1 //===-- CodeGenFunction.h - Per-Function state for LLVM CodeGen -*- C++ -*-===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This is the internal per-function state used for llvm translation. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #ifndef LLVM_CLANG_LIB_CODEGEN_CODEGENFUNCTION_H 15 #define LLVM_CLANG_LIB_CODEGEN_CODEGENFUNCTION_H 16 17 #include "CGBuilder.h" 18 #include "CGDebugInfo.h" 19 #include "CGLoopInfo.h" 20 #include "CGValue.h" 21 #include "CodeGenModule.h" 22 #include "CodeGenPGO.h" 23 #include "EHScopeStack.h" 24 #include "clang/AST/CharUnits.h" 25 #include "clang/AST/ExprCXX.h" 26 #include "clang/AST/ExprObjC.h" 27 #include "clang/AST/ExprOpenMP.h" 28 #include "clang/AST/Type.h" 29 #include "clang/Basic/ABI.h" 30 #include "clang/Basic/CapturedStmt.h" 31 #include "clang/Basic/OpenMPKinds.h" 32 #include "clang/Basic/TargetInfo.h" 33 #include "clang/Frontend/CodeGenOptions.h" 34 #include "llvm/ADT/ArrayRef.h" 35 #include "llvm/ADT/DenseMap.h" 36 #include "llvm/ADT/SmallVector.h" 37 #include "llvm/IR/ValueHandle.h" 38 #include "llvm/Support/Debug.h" 39 #include "llvm/Transforms/Utils/SanitizerStats.h" 40 41 namespace llvm { 42 class BasicBlock; 43 class LLVMContext; 44 class MDNode; 45 class Module; 46 class SwitchInst; 47 class Twine; 48 class Value; 49 class CallSite; 50 } 51 52 namespace clang { 53 class ASTContext; 54 class BlockDecl; 55 class CXXDestructorDecl; 56 class CXXForRangeStmt; 57 class CXXTryStmt; 58 class Decl; 59 class LabelDecl; 60 class EnumConstantDecl; 61 class FunctionDecl; 62 class FunctionProtoType; 63 class LabelStmt; 64 class ObjCContainerDecl; 65 class ObjCInterfaceDecl; 66 class ObjCIvarDecl; 67 class ObjCMethodDecl; 68 class ObjCImplementationDecl; 69 class ObjCPropertyImplDecl; 70 class TargetInfo; 71 class VarDecl; 72 class ObjCForCollectionStmt; 73 class ObjCAtTryStmt; 74 class ObjCAtThrowStmt; 75 class ObjCAtSynchronizedStmt; 76 class ObjCAutoreleasePoolStmt; 77 78 namespace CodeGen { 79 class CodeGenTypes; 80 class CGFunctionInfo; 81 class CGRecordLayout; 82 class CGBlockInfo; 83 class CGCXXABI; 84 class BlockByrefHelpers; 85 class BlockByrefInfo; 86 class BlockFlags; 87 class BlockFieldFlags; 88 class TargetCodeGenInfo; 89 90 /// The kind of evaluation to perform on values of a particular 91 /// type. Basically, is the code in CGExprScalar, CGExprComplex, or 92 /// CGExprAgg? 93 /// 94 /// TODO: should vectors maybe be split out into their own thing? 95 enum TypeEvaluationKind { 96 TEK_Scalar, 97 TEK_Complex, 98 TEK_Aggregate 99 }; 100 101 /// CodeGenFunction - This class organizes the per-function state that is used 102 /// while generating LLVM code. 103 class CodeGenFunction : public CodeGenTypeCache { 104 CodeGenFunction(const CodeGenFunction &) = delete; 105 void operator=(const CodeGenFunction &) = delete; 106 107 friend class CGCXXABI; 108 public: 109 /// A jump destination is an abstract label, branching to which may 110 /// require a jump out through normal cleanups. 111 struct JumpDest { 112 JumpDest() : Block(nullptr), ScopeDepth(), Index(0) {} 113 JumpDest(llvm::BasicBlock *Block, 114 EHScopeStack::stable_iterator Depth, 115 unsigned Index) 116 : Block(Block), ScopeDepth(Depth), Index(Index) {} 117 118 bool isValid() const { return Block != nullptr; } 119 llvm::BasicBlock *getBlock() const { return Block; } 120 EHScopeStack::stable_iterator getScopeDepth() const { return ScopeDepth; } 121 unsigned getDestIndex() const { return Index; } 122 123 // This should be used cautiously. 124 void setScopeDepth(EHScopeStack::stable_iterator depth) { 125 ScopeDepth = depth; 126 } 127 128 private: 129 llvm::BasicBlock *Block; 130 EHScopeStack::stable_iterator ScopeDepth; 131 unsigned Index; 132 }; 133 134 CodeGenModule &CGM; // Per-module state. 135 const TargetInfo &Target; 136 137 typedef std::pair<llvm::Value *, llvm::Value *> ComplexPairTy; 138 LoopInfoStack LoopStack; 139 CGBuilderTy Builder; 140 141 /// \brief CGBuilder insert helper. This function is called after an 142 /// instruction is created using Builder. 143 void InsertHelper(llvm::Instruction *I, const llvm::Twine &Name, 144 llvm::BasicBlock *BB, 145 llvm::BasicBlock::iterator InsertPt) const; 146 147 /// CurFuncDecl - Holds the Decl for the current outermost 148 /// non-closure context. 149 const Decl *CurFuncDecl; 150 /// CurCodeDecl - This is the inner-most code context, which includes blocks. 151 const Decl *CurCodeDecl; 152 const CGFunctionInfo *CurFnInfo; 153 QualType FnRetTy; 154 llvm::Function *CurFn; 155 156 /// CurGD - The GlobalDecl for the current function being compiled. 157 GlobalDecl CurGD; 158 159 /// PrologueCleanupDepth - The cleanup depth enclosing all the 160 /// cleanups associated with the parameters. 161 EHScopeStack::stable_iterator PrologueCleanupDepth; 162 163 /// ReturnBlock - Unified return block. 164 JumpDest ReturnBlock; 165 166 /// ReturnValue - The temporary alloca to hold the return 167 /// value. This is invalid iff the function has no return value. 