1 //===-- CodeGenFunction.h - Per-Function state for LLVM CodeGen -*- C++ -*-===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This is the internal per-function state used for llvm translation. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #ifndef LLVM_CLANG_LIB_CODEGEN_CODEGENFUNCTION_H 15 #define LLVM_CLANG_LIB_CODEGEN_CODEGENFUNCTION_H 16 17 #include "CGBuilder.h" 18 #include "CGDebugInfo.h" 19 #include "CGLoopInfo.h" 20 #include "CGValue.h" 21 #include "CodeGenModule.h" 22 #include "CodeGenPGO.h" 23 #include "EHScopeStack.h" 24 #include "VarBypassDetector.h" 25 #include "clang/AST/CharUnits.h" 26 #include "clang/AST/ExprCXX.h" 27 #include "clang/AST/ExprObjC.h" 28 #include "clang/AST/ExprOpenMP.h" 29 #include "clang/AST/Type.h" 30 #include "clang/Basic/ABI.h" 31 #include "clang/Basic/CapturedStmt.h" 32 #include "clang/Basic/OpenMPKinds.h" 33 #include "clang/Basic/TargetInfo.h" 34 #include "clang/Frontend/CodeGenOptions.h" 35 #include "llvm/ADT/ArrayRef.h" 36 #include "llvm/ADT/DenseMap.h" 37 #include "llvm/ADT/MapVector.h" 38 #include "llvm/ADT/SmallVector.h" 39 #include "llvm/IR/ValueHandle.h" 40 #include "llvm/Support/Debug.h" 41 #include "llvm/Transforms/Utils/SanitizerStats.h" 42 43 namespace llvm { 44 class BasicBlock; 45 class LLVMContext; 46 class MDNode; 47 class Module; 48 class SwitchInst; 49 class Twine; 50 class Value; 51 class CallSite; 52 } 53 54 namespace clang { 55 class ASTContext; 56 class BlockDecl; 57 class CXXDestructorDecl; 58 class CXXForRangeStmt; 59 class CXXTryStmt; 60 class Decl; 61 class LabelDecl; 62 class EnumConstantDecl; 63 class FunctionDecl; 64 class FunctionProtoType; 65 class LabelStmt; 66 class ObjCContainerDecl; 67 class ObjCInterfaceDecl; 68 class ObjCIvarDecl; 69 class ObjCMethodDecl; 70 class ObjCImplementationDecl; 71 class ObjCPropertyImplDecl; 72 class TargetInfo; 73 class VarDecl; 74 class ObjCForCollectionStmt; 75 class ObjCAtTryStmt; 76 class ObjCAtThrowStmt; 77 class ObjCAtSynchronizedStmt; 78 class ObjCAutoreleasePoolStmt; 79 80 namespace analyze_os_log { 81 class OSLogBufferLayout; 82 } 83 84 namespace CodeGen { 85 class CodeGenTypes; 86 class CGCallee; 87 class CGFunctionInfo; 88 class CGRecordLayout; 89 class CGBlockInfo; 90 class CGCXXABI; 91 class BlockByrefHelpers; 92 class BlockByrefInfo; 93 class BlockFlags; 94 class BlockFieldFlags; 95 class RegionCodeGenTy; 96 class TargetCodeGenInfo; 97 struct OMPTaskDataTy; 98 struct CGCoroData; 99 100 /// The kind of evaluation to perform on values of a particular 101 /// type. Basically, is the code in CGExprScalar, CGExprComplex, or 102 /// CGExprAgg? 103 /// 104 /// TODO: should vectors maybe be split out into their own thing? 105 enum TypeEvaluationKind { 106 TEK_Scalar, 107 TEK_Complex, 108 TEK_Aggregate 109 }; 110 111 #define LIST_SANITIZER_CHECKS \ 112 SANITIZER_CHECK(AddOverflow, add_overflow, 0) \ 113 SANITIZER_CHECK(BuiltinUnreachable, builtin_unreachable, 0) \ 114 SANITIZER_CHECK(CFICheckFail, cfi_check_fail, 0) \ 115 SANITIZER_CHECK(DivremOverflow, divrem_overflow, 0) \ 116 SANITIZER_CHECK(DynamicTypeCacheMiss, dynamic_type_cache_miss, 0) \ 117 SANITIZER_CHECK(FloatCastOverflow, float_cast_overflow, 0) \ 118 SANITIZER_CHECK(FunctionTypeMismatch, function_type_mismatch, 0) \ 119 SANITIZER_CHECK(InvalidBuiltin, invalid_builtin, 0) \ 120 SANITIZER_CHECK(LoadInvalidValue, load_invalid_value, 0) \ 121 SANITIZER_CHECK(MissingReturn, missing_return, 0) \ 122 SANITIZER_CHECK(MulOverflow, mul_overflow, 0) \ 123 SANITIZER_CHECK(NegateOverflow, negate_overflow, 0) \ 124 SANITIZER_CHECK(NullabilityArg, nullability_arg, 0) \ 125 SANITIZER_CHECK(NullabilityReturn, nullability_return, 1) \ 126 SANITIZER_CHECK(NonnullArg, nonnull_arg, 0) \ 127 SANITIZER_CHECK(NonnullReturn, nonnull_return, 1) \ 128 SANITIZER_CHECK(OutOfBounds, out_of_bounds, 0) \ 129 SANITIZER_CHECK(PointerOverflow, pointer_overflow, 0) \ 130 SANITIZER_CHECK(ShiftOutOfBounds, shift_out_of_bounds, 0) \ 131 SANITIZER_CHECK(SubOverflow, sub_overflow, 0) \ 132 SANITIZER_CHECK(TypeMismatch, type_mismatch, 1) \ 133 SANITIZER_CHECK(VLABoundNotPositive, vla_bound_not_positive, 0) 134 135 enum SanitizerHandler { 136 #define SANITIZER_CHECK(Enum, Name, Version) Enum, 137 LIST_SANITIZER_CHECKS 138 #undef SANITIZER_CHECK 139 }; 140 141 /// CodeGenFunction - This class organizes the per-function state that is used 142 /// while generating LLVM code. 143 class CodeGenFunction : public CodeGenTypeCache { 144 CodeGenFunction(const CodeGenFunction &) = delete; 145 void operator=(const CodeGenFunction &) = delete; 146 147 friend class CGCXXABI; 148 public: 149 /// A jump destination is an abstract label, branching to which may 150 /// require a jump out through normal cleanups. 151 struct JumpDest { 152 JumpDest() : Block(nullptr), ScopeDepth(), Index(0) {} 153 JumpDest(llvm::BasicBlock *Block, 154 EHScopeStack::stable_iterator Depth, 155 unsigned Index) 156 : Block(Block), ScopeDepth(Depth), Index(Index) {} 157 158 bool isValid() const { return Block != nullptr; } 159 llvm::BasicBlock *getBlock() const { return Block; } 160 EHScopeStack::stable_iterator getScopeDepth() const { return ScopeDepth; } 161 unsigned getDestIndex() const { return Index; } 162 163 // This should be used cautiously. 164 void setScopeDepth(EHScopeStack::stable_iterator depth) { 165 ScopeDepth = depth; 166 } 167 168 private: 169 llvm::BasicBlock *Block; 170 EHScopeStack::stable_iterator ScopeDepth; 171 unsigned Index; 172 }; 173 174 CodeGenModule &CGM; // Per-module state. 175 const TargetInfo &Target; 176 177 typedef std::pair<llvm::Value *, llvm::Value *> ComplexPairTy; 178 LoopInfoStack LoopStack; 179 CGBuilderTy Builder; 180 181 // Stores variables for which we can't generate correct lifetime markers 182 // because of jumps. 183 VarBypassDetector Bypasses; 184 185 // CodeGen lambda for loops and support for ordered clause 186 typedef llvm::function_ref<void(CodeGenFunction &, const OMPLoopDirective &, 187 JumpDest)> 188 CodeGenLoopTy; 189 typedef llvm::function_ref<void(CodeGenFunction &, SourceLocation, 190 const unsigned, const bool)> 191 CodeGenOrderedTy; 192 193 // Codegen lambda for loop bounds in worksharing loop constructs 194 typedef llvm::function_ref<std::pair<LValue, LValue>( 195 CodeGenFunction &, const OMPExecutableDirective &S)> 196 CodeGenLoopBoundsTy; 197 198 // Codegen lambda for loop bounds in dispatch-based loop implementation 199 typedef llvm::function_ref<std::pair<llvm::Value *, llvm::Value *>( 200 CodeGenFunction &, const OMPExecutableDirective &S, Address LB, 201 Address UB)> 202 CodeGenDispatchBoundsTy; 203 204 /// \brief CGBuilder insert helper. This function is called after an 205 /// instruction is created using Builder. 206 void InsertHelper(llvm::Instruction *I, const llvm::Twine &Name, 207 llvm::BasicBlock *BB, 208 llvm::BasicBlock::iterator InsertPt) const; 209 210 /// CurFuncDecl - Holds the Decl for the current outermost 211 /// non-closure context. 212 const Decl *CurFuncDecl; 213 /// CurCodeDecl - This is the inner-most code context, which includes blocks. 214 const Decl *CurCodeDecl; 215 const CGFunctionInfo *CurFnInfo; 216 QualType FnRetTy; 217 llvm::Function *CurFn; 218 219 // Holds coroutine data if the current function is a coroutine. We use a 220 // wrapper to manage its lifetime, so that we don't have to define CGCoroData 221 // in this header. 222 struct CGCoroInfo { 223 std::unique_ptr<CGCoroData> Data; 224 CGCoroInfo(); 225 ~CGCoroInfo(); 226 }; 227 CGCoroInfo CurCoro; 228 229 bool isCoroutine() const { 230 return CurCoro.Data != nullptr; 231 } 232 233 /// CurGD - The GlobalDecl for the current function being compiled. 234 GlobalDecl CurGD; 235 236 /// PrologueCleanupDepth - The cleanup depth enclosing all the 237 /// cleanups associated with the parameters. 238 EHScopeStack::stable_iterator PrologueCleanupDepth; 239 240 /// ReturnBlock - Unified return block. 241 JumpDest ReturnBlock; 242 243 /// ReturnValue - The temporary alloca to hold the return 244 /// value. This is invalid iff the function has no return value. 245 Address ReturnValue; 246 247 /// Return true if a label was seen in the current scope. 248 bool hasLabelBeenSeenInCurrentScope() const { 249 if (CurLexicalScope) 250 return CurLexicalScope->hasLabels(); 251 return !LabelMap.empty(); 252 } 253 254 /// AllocaInsertPoint - This is an instruction in the entry block before which 255 /// we prefer to insert allocas. 256 llvm::AssertingVH<llvm::Instruction> AllocaInsertPt; 257 258 /// \brief API for captured statement code generation. 259 class CGCapturedStmtInfo { 260 public: 261 explicit CGCapturedStmtInfo(CapturedRegionKind K = CR_Default) 262 : Kind(K), ThisValue(nullptr), CXXThisFieldDecl(nullptr) {} 263 explicit CGCapturedStmtInfo(const CapturedStmt &S, 264 CapturedRegionKind K = CR_Default) 265 : Kind(K), ThisValue(nullptr), CXXThisFieldDecl(nullptr) { 266 267 RecordDecl::field_iterator Field = 268 S.getCapturedRecordDecl()->field_begin(); 269 for (CapturedStmt::const_capture_iterator I = S.capture_begin(), 270 E = S.capture_end(); 271 I != E; ++I, ++Field) { 272 if (I->capturesThis()) 273 CXXThisFieldDecl = *Field; 274 else if (I->capturesVariable()) 275 CaptureFields[I->getCapturedVar()->getCanonicalDecl()] = *Field; 276 else if (I->capturesVariableByCopy()) 277 CaptureFields[I->getCapturedVar()->getCanonicalDecl()] = *Field; 278 } 279 } 280 281 virtual ~CGCapturedStmtInfo(); 282 283 CapturedRegionKind getKind() const { return Kind; } 284 285 virtual void setContextValue(llvm::Value *V) { ThisValue = V; } 286 // \brief Retrieve the value of the context parameter. 287 virtual llvm::Value *getContextValue() const { return ThisValue; } 288 289 /// \brief Lookup the captured field decl for a variable. 290 virtual const FieldDecl *lookup(const VarDecl *VD) const { 291 return CaptureFields.lookup(VD->getCanonicalDecl()); 292 } 293 294 bool isCXXThisExprCaptured() const { return getThisFieldDecl() != nullptr; } 295 virtual FieldDecl *getThisFieldDecl() const { return CXXThisFieldDecl; } 296 297 static bool classof(const CGCapturedStmtInfo *) { 298 return true; 299 } 300 301 /// \brief Emit the captured statement body. 302 virtual void EmitBody(CodeGenFunction &CGF, const Stmt *S) { 303 CGF.incrementProfileCounter(S); 304 CGF.EmitStmt(S); 305 } 306 307 /// \brief Get the name of the capture helper. 308 virtual StringRef getHelperName() const { return "__captured_stmt"; } 309 310 private: 311 /// \brief The kind of captured statement being generated. 312 CapturedRegionKind Kind; 313 314 /// \brief Keep the map between VarDecl and FieldDecl. 315 llvm::SmallDenseMap<const VarDecl *, FieldDecl *> CaptureFields; 316 317 /// \brief The base address of the captured record, passed in as the first 318 /// argument of the parallel region function. 319 llvm::Value *ThisValue; 320 321 /// \brief Captured 'this' type. 322 FieldDecl *CXXThisFieldDecl; 323 }; 324 CGCapturedStmtInfo *CapturedStmtInfo; 325 326 /// \brief RAII for correct setting/restoring of CapturedStmtInfo. 327 class CGCapturedStmtRAII { 328 private: 329 CodeGenFunction &CGF; 330 CGCapturedStmtInfo *PrevCapturedStmtInfo; 331 public: 332 CGCapturedStmtRAII(CodeGenFunction &CGF, 333 CGCapturedStmtInfo *NewCapturedStmtInfo) 334 : CGF(CGF), PrevCapturedStmtInfo(CGF.CapturedStmtInfo) { 335 CGF.CapturedStmtInfo = NewCapturedStmtInfo; 336 } 337 ~CGCapturedStmtRAII() { CGF.CapturedStmtInfo = PrevCapturedStmtInfo; } 338 }; 339 340 /// An abstract representation of regular/ObjC call/message targets. 341 class AbstractCallee { 342 /// The function declaration of the callee. 343 const Decl *CalleeDecl; 344 345 public: 346 AbstractCallee() : CalleeDecl(nullptr) {} 347 AbstractCallee(const FunctionDecl *FD) : CalleeDecl(FD) {} 348 AbstractCallee(const ObjCMethodDecl *OMD) : CalleeDecl(OMD) {} 349 bool hasFunctionDecl() const { 350 return dyn_cast_or_null<FunctionDecl>(CalleeDecl); 351 } 352 const Decl *getDecl() const { return CalleeDecl; } 353 unsigned getNumParams() const { 354 if (const auto *FD = dyn_cast<FunctionDecl>(CalleeDecl)) 355 return FD->getNumParams(); 356 return cast<ObjCMethodDecl>(CalleeDecl)->param_size(); 357 } 358 const ParmVarDecl *getParamDecl(unsigned I) const { 359 if (const auto *FD = dyn_cast<FunctionDecl>(CalleeDecl)) 360 return FD->getParamDecl(I); 361 return *(cast<ObjCMethodDecl>(CalleeDecl)->param_begin() + I); 362 } 363 }; 364 365 /// \brief Sanitizers enabled for this function. 366 SanitizerSet SanOpts; 367 368 /// \brief True if CodeGen currently emits code implementing sanitizer checks. 369 bool IsSanitizerScope; 370 371 /// \brief RAII object to set/unset CodeGenFunction::IsSanitizerScope. 372 class SanitizerScope { 373 CodeGenFunction *CGF; 374 public: 375 SanitizerScope(CodeGenFunction *CGF); 376 ~SanitizerScope(); 377 }; 378 379 /// In C++, whether we are code generating a thunk. This controls whether we 380 /// should emit cleanups. 381 bool CurFuncIsThunk; 382 383 /// In ARC, whether we should autorelease the return value. 384 bool AutoreleaseResult; 385 386 /// Whether we processed a Microsoft-style asm block during CodeGen. These can 387 /// potentially set the return value. 388 bool SawAsmBlock; 389 390 const FunctionDecl *CurSEHParent = nullptr; 391 392 /// True if the current function is an outlined SEH helper. This can be a 393 /// finally block or filter expression. 394 bool IsOutlinedSEHHelper; 395 396 const CodeGen::CGBlockInfo *BlockInfo; 397 llvm::Value *BlockPointer; 398 399 llvm::DenseMap<const VarDecl *, FieldDecl *> LambdaCaptureFields; 400 FieldDecl *LambdaThisCaptureField; 401 402 /// \brief A mapping from NRVO variables to the flags used to indicate 403 /// when the NRVO has been applied to this variable. 404 llvm::DenseMap<const VarDecl *, llvm::Value *> NRVOFlags; 405 406 EHScopeStack EHStack; 407 llvm::SmallVector<char, 256> LifetimeExtendedCleanupStack; 408 llvm::SmallVector<const JumpDest *, 2> SEHTryEpilogueStack; 409 410 llvm::Instruction *CurrentFuncletPad = nullptr; 411 412 class CallLifetimeEnd final : public EHScopeStack::Cleanup { 413 llvm::Value *Addr; 414 llvm::Value *Size; 415 416 public: 417 CallLifetimeEnd(Address addr, llvm::Value *size) 418 : Addr(addr.getPointer()), Size(size) {} 419 420 void Emit(CodeGenFunction &CGF, Flags flags) override { 421 CGF.EmitLifetimeEnd(Size, Addr); 422 } 423 }; 424 425 /// Header for data within LifetimeExtendedCleanupStack. 426 struct LifetimeExtendedCleanupHeader { 427 /// The size of the following cleanup object. 428 unsigned Size; 429 /// The kind of cleanup to push: a value from the CleanupKind enumeration. 430 CleanupKind Kind; 431 432 size_t getSize() const { return Size; } 433 CleanupKind getKind() const { return Kind; } 434 }; 435 436 /// i32s containing the indexes of the cleanup destinations. 437 Address NormalCleanupDest; 438 439 unsigned NextCleanupDestIndex; 440 441 /// FirstBlockInfo - The head of a singly-linked-list of block layouts. 442 CGBlockInfo *FirstBlockInfo; 443 444 /// EHResumeBlock - Unified block containing a call to llvm.eh.resume. 445 llvm::BasicBlock *EHResumeBlock; 446 447 /// The exception slot. All landing pads write the current exception pointer 448 /// into this alloca. 449 llvm::Value *ExceptionSlot; 450 451 /// The selector slot. Under the MandatoryCleanup model, all landing pads 452 /// write the current selector value into this alloca. 453 llvm::AllocaInst *EHSelectorSlot; 454 455 /// A stack of exception code slots. Entering an __except block pushes a slot 456 /// on the stack and leaving pops one. The __exception_code() intrinsic loads 457 /// a value from the top of the stack. 458 SmallVector<Address, 1> SEHCodeSlotStack; 459 460 /// Value returned by __exception_info intrinsic. 461 llvm::Value *SEHInfo = nullptr; 462 463 /// Emits a landing pad for the current EH stack. 464 llvm::BasicBlock *EmitLandingPad(); 465 466 llvm::BasicBlock *getInvokeDestImpl(); 467 468 template <class T> 469 typename DominatingValue<T>::saved_type saveValueInCond(T value) { 470 return DominatingValue<T>::save(*this, value); 471 } 472 473 public: 474 /// ObjCEHValueStack - Stack of Objective-C exception values, used for 475 /// rethrows. 476 SmallVector<llvm::Value*, 8> ObjCEHValueStack; 477 478 /// A class controlling the emission of a finally block. 479 class FinallyInfo { 480 /// Where the catchall's edge through the cleanup should go. 481 JumpDest RethrowDest; 482 483 /// A function to call to enter the catch. 484 llvm::Constant *BeginCatchFn; 485 486 /// An i1 variable indicating whether or not the @finally is 487 /// running for an exception. 488 llvm::AllocaInst *ForEHVar; 489 490 /// An i8* variable into which the exception pointer to rethrow 491 /// has been saved. 492 llvm::AllocaInst *SavedExnVar; 493 494 public: 495 void enter(CodeGenFunction &CGF, const Stmt *Finally, 496 llvm::Constant *beginCatchFn, llvm::Constant *endCatchFn, 497 llvm::Constant *rethrowFn); 498 void exit(CodeGenFunction &CGF); 499 }; 500 501 /// Returns true inside SEH __try blocks. 502 bool isSEHTryScope() const { return !SEHTryEpilogueStack.empty(); } 503 504 /// Returns true while emitting a cleanuppad. 505 bool isCleanupPadScope() const { 506 return CurrentFuncletPad && isa<llvm::CleanupPadInst>(CurrentFuncletPad); 507 } 508 509 /// pushFullExprCleanup - Push a cleanup to be run at the end of the 510 /// current full-expression. Safe against the possibility that 511 /// we're currently inside a conditionally-evaluated expression. 512 template <class T, class... As> 513 void pushFullExprCleanup(CleanupKind kind, As... A) { 514 // If we're not in a conditional branch, or if none of the 515 // arguments requires saving, then use the unconditional cleanup. 516 if (!isInConditionalBranch()) 517 return EHStack.pushCleanup<T>(kind, A...); 518 519 // Stash values in a tuple so we can guarantee the order of saves. 520 typedef std::tuple<typename DominatingValue<As>::saved_type...> SavedTuple; 521 SavedTuple Saved{saveValueInCond(A)...}; 522 523 typedef EHScopeStack::ConditionalCleanup<T, As...> CleanupType; 524 EHStack.pushCleanupTuple<CleanupType>(kind, Saved); 525 initFullExprCleanup(); 526 } 527 528 /// \brief Queue a cleanup to be pushed after finishing the current 529 /// full-expression. 530 template <class T, class... As> 531 void pushCleanupAfterFullExpr(CleanupKind Kind, As... A) { 532 assert(!isInConditionalBranch() && "can't defer conditional cleanup"); 533 534 LifetimeExtendedCleanupHeader Header = { sizeof(T), Kind }; 535 536 size_t OldSize = LifetimeExtendedCleanupStack.size(); 537 LifetimeExtendedCleanupStack.resize( 538 LifetimeExtendedCleanupStack.size() + sizeof(Header) + Header.Size); 539 540 static_assert(sizeof(Header) % alignof(T) == 0, 541 "Cleanup will be allocated on misaligned address"); 542 char *Buffer = &LifetimeExtendedCleanupStack[OldSize]; 543 new (Buffer) LifetimeExtendedCleanupHeader(Header); 544 new (Buffer + sizeof(Header)) T(A...); 545 } 546 547 /// Set up the last cleaup that was pushed as a conditional 548 /// full-expression cleanup. 549 void initFullExprCleanup(); 550 551 /// PushDestructorCleanup - Push a cleanup to call the 552 /// complete-object destructor of an object of the given type at the 553 /// given address. Does nothing if T is not a C++ class type with a 554 /// non-trivial destructor. 555 void PushDestructorCleanup(QualType T, Address Addr); 556 557 /// PushDestructorCleanup - Push a cleanup to call the 558 /// complete-object variant of the given destructor on the object at 559 /// the given address. 560 void PushDestructorCleanup(const CXXDestructorDecl *Dtor, Address Addr); 561 562 /// PopCleanupBlock - Will pop the cleanup entry on the stack and 563 /// process all branch fixups. 564 void PopCleanupBlock(bool FallThroughIsBranchThrough = false); 565 566 /// DeactivateCleanupBlock - Deactivates the given cleanup block. 567 /// The block cannot be reactivated. Pops it if it's the top of the 568 /// stack. 569 /// 570 /// \param DominatingIP - An instruction which is known to 571 /// dominate the current IP (if set) and which lies along 572 /// all paths of execution between the current IP and the 573 /// the point at which the cleanup comes into scope. 574 void DeactivateCleanupBlock(EHScopeStack::stable_iterator Cleanup, 575 llvm::Instruction *DominatingIP); 576 577 /// ActivateCleanupBlock - Activates an initially-inactive cleanup. 578 /// Cannot be used to resurrect a deactivated cleanup. 579 /// 580 /// \param DominatingIP - An instruction which is known to 581 /// dominate the current IP (if set) and which lies along 582 /// all paths of execution between the current IP and the 583 /// the point at which the cleanup comes into scope. 584 void ActivateCleanupBlock(EHScopeStack::stable_iterator Cleanup, 585 llvm::Instruction *DominatingIP); 586 587 /// \brief Enters a new scope for capturing cleanups, all of which 588 /// will be executed once the scope is exited. 589 class RunCleanupsScope { 590 EHScopeStack::stable_iterator CleanupStackDepth; 591 size_t LifetimeExtendedCleanupStackSize; 592 bool OldDidCallStackSave; 593 protected: 594 bool PerformCleanup; 595 private: 596 597 RunCleanupsScope(const RunCleanupsScope &) = delete; 598 void operator=(const RunCleanupsScope &) = delete; 599 600 protected: 601 CodeGenFunction& CGF; 602 603 public: 604 /// \brief Enter a new cleanup scope. 605 explicit RunCleanupsScope(CodeGenFunction &CGF) 606 : PerformCleanup(true), CGF(CGF) 607 { 608 CleanupStackDepth = CGF.EHStack.stable_begin(); 609 LifetimeExtendedCleanupStackSize = 610 CGF.LifetimeExtendedCleanupStack.size(); 611 OldDidCallStackSave = CGF.DidCallStackSave; 612 CGF.DidCallStackSave = false; 613 } 614 615 /// \brief Exit this cleanup scope, emitting any accumulated cleanups. 616 ~RunCleanupsScope() { 617 if (PerformCleanup) 618 ForceCleanup(); 619 } 620 621 /// \brief Determine whether this scope requires any cleanups. 