /// OMPEmitOMPCanonicalLoop called by it will add its CanonicalLoopInfo to
287   /// this stack when done. Entering a new loop requires clearing this list; it
288   /// either means we start parsing a new loop nest (in which case the previous
289   /// loop nest goes out of scope) or a second loop in the same level in which
290   /// case it would be ambiguous into which of the two (or more) loops the loop
291   /// nest would extend.
292   SmallVector<llvm::CanonicalLoopInfo *, 4> OMPLoopNestStack;
293 
294   // CodeGen lambda for loops and support for ordered clause
295   typedef llvm::function_ref<void(CodeGenFunction &, const OMPLoopDirective &,
296                                   JumpDest)>
297       CodeGenLoopTy;
298   typedef llvm::function_ref<void(CodeGenFunction &, SourceLocation,
299                                   const unsigned, const bool)>
300       CodeGenOrderedTy;
301 
302   // Codegen lambda for loop bounds in worksharing loop constructs
303   typedef llvm::function_ref<std::pair<LValue, LValue>(
304       CodeGenFunction &, const OMPExecutableDirective &S)>
305       CodeGenLoopBoundsTy;
306 
307   // Codegen lambda for loop bounds in dispatch-based loop implementation
308   typedef llvm::function_ref<std::pair<llvm::Value *, llvm::Value *>(
309       CodeGenFunction &, const OMPExecutableDirective &S, Address LB,
310       Address UB)>
311       CodeGenDispatchBoundsTy;
312 
313   /// CGBuilder insert helper. This function is called after an
314   /// instruction is created using Builder.
315   void InsertHelper(llvm::Instruction *I, const llvm::Twine &Name,
316                     llvm::BasicBlock *BB,
317                     llvm::BasicBlock::iterator InsertPt) const;
318 
319   /// CurFuncDecl - Holds the Decl for the current outermost
320   /// non-closure context.
321   const Decl *CurFuncDecl;
322   /// CurCodeDecl - This is the inner-most code context, which includes blocks.
323   const Decl *CurCodeDecl;
324   const CGFunctionInfo *CurFnInfo;
325   QualType FnRetTy;
326   llvm::Function *CurFn = nullptr;
327 
328   /// Save Parameter Decl for coroutine.
329   llvm::SmallVector<const ParmVarDecl *, 4> FnArgs;
330 
331   // Holds coroutine data if the current function is a coroutine. We use a
332   // wrapper to manage its lifetime, so that we don't have to define CGCoroData
333   // in this header.
334   struct CGCoroInfo {
335     std::unique_ptr<CGCoroData> Data;
336     CGCoroInfo();
337     ~CGCoroInfo();
338   };
339   CGCoroInfo CurCoro;
340 
341   bool isCoroutine() const {
342     return CurCoro.Data != nullptr;
343   }
344 
345   /// CurGD - The GlobalDecl for the current function being compiled.
346   GlobalDecl CurGD;
347 
348   /// PrologueCleanupDepth - The cleanup depth enclosing all the
349   /// cleanups associated with the parameters.
350   EHScopeStack::stable_iterator PrologueCleanupDepth;
351 
352   /// ReturnBlock - Unified return block.
353   JumpDest ReturnBlock;
354 
355   /// ReturnValue - The temporary alloca to hold the return
356   /// value. This is invalid iff the function has no return value.
357   Address ReturnValue = Address::invalid();
358 
359   /// ReturnValuePointer - The temporary alloca to hold a pointer to sret.
360   /// This is invalid if sret is not in use.
361   Address ReturnValuePointer = Address::invalid();
362 
363   /// If a return statement is being visited, this holds the return statment's
364   /// result expression.
365   const Expr *RetExpr = nullptr;
366 
367   /// Return true if a label was seen in the current scope.
368   bool hasLabelBeenSeenInCurrentScope() const {
369     if (CurLexicalScope)
370       return CurLexicalScope->hasLabels();
371     return !LabelMap.empty();
372   }
373 
374   /// AllocaInsertPoint - This is an instruction in the entry block before which
375   /// we prefer to insert allocas.
376   llvm::AssertingVH<llvm::Instruction> AllocaInsertPt;
377 
378   /// API for captured statement code generation.
379   class CGCapturedStmtInfo {
380   public:
381     explicit CGCapturedStmtInfo(CapturedRegionKind K = CR_Default)
382         : Kind(K), ThisValue(nullptr), CXXThisFieldDecl(nullptr) {}
383     explicit CGCapturedStmtInfo(const CapturedStmt &S,
384                                 CapturedRegionKind K = CR_Default)
385       : Kind(K), ThisValue(nullptr), CXXThisFieldDecl(nullptr) {
386 
387       RecordDecl::field_iterator Field =
388         S.getCapturedRecordDecl()->field_begin();
389       for (CapturedStmt::const_capture_iterator I = S.capture_begin(),
390                                                 E = S.capture_end();
391            I != E; ++I, ++Field) {
392         if (I->capturesThis())
393           CXXThisFieldDecl = *Field;
394         else if (I->capturesVariable())
395           CaptureFields[I->getCapturedVar()->getCanonicalDecl()] = *Field;
396         else if (I->capturesVariableByCopy())
397           CaptureFields[I->getCapturedVar()->getCanonicalDecl()] = *Field;
398       }
399     }
400 
401     virtual ~CGCapturedStmtInfo();
402 
403     CapturedRegionKind getKind() const { return Kind; }
404 
405     virtual void setContextValue(llvm::Value *V) { ThisValue = V; }
406     // Retrieve the value of the context parameter.
407     virtual llvm::Value *getContextValue() const { return ThisValue; }
408 
409     /// Lookup the captured field decl for a variable.
410     virtual const FieldDecl *lookup(const VarDecl *VD) const {
411       return CaptureFields.lookup(VD->getCanonicalDecl());
412     }
413 
414     bool isCXXThisExprCaptured() const { return getThisFieldDecl() != nullptr; }
415     virtual FieldDecl *getThisFieldDecl() const { return CXXThisFieldDecl; }
416 
417     static bool classof(const CGCapturedStmtInfo *) {
418       return true;
419     }
420 
421     /// Emit the captured statement body.
422     virtual void EmitBody(CodeGenFunction &CGF, const Stmt *S) {
423       CGF.incrementProfileCounter(S);
424       CGF.EmitStmt(S);
425     }
426 
427     /// Get the name of the capture helper.
428     virtual StringRef getHelperName() const { return "__captured_stmt"; }
429 
430   private:
431     /// The kind of captured statement being generated.
432     CapturedRegionKind Kind;
433 
434     /// Keep the map between VarDecl and FieldDecl.
435     llvm::SmallDenseMap<const VarDecl *, FieldDecl *> CaptureFields;
436 
437     /// The base address of the captured record, passed in as the first
438     /// argument of the parallel region function.
439     llvm::Value *ThisValue;
440 
441     /// Captured 'this' type.
442     FieldDecl *CXXThisFieldDecl;
443   };
444   CGCapturedStmtInfo *CapturedStmtInfo = nullptr;
445 
446   /// RAII for correct setting/restoring of CapturedStmtInfo.
447   class CGCapturedStmtRAII {
448   private:
449     CodeGenFunction &CGF;
450     CGCapturedStmtInfo *PrevCapturedStmtInfo;
451   public:
452     CGCapturedStmtRAII(CodeGenFunction &CGF,
453                        CGCapturedStmtInfo *NewCapturedStmtInfo)
454         : CGF(CGF), PrevCapturedStmtInfo(CGF.CapturedStmtInfo) {
455       CGF.CapturedStmtInfo = NewCapturedStmtInfo;
456     }
457     ~CGCapturedStmtRAII() { CGF.CapturedStmtInfo = PrevCapturedStmtInfo; }
458   };
459 
460   /// An abstract representation of regular/ObjC call/message targets.
461   class AbstractCallee {
462     /// The function declaration of the callee.
463     const Decl *CalleeDecl;
464 
465   public:
466     AbstractCallee() : CalleeDecl(nullptr) {}
467     AbstractCallee(const FunctionDecl *FD) : CalleeDecl(FD) {}
468     AbstractCallee(const ObjCMethodDecl *OMD) : CalleeDecl(OMD) {}
469     bool hasFunctionDecl() const {
470       return dyn_cast_or_null<FunctionDecl>(CalleeDecl);
471     }
472     const Decl *getDecl() const { return CalleeDecl; }
473     unsigned getNumParams() const {
474       if (const auto *FD = dyn_cast<FunctionDecl>(CalleeDecl))
475         return FD->getNumParams();
476       return cast<ObjCMethodDecl>(CalleeDecl)->param_size();
477     }
478     const ParmVarDecl *getParamDecl(unsigned I) const {
479       if (const auto *FD = dyn_cast<FunctionDecl>(CalleeDecl))
480         return FD->getParamDecl(I);
481       return *(cast<ObjCMethodDecl>(CalleeDecl)->param_begin() + I);
482     }
483   };
484 
485   /// Sanitizers enabled for this function.
486   SanitizerSet SanOpts;
487 
488   /// True if CodeGen currently emits code implementing sanitizer checks.
489   bool IsSanitizerScope = false;
490 
491   /// RAII object to set/unset CodeGenFunction::IsSanitizerScope.
492   class SanitizerScope {
493     CodeGenFunction *CGF;
494   public:
495     SanitizerScope(CodeGenFunction *CGF);
496     ~SanitizerScope();
497   };
498 
499   /// In C++, whether we are code generating a thunk.  This controls whether we
500   /// should emit cleanups.
501   bool CurFuncIsThunk = false;
502 
503   /// In ARC, whether we should autorelease the return value.
504   bool AutoreleaseResult = false;
505 
506   /// Whether we processed a Microsoft-style asm block during CodeGen. These can
507   /// potentially set the return value.
508   bool SawAsmBlock = false;
509 
510   const NamedDecl *CurSEHParent = nullptr;
511 
512   /// True if the current function is an outlined SEH helper. This can be a
513   /// finally block or filter expression.
514   bool IsOutlinedSEHHelper = false;
515 
516   /// True if CodeGen currently emits code inside presereved access index
517   /// region.
518   bool IsInPreservedAIRegion = false;
519 
520   /// True if the current statement has nomerge attribute.
521   bool InNoMergeAttributedStmt = false;
522 
523   /// True if the current function should be marked mustprogress.
524   bool FnIsMustProgress = false;
525 
526   /// True if the C++ Standard Requires Progress.
527   bool CPlusPlusWithProgress() {
528     if (CGM.getCodeGenOpts().getFiniteLoops() ==
529         CodeGenOptions::FiniteLoopsKind::Never)
530       return false;
531 
532     return getLangOpts().CPlusPlus11 || getLangOpts().CPlusPlus14 ||
533            getLangOpts().CPlusPlus17 || getLangOpts().CPlusPlus20;
534   }
535 
536   /// True if the C Standard Requires Progress.
537   bool CWithProgress() {
538     if (CGM.getCodeGenOpts().getFiniteLoops() ==
539         CodeGenOptions::FiniteLoopsKind::Always)
540       return true;
541     if (CGM.getCodeGenOpts().getFiniteLoops() ==
542         CodeGenOptions::FiniteLoopsKind::Never)
543       return false;
544 
545     return getLangOpts().C11 || getLangOpts().C17 || getLangOpts().C2x;
546   }
547 
548   /// True if the language standard requires progress in functions or
549   /// in infinite loops with non-constant conditionals.
550   bool LanguageRequiresProgress() {
551     return CWithProgress() || CPlusPlusWithProgress();
552   }
553 
554   const CodeGen::CGBlockInfo *BlockInfo = nullptr;
555   llvm::Value *BlockPointer = nullptr;
556 
557   llvm::DenseMap<const VarDecl *, FieldDecl *> LambdaCaptureFields;
558   FieldDecl *LambdaThisCaptureField = nullptr;
559 
560   /// A mapping from NRVO variables to the flags used to indicate
561   /// when the NRVO has been applied to this variable.
562   llvm::DenseMap<const VarDecl *, llvm::Value *> NRVOFlags;
563 
564   EHScopeStack EHStack;
565   llvm::SmallVector<char, 256> LifetimeExtendedCleanupStack;
566   llvm::SmallVector<const JumpDest *, 2> SEHTryEpilogueStack;
567 
568   llvm::Instruction *CurrentFuncletPad = nullptr;
569 
570   class CallLifetimeEnd final : public EHScopeStack::Cleanup {
571     llvm::Value *Addr;
572     llvm::Value *Size;
573 
574   public:
575     CallLifetimeEnd(Address addr, llvm::Value *size)
576         : Addr(addr.getPointer()), Size(size) {}
577 
578     void Emit(CodeGenFunction &CGF, Flags flags) override {
579       CGF.EmitLifetimeEnd(Size, Addr);
580     }
581   };
582 
583   /// Header for data within LifetimeExtendedCleanupStack.
584   struct LifetimeExtendedCleanupHeader {
585     /// The size of the following cleanup object.
586     unsigned Size;
587     /// The kind of cleanup to push: a value from the CleanupKind enumeration.
588     unsigned Kind : 31;
589     /// Whether this is a conditional cleanup.
590     unsigned IsConditional : 1;
591 
592     size_t getSize() const { return Size; }
593     CleanupKind getKind() const { return (CleanupKind)Kind; }
594     bool isConditional() const { return IsConditional; }
595   };
596 
597   /// i32s containing the indexes of the cleanup destinations.
598   Address NormalCleanupDest = Address::invalid();
599 
600   unsigned NextCleanupDestIndex = 1;
601 
602   /// EHResumeBlock - Unified block containing a call to llvm.eh.resume.
603   llvm::BasicBlock *EHResumeBlock = nullptr;
604 
605   /// The exception slot.  All landing pads write the current exception pointer
606   /// into this alloca.
607   llvm::Value *ExceptionSlot = nullptr;
608 
609   /// The selector slot.  Under the MandatoryCleanup model, all landing pads
610   /// write the current selector value into this alloca.
611   llvm::AllocaInst *EHSelectorSlot = nullptr;
612 
613   /// A stack of exception code slots. Entering an __except block pushes a slot
614   /// on the stack and leaving pops one. The __exception_code() intrinsic loads
615   /// a value from the top of the stack.
616   SmallVector<Address, 1> SEHCodeSlotStack;
617 
618   /// Value returned by __exception_info intrinsic.
619   llvm::Value *SEHInfo = nullptr;
620 
621   /// Emits a landing pad for the current EH stack.
622   llvm::BasicBlock *EmitLandingPad();
623 
624   llvm::BasicBlock *getInvokeDestImpl();
625 
626   /// Parent loop-based directive for scan directive.
627   const OMPExecutableDirective *OMPParentLoopDirectiveForScan = nullptr;
628   llvm::BasicBlock *OMPBeforeScanBlock = nullptr;
629   llvm::BasicBlock *OMPAfterScanBlock = nullptr;
630   llvm::BasicBlock *OMPScanExitBlock = nullptr;
631   llvm::BasicBlock *OMPScanDispatch = nullptr;
632   bool OMPFirstScanLoop = false;
633 
634   /// Manages parent directive for scan directives.
635   class ParentLoopDirectiveForScanRegion {
636     CodeGenFunction &CGF;
637     const OMPExecutableDirective *ParentLoopDirectiveForScan;
638 
639   public:
640     ParentLoopDirectiveForScanRegion(
641         CodeGenFunction &CGF,
642         const OMPExecutableDirective &ParentLoopDirectiveForScan)
643         : CGF(CGF),
644           ParentLoopDirectiveForScan(CGF.OMPParentLoopDirectiveForScan) {
645       CGF.OMPParentLoopDirectiveForScan = &ParentLoopDirectiveForScan;
646     }
647     ~ParentLoopDirectiveForScanRegion() {
648       CGF.OMPParentLoopDirectiveForScan = ParentLoopDirectiveForScan;
649     }
650   };
651 
652   template <class T>
653   typename DominatingValue<T>::saved_type saveValueInCond(T value) {
654     return DominatingValue<T>::save(*this, value);
655   }
656 
657   class CGFPOptionsRAII {
658   public:
659     CGFPOptionsRAII(CodeGenFunction &CGF, FPOptions FPFeatures);
660     CGFPOptionsRAII(CodeGenFunction &CGF, const Expr *E);
661     ~CGFPOptionsRAII();
662 
663   private:
664     void ConstructorHelper(FPOptions FPFeatures);
665     CodeGenFunction &CGF;
666     FPOptions OldFPFeatures;
667     llvm::fp::ExceptionBehavior OldExcept;
668     llvm::RoundingMode OldRounding;
669     Optional<CGBuilderTy::FastMathFlagGuard> FMFGuard;
670   };
671   FPOptions CurFPFeatures;
672 
673 public:
674   /// ObjCEHValueStack - Stack of Objective-C exception values, used for
675   /// rethrows.
676   SmallVector<llvm::Value*, 8> ObjCEHValueStack;
677 
678   /// A class controlling the emission of a finally block.
679   class FinallyInfo {
680     /// Where the catchall's edge through the cleanup should go.
681     JumpDest RethrowDest;
682 
683     /// A function to call to enter the catch.
684     llvm::FunctionCallee BeginCatchFn;
685 
686     /// An i1 variable indicating whether or not the @finally is
687     /// running for an exception.
688     llvm::AllocaInst *ForEHVar;
689 
690     /// An i8* variable into which the exception pointer to rethrow
691     /// has been saved.
692     llvm::AllocaInst *SavedExnVar;
693 
694   public:
695     void enter(CodeGenFunction &CGF, const Stmt *Finally,
696                llvm::FunctionCallee beginCatchFn,
697                llvm::FunctionCallee endCatchFn, llvm::FunctionCallee rethrowFn);
698     void exit(CodeGenFunction &CGF);
699   };
700 
701   /// Returns true inside SEH __try blocks.
702   bool isSEHTryScope() const { return !SEHTryEpilogueStack.empty(); }
703 
704   /// Returns true while emitting a cleanuppad.
705   bool isCleanupPadScope() const {
706     return CurrentFuncletPad && isa<llvm::CleanupPadInst>(CurrentFuncletPad);
707   }
708 
709   /// pushFullExprCleanup - Push a cleanup to be run at the end of the
710   /// current full-expression.  Safe against the possibility that
711   /// we're currently inside a conditionally-evaluated expression.
712   template <class T, class... As>
713   void pushFullExprCleanup(CleanupKind kind, As... A) {
714     // If we're not in a conditional branch, or if none of the
715     // arguments requires saving, then use the unconditional cleanup.
716     if (!isInConditionalBranch())
717       return EHStack.pushCleanup<T>(kind, A...);
718 
719     // Stash values in a tuple so we can guarantee the order of saves.
720     typedef std::tuple<typename DominatingValue<As>::saved_type...> SavedTuple;
721     SavedTuple Saved{saveValueInCond(A)...};
722 
723     typedef EHScopeStack::ConditionalCleanup<T, As...> CleanupType;
724     EHStack.pushCleanupTuple<CleanupType>(kind, Saved);
725     initFullExprCleanup();
726   }
727 
728   /// Queue a cleanup to be pushed after finishing the current full-expression,
729   /// potentially with an active flag.
730   template <class T, class... As>
731   void pushCleanupAfterFullExpr(CleanupKind Kind, As... A) {
732     if (!isInConditionalBranch())
733       return pushCleanupAfterFullExprWithActiveFlag<T>(Kind, Address::invalid(),
734                                                        A...);
735 
736     Address ActiveFlag = createCleanupActiveFlag();
737     assert(!DominatingValue<Address>::needsSaving(ActiveFlag) &&
738            "cleanup active flag should never need saving");
739 
740     typedef std::tuple<typename DominatingValue<As>::saved_type...> SavedTuple;
741     SavedTuple Saved{saveValueInCond(A)...};
742 
743     typedef EHScopeStack::ConditionalCleanup<T, As...> CleanupType;
744     pushCleanupAfterFullExprWithActiveFlag<CleanupType>(Kind, ActiveFlag, Saved);
745   }
746 
747   template <class T, class... As>
748   void pushCleanupAfterFullExprWithActiveFlag(CleanupKind Kind,
749                                               Address ActiveFlag, As... A) {
750     LifetimeExtendedCleanupHeader Header = {sizeof(T), Kind,
751                                             ActiveFlag.isValid()};
752 
753     size_t OldSize = LifetimeExtendedCleanupStack.size();
754     LifetimeExtendedCleanupStack.resize(
755         LifetimeExtendedCleanupStack.size() + sizeof(Header) + Header.Size +
756         (Header.IsConditional ? sizeof(ActiveFlag) : 0));
757 
758     static_assert(sizeof(Header) % alignof(T) == 0,
759                   "Cleanup will be allocated on misaligned address");
760     char *Buffer = &LifetimeExtendedCleanupStack[OldSize];
761     new (Buffer) LifetimeExtendedCleanupHeader(Header);
762     new (Buffer + sizeof(Header)) T(A...);
763     if (Header.IsConditional)
764       new (Buffer + sizeof(Header) + sizeof(T)) Address(ActiveFlag);
765   }
766 
767   /// Set up the last cleanup that was pushed as a conditional
768   /// full-expression cleanup.
769   void initFullExprCleanup() {
770     initFullExprCleanupWithFlag(createCleanupActiveFlag());
771   }
772 
773   void initFullExprCleanupWithFlag(Address ActiveFlag);
774   Address createCleanupActiveFlag();
775 
776   /// PushDestructorCleanup - Push a cleanup to call the
777   /// complete-object destructor of an object of the given type at the
778   /// given address.  Does nothing if T is not a C++ class type with a
779   /// non-trivial destructor.
780   void PushDestructorCleanup(QualType T, Address Addr);
781 
782   /// PushDestructorCleanup - Push a cleanup to call the
783   /// complete-object variant of the given destructor on the object at
784   /// the given address.
785   void PushDestructorCleanup(const CXXDestructorDecl *Dtor, QualType T,
786                              Address Addr);
787 
788   /// PopCleanupBlock - Will pop the cleanup entry on the stack and
789   /// process all branch fixups.
790   void PopCleanupBlock(bool FallThroughIsBranchThrough = false);
791 
792   /// DeactivateCleanupBlock - Deactivates the given cleanup block.
793   /// The block cannot be reactivated.  Pops it if it's the top of the
794   /// stack.
795   ///
796   /// \param DominatingIP - An instruction which is known to
797   ///   dominate the current IP (if set) and which lies along
798   ///   all paths of execution between the current IP and the
799   ///   the point at which the cleanup comes into scope.
800   void DeactivateCleanupBlock(EHScopeStack::stable_iterator Cleanup,
801                               llvm::Instruction *DominatingIP);
802 
803   /// ActivateCleanupBlock - Activates an initially-inactive cleanup.
804   /// Cannot be used to resurrect a deactivated cleanup.
805   ///
806   /// \param DominatingIP - An instruction which is known to
807   ///   dominate the current IP (if set) and which lies along
808   ///   all paths of execution between the current IP and the
809   ///   the point at which the cleanup comes into scope.
810   void ActivateCleanupBlock(EHScopeStack::stable_iterator Cleanup,
811                             llvm::Instruction *DominatingIP);
812 
813   /// Enters a new scope for capturing cleanups, all of which
814   /// will be executed once the scope is exited.
815   class RunCleanupsScope {
816     EHScopeStack::stable_iterator CleanupStackDepth, OldCleanupScopeDepth;
817     size_t LifetimeExtendedCleanupStackSize;
818     bool OldDidCallStackSave;
819   protected:
820     bool PerformCleanup;
821   private:
822 
823     RunCleanupsScope(const RunCleanupsScope &) = delete;
824     void operator=(const RunCleanupsScope &) = delete;
825 
826   protected:
827     CodeGenFunction& CGF;
828 
829   public:
830     /// Enter a new cleanup scope.
831     explicit RunCleanupsScope(CodeGenFunction &CGF)
832       : PerformCleanup(true), CGF(CGF)
833     {
834       CleanupStackDepth = CGF.EHStack.stable_begin();
835       LifetimeExtendedCleanupStackSize =
836           CGF.LifetimeExtendedCleanupStack.size();
837       OldDidCallStackSave = CGF.DidCallStackSave;
838       CGF.DidCallStackSave = false;
839       OldCleanupScopeDepth = CGF.CurrentCleanupScopeDepth;
840       CGF.CurrentCleanupScopeDepth = CleanupStackDepth;
841     }
842 
843     /// Exit this cleanup scope, emitting any accumulated cleanups.
844     ~RunCleanupsScope() {
845       if (PerformCleanup)
846         ForceCleanup();
847     }
848 
849     /// Determine whether this scope requires any cleanups.
850     bool requiresCleanups() const {
851       return CGF.EHStack.stable_begin() != CleanupStackDepth;
852     }
853 
854     /// Force the emission of cleanups now, instead of waiting
855     /// until this object is destroyed.
856     /// \param ValuesToReload - A list of values that need to be available at
857     /// the insertion point after cleanup emission. If cleanup emission created
858     /// a shared cleanup block, these value pointers will be rewritten.
859     /// Otherwise, they not will be modified.
860     void ForceCleanup(std::initializer_list<llvm::Value**> ValuesToReload = {}) {
861       assert(PerformCleanup && "Already forced cleanup");
862       CGF.DidCallStackSave = OldDidCallStackSave;
863       CGF.PopCleanupBlocks(CleanupStackDepth, LifetimeExtendedCleanupStackSize,
864                            ValuesToReload);
865       PerformCleanup = false;
866       CGF.CurrentCleanupScopeDepth = OldCleanupScopeDepth;
867     }
868   };
869 
870   // Cleanup stack depth of the RunCleanupsScope that was pushed most recently.
871   EHScopeStack::stable_iterator CurrentCleanupScopeDepth =
872       EHScopeStack::stable_end();
873 
874   class LexicalScope : public RunCleanupsScope {
875     SourceRange Range;
876     SmallVector<const LabelDecl*, 4> Labels;
877     LexicalScope *ParentScope;
878 
879     LexicalScope(const LexicalScope &) = delete;
880     void operator=(const LexicalScope &) = delete;
881 
882   public:
883     /// Enter a new cleanup scope.
884     explicit LexicalScope(CodeGenFunction &CGF, SourceRange Range)
885       : RunCleanupsScope(CGF), Range(Range), ParentScope(CGF.CurLexicalScope) {
886       CGF.CurLexicalScope = this;
887       if (CGDebugInfo *DI = CGF.getDebugInfo())
888         DI->EmitLexicalBlockStart(CGF.Builder, Range.getBegin());
889     }
890 
891     void addLabel(const LabelDecl *label) {
892       assert(PerformCleanup && "adding label to dead scope?");
893       Labels.push_back(label);
894     }
895 
896     /// Exit this cleanup scope, emitting any accumulated
897     /// cleanups.
898     ~LexicalScope() {
899       if (CGDebugInfo *DI = CGF.getDebugInfo())
900         DI->EmitLexicalBlockEnd(CGF.Builder, Range.getEnd());
901 
902       // If we should perform a cleanup, force them now.  Note that
903       // this ends the cleanup scope before rescoping any labels.
904       if (PerformCleanup) {
905         ApplyDebugLocation DL(CGF, Range.getEnd());
906         ForceCleanup();
907       }
908     }
909 
910     /// Force the emission of cleanups now, instead of waiting
911     /// until this object is destroyed.
912     void ForceCleanup() {
913       CGF.CurLexicalScope = ParentScope;
914       RunCleanupsScope::ForceCleanup();
915 
916       if (!Labels.empty())
917         rescopeLabels();
918     }
919 
920     bool hasLabels() const {
921       return !Labels.empty();
922     }
923 
924     void rescopeLabels();
925   };
926 
927   typedef llvm::DenseMap<const Decl *, Address> DeclMapTy;
928 
929   /// The class used to assign some variables some temporarily addresses.
930   class OMPMapVars {
931     DeclMapTy SavedLocals;
932     DeclMapTy SavedTempAddresses;
933     OMPMapVars(const OMPMapVars &) = delete;
934     void operator=(const OMPMapVars &) = delete;
935 
936   public:
937     explicit OMPMapVars() = default;
938     ~OMPMapVars() {
939       assert(SavedLocals.empty() && "Did not restored original addresses.");
940     };
941 
942     /// Sets the address of the variable \p LocalVD to be \p TempAddr in
943     /// function \p CGF.
944     /// \return true if at least one variable was set already, false otherwise.
945     bool setVarAddr(CodeGenFunction &CGF, const VarDecl *LocalVD,
946                     Address TempAddr) {
947       LocalVD = LocalVD->getCanonicalDecl();
948       // Only save it once.
949       if (SavedLocals.count(LocalVD)) return false;
950 
951       // Copy the existing local entry to SavedLocals.