168 Address ReturnValue; 169 170 /// AllocaInsertPoint - This is an instruction in the entry block before which 171 /// we prefer to insert allocas. 172 llvm::AssertingVH<llvm::Instruction> AllocaInsertPt; 173 174 /// \brief API for captured statement code generation. 175 class CGCapturedStmtInfo { 176 public: 177 explicit CGCapturedStmtInfo(CapturedRegionKind K = CR_Default) 178 : Kind(K), ThisValue(nullptr), CXXThisFieldDecl(nullptr) {} 179 explicit CGCapturedStmtInfo(const CapturedStmt &S, 180 CapturedRegionKind K = CR_Default) 181 : Kind(K), ThisValue(nullptr), CXXThisFieldDecl(nullptr) { 182 183 RecordDecl::field_iterator Field = 184 S.getCapturedRecordDecl()->field_begin(); 185 for (CapturedStmt::const_capture_iterator I = S.capture_begin(), 186 E = S.capture_end(); 187 I != E; ++I, ++Field) { 188 if (I->capturesThis()) 189 CXXThisFieldDecl = *Field; 190 else if (I->capturesVariable()) 191 CaptureFields[I->getCapturedVar()] = *Field; 192 } 193 } 194 195 virtual ~CGCapturedStmtInfo(); 196 197 CapturedRegionKind getKind() const { return Kind; } 198 199 virtual void setContextValue(llvm::Value *V) { ThisValue = V; } 200 // \brief Retrieve the value of the context parameter. 201 virtual llvm::Value *getContextValue() const { return ThisValue; } 202 203 /// \brief Lookup the captured field decl for a variable. 204 virtual const FieldDecl *lookup(const VarDecl *VD) const { 205 return CaptureFields.lookup(VD); 206 } 207 208 bool isCXXThisExprCaptured() const { return getThisFieldDecl() != nullptr; } 209 virtual FieldDecl *getThisFieldDecl() const { return CXXThisFieldDecl; } 210 211 static bool classof(const CGCapturedStmtInfo *) { 212 return true; 213 } 214 215 /// \brief Emit the captured statement body. 216 virtual void EmitBody(CodeGenFunction &CGF, const Stmt *S) { 217 CGF.incrementProfileCounter(S); 218 CGF.EmitStmt(S); 219 } 220 221 /// \brief Get the name of the capture helper. 222 virtual StringRef getHelperName() const { return "__captured_stmt"; } 223 224 private: 225 /// \brief The kind of captured statement being generated. 226 CapturedRegionKind Kind; 227 228 /// \brief Keep the map between VarDecl and FieldDecl. 229 llvm::SmallDenseMap<const VarDecl *, FieldDecl *> CaptureFields; 230 231 /// \brief The base address of the captured record, passed in as the first 232 /// argument of the parallel region function. 233 llvm::Value *ThisValue; 234 235 /// \brief Captured 'this' type. 236 FieldDecl *CXXThisFieldDecl; 237 }; 238 CGCapturedStmtInfo *CapturedStmtInfo; 239 240 /// \brief RAII for correct setting/restoring of CapturedStmtInfo. 241 class CGCapturedStmtRAII { 242 private: 243 CodeGenFunction &CGF; 244 CGCapturedStmtInfo *PrevCapturedStmtInfo; 245 public: 246 CGCapturedStmtRAII(CodeGenFunction &CGF, 247 CGCapturedStmtInfo *NewCapturedStmtInfo) 248 : CGF(CGF), PrevCapturedStmtInfo(CGF.CapturedStmtInfo) { 249 CGF.CapturedStmtInfo = NewCapturedStmtInfo; 250 } 251 ~CGCapturedStmtRAII() { CGF.CapturedStmtInfo = PrevCapturedStmtInfo; } 252 }; 253 254 /// \brief Sanitizers enabled for this function. 255 SanitizerSet SanOpts; 256 257 /// \brief True if CodeGen currently emits code implementing sanitizer checks. 258 bool IsSanitizerScope; 259 260 /// \brief RAII object to set/unset CodeGenFunction::IsSanitizerScope. 261 class SanitizerScope { 262 CodeGenFunction *CGF; 263 public: 264 SanitizerScope(CodeGenFunction *CGF); 265 ~SanitizerScope(); 266 }; 267 268 /// In C++, whether we are code generating a thunk. This controls whether we 269 /// should emit cleanups. 270 bool CurFuncIsThunk; 271 272 /// In ARC, whether we should autorelease the return value. 273 bool AutoreleaseResult; 274 275 /// Whether we processed a Microsoft-style asm block during CodeGen. These can 276 /// potentially set the return value. 277 bool SawAsmBlock; 278 279 const FunctionDecl *CurSEHParent = nullptr; 280 281 /// True if the current function is an outlined SEH helper. This can be a 282 /// finally block or filter expression. 283 bool IsOutlinedSEHHelper; 284 285 const CodeGen::CGBlockInfo *BlockInfo; 286 llvm::Value *BlockPointer; 287 288 llvm::DenseMap<const VarDecl *, FieldDecl *> LambdaCaptureFields; 289 FieldDecl *LambdaThisCaptureField; 290 291 /// \brief A mapping from NRVO variables to the flags used to indicate 292 /// when the NRVO has been applied to this variable. 293 llvm::DenseMap<const VarDecl *, llvm::Value *> NRVOFlags; 294 295 EHScopeStack EHStack; 296 llvm::SmallVector<char, 256> LifetimeExtendedCleanupStack; 297 llvm::SmallVector<const JumpDest *, 2> SEHTryEpilogueStack; 298 299 llvm::Instruction *CurrentFuncletPad = nullptr; 300 301 /// Header for data within LifetimeExtendedCleanupStack. 302 struct LifetimeExtendedCleanupHeader { 303 /// The size of the following cleanup object. 304 unsigned Size; 305 /// The kind of cleanup to push: a value from the CleanupKind enumeration. 306 CleanupKind Kind; 307 308 size_t getSize() const { return Size; } 309 CleanupKind getKind() const { return Kind; } 310 }; 311 312 /// i32s containing the indexes of the cleanup destinations. 