1 //===-- CodeGenFunction.h - Per-Function state for LLVM CodeGen -*- C++ -*-===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This is the internal per-function state used for llvm translation. 10 // 11 //===----------------------------------------------------------------------===// 12 13 #ifndef LLVM_CLANG_LIB_CODEGEN_CODEGENFUNCTION_H 14 #define LLVM_CLANG_LIB_CODEGEN_CODEGENFUNCTION_H 15 16 #include "CGBuilder.h" 17 #include "CGDebugInfo.h" 18 #include "CGLoopInfo.h" 19 #include "CGValue.h" 20 #include "CodeGenModule.h" 21 #include "CodeGenPGO.h" 22 #include "EHScopeStack.h" 23 #include "VarBypassDetector.h" 24 #include "clang/AST/CharUnits.h" 25 #include "clang/AST/CurrentSourceLocExprScope.h" 26 #include "clang/AST/ExprCXX.h" 27 #include "clang/AST/ExprObjC.h" 28 #include "clang/AST/ExprOpenMP.h" 29 #include "clang/AST/StmtOpenMP.h" 30 #include "clang/AST/Type.h" 31 #include "clang/Basic/ABI.h" 32 #include "clang/Basic/CapturedStmt.h" 33 #include "clang/Basic/CodeGenOptions.h" 34 #include "clang/Basic/OpenMPKinds.h" 35 #include "clang/Basic/TargetInfo.h" 36 #include "llvm/ADT/ArrayRef.h" 37 #include "llvm/ADT/DenseMap.h" 38 #include "llvm/ADT/MapVector.h" 39 #include "llvm/ADT/SmallVector.h" 40 #include "llvm/Frontend/OpenMP/OMPIRBuilder.h" 41 #include "llvm/IR/ValueHandle.h" 42 #include "llvm/Support/Debug.h" 43 #include "llvm/Transforms/Utils/SanitizerStats.h" 44 45 namespace llvm { 46 class BasicBlock; 47 class LLVMContext; 48 class MDNode; 49 class Module; 50 class SwitchInst; 51 class Twine; 52 class Value; 53 } 54 55 namespace clang { 56 class ASTContext; 57 class BlockDecl; 58 class CXXDestructorDecl; 59 class CXXForRangeStmt; 60 class CXXTryStmt; 61 class Decl; 62 class LabelDecl; 63 class EnumConstantDecl; 64 class FunctionDecl; 65 class FunctionProtoType; 66 class LabelStmt; 67 class ObjCContainerDecl; 68 class ObjCInterfaceDecl; 69 class ObjCIvarDecl; 70 class ObjCMethodDecl; 71 class ObjCImplementationDecl; 72 class ObjCPropertyImplDecl; 73 class TargetInfo; 74 class VarDecl; 75 class ObjCForCollectionStmt; 76 class ObjCAtTryStmt; 77 class ObjCAtThrowStmt; 78 class ObjCAtSynchronizedStmt; 79 class ObjCAutoreleasePoolStmt; 80 class OMPUseDevicePtrClause; 81 class OMPUseDeviceAddrClause; 82 class ReturnsNonNullAttr; 83 class SVETypeFlags; 84 class OMPExecutableDirective; 85 86 namespace analyze_os_log { 87 class OSLogBufferLayout; 88 } 89 90 namespace CodeGen { 91 class CodeGenTypes; 92 class CGCallee; 93 class CGFunctionInfo; 94 class CGRecordLayout; 95 class CGBlockInfo; 96 class CGCXXABI; 97 class BlockByrefHelpers; 98 class BlockByrefInfo; 99 class BlockFlags; 100 class BlockFieldFlags; 101 class RegionCodeGenTy; 102 class TargetCodeGenInfo; 103 struct OMPTaskDataTy; 104 struct CGCoroData; 105 106 /// The kind of evaluation to perform on values of a particular 107 /// type. Basically, is the code in CGExprScalar, CGExprComplex, or 108 /// CGExprAgg? 109 /// 110 /// TODO: should vectors maybe be split out into their own thing? 111 enum TypeEvaluationKind { 112 TEK_Scalar, 113 TEK_Complex, 114 TEK_Aggregate 115 }; 116 117 #define LIST_SANITIZER_CHECKS \ 118 SANITIZER_CHECK(AddOverflow, add_overflow, 0) \ 119 SANITIZER_CHECK(BuiltinUnreachable, builtin_unreachable, 0) \ 120 SANITIZER_CHECK(CFICheckFail, cfi_check_fail, 0) \ 121 SANITIZER_CHECK(DivremOverflow, divrem_overflow, 0) \ 122 SANITIZER_CHECK(DynamicTypeCacheMiss, dynamic_type_cache_miss, 0) \ 123 SANITIZER_CHECK(FloatCastOverflow, float_cast_overflow, 0) \ 124 SANITIZER_CHECK(FunctionTypeMismatch, function_type_mismatch, 1) \ 125 SANITIZER_CHECK(ImplicitConversion, implicit_conversion, 0) \ 126 SANITIZER_CHECK(InvalidBuiltin, invalid_builtin, 0) \ 127 SANITIZER_CHECK(InvalidObjCCast, invalid_objc_cast, 0) \ 128 SANITIZER_CHECK(LoadInvalidValue, load_invalid_value, 0) \ 129 SANITIZER_CHECK(MissingReturn, missing_return, 0) \ 130 SANITIZER_CHECK(MulOverflow, mul_overflow, 0) \ 131 SANITIZER_CHECK(NegateOverflow, negate_overflow, 0) \ 132 SANITIZER_CHECK(NullabilityArg, nullability_arg, 0) \ 133 SANITIZER_CHECK(NullabilityReturn, nullability_return, 1) \ 134 SANITIZER_CHECK(NonnullArg, nonnull_arg, 0) \ 135 SANITIZER_CHECK(NonnullReturn, nonnull_return, 1) \ 136 SANITIZER_CHECK(OutOfBounds, out_of_bounds, 0) \ 137 SANITIZER_CHECK(PointerOverflow, pointer_overflow, 0) \ 138 SANITIZER_CHECK(ShiftOutOfBounds, shift_out_of_bounds, 0) \ 139 SANITIZER_CHECK(SubOverflow, sub_overflow, 0) \ 140 SANITIZER_CHECK(TypeMismatch, type_mismatch, 1) \ 141 SANITIZER_CHECK(AlignmentAssumption, alignment_assumption, 0) \ 142 SANITIZER_CHECK(VLABoundNotPositive, vla_bound_not_positive, 0) 143 144 enum SanitizerHandler { 145 #define SANITIZER_CHECK(Enum, Name, Version) Enum, 146 LIST_SANITIZER_CHECKS 147 #undef SANITIZER_CHECK 148 }; 149 150 /// Helper class with most of the code for saving a value for a 151 /// conditional expression cleanup. 152 struct DominatingLLVMValue { 153 typedef llvm::PointerIntPair<llvm::Value*, 1, bool> saved_type; 154 155 /// Answer whether the given value needs extra work to be saved. 156 static bool needsSaving(llvm::Value *value) { 157 // If it's not an instruction, we don't need to save. 158 if (!isa<llvm::Instruction>(value)) return false; 159 160 // If it's an instruction in the entry block, we don't need to save. 161 llvm::BasicBlock *block = cast<llvm::Instruction>(value)->getParent(); 162 return (block != &block->getParent()->getEntryBlock()); 163 } 164 165 static saved_type save(CodeGenFunction &CGF, llvm::Value *value); 166 static llvm::Value *restore(CodeGenFunction &CGF, saved_type value); 167 }; 168 169 /// A partial specialization of DominatingValue for llvm::Values that 170 /// might be llvm::Instructions. 171 template <class T> struct DominatingPointer<T,true> : DominatingLLVMValue { 172 typedef T *type; 173 static type restore(CodeGenFunction &CGF, saved_type value) { 174 return static_cast<T*>(DominatingLLVMValue::restore(CGF, value)); 175 } 176 }; 177 178 /// A specialization of DominatingValue for Address. 179 template <> struct DominatingValue<Address> { 180 typedef Address type; 181 182 struct saved_type { 183 DominatingLLVMValue::saved_type SavedValue; 184 CharUnits Alignment; 185 }; 186 187 static bool needsSaving(type value) { 188 return DominatingLLVMValue::needsSaving(value.getPointer()); 189 } 190 static saved_type save(CodeGenFunction &CGF, type value) { 191 return { DominatingLLVMValue::save(CGF, value.getPointer()), 192 value.getAlignment() }; 193 } 194 static type restore(CodeGenFunction &CGF, saved_type value) { 195 return Address(DominatingLLVMValue::restore(CGF, value.SavedValue), 196 value.Alignment); 197 } 198 }; 199 200 /// A specialization of DominatingValue for RValue. 201 template <> struct DominatingValue<RValue> { 202 typedef RValue type; 203 class saved_type { 204 enum Kind { ScalarLiteral, ScalarAddress, AggregateLiteral, 205 AggregateAddress, ComplexAddress }; 206 207 llvm::Value *Value; 208 unsigned K : 3; 209 unsigned Align : 29; 210 saved_type(llvm::Value *v, Kind k, unsigned a = 0) 211 : Value(v), K(k), Align(a) {} 212 213 public: 214 static bool needsSaving(RValue value); 215 static saved_type save(CodeGenFunction &CGF, RValue value); 216 RValue restore(CodeGenFunction &CGF); 217 218 // implementations in CGCleanup.cpp 219 }; 220 221 static bool needsSaving(type value) { 222 return saved_type::needsSaving(value); 223 } 224 static saved_type save(CodeGenFunction &CGF, type value) { 225 return saved_type::save(CGF, value); 226 } 227 static type restore(CodeGenFunction &CGF, saved_type value) { 228 return value.restore(CGF); 229 } 230 }; 231 232 /// CodeGenFunction - This class organizes the per-function state that is used 233 /// while generating LLVM code. 234 class CodeGenFunction : public CodeGenTypeCache { 235 CodeGenFunction(const CodeGenFunction &) = delete; 236 void operator=(const CodeGenFunction &) = delete; 237 238 friend class CGCXXABI; 239 public: 240 /// A jump destination is an abstract label, branching to which may 241 /// require a jump out through normal cleanups. 242 struct JumpDest { 243 JumpDest() : Block(nullptr), ScopeDepth(), Index(0) {} 244 JumpDest(llvm::BasicBlock *Block, 245 EHScopeStack::stable_iterator Depth, 246 unsigned Index) 247 : Block(Block), ScopeDepth(Depth), Index(Index) {} 248 249 bool isValid() const { return Block != nullptr; } 250 llvm::BasicBlock *getBlock() const { return Block; } 251 EHScopeStack::stable_iterator getScopeDepth() const { return ScopeDepth; } 252 unsigned getDestIndex() const { return Index; } 253 254 // This should be used cautiously. 255 void setScopeDepth(EHScopeStack::stable_iterator depth) { 256 ScopeDepth = depth; 257 } 258 259 private: 260 llvm::BasicBlock *Block; 261 EHScopeStack::stable_iterator ScopeDepth; 262 unsigned Index; 263 }; 264 265 CodeGenModule &CGM; // Per-module state. 266 const TargetInfo &Target; 267 268 // For EH/SEH outlined funclets, this field points to parent's CGF 269 CodeGenFunction *ParentCGF = nullptr; 270 271 typedef std::pair<llvm::Value *, llvm::Value *> ComplexPairTy; 272 LoopInfoStack LoopStack; 273 CGBuilderTy Builder; 274 275 // Stores variables for which we can't generate correct lifetime markers 276 // because of jumps. 277 VarBypassDetector Bypasses; 278 279 // CodeGen lambda for loops and support for ordered clause 280 typedef llvm::function_ref<void(CodeGenFunction &, const OMPLoopDirective &, 281 JumpDest)> 282 CodeGenLoopTy; 283 typedef llvm::function_ref<void(CodeGenFunction &, SourceLocation, 284 const unsigned, const bool)> 285 CodeGenOrderedTy; 286 287 // Codegen lambda for loop bounds in worksharing loop constructs 288 typedef llvm::function_ref<std::pair<LValue, LValue>( 289 CodeGenFunction &, const OMPExecutableDirective &S)> 290 CodeGenLoopBoundsTy; 291 292 // Codegen lambda for loop bounds in dispatch-based loop implementation 293 typedef llvm::function_ref<std::pair<llvm::Value *, llvm::Value *>( 294 CodeGenFunction &, const OMPExecutableDirective &S, Address LB, 295 Address UB)> 296 CodeGenDispatchBoundsTy; 297 298 /// CGBuilder insert helper. This function is called after an 299 /// instruction is created using Builder. 300 void InsertHelper(llvm::Instruction *I, const llvm::Twine &Name, 301 llvm::BasicBlock *BB, 302 llvm::BasicBlock::iterator InsertPt) const; 303 304 /// CurFuncDecl - Holds the Decl for the current outermost 305 /// non-closure context. 306 const Decl *CurFuncDecl; 307 /// CurCodeDecl - This is the inner-most code context, which includes blocks. 308 const Decl *CurCodeDecl; 309 const CGFunctionInfo *CurFnInfo; 310 QualType FnRetTy; 311 llvm::Function *CurFn = nullptr; 312 313 // Holds coroutine data if the current function is a coroutine. We use a 314 // wrapper to manage its lifetime, so that we don't have to define CGCoroData 315 // in this header. 316 struct CGCoroInfo { 317 std::unique_ptr<CGCoroData> Data; 318 CGCoroInfo(); 319 ~CGCoroInfo(); 320 }; 321 CGCoroInfo CurCoro; 322 323 bool isCoroutine() const { 324 return CurCoro.Data != nullptr; 325 } 326 327 /// CurGD - The GlobalDecl for the current function being compiled. 328 GlobalDecl CurGD; 329 330 /// PrologueCleanupDepth - The cleanup depth enclosing all the 331 /// cleanups associated with the parameters. 332 EHScopeStack::stable_iterator PrologueCleanupDepth; 333 334 /// ReturnBlock - Unified return block. 335 JumpDest ReturnBlock; 336 337 /// ReturnValue - The temporary alloca to hold the return 338 /// value. This is invalid iff the function has no return value. 339 Address ReturnValue = Address::invalid(); 340 341 /// ReturnValuePointer - The temporary alloca to hold a pointer to sret. 342 /// This is invalid if sret is not in use. 343 Address ReturnValuePointer = Address::invalid(); 344 345 /// If a return statement is being visited, this holds the return statment's 346 /// result expression. 347 const Expr *RetExpr = nullptr; 348 349 /// Return true if a label was seen in the current scope. 350 bool hasLabelBeenSeenInCurrentScope() const { 351 if (CurLexicalScope) 352 return CurLexicalScope->hasLabels(); 353 return !LabelMap.empty(); 354 } 355 356 /// AllocaInsertPoint - This is an instruction in the entry block before which 357 /// we prefer to insert allocas. 358 llvm::AssertingVH<llvm::Instruction> AllocaInsertPt; 359 360 /// API for captured statement code generation. 361 class CGCapturedStmtInfo { 362 public: 363 explicit CGCapturedStmtInfo(CapturedRegionKind K = CR_Default) 364 : Kind(K), ThisValue(nullptr), CXXThisFieldDecl(nullptr) {} 365 explicit CGCapturedStmtInfo(const CapturedStmt &S, 366 CapturedRegionKind K = CR_Default) 367 : Kind(K), ThisValue(nullptr), CXXThisFieldDecl(nullptr) { 368 369 RecordDecl::field_iterator Field = 370 S.getCapturedRecordDecl()->field_begin(); 371 for (CapturedStmt::const_capture_iterator I = S.capture_begin(), 372 E = S.capture_end(); 373 I != E; ++I, ++Field) { 374 if (I->capturesThis()) 375 CXXThisFieldDecl = *Field; 376 else if (I->capturesVariable()) 377 CaptureFields[I->getCapturedVar()->getCanonicalDecl()] = *Field; 378 else if (I->capturesVariableByCopy()) 379 CaptureFields[I->getCapturedVar()->getCanonicalDecl()] = *Field; 380 } 381 } 382 383 virtual ~CGCapturedStmtInfo(); 384 385 CapturedRegionKind getKind() const { return Kind; } 386 387 virtual void setContextValue(llvm::Value *V) { ThisValue = V; } 388 // Retrieve the value of the context parameter. 389 virtual llvm::Value *getContextValue() const { return ThisValue; } 390 391 /// Lookup the captured field decl for a variable. 392 virtual const FieldDecl *lookup(const VarDecl *VD) const { 393 return CaptureFields.lookup(VD->getCanonicalDecl()); 394 } 395 396 bool isCXXThisExprCaptured() const { return getThisFieldDecl() != nullptr; } 397 virtual FieldDecl *getThisFieldDecl() const { return CXXThisFieldDecl; } 398 399 static bool classof(const CGCapturedStmtInfo *) { 400 return true; 401 } 402 403 /// Emit the captured statement body. 404 virtual void EmitBody(CodeGenFunction &CGF, const Stmt *S) { 405 CGF.incrementProfileCounter(S); 406 CGF.EmitStmt(S); 407 } 408 409 /// Get the name of the capture helper. 410 virtual StringRef getHelperName() const { return "__captured_stmt"; } 411 412 private: 413 /// The kind of captured statement being generated. 414 CapturedRegionKind Kind; 415 416 /// Keep the map between VarDecl and FieldDecl. 417 llvm::SmallDenseMap<const VarDecl *, FieldDecl *> CaptureFields; 418 419 /// The base address of the captured record, passed in as the first 420 /// argument of the parallel region function. 421 llvm::Value *ThisValue; 422 423 /// Captured 'this' type. 424 FieldDecl *CXXThisFieldDecl; 425 }; 426 CGCapturedStmtInfo *CapturedStmtInfo = nullptr; 427 428 /// RAII for correct setting/restoring of CapturedStmtInfo. 429 class CGCapturedStmtRAII { 430 private: 431 CodeGenFunction &CGF; 432 CGCapturedStmtInfo *PrevCapturedStmtInfo; 433 public: 434 CGCapturedStmtRAII(CodeGenFunction &CGF, 435 CGCapturedStmtInfo *NewCapturedStmtInfo) 436 : CGF(CGF), PrevCapturedStmtInfo(CGF.CapturedStmtInfo) { 437 CGF.CapturedStmtInfo = NewCapturedStmtInfo; 438 } 439 ~CGCapturedStmtRAII() { CGF.CapturedStmtInfo = PrevCapturedStmtInfo; } 440 }; 441 442 /// An abstract representation of regular/ObjC call/message targets. 443 class AbstractCallee { 444 /// The function declaration of the callee. 445 const Decl *CalleeDecl; 446 447 public: 448 AbstractCallee() : CalleeDecl(nullptr) {} 449 AbstractCallee(const FunctionDecl *FD) : CalleeDecl(FD) {} 450 AbstractCallee(const ObjCMethodDecl *OMD) : CalleeDecl(OMD) {} 451 bool hasFunctionDecl() const { 452 return dyn_cast_or_null<FunctionDecl>(CalleeDecl); 453 } 454 const Decl *getDecl() const { return CalleeDecl; } 455 unsigned getNumParams() const { 456 if (const auto *FD = dyn_cast<FunctionDecl>(CalleeDecl)) 457 return FD->getNumParams(); 458 return cast<ObjCMethodDecl>(CalleeDecl)->param_size(); 459 } 460 const ParmVarDecl *getParamDecl(unsigned I) const { 461 if (const auto *FD = dyn_cast<FunctionDecl>(CalleeDecl)) 462 return FD->getParamDecl(I); 463 return *(cast<ObjCMethodDecl>(CalleeDecl)->param_begin() + I); 464 } 465 }; 466 467 /// Sanitizers enabled for this function. 468 SanitizerSet SanOpts; 469 470 /// True if CodeGen currently emits code implementing sanitizer checks. 471 bool IsSanitizerScope = false; 472 473 /// RAII object to set/unset CodeGenFunction::IsSanitizerScope. 474 class SanitizerScope { 475 CodeGenFunction *CGF; 476 public: 477 SanitizerScope(CodeGenFunction *CGF); 478 ~SanitizerScope(); 479 }; 480 481 /// In C++, whether we are code generating a thunk. This controls whether we 482 /// should emit cleanups. 483 bool CurFuncIsThunk = false; 484 485 /// In ARC, whether we should autorelease the return value. 486 bool AutoreleaseResult = false; 487 488 /// Whether we processed a Microsoft-style asm block during CodeGen. These can 489 /// potentially set the return value. 490 bool SawAsmBlock = false; 491 492 const NamedDecl *CurSEHParent = nullptr; 493 494 /// True if the current function is an outlined SEH helper. This can be a 495 /// finally block or filter expression. 496 bool IsOutlinedSEHHelper = false; 497 498 /// True if CodeGen currently emits code inside presereved access index 499 /// region. 500 bool IsInPreservedAIRegion = false; 501 502 /// True if the current statement has nomerge attribute. 503 bool InNoMergeAttributedStmt = false; 504 505 /// True if the current function should be marked mustprogress. 506 bool FnIsMustProgress = false; 507 508 /// True if the C++ Standard Requires Progress. 509 bool CPlusPlusWithProgress() { 510 return getLangOpts().CPlusPlus11 || getLangOpts().CPlusPlus14 || 511 getLangOpts().CPlusPlus17 || getLangOpts().CPlusPlus20; 512 } 513 514 /// True if the C Standard Requires Progress. 515 bool CWithProgress() { 516 return getLangOpts().C11 || getLangOpts().C17 || getLangOpts().C2x; 517 } 518 519 /// True if the language standard requires progress in functions or 520 /// in infinite loops with non-constant conditionals. 521 bool LanguageRequiresProgress() { 522 return CWithProgress() || CPlusPlusWithProgress(); 523 } 524 525 const CodeGen::CGBlockInfo *BlockInfo = nullptr; 526 llvm::Value *BlockPointer = nullptr; 527 528 llvm::DenseMap<const VarDecl *, FieldDecl *> LambdaCaptureFields; 529 FieldDecl *LambdaThisCaptureField = nullptr; 530 531 /// A mapping from NRVO variables to the flags used to indicate 532 /// when the NRVO has been applied to this variable. 533 llvm::DenseMap<const VarDecl *, llvm::Value *> NRVOFlags; 534 535 EHScopeStack EHStack; 536 llvm::SmallVector<char, 256> LifetimeExtendedCleanupStack; 537 llvm::SmallVector<const JumpDest *, 2> SEHTryEpilogueStack; 538 539 llvm::Instruction *CurrentFuncletPad = nullptr; 540 541 class CallLifetimeEnd final : public EHScopeStack::Cleanup { 542 llvm::Value *Addr; 543 llvm::Value *Size; 544 545 public: 546 CallLifetimeEnd(Address addr, llvm::Value *size) 547 : Addr(addr.getPointer()), Size(size) {} 548 549 void Emit(CodeGenFunction &CGF, Flags flags) override { 550 CGF.EmitLifetimeEnd(Size, Addr); 551 } 552 }; 553 554 /// Header for data within LifetimeExtendedCleanupStack. 555 struct LifetimeExtendedCleanupHeader { 556 /// The size of the following cleanup object. 557 unsigned Size; 558 /// The kind of cleanup to push: a value from the CleanupKind enumeration. 559 unsigned Kind : 31; 560 /// Whether this is a conditional cleanup. 561 unsigned IsConditional : 1; 562 563 size_t getSize() const { return Size; } 564 CleanupKind getKind() const { return (CleanupKind)Kind; } 565 bool isConditional() const { return IsConditional; } 566 }; 567 568 /// i32s containing the indexes of the cleanup destinations. 569 Address NormalCleanupDest = Address::invalid(); 570 571 unsigned NextCleanupDestIndex = 1; 572 573 /// EHResumeBlock - Unified block containing a call to llvm.eh.resume. 574 llvm::BasicBlock *EHResumeBlock = nullptr; 575 576 /// The exception slot. All landing pads write the current exception pointer 577 /// into this alloca. 578 llvm::Value *ExceptionSlot = nullptr; 579 580 /// The selector slot. Under the MandatoryCleanup model, all landing pads 581 /// write the current selector value into this alloca. 582 llvm::AllocaInst *EHSelectorSlot = nullptr; 583 584 /// A stack of exception code slots. Entering an __except block pushes a slot 585 /// on the stack and leaving pops one. The __exception_code() intrinsic loads 586 /// a value from the top of the stack. 587 SmallVector<Address, 1> SEHCodeSlotStack; 588 589 /// Value returned by __exception_info intrinsic. 590 llvm::Value *SEHInfo = nullptr; 591 592 /// Emits a landing pad for the current EH stack. 593 llvm::BasicBlock *EmitLandingPad(); 594 595 llvm::BasicBlock *getInvokeDestImpl(); 596 597 /// Parent loop-based directive for scan directive. 598 const OMPExecutableDirective *OMPParentLoopDirectiveForScan = nullptr; 599 llvm::BasicBlock *OMPBeforeScanBlock = nullptr; 600 llvm::BasicBlock *OMPAfterScanBlock = nullptr; 601 llvm::BasicBlock *OMPScanExitBlock = nullptr; 602 llvm::BasicBlock *OMPScanDispatch = nullptr; 603 bool OMPFirstScanLoop = false; 604 605 /// Manages parent directive for scan directives. 606 class ParentLoopDirectiveForScanRegion { 607 CodeGenFunction &CGF; 608 const OMPExecutableDirective *ParentLoopDirectiveForScan; 609 610 public: 611 ParentLoopDirectiveForScanRegion( 612 CodeGenFunction &CGF, 613 const OMPExecutableDirective &ParentLoopDirectiveForScan) 614 : CGF(CGF), 615 ParentLoopDirectiveForScan(CGF.OMPParentLoopDirectiveForScan) { 616 CGF.OMPParentLoopDirectiveForScan = &ParentLoopDirectiveForScan; 617 } 618 ~ParentLoopDirectiveForScanRegion() { 619 CGF.OMPParentLoopDirectiveForScan = ParentLoopDirectiveForScan; 620 } 621 }; 622 623 template <class T> 624 typename DominatingValue<T>::saved_type saveValueInCond(T value) { 625 return DominatingValue<T>::save(*this, value); 626 } 627 628 class CGFPOptionsRAII { 629 public: 630 CGFPOptionsRAII(CodeGenFunction &CGF, FPOptions FPFeatures); 631 ~CGFPOptionsRAII(); 632 633 private: 634 CodeGenFunction &CGF; 635 FPOptions OldFPFeatures; 636 Optional<CGBuilderTy::FastMathFlagGuard> FMFGuard; 637 }; 638 FPOptions CurFPFeatures; 639 640 public: 641 /// ObjCEHValueStack - Stack of Objective-C exception values, used for 642 /// rethrows. 643 SmallVector<llvm::Value*, 8> ObjCEHValueStack; 644 645 /// A class controlling the emission of a finally block. 646 class FinallyInfo { 647 /// Where the catchall's edge through the cleanup should go. 648 JumpDest RethrowDest; 649 650 /// A function to call to enter the catch. 651 llvm::FunctionCallee BeginCatchFn; 652 653 /// An i1 variable indicating whether or not the @finally is 654 /// running for an exception. 655 llvm::AllocaInst *ForEHVar; 656 657 /// An i8* variable into which the exception pointer to rethrow 658 /// has been saved. 659 llvm::AllocaInst *SavedExnVar; 660 661 public: 662 void enter(CodeGenFunction &CGF, const Stmt *Finally, 663 llvm::FunctionCallee beginCatchFn, 664 llvm::FunctionCallee endCatchFn, llvm::FunctionCallee rethrowFn); 665 void exit(CodeGenFunction &CGF); 666 }; 667 668 /// Returns true inside SEH __try blocks. 669 bool isSEHTryScope() const { return !SEHTryEpilogueStack.empty(); } 670 671 /// Returns true while emitting a cleanuppad. 672 bool isCleanupPadScope() const { 673 return CurrentFuncletPad && isa<llvm::CleanupPadInst>(CurrentFuncletPad); 674 } 675 676 /// pushFullExprCleanup - Push a cleanup to be run at the end of the 677 /// current full-expression. Safe against the possibility that 678 /// we're currently inside a conditionally-evaluated expression. 679 template <class T, class... As> 680 void pushFullExprCleanup(CleanupKind kind, As... A) { 681 // If we're not in a conditional branch, or if none of the 682 // arguments requires saving, then use the unconditional cleanup. 683 if (!isInConditionalBranch()) 684 return EHStack.pushCleanup<T>(kind, A...); 685 686 // Stash values in a tuple so we can guarantee the order of saves. 687 typedef std::tuple<typename DominatingValue<As>::saved_type...> SavedTuple; 688 SavedTuple Saved{saveValueInCond(A)...}; 689 690 typedef EHScopeStack::ConditionalCleanup<T, As...> CleanupType; 691 EHStack.pushCleanupTuple<CleanupType>(kind, Saved); 692 initFullExprCleanup(); 693 } 694 695 /// Queue a cleanup to be pushed after finishing the current full-expression, 696 /// potentially with an active flag. 697 template <class T, class... As> 698 void pushCleanupAfterFullExpr(CleanupKind Kind, As... A) { 699 if (!isInConditionalBranch()) 700 return pushCleanupAfterFullExprWithActiveFlag<T>(Kind, Address::invalid(), 701 A...); 702 703 Address ActiveFlag = createCleanupActiveFlag(); 704 assert(!DominatingValue<Address>::needsSaving(ActiveFlag) && 705 "cleanup active flag should never need saving"); 706 707 typedef std::tuple<typename DominatingValue<As>::saved_type...> SavedTuple; 708 SavedTuple Saved{saveValueInCond(A)...}; 709 710 typedef EHScopeStack::ConditionalCleanup<T, As...