952       auto it = CGF.LocalDeclMap.find(LocalVD);
953       if (it != CGF.LocalDeclMap.end())
954         SavedLocals.try_emplace(LocalVD, it->second);
955       else
956         SavedLocals.try_emplace(LocalVD, Address::invalid());
957 
958       // Generate the private entry.
959       QualType VarTy = LocalVD->getType();
960       if (VarTy->isReferenceType()) {
961         Address Temp = CGF.CreateMemTemp(VarTy);
962         CGF.Builder.CreateStore(TempAddr.getPointer(), Temp);
963         TempAddr = Temp;
964       }
965       SavedTempAddresses.try_emplace(LocalVD, TempAddr);
966 
967       return true;
968     }
969 
970     /// Applies new addresses to the list of the variables.
971     /// \return true if at least one variable is using new address, false
972     /// otherwise.
973     bool apply(CodeGenFunction &CGF) {
974       copyInto(SavedTempAddresses, CGF.LocalDeclMap);
975       SavedTempAddresses.clear();
976       return !SavedLocals.empty();
977     }
978 
979     /// Restores original addresses of the variables.
980     void restore(CodeGenFunction &CGF) {
981       if (!SavedLocals.empty()) {
982         copyInto(SavedLocals, CGF.LocalDeclMap);
983         SavedLocals.clear();
984       }
985     }
986 
987   private:
988     /// Copy all the entries in the source map over the corresponding
989     /// entries in the destination, which must exist.
990     static void copyInto(const DeclMapTy &Src, DeclMapTy &Dest) {
991       for (auto &Pair : Src) {
992         if (!Pair.second.isValid()) {
993           Dest.erase(Pair.first);
994           continue;
995         }
996 
997         auto I = Dest.find(Pair.first);
998         if (I != Dest.end())
999           I->second = Pair.second;
1000         else
1001           Dest.insert(Pair);
1002       }
1003     }
1004   };
1005 
1006   /// The scope used to remap some variables as private in the OpenMP loop body
1007   /// (or other captured region emitted without outlining), and to restore old
1008   /// vars back on exit.
1009   class OMPPrivateScope : public RunCleanupsScope {
1010     OMPMapVars MappedVars;
1011     OMPPrivateScope(const OMPPrivateScope &) = delete;
1012     void operator=(const OMPPrivateScope &) = delete;
1013 
1014   public:
1015     /// Enter a new OpenMP private scope.
1016     explicit OMPPrivateScope(CodeGenFunction &CGF) : RunCleanupsScope(CGF) {}
1017 
1018     /// Registers \p LocalVD variable as a private and apply \p PrivateGen
1019     /// function for it to generate corresponding private variable. \p
1020     /// PrivateGen returns an address of the generated private variable.
1021     /// \return true if the variable is registered as private, false if it has
1022     /// been privatized already.
1023     bool addPrivate(const VarDecl *LocalVD,
1024                     const llvm::function_ref<Address()> PrivateGen) {
1025       assert(PerformCleanup && "adding private to dead scope");
1026       return MappedVars.setVarAddr(CGF, LocalVD, PrivateGen());
1027     }
1028 
1029     /// Privatizes local variables previously registered as private.
1030     /// Registration is separate from the actual privatization to allow
1031     /// initializers use values of the original variables, not the private one.
1032     /// This is important, for example, if the private variable is a class
1033     /// variable initialized by a constructor that references other private
1034     /// variables. But at initialization original variables must be used, not
1035     /// private copies.
1036     /// \return true if at least one variable was privatized, false otherwise.
1037     bool Privatize() { return MappedVars.apply(CGF); }
1038 
1039     void ForceCleanup() {
1040       RunCleanupsScope::ForceCleanup();
1041       MappedVars.restore(CGF);
1042     }
1043 
1044     /// Exit scope - all the mapped variables are restored.
1045     ~OMPPrivateScope() {
1046       if (PerformCleanup)
1047         ForceCleanup();
1048     }
1049 
1050     /// Checks if the global variable is captured in current function.
1051     bool isGlobalVarCaptured(const VarDecl *VD) const {
1052       VD = VD->getCanonicalDecl();
1053       return !VD->isLocalVarDeclOrParm() && CGF.LocalDeclMap.count(VD) > 0;
1054     }
1055   };
1056 
1057   /// Save/restore original map of previously emitted local vars in case when we
1058   /// need to duplicate emission of the same code several times in the same
1059   /// function for OpenMP code.
1060   class OMPLocalDeclMapRAII {
1061     CodeGenFunction &CGF;
1062     DeclMapTy SavedMap;
1063 
1064   public:
1065     OMPLocalDeclMapRAII(CodeGenFunction &CGF)
1066         : CGF(CGF), SavedMap(CGF.LocalDeclMap) {}
1067     ~OMPLocalDeclMapRAII() { SavedMap.swap(CGF.LocalDeclMap); }
1068   };
1069 
1070   /// Takes the old cleanup stack size and emits the cleanup blocks
1071   /// that have been added.
1072   void
1073   PopCleanupBlocks(EHScopeStack::stable_iterator OldCleanupStackSize,
1074                    std::initializer_list<llvm::Value **> ValuesToReload = {});
1075 
1076   /// Takes the old cleanup stack size and emits the cleanup blocks
1077   /// that have been added, then adds all lifetime-extended cleanups from
1078   /// the given position to the stack.
1079   void
1080   PopCleanupBlocks(EHScopeStack::stable_iterator OldCleanupStackSize,
1081                    size_t OldLifetimeExtendedStackSize,
1082                    std::initializer_list<llvm::Value **> ValuesToReload = {});
1083 
1084   void ResolveBranchFixups(llvm::BasicBlock *Target);
1085 
1086   /// The given basic block lies in the current EH scope, but may be a
1087   /// target of a potentially scope-crossing jump; get a stable handle
1088   /// to which we can perform this jump later.
1089   JumpDest getJumpDestInCurrentScope(llvm::BasicBlock *Target) {
1090     return JumpDest(Target,
1091                     EHStack.getInnermostNormalCleanup(),
1092                     NextCleanupDestIndex++);
1093   }
1094 
1095   /// The given basic block lies in the current EH scope, but may be a
1096   /// target of a potentially scope-crossing jump; get a stable handle
1097   /// to which we can perform this jump later.
1098   JumpDest getJumpDestInCurrentScope(StringRef Name = StringRef()) {
1099     return getJumpDestInCurrentScope(createBasicBlock(Name));
1100   }
1101 
1102   /// EmitBranchThroughCleanup - Emit a branch from the current insert
1103   /// block through the normal cleanup handling code (if any) and then
1104   /// on to \arg Dest.
1105   void EmitBranchThroughCleanup(JumpDest Dest);
1106 
1107   /// isObviouslyBranchWithoutCleanups - Return true if a branch to the
1108   /// specified destination obviously has no cleanups to run.  'false' is always
1109   /// a conservatively correct answer for this method.
1110   bool isObviouslyBranchWithoutCleanups(JumpDest Dest) const;
1111 
1112   /// popCatchScope - Pops the catch scope at the top of the EHScope
1113   /// stack, emitting any required code (other than the catch handlers
1114   /// themselves).
1115   void popCatchScope();
1116 
1117   llvm::BasicBlock *getEHResumeBlock(bool isCleanup);
1118   llvm::BasicBlock *getEHDispatchBlock(EHScopeStack::stable_iterator scope);
1119   llvm::BasicBlock *
1120   getFuncletEHDispatchBlock(EHScopeStack::stable_iterator scope);
1121 
1122   /// An object to manage conditionally-evaluated expressions.
1123   class ConditionalEvaluation {
1124     llvm::BasicBlock *StartBB;
1125 
1126   public:
1127     ConditionalEvaluation(CodeGenFunction &CGF)
1128       : StartBB(CGF.Builder.GetInsertBlock()) {}
1129 
1130     void begin(CodeGenFunction &CGF) {
1131       assert(CGF.OutermostConditional != this);
1132       if (!CGF.OutermostConditional)
1133         CGF.OutermostConditional = this;
1134     }
1135 
1136     void end(CodeGenFunction &CGF) {
1137       assert(CGF.OutermostConditional != nullptr);
1138       if (CGF.OutermostConditional == this)
1139         CGF.OutermostConditional = nullptr;
1140     }
1141 
1142     /// Returns a block which will be executed prior to each
1143     /// evaluation of the conditional code.
1144     llvm::BasicBlock *getStartingBlock() const {
1145       return StartBB;
1146     }
1147   };
1148 
1149   /// isInConditionalBranch - Return true if we're currently emitting
1150   /// one branch or the other of a conditional expression.
1151   bool isInConditionalBranch() const { return OutermostConditional != nullptr; }
1152 
1153   void setBeforeOutermostConditional(llvm::Value *value, Address addr) {
1154     assert(isInConditionalBranch());
1155     llvm::BasicBlock *block = OutermostConditional->getStartingBlock();
1156     auto store = new llvm::StoreInst(value, addr.getPointer(), &block->back());
1157     store->setAlignment(addr.getAlignment().getAsAlign());
1158   }
1159 
1160   /// An RAII object to record that we're evaluating a statement
1161   /// expression.
1162   class StmtExprEvaluation {
1163     CodeGenFunction &CGF;
1164 
1165     /// We have to save the outermost conditional: cleanups in a
1166     /// statement expression aren't conditional just because the
1167     /// StmtExpr is.
1168     ConditionalEvaluation *SavedOutermostConditional;
1169 
1170   public:
1171     StmtExprEvaluation(CodeGenFunction &CGF)
1172       : CGF(CGF), SavedOutermostConditional(CGF.OutermostConditional) {
1173       CGF.OutermostConditional = nullptr;
1174     }
1175 
1176     ~StmtExprEvaluation() {
1177       CGF.OutermostConditional = SavedOutermostConditional;
1178       CGF.EnsureInsertPoint();
1179     }
1180   };
1181 
1182   /// An object which temporarily prevents a value from being
1183   /// destroyed by aggressive peephole optimizations that assume that
1184   /// all uses of a value have been realized in the IR.
1185   class PeepholeProtection {
1186     llvm::Instruction *Inst;
1187     friend class CodeGenFunction;
1188 
1189   public:
1190     PeepholeProtection() : Inst(nullptr) {}
1191   };
1192 
1193   /// A non-RAII class containing all the information about a bound
1194   /// opaque value.  OpaqueValueMapping, below, is a RAII wrapper for
1195   /// this which makes individual mappings very simple; using this
1196   /// class directly is useful when you have a variable number of
1197   /// opaque values or don't want the RAII functionality for some
1198   /// reason.
1199   class OpaqueValueMappingData {
1200     const OpaqueValueExpr *OpaqueValue;
1201     bool BoundLValue;
1202     CodeGenFunction::PeepholeProtection Protection;
1203 
1204     OpaqueValueMappingData(const OpaqueValueExpr *ov,
1205                            bool boundLValue)
1206       : OpaqueValue(ov), BoundLValue(boundLValue) {}
1207   public:
1208     OpaqueValueMappingData() : OpaqueValue(nullptr) {}
1209 
1210     static bool shouldBindAsLValue(const Expr *expr) {
1211       // gl-values should be bound as l-values for obvious reasons.
1212       // Records should be bound as l-values because IR generation
1213       // always keeps them in memory.  Expressions of function type
1214       // act exactly like l-values but are formally required to be
1215       // r-values in C.
1216       return expr->isGLValue() ||
1217              expr->getType()->isFunctionType() ||
1218              hasAggregateEvaluationKind(expr->getType());
1219     }
1220 
1221     static OpaqueValueMappingData bind(CodeGenFunction &CGF,
1222                                        const OpaqueValueExpr *ov,
1223                                        const Expr *e) {
1224       if (shouldBindAsLValue(ov))
1225         return bind(CGF, ov, CGF.EmitLValue(e));
1226       return bind(CGF, ov, CGF.EmitAnyExpr(e));
1227     }
1228 
1229     static OpaqueValueMappingData bind(CodeGenFunction &CGF,
1230                                        const OpaqueValueExpr *ov,
1231                                        const LValue &lv) {
1232       assert(shouldBindAsLValue(ov));
1233       CGF.OpaqueLValues.insert(std::make_pair(ov, lv));
1234       return OpaqueValueMappingData(ov, true);
1235     }
1236 
1237     static OpaqueValueMappingData bind(CodeGenFunction &CGF,
1238                                        const OpaqueValueExpr *ov,
1239                                        const RValue &rv) {
1240       assert(!shouldBindAsLValue(ov));
1241       CGF.OpaqueRValues.insert(std::make_pair(ov, rv));
1242 
1243       OpaqueValueMappingData data(ov, false);
1244 
1245       // Work around an extremely aggressive peephole optimization in
1246       // EmitScalarConversion which assumes that all other uses of a
1247       // value are extant.
1248       data.Protection = CGF.protectFromPeepholes(rv);
1249 
1250       return data;
1251     }
1252 
1253     bool isValid() const { return OpaqueValue != nullptr; }
1254     void clear() { OpaqueValue = nullptr; }
1255 
1256     void unbind(CodeGenFunction &CGF) {
1257       assert(OpaqueValue && "no data to unbind!");
1258 
1259       if (BoundLValue) {
1260         CGF.OpaqueLValues.erase(OpaqueValue);
1261       } else {
1262         CGF.OpaqueRValues.erase(OpaqueValue);
1263         CGF.unprotectFromPeepholes(Protection);
1264       }
1265     }
1266   };
1267 
1268   /// An RAII object to set (and then clear) a mapping for an OpaqueValueExpr.
1269   class OpaqueValueMapping {
1270     CodeGenFunction &CGF;
1271     OpaqueValueMappingData Data;
1272 
1273   public:
1274     static bool shouldBindAsLValue(const Expr *expr) {
1275       return OpaqueValueMappingData::shouldBindAsLValue(expr);
1276     }
1277 
1278     /// Build the opaque value mapping for the given conditional
1279     /// operator if it's the GNU ?: extension.  This is a common
1280     /// enough pattern that the convenience operator is really
1281     /// helpful.
1282     ///
1283     OpaqueValueMapping(CodeGenFunction &CGF,
1284                        const AbstractConditionalOperator *op) : CGF(CGF) {
1285       if (isa<ConditionalOperator>(op))
1286         // Leave Data empty.
1287         return;
1288 
1289       const BinaryConditionalOperator *e = cast<BinaryConditionalOperator>(op);
1290       Data = OpaqueValueMappingData::bind(CGF, e->getOpaqueValue(),
1291                                           e->getCommon());
1292     }
1293 
1294     /// Build the opaque value mapping for an OpaqueValueExpr whose source
1295     /// expression is set to the expression the OVE represents.
1296     OpaqueValueMapping(CodeGenFunction &CGF, const OpaqueValueExpr *OV)
1297         : CGF(CGF) {
1298       if (OV) {
1299         assert(OV->getSourceExpr() && "wrong form of OpaqueValueMapping used "
1300                                       "for OVE with no source expression");
1301         Data = OpaqueValueMappingData::bind(CGF, OV, OV->getSourceExpr());
1302       }
1303     }
1304 
1305     OpaqueValueMapping(CodeGenFunction &CGF,
1306                        const OpaqueValueExpr *opaqueValue,
1307                        LValue lvalue)
1308       : CGF(CGF), Data(OpaqueValueMappingData::bind(CGF, opaqueValue, lvalue)) {
1309     }
1310 
1311     OpaqueValueMapping(CodeGenFunction &CGF,
1312                        const OpaqueValueExpr *opaqueValue,
1313                        RValue rvalue)
1314       : CGF(CGF), Data(OpaqueValueMappingData::bind(CGF, opaqueValue, rvalue)) {
1315     }
1316 
1317     void pop() {
1318       Data.unbind(CGF);
1319       Data.clear();
1320     }
1321 
1322     ~OpaqueValueMapping() {
1323       if (Data.isValid()) Data.unbind(CGF);
1324     }
1325   };
1326 
1327 private:
1328   CGDebugInfo *DebugInfo;
1329   /// Used to create unique names for artificial VLA size debug info variables.
1330   unsigned VLAExprCounter = 0;
1331   bool DisableDebugInfo = false;
1332 
1333   /// DidCallStackSave - Whether llvm.stacksave has been called. Used to avoid
1334   /// calling llvm.stacksave for multiple VLAs in the same scope.
1335   bool DidCallStackSave = false;
1336 
1337   /// IndirectBranch - The first time an indirect goto is seen we create a block
1338   /// with an indirect branch.  Every time we see the address of a label taken,
1339   /// we add the label to the indirect goto.  Every subsequent indirect goto is
1340   /// codegen'd as a jump to the IndirectBranch's basic block.
1341   llvm::IndirectBrInst *IndirectBranch = nullptr;
1342 
1343   /// LocalDeclMap - This keeps track of the LLVM allocas or globals for local C
1344   /// decls.
1345   DeclMapTy LocalDeclMap;
1346 
1347   // Keep track of the cleanups for callee-destructed parameters pushed to the
1348   // cleanup stack so that they can be deactivated later.
1349   llvm::DenseMap<const ParmVarDecl *, EHScopeStack::stable_iterator>
1350       CalleeDestructedParamCleanups;
1351 
1352   /// SizeArguments - If a ParmVarDecl had the pass_object_size attribute, this
1353   /// will contain a mapping from said ParmVarDecl to its implicit "object_size"
1354   /// parameter.
1355   llvm::SmallDenseMap<const ParmVarDecl *, const ImplicitParamDecl *, 2>
1356       SizeArguments;
1357 
1358   /// Track escaped local variables with auto storage. Used during SEH
1359   /// outlining to produce a call to llvm.localescape.
1360   llvm::DenseMap<llvm::AllocaInst *, int> EscapedLocals;
1361 
1362   /// LabelMap - This keeps track of the LLVM basic block for each C label.
1363   llvm::DenseMap<const LabelDecl*, JumpDest> LabelMap;
1364 
1365   // BreakContinueStack - This keeps track of where break and continue
1366   // statements should jump to.
1367   struct BreakContinue {
1368     BreakContinue(JumpDest Break, JumpDest Continue)
1369       : BreakBlock(Break), ContinueBlock(Continue) {}
1370 
1371     JumpDest BreakBlock;
1372     JumpDest ContinueBlock;
1373   };
1374   SmallVector<BreakContinue, 8> BreakContinueStack;
1375 
1376   /// Handles cancellation exit points in OpenMP-related constructs.
1377   class OpenMPCancelExitStack {
1378     /// Tracks cancellation exit point and join point for cancel-related exit
1379     /// and normal exit.
1380     struct CancelExit {
1381       CancelExit() = default;
1382       CancelExit(OpenMPDirectiveKind Kind, JumpDest ExitBlock,
1383                  JumpDest ContBlock)
1384           : Kind(Kind), ExitBlock(ExitBlock), ContBlock(ContBlock) {}
1385       OpenMPDirectiveKind Kind = llvm::omp::OMPD_unknown;
1386       /// true if the exit block has been emitted already by the special
1387       /// emitExit() call, false if the default codegen is used.
1388       bool HasBeenEmitted = false;
1389       JumpDest ExitBlock;
1390       JumpDest ContBlock;
1391     };
1392 
1393     SmallVector<CancelExit, 8> Stack;
1394 
1395   public:
1396     OpenMPCancelExitStack() : Stack(1) {}
1397     ~OpenMPCancelExitStack() = default;
1398     /// Fetches the exit block for the current OpenMP construct.
1399     JumpDest getExitBlock() const { return Stack.back().ExitBlock; }
1400     /// Emits exit block with special codegen procedure specific for the related
1401     /// OpenMP construct + emits code for normal construct cleanup.
1402     void emitExit(CodeGenFunction &CGF, OpenMPDirectiveKind Kind,
1403                   const llvm::function_ref<void(CodeGenFunction &)> CodeGen) {
1404       if (Stack.back().Kind == Kind && getExitBlock().isValid()) {
1405         assert(CGF.getOMPCancelDestination(Kind).isValid());
1406         assert(CGF.HaveInsertPoint());
1407         assert(!Stack.back().HasBeenEmitted);
1408         auto IP = CGF.Builder.saveAndClearIP();
1409         CGF.EmitBlock(Stack.back().ExitBlock.getBlock());
1410         CodeGen(CGF);
1411         CGF.EmitBranch(Stack.back().ContBlock.getBlock());
1412         CGF.Builder.restoreIP(IP);
1413         Stack.back().HasBeenEmitted = true;
1414       }
1415       CodeGen(CGF);
1416     }
1417     /// Enter the cancel supporting \a Kind construct.
1418     /// \param Kind OpenMP directive that supports cancel constructs.
1419     /// \param HasCancel true, if the construct has inner cancel directive,
1420     /// false otherwise.
1421     void enter(CodeGenFunction &CGF, OpenMPDirectiveKind Kind, bool HasCancel) {
1422       Stack.push_back({Kind,
1423                        HasCancel ? CGF.getJumpDestInCurrentScope("cancel.exit")
1424                                  : JumpDest(),
1425                        HasCancel ? CGF.getJumpDestInCurrentScope("cancel.cont")
1426                                  : JumpDest()});
1427     }
1428     /// Emits default exit point for the cancel construct (if the special one
1429     /// has not be used) + join point for cancel/normal exits.
1430     void exit(CodeGenFunction &CGF) {
1431       if (getExitBlock().isValid()) {
1432         assert(CGF.getOMPCancelDestination(Stack.back().Kind).isValid());
1433         bool HaveIP = CGF.HaveInsertPoint();
1434         if (!Stack.back().HasBeenEmitted) {
1435           if (HaveIP)
1436             CGF.EmitBranchThroughCleanup(Stack.back().ContBlock);
1437           CGF.EmitBlock(Stack.back().ExitBlock.getBlock());
1438           CGF.EmitBranchThroughCleanup(Stack.back().ContBlock);
1439         }
1440         CGF.EmitBlock(Stack.back().ContBlock.getBlock());
1441         if (!HaveIP) {
1442           CGF.Builder.CreateUnreachable();
1443           CGF.Builder.ClearInsertionPoint();
1444         }
1445       }
1446       Stack.pop_back();
1447     }
1448   };
1449   OpenMPCancelExitStack OMPCancelStack;
1450 
1451   /// Lower the Likelihood knowledge about the \p Cond via llvm.expect intrin.
1452   llvm::Value *emitCondLikelihoodViaExpectIntrinsic(llvm::Value *Cond,
1453                                                     Stmt::Likelihood LH);
1454 
1455   CodeGenPGO PGO;
1456 
1457   /// Calculate branch weights appropriate for PGO data
1458   llvm::MDNode *createProfileWeights(uint64_t TrueCount,
1459                                      uint64_t FalseCount) const;
1460   llvm::MDNode *createProfileWeights(ArrayRef<uint64_t> Weights) const;
1461   llvm::MDNode *createProfileWeightsForLoop(const Stmt *Cond,
1462                                             uint64_t LoopCount) const;
1463 
1464 public:
1465   /// Increment the profiler's counter for the given statement by \p StepV.
1466   /// If \p StepV is null, the default increment is 1.
1467   void incrementProfileCounter(const Stmt *S, llvm::Value *StepV = nullptr) {
1468     if (CGM.getCodeGenOpts().hasProfileClangInstr() &&
1469         !CurFn->hasFnAttribute(llvm::Attribute::NoProfile))
1470       PGO.emitCounterIncrement(Builder, S, StepV);
1471     PGO.setCurrentStmt(S);
1472   }
1473 
1474   /// Get the profiler's count for the given statement.
1475   uint64_t getProfileCount(const Stmt *S) {
1476     Optional<uint64_t> Count = PGO.getStmtCount(S);
1477     if (!Count.hasValue())
1478       return 0;
1479     return *Count;
1480   }
1481 
1482   /// Set the profiler's current count.
1483   void setCurrentProfileCount(uint64_t Count) {
1484     PGO.setCurrentRegionCount(Count);
1485   }
1486 
1487   /// Get the profiler's current count. This is generally the count for the most
1488   /// recently incremented counter.
1489   uint64_t getCurrentProfileCount() {
1490     return PGO.getCurrentRegionCount();
1491   }
1492 
1493 private:
1494 
1495   /// SwitchInsn - This is nearest current switch instruction. It is null if
1496   /// current context is not in a switch.
1497   llvm::SwitchInst *SwitchInsn = nullptr;
1498   /// The branch weights of SwitchInsn when doing instrumentation based PGO.
1499   SmallVector<uint64_t, 16> *SwitchWeights = nullptr;
1500 
1501   /// The likelihood attributes of the SwitchCase.
1502   SmallVector<Stmt::Likelihood, 16> *SwitchLikelihood = nullptr;
1503 
1504   /// CaseRangeBlock - This block holds if condition check for last case
1505   /// statement range in current switch instruction.
1506   llvm::BasicBlock *CaseRangeBlock = nullptr;
1507 
1508   /// OpaqueLValues - Keeps track of the current set of opaque value
1509   /// expressions.
1510   llvm::DenseMap<const OpaqueValueExpr *, LValue> OpaqueLValues;
1511   llvm::DenseMap<const OpaqueValueExpr *, RValue> OpaqueRValues;
1512 
1513   // VLASizeMap - This keeps track of the associated size for each VLA type.
1514   // We track this by the size expression rather than the type itself because
1515   // in certain situations, like a const qualifier applied to an VLA typedef,
1516   // multiple VLA types can share the same size expression.
1517   // FIXME: Maybe this could be a stack of maps that is pushed/popped as we
1518   // enter/leave scopes.
1519   llvm::DenseMap<const Expr*, llvm::Value*> VLASizeMap;
1520 
1521   /// A block containing a single 'unreachable' instruction.  Created
1522   /// lazily by getUnreachableBlock().
1523   llvm::BasicBlock *UnreachableBlock = nullptr;
1524 
1525   /// Counts of the number return expressions in the function.
1526   unsigned NumReturnExprs = 0;
1527 
1528   /// Count the number of simple (constant) return expressions in the function.
1529   unsigned NumSimpleReturnExprs = 0;
1530 
1531   /// The last regular (non-return) debug location (breakpoint) in the function.
1532   SourceLocation LastStopPoint;
1533 
1534 public:
1535   /// Source location information about the default argument or member
1536   /// initializer expression we're evaluating, if any.
1537   CurrentSourceLocExprScope CurSourceLocExprScope;
1538   using SourceLocExprScopeGuard =
1539       CurrentSourceLocExprScope::SourceLocExprScopeGuard;
1540 
1541   /// A scope within which we are constructing the fields of an object which
1542   /// might use a CXXDefaultInitExpr. This stashes away a 'this' value to use
1543   /// if we need to evaluate a CXXDefaultInitExpr within the evaluation.
1544   class FieldConstructionScope {
1545   public:
1546     FieldConstructionScope(CodeGenFunction &CGF, Address This)
1547         : CGF(CGF), OldCXXDefaultInitExprThis(CGF.CXXDefaultInitExprThis) {
1548       CGF.CXXDefaultInitExprThis = This;
1549     }
1550     ~FieldConstructionScope() {
1551       CGF.CXXDefaultInitExprThis = OldCXXDefaultInitExprThis;
1552     }
1553 
1554   private:
1555     CodeGenFunction &CGF;
1556     Address OldCXXDefaultInitExprThis;
1557   };
1558 
1559   /// The scope of a CXXDefaultInitExpr. Within this scope, the value of 'this'
1560   /// is overridden to be the object under construction.
1561   class CXXDefaultInitExprScope  {
1562   public:
1563     CXXDefaultInitExprScope(CodeGenFunction &CGF, const CXXDefaultInitExpr *E)
1564         : CGF(CGF), OldCXXThisValue(CGF.CXXThisValue),
1565           OldCXXThisAlignment(CGF.CXXThisAlignment),
1566           SourceLocScope(E, CGF.CurSourceLocExprScope) {
1567       CGF.CXXThisValue = CGF.CXXDefaultInitExprThis.getPointer();
1568       CGF.CXXThisAlignment = CGF.CXXDefaultInitExprThis.getAlignment();
1569     }
1570     ~CXXDefaultInitExprScope() {
1571       CGF.CXXThisValue = OldCXXThisValue;
1572       CGF.CXXThisAlignment = OldCXXThisAlignment;
1573     }
1574 
1575   public:
1576     CodeGenFunction &CGF;
1577     llvm::Value *OldCXXThisValue;
1578     CharUnits OldCXXThisAlignment;
1579     SourceLocExprScopeGuard SourceLocScope;
1580   };
1581 
1582   struct CXXDefaultArgExprScope : SourceLocExprScopeGuard {
1583     CXXDefaultArgExprScope(CodeGenFunction &CGF, const CXXDefaultArgExpr *E)
1584         : SourceLocExprScopeGuard(E, CGF.CurSourceLocExprScope) {}
1585   };
1586 
1587   /// The scope of an ArrayInitLoopExpr. Within this scope, the value of the
1588   /// current loop index is overridden.
