1 //===-- CodeGenFunction.h - Per-Function state for LLVM CodeGen -*- C++ -*-===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This is the internal per-function state used for llvm translation.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #ifndef CLANG_CODEGEN_CODEGENFUNCTION_H
15 #define CLANG_CODEGEN_CODEGENFUNCTION_H
16 
17 #include "clang/AST/Type.h"
18 #include "clang/AST/ExprCXX.h"
19 #include "clang/AST/ExprObjC.h"
20 #include "clang/AST/CharUnits.h"
21 #include "clang/Basic/ABI.h"
22 #include "clang/Basic/TargetInfo.h"
23 #include "llvm/ADT/DenseMap.h"
24 #include "llvm/ADT/SmallVector.h"
25 #include "llvm/Support/ValueHandle.h"
26 #include "CodeGenModule.h"
27 #include "CGBuilder.h"
28 #include "CGValue.h"
29 
30 namespace llvm {
31   class BasicBlock;
32   class LLVMContext;
33   class MDNode;
34   class Module;
35   class SwitchInst;
36   class Twine;
37   class Value;
38   class CallSite;
39 }
40 
41 namespace clang {
42   class APValue;
43   class ASTContext;
44   class CXXDestructorDecl;
45   class CXXForRangeStmt;
46   class CXXTryStmt;
47   class Decl;
48   class LabelDecl;
49   class EnumConstantDecl;
50   class FunctionDecl;
51   class FunctionProtoType;
52   class LabelStmt;
53   class ObjCContainerDecl;
54   class ObjCInterfaceDecl;
55   class ObjCIvarDecl;
56   class ObjCMethodDecl;
57   class ObjCImplementationDecl;
58   class ObjCPropertyImplDecl;
59   class TargetInfo;
60   class TargetCodeGenInfo;
61   class VarDecl;
62   class ObjCForCollectionStmt;
63   class ObjCAtTryStmt;
64   class ObjCAtThrowStmt;
65   class ObjCAtSynchronizedStmt;
66 
67 namespace CodeGen {
68   class CodeGenTypes;
69   class CGDebugInfo;
70   class CGFunctionInfo;
71   class CGRecordLayout;
72   class CGBlockInfo;
73   class CGCXXABI;
74   class BlockFlags;
75   class BlockFieldFlags;
76 
77 /// A branch fixup.  These are required when emitting a goto to a
78 /// label which hasn't been emitted yet.  The goto is optimistically
79 /// emitted as a branch to the basic block for the label, and (if it
80 /// occurs in a scope with non-trivial cleanups) a fixup is added to
81 /// the innermost cleanup.  When a (normal) cleanup is popped, any
82 /// unresolved fixups in that scope are threaded through the cleanup.
83 struct BranchFixup {
84   /// The block containing the terminator which needs to be modified
85   /// into a switch if this fixup is resolved into the current scope.
86   /// If null, LatestBranch points directly to the destination.
87   llvm::BasicBlock *OptimisticBranchBlock;
88 
89   /// The ultimate destination of the branch.
90   ///
91   /// This can be set to null to indicate that this fixup was
92   /// successfully resolved.
93   llvm::BasicBlock *Destination;
94 
95   /// The destination index value.
96   unsigned DestinationIndex;
97 
98   /// The initial branch of the fixup.
99   llvm::BranchInst *InitialBranch;
100 };
101 
102 template <class T> struct InvariantValue {
103   typedef T type;
104   typedef T saved_type;
105   static bool needsSaving(type value) { return false; }
106   static saved_type save(CodeGenFunction &CGF, type value) { return value; }
107   static type restore(CodeGenFunction &CGF, saved_type value) { return value; }
108 };
109 
110 /// A metaprogramming class for ensuring that a value will dominate an
111 /// arbitrary position in a function.
112 template <class T> struct DominatingValue : InvariantValue<T> {};
113 
114 template <class T, bool mightBeInstruction =
115             llvm::is_base_of<llvm::Value, T>::value &&
116             !llvm::is_base_of<llvm::Constant, T>::value &&
117             !llvm::is_base_of<llvm::BasicBlock, T>::value>
118 struct DominatingPointer;
119 template <class T> struct DominatingPointer<T,false> : InvariantValue<T*> {};
120 // template <class T> struct DominatingPointer<T,true> at end of file
121 
122 template <class T> struct DominatingValue<T*> : DominatingPointer<T> {};
123 
124 enum CleanupKind {
125   EHCleanup = 0x1,
126   NormalCleanup = 0x2,
127   NormalAndEHCleanup = EHCleanup | NormalCleanup,
128 
129   InactiveCleanup = 0x4,
130   InactiveEHCleanup = EHCleanup | InactiveCleanup,
131   InactiveNormalCleanup = NormalCleanup | InactiveCleanup,
132   InactiveNormalAndEHCleanup = NormalAndEHCleanup | InactiveCleanup
133 };
134 
135 /// A stack of scopes which respond to exceptions, including cleanups
136 /// and catch blocks.
137 class EHScopeStack {
138 public:
139   /// A saved depth on the scope stack.  This is necessary because
140   /// pushing scopes onto the stack invalidates iterators.
141   class stable_iterator {
142     friend class EHScopeStack;
143 
144     /// Offset from StartOfData to EndOfBuffer.
145     ptrdiff_t Size;
146 
147     stable_iterator(ptrdiff_t Size) : Size(Size) {}
148 
149   public:
150     static stable_iterator invalid() { return stable_iterator(-1); }
151     stable_iterator() : Size(-1) {}
152 
153     bool isValid() const { return Size >= 0; }
154 
155     /// Returns true if this scope encloses I.
156     /// Returns false if I is invalid.
157     /// This scope must be valid.
158     bool encloses(stable_iterator I) const { return Size <= I.Size; }
159 
160     /// Returns true if this scope strictly encloses I: that is,
161     /// if it encloses I and is not I.
162     /// Returns false is I is invalid.
163     /// This scope must be valid.
164     bool strictlyEncloses(stable_iterator I) const { return Size < I.Size; }
165 
166     friend bool operator==(stable_iterator A, stable_iterator B) {
167       return A.Size == B.Size;
168     }
169     friend bool operator!=(stable_iterator A, stable_iterator B) {
170       return A.Size != B.Size;
171     }
172   };
173 
174   /// Information for lazily generating a cleanup.  Subclasses must be
175   /// POD-like: cleanups will not be destructed, and they will be
176   /// allocated on the cleanup stack and freely copied and moved
177   /// around.
178   ///
179   /// Cleanup implementations should generally be declared in an
180   /// anonymous namespace.
181   class Cleanup {
182   public:
183     // Anchor the construction vtable.  We use the destructor because
184     // gcc gives an obnoxious warning if there are virtual methods
185     // with an accessible non-virtual destructor.  Unfortunately,
186     // declaring this destructor makes it non-trivial, but there
187     // doesn't seem to be any other way around this warning.
188     //
189     // This destructor will never be called.
190     virtual ~Cleanup();
191 
192     /// Emit the cleanup.  For normal cleanups, this is run in the
193     /// same EH context as when the cleanup was pushed, i.e. the
194     /// immediately-enclosing context of the cleanup scope.  For
195     /// EH cleanups, this is run in a terminate context.
196     ///
197     // \param IsForEHCleanup true if this is for an EH cleanup, false
198     ///  if for a normal cleanup.
199     virtual void Emit(CodeGenFunction &CGF, bool IsForEHCleanup) = 0;
200   };
201 
202   /// UnconditionalCleanupN stores its N parameters and just passes
203   /// them to the real cleanup function.
204   template <class T, class A0>
205   class UnconditionalCleanup1 : public Cleanup {
206     A0 a0;
207   public:
208     UnconditionalCleanup1(A0 a0) : a0(a0) {}
209     void Emit(CodeGenFunction &CGF, bool IsForEHCleanup) {
210       T::Emit(CGF, IsForEHCleanup, a0);
211     }
212   };
213 
214   template <class T, class A0, class A1>
215   class UnconditionalCleanup2 : public Cleanup {
216     A0 a0; A1 a1;
217   public:
218     UnconditionalCleanup2(A0 a0, A1 a1) : a0(a0), a1(a1) {}
219     void Emit(CodeGenFunction &CGF, bool IsForEHCleanup) {
220       T::Emit(CGF, IsForEHCleanup, a0, a1);
221     }
222   };
223 
224   /// ConditionalCleanupN stores the saved form of its N parameters,
225   /// then restores them and performs the cleanup.
226   template <class T, class A0>
227   class ConditionalCleanup1 : public Cleanup {
228     typedef typename DominatingValue<A0>::saved_type A0_saved;
229     A0_saved a0_saved;
230 
231     void Emit(CodeGenFunction &CGF, bool IsForEHCleanup) {
232       A0 a0 = DominatingValue<A0>::restore(CGF, a0_saved);
233       T::Emit(CGF, IsForEHCleanup, a0);
234     }
235 
236   public:
237     ConditionalCleanup1(A0_saved a0)
238       : a0_saved(a0) {}
239   };
240 
241   template <class T, class A0, class A1>
242   class ConditionalCleanup2 : public Cleanup {
243     typedef typename DominatingValue<A0>::saved_type A0_saved;
244     typedef typename DominatingValue<A1>::saved_type A1_saved;
245     A0_saved a0_saved;
246     A1_saved a1_saved;
247 
248     void Emit(CodeGenFunction &CGF, bool IsForEHCleanup) {
249       A0 a0 = DominatingValue<A0>::restore(CGF, a0_saved);
250       A1 a1 = DominatingValue<A1>::restore(CGF, a1_saved);
251       T::Emit(CGF, IsForEHCleanup, a0, a1);
252     }
253 
254   public:
255     ConditionalCleanup2(A0_saved a0, A1_saved a1)
256       : a0_saved(a0), a1_saved(a1) {}
257   };
258 
259 private:
260   // The implementation for this class is in CGException.h and
261   // CGException.cpp; the definition is here because it's used as a
262   // member of CodeGenFunction.
263 
264   /// The start of the scope-stack buffer, i.e. the allocated pointer
265   /// for the buffer.  All of these pointers are either simultaneously
266   /// null or simultaneously valid.
267   char *StartOfBuffer;
268 
269   /// The end of the buffer.
270   char *EndOfBuffer;
271 
272   /// The first valid entry in the buffer.
273   char *StartOfData;
274 
275   /// The innermost normal cleanup on the stack.
276   stable_iterator InnermostNormalCleanup;
277 
278   /// The innermost EH cleanup on the stack.
279   stable_iterator InnermostEHCleanup;
280 
281   /// The number of catches on the stack.
282   unsigned CatchDepth;
283 
284   /// The current EH destination index.  Reset to FirstCatchIndex
285   /// whenever the last EH cleanup is popped.
286   unsigned NextEHDestIndex;
287   enum { FirstEHDestIndex = 1 };
288 
289   /// The current set of branch fixups.  A branch fixup is a jump to
290   /// an as-yet unemitted label, i.e. a label for which we don't yet
291   /// know the EH stack depth.  Whenever we pop a cleanup, we have
292   /// to thread all the current branch fixups through it.
293   ///
294   /// Fixups are recorded as the Use of the respective branch or
295   /// switch statement.  The use points to the final destination.
296   /// When popping out of a cleanup, these uses are threaded through
297   /// the cleanup and adjusted to point to the new cleanup.
298   ///
299   /// Note that branches are allowed to jump into protected scopes
300   /// in certain situations;  e.g. the following code is legal:
301   ///     struct A { ~A(); }; // trivial ctor, non-trivial dtor
302   ///     goto foo;
303   ///     A a;
304   ///    foo:
305   ///     bar();
306   llvm::SmallVector<BranchFixup, 8> BranchFixups;
307 
308   char *allocate(size_t Size);
309 
310   void *pushCleanup(CleanupKind K, size_t DataSize);
311 
312 public:
313   EHScopeStack() : StartOfBuffer(0), EndOfBuffer(0), StartOfData(0),
314                    InnermostNormalCleanup(stable_end()),
315                    InnermostEHCleanup(stable_end()),
316                    CatchDepth(0), NextEHDestIndex(FirstEHDestIndex) {}
317   ~EHScopeStack() { delete[] StartOfBuffer; }
318 
319   // Variadic templates would make this not terrible.
320 
321   /// Push a lazily-created cleanup on the stack.
322   template <class T>
323   void pushCleanup(CleanupKind Kind) {
324     void *Buffer = pushCleanup(Kind, sizeof(T));
325     Cleanup *Obj = new(Buffer) T();
326     (void) Obj;
327   }
328 
329   /// Push a lazily-created cleanup on the stack.
330   template <class T, class A0>
331   void pushCleanup(CleanupKind Kind, A0 a0) {
332     void *Buffer = pushCleanup(Kind, sizeof(T));
333     Cleanup *Obj = new(Buffer) T(a0);
334     (void) Obj;
335   }
336 
337   /// Push a lazily-created cleanup on the stack.
338   template <class T, class A0, class A1>
339   void pushCleanup(CleanupKind Kind, A0 a0, A1 a1) {
340     void *Buffer = pushCleanup(Kind, sizeof(T));
341     Cleanup *Obj = new(Buffer) T(a0, a1);
342     (void) Obj;
343   }
344 
345   /// Push a lazily-created cleanup on the stack.