> CleanupType; 711 pushCleanupAfterFullExprWithActiveFlag<CleanupType>(Kind, ActiveFlag, Saved); 712 } 713 714 template <class T, class... As> 715 void pushCleanupAfterFullExprWithActiveFlag(CleanupKind Kind, 716 Address ActiveFlag, As... A) { 717 LifetimeExtendedCleanupHeader Header = {sizeof(T), Kind, 718 ActiveFlag.isValid()}; 719 720 size_t OldSize = LifetimeExtendedCleanupStack.size(); 721 LifetimeExtendedCleanupStack.resize( 722 LifetimeExtendedCleanupStack.size() + sizeof(Header) + Header.Size + 723 (Header.IsConditional ? sizeof(ActiveFlag) : 0)); 724 725 static_assert(sizeof(Header) % alignof(T) == 0, 726 "Cleanup will be allocated on misaligned address"); 727 char *Buffer = &LifetimeExtendedCleanupStack[OldSize]; 728 new (Buffer) LifetimeExtendedCleanupHeader(Header); 729 new (Buffer + sizeof(Header)) T(A...); 730 if (Header.IsConditional) 731 new (Buffer + sizeof(Header) + sizeof(T)) Address(ActiveFlag); 732 } 733 734 /// Set up the last cleanup that was pushed as a conditional 735 /// full-expression cleanup. 736 void initFullExprCleanup() { 737 initFullExprCleanupWithFlag(createCleanupActiveFlag()); 738 } 739 740 void initFullExprCleanupWithFlag(Address ActiveFlag); 741 Address createCleanupActiveFlag(); 742 743 /// PushDestructorCleanup - Push a cleanup to call the 744 /// complete-object destructor of an object of the given type at the 745 /// given address. Does nothing if T is not a C++ class type with a 746 /// non-trivial destructor. 747 void PushDestructorCleanup(QualType T, Address Addr); 748 749 /// PushDestructorCleanup - Push a cleanup to call the 750 /// complete-object variant of the given destructor on the object at 751 /// the given address. 752 void PushDestructorCleanup(const CXXDestructorDecl *Dtor, QualType T, 753 Address Addr); 754 755 /// PopCleanupBlock - Will pop the cleanup entry on the stack and 756 /// process all branch fixups. 757 void PopCleanupBlock(bool FallThroughIsBranchThrough = false); 758 759 /// DeactivateCleanupBlock - Deactivates the given cleanup block. 760 /// The block cannot be reactivated. Pops it if it's the top of the 761 /// stack. 762 /// 763 /// \param DominatingIP - An instruction which is known to 764 /// dominate the current IP (if set) and which lies along 765 /// all paths of execution between the current IP and the 766 /// the point at which the cleanup comes into scope. 767 void DeactivateCleanupBlock(EHScopeStack::stable_iterator Cleanup, 768 llvm::Instruction *DominatingIP); 769 770 /// ActivateCleanupBlock - Activates an initially-inactive cleanup. 771 /// Cannot be used to resurrect a deactivated cleanup. 772 /// 773 /// \param DominatingIP - An instruction which is known to 774 /// dominate the current IP (if set) and which lies along 775 /// all paths of execution between the current IP and the 776 /// the point at which the cleanup comes into scope. 777 void ActivateCleanupBlock(EHScopeStack::stable_iterator Cleanup, 778 llvm::Instruction *DominatingIP); 779 780 /// Enters a new scope for capturing cleanups, all of which 781 /// will be executed once the scope is exited. 782 class RunCleanupsScope { 783 EHScopeStack::stable_iterator CleanupStackDepth, OldCleanupScopeDepth; 784 size_t LifetimeExtendedCleanupStackSize; 785 bool OldDidCallStackSave; 786 protected: 787 bool PerformCleanup; 788 private: 789 790 RunCleanupsScope(const RunCleanupsScope &) = delete; 791 void operator=(const RunCleanupsScope &) = delete; 792 793 protected: 794 CodeGenFunction& CGF; 795 796 public: 797 /// Enter a new cleanup scope. 798 explicit RunCleanupsScope(CodeGenFunction &CGF) 799 : PerformCleanup(true), CGF(CGF) 800 { 801 CleanupStackDepth = CGF.EHStack.stable_begin(); 802 LifetimeExtendedCleanupStackSize = 803 CGF.LifetimeExtendedCleanupStack.size(); 804 OldDidCallStackSave = CGF.DidCallStackSave; 805 CGF.DidCallStackSave = false; 806 OldCleanupScopeDepth = CGF.CurrentCleanupScopeDepth; 807 CGF.CurrentCleanupScopeDepth = CleanupStackDepth; 808 } 809 810 /// Exit this cleanup scope, emitting any accumulated cleanups. 811 ~RunCleanupsScope() { 812 if (PerformCleanup) 813 ForceCleanup(); 814 } 815 816 /// Determine whether this scope requires any cleanups. 817 bool requiresCleanups() const { 818 return CGF.EHStack.stable_begin() != CleanupStackDepth; 819 } 820 821 /// Force the emission of cleanups now, instead of waiting 822 /// until this object is destroyed. 823 /// \param ValuesToReload - A list of values that need to be available at 824 /// the insertion point after cleanup emission. If cleanup emission created 825 /// a shared cleanup block, these value pointers will be rewritten. 826 /// Otherwise, they not will be modified. 827 void ForceCleanup(std::initializer_list<llvm::Value**> ValuesToReload = {}) { 828 assert(PerformCleanup && "Already forced cleanup"); 829 CGF.DidCallStackSave = OldDidCallStackSave; 830 CGF.PopCleanupBlocks(CleanupStackDepth, LifetimeExtendedCleanupStackSize, 831 ValuesToReload); 832 PerformCleanup = false; 833 CGF.CurrentCleanupScopeDepth = OldCleanupScopeDepth; 834 } 835 }; 836 837 // Cleanup stack depth of the RunCleanupsScope that was pushed most recently. 838 EHScopeStack::stable_iterator CurrentCleanupScopeDepth = 839 EHScopeStack::stable_end(); 840 841 class LexicalScope : public RunCleanupsScope { 842 SourceRange Range; 843 SmallVector<const LabelDecl*, 4> Labels; 844 LexicalScope *ParentScope; 845 846 LexicalScope(const LexicalScope &) = delete; 847 void operator=(const LexicalScope &) = delete; 848 849 public: 850 /// Enter a new cleanup scope. 851 explicit LexicalScope(CodeGenFunction &CGF, SourceRange Range) 852 : RunCleanupsScope(CGF), Range(Range), ParentScope(CGF.CurLexicalScope) { 853 CGF.CurLexicalScope = this; 854 if (CGDebugInfo *DI = CGF.getDebugInfo()) 855 DI->EmitLexicalBlockStart(CGF.Builder, Range.getBegin()); 856 } 857 858 void addLabel(const LabelDecl *label) { 859 assert(PerformCleanup && "adding label to dead scope?"); 860 Labels.push_back(label); 861 } 862 863 /// Exit this cleanup scope, emitting any accumulated 864 /// cleanups. 865 ~LexicalScope() { 866 if (CGDebugInfo *DI = CGF.getDebugInfo()) 867 DI->EmitLexicalBlockEnd(CGF.Builder, Range.getEnd()); 868 869 // If we should perform a cleanup, force them now. Note that 870 // this ends the cleanup scope before rescoping any labels. 871 if (PerformCleanup) { 872 ApplyDebugLocation DL(CGF, Range.getEnd()); 873 ForceCleanup(); 874 } 875 } 876 877 /// Force the emission of cleanups now, instead of waiting 878 /// until this object is destroyed. 879 void ForceCleanup() { 880 CGF.CurLexicalScope = ParentScope; 881 RunCleanupsScope::ForceCleanup(); 882 883 if (!Labels.empty()) 884 rescopeLabels(); 885 } 886 887 bool hasLabels() const { 888 return !Labels.empty(); 889 } 890 891 void rescopeLabels(); 892 }; 893 894 typedef llvm::DenseMap<const Decl *, Address> DeclMapTy; 895 896 /// The class used to assign some variables some temporarily addresses. 897 class OMPMapVars { 898 DeclMapTy SavedLocals; 899 DeclMapTy SavedTempAddresses; 900 OMPMapVars(const OMPMapVars &) = delete; 901 void operator=(const OMPMapVars &) = delete; 902 903 public: 904 explicit OMPMapVars() = default; 905 ~OMPMapVars() { 906 assert(SavedLocals.empty() && "Did not restored original addresses."); 907 }; 908 909 /// Sets the address of the variable \p LocalVD to be \p TempAddr in 910 /// function \p CGF. 911 /// \return true if at least one variable was set already, false otherwise. 912 bool setVarAddr(CodeGenFunction &CGF, const VarDecl *LocalVD, 913 Address TempAddr) { 914 LocalVD = LocalVD->getCanonicalDecl(); 915 // Only save it once. 916 if (SavedLocals.count(LocalVD)) return false; 917 918 // Copy the existing local entry to SavedLocals. 919 auto it = CGF.LocalDeclMap.find(LocalVD); 920 if (it != CGF.LocalDeclMap.end()) 921 SavedLocals.try_emplace(LocalVD, it->second); 922 else 923 SavedLocals.try_emplace(LocalVD, Address::invalid()); 924 925 // Generate the private entry. 926 QualType VarTy = LocalVD->getType(); 927 if (VarTy->isReferenceType()) { 928 Address Temp = CGF.CreateMemTemp(VarTy); 929 CGF.Builder.CreateStore(TempAddr.getPointer(), Temp); 930 TempAddr = Temp; 931 } 932 SavedTempAddresses.try_emplace(LocalVD, TempAddr); 933 934 return true; 935 } 936 937 /// Applies new addresses to the list of the variables. 938 /// \return true if at least one variable is using new address, false 939 /// otherwise. 940 bool apply(CodeGenFunction &CGF) { 941 copyInto(SavedTempAddresses, CGF.LocalDeclMap); 942 SavedTempAddresses.clear(); 943 return !SavedLocals.empty(); 944 } 945 946 /// Restores original addresses of the variables. 947 void restore(CodeGenFunction &CGF) { 948 if (!SavedLocals.empty()) { 949 copyInto(SavedLocals, CGF.LocalDeclMap); 950 SavedLocals.clear(); 951 } 952 } 953 954 private: 955 /// Copy all the entries in the source map over the corresponding 956 /// entries in the destination, which must exist. 957 static void copyInto(const DeclMapTy &Src, DeclMapTy &Dest) { 958 for (auto &Pair : Src) { 959 if (!Pair.second.isValid()) { 960 Dest.erase(Pair.first); 961 continue; 962 } 963 964 auto I = Dest.find(Pair.first); 965 if (I != Dest.end()) 966 I->second = Pair.second; 967 else 968 Dest.insert(Pair); 969 } 970 } 971 }; 972 973 /// The scope used to remap some variables as private in the OpenMP loop body 974 /// (or other captured region emitted without outlining), and to restore old 975 /// vars back on exit. 976 class OMPPrivateScope : public RunCleanupsScope { 977 OMPMapVars MappedVars; 978 OMPPrivateScope(const OMPPrivateScope &) = delete; 979 void operator=(const OMPPrivateScope &) = delete; 980 981 public: 982 /// Enter a new OpenMP private scope. 983 explicit OMPPrivateScope(CodeGenFunction &CGF) : RunCleanupsScope(CGF) {} 984 985 /// Registers \p LocalVD variable as a private and apply \p PrivateGen 986 /// function for it to generate corresponding private variable. \p 987 /// PrivateGen returns an address of the generated private variable. 988 /// \return true if the variable is registered as private, false if it has 989 /// been privatized already. 990 bool addPrivate(const VarDecl *LocalVD, 991 const llvm::function_ref<Address()> PrivateGen) { 992 assert(PerformCleanup && "adding private to dead scope"); 993 return MappedVars.setVarAddr(CGF, LocalVD, PrivateGen()); 994 } 995 996 /// Privatizes local variables previously registered as private. 997 /// Registration is separate from the actual privatization to allow 998 /// initializers use values of the original variables, not the private one. 999 /// This is important, for example, if the private variable is a class 1000 /// variable initialized by a constructor that references other private 1001 /// variables. But at initialization original variables must be used, not 1002 /// private copies. 1003 /// \return true if at least one variable was privatized, false otherwise. 1004 bool Privatize() { return MappedVars.apply(CGF); } 1005 1006 void ForceCleanup() { 1007 RunCleanupsScope::ForceCleanup(); 1008 MappedVars.restore(CGF); 1009 } 1010 1011 /// Exit scope - all the mapped variables are restored. 1012 ~OMPPrivateScope() { 1013 if (PerformCleanup) 1014 ForceCleanup(); 1015 } 1016 1017 /// Checks if the global variable is captured in current function. 1018 bool isGlobalVarCaptured(const VarDecl *VD) const { 1019 VD = VD->getCanonicalDecl(); 1020 return !VD->isLocalVarDeclOrParm() && CGF.LocalDeclMap.count(VD) > 0; 1021 } 1022 }; 1023 1024 /// Save/restore original map of previously emitted local vars in case when we 1025 /// need to duplicate emission of the same code several times in the same 1026 /// function for OpenMP code. 1027 class OMPLocalDeclMapRAII { 1028 CodeGenFunction &CGF; 1029 DeclMapTy SavedMap; 1030 1031 public: 1032 OMPLocalDeclMapRAII(CodeGenFunction &CGF) 1033 : CGF(CGF), SavedMap(CGF.LocalDeclMap) {} 1034 ~OMPLocalDeclMapRAII() { SavedMap.swap(CGF.LocalDeclMap); } 1035 }; 1036 1037 /// Takes the old cleanup stack size and emits the cleanup blocks 1038 /// that have been added. 1039 void 1040 PopCleanupBlocks(EHScopeStack::stable_iterator OldCleanupStackSize, 1041 std::initializer_list<llvm::Value **> ValuesToReload = {}); 1042 1043 /// Takes the old cleanup stack size and emits the cleanup blocks 1044 /// that have been added, then adds all lifetime-extended cleanups from 1045 /// the given position to the stack. 1046 void 1047 PopCleanupBlocks(EHScopeStack::stable_iterator OldCleanupStackSize, 1048 size_t OldLifetimeExtendedStackSize, 1049 std::initializer_list<llvm::Value **> ValuesToReload = {}); 1050 1051 void ResolveBranchFixups(llvm::BasicBlock *Target); 1052 1053 /// The given basic block lies in the current EH scope, but may be a 1054 /// target of a potentially scope-crossing jump; get a stable handle 1055 /// to which we can perform this jump later. 1056 JumpDest getJumpDestInCurrentScope(llvm::BasicBlock *Target) { 1057 return JumpDest(Target, 1058 EHStack.getInnermostNormalCleanup(), 1059 NextCleanupDestIndex++); 1060 } 1061 1062 /// The given basic block lies in the current EH scope, but may be a 1063 /// target of a potentially scope-crossing jump; get a stable handle 1064 /// to which we can perform this jump later. 1065 JumpDest getJumpDestInCurrentScope(StringRef Name = StringRef()) { 1066 return getJumpDestInCurrentScope(createBasicBlock(Name)); 1067 } 1068 1069 /// EmitBranchThroughCleanup - Emit a branch from the current insert 1070 /// block through the normal cleanup handling code (if any) and then 1071 /// on to \arg Dest. 1072 void EmitBranchThroughCleanup(JumpDest Dest); 1073 1074 /// isObviouslyBranchWithoutCleanups - Return true if a branch to the 1075 /// specified destination obviously has no cleanups to run. 'false' is always 1076 /// a conservatively correct answer for this method. 1077 bool isObviouslyBranchWithoutCleanups(JumpDest Dest) const; 1078 1079 /// popCatchScope - Pops the catch scope at the top of the EHScope 1080 /// stack, emitting any required code (other than the catch handlers 1081 /// themselves). 1082 void popCatchScope(); 1083 1084 llvm::BasicBlock *getEHResumeBlock(bool isCleanup); 1085 llvm::BasicBlock *getEHDispatchBlock(EHScopeStack::stable_iterator scope); 1086 llvm::BasicBlock * 1087 getFuncletEHDispatchBlock(EHScopeStack::stable_iterator scope); 1088 1089 /// An object to manage conditionally-evaluated expressions. 1090 class ConditionalEvaluation { 1091 llvm::BasicBlock *StartBB; 1092 1093 public: 1094 ConditionalEvaluation(CodeGenFunction &CGF) 1095 : StartBB(CGF.Builder.GetInsertBlock()) {} 1096 1097 void begin(CodeGenFunction &CGF) { 1098 assert(CGF.OutermostConditional != this); 1099 if (!CGF.OutermostConditional) 1100 CGF.OutermostConditional = this; 1101 } 1102 1103 void end(CodeGenFunction &CGF) { 1104 assert(CGF.OutermostConditional != nullptr); 1105 if (CGF.OutermostConditional == this) 1106 CGF.OutermostConditional = nullptr; 1107 } 1108 1109 /// Returns a block which will be executed prior to each 1110 /// evaluation of the conditional code. 1111 llvm::BasicBlock *getStartingBlock() const { 1112 return StartBB; 1113 } 1114 }; 1115 1116 /// isInConditionalBranch - Return true if we're currently emitting 1117 /// one branch or the other of a conditional expression. 1118 bool isInConditionalBranch() const { return OutermostConditional != nullptr; } 1119 1120 void setBeforeOutermostConditional(llvm::Value *value, Address addr) { 1121 assert(isInConditionalBranch()); 1122 llvm::BasicBlock *block = OutermostConditional->getStartingBlock(); 1123 auto store = new llvm::StoreInst(value, addr.getPointer(), &block->back()); 1124 store->setAlignment(addr.getAlignment().getAsAlign()); 1125 } 1126 1127 /// An RAII object to record that we're evaluating a statement 1128 /// expression. 1129 class StmtExprEvaluation { 1130 CodeGenFunction &CGF; 1131 1132 /// We have to save the outermost conditional: cleanups in a 1133 /// statement expression aren't conditional just because the 1134 /// StmtExpr is. 1135 ConditionalEvaluation *SavedOutermostConditional; 1136 1137 public: 1138 StmtExprEvaluation(CodeGenFunction &CGF) 1139 : CGF(CGF), SavedOutermostConditional(CGF.OutermostConditional) { 1140 CGF.OutermostConditional = nullptr; 1141 } 1142 1143 ~StmtExprEvaluation() { 1144 CGF.OutermostConditional = SavedOutermostConditional; 1145 CGF.EnsureInsertPoint(); 1146 } 1147 }; 1148 1149 /// An object which temporarily prevents a value from being 1150 /// destroyed by aggressive peephole optimizations that assume that 1151 /// all uses of a value have been realized in the IR. 1152 class PeepholeProtection { 1153 llvm::Instruction *Inst; 1154 friend class CodeGenFunction; 1155 1156 public: 1157 PeepholeProtection() : Inst(nullptr) {} 1158 }; 1159 1160 /// A non-RAII class containing all the information about a bound 1161 /// opaque value. OpaqueValueMapping, below, is a RAII wrapper for 1162 /// this which makes individual mappings very simple; using this 1163 /// class directly is useful when you have a variable number of 1164 /// opaque values or don't want the RAII functionality for some 1165 /// reason. 1166 class OpaqueValueMappingData { 1167 const OpaqueValueExpr *OpaqueValue; 1168 bool BoundLValue; 1169 CodeGenFunction::PeepholeProtection Protection; 1170 1171 OpaqueValueMappingData(const OpaqueValueExpr *ov, 1172 bool boundLValue) 1173 : OpaqueValue(ov), BoundLValue(boundLValue) {} 1174 public: 1175 OpaqueValueMappingData() : OpaqueValue(nullptr) {} 1176 1177 static bool shouldBindAsLValue(const Expr *expr) { 1178 // gl-values should be bound as l-values for obvious reasons. 1179 // Records should be bound as l-values because IR generation 1180 // always keeps them in memory. Expressions of function type 1181 // act exactly like l-values but are formally required to be 1182 // r-values in C. 1183 return expr->isGLValue() || 1184 expr->getType()->isFunctionType() || 1185 hasAggregateEvaluationKind(expr->getType()); 1186 } 1187 1188 static OpaqueValueMappingData bind(CodeGenFunction &CGF, 1189 const OpaqueValueExpr *ov, 1190 const Expr *e) { 1191 if (shouldBindAsLValue(ov)) 1192 return bind(CGF, ov, CGF.EmitLValue(e)); 1193 return bind(CGF, ov, CGF.EmitAnyExpr(e)); 1194 } 1195 1196 static OpaqueValueMappingData bind(CodeGenFunction &CGF, 1197 const OpaqueValueExpr *ov, 1198 const LValue &lv) { 1199 assert(shouldBindAsLValue(ov)); 1200 CGF.OpaqueLValues.insert(std::make_pair(ov, lv)); 1201 return OpaqueValueMappingData(ov, true); 1202 } 1203 1204 static OpaqueValueMappingData bind(CodeGenFunction &CGF, 1205 const OpaqueValueExpr *ov, 1206 const RValue &rv) { 1207 assert(!shouldBindAsLValue(ov)); 1208 CGF.OpaqueRValues.insert(std::make_pair(ov, rv)); 1209 1210 OpaqueValueMappingData data(ov, false); 1211 1212 // Work around an extremely aggressive peephole optimization in 1213 // EmitScalarConversion which assumes that all other uses of a 1214 // value are extant. 1215 data.Protection = CGF.protectFromPeepholes(rv); 1216 1217 return data; 1218 } 1219 1220 bool isValid() const { return OpaqueValue != nullptr; } 1221 void clear() { OpaqueValue = nullptr; } 1222 1223 void unbind(CodeGenFunction &CGF) { 1224 assert(OpaqueValue && "no data to unbind!"); 1225 1226 if (BoundLValue) { 1227 CGF.OpaqueLValues.erase(OpaqueValue); 1228 } else { 1229 CGF.OpaqueRValues.erase(OpaqueValue); 1230 CGF.unprotectFromPeepholes(Protection); 1231 } 1232 } 1233 }; 1234 1235 /// An RAII object to set (and then clear) a mapping for an OpaqueValueExpr. 1236 class OpaqueValueMapping { 1237 CodeGenFunction &CGF; 1238 OpaqueValueMappingData Data; 1239 1240 public: 1241 static bool shouldBindAsLValue(const Expr *expr) { 1242 return OpaqueValueMappingData::shouldBindAsLValue(expr); 1243 } 1244 1245 /// Build the opaque value mapping for the given conditional 1246 /// operator if it's the GNU ?: extension. This is a common 1247 /// enough pattern that the convenience operator is really 1248 /// helpful. 1249 /// 1250 OpaqueValueMapping(CodeGenFunction &CGF, 1251 const AbstractConditionalOperator *op) : CGF(CGF) { 1252 if (isa<ConditionalOperator>(op)) 1253 // Leave Data empty. 1254 return; 1255 1256 const BinaryConditionalOperator *e = cast<BinaryConditionalOperator>(op); 1257 Data = OpaqueValueMappingData::bind(CGF, e->getOpaqueValue(), 1258 e->getCommon()); 1259 } 1260 1261 /// Build the opaque value mapping for an OpaqueValueExpr whose source 1262 /// expression is set to the expression the OVE represents. 1263 OpaqueValueMapping(CodeGenFunction &CGF, const OpaqueValueExpr *OV) 1264 : CGF(CGF) { 1265 if (OV) { 1266 assert(OV->getSourceExpr() && "wrong form of OpaqueValueMapping used " 1267 "for OVE with no source expression"); 1268 Data = OpaqueValueMappingData::bind(CGF, OV, OV->getSourceExpr()); 1269 } 1270 } 1271 1272 OpaqueValueMapping(CodeGenFunction &CGF, 1273 const OpaqueValueExpr *opaqueValue, 1274 LValue lvalue) 1275 : CGF(CGF), Data(OpaqueValueMappingData::bind(CGF, opaqueValue, lvalue)) { 1276 } 1277 1278 OpaqueValueMapping(CodeGenFunction &CGF, 1279 const OpaqueValueExpr *opaqueValue, 1280 RValue rvalue) 1281 : CGF(CGF), Data(OpaqueValueMappingData::bind(CGF, opaqueValue, rvalue)) { 1282 } 1283 1284 void pop() { 1285 Data.unbind(CGF); 1286 Data.clear(); 1287 } 1288 1289 ~OpaqueValueMapping() { 1290 if (Data.isValid()) Data.unbind(CGF); 1291 } 1292 }; 1293 1294 private: 1295 CGDebugInfo *DebugInfo; 1296 /// Used to create unique names for artificial VLA size debug info variables. 1297 unsigned VLAExprCounter = 0; 1298 bool DisableDebugInfo = false; 1299 1300 /// DidCallStackSave - Whether llvm.stacksave has been called. Used to avoid 1301 /// calling llvm.stacksave for multiple VLAs in the same scope. 1302 bool DidCallStackSave = false; 1303 1304 /// IndirectBranch - The first time an indirect goto is seen we create a block 1305 /// with an indirect branch. Every time we see the address of a label taken, 1306 /// we add the label to the indirect goto. Every subsequent indirect goto is 1307 /// codegen'd as a jump to the IndirectBranch's basic block. 1308 llvm::IndirectBrInst *IndirectBranch = nullptr; 1309 1310 /// LocalDeclMap - This keeps track of the LLVM allocas or globals for local C 1311 /// decls. 1312 DeclMapTy LocalDeclMap; 1313 1314 // Keep track of the cleanups for callee-destructed parameters pushed to the 1315 // cleanup stack so that they can be deactivated later. 1316 llvm::DenseMap<const ParmVarDecl *, EHScopeStack::stable_iterator> 1317 CalleeDestructedParamCleanups; 1318 1319 /// SizeArguments - If a ParmVarDecl had the pass_object_size attribute, this 1320 /// will contain a mapping from said ParmVarDecl to its implicit "object_size" 1321 /// parameter. 1322 llvm::SmallDenseMap<const ParmVarDecl *, const ImplicitParamDecl *, 2> 1323 SizeArguments; 1324 1325 /// Track escaped local variables with auto storage. Used during SEH 1326 /// outlining to produce a call to llvm.localescape. 1327 llvm::DenseMap<llvm::AllocaInst *, int> EscapedLocals; 1328 1329 /// LabelMap - This keeps track of the LLVM basic block for each C label. 1330 llvm::DenseMap<const LabelDecl*, JumpDest> LabelMap; 1331 1332 // BreakContinueStack - This keeps track of where break and continue 1333 // statements should jump to. 1334 struct BreakContinue { 1335 BreakContinue(JumpDest Break, JumpDest Continue) 1336 : BreakBlock(Break), ContinueBlock(Continue) {} 1337 1338 JumpDest BreakBlock; 1339 JumpDest ContinueBlock; 1340 }; 1341 SmallVector<BreakContinue, 8> BreakContinueStack; 1342 1343 /// Handles cancellation exit points in OpenMP-related constructs. 1344 class OpenMPCancelExitStack { 1345 /// Tracks cancellation exit point and join point for cancel-related exit 1346 /// and normal exit. 1347 struct CancelExit { 1348 CancelExit() = default; 1349 CancelExit(OpenMPDirectiveKind Kind, JumpDest ExitBlock, 1350 JumpDest ContBlock) 1351 : Kind(Kind), ExitBlock(ExitBlock), ContBlock(ContBlock) {} 1352 OpenMPDirectiveKind Kind = llvm::omp::OMPD_unknown; 1353 /// true if the exit block has been emitted already by the special 1354 /// emitExit() call, false if the default codegen is used. 1355 bool HasBeenEmitted = false; 1356 JumpDest ExitBlock; 1357 JumpDest ContBlock; 1358 }; 1359 1360 SmallVector<CancelExit, 8> Stack; 1361 1362 public: 1363 OpenMPCancelExitStack() : Stack(1) {} 1364 ~OpenMPCancelExitStack() = default; 1365 /// Fetches the exit block for the current OpenMP construct. 1366 JumpDest getExitBlock() const { return Stack.back().ExitBlock; } 1367 /// Emits exit block with special codegen procedure specific for the related 1368 /// OpenMP construct + emits code for normal construct cleanup. 1369 void emitExit(CodeGenFunction &CGF, OpenMPDirectiveKind Kind, 1370 const llvm::function_ref<void(CodeGenFunction &)> CodeGen) { 1371 if (Stack.back().Kind == Kind && getExitBlock().isValid()) { 1372 assert(CGF.getOMPCancelDestination(Kind).isValid()); 1373 assert(CGF.HaveInsertPoint()); 1374 assert(!Stack.back().HasBeenEmitted); 1375 auto IP = CGF.Builder.saveAndClearIP(); 1376 CGF.EmitBlock(Stack.back().ExitBlock.getBlock()); 1377 CodeGen(CGF); 1378 CGF.EmitBranch(Stack.back().ContBlock.getBlock()); 1379 CGF.Builder.restoreIP(IP); 1380 Stack.back().HasBeenEmitted = true; 1381 } 1382 CodeGen(CGF); 1383 } 1384 /// Enter the cancel supporting \a Kind construct. 1385 /// \param Kind OpenMP directive that supports cancel constructs. 1386 /// \param HasCancel true, if the construct has inner cancel directive, 1387 /// false otherwise. 