1589   class ArrayInitLoopExprScope {
1590   public:
1591     ArrayInitLoopExprScope(CodeGenFunction &CGF, llvm::Value *Index)
1592       : CGF(CGF), OldArrayInitIndex(CGF.ArrayInitIndex) {
1593       CGF.ArrayInitIndex = Index;
1594     }
1595     ~ArrayInitLoopExprScope() {
1596       CGF.ArrayInitIndex = OldArrayInitIndex;
1597     }
1598 
1599   private:
1600     CodeGenFunction &CGF;
1601     llvm::Value *OldArrayInitIndex;
1602   };
1603 
1604   class InlinedInheritingConstructorScope {
1605   public:
1606     InlinedInheritingConstructorScope(CodeGenFunction &CGF, GlobalDecl GD)
1607         : CGF(CGF), OldCurGD(CGF.CurGD), OldCurFuncDecl(CGF.CurFuncDecl),
1608           OldCurCodeDecl(CGF.CurCodeDecl),
1609           OldCXXABIThisDecl(CGF.CXXABIThisDecl),
1610           OldCXXABIThisValue(CGF.CXXABIThisValue),
1611           OldCXXThisValue(CGF.CXXThisValue),
1612           OldCXXABIThisAlignment(CGF.CXXABIThisAlignment),
1613           OldCXXThisAlignment(CGF.CXXThisAlignment),
1614           OldReturnValue(CGF.ReturnValue), OldFnRetTy(CGF.FnRetTy),
1615           OldCXXInheritedCtorInitExprArgs(
1616               std::move(CGF.CXXInheritedCtorInitExprArgs)) {
1617       CGF.CurGD = GD;
1618       CGF.CurFuncDecl = CGF.CurCodeDecl =
1619           cast<CXXConstructorDecl>(GD.getDecl());
1620       CGF.CXXABIThisDecl = nullptr;
1621       CGF.CXXABIThisValue = nullptr;
1622       CGF.CXXThisValue = nullptr;
1623       CGF.CXXABIThisAlignment = CharUnits();
1624       CGF.CXXThisAlignment = CharUnits();
1625       CGF.ReturnValue = Address::invalid();
1626       CGF.FnRetTy = QualType();
1627       CGF.CXXInheritedCtorInitExprArgs.clear();
1628     }
1629     ~InlinedInheritingConstructorScope() {
1630       CGF.CurGD = OldCurGD;
1631       CGF.CurFuncDecl = OldCurFuncDecl;
1632       CGF.CurCodeDecl = OldCurCodeDecl;
1633       CGF.CXXABIThisDecl = OldCXXABIThisDecl;
1634       CGF.CXXABIThisValue = OldCXXABIThisValue;
1635       CGF.CXXThisValue = OldCXXThisValue;
1636       CGF.CXXABIThisAlignment = OldCXXABIThisAlignment;
1637       CGF.CXXThisAlignment = OldCXXThisAlignment;
1638       CGF.ReturnValue = OldReturnValue;
1639       CGF.FnRetTy = OldFnRetTy;
1640       CGF.CXXInheritedCtorInitExprArgs =
1641           std::move(OldCXXInheritedCtorInitExprArgs);
1642     }
1643 
1644   private:
1645     CodeGenFunction &CGF;
1646     GlobalDecl OldCurGD;
1647     const Decl *OldCurFuncDecl;
1648     const Decl *OldCurCodeDecl;
1649     ImplicitParamDecl *OldCXXABIThisDecl;
1650     llvm::Value *OldCXXABIThisValue;
1651     llvm::Value *OldCXXThisValue;
1652     CharUnits OldCXXABIThisAlignment;
1653     CharUnits OldCXXThisAlignment;
1654     Address OldReturnValue;
1655     QualType OldFnRetTy;
1656     CallArgList OldCXXInheritedCtorInitExprArgs;
1657   };
1658 
1659   // Helper class for the OpenMP IR Builder. Allows reusability of code used for
1660   // region body, and finalization codegen callbacks. This will class will also
1661   // contain privatization functions used by the privatization call backs
1662   //
1663   // TODO: this is temporary class for things that are being moved out of
1664   // CGOpenMPRuntime, new versions of current CodeGenFunction methods, or
1665   // utility function for use with the OMPBuilder. Once that move to use the
1666   // OMPBuilder is done, everything here will either become part of CodeGenFunc.
1667   // directly, or a new helper class that will contain functions used by both
1668   // this and the OMPBuilder
1669 
1670   struct OMPBuilderCBHelpers {
1671 
1672     OMPBuilderCBHelpers() = delete;
1673     OMPBuilderCBHelpers(const OMPBuilderCBHelpers &) = delete;
1674     OMPBuilderCBHelpers &operator=(const OMPBuilderCBHelpers &) = delete;
1675 
1676     using InsertPointTy = llvm::OpenMPIRBuilder::InsertPointTy;
1677 
1678     /// Cleanup action for allocate support.
1679     class OMPAllocateCleanupTy final : public EHScopeStack::Cleanup {
1680 
1681     private:
1682       llvm::CallInst *RTLFnCI;
1683 
1684     public:
1685       OMPAllocateCleanupTy(llvm::CallInst *RLFnCI) : RTLFnCI(RLFnCI) {
1686         RLFnCI->removeFromParent();
1687       }
1688 
1689       void Emit(CodeGenFunction &CGF, Flags /*flags*/) override {
1690         if (!CGF.HaveInsertPoint())
1691           return;
1692         CGF.Builder.Insert(RTLFnCI);
1693       }
1694     };
1695 
1696     /// Returns address of the threadprivate variable for the current
1697     /// thread. This Also create any necessary OMP runtime calls.
1698     ///
1699     /// \param VD VarDecl for Threadprivate variable.
1700     /// \param VDAddr Address of the Vardecl
1701     /// \param Loc  The location where the barrier directive was encountered
1702     static Address getAddrOfThreadPrivate(CodeGenFunction &CGF,
1703                                           const VarDecl *VD, Address VDAddr,
1704                                           SourceLocation Loc);
1705 
1706     /// Gets the OpenMP-specific address of the local variable /p VD.
1707     static Address getAddressOfLocalVariable(CodeGenFunction &CGF,
1708                                              const VarDecl *VD);
1709     /// Get the platform-specific name separator.
1710     /// \param Parts different parts of the final name that needs separation
1711     /// \param FirstSeparator First separator used between the initial two
1712     ///        parts of the name.
1713     /// \param Separator separator used between all of the rest consecutinve
1714     ///        parts of the name
1715     static std::string getNameWithSeparators(ArrayRef<StringRef> Parts,
1716                                              StringRef FirstSeparator = ".",
1717                                              StringRef Separator = ".");
1718     /// Emit the Finalization for an OMP region
1719     /// \param CGF	The Codegen function this belongs to
1720     /// \param IP	Insertion point for generating the finalization code.
1721     static void FinalizeOMPRegion(CodeGenFunction &CGF, InsertPointTy IP) {
1722       CGBuilderTy::InsertPointGuard IPG(CGF.Builder);
1723       assert(IP.getBlock()->end() != IP.getPoint() &&
1724              "OpenMP IR Builder should cause terminated block!");
1725 
1726       llvm::BasicBlock *IPBB = IP.getBlock();
1727       llvm::BasicBlock *DestBB = IPBB->getUniqueSuccessor();
1728       assert(DestBB && "Finalization block should have one successor!");
1729 
1730       // erase and replace with cleanup branch.
1731       IPBB->getTerminator()->eraseFromParent();
1732       CGF.Builder.SetInsertPoint(IPBB);
1733       CodeGenFunction::JumpDest Dest = CGF.getJumpDestInCurrentScope(DestBB);
1734       CGF.EmitBranchThroughCleanup(Dest);
1735     }
1736 
1737     /// Emit the body of an OMP region
1738     /// \param CGF	The Codegen function this belongs to
1739     /// \param RegionBodyStmt	The body statement for the OpenMP region being
1740     /// 			 generated
1741     /// \param CodeGenIP	Insertion point for generating the body code.
1742     /// \param FiniBB	The finalization basic block
1743     static void EmitOMPRegionBody(CodeGenFunction &CGF,
1744                                   const Stmt *RegionBodyStmt,
1745                                   InsertPointTy CodeGenIP,
1746                                   llvm::BasicBlock &FiniBB) {
1747       llvm::BasicBlock *CodeGenIPBB = CodeGenIP.getBlock();
1748       if (llvm::Instruction *CodeGenIPBBTI = CodeGenIPBB->getTerminator())
1749         CodeGenIPBBTI->eraseFromParent();
1750 
1751       CGF.Builder.SetInsertPoint(CodeGenIPBB);
1752 
1753       CGF.EmitStmt(RegionBodyStmt);
1754 
1755       if (CGF.Builder.saveIP().isSet())
1756         CGF.Builder.CreateBr(&FiniBB);
1757     }
1758 
1759     /// RAII for preserving necessary info during Outlined region body codegen.
1760     class OutlinedRegionBodyRAII {
1761 
1762       llvm::AssertingVH<llvm::Instruction> OldAllocaIP;
1763       CodeGenFunction::JumpDest OldReturnBlock;
1764       CGBuilderTy::InsertPoint IP;
1765       CodeGenFunction &CGF;
1766 
1767     public:
1768       OutlinedRegionBodyRAII(CodeGenFunction &cgf, InsertPointTy &AllocaIP,
1769                              llvm::BasicBlock &RetBB)
1770           : CGF(cgf) {
1771         assert(AllocaIP.isSet() &&
1772                "Must specify Insertion point for allocas of outlined function");
1773         OldAllocaIP = CGF.AllocaInsertPt;
1774         CGF.AllocaInsertPt = &*AllocaIP.getPoint();
1775         IP = CGF.Builder.saveIP();
1776 
1777         OldReturnBlock = CGF.ReturnBlock;
1778         CGF.ReturnBlock = CGF.getJumpDestInCurrentScope(&RetBB);
1779       }
1780 
1781       ~OutlinedRegionBodyRAII() {
1782         CGF.AllocaInsertPt = OldAllocaIP;
1783         CGF.ReturnBlock = OldReturnBlock;
1784         CGF.Builder.restoreIP(IP);
1785       }
1786     };
1787 
1788     /// RAII for preserving necessary info during inlined region body codegen.
1789     class InlinedRegionBodyRAII {
1790 
1791       llvm::AssertingVH<llvm::Instruction> OldAllocaIP;
1792       CodeGenFunction &CGF;
1793 
1794     public:
1795       InlinedRegionBodyRAII(CodeGenFunction &cgf, InsertPointTy &AllocaIP,
1796                             llvm::BasicBlock &FiniBB)
1797           : CGF(cgf) {
1798         // Alloca insertion block should be in the entry block of the containing
1799         // function so it expects an empty AllocaIP in which case will reuse the
1800         // old alloca insertion point, or a new AllocaIP in the same block as
1801         // the old one
1802         assert((!AllocaIP.isSet() ||
1803                 CGF.AllocaInsertPt->getParent() == AllocaIP.getBlock()) &&
1804                "Insertion point should be in the entry block of containing "
1805                "function!");
1806         OldAllocaIP = CGF.AllocaInsertPt;
1807         if (AllocaIP.isSet())
1808           CGF.AllocaInsertPt = &*AllocaIP.getPoint();
1809 
1810         // TODO: Remove the call, after making sure the counter is not used by
1811         //       the EHStack.
1812         // Since this is an inlined region, it should not modify the
1813         // ReturnBlock, and should reuse the one for the enclosing outlined
1814         // region. So, the JumpDest being return by the function is discarded
1815         (void)CGF.getJumpDestInCurrentScope(&FiniBB);
1816       }
1817 
1818       ~InlinedRegionBodyRAII() { CGF.AllocaInsertPt = OldAllocaIP; }
1819     };
1820   };
1821 
1822 private:
1823   /// CXXThisDecl - When generating code for a C++ member function,
1824   /// this will hold the implicit 'this' declaration.
1825   ImplicitParamDecl *CXXABIThisDecl = nullptr;
1826   llvm::Value *CXXABIThisValue = nullptr;
1827   llvm::Value *CXXThisValue = nullptr;
1828   CharUnits CXXABIThisAlignment;
1829   CharUnits CXXThisAlignment;
1830 
1831   /// The value of 'this' to use when evaluating CXXDefaultInitExprs within
1832   /// this expression.
1833   Address CXXDefaultInitExprThis = Address::invalid();
1834 
1835   /// The current array initialization index when evaluating an
1836   /// ArrayInitIndexExpr within an ArrayInitLoopExpr.
1837   llvm::Value *ArrayInitIndex = nullptr;
1838 
1839   /// The values of function arguments to use when evaluating
1840   /// CXXInheritedCtorInitExprs within this context.
1841   CallArgList CXXInheritedCtorInitExprArgs;
1842 
1843   /// CXXStructorImplicitParamDecl - When generating code for a constructor or
1844   /// destructor, this will hold the implicit argument (e.g. VTT).
1845   ImplicitParamDecl *CXXStructorImplicitParamDecl = nullptr;
1846   llvm::Value *CXXStructorImplicitParamValue = nullptr;
1847 
1848   /// OutermostConditional - Points to the outermost active
1849   /// conditional control.  This is used so that we know if a
1850   /// temporary should be destroyed conditionally.
1851   ConditionalEvaluation *OutermostConditional = nullptr;
1852 
1853   /// The current lexical scope.
1854   LexicalScope *CurLexicalScope = nullptr;
1855 
1856   /// The current source location that should be used for exception
1857   /// handling code.
1858   SourceLocation CurEHLocation;
1859 
1860   /// BlockByrefInfos - For each __block variable, contains
1861   /// information about the layout of the variable.
1862   llvm::DenseMap<const ValueDecl *, BlockByrefInfo> BlockByrefInfos;
1863 
1864   /// Used by -fsanitize=nullability-return to determine whether the return
1865   /// value can be checked.
1866   llvm::Value *RetValNullabilityPrecondition = nullptr;
1867 
1868   /// Check if -fsanitize=nullability-return instrumentation is required for
1869   /// this function.
1870   bool requiresReturnValueNullabilityCheck() const {
1871     return RetValNullabilityPrecondition;
1872   }
1873 
1874   /// Used to store precise source locations for return statements by the
1875   /// runtime return value checks.
1876   Address ReturnLocation = Address::invalid();
1877 
1878   /// Check if the return value of this function requires sanitization.
1879   bool requiresReturnValueCheck() const;
1880 
1881   llvm::BasicBlock *TerminateLandingPad = nullptr;
1882   llvm::BasicBlock *TerminateHandler = nullptr;
1883   llvm::SmallVector<llvm::BasicBlock *, 2> TrapBBs;
1884 
1885   /// Terminate funclets keyed by parent funclet pad.
1886   llvm::MapVector<llvm::Value *, llvm::BasicBlock *> TerminateFunclets;
1887 
1888   /// Largest vector width used in ths function. Will be used to create a
1889   /// function attribute.
1890   unsigned LargestVectorWidth = 0;
1891 
1892   /// True if we need emit the life-time markers. This is initially set in
1893   /// the constructor, but could be overwritten to true if this is a coroutine.
1894   bool ShouldEmitLifetimeMarkers;
1895 
1896   /// Add OpenCL kernel arg metadata and the kernel attribute metadata to
1897   /// the function metadata.
1898   void EmitOpenCLKernelMetadata(const FunctionDecl *FD,
1899                                 llvm::Function *Fn);
1900 
1901 public:
1902   CodeGenFunction(CodeGenModule &cgm, bool suppressNewContext=false);
1903   ~CodeGenFunction();
1904 
1905   CodeGenTypes &getTypes() const { return CGM.getTypes(); }
1906   ASTContext &getContext() const { return CGM.getContext(); }
1907   CGDebugInfo *getDebugInfo() {
1908     if (DisableDebugInfo)
1909       return nullptr;
1910     return DebugInfo;
1911   }
1912   void disableDebugInfo() { DisableDebugInfo = true; }
1913   void enableDebugInfo() { DisableDebugInfo = false; }
1914 
1915   bool shouldUseFusedARCCalls() {
1916     return CGM.getCodeGenOpts().OptimizationLevel == 0;
1917   }
1918 
1919   const LangOptions &getLangOpts() const { return CGM.getLangOpts(); }
1920 
1921   /// Returns a pointer to the function's exception object and selector slot,
1922   /// which is assigned in every landing pad.
1923   Address getExceptionSlot();
1924   Address getEHSelectorSlot();
1925 
1926   /// Returns the contents of the function's exception object and selector
1927   /// slots.
1928   llvm::Value *getExceptionFromSlot();
1929   llvm::Value *getSelectorFromSlot();
1930 
1931   Address getNormalCleanupDestSlot();
1932 
1933   llvm::BasicBlock *getUnreachableBlock() {
1934     if (!UnreachableBlock) {
1935       UnreachableBlock = createBasicBlock("unreachable");
1936       new llvm::UnreachableInst(getLLVMContext(), UnreachableBlock);
1937     }
1938     return UnreachableBlock;
1939   }
1940 
1941   llvm::BasicBlock *getInvokeDest() {
1942     if (!EHStack.requiresLandingPad()) return nullptr;
1943     return getInvokeDestImpl();
1944   }
1945 
1946   bool currentFunctionUsesSEHTry() const { return CurSEHParent != nullptr; }
1947 
1948   const TargetInfo &getTarget() const { return Target; }
1949   llvm::LLVMContext &getLLVMContext() { return CGM.getLLVMContext(); }
1950   const TargetCodeGenInfo &getTargetHooks() const {
1951     return CGM.getTargetCodeGenInfo();
1952   }
1953 
1954   //===--------------------------------------------------------------------===//
1955   //                                  Cleanups
1956   //===--------------------------------------------------------------------===//
1957 
1958   typedef void Destroyer(CodeGenFunction &CGF, Address addr, QualType ty);
1959 
1960   void pushIrregularPartialArrayCleanup(llvm::Value *arrayBegin,
1961                                         Address arrayEndPointer,
1962                                         QualType elementType,
1963                                         CharUnits elementAlignment,
1964                                         Destroyer *destroyer);
1965   void pushRegularPartialArrayCleanup(llvm::Value *arrayBegin,
1966                                       llvm::Value *arrayEnd,
1967                                       QualType elementType,
1968                                       CharUnits elementAlignment,
1969                                       Destroyer *destroyer);
1970 
1971   void pushDestroy(QualType::DestructionKind dtorKind,
1972                    Address addr, QualType type);
1973   void pushEHDestroy(QualType::DestructionKind dtorKind,
1974                      Address addr, QualType type);
1975   void pushDestroy(CleanupKind kind, Address addr, QualType type,
1976                    Destroyer *destroyer, bool useEHCleanupForArray);
1977   void pushLifetimeExtendedDestroy(CleanupKind kind, Address addr,
1978                                    QualType type, Destroyer *destroyer,
1979                                    bool useEHCleanupForArray);
1980   void pushCallObjectDeleteCleanup(const FunctionDecl *OperatorDelete,
1981                                    llvm::Value *CompletePtr,
1982                                    QualType ElementType);
1983   void pushStackRestore(CleanupKind kind, Address SPMem);
1984   void emitDestroy(Address addr, QualType type, Destroyer *destroyer,
1985                    bool useEHCleanupForArray);
1986   llvm::Function *generateDestroyHelper(Address addr, QualType type,
1987                                         Destroyer *destroyer,
1988                                         bool useEHCleanupForArray,
1989                                         const VarDecl *VD);
1990   void emitArrayDestroy(llvm::Value *begin, llvm::Value *end,
1991                         QualType elementType, CharUnits elementAlign,
1992                         Destroyer *destroyer,
1993                         bool checkZeroLength, bool useEHCleanup);
1994 
1995   Destroyer *getDestroyer(QualType::DestructionKind destructionKind);
1996 
1997   /// Determines whether an EH cleanup is required to destroy a type
1998   /// with the given destruction kind.
1999   bool needsEHCleanup(QualType::DestructionKind kind) {
2000     switch (kind) {
2001     case QualType::DK_none:
2002       return false;
2003     case QualType::DK_cxx_destructor:
2004     case QualType::DK_objc_weak_lifetime:
2005     case QualType::DK_nontrivial_c_struct:
2006       return getLangOpts().Exceptions;
2007     case QualType::DK_objc_strong_lifetime:
2008       return getLangOpts().Exceptions &&
2009              CGM.getCodeGenOpts().ObjCAutoRefCountExceptions;
2010     }
2011     llvm_unreachable("bad destruction kind");
2012   }
2013 
2014   CleanupKind getCleanupKind(QualType::DestructionKind kind) {
2015     return (needsEHCleanup(kind) ? NormalAndEHCleanup : NormalCleanup);
2016   }
2017 
2018   //===--------------------------------------------------------------------===//
2019   //                                  Objective-C
2020   //===--------------------------------------------------------------------===//
2021 
2022   void GenerateObjCMethod(const ObjCMethodDecl *OMD);
2023 
2024   void StartObjCMethod(const ObjCMethodDecl *MD, const ObjCContainerDecl *CD);
2025 
2026   /// GenerateObjCGetter - Synthesize an Objective-C property getter function.
2027   void GenerateObjCGetter(ObjCImplementationDecl *IMP,
2028                           const ObjCPropertyImplDecl *PID);
2029   void generateObjCGetterBody(const ObjCImplementationDecl *classImpl,
2030                               const ObjCPropertyImplDecl *propImpl,
2031                               const ObjCMethodDecl *GetterMothodDecl,
2032                               llvm::Constant *AtomicHelperFn);
2033 
2034   void GenerateObjCCtorDtorMethod(ObjCImplementationDecl *IMP,
2035                                   ObjCMethodDecl *MD, bool ctor);
2036 
2037   /// GenerateObjCSetter - Synthesize an Objective-C property setter function
2038   /// for the given property.
2039   void GenerateObjCSetter(ObjCImplementationDecl *IMP,
2040                           const ObjCPropertyImplDecl *PID);
2041   void generateObjCSetterBody(const ObjCImplementationDecl *classImpl,
2042                               const ObjCPropertyImplDecl *propImpl,
2043                               llvm::Constant *AtomicHelperFn);
2044 
2045   //===--------------------------------------------------------------------===//
2046   //                                  Block Bits
2047   //===--------------------------------------------------------------------===//
2048 
2049   /// Emit block literal.
2050   /// \return an LLVM value which is a pointer to a struct which contains
2051   /// information about the block, including the block invoke function, the
2052   /// captured variables, etc.
2053   llvm::Value *EmitBlockLiteral(const BlockExpr *);
2054 
2055   llvm::Function *GenerateBlockFunction(GlobalDecl GD,
2056                                         const CGBlockInfo &Info,
2057                                         const DeclMapTy &ldm,
2058                                         bool IsLambdaConversionToBlock,
2059                                         bool BuildGlobalBlock);
2060 
2061   /// Check if \p T is a C++ class that has a destructor that can throw.
2062   static bool cxxDestructorCanThrow(QualType T);
2063 
2064   llvm::Constant *GenerateCopyHelperFunction(const CGBlockInfo &blockInfo);
2065   llvm::Constant *GenerateDestroyHelperFunction(const CGBlockInfo &blockInfo);
2066   llvm::Constant *GenerateObjCAtomicSetterCopyHelperFunction(
2067                                              const ObjCPropertyImplDecl *PID);
2068   llvm::Constant *GenerateObjCAtomicGetterCopyHelperFunction(
2069                                              const ObjCPropertyImplDecl *PID);
2070   llvm::Value *EmitBlockCopyAndAutorelease(llvm::Value *Block, QualType Ty);
2071 
2072   void BuildBlockRelease(llvm::Value *DeclPtr, BlockFieldFlags flags,
2073                          bool CanThrow);
2074 
2075   class AutoVarEmission;
2076 
2077   void emitByrefStructureInit(const AutoVarEmission &emission);
2078 
2079   /// Enter a cleanup to destroy a __block variable.  Note that this
2080   /// cleanup should be a no-op if the variable hasn't left the stack
2081   /// yet; if a cleanup is required for the variable itself, that needs
2082   /// to be done externally.
2083   ///
2084   /// \param Kind Cleanup kind.
2085   ///
2086   /// \param Addr When \p LoadBlockVarAddr is false, the address of the __block
2087   /// structure that will be passed to _Block_object_dispose. When
2088   /// \p LoadBlockVarAddr is true, the address of the field of the block
2089   /// structure that holds the address of the __block structure.
2090   ///
2091   /// \param Flags The flag that will be passed to _Block_object_dispose.
2092   ///
2093   /// \param LoadBlockVarAddr Indicates whether we need to emit a load from
2094   /// \p Addr to get the address of the __block structure.
2095   void enterByrefCleanup(CleanupKind Kind, Address Addr, BlockFieldFlags Flags,
2096                          bool LoadBlockVarAddr, bool CanThrow);
2097 
2098   void setBlockContextParameter(const ImplicitParamDecl *D, unsigned argNum,
2099                                 llvm::Value *ptr);
2100 
2101   Address LoadBlockStruct();
2102   Address GetAddrOfBlockDecl(const VarDecl *var);
2103 
2104   /// BuildBlockByrefAddress - Computes the location of the
2105   /// data in a variable which is declared as __block.
2106   Address emitBlockByrefAddress(Address baseAddr, const VarDecl *V,
2107                                 bool followForward = true);
2108   Address emitBlockByrefAddress(Address baseAddr,
2109                                 const BlockByrefInfo &info,
2110                                 bool followForward,
2111                                 const llvm::Twine &name);
2112 
2113   const BlockByrefInfo &getBlockByrefInfo(const VarDecl *var);
2114 
2115   QualType BuildFunctionArgList(GlobalDecl GD, FunctionArgList &Args);
2116 
2117   void GenerateCode(GlobalDecl GD, llvm::Function *Fn,
2118                     const CGFunctionInfo &FnInfo);
2119 
2120   /// Annotate the function with an attribute that disables TSan checking at
2121   /// runtime.
2122   void markAsIgnoreThreadCheckingAtRuntime(llvm::Function *Fn);
2123 
2124   /// Emit code for the start of a function.
2125   /// \param Loc       The location to be associated with the function.
2126   /// \param StartLoc  The location of the function body.
2127   void StartFunction(GlobalDecl GD,
2128                      QualType RetTy,
2129                      llvm::Function *Fn,
2130                      const CGFunctionInfo &FnInfo,
2131                      const FunctionArgList &Args,
2132                      SourceLocation Loc = SourceLocation(),
2133                      SourceLocation StartLoc = SourceLocation());
2134 
2135   static bool IsConstructorDelegationValid(const CXXConstructorDecl *Ctor);
2136 
2137   void EmitConstructorBody(FunctionArgList &Args);
2138   void EmitDestructorBody(FunctionArgList &Args);
2139   void emitImplicitAssignmentOperatorBody(FunctionArgList &Args);
2140   void EmitFunctionBody(const Stmt *Body);
2141   void EmitBlockWithFallThrough(llvm::BasicBlock *BB, const Stmt *S);
2142 
2143   void EmitForwardingCallToLambda(const CXXMethodDecl *LambdaCallOperator,
2144                                   CallArgList &CallArgs);
2145   void EmitLambdaBlockInvokeBody();
2146   void EmitLambdaDelegatingInvokeBody(const CXXMethodDecl *MD);
2147   void EmitLambdaStaticInvokeBody(const CXXMethodDecl *MD);
2148   void EmitLambdaVLACapture(const VariableArrayType *VAT, LValue LV) {
2149     EmitStoreThroughLValue(RValue::get(VLASizeMap[VAT->getSizeExpr()]), LV);
2150   }
2151   void EmitAsanPrologueOrEpilogue(bool Prologue);
2152 
2153   /// Emit the unified return block, trying to avoid its emission when
2154   /// possible.
2155   /// \return The debug location of the user written return statement if the
2156   /// return block is is avoided.
2157   llvm::DebugLoc EmitReturnBlock();
2158 
2159   /// FinishFunction - Complete IR generation of the current function. It is
2160   /// legal to call this function even if there is no current insertion point.
2161   void FinishFunction(SourceLocation EndLoc=SourceLocation());
2162 
2163   void StartThunk(llvm::Function *Fn, GlobalDecl GD,
2164                   const CGFunctionInfo &FnInfo, bool IsUnprototyped);
2165 
2166   void EmitCallAndReturnForThunk(llvm::FunctionCallee Callee,
2167                                  const ThunkInfo *Thunk, bool IsUnprototyped);
2168 
2169   void FinishThunk();
2170 
2171   /// Emit a musttail call for a thunk with a potentially adjusted this pointer.
2172   void EmitMustTailThunk(GlobalDecl GD, llvm::Value *AdjustedThisPtr,
2173                          llvm::FunctionCallee Callee);
2174 
2175   /// Generate a thunk for the given method.
