1 //===-- CodeGenFunction.h - Per-Function state for LLVM CodeGen -*- C++ -*-===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This is the internal per-function state used for llvm translation.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #ifndef LLVM_CLANG_LIB_CODEGEN_CODEGENFUNCTION_H
15 #define LLVM_CLANG_LIB_CODEGEN_CODEGENFUNCTION_H
16 
17 #include "CGBuilder.h"
18 #include "CGDebugInfo.h"
19 #include "CGLoopInfo.h"
20 #include "CGValue.h"
21 #include "CodeGenModule.h"
22 #include "CodeGenPGO.h"
23 #include "EHScopeStack.h"
24 #include "VarBypassDetector.h"
25 #include "clang/AST/CharUnits.h"
26 #include "clang/AST/ExprCXX.h"
27 #include "clang/AST/ExprObjC.h"
28 #include "clang/AST/ExprOpenMP.h"
29 #include "clang/AST/Type.h"
30 #include "clang/Basic/ABI.h"
31 #include "clang/Basic/CapturedStmt.h"
32 #include "clang/Basic/OpenMPKinds.h"
33 #include "clang/Basic/TargetInfo.h"
34 #include "clang/Frontend/CodeGenOptions.h"
35 #include "llvm/ADT/ArrayRef.h"
36 #include "llvm/ADT/DenseMap.h"
37 #include "llvm/ADT/MapVector.h"
38 #include "llvm/ADT/SmallVector.h"
39 #include "llvm/IR/ValueHandle.h"
40 #include "llvm/Support/Debug.h"
41 #include "llvm/Transforms/Utils/SanitizerStats.h"
42 
43 namespace llvm {
44 class BasicBlock;
45 class LLVMContext;
46 class MDNode;
47 class Module;
48 class SwitchInst;
49 class Twine;
50 class Value;
51 class CallSite;
52 }
53 
54 namespace clang {
55 class ASTContext;
56 class BlockDecl;
57 class CXXDestructorDecl;
58 class CXXForRangeStmt;
59 class CXXTryStmt;
60 class Decl;
61 class LabelDecl;
62 class EnumConstantDecl;
63 class FunctionDecl;
64 class FunctionProtoType;
65 class LabelStmt;
66 class ObjCContainerDecl;
67 class ObjCInterfaceDecl;
68 class ObjCIvarDecl;
69 class ObjCMethodDecl;
70 class ObjCImplementationDecl;
71 class ObjCPropertyImplDecl;
72 class TargetInfo;
73 class VarDecl;
74 class ObjCForCollectionStmt;
75 class ObjCAtTryStmt;
76 class ObjCAtThrowStmt;
77 class ObjCAtSynchronizedStmt;
78 class ObjCAutoreleasePoolStmt;
79 
80 namespace analyze_os_log {
81 class OSLogBufferLayout;
82 }
83 
84 namespace CodeGen {
85 class CodeGenTypes;
86 class CGCallee;
87 class CGFunctionInfo;
88 class CGRecordLayout;
89 class CGBlockInfo;
90 class CGCXXABI;
91 class BlockByrefHelpers;
92 class BlockByrefInfo;
93 class BlockFlags;
94 class BlockFieldFlags;
95 class RegionCodeGenTy;
96 class TargetCodeGenInfo;
97 struct OMPTaskDataTy;
98 struct CGCoroData;
99 
100 /// The kind of evaluation to perform on values of a particular
101 /// type.  Basically, is the code in CGExprScalar, CGExprComplex, or
102 /// CGExprAgg?
103 ///
104 /// TODO: should vectors maybe be split out into their own thing?
105 enum TypeEvaluationKind {
106   TEK_Scalar,
107   TEK_Complex,
108   TEK_Aggregate
109 };
110 
111 #define LIST_SANITIZER_CHECKS                                                  \
112   SANITIZER_CHECK(AddOverflow, add_overflow, 0)                                \
113   SANITIZER_CHECK(BuiltinUnreachable, builtin_unreachable, 0)                  \
114   SANITIZER_CHECK(CFICheckFail, cfi_check_fail, 0)                             \
115   SANITIZER_CHECK(DivremOverflow, divrem_overflow, 0)                          \
116   SANITIZER_CHECK(DynamicTypeCacheMiss, dynamic_type_cache_miss, 0)            \
117   SANITIZER_CHECK(FloatCastOverflow, float_cast_overflow, 0)                   \
118   SANITIZER_CHECK(FunctionTypeMismatch, function_type_mismatch, 0)             \
119   SANITIZER_CHECK(InvalidBuiltin, invalid_builtin, 0)                          \
120   SANITIZER_CHECK(LoadInvalidValue, load_invalid_value, 0)                     \
121   SANITIZER_CHECK(MissingReturn, missing_return, 0)                            \
122   SANITIZER_CHECK(MulOverflow, mul_overflow, 0)                                \
123   SANITIZER_CHECK(NegateOverflow, negate_overflow, 0)                          \
124   SANITIZER_CHECK(NullabilityArg, nullability_arg, 0)                          \
125   SANITIZER_CHECK(NullabilityReturn, nullability_return, 1)                    \
126   SANITIZER_CHECK(NonnullArg, nonnull_arg, 0)                                  \
127   SANITIZER_CHECK(NonnullReturn, nonnull_return, 1)                            \
128   SANITIZER_CHECK(OutOfBounds, out_of_bounds, 0)                               \
129   SANITIZER_CHECK(PointerOverflow, pointer_overflow, 0)                        \
130   SANITIZER_CHECK(ShiftOutOfBounds, shift_out_of_bounds, 0)                    \
131   SANITIZER_CHECK(SubOverflow, sub_overflow, 0)                                \
132   SANITIZER_CHECK(TypeMismatch, type_mismatch, 1)                              \
133   SANITIZER_CHECK(VLABoundNotPositive, vla_bound_not_positive, 0)
134 
135 enum SanitizerHandler {
136 #define SANITIZER_CHECK(Enum, Name, Version) Enum,
137   LIST_SANITIZER_CHECKS
138 #undef SANITIZER_CHECK
139 };
140 
141 /// CodeGenFunction - This class organizes the per-function state that is used
142 /// while generating LLVM code.
143 class CodeGenFunction : public CodeGenTypeCache {
144   CodeGenFunction(const CodeGenFunction &) = delete;
145   void operator=(const CodeGenFunction &) = delete;
146 
147   friend class CGCXXABI;
148 public:
149   /// A jump destination is an abstract label, branching to which may
150   /// require a jump out through normal cleanups.
151   struct JumpDest {
152     JumpDest() : Block(nullptr), ScopeDepth(), Index(0) {}
153     JumpDest(llvm::BasicBlock *Block,
154              EHScopeStack::stable_iterator Depth,
155              unsigned Index)
156       : Block(Block), ScopeDepth(Depth), Index(Index) {}
157 
158     bool isValid() const { return Block != nullptr; }
159     llvm::BasicBlock *getBlock() const { return Block; }
160     EHScopeStack::stable_iterator getScopeDepth() const { return ScopeDepth; }
161     unsigned getDestIndex() const { return Index; }
162 
163     // This should be used cautiously.
164     void setScopeDepth(EHScopeStack::stable_iterator depth) {
165       ScopeDepth = depth;
166     }
167 
168   private:
169     llvm::BasicBlock *Block;
170     EHScopeStack::stable_iterator ScopeDepth;
171     unsigned Index;
172   };
173 
174   CodeGenModule &CGM;  // Per-module state.
175   const TargetInfo &Target;
176 
177   typedef std::pair<llvm::Value *, llvm::Value *> ComplexPairTy;
178   LoopInfoStack LoopStack;
179   CGBuilderTy Builder;
180 
181   // Stores variables for which we can't generate correct lifetime markers
182   // because of jumps.
183   VarBypassDetector Bypasses;
184 
185   // CodeGen lambda for loops and support for ordered clause
186   typedef llvm::function_ref<void(CodeGenFunction &, const OMPLoopDirective &,
187                                   JumpDest)>
188       CodeGenLoopTy;
189   typedef llvm::function_ref<void(CodeGenFunction &, SourceLocation,
190                                   const unsigned, const bool)>
191       CodeGenOrderedTy;
192 
193   // Codegen lambda for loop bounds in worksharing loop constructs
194   typedef llvm::function_ref<std::pair<LValue, LValue>(
195       CodeGenFunction &, const OMPExecutableDirective &S)>
196       CodeGenLoopBoundsTy;
197 
198   // Codegen lambda for loop bounds in dispatch-based loop implementation
199   typedef llvm::function_ref<std::pair<llvm::Value *, llvm::Value *>(
200       CodeGenFunction &, const OMPExecutableDirective &S, Address LB,
201       Address UB)>
202       CodeGenDispatchBoundsTy;
203 
204   /// \brief CGBuilder insert helper. This function is called after an
205   /// instruction is created using Builder.
206   void InsertHelper(llvm::Instruction *I, const llvm::Twine &Name,
207                     llvm::BasicBlock *BB,
208                     llvm::BasicBlock::iterator InsertPt) const;
209 
210   /// CurFuncDecl - Holds the Decl for the current outermost
211   /// non-closure context.
212   const Decl *CurFuncDecl;
213   /// CurCodeDecl - This is the inner-most code context, which includes blocks.
214   const Decl *CurCodeDecl;
215   const CGFunctionInfo *CurFnInfo;
216   QualType FnRetTy;
217   llvm::Function *CurFn;
218 
219   // Holds coroutine data if the current function is a coroutine. We use a
220   // wrapper to manage its lifetime, so that we don't have to define CGCoroData
221   // in this header.
222   struct CGCoroInfo {
223     std::unique_ptr<CGCoroData> Data;
224     CGCoroInfo();
225     ~CGCoroInfo();
226   };
227   CGCoroInfo CurCoro;
228 
229   bool isCoroutine() const {
230     return CurCoro.Data != nullptr;
231   }
232 
233   /// CurGD - The GlobalDecl for the current function being compiled.
234   GlobalDecl CurGD;
235 
236   /// PrologueCleanupDepth - The cleanup depth enclosing all the
237   /// cleanups associated with the parameters.
238   EHScopeStack::stable_iterator PrologueCleanupDepth;
239 
240   /// ReturnBlock - Unified return block.
241   JumpDest ReturnBlock;
242 
243   /// ReturnValue - The temporary alloca to hold the return
244   /// value. This is invalid iff the function has no return value.
245   Address ReturnValue;
246 
247   /// Return true if a label was seen in the current scope.
248   bool hasLabelBeenSeenInCurrentScope() const {
249     if (CurLexicalScope)
250       return CurLexicalScope->hasLabels();
251     return !LabelMap.empty();
252   }
253 
254   /// AllocaInsertPoint - This is an instruction in the entry block before which
255   /// we prefer to insert allocas.
256   llvm::AssertingVH<llvm::Instruction> AllocaInsertPt;
257 
258   /// \brief API for captured statement code generation.
259   class CGCapturedStmtInfo {
260   public:
261     explicit CGCapturedStmtInfo(CapturedRegionKind K = CR_Default)
262         : Kind(K), ThisValue(nullptr), CXXThisFieldDecl(nullptr) {}
263     explicit CGCapturedStmtInfo(const CapturedStmt &S,
264                                 CapturedRegionKind K = CR_Default)
265       : Kind(K), ThisValue(nullptr), CXXThisFieldDecl(nullptr) {
266 
267       RecordDecl::field_iterator Field =
268         S.getCapturedRecordDecl()->field_begin();
269       for (CapturedStmt::const_capture_iterator I = S.capture_begin(),
270                                                 E = S.capture_end();
271            I != E; ++I, ++Field) {
272         if (I->capturesThis())
273           CXXThisFieldDecl = *Field;
274         else if (I->capturesVariable())
275           CaptureFields[I->getCapturedVar()->getCanonicalDecl()] = *Field;
276         else if (I->capturesVariableByCopy())
277           CaptureFields[I->getCapturedVar()->getCanonicalDecl()] = *Field;
278       }
279     }
280 
281     virtual ~CGCapturedStmtInfo();
282 
283     CapturedRegionKind getKind() const { return Kind; }
284 
285     virtual void setContextValue(llvm::Value *V) { ThisValue = V; }
286     // \brief Retrieve the value of the context parameter.
287     virtual llvm::Value *getContextValue() const { return ThisValue; }
288 
289     /// \brief Lookup the captured field decl for a variable.
290     virtual const FieldDecl *lookup(const VarDecl *VD) const {
291       return CaptureFields.lookup(VD->getCanonicalDecl());
292     }
293 
294     bool isCXXThisExprCaptured() const { return getThisFieldDecl() != nullptr; }
295     virtual FieldDecl *getThisFieldDecl() const { return CXXThisFieldDecl; }
296 
297     static bool classof(const CGCapturedStmtInfo *) {
298       return true;
299     }
300 
301     /// \brief Emit the captured statement body.
302     virtual void EmitBody(CodeGenFunction &CGF, const Stmt *S) {
303       CGF.incrementProfileCounter(S);
304       CGF.EmitStmt(S);
305     }
306 
307     /// \brief Get the name of the capture helper.
308     virtual StringRef getHelperName() const { return "__captured_stmt"; }
309 
310   private:
311     /// \brief The kind of captured statement being generated.
312     CapturedRegionKind Kind;
313 
314     /// \brief Keep the map between VarDecl and FieldDecl.
315     llvm::SmallDenseMap<const VarDecl *, FieldDecl *> CaptureFields;
316 
317     /// \brief The base address of the captured record, passed in as the first
318     /// argument of the parallel region function.
319     llvm::Value *ThisValue;
320 
321     /// \brief Captured 'this' type.
322     FieldDecl *CXXThisFieldDecl;
323   };
324   CGCapturedStmtInfo *CapturedStmtInfo;
325 
326   /// \brief RAII for correct setting/restoring of CapturedStmtInfo.
327   class CGCapturedStmtRAII {
328   private:
329     CodeGenFunction &CGF;
330     CGCapturedStmtInfo *PrevCapturedStmtInfo;
331   public:
332     CGCapturedStmtRAII(CodeGenFunction &CGF,
333                        CGCapturedStmtInfo *NewCapturedStmtInfo)
334         : CGF(CGF), PrevCapturedStmtInfo(CGF.CapturedStmtInfo) {
335       CGF.CapturedStmtInfo = NewCapturedStmtInfo;
336     }
337     ~CGCapturedStmtRAII() { CGF.CapturedStmtInfo = PrevCapturedStmtInfo; }
338   };
339 
340   /// An abstract representation of regular/ObjC call/message targets.
341   class AbstractCallee {
342     /// The function declaration of the callee.
343     const Decl *CalleeDecl;
344 
345   public:
346     AbstractCallee() : CalleeDecl(nullptr) {}
347     AbstractCallee(const FunctionDecl *FD) : CalleeDecl(FD) {}
348     AbstractCallee(const ObjCMethodDecl *OMD) : CalleeDecl(OMD) {}
349     bool hasFunctionDecl() const {
350       return dyn_cast_or_null<FunctionDecl>(CalleeDecl);
351     }
352     const Decl *getDecl() const { return CalleeDecl; }
353     unsigned getNumParams() const {
354       if (const auto *FD = dyn_cast<FunctionDecl>(CalleeDecl))
355         return FD->getNumParams();
356       return cast<ObjCMethodDecl>(CalleeDecl)->param_size();
357     }
358     const ParmVarDecl *getParamDecl(unsigned I) const {
359       if (const auto *FD = dyn_cast<FunctionDecl>(CalleeDecl))
360         return FD->getParamDecl(I);
361       return *(cast<ObjCMethodDecl>(CalleeDecl)->param_begin() + I);
362     }
363   };
364 
365   /// \brief Sanitizers enabled for this function.
366   SanitizerSet SanOpts;
367 
368   /// \brief True if CodeGen currently emits code implementing sanitizer checks.
369   bool IsSanitizerScope;
370 
371   /// \brief RAII object to set/unset CodeGenFunction::IsSanitizerScope.
372   class SanitizerScope {
373     CodeGenFunction *CGF;
374   public:
375     SanitizerScope(CodeGenFunction *CGF);
376     ~SanitizerScope();
377   };
378 
379   /// In C++, whether we are code generating a thunk.  This controls whether we
380   /// should emit cleanups.
381   bool CurFuncIsThunk;
382 
383   /// In ARC, whether we should autorelease the return value.
384   bool AutoreleaseResult;
385 
386   /// Whether we processed a Microsoft-style asm block during CodeGen. These can
387   /// potentially set the return value.
388   bool SawAsmBlock;
389 
390   const FunctionDecl *CurSEHParent = nullptr;
391 
392   /// True if the current function is an outlined SEH helper. This can be a
393   /// finally block or filter expression.
394   bool IsOutlinedSEHHelper;
395 
396   const CodeGen::CGBlockInfo *BlockInfo;
397   llvm::Value *BlockPointer;
398 
399   llvm::DenseMap<const VarDecl *, FieldDecl *> LambdaCaptureFields;
400   FieldDecl *LambdaThisCaptureField;
401 
402   /// \brief A mapping from NRVO variables to the flags used to indicate
403   /// when the NRVO has been applied to this variable.
404   llvm::DenseMap<const VarDecl *, llvm::Value *> NRVOFlags;
405 
406   EHScopeStack EHStack;
407   llvm::SmallVector<char, 256> LifetimeExtendedCleanupStack;
408   llvm::SmallVector<const JumpDest *, 2> SEHTryEpilogueStack;
409 
410   llvm::Instruction *CurrentFuncletPad = nullptr;
411 
412   class CallLifetimeEnd final : public EHScopeStack::Cleanup {
413     llvm::Value *Addr;
414     llvm::Value *Size;
415 
416   public:
417     CallLifetimeEnd(Address addr, llvm::Value *size)
418         : Addr(addr.getPointer()), Size(size) {}
419 
420     void Emit(CodeGenFunction &CGF, Flags flags) override {
421       CGF.EmitLifetimeEnd(Size, Addr);
422     }
423   };
424 
425   /// Header for data within LifetimeExtendedCleanupStack.
426   struct LifetimeExtendedCleanupHeader {
427     /// The size of the following cleanup object.
428     unsigned Size;
429     /// The kind of cleanup to push: a value from the CleanupKind enumeration.
430     CleanupKind Kind;
431 
432     size_t getSize() const { return Size; }
433     CleanupKind getKind() const { return Kind; }
434   };
435 
436   /// i32s containing the indexes of the cleanup destinations.
437   Address NormalCleanupDest;
438 
439   unsigned NextCleanupDestIndex;
440 
441   /// FirstBlockInfo - The head of a singly-linked-list of block layouts.
442   CGBlockInfo *FirstBlockInfo;
443 
444   /// EHResumeBlock - Unified block containing a call to llvm.eh.resume.
445   llvm::BasicBlock *EHResumeBlock;
446 
447   /// The exception slot.  All landing pads write the current exception pointer
448   /// into this alloca.
449   llvm::Value *ExceptionSlot;
450 
451   /// The selector slot.  Under the MandatoryCleanup model, all landing pads
452   /// write the current selector value into this alloca.
453   llvm::AllocaInst *EHSelectorSlot;
454 
455   /// A stack of exception code slots. Entering an __except block pushes a slot
456   /// on the stack and leaving pops one. The __exception_code() intrinsic loads
457   /// a value from the top of the stack.
458   SmallVector<Address, 1> SEHCodeSlotStack;
459 
460   /// Value returned by __exception_info intrinsic.
461   llvm::Value *SEHInfo = nullptr;
462 
463   /// Emits a landing pad for the current EH stack.
464   llvm::BasicBlock *EmitLandingPad();
465 
466   llvm::BasicBlock *getInvokeDestImpl();
467 
468   template <class T>
469   typename DominatingValue<T>::saved_type saveValueInCond(T value) {
470     return DominatingValue<T>::save(*this, value);
471   }
472 
473 public:
474   /// ObjCEHValueStack - Stack of Objective-C exception values, used for
475   /// rethrows.
476   SmallVector<llvm::Value*, 8> ObjCEHValueStack;
477 
478   /// A class controlling the emission of a finally block.
479   class FinallyInfo {
480     /// Where the catchall's edge through the cleanup should go.
481     JumpDest RethrowDest;
482 
483     /// A function to call to enter the catch.
484     llvm::Constant *BeginCatchFn;
485 
486     /// An i1 variable indicating whether or not the @finally is
487     /// running for an exception.
488     llvm::AllocaInst *ForEHVar;
489 
490     /// An i8* variable into which the exception pointer to rethrow
491     /// has been saved.
492     llvm::AllocaInst *SavedExnVar;
493 
494   public:
495     void enter(CodeGenFunction &CGF, const Stmt *Finally,
496                llvm::Constant *beginCatchFn, llvm::Constant *endCatchFn,
497                llvm::Constant *rethrowFn);
498     void exit(CodeGenFunction &CGF);
499   };
500 
501   /// Returns true inside SEH __try blocks.
502   bool isSEHTryScope() const { return !SEHTryEpilogueStack.empty(); }
503 
504   /// Returns true while emitting a cleanuppad.
505   bool isCleanupPadScope() const {
506     return CurrentFuncletPad && isa<llvm::CleanupPadInst>(CurrentFuncletPad);
507   }
508 
509   /// pushFullExprCleanup - Push a cleanup to be run at the end of the
510   /// current full-expression.  Safe against the possibility that
511   /// we're currently inside a conditionally-evaluated expression.
512   template <class T, class... As>
513   void pushFullExprCleanup(CleanupKind kind, As... A) {
514     // If we're not in a conditional branch, or if none of the
515     // arguments requires saving, then use the unconditional cleanup.
516     if (!isInConditionalBranch())
517       return EHStack.pushCleanup<T>(kind, A...);
518 
519     // Stash values in a tuple so we can guarantee the order of saves.
520     typedef std::tuple<typename DominatingValue<As>::saved_type...> SavedTuple;
521     SavedTuple Saved{saveValueInCond(A)...};
522 
523     typedef EHScopeStack::ConditionalCleanup<T, As...> CleanupType;
524     EHStack.pushCleanupTuple<CleanupType>(kind, Saved);
525     initFullExprCleanup();
526   }
527 
528   /// \brief Queue a cleanup to be pushed after finishing the current
529   /// full-expression.
530   template <class T, class... As>
531   void pushCleanupAfterFullExpr(CleanupKind Kind, As... A) {
532     assert(!isInConditionalBranch() && "can't defer conditional cleanup");
533 
534     LifetimeExtendedCleanupHeader Header = { sizeof(T), Kind };
535 
536     size_t OldSize = LifetimeExtendedCleanupStack.size();
537     LifetimeExtendedCleanupStack.resize(
538         LifetimeExtendedCleanupStack.size() + sizeof(Header) + Header.Size);
539 
540     static_assert(sizeof(Header) % alignof(T) == 0,
541                   "Cleanup will be allocated on misaligned address");
542     char *Buffer = &LifetimeExtendedCleanupStack[OldSize];
543     new (Buffer) LifetimeExtendedCleanupHeader(Header);
544     new (Buffer + sizeof(Header)) T(A...);
545   }
546 
547   /// Set up the last cleaup that was pushed as a conditional
548   /// full-expression cleanup.
549   void initFullExprCleanup();
550 
551   /// PushDestructorCleanup - Push a cleanup to call the
552   /// complete-object destructor of an object of the given type at the
553   /// given address.  Does nothing if T is not a C++ class type with a
554   /// non-trivial destructor.
555   void PushDestructorCleanup(QualType T, Address Addr);
556 
557   /// PushDestructorCleanup - Push a cleanup to call the
558   /// complete-object variant of the given destructor on the object at
559   /// the given address.
560   void PushDestructorCleanup(const CXXDestructorDecl *Dtor, Address Addr);
561 
562   /// PopCleanupBlock - Will pop the cleanup entry on the stack and
563   /// process all branch fixups.
564   void PopCleanupBlock(bool FallThroughIsBranchThrough = false);
565 
566   /// DeactivateCleanupBlock - Deactivates the given cleanup block.
567   /// The block cannot be reactivated.  Pops it if it's the top of the
568   /// stack.
569   ///
570   /// \param DominatingIP - An instruction which is known to
571   ///   dominate the current IP (if set) and which lies along
572   ///   all paths of execution between the current IP and the
573   ///   the point at which the cleanup comes into scope.
574   void DeactivateCleanupBlock(EHScopeStack::stable_iterator Cleanup,
575                               llvm::Instruction *DominatingIP);
576 
577   /// ActivateCleanupBlock - Activates an initially-inactive cleanup.
578   /// Cannot be used to resurrect a deactivated cleanup.
579   ///
580   /// \param DominatingIP - An instruction which is known to
581   ///   dominate the current IP (if set) and which lies along
582   ///   all paths of execution between the current IP and the
583   ///   the point at which the cleanup comes into scope.
584   void ActivateCleanupBlock(EHScopeStack::stable_iterator Cleanup,
585                             llvm::Instruction *DominatingIP);
586 
587   /// \brief Enters a new scope for capturing cleanups, all of which
588   /// will be executed once the scope is exited.
589   class RunCleanupsScope {
590     EHScopeStack::stable_iterator CleanupStackDepth;
591     size_t LifetimeExtendedCleanupStackSize;
592     bool OldDidCallStackSave;
593   protected:
594     bool PerformCleanup;
595   private:
596 
597     RunCleanupsScope(const RunCleanupsScope &) = delete;
598     void operator=(const RunCleanupsScope &) = delete;
599 
600   protected:
601     CodeGenFunction& CGF;
602 
603   public:
604     /// \brief Enter a new cleanup scope.