1388 void enter(CodeGenFunction &CGF, OpenMPDirectiveKind Kind, bool HasCancel) { 1389 Stack.push_back({Kind, 1390 HasCancel ? CGF.getJumpDestInCurrentScope("cancel.exit") 1391 : JumpDest(), 1392 HasCancel ? CGF.getJumpDestInCurrentScope("cancel.cont") 1393 : JumpDest()}); 1394 } 1395 /// Emits default exit point for the cancel construct (if the special one 1396 /// has not be used) + join point for cancel/normal exits. 1397 void exit(CodeGenFunction &CGF) { 1398 if (getExitBlock().isValid()) { 1399 assert(CGF.getOMPCancelDestination(Stack.back().Kind).isValid()); 1400 bool HaveIP = CGF.HaveInsertPoint(); 1401 if (!Stack.back().HasBeenEmitted) { 1402 if (HaveIP) 1403 CGF.EmitBranchThroughCleanup(Stack.back().ContBlock); 1404 CGF.EmitBlock(Stack.back().ExitBlock.getBlock()); 1405 CGF.EmitBranchThroughCleanup(Stack.back().ContBlock); 1406 } 1407 CGF.EmitBlock(Stack.back().ContBlock.getBlock()); 1408 if (!HaveIP) { 1409 CGF.Builder.CreateUnreachable(); 1410 CGF.Builder.ClearInsertionPoint(); 1411 } 1412 } 1413 Stack.pop_back(); 1414 } 1415 }; 1416 OpenMPCancelExitStack OMPCancelStack; 1417 1418 /// Calculate branch weights for the likelihood attribute 1419 llvm::MDNode *createBranchWeights(Stmt::Likelihood LH) const; 1420 1421 CodeGenPGO PGO; 1422 1423 /// Calculate branch weights appropriate for PGO data 1424 llvm::MDNode *createProfileWeights(uint64_t TrueCount, 1425 uint64_t FalseCount) const; 1426 llvm::MDNode *createProfileWeights(ArrayRef<uint64_t> Weights) const; 1427 llvm::MDNode *createProfileWeightsForLoop(const Stmt *Cond, 1428 uint64_t LoopCount) const; 1429 1430 /// Calculate the branch weight for PGO data or the likelihood attribute. 1431 /// The function tries to get the weight of \ref createProfileWeightsForLoop. 1432 /// If that fails it gets the weight of \ref createBranchWeights. 1433 llvm::MDNode *createProfileOrBranchWeightsForLoop(const Stmt *Cond, 1434 uint64_t LoopCount, 1435 const Stmt *Body) const; 1436 1437 public: 1438 /// Increment the profiler's counter for the given statement by \p StepV. 1439 /// If \p StepV is null, the default increment is 1. 1440 void incrementProfileCounter(const Stmt *S, llvm::Value *StepV = nullptr) { 1441 if (CGM.getCodeGenOpts().hasProfileClangInstr()) 1442 PGO.emitCounterIncrement(Builder, S, StepV); 1443 PGO.setCurrentStmt(S); 1444 } 1445 1446 /// Get the profiler's count for the given statement. 1447 uint64_t getProfileCount(const Stmt *S) { 1448 Optional<uint64_t> Count = PGO.getStmtCount(S); 1449 if (!Count.hasValue()) 1450 return 0; 1451 return *Count; 1452 } 1453 1454 /// Set the profiler's current count. 1455 void setCurrentProfileCount(uint64_t Count) { 1456 PGO.setCurrentRegionCount(Count); 1457 } 1458 1459 /// Get the profiler's current count. This is generally the count for the most 1460 /// recently incremented counter. 1461 uint64_t getCurrentProfileCount() { 1462 return PGO.getCurrentRegionCount(); 1463 } 1464 1465 private: 1466 1467 /// SwitchInsn - This is nearest current switch instruction. It is null if 1468 /// current context is not in a switch. 1469 llvm::SwitchInst *SwitchInsn = nullptr; 1470 /// The branch weights of SwitchInsn when doing instrumentation based PGO. 1471 SmallVector<uint64_t, 16> *SwitchWeights = nullptr; 1472 1473 /// The likelihood attributes of the SwitchCase. 1474 SmallVector<Stmt::Likelihood, 16> *SwitchLikelihood = nullptr; 1475 1476 /// CaseRangeBlock - This block holds if condition check for last case 1477 /// statement range in current switch instruction. 1478 llvm::BasicBlock *CaseRangeBlock = nullptr; 1479 1480 /// OpaqueLValues - Keeps track of the current set of opaque value 1481 /// expressions. 1482 llvm::DenseMap<const OpaqueValueExpr *, LValue> OpaqueLValues; 1483 llvm::DenseMap<const OpaqueValueExpr *, RValue> OpaqueRValues; 1484 1485 // VLASizeMap - This keeps track of the associated size for each VLA type. 1486 // We track this by the size expression rather than the type itself because 1487 // in certain situations, like a const qualifier applied to an VLA typedef, 1488 // multiple VLA types can share the same size expression. 1489 // FIXME: Maybe this could be a stack of maps that is pushed/popped as we 1490 // enter/leave scopes. 1491 llvm::DenseMap<const Expr*, llvm::Value*> VLASizeMap; 1492 1493 /// A block containing a single 'unreachable' instruction. Created 1494 /// lazily by getUnreachableBlock(). 1495 llvm::BasicBlock *UnreachableBlock = nullptr; 1496 1497 /// Counts of the number return expressions in the function. 1498 unsigned NumReturnExprs = 0; 1499 1500 /// Count the number of simple (constant) return expressions in the function. 1501 unsigned NumSimpleReturnExprs = 0; 1502 1503 /// The last regular (non-return) debug location (breakpoint) in the function. 1504 SourceLocation LastStopPoint; 1505 1506 public: 1507 /// Source location information about the default argument or member 1508 /// initializer expression we're evaluating, if any. 1509 CurrentSourceLocExprScope CurSourceLocExprScope; 1510 using SourceLocExprScopeGuard = 1511 CurrentSourceLocExprScope::SourceLocExprScopeGuard; 1512 1513 /// A scope within which we are constructing the fields of an object which 1514 /// might use a CXXDefaultInitExpr. This stashes away a 'this' value to use 1515 /// if we need to evaluate a CXXDefaultInitExpr within the evaluation. 1516 class FieldConstructionScope { 1517 public: 1518 FieldConstructionScope(CodeGenFunction &CGF, Address This) 1519 : CGF(CGF), OldCXXDefaultInitExprThis(CGF.CXXDefaultInitExprThis) { 1520 CGF.CXXDefaultInitExprThis = This; 1521 } 1522 ~FieldConstructionScope() { 1523 CGF.CXXDefaultInitExprThis = OldCXXDefaultInitExprThis; 1524 } 1525 1526 private: 1527 CodeGenFunction &CGF; 1528 Address OldCXXDefaultInitExprThis; 1529 }; 1530 1531 /// The scope of a CXXDefaultInitExpr. Within this scope, the value of 'this' 1532 /// is overridden to be the object under construction. 1533 class CXXDefaultInitExprScope { 1534 public: 1535 CXXDefaultInitExprScope(CodeGenFunction &CGF, const CXXDefaultInitExpr *E) 1536 : CGF(CGF), OldCXXThisValue(CGF.CXXThisValue), 1537 OldCXXThisAlignment(CGF.CXXThisAlignment), 1538 SourceLocScope(E, CGF.CurSourceLocExprScope) { 1539 CGF.CXXThisValue = CGF.CXXDefaultInitExprThis.getPointer(); 1540 CGF.CXXThisAlignment = CGF.CXXDefaultInitExprThis.getAlignment(); 1541 } 1542 ~CXXDefaultInitExprScope() { 1543 CGF.CXXThisValue = OldCXXThisValue; 1544 CGF.CXXThisAlignment = OldCXXThisAlignment; 1545 } 1546 1547 public: 1548 CodeGenFunction &CGF; 1549 llvm::Value *OldCXXThisValue; 1550 CharUnits OldCXXThisAlignment; 1551 SourceLocExprScopeGuard SourceLocScope; 1552 }; 1553 1554 struct CXXDefaultArgExprScope : SourceLocExprScopeGuard { 1555 CXXDefaultArgExprScope(CodeGenFunction &CGF, const CXXDefaultArgExpr *E) 1556 : SourceLocExprScopeGuard(E, CGF.CurSourceLocExprScope) {} 1557 }; 1558 1559 /// The scope of an ArrayInitLoopExpr. Within this scope, the value of the 1560 /// current loop index is overridden. 1561 class ArrayInitLoopExprScope { 1562 public: 1563 ArrayInitLoopExprScope(CodeGenFunction &CGF, llvm::Value *Index) 1564 : CGF(CGF), OldArrayInitIndex(CGF.ArrayInitIndex) { 1565 CGF.ArrayInitIndex = Index; 1566 } 1567 ~ArrayInitLoopExprScope() { 1568 CGF.ArrayInitIndex = OldArrayInitIndex; 1569 } 1570 1571 private: 1572 CodeGenFunction &CGF; 1573 llvm::Value *OldArrayInitIndex; 1574 }; 1575 1576 class InlinedInheritingConstructorScope { 1577 public: 1578 InlinedInheritingConstructorScope(CodeGenFunction &CGF, GlobalDecl GD) 1579 : CGF(CGF), OldCurGD(CGF.CurGD), OldCurFuncDecl(CGF.CurFuncDecl), 1580 OldCurCodeDecl(CGF.CurCodeDecl), 1581 OldCXXABIThisDecl(CGF.CXXABIThisDecl), 1582 OldCXXABIThisValue(CGF.CXXABIThisValue), 1583 OldCXXThisValue(CGF.CXXThisValue), 1584 OldCXXABIThisAlignment(CGF.CXXABIThisAlignment), 1585 OldCXXThisAlignment(CGF.CXXThisAlignment), 1586 OldReturnValue(CGF.ReturnValue), OldFnRetTy(CGF.FnRetTy), 1587 OldCXXInheritedCtorInitExprArgs( 1588 std::move(CGF.CXXInheritedCtorInitExprArgs)) { 1589 CGF.CurGD = GD; 1590 CGF.CurFuncDecl = CGF.CurCodeDecl = 1591 cast<CXXConstructorDecl>(GD.getDecl()); 1592 CGF.CXXABIThisDecl = nullptr; 1593 CGF.CXXABIThisValue = nullptr; 1594 CGF.CXXThisValue = nullptr; 1595 CGF.CXXABIThisAlignment = CharUnits(); 1596 CGF.CXXThisAlignment = CharUnits(); 1597 CGF.ReturnValue = Address::invalid(); 1598 CGF.FnRetTy = QualType(); 1599 CGF.CXXInheritedCtorInitExprArgs.clear(); 1600 } 1601 ~InlinedInheritingConstructorScope() { 1602 CGF.CurGD = OldCurGD; 1603 CGF.CurFuncDecl = OldCurFuncDecl; 1604 CGF.CurCodeDecl = OldCurCodeDecl; 1605 CGF.CXXABIThisDecl = OldCXXABIThisDecl; 1606 CGF.CXXABIThisValue = OldCXXABIThisValue; 1607 CGF.CXXThisValue = OldCXXThisValue; 1608 CGF.CXXABIThisAlignment = OldCXXABIThisAlignment; 1609 CGF.CXXThisAlignment = OldCXXThisAlignment; 1610 CGF.ReturnValue = OldReturnValue; 1611 CGF.FnRetTy = OldFnRetTy; 1612 CGF.CXXInheritedCtorInitExprArgs = 1613 std::move(OldCXXInheritedCtorInitExprArgs); 1614 } 1615 1616 private: 1617 CodeGenFunction &CGF; 1618 GlobalDecl OldCurGD; 1619 const Decl *OldCurFuncDecl; 1620 const Decl *OldCurCodeDecl; 1621 ImplicitParamDecl *OldCXXABIThisDecl; 1622 llvm::Value *OldCXXABIThisValue; 1623 llvm::Value *OldCXXThisValue; 1624 CharUnits OldCXXABIThisAlignment; 1625 CharUnits OldCXXThisAlignment; 1626 Address OldReturnValue; 1627 QualType OldFnRetTy; 1628 CallArgList OldCXXInheritedCtorInitExprArgs; 1629 }; 1630 1631 // Helper class for the OpenMP IR Builder. Allows reusability of code used for 1632 // region body, and finalization codegen callbacks. This will class will also 1633 // contain privatization functions used by the privatization call backs 1634 // 1635 // TODO: this is temporary class for things that are being moved out of 1636 // CGOpenMPRuntime, new versions of current CodeGenFunction methods, or 1637 // utility function for use with the OMPBuilder. Once that move to use the 1638 // OMPBuilder is done, everything here will either become part of CodeGenFunc. 1639 // directly, or a new helper class that will contain functions used by both 1640 // this and the OMPBuilder 1641 1642 struct OMPBuilderCBHelpers { 1643 1644 OMPBuilderCBHelpers() = delete; 1645 OMPBuilderCBHelpers(const OMPBuilderCBHelpers &) = delete; 1646 OMPBuilderCBHelpers &operator=(const OMPBuilderCBHelpers &) = delete; 1647 1648 using InsertPointTy = llvm::OpenMPIRBuilder::InsertPointTy; 1649 1650 /// Cleanup action for allocate support. 1651 class OMPAllocateCleanupTy final : public EHScopeStack::Cleanup { 1652 1653 private: 1654 llvm::CallInst *RTLFnCI; 1655 1656 public: 1657 OMPAllocateCleanupTy(llvm::CallInst *RLFnCI) : RTLFnCI(RLFnCI) { 1658 RLFnCI->removeFromParent(); 1659 } 1660 1661 void Emit(CodeGenFunction &CGF, Flags /*flags*/) override { 1662 if (!CGF.HaveInsertPoint()) 1663 return; 1664 CGF.Builder.Insert(RTLFnCI); 1665 } 1666 }; 1667 1668 /// Returns address of the threadprivate variable for the current 1669 /// thread. This Also create any necessary OMP runtime calls. 1670 /// 1671 /// \param VD VarDecl for Threadprivate variable. 1672 /// \param VDAddr Address of the Vardecl 1673 /// \param Loc The location where the barrier directive was encountered 1674 static Address getAddrOfThreadPrivate(CodeGenFunction &CGF, 1675 const VarDecl *VD, Address VDAddr, 1676 SourceLocation Loc); 1677 1678 /// Gets the OpenMP-specific address of the local variable /p VD. 1679 static Address getAddressOfLocalVariable(CodeGenFunction &CGF, 1680 const VarDecl *VD); 1681 /// Get the platform-specific name separator. 1682 /// \param Parts different parts of the final name that needs separation 1683 /// \param FirstSeparator First separator used between the initial two 1684 /// parts of the name. 1685 /// \param Separator separator used between all of the rest consecutinve 1686 /// parts of the name 1687 static std::string getNameWithSeparators(ArrayRef<StringRef> Parts, 1688 StringRef FirstSeparator = ".", 1689 StringRef Separator = "."); 1690 /// Emit the Finalization for an OMP region 1691 /// \param CGF The Codegen function this belongs to 1692 /// \param IP Insertion point for generating the finalization code. 1693 static void FinalizeOMPRegion(CodeGenFunction &CGF, InsertPointTy IP) { 1694 CGBuilderTy::InsertPointGuard IPG(CGF.Builder); 1695 assert(IP.getBlock()->end() != IP.getPoint() && 1696 "OpenMP IR Builder should cause terminated block!"); 1697 1698 llvm::BasicBlock *IPBB = IP.getBlock(); 1699 llvm::BasicBlock *DestBB = IPBB->getUniqueSuccessor(); 1700 assert(DestBB && "Finalization block should have one successor!"); 1701 1702 // erase and replace with cleanup branch. 1703 IPBB->getTerminator()->eraseFromParent(); 1704 CGF.Builder.SetInsertPoint(IPBB); 1705 CodeGenFunction::JumpDest Dest = CGF.getJumpDestInCurrentScope(DestBB); 1706 CGF.EmitBranchThroughCleanup(Dest); 1707 } 1708 1709 /// Emit the body of an OMP region 1710 /// \param CGF The Codegen function this belongs to 1711 /// \param RegionBodyStmt The body statement for the OpenMP region being 1712 /// generated 1713 /// \param CodeGenIP Insertion point for generating the body code. 1714 /// \param FiniBB The finalization basic block 1715 static void EmitOMPRegionBody(CodeGenFunction &CGF, 1716 const Stmt *RegionBodyStmt, 1717 InsertPointTy CodeGenIP, 1718 llvm::BasicBlock &FiniBB) { 1719 llvm::BasicBlock *CodeGenIPBB = CodeGenIP.getBlock(); 1720 if (llvm::Instruction *CodeGenIPBBTI = CodeGenIPBB->getTerminator()) 1721 CodeGenIPBBTI->eraseFromParent(); 1722 1723 CGF.Builder.SetInsertPoint(CodeGenIPBB); 1724 1725 CGF.EmitStmt(RegionBodyStmt); 1726 1727 if (CGF.Builder.saveIP().isSet()) 1728 CGF.Builder.CreateBr(&FiniBB); 1729 } 1730 1731 /// RAII for preserving necessary info during Outlined region body codegen. 1732 class OutlinedRegionBodyRAII { 1733 1734 llvm::AssertingVH<llvm::Instruction> OldAllocaIP; 1735 CodeGenFunction::JumpDest OldReturnBlock; 1736 CGBuilderTy::InsertPoint IP; 1737 CodeGenFunction &CGF; 1738 1739 public: 1740 OutlinedRegionBodyRAII(CodeGenFunction &cgf, InsertPointTy &AllocaIP, 1741 llvm::BasicBlock &RetBB) 1742 : CGF(cgf) { 1743 assert(AllocaIP.isSet() && 1744 "Must specify Insertion point for allocas of outlined function"); 1745 OldAllocaIP = CGF.AllocaInsertPt; 1746 CGF.AllocaInsertPt = &*AllocaIP.getPoint(); 1747 IP = CGF.Builder.saveIP(); 1748 1749 OldReturnBlock = CGF.ReturnBlock; 1750 CGF.ReturnBlock = CGF.getJumpDestInCurrentScope(&RetBB); 1751 } 1752 1753 ~OutlinedRegionBodyRAII() { 1754 CGF.AllocaInsertPt = OldAllocaIP; 1755 CGF.ReturnBlock = OldReturnBlock; 1756 CGF.Builder.restoreIP(IP); 1757 } 1758 }; 1759 1760 /// RAII for preserving necessary info during inlined region body codegen. 1761 class InlinedRegionBodyRAII { 1762 1763 llvm::AssertingVH<llvm::Instruction> OldAllocaIP; 1764 CodeGenFunction &CGF; 1765 1766 public: 1767 InlinedRegionBodyRAII(CodeGenFunction &cgf, InsertPointTy &AllocaIP, 1768 llvm::BasicBlock &FiniBB) 1769 : CGF(cgf) { 1770 // Alloca insertion block should be in the entry block of the containing 1771 // function so it expects an empty AllocaIP in which case will reuse the 1772 // old alloca insertion point, or a new AllocaIP in the same block as 1773 // the old one 1774 assert((!AllocaIP.isSet() || 1775 CGF.AllocaInsertPt->getParent() == AllocaIP.getBlock()) && 1776 "Insertion point should be in the entry block of containing " 1777 "function!"); 1778 OldAllocaIP = CGF.AllocaInsertPt; 1779 if (AllocaIP.isSet()) 1780 CGF.AllocaInsertPt = &*AllocaIP.getPoint(); 1781 1782 // TODO: Remove the call, after making sure the counter is not used by 1783 // the EHStack. 1784 // Since this is an inlined region, it should not modify the 1785 // ReturnBlock, and should reuse the one for the enclosing outlined 1786 // region. So, the JumpDest being return by the function is discarded 1787 (void)CGF.getJumpDestInCurrentScope(&FiniBB); 1788 } 1789 1790 ~InlinedRegionBodyRAII() { CGF.AllocaInsertPt = OldAllocaIP; } 1791 }; 1792 }; 1793 1794 private: 1795 /// CXXThisDecl - When generating code for a C++ member function, 1796 /// this will hold the implicit 'this' declaration. 1797 ImplicitParamDecl *CXXABIThisDecl = nullptr; 1798 llvm::Value *CXXABIThisValue = nullptr; 1799 llvm::Value *CXXThisValue = nullptr; 1800 CharUnits CXXABIThisAlignment; 1801 CharUnits CXXThisAlignment; 1802 1803 /// The value of 'this' to use when evaluating CXXDefaultInitExprs within 1804 /// this expression. 1805 Address CXXDefaultInitExprThis = Address::invalid(); 1806 1807 /// The current array initialization index when evaluating an 1808 /// ArrayInitIndexExpr within an ArrayInitLoopExpr. 1809 llvm::Value *ArrayInitIndex = nullptr; 1810 1811 /// The values of function arguments to use when evaluating 1812 /// CXXInheritedCtorInitExprs within this context. 1813 CallArgList CXXInheritedCtorInitExprArgs; 1814 1815 /// CXXStructorImplicitParamDecl - When generating code for a constructor or 1816 /// destructor, this will hold the implicit argument (e.g. VTT). 1817 ImplicitParamDecl *CXXStructorImplicitParamDecl = nullptr; 1818 llvm::Value *CXXStructorImplicitParamValue = nullptr; 1819 1820 /// OutermostConditional - Points to the outermost active 1821 /// conditional control. This is used so that we know if a 1822 /// temporary should be destroyed conditionally. 1823 ConditionalEvaluation *OutermostConditional = nullptr; 1824 1825 /// The current lexical scope. 1826 LexicalScope *CurLexicalScope = nullptr; 1827 1828 /// The current source location that should be used for exception 1829 /// handling code. 1830 SourceLocation CurEHLocation; 1831 1832 /// BlockByrefInfos - For each __block variable, contains 1833 /// information about the layout of the variable. 1834 llvm::DenseMap<const ValueDecl *, BlockByrefInfo> BlockByrefInfos; 1835 1836 /// Used by -fsanitize=nullability-return to determine whether the return 1837 /// value can be checked. 1838 llvm::Value *RetValNullabilityPrecondition = nullptr; 1839 1840 /// Check if -fsanitize=nullability-return instrumentation is required for 1841 /// this function. 1842 bool requiresReturnValueNullabilityCheck() const { 1843 return RetValNullabilityPrecondition; 1844 } 1845 1846 /// Used to store precise source locations for return statements by the 1847 /// runtime return value checks. 1848 Address ReturnLocation = Address::invalid(); 1849 1850 /// Check if the return value of this function requires sanitization. 1851 bool requiresReturnValueCheck() const; 1852 1853 llvm::BasicBlock *TerminateLandingPad = nullptr; 1854 llvm::BasicBlock *TerminateHandler = nullptr; 1855 llvm::BasicBlock *TrapBB = nullptr; 1856 1857 /// Terminate funclets keyed by parent funclet pad. 1858 llvm::MapVector<llvm::Value *, llvm::BasicBlock *> TerminateFunclets; 1859 1860 /// Largest vector width used in ths function. Will be used to create a 1861 /// function attribute. 1862 unsigned LargestVectorWidth = 0; 1863 1864 /// True if we need emit the life-time markers. 1865 const bool ShouldEmitLifetimeMarkers; 1866 1867 /// Add OpenCL kernel arg metadata and the kernel attribute metadata to 1868 /// the function metadata. 1869 void EmitOpenCLKernelMetadata(const FunctionDecl *FD, 1870 llvm::Function *Fn); 1871 1872 public: 1873 CodeGenFunction(CodeGenModule &cgm, bool suppressNewContext=false); 1874 ~CodeGenFunction(); 1875 1876 CodeGenTypes &getTypes() const { return CGM.getTypes(); } 1877 ASTContext &getContext() const { return CGM.getContext(); } 1878 CGDebugInfo *getDebugInfo() { 1879 if (DisableDebugInfo) 1880 return nullptr; 1881 return DebugInfo; 1882 } 1883 void disableDebugInfo() { DisableDebugInfo = true; } 1884 void enableDebugInfo() { DisableDebugInfo = false; } 1885 1886 bool shouldUseFusedARCCalls() { 1887 return CGM.getCodeGenOpts().OptimizationLevel == 0; 1888 } 1889 1890 const LangOptions &getLangOpts() const { return CGM.getLangOpts(); } 1891 1892 /// Returns a pointer to the function's exception object and selector slot, 1893 /// which is assigned in every landing pad. 1894 Address getExceptionSlot(); 1895 Address getEHSelectorSlot(); 1896 1897 /// Returns the contents of the function's exception object and selector 1898 /// slots. 1899 llvm::Value *getExceptionFromSlot(); 1900 llvm::Value *getSelectorFromSlot(); 1901 1902 Address getNormalCleanupDestSlot(); 1903 1904 llvm::BasicBlock *getUnreachableBlock() { 1905 if (!UnreachableBlock) { 1906 UnreachableBlock = createBasicBlock("unreachable"); 1907 new llvm::UnreachableInst(getLLVMContext(), UnreachableBlock); 1908 } 1909 return UnreachableBlock; 1910 } 1911 1912 llvm::BasicBlock *getInvokeDest() { 1913 if (!EHStack.requiresLandingPad()) return nullptr; 1914 return getInvokeDestImpl(); 1915 } 1916 1917 bool currentFunctionUsesSEHTry() const { return CurSEHParent != nullptr; } 1918 1919 const TargetInfo &getTarget() const { return Target; } 1920 llvm::LLVMContext &getLLVMContext() { return CGM.getLLVMContext(); } 1921 const TargetCodeGenInfo &getTargetHooks() const { 1922 return CGM.getTargetCodeGenInfo(); 1923 } 1924 1925 //===--------------------------------------------------------------------===// 1926 // Cleanups 1927 //===--------------------------------------------------------------------===// 1928 1929 typedef void Destroyer(CodeGenFunction &CGF, Address addr, QualType ty); 1930 1931 void pushIrregularPartialArrayCleanup(llvm::Value *arrayBegin, 1932 Address arrayEndPointer, 1933 QualType elementType, 1934 CharUnits elementAlignment, 1935 Destroyer *destroyer); 1936 void pushRegularPartialArrayCleanup(llvm::Value *arrayBegin, 1937 llvm::Value *arrayEnd, 1938 QualType elementType, 1939 CharUnits elementAlignment, 1940 Destroyer *destroyer); 1941 1942 void pushDestroy(QualType::DestructionKind dtorKind, 1943 Address addr, QualType type); 1944 void pushEHDestroy(QualType::DestructionKind dtorKind, 1945 Address addr, QualType type); 1946 void pushDestroy(CleanupKind kind, Address addr, QualType type, 1947 Destroyer *destroyer, bool useEHCleanupForArray); 1948 void pushLifetimeExtendedDestroy(CleanupKind kind, Address addr, 1949 QualType type, Destroyer *destroyer, 1950 bool useEHCleanupForArray); 1951 void pushCallObjectDeleteCleanup(const FunctionDecl *OperatorDelete, 1952 llvm::Value *CompletePtr, 1953 QualType ElementType); 1954 void pushStackRestore(CleanupKind kind, Address SPMem); 1955 void emitDestroy(Address addr, QualType type, Destroyer *destroyer, 1956 bool useEHCleanupForArray); 1957 llvm::Function *generateDestroyHelper(Address addr, QualType type, 1958 Destroyer *destroyer, 1959 bool useEHCleanupForArray, 1960 const VarDecl *VD); 1961 void emitArrayDestroy(llvm::Value *begin, llvm::Value *end, 1962 QualType elementType, CharUnits elementAlign, 1963 Destroyer *destroyer, 1964 bool checkZeroLength, bool useEHCleanup); 1965 1966 Destroyer *getDestroyer(QualType::DestructionKind destructionKind); 1967 1968 /// Determines whether an EH cleanup is required to destroy a type 1969 /// with the given destruction kind. 1970 bool needsEHCleanup(QualType::DestructionKind kind) { 1971 switch (kind) { 1972 case QualType::DK_none: 1973 return false; 1974 case QualType::DK_cxx_destructor: 1975 case QualType::DK_objc_weak_lifetime: 1976 case QualType::DK_nontrivial_c_struct: 1977 return getLangOpts().Exceptions; 1978 case QualType::DK_objc_strong_lifetime: 1979 return getLangOpts().Exceptions && 1980 CGM.getCodeGenOpts().ObjCAutoRefCountExceptions; 1981 } 1982 llvm_unreachable("bad destruction kind"); 1983 } 1984 1985 CleanupKind getCleanupKind(QualType::DestructionKind kind) { 1986 return (needsEHCleanup(kind) ? NormalAndEHCleanup : NormalCleanup); 1987 } 1988 1989 //===--------------------------------------------------------------------===// 1990 // Objective-C 1991 //===--------------------------------------------------------------------===// 1992 1993 void GenerateObjCMethod(const ObjCMethodDecl *OMD); 1994 1995 void StartObjCMethod(const ObjCMethodDecl *MD, const ObjCContainerDecl *CD); 1996 1997 /// GenerateObjCGetter - Synthesize an Objective-C property getter function. 1998 void GenerateObjCGetter(ObjCImplementationDecl *IMP, 1999 const ObjCPropertyImplDecl *PID); 2000 void generateObjCGetterBody(const ObjCImplementationDecl *classImpl, 2001 const ObjCPropertyImplDecl *propImpl, 2002 const ObjCMethodDecl *GetterMothodDecl, 2003 llvm::Constant *AtomicHelperFn); 2004 2005 void GenerateObjCCtorDtorMethod(ObjCImplementationDecl *IMP, 2006 ObjCMethodDecl *MD, bool ctor); 2007 2008 /// GenerateObjCSetter - Synthesize an Objective-C property setter function 2009 /// for the given property. 2010 void GenerateObjCSetter(ObjCImplementationDecl *IMP, 2011 const ObjCPropertyImplDecl *PID); 2012 void generateObjCSetterBody(const ObjCImplementationDecl *classImpl, 2013 const ObjCPropertyImplDecl *propImpl, 2014 llvm::Constant *AtomicHelperFn); 2015 2016 //===--------------------------------------------------------------------===// 2017 // Block Bits 2018 //===--------------------------------------------------------------------===// 2019 2020 /// Emit block literal. 2021 /// \return an LLVM value which is a pointer to a struct which contains 2022 /// information about the block, including the block invoke function, the 2023 /// captured variables, etc. 2024 llvm::Value *EmitBlockLiteral(const BlockExpr *); 2025 2026 llvm::Function *GenerateBlockFunction(GlobalDecl GD, 2027 const CGBlockInfo &Info, 2028 const DeclMapTy &ldm, 2029 bool IsLambdaConversionToBlock, 2030 bool BuildGlobalBlock); 2031 2032 /// Check if \p T is a C++ class that has a destructor that can throw. 