2176   void generateThunk(llvm::Function *Fn, const CGFunctionInfo &FnInfo,
2177                      GlobalDecl GD, const ThunkInfo &Thunk,
2178                      bool IsUnprototyped);
2179 
2180   llvm::Function *GenerateVarArgsThunk(llvm::Function *Fn,
2181                                        const CGFunctionInfo &FnInfo,
2182                                        GlobalDecl GD, const ThunkInfo &Thunk);
2183 
2184   void EmitCtorPrologue(const CXXConstructorDecl *CD, CXXCtorType Type,
2185                         FunctionArgList &Args);
2186 
2187   void EmitInitializerForField(FieldDecl *Field, LValue LHS, Expr *Init);
2188 
2189   /// Struct with all information about dynamic [sub]class needed to set vptr.
2190   struct VPtr {
2191     BaseSubobject Base;
2192     const CXXRecordDecl *NearestVBase;
2193     CharUnits OffsetFromNearestVBase;
2194     const CXXRecordDecl *VTableClass;
2195   };
2196 
2197   /// Initialize the vtable pointer of the given subobject.
2198   void InitializeVTablePointer(const VPtr &vptr);
2199 
2200   typedef llvm::SmallVector<VPtr, 4> VPtrsVector;
2201 
2202   typedef llvm::SmallPtrSet<const CXXRecordDecl *, 4> VisitedVirtualBasesSetTy;
2203   VPtrsVector getVTablePointers(const CXXRecordDecl *VTableClass);
2204 
2205   void getVTablePointers(BaseSubobject Base, const CXXRecordDecl *NearestVBase,
2206                          CharUnits OffsetFromNearestVBase,
2207                          bool BaseIsNonVirtualPrimaryBase,
2208                          const CXXRecordDecl *VTableClass,
2209                          VisitedVirtualBasesSetTy &VBases, VPtrsVector &vptrs);
2210 
2211   void InitializeVTablePointers(const CXXRecordDecl *ClassDecl);
2212 
2213   /// GetVTablePtr - Return the Value of the vtable pointer member pointed
2214   /// to by This.
2215   llvm::Value *GetVTablePtr(Address This, llvm::Type *VTableTy,
2216                             const CXXRecordDecl *VTableClass);
2217 
2218   enum CFITypeCheckKind {
2219     CFITCK_VCall,
2220     CFITCK_NVCall,
2221     CFITCK_DerivedCast,
2222     CFITCK_UnrelatedCast,
2223     CFITCK_ICall,
2224     CFITCK_NVMFCall,
2225     CFITCK_VMFCall,
2226   };
2227 
2228   /// Derived is the presumed address of an object of type T after a
2229   /// cast. If T is a polymorphic class type, emit a check that the virtual
2230   /// table for Derived belongs to a class derived from T.
2231   void EmitVTablePtrCheckForCast(QualType T, llvm::Value *Derived,
2232                                  bool MayBeNull, CFITypeCheckKind TCK,
2233                                  SourceLocation Loc);
2234 
2235   /// EmitVTablePtrCheckForCall - Virtual method MD is being called via VTable.
2236   /// If vptr CFI is enabled, emit a check that VTable is valid.
2237   void EmitVTablePtrCheckForCall(const CXXRecordDecl *RD, llvm::Value *VTable,
2238                                  CFITypeCheckKind TCK, SourceLocation Loc);
2239 
2240   /// EmitVTablePtrCheck - Emit a check that VTable is a valid virtual table for
2241   /// RD using llvm.type.test.
2242   void EmitVTablePtrCheck(const CXXRecordDecl *RD, llvm::Value *VTable,
2243                           CFITypeCheckKind TCK, SourceLocation Loc);
2244 
2245   /// If whole-program virtual table optimization is enabled, emit an assumption
2246   /// that VTable is a member of RD's type identifier. Or, if vptr CFI is
2247   /// enabled, emit a check that VTable is a member of RD's type identifier.
2248   void EmitTypeMetadataCodeForVCall(const CXXRecordDecl *RD,
2249                                     llvm::Value *VTable, SourceLocation Loc);
2250 
2251   /// Returns whether we should perform a type checked load when loading a
2252   /// virtual function for virtual calls to members of RD. This is generally
2253   /// true when both vcall CFI and whole-program-vtables are enabled.
2254   bool ShouldEmitVTableTypeCheckedLoad(const CXXRecordDecl *RD);
2255 
2256   /// Emit a type checked load from the given vtable.
2257   llvm::Value *EmitVTableTypeCheckedLoad(const CXXRecordDecl *RD, llvm::Value *VTable,
2258                                          uint64_t VTableByteOffset);
2259 
2260   /// EnterDtorCleanups - Enter the cleanups necessary to complete the
2261   /// given phase of destruction for a destructor.  The end result
2262   /// should call destructors on members and base classes in reverse
2263   /// order of their construction.
2264   void EnterDtorCleanups(const CXXDestructorDecl *Dtor, CXXDtorType Type);
2265 
2266   /// ShouldInstrumentFunction - Return true if the current function should be
2267   /// instrumented with __cyg_profile_func_* calls
2268   bool ShouldInstrumentFunction();
2269 
2270   /// ShouldXRayInstrument - Return true if the current function should be
2271   /// instrumented with XRay nop sleds.
2272   bool ShouldXRayInstrumentFunction() const;
2273 
2274   /// AlwaysEmitXRayCustomEvents - Return true if we must unconditionally emit
2275   /// XRay custom event handling calls.
2276   bool AlwaysEmitXRayCustomEvents() const;
2277 
2278   /// AlwaysEmitXRayTypedEvents - Return true if clang must unconditionally emit
2279   /// XRay typed event handling calls.
2280   bool AlwaysEmitXRayTypedEvents() const;
2281 
2282   /// Encode an address into a form suitable for use in a function prologue.
2283   llvm::Constant *EncodeAddrForUseInPrologue(llvm::Function *F,
2284                                              llvm::Constant *Addr);
2285 
2286   /// Decode an address used in a function prologue, encoded by \c
2287   /// EncodeAddrForUseInPrologue.
2288   llvm::Value *DecodeAddrUsedInPrologue(llvm::Value *F,
2289                                         llvm::Value *EncodedAddr);
2290 
2291   /// EmitFunctionProlog - Emit the target specific LLVM code to load the
2292   /// arguments for the given function. This is also responsible for naming the
2293   /// LLVM function arguments.
2294   void EmitFunctionProlog(const CGFunctionInfo &FI,
2295                           llvm::Function *Fn,
2296                           const FunctionArgList &Args);
2297 
2298   /// EmitFunctionEpilog - Emit the target specific LLVM code to return the
2299   /// given temporary.
2300   void EmitFunctionEpilog(const CGFunctionInfo &FI, bool EmitRetDbgLoc,
2301                           SourceLocation EndLoc);
2302 
2303   /// Emit a test that checks if the return value \p RV is nonnull.
2304   void EmitReturnValueCheck(llvm::Value *RV);
2305 
2306   /// EmitStartEHSpec - Emit the start of the exception spec.
2307   void EmitStartEHSpec(const Decl *D);
2308 
2309   /// EmitEndEHSpec - Emit the end of the exception spec.
2310   void EmitEndEHSpec(const Decl *D);
2311 
2312   /// getTerminateLandingPad - Return a landing pad that just calls terminate.
2313   llvm::BasicBlock *getTerminateLandingPad();
2314 
2315   /// getTerminateLandingPad - Return a cleanup funclet that just calls
2316   /// terminate.
2317   llvm::BasicBlock *getTerminateFunclet();
2318 
2319   /// getTerminateHandler - Return a handler (not a landing pad, just
2320   /// a catch handler) that just calls terminate.  This is used when
2321   /// a terminate scope encloses a try.
2322   llvm::BasicBlock *getTerminateHandler();
2323 
2324   llvm::Type *ConvertTypeForMem(QualType T);
2325   llvm::Type *ConvertType(QualType T);
2326   llvm::Type *ConvertType(const TypeDecl *T) {
2327     return ConvertType(getContext().getTypeDeclType(T));
2328   }
2329 
2330   /// LoadObjCSelf - Load the value of self. This function is only valid while
2331   /// generating code for an Objective-C method.
2332   llvm::Value *LoadObjCSelf();
2333 
2334   /// TypeOfSelfObject - Return type of object that this self represents.
2335   QualType TypeOfSelfObject();
2336 
2337   /// getEvaluationKind - Return the TypeEvaluationKind of QualType \c T.
2338   static TypeEvaluationKind getEvaluationKind(QualType T);
2339 
2340   static bool hasScalarEvaluationKind(QualType T) {
2341     return getEvaluationKind(T) == TEK_Scalar;
2342   }
2343 
2344   static bool hasAggregateEvaluationKind(QualType T) {
2345     return getEvaluationKind(T) == TEK_Aggregate;
2346   }
2347 
2348   /// createBasicBlock - Create an LLVM basic block.
2349   llvm::BasicBlock *createBasicBlock(const Twine &name = "",
2350                                      llvm::Function *parent = nullptr,
2351                                      llvm::BasicBlock *before = nullptr) {
2352     return llvm::BasicBlock::Create(getLLVMContext(), name, parent, before);
2353   }
2354 
2355   /// getBasicBlockForLabel - Return the LLVM basicblock that the specified
2356   /// label maps to.
2357   JumpDest getJumpDestForLabel(const LabelDecl *S);
2358 
2359   /// SimplifyForwardingBlocks - If the given basic block is only a branch to
2360   /// another basic block, simplify it. This assumes that no other code could
2361   /// potentially reference the basic block.
2362   void SimplifyForwardingBlocks(llvm::BasicBlock *BB);
2363 
2364   /// EmitBlock - Emit the given block \arg BB and set it as the insert point,
2365   /// adding a fall-through branch from the current insert block if
2366   /// necessary. It is legal to call this function even if there is no current
2367   /// insertion point.
2368   ///
2369   /// IsFinished - If true, indicates that the caller has finished emitting
2370   /// branches to the given block and does not expect to emit code into it. This
2371   /// means the block can be ignored if it is unreachable.
2372   void EmitBlock(llvm::BasicBlock *BB, bool IsFinished=false);
2373 
2374   /// EmitBlockAfterUses - Emit the given block somewhere hopefully
2375   /// near its uses, and leave the insertion point in it.
2376   void EmitBlockAfterUses(llvm::BasicBlock *BB);
2377 
2378   /// EmitBranch - Emit a branch to the specified basic block from the current
2379   /// insert block, taking care to avoid creation of branches from dummy
2380   /// blocks. It is legal to call this function even if there is no current
2381   /// insertion point.
2382   ///
2383   /// This function clears the current insertion point. The caller should follow
2384   /// calls to this function with calls to Emit*Block prior to generation new
2385   /// code.
2386   void EmitBranch(llvm::BasicBlock *Block);
2387 
2388   /// HaveInsertPoint - True if an insertion point is defined. If not, this
2389   /// indicates that the current code being emitted is unreachable.
2390   bool HaveInsertPoint() const {
2391     return Builder.GetInsertBlock() != nullptr;
2392   }
2393 
2394   /// EnsureInsertPoint - Ensure that an insertion point is defined so that
2395   /// emitted IR has a place to go. Note that by definition, if this function
2396   /// creates a block then that block is unreachable; callers may do better to
2397   /// detect when no insertion point is defined and simply skip IR generation.
2398   void EnsureInsertPoint() {
2399     if (!HaveInsertPoint())
2400       EmitBlock(createBasicBlock());
2401   }
2402 
2403   /// ErrorUnsupported - Print out an error that codegen doesn't support the
2404   /// specified stmt yet.
2405   void ErrorUnsupported(const Stmt *S, const char *Type);
2406 
2407   //===--------------------------------------------------------------------===//
2408   //                                  Helpers
2409   //===--------------------------------------------------------------------===//
2410 
2411   LValue MakeAddrLValue(Address Addr, QualType T,
2412                         AlignmentSource Source = AlignmentSource::Type) {
2413     return LValue::MakeAddr(Addr, T, getContext(), LValueBaseInfo(Source),
2414                             CGM.getTBAAAccessInfo(T));
2415   }
2416 
2417   LValue MakeAddrLValue(Address Addr, QualType T, LValueBaseInfo BaseInfo,
2418                         TBAAAccessInfo TBAAInfo) {
2419     return LValue::MakeAddr(Addr, T, getContext(), BaseInfo, TBAAInfo);
2420   }
2421 
2422   LValue MakeAddrLValue(llvm::Value *V, QualType T, CharUnits Alignment,
2423                         AlignmentSource Source = AlignmentSource::Type) {
2424     return LValue::MakeAddr(Address(V, Alignment), T, getContext(),
2425                             LValueBaseInfo(Source), CGM.getTBAAAccessInfo(T));
2426   }
2427 
2428   LValue MakeAddrLValue(llvm::Value *V, QualType T, CharUnits Alignment,
2429                         LValueBaseInfo BaseInfo, TBAAAccessInfo TBAAInfo) {
2430     return LValue::MakeAddr(Address(V, Alignment), T, getContext(),
2431                             BaseInfo, TBAAInfo);
2432   }
2433 
2434   LValue MakeNaturalAlignPointeeAddrLValue(llvm::Value *V, QualType T);
2435   LValue MakeNaturalAlignAddrLValue(llvm::Value *V, QualType T);
2436 
2437   Address EmitLoadOfReference(LValue RefLVal,
2438                               LValueBaseInfo *PointeeBaseInfo = nullptr,
2439                               TBAAAccessInfo *PointeeTBAAInfo = nullptr);
2440   LValue EmitLoadOfReferenceLValue(LValue RefLVal);
2441   LValue EmitLoadOfReferenceLValue(Address RefAddr, QualType RefTy,
2442                                    AlignmentSource Source =
2443                                        AlignmentSource::Type) {
2444     LValue RefLVal = MakeAddrLValue(RefAddr, RefTy, LValueBaseInfo(Source),
2445                                     CGM.getTBAAAccessInfo(RefTy));
2446     return EmitLoadOfReferenceLValue(RefLVal);
2447   }
2448 
2449   Address EmitLoadOfPointer(Address Ptr, const PointerType *PtrTy,
2450                             LValueBaseInfo *BaseInfo = nullptr,
2451                             TBAAAccessInfo *TBAAInfo = nullptr);
2452   LValue EmitLoadOfPointerLValue(Address Ptr, const PointerType *PtrTy);
2453 
2454   /// CreateTempAlloca - This creates an alloca and inserts it into the entry
2455   /// block if \p ArraySize is nullptr, otherwise inserts it at the current
2456   /// insertion point of the builder. The caller is responsible for setting an
2457   /// appropriate alignment on
2458   /// the alloca.
2459   ///
2460   /// \p ArraySize is the number of array elements to be allocated if it
2461   ///    is not nullptr.
2462   ///
2463   /// LangAS::Default is the address space of pointers to local variables and
2464   /// temporaries, as exposed in the source language. In certain
2465   /// configurations, this is not the same as the alloca address space, and a
2466   /// cast is needed to lift the pointer from the alloca AS into
2467   /// LangAS::Default. This can happen when the target uses a restricted
2468   /// address space for the stack but the source language requires
2469   /// LangAS::Default to be a generic address space. The latter condition is
2470   /// common for most programming languages; OpenCL is an exception in that
2471   /// LangAS::Default is the private address space, which naturally maps
2472   /// to the stack.
2473   ///
2474   /// Because the address of a temporary is often exposed to the program in
2475   /// various ways, this function will perform the cast. The original alloca
2476   /// instruction is returned through \p Alloca if it is not nullptr.
2477   ///
2478   /// The cast is not performaed in CreateTempAllocaWithoutCast. This is
2479   /// more efficient if the caller knows that the address will not be exposed.
2480   llvm::AllocaInst *CreateTempAlloca(llvm::Type *Ty, const Twine &Name = "tmp",
2481                                      llvm::Value *ArraySize = nullptr);
2482   Address CreateTempAlloca(llvm::Type *Ty, CharUnits align,
2483                            const Twine &Name = "tmp",
2484                            llvm::Value *ArraySize = nullptr,
2485                            Address *Alloca = nullptr);
2486   Address CreateTempAllocaWithoutCast(llvm::Type *Ty, CharUnits align,
2487                                       const Twine &Name = "tmp",
2488                                       llvm::Value *ArraySize = nullptr);
2489 
2490   /// CreateDefaultAlignedTempAlloca - This creates an alloca with the
2491   /// default ABI alignment of the given LLVM type.
2492   ///
2493   /// IMPORTANT NOTE: This is *not* generally the right alignment for
2494   /// any given AST type that happens to have been lowered to the
2495   /// given IR type.  This should only ever be used for function-local,
2496   /// IR-driven manipulations like saving and restoring a value.  Do
2497   /// not hand this address off to arbitrary IRGen routines, and especially
2498   /// do not pass it as an argument to a function that might expect a
2499   /// properly ABI-aligned value.
2500   Address CreateDefaultAlignTempAlloca(llvm::Type *Ty,
2501                                        const Twine &Name = "tmp");
2502 
2503   /// InitTempAlloca - Provide an initial value for the given alloca which
2504   /// will be observable at all locations in the function.
2505   ///
2506   /// The address should be something that was returned from one of
2507   /// the CreateTempAlloca or CreateMemTemp routines, and the
2508   /// initializer must be valid in the entry block (i.e. it must
2509   /// either be a constant or an argument value).
2510   void InitTempAlloca(Address Alloca, llvm::Value *Value);
2511 
2512   /// CreateIRTemp - Create a temporary IR object of the given type, with
2513   /// appropriate alignment. This routine should only be used when an temporary
2514   /// value needs to be stored into an alloca (for example, to avoid explicit
2515   /// PHI construction), but the type is the IR type, not the type appropriate
2516   /// for storing in memory.
2517   ///
2518   /// That is, this is exactly equivalent to CreateMemTemp, but calling
2519   /// ConvertType instead of ConvertTypeForMem.
2520   Address CreateIRTemp(QualType T, const Twine &Name = "tmp");
2521 
2522   /// CreateMemTemp - Create a temporary memory object of the given type, with
2523   /// appropriate alignmen and cast it to the default address space. Returns
2524   /// the original alloca instruction by \p Alloca if it is not nullptr.
2525   Address CreateMemTemp(QualType T, const Twine &Name = "tmp",
2526                         Address *Alloca = nullptr);
2527   Address CreateMemTemp(QualType T, CharUnits Align, const Twine &Name = "tmp",
2528                         Address *Alloca = nullptr);
2529 
2530   /// CreateMemTemp - Create a temporary memory object of the given type, with
2531   /// appropriate alignmen without casting it to the default address space.
2532   Address CreateMemTempWithoutCast(QualType T, const Twine &Name = "tmp");
2533   Address CreateMemTempWithoutCast(QualType T, CharUnits Align,
2534                                    const Twine &Name = "tmp");
2535 
2536   /// CreateAggTemp - Create a temporary memory object for the given
2537   /// aggregate type.
2538   AggValueSlot CreateAggTemp(QualType T, const Twine &Name = "tmp",
2539                              Address *Alloca = nullptr) {
2540     return AggValueSlot::forAddr(CreateMemTemp(T, Name, Alloca),
2541                                  T.getQualifiers(),
2542                                  AggValueSlot::IsNotDestructed,
2543                                  AggValueSlot::DoesNotNeedGCBarriers,
2544                                  AggValueSlot::IsNotAliased,
2545                                  AggValueSlot::DoesNotOverlap);
2546   }
2547 
2548   /// Emit a cast to void* in the appropriate address space.
2549   llvm::Value *EmitCastToVoidPtr(llvm::Value *value);
2550 
2551   /// EvaluateExprAsBool - Perform the usual unary conversions on the specified
2552   /// expression and compare the result against zero, returning an Int1Ty value.
2553   llvm::Value *EvaluateExprAsBool(const Expr *E);
2554 
2555   /// EmitIgnoredExpr - Emit an expression in a context which ignores the result.
2556   void EmitIgnoredExpr(const Expr *E);
2557 
2558   /// EmitAnyExpr - Emit code to compute the specified expression which can have
2559   /// any type.  The result is returned as an RValue struct.  If this is an
2560   /// aggregate expression, the aggloc/agglocvolatile arguments indicate where
2561   /// the result should be returned.
2562   ///
2563   /// \param ignoreResult True if the resulting value isn't used.
2564   RValue EmitAnyExpr(const Expr *E,
2565                      AggValueSlot aggSlot = AggValueSlot::ignored(),
2566                      bool ignoreResult = false);
2567 
2568   // EmitVAListRef - Emit a "reference" to a va_list; this is either the address
2569   // or the value of the expression, depending on how va_list is defined.
2570   Address EmitVAListRef(const Expr *E);
2571 
2572   /// Emit a "reference" to a __builtin_ms_va_list; this is
2573   /// always the value of the expression, because a __builtin_ms_va_list is a
2574   /// pointer to a char.
2575   Address EmitMSVAListRef(const Expr *E);
2576 
2577   /// EmitAnyExprToTemp - Similarly to EmitAnyExpr(), however, the result will
2578   /// always be accessible even if no aggregate location is provided.
2579   RValue EmitAnyExprToTemp(const Expr *E);
2580 
2581   /// EmitAnyExprToMem - Emits the code necessary to evaluate an
2582   /// arbitrary expression into the given memory location.
2583   void EmitAnyExprToMem(const Expr *E, Address Location,
2584                         Qualifiers Quals, bool IsInitializer);
2585 
2586   void EmitAnyExprToExn(const Expr *E, Address Addr);
2587 
2588   /// EmitExprAsInit - Emits the code necessary to initialize a
2589   /// location in memory with the given initializer.
2590   void EmitExprAsInit(const Expr *init, const ValueDecl *D, LValue lvalue,
2591                       bool capturedByInit);
2592 
2593   /// hasVolatileMember - returns true if aggregate type has a volatile
2594   /// member.
2595   bool hasVolatileMember(QualType T) {
2596     if (const RecordType *RT = T->getAs<RecordType>()) {
2597       const RecordDecl *RD = cast<RecordDecl>(RT->getDecl());
2598       return RD->hasVolatileMember();
2599     }
2600     return false;
2601   }
2602 
2603   /// Determine whether a return value slot may overlap some other object.
2604   AggValueSlot::Overlap_t getOverlapForReturnValue() {
2605     // FIXME: Assuming no overlap here breaks guaranteed copy elision for base
2606     // class subobjects. These cases may need to be revisited depending on the
2607     // resolution of the relevant core issue.
2608     return AggValueSlot::DoesNotOverlap;
2609   }
2610 
2611   /// Determine whether a field initialization may overlap some other object.
2612   AggValueSlot::Overlap_t getOverlapForFieldInit(const FieldDecl *FD);
2613 
2614   /// Determine whether a base class initialization may overlap some other
2615   /// object.
2616   AggValueSlot::Overlap_t getOverlapForBaseInit(const CXXRecordDecl *RD,
2617                                                 const CXXRecordDecl *BaseRD,
2618                                                 bool IsVirtual);
2619 
2620   /// Emit an aggregate assignment.
2621   void EmitAggregateAssign(LValue Dest, LValue Src, QualType EltTy) {
2622     bool IsVolatile = hasVolatileMember(EltTy);
2623     EmitAggregateCopy(Dest, Src, EltTy, AggValueSlot::MayOverlap, IsVolatile);
2624   }
2625 
2626   void EmitAggregateCopyCtor(LValue Dest, LValue Src,
2627                              AggValueSlot::Overlap_t MayOverlap) {
2628     EmitAggregateCopy(Dest, Src, Src.getType(), MayOverlap);
2629   }
2630 
2631   /// EmitAggregateCopy - Emit an aggregate copy.
2632   ///
2633   /// \param isVolatile \c true iff either the source or the destination is
2634   ///        volatile.
2635   /// \param MayOverlap Whether the tail padding of the destination might be
2636   ///        occupied by some other object. More efficient code can often be
2637   ///        generated if not.
2638   void EmitAggregateCopy(LValue Dest, LValue Src, QualType EltTy,
2639                          AggValueSlot::Overlap_t MayOverlap,
2640                          bool isVolatile = false);
2641 
2642   /// GetAddrOfLocalVar - Return the address of a local variable.
2643   Address GetAddrOfLocalVar(const VarDecl *VD) {
2644     auto it = LocalDeclMap.find(VD);
2645     assert(it != LocalDeclMap.end() &&
2646            "Invalid argument to GetAddrOfLocalVar(), no decl!");
2647     return it->second;
2648   }
2649 
2650   /// Given an opaque value expression, return its LValue mapping if it exists,
2651   /// otherwise create one.
2652   LValue getOrCreateOpaqueLValueMapping(const OpaqueValueExpr *e);
2653 
2654   /// Given an opaque value expression, return its RValue mapping if it exists,
2655   /// otherwise create one.
2656   RValue getOrCreateOpaqueRValueMapping(const OpaqueValueExpr *e);
2657 
2658   /// Get the index of the current ArrayInitLoopExpr, if any.
2659   llvm::Value *getArrayInitIndex() { return ArrayInitIndex; }
2660 
2661   /// getAccessedFieldNo - Given an encoded value and a result number, return
2662   /// the input field number being accessed.
2663   static unsigned getAccessedFieldNo(unsigned Idx, const llvm::Constant *Elts);
2664 
2665   llvm::BlockAddress *GetAddrOfLabel(const LabelDecl *L);
2666   llvm::BasicBlock *GetIndirectGotoBlock();
2667 
2668   /// Check if \p E is a C++ "this" pointer wrapped in value-preserving casts.
2669   static bool IsWrappedCXXThis(const Expr *E);
2670 
2671   /// EmitNullInitialization - Generate code to set a value of the given type to
2672   /// null, If the type contains data member pointers, they will be initialized
2673   /// to -1 in accordance with the Itanium C++ ABI.
2674   void EmitNullInitialization(Address DestPtr, QualType Ty);
2675 
2676   /// Emits a call to an LLVM variable-argument intrinsic, either
2677   /// \c llvm.va_start or \c llvm.va_end.
2678   /// \param ArgValue A reference to the \c va_list as emitted by either
2679   /// \c EmitVAListRef or \c EmitMSVAListRef.
2680   /// \param IsStart If \c true, emits a call to \c llvm.va_start; otherwise,
2681   /// calls \c llvm.va_end.
2682   llvm::Value *EmitVAStartEnd(llvm::Value *ArgValue, bool IsStart);
2683 
2684   /// Generate code to get an argument from the passed in pointer
2685   /// and update it accordingly.
2686   /// \param VE The \c VAArgExpr for which to generate code.
2687   /// \param VAListAddr Receives a reference to the \c va_list as emitted by
2688   /// either \c EmitVAListRef or \c EmitMSVAListRef.
2689   /// \returns A pointer to the argument.
2690   // FIXME: We should be able to get rid of this method and use the va_arg
2691   // instruction in LLVM instead once it works well enough.
2692   Address EmitVAArg(VAArgExpr *VE, Address &VAListAddr);
2693 
2694   /// emitArrayLength - Compute the length of an array, even if it's a
2695   /// VLA, and drill down to the base element type.
2696   llvm::Value *emitArrayLength(const ArrayType *arrayType,
2697                                QualType &baseType,
2698                                Address &addr);
2699 
2700   /// EmitVLASize - Capture all the sizes for the VLA expressions in
2701   /// the given variably-modified type and store them in the VLASizeMap.
2702   ///
2703   /// This function can be called with a null (unreachable) insert point.
2704   void EmitVariablyModifiedType(QualType Ty);
2705 
2706   struct VlaSizePair {
2707     llvm::Value *NumElts;
2708     QualType Type;
2709 
2710     VlaSizePair(llvm::Value *NE, QualType T) : NumElts(NE), Type(T) {}
2711   };
2712 
2713   /// Return the number of elements for a single dimension
2714   /// for the given array type.
2715   VlaSizePair getVLAElements1D(const VariableArrayType *vla);
2716   VlaSizePair getVLAElements1D(QualType vla);
2717 
2718   /// Returns an LLVM value that corresponds to the size,
2719   /// in non-variably-sized elements, of a variable length array type,
2720   /// plus that largest non-variably-sized element type.  Assumes that
2721   /// the type has already been emitted with EmitVariablyModifiedType.
2722   VlaSizePair getVLASize(const VariableArrayType *vla);
2723   VlaSizePair getVLASize(QualType vla);
2724 
2725   /// LoadCXXThis - Load the value of 'this'. This function is only valid while
2726   /// generating code for an C++ member function.
2727   llvm::Value *LoadCXXThis() {
2728     assert(CXXThisValue && "no 'this' value for this function");
2729     return CXXThisValue;
2730   }
2731   Address LoadCXXThisAddress();
2732 
2733   /// LoadCXXVTT - Load the VTT parameter to base constructors/destructors have
2734   /// virtual bases.