313 llvm::AllocaInst *NormalCleanupDest; 314 315 unsigned NextCleanupDestIndex; 316 317 /// FirstBlockInfo - The head of a singly-linked-list of block layouts. 318 CGBlockInfo *FirstBlockInfo; 319 320 /// EHResumeBlock - Unified block containing a call to llvm.eh.resume. 321 llvm::BasicBlock *EHResumeBlock; 322 323 /// The exception slot. All landing pads write the current exception pointer 324 /// into this alloca. 325 llvm::Value *ExceptionSlot; 326 327 /// The selector slot. Under the MandatoryCleanup model, all landing pads 328 /// write the current selector value into this alloca. 329 llvm::AllocaInst *EHSelectorSlot; 330 331 /// A stack of exception code slots. Entering an __except block pushes a slot 332 /// on the stack and leaving pops one. The __exception_code() intrinsic loads 333 /// a value from the top of the stack. 334 SmallVector<Address, 1> SEHCodeSlotStack; 335 336 /// Value returned by __exception_info intrinsic. 337 llvm::Value *SEHInfo = nullptr; 338 339 /// Emits a landing pad for the current EH stack. 340 llvm::BasicBlock *EmitLandingPad(); 341 342 llvm::BasicBlock *getInvokeDestImpl(); 343 344 template <class T> 345 typename DominatingValue<T>::saved_type saveValueInCond(T value) { 346 return DominatingValue<T>::save(*this, value); 347 } 348 349 public: 350 /// ObjCEHValueStack - Stack of Objective-C exception values, used for 351 /// rethrows. 352 SmallVector<llvm::Value*, 8> ObjCEHValueStack; 353 354 /// A class controlling the emission of a finally block. 355 class FinallyInfo { 356 /// Where the catchall's edge through the cleanup should go. 357 JumpDest RethrowDest; 358 359 /// A function to call to enter the catch. 360 llvm::Constant *BeginCatchFn; 361 362 /// An i1 variable indicating whether or not the @finally is 363 /// running for an exception. 364 llvm::AllocaInst *ForEHVar; 365 366 /// An i8* variable into which the exception pointer to rethrow 367 /// has been saved. 368 llvm::AllocaInst *SavedExnVar; 369 370 public: 371 void enter(CodeGenFunction &CGF, const Stmt *Finally, 372 llvm::Constant *beginCatchFn, llvm::Constant *endCatchFn, 373 llvm::Constant *rethrowFn); 374 void exit(CodeGenFunction &CGF); 375 }; 376 377 /// Returns true inside SEH __try blocks. 378 bool isSEHTryScope() const { return !SEHTryEpilogueStack.empty(); } 379 380 /// Returns true while emitting a cleanuppad. 381 bool isCleanupPadScope() const { 382 return CurrentFuncletPad && isa<llvm::CleanupPadInst>(CurrentFuncletPad); 383 } 384 385 /// pushFullExprCleanup - Push a cleanup to be run at the end of the 386 /// current full-expression. Safe against the possibility that 387 /// we're currently inside a conditionally-evaluated expression. 388 template <class T, class... As> 389 void pushFullExprCleanup(CleanupKind kind, As... A) { 390 // If we're not in a conditional branch, or if none of the 391 // arguments requires saving, then use the unconditional cleanup. 392 if (!isInConditionalBranch()) 393 return EHStack.pushCleanup<T>(kind, A...); 394 395 // Stash values in a tuple so we can guarantee the order of saves. 396 typedef std::tuple<typename DominatingValue<As>::saved_type...> SavedTuple; 397 SavedTuple Saved{saveValueInCond(A)...}; 398 399 typedef EHScopeStack::ConditionalCleanup<T, As...> CleanupType; 400 EHStack.pushCleanupTuple<CleanupType>(kind, Saved); 401 initFullExprCleanup(); 402 } 403 404 /// \brief Queue a cleanup to be pushed after finishing the current 405 /// full-expression. 406 template <class T, class... As> 407 void pushCleanupAfterFullExpr(CleanupKind Kind, As... A) { 408 assert(!isInConditionalBranch() && "can't defer conditional cleanup"); 409 410 LifetimeExtendedCleanupHeader Header = { sizeof(T), Kind }; 411 412 size_t OldSize = LifetimeExtendedCleanupStack.size(); 413 LifetimeExtendedCleanupStack.resize( 414 LifetimeExtendedCleanupStack.size() + sizeof(Header) + Header.Size); 415 416 static_assert(sizeof(Header) % llvm::AlignOf<T>::Alignment == 0, 417 "Cleanup will be allocated on misaligned address"); 418 char *Buffer = &LifetimeExtendedCleanupStack[OldSize]; 419 new (Buffer) LifetimeExtendedCleanupHeader(Header); 420 new (Buffer + sizeof(Header)) T(A...); 421 } 422 423 /// Set up the last cleaup that was pushed as a conditional 424 /// full-expression cleanup. 425 void initFullExprCleanup(); 426 427 /// PushDestructorCleanup - Push a cleanup to call the 428 /// complete-object destructor of an object of the given type at the 429 /// given address. Does nothing if T is not a C++ class type with a 430 /// non-trivial destructor. 431 void PushDestructorCleanup(QualType T, Address Addr); 432 433 /// PushDestructorCleanup - Push a cleanup to call the 434 /// complete-object variant of the given destructor on the object at 435 /// the given address. 436 void PushDestructorCleanup(const CXXDestructorDecl *Dtor, Address Addr); 437 438 /// PopCleanupBlock - Will pop the cleanup entry on the stack and 439 /// process all branch fixups. 