622 bool requiresCleanups() const { 623 return CGF.EHStack.stable_begin() != CleanupStackDepth; 624 } 625 626 /// \brief Force the emission of cleanups now, instead of waiting 627 /// until this object is destroyed. 628 /// \param ValuesToReload - A list of values that need to be available at 629 /// the insertion point after cleanup emission. If cleanup emission created 630 /// a shared cleanup block, these value pointers will be rewritten. 631 /// Otherwise, they not will be modified. 632 void ForceCleanup(std::initializer_list<llvm::Value**> ValuesToReload = {}) { 633 assert(PerformCleanup && "Already forced cleanup"); 634 CGF.DidCallStackSave = OldDidCallStackSave; 635 CGF.PopCleanupBlocks(CleanupStackDepth, LifetimeExtendedCleanupStackSize, 636 ValuesToReload); 637 PerformCleanup = false; 638 } 639 }; 640 641 class LexicalScope : public RunCleanupsScope { 642 SourceRange Range; 643 SmallVector<const LabelDecl*, 4> Labels; 644 LexicalScope *ParentScope; 645 646 LexicalScope(const LexicalScope &) = delete; 647 void operator=(const LexicalScope &) = delete; 648 649 public: 650 /// \brief Enter a new cleanup scope. 651 explicit LexicalScope(CodeGenFunction &CGF, SourceRange Range) 652 : RunCleanupsScope(CGF), Range(Range), ParentScope(CGF.CurLexicalScope) { 653 CGF.CurLexicalScope = this; 654 if (CGDebugInfo *DI = CGF.getDebugInfo()) 655 DI->EmitLexicalBlockStart(CGF.Builder, Range.getBegin()); 656 } 657 658 void addLabel(const LabelDecl *label) { 659 assert(PerformCleanup && "adding label to dead scope?"); 660 Labels.push_back(label); 661 } 662 663 /// \brief Exit this cleanup scope, emitting any accumulated 664 /// cleanups. 665 ~LexicalScope() { 666 if (CGDebugInfo *DI = CGF.getDebugInfo()) 667 DI->EmitLexicalBlockEnd(CGF.Builder, Range.getEnd()); 668 669 // If we should perform a cleanup, force them now. Note that 670 // this ends the cleanup scope before rescoping any labels. 671 if (PerformCleanup) { 672 ApplyDebugLocation DL(CGF, Range.getEnd()); 673 ForceCleanup(); 674 } 675 } 676 677 /// \brief Force the emission of cleanups now, instead of waiting 678 /// until this object is destroyed. 679 void ForceCleanup() { 680 CGF.CurLexicalScope = ParentScope; 681 RunCleanupsScope::ForceCleanup(); 682 683 if (!Labels.empty()) 684 rescopeLabels(); 685 } 686 687 bool hasLabels() const { 688 return !Labels.empty(); 689 } 690 691 void rescopeLabels(); 692 }; 693 694 typedef llvm::DenseMap<const Decl *, Address> DeclMapTy; 695 696 /// \brief The scope used to remap some variables as private in the OpenMP 697 /// loop body (or other captured region emitted without outlining), and to 698 /// restore old vars back on exit. 699 class OMPPrivateScope : public RunCleanupsScope { 700 DeclMapTy SavedLocals; 701 DeclMapTy SavedPrivates; 702 703 private: 704 OMPPrivateScope(const OMPPrivateScope &) = delete; 705 void operator=(const OMPPrivateScope &) = delete; 706 707 public: 708 /// \brief Enter a new OpenMP private scope. 709 explicit OMPPrivateScope(CodeGenFunction &CGF) : RunCleanupsScope(CGF) {} 710 711 /// \brief Registers \a LocalVD variable as a private and apply \a 712 /// PrivateGen function for it to generate corresponding private variable. 713 /// \a PrivateGen returns an address of the generated private variable. 714 /// \return true if the variable is registered as private, false if it has 715 /// been privatized already. 716 bool 717 addPrivate(const VarDecl *LocalVD, 718 llvm::function_ref<Address()> PrivateGen) { 719 assert(PerformCleanup && "adding private to dead scope"); 720 721 LocalVD = LocalVD->getCanonicalDecl(); 722 // Only save it once. 723 if (SavedLocals.count(LocalVD)) return false; 724 725 // Copy the existing local entry to SavedLocals. 726 auto it = CGF.LocalDeclMap.find(LocalVD); 727 if (it != CGF.LocalDeclMap.end()) { 728 SavedLocals.insert({LocalVD, it->second}); 729 } else { 730 SavedLocals.insert({LocalVD, Address::invalid()}); 731 } 732 733 // Generate the private entry. 734 Address Addr = PrivateGen(); 735 QualType VarTy = LocalVD->getType(); 736 if (VarTy->isReferenceType()) { 737 Address Temp = CGF.CreateMemTemp(VarTy); 738 CGF.Builder.CreateStore(Addr.getPointer(), Temp); 739 Addr = Temp; 740 } 741 SavedPrivates.insert({LocalVD, Addr}); 742 743 return true; 744 } 745 746 /// \brief Privatizes local variables previously registered as private. 747 /// Registration is separate from the actual privatization to allow 748 /// initializers use values of the original variables, not the private one. 749 /// This is important, for example, if the private variable is a class 750 /// variable initialized by a constructor that references other private 751 /// variables. But at initialization original variables must be used, not 752 /// private copies. 753 /// \return true if at least one variable was privatized, false otherwise. 754 bool Privatize() { 755 copyInto(SavedPrivates, CGF.LocalDeclMap); 756 SavedPrivates.clear(); 757 return !SavedLocals.empty(); 758 } 759 760 void ForceCleanup() { 761 RunCleanupsScope::ForceCleanup(); 762 copyInto(SavedLocals, CGF.LocalDeclMap); 763 SavedLocals.clear(); 764 } 765 766 /// \brief Exit scope - all the mapped variables are restored. 767 ~OMPPrivateScope() { 768 if (PerformCleanup) 769 ForceCleanup(); 770 } 771 772 /// Checks if the global variable is captured in current function. 773 bool isGlobalVarCaptured(const VarDecl *VD) const { 774 VD = VD->getCanonicalDecl(); 775 return !VD->isLocalVarDeclOrParm() && CGF.LocalDeclMap.count(VD) > 0; 776 } 777 778 private: 779 /// Copy all the entries in the source map over the corresponding 780 /// entries in the destination, which must exist. 781 static void copyInto(const DeclMapTy &src, DeclMapTy &dest) { 782 for (auto &pair : src) { 783 if (!pair.second.isValid()) { 784 dest.erase(pair.first); 785 continue; 786 } 787 788 auto it = dest.find(pair.first); 789 if (it != dest.end()) { 790 it->second = pair.second; 791 } else { 792 dest.insert(pair); 793 } 794 } 795 } 796 }; 797 798 /// \brief Takes the old cleanup stack size and emits the cleanup blocks 799 /// that have been added. 800 void 801 PopCleanupBlocks(EHScopeStack::stable_iterator OldCleanupStackSize, 802 std::initializer_list<llvm::Value **> ValuesToReload = {}); 803 804 /// \brief Takes the old cleanup stack size and emits the cleanup blocks 805 /// that have been added, then adds all lifetime-extended cleanups from 806 /// the given position to the stack. 807 void 808 PopCleanupBlocks(EHScopeStack::stable_iterator OldCleanupStackSize, 809 size_t OldLifetimeExtendedStackSize, 810 std::initializer_list<llvm::Value **> ValuesToReload = {}); 811 812 void ResolveBranchFixups(llvm::BasicBlock *Target); 813 814 /// The given basic block lies in the current EH scope, but may be a 815 /// target of a potentially scope-crossing jump; get a stable handle 816 /// to which we can perform this jump later. 817 JumpDest getJumpDestInCurrentScope(llvm::BasicBlock *Target) { 818 return JumpDest(Target, 819 EHStack.getInnermostNormalCleanup(), 820 NextCleanupDestIndex++); 821 } 822 823 /// The given basic block lies in the current EH scope, but may be a 824 /// target of a potentially scope-crossing jump; get a stable handle 825 /// to which we can perform this jump later. 826 JumpDest getJumpDestInCurrentScope(StringRef Name = StringRef()) { 827 return getJumpDestInCurrentScope(createBasicBlock(Name)); 828 } 829 830 /// EmitBranchThroughCleanup - Emit a branch from the current insert 831 /// block through the normal cleanup handling code (if any) and then 832 /// on to \arg Dest. 833 void EmitBranchThroughCleanup(JumpDest Dest); 834 835 /// isObviouslyBranchWithoutCleanups - Return true if a branch to the 836 /// specified destination obviously has no cleanups to run. 'false' is always 837 /// a conservatively correct answer for this method. 838 bool isObviouslyBranchWithoutCleanups(JumpDest Dest) const; 839 840 /// popCatchScope - Pops the catch scope at the top of the EHScope 841 /// stack, emitting any required code (other than the catch handlers 842 /// themselves). 843 void popCatchScope(); 844 845 llvm::BasicBlock *getEHResumeBlock(bool isCleanup); 846 llvm::BasicBlock *getEHDispatchBlock(EHScopeStack::stable_iterator scope); 847 llvm::BasicBlock *getMSVCDispatchBlock(EHScopeStack::stable_iterator scope); 848 849 /// An object to manage conditionally-evaluated expressions. 850 class ConditionalEvaluation { 851 llvm::BasicBlock *StartBB; 852 853 public: 854 ConditionalEvaluation(CodeGenFunction &CGF) 855 : StartBB(CGF.Builder.GetInsertBlock()) {} 856 857 void begin(CodeGenFunction &CGF) { 858 assert(CGF.OutermostConditional != this); 859 if (!CGF.OutermostConditional) 860 CGF.OutermostConditional = this; 861 } 862 863 void end(CodeGenFunction &CGF) { 864 assert(CGF.OutermostConditional != nullptr); 865 if (CGF.OutermostConditional == this) 866 CGF.OutermostConditional = nullptr; 867 } 868 869 /// Returns a block which will be executed prior to each 870 /// evaluation of the conditional code. 871 llvm::BasicBlock *getStartingBlock() const { 872 return StartBB; 873 } 874 }; 875 876 /// isInConditionalBranch - Return true if we're currently emitting 877 /// one branch or the other of a conditional expression. 878 bool isInConditionalBranch() const { return OutermostConditional != nullptr; } 879 880 void setBeforeOutermostConditional(llvm::Value *value, Address addr) { 881 assert(isInConditionalBranch()); 882 llvm::BasicBlock *block = OutermostConditional->getStartingBlock(); 883 auto store = new llvm::StoreInst(value, addr.getPointer(), &block->back()); 884 store->setAlignment(addr.getAlignment().getQuantity()); 885 } 886 887 /// An RAII object to record that we're evaluating a statement 888 /// expression. 889 class StmtExprEvaluation { 890 CodeGenFunction &CGF; 891 892 /// We have to save the outermost conditional: cleanups in a 893 /// statement expression aren't conditional just because the 894 /// StmtExpr is. 895 ConditionalEvaluation *SavedOutermostConditional; 896 897 public: 898 StmtExprEvaluation(CodeGenFunction &CGF) 899 : CGF(CGF), SavedOutermostConditional(CGF.OutermostConditional) { 900 CGF.OutermostConditional = nullptr; 901 } 902 903 ~StmtExprEvaluation() { 904 CGF.OutermostConditional = SavedOutermostConditional; 905 CGF.EnsureInsertPoint(); 906 } 907 }; 908 909 /// An object which temporarily prevents a value from being 910 /// destroyed by aggressive peephole optimizations that assume that 911 /// all uses of a value have been realized in the IR. 912 class PeepholeProtection { 913 llvm::Instruction *Inst; 914 friend class CodeGenFunction; 915 916 public: 917 PeepholeProtection() : Inst(nullptr) {} 918 }; 919 920 /// A non-RAII class containing all the information about a bound 921 /// opaque value. OpaqueValueMapping, below, is a RAII wrapper for 922 /// this which makes individual mappings very simple; using this 923 /// class directly is useful when you have a variable number of 924 /// opaque values or don't want the RAII functionality for some 925 /// reason. 926 class OpaqueValueMappingData { 927 const OpaqueValueExpr *OpaqueValue; 928 bool BoundLValue; 929 CodeGenFunction::PeepholeProtection Protection; 930 931 OpaqueValueMappingData(const OpaqueValueExpr *ov, 932 bool boundLValue) 933 : OpaqueValue(ov), BoundLValue(boundLValue) {} 934 public: 935 OpaqueValueMappingData() : OpaqueValue(nullptr) {} 936 937 static bool shouldBindAsLValue(const Expr *expr) { 938 // gl-values should be bound as l-values for obvious reasons. 939 // Records should be bound as l-values because IR generation 940 // always keeps them in memory. Expressions of function type 941 // act exactly like l-values but are formally required to be 942 // r-values in C. 943 return expr->isGLValue() || 944 expr->getType()->isFunctionType() || 945 hasAggregateEvaluationKind(expr->getType()); 946 } 947 948 static OpaqueValueMappingData bind(CodeGenFunction &CGF, 949 const OpaqueValueExpr *ov, 950 const Expr *e) { 951 if (shouldBindAsLValue(ov)) 952 return bind(CGF, ov, CGF.EmitLValue(e)); 953 return bind(CGF, ov, CGF.EmitAnyExpr(e)); 954 } 955 956 static OpaqueValueMappingData bind(CodeGenFunction &CGF, 957 const OpaqueValueExpr *ov, 958 const LValue &lv) { 959 assert(shouldBindAsLValue(ov)); 960 CGF.OpaqueLValues.insert(std::make_pair(ov, lv)); 961 return OpaqueValueMappingData(ov, true); 962 } 963 964 static OpaqueValueMappingData bind(CodeGenFunction &CGF, 965 const OpaqueValueExpr *ov, 966 const RValue &rv) { 967 assert(!shouldBindAsLValue(ov)); 968 CGF.OpaqueRValues.insert(std::make_pair(ov, rv)); 969 970 OpaqueValueMappingData data(ov, false); 971 972 // Work around an extremely aggressive peephole optimization in 973 // EmitScalarConversion which assumes that all other uses of a 974 // value are extant. 975 data.Protection = CGF.protectFromPeepholes(rv); 976 977 return data; 978 } 979 980 bool isValid() const { return OpaqueValue != nullptr; } 981 void clear() { OpaqueValue = nullptr; } 982 983 void unbind(CodeGenFunction &CGF) { 984 assert(OpaqueValue && "no data to unbind!"); 985 986 if (BoundLValue) { 987 CGF.OpaqueLValues.erase(OpaqueValue); 988 } else { 989 CGF.OpaqueRValues.erase(OpaqueValue); 990 CGF.unprotectFromPeepholes(Protection); 991 } 992 } 993 }; 994 995 /// An RAII object to set (and then clear) a mapping for an OpaqueValueExpr. 996 class OpaqueValueMapping { 997 CodeGenFunction &CGF; 998 OpaqueValueMappingData Data; 999 1000 public: 1001 static bool shouldBindAsLValue(const Expr *expr) { 1002 return OpaqueValueMappingData::shouldBindAsLValue(expr); 1003 } 1004 1005 /// Build the opaque value mapping for the given conditional 1006 /// operator if it's the GNU ?: extension. This is a common 1007 /// enough pattern that the convenience operator is really 1008 /// helpful. 1009 /// 1010 OpaqueValueMapping(CodeGenFunction &CGF, 1011 const AbstractConditionalOperator *op) : CGF(CGF) { 1012 if (isa<ConditionalOperator>(op)) 1013 // Leave Data empty. 1014 return; 1015 1016 const BinaryConditionalOperator *e = cast<BinaryConditionalOperator>(op); 1017 Data = OpaqueValueMappingData::bind(CGF, e->getOpaqueValue(), 1018 e->getCommon()); 1019 } 1020 1021 /// Build the opaque value mapping for an OpaqueValueExpr whose source 1022 /// expression is set to the expression the OVE represents. 1023 OpaqueValueMapping(CodeGenFunction &CGF, const OpaqueValueExpr *OV) 1024 : CGF(CGF) { 1025 if (OV) { 1026 assert(OV->getSourceExpr() && "wrong form of OpaqueValueMapping used " 1027 "for OVE with no source expression"); 1028 Data = OpaqueValueMappingData::bind(CGF, OV, OV->getSourceExpr()); 1029 } 1030 } 1031 1032 OpaqueValueMapping(CodeGenFunction &CGF, 1033 const OpaqueValueExpr *opaqueValue, 1034 LValue lvalue) 1035 : CGF(CGF), Data(OpaqueValueMappingData::bind(CGF, opaqueValue, lvalue)) { 1036 } 1037 1038 OpaqueValueMapping(CodeGenFunction &CGF, 1039 const OpaqueValueExpr *opaqueValue, 1040 RValue rvalue) 1041 : CGF(CGF), Data(OpaqueValueMappingData::bind(CGF, opaqueValue, rvalue)) { 1042 } 1043 1044 void pop() { 1045 Data.unbind(CGF); 1046 Data.clear(); 1047 } 1048 1049 ~OpaqueValueMapping() { 1050 if (Data.isValid()) Data.unbind(CGF); 1051 } 1052 }; 1053 1054 private: 1055 CGDebugInfo *DebugInfo; 1056 bool DisableDebugInfo; 1057 1058 /// DidCallStackSave - Whether llvm.stacksave has been called. Used to avoid 1059 /// calling llvm.stacksave for multiple VLAs in the same scope. 1060 bool DidCallStackSave; 1061 1062 /// IndirectBranch - The first time an indirect goto is seen we create a block 1063 /// with an indirect branch. Every time we see the address of a label taken, 1064 /// we add the label to the indirect goto. Every subsequent indirect goto is 1065 /// codegen'd as a jump to the IndirectBranch's basic block. 1066 llvm::IndirectBrInst *IndirectBranch; 1067 1068 /// LocalDeclMap - This keeps track of the LLVM allocas or globals for local C 1069 /// decls. 1070 DeclMapTy LocalDeclMap; 1071 1072 /// SizeArguments - If a ParmVarDecl had the pass_object_size attribute, this 1073 /// will contain a mapping from said ParmVarDecl to its implicit "object_size" 1074 /// parameter. 1075 llvm::SmallDenseMap<const ParmVarDecl *, const ImplicitParamDecl *, 2> 1076 SizeArguments; 1077 1078 /// Track escaped local variables with auto storage. Used during SEH 1079 /// outlining to produce a call to llvm.localescape. 1080 llvm::DenseMap<llvm::AllocaInst *, int> EscapedLocals; 1081 1082 /// LabelMap - This keeps track of the LLVM basic block for each C label. 1083 llvm::DenseMap<const LabelDecl*, JumpDest> LabelMap; 1084 1085 // BreakContinueStack - This keeps track of where break and continue 1086 // statements should jump to. 1087 struct BreakContinue { 1088 BreakContinue(JumpDest Break, JumpDest Continue) 1089 : BreakBlock(Break), ContinueBlock(Continue) {} 1090 1091 JumpDest BreakBlock; 1092 JumpDest ContinueBlock; 1093 }; 1094 SmallVector<BreakContinue, 8> BreakContinueStack; 1095 1096 /// Handles cancellation exit points in OpenMP-related constructs. 1097 class OpenMPCancelExitStack { 1098 /// Tracks cancellation exit point and join point for cancel-related exit 1099 /// and normal exit. 1100 struct CancelExit { 1101 CancelExit() = default; 1102 CancelExit(OpenMPDirectiveKind Kind, JumpDest ExitBlock, 1103 JumpDest ContBlock) 1104 : Kind(Kind), ExitBlock(ExitBlock), ContBlock(ContBlock) {} 1105 OpenMPDirectiveKind Kind = OMPD_unknown; 1106 /// true if the exit block has been emitted already by the special 1107 /// emitExit() call, false if the default codegen is used. 1108 bool HasBeenEmitted = false; 1109 JumpDest ExitBlock; 1110 JumpDest ContBlock; 1111 }; 1112 1113 SmallVector<CancelExit, 8> Stack; 1114 1115 public: 1116 OpenMPCancelExitStack() : Stack(1) {} 1117 ~OpenMPCancelExitStack() = default; 1118 /// Fetches the exit block for the current OpenMP construct. 1119 JumpDest getExitBlock() const { return Stack.back().ExitBlock; } 1120 /// Emits exit block with special codegen procedure specific for the related 1121 /// OpenMP construct + emits code for normal construct cleanup. 1122 void emitExit(CodeGenFunction &CGF, OpenMPDirectiveKind Kind, 1123 const llvm::function_ref<void(CodeGenFunction &)> &CodeGen) { 1124 if (Stack.back().Kind == Kind && getExitBlock().isValid()) { 1125 assert(CGF.getOMPCancelDestination(Kind).isValid()); 1126 assert(CGF.HaveInsertPoint()); 1127 assert(!Stack.back().HasBeenEmitted); 1128 auto IP = CGF.Builder.saveAndClearIP(); 1129 CGF.EmitBlock(Stack.back().ExitBlock.getBlock()); 1130 CodeGen(CGF); 1131 CGF.EmitBranch(Stack.back().ContBlock.getBlock()); 1132 CGF.Builder.restoreIP(IP); 1133 Stack.back().HasBeenEmitted = true; 1134 } 1135 CodeGen(CGF); 1136 } 1137 /// Enter the cancel supporting \a Kind construct. 1138 /// \param Kind OpenMP directive that supports cancel constructs. 1139 /// \param HasCancel true, if the construct has inner cancel directive, 1140 /// false otherwise. 1141 void enter(CodeGenFunction &CGF, OpenMPDirectiveKind Kind, bool HasCancel) { 1142 Stack.push_back({Kind, 1143 HasCancel ? CGF.getJumpDestInCurrentScope("cancel.exit") 1144 : JumpDest(), 1145 HasCancel ? CGF.getJumpDestInCurrentScope("cancel.cont") 1146 : JumpDest()}); 1147 } 1148 /// Emits default exit point for the cancel construct (if the special one 1149 /// has not be used) + join point for cancel/normal exits. 1150 void exit(CodeGenFunction &CGF) { 1151 if (getExitBlock().isValid()) { 1152 assert(CGF.getOMPCancelDestination(Stack.back().Kind).isValid()); 1153 bool HaveIP = CGF.HaveInsertPoint(); 1154 if (!Stack.back().HasBeenEmitted) { 1155 if (HaveIP) 1156 CGF.EmitBranchThroughCleanup(Stack.back().ContBlock); 1157 CGF.EmitBlock(Stack.back().ExitBlock.getBlock()); 1158 CGF.EmitBranchThroughCleanup(Stack.back().ContBlock); 1159 } 1160 CGF.EmitBlock(Stack.back().ContBlock.getBlock()); 1161 if (!HaveIP) { 1162 CGF.Builder.CreateUnreachable(); 1163 CGF.Builder.ClearInsertionPoint(); 1164 } 1165 } 1166 Stack.pop_back(); 1167 } 1168 }; 1169 OpenMPCancelExitStack OMPCancelStack; 1170 1171 CodeGenPGO PGO; 1172 1173 /// Calculate branch weights appropriate for PGO data 1174 llvm::MDNode *createProfileWeights(uint64_t TrueCount, uint64_t FalseCount); 1175 llvm::MDNode *createProfileWeights(ArrayRef<uint64_t> Weights); 1176 llvm::MDNode *createProfileWeightsForLoop(const Stmt *Cond, 1177 uint64_t LoopCount); 1178 1179 public: 1180 /// Increment the profiler's counter for the given statement by \p StepV. 1181 /// If \p StepV is null, the default increment is 1. 1182 void incrementProfileCounter(const Stmt *S, llvm::Value *StepV = nullptr) { 1183 if (CGM.getCodeGenOpts().hasProfileClangInstr()) 1184 PGO.emitCounterIncrement(Builder, S, StepV); 1185 PGO.setCurrentStmt(S); 1186 } 1187 1188 /// Get the profiler's count for the given statement. 1189 uint64_t getProfileCount(const Stmt *S) { 1190 Optional<uint64_t> Count = PGO.getStmtCount(S); 1191 if (!Count.hasValue()) 1192 return 0; 1193 return *Count; 1194 } 1195 1196 /// Set the profiler's current count. 1197 void setCurrentProfileCount(uint64_t Count) { 1198 PGO.setCurrentRegionCount(Count); 1199 } 1200 1201 /// Get the profiler's current count. This is generally the count for the most 1202 /// recently incremented counter. 1203 uint64_t getCurrentProfileCount() { 1204 return PGO.getCurrentRegionCount(); 1205 } 1206 1207 private: 1208 1209 /// SwitchInsn - This is nearest current switch instruction. It is null if 1210 /// current context is not in a switch. 1211 llvm::SwitchInst *SwitchInsn; 1212 /// The branch weights of SwitchInsn when doing instrumentation based PGO. 1213 SmallVector<uint64_t, 16> *SwitchWeights; 1214 1215 /// CaseRangeBlock - This block holds if condition check for last case 1216 /// statement range in current switch instruction. 