2735   // FIXME: Every place that calls LoadCXXVTT is something
2736   // that needs to be abstracted properly.
2737   llvm::Value *LoadCXXVTT() {
2738     assert(CXXStructorImplicitParamValue && "no VTT value for this function");
2739     return CXXStructorImplicitParamValue;
2740   }
2741 
2742   /// GetAddressOfBaseOfCompleteClass - Convert the given pointer to a
2743   /// complete class to the given direct base.
2744   Address
2745   GetAddressOfDirectBaseInCompleteClass(Address Value,
2746                                         const CXXRecordDecl *Derived,
2747                                         const CXXRecordDecl *Base,
2748                                         bool BaseIsVirtual);
2749 
2750   static bool ShouldNullCheckClassCastValue(const CastExpr *Cast);
2751 
2752   /// GetAddressOfBaseClass - This function will add the necessary delta to the
2753   /// load of 'this' and returns address of the base class.
2754   Address GetAddressOfBaseClass(Address Value,
2755                                 const CXXRecordDecl *Derived,
2756                                 CastExpr::path_const_iterator PathBegin,
2757                                 CastExpr::path_const_iterator PathEnd,
2758                                 bool NullCheckValue, SourceLocation Loc);
2759 
2760   Address GetAddressOfDerivedClass(Address Value,
2761                                    const CXXRecordDecl *Derived,
2762                                    CastExpr::path_const_iterator PathBegin,
2763                                    CastExpr::path_const_iterator PathEnd,
2764                                    bool NullCheckValue);
2765 
2766   /// GetVTTParameter - Return the VTT parameter that should be passed to a
2767   /// base constructor/destructor with virtual bases.
2768   /// FIXME: VTTs are Itanium ABI-specific, so the definition should move
2769   /// to ItaniumCXXABI.cpp together with all the references to VTT.
2770   llvm::Value *GetVTTParameter(GlobalDecl GD, bool ForVirtualBase,
2771                                bool Delegating);
2772 
2773   void EmitDelegateCXXConstructorCall(const CXXConstructorDecl *Ctor,
2774                                       CXXCtorType CtorType,
2775                                       const FunctionArgList &Args,
2776                                       SourceLocation Loc);
2777   // It's important not to confuse this and the previous function. Delegating
2778   // constructors are the C++0x feature. The constructor delegate optimization
2779   // is used to reduce duplication in the base and complete consturctors where
2780   // they are substantially the same.
2781   void EmitDelegatingCXXConstructorCall(const CXXConstructorDecl *Ctor,
2782                                         const FunctionArgList &Args);
2783 
2784   /// Emit a call to an inheriting constructor (that is, one that invokes a
2785   /// constructor inherited from a base class) by inlining its definition. This
2786   /// is necessary if the ABI does not support forwarding the arguments to the
2787   /// base class constructor (because they're variadic or similar).
2788   void EmitInlinedInheritingCXXConstructorCall(const CXXConstructorDecl *Ctor,
2789                                                CXXCtorType CtorType,
2790                                                bool ForVirtualBase,
2791                                                bool Delegating,
2792                                                CallArgList &Args);
2793 
2794   /// Emit a call to a constructor inherited from a base class, passing the
2795   /// current constructor's arguments along unmodified (without even making
2796   /// a copy).
2797   void EmitInheritedCXXConstructorCall(const CXXConstructorDecl *D,
2798                                        bool ForVirtualBase, Address This,
2799                                        bool InheritedFromVBase,
2800                                        const CXXInheritedCtorInitExpr *E);
2801 
2802   void EmitCXXConstructorCall(const CXXConstructorDecl *D, CXXCtorType Type,
2803                               bool ForVirtualBase, bool Delegating,
2804                               AggValueSlot ThisAVS, const CXXConstructExpr *E);
2805 
2806   void EmitCXXConstructorCall(const CXXConstructorDecl *D, CXXCtorType Type,
2807                               bool ForVirtualBase, bool Delegating,
2808                               Address This, CallArgList &Args,
2809                               AggValueSlot::Overlap_t Overlap,
2810                               SourceLocation Loc, bool NewPointerIsChecked);
2811 
2812   /// Emit assumption load for all bases. Requires to be be called only on
2813   /// most-derived class and not under construction of the object.
2814   void EmitVTableAssumptionLoads(const CXXRecordDecl *ClassDecl, Address This);
2815 
2816   /// Emit assumption that vptr load == global vtable.
2817   void EmitVTableAssumptionLoad(const VPtr &vptr, Address This);
2818 
2819   void EmitSynthesizedCXXCopyCtorCall(const CXXConstructorDecl *D,
2820                                       Address This, Address Src,
2821                                       const CXXConstructExpr *E);
2822 
2823   void EmitCXXAggrConstructorCall(const CXXConstructorDecl *D,
2824                                   const ArrayType *ArrayTy,
2825                                   Address ArrayPtr,
2826                                   const CXXConstructExpr *E,
2827                                   bool NewPointerIsChecked,
2828                                   bool ZeroInitialization = false);
2829 
2830   void EmitCXXAggrConstructorCall(const CXXConstructorDecl *D,
2831                                   llvm::Value *NumElements,
2832                                   Address ArrayPtr,
2833                                   const CXXConstructExpr *E,
2834                                   bool NewPointerIsChecked,
2835                                   bool ZeroInitialization = false);
2836 
2837   static Destroyer destroyCXXObject;
2838 
2839   void EmitCXXDestructorCall(const CXXDestructorDecl *D, CXXDtorType Type,
2840                              bool ForVirtualBase, bool Delegating, Address This,
2841                              QualType ThisTy);
2842 
2843   void EmitNewArrayInitializer(const CXXNewExpr *E, QualType elementType,
2844                                llvm::Type *ElementTy, Address NewPtr,
2845                                llvm::Value *NumElements,
2846                                llvm::Value *AllocSizeWithoutCookie);
2847 
2848   void EmitCXXTemporary(const CXXTemporary *Temporary, QualType TempType,
2849                         Address Ptr);
2850 
2851   llvm::Value *EmitLifetimeStart(uint64_t Size, llvm::Value *Addr);
2852   void EmitLifetimeEnd(llvm::Value *Size, llvm::Value *Addr);
2853 
2854   llvm::Value *EmitCXXNewExpr(const CXXNewExpr *E);
2855   void EmitCXXDeleteExpr(const CXXDeleteExpr *E);
2856 
2857   void EmitDeleteCall(const FunctionDecl *DeleteFD, llvm::Value *Ptr,
2858                       QualType DeleteTy, llvm::Value *NumElements = nullptr,
2859                       CharUnits CookieSize = CharUnits());
2860 
2861   RValue EmitBuiltinNewDeleteCall(const FunctionProtoType *Type,
2862                                   const CallExpr *TheCallExpr, bool IsDelete);
2863 
2864   llvm::Value *EmitCXXTypeidExpr(const CXXTypeidExpr *E);
2865   llvm::Value *EmitDynamicCast(Address V, const CXXDynamicCastExpr *DCE);
2866   Address EmitCXXUuidofExpr(const CXXUuidofExpr *E);
2867 
2868   /// Situations in which we might emit a check for the suitability of a
2869   /// pointer or glvalue. Needs to be kept in sync with ubsan_handlers.cpp in
2870   /// compiler-rt.
2871   enum TypeCheckKind {
2872     /// Checking the operand of a load. Must be suitably sized and aligned.
2873     TCK_Load,
2874     /// Checking the destination of a store. Must be suitably sized and aligned.
2875     TCK_Store,
2876     /// Checking the bound value in a reference binding. Must be suitably sized
2877     /// and aligned, but is not required to refer to an object (until the
2878     /// reference is used), per core issue 453.
2879     TCK_ReferenceBinding,
2880     /// Checking the object expression in a non-static data member access. Must
2881     /// be an object within its lifetime.
2882     TCK_MemberAccess,
2883     /// Checking the 'this' pointer for a call to a non-static member function.
2884     /// Must be an object within its lifetime.
2885     TCK_MemberCall,
2886     /// Checking the 'this' pointer for a constructor call.
2887     TCK_ConstructorCall,
2888     /// Checking the operand of a static_cast to a derived pointer type. Must be
2889     /// null or an object within its lifetime.
2890     TCK_DowncastPointer,
2891     /// Checking the operand of a static_cast to a derived reference type. Must
2892     /// be an object within its lifetime.
2893     TCK_DowncastReference,
2894     /// Checking the operand of a cast to a base object. Must be suitably sized
2895     /// and aligned.
2896     TCK_Upcast,
2897     /// Checking the operand of a cast to a virtual base object. Must be an
2898     /// object within its lifetime.
2899     TCK_UpcastToVirtualBase,
2900     /// Checking the value assigned to a _Nonnull pointer. Must not be null.
2901     TCK_NonnullAssign,
2902     /// Checking the operand of a dynamic_cast or a typeid expression.  Must be
2903     /// null or an object within its lifetime.
2904     TCK_DynamicOperation
2905   };
2906 
2907   /// Determine whether the pointer type check \p TCK permits null pointers.
2908   static bool isNullPointerAllowed(TypeCheckKind TCK);
2909 
2910   /// Determine whether the pointer type check \p TCK requires a vptr check.
2911   static bool isVptrCheckRequired(TypeCheckKind TCK, QualType Ty);
2912 
2913   /// Whether any type-checking sanitizers are enabled. If \c false,
2914   /// calls to EmitTypeCheck can be skipped.
2915   bool sanitizePerformTypeCheck() const;
2916 
2917   /// Emit a check that \p V is the address of storage of the
2918   /// appropriate size and alignment for an object of type \p Type
2919   /// (or if ArraySize is provided, for an array of that bound).
2920   void EmitTypeCheck(TypeCheckKind TCK, SourceLocation Loc, llvm::Value *V,
2921                      QualType Type, CharUnits Alignment = CharUnits::Zero(),
2922                      SanitizerSet SkippedChecks = SanitizerSet(),
2923                      llvm::Value *ArraySize = nullptr);
2924 
2925   /// Emit a check that \p Base points into an array object, which
2926   /// we can access at index \p Index. \p Accessed should be \c false if we
2927   /// this expression is used as an lvalue, for instance in "&Arr[Idx]".
2928   void EmitBoundsCheck(const Expr *E, const Expr *Base, llvm::Value *Index,
2929                        QualType IndexType, bool Accessed);
2930 
2931   llvm::Value *EmitScalarPrePostIncDec(const UnaryOperator *E, LValue LV,
2932                                        bool isInc, bool isPre);
2933   ComplexPairTy EmitComplexPrePostIncDec(const UnaryOperator *E, LValue LV,
2934                                          bool isInc, bool isPre);
2935 
2936   /// Converts Location to a DebugLoc, if debug information is enabled.
2937   llvm::DebugLoc SourceLocToDebugLoc(SourceLocation Location);
2938 
2939   /// Get the record field index as represented in debug info.
2940   unsigned getDebugInfoFIndex(const RecordDecl *Rec, unsigned FieldIndex);
2941 
2942 
2943   //===--------------------------------------------------------------------===//
2944   //                            Declaration Emission
2945   //===--------------------------------------------------------------------===//
2946 
2947   /// EmitDecl - Emit a declaration.
2948   ///
2949   /// This function can be called with a null (unreachable) insert point.
2950   void EmitDecl(const Decl &D);
2951 
2952   /// EmitVarDecl - Emit a local variable declaration.
2953   ///
2954   /// This function can be called with a null (unreachable) insert point.
2955   void EmitVarDecl(const VarDecl &D);
2956 
2957   void EmitScalarInit(const Expr *init, const ValueDecl *D, LValue lvalue,
2958                       bool capturedByInit);
2959 
2960   typedef void SpecialInitFn(CodeGenFunction &Init, const VarDecl &D,
2961                              llvm::Value *Address);
2962 
2963   /// Determine whether the given initializer is trivial in the sense
2964   /// that it requires no code to be generated.
2965   bool isTrivialInitializer(const Expr *Init);
2966 
2967   /// EmitAutoVarDecl - Emit an auto variable declaration.
2968   ///
2969   /// This function can be called with a null (unreachable) insert point.
2970   void EmitAutoVarDecl(const VarDecl &D);
2971 
2972   class AutoVarEmission {
2973     friend class CodeGenFunction;
2974 
2975     const VarDecl *Variable;
2976 
2977     /// The address of the alloca for languages with explicit address space
2978     /// (e.g. OpenCL) or alloca casted to generic pointer for address space
2979     /// agnostic languages (e.g. C++). Invalid if the variable was emitted
2980     /// as a global constant.
2981     Address Addr;
2982 
2983     llvm::Value *NRVOFlag;
2984 
2985     /// True if the variable is a __block variable that is captured by an
2986     /// escaping block.
2987     bool IsEscapingByRef;
2988 
2989     /// True if the variable is of aggregate type and has a constant
2990     /// initializer.
2991     bool IsConstantAggregate;
2992 
2993     /// Non-null if we should use lifetime annotations.
2994     llvm::Value *SizeForLifetimeMarkers;
2995 
2996     /// Address with original alloca instruction. Invalid if the variable was
2997     /// emitted as a global constant.
2998     Address AllocaAddr;
2999 
3000     struct Invalid {};
3001     AutoVarEmission(Invalid)
3002         : Variable(nullptr), Addr(Address::invalid()),
3003           AllocaAddr(Address::invalid()) {}
3004 
3005     AutoVarEmission(const VarDecl &variable)
3006         : Variable(&variable), Addr(Address::invalid()), NRVOFlag(nullptr),
3007           IsEscapingByRef(false), IsConstantAggregate(false),
3008           SizeForLifetimeMarkers(nullptr), AllocaAddr(Address::invalid()) {}
3009 
3010     bool wasEmittedAsGlobal() const { return !Addr.isValid(); }
3011 
3012   public:
3013     static AutoVarEmission invalid() { return AutoVarEmission(Invalid()); }
3014 
3015     bool useLifetimeMarkers() const {
3016       return SizeForLifetimeMarkers != nullptr;
3017     }
3018     llvm::Value *getSizeForLifetimeMarkers() const {
3019       assert(useLifetimeMarkers());
3020       return SizeForLifetimeMarkers;
3021     }
3022 
3023     /// Returns the raw, allocated address, which is not necessarily
3024     /// the address of the object itself. It is casted to default
3025     /// address space for address space agnostic languages.
3026     Address getAllocatedAddress() const {
3027       return Addr;
3028     }
3029 
3030     /// Returns the address for the original alloca instruction.
3031     Address getOriginalAllocatedAddress() const { return AllocaAddr; }
3032 
3033     /// Returns the address of the object within this declaration.
3034     /// Note that this does not chase the forwarding pointer for
3035     /// __block decls.
3036     Address getObjectAddress(CodeGenFunction &CGF) const {
3037       if (!IsEscapingByRef) return Addr;
3038 
3039       return CGF.emitBlockByrefAddress(Addr, Variable, /*forward*/ false);
3040     }
3041   };
3042   AutoVarEmission EmitAutoVarAlloca(const VarDecl &var);
3043   void EmitAutoVarInit(const AutoVarEmission &emission);
3044   void EmitAutoVarCleanups(const AutoVarEmission &emission);
3045   void emitAutoVarTypeCleanup(const AutoVarEmission &emission,
3046                               QualType::DestructionKind dtorKind);
3047 
3048   /// Emits the alloca and debug information for the size expressions for each
3049   /// dimension of an array. It registers the association of its (1-dimensional)
3050   /// QualTypes and size expression's debug node, so that CGDebugInfo can
3051   /// reference this node when creating the DISubrange object to describe the
3052   /// array types.
3053   void EmitAndRegisterVariableArrayDimensions(CGDebugInfo *DI,
3054                                               const VarDecl &D,
3055                                               bool EmitDebugInfo);
3056 
3057   void EmitStaticVarDecl(const VarDecl &D,
3058                          llvm::GlobalValue::LinkageTypes Linkage);
3059 
3060   class ParamValue {
3061     llvm::Value *Value;
3062     unsigned Alignment;
3063     ParamValue(llvm::Value *V, unsigned A) : Value(V), Alignment(A) {}
3064   public:
3065     static ParamValue forDirect(llvm::Value *value) {
3066       return ParamValue(value, 0);
3067     }
3068     static ParamValue forIndirect(Address addr) {
3069       assert(!addr.getAlignment().isZero());
3070       return ParamValue(addr.getPointer(), addr.getAlignment().getQuantity());
3071     }
3072 
3073     bool isIndirect() const { return Alignment != 0; }
3074     llvm::Value *getAnyValue() const { return Value; }
3075 
3076     llvm::Value *getDirectValue() const {
3077       assert(!isIndirect());
3078       return Value;
3079     }
3080 
3081     Address getIndirectAddress() const {
3082       assert(isIndirect());
3083       return Address(Value, CharUnits::fromQuantity(Alignment));
3084     }
3085   };
3086 
3087   /// EmitParmDecl - Emit a ParmVarDecl or an ImplicitParamDecl.
3088   void EmitParmDecl(const VarDecl &D, ParamValue Arg, unsigned ArgNo);
3089 
3090   /// protectFromPeepholes - Protect a value that we're intending to
3091   /// store to the side, but which will probably be used later, from
3092   /// aggressive peepholing optimizations that might delete it.
3093   ///
3094   /// Pass the result to unprotectFromPeepholes to declare that
3095   /// protection is no longer required.
3096   ///
3097   /// There's no particular reason why this shouldn't apply to
3098   /// l-values, it's just that no existing peepholes work on pointers.
3099   PeepholeProtection protectFromPeepholes(RValue rvalue);
3100   void unprotectFromPeepholes(PeepholeProtection protection);
3101 
3102   void emitAlignmentAssumptionCheck(llvm::Value *Ptr, QualType Ty,
3103                                     SourceLocation Loc,
3104                                     SourceLocation AssumptionLoc,
3105                                     llvm::Value *Alignment,
3106                                     llvm::Value *OffsetValue,
3107                                     llvm::Value *TheCheck,
3108                                     llvm::Instruction *Assumption);
3109 
3110   void emitAlignmentAssumption(llvm::Value *PtrValue, QualType Ty,
3111                                SourceLocation Loc, SourceLocation AssumptionLoc,
3112                                llvm::Value *Alignment,
3113                                llvm::Value *OffsetValue = nullptr);
3114 
3115   void emitAlignmentAssumption(llvm::Value *PtrValue, const Expr *E,
3116                                SourceLocation AssumptionLoc,
3117                                llvm::Value *Alignment,
3118                                llvm::Value *OffsetValue = nullptr);
3119 
3120   //===--------------------------------------------------------------------===//
3121   //                             Statement Emission
3122   //===--------------------------------------------------------------------===//
3123 
3124   /// EmitStopPoint - Emit a debug stoppoint if we are emitting debug info.
3125   void EmitStopPoint(const Stmt *S);
3126 
3127   /// EmitStmt - Emit the code for the statement \arg S. It is legal to call
3128   /// this function even if there is no current insertion point.
3129   ///
3130   /// This function may clear the current insertion point; callers should use
3131   /// EnsureInsertPoint if they wish to subsequently generate code without first
3132   /// calling EmitBlock, EmitBranch, or EmitStmt.
3133   void EmitStmt(const Stmt *S, ArrayRef<const Attr *> Attrs = None);
3134 
3135   /// EmitSimpleStmt - Try to emit a "simple" statement which does not
3136   /// necessarily require an insertion point or debug information; typically
3137   /// because the statement amounts to a jump or a container of other
3138   /// statements.
3139   ///
3140   /// \return True if the statement was handled.
3141   bool EmitSimpleStmt(const Stmt *S, ArrayRef<const Attr *> Attrs);
3142 
3143   Address EmitCompoundStmt(const CompoundStmt &S, bool GetLast = false,
3144                            AggValueSlot AVS = AggValueSlot::ignored());
3145   Address EmitCompoundStmtWithoutScope(const CompoundStmt &S,
3146                                        bool GetLast = false,
3147                                        AggValueSlot AVS =
3148                                                 AggValueSlot::ignored());
3149 
3150   /// EmitLabel - Emit the block for the given label. It is legal to call this
3151   /// function even if there is no current insertion point.
3152   void EmitLabel(const LabelDecl *D); // helper for EmitLabelStmt.
3153 
3154   void EmitLabelStmt(const LabelStmt &S);
3155   void EmitAttributedStmt(const AttributedStmt &S);
3156   void EmitGotoStmt(const GotoStmt &S);
3157   void EmitIndirectGotoStmt(const IndirectGotoStmt &S);
3158   void EmitIfStmt(const IfStmt &S);
3159 
3160   void EmitWhileStmt(const WhileStmt &S,
3161                      ArrayRef<const Attr *> Attrs = None);
3162   void EmitDoStmt(const DoStmt &S, ArrayRef<const Attr *> Attrs = None);
3163   void EmitForStmt(const ForStmt &S,
3164                    ArrayRef<const Attr *> Attrs = None);
3165   void EmitReturnStmt(const ReturnStmt &S);
3166   void EmitDeclStmt(const DeclStmt &S);
3167   void EmitBreakStmt(const BreakStmt &S);
3168   void EmitContinueStmt(const ContinueStmt &S);
3169   void EmitSwitchStmt(const SwitchStmt &S);
3170   void EmitDefaultStmt(const DefaultStmt &S, ArrayRef<const Attr *> Attrs);
3171   void EmitCaseStmt(const CaseStmt &S, ArrayRef<const Attr *> Attrs);
3172   void EmitCaseStmtRange(const CaseStmt &S, ArrayRef<const Attr *> Attrs);
3173   void EmitAsmStmt(const AsmStmt &S);
3174 
3175   void EmitObjCForCollectionStmt(const ObjCForCollectionStmt &S);
3176   void EmitObjCAtTryStmt(const ObjCAtTryStmt &S);
3177   void EmitObjCAtThrowStmt(const ObjCAtThrowStmt &S);
3178   void EmitObjCAtSynchronizedStmt(const ObjCAtSynchronizedStmt &S);
3179   void EmitObjCAutoreleasePoolStmt(const ObjCAutoreleasePoolStmt &S);
3180 
3181   void EmitCoroutineBody(const CoroutineBodyStmt &S);
3182   void EmitCoreturnStmt(const CoreturnStmt &S);
3183   RValue EmitCoawaitExpr(const CoawaitExpr &E,
3184                          AggValueSlot aggSlot = AggValueSlot::ignored(),
3185                          bool ignoreResult = false);
3186   LValue EmitCoawaitLValue(const CoawaitExpr *E);
3187   RValue EmitCoyieldExpr(const CoyieldExpr &E,
3188                          AggValueSlot aggSlot = AggValueSlot::ignored(),
3189                          bool ignoreResult = false);
3190   LValue EmitCoyieldLValue(const CoyieldExpr *E);
3191   RValue EmitCoroutineIntrinsic(const CallExpr *E, unsigned int IID);
3192 
3193   void EnterCXXTryStmt(const CXXTryStmt &S, bool IsFnTryBlock = false);
3194   void ExitCXXTryStmt(const CXXTryStmt &S, bool IsFnTryBlock = false);
3195 
3196   void EmitCXXTryStmt(const CXXTryStmt &S);
3197   void EmitSEHTryStmt(const SEHTryStmt &S);
3198   void EmitSEHLeaveStmt(const SEHLeaveStmt &S);
3199   void EnterSEHTryStmt(const SEHTryStmt &S);
3200   void ExitSEHTryStmt(const SEHTryStmt &S);
3201 
3202   void pushSEHCleanup(CleanupKind kind,
3203                       llvm::Function *FinallyFunc);
3204   void startOutlinedSEHHelper(CodeGenFunction &ParentCGF, bool IsFilter,
3205                               const Stmt *OutlinedStmt);
3206 
3207   llvm::Function *GenerateSEHFilterFunction(CodeGenFunction &ParentCGF,
3208                                             const SEHExceptStmt &Except);
3209 
3210   llvm::Function *GenerateSEHFinallyFunction(CodeGenFunction &ParentCGF,
3211                                              const SEHFinallyStmt &Finally);
3212 
3213   void EmitSEHExceptionCodeSave(CodeGenFunction &ParentCGF,
3214                                 llvm::Value *ParentFP,
3215                                 llvm::Value *EntryEBP);
3216   llvm::Value *EmitSEHExceptionCode();
3217   llvm::Value *EmitSEHExceptionInfo();
3218   llvm::Value *EmitSEHAbnormalTermination();
3219 
3220   /// Emit simple code for OpenMP directives in Simd-only mode.
3221   void EmitSimpleOMPExecutableDirective(const OMPExecutableDirective &D);
3222 
3223   /// Scan the outlined statement for captures from the parent function. For
3224   /// each capture, mark the capture as escaped and emit a call to
3225   /// llvm.localrecover. Insert the localrecover result into the LocalDeclMap.
3226   void EmitCapturedLocals(CodeGenFunction &ParentCGF, const Stmt *OutlinedStmt,
3227                           bool IsFilter);
3228 
3229   /// Recovers the address of a local in a parent function. ParentVar is the
3230   /// address of the variable used in the immediate parent function. It can
3231   /// either be an alloca or a call to llvm.localrecover if there are nested
3232   /// outlined functions. ParentFP is the frame pointer of the outermost parent
3233   /// frame.
3234   Address recoverAddrOfEscapedLocal(CodeGenFunction &ParentCGF,
3235                                     Address ParentVar,
3236                                     llvm::Value *ParentFP);
3237 
3238   void EmitCXXForRangeStmt(const CXXForRangeStmt &S,
3239                            ArrayRef<const Attr *> Attrs = None);
3240 
3241   /// Controls insertion of cancellation exit blocks in worksharing constructs.
3242   class OMPCancelStackRAII {
3243     CodeGenFunction &CGF;
3244 
3245   public:
3246     OMPCancelStackRAII(CodeGenFunction &CGF, OpenMPDirectiveKind Kind,
3247                        bool HasCancel)
3248         : CGF(CGF) {
3249       CGF.OMPCancelStack.enter(CGF, Kind, HasCancel);
3250     }
3251     ~OMPCancelStackRAII() { CGF.OMPCancelStack.exit(CGF); }
3252   };
3253 
3254   /// Returns calculated size of the specified type.
3255   llvm::Value *getTypeSize(QualType Ty);
3256   LValue InitCapturedStruct(const CapturedStmt &S);
3257   llvm::Function *EmitCapturedStmt(const CapturedStmt &S, CapturedRegionKind K);
3258   llvm::Function *GenerateCapturedStmtFunction(const CapturedStmt &S);
3259   Address GenerateCapturedStmtArgument(const CapturedStmt &S);
3260   llvm::Function *GenerateOpenMPCapturedStmtFunction(const CapturedStmt &S,
3261                                                      SourceLocation Loc);
3262   void GenerateOpenMPCapturedVars(const CapturedStmt &S,
3263                                   SmallVectorImpl<llvm::Value *> &CapturedVars);
3264   void emitOMPSimpleStore(LValue LVal, RValue RVal, QualType RValTy,
3265                           SourceLocation Loc);
3266   /// Perform element by element copying of arrays with type \a
3267   /// OriginalType from \a SrcAddr to \a DestAddr using copying procedure
3268   /// generated by \a CopyGen.
3269   ///
3270   /// \param DestAddr Address of the destination array.
3271   /// \param SrcAddr Address of the source array.
3272   /// \param OriginalType Type of destination and source arrays.
3273   /// \param CopyGen Copying procedure that copies value of single array element
3274   /// to another single array element.
3275   void EmitOMPAggregateAssign(
3276       Address DestAddr, Address SrcAddr, QualType OriginalType,
3277       const llvm::function_ref<void(Address, Address)> CopyGen);
3278   /// Emit proper copying of data from one variable to another.
3279   ///
3280   /// \param OriginalType Original type of the copied variables.
3281   /// \param DestAddr Destination address.
3282   /// \param SrcAddr Source address.
3283   /// \param DestVD Destination variable used in \a CopyExpr (for arrays, has
3284   /// type of the base array element).
3285   /// \param SrcVD Source variable used in \a CopyExpr (for arrays, has type of
3286   /// the base array element).
3287   /// \param Copy Actual copygin expression for copying data from \a SrcVD to \a
3288   /// DestVD.
3289   void EmitOMPCopy(QualType OriginalType,
3290                    Address DestAddr, Address SrcAddr,
3291                    const VarDecl *DestVD, const VarDecl *SrcVD,
3292                    const Expr *Copy);
3293   /// Emit atomic update code for constructs: \a X = \a X \a BO \a E or
3294   /// \a X = \a E \a BO \a E.
3295   ///
3296   /// \param X Value to be updated.
3297   /// \param E Update value.
3298   /// \param BO Binary operation for update operation.
3299   /// \param IsXLHSInRHSPart true if \a X is LHS in RHS part of the update
3300   /// expression, false otherwise.