346   template <class T, class A0, class A1, class A2>
347   void pushCleanup(CleanupKind Kind, A0 a0, A1 a1, A2 a2) {
348     void *Buffer = pushCleanup(Kind, sizeof(T));
349     Cleanup *Obj = new(Buffer) T(a0, a1, a2);
350     (void) Obj;
351   }
352 
353   /// Push a lazily-created cleanup on the stack.
354   template <class T, class A0, class A1, class A2, class A3>
355   void pushCleanup(CleanupKind Kind, A0 a0, A1 a1, A2 a2, A3 a3) {
356     void *Buffer = pushCleanup(Kind, sizeof(T));
357     Cleanup *Obj = new(Buffer) T(a0, a1, a2, a3);
358     (void) Obj;
359   }
360 
361   /// Push a lazily-created cleanup on the stack.
362   template <class T, class A0, class A1, class A2, class A3, class A4>
363   void pushCleanup(CleanupKind Kind, A0 a0, A1 a1, A2 a2, A3 a3, A4 a4) {
364     void *Buffer = pushCleanup(Kind, sizeof(T));
365     Cleanup *Obj = new(Buffer) T(a0, a1, a2, a3, a4);
366     (void) Obj;
367   }
368 
369   // Feel free to add more variants of the following:
370 
371   /// Push a cleanup with non-constant storage requirements on the
372   /// stack.  The cleanup type must provide an additional static method:
373   ///   static size_t getExtraSize(size_t);
374   /// The argument to this method will be the value N, which will also
375   /// be passed as the first argument to the constructor.
376   ///
377   /// The data stored in the extra storage must obey the same
378   /// restrictions as normal cleanup member data.
379   ///
380   /// The pointer returned from this method is valid until the cleanup
381   /// stack is modified.
382   template <class T, class A0, class A1, class A2>
383   T *pushCleanupWithExtra(CleanupKind Kind, size_t N, A0 a0, A1 a1, A2 a2) {
384     void *Buffer = pushCleanup(Kind, sizeof(T) + T::getExtraSize(N));
385     return new (Buffer) T(N, a0, a1, a2);
386   }
387 
388   /// Pops a cleanup scope off the stack.  This should only be called
389   /// by CodeGenFunction::PopCleanupBlock.
390   void popCleanup();
391 
392   /// Push a set of catch handlers on the stack.  The catch is
393   /// uninitialized and will need to have the given number of handlers
394   /// set on it.
395   class EHCatchScope *pushCatch(unsigned NumHandlers);
396 
397   /// Pops a catch scope off the stack.
398   void popCatch();
399 
400   /// Push an exceptions filter on the stack.
401   class EHFilterScope *pushFilter(unsigned NumFilters);
402 
403   /// Pops an exceptions filter off the stack.
404   void popFilter();
405 
406   /// Push a terminate handler on the stack.
407   void pushTerminate();
408 
409   /// Pops a terminate handler off the stack.
410   void popTerminate();
411 
412   /// Determines whether the exception-scopes stack is empty.
413   bool empty() const { return StartOfData == EndOfBuffer; }
414 
415   bool requiresLandingPad() const {
416     return (CatchDepth || hasEHCleanups());
417   }
418 
419   /// Determines whether there are any normal cleanups on the stack.
420   bool hasNormalCleanups() const {
421     return InnermostNormalCleanup != stable_end();
422   }
423 
424   /// Returns the innermost normal cleanup on the stack, or
425   /// stable_end() if there are no normal cleanups.
426   stable_iterator getInnermostNormalCleanup() const {
427     return InnermostNormalCleanup;
428   }
429   stable_iterator getInnermostActiveNormalCleanup() const; // CGException.h
430 
431   /// Determines whether there are any EH cleanups on the stack.
432   bool hasEHCleanups() const {
433     return InnermostEHCleanup != stable_end();
434   }
435 
436   /// Returns the innermost EH cleanup on the stack, or stable_end()
437   /// if there are no EH cleanups.
438   stable_iterator getInnermostEHCleanup() const {
439     return InnermostEHCleanup;
440   }
441   stable_iterator getInnermostActiveEHCleanup() const; // CGException.h
442 
443   /// An unstable reference to a scope-stack depth.  Invalidated by
444   /// pushes but not pops.
445   class iterator;
446 
447   /// Returns an iterator pointing to the innermost EH scope.
448   iterator begin() const;
449 
450   /// Returns an iterator pointing to the outermost EH scope.
451   iterator end() const;
452 
453   /// Create a stable reference to the top of the EH stack.  The
454   /// returned reference is valid until that scope is popped off the
455   /// stack.
456   stable_iterator stable_begin() const {
457     return stable_iterator(EndOfBuffer - StartOfData);
458   }
459 
460   /// Create a stable reference to the bottom of the EH stack.
461   static stable_iterator stable_end() {
462     return stable_iterator(0);
463   }
464 
465   /// Translates an iterator into a stable_iterator.
466   stable_iterator stabilize(iterator it) const;
467 
468   /// Finds the nearest cleanup enclosing the given iterator.
469   /// Returns stable_iterator::invalid() if there are no such cleanups.
470   stable_iterator getEnclosingEHCleanup(iterator it) const;
471 
472   /// Turn a stable reference to a scope depth into a unstable pointer
473   /// to the EH stack.
474   iterator find(stable_iterator save) const;
475 
476   /// Removes the cleanup pointed to by the given stable_iterator.
477   void removeCleanup(stable_iterator save);
478 
479   /// Add a branch fixup to the current cleanup scope.
480   BranchFixup &addBranchFixup() {
481     assert(hasNormalCleanups() && "adding fixup in scope without cleanups");
482     BranchFixups.push_back(BranchFixup());
483     return BranchFixups.back();
484   }
485 
486   unsigned getNumBranchFixups() const { return BranchFixups.size(); }
487   BranchFixup &getBranchFixup(unsigned I) {
488     assert(I < getNumBranchFixups());
489     return BranchFixups[I];
490   }
491 
492   /// Pops lazily-removed fixups from the end of the list.  This
493   /// should only be called by procedures which have just popped a
494   /// cleanup or resolved one or more fixups.
495   void popNullFixups();
496 
497   /// Clears the branch-fixups list.  This should only be called by
498   /// ResolveAllBranchFixups.
499   void clearFixups() { BranchFixups.clear(); }
500 
501   /// Gets the next EH destination index.
502   unsigned getNextEHDestIndex() { return NextEHDestIndex++; }
503 };
504 
505 /// CodeGenFunction - This class organizes the per-function state that is used
506 /// while generating LLVM code.
507 class CodeGenFunction : public CodeGenTypeCache {
508   CodeGenFunction(const CodeGenFunction&); // DO NOT IMPLEMENT
509   void operator=(const CodeGenFunction&);  // DO NOT IMPLEMENT
510 
511   friend class CGCXXABI;
512 public:
513   /// A jump destination is an abstract label, branching to which may
514   /// require a jump out through normal cleanups.
515   struct JumpDest {
516     JumpDest() : Block(0), ScopeDepth(), Index(0) {}
517     JumpDest(llvm::BasicBlock *Block,
518              EHScopeStack::stable_iterator Depth,
519              unsigned Index)
520       : Block(Block), ScopeDepth(Depth), Index(Index) {}
521 
522     bool isValid() const { return Block != 0; }
523     llvm::BasicBlock *getBlock() const { return Block; }
524     EHScopeStack::stable_iterator getScopeDepth() const { return ScopeDepth; }
525     unsigned getDestIndex() const { return Index; }
526 
527   private:
528     llvm::BasicBlock *Block;
529     EHScopeStack::stable_iterator ScopeDepth;
530     unsigned Index;
531   };
532 
533   /// An unwind destination is an abstract label, branching to which
534   /// may require a jump out through EH cleanups.
535   struct UnwindDest {
536     UnwindDest() : Block(0), ScopeDepth(), Index(0) {}
537     UnwindDest(llvm::BasicBlock *Block,
538                EHScopeStack::stable_iterator Depth,
539                unsigned Index)
540       : Block(Block), ScopeDepth(Depth), Index(Index) {}
541 
542     bool isValid() const { return Block != 0; }
543     llvm::BasicBlock *getBlock() const { return Block; }
544     EHScopeStack::stable_iterator getScopeDepth() const { return ScopeDepth; }
545     unsigned getDestIndex() const { return Index; }
546 
547   private:
548     llvm::BasicBlock *Block;
549     EHScopeStack::stable_iterator ScopeDepth;
550     unsigned Index;
551   };
552 
553   CodeGenModule &CGM;  // Per-module state.
554   const TargetInfo &Target;
555 
556   typedef std::pair<llvm::Value *, llvm::Value *> ComplexPairTy;
557   CGBuilderTy Builder;
558 
559   /// CurFuncDecl - Holds the Decl for the current function or ObjC method.
560   /// This excludes BlockDecls.
561   const Decl *CurFuncDecl;
562   /// CurCodeDecl - This is the inner-most code context, which includes blocks.
563   const Decl *CurCodeDecl;
564   const CGFunctionInfo *CurFnInfo;
565   QualType FnRetTy;
566   llvm::Function *CurFn;
567 
568   /// CurGD - The GlobalDecl for the current function being compiled.
569   GlobalDecl CurGD;
570 
571   /// ReturnBlock - Unified return block.
572   JumpDest ReturnBlock;
573 
574   /// ReturnValue - The temporary alloca to hold the return value. This is null
575   /// iff the function has no return value.
576   llvm::Value *ReturnValue;
577 
578   /// RethrowBlock - Unified rethrow block.
579   UnwindDest RethrowBlock;
580 
581   /// AllocaInsertPoint - This is an instruction in the entry block before which
582   /// we prefer to insert allocas.
583   llvm::AssertingVH<llvm::Instruction> AllocaInsertPt;
584 
585   bool CatchUndefined;
586 
587   const CodeGen::CGBlockInfo *BlockInfo;
588   llvm::Value *BlockPointer;
589 
590   /// \brief A mapping from NRVO variables to the flags used to indicate
591   /// when the NRVO has been applied to this variable.
592   llvm::DenseMap<const VarDecl *, llvm::Value *> NRVOFlags;
593 
594   EHScopeStack EHStack;
595 
596   /// i32s containing the indexes of the cleanup destinations.
597   llvm::AllocaInst *NormalCleanupDest;
598   llvm::AllocaInst *EHCleanupDest;
599 
600   unsigned NextCleanupDestIndex;
601 
602   /// The exception slot.  All landing pads write the current
603   /// exception pointer into this alloca.
604   llvm::Value *ExceptionSlot;
605 
606   /// The selector slot.  Under the MandatoryCleanup model, all
607   /// landing pads write the current selector value into this alloca.
608   llvm::AllocaInst *EHSelectorSlot;
609 
610   /// Emits a landing pad for the current EH stack.
611   llvm::BasicBlock *EmitLandingPad();
612 
613   llvm::BasicBlock *getInvokeDestImpl();
614 
615   /// Set up the last cleaup that was pushed as a conditional
616   /// full-expression cleanup.
617   void initFullExprCleanup();
618 
619   template <class T>
620   typename DominatingValue<T>::saved_type saveValueInCond(T value) {
621     return DominatingValue<T>::save(*this, value);
622   }
623 
624 public:
625   /// ObjCEHValueStack - Stack of Objective-C exception values, used for
626   /// rethrows.
627   llvm::SmallVector<llvm::Value*, 8> ObjCEHValueStack;
628 
629   // A struct holding information about a finally block's IR
630   // generation.  For now, doesn't actually hold anything.
631   struct FinallyInfo {
632   };
633 
634   FinallyInfo EnterFinallyBlock(const Stmt *Stmt,
635                                 llvm::Constant *BeginCatchFn,
636                                 llvm::Constant *EndCatchFn,
637                                 llvm::Constant *RethrowFn);
638   void ExitFinallyBlock(FinallyInfo &FinallyInfo);
639 
640   /// pushFullExprCleanup - Push a cleanup to be run at the end of the
641   /// current full-expression.  Safe against the possibility that
642   /// we're currently inside a conditionally-evaluated expression.
643   template <class T, class A0>
644   void pushFullExprCleanup(CleanupKind kind, A0 a0) {
645     // If we're not in a conditional branch, or if none of the
646     // arguments requires saving, then use the unconditional cleanup.
647     if (!isInConditionalBranch()) {
648       typedef EHScopeStack::UnconditionalCleanup1<T, A0> CleanupType;
649       return EHStack.pushCleanup<CleanupType>(kind, a0);
650     }
651 
652     typename DominatingValue<A0>::saved_type a0_saved = saveValueInCond(a0);
653 
654     typedef EHScopeStack::ConditionalCleanup1<T, A0> CleanupType;
655     EHStack.pushCleanup<CleanupType>(kind, a0_saved);
656     initFullExprCleanup();
657   }
658 
659   /// pushFullExprCleanup - Push a cleanup to be run at the end of the
660   /// current full-expression.  Safe against the possibility that
661   /// we're currently inside a conditionally-evaluated expression.
662   template <class T, class A0, class A1>
663   void pushFullExprCleanup(CleanupKind kind, A0 a0, A1 a1) {
664     // If we're not in a conditional branch, or if none of the
665     // arguments requires saving, then use the unconditional cleanup.