1217 llvm::BasicBlock *CaseRangeBlock; 1218 1219 /// OpaqueLValues - Keeps track of the current set of opaque value 1220 /// expressions. 1221 llvm::DenseMap<const OpaqueValueExpr *, LValue> OpaqueLValues; 1222 llvm::DenseMap<const OpaqueValueExpr *, RValue> OpaqueRValues; 1223 1224 // VLASizeMap - This keeps track of the associated size for each VLA type. 1225 // We track this by the size expression rather than the type itself because 1226 // in certain situations, like a const qualifier applied to an VLA typedef, 1227 // multiple VLA types can share the same size expression. 1228 // FIXME: Maybe this could be a stack of maps that is pushed/popped as we 1229 // enter/leave scopes. 1230 llvm::DenseMap<const Expr*, llvm::Value*> VLASizeMap; 1231 1232 /// A block containing a single 'unreachable' instruction. Created 1233 /// lazily by getUnreachableBlock(). 1234 llvm::BasicBlock *UnreachableBlock; 1235 1236 /// Counts of the number return expressions in the function. 1237 unsigned NumReturnExprs; 1238 1239 /// Count the number of simple (constant) return expressions in the function. 1240 unsigned NumSimpleReturnExprs; 1241 1242 /// The last regular (non-return) debug location (breakpoint) in the function. 1243 SourceLocation LastStopPoint; 1244 1245 public: 1246 /// A scope within which we are constructing the fields of an object which 1247 /// might use a CXXDefaultInitExpr. This stashes away a 'this' value to use 1248 /// if we need to evaluate a CXXDefaultInitExpr within the evaluation. 1249 class FieldConstructionScope { 1250 public: 1251 FieldConstructionScope(CodeGenFunction &CGF, Address This) 1252 : CGF(CGF), OldCXXDefaultInitExprThis(CGF.CXXDefaultInitExprThis) { 1253 CGF.CXXDefaultInitExprThis = This; 1254 } 1255 ~FieldConstructionScope() { 1256 CGF.CXXDefaultInitExprThis = OldCXXDefaultInitExprThis; 1257 } 1258 1259 private: 1260 CodeGenFunction &CGF; 1261 Address OldCXXDefaultInitExprThis; 1262 }; 1263 1264 /// The scope of a CXXDefaultInitExpr. Within this scope, the value of 'this' 1265 /// is overridden to be the object under construction. 1266 class CXXDefaultInitExprScope { 1267 public: 1268 CXXDefaultInitExprScope(CodeGenFunction &CGF) 1269 : CGF(CGF), OldCXXThisValue(CGF.CXXThisValue), 1270 OldCXXThisAlignment(CGF.CXXThisAlignment) { 1271 CGF.CXXThisValue = CGF.CXXDefaultInitExprThis.getPointer(); 1272 CGF.CXXThisAlignment = CGF.CXXDefaultInitExprThis.getAlignment(); 1273 } 1274 ~CXXDefaultInitExprScope() { 1275 CGF.CXXThisValue = OldCXXThisValue; 1276 CGF.CXXThisAlignment = OldCXXThisAlignment; 1277 } 1278 1279 public: 1280 CodeGenFunction &CGF; 1281 llvm::Value *OldCXXThisValue; 1282 CharUnits OldCXXThisAlignment; 1283 }; 1284 1285 /// The scope of an ArrayInitLoopExpr. Within this scope, the value of the 1286 /// current loop index is overridden. 1287 class ArrayInitLoopExprScope { 1288 public: 1289 ArrayInitLoopExprScope(CodeGenFunction &CGF, llvm::Value *Index) 1290 : CGF(CGF), OldArrayInitIndex(CGF.ArrayInitIndex) { 1291 CGF.ArrayInitIndex = Index; 1292 } 1293 ~ArrayInitLoopExprScope() { 1294 CGF.ArrayInitIndex = OldArrayInitIndex; 1295 } 1296 1297 private: 1298 CodeGenFunction &CGF; 1299 llvm::Value *OldArrayInitIndex; 1300 }; 1301 1302 class InlinedInheritingConstructorScope { 1303 public: 1304 InlinedInheritingConstructorScope(CodeGenFunction &CGF, GlobalDecl GD) 1305 : CGF(CGF), OldCurGD(CGF.CurGD), OldCurFuncDecl(CGF.CurFuncDecl), 1306 OldCurCodeDecl(CGF.CurCodeDecl), 1307 OldCXXABIThisDecl(CGF.CXXABIThisDecl), 1308 OldCXXABIThisValue(CGF.CXXABIThisValue), 1309 OldCXXThisValue(CGF.CXXThisValue), 1310 OldCXXABIThisAlignment(CGF.CXXABIThisAlignment), 1311 OldCXXThisAlignment(CGF.CXXThisAlignment), 1312 OldReturnValue(CGF.ReturnValue), OldFnRetTy(CGF.FnRetTy), 1313 OldCXXInheritedCtorInitExprArgs( 1314 std::move(CGF.CXXInheritedCtorInitExprArgs)) { 1315 CGF.CurGD = GD; 1316 CGF.CurFuncDecl = CGF.CurCodeDecl = 1317 cast<CXXConstructorDecl>(GD.getDecl()); 1318 CGF.CXXABIThisDecl = nullptr; 1319 CGF.CXXABIThisValue = nullptr; 1320 CGF.CXXThisValue = nullptr; 1321 CGF.CXXABIThisAlignment = CharUnits(); 1322 CGF.CXXThisAlignment = CharUnits(); 1323 CGF.ReturnValue = Address::invalid(); 1324 CGF.FnRetTy = QualType(); 1325 CGF.CXXInheritedCtorInitExprArgs.clear(); 1326 } 1327 ~InlinedInheritingConstructorScope() { 1328 CGF.CurGD = OldCurGD; 1329 CGF.CurFuncDecl = OldCurFuncDecl; 1330 CGF.CurCodeDecl = OldCurCodeDecl; 1331 CGF.CXXABIThisDecl = OldCXXABIThisDecl; 1332 CGF.CXXABIThisValue = OldCXXABIThisValue; 1333 CGF.CXXThisValue = OldCXXThisValue; 1334 CGF.CXXABIThisAlignment = OldCXXABIThisAlignment; 1335 CGF.CXXThisAlignment = OldCXXThisAlignment; 1336 CGF.ReturnValue = OldReturnValue; 1337 CGF.FnRetTy = OldFnRetTy; 1338 CGF.CXXInheritedCtorInitExprArgs = 1339 std::move(OldCXXInheritedCtorInitExprArgs); 1340 } 1341 1342 private: 1343 CodeGenFunction &CGF; 1344 GlobalDecl OldCurGD; 1345 const Decl *OldCurFuncDecl; 1346 const Decl *OldCurCodeDecl; 1347 ImplicitParamDecl *OldCXXABIThisDecl; 1348 llvm::Value *OldCXXABIThisValue; 1349 llvm::Value *OldCXXThisValue; 1350 CharUnits OldCXXABIThisAlignment; 1351 CharUnits OldCXXThisAlignment; 1352 Address OldReturnValue; 1353 QualType OldFnRetTy; 1354 CallArgList OldCXXInheritedCtorInitExprArgs; 1355 }; 1356 1357 private: 1358 /// CXXThisDecl - When generating code for a C++ member function, 1359 /// this will hold the implicit 'this' declaration. 1360 ImplicitParamDecl *CXXABIThisDecl; 1361 llvm::Value *CXXABIThisValue; 1362 llvm::Value *CXXThisValue; 1363 CharUnits CXXABIThisAlignment; 1364 CharUnits CXXThisAlignment; 1365 1366 /// The value of 'this' to use when evaluating CXXDefaultInitExprs within 1367 /// this expression. 1368 Address CXXDefaultInitExprThis = Address::invalid(); 1369 1370 /// The current array initialization index when evaluating an 1371 /// ArrayInitIndexExpr within an ArrayInitLoopExpr. 1372 llvm::Value *ArrayInitIndex = nullptr; 1373 1374 /// The values of function arguments to use when evaluating 1375 /// CXXInheritedCtorInitExprs within this context. 1376 CallArgList CXXInheritedCtorInitExprArgs; 1377 1378 /// CXXStructorImplicitParamDecl - When generating code for a constructor or 1379 /// destructor, this will hold the implicit argument (e.g. VTT). 1380 ImplicitParamDecl *CXXStructorImplicitParamDecl; 1381 llvm::Value *CXXStructorImplicitParamValue; 1382 1383 /// OutermostConditional - Points to the outermost active 1384 /// conditional control. This is used so that we know if a 1385 /// temporary should be destroyed conditionally. 1386 ConditionalEvaluation *OutermostConditional; 1387 1388 /// The current lexical scope. 1389 LexicalScope *CurLexicalScope; 1390 1391 /// The current source location that should be used for exception 1392 /// handling code. 1393 SourceLocation CurEHLocation; 1394 1395 /// BlockByrefInfos - For each __block variable, contains 1396 /// information about the layout of the variable. 1397 llvm::DenseMap<const ValueDecl *, BlockByrefInfo> BlockByrefInfos; 1398 1399 /// Used by -fsanitize=nullability-return to determine whether the return 1400 /// value can be checked. 1401 llvm::Value *RetValNullabilityPrecondition = nullptr; 1402 1403 /// Check if -fsanitize=nullability-return instrumentation is required for 1404 /// this function. 1405 bool requiresReturnValueNullabilityCheck() const { 1406 return RetValNullabilityPrecondition; 1407 } 1408 1409 /// Used to store precise source locations for return statements by the 1410 /// runtime return value checks. 1411 Address ReturnLocation = Address::invalid(); 1412 1413 /// Check if the return value of this function requires sanitization. 1414 bool requiresReturnValueCheck() const { 1415 return requiresReturnValueNullabilityCheck() || 1416 (SanOpts.has(SanitizerKind::ReturnsNonnullAttribute) && 1417 CurCodeDecl && CurCodeDecl->getAttr<ReturnsNonNullAttr>()); 1418 } 1419 1420 llvm::BasicBlock *TerminateLandingPad; 1421 llvm::BasicBlock *TerminateHandler; 1422 llvm::BasicBlock *TrapBB; 1423 1424 /// Terminate funclets keyed by parent funclet pad. 1425 llvm::MapVector<llvm::Value *, llvm::BasicBlock *> TerminateFunclets; 1426 1427 /// True if we need emit the life-time markers. 1428 const bool ShouldEmitLifetimeMarkers; 1429 1430 /// Add OpenCL kernel arg metadata and the kernel attribute meatadata to 1431 /// the function metadata. 1432 void EmitOpenCLKernelMetadata(const FunctionDecl *FD, 1433 llvm::Function *Fn); 1434 1435 public: 1436 CodeGenFunction(CodeGenModule &cgm, bool suppressNewContext=false); 1437 ~CodeGenFunction(); 1438 1439 CodeGenTypes &getTypes() const { return CGM.getTypes(); } 1440 ASTContext &getContext() const { return CGM.getContext(); } 1441 CGDebugInfo *getDebugInfo() { 1442 if (DisableDebugInfo) 1443 return nullptr; 1444 return DebugInfo; 1445 } 1446 void disableDebugInfo() { DisableDebugInfo = true; } 1447 void enableDebugInfo() { DisableDebugInfo = false; } 1448 1449 bool shouldUseFusedARCCalls() { 1450 return CGM.getCodeGenOpts().OptimizationLevel == 0; 1451 } 1452 1453 const LangOptions &getLangOpts() const { return CGM.getLangOpts(); } 1454 1455 /// Returns a pointer to the function's exception object and selector slot, 1456 /// which is assigned in every landing pad. 1457 Address getExceptionSlot(); 1458 Address getEHSelectorSlot(); 1459 1460 /// Returns the contents of the function's exception object and selector 1461 /// slots. 1462 llvm::Value *getExceptionFromSlot(); 1463 llvm::Value *getSelectorFromSlot(); 1464 1465 Address getNormalCleanupDestSlot(); 1466 1467 llvm::BasicBlock *getUnreachableBlock() { 1468 if (!UnreachableBlock) { 1469 UnreachableBlock = createBasicBlock("unreachable"); 1470 new llvm::UnreachableInst(getLLVMContext(), UnreachableBlock); 1471 } 1472 return UnreachableBlock; 1473 } 1474 1475 llvm::BasicBlock *getInvokeDest() { 1476 if (!EHStack.requiresLandingPad()) return nullptr; 1477 return getInvokeDestImpl(); 1478 } 1479 1480 bool currentFunctionUsesSEHTry() const { return CurSEHParent != nullptr; } 1481 1482 const TargetInfo &getTarget() const { return Target; } 1483 llvm::LLVMContext &getLLVMContext() { return CGM.getLLVMContext(); } 1484 const TargetCodeGenInfo &getTargetHooks() const { 1485 return CGM.getTargetCodeGenInfo(); 1486 } 1487 1488 //===--------------------------------------------------------------------===// 1489 // Cleanups 1490 //===--------------------------------------------------------------------===// 1491 1492 typedef void Destroyer(CodeGenFunction &CGF, Address addr, QualType ty); 1493 1494 void pushIrregularPartialArrayCleanup(llvm::Value *arrayBegin, 1495 Address arrayEndPointer, 1496 QualType elementType, 1497 CharUnits elementAlignment, 1498 Destroyer *destroyer); 1499 void pushRegularPartialArrayCleanup(llvm::Value *arrayBegin, 1500 llvm::Value *arrayEnd, 1501 QualType elementType, 1502 CharUnits elementAlignment, 1503 Destroyer *destroyer); 1504 1505 void pushDestroy(QualType::DestructionKind dtorKind, 1506 Address addr, QualType type); 1507 void pushEHDestroy(QualType::DestructionKind dtorKind, 1508 Address addr, QualType type); 1509 void pushDestroy(CleanupKind kind, Address addr, QualType type, 1510 Destroyer *destroyer, bool useEHCleanupForArray); 1511 void pushLifetimeExtendedDestroy(CleanupKind kind, Address addr, 1512 QualType type, Destroyer *destroyer, 1513 bool useEHCleanupForArray); 1514 void pushCallObjectDeleteCleanup(const FunctionDecl *OperatorDelete, 1515 llvm::Value *CompletePtr, 1516 QualType ElementType); 1517 void pushStackRestore(CleanupKind kind, Address SPMem); 1518 void emitDestroy(Address addr, QualType type, Destroyer *destroyer, 1519 bool useEHCleanupForArray); 1520 llvm::Function *generateDestroyHelper(Address addr, QualType type, 1521 Destroyer *destroyer, 1522 bool useEHCleanupForArray, 1523 const VarDecl *VD); 1524 void emitArrayDestroy(llvm::Value *begin, llvm::Value *end, 1525 QualType elementType, CharUnits elementAlign, 1526 Destroyer *destroyer, 1527 bool checkZeroLength, bool useEHCleanup); 1528 1529 Destroyer *getDestroyer(QualType::DestructionKind destructionKind); 1530 1531 /// Determines whether an EH cleanup is required to destroy a type 1532 /// with the given destruction kind. 1533 bool needsEHCleanup(QualType::DestructionKind kind) { 1534 switch (kind) { 1535 case QualType::DK_none: 1536 return false; 1537 case QualType::DK_cxx_destructor: 1538 case QualType::DK_objc_weak_lifetime: 1539 return getLangOpts().Exceptions; 1540 case QualType::DK_objc_strong_lifetime: 1541 return getLangOpts().Exceptions && 1542 CGM.getCodeGenOpts().ObjCAutoRefCountExceptions; 1543 } 1544 llvm_unreachable("bad destruction kind"); 1545 } 1546 1547 CleanupKind getCleanupKind(QualType::DestructionKind kind) { 1548 return (needsEHCleanup(kind) ? NormalAndEHCleanup : NormalCleanup); 1549 } 1550 1551 //===--------------------------------------------------------------------===// 1552 // Objective-C 1553 //===--------------------------------------------------------------------===// 1554 1555 void GenerateObjCMethod(const ObjCMethodDecl *OMD); 1556 1557 void StartObjCMethod(const ObjCMethodDecl *MD, const ObjCContainerDecl *CD); 1558 1559 /// GenerateObjCGetter - Synthesize an Objective-C property getter function. 1560 void GenerateObjCGetter(ObjCImplementationDecl *IMP, 1561 const ObjCPropertyImplDecl *PID); 1562 void generateObjCGetterBody(const ObjCImplementationDecl *classImpl, 1563 const ObjCPropertyImplDecl *propImpl, 1564 const ObjCMethodDecl *GetterMothodDecl, 1565 llvm::Constant *AtomicHelperFn); 1566 1567 void GenerateObjCCtorDtorMethod(ObjCImplementationDecl *IMP, 1568 ObjCMethodDecl *MD, bool ctor); 1569 1570 /// GenerateObjCSetter - Synthesize an Objective-C property setter function 1571 /// for the given property. 1572 void GenerateObjCSetter(ObjCImplementationDecl *IMP, 1573 const ObjCPropertyImplDecl *PID); 1574 void generateObjCSetterBody(const ObjCImplementationDecl *classImpl, 1575 const ObjCPropertyImplDecl *propImpl, 1576 llvm::Constant *AtomicHelperFn); 1577 1578 //===--------------------------------------------------------------------===// 1579 // Block Bits 1580 //===--------------------------------------------------------------------===// 1581 1582 /// Emit block literal. 1583 /// \return an LLVM value which is a pointer to a struct which contains 1584 /// information about the block, including the block invoke function, the 1585 /// captured variables, etc. 1586 /// \param InvokeF will contain the block invoke function if it is not 1587 /// nullptr. 1588 llvm::Value *EmitBlockLiteral(const BlockExpr *, 1589 llvm::Function **InvokeF = nullptr); 1590 static void destroyBlockInfos(CGBlockInfo *info); 1591 1592 llvm::Function *GenerateBlockFunction(GlobalDecl GD, 1593 const CGBlockInfo &Info, 1594 const DeclMapTy &ldm, 1595 bool IsLambdaConversionToBlock, 1596 bool BuildGlobalBlock); 1597 1598 llvm::Constant *GenerateCopyHelperFunction(const CGBlockInfo &blockInfo); 1599 llvm::Constant *GenerateDestroyHelperFunction(const CGBlockInfo &blockInfo); 1600 llvm::Constant *GenerateObjCAtomicSetterCopyHelperFunction( 1601 const ObjCPropertyImplDecl *PID); 1602 llvm::Constant *GenerateObjCAtomicGetterCopyHelperFunction( 1603 const ObjCPropertyImplDecl *PID); 1604 llvm::Value *EmitBlockCopyAndAutorelease(llvm::Value *Block, QualType Ty); 1605 1606 void BuildBlockRelease(llvm::Value *DeclPtr, BlockFieldFlags flags); 1607 1608 class AutoVarEmission; 1609 1610 void emitByrefStructureInit(const AutoVarEmission &emission); 1611 void enterByrefCleanup(const AutoVarEmission &emission); 1612 1613 void setBlockContextParameter(const ImplicitParamDecl *D, unsigned argNum, 1614 llvm::Value *ptr); 1615 1616 Address LoadBlockStruct(); 1617 Address GetAddrOfBlockDecl(const VarDecl *var, bool ByRef); 1618 1619 /// BuildBlockByrefAddress - Computes the location of the 1620 /// data in a variable which is declared as __block. 1621 Address emitBlockByrefAddress(Address baseAddr, const VarDecl *V, 1622 bool followForward = true); 1623 Address emitBlockByrefAddress(Address baseAddr, 1624 const BlockByrefInfo &info, 1625 bool followForward, 1626 const llvm::Twine &name); 1627 1628 const BlockByrefInfo &getBlockByrefInfo(const VarDecl *var); 1629 1630 QualType BuildFunctionArgList(GlobalDecl GD, FunctionArgList &Args); 1631 1632 void GenerateCode(GlobalDecl GD, llvm::Function *Fn, 1633 const CGFunctionInfo &FnInfo); 1634 /// \brief Emit code for the start of a function. 1635 /// \param Loc The location to be associated with the function. 1636 /// \param StartLoc The location of the function body. 1637 void StartFunction(GlobalDecl GD, 1638 QualType RetTy, 1639 llvm::Function *Fn, 1640 const CGFunctionInfo &FnInfo, 1641 const FunctionArgList &Args, 1642 SourceLocation Loc = SourceLocation(), 1643 SourceLocation StartLoc = SourceLocation()); 1644 1645 static bool IsConstructorDelegationValid(const CXXConstructorDecl *Ctor); 1646 1647 void EmitConstructorBody(FunctionArgList &Args); 1648 void EmitDestructorBody(FunctionArgList &Args); 1649 void emitImplicitAssignmentOperatorBody(FunctionArgList &Args); 1650 void EmitFunctionBody(FunctionArgList &Args, const Stmt *Body); 1651 void EmitBlockWithFallThrough(llvm::BasicBlock *BB, const Stmt *S); 1652 1653 void EmitForwardingCallToLambda(const CXXMethodDecl *LambdaCallOperator, 1654 CallArgList &CallArgs); 1655 void EmitLambdaBlockInvokeBody(); 1656 void EmitLambdaDelegatingInvokeBody(const CXXMethodDecl *MD); 1657 void EmitLambdaStaticInvokeBody(const CXXMethodDecl *MD); 1658 void EmitAsanPrologueOrEpilogue(bool Prologue); 1659 1660 /// \brief Emit the unified return block, trying to avoid its emission when 1661 /// possible. 1662 /// \return The debug location of the user written return statement if the 1663 /// return block is is avoided. 1664 llvm::DebugLoc EmitReturnBlock(); 1665 1666 /// FinishFunction - Complete IR generation of the current function. It is 1667 /// legal to call this function even if there is no current insertion point. 1668 void FinishFunction(SourceLocation EndLoc=SourceLocation()); 1669 1670 void StartThunk(llvm::Function *Fn, GlobalDecl GD, 1671 const CGFunctionInfo &FnInfo); 1672 1673 void EmitCallAndReturnForThunk(llvm::Constant *Callee, 1674 const ThunkInfo *Thunk); 1675 1676 void FinishThunk(); 1677 1678 /// Emit a musttail call for a thunk with a potentially adjusted this pointer. 1679 void EmitMustTailThunk(const CXXMethodDecl *MD, llvm::Value *AdjustedThisPtr, 1680 llvm::Value *Callee); 1681 1682 /// Generate a thunk for the given method. 1683 void generateThunk(llvm::Function *Fn, const CGFunctionInfo &FnInfo, 1684 GlobalDecl GD, const ThunkInfo &Thunk); 1685 1686 llvm::Function *GenerateVarArgsThunk(llvm::Function *Fn, 1687 const CGFunctionInfo &FnInfo, 1688 GlobalDecl GD, const ThunkInfo &Thunk); 1689 1690 void EmitCtorPrologue(const CXXConstructorDecl *CD, CXXCtorType Type, 1691 FunctionArgList &Args); 1692 1693 void EmitInitializerForField(FieldDecl *Field, LValue LHS, Expr *Init); 1694 1695 /// Struct with all informations about dynamic [sub]class needed to set vptr. 1696 struct VPtr { 1697 BaseSubobject Base; 1698 const CXXRecordDecl *NearestVBase; 1699 CharUnits OffsetFromNearestVBase; 1700 const CXXRecordDecl *VTableClass; 1701 }; 1702 1703 /// Initialize the vtable pointer of the given subobject. 1704 void InitializeVTablePointer(const VPtr &vptr); 1705 1706 typedef llvm::SmallVector<VPtr, 4> VPtrsVector; 1707 1708 typedef llvm::SmallPtrSet<const CXXRecordDecl *, 4> VisitedVirtualBasesSetTy; 1709 VPtrsVector getVTablePointers(const CXXRecordDecl *VTableClass); 1710 1711 void getVTablePointers(BaseSubobject Base, const CXXRecordDecl *NearestVBase, 1712 CharUnits OffsetFromNearestVBase, 1713 bool BaseIsNonVirtualPrimaryBase, 1714 const CXXRecordDecl *VTableClass, 1715 VisitedVirtualBasesSetTy &VBases, VPtrsVector &vptrs); 1716 1717 void InitializeVTablePointers(const CXXRecordDecl *ClassDecl); 1718 1719 /// GetVTablePtr - Return the Value of the vtable pointer member pointed 1720 /// to by This. 1721 llvm::Value *GetVTablePtr(Address This, llvm::Type *VTableTy, 1722 const CXXRecordDecl *VTableClass); 1723 1724 enum CFITypeCheckKind { 1725 CFITCK_VCall, 1726 CFITCK_NVCall, 1727 CFITCK_DerivedCast, 1728 CFITCK_UnrelatedCast, 1729 CFITCK_ICall, 1730 }; 1731 1732 /// \brief Derived is the presumed address of an object of type T after a 1733 /// cast. If T is a polymorphic class type, emit a check that the virtual 1734 /// table for Derived belongs to a class derived from T. 1735 void EmitVTablePtrCheckForCast(QualType T, llvm::Value *Derived, 1736 bool MayBeNull, CFITypeCheckKind TCK, 1737 SourceLocation Loc); 1738 1739 /// EmitVTablePtrCheckForCall - Virtual method MD is being called via VTable. 1740 /// If vptr CFI is enabled, emit a check that VTable is valid. 1741 void EmitVTablePtrCheckForCall(const CXXRecordDecl *RD, llvm::Value *VTable, 1742 CFITypeCheckKind TCK, SourceLocation Loc); 1743 1744 /// EmitVTablePtrCheck - Emit a check that VTable is a valid virtual table for 1745 /// RD using llvm.type.test. 1746 void EmitVTablePtrCheck(const CXXRecordDecl *RD, llvm::Value *VTable, 1747 CFITypeCheckKind TCK, SourceLocation Loc); 1748 1749 /// If whole-program virtual table optimization is enabled, emit an assumption 1750 /// that VTable is a member of RD's type identifier. Or, if vptr CFI is 1751 /// enabled, emit a check that VTable is a member of RD's type identifier. 1752 void EmitTypeMetadataCodeForVCall(const CXXRecordDecl *RD, 1753 llvm::Value *VTable, SourceLocation Loc); 1754 1755 /// Returns whether we should perform a type checked load when loading a 1756 /// virtual function for virtual calls to members of RD. This is generally 1757 /// true when both vcall CFI and whole-program-vtables are enabled. 