1 //===-- CodeGenFunction.h - Per-Function state for LLVM CodeGen -*- C++ -*-===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This is the internal per-function state used for llvm translation. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #ifndef CLANG_CODEGEN_CODEGENFUNCTION_H 15 #define CLANG_CODEGEN_CODEGENFUNCTION_H 16 17 #include "CGBuilder.h" 18 #include "CGDebugInfo.h" 19 #include "CGValue.h" 20 #include "CodeGenModule.h" 21 #include "CodeGenPGO.h" 22 #include "EHScopeStack.h" 23 #include "clang/AST/CharUnits.h" 24 #include "clang/AST/ExprCXX.h" 25 #include "clang/AST/ExprObjC.h" 26 #include "clang/AST/Type.h" 27 #include "clang/Basic/ABI.h" 28 #include "clang/Basic/CapturedStmt.h" 29 #include "clang/Basic/TargetInfo.h" 30 #include "clang/Frontend/CodeGenOptions.h" 31 #include "llvm/ADT/ArrayRef.h" 32 #include "llvm/ADT/DenseMap.h" 33 #include "llvm/ADT/SmallVector.h" 34 #include "llvm/Support/Debug.h" 35 #include "llvm/Support/ValueHandle.h" 36 37 namespace llvm { 38 class BasicBlock; 39 class LLVMContext; 40 class MDNode; 41 class Module; 42 class SwitchInst; 43 class Twine; 44 class Value; 45 class CallSite; 46 } 47 48 namespace clang { 49 class ASTContext; 50 class BlockDecl; 51 class CXXDestructorDecl; 52 class CXXForRangeStmt; 53 class CXXTryStmt; 54 class Decl; 55 class LabelDecl; 56 class EnumConstantDecl; 57 class FunctionDecl; 58 class FunctionProtoType; 59 class LabelStmt; 60 class ObjCContainerDecl; 61 class ObjCInterfaceDecl; 62 class ObjCIvarDecl; 63 class ObjCMethodDecl; 64 class ObjCImplementationDecl; 65 class ObjCPropertyImplDecl; 66 class TargetInfo; 67 class TargetCodeGenInfo; 68 class VarDecl; 69 class ObjCForCollectionStmt; 70 class ObjCAtTryStmt; 71 class ObjCAtThrowStmt; 72 class ObjCAtSynchronizedStmt; 73 class ObjCAutoreleasePoolStmt; 74 75 namespace CodeGen { 76 class CodeGenTypes; 77 class CGFunctionInfo; 78 class CGRecordLayout; 79 class CGBlockInfo; 80 class CGCXXABI; 81 class BlockFlags; 82 class BlockFieldFlags; 83 84 /// The kind of evaluation to perform on values of a particular 85 /// type. Basically, is the code in CGExprScalar, CGExprComplex, or 86 /// CGExprAgg? 87 /// 88 /// TODO: should vectors maybe be split out into their own thing? 89 enum TypeEvaluationKind { 90 TEK_Scalar, 91 TEK_Complex, 92 TEK_Aggregate 93 }; 94 95 /// CodeGenFunction - This class organizes the per-function state that is used 96 /// while generating LLVM code. 97 class CodeGenFunction : public CodeGenTypeCache { 98 CodeGenFunction(const CodeGenFunction &) LLVM_DELETED_FUNCTION; 99 void operator=(const CodeGenFunction &) LLVM_DELETED_FUNCTION; 100 101 friend class CGCXXABI; 102 public: 103 /// A jump destination is an abstract label, branching to which may 104 /// require a jump out through normal cleanups. 105 struct JumpDest { 106 JumpDest() : Block(0), ScopeDepth(), Index(0) {} 107 JumpDest(llvm::BasicBlock *Block, 108 EHScopeStack::stable_iterator Depth, 109 unsigned Index) 110 : Block(Block), ScopeDepth(Depth), Index(Index) {} 111 112 bool isValid() const { return Block != 0; } 113 llvm::BasicBlock *getBlock() const { return Block; } 114 EHScopeStack::stable_iterator getScopeDepth() const { return ScopeDepth; } 115 unsigned getDestIndex() const { return Index; } 116 117 // This should be used cautiously. 118 void setScopeDepth(EHScopeStack::stable_iterator depth) { 119 ScopeDepth = depth; 120 } 121 122 private: 123 llvm::BasicBlock *Block; 124 EHScopeStack::stable_iterator ScopeDepth; 125 unsigned Index; 126 }; 127 128 CodeGenModule &CGM; // Per-module state. 129 const TargetInfo &Target; 130 131 typedef std::pair<llvm::Value *, llvm::Value *> ComplexPairTy; 132 CGBuilderTy Builder; 133 134 /// CurFuncDecl - Holds the Decl for the current outermost 135 /// non-closure context. 136 const Decl *CurFuncDecl; 137 /// CurCodeDecl - This is the inner-most code context, which includes blocks. 138 const Decl *CurCodeDecl; 139 const CGFunctionInfo *CurFnInfo; 140 QualType FnRetTy; 141 llvm::Function *CurFn; 142 143 /// CurGD - The GlobalDecl for the current function being compiled. 144 GlobalDecl CurGD; 145 146 /// PrologueCleanupDepth - The cleanup depth enclosing all the 147 /// cleanups associated with the parameters. 148 EHScopeStack::stable_iterator PrologueCleanupDepth; 149 150 /// ReturnBlock - Unified return block. 151 JumpDest ReturnBlock; 152 153 /// ReturnValue - The temporary alloca to hold the return value. This is null 154 /// iff the function has no return value. 155 llvm::Value *ReturnValue; 156 157 /// AllocaInsertPoint - This is an instruction in the entry block before which 158 /// we prefer to insert allocas. 159 llvm::AssertingVH<llvm::Instruction> AllocaInsertPt; 160 161 /// \brief API for captured statement code generation. 162 class CGCapturedStmtInfo { 163 public: 164 explicit CGCapturedStmtInfo(const CapturedStmt &S, 165 CapturedRegionKind K = CR_Default) 166 : Kind(K), ThisValue(0), CXXThisFieldDecl(0) { 167 168 RecordDecl::field_iterator Field = 169 S.getCapturedRecordDecl()->field_begin(); 170 for (CapturedStmt::const_capture_iterator I = S.capture_begin(), 171 E = S.capture_end(); 172 I != E; ++I, ++Field) { 173 if (I->capturesThis()) 174 CXXThisFieldDecl = *Field; 175 else 176 CaptureFields[I->getCapturedVar()] = *Field; 177 } 178 } 179 180 virtual ~CGCapturedStmtInfo(); 181 182 CapturedRegionKind getKind() const { return Kind; } 183 184 void setContextValue(llvm::Value *V) { ThisValue = V; } 185 // \brief Retrieve the value of the context parameter. 186 llvm::Value *getContextValue() const { return ThisValue; } 187 188 /// \brief Lookup the captured field decl for a variable. 189 const FieldDecl *lookup(const VarDecl *VD) const { 190 return CaptureFields.lookup(VD); 191 } 192 193 bool isCXXThisExprCaptured() const { return CXXThisFieldDecl != 0; } 194 FieldDecl *getThisFieldDecl() const { return CXXThisFieldDecl; } 195 196 /// \brief Emit the captured statement body. 197 virtual void EmitBody(CodeGenFunction &CGF, Stmt *S) { 198 CGF.EmitStmt(S); 199 } 200 201 /// \brief Get the name of the capture helper. 202 virtual StringRef getHelperName() const { return "__captured_stmt"; } 203 204 private: 205 /// \brief The kind of captured statement being generated. 206 CapturedRegionKind Kind; 207 208 /// \brief Keep the map between VarDecl and FieldDecl. 209 llvm::SmallDenseMap<const VarDecl *, FieldDecl *> CaptureFields; 210 211 /// \brief The base address of the captured record, passed in as the first 212 /// argument of the parallel region function. 213 llvm::Value *ThisValue; 214 215 /// \brief Captured 'this' type. 216 FieldDecl *CXXThisFieldDecl; 217 }; 218 CGCapturedStmtInfo *CapturedStmtInfo; 219 220 /// BoundsChecking - Emit run-time bounds checks. Higher values mean 221 /// potentially higher performance penalties. 222 unsigned char BoundsChecking; 223 224 /// \brief Whether any type-checking sanitizers are enabled. If \c false, 225 /// calls to EmitTypeCheck can be skipped. 226 bool SanitizePerformTypeCheck; 227 228 /// \brief Sanitizer options to use for this function. 229 const SanitizerOptions *SanOpts; 230 231 /// In ARC, whether we should autorelease the return value. 232 bool AutoreleaseResult; 233 234 const CodeGen::CGBlockInfo *BlockInfo; 235 llvm::Value *BlockPointer; 236 237 llvm::DenseMap<const VarDecl *, FieldDecl *> LambdaCaptureFields; 238 FieldDecl *LambdaThisCaptureField; 239 240 /// \brief A mapping from NRVO variables to the flags used to indicate 241 /// when the NRVO has been applied to this variable. 242 llvm::DenseMap<const VarDecl *, llvm::Value *> NRVOFlags; 243 244 EHScopeStack EHStack; 245 llvm::SmallVector<char, 256> LifetimeExtendedCleanupStack; 246 247 /// Header for data within LifetimeExtendedCleanupStack. 248 struct LifetimeExtendedCleanupHeader { 249 /// The size of the following cleanup object. 250 size_t Size : 29; 251 /// The kind of cleanup to push: a value from the CleanupKind enumeration. 252 unsigned Kind : 3; 253 254 size_t getSize() const { return Size; } 255 CleanupKind getKind() const { return static_cast<CleanupKind>(Kind); } 256 }; 257 258 /// i32s containing the indexes of the cleanup destinations. 259 llvm::AllocaInst *NormalCleanupDest; 260 261 unsigned NextCleanupDestIndex; 262 263 /// FirstBlockInfo - The head of a singly-linked-list of block layouts. 264 CGBlockInfo *FirstBlockInfo; 265 266 /// EHResumeBlock - Unified block containing a call to llvm.eh.resume. 267 llvm::BasicBlock *EHResumeBlock; 268 269 /// The exception slot. All landing pads write the current exception pointer 270 /// into this alloca. 271 llvm::Value *ExceptionSlot; 272 273 /// The selector slot. Under the MandatoryCleanup model, all landing pads 274 /// write the current selector value into this alloca. 275 llvm::AllocaInst *EHSelectorSlot; 276 277 /// Emits a landing pad for the current EH stack. 278 llvm::BasicBlock *EmitLandingPad(); 279 280 llvm::BasicBlock *getInvokeDestImpl(); 281 282 template <class T> 283 typename DominatingValue<T>::saved_type saveValueInCond(T value) { 284 return DominatingValue<T>::save(*this, value); 285 } 286 287 public: 288 /// ObjCEHValueStack - Stack of Objective-C exception values, used for 289 /// rethrows. 290 SmallVector<llvm::Value*, 8> ObjCEHValueStack; 291 292 /// A class controlling the emission of a finally block. 293 class FinallyInfo { 294 /// Where the catchall's edge through the cleanup should go. 295 JumpDest RethrowDest; 296 297 /// A function to call to enter the catch. 298 llvm::Constant *BeginCatchFn; 299 300 /// An i1 variable indicating whether or not the @finally is 301 /// running for an exception. 302 llvm::AllocaInst *ForEHVar; 303 304 /// An i8* variable into which the exception pointer to rethrow 305 /// has been saved. 306 llvm::AllocaInst *SavedExnVar; 307 308 public: 309 void enter(CodeGenFunction &CGF, const Stmt *Finally, 310 llvm::Constant *beginCatchFn, llvm::Constant *endCatchFn, 311 llvm::Constant *rethrowFn); 312 void exit(CodeGenFunction &CGF); 313 }; 314 315 /// pushFullExprCleanup - Push a cleanup to be run at the end of the 316 /// current full-expression. Safe against the possibility that 317 /// we're currently inside a conditionally-evaluated expression. 318 template <class T, class A0> 319 void pushFullExprCleanup(CleanupKind kind, A0 a0) { 320 // If we're not in a conditional branch, or if none of the 321 // arguments requires saving, then use the unconditional cleanup. 322 if (!isInConditionalBranch()) 323 return EHStack.pushCleanup<T>(kind, a0); 324 325 typename DominatingValue<A0>::saved_type a0_saved = saveValueInCond(a0); 326 327 typedef EHScopeStack::ConditionalCleanup1<T, A0> CleanupType; 328 EHStack.pushCleanup<CleanupType>(kind, a0_saved); 329 initFullExprCleanup(); 330 } 331 332 /// pushFullExprCleanup - Push a cleanup to be run at the end of the 333 /// current full-expression. Safe against the possibility that 334 /// we're currently inside a conditionally-evaluated expression. 335 template <class T, class A0, class A1> 336 void pushFullExprCleanup(CleanupKind kind, A0 a0, A1 a1) { 337 // If we're not in a conditional branch, or if none of the 338 // arguments requires saving, then use the unconditional cleanup. 339 if (!isInConditionalBranch()) 340 return EHStack.pushCleanup<T>(kind, a0, a1); 341 342 typename DominatingValue<A0>::saved_type a0_saved = saveValueInCond(a0); 343 typename DominatingValue<A1>::saved_type a1_saved = saveValueInCond(a1); 344 345 typedef EHScopeStack::ConditionalCleanup2<T, A0, A1> CleanupType; 346 EHStack.pushCleanup<CleanupType>(kind, a0_saved, a1_saved); 347 initFullExprCleanup(); 348 } 349 350 /// pushFullExprCleanup - Push a cleanup to be run at the end of the 351 /// current full-expression. Safe against the possibility that 352 /// we're currently inside a conditionally-evaluated expression. 353 template <class T, class A0, class A1, class A2> 354 void pushFullExprCleanup(CleanupKind kind, A0 a0, A1 a1, A2 a2) { 355 // If we're not in a conditional branch, or if none of the 356 // arguments requires saving, then use the unconditional cleanup. 357 if (!isInConditionalBranch()) { 358 return EHStack.pushCleanup<T>(kind, a0, a1, a2); 359 } 360 361 typename DominatingValue<A0>::saved_type a0_saved = saveValueInCond(a0); 362 typename DominatingValue<A1>::saved_type a1_saved = saveValueInCond(a1); 363 typename DominatingValue<A2>::saved_type a2_saved = saveValueInCond(a2); 364 365 typedef EHScopeStack::ConditionalCleanup3<T, A0, A1, A2> CleanupType; 366 EHStack.pushCleanup<CleanupType>(kind, a0_saved, a1_saved, a2_saved); 367 initFullExprCleanup(); 368 } 369 370 /// pushFullExprCleanup - Push a cleanup to be run at the end of the 371 /// current full-expression. Safe against the possibility that 372 /// we're currently inside a conditionally-evaluated expression. 373 template <class T, class A0, class A1, class A2, class A3> 374 void pushFullExprCleanup(CleanupKind kind, A0 a0, A1 a1, A2 a2, A3 a3) { 375 // If we're not in a conditional branch, or if none of the 376 // arguments requires saving, then use the unconditional cleanup. 377 if (!isInConditionalBranch()) { 378 return EHStack.pushCleanup<T>(kind, a0, a1, a2, a3); 379 } 380 381 typename DominatingValue<A0>::saved_type a0_saved = saveValueInCond(a0); 382 typename DominatingValue<A1>::saved_type a1_saved = saveValueInCond(a1); 383 typename DominatingValue<A2>::saved_type a2_saved = saveValueInCond(a2); 384 typename DominatingValue<A3>::saved_type a3_saved = saveValueInCond(a3); 385 386 typedef EHScopeStack::ConditionalCleanup4<T, A0, A1, A2, A3> CleanupType; 387 EHStack.pushCleanup<CleanupType>(kind, a0_saved, a1_saved, 388 a2_saved, a3_saved); 389 initFullExprCleanup(); 390 } 391 392 /// \brief Queue a cleanup to be pushed after finishing the current 393 /// full-expression. 