1 //===-- CodeGenFunction.h - Per-Function state for LLVM CodeGen -*- C++ -*-===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This is the internal per-function state used for llvm translation. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #ifndef CLANG_CODEGEN_CODEGENFUNCTION_H 15 #define CLANG_CODEGEN_CODEGENFUNCTION_H 16 17 #include "clang/AST/Type.h" 18 #include "clang/AST/ExprCXX.h" 19 #include "clang/AST/ExprObjC.h" 20 #include "clang/AST/CharUnits.h" 21 #include "clang/Frontend/CodeGenOptions.h" 22 #include "clang/Basic/ABI.h" 23 #include "clang/Basic/TargetInfo.h" 24 #include "llvm/ADT/ArrayRef.h" 25 #include "llvm/ADT/DenseMap.h" 26 #include "llvm/ADT/SmallVector.h" 27 #include "llvm/Support/ValueHandle.h" 28 #include "llvm/Support/Debug.h" 29 #include "CodeGenModule.h" 30 #include "CGBuilder.h" 31 #include "CGDebugInfo.h" 32 #include "CGValue.h" 33 34 namespace llvm { 35 class BasicBlock; 36 class LLVMContext; 37 class MDNode; 38 class Module; 39 class SwitchInst; 40 class Twine; 41 class Value; 42 class CallSite; 43 } 44 45 namespace clang { 46 class ASTContext; 47 class BlockDecl; 48 class CXXDestructorDecl; 49 class CXXForRangeStmt; 50 class CXXTryStmt; 51 class Decl; 52 class LabelDecl; 53 class EnumConstantDecl; 54 class FunctionDecl; 55 class FunctionProtoType; 56 class LabelStmt; 57 class ObjCContainerDecl; 58 class ObjCInterfaceDecl; 59 class ObjCIvarDecl; 60 class ObjCMethodDecl; 61 class ObjCImplementationDecl; 62 class ObjCPropertyImplDecl; 63 class TargetInfo; 64 class TargetCodeGenInfo; 65 class VarDecl; 66 class ObjCForCollectionStmt; 67 class ObjCAtTryStmt; 68 class ObjCAtThrowStmt; 69 class ObjCAtSynchronizedStmt; 70 class ObjCAutoreleasePoolStmt; 71 72 namespace CodeGen { 73 class CodeGenTypes; 74 class CGFunctionInfo; 75 class CGRecordLayout; 76 class CGBlockInfo; 77 class CGCXXABI; 78 class BlockFlags; 79 class BlockFieldFlags; 80 81 /// A branch fixup. These are required when emitting a goto to a 82 /// label which hasn't been emitted yet. The goto is optimistically 83 /// emitted as a branch to the basic block for the label, and (if it 84 /// occurs in a scope with non-trivial cleanups) a fixup is added to 85 /// the innermost cleanup. When a (normal) cleanup is popped, any 86 /// unresolved fixups in that scope are threaded through the cleanup. 87 struct BranchFixup { 88 /// The block containing the terminator which needs to be modified 89 /// into a switch if this fixup is resolved into the current scope. 90 /// If null, LatestBranch points directly to the destination. 91 llvm::BasicBlock *OptimisticBranchBlock; 92 93 /// The ultimate destination of the branch. 94 /// 95 /// This can be set to null to indicate that this fixup was 96 /// successfully resolved. 97 llvm::BasicBlock *Destination; 98 99 /// The destination index value. 100 unsigned DestinationIndex; 101 102 /// The initial branch of the fixup. 103 llvm::BranchInst *InitialBranch; 104 }; 105 106 template <class T> struct InvariantValue { 107 typedef T type; 108 typedef T saved_type; 109 static bool needsSaving(type value) { return false; } 110 static saved_type save(CodeGenFunction &CGF, type value) { return value; } 111 static type restore(CodeGenFunction &CGF, saved_type value) { return value; } 112 }; 113 114 /// A metaprogramming class for ensuring that a value will dominate an 115 /// arbitrary position in a function. 116 template <class T> struct DominatingValue : InvariantValue<T> {}; 117 118 template <class T, bool mightBeInstruction = 119 llvm::is_base_of<llvm::Value, T>::value && 120 !llvm::is_base_of<llvm::Constant, T>::value && 121 !llvm::is_base_of<llvm::BasicBlock, T>::value> 122 struct DominatingPointer; 123 template <class T> struct DominatingPointer<T,false> : InvariantValue<T*> {}; 124 // template <class T> struct DominatingPointer<T,true> at end of file 125 126 template <class T> struct DominatingValue<T*> : DominatingPointer<T> {}; 127 128 enum CleanupKind { 129 EHCleanup = 0x1, 130 NormalCleanup = 0x2, 131 NormalAndEHCleanup = EHCleanup | NormalCleanup, 132 133 InactiveCleanup = 0x4, 134 InactiveEHCleanup = EHCleanup | InactiveCleanup, 135 InactiveNormalCleanup = NormalCleanup | InactiveCleanup, 136 InactiveNormalAndEHCleanup = NormalAndEHCleanup | InactiveCleanup 137 }; 138 139 /// A stack of scopes which respond to exceptions, including cleanups 140 /// and catch blocks. 141 class EHScopeStack { 142 public: 143 /// A saved depth on the scope stack. This is necessary because 144 /// pushing scopes onto the stack invalidates iterators. 145 class stable_iterator { 146 friend class EHScopeStack; 147 148 /// Offset from StartOfData to EndOfBuffer. 149 ptrdiff_t Size; 150 151 stable_iterator(ptrdiff_t Size) : Size(Size) {} 152 153 public: 154 static stable_iterator invalid() { return stable_iterator(-1); } 155 stable_iterator() : Size(-1) {} 156 157 bool isValid() const { return Size >= 0; } 158 159 /// Returns true if this scope encloses I. 160 /// Returns false if I is invalid. 161 /// This scope must be valid. 162 bool encloses(stable_iterator I) const { return Size <= I.Size; } 163 164 /// Returns true if this scope strictly encloses I: that is, 165 /// if it encloses I and is not I. 166 /// Returns false is I is invalid. 167 /// This scope must be valid. 168 bool strictlyEncloses(stable_iterator I) const { return Size < I.Size; } 169 170 friend bool operator==(stable_iterator A, stable_iterator B) { 171 return A.Size == B.Size; 172 } 173 friend bool operator!=(stable_iterator A, stable_iterator B) { 174 return A.Size != B.Size; 175 } 176 }; 177 178 /// Information for lazily generating a cleanup. Subclasses must be 179 /// POD-like: cleanups will not be destructed, and they will be 180 /// allocated on the cleanup stack and freely copied and moved 181 /// around. 182 /// 183 /// Cleanup implementations should generally be declared in an 184 /// anonymous namespace. 185 class Cleanup { 186 // Anchor the construction vtable. 187 virtual void anchor(); 188 public: 189 /// Generation flags. 190 class Flags { 191 enum { 192 F_IsForEH = 0x1, 193 F_IsNormalCleanupKind = 0x2, 194 F_IsEHCleanupKind = 0x4 195 }; 196 unsigned flags; 197 198 public: 199 Flags() : flags(0) {} 200 201 /// isForEH - true if the current emission is for an EH cleanup. 202 bool isForEHCleanup() const { return flags & F_IsForEH; } 203 bool isForNormalCleanup() const { return !isForEHCleanup(); } 204 void setIsForEHCleanup() { flags |= F_IsForEH; } 205 206 bool isNormalCleanupKind() const { return flags & F_IsNormalCleanupKind; } 207 void setIsNormalCleanupKind() { flags |= F_IsNormalCleanupKind; } 208 209 /// isEHCleanupKind - true if the cleanup was pushed as an EH 210 /// cleanup. 211 bool isEHCleanupKind() const { return flags & F_IsEHCleanupKind; } 212 void setIsEHCleanupKind() { flags |= F_IsEHCleanupKind; } 213 }; 214 215 // Provide a virtual destructor to suppress a very common warning 216 // that unfortunately cannot be suppressed without this. Cleanups 217 // should not rely on this destructor ever being called. 218 virtual ~Cleanup() {} 219 220 /// Emit the cleanup. For normal cleanups, this is run in the 221 /// same EH context as when the cleanup was pushed, i.e. the 222 /// immediately-enclosing context of the cleanup scope. For 223 /// EH cleanups, this is run in a terminate context. 224 /// 225 // \param IsForEHCleanup true if this is for an EH cleanup, false 226 /// if for a normal cleanup. 227 virtual void Emit(CodeGenFunction &CGF, Flags flags) = 0; 228 }; 229 230 /// ConditionalCleanupN stores the saved form of its N parameters, 231 /// then restores them and performs the cleanup. 232 template <class T, class A0> 233 class ConditionalCleanup1 : public Cleanup { 234 typedef typename DominatingValue<A0>::saved_type A0_saved; 235 A0_saved a0_saved; 236 237 void Emit(CodeGenFunction &CGF, Flags flags) { 238 A0 a0 = DominatingValue<A0>::restore(CGF, a0_saved); 239 T(a0).Emit(CGF, flags); 240 } 241 242 public: 243 ConditionalCleanup1(A0_saved a0) 244 : a0_saved(a0) {} 245 }; 246 247 template <class T, class A0, class A1> 248 class ConditionalCleanup2 : public Cleanup { 249 typedef typename DominatingValue<A0>::saved_type A0_saved; 250 typedef typename DominatingValue<A1>::saved_type A1_saved; 251 A0_saved a0_saved; 252 A1_saved a1_saved; 253 254 void Emit(CodeGenFunction &CGF, Flags flags) { 255 A0 a0 = DominatingValue<A0>::restore(CGF, a0_saved); 256 A1 a1 = DominatingValue<A1>::restore(CGF, a1_saved); 257 T(a0, a1).Emit(CGF, flags); 258 } 259 260 public: 261 ConditionalCleanup2(A0_saved a0, A1_saved a1) 262 : a0_saved(a0), a1_saved(a1) {} 263 }; 264 265 template <class T, class A0, class A1, class A2> 266 class ConditionalCleanup3 : public Cleanup { 267 typedef typename DominatingValue<A0>::saved_type A0_saved; 268 typedef typename DominatingValue<A1>::saved_type A1_saved; 269 typedef typename DominatingValue<A2>::saved_type A2_saved; 270 A0_saved a0_saved; 271 A1_saved a1_saved; 272 A2_saved a2_saved; 273 274 void Emit(CodeGenFunction &CGF, Flags flags) { 275 A0 a0 = DominatingValue<A0>::restore(CGF, a0_saved); 276 A1 a1 = DominatingValue<A1>::restore(CGF, a1_saved); 277 A2 a2 = DominatingValue<A2>::restore(CGF, a2_saved); 278 T(a0, a1, a2).Emit(CGF, flags); 279 } 280 281 public: 282 ConditionalCleanup3(A0_saved a0, A1_saved a1, A2_saved a2) 283 : a0_saved(a0), a1_saved(a1), a2_saved(a2) {} 284 }; 285 286 template <class T, class A0, class A1, class A2, class A3> 287 class ConditionalCleanup4 : public Cleanup { 288 typedef typename DominatingValue<A0>::saved_type A0_saved; 289 typedef typename DominatingValue<A1>::saved_type A1_saved; 290 typedef typename DominatingValue<A2>::saved_type A2_saved; 291 typedef typename DominatingValue<A3>::saved_type A3_saved; 292 A0_saved a0_saved; 293 A1_saved a1_saved; 294 A2_saved a2_saved; 295 A3_saved a3_saved; 296 297 void Emit(CodeGenFunction &CGF, Flags flags) { 298 A0 a0 = DominatingValue<A0>::restore(CGF, a0_saved); 299 A1 a1 = DominatingValue<A1>::restore(CGF, a1_saved); 300 A2 a2 = DominatingValue<A2>::restore(CGF, a2_saved); 301 A3 a3 = DominatingValue<A3>::restore(CGF, a3_saved); 302 T(a0, a1, a2, a3).Emit(CGF, flags); 303 } 304 305 public: 306 ConditionalCleanup4(A0_saved a0, A1_saved a1, A2_saved a2, A3_saved a3) 307 : a0_saved(a0), a1_saved(a1), a2_saved(a2), a3_saved(a3) {} 308 }; 309 310 private: 311 // The implementation for this class is in CGException.h and 312 // CGException.cpp; the definition is here because it's used as a 313 // member of CodeGenFunction. 314 315 /// The start of the scope-stack buffer, i.e. the allocated pointer 316 /// for the buffer. All of these pointers are either simultaneously 317 /// null or simultaneously valid. 318 char *StartOfBuffer; 319 320 /// The end of the buffer. 321 char *EndOfBuffer; 322 323 /// The first valid entry in the buffer. 324 char *StartOfData; 325 326 /// The innermost normal cleanup on the stack. 327 stable_iterator InnermostNormalCleanup; 328 329 /// The innermost EH scope on the stack. 330 stable_iterator InnermostEHScope; 331 332 /// The current set of branch fixups. A branch fixup is a jump to 333 /// an as-yet unemitted label, i.e. a label for which we don't yet 334 /// know the EH stack depth. Whenever we pop a cleanup, we have 335 /// to thread all the current branch fixups through it. 336 /// 337 /// Fixups are recorded as the Use of the respective branch or 338 /// switch statement. The use points to the final destination. 339 /// When popping out of a cleanup, these uses are threaded through 340 /// the cleanup and adjusted to point to the new cleanup. 341 /// 342 /// Note that branches are allowed to jump into protected scopes 343 /// in certain situations; e.g. the following code is legal: 344 /// struct A { ~A(); }; // trivial ctor, non-trivial dtor 345 /// goto foo; 346 /// A a; 347 /// foo: 348 /// bar(); 349 SmallVector<BranchFixup, 8> BranchFixups; 350 351 char *allocate(size_t Size); 352 353 void *pushCleanup(CleanupKind K, size_t DataSize); 354 355 public: 356 EHScopeStack() : StartOfBuffer(0), EndOfBuffer(0), StartOfData(0), 357 InnermostNormalCleanup(stable_end()), 358 InnermostEHScope(stable_end()) {} 359 ~EHScopeStack() { delete[] StartOfBuffer; } 360 361 // Variadic templates would make this not terrible. 362 363 /// Push a lazily-created cleanup on the stack. 364 template <class T> 365 void pushCleanup(CleanupKind Kind) { 366 void *Buffer = pushCleanup(Kind, sizeof(T)); 367 Cleanup *Obj = new(Buffer) T(); 368 (void) Obj; 369 } 370 371 /// Push a lazily-created cleanup on the stack. 372 template <class T, class A0> 373 void pushCleanup(CleanupKind Kind, A0 a0) { 374 void *Buffer = pushCleanup(Kind, sizeof(T)); 375 Cleanup *Obj = new(Buffer) T(a0); 376 (void) Obj; 377 } 378 379 /// Push a lazily-created cleanup on the stack. 380 template <class T, class A0, class A1> 381 void pushCleanup(CleanupKind Kind, A0 a0, A1 a1) { 382 void *Buffer = pushCleanup(Kind, sizeof(T)); 383 Cleanup *Obj = new(Buffer) T(a0, a1); 384 (void) Obj; 385 } 386 387 /// Push a lazily-created cleanup on the stack. 388 template <class T, class A0, class A1, class A2> 389 void pushCleanup(CleanupKind Kind, A0 a0, A1 a1, A2 a2) { 390 void *Buffer = pushCleanup(Kind, sizeof(T)); 391 Cleanup *Obj = new(Buffer) T(a0, a1, a2); 392 (void) Obj; 393 } 394 395 /// Push a lazily-created cleanup on the stack. 