1758 bool ShouldEmitVTableTypeCheckedLoad(const CXXRecordDecl *RD); 1759 1760 /// Emit a type checked load from the given vtable. 1761 llvm::Value *EmitVTableTypeCheckedLoad(const CXXRecordDecl *RD, llvm::Value *VTable, 1762 uint64_t VTableByteOffset); 1763 1764 /// EnterDtorCleanups - Enter the cleanups necessary to complete the 1765 /// given phase of destruction for a destructor. The end result 1766 /// should call destructors on members and base classes in reverse 1767 /// order of their construction. 1768 void EnterDtorCleanups(const CXXDestructorDecl *Dtor, CXXDtorType Type); 1769 1770 /// ShouldInstrumentFunction - Return true if the current function should be 1771 /// instrumented with __cyg_profile_func_* calls 1772 bool ShouldInstrumentFunction(); 1773 1774 /// ShouldXRayInstrument - Return true if the current function should be 1775 /// instrumented with XRay nop sleds. 1776 bool ShouldXRayInstrumentFunction() const; 1777 1778 /// AlwaysEmitXRayCustomEvents - Return true if we must unconditionally emit 1779 /// XRay custom event handling calls. 1780 bool AlwaysEmitXRayCustomEvents() const; 1781 1782 /// Encode an address into a form suitable for use in a function prologue. 1783 llvm::Constant *EncodeAddrForUseInPrologue(llvm::Function *F, 1784 llvm::Constant *Addr); 1785 1786 /// Decode an address used in a function prologue, encoded by \c 1787 /// EncodeAddrForUseInPrologue. 1788 llvm::Value *DecodeAddrUsedInPrologue(llvm::Value *F, 1789 llvm::Value *EncodedAddr); 1790 1791 /// EmitFunctionProlog - Emit the target specific LLVM code to load the 1792 /// arguments for the given function. This is also responsible for naming the 1793 /// LLVM function arguments. 1794 void EmitFunctionProlog(const CGFunctionInfo &FI, 1795 llvm::Function *Fn, 1796 const FunctionArgList &Args); 1797 1798 /// EmitFunctionEpilog - Emit the target specific LLVM code to return the 1799 /// given temporary. 1800 void EmitFunctionEpilog(const CGFunctionInfo &FI, bool EmitRetDbgLoc, 1801 SourceLocation EndLoc); 1802 1803 /// Emit a test that checks if the return value \p RV is nonnull. 1804 void EmitReturnValueCheck(llvm::Value *RV); 1805 1806 /// EmitStartEHSpec - Emit the start of the exception spec. 1807 void EmitStartEHSpec(const Decl *D); 1808 1809 /// EmitEndEHSpec - Emit the end of the exception spec. 1810 void EmitEndEHSpec(const Decl *D); 1811 1812 /// getTerminateLandingPad - Return a landing pad that just calls terminate. 1813 llvm::BasicBlock *getTerminateLandingPad(); 1814 1815 /// getTerminateLandingPad - Return a cleanup funclet that just calls 1816 /// terminate. 1817 llvm::BasicBlock *getTerminateFunclet(); 1818 1819 /// getTerminateHandler - Return a handler (not a landing pad, just 1820 /// a catch handler) that just calls terminate. This is used when 1821 /// a terminate scope encloses a try. 1822 llvm::BasicBlock *getTerminateHandler(); 1823 1824 llvm::Type *ConvertTypeForMem(QualType T); 1825 llvm::Type *ConvertType(QualType T); 1826 llvm::Type *ConvertType(const TypeDecl *T) { 1827 return ConvertType(getContext().getTypeDeclType(T)); 1828 } 1829 1830 /// LoadObjCSelf - Load the value of self. This function is only valid while 1831 /// generating code for an Objective-C method. 1832 llvm::Value *LoadObjCSelf(); 1833 1834 /// TypeOfSelfObject - Return type of object that this self represents. 1835 QualType TypeOfSelfObject(); 1836 1837 /// getEvaluationKind - Return the TypeEvaluationKind of QualType \c T. 1838 static TypeEvaluationKind getEvaluationKind(QualType T); 1839 1840 static bool hasScalarEvaluationKind(QualType T) { 1841 return getEvaluationKind(T) == TEK_Scalar; 1842 } 1843 1844 static bool hasAggregateEvaluationKind(QualType T) { 1845 return getEvaluationKind(T) == TEK_Aggregate; 1846 } 1847 1848 /// createBasicBlock - Create an LLVM basic block. 1849 llvm::BasicBlock *createBasicBlock(const Twine &name = "", 1850 llvm::Function *parent = nullptr, 1851 llvm::BasicBlock *before = nullptr) { 1852 return llvm::BasicBlock::Create(getLLVMContext(), name, parent, before); 1853 } 1854 1855 /// getBasicBlockForLabel - Return the LLVM basicblock that the specified 1856 /// label maps to. 1857 JumpDest getJumpDestForLabel(const LabelDecl *S); 1858 1859 /// SimplifyForwardingBlocks - If the given basic block is only a branch to 1860 /// another basic block, simplify it. This assumes that no other code could 1861 /// potentially reference the basic block. 1862 void SimplifyForwardingBlocks(llvm::BasicBlock *BB); 1863 1864 /// EmitBlock - Emit the given block \arg BB and set it as the insert point, 1865 /// adding a fall-through branch from the current insert block if 1866 /// necessary. It is legal to call this function even if there is no current 1867 /// insertion point. 1868 /// 1869 /// IsFinished - If true, indicates that the caller has finished emitting 1870 /// branches to the given block and does not expect to emit code into it. This 1871 /// means the block can be ignored if it is unreachable. 1872 void EmitBlock(llvm::BasicBlock *BB, bool IsFinished=false); 1873 1874 /// EmitBlockAfterUses - Emit the given block somewhere hopefully 1875 /// near its uses, and leave the insertion point in it. 1876 void EmitBlockAfterUses(llvm::BasicBlock *BB); 1877 1878 /// EmitBranch - Emit a branch to the specified basic block from the current 1879 /// insert block, taking care to avoid creation of branches from dummy 1880 /// blocks. It is legal to call this function even if there is no current 1881 /// insertion point. 1882 /// 1883 /// This function clears the current insertion point. The caller should follow 1884 /// calls to this function with calls to Emit*Block prior to generation new 1885 /// code. 1886 void EmitBranch(llvm::BasicBlock *Block); 1887 1888 /// HaveInsertPoint - True if an insertion point is defined. If not, this 1889 /// indicates that the current code being emitted is unreachable. 1890 bool HaveInsertPoint() const { 1891 return Builder.GetInsertBlock() != nullptr; 1892 } 1893 1894 /// EnsureInsertPoint - Ensure that an insertion point is defined so that 1895 /// emitted IR has a place to go. Note that by definition, if this function 1896 /// creates a block then that block is unreachable; callers may do better to 1897 /// detect when no insertion point is defined and simply skip IR generation. 1898 void EnsureInsertPoint() { 1899 if (!HaveInsertPoint()) 1900 EmitBlock(createBasicBlock()); 1901 } 1902 1903 /// ErrorUnsupported - Print out an error that codegen doesn't support the 1904 /// specified stmt yet. 1905 void ErrorUnsupported(const Stmt *S, const char *Type); 1906 1907 //===--------------------------------------------------------------------===// 1908 // Helpers 1909 //===--------------------------------------------------------------------===// 1910 1911 LValue MakeAddrLValue(Address Addr, QualType T, 1912 AlignmentSource Source = AlignmentSource::Type) { 1913 return LValue::MakeAddr(Addr, T, getContext(), LValueBaseInfo(Source), 1914 CGM.getTBAAAccessInfo(T)); 1915 } 1916 1917 LValue MakeAddrLValue(Address Addr, QualType T, LValueBaseInfo BaseInfo, 1918 TBAAAccessInfo TBAAInfo) { 1919 return LValue::MakeAddr(Addr, T, getContext(), BaseInfo, TBAAInfo); 1920 } 1921 1922 LValue MakeAddrLValue(llvm::Value *V, QualType T, CharUnits Alignment, 1923 AlignmentSource Source = AlignmentSource::Type) { 1924 return LValue::MakeAddr(Address(V, Alignment), T, getContext(), 1925 LValueBaseInfo(Source), CGM.getTBAAAccessInfo(T)); 1926 } 1927 1928 LValue MakeAddrLValue(llvm::Value *V, QualType T, CharUnits Alignment, 1929 LValueBaseInfo BaseInfo, TBAAAccessInfo TBAAInfo) { 1930 return LValue::MakeAddr(Address(V, Alignment), T, getContext(), 1931 BaseInfo, TBAAInfo); 1932 } 1933 1934 LValue MakeNaturalAlignPointeeAddrLValue(llvm::Value *V, QualType T); 1935 LValue MakeNaturalAlignAddrLValue(llvm::Value *V, QualType T); 1936 CharUnits getNaturalTypeAlignment(QualType T, 1937 LValueBaseInfo *BaseInfo = nullptr, 1938 TBAAAccessInfo *TBAAInfo = nullptr, 1939 bool forPointeeType = false); 1940 CharUnits getNaturalPointeeTypeAlignment(QualType T, 1941 LValueBaseInfo *BaseInfo = nullptr, 1942 TBAAAccessInfo *TBAAInfo = nullptr); 1943 1944 Address EmitLoadOfReference(LValue RefLVal, 1945 LValueBaseInfo *PointeeBaseInfo = nullptr, 1946 TBAAAccessInfo *PointeeTBAAInfo = nullptr); 1947 LValue EmitLoadOfReferenceLValue(LValue RefLVal); 1948 LValue EmitLoadOfReferenceLValue(Address RefAddr, QualType RefTy, 1949 AlignmentSource Source = 1950 AlignmentSource::Type) { 1951 LValue RefLVal = MakeAddrLValue(RefAddr, RefTy, LValueBaseInfo(Source), 1952 CGM.getTBAAAccessInfo(RefTy)); 1953 return EmitLoadOfReferenceLValue(RefLVal); 1954 } 1955 1956 Address EmitLoadOfPointer(Address Ptr, const PointerType *PtrTy, 1957 LValueBaseInfo *BaseInfo = nullptr, 1958 TBAAAccessInfo *TBAAInfo = nullptr); 1959 LValue EmitLoadOfPointerLValue(Address Ptr, const PointerType *PtrTy); 1960 1961 /// CreateTempAlloca - This creates an alloca and inserts it into the entry 1962 /// block if \p ArraySize is nullptr, otherwise inserts it at the current 1963 /// insertion point of the builder. The caller is responsible for setting an 1964 /// appropriate alignment on 1965 /// the alloca. 1966 /// 1967 /// \p ArraySize is the number of array elements to be allocated if it 1968 /// is not nullptr. 1969 /// 1970 /// LangAS::Default is the address space of pointers to local variables and 1971 /// temporaries, as exposed in the source language. In certain 1972 /// configurations, this is not the same as the alloca address space, and a 1973 /// cast is needed to lift the pointer from the alloca AS into 1974 /// LangAS::Default. This can happen when the target uses a restricted 1975 /// address space for the stack but the source language requires 1976 /// LangAS::Default to be a generic address space. The latter condition is 1977 /// common for most programming languages; OpenCL is an exception in that 1978 /// LangAS::Default is the private address space, which naturally maps 1979 /// to the stack. 1980 /// 1981 /// Because the address of a temporary is often exposed to the program in 1982 /// various ways, this function will perform the cast by default. The cast 1983 /// may be avoided by passing false as \p CastToDefaultAddrSpace; this is 1984 /// more efficient if the caller knows that the address will not be exposed. 1985 llvm::AllocaInst *CreateTempAlloca(llvm::Type *Ty, const Twine &Name = "tmp", 1986 llvm::Value *ArraySize = nullptr); 1987 Address CreateTempAlloca(llvm::Type *Ty, CharUnits align, 1988 const Twine &Name = "tmp", 1989 llvm::Value *ArraySize = nullptr, 1990 bool CastToDefaultAddrSpace = true); 1991 1992 /// CreateDefaultAlignedTempAlloca - This creates an alloca with the 1993 /// default ABI alignment of the given LLVM type. 1994 /// 1995 /// IMPORTANT NOTE: This is *not* generally the right alignment for 1996 /// any given AST type that happens to have been lowered to the 1997 /// given IR type. This should only ever be used for function-local, 1998 /// IR-driven manipulations like saving and restoring a value. Do 1999 /// not hand this address off to arbitrary IRGen routines, and especially 2000 /// do not pass it as an argument to a function that might expect a 2001 /// properly ABI-aligned value. 2002 Address CreateDefaultAlignTempAlloca(llvm::Type *Ty, 2003 const Twine &Name = "tmp"); 2004 2005 /// InitTempAlloca - Provide an initial value for the given alloca which 2006 /// will be observable at all locations in the function. 2007 /// 2008 /// The address should be something that was returned from one of 2009 /// the CreateTempAlloca or CreateMemTemp routines, and the 2010 /// initializer must be valid in the entry block (i.e. it must 2011 /// either be a constant or an argument value). 2012 void InitTempAlloca(Address Alloca, llvm::Value *Value); 2013 2014 /// CreateIRTemp - Create a temporary IR object of the given type, with 2015 /// appropriate alignment. This routine should only be used when an temporary 2016 /// value needs to be stored into an alloca (for example, to avoid explicit 2017 /// PHI construction), but the type is the IR type, not the type appropriate 2018 /// for storing in memory. 2019 /// 2020 /// That is, this is exactly equivalent to CreateMemTemp, but calling 2021 /// ConvertType instead of ConvertTypeForMem. 2022 Address CreateIRTemp(QualType T, const Twine &Name = "tmp"); 2023 2024 /// CreateMemTemp - Create a temporary memory object of the given type, with 2025 /// appropriate alignment. Cast it to the default address space if 2026 /// \p CastToDefaultAddrSpace is true. 2027 Address CreateMemTemp(QualType T, const Twine &Name = "tmp", 2028 bool CastToDefaultAddrSpace = true); 2029 Address CreateMemTemp(QualType T, CharUnits Align, const Twine &Name = "tmp", 2030 bool CastToDefaultAddrSpace = true); 2031 2032 /// CreateAggTemp - Create a temporary memory object for the given 2033 /// aggregate type. 2034 AggValueSlot CreateAggTemp(QualType T, const Twine &Name = "tmp") { 2035 return AggValueSlot::forAddr(CreateMemTemp(T, Name), 2036 T.getQualifiers(), 2037 AggValueSlot::IsNotDestructed, 2038 AggValueSlot::DoesNotNeedGCBarriers, 2039 AggValueSlot::IsNotAliased); 2040 } 2041 2042 /// Emit a cast to void* in the appropriate address space. 2043 llvm::Value *EmitCastToVoidPtr(llvm::Value *value); 2044 2045 /// EvaluateExprAsBool - Perform the usual unary conversions on the specified 2046 /// expression and compare the result against zero, returning an Int1Ty value. 2047 llvm::Value *EvaluateExprAsBool(const Expr *E); 2048 2049 /// EmitIgnoredExpr - Emit an expression in a context which ignores the result. 2050 void EmitIgnoredExpr(const Expr *E); 2051 2052 /// EmitAnyExpr - Emit code to compute the specified expression which can have 2053 /// any type. The result is returned as an RValue struct. If this is an 2054 /// aggregate expression, the aggloc/agglocvolatile arguments indicate where 2055 /// the result should be returned. 2056 /// 2057 /// \param ignoreResult True if the resulting value isn't used. 2058 RValue EmitAnyExpr(const Expr *E, 2059 AggValueSlot aggSlot = AggValueSlot::ignored(), 2060 bool ignoreResult = false); 2061 2062 // EmitVAListRef - Emit a "reference" to a va_list; this is either the address 2063 // or the value of the expression, depending on how va_list is defined. 2064 Address EmitVAListRef(const Expr *E); 2065 2066 /// Emit a "reference" to a __builtin_ms_va_list; this is 2067 /// always the value of the expression, because a __builtin_ms_va_list is a 2068 /// pointer to a char. 2069 Address EmitMSVAListRef(const Expr *E); 2070 2071 /// EmitAnyExprToTemp - Similarly to EmitAnyExpr(), however, the result will 2072 /// always be accessible even if no aggregate location is provided. 2073 RValue EmitAnyExprToTemp(const Expr *E); 2074 2075 /// EmitAnyExprToMem - Emits the code necessary to evaluate an 2076 /// arbitrary expression into the given memory location. 2077 void EmitAnyExprToMem(const Expr *E, Address Location, 2078 Qualifiers Quals, bool IsInitializer); 2079 2080 void EmitAnyExprToExn(const Expr *E, Address Addr); 2081 2082 /// EmitExprAsInit - Emits the code necessary to initialize a 2083 /// location in memory with the given initializer. 2084 void EmitExprAsInit(const Expr *init, const ValueDecl *D, LValue lvalue, 2085 bool capturedByInit); 2086 2087 /// hasVolatileMember - returns true if aggregate type has a volatile 2088 /// member. 2089 bool hasVolatileMember(QualType T) { 2090 if (const RecordType *RT = T->getAs<RecordType>()) { 2091 const RecordDecl *RD = cast<RecordDecl>(RT->getDecl()); 2092 return RD->hasVolatileMember(); 2093 } 2094 return false; 2095 } 2096 /// EmitAggregateCopy - Emit an aggregate assignment. 2097 /// 2098 /// The difference to EmitAggregateCopy is that tail padding is not copied. 2099 /// This is required for correctness when assigning non-POD structures in C++. 2100 void EmitAggregateAssign(LValue Dest, LValue Src, QualType EltTy) { 2101 bool IsVolatile = hasVolatileMember(EltTy); 2102 EmitAggregateCopy(Dest, Src, EltTy, IsVolatile, /* isAssignment= */ true); 2103 } 2104 2105 void EmitAggregateCopyCtor(LValue Dest, LValue Src) { 2106 EmitAggregateCopy(Dest, Src, Src.getType(), 2107 /* IsVolatile= */ false, /* IsAssignment= */ false); 2108 } 2109 2110 /// EmitAggregateCopy - Emit an aggregate copy. 2111 /// 2112 /// \param isVolatile - True iff either the source or the destination is 2113 /// volatile. 2114 /// \param isAssignment - If false, allow padding to be copied. This often 2115 /// yields more efficient. 2116 void EmitAggregateCopy(LValue Dest, LValue Src, QualType EltTy, 2117 bool isVolatile = false, bool isAssignment = false); 2118 2119 /// GetAddrOfLocalVar - Return the address of a local variable. 2120 Address GetAddrOfLocalVar(const VarDecl *VD) { 2121 auto it = LocalDeclMap.find(VD); 2122 assert(it != LocalDeclMap.end() && 2123 "Invalid argument to GetAddrOfLocalVar(), no decl!"); 2124 return it->second; 2125 } 2126 2127 /// getOpaqueLValueMapping - Given an opaque value expression (which 2128 /// must be mapped to an l-value), return its mapping. 2129 const LValue &getOpaqueLValueMapping(const OpaqueValueExpr *e) { 2130 assert(OpaqueValueMapping::shouldBindAsLValue(e)); 2131 2132 llvm::DenseMap<const OpaqueValueExpr*,LValue>::iterator 2133 it = OpaqueLValues.find(e); 2134 assert(it != OpaqueLValues.end() && "no mapping for opaque value!"); 2135 return it->second; 2136 } 2137 2138 /// getOpaqueRValueMapping - Given an opaque value expression (which 2139 /// must be mapped to an r-value), return its mapping. 2140 const RValue &getOpaqueRValueMapping(const OpaqueValueExpr *e) { 2141 assert(!OpaqueValueMapping::shouldBindAsLValue(e)); 2142 2143 llvm::DenseMap<const OpaqueValueExpr*,RValue>::iterator 2144 it = OpaqueRValues.find(e); 2145 assert(it != OpaqueRValues.end() && "no mapping for opaque value!"); 2146 return it->second; 2147 } 2148 2149 /// Get the index of the current ArrayInitLoopExpr, if any. 2150 llvm::Value *getArrayInitIndex() { return ArrayInitIndex; } 2151 2152 /// getAccessedFieldNo - Given an encoded value and a result number, return 2153 /// the input field number being accessed. 2154 static unsigned getAccessedFieldNo(unsigned Idx, const llvm::Constant *Elts); 2155 2156 llvm::BlockAddress *GetAddrOfLabel(const LabelDecl *L); 2157 llvm::BasicBlock *GetIndirectGotoBlock(); 2158 2159 /// Check if \p E is a C++ "this" pointer wrapped in value-preserving casts. 2160 static bool IsWrappedCXXThis(const Expr *E); 2161 2162 /// EmitNullInitialization - Generate code to set a value of the given type to 2163 /// null, If the type contains data member pointers, they will be initialized 2164 /// to -1 in accordance with the Itanium C++ ABI. 2165 void EmitNullInitialization(Address DestPtr, QualType Ty); 2166 2167 /// Emits a call to an LLVM variable-argument intrinsic, either 2168 /// \c llvm.va_start or \c llvm.va_end. 2169 /// \param ArgValue A reference to the \c va_list as emitted by either 2170 /// \c EmitVAListRef or \c EmitMSVAListRef. 2171 /// \param IsStart If \c true, emits a call to \c llvm.va_start; otherwise, 2172 /// calls \c llvm.va_end. 2173 llvm::Value *EmitVAStartEnd(llvm::Value *ArgValue, bool IsStart); 2174 2175 /// Generate code to get an argument from the passed in pointer 2176 /// and update it accordingly. 2177 /// \param VE The \c VAArgExpr for which to generate code. 2178 /// \param VAListAddr Receives a reference to the \c va_list as emitted by 2179 /// either \c EmitVAListRef or \c EmitMSVAListRef. 2180 /// \returns A pointer to the argument. 2181 // FIXME: We should be able to get rid of this method and use the va_arg 2182 // instruction in LLVM instead once it works well enough. 2183 Address EmitVAArg(VAArgExpr *VE, Address &VAListAddr); 2184 2185 /// emitArrayLength - Compute the length of an array, even if it's a 2186 /// VLA, and drill down to the base element type. 2187 llvm::Value *emitArrayLength(const ArrayType *arrayType, 2188 QualType &baseType, 2189 Address &addr); 2190 2191 /// EmitVLASize - Capture all the sizes for the VLA expressions in 2192 /// the given variably-modified type and store them in the VLASizeMap. 2193 /// 2194 /// This function can be called with a null (unreachable) insert point. 2195 void EmitVariablyModifiedType(QualType Ty); 2196 2197 struct VlaSizePair { 2198 llvm::Value *NumElts; 2199 QualType Type; 2200 2201 VlaSizePair(llvm::Value *NE, QualType T) : NumElts(NE), Type(T) {} 2202 }; 2203 2204 /// Return the number of elements for a single dimension 2205 /// for the given array type. 2206 VlaSizePair getVLAElements1D(const VariableArrayType *vla); 2207 VlaSizePair getVLAElements1D(QualType vla); 2208 2209 /// Returns an LLVM value that corresponds to the size, 2210 /// in non-variably-sized elements, of a variable length array type, 2211 /// plus that largest non-variably-sized element type. Assumes that 2212 /// the type has already been emitted with EmitVariablyModifiedType. 2213 VlaSizePair getVLASize(const VariableArrayType *vla); 2214 VlaSizePair getVLASize(QualType vla); 2215 2216 /// LoadCXXThis - Load the value of 'this'. This function is only valid while 2217 /// generating code for an C++ member function. 2218 llvm::Value *LoadCXXThis() { 2219 assert(CXXThisValue && "no 'this' value for this function"); 2220 return CXXThisValue; 2221 } 2222 Address LoadCXXThisAddress(); 2223 2224 /// LoadCXXVTT - Load the VTT parameter to base constructors/destructors have 2225 /// virtual bases. 2226 // FIXME: Every place that calls LoadCXXVTT is something 2227 // that needs to be abstracted properly. 