605     explicit RunCleanupsScope(CodeGenFunction &CGF)
606       : PerformCleanup(true), CGF(CGF)
607     {
608       CleanupStackDepth = CGF.EHStack.stable_begin();
609       LifetimeExtendedCleanupStackSize =
610           CGF.LifetimeExtendedCleanupStack.size();
611       OldDidCallStackSave = CGF.DidCallStackSave;
612       CGF.DidCallStackSave = false;
613     }
614 
615     /// \brief Exit this cleanup scope, emitting any accumulated cleanups.
616     ~RunCleanupsScope() {
617       if (PerformCleanup)
618         ForceCleanup();
619     }
620 
621     /// \brief Determine whether this scope requires any cleanups.
622     bool requiresCleanups() const {
623       return CGF.EHStack.stable_begin() != CleanupStackDepth;
624     }
625 
626     /// \brief Force the emission of cleanups now, instead of waiting
627     /// until this object is destroyed.
628     /// \param ValuesToReload - A list of values that need to be available at
629     /// the insertion point after cleanup emission. If cleanup emission created
630     /// a shared cleanup block, these value pointers will be rewritten.
631     /// Otherwise, they not will be modified.
632     void ForceCleanup(std::initializer_list<llvm::Value**> ValuesToReload = {}) {
633       assert(PerformCleanup && "Already forced cleanup");
634       CGF.DidCallStackSave = OldDidCallStackSave;
635       CGF.PopCleanupBlocks(CleanupStackDepth, LifetimeExtendedCleanupStackSize,
636                            ValuesToReload);
637       PerformCleanup = false;
638     }
639   };
640 
641   class LexicalScope : public RunCleanupsScope {
642     SourceRange Range;
643     SmallVector<const LabelDecl*, 4> Labels;
644     LexicalScope *ParentScope;
645 
646     LexicalScope(const LexicalScope &) = delete;
647     void operator=(const LexicalScope &) = delete;
648 
649   public:
650     /// \brief Enter a new cleanup scope.
651     explicit LexicalScope(CodeGenFunction &CGF, SourceRange Range)
652       : RunCleanupsScope(CGF), Range(Range), ParentScope(CGF.CurLexicalScope) {
653       CGF.CurLexicalScope = this;
654       if (CGDebugInfo *DI = CGF.getDebugInfo())
655         DI->EmitLexicalBlockStart(CGF.Builder, Range.getBegin());
656     }
657 
658     void addLabel(const LabelDecl *label) {
659       assert(PerformCleanup && "adding label to dead scope?");
660       Labels.push_back(label);
661     }
662 
663     /// \brief Exit this cleanup scope, emitting any accumulated
664     /// cleanups.
665     ~LexicalScope() {
666       if (CGDebugInfo *DI = CGF.getDebugInfo())
667         DI->EmitLexicalBlockEnd(CGF.Builder, Range.getEnd());
668 
669       // If we should perform a cleanup, force them now.  Note that
670       // this ends the cleanup scope before rescoping any labels.
671       if (PerformCleanup) {
672         ApplyDebugLocation DL(CGF, Range.getEnd());
673         ForceCleanup();
674       }
675     }
676 
677     /// \brief Force the emission of cleanups now, instead of waiting
678     /// until this object is destroyed.
679     void ForceCleanup() {
680       CGF.CurLexicalScope = ParentScope;
681       RunCleanupsScope::ForceCleanup();
682 
683       if (!Labels.empty())
684         rescopeLabels();
685     }
686 
687     bool hasLabels() const {
688       return !Labels.empty();
689     }
690 
691     void rescopeLabels();
692   };
693 
694   typedef llvm::DenseMap<const Decl *, Address> DeclMapTy;
695 
696   /// \brief The scope used to remap some variables as private in the OpenMP
697   /// loop body (or other captured region emitted without outlining), and to
698   /// restore old vars back on exit.
699   class OMPPrivateScope : public RunCleanupsScope {
700     DeclMapTy SavedLocals;
701     DeclMapTy SavedPrivates;
702 
703   private:
704     OMPPrivateScope(const OMPPrivateScope &) = delete;
705     void operator=(const OMPPrivateScope &) = delete;
706 
707   public:
708     /// \brief Enter a new OpenMP private scope.
709     explicit OMPPrivateScope(CodeGenFunction &CGF) : RunCleanupsScope(CGF) {}
710 
711     /// \brief Registers \a LocalVD variable as a private and apply \a
712     /// PrivateGen function for it to generate corresponding private variable.
713     /// \a PrivateGen returns an address of the generated private variable.
714     /// \return true if the variable is registered as private, false if it has
715     /// been privatized already.
716     bool
717     addPrivate(const VarDecl *LocalVD,
718                llvm::function_ref<Address()> PrivateGen) {
719       assert(PerformCleanup && "adding private to dead scope");
720 
721       LocalVD = LocalVD->getCanonicalDecl();
722       // Only save it once.
723       if (SavedLocals.count(LocalVD)) return false;
724 
725       // Copy the existing local entry to SavedLocals.
726       auto it = CGF.LocalDeclMap.find(LocalVD);
727       if (it != CGF.LocalDeclMap.end()) {
728         SavedLocals.insert({LocalVD, it->second});
729       } else {
730         SavedLocals.insert({LocalVD, Address::invalid()});
731       }
732 
733       // Generate the private entry.
734       Address Addr = PrivateGen();
735       QualType VarTy = LocalVD->getType();
736       if (VarTy->isReferenceType()) {
737         Address Temp = CGF.CreateMemTemp(VarTy);
738         CGF.Builder.CreateStore(Addr.getPointer(), Temp);
739         Addr = Temp;
740       }
741       SavedPrivates.insert({LocalVD, Addr});
742 
743       return true;
744     }
745 
746     /// \brief Privatizes local variables previously registered as private.
747     /// Registration is separate from the actual privatization to allow
748     /// initializers use values of the original variables, not the private one.
749     /// This is important, for example, if the private variable is a class
750     /// variable initialized by a constructor that references other private
751     /// variables. But at initialization original variables must be used, not
752     /// private copies.
753     /// \return true if at least one variable was privatized, false otherwise.
754     bool Privatize() {
755       copyInto(SavedPrivates, CGF.LocalDeclMap);
756       SavedPrivates.clear();
757       return !SavedLocals.empty();
758     }
759 
760     void ForceCleanup() {
761       RunCleanupsScope::ForceCleanup();
762       copyInto(SavedLocals, CGF.LocalDeclMap);
763       SavedLocals.clear();
764     }
765 
766     /// \brief Exit scope - all the mapped variables are restored.
767     ~OMPPrivateScope() {
768       if (PerformCleanup)
769         ForceCleanup();
770     }
771 
772     /// Checks if the global variable is captured in current function.
773     bool isGlobalVarCaptured(const VarDecl *VD) const {
774       VD = VD->getCanonicalDecl();
775       return !VD->isLocalVarDeclOrParm() && CGF.LocalDeclMap.count(VD) > 0;
776     }
777 
778   private:
779     /// Copy all the entries in the source map over the corresponding
780     /// entries in the destination, which must exist.
781     static void copyInto(const DeclMapTy &src, DeclMapTy &dest) {
782       for (auto &pair : src) {
783         if (!pair.second.isValid()) {
784           dest.erase(pair.first);
785           continue;
786         }
787 
788         auto it = dest.find(pair.first);
789         if (it != dest.end()) {
790           it->second = pair.second;
791         } else {
792           dest.insert(pair);
793         }
794       }
795     }
796   };
797 
798   /// \brief Takes the old cleanup stack size and emits the cleanup blocks
799   /// that have been added.
800   void
801   PopCleanupBlocks(EHScopeStack::stable_iterator OldCleanupStackSize,
802                    std::initializer_list<llvm::Value **> ValuesToReload = {});
803 
804   /// \brief Takes the old cleanup stack size and emits the cleanup blocks
805   /// that have been added, then adds all lifetime-extended cleanups from
806   /// the given position to the stack.
807   void
808   PopCleanupBlocks(EHScopeStack::stable_iterator OldCleanupStackSize,
809                    size_t OldLifetimeExtendedStackSize,
810                    std::initializer_list<llvm::Value **> ValuesToReload = {});
811 
812   void ResolveBranchFixups(llvm::BasicBlock *Target);
813 
814   /// The given basic block lies in the current EH scope, but may be a
815   /// target of a potentially scope-crossing jump; get a stable handle
816   /// to which we can perform this jump later.
817   JumpDest getJumpDestInCurrentScope(llvm::BasicBlock *Target) {
818     return JumpDest(Target,
819                     EHStack.getInnermostNormalCleanup(),
820                     NextCleanupDestIndex++);
821   }
822 
823   /// The given basic block lies in the current EH scope, but may be a
824   /// target of a potentially scope-crossing jump; get a stable handle
825   /// to which we can perform this jump later.
826   JumpDest getJumpDestInCurrentScope(StringRef Name = StringRef()) {
827     return getJumpDestInCurrentScope(createBasicBlock(Name));
828   }
829 
830   /// EmitBranchThroughCleanup - Emit a branch from the current insert
831   /// block through the normal cleanup handling code (if any) and then
832   /// on to \arg Dest.
833   void EmitBranchThroughCleanup(JumpDest Dest);
834 
835   /// isObviouslyBranchWithoutCleanups - Return true if a branch to the
836   /// specified destination obviously has no cleanups to run.  'false' is always
837   /// a conservatively correct answer for this method.
838   bool isObviouslyBranchWithoutCleanups(JumpDest Dest) const;
839 
840   /// popCatchScope - Pops the catch scope at the top of the EHScope
841   /// stack, emitting any required code (other than the catch handlers
842   /// themselves).
843   void popCatchScope();
844 
845   llvm::BasicBlock *getEHResumeBlock(bool isCleanup);
846   llvm::BasicBlock *getEHDispatchBlock(EHScopeStack::stable_iterator scope);
847   llvm::BasicBlock *getMSVCDispatchBlock(EHScopeStack::stable_iterator scope);
848 
849   /// An object to manage conditionally-evaluated expressions.
850   class ConditionalEvaluation {
851     llvm::BasicBlock *StartBB;
852 
853   public:
854     ConditionalEvaluation(CodeGenFunction &CGF)
855       : StartBB(CGF.Builder.GetInsertBlock()) {}
856 
857     void begin(CodeGenFunction &CGF) {
858       assert(CGF.OutermostConditional != this);
859       if (!CGF.OutermostConditional)
860         CGF.OutermostConditional = this;
861     }
862 
863     void end(CodeGenFunction &CGF) {
864       assert(CGF.OutermostConditional != nullptr);
865       if (CGF.OutermostConditional == this)
866         CGF.OutermostConditional = nullptr;
867     }
868 
869     /// Returns a block which will be executed prior to each
870     /// evaluation of the conditional code.
871     llvm::BasicBlock *getStartingBlock() const {
872       return StartBB;
873     }
874   };
875 
876   /// isInConditionalBranch - Return true if we're currently emitting
877   /// one branch or the other of a conditional expression.
878   bool isInConditionalBranch() const { return OutermostConditional != nullptr; }
879 
880   void setBeforeOutermostConditional(llvm::Value *value, Address addr) {
881     assert(isInConditionalBranch());
882     llvm::BasicBlock *block = OutermostConditional->getStartingBlock();
883     auto store = new llvm::StoreInst(value, addr.getPointer(), &block->back());
884     store->setAlignment(addr.getAlignment().getQuantity());
885   }
886 
887   /// An RAII object to record that we're evaluating a statement
888   /// expression.
889   class StmtExprEvaluation {
890     CodeGenFunction &CGF;
891 
892     /// We have to save the outermost conditional: cleanups in a
893     /// statement expression aren't conditional just because the
894     /// StmtExpr is.
895     ConditionalEvaluation *SavedOutermostConditional;
896 
897   public:
898     StmtExprEvaluation(CodeGenFunction &CGF)
899       : CGF(CGF), SavedOutermostConditional(CGF.OutermostConditional) {
900       CGF.OutermostConditional = nullptr;
901     }
902 
903     ~StmtExprEvaluation() {
904       CGF.OutermostConditional = SavedOutermostConditional;
905       CGF.EnsureInsertPoint();
906     }
907   };
908 
909   /// An object which temporarily prevents a value from being
910   /// destroyed by aggressive peephole optimizations that assume that
911   /// all uses of a value have been realized in the IR.
912   class PeepholeProtection {
913     llvm::Instruction *Inst;
914     friend class CodeGenFunction;
915 
916   public:
917     PeepholeProtection() : Inst(nullptr) {}
918   };
919 
920   /// A non-RAII class containing all the information about a bound
921   /// opaque value.  OpaqueValueMapping, below, is a RAII wrapper for
922   /// this which makes individual mappings very simple; using this
923   /// class directly is useful when you have a variable number of
924   /// opaque values or don't want the RAII functionality for some
925   /// reason.
926   class OpaqueValueMappingData {
927     const OpaqueValueExpr *OpaqueValue;
928     bool BoundLValue;
929     CodeGenFunction::PeepholeProtection Protection;
930 
931     OpaqueValueMappingData(const OpaqueValueExpr *ov,
932                            bool boundLValue)
933       : OpaqueValue(ov), BoundLValue(boundLValue) {}
934   public:
935     OpaqueValueMappingData() : OpaqueValue(nullptr) {}
936 
937     static bool shouldBindAsLValue(const Expr *expr) {
938       // gl-values should be bound as l-values for obvious reasons.
939       // Records should be bound as l-values because IR generation
940       // always keeps them in memory.  Expressions of function type
941       // act exactly like l-values but are formally required to be
942       // r-values in C.
943       return expr->isGLValue() ||
944              expr->getType()->isFunctionType() ||
945              hasAggregateEvaluationKind(expr->getType());
946     }
947 
948     static OpaqueValueMappingData bind(CodeGenFunction &CGF,
949                                        const OpaqueValueExpr *ov,
950                                        const Expr *e) {
951       if (shouldBindAsLValue(ov))
952         return bind(CGF, ov, CGF.EmitLValue(e));
953       return bind(CGF, ov, CGF.EmitAnyExpr(e));
954     }
955 
956     static OpaqueValueMappingData bind(CodeGenFunction &CGF,
957                                        const OpaqueValueExpr *ov,
958                                        const LValue &lv) {
959       assert(shouldBindAsLValue(ov));
960       CGF.OpaqueLValues.insert(std::make_pair(ov, lv));
961       return OpaqueValueMappingData(ov, true);
962     }
963 
964     static OpaqueValueMappingData bind(CodeGenFunction &CGF,
965                                        const OpaqueValueExpr *ov,
966                                        const RValue &rv) {
967       assert(!shouldBindAsLValue(ov));
968       CGF.OpaqueRValues.insert(std::make_pair(ov, rv));
969 
970       OpaqueValueMappingData data(ov, false);
971 
972       // Work around an extremely aggressive peephole optimization in
973       // EmitScalarConversion which assumes that all other uses of a
974       // value are extant.
975       data.Protection = CGF.protectFromPeepholes(rv);
976 
977       return data;
978     }
979 
980     bool isValid() const { return OpaqueValue != nullptr; }
981     void clear() { OpaqueValue = nullptr; }
982 
983     void unbind(CodeGenFunction &CGF) {
984       assert(OpaqueValue && "no data to unbind!");
985 
986       if (BoundLValue) {
987         CGF.OpaqueLValues.erase(OpaqueValue);
988       } else {
989         CGF.OpaqueRValues.erase(OpaqueValue);
990         CGF.unprotectFromPeepholes(Protection);
991       }
992     }
993   };
994 
995   /// An RAII object to set (and then clear) a mapping for an OpaqueValueExpr.
996   class OpaqueValueMapping {
997     CodeGenFunction &CGF;
998     OpaqueValueMappingData Data;
999 
1000   public:
1001     static bool shouldBindAsLValue(const Expr *expr) {
1002       return OpaqueValueMappingData::shouldBindAsLValue(expr);
1003     }
1004 
1005     /// Build the opaque value mapping for the given conditional
1006     /// operator if it's the GNU ?: extension.  This is a common
1007     /// enough pattern that the convenience operator is really
1008     /// helpful.
1009     ///
1010     OpaqueValueMapping(CodeGenFunction &CGF,
1011                        const AbstractConditionalOperator *op) : CGF(CGF) {
1012       if (isa<ConditionalOperator>(op))
1013         // Leave Data empty.
1014         return;
1015 
1016       const BinaryConditionalOperator *e = cast<BinaryConditionalOperator>(op);
1017       Data = OpaqueValueMappingData::bind(CGF, e->getOpaqueValue(),
1018                                           e->getCommon());
1019     }
1020 
1021     /// Build the opaque value mapping for an OpaqueValueExpr whose source
1022     /// expression is set to the expression the OVE represents.
1023     OpaqueValueMapping(CodeGenFunction &CGF, const OpaqueValueExpr *OV)
1024         : CGF(CGF) {
1025       if (OV) {
1026         assert(OV->getSourceExpr() && "wrong form of OpaqueValueMapping used "
1027                                       "for OVE with no source expression");
1028         Data = OpaqueValueMappingData::bind(CGF, OV, OV->getSourceExpr());
1029       }
1030     }
1031 
1032     OpaqueValueMapping(CodeGenFunction &CGF,
1033                        const OpaqueValueExpr *opaqueValue,
1034                        LValue lvalue)
1035       : CGF(CGF), Data(OpaqueValueMappingData::bind(CGF, opaqueValue, lvalue)) {
1036     }
1037 
1038     OpaqueValueMapping(CodeGenFunction &CGF,
1039                        const OpaqueValueExpr *opaqueValue,
1040                        RValue rvalue)
1041       : CGF(CGF), Data(OpaqueValueMappingData::bind(CGF, opaqueValue, rvalue)) {
1042     }
1043 
1044     void pop() {
1045       Data.unbind(CGF);
1046       Data.clear();
1047     }
1048 
1049     ~OpaqueValueMapping() {
1050       if (Data.isValid()) Data.unbind(CGF);
1051     }
1052   };
1053 
1054 private:
1055   CGDebugInfo *DebugInfo;
1056   bool DisableDebugInfo;
1057 
1058   /// DidCallStackSave - Whether llvm.stacksave has been called. Used to avoid
1059   /// calling llvm.stacksave for multiple VLAs in the same scope.
1060   bool DidCallStackSave;
1061 
1062   /// IndirectBranch - The first time an indirect goto is seen we create a block
1063   /// with an indirect branch.  Every time we see the address of a label taken,
1064   /// we add the label to the indirect goto.  Every subsequent indirect goto is
1065   /// codegen'd as a jump to the IndirectBranch's basic block.
1066   llvm::IndirectBrInst *IndirectBranch;
1067 
1068   /// LocalDeclMap - This keeps track of the LLVM allocas or globals for local C
1069   /// decls.
1070   DeclMapTy LocalDeclMap;
1071 
1072   /// SizeArguments - If a ParmVarDecl had the pass_object_size attribute, this
1073   /// will contain a mapping from said ParmVarDecl to its implicit "object_size"
1074   /// parameter.
1075   llvm::SmallDenseMap<const ParmVarDecl *, const ImplicitParamDecl *, 2>
1076       SizeArguments;
1077 
1078   /// Track escaped local variables with auto storage. Used during SEH
1079   /// outlining to produce a call to llvm.localescape.
1080   llvm::DenseMap<llvm::AllocaInst *, int> EscapedLocals;
1081 
1082   /// LabelMap - This keeps track of the LLVM basic block for each C label.
1083   llvm::DenseMap<const LabelDecl*, JumpDest> LabelMap;
1084 
1085   // BreakContinueStack - This keeps track of where break and continue
1086   // statements should jump to.
1087   struct BreakContinue {
1088     BreakContinue(JumpDest Break, JumpDest Continue)
1089       : BreakBlock(Break), ContinueBlock(Continue) {}
1090 
1091     JumpDest BreakBlock;
1092     JumpDest ContinueBlock;
1093   };
1094   SmallVector<BreakContinue, 8> BreakContinueStack;
1095 
1096   /// Handles cancellation exit points in OpenMP-related constructs.
1097   class OpenMPCancelExitStack {
1098     /// Tracks cancellation exit point and join point for cancel-related exit
1099     /// and normal exit.
1100     struct CancelExit {
1101       CancelExit() = default;
1102       CancelExit(OpenMPDirectiveKind Kind, JumpDest ExitBlock,
1103                  JumpDest ContBlock)
1104           : Kind(Kind), ExitBlock(ExitBlock), ContBlock(ContBlock) {}
1105       OpenMPDirectiveKind Kind = OMPD_unknown;
1106       /// true if the exit block has been emitted already by the special
1107       /// emitExit() call, false if the default codegen is used.
1108       bool HasBeenEmitted = false;
1109       JumpDest ExitBlock;
1110       JumpDest ContBlock;
1111     };
1112 
1113     SmallVector<CancelExit, 8> Stack;
1114 
1115   public:
1116     OpenMPCancelExitStack() : Stack(1) {}
1117     ~OpenMPCancelExitStack() = default;
1118     /// Fetches the exit block for the current OpenMP construct.
1119     JumpDest getExitBlock() const { return Stack.back().ExitBlock; }
1120     /// Emits exit block with special codegen procedure specific for the related
1121     /// OpenMP construct + emits code for normal construct cleanup.
1122     void emitExit(CodeGenFunction &CGF, OpenMPDirectiveKind Kind,
1123                   const llvm::function_ref<void(CodeGenFunction &)> &CodeGen) {
1124       if (Stack.back().Kind == Kind && getExitBlock().isValid()) {
1125         assert(CGF.getOMPCancelDestination(Kind).isValid());
1126         assert(CGF.HaveInsertPoint());
1127         assert(!Stack.back().HasBeenEmitted);
1128         auto IP = CGF.Builder.saveAndClearIP();
1129         CGF.EmitBlock(Stack.back().ExitBlock.getBlock());
1130         CodeGen(CGF);
1131         CGF.EmitBranch(Stack.back().ContBlock.getBlock());
1132         CGF.Builder.restoreIP(IP);
1133         Stack.back().HasBeenEmitted = true;
1134       }
1135       CodeGen(CGF);
1136     }
1137     /// Enter the cancel supporting \a Kind construct.
1138     /// \param Kind OpenMP directive that supports cancel constructs.
1139     /// \param HasCancel true, if the construct has inner cancel directive,
1140     /// false otherwise.
1141     void enter(CodeGenFunction &CGF, OpenMPDirectiveKind Kind, bool HasCancel) {
1142       Stack.push_back({Kind,
1143                        HasCancel ? CGF.getJumpDestInCurrentScope("cancel.exit")
1144                                  : JumpDest(),
1145                        HasCancel ? CGF.getJumpDestInCurrentScope("cancel.cont")
1146                                  : JumpDest()});
1147     }
1148     /// Emits default exit point for the cancel construct (if the special one
1149     /// has not be used) + join point for cancel/normal exits.
1150     void exit(CodeGenFunction &CGF) {
1151       if (getExitBlock().isValid()) {
1152         assert(CGF.getOMPCancelDestination(Stack.back().Kind).isValid());
1153         bool HaveIP = CGF.HaveInsertPoint();
1154         if (!Stack.back().HasBeenEmitted) {
1155           if (HaveIP)
1156             CGF.EmitBranchThroughCleanup(Stack.back().ContBlock);
1157           CGF.EmitBlock(Stack.back().ExitBlock.getBlock());
1158           CGF.EmitBranchThroughCleanup(Stack.back().ContBlock);
1159         }
1160         CGF.EmitBlock(Stack.back().ContBlock.getBlock());
1161         if (!HaveIP) {
1162           CGF.Builder.CreateUnreachable();
1163           CGF.Builder.ClearInsertionPoint();
1164         }
1165       }
1166       Stack.pop_back();
1167     }
1168   };
1169   OpenMPCancelExitStack OMPCancelStack;
1170 
1171   CodeGenPGO PGO;
1172 
1173   /// Calculate branch weights appropriate for PGO data
1174   llvm::MDNode *createProfileWeights(uint64_t TrueCount, uint64_t FalseCount);
1175   llvm::MDNode *createProfileWeights(ArrayRef<uint64_t> Weights);
1176   llvm::MDNode *createProfileWeightsForLoop(const Stmt *Cond,
1177                                             uint64_t LoopCount);
1178 
1179 public:
1180   /// Increment the profiler's counter for the given statement by \p StepV.
1181   /// If \p StepV is null, the default increment is 1.
1182   void incrementProfileCounter(const Stmt *S, llvm::Value *StepV = nullptr) {
1183     if (CGM.getCodeGenOpts().hasProfileClangInstr())
1184       PGO.emitCounterIncrement(Builder, S, StepV);
1185     PGO.setCurrentStmt(S);
1186   }
1187 
1188   /// Get the profiler's count for the given statement.
1189   uint64_t getProfileCount(const Stmt *S) {
1190     Optional<uint64_t> Count = PGO.getStmtCount(S);
1191     if (!Count.hasValue())
1192       return 0;
1193     return *Count;
1194   }
1195 
1196   /// Set the profiler's current count.
1197   void setCurrentProfileCount(uint64_t Count) {
1198     PGO.setCurrentRegionCount(Count);
1199   }
1200 
1201   /// Get the profiler's current count. This is generally the count for the most
1202   /// recently incremented counter.
1203   uint64_t getCurrentProfileCount() {
1204     return PGO.getCurrentRegionCount();
1205   }
1206 
1207 private:
1208 
1209   /// SwitchInsn - This is nearest current switch instruction. It is null if
1210   /// current context is not in a switch.
1211   llvm::SwitchInst *SwitchInsn;
1212   /// The branch weights of SwitchInsn when doing instrumentation based PGO.
1213   SmallVector<uint64_t, 16> *SwitchWeights;
1214 
1215   /// CaseRangeBlock - This block holds if condition check for last case
1216   /// statement range in current switch instruction.
1217   llvm::BasicBlock *CaseRangeBlock;
1218 
1219   /// OpaqueLValues - Keeps track of the current set of opaque value
1220   /// expressions.