440 void PopCleanupBlock(bool FallThroughIsBranchThrough = false); 441 442 /// DeactivateCleanupBlock - Deactivates the given cleanup block. 443 /// The block cannot be reactivated. Pops it if it's the top of the 444 /// stack. 445 /// 446 /// \param DominatingIP - An instruction which is known to 447 /// dominate the current IP (if set) and which lies along 448 /// all paths of execution between the current IP and the 449 /// the point at which the cleanup comes into scope. 450 void DeactivateCleanupBlock(EHScopeStack::stable_iterator Cleanup, 451 llvm::Instruction *DominatingIP); 452 453 /// ActivateCleanupBlock - Activates an initially-inactive cleanup. 454 /// Cannot be used to resurrect a deactivated cleanup. 455 /// 456 /// \param DominatingIP - An instruction which is known to 457 /// dominate the current IP (if set) and which lies along 458 /// all paths of execution between the current IP and the 459 /// the point at which the cleanup comes into scope. 460 void ActivateCleanupBlock(EHScopeStack::stable_iterator Cleanup, 461 llvm::Instruction *DominatingIP); 462 463 /// \brief Enters a new scope for capturing cleanups, all of which 464 /// will be executed once the scope is exited. 465 class RunCleanupsScope { 466 EHScopeStack::stable_iterator CleanupStackDepth; 467 size_t LifetimeExtendedCleanupStackSize; 468 bool OldDidCallStackSave; 469 protected: 470 bool PerformCleanup; 471 private: 472 473 RunCleanupsScope(const RunCleanupsScope &) = delete; 474 void operator=(const RunCleanupsScope &) = delete; 475 476 protected: 477 CodeGenFunction& CGF; 478 479 public: 480 /// \brief Enter a new cleanup scope. 481 explicit RunCleanupsScope(CodeGenFunction &CGF) 482 : PerformCleanup(true), CGF(CGF) 483 { 484 CleanupStackDepth = CGF.EHStack.stable_begin(); 485 LifetimeExtendedCleanupStackSize = 486 CGF.LifetimeExtendedCleanupStack.size(); 487 OldDidCallStackSave = CGF.DidCallStackSave; 488 CGF.DidCallStackSave = false; 489 } 490 491 /// \brief Exit this cleanup scope, emitting any accumulated 492 /// cleanups. 493 ~RunCleanupsScope() { 494 if (PerformCleanup) { 495 CGF.DidCallStackSave = OldDidCallStackSave; 496 CGF.PopCleanupBlocks(CleanupStackDepth, 497 LifetimeExtendedCleanupStackSize); 498 } 499 } 500 501 /// \brief Determine whether this scope requires any cleanups. 502 bool requiresCleanups() const { 503 return CGF.EHStack.stable_begin() != CleanupStackDepth; 504 } 505 506 /// \brief Force the emission of cleanups now, instead of waiting 507 /// until this object is destroyed. 508 void ForceCleanup() { 509 assert(PerformCleanup && "Already forced cleanup"); 510 CGF.DidCallStackSave = OldDidCallStackSave; 511 CGF.PopCleanupBlocks(CleanupStackDepth, 512 LifetimeExtendedCleanupStackSize); 513 PerformCleanup = false; 514 } 515 }; 516 517 class LexicalScope : public RunCleanupsScope { 518 SourceRange Range; 519 SmallVector<const LabelDecl*, 4> Labels; 520 LexicalScope *ParentScope; 521 522 LexicalScope(const LexicalScope &) = delete; 523 void operator=(const LexicalScope &) = delete; 524 525 public: 526 /// \brief Enter a new cleanup scope. 527 explicit LexicalScope(CodeGenFunction &CGF, SourceRange Range) 528 : RunCleanupsScope(CGF), Range(Range), ParentScope(CGF.CurLexicalScope) { 529 CGF.CurLexicalScope = this; 530 if (CGDebugInfo *DI = CGF.getDebugInfo()) 531 DI->EmitLexicalBlockStart(CGF.Builder, Range.getBegin()); 532 } 533 534 void addLabel(const LabelDecl *label) { 535 assert(PerformCleanup && "adding label to dead scope?"); 536 Labels.push_back(label); 537 } 538 539 /// \brief Exit this cleanup scope, emitting any accumulated 540 /// cleanups. 541 ~LexicalScope() { 542 if (CGDebugInfo *DI = CGF.getDebugInfo()) 543 DI->EmitLexicalBlockEnd(CGF.Builder, Range.getEnd()); 544 545 // If we should perform a cleanup, force them now. Note that 546 // this ends the cleanup scope before rescoping any labels. 547 if (PerformCleanup) { 548 ApplyDebugLocation DL(CGF, Range.getEnd()); 549 ForceCleanup(); 550 } 551 } 552 553 /// \brief Force the emission of cleanups now, instead of waiting 554 /// until this object is destroyed. 555 void ForceCleanup() { 556 CGF.CurLexicalScope = ParentScope; 557 RunCleanupsScope::ForceCleanup(); 558 559 if (!Labels.empty()) 560 rescopeLabels(); 561 } 562 563 void rescopeLabels(); 564 }; 565 566 typedef llvm::DenseMap<const Decl *, Address> DeclMapTy; 567 568 /// \brief The scope used to remap some variables as private in the OpenMP 569 /// loop body (or other captured region emitted without outlining), and to 570 /// restore old vars back on exit. 571 class OMPPrivateScope : public RunCleanupsScope { 572 DeclMapTy SavedLocals; 573 DeclMapTy SavedPrivates; 574 575 private: 576 OMPPrivateScope(const OMPPrivateScope &) = delete; 577 void operator=(const OMPPrivateScope &) = delete; 578 579 public: 580 /// \brief Enter a new OpenMP private scope. 581 explicit OMPPrivateScope(CodeGenFunction &CGF) : RunCleanupsScope(CGF) {} 582 583 /// \brief Registers \a LocalVD variable as a private and apply \a 584 /// PrivateGen function for it to generate corresponding private variable. 