2033 static bool cxxDestructorCanThrow(QualType T); 2034 2035 llvm::Constant *GenerateCopyHelperFunction(const CGBlockInfo &blockInfo); 2036 llvm::Constant *GenerateDestroyHelperFunction(const CGBlockInfo &blockInfo); 2037 llvm::Constant *GenerateObjCAtomicSetterCopyHelperFunction( 2038 const ObjCPropertyImplDecl *PID); 2039 llvm::Constant *GenerateObjCAtomicGetterCopyHelperFunction( 2040 const ObjCPropertyImplDecl *PID); 2041 llvm::Value *EmitBlockCopyAndAutorelease(llvm::Value *Block, QualType Ty); 2042 2043 void BuildBlockRelease(llvm::Value *DeclPtr, BlockFieldFlags flags, 2044 bool CanThrow); 2045 2046 class AutoVarEmission; 2047 2048 void emitByrefStructureInit(const AutoVarEmission &emission); 2049 2050 /// Enter a cleanup to destroy a __block variable. Note that this 2051 /// cleanup should be a no-op if the variable hasn't left the stack 2052 /// yet; if a cleanup is required for the variable itself, that needs 2053 /// to be done externally. 2054 /// 2055 /// \param Kind Cleanup kind. 2056 /// 2057 /// \param Addr When \p LoadBlockVarAddr is false, the address of the __block 2058 /// structure that will be passed to _Block_object_dispose. When 2059 /// \p LoadBlockVarAddr is true, the address of the field of the block 2060 /// structure that holds the address of the __block structure. 2061 /// 2062 /// \param Flags The flag that will be passed to _Block_object_dispose. 2063 /// 2064 /// \param LoadBlockVarAddr Indicates whether we need to emit a load from 2065 /// \p Addr to get the address of the __block structure. 2066 void enterByrefCleanup(CleanupKind Kind, Address Addr, BlockFieldFlags Flags, 2067 bool LoadBlockVarAddr, bool CanThrow); 2068 2069 void setBlockContextParameter(const ImplicitParamDecl *D, unsigned argNum, 2070 llvm::Value *ptr); 2071 2072 Address LoadBlockStruct(); 2073 Address GetAddrOfBlockDecl(const VarDecl *var); 2074 2075 /// BuildBlockByrefAddress - Computes the location of the 2076 /// data in a variable which is declared as __block. 2077 Address emitBlockByrefAddress(Address baseAddr, const VarDecl *V, 2078 bool followForward = true); 2079 Address emitBlockByrefAddress(Address baseAddr, 2080 const BlockByrefInfo &info, 2081 bool followForward, 2082 const llvm::Twine &name); 2083 2084 const BlockByrefInfo &getBlockByrefInfo(const VarDecl *var); 2085 2086 QualType BuildFunctionArgList(GlobalDecl GD, FunctionArgList &Args); 2087 2088 void GenerateCode(GlobalDecl GD, llvm::Function *Fn, 2089 const CGFunctionInfo &FnInfo); 2090 2091 /// Annotate the function with an attribute that disables TSan checking at 2092 /// runtime. 2093 void markAsIgnoreThreadCheckingAtRuntime(llvm::Function *Fn); 2094 2095 /// Emit code for the start of a function. 2096 /// \param Loc The location to be associated with the function. 2097 /// \param StartLoc The location of the function body. 2098 void StartFunction(GlobalDecl GD, 2099 QualType RetTy, 2100 llvm::Function *Fn, 2101 const CGFunctionInfo &FnInfo, 2102 const FunctionArgList &Args, 2103 SourceLocation Loc = SourceLocation(), 2104 SourceLocation StartLoc = SourceLocation()); 2105 2106 static bool IsConstructorDelegationValid(const CXXConstructorDecl *Ctor); 2107 2108 void EmitConstructorBody(FunctionArgList &Args); 2109 void EmitDestructorBody(FunctionArgList &Args); 2110 void emitImplicitAssignmentOperatorBody(FunctionArgList &Args); 2111 void EmitFunctionBody(const Stmt *Body); 2112 void EmitBlockWithFallThrough(llvm::BasicBlock *BB, const Stmt *S); 2113 2114 void EmitForwardingCallToLambda(const CXXMethodDecl *LambdaCallOperator, 2115 CallArgList &CallArgs); 2116 void EmitLambdaBlockInvokeBody(); 2117 void EmitLambdaDelegatingInvokeBody(const CXXMethodDecl *MD); 2118 void EmitLambdaStaticInvokeBody(const CXXMethodDecl *MD); 2119 void EmitLambdaVLACapture(const VariableArrayType *VAT, LValue LV) { 2120 EmitStoreThroughLValue(RValue::get(VLASizeMap[VAT->getSizeExpr()]), LV); 2121 } 2122 void EmitAsanPrologueOrEpilogue(bool Prologue); 2123 2124 /// Emit the unified return block, trying to avoid its emission when 2125 /// possible. 2126 /// \return The debug location of the user written return statement if the 2127 /// return block is is avoided. 2128 llvm::DebugLoc EmitReturnBlock(); 2129 2130 /// FinishFunction - Complete IR generation of the current function. It is 2131 /// legal to call this function even if there is no current insertion point. 2132 void FinishFunction(SourceLocation EndLoc=SourceLocation()); 2133 2134 void StartThunk(llvm::Function *Fn, GlobalDecl GD, 2135 const CGFunctionInfo &FnInfo, bool IsUnprototyped); 2136 2137 void EmitCallAndReturnForThunk(llvm::FunctionCallee Callee, 2138 const ThunkInfo *Thunk, bool IsUnprototyped); 2139 2140 void FinishThunk(); 2141 2142 /// Emit a musttail call for a thunk with a potentially adjusted this pointer. 2143 void EmitMustTailThunk(GlobalDecl GD, llvm::Value *AdjustedThisPtr, 2144 llvm::FunctionCallee Callee); 2145 2146 /// Generate a thunk for the given method. 2147 void generateThunk(llvm::Function *Fn, const CGFunctionInfo &FnInfo, 2148 GlobalDecl GD, const ThunkInfo &Thunk, 2149 bool IsUnprototyped); 2150 2151 llvm::Function *GenerateVarArgsThunk(llvm::Function *Fn, 2152 const CGFunctionInfo &FnInfo, 2153 GlobalDecl GD, const ThunkInfo &Thunk); 2154 2155 void EmitCtorPrologue(const CXXConstructorDecl *CD, CXXCtorType Type, 2156 FunctionArgList &Args); 2157 2158 void EmitInitializerForField(FieldDecl *Field, LValue LHS, Expr *Init); 2159 2160 /// Struct with all information about dynamic [sub]class needed to set vptr. 2161 struct VPtr { 2162 BaseSubobject Base; 2163 const CXXRecordDecl *NearestVBase; 2164 CharUnits OffsetFromNearestVBase; 2165 const CXXRecordDecl *VTableClass; 2166 }; 2167 2168 /// Initialize the vtable pointer of the given subobject. 2169 void InitializeVTablePointer(const VPtr &vptr); 2170 2171 typedef llvm::SmallVector<VPtr, 4> VPtrsVector; 2172 2173 typedef llvm::SmallPtrSet<const CXXRecordDecl *, 4> VisitedVirtualBasesSetTy; 2174 VPtrsVector getVTablePointers(const CXXRecordDecl *VTableClass); 2175 2176 void getVTablePointers(BaseSubobject Base, const CXXRecordDecl *NearestVBase, 2177 CharUnits OffsetFromNearestVBase, 2178 bool BaseIsNonVirtualPrimaryBase, 2179 const CXXRecordDecl *VTableClass, 2180 VisitedVirtualBasesSetTy &VBases, VPtrsVector &vptrs); 2181 2182 void InitializeVTablePointers(const CXXRecordDecl *ClassDecl); 2183 2184 /// GetVTablePtr - Return the Value of the vtable pointer member pointed 2185 /// to by This. 2186 llvm::Value *GetVTablePtr(Address This, llvm::Type *VTableTy, 2187 const CXXRecordDecl *VTableClass); 2188 2189 enum CFITypeCheckKind { 2190 CFITCK_VCall, 2191 CFITCK_NVCall, 2192 CFITCK_DerivedCast, 2193 CFITCK_UnrelatedCast, 2194 CFITCK_ICall, 2195 CFITCK_NVMFCall, 2196 CFITCK_VMFCall, 2197 }; 2198 2199 /// Derived is the presumed address of an object of type T after a 2200 /// cast. If T is a polymorphic class type, emit a check that the virtual 2201 /// table for Derived belongs to a class derived from T. 2202 void EmitVTablePtrCheckForCast(QualType T, llvm::Value *Derived, 2203 bool MayBeNull, CFITypeCheckKind TCK, 2204 SourceLocation Loc); 2205 2206 /// EmitVTablePtrCheckForCall - Virtual method MD is being called via VTable. 2207 /// If vptr CFI is enabled, emit a check that VTable is valid. 2208 void EmitVTablePtrCheckForCall(const CXXRecordDecl *RD, llvm::Value *VTable, 2209 CFITypeCheckKind TCK, SourceLocation Loc); 2210 2211 /// EmitVTablePtrCheck - Emit a check that VTable is a valid virtual table for 2212 /// RD using llvm.type.test. 2213 void EmitVTablePtrCheck(const CXXRecordDecl *RD, llvm::Value *VTable, 2214 CFITypeCheckKind TCK, SourceLocation Loc); 2215 2216 /// If whole-program virtual table optimization is enabled, emit an assumption 2217 /// that VTable is a member of RD's type identifier. Or, if vptr CFI is 2218 /// enabled, emit a check that VTable is a member of RD's type identifier. 2219 void EmitTypeMetadataCodeForVCall(const CXXRecordDecl *RD, 2220 llvm::Value *VTable, SourceLocation Loc); 2221 2222 /// Returns whether we should perform a type checked load when loading a 2223 /// virtual function for virtual calls to members of RD. This is generally 2224 /// true when both vcall CFI and whole-program-vtables are enabled. 2225 bool ShouldEmitVTableTypeCheckedLoad(const CXXRecordDecl *RD); 2226 2227 /// Emit a type checked load from the given vtable. 2228 llvm::Value *EmitVTableTypeCheckedLoad(const CXXRecordDecl *RD, llvm::Value *VTable, 2229 uint64_t VTableByteOffset); 2230 2231 /// EnterDtorCleanups - Enter the cleanups necessary to complete the 2232 /// given phase of destruction for a destructor. The end result 2233 /// should call destructors on members and base classes in reverse 2234 /// order of their construction. 2235 void EnterDtorCleanups(const CXXDestructorDecl *Dtor, CXXDtorType Type); 2236 2237 /// ShouldInstrumentFunction - Return true if the current function should be 2238 /// instrumented with __cyg_profile_func_* calls 2239 bool ShouldInstrumentFunction(); 2240 2241 /// ShouldXRayInstrument - Return true if the current function should be 2242 /// instrumented with XRay nop sleds. 2243 bool ShouldXRayInstrumentFunction() const; 2244 2245 /// AlwaysEmitXRayCustomEvents - Return true if we must unconditionally emit 2246 /// XRay custom event handling calls. 2247 bool AlwaysEmitXRayCustomEvents() const; 2248 2249 /// AlwaysEmitXRayTypedEvents - Return true if clang must unconditionally emit 2250 /// XRay typed event handling calls. 2251 bool AlwaysEmitXRayTypedEvents() const; 2252 2253 /// Encode an address into a form suitable for use in a function prologue. 2254 llvm::Constant *EncodeAddrForUseInPrologue(llvm::Function *F, 2255 llvm::Constant *Addr); 2256 2257 /// Decode an address used in a function prologue, encoded by \c 2258 /// EncodeAddrForUseInPrologue. 2259 llvm::Value *DecodeAddrUsedInPrologue(llvm::Value *F, 2260 llvm::Value *EncodedAddr); 2261 2262 /// EmitFunctionProlog - Emit the target specific LLVM code to load the 2263 /// arguments for the given function. This is also responsible for naming the 2264 /// LLVM function arguments. 2265 void EmitFunctionProlog(const CGFunctionInfo &FI, 2266 llvm::Function *Fn, 2267 const FunctionArgList &Args); 2268 2269 /// EmitFunctionEpilog - Emit the target specific LLVM code to return the 2270 /// given temporary. 2271 void EmitFunctionEpilog(const CGFunctionInfo &FI, bool EmitRetDbgLoc, 2272 SourceLocation EndLoc); 2273 2274 /// Emit a test that checks if the return value \p RV is nonnull. 2275 void EmitReturnValueCheck(llvm::Value *RV); 2276 2277 /// EmitStartEHSpec - Emit the start of the exception spec. 2278 void EmitStartEHSpec(const Decl *D); 2279 2280 /// EmitEndEHSpec - Emit the end of the exception spec. 2281 void EmitEndEHSpec(const Decl *D); 2282 2283 /// getTerminateLandingPad - Return a landing pad that just calls terminate. 2284 llvm::BasicBlock *getTerminateLandingPad(); 2285 2286 /// getTerminateLandingPad - Return a cleanup funclet that just calls 2287 /// terminate. 2288 llvm::BasicBlock *getTerminateFunclet(); 2289 2290 /// getTerminateHandler - Return a handler (not a landing pad, just 2291 /// a catch handler) that just calls terminate. This is used when 2292 /// a terminate scope encloses a try. 2293 llvm::BasicBlock *getTerminateHandler(); 2294 2295 llvm::Type *ConvertTypeForMem(QualType T); 2296 llvm::Type *ConvertType(QualType T); 2297 llvm::Type *ConvertType(const TypeDecl *T) { 2298 return ConvertType(getContext().getTypeDeclType(T)); 2299 } 2300 2301 /// LoadObjCSelf - Load the value of self. This function is only valid while 2302 /// generating code for an Objective-C method. 2303 llvm::Value *LoadObjCSelf(); 2304 2305 /// TypeOfSelfObject - Return type of object that this self represents. 2306 QualType TypeOfSelfObject(); 2307 2308 /// getEvaluationKind - Return the TypeEvaluationKind of QualType \c T. 2309 static TypeEvaluationKind getEvaluationKind(QualType T); 2310 2311 static bool hasScalarEvaluationKind(QualType T) { 2312 return getEvaluationKind(T) == TEK_Scalar; 2313 } 2314 2315 static bool hasAggregateEvaluationKind(QualType T) { 2316 return getEvaluationKind(T) == TEK_Aggregate; 2317 } 2318 2319 /// createBasicBlock - Create an LLVM basic block. 2320 llvm::BasicBlock *createBasicBlock(const Twine &name = "", 2321 llvm::Function *parent = nullptr, 2322 llvm::BasicBlock *before = nullptr) { 2323 return llvm::BasicBlock::Create(getLLVMContext(), name, parent, before); 2324 } 2325 2326 /// getBasicBlockForLabel - Return the LLVM basicblock that the specified 2327 /// label maps to. 2328 JumpDest getJumpDestForLabel(const LabelDecl *S); 2329 2330 /// SimplifyForwardingBlocks - If the given basic block is only a branch to 2331 /// another basic block, simplify it. This assumes that no other code could 2332 /// potentially reference the basic block. 2333 void SimplifyForwardingBlocks(llvm::BasicBlock *BB); 2334 2335 /// EmitBlock - Emit the given block \arg BB and set it as the insert point, 2336 /// adding a fall-through branch from the current insert block if 2337 /// necessary. It is legal to call this function even if there is no current 2338 /// insertion point. 2339 /// 2340 /// IsFinished - If true, indicates that the caller has finished emitting 2341 /// branches to the given block and does not expect to emit code into it. This 2342 /// means the block can be ignored if it is unreachable. 2343 void EmitBlock(llvm::BasicBlock *BB, bool IsFinished=false); 2344 2345 /// EmitBlockAfterUses - Emit the given block somewhere hopefully 2346 /// near its uses, and leave the insertion point in it. 2347 void EmitBlockAfterUses(llvm::BasicBlock *BB); 2348 2349 /// EmitBranch - Emit a branch to the specified basic block from the current 2350 /// insert block, taking care to avoid creation of branches from dummy 2351 /// blocks. It is legal to call this function even if there is no current 2352 /// insertion point. 2353 /// 2354 /// This function clears the current insertion point. The caller should follow 2355 /// calls to this function with calls to Emit*Block prior to generation new 2356 /// code. 2357 void EmitBranch(llvm::BasicBlock *Block); 2358 2359 /// HaveInsertPoint - True if an insertion point is defined. If not, this 2360 /// indicates that the current code being emitted is unreachable. 2361 bool HaveInsertPoint() const { 2362 return Builder.GetInsertBlock() != nullptr; 2363 } 2364 2365 /// EnsureInsertPoint - Ensure that an insertion point is defined so that 2366 /// emitted IR has a place to go. Note that by definition, if this function 2367 /// creates a block then that block is unreachable; callers may do better to 2368 /// detect when no insertion point is defined and simply skip IR generation. 2369 void EnsureInsertPoint() { 2370 if (!HaveInsertPoint()) 2371 EmitBlock(createBasicBlock()); 2372 } 2373 2374 /// ErrorUnsupported - Print out an error that codegen doesn't support the 2375 /// specified stmt yet. 2376 void ErrorUnsupported(const Stmt *S, const char *Type); 2377 2378 //===--------------------------------------------------------------------===// 2379 // Helpers 2380 //===--------------------------------------------------------------------===// 2381 2382 LValue MakeAddrLValue(Address Addr, QualType T, 2383 AlignmentSource Source = AlignmentSource::Type) { 2384 return LValue::MakeAddr(Addr, T, getContext(), LValueBaseInfo(Source), 2385 CGM.getTBAAAccessInfo(T)); 2386 } 2387 2388 LValue MakeAddrLValue(Address Addr, QualType T, LValueBaseInfo BaseInfo, 2389 TBAAAccessInfo TBAAInfo) { 2390 return LValue::MakeAddr(Addr, T, getContext(), BaseInfo, TBAAInfo); 2391 } 2392 2393 LValue MakeAddrLValue(llvm::Value *V, QualType T, CharUnits Alignment, 2394 AlignmentSource Source = AlignmentSource::Type) { 2395 return LValue::MakeAddr(Address(V, Alignment), T, getContext(), 2396 LValueBaseInfo(Source), CGM.getTBAAAccessInfo(T)); 2397 } 2398 2399 LValue MakeAddrLValue(llvm::Value *V, QualType T, CharUnits Alignment, 2400 LValueBaseInfo BaseInfo, TBAAAccessInfo TBAAInfo) { 2401 return LValue::MakeAddr(Address(V, Alignment), T, getContext(), 2402 BaseInfo, TBAAInfo); 2403 } 2404 2405 LValue MakeNaturalAlignPointeeAddrLValue(llvm::Value *V, QualType T); 2406 LValue MakeNaturalAlignAddrLValue(llvm::Value *V, QualType T); 2407 2408 Address EmitLoadOfReference(LValue RefLVal, 2409 LValueBaseInfo *PointeeBaseInfo = nullptr, 2410 TBAAAccessInfo *PointeeTBAAInfo = nullptr); 2411 LValue EmitLoadOfReferenceLValue(LValue RefLVal); 2412 LValue EmitLoadOfReferenceLValue(Address RefAddr, QualType RefTy, 2413 AlignmentSource Source = 2414 AlignmentSource::Type) { 2415 LValue RefLVal = MakeAddrLValue(RefAddr, RefTy, LValueBaseInfo(Source), 2416 CGM.getTBAAAccessInfo(RefTy)); 2417 return EmitLoadOfReferenceLValue(RefLVal); 2418 } 2419 2420 Address EmitLoadOfPointer(Address Ptr, const PointerType *PtrTy, 2421 LValueBaseInfo *BaseInfo = nullptr, 2422 TBAAAccessInfo *TBAAInfo = nullptr); 2423 LValue EmitLoadOfPointerLValue(Address Ptr, const PointerType *PtrTy); 2424 2425 /// CreateTempAlloca - This creates an alloca and inserts it into the entry 2426 /// block if \p ArraySize is nullptr, otherwise inserts it at the current 2427 /// insertion point of the builder. The caller is responsible for setting an 2428 /// appropriate alignment on 2429 /// the alloca. 2430 /// 2431 /// \p ArraySize is the number of array elements to be allocated if it 2432 /// is not nullptr. 2433 /// 2434 /// LangAS::Default is the address space of pointers to local variables and 2435 /// temporaries, as exposed in the source language. In certain 2436 /// configurations, this is not the same as the alloca address space, and a 2437 /// cast is needed to lift the pointer from the alloca AS into 2438 /// LangAS::Default. This can happen when the target uses a restricted 2439 /// address space for the stack but the source language requires 2440 /// LangAS::Default to be a generic address space. The latter condition is 2441 /// common for most programming languages; OpenCL is an exception in that 2442 /// LangAS::Default is the private address space, which naturally maps 2443 /// to the stack. 2444 /// 2445 /// Because the address of a temporary is often exposed to the program in 2446 /// various ways, this function will perform the cast. The original alloca 2447 /// instruction is returned through \p Alloca if it is not nullptr. 2448 /// 2449 /// The cast is not performaed in CreateTempAllocaWithoutCast. This is 2450 /// more efficient if the caller knows that the address will not be exposed. 2451 llvm::AllocaInst *CreateTempAlloca(llvm::Type *Ty, const Twine &Name = "tmp", 2452 llvm::Value *ArraySize = nullptr); 2453 Address CreateTempAlloca(llvm::Type *Ty, CharUnits align, 2454 const Twine &Name = "tmp", 2455 llvm::Value *ArraySize = nullptr, 2456 Address *Alloca = nullptr); 2457 Address CreateTempAllocaWithoutCast(llvm::Type *Ty, CharUnits align, 2458 const Twine &Name = "tmp", 2459 llvm::Value *ArraySize = nullptr); 2460 2461 /// CreateDefaultAlignedTempAlloca - This creates an alloca with the 2462 /// default ABI alignment of the given LLVM type. 2463 /// 2464 /// IMPORTANT NOTE: This is *not* generally the right alignment for 2465 /// any given AST type that happens to have been lowered to the 2466 /// given IR type. This should only ever be used for function-local, 2467 /// IR-driven manipulations like saving and restoring a value. Do 2468 /// not hand this address off to arbitrary IRGen routines, and especially 2469 /// do not pass it as an argument to a function that might expect a 2470 /// properly ABI-aligned value. 2471 Address CreateDefaultAlignTempAlloca(llvm::Type *Ty, 2472 const Twine &Name = "tmp"); 2473 2474 /// InitTempAlloca - Provide an initial value for the given alloca which 2475 /// will be observable at all locations in the function. 2476 /// 2477 /// The address should be something that was returned from one of 2478 /// the CreateTempAlloca or CreateMemTemp routines, and the 2479 /// initializer must be valid in the entry block (i.e. it must 2480 /// either be a constant or an argument value). 2481 void InitTempAlloca(Address Alloca, llvm::Value *Value); 2482 2483 /// CreateIRTemp - Create a temporary IR object of the given type, with 2484 /// appropriate alignment. This routine should only be used when an temporary 2485 /// value needs to be stored into an alloca (for example, to avoid explicit 2486 /// PHI construction), but the type is the IR type, not the type appropriate 2487 /// for storing in memory. 2488 /// 2489 /// That is, this is exactly equivalent to CreateMemTemp, but calling 2490 /// ConvertType instead of ConvertTypeForMem. 2491 Address CreateIRTemp(QualType T, const Twine &Name = "tmp"); 2492 2493 /// CreateMemTemp - Create a temporary memory object of the given type, with 2494 /// appropriate alignmen and cast it to the default address space. Returns 2495 /// the original alloca instruction by \p Alloca if it is not nullptr. 2496 Address CreateMemTemp(QualType T, const Twine &Name = "tmp", 2497 Address *Alloca = nullptr); 2498 Address CreateMemTemp(QualType T, CharUnits Align, const Twine &Name = "tmp", 2499 Address *Alloca = nullptr); 2500 2501 /// CreateMemTemp - Create a temporary memory object of the given type, with 2502 /// appropriate alignmen without casting it to the default address space. 2503 Address CreateMemTempWithoutCast(QualType T, const Twine &Name = "tmp"); 2504 Address CreateMemTempWithoutCast(QualType T, CharUnits Align, 2505 const Twine &Name = "tmp"); 2506 2507 /// CreateAggTemp - Create a temporary memory object for the given 2508 /// aggregate type. 2509 AggValueSlot CreateAggTemp(QualType T, const Twine &Name = "tmp", 2510 Address *Alloca = nullptr) { 2511 return AggValueSlot::forAddr(CreateMemTemp(T, Name, Alloca), 2512 T.getQualifiers(), 2513 AggValueSlot::IsNotDestructed, 2514 AggValueSlot::DoesNotNeedGCBarriers, 2515 AggValueSlot::IsNotAliased, 2516 AggValueSlot::DoesNotOverlap); 2517 } 2518 2519 /// Emit a cast to void* in the appropriate address space. 2520 llvm::Value *EmitCastToVoidPtr(llvm::Value *value); 2521 2522 /// EvaluateExprAsBool - Perform the usual unary conversions on the specified 2523 /// expression and compare the result against zero, returning an Int1Ty value. 2524 llvm::Value *EvaluateExprAsBool(const Expr *E); 2525 2526 /// EmitIgnoredExpr - Emit an expression in a context which ignores the result. 2527 void EmitIgnoredExpr(const Expr *E); 2528 2529 /// EmitAnyExpr - Emit code to compute the specified expression which can have 2530 /// any type. The result is returned as an RValue struct. If this is an 2531 /// aggregate expression, the aggloc/agglocvolatile arguments indicate where 2532 /// the result should be returned. 2533 /// 2534 /// \param ignoreResult True if the resulting value isn't used. 2535 RValue EmitAnyExpr(const Expr *E, 2536 AggValueSlot aggSlot = AggValueSlot::ignored(), 2537 bool ignoreResult = false); 2538 2539 // EmitVAListRef - Emit a "reference" to a va_list; this is either the address 2540 // or the value of the expression, depending on how va_list is defined. 2541 Address EmitVAListRef(const Expr *E); 2542 2543 /// Emit a "reference" to a __builtin_ms_va_list; this is 2544 /// always the value of the expression, because a __builtin_ms_va_list is a 2545 /// pointer to a char. 2546 Address EmitMSVAListRef(const Expr *E); 2547 2548 /// EmitAnyExprToTemp - Similarly to EmitAnyExpr(), however, the result will 2549 /// always be accessible even if no aggregate location is provided. 2550 RValue EmitAnyExprToTemp(const Expr *E); 2551 2552 /// EmitAnyExprToMem - Emits the code necessary to evaluate an 2553 /// arbitrary expression into the given memory location. 2554 void EmitAnyExprToMem(const Expr *E, Address Location, 2555 Qualifiers Quals, bool IsInitializer); 2556 2557 void EmitAnyExprToExn(const Expr *E, Address Addr); 2558 2559 /// EmitExprAsInit - Emits the code necessary to initialize a 2560 /// location in memory with the given initializer. 2561 void EmitExprAsInit(const Expr *init, const ValueDecl *D, LValue lvalue, 2562 bool capturedByInit); 2563 2564 /// hasVolatileMember - returns true if aggregate type has a volatile 2565 /// member. 2566 bool hasVolatileMember(QualType T) { 2567 if (const RecordType *RT = T->getAs<RecordType>()) { 2568 const RecordDecl *RD = cast<RecordDecl>(RT->getDecl()); 2569 return RD->hasVolatileMember(); 2570 } 2571 return false; 2572 } 2573 2574 /// Determine whether a return value slot may overlap some other object. 2575 AggValueSlot::Overlap_t getOverlapForReturnValue() { 2576 // FIXME: Assuming no overlap here breaks guaranteed copy elision for base 2577 // class subobjects. These cases may need to be revisited depending on the 2578 // resolution of the relevant core issue. 2579 return AggValueSlot::DoesNotOverlap; 2580 } 2581 2582 /// Determine whether a field initialization may overlap some other object. 2583 AggValueSlot::Overlap_t getOverlapForFieldInit(const FieldDecl *FD); 2584 2585 /// Determine whether a base class initialization may overlap some other 2586 /// object. 2587 AggValueSlot::Overlap_t getOverlapForBaseInit(const CXXRecordDecl *RD, 2588 const CXXRecordDecl *BaseRD, 2589 bool IsVirtual); 2590 2591 /// Emit an aggregate assignment. 