1221   llvm::DenseMap<const OpaqueValueExpr *, LValue> OpaqueLValues;
1222   llvm::DenseMap<const OpaqueValueExpr *, RValue> OpaqueRValues;
1223 
1224   // VLASizeMap - This keeps track of the associated size for each VLA type.
1225   // We track this by the size expression rather than the type itself because
1226   // in certain situations, like a const qualifier applied to an VLA typedef,
1227   // multiple VLA types can share the same size expression.
1228   // FIXME: Maybe this could be a stack of maps that is pushed/popped as we
1229   // enter/leave scopes.
1230   llvm::DenseMap<const Expr*, llvm::Value*> VLASizeMap;
1231 
1232   /// A block containing a single 'unreachable' instruction.  Created
1233   /// lazily by getUnreachableBlock().
1234   llvm::BasicBlock *UnreachableBlock;
1235 
1236   /// Counts of the number return expressions in the function.
1237   unsigned NumReturnExprs;
1238 
1239   /// Count the number of simple (constant) return expressions in the function.
1240   unsigned NumSimpleReturnExprs;
1241 
1242   /// The last regular (non-return) debug location (breakpoint) in the function.
1243   SourceLocation LastStopPoint;
1244 
1245 public:
1246   /// A scope within which we are constructing the fields of an object which
1247   /// might use a CXXDefaultInitExpr. This stashes away a 'this' value to use
1248   /// if we need to evaluate a CXXDefaultInitExpr within the evaluation.
1249   class FieldConstructionScope {
1250   public:
1251     FieldConstructionScope(CodeGenFunction &CGF, Address This)
1252         : CGF(CGF), OldCXXDefaultInitExprThis(CGF.CXXDefaultInitExprThis) {
1253       CGF.CXXDefaultInitExprThis = This;
1254     }
1255     ~FieldConstructionScope() {
1256       CGF.CXXDefaultInitExprThis = OldCXXDefaultInitExprThis;
1257     }
1258 
1259   private:
1260     CodeGenFunction &CGF;
1261     Address OldCXXDefaultInitExprThis;
1262   };
1263 
1264   /// The scope of a CXXDefaultInitExpr. Within this scope, the value of 'this'
1265   /// is overridden to be the object under construction.
1266   class CXXDefaultInitExprScope {
1267   public:
1268     CXXDefaultInitExprScope(CodeGenFunction &CGF)
1269       : CGF(CGF), OldCXXThisValue(CGF.CXXThisValue),
1270         OldCXXThisAlignment(CGF.CXXThisAlignment) {
1271       CGF.CXXThisValue = CGF.CXXDefaultInitExprThis.getPointer();
1272       CGF.CXXThisAlignment = CGF.CXXDefaultInitExprThis.getAlignment();
1273     }
1274     ~CXXDefaultInitExprScope() {
1275       CGF.CXXThisValue = OldCXXThisValue;
1276       CGF.CXXThisAlignment = OldCXXThisAlignment;
1277     }
1278 
1279   public:
1280     CodeGenFunction &CGF;
1281     llvm::Value *OldCXXThisValue;
1282     CharUnits OldCXXThisAlignment;
1283   };
1284 
1285   /// The scope of an ArrayInitLoopExpr. Within this scope, the value of the
1286   /// current loop index is overridden.
1287   class ArrayInitLoopExprScope {
1288   public:
1289     ArrayInitLoopExprScope(CodeGenFunction &CGF, llvm::Value *Index)
1290       : CGF(CGF), OldArrayInitIndex(CGF.ArrayInitIndex) {
1291       CGF.ArrayInitIndex = Index;
1292     }
1293     ~ArrayInitLoopExprScope() {
1294       CGF.ArrayInitIndex = OldArrayInitIndex;
1295     }
1296 
1297   private:
1298     CodeGenFunction &CGF;
1299     llvm::Value *OldArrayInitIndex;
1300   };
1301 
1302   class InlinedInheritingConstructorScope {
1303   public:
1304     InlinedInheritingConstructorScope(CodeGenFunction &CGF, GlobalDecl GD)
1305         : CGF(CGF), OldCurGD(CGF.CurGD), OldCurFuncDecl(CGF.CurFuncDecl),
1306           OldCurCodeDecl(CGF.CurCodeDecl),
1307           OldCXXABIThisDecl(CGF.CXXABIThisDecl),
1308           OldCXXABIThisValue(CGF.CXXABIThisValue),
1309           OldCXXThisValue(CGF.CXXThisValue),
1310           OldCXXABIThisAlignment(CGF.CXXABIThisAlignment),
1311           OldCXXThisAlignment(CGF.CXXThisAlignment),
1312           OldReturnValue(CGF.ReturnValue), OldFnRetTy(CGF.FnRetTy),
1313           OldCXXInheritedCtorInitExprArgs(
1314               std::move(CGF.CXXInheritedCtorInitExprArgs)) {
1315       CGF.CurGD = GD;
1316       CGF.CurFuncDecl = CGF.CurCodeDecl =
1317           cast<CXXConstructorDecl>(GD.getDecl());
1318       CGF.CXXABIThisDecl = nullptr;
1319       CGF.CXXABIThisValue = nullptr;
1320       CGF.CXXThisValue = nullptr;
1321       CGF.CXXABIThisAlignment = CharUnits();
1322       CGF.CXXThisAlignment = CharUnits();
1323       CGF.ReturnValue = Address::invalid();
1324       CGF.FnRetTy = QualType();
1325       CGF.CXXInheritedCtorInitExprArgs.clear();
1326     }
1327     ~InlinedInheritingConstructorScope() {
1328       CGF.CurGD = OldCurGD;
1329       CGF.CurFuncDecl = OldCurFuncDecl;
1330       CGF.CurCodeDecl = OldCurCodeDecl;
1331       CGF.CXXABIThisDecl = OldCXXABIThisDecl;
1332       CGF.CXXABIThisValue = OldCXXABIThisValue;
1333       CGF.CXXThisValue = OldCXXThisValue;
1334       CGF.CXXABIThisAlignment = OldCXXABIThisAlignment;
1335       CGF.CXXThisAlignment = OldCXXThisAlignment;
1336       CGF.ReturnValue = OldReturnValue;
1337       CGF.FnRetTy = OldFnRetTy;
1338       CGF.CXXInheritedCtorInitExprArgs =
1339           std::move(OldCXXInheritedCtorInitExprArgs);
1340     }
1341 
1342   private:
1343     CodeGenFunction &CGF;
1344     GlobalDecl OldCurGD;
1345     const Decl *OldCurFuncDecl;
1346     const Decl *OldCurCodeDecl;
1347     ImplicitParamDecl *OldCXXABIThisDecl;
1348     llvm::Value *OldCXXABIThisValue;
1349     llvm::Value *OldCXXThisValue;
1350     CharUnits OldCXXABIThisAlignment;
1351     CharUnits OldCXXThisAlignment;
1352     Address OldReturnValue;
1353     QualType OldFnRetTy;
1354     CallArgList OldCXXInheritedCtorInitExprArgs;
1355   };
1356 
1357 private:
1358   /// CXXThisDecl - When generating code for a C++ member function,
1359   /// this will hold the implicit 'this' declaration.
1360   ImplicitParamDecl *CXXABIThisDecl;
1361   llvm::Value *CXXABIThisValue;
1362   llvm::Value *CXXThisValue;
1363   CharUnits CXXABIThisAlignment;
1364   CharUnits CXXThisAlignment;
1365 
1366   /// The value of 'this' to use when evaluating CXXDefaultInitExprs within
1367   /// this expression.
1368   Address CXXDefaultInitExprThis = Address::invalid();
1369 
1370   /// The current array initialization index when evaluating an
1371   /// ArrayInitIndexExpr within an ArrayInitLoopExpr.
1372   llvm::Value *ArrayInitIndex = nullptr;
1373 
1374   /// The values of function arguments to use when evaluating
1375   /// CXXInheritedCtorInitExprs within this context.
1376   CallArgList CXXInheritedCtorInitExprArgs;
1377 
1378   /// CXXStructorImplicitParamDecl - When generating code for a constructor or
1379   /// destructor, this will hold the implicit argument (e.g. VTT).
1380   ImplicitParamDecl *CXXStructorImplicitParamDecl;
1381   llvm::Value *CXXStructorImplicitParamValue;
1382 
1383   /// OutermostConditional - Points to the outermost active
1384   /// conditional control.  This is used so that we know if a
1385   /// temporary should be destroyed conditionally.
1386   ConditionalEvaluation *OutermostConditional;
1387 
1388   /// The current lexical scope.
1389   LexicalScope *CurLexicalScope;
1390 
1391   /// The current source location that should be used for exception
1392   /// handling code.
1393   SourceLocation CurEHLocation;
1394 
1395   /// BlockByrefInfos - For each __block variable, contains
1396   /// information about the layout of the variable.
1397   llvm::DenseMap<const ValueDecl *, BlockByrefInfo> BlockByrefInfos;
1398 
1399   /// Used by -fsanitize=nullability-return to determine whether the return
1400   /// value can be checked.
1401   llvm::Value *RetValNullabilityPrecondition = nullptr;
1402 
1403   /// Check if -fsanitize=nullability-return instrumentation is required for
1404   /// this function.
1405   bool requiresReturnValueNullabilityCheck() const {
1406     return RetValNullabilityPrecondition;
1407   }
1408 
1409   /// Used to store precise source locations for return statements by the
1410   /// runtime return value checks.
1411   Address ReturnLocation = Address::invalid();
1412 
1413   /// Check if the return value of this function requires sanitization.
1414   bool requiresReturnValueCheck() const {
1415     return requiresReturnValueNullabilityCheck() ||
1416            (SanOpts.has(SanitizerKind::ReturnsNonnullAttribute) &&
1417             CurCodeDecl && CurCodeDecl->getAttr<ReturnsNonNullAttr>());
1418   }
1419 
1420   llvm::BasicBlock *TerminateLandingPad;
1421   llvm::BasicBlock *TerminateHandler;
1422   llvm::BasicBlock *TrapBB;
1423 
1424   /// Terminate funclets keyed by parent funclet pad.
1425   llvm::MapVector<llvm::Value *, llvm::BasicBlock *> TerminateFunclets;
1426 
1427   /// True if we need emit the life-time markers.
1428   const bool ShouldEmitLifetimeMarkers;
1429 
1430   /// Add OpenCL kernel arg metadata and the kernel attribute meatadata to
1431   /// the function metadata.
1432   void EmitOpenCLKernelMetadata(const FunctionDecl *FD,
1433                                 llvm::Function *Fn);
1434 
1435 public:
1436   CodeGenFunction(CodeGenModule &cgm, bool suppressNewContext=false);
1437   ~CodeGenFunction();
1438 
1439   CodeGenTypes &getTypes() const { return CGM.getTypes(); }
1440   ASTContext &getContext() const { return CGM.getContext(); }
1441   CGDebugInfo *getDebugInfo() {
1442     if (DisableDebugInfo)
1443       return nullptr;
1444     return DebugInfo;
1445   }
1446   void disableDebugInfo() { DisableDebugInfo = true; }
1447   void enableDebugInfo() { DisableDebugInfo = false; }
1448 
1449   bool shouldUseFusedARCCalls() {
1450     return CGM.getCodeGenOpts().OptimizationLevel == 0;
1451   }
1452 
1453   const LangOptions &getLangOpts() const { return CGM.getLangOpts(); }
1454 
1455   /// Returns a pointer to the function's exception object and selector slot,
1456   /// which is assigned in every landing pad.
1457   Address getExceptionSlot();
1458   Address getEHSelectorSlot();
1459 
1460   /// Returns the contents of the function's exception object and selector
1461   /// slots.
1462   llvm::Value *getExceptionFromSlot();
1463   llvm::Value *getSelectorFromSlot();
1464 
1465   Address getNormalCleanupDestSlot();
1466 
1467   llvm::BasicBlock *getUnreachableBlock() {
1468     if (!UnreachableBlock) {
1469       UnreachableBlock = createBasicBlock("unreachable");
1470       new llvm::UnreachableInst(getLLVMContext(), UnreachableBlock);
1471     }
1472     return UnreachableBlock;
1473   }
1474 
1475   llvm::BasicBlock *getInvokeDest() {
1476     if (!EHStack.requiresLandingPad()) return nullptr;
1477     return getInvokeDestImpl();
1478   }
1479 
1480   bool currentFunctionUsesSEHTry() const { return CurSEHParent != nullptr; }
1481 
1482   const TargetInfo &getTarget() const { return Target; }
1483   llvm::LLVMContext &getLLVMContext() { return CGM.getLLVMContext(); }
1484   const TargetCodeGenInfo &getTargetHooks() const {
1485     return CGM.getTargetCodeGenInfo();
1486   }
1487 
1488   //===--------------------------------------------------------------------===//
1489   //                                  Cleanups
1490   //===--------------------------------------------------------------------===//
1491 
1492   typedef void Destroyer(CodeGenFunction &CGF, Address addr, QualType ty);
1493 
1494   void pushIrregularPartialArrayCleanup(llvm::Value *arrayBegin,
1495                                         Address arrayEndPointer,
1496                                         QualType elementType,
1497                                         CharUnits elementAlignment,
1498                                         Destroyer *destroyer);
1499   void pushRegularPartialArrayCleanup(llvm::Value *arrayBegin,
1500                                       llvm::Value *arrayEnd,
1501                                       QualType elementType,
1502                                       CharUnits elementAlignment,
1503                                       Destroyer *destroyer);
1504 
1505   void pushDestroy(QualType::DestructionKind dtorKind,
1506                    Address addr, QualType type);
1507   void pushEHDestroy(QualType::DestructionKind dtorKind,
1508                      Address addr, QualType type);
1509   void pushDestroy(CleanupKind kind, Address addr, QualType type,
1510                    Destroyer *destroyer, bool useEHCleanupForArray);
1511   void pushLifetimeExtendedDestroy(CleanupKind kind, Address addr,
1512                                    QualType type, Destroyer *destroyer,
1513                                    bool useEHCleanupForArray);
1514   void pushCallObjectDeleteCleanup(const FunctionDecl *OperatorDelete,
1515                                    llvm::Value *CompletePtr,
1516                                    QualType ElementType);
1517   void pushStackRestore(CleanupKind kind, Address SPMem);
1518   void emitDestroy(Address addr, QualType type, Destroyer *destroyer,
1519                    bool useEHCleanupForArray);
1520   llvm::Function *generateDestroyHelper(Address addr, QualType type,
1521                                         Destroyer *destroyer,
1522                                         bool useEHCleanupForArray,
1523                                         const VarDecl *VD);
1524   void emitArrayDestroy(llvm::Value *begin, llvm::Value *end,
1525                         QualType elementType, CharUnits elementAlign,
1526                         Destroyer *destroyer,
1527                         bool checkZeroLength, bool useEHCleanup);
1528 
1529   Destroyer *getDestroyer(QualType::DestructionKind destructionKind);
1530 
1531   /// Determines whether an EH cleanup is required to destroy a type
1532   /// with the given destruction kind.
1533   bool needsEHCleanup(QualType::DestructionKind kind) {
1534     switch (kind) {
1535     case QualType::DK_none:
1536       return false;
1537     case QualType::DK_cxx_destructor:
1538     case QualType::DK_objc_weak_lifetime:
1539       return getLangOpts().Exceptions;
1540     case QualType::DK_objc_strong_lifetime:
1541       return getLangOpts().Exceptions &&
1542              CGM.getCodeGenOpts().ObjCAutoRefCountExceptions;
1543     }
1544     llvm_unreachable("bad destruction kind");
1545   }
1546 
1547   CleanupKind getCleanupKind(QualType::DestructionKind kind) {
1548     return (needsEHCleanup(kind) ? NormalAndEHCleanup : NormalCleanup);
1549   }
1550 
1551   //===--------------------------------------------------------------------===//
1552   //                                  Objective-C
1553   //===--------------------------------------------------------------------===//
1554 
1555   void GenerateObjCMethod(const ObjCMethodDecl *OMD);
1556 
1557   void StartObjCMethod(const ObjCMethodDecl *MD, const ObjCContainerDecl *CD);
1558 
1559   /// GenerateObjCGetter - Synthesize an Objective-C property getter function.
1560   void GenerateObjCGetter(ObjCImplementationDecl *IMP,
1561                           const ObjCPropertyImplDecl *PID);
1562   void generateObjCGetterBody(const ObjCImplementationDecl *classImpl,
1563                               const ObjCPropertyImplDecl *propImpl,
1564                               const ObjCMethodDecl *GetterMothodDecl,
1565                               llvm::Constant *AtomicHelperFn);
1566 
1567   void GenerateObjCCtorDtorMethod(ObjCImplementationDecl *IMP,
1568                                   ObjCMethodDecl *MD, bool ctor);
1569 
1570   /// GenerateObjCSetter - Synthesize an Objective-C property setter function
1571   /// for the given property.
1572   void GenerateObjCSetter(ObjCImplementationDecl *IMP,
1573                           const ObjCPropertyImplDecl *PID);
1574   void generateObjCSetterBody(const ObjCImplementationDecl *classImpl,
1575                               const ObjCPropertyImplDecl *propImpl,
1576                               llvm::Constant *AtomicHelperFn);
1577 
1578   //===--------------------------------------------------------------------===//
1579   //                                  Block Bits
1580   //===--------------------------------------------------------------------===//
1581 
1582   /// Emit block literal.
1583   /// \return an LLVM value which is a pointer to a struct which contains
1584   /// information about the block, including the block invoke function, the
1585   /// captured variables, etc.
1586   /// \param InvokeF will contain the block invoke function if it is not
1587   /// nullptr.
1588   llvm::Value *EmitBlockLiteral(const BlockExpr *,
1589                                 llvm::Function **InvokeF = nullptr);
1590   static void destroyBlockInfos(CGBlockInfo *info);
1591 
1592   llvm::Function *GenerateBlockFunction(GlobalDecl GD,
1593                                         const CGBlockInfo &Info,
1594                                         const DeclMapTy &ldm,
1595                                         bool IsLambdaConversionToBlock,
1596                                         bool BuildGlobalBlock);
1597 
1598   llvm::Constant *GenerateCopyHelperFunction(const CGBlockInfo &blockInfo);
1599   llvm::Constant *GenerateDestroyHelperFunction(const CGBlockInfo &blockInfo);
1600   llvm::Constant *GenerateObjCAtomicSetterCopyHelperFunction(
1601                                              const ObjCPropertyImplDecl *PID);
1602   llvm::Constant *GenerateObjCAtomicGetterCopyHelperFunction(
1603                                              const ObjCPropertyImplDecl *PID);
1604   llvm::Value *EmitBlockCopyAndAutorelease(llvm::Value *Block, QualType Ty);
1605 
1606   void BuildBlockRelease(llvm::Value *DeclPtr, BlockFieldFlags flags);
1607 
1608   class AutoVarEmission;
1609 
1610   void emitByrefStructureInit(const AutoVarEmission &emission);
1611   void enterByrefCleanup(const AutoVarEmission &emission);
1612 
1613   void setBlockContextParameter(const ImplicitParamDecl *D, unsigned argNum,
1614                                 llvm::Value *ptr);
1615 
1616   Address LoadBlockStruct();
1617   Address GetAddrOfBlockDecl(const VarDecl *var, bool ByRef);
1618 
1619   /// BuildBlockByrefAddress - Computes the location of the
1620   /// data in a variable which is declared as __block.
1621   Address emitBlockByrefAddress(Address baseAddr, const VarDecl *V,
1622                                 bool followForward = true);
1623   Address emitBlockByrefAddress(Address baseAddr,
1624                                 const BlockByrefInfo &info,
1625                                 bool followForward,
1626                                 const llvm::Twine &name);
1627 
1628   const BlockByrefInfo &getBlockByrefInfo(const VarDecl *var);
1629 
1630   QualType BuildFunctionArgList(GlobalDecl GD, FunctionArgList &Args);
1631 
1632   void GenerateCode(GlobalDecl GD, llvm::Function *Fn,
1633                     const CGFunctionInfo &FnInfo);
1634   /// \brief Emit code for the start of a function.
1635   /// \param Loc       The location to be associated with the function.
1636   /// \param StartLoc  The location of the function body.
1637   void StartFunction(GlobalDecl GD,
1638                      QualType RetTy,
1639                      llvm::Function *Fn,
1640                      const CGFunctionInfo &FnInfo,
1641                      const FunctionArgList &Args,
1642                      SourceLocation Loc = SourceLocation(),
1643                      SourceLocation StartLoc = SourceLocation());
1644 
1645   static bool IsConstructorDelegationValid(const CXXConstructorDecl *Ctor);
1646 
1647   void EmitConstructorBody(FunctionArgList &Args);
1648   void EmitDestructorBody(FunctionArgList &Args);
1649   void emitImplicitAssignmentOperatorBody(FunctionArgList &Args);
1650   void EmitFunctionBody(FunctionArgList &Args, const Stmt *Body);
1651   void EmitBlockWithFallThrough(llvm::BasicBlock *BB, const Stmt *S);
1652 
1653   void EmitForwardingCallToLambda(const CXXMethodDecl *LambdaCallOperator,
1654                                   CallArgList &CallArgs);
1655   void EmitLambdaBlockInvokeBody();
1656   void EmitLambdaDelegatingInvokeBody(const CXXMethodDecl *MD);
1657   void EmitLambdaStaticInvokeBody(const CXXMethodDecl *MD);
1658   void EmitAsanPrologueOrEpilogue(bool Prologue);
1659 
1660   /// \brief Emit the unified return block, trying to avoid its emission when
1661   /// possible.
1662   /// \return The debug location of the user written return statement if the
1663   /// return block is is avoided.
1664   llvm::DebugLoc EmitReturnBlock();
1665 
1666   /// FinishFunction - Complete IR generation of the current function. It is
1667   /// legal to call this function even if there is no current insertion point.
1668   void FinishFunction(SourceLocation EndLoc=SourceLocation());
1669 
1670   void StartThunk(llvm::Function *Fn, GlobalDecl GD,
1671                   const CGFunctionInfo &FnInfo);
1672 
1673   void EmitCallAndReturnForThunk(llvm::Constant *Callee,
1674                                  const ThunkInfo *Thunk);
1675 
1676   void FinishThunk();
1677 
1678   /// Emit a musttail call for a thunk with a potentially adjusted this pointer.
1679   void EmitMustTailThunk(const CXXMethodDecl *MD, llvm::Value *AdjustedThisPtr,
1680                          llvm::Value *Callee);
1681 
1682   /// Generate a thunk for the given method.
1683   void generateThunk(llvm::Function *Fn, const CGFunctionInfo &FnInfo,
1684                      GlobalDecl GD, const ThunkInfo &Thunk);
1685 
1686   llvm::Function *GenerateVarArgsThunk(llvm::Function *Fn,
1687                                        const CGFunctionInfo &FnInfo,
1688                                        GlobalDecl GD, const ThunkInfo &Thunk);
1689 
1690   void EmitCtorPrologue(const CXXConstructorDecl *CD, CXXCtorType Type,
1691                         FunctionArgList &Args);
1692 
1693   void EmitInitializerForField(FieldDecl *Field, LValue LHS, Expr *Init);
1694 
1695   /// Struct with all informations about dynamic [sub]class needed to set vptr.
1696   struct VPtr {
1697     BaseSubobject Base;
1698     const CXXRecordDecl *NearestVBase;
1699     CharUnits OffsetFromNearestVBase;
1700     const CXXRecordDecl *VTableClass;
1701   };
1702 
1703   /// Initialize the vtable pointer of the given subobject.
1704   void InitializeVTablePointer(const VPtr &vptr);
1705 
1706   typedef llvm::SmallVector<VPtr, 4> VPtrsVector;
1707 
1708   typedef llvm::SmallPtrSet<const CXXRecordDecl *, 4> VisitedVirtualBasesSetTy;
1709   VPtrsVector getVTablePointers(const CXXRecordDecl *VTableClass);
1710 
1711   void getVTablePointers(BaseSubobject Base, const CXXRecordDecl *NearestVBase,
1712                          CharUnits OffsetFromNearestVBase,
1713                          bool BaseIsNonVirtualPrimaryBase,
1714                          const CXXRecordDecl *VTableClass,
1715                          VisitedVirtualBasesSetTy &VBases, VPtrsVector &vptrs);
1716 
1717   void InitializeVTablePointers(const CXXRecordDecl *ClassDecl);
1718 
1719   /// GetVTablePtr - Return the Value of the vtable pointer member pointed
1720   /// to by This.
1721   llvm::Value *GetVTablePtr(Address This, llvm::Type *VTableTy,
1722                             const CXXRecordDecl *VTableClass);
1723 
1724   enum CFITypeCheckKind {
1725     CFITCK_VCall,
1726     CFITCK_NVCall,
1727     CFITCK_DerivedCast,
1728     CFITCK_UnrelatedCast,
1729     CFITCK_ICall,
1730   };
1731 
1732   /// \brief Derived is the presumed address of an object of type T after a
1733   /// cast. If T is a polymorphic class type, emit a check that the virtual
1734   /// table for Derived belongs to a class derived from T.
1735   void EmitVTablePtrCheckForCast(QualType T, llvm::Value *Derived,
1736                                  bool MayBeNull, CFITypeCheckKind TCK,
1737                                  SourceLocation Loc);
1738 
1739   /// EmitVTablePtrCheckForCall - Virtual method MD is being called via VTable.
1740   /// If vptr CFI is enabled, emit a check that VTable is valid.
1741   void EmitVTablePtrCheckForCall(const CXXRecordDecl *RD, llvm::Value *VTable,
1742                                  CFITypeCheckKind TCK, SourceLocation Loc);
1743 
1744   /// EmitVTablePtrCheck - Emit a check that VTable is a valid virtual table for
1745   /// RD using llvm.type.test.