396 template <class T, class A0, class A1, class A2, class A3> 397 void pushCleanup(CleanupKind Kind, A0 a0, A1 a1, A2 a2, A3 a3) { 398 void *Buffer = pushCleanup(Kind, sizeof(T)); 399 Cleanup *Obj = new(Buffer) T(a0, a1, a2, a3); 400 (void) Obj; 401 } 402 403 /// Push a lazily-created cleanup on the stack. 404 template <class T, class A0, class A1, class A2, class A3, class A4> 405 void pushCleanup(CleanupKind Kind, A0 a0, A1 a1, A2 a2, A3 a3, A4 a4) { 406 void *Buffer = pushCleanup(Kind, sizeof(T)); 407 Cleanup *Obj = new(Buffer) T(a0, a1, a2, a3, a4); 408 (void) Obj; 409 } 410 411 // Feel free to add more variants of the following: 412 413 /// Push a cleanup with non-constant storage requirements on the 414 /// stack. The cleanup type must provide an additional static method: 415 /// static size_t getExtraSize(size_t); 416 /// The argument to this method will be the value N, which will also 417 /// be passed as the first argument to the constructor. 418 /// 419 /// The data stored in the extra storage must obey the same 420 /// restrictions as normal cleanup member data. 421 /// 422 /// The pointer returned from this method is valid until the cleanup 423 /// stack is modified. 424 template <class T, class A0, class A1, class A2> 425 T *pushCleanupWithExtra(CleanupKind Kind, size_t N, A0 a0, A1 a1, A2 a2) { 426 void *Buffer = pushCleanup(Kind, sizeof(T) + T::getExtraSize(N)); 427 return new (Buffer) T(N, a0, a1, a2); 428 } 429 430 /// Pops a cleanup scope off the stack. This is private to CGCleanup.cpp. 431 void popCleanup(); 432 433 /// Push a set of catch handlers on the stack. The catch is 434 /// uninitialized and will need to have the given number of handlers 435 /// set on it. 436 class EHCatchScope *pushCatch(unsigned NumHandlers); 437 438 /// Pops a catch scope off the stack. This is private to CGException.cpp. 439 void popCatch(); 440 441 /// Push an exceptions filter on the stack. 442 class EHFilterScope *pushFilter(unsigned NumFilters); 443 444 /// Pops an exceptions filter off the stack. 445 void popFilter(); 446 447 /// Push a terminate handler on the stack. 448 void pushTerminate(); 449 450 /// Pops a terminate handler off the stack. 451 void popTerminate(); 452 453 /// Determines whether the exception-scopes stack is empty. 454 bool empty() const { return StartOfData == EndOfBuffer; } 455 456 bool requiresLandingPad() const { 457 return InnermostEHScope != stable_end(); 458 } 459 460 /// Determines whether there are any normal cleanups on the stack. 461 bool hasNormalCleanups() const { 462 return InnermostNormalCleanup != stable_end(); 463 } 464 465 /// Returns the innermost normal cleanup on the stack, or 466 /// stable_end() if there are no normal cleanups. 467 stable_iterator getInnermostNormalCleanup() const { 468 return InnermostNormalCleanup; 469 } 470 stable_iterator getInnermostActiveNormalCleanup() const; 471 472 stable_iterator getInnermostEHScope() const { 473 return InnermostEHScope; 474 } 475 476 stable_iterator getInnermostActiveEHScope() const; 477 478 /// An unstable reference to a scope-stack depth. Invalidated by 479 /// pushes but not pops. 480 class iterator; 481 482 /// Returns an iterator pointing to the innermost EH scope. 483 iterator begin() const; 484 485 /// Returns an iterator pointing to the outermost EH scope. 486 iterator end() const; 487 488 /// Create a stable reference to the top of the EH stack. The 489 /// returned reference is valid until that scope is popped off the 490 /// stack. 491 stable_iterator stable_begin() const { 492 return stable_iterator(EndOfBuffer - StartOfData); 493 } 494 495 /// Create a stable reference to the bottom of the EH stack. 496 static stable_iterator stable_end() { 497 return stable_iterator(0); 498 } 499 500 /// Translates an iterator into a stable_iterator. 501 stable_iterator stabilize(iterator it) const; 502 503 /// Turn a stable reference to a scope depth into a unstable pointer 504 /// to the EH stack. 505 iterator find(stable_iterator save) const; 506 507 /// Removes the cleanup pointed to by the given stable_iterator. 508 void removeCleanup(stable_iterator save); 509 510 /// Add a branch fixup to the current cleanup scope. 511 BranchFixup &addBranchFixup() { 512 assert(hasNormalCleanups() && "adding fixup in scope without cleanups"); 513 BranchFixups.push_back(BranchFixup()); 514 return BranchFixups.back(); 515 } 516 517 unsigned getNumBranchFixups() const { return BranchFixups.size(); } 518 BranchFixup &getBranchFixup(unsigned I) { 519 assert(I < getNumBranchFixups()); 520 return BranchFixups[I]; 521 } 522 523 /// Pops lazily-removed fixups from the end of the list. This 524 /// should only be called by procedures which have just popped a 525 /// cleanup or resolved one or more fixups. 526 void popNullFixups(); 527 528 /// Clears the branch-fixups list. This should only be called by 529 /// ResolveAllBranchFixups. 530 void clearFixups() { BranchFixups.clear(); } 531 }; 532 533 /// CodeGenFunction - This class organizes the per-function state that is used 534 /// while generating LLVM code. 535 class CodeGenFunction : public CodeGenTypeCache { 536 CodeGenFunction(const CodeGenFunction&); // DO NOT IMPLEMENT 537 void operator=(const CodeGenFunction&); // DO NOT IMPLEMENT 538 539 friend class CGCXXABI; 540 public: 541 /// A jump destination is an abstract label, branching to which may 542 /// require a jump out through normal cleanups. 543 struct JumpDest { 544 JumpDest() : Block(0), ScopeDepth(), Index(0) {} 545 JumpDest(llvm::BasicBlock *Block, 546 EHScopeStack::stable_iterator Depth, 547 unsigned Index) 548 : Block(Block), ScopeDepth(Depth), Index(Index) {} 549 550 bool isValid() const { return Block != 0; } 551 llvm::BasicBlock *getBlock() const { return Block; } 552 EHScopeStack::stable_iterator getScopeDepth() const { return ScopeDepth; } 553 unsigned getDestIndex() const { return Index; } 554 555 private: 556 llvm::BasicBlock *Block; 557 EHScopeStack::stable_iterator ScopeDepth; 558 unsigned Index; 559 }; 560 561 CodeGenModule &CGM; // Per-module state. 562 const TargetInfo &Target; 563 564 typedef std::pair<llvm::Value *, llvm::Value *> ComplexPairTy; 565 CGBuilderTy Builder; 566 567 /// CurFuncDecl - Holds the Decl for the current function or ObjC method. 568 /// This excludes BlockDecls. 569 const Decl *CurFuncDecl; 570 /// CurCodeDecl - This is the inner-most code context, which includes blocks. 571 const Decl *CurCodeDecl; 572 const CGFunctionInfo *CurFnInfo; 573 QualType FnRetTy; 574 llvm::Function *CurFn; 575 576 /// CurGD - The GlobalDecl for the current function being compiled. 577 GlobalDecl CurGD; 578 579 /// PrologueCleanupDepth - The cleanup depth enclosing all the 580 /// cleanups associated with the parameters. 581 EHScopeStack::stable_iterator PrologueCleanupDepth; 582 583 /// ReturnBlock - Unified return block. 584 JumpDest ReturnBlock; 585 586 /// ReturnValue - The temporary alloca to hold the return value. This is null 587 /// iff the function has no return value. 588 llvm::Value *ReturnValue; 589 590 /// AllocaInsertPoint - This is an instruction in the entry block before which 591 /// we prefer to insert allocas. 592 llvm::AssertingVH<llvm::Instruction> AllocaInsertPt; 593 594 bool CatchUndefined; 595 596 /// In ARC, whether we should autorelease the return value. 597 bool AutoreleaseResult; 598 599 const CodeGen::CGBlockInfo *BlockInfo; 600 llvm::Value *BlockPointer; 601 602 /// \brief A mapping from NRVO variables to the flags used to indicate 603 /// when the NRVO has been applied to this variable. 604 llvm::DenseMap<const VarDecl *, llvm::Value *> NRVOFlags; 605 606 EHScopeStack EHStack; 607 608 /// i32s containing the indexes of the cleanup destinations. 609 llvm::AllocaInst *NormalCleanupDest; 610 611 unsigned NextCleanupDestIndex; 612 613 /// FirstBlockInfo - The head of a singly-linked-list of block layouts. 614 CGBlockInfo *FirstBlockInfo; 615 616 /// EHResumeBlock - Unified block containing a call to llvm.eh.resume. 617 llvm::BasicBlock *EHResumeBlock; 618 619 /// The exception slot. All landing pads write the current exception pointer 620 /// into this alloca. 621 llvm::Value *ExceptionSlot; 622 623 /// The selector slot. Under the MandatoryCleanup model, all landing pads 624 /// write the current selector value into this alloca. 625 llvm::AllocaInst *EHSelectorSlot; 626 627 /// Emits a landing pad for the current EH stack. 628 llvm::BasicBlock *EmitLandingPad(); 629 630 llvm::BasicBlock *getInvokeDestImpl(); 631 632 template <class T> 633 typename DominatingValue<T>::saved_type saveValueInCond(T value) { 634 return DominatingValue<T>::save(*this, value); 635 } 636 637 public: 638 /// ObjCEHValueStack - Stack of Objective-C exception values, used for 639 /// rethrows. 640 SmallVector<llvm::Value*, 8> ObjCEHValueStack; 641 642 /// A class controlling the emission of a finally block. 643 class FinallyInfo { 644 /// Where the catchall's edge through the cleanup should go. 645 JumpDest RethrowDest; 646 647 /// A function to call to enter the catch. 648 llvm::Constant *BeginCatchFn; 649 650 /// An i1 variable indicating whether or not the @finally is 651 /// running for an exception. 652 llvm::AllocaInst *ForEHVar; 653 654 /// An i8* variable into which the exception pointer to rethrow 655 /// has been saved. 656 llvm::AllocaInst *SavedExnVar; 657 658 public: 659 void enter(CodeGenFunction &CGF, const Stmt *Finally, 660 llvm::Constant *beginCatchFn, llvm::Constant *endCatchFn, 661 llvm::Constant *rethrowFn); 662 void exit(CodeGenFunction &CGF); 663 }; 664 665 /// pushFullExprCleanup - Push a cleanup to be run at the end of the 666 /// current full-expression. Safe against the possibility that 667 /// we're currently inside a conditionally-evaluated expression. 668 template <class T, class A0> 669 void pushFullExprCleanup(CleanupKind kind, A0 a0) { 670 // If we're not in a conditional branch, or if none of the 671 // arguments requires saving, then use the unconditional cleanup. 672 if (!isInConditionalBranch()) 673 return EHStack.pushCleanup<T>(kind, a0); 674 675 typename DominatingValue<A0>::saved_type a0_saved = saveValueInCond(a0); 676 677 typedef EHScopeStack::ConditionalCleanup1<T, A0> CleanupType; 678 EHStack.pushCleanup<CleanupType>(kind, a0_saved); 679 initFullExprCleanup(); 680 } 681 682 /// pushFullExprCleanup - Push a cleanup to be run at the end of the 683 /// current full-expression. Safe against the possibility that 684 /// we're currently inside a conditionally-evaluated expression. 685 template <class T, class A0, class A1> 686 void pushFullExprCleanup(CleanupKind kind, A0 a0, A1 a1) { 687 // If we're not in a conditional branch, or if none of the 688 // arguments requires saving, then use the unconditional cleanup. 689 if (!isInConditionalBranch()) 690 return EHStack.pushCleanup<T>(kind, a0, a1); 691 692 typename DominatingValue<A0>::saved_type a0_saved = saveValueInCond(a0); 693 typename DominatingValue<A1>::saved_type a1_saved = saveValueInCond(a1); 694 695 typedef EHScopeStack::ConditionalCleanup2<T, A0, A1> CleanupType; 696 EHStack.pushCleanup<CleanupType>(kind, a0_saved, a1_saved); 697 initFullExprCleanup(); 698 } 699 700 /// pushFullExprCleanup - Push a cleanup to be run at the end of the 701 /// current full-expression. Safe against the possibility that 702 /// we're currently inside a conditionally-evaluated expression. 703 template <class T, class A0, class A1, class A2> 704 void pushFullExprCleanup(CleanupKind kind, A0 a0, A1 a1, A2 a2) { 705 // If we're not in a conditional branch, or if none of the 706 // arguments requires saving, then use the unconditional cleanup. 707 if (!isInConditionalBranch()) { 708 return EHStack.pushCleanup<T>(kind, a0, a1, a2); 709 } 710 711 typename DominatingValue<A0>::saved_type a0_saved = saveValueInCond(a0); 712 typename DominatingValue<A1>::saved_type a1_saved = saveValueInCond(a1); 713 typename DominatingValue<A2>::saved_type a2_saved = saveValueInCond(a2); 714 715 typedef EHScopeStack::ConditionalCleanup3<T, A0, A1, A2> CleanupType; 716 EHStack.pushCleanup<CleanupType>(kind, a0_saved, a1_saved, a2_saved); 717 initFullExprCleanup(); 718 } 719 720 /// pushFullExprCleanup - Push a cleanup to be run at the end of the 721 /// current full-expression. Safe against the possibility that 722 /// we're currently inside a conditionally-evaluated expression. 723 template <class T, class A0, class A1, class A2, class A3> 724 void pushFullExprCleanup(CleanupKind kind, A0 a0, A1 a1, A2 a2, A3 a3) { 725 // If we're not in a conditional branch, or if none of the 726 // arguments requires saving, then use the unconditional cleanup. 727 if (!isInConditionalBranch()) { 728 return EHStack.pushCleanup<T>(kind, a0, a1, a2, a3); 729 } 730 731 typename DominatingValue<A0>::saved_type a0_saved = saveValueInCond(a0); 732 typename DominatingValue<A1>::saved_type a1_saved = saveValueInCond(a1); 733 typename DominatingValue<A2>::saved_type a2_saved = saveValueInCond(a2); 734 typename DominatingValue<A3>::saved_type a3_saved = saveValueInCond(a3); 735 736 typedef EHScopeStack::ConditionalCleanup4<T, A0, A1, A2, A3> CleanupType; 737 EHStack.pushCleanup<CleanupType>(kind, a0_saved, a1_saved, 738 a2_saved, a3_saved); 739 initFullExprCleanup(); 740 } 741 742 /// Set up the last cleaup that was pushed as a conditional 743 /// full-expression cleanup. 