585 /// \a PrivateGen returns an address of the generated private variable. 586 /// \return true if the variable is registered as private, false if it has 587 /// been privatized already. 588 bool 589 addPrivate(const VarDecl *LocalVD, 590 llvm::function_ref<Address()> PrivateGen) { 591 assert(PerformCleanup && "adding private to dead scope"); 592 593 // Only save it once. 594 if (SavedLocals.count(LocalVD)) return false; 595 596 // Copy the existing local entry to SavedLocals. 597 auto it = CGF.LocalDeclMap.find(LocalVD); 598 if (it != CGF.LocalDeclMap.end()) { 599 SavedLocals.insert({LocalVD, it->second}); 600 } else { 601 SavedLocals.insert({LocalVD, Address::invalid()}); 602 } 603 604 // Generate the private entry. 605 Address Addr = PrivateGen(); 606 QualType VarTy = LocalVD->getType(); 607 if (VarTy->isReferenceType()) { 608 Address Temp = CGF.CreateMemTemp(VarTy); 609 CGF.Builder.CreateStore(Addr.getPointer(), Temp); 610 Addr = Temp; 611 } 612 SavedPrivates.insert({LocalVD, Addr}); 613 614 return true; 615 } 616 617 /// \brief Privatizes local variables previously registered as private. 618 /// Registration is separate from the actual privatization to allow 619 /// initializers use values of the original variables, not the private one. 620 /// This is important, for example, if the private variable is a class 621 /// variable initialized by a constructor that references other private 622 /// variables. But at initialization original variables must be used, not 623 /// private copies. 624 /// \return true if at least one variable was privatized, false otherwise. 625 bool Privatize() { 626 copyInto(SavedPrivates, CGF.LocalDeclMap); 627 SavedPrivates.clear(); 628 return !SavedLocals.empty(); 629 } 630 631 void ForceCleanup() { 632 RunCleanupsScope::ForceCleanup(); 633 copyInto(SavedLocals, CGF.LocalDeclMap); 634 SavedLocals.clear(); 635 } 636 637 /// \brief Exit scope - all the mapped variables are restored. 638 ~OMPPrivateScope() { 639 if (PerformCleanup) 640 ForceCleanup(); 641 } 642 643 private: 644 /// Copy all the entries in the source map over the corresponding 645 /// entries in the destination, which must exist. 646 static void copyInto(const DeclMapTy &src, DeclMapTy &dest) { 647 for (auto &pair : src) { 648 if (!pair.second.isValid()) { 649 dest.erase(pair.first); 650 continue; 651 } 652 653 auto it = dest.find(pair.first); 654 if (it != dest.end()) { 655 it->second = pair.second; 656 } else { 657 dest.insert(pair); 658 } 659 } 660 } 661 }; 662 663 /// \brief Takes the old cleanup stack size and emits the cleanup blocks 664 /// that have been added. 665 void PopCleanupBlocks(EHScopeStack::stable_iterator OldCleanupStackSize); 666 667 /// \brief Takes the old cleanup stack size and emits the cleanup blocks 668 /// that have been added, then adds all lifetime-extended cleanups from 669 /// the given position to the stack. 670 void PopCleanupBlocks(EHScopeStack::stable_iterator OldCleanupStackSize, 671 size_t OldLifetimeExtendedStackSize); 672 673 void ResolveBranchFixups(llvm::BasicBlock *Target); 674 675 /// The given basic block lies in the current EH scope, but may be a 676 /// target of a potentially scope-crossing jump; get a stable handle 677 /// to which we can perform this jump later. 678 JumpDest getJumpDestInCurrentScope(llvm::BasicBlock *Target) { 679 return JumpDest(Target, 680 EHStack.getInnermostNormalCleanup(), 681 NextCleanupDestIndex++); 682 } 683 684 /// The given basic block lies in the current EH scope, but may be a 685 /// target of a potentially scope-crossing jump; get a stable handle 686 /// to which we can perform this jump later. 687 JumpDest getJumpDestInCurrentScope(StringRef Name = StringRef()) { 688 return getJumpDestInCurrentScope(createBasicBlock(Name)); 689 } 690 691 /// EmitBranchThroughCleanup - Emit a branch from the current insert 692 /// block through the normal cleanup handling code (if any) and then 693 /// on to \arg Dest. 694 void EmitBranchThroughCleanup(JumpDest Dest); 695 696 /// isObviouslyBranchWithoutCleanups - Return true if a branch to the 697 /// specified destination obviously has no cleanups to run. 'false' is always 698 /// a conservatively correct answer for this method. 699 bool isObviouslyBranchWithoutCleanups(JumpDest Dest) const; 700 701 /// popCatchScope - Pops the catch scope at the top of the EHScope 702 /// stack, emitting any required code (other than the catch handlers 703 /// themselves). 704 void popCatchScope(); 705 706 llvm::BasicBlock *getEHResumeBlock(bool isCleanup); 707 llvm::BasicBlock *getEHDispatchBlock(EHScopeStack::stable_iterator scope); 708 llvm::BasicBlock *getMSVCDispatchBlock(EHScopeStack::stable_iterator scope); 709 710 /// An object to manage conditionally-evaluated expressions. 