394 template <class T, class A0, class A1, class A2, class A3> 395 void pushCleanupAfterFullExpr(CleanupKind Kind, A0 a0, A1 a1, A2 a2, A3 a3) { 396 assert(!isInConditionalBranch() && "can't defer conditional cleanup"); 397 398 LifetimeExtendedCleanupHeader Header = { sizeof(T), Kind }; 399 400 size_t OldSize = LifetimeExtendedCleanupStack.size(); 401 LifetimeExtendedCleanupStack.resize( 402 LifetimeExtendedCleanupStack.size() + sizeof(Header) + Header.Size); 403 404 char *Buffer = &LifetimeExtendedCleanupStack[OldSize]; 405 new (Buffer) LifetimeExtendedCleanupHeader(Header); 406 new (Buffer + sizeof(Header)) T(a0, a1, a2, a3); 407 } 408 409 /// Set up the last cleaup that was pushed as a conditional 410 /// full-expression cleanup. 411 void initFullExprCleanup(); 412 413 /// PushDestructorCleanup - Push a cleanup to call the 414 /// complete-object destructor of an object of the given type at the 415 /// given address. Does nothing if T is not a C++ class type with a 416 /// non-trivial destructor. 417 void PushDestructorCleanup(QualType T, llvm::Value *Addr); 418 419 /// PushDestructorCleanup - Push a cleanup to call the 420 /// complete-object variant of the given destructor on the object at 421 /// the given address. 422 void PushDestructorCleanup(const CXXDestructorDecl *Dtor, 423 llvm::Value *Addr); 424 425 /// PopCleanupBlock - Will pop the cleanup entry on the stack and 426 /// process all branch fixups. 427 void PopCleanupBlock(bool FallThroughIsBranchThrough = false); 428 429 /// DeactivateCleanupBlock - Deactivates the given cleanup block. 430 /// The block cannot be reactivated. Pops it if it's the top of the 431 /// stack. 432 /// 433 /// \param DominatingIP - An instruction which is known to 434 /// dominate the current IP (if set) and which lies along 435 /// all paths of execution between the current IP and the 436 /// the point at which the cleanup comes into scope. 437 void DeactivateCleanupBlock(EHScopeStack::stable_iterator Cleanup, 438 llvm::Instruction *DominatingIP); 439 440 /// ActivateCleanupBlock - Activates an initially-inactive cleanup. 441 /// Cannot be used to resurrect a deactivated cleanup. 442 /// 443 /// \param DominatingIP - An instruction which is known to 444 /// dominate the current IP (if set) and which lies along 445 /// all paths of execution between the current IP and the 446 /// the point at which the cleanup comes into scope. 447 void ActivateCleanupBlock(EHScopeStack::stable_iterator Cleanup, 448 llvm::Instruction *DominatingIP); 449 450 /// \brief Enters a new scope for capturing cleanups, all of which 451 /// will be executed once the scope is exited. 452 class RunCleanupsScope { 453 EHScopeStack::stable_iterator CleanupStackDepth; 454 size_t LifetimeExtendedCleanupStackSize; 455 bool OldDidCallStackSave; 456 protected: 457 bool PerformCleanup; 458 private: 459 460 RunCleanupsScope(const RunCleanupsScope &) LLVM_DELETED_FUNCTION; 461 void operator=(const RunCleanupsScope &) LLVM_DELETED_FUNCTION; 462 463 protected: 464 CodeGenFunction& CGF; 465 466 public: 467 /// \brief Enter a new cleanup scope. 468 explicit RunCleanupsScope(CodeGenFunction &CGF) 469 : PerformCleanup(true), CGF(CGF) 470 { 471 CleanupStackDepth = CGF.EHStack.stable_begin(); 472 LifetimeExtendedCleanupStackSize = 473 CGF.LifetimeExtendedCleanupStack.size(); 474 OldDidCallStackSave = CGF.DidCallStackSave; 475 CGF.DidCallStackSave = false; 476 } 477 478 /// \brief Exit this cleanup scope, emitting any accumulated 479 /// cleanups. 480 ~RunCleanupsScope() { 481 if (PerformCleanup) { 482 CGF.DidCallStackSave = OldDidCallStackSave; 483 CGF.PopCleanupBlocks(CleanupStackDepth, 484 LifetimeExtendedCleanupStackSize); 485 } 486 } 487 488 /// \brief Determine whether this scope requires any cleanups. 489 bool requiresCleanups() const { 490 return CGF.EHStack.stable_begin() != CleanupStackDepth; 491 } 492 493 /// \brief Force the emission of cleanups now, instead of waiting 494 /// until this object is destroyed. 495 void ForceCleanup() { 496 assert(PerformCleanup && "Already forced cleanup"); 497 CGF.DidCallStackSave = OldDidCallStackSave; 498 CGF.PopCleanupBlocks(CleanupStackDepth, 499 LifetimeExtendedCleanupStackSize); 500 PerformCleanup = false; 501 } 502 }; 503 504 class LexicalScope: protected RunCleanupsScope { 505 SourceRange Range; 506 SmallVector<const LabelDecl*, 4> Labels; 507 LexicalScope *ParentScope; 508 509 LexicalScope(const LexicalScope &) LLVM_DELETED_FUNCTION; 510 void operator=(const LexicalScope &) LLVM_DELETED_FUNCTION; 511 512 public: 513 /// \brief Enter a new cleanup scope. 514 explicit LexicalScope(CodeGenFunction &CGF, SourceRange Range) 515 : RunCleanupsScope(CGF), Range(Range), ParentScope(CGF.CurLexicalScope) { 516 CGF.CurLexicalScope = this; 517 if (CGDebugInfo *DI = CGF.getDebugInfo()) 518 DI->EmitLexicalBlockStart(CGF.Builder, Range.getBegin()); 519 } 520 521 void addLabel(const LabelDecl *label) { 522 assert(PerformCleanup && "adding label to dead scope?"); 523 Labels.push_back(label); 524 } 525 526 /// \brief Exit this cleanup scope, emitting any accumulated 527 /// cleanups. 528 ~LexicalScope() { 529 if (CGDebugInfo *DI = CGF.getDebugInfo()) 530 DI->EmitLexicalBlockEnd(CGF.Builder, Range.getEnd()); 531 532 // If we should perform a cleanup, force them now. Note that 533 // this ends the cleanup scope before rescoping any labels. 534 if (PerformCleanup) ForceCleanup(); 535 } 536 537 /// \brief Force the emission of cleanups now, instead of waiting 538 /// until this object is destroyed. 539 void ForceCleanup() { 540 CGF.CurLexicalScope = ParentScope; 541 RunCleanupsScope::ForceCleanup(); 542 543 if (!Labels.empty()) 544 rescopeLabels(); 545 } 546 547 void rescopeLabels(); 548 }; 549 550 551 /// \brief Takes the old cleanup stack size and emits the cleanup blocks 552 /// that have been added. 553 void PopCleanupBlocks(EHScopeStack::stable_iterator OldCleanupStackSize); 554 555 /// \brief Takes the old cleanup stack size and emits the cleanup blocks 556 /// that have been added, then adds all lifetime-extended cleanups from 557 /// the given position to the stack. 558 void PopCleanupBlocks(EHScopeStack::stable_iterator OldCleanupStackSize, 559 size_t OldLifetimeExtendedStackSize); 560 561 void ResolveBranchFixups(llvm::BasicBlock *Target); 562 563 /// The given basic block lies in the current EH scope, but may be a 564 /// target of a potentially scope-crossing jump; get a stable handle 565 /// to which we can perform this jump later. 566 JumpDest getJumpDestInCurrentScope(llvm::BasicBlock *Target) { 567 return JumpDest(Target, 568 EHStack.getInnermostNormalCleanup(), 569 NextCleanupDestIndex++); 570 } 571 572 /// The given basic block lies in the current EH scope, but may be a 573 /// target of a potentially scope-crossing jump; get a stable handle 574 /// to which we can perform this jump later. 575 JumpDest getJumpDestInCurrentScope(StringRef Name = StringRef()) { 576 return getJumpDestInCurrentScope(createBasicBlock(Name)); 577 } 578 579 /// EmitBranchThroughCleanup - Emit a branch from the current insert 580 /// block through the normal cleanup handling code (if any) and then 581 /// on to \arg Dest. 582 void EmitBranchThroughCleanup(JumpDest Dest); 583 584 /// isObviouslyBranchWithoutCleanups - Return true if a branch to the 585 /// specified destination obviously has no cleanups to run. 'false' is always 586 /// a conservatively correct answer for this method. 587 bool isObviouslyBranchWithoutCleanups(JumpDest Dest) const; 588 589 /// popCatchScope - Pops the catch scope at the top of the EHScope 590 /// stack, emitting any required code (other than the catch handlers 591 /// themselves). 592 void popCatchScope(); 593 594 llvm::BasicBlock *getEHResumeBlock(bool isCleanup); 595 llvm::BasicBlock *getEHDispatchBlock(EHScopeStack::stable_iterator scope); 596 597 /// An object to manage conditionally-evaluated expressions. 598 class ConditionalEvaluation { 599 llvm::BasicBlock *StartBB; 600 601 public: 602 ConditionalEvaluation(CodeGenFunction &CGF) 603 : StartBB(CGF.Builder.GetInsertBlock()) {} 604 605 void begin(CodeGenFunction &CGF) { 606 assert(CGF.OutermostConditional != this); 607 if (!CGF.OutermostConditional) 608 CGF.OutermostConditional = this; 609 } 610 611 void end(CodeGenFunction &CGF) { 612 assert(CGF.OutermostConditional != 0); 613 if (CGF.OutermostConditional == this) 614 CGF.OutermostConditional = 0; 615 } 616 617 /// Returns a block which will be executed prior to each 618 /// evaluation of the conditional code. 619 llvm::BasicBlock *getStartingBlock() const { 620 return StartBB; 621 } 622 }; 623 624 /// isInConditionalBranch - Return true if we're currently emitting 625 /// one branch or the other of a conditional expression. 626 bool isInConditionalBranch() const { return OutermostConditional != 0; } 627 628 void setBeforeOutermostConditional(llvm::Value *value, llvm::Value *addr) { 629 assert(isInConditionalBranch()); 630 llvm::BasicBlock *block = OutermostConditional->getStartingBlock(); 631 new llvm::StoreInst(value, addr, &block->back()); 632 } 633 634 /// An RAII object to record that we're evaluating a statement 635 /// expression. 636 class StmtExprEvaluation { 637 CodeGenFunction &CGF; 638 639 /// We have to save the outermost conditional: cleanups in a 640 /// statement expression aren't conditional just because the 641 /// StmtExpr is. 642 ConditionalEvaluation *SavedOutermostConditional; 643 644 public: 645 StmtExprEvaluation(CodeGenFunction &CGF) 646 : CGF(CGF), SavedOutermostConditional(CGF.OutermostConditional) { 647 CGF.OutermostConditional = 0; 648 } 649 650 ~StmtExprEvaluation() { 651 CGF.OutermostConditional = SavedOutermostConditional; 652 CGF.EnsureInsertPoint(); 653 } 654 }; 655 656 /// An object which temporarily prevents a value from being 657 /// destroyed by aggressive peephole optimizations that assume that 658 /// all uses of a value have been realized in the IR. 659 class PeepholeProtection { 660 llvm::Instruction *Inst; 661 friend class CodeGenFunction; 662 663 public: 664 PeepholeProtection() : Inst(0) {} 665 }; 666 667 /// A non-RAII class containing all the information about a bound 668 /// opaque value. OpaqueValueMapping, below, is a RAII wrapper for 669 /// this which makes individual mappings very simple; using this 670 /// class directly is useful when you have a variable number of 671 /// opaque values or don't want the RAII functionality for some 672 /// reason. 673 class OpaqueValueMappingData { 674 const OpaqueValueExpr *OpaqueValue; 675 bool BoundLValue; 676 CodeGenFunction::PeepholeProtection Protection; 677 678 OpaqueValueMappingData(const OpaqueValueExpr *ov, 679 bool boundLValue) 680 : OpaqueValue(ov), BoundLValue(boundLValue) {} 681 public: 682 OpaqueValueMappingData() : OpaqueValue(0) {} 683 684 static bool shouldBindAsLValue(const Expr *expr) { 685 // gl-values should be bound as l-values for obvious reasons. 686 // Records should be bound as l-values because IR generation 687 // always keeps them in memory. Expressions of function type 688 // act exactly like l-values but are formally required to be 689 // r-values in C. 690 return expr->isGLValue() || 691 expr->getType()->isRecordType() || 692 expr->getType()->isFunctionType(); 693 } 694 695 static OpaqueValueMappingData bind(CodeGenFunction &CGF, 696 const OpaqueValueExpr *ov, 697 const Expr *e) { 698 if (shouldBindAsLValue(ov)) 699 return bind(CGF, ov, CGF.EmitLValue(e)); 700 return bind(CGF, ov, CGF.EmitAnyExpr(e)); 701 } 702 703 static OpaqueValueMappingData bind(CodeGenFunction &CGF, 704 const OpaqueValueExpr *ov, 705 const LValue &lv) { 706 assert(shouldBindAsLValue(ov)); 707 CGF.OpaqueLValues.insert(std::make_pair(ov, lv)); 708 return OpaqueValueMappingData(ov, true); 709 } 710 711 static OpaqueValueMappingData bind(CodeGenFunction &CGF, 712 const OpaqueValueExpr *ov, 713 const RValue &rv) { 714 assert(!shouldBindAsLValue(ov)); 715 CGF.OpaqueRValues.insert(std::make_pair(ov, rv)); 716 717 OpaqueValueMappingData data(ov, false); 718 719 // Work around an extremely aggressive peephole optimization in 720 // EmitScalarConversion which assumes that all other uses of a 721 // value are extant. 722 data.Protection = CGF.protectFromPeepholes(rv); 723 724 return data; 725 } 726 727 bool isValid() const { return OpaqueValue != 0; } 728 void clear() { OpaqueValue = 0; } 729 730 void unbind(CodeGenFunction &CGF) { 731 assert(OpaqueValue && "no data to unbind!"); 732 733 if (BoundLValue) { 734 CGF.OpaqueLValues.erase(OpaqueValue); 735 } else { 736 CGF.OpaqueRValues.erase(OpaqueValue); 737 CGF.unprotectFromPeepholes(Protection); 738 } 739 } 740 }; 741 742 /// An RAII object to set (and then clear) a mapping for an OpaqueValueExpr. 743 class OpaqueValueMapping { 744 CodeGenFunction &CGF; 745 OpaqueValueMappingData Data; 746 747 public: 748 static bool shouldBindAsLValue(const Expr *expr) { 749 return OpaqueValueMappingData::shouldBindAsLValue(expr); 750 } 751 752 /// Build the opaque value mapping for the given conditional 753 /// operator if it's the GNU ?: extension. This is a common 754 /// enough pattern that the convenience operator is really 755 /// helpful. 756 /// 757 OpaqueValueMapping(CodeGenFunction &CGF, 758 const AbstractConditionalOperator *op) : CGF(CGF) { 759 if (isa<ConditionalOperator>(op)) 760 // Leave Data empty. 