3301   /// \param AO Atomic ordering of the generated atomic instructions.
3302   /// \param CommonGen Code generator for complex expressions that cannot be
3303   /// expressed through atomicrmw instruction.
3304   /// \returns <true, OldAtomicValue> if simple 'atomicrmw' instruction was
3305   /// generated, <false, RValue::get(nullptr)> otherwise.
3306   std::pair<bool, RValue> EmitOMPAtomicSimpleUpdateExpr(
3307       LValue X, RValue E, BinaryOperatorKind BO, bool IsXLHSInRHSPart,
3308       llvm::AtomicOrdering AO, SourceLocation Loc,
3309       const llvm::function_ref<RValue(RValue)> CommonGen);
3310   bool EmitOMPFirstprivateClause(const OMPExecutableDirective &D,
3311                                  OMPPrivateScope &PrivateScope);
3312   void EmitOMPPrivateClause(const OMPExecutableDirective &D,
3313                             OMPPrivateScope &PrivateScope);
3314   void EmitOMPUseDevicePtrClause(
3315       const OMPUseDevicePtrClause &C, OMPPrivateScope &PrivateScope,
3316       const llvm::DenseMap<const ValueDecl *, Address> &CaptureDeviceAddrMap);
3317   void EmitOMPUseDeviceAddrClause(
3318       const OMPUseDeviceAddrClause &C, OMPPrivateScope &PrivateScope,
3319       const llvm::DenseMap<const ValueDecl *, Address> &CaptureDeviceAddrMap);
3320   /// Emit code for copyin clause in \a D directive. The next code is
3321   /// generated at the start of outlined functions for directives:
3322   /// \code
3323   /// threadprivate_var1 = master_threadprivate_var1;
3324   /// operator=(threadprivate_var2, master_threadprivate_var2);
3325   /// ...
3326   /// __kmpc_barrier(&loc, global_tid);
3327   /// \endcode
3328   ///
3329   /// \param D OpenMP directive possibly with 'copyin' clause(s).
3330   /// \returns true if at least one copyin variable is found, false otherwise.
3331   bool EmitOMPCopyinClause(const OMPExecutableDirective &D);
3332   /// Emit initial code for lastprivate variables. If some variable is
3333   /// not also firstprivate, then the default initialization is used. Otherwise
3334   /// initialization of this variable is performed by EmitOMPFirstprivateClause
3335   /// method.
3336   ///
3337   /// \param D Directive that may have 'lastprivate' directives.
3338   /// \param PrivateScope Private scope for capturing lastprivate variables for
3339   /// proper codegen in internal captured statement.
3340   ///
3341   /// \returns true if there is at least one lastprivate variable, false
3342   /// otherwise.
3343   bool EmitOMPLastprivateClauseInit(const OMPExecutableDirective &D,
3344                                     OMPPrivateScope &PrivateScope);
3345   /// Emit final copying of lastprivate values to original variables at
3346   /// the end of the worksharing or simd directive.
3347   ///
3348   /// \param D Directive that has at least one 'lastprivate' directives.
3349   /// \param IsLastIterCond Boolean condition that must be set to 'i1 true' if
3350   /// it is the last iteration of the loop code in associated directive, or to
3351   /// 'i1 false' otherwise. If this item is nullptr, no final check is required.
3352   void EmitOMPLastprivateClauseFinal(const OMPExecutableDirective &D,
3353                                      bool NoFinals,
3354                                      llvm::Value *IsLastIterCond = nullptr);
3355   /// Emit initial code for linear clauses.
3356   void EmitOMPLinearClause(const OMPLoopDirective &D,
3357                            CodeGenFunction::OMPPrivateScope &PrivateScope);
3358   /// Emit final code for linear clauses.
3359   /// \param CondGen Optional conditional code for final part of codegen for
3360   /// linear clause.
3361   void EmitOMPLinearClauseFinal(
3362       const OMPLoopDirective &D,
3363       const llvm::function_ref<llvm::Value *(CodeGenFunction &)> CondGen);
3364   /// Emit initial code for reduction variables. Creates reduction copies
3365   /// and initializes them with the values according to OpenMP standard.
3366   ///
3367   /// \param D Directive (possibly) with the 'reduction' clause.
3368   /// \param PrivateScope Private scope for capturing reduction variables for
3369   /// proper codegen in internal captured statement.
3370   ///
3371   void EmitOMPReductionClauseInit(const OMPExecutableDirective &D,
3372                                   OMPPrivateScope &PrivateScope,
3373                                   bool ForInscan = false);
3374   /// Emit final update of reduction values to original variables at
3375   /// the end of the directive.
3376   ///
3377   /// \param D Directive that has at least one 'reduction' directives.
3378   /// \param ReductionKind The kind of reduction to perform.
3379   void EmitOMPReductionClauseFinal(const OMPExecutableDirective &D,
3380                                    const OpenMPDirectiveKind ReductionKind);
3381   /// Emit initial code for linear variables. Creates private copies
3382   /// and initializes them with the values according to OpenMP standard.
3383   ///
3384   /// \param D Directive (possibly) with the 'linear' clause.
3385   /// \return true if at least one linear variable is found that should be
3386   /// initialized with the value of the original variable, false otherwise.
3387   bool EmitOMPLinearClauseInit(const OMPLoopDirective &D);
3388 
3389   typedef const llvm::function_ref<void(CodeGenFunction & /*CGF*/,
3390                                         llvm::Function * /*OutlinedFn*/,
3391                                         const OMPTaskDataTy & /*Data*/)>
3392       TaskGenTy;
3393   void EmitOMPTaskBasedDirective(const OMPExecutableDirective &S,
3394                                  const OpenMPDirectiveKind CapturedRegion,
3395                                  const RegionCodeGenTy &BodyGen,
3396                                  const TaskGenTy &TaskGen, OMPTaskDataTy &Data);
3397   struct OMPTargetDataInfo {
3398     Address BasePointersArray = Address::invalid();
3399     Address PointersArray = Address::invalid();
3400     Address SizesArray = Address::invalid();
3401     Address MappersArray = Address::invalid();
3402     unsigned NumberOfTargetItems = 0;
3403     explicit OMPTargetDataInfo() = default;
3404     OMPTargetDataInfo(Address BasePointersArray, Address PointersArray,
3405                       Address SizesArray, Address MappersArray,
3406                       unsigned NumberOfTargetItems)
3407         : BasePointersArray(BasePointersArray), PointersArray(PointersArray),
3408           SizesArray(SizesArray), MappersArray(MappersArray),
3409           NumberOfTargetItems(NumberOfTargetItems) {}
3410   };
3411   void EmitOMPTargetTaskBasedDirective(const OMPExecutableDirective &S,
3412                                        const RegionCodeGenTy &BodyGen,
3413                                        OMPTargetDataInfo &InputInfo);
3414 
3415   void EmitOMPParallelDirective(const OMPParallelDirective &S);
3416   void EmitOMPSimdDirective(const OMPSimdDirective &S);
3417   void EmitOMPTileDirective(const OMPTileDirective &S);
3418   void EmitOMPForDirective(const OMPForDirective &S);
3419   void EmitOMPForSimdDirective(const OMPForSimdDirective &S);
3420   void EmitOMPSectionsDirective(const OMPSectionsDirective &S);
3421   void EmitOMPSectionDirective(const OMPSectionDirective &S);
3422   void EmitOMPSingleDirective(const OMPSingleDirective &S);
3423   void EmitOMPMasterDirective(const OMPMasterDirective &S);
3424   void EmitOMPCriticalDirective(const OMPCriticalDirective &S);
3425   void EmitOMPParallelForDirective(const OMPParallelForDirective &S);
3426   void EmitOMPParallelForSimdDirective(const OMPParallelForSimdDirective &S);
3427   void EmitOMPParallelSectionsDirective(const OMPParallelSectionsDirective &S);
3428   void EmitOMPParallelMasterDirective(const OMPParallelMasterDirective &S);
3429   void EmitOMPTaskDirective(const OMPTaskDirective &S);
3430   void EmitOMPTaskyieldDirective(const OMPTaskyieldDirective &S);
3431   void EmitOMPBarrierDirective(const OMPBarrierDirective &S);
3432   void EmitOMPTaskwaitDirective(const OMPTaskwaitDirective &S);
3433   void EmitOMPTaskgroupDirective(const OMPTaskgroupDirective &S);
3434   void EmitOMPFlushDirective(const OMPFlushDirective &S);
3435   void EmitOMPDepobjDirective(const OMPDepobjDirective &S);
3436   void EmitOMPScanDirective(const OMPScanDirective &S);
3437   void EmitOMPOrderedDirective(const OMPOrderedDirective &S);
3438   void EmitOMPAtomicDirective(const OMPAtomicDirective &S);
3439   void EmitOMPTargetDirective(const OMPTargetDirective &S);
3440   void EmitOMPTargetDataDirective(const OMPTargetDataDirective &S);
3441   void EmitOMPTargetEnterDataDirective(const OMPTargetEnterDataDirective &S);
3442   void EmitOMPTargetExitDataDirective(const OMPTargetExitDataDirective &S);
3443   void EmitOMPTargetUpdateDirective(const OMPTargetUpdateDirective &S);
3444   void EmitOMPTargetParallelDirective(const OMPTargetParallelDirective &S);
3445   void
3446   EmitOMPTargetParallelForDirective(const OMPTargetParallelForDirective &S);
3447   void EmitOMPTeamsDirective(const OMPTeamsDirective &S);
3448   void
3449   EmitOMPCancellationPointDirective(const OMPCancellationPointDirective &S);
3450   void EmitOMPCancelDirective(const OMPCancelDirective &S);
3451   void EmitOMPTaskLoopBasedDirective(const OMPLoopDirective &S);
3452   void EmitOMPTaskLoopDirective(const OMPTaskLoopDirective &S);
3453   void EmitOMPTaskLoopSimdDirective(const OMPTaskLoopSimdDirective &S);
3454   void EmitOMPMasterTaskLoopDirective(const OMPMasterTaskLoopDirective &S);
3455   void
3456   EmitOMPMasterTaskLoopSimdDirective(const OMPMasterTaskLoopSimdDirective &S);
3457   void EmitOMPParallelMasterTaskLoopDirective(
3458       const OMPParallelMasterTaskLoopDirective &S);
3459   void EmitOMPParallelMasterTaskLoopSimdDirective(
3460       const OMPParallelMasterTaskLoopSimdDirective &S);
3461   void EmitOMPDistributeDirective(const OMPDistributeDirective &S);
3462   void EmitOMPDistributeParallelForDirective(
3463       const OMPDistributeParallelForDirective &S);
3464   void EmitOMPDistributeParallelForSimdDirective(
3465       const OMPDistributeParallelForSimdDirective &S);
3466   void EmitOMPDistributeSimdDirective(const OMPDistributeSimdDirective &S);
3467   void EmitOMPTargetParallelForSimdDirective(
3468       const OMPTargetParallelForSimdDirective &S);
3469   void EmitOMPTargetSimdDirective(const OMPTargetSimdDirective &S);
3470   void EmitOMPTeamsDistributeDirective(const OMPTeamsDistributeDirective &S);
3471   void
3472   EmitOMPTeamsDistributeSimdDirective(const OMPTeamsDistributeSimdDirective &S);
3473   void EmitOMPTeamsDistributeParallelForSimdDirective(
3474       const OMPTeamsDistributeParallelForSimdDirective &S);
3475   void EmitOMPTeamsDistributeParallelForDirective(
3476       const OMPTeamsDistributeParallelForDirective &S);
3477   void EmitOMPTargetTeamsDirective(const OMPTargetTeamsDirective &S);
3478   void EmitOMPTargetTeamsDistributeDirective(
3479       const OMPTargetTeamsDistributeDirective &S);
3480   void EmitOMPTargetTeamsDistributeParallelForDirective(
3481       const OMPTargetTeamsDistributeParallelForDirective &S);
3482   void EmitOMPTargetTeamsDistributeParallelForSimdDirective(
3483       const OMPTargetTeamsDistributeParallelForSimdDirective &S);
3484   void EmitOMPTargetTeamsDistributeSimdDirective(
3485       const OMPTargetTeamsDistributeSimdDirective &S);
3486 
3487   /// Emit device code for the target directive.
3488   static void EmitOMPTargetDeviceFunction(CodeGenModule &CGM,
3489                                           StringRef ParentName,
3490                                           const OMPTargetDirective &S);
3491   static void
3492   EmitOMPTargetParallelDeviceFunction(CodeGenModule &CGM, StringRef ParentName,
3493                                       const OMPTargetParallelDirective &S);
3494   /// Emit device code for the target parallel for directive.
3495   static void EmitOMPTargetParallelForDeviceFunction(
3496       CodeGenModule &CGM, StringRef ParentName,
3497       const OMPTargetParallelForDirective &S);
3498   /// Emit device code for the target parallel for simd directive.
3499   static void EmitOMPTargetParallelForSimdDeviceFunction(
3500       CodeGenModule &CGM, StringRef ParentName,
3501       const OMPTargetParallelForSimdDirective &S);
3502   /// Emit device code for the target teams directive.
3503   static void
3504   EmitOMPTargetTeamsDeviceFunction(CodeGenModule &CGM, StringRef ParentName,
3505                                    const OMPTargetTeamsDirective &S);
3506   /// Emit device code for the target teams distribute directive.
3507   static void EmitOMPTargetTeamsDistributeDeviceFunction(
3508       CodeGenModule &CGM, StringRef ParentName,
3509       const OMPTargetTeamsDistributeDirective &S);
3510   /// Emit device code for the target teams distribute simd directive.
3511   static void EmitOMPTargetTeamsDistributeSimdDeviceFunction(
3512       CodeGenModule &CGM, StringRef ParentName,
3513       const OMPTargetTeamsDistributeSimdDirective &S);
3514   /// Emit device code for the target simd directive.
3515   static void EmitOMPTargetSimdDeviceFunction(CodeGenModule &CGM,
3516                                               StringRef ParentName,
3517                                               const OMPTargetSimdDirective &S);
3518   /// Emit device code for the target teams distribute parallel for simd
3519   /// directive.
3520   static void EmitOMPTargetTeamsDistributeParallelForSimdDeviceFunction(
3521       CodeGenModule &CGM, StringRef ParentName,
3522       const OMPTargetTeamsDistributeParallelForSimdDirective &S);
3523 
3524   static void EmitOMPTargetTeamsDistributeParallelForDeviceFunction(
3525       CodeGenModule &CGM, StringRef ParentName,
3526       const OMPTargetTeamsDistributeParallelForDirective &S);
3527 
3528   /// Emit the Stmt \p S and return its topmost canonical loop, if any.
3529   /// TODO: The \p Depth paramter is not yet implemented and must be 1. In the
3530   /// future it is meant to be the number of loops expected in the loop nests
3531   /// (usually specified by the "collapse" clause) that are collapsed to a
3532   /// single loop by this function.
3533   llvm::CanonicalLoopInfo *EmitOMPCollapsedCanonicalLoopNest(const Stmt *S,
3534                                                              int Depth);
3535 
3536   /// Emit an OMPCanonicalLoop using the OpenMPIRBuilder.
3537   void EmitOMPCanonicalLoop(const OMPCanonicalLoop *S);
3538 
3539   /// Emit inner loop of the worksharing/simd construct.
3540   ///
3541   /// \param S Directive, for which the inner loop must be emitted.
3542   /// \param RequiresCleanup true, if directive has some associated private
3543   /// variables.
3544   /// \param LoopCond Bollean condition for loop continuation.
3545   /// \param IncExpr Increment expression for loop control variable.
3546   /// \param BodyGen Generator for the inner body of the inner loop.
3547   /// \param PostIncGen Genrator for post-increment code (required for ordered
3548   /// loop directvies).
3549   void EmitOMPInnerLoop(
3550       const OMPExecutableDirective &S, bool RequiresCleanup,
3551       const Expr *LoopCond, const Expr *IncExpr,
3552       const llvm::function_ref<void(CodeGenFunction &)> BodyGen,
3553       const llvm::function_ref<void(CodeGenFunction &)> PostIncGen);
3554 
3555   JumpDest getOMPCancelDestination(OpenMPDirectiveKind Kind);
3556   /// Emit initial code for loop counters of loop-based directives.
3557   void EmitOMPPrivateLoopCounters(const OMPLoopDirective &S,
3558                                   OMPPrivateScope &LoopScope);
3559 
3560   /// Helper for the OpenMP loop directives.
3561   void EmitOMPLoopBody(const OMPLoopDirective &D, JumpDest LoopExit);
3562 
3563   /// Emit code for the worksharing loop-based directive.
3564   /// \return true, if this construct has any lastprivate clause, false -
3565   /// otherwise.
3566   bool EmitOMPWorksharingLoop(const OMPLoopDirective &S, Expr *EUB,
3567                               const CodeGenLoopBoundsTy &CodeGenLoopBounds,
3568                               const CodeGenDispatchBoundsTy &CGDispatchBounds);
3569 
3570   /// Emit code for the distribute loop-based directive.
3571   void EmitOMPDistributeLoop(const OMPLoopDirective &S,
3572                              const CodeGenLoopTy &CodeGenLoop, Expr *IncExpr);
3573 
3574   /// Helpers for the OpenMP loop directives.
3575   void EmitOMPSimdInit(const OMPLoopDirective &D, bool IsMonotonic = false);
3576   void EmitOMPSimdFinal(
3577       const OMPLoopDirective &D,
3578       const llvm::function_ref<llvm::Value *(CodeGenFunction &)> CondGen);
3579 
3580   /// Emits the lvalue for the expression with possibly captured variable.
3581   LValue EmitOMPSharedLValue(const Expr *E);
3582 
3583 private:
3584   /// Helpers for blocks.
3585   llvm::Value *EmitBlockLiteral(const CGBlockInfo &Info);
3586 
3587   /// struct with the values to be passed to the OpenMP loop-related functions
3588   struct OMPLoopArguments {
3589     /// loop lower bound
3590     Address LB = Address::invalid();
3591     /// loop upper bound
3592     Address UB = Address::invalid();
3593     /// loop stride
3594     Address ST = Address::invalid();
3595     /// isLastIteration argument for runtime functions
3596     Address IL = Address::invalid();
3597     /// Chunk value generated by sema
3598     llvm::Value *Chunk = nullptr;
3599     /// EnsureUpperBound
3600     Expr *EUB = nullptr;
3601     /// IncrementExpression
3602     Expr *IncExpr = nullptr;
3603     /// Loop initialization
3604     Expr *Init = nullptr;
3605     /// Loop exit condition
3606     Expr *Cond = nullptr;
3607     /// Update of LB after a whole chunk has been executed
3608     Expr *NextLB = nullptr;
3609     /// Update of UB after a whole chunk has been executed
3610     Expr *NextUB = nullptr;
3611     OMPLoopArguments() = default;
3612     OMPLoopArguments(Address LB, Address UB, Address ST, Address IL,
3613                      llvm::Value *Chunk = nullptr, Expr *EUB = nullptr,
3614                      Expr *IncExpr = nullptr, Expr *Init = nullptr,
3615                      Expr *Cond = nullptr, Expr *NextLB = nullptr,
3616                      Expr *NextUB = nullptr)
3617         : LB(LB), UB(UB), ST(ST), IL(IL), Chunk(Chunk), EUB(EUB),
3618           IncExpr(IncExpr), Init(Init), Cond(Cond), NextLB(NextLB),
3619           NextUB(NextUB) {}
3620   };
3621   void EmitOMPOuterLoop(bool DynamicOrOrdered, bool IsMonotonic,
3622                         const OMPLoopDirective &S, OMPPrivateScope &LoopScope,
3623                         const OMPLoopArguments &LoopArgs,
3624                         const CodeGenLoopTy &CodeGenLoop,
3625                         const CodeGenOrderedTy &CodeGenOrdered);
3626   void EmitOMPForOuterLoop(const OpenMPScheduleTy &ScheduleKind,
3627                            bool IsMonotonic, const OMPLoopDirective &S,
3628                            OMPPrivateScope &LoopScope, bool Ordered,
3629                            const OMPLoopArguments &LoopArgs,
3630                            const CodeGenDispatchBoundsTy &CGDispatchBounds);
3631   void EmitOMPDistributeOuterLoop(OpenMPDistScheduleClauseKind ScheduleKind,
3632                                   const OMPLoopDirective &S,
3633                                   OMPPrivateScope &LoopScope,
3634                                   const OMPLoopArguments &LoopArgs,
3635                                   const CodeGenLoopTy &CodeGenLoopContent);
3636   /// Emit code for sections directive.
3637   void EmitSections(const OMPExecutableDirective &S);
3638 
3639 public:
3640 
3641   //===--------------------------------------------------------------------===//
3642   //                         LValue Expression Emission
3643   //===--------------------------------------------------------------------===//
3644 
3645   /// Create a check that a scalar RValue is non-null.
3646   llvm::Value *EmitNonNullRValueCheck(RValue RV, QualType T);
3647 
3648   /// GetUndefRValue - Get an appropriate 'undef' rvalue for the given type.
3649   RValue GetUndefRValue(QualType Ty);
3650 
3651   /// EmitUnsupportedRValue - Emit a dummy r-value using the type of E
3652   /// and issue an ErrorUnsupported style diagnostic (using the
3653   /// provided Name).
3654   RValue EmitUnsupportedRValue(const Expr *E,
3655                                const char *Name);
3656 
3657   /// EmitUnsupportedLValue - Emit a dummy l-value using the type of E and issue
3658   /// an ErrorUnsupported style diagnostic (using the provided Name).
3659   LValue EmitUnsupportedLValue(const Expr *E,
3660                                const char *Name);
3661 
3662   /// EmitLValue - Emit code to compute a designator that specifies the location
3663   /// of the expression.
3664   ///
3665   /// This can return one of two things: a simple address or a bitfield
3666   /// reference.  In either case, the LLVM Value* in the LValue structure is
3667   /// guaranteed to be an LLVM pointer type.
3668   ///
3669   /// If this returns a bitfield reference, nothing about the pointee type of
3670   /// the LLVM value is known: For example, it may not be a pointer to an
3671   /// integer.
3672   ///
3673   /// If this returns a normal address, and if the lvalue's C type is fixed
3674   /// size, this method guarantees that the returned pointer type will point to
3675   /// an LLVM type of the same size of the lvalue's type.  If the lvalue has a
3676   /// variable length type, this is not possible.
3677   ///
3678   LValue EmitLValue(const Expr *E);
3679 
3680   /// Same as EmitLValue but additionally we generate checking code to
3681   /// guard against undefined behavior.  This is only suitable when we know
3682   /// that the address will be used to access the object.
3683   LValue EmitCheckedLValue(const Expr *E, TypeCheckKind TCK);
3684 
3685   RValue convertTempToRValue(Address addr, QualType type,
3686                              SourceLocation Loc);
3687 
3688   void EmitAtomicInit(Expr *E, LValue lvalue);
3689 
3690   bool LValueIsSuitableForInlineAtomic(LValue Src);
3691 
3692   RValue EmitAtomicLoad(LValue LV, SourceLocation SL,
3693                         AggValueSlot Slot = AggValueSlot::ignored());
3694 
3695   RValue EmitAtomicLoad(LValue lvalue, SourceLocation loc,
3696                         llvm::AtomicOrdering AO, bool IsVolatile = false,
3697                         AggValueSlot slot = AggValueSlot::ignored());
3698 
3699   void EmitAtomicStore(RValue rvalue, LValue lvalue, bool isInit);
3700 
3701   void EmitAtomicStore(RValue rvalue, LValue lvalue, llvm::AtomicOrdering AO,
3702                        bool IsVolatile, bool isInit);
3703 
3704   std::pair<RValue, llvm::Value *> EmitAtomicCompareExchange(
3705       LValue Obj, RValue Expected, RValue Desired, SourceLocation Loc,
3706       llvm::AtomicOrdering Success =
3707           llvm::AtomicOrdering::SequentiallyConsistent,
3708       llvm::AtomicOrdering Failure =
3709           llvm::AtomicOrdering::SequentiallyConsistent,
3710       bool IsWeak = false, AggValueSlot Slot = AggValueSlot::ignored());
3711 
3712   void EmitAtomicUpdate(LValue LVal, llvm::AtomicOrdering AO,
3713                         const llvm::function_ref<RValue(RValue)> &UpdateOp,
3714                         bool IsVolatile);
3715 
3716   /// EmitToMemory - Change a scalar value from its value
3717   /// representation to its in-memory representation.
3718   llvm::Value *EmitToMemory(llvm::Value *Value, QualType Ty);
3719 
3720   /// EmitFromMemory - Change a scalar value from its memory
3721   /// representation to its value representation.
3722   llvm::Value *EmitFromMemory(llvm::Value *Value, QualType Ty);
3723 
3724   /// Check if the scalar \p Value is within the valid range for the given
3725   /// type \p Ty.
3726   ///
3727   /// Returns true if a check is needed (even if the range is unknown).
3728   bool EmitScalarRangeCheck(llvm::Value *Value, QualType Ty,
3729                             SourceLocation Loc);
3730 
3731   /// EmitLoadOfScalar - Load a scalar value from an address, taking
3732   /// care to appropriately convert from the memory representation to
3733   /// the LLVM value representation.
3734   llvm::Value *EmitLoadOfScalar(Address Addr, bool Volatile, QualType Ty,
3735                                 SourceLocation Loc,
3736                                 AlignmentSource Source = AlignmentSource::Type,
3737                                 bool isNontemporal = false) {
3738     return EmitLoadOfScalar(Addr, Volatile, Ty, Loc, LValueBaseInfo(Source),
3739                             CGM.getTBAAAccessInfo(Ty), isNontemporal);
3740   }
3741 
3742   llvm::Value *EmitLoadOfScalar(Address Addr, bool Volatile, QualType Ty,
3743                                 SourceLocation Loc, LValueBaseInfo BaseInfo,
3744                                 TBAAAccessInfo TBAAInfo,
3745                                 bool isNontemporal = false);
3746 
3747   /// EmitLoadOfScalar - Load a scalar value from an address, taking
3748   /// care to appropriately convert from the memory representation to
3749   /// the LLVM value representation.  The l-value must be a simple
3750   /// l-value.
3751   llvm::Value *EmitLoadOfScalar(LValue lvalue, SourceLocation Loc);
3752 
3753   /// EmitStoreOfScalar - Store a scalar value to an address, taking
3754   /// care to appropriately convert from the memory representation to
3755   /// the LLVM value representation.
3756   void EmitStoreOfScalar(llvm::Value *Value, Address Addr,
3757                          bool Volatile, QualType Ty,
3758                          AlignmentSource Source = AlignmentSource::Type,
3759                          bool isInit = false, bool isNontemporal = false) {
3760     EmitStoreOfScalar(Value, Addr, Volatile, Ty, LValueBaseInfo(Source),
3761                       CGM.getTBAAAccessInfo(Ty), isInit, isNontemporal);
3762   }
3763 
3764   void EmitStoreOfScalar(llvm::Value *Value, Address Addr,
3765                          bool Volatile, QualType Ty,
3766                          LValueBaseInfo BaseInfo, TBAAAccessInfo TBAAInfo,
3767                          bool isInit = false, bool isNontemporal = false);
3768 
3769   /// EmitStoreOfScalar - Store a scalar value to an address, taking
3770   /// care to appropriately convert from the memory representation to
3771   /// the LLVM value representation.  The l-value must be a simple
3772   /// l-value.  The isInit flag indicates whether this is an initialization.
3773   /// If so, atomic qualifiers are ignored and the store is always non-atomic.
3774   void EmitStoreOfScalar(llvm::Value *value, LValue lvalue, bool isInit=false);
3775 
3776   /// EmitLoadOfLValue - Given an expression that represents a value lvalue,
3777   /// this method emits the address of the lvalue, then loads the result as an
3778   /// rvalue, returning the rvalue.
3779   RValue EmitLoadOfLValue(LValue V, SourceLocation Loc);
3780   RValue EmitLoadOfExtVectorElementLValue(LValue V);
3781   RValue EmitLoadOfBitfieldLValue(LValue LV, SourceLocation Loc);
3782   RValue EmitLoadOfGlobalRegLValue(LValue LV);
3783 
3784   /// EmitStoreThroughLValue - Store the specified rvalue into the specified
3785   /// lvalue, where both are guaranteed to the have the same type, and that type
3786   /// is 'Ty'.
3787   void EmitStoreThroughLValue(RValue Src, LValue Dst, bool isInit = false);
3788   void EmitStoreThroughExtVectorComponentLValue(RValue Src, LValue Dst);
3789   void EmitStoreThroughGlobalRegLValue(RValue Src, LValue Dst);
3790 
3791   /// EmitStoreThroughBitfieldLValue - Store Src into Dst with same constraints
3792   /// as EmitStoreThroughLValue.