666     if (!isInConditionalBranch()) {
667       typedef EHScopeStack::UnconditionalCleanup2<T, A0, A1> CleanupType;
668       return EHStack.pushCleanup<CleanupType>(kind, a0, a1);
669     }
670 
671     typename DominatingValue<A0>::saved_type a0_saved = saveValueInCond(a0);
672     typename DominatingValue<A1>::saved_type a1_saved = saveValueInCond(a1);
673 
674     typedef EHScopeStack::ConditionalCleanup2<T, A0, A1> CleanupType;
675     EHStack.pushCleanup<CleanupType>(kind, a0_saved, a1_saved);
676     initFullExprCleanup();
677   }
678 
679   /// PushDestructorCleanup - Push a cleanup to call the
680   /// complete-object destructor of an object of the given type at the
681   /// given address.  Does nothing if T is not a C++ class type with a
682   /// non-trivial destructor.
683   void PushDestructorCleanup(QualType T, llvm::Value *Addr);
684 
685   /// PushDestructorCleanup - Push a cleanup to call the
686   /// complete-object variant of the given destructor on the object at
687   /// the given address.
688   void PushDestructorCleanup(const CXXDestructorDecl *Dtor,
689                              llvm::Value *Addr);
690 
691   /// PopCleanupBlock - Will pop the cleanup entry on the stack and
692   /// process all branch fixups.
693   void PopCleanupBlock(bool FallThroughIsBranchThrough = false);
694 
695   /// DeactivateCleanupBlock - Deactivates the given cleanup block.
696   /// The block cannot be reactivated.  Pops it if it's the top of the
697   /// stack.
698   void DeactivateCleanupBlock(EHScopeStack::stable_iterator Cleanup);
699 
700   /// ActivateCleanupBlock - Activates an initially-inactive cleanup.
701   /// Cannot be used to resurrect a deactivated cleanup.
702   void ActivateCleanupBlock(EHScopeStack::stable_iterator Cleanup);
703 
704   /// \brief Enters a new scope for capturing cleanups, all of which
705   /// will be executed once the scope is exited.
706   class RunCleanupsScope {
707     CodeGenFunction& CGF;
708     EHScopeStack::stable_iterator CleanupStackDepth;
709     bool OldDidCallStackSave;
710     bool PerformCleanup;
711 
712     RunCleanupsScope(const RunCleanupsScope &); // DO NOT IMPLEMENT
713     RunCleanupsScope &operator=(const RunCleanupsScope &); // DO NOT IMPLEMENT
714 
715   public:
716     /// \brief Enter a new cleanup scope.
717     explicit RunCleanupsScope(CodeGenFunction &CGF)
718       : CGF(CGF), PerformCleanup(true)
719     {
720       CleanupStackDepth = CGF.EHStack.stable_begin();
721       OldDidCallStackSave = CGF.DidCallStackSave;
722       CGF.DidCallStackSave = false;
723     }
724 
725     /// \brief Exit this cleanup scope, emitting any accumulated
726     /// cleanups.
727     ~RunCleanupsScope() {
728       if (PerformCleanup) {
729         CGF.DidCallStackSave = OldDidCallStackSave;
730         CGF.PopCleanupBlocks(CleanupStackDepth);
731       }
732     }
733 
734     /// \brief Determine whether this scope requires any cleanups.
735     bool requiresCleanups() const {
736       return CGF.EHStack.stable_begin() != CleanupStackDepth;
737     }
738 
739     /// \brief Force the emission of cleanups now, instead of waiting
740     /// until this object is destroyed.
741     void ForceCleanup() {
742       assert(PerformCleanup && "Already forced cleanup");
743       CGF.DidCallStackSave = OldDidCallStackSave;
744       CGF.PopCleanupBlocks(CleanupStackDepth);
745       PerformCleanup = false;
746     }
747   };
748 
749 
750   /// PopCleanupBlocks - Takes the old cleanup stack size and emits
751   /// the cleanup blocks that have been added.
752   void PopCleanupBlocks(EHScopeStack::stable_iterator OldCleanupStackSize);
753 
754   void ResolveBranchFixups(llvm::BasicBlock *Target);
755 
756   /// The given basic block lies in the current EH scope, but may be a
757   /// target of a potentially scope-crossing jump; get a stable handle
758   /// to which we can perform this jump later.
759   JumpDest getJumpDestInCurrentScope(llvm::BasicBlock *Target) {
760     return JumpDest(Target,
761                     EHStack.getInnermostNormalCleanup(),
762                     NextCleanupDestIndex++);
763   }
764 
765   /// The given basic block lies in the current EH scope, but may be a
766   /// target of a potentially scope-crossing jump; get a stable handle
767   /// to which we can perform this jump later.
768   JumpDest getJumpDestInCurrentScope(llvm::StringRef Name = llvm::StringRef()) {
769     return getJumpDestInCurrentScope(createBasicBlock(Name));
770   }
771 
772   /// EmitBranchThroughCleanup - Emit a branch from the current insert
773   /// block through the normal cleanup handling code (if any) and then
774   /// on to \arg Dest.
775   void EmitBranchThroughCleanup(JumpDest Dest);
776 
777   /// isObviouslyBranchWithoutCleanups - Return true if a branch to the
778   /// specified destination obviously has no cleanups to run.  'false' is always
779   /// a conservatively correct answer for this method.
780   bool isObviouslyBranchWithoutCleanups(JumpDest Dest) const;
781 
782   /// EmitBranchThroughEHCleanup - Emit a branch from the current
783   /// insert block through the EH cleanup handling code (if any) and
784   /// then on to \arg Dest.
785   void EmitBranchThroughEHCleanup(UnwindDest Dest);
786 
787   /// getRethrowDest - Returns the unified outermost-scope rethrow
788   /// destination.
789   UnwindDest getRethrowDest();
790 
791   /// An object to manage conditionally-evaluated expressions.
792   class ConditionalEvaluation {
793     llvm::BasicBlock *StartBB;
794 
795   public:
796     ConditionalEvaluation(CodeGenFunction &CGF)
797       : StartBB(CGF.Builder.GetInsertBlock()) {}
798 
799     void begin(CodeGenFunction &CGF) {
800       assert(CGF.OutermostConditional != this);
801       if (!CGF.OutermostConditional)
802         CGF.OutermostConditional = this;
803     }
804 
805     void end(CodeGenFunction &CGF) {
806       assert(CGF.OutermostConditional != 0);
807       if (CGF.OutermostConditional == this)
808         CGF.OutermostConditional = 0;
809     }
810 
811     /// Returns a block which will be executed prior to each
812     /// evaluation of the conditional code.
813     llvm::BasicBlock *getStartingBlock() const {
814       return StartBB;
815     }
816   };
817 
818   /// isInConditionalBranch - Return true if we're currently emitting
819   /// one branch or the other of a conditional expression.
820   bool isInConditionalBranch() const { return OutermostConditional != 0; }
821 
822   /// An RAII object to record that we're evaluating a statement
823   /// expression.
824   class StmtExprEvaluation {
825     CodeGenFunction &CGF;
826 
827     /// We have to save the outermost conditional: cleanups in a
828     /// statement expression aren't conditional just because the
829     /// StmtExpr is.
830     ConditionalEvaluation *SavedOutermostConditional;
831 
832   public:
833     StmtExprEvaluation(CodeGenFunction &CGF)
834       : CGF(CGF), SavedOutermostConditional(CGF.OutermostConditional) {
835       CGF.OutermostConditional = 0;
836     }
837 
838     ~StmtExprEvaluation() {
839       CGF.OutermostConditional = SavedOutermostConditional;
840       CGF.EnsureInsertPoint();
841     }
842   };
843 
844   /// An object which temporarily prevents a value from being
845   /// destroyed by aggressive peephole optimizations that assume that
846   /// all uses of a value have been realized in the IR.
847   class PeepholeProtection {
848     llvm::Instruction *Inst;
849     friend class CodeGenFunction;
850 
851   public:
852     PeepholeProtection() : Inst(0) {}
853   };
854 
855   /// An RAII object to set (and then clear) a mapping for an OpaqueValueExpr.
856   class OpaqueValueMapping {
857     CodeGenFunction &CGF;
858     const OpaqueValueExpr *OpaqueValue;
859     bool BoundLValue;
860     CodeGenFunction::PeepholeProtection Protection;
861 
862   public:
863     static bool shouldBindAsLValue(const Expr *expr) {
864       return expr->isGLValue() || expr->getType()->isRecordType();
865     }
866 
867     /// Build the opaque value mapping for the given conditional
868     /// operator if it's the GNU ?: extension.  This is a common
869     /// enough pattern that the convenience operator is really
870     /// helpful.
871     ///
872     OpaqueValueMapping(CodeGenFunction &CGF,
873                        const AbstractConditionalOperator *op) : CGF(CGF) {
874       if (isa<ConditionalOperator>(op)) {
875         OpaqueValue = 0;
876         BoundLValue = false;
877         return;
878       }
879 
880       const BinaryConditionalOperator *e = cast<BinaryConditionalOperator>(op);
881       init(e->getOpaqueValue(), e->getCommon());
882     }
883 
884     OpaqueValueMapping(CodeGenFunction &CGF,
885                        const OpaqueValueExpr *opaqueValue,
886                        LValue lvalue)
887       : CGF(CGF), OpaqueValue(opaqueValue), BoundLValue(true) {
888       assert(opaqueValue && "no opaque value expression!");
889       assert(shouldBindAsLValue(opaqueValue));
890       initLValue(lvalue);
891     }
892 
893     OpaqueValueMapping(CodeGenFunction &CGF,
894                        const OpaqueValueExpr *opaqueValue,
895                        RValue rvalue)
896       : CGF(CGF), OpaqueValue(opaqueValue), BoundLValue(false) {
897       assert(opaqueValue && "no opaque value expression!");
898       assert(!shouldBindAsLValue(opaqueValue));
899       initRValue(rvalue);
900     }
901 
902     void pop() {
903       assert(OpaqueValue && "mapping already popped!");
904       popImpl();
905       OpaqueValue = 0;
906     }
907 
908     ~OpaqueValueMapping() {
909       if (OpaqueValue) popImpl();
910     }
911 
912   private:
913     void popImpl() {
914       if (BoundLValue)
915         CGF.OpaqueLValues.erase(OpaqueValue);
916       else {
917         CGF.OpaqueRValues.erase(OpaqueValue);
918         CGF.unprotectFromPeepholes(Protection);
919       }
920     }
921 
922     void init(const OpaqueValueExpr *ov, const Expr *e) {
923       OpaqueValue = ov;
924       BoundLValue = shouldBindAsLValue(ov);
925       assert(BoundLValue == shouldBindAsLValue(e)
926              && "inconsistent expression value kinds!");
927       if (BoundLValue)
928         initLValue(CGF.EmitLValue(e));
929       else
930         initRValue(CGF.EmitAnyExpr(e));
931     }
932 
933     void initLValue(const LValue &lv) {
934       CGF.OpaqueLValues.insert(std::make_pair(OpaqueValue, lv));
935     }
936 
937     void initRValue(const RValue &rv) {
938       // Work around an extremely aggressive peephole optimization in
939       // EmitScalarConversion which assumes that all other uses of a
940       // value are extant.
941       Protection = CGF.protectFromPeepholes(rv);
942       CGF.OpaqueRValues.insert(std::make_pair(OpaqueValue, rv));
943     }
944   };
945 
946   /// getByrefValueFieldNumber - Given a declaration, returns the LLVM field
947   /// number that holds the value.
948   unsigned getByRefValueLLVMField(const ValueDecl *VD) const;
949 
950   /// BuildBlockByrefAddress - Computes address location of the
951   /// variable which is declared as __block.
952   llvm::Value *BuildBlockByrefAddress(llvm::Value *BaseAddr,
953                                       const VarDecl *V);
954 private:
955   CGDebugInfo *DebugInfo;
956   bool DisableDebugInfo;
957 
958   /// DidCallStackSave - Whether llvm.stacksave has been called. Used to avoid
959   /// calling llvm.stacksave for multiple VLAs in the same scope.
960   bool DidCallStackSave;
961 
962   /// IndirectBranch - The first time an indirect goto is seen we create a block
963   /// with an indirect branch.  Every time we see the address of a label taken,
964   /// we add the label to the indirect goto.  Every subsequent indirect goto is
965   /// codegen'd as a jump to the IndirectBranch's basic block.
966   llvm::IndirectBrInst *IndirectBranch;
967 
968   /// LocalDeclMap - This keeps track of the LLVM allocas or globals for local C
969   /// decls.
970   typedef llvm::DenseMap<const Decl*, llvm::Value*> DeclMapTy;
971   DeclMapTy LocalDeclMap;
972 
973   /// LabelMap - This keeps track of the LLVM basic block for each C label.
974   llvm::DenseMap<const LabelDecl*, JumpDest> LabelMap;
975 
976   // BreakContinueStack - This keeps track of where break and continue
977   // statements should jump to.
978   struct BreakContinue {
979     BreakContinue(JumpDest Break, JumpDest Continue)
980       : BreakBlock(Break), ContinueBlock(Continue) {}
981 
982     JumpDest BreakBlock;
983     JumpDest ContinueBlock;
984   };
985   llvm::SmallVector<BreakContinue, 8> BreakContinueStack;
986 
987   /// SwitchInsn - This is nearest current switch instruction. It is null if if
988   /// current context is not in a switch.