761 return; 762 763 const BinaryConditionalOperator *e = cast<BinaryConditionalOperator>(op); 764 Data = OpaqueValueMappingData::bind(CGF, e->getOpaqueValue(), 765 e->getCommon()); 766 } 767 768 OpaqueValueMapping(CodeGenFunction &CGF, 769 const OpaqueValueExpr *opaqueValue, 770 LValue lvalue) 771 : CGF(CGF), Data(OpaqueValueMappingData::bind(CGF, opaqueValue, lvalue)) { 772 } 773 774 OpaqueValueMapping(CodeGenFunction &CGF, 775 const OpaqueValueExpr *opaqueValue, 776 RValue rvalue) 777 : CGF(CGF), Data(OpaqueValueMappingData::bind(CGF, opaqueValue, rvalue)) { 778 } 779 780 void pop() { 781 Data.unbind(CGF); 782 Data.clear(); 783 } 784 785 ~OpaqueValueMapping() { 786 if (Data.isValid()) Data.unbind(CGF); 787 } 788 }; 789 790 /// getByrefValueFieldNumber - Given a declaration, returns the LLVM field 791 /// number that holds the value. 792 unsigned getByRefValueLLVMField(const ValueDecl *VD) const; 793 794 /// BuildBlockByrefAddress - Computes address location of the 795 /// variable which is declared as __block. 796 llvm::Value *BuildBlockByrefAddress(llvm::Value *BaseAddr, 797 const VarDecl *V); 798 private: 799 CGDebugInfo *DebugInfo; 800 bool DisableDebugInfo; 801 802 /// DidCallStackSave - Whether llvm.stacksave has been called. Used to avoid 803 /// calling llvm.stacksave for multiple VLAs in the same scope. 804 bool DidCallStackSave; 805 806 /// IndirectBranch - The first time an indirect goto is seen we create a block 807 /// with an indirect branch. Every time we see the address of a label taken, 808 /// we add the label to the indirect goto. Every subsequent indirect goto is 809 /// codegen'd as a jump to the IndirectBranch's basic block. 810 llvm::IndirectBrInst *IndirectBranch; 811 812 /// LocalDeclMap - This keeps track of the LLVM allocas or globals for local C 813 /// decls. 814 typedef llvm::DenseMap<const Decl*, llvm::Value*> DeclMapTy; 815 DeclMapTy LocalDeclMap; 816 817 /// LabelMap - This keeps track of the LLVM basic block for each C label. 818 llvm::DenseMap<const LabelDecl*, JumpDest> LabelMap; 819 820 // BreakContinueStack - This keeps track of where break and continue 821 // statements should jump to and the associated base counter for 822 // instrumentation. 823 struct BreakContinue { 824 BreakContinue(JumpDest Break, JumpDest Continue, RegionCounter *LoopCnt, 825 bool CountBreak = true) 826 : BreakBlock(Break), ContinueBlock(Continue), LoopCnt(LoopCnt), 827 CountBreak(CountBreak) {} 828 829 JumpDest BreakBlock; 830 JumpDest ContinueBlock; 831 RegionCounter *LoopCnt; 832 bool CountBreak; 833 }; 834 SmallVector<BreakContinue, 8> BreakContinueStack; 835 836 CodeGenPGO PGO; 837 838 public: 839 /// Get a counter for instrumentation of the region associated with the given 840 /// statement. 841 RegionCounter getPGORegionCounter(const Stmt *S) { 842 return RegionCounter(PGO, S); 843 } 844 private: 845 846 /// SwitchInsn - This is nearest current switch instruction. It is null if 847 /// current context is not in a switch. 848 llvm::SwitchInst *SwitchInsn; 849 /// The branch weights of SwitchInsn when doing instrumentation based PGO. 850 SmallVector<uint64_t, 16> *SwitchWeights; 851 852 /// CaseRangeBlock - This block holds if condition check for last case 853 /// statement range in current switch instruction. 854 llvm::BasicBlock *CaseRangeBlock; 855 856 /// OpaqueLValues - Keeps track of the current set of opaque value 857 /// expressions. 858 llvm::DenseMap<const OpaqueValueExpr *, LValue> OpaqueLValues; 859 llvm::DenseMap<const OpaqueValueExpr *, RValue> OpaqueRValues; 860 861 // VLASizeMap - This keeps track of the associated size for each VLA type. 862 // We track this by the size expression rather than the type itself because 863 // in certain situations, like a const qualifier applied to an VLA typedef, 864 // multiple VLA types can share the same size expression. 865 // FIXME: Maybe this could be a stack of maps that is pushed/popped as we 866 // enter/leave scopes. 867 llvm::DenseMap<const Expr*, llvm::Value*> VLASizeMap; 868 869 /// A block containing a single 'unreachable' instruction. Created 870 /// lazily by getUnreachableBlock(). 871 llvm::BasicBlock *UnreachableBlock; 872 873 /// Counts of the number return expressions in the function. 874 unsigned NumReturnExprs; 875 876 /// Count the number of simple (constant) return expressions in the function. 877 unsigned NumSimpleReturnExprs; 878 879 /// The last regular (non-return) debug location (breakpoint) in the function. 880 SourceLocation LastStopPoint; 881 882 public: 883 /// A scope within which we are constructing the fields of an object which 884 /// might use a CXXDefaultInitExpr. This stashes away a 'this' value to use 885 /// if we need to evaluate a CXXDefaultInitExpr within the evaluation. 886 class FieldConstructionScope { 887 public: 888 FieldConstructionScope(CodeGenFunction &CGF, llvm::Value *This) 889 : CGF(CGF), OldCXXDefaultInitExprThis(CGF.CXXDefaultInitExprThis) { 890 CGF.CXXDefaultInitExprThis = This; 891 } 892 ~FieldConstructionScope() { 893 CGF.CXXDefaultInitExprThis = OldCXXDefaultInitExprThis; 894 } 895 896 private: 897 CodeGenFunction &CGF; 898 llvm::Value *OldCXXDefaultInitExprThis; 899 }; 900 901 /// The scope of a CXXDefaultInitExpr. Within this scope, the value of 'this' 902 /// is overridden to be the object under construction. 903 class CXXDefaultInitExprScope { 904 public: 905 CXXDefaultInitExprScope(CodeGenFunction &CGF) 906 : CGF(CGF), OldCXXThisValue(CGF.CXXThisValue) { 907 CGF.CXXThisValue = CGF.CXXDefaultInitExprThis; 908 } 909 ~CXXDefaultInitExprScope() { 910 CGF.CXXThisValue = OldCXXThisValue; 911 } 912 913 public: 914 CodeGenFunction &CGF; 915 llvm::Value *OldCXXThisValue; 916 }; 917 918 private: 919 /// CXXThisDecl - When generating code for a C++ member function, 920 /// this will hold the implicit 'this' declaration. 921 ImplicitParamDecl *CXXABIThisDecl; 922 llvm::Value *CXXABIThisValue; 923 llvm::Value *CXXThisValue; 924 925 /// The value of 'this' to use when evaluating CXXDefaultInitExprs within 926 /// this expression. 927 llvm::Value *CXXDefaultInitExprThis; 928 929 /// CXXStructorImplicitParamDecl - When generating code for a constructor or 930 /// destructor, this will hold the implicit argument (e.g. VTT). 931 ImplicitParamDecl *CXXStructorImplicitParamDecl; 932 llvm::Value *CXXStructorImplicitParamValue; 933 934 /// OutermostConditional - Points to the outermost active 935 /// conditional control. This is used so that we know if a 936 /// temporary should be destroyed conditionally. 937 ConditionalEvaluation *OutermostConditional; 938 939 /// The current lexical scope. 940 LexicalScope *CurLexicalScope; 941 942 /// The current source location that should be used for exception 943 /// handling code. 944 SourceLocation CurEHLocation; 945 946 /// ByrefValueInfoMap - For each __block variable, contains a pair of the LLVM 947 /// type as well as the field number that contains the actual data. 948 llvm::DenseMap<const ValueDecl *, std::pair<llvm::Type *, 949 unsigned> > ByRefValueInfo; 950 951 llvm::BasicBlock *TerminateLandingPad; 952 llvm::BasicBlock *TerminateHandler; 953 llvm::BasicBlock *TrapBB; 954 955 /// Add a kernel metadata node to the named metadata node 'opencl.kernels'. 956 /// In the kernel metadata node, reference the kernel function and metadata 957 /// nodes for its optional attribute qualifiers (OpenCL 1.1 6.7.2): 958 /// - A node for the vec_type_hint(<type>) qualifier contains string 959 /// "vec_type_hint", an undefined value of the <type> data type, 960 /// and a Boolean that is true if the <type> is integer and signed. 961 /// - A node for the work_group_size_hint(X,Y,Z) qualifier contains string 962 /// "work_group_size_hint", and three 32-bit integers X, Y and Z. 963 /// - A node for the reqd_work_group_size(X,Y,Z) qualifier contains string 964 /// "reqd_work_group_size", and three 32-bit integers X, Y and Z. 965 void EmitOpenCLKernelMetadata(const FunctionDecl *FD, 966 llvm::Function *Fn); 967 968 public: 969 CodeGenFunction(CodeGenModule &cgm, bool suppressNewContext=false); 970 ~CodeGenFunction(); 971 972 CodeGenTypes &getTypes() const { return CGM.getTypes(); } 973 ASTContext &getContext() const { return CGM.getContext(); } 974 CGDebugInfo *getDebugInfo() { 975 if (DisableDebugInfo) 976 return NULL; 977 return DebugInfo; 978 } 979 void disableDebugInfo() { DisableDebugInfo = true; } 980 void enableDebugInfo() { DisableDebugInfo = false; } 981 982 bool shouldUseFusedARCCalls() { 983 return CGM.getCodeGenOpts().OptimizationLevel == 0; 984 } 985 986 const LangOptions &getLangOpts() const { return CGM.getLangOpts(); } 987 988 /// Returns a pointer to the function's exception object and selector slot, 989 /// which is assigned in every landing pad. 990 llvm::Value *getExceptionSlot(); 991 llvm::Value *getEHSelectorSlot(); 992 993 /// Returns the contents of the function's exception object and selector 994 /// slots. 995 llvm::Value *getExceptionFromSlot(); 996 llvm::Value *getSelectorFromSlot(); 997 998 llvm::Value *getNormalCleanupDestSlot(); 999 1000 llvm::BasicBlock *getUnreachableBlock() { 1001 if (!UnreachableBlock) { 1002 UnreachableBlock = createBasicBlock("unreachable"); 1003 new llvm::UnreachableInst(getLLVMContext(), UnreachableBlock); 1004 } 1005 return UnreachableBlock; 1006 } 1007 1008 llvm::BasicBlock *getInvokeDest() { 1009 if (!EHStack.requiresLandingPad()) return 0; 1010 return getInvokeDestImpl(); 1011 } 1012 1013 const TargetInfo &getTarget() const { return Target; } 1014 llvm::LLVMContext &getLLVMContext() { return CGM.getLLVMContext(); } 1015 1016 //===--------------------------------------------------------------------===// 1017 // Cleanups 1018 //===--------------------------------------------------------------------===// 1019 1020 typedef void Destroyer(CodeGenFunction &CGF, llvm::Value *addr, QualType ty); 1021 1022 void pushIrregularPartialArrayCleanup(llvm::Value *arrayBegin, 1023 llvm::Value *arrayEndPointer, 1024 QualType elementType, 1025 Destroyer *destroyer); 1026 void pushRegularPartialArrayCleanup(llvm::Value *arrayBegin, 1027 llvm::Value *arrayEnd, 1028 QualType elementType, 1029 Destroyer *destroyer); 1030 1031 void pushDestroy(QualType::DestructionKind dtorKind, 1032 llvm::Value *addr, QualType type); 1033 void pushEHDestroy(QualType::DestructionKind dtorKind, 1034 llvm::Value *addr, QualType type); 1035 void pushDestroy(CleanupKind kind, llvm::Value *addr, QualType type, 1036 Destroyer *destroyer, bool useEHCleanupForArray); 1037 void pushLifetimeExtendedDestroy(CleanupKind kind, llvm::Value *addr, 1038 QualType type, Destroyer *destroyer, 1039 bool useEHCleanupForArray); 1040 void emitDestroy(llvm::Value *addr, QualType type, Destroyer *destroyer, 1041 bool useEHCleanupForArray); 1042 llvm::Function *generateDestroyHelper(llvm::Constant *addr, QualType type, 1043 Destroyer *destroyer, 1044 bool useEHCleanupForArray, 1045 const VarDecl *VD); 1046 void emitArrayDestroy(llvm::Value *begin, llvm::Value *end, 1047 QualType type, Destroyer *destroyer, 1048 bool checkZeroLength, bool useEHCleanup); 1049 1050 Destroyer *getDestroyer(QualType::DestructionKind destructionKind); 1051 1052 /// Determines whether an EH cleanup is required to destroy a type 1053 /// with the given destruction kind. 1054 bool needsEHCleanup(QualType::DestructionKind kind) { 1055 switch (kind) { 1056 case QualType::DK_none: 1057 return false; 1058 case QualType::DK_cxx_destructor: 1059 case QualType::DK_objc_weak_lifetime: 1060 return getLangOpts().Exceptions; 1061 case QualType::DK_objc_strong_lifetime: 1062 return getLangOpts().Exceptions && 1063 CGM.getCodeGenOpts().ObjCAutoRefCountExceptions; 1064 } 1065 llvm_unreachable("bad destruction kind"); 1066 } 1067 1068 CleanupKind getCleanupKind(QualType::DestructionKind kind) { 1069 return (needsEHCleanup(kind) ? NormalAndEHCleanup : NormalCleanup); 1070 } 1071 1072 //===--------------------------------------------------------------------===// 1073 // Objective-C 1074 //===--------------------------------------------------------------------===// 1075 1076 void GenerateObjCMethod(const ObjCMethodDecl *OMD); 1077 1078 void StartObjCMethod(const ObjCMethodDecl *MD, 1079 const ObjCContainerDecl *CD, 1080 SourceLocation StartLoc); 1081 1082 /// GenerateObjCGetter - Synthesize an Objective-C property getter function. 1083 void GenerateObjCGetter(ObjCImplementationDecl *IMP, 1084 const ObjCPropertyImplDecl *PID); 1085 void generateObjCGetterBody(const ObjCImplementationDecl *classImpl, 1086 const ObjCPropertyImplDecl *propImpl, 1087 const ObjCMethodDecl *GetterMothodDecl, 1088 llvm::Constant *AtomicHelperFn); 1089 1090 void GenerateObjCCtorDtorMethod(ObjCImplementationDecl *IMP, 1091 ObjCMethodDecl *MD, bool ctor); 1092 1093 /// GenerateObjCSetter - Synthesize an Objective-C property setter function 1094 /// for the given property. 