2592 void EmitAggregateAssign(LValue Dest, LValue Src, QualType EltTy) { 2593 bool IsVolatile = hasVolatileMember(EltTy); 2594 EmitAggregateCopy(Dest, Src, EltTy, AggValueSlot::MayOverlap, IsVolatile); 2595 } 2596 2597 void EmitAggregateCopyCtor(LValue Dest, LValue Src, 2598 AggValueSlot::Overlap_t MayOverlap) { 2599 EmitAggregateCopy(Dest, Src, Src.getType(), MayOverlap); 2600 } 2601 2602 /// EmitAggregateCopy - Emit an aggregate copy. 2603 /// 2604 /// \param isVolatile \c true iff either the source or the destination is 2605 /// volatile. 2606 /// \param MayOverlap Whether the tail padding of the destination might be 2607 /// occupied by some other object. More efficient code can often be 2608 /// generated if not. 2609 void EmitAggregateCopy(LValue Dest, LValue Src, QualType EltTy, 2610 AggValueSlot::Overlap_t MayOverlap, 2611 bool isVolatile = false); 2612 2613 /// GetAddrOfLocalVar - Return the address of a local variable. 2614 Address GetAddrOfLocalVar(const VarDecl *VD) { 2615 auto it = LocalDeclMap.find(VD); 2616 assert(it != LocalDeclMap.end() && 2617 "Invalid argument to GetAddrOfLocalVar(), no decl!"); 2618 return it->second; 2619 } 2620 2621 /// Given an opaque value expression, return its LValue mapping if it exists, 2622 /// otherwise create one. 2623 LValue getOrCreateOpaqueLValueMapping(const OpaqueValueExpr *e); 2624 2625 /// Given an opaque value expression, return its RValue mapping if it exists, 2626 /// otherwise create one. 2627 RValue getOrCreateOpaqueRValueMapping(const OpaqueValueExpr *e); 2628 2629 /// Get the index of the current ArrayInitLoopExpr, if any. 2630 llvm::Value *getArrayInitIndex() { return ArrayInitIndex; } 2631 2632 /// getAccessedFieldNo - Given an encoded value and a result number, return 2633 /// the input field number being accessed. 2634 static unsigned getAccessedFieldNo(unsigned Idx, const llvm::Constant *Elts); 2635 2636 llvm::BlockAddress *GetAddrOfLabel(const LabelDecl *L); 2637 llvm::BasicBlock *GetIndirectGotoBlock(); 2638 2639 /// Check if \p E is a C++ "this" pointer wrapped in value-preserving casts. 2640 static bool IsWrappedCXXThis(const Expr *E); 2641 2642 /// EmitNullInitialization - Generate code to set a value of the given type to 2643 /// null, If the type contains data member pointers, they will be initialized 2644 /// to -1 in accordance with the Itanium C++ ABI. 2645 void EmitNullInitialization(Address DestPtr, QualType Ty); 2646 2647 /// Emits a call to an LLVM variable-argument intrinsic, either 2648 /// \c llvm.va_start or \c llvm.va_end. 2649 /// \param ArgValue A reference to the \c va_list as emitted by either 2650 /// \c EmitVAListRef or \c EmitMSVAListRef. 2651 /// \param IsStart If \c true, emits a call to \c llvm.va_start; otherwise, 2652 /// calls \c llvm.va_end. 2653 llvm::Value *EmitVAStartEnd(llvm::Value *ArgValue, bool IsStart); 2654 2655 /// Generate code to get an argument from the passed in pointer 2656 /// and update it accordingly. 2657 /// \param VE The \c VAArgExpr for which to generate code. 2658 /// \param VAListAddr Receives a reference to the \c va_list as emitted by 2659 /// either \c EmitVAListRef or \c EmitMSVAListRef. 2660 /// \returns A pointer to the argument. 2661 // FIXME: We should be able to get rid of this method and use the va_arg 2662 // instruction in LLVM instead once it works well enough. 2663 Address EmitVAArg(VAArgExpr *VE, Address &VAListAddr); 2664 2665 /// emitArrayLength - Compute the length of an array, even if it's a 2666 /// VLA, and drill down to the base element type. 2667 llvm::Value *emitArrayLength(const ArrayType *arrayType, 2668 QualType &baseType, 2669 Address &addr); 2670 2671 /// EmitVLASize - Capture all the sizes for the VLA expressions in 2672 /// the given variably-modified type and store them in the VLASizeMap. 2673 /// 2674 /// This function can be called with a null (unreachable) insert point. 2675 void EmitVariablyModifiedType(QualType Ty); 2676 2677 struct VlaSizePair { 2678 llvm::Value *NumElts; 2679 QualType Type; 2680 2681 VlaSizePair(llvm::Value *NE, QualType T) : NumElts(NE), Type(T) {} 2682 }; 2683 2684 /// Return the number of elements for a single dimension 2685 /// for the given array type. 2686 VlaSizePair getVLAElements1D(const VariableArrayType *vla); 2687 VlaSizePair getVLAElements1D(QualType vla); 2688 2689 /// Returns an LLVM value that corresponds to the size, 2690 /// in non-variably-sized elements, of a variable length array type, 2691 /// plus that largest non-variably-sized element type. Assumes that 2692 /// the type has already been emitted with EmitVariablyModifiedType. 2693 VlaSizePair getVLASize(const VariableArrayType *vla); 2694 VlaSizePair getVLASize(QualType vla); 2695 2696 /// LoadCXXThis - Load the value of 'this'. This function is only valid while 2697 /// generating code for an C++ member function. 2698 llvm::Value *LoadCXXThis() { 2699 assert(CXXThisValue && "no 'this' value for this function"); 2700 return CXXThisValue; 2701 } 2702 Address LoadCXXThisAddress(); 2703 2704 /// LoadCXXVTT - Load the VTT parameter to base constructors/destructors have 2705 /// virtual bases. 2706 // FIXME: Every place that calls LoadCXXVTT is something 2707 // that needs to be abstracted properly. 2708 llvm::Value *LoadCXXVTT() { 2709 assert(CXXStructorImplicitParamValue && "no VTT value for this function"); 2710 return CXXStructorImplicitParamValue; 2711 } 2712 2713 /// GetAddressOfBaseOfCompleteClass - Convert the given pointer to a 2714 /// complete class to the given direct base. 2715 Address 2716 GetAddressOfDirectBaseInCompleteClass(Address Value, 2717 const CXXRecordDecl *Derived, 2718 const CXXRecordDecl *Base, 2719 bool BaseIsVirtual); 2720 2721 static bool ShouldNullCheckClassCastValue(const CastExpr *Cast); 2722 2723 /// GetAddressOfBaseClass - This function will add the necessary delta to the 2724 /// load of 'this' and returns address of the base class. 2725 Address GetAddressOfBaseClass(Address Value, 2726 const CXXRecordDecl *Derived, 2727 CastExpr::path_const_iterator PathBegin, 2728 CastExpr::path_const_iterator PathEnd, 2729 bool NullCheckValue, SourceLocation Loc); 2730 2731 Address GetAddressOfDerivedClass(Address Value, 2732 const CXXRecordDecl *Derived, 2733 CastExpr::path_const_iterator PathBegin, 2734 CastExpr::path_const_iterator PathEnd, 2735 bool NullCheckValue); 2736 2737 /// GetVTTParameter - Return the VTT parameter that should be passed to a 2738 /// base constructor/destructor with virtual bases. 2739 /// FIXME: VTTs are Itanium ABI-specific, so the definition should move 2740 /// to ItaniumCXXABI.cpp together with all the references to VTT. 2741 llvm::Value *GetVTTParameter(GlobalDecl GD, bool ForVirtualBase, 2742 bool Delegating); 2743 2744 void EmitDelegateCXXConstructorCall(const CXXConstructorDecl *Ctor, 2745 CXXCtorType CtorType, 2746 const FunctionArgList &Args, 2747 SourceLocation Loc); 2748 // It's important not to confuse this and the previous function. Delegating 2749 // constructors are the C++0x feature. The constructor delegate optimization 2750 // is used to reduce duplication in the base and complete consturctors where 2751 // they are substantially the same. 2752 void EmitDelegatingCXXConstructorCall(const CXXConstructorDecl *Ctor, 2753 const FunctionArgList &Args); 2754 2755 /// Emit a call to an inheriting constructor (that is, one that invokes a 2756 /// constructor inherited from a base class) by inlining its definition. This 2757 /// is necessary if the ABI does not support forwarding the arguments to the 2758 /// base class constructor (because they're variadic or similar). 2759 void EmitInlinedInheritingCXXConstructorCall(const CXXConstructorDecl *Ctor, 2760 CXXCtorType CtorType, 2761 bool ForVirtualBase, 2762 bool Delegating, 2763 CallArgList &Args); 2764 2765 /// Emit a call to a constructor inherited from a base class, passing the 2766 /// current constructor's arguments along unmodified (without even making 2767 /// a copy). 2768 void EmitInheritedCXXConstructorCall(const CXXConstructorDecl *D, 2769 bool ForVirtualBase, Address This, 2770 bool InheritedFromVBase, 2771 const CXXInheritedCtorInitExpr *E); 2772 2773 void EmitCXXConstructorCall(const CXXConstructorDecl *D, CXXCtorType Type, 2774 bool ForVirtualBase, bool Delegating, 2775 AggValueSlot ThisAVS, const CXXConstructExpr *E); 2776 2777 void EmitCXXConstructorCall(const CXXConstructorDecl *D, CXXCtorType Type, 2778 bool ForVirtualBase, bool Delegating, 2779 Address This, CallArgList &Args, 2780 AggValueSlot::Overlap_t Overlap, 2781 SourceLocation Loc, bool NewPointerIsChecked); 2782 2783 /// Emit assumption load for all bases. Requires to be be called only on 2784 /// most-derived class and not under construction of the object. 2785 void EmitVTableAssumptionLoads(const CXXRecordDecl *ClassDecl, Address This); 2786 2787 /// Emit assumption that vptr load == global vtable. 2788 void EmitVTableAssumptionLoad(const VPtr &vptr, Address This); 2789 2790 void EmitSynthesizedCXXCopyCtorCall(const CXXConstructorDecl *D, 2791 Address This, Address Src, 2792 const CXXConstructExpr *E); 2793 2794 void EmitCXXAggrConstructorCall(const CXXConstructorDecl *D, 2795 const ArrayType *ArrayTy, 2796 Address ArrayPtr, 2797 const CXXConstructExpr *E, 2798 bool NewPointerIsChecked, 2799 bool ZeroInitialization = false); 2800 2801 void EmitCXXAggrConstructorCall(const CXXConstructorDecl *D, 2802 llvm::Value *NumElements, 2803 Address ArrayPtr, 2804 const CXXConstructExpr *E, 2805 bool NewPointerIsChecked, 2806 bool ZeroInitialization = false); 2807 2808 static Destroyer destroyCXXObject; 2809 2810 void EmitCXXDestructorCall(const CXXDestructorDecl *D, CXXDtorType Type, 2811 bool ForVirtualBase, bool Delegating, Address This, 2812 QualType ThisTy); 2813 2814 void EmitNewArrayInitializer(const CXXNewExpr *E, QualType elementType, 2815 llvm::Type *ElementTy, Address NewPtr, 2816 llvm::Value *NumElements, 2817 llvm::Value *AllocSizeWithoutCookie); 2818 2819 void EmitCXXTemporary(const CXXTemporary *Temporary, QualType TempType, 2820 Address Ptr); 2821 2822 llvm::Value *EmitLifetimeStart(uint64_t Size, llvm::Value *Addr); 2823 void EmitLifetimeEnd(llvm::Value *Size, llvm::Value *Addr); 2824 2825 llvm::Value *EmitCXXNewExpr(const CXXNewExpr *E); 2826 void EmitCXXDeleteExpr(const CXXDeleteExpr *E); 2827 2828 void EmitDeleteCall(const FunctionDecl *DeleteFD, llvm::Value *Ptr, 2829 QualType DeleteTy, llvm::Value *NumElements = nullptr, 2830 CharUnits CookieSize = CharUnits()); 2831 2832 RValue EmitBuiltinNewDeleteCall(const FunctionProtoType *Type, 2833 const CallExpr *TheCallExpr, bool IsDelete); 2834 2835 llvm::Value *EmitCXXTypeidExpr(const CXXTypeidExpr *E); 2836 llvm::Value *EmitDynamicCast(Address V, const CXXDynamicCastExpr *DCE); 2837 Address EmitCXXUuidofExpr(const CXXUuidofExpr *E); 2838 2839 /// Situations in which we might emit a check for the suitability of a 2840 /// pointer or glvalue. Needs to be kept in sync with ubsan_handlers.cpp in 2841 /// compiler-rt. 2842 enum TypeCheckKind { 2843 /// Checking the operand of a load. Must be suitably sized and aligned. 2844 TCK_Load, 2845 /// Checking the destination of a store. Must be suitably sized and aligned. 2846 TCK_Store, 2847 /// Checking the bound value in a reference binding. Must be suitably sized 2848 /// and aligned, but is not required to refer to an object (until the 2849 /// reference is used), per core issue 453. 2850 TCK_ReferenceBinding, 2851 /// Checking the object expression in a non-static data member access. Must 2852 /// be an object within its lifetime. 2853 TCK_MemberAccess, 2854 /// Checking the 'this' pointer for a call to a non-static member function. 2855 /// Must be an object within its lifetime. 2856 TCK_MemberCall, 2857 /// Checking the 'this' pointer for a constructor call. 2858 TCK_ConstructorCall, 2859 /// Checking the operand of a static_cast to a derived pointer type. Must be 2860 /// null or an object within its lifetime. 2861 TCK_DowncastPointer, 2862 /// Checking the operand of a static_cast to a derived reference type. Must 2863 /// be an object within its lifetime. 2864 TCK_DowncastReference, 2865 /// Checking the operand of a cast to a base object. Must be suitably sized 2866 /// and aligned. 2867 TCK_Upcast, 2868 /// Checking the operand of a cast to a virtual base object. Must be an 2869 /// object within its lifetime. 2870 TCK_UpcastToVirtualBase, 2871 /// Checking the value assigned to a _Nonnull pointer. Must not be null. 2872 TCK_NonnullAssign, 2873 /// Checking the operand of a dynamic_cast or a typeid expression. Must be 2874 /// null or an object within its lifetime. 2875 TCK_DynamicOperation 2876 }; 2877 2878 /// Determine whether the pointer type check \p TCK permits null pointers. 2879 static bool isNullPointerAllowed(TypeCheckKind TCK); 2880 2881 /// Determine whether the pointer type check \p TCK requires a vptr check. 2882 static bool isVptrCheckRequired(TypeCheckKind TCK, QualType Ty); 2883 2884 /// Whether any type-checking sanitizers are enabled. If \c false, 2885 /// calls to EmitTypeCheck can be skipped. 2886 bool sanitizePerformTypeCheck() const; 2887 2888 /// Emit a check that \p V is the address of storage of the 2889 /// appropriate size and alignment for an object of type \p Type 2890 /// (or if ArraySize is provided, for an array of that bound). 2891 void EmitTypeCheck(TypeCheckKind TCK, SourceLocation Loc, llvm::Value *V, 2892 QualType Type, CharUnits Alignment = CharUnits::Zero(), 2893 SanitizerSet SkippedChecks = SanitizerSet(), 2894 llvm::Value *ArraySize = nullptr); 2895 2896 /// Emit a check that \p Base points into an array object, which 2897 /// we can access at index \p Index. \p Accessed should be \c false if we 2898 /// this expression is used as an lvalue, for instance in "&Arr[Idx]". 2899 void EmitBoundsCheck(const Expr *E, const Expr *Base, llvm::Value *Index, 2900 QualType IndexType, bool Accessed); 2901 2902 llvm::Value *EmitScalarPrePostIncDec(const UnaryOperator *E, LValue LV, 2903 bool isInc, bool isPre); 2904 ComplexPairTy EmitComplexPrePostIncDec(const UnaryOperator *E, LValue LV, 2905 bool isInc, bool isPre); 2906 2907 /// Converts Location to a DebugLoc, if debug information is enabled. 2908 llvm::DebugLoc SourceLocToDebugLoc(SourceLocation Location); 2909 2910 /// Get the record field index as represented in debug info. 2911 unsigned getDebugInfoFIndex(const RecordDecl *Rec, unsigned FieldIndex); 2912 2913 2914 //===--------------------------------------------------------------------===// 2915 // Declaration Emission 2916 //===--------------------------------------------------------------------===// 2917 2918 /// EmitDecl - Emit a declaration. 2919 /// 2920 /// This function can be called with a null (unreachable) insert point. 2921 void EmitDecl(const Decl &D); 2922 2923 /// EmitVarDecl - Emit a local variable declaration. 2924 /// 2925 /// This function can be called with a null (unreachable) insert point. 2926 void EmitVarDecl(const VarDecl &D); 2927 2928 void EmitScalarInit(const Expr *init, const ValueDecl *D, LValue lvalue, 2929 bool capturedByInit); 2930 2931 typedef void SpecialInitFn(CodeGenFunction &Init, const VarDecl &D, 2932 llvm::Value *Address); 2933 2934 /// Determine whether the given initializer is trivial in the sense 2935 /// that it requires no code to be generated. 2936 bool isTrivialInitializer(const Expr *Init); 2937 2938 /// EmitAutoVarDecl - Emit an auto variable declaration. 2939 /// 2940 /// This function can be called with a null (unreachable) insert point. 2941 void EmitAutoVarDecl(const VarDecl &D); 2942 2943 class AutoVarEmission { 2944 friend class CodeGenFunction; 2945 2946 const VarDecl *Variable; 2947 2948 /// The address of the alloca for languages with explicit address space 2949 /// (e.g. OpenCL) or alloca casted to generic pointer for address space 2950 /// agnostic languages (e.g. C++). Invalid if the variable was emitted 2951 /// as a global constant. 2952 Address Addr; 2953 2954 llvm::Value *NRVOFlag; 2955 2956 /// True if the variable is a __block variable that is captured by an 2957 /// escaping block. 2958 bool IsEscapingByRef; 2959 2960 /// True if the variable is of aggregate type and has a constant 2961 /// initializer. 2962 bool IsConstantAggregate; 2963 2964 /// Non-null if we should use lifetime annotations. 2965 llvm::Value *SizeForLifetimeMarkers; 2966 2967 /// Address with original alloca instruction. Invalid if the variable was 2968 /// emitted as a global constant. 2969 Address AllocaAddr; 2970 2971 struct Invalid {}; 2972 AutoVarEmission(Invalid) 2973 : Variable(nullptr), Addr(Address::invalid()), 2974 AllocaAddr(Address::invalid()) {} 2975 2976 AutoVarEmission(const VarDecl &variable) 2977 : Variable(&variable), Addr(Address::invalid()), NRVOFlag(nullptr), 2978 IsEscapingByRef(false), IsConstantAggregate(false), 2979 SizeForLifetimeMarkers(nullptr), AllocaAddr(Address::invalid()) {} 2980 2981 bool wasEmittedAsGlobal() const { return !Addr.isValid(); } 2982 2983 public: 2984 static AutoVarEmission invalid() { return AutoVarEmission(Invalid()); } 2985 2986 bool useLifetimeMarkers() const { 2987 return SizeForLifetimeMarkers != nullptr; 2988 } 2989 llvm::Value *getSizeForLifetimeMarkers() const { 2990 assert(useLifetimeMarkers()); 2991 return SizeForLifetimeMarkers; 2992 } 2993 2994 /// Returns the raw, allocated address, which is not necessarily 2995 /// the address of the object itself. It is casted to default 2996 /// address space for address space agnostic languages. 2997 Address getAllocatedAddress() const { 2998 return Addr; 2999 } 3000 3001 /// Returns the address for the original alloca instruction. 3002 Address getOriginalAllocatedAddress() const { return AllocaAddr; } 3003 3004 /// Returns the address of the object within this declaration. 3005 /// Note that this does not chase the forwarding pointer for 3006 /// __block decls. 3007 Address getObjectAddress(CodeGenFunction &CGF) const { 3008 if (!IsEscapingByRef) return Addr; 3009 3010 return CGF.emitBlockByrefAddress(Addr, Variable, /*forward*/ false); 3011 } 3012 }; 3013 AutoVarEmission EmitAutoVarAlloca(const VarDecl &var); 3014 void EmitAutoVarInit(const AutoVarEmission &emission); 3015 void EmitAutoVarCleanups(const AutoVarEmission &emission); 3016 void emitAutoVarTypeCleanup(const AutoVarEmission &emission, 3017 QualType::DestructionKind dtorKind); 3018 3019 /// Emits the alloca and debug information for the size expressions for each 3020 /// dimension of an array. It registers the association of its (1-dimensional) 3021 /// QualTypes and size expression's debug node, so that CGDebugInfo can 3022 /// reference this node when creating the DISubrange object to describe the 3023 /// array types. 3024 void EmitAndRegisterVariableArrayDimensions(CGDebugInfo *DI, 3025 const VarDecl &D, 3026 bool EmitDebugInfo); 3027 3028 void EmitStaticVarDecl(const VarDecl &D, 3029 llvm::GlobalValue::LinkageTypes Linkage); 3030 3031 class ParamValue { 3032 llvm::Value *Value; 3033 unsigned Alignment; 3034 ParamValue(llvm::Value *V, unsigned A) : Value(V), Alignment(A) {} 3035 public: 3036 static ParamValue forDirect(llvm::Value *value) { 3037 return ParamValue(value, 0); 3038 } 3039 static ParamValue forIndirect(Address addr) { 3040 assert(!addr.getAlignment().isZero()); 3041 return ParamValue(addr.getPointer(), addr.getAlignment().getQuantity()); 3042 } 3043 3044 bool isIndirect() const { return Alignment != 0; } 3045 llvm::Value *getAnyValue() const { return Value; } 3046 3047 llvm::Value *getDirectValue() const { 3048 assert(!isIndirect()); 3049 return Value; 3050 } 3051 3052 Address getIndirectAddress() const { 3053 assert(isIndirect()); 3054 return Address(Value, CharUnits::fromQuantity(Alignment)); 3055 } 3056 }; 3057 3058 /// EmitParmDecl - Emit a ParmVarDecl or an ImplicitParamDecl. 3059 void EmitParmDecl(const VarDecl &D, ParamValue Arg, unsigned ArgNo); 3060 3061 /// protectFromPeepholes - Protect a value that we're intending to 3062 /// store to the side, but which will probably be used later, from 3063 /// aggressive peepholing optimizations that might delete it. 3064 /// 3065 /// Pass the result to unprotectFromPeepholes to declare that 3066 /// protection is no longer required. 3067 /// 3068 /// There's no particular reason why this shouldn't apply to 3069 /// l-values, it's just that no existing peepholes work on pointers. 3070 PeepholeProtection protectFromPeepholes(RValue rvalue); 3071 void unprotectFromPeepholes(PeepholeProtection protection); 3072 3073 void emitAlignmentAssumptionCheck(llvm::Value *Ptr, QualType Ty, 3074 SourceLocation Loc, 3075 SourceLocation AssumptionLoc, 3076 llvm::Value *Alignment, 3077 llvm::Value *OffsetValue, 3078 llvm::Value *TheCheck, 3079 llvm::Instruction *Assumption); 3080 3081 void emitAlignmentAssumption(llvm::Value *PtrValue, QualType Ty, 3082 SourceLocation Loc, SourceLocation AssumptionLoc, 3083 llvm::Value *Alignment, 3084 llvm::Value *OffsetValue = nullptr); 3085 3086 void emitAlignmentAssumption(llvm::Value *PtrValue, const Expr *E, 3087 SourceLocation AssumptionLoc, 3088 llvm::Value *Alignment, 3089 llvm::Value *OffsetValue = nullptr); 3090 3091 //===--------------------------------------------------------------------===// 3092 // Statement Emission 3093 //===--------------------------------------------------------------------===// 3094 3095 /// EmitStopPoint - Emit a debug stoppoint if we are emitting debug info. 3096 void EmitStopPoint(const Stmt *S); 3097 3098 /// EmitStmt - Emit the code for the statement \arg S. It is legal to call 3099 /// this function even if there is no current insertion point. 3100 /// 3101 /// This function may clear the current insertion point; callers should use 3102 /// EnsureInsertPoint if they wish to subsequently generate code without first 3103 /// calling EmitBlock, EmitBranch, or EmitStmt. 3104 void EmitStmt(const Stmt *S, ArrayRef<const Attr *> Attrs = None); 3105 3106 /// EmitSimpleStmt - Try to emit a "simple" statement which does not 3107 /// necessarily require an insertion point or debug information; typically 3108 /// because the statement amounts to a jump or a container of other 3109 /// statements. 3110 /// 3111 /// \return True if the statement was handled. 3112 bool EmitSimpleStmt(const Stmt *S, ArrayRef<const Attr *> Attrs); 3113 3114 Address EmitCompoundStmt(const CompoundStmt &S, bool GetLast = false, 3115 AggValueSlot AVS = AggValueSlot::ignored()); 3116 Address EmitCompoundStmtWithoutScope(const CompoundStmt &S, 3117 bool GetLast = false, 3118 AggValueSlot AVS = 3119 AggValueSlot::ignored()); 3120 3121 /// EmitLabel - Emit the block for the given label. It is legal to call this 3122 /// function even if there is no current insertion point. 3123 void EmitLabel(const LabelDecl *D); // helper for EmitLabelStmt. 3124 3125 void EmitLabelStmt(const LabelStmt &S); 3126 void EmitAttributedStmt(const AttributedStmt &S); 3127 void EmitGotoStmt(const GotoStmt &S); 3128 void EmitIndirectGotoStmt(const IndirectGotoStmt &S); 3129 void EmitIfStmt(const IfStmt &S); 3130 3131 void EmitWhileStmt(const WhileStmt &S, 3132 ArrayRef<const Attr *> Attrs = None); 3133 void EmitDoStmt(const DoStmt &S, ArrayRef<const Attr *> Attrs = None); 3134 void EmitForStmt(const ForStmt &S, 3135 ArrayRef<const Attr *> Attrs = None); 3136 void EmitReturnStmt(const ReturnStmt &S); 3137 void EmitDeclStmt(const DeclStmt &S); 3138 void EmitBreakStmt(const BreakStmt &S); 3139 void EmitContinueStmt(const ContinueStmt &S); 3140 void EmitSwitchStmt(const SwitchStmt &S); 3141 void EmitDefaultStmt(const DefaultStmt &S, ArrayRef<const Attr *> Attrs); 3142 void EmitCaseStmt(const CaseStmt &S, ArrayRef<const Attr *> Attrs); 3143 void EmitCaseStmtRange(const CaseStmt &S, ArrayRef<const Attr *> Attrs); 3144 void EmitAsmStmt(const AsmStmt &S); 3145 3146 void EmitObjCForCollectionStmt(const ObjCForCollectionStmt &S); 3147 void EmitObjCAtTryStmt(const ObjCAtTryStmt &S); 3148 void EmitObjCAtThrowStmt(const ObjCAtThrowStmt &S); 3149 void EmitObjCAtSynchronizedStmt(const ObjCAtSynchronizedStmt &S); 3150 void EmitObjCAutoreleasePoolStmt(const ObjCAutoreleasePoolStmt &S); 3151 3152 void EmitCoroutineBody(const CoroutineBodyStmt &S); 3153 void EmitCoreturnStmt(const CoreturnStmt &S); 3154 RValue EmitCoawaitExpr(const CoawaitExpr &E, 3155 AggValueSlot aggSlot = AggValueSlot::ignored(), 3156 bool ignoreResult = false); 3157 LValue EmitCoawaitLValue(const CoawaitExpr *E); 3158 RValue EmitCoyieldExpr(const CoyieldExpr &E, 3159 AggValueSlot aggSlot = AggValueSlot::ignored(), 3160 bool ignoreResult = false); 3161 LValue EmitCoyieldLValue(const CoyieldExpr *E); 3162 RValue EmitCoroutineIntrinsic(const CallExpr *E, unsigned int IID); 3163 3164 void EnterCXXTryStmt(const CXXTryStmt &S, bool IsFnTryBlock = false); 3165 void ExitCXXTryStmt(const CXXTryStmt &S, bool IsFnTryBlock = false); 3166 3167 void EmitCXXTryStmt(const CXXTryStmt &S); 3168 void EmitSEHTryStmt(const SEHTryStmt &S); 3169 void EmitSEHLeaveStmt(const SEHLeaveStmt &S); 3170 void EnterSEHTryStmt(const SEHTryStmt &S); 3171 void ExitSEHTryStmt(const SEHTryStmt &S); 3172 3173 void pushSEHCleanup(CleanupKind kind, 3174 llvm::Function *FinallyFunc); 3175 void startOutlinedSEHHelper(CodeGenFunction &ParentCGF, bool IsFilter, 3176 const Stmt *OutlinedStmt); 3177 3178 llvm::Function *GenerateSEHFilterFunction(CodeGenFunction &ParentCGF, 3179 const SEHExceptStmt &Except); 3180 3181 llvm::Function *GenerateSEHFinallyFunction(CodeGenFunction &ParentCGF, 3182 const SEHFinallyStmt &Finally); 3183 3184 void EmitSEHExceptionCodeSave(CodeGenFunction &ParentCGF, 3185 llvm::Value *ParentFP, 3186 llvm::Value *EntryEBP); 3187 llvm::Value *EmitSEHExceptionCode(); 3188 llvm::Value *EmitSEHExceptionInfo(); 3189 llvm::Value *EmitSEHAbnormalTermination(); 3190 3191 /// Emit simple code for OpenMP directives in Simd-only mode. 3192 void EmitSimpleOMPExecutableDirective(const OMPExecutableDirective &D); 3193 3194 /// Scan the outlined statement for captures from the parent function. For 3195 /// each capture, mark the capture as escaped and emit a call to 3196 /// llvm.localrecover. Insert the localrecover result into the LocalDeclMap. 