744 void initFullExprCleanup(); 745 746 /// PushDestructorCleanup - Push a cleanup to call the 747 /// complete-object destructor of an object of the given type at the 748 /// given address. Does nothing if T is not a C++ class type with a 749 /// non-trivial destructor. 750 void PushDestructorCleanup(QualType T, llvm::Value *Addr); 751 752 /// PushDestructorCleanup - Push a cleanup to call the 753 /// complete-object variant of the given destructor on the object at 754 /// the given address. 755 void PushDestructorCleanup(const CXXDestructorDecl *Dtor, 756 llvm::Value *Addr); 757 758 /// PopCleanupBlock - Will pop the cleanup entry on the stack and 759 /// process all branch fixups. 760 void PopCleanupBlock(bool FallThroughIsBranchThrough = false); 761 762 /// DeactivateCleanupBlock - Deactivates the given cleanup block. 763 /// The block cannot be reactivated. Pops it if it's the top of the 764 /// stack. 765 /// 766 /// \param DominatingIP - An instruction which is known to 767 /// dominate the current IP (if set) and which lies along 768 /// all paths of execution between the current IP and the 769 /// the point at which the cleanup comes into scope. 770 void DeactivateCleanupBlock(EHScopeStack::stable_iterator Cleanup, 771 llvm::Instruction *DominatingIP); 772 773 /// ActivateCleanupBlock - Activates an initially-inactive cleanup. 774 /// Cannot be used to resurrect a deactivated cleanup. 775 /// 776 /// \param DominatingIP - An instruction which is known to 777 /// dominate the current IP (if set) and which lies along 778 /// all paths of execution between the current IP and the 779 /// the point at which the cleanup comes into scope. 780 void ActivateCleanupBlock(EHScopeStack::stable_iterator Cleanup, 781 llvm::Instruction *DominatingIP); 782 783 /// \brief Enters a new scope for capturing cleanups, all of which 784 /// will be executed once the scope is exited. 785 class RunCleanupsScope { 786 EHScopeStack::stable_iterator CleanupStackDepth; 787 bool OldDidCallStackSave; 788 bool PerformCleanup; 789 790 RunCleanupsScope(const RunCleanupsScope &); // DO NOT IMPLEMENT 791 RunCleanupsScope &operator=(const RunCleanupsScope &); // DO NOT IMPLEMENT 792 793 protected: 794 CodeGenFunction& CGF; 795 796 public: 797 /// \brief Enter a new cleanup scope. 798 explicit RunCleanupsScope(CodeGenFunction &CGF) 799 : PerformCleanup(true), CGF(CGF) 800 { 801 CleanupStackDepth = CGF.EHStack.stable_begin(); 802 OldDidCallStackSave = CGF.DidCallStackSave; 803 CGF.DidCallStackSave = false; 804 } 805 806 /// \brief Exit this cleanup scope, emitting any accumulated 807 /// cleanups. 808 ~RunCleanupsScope() { 809 if (PerformCleanup) { 810 CGF.DidCallStackSave = OldDidCallStackSave; 811 CGF.PopCleanupBlocks(CleanupStackDepth); 812 } 813 } 814 815 /// \brief Determine whether this scope requires any cleanups. 816 bool requiresCleanups() const { 817 return CGF.EHStack.stable_begin() != CleanupStackDepth; 818 } 819 820 /// \brief Force the emission of cleanups now, instead of waiting 821 /// until this object is destroyed. 822 void ForceCleanup() { 823 assert(PerformCleanup && "Already forced cleanup"); 824 CGF.DidCallStackSave = OldDidCallStackSave; 825 CGF.PopCleanupBlocks(CleanupStackDepth); 826 PerformCleanup = false; 827 } 828 }; 829 830 class LexicalScope: protected RunCleanupsScope { 831 SourceRange Range; 832 bool PopDebugStack; 833 834 LexicalScope(const LexicalScope &); // DO NOT IMPLEMENT THESE 835 LexicalScope &operator=(const LexicalScope &); 836 837 public: 838 /// \brief Enter a new cleanup scope. 839 explicit LexicalScope(CodeGenFunction &CGF, SourceRange Range) 840 : RunCleanupsScope(CGF), Range(Range), PopDebugStack(true) { 841 if (CGDebugInfo *DI = CGF.getDebugInfo()) 842 DI->EmitLexicalBlockStart(CGF.Builder, Range.getBegin()); 843 } 844 845 /// \brief Exit this cleanup scope, emitting any accumulated 846 /// cleanups. 847 ~LexicalScope() { 848 if (PopDebugStack) { 849 CGDebugInfo *DI = CGF.getDebugInfo(); 850 if (DI) DI->EmitLexicalBlockEnd(CGF.Builder, Range.getEnd()); 851 } 852 } 853 854 /// \brief Force the emission of cleanups now, instead of waiting 855 /// until this object is destroyed. 856 void ForceCleanup() { 857 RunCleanupsScope::ForceCleanup(); 858 if (CGDebugInfo *DI = CGF.getDebugInfo()) { 859 DI->EmitLexicalBlockEnd(CGF.Builder, Range.getEnd()); 860 PopDebugStack = false; 861 } 862 } 863 }; 864 865 866 /// PopCleanupBlocks - Takes the old cleanup stack size and emits 867 /// the cleanup blocks that have been added. 868 void PopCleanupBlocks(EHScopeStack::stable_iterator OldCleanupStackSize); 869 870 void ResolveBranchFixups(llvm::BasicBlock *Target); 871 872 /// The given basic block lies in the current EH scope, but may be a 873 /// target of a potentially scope-crossing jump; get a stable handle 874 /// to which we can perform this jump later. 875 JumpDest getJumpDestInCurrentScope(llvm::BasicBlock *Target) { 876 return JumpDest(Target, 877 EHStack.getInnermostNormalCleanup(), 878 NextCleanupDestIndex++); 879 } 880 881 /// The given basic block lies in the current EH scope, but may be a 882 /// target of a potentially scope-crossing jump; get a stable handle 883 /// to which we can perform this jump later. 884 JumpDest getJumpDestInCurrentScope(StringRef Name = StringRef()) { 885 return getJumpDestInCurrentScope(createBasicBlock(Name)); 886 } 887 888 /// EmitBranchThroughCleanup - Emit a branch from the current insert 889 /// block through the normal cleanup handling code (if any) and then 890 /// on to \arg Dest. 891 void EmitBranchThroughCleanup(JumpDest Dest); 892 893 /// isObviouslyBranchWithoutCleanups - Return true if a branch to the 894 /// specified destination obviously has no cleanups to run. 'false' is always 895 /// a conservatively correct answer for this method. 896 bool isObviouslyBranchWithoutCleanups(JumpDest Dest) const; 897 898 /// popCatchScope - Pops the catch scope at the top of the EHScope 899 /// stack, emitting any required code (other than the catch handlers 900 /// themselves). 901 void popCatchScope(); 902 903 llvm::BasicBlock *getEHResumeBlock(); 904 llvm::BasicBlock *getEHDispatchBlock(EHScopeStack::stable_iterator scope); 905 906 /// An object to manage conditionally-evaluated expressions. 907 class ConditionalEvaluation { 908 llvm::BasicBlock *StartBB; 909 910 public: 911 ConditionalEvaluation(CodeGenFunction &CGF) 912 : StartBB(CGF.Builder.GetInsertBlock()) {} 913 914 void begin(CodeGenFunction &CGF) { 915 assert(CGF.OutermostConditional != this); 916 if (!CGF.OutermostConditional) 917 CGF.OutermostConditional = this; 918 } 919 920 void end(CodeGenFunction &CGF) { 921 assert(CGF.OutermostConditional != 0); 922 if (CGF.OutermostConditional == this) 923 CGF.OutermostConditional = 0; 924 } 925 926 /// Returns a block which will be executed prior to each 927 /// evaluation of the conditional code. 928 llvm::BasicBlock *getStartingBlock() const { 929 return StartBB; 930 } 931 }; 932 933 /// isInConditionalBranch - Return true if we're currently emitting 934 /// one branch or the other of a conditional expression. 935 bool isInConditionalBranch() const { return OutermostConditional != 0; } 936 937 void setBeforeOutermostConditional(llvm::Value *value, llvm::Value *addr) { 938 assert(isInConditionalBranch()); 939 llvm::BasicBlock *block = OutermostConditional->getStartingBlock(); 940 new llvm::StoreInst(value, addr, &block->back()); 941 } 942 943 /// An RAII object to record that we're evaluating a statement 944 /// expression. 945 class StmtExprEvaluation { 946 CodeGenFunction &CGF; 947 948 /// We have to save the outermost conditional: cleanups in a 949 /// statement expression aren't conditional just because the 950 /// StmtExpr is. 951 ConditionalEvaluation *SavedOutermostConditional; 952 953 public: 954 StmtExprEvaluation(CodeGenFunction &CGF) 955 : CGF(CGF), SavedOutermostConditional(CGF.OutermostConditional) { 956 CGF.OutermostConditional = 0; 957 } 958 959 ~StmtExprEvaluation() { 960 CGF.OutermostConditional = SavedOutermostConditional; 961 CGF.EnsureInsertPoint(); 962 } 963 }; 964 965 /// An object which temporarily prevents a value from being 966 /// destroyed by aggressive peephole optimizations that assume that 967 /// all uses of a value have been realized in the IR. 968 class PeepholeProtection { 969 llvm::Instruction *Inst; 970 friend class CodeGenFunction; 971 972 public: 973 PeepholeProtection() : Inst(0) {} 974 }; 975 976 /// A non-RAII class containing all the information about a bound 977 /// opaque value. OpaqueValueMapping, below, is a RAII wrapper for 978 /// this which makes individual mappings very simple; using this 979 /// class directly is useful when you have a variable number of 980 /// opaque values or don't want the RAII functionality for some 981 /// reason. 982 class OpaqueValueMappingData { 983 const OpaqueValueExpr *OpaqueValue; 984 bool BoundLValue; 985 CodeGenFunction::PeepholeProtection Protection; 986 987 OpaqueValueMappingData(const OpaqueValueExpr *ov, 988 bool boundLValue) 989 : OpaqueValue(ov), BoundLValue(boundLValue) {} 990 public: 991 OpaqueValueMappingData() : OpaqueValue(0) {} 992 993 static bool shouldBindAsLValue(const Expr *expr) { 994 // gl-values should be bound as l-values for obvious reasons. 995 // Records should be bound as l-values because IR generation 996 // always keeps them in memory. Expressions of function type 997 // act exactly like l-values but are formally required to be 998 // r-values in C. 999 return expr->isGLValue() || 1000 expr->getType()->isRecordType() || 1001 expr->getType()->isFunctionType(); 1002 } 1003 1004 static OpaqueValueMappingData bind(CodeGenFunction &CGF, 1005 const OpaqueValueExpr *ov, 1006 const Expr *e) { 1007 if (shouldBindAsLValue(ov)) 1008 return bind(CGF, ov, CGF.EmitLValue(e)); 1009 return bind(CGF, ov, CGF.EmitAnyExpr(e)); 1010 } 1011 1012 static OpaqueValueMappingData bind(CodeGenFunction &CGF, 1013 const OpaqueValueExpr *ov, 1014 const LValue &lv) { 1015 assert(shouldBindAsLValue(ov)); 1016 CGF.OpaqueLValues.insert(std::make_pair(ov, lv)); 1017 return OpaqueValueMappingData(ov, true); 1018 } 1019 1020 static OpaqueValueMappingData bind(CodeGenFunction &CGF, 1021 const OpaqueValueExpr *ov, 1022 const RValue &rv) { 1023 assert(!shouldBindAsLValue(ov)); 1024 CGF.OpaqueRValues.insert(std::make_pair(ov, rv)); 1025 1026 OpaqueValueMappingData data(ov, false); 1027 1028 // Work around an extremely aggressive peephole optimization in 1029 // EmitScalarConversion which assumes that all other uses of a 1030 // value are extant. 1031 data.Protection = CGF.protectFromPeepholes(rv); 1032 1033 return data; 1034 } 1035 1036 bool isValid() const { return OpaqueValue != 0; } 1037 void clear() { OpaqueValue = 0; } 1038 1039 void unbind(CodeGenFunction &CGF) { 1040 assert(OpaqueValue && "no data to unbind!"); 1041 1042 if (BoundLValue) { 1043 CGF.OpaqueLValues.erase(OpaqueValue); 1044 } else { 1045 CGF.OpaqueRValues.erase(OpaqueValue); 1046 CGF.unprotectFromPeepholes(Protection); 1047 } 1048 } 1049 }; 1050 1051 /// An RAII object to set (and then clear) a mapping for an OpaqueValueExpr. 1052 class OpaqueValueMapping { 1053 CodeGenFunction &CGF; 1054 OpaqueValueMappingData Data; 1055 1056 public: 1057 static bool shouldBindAsLValue(const Expr *expr) { 1058 return OpaqueValueMappingData::shouldBindAsLValue(expr); 1059 } 1060 1061 /// Build the opaque value mapping for the given conditional 1062 /// operator if it's the GNU ?: extension. This is a common 1063 /// enough pattern that the convenience operator is really 1064 /// helpful. 1065 /// 1066 OpaqueValueMapping(CodeGenFunction &CGF, 1067 const AbstractConditionalOperator *op) : CGF(CGF) { 1068 if (isa<ConditionalOperator>(op)) 1069 // Leave Data empty. 1070 return; 1071 1072 const BinaryConditionalOperator *e = cast<BinaryConditionalOperator>(op); 1073 Data = OpaqueValueMappingData::bind(CGF, e->getOpaqueValue(), 1074 e->getCommon()); 1075 } 1076 1077 OpaqueValueMapping(CodeGenFunction &CGF, 1078 const OpaqueValueExpr *opaqueValue, 1079 LValue lvalue) 1080 : CGF(CGF), Data(OpaqueValueMappingData::bind(CGF, opaqueValue, lvalue)) { 1081 } 1082 1083 OpaqueValueMapping(CodeGenFunction &CGF, 1084 const OpaqueValueExpr *opaqueValue, 1085 RValue rvalue) 1086 : CGF(CGF), Data(OpaqueValueMappingData::bind(CGF, opaqueValue, rvalue)) { 1087 } 1088 1089 void pop() { 1090 Data.unbind(CGF); 1091 Data.clear(); 1092 } 1093 1094 ~OpaqueValueMapping() { 1095 if (Data.isValid()) Data.unbind(CGF); 1096 } 1097 }; 1098 1099 /// getByrefValueFieldNumber - Given a declaration, returns the LLVM field 1100 /// number that holds the value. 1101 unsigned getByRefValueLLVMField(const ValueDecl *VD) const; 1102 1103 /// BuildBlockByrefAddress - Computes address location of the 1104 /// variable which is declared as __block. 1105 llvm::Value *BuildBlockByrefAddress(llvm::Value *BaseAddr, 1106 const VarDecl *V); 1107 private: 1108 CGDebugInfo *DebugInfo; 1109 bool DisableDebugInfo; 1110 1111 /// DidCallStackSave - Whether llvm.stacksave has been called. Used to avoid 1112 /// calling llvm.stacksave for multiple VLAs in the same scope. 