1095 void GenerateObjCSetter(ObjCImplementationDecl *IMP, 1096 const ObjCPropertyImplDecl *PID); 1097 void generateObjCSetterBody(const ObjCImplementationDecl *classImpl, 1098 const ObjCPropertyImplDecl *propImpl, 1099 llvm::Constant *AtomicHelperFn); 1100 bool IndirectObjCSetterArg(const CGFunctionInfo &FI); 1101 bool IvarTypeWithAggrGCObjects(QualType Ty); 1102 1103 //===--------------------------------------------------------------------===// 1104 // Block Bits 1105 //===--------------------------------------------------------------------===// 1106 1107 llvm::Value *EmitBlockLiteral(const BlockExpr *); 1108 llvm::Value *EmitBlockLiteral(const CGBlockInfo &Info); 1109 static void destroyBlockInfos(CGBlockInfo *info); 1110 llvm::Constant *BuildDescriptorBlockDecl(const BlockExpr *, 1111 const CGBlockInfo &Info, 1112 llvm::StructType *, 1113 llvm::Constant *BlockVarLayout); 1114 1115 llvm::Function *GenerateBlockFunction(GlobalDecl GD, 1116 const CGBlockInfo &Info, 1117 const DeclMapTy &ldm, 1118 bool IsLambdaConversionToBlock); 1119 1120 llvm::Constant *GenerateCopyHelperFunction(const CGBlockInfo &blockInfo); 1121 llvm::Constant *GenerateDestroyHelperFunction(const CGBlockInfo &blockInfo); 1122 llvm::Constant *GenerateObjCAtomicSetterCopyHelperFunction( 1123 const ObjCPropertyImplDecl *PID); 1124 llvm::Constant *GenerateObjCAtomicGetterCopyHelperFunction( 1125 const ObjCPropertyImplDecl *PID); 1126 llvm::Value *EmitBlockCopyAndAutorelease(llvm::Value *Block, QualType Ty); 1127 1128 void BuildBlockRelease(llvm::Value *DeclPtr, BlockFieldFlags flags); 1129 1130 class AutoVarEmission; 1131 1132 void emitByrefStructureInit(const AutoVarEmission &emission); 1133 void enterByrefCleanup(const AutoVarEmission &emission); 1134 1135 llvm::Value *LoadBlockStruct() { 1136 assert(BlockPointer && "no block pointer set!"); 1137 return BlockPointer; 1138 } 1139 1140 void AllocateBlockCXXThisPointer(const CXXThisExpr *E); 1141 void AllocateBlockDecl(const DeclRefExpr *E); 1142 llvm::Value *GetAddrOfBlockDecl(const VarDecl *var, bool ByRef); 1143 llvm::Type *BuildByRefType(const VarDecl *var); 1144 1145 void GenerateCode(GlobalDecl GD, llvm::Function *Fn, 1146 const CGFunctionInfo &FnInfo); 1147 void StartFunction(GlobalDecl GD, 1148 QualType RetTy, 1149 llvm::Function *Fn, 1150 const CGFunctionInfo &FnInfo, 1151 const FunctionArgList &Args, 1152 SourceLocation StartLoc); 1153 1154 void EmitConstructorBody(FunctionArgList &Args); 1155 void EmitDestructorBody(FunctionArgList &Args); 1156 void emitImplicitAssignmentOperatorBody(FunctionArgList &Args); 1157 void EmitFunctionBody(FunctionArgList &Args, const Stmt *Body); 1158 1159 void EmitForwardingCallToLambda(const CXXMethodDecl *LambdaCallOperator, 1160 CallArgList &CallArgs); 1161 void EmitLambdaToBlockPointerBody(FunctionArgList &Args); 1162 void EmitLambdaBlockInvokeBody(); 1163 void EmitLambdaDelegatingInvokeBody(const CXXMethodDecl *MD); 1164 void EmitLambdaStaticInvokeFunction(const CXXMethodDecl *MD); 1165 1166 /// EmitReturnBlock - Emit the unified return block, trying to avoid its 1167 /// emission when possible. 1168 void EmitReturnBlock(); 1169 1170 /// FinishFunction - Complete IR generation of the current function. It is 1171 /// legal to call this function even if there is no current insertion point. 1172 void FinishFunction(SourceLocation EndLoc=SourceLocation()); 1173 1174 void StartThunk(llvm::Function *Fn, GlobalDecl GD, const CGFunctionInfo &FnInfo); 1175 1176 void EmitCallAndReturnForThunk(GlobalDecl GD, llvm::Value *Callee, 1177 const ThunkInfo *Thunk); 1178 1179 /// GenerateThunk - Generate a thunk for the given method. 1180 void GenerateThunk(llvm::Function *Fn, const CGFunctionInfo &FnInfo, 1181 GlobalDecl GD, const ThunkInfo &Thunk); 1182 1183 void GenerateVarArgsThunk(llvm::Function *Fn, const CGFunctionInfo &FnInfo, 1184 GlobalDecl GD, const ThunkInfo &Thunk); 1185 1186 void EmitCtorPrologue(const CXXConstructorDecl *CD, CXXCtorType Type, 1187 FunctionArgList &Args); 1188 1189 void EmitInitializerForField(FieldDecl *Field, LValue LHS, Expr *Init, 1190 ArrayRef<VarDecl *> ArrayIndexes); 1191 1192 /// InitializeVTablePointer - Initialize the vtable pointer of the given 1193 /// subobject. 1194 /// 1195 void InitializeVTablePointer(BaseSubobject Base, 1196 const CXXRecordDecl *NearestVBase, 1197 CharUnits OffsetFromNearestVBase, 1198 const CXXRecordDecl *VTableClass); 1199 1200 typedef llvm::SmallPtrSet<const CXXRecordDecl *, 4> VisitedVirtualBasesSetTy; 1201 void InitializeVTablePointers(BaseSubobject Base, 1202 const CXXRecordDecl *NearestVBase, 1203 CharUnits OffsetFromNearestVBase, 1204 bool BaseIsNonVirtualPrimaryBase, 1205 const CXXRecordDecl *VTableClass, 1206 VisitedVirtualBasesSetTy& VBases); 1207 1208 void InitializeVTablePointers(const CXXRecordDecl *ClassDecl); 1209 1210 /// GetVTablePtr - Return the Value of the vtable pointer member pointed 1211 /// to by This. 1212 llvm::Value *GetVTablePtr(llvm::Value *This, llvm::Type *Ty); 1213 1214 1215 /// CanDevirtualizeMemberFunctionCalls - Checks whether virtual calls on given 1216 /// expr can be devirtualized. 1217 bool CanDevirtualizeMemberFunctionCall(const Expr *Base, 1218 const CXXMethodDecl *MD); 1219 1220 /// EnterDtorCleanups - Enter the cleanups necessary to complete the 1221 /// given phase of destruction for a destructor. The end result 1222 /// should call destructors on members and base classes in reverse 1223 /// order of their construction. 1224 void EnterDtorCleanups(const CXXDestructorDecl *Dtor, CXXDtorType Type); 1225 1226 /// ShouldInstrumentFunction - Return true if the current function should be 1227 /// instrumented with __cyg_profile_func_* calls 1228 bool ShouldInstrumentFunction(); 1229 1230 /// EmitFunctionInstrumentation - Emit LLVM code to call the specified 1231 /// instrumentation function with the current function and the call site, if 1232 /// function instrumentation is enabled. 1233 void EmitFunctionInstrumentation(const char *Fn); 1234 1235 /// EmitMCountInstrumentation - Emit call to .mcount. 1236 void EmitMCountInstrumentation(); 1237 1238 /// EmitFunctionProlog - Emit the target specific LLVM code to load the 1239 /// arguments for the given function. This is also responsible for naming the 1240 /// LLVM function arguments. 1241 void EmitFunctionProlog(const CGFunctionInfo &FI, 1242 llvm::Function *Fn, 1243 const FunctionArgList &Args); 1244 1245 /// EmitFunctionEpilog - Emit the target specific LLVM code to return the 1246 /// given temporary. 1247 void EmitFunctionEpilog(const CGFunctionInfo &FI, bool EmitRetDbgLoc, 1248 SourceLocation EndLoc); 1249 1250 /// EmitStartEHSpec - Emit the start of the exception spec. 1251 void EmitStartEHSpec(const Decl *D); 1252 1253 /// EmitEndEHSpec - Emit the end of the exception spec. 1254 void EmitEndEHSpec(const Decl *D); 1255 1256 /// getTerminateLandingPad - Return a landing pad that just calls terminate. 1257 llvm::BasicBlock *getTerminateLandingPad(); 1258 1259 /// getTerminateHandler - Return a handler (not a landing pad, just 1260 /// a catch handler) that just calls terminate. This is used when 1261 /// a terminate scope encloses a try. 1262 llvm::BasicBlock *getTerminateHandler(); 1263 1264 llvm::Type *ConvertTypeForMem(QualType T); 1265 llvm::Type *ConvertType(QualType T); 1266 llvm::Type *ConvertType(const TypeDecl *T) { 1267 return ConvertType(getContext().getTypeDeclType(T)); 1268 } 1269 1270 /// LoadObjCSelf - Load the value of self. This function is only valid while 1271 /// generating code for an Objective-C method. 1272 llvm::Value *LoadObjCSelf(); 1273 1274 /// TypeOfSelfObject - Return type of object that this self represents. 1275 QualType TypeOfSelfObject(); 1276 1277 /// hasAggregateLLVMType - Return true if the specified AST type will map into 1278 /// an aggregate LLVM type or is void. 1279 static TypeEvaluationKind getEvaluationKind(QualType T); 1280 1281 static bool hasScalarEvaluationKind(QualType T) { 1282 return getEvaluationKind(T) == TEK_Scalar; 1283 } 1284 1285 static bool hasAggregateEvaluationKind(QualType T) { 1286 return getEvaluationKind(T) == TEK_Aggregate; 1287 } 1288 1289 /// createBasicBlock - Create an LLVM basic block. 1290 llvm::BasicBlock *createBasicBlock(const Twine &name = "", 1291 llvm::Function *parent = 0, 1292 llvm::BasicBlock *before = 0) { 1293 #ifdef NDEBUG 1294 return llvm::BasicBlock::Create(getLLVMContext(), "", parent, before); 1295 #else 1296 return llvm::BasicBlock::Create(getLLVMContext(), name, parent, before); 1297 #endif 1298 } 1299 1300 /// getBasicBlockForLabel - Return the LLVM basicblock that the specified 1301 /// label maps to. 1302 JumpDest getJumpDestForLabel(const LabelDecl *S); 1303 1304 /// SimplifyForwardingBlocks - If the given basic block is only a branch to 1305 /// another basic block, simplify it. This assumes that no other code could 1306 /// potentially reference the basic block. 1307 void SimplifyForwardingBlocks(llvm::BasicBlock *BB); 1308 1309 /// EmitBlock - Emit the given block \arg BB and set it as the insert point, 1310 /// adding a fall-through branch from the current insert block if 1311 /// necessary. It is legal to call this function even if there is no current 1312 /// insertion point. 1313 /// 1314 /// IsFinished - If true, indicates that the caller has finished emitting 1315 /// branches to the given block and does not expect to emit code into it. This 1316 /// means the block can be ignored if it is unreachable. 1317 void EmitBlock(llvm::BasicBlock *BB, bool IsFinished=false); 1318 1319 /// EmitBlockAfterUses - Emit the given block somewhere hopefully 1320 /// near its uses, and leave the insertion point in it. 1321 void EmitBlockAfterUses(llvm::BasicBlock *BB); 1322 1323 /// EmitBranch - Emit a branch to the specified basic block from the current 1324 /// insert block, taking care to avoid creation of branches from dummy 1325 /// blocks. It is legal to call this function even if there is no current 1326 /// insertion point. 1327 /// 1328 /// This function clears the current insertion point. The caller should follow 1329 /// calls to this function with calls to Emit*Block prior to generation new 1330 /// code. 1331 void EmitBranch(llvm::BasicBlock *Block); 1332 1333 /// HaveInsertPoint - True if an insertion point is defined. If not, this 1334 /// indicates that the current code being emitted is unreachable. 1335 bool HaveInsertPoint() const { 1336 return Builder.GetInsertBlock() != 0; 1337 } 1338 1339 /// EnsureInsertPoint - Ensure that an insertion point is defined so that 1340 /// emitted IR has a place to go. Note that by definition, if this function 1341 /// creates a block then that block is unreachable; callers may do better to 1342 /// detect when no insertion point is defined and simply skip IR generation. 1343 void EnsureInsertPoint() { 1344 if (!HaveInsertPoint()) 1345 EmitBlock(createBasicBlock()); 1346 } 1347 1348 /// ErrorUnsupported - Print out an error that codegen doesn't support the 1349 /// specified stmt yet. 1350 void ErrorUnsupported(const Stmt *S, const char *Type); 1351 1352 //===--------------------------------------------------------------------===// 1353 // Helpers 1354 //===--------------------------------------------------------------------===// 1355 1356 LValue MakeAddrLValue(llvm::Value *V, QualType T, 1357 CharUnits Alignment = CharUnits()) { 1358 return LValue::MakeAddr(V, T, Alignment, getContext(), 1359 CGM.getTBAAInfo(T)); 1360 } 1361 1362 LValue MakeNaturalAlignAddrLValue(llvm::Value *V, QualType T) { 1363 CharUnits Alignment; 1364 if (!T->isIncompleteType()) 1365 Alignment = getContext().getTypeAlignInChars(T); 1366 return LValue::MakeAddr(V, T, Alignment, getContext(), 1367 CGM.getTBAAInfo(T)); 1368 } 1369 1370 /// CreateTempAlloca - This creates a alloca and inserts it into the entry 1371 /// block. The caller is responsible for setting an appropriate alignment on 1372 /// the alloca. 1373 llvm::AllocaInst *CreateTempAlloca(llvm::Type *Ty, 1374 const Twine &Name = "tmp"); 1375 1376 /// InitTempAlloca - Provide an initial value for the given alloca. 1377 void InitTempAlloca(llvm::AllocaInst *Alloca, llvm::Value *Value); 1378 1379 /// CreateIRTemp - Create a temporary IR object of the given type, with 1380 /// appropriate alignment. This routine should only be used when an temporary 1381 /// value needs to be stored into an alloca (for example, to avoid explicit 1382 /// PHI construction), but the type is the IR type, not the type appropriate 1383 /// for storing in memory. 1384 llvm::AllocaInst *CreateIRTemp(QualType T, const Twine &Name = "tmp"); 1385 1386 /// CreateMemTemp - Create a temporary memory object of the given type, with 1387 /// appropriate alignment. 1388 llvm::AllocaInst *CreateMemTemp(QualType T, const Twine &Name = "tmp"); 1389 1390 /// CreateAggTemp - Create a temporary memory object for the given 1391 /// aggregate type. 1392 AggValueSlot CreateAggTemp(QualType T, const Twine &Name = "tmp") { 1393 CharUnits Alignment = getContext().getTypeAlignInChars(T); 1394 return AggValueSlot::forAddr(CreateMemTemp(T, Name), Alignment, 1395 T.getQualifiers(), 1396 AggValueSlot::IsNotDestructed, 1397 AggValueSlot::DoesNotNeedGCBarriers, 1398 AggValueSlot::IsNotAliased); 1399 } 1400 1401 /// Emit a cast to void* in the appropriate address space. 1402 llvm::Value *EmitCastToVoidPtr(llvm::Value *value); 1403 1404 /// EvaluateExprAsBool - Perform the usual unary conversions on the specified 1405 /// expression and compare the result against zero, returning an Int1Ty value. 1406 llvm::Value *EvaluateExprAsBool(const Expr *E); 1407 1408 /// EmitIgnoredExpr - Emit an expression in a context which ignores the result. 1409 void EmitIgnoredExpr(const Expr *E); 1410 1411 /// EmitAnyExpr - Emit code to compute the specified expression which can have 1412 /// any type. The result is returned as an RValue struct. If this is an 1413 /// aggregate expression, the aggloc/agglocvolatile arguments indicate where 1414 /// the result should be returned. 1415 /// 1416 /// \param ignoreResult True if the resulting value isn't used. 1417 RValue EmitAnyExpr(const Expr *E, 1418 AggValueSlot aggSlot = AggValueSlot::ignored(), 1419 bool ignoreResult = false); 1420 1421 // EmitVAListRef - Emit a "reference" to a va_list; this is either the address 1422 // or the value of the expression, depending on how va_list is defined. 1423 llvm::Value *EmitVAListRef(const Expr *E); 1424 1425 /// EmitAnyExprToTemp - Similary to EmitAnyExpr(), however, the result will 1426 /// always be accessible even if no aggregate location is provided. 1427 RValue EmitAnyExprToTemp(const Expr *E); 1428 1429 /// EmitAnyExprToMem - Emits the code necessary to evaluate an 1430 /// arbitrary expression into the given memory location. 1431 void EmitAnyExprToMem(const Expr *E, llvm::Value *Location, 1432 Qualifiers Quals, bool IsInitializer); 1433 1434 /// EmitExprAsInit - Emits the code necessary to initialize a 1435 /// location in memory with the given initializer. 