2228 llvm::Value *LoadCXXVTT() { 2229 assert(CXXStructorImplicitParamValue && "no VTT value for this function"); 2230 return CXXStructorImplicitParamValue; 2231 } 2232 2233 /// GetAddressOfBaseOfCompleteClass - Convert the given pointer to a 2234 /// complete class to the given direct base. 2235 Address 2236 GetAddressOfDirectBaseInCompleteClass(Address Value, 2237 const CXXRecordDecl *Derived, 2238 const CXXRecordDecl *Base, 2239 bool BaseIsVirtual); 2240 2241 static bool ShouldNullCheckClassCastValue(const CastExpr *Cast); 2242 2243 /// GetAddressOfBaseClass - This function will add the necessary delta to the 2244 /// load of 'this' and returns address of the base class. 2245 Address GetAddressOfBaseClass(Address Value, 2246 const CXXRecordDecl *Derived, 2247 CastExpr::path_const_iterator PathBegin, 2248 CastExpr::path_const_iterator PathEnd, 2249 bool NullCheckValue, SourceLocation Loc); 2250 2251 Address GetAddressOfDerivedClass(Address Value, 2252 const CXXRecordDecl *Derived, 2253 CastExpr::path_const_iterator PathBegin, 2254 CastExpr::path_const_iterator PathEnd, 2255 bool NullCheckValue); 2256 2257 /// GetVTTParameter - Return the VTT parameter that should be passed to a 2258 /// base constructor/destructor with virtual bases. 2259 /// FIXME: VTTs are Itanium ABI-specific, so the definition should move 2260 /// to ItaniumCXXABI.cpp together with all the references to VTT. 2261 llvm::Value *GetVTTParameter(GlobalDecl GD, bool ForVirtualBase, 2262 bool Delegating); 2263 2264 void EmitDelegateCXXConstructorCall(const CXXConstructorDecl *Ctor, 2265 CXXCtorType CtorType, 2266 const FunctionArgList &Args, 2267 SourceLocation Loc); 2268 // It's important not to confuse this and the previous function. Delegating 2269 // constructors are the C++0x feature. The constructor delegate optimization 2270 // is used to reduce duplication in the base and complete consturctors where 2271 // they are substantially the same. 2272 void EmitDelegatingCXXConstructorCall(const CXXConstructorDecl *Ctor, 2273 const FunctionArgList &Args); 2274 2275 /// Emit a call to an inheriting constructor (that is, one that invokes a 2276 /// constructor inherited from a base class) by inlining its definition. This 2277 /// is necessary if the ABI does not support forwarding the arguments to the 2278 /// base class constructor (because they're variadic or similar). 2279 void EmitInlinedInheritingCXXConstructorCall(const CXXConstructorDecl *Ctor, 2280 CXXCtorType CtorType, 2281 bool ForVirtualBase, 2282 bool Delegating, 2283 CallArgList &Args); 2284 2285 /// Emit a call to a constructor inherited from a base class, passing the 2286 /// current constructor's arguments along unmodified (without even making 2287 /// a copy). 2288 void EmitInheritedCXXConstructorCall(const CXXConstructorDecl *D, 2289 bool ForVirtualBase, Address This, 2290 bool InheritedFromVBase, 2291 const CXXInheritedCtorInitExpr *E); 2292 2293 void EmitCXXConstructorCall(const CXXConstructorDecl *D, CXXCtorType Type, 2294 bool ForVirtualBase, bool Delegating, 2295 Address This, const CXXConstructExpr *E); 2296 2297 void EmitCXXConstructorCall(const CXXConstructorDecl *D, CXXCtorType Type, 2298 bool ForVirtualBase, bool Delegating, 2299 Address This, CallArgList &Args); 2300 2301 /// Emit assumption load for all bases. Requires to be be called only on 2302 /// most-derived class and not under construction of the object. 2303 void EmitVTableAssumptionLoads(const CXXRecordDecl *ClassDecl, Address This); 2304 2305 /// Emit assumption that vptr load == global vtable. 2306 void EmitVTableAssumptionLoad(const VPtr &vptr, Address This); 2307 2308 void EmitSynthesizedCXXCopyCtorCall(const CXXConstructorDecl *D, 2309 Address This, Address Src, 2310 const CXXConstructExpr *E); 2311 2312 void EmitCXXAggrConstructorCall(const CXXConstructorDecl *D, 2313 const ArrayType *ArrayTy, 2314 Address ArrayPtr, 2315 const CXXConstructExpr *E, 2316 bool ZeroInitialization = false); 2317 2318 void EmitCXXAggrConstructorCall(const CXXConstructorDecl *D, 2319 llvm::Value *NumElements, 2320 Address ArrayPtr, 2321 const CXXConstructExpr *E, 2322 bool ZeroInitialization = false); 2323 2324 static Destroyer destroyCXXObject; 2325 2326 void EmitCXXDestructorCall(const CXXDestructorDecl *D, CXXDtorType Type, 2327 bool ForVirtualBase, bool Delegating, 2328 Address This); 2329 2330 void EmitNewArrayInitializer(const CXXNewExpr *E, QualType elementType, 2331 llvm::Type *ElementTy, Address NewPtr, 2332 llvm::Value *NumElements, 2333 llvm::Value *AllocSizeWithoutCookie); 2334 2335 void EmitCXXTemporary(const CXXTemporary *Temporary, QualType TempType, 2336 Address Ptr); 2337 2338 llvm::Value *EmitLifetimeStart(uint64_t Size, llvm::Value *Addr); 2339 void EmitLifetimeEnd(llvm::Value *Size, llvm::Value *Addr); 2340 2341 llvm::Value *EmitCXXNewExpr(const CXXNewExpr *E); 2342 void EmitCXXDeleteExpr(const CXXDeleteExpr *E); 2343 2344 void EmitDeleteCall(const FunctionDecl *DeleteFD, llvm::Value *Ptr, 2345 QualType DeleteTy, llvm::Value *NumElements = nullptr, 2346 CharUnits CookieSize = CharUnits()); 2347 2348 RValue EmitBuiltinNewDeleteCall(const FunctionProtoType *Type, 2349 const Expr *Arg, bool IsDelete); 2350 2351 llvm::Value *EmitCXXTypeidExpr(const CXXTypeidExpr *E); 2352 llvm::Value *EmitDynamicCast(Address V, const CXXDynamicCastExpr *DCE); 2353 Address EmitCXXUuidofExpr(const CXXUuidofExpr *E); 2354 2355 /// \brief Situations in which we might emit a check for the suitability of a 2356 /// pointer or glvalue. 2357 enum TypeCheckKind { 2358 /// Checking the operand of a load. Must be suitably sized and aligned. 2359 TCK_Load, 2360 /// Checking the destination of a store. Must be suitably sized and aligned. 2361 TCK_Store, 2362 /// Checking the bound value in a reference binding. Must be suitably sized 2363 /// and aligned, but is not required to refer to an object (until the 2364 /// reference is used), per core issue 453. 2365 TCK_ReferenceBinding, 2366 /// Checking the object expression in a non-static data member access. Must 2367 /// be an object within its lifetime. 2368 TCK_MemberAccess, 2369 /// Checking the 'this' pointer for a call to a non-static member function. 2370 /// Must be an object within its lifetime. 2371 TCK_MemberCall, 2372 /// Checking the 'this' pointer for a constructor call. 2373 TCK_ConstructorCall, 2374 /// Checking the operand of a static_cast to a derived pointer type. Must be 2375 /// null or an object within its lifetime. 2376 TCK_DowncastPointer, 2377 /// Checking the operand of a static_cast to a derived reference type. Must 2378 /// be an object within its lifetime. 2379 TCK_DowncastReference, 2380 /// Checking the operand of a cast to a base object. Must be suitably sized 2381 /// and aligned. 2382 TCK_Upcast, 2383 /// Checking the operand of a cast to a virtual base object. Must be an 2384 /// object within its lifetime. 2385 TCK_UpcastToVirtualBase, 2386 /// Checking the value assigned to a _Nonnull pointer. Must not be null. 2387 TCK_NonnullAssign, 2388 /// Checking the operand of a dynamic_cast or a typeid expression. Must be 2389 /// null or an object within its lifetime. 2390 TCK_DynamicOperation 2391 }; 2392 2393 /// Determine whether the pointer type check \p TCK permits null pointers. 2394 static bool isNullPointerAllowed(TypeCheckKind TCK); 2395 2396 /// Determine whether the pointer type check \p TCK requires a vptr check. 2397 static bool isVptrCheckRequired(TypeCheckKind TCK, QualType Ty); 2398 2399 /// \brief Whether any type-checking sanitizers are enabled. If \c false, 2400 /// calls to EmitTypeCheck can be skipped. 2401 bool sanitizePerformTypeCheck() const; 2402 2403 /// \brief Emit a check that \p V is the address of storage of the 2404 /// appropriate size and alignment for an object of type \p Type. 2405 void EmitTypeCheck(TypeCheckKind TCK, SourceLocation Loc, llvm::Value *V, 2406 QualType Type, CharUnits Alignment = CharUnits::Zero(), 2407 SanitizerSet SkippedChecks = SanitizerSet()); 2408 2409 /// \brief Emit a check that \p Base points into an array object, which 2410 /// we can access at index \p Index. \p Accessed should be \c false if we 2411 /// this expression is used as an lvalue, for instance in "&Arr[Idx]". 2412 void EmitBoundsCheck(const Expr *E, const Expr *Base, llvm::Value *Index, 2413 QualType IndexType, bool Accessed); 2414 2415 llvm::Value *EmitScalarPrePostIncDec(const UnaryOperator *E, LValue LV, 2416 bool isInc, bool isPre); 2417 ComplexPairTy EmitComplexPrePostIncDec(const UnaryOperator *E, LValue LV, 2418 bool isInc, bool isPre); 2419 2420 void EmitAlignmentAssumption(llvm::Value *PtrValue, unsigned Alignment, 2421 llvm::Value *OffsetValue = nullptr) { 2422 Builder.CreateAlignmentAssumption(CGM.getDataLayout(), PtrValue, Alignment, 2423 OffsetValue); 2424 } 2425 2426 /// Converts Location to a DebugLoc, if debug information is enabled. 2427 llvm::DebugLoc SourceLocToDebugLoc(SourceLocation Location); 2428 2429 2430 //===--------------------------------------------------------------------===// 2431 // Declaration Emission 2432 //===--------------------------------------------------------------------===// 2433 2434 /// EmitDecl - Emit a declaration. 2435 /// 2436 /// This function can be called with a null (unreachable) insert point. 2437 void EmitDecl(const Decl &D); 2438 2439 /// EmitVarDecl - Emit a local variable declaration. 2440 /// 2441 /// This function can be called with a null (unreachable) insert point. 2442 void EmitVarDecl(const VarDecl &D); 2443 2444 void EmitScalarInit(const Expr *init, const ValueDecl *D, LValue lvalue, 2445 bool capturedByInit); 2446 2447 typedef void SpecialInitFn(CodeGenFunction &Init, const VarDecl &D, 2448 llvm::Value *Address); 2449 2450 /// \brief Determine whether the given initializer is trivial in the sense 2451 /// that it requires no code to be generated. 2452 bool isTrivialInitializer(const Expr *Init); 2453 2454 /// EmitAutoVarDecl - Emit an auto variable declaration. 2455 /// 2456 /// This function can be called with a null (unreachable) insert point. 2457 void EmitAutoVarDecl(const VarDecl &D); 2458 2459 class AutoVarEmission { 2460 friend class CodeGenFunction; 2461 2462 const VarDecl *Variable; 2463 2464 /// The address of the alloca. Invalid if the variable was emitted 2465 /// as a global constant. 2466 Address Addr; 2467 2468 llvm::Value *NRVOFlag; 2469 2470 /// True if the variable is a __block variable. 2471 bool IsByRef; 2472 2473 /// True if the variable is of aggregate type and has a constant 2474 /// initializer. 2475 bool IsConstantAggregate; 2476 2477 /// Non-null if we should use lifetime annotations. 2478 llvm::Value *SizeForLifetimeMarkers; 2479 2480 struct Invalid {}; 2481 AutoVarEmission(Invalid) : Variable(nullptr), Addr(Address::invalid()) {} 2482 2483 AutoVarEmission(const VarDecl &variable) 2484 : Variable(&variable), Addr(Address::invalid()), NRVOFlag(nullptr), 2485 IsByRef(false), IsConstantAggregate(false), 2486 SizeForLifetimeMarkers(nullptr) {} 2487 2488 bool wasEmittedAsGlobal() const { return !Addr.isValid(); } 2489 2490 public: 2491 static AutoVarEmission invalid() { return AutoVarEmission(Invalid()); } 2492 2493 bool useLifetimeMarkers() const { 2494 return SizeForLifetimeMarkers != nullptr; 2495 } 2496 llvm::Value *getSizeForLifetimeMarkers() const { 2497 assert(useLifetimeMarkers()); 2498 return SizeForLifetimeMarkers; 2499 } 2500 2501 /// Returns the raw, allocated address, which is not necessarily 2502 /// the address of the object itself. 2503 Address getAllocatedAddress() const { 2504 return Addr; 2505 } 2506 2507 /// Returns the address of the object within this declaration. 2508 /// Note that this does not chase the forwarding pointer for 2509 /// __block decls. 2510 Address getObjectAddress(CodeGenFunction &CGF) const { 2511 if (!IsByRef) return Addr; 2512 2513 return CGF.emitBlockByrefAddress(Addr, Variable, /*forward*/ false); 2514 } 2515 }; 2516 AutoVarEmission EmitAutoVarAlloca(const VarDecl &var); 2517 void EmitAutoVarInit(const AutoVarEmission &emission); 2518 void EmitAutoVarCleanups(const AutoVarEmission &emission); 2519 void emitAutoVarTypeCleanup(const AutoVarEmission &emission, 2520 QualType::DestructionKind dtorKind); 2521 2522 /// Emits the alloca and debug information for the size expressions for each 2523 /// dimension of an array. It registers the association of its (1-dimensional) 2524 /// QualTypes and size expression's debug node, so that CGDebugInfo can 2525 /// reference this node when creating the DISubrange object to describe the 2526 /// array types. 2527 void EmitAndRegisterVariableArrayDimensions(CGDebugInfo *DI, 2528 const VarDecl &D, 2529 bool EmitDebugInfo); 2530 2531 void EmitStaticVarDecl(const VarDecl &D, 2532 llvm::GlobalValue::LinkageTypes Linkage); 2533 2534 class ParamValue { 2535 llvm::Value *Value; 2536 unsigned Alignment; 2537 ParamValue(llvm::Value *V, unsigned A) : Value(V), Alignment(A) {} 2538 public: 2539 static ParamValue forDirect(llvm::Value *value) { 2540 return ParamValue(value, 0); 2541 } 2542 static ParamValue forIndirect(Address addr) { 2543 assert(!addr.getAlignment().isZero()); 2544 return ParamValue(addr.getPointer(), addr.getAlignment().getQuantity()); 2545 } 2546 2547 bool isIndirect() const { return Alignment != 0; } 2548 llvm::Value *getAnyValue() const { return Value; } 2549 2550 llvm::Value *getDirectValue() const { 2551 assert(!isIndirect()); 2552 return Value; 2553 } 2554 2555 Address getIndirectAddress() const { 2556 assert(isIndirect()); 2557 return Address(Value, CharUnits::fromQuantity(Alignment)); 2558 } 2559 }; 2560 2561 /// EmitParmDecl - Emit a ParmVarDecl or an ImplicitParamDecl. 2562 void EmitParmDecl(const VarDecl &D, ParamValue Arg, unsigned ArgNo); 2563 2564 /// protectFromPeepholes - Protect a value that we're intending to 2565 /// store to the side, but which will probably be used later, from 2566 /// aggressive peepholing optimizations that might delete it. 2567 /// 2568 /// Pass the result to unprotectFromPeepholes to declare that 2569 /// protection is no longer required. 2570 /// 2571 /// There's no particular reason why this shouldn't apply to 2572 /// l-values, it's just that no existing peepholes work on pointers. 2573 PeepholeProtection protectFromPeepholes(RValue rvalue); 2574 void unprotectFromPeepholes(PeepholeProtection protection); 2575 2576 void EmitAlignmentAssumption(llvm::Value *PtrValue, llvm::Value *Alignment, 2577 llvm::Value *OffsetValue = nullptr) { 2578 Builder.CreateAlignmentAssumption(CGM.getDataLayout(), PtrValue, Alignment, 2579 OffsetValue); 2580 } 2581 2582 //===--------------------------------------------------------------------===// 2583 // Statement Emission 2584 //===--------------------------------------------------------------------===// 2585 2586 /// EmitStopPoint - Emit a debug stoppoint if we are emitting debug info. 2587 void EmitStopPoint(const Stmt *S); 2588 2589 /// EmitStmt - Emit the code for the statement \arg S. It is legal to call 2590 /// this function even if there is no current insertion point. 2591 /// 2592 /// This function may clear the current insertion point; callers should use 2593 /// EnsureInsertPoint if they wish to subsequently generate code without first 2594 /// calling EmitBlock, EmitBranch, or EmitStmt. 2595 void EmitStmt(const Stmt *S, ArrayRef<const Attr *> Attrs = None); 2596 2597 /// EmitSimpleStmt - Try to emit a "simple" statement which does not 2598 /// necessarily require an insertion point or debug information; typically 2599 /// because the statement amounts to a jump or a container of other 2600 /// statements. 2601 /// 2602 /// \return True if the statement was handled. 2603 bool EmitSimpleStmt(const Stmt *S); 2604 2605 Address EmitCompoundStmt(const CompoundStmt &S, bool GetLast = false, 2606 AggValueSlot AVS = AggValueSlot::ignored()); 2607 Address EmitCompoundStmtWithoutScope(const CompoundStmt &S, 2608 bool GetLast = false, 2609 AggValueSlot AVS = 2610 AggValueSlot::ignored()); 2611 2612 /// EmitLabel - Emit the block for the given label. It is legal to call this 2613 /// function even if there is no current insertion point. 2614 void EmitLabel(const LabelDecl *D); // helper for EmitLabelStmt. 2615 2616 void EmitLabelStmt(const LabelStmt &S); 2617 void EmitAttributedStmt(const AttributedStmt &S); 2618 void EmitGotoStmt(const GotoStmt &S); 2619 void EmitIndirectGotoStmt(const IndirectGotoStmt &S); 2620 void EmitIfStmt(const IfStmt &S); 2621 2622 void EmitWhileStmt(const WhileStmt &S, 2623 ArrayRef<const Attr *> Attrs = None); 2624 void EmitDoStmt(const DoStmt &S, ArrayRef<const Attr *> Attrs = None); 2625 void EmitForStmt(const ForStmt &S, 2626 ArrayRef<const Attr *> Attrs = None); 2627 void EmitReturnStmt(const ReturnStmt &S); 2628 void EmitDeclStmt(const DeclStmt &S); 2629 void EmitBreakStmt(const BreakStmt &S); 2630 void EmitContinueStmt(const ContinueStmt &S); 2631 void EmitSwitchStmt(const SwitchStmt &S); 2632 void EmitDefaultStmt(const DefaultStmt &S); 2633 void EmitCaseStmt(const CaseStmt &S); 2634 void EmitCaseStmtRange(const CaseStmt &S); 2635 void EmitAsmStmt(const AsmStmt &S); 2636 2637 void EmitObjCForCollectionStmt(const ObjCForCollectionStmt &S); 2638 void EmitObjCAtTryStmt(const ObjCAtTryStmt &S); 2639 void EmitObjCAtThrowStmt(const ObjCAtThrowStmt &S); 2640 void EmitObjCAtSynchronizedStmt(const ObjCAtSynchronizedStmt &S); 2641 void EmitObjCAutoreleasePoolStmt(const ObjCAutoreleasePoolStmt &S); 2642 2643 void EmitCoroutineBody(const CoroutineBodyStmt &S); 2644 void EmitCoreturnStmt(const CoreturnStmt &S); 2645 RValue EmitCoawaitExpr(const CoawaitExpr &E, 2646 AggValueSlot aggSlot = AggValueSlot::ignored(), 2647 bool ignoreResult = false); 2648 LValue EmitCoawaitLValue(const CoawaitExpr *E); 2649 RValue EmitCoyieldExpr(const CoyieldExpr &E, 2650 AggValueSlot aggSlot = AggValueSlot::ignored(), 2651 bool ignoreResult = false); 2652 LValue EmitCoyieldLValue(const CoyieldExpr *E); 2653 RValue EmitCoroutineIntrinsic(const CallExpr *E, unsigned int IID); 2654 2655 void EnterCXXTryStmt(const CXXTryStmt &S, bool IsFnTryBlock = false); 2656 void ExitCXXTryStmt(const CXXTryStmt &S, bool IsFnTryBlock = false); 2657 2658 void EmitCXXTryStmt(const CXXTryStmt &S); 2659 void EmitSEHTryStmt(const SEHTryStmt &S); 2660 void EmitSEHLeaveStmt(const SEHLeaveStmt &S); 2661 void EnterSEHTryStmt(const SEHTryStmt &S); 2662 void ExitSEHTryStmt(const SEHTryStmt &S); 2663 2664 void startOutlinedSEHHelper(CodeGenFunction &ParentCGF, bool IsFilter, 2665 const Stmt *OutlinedStmt); 2666 2667 llvm::Function *GenerateSEHFilterFunction(CodeGenFunction &ParentCGF, 2668 const SEHExceptStmt &Except); 2669 2670 llvm::Function *GenerateSEHFinallyFunction(CodeGenFunction &ParentCGF, 2671 const SEHFinallyStmt &Finally); 2672 2673 void EmitSEHExceptionCodeSave(CodeGenFunction &ParentCGF, 2674 llvm::Value *ParentFP, 2675 llvm::Value *EntryEBP); 2676 llvm::Value *EmitSEHExceptionCode(); 2677 llvm::Value *EmitSEHExceptionInfo(); 2678 llvm::Value *EmitSEHAbnormalTermination(); 2679 2680 /// Emit simple code for OpenMP directives in Simd-only mode. 2681 void EmitSimpleOMPExecutableDirective(const OMPExecutableDirective &D); 2682 2683 /// Scan the outlined statement for captures from the parent function. For 2684 /// each capture, mark the capture as escaped and emit a call to 2685 /// llvm.localrecover. Insert the localrecover result into the LocalDeclMap. 2686 void EmitCapturedLocals(CodeGenFunction &ParentCGF, const Stmt *OutlinedStmt, 2687 bool IsFilter); 2688 2689 /// Recovers the address of a local in a parent function. ParentVar is the 2690 /// address of the variable used in the immediate parent function. It can 2691 /// either be an alloca or a call to llvm.localrecover if there are nested 2692 /// outlined functions. ParentFP is the frame pointer of the outermost parent 2693 /// frame. 2694 Address recoverAddrOfEscapedLocal(CodeGenFunction &ParentCGF, 2695 Address ParentVar, 2696 llvm::Value *ParentFP); 2697 2698 void EmitCXXForRangeStmt(const CXXForRangeStmt &S, 2699 ArrayRef<const Attr *> Attrs = None); 2700 2701 /// Controls insertion of cancellation exit blocks in worksharing constructs. 2702 class OMPCancelStackRAII { 2703 CodeGenFunction &CGF; 2704 2705 public: 2706 OMPCancelStackRAII(CodeGenFunction &CGF, OpenMPDirectiveKind Kind, 2707 bool HasCancel) 2708 : CGF(CGF) { 2709 CGF.OMPCancelStack.enter(CGF, Kind, HasCancel); 2710 } 2711 ~OMPCancelStackRAII() { CGF.OMPCancelStack.exit(CGF); } 2712 }; 2713 2714 /// Returns calculated size of the specified type. 2715 llvm::Value *getTypeSize(QualType Ty); 2716 LValue InitCapturedStruct(const CapturedStmt &S); 2717 llvm::Function *EmitCapturedStmt(const CapturedStmt &S, CapturedRegionKind K); 2718 llvm::Function *GenerateCapturedStmtFunction(const CapturedStmt &S); 2719 Address GenerateCapturedStmtArgument(const CapturedStmt &S); 2720 llvm::Function *GenerateOpenMPCapturedStmtFunction(const CapturedStmt &S); 2721 void GenerateOpenMPCapturedVars(const CapturedStmt &S, 2722 SmallVectorImpl<llvm::Value *> &CapturedVars); 2723 void emitOMPSimpleStore(LValue LVal, RValue RVal, QualType RValTy, 2724 SourceLocation Loc); 2725 /// \brief Perform element by element copying of arrays with type \a 2726 /// OriginalType from \a SrcAddr to \a DestAddr using copying procedure 2727 /// generated by \a CopyGen. 2728 /// 2729 /// \param DestAddr Address of the destination array. 2730 /// \param SrcAddr Address of the source array. 2731 /// \param OriginalType Type of destination and source arrays. 2732 /// \param CopyGen Copying procedure that copies value of single array element 2733 /// to another single array element. 2734 void EmitOMPAggregateAssign( 2735 Address DestAddr, Address SrcAddr, QualType OriginalType, 2736 const llvm::function_ref<void(Address, Address)> &CopyGen); 2737 /// \brief Emit proper copying of data from one variable to another. 2738 /// 2739 /// \param OriginalType Original type of the copied variables. 