711 class ConditionalEvaluation { 712 llvm::BasicBlock *StartBB; 713 714 public: 715 ConditionalEvaluation(CodeGenFunction &CGF) 716 : StartBB(CGF.Builder.GetInsertBlock()) {} 717 718 void begin(CodeGenFunction &CGF) { 719 assert(CGF.OutermostConditional != this); 720 if (!CGF.OutermostConditional) 721 CGF.OutermostConditional = this; 722 } 723 724 void end(CodeGenFunction &CGF) { 725 assert(CGF.OutermostConditional != nullptr); 726 if (CGF.OutermostConditional == this) 727 CGF.OutermostConditional = nullptr; 728 } 729 730 /// Returns a block which will be executed prior to each 731 /// evaluation of the conditional code. 732 llvm::BasicBlock *getStartingBlock() const { 733 return StartBB; 734 } 735 }; 736 737 /// isInConditionalBranch - Return true if we're currently emitting 738 /// one branch or the other of a conditional expression. 739 bool isInConditionalBranch() const { return OutermostConditional != nullptr; } 740 741 void setBeforeOutermostConditional(llvm::Value *value, Address addr) { 742 assert(isInConditionalBranch()); 743 llvm::BasicBlock *block = OutermostConditional->getStartingBlock(); 744 auto store = new llvm::StoreInst(value, addr.getPointer(), &block->back()); 745 store->setAlignment(addr.getAlignment().getQuantity()); 746 } 747 748 /// An RAII object to record that we're evaluating a statement 749 /// expression. 750 class StmtExprEvaluation { 751 CodeGenFunction &CGF; 752 753 /// We have to save the outermost conditional: cleanups in a 754 /// statement expression aren't conditional just because the 755 /// StmtExpr is. 756 ConditionalEvaluation *SavedOutermostConditional; 757 758 public: 759 StmtExprEvaluation(CodeGenFunction &CGF) 760 : CGF(CGF), SavedOutermostConditional(CGF.OutermostConditional) { 761 CGF.OutermostConditional = nullptr; 762 } 763 764 ~StmtExprEvaluation() { 765 CGF.OutermostConditional = SavedOutermostConditional; 766 CGF.EnsureInsertPoint(); 767 } 768 }; 769 770 /// An object which temporarily prevents a value from being 771 /// destroyed by aggressive peephole optimizations that assume that 772 /// all uses of a value have been realized in the IR. 773 class PeepholeProtection { 774 llvm::Instruction *Inst; 775 friend class CodeGenFunction; 776 777 public: 778 PeepholeProtection() : Inst(nullptr) {} 779 }; 780 781 /// A non-RAII class containing all the information about a bound 782 /// opaque value. OpaqueValueMapping, below, is a RAII wrapper for 783 /// this which makes individual mappings very simple; using this 784 /// class directly is useful when you have a variable number of 785 /// opaque values or don't want the RAII functionality for some 786 /// reason. 787 class OpaqueValueMappingData { 788 const OpaqueValueExpr *OpaqueValue; 789 bool BoundLValue; 790 CodeGenFunction::PeepholeProtection Protection; 791 792 OpaqueValueMappingData(const OpaqueValueExpr *ov, 793 bool boundLValue) 794 : OpaqueValue(ov), BoundLValue(boundLValue) {} 795 public: 796 OpaqueValueMappingData() : OpaqueValue(nullptr) {} 797 798 static bool shouldBindAsLValue(const Expr *expr) { 799 // gl-values should be bound as l-values for obvious reasons. 800 // Records should be bound as l-values because IR generation 801 // always keeps them in memory. Expressions of function type 802 // act exactly like l-values but are formally required to be 803 // r-values in C. 804 return expr->isGLValue() || 805 expr->getType()->isFunctionType() || 806 hasAggregateEvaluationKind(expr->getType()); 807 } 808 809 static OpaqueValueMappingData bind(CodeGenFunction &CGF, 810 const OpaqueValueExpr *ov, 811 const Expr *e) { 812 if (shouldBindAsLValue(ov)) 813 return bind(CGF, ov, CGF.EmitLValue(e)); 814 return bind(CGF, ov, CGF.EmitAnyExpr(e)); 815 } 816 817 static OpaqueValueMappingData bind(CodeGenFunction &CGF, 818 const OpaqueValueExpr *ov, 819 const LValue &lv) { 820 assert(shouldBindAsLValue(ov)); 821 CGF.OpaqueLValues.insert(std::make_pair(ov, lv)); 822 return OpaqueValueMappingData(ov, true); 823 } 824 825 static OpaqueValueMappingData bind(CodeGenFunction &CGF, 826 const OpaqueValueExpr *ov, 827 const RValue &rv) { 828 assert(!shouldBindAsLValue(ov)); 829 CGF.OpaqueRValues.insert(std::make_pair(ov, rv)); 830 831 OpaqueValueMappingData data(ov, false); 832 833 // Work around an extremely aggressive peephole optimization in 834 // EmitScalarConversion which assumes that all other uses of a 835 // value are extant. 836 data.Protection = CGF.protectFromPeepholes(rv); 837 838 return data; 839 } 840 841 bool isValid() const { return OpaqueValue != nullptr; } 842 void clear() { OpaqueValue = nullptr; } 843 844 void unbind(CodeGenFunction &CGF) { 845 assert(OpaqueValue && "no data to unbind!"); 846 847 if (BoundLValue) { 848 CGF.OpaqueLValues.erase(OpaqueValue); 849 } else { 850 CGF.OpaqueRValues.erase(OpaqueValue); 851 CGF.unprotectFromPeepholes(Protection); 852 } 853 } 854 }; 855 856 /// An RAII object to set (and then clear) a mapping for an OpaqueValueExpr. 857 class OpaqueValueMapping { 858 CodeGenFunction &CGF; 859 OpaqueValueMappingData Data; 860 861 public: 862 static bool shouldBindAsLValue(const Expr *expr) { 863 return OpaqueValueMappingData::shouldBindAsLValue(expr); 864 } 865 866 /// Build the opaque value mapping for the given conditional 867 /// operator if it's the GNU ?: extension. This is a common 868 /// enough pattern that the convenience operator is really 869 /// helpful. 