1436 void EmitExprAsInit(const Expr *init, const ValueDecl *D, 1437 LValue lvalue, bool capturedByInit); 1438 1439 /// hasVolatileMember - returns true if aggregate type has a volatile 1440 /// member. 1441 bool hasVolatileMember(QualType T) { 1442 if (const RecordType *RT = T->getAs<RecordType>()) { 1443 const RecordDecl *RD = cast<RecordDecl>(RT->getDecl()); 1444 return RD->hasVolatileMember(); 1445 } 1446 return false; 1447 } 1448 /// EmitAggregateCopy - Emit an aggregate assignment. 1449 /// 1450 /// The difference to EmitAggregateCopy is that tail padding is not copied. 1451 /// This is required for correctness when assigning non-POD structures in C++. 1452 void EmitAggregateAssign(llvm::Value *DestPtr, llvm::Value *SrcPtr, 1453 QualType EltTy) { 1454 bool IsVolatile = hasVolatileMember(EltTy); 1455 EmitAggregateCopy(DestPtr, SrcPtr, EltTy, IsVolatile, CharUnits::Zero(), 1456 true); 1457 } 1458 1459 /// EmitAggregateCopy - Emit an aggregate copy. 1460 /// 1461 /// \param isVolatile - True iff either the source or the destination is 1462 /// volatile. 1463 /// \param isAssignment - If false, allow padding to be copied. This often 1464 /// yields more efficient. 1465 void EmitAggregateCopy(llvm::Value *DestPtr, llvm::Value *SrcPtr, 1466 QualType EltTy, bool isVolatile=false, 1467 CharUnits Alignment = CharUnits::Zero(), 1468 bool isAssignment = false); 1469 1470 /// StartBlock - Start new block named N. If insert block is a dummy block 1471 /// then reuse it. 1472 void StartBlock(const char *N); 1473 1474 /// GetAddrOfLocalVar - Return the address of a local variable. 1475 llvm::Value *GetAddrOfLocalVar(const VarDecl *VD) { 1476 llvm::Value *Res = LocalDeclMap[VD]; 1477 assert(Res && "Invalid argument to GetAddrOfLocalVar(), no decl!"); 1478 return Res; 1479 } 1480 1481 /// getOpaqueLValueMapping - Given an opaque value expression (which 1482 /// must be mapped to an l-value), return its mapping. 1483 const LValue &getOpaqueLValueMapping(const OpaqueValueExpr *e) { 1484 assert(OpaqueValueMapping::shouldBindAsLValue(e)); 1485 1486 llvm::DenseMap<const OpaqueValueExpr*,LValue>::iterator 1487 it = OpaqueLValues.find(e); 1488 assert(it != OpaqueLValues.end() && "no mapping for opaque value!"); 1489 return it->second; 1490 } 1491 1492 /// getOpaqueRValueMapping - Given an opaque value expression (which 1493 /// must be mapped to an r-value), return its mapping. 1494 const RValue &getOpaqueRValueMapping(const OpaqueValueExpr *e) { 1495 assert(!OpaqueValueMapping::shouldBindAsLValue(e)); 1496 1497 llvm::DenseMap<const OpaqueValueExpr*,RValue>::iterator 1498 it = OpaqueRValues.find(e); 1499 assert(it != OpaqueRValues.end() && "no mapping for opaque value!"); 1500 return it->second; 1501 } 1502 1503 /// getAccessedFieldNo - Given an encoded value and a result number, return 1504 /// the input field number being accessed. 1505 static unsigned getAccessedFieldNo(unsigned Idx, const llvm::Constant *Elts); 1506 1507 llvm::BlockAddress *GetAddrOfLabel(const LabelDecl *L); 1508 llvm::BasicBlock *GetIndirectGotoBlock(); 1509 1510 /// EmitNullInitialization - Generate code to set a value of the given type to 1511 /// null, If the type contains data member pointers, they will be initialized 1512 /// to -1 in accordance with the Itanium C++ ABI. 1513 void EmitNullInitialization(llvm::Value *DestPtr, QualType Ty); 1514 1515 // EmitVAArg - Generate code to get an argument from the passed in pointer 1516 // and update it accordingly. The return value is a pointer to the argument. 1517 // FIXME: We should be able to get rid of this method and use the va_arg 1518 // instruction in LLVM instead once it works well enough. 1519 llvm::Value *EmitVAArg(llvm::Value *VAListAddr, QualType Ty); 1520 1521 /// emitArrayLength - Compute the length of an array, even if it's a 1522 /// VLA, and drill down to the base element type. 1523 llvm::Value *emitArrayLength(const ArrayType *arrayType, 1524 QualType &baseType, 1525 llvm::Value *&addr); 1526 1527 /// EmitVLASize - Capture all the sizes for the VLA expressions in 1528 /// the given variably-modified type and store them in the VLASizeMap. 1529 /// 1530 /// This function can be called with a null (unreachable) insert point. 1531 void EmitVariablyModifiedType(QualType Ty); 1532 1533 /// getVLASize - Returns an LLVM value that corresponds to the size, 1534 /// in non-variably-sized elements, of a variable length array type, 1535 /// plus that largest non-variably-sized element type. Assumes that 1536 /// the type has already been emitted with EmitVariablyModifiedType. 1537 std::pair<llvm::Value*,QualType> getVLASize(const VariableArrayType *vla); 1538 std::pair<llvm::Value*,QualType> getVLASize(QualType vla); 1539 1540 /// LoadCXXThis - Load the value of 'this'. This function is only valid while 1541 /// generating code for an C++ member function. 1542 llvm::Value *LoadCXXThis() { 1543 assert(CXXThisValue && "no 'this' value for this function"); 1544 return CXXThisValue; 1545 } 1546 1547 /// LoadCXXVTT - Load the VTT parameter to base constructors/destructors have 1548 /// virtual bases. 1549 // FIXME: Every place that calls LoadCXXVTT is something 1550 // that needs to be abstracted properly. 1551 llvm::Value *LoadCXXVTT() { 1552 assert(CXXStructorImplicitParamValue && "no VTT value for this function"); 1553 return CXXStructorImplicitParamValue; 1554 } 1555 1556 /// LoadCXXStructorImplicitParam - Load the implicit parameter 1557 /// for a constructor/destructor. 1558 llvm::Value *LoadCXXStructorImplicitParam() { 1559 assert(CXXStructorImplicitParamValue && 1560 "no implicit argument value for this function"); 1561 return CXXStructorImplicitParamValue; 1562 } 1563 1564 /// GetAddressOfBaseOfCompleteClass - Convert the given pointer to a 1565 /// complete class to the given direct base. 1566 llvm::Value * 1567 GetAddressOfDirectBaseInCompleteClass(llvm::Value *Value, 1568 const CXXRecordDecl *Derived, 1569 const CXXRecordDecl *Base, 1570 bool BaseIsVirtual); 1571 1572 /// GetAddressOfBaseClass - This function will add the necessary delta to the 1573 /// load of 'this' and returns address of the base class. 1574 llvm::Value *GetAddressOfBaseClass(llvm::Value *Value, 1575 const CXXRecordDecl *Derived, 1576 CastExpr::path_const_iterator PathBegin, 1577 CastExpr::path_const_iterator PathEnd, 1578 bool NullCheckValue); 1579 1580 llvm::Value *GetAddressOfDerivedClass(llvm::Value *Value, 1581 const CXXRecordDecl *Derived, 1582 CastExpr::path_const_iterator PathBegin, 1583 CastExpr::path_const_iterator PathEnd, 1584 bool NullCheckValue); 1585 1586 /// GetVTTParameter - Return the VTT parameter that should be passed to a 1587 /// base constructor/destructor with virtual bases. 1588 /// FIXME: VTTs are Itanium ABI-specific, so the definition should move 1589 /// to ItaniumCXXABI.cpp together with all the references to VTT. 1590 llvm::Value *GetVTTParameter(GlobalDecl GD, bool ForVirtualBase, 1591 bool Delegating); 1592 1593 void EmitDelegateCXXConstructorCall(const CXXConstructorDecl *Ctor, 1594 CXXCtorType CtorType, 1595 const FunctionArgList &Args, 1596 SourceLocation Loc); 1597 // It's important not to confuse this and the previous function. Delegating 1598 // constructors are the C++0x feature. The constructor delegate optimization 1599 // is used to reduce duplication in the base and complete consturctors where 1600 // they are substantially the same. 1601 void EmitDelegatingCXXConstructorCall(const CXXConstructorDecl *Ctor, 1602 const FunctionArgList &Args); 1603 void EmitCXXConstructorCall(const CXXConstructorDecl *D, CXXCtorType Type, 1604 bool ForVirtualBase, bool Delegating, 1605 llvm::Value *This, 1606 CallExpr::const_arg_iterator ArgBeg, 1607 CallExpr::const_arg_iterator ArgEnd); 1608 1609 void EmitSynthesizedCXXCopyCtorCall(const CXXConstructorDecl *D, 1610 llvm::Value *This, llvm::Value *Src, 1611 CallExpr::const_arg_iterator ArgBeg, 1612 CallExpr::const_arg_iterator ArgEnd); 1613 1614 void EmitCXXAggrConstructorCall(const CXXConstructorDecl *D, 1615 const ConstantArrayType *ArrayTy, 1616 llvm::Value *ArrayPtr, 1617 CallExpr::const_arg_iterator ArgBeg, 1618 CallExpr::const_arg_iterator ArgEnd, 1619 bool ZeroInitialization = false); 1620 1621 void EmitCXXAggrConstructorCall(const CXXConstructorDecl *D, 1622 llvm::Value *NumElements, 1623 llvm::Value *ArrayPtr, 1624 CallExpr::const_arg_iterator ArgBeg, 1625 CallExpr::const_arg_iterator ArgEnd, 1626 bool ZeroInitialization = false); 1627 1628 static Destroyer destroyCXXObject; 1629 1630 void EmitCXXDestructorCall(const CXXDestructorDecl *D, CXXDtorType Type, 1631 bool ForVirtualBase, bool Delegating, 1632 llvm::Value *This); 1633 1634 void EmitNewArrayInitializer(const CXXNewExpr *E, QualType elementType, 1635 llvm::Value *NewPtr, llvm::Value *NumElements); 1636 1637 void EmitCXXTemporary(const CXXTemporary *Temporary, QualType TempType, 1638 llvm::Value *Ptr); 1639 1640 llvm::Value *EmitCXXNewExpr(const CXXNewExpr *E); 1641 void EmitCXXDeleteExpr(const CXXDeleteExpr *E); 1642 1643 void EmitDeleteCall(const FunctionDecl *DeleteFD, llvm::Value *Ptr, 1644 QualType DeleteTy); 1645 1646 llvm::Value* EmitCXXTypeidExpr(const CXXTypeidExpr *E); 1647 llvm::Value *EmitDynamicCast(llvm::Value *V, const CXXDynamicCastExpr *DCE); 1648 llvm::Value* EmitCXXUuidofExpr(const CXXUuidofExpr *E); 1649 1650 /// \brief Situations in which we might emit a check for the suitability of a 1651 /// pointer or glvalue. 1652 enum TypeCheckKind { 1653 /// Checking the operand of a load. Must be suitably sized and aligned. 1654 TCK_Load, 1655 /// Checking the destination of a store. Must be suitably sized and aligned. 1656 TCK_Store, 1657 /// Checking the bound value in a reference binding. Must be suitably sized 1658 /// and aligned, but is not required to refer to an object (until the 1659 /// reference is used), per core issue 453. 1660 TCK_ReferenceBinding, 1661 /// Checking the object expression in a non-static data member access. Must 1662 /// be an object within its lifetime. 1663 TCK_MemberAccess, 1664 /// Checking the 'this' pointer for a call to a non-static member function. 1665 /// Must be an object within its lifetime. 1666 TCK_MemberCall, 1667 /// Checking the 'this' pointer for a constructor call. 1668 TCK_ConstructorCall, 1669 /// Checking the operand of a static_cast to a derived pointer type. Must be 1670 /// null or an object within its lifetime. 1671 TCK_DowncastPointer, 1672 /// Checking the operand of a static_cast to a derived reference type. Must 1673 /// be an object within its lifetime. 1674 TCK_DowncastReference 1675 }; 1676 1677 /// \brief Emit a check that \p V is the address of storage of the 1678 /// appropriate size and alignment for an object of type \p Type. 1679 void EmitTypeCheck(TypeCheckKind TCK, SourceLocation Loc, llvm::Value *V, 1680 QualType Type, CharUnits Alignment = CharUnits::Zero()); 1681 1682 /// \brief Emit a check that \p Base points into an array object, which 1683 /// we can access at index \p Index. \p Accessed should be \c false if we 1684 /// this expression is used as an lvalue, for instance in "&Arr[Idx]". 1685 void EmitBoundsCheck(const Expr *E, const Expr *Base, llvm::Value *Index, 1686 QualType IndexType, bool Accessed); 1687 1688 llvm::Value *EmitScalarPrePostIncDec(const UnaryOperator *E, LValue LV, 1689 bool isInc, bool isPre); 1690 ComplexPairTy EmitComplexPrePostIncDec(const UnaryOperator *E, LValue LV, 1691 bool isInc, bool isPre); 1692 //===--------------------------------------------------------------------===// 1693 // Declaration Emission 1694 //===--------------------------------------------------------------------===// 1695 1696 /// EmitDecl - Emit a declaration. 1697 /// 1698 /// This function can be called with a null (unreachable) insert point. 1699 void EmitDecl(const Decl &D); 1700 1701 /// EmitVarDecl - Emit a local variable declaration. 1702 /// 1703 /// This function can be called with a null (unreachable) insert point. 1704 void EmitVarDecl(const VarDecl &D); 1705 1706 void EmitScalarInit(const Expr *init, const ValueDecl *D, 1707 LValue lvalue, bool capturedByInit); 1708 void EmitScalarInit(llvm::Value *init, LValue lvalue); 1709 1710 typedef void SpecialInitFn(CodeGenFunction &Init, const VarDecl &D, 1711 llvm::Value *Address); 1712 1713 /// EmitAutoVarDecl - Emit an auto variable declaration. 1714 /// 1715 /// This function can be called with a null (unreachable) insert point. 1716 void EmitAutoVarDecl(const VarDecl &D); 1717 1718 class AutoVarEmission { 1719 friend class CodeGenFunction; 1720 1721 const VarDecl *Variable; 1722 1723 /// The alignment of the variable. 1724 CharUnits Alignment; 1725 1726 /// The address of the alloca. Null if the variable was emitted 1727 /// as a global constant. 1728 llvm::Value *Address; 1729 1730 llvm::Value *NRVOFlag; 1731 1732 /// True if the variable is a __block variable. 1733 bool IsByRef; 1734 1735 /// True if the variable is of aggregate type and has a constant 1736 /// initializer. 1737 bool IsConstantAggregate; 1738 1739 /// Non-null if we should use lifetime annotations. 1740 llvm::Value *SizeForLifetimeMarkers; 1741 1742 struct Invalid {}; 1743 AutoVarEmission(Invalid) : Variable(0) {} 1744 1745 AutoVarEmission(const VarDecl &variable) 1746 : Variable(&variable), Address(0), NRVOFlag(0), 1747 IsByRef(false), IsConstantAggregate(false), 1748 SizeForLifetimeMarkers(0) {} 1749 1750 bool wasEmittedAsGlobal() const { return Address == 0; } 1751 1752 public: 1753 static AutoVarEmission invalid() { return AutoVarEmission(Invalid()); } 1754 1755 bool useLifetimeMarkers() const { return SizeForLifetimeMarkers != 0; } 1756 llvm::Value *getSizeForLifetimeMarkers() const { 1757 assert(useLifetimeMarkers()); 1758 return SizeForLifetimeMarkers; 1759 } 1760 1761 /// Returns the raw, allocated address, which is not necessarily 1762 /// the address of the object itself. 