1746   void EmitVTablePtrCheck(const CXXRecordDecl *RD, llvm::Value *VTable,
1747                           CFITypeCheckKind TCK, SourceLocation Loc);
1748 
1749   /// If whole-program virtual table optimization is enabled, emit an assumption
1750   /// that VTable is a member of RD's type identifier. Or, if vptr CFI is
1751   /// enabled, emit a check that VTable is a member of RD's type identifier.
1752   void EmitTypeMetadataCodeForVCall(const CXXRecordDecl *RD,
1753                                     llvm::Value *VTable, SourceLocation Loc);
1754 
1755   /// Returns whether we should perform a type checked load when loading a
1756   /// virtual function for virtual calls to members of RD. This is generally
1757   /// true when both vcall CFI and whole-program-vtables are enabled.
1758   bool ShouldEmitVTableTypeCheckedLoad(const CXXRecordDecl *RD);
1759 
1760   /// Emit a type checked load from the given vtable.
1761   llvm::Value *EmitVTableTypeCheckedLoad(const CXXRecordDecl *RD, llvm::Value *VTable,
1762                                          uint64_t VTableByteOffset);
1763 
1764   /// EnterDtorCleanups - Enter the cleanups necessary to complete the
1765   /// given phase of destruction for a destructor.  The end result
1766   /// should call destructors on members and base classes in reverse
1767   /// order of their construction.
1768   void EnterDtorCleanups(const CXXDestructorDecl *Dtor, CXXDtorType Type);
1769 
1770   /// ShouldInstrumentFunction - Return true if the current function should be
1771   /// instrumented with __cyg_profile_func_* calls
1772   bool ShouldInstrumentFunction();
1773 
1774   /// ShouldXRayInstrument - Return true if the current function should be
1775   /// instrumented with XRay nop sleds.
1776   bool ShouldXRayInstrumentFunction() const;
1777 
1778   /// AlwaysEmitXRayCustomEvents - Return true if we must unconditionally emit
1779   /// XRay custom event handling calls.
1780   bool AlwaysEmitXRayCustomEvents() const;
1781 
1782   /// Encode an address into a form suitable for use in a function prologue.
1783   llvm::Constant *EncodeAddrForUseInPrologue(llvm::Function *F,
1784                                              llvm::Constant *Addr);
1785 
1786   /// Decode an address used in a function prologue, encoded by \c
1787   /// EncodeAddrForUseInPrologue.
1788   llvm::Value *DecodeAddrUsedInPrologue(llvm::Value *F,
1789                                         llvm::Value *EncodedAddr);
1790 
1791   /// EmitFunctionProlog - Emit the target specific LLVM code to load the
1792   /// arguments for the given function. This is also responsible for naming the
1793   /// LLVM function arguments.
1794   void EmitFunctionProlog(const CGFunctionInfo &FI,
1795                           llvm::Function *Fn,
1796                           const FunctionArgList &Args);
1797 
1798   /// EmitFunctionEpilog - Emit the target specific LLVM code to return the
1799   /// given temporary.
1800   void EmitFunctionEpilog(const CGFunctionInfo &FI, bool EmitRetDbgLoc,
1801                           SourceLocation EndLoc);
1802 
1803   /// Emit a test that checks if the return value \p RV is nonnull.
1804   void EmitReturnValueCheck(llvm::Value *RV);
1805 
1806   /// EmitStartEHSpec - Emit the start of the exception spec.
1807   void EmitStartEHSpec(const Decl *D);
1808 
1809   /// EmitEndEHSpec - Emit the end of the exception spec.
1810   void EmitEndEHSpec(const Decl *D);
1811 
1812   /// getTerminateLandingPad - Return a landing pad that just calls terminate.
1813   llvm::BasicBlock *getTerminateLandingPad();
1814 
1815   /// getTerminateLandingPad - Return a cleanup funclet that just calls
1816   /// terminate.
1817   llvm::BasicBlock *getTerminateFunclet();
1818 
1819   /// getTerminateHandler - Return a handler (not a landing pad, just
1820   /// a catch handler) that just calls terminate.  This is used when
1821   /// a terminate scope encloses a try.
1822   llvm::BasicBlock *getTerminateHandler();
1823 
1824   llvm::Type *ConvertTypeForMem(QualType T);
1825   llvm::Type *ConvertType(QualType T);
1826   llvm::Type *ConvertType(const TypeDecl *T) {
1827     return ConvertType(getContext().getTypeDeclType(T));
1828   }
1829 
1830   /// LoadObjCSelf - Load the value of self. This function is only valid while
1831   /// generating code for an Objective-C method.
1832   llvm::Value *LoadObjCSelf();
1833 
1834   /// TypeOfSelfObject - Return type of object that this self represents.
1835   QualType TypeOfSelfObject();
1836 
1837   /// getEvaluationKind - Return the TypeEvaluationKind of QualType \c T.
1838   static TypeEvaluationKind getEvaluationKind(QualType T);
1839 
1840   static bool hasScalarEvaluationKind(QualType T) {
1841     return getEvaluationKind(T) == TEK_Scalar;
1842   }
1843 
1844   static bool hasAggregateEvaluationKind(QualType T) {
1845     return getEvaluationKind(T) == TEK_Aggregate;
1846   }
1847 
1848   /// createBasicBlock - Create an LLVM basic block.
1849   llvm::BasicBlock *createBasicBlock(const Twine &name = "",
1850                                      llvm::Function *parent = nullptr,
1851                                      llvm::BasicBlock *before = nullptr) {
1852     return llvm::BasicBlock::Create(getLLVMContext(), name, parent, before);
1853   }
1854 
1855   /// getBasicBlockForLabel - Return the LLVM basicblock that the specified
1856   /// label maps to.
1857   JumpDest getJumpDestForLabel(const LabelDecl *S);
1858 
1859   /// SimplifyForwardingBlocks - If the given basic block is only a branch to
1860   /// another basic block, simplify it. This assumes that no other code could
1861   /// potentially reference the basic block.
1862   void SimplifyForwardingBlocks(llvm::BasicBlock *BB);
1863 
1864   /// EmitBlock - Emit the given block \arg BB and set it as the insert point,
1865   /// adding a fall-through branch from the current insert block if
1866   /// necessary. It is legal to call this function even if there is no current
1867   /// insertion point.
1868   ///
1869   /// IsFinished - If true, indicates that the caller has finished emitting
1870   /// branches to the given block and does not expect to emit code into it. This
1871   /// means the block can be ignored if it is unreachable.
1872   void EmitBlock(llvm::BasicBlock *BB, bool IsFinished=false);
1873 
1874   /// EmitBlockAfterUses - Emit the given block somewhere hopefully
1875   /// near its uses, and leave the insertion point in it.
1876   void EmitBlockAfterUses(llvm::BasicBlock *BB);
1877 
1878   /// EmitBranch - Emit a branch to the specified basic block from the current
1879   /// insert block, taking care to avoid creation of branches from dummy
1880   /// blocks. It is legal to call this function even if there is no current
1881   /// insertion point.
1882   ///
1883   /// This function clears the current insertion point. The caller should follow
1884   /// calls to this function with calls to Emit*Block prior to generation new
1885   /// code.
1886   void EmitBranch(llvm::BasicBlock *Block);
1887 
1888   /// HaveInsertPoint - True if an insertion point is defined. If not, this
1889   /// indicates that the current code being emitted is unreachable.
1890   bool HaveInsertPoint() const {
1891     return Builder.GetInsertBlock() != nullptr;
1892   }
1893 
1894   /// EnsureInsertPoint - Ensure that an insertion point is defined so that
1895   /// emitted IR has a place to go. Note that by definition, if this function
1896   /// creates a block then that block is unreachable; callers may do better to
1897   /// detect when no insertion point is defined and simply skip IR generation.
1898   void EnsureInsertPoint() {
1899     if (!HaveInsertPoint())
1900       EmitBlock(createBasicBlock());
1901   }
1902 
1903   /// ErrorUnsupported - Print out an error that codegen doesn't support the
1904   /// specified stmt yet.
1905   void ErrorUnsupported(const Stmt *S, const char *Type);
1906 
1907   //===--------------------------------------------------------------------===//
1908   //                                  Helpers
1909   //===--------------------------------------------------------------------===//
1910 
1911   LValue MakeAddrLValue(Address Addr, QualType T,
1912                         AlignmentSource Source = AlignmentSource::Type) {
1913     return LValue::MakeAddr(Addr, T, getContext(), LValueBaseInfo(Source),
1914                             CGM.getTBAAAccessInfo(T));
1915   }
1916 
1917   LValue MakeAddrLValue(Address Addr, QualType T, LValueBaseInfo BaseInfo,
1918                         TBAAAccessInfo TBAAInfo) {
1919     return LValue::MakeAddr(Addr, T, getContext(), BaseInfo, TBAAInfo);
1920   }
1921 
1922   LValue MakeAddrLValue(llvm::Value *V, QualType T, CharUnits Alignment,
1923                         AlignmentSource Source = AlignmentSource::Type) {
1924     return LValue::MakeAddr(Address(V, Alignment), T, getContext(),
1925                             LValueBaseInfo(Source), CGM.getTBAAAccessInfo(T));
1926   }
1927 
1928   LValue MakeAddrLValue(llvm::Value *V, QualType T, CharUnits Alignment,
1929                         LValueBaseInfo BaseInfo, TBAAAccessInfo TBAAInfo) {
1930     return LValue::MakeAddr(Address(V, Alignment), T, getContext(),
1931                             BaseInfo, TBAAInfo);
1932   }
1933 
1934   LValue MakeNaturalAlignPointeeAddrLValue(llvm::Value *V, QualType T);
1935   LValue MakeNaturalAlignAddrLValue(llvm::Value *V, QualType T);
1936   CharUnits getNaturalTypeAlignment(QualType T,
1937                                     LValueBaseInfo *BaseInfo = nullptr,
1938                                     TBAAAccessInfo *TBAAInfo = nullptr,
1939                                     bool forPointeeType = false);
1940   CharUnits getNaturalPointeeTypeAlignment(QualType T,
1941                                            LValueBaseInfo *BaseInfo = nullptr,
1942                                            TBAAAccessInfo *TBAAInfo = nullptr);
1943 
1944   Address EmitLoadOfReference(LValue RefLVal,
1945                               LValueBaseInfo *PointeeBaseInfo = nullptr,
1946                               TBAAAccessInfo *PointeeTBAAInfo = nullptr);
1947   LValue EmitLoadOfReferenceLValue(LValue RefLVal);
1948   LValue EmitLoadOfReferenceLValue(Address RefAddr, QualType RefTy,
1949                                    AlignmentSource Source =
1950                                        AlignmentSource::Type) {
1951     LValue RefLVal = MakeAddrLValue(RefAddr, RefTy, LValueBaseInfo(Source),
1952                                     CGM.getTBAAAccessInfo(RefTy));
1953     return EmitLoadOfReferenceLValue(RefLVal);
1954   }
1955 
1956   Address EmitLoadOfPointer(Address Ptr, const PointerType *PtrTy,
1957                             LValueBaseInfo *BaseInfo = nullptr,
1958                             TBAAAccessInfo *TBAAInfo = nullptr);
1959   LValue EmitLoadOfPointerLValue(Address Ptr, const PointerType *PtrTy);
1960 
1961   /// CreateTempAlloca - This creates an alloca and inserts it into the entry
1962   /// block if \p ArraySize is nullptr, otherwise inserts it at the current
1963   /// insertion point of the builder. The caller is responsible for setting an
1964   /// appropriate alignment on
1965   /// the alloca.
1966   ///
1967   /// \p ArraySize is the number of array elements to be allocated if it
1968   ///    is not nullptr.
1969   ///
1970   /// LangAS::Default is the address space of pointers to local variables and
1971   /// temporaries, as exposed in the source language. In certain
1972   /// configurations, this is not the same as the alloca address space, and a
1973   /// cast is needed to lift the pointer from the alloca AS into
1974   /// LangAS::Default. This can happen when the target uses a restricted
1975   /// address space for the stack but the source language requires
1976   /// LangAS::Default to be a generic address space. The latter condition is
1977   /// common for most programming languages; OpenCL is an exception in that
1978   /// LangAS::Default is the private address space, which naturally maps
1979   /// to the stack.
1980   ///
1981   /// Because the address of a temporary is often exposed to the program in
1982   /// various ways, this function will perform the cast by default. The cast
1983   /// may be avoided by passing false as \p CastToDefaultAddrSpace; this is
1984   /// more efficient if the caller knows that the address will not be exposed.
1985   llvm::AllocaInst *CreateTempAlloca(llvm::Type *Ty, const Twine &Name = "tmp",
1986                                      llvm::Value *ArraySize = nullptr);
1987   Address CreateTempAlloca(llvm::Type *Ty, CharUnits align,
1988                            const Twine &Name = "tmp",
1989                            llvm::Value *ArraySize = nullptr,
1990                            bool CastToDefaultAddrSpace = true);
1991 
1992   /// CreateDefaultAlignedTempAlloca - This creates an alloca with the
1993   /// default ABI alignment of the given LLVM type.
1994   ///
1995   /// IMPORTANT NOTE: This is *not* generally the right alignment for
1996   /// any given AST type that happens to have been lowered to the
1997   /// given IR type.  This should only ever be used for function-local,
1998   /// IR-driven manipulations like saving and restoring a value.  Do
1999   /// not hand this address off to arbitrary IRGen routines, and especially
2000   /// do not pass it as an argument to a function that might expect a
2001   /// properly ABI-aligned value.
2002   Address CreateDefaultAlignTempAlloca(llvm::Type *Ty,
2003                                        const Twine &Name = "tmp");
2004 
2005   /// InitTempAlloca - Provide an initial value for the given alloca which
2006   /// will be observable at all locations in the function.
2007   ///
2008   /// The address should be something that was returned from one of
2009   /// the CreateTempAlloca or CreateMemTemp routines, and the
2010   /// initializer must be valid in the entry block (i.e. it must
2011   /// either be a constant or an argument value).
2012   void InitTempAlloca(Address Alloca, llvm::Value *Value);
2013 
2014   /// CreateIRTemp - Create a temporary IR object of the given type, with
2015   /// appropriate alignment. This routine should only be used when an temporary
2016   /// value needs to be stored into an alloca (for example, to avoid explicit
2017   /// PHI construction), but the type is the IR type, not the type appropriate
2018   /// for storing in memory.
2019   ///
2020   /// That is, this is exactly equivalent to CreateMemTemp, but calling
2021   /// ConvertType instead of ConvertTypeForMem.
2022   Address CreateIRTemp(QualType T, const Twine &Name = "tmp");
2023 
2024   /// CreateMemTemp - Create a temporary memory object of the given type, with
2025   /// appropriate alignment. Cast it to the default address space if
2026   /// \p CastToDefaultAddrSpace is true.
2027   Address CreateMemTemp(QualType T, const Twine &Name = "tmp",
2028                         bool CastToDefaultAddrSpace = true);
2029   Address CreateMemTemp(QualType T, CharUnits Align, const Twine &Name = "tmp",
2030                         bool CastToDefaultAddrSpace = true);
2031 
2032   /// CreateAggTemp - Create a temporary memory object for the given
2033   /// aggregate type.
2034   AggValueSlot CreateAggTemp(QualType T, const Twine &Name = "tmp") {
2035     return AggValueSlot::forAddr(CreateMemTemp(T, Name),
2036                                  T.getQualifiers(),
2037                                  AggValueSlot::IsNotDestructed,
2038                                  AggValueSlot::DoesNotNeedGCBarriers,
2039                                  AggValueSlot::IsNotAliased);
2040   }
2041 
2042   /// Emit a cast to void* in the appropriate address space.
2043   llvm::Value *EmitCastToVoidPtr(llvm::Value *value);
2044 
2045   /// EvaluateExprAsBool - Perform the usual unary conversions on the specified
2046   /// expression and compare the result against zero, returning an Int1Ty value.
2047   llvm::Value *EvaluateExprAsBool(const Expr *E);
2048 
2049   /// EmitIgnoredExpr - Emit an expression in a context which ignores the result.
2050   void EmitIgnoredExpr(const Expr *E);
2051 
2052   /// EmitAnyExpr - Emit code to compute the specified expression which can have
2053   /// any type.  The result is returned as an RValue struct.  If this is an
2054   /// aggregate expression, the aggloc/agglocvolatile arguments indicate where
2055   /// the result should be returned.
2056   ///
2057   /// \param ignoreResult True if the resulting value isn't used.
2058   RValue EmitAnyExpr(const Expr *E,
2059                      AggValueSlot aggSlot = AggValueSlot::ignored(),
2060                      bool ignoreResult = false);
2061 
2062   // EmitVAListRef - Emit a "reference" to a va_list; this is either the address
2063   // or the value of the expression, depending on how va_list is defined.
2064   Address EmitVAListRef(const Expr *E);
2065 
2066   /// Emit a "reference" to a __builtin_ms_va_list; this is
2067   /// always the value of the expression, because a __builtin_ms_va_list is a
2068   /// pointer to a char.
2069   Address EmitMSVAListRef(const Expr *E);
2070 
2071   /// EmitAnyExprToTemp - Similarly to EmitAnyExpr(), however, the result will
2072   /// always be accessible even if no aggregate location is provided.
2073   RValue EmitAnyExprToTemp(const Expr *E);
2074 
2075   /// EmitAnyExprToMem - Emits the code necessary to evaluate an
2076   /// arbitrary expression into the given memory location.
2077   void EmitAnyExprToMem(const Expr *E, Address Location,
2078                         Qualifiers Quals, bool IsInitializer);
2079 
2080   void EmitAnyExprToExn(const Expr *E, Address Addr);
2081 
2082   /// EmitExprAsInit - Emits the code necessary to initialize a
2083   /// location in memory with the given initializer.
2084   void EmitExprAsInit(const Expr *init, const ValueDecl *D, LValue lvalue,
2085                       bool capturedByInit);
2086 
2087   /// hasVolatileMember - returns true if aggregate type has a volatile
2088   /// member.
2089   bool hasVolatileMember(QualType T) {
2090     if (const RecordType *RT = T->getAs<RecordType>()) {
2091       const RecordDecl *RD = cast<RecordDecl>(RT->getDecl());
2092       return RD->hasVolatileMember();
2093     }
2094     return false;
2095   }
2096   /// EmitAggregateCopy - Emit an aggregate assignment.
2097   ///
2098   /// The difference to EmitAggregateCopy is that tail padding is not copied.
2099   /// This is required for correctness when assigning non-POD structures in C++.
2100   void EmitAggregateAssign(LValue Dest, LValue Src, QualType EltTy) {
2101     bool IsVolatile = hasVolatileMember(EltTy);
2102     EmitAggregateCopy(Dest, Src, EltTy, IsVolatile, /* isAssignment= */ true);
2103   }
2104 
2105   void EmitAggregateCopyCtor(LValue Dest, LValue Src) {
2106     EmitAggregateCopy(Dest, Src, Src.getType(),
2107                       /* IsVolatile= */ false, /* IsAssignment= */ false);
2108   }
2109 
2110   /// EmitAggregateCopy - Emit an aggregate copy.
2111   ///
2112   /// \param isVolatile - True iff either the source or the destination is
2113   /// volatile.
2114   /// \param isAssignment - If false, allow padding to be copied.  This often
2115   /// yields more efficient.
2116   void EmitAggregateCopy(LValue Dest, LValue Src, QualType EltTy,
2117                          bool isVolatile = false, bool isAssignment = false);
2118 
2119   /// GetAddrOfLocalVar - Return the address of a local variable.
2120   Address GetAddrOfLocalVar(const VarDecl *VD) {
2121     auto it = LocalDeclMap.find(VD);
2122     assert(it != LocalDeclMap.end() &&
2123            "Invalid argument to GetAddrOfLocalVar(), no decl!");
2124     return it->second;
2125   }
2126 
2127   /// getOpaqueLValueMapping - Given an opaque value expression (which
2128   /// must be mapped to an l-value), return its mapping.
2129   const LValue &getOpaqueLValueMapping(const OpaqueValueExpr *e) {
2130     assert(OpaqueValueMapping::shouldBindAsLValue(e));
2131 
2132     llvm::DenseMap<const OpaqueValueExpr*,LValue>::iterator
2133       it = OpaqueLValues.find(e);
2134     assert(it != OpaqueLValues.end() && "no mapping for opaque value!");
2135     return it->second;
2136   }
2137 
2138   /// getOpaqueRValueMapping - Given an opaque value expression (which
2139   /// must be mapped to an r-value), return its mapping.
2140   const RValue &getOpaqueRValueMapping(const OpaqueValueExpr *e) {
2141     assert(!OpaqueValueMapping::shouldBindAsLValue(e));
2142 
2143     llvm::DenseMap<const OpaqueValueExpr*,RValue>::iterator
2144       it = OpaqueRValues.find(e);
2145     assert(it != OpaqueRValues.end() && "no mapping for opaque value!");
2146     return it->second;
2147   }
2148 
2149   /// Get the index of the current ArrayInitLoopExpr, if any.
2150   llvm::Value *getArrayInitIndex() { return ArrayInitIndex; }
2151 
2152   /// getAccessedFieldNo - Given an encoded value and a result number, return
2153   /// the input field number being accessed.
2154   static unsigned getAccessedFieldNo(unsigned Idx, const llvm::Constant *Elts);
2155 
2156   llvm::BlockAddress *GetAddrOfLabel(const LabelDecl *L);
2157   llvm::BasicBlock *GetIndirectGotoBlock();
2158 
2159   /// Check if \p E is a C++ "this" pointer wrapped in value-preserving casts.
2160   static bool IsWrappedCXXThis(const Expr *E);
2161 
2162   /// EmitNullInitialization - Generate code to set a value of the given type to
2163   /// null, If the type contains data member pointers, they will be initialized
2164   /// to -1 in accordance with the Itanium C++ ABI.
2165   void EmitNullInitialization(Address DestPtr, QualType Ty);
2166 
2167   /// Emits a call to an LLVM variable-argument intrinsic, either
2168   /// \c llvm.va_start or \c llvm.va_end.
2169   /// \param ArgValue A reference to the \c va_list as emitted by either
2170   /// \c EmitVAListRef or \c EmitMSVAListRef.
2171   /// \param IsStart If \c true, emits a call to \c llvm.va_start; otherwise,
2172   /// calls \c llvm.va_end.
2173   llvm::Value *EmitVAStartEnd(llvm::Value *ArgValue, bool IsStart);
2174 
2175   /// Generate code to get an argument from the passed in pointer
2176   /// and update it accordingly.
2177   /// \param VE The \c VAArgExpr for which to generate code.
2178   /// \param VAListAddr Receives a reference to the \c va_list as emitted by
2179   /// either \c EmitVAListRef or \c EmitMSVAListRef.
2180   /// \returns A pointer to the argument.
2181   // FIXME: We should be able to get rid of this method and use the va_arg
2182   // instruction in LLVM instead once it works well enough.
2183   Address EmitVAArg(VAArgExpr *VE, Address &VAListAddr);
2184 
2185   /// emitArrayLength - Compute the length of an array, even if it's a
2186   /// VLA, and drill down to the base element type.
2187   llvm::Value *emitArrayLength(const ArrayType *arrayType,
2188                                QualType &baseType,
2189                                Address &addr);
2190 
2191   /// EmitVLASize - Capture all the sizes for the VLA expressions in
2192   /// the given variably-modified type and store them in the VLASizeMap.
2193   ///
2194   /// This function can be called with a null (unreachable) insert point.
2195   void EmitVariablyModifiedType(QualType Ty);
2196 
2197   struct VlaSizePair {
2198     llvm::Value *NumElts;
2199     QualType Type;
2200 
2201     VlaSizePair(llvm::Value *NE, QualType T) : NumElts(NE), Type(T) {}
2202   };
2203 
2204   /// Return the number of elements for a single dimension
2205   /// for the given array type.
2206   VlaSizePair getVLAElements1D(const VariableArrayType *vla);
2207   VlaSizePair getVLAElements1D(QualType vla);
2208 
2209   /// Returns an LLVM value that corresponds to the size,
2210   /// in non-variably-sized elements, of a variable length array type,
2211   /// plus that largest non-variably-sized element type.  Assumes that
2212   /// the type has already been emitted with EmitVariablyModifiedType.
2213   VlaSizePair getVLASize(const VariableArrayType *vla);
2214   VlaSizePair getVLASize(QualType vla);
2215 
2216   /// LoadCXXThis - Load the value of 'this'. This function is only valid while
2217   /// generating code for an C++ member function.
2218   llvm::Value *LoadCXXThis() {
2219     assert(CXXThisValue && "no 'this' value for this function");
2220     return CXXThisValue;
2221   }
2222   Address LoadCXXThisAddress();
2223 
2224   /// LoadCXXVTT - Load the VTT parameter to base constructors/destructors have
2225   /// virtual bases.
2226   // FIXME: Every place that calls LoadCXXVTT is something
2227   // that needs to be abstracted properly.
2228   llvm::Value *LoadCXXVTT() {
2229     assert(CXXStructorImplicitParamValue && "no VTT value for this function");
2230     return CXXStructorImplicitParamValue;
2231   }
2232 
2233   /// GetAddressOfBaseOfCompleteClass - Convert the given pointer to a
2234   /// complete class to the given direct base.
2235   Address
2236   GetAddressOfDirectBaseInCompleteClass(Address Value,
2237                                         const CXXRecordDecl *Derived,
2238                                         const CXXRecordDecl *Base,
2239                                         bool BaseIsVirtual);
2240 
2241   static bool ShouldNullCheckClassCastValue(const CastExpr *Cast);
2242 
2243   /// GetAddressOfBaseClass - This function will add the necessary delta to the
2244   /// load of 'this' and returns address of the base class.