3197 void EmitCapturedLocals(CodeGenFunction &ParentCGF, const Stmt *OutlinedStmt, 3198 bool IsFilter); 3199 3200 /// Recovers the address of a local in a parent function. ParentVar is the 3201 /// address of the variable used in the immediate parent function. It can 3202 /// either be an alloca or a call to llvm.localrecover if there are nested 3203 /// outlined functions. ParentFP is the frame pointer of the outermost parent 3204 /// frame. 3205 Address recoverAddrOfEscapedLocal(CodeGenFunction &ParentCGF, 3206 Address ParentVar, 3207 llvm::Value *ParentFP); 3208 3209 void EmitCXXForRangeStmt(const CXXForRangeStmt &S, 3210 ArrayRef<const Attr *> Attrs = None); 3211 3212 /// Controls insertion of cancellation exit blocks in worksharing constructs. 3213 class OMPCancelStackRAII { 3214 CodeGenFunction &CGF; 3215 3216 public: 3217 OMPCancelStackRAII(CodeGenFunction &CGF, OpenMPDirectiveKind Kind, 3218 bool HasCancel) 3219 : CGF(CGF) { 3220 CGF.OMPCancelStack.enter(CGF, Kind, HasCancel); 3221 } 3222 ~OMPCancelStackRAII() { CGF.OMPCancelStack.exit(CGF); } 3223 }; 3224 3225 /// Returns calculated size of the specified type. 3226 llvm::Value *getTypeSize(QualType Ty); 3227 LValue InitCapturedStruct(const CapturedStmt &S); 3228 llvm::Function *EmitCapturedStmt(const CapturedStmt &S, CapturedRegionKind K); 3229 llvm::Function *GenerateCapturedStmtFunction(const CapturedStmt &S); 3230 Address GenerateCapturedStmtArgument(const CapturedStmt &S); 3231 llvm::Function *GenerateOpenMPCapturedStmtFunction(const CapturedStmt &S, 3232 SourceLocation Loc); 3233 void GenerateOpenMPCapturedVars(const CapturedStmt &S, 3234 SmallVectorImpl<llvm::Value *> &CapturedVars); 3235 void emitOMPSimpleStore(LValue LVal, RValue RVal, QualType RValTy, 3236 SourceLocation Loc); 3237 /// Perform element by element copying of arrays with type \a 3238 /// OriginalType from \a SrcAddr to \a DestAddr using copying procedure 3239 /// generated by \a CopyGen. 3240 /// 3241 /// \param DestAddr Address of the destination array. 3242 /// \param SrcAddr Address of the source array. 3243 /// \param OriginalType Type of destination and source arrays. 3244 /// \param CopyGen Copying procedure that copies value of single array element 3245 /// to another single array element. 3246 void EmitOMPAggregateAssign( 3247 Address DestAddr, Address SrcAddr, QualType OriginalType, 3248 const llvm::function_ref<void(Address, Address)> CopyGen); 3249 /// Emit proper copying of data from one variable to another. 3250 /// 3251 /// \param OriginalType Original type of the copied variables. 3252 /// \param DestAddr Destination address. 3253 /// \param SrcAddr Source address. 3254 /// \param DestVD Destination variable used in \a CopyExpr (for arrays, has 3255 /// type of the base array element). 3256 /// \param SrcVD Source variable used in \a CopyExpr (for arrays, has type of 3257 /// the base array element). 3258 /// \param Copy Actual copygin expression for copying data from \a SrcVD to \a 3259 /// DestVD. 3260 void EmitOMPCopy(QualType OriginalType, 3261 Address DestAddr, Address SrcAddr, 3262 const VarDecl *DestVD, const VarDecl *SrcVD, 3263 const Expr *Copy); 3264 /// Emit atomic update code for constructs: \a X = \a X \a BO \a E or 3265 /// \a X = \a E \a BO \a E. 3266 /// 3267 /// \param X Value to be updated. 3268 /// \param E Update value. 3269 /// \param BO Binary operation for update operation. 3270 /// \param IsXLHSInRHSPart true if \a X is LHS in RHS part of the update 3271 /// expression, false otherwise. 3272 /// \param AO Atomic ordering of the generated atomic instructions. 3273 /// \param CommonGen Code generator for complex expressions that cannot be 3274 /// expressed through atomicrmw instruction. 3275 /// \returns <true, OldAtomicValue> if simple 'atomicrmw' instruction was 3276 /// generated, <false, RValue::get(nullptr)> otherwise. 3277 std::pair<bool, RValue> EmitOMPAtomicSimpleUpdateExpr( 3278 LValue X, RValue E, BinaryOperatorKind BO, bool IsXLHSInRHSPart, 3279 llvm::AtomicOrdering AO, SourceLocation Loc, 3280 const llvm::function_ref<RValue(RValue)> CommonGen); 3281 bool EmitOMPFirstprivateClause(const OMPExecutableDirective &D, 3282 OMPPrivateScope &PrivateScope); 3283 void EmitOMPPrivateClause(const OMPExecutableDirective &D, 3284 OMPPrivateScope &PrivateScope); 3285 void EmitOMPUseDevicePtrClause( 3286 const OMPUseDevicePtrClause &C, OMPPrivateScope &PrivateScope, 3287 const llvm::DenseMap<const ValueDecl *, Address> &CaptureDeviceAddrMap); 3288 void EmitOMPUseDeviceAddrClause( 3289 const OMPUseDeviceAddrClause &C, OMPPrivateScope &PrivateScope, 3290 const llvm::DenseMap<const ValueDecl *, Address> &CaptureDeviceAddrMap); 3291 /// Emit code for copyin clause in \a D directive. The next code is 3292 /// generated at the start of outlined functions for directives: 3293 /// \code 3294 /// threadprivate_var1 = master_threadprivate_var1; 3295 /// operator=(threadprivate_var2, master_threadprivate_var2); 3296 /// ... 3297 /// __kmpc_barrier(&loc, global_tid); 3298 /// \endcode 3299 /// 3300 /// \param D OpenMP directive possibly with 'copyin' clause(s). 3301 /// \returns true if at least one copyin variable is found, false otherwise. 3302 bool EmitOMPCopyinClause(const OMPExecutableDirective &D); 3303 /// Emit initial code for lastprivate variables. If some variable is 3304 /// not also firstprivate, then the default initialization is used. Otherwise 3305 /// initialization of this variable is performed by EmitOMPFirstprivateClause 3306 /// method. 3307 /// 3308 /// \param D Directive that may have 'lastprivate' directives. 3309 /// \param PrivateScope Private scope for capturing lastprivate variables for 3310 /// proper codegen in internal captured statement. 3311 /// 3312 /// \returns true if there is at least one lastprivate variable, false 3313 /// otherwise. 3314 bool EmitOMPLastprivateClauseInit(const OMPExecutableDirective &D, 3315 OMPPrivateScope &PrivateScope); 3316 /// Emit final copying of lastprivate values to original variables at 3317 /// the end of the worksharing or simd directive. 3318 /// 3319 /// \param D Directive that has at least one 'lastprivate' directives. 3320 /// \param IsLastIterCond Boolean condition that must be set to 'i1 true' if 3321 /// it is the last iteration of the loop code in associated directive, or to 3322 /// 'i1 false' otherwise. If this item is nullptr, no final check is required. 3323 void EmitOMPLastprivateClauseFinal(const OMPExecutableDirective &D, 3324 bool NoFinals, 3325 llvm::Value *IsLastIterCond = nullptr); 3326 /// Emit initial code for linear clauses. 3327 void EmitOMPLinearClause(const OMPLoopDirective &D, 3328 CodeGenFunction::OMPPrivateScope &PrivateScope); 3329 /// Emit final code for linear clauses. 3330 /// \param CondGen Optional conditional code for final part of codegen for 3331 /// linear clause. 3332 void EmitOMPLinearClauseFinal( 3333 const OMPLoopDirective &D, 3334 const llvm::function_ref<llvm::Value *(CodeGenFunction &)> CondGen); 3335 /// Emit initial code for reduction variables. Creates reduction copies 3336 /// and initializes them with the values according to OpenMP standard. 3337 /// 3338 /// \param D Directive (possibly) with the 'reduction' clause. 3339 /// \param PrivateScope Private scope for capturing reduction variables for 3340 /// proper codegen in internal captured statement. 3341 /// 3342 void EmitOMPReductionClauseInit(const OMPExecutableDirective &D, 3343 OMPPrivateScope &PrivateScope, 3344 bool ForInscan = false); 3345 /// Emit final update of reduction values to original variables at 3346 /// the end of the directive. 3347 /// 3348 /// \param D Directive that has at least one 'reduction' directives. 3349 /// \param ReductionKind The kind of reduction to perform. 3350 void EmitOMPReductionClauseFinal(const OMPExecutableDirective &D, 3351 const OpenMPDirectiveKind ReductionKind); 3352 /// Emit initial code for linear variables. Creates private copies 3353 /// and initializes them with the values according to OpenMP standard. 3354 /// 3355 /// \param D Directive (possibly) with the 'linear' clause. 3356 /// \return true if at least one linear variable is found that should be 3357 /// initialized with the value of the original variable, false otherwise. 3358 bool EmitOMPLinearClauseInit(const OMPLoopDirective &D); 3359 3360 typedef const llvm::function_ref<void(CodeGenFunction & /*CGF*/, 3361 llvm::Function * /*OutlinedFn*/, 3362 const OMPTaskDataTy & /*Data*/)> 3363 TaskGenTy; 3364 void EmitOMPTaskBasedDirective(const OMPExecutableDirective &S, 3365 const OpenMPDirectiveKind CapturedRegion, 3366 const RegionCodeGenTy &BodyGen, 3367 const TaskGenTy &TaskGen, OMPTaskDataTy &Data); 3368 struct OMPTargetDataInfo { 3369 Address BasePointersArray = Address::invalid(); 3370 Address PointersArray = Address::invalid(); 3371 Address SizesArray = Address::invalid(); 3372 Address MappersArray = Address::invalid(); 3373 unsigned NumberOfTargetItems = 0; 3374 explicit OMPTargetDataInfo() = default; 3375 OMPTargetDataInfo(Address BasePointersArray, Address PointersArray, 3376 Address SizesArray, Address MappersArray, 3377 unsigned NumberOfTargetItems) 3378 : BasePointersArray(BasePointersArray), PointersArray(PointersArray), 3379 SizesArray(SizesArray), MappersArray(MappersArray), 3380 NumberOfTargetItems(NumberOfTargetItems) {} 3381 }; 3382 void EmitOMPTargetTaskBasedDirective(const OMPExecutableDirective &S, 3383 const RegionCodeGenTy &BodyGen, 3384 OMPTargetDataInfo &InputInfo); 3385 3386 void EmitOMPParallelDirective(const OMPParallelDirective &S); 3387 void EmitOMPSimdDirective(const OMPSimdDirective &S); 3388 void EmitOMPForDirective(const OMPForDirective &S); 3389 void EmitOMPForSimdDirective(const OMPForSimdDirective &S); 3390 void EmitOMPSectionsDirective(const OMPSectionsDirective &S); 3391 void EmitOMPSectionDirective(const OMPSectionDirective &S); 3392 void EmitOMPSingleDirective(const OMPSingleDirective &S); 3393 void EmitOMPMasterDirective(const OMPMasterDirective &S); 3394 void EmitOMPCriticalDirective(const OMPCriticalDirective &S); 3395 void EmitOMPParallelForDirective(const OMPParallelForDirective &S); 3396 void EmitOMPParallelForSimdDirective(const OMPParallelForSimdDirective &S); 3397 void EmitOMPParallelSectionsDirective(const OMPParallelSectionsDirective &S); 3398 void EmitOMPParallelMasterDirective(const OMPParallelMasterDirective &S); 3399 void EmitOMPTaskDirective(const OMPTaskDirective &S); 3400 void EmitOMPTaskyieldDirective(const OMPTaskyieldDirective &S); 3401 void EmitOMPBarrierDirective(const OMPBarrierDirective &S); 3402 void EmitOMPTaskwaitDirective(const OMPTaskwaitDirective &S); 3403 void EmitOMPTaskgroupDirective(const OMPTaskgroupDirective &S); 3404 void EmitOMPFlushDirective(const OMPFlushDirective &S); 3405 void EmitOMPDepobjDirective(const OMPDepobjDirective &S); 3406 void EmitOMPScanDirective(const OMPScanDirective &S); 3407 void EmitOMPOrderedDirective(const OMPOrderedDirective &S); 3408 void EmitOMPAtomicDirective(const OMPAtomicDirective &S); 3409 void EmitOMPTargetDirective(const OMPTargetDirective &S); 3410 void EmitOMPTargetDataDirective(const OMPTargetDataDirective &S); 3411 void EmitOMPTargetEnterDataDirective(const OMPTargetEnterDataDirective &S); 3412 void EmitOMPTargetExitDataDirective(const OMPTargetExitDataDirective &S); 3413 void EmitOMPTargetUpdateDirective(const OMPTargetUpdateDirective &S); 3414 void EmitOMPTargetParallelDirective(const OMPTargetParallelDirective &S); 3415 void 3416 EmitOMPTargetParallelForDirective(const OMPTargetParallelForDirective &S); 3417 void EmitOMPTeamsDirective(const OMPTeamsDirective &S); 3418 void 3419 EmitOMPCancellationPointDirective(const OMPCancellationPointDirective &S); 3420 void EmitOMPCancelDirective(const OMPCancelDirective &S); 3421 void EmitOMPTaskLoopBasedDirective(const OMPLoopDirective &S); 3422 void EmitOMPTaskLoopDirective(const OMPTaskLoopDirective &S); 3423 void EmitOMPTaskLoopSimdDirective(const OMPTaskLoopSimdDirective &S); 3424 void EmitOMPMasterTaskLoopDirective(const OMPMasterTaskLoopDirective &S); 3425 void 3426 EmitOMPMasterTaskLoopSimdDirective(const OMPMasterTaskLoopSimdDirective &S); 3427 void EmitOMPParallelMasterTaskLoopDirective( 3428 const OMPParallelMasterTaskLoopDirective &S); 3429 void EmitOMPParallelMasterTaskLoopSimdDirective( 3430 const OMPParallelMasterTaskLoopSimdDirective &S); 3431 void EmitOMPDistributeDirective(const OMPDistributeDirective &S); 3432 void EmitOMPDistributeParallelForDirective( 3433 const OMPDistributeParallelForDirective &S); 3434 void EmitOMPDistributeParallelForSimdDirective( 3435 const OMPDistributeParallelForSimdDirective &S); 3436 void EmitOMPDistributeSimdDirective(const OMPDistributeSimdDirective &S); 3437 void EmitOMPTargetParallelForSimdDirective( 3438 const OMPTargetParallelForSimdDirective &S); 3439 void EmitOMPTargetSimdDirective(const OMPTargetSimdDirective &S); 3440 void EmitOMPTeamsDistributeDirective(const OMPTeamsDistributeDirective &S); 3441 void 3442 EmitOMPTeamsDistributeSimdDirective(const OMPTeamsDistributeSimdDirective &S); 3443 void EmitOMPTeamsDistributeParallelForSimdDirective( 3444 const OMPTeamsDistributeParallelForSimdDirective &S); 3445 void EmitOMPTeamsDistributeParallelForDirective( 3446 const OMPTeamsDistributeParallelForDirective &S); 3447 void EmitOMPTargetTeamsDirective(const OMPTargetTeamsDirective &S); 3448 void EmitOMPTargetTeamsDistributeDirective( 3449 const OMPTargetTeamsDistributeDirective &S); 3450 void EmitOMPTargetTeamsDistributeParallelForDirective( 3451 const OMPTargetTeamsDistributeParallelForDirective &S); 3452 void EmitOMPTargetTeamsDistributeParallelForSimdDirective( 3453 const OMPTargetTeamsDistributeParallelForSimdDirective &S); 3454 void EmitOMPTargetTeamsDistributeSimdDirective( 3455 const OMPTargetTeamsDistributeSimdDirective &S); 3456 3457 /// Emit device code for the target directive. 3458 static void EmitOMPTargetDeviceFunction(CodeGenModule &CGM, 3459 StringRef ParentName, 3460 const OMPTargetDirective &S); 3461 static void 3462 EmitOMPTargetParallelDeviceFunction(CodeGenModule &CGM, StringRef ParentName, 3463 const OMPTargetParallelDirective &S); 3464 /// Emit device code for the target parallel for directive. 3465 static void EmitOMPTargetParallelForDeviceFunction( 3466 CodeGenModule &CGM, StringRef ParentName, 3467 const OMPTargetParallelForDirective &S); 3468 /// Emit device code for the target parallel for simd directive. 3469 static void EmitOMPTargetParallelForSimdDeviceFunction( 3470 CodeGenModule &CGM, StringRef ParentName, 3471 const OMPTargetParallelForSimdDirective &S); 3472 /// Emit device code for the target teams directive. 3473 static void 3474 EmitOMPTargetTeamsDeviceFunction(CodeGenModule &CGM, StringRef ParentName, 3475 const OMPTargetTeamsDirective &S); 3476 /// Emit device code for the target teams distribute directive. 3477 static void EmitOMPTargetTeamsDistributeDeviceFunction( 3478 CodeGenModule &CGM, StringRef ParentName, 3479 const OMPTargetTeamsDistributeDirective &S); 3480 /// Emit device code for the target teams distribute simd directive. 3481 static void EmitOMPTargetTeamsDistributeSimdDeviceFunction( 3482 CodeGenModule &CGM, StringRef ParentName, 3483 const OMPTargetTeamsDistributeSimdDirective &S); 3484 /// Emit device code for the target simd directive. 3485 static void EmitOMPTargetSimdDeviceFunction(CodeGenModule &CGM, 3486 StringRef ParentName, 3487 const OMPTargetSimdDirective &S); 3488 /// Emit device code for the target teams distribute parallel for simd 3489 /// directive. 3490 static void EmitOMPTargetTeamsDistributeParallelForSimdDeviceFunction( 3491 CodeGenModule &CGM, StringRef ParentName, 3492 const OMPTargetTeamsDistributeParallelForSimdDirective &S); 3493 3494 static void EmitOMPTargetTeamsDistributeParallelForDeviceFunction( 3495 CodeGenModule &CGM, StringRef ParentName, 3496 const OMPTargetTeamsDistributeParallelForDirective &S); 3497 /// Emit inner loop of the worksharing/simd construct. 3498 /// 3499 /// \param S Directive, for which the inner loop must be emitted. 3500 /// \param RequiresCleanup true, if directive has some associated private 3501 /// variables. 3502 /// \param LoopCond Bollean condition for loop continuation. 3503 /// \param IncExpr Increment expression for loop control variable. 3504 /// \param BodyGen Generator for the inner body of the inner loop. 3505 /// \param PostIncGen Genrator for post-increment code (required for ordered 3506 /// loop directvies). 3507 void EmitOMPInnerLoop( 3508 const OMPExecutableDirective &S, bool RequiresCleanup, 3509 const Expr *LoopCond, const Expr *IncExpr, 3510 const llvm::function_ref<void(CodeGenFunction &)> BodyGen, 3511 const llvm::function_ref<void(CodeGenFunction &)> PostIncGen); 3512 3513 JumpDest getOMPCancelDestination(OpenMPDirectiveKind Kind); 3514 /// Emit initial code for loop counters of loop-based directives. 3515 void EmitOMPPrivateLoopCounters(const OMPLoopDirective &S, 3516 OMPPrivateScope &LoopScope); 3517 3518 /// Helper for the OpenMP loop directives. 3519 void EmitOMPLoopBody(const OMPLoopDirective &D, JumpDest LoopExit); 3520 3521 /// Emit code for the worksharing loop-based directive. 3522 /// \return true, if this construct has any lastprivate clause, false - 3523 /// otherwise. 3524 bool EmitOMPWorksharingLoop(const OMPLoopDirective &S, Expr *EUB, 3525 const CodeGenLoopBoundsTy &CodeGenLoopBounds, 3526 const CodeGenDispatchBoundsTy &CGDispatchBounds); 3527 3528 /// Emit code for the distribute loop-based directive. 3529 void EmitOMPDistributeLoop(const OMPLoopDirective &S, 3530 const CodeGenLoopTy &CodeGenLoop, Expr *IncExpr); 3531 3532 /// Helpers for the OpenMP loop directives. 3533 void EmitOMPSimdInit(const OMPLoopDirective &D, bool IsMonotonic = false); 3534 void EmitOMPSimdFinal( 3535 const OMPLoopDirective &D, 3536 const llvm::function_ref<llvm::Value *(CodeGenFunction &)> CondGen); 3537 3538 /// Emits the lvalue for the expression with possibly captured variable. 3539 LValue EmitOMPSharedLValue(const Expr *E); 3540 3541 private: 3542 /// Helpers for blocks. 3543 llvm::Value *EmitBlockLiteral(const CGBlockInfo &Info); 3544 3545 /// struct with the values to be passed to the OpenMP loop-related functions 3546 struct OMPLoopArguments { 3547 /// loop lower bound 3548 Address LB = Address::invalid(); 3549 /// loop upper bound 3550 Address UB = Address::invalid(); 3551 /// loop stride 3552 Address ST = Address::invalid(); 3553 /// isLastIteration argument for runtime functions 3554 Address IL = Address::invalid(); 3555 /// Chunk value generated by sema 3556 llvm::Value *Chunk = nullptr; 3557 /// EnsureUpperBound 3558 Expr *EUB = nullptr; 3559 /// IncrementExpression 3560 Expr *IncExpr = nullptr; 3561 /// Loop initialization 3562 Expr *Init = nullptr; 3563 /// Loop exit condition 3564 Expr *Cond = nullptr; 3565 /// Update of LB after a whole chunk has been executed 3566 Expr *NextLB = nullptr; 3567 /// Update of UB after a whole chunk has been executed 3568 Expr *NextUB = nullptr; 3569 OMPLoopArguments() = default; 3570 OMPLoopArguments(Address LB, Address UB, Address ST, Address IL, 3571 llvm::Value *Chunk = nullptr, Expr *EUB = nullptr, 3572 Expr *IncExpr = nullptr, Expr *Init = nullptr, 3573 Expr *Cond = nullptr, Expr *NextLB = nullptr, 3574 Expr *NextUB = nullptr) 3575 : LB(LB), UB(UB), ST(ST), IL(IL), Chunk(Chunk), EUB(EUB), 3576 IncExpr(IncExpr), Init(Init), Cond(Cond), NextLB(NextLB), 3577 NextUB(NextUB) {} 3578 }; 3579 void EmitOMPOuterLoop(bool DynamicOrOrdered, bool IsMonotonic, 3580 const OMPLoopDirective &S, OMPPrivateScope &LoopScope, 3581 const OMPLoopArguments &LoopArgs, 3582 const CodeGenLoopTy &CodeGenLoop, 3583 const CodeGenOrderedTy &CodeGenOrdered); 3584 void EmitOMPForOuterLoop(const OpenMPScheduleTy &ScheduleKind, 3585 bool IsMonotonic, const OMPLoopDirective &S, 3586 OMPPrivateScope &LoopScope, bool Ordered, 3587 const OMPLoopArguments &LoopArgs, 3588 const CodeGenDispatchBoundsTy &CGDispatchBounds); 3589 void EmitOMPDistributeOuterLoop(OpenMPDistScheduleClauseKind ScheduleKind, 3590 const OMPLoopDirective &S, 3591 OMPPrivateScope &LoopScope, 3592 const OMPLoopArguments &LoopArgs, 3593 const CodeGenLoopTy &CodeGenLoopContent); 3594 /// Emit code for sections directive. 3595 void EmitSections(const OMPExecutableDirective &S); 3596 3597 public: 3598 3599 //===--------------------------------------------------------------------===// 3600 // LValue Expression Emission 3601 //===--------------------------------------------------------------------===// 3602 3603 /// Create a check that a scalar RValue is non-null. 3604 llvm::Value *EmitNonNullRValueCheck(RValue RV, QualType T); 3605 3606 /// GetUndefRValue - Get an appropriate 'undef' rvalue for the given type. 3607 RValue GetUndefRValue(QualType Ty); 3608 3609 /// EmitUnsupportedRValue - Emit a dummy r-value using the type of E 3610 /// and issue an ErrorUnsupported style diagnostic (using the 3611 /// provided Name). 3612 RValue EmitUnsupportedRValue(const Expr *E, 3613 const char *Name); 3614 3615 /// EmitUnsupportedLValue - Emit a dummy l-value using the type of E and issue 3616 /// an ErrorUnsupported style diagnostic (using the provided Name). 3617 LValue EmitUnsupportedLValue(const Expr *E, 3618 const char *Name); 3619 3620 /// EmitLValue - Emit code to compute a designator that specifies the location 3621 /// of the expression. 3622 /// 3623 /// This can return one of two things: a simple address or a bitfield 3624 /// reference. In either case, the LLVM Value* in the LValue structure is 3625 /// guaranteed to be an LLVM pointer type. 3626 /// 3627 /// If this returns a bitfield reference, nothing about the pointee type of 3628 /// the LLVM value is known: For example, it may not be a pointer to an 3629 /// integer. 3630 /// 3631 /// If this returns a normal address, and if the lvalue's C type is fixed 3632 /// size, this method guarantees that the returned pointer type will point to 3633 /// an LLVM type of the same size of the lvalue's type. If the lvalue has a 3634 /// variable length type, this is not possible. 3635 /// 3636 LValue EmitLValue(const Expr *E); 3637 3638 /// Same as EmitLValue but additionally we generate checking code to 3639 /// guard against undefined behavior. This is only suitable when we know 3640 /// that the address will be used to access the object. 3641 LValue EmitCheckedLValue(const Expr *E, TypeCheckKind TCK); 3642 3643 RValue convertTempToRValue(Address addr, QualType type, 3644 SourceLocation Loc); 3645 3646 void EmitAtomicInit(Expr *E, LValue lvalue); 3647 3648 bool LValueIsSuitableForInlineAtomic(LValue Src); 3649 3650 RValue EmitAtomicLoad(LValue LV, SourceLocation SL, 3651 AggValueSlot Slot = AggValueSlot::ignored()); 3652 3653 RValue EmitAtomicLoad(LValue lvalue, SourceLocation loc, 3654 llvm::AtomicOrdering AO, bool IsVolatile = false, 3655 AggValueSlot slot = AggValueSlot::ignored()); 3656 3657 void EmitAtomicStore(RValue rvalue, LValue lvalue, bool isInit); 3658 3659 void EmitAtomicStore(RValue rvalue, LValue lvalue, llvm::AtomicOrdering AO, 3660 bool IsVolatile, bool isInit); 3661 3662 std::pair<RValue, llvm::Value *> EmitAtomicCompareExchange( 3663 LValue Obj, RValue Expected, RValue Desired, SourceLocation Loc, 3664 llvm::AtomicOrdering Success = 3665 llvm::AtomicOrdering::SequentiallyConsistent, 3666 llvm::AtomicOrdering Failure = 3667 llvm::AtomicOrdering::SequentiallyConsistent, 3668 bool IsWeak = false, AggValueSlot Slot = AggValueSlot::ignored()); 3669 3670 void EmitAtomicUpdate(LValue LVal, llvm::AtomicOrdering AO, 3671 const llvm::function_ref<RValue(RValue)> &UpdateOp, 3672 bool IsVolatile); 3673 3674 /// EmitToMemory - Change a scalar value from its value 3675 /// representation to its in-memory representation. 3676 llvm::Value *EmitToMemory(llvm::Value *Value, QualType Ty); 3677 3678 /// EmitFromMemory - Change a scalar value from its memory 3679 /// representation to its value representation. 3680 llvm::Value *EmitFromMemory(llvm::Value *Value, QualType Ty); 3681 3682 /// Check if the scalar \p Value is within the valid range for the given 3683 /// type \p Ty. 3684 /// 3685 /// Returns true if a check is needed (even if the range is unknown). 3686 bool EmitScalarRangeCheck(llvm::Value *Value, QualType Ty, 3687 SourceLocation Loc); 3688 3689 /// EmitLoadOfScalar - Load a scalar value from an address, taking 3690 /// care to appropriately convert from the memory representation to 3691 /// the LLVM value representation. 