1763 llvm::Value *getAllocatedAddress() const { 1764 return Address; 1765 } 1766 1767 /// Returns the address of the object within this declaration. 1768 /// Note that this does not chase the forwarding pointer for 1769 /// __block decls. 1770 llvm::Value *getObjectAddress(CodeGenFunction &CGF) const { 1771 if (!IsByRef) return Address; 1772 1773 return CGF.Builder.CreateStructGEP(Address, 1774 CGF.getByRefValueLLVMField(Variable), 1775 Variable->getNameAsString()); 1776 } 1777 }; 1778 AutoVarEmission EmitAutoVarAlloca(const VarDecl &var); 1779 void EmitAutoVarInit(const AutoVarEmission &emission); 1780 void EmitAutoVarCleanups(const AutoVarEmission &emission); 1781 void emitAutoVarTypeCleanup(const AutoVarEmission &emission, 1782 QualType::DestructionKind dtorKind); 1783 1784 void EmitStaticVarDecl(const VarDecl &D, 1785 llvm::GlobalValue::LinkageTypes Linkage); 1786 1787 /// EmitParmDecl - Emit a ParmVarDecl or an ImplicitParamDecl. 1788 void EmitParmDecl(const VarDecl &D, llvm::Value *Arg, unsigned ArgNo); 1789 1790 /// protectFromPeepholes - Protect a value that we're intending to 1791 /// store to the side, but which will probably be used later, from 1792 /// aggressive peepholing optimizations that might delete it. 1793 /// 1794 /// Pass the result to unprotectFromPeepholes to declare that 1795 /// protection is no longer required. 1796 /// 1797 /// There's no particular reason why this shouldn't apply to 1798 /// l-values, it's just that no existing peepholes work on pointers. 1799 PeepholeProtection protectFromPeepholes(RValue rvalue); 1800 void unprotectFromPeepholes(PeepholeProtection protection); 1801 1802 //===--------------------------------------------------------------------===// 1803 // Statement Emission 1804 //===--------------------------------------------------------------------===// 1805 1806 /// EmitStopPoint - Emit a debug stoppoint if we are emitting debug info. 1807 void EmitStopPoint(const Stmt *S); 1808 1809 /// EmitStmt - Emit the code for the statement \arg S. It is legal to call 1810 /// this function even if there is no current insertion point. 1811 /// 1812 /// This function may clear the current insertion point; callers should use 1813 /// EnsureInsertPoint if they wish to subsequently generate code without first 1814 /// calling EmitBlock, EmitBranch, or EmitStmt. 1815 void EmitStmt(const Stmt *S); 1816 1817 /// EmitSimpleStmt - Try to emit a "simple" statement which does not 1818 /// necessarily require an insertion point or debug information; typically 1819 /// because the statement amounts to a jump or a container of other 1820 /// statements. 1821 /// 1822 /// \return True if the statement was handled. 1823 bool EmitSimpleStmt(const Stmt *S); 1824 1825 llvm::Value *EmitCompoundStmt(const CompoundStmt &S, bool GetLast = false, 1826 AggValueSlot AVS = AggValueSlot::ignored()); 1827 llvm::Value *EmitCompoundStmtWithoutScope(const CompoundStmt &S, 1828 bool GetLast = false, 1829 AggValueSlot AVS = 1830 AggValueSlot::ignored()); 1831 1832 /// EmitLabel - Emit the block for the given label. It is legal to call this 1833 /// function even if there is no current insertion point. 1834 void EmitLabel(const LabelDecl *D); // helper for EmitLabelStmt. 1835 1836 void EmitLabelStmt(const LabelStmt &S); 1837 void EmitAttributedStmt(const AttributedStmt &S); 1838 void EmitGotoStmt(const GotoStmt &S); 1839 void EmitIndirectGotoStmt(const IndirectGotoStmt &S); 1840 void EmitIfStmt(const IfStmt &S); 1841 void EmitWhileStmt(const WhileStmt &S); 1842 void EmitDoStmt(const DoStmt &S); 1843 void EmitForStmt(const ForStmt &S); 1844 void EmitReturnStmt(const ReturnStmt &S); 1845 void EmitDeclStmt(const DeclStmt &S); 1846 void EmitBreakStmt(const BreakStmt &S); 1847 void EmitContinueStmt(const ContinueStmt &S); 1848 void EmitSwitchStmt(const SwitchStmt &S); 1849 void EmitDefaultStmt(const DefaultStmt &S); 1850 void EmitCaseStmt(const CaseStmt &S); 1851 void EmitCaseStmtRange(const CaseStmt &S); 1852 void EmitAsmStmt(const AsmStmt &S); 1853 1854 void EmitObjCForCollectionStmt(const ObjCForCollectionStmt &S); 1855 void EmitObjCAtTryStmt(const ObjCAtTryStmt &S); 1856 void EmitObjCAtThrowStmt(const ObjCAtThrowStmt &S); 1857 void EmitObjCAtSynchronizedStmt(const ObjCAtSynchronizedStmt &S); 1858 void EmitObjCAutoreleasePoolStmt(const ObjCAutoreleasePoolStmt &S); 1859 1860 llvm::Constant *getUnwindResumeFn(); 1861 llvm::Constant *getUnwindResumeOrRethrowFn(); 1862 void EnterCXXTryStmt(const CXXTryStmt &S, bool IsFnTryBlock = false); 1863 void ExitCXXTryStmt(const CXXTryStmt &S, bool IsFnTryBlock = false); 1864 1865 void EmitCXXTryStmt(const CXXTryStmt &S); 1866 void EmitSEHTryStmt(const SEHTryStmt &S); 1867 void EmitCXXForRangeStmt(const CXXForRangeStmt &S); 1868 1869 llvm::Function *EmitCapturedStmt(const CapturedStmt &S, CapturedRegionKind K); 1870 llvm::Function *GenerateCapturedStmtFunction(const CapturedDecl *CD, 1871 const RecordDecl *RD, 1872 SourceLocation Loc); 1873 1874 //===--------------------------------------------------------------------===// 1875 // LValue Expression Emission 1876 //===--------------------------------------------------------------------===// 1877 1878 /// GetUndefRValue - Get an appropriate 'undef' rvalue for the given type. 1879 RValue GetUndefRValue(QualType Ty); 1880 1881 /// EmitUnsupportedRValue - Emit a dummy r-value using the type of E 1882 /// and issue an ErrorUnsupported style diagnostic (using the 1883 /// provided Name). 1884 RValue EmitUnsupportedRValue(const Expr *E, 1885 const char *Name); 1886 1887 /// EmitUnsupportedLValue - Emit a dummy l-value using the type of E and issue 1888 /// an ErrorUnsupported style diagnostic (using the provided Name). 1889 LValue EmitUnsupportedLValue(const Expr *E, 1890 const char *Name); 1891 1892 /// EmitLValue - Emit code to compute a designator that specifies the location 1893 /// of the expression. 1894 /// 1895 /// This can return one of two things: a simple address or a bitfield 1896 /// reference. In either case, the LLVM Value* in the LValue structure is 1897 /// guaranteed to be an LLVM pointer type. 1898 /// 1899 /// If this returns a bitfield reference, nothing about the pointee type of 1900 /// the LLVM value is known: For example, it may not be a pointer to an 1901 /// integer. 1902 /// 1903 /// If this returns a normal address, and if the lvalue's C type is fixed 1904 /// size, this method guarantees that the returned pointer type will point to 1905 /// an LLVM type of the same size of the lvalue's type. If the lvalue has a 1906 /// variable length type, this is not possible. 1907 /// 1908 LValue EmitLValue(const Expr *E); 1909 1910 /// \brief Same as EmitLValue but additionally we generate checking code to 1911 /// guard against undefined behavior. This is only suitable when we know 1912 /// that the address will be used to access the object. 1913 LValue EmitCheckedLValue(const Expr *E, TypeCheckKind TCK); 1914 1915 RValue convertTempToRValue(llvm::Value *addr, QualType type, 1916 SourceLocation Loc); 1917 1918 void EmitAtomicInit(Expr *E, LValue lvalue); 1919 1920 RValue EmitAtomicLoad(LValue lvalue, SourceLocation loc, 1921 AggValueSlot slot = AggValueSlot::ignored()); 1922 1923 void EmitAtomicStore(RValue rvalue, LValue lvalue, bool isInit); 1924 1925 /// EmitToMemory - Change a scalar value from its value 1926 /// representation to its in-memory representation. 1927 llvm::Value *EmitToMemory(llvm::Value *Value, QualType Ty); 1928 1929 /// EmitFromMemory - Change a scalar value from its memory 1930 /// representation to its value representation. 1931 llvm::Value *EmitFromMemory(llvm::Value *Value, QualType Ty); 1932 1933 /// EmitLoadOfScalar - Load a scalar value from an address, taking 1934 /// care to appropriately convert from the memory representation to 1935 /// the LLVM value representation. 1936 llvm::Value *EmitLoadOfScalar(llvm::Value *Addr, bool Volatile, 1937 unsigned Alignment, QualType Ty, 1938 SourceLocation Loc, 1939 llvm::MDNode *TBAAInfo = 0, 1940 QualType TBAABaseTy = QualType(), 1941 uint64_t TBAAOffset = 0); 1942 1943 /// EmitLoadOfScalar - Load a scalar value from an address, taking 1944 /// care to appropriately convert from the memory representation to 1945 /// the LLVM value representation. The l-value must be a simple 1946 /// l-value. 1947 llvm::Value *EmitLoadOfScalar(LValue lvalue, SourceLocation Loc); 1948 1949 /// EmitStoreOfScalar - Store a scalar value to an address, taking 1950 /// care to appropriately convert from the memory representation to 1951 /// the LLVM value representation. 1952 void EmitStoreOfScalar(llvm::Value *Value, llvm::Value *Addr, 1953 bool Volatile, unsigned Alignment, QualType Ty, 1954 llvm::MDNode *TBAAInfo = 0, bool isInit = false, 1955 QualType TBAABaseTy = QualType(), 1956 uint64_t TBAAOffset = 0); 1957 1958 /// EmitStoreOfScalar - Store a scalar value to an address, taking 1959 /// care to appropriately convert from the memory representation to 1960 /// the LLVM value representation. The l-value must be a simple 1961 /// l-value. The isInit flag indicates whether this is an initialization. 1962 /// If so, atomic qualifiers are ignored and the store is always non-atomic. 1963 void EmitStoreOfScalar(llvm::Value *value, LValue lvalue, bool isInit=false); 1964 1965 /// EmitLoadOfLValue - Given an expression that represents a value lvalue, 1966 /// this method emits the address of the lvalue, then loads the result as an 1967 /// rvalue, returning the rvalue. 1968 RValue EmitLoadOfLValue(LValue V, SourceLocation Loc); 1969 RValue EmitLoadOfExtVectorElementLValue(LValue V); 1970 RValue EmitLoadOfBitfieldLValue(LValue LV); 1971 1972 /// EmitStoreThroughLValue - Store the specified rvalue into the specified 1973 /// lvalue, where both are guaranteed to the have the same type, and that type 1974 /// is 'Ty'. 1975 void EmitStoreThroughLValue(RValue Src, LValue Dst, bool isInit=false); 1976 void EmitStoreThroughExtVectorComponentLValue(RValue Src, LValue Dst); 1977 1978 /// EmitStoreThroughBitfieldLValue - Store Src into Dst with same constraints 1979 /// as EmitStoreThroughLValue. 1980 /// 1981 /// \param Result [out] - If non-null, this will be set to a Value* for the 1982 /// bit-field contents after the store, appropriate for use as the result of 1983 /// an assignment to the bit-field. 1984 void EmitStoreThroughBitfieldLValue(RValue Src, LValue Dst, 1985 llvm::Value **Result=0); 1986 1987 /// Emit an l-value for an assignment (simple or compound) of complex type. 1988 LValue EmitComplexAssignmentLValue(const BinaryOperator *E); 1989 LValue EmitComplexCompoundAssignmentLValue(const CompoundAssignOperator *E); 1990 LValue EmitScalarCompooundAssignWithComplex(const CompoundAssignOperator *E, 1991 llvm::Value *&Result); 1992 1993 // Note: only available for agg return types 1994 LValue EmitBinaryOperatorLValue(const BinaryOperator *E); 1995 LValue EmitCompoundAssignmentLValue(const CompoundAssignOperator *E); 1996 // Note: only available for agg return types 1997 LValue EmitCallExprLValue(const CallExpr *E); 1998 // Note: only available for agg return types 1999 LValue EmitVAArgExprLValue(const VAArgExpr *E); 2000 LValue EmitDeclRefLValue(const DeclRefExpr *E); 2001 LValue EmitStringLiteralLValue(const StringLiteral *E); 2002 LValue EmitObjCEncodeExprLValue(const ObjCEncodeExpr *E); 2003 LValue EmitPredefinedLValue(const PredefinedExpr *E); 2004 LValue EmitUnaryOpLValue(const UnaryOperator *E); 2005 LValue EmitArraySubscriptExpr(const ArraySubscriptExpr *E, 2006 bool Accessed = false); 2007 LValue EmitExtVectorElementExpr(const ExtVectorElementExpr *E); 2008 LValue EmitMemberExpr(const MemberExpr *E); 2009 LValue EmitObjCIsaExpr(const ObjCIsaExpr *E); 2010 LValue EmitCompoundLiteralLValue(const CompoundLiteralExpr *E); 2011 LValue EmitInitListLValue(const InitListExpr *E); 2012 LValue EmitConditionalOperatorLValue(const AbstractConditionalOperator *E); 2013 LValue EmitCastLValue(const CastExpr *E); 2014 LValue EmitMaterializeTemporaryExpr(const MaterializeTemporaryExpr *E); 2015 LValue EmitOpaqueValueLValue(const OpaqueValueExpr *e); 2016 2017 RValue EmitRValueForField(LValue LV, const FieldDecl *FD, SourceLocation Loc); 2018 2019 class ConstantEmission { 2020 llvm::PointerIntPair<llvm::Constant*, 1, bool> ValueAndIsReference; 2021 ConstantEmission(llvm::Constant *C, bool isReference) 2022 : ValueAndIsReference(C, isReference) {} 2023 public: 2024 ConstantEmission() {} 2025 static ConstantEmission forReference(llvm::Constant *C) { 2026 return ConstantEmission(C, true); 2027 } 2028 static ConstantEmission forValue(llvm::Constant *C) { 2029 return ConstantEmission(C, false); 2030 } 2031 2032 LLVM_EXPLICIT operator bool() const { return ValueAndIsReference.getOpaqueValue() != 0; } 2033 2034 bool isReference() const { return ValueAndIsReference.getInt(); } 2035 LValue getReferenceLValue(CodeGenFunction &CGF, Expr *refExpr) const { 2036 assert(isReference()); 2037 return CGF.MakeNaturalAlignAddrLValue(ValueAndIsReference.getPointer(), 2038 refExpr->getType()); 2039 } 2040 2041 llvm::Constant *getValue() const { 2042 assert(!isReference()); 2043 return ValueAndIsReference.getPointer(); 2044 } 2045 }; 2046 2047 ConstantEmission tryEmitAsConstant(DeclRefExpr *refExpr); 2048 2049 RValue EmitPseudoObjectRValue(const PseudoObjectExpr *e, 2050 AggValueSlot slot = AggValueSlot::ignored()); 2051 LValue EmitPseudoObjectLValue(const PseudoObjectExpr *e); 2052 2053 llvm::Value *EmitIvarOffset(const ObjCInterfaceDecl *Interface, 2054 const ObjCIvarDecl *Ivar); 2055 LValue EmitLValueForField(LValue Base, const FieldDecl* Field); 2056 LValue EmitLValueForLambdaField(const FieldDecl *Field); 2057 2058 /// EmitLValueForFieldInitialization - Like EmitLValueForField, except that 2059 /// if the Field is a reference, this will return the address of the reference 2060 /// and not the address of the value stored in the reference. 