870 /// 871 OpaqueValueMapping(CodeGenFunction &CGF, 872 const AbstractConditionalOperator *op) : CGF(CGF) { 873 if (isa<ConditionalOperator>(op)) 874 // Leave Data empty. 875 return; 876 877 const BinaryConditionalOperator *e = cast<BinaryConditionalOperator>(op); 878 Data = OpaqueValueMappingData::bind(CGF, e->getOpaqueValue(), 879 e->getCommon()); 880 } 881 882 OpaqueValueMapping(CodeGenFunction &CGF, 883 const OpaqueValueExpr *opaqueValue, 884 LValue lvalue) 885 : CGF(CGF), Data(OpaqueValueMappingData::bind(CGF, opaqueValue, lvalue)) { 886 } 887 888 OpaqueValueMapping(CodeGenFunction &CGF, 889 const OpaqueValueExpr *opaqueValue, 890 RValue rvalue) 891 : CGF(CGF), Data(OpaqueValueMappingData::bind(CGF, opaqueValue, rvalue)) { 892 } 893 894 void pop() { 895 Data.unbind(CGF); 896 Data.clear(); 897 } 898 899 ~OpaqueValueMapping() { 900 if (Data.isValid()) Data.unbind(CGF); 901 } 902 }; 903 904 private: 905 CGDebugInfo *DebugInfo; 906 bool DisableDebugInfo; 907 908 /// DidCallStackSave - Whether llvm.stacksave has been called. Used to avoid 909 /// calling llvm.stacksave for multiple VLAs in the same scope. 910 bool DidCallStackSave; 911 912 /// IndirectBranch - The first time an indirect goto is seen we create a block 913 /// with an indirect branch. Every time we see the address of a label taken, 914 /// we add the label to the indirect goto. Every subsequent indirect goto is 915 /// codegen'd as a jump to the IndirectBranch's basic block. 916 llvm::IndirectBrInst *IndirectBranch; 917 918 /// LocalDeclMap - This keeps track of the LLVM allocas or globals for local C 919 /// decls. 920 DeclMapTy LocalDeclMap; 921 922 /// SizeArguments - If a ParmVarDecl had the pass_object_size attribute, this 923 /// will contain a mapping from said ParmVarDecl to its implicit "object_size" 924 /// parameter. 925 llvm::SmallDenseMap<const ParmVarDecl *, const ImplicitParamDecl *, 2> 926 SizeArguments; 927 928 /// Track escaped local variables with auto storage. Used during SEH 929 /// outlining to produce a call to llvm.localescape. 930 llvm::DenseMap<llvm::AllocaInst *, int> EscapedLocals; 931 932 /// LabelMap - This keeps track of the LLVM basic block for each C label. 933 llvm::DenseMap<const LabelDecl*, JumpDest> LabelMap; 934 935 // BreakContinueStack - This keeps track of where break and continue 936 // statements should jump to. 937 struct BreakContinue { 938 BreakContinue(JumpDest Break, JumpDest Continue) 939 : BreakBlock(Break), ContinueBlock(Continue) {} 940 941 JumpDest BreakBlock; 942 JumpDest ContinueBlock; 943 }; 944 SmallVector<BreakContinue, 8> BreakContinueStack; 945 946 CodeGenPGO PGO; 947 948 /// Calculate branch weights appropriate for PGO data 949 llvm::MDNode *createProfileWeights(uint64_t TrueCount, uint64_t FalseCount); 950 llvm::MDNode *createProfileWeights(ArrayRef<uint64_t> Weights); 951 llvm::MDNode *createProfileWeightsForLoop(const Stmt *Cond, 952 uint64_t LoopCount); 953 954 public: 955 /// Increment the profiler's counter for the given statement. 956 void incrementProfileCounter(const Stmt *S) { 957 if (CGM.getCodeGenOpts().hasProfileClangInstr()) 958 PGO.emitCounterIncrement(Builder, S); 959 PGO.setCurrentStmt(S); 960 } 961 962 /// Get the profiler's count for the given statement. 963 uint64_t getProfileCount(const Stmt *S) { 964 Optional<uint64_t> Count = PGO.getStmtCount(S); 965 if (!Count.hasValue()) 966 return 0; 967 return *Count; 968 } 969 970 /// Set the profiler's current count. 971 void setCurrentProfileCount(uint64_t Count) { 972 PGO.setCurrentRegionCount(Count); 973 } 974 975 /// Get the profiler's current count. This is generally the count for the most 976 /// recently incremented counter. 977 uint64_t getCurrentProfileCount() { 978 return PGO.getCurrentRegionCount(); 979 } 980 981 private: 982 983 /// SwitchInsn - This is nearest current switch instruction. It is null if 984 /// current context is not in a switch. 985 llvm::SwitchInst *SwitchInsn; 986 /// The branch weights of SwitchInsn when doing instrumentation based PGO. 987 SmallVector<uint64_t, 16> *SwitchWeights; 988 989 /// CaseRangeBlock - This block holds if condition check for last case 990 /// statement range in current switch instruction. 991 llvm::BasicBlock *CaseRangeBlock; 992 993 /// OpaqueLValues - Keeps track of the current set of opaque value 994 /// expressions. 995 llvm::DenseMap<const OpaqueValueExpr *, LValue> OpaqueLValues; 996 llvm::DenseMap<const OpaqueValueExpr *, RValue> OpaqueRValues; 997 998 // VLASizeMap - This keeps track of the associated size for each VLA type. 999 // We track this by the size expression rather than the type itself because 1000 // in certain situations, like a const qualifier applied to an VLA typedef, 1001 // multiple VLA types can share the same size expression. 