3692 llvm::Value *EmitLoadOfScalar(Address Addr, bool Volatile, QualType Ty, 3693 SourceLocation Loc, 3694 AlignmentSource Source = AlignmentSource::Type, 3695 bool isNontemporal = false) { 3696 return EmitLoadOfScalar(Addr, Volatile, Ty, Loc, LValueBaseInfo(Source), 3697 CGM.getTBAAAccessInfo(Ty), isNontemporal); 3698 } 3699 3700 llvm::Value *EmitLoadOfScalar(Address Addr, bool Volatile, QualType Ty, 3701 SourceLocation Loc, LValueBaseInfo BaseInfo, 3702 TBAAAccessInfo TBAAInfo, 3703 bool isNontemporal = false); 3704 3705 /// EmitLoadOfScalar - Load a scalar value from an address, taking 3706 /// care to appropriately convert from the memory representation to 3707 /// the LLVM value representation. The l-value must be a simple 3708 /// l-value. 3709 llvm::Value *EmitLoadOfScalar(LValue lvalue, SourceLocation Loc); 3710 3711 /// EmitStoreOfScalar - Store a scalar value to an address, taking 3712 /// care to appropriately convert from the memory representation to 3713 /// the LLVM value representation. 3714 void EmitStoreOfScalar(llvm::Value *Value, Address Addr, 3715 bool Volatile, QualType Ty, 3716 AlignmentSource Source = AlignmentSource::Type, 3717 bool isInit = false, bool isNontemporal = false) { 3718 EmitStoreOfScalar(Value, Addr, Volatile, Ty, LValueBaseInfo(Source), 3719 CGM.getTBAAAccessInfo(Ty), isInit, isNontemporal); 3720 } 3721 3722 void EmitStoreOfScalar(llvm::Value *Value, Address Addr, 3723 bool Volatile, QualType Ty, 3724 LValueBaseInfo BaseInfo, TBAAAccessInfo TBAAInfo, 3725 bool isInit = false, bool isNontemporal = false); 3726 3727 /// EmitStoreOfScalar - Store a scalar value to an address, taking 3728 /// care to appropriately convert from the memory representation to 3729 /// the LLVM value representation. The l-value must be a simple 3730 /// l-value. The isInit flag indicates whether this is an initialization. 3731 /// If so, atomic qualifiers are ignored and the store is always non-atomic. 3732 void EmitStoreOfScalar(llvm::Value *value, LValue lvalue, bool isInit=false); 3733 3734 /// EmitLoadOfLValue - Given an expression that represents a value lvalue, 3735 /// this method emits the address of the lvalue, then loads the result as an 3736 /// rvalue, returning the rvalue. 3737 RValue EmitLoadOfLValue(LValue V, SourceLocation Loc); 3738 RValue EmitLoadOfExtVectorElementLValue(LValue V); 3739 RValue EmitLoadOfBitfieldLValue(LValue LV, SourceLocation Loc); 3740 RValue EmitLoadOfGlobalRegLValue(LValue LV); 3741 3742 /// EmitStoreThroughLValue - Store the specified rvalue into the specified 3743 /// lvalue, where both are guaranteed to the have the same type, and that type 3744 /// is 'Ty'. 3745 void EmitStoreThroughLValue(RValue Src, LValue Dst, bool isInit = false); 3746 void EmitStoreThroughExtVectorComponentLValue(RValue Src, LValue Dst); 3747 void EmitStoreThroughGlobalRegLValue(RValue Src, LValue Dst); 3748 3749 /// EmitStoreThroughBitfieldLValue - Store Src into Dst with same constraints 3750 /// as EmitStoreThroughLValue. 3751 /// 3752 /// \param Result [out] - If non-null, this will be set to a Value* for the 3753 /// bit-field contents after the store, appropriate for use as the result of 3754 /// an assignment to the bit-field. 3755 void EmitStoreThroughBitfieldLValue(RValue Src, LValue Dst, 3756 llvm::Value **Result=nullptr); 3757 3758 /// Emit an l-value for an assignment (simple or compound) of complex type. 3759 LValue EmitComplexAssignmentLValue(const BinaryOperator *E); 3760 LValue EmitComplexCompoundAssignmentLValue(const CompoundAssignOperator *E); 3761 LValue EmitScalarCompoundAssignWithComplex(const CompoundAssignOperator *E, 3762 llvm::Value *&Result); 3763 3764 // Note: only available for agg return types 3765 LValue EmitBinaryOperatorLValue(const BinaryOperator *E); 3766 LValue EmitCompoundAssignmentLValue(const CompoundAssignOperator *E); 3767 // Note: only available for agg return types 3768 LValue EmitCallExprLValue(const CallExpr *E); 3769 // Note: only available for agg return types 3770 LValue EmitVAArgExprLValue(const VAArgExpr *E); 3771 LValue EmitDeclRefLValue(const DeclRefExpr *E); 3772 LValue EmitStringLiteralLValue(const StringLiteral *E); 3773 LValue EmitObjCEncodeExprLValue(const ObjCEncodeExpr *E); 3774 LValue EmitPredefinedLValue(const PredefinedExpr *E); 3775 LValue EmitUnaryOpLValue(const UnaryOperator *E); 3776 LValue EmitArraySubscriptExpr(const ArraySubscriptExpr *E, 3777 bool Accessed = false); 3778 LValue EmitMatrixSubscriptExpr(const MatrixSubscriptExpr *E); 3779 LValue EmitOMPArraySectionExpr(const OMPArraySectionExpr *E, 3780 bool IsLowerBound = true); 3781 LValue EmitExtVectorElementExpr(const ExtVectorElementExpr *E); 3782 LValue EmitMemberExpr(const MemberExpr *E); 3783 LValue EmitObjCIsaExpr(const ObjCIsaExpr *E); 3784 LValue EmitCompoundLiteralLValue(const CompoundLiteralExpr *E); 3785 LValue EmitInitListLValue(const InitListExpr *E); 3786 LValue EmitConditionalOperatorLValue(const AbstractConditionalOperator *E); 3787 LValue EmitCastLValue(const CastExpr *E); 3788 LValue EmitMaterializeTemporaryExpr(const MaterializeTemporaryExpr *E); 3789 LValue EmitOpaqueValueLValue(const OpaqueValueExpr *e); 3790 3791 Address EmitExtVectorElementLValue(LValue V); 3792 3793 RValue EmitRValueForField(LValue LV, const FieldDecl *FD, SourceLocation Loc); 3794 3795 Address EmitArrayToPointerDecay(const Expr *Array, 3796 LValueBaseInfo *BaseInfo = nullptr, 3797 TBAAAccessInfo *TBAAInfo = nullptr); 3798 3799 class ConstantEmission { 3800 llvm::PointerIntPair<llvm::Constant*, 1, bool> ValueAndIsReference; 3801 ConstantEmission(llvm::Constant *C, bool isReference) 3802 : ValueAndIsReference(C, isReference) {} 3803 public: 3804 ConstantEmission() {} 3805 static ConstantEmission forReference(llvm::Constant *C) { 3806 return ConstantEmission(C, true); 3807 } 3808 static ConstantEmission forValue(llvm::Constant *C) { 3809 return ConstantEmission(C, false); 3810 } 3811 3812 explicit operator bool() const { 3813 return ValueAndIsReference.getOpaqueValue() != nullptr; 3814 } 3815 3816 bool isReference() const { return ValueAndIsReference.getInt(); } 3817 LValue getReferenceLValue(CodeGenFunction &CGF, Expr *refExpr) const { 3818 assert(isReference()); 3819 return CGF.MakeNaturalAlignAddrLValue(ValueAndIsReference.getPointer(), 3820 refExpr->getType()); 3821 } 3822 3823 llvm::Constant *getValue() const { 3824 assert(!isReference()); 3825 return ValueAndIsReference.getPointer(); 3826 } 3827 }; 3828 3829 ConstantEmission tryEmitAsConstant(DeclRefExpr *refExpr); 3830 ConstantEmission tryEmitAsConstant(const MemberExpr *ME); 3831 llvm::Value *emitScalarConstant(const ConstantEmission &Constant, Expr *E); 3832 3833 RValue EmitPseudoObjectRValue(const PseudoObjectExpr *e, 3834 AggValueSlot slot = AggValueSlot::ignored()); 3835 LValue EmitPseudoObjectLValue(const PseudoObjectExpr *e); 3836 3837 llvm::Value *EmitIvarOffset(const ObjCInterfaceDecl *Interface, 3838 const ObjCIvarDecl *Ivar); 3839 LValue EmitLValueForField(LValue Base, const FieldDecl* Field); 3840 LValue EmitLValueForLambdaField(const FieldDecl *Field); 3841 3842 /// EmitLValueForFieldInitialization - Like EmitLValueForField, except that 3843 /// if the Field is a reference, this will return the address of the reference 3844 /// and not the address of the value stored in the reference. 3845 LValue EmitLValueForFieldInitialization(LValue Base, 3846 const FieldDecl* Field); 3847 3848 LValue EmitLValueForIvar(QualType ObjectTy, 3849 llvm::Value* Base, const ObjCIvarDecl *Ivar, 3850 unsigned CVRQualifiers); 3851 3852 LValue EmitCXXConstructLValue(const CXXConstructExpr *E); 3853 LValue EmitCXXBindTemporaryLValue(const CXXBindTemporaryExpr *E); 3854 LValue EmitCXXTypeidLValue(const CXXTypeidExpr *E); 3855 LValue EmitCXXUuidofLValue(const CXXUuidofExpr *E); 3856 3857 LValue EmitObjCMessageExprLValue(const ObjCMessageExpr *E); 3858 LValue EmitObjCIvarRefLValue(const ObjCIvarRefExpr *E); 3859 LValue EmitStmtExprLValue(const StmtExpr *E); 3860 LValue EmitPointerToDataMemberBinaryExpr(const BinaryOperator *E); 3861 LValue EmitObjCSelectorLValue(const ObjCSelectorExpr *E); 3862 void EmitDeclRefExprDbgValue(const DeclRefExpr *E, const APValue &Init); 3863 3864 //===--------------------------------------------------------------------===// 3865 // Scalar Expression Emission 3866 //===--------------------------------------------------------------------===// 3867 3868 /// EmitCall - Generate a call of the given function, expecting the given 3869 /// result type, and using the given argument list which specifies both the 3870 /// LLVM arguments and the types they were derived from. 3871 RValue EmitCall(const CGFunctionInfo &CallInfo, const CGCallee &Callee, 3872 ReturnValueSlot ReturnValue, const CallArgList &Args, 3873 llvm::CallBase **callOrInvoke, SourceLocation Loc); 3874 RValue EmitCall(const CGFunctionInfo &CallInfo, const CGCallee &Callee, 3875 ReturnValueSlot ReturnValue, const CallArgList &Args, 3876 llvm::CallBase **callOrInvoke = nullptr) { 3877 return EmitCall(CallInfo, Callee, ReturnValue, Args, callOrInvoke, 3878 SourceLocation()); 3879 } 3880 RValue EmitCall(QualType FnType, const CGCallee &Callee, const CallExpr *E, 3881 ReturnValueSlot ReturnValue, llvm::Value *Chain = nullptr); 3882 RValue EmitCallExpr(const CallExpr *E, 3883 ReturnValueSlot ReturnValue = ReturnValueSlot()); 3884 RValue EmitSimpleCallExpr(const CallExpr *E, ReturnValueSlot ReturnValue); 3885 CGCallee EmitCallee(const Expr *E); 3886 3887 void checkTargetFeatures(const CallExpr *E, const FunctionDecl *TargetDecl); 3888 void checkTargetFeatures(SourceLocation Loc, const FunctionDecl *TargetDecl); 3889 3890 llvm::CallInst *EmitRuntimeCall(llvm::FunctionCallee callee, 3891 const Twine &name = ""); 3892 llvm::CallInst *EmitRuntimeCall(llvm::FunctionCallee callee, 3893 ArrayRef<llvm::Value *> args, 3894 const Twine &name = ""); 3895 llvm::CallInst *EmitNounwindRuntimeCall(llvm::FunctionCallee callee, 3896 const Twine &name = ""); 3897 llvm::CallInst *EmitNounwindRuntimeCall(llvm::FunctionCallee callee, 3898 ArrayRef<llvm::Value *> args, 3899 const Twine &name = ""); 3900 3901 SmallVector<llvm::OperandBundleDef, 1> 3902 getBundlesForFunclet(llvm::Value *Callee); 3903 3904 llvm::CallBase *EmitCallOrInvoke(llvm::FunctionCallee Callee, 3905 ArrayRef<llvm::Value *> Args, 3906 const Twine &Name = ""); 3907 llvm::CallBase *EmitRuntimeCallOrInvoke(llvm::FunctionCallee callee, 3908 ArrayRef<llvm::Value *> args, 3909 const Twine &name = ""); 3910 llvm::CallBase *EmitRuntimeCallOrInvoke(llvm::FunctionCallee callee, 3911 const Twine &name = ""); 3912 void EmitNoreturnRuntimeCallOrInvoke(llvm::FunctionCallee callee, 3913 ArrayRef<llvm::Value *> args); 3914 3915 CGCallee BuildAppleKextVirtualCall(const CXXMethodDecl *MD, 3916 NestedNameSpecifier *Qual, 3917 llvm::Type *Ty); 3918 3919 CGCallee BuildAppleKextVirtualDestructorCall(const CXXDestructorDecl *DD, 3920 CXXDtorType Type, 3921 const CXXRecordDecl *RD); 3922 3923 // Return the copy constructor name with the prefix "__copy_constructor_" 3924 // removed. 3925 static std::string getNonTrivialCopyConstructorStr(QualType QT, 3926 CharUnits Alignment, 3927 bool IsVolatile, 3928 ASTContext &Ctx); 3929 3930 // Return the destructor name with the prefix "__destructor_" removed. 3931 static std::string getNonTrivialDestructorStr(QualType QT, 3932 CharUnits Alignment, 3933 bool IsVolatile, 3934 ASTContext &Ctx); 3935 3936 // These functions emit calls to the special functions of non-trivial C 3937 // structs. 3938 void defaultInitNonTrivialCStructVar(LValue Dst); 3939 void callCStructDefaultConstructor(LValue Dst); 3940 void callCStructDestructor(LValue Dst); 3941 void callCStructCopyConstructor(LValue Dst, LValue Src); 3942 void callCStructMoveConstructor(LValue Dst, LValue Src); 3943 void callCStructCopyAssignmentOperator(LValue Dst, LValue Src); 3944 void callCStructMoveAssignmentOperator(LValue Dst, LValue Src); 3945 3946 RValue 3947 EmitCXXMemberOrOperatorCall(const CXXMethodDecl *Method, 3948 const CGCallee &Callee, 3949 ReturnValueSlot ReturnValue, llvm::Value *This, 3950 llvm::Value *ImplicitParam, 3951 QualType ImplicitParamTy, const CallExpr *E, 3952 CallArgList *RtlArgs); 3953 RValue EmitCXXDestructorCall(GlobalDecl Dtor, const CGCallee &Callee, 3954 llvm::Value *This, QualType ThisTy, 3955 llvm::Value *ImplicitParam, 3956 QualType ImplicitParamTy, const CallExpr *E); 3957 RValue EmitCXXMemberCallExpr(const CXXMemberCallExpr *E, 3958 ReturnValueSlot ReturnValue); 3959 RValue EmitCXXMemberOrOperatorMemberCallExpr(const CallExpr *CE, 3960 const CXXMethodDecl *MD, 3961 ReturnValueSlot ReturnValue, 3962 bool HasQualifier, 3963 NestedNameSpecifier *Qualifier, 3964 bool IsArrow, const Expr *Base); 3965 // Compute the object pointer. 3966 Address EmitCXXMemberDataPointerAddress(const Expr *E, Address base, 3967 llvm::Value *memberPtr, 3968 const MemberPointerType *memberPtrType, 3969 LValueBaseInfo *BaseInfo = nullptr, 3970 TBAAAccessInfo *TBAAInfo = nullptr); 3971 RValue EmitCXXMemberPointerCallExpr(const CXXMemberCallExpr *E, 3972 ReturnValueSlot ReturnValue); 3973 3974 RValue EmitCXXOperatorMemberCallExpr(const CXXOperatorCallExpr *E, 3975 const CXXMethodDecl *MD, 3976 ReturnValueSlot ReturnValue); 3977 RValue EmitCXXPseudoDestructorExpr(const CXXPseudoDestructorExpr *E); 3978 3979 RValue EmitCUDAKernelCallExpr(const CUDAKernelCallExpr *E, 3980 ReturnValueSlot ReturnValue); 3981 3982 RValue EmitNVPTXDevicePrintfCallExpr(const CallExpr *E, 3983 ReturnValueSlot ReturnValue); 3984 RValue EmitAMDGPUDevicePrintfCallExpr(const CallExpr *E, 3985 ReturnValueSlot ReturnValue); 3986 3987 RValue EmitBuiltinExpr(const GlobalDecl GD, unsigned BuiltinID, 3988 const CallExpr *E, ReturnValueSlot ReturnValue); 3989 3990 RValue emitRotate(const CallExpr *E, bool IsRotateRight); 3991 3992 /// Emit IR for __builtin_os_log_format. 3993 RValue emitBuiltinOSLogFormat(const CallExpr &E); 3994 3995 /// Emit IR for __builtin_is_aligned. 3996 RValue EmitBuiltinIsAligned(const CallExpr *E); 3997 /// Emit IR for __builtin_align_up/__builtin_align_down. 3998 RValue EmitBuiltinAlignTo(const CallExpr *E, bool AlignUp); 3999 4000 llvm::Function *generateBuiltinOSLogHelperFunction( 4001 const analyze_os_log::OSLogBufferLayout &Layout, 4002 CharUnits BufferAlignment); 4003 4004 RValue EmitBlockCallExpr(const CallExpr *E, ReturnValueSlot ReturnValue); 4005 4006 /// EmitTargetBuiltinExpr - Emit the given builtin call. Returns 0 if the call 4007 /// is unhandled by the current target. 4008 llvm::Value *EmitTargetBuiltinExpr(unsigned BuiltinID, const CallExpr *E, 4009 ReturnValueSlot ReturnValue); 4010 4011 llvm::Value *EmitAArch64CompareBuiltinExpr(llvm::Value *Op, llvm::Type *Ty, 4012 const llvm::CmpInst::Predicate Fp, 4013 const llvm::CmpInst::Predicate Ip, 4014 const llvm::Twine &Name = ""); 4015 llvm::Value *EmitARMBuiltinExpr(unsigned BuiltinID, const CallExpr *E, 4016 ReturnValueSlot ReturnValue, 4017 llvm::Triple::ArchType Arch); 4018 llvm::Value *EmitARMMVEBuiltinExpr(unsigned BuiltinID, const CallExpr *E, 4019 ReturnValueSlot ReturnValue, 4020 llvm::Triple::ArchType Arch); 4021 llvm::Value *EmitARMCDEBuiltinExpr(unsigned BuiltinID, const CallExpr *E, 4022 ReturnValueSlot ReturnValue, 4023 llvm::Triple::ArchType Arch); 4024 llvm::Value *EmitCMSEClearRecord(llvm::Value *V, llvm::IntegerType *ITy, 4025 QualType RTy); 4026 llvm::Value *EmitCMSEClearRecord(llvm::Value *V, llvm::ArrayType *ATy, 4027 QualType RTy); 4028 4029 llvm::Value *EmitCommonNeonBuiltinExpr(unsigned BuiltinID, 4030 unsigned LLVMIntrinsic, 4031 unsigned AltLLVMIntrinsic, 4032 const char *NameHint, 4033 unsigned Modifier, 4034 const CallExpr *E, 4035 SmallVectorImpl<llvm::Value *> &Ops, 4036 Address PtrOp0, Address PtrOp1, 4037 llvm::Triple::ArchType Arch); 4038 4039 llvm::Function *LookupNeonLLVMIntrinsic(unsigned IntrinsicID, 4040 unsigned Modifier, llvm::Type *ArgTy, 4041 const CallExpr *E); 4042 llvm::Value *EmitNeonCall(llvm::Function *F, 4043 SmallVectorImpl<llvm::Value*> &O, 4044 const char *name, 4045 unsigned shift = 0, bool rightshift = false); 4046 llvm::Value *EmitNeonSplat(llvm::Value *V, llvm::Constant *Idx, 4047 const llvm::ElementCount &Count); 4048 llvm::Value *EmitNeonSplat(llvm::Value *V, llvm::Constant *Idx); 4049 llvm::Value *EmitNeonShiftVector(llvm::Value *V, llvm::Type *Ty, 4050 bool negateForRightShift); 4051 llvm::Value *EmitNeonRShiftImm(llvm::Value *Vec, llvm::Value *Amt, 4052 llvm::Type *Ty, bool usgn, const char *name); 4053 llvm::Value *vectorWrapScalar16(llvm::Value *Op); 4054 /// SVEBuiltinMemEltTy - Returns the memory element type for this memory 4055 /// access builtin. Only required if it can't be inferred from the base 4056 /// pointer operand. 4057 llvm::Type *SVEBuiltinMemEltTy(SVETypeFlags TypeFlags); 4058 4059 SmallVector<llvm::Type *, 2> getSVEOverloadTypes(SVETypeFlags TypeFlags, 4060 llvm::Type *ReturnType, 4061 ArrayRef<llvm::Value *> Ops); 4062 llvm::Type *getEltType(SVETypeFlags TypeFlags); 4063 llvm::ScalableVectorType *getSVEType(const SVETypeFlags &TypeFlags); 4064 llvm::ScalableVectorType *getSVEPredType(SVETypeFlags TypeFlags); 4065 llvm::Value *EmitSVEAllTruePred(SVETypeFlags TypeFlags); 4066 llvm::Value *EmitSVEDupX(llvm::Value *Scalar); 4067 llvm::Value *EmitSVEDupX(llvm::Value *Scalar, llvm::Type *Ty); 4068 llvm::Value *EmitSVEReinterpret(llvm::Value *Val, llvm::Type *Ty); 4069 llvm::Value *EmitSVEPMull(SVETypeFlags TypeFlags, 4070 llvm::SmallVectorImpl<llvm::Value *> &Ops, 4071 unsigned BuiltinID); 4072 llvm::Value *EmitSVEMovl(SVETypeFlags TypeFlags, 4073 llvm::ArrayRef<llvm::Value *> Ops, 4074 unsigned BuiltinID); 4075 llvm::Value *EmitSVEPredicateCast(llvm::Value *Pred, 4076 llvm::ScalableVectorType *VTy); 4077 llvm::Value *EmitSVEGatherLoad(SVETypeFlags TypeFlags, 4078 llvm::SmallVectorImpl<llvm::Value *> &Ops, 4079 unsigned IntID); 4080 llvm::Value *EmitSVEScatterStore(SVETypeFlags TypeFlags, 4081 llvm::SmallVectorImpl<llvm::Value *> &Ops, 4082 unsigned IntID); 4083 llvm::Value *EmitSVEMaskedLoad(const CallExpr *, llvm::Type *ReturnTy, 4084 SmallVectorImpl<llvm::Value *> &Ops, 4085 unsigned BuiltinID, bool IsZExtReturn); 4086 llvm::Value *EmitSVEMaskedStore(const CallExpr *, 4087 SmallVectorImpl<llvm::Value *> &Ops, 4088 unsigned BuiltinID); 4089 llvm::Value *EmitSVEPrefetchLoad(SVETypeFlags TypeFlags, 4090 SmallVectorImpl<llvm::Value *> &Ops, 4091 unsigned BuiltinID); 4092 llvm::Value *EmitSVEGatherPrefetch(SVETypeFlags TypeFlags, 4093 SmallVectorImpl<llvm::Value *> &Ops, 4094 unsigned IntID); 4095 llvm::Value *EmitSVEStructLoad(SVETypeFlags TypeFlags, 4096 SmallVectorImpl<llvm::Value *> &Ops, unsigned IntID); 4097 llvm::Value *EmitSVEStructStore(SVETypeFlags TypeFlags, 4098 SmallVectorImpl<llvm::Value *> &Ops, 4099 unsigned IntID); 4100 llvm::Value *EmitAArch64SVEBuiltinExpr(unsigned BuiltinID, const CallExpr *E); 4101 4102 llvm::Value *EmitAArch64BuiltinExpr(unsigned BuiltinID, const CallExpr *E, 4103 llvm::Triple::ArchType Arch); 4104 llvm::Value *EmitBPFBuiltinExpr(unsigned BuiltinID, const CallExpr *E); 4105 4106 llvm::Value *BuildVector(ArrayRef<llvm::Value*> Ops); 4107 llvm::Value *EmitX86BuiltinExpr(unsigned BuiltinID, const CallExpr *E); 4108 llvm::Value *EmitPPCBuiltinExpr(unsigned BuiltinID, const CallExpr *E); 4109 llvm::Value *EmitAMDGPUBuiltinExpr(unsigned BuiltinID, const CallExpr *E); 4110 llvm::Value *EmitSystemZBuiltinExpr(unsigned BuiltinID, const CallExpr *E); 4111 llvm::Value *EmitNVPTXBuiltinExpr(unsigned BuiltinID, const CallExpr *E); 4112 llvm::Value *EmitWebAssemblyBuiltinExpr(unsigned BuiltinID, 4113 const CallExpr *E); 4114 llvm::Value *EmitHexagonBuiltinExpr(unsigned BuiltinID, const CallExpr *E); 4115 bool ProcessOrderScopeAMDGCN(llvm::Value *Order, llvm::Value *Scope, 4116 llvm::AtomicOrdering &AO, 4117 llvm::SyncScope::ID &SSID); 4118 4119 private: 4120 enum class MSVCIntrin; 4121 4122 public: 4123 llvm::Value *EmitMSVCBuiltinExpr(MSVCIntrin BuiltinID, const CallExpr *E); 4124 4125 llvm::Value *EmitBuiltinAvailable(const VersionTuple &Version); 4126 4127 llvm::Value *EmitObjCProtocolExpr(const ObjCProtocolExpr *E); 4128 llvm::Value *EmitObjCStringLiteral(const ObjCStringLiteral *E); 4129 llvm::Value *EmitObjCBoxedExpr(const ObjCBoxedExpr *E); 4130 llvm::Value *EmitObjCArrayLiteral(const ObjCArrayLiteral *E); 4131 llvm::Value *EmitObjCDictionaryLiteral(const ObjCDictionaryLiteral *E); 4132 llvm::Value *EmitObjCCollectionLiteral(const Expr *E, 4133 const ObjCMethodDecl *MethodWithObjects); 4134 llvm::Value *EmitObjCSelectorExpr(const ObjCSelectorExpr *E); 4135 RValue EmitObjCMessageExpr(const ObjCMessageExpr *E, 4136 ReturnValueSlot Return = ReturnValueSlot()); 4137 4138 /// Retrieves the default cleanup kind for an ARC cleanup. 4139 /// Except under -fobjc-arc-eh, ARC cleanups are normal-only. 4140 CleanupKind getARCCleanupKind() { 4141 return CGM.getCodeGenOpts().ObjCAutoRefCountExceptions 4142 ? NormalAndEHCleanup : NormalCleanup; 4143 } 4144 4145 // ARC primitives. 4146 void EmitARCInitWeak(Address addr, llvm::Value *value); 4147 void EmitARCDestroyWeak(Address addr); 4148 llvm::Value *EmitARCLoadWeak(Address addr); 4149 llvm::Value *EmitARCLoadWeakRetained(Address addr); 4150 llvm::Value *EmitARCStoreWeak(Address addr, llvm::Value *value, bool ignored); 4151 void emitARCCopyAssignWeak(QualType Ty, Address DstAddr, Address SrcAddr); 4152 void emitARCMoveAssignWeak(QualType Ty, Address DstAddr, Address SrcAddr); 4153 void EmitARCCopyWeak(Address dst, Address src); 4154 void EmitARCMoveWeak(Address dst, Address src); 4155 llvm::Value *EmitARCRetainAutorelease(QualType type, llvm::Value *value); 4156 llvm::Value *EmitARCRetainAutoreleaseNonBlock(llvm::Value *value); 4157 llvm::Value *EmitARCStoreStrong(LValue lvalue, llvm::Value *value, 4158 bool resultIgnored); 4159 llvm::Value *EmitARCStoreStrongCall(Address addr, llvm::Value *value, 4160 bool resultIgnored); 4161 llvm::Value *EmitARCRetain(QualType type, llvm::Value *value); 4162 llvm::Value *EmitARCRetainNonBlock(llvm::Value *value); 4163 llvm::Value *EmitARCRetainBlock(llvm::Value *value, bool mandatory); 4164 void EmitARCDestroyStrong(Address addr, ARCPreciseLifetime_t precise); 4165 void EmitARCRelease(llvm::Value *value, ARCPreciseLifetime_t precise); 4166 llvm::Value *EmitARCAutorelease(llvm::Value *value); 4167 llvm::Value *EmitARCAutoreleaseReturnValue(llvm::Value *value); 4168 llvm::Value *EmitARCRetainAutoreleaseReturnValue(llvm::Value *value); 4169 llvm::Value *EmitARCRetainAutoreleasedReturnValue(llvm::Value *value); 4170 llvm::Value *EmitARCUnsafeClaimAutoreleasedReturnValue(llvm::Value *value); 4171 4172 llvm::Value *EmitObjCAutorelease(llvm::Value *value, llvm::Type *returnType); 4173 llvm::Value *EmitObjCRetainNonBlock(llvm::Value *value, 4174 llvm::Type *returnType); 4175 void EmitObjCRelease(llvm::Value *value, ARCPreciseLifetime_t precise); 4176 4177 std::pair<LValue,llvm::Value*> 4178 EmitARCStoreAutoreleasing(const BinaryOperator *e); 4179 std::pair<LValue,llvm::Value*> 4180 EmitARCStoreStrong(const BinaryOperator *e, bool ignored); 4181 std::pair<LValue,llvm::Value*> 4182 EmitARCStoreUnsafeUnretained(const BinaryOperator *e, bool ignored); 4183 4184 llvm::Value *EmitObjCAlloc(llvm::Value *value, 4185 llvm::Type *returnType); 4186 llvm::Value *EmitObjCAllocWithZone(llvm::Value *value, 4187 llvm::Type *returnType); 4188 llvm::Value *EmitObjCAllocInit(llvm::Value *value, llvm::Type *resultType); 4189 4190 llvm::Value *EmitObjCThrowOperand(const Expr *expr); 4191 llvm::Value *EmitObjCConsumeObject(QualType T, llvm::Value *Ptr); 4192 llvm::Value *EmitObjCExtendObjectLifetime(QualType T, llvm::Value *Ptr); 4193 4194 llvm::Value *EmitARCExtendBlockObject(const Expr *expr); 4195 llvm::Value *EmitARCReclaimReturnedObject(const Expr *e, 4196 bool allowUnsafeClaim); 4197 llvm::Value *EmitARCRetainScalarExpr(const Expr *expr); 4198 llvm::Value *EmitARCRetainAutoreleaseScalarExpr(const Expr *expr); 4199 llvm::Value *EmitARCUnsafeUnretainedScalarExpr(const Expr *expr); 4200 4201 void EmitARCIntrinsicUse(ArrayRef<llvm::Value*> values); 4202 4203 static Destroyer destroyARCStrongImprecise; 4204 static Destroyer destroyARCStrongPrecise; 4205 static Destroyer destroyARCWeak; 4206 static Destroyer emitARCIntrinsicUse; 4207 static Destroyer destroyNonTrivialCStruct; 4208 4209 void EmitObjCAutoreleasePoolPop(llvm::Value *Ptr); 4210 llvm::Value *EmitObjCAutoreleasePoolPush(); 4211 llvm::Value *EmitObjCMRRAutoreleasePoolPush(); 4212 void EmitObjCAutoreleasePoolCleanup(llvm::Value *Ptr); 4213 void EmitObjCMRRAutoreleasePoolPop(llvm::Value *Ptr); 4214 4215 /// Emits a reference binding to the passed in expression. 4216 RValue EmitReferenceBindingToExpr(const Expr *E); 4217 4218 //===--------------------------------------------------------------------===// 4219 // Expression Emission 4220 //===--------------------------------------------------------------------===// 4221 4222 // Expressions are broken into three classes: scalar, complex, aggregate. 4223 4224 /// EmitScalarExpr - Emit the computation of the specified expression of LLVM 4225 /// scalar type, returning the result. 4226 llvm::Value *EmitScalarExpr(const Expr *E , bool IgnoreResultAssign = false); 4227 4228 /// Emit a conversion from the specified type to the specified destination 4229 /// type, both of which are LLVM scalar types. 