2061 LValue EmitLValueForFieldInitialization(LValue Base, 2062 const FieldDecl* Field); 2063 2064 LValue EmitLValueForIvar(QualType ObjectTy, 2065 llvm::Value* Base, const ObjCIvarDecl *Ivar, 2066 unsigned CVRQualifiers); 2067 2068 LValue EmitCXXConstructLValue(const CXXConstructExpr *E); 2069 LValue EmitCXXBindTemporaryLValue(const CXXBindTemporaryExpr *E); 2070 LValue EmitLambdaLValue(const LambdaExpr *E); 2071 LValue EmitCXXTypeidLValue(const CXXTypeidExpr *E); 2072 LValue EmitCXXUuidofLValue(const CXXUuidofExpr *E); 2073 2074 LValue EmitObjCMessageExprLValue(const ObjCMessageExpr *E); 2075 LValue EmitObjCIvarRefLValue(const ObjCIvarRefExpr *E); 2076 LValue EmitStmtExprLValue(const StmtExpr *E); 2077 LValue EmitPointerToDataMemberBinaryExpr(const BinaryOperator *E); 2078 LValue EmitObjCSelectorLValue(const ObjCSelectorExpr *E); 2079 void EmitDeclRefExprDbgValue(const DeclRefExpr *E, llvm::Constant *Init); 2080 2081 //===--------------------------------------------------------------------===// 2082 // Scalar Expression Emission 2083 //===--------------------------------------------------------------------===// 2084 2085 /// EmitCall - Generate a call of the given function, expecting the given 2086 /// result type, and using the given argument list which specifies both the 2087 /// LLVM arguments and the types they were derived from. 2088 /// 2089 /// \param TargetDecl - If given, the decl of the function in a direct call; 2090 /// used to set attributes on the call (noreturn, etc.). 2091 RValue EmitCall(const CGFunctionInfo &FnInfo, 2092 llvm::Value *Callee, 2093 ReturnValueSlot ReturnValue, 2094 const CallArgList &Args, 2095 const Decl *TargetDecl = 0, 2096 llvm::Instruction **callOrInvoke = 0); 2097 2098 RValue EmitCall(QualType FnType, llvm::Value *Callee, 2099 SourceLocation CallLoc, 2100 ReturnValueSlot ReturnValue, 2101 CallExpr::const_arg_iterator ArgBeg, 2102 CallExpr::const_arg_iterator ArgEnd, 2103 const Decl *TargetDecl = 0); 2104 RValue EmitCallExpr(const CallExpr *E, 2105 ReturnValueSlot ReturnValue = ReturnValueSlot()); 2106 2107 llvm::CallInst *EmitRuntimeCall(llvm::Value *callee, 2108 const Twine &name = ""); 2109 llvm::CallInst *EmitRuntimeCall(llvm::Value *callee, 2110 ArrayRef<llvm::Value*> args, 2111 const Twine &name = ""); 2112 llvm::CallInst *EmitNounwindRuntimeCall(llvm::Value *callee, 2113 const Twine &name = ""); 2114 llvm::CallInst *EmitNounwindRuntimeCall(llvm::Value *callee, 2115 ArrayRef<llvm::Value*> args, 2116 const Twine &name = ""); 2117 2118 llvm::CallSite EmitCallOrInvoke(llvm::Value *Callee, 2119 ArrayRef<llvm::Value *> Args, 2120 const Twine &Name = ""); 2121 llvm::CallSite EmitCallOrInvoke(llvm::Value *Callee, 2122 const Twine &Name = ""); 2123 llvm::CallSite EmitRuntimeCallOrInvoke(llvm::Value *callee, 2124 ArrayRef<llvm::Value*> args, 2125 const Twine &name = ""); 2126 llvm::CallSite EmitRuntimeCallOrInvoke(llvm::Value *callee, 2127 const Twine &name = ""); 2128 void EmitNoreturnRuntimeCallOrInvoke(llvm::Value *callee, 2129 ArrayRef<llvm::Value*> args); 2130 2131 llvm::Value *BuildAppleKextVirtualCall(const CXXMethodDecl *MD, 2132 NestedNameSpecifier *Qual, 2133 llvm::Type *Ty); 2134 2135 llvm::Value *BuildAppleKextVirtualDestructorCall(const CXXDestructorDecl *DD, 2136 CXXDtorType Type, 2137 const CXXRecordDecl *RD); 2138 2139 RValue EmitCXXMemberCall(const CXXMethodDecl *MD, 2140 SourceLocation CallLoc, 2141 llvm::Value *Callee, 2142 ReturnValueSlot ReturnValue, 2143 llvm::Value *This, 2144 llvm::Value *ImplicitParam, 2145 QualType ImplicitParamTy, 2146 CallExpr::const_arg_iterator ArgBeg, 2147 CallExpr::const_arg_iterator ArgEnd); 2148 RValue EmitCXXMemberCallExpr(const CXXMemberCallExpr *E, 2149 ReturnValueSlot ReturnValue); 2150 RValue EmitCXXMemberPointerCallExpr(const CXXMemberCallExpr *E, 2151 ReturnValueSlot ReturnValue); 2152 2153 llvm::Value *EmitCXXOperatorMemberCallee(const CXXOperatorCallExpr *E, 2154 const CXXMethodDecl *MD, 2155 llvm::Value *This); 2156 RValue EmitCXXOperatorMemberCallExpr(const CXXOperatorCallExpr *E, 2157 const CXXMethodDecl *MD, 2158 ReturnValueSlot ReturnValue); 2159 2160 RValue EmitCUDAKernelCallExpr(const CUDAKernelCallExpr *E, 2161 ReturnValueSlot ReturnValue); 2162 2163 2164 RValue EmitBuiltinExpr(const FunctionDecl *FD, 2165 unsigned BuiltinID, const CallExpr *E); 2166 2167 RValue EmitBlockCallExpr(const CallExpr *E, ReturnValueSlot ReturnValue); 2168 2169 /// EmitTargetBuiltinExpr - Emit the given builtin call. Returns 0 if the call 2170 /// is unhandled by the current target. 2171 llvm::Value *EmitTargetBuiltinExpr(unsigned BuiltinID, const CallExpr *E); 2172 2173 llvm::Value *EmitAArch64CompareBuiltinExpr(llvm::Value *Op, llvm::Type *Ty, 2174 const llvm::CmpInst::Predicate Fp, 2175 const llvm::CmpInst::Predicate Ip, 2176 const llvm::Twine &Name = ""); 2177 llvm::Value *EmitAArch64CompareBuiltinExpr(llvm::Value *Op, llvm::Type *Ty); 2178 llvm::Value *EmitAArch64BuiltinExpr(unsigned BuiltinID, const CallExpr *E); 2179 llvm::Value *EmitARMBuiltinExpr(unsigned BuiltinID, const CallExpr *E); 2180 llvm::Value *EmitNeonCall(llvm::Function *F, 2181 SmallVectorImpl<llvm::Value*> &O, 2182 const char *name, 2183 unsigned shift = 0, bool rightshift = false); 2184 llvm::Value *EmitNeonSplat(llvm::Value *V, llvm::Constant *Idx); 2185 llvm::Value *EmitNeonShiftVector(llvm::Value *V, llvm::Type *Ty, 2186 bool negateForRightShift); 2187 llvm::Value *EmitNeonRShiftImm(llvm::Value *Vec, llvm::Value *Amt, 2188 llvm::Type *Ty, bool usgn, const char *name); 2189 2190 llvm::Value *BuildVector(ArrayRef<llvm::Value*> Ops); 2191 llvm::Value *EmitX86BuiltinExpr(unsigned BuiltinID, const CallExpr *E); 2192 llvm::Value *EmitPPCBuiltinExpr(unsigned BuiltinID, const CallExpr *E); 2193 2194 llvm::Value *EmitObjCProtocolExpr(const ObjCProtocolExpr *E); 2195 llvm::Value *EmitObjCStringLiteral(const ObjCStringLiteral *E); 2196 llvm::Value *EmitObjCBoxedExpr(const ObjCBoxedExpr *E); 2197 llvm::Value *EmitObjCArrayLiteral(const ObjCArrayLiteral *E); 2198 llvm::Value *EmitObjCDictionaryLiteral(const ObjCDictionaryLiteral *E); 2199 llvm::Value *EmitObjCCollectionLiteral(const Expr *E, 2200 const ObjCMethodDecl *MethodWithObjects); 2201 llvm::Value *EmitObjCSelectorExpr(const ObjCSelectorExpr *E); 2202 RValue EmitObjCMessageExpr(const ObjCMessageExpr *E, 2203 ReturnValueSlot Return = ReturnValueSlot()); 2204 2205 /// Retrieves the default cleanup kind for an ARC cleanup. 2206 /// Except under -fobjc-arc-eh, ARC cleanups are normal-only. 2207 CleanupKind getARCCleanupKind() { 2208 return CGM.getCodeGenOpts().ObjCAutoRefCountExceptions 2209 ? NormalAndEHCleanup : NormalCleanup; 2210 } 2211 2212 // ARC primitives. 2213 void EmitARCInitWeak(llvm::Value *value, llvm::Value *addr); 2214 void EmitARCDestroyWeak(llvm::Value *addr); 2215 llvm::Value *EmitARCLoadWeak(llvm::Value *addr); 2216 llvm::Value *EmitARCLoadWeakRetained(llvm::Value *addr); 2217 llvm::Value *EmitARCStoreWeak(llvm::Value *value, llvm::Value *addr, 2218 bool ignored); 2219 void EmitARCCopyWeak(llvm::Value *dst, llvm::Value *src); 2220 void EmitARCMoveWeak(llvm::Value *dst, llvm::Value *src); 2221 llvm::Value *EmitARCRetainAutorelease(QualType type, llvm::Value *value); 2222 llvm::Value *EmitARCRetainAutoreleaseNonBlock(llvm::Value *value); 2223 llvm::Value *EmitARCStoreStrong(LValue lvalue, llvm::Value *value, 2224 bool resultIgnored); 2225 llvm::Value *EmitARCStoreStrongCall(llvm::Value *addr, llvm::Value *value, 2226 bool resultIgnored); 2227 llvm::Value *EmitARCRetain(QualType type, llvm::Value *value); 2228 llvm::Value *EmitARCRetainNonBlock(llvm::Value *value); 2229 llvm::Value *EmitARCRetainBlock(llvm::Value *value, bool mandatory); 2230 void EmitARCDestroyStrong(llvm::Value *addr, ARCPreciseLifetime_t precise); 2231 void EmitARCRelease(llvm::Value *value, ARCPreciseLifetime_t precise); 2232 llvm::Value *EmitARCAutorelease(llvm::Value *value); 2233 llvm::Value *EmitARCAutoreleaseReturnValue(llvm::Value *value); 2234 llvm::Value *EmitARCRetainAutoreleaseReturnValue(llvm::Value *value); 2235 llvm::Value *EmitARCRetainAutoreleasedReturnValue(llvm::Value *value); 2236 2237 std::pair<LValue,llvm::Value*> 2238 EmitARCStoreAutoreleasing(const BinaryOperator *e); 2239 std::pair<LValue,llvm::Value*> 2240 EmitARCStoreStrong(const BinaryOperator *e, bool ignored); 2241 2242 llvm::Value *EmitObjCThrowOperand(const Expr *expr); 2243 2244 llvm::Value *EmitObjCProduceObject(QualType T, llvm::Value *Ptr); 2245 llvm::Value *EmitObjCConsumeObject(QualType T, llvm::Value *Ptr); 2246 llvm::Value *EmitObjCExtendObjectLifetime(QualType T, llvm::Value *Ptr); 2247 2248 llvm::Value *EmitARCExtendBlockObject(const Expr *expr); 2249 llvm::Value *EmitARCRetainScalarExpr(const Expr *expr); 2250 llvm::Value *EmitARCRetainAutoreleaseScalarExpr(const Expr *expr); 2251 2252 void EmitARCIntrinsicUse(llvm::ArrayRef<llvm::Value*> values); 2253 2254 static Destroyer destroyARCStrongImprecise; 2255 static Destroyer destroyARCStrongPrecise; 2256 static Destroyer destroyARCWeak; 2257 2258 void EmitObjCAutoreleasePoolPop(llvm::Value *Ptr); 2259 llvm::Value *EmitObjCAutoreleasePoolPush(); 2260 llvm::Value *EmitObjCMRRAutoreleasePoolPush(); 2261 void EmitObjCAutoreleasePoolCleanup(llvm::Value *Ptr); 2262 void EmitObjCMRRAutoreleasePoolPop(llvm::Value *Ptr); 2263 2264 /// \brief Emits a reference binding to the passed in expression. 2265 RValue EmitReferenceBindingToExpr(const Expr *E); 2266 2267 //===--------------------------------------------------------------------===// 2268 // Expression Emission 2269 //===--------------------------------------------------------------------===// 2270 2271 // Expressions are broken into three classes: scalar, complex, aggregate. 2272 2273 /// EmitScalarExpr - Emit the computation of the specified expression of LLVM 2274 /// scalar type, returning the result. 2275 llvm::Value *EmitScalarExpr(const Expr *E , bool IgnoreResultAssign = false); 2276 2277 /// EmitScalarConversion - Emit a conversion from the specified type to the 2278 /// specified destination type, both of which are LLVM scalar types. 2279 llvm::Value *EmitScalarConversion(llvm::Value *Src, QualType SrcTy, 2280 QualType DstTy); 2281 2282 /// EmitComplexToScalarConversion - Emit a conversion from the specified 2283 /// complex type to the specified destination type, where the destination type 2284 /// is an LLVM scalar type. 2285 llvm::Value *EmitComplexToScalarConversion(ComplexPairTy Src, QualType SrcTy, 2286 QualType DstTy); 2287 2288 2289 /// EmitAggExpr - Emit the computation of the specified expression 2290 /// of aggregate type. The result is computed into the given slot, 2291 /// which may be null to indicate that the value is not needed. 2292 void EmitAggExpr(const Expr *E, AggValueSlot AS); 2293 2294 /// EmitAggExprToLValue - Emit the computation of the specified expression of 2295 /// aggregate type into a temporary LValue. 2296 LValue EmitAggExprToLValue(const Expr *E); 2297 2298 /// EmitGCMemmoveCollectable - Emit special API for structs with object 2299 /// pointers. 2300 void EmitGCMemmoveCollectable(llvm::Value *DestPtr, llvm::Value *SrcPtr, 2301 QualType Ty); 2302 2303 /// EmitExtendGCLifetime - Given a pointer to an Objective-C object, 2304 /// make sure it survives garbage collection until this point. 2305 void EmitExtendGCLifetime(llvm::Value *object); 2306 2307 /// EmitComplexExpr - Emit the computation of the specified expression of 2308 /// complex type, returning the result. 2309 ComplexPairTy EmitComplexExpr(const Expr *E, 2310 bool IgnoreReal = false, 2311 bool IgnoreImag = false); 2312 2313 /// EmitComplexExprIntoLValue - Emit the given expression of complex 2314 /// type and place its result into the specified l-value. 2315 void EmitComplexExprIntoLValue(const Expr *E, LValue dest, bool isInit); 2316 2317 /// EmitStoreOfComplex - Store a complex number into the specified l-value. 2318 void EmitStoreOfComplex(ComplexPairTy V, LValue dest, bool isInit); 2319 2320 /// EmitLoadOfComplex - Load a complex number from the specified l-value. 2321 ComplexPairTy EmitLoadOfComplex(LValue src, SourceLocation loc); 2322 2323 /// CreateStaticVarDecl - Create a zero-initialized LLVM global for 2324 /// a static local variable. 2325 llvm::GlobalVariable *CreateStaticVarDecl(const VarDecl &D, 2326 const char *Separator, 2327 llvm::GlobalValue::LinkageTypes Linkage); 2328 2329 /// AddInitializerToStaticVarDecl - Add the initializer for 'D' to the 2330 /// global variable that has already been created for it. If the initializer 2331 /// has a different type than GV does, this may free GV and return a different 2332 /// one. Otherwise it just returns GV. 2333 llvm::GlobalVariable * 2334 AddInitializerToStaticVarDecl(const VarDecl &D, 2335 llvm::GlobalVariable *GV); 2336 2337 2338 /// EmitCXXGlobalVarDeclInit - Create the initializer for a C++ 2339 /// variable with global storage. 2340 void EmitCXXGlobalVarDeclInit(const VarDecl &D, llvm::Constant *DeclPtr, 2341 bool PerformInit); 2342 2343 /// Call atexit() with a function that passes the given argument to 2344 /// the given function. 