989   llvm::SwitchInst *SwitchInsn;
990 
991   /// CaseRangeBlock - This block holds if condition check for last case
992   /// statement range in current switch instruction.
993   llvm::BasicBlock *CaseRangeBlock;
994 
995   /// OpaqueLValues - Keeps track of the current set of opaque value
996   /// expressions.
997   llvm::DenseMap<const OpaqueValueExpr *, LValue> OpaqueLValues;
998   llvm::DenseMap<const OpaqueValueExpr *, RValue> OpaqueRValues;
999 
1000   // VLASizeMap - This keeps track of the associated size for each VLA type.
1001   // We track this by the size expression rather than the type itself because
1002   // in certain situations, like a const qualifier applied to an VLA typedef,
1003   // multiple VLA types can share the same size expression.
1004   // FIXME: Maybe this could be a stack of maps that is pushed/popped as we
1005   // enter/leave scopes.
1006   llvm::DenseMap<const Expr*, llvm::Value*> VLASizeMap;
1007 
1008   /// A block containing a single 'unreachable' instruction.  Created
1009   /// lazily by getUnreachableBlock().
1010   llvm::BasicBlock *UnreachableBlock;
1011 
1012   /// CXXThisDecl - When generating code for a C++ member function,
1013   /// this will hold the implicit 'this' declaration.
1014   ImplicitParamDecl *CXXThisDecl;
1015   llvm::Value *CXXThisValue;
1016 
1017   /// CXXVTTDecl - When generating code for a base object constructor or
1018   /// base object destructor with virtual bases, this will hold the implicit
1019   /// VTT parameter.
1020   ImplicitParamDecl *CXXVTTDecl;
1021   llvm::Value *CXXVTTValue;
1022 
1023   /// OutermostConditional - Points to the outermost active
1024   /// conditional control.  This is used so that we know if a
1025   /// temporary should be destroyed conditionally.
1026   ConditionalEvaluation *OutermostConditional;
1027 
1028 
1029   /// ByrefValueInfoMap - For each __block variable, contains a pair of the LLVM
1030   /// type as well as the field number that contains the actual data.
1031   llvm::DenseMap<const ValueDecl *, std::pair<const llvm::Type *,
1032                                               unsigned> > ByRefValueInfo;
1033 
1034   llvm::BasicBlock *TerminateLandingPad;
1035   llvm::BasicBlock *TerminateHandler;
1036   llvm::BasicBlock *TrapBB;
1037 
1038 public:
1039   CodeGenFunction(CodeGenModule &cgm);
1040 
1041   CodeGenTypes &getTypes() const { return CGM.getTypes(); }
1042   ASTContext &getContext() const { return CGM.getContext(); }
1043   CGDebugInfo *getDebugInfo() {
1044     if (DisableDebugInfo)
1045       return NULL;
1046     return DebugInfo;
1047   }
1048   void disableDebugInfo() { DisableDebugInfo = true; }
1049   void enableDebugInfo() { DisableDebugInfo = false; }
1050 
1051 
1052   const LangOptions &getLangOptions() const { return CGM.getLangOptions(); }
1053 
1054   /// Returns a pointer to the function's exception object slot, which
1055   /// is assigned in every landing pad.
1056   llvm::Value *getExceptionSlot();
1057   llvm::Value *getEHSelectorSlot();
1058 
1059   llvm::Value *getNormalCleanupDestSlot();
1060   llvm::Value *getEHCleanupDestSlot();
1061 
1062   llvm::BasicBlock *getUnreachableBlock() {
1063     if (!UnreachableBlock) {
1064       UnreachableBlock = createBasicBlock("unreachable");
1065       new llvm::UnreachableInst(getLLVMContext(), UnreachableBlock);
1066     }
1067     return UnreachableBlock;
1068   }
1069 
1070   llvm::BasicBlock *getInvokeDest() {
1071     if (!EHStack.requiresLandingPad()) return 0;
1072     return getInvokeDestImpl();
1073   }
1074 
1075   llvm::LLVMContext &getLLVMContext() { return CGM.getLLVMContext(); }
1076 
1077   //===--------------------------------------------------------------------===//
1078   //                                  Objective-C
1079   //===--------------------------------------------------------------------===//
1080 
1081   void GenerateObjCMethod(const ObjCMethodDecl *OMD);
1082 
1083   void StartObjCMethod(const ObjCMethodDecl *MD,
1084                        const ObjCContainerDecl *CD,
1085                        SourceLocation StartLoc);
1086 
1087   /// GenerateObjCGetter - Synthesize an Objective-C property getter function.
1088   void GenerateObjCGetter(ObjCImplementationDecl *IMP,
1089                           const ObjCPropertyImplDecl *PID);
1090   void GenerateObjCGetterBody(ObjCIvarDecl *Ivar, bool IsAtomic, bool IsStrong);
1091   void GenerateObjCAtomicSetterBody(ObjCMethodDecl *OMD,
1092                                     ObjCIvarDecl *Ivar);
1093 
1094   void GenerateObjCCtorDtorMethod(ObjCImplementationDecl *IMP,
1095                                   ObjCMethodDecl *MD, bool ctor);
1096 
1097   /// GenerateObjCSetter - Synthesize an Objective-C property setter function
1098   /// for the given property.
1099   void GenerateObjCSetter(ObjCImplementationDecl *IMP,
1100                           const ObjCPropertyImplDecl *PID);
1101   bool IndirectObjCSetterArg(const CGFunctionInfo &FI);
1102   bool IvarTypeWithAggrGCObjects(QualType Ty);
1103 
1104   //===--------------------------------------------------------------------===//
1105   //                                  Block Bits
1106   //===--------------------------------------------------------------------===//
1107 
1108   llvm::Value *EmitBlockLiteral(const BlockExpr *);
1109   llvm::Constant *BuildDescriptorBlockDecl(const BlockExpr *,
1110                                            const CGBlockInfo &Info,
1111                                            const llvm::StructType *,
1112                                            llvm::Constant *BlockVarLayout);
1113 
1114   llvm::Function *GenerateBlockFunction(GlobalDecl GD,
1115                                         const CGBlockInfo &Info,
1116                                         const Decl *OuterFuncDecl,
1117                                         const DeclMapTy &ldm);
1118 
1119   llvm::Constant *GenerateCopyHelperFunction(const CGBlockInfo &blockInfo);
1120   llvm::Constant *GenerateDestroyHelperFunction(const CGBlockInfo &blockInfo);
1121 
1122   void BuildBlockRelease(llvm::Value *DeclPtr, BlockFieldFlags flags);
1123 
1124   class AutoVarEmission;
1125 
1126   void emitByrefStructureInit(const AutoVarEmission &emission);
1127   void enterByrefCleanup(const AutoVarEmission &emission);
1128 
1129   llvm::Value *LoadBlockStruct() {
1130     assert(BlockPointer && "no block pointer set!");
1131     return BlockPointer;
1132   }
1133 
1134   void AllocateBlockCXXThisPointer(const CXXThisExpr *E);
1135   void AllocateBlockDecl(const BlockDeclRefExpr *E);
1136   llvm::Value *GetAddrOfBlockDecl(const BlockDeclRefExpr *E) {
1137     return GetAddrOfBlockDecl(E->getDecl(), E->isByRef());
1138   }
1139   llvm::Value *GetAddrOfBlockDecl(const VarDecl *var, bool ByRef);
1140   const llvm::Type *BuildByRefType(const VarDecl *var);
1141 
1142   void GenerateCode(GlobalDecl GD, llvm::Function *Fn,
1143                     const CGFunctionInfo &FnInfo);
1144   void StartFunction(GlobalDecl GD, QualType RetTy,
1145                      llvm::Function *Fn,
1146                      const CGFunctionInfo &FnInfo,
1147                      const FunctionArgList &Args,
1148                      SourceLocation StartLoc);
1149 
1150   void EmitConstructorBody(FunctionArgList &Args);
1151   void EmitDestructorBody(FunctionArgList &Args);
1152   void EmitFunctionBody(FunctionArgList &Args);
1153 
1154   /// EmitReturnBlock - Emit the unified return block, trying to avoid its
1155   /// emission when possible.
1156   void EmitReturnBlock();
1157 
1158   /// FinishFunction - Complete IR generation of the current function. It is
1159   /// legal to call this function even if there is no current insertion point.
1160   void FinishFunction(SourceLocation EndLoc=SourceLocation());
1161 
1162   /// GenerateThunk - Generate a thunk for the given method.
1163   void GenerateThunk(llvm::Function *Fn, const CGFunctionInfo &FnInfo,
1164                      GlobalDecl GD, const ThunkInfo &Thunk);
1165 
1166   void GenerateVarArgsThunk(llvm::Function *Fn, const CGFunctionInfo &FnInfo,
1167                             GlobalDecl GD, const ThunkInfo &Thunk);
1168 
1169   void EmitCtorPrologue(const CXXConstructorDecl *CD, CXXCtorType Type,
1170                         FunctionArgList &Args);
1171 
1172   /// InitializeVTablePointer - Initialize the vtable pointer of the given
1173   /// subobject.
1174   ///
1175   void InitializeVTablePointer(BaseSubobject Base,
1176                                const CXXRecordDecl *NearestVBase,
1177                                CharUnits OffsetFromNearestVBase,
1178                                llvm::Constant *VTable,
1179                                const CXXRecordDecl *VTableClass);
1180 
1181   typedef llvm::SmallPtrSet<const CXXRecordDecl *, 4> VisitedVirtualBasesSetTy;
1182   void InitializeVTablePointers(BaseSubobject Base,
1183                                 const CXXRecordDecl *NearestVBase,
1184                                 CharUnits OffsetFromNearestVBase,
1185                                 bool BaseIsNonVirtualPrimaryBase,
1186                                 llvm::Constant *VTable,
1187                                 const CXXRecordDecl *VTableClass,
1188                                 VisitedVirtualBasesSetTy& VBases);
1189 
1190   void InitializeVTablePointers(const CXXRecordDecl *ClassDecl);
1191 
1192   /// GetVTablePtr - Return the Value of the vtable pointer member pointed
1193   /// to by This.
1194   llvm::Value *GetVTablePtr(llvm::Value *This, const llvm::Type *Ty);
1195 
1196   /// EnterDtorCleanups - Enter the cleanups necessary to complete the
1197   /// given phase of destruction for a destructor.  The end result
1198   /// should call destructors on members and base classes in reverse
1199   /// order of their construction.
1200   void EnterDtorCleanups(const CXXDestructorDecl *Dtor, CXXDtorType Type);
1201 
1202   /// ShouldInstrumentFunction - Return true if the current function should be
1203   /// instrumented with __cyg_profile_func_* calls
1204   bool ShouldInstrumentFunction();
1205 
1206   /// EmitFunctionInstrumentation - Emit LLVM code to call the specified
1207   /// instrumentation function with the current function and the call site, if
1208   /// function instrumentation is enabled.
1209   void EmitFunctionInstrumentation(const char *Fn);
1210 
1211   /// EmitMCountInstrumentation - Emit call to .mcount.
1212   void EmitMCountInstrumentation();
1213 
1214   /// EmitFunctionProlog - Emit the target specific LLVM code to load the
1215   /// arguments for the given function. This is also responsible for naming the
1216   /// LLVM function arguments.
1217   void EmitFunctionProlog(const CGFunctionInfo &FI,
1218                           llvm::Function *Fn,
1219                           const FunctionArgList &Args);
1220 
1221   /// EmitFunctionEpilog - Emit the target specific LLVM code to return the
1222   /// given temporary.
1223   void EmitFunctionEpilog(const CGFunctionInfo &FI);
1224 
1225   /// EmitStartEHSpec - Emit the start of the exception spec.
1226   void EmitStartEHSpec(const Decl *D);
1227 
1228   /// EmitEndEHSpec - Emit the end of the exception spec.
1229   void EmitEndEHSpec(const Decl *D);
1230 
1231   /// getTerminateLandingPad - Return a landing pad that just calls terminate.
1232   llvm::BasicBlock *getTerminateLandingPad();
1233 
1234   /// getTerminateHandler - Return a handler (not a landing pad, just
1235   /// a catch handler) that just calls terminate.  This is used when
1236   /// a terminate scope encloses a try.
1237   llvm::BasicBlock *getTerminateHandler();
1238 
1239   const llvm::Type *ConvertTypeForMem(QualType T);
1240   const llvm::Type *ConvertType(QualType T);
1241   const llvm::Type *ConvertType(const TypeDecl *T) {
1242     return ConvertType(getContext().getTypeDeclType(T));
1243   }
1244 
1245   /// LoadObjCSelf - Load the value of self. This function is only valid while
1246   /// generating code for an Objective-C method.
1247   llvm::Value *LoadObjCSelf();
1248 
1249   /// TypeOfSelfObject - Return type of object that this self represents.
1250   QualType TypeOfSelfObject();
1251 
1252   /// hasAggregateLLVMType - Return true if the specified AST type will map into
1253   /// an aggregate LLVM type or is void.
1254   static bool hasAggregateLLVMType(QualType T);
1255 
1256   /// createBasicBlock - Create an LLVM basic block.