1113 bool DidCallStackSave; 1114 1115 /// IndirectBranch - The first time an indirect goto is seen we create a block 1116 /// with an indirect branch. Every time we see the address of a label taken, 1117 /// we add the label to the indirect goto. Every subsequent indirect goto is 1118 /// codegen'd as a jump to the IndirectBranch's basic block. 1119 llvm::IndirectBrInst *IndirectBranch; 1120 1121 /// LocalDeclMap - This keeps track of the LLVM allocas or globals for local C 1122 /// decls. 1123 typedef llvm::DenseMap<const Decl*, llvm::Value*> DeclMapTy; 1124 DeclMapTy LocalDeclMap; 1125 1126 /// LabelMap - This keeps track of the LLVM basic block for each C label. 1127 llvm::DenseMap<const LabelDecl*, JumpDest> LabelMap; 1128 1129 // BreakContinueStack - This keeps track of where break and continue 1130 // statements should jump to. 1131 struct BreakContinue { 1132 BreakContinue(JumpDest Break, JumpDest Continue) 1133 : BreakBlock(Break), ContinueBlock(Continue) {} 1134 1135 JumpDest BreakBlock; 1136 JumpDest ContinueBlock; 1137 }; 1138 SmallVector<BreakContinue, 8> BreakContinueStack; 1139 1140 /// SwitchInsn - This is nearest current switch instruction. It is null if if 1141 /// current context is not in a switch. 1142 llvm::SwitchInst *SwitchInsn; 1143 1144 /// CaseRangeBlock - This block holds if condition check for last case 1145 /// statement range in current switch instruction. 1146 llvm::BasicBlock *CaseRangeBlock; 1147 1148 /// OpaqueLValues - Keeps track of the current set of opaque value 1149 /// expressions. 1150 llvm::DenseMap<const OpaqueValueExpr *, LValue> OpaqueLValues; 1151 llvm::DenseMap<const OpaqueValueExpr *, RValue> OpaqueRValues; 1152 1153 // VLASizeMap - This keeps track of the associated size for each VLA type. 1154 // We track this by the size expression rather than the type itself because 1155 // in certain situations, like a const qualifier applied to an VLA typedef, 1156 // multiple VLA types can share the same size expression. 1157 // FIXME: Maybe this could be a stack of maps that is pushed/popped as we 1158 // enter/leave scopes. 1159 llvm::DenseMap<const Expr*, llvm::Value*> VLASizeMap; 1160 1161 /// A block containing a single 'unreachable' instruction. Created 1162 /// lazily by getUnreachableBlock(). 1163 llvm::BasicBlock *UnreachableBlock; 1164 1165 /// CXXThisDecl - When generating code for a C++ member function, 1166 /// this will hold the implicit 'this' declaration. 1167 ImplicitParamDecl *CXXThisDecl; 1168 llvm::Value *CXXThisValue; 1169 1170 /// CXXVTTDecl - When generating code for a base object constructor or 1171 /// base object destructor with virtual bases, this will hold the implicit 1172 /// VTT parameter. 1173 ImplicitParamDecl *CXXVTTDecl; 1174 llvm::Value *CXXVTTValue; 1175 1176 /// OutermostConditional - Points to the outermost active 1177 /// conditional control. This is used so that we know if a 1178 /// temporary should be destroyed conditionally. 1179 ConditionalEvaluation *OutermostConditional; 1180 1181 1182 /// ByrefValueInfoMap - For each __block variable, contains a pair of the LLVM 1183 /// type as well as the field number that contains the actual data. 1184 llvm::DenseMap<const ValueDecl *, std::pair<llvm::Type *, 1185 unsigned> > ByRefValueInfo; 1186 1187 llvm::BasicBlock *TerminateLandingPad; 1188 llvm::BasicBlock *TerminateHandler; 1189 llvm::BasicBlock *TrapBB; 1190 1191 public: 1192 CodeGenFunction(CodeGenModule &cgm); 1193 ~CodeGenFunction(); 1194 1195 CodeGenTypes &getTypes() const { return CGM.getTypes(); } 1196 ASTContext &getContext() const { return CGM.getContext(); } 1197 CGDebugInfo *getDebugInfo() { 1198 if (DisableDebugInfo) 1199 return NULL; 1200 return DebugInfo; 1201 } 1202 void disableDebugInfo() { DisableDebugInfo = true; } 1203 void enableDebugInfo() { DisableDebugInfo = false; } 1204 1205 bool shouldUseFusedARCCalls() { 1206 return CGM.getCodeGenOpts().OptimizationLevel == 0; 1207 } 1208 1209 const LangOptions &getLangOptions() const { return CGM.getLangOptions(); } 1210 1211 /// Returns a pointer to the function's exception object and selector slot, 1212 /// which is assigned in every landing pad. 1213 llvm::Value *getExceptionSlot(); 1214 llvm::Value *getEHSelectorSlot(); 1215 1216 /// Returns the contents of the function's exception object and selector 1217 /// slots. 1218 llvm::Value *getExceptionFromSlot(); 1219 llvm::Value *getSelectorFromSlot(); 1220 1221 llvm::Value *getNormalCleanupDestSlot(); 1222 1223 llvm::BasicBlock *getUnreachableBlock() { 1224 if (!UnreachableBlock) { 1225 UnreachableBlock = createBasicBlock("unreachable"); 1226 new llvm::UnreachableInst(getLLVMContext(), UnreachableBlock); 1227 } 1228 return UnreachableBlock; 1229 } 1230 1231 llvm::BasicBlock *getInvokeDest() { 1232 if (!EHStack.requiresLandingPad()) return 0; 1233 return getInvokeDestImpl(); 1234 } 1235 1236 llvm::LLVMContext &getLLVMContext() { return CGM.getLLVMContext(); } 1237 1238 //===--------------------------------------------------------------------===// 1239 // Cleanups 1240 //===--------------------------------------------------------------------===// 1241 1242 typedef void Destroyer(CodeGenFunction &CGF, llvm::Value *addr, QualType ty); 1243 1244 void pushIrregularPartialArrayCleanup(llvm::Value *arrayBegin, 1245 llvm::Value *arrayEndPointer, 1246 QualType elementType, 1247 Destroyer &destroyer); 1248 void pushRegularPartialArrayCleanup(llvm::Value *arrayBegin, 1249 llvm::Value *arrayEnd, 1250 QualType elementType, 1251 Destroyer &destroyer); 1252 1253 void pushDestroy(QualType::DestructionKind dtorKind, 1254 llvm::Value *addr, QualType type); 1255 void pushDestroy(CleanupKind kind, llvm::Value *addr, QualType type, 1256 Destroyer &destroyer, bool useEHCleanupForArray); 1257 void emitDestroy(llvm::Value *addr, QualType type, Destroyer &destroyer, 1258 bool useEHCleanupForArray); 1259 llvm::Function *generateDestroyHelper(llvm::Constant *addr, 1260 QualType type, 1261 Destroyer &destroyer, 1262 bool useEHCleanupForArray); 1263 void emitArrayDestroy(llvm::Value *begin, llvm::Value *end, 1264 QualType type, Destroyer &destroyer, 1265 bool checkZeroLength, bool useEHCleanup); 1266 1267 Destroyer &getDestroyer(QualType::DestructionKind destructionKind); 1268 1269 /// Determines whether an EH cleanup is required to destroy a type 1270 /// with the given destruction kind. 1271 bool needsEHCleanup(QualType::DestructionKind kind) { 1272 switch (kind) { 1273 case QualType::DK_none: 1274 return false; 1275 case QualType::DK_cxx_destructor: 1276 case QualType::DK_objc_weak_lifetime: 1277 return getLangOptions().Exceptions; 1278 case QualType::DK_objc_strong_lifetime: 1279 return getLangOptions().Exceptions && 1280 CGM.getCodeGenOpts().ObjCAutoRefCountExceptions; 1281 } 1282 llvm_unreachable("bad destruction kind"); 1283 } 1284 1285 CleanupKind getCleanupKind(QualType::DestructionKind kind) { 1286 return (needsEHCleanup(kind) ? NormalAndEHCleanup : NormalCleanup); 1287 } 1288 1289 //===--------------------------------------------------------------------===// 1290 // Objective-C 1291 //===--------------------------------------------------------------------===// 1292 1293 void GenerateObjCMethod(const ObjCMethodDecl *OMD); 1294 1295 void StartObjCMethod(const ObjCMethodDecl *MD, 1296 const ObjCContainerDecl *CD, 1297 SourceLocation StartLoc); 1298 1299 /// GenerateObjCGetter - Synthesize an Objective-C property getter function. 1300 void GenerateObjCGetter(ObjCImplementationDecl *IMP, 1301 const ObjCPropertyImplDecl *PID); 1302 void generateObjCGetterBody(const ObjCImplementationDecl *classImpl, 1303 const ObjCPropertyImplDecl *propImpl, 1304 llvm::Constant *AtomicHelperFn); 1305 1306 void GenerateObjCCtorDtorMethod(ObjCImplementationDecl *IMP, 1307 ObjCMethodDecl *MD, bool ctor); 1308 1309 /// GenerateObjCSetter - Synthesize an Objective-C property setter function 1310 /// for the given property. 1311 void GenerateObjCSetter(ObjCImplementationDecl *IMP, 1312 const ObjCPropertyImplDecl *PID); 1313 void generateObjCSetterBody(const ObjCImplementationDecl *classImpl, 1314 const ObjCPropertyImplDecl *propImpl, 1315 llvm::Constant *AtomicHelperFn); 1316 bool IndirectObjCSetterArg(const CGFunctionInfo &FI); 1317 bool IvarTypeWithAggrGCObjects(QualType Ty); 1318 1319 //===--------------------------------------------------------------------===// 1320 // Block Bits 1321 //===--------------------------------------------------------------------===// 1322 1323 llvm::Value *EmitBlockLiteral(const BlockExpr *); 1324 llvm::Value *EmitBlockLiteral(const CGBlockInfo &Info); 1325 static void destroyBlockInfos(CGBlockInfo *info); 1326 llvm::Constant *BuildDescriptorBlockDecl(const BlockExpr *, 1327 const CGBlockInfo &Info, 1328 llvm::StructType *, 1329 llvm::Constant *BlockVarLayout); 1330 1331 llvm::Function *GenerateBlockFunction(GlobalDecl GD, 1332 const CGBlockInfo &Info, 1333 const Decl *OuterFuncDecl, 1334 const DeclMapTy &ldm); 1335 1336 llvm::Constant *GenerateCopyHelperFunction(const CGBlockInfo &blockInfo); 1337 llvm::Constant *GenerateDestroyHelperFunction(const CGBlockInfo &blockInfo); 1338 llvm::Constant *GenerateObjCAtomicCopyHelperFunction( 1339 const ObjCPropertyImplDecl *PID, 1340 bool forSetter); 1341 1342 void BuildBlockRelease(llvm::Value *DeclPtr, BlockFieldFlags flags); 1343 1344 class AutoVarEmission; 1345 1346 void emitByrefStructureInit(const AutoVarEmission &emission); 1347 void enterByrefCleanup(const AutoVarEmission &emission); 1348 1349 llvm::Value *LoadBlockStruct() { 1350 assert(BlockPointer && "no block pointer set!"); 1351 return BlockPointer; 1352 } 1353 1354 void AllocateBlockCXXThisPointer(const CXXThisExpr *E); 1355 void AllocateBlockDecl(const BlockDeclRefExpr *E); 1356 llvm::Value *GetAddrOfBlockDecl(const BlockDeclRefExpr *E) { 1357 return GetAddrOfBlockDecl(E->getDecl(), E->isByRef()); 1358 } 1359 llvm::Value *GetAddrOfBlockDecl(const VarDecl *var, bool ByRef); 1360 llvm::Type *BuildByRefType(const VarDecl *var); 1361 1362 void GenerateCode(GlobalDecl GD, llvm::Function *Fn, 1363 const CGFunctionInfo &FnInfo); 1364 void StartFunction(GlobalDecl GD, QualType RetTy, 1365 llvm::Function *Fn, 1366 const CGFunctionInfo &FnInfo, 1367 const FunctionArgList &Args, 1368 SourceLocation StartLoc); 1369 1370 void EmitConstructorBody(FunctionArgList &Args); 1371 void EmitDestructorBody(FunctionArgList &Args); 1372 void EmitFunctionBody(FunctionArgList &Args); 1373 1374 /// EmitReturnBlock - Emit the unified return block, trying to avoid its 1375 /// emission when possible. 1376 void EmitReturnBlock(); 1377 1378 /// FinishFunction - Complete IR generation of the current function. It is 1379 /// legal to call this function even if there is no current insertion point. 1380 void FinishFunction(SourceLocation EndLoc=SourceLocation()); 1381 1382 /// GenerateThunk - Generate a thunk for the given method. 1383 void GenerateThunk(llvm::Function *Fn, const CGFunctionInfo &FnInfo, 1384 GlobalDecl GD, const ThunkInfo &Thunk); 1385 1386 void GenerateVarArgsThunk(llvm::Function *Fn, const CGFunctionInfo &FnInfo, 1387 GlobalDecl GD, const ThunkInfo &Thunk); 1388 1389 void EmitCtorPrologue(const CXXConstructorDecl *CD, CXXCtorType Type, 1390 FunctionArgList &Args); 1391 1392 /// InitializeVTablePointer - Initialize the vtable pointer of the given 1393 /// subobject. 1394 /// 1395 void InitializeVTablePointer(BaseSubobject Base, 1396 const CXXRecordDecl *NearestVBase, 1397 CharUnits OffsetFromNearestVBase, 1398 llvm::Constant *VTable, 1399 const CXXRecordDecl *VTableClass); 1400 1401 typedef llvm::SmallPtrSet<const CXXRecordDecl *, 4> VisitedVirtualBasesSetTy; 1402 void InitializeVTablePointers(BaseSubobject Base, 1403 const CXXRecordDecl *NearestVBase, 1404 CharUnits OffsetFromNearestVBase, 1405 bool BaseIsNonVirtualPrimaryBase, 1406 llvm::Constant *VTable, 1407 const CXXRecordDecl *VTableClass, 1408 VisitedVirtualBasesSetTy& VBases); 1409 1410 void InitializeVTablePointers(const CXXRecordDecl *ClassDecl); 1411 1412 /// GetVTablePtr - Return the Value of the vtable pointer member pointed 1413 /// to by This. 1414 llvm::Value *GetVTablePtr(llvm::Value *This, llvm::Type *Ty); 1415 1416 /// EnterDtorCleanups - Enter the cleanups necessary to complete the 1417 /// given phase of destruction for a destructor. The end result 1418 /// should call destructors on members and base classes in reverse 1419 /// order of their construction. 1420 void EnterDtorCleanups(const CXXDestructorDecl *Dtor, CXXDtorType Type); 1421 1422 /// ShouldInstrumentFunction - Return true if the current function should be 1423 /// instrumented with __cyg_profile_func_* calls 1424 bool ShouldInstrumentFunction(); 1425 1426 /// EmitFunctionInstrumentation - Emit LLVM code to call the specified 1427 /// instrumentation function with the current function and the call site, if 1428 /// function instrumentation is enabled. 1429 void EmitFunctionInstrumentation(const char *Fn); 1430 1431 /// EmitMCountInstrumentation - Emit call to .mcount. 1432 void EmitMCountInstrumentation(); 1433 1434 /// EmitFunctionProlog - Emit the target specific LLVM code to load the 1435 /// arguments for the given function. This is also responsible for naming the 1436 /// LLVM function arguments. 