2740 /// \param DestAddr Destination address. 2741 /// \param SrcAddr Source address. 2742 /// \param DestVD Destination variable used in \a CopyExpr (for arrays, has 2743 /// type of the base array element). 2744 /// \param SrcVD Source variable used in \a CopyExpr (for arrays, has type of 2745 /// the base array element). 2746 /// \param Copy Actual copygin expression for copying data from \a SrcVD to \a 2747 /// DestVD. 2748 void EmitOMPCopy(QualType OriginalType, 2749 Address DestAddr, Address SrcAddr, 2750 const VarDecl *DestVD, const VarDecl *SrcVD, 2751 const Expr *Copy); 2752 /// \brief Emit atomic update code for constructs: \a X = \a X \a BO \a E or 2753 /// \a X = \a E \a BO \a E. 2754 /// 2755 /// \param X Value to be updated. 2756 /// \param E Update value. 2757 /// \param BO Binary operation for update operation. 2758 /// \param IsXLHSInRHSPart true if \a X is LHS in RHS part of the update 2759 /// expression, false otherwise. 2760 /// \param AO Atomic ordering of the generated atomic instructions. 2761 /// \param CommonGen Code generator for complex expressions that cannot be 2762 /// expressed through atomicrmw instruction. 2763 /// \returns <true, OldAtomicValue> if simple 'atomicrmw' instruction was 2764 /// generated, <false, RValue::get(nullptr)> otherwise. 2765 std::pair<bool, RValue> EmitOMPAtomicSimpleUpdateExpr( 2766 LValue X, RValue E, BinaryOperatorKind BO, bool IsXLHSInRHSPart, 2767 llvm::AtomicOrdering AO, SourceLocation Loc, 2768 const llvm::function_ref<RValue(RValue)> &CommonGen); 2769 bool EmitOMPFirstprivateClause(const OMPExecutableDirective &D, 2770 OMPPrivateScope &PrivateScope); 2771 void EmitOMPPrivateClause(const OMPExecutableDirective &D, 2772 OMPPrivateScope &PrivateScope); 2773 void EmitOMPUseDevicePtrClause( 2774 const OMPClause &C, OMPPrivateScope &PrivateScope, 2775 const llvm::DenseMap<const ValueDecl *, Address> &CaptureDeviceAddrMap); 2776 /// \brief Emit code for copyin clause in \a D directive. The next code is 2777 /// generated at the start of outlined functions for directives: 2778 /// \code 2779 /// threadprivate_var1 = master_threadprivate_var1; 2780 /// operator=(threadprivate_var2, master_threadprivate_var2); 2781 /// ... 2782 /// __kmpc_barrier(&loc, global_tid); 2783 /// \endcode 2784 /// 2785 /// \param D OpenMP directive possibly with 'copyin' clause(s). 2786 /// \returns true if at least one copyin variable is found, false otherwise. 2787 bool EmitOMPCopyinClause(const OMPExecutableDirective &D); 2788 /// \brief Emit initial code for lastprivate variables. If some variable is 2789 /// not also firstprivate, then the default initialization is used. Otherwise 2790 /// initialization of this variable is performed by EmitOMPFirstprivateClause 2791 /// method. 2792 /// 2793 /// \param D Directive that may have 'lastprivate' directives. 2794 /// \param PrivateScope Private scope for capturing lastprivate variables for 2795 /// proper codegen in internal captured statement. 2796 /// 2797 /// \returns true if there is at least one lastprivate variable, false 2798 /// otherwise. 2799 bool EmitOMPLastprivateClauseInit(const OMPExecutableDirective &D, 2800 OMPPrivateScope &PrivateScope); 2801 /// \brief Emit final copying of lastprivate values to original variables at 2802 /// the end of the worksharing or simd directive. 2803 /// 2804 /// \param D Directive that has at least one 'lastprivate' directives. 2805 /// \param IsLastIterCond Boolean condition that must be set to 'i1 true' if 2806 /// it is the last iteration of the loop code in associated directive, or to 2807 /// 'i1 false' otherwise. If this item is nullptr, no final check is required. 2808 void EmitOMPLastprivateClauseFinal(const OMPExecutableDirective &D, 2809 bool NoFinals, 2810 llvm::Value *IsLastIterCond = nullptr); 2811 /// Emit initial code for linear clauses. 2812 void EmitOMPLinearClause(const OMPLoopDirective &D, 2813 CodeGenFunction::OMPPrivateScope &PrivateScope); 2814 /// Emit final code for linear clauses. 2815 /// \param CondGen Optional conditional code for final part of codegen for 2816 /// linear clause. 2817 void EmitOMPLinearClauseFinal( 2818 const OMPLoopDirective &D, 2819 const llvm::function_ref<llvm::Value *(CodeGenFunction &)> &CondGen); 2820 /// \brief Emit initial code for reduction variables. Creates reduction copies 2821 /// and initializes them with the values according to OpenMP standard. 2822 /// 2823 /// \param D Directive (possibly) with the 'reduction' clause. 2824 /// \param PrivateScope Private scope for capturing reduction variables for 2825 /// proper codegen in internal captured statement. 2826 /// 2827 void EmitOMPReductionClauseInit(const OMPExecutableDirective &D, 2828 OMPPrivateScope &PrivateScope); 2829 /// \brief Emit final update of reduction values to original variables at 2830 /// the end of the directive. 2831 /// 2832 /// \param D Directive that has at least one 'reduction' directives. 2833 /// \param ReductionKind The kind of reduction to perform. 2834 void EmitOMPReductionClauseFinal(const OMPExecutableDirective &D, 2835 const OpenMPDirectiveKind ReductionKind); 2836 /// \brief Emit initial code for linear variables. Creates private copies 2837 /// and initializes them with the values according to OpenMP standard. 2838 /// 2839 /// \param D Directive (possibly) with the 'linear' clause. 2840 /// \return true if at least one linear variable is found that should be 2841 /// initialized with the value of the original variable, false otherwise. 2842 bool EmitOMPLinearClauseInit(const OMPLoopDirective &D); 2843 2844 typedef const llvm::function_ref<void(CodeGenFunction & /*CGF*/, 2845 llvm::Value * /*OutlinedFn*/, 2846 const OMPTaskDataTy & /*Data*/)> 2847 TaskGenTy; 2848 void EmitOMPTaskBasedDirective(const OMPExecutableDirective &S, 2849 const OpenMPDirectiveKind CapturedRegion, 2850 const RegionCodeGenTy &BodyGen, 2851 const TaskGenTy &TaskGen, OMPTaskDataTy &Data); 2852 struct OMPTargetDataInfo { 2853 Address BasePointersArray = Address::invalid(); 2854 Address PointersArray = Address::invalid(); 2855 Address SizesArray = Address::invalid(); 2856 unsigned NumberOfTargetItems = 0; 2857 explicit OMPTargetDataInfo() = default; 2858 OMPTargetDataInfo(Address BasePointersArray, Address PointersArray, 2859 Address SizesArray, unsigned NumberOfTargetItems) 2860 : BasePointersArray(BasePointersArray), PointersArray(PointersArray), 2861 SizesArray(SizesArray), NumberOfTargetItems(NumberOfTargetItems) {} 2862 }; 2863 void EmitOMPTargetTaskBasedDirective(const OMPExecutableDirective &S, 2864 const RegionCodeGenTy &BodyGen, 2865 OMPTargetDataInfo &InputInfo); 2866 2867 void EmitOMPParallelDirective(const OMPParallelDirective &S); 2868 void EmitOMPSimdDirective(const OMPSimdDirective &S); 2869 void EmitOMPForDirective(const OMPForDirective &S); 2870 void EmitOMPForSimdDirective(const OMPForSimdDirective &S); 2871 void EmitOMPSectionsDirective(const OMPSectionsDirective &S); 2872 void EmitOMPSectionDirective(const OMPSectionDirective &S); 2873 void EmitOMPSingleDirective(const OMPSingleDirective &S); 2874 void EmitOMPMasterDirective(const OMPMasterDirective &S); 2875 void EmitOMPCriticalDirective(const OMPCriticalDirective &S); 2876 void EmitOMPParallelForDirective(const OMPParallelForDirective &S); 2877 void EmitOMPParallelForSimdDirective(const OMPParallelForSimdDirective &S); 2878 void EmitOMPParallelSectionsDirective(const OMPParallelSectionsDirective &S); 2879 void EmitOMPTaskDirective(const OMPTaskDirective &S); 2880 void EmitOMPTaskyieldDirective(const OMPTaskyieldDirective &S); 2881 void EmitOMPBarrierDirective(const OMPBarrierDirective &S); 2882 void EmitOMPTaskwaitDirective(const OMPTaskwaitDirective &S); 2883 void EmitOMPTaskgroupDirective(const OMPTaskgroupDirective &S); 2884 void EmitOMPFlushDirective(const OMPFlushDirective &S); 2885 void EmitOMPOrderedDirective(const OMPOrderedDirective &S); 2886 void EmitOMPAtomicDirective(const OMPAtomicDirective &S); 2887 void EmitOMPTargetDirective(const OMPTargetDirective &S); 2888 void EmitOMPTargetDataDirective(const OMPTargetDataDirective &S); 2889 void EmitOMPTargetEnterDataDirective(const OMPTargetEnterDataDirective &S); 2890 void EmitOMPTargetExitDataDirective(const OMPTargetExitDataDirective &S); 2891 void EmitOMPTargetUpdateDirective(const OMPTargetUpdateDirective &S); 2892 void EmitOMPTargetParallelDirective(const OMPTargetParallelDirective &S); 2893 void 2894 EmitOMPTargetParallelForDirective(const OMPTargetParallelForDirective &S); 2895 void EmitOMPTeamsDirective(const OMPTeamsDirective &S); 2896 void 2897 EmitOMPCancellationPointDirective(const OMPCancellationPointDirective &S); 2898 void EmitOMPCancelDirective(const OMPCancelDirective &S); 2899 void EmitOMPTaskLoopBasedDirective(const OMPLoopDirective &S); 2900 void EmitOMPTaskLoopDirective(const OMPTaskLoopDirective &S); 2901 void EmitOMPTaskLoopSimdDirective(const OMPTaskLoopSimdDirective &S); 2902 void EmitOMPDistributeDirective(const OMPDistributeDirective &S); 2903 void EmitOMPDistributeParallelForDirective( 2904 const OMPDistributeParallelForDirective &S); 2905 void EmitOMPDistributeParallelForSimdDirective( 2906 const OMPDistributeParallelForSimdDirective &S); 2907 void EmitOMPDistributeSimdDirective(const OMPDistributeSimdDirective &S); 2908 void EmitOMPTargetParallelForSimdDirective( 2909 const OMPTargetParallelForSimdDirective &S); 2910 void EmitOMPTargetSimdDirective(const OMPTargetSimdDirective &S); 2911 void EmitOMPTeamsDistributeDirective(const OMPTeamsDistributeDirective &S); 2912 void 2913 EmitOMPTeamsDistributeSimdDirective(const OMPTeamsDistributeSimdDirective &S); 2914 void EmitOMPTeamsDistributeParallelForSimdDirective( 2915 const OMPTeamsDistributeParallelForSimdDirective &S); 2916 void EmitOMPTeamsDistributeParallelForDirective( 2917 const OMPTeamsDistributeParallelForDirective &S); 2918 void EmitOMPTargetTeamsDirective(const OMPTargetTeamsDirective &S); 2919 void EmitOMPTargetTeamsDistributeDirective( 2920 const OMPTargetTeamsDistributeDirective &S); 2921 void EmitOMPTargetTeamsDistributeParallelForDirective( 2922 const OMPTargetTeamsDistributeParallelForDirective &S); 2923 void EmitOMPTargetTeamsDistributeParallelForSimdDirective( 2924 const OMPTargetTeamsDistributeParallelForSimdDirective &S); 2925 void EmitOMPTargetTeamsDistributeSimdDirective( 2926 const OMPTargetTeamsDistributeSimdDirective &S); 2927 2928 /// Emit device code for the target directive. 2929 static void EmitOMPTargetDeviceFunction(CodeGenModule &CGM, 2930 StringRef ParentName, 2931 const OMPTargetDirective &S); 2932 static void 2933 EmitOMPTargetParallelDeviceFunction(CodeGenModule &CGM, StringRef ParentName, 2934 const OMPTargetParallelDirective &S); 2935 /// Emit device code for the target parallel for directive. 2936 static void EmitOMPTargetParallelForDeviceFunction( 2937 CodeGenModule &CGM, StringRef ParentName, 2938 const OMPTargetParallelForDirective &S); 2939 /// Emit device code for the target parallel for simd directive. 2940 static void EmitOMPTargetParallelForSimdDeviceFunction( 2941 CodeGenModule &CGM, StringRef ParentName, 2942 const OMPTargetParallelForSimdDirective &S); 2943 /// Emit device code for the target teams directive. 2944 static void 2945 EmitOMPTargetTeamsDeviceFunction(CodeGenModule &CGM, StringRef ParentName, 2946 const OMPTargetTeamsDirective &S); 2947 /// Emit device code for the target teams distribute directive. 2948 static void EmitOMPTargetTeamsDistributeDeviceFunction( 2949 CodeGenModule &CGM, StringRef ParentName, 2950 const OMPTargetTeamsDistributeDirective &S); 2951 /// Emit device code for the target teams distribute simd directive. 2952 static void EmitOMPTargetTeamsDistributeSimdDeviceFunction( 2953 CodeGenModule &CGM, StringRef ParentName, 2954 const OMPTargetTeamsDistributeSimdDirective &S); 2955 /// Emit device code for the target simd directive. 2956 static void EmitOMPTargetSimdDeviceFunction(CodeGenModule &CGM, 2957 StringRef ParentName, 2958 const OMPTargetSimdDirective &S); 2959 /// Emit device code for the target teams distribute parallel for simd 2960 /// directive. 2961 static void EmitOMPTargetTeamsDistributeParallelForSimdDeviceFunction( 2962 CodeGenModule &CGM, StringRef ParentName, 2963 const OMPTargetTeamsDistributeParallelForSimdDirective &S); 2964 2965 static void EmitOMPTargetTeamsDistributeParallelForDeviceFunction( 2966 CodeGenModule &CGM, StringRef ParentName, 2967 const OMPTargetTeamsDistributeParallelForDirective &S); 2968 /// \brief Emit inner loop of the worksharing/simd construct. 2969 /// 2970 /// \param S Directive, for which the inner loop must be emitted. 2971 /// \param RequiresCleanup true, if directive has some associated private 2972 /// variables. 2973 /// \param LoopCond Bollean condition for loop continuation. 2974 /// \param IncExpr Increment expression for loop control variable. 2975 /// \param BodyGen Generator for the inner body of the inner loop. 2976 /// \param PostIncGen Genrator for post-increment code (required for ordered 2977 /// loop directvies). 2978 void EmitOMPInnerLoop( 2979 const Stmt &S, bool RequiresCleanup, const Expr *LoopCond, 2980 const Expr *IncExpr, 2981 const llvm::function_ref<void(CodeGenFunction &)> &BodyGen, 2982 const llvm::function_ref<void(CodeGenFunction &)> &PostIncGen); 2983 2984 JumpDest getOMPCancelDestination(OpenMPDirectiveKind Kind); 2985 /// Emit initial code for loop counters of loop-based directives. 2986 void EmitOMPPrivateLoopCounters(const OMPLoopDirective &S, 2987 OMPPrivateScope &LoopScope); 2988 2989 /// Helper for the OpenMP loop directives. 2990 void EmitOMPLoopBody(const OMPLoopDirective &D, JumpDest LoopExit); 2991 2992 /// \brief Emit code for the worksharing loop-based directive. 2993 /// \return true, if this construct has any lastprivate clause, false - 2994 /// otherwise. 2995 bool EmitOMPWorksharingLoop(const OMPLoopDirective &S, Expr *EUB, 2996 const CodeGenLoopBoundsTy &CodeGenLoopBounds, 2997 const CodeGenDispatchBoundsTy &CGDispatchBounds); 2998 2999 /// Emit code for the distribute loop-based directive. 3000 void EmitOMPDistributeLoop(const OMPLoopDirective &S, 3001 const CodeGenLoopTy &CodeGenLoop, Expr *IncExpr); 3002 3003 /// Helpers for the OpenMP loop directives. 3004 void EmitOMPSimdInit(const OMPLoopDirective &D, bool IsMonotonic = false); 3005 void EmitOMPSimdFinal( 3006 const OMPLoopDirective &D, 3007 const llvm::function_ref<llvm::Value *(CodeGenFunction &)> &CondGen); 3008 3009 /// Emits the lvalue for the expression with possibly captured variable. 3010 LValue EmitOMPSharedLValue(const Expr *E); 3011 3012 private: 3013 /// Helpers for blocks. Returns invoke function by \p InvokeF if it is not 3014 /// nullptr. It should be called without \p InvokeF if the caller does not 3015 /// need invoke function to be returned. 3016 llvm::Value *EmitBlockLiteral(const CGBlockInfo &Info, 3017 llvm::Function **InvokeF = nullptr); 3018 3019 /// struct with the values to be passed to the OpenMP loop-related functions 3020 struct OMPLoopArguments { 3021 /// loop lower bound 3022 Address LB = Address::invalid(); 3023 /// loop upper bound 3024 Address UB = Address::invalid(); 3025 /// loop stride 3026 Address ST = Address::invalid(); 3027 /// isLastIteration argument for runtime functions 3028 Address IL = Address::invalid(); 3029 /// Chunk value generated by sema 3030 llvm::Value *Chunk = nullptr; 3031 /// EnsureUpperBound 3032 Expr *EUB = nullptr; 3033 /// IncrementExpression 3034 Expr *IncExpr = nullptr; 3035 /// Loop initialization 3036 Expr *Init = nullptr; 3037 /// Loop exit condition 3038 Expr *Cond = nullptr; 3039 /// Update of LB after a whole chunk has been executed 3040 Expr *NextLB = nullptr; 3041 /// Update of UB after a whole chunk has been executed 3042 Expr *NextUB = nullptr; 3043 OMPLoopArguments() = default; 3044 OMPLoopArguments(Address LB, Address UB, Address ST, Address IL, 3045 llvm::Value *Chunk = nullptr, Expr *EUB = nullptr, 3046 Expr *IncExpr = nullptr, Expr *Init = nullptr, 3047 Expr *Cond = nullptr, Expr *NextLB = nullptr, 3048 Expr *NextUB = nullptr) 3049 : LB(LB), UB(UB), ST(ST), IL(IL), Chunk(Chunk), EUB(EUB), 3050 IncExpr(IncExpr), Init(Init), Cond(Cond), NextLB(NextLB), 3051 NextUB(NextUB) {} 3052 }; 3053 void EmitOMPOuterLoop(bool DynamicOrOrdered, bool IsMonotonic, 3054 const OMPLoopDirective &S, OMPPrivateScope &LoopScope, 3055 const OMPLoopArguments &LoopArgs, 3056 const CodeGenLoopTy &CodeGenLoop, 3057 const CodeGenOrderedTy &CodeGenOrdered); 3058 void EmitOMPForOuterLoop(const OpenMPScheduleTy &ScheduleKind, 3059 bool IsMonotonic, const OMPLoopDirective &S, 3060 OMPPrivateScope &LoopScope, bool Ordered, 3061 const OMPLoopArguments &LoopArgs, 3062 const CodeGenDispatchBoundsTy &CGDispatchBounds); 3063 void EmitOMPDistributeOuterLoop(OpenMPDistScheduleClauseKind ScheduleKind, 3064 const OMPLoopDirective &S, 3065 OMPPrivateScope &LoopScope, 3066 const OMPLoopArguments &LoopArgs, 3067 const CodeGenLoopTy &CodeGenLoopContent); 3068 /// \brief Emit code for sections directive. 3069 void EmitSections(const OMPExecutableDirective &S); 3070 3071 public: 3072 3073 //===--------------------------------------------------------------------===// 3074 // LValue Expression Emission 3075 //===--------------------------------------------------------------------===// 3076 3077 /// GetUndefRValue - Get an appropriate 'undef' rvalue for the given type. 3078 RValue GetUndefRValue(QualType Ty); 3079 3080 /// EmitUnsupportedRValue - Emit a dummy r-value using the type of E 3081 /// and issue an ErrorUnsupported style diagnostic (using the 3082 /// provided Name). 3083 RValue EmitUnsupportedRValue(const Expr *E, 3084 const char *Name); 3085 3086 /// EmitUnsupportedLValue - Emit a dummy l-value using the type of E and issue 3087 /// an ErrorUnsupported style diagnostic (using the provided Name). 3088 LValue EmitUnsupportedLValue(const Expr *E, 3089 const char *Name); 3090 3091 /// EmitLValue - Emit code to compute a designator that specifies the location 3092 /// of the expression. 3093 /// 3094 /// This can return one of two things: a simple address or a bitfield 3095 /// reference. In either case, the LLVM Value* in the LValue structure is 3096 /// guaranteed to be an LLVM pointer type. 3097 /// 3098 /// If this returns a bitfield reference, nothing about the pointee type of 3099 /// the LLVM value is known: For example, it may not be a pointer to an 3100 /// integer. 3101 /// 3102 /// If this returns a normal address, and if the lvalue's C type is fixed 3103 /// size, this method guarantees that the returned pointer type will point to 3104 /// an LLVM type of the same size of the lvalue's type. If the lvalue has a 3105 /// variable length type, this is not possible. 3106 /// 3107 LValue EmitLValue(const Expr *E); 3108 3109 /// \brief Same as EmitLValue but additionally we generate checking code to 3110 /// guard against undefined behavior. This is only suitable when we know 3111 /// that the address will be used to access the object. 3112 LValue EmitCheckedLValue(const Expr *E, TypeCheckKind TCK); 3113 3114 RValue convertTempToRValue(Address addr, QualType type, 3115 SourceLocation Loc); 3116 3117 void EmitAtomicInit(Expr *E, LValue lvalue); 3118 3119 bool LValueIsSuitableForInlineAtomic(LValue Src); 3120 3121 RValue EmitAtomicLoad(LValue LV, SourceLocation SL, 3122 AggValueSlot Slot = AggValueSlot::ignored()); 3123 3124 RValue EmitAtomicLoad(LValue lvalue, SourceLocation loc, 3125 llvm::AtomicOrdering AO, bool IsVolatile = false, 3126 AggValueSlot slot = AggValueSlot::ignored()); 3127 3128 void EmitAtomicStore(RValue rvalue, LValue lvalue, bool isInit); 3129 3130 void EmitAtomicStore(RValue rvalue, LValue lvalue, llvm::AtomicOrdering AO, 3131 bool IsVolatile, bool isInit); 3132 3133 std::pair<RValue, llvm::Value *> EmitAtomicCompareExchange( 3134 LValue Obj, RValue Expected, RValue Desired, SourceLocation Loc, 3135 llvm::AtomicOrdering Success = 3136 llvm::AtomicOrdering::SequentiallyConsistent, 3137 llvm::AtomicOrdering Failure = 3138 llvm::AtomicOrdering::SequentiallyConsistent, 3139 bool IsWeak = false, AggValueSlot Slot = AggValueSlot::ignored()); 3140 3141 void EmitAtomicUpdate(LValue LVal, llvm::AtomicOrdering AO, 3142 const llvm::function_ref<RValue(RValue)> &UpdateOp, 3143 bool IsVolatile); 3144 3145 /// EmitToMemory - Change a scalar value from its value 3146 /// representation to its in-memory representation. 3147 llvm::Value *EmitToMemory(llvm::Value *Value, QualType Ty); 3148 3149 /// EmitFromMemory - Change a scalar value from its memory 3150 /// representation to its value representation. 3151 llvm::Value *EmitFromMemory(llvm::Value *Value, QualType Ty); 3152 3153 /// Check if the scalar \p Value is within the valid range for the given 3154 /// type \p Ty. 3155 /// 3156 /// Returns true if a check is needed (even if the range is unknown). 3157 bool EmitScalarRangeCheck(llvm::Value *Value, QualType Ty, 3158 SourceLocation Loc); 3159 3160 /// EmitLoadOfScalar - Load a scalar value from an address, taking 3161 /// care to appropriately convert from the memory representation to 3162 /// the LLVM value representation. 3163 llvm::Value *EmitLoadOfScalar(Address Addr, bool Volatile, QualType Ty, 3164 SourceLocation Loc, 3165 AlignmentSource Source = AlignmentSource::Type, 3166 bool isNontemporal = false) { 3167 return EmitLoadOfScalar(Addr, Volatile, Ty, Loc, LValueBaseInfo(Source), 3168 CGM.getTBAAAccessInfo(Ty), isNontemporal); 3169 } 3170 3171 llvm::Value *EmitLoadOfScalar(Address Addr, bool Volatile, QualType Ty, 3172 SourceLocation Loc, LValueBaseInfo BaseInfo, 3173 TBAAAccessInfo TBAAInfo, 3174 bool isNontemporal = false); 3175 3176 /// EmitLoadOfScalar - Load a scalar value from an address, taking 3177 /// care to appropriately convert from the memory representation to 3178 /// the LLVM value representation. The l-value must be a simple 3179 /// l-value. 