1257   llvm::BasicBlock *createBasicBlock(llvm::StringRef name = "",
1258                                      llvm::Function *parent = 0,
1259                                      llvm::BasicBlock *before = 0) {
1260 #ifdef NDEBUG
1261     return llvm::BasicBlock::Create(getLLVMContext(), "", parent, before);
1262 #else
1263     return llvm::BasicBlock::Create(getLLVMContext(), name, parent, before);
1264 #endif
1265   }
1266 
1267   /// getBasicBlockForLabel - Return the LLVM basicblock that the specified
1268   /// label maps to.
1269   JumpDest getJumpDestForLabel(const LabelDecl *S);
1270 
1271   /// SimplifyForwardingBlocks - If the given basic block is only a branch to
1272   /// another basic block, simplify it. This assumes that no other code could
1273   /// potentially reference the basic block.
1274   void SimplifyForwardingBlocks(llvm::BasicBlock *BB);
1275 
1276   /// EmitBlock - Emit the given block \arg BB and set it as the insert point,
1277   /// adding a fall-through branch from the current insert block if
1278   /// necessary. It is legal to call this function even if there is no current
1279   /// insertion point.
1280   ///
1281   /// IsFinished - If true, indicates that the caller has finished emitting
1282   /// branches to the given block and does not expect to emit code into it. This
1283   /// means the block can be ignored if it is unreachable.
1284   void EmitBlock(llvm::BasicBlock *BB, bool IsFinished=false);
1285 
1286   /// EmitBranch - Emit a branch to the specified basic block from the current
1287   /// insert block, taking care to avoid creation of branches from dummy
1288   /// blocks. It is legal to call this function even if there is no current
1289   /// insertion point.
1290   ///
1291   /// This function clears the current insertion point. The caller should follow
1292   /// calls to this function with calls to Emit*Block prior to generation new
1293   /// code.
1294   void EmitBranch(llvm::BasicBlock *Block);
1295 
1296   /// HaveInsertPoint - True if an insertion point is defined. If not, this
1297   /// indicates that the current code being emitted is unreachable.
1298   bool HaveInsertPoint() const {
1299     return Builder.GetInsertBlock() != 0;
1300   }
1301 
1302   /// EnsureInsertPoint - Ensure that an insertion point is defined so that
1303   /// emitted IR has a place to go. Note that by definition, if this function
1304   /// creates a block then that block is unreachable; callers may do better to
1305   /// detect when no insertion point is defined and simply skip IR generation.
1306   void EnsureInsertPoint() {
1307     if (!HaveInsertPoint())
1308       EmitBlock(createBasicBlock());
1309   }
1310 
1311   /// ErrorUnsupported - Print out an error that codegen doesn't support the
1312   /// specified stmt yet.
1313   void ErrorUnsupported(const Stmt *S, const char *Type,
1314                         bool OmitOnError=false);
1315 
1316   //===--------------------------------------------------------------------===//
1317   //                                  Helpers
1318   //===--------------------------------------------------------------------===//
1319 
1320   LValue MakeAddrLValue(llvm::Value *V, QualType T, unsigned Alignment = 0) {
1321     return LValue::MakeAddr(V, T, Alignment, getContext(),
1322                             CGM.getTBAAInfo(T));
1323   }
1324 
1325   /// CreateTempAlloca - This creates a alloca and inserts it into the entry
1326   /// block. The caller is responsible for setting an appropriate alignment on
1327   /// the alloca.
1328   llvm::AllocaInst *CreateTempAlloca(const llvm::Type *Ty,
1329                                      const llvm::Twine &Name = "tmp");
1330 
1331   /// InitTempAlloca - Provide an initial value for the given alloca.
1332   void InitTempAlloca(llvm::AllocaInst *Alloca, llvm::Value *Value);
1333 
1334   /// CreateIRTemp - Create a temporary IR object of the given type, with
1335   /// appropriate alignment. This routine should only be used when an temporary
1336   /// value needs to be stored into an alloca (for example, to avoid explicit
1337   /// PHI construction), but the type is the IR type, not the type appropriate
1338   /// for storing in memory.
1339   llvm::AllocaInst *CreateIRTemp(QualType T, const llvm::Twine &Name = "tmp");
1340 
1341   /// CreateMemTemp - Create a temporary memory object of the given type, with
1342   /// appropriate alignment.
1343   llvm::AllocaInst *CreateMemTemp(QualType T, const llvm::Twine &Name = "tmp");
1344 
1345   /// CreateAggTemp - Create a temporary memory object for the given
1346   /// aggregate type.
1347   AggValueSlot CreateAggTemp(QualType T, const llvm::Twine &Name = "tmp") {
1348     return AggValueSlot::forAddr(CreateMemTemp(T, Name), false, false);
1349   }
1350 
1351   /// Emit a cast to void* in the appropriate address space.
1352   llvm::Value *EmitCastToVoidPtr(llvm::Value *value);
1353 
1354   /// EvaluateExprAsBool - Perform the usual unary conversions on the specified
1355   /// expression and compare the result against zero, returning an Int1Ty value.
1356   llvm::Value *EvaluateExprAsBool(const Expr *E);
1357 
1358   /// EmitIgnoredExpr - Emit an expression in a context which ignores the result.
1359   void EmitIgnoredExpr(const Expr *E);
1360 
1361   /// EmitAnyExpr - Emit code to compute the specified expression which can have
1362   /// any type.  The result is returned as an RValue struct.  If this is an
1363   /// aggregate expression, the aggloc/agglocvolatile arguments indicate where
1364   /// the result should be returned.
1365   ///
1366   /// \param IgnoreResult - True if the resulting value isn't used.
1367   RValue EmitAnyExpr(const Expr *E,
1368                      AggValueSlot AggSlot = AggValueSlot::ignored(),
1369                      bool IgnoreResult = false);
1370 
1371   // EmitVAListRef - Emit a "reference" to a va_list; this is either the address
1372   // or the value of the expression, depending on how va_list is defined.
1373   llvm::Value *EmitVAListRef(const Expr *E);
1374 
1375   /// EmitAnyExprToTemp - Similary to EmitAnyExpr(), however, the result will
1376   /// always be accessible even if no aggregate location is provided.
1377   RValue EmitAnyExprToTemp(const Expr *E);
1378 
1379   /// EmitAnyExprToMem - Emits the code necessary to evaluate an
1380   /// arbitrary expression into the given memory location.
1381   void EmitAnyExprToMem(const Expr *E, llvm::Value *Location,
1382                         bool IsLocationVolatile,
1383                         bool IsInitializer);
1384 
1385   /// EmitExprAsInit - Emits the code necessary to initialize a
1386   /// location in memory with the given initializer.
1387   void EmitExprAsInit(const Expr *init, const VarDecl *var,
1388                       llvm::Value *loc, CharUnits alignment,
1389                       bool capturedByInit);
1390 
1391   /// EmitAggregateCopy - Emit an aggrate copy.
1392   ///
1393   /// \param isVolatile - True iff either the source or the destination is
1394   /// volatile.
1395   void EmitAggregateCopy(llvm::Value *DestPtr, llvm::Value *SrcPtr,
1396                          QualType EltTy, bool isVolatile=false);
1397 
1398   /// StartBlock - Start new block named N. If insert block is a dummy block
1399   /// then reuse it.
1400   void StartBlock(const char *N);
1401 
1402   /// GetAddrOfStaticLocalVar - Return the address of a static local variable.
1403   llvm::Constant *GetAddrOfStaticLocalVar(const VarDecl *BVD) {
1404     return cast<llvm::Constant>(GetAddrOfLocalVar(BVD));
1405   }
1406 
1407   /// GetAddrOfLocalVar - Return the address of a local variable.
1408   llvm::Value *GetAddrOfLocalVar(const VarDecl *VD) {
1409     llvm::Value *Res = LocalDeclMap[VD];
1410     assert(Res && "Invalid argument to GetAddrOfLocalVar(), no decl!");
1411     return Res;
1412   }
1413 
1414   /// getOpaqueLValueMapping - Given an opaque value expression (which
1415   /// must be mapped to an l-value), return its mapping.
1416   const LValue &getOpaqueLValueMapping(const OpaqueValueExpr *e) {
1417     assert(OpaqueValueMapping::shouldBindAsLValue(e));
1418 
1419     llvm::DenseMap<const OpaqueValueExpr*,LValue>::iterator
1420       it = OpaqueLValues.find(e);
1421     assert(it != OpaqueLValues.end() && "no mapping for opaque value!");
1422     return it->second;
1423   }
1424 
1425   /// getOpaqueRValueMapping - Given an opaque value expression (which
1426   /// must be mapped to an r-value), return its mapping.
1427   const RValue &getOpaqueRValueMapping(const OpaqueValueExpr *e) {
1428     assert(!OpaqueValueMapping::shouldBindAsLValue(e));
1429 
1430     llvm::DenseMap<const OpaqueValueExpr*,RValue>::iterator
1431       it = OpaqueRValues.find(e);
1432     assert(it != OpaqueRValues.end() && "no mapping for opaque value!");
1433     return it->second;
1434   }
1435 
1436   /// getAccessedFieldNo - Given an encoded value and a result number, return
1437   /// the input field number being accessed.
1438   static unsigned getAccessedFieldNo(unsigned Idx, const llvm::Constant *Elts);
1439 
1440   llvm::BlockAddress *GetAddrOfLabel(const LabelDecl *L);
1441   llvm::BasicBlock *GetIndirectGotoBlock();
1442 
1443   /// EmitNullInitialization - Generate code to set a value of the given type to
1444   /// null, If the type contains data member pointers, they will be initialized
1445   /// to -1 in accordance with the Itanium C++ ABI.
1446   void EmitNullInitialization(llvm::Value *DestPtr, QualType Ty);
1447 
1448   // EmitVAArg - Generate code to get an argument from the passed in pointer
1449   // and update it accordingly. The return value is a pointer to the argument.
1450   // FIXME: We should be able to get rid of this method and use the va_arg
1451   // instruction in LLVM instead once it works well enough.
1452   llvm::Value *EmitVAArg(llvm::Value *VAListAddr, QualType Ty);
1453 
1454   /// EmitVLASize - Generate code for any VLA size expressions that might occur
1455   /// in a variably modified type. If Ty is a VLA, will return the value that
1456   /// corresponds to the size in bytes of the VLA type. Will return 0 otherwise.
1457   ///
1458   /// This function can be called with a null (unreachable) insert point.
1459   llvm::Value *EmitVLASize(QualType Ty);
1460 
1461   // GetVLASize - Returns an LLVM value that corresponds to the size in bytes
1462   // of a variable length array type.
1463   llvm::Value *GetVLASize(const VariableArrayType *);
1464 
1465   /// LoadCXXThis - Load the value of 'this'. This function is only valid while
1466   /// generating code for an C++ member function.
1467   llvm::Value *LoadCXXThis() {
1468     assert(CXXThisValue && "no 'this' value for this function");
1469     return CXXThisValue;
1470   }
1471 
1472   /// LoadCXXVTT - Load the VTT parameter to base constructors/destructors have
1473   /// virtual bases.
1474   llvm::Value *LoadCXXVTT() {
1475     assert(CXXVTTValue && "no VTT value for this function");
1476     return CXXVTTValue;
1477   }
1478 
1479   /// GetAddressOfBaseOfCompleteClass - Convert the given pointer to a
1480   /// complete class to the given direct base.
1481   llvm::Value *
1482   GetAddressOfDirectBaseInCompleteClass(llvm::Value *Value,
1483                                         const CXXRecordDecl *Derived,
1484                                         const CXXRecordDecl *Base,
1485                                         bool BaseIsVirtual);
1486 
1487   /// GetAddressOfBaseClass - This function will add the necessary delta to the
1488   /// load of 'this' and returns address of the base class.
1489   llvm::Value *GetAddressOfBaseClass(llvm::Value *Value,
1490                                      const CXXRecordDecl *Derived,
1491                                      CastExpr::path_const_iterator PathBegin,
1492                                      CastExpr::path_const_iterator PathEnd,
1493                                      bool NullCheckValue);
1494 
1495   llvm::Value *GetAddressOfDerivedClass(llvm::Value *Value,
1496                                         const CXXRecordDecl *Derived,
1497                                         CastExpr::path_const_iterator PathBegin,
1498                                         CastExpr::path_const_iterator PathEnd,
1499                                         bool NullCheckValue);
1500 
1501   llvm::Value *GetVirtualBaseClassOffset(llvm::Value *This,
1502                                          const CXXRecordDecl *ClassDecl,
1503                                          const CXXRecordDecl *BaseClassDecl);
1504 
1505   void EmitDelegateCXXConstructorCall(const CXXConstructorDecl *Ctor,
1506                                       CXXCtorType CtorType,
1507                                       const FunctionArgList &Args);
1508   // It's important not to confuse this and the previous function. Delegating
1509   // constructors are the C++0x feature. The constructor delegate optimization
1510   // is used to reduce duplication in the base and complete consturctors where
1511   // they are substantially the same.