1437 void EmitFunctionProlog(const CGFunctionInfo &FI, 1438 llvm::Function *Fn, 1439 const FunctionArgList &Args); 1440 1441 /// EmitFunctionEpilog - Emit the target specific LLVM code to return the 1442 /// given temporary. 1443 void EmitFunctionEpilog(const CGFunctionInfo &FI); 1444 1445 /// EmitStartEHSpec - Emit the start of the exception spec. 1446 void EmitStartEHSpec(const Decl *D); 1447 1448 /// EmitEndEHSpec - Emit the end of the exception spec. 1449 void EmitEndEHSpec(const Decl *D); 1450 1451 /// getTerminateLandingPad - Return a landing pad that just calls terminate. 1452 llvm::BasicBlock *getTerminateLandingPad(); 1453 1454 /// getTerminateHandler - Return a handler (not a landing pad, just 1455 /// a catch handler) that just calls terminate. This is used when 1456 /// a terminate scope encloses a try. 1457 llvm::BasicBlock *getTerminateHandler(); 1458 1459 llvm::Type *ConvertTypeForMem(QualType T); 1460 llvm::Type *ConvertType(QualType T); 1461 llvm::Type *ConvertType(const TypeDecl *T) { 1462 return ConvertType(getContext().getTypeDeclType(T)); 1463 } 1464 1465 /// LoadObjCSelf - Load the value of self. This function is only valid while 1466 /// generating code for an Objective-C method. 1467 llvm::Value *LoadObjCSelf(); 1468 1469 /// TypeOfSelfObject - Return type of object that this self represents. 1470 QualType TypeOfSelfObject(); 1471 1472 /// hasAggregateLLVMType - Return true if the specified AST type will map into 1473 /// an aggregate LLVM type or is void. 1474 static bool hasAggregateLLVMType(QualType T); 1475 1476 /// createBasicBlock - Create an LLVM basic block. 1477 llvm::BasicBlock *createBasicBlock(StringRef name = "", 1478 llvm::Function *parent = 0, 1479 llvm::BasicBlock *before = 0) { 1480 #ifdef NDEBUG 1481 return llvm::BasicBlock::Create(getLLVMContext(), "", parent, before); 1482 #else 1483 return llvm::BasicBlock::Create(getLLVMContext(), name, parent, before); 1484 #endif 1485 } 1486 1487 /// getBasicBlockForLabel - Return the LLVM basicblock that the specified 1488 /// label maps to. 1489 JumpDest getJumpDestForLabel(const LabelDecl *S); 1490 1491 /// SimplifyForwardingBlocks - If the given basic block is only a branch to 1492 /// another basic block, simplify it. This assumes that no other code could 1493 /// potentially reference the basic block. 1494 void SimplifyForwardingBlocks(llvm::BasicBlock *BB); 1495 1496 /// EmitBlock - Emit the given block \arg BB and set it as the insert point, 1497 /// adding a fall-through branch from the current insert block if 1498 /// necessary. It is legal to call this function even if there is no current 1499 /// insertion point. 1500 /// 1501 /// IsFinished - If true, indicates that the caller has finished emitting 1502 /// branches to the given block and does not expect to emit code into it. This 1503 /// means the block can be ignored if it is unreachable. 1504 void EmitBlock(llvm::BasicBlock *BB, bool IsFinished=false); 1505 1506 /// EmitBlockAfterUses - Emit the given block somewhere hopefully 1507 /// near its uses, and leave the insertion point in it. 1508 void EmitBlockAfterUses(llvm::BasicBlock *BB); 1509 1510 /// EmitBranch - Emit a branch to the specified basic block from the current 1511 /// insert block, taking care to avoid creation of branches from dummy 1512 /// blocks. It is legal to call this function even if there is no current 1513 /// insertion point. 1514 /// 1515 /// This function clears the current insertion point. The caller should follow 1516 /// calls to this function with calls to Emit*Block prior to generation new 1517 /// code. 1518 void EmitBranch(llvm::BasicBlock *Block); 1519 1520 /// HaveInsertPoint - True if an insertion point is defined. If not, this 1521 /// indicates that the current code being emitted is unreachable. 1522 bool HaveInsertPoint() const { 1523 return Builder.GetInsertBlock() != 0; 1524 } 1525 1526 /// EnsureInsertPoint - Ensure that an insertion point is defined so that 1527 /// emitted IR has a place to go. Note that by definition, if this function 1528 /// creates a block then that block is unreachable; callers may do better to 1529 /// detect when no insertion point is defined and simply skip IR generation. 1530 void EnsureInsertPoint() { 1531 if (!HaveInsertPoint()) 1532 EmitBlock(createBasicBlock()); 1533 } 1534 1535 /// ErrorUnsupported - Print out an error that codegen doesn't support the 1536 /// specified stmt yet. 1537 void ErrorUnsupported(const Stmt *S, const char *Type, 1538 bool OmitOnError=false); 1539 1540 //===--------------------------------------------------------------------===// 1541 // Helpers 1542 //===--------------------------------------------------------------------===// 1543 1544 LValue MakeAddrLValue(llvm::Value *V, QualType T, 1545 CharUnits Alignment = CharUnits()) { 1546 return LValue::MakeAddr(V, T, Alignment, getContext(), 1547 CGM.getTBAAInfo(T)); 1548 } 1549 LValue MakeNaturalAlignAddrLValue(llvm::Value *V, QualType T) { 1550 CharUnits Alignment; 1551 if (!T->isIncompleteType()) 1552 Alignment = getContext().getTypeAlignInChars(T); 1553 return LValue::MakeAddr(V, T, Alignment, getContext(), 1554 CGM.getTBAAInfo(T)); 1555 } 1556 1557 /// CreateTempAlloca - This creates a alloca and inserts it into the entry 1558 /// block. The caller is responsible for setting an appropriate alignment on 1559 /// the alloca. 1560 llvm::AllocaInst *CreateTempAlloca(llvm::Type *Ty, 1561 const Twine &Name = "tmp"); 1562 1563 /// InitTempAlloca - Provide an initial value for the given alloca. 1564 void InitTempAlloca(llvm::AllocaInst *Alloca, llvm::Value *Value); 1565 1566 /// CreateIRTemp - Create a temporary IR object of the given type, with 1567 /// appropriate alignment. This routine should only be used when an temporary 1568 /// value needs to be stored into an alloca (for example, to avoid explicit 1569 /// PHI construction), but the type is the IR type, not the type appropriate 1570 /// for storing in memory. 1571 llvm::AllocaInst *CreateIRTemp(QualType T, const Twine &Name = "tmp"); 1572 1573 /// CreateMemTemp - Create a temporary memory object of the given type, with 1574 /// appropriate alignment. 1575 llvm::AllocaInst *CreateMemTemp(QualType T, const Twine &Name = "tmp"); 1576 1577 /// CreateAggTemp - Create a temporary memory object for the given 1578 /// aggregate type. 1579 AggValueSlot CreateAggTemp(QualType T, const Twine &Name = "tmp") { 1580 CharUnits Alignment = getContext().getTypeAlignInChars(T); 1581 return AggValueSlot::forAddr(CreateMemTemp(T, Name), Alignment, 1582 T.getQualifiers(), 1583 AggValueSlot::IsNotDestructed, 1584 AggValueSlot::DoesNotNeedGCBarriers, 1585 AggValueSlot::IsNotAliased); 1586 } 1587 1588 /// Emit a cast to void* in the appropriate address space. 1589 llvm::Value *EmitCastToVoidPtr(llvm::Value *value); 1590 1591 /// EvaluateExprAsBool - Perform the usual unary conversions on the specified 1592 /// expression and compare the result against zero, returning an Int1Ty value. 1593 llvm::Value *EvaluateExprAsBool(const Expr *E); 1594 1595 /// EmitIgnoredExpr - Emit an expression in a context which ignores the result. 1596 void EmitIgnoredExpr(const Expr *E); 1597 1598 /// EmitAnyExpr - Emit code to compute the specified expression which can have 1599 /// any type. The result is returned as an RValue struct. If this is an 1600 /// aggregate expression, the aggloc/agglocvolatile arguments indicate where 1601 /// the result should be returned. 1602 /// 1603 /// \param IgnoreResult - True if the resulting value isn't used. 1604 RValue EmitAnyExpr(const Expr *E, 1605 AggValueSlot AggSlot = AggValueSlot::ignored(), 1606 bool IgnoreResult = false); 1607 1608 // EmitVAListRef - Emit a "reference" to a va_list; this is either the address 1609 // or the value of the expression, depending on how va_list is defined. 1610 llvm::Value *EmitVAListRef(const Expr *E); 1611 1612 /// EmitAnyExprToTemp - Similary to EmitAnyExpr(), however, the result will 1613 /// always be accessible even if no aggregate location is provided. 1614 RValue EmitAnyExprToTemp(const Expr *E); 1615 1616 /// EmitAnyExprToMem - Emits the code necessary to evaluate an 1617 /// arbitrary expression into the given memory location. 1618 void EmitAnyExprToMem(const Expr *E, llvm::Value *Location, 1619 Qualifiers Quals, bool IsInitializer); 1620 1621 /// EmitExprAsInit - Emits the code necessary to initialize a 1622 /// location in memory with the given initializer. 1623 void EmitExprAsInit(const Expr *init, const ValueDecl *D, 1624 LValue lvalue, bool capturedByInit); 1625 1626 /// EmitAggregateCopy - Emit an aggrate copy. 1627 /// 1628 /// \param isVolatile - True iff either the source or the destination is 1629 /// volatile. 1630 void EmitAggregateCopy(llvm::Value *DestPtr, llvm::Value *SrcPtr, 1631 QualType EltTy, bool isVolatile=false, 1632 unsigned Alignment = 0); 1633 1634 /// StartBlock - Start new block named N. If insert block is a dummy block 1635 /// then reuse it. 1636 void StartBlock(const char *N); 1637 1638 /// GetAddrOfStaticLocalVar - Return the address of a static local variable. 1639 llvm::Constant *GetAddrOfStaticLocalVar(const VarDecl *BVD) { 1640 return cast<llvm::Constant>(GetAddrOfLocalVar(BVD)); 1641 } 1642 1643 /// GetAddrOfLocalVar - Return the address of a local variable. 1644 llvm::Value *GetAddrOfLocalVar(const VarDecl *VD) { 1645 llvm::Value *Res = LocalDeclMap[VD]; 1646 assert(Res && "Invalid argument to GetAddrOfLocalVar(), no decl!"); 1647 return Res; 1648 } 1649 1650 /// getOpaqueLValueMapping - Given an opaque value expression (which 1651 /// must be mapped to an l-value), return its mapping. 1652 const LValue &getOpaqueLValueMapping(const OpaqueValueExpr *e) { 1653 assert(OpaqueValueMapping::shouldBindAsLValue(e)); 1654 1655 llvm::DenseMap<const OpaqueValueExpr*,LValue>::iterator 1656 it = OpaqueLValues.find(e); 1657 assert(it != OpaqueLValues.end() && "no mapping for opaque value!"); 1658 return it->second; 1659 } 1660 1661 /// getOpaqueRValueMapping - Given an opaque value expression (which 1662 /// must be mapped to an r-value), return its mapping. 1663 const RValue &getOpaqueRValueMapping(const OpaqueValueExpr *e) { 1664 assert(!OpaqueValueMapping::shouldBindAsLValue(e)); 1665 1666 llvm::DenseMap<const OpaqueValueExpr*,RValue>::iterator 1667 it = OpaqueRValues.find(e); 1668 assert(it != OpaqueRValues.end() && "no mapping for opaque value!"); 1669 return it->second; 1670 } 1671 1672 /// getAccessedFieldNo - Given an encoded value and a result number, return 1673 /// the input field number being accessed. 1674 static unsigned getAccessedFieldNo(unsigned Idx, const llvm::Constant *Elts); 1675 1676 llvm::BlockAddress *GetAddrOfLabel(const LabelDecl *L); 1677 llvm::BasicBlock *GetIndirectGotoBlock(); 1678 1679 /// EmitNullInitialization - Generate code to set a value of the given type to 1680 /// null, If the type contains data member pointers, they will be initialized 1681 /// to -1 in accordance with the Itanium C++ ABI. 1682 void EmitNullInitialization(llvm::Value *DestPtr, QualType Ty); 1683 1684 // EmitVAArg - Generate code to get an argument from the passed in pointer 1685 // and update it accordingly. The return value is a pointer to the argument. 1686 // FIXME: We should be able to get rid of this method and use the va_arg 1687 // instruction in LLVM instead once it works well enough. 1688 llvm::Value *EmitVAArg(llvm::Value *VAListAddr, QualType Ty); 1689 1690 /// emitArrayLength - Compute the length of an array, even if it's a 1691 /// VLA, and drill down to the base element type. 1692 llvm::Value *emitArrayLength(const ArrayType *arrayType, 1693 QualType &baseType, 1694 llvm::Value *&addr); 1695 1696 /// EmitVLASize - Capture all the sizes for the VLA expressions in 1697 /// the given variably-modified type and store them in the VLASizeMap. 1698 /// 1699 /// This function can be called with a null (unreachable) insert point. 1700 void EmitVariablyModifiedType(QualType Ty); 1701 1702 /// getVLASize - Returns an LLVM value that corresponds to the size, 1703 /// in non-variably-sized elements, of a variable length array type, 1704 /// plus that largest non-variably-sized element type. Assumes that 1705 /// the type has already been emitted with EmitVariablyModifiedType. 1706 std::pair<llvm::Value*,QualType> getVLASize(const VariableArrayType *vla); 1707 std::pair<llvm::Value*,QualType> getVLASize(QualType vla); 1708 1709 /// LoadCXXThis - Load the value of 'this'. This function is only valid while 1710 /// generating code for an C++ member function. 1711 llvm::Value *LoadCXXThis() { 1712 assert(CXXThisValue && "no 'this' value for this function"); 1713 return CXXThisValue; 1714 } 1715 1716 /// LoadCXXVTT - Load the VTT parameter to base constructors/destructors have 1717 /// virtual bases. 1718 llvm::Value *LoadCXXVTT() { 1719 assert(CXXVTTValue && "no VTT value for this function"); 1720 return CXXVTTValue; 1721 } 1722 1723 /// GetAddressOfBaseOfCompleteClass - Convert the given pointer to a 1724 /// complete class to the given direct base. 1725 llvm::Value * 1726 GetAddressOfDirectBaseInCompleteClass(llvm::Value *Value, 1727 const CXXRecordDecl *Derived, 1728 const CXXRecordDecl *Base, 1729 bool BaseIsVirtual); 1730 1731 /// GetAddressOfBaseClass - This function will add the necessary delta to the 1732 /// load of 'this' and returns address of the base class. 