3793   ///
3794   /// \param Result [out] - If non-null, this will be set to a Value* for the
3795   /// bit-field contents after the store, appropriate for use as the result of
3796   /// an assignment to the bit-field.
3797   void EmitStoreThroughBitfieldLValue(RValue Src, LValue Dst,
3798                                       llvm::Value **Result=nullptr);
3799 
3800   /// Emit an l-value for an assignment (simple or compound) of complex type.
3801   LValue EmitComplexAssignmentLValue(const BinaryOperator *E);
3802   LValue EmitComplexCompoundAssignmentLValue(const CompoundAssignOperator *E);
3803   LValue EmitScalarCompoundAssignWithComplex(const CompoundAssignOperator *E,
3804                                              llvm::Value *&Result);
3805 
3806   // Note: only available for agg return types
3807   LValue EmitBinaryOperatorLValue(const BinaryOperator *E);
3808   LValue EmitCompoundAssignmentLValue(const CompoundAssignOperator *E);
3809   // Note: only available for agg return types
3810   LValue EmitCallExprLValue(const CallExpr *E);
3811   // Note: only available for agg return types
3812   LValue EmitVAArgExprLValue(const VAArgExpr *E);
3813   LValue EmitDeclRefLValue(const DeclRefExpr *E);
3814   LValue EmitStringLiteralLValue(const StringLiteral *E);
3815   LValue EmitObjCEncodeExprLValue(const ObjCEncodeExpr *E);
3816   LValue EmitPredefinedLValue(const PredefinedExpr *E);
3817   LValue EmitUnaryOpLValue(const UnaryOperator *E);
3818   LValue EmitArraySubscriptExpr(const ArraySubscriptExpr *E,
3819                                 bool Accessed = false);
3820   LValue EmitMatrixSubscriptExpr(const MatrixSubscriptExpr *E);
3821   LValue EmitOMPArraySectionExpr(const OMPArraySectionExpr *E,
3822                                  bool IsLowerBound = true);
3823   LValue EmitExtVectorElementExpr(const ExtVectorElementExpr *E);
3824   LValue EmitMemberExpr(const MemberExpr *E);
3825   LValue EmitObjCIsaExpr(const ObjCIsaExpr *E);
3826   LValue EmitCompoundLiteralLValue(const CompoundLiteralExpr *E);
3827   LValue EmitInitListLValue(const InitListExpr *E);
3828   LValue EmitConditionalOperatorLValue(const AbstractConditionalOperator *E);
3829   LValue EmitCastLValue(const CastExpr *E);
3830   LValue EmitMaterializeTemporaryExpr(const MaterializeTemporaryExpr *E);
3831   LValue EmitOpaqueValueLValue(const OpaqueValueExpr *e);
3832 
3833   Address EmitExtVectorElementLValue(LValue V);
3834 
3835   RValue EmitRValueForField(LValue LV, const FieldDecl *FD, SourceLocation Loc);
3836 
3837   Address EmitArrayToPointerDecay(const Expr *Array,
3838                                   LValueBaseInfo *BaseInfo = nullptr,
3839                                   TBAAAccessInfo *TBAAInfo = nullptr);
3840 
3841   class ConstantEmission {
3842     llvm::PointerIntPair<llvm::Constant*, 1, bool> ValueAndIsReference;
3843     ConstantEmission(llvm::Constant *C, bool isReference)
3844       : ValueAndIsReference(C, isReference) {}
3845   public:
3846     ConstantEmission() {}
3847     static ConstantEmission forReference(llvm::Constant *C) {
3848       return ConstantEmission(C, true);
3849     }
3850     static ConstantEmission forValue(llvm::Constant *C) {
3851       return ConstantEmission(C, false);
3852     }
3853 
3854     explicit operator bool() const {
3855       return ValueAndIsReference.getOpaqueValue() != nullptr;
3856     }
3857 
3858     bool isReference() const { return ValueAndIsReference.getInt(); }
3859     LValue getReferenceLValue(CodeGenFunction &CGF, Expr *refExpr) const {
3860       assert(isReference());
3861       return CGF.MakeNaturalAlignAddrLValue(ValueAndIsReference.getPointer(),
3862                                             refExpr->getType());
3863     }
3864 
3865     llvm::Constant *getValue() const {
3866       assert(!isReference());
3867       return ValueAndIsReference.getPointer();
3868     }
3869   };
3870 
3871   ConstantEmission tryEmitAsConstant(DeclRefExpr *refExpr);
3872   ConstantEmission tryEmitAsConstant(const MemberExpr *ME);
3873   llvm::Value *emitScalarConstant(const ConstantEmission &Constant, Expr *E);
3874 
3875   RValue EmitPseudoObjectRValue(const PseudoObjectExpr *e,
3876                                 AggValueSlot slot = AggValueSlot::ignored());
3877   LValue EmitPseudoObjectLValue(const PseudoObjectExpr *e);
3878 
3879   llvm::Value *EmitIvarOffset(const ObjCInterfaceDecl *Interface,
3880                               const ObjCIvarDecl *Ivar);
3881   LValue EmitLValueForField(LValue Base, const FieldDecl* Field);
3882   LValue EmitLValueForLambdaField(const FieldDecl *Field);
3883 
3884   /// EmitLValueForFieldInitialization - Like EmitLValueForField, except that
3885   /// if the Field is a reference, this will return the address of the reference
3886   /// and not the address of the value stored in the reference.
3887   LValue EmitLValueForFieldInitialization(LValue Base,
3888                                           const FieldDecl* Field);
3889 
3890   LValue EmitLValueForIvar(QualType ObjectTy,
3891                            llvm::Value* Base, const ObjCIvarDecl *Ivar,
3892                            unsigned CVRQualifiers);
3893 
3894   LValue EmitCXXConstructLValue(const CXXConstructExpr *E);
3895   LValue EmitCXXBindTemporaryLValue(const CXXBindTemporaryExpr *E);
3896   LValue EmitCXXTypeidLValue(const CXXTypeidExpr *E);
3897   LValue EmitCXXUuidofLValue(const CXXUuidofExpr *E);
3898 
3899   LValue EmitObjCMessageExprLValue(const ObjCMessageExpr *E);
3900   LValue EmitObjCIvarRefLValue(const ObjCIvarRefExpr *E);
3901   LValue EmitStmtExprLValue(const StmtExpr *E);
3902   LValue EmitPointerToDataMemberBinaryExpr(const BinaryOperator *E);
3903   LValue EmitObjCSelectorLValue(const ObjCSelectorExpr *E);
3904   void   EmitDeclRefExprDbgValue(const DeclRefExpr *E, const APValue &Init);
3905 
3906   //===--------------------------------------------------------------------===//
3907   //                         Scalar Expression Emission
3908   //===--------------------------------------------------------------------===//
3909 
3910   /// EmitCall - Generate a call of the given function, expecting the given
3911   /// result type, and using the given argument list which specifies both the
3912   /// LLVM arguments and the types they were derived from.
3913   RValue EmitCall(const CGFunctionInfo &CallInfo, const CGCallee &Callee,
3914                   ReturnValueSlot ReturnValue, const CallArgList &Args,
3915                   llvm::CallBase **callOrInvoke, SourceLocation Loc);
3916   RValue EmitCall(const CGFunctionInfo &CallInfo, const CGCallee &Callee,
3917                   ReturnValueSlot ReturnValue, const CallArgList &Args,
3918                   llvm::CallBase **callOrInvoke = nullptr) {
3919     return EmitCall(CallInfo, Callee, ReturnValue, Args, callOrInvoke,
3920                     SourceLocation());
3921   }
3922   RValue EmitCall(QualType FnType, const CGCallee &Callee, const CallExpr *E,
3923                   ReturnValueSlot ReturnValue, llvm::Value *Chain = nullptr);
3924   RValue EmitCallExpr(const CallExpr *E,
3925                       ReturnValueSlot ReturnValue = ReturnValueSlot());
3926   RValue EmitSimpleCallExpr(const CallExpr *E, ReturnValueSlot ReturnValue);
3927   CGCallee EmitCallee(const Expr *E);
3928 
3929   void checkTargetFeatures(const CallExpr *E, const FunctionDecl *TargetDecl);
3930   void checkTargetFeatures(SourceLocation Loc, const FunctionDecl *TargetDecl);
3931 
3932   llvm::CallInst *EmitRuntimeCall(llvm::FunctionCallee callee,
3933                                   const Twine &name = "");
3934   llvm::CallInst *EmitRuntimeCall(llvm::FunctionCallee callee,
3935                                   ArrayRef<llvm::Value *> args,
3936                                   const Twine &name = "");
3937   llvm::CallInst *EmitNounwindRuntimeCall(llvm::FunctionCallee callee,
3938                                           const Twine &name = "");
3939   llvm::CallInst *EmitNounwindRuntimeCall(llvm::FunctionCallee callee,
3940                                           ArrayRef<llvm::Value *> args,
3941                                           const Twine &name = "");
3942 
3943   SmallVector<llvm::OperandBundleDef, 1>
3944   getBundlesForFunclet(llvm::Value *Callee);
3945 
3946   llvm::CallBase *EmitCallOrInvoke(llvm::FunctionCallee Callee,
3947                                    ArrayRef<llvm::Value *> Args,
3948                                    const Twine &Name = "");
3949   llvm::CallBase *EmitRuntimeCallOrInvoke(llvm::FunctionCallee callee,
3950                                           ArrayRef<llvm::Value *> args,
3951                                           const Twine &name = "");
3952   llvm::CallBase *EmitRuntimeCallOrInvoke(llvm::FunctionCallee callee,
3953                                           const Twine &name = "");
3954   void EmitNoreturnRuntimeCallOrInvoke(llvm::FunctionCallee callee,
3955                                        ArrayRef<llvm::Value *> args);
3956 
3957   CGCallee BuildAppleKextVirtualCall(const CXXMethodDecl *MD,
3958                                      NestedNameSpecifier *Qual,
3959                                      llvm::Type *Ty);
3960 
3961   CGCallee BuildAppleKextVirtualDestructorCall(const CXXDestructorDecl *DD,
3962                                                CXXDtorType Type,
3963                                                const CXXRecordDecl *RD);
3964 
3965   // Return the copy constructor name with the prefix "__copy_constructor_"
3966   // removed.
3967   static std::string getNonTrivialCopyConstructorStr(QualType QT,
3968                                                      CharUnits Alignment,
3969                                                      bool IsVolatile,
3970                                                      ASTContext &Ctx);
3971 
3972   // Return the destructor name with the prefix "__destructor_" removed.
3973   static std::string getNonTrivialDestructorStr(QualType QT,
3974                                                 CharUnits Alignment,
3975                                                 bool IsVolatile,
3976                                                 ASTContext &Ctx);
3977 
3978   // These functions emit calls to the special functions of non-trivial C
3979   // structs.
3980   void defaultInitNonTrivialCStructVar(LValue Dst);
3981   void callCStructDefaultConstructor(LValue Dst);
3982   void callCStructDestructor(LValue Dst);
3983   void callCStructCopyConstructor(LValue Dst, LValue Src);
3984   void callCStructMoveConstructor(LValue Dst, LValue Src);
3985   void callCStructCopyAssignmentOperator(LValue Dst, LValue Src);
3986   void callCStructMoveAssignmentOperator(LValue Dst, LValue Src);
3987 
3988   RValue
3989   EmitCXXMemberOrOperatorCall(const CXXMethodDecl *Method,
3990                               const CGCallee &Callee,
3991                               ReturnValueSlot ReturnValue, llvm::Value *This,
3992                               llvm::Value *ImplicitParam,
3993                               QualType ImplicitParamTy, const CallExpr *E,
3994                               CallArgList *RtlArgs);
3995   RValue EmitCXXDestructorCall(GlobalDecl Dtor, const CGCallee &Callee,
3996                                llvm::Value *This, QualType ThisTy,
3997                                llvm::Value *ImplicitParam,
3998                                QualType ImplicitParamTy, const CallExpr *E);
3999   RValue EmitCXXMemberCallExpr(const CXXMemberCallExpr *E,
4000                                ReturnValueSlot ReturnValue);
4001   RValue EmitCXXMemberOrOperatorMemberCallExpr(const CallExpr *CE,
4002                                                const CXXMethodDecl *MD,
4003                                                ReturnValueSlot ReturnValue,
4004                                                bool HasQualifier,
4005                                                NestedNameSpecifier *Qualifier,
4006                                                bool IsArrow, const Expr *Base);
4007   // Compute the object pointer.
4008   Address EmitCXXMemberDataPointerAddress(const Expr *E, Address base,
4009                                           llvm::Value *memberPtr,
4010                                           const MemberPointerType *memberPtrType,
4011                                           LValueBaseInfo *BaseInfo = nullptr,
4012                                           TBAAAccessInfo *TBAAInfo = nullptr);
4013   RValue EmitCXXMemberPointerCallExpr(const CXXMemberCallExpr *E,
4014                                       ReturnValueSlot ReturnValue);
4015 
4016   RValue EmitCXXOperatorMemberCallExpr(const CXXOperatorCallExpr *E,
4017                                        const CXXMethodDecl *MD,
4018                                        ReturnValueSlot ReturnValue);
4019   RValue EmitCXXPseudoDestructorExpr(const CXXPseudoDestructorExpr *E);
4020 
4021   RValue EmitCUDAKernelCallExpr(const CUDAKernelCallExpr *E,
4022                                 ReturnValueSlot ReturnValue);
4023 
4024   RValue EmitNVPTXDevicePrintfCallExpr(const CallExpr *E,
4025                                        ReturnValueSlot ReturnValue);
4026   RValue EmitAMDGPUDevicePrintfCallExpr(const CallExpr *E,
4027                                         ReturnValueSlot ReturnValue);
4028 
4029   RValue EmitBuiltinExpr(const GlobalDecl GD, unsigned BuiltinID,
4030                          const CallExpr *E, ReturnValueSlot ReturnValue);
4031 
4032   RValue emitRotate(const CallExpr *E, bool IsRotateRight);
4033 
4034   /// Emit IR for __builtin_os_log_format.
4035   RValue emitBuiltinOSLogFormat(const CallExpr &E);
4036 
4037   /// Emit IR for __builtin_is_aligned.
4038   RValue EmitBuiltinIsAligned(const CallExpr *E);
4039   /// Emit IR for __builtin_align_up/__builtin_align_down.
4040   RValue EmitBuiltinAlignTo(const CallExpr *E, bool AlignUp);
4041 
4042   llvm::Function *generateBuiltinOSLogHelperFunction(
4043       const analyze_os_log::OSLogBufferLayout &Layout,
4044       CharUnits BufferAlignment);
4045 
4046   RValue EmitBlockCallExpr(const CallExpr *E, ReturnValueSlot ReturnValue);
4047 
4048   /// EmitTargetBuiltinExpr - Emit the given builtin call. Returns 0 if the call
4049   /// is unhandled by the current target.
4050   llvm::Value *EmitTargetBuiltinExpr(unsigned BuiltinID, const CallExpr *E,
4051                                      ReturnValueSlot ReturnValue);
4052 
4053   llvm::Value *EmitAArch64CompareBuiltinExpr(llvm::Value *Op, llvm::Type *Ty,
4054                                              const llvm::CmpInst::Predicate Fp,
4055                                              const llvm::CmpInst::Predicate Ip,
4056                                              const llvm::Twine &Name = "");
4057   llvm::Value *EmitARMBuiltinExpr(unsigned BuiltinID, const CallExpr *E,
4058                                   ReturnValueSlot ReturnValue,
4059                                   llvm::Triple::ArchType Arch);
4060   llvm::Value *EmitARMMVEBuiltinExpr(unsigned BuiltinID, const CallExpr *E,
4061                                      ReturnValueSlot ReturnValue,
4062                                      llvm::Triple::ArchType Arch);
4063   llvm::Value *EmitARMCDEBuiltinExpr(unsigned BuiltinID, const CallExpr *E,
4064                                      ReturnValueSlot ReturnValue,
4065                                      llvm::Triple::ArchType Arch);
4066   llvm::Value *EmitCMSEClearRecord(llvm::Value *V, llvm::IntegerType *ITy,
4067                                    QualType RTy);
4068   llvm::Value *EmitCMSEClearRecord(llvm::Value *V, llvm::ArrayType *ATy,
4069                                    QualType RTy);
4070 
4071   llvm::Value *EmitCommonNeonBuiltinExpr(unsigned BuiltinID,
4072                                          unsigned LLVMIntrinsic,
4073                                          unsigned AltLLVMIntrinsic,
4074                                          const char *NameHint,
4075                                          unsigned Modifier,
4076                                          const CallExpr *E,
4077                                          SmallVectorImpl<llvm::Value *> &Ops,
4078                                          Address PtrOp0, Address PtrOp1,
4079                                          llvm::Triple::ArchType Arch);
4080 
4081   llvm::Function *LookupNeonLLVMIntrinsic(unsigned IntrinsicID,
4082                                           unsigned Modifier, llvm::Type *ArgTy,
4083                                           const CallExpr *E);
4084   llvm::Value *EmitNeonCall(llvm::Function *F,
4085                             SmallVectorImpl<llvm::Value*> &O,
4086                             const char *name,
4087                             unsigned shift = 0, bool rightshift = false);
4088   llvm::Value *EmitNeonSplat(llvm::Value *V, llvm::Constant *Idx,
4089                              const llvm::ElementCount &Count);
4090   llvm::Value *EmitNeonSplat(llvm::Value *V, llvm::Constant *Idx);
4091   llvm::Value *EmitNeonShiftVector(llvm::Value *V, llvm::Type *Ty,
4092                                    bool negateForRightShift);
4093   llvm::Value *EmitNeonRShiftImm(llvm::Value *Vec, llvm::Value *Amt,
4094                                  llvm::Type *Ty, bool usgn, const char *name);
4095   llvm::Value *vectorWrapScalar16(llvm::Value *Op);
4096   /// SVEBuiltinMemEltTy - Returns the memory element type for this memory
4097   /// access builtin.  Only required if it can't be inferred from the base
4098   /// pointer operand.
4099   llvm::Type *SVEBuiltinMemEltTy(SVETypeFlags TypeFlags);
4100 
4101   SmallVector<llvm::Type *, 2> getSVEOverloadTypes(SVETypeFlags TypeFlags,
4102                                                    llvm::Type *ReturnType,
4103                                                    ArrayRef<llvm::Value *> Ops);
4104   llvm::Type *getEltType(SVETypeFlags TypeFlags);
4105   llvm::ScalableVectorType *getSVEType(const SVETypeFlags &TypeFlags);
4106   llvm::ScalableVectorType *getSVEPredType(SVETypeFlags TypeFlags);
4107   llvm::Value *EmitSVEAllTruePred(SVETypeFlags TypeFlags);
4108   llvm::Value *EmitSVEDupX(llvm::Value *Scalar);
4109   llvm::Value *EmitSVEDupX(llvm::Value *Scalar, llvm::Type *Ty);
4110   llvm::Value *EmitSVEReinterpret(llvm::Value *Val, llvm::Type *Ty);
4111   llvm::Value *EmitSVEPMull(SVETypeFlags TypeFlags,
4112                             llvm::SmallVectorImpl<llvm::Value *> &Ops,
4113                             unsigned BuiltinID);
4114   llvm::Value *EmitSVEMovl(SVETypeFlags TypeFlags,
4115                            llvm::ArrayRef<llvm::Value *> Ops,
4116                            unsigned BuiltinID);
4117   llvm::Value *EmitSVEPredicateCast(llvm::Value *Pred,
4118                                     llvm::ScalableVectorType *VTy);
4119   llvm::Value *EmitSVEGatherLoad(SVETypeFlags TypeFlags,
4120                                  llvm::SmallVectorImpl<llvm::Value *> &Ops,
4121                                  unsigned IntID);
4122   llvm::Value *EmitSVEScatterStore(SVETypeFlags TypeFlags,
4123                                    llvm::SmallVectorImpl<llvm::Value *> &Ops,
4124                                    unsigned IntID);
4125   llvm::Value *EmitSVEMaskedLoad(const CallExpr *, llvm::Type *ReturnTy,
4126                                  SmallVectorImpl<llvm::Value *> &Ops,
4127                                  unsigned BuiltinID, bool IsZExtReturn);
4128   llvm::Value *EmitSVEMaskedStore(const CallExpr *,
4129                                   SmallVectorImpl<llvm::Value *> &Ops,
4130                                   unsigned BuiltinID);
4131   llvm::Value *EmitSVEPrefetchLoad(SVETypeFlags TypeFlags,
4132                                    SmallVectorImpl<llvm::Value *> &Ops,
4133                                    unsigned BuiltinID);
4134   llvm::Value *EmitSVEGatherPrefetch(SVETypeFlags TypeFlags,
4135                                      SmallVectorImpl<llvm::Value *> &Ops,
4136                                      unsigned IntID);
4137   llvm::Value *EmitSVEStructLoad(SVETypeFlags TypeFlags,
4138                                  SmallVectorImpl<llvm::Value *> &Ops, unsigned IntID);
4139   llvm::Value *EmitSVEStructStore(SVETypeFlags TypeFlags,
4140                                   SmallVectorImpl<llvm::Value *> &Ops,
4141                                   unsigned IntID);
4142   llvm::Value *EmitAArch64SVEBuiltinExpr(unsigned BuiltinID, const CallExpr *E);
4143 
4144   llvm::Value *EmitAArch64BuiltinExpr(unsigned BuiltinID, const CallExpr *E,
4145                                       llvm::Triple::ArchType Arch);
4146   llvm::Value *EmitBPFBuiltinExpr(unsigned BuiltinID, const CallExpr *E);
4147 
4148   llvm::Value *BuildVector(ArrayRef<llvm::Value*> Ops);
4149   llvm::Value *EmitX86BuiltinExpr(unsigned BuiltinID, const CallExpr *E);
4150   llvm::Value *EmitPPCBuiltinExpr(unsigned BuiltinID, const CallExpr *E);
4151   llvm::Value *EmitAMDGPUBuiltinExpr(unsigned BuiltinID, const CallExpr *E);
4152   llvm::Value *EmitSystemZBuiltinExpr(unsigned BuiltinID, const CallExpr *E);
4153   llvm::Value *EmitNVPTXBuiltinExpr(unsigned BuiltinID, const CallExpr *E);
4154   llvm::Value *EmitWebAssemblyBuiltinExpr(unsigned BuiltinID,
4155                                           const CallExpr *E);
4156   llvm::Value *EmitHexagonBuiltinExpr(unsigned BuiltinID, const CallExpr *E);
4157   llvm::Value *EmitRISCVBuiltinExpr(unsigned BuiltinID, const CallExpr *E,
4158                                     ReturnValueSlot ReturnValue);
4159   bool ProcessOrderScopeAMDGCN(llvm::Value *Order, llvm::Value *Scope,
4160                                llvm::AtomicOrdering &AO,
4161                                llvm::SyncScope::ID &SSID);
4162 
4163   enum class MSVCIntrin;
4164   llvm::Value *EmitMSVCBuiltinExpr(MSVCIntrin BuiltinID, const CallExpr *E);
4165 
4166   llvm::Value *EmitBuiltinAvailable(const VersionTuple &Version);
4167 
4168   llvm::Value *EmitObjCProtocolExpr(const ObjCProtocolExpr *E);
4169   llvm::Value *EmitObjCStringLiteral(const ObjCStringLiteral *E);
4170   llvm::Value *EmitObjCBoxedExpr(const ObjCBoxedExpr *E);
4171   llvm::Value *EmitObjCArrayLiteral(const ObjCArrayLiteral *E);
4172   llvm::Value *EmitObjCDictionaryLiteral(const ObjCDictionaryLiteral *E);
4173   llvm::Value *EmitObjCCollectionLiteral(const Expr *E,
4174                                 const ObjCMethodDecl *MethodWithObjects);
4175   llvm::Value *EmitObjCSelectorExpr(const ObjCSelectorExpr *E);
4176   RValue EmitObjCMessageExpr(const ObjCMessageExpr *E,
4177                              ReturnValueSlot Return = ReturnValueSlot());
4178 
4179   /// Retrieves the default cleanup kind for an ARC cleanup.
4180   /// Except under -fobjc-arc-eh, ARC cleanups are normal-only.
4181   CleanupKind getARCCleanupKind() {
4182     return CGM.getCodeGenOpts().ObjCAutoRefCountExceptions
4183              ? NormalAndEHCleanup : NormalCleanup;
4184   }
4185 
4186   // ARC primitives.
4187   void EmitARCInitWeak(Address addr, llvm::Value *value);
4188   void EmitARCDestroyWeak(Address addr);
4189   llvm::Value *EmitARCLoadWeak(Address addr);
4190   llvm::Value *EmitARCLoadWeakRetained(Address addr);
4191   llvm::Value *EmitARCStoreWeak(Address addr, llvm::Value *value, bool ignored);
4192   void emitARCCopyAssignWeak(QualType Ty, Address DstAddr, Address SrcAddr);
4193   void emitARCMoveAssignWeak(QualType Ty, Address DstAddr, Address SrcAddr);
4194   void EmitARCCopyWeak(Address dst, Address src);
4195   void EmitARCMoveWeak(Address dst, Address src);
4196   llvm::Value *EmitARCRetainAutorelease(QualType type, llvm::Value *value);
4197   llvm::Value *EmitARCRetainAutoreleaseNonBlock(llvm::Value *value);
4198   llvm::Value *EmitARCStoreStrong(LValue lvalue, llvm::Value *value,
4199                                   bool resultIgnored);
4200   llvm::Value *EmitARCStoreStrongCall(Address addr, llvm::Value *value,
4201                                       bool resultIgnored);
4202   llvm::Value *EmitARCRetain(QualType type, llvm::Value *value);
4203   llvm::Value *EmitARCRetainNonBlock(llvm::Value *value);
4204   llvm::Value *EmitARCRetainBlock(llvm::Value *value, bool mandatory);
4205   void EmitARCDestroyStrong(Address addr, ARCPreciseLifetime_t precise);
4206   void EmitARCRelease(llvm::Value *value, ARCPreciseLifetime_t precise);
4207   llvm::Value *EmitARCAutorelease(llvm::Value *value);
4208   llvm::Value *EmitARCAutoreleaseReturnValue(llvm::Value *value);
4209   llvm::Value *EmitARCRetainAutoreleaseReturnValue(llvm::Value *value);
4210   llvm::Value *EmitARCRetainAutoreleasedReturnValue(llvm::Value *value);
4211   llvm::Value *EmitARCUnsafeClaimAutoreleasedReturnValue(llvm::Value *value);
4212 
4213   llvm::Value *EmitObjCAutorelease(llvm::Value *value, llvm::Type *returnType);
4214   llvm::Value *EmitObjCRetainNonBlock(llvm::Value *value,
4215                                       llvm::Type *returnType);
4216   void EmitObjCRelease(llvm::Value *value, ARCPreciseLifetime_t precise);
4217 
4218   std::pair<LValue,llvm::Value*>
4219   EmitARCStoreAutoreleasing(const BinaryOperator *e);
4220   std::pair<LValue,llvm::Value*>
4221   EmitARCStoreStrong(const BinaryOperator *e, bool ignored);
4222   std::pair<LValue,llvm::Value*>
4223   EmitARCStoreUnsafeUnretained(const BinaryOperator *e, bool ignored);
4224 
4225   llvm::Value *EmitObjCAlloc(llvm::Value *value,
4226                              llvm::Type *returnType);
4227   llvm::Value *EmitObjCAllocWithZone(llvm::Value *value,
4228                                      llvm::Type *returnType);
4229   llvm::Value *EmitObjCAllocInit(llvm::Value *value, llvm::Type *resultType);
4230 
4231   llvm::Value *EmitObjCThrowOperand(const Expr *expr);
4232   llvm::Value *EmitObjCConsumeObject(QualType T, llvm::Value *Ptr);
4233   llvm::Value *EmitObjCExtendObjectLifetime(QualType T, llvm::Value *Ptr);
4234 
4235   llvm::Value *EmitARCExtendBlockObject(const Expr *expr);
4236   llvm::Value *EmitARCReclaimReturnedObject(const Expr *e,
4237                                             bool allowUnsafeClaim);
4238   llvm::Value *EmitARCRetainScalarExpr(const Expr *expr);
4239   llvm::Value *EmitARCRetainAutoreleaseScalarExpr(const Expr *expr);
4240   llvm::Value *EmitARCUnsafeUnretainedScalarExpr(const Expr *expr);
4241 
4242   void EmitARCIntrinsicUse(ArrayRef<llvm::Value*> values);
4243 
4244   void EmitARCNoopIntrinsicUse(ArrayRef<llvm::Value *> values);
4245 
4246   static Destroyer destroyARCStrongImprecise;
4247   static Destroyer destroyARCStrongPrecise;
4248   static Destroyer destroyARCWeak;
4249   static Destroyer emitARCIntrinsicUse;
4250   static Destroyer destroyNonTrivialCStruct;
4251 
4252   void EmitObjCAutoreleasePoolPop(llvm::Value *Ptr);
4253   llvm::Value *EmitObjCAutoreleasePoolPush();
4254   llvm::Value *EmitObjCMRRAutoreleasePoolPush();
4255   void EmitObjCAutoreleasePoolCleanup(llvm::Value *Ptr);
4256   void EmitObjCMRRAutoreleasePoolPop(llvm::Value *Ptr);
4257 
4258   /// Emits a reference binding to the passed in expression.