1512   void EmitDelegatingCXXConstructorCall(const CXXConstructorDecl *Ctor,
1513                                         const FunctionArgList &Args);
1514   void EmitCXXConstructorCall(const CXXConstructorDecl *D, CXXCtorType Type,
1515                               bool ForVirtualBase, llvm::Value *This,
1516                               CallExpr::const_arg_iterator ArgBeg,
1517                               CallExpr::const_arg_iterator ArgEnd);
1518 
1519   void EmitSynthesizedCXXCopyCtorCall(const CXXConstructorDecl *D,
1520                               llvm::Value *This, llvm::Value *Src,
1521                               CallExpr::const_arg_iterator ArgBeg,
1522                               CallExpr::const_arg_iterator ArgEnd);
1523 
1524   void EmitCXXAggrConstructorCall(const CXXConstructorDecl *D,
1525                                   const ConstantArrayType *ArrayTy,
1526                                   llvm::Value *ArrayPtr,
1527                                   CallExpr::const_arg_iterator ArgBeg,
1528                                   CallExpr::const_arg_iterator ArgEnd,
1529                                   bool ZeroInitialization = false);
1530 
1531   void EmitCXXAggrConstructorCall(const CXXConstructorDecl *D,
1532                                   llvm::Value *NumElements,
1533                                   llvm::Value *ArrayPtr,
1534                                   CallExpr::const_arg_iterator ArgBeg,
1535                                   CallExpr::const_arg_iterator ArgEnd,
1536                                   bool ZeroInitialization = false);
1537 
1538   void EmitCXXAggrDestructorCall(const CXXDestructorDecl *D,
1539                                  const ArrayType *Array,
1540                                  llvm::Value *This);
1541 
1542   void EmitCXXAggrDestructorCall(const CXXDestructorDecl *D,
1543                                  llvm::Value *NumElements,
1544                                  llvm::Value *This);
1545 
1546   llvm::Function *GenerateCXXAggrDestructorHelper(const CXXDestructorDecl *D,
1547                                                   const ArrayType *Array,
1548                                                   llvm::Value *This);
1549 
1550   void EmitCXXDestructorCall(const CXXDestructorDecl *D, CXXDtorType Type,
1551                              bool ForVirtualBase, llvm::Value *This);
1552 
1553   void EmitNewArrayInitializer(const CXXNewExpr *E, llvm::Value *NewPtr,
1554                                llvm::Value *NumElements);
1555 
1556   void EmitCXXTemporary(const CXXTemporary *Temporary, llvm::Value *Ptr);
1557 
1558   llvm::Value *EmitCXXNewExpr(const CXXNewExpr *E);
1559   void EmitCXXDeleteExpr(const CXXDeleteExpr *E);
1560 
1561   void EmitDeleteCall(const FunctionDecl *DeleteFD, llvm::Value *Ptr,
1562                       QualType DeleteTy);
1563 
1564   llvm::Value* EmitCXXTypeidExpr(const CXXTypeidExpr *E);
1565   llvm::Value *EmitDynamicCast(llvm::Value *V, const CXXDynamicCastExpr *DCE);
1566 
1567   void EmitCheck(llvm::Value *, unsigned Size);
1568 
1569   llvm::Value *EmitScalarPrePostIncDec(const UnaryOperator *E, LValue LV,
1570                                        bool isInc, bool isPre);
1571   ComplexPairTy EmitComplexPrePostIncDec(const UnaryOperator *E, LValue LV,
1572                                          bool isInc, bool isPre);
1573   //===--------------------------------------------------------------------===//
1574   //                            Declaration Emission
1575   //===--------------------------------------------------------------------===//
1576 
1577   /// EmitDecl - Emit a declaration.
1578   ///
1579   /// This function can be called with a null (unreachable) insert point.
1580   void EmitDecl(const Decl &D);
1581 
1582   /// EmitVarDecl - Emit a local variable declaration.
1583   ///
1584   /// This function can be called with a null (unreachable) insert point.
1585   void EmitVarDecl(const VarDecl &D);
1586 
1587   typedef void SpecialInitFn(CodeGenFunction &Init, const VarDecl &D,
1588                              llvm::Value *Address);
1589 
1590   /// EmitAutoVarDecl - Emit an auto variable declaration.
1591   ///
1592   /// This function can be called with a null (unreachable) insert point.
1593   void EmitAutoVarDecl(const VarDecl &D);
1594 
1595   class AutoVarEmission {
1596     friend class CodeGenFunction;
1597 
1598     const VarDecl *Variable;
1599 
1600     /// The alignment of the variable.
1601     CharUnits Alignment;
1602 
1603     /// The address of the alloca.  Null if the variable was emitted
1604     /// as a global constant.
1605     llvm::Value *Address;
1606 
1607     llvm::Value *NRVOFlag;
1608 
1609     /// True if the variable is a __block variable.
1610     bool IsByRef;
1611 
1612     /// True if the variable is of aggregate type and has a constant
1613     /// initializer.
1614     bool IsConstantAggregate;
1615 
1616     struct Invalid {};
1617     AutoVarEmission(Invalid) : Variable(0) {}
1618 
1619     AutoVarEmission(const VarDecl &variable)
1620       : Variable(&variable), Address(0), NRVOFlag(0),
1621         IsByRef(false), IsConstantAggregate(false) {}
1622 
1623     bool wasEmittedAsGlobal() const { return Address == 0; }
1624 
1625   public:
1626     static AutoVarEmission invalid() { return AutoVarEmission(Invalid()); }
1627 
1628     /// Returns the address of the object within this declaration.
1629     /// Note that this does not chase the forwarding pointer for
1630     /// __block decls.
1631     llvm::Value *getObjectAddress(CodeGenFunction &CGF) const {
1632       if (!IsByRef) return Address;
1633 
1634       return CGF.Builder.CreateStructGEP(Address,
1635                                          CGF.getByRefValueLLVMField(Variable),
1636                                          Variable->getNameAsString());
1637     }
1638   };
1639   AutoVarEmission EmitAutoVarAlloca(const VarDecl &var);
1640   void EmitAutoVarInit(const AutoVarEmission &emission);
1641   void EmitAutoVarCleanups(const AutoVarEmission &emission);
1642 
1643   void EmitStaticVarDecl(const VarDecl &D,
1644                          llvm::GlobalValue::LinkageTypes Linkage);
1645 
1646   /// EmitParmDecl - Emit a ParmVarDecl or an ImplicitParamDecl.
1647   void EmitParmDecl(const VarDecl &D, llvm::Value *Arg, unsigned ArgNo);
1648 
1649   /// protectFromPeepholes - Protect a value that we're intending to
1650   /// store to the side, but which will probably be used later, from
1651   /// aggressive peepholing optimizations that might delete it.
1652   ///
1653   /// Pass the result to unprotectFromPeepholes to declare that
1654   /// protection is no longer required.
1655   ///
1656   /// There's no particular reason why this shouldn't apply to
1657   /// l-values, it's just that no existing peepholes work on pointers.
1658   PeepholeProtection protectFromPeepholes(RValue rvalue);
1659   void unprotectFromPeepholes(PeepholeProtection protection);
1660 
1661   //===--------------------------------------------------------------------===//
1662   //                             Statement Emission
1663   //===--------------------------------------------------------------------===//
1664 
1665   /// EmitStopPoint - Emit a debug stoppoint if we are emitting debug info.
1666   void EmitStopPoint(const Stmt *S);
1667 
1668   /// EmitStmt - Emit the code for the statement \arg S. It is legal to call
1669   /// this function even if there is no current insertion point.
1670   ///
1671   /// This function may clear the current insertion point; callers should use
1672   /// EnsureInsertPoint if they wish to subsequently generate code without first
1673   /// calling EmitBlock, EmitBranch, or EmitStmt.
1674   void EmitStmt(const Stmt *S);
1675 
1676   /// EmitSimpleStmt - Try to emit a "simple" statement which does not
1677   /// necessarily require an insertion point or debug information; typically
1678   /// because the statement amounts to a jump or a container of other
1679   /// statements.
1680   ///
1681   /// \return True if the statement was handled.
1682   bool EmitSimpleStmt(const Stmt *S);
1683 
1684   RValue EmitCompoundStmt(const CompoundStmt &S, bool GetLast = false,
1685                           AggValueSlot AVS = AggValueSlot::ignored());
1686 
1687   /// EmitLabel - Emit the block for the given label. It is legal to call this
1688   /// function even if there is no current insertion point.
1689   void EmitLabel(const LabelDecl *D); // helper for EmitLabelStmt.
1690 
1691   void EmitLabelStmt(const LabelStmt &S);
1692   void EmitGotoStmt(const GotoStmt &S);
1693   void EmitIndirectGotoStmt(const IndirectGotoStmt &S);
1694   void EmitIfStmt(const IfStmt &S);
1695   void EmitWhileStmt(const WhileStmt &S);
1696   void EmitDoStmt(const DoStmt &S);
1697   void EmitForStmt(const ForStmt &S);
1698   void EmitReturnStmt(const ReturnStmt &S);
1699   void EmitDeclStmt(const DeclStmt &S);
1700   void EmitBreakStmt(const BreakStmt &S);
1701   void EmitContinueStmt(const ContinueStmt &S);
1702   void EmitSwitchStmt(const SwitchStmt &S);
1703   void EmitDefaultStmt(const DefaultStmt &S);
1704   void EmitCaseStmt(const CaseStmt &S);
1705   void EmitCaseStmtRange(const CaseStmt &S);
1706   void EmitAsmStmt(const AsmStmt &S);
1707 
1708   void EmitObjCForCollectionStmt(const ObjCForCollectionStmt &S);
1709   void EmitObjCAtTryStmt(const ObjCAtTryStmt &S);
1710   void EmitObjCAtThrowStmt(const ObjCAtThrowStmt &S);
1711   void EmitObjCAtSynchronizedStmt(const ObjCAtSynchronizedStmt &S);
1712 
1713   llvm::Constant *getUnwindResumeFn();
1714   llvm::Constant *getUnwindResumeOrRethrowFn();
1715   void EnterCXXTryStmt(const CXXTryStmt &S, bool IsFnTryBlock = false);
1716   void ExitCXXTryStmt(const CXXTryStmt &S, bool IsFnTryBlock = false);
1717 
1718   void EmitCXXTryStmt(const CXXTryStmt &S);
1719   void EmitCXXForRangeStmt(const CXXForRangeStmt &S);
1720 
1721   //===--------------------------------------------------------------------===//
1722   //                         LValue Expression Emission
1723   //===--------------------------------------------------------------------===//
1724 
1725   /// GetUndefRValue - Get an appropriate 'undef' rvalue for the given type.
1726   RValue GetUndefRValue(QualType Ty);
1727 
1728   /// EmitUnsupportedRValue - Emit a dummy r-value using the type of E
1729   /// and issue an ErrorUnsupported style diagnostic (using the
1730   /// provided Name).
1731   RValue EmitUnsupportedRValue(const Expr *E,
1732                                const char *Name);
1733 
1734   /// EmitUnsupportedLValue - Emit a dummy l-value using the type of E and issue
1735   /// an ErrorUnsupported style diagnostic (using the provided Name).
1736   LValue EmitUnsupportedLValue(const Expr *E,
1737                                const char *Name);
1738 
1739   /// EmitLValue - Emit code to compute a designator that specifies the location
1740   /// of the expression.
1741   ///
1742   /// This can return one of two things: a simple address or a bitfield
1743   /// reference.  In either case, the LLVM Value* in the LValue structure is
1744   /// guaranteed to be an LLVM pointer type.
1745   ///
1746   /// If this returns a bitfield reference, nothing about the pointee type of
1747   /// the LLVM value is known: For example, it may not be a pointer to an
1748   /// integer.
1749   ///
1750   /// If this returns a normal address, and if the lvalue's C type is fixed
1751   /// size, this method guarantees that the returned pointer type will point to
1752   /// an LLVM type of the same size of the lvalue's type.  If the lvalue has a
1753   /// variable length type, this is not possible.
1754   ///
1755   LValue EmitLValue(const Expr *E);
1756 
1757   /// EmitCheckedLValue - Same as EmitLValue but additionally we generate
1758   /// checking code to guard against undefined behavior.  This is only
1759   /// suitable when we know that the address will be used to access the
1760   /// object.
1761   LValue EmitCheckedLValue(const Expr *E);
1762 
1763   /// EmitToMemory - Change a scalar value from its value
1764   /// representation to its in-memory representation.
1765   llvm::Value *EmitToMemory(llvm::Value *Value, QualType Ty);
1766 
1767   /// EmitFromMemory - Change a scalar value from its memory
1768   /// representation to its value representation.
1769   llvm::Value *EmitFromMemory(llvm::Value *Value, QualType Ty);
1770 
1771   /// EmitLoadOfScalar - Load a scalar value from an address, taking
1772   /// care to appropriately convert from the memory representation to
1773   /// the LLVM value representation.
1774   llvm::Value *EmitLoadOfScalar(llvm::Value *Addr, bool Volatile,
1775                                 unsigned Alignment, QualType Ty,
1776                                 llvm::MDNode *TBAAInfo = 0);
1777 
1778   /// EmitStoreOfScalar - Store a scalar value to an address, taking
1779   /// care to appropriately convert from the memory representation to
1780   /// the LLVM value representation.
1781   void EmitStoreOfScalar(llvm::Value *Value, llvm::Value *Addr,
1782                          bool Volatile, unsigned Alignment, QualType Ty,
1783                          llvm::MDNode *TBAAInfo = 0);
1784 
1785   /// EmitLoadOfLValue - Given an expression that represents a value lvalue,
1786   /// this method emits the address of the lvalue, then loads the result as an
1787   /// rvalue, returning the rvalue.