1733 llvm::Value *GetAddressOfBaseClass(llvm::Value *Value, 1734 const CXXRecordDecl *Derived, 1735 CastExpr::path_const_iterator PathBegin, 1736 CastExpr::path_const_iterator PathEnd, 1737 bool NullCheckValue); 1738 1739 llvm::Value *GetAddressOfDerivedClass(llvm::Value *Value, 1740 const CXXRecordDecl *Derived, 1741 CastExpr::path_const_iterator PathBegin, 1742 CastExpr::path_const_iterator PathEnd, 1743 bool NullCheckValue); 1744 1745 llvm::Value *GetVirtualBaseClassOffset(llvm::Value *This, 1746 const CXXRecordDecl *ClassDecl, 1747 const CXXRecordDecl *BaseClassDecl); 1748 1749 void EmitDelegateCXXConstructorCall(const CXXConstructorDecl *Ctor, 1750 CXXCtorType CtorType, 1751 const FunctionArgList &Args); 1752 // It's important not to confuse this and the previous function. Delegating 1753 // constructors are the C++0x feature. The constructor delegate optimization 1754 // is used to reduce duplication in the base and complete consturctors where 1755 // they are substantially the same. 1756 void EmitDelegatingCXXConstructorCall(const CXXConstructorDecl *Ctor, 1757 const FunctionArgList &Args); 1758 void EmitCXXConstructorCall(const CXXConstructorDecl *D, CXXCtorType Type, 1759 bool ForVirtualBase, llvm::Value *This, 1760 CallExpr::const_arg_iterator ArgBeg, 1761 CallExpr::const_arg_iterator ArgEnd); 1762 1763 void EmitSynthesizedCXXCopyCtorCall(const CXXConstructorDecl *D, 1764 llvm::Value *This, llvm::Value *Src, 1765 CallExpr::const_arg_iterator ArgBeg, 1766 CallExpr::const_arg_iterator ArgEnd); 1767 1768 void EmitCXXAggrConstructorCall(const CXXConstructorDecl *D, 1769 const ConstantArrayType *ArrayTy, 1770 llvm::Value *ArrayPtr, 1771 CallExpr::const_arg_iterator ArgBeg, 1772 CallExpr::const_arg_iterator ArgEnd, 1773 bool ZeroInitialization = false); 1774 1775 void EmitCXXAggrConstructorCall(const CXXConstructorDecl *D, 1776 llvm::Value *NumElements, 1777 llvm::Value *ArrayPtr, 1778 CallExpr::const_arg_iterator ArgBeg, 1779 CallExpr::const_arg_iterator ArgEnd, 1780 bool ZeroInitialization = false); 1781 1782 static Destroyer destroyCXXObject; 1783 1784 void EmitCXXDestructorCall(const CXXDestructorDecl *D, CXXDtorType Type, 1785 bool ForVirtualBase, llvm::Value *This); 1786 1787 void EmitNewArrayInitializer(const CXXNewExpr *E, QualType elementType, 1788 llvm::Value *NewPtr, llvm::Value *NumElements); 1789 1790 void EmitCXXTemporary(const CXXTemporary *Temporary, QualType TempType, 1791 llvm::Value *Ptr); 1792 1793 llvm::Value *EmitCXXNewExpr(const CXXNewExpr *E); 1794 void EmitCXXDeleteExpr(const CXXDeleteExpr *E); 1795 1796 void EmitDeleteCall(const FunctionDecl *DeleteFD, llvm::Value *Ptr, 1797 QualType DeleteTy); 1798 1799 llvm::Value* EmitCXXTypeidExpr(const CXXTypeidExpr *E); 1800 llvm::Value *EmitDynamicCast(llvm::Value *V, const CXXDynamicCastExpr *DCE); 1801 1802 void EmitCheck(llvm::Value *, unsigned Size); 1803 1804 llvm::Value *EmitScalarPrePostIncDec(const UnaryOperator *E, LValue LV, 1805 bool isInc, bool isPre); 1806 ComplexPairTy EmitComplexPrePostIncDec(const UnaryOperator *E, LValue LV, 1807 bool isInc, bool isPre); 1808 //===--------------------------------------------------------------------===// 1809 // Declaration Emission 1810 //===--------------------------------------------------------------------===// 1811 1812 /// EmitDecl - Emit a declaration. 1813 /// 1814 /// This function can be called with a null (unreachable) insert point. 1815 void EmitDecl(const Decl &D); 1816 1817 /// EmitVarDecl - Emit a local variable declaration. 1818 /// 1819 /// This function can be called with a null (unreachable) insert point. 1820 void EmitVarDecl(const VarDecl &D); 1821 1822 void EmitScalarInit(const Expr *init, const ValueDecl *D, 1823 LValue lvalue, bool capturedByInit); 1824 void EmitScalarInit(llvm::Value *init, LValue lvalue); 1825 1826 typedef void SpecialInitFn(CodeGenFunction &Init, const VarDecl &D, 1827 llvm::Value *Address); 1828 1829 /// EmitAutoVarDecl - Emit an auto variable declaration. 1830 /// 1831 /// This function can be called with a null (unreachable) insert point. 1832 void EmitAutoVarDecl(const VarDecl &D); 1833 1834 class AutoVarEmission { 1835 friend class CodeGenFunction; 1836 1837 const VarDecl *Variable; 1838 1839 /// The alignment of the variable. 1840 CharUnits Alignment; 1841 1842 /// The address of the alloca. Null if the variable was emitted 1843 /// as a global constant. 1844 llvm::Value *Address; 1845 1846 llvm::Value *NRVOFlag; 1847 1848 /// True if the variable is a __block variable. 1849 bool IsByRef; 1850 1851 /// True if the variable is of aggregate type and has a constant 1852 /// initializer. 1853 bool IsConstantAggregate; 1854 1855 struct Invalid {}; 1856 AutoVarEmission(Invalid) : Variable(0) {} 1857 1858 AutoVarEmission(const VarDecl &variable) 1859 : Variable(&variable), Address(0), NRVOFlag(0), 1860 IsByRef(false), IsConstantAggregate(false) {} 1861 1862 bool wasEmittedAsGlobal() const { return Address == 0; } 1863 1864 public: 1865 static AutoVarEmission invalid() { return AutoVarEmission(Invalid()); } 1866 1867 /// Returns the address of the object within this declaration. 1868 /// Note that this does not chase the forwarding pointer for 1869 /// __block decls. 1870 llvm::Value *getObjectAddress(CodeGenFunction &CGF) const { 1871 if (!IsByRef) return Address; 1872 1873 return CGF.Builder.CreateStructGEP(Address, 1874 CGF.getByRefValueLLVMField(Variable), 1875 Variable->getNameAsString()); 1876 } 1877 }; 1878 AutoVarEmission EmitAutoVarAlloca(const VarDecl &var); 1879 void EmitAutoVarInit(const AutoVarEmission &emission); 1880 void EmitAutoVarCleanups(const AutoVarEmission &emission); 1881 void emitAutoVarTypeCleanup(const AutoVarEmission &emission, 1882 QualType::DestructionKind dtorKind); 1883 1884 void EmitStaticVarDecl(const VarDecl &D, 1885 llvm::GlobalValue::LinkageTypes Linkage); 1886 1887 /// EmitParmDecl - Emit a ParmVarDecl or an ImplicitParamDecl. 1888 void EmitParmDecl(const VarDecl &D, llvm::Value *Arg, unsigned ArgNo); 1889 1890 /// protectFromPeepholes - Protect a value that we're intending to 1891 /// store to the side, but which will probably be used later, from 1892 /// aggressive peepholing optimizations that might delete it. 1893 /// 1894 /// Pass the result to unprotectFromPeepholes to declare that 1895 /// protection is no longer required. 1896 /// 1897 /// There's no particular reason why this shouldn't apply to 1898 /// l-values, it's just that no existing peepholes work on pointers. 1899 PeepholeProtection protectFromPeepholes(RValue rvalue); 1900 void unprotectFromPeepholes(PeepholeProtection protection); 1901 1902 //===--------------------------------------------------------------------===// 1903 // Statement Emission 1904 //===--------------------------------------------------------------------===// 1905 1906 /// EmitStopPoint - Emit a debug stoppoint if we are emitting debug info. 1907 void EmitStopPoint(const Stmt *S); 1908 1909 /// EmitStmt - Emit the code for the statement \arg S. It is legal to call 1910 /// this function even if there is no current insertion point. 1911 /// 1912 /// This function may clear the current insertion point; callers should use 1913 /// EnsureInsertPoint if they wish to subsequently generate code without first 1914 /// calling EmitBlock, EmitBranch, or EmitStmt. 1915 void EmitStmt(const Stmt *S); 1916 1917 /// EmitSimpleStmt - Try to emit a "simple" statement which does not 1918 /// necessarily require an insertion point or debug information; typically 1919 /// because the statement amounts to a jump or a container of other 1920 /// statements. 1921 /// 1922 /// \return True if the statement was handled. 1923 bool EmitSimpleStmt(const Stmt *S); 1924 1925 RValue EmitCompoundStmt(const CompoundStmt &S, bool GetLast = false, 1926 AggValueSlot AVS = AggValueSlot::ignored()); 1927 1928 /// EmitLabel - Emit the block for the given label. It is legal to call this 1929 /// function even if there is no current insertion point. 1930 void EmitLabel(const LabelDecl *D); // helper for EmitLabelStmt. 1931 1932 void EmitLabelStmt(const LabelStmt &S); 1933 void EmitGotoStmt(const GotoStmt &S); 1934 void EmitIndirectGotoStmt(const IndirectGotoStmt &S); 1935 void EmitIfStmt(const IfStmt &S); 1936 void EmitWhileStmt(const WhileStmt &S); 1937 void EmitDoStmt(const DoStmt &S); 1938 void EmitForStmt(const ForStmt &S); 1939 void EmitReturnStmt(const ReturnStmt &S); 1940 void EmitDeclStmt(const DeclStmt &S); 1941 void EmitBreakStmt(const BreakStmt &S); 1942 void EmitContinueStmt(const ContinueStmt &S); 1943 void EmitSwitchStmt(const SwitchStmt &S); 1944 void EmitDefaultStmt(const DefaultStmt &S); 1945 void EmitCaseStmt(const CaseStmt &S); 1946 void EmitCaseStmtRange(const CaseStmt &S); 1947 void EmitAsmStmt(const AsmStmt &S); 1948 1949 void EmitObjCForCollectionStmt(const ObjCForCollectionStmt &S); 1950 void EmitObjCAtTryStmt(const ObjCAtTryStmt &S); 1951 void EmitObjCAtThrowStmt(const ObjCAtThrowStmt &S); 1952 void EmitObjCAtSynchronizedStmt(const ObjCAtSynchronizedStmt &S); 1953 void EmitObjCAutoreleasePoolStmt(const ObjCAutoreleasePoolStmt &S); 1954 1955 llvm::Constant *getUnwindResumeFn(); 1956 llvm::Constant *getUnwindResumeOrRethrowFn(); 1957 void EnterCXXTryStmt(const CXXTryStmt &S, bool IsFnTryBlock = false); 1958 void ExitCXXTryStmt(const CXXTryStmt &S, bool IsFnTryBlock = false); 1959 1960 void EmitCXXTryStmt(const CXXTryStmt &S); 1961 void EmitCXXForRangeStmt(const CXXForRangeStmt &S); 1962 1963 //===--------------------------------------------------------------------===// 1964 // LValue Expression Emission 1965 //===--------------------------------------------------------------------===// 1966 1967 /// GetUndefRValue - Get an appropriate 'undef' rvalue for the given type. 1968 RValue GetUndefRValue(QualType Ty); 1969 1970 /// EmitUnsupportedRValue - Emit a dummy r-value using the type of E 1971 /// and issue an ErrorUnsupported style diagnostic (using the 1972 /// provided Name). 1973 RValue EmitUnsupportedRValue(const Expr *E, 1974 const char *Name); 1975 1976 /// EmitUnsupportedLValue - Emit a dummy l-value using the type of E and issue 1977 /// an ErrorUnsupported style diagnostic (using the provided Name). 1978 LValue EmitUnsupportedLValue(const Expr *E, 1979 const char *Name); 1980 1981 /// EmitLValue - Emit code to compute a designator that specifies the location 1982 /// of the expression. 1983 /// 1984 /// This can return one of two things: a simple address or a bitfield 1985 /// reference. In either case, the LLVM Value* in the LValue structure is 1986 /// guaranteed to be an LLVM pointer type. 1987 /// 1988 /// If this returns a bitfield reference, nothing about the pointee type of 1989 /// the LLVM value is known: For example, it may not be a pointer to an 1990 /// integer. 1991 /// 1992 /// If this returns a normal address, and if the lvalue's C type is fixed 1993 /// size, this method guarantees that the returned pointer type will point to 1994 /// an LLVM type of the same size of the lvalue's type. If the lvalue has a 1995 /// variable length type, this is not possible. 1996 /// 1997 LValue EmitLValue(const Expr *E); 1998 1999 /// EmitCheckedLValue - Same as EmitLValue but additionally we generate 2000 /// checking code to guard against undefined behavior. This is only 2001 /// suitable when we know that the address will be used to access the 2002 /// object. 2003 LValue EmitCheckedLValue(const Expr *E); 2004 2005 /// EmitToMemory - Change a scalar value from its value 2006 /// representation to its in-memory representation. 2007 llvm::Value *EmitToMemory(llvm::Value *Value, QualType Ty); 2008 2009 /// EmitFromMemory - Change a scalar value from its memory 2010 /// representation to its value representation. 2011 llvm::Value *EmitFromMemory(llvm::Value *Value, QualType Ty); 2012 2013 /// EmitLoadOfScalar - Load a scalar value from an address, taking 2014 /// care to appropriately convert from the memory representation to 2015 /// the LLVM value representation. 2016 llvm::Value *EmitLoadOfScalar(llvm::Value *Addr, bool Volatile, 2017 unsigned Alignment, QualType Ty, 2018 llvm::MDNode *TBAAInfo = 0); 2019 2020 /// EmitLoadOfScalar - Load a scalar value from an address, taking 2021 /// care to appropriately convert from the memory representation to 2022 /// the LLVM value representation. The l-value must be a simple 2023 /// l-value. 2024 llvm::Value *EmitLoadOfScalar(LValue lvalue); 2025 2026 /// EmitStoreOfScalar - Store a scalar value to an address, taking 2027 /// care to appropriately convert from the memory representation to 2028 /// the LLVM value representation. 2029 void EmitStoreOfScalar(llvm::Value *Value, llvm::Value *Addr, 2030 bool Volatile, unsigned Alignment, QualType Ty, 2031 llvm::MDNode *TBAAInfo = 0); 2032 2033 /// EmitStoreOfScalar - Store a scalar value to an address, taking 2034 /// care to appropriately convert from the memory representation to 2035 /// the LLVM value representation. The l-value must be a simple 2036 /// l-value. 