3180 llvm::Value *EmitLoadOfScalar(LValue lvalue, SourceLocation Loc); 3181 3182 /// EmitStoreOfScalar - Store a scalar value to an address, taking 3183 /// care to appropriately convert from the memory representation to 3184 /// the LLVM value representation. 3185 void EmitStoreOfScalar(llvm::Value *Value, Address Addr, 3186 bool Volatile, QualType Ty, 3187 AlignmentSource Source = AlignmentSource::Type, 3188 bool isInit = false, bool isNontemporal = false) { 3189 EmitStoreOfScalar(Value, Addr, Volatile, Ty, LValueBaseInfo(Source), 3190 CGM.getTBAAAccessInfo(Ty), isInit, isNontemporal); 3191 } 3192 3193 void EmitStoreOfScalar(llvm::Value *Value, Address Addr, 3194 bool Volatile, QualType Ty, 3195 LValueBaseInfo BaseInfo, TBAAAccessInfo TBAAInfo, 3196 bool isInit = false, bool isNontemporal = false); 3197 3198 /// EmitStoreOfScalar - Store a scalar value to an address, taking 3199 /// care to appropriately convert from the memory representation to 3200 /// the LLVM value representation. The l-value must be a simple 3201 /// l-value. The isInit flag indicates whether this is an initialization. 3202 /// If so, atomic qualifiers are ignored and the store is always non-atomic. 3203 void EmitStoreOfScalar(llvm::Value *value, LValue lvalue, bool isInit=false); 3204 3205 /// EmitLoadOfLValue - Given an expression that represents a value lvalue, 3206 /// this method emits the address of the lvalue, then loads the result as an 3207 /// rvalue, returning the rvalue. 3208 RValue EmitLoadOfLValue(LValue V, SourceLocation Loc); 3209 RValue EmitLoadOfExtVectorElementLValue(LValue V); 3210 RValue EmitLoadOfBitfieldLValue(LValue LV, SourceLocation Loc); 3211 RValue EmitLoadOfGlobalRegLValue(LValue LV); 3212 3213 /// EmitStoreThroughLValue - Store the specified rvalue into the specified 3214 /// lvalue, where both are guaranteed to the have the same type, and that type 3215 /// is 'Ty'. 3216 void EmitStoreThroughLValue(RValue Src, LValue Dst, bool isInit = false); 3217 void EmitStoreThroughExtVectorComponentLValue(RValue Src, LValue Dst); 3218 void EmitStoreThroughGlobalRegLValue(RValue Src, LValue Dst); 3219 3220 /// EmitStoreThroughBitfieldLValue - Store Src into Dst with same constraints 3221 /// as EmitStoreThroughLValue. 3222 /// 3223 /// \param Result [out] - If non-null, this will be set to a Value* for the 3224 /// bit-field contents after the store, appropriate for use as the result of 3225 /// an assignment to the bit-field. 3226 void EmitStoreThroughBitfieldLValue(RValue Src, LValue Dst, 3227 llvm::Value **Result=nullptr); 3228 3229 /// Emit an l-value for an assignment (simple or compound) of complex type. 3230 LValue EmitComplexAssignmentLValue(const BinaryOperator *E); 3231 LValue EmitComplexCompoundAssignmentLValue(const CompoundAssignOperator *E); 3232 LValue EmitScalarCompoundAssignWithComplex(const CompoundAssignOperator *E, 3233 llvm::Value *&Result); 3234 3235 // Note: only available for agg return types 3236 LValue EmitBinaryOperatorLValue(const BinaryOperator *E); 3237 LValue EmitCompoundAssignmentLValue(const CompoundAssignOperator *E); 3238 // Note: only available for agg return types 3239 LValue EmitCallExprLValue(const CallExpr *E); 3240 // Note: only available for agg return types 3241 LValue EmitVAArgExprLValue(const VAArgExpr *E); 3242 LValue EmitDeclRefLValue(const DeclRefExpr *E); 3243 LValue EmitStringLiteralLValue(const StringLiteral *E); 3244 LValue EmitObjCEncodeExprLValue(const ObjCEncodeExpr *E); 3245 LValue EmitPredefinedLValue(const PredefinedExpr *E); 3246 LValue EmitUnaryOpLValue(const UnaryOperator *E); 3247 LValue EmitArraySubscriptExpr(const ArraySubscriptExpr *E, 3248 bool Accessed = false); 3249 LValue EmitOMPArraySectionExpr(const OMPArraySectionExpr *E, 3250 bool IsLowerBound = true); 3251 LValue EmitExtVectorElementExpr(const ExtVectorElementExpr *E); 3252 LValue EmitMemberExpr(const MemberExpr *E); 3253 LValue EmitObjCIsaExpr(const ObjCIsaExpr *E); 3254 LValue EmitCompoundLiteralLValue(const CompoundLiteralExpr *E); 3255 LValue EmitInitListLValue(const InitListExpr *E); 3256 LValue EmitConditionalOperatorLValue(const AbstractConditionalOperator *E); 3257 LValue EmitCastLValue(const CastExpr *E); 3258 LValue EmitMaterializeTemporaryExpr(const MaterializeTemporaryExpr *E); 3259 LValue EmitOpaqueValueLValue(const OpaqueValueExpr *e); 3260 3261 Address EmitExtVectorElementLValue(LValue V); 3262 3263 RValue EmitRValueForField(LValue LV, const FieldDecl *FD, SourceLocation Loc); 3264 3265 Address EmitArrayToPointerDecay(const Expr *Array, 3266 LValueBaseInfo *BaseInfo = nullptr, 3267 TBAAAccessInfo *TBAAInfo = nullptr); 3268 3269 class ConstantEmission { 3270 llvm::PointerIntPair<llvm::Constant*, 1, bool> ValueAndIsReference; 3271 ConstantEmission(llvm::Constant *C, bool isReference) 3272 : ValueAndIsReference(C, isReference) {} 3273 public: 3274 ConstantEmission() {} 3275 static ConstantEmission forReference(llvm::Constant *C) { 3276 return ConstantEmission(C, true); 3277 } 3278 static ConstantEmission forValue(llvm::Constant *C) { 3279 return ConstantEmission(C, false); 3280 } 3281 3282 explicit operator bool() const { 3283 return ValueAndIsReference.getOpaqueValue() != nullptr; 3284 } 3285 3286 bool isReference() const { return ValueAndIsReference.getInt(); } 3287 LValue getReferenceLValue(CodeGenFunction &CGF, Expr *refExpr) const { 3288 assert(isReference()); 3289 return CGF.MakeNaturalAlignAddrLValue(ValueAndIsReference.getPointer(), 3290 refExpr->getType()); 3291 } 3292 3293 llvm::Constant *getValue() const { 3294 assert(!isReference()); 3295 return ValueAndIsReference.getPointer(); 3296 } 3297 }; 3298 3299 ConstantEmission tryEmitAsConstant(DeclRefExpr *refExpr); 3300 ConstantEmission tryEmitAsConstant(const MemberExpr *ME); 3301 3302 RValue EmitPseudoObjectRValue(const PseudoObjectExpr *e, 3303 AggValueSlot slot = AggValueSlot::ignored()); 3304 LValue EmitPseudoObjectLValue(const PseudoObjectExpr *e); 3305 3306 llvm::Value *EmitIvarOffset(const ObjCInterfaceDecl *Interface, 3307 const ObjCIvarDecl *Ivar); 3308 LValue EmitLValueForField(LValue Base, const FieldDecl* Field); 3309 LValue EmitLValueForLambdaField(const FieldDecl *Field); 3310 3311 /// EmitLValueForFieldInitialization - Like EmitLValueForField, except that 3312 /// if the Field is a reference, this will return the address of the reference 3313 /// and not the address of the value stored in the reference. 3314 LValue EmitLValueForFieldInitialization(LValue Base, 3315 const FieldDecl* Field); 3316 3317 LValue EmitLValueForIvar(QualType ObjectTy, 3318 llvm::Value* Base, const ObjCIvarDecl *Ivar, 3319 unsigned CVRQualifiers); 3320 3321 LValue EmitCXXConstructLValue(const CXXConstructExpr *E); 3322 LValue EmitCXXBindTemporaryLValue(const CXXBindTemporaryExpr *E); 3323 LValue EmitLambdaLValue(const LambdaExpr *E); 3324 LValue EmitCXXTypeidLValue(const CXXTypeidExpr *E); 3325 LValue EmitCXXUuidofLValue(const CXXUuidofExpr *E); 3326 3327 LValue EmitObjCMessageExprLValue(const ObjCMessageExpr *E); 3328 LValue EmitObjCIvarRefLValue(const ObjCIvarRefExpr *E); 3329 LValue EmitStmtExprLValue(const StmtExpr *E); 3330 LValue EmitPointerToDataMemberBinaryExpr(const BinaryOperator *E); 3331 LValue EmitObjCSelectorLValue(const ObjCSelectorExpr *E); 3332 void EmitDeclRefExprDbgValue(const DeclRefExpr *E, const APValue &Init); 3333 3334 //===--------------------------------------------------------------------===// 3335 // Scalar Expression Emission 3336 //===--------------------------------------------------------------------===// 3337 3338 /// EmitCall - Generate a call of the given function, expecting the given 3339 /// result type, and using the given argument list which specifies both the 3340 /// LLVM arguments and the types they were derived from. 3341 RValue EmitCall(const CGFunctionInfo &CallInfo, const CGCallee &Callee, 3342 ReturnValueSlot ReturnValue, const CallArgList &Args, 3343 llvm::Instruction **callOrInvoke, SourceLocation Loc); 3344 RValue EmitCall(const CGFunctionInfo &CallInfo, const CGCallee &Callee, 3345 ReturnValueSlot ReturnValue, const CallArgList &Args, 3346 llvm::Instruction **callOrInvoke = nullptr) { 3347 return EmitCall(CallInfo, Callee, ReturnValue, Args, callOrInvoke, 3348 SourceLocation()); 3349 } 3350 RValue EmitCall(QualType FnType, const CGCallee &Callee, const CallExpr *E, 3351 ReturnValueSlot ReturnValue, llvm::Value *Chain = nullptr); 3352 RValue EmitCallExpr(const CallExpr *E, 3353 ReturnValueSlot ReturnValue = ReturnValueSlot()); 3354 RValue EmitSimpleCallExpr(const CallExpr *E, ReturnValueSlot ReturnValue); 3355 CGCallee EmitCallee(const Expr *E); 3356 3357 void checkTargetFeatures(const CallExpr *E, const FunctionDecl *TargetDecl); 3358 3359 llvm::CallInst *EmitRuntimeCall(llvm::Value *callee, 3360 const Twine &name = ""); 3361 llvm::CallInst *EmitRuntimeCall(llvm::Value *callee, 3362 ArrayRef<llvm::Value*> args, 3363 const Twine &name = ""); 3364 llvm::CallInst *EmitNounwindRuntimeCall(llvm::Value *callee, 3365 const Twine &name = ""); 3366 llvm::CallInst *EmitNounwindRuntimeCall(llvm::Value *callee, 3367 ArrayRef<llvm::Value*> args, 3368 const Twine &name = ""); 3369 3370 llvm::CallSite EmitCallOrInvoke(llvm::Value *Callee, 3371 ArrayRef<llvm::Value *> Args, 3372 const Twine &Name = ""); 3373 llvm::CallSite EmitRuntimeCallOrInvoke(llvm::Value *callee, 3374 ArrayRef<llvm::Value*> args, 3375 const Twine &name = ""); 3376 llvm::CallSite EmitRuntimeCallOrInvoke(llvm::Value *callee, 3377 const Twine &name = ""); 3378 void EmitNoreturnRuntimeCallOrInvoke(llvm::Value *callee, 3379 ArrayRef<llvm::Value*> args); 3380 3381 CGCallee BuildAppleKextVirtualCall(const CXXMethodDecl *MD, 3382 NestedNameSpecifier *Qual, 3383 llvm::Type *Ty); 3384 3385 CGCallee BuildAppleKextVirtualDestructorCall(const CXXDestructorDecl *DD, 3386 CXXDtorType Type, 3387 const CXXRecordDecl *RD); 3388 3389 RValue 3390 EmitCXXMemberOrOperatorCall(const CXXMethodDecl *Method, 3391 const CGCallee &Callee, 3392 ReturnValueSlot ReturnValue, llvm::Value *This, 3393 llvm::Value *ImplicitParam, 3394 QualType ImplicitParamTy, const CallExpr *E, 3395 CallArgList *RtlArgs); 3396 RValue EmitCXXDestructorCall(const CXXDestructorDecl *DD, 3397 const CGCallee &Callee, 3398 llvm::Value *This, llvm::Value *ImplicitParam, 3399 QualType ImplicitParamTy, const CallExpr *E, 3400 StructorType Type); 3401 RValue EmitCXXMemberCallExpr(const CXXMemberCallExpr *E, 3402 ReturnValueSlot ReturnValue); 3403 RValue EmitCXXMemberOrOperatorMemberCallExpr(const CallExpr *CE, 3404 const CXXMethodDecl *MD, 3405 ReturnValueSlot ReturnValue, 3406 bool HasQualifier, 3407 NestedNameSpecifier *Qualifier, 3408 bool IsArrow, const Expr *Base); 3409 // Compute the object pointer. 3410 Address EmitCXXMemberDataPointerAddress(const Expr *E, Address base, 3411 llvm::Value *memberPtr, 3412 const MemberPointerType *memberPtrType, 3413 LValueBaseInfo *BaseInfo = nullptr, 3414 TBAAAccessInfo *TBAAInfo = nullptr); 3415 RValue EmitCXXMemberPointerCallExpr(const CXXMemberCallExpr *E, 3416 ReturnValueSlot ReturnValue); 3417 3418 RValue EmitCXXOperatorMemberCallExpr(const CXXOperatorCallExpr *E, 3419 const CXXMethodDecl *MD, 3420 ReturnValueSlot ReturnValue); 3421 RValue EmitCXXPseudoDestructorExpr(const CXXPseudoDestructorExpr *E); 3422 3423 RValue EmitCUDAKernelCallExpr(const CUDAKernelCallExpr *E, 3424 ReturnValueSlot ReturnValue); 3425 3426 RValue EmitNVPTXDevicePrintfCallExpr(const CallExpr *E, 3427 ReturnValueSlot ReturnValue); 3428 3429 RValue EmitBuiltinExpr(const FunctionDecl *FD, 3430 unsigned BuiltinID, const CallExpr *E, 3431 ReturnValueSlot ReturnValue); 3432 3433 /// Emit IR for __builtin_os_log_format. 3434 RValue emitBuiltinOSLogFormat(const CallExpr &E); 3435 3436 llvm::Function *generateBuiltinOSLogHelperFunction( 3437 const analyze_os_log::OSLogBufferLayout &Layout, 3438 CharUnits BufferAlignment); 3439 3440 RValue EmitBlockCallExpr(const CallExpr *E, ReturnValueSlot ReturnValue); 3441 3442 /// EmitTargetBuiltinExpr - Emit the given builtin call. Returns 0 if the call 3443 /// is unhandled by the current target. 3444 llvm::Value *EmitTargetBuiltinExpr(unsigned BuiltinID, const CallExpr *E); 3445 3446 llvm::Value *EmitAArch64CompareBuiltinExpr(llvm::Value *Op, llvm::Type *Ty, 3447 const llvm::CmpInst::Predicate Fp, 3448 const llvm::CmpInst::Predicate Ip, 3449 const llvm::Twine &Name = ""); 3450 llvm::Value *EmitARMBuiltinExpr(unsigned BuiltinID, const CallExpr *E, 3451 llvm::Triple::ArchType Arch); 3452 3453 llvm::Value *EmitCommonNeonBuiltinExpr(unsigned BuiltinID, 3454 unsigned LLVMIntrinsic, 3455 unsigned AltLLVMIntrinsic, 3456 const char *NameHint, 3457 unsigned Modifier, 3458 const CallExpr *E, 3459 SmallVectorImpl<llvm::Value *> &Ops, 3460 Address PtrOp0, Address PtrOp1, 3461 llvm::Triple::ArchType Arch); 3462 llvm::Function *LookupNeonLLVMIntrinsic(unsigned IntrinsicID, 3463 unsigned Modifier, llvm::Type *ArgTy, 3464 const CallExpr *E); 3465 llvm::Value *EmitNeonCall(llvm::Function *F, 3466 SmallVectorImpl<llvm::Value*> &O, 3467 const char *name, 3468 unsigned shift = 0, bool rightshift = false); 3469 llvm::Value *EmitNeonSplat(llvm::Value *V, llvm::Constant *Idx); 3470 llvm::Value *EmitNeonShiftVector(llvm::Value *V, llvm::Type *Ty, 3471 bool negateForRightShift); 3472 llvm::Value *EmitNeonRShiftImm(llvm::Value *Vec, llvm::Value *Amt, 3473 llvm::Type *Ty, bool usgn, const char *name); 3474 llvm::Value *vectorWrapScalar16(llvm::Value *Op); 3475 llvm::Value *EmitAArch64BuiltinExpr(unsigned BuiltinID, const CallExpr *E, 3476 llvm::Triple::ArchType Arch); 3477 3478 llvm::Value *BuildVector(ArrayRef<llvm::Value*> Ops); 3479 llvm::Value *EmitX86BuiltinExpr(unsigned BuiltinID, const CallExpr *E); 3480 llvm::Value *EmitPPCBuiltinExpr(unsigned BuiltinID, const CallExpr *E); 3481 llvm::Value *EmitAMDGPUBuiltinExpr(unsigned BuiltinID, const CallExpr *E); 3482 llvm::Value *EmitSystemZBuiltinExpr(unsigned BuiltinID, const CallExpr *E); 3483 llvm::Value *EmitNVPTXBuiltinExpr(unsigned BuiltinID, const CallExpr *E); 3484 llvm::Value *EmitWebAssemblyBuiltinExpr(unsigned BuiltinID, 3485 const CallExpr *E); 3486 llvm::Value *EmitHexagonBuiltinExpr(unsigned BuiltinID, const CallExpr *E); 3487 3488 private: 3489 enum class MSVCIntrin; 3490 3491 public: 3492 llvm::Value *EmitMSVCBuiltinExpr(MSVCIntrin BuiltinID, const CallExpr *E); 3493 3494 llvm::Value *EmitBuiltinAvailable(ArrayRef<llvm::Value *> Args); 3495 3496 llvm::Value *EmitObjCProtocolExpr(const ObjCProtocolExpr *E); 3497 llvm::Value *EmitObjCStringLiteral(const ObjCStringLiteral *E); 3498 llvm::Value *EmitObjCBoxedExpr(const ObjCBoxedExpr *E); 3499 llvm::Value *EmitObjCArrayLiteral(const ObjCArrayLiteral *E); 3500 llvm::Value *EmitObjCDictionaryLiteral(const ObjCDictionaryLiteral *E); 3501 llvm::Value *EmitObjCCollectionLiteral(const Expr *E, 3502 const ObjCMethodDecl *MethodWithObjects); 3503 llvm::Value *EmitObjCSelectorExpr(const ObjCSelectorExpr *E); 3504 RValue EmitObjCMessageExpr(const ObjCMessageExpr *E, 3505 ReturnValueSlot Return = ReturnValueSlot()); 3506 3507 /// Retrieves the default cleanup kind for an ARC cleanup. 3508 /// Except under -fobjc-arc-eh, ARC cleanups are normal-only. 3509 CleanupKind getARCCleanupKind() { 3510 return CGM.getCodeGenOpts().ObjCAutoRefCountExceptions 3511 ? NormalAndEHCleanup : NormalCleanup; 3512 } 3513 3514 // ARC primitives. 3515 void EmitARCInitWeak(Address addr, llvm::Value *value); 3516 void EmitARCDestroyWeak(Address addr); 3517 llvm::Value *EmitARCLoadWeak(Address addr); 3518 llvm::Value *EmitARCLoadWeakRetained(Address addr); 3519 llvm::Value *EmitARCStoreWeak(Address addr, llvm::Value *value, bool ignored); 3520 void EmitARCCopyWeak(Address dst, Address src); 3521 void EmitARCMoveWeak(Address dst, Address src); 3522 llvm::Value *EmitARCRetainAutorelease(QualType type, llvm::Value *value); 3523 llvm::Value *EmitARCRetainAutoreleaseNonBlock(llvm::Value *value); 3524 llvm::Value *EmitARCStoreStrong(LValue lvalue, llvm::Value *value, 3525 bool resultIgnored); 3526 llvm::Value *EmitARCStoreStrongCall(Address addr, llvm::Value *value, 3527 bool resultIgnored); 3528 llvm::Value *EmitARCRetain(QualType type, llvm::Value *value); 3529 llvm::Value *EmitARCRetainNonBlock(llvm::Value *value); 3530 llvm::Value *EmitARCRetainBlock(llvm::Value *value, bool mandatory); 3531 void EmitARCDestroyStrong(Address addr, ARCPreciseLifetime_t precise); 3532 void EmitARCRelease(llvm::Value *value, ARCPreciseLifetime_t precise); 3533 llvm::Value *EmitARCAutorelease(llvm::Value *value); 3534 llvm::Value *EmitARCAutoreleaseReturnValue(llvm::Value *value); 3535 llvm::Value *EmitARCRetainAutoreleaseReturnValue(llvm::Value *value); 3536 llvm::Value *EmitARCRetainAutoreleasedReturnValue(llvm::Value *value); 3537 llvm::Value *EmitARCUnsafeClaimAutoreleasedReturnValue(llvm::Value *value); 3538 3539 std::pair<LValue,llvm::Value*> 3540 EmitARCStoreAutoreleasing(const BinaryOperator *e); 3541 std::pair<LValue,llvm::Value*> 3542 EmitARCStoreStrong(const BinaryOperator *e, bool ignored); 3543 std::pair<LValue,llvm::Value*> 3544 EmitARCStoreUnsafeUnretained(const BinaryOperator *e, bool ignored); 3545 3546 llvm::Value *EmitObjCThrowOperand(const Expr *expr); 3547 llvm::Value *EmitObjCConsumeObject(QualType T, llvm::Value *Ptr); 3548 llvm::Value *EmitObjCExtendObjectLifetime(QualType T, llvm::Value *Ptr); 3549 3550 llvm::Value *EmitARCExtendBlockObject(const Expr *expr); 3551 llvm::Value *EmitARCReclaimReturnedObject(const Expr *e, 3552 bool allowUnsafeClaim); 3553 llvm::Value *EmitARCRetainScalarExpr(const Expr *expr); 3554 llvm::Value *EmitARCRetainAutoreleaseScalarExpr(const Expr *expr); 3555 llvm::Value *EmitARCUnsafeUnretainedScalarExpr(const Expr *expr); 3556 3557 void EmitARCIntrinsicUse(ArrayRef<llvm::Value*> values); 3558 3559 static Destroyer destroyARCStrongImprecise; 3560 static Destroyer destroyARCStrongPrecise; 3561 static Destroyer destroyARCWeak; 3562 static Destroyer emitARCIntrinsicUse; 3563 3564 void EmitObjCAutoreleasePoolPop(llvm::Value *Ptr); 3565 llvm::Value *EmitObjCAutoreleasePoolPush(); 3566 llvm::Value *EmitObjCMRRAutoreleasePoolPush(); 3567 void EmitObjCAutoreleasePoolCleanup(llvm::Value *Ptr); 3568 void EmitObjCMRRAutoreleasePoolPop(llvm::Value *Ptr); 3569 3570 /// \brief Emits a reference binding to the passed in expression. 3571 RValue EmitReferenceBindingToExpr(const Expr *E); 3572 3573 //===--------------------------------------------------------------------===// 3574 // Expression Emission 3575 //===--------------------------------------------------------------------===// 3576 3577 // Expressions are broken into three classes: scalar, complex, aggregate. 3578 3579 /// EmitScalarExpr - Emit the computation of the specified expression of LLVM 3580 /// scalar type, returning the result. 3581 llvm::Value *EmitScalarExpr(const Expr *E , bool IgnoreResultAssign = false); 3582 3583 /// Emit a conversion from the specified type to the specified destination 3584 /// type, both of which are LLVM scalar types. 3585 llvm::Value *EmitScalarConversion(llvm::Value *Src, QualType SrcTy, 3586 QualType DstTy, SourceLocation Loc); 3587 3588 /// Emit a conversion from the specified complex type to the specified 3589 /// destination type, where the destination type is an LLVM scalar type. 3590 llvm::Value *EmitComplexToScalarConversion(ComplexPairTy Src, QualType SrcTy, 3591 QualType DstTy, 3592 SourceLocation Loc); 3593 3594 /// EmitAggExpr - Emit the computation of the specified expression 3595 /// of aggregate type. The result is computed into the given slot, 3596 /// which may be null to indicate that the value is not needed. 3597 void EmitAggExpr(const Expr *E, AggValueSlot AS); 3598 3599 /// EmitAggExprToLValue - Emit the computation of the specified expression of 3600 /// aggregate type into a temporary LValue. 3601 LValue EmitAggExprToLValue(const Expr *E); 3602 3603 /// EmitExtendGCLifetime - Given a pointer to an Objective-C object, 3604 /// make sure it survives garbage collection until this point. 3605 void EmitExtendGCLifetime(llvm::Value *object); 3606 3607 /// EmitComplexExpr - Emit the computation of the specified expression of 3608 /// complex type, returning the result. 3609 ComplexPairTy EmitComplexExpr(const Expr *E, 3610 bool IgnoreReal = false, 3611 bool IgnoreImag = false); 3612 3613 /// EmitComplexExprIntoLValue - Emit the given expression of complex 3614 /// type and place its result into the specified l-value. 3615 void EmitComplexExprIntoLValue(const Expr *E, LValue dest, bool isInit); 3616 3617 /// EmitStoreOfComplex - Store a complex number into the specified l-value. 3618 void EmitStoreOfComplex(ComplexPairTy V, LValue dest, bool isInit); 3619 3620 /// EmitLoadOfComplex - Load a complex number from the specified l-value. 3621 ComplexPairTy EmitLoadOfComplex(LValue src, SourceLocation loc); 3622 3623 Address emitAddrOfRealComponent(Address complex, QualType complexType); 3624 Address emitAddrOfImagComponent(Address complex, QualType complexType); 3625 3626 /// AddInitializerToStaticVarDecl - Add the initializer for 'D' to the 3627 /// global variable that has already been created for it. If the initializer 3628 /// has a different type than GV does, this may free GV and return a different 3629 /// one. Otherwise it just returns GV. 3630 llvm::GlobalVariable * 3631 AddInitializerToStaticVarDecl(const VarDecl &D, 3632 llvm::GlobalVariable *GV); 3633 3634 3635 /// EmitCXXGlobalVarDeclInit - Create the initializer for a C++ 3636 /// variable with global storage. 3637 void EmitCXXGlobalVarDeclInit(const VarDecl &D, llvm::Constant *DeclPtr, 3638 bool PerformInit); 3639 3640 llvm::Constant *createAtExitStub(const VarDecl &VD, llvm::Constant *Dtor, 3641 llvm::Constant *Addr); 3642 3643 /// Call atexit() with a function that passes the given argument to 3644 /// the given function. 