1788   RValue EmitLoadOfLValue(LValue V, QualType LVType);
1789   RValue EmitLoadOfExtVectorElementLValue(LValue V, QualType LVType);
1790   RValue EmitLoadOfBitfieldLValue(LValue LV, QualType ExprType);
1791   RValue EmitLoadOfPropertyRefLValue(LValue LV,
1792                                  ReturnValueSlot Return = ReturnValueSlot());
1793 
1794   /// EmitStoreThroughLValue - Store the specified rvalue into the specified
1795   /// lvalue, where both are guaranteed to the have the same type, and that type
1796   /// is 'Ty'.
1797   void EmitStoreThroughLValue(RValue Src, LValue Dst, QualType Ty);
1798   void EmitStoreThroughExtVectorComponentLValue(RValue Src, LValue Dst,
1799                                                 QualType Ty);
1800   void EmitStoreThroughPropertyRefLValue(RValue Src, LValue Dst);
1801 
1802   /// EmitStoreThroughLValue - Store Src into Dst with same constraints as
1803   /// EmitStoreThroughLValue.
1804   ///
1805   /// \param Result [out] - If non-null, this will be set to a Value* for the
1806   /// bit-field contents after the store, appropriate for use as the result of
1807   /// an assignment to the bit-field.
1808   void EmitStoreThroughBitfieldLValue(RValue Src, LValue Dst, QualType Ty,
1809                                       llvm::Value **Result=0);
1810 
1811   /// Emit an l-value for an assignment (simple or compound) of complex type.
1812   LValue EmitComplexAssignmentLValue(const BinaryOperator *E);
1813   LValue EmitComplexCompoundAssignmentLValue(const CompoundAssignOperator *E);
1814 
1815   // Note: only available for agg return types
1816   LValue EmitBinaryOperatorLValue(const BinaryOperator *E);
1817   LValue EmitCompoundAssignmentLValue(const CompoundAssignOperator *E);
1818   // Note: only available for agg return types
1819   LValue EmitCallExprLValue(const CallExpr *E);
1820   // Note: only available for agg return types
1821   LValue EmitVAArgExprLValue(const VAArgExpr *E);
1822   LValue EmitDeclRefLValue(const DeclRefExpr *E);
1823   LValue EmitStringLiteralLValue(const StringLiteral *E);
1824   LValue EmitObjCEncodeExprLValue(const ObjCEncodeExpr *E);
1825   LValue EmitPredefinedLValue(const PredefinedExpr *E);
1826   LValue EmitUnaryOpLValue(const UnaryOperator *E);
1827   LValue EmitArraySubscriptExpr(const ArraySubscriptExpr *E);
1828   LValue EmitExtVectorElementExpr(const ExtVectorElementExpr *E);
1829   LValue EmitMemberExpr(const MemberExpr *E);
1830   LValue EmitObjCIsaExpr(const ObjCIsaExpr *E);
1831   LValue EmitCompoundLiteralLValue(const CompoundLiteralExpr *E);
1832   LValue EmitConditionalOperatorLValue(const AbstractConditionalOperator *E);
1833   LValue EmitCastLValue(const CastExpr *E);
1834   LValue EmitNullInitializationLValue(const CXXScalarValueInitExpr *E);
1835   LValue EmitOpaqueValueLValue(const OpaqueValueExpr *e);
1836 
1837   llvm::Value *EmitIvarOffset(const ObjCInterfaceDecl *Interface,
1838                               const ObjCIvarDecl *Ivar);
1839   LValue EmitLValueForAnonRecordField(llvm::Value* Base,
1840                                       const IndirectFieldDecl* Field,
1841                                       unsigned CVRQualifiers);
1842   LValue EmitLValueForField(llvm::Value* Base, const FieldDecl* Field,
1843                             unsigned CVRQualifiers);
1844 
1845   /// EmitLValueForFieldInitialization - Like EmitLValueForField, except that
1846   /// if the Field is a reference, this will return the address of the reference
1847   /// and not the address of the value stored in the reference.
1848   LValue EmitLValueForFieldInitialization(llvm::Value* Base,
1849                                           const FieldDecl* Field,
1850                                           unsigned CVRQualifiers);
1851 
1852   LValue EmitLValueForIvar(QualType ObjectTy,
1853                            llvm::Value* Base, const ObjCIvarDecl *Ivar,
1854                            unsigned CVRQualifiers);
1855 
1856   LValue EmitLValueForBitfield(llvm::Value* Base, const FieldDecl* Field,
1857                                 unsigned CVRQualifiers);
1858 
1859   LValue EmitBlockDeclRefLValue(const BlockDeclRefExpr *E);
1860 
1861   LValue EmitCXXConstructLValue(const CXXConstructExpr *E);
1862   LValue EmitCXXBindTemporaryLValue(const CXXBindTemporaryExpr *E);
1863   LValue EmitExprWithCleanupsLValue(const ExprWithCleanups *E);
1864   LValue EmitCXXTypeidLValue(const CXXTypeidExpr *E);
1865 
1866   LValue EmitObjCMessageExprLValue(const ObjCMessageExpr *E);
1867   LValue EmitObjCIvarRefLValue(const ObjCIvarRefExpr *E);
1868   LValue EmitObjCPropertyRefLValue(const ObjCPropertyRefExpr *E);
1869   LValue EmitStmtExprLValue(const StmtExpr *E);
1870   LValue EmitPointerToDataMemberBinaryExpr(const BinaryOperator *E);
1871   LValue EmitObjCSelectorLValue(const ObjCSelectorExpr *E);
1872   void   EmitDeclRefExprDbgValue(const DeclRefExpr *E, llvm::Constant *Init);
1873 
1874   //===--------------------------------------------------------------------===//
1875   //                         Scalar Expression Emission
1876   //===--------------------------------------------------------------------===//
1877 
1878   /// EmitCall - Generate a call of the given function, expecting the given
1879   /// result type, and using the given argument list which specifies both the
1880   /// LLVM arguments and the types they were derived from.
1881   ///
1882   /// \param TargetDecl - If given, the decl of the function in a direct call;
1883   /// used to set attributes on the call (noreturn, etc.).
1884   RValue EmitCall(const CGFunctionInfo &FnInfo,
1885                   llvm::Value *Callee,
1886                   ReturnValueSlot ReturnValue,
1887                   const CallArgList &Args,
1888                   const Decl *TargetDecl = 0,
1889                   llvm::Instruction **callOrInvoke = 0);
1890 
1891   RValue EmitCall(QualType FnType, llvm::Value *Callee,
1892                   ReturnValueSlot ReturnValue,
1893                   CallExpr::const_arg_iterator ArgBeg,
1894                   CallExpr::const_arg_iterator ArgEnd,
1895                   const Decl *TargetDecl = 0);
1896   RValue EmitCallExpr(const CallExpr *E,
1897                       ReturnValueSlot ReturnValue = ReturnValueSlot());
1898 
1899   llvm::CallSite EmitCallOrInvoke(llvm::Value *Callee,
1900                                   llvm::Value * const *ArgBegin,
1901                                   llvm::Value * const *ArgEnd,
1902                                   const llvm::Twine &Name = "");
1903 
1904   llvm::Value *BuildVirtualCall(const CXXMethodDecl *MD, llvm::Value *This,
1905                                 const llvm::Type *Ty);
1906   llvm::Value *BuildVirtualCall(const CXXDestructorDecl *DD, CXXDtorType Type,
1907                                 llvm::Value *This, const llvm::Type *Ty);
1908   llvm::Value *BuildAppleKextVirtualCall(const CXXMethodDecl *MD,
1909                                          NestedNameSpecifier *Qual,
1910                                          const llvm::Type *Ty);
1911 
1912   llvm::Value *BuildAppleKextVirtualDestructorCall(const CXXDestructorDecl *DD,
1913                                                    CXXDtorType Type,
1914                                                    const CXXRecordDecl *RD);
1915 
1916   RValue EmitCXXMemberCall(const CXXMethodDecl *MD,
1917                            llvm::Value *Callee,
1918                            ReturnValueSlot ReturnValue,
1919                            llvm::Value *This,
1920                            llvm::Value *VTT,
1921                            CallExpr::const_arg_iterator ArgBeg,
1922                            CallExpr::const_arg_iterator ArgEnd);
1923   RValue EmitCXXMemberCallExpr(const CXXMemberCallExpr *E,
1924                                ReturnValueSlot ReturnValue);
1925   RValue EmitCXXMemberPointerCallExpr(const CXXMemberCallExpr *E,
1926                                       ReturnValueSlot ReturnValue);
1927 
1928   llvm::Value *EmitCXXOperatorMemberCallee(const CXXOperatorCallExpr *E,
1929                                            const CXXMethodDecl *MD,
1930                                            llvm::Value *This);
1931   RValue EmitCXXOperatorMemberCallExpr(const CXXOperatorCallExpr *E,
1932                                        const CXXMethodDecl *MD,
1933                                        ReturnValueSlot ReturnValue);
1934 
1935 
1936   RValue EmitBuiltinExpr(const FunctionDecl *FD,
1937                          unsigned BuiltinID, const CallExpr *E);
1938 
1939   RValue EmitBlockCallExpr(const CallExpr *E, ReturnValueSlot ReturnValue);
1940 
1941   /// EmitTargetBuiltinExpr - Emit the given builtin call. Returns 0 if the call
1942   /// is unhandled by the current target.
1943   llvm::Value *EmitTargetBuiltinExpr(unsigned BuiltinID, const CallExpr *E);
1944 
1945   llvm::Value *EmitARMBuiltinExpr(unsigned BuiltinID, const CallExpr *E);
1946   llvm::Value *EmitNeonCall(llvm::Function *F,
1947                             llvm::SmallVectorImpl<llvm::Value*> &O,
1948                             const char *name,
1949                             unsigned shift = 0, bool rightshift = false);
1950   llvm::Value *EmitNeonSplat(llvm::Value *V, llvm::Constant *Idx);
1951   llvm::Value *EmitNeonShiftVector(llvm::Value *V, const llvm::Type *Ty,
1952                                    bool negateForRightShift);
1953 
1954   llvm::Value *BuildVector(const llvm::SmallVectorImpl<llvm::Value*> &Ops);
1955   llvm::Value *EmitX86BuiltinExpr(unsigned BuiltinID, const CallExpr *E);
1956   llvm::Value *EmitPPCBuiltinExpr(unsigned BuiltinID, const CallExpr *E);
1957 
1958   llvm::Value *EmitObjCProtocolExpr(const ObjCProtocolExpr *E);
1959   llvm::Value *EmitObjCStringLiteral(const ObjCStringLiteral *E);
1960   llvm::Value *EmitObjCSelectorExpr(const ObjCSelectorExpr *E);
1961   RValue EmitObjCMessageExpr(const ObjCMessageExpr *E,
1962                              ReturnValueSlot Return = ReturnValueSlot());
1963 
1964   /// EmitReferenceBindingToExpr - Emits a reference binding to the passed in
1965   /// expression. Will emit a temporary variable if E is not an LValue.
1966   RValue EmitReferenceBindingToExpr(const Expr* E,
1967                                     const NamedDecl *InitializedDecl);
1968 
1969   //===--------------------------------------------------------------------===//
1970   //                           Expression Emission
1971   //===--------------------------------------------------------------------===//
1972 
1973   // Expressions are broken into three classes: scalar, complex, aggregate.
1974 
1975   /// EmitScalarExpr - Emit the computation of the specified expression of LLVM
1976   /// scalar type, returning the result.
1977   llvm::Value *EmitScalarExpr(const Expr *E , bool IgnoreResultAssign = false);
1978 
1979   /// EmitScalarConversion - Emit a conversion from the specified type to the
1980   /// specified destination type, both of which are LLVM scalar types.
1981   llvm::Value *EmitScalarConversion(llvm::Value *Src, QualType SrcTy,
1982                                     QualType DstTy);
1983 
1984   /// EmitComplexToScalarConversion - Emit a conversion from the specified
1985   /// complex type to the specified destination type, where the destination type
1986   /// is an LLVM scalar type.
1987   llvm::Value *EmitComplexToScalarConversion(ComplexPairTy Src, QualType SrcTy,
1988                                              QualType DstTy);
1989 
1990 
1991   /// EmitAggExpr - Emit the computation of the specified expression
1992   /// of aggregate type.  The result is computed into the given slot,
1993   /// which may be null to indicate that the value is not needed.
1994   void EmitAggExpr(const Expr *E, AggValueSlot AS, bool IgnoreResult = false);
1995 
1996   /// EmitAggExprToLValue - Emit the computation of the specified expression of
1997   /// aggregate type into a temporary LValue.
1998   LValue EmitAggExprToLValue(const Expr *E);
1999 
2000   /// EmitGCMemmoveCollectable - Emit special API for structs with object
2001   /// pointers.
2002   void EmitGCMemmoveCollectable(llvm::Value *DestPtr, llvm::Value *SrcPtr,
2003                                 QualType Ty);
2004 
2005   /// EmitComplexExpr - Emit the computation of the specified expression of
2006   /// complex type, returning the result.