2245   Address GetAddressOfBaseClass(Address Value,
2246                                 const CXXRecordDecl *Derived,
2247                                 CastExpr::path_const_iterator PathBegin,
2248                                 CastExpr::path_const_iterator PathEnd,
2249                                 bool NullCheckValue, SourceLocation Loc);
2250 
2251   Address GetAddressOfDerivedClass(Address Value,
2252                                    const CXXRecordDecl *Derived,
2253                                    CastExpr::path_const_iterator PathBegin,
2254                                    CastExpr::path_const_iterator PathEnd,
2255                                    bool NullCheckValue);
2256 
2257   /// GetVTTParameter - Return the VTT parameter that should be passed to a
2258   /// base constructor/destructor with virtual bases.
2259   /// FIXME: VTTs are Itanium ABI-specific, so the definition should move
2260   /// to ItaniumCXXABI.cpp together with all the references to VTT.
2261   llvm::Value *GetVTTParameter(GlobalDecl GD, bool ForVirtualBase,
2262                                bool Delegating);
2263 
2264   void EmitDelegateCXXConstructorCall(const CXXConstructorDecl *Ctor,
2265                                       CXXCtorType CtorType,
2266                                       const FunctionArgList &Args,
2267                                       SourceLocation Loc);
2268   // It's important not to confuse this and the previous function. Delegating
2269   // constructors are the C++0x feature. The constructor delegate optimization
2270   // is used to reduce duplication in the base and complete consturctors where
2271   // they are substantially the same.
2272   void EmitDelegatingCXXConstructorCall(const CXXConstructorDecl *Ctor,
2273                                         const FunctionArgList &Args);
2274 
2275   /// Emit a call to an inheriting constructor (that is, one that invokes a
2276   /// constructor inherited from a base class) by inlining its definition. This
2277   /// is necessary if the ABI does not support forwarding the arguments to the
2278   /// base class constructor (because they're variadic or similar).
2279   void EmitInlinedInheritingCXXConstructorCall(const CXXConstructorDecl *Ctor,
2280                                                CXXCtorType CtorType,
2281                                                bool ForVirtualBase,
2282                                                bool Delegating,
2283                                                CallArgList &Args);
2284 
2285   /// Emit a call to a constructor inherited from a base class, passing the
2286   /// current constructor's arguments along unmodified (without even making
2287   /// a copy).
2288   void EmitInheritedCXXConstructorCall(const CXXConstructorDecl *D,
2289                                        bool ForVirtualBase, Address This,
2290                                        bool InheritedFromVBase,
2291                                        const CXXInheritedCtorInitExpr *E);
2292 
2293   void EmitCXXConstructorCall(const CXXConstructorDecl *D, CXXCtorType Type,
2294                               bool ForVirtualBase, bool Delegating,
2295                               Address This, const CXXConstructExpr *E);
2296 
2297   void EmitCXXConstructorCall(const CXXConstructorDecl *D, CXXCtorType Type,
2298                               bool ForVirtualBase, bool Delegating,
2299                               Address This, CallArgList &Args);
2300 
2301   /// Emit assumption load for all bases. Requires to be be called only on
2302   /// most-derived class and not under construction of the object.
2303   void EmitVTableAssumptionLoads(const CXXRecordDecl *ClassDecl, Address This);
2304 
2305   /// Emit assumption that vptr load == global vtable.
2306   void EmitVTableAssumptionLoad(const VPtr &vptr, Address This);
2307 
2308   void EmitSynthesizedCXXCopyCtorCall(const CXXConstructorDecl *D,
2309                                       Address This, Address Src,
2310                                       const CXXConstructExpr *E);
2311 
2312   void EmitCXXAggrConstructorCall(const CXXConstructorDecl *D,
2313                                   const ArrayType *ArrayTy,
2314                                   Address ArrayPtr,
2315                                   const CXXConstructExpr *E,
2316                                   bool ZeroInitialization = false);
2317 
2318   void EmitCXXAggrConstructorCall(const CXXConstructorDecl *D,
2319                                   llvm::Value *NumElements,
2320                                   Address ArrayPtr,
2321                                   const CXXConstructExpr *E,
2322                                   bool ZeroInitialization = false);
2323 
2324   static Destroyer destroyCXXObject;
2325 
2326   void EmitCXXDestructorCall(const CXXDestructorDecl *D, CXXDtorType Type,
2327                              bool ForVirtualBase, bool Delegating,
2328                              Address This);
2329 
2330   void EmitNewArrayInitializer(const CXXNewExpr *E, QualType elementType,
2331                                llvm::Type *ElementTy, Address NewPtr,
2332                                llvm::Value *NumElements,
2333                                llvm::Value *AllocSizeWithoutCookie);
2334 
2335   void EmitCXXTemporary(const CXXTemporary *Temporary, QualType TempType,
2336                         Address Ptr);
2337 
2338   llvm::Value *EmitLifetimeStart(uint64_t Size, llvm::Value *Addr);
2339   void EmitLifetimeEnd(llvm::Value *Size, llvm::Value *Addr);
2340 
2341   llvm::Value *EmitCXXNewExpr(const CXXNewExpr *E);
2342   void EmitCXXDeleteExpr(const CXXDeleteExpr *E);
2343 
2344   void EmitDeleteCall(const FunctionDecl *DeleteFD, llvm::Value *Ptr,
2345                       QualType DeleteTy, llvm::Value *NumElements = nullptr,
2346                       CharUnits CookieSize = CharUnits());
2347 
2348   RValue EmitBuiltinNewDeleteCall(const FunctionProtoType *Type,
2349                                   const Expr *Arg, bool IsDelete);
2350 
2351   llvm::Value *EmitCXXTypeidExpr(const CXXTypeidExpr *E);
2352   llvm::Value *EmitDynamicCast(Address V, const CXXDynamicCastExpr *DCE);
2353   Address EmitCXXUuidofExpr(const CXXUuidofExpr *E);
2354 
2355   /// \brief Situations in which we might emit a check for the suitability of a
2356   ///        pointer or glvalue.
2357   enum TypeCheckKind {
2358     /// Checking the operand of a load. Must be suitably sized and aligned.
2359     TCK_Load,
2360     /// Checking the destination of a store. Must be suitably sized and aligned.
2361     TCK_Store,
2362     /// Checking the bound value in a reference binding. Must be suitably sized
2363     /// and aligned, but is not required to refer to an object (until the
2364     /// reference is used), per core issue 453.
2365     TCK_ReferenceBinding,
2366     /// Checking the object expression in a non-static data member access. Must
2367     /// be an object within its lifetime.
2368     TCK_MemberAccess,
2369     /// Checking the 'this' pointer for a call to a non-static member function.
2370     /// Must be an object within its lifetime.
2371     TCK_MemberCall,
2372     /// Checking the 'this' pointer for a constructor call.
2373     TCK_ConstructorCall,
2374     /// Checking the operand of a static_cast to a derived pointer type. Must be
2375     /// null or an object within its lifetime.
2376     TCK_DowncastPointer,
2377     /// Checking the operand of a static_cast to a derived reference type. Must
2378     /// be an object within its lifetime.
2379     TCK_DowncastReference,
2380     /// Checking the operand of a cast to a base object. Must be suitably sized
2381     /// and aligned.
2382     TCK_Upcast,
2383     /// Checking the operand of a cast to a virtual base object. Must be an
2384     /// object within its lifetime.
2385     TCK_UpcastToVirtualBase,
2386     /// Checking the value assigned to a _Nonnull pointer. Must not be null.
2387     TCK_NonnullAssign,
2388     /// Checking the operand of a dynamic_cast or a typeid expression.  Must be
2389     /// null or an object within its lifetime.
2390     TCK_DynamicOperation
2391   };
2392 
2393   /// Determine whether the pointer type check \p TCK permits null pointers.
2394   static bool isNullPointerAllowed(TypeCheckKind TCK);
2395 
2396   /// Determine whether the pointer type check \p TCK requires a vptr check.
2397   static bool isVptrCheckRequired(TypeCheckKind TCK, QualType Ty);
2398 
2399   /// \brief Whether any type-checking sanitizers are enabled. If \c false,
2400   /// calls to EmitTypeCheck can be skipped.
2401   bool sanitizePerformTypeCheck() const;
2402 
2403   /// \brief Emit a check that \p V is the address of storage of the
2404   /// appropriate size and alignment for an object of type \p Type.
2405   void EmitTypeCheck(TypeCheckKind TCK, SourceLocation Loc, llvm::Value *V,
2406                      QualType Type, CharUnits Alignment = CharUnits::Zero(),
2407                      SanitizerSet SkippedChecks = SanitizerSet());
2408 
2409   /// \brief Emit a check that \p Base points into an array object, which
2410   /// we can access at index \p Index. \p Accessed should be \c false if we
2411   /// this expression is used as an lvalue, for instance in "&Arr[Idx]".
2412   void EmitBoundsCheck(const Expr *E, const Expr *Base, llvm::Value *Index,
2413                        QualType IndexType, bool Accessed);
2414 
2415   llvm::Value *EmitScalarPrePostIncDec(const UnaryOperator *E, LValue LV,
2416                                        bool isInc, bool isPre);
2417   ComplexPairTy EmitComplexPrePostIncDec(const UnaryOperator *E, LValue LV,
2418                                          bool isInc, bool isPre);
2419 
2420   void EmitAlignmentAssumption(llvm::Value *PtrValue, unsigned Alignment,
2421                                llvm::Value *OffsetValue = nullptr) {
2422     Builder.CreateAlignmentAssumption(CGM.getDataLayout(), PtrValue, Alignment,
2423                                       OffsetValue);
2424   }
2425 
2426   /// Converts Location to a DebugLoc, if debug information is enabled.
2427   llvm::DebugLoc SourceLocToDebugLoc(SourceLocation Location);
2428 
2429 
2430   //===--------------------------------------------------------------------===//
2431   //                            Declaration Emission
2432   //===--------------------------------------------------------------------===//
2433 
2434   /// EmitDecl - Emit a declaration.
2435   ///
2436   /// This function can be called with a null (unreachable) insert point.
2437   void EmitDecl(const Decl &D);
2438 
2439   /// EmitVarDecl - Emit a local variable declaration.
2440   ///
2441   /// This function can be called with a null (unreachable) insert point.
2442   void EmitVarDecl(const VarDecl &D);
2443 
2444   void EmitScalarInit(const Expr *init, const ValueDecl *D, LValue lvalue,
2445                       bool capturedByInit);
2446 
2447   typedef void SpecialInitFn(CodeGenFunction &Init, const VarDecl &D,
2448                              llvm::Value *Address);
2449 
2450   /// \brief Determine whether the given initializer is trivial in the sense
2451   /// that it requires no code to be generated.
2452   bool isTrivialInitializer(const Expr *Init);
2453 
2454   /// EmitAutoVarDecl - Emit an auto variable declaration.
2455   ///
2456   /// This function can be called with a null (unreachable) insert point.
2457   void EmitAutoVarDecl(const VarDecl &D);
2458 
2459   class AutoVarEmission {
2460     friend class CodeGenFunction;
2461 
2462     const VarDecl *Variable;
2463 
2464     /// The address of the alloca.  Invalid if the variable was emitted
2465     /// as a global constant.
2466     Address Addr;
2467 
2468     llvm::Value *NRVOFlag;
2469 
2470     /// True if the variable is a __block variable.
2471     bool IsByRef;
2472 
2473     /// True if the variable is of aggregate type and has a constant
2474     /// initializer.
2475     bool IsConstantAggregate;
2476 
2477     /// Non-null if we should use lifetime annotations.
2478     llvm::Value *SizeForLifetimeMarkers;
2479 
2480     struct Invalid {};
2481     AutoVarEmission(Invalid) : Variable(nullptr), Addr(Address::invalid()) {}
2482 
2483     AutoVarEmission(const VarDecl &variable)
2484       : Variable(&variable), Addr(Address::invalid()), NRVOFlag(nullptr),
2485         IsByRef(false), IsConstantAggregate(false),
2486         SizeForLifetimeMarkers(nullptr) {}
2487 
2488     bool wasEmittedAsGlobal() const { return !Addr.isValid(); }
2489 
2490   public:
2491     static AutoVarEmission invalid() { return AutoVarEmission(Invalid()); }
2492 
2493     bool useLifetimeMarkers() const {
2494       return SizeForLifetimeMarkers != nullptr;
2495     }
2496     llvm::Value *getSizeForLifetimeMarkers() const {
2497       assert(useLifetimeMarkers());
2498       return SizeForLifetimeMarkers;
2499     }
2500 
2501     /// Returns the raw, allocated address, which is not necessarily
2502     /// the address of the object itself.
2503     Address getAllocatedAddress() const {
2504       return Addr;
2505     }
2506 
2507     /// Returns the address of the object within this declaration.
2508     /// Note that this does not chase the forwarding pointer for
2509     /// __block decls.
2510     Address getObjectAddress(CodeGenFunction &CGF) const {
2511       if (!IsByRef) return Addr;
2512 
2513       return CGF.emitBlockByrefAddress(Addr, Variable, /*forward*/ false);
2514     }
2515   };
2516   AutoVarEmission EmitAutoVarAlloca(const VarDecl &var);
2517   void EmitAutoVarInit(const AutoVarEmission &emission);
2518   void EmitAutoVarCleanups(const AutoVarEmission &emission);
2519   void emitAutoVarTypeCleanup(const AutoVarEmission &emission,
2520                               QualType::DestructionKind dtorKind);
2521 
2522   /// Emits the alloca and debug information for the size expressions for each
2523   /// dimension of an array. It registers the association of its (1-dimensional)
2524   /// QualTypes and size expression's debug node, so that CGDebugInfo can
2525   /// reference this node when creating the DISubrange object to describe the
2526   /// array types.
2527   void EmitAndRegisterVariableArrayDimensions(CGDebugInfo *DI,
2528                                               const VarDecl &D,
2529                                               bool EmitDebugInfo);
2530 
2531   void EmitStaticVarDecl(const VarDecl &D,
2532                          llvm::GlobalValue::LinkageTypes Linkage);
2533 
2534   class ParamValue {
2535     llvm::Value *Value;
2536     unsigned Alignment;
2537     ParamValue(llvm::Value *V, unsigned A) : Value(V), Alignment(A) {}
2538   public:
2539     static ParamValue forDirect(llvm::Value *value) {
2540       return ParamValue(value, 0);
2541     }
2542     static ParamValue forIndirect(Address addr) {
2543       assert(!addr.getAlignment().isZero());
2544       return ParamValue(addr.getPointer(), addr.getAlignment().getQuantity());
2545     }
2546 
2547     bool isIndirect() const { return Alignment != 0; }
2548     llvm::Value *getAnyValue() const { return Value; }
2549 
2550     llvm::Value *getDirectValue() const {
2551       assert(!isIndirect());
2552       return Value;
2553     }
2554 
2555     Address getIndirectAddress() const {
2556       assert(isIndirect());
2557       return Address(Value, CharUnits::fromQuantity(Alignment));
2558     }
2559   };
2560 
2561   /// EmitParmDecl - Emit a ParmVarDecl or an ImplicitParamDecl.
2562   void EmitParmDecl(const VarDecl &D, ParamValue Arg, unsigned ArgNo);
2563 
2564   /// protectFromPeepholes - Protect a value that we're intending to
2565   /// store to the side, but which will probably be used later, from
2566   /// aggressive peepholing optimizations that might delete it.
2567   ///
2568   /// Pass the result to unprotectFromPeepholes to declare that
2569   /// protection is no longer required.
2570   ///
2571   /// There's no particular reason why this shouldn't apply to
2572   /// l-values, it's just that no existing peepholes work on pointers.
2573   PeepholeProtection protectFromPeepholes(RValue rvalue);
2574   void unprotectFromPeepholes(PeepholeProtection protection);
2575 
2576   void EmitAlignmentAssumption(llvm::Value *PtrValue, llvm::Value *Alignment,
2577                                llvm::Value *OffsetValue = nullptr) {
2578     Builder.CreateAlignmentAssumption(CGM.getDataLayout(), PtrValue, Alignment,
2579                                       OffsetValue);
2580   }
2581 
2582   //===--------------------------------------------------------------------===//
2583   //                             Statement Emission
2584   //===--------------------------------------------------------------------===//
2585 
2586   /// EmitStopPoint - Emit a debug stoppoint if we are emitting debug info.
2587   void EmitStopPoint(const Stmt *S);
2588 
2589   /// EmitStmt - Emit the code for the statement \arg S. It is legal to call
2590   /// this function even if there is no current insertion point.
2591   ///
2592   /// This function may clear the current insertion point; callers should use
2593   /// EnsureInsertPoint if they wish to subsequently generate code without first
2594   /// calling EmitBlock, EmitBranch, or EmitStmt.
2595   void EmitStmt(const Stmt *S, ArrayRef<const Attr *> Attrs = None);
2596 
2597   /// EmitSimpleStmt - Try to emit a "simple" statement which does not
2598   /// necessarily require an insertion point or debug information; typically
2599   /// because the statement amounts to a jump or a container of other
2600   /// statements.
2601   ///
2602   /// \return True if the statement was handled.
2603   bool EmitSimpleStmt(const Stmt *S);
2604 
2605   Address EmitCompoundStmt(const CompoundStmt &S, bool GetLast = false,
2606                            AggValueSlot AVS = AggValueSlot::ignored());
2607   Address EmitCompoundStmtWithoutScope(const CompoundStmt &S,
2608                                        bool GetLast = false,
2609                                        AggValueSlot AVS =
2610                                                 AggValueSlot::ignored());
2611 
2612   /// EmitLabel - Emit the block for the given label. It is legal to call this
2613   /// function even if there is no current insertion point.
2614   void EmitLabel(const LabelDecl *D); // helper for EmitLabelStmt.
2615 
2616   void EmitLabelStmt(const LabelStmt &S);
2617   void EmitAttributedStmt(const AttributedStmt &S);
2618   void EmitGotoStmt(const GotoStmt &S);
2619   void EmitIndirectGotoStmt(const IndirectGotoStmt &S);
2620   void EmitIfStmt(const IfStmt &S);
2621 
2622   void EmitWhileStmt(const WhileStmt &S,
2623                      ArrayRef<const Attr *> Attrs = None);
2624   void EmitDoStmt(const DoStmt &S, ArrayRef<const Attr *> Attrs = None);
2625   void EmitForStmt(const ForStmt &S,
2626                    ArrayRef<const Attr *> Attrs = None);
2627   void EmitReturnStmt(const ReturnStmt &S);
2628   void EmitDeclStmt(const DeclStmt &S);
2629   void EmitBreakStmt(const BreakStmt &S);
2630   void EmitContinueStmt(const ContinueStmt &S);
2631   void EmitSwitchStmt(const SwitchStmt &S);
2632   void EmitDefaultStmt(const DefaultStmt &S);
2633   void EmitCaseStmt(const CaseStmt &S);
2634   void EmitCaseStmtRange(const CaseStmt &S);
2635   void EmitAsmStmt(const AsmStmt &S);
2636 
2637   void EmitObjCForCollectionStmt(const ObjCForCollectionStmt &S);
2638   void EmitObjCAtTryStmt(const ObjCAtTryStmt &S);
2639   void EmitObjCAtThrowStmt(const ObjCAtThrowStmt &S);
2640   void EmitObjCAtSynchronizedStmt(const ObjCAtSynchronizedStmt &S);
2641   void EmitObjCAutoreleasePoolStmt(const ObjCAutoreleasePoolStmt &S);
2642 
2643   void EmitCoroutineBody(const CoroutineBodyStmt &S);
2644   void EmitCoreturnStmt(const CoreturnStmt &S);
2645   RValue EmitCoawaitExpr(const CoawaitExpr &E,
2646                          AggValueSlot aggSlot = AggValueSlot::ignored(),
2647                          bool ignoreResult = false);
2648   LValue EmitCoawaitLValue(const CoawaitExpr *E);
2649   RValue EmitCoyieldExpr(const CoyieldExpr &E,
2650                          AggValueSlot aggSlot = AggValueSlot::ignored(),
2651                          bool ignoreResult = false);
2652   LValue EmitCoyieldLValue(const CoyieldExpr *E);
2653   RValue EmitCoroutineIntrinsic(const CallExpr *E, unsigned int IID);
2654 
2655   void EnterCXXTryStmt(const CXXTryStmt &S, bool IsFnTryBlock = false);
2656   void ExitCXXTryStmt(const CXXTryStmt &S, bool IsFnTryBlock = false);
2657 
2658   void EmitCXXTryStmt(const CXXTryStmt &S);
2659   void EmitSEHTryStmt(const SEHTryStmt &S);
2660   void EmitSEHLeaveStmt(const SEHLeaveStmt &S);
2661   void EnterSEHTryStmt(const SEHTryStmt &S);
2662   void ExitSEHTryStmt(const SEHTryStmt &S);
2663 
2664   void startOutlinedSEHHelper(CodeGenFunction &ParentCGF, bool IsFilter,
2665                               const Stmt *OutlinedStmt);
2666 
2667   llvm::Function *GenerateSEHFilterFunction(CodeGenFunction &ParentCGF,
2668                                             const SEHExceptStmt &Except);
2669 
2670   llvm::Function *GenerateSEHFinallyFunction(CodeGenFunction &ParentCGF,
2671                                              const SEHFinallyStmt &Finally);
2672 
2673   void EmitSEHExceptionCodeSave(CodeGenFunction &ParentCGF,
2674                                 llvm::Value *ParentFP,
2675                                 llvm::Value *EntryEBP);
2676   llvm::Value *EmitSEHExceptionCode();
2677   llvm::Value *EmitSEHExceptionInfo();
2678   llvm::Value *EmitSEHAbnormalTermination();
2679 
2680   /// Emit simple code for OpenMP directives in Simd-only mode.
2681   void EmitSimpleOMPExecutableDirective(const OMPExecutableDirective &D);
2682 
2683   /// Scan the outlined statement for captures from the parent function. For
2684   /// each capture, mark the capture as escaped and emit a call to
2685   /// llvm.localrecover. Insert the localrecover result into the LocalDeclMap.
2686   void EmitCapturedLocals(CodeGenFunction &ParentCGF, const Stmt *OutlinedStmt,
2687                           bool IsFilter);
2688 
2689   /// Recovers the address of a local in a parent function. ParentVar is the
2690   /// address of the variable used in the immediate parent function. It can
2691   /// either be an alloca or a call to llvm.localrecover if there are nested
2692   /// outlined functions. ParentFP is the frame pointer of the outermost parent
2693   /// frame.
2694   Address recoverAddrOfEscapedLocal(CodeGenFunction &ParentCGF,
2695                                     Address ParentVar,
2696                                     llvm::Value *ParentFP);
2697 
2698   void EmitCXXForRangeStmt(const CXXForRangeStmt &S,
2699                            ArrayRef<const Attr *> Attrs = None);
2700 
2701   /// Controls insertion of cancellation exit blocks in worksharing constructs.
2702   class OMPCancelStackRAII {
2703     CodeGenFunction &CGF;
2704 
2705   public:
2706     OMPCancelStackRAII(CodeGenFunction &CGF, OpenMPDirectiveKind Kind,
2707                        bool HasCancel)
2708         : CGF(CGF) {
2709       CGF.OMPCancelStack.enter(CGF, Kind, HasCancel);
2710     }
2711     ~OMPCancelStackRAII() { CGF.OMPCancelStack.exit(CGF); }
2712   };
2713 
2714   /// Returns calculated size of the specified type.
2715   llvm::Value *getTypeSize(QualType Ty);
2716   LValue InitCapturedStruct(const CapturedStmt &S);
2717   llvm::Function *EmitCapturedStmt(const CapturedStmt &S, CapturedRegionKind K);
2718   llvm::Function *GenerateCapturedStmtFunction(const CapturedStmt &S);
2719   Address GenerateCapturedStmtArgument(const CapturedStmt &S);
2720   llvm::Function *GenerateOpenMPCapturedStmtFunction(const CapturedStmt &S);
2721   void GenerateOpenMPCapturedVars(const CapturedStmt &S,
2722                                   SmallVectorImpl<llvm::Value *> &CapturedVars);
2723   void emitOMPSimpleStore(LValue LVal, RValue RVal, QualType RValTy,
2724                           SourceLocation Loc);
2725   /// \brief Perform element by element copying of arrays with type \a
2726   /// OriginalType from \a SrcAddr to \a DestAddr using copying procedure
2727   /// generated by \a CopyGen.
2728   ///
2729   /// \param DestAddr Address of the destination array.
2730   /// \param SrcAddr Address of the source array.
2731   /// \param OriginalType Type of destination and source arrays.
2732   /// \param CopyGen Copying procedure that copies value of single array element
2733   /// to another single array element.
2734   void EmitOMPAggregateAssign(
2735       Address DestAddr, Address SrcAddr, QualType OriginalType,
2736       const llvm::function_ref<void(Address, Address)> &CopyGen);
2737   /// \brief Emit proper copying of data from one variable to another.
2738   ///
2739   /// \param OriginalType Original type of the copied variables.
2740   /// \param DestAddr Destination address.
2741   /// \param SrcAddr Source address.
2742   /// \param DestVD Destination variable used in \a CopyExpr (for arrays, has
2743   /// type of the base array element).
2744   /// \param SrcVD Source variable used in \a CopyExpr (for arrays, has type of
2745   /// the base array element).
2746   /// \param Copy Actual copygin expression for copying data from \a SrcVD to \a
2747   /// DestVD.
2748   void EmitOMPCopy(QualType OriginalType,
2749                    Address DestAddr, Address SrcAddr,
2750                    const VarDecl *DestVD, const VarDecl *SrcVD,
2751                    const Expr *Copy);
2752   /// \brief Emit atomic update code for constructs: \a X = \a X \a BO \a E or
2753   /// \a X = \a E \a BO \a E.
2754   ///
2755   /// \param X Value to be updated.