2037 void EmitStoreOfScalar(llvm::Value *value, LValue lvalue); 2038 2039 /// EmitLoadOfLValue - Given an expression that represents a value lvalue, 2040 /// this method emits the address of the lvalue, then loads the result as an 2041 /// rvalue, returning the rvalue. 2042 RValue EmitLoadOfLValue(LValue V); 2043 RValue EmitLoadOfExtVectorElementLValue(LValue V); 2044 RValue EmitLoadOfBitfieldLValue(LValue LV); 2045 2046 /// EmitStoreThroughLValue - Store the specified rvalue into the specified 2047 /// lvalue, where both are guaranteed to the have the same type, and that type 2048 /// is 'Ty'. 2049 void EmitStoreThroughLValue(RValue Src, LValue Dst); 2050 void EmitStoreThroughExtVectorComponentLValue(RValue Src, LValue Dst); 2051 2052 /// EmitStoreThroughLValue - Store Src into Dst with same constraints as 2053 /// EmitStoreThroughLValue. 2054 /// 2055 /// \param Result [out] - If non-null, this will be set to a Value* for the 2056 /// bit-field contents after the store, appropriate for use as the result of 2057 /// an assignment to the bit-field. 2058 void EmitStoreThroughBitfieldLValue(RValue Src, LValue Dst, 2059 llvm::Value **Result=0); 2060 2061 /// Emit an l-value for an assignment (simple or compound) of complex type. 2062 LValue EmitComplexAssignmentLValue(const BinaryOperator *E); 2063 LValue EmitComplexCompoundAssignmentLValue(const CompoundAssignOperator *E); 2064 2065 // Note: only available for agg return types 2066 LValue EmitBinaryOperatorLValue(const BinaryOperator *E); 2067 LValue EmitCompoundAssignmentLValue(const CompoundAssignOperator *E); 2068 // Note: only available for agg return types 2069 LValue EmitCallExprLValue(const CallExpr *E); 2070 // Note: only available for agg return types 2071 LValue EmitVAArgExprLValue(const VAArgExpr *E); 2072 LValue EmitDeclRefLValue(const DeclRefExpr *E); 2073 LValue EmitStringLiteralLValue(const StringLiteral *E); 2074 LValue EmitObjCEncodeExprLValue(const ObjCEncodeExpr *E); 2075 LValue EmitPredefinedLValue(const PredefinedExpr *E); 2076 LValue EmitUnaryOpLValue(const UnaryOperator *E); 2077 LValue EmitArraySubscriptExpr(const ArraySubscriptExpr *E); 2078 LValue EmitExtVectorElementExpr(const ExtVectorElementExpr *E); 2079 LValue EmitMemberExpr(const MemberExpr *E); 2080 LValue EmitObjCIsaExpr(const ObjCIsaExpr *E); 2081 LValue EmitCompoundLiteralLValue(const CompoundLiteralExpr *E); 2082 LValue EmitConditionalOperatorLValue(const AbstractConditionalOperator *E); 2083 LValue EmitCastLValue(const CastExpr *E); 2084 LValue EmitNullInitializationLValue(const CXXScalarValueInitExpr *E); 2085 LValue EmitMaterializeTemporaryExpr(const MaterializeTemporaryExpr *E); 2086 LValue EmitOpaqueValueLValue(const OpaqueValueExpr *e); 2087 2088 RValue EmitPseudoObjectRValue(const PseudoObjectExpr *e, 2089 AggValueSlot slot = AggValueSlot::ignored()); 2090 LValue EmitPseudoObjectLValue(const PseudoObjectExpr *e); 2091 2092 llvm::Value *EmitIvarOffset(const ObjCInterfaceDecl *Interface, 2093 const ObjCIvarDecl *Ivar); 2094 LValue EmitLValueForAnonRecordField(llvm::Value* Base, 2095 const IndirectFieldDecl* Field, 2096 unsigned CVRQualifiers); 2097 LValue EmitLValueForField(llvm::Value* Base, const FieldDecl* Field, 2098 unsigned CVRQualifiers); 2099 2100 /// EmitLValueForFieldInitialization - Like EmitLValueForField, except that 2101 /// if the Field is a reference, this will return the address of the reference 2102 /// and not the address of the value stored in the reference. 2103 LValue EmitLValueForFieldInitialization(llvm::Value* Base, 2104 const FieldDecl* Field, 2105 unsigned CVRQualifiers); 2106 2107 LValue EmitLValueForIvar(QualType ObjectTy, 2108 llvm::Value* Base, const ObjCIvarDecl *Ivar, 2109 unsigned CVRQualifiers); 2110 2111 LValue EmitLValueForBitfield(llvm::Value* Base, const FieldDecl* Field, 2112 unsigned CVRQualifiers); 2113 2114 LValue EmitBlockDeclRefLValue(const BlockDeclRefExpr *E); 2115 2116 LValue EmitCXXConstructLValue(const CXXConstructExpr *E); 2117 LValue EmitCXXBindTemporaryLValue(const CXXBindTemporaryExpr *E); 2118 LValue EmitCXXTypeidLValue(const CXXTypeidExpr *E); 2119 2120 LValue EmitObjCMessageExprLValue(const ObjCMessageExpr *E); 2121 LValue EmitObjCIvarRefLValue(const ObjCIvarRefExpr *E); 2122 LValue EmitStmtExprLValue(const StmtExpr *E); 2123 LValue EmitPointerToDataMemberBinaryExpr(const BinaryOperator *E); 2124 LValue EmitObjCSelectorLValue(const ObjCSelectorExpr *E); 2125 void EmitDeclRefExprDbgValue(const DeclRefExpr *E, llvm::Constant *Init); 2126 2127 //===--------------------------------------------------------------------===// 2128 // Scalar Expression Emission 2129 //===--------------------------------------------------------------------===// 2130 2131 /// EmitCall - Generate a call of the given function, expecting the given 2132 /// result type, and using the given argument list which specifies both the 2133 /// LLVM arguments and the types they were derived from. 2134 /// 2135 /// \param TargetDecl - If given, the decl of the function in a direct call; 2136 /// used to set attributes on the call (noreturn, etc.). 2137 RValue EmitCall(const CGFunctionInfo &FnInfo, 2138 llvm::Value *Callee, 2139 ReturnValueSlot ReturnValue, 2140 const CallArgList &Args, 2141 const Decl *TargetDecl = 0, 2142 llvm::Instruction **callOrInvoke = 0); 2143 2144 RValue EmitCall(QualType FnType, llvm::Value *Callee, 2145 ReturnValueSlot ReturnValue, 2146 CallExpr::const_arg_iterator ArgBeg, 2147 CallExpr::const_arg_iterator ArgEnd, 2148 const Decl *TargetDecl = 0); 2149 RValue EmitCallExpr(const CallExpr *E, 2150 ReturnValueSlot ReturnValue = ReturnValueSlot()); 2151 2152 llvm::CallSite EmitCallOrInvoke(llvm::Value *Callee, 2153 ArrayRef<llvm::Value *> Args, 2154 const Twine &Name = ""); 2155 llvm::CallSite EmitCallOrInvoke(llvm::Value *Callee, 2156 const Twine &Name = ""); 2157 2158 llvm::Value *BuildVirtualCall(const CXXMethodDecl *MD, llvm::Value *This, 2159 llvm::Type *Ty); 2160 llvm::Value *BuildVirtualCall(const CXXDestructorDecl *DD, CXXDtorType Type, 2161 llvm::Value *This, llvm::Type *Ty); 2162 llvm::Value *BuildAppleKextVirtualCall(const CXXMethodDecl *MD, 2163 NestedNameSpecifier *Qual, 2164 llvm::Type *Ty); 2165 2166 llvm::Value *BuildAppleKextVirtualDestructorCall(const CXXDestructorDecl *DD, 2167 CXXDtorType Type, 2168 const CXXRecordDecl *RD); 2169 2170 RValue EmitCXXMemberCall(const CXXMethodDecl *MD, 2171 llvm::Value *Callee, 2172 ReturnValueSlot ReturnValue, 2173 llvm::Value *This, 2174 llvm::Value *VTT, 2175 CallExpr::const_arg_iterator ArgBeg, 2176 CallExpr::const_arg_iterator ArgEnd); 2177 RValue EmitCXXMemberCallExpr(const CXXMemberCallExpr *E, 2178 ReturnValueSlot ReturnValue); 2179 RValue EmitCXXMemberPointerCallExpr(const CXXMemberCallExpr *E, 2180 ReturnValueSlot ReturnValue); 2181 2182 llvm::Value *EmitCXXOperatorMemberCallee(const CXXOperatorCallExpr *E, 2183 const CXXMethodDecl *MD, 2184 llvm::Value *This); 2185 RValue EmitCXXOperatorMemberCallExpr(const CXXOperatorCallExpr *E, 2186 const CXXMethodDecl *MD, 2187 ReturnValueSlot ReturnValue); 2188 2189 RValue EmitCUDAKernelCallExpr(const CUDAKernelCallExpr *E, 2190 ReturnValueSlot ReturnValue); 2191 2192 2193 RValue EmitBuiltinExpr(const FunctionDecl *FD, 2194 unsigned BuiltinID, const CallExpr *E); 2195 2196 RValue EmitBlockCallExpr(const CallExpr *E, ReturnValueSlot ReturnValue); 2197 2198 /// EmitTargetBuiltinExpr - Emit the given builtin call. Returns 0 if the call 2199 /// is unhandled by the current target. 2200 llvm::Value *EmitTargetBuiltinExpr(unsigned BuiltinID, const CallExpr *E); 2201 2202 llvm::Value *EmitARMBuiltinExpr(unsigned BuiltinID, const CallExpr *E); 2203 llvm::Value *EmitNeonCall(llvm::Function *F, 2204 SmallVectorImpl<llvm::Value*> &O, 2205 const char *name, 2206 unsigned shift = 0, bool rightshift = false); 2207 llvm::Value *EmitNeonSplat(llvm::Value *V, llvm::Constant *Idx); 2208 llvm::Value *EmitNeonShiftVector(llvm::Value *V, llvm::Type *Ty, 2209 bool negateForRightShift); 2210 2211 llvm::Value *BuildVector(const SmallVectorImpl<llvm::Value*> &Ops); 2212 llvm::Value *EmitX86BuiltinExpr(unsigned BuiltinID, const CallExpr *E); 2213 llvm::Value *EmitHexagonBuiltinExpr(unsigned BuiltinID, const CallExpr *E); 2214 llvm::Value *EmitPPCBuiltinExpr(unsigned BuiltinID, const CallExpr *E); 2215 2216 llvm::Value *EmitObjCProtocolExpr(const ObjCProtocolExpr *E); 2217 llvm::Value *EmitObjCStringLiteral(const ObjCStringLiteral *E); 2218 llvm::Value *EmitObjCSelectorExpr(const ObjCSelectorExpr *E); 2219 RValue EmitObjCMessageExpr(const ObjCMessageExpr *E, 2220 ReturnValueSlot Return = ReturnValueSlot()); 2221 2222 /// Retrieves the default cleanup kind for an ARC cleanup. 2223 /// Except under -fobjc-arc-eh, ARC cleanups are normal-only. 2224 CleanupKind getARCCleanupKind() { 2225 return CGM.getCodeGenOpts().ObjCAutoRefCountExceptions 2226 ? NormalAndEHCleanup : NormalCleanup; 2227 } 2228 2229 // ARC primitives. 2230 void EmitARCInitWeak(llvm::Value *value, llvm::Value *addr); 2231 void EmitARCDestroyWeak(llvm::Value *addr); 2232 llvm::Value *EmitARCLoadWeak(llvm::Value *addr); 2233 llvm::Value *EmitARCLoadWeakRetained(llvm::Value *addr); 2234 llvm::Value *EmitARCStoreWeak(llvm::Value *value, llvm::Value *addr, 2235 bool ignored); 2236 void EmitARCCopyWeak(llvm::Value *dst, llvm::Value *src); 2237 void EmitARCMoveWeak(llvm::Value *dst, llvm::Value *src); 2238 llvm::Value *EmitARCRetainAutorelease(QualType type, llvm::Value *value); 2239 llvm::Value *EmitARCRetainAutoreleaseNonBlock(llvm::Value *value); 2240 llvm::Value *EmitARCStoreStrong(LValue lvalue, llvm::Value *value, 2241 bool ignored); 2242 llvm::Value *EmitARCStoreStrongCall(llvm::Value *addr, llvm::Value *value, 2243 bool ignored); 2244 llvm::Value *EmitARCRetain(QualType type, llvm::Value *value); 2245 llvm::Value *EmitARCRetainNonBlock(llvm::Value *value); 2246 llvm::Value *EmitARCRetainBlock(llvm::Value *value, bool mandatory); 2247 void EmitARCRelease(llvm::Value *value, bool precise); 2248 llvm::Value *EmitARCAutorelease(llvm::Value *value); 2249 llvm::Value *EmitARCAutoreleaseReturnValue(llvm::Value *value); 2250 llvm::Value *EmitARCRetainAutoreleaseReturnValue(llvm::Value *value); 2251 llvm::Value *EmitARCRetainAutoreleasedReturnValue(llvm::Value *value); 2252 2253 std::pair<LValue,llvm::Value*> 2254 EmitARCStoreAutoreleasing(const BinaryOperator *e); 2255 std::pair<LValue,llvm::Value*> 2256 EmitARCStoreStrong(const BinaryOperator *e, bool ignored); 2257 2258 llvm::Value *EmitObjCThrowOperand(const Expr *expr); 2259 2260 llvm::Value *EmitObjCProduceObject(QualType T, llvm::Value *Ptr); 2261 llvm::Value *EmitObjCConsumeObject(QualType T, llvm::Value *Ptr); 2262 llvm::Value *EmitObjCExtendObjectLifetime(QualType T, llvm::Value *Ptr); 2263 2264 llvm::Value *EmitARCExtendBlockObject(const Expr *expr); 2265 llvm::Value *EmitARCRetainScalarExpr(const Expr *expr); 2266 llvm::Value *EmitARCRetainAutoreleaseScalarExpr(const Expr *expr); 2267 2268 static Destroyer destroyARCStrongImprecise; 2269 static Destroyer destroyARCStrongPrecise; 2270 static Destroyer destroyARCWeak; 2271 2272 void EmitObjCAutoreleasePoolPop(llvm::Value *Ptr); 2273 llvm::Value *EmitObjCAutoreleasePoolPush(); 2274 llvm::Value *EmitObjCMRRAutoreleasePoolPush(); 2275 void EmitObjCAutoreleasePoolCleanup(llvm::Value *Ptr); 2276 void EmitObjCMRRAutoreleasePoolPop(llvm::Value *Ptr); 2277 2278 /// EmitReferenceBindingToExpr - Emits a reference binding to the passed in 2279 /// expression. Will emit a temporary variable if E is not an LValue. 2280 RValue EmitReferenceBindingToExpr(const Expr* E, 2281 const NamedDecl *InitializedDecl); 2282 2283 //===--------------------------------------------------------------------===// 2284 // Expression Emission 2285 //===--------------------------------------------------------------------===// 2286 2287 // Expressions are broken into three classes: scalar, complex, aggregate. 2288 2289 /// EmitScalarExpr - Emit the computation of the specified expression of LLVM 2290 /// scalar type, returning the result. 2291 llvm::Value *EmitScalarExpr(const Expr *E , bool IgnoreResultAssign = false); 2292 2293 /// EmitScalarConversion - Emit a conversion from the specified type to the 2294 /// specified destination type, both of which are LLVM scalar types. 2295 llvm::Value *EmitScalarConversion(llvm::Value *Src, QualType SrcTy, 2296 QualType DstTy); 2297 2298 /// EmitComplexToScalarConversion - Emit a conversion from the specified 2299 /// complex type to the specified destination type, where the destination type 2300 /// is an LLVM scalar type. 2301 llvm::Value *EmitComplexToScalarConversion(ComplexPairTy Src, QualType SrcTy, 2302 QualType DstTy); 2303 2304 2305 /// EmitAggExpr - Emit the computation of the specified expression 2306 /// of aggregate type. The result is computed into the given slot, 2307 /// which may be null to indicate that the value is not needed. 2308 void EmitAggExpr(const Expr *E, AggValueSlot AS, bool IgnoreResult = false); 2309 2310 /// EmitAggExprToLValue - Emit the computation of the specified expression of 2311 /// aggregate type into a temporary LValue. 