2007   ComplexPairTy EmitComplexExpr(const Expr *E,
2008                                 bool IgnoreReal = false,
2009                                 bool IgnoreImag = false);
2010 
2011   /// EmitComplexExprIntoAddr - Emit the computation of the specified expression
2012   /// of complex type, storing into the specified Value*.
2013   void EmitComplexExprIntoAddr(const Expr *E, llvm::Value *DestAddr,
2014                                bool DestIsVolatile);
2015 
2016   /// StoreComplexToAddr - Store a complex number into the specified address.
2017   void StoreComplexToAddr(ComplexPairTy V, llvm::Value *DestAddr,
2018                           bool DestIsVolatile);
2019   /// LoadComplexFromAddr - Load a complex number from the specified address.
2020   ComplexPairTy LoadComplexFromAddr(llvm::Value *SrcAddr, bool SrcIsVolatile);
2021 
2022   /// CreateStaticVarDecl - Create a zero-initialized LLVM global for
2023   /// a static local variable.
2024   llvm::GlobalVariable *CreateStaticVarDecl(const VarDecl &D,
2025                                             const char *Separator,
2026                                        llvm::GlobalValue::LinkageTypes Linkage);
2027 
2028   /// AddInitializerToStaticVarDecl - Add the initializer for 'D' to the
2029   /// global variable that has already been created for it.  If the initializer
2030   /// has a different type than GV does, this may free GV and return a different
2031   /// one.  Otherwise it just returns GV.
2032   llvm::GlobalVariable *
2033   AddInitializerToStaticVarDecl(const VarDecl &D,
2034                                 llvm::GlobalVariable *GV);
2035 
2036 
2037   /// EmitCXXGlobalVarDeclInit - Create the initializer for a C++
2038   /// variable with global storage.
2039   void EmitCXXGlobalVarDeclInit(const VarDecl &D, llvm::Constant *DeclPtr);
2040 
2041   /// EmitCXXGlobalDtorRegistration - Emits a call to register the global ptr
2042   /// with the C++ runtime so that its destructor will be called at exit.
2043   void EmitCXXGlobalDtorRegistration(llvm::Constant *DtorFn,
2044                                      llvm::Constant *DeclPtr);
2045 
2046   /// Emit code in this function to perform a guarded variable
2047   /// initialization.  Guarded initializations are used when it's not
2048   /// possible to prove that an initialization will be done exactly
2049   /// once, e.g. with a static local variable or a static data member
2050   /// of a class template.
2051   void EmitCXXGuardedInit(const VarDecl &D, llvm::GlobalVariable *DeclPtr);
2052 
2053   /// GenerateCXXGlobalInitFunc - Generates code for initializing global
2054   /// variables.
2055   void GenerateCXXGlobalInitFunc(llvm::Function *Fn,
2056                                  llvm::Constant **Decls,
2057                                  unsigned NumDecls);
2058 
2059   /// GenerateCXXGlobalDtorFunc - Generates code for destroying global
2060   /// variables.
2061   void GenerateCXXGlobalDtorFunc(llvm::Function *Fn,
2062                                  const std::vector<std::pair<llvm::WeakVH,
2063                                    llvm::Constant*> > &DtorsAndObjects);
2064 
2065   void GenerateCXXGlobalVarDeclInitFunc(llvm::Function *Fn,
2066                                         const VarDecl *D,
2067                                         llvm::GlobalVariable *Addr);
2068 
2069   void EmitCXXConstructExpr(const CXXConstructExpr *E, AggValueSlot Dest);
2070 
2071   void EmitSynthesizedCXXCopyCtor(llvm::Value *Dest, llvm::Value *Src,
2072                                   const Expr *Exp);
2073 
2074   RValue EmitExprWithCleanups(const ExprWithCleanups *E,
2075                               AggValueSlot Slot =AggValueSlot::ignored());
2076 
2077   void EmitCXXThrowExpr(const CXXThrowExpr *E);
2078 
2079   //===--------------------------------------------------------------------===//
2080   //                             Internal Helpers
2081   //===--------------------------------------------------------------------===//
2082 
2083   /// ContainsLabel - Return true if the statement contains a label in it.  If
2084   /// this statement is not executed normally, it not containing a label means
2085   /// that we can just remove the code.
2086   static bool ContainsLabel(const Stmt *S, bool IgnoreCaseStmts = false);
2087 
2088   /// containsBreak - Return true if the statement contains a break out of it.
2089   /// If the statement (recursively) contains a switch or loop with a break
2090   /// inside of it, this is fine.
2091   static bool containsBreak(const Stmt *S);
2092 
2093   /// ConstantFoldsToSimpleInteger - If the specified expression does not fold
2094   /// to a constant, or if it does but contains a label, return false.  If it
2095   /// constant folds return true and set the boolean result in Result.
2096   bool ConstantFoldsToSimpleInteger(const Expr *Cond, bool &Result);
2097 
2098   /// ConstantFoldsToSimpleInteger - If the specified expression does not fold
2099   /// to a constant, or if it does but contains a label, return false.  If it
2100   /// constant folds return true and set the folded value.
2101   bool ConstantFoldsToSimpleInteger(const Expr *Cond, llvm::APInt &Result);
2102 
2103   /// EmitBranchOnBoolExpr - Emit a branch on a boolean condition (e.g. for an
2104   /// if statement) to the specified blocks.  Based on the condition, this might
2105   /// try to simplify the codegen of the conditional based on the branch.
2106   void EmitBranchOnBoolExpr(const Expr *Cond, llvm::BasicBlock *TrueBlock,
2107                             llvm::BasicBlock *FalseBlock);
2108 
2109   /// getTrapBB - Create a basic block that will call the trap intrinsic.  We'll
2110   /// generate a branch around the created basic block as necessary.
2111   llvm::BasicBlock *getTrapBB();
2112 
2113   /// EmitCallArg - Emit a single call argument.
2114   void EmitCallArg(CallArgList &args, const Expr *E, QualType ArgType);
2115 
2116   /// EmitDelegateCallArg - We are performing a delegate call; that
2117   /// is, the current function is delegating to another one.  Produce
2118   /// a r-value suitable for passing the given parameter.
2119   void EmitDelegateCallArg(CallArgList &args, const VarDecl *param);
2120 
2121 private:
2122   void EmitReturnOfRValue(RValue RV, QualType Ty);
2123 
2124   /// ExpandTypeFromArgs - Reconstruct a structure of type \arg Ty
2125   /// from function arguments into \arg Dst. See ABIArgInfo::Expand.
2126   ///
2127   /// \param AI - The first function argument of the expansion.
2128   /// \return The argument following the last expanded function
2129   /// argument.
2130   llvm::Function::arg_iterator
2131   ExpandTypeFromArgs(QualType Ty, LValue Dst,
2132                      llvm::Function::arg_iterator AI);
2133 
2134   /// ExpandTypeToArgs - Expand an RValue \arg Src, with the LLVM type for \arg
2135   /// Ty, into individual arguments on the provided vector \arg Args. See
2136   /// ABIArgInfo::Expand.
2137   void ExpandTypeToArgs(QualType Ty, RValue Src,
2138                         llvm::SmallVector<llvm::Value*, 16> &Args);
2139 
2140   llvm::Value* EmitAsmInput(const AsmStmt &S,
2141                             const TargetInfo::ConstraintInfo &Info,
2142                             const Expr *InputExpr, std::string &ConstraintStr);
2143 
2144   llvm::Value* EmitAsmInputLValue(const AsmStmt &S,
2145                                   const TargetInfo::ConstraintInfo &Info,
2146                                   LValue InputValue, QualType InputType,
2147                                   std::string &ConstraintStr);
2148 
2149   /// EmitCallArgs - Emit call arguments for a function.
2150   /// The CallArgTypeInfo parameter is used for iterating over the known
2151   /// argument types of the function being called.
2152   template<typename T>
2153   void EmitCallArgs(CallArgList& Args, const T* CallArgTypeInfo,
2154                     CallExpr::const_arg_iterator ArgBeg,
2155                     CallExpr::const_arg_iterator ArgEnd) {
2156       CallExpr::const_arg_iterator Arg = ArgBeg;
2157 
2158     // First, use the argument types that the type info knows about
2159     if (CallArgTypeInfo) {
2160       for (typename T::arg_type_iterator I = CallArgTypeInfo->arg_type_begin(),
2161            E = CallArgTypeInfo->arg_type_end(); I != E; ++I, ++Arg) {
2162         assert(Arg != ArgEnd && "Running over edge of argument list!");
2163         QualType ArgType = *I;
2164 #ifndef NDEBUG
2165         QualType ActualArgType = Arg->getType();
2166         if (ArgType->isPointerType() && ActualArgType->isPointerType()) {
2167           QualType ActualBaseType =
2168             ActualArgType->getAs<PointerType>()->getPointeeType();
2169           QualType ArgBaseType =
2170             ArgType->getAs<PointerType>()->getPointeeType();
2171           if (ArgBaseType->isVariableArrayType()) {
2172             if (const VariableArrayType *VAT =
2173                 getContext().getAsVariableArrayType(ActualBaseType)) {
2174               if (!VAT->getSizeExpr())
2175                 ActualArgType = ArgType;
2176             }
2177           }
2178         }
2179         assert(getContext().getCanonicalType(ArgType.getNonReferenceType()).
2180                getTypePtr() ==
2181                getContext().getCanonicalType(ActualArgType).getTypePtr() &&
2182                "type mismatch in call argument!");
2183 #endif
2184         EmitCallArg(Args, *Arg, ArgType);
2185       }
2186 
2187       // Either we've emitted all the call args, or we have a call to a
2188       // variadic function.
2189       assert((Arg == ArgEnd || CallArgTypeInfo->isVariadic()) &&
2190              "Extra arguments in non-variadic function!");
2191 
2192     }
2193 
2194     // If we still have any arguments, emit them using the type of the argument.
2195     for (; Arg != ArgEnd; ++Arg)
2196       EmitCallArg(Args, *Arg, Arg->getType());
2197   }
2198 
2199   const TargetCodeGenInfo &getTargetHooks() const {
2200     return CGM.getTargetCodeGenInfo();
2201   }
2202 
2203   void EmitDeclMetadata();
2204 
2205   CodeGenModule::ByrefHelpers *
2206   buildByrefHelpers(const llvm::StructType &byrefType,
2207                     const AutoVarEmission &emission);
2208 };
2209 
2210 /// Helper class with most of the code for saving a value for a
2211 /// conditional expression cleanup.
2212 struct DominatingLLVMValue {
2213   typedef llvm::PointerIntPair<llvm::Value*, 1, bool> saved_type;
2214 
2215   /// Answer whether the given value needs extra work to be saved.
2216   static bool needsSaving(llvm::Value *value) {
2217     // If it's not an instruction, we don't need to save.
2218     if (!isa<llvm::Instruction>(value)) return false;
2219 
2220     // If it's an instruction in the entry block, we don't need to save.
2221     llvm::BasicBlock *block = cast<llvm::Instruction>(value)->getParent();
2222     return (block != &block->getParent()->getEntryBlock());
2223   }
2224 
2225   /// Try to save the given value.
2226   static saved_type save(CodeGenFunction &CGF, llvm::Value *value) {
2227     if (!needsSaving(value)) return saved_type(value, false);
2228 
2229     // Otherwise we need an alloca.
2230     llvm::Value *alloca =
2231       CGF.CreateTempAlloca(value->getType(), "cond-cleanup.save");
2232     CGF.Builder.CreateStore(value, alloca);
2233 
2234     return saved_type(alloca, true);
2235   }
2236 
2237   static llvm::Value *restore(CodeGenFunction &CGF, saved_type value) {
2238     if (!value.getInt()) return value.getPointer();
2239     return CGF.Builder.CreateLoad(value.getPointer());
2240   }
2241 };
2242 
2243 /// A partial specialization of DominatingValue for llvm::Values that
2244 /// might be llvm::Instructions.
2245 template <class T> struct DominatingPointer<T,true> : DominatingLLVMValue {
2246   typedef T *type;
2247   static type restore(CodeGenFunction &CGF, saved_type value) {
2248     return static_cast<T*>(DominatingLLVMValue::restore(CGF, value));
2249   }
2250 };
2251 
2252 /// A specialization of DominatingValue for RValue.
2253 template <> struct DominatingValue<RValue> {
2254   typedef RValue type;
2255   class saved_type {
2256     enum Kind { ScalarLiteral, ScalarAddress, AggregateLiteral,
2257                 AggregateAddress, ComplexAddress };
2258 
2259     llvm::Value *Value;
2260     Kind K;
2261     saved_type(llvm::Value *v, Kind k) : Value(v), K(k) {}
2262 
2263   public:
2264     static bool needsSaving(RValue value);
2265     static saved_type save(CodeGenFunction &CGF, RValue value);
2266     RValue restore(CodeGenFunction &CGF);
2267 
2268     // implementations in CGExprCXX.cpp
2269   };
2270 
2271   static bool needsSaving(type value) {
2272     return saved_type::needsSaving(value);
2273   }
2274   static saved_type save(CodeGenFunction &CGF, type value) {
2275     return saved_type::save(CGF, value);
2276   }
2277   static type restore(CodeGenFunction &CGF, saved_type value) {
2278     return value.restore(CGF);
2279   }
2280 };
2281 
2282 }  // end namespace CodeGen
2283 }  // end namespace clang
2284 
2285 #endif
2286