3645 void registerGlobalDtorWithAtExit(const VarDecl &D, llvm::Constant *fn, 3646 llvm::Constant *addr); 3647 3648 /// Emit code in this function to perform a guarded variable 3649 /// initialization. Guarded initializations are used when it's not 3650 /// possible to prove that an initialization will be done exactly 3651 /// once, e.g. with a static local variable or a static data member 3652 /// of a class template. 3653 void EmitCXXGuardedInit(const VarDecl &D, llvm::GlobalVariable *DeclPtr, 3654 bool PerformInit); 3655 3656 enum class GuardKind { VariableGuard, TlsGuard }; 3657 3658 /// Emit a branch to select whether or not to perform guarded initialization. 3659 void EmitCXXGuardedInitBranch(llvm::Value *NeedsInit, 3660 llvm::BasicBlock *InitBlock, 3661 llvm::BasicBlock *NoInitBlock, 3662 GuardKind Kind, const VarDecl *D); 3663 3664 /// GenerateCXXGlobalInitFunc - Generates code for initializing global 3665 /// variables. 3666 void GenerateCXXGlobalInitFunc(llvm::Function *Fn, 3667 ArrayRef<llvm::Function *> CXXThreadLocals, 3668 Address Guard = Address::invalid()); 3669 3670 /// GenerateCXXGlobalDtorsFunc - Generates code for destroying global 3671 /// variables. 3672 void GenerateCXXGlobalDtorsFunc( 3673 llvm::Function *Fn, 3674 const std::vector<std::pair<llvm::WeakTrackingVH, llvm::Constant *>> 3675 &DtorsAndObjects); 3676 3677 void GenerateCXXGlobalVarDeclInitFunc(llvm::Function *Fn, 3678 const VarDecl *D, 3679 llvm::GlobalVariable *Addr, 3680 bool PerformInit); 3681 3682 void EmitCXXConstructExpr(const CXXConstructExpr *E, AggValueSlot Dest); 3683 3684 void EmitSynthesizedCXXCopyCtor(Address Dest, Address Src, const Expr *Exp); 3685 3686 void enterFullExpression(const ExprWithCleanups *E) { 3687 if (E->getNumObjects() == 0) return; 3688 enterNonTrivialFullExpression(E); 3689 } 3690 void enterNonTrivialFullExpression(const ExprWithCleanups *E); 3691 3692 void EmitCXXThrowExpr(const CXXThrowExpr *E, bool KeepInsertionPoint = true); 3693 3694 void EmitLambdaExpr(const LambdaExpr *E, AggValueSlot Dest); 3695 3696 RValue EmitAtomicExpr(AtomicExpr *E); 3697 3698 //===--------------------------------------------------------------------===// 3699 // Annotations Emission 3700 //===--------------------------------------------------------------------===// 3701 3702 /// Emit an annotation call (intrinsic or builtin). 3703 llvm::Value *EmitAnnotationCall(llvm::Value *AnnotationFn, 3704 llvm::Value *AnnotatedVal, 3705 StringRef AnnotationStr, 3706 SourceLocation Location); 3707 3708 /// Emit local annotations for the local variable V, declared by D. 3709 void EmitVarAnnotations(const VarDecl *D, llvm::Value *V); 3710 3711 /// Emit field annotations for the given field & value. Returns the 3712 /// annotation result. 3713 Address EmitFieldAnnotations(const FieldDecl *D, Address V); 3714 3715 //===--------------------------------------------------------------------===// 3716 // Internal Helpers 3717 //===--------------------------------------------------------------------===// 3718 3719 /// ContainsLabel - Return true if the statement contains a label in it. If 3720 /// this statement is not executed normally, it not containing a label means 3721 /// that we can just remove the code. 3722 static bool ContainsLabel(const Stmt *S, bool IgnoreCaseStmts = false); 3723 3724 /// containsBreak - Return true if the statement contains a break out of it. 3725 /// If the statement (recursively) contains a switch or loop with a break 3726 /// inside of it, this is fine. 3727 static bool containsBreak(const Stmt *S); 3728 3729 /// Determine if the given statement might introduce a declaration into the 3730 /// current scope, by being a (possibly-labelled) DeclStmt. 3731 static bool mightAddDeclToScope(const Stmt *S); 3732 3733 /// ConstantFoldsToSimpleInteger - If the specified expression does not fold 3734 /// to a constant, or if it does but contains a label, return false. If it 3735 /// constant folds return true and set the boolean result in Result. 3736 bool ConstantFoldsToSimpleInteger(const Expr *Cond, bool &Result, 3737 bool AllowLabels = false); 3738 3739 /// ConstantFoldsToSimpleInteger - If the specified expression does not fold 3740 /// to a constant, or if it does but contains a label, return false. If it 3741 /// constant folds return true and set the folded value. 3742 bool ConstantFoldsToSimpleInteger(const Expr *Cond, llvm::APSInt &Result, 3743 bool AllowLabels = false); 3744 3745 /// EmitBranchOnBoolExpr - Emit a branch on a boolean condition (e.g. for an 3746 /// if statement) to the specified blocks. Based on the condition, this might 3747 /// try to simplify the codegen of the conditional based on the branch. 3748 /// TrueCount should be the number of times we expect the condition to 3749 /// evaluate to true based on PGO data. 3750 void EmitBranchOnBoolExpr(const Expr *Cond, llvm::BasicBlock *TrueBlock, 3751 llvm::BasicBlock *FalseBlock, uint64_t TrueCount); 3752 3753 /// Given an assignment `*LHS = RHS`, emit a test that checks if \p RHS is 3754 /// nonnull, if \p LHS is marked _Nonnull. 3755 void EmitNullabilityCheck(LValue LHS, llvm::Value *RHS, SourceLocation Loc); 3756 3757 /// An enumeration which makes it easier to specify whether or not an 3758 /// operation is a subtraction. 3759 enum { NotSubtraction = false, IsSubtraction = true }; 3760 3761 /// Same as IRBuilder::CreateInBoundsGEP, but additionally emits a check to 3762 /// detect undefined behavior when the pointer overflow sanitizer is enabled. 3763 /// \p SignedIndices indicates whether any of the GEP indices are signed. 3764 /// \p IsSubtraction indicates whether the expression used to form the GEP 3765 /// is a subtraction. 3766 llvm::Value *EmitCheckedInBoundsGEP(llvm::Value *Ptr, 3767 ArrayRef<llvm::Value *> IdxList, 3768 bool SignedIndices, 3769 bool IsSubtraction, 3770 SourceLocation Loc, 3771 const Twine &Name = ""); 3772 3773 /// Specifies which type of sanitizer check to apply when handling a 3774 /// particular builtin. 3775 enum BuiltinCheckKind { 3776 BCK_CTZPassedZero, 3777 BCK_CLZPassedZero, 3778 }; 3779 3780 /// Emits an argument for a call to a builtin. If the builtin sanitizer is 3781 /// enabled, a runtime check specified by \p Kind is also emitted. 3782 llvm::Value *EmitCheckedArgForBuiltin(const Expr *E, BuiltinCheckKind Kind); 3783 3784 /// \brief Emit a description of a type in a format suitable for passing to 3785 /// a runtime sanitizer handler. 3786 llvm::Constant *EmitCheckTypeDescriptor(QualType T); 3787 3788 /// \brief Convert a value into a format suitable for passing to a runtime 3789 /// sanitizer handler. 3790 llvm::Value *EmitCheckValue(llvm::Value *V); 3791 3792 /// \brief Emit a description of a source location in a format suitable for 3793 /// passing to a runtime sanitizer handler. 3794 llvm::Constant *EmitCheckSourceLocation(SourceLocation Loc); 3795 3796 /// \brief Create a basic block that will call a handler function in a 3797 /// sanitizer runtime with the provided arguments, and create a conditional 3798 /// branch to it. 3799 void EmitCheck(ArrayRef<std::pair<llvm::Value *, SanitizerMask>> Checked, 3800 SanitizerHandler Check, ArrayRef<llvm::Constant *> StaticArgs, 3801 ArrayRef<llvm::Value *> DynamicArgs); 3802 3803 /// \brief Emit a slow path cross-DSO CFI check which calls __cfi_slowpath 3804 /// if Cond if false. 3805 void EmitCfiSlowPathCheck(SanitizerMask Kind, llvm::Value *Cond, 3806 llvm::ConstantInt *TypeId, llvm::Value *Ptr, 3807 ArrayRef<llvm::Constant *> StaticArgs); 3808 3809 /// Emit a reached-unreachable diagnostic if \p Loc is valid and runtime 3810 /// checking is enabled. Otherwise, just emit an unreachable instruction. 3811 void EmitUnreachable(SourceLocation Loc); 3812 3813 /// \brief Create a basic block that will call the trap intrinsic, and emit a 3814 /// conditional branch to it, for the -ftrapv checks. 3815 void EmitTrapCheck(llvm::Value *Checked); 3816 3817 /// \brief Emit a call to trap or debugtrap and attach function attribute 3818 /// "trap-func-name" if specified. 3819 llvm::CallInst *EmitTrapCall(llvm::Intrinsic::ID IntrID); 3820 3821 /// \brief Emit a stub for the cross-DSO CFI check function. 3822 void EmitCfiCheckStub(); 3823 3824 /// \brief Emit a cross-DSO CFI failure handling function. 3825 void EmitCfiCheckFail(); 3826 3827 /// \brief Create a check for a function parameter that may potentially be 3828 /// declared as non-null. 3829 void EmitNonNullArgCheck(RValue RV, QualType ArgType, SourceLocation ArgLoc, 3830 AbstractCallee AC, unsigned ParmNum); 3831 3832 /// EmitCallArg - Emit a single call argument. 3833 void EmitCallArg(CallArgList &args, const Expr *E, QualType ArgType); 3834 3835 /// EmitDelegateCallArg - We are performing a delegate call; that 3836 /// is, the current function is delegating to another one. Produce 3837 /// a r-value suitable for passing the given parameter. 3838 void EmitDelegateCallArg(CallArgList &args, const VarDecl *param, 3839 SourceLocation loc); 3840 3841 /// SetFPAccuracy - Set the minimum required accuracy of the given floating 3842 /// point operation, expressed as the maximum relative error in ulp. 3843 void SetFPAccuracy(llvm::Value *Val, float Accuracy); 3844 3845 private: 3846 llvm::MDNode *getRangeForLoadFromType(QualType Ty); 3847 void EmitReturnOfRValue(RValue RV, QualType Ty); 3848 3849 void deferPlaceholderReplacement(llvm::Instruction *Old, llvm::Value *New); 3850 3851 llvm::SmallVector<std::pair<llvm::Instruction *, llvm::Value *>, 4> 3852 DeferredReplacements; 3853 3854 /// Set the address of a local variable. 3855 void setAddrOfLocalVar(const VarDecl *VD, Address Addr) { 3856 assert(!LocalDeclMap.count(VD) && "Decl already exists in LocalDeclMap!"); 3857 LocalDeclMap.insert({VD, Addr}); 3858 } 3859 3860 /// ExpandTypeFromArgs - Reconstruct a structure of type \arg Ty 3861 /// from function arguments into \arg Dst. See ABIArgInfo::Expand. 3862 /// 3863 /// \param AI - The first function argument of the expansion. 3864 void ExpandTypeFromArgs(QualType Ty, LValue Dst, 3865 SmallVectorImpl<llvm::Value *>::iterator &AI); 3866 3867 /// ExpandTypeToArgs - Expand an RValue \arg RV, with the LLVM type for \arg 3868 /// Ty, into individual arguments on the provided vector \arg IRCallArgs, 3869 /// starting at index \arg IRCallArgPos. See ABIArgInfo::Expand. 3870 void ExpandTypeToArgs(QualType Ty, RValue RV, llvm::FunctionType *IRFuncTy, 3871 SmallVectorImpl<llvm::Value *> &IRCallArgs, 3872 unsigned &IRCallArgPos); 3873 3874 llvm::Value* EmitAsmInput(const TargetInfo::ConstraintInfo &Info, 3875 const Expr *InputExpr, std::string &ConstraintStr); 3876 3877 llvm::Value* EmitAsmInputLValue(const TargetInfo::ConstraintInfo &Info, 3878 LValue InputValue, QualType InputType, 3879 std::string &ConstraintStr, 3880 SourceLocation Loc); 3881 3882 /// \brief Attempts to statically evaluate the object size of E. If that 3883 /// fails, emits code to figure the size of E out for us. This is 3884 /// pass_object_size aware. 3885 /// 3886 /// If EmittedExpr is non-null, this will use that instead of re-emitting E. 3887 llvm::Value *evaluateOrEmitBuiltinObjectSize(const Expr *E, unsigned Type, 3888 llvm::IntegerType *ResType, 3889 llvm::Value *EmittedE); 3890 3891 /// \brief Emits the size of E, as required by __builtin_object_size. This 3892 /// function is aware of pass_object_size parameters, and will act accordingly 3893 /// if E is a parameter with the pass_object_size attribute. 3894 llvm::Value *emitBuiltinObjectSize(const Expr *E, unsigned Type, 3895 llvm::IntegerType *ResType, 3896 llvm::Value *EmittedE); 3897 3898 public: 3899 #ifndef NDEBUG 3900 // Determine whether the given argument is an Objective-C method 3901 // that may have type parameters in its signature. 3902 static bool isObjCMethodWithTypeParams(const ObjCMethodDecl *method) { 3903 const DeclContext *dc = method->getDeclContext(); 3904 if (const ObjCInterfaceDecl *classDecl= dyn_cast<ObjCInterfaceDecl>(dc)) { 3905 return classDecl->getTypeParamListAsWritten(); 3906 } 3907 3908 if (const ObjCCategoryDecl *catDecl = dyn_cast<ObjCCategoryDecl>(dc)) { 3909 return catDecl->getTypeParamList(); 3910 } 3911 3912 return false; 3913 } 3914 3915 template<typename T> 3916 static bool isObjCMethodWithTypeParams(const T *) { return false; } 3917 #endif 3918 3919 enum class EvaluationOrder { 3920 ///! No language constraints on evaluation order. 3921 Default, 3922 ///! Language semantics require left-to-right evaluation. 3923 ForceLeftToRight, 3924 ///! Language semantics require right-to-left evaluation. 3925 ForceRightToLeft 3926 }; 3927 3928 /// EmitCallArgs - Emit call arguments for a function. 3929 template <typename T> 3930 void EmitCallArgs(CallArgList &Args, const T *CallArgTypeInfo, 3931 llvm::iterator_range<CallExpr::const_arg_iterator> ArgRange, 3932 AbstractCallee AC = AbstractCallee(), 3933 unsigned ParamsToSkip = 0, 3934 EvaluationOrder Order = EvaluationOrder::Default) { 3935 SmallVector<QualType, 16> ArgTypes; 3936 CallExpr::const_arg_iterator Arg = ArgRange.begin(); 3937 3938 assert((ParamsToSkip == 0 || CallArgTypeInfo) && 3939 "Can't skip parameters if type info is not provided"); 3940 if (CallArgTypeInfo) { 3941 #ifndef NDEBUG 3942 bool isGenericMethod = isObjCMethodWithTypeParams(CallArgTypeInfo); 3943 #endif 3944 3945 // First, use the argument types that the type info knows about 3946 for (auto I = CallArgTypeInfo->param_type_begin() + ParamsToSkip, 3947 E = CallArgTypeInfo->param_type_end(); 3948 I != E; ++I, ++Arg) { 3949 assert(Arg != ArgRange.end() && "Running over edge of argument list!"); 3950 assert((isGenericMethod || 3951 ((*I)->isVariablyModifiedType() || 3952 (*I).getNonReferenceType()->isObjCRetainableType() || 3953 getContext() 3954 .getCanonicalType((*I).getNonReferenceType()) 3955 .getTypePtr() == 3956 getContext() 3957 .getCanonicalType((*Arg)->getType()) 3958 .getTypePtr())) && 3959 "type mismatch in call argument!"); 3960 ArgTypes.push_back(*I); 3961 } 3962 } 3963 3964 // Either we've emitted all the call args, or we have a call to variadic 3965 // function. 3966 assert((Arg == ArgRange.end() || !CallArgTypeInfo || 3967 CallArgTypeInfo->isVariadic()) && 3968 "Extra arguments in non-variadic function!"); 3969 3970 // If we still have any arguments, emit them using the type of the argument. 3971 for (auto *A : llvm::make_range(Arg, ArgRange.end())) 3972 ArgTypes.push_back(CallArgTypeInfo ? getVarArgType(A) : A->getType()); 3973 3974 EmitCallArgs(Args, ArgTypes, ArgRange, AC, ParamsToSkip, Order); 3975 } 3976 3977 void EmitCallArgs(CallArgList &Args, ArrayRef<QualType> ArgTypes, 3978 llvm::iterator_range<CallExpr::const_arg_iterator> ArgRange, 3979 AbstractCallee AC = AbstractCallee(), 3980 unsigned ParamsToSkip = 0, 3981 EvaluationOrder Order = EvaluationOrder::Default); 3982 3983 /// EmitPointerWithAlignment - Given an expression with a pointer type, 3984 /// emit the value and compute our best estimate of the alignment of the 3985 /// pointee. 3986 /// 3987 /// \param BaseInfo - If non-null, this will be initialized with 3988 /// information about the source of the alignment and the may-alias 3989 /// attribute. Note that this function will conservatively fall back on 3990 /// the type when it doesn't recognize the expression and may-alias will 3991 /// be set to false. 3992 /// 3993 /// One reasonable way to use this information is when there's a language 3994 /// guarantee that the pointer must be aligned to some stricter value, and 3995 /// we're simply trying to ensure that sufficiently obvious uses of under- 3996 /// aligned objects don't get miscompiled; for example, a placement new 3997 /// into the address of a local variable. In such a case, it's quite 3998 /// reasonable to just ignore the returned alignment when it isn't from an 3999 /// explicit source. 4000 Address EmitPointerWithAlignment(const Expr *Addr, 4001 LValueBaseInfo *BaseInfo = nullptr, 4002 TBAAAccessInfo *TBAAInfo = nullptr); 4003 4004 /// If \p E references a parameter with pass_object_size info or a constant 4005 /// array size modifier, emit the object size divided by the size of \p EltTy. 4006 /// Otherwise return null. 4007 llvm::Value *LoadPassedObjectSize(const Expr *E, QualType EltTy); 4008 4009 void EmitSanitizerStatReport(llvm::SanitizerStatKind SSK); 4010 4011 struct MultiVersionResolverOption { 4012 llvm::Function *Function; 4013 TargetAttr::ParsedTargetAttr ParsedAttribute; 4014 unsigned Priority; 4015 MultiVersionResolverOption(const TargetInfo &TargInfo, llvm::Function *F, 4016 const clang::TargetAttr::ParsedTargetAttr &PT) 4017 : Function(F), ParsedAttribute(PT), Priority(0u) { 4018 for (StringRef Feat : PT.Features) 4019 Priority = std::max(Priority, 4020 TargInfo.multiVersionSortPriority(Feat.substr(1))); 4021 4022 if (!PT.Architecture.empty()) 4023 Priority = std::max(Priority, 4024 TargInfo.multiVersionSortPriority(PT.Architecture)); 4025 } 4026 4027 bool operator>(const MultiVersionResolverOption &Other) const { 4028 return Priority > Other.Priority; 4029 } 4030 }; 4031 void EmitMultiVersionResolver(llvm::Function *Resolver, 4032 ArrayRef<MultiVersionResolverOption> Options); 4033 4034 private: 4035 QualType getVarArgType(const Expr *Arg); 4036 4037 void EmitDeclMetadata(); 4038 4039 BlockByrefHelpers *buildByrefHelpers(llvm::StructType &byrefType, 4040 const AutoVarEmission &emission); 4041 4042 void AddObjCARCExceptionMetadata(llvm::Instruction *Inst); 4043 4044 llvm::Value *GetValueForARMHint(unsigned BuiltinID); 4045 llvm::Value *EmitX86CpuIs(const CallExpr *E); 4046 llvm::Value *EmitX86CpuIs(StringRef CPUStr); 4047 llvm::Value *EmitX86CpuSupports(const CallExpr *E); 4048 llvm::Value *EmitX86CpuSupports(ArrayRef<StringRef> FeatureStrs); 4049 llvm::Value *EmitX86CpuInit(); 4050 llvm::Value *FormResolverCondition(const MultiVersionResolverOption &RO); 4051 }; 4052 4053 /// Helper class with most of the code for saving a value for a 4054 /// conditional expression cleanup. 4055 struct DominatingLLVMValue { 4056 typedef llvm::PointerIntPair<llvm::Value*, 1, bool> saved_type; 4057 4058 /// Answer whether the given value needs extra work to be saved. 4059 static bool needsSaving(llvm::Value *value) { 4060 // If it's not an instruction, we don't need to save. 4061 if (!isa<llvm::Instruction>(value)) return false; 4062 4063 // If it's an instruction in the entry block, we don't need to save. 4064 llvm::BasicBlock *block = cast<llvm::Instruction>(value)->getParent(); 4065 return (block != &block->getParent()->getEntryBlock()); 4066 } 4067 4068 /// Try to save the given value. 4069 static saved_type save(CodeGenFunction &CGF, llvm::Value *value) { 4070 if (!needsSaving(value)) return saved_type(value, false); 4071 4072 // Otherwise, we need an alloca. 4073 auto align = CharUnits::fromQuantity( 4074 CGF.CGM.getDataLayout().getPrefTypeAlignment(value->getType())); 4075 Address alloca = 4076 CGF.CreateTempAlloca(value->getType(), align, "cond-cleanup.save"); 4077 CGF.Builder.CreateStore(value, alloca); 4078 4079 return saved_type(alloca.getPointer(), true); 4080 } 4081 4082 static llvm::Value *restore(CodeGenFunction &CGF, saved_type value) { 4083 // If the value says it wasn't saved, trust that it's still dominating. 4084 if (!value.getInt()) return value.getPointer(); 4085 4086 // Otherwise, it should be an alloca instruction, as set up in save(). 4087 auto alloca = cast<llvm::AllocaInst>(value.getPointer()); 4088 return CGF.Builder.CreateAlignedLoad(alloca, alloca->getAlignment()); 4089 } 4090 }; 4091 4092 /// A partial specialization of DominatingValue for llvm::Values that 4093 /// might be llvm::Instructions. 4094 template <class T> struct DominatingPointer<T,true> : DominatingLLVMValue { 4095 typedef T *type; 4096 static type restore(CodeGenFunction &CGF, saved_type value) { 4097 return static_cast<T*>(DominatingLLVMValue::restore(CGF, value)); 4098 } 4099 }; 4100 4101 /// A specialization of DominatingValue for Address. 4102 template <> struct DominatingValue<Address> { 4103 typedef Address type; 4104 4105 struct saved_type { 4106 DominatingLLVMValue::saved_type SavedValue; 4107 CharUnits Alignment; 4108 }; 4109 4110 static bool needsSaving(type value) { 4111 return DominatingLLVMValue::needsSaving(value.getPointer()); 4112 } 4113 static saved_type save(CodeGenFunction &CGF, type value) { 4114 return { DominatingLLVMValue::save(CGF, value.getPointer()), 4115 value.getAlignment() }; 4116 } 4117 static type restore(CodeGenFunction &CGF, saved_type value) { 4118 return Address(DominatingLLVMValue::restore(CGF, value.SavedValue), 4119 value.Alignment); 4120 } 4121 }; 4122 4123 /// A specialization of DominatingValue for RValue. 4124 template <> struct DominatingValue<RValue> { 4125 typedef RValue type; 4126 class saved_type { 4127 enum Kind { ScalarLiteral, ScalarAddress, AggregateLiteral, 4128 AggregateAddress, ComplexAddress }; 4129 4130 llvm::Value *Value; 4131 unsigned K : 3; 4132 unsigned Align : 29; 4133 saved_type(llvm::Value *v, Kind k, unsigned a = 0) 4134 : Value(v), K(k), Align(a) {} 4135 4136 public: 4137 static bool needsSaving(RValue value); 4138 static saved_type save(CodeGenFunction &CGF, RValue value); 4139 RValue restore(CodeGenFunction &CGF); 4140 4141 // implementations in CGCleanup.cpp 4142 }; 4143 4144 static bool needsSaving(type value) { 4145 return saved_type::needsSaving(value); 4146 } 4147 static saved_type save(CodeGenFunction &CGF, type value) { 4148 return saved_type::save(CGF, value); 4149 } 4150 static type restore(CodeGenFunction &CGF, saved_type value) { 4151 return value.restore(CGF); 4152 } 4153 }; 4154 4155 } // end namespace CodeGen 4156 } // end namespace clang 4157 4158 #endif 4159