4259   RValue EmitReferenceBindingToExpr(const Expr *E);
4260 
4261   //===--------------------------------------------------------------------===//
4262   //                           Expression Emission
4263   //===--------------------------------------------------------------------===//
4264 
4265   // Expressions are broken into three classes: scalar, complex, aggregate.
4266 
4267   /// EmitScalarExpr - Emit the computation of the specified expression of LLVM
4268   /// scalar type, returning the result.
4269   llvm::Value *EmitScalarExpr(const Expr *E , bool IgnoreResultAssign = false);
4270 
4271   /// Emit a conversion from the specified type to the specified destination
4272   /// type, both of which are LLVM scalar types.
4273   llvm::Value *EmitScalarConversion(llvm::Value *Src, QualType SrcTy,
4274                                     QualType DstTy, SourceLocation Loc);
4275 
4276   /// Emit a conversion from the specified complex type to the specified
4277   /// destination type, where the destination type is an LLVM scalar type.
4278   llvm::Value *EmitComplexToScalarConversion(ComplexPairTy Src, QualType SrcTy,
4279                                              QualType DstTy,
4280                                              SourceLocation Loc);
4281 
4282   /// EmitAggExpr - Emit the computation of the specified expression
4283   /// of aggregate type.  The result is computed into the given slot,
4284   /// which may be null to indicate that the value is not needed.
4285   void EmitAggExpr(const Expr *E, AggValueSlot AS);
4286 
4287   /// EmitAggExprToLValue - Emit the computation of the specified expression of
4288   /// aggregate type into a temporary LValue.
4289   LValue EmitAggExprToLValue(const Expr *E);
4290 
4291   /// Build all the stores needed to initialize an aggregate at Dest with the
4292   /// value Val.
4293   void EmitAggregateStore(llvm::Value *Val, Address Dest, bool DestIsVolatile);
4294 
4295   /// EmitExtendGCLifetime - Given a pointer to an Objective-C object,
4296   /// make sure it survives garbage collection until this point.
4297   void EmitExtendGCLifetime(llvm::Value *object);
4298 
4299   /// EmitComplexExpr - Emit the computation of the specified expression of
4300   /// complex type, returning the result.
4301   ComplexPairTy EmitComplexExpr(const Expr *E,
4302                                 bool IgnoreReal = false,
4303                                 bool IgnoreImag = false);
4304 
4305   /// EmitComplexExprIntoLValue - Emit the given expression of complex
4306   /// type and place its result into the specified l-value.
4307   void EmitComplexExprIntoLValue(const Expr *E, LValue dest, bool isInit);
4308 
4309   /// EmitStoreOfComplex - Store a complex number into the specified l-value.
4310   void EmitStoreOfComplex(ComplexPairTy V, LValue dest, bool isInit);
4311 
4312   /// EmitLoadOfComplex - Load a complex number from the specified l-value.
4313   ComplexPairTy EmitLoadOfComplex(LValue src, SourceLocation loc);
4314 
4315   Address emitAddrOfRealComponent(Address complex, QualType complexType);
4316   Address emitAddrOfImagComponent(Address complex, QualType complexType);
4317 
4318   /// AddInitializerToStaticVarDecl - Add the initializer for 'D' to the
4319   /// global variable that has already been created for it.  If the initializer
4320   /// has a different type than GV does, this may free GV and return a different
4321   /// one.  Otherwise it just returns GV.
4322   llvm::GlobalVariable *
4323   AddInitializerToStaticVarDecl(const VarDecl &D,
4324                                 llvm::GlobalVariable *GV);
4325 
4326   // Emit an @llvm.invariant.start call for the given memory region.
4327   void EmitInvariantStart(llvm::Constant *Addr, CharUnits Size);
4328 
4329   /// EmitCXXGlobalVarDeclInit - Create the initializer for a C++
4330   /// variable with global storage.
4331   void EmitCXXGlobalVarDeclInit(const VarDecl &D, llvm::Constant *DeclPtr,
4332                                 bool PerformInit);
4333 
4334   llvm::Function *createAtExitStub(const VarDecl &VD, llvm::FunctionCallee Dtor,
4335                                    llvm::Constant *Addr);
4336 
4337   /// Call atexit() with a function that passes the given argument to
4338   /// the given function.
4339   void registerGlobalDtorWithAtExit(const VarDecl &D, llvm::FunctionCallee fn,
4340                                     llvm::Constant *addr);
4341 
4342   /// Call atexit() with function dtorStub.
4343   void registerGlobalDtorWithAtExit(llvm::Constant *dtorStub);
4344 
4345   /// Call unatexit() with function dtorStub.
4346   llvm::Value *unregisterGlobalDtorWithUnAtExit(llvm::Constant *dtorStub);
4347 
4348   /// Emit code in this function to perform a guarded variable
4349   /// initialization.  Guarded initializations are used when it's not
4350   /// possible to prove that an initialization will be done exactly
4351   /// once, e.g. with a static local variable or a static data member
4352   /// of a class template.
4353   void EmitCXXGuardedInit(const VarDecl &D, llvm::GlobalVariable *DeclPtr,
4354                           bool PerformInit);
4355 
4356   enum class GuardKind { VariableGuard, TlsGuard };
4357 
4358   /// Emit a branch to select whether or not to perform guarded initialization.
4359   void EmitCXXGuardedInitBranch(llvm::Value *NeedsInit,
4360                                 llvm::BasicBlock *InitBlock,
4361                                 llvm::BasicBlock *NoInitBlock,
4362                                 GuardKind Kind, const VarDecl *D);
4363 
4364   /// GenerateCXXGlobalInitFunc - Generates code for initializing global
4365   /// variables.
4366   void
4367   GenerateCXXGlobalInitFunc(llvm::Function *Fn,
4368                             ArrayRef<llvm::Function *> CXXThreadLocals,
4369                             ConstantAddress Guard = ConstantAddress::invalid());
4370 
4371   /// GenerateCXXGlobalCleanUpFunc - Generates code for cleaning up global
4372   /// variables.
4373   void GenerateCXXGlobalCleanUpFunc(
4374       llvm::Function *Fn,
4375       ArrayRef<std::tuple<llvm::FunctionType *, llvm::WeakTrackingVH,
4376                           llvm::Constant *>>
4377           DtorsOrStermFinalizers);
4378 
4379   void GenerateCXXGlobalVarDeclInitFunc(llvm::Function *Fn,
4380                                         const VarDecl *D,
4381                                         llvm::GlobalVariable *Addr,
4382                                         bool PerformInit);
4383 
4384   void EmitCXXConstructExpr(const CXXConstructExpr *E, AggValueSlot Dest);
4385 
4386   void EmitSynthesizedCXXCopyCtor(Address Dest, Address Src, const Expr *Exp);
4387 
4388   void EmitCXXThrowExpr(const CXXThrowExpr *E, bool KeepInsertionPoint = true);
4389 
4390   RValue EmitAtomicExpr(AtomicExpr *E);
4391 
4392   //===--------------------------------------------------------------------===//
4393   //                         Annotations Emission
4394   //===--------------------------------------------------------------------===//
4395 
4396   /// Emit an annotation call (intrinsic).
4397   llvm::Value *EmitAnnotationCall(llvm::Function *AnnotationFn,
4398                                   llvm::Value *AnnotatedVal,
4399                                   StringRef AnnotationStr,
4400                                   SourceLocation Location,
4401                                   const AnnotateAttr *Attr);
4402 
4403   /// Emit local annotations for the local variable V, declared by D.
4404   void EmitVarAnnotations(const VarDecl *D, llvm::Value *V);
4405 
4406   /// Emit field annotations for the given field & value. Returns the
4407   /// annotation result.
4408   Address EmitFieldAnnotations(const FieldDecl *D, Address V);
4409 
4410   //===--------------------------------------------------------------------===//
4411   //                             Internal Helpers
4412   //===--------------------------------------------------------------------===//
4413 
4414   /// ContainsLabel - Return true if the statement contains a label in it.  If
4415   /// this statement is not executed normally, it not containing a label means
4416   /// that we can just remove the code.
4417   static bool ContainsLabel(const Stmt *S, bool IgnoreCaseStmts = false);
4418 
4419   /// containsBreak - Return true if the statement contains a break out of it.
4420   /// If the statement (recursively) contains a switch or loop with a break
4421   /// inside of it, this is fine.
4422   static bool containsBreak(const Stmt *S);
4423 
4424   /// Determine if the given statement might introduce a declaration into the
4425   /// current scope, by being a (possibly-labelled) DeclStmt.
4426   static bool mightAddDeclToScope(const Stmt *S);
4427 
4428   /// ConstantFoldsToSimpleInteger - If the specified expression does not fold
4429   /// to a constant, or if it does but contains a label, return false.  If it
4430   /// constant folds return true and set the boolean result in Result.
4431   bool ConstantFoldsToSimpleInteger(const Expr *Cond, bool &Result,
4432                                     bool AllowLabels = false);
4433 
4434   /// ConstantFoldsToSimpleInteger - If the specified expression does not fold
4435   /// to a constant, or if it does but contains a label, return false.  If it
4436   /// constant folds return true and set the folded value.
4437   bool ConstantFoldsToSimpleInteger(const Expr *Cond, llvm::APSInt &Result,
4438                                     bool AllowLabels = false);
4439 
4440   /// isInstrumentedCondition - Determine whether the given condition is an
4441   /// instrumentable condition (i.e. no "&&" or "||").
4442   static bool isInstrumentedCondition(const Expr *C);
4443 
4444   /// EmitBranchToCounterBlock - Emit a conditional branch to a new block that
4445   /// increments a profile counter based on the semantics of the given logical
4446   /// operator opcode.  This is used to instrument branch condition coverage
4447   /// for logical operators.
4448   void EmitBranchToCounterBlock(const Expr *Cond, BinaryOperator::Opcode LOp,
4449                                 llvm::BasicBlock *TrueBlock,
4450                                 llvm::BasicBlock *FalseBlock,
4451                                 uint64_t TrueCount = 0,
4452                                 Stmt::Likelihood LH = Stmt::LH_None,
4453                                 const Expr *CntrIdx = nullptr);
4454 
4455   /// EmitBranchOnBoolExpr - Emit a branch on a boolean condition (e.g. for an
4456   /// if statement) to the specified blocks.  Based on the condition, this might
4457   /// try to simplify the codegen of the conditional based on the branch.
4458   /// TrueCount should be the number of times we expect the condition to
4459   /// evaluate to true based on PGO data.
4460   void EmitBranchOnBoolExpr(const Expr *Cond, llvm::BasicBlock *TrueBlock,
4461                             llvm::BasicBlock *FalseBlock, uint64_t TrueCount,
4462                             Stmt::Likelihood LH = Stmt::LH_None);
4463 
4464   /// Given an assignment `*LHS = RHS`, emit a test that checks if \p RHS is
4465   /// nonnull, if \p LHS is marked _Nonnull.
4466   void EmitNullabilityCheck(LValue LHS, llvm::Value *RHS, SourceLocation Loc);
4467 
4468   /// An enumeration which makes it easier to specify whether or not an
4469   /// operation is a subtraction.
4470   enum { NotSubtraction = false, IsSubtraction = true };
4471 
4472   /// Same as IRBuilder::CreateInBoundsGEP, but additionally emits a check to
4473   /// detect undefined behavior when the pointer overflow sanitizer is enabled.
4474   /// \p SignedIndices indicates whether any of the GEP indices are signed.
4475   /// \p IsSubtraction indicates whether the expression used to form the GEP
4476   /// is a subtraction.
4477   llvm::Value *EmitCheckedInBoundsGEP(llvm::Value *Ptr,
4478                                       ArrayRef<llvm::Value *> IdxList,
4479                                       bool SignedIndices,
4480                                       bool IsSubtraction,
4481                                       SourceLocation Loc,
4482                                       const Twine &Name = "");
4483 
4484   /// Specifies which type of sanitizer check to apply when handling a
4485   /// particular builtin.
4486   enum BuiltinCheckKind {
4487     BCK_CTZPassedZero,
4488     BCK_CLZPassedZero,
4489   };
4490 
4491   /// Emits an argument for a call to a builtin. If the builtin sanitizer is
4492   /// enabled, a runtime check specified by \p Kind is also emitted.
4493   llvm::Value *EmitCheckedArgForBuiltin(const Expr *E, BuiltinCheckKind Kind);
4494 
4495   /// Emit a description of a type in a format suitable for passing to
4496   /// a runtime sanitizer handler.
4497   llvm::Constant *EmitCheckTypeDescriptor(QualType T);
4498 
4499   /// Convert a value into a format suitable for passing to a runtime
4500   /// sanitizer handler.
4501   llvm::Value *EmitCheckValue(llvm::Value *V);
4502 
4503   /// Emit a description of a source location in a format suitable for
4504   /// passing to a runtime sanitizer handler.
4505   llvm::Constant *EmitCheckSourceLocation(SourceLocation Loc);
4506 
4507   /// Create a basic block that will either trap or call a handler function in
4508   /// the UBSan runtime with the provided arguments, and create a conditional
4509   /// branch to it.
4510   void EmitCheck(ArrayRef<std::pair<llvm::Value *, SanitizerMask>> Checked,
4511                  SanitizerHandler Check, ArrayRef<llvm::Constant *> StaticArgs,
4512                  ArrayRef<llvm::Value *> DynamicArgs);
4513 
4514   /// Emit a slow path cross-DSO CFI check which calls __cfi_slowpath
4515   /// if Cond if false.
4516   void EmitCfiSlowPathCheck(SanitizerMask Kind, llvm::Value *Cond,
4517                             llvm::ConstantInt *TypeId, llvm::Value *Ptr,
4518                             ArrayRef<llvm::Constant *> StaticArgs);
4519 
4520   /// Emit a reached-unreachable diagnostic if \p Loc is valid and runtime
4521   /// checking is enabled. Otherwise, just emit an unreachable instruction.
4522   void EmitUnreachable(SourceLocation Loc);
4523 
4524   /// Create a basic block that will call the trap intrinsic, and emit a
4525   /// conditional branch to it, for the -ftrapv checks.
4526   void EmitTrapCheck(llvm::Value *Checked, SanitizerHandler CheckHandlerID);
4527 
4528   /// Emit a call to trap or debugtrap and attach function attribute
4529   /// "trap-func-name" if specified.
4530   llvm::CallInst *EmitTrapCall(llvm::Intrinsic::ID IntrID);
4531 
4532   /// Emit a stub for the cross-DSO CFI check function.
4533   void EmitCfiCheckStub();
4534 
4535   /// Emit a cross-DSO CFI failure handling function.
4536   void EmitCfiCheckFail();
4537 
4538   /// Create a check for a function parameter that may potentially be
4539   /// declared as non-null.
4540   void EmitNonNullArgCheck(RValue RV, QualType ArgType, SourceLocation ArgLoc,
4541                            AbstractCallee AC, unsigned ParmNum);
4542 
4543   /// EmitCallArg - Emit a single call argument.
4544   void EmitCallArg(CallArgList &args, const Expr *E, QualType ArgType);
4545 
4546   /// EmitDelegateCallArg - We are performing a delegate call; that
4547   /// is, the current function is delegating to another one.  Produce
4548   /// a r-value suitable for passing the given parameter.
4549   void EmitDelegateCallArg(CallArgList &args, const VarDecl *param,
4550                            SourceLocation loc);
4551 
4552   /// SetFPAccuracy - Set the minimum required accuracy of the given floating
4553   /// point operation, expressed as the maximum relative error in ulp.
4554   void SetFPAccuracy(llvm::Value *Val, float Accuracy);
4555 
4556   /// SetFPModel - Control floating point behavior via fp-model settings.
4557   void SetFPModel();
4558 
4559   /// Set the codegen fast-math flags.
4560   void SetFastMathFlags(FPOptions FPFeatures);
4561 
4562 private:
4563   llvm::MDNode *getRangeForLoadFromType(QualType Ty);
4564   void EmitReturnOfRValue(RValue RV, QualType Ty);
4565 
4566   void deferPlaceholderReplacement(llvm::Instruction *Old, llvm::Value *New);
4567 
4568   llvm::SmallVector<std::pair<llvm::WeakTrackingVH, llvm::Value *>, 4>
4569       DeferredReplacements;
4570 
4571   /// Set the address of a local variable.
4572   void setAddrOfLocalVar(const VarDecl *VD, Address Addr) {
4573     assert(!LocalDeclMap.count(VD) && "Decl already exists in LocalDeclMap!");
4574     LocalDeclMap.insert({VD, Addr});
4575   }
4576 
4577   /// ExpandTypeFromArgs - Reconstruct a structure of type \arg Ty
4578   /// from function arguments into \arg Dst. See ABIArgInfo::Expand.
4579   ///
4580   /// \param AI - The first function argument of the expansion.
4581   void ExpandTypeFromArgs(QualType Ty, LValue Dst,
4582                           llvm::Function::arg_iterator &AI);
4583 
4584   /// ExpandTypeToArgs - Expand an CallArg \arg Arg, with the LLVM type for \arg
4585   /// Ty, into individual arguments on the provided vector \arg IRCallArgs,
4586   /// starting at index \arg IRCallArgPos. See ABIArgInfo::Expand.
4587   void ExpandTypeToArgs(QualType Ty, CallArg Arg, llvm::FunctionType *IRFuncTy,
4588                         SmallVectorImpl<llvm::Value *> &IRCallArgs,
4589                         unsigned &IRCallArgPos);
4590 
4591   llvm::Value* EmitAsmInput(const TargetInfo::ConstraintInfo &Info,
4592                             const Expr *InputExpr, std::string &ConstraintStr);
4593 
4594   llvm::Value* EmitAsmInputLValue(const TargetInfo::ConstraintInfo &Info,
4595                                   LValue InputValue, QualType InputType,
4596                                   std::string &ConstraintStr,
4597                                   SourceLocation Loc);
4598 
4599   /// Attempts to statically evaluate the object size of E. If that
4600   /// fails, emits code to figure the size of E out for us. This is
4601   /// pass_object_size aware.
4602   ///
4603   /// If EmittedExpr is non-null, this will use that instead of re-emitting E.
4604   llvm::Value *evaluateOrEmitBuiltinObjectSize(const Expr *E, unsigned Type,
4605                                                llvm::IntegerType *ResType,
4606                                                llvm::Value *EmittedE,
4607                                                bool IsDynamic);
4608 
4609   /// Emits the size of E, as required by __builtin_object_size. This
4610   /// function is aware of pass_object_size parameters, and will act accordingly
4611   /// if E is a parameter with the pass_object_size attribute.
4612   llvm::Value *emitBuiltinObjectSize(const Expr *E, unsigned Type,
4613                                      llvm::IntegerType *ResType,
4614                                      llvm::Value *EmittedE,
4615                                      bool IsDynamic);
4616 
4617   void emitZeroOrPatternForAutoVarInit(QualType type, const VarDecl &D,
4618                                        Address Loc);
4619 
4620 public:
4621   enum class EvaluationOrder {
4622     ///! No language constraints on evaluation order.
4623     Default,
4624     ///! Language semantics require left-to-right evaluation.
4625     ForceLeftToRight,
4626     ///! Language semantics require right-to-left evaluation.
4627     ForceRightToLeft
4628   };
4629 
4630   // Wrapper for function prototype sources. Wraps either a FunctionProtoType or
4631   // an ObjCMethodDecl.
4632   struct PrototypeWrapper {
4633     llvm::PointerUnion<const FunctionProtoType *, const ObjCMethodDecl *> P;
4634 
4635     PrototypeWrapper(const FunctionProtoType *FT) : P(FT) {}
4636     PrototypeWrapper(const ObjCMethodDecl *MD) : P(MD) {}
4637   };
4638 
4639   void EmitCallArgs(CallArgList &Args, PrototypeWrapper Prototype,
4640                     llvm::iterator_range<CallExpr::const_arg_iterator> ArgRange,
4641                     AbstractCallee AC = AbstractCallee(),
4642                     unsigned ParamsToSkip = 0,
4643                     EvaluationOrder Order = EvaluationOrder::Default);
4644 
4645   /// EmitPointerWithAlignment - Given an expression with a pointer type,
4646   /// emit the value and compute our best estimate of the alignment of the
4647   /// pointee.
4648   ///
4649   /// \param BaseInfo - If non-null, this will be initialized with
4650   /// information about the source of the alignment and the may-alias
4651   /// attribute.  Note that this function will conservatively fall back on
4652   /// the type when it doesn't recognize the expression and may-alias will
4653   /// be set to false.
4654   ///
4655   /// One reasonable way to use this information is when there's a language
4656   /// guarantee that the pointer must be aligned to some stricter value, and
4657   /// we're simply trying to ensure that sufficiently obvious uses of under-
4658   /// aligned objects don't get miscompiled; for example, a placement new
4659   /// into the address of a local variable.  In such a case, it's quite
4660   /// reasonable to just ignore the returned alignment when it isn't from an
4661   /// explicit source.
4662   Address EmitPointerWithAlignment(const Expr *Addr,
4663                                    LValueBaseInfo *BaseInfo = nullptr,
4664                                    TBAAAccessInfo *TBAAInfo = nullptr);
4665 
4666   /// If \p E references a parameter with pass_object_size info or a constant
4667   /// array size modifier, emit the object size divided by the size of \p EltTy.
4668   /// Otherwise return null.
4669   llvm::Value *LoadPassedObjectSize(const Expr *E, QualType EltTy);
4670 
4671   void EmitSanitizerStatReport(llvm::SanitizerStatKind SSK);
4672 
4673   struct MultiVersionResolverOption {
4674     llvm::Function *Function;
4675     struct Conds {
4676       StringRef Architecture;
4677       llvm::SmallVector<StringRef, 8> Features;
4678 
4679       Conds(StringRef Arch, ArrayRef<StringRef> Feats)
4680           : Architecture(Arch), Features(Feats.begin(), Feats.end()) {}
4681     } Conditions;
4682 
4683     MultiVersionResolverOption(llvm::Function *F, StringRef Arch,
4684                                ArrayRef<StringRef> Feats)
4685         : Function(F), Conditions(Arch, Feats) {}
4686   };
4687 
4688   // Emits the body of a multiversion function's resolver. Assumes that the
4689   // options are already sorted in the proper order, with the 'default' option
4690   // last (if it exists).
4691   void EmitMultiVersionResolver(llvm::Function *Resolver,
4692                                 ArrayRef<MultiVersionResolverOption> Options);
4693 
4694   static uint64_t GetX86CpuSupportsMask(ArrayRef<StringRef> FeatureStrs);
4695 
4696 private:
4697   QualType getVarArgType(const Expr *Arg);
4698 
4699   void EmitDeclMetadata();
4700 
4701   BlockByrefHelpers *buildByrefHelpers(llvm::StructType &byrefType,
4702                                   const AutoVarEmission &emission);
4703 
4704   void AddObjCARCExceptionMetadata(llvm::Instruction *Inst);
4705 
4706   llvm::Value *GetValueForARMHint(unsigned BuiltinID);
4707   llvm::Value *EmitX86CpuIs(const CallExpr *E);
4708   llvm::Value *EmitX86CpuIs(StringRef CPUStr);
4709   llvm::Value *EmitX86CpuSupports(const CallExpr *E);
4710   llvm::Value *EmitX86CpuSupports(ArrayRef<StringRef> FeatureStrs);
4711   llvm::Value *EmitX86CpuSupports(uint64_t Mask);
4712   llvm::Value *EmitX86CpuInit();
4713   llvm::Value *FormResolverCondition(const MultiVersionResolverOption &RO);
4714 };
4715 
4716 /// TargetFeatures - This class is used to check whether the builtin function
4717 /// has the required tagert specific features. It is able to support the
4718 /// combination of ','(and), '|'(or), and '()'. By default, the priority of
4719 /// ',' is higher than that of '|' .
4720 /// E.g:
4721 /// A,B|C means the builtin function requires both A and B, or C.
4722 /// If we want the builtin function requires both A and B, or both A and C,
4723 /// there are two ways: A,B|A,C or A,(B|C).
4724 /// The FeaturesList should not contain spaces, and brackets must appear in
4725 /// pairs.
4726 class TargetFeatures {
4727   struct FeatureListStatus {
4728     bool HasFeatures;
4729     StringRef CurFeaturesList;
4730   };
4731 
4732   const llvm::StringMap<bool> &CallerFeatureMap;
4733 
4734   FeatureListStatus getAndFeatures(StringRef FeatureList) {
4735     int InParentheses = 0;
4736     bool HasFeatures = true;
4737     size_t SubexpressionStart = 0;
4738     for (size_t i = 0, e = FeatureList.size(); i < e; ++i) {
4739       char CurrentToken = FeatureList[i];
4740       switch (CurrentToken) {
4741       default:
4742         break;
4743       case '(':
4744         if (InParentheses == 0)
4745           SubexpressionStart = i + 1;
4746         ++InParentheses;
4747         break;
4748       case ')':
4749         --InParentheses;
4750         assert(InParentheses >= 0 && "Parentheses are not in pair");
4751         LLVM_FALLTHROUGH;
4752       case '|':
4753       case ',':
4754         if (InParentheses == 0) {
4755           if (HasFeatures && i != SubexpressionStart) {
4756             StringRef F = FeatureList.slice(SubexpressionStart, i);
4757             HasFeatures = CurrentToken == ')' ? hasRequiredFeatures(F)
4758                                               : CallerFeatureMap.lookup(F);
4759           }
4760           SubexpressionStart = i + 1;
4761           if (CurrentToken == '|') {
4762             return {HasFeatures, FeatureList.substr(SubexpressionStart)};
4763           }
4764         }
4765         break;
4766       }
4767     }
4768     assert(InParentheses == 0 && "Parentheses are not in pair");
4769     if (HasFeatures && SubexpressionStart != FeatureList.size())
4770       HasFeatures =
4771           CallerFeatureMap.lookup(FeatureList.substr(SubexpressionStart));
4772     return {HasFeatures, StringRef()};
4773   }
4774 
4775 public:
4776   bool hasRequiredFeatures(StringRef FeatureList) {
4777     FeatureListStatus FS = {false, FeatureList};
4778     while (!FS.HasFeatures && !FS.CurFeaturesList.empty())
4779       FS = getAndFeatures(FS.CurFeaturesList);
4780     return FS.HasFeatures;
4781   }
4782 
4783   TargetFeatures(const llvm::StringMap<bool> &CallerFeatureMap)
4784       : CallerFeatureMap(CallerFeatureMap) {}
4785 };
4786 
4787 inline DominatingLLVMValue::saved_type
4788 DominatingLLVMValue::save(CodeGenFunction &CGF, llvm::Value *value) {
4789   if (!needsSaving(value)) return saved_type(value, false);
4790 
4791   // Otherwise, we need an alloca.
4792   auto align = CharUnits::fromQuantity(
4793             CGF.CGM.getDataLayout().getPrefTypeAlignment(value->getType()));
4794   Address alloca =
4795     CGF.CreateTempAlloca(value->getType(), align, "cond-cleanup.save");
4796   CGF.Builder.CreateStore(value, alloca);
4797 
4798   return saved_type(alloca.getPointer(), true);
4799 }
4800 
4801 inline llvm::Value *DominatingLLVMValue::restore(CodeGenFunction &CGF,
4802                                                  saved_type value) {
4803   // If the value says it wasn't saved, trust that it's still dominating.
4804   if (!value.getInt()) return value.getPointer();
4805 
4806   // Otherwise, it should be an alloca instruction, as set up in save().
4807   auto alloca = cast<llvm::AllocaInst>(value.getPointer());
4808   return CGF.Builder.CreateAlignedLoad(alloca->getAllocatedType(), alloca,
4809                                        alloca->getAlign());
4810 }
4811 
4812 }  // end namespace CodeGen
4813 
4814 // Map the LangOption for floating point exception behavior into
4815 // the corresponding enum in the IR.
4816 llvm::fp::ExceptionBehavior
4817 ToConstrainedExceptMD(LangOptions::FPExceptionModeKind Kind);
4818 }  // end namespace clang
4819 
4820 #endif
4821