2312 LValue EmitAggExprToLValue(const Expr *E); 2313 2314 /// EmitGCMemmoveCollectable - Emit special API for structs with object 2315 /// pointers. 2316 void EmitGCMemmoveCollectable(llvm::Value *DestPtr, llvm::Value *SrcPtr, 2317 QualType Ty); 2318 2319 /// EmitExtendGCLifetime - Given a pointer to an Objective-C object, 2320 /// make sure it survives garbage collection until this point. 2321 void EmitExtendGCLifetime(llvm::Value *object); 2322 2323 /// EmitComplexExpr - Emit the computation of the specified expression of 2324 /// complex type, returning the result. 2325 ComplexPairTy EmitComplexExpr(const Expr *E, 2326 bool IgnoreReal = false, 2327 bool IgnoreImag = false); 2328 2329 /// EmitComplexExprIntoAddr - Emit the computation of the specified expression 2330 /// of complex type, storing into the specified Value*. 2331 void EmitComplexExprIntoAddr(const Expr *E, llvm::Value *DestAddr, 2332 bool DestIsVolatile); 2333 2334 /// StoreComplexToAddr - Store a complex number into the specified address. 2335 void StoreComplexToAddr(ComplexPairTy V, llvm::Value *DestAddr, 2336 bool DestIsVolatile); 2337 /// LoadComplexFromAddr - Load a complex number from the specified address. 2338 ComplexPairTy LoadComplexFromAddr(llvm::Value *SrcAddr, bool SrcIsVolatile); 2339 2340 /// CreateStaticVarDecl - Create a zero-initialized LLVM global for 2341 /// a static local variable. 2342 llvm::GlobalVariable *CreateStaticVarDecl(const VarDecl &D, 2343 const char *Separator, 2344 llvm::GlobalValue::LinkageTypes Linkage); 2345 2346 /// AddInitializerToStaticVarDecl - Add the initializer for 'D' to the 2347 /// global variable that has already been created for it. If the initializer 2348 /// has a different type than GV does, this may free GV and return a different 2349 /// one. Otherwise it just returns GV. 2350 llvm::GlobalVariable * 2351 AddInitializerToStaticVarDecl(const VarDecl &D, 2352 llvm::GlobalVariable *GV); 2353 2354 2355 /// EmitCXXGlobalVarDeclInit - Create the initializer for a C++ 2356 /// variable with global storage. 2357 void EmitCXXGlobalVarDeclInit(const VarDecl &D, llvm::Constant *DeclPtr); 2358 2359 /// EmitCXXGlobalDtorRegistration - Emits a call to register the global ptr 2360 /// with the C++ runtime so that its destructor will be called at exit. 2361 void EmitCXXGlobalDtorRegistration(llvm::Constant *DtorFn, 2362 llvm::Constant *DeclPtr); 2363 2364 /// Emit code in this function to perform a guarded variable 2365 /// initialization. Guarded initializations are used when it's not 2366 /// possible to prove that an initialization will be done exactly 2367 /// once, e.g. with a static local variable or a static data member 2368 /// of a class template. 2369 void EmitCXXGuardedInit(const VarDecl &D, llvm::GlobalVariable *DeclPtr); 2370 2371 /// GenerateCXXGlobalInitFunc - Generates code for initializing global 2372 /// variables. 2373 void GenerateCXXGlobalInitFunc(llvm::Function *Fn, 2374 llvm::Constant **Decls, 2375 unsigned NumDecls); 2376 2377 /// GenerateCXXGlobalDtorFunc - Generates code for destroying global 2378 /// variables. 2379 void GenerateCXXGlobalDtorFunc(llvm::Function *Fn, 2380 const std::vector<std::pair<llvm::WeakVH, 2381 llvm::Constant*> > &DtorsAndObjects); 2382 2383 void GenerateCXXGlobalVarDeclInitFunc(llvm::Function *Fn, 2384 const VarDecl *D, 2385 llvm::GlobalVariable *Addr); 2386 2387 void EmitCXXConstructExpr(const CXXConstructExpr *E, AggValueSlot Dest); 2388 2389 void EmitSynthesizedCXXCopyCtor(llvm::Value *Dest, llvm::Value *Src, 2390 const Expr *Exp); 2391 2392 void enterFullExpression(const ExprWithCleanups *E) { 2393 if (E->getNumObjects() == 0) return; 2394 enterNonTrivialFullExpression(E); 2395 } 2396 void enterNonTrivialFullExpression(const ExprWithCleanups *E); 2397 2398 void EmitCXXThrowExpr(const CXXThrowExpr *E); 2399 2400 RValue EmitAtomicExpr(AtomicExpr *E, llvm::Value *Dest = 0); 2401 2402 //===--------------------------------------------------------------------===// 2403 // Annotations Emission 2404 //===--------------------------------------------------------------------===// 2405 2406 /// Emit an annotation call (intrinsic or builtin). 2407 llvm::Value *EmitAnnotationCall(llvm::Value *AnnotationFn, 2408 llvm::Value *AnnotatedVal, 2409 llvm::StringRef AnnotationStr, 2410 SourceLocation Location); 2411 2412 /// Emit local annotations for the local variable V, declared by D. 2413 void EmitVarAnnotations(const VarDecl *D, llvm::Value *V); 2414 2415 /// Emit field annotations for the given field & value. Returns the 2416 /// annotation result. 2417 llvm::Value *EmitFieldAnnotations(const FieldDecl *D, llvm::Value *V); 2418 2419 //===--------------------------------------------------------------------===// 2420 // Internal Helpers 2421 //===--------------------------------------------------------------------===// 2422 2423 /// ContainsLabel - Return true if the statement contains a label in it. If 2424 /// this statement is not executed normally, it not containing a label means 2425 /// that we can just remove the code. 2426 static bool ContainsLabel(const Stmt *S, bool IgnoreCaseStmts = false); 2427 2428 /// containsBreak - Return true if the statement contains a break out of it. 2429 /// If the statement (recursively) contains a switch or loop with a break 2430 /// inside of it, this is fine. 2431 static bool containsBreak(const Stmt *S); 2432 2433 /// ConstantFoldsToSimpleInteger - If the specified expression does not fold 2434 /// to a constant, or if it does but contains a label, return false. If it 2435 /// constant folds return true and set the boolean result in Result. 2436 bool ConstantFoldsToSimpleInteger(const Expr *Cond, bool &Result); 2437 2438 /// ConstantFoldsToSimpleInteger - If the specified expression does not fold 2439 /// to a constant, or if it does but contains a label, return false. If it 2440 /// constant folds return true and set the folded value. 2441 bool ConstantFoldsToSimpleInteger(const Expr *Cond, llvm::APInt &Result); 2442 2443 /// EmitBranchOnBoolExpr - Emit a branch on a boolean condition (e.g. for an 2444 /// if statement) to the specified blocks. Based on the condition, this might 2445 /// try to simplify the codegen of the conditional based on the branch. 2446 void EmitBranchOnBoolExpr(const Expr *Cond, llvm::BasicBlock *TrueBlock, 2447 llvm::BasicBlock *FalseBlock); 2448 2449 /// getTrapBB - Create a basic block that will call the trap intrinsic. We'll 2450 /// generate a branch around the created basic block as necessary. 2451 llvm::BasicBlock *getTrapBB(); 2452 2453 /// EmitCallArg - Emit a single call argument. 2454 void EmitCallArg(CallArgList &args, const Expr *E, QualType ArgType); 2455 2456 /// EmitDelegateCallArg - We are performing a delegate call; that 2457 /// is, the current function is delegating to another one. Produce 2458 /// a r-value suitable for passing the given parameter. 2459 void EmitDelegateCallArg(CallArgList &args, const VarDecl *param); 2460 2461 /// SetFPAccuracy - Set the minimum required accuracy of the given floating 2462 /// point operation, expressed as the maximum relative error in ulp. 2463 void SetFPAccuracy(llvm::Value *Val, unsigned AccuracyN, 2464 unsigned AccuracyD = 1); 2465 2466 private: 2467 void EmitReturnOfRValue(RValue RV, QualType Ty); 2468 2469 /// ExpandTypeFromArgs - Reconstruct a structure of type \arg Ty 2470 /// from function arguments into \arg Dst. See ABIArgInfo::Expand. 2471 /// 2472 /// \param AI - The first function argument of the expansion. 2473 /// \return The argument following the last expanded function 2474 /// argument. 2475 llvm::Function::arg_iterator 2476 ExpandTypeFromArgs(QualType Ty, LValue Dst, 2477 llvm::Function::arg_iterator AI); 2478 2479 /// ExpandTypeToArgs - Expand an RValue \arg Src, with the LLVM type for \arg 2480 /// Ty, into individual arguments on the provided vector \arg Args. See 2481 /// ABIArgInfo::Expand. 2482 void ExpandTypeToArgs(QualType Ty, RValue Src, 2483 SmallVector<llvm::Value*, 16> &Args, 2484 llvm::FunctionType *IRFuncTy); 2485 2486 llvm::Value* EmitAsmInput(const AsmStmt &S, 2487 const TargetInfo::ConstraintInfo &Info, 2488 const Expr *InputExpr, std::string &ConstraintStr); 2489 2490 llvm::Value* EmitAsmInputLValue(const AsmStmt &S, 2491 const TargetInfo::ConstraintInfo &Info, 2492 LValue InputValue, QualType InputType, 2493 std::string &ConstraintStr); 2494 2495 /// EmitCallArgs - Emit call arguments for a function. 2496 /// The CallArgTypeInfo parameter is used for iterating over the known 2497 /// argument types of the function being called. 2498 template<typename T> 2499 void EmitCallArgs(CallArgList& Args, const T* CallArgTypeInfo, 2500 CallExpr::const_arg_iterator ArgBeg, 2501 CallExpr::const_arg_iterator ArgEnd) { 2502 CallExpr::const_arg_iterator Arg = ArgBeg; 2503 2504 // First, use the argument types that the type info knows about 2505 if (CallArgTypeInfo) { 2506 for (typename T::arg_type_iterator I = CallArgTypeInfo->arg_type_begin(), 2507 E = CallArgTypeInfo->arg_type_end(); I != E; ++I, ++Arg) { 2508 assert(Arg != ArgEnd && "Running over edge of argument list!"); 2509 QualType ArgType = *I; 2510 #ifndef NDEBUG 2511 QualType ActualArgType = Arg->getType(); 2512 if (ArgType->isPointerType() && ActualArgType->isPointerType()) { 2513 QualType ActualBaseType = 2514 ActualArgType->getAs<PointerType>()->getPointeeType(); 2515 QualType ArgBaseType = 2516 ArgType->getAs<PointerType>()->getPointeeType(); 2517 if (ArgBaseType->isVariableArrayType()) { 2518 if (const VariableArrayType *VAT = 2519 getContext().getAsVariableArrayType(ActualBaseType)) { 2520 if (!VAT->getSizeExpr()) 2521 ActualArgType = ArgType; 2522 } 2523 } 2524 } 2525 assert(getContext().getCanonicalType(ArgType.getNonReferenceType()). 2526 getTypePtr() == 2527 getContext().getCanonicalType(ActualArgType).getTypePtr() && 2528 "type mismatch in call argument!"); 2529 #endif 2530 EmitCallArg(Args, *Arg, ArgType); 2531 } 2532 2533 // Either we've emitted all the call args, or we have a call to a 2534 // variadic function. 2535 assert((Arg == ArgEnd || CallArgTypeInfo->isVariadic()) && 2536 "Extra arguments in non-variadic function!"); 2537 2538 } 2539 2540 // If we still have any arguments, emit them using the type of the argument. 2541 for (; Arg != ArgEnd; ++Arg) 2542 EmitCallArg(Args, *Arg, Arg->getType()); 2543 } 2544 2545 const TargetCodeGenInfo &getTargetHooks() const { 2546 return CGM.getTargetCodeGenInfo(); 2547 } 2548 2549 void EmitDeclMetadata(); 2550 2551 CodeGenModule::ByrefHelpers * 2552 buildByrefHelpers(llvm::StructType &byrefType, 2553 const AutoVarEmission &emission); 2554 }; 2555 2556 /// Helper class with most of the code for saving a value for a 2557 /// conditional expression cleanup. 2558 struct DominatingLLVMValue { 2559 typedef llvm::PointerIntPair<llvm::Value*, 1, bool> saved_type; 2560 2561 /// Answer whether the given value needs extra work to be saved. 2562 static bool needsSaving(llvm::Value *value) { 2563 // If it's not an instruction, we don't need to save. 2564 if (!isa<llvm::Instruction>(value)) return false; 2565 2566 // If it's an instruction in the entry block, we don't need to save. 2567 llvm::BasicBlock *block = cast<llvm::Instruction>(value)->getParent(); 2568 return (block != &block->getParent()->getEntryBlock()); 2569 } 2570 2571 /// Try to save the given value. 2572 static saved_type save(CodeGenFunction &CGF, llvm::Value *value) { 2573 if (!needsSaving(value)) return saved_type(value, false); 2574 2575 // Otherwise we need an alloca. 2576 llvm::Value *alloca = 2577 CGF.CreateTempAlloca(value->getType(), "cond-cleanup.save"); 2578 CGF.Builder.CreateStore(value, alloca); 2579 2580 return saved_type(alloca, true); 2581 } 2582 2583 static llvm::Value *restore(CodeGenFunction &CGF, saved_type value) { 2584 if (!value.getInt()) return value.getPointer(); 2585 return CGF.Builder.CreateLoad(value.getPointer()); 2586 } 2587 }; 2588 2589 /// A partial specialization of DominatingValue for llvm::Values that 2590 /// might be llvm::Instructions. 2591 template <class T> struct DominatingPointer<T,true> : DominatingLLVMValue { 2592 typedef T *type; 2593 static type restore(CodeGenFunction &CGF, saved_type value) { 2594 return static_cast<T*>(DominatingLLVMValue::restore(CGF, value)); 2595 } 2596 }; 2597 2598 /// A specialization of DominatingValue for RValue. 2599 template <> struct DominatingValue<RValue> { 2600 typedef RValue type; 2601 class saved_type { 2602 enum Kind { ScalarLiteral, ScalarAddress, AggregateLiteral, 2603 AggregateAddress, ComplexAddress }; 2604 2605 llvm::Value *Value; 2606 Kind K; 2607 saved_type(llvm::Value *v, Kind k) : Value(v), K(k) {} 2608 2609 public: 2610 static bool needsSaving(RValue value); 2611 static saved_type save(CodeGenFunction &CGF, RValue value); 2612 RValue restore(CodeGenFunction &CGF); 2613 2614 // implementations in CGExprCXX.cpp 2615 }; 2616 2617 static bool needsSaving(type value) { 2618 return saved_type::needsSaving(value); 2619 } 2620 static saved_type save(CodeGenFunction &CGF, type value) { 2621 return saved_type::save(CGF, value); 2622 } 2623 static type restore(CodeGenFunction &CGF, saved_type value) { 2624 return value.restore(CGF); 2625 } 2626 }; 2627 2628 } // end namespace CodeGen 2629 } // end namespace clang 2630 2631 #endif 2632