2756   /// \param E Update value.
2757   /// \param BO Binary operation for update operation.
2758   /// \param IsXLHSInRHSPart true if \a X is LHS in RHS part of the update
2759   /// expression, false otherwise.
2760   /// \param AO Atomic ordering of the generated atomic instructions.
2761   /// \param CommonGen Code generator for complex expressions that cannot be
2762   /// expressed through atomicrmw instruction.
2763   /// \returns <true, OldAtomicValue> if simple 'atomicrmw' instruction was
2764   /// generated, <false, RValue::get(nullptr)> otherwise.
2765   std::pair<bool, RValue> EmitOMPAtomicSimpleUpdateExpr(
2766       LValue X, RValue E, BinaryOperatorKind BO, bool IsXLHSInRHSPart,
2767       llvm::AtomicOrdering AO, SourceLocation Loc,
2768       const llvm::function_ref<RValue(RValue)> &CommonGen);
2769   bool EmitOMPFirstprivateClause(const OMPExecutableDirective &D,
2770                                  OMPPrivateScope &PrivateScope);
2771   void EmitOMPPrivateClause(const OMPExecutableDirective &D,
2772                             OMPPrivateScope &PrivateScope);
2773   void EmitOMPUseDevicePtrClause(
2774       const OMPClause &C, OMPPrivateScope &PrivateScope,
2775       const llvm::DenseMap<const ValueDecl *, Address> &CaptureDeviceAddrMap);
2776   /// \brief Emit code for copyin clause in \a D directive. The next code is
2777   /// generated at the start of outlined functions for directives:
2778   /// \code
2779   /// threadprivate_var1 = master_threadprivate_var1;
2780   /// operator=(threadprivate_var2, master_threadprivate_var2);
2781   /// ...
2782   /// __kmpc_barrier(&loc, global_tid);
2783   /// \endcode
2784   ///
2785   /// \param D OpenMP directive possibly with 'copyin' clause(s).
2786   /// \returns true if at least one copyin variable is found, false otherwise.
2787   bool EmitOMPCopyinClause(const OMPExecutableDirective &D);
2788   /// \brief Emit initial code for lastprivate variables. If some variable is
2789   /// not also firstprivate, then the default initialization is used. Otherwise
2790   /// initialization of this variable is performed by EmitOMPFirstprivateClause
2791   /// method.
2792   ///
2793   /// \param D Directive that may have 'lastprivate' directives.
2794   /// \param PrivateScope Private scope for capturing lastprivate variables for
2795   /// proper codegen in internal captured statement.
2796   ///
2797   /// \returns true if there is at least one lastprivate variable, false
2798   /// otherwise.
2799   bool EmitOMPLastprivateClauseInit(const OMPExecutableDirective &D,
2800                                     OMPPrivateScope &PrivateScope);
2801   /// \brief Emit final copying of lastprivate values to original variables at
2802   /// the end of the worksharing or simd directive.
2803   ///
2804   /// \param D Directive that has at least one 'lastprivate' directives.
2805   /// \param IsLastIterCond Boolean condition that must be set to 'i1 true' if
2806   /// it is the last iteration of the loop code in associated directive, or to
2807   /// 'i1 false' otherwise. If this item is nullptr, no final check is required.
2808   void EmitOMPLastprivateClauseFinal(const OMPExecutableDirective &D,
2809                                      bool NoFinals,
2810                                      llvm::Value *IsLastIterCond = nullptr);
2811   /// Emit initial code for linear clauses.
2812   void EmitOMPLinearClause(const OMPLoopDirective &D,
2813                            CodeGenFunction::OMPPrivateScope &PrivateScope);
2814   /// Emit final code for linear clauses.
2815   /// \param CondGen Optional conditional code for final part of codegen for
2816   /// linear clause.
2817   void EmitOMPLinearClauseFinal(
2818       const OMPLoopDirective &D,
2819       const llvm::function_ref<llvm::Value *(CodeGenFunction &)> &CondGen);
2820   /// \brief Emit initial code for reduction variables. Creates reduction copies
2821   /// and initializes them with the values according to OpenMP standard.
2822   ///
2823   /// \param D Directive (possibly) with the 'reduction' clause.
2824   /// \param PrivateScope Private scope for capturing reduction variables for
2825   /// proper codegen in internal captured statement.
2826   ///
2827   void EmitOMPReductionClauseInit(const OMPExecutableDirective &D,
2828                                   OMPPrivateScope &PrivateScope);
2829   /// \brief Emit final update of reduction values to original variables at
2830   /// the end of the directive.
2831   ///
2832   /// \param D Directive that has at least one 'reduction' directives.
2833   /// \param ReductionKind The kind of reduction to perform.
2834   void EmitOMPReductionClauseFinal(const OMPExecutableDirective &D,
2835                                    const OpenMPDirectiveKind ReductionKind);
2836   /// \brief Emit initial code for linear variables. Creates private copies
2837   /// and initializes them with the values according to OpenMP standard.
2838   ///
2839   /// \param D Directive (possibly) with the 'linear' clause.
2840   /// \return true if at least one linear variable is found that should be
2841   /// initialized with the value of the original variable, false otherwise.
2842   bool EmitOMPLinearClauseInit(const OMPLoopDirective &D);
2843 
2844   typedef const llvm::function_ref<void(CodeGenFunction & /*CGF*/,
2845                                         llvm::Value * /*OutlinedFn*/,
2846                                         const OMPTaskDataTy & /*Data*/)>
2847       TaskGenTy;
2848   void EmitOMPTaskBasedDirective(const OMPExecutableDirective &S,
2849                                  const OpenMPDirectiveKind CapturedRegion,
2850                                  const RegionCodeGenTy &BodyGen,
2851                                  const TaskGenTy &TaskGen, OMPTaskDataTy &Data);
2852   struct OMPTargetDataInfo {
2853     Address BasePointersArray = Address::invalid();
2854     Address PointersArray = Address::invalid();
2855     Address SizesArray = Address::invalid();
2856     unsigned NumberOfTargetItems = 0;
2857     explicit OMPTargetDataInfo() = default;
2858     OMPTargetDataInfo(Address BasePointersArray, Address PointersArray,
2859                       Address SizesArray, unsigned NumberOfTargetItems)
2860         : BasePointersArray(BasePointersArray), PointersArray(PointersArray),
2861           SizesArray(SizesArray), NumberOfTargetItems(NumberOfTargetItems) {}
2862   };
2863   void EmitOMPTargetTaskBasedDirective(const OMPExecutableDirective &S,
2864                                        const RegionCodeGenTy &BodyGen,
2865                                        OMPTargetDataInfo &InputInfo);
2866 
2867   void EmitOMPParallelDirective(const OMPParallelDirective &S);
2868   void EmitOMPSimdDirective(const OMPSimdDirective &S);
2869   void EmitOMPForDirective(const OMPForDirective &S);
2870   void EmitOMPForSimdDirective(const OMPForSimdDirective &S);
2871   void EmitOMPSectionsDirective(const OMPSectionsDirective &S);
2872   void EmitOMPSectionDirective(const OMPSectionDirective &S);
2873   void EmitOMPSingleDirective(const OMPSingleDirective &S);
2874   void EmitOMPMasterDirective(const OMPMasterDirective &S);
2875   void EmitOMPCriticalDirective(const OMPCriticalDirective &S);
2876   void EmitOMPParallelForDirective(const OMPParallelForDirective &S);
2877   void EmitOMPParallelForSimdDirective(const OMPParallelForSimdDirective &S);
2878   void EmitOMPParallelSectionsDirective(const OMPParallelSectionsDirective &S);
2879   void EmitOMPTaskDirective(const OMPTaskDirective &S);
2880   void EmitOMPTaskyieldDirective(const OMPTaskyieldDirective &S);
2881   void EmitOMPBarrierDirective(const OMPBarrierDirective &S);
2882   void EmitOMPTaskwaitDirective(const OMPTaskwaitDirective &S);
2883   void EmitOMPTaskgroupDirective(const OMPTaskgroupDirective &S);
2884   void EmitOMPFlushDirective(const OMPFlushDirective &S);
2885   void EmitOMPOrderedDirective(const OMPOrderedDirective &S);
2886   void EmitOMPAtomicDirective(const OMPAtomicDirective &S);
2887   void EmitOMPTargetDirective(const OMPTargetDirective &S);
2888   void EmitOMPTargetDataDirective(const OMPTargetDataDirective &S);
2889   void EmitOMPTargetEnterDataDirective(const OMPTargetEnterDataDirective &S);
2890   void EmitOMPTargetExitDataDirective(const OMPTargetExitDataDirective &S);
2891   void EmitOMPTargetUpdateDirective(const OMPTargetUpdateDirective &S);
2892   void EmitOMPTargetParallelDirective(const OMPTargetParallelDirective &S);
2893   void
2894   EmitOMPTargetParallelForDirective(const OMPTargetParallelForDirective &S);
2895   void EmitOMPTeamsDirective(const OMPTeamsDirective &S);
2896   void
2897   EmitOMPCancellationPointDirective(const OMPCancellationPointDirective &S);
2898   void EmitOMPCancelDirective(const OMPCancelDirective &S);
2899   void EmitOMPTaskLoopBasedDirective(const OMPLoopDirective &S);
2900   void EmitOMPTaskLoopDirective(const OMPTaskLoopDirective &S);
2901   void EmitOMPTaskLoopSimdDirective(const OMPTaskLoopSimdDirective &S);
2902   void EmitOMPDistributeDirective(const OMPDistributeDirective &S);
2903   void EmitOMPDistributeParallelForDirective(
2904       const OMPDistributeParallelForDirective &S);
2905   void EmitOMPDistributeParallelForSimdDirective(
2906       const OMPDistributeParallelForSimdDirective &S);
2907   void EmitOMPDistributeSimdDirective(const OMPDistributeSimdDirective &S);
2908   void EmitOMPTargetParallelForSimdDirective(
2909       const OMPTargetParallelForSimdDirective &S);
2910   void EmitOMPTargetSimdDirective(const OMPTargetSimdDirective &S);
2911   void EmitOMPTeamsDistributeDirective(const OMPTeamsDistributeDirective &S);
2912   void
2913   EmitOMPTeamsDistributeSimdDirective(const OMPTeamsDistributeSimdDirective &S);
2914   void EmitOMPTeamsDistributeParallelForSimdDirective(
2915       const OMPTeamsDistributeParallelForSimdDirective &S);
2916   void EmitOMPTeamsDistributeParallelForDirective(
2917       const OMPTeamsDistributeParallelForDirective &S);
2918   void EmitOMPTargetTeamsDirective(const OMPTargetTeamsDirective &S);
2919   void EmitOMPTargetTeamsDistributeDirective(
2920       const OMPTargetTeamsDistributeDirective &S);
2921   void EmitOMPTargetTeamsDistributeParallelForDirective(
2922       const OMPTargetTeamsDistributeParallelForDirective &S);
2923   void EmitOMPTargetTeamsDistributeParallelForSimdDirective(
2924       const OMPTargetTeamsDistributeParallelForSimdDirective &S);
2925   void EmitOMPTargetTeamsDistributeSimdDirective(
2926       const OMPTargetTeamsDistributeSimdDirective &S);
2927 
2928   /// Emit device code for the target directive.
2929   static void EmitOMPTargetDeviceFunction(CodeGenModule &CGM,
2930                                           StringRef ParentName,
2931                                           const OMPTargetDirective &S);
2932   static void
2933   EmitOMPTargetParallelDeviceFunction(CodeGenModule &CGM, StringRef ParentName,
2934                                       const OMPTargetParallelDirective &S);
2935   /// Emit device code for the target parallel for directive.
2936   static void EmitOMPTargetParallelForDeviceFunction(
2937       CodeGenModule &CGM, StringRef ParentName,
2938       const OMPTargetParallelForDirective &S);
2939   /// Emit device code for the target parallel for simd directive.
2940   static void EmitOMPTargetParallelForSimdDeviceFunction(
2941       CodeGenModule &CGM, StringRef ParentName,
2942       const OMPTargetParallelForSimdDirective &S);
2943   /// Emit device code for the target teams directive.
2944   static void
2945   EmitOMPTargetTeamsDeviceFunction(CodeGenModule &CGM, StringRef ParentName,
2946                                    const OMPTargetTeamsDirective &S);
2947   /// Emit device code for the target teams distribute directive.
2948   static void EmitOMPTargetTeamsDistributeDeviceFunction(
2949       CodeGenModule &CGM, StringRef ParentName,
2950       const OMPTargetTeamsDistributeDirective &S);
2951   /// Emit device code for the target teams distribute simd directive.
2952   static void EmitOMPTargetTeamsDistributeSimdDeviceFunction(
2953       CodeGenModule &CGM, StringRef ParentName,
2954       const OMPTargetTeamsDistributeSimdDirective &S);
2955   /// Emit device code for the target simd directive.
2956   static void EmitOMPTargetSimdDeviceFunction(CodeGenModule &CGM,
2957                                               StringRef ParentName,
2958                                               const OMPTargetSimdDirective &S);
2959   /// Emit device code for the target teams distribute parallel for simd
2960   /// directive.
2961   static void EmitOMPTargetTeamsDistributeParallelForSimdDeviceFunction(
2962       CodeGenModule &CGM, StringRef ParentName,
2963       const OMPTargetTeamsDistributeParallelForSimdDirective &S);
2964 
2965   static void EmitOMPTargetTeamsDistributeParallelForDeviceFunction(
2966       CodeGenModule &CGM, StringRef ParentName,
2967       const OMPTargetTeamsDistributeParallelForDirective &S);
2968   /// \brief Emit inner loop of the worksharing/simd construct.
2969   ///
2970   /// \param S Directive, for which the inner loop must be emitted.
2971   /// \param RequiresCleanup true, if directive has some associated private
2972   /// variables.
2973   /// \param LoopCond Bollean condition for loop continuation.
2974   /// \param IncExpr Increment expression for loop control variable.
2975   /// \param BodyGen Generator for the inner body of the inner loop.
2976   /// \param PostIncGen Genrator for post-increment code (required for ordered
2977   /// loop directvies).
2978   void EmitOMPInnerLoop(
2979       const Stmt &S, bool RequiresCleanup, const Expr *LoopCond,
2980       const Expr *IncExpr,
2981       const llvm::function_ref<void(CodeGenFunction &)> &BodyGen,
2982       const llvm::function_ref<void(CodeGenFunction &)> &PostIncGen);
2983 
2984   JumpDest getOMPCancelDestination(OpenMPDirectiveKind Kind);
2985   /// Emit initial code for loop counters of loop-based directives.
2986   void EmitOMPPrivateLoopCounters(const OMPLoopDirective &S,
2987                                   OMPPrivateScope &LoopScope);
2988 
2989   /// Helper for the OpenMP loop directives.
2990   void EmitOMPLoopBody(const OMPLoopDirective &D, JumpDest LoopExit);
2991 
2992   /// \brief Emit code for the worksharing loop-based directive.
2993   /// \return true, if this construct has any lastprivate clause, false -
2994   /// otherwise.
2995   bool EmitOMPWorksharingLoop(const OMPLoopDirective &S, Expr *EUB,
2996                               const CodeGenLoopBoundsTy &CodeGenLoopBounds,
2997                               const CodeGenDispatchBoundsTy &CGDispatchBounds);
2998 
2999   /// Emit code for the distribute loop-based directive.
3000   void EmitOMPDistributeLoop(const OMPLoopDirective &S,
3001                              const CodeGenLoopTy &CodeGenLoop, Expr *IncExpr);
3002 
3003   /// Helpers for the OpenMP loop directives.
3004   void EmitOMPSimdInit(const OMPLoopDirective &D, bool IsMonotonic = false);
3005   void EmitOMPSimdFinal(
3006       const OMPLoopDirective &D,
3007       const llvm::function_ref<llvm::Value *(CodeGenFunction &)> &CondGen);
3008 
3009   /// Emits the lvalue for the expression with possibly captured variable.
3010   LValue EmitOMPSharedLValue(const Expr *E);
3011 
3012 private:
3013   /// Helpers for blocks. Returns invoke function by \p InvokeF if it is not
3014   /// nullptr. It should be called without \p InvokeF if the caller does not
3015   /// need invoke function to be returned.
3016   llvm::Value *EmitBlockLiteral(const CGBlockInfo &Info,
3017                                 llvm::Function **InvokeF = nullptr);
3018 
3019   /// struct with the values to be passed to the OpenMP loop-related functions
3020   struct OMPLoopArguments {
3021     /// loop lower bound
3022     Address LB = Address::invalid();
3023     /// loop upper bound
3024     Address UB = Address::invalid();
3025     /// loop stride
3026     Address ST = Address::invalid();
3027     /// isLastIteration argument for runtime functions
3028     Address IL = Address::invalid();
3029     /// Chunk value generated by sema
3030     llvm::Value *Chunk = nullptr;
3031     /// EnsureUpperBound
3032     Expr *EUB = nullptr;
3033     /// IncrementExpression
3034     Expr *IncExpr = nullptr;
3035     /// Loop initialization
3036     Expr *Init = nullptr;
3037     /// Loop exit condition
3038     Expr *Cond = nullptr;
3039     /// Update of LB after a whole chunk has been executed
3040     Expr *NextLB = nullptr;
3041     /// Update of UB after a whole chunk has been executed
3042     Expr *NextUB = nullptr;
3043     OMPLoopArguments() = default;
3044     OMPLoopArguments(Address LB, Address UB, Address ST, Address IL,
3045                      llvm::Value *Chunk = nullptr, Expr *EUB = nullptr,
3046                      Expr *IncExpr = nullptr, Expr *Init = nullptr,
3047                      Expr *Cond = nullptr, Expr *NextLB = nullptr,
3048                      Expr *NextUB = nullptr)
3049         : LB(LB), UB(UB), ST(ST), IL(IL), Chunk(Chunk), EUB(EUB),
3050           IncExpr(IncExpr), Init(Init), Cond(Cond), NextLB(NextLB),
3051           NextUB(NextUB) {}
3052   };
3053   void EmitOMPOuterLoop(bool DynamicOrOrdered, bool IsMonotonic,
3054                         const OMPLoopDirective &S, OMPPrivateScope &LoopScope,
3055                         const OMPLoopArguments &LoopArgs,
3056                         const CodeGenLoopTy &CodeGenLoop,
3057                         const CodeGenOrderedTy &CodeGenOrdered);
3058   void EmitOMPForOuterLoop(const OpenMPScheduleTy &ScheduleKind,
3059                            bool IsMonotonic, const OMPLoopDirective &S,
3060                            OMPPrivateScope &LoopScope, bool Ordered,
3061                            const OMPLoopArguments &LoopArgs,
3062                            const CodeGenDispatchBoundsTy &CGDispatchBounds);
3063   void EmitOMPDistributeOuterLoop(OpenMPDistScheduleClauseKind ScheduleKind,
3064                                   const OMPLoopDirective &S,
3065                                   OMPPrivateScope &LoopScope,
3066                                   const OMPLoopArguments &LoopArgs,
3067                                   const CodeGenLoopTy &CodeGenLoopContent);
3068   /// \brief Emit code for sections directive.
3069   void EmitSections(const OMPExecutableDirective &S);
3070 
3071 public:
3072 
3073   //===--------------------------------------------------------------------===//
3074   //                         LValue Expression Emission
3075   //===--------------------------------------------------------------------===//
3076 
3077   /// GetUndefRValue - Get an appropriate 'undef' rvalue for the given type.
3078   RValue GetUndefRValue(QualType Ty);
3079 
3080   /// EmitUnsupportedRValue - Emit a dummy r-value using the type of E
3081   /// and issue an ErrorUnsupported style diagnostic (using the
3082   /// provided Name).
3083   RValue EmitUnsupportedRValue(const Expr *E,
3084                                const char *Name);
3085 
3086   /// EmitUnsupportedLValue - Emit a dummy l-value using the type of E and issue
3087   /// an ErrorUnsupported style diagnostic (using the provided Name).
3088   LValue EmitUnsupportedLValue(const Expr *E,
3089                                const char *Name);
3090 
3091   /// EmitLValue - Emit code to compute a designator that specifies the location
3092   /// of the expression.
3093   ///
3094   /// This can return one of two things: a simple address or a bitfield
3095   /// reference.  In either case, the LLVM Value* in the LValue structure is
3096   /// guaranteed to be an LLVM pointer type.
3097   ///
3098   /// If this returns a bitfield reference, nothing about the pointee type of
3099   /// the LLVM value is known: For example, it may not be a pointer to an
3100   /// integer.
3101   ///
3102   /// If this returns a normal address, and if the lvalue's C type is fixed
3103   /// size, this method guarantees that the returned pointer type will point to
3104   /// an LLVM type of the same size of the lvalue's type.  If the lvalue has a
3105   /// variable length type, this is not possible.
3106   ///
3107   LValue EmitLValue(const Expr *E);
3108 
3109   /// \brief Same as EmitLValue but additionally we generate checking code to
3110   /// guard against undefined behavior.  This is only suitable when we know
3111   /// that the address will be used to access the object.
3112   LValue EmitCheckedLValue(const Expr *E, TypeCheckKind TCK);
3113 
3114   RValue convertTempToRValue(Address addr, QualType type,
3115                              SourceLocation Loc);
3116 
3117   void EmitAtomicInit(Expr *E, LValue lvalue);
3118 
3119   bool LValueIsSuitableForInlineAtomic(LValue Src);
3120 
3121   RValue EmitAtomicLoad(LValue LV, SourceLocation SL,
3122                         AggValueSlot Slot = AggValueSlot::ignored());
3123 
3124   RValue EmitAtomicLoad(LValue lvalue, SourceLocation loc,
3125                         llvm::AtomicOrdering AO, bool IsVolatile = false,
3126                         AggValueSlot slot = AggValueSlot::ignored());
3127 
3128   void EmitAtomicStore(RValue rvalue, LValue lvalue, bool isInit);
3129 
3130   void EmitAtomicStore(RValue rvalue, LValue lvalue, llvm::AtomicOrdering AO,
3131                        bool IsVolatile, bool isInit);
3132 
3133   std::pair<RValue, llvm::Value *> EmitAtomicCompareExchange(
3134       LValue Obj, RValue Expected, RValue Desired, SourceLocation Loc,
3135       llvm::AtomicOrdering Success =
3136           llvm::AtomicOrdering::SequentiallyConsistent,
3137       llvm::AtomicOrdering Failure =
3138           llvm::AtomicOrdering::SequentiallyConsistent,
3139       bool IsWeak = false, AggValueSlot Slot = AggValueSlot::ignored());
3140 
3141   void EmitAtomicUpdate(LValue LVal, llvm::AtomicOrdering AO,
3142                         const llvm::function_ref<RValue(RValue)> &UpdateOp,
3143                         bool IsVolatile);
3144 
3145   /// EmitToMemory - Change a scalar value from its value
3146   /// representation to its in-memory representation.
3147   llvm::Value *EmitToMemory(llvm::Value *Value, QualType Ty);
3148 
3149   /// EmitFromMemory - Change a scalar value from its memory
3150   /// representation to its value representation.
3151   llvm::Value *EmitFromMemory(llvm::Value *Value, QualType Ty);
3152 
3153   /// Check if the scalar \p Value is within the valid range for the given
3154   /// type \p Ty.
3155   ///
3156   /// Returns true if a check is needed (even if the range is unknown).
3157   bool EmitScalarRangeCheck(llvm::Value *Value, QualType Ty,
3158                             SourceLocation Loc);
3159 
3160   /// EmitLoadOfScalar - Load a scalar value from an address, taking
3161   /// care to appropriately convert from the memory representation to
3162   /// the LLVM value representation.
3163   llvm::Value *EmitLoadOfScalar(Address Addr, bool Volatile, QualType Ty,
3164                                 SourceLocation Loc,
3165                                 AlignmentSource Source = AlignmentSource::Type,
3166                                 bool isNontemporal = false) {
3167     return EmitLoadOfScalar(Addr, Volatile, Ty, Loc, LValueBaseInfo(Source),
3168                             CGM.getTBAAAccessInfo(Ty), isNontemporal);
3169   }
3170 
3171   llvm::Value *EmitLoadOfScalar(Address Addr, bool Volatile, QualType Ty,
3172                                 SourceLocation Loc, LValueBaseInfo BaseInfo,
3173                                 TBAAAccessInfo TBAAInfo,
3174                                 bool isNontemporal = false);
3175 
3176   /// EmitLoadOfScalar - Load a scalar value from an address, taking
3177   /// care to appropriately convert from the memory representation to
3178   /// the LLVM value representation.  The l-value must be a simple
3179   /// l-value.
3180   llvm::Value *EmitLoadOfScalar(LValue lvalue, SourceLocation Loc);
3181 
3182   /// EmitStoreOfScalar - Store a scalar value to an address, taking
3183   /// care to appropriately convert from the memory representation to
3184   /// the LLVM value representation.
3185   void EmitStoreOfScalar(llvm::Value *Value, Address Addr,
3186                          bool Volatile, QualType Ty,
3187                          AlignmentSource Source = AlignmentSource::Type,
3188                          bool isInit = false, bool isNontemporal = false) {
3189     EmitStoreOfScalar(Value, Addr, Volatile, Ty, LValueBaseInfo(Source),
3190                       CGM.getTBAAAccessInfo(Ty), isInit, isNontemporal);
3191   }
3192 
3193   void EmitStoreOfScalar(llvm::Value *Value, Address Addr,
3194                          bool Volatile, QualType Ty,
3195                          LValueBaseInfo BaseInfo, TBAAAccessInfo TBAAInfo,
3196                          bool isInit = false, bool isNontemporal = false);
3197 
3198   /// EmitStoreOfScalar - Store a scalar value to an address, taking
3199   /// care to appropriately convert from the memory representation to
3200   /// the LLVM value representation.  The l-value must be a simple
3201   /// l-value.  The isInit flag indicates whether this is an initialization.