4230 llvm::Value *EmitScalarConversion(llvm::Value *Src, QualType SrcTy, 4231 QualType DstTy, SourceLocation Loc); 4232 4233 /// Emit a conversion from the specified complex type to the specified 4234 /// destination type, where the destination type is an LLVM scalar type. 4235 llvm::Value *EmitComplexToScalarConversion(ComplexPairTy Src, QualType SrcTy, 4236 QualType DstTy, 4237 SourceLocation Loc); 4238 4239 /// EmitAggExpr - Emit the computation of the specified expression 4240 /// of aggregate type. The result is computed into the given slot, 4241 /// which may be null to indicate that the value is not needed. 4242 void EmitAggExpr(const Expr *E, AggValueSlot AS); 4243 4244 /// EmitAggExprToLValue - Emit the computation of the specified expression of 4245 /// aggregate type into a temporary LValue. 4246 LValue EmitAggExprToLValue(const Expr *E); 4247 4248 /// Build all the stores needed to initialize an aggregate at Dest with the 4249 /// value Val. 4250 void EmitAggregateStore(llvm::Value *Val, Address Dest, bool DestIsVolatile); 4251 4252 /// EmitExtendGCLifetime - Given a pointer to an Objective-C object, 4253 /// make sure it survives garbage collection until this point. 4254 void EmitExtendGCLifetime(llvm::Value *object); 4255 4256 /// EmitComplexExpr - Emit the computation of the specified expression of 4257 /// complex type, returning the result. 4258 ComplexPairTy EmitComplexExpr(const Expr *E, 4259 bool IgnoreReal = false, 4260 bool IgnoreImag = false); 4261 4262 /// EmitComplexExprIntoLValue - Emit the given expression of complex 4263 /// type and place its result into the specified l-value. 4264 void EmitComplexExprIntoLValue(const Expr *E, LValue dest, bool isInit); 4265 4266 /// EmitStoreOfComplex - Store a complex number into the specified l-value. 4267 void EmitStoreOfComplex(ComplexPairTy V, LValue dest, bool isInit); 4268 4269 /// EmitLoadOfComplex - Load a complex number from the specified l-value. 4270 ComplexPairTy EmitLoadOfComplex(LValue src, SourceLocation loc); 4271 4272 Address emitAddrOfRealComponent(Address complex, QualType complexType); 4273 Address emitAddrOfImagComponent(Address complex, QualType complexType); 4274 4275 /// AddInitializerToStaticVarDecl - Add the initializer for 'D' to the 4276 /// global variable that has already been created for it. If the initializer 4277 /// has a different type than GV does, this may free GV and return a different 4278 /// one. Otherwise it just returns GV. 4279 llvm::GlobalVariable * 4280 AddInitializerToStaticVarDecl(const VarDecl &D, 4281 llvm::GlobalVariable *GV); 4282 4283 // Emit an @llvm.invariant.start call for the given memory region. 4284 void EmitInvariantStart(llvm::Constant *Addr, CharUnits Size); 4285 4286 /// EmitCXXGlobalVarDeclInit - Create the initializer for a C++ 4287 /// variable with global storage. 4288 void EmitCXXGlobalVarDeclInit(const VarDecl &D, llvm::Constant *DeclPtr, 4289 bool PerformInit); 4290 4291 llvm::Function *createAtExitStub(const VarDecl &VD, llvm::FunctionCallee Dtor, 4292 llvm::Constant *Addr); 4293 4294 /// Call atexit() with a function that passes the given argument to 4295 /// the given function. 4296 void registerGlobalDtorWithAtExit(const VarDecl &D, llvm::FunctionCallee fn, 4297 llvm::Constant *addr); 4298 4299 /// Call atexit() with function dtorStub. 4300 void registerGlobalDtorWithAtExit(llvm::Constant *dtorStub); 4301 4302 /// Call unatexit() with function dtorStub. 4303 llvm::Value *unregisterGlobalDtorWithUnAtExit(llvm::Function *dtorStub); 4304 4305 /// Emit code in this function to perform a guarded variable 4306 /// initialization. Guarded initializations are used when it's not 4307 /// possible to prove that an initialization will be done exactly 4308 /// once, e.g. with a static local variable or a static data member 4309 /// of a class template. 4310 void EmitCXXGuardedInit(const VarDecl &D, llvm::GlobalVariable *DeclPtr, 4311 bool PerformInit); 4312 4313 enum class GuardKind { VariableGuard, TlsGuard }; 4314 4315 /// Emit a branch to select whether or not to perform guarded initialization. 4316 void EmitCXXGuardedInitBranch(llvm::Value *NeedsInit, 4317 llvm::BasicBlock *InitBlock, 4318 llvm::BasicBlock *NoInitBlock, 4319 GuardKind Kind, const VarDecl *D); 4320 4321 /// GenerateCXXGlobalInitFunc - Generates code for initializing global 4322 /// variables. 4323 void 4324 GenerateCXXGlobalInitFunc(llvm::Function *Fn, 4325 ArrayRef<llvm::Function *> CXXThreadLocals, 4326 ConstantAddress Guard = ConstantAddress::invalid()); 4327 4328 /// GenerateCXXGlobalCleanUpFunc - Generates code for cleaning up global 4329 /// variables. 4330 void GenerateCXXGlobalCleanUpFunc( 4331 llvm::Function *Fn, 4332 const std::vector<std::tuple<llvm::FunctionType *, llvm::WeakTrackingVH, 4333 llvm::Constant *>> &DtorsOrStermFinalizers); 4334 4335 void GenerateCXXGlobalVarDeclInitFunc(llvm::Function *Fn, 4336 const VarDecl *D, 4337 llvm::GlobalVariable *Addr, 4338 bool PerformInit); 4339 4340 void EmitCXXConstructExpr(const CXXConstructExpr *E, AggValueSlot Dest); 4341 4342 void EmitSynthesizedCXXCopyCtor(Address Dest, Address Src, const Expr *Exp); 4343 4344 void EmitCXXThrowExpr(const CXXThrowExpr *E, bool KeepInsertionPoint = true); 4345 4346 RValue EmitAtomicExpr(AtomicExpr *E); 4347 4348 //===--------------------------------------------------------------------===// 4349 // Annotations Emission 4350 //===--------------------------------------------------------------------===// 4351 4352 /// Emit an annotation call (intrinsic). 4353 llvm::Value *EmitAnnotationCall(llvm::Function *AnnotationFn, 4354 llvm::Value *AnnotatedVal, 4355 StringRef AnnotationStr, 4356 SourceLocation Location, 4357 const AnnotateAttr *Attr); 4358 4359 /// Emit local annotations for the local variable V, declared by D. 4360 void EmitVarAnnotations(const VarDecl *D, llvm::Value *V); 4361 4362 /// Emit field annotations for the given field & value. Returns the 4363 /// annotation result. 4364 Address EmitFieldAnnotations(const FieldDecl *D, Address V); 4365 4366 //===--------------------------------------------------------------------===// 4367 // Internal Helpers 4368 //===--------------------------------------------------------------------===// 4369 4370 /// ContainsLabel - Return true if the statement contains a label in it. If 4371 /// this statement is not executed normally, it not containing a label means 4372 /// that we can just remove the code. 4373 static bool ContainsLabel(const Stmt *S, bool IgnoreCaseStmts = false); 4374 4375 /// containsBreak - Return true if the statement contains a break out of it. 4376 /// If the statement (recursively) contains a switch or loop with a break 4377 /// inside of it, this is fine. 4378 static bool containsBreak(const Stmt *S); 4379 4380 /// Determine if the given statement might introduce a declaration into the 4381 /// current scope, by being a (possibly-labelled) DeclStmt. 4382 static bool mightAddDeclToScope(const Stmt *S); 4383 4384 /// ConstantFoldsToSimpleInteger - If the specified expression does not fold 4385 /// to a constant, or if it does but contains a label, return false. If it 4386 /// constant folds return true and set the boolean result in Result. 4387 bool ConstantFoldsToSimpleInteger(const Expr *Cond, bool &Result, 4388 bool AllowLabels = false); 4389 4390 /// ConstantFoldsToSimpleInteger - If the specified expression does not fold 4391 /// to a constant, or if it does but contains a label, return false. If it 4392 /// constant folds return true and set the folded value. 4393 bool ConstantFoldsToSimpleInteger(const Expr *Cond, llvm::APSInt &Result, 4394 bool AllowLabels = false); 4395 4396 /// EmitBranchOnBoolExpr - Emit a branch on a boolean condition (e.g. for an 4397 /// if statement) to the specified blocks. Based on the condition, this might 4398 /// try to simplify the codegen of the conditional based on the branch. 4399 /// TrueCount should be the number of times we expect the condition to 4400 /// evaluate to true based on PGO data. 4401 void EmitBranchOnBoolExpr(const Expr *Cond, llvm::BasicBlock *TrueBlock, 4402 llvm::BasicBlock *FalseBlock, uint64_t TrueCount, 4403 Stmt::Likelihood LH = Stmt::LH_None); 4404 4405 /// Given an assignment `*LHS = RHS`, emit a test that checks if \p RHS is 4406 /// nonnull, if \p LHS is marked _Nonnull. 4407 void EmitNullabilityCheck(LValue LHS, llvm::Value *RHS, SourceLocation Loc); 4408 4409 /// An enumeration which makes it easier to specify whether or not an 4410 /// operation is a subtraction. 4411 enum { NotSubtraction = false, IsSubtraction = true }; 4412 4413 /// Same as IRBuilder::CreateInBoundsGEP, but additionally emits a check to 4414 /// detect undefined behavior when the pointer overflow sanitizer is enabled. 4415 /// \p SignedIndices indicates whether any of the GEP indices are signed. 4416 /// \p IsSubtraction indicates whether the expression used to form the GEP 4417 /// is a subtraction. 4418 llvm::Value *EmitCheckedInBoundsGEP(llvm::Value *Ptr, 4419 ArrayRef<llvm::Value *> IdxList, 4420 bool SignedIndices, 4421 bool IsSubtraction, 4422 SourceLocation Loc, 4423 const Twine &Name = ""); 4424 4425 /// Specifies which type of sanitizer check to apply when handling a 4426 /// particular builtin. 4427 enum BuiltinCheckKind { 4428 BCK_CTZPassedZero, 4429 BCK_CLZPassedZero, 4430 }; 4431 4432 /// Emits an argument for a call to a builtin. If the builtin sanitizer is 4433 /// enabled, a runtime check specified by \p Kind is also emitted. 4434 llvm::Value *EmitCheckedArgForBuiltin(const Expr *E, BuiltinCheckKind Kind); 4435 4436 /// Emit a description of a type in a format suitable for passing to 4437 /// a runtime sanitizer handler. 4438 llvm::Constant *EmitCheckTypeDescriptor(QualType T); 4439 4440 /// Convert a value into a format suitable for passing to a runtime 4441 /// sanitizer handler. 4442 llvm::Value *EmitCheckValue(llvm::Value *V); 4443 4444 /// Emit a description of a source location in a format suitable for 4445 /// passing to a runtime sanitizer handler. 4446 llvm::Constant *EmitCheckSourceLocation(SourceLocation Loc); 4447 4448 /// Create a basic block that will either trap or call a handler function in 4449 /// the UBSan runtime with the provided arguments, and create a conditional 4450 /// branch to it. 4451 void EmitCheck(ArrayRef<std::pair<llvm::Value *, SanitizerMask>> Checked, 4452 SanitizerHandler Check, ArrayRef<llvm::Constant *> StaticArgs, 4453 ArrayRef<llvm::Value *> DynamicArgs); 4454 4455 /// Emit a slow path cross-DSO CFI check which calls __cfi_slowpath 4456 /// if Cond if false. 4457 void EmitCfiSlowPathCheck(SanitizerMask Kind, llvm::Value *Cond, 4458 llvm::ConstantInt *TypeId, llvm::Value *Ptr, 4459 ArrayRef<llvm::Constant *> StaticArgs); 4460 4461 /// Emit a reached-unreachable diagnostic if \p Loc is valid and runtime 4462 /// checking is enabled. Otherwise, just emit an unreachable instruction. 4463 void EmitUnreachable(SourceLocation Loc); 4464 4465 /// Create a basic block that will call the trap intrinsic, and emit a 4466 /// conditional branch to it, for the -ftrapv checks. 4467 void EmitTrapCheck(llvm::Value *Checked); 4468 4469 /// Emit a call to trap or debugtrap and attach function attribute 4470 /// "trap-func-name" if specified. 4471 llvm::CallInst *EmitTrapCall(llvm::Intrinsic::ID IntrID); 4472 4473 /// Emit a stub for the cross-DSO CFI check function. 4474 void EmitCfiCheckStub(); 4475 4476 /// Emit a cross-DSO CFI failure handling function. 4477 void EmitCfiCheckFail(); 4478 4479 /// Create a check for a function parameter that may potentially be 4480 /// declared as non-null. 4481 void EmitNonNullArgCheck(RValue RV, QualType ArgType, SourceLocation ArgLoc, 4482 AbstractCallee AC, unsigned ParmNum); 4483 4484 /// EmitCallArg - Emit a single call argument. 4485 void EmitCallArg(CallArgList &args, const Expr *E, QualType ArgType); 4486 4487 /// EmitDelegateCallArg - We are performing a delegate call; that 4488 /// is, the current function is delegating to another one. Produce 4489 /// a r-value suitable for passing the given parameter. 4490 void EmitDelegateCallArg(CallArgList &args, const VarDecl *param, 4491 SourceLocation loc); 4492 4493 /// SetFPAccuracy - Set the minimum required accuracy of the given floating 4494 /// point operation, expressed as the maximum relative error in ulp. 4495 void SetFPAccuracy(llvm::Value *Val, float Accuracy); 4496 4497 /// SetFPModel - Control floating point behavior via fp-model settings. 4498 void SetFPModel(); 4499 4500 /// Set the codegen fast-math flags. 4501 void SetFastMathFlags(FPOptions FPFeatures); 4502 4503 private: 4504 llvm::MDNode *getRangeForLoadFromType(QualType Ty); 4505 void EmitReturnOfRValue(RValue RV, QualType Ty); 4506 4507 void deferPlaceholderReplacement(llvm::Instruction *Old, llvm::Value *New); 4508 4509 llvm::SmallVector<std::pair<llvm::Instruction *, llvm::Value *>, 4> 4510 DeferredReplacements; 4511 4512 /// Set the address of a local variable. 4513 void setAddrOfLocalVar(const VarDecl *VD, Address Addr) { 4514 assert(!LocalDeclMap.count(VD) && "Decl already exists in LocalDeclMap!"); 4515 LocalDeclMap.insert({VD, Addr}); 4516 } 4517 4518 /// ExpandTypeFromArgs - Reconstruct a structure of type \arg Ty 4519 /// from function arguments into \arg Dst. See ABIArgInfo::Expand. 4520 /// 4521 /// \param AI - The first function argument of the expansion. 4522 void ExpandTypeFromArgs(QualType Ty, LValue Dst, 4523 llvm::Function::arg_iterator &AI); 4524 4525 /// ExpandTypeToArgs - Expand an CallArg \arg Arg, with the LLVM type for \arg 4526 /// Ty, into individual arguments on the provided vector \arg IRCallArgs, 4527 /// starting at index \arg IRCallArgPos. See ABIArgInfo::Expand. 4528 void ExpandTypeToArgs(QualType Ty, CallArg Arg, llvm::FunctionType *IRFuncTy, 4529 SmallVectorImpl<llvm::Value *> &IRCallArgs, 4530 unsigned &IRCallArgPos); 4531 4532 llvm::Value* EmitAsmInput(const TargetInfo::ConstraintInfo &Info, 4533 const Expr *InputExpr, std::string &ConstraintStr); 4534 4535 llvm::Value* EmitAsmInputLValue(const TargetInfo::ConstraintInfo &Info, 4536 LValue InputValue, QualType InputType, 4537 std::string &ConstraintStr, 4538 SourceLocation Loc); 4539 4540 /// Attempts to statically evaluate the object size of E. If that 4541 /// fails, emits code to figure the size of E out for us. This is 4542 /// pass_object_size aware. 4543 /// 4544 /// If EmittedExpr is non-null, this will use that instead of re-emitting E. 4545 llvm::Value *evaluateOrEmitBuiltinObjectSize(const Expr *E, unsigned Type, 4546 llvm::IntegerType *ResType, 4547 llvm::Value *EmittedE, 4548 bool IsDynamic); 4549 4550 /// Emits the size of E, as required by __builtin_object_size. This 4551 /// function is aware of pass_object_size parameters, and will act accordingly 4552 /// if E is a parameter with the pass_object_size attribute. 4553 llvm::Value *emitBuiltinObjectSize(const Expr *E, unsigned Type, 4554 llvm::IntegerType *ResType, 4555 llvm::Value *EmittedE, 4556 bool IsDynamic); 4557 4558 void emitZeroOrPatternForAutoVarInit(QualType type, const VarDecl &D, 4559 Address Loc); 4560 4561 public: 4562 #ifndef NDEBUG 4563 // Determine whether the given argument is an Objective-C method 4564 // that may have type parameters in its signature. 4565 static bool isObjCMethodWithTypeParams(const ObjCMethodDecl *method) { 4566 const DeclContext *dc = method->getDeclContext(); 4567 if (const ObjCInterfaceDecl *classDecl= dyn_cast<ObjCInterfaceDecl>(dc)) { 4568 return classDecl->getTypeParamListAsWritten(); 4569 } 4570 4571 if (const ObjCCategoryDecl *catDecl = dyn_cast<ObjCCategoryDecl>(dc)) { 4572 return catDecl->getTypeParamList(); 4573 } 4574 4575 return false; 4576 } 4577 4578 template<typename T> 4579 static bool isObjCMethodWithTypeParams(const T *) { return false; } 4580 #endif 4581 4582 enum class EvaluationOrder { 4583 ///! No language constraints on evaluation order. 4584 Default, 4585 ///! Language semantics require left-to-right evaluation. 4586 ForceLeftToRight, 4587 ///! Language semantics require right-to-left evaluation. 4588 ForceRightToLeft 4589 }; 4590 4591 /// EmitCallArgs - Emit call arguments for a function. 4592 template <typename T> 4593 void EmitCallArgs(CallArgList &Args, const T *CallArgTypeInfo, 4594 llvm::iterator_range<CallExpr::const_arg_iterator> ArgRange, 4595 AbstractCallee AC = AbstractCallee(), 4596 unsigned ParamsToSkip = 0, 4597 EvaluationOrder Order = EvaluationOrder::Default) { 4598 SmallVector<QualType, 16> ArgTypes; 4599 CallExpr::const_arg_iterator Arg = ArgRange.begin(); 4600 4601 assert((ParamsToSkip == 0 || CallArgTypeInfo) && 4602 "Can't skip parameters if type info is not provided"); 4603 if (CallArgTypeInfo) { 4604 #ifndef NDEBUG 4605 bool isGenericMethod = isObjCMethodWithTypeParams(CallArgTypeInfo); 4606 #endif 4607 4608 // First, use the argument types that the type info knows about 4609 for (auto I = CallArgTypeInfo->param_type_begin() + ParamsToSkip, 4610 E = CallArgTypeInfo->param_type_end(); 4611 I != E; ++I, ++Arg) { 4612 assert(Arg != ArgRange.end() && "Running over edge of argument list!"); 4613 assert((isGenericMethod || 4614 ((*I)->isVariablyModifiedType() || 4615 (*I).getNonReferenceType()->isObjCRetainableType() || 4616 getContext() 4617 .getCanonicalType((*I).getNonReferenceType()) 4618 .getTypePtr() == 4619 getContext() 4620 .getCanonicalType((*Arg)->getType()) 4621 .getTypePtr())) && 4622 "type mismatch in call argument!"); 4623 ArgTypes.push_back(*I); 4624 } 4625 } 4626 4627 // Either we've emitted all the call args, or we have a call to variadic 4628 // function. 4629 assert((Arg == ArgRange.end() || !CallArgTypeInfo || 4630 CallArgTypeInfo->isVariadic()) && 4631 "Extra arguments in non-variadic function!"); 4632 4633 // If we still have any arguments, emit them using the type of the argument. 4634 for (auto *A : llvm::make_range(Arg, ArgRange.end())) 4635 ArgTypes.push_back(CallArgTypeInfo ? getVarArgType(A) : A->getType()); 4636 4637 EmitCallArgs(Args, ArgTypes, ArgRange, AC, ParamsToSkip, Order); 4638 } 4639 4640 void EmitCallArgs(CallArgList &Args, ArrayRef<QualType> ArgTypes, 4641 llvm::iterator_range<CallExpr::const_arg_iterator> ArgRange, 4642 AbstractCallee AC = AbstractCallee(), 4643 unsigned ParamsToSkip = 0, 4644 EvaluationOrder Order = EvaluationOrder::Default); 4645 4646 /// EmitPointerWithAlignment - Given an expression with a pointer type, 4647 /// emit the value and compute our best estimate of the alignment of the 4648 /// pointee. 4649 /// 4650 /// \param BaseInfo - If non-null, this will be initialized with 4651 /// information about the source of the alignment and the may-alias 4652 /// attribute. Note that this function will conservatively fall back on 4653 /// the type when it doesn't recognize the expression and may-alias will 4654 /// be set to false. 4655 /// 4656 /// One reasonable way to use this information is when there's a language 4657 /// guarantee that the pointer must be aligned to some stricter value, and 4658 /// we're simply trying to ensure that sufficiently obvious uses of under- 4659 /// aligned objects don't get miscompiled; for example, a placement new 4660 /// into the address of a local variable. In such a case, it's quite 4661 /// reasonable to just ignore the returned alignment when it isn't from an 4662 /// explicit source. 4663 Address EmitPointerWithAlignment(const Expr *Addr, 4664 LValueBaseInfo *BaseInfo = nullptr, 4665 TBAAAccessInfo *TBAAInfo = nullptr); 4666 4667 /// If \p E references a parameter with pass_object_size info or a constant 4668 /// array size modifier, emit the object size divided by the size of \p EltTy. 4669 /// Otherwise return null. 4670 llvm::Value *LoadPassedObjectSize(const Expr *E, QualType EltTy); 4671 4672 void EmitSanitizerStatReport(llvm::SanitizerStatKind SSK); 4673 4674 struct MultiVersionResolverOption { 4675 llvm::Function *Function; 4676 FunctionDecl *FD; 4677 struct Conds { 4678 StringRef Architecture; 4679 llvm::SmallVector<StringRef, 8> Features; 4680 4681 Conds(StringRef Arch, ArrayRef<StringRef> Feats) 4682 : Architecture(Arch), Features(Feats.begin(), Feats.end()) {} 4683 } Conditions; 4684 4685 MultiVersionResolverOption(llvm::Function *F, StringRef Arch, 4686 ArrayRef<StringRef> Feats) 4687 : Function(F), Conditions(Arch, Feats) {} 4688 }; 4689 4690 // Emits the body of a multiversion function's resolver. Assumes that the 4691 // options are already sorted in the proper order, with the 'default' option 4692 // last (if it exists). 4693 void EmitMultiVersionResolver(llvm::Function *Resolver, 4694 ArrayRef<MultiVersionResolverOption> Options); 4695 4696 static uint64_t GetX86CpuSupportsMask(ArrayRef<StringRef> FeatureStrs); 4697 4698 private: 4699 QualType getVarArgType(const Expr *Arg); 4700 4701 void EmitDeclMetadata(); 4702 4703 BlockByrefHelpers *buildByrefHelpers(llvm::StructType &byrefType, 4704 const AutoVarEmission &emission); 4705 4706 void AddObjCARCExceptionMetadata(llvm::Instruction *Inst); 4707 4708 llvm::Value *GetValueForARMHint(unsigned BuiltinID); 4709 llvm::Value *EmitX86CpuIs(const CallExpr *E); 4710 llvm::Value *EmitX86CpuIs(StringRef CPUStr); 4711 llvm::Value *EmitX86CpuSupports(const CallExpr *E); 4712 llvm::Value *EmitX86CpuSupports(ArrayRef<StringRef> FeatureStrs); 4713 llvm::Value *EmitX86CpuSupports(uint64_t Mask); 4714 llvm::Value *EmitX86CpuInit(); 4715 llvm::Value *FormResolverCondition(const MultiVersionResolverOption &RO); 4716 }; 4717 4718 /// TargetFeatures - This class is used to check whether the builtin function 4719 /// has the required tagert specific features. It is able to support the 4720 /// combination of ','(and), '|'(or), and '()'. By default, the priority of 4721 /// ',' is higher than that of '|' . 4722 /// E.g: 4723 /// A,B|C means the builtin function requires both A and B, or C. 4724 /// If we want the builtin function requires both A and B, or both A and C, 4725 /// there are two ways: A,B|A,C or A,(B|C). 4726 /// The FeaturesList should not contain spaces, and brackets must appear in 4727 /// pairs. 4728 class TargetFeatures { 4729 struct FeatureListStatus { 4730 bool HasFeatures; 4731 StringRef CurFeaturesList; 4732 }; 4733 4734 const llvm::StringMap<bool> &CallerFeatureMap; 4735 4736 FeatureListStatus getAndFeatures(StringRef FeatureList) { 4737 int InParentheses = 0; 4738 bool HasFeatures = true; 4739 size_t SubexpressionStart = 0; 4740 for (size_t i = 0, e = FeatureList.size(); i < e; ++i) { 4741 char CurrentToken = FeatureList[i]; 4742 switch (CurrentToken) { 4743 default: 4744 break; 4745 case '(': 4746 if (InParentheses == 0) 4747 SubexpressionStart = i + 1; 4748 ++InParentheses; 4749 break; 4750 case ')': 4751 --InParentheses; 4752 assert(InParentheses >= 0 && "Parentheses are not in pair"); 4753 LLVM_FALLTHROUGH; 4754 case '|': 4755 case ',': 4756 if (InParentheses == 0) { 4757 if (HasFeatures && i != SubexpressionStart) { 4758 StringRef F = FeatureList.slice(SubexpressionStart, i); 4759 HasFeatures = CurrentToken == ')' ? hasRequiredFeatures(F) 4760 : CallerFeatureMap.lookup(F); 4761 } 4762 SubexpressionStart = i + 1; 4763 if (CurrentToken == '|') { 4764 return {HasFeatures, FeatureList.substr(SubexpressionStart)}; 4765 } 4766 } 4767 break; 4768 } 4769 } 4770 assert(InParentheses == 0 && "Parentheses are not in pair"); 4771 if (HasFeatures && SubexpressionStart != FeatureList.size()) 4772 HasFeatures = 4773 CallerFeatureMap.lookup(FeatureList.substr(SubexpressionStart)); 4774 return {HasFeatures, StringRef()}; 4775 } 4776 4777 public: 4778 bool hasRequiredFeatures(StringRef FeatureList) { 4779 FeatureListStatus FS = {false, FeatureList}; 4780 while (!FS.HasFeatures && !FS.CurFeaturesList.empty()) 4781 FS = getAndFeatures(FS.CurFeaturesList); 4782 return FS.HasFeatures; 4783 } 4784 4785 TargetFeatures(const llvm::StringMap<bool> &CallerFeatureMap) 4786 : CallerFeatureMap(CallerFeatureMap) {} 4787 }; 4788 4789 inline DominatingLLVMValue::saved_type 4790 DominatingLLVMValue::save(CodeGenFunction &CGF, llvm::Value *value) { 4791 if (!needsSaving(value)) return saved_type(value, false); 4792 4793 // Otherwise, we need an alloca. 4794 auto align = CharUnits::fromQuantity( 4795 CGF.CGM.getDataLayout().getPrefTypeAlignment(value->getType())); 4796 Address alloca = 4797 CGF.CreateTempAlloca(value->getType(), align, "cond-cleanup.save"); 4798 CGF.Builder.CreateStore(value, alloca); 4799 4800 return saved_type(alloca.getPointer(), true); 4801 } 4802 4803 inline llvm::Value *DominatingLLVMValue::restore(CodeGenFunction &CGF, 4804 saved_type value) { 4805 // If the value says it wasn't saved, trust that it's still dominating. 4806 if (!value.getInt()) return value.getPointer(); 4807 4808 // Otherwise, it should be an alloca instruction, as set up in save(). 4809 auto alloca = cast<llvm::AllocaInst>(value.getPointer()); 4810 return CGF.Builder.CreateAlignedLoad(alloca, alloca->getAlign()); 4811 } 4812 4813 } // end namespace CodeGen 4814 4815 // Map the LangOption for floating point exception behavior into 4816 // the corresponding enum in the IR. 4817 llvm::fp::ExceptionBehavior 4818 ToConstrainedExceptMD(LangOptions::FPExceptionModeKind Kind); 4819 } // end namespace clang 4820 4821 #endif 4822