2345 void registerGlobalDtorWithAtExit(const VarDecl &D, llvm::Constant *fn, 2346 llvm::Constant *addr); 2347 2348 /// Emit code in this function to perform a guarded variable 2349 /// initialization. Guarded initializations are used when it's not 2350 /// possible to prove that an initialization will be done exactly 2351 /// once, e.g. with a static local variable or a static data member 2352 /// of a class template. 2353 void EmitCXXGuardedInit(const VarDecl &D, llvm::GlobalVariable *DeclPtr, 2354 bool PerformInit); 2355 2356 /// GenerateCXXGlobalInitFunc - Generates code for initializing global 2357 /// variables. 2358 void GenerateCXXGlobalInitFunc(llvm::Function *Fn, 2359 ArrayRef<llvm::Constant *> Decls, 2360 llvm::GlobalVariable *Guard = 0); 2361 2362 /// GenerateCXXGlobalDtorsFunc - Generates code for destroying global 2363 /// variables. 2364 void GenerateCXXGlobalDtorsFunc(llvm::Function *Fn, 2365 const std::vector<std::pair<llvm::WeakVH, 2366 llvm::Constant*> > &DtorsAndObjects); 2367 2368 void GenerateCXXGlobalVarDeclInitFunc(llvm::Function *Fn, 2369 const VarDecl *D, 2370 llvm::GlobalVariable *Addr, 2371 bool PerformInit); 2372 2373 void EmitCXXConstructExpr(const CXXConstructExpr *E, AggValueSlot Dest); 2374 2375 void EmitSynthesizedCXXCopyCtor(llvm::Value *Dest, llvm::Value *Src, 2376 const Expr *Exp); 2377 2378 void enterFullExpression(const ExprWithCleanups *E) { 2379 if (E->getNumObjects() == 0) return; 2380 enterNonTrivialFullExpression(E); 2381 } 2382 void enterNonTrivialFullExpression(const ExprWithCleanups *E); 2383 2384 void EmitCXXThrowExpr(const CXXThrowExpr *E, bool KeepInsertionPoint = true); 2385 2386 void EmitLambdaExpr(const LambdaExpr *E, AggValueSlot Dest); 2387 2388 RValue EmitAtomicExpr(AtomicExpr *E, llvm::Value *Dest = 0); 2389 2390 //===--------------------------------------------------------------------===// 2391 // Annotations Emission 2392 //===--------------------------------------------------------------------===// 2393 2394 /// Emit an annotation call (intrinsic or builtin). 2395 llvm::Value *EmitAnnotationCall(llvm::Value *AnnotationFn, 2396 llvm::Value *AnnotatedVal, 2397 StringRef AnnotationStr, 2398 SourceLocation Location); 2399 2400 /// Emit local annotations for the local variable V, declared by D. 2401 void EmitVarAnnotations(const VarDecl *D, llvm::Value *V); 2402 2403 /// Emit field annotations for the given field & value. Returns the 2404 /// annotation result. 2405 llvm::Value *EmitFieldAnnotations(const FieldDecl *D, llvm::Value *V); 2406 2407 //===--------------------------------------------------------------------===// 2408 // Internal Helpers 2409 //===--------------------------------------------------------------------===// 2410 2411 /// ContainsLabel - Return true if the statement contains a label in it. If 2412 /// this statement is not executed normally, it not containing a label means 2413 /// that we can just remove the code. 2414 static bool ContainsLabel(const Stmt *S, bool IgnoreCaseStmts = false); 2415 2416 /// containsBreak - Return true if the statement contains a break out of it. 2417 /// If the statement (recursively) contains a switch or loop with a break 2418 /// inside of it, this is fine. 2419 static bool containsBreak(const Stmt *S); 2420 2421 /// ConstantFoldsToSimpleInteger - If the specified expression does not fold 2422 /// to a constant, or if it does but contains a label, return false. If it 2423 /// constant folds return true and set the boolean result in Result. 2424 bool ConstantFoldsToSimpleInteger(const Expr *Cond, bool &Result); 2425 2426 /// ConstantFoldsToSimpleInteger - If the specified expression does not fold 2427 /// to a constant, or if it does but contains a label, return false. If it 2428 /// constant folds return true and set the folded value. 2429 bool ConstantFoldsToSimpleInteger(const Expr *Cond, llvm::APSInt &Result); 2430 2431 /// EmitBranchOnBoolExpr - Emit a branch on a boolean condition (e.g. for an 2432 /// if statement) to the specified blocks. Based on the condition, this might 2433 /// try to simplify the codegen of the conditional based on the branch. 2434 /// TrueCount should be the number of times we expect the condition to 2435 /// evaluate to true based on PGO data. 2436 void EmitBranchOnBoolExpr(const Expr *Cond, llvm::BasicBlock *TrueBlock, 2437 llvm::BasicBlock *FalseBlock, uint64_t TrueCount); 2438 2439 /// \brief Emit a description of a type in a format suitable for passing to 2440 /// a runtime sanitizer handler. 2441 llvm::Constant *EmitCheckTypeDescriptor(QualType T); 2442 2443 /// \brief Convert a value into a format suitable for passing to a runtime 2444 /// sanitizer handler. 2445 llvm::Value *EmitCheckValue(llvm::Value *V); 2446 2447 /// \brief Emit a description of a source location in a format suitable for 2448 /// passing to a runtime sanitizer handler. 2449 llvm::Constant *EmitCheckSourceLocation(SourceLocation Loc); 2450 2451 /// \brief Specify under what conditions this check can be recovered 2452 enum CheckRecoverableKind { 2453 /// Always terminate program execution if this check fails 2454 CRK_Unrecoverable, 2455 /// Check supports recovering, allows user to specify which 2456 CRK_Recoverable, 2457 /// Runtime conditionally aborts, always need to support recovery. 2458 CRK_AlwaysRecoverable 2459 }; 2460 2461 /// \brief Create a basic block that will call a handler function in a 2462 /// sanitizer runtime with the provided arguments, and create a conditional 2463 /// branch to it. 2464 void EmitCheck(llvm::Value *Checked, StringRef CheckName, 2465 ArrayRef<llvm::Constant *> StaticArgs, 2466 ArrayRef<llvm::Value *> DynamicArgs, 2467 CheckRecoverableKind Recoverable); 2468 2469 /// \brief Create a basic block that will call the trap intrinsic, and emit a 2470 /// conditional branch to it, for the -ftrapv checks. 2471 void EmitTrapCheck(llvm::Value *Checked); 2472 2473 /// EmitCallArg - Emit a single call argument. 2474 void EmitCallArg(CallArgList &args, const Expr *E, QualType ArgType); 2475 2476 /// EmitDelegateCallArg - We are performing a delegate call; that 2477 /// is, the current function is delegating to another one. Produce 2478 /// a r-value suitable for passing the given parameter. 2479 void EmitDelegateCallArg(CallArgList &args, const VarDecl *param, 2480 SourceLocation loc); 2481 2482 /// SetFPAccuracy - Set the minimum required accuracy of the given floating 2483 /// point operation, expressed as the maximum relative error in ulp. 2484 void SetFPAccuracy(llvm::Value *Val, float Accuracy); 2485 2486 private: 2487 llvm::MDNode *getRangeForLoadFromType(QualType Ty); 2488 void EmitReturnOfRValue(RValue RV, QualType Ty); 2489 2490 /// ExpandTypeFromArgs - Reconstruct a structure of type \arg Ty 2491 /// from function arguments into \arg Dst. See ABIArgInfo::Expand. 2492 /// 2493 /// \param AI - The first function argument of the expansion. 2494 /// \return The argument following the last expanded function 2495 /// argument. 2496 llvm::Function::arg_iterator 2497 ExpandTypeFromArgs(QualType Ty, LValue Dst, 2498 llvm::Function::arg_iterator AI); 2499 2500 /// ExpandTypeToArgs - Expand an RValue \arg Src, with the LLVM type for \arg 2501 /// Ty, into individual arguments on the provided vector \arg Args. See 2502 /// ABIArgInfo::Expand. 2503 void ExpandTypeToArgs(QualType Ty, RValue Src, 2504 SmallVectorImpl<llvm::Value *> &Args, 2505 llvm::FunctionType *IRFuncTy); 2506 2507 llvm::Value* EmitAsmInput(const TargetInfo::ConstraintInfo &Info, 2508 const Expr *InputExpr, std::string &ConstraintStr); 2509 2510 llvm::Value* EmitAsmInputLValue(const TargetInfo::ConstraintInfo &Info, 2511 LValue InputValue, QualType InputType, 2512 std::string &ConstraintStr, 2513 SourceLocation Loc); 2514 2515 public: 2516 /// EmitCallArgs - Emit call arguments for a function. 2517 template <typename T> 2518 void EmitCallArgs(CallArgList &Args, const T *CallArgTypeInfo, 2519 CallExpr::const_arg_iterator ArgBeg, 2520 CallExpr::const_arg_iterator ArgEnd, 2521 bool ForceColumnInfo = false) { 2522 if (CallArgTypeInfo) { 2523 EmitCallArgs(Args, CallArgTypeInfo->isVariadic(), 2524 CallArgTypeInfo->param_type_begin(), 2525 CallArgTypeInfo->param_type_end(), ArgBeg, ArgEnd, 2526 ForceColumnInfo); 2527 } else { 2528 // T::param_type_iterator might not have a default ctor. 2529 const QualType *NoIter = 0; 2530 EmitCallArgs(Args, /*AllowExtraArguments=*/true, NoIter, NoIter, ArgBeg, 2531 ArgEnd, ForceColumnInfo); 2532 } 2533 } 2534 2535 template<typename ArgTypeIterator> 2536 void EmitCallArgs(CallArgList& Args, 2537 bool AllowExtraArguments, 2538 ArgTypeIterator ArgTypeBeg, 2539 ArgTypeIterator ArgTypeEnd, 2540 CallExpr::const_arg_iterator ArgBeg, 2541 CallExpr::const_arg_iterator ArgEnd, 2542 bool ForceColumnInfo = false) { 2543 SmallVector<QualType, 16> ArgTypes; 2544 CallExpr::const_arg_iterator Arg = ArgBeg; 2545 2546 // First, use the argument types that the type info knows about 2547 for (ArgTypeIterator I = ArgTypeBeg, E = ArgTypeEnd; I != E; ++I, ++Arg) { 2548 assert(Arg != ArgEnd && "Running over edge of argument list!"); 2549 #ifndef NDEBUG 2550 QualType ArgType = *I; 2551 QualType ActualArgType = Arg->getType(); 2552 if (ArgType->isPointerType() && ActualArgType->isPointerType()) { 2553 QualType ActualBaseType = 2554 ActualArgType->getAs<PointerType>()->getPointeeType(); 2555 QualType ArgBaseType = 2556 ArgType->getAs<PointerType>()->getPointeeType(); 2557 if (ArgBaseType->isVariableArrayType()) { 2558 if (const VariableArrayType *VAT = 2559 getContext().getAsVariableArrayType(ActualBaseType)) { 2560 if (!VAT->getSizeExpr()) 2561 ActualArgType = ArgType; 2562 } 2563 } 2564 } 2565 assert(getContext().getCanonicalType(ArgType.getNonReferenceType()). 2566 getTypePtr() == 2567 getContext().getCanonicalType(ActualArgType).getTypePtr() && 2568 "type mismatch in call argument!"); 2569 #endif 2570 ArgTypes.push_back(*I); 2571 } 2572 2573 // Either we've emitted all the call args, or we have a call to variadic 2574 // function or some other call that allows extra arguments. 2575 assert((Arg == ArgEnd || AllowExtraArguments) && 2576 "Extra arguments in non-variadic function!"); 2577 2578 // If we still have any arguments, emit them using the type of the argument. 2579 for (; Arg != ArgEnd; ++Arg) 2580 ArgTypes.push_back(Arg->getType()); 2581 2582 EmitCallArgs(Args, ArgTypes, ArgBeg, ArgEnd, ForceColumnInfo); 2583 } 2584 2585 void EmitCallArgs(CallArgList &Args, ArrayRef<QualType> ArgTypes, 2586 CallExpr::const_arg_iterator ArgBeg, 2587 CallExpr::const_arg_iterator ArgEnd, bool ForceColumnInfo); 2588 2589 private: 2590 const TargetCodeGenInfo &getTargetHooks() const { 2591 return CGM.getTargetCodeGenInfo(); 2592 } 2593 2594 void EmitDeclMetadata(); 2595 2596 CodeGenModule::ByrefHelpers * 2597 buildByrefHelpers(llvm::StructType &byrefType, 2598 const AutoVarEmission &emission); 2599 2600 void AddObjCARCExceptionMetadata(llvm::Instruction *Inst); 2601 2602 /// GetPointeeAlignment - Given an expression with a pointer type, emit the 2603 /// value and compute our best estimate of the alignment of the pointee. 2604 std::pair<llvm::Value*, unsigned> EmitPointerWithAlignment(const Expr *Addr); 2605 }; 2606 2607 /// Helper class with most of the code for saving a value for a 2608 /// conditional expression cleanup. 2609 struct DominatingLLVMValue { 2610 typedef llvm::PointerIntPair<llvm::Value*, 1, bool> saved_type; 2611 2612 /// Answer whether the given value needs extra work to be saved. 2613 static bool needsSaving(llvm::Value *value) { 2614 // If it's not an instruction, we don't need to save. 2615 if (!isa<llvm::Instruction>(value)) return false; 2616 2617 // If it's an instruction in the entry block, we don't need to save. 2618 llvm::BasicBlock *block = cast<llvm::Instruction>(value)->getParent(); 2619 return (block != &block->getParent()->getEntryBlock()); 2620 } 2621 2622 /// Try to save the given value. 2623 static saved_type save(CodeGenFunction &CGF, llvm::Value *value) { 2624 if (!needsSaving(value)) return saved_type(value, false); 2625 2626 // Otherwise we need an alloca. 2627 llvm::Value *alloca = 2628 CGF.CreateTempAlloca(value->getType(), "cond-cleanup.save"); 2629 CGF.Builder.CreateStore(value, alloca); 2630 2631 return saved_type(alloca, true); 2632 } 2633 2634 static llvm::Value *restore(CodeGenFunction &CGF, saved_type value) { 2635 if (!value.getInt()) return value.getPointer(); 2636 return CGF.Builder.CreateLoad(value.getPointer()); 2637 } 2638 }; 2639 2640 /// A partial specialization of DominatingValue for llvm::Values that 2641 /// might be llvm::Instructions. 2642 template <class T> struct DominatingPointer<T,true> : DominatingLLVMValue { 2643 typedef T *type; 2644 static type restore(CodeGenFunction &CGF, saved_type value) { 2645 return static_cast<T*>(DominatingLLVMValue::restore(CGF, value)); 2646 } 2647 }; 2648 2649 /// A specialization of DominatingValue for RValue. 2650 template <> struct DominatingValue<RValue> { 2651 typedef RValue type; 2652 class saved_type { 2653 enum Kind { ScalarLiteral, ScalarAddress, AggregateLiteral, 2654 AggregateAddress, ComplexAddress }; 2655 2656 llvm::Value *Value; 2657 Kind K; 2658 saved_type(llvm::Value *v, Kind k) : Value(v), K(k) {} 2659 2660 public: 2661 static bool needsSaving(RValue value); 2662 static saved_type save(CodeGenFunction &CGF, RValue value); 2663 RValue restore(CodeGenFunction &CGF); 2664 2665 // implementations in CGExprCXX.cpp 2666 }; 2667 2668 static bool needsSaving(type value) { 2669 return saved_type::needsSaving(value); 2670 } 2671 static saved_type save(CodeGenFunction &CGF, type value) { 2672 return saved_type::save(CGF, value); 2673 } 2674 static type restore(CodeGenFunction &CGF, saved_type value) { 2675 return value.restore(CGF); 2676 } 2677 }; 2678 2679 } // end namespace CodeGen 2680 } // end namespace clang 2681 2682 #endif 2683