3202   /// If so, atomic qualifiers are ignored and the store is always non-atomic.
3203   void EmitStoreOfScalar(llvm::Value *value, LValue lvalue, bool isInit=false);
3204 
3205   /// EmitLoadOfLValue - Given an expression that represents a value lvalue,
3206   /// this method emits the address of the lvalue, then loads the result as an
3207   /// rvalue, returning the rvalue.
3208   RValue EmitLoadOfLValue(LValue V, SourceLocation Loc);
3209   RValue EmitLoadOfExtVectorElementLValue(LValue V);
3210   RValue EmitLoadOfBitfieldLValue(LValue LV, SourceLocation Loc);
3211   RValue EmitLoadOfGlobalRegLValue(LValue LV);
3212 
3213   /// EmitStoreThroughLValue - Store the specified rvalue into the specified
3214   /// lvalue, where both are guaranteed to the have the same type, and that type
3215   /// is 'Ty'.
3216   void EmitStoreThroughLValue(RValue Src, LValue Dst, bool isInit = false);
3217   void EmitStoreThroughExtVectorComponentLValue(RValue Src, LValue Dst);
3218   void EmitStoreThroughGlobalRegLValue(RValue Src, LValue Dst);
3219 
3220   /// EmitStoreThroughBitfieldLValue - Store Src into Dst with same constraints
3221   /// as EmitStoreThroughLValue.
3222   ///
3223   /// \param Result [out] - If non-null, this will be set to a Value* for the
3224   /// bit-field contents after the store, appropriate for use as the result of
3225   /// an assignment to the bit-field.
3226   void EmitStoreThroughBitfieldLValue(RValue Src, LValue Dst,
3227                                       llvm::Value **Result=nullptr);
3228 
3229   /// Emit an l-value for an assignment (simple or compound) of complex type.
3230   LValue EmitComplexAssignmentLValue(const BinaryOperator *E);
3231   LValue EmitComplexCompoundAssignmentLValue(const CompoundAssignOperator *E);
3232   LValue EmitScalarCompoundAssignWithComplex(const CompoundAssignOperator *E,
3233                                              llvm::Value *&Result);
3234 
3235   // Note: only available for agg return types
3236   LValue EmitBinaryOperatorLValue(const BinaryOperator *E);
3237   LValue EmitCompoundAssignmentLValue(const CompoundAssignOperator *E);
3238   // Note: only available for agg return types
3239   LValue EmitCallExprLValue(const CallExpr *E);
3240   // Note: only available for agg return types
3241   LValue EmitVAArgExprLValue(const VAArgExpr *E);
3242   LValue EmitDeclRefLValue(const DeclRefExpr *E);
3243   LValue EmitStringLiteralLValue(const StringLiteral *E);
3244   LValue EmitObjCEncodeExprLValue(const ObjCEncodeExpr *E);
3245   LValue EmitPredefinedLValue(const PredefinedExpr *E);
3246   LValue EmitUnaryOpLValue(const UnaryOperator *E);
3247   LValue EmitArraySubscriptExpr(const ArraySubscriptExpr *E,
3248                                 bool Accessed = false);
3249   LValue EmitOMPArraySectionExpr(const OMPArraySectionExpr *E,
3250                                  bool IsLowerBound = true);
3251   LValue EmitExtVectorElementExpr(const ExtVectorElementExpr *E);
3252   LValue EmitMemberExpr(const MemberExpr *E);
3253   LValue EmitObjCIsaExpr(const ObjCIsaExpr *E);
3254   LValue EmitCompoundLiteralLValue(const CompoundLiteralExpr *E);
3255   LValue EmitInitListLValue(const InitListExpr *E);
3256   LValue EmitConditionalOperatorLValue(const AbstractConditionalOperator *E);
3257   LValue EmitCastLValue(const CastExpr *E);
3258   LValue EmitMaterializeTemporaryExpr(const MaterializeTemporaryExpr *E);
3259   LValue EmitOpaqueValueLValue(const OpaqueValueExpr *e);
3260 
3261   Address EmitExtVectorElementLValue(LValue V);
3262 
3263   RValue EmitRValueForField(LValue LV, const FieldDecl *FD, SourceLocation Loc);
3264 
3265   Address EmitArrayToPointerDecay(const Expr *Array,
3266                                   LValueBaseInfo *BaseInfo = nullptr,
3267                                   TBAAAccessInfo *TBAAInfo = nullptr);
3268 
3269   class ConstantEmission {
3270     llvm::PointerIntPair<llvm::Constant*, 1, bool> ValueAndIsReference;
3271     ConstantEmission(llvm::Constant *C, bool isReference)
3272       : ValueAndIsReference(C, isReference) {}
3273   public:
3274     ConstantEmission() {}
3275     static ConstantEmission forReference(llvm::Constant *C) {
3276       return ConstantEmission(C, true);
3277     }
3278     static ConstantEmission forValue(llvm::Constant *C) {
3279       return ConstantEmission(C, false);
3280     }
3281 
3282     explicit operator bool() const {
3283       return ValueAndIsReference.getOpaqueValue() != nullptr;
3284     }
3285 
3286     bool isReference() const { return ValueAndIsReference.getInt(); }
3287     LValue getReferenceLValue(CodeGenFunction &CGF, Expr *refExpr) const {
3288       assert(isReference());
3289       return CGF.MakeNaturalAlignAddrLValue(ValueAndIsReference.getPointer(),
3290                                             refExpr->getType());
3291     }
3292 
3293     llvm::Constant *getValue() const {
3294       assert(!isReference());
3295       return ValueAndIsReference.getPointer();
3296     }
3297   };
3298 
3299   ConstantEmission tryEmitAsConstant(DeclRefExpr *refExpr);
3300   ConstantEmission tryEmitAsConstant(const MemberExpr *ME);
3301 
3302   RValue EmitPseudoObjectRValue(const PseudoObjectExpr *e,
3303                                 AggValueSlot slot = AggValueSlot::ignored());
3304   LValue EmitPseudoObjectLValue(const PseudoObjectExpr *e);
3305 
3306   llvm::Value *EmitIvarOffset(const ObjCInterfaceDecl *Interface,
3307                               const ObjCIvarDecl *Ivar);
3308   LValue EmitLValueForField(LValue Base, const FieldDecl* Field);
3309   LValue EmitLValueForLambdaField(const FieldDecl *Field);
3310 
3311   /// EmitLValueForFieldInitialization - Like EmitLValueForField, except that
3312   /// if the Field is a reference, this will return the address of the reference
3313   /// and not the address of the value stored in the reference.
3314   LValue EmitLValueForFieldInitialization(LValue Base,
3315                                           const FieldDecl* Field);
3316 
3317   LValue EmitLValueForIvar(QualType ObjectTy,
3318                            llvm::Value* Base, const ObjCIvarDecl *Ivar,
3319                            unsigned CVRQualifiers);
3320 
3321   LValue EmitCXXConstructLValue(const CXXConstructExpr *E);
3322   LValue EmitCXXBindTemporaryLValue(const CXXBindTemporaryExpr *E);
3323   LValue EmitLambdaLValue(const LambdaExpr *E);
3324   LValue EmitCXXTypeidLValue(const CXXTypeidExpr *E);
3325   LValue EmitCXXUuidofLValue(const CXXUuidofExpr *E);
3326 
3327   LValue EmitObjCMessageExprLValue(const ObjCMessageExpr *E);
3328   LValue EmitObjCIvarRefLValue(const ObjCIvarRefExpr *E);
3329   LValue EmitStmtExprLValue(const StmtExpr *E);
3330   LValue EmitPointerToDataMemberBinaryExpr(const BinaryOperator *E);
3331   LValue EmitObjCSelectorLValue(const ObjCSelectorExpr *E);
3332   void   EmitDeclRefExprDbgValue(const DeclRefExpr *E, const APValue &Init);
3333 
3334   //===--------------------------------------------------------------------===//
3335   //                         Scalar Expression Emission
3336   //===--------------------------------------------------------------------===//
3337 
3338   /// EmitCall - Generate a call of the given function, expecting the given
3339   /// result type, and using the given argument list which specifies both the
3340   /// LLVM arguments and the types they were derived from.
3341   RValue EmitCall(const CGFunctionInfo &CallInfo, const CGCallee &Callee,
3342                   ReturnValueSlot ReturnValue, const CallArgList &Args,
3343                   llvm::Instruction **callOrInvoke, SourceLocation Loc);
3344   RValue EmitCall(const CGFunctionInfo &CallInfo, const CGCallee &Callee,
3345                   ReturnValueSlot ReturnValue, const CallArgList &Args,
3346                   llvm::Instruction **callOrInvoke = nullptr) {
3347     return EmitCall(CallInfo, Callee, ReturnValue, Args, callOrInvoke,
3348                     SourceLocation());
3349   }
3350   RValue EmitCall(QualType FnType, const CGCallee &Callee, const CallExpr *E,
3351                   ReturnValueSlot ReturnValue, llvm::Value *Chain = nullptr);
3352   RValue EmitCallExpr(const CallExpr *E,
3353                       ReturnValueSlot ReturnValue = ReturnValueSlot());
3354   RValue EmitSimpleCallExpr(const CallExpr *E, ReturnValueSlot ReturnValue);
3355   CGCallee EmitCallee(const Expr *E);
3356 
3357   void checkTargetFeatures(const CallExpr *E, const FunctionDecl *TargetDecl);
3358 
3359   llvm::CallInst *EmitRuntimeCall(llvm::Value *callee,
3360                                   const Twine &name = "");
3361   llvm::CallInst *EmitRuntimeCall(llvm::Value *callee,
3362                                   ArrayRef<llvm::Value*> args,
3363                                   const Twine &name = "");
3364   llvm::CallInst *EmitNounwindRuntimeCall(llvm::Value *callee,
3365                                           const Twine &name = "");
3366   llvm::CallInst *EmitNounwindRuntimeCall(llvm::Value *callee,
3367                                           ArrayRef<llvm::Value*> args,
3368                                           const Twine &name = "");
3369 
3370   llvm::CallSite EmitCallOrInvoke(llvm::Value *Callee,
3371                                   ArrayRef<llvm::Value *> Args,
3372                                   const Twine &Name = "");
3373   llvm::CallSite EmitRuntimeCallOrInvoke(llvm::Value *callee,
3374                                          ArrayRef<llvm::Value*> args,
3375                                          const Twine &name = "");
3376   llvm::CallSite EmitRuntimeCallOrInvoke(llvm::Value *callee,
3377                                          const Twine &name = "");
3378   void EmitNoreturnRuntimeCallOrInvoke(llvm::Value *callee,
3379                                        ArrayRef<llvm::Value*> args);
3380 
3381   CGCallee BuildAppleKextVirtualCall(const CXXMethodDecl *MD,
3382                                      NestedNameSpecifier *Qual,
3383                                      llvm::Type *Ty);
3384 
3385   CGCallee BuildAppleKextVirtualDestructorCall(const CXXDestructorDecl *DD,
3386                                                CXXDtorType Type,
3387                                                const CXXRecordDecl *RD);
3388 
3389   RValue
3390   EmitCXXMemberOrOperatorCall(const CXXMethodDecl *Method,
3391                               const CGCallee &Callee,
3392                               ReturnValueSlot ReturnValue, llvm::Value *This,
3393                               llvm::Value *ImplicitParam,
3394                               QualType ImplicitParamTy, const CallExpr *E,
3395                               CallArgList *RtlArgs);
3396   RValue EmitCXXDestructorCall(const CXXDestructorDecl *DD,
3397                                const CGCallee &Callee,
3398                                llvm::Value *This, llvm::Value *ImplicitParam,
3399                                QualType ImplicitParamTy, const CallExpr *E,
3400                                StructorType Type);
3401   RValue EmitCXXMemberCallExpr(const CXXMemberCallExpr *E,
3402                                ReturnValueSlot ReturnValue);
3403   RValue EmitCXXMemberOrOperatorMemberCallExpr(const CallExpr *CE,
3404                                                const CXXMethodDecl *MD,
3405                                                ReturnValueSlot ReturnValue,
3406                                                bool HasQualifier,
3407                                                NestedNameSpecifier *Qualifier,
3408                                                bool IsArrow, const Expr *Base);
3409   // Compute the object pointer.
3410   Address EmitCXXMemberDataPointerAddress(const Expr *E, Address base,
3411                                           llvm::Value *memberPtr,
3412                                           const MemberPointerType *memberPtrType,
3413                                           LValueBaseInfo *BaseInfo = nullptr,
3414                                           TBAAAccessInfo *TBAAInfo = nullptr);
3415   RValue EmitCXXMemberPointerCallExpr(const CXXMemberCallExpr *E,
3416                                       ReturnValueSlot ReturnValue);
3417 
3418   RValue EmitCXXOperatorMemberCallExpr(const CXXOperatorCallExpr *E,
3419                                        const CXXMethodDecl *MD,
3420                                        ReturnValueSlot ReturnValue);
3421   RValue EmitCXXPseudoDestructorExpr(const CXXPseudoDestructorExpr *E);
3422 
3423   RValue EmitCUDAKernelCallExpr(const CUDAKernelCallExpr *E,
3424                                 ReturnValueSlot ReturnValue);
3425 
3426   RValue EmitNVPTXDevicePrintfCallExpr(const CallExpr *E,
3427                                        ReturnValueSlot ReturnValue);
3428 
3429   RValue EmitBuiltinExpr(const FunctionDecl *FD,
3430                          unsigned BuiltinID, const CallExpr *E,
3431                          ReturnValueSlot ReturnValue);
3432 
3433   /// Emit IR for __builtin_os_log_format.
3434   RValue emitBuiltinOSLogFormat(const CallExpr &E);
3435 
3436   llvm::Function *generateBuiltinOSLogHelperFunction(
3437       const analyze_os_log::OSLogBufferLayout &Layout,
3438       CharUnits BufferAlignment);
3439 
3440   RValue EmitBlockCallExpr(const CallExpr *E, ReturnValueSlot ReturnValue);
3441 
3442   /// EmitTargetBuiltinExpr - Emit the given builtin call. Returns 0 if the call
3443   /// is unhandled by the current target.
3444   llvm::Value *EmitTargetBuiltinExpr(unsigned BuiltinID, const CallExpr *E);
3445 
3446   llvm::Value *EmitAArch64CompareBuiltinExpr(llvm::Value *Op, llvm::Type *Ty,
3447                                              const llvm::CmpInst::Predicate Fp,
3448                                              const llvm::CmpInst::Predicate Ip,
3449                                              const llvm::Twine &Name = "");
3450   llvm::Value *EmitARMBuiltinExpr(unsigned BuiltinID, const CallExpr *E,
3451                                   llvm::Triple::ArchType Arch);
3452 
3453   llvm::Value *EmitCommonNeonBuiltinExpr(unsigned BuiltinID,
3454                                          unsigned LLVMIntrinsic,
3455                                          unsigned AltLLVMIntrinsic,
3456                                          const char *NameHint,
3457                                          unsigned Modifier,
3458                                          const CallExpr *E,
3459                                          SmallVectorImpl<llvm::Value *> &Ops,
3460                                          Address PtrOp0, Address PtrOp1,
3461                                          llvm::Triple::ArchType Arch);
3462   llvm::Function *LookupNeonLLVMIntrinsic(unsigned IntrinsicID,
3463                                           unsigned Modifier, llvm::Type *ArgTy,
3464                                           const CallExpr *E);
3465   llvm::Value *EmitNeonCall(llvm::Function *F,
3466                             SmallVectorImpl<llvm::Value*> &O,
3467                             const char *name,
3468                             unsigned shift = 0, bool rightshift = false);
3469   llvm::Value *EmitNeonSplat(llvm::Value *V, llvm::Constant *Idx);
3470   llvm::Value *EmitNeonShiftVector(llvm::Value *V, llvm::Type *Ty,
3471                                    bool negateForRightShift);
3472   llvm::Value *EmitNeonRShiftImm(llvm::Value *Vec, llvm::Value *Amt,
3473                                  llvm::Type *Ty, bool usgn, const char *name);
3474   llvm::Value *vectorWrapScalar16(llvm::Value *Op);
3475   llvm::Value *EmitAArch64BuiltinExpr(unsigned BuiltinID, const CallExpr *E,
3476                                       llvm::Triple::ArchType Arch);
3477 
3478   llvm::Value *BuildVector(ArrayRef<llvm::Value*> Ops);
3479   llvm::Value *EmitX86BuiltinExpr(unsigned BuiltinID, const CallExpr *E);
3480   llvm::Value *EmitPPCBuiltinExpr(unsigned BuiltinID, const CallExpr *E);
3481   llvm::Value *EmitAMDGPUBuiltinExpr(unsigned BuiltinID, const CallExpr *E);
3482   llvm::Value *EmitSystemZBuiltinExpr(unsigned BuiltinID, const CallExpr *E);
3483   llvm::Value *EmitNVPTXBuiltinExpr(unsigned BuiltinID, const CallExpr *E);
3484   llvm::Value *EmitWebAssemblyBuiltinExpr(unsigned BuiltinID,
3485                                           const CallExpr *E);
3486   llvm::Value *EmitHexagonBuiltinExpr(unsigned BuiltinID, const CallExpr *E);
3487 
3488 private:
3489   enum class MSVCIntrin;
3490 
3491 public:
3492   llvm::Value *EmitMSVCBuiltinExpr(MSVCIntrin BuiltinID, const CallExpr *E);
3493 
3494   llvm::Value *EmitBuiltinAvailable(ArrayRef<llvm::Value *> Args);
3495 
3496   llvm::Value *EmitObjCProtocolExpr(const ObjCProtocolExpr *E);
3497   llvm::Value *EmitObjCStringLiteral(const ObjCStringLiteral *E);
3498   llvm::Value *EmitObjCBoxedExpr(const ObjCBoxedExpr *E);
3499   llvm::Value *EmitObjCArrayLiteral(const ObjCArrayLiteral *E);
3500   llvm::Value *EmitObjCDictionaryLiteral(const ObjCDictionaryLiteral *E);
3501   llvm::Value *EmitObjCCollectionLiteral(const Expr *E,
3502                                 const ObjCMethodDecl *MethodWithObjects);
3503   llvm::Value *EmitObjCSelectorExpr(const ObjCSelectorExpr *E);
3504   RValue EmitObjCMessageExpr(const ObjCMessageExpr *E,
3505                              ReturnValueSlot Return = ReturnValueSlot());
3506 
3507   /// Retrieves the default cleanup kind for an ARC cleanup.
3508   /// Except under -fobjc-arc-eh, ARC cleanups are normal-only.
3509   CleanupKind getARCCleanupKind() {
3510     return CGM.getCodeGenOpts().ObjCAutoRefCountExceptions
3511              ? NormalAndEHCleanup : NormalCleanup;
3512   }
3513 
3514   // ARC primitives.
3515   void EmitARCInitWeak(Address addr, llvm::Value *value);
3516   void EmitARCDestroyWeak(Address addr);
3517   llvm::Value *EmitARCLoadWeak(Address addr);
3518   llvm::Value *EmitARCLoadWeakRetained(Address addr);
3519   llvm::Value *EmitARCStoreWeak(Address addr, llvm::Value *value, bool ignored);
3520   void EmitARCCopyWeak(Address dst, Address src);
3521   void EmitARCMoveWeak(Address dst, Address src);
3522   llvm::Value *EmitARCRetainAutorelease(QualType type, llvm::Value *value);
3523   llvm::Value *EmitARCRetainAutoreleaseNonBlock(llvm::Value *value);
3524   llvm::Value *EmitARCStoreStrong(LValue lvalue, llvm::Value *value,
3525                                   bool resultIgnored);
3526   llvm::Value *EmitARCStoreStrongCall(Address addr, llvm::Value *value,
3527                                       bool resultIgnored);
3528   llvm::Value *EmitARCRetain(QualType type, llvm::Value *value);
3529   llvm::Value *EmitARCRetainNonBlock(llvm::Value *value);
3530   llvm::Value *EmitARCRetainBlock(llvm::Value *value, bool mandatory);
3531   void EmitARCDestroyStrong(Address addr, ARCPreciseLifetime_t precise);
3532   void EmitARCRelease(llvm::Value *value, ARCPreciseLifetime_t precise);
3533   llvm::Value *EmitARCAutorelease(llvm::Value *value);
3534   llvm::Value *EmitARCAutoreleaseReturnValue(llvm::Value *value);
3535   llvm::Value *EmitARCRetainAutoreleaseReturnValue(llvm::Value *value);
3536   llvm::Value *EmitARCRetainAutoreleasedReturnValue(llvm::Value *value);
3537   llvm::Value *EmitARCUnsafeClaimAutoreleasedReturnValue(llvm::Value *value);
3538 
3539   std::pair<LValue,llvm::Value*>
3540   EmitARCStoreAutoreleasing(const BinaryOperator *e);
3541   std::pair<LValue,llvm::Value*>
3542   EmitARCStoreStrong(const BinaryOperator *e, bool ignored);
3543   std::pair<LValue,llvm::Value*>
3544   EmitARCStoreUnsafeUnretained(const BinaryOperator *e, bool ignored);
3545 
3546   llvm::Value *EmitObjCThrowOperand(const Expr *expr);
3547   llvm::Value *EmitObjCConsumeObject(QualType T, llvm::Value *Ptr);
3548   llvm::Value *EmitObjCExtendObjectLifetime(QualType T, llvm::Value *Ptr);
3549 
3550   llvm::Value *EmitARCExtendBlockObject(const Expr *expr);
3551   llvm::Value *EmitARCReclaimReturnedObject(const Expr *e,
3552                                             bool allowUnsafeClaim);
3553   llvm::Value *EmitARCRetainScalarExpr(const Expr *expr);
3554   llvm::Value *EmitARCRetainAutoreleaseScalarExpr(const Expr *expr);
3555   llvm::Value *EmitARCUnsafeUnretainedScalarExpr(const Expr *expr);
3556 
3557   void EmitARCIntrinsicUse(ArrayRef<llvm::Value*> values);
3558 
3559   static Destroyer destroyARCStrongImprecise;
3560   static Destroyer destroyARCStrongPrecise;
3561   static Destroyer destroyARCWeak;
3562   static Destroyer emitARCIntrinsicUse;
3563 
3564   void EmitObjCAutoreleasePoolPop(llvm::Value *Ptr);
3565   llvm::Value *EmitObjCAutoreleasePoolPush();
3566   llvm::Value *EmitObjCMRRAutoreleasePoolPush();
3567   void EmitObjCAutoreleasePoolCleanup(llvm::Value *Ptr);
3568   void EmitObjCMRRAutoreleasePoolPop(llvm::Value *Ptr);
3569 
3570   /// \brief Emits a reference binding to the passed in expression.
3571   RValue EmitReferenceBindingToExpr(const Expr *E);
3572 
3573   //===--------------------------------------------------------------------===//
3574   //                           Expression Emission
3575   //===--------------------------------------------------------------------===//
3576 
3577   // Expressions are broken into three classes: scalar, complex, aggregate.
3578 
3579   /// EmitScalarExpr - Emit the computation of the specified expression of LLVM
3580   /// scalar type, returning the result.
3581   llvm::Value *EmitScalarExpr(const Expr *E , bool IgnoreResultAssign = false);
3582 
3583   /// Emit a conversion from the specified type to the specified destination
3584   /// type, both of which are LLVM scalar types.
3585   llvm::Value *EmitScalarConversion(llvm::Value *Src, QualType SrcTy,
3586                                     QualType DstTy, SourceLocation Loc);
3587 
3588   /// Emit a conversion from the specified complex type to the specified
3589   /// destination type, where the destination type is an LLVM scalar type.
3590   llvm::Value *EmitComplexToScalarConversion(ComplexPairTy Src, QualType SrcTy,
3591                                              QualType DstTy,
3592                                              SourceLocation Loc);
3593 
3594   /// EmitAggExpr - Emit the computation of the specified expression
3595   /// of aggregate type.  The result is computed into the given slot,
3596   /// which may be null to indicate that the value is not needed.
3597   void EmitAggExpr(const Expr *E, AggValueSlot AS);
3598 
3599   /// EmitAggExprToLValue - Emit the computation of the specified expression of
3600   /// aggregate type into a temporary LValue.
3601   LValue EmitAggExprToLValue(const Expr *E);
3602 
3603   /// EmitExtendGCLifetime - Given a pointer to an Objective-C object,
3604   /// make sure it survives garbage collection until this point.
3605   void EmitExtendGCLifetime(llvm::Value *object);
3606 
3607   /// EmitComplexExpr - Emit the computation of the specified expression of
3608   /// complex type, returning the result.
3609   ComplexPairTy EmitComplexExpr(const Expr *E,
3610                                 bool IgnoreReal = false,
3611                                 bool IgnoreImag = false);
3612 
3613   /// EmitComplexExprIntoLValue - Emit the given expression of complex
3614   /// type and place its result into the specified l-value.
3615   void EmitComplexExprIntoLValue(const Expr *E, LValue dest, bool isInit);
3616 
3617   /// EmitStoreOfComplex - Store a complex number into the specified l-value.
3618   void EmitStoreOfComplex(ComplexPairTy V, LValue dest, bool isInit);
3619 
3620   /// EmitLoadOfComplex - Load a complex number from the specified l-value.
3621   ComplexPairTy EmitLoadOfComplex(LValue src, SourceLocation loc);
3622 
3623   Address emitAddrOfRealComponent(Address complex, QualType complexType);
3624   Address emitAddrOfImagComponent(Address complex, QualType complexType);
3625 
3626   /// AddInitializerToStaticVarDecl - Add the initializer for 'D' to the
3627   /// global variable that has already been created for it.  If the initializer
3628   /// has a different type than GV does, this may free GV and return a different
3629   /// one.  Otherwise it just returns GV.
3630   llvm::GlobalVariable *
3631   AddInitializerToStaticVarDecl(const VarDecl &D,
3632                                 llvm::GlobalVariable *GV);
3633 
3634 
3635   /// EmitCXXGlobalVarDeclInit - Create the initializer for a C++
3636   /// variable with global storage.
3637   void EmitCXXGlobalVarDeclInit(const VarDecl &D, llvm::Constant *DeclPtr,
3638                                 bool PerformInit);
3639 
3640   llvm::Constant *createAtExitStub(const VarDecl &VD, llvm::Constant *Dtor,
3641                                    llvm::Constant *Addr);
3642 
3643   /// Call atexit() with a function that passes the given argument to
3644   /// the given function.
3645   void registerGlobalDtorWithAtExit(const VarDecl &D, llvm::Constant *fn,
3646                                     llvm::Constant *addr);
3647 
3648   /// Emit code in this function to perform a guarded variable
3649   /// initialization.  Guarded initializations are used when it's not
3650   /// possible to prove that an initialization will be done exactly
3651   /// once, e.g. with a static local variable or a static data member
3652   /// of a class template.
3653   void EmitCXXGuardedInit(const VarDecl &D, llvm::GlobalVariable *DeclPtr,
3654                           bool PerformInit);
3655 
3656   enum class GuardKind { VariableGuard, TlsGuard };
3657 
3658   /// Emit a branch to select whether or not to perform guarded initialization.
3659   void EmitCXXGuardedInitBranch(llvm::Value *NeedsInit,
3660                                 llvm::BasicBlock *InitBlock,
3661                                 llvm::BasicBlock *NoInitBlock,
3662                                 GuardKind Kind, const VarDecl *D);
3663 
3664   /// GenerateCXXGlobalInitFunc - Generates code for initializing global
3665   /// variables.
3666   void GenerateCXXGlobalInitFunc(llvm::Function *Fn,
3667                                  ArrayRef<llvm::Function *> CXXThreadLocals,
3668                                  Address Guard = Address::invalid());
3669 
3670   /// GenerateCXXGlobalDtorsFunc - Generates code for destroying global
3671   /// variables.
3672   void GenerateCXXGlobalDtorsFunc(
3673       llvm::Function *Fn,
3674       const std::vector<std::pair<llvm::WeakTrackingVH, llvm::Constant *>>
3675           &DtorsAndObjects);
3676 
3677   void GenerateCXXGlobalVarDeclInitFunc(llvm::Function *Fn,
3678                                         const VarDecl *D,
3679                                         llvm::GlobalVariable *Addr,
3680                                         bool PerformInit);
3681 
3682   void EmitCXXConstructExpr(const CXXConstructExpr *E, AggValueSlot Dest);
3683 
3684   void EmitSynthesizedCXXCopyCtor(Address Dest, Address Src, const Expr *Exp);
3685 
3686   void enterFullExpression(const ExprWithCleanups *E) {
3687     if (E->getNumObjects() == 0) return;
3688     enterNonTrivialFullExpression(E);
3689   }
3690   void enterNonTrivialFullExpression(const ExprWithCleanups *E);
3691 
3692   void EmitCXXThrowExpr(const CXXThrowExpr *E, bool KeepInsertionPoint = true);
3693 
3694   void EmitLambdaExpr(const LambdaExpr *E, AggValueSlot Dest);
3695 
3696   RValue EmitAtomicExpr(AtomicExpr *E);
3697 
3698   //===--------------------------------------------------------------------===//
3699   //                         Annotations Emission
3700   //===--------------------------------------------------------------------===//
3701 
3702   /// Emit an annotation call (intrinsic or builtin).
3703   llvm::Value *EmitAnnotationCall(llvm::Value *AnnotationFn,
3704                                   llvm::Value *AnnotatedVal,
3705                                   StringRef AnnotationStr,
3706                                   SourceLocation Location);
3707 
3708   /// Emit local annotations for the local variable V, declared by D.
3709   void EmitVarAnnotations(const VarDecl *D, llvm::Value *V);
3710 
3711   /// Emit field annotations for the given field & value. Returns the
3712   /// annotation result.
3713   Address EmitFieldAnnotations(const FieldDecl *D, Address V);
3714 
3715   //===--------------------------------------------------------------------===//
3716   //                             Internal Helpers
3717   //===--------------------------------------------------------------------===//
3718 
3719   /// ContainsLabel - Return true if the statement contains a label in it.  If
3720   /// this statement is not executed normally, it not containing a label means
3721   /// that we can just remove the code.
3722   static bool ContainsLabel(const Stmt *S, bool IgnoreCaseStmts = false);
3723 
3724   /// containsBreak - Return true if the statement contains a break out of it.
3725   /// If the statement (recursively) contains a switch or loop with a break
3726   /// inside of it, this is fine.
3727   static bool containsBreak(const Stmt *S);
3728 
3729   /// Determine if the given statement might introduce a declaration into the
3730   /// current scope, by being a (possibly-labelled) DeclStmt.
3731   static bool mightAddDeclToScope(const Stmt *S);
3732 
3733   /// ConstantFoldsToSimpleInteger - If the specified expression does not fold
3734   /// to a constant, or if it does but contains a label, return false.  If it
3735   /// constant folds return true and set the boolean result in Result.
3736   bool ConstantFoldsToSimpleInteger(const Expr *Cond, bool &Result,
3737                                     bool AllowLabels = false);
3738 
3739   /// ConstantFoldsToSimpleInteger - If the specified expression does not fold
3740   /// to a constant, or if it does but contains a label, return false.  If it
3741   /// constant folds return true and set the folded value.
3742   bool ConstantFoldsToSimpleInteger(const Expr *Cond, llvm::APSInt &Result,
3743                                     bool AllowLabels = false);
3744 
3745   /// EmitBranchOnBoolExpr - Emit a branch on a boolean condition (e.g. for an
3746   /// if statement) to the specified blocks.  Based on the condition, this might
3747   /// try to simplify the codegen of the conditional based on the branch.
3748   /// TrueCount should be the number of times we expect the condition to
3749   /// evaluate to true based on PGO data.
3750   void EmitBranchOnBoolExpr(const Expr *Cond, llvm::BasicBlock *TrueBlock,
3751                             llvm::BasicBlock *FalseBlock, uint64_t TrueCount);
3752 
3753   /// Given an assignment `*LHS = RHS`, emit a test that checks if \p RHS is
3754   /// nonnull, if \p LHS is marked _Nonnull.
3755   void EmitNullabilityCheck(LValue LHS, llvm::Value *RHS, SourceLocation Loc);
3756 
3757   /// An enumeration which makes it easier to specify whether or not an
3758   /// operation is a subtraction.
3759   enum { NotSubtraction = false, IsSubtraction = true };
3760 
3761   /// Same as IRBuilder::CreateInBoundsGEP, but additionally emits a check to
3762   /// detect undefined behavior when the pointer overflow sanitizer is enabled.
3763   /// \p SignedIndices indicates whether any of the GEP indices are signed.
3764   /// \p IsSubtraction indicates whether the expression used to form the GEP
3765   /// is a subtraction.
3766   llvm::Value *EmitCheckedInBoundsGEP(llvm::Value *Ptr,
3767                                       ArrayRef<llvm::Value *> IdxList,
3768                                       bool SignedIndices,
3769                                       bool IsSubtraction,
3770                                       SourceLocation Loc,
3771                                       const Twine &Name = "");
3772 
3773   /// Specifies which type of sanitizer check to apply when handling a
3774   /// particular builtin.
3775   enum BuiltinCheckKind {
3776     BCK_CTZPassedZero,
3777     BCK_CLZPassedZero,
3778   };
3779 
3780   /// Emits an argument for a call to a builtin. If the builtin sanitizer is
3781   /// enabled, a runtime check specified by \p Kind is also emitted.
3782   llvm::Value *EmitCheckedArgForBuiltin(const Expr *E, BuiltinCheckKind Kind);
3783 
3784   /// \brief Emit a description of a type in a format suitable for passing to
3785   /// a runtime sanitizer handler.
3786   llvm::Constant *EmitCheckTypeDescriptor(QualType T);
3787 
3788   /// \brief Convert a value into a format suitable for passing to a runtime
3789   /// sanitizer handler.
3790   llvm::Value *EmitCheckValue(llvm::Value *V);
3791 
3792   /// \brief Emit a description of a source location in a format suitable for
3793   /// passing to a runtime sanitizer handler.
3794   llvm::Constant *EmitCheckSourceLocation(SourceLocation Loc);
3795 
3796   /// \brief Create a basic block that will call a handler function in a
3797   /// sanitizer runtime with the provided arguments, and create a conditional
3798   /// branch to it.
3799   void EmitCheck(ArrayRef<std::pair<llvm::Value *, SanitizerMask>> Checked,
3800                  SanitizerHandler Check, ArrayRef<llvm::Constant *> StaticArgs,
3801                  ArrayRef<llvm::Value *> DynamicArgs);
3802 
3803   /// \brief Emit a slow path cross-DSO CFI check which calls __cfi_slowpath
3804   /// if Cond if false.
3805   void EmitCfiSlowPathCheck(SanitizerMask Kind, llvm::Value *Cond,
3806                             llvm::ConstantInt *TypeId, llvm::Value *Ptr,
3807                             ArrayRef<llvm::Constant *> StaticArgs);
3808 
3809   /// Emit a reached-unreachable diagnostic if \p Loc is valid and runtime
3810   /// checking is enabled. Otherwise, just emit an unreachable instruction.
3811   void EmitUnreachable(SourceLocation Loc);
3812 
3813   /// \brief Create a basic block that will call the trap intrinsic, and emit a
3814   /// conditional branch to it, for the -ftrapv checks.
3815   void EmitTrapCheck(llvm::Value *Checked);
3816 
3817   /// \brief Emit a call to trap or debugtrap and attach function attribute
3818   /// "trap-func-name" if specified.
3819   llvm::CallInst *EmitTrapCall(llvm::Intrinsic::ID IntrID);
3820 
3821   /// \brief Emit a stub for the cross-DSO CFI check function.
3822   void EmitCfiCheckStub();
3823 
3824   /// \brief Emit a cross-DSO CFI failure handling function.
3825   void EmitCfiCheckFail();
3826 
3827   /// \brief Create a check for a function parameter that may potentially be
3828   /// declared as non-null.
3829   void EmitNonNullArgCheck(RValue RV, QualType ArgType, SourceLocation ArgLoc,
3830                            AbstractCallee AC, unsigned ParmNum);
3831 
3832   /// EmitCallArg - Emit a single call argument.
3833   void EmitCallArg(CallArgList &args, const Expr *E, QualType ArgType);
3834 
3835   /// EmitDelegateCallArg - We are performing a delegate call; that
3836   /// is, the current function is delegating to another one.  Produce
3837   /// a r-value suitable for passing the given parameter.
3838   void EmitDelegateCallArg(CallArgList &args, const VarDecl *param,
3839                            SourceLocation loc);
3840 
3841   /// SetFPAccuracy - Set the minimum required accuracy of the given floating
3842   /// point operation, expressed as the maximum relative error in ulp.
3843   void SetFPAccuracy(llvm::Value *Val, float Accuracy);
3844 
3845 private:
3846   llvm::MDNode *getRangeForLoadFromType(QualType Ty);
3847   void EmitReturnOfRValue(RValue RV, QualType Ty);
3848 
3849   void deferPlaceholderReplacement(llvm::Instruction *Old, llvm::Value *New);
3850 
3851   llvm::SmallVector<std::pair<llvm::Instruction *, llvm::Value *>, 4>
3852   DeferredReplacements;
3853 
3854   /// Set the address of a local variable.
3855   void setAddrOfLocalVar(const VarDecl *VD, Address Addr) {
3856     assert(!LocalDeclMap.count(VD) && "Decl already exists in LocalDeclMap!");
3857     LocalDeclMap.insert({VD, Addr});
3858   }
3859 
3860   /// ExpandTypeFromArgs - Reconstruct a structure of type \arg Ty
3861   /// from function arguments into \arg Dst. See ABIArgInfo::Expand.
3862   ///
3863   /// \param AI - The first function argument of the expansion.
3864   void ExpandTypeFromArgs(QualType Ty, LValue Dst,
3865                           SmallVectorImpl<llvm::Value *>::iterator &AI);
3866 
3867   /// ExpandTypeToArgs - Expand an RValue \arg RV, with the LLVM type for \arg
3868   /// Ty, into individual arguments on the provided vector \arg IRCallArgs,
3869   /// starting at index \arg IRCallArgPos. See ABIArgInfo::Expand.
3870   void ExpandTypeToArgs(QualType Ty, RValue RV, llvm::FunctionType *IRFuncTy,
3871                         SmallVectorImpl<llvm::Value *> &IRCallArgs,
3872                         unsigned &IRCallArgPos);
3873 
3874   llvm::Value* EmitAsmInput(const TargetInfo::ConstraintInfo &Info,
3875                             const Expr *InputExpr, std::string &ConstraintStr);
3876 
3877   llvm::Value* EmitAsmInputLValue(const TargetInfo::ConstraintInfo &Info,
3878                                   LValue InputValue, QualType InputType,
3879                                   std::string &ConstraintStr,
3880                                   SourceLocation Loc);
3881 
3882   /// \brief Attempts to statically evaluate the object size of E. If that
3883   /// fails, emits code to figure the size of E out for us. This is
3884   /// pass_object_size aware.
3885   ///
3886   /// If EmittedExpr is non-null, this will use that instead of re-emitting E.
3887   llvm::Value *evaluateOrEmitBuiltinObjectSize(const Expr *E, unsigned Type,
3888                                                llvm::IntegerType *ResType,
3889                                                llvm::Value *EmittedE);
3890 
3891   /// \brief Emits the size of E, as required by __builtin_object_size. This
3892   /// function is aware of pass_object_size parameters, and will act accordingly
3893   /// if E is a parameter with the pass_object_size attribute.
3894   llvm::Value *emitBuiltinObjectSize(const Expr *E, unsigned Type,
3895                                      llvm::IntegerType *ResType,
3896                                      llvm::Value *EmittedE);
3897 
3898 public:
3899 #ifndef NDEBUG
3900   // Determine whether the given argument is an Objective-C method
3901   // that may have type parameters in its signature.
3902   static bool isObjCMethodWithTypeParams(const ObjCMethodDecl *method) {
3903     const DeclContext *dc = method->getDeclContext();
3904     if (const ObjCInterfaceDecl *classDecl= dyn_cast<ObjCInterfaceDecl>(dc)) {
3905       return classDecl->getTypeParamListAsWritten();
3906     }
3907 
3908     if (const ObjCCategoryDecl *catDecl = dyn_cast<ObjCCategoryDecl>(dc)) {
3909       return catDecl->getTypeParamList();
3910     }
3911 
3912     return false;
3913   }
3914 
3915   template<typename T>
3916   static bool isObjCMethodWithTypeParams(const T *) { return false; }
3917 #endif
3918 
3919   enum class EvaluationOrder {
3920     ///! No language constraints on evaluation order.
3921     Default,
3922     ///! Language semantics require left-to-right evaluation.
3923     ForceLeftToRight,
3924     ///! Language semantics require right-to-left evaluation.
3925     ForceRightToLeft
3926   };
3927 
3928   /// EmitCallArgs - Emit call arguments for a function.
3929   template <typename T>
3930   void EmitCallArgs(CallArgList &Args, const T *CallArgTypeInfo,
3931                     llvm::iterator_range<CallExpr::const_arg_iterator> ArgRange,
3932                     AbstractCallee AC = AbstractCallee(),
3933                     unsigned ParamsToSkip = 0,
3934                     EvaluationOrder Order = EvaluationOrder::Default) {
3935     SmallVector<QualType, 16> ArgTypes;
3936     CallExpr::const_arg_iterator Arg = ArgRange.begin();
3937 
3938     assert((ParamsToSkip == 0 || CallArgTypeInfo) &&
3939            "Can't skip parameters if type info is not provided");
3940     if (CallArgTypeInfo) {
3941 #ifndef NDEBUG
3942       bool isGenericMethod = isObjCMethodWithTypeParams(CallArgTypeInfo);
3943 #endif
3944 
3945       // First, use the argument types that the type info knows about
3946       for (auto I = CallArgTypeInfo->param_type_begin() + ParamsToSkip,
3947                 E = CallArgTypeInfo->param_type_end();
3948            I != E; ++I, ++Arg) {
3949         assert(Arg != ArgRange.end() && "Running over edge of argument list!");
3950         assert((isGenericMethod ||
3951                 ((*I)->isVariablyModifiedType() ||
3952                  (*I).getNonReferenceType()->isObjCRetainableType() ||
3953                  getContext()
3954                          .getCanonicalType((*I).getNonReferenceType())
3955                          .getTypePtr() ==
3956                      getContext()
3957                          .getCanonicalType((*Arg)->getType())
3958                          .getTypePtr())) &&
3959                "type mismatch in call argument!");
3960         ArgTypes.push_back(*I);
3961       }
3962     }
3963 
3964     // Either we've emitted all the call args, or we have a call to variadic
3965     // function.
3966     assert((Arg == ArgRange.end() || !CallArgTypeInfo ||
3967             CallArgTypeInfo->isVariadic()) &&
3968            "Extra arguments in non-variadic function!");
3969 
3970     // If we still have any arguments, emit them using the type of the argument.
3971     for (auto *A : llvm::make_range(Arg, ArgRange.end()))
3972       ArgTypes.push_back(CallArgTypeInfo ? getVarArgType(A) : A->getType());
3973 
3974     EmitCallArgs(Args, ArgTypes, ArgRange, AC, ParamsToSkip, Order);
3975   }
3976 
3977   void EmitCallArgs(CallArgList &Args, ArrayRef<QualType> ArgTypes,
3978                     llvm::iterator_range<CallExpr::const_arg_iterator> ArgRange,
3979                     AbstractCallee AC = AbstractCallee(),
3980                     unsigned ParamsToSkip = 0,
3981                     EvaluationOrder Order = EvaluationOrder::Default);
3982 
3983   /// EmitPointerWithAlignment - Given an expression with a pointer type,
3984   /// emit the value and compute our best estimate of the alignment of the
3985   /// pointee.
3986   ///
3987   /// \param BaseInfo - If non-null, this will be initialized with
3988   /// information about the source of the alignment and the may-alias
3989   /// attribute.  Note that this function will conservatively fall back on
3990   /// the type when it doesn't recognize the expression and may-alias will
3991   /// be set to false.
3992   ///
3993   /// One reasonable way to use this information is when there's a language
3994   /// guarantee that the pointer must be aligned to some stricter value, and
3995   /// we're simply trying to ensure that sufficiently obvious uses of under-
3996   /// aligned objects don't get miscompiled; for example, a placement new
3997   /// into the address of a local variable.  In such a case, it's quite
3998   /// reasonable to just ignore the returned alignment when it isn't from an
3999   /// explicit source.
4000   Address EmitPointerWithAlignment(const Expr *Addr,
4001                                    LValueBaseInfo *BaseInfo = nullptr,
4002                                    TBAAAccessInfo *TBAAInfo = nullptr);
4003 
4004   /// If \p E references a parameter with pass_object_size info or a constant
4005   /// array size modifier, emit the object size divided by the size of \p EltTy.
4006   /// Otherwise return null.
4007   llvm::Value *LoadPassedObjectSize(const Expr *E, QualType EltTy);
4008 
4009   void EmitSanitizerStatReport(llvm::SanitizerStatKind SSK);
4010 
4011   struct MultiVersionResolverOption {
4012     llvm::Function *Function;
4013     TargetAttr::ParsedTargetAttr ParsedAttribute;
4014     unsigned Priority;
4015     MultiVersionResolverOption(const TargetInfo &TargInfo, llvm::Function *F,
4016                                const clang::TargetAttr::ParsedTargetAttr &PT)
4017         : Function(F), ParsedAttribute(PT), Priority(0u) {
4018       for (StringRef Feat : PT.Features)
4019         Priority = std::max(Priority,
4020                             TargInfo.multiVersionSortPriority(Feat.substr(1)));
4021 
4022       if (!PT.Architecture.empty())
4023         Priority = std::max(Priority,
4024                             TargInfo.multiVersionSortPriority(PT.Architecture));
4025     }
4026 
4027     bool operator>(const MultiVersionResolverOption &Other) const {
4028       return Priority > Other.Priority;
4029     }
4030   };
4031   void EmitMultiVersionResolver(llvm::Function *Resolver,
4032                                 ArrayRef<MultiVersionResolverOption> Options);
4033 
4034 private:
4035   QualType getVarArgType(const Expr *Arg);
4036 
4037   void EmitDeclMetadata();
4038 
4039   BlockByrefHelpers *buildByrefHelpers(llvm::StructType &byrefType,
4040                                   const AutoVarEmission &emission);
4041 
4042   void AddObjCARCExceptionMetadata(llvm::Instruction *Inst);
4043 
4044   llvm::Value *GetValueForARMHint(unsigned BuiltinID);
4045   llvm::Value *EmitX86CpuIs(const CallExpr *E);
4046   llvm::Value *EmitX86CpuIs(StringRef CPUStr);
4047   llvm::Value *EmitX86CpuSupports(const CallExpr *E);
4048   llvm::Value *EmitX86CpuSupports(ArrayRef<StringRef> FeatureStrs);
4049   llvm::Value *EmitX86CpuInit();
4050   llvm::Value *FormResolverCondition(const MultiVersionResolverOption &RO);
4051 };
4052 
4053 /// Helper class with most of the code for saving a value for a
4054 /// conditional expression cleanup.
4055 struct DominatingLLVMValue {
4056   typedef llvm::PointerIntPair<llvm::Value*, 1, bool> saved_type;
4057 
4058   /// Answer whether the given value needs extra work to be saved.
4059   static bool needsSaving(llvm::Value *value) {
4060     // If it's not an instruction, we don't need to save.
4061     if (!isa<llvm::Instruction>(value)) return false;
4062 
4063     // If it's an instruction in the entry block, we don't need to save.
4064     llvm::BasicBlock *block = cast<llvm::Instruction>(value)->getParent();
4065     return (block != &block->getParent()->getEntryBlock());
4066   }
4067 
4068   /// Try to save the given value.
4069   static saved_type save(CodeGenFunction &CGF, llvm::Value *value) {
4070     if (!needsSaving(value)) return saved_type(value, false);
4071 
4072     // Otherwise, we need an alloca.
4073     auto align = CharUnits::fromQuantity(
4074               CGF.CGM.getDataLayout().getPrefTypeAlignment(value->getType()));
4075     Address alloca =
4076       CGF.CreateTempAlloca(value->getType(), align, "cond-cleanup.save");
4077     CGF.Builder.CreateStore(value, alloca);
4078 
4079     return saved_type(alloca.getPointer(), true);
4080   }
4081 
4082   static llvm::Value *restore(CodeGenFunction &CGF, saved_type value) {
4083     // If the value says it wasn't saved, trust that it's still dominating.
4084     if (!value.getInt()) return value.getPointer();
4085 
4086     // Otherwise, it should be an alloca instruction, as set up in save().
4087     auto alloca = cast<llvm::AllocaInst>(value.getPointer());
4088     return CGF.Builder.CreateAlignedLoad(alloca, alloca->getAlignment());
4089   }
4090 };
4091 
4092 /// A partial specialization of DominatingValue for llvm::Values that
4093 /// might be llvm::Instructions.
4094 template <class T> struct DominatingPointer<T,true> : DominatingLLVMValue {
4095   typedef T *type;
4096   static type restore(CodeGenFunction &CGF, saved_type value) {
4097     return static_cast<T*>(DominatingLLVMValue::restore(CGF, value));
4098   }
4099 };
4100 
4101 /// A specialization of DominatingValue for Address.
4102 template <> struct DominatingValue<Address> {
4103   typedef Address type;
4104 
4105   struct saved_type {
4106     DominatingLLVMValue::saved_type SavedValue;
4107     CharUnits Alignment;
4108   };
4109 
4110   static bool needsSaving(type value) {
4111     return DominatingLLVMValue::needsSaving(value.getPointer());
4112   }
4113   static saved_type save(CodeGenFunction &CGF, type value) {
4114     return { DominatingLLVMValue::save(CGF, value.getPointer()),
4115              value.getAlignment() };
4116   }
4117   static type restore(CodeGenFunction &CGF, saved_type value) {
4118     return Address(DominatingLLVMValue::restore(CGF, value.SavedValue),
4119                    value.Alignment);
4120   }
4121 };
4122 
4123 /// A specialization of DominatingValue for RValue.
4124 template <> struct DominatingValue<RValue> {
4125   typedef RValue type;
4126   class saved_type {
4127     enum Kind { ScalarLiteral, ScalarAddress, AggregateLiteral,
4128                 AggregateAddress, ComplexAddress };
4129 
4130     llvm::Value *Value;
4131     unsigned K : 3;
4132     unsigned Align : 29;
4133     saved_type(llvm::Value *v, Kind k, unsigned a = 0)
4134       : Value(v), K(k), Align(a) {}
4135 
4136   public:
4137     static bool needsSaving(RValue value);
4138     static saved_type save(CodeGenFunction &CGF, RValue value);
4139     RValue restore(CodeGenFunction &CGF);
4140 
4141     // implementations in CGCleanup.cpp
4142   };
4143 
4144   static bool needsSaving(type value) {
4145     return saved_type::needsSaving(value);
4146   }
4147   static saved_type save(CodeGenFunction &CGF, type value) {
4148     return saved_type::save(CGF, value);
4149   }
4150   static type restore(CodeGenFunction &CGF, saved_type value) {
4151     return value.restore(CGF);
4152   }
4153 };
4154 
4155 }  // end namespace CodeGen
4156 }  // end namespace clang
4157 
4158 #endif
4159