1002 // FIXME: Maybe this could be a stack of maps that is pushed/popped as we 1003 // enter/leave scopes. 1004 llvm::DenseMap<const Expr*, llvm::Value*> VLASizeMap; 1005 1006 /// A block containing a single 'unreachable' instruction. Created 1007 /// lazily by getUnreachableBlock(). 1008 llvm::BasicBlock *UnreachableBlock; 1009 1010 /// Counts of the number return expressions in the function. 1011 unsigned NumReturnExprs; 1012 1013 /// Count the number of simple (constant) return expressions in the function. 1014 unsigned NumSimpleReturnExprs; 1015 1016 /// The last regular (non-return) debug location (breakpoint) in the function. 1017 SourceLocation LastStopPoint; 1018 1019 public: 1020 /// A scope within which we are constructing the fields of an object which 1021 /// might use a CXXDefaultInitExpr. This stashes away a 'this' value to use 1022 /// if we need to evaluate a CXXDefaultInitExpr within the evaluation. 1023 class FieldConstructionScope { 1024 public: 1025 FieldConstructionScope(CodeGenFunction &CGF, Address This) 1026 : CGF(CGF), OldCXXDefaultInitExprThis(CGF.CXXDefaultInitExprThis) { 1027 CGF.CXXDefaultInitExprThis = This; 1028 } 1029 ~FieldConstructionScope() { 1030 CGF.CXXDefaultInitExprThis = OldCXXDefaultInitExprThis; 1031 } 1032 1033 private: 1034 CodeGenFunction &CGF; 1035 Address OldCXXDefaultInitExprThis; 1036 }; 1037 1038 /// The scope of a CXXDefaultInitExpr. Within this scope, the value of 'this' 1039 /// is overridden to be the object under construction. 1040 class CXXDefaultInitExprScope { 1041 public: 1042 CXXDefaultInitExprScope(CodeGenFunction &CGF) 1043 : CGF(CGF), OldCXXThisValue(CGF.CXXThisValue), 1044 OldCXXThisAlignment(CGF.CXXThisAlignment) { 1045 CGF.CXXThisValue = CGF.CXXDefaultInitExprThis.getPointer(); 1046 CGF.CXXThisAlignment = CGF.CXXDefaultInitExprThis.getAlignment(); 1047 } 1048 ~CXXDefaultInitExprScope() { 1049 CGF.CXXThisValue = OldCXXThisValue; 1050 CGF.CXXThisAlignment = OldCXXThisAlignment; 1051 } 1052 1053 public: 1054 CodeGenFunction &CGF; 1055 llvm::Value *OldCXXThisValue; 1056 CharUnits OldCXXThisAlignment; 1057 }; 1058 1059 private: 1060 /// CXXThisDecl - When generating code for a C++ member function, 1061 /// this will hold the implicit 'this' declaration. 1062 ImplicitParamDecl *CXXABIThisDecl; 1063 llvm::Value *CXXABIThisValue; 1064 llvm::Value *CXXThisValue; 1065 CharUnits CXXABIThisAlignment; 1066 CharUnits CXXThisAlignment; 1067 1068 /// The value of 'this' to use when evaluating CXXDefaultInitExprs within 1069 /// this expression. 1070 Address CXXDefaultInitExprThis = Address::invalid(); 1071 1072 /// CXXStructorImplicitParamDecl - When generating code for a constructor or 1073 /// destructor, this will hold the implicit argument (e.g. VTT). 1074 ImplicitParamDecl *CXXStructorImplicitParamDecl; 1075 llvm::Value *CXXStructorImplicitParamValue; 1076 1077 /// OutermostConditional - Points to the outermost active 1078 /// conditional control. This is used so that we know if a 1079 /// temporary should be destroyed conditionally. 1080 ConditionalEvaluation *OutermostConditional; 1081 1082 /// The current lexical scope. 1083 LexicalScope *CurLexicalScope; 1084 1085 /// The current source location that should be used for exception 1086 /// handling code. 1087 SourceLocation CurEHLocation; 1088 1089 /// BlockByrefInfos - For each __block variable, contains 1090 /// information about the layout of the variable. 1091 llvm::DenseMap<const ValueDecl *, BlockByrefInfo> BlockByrefInfos; 1092 1093 llvm::BasicBlock *TerminateLandingPad; 1094 llvm::BasicBlock *TerminateHandler; 1095 llvm::BasicBlock *TrapBB; 1096 1097 /// Add a kernel metadata node to the named metadata node 'opencl.kernels'. 1098 /// In the kernel metadata node, reference the kernel function and metadata 1099 /// nodes for its optional attribute qualifiers (OpenCL 1.1 6.7.2): 1100 /// - A node for the vec_type_hint(<type>) qualifier contains string 1101 /// "vec_type_hint", an undefined value of the <type> data type, 1102 /// and a Boolean that is true if the <type> is integer and signed. 1103 /// - A node for the work_group_size_hint(X,Y,Z) qualifier contains string 1104 /// "work_group_size_hint", and three 32-bit integers X, Y and Z. 1105 /// - A node for the reqd_work_group_size(X,Y,Z) qualifier contains string 1106 /// "reqd_work_group_size", and three 32-bit integers X, Y and Z. 1107 void EmitOpenCLKernelMetadata(const FunctionDecl *FD, 1108 llvm::Function *Fn); 1109 1110 public: 1111 CodeGenFunction(CodeGenModule &cgm, bool suppressNewContext=false); 1112 ~CodeGenFunction(); 1113 1114 CodeGenTypes &getTypes() const { return CGM.getTypes(); } 1115 ASTContext &getContext() const { return CGM.getContext(); } 1116 CGDebugInfo *getDebugInfo() { 1117 if (DisableDebugInfo) 1118 return nullptr; 1119 return DebugInfo; 1120 } 1121 void disableDebugInfo() { DisableDebugInfo = true; } 1122 void enableDebugInfo() { DisableDebugInfo = false; } 1123 1124 bool shouldUseFusedARCCalls() { 1125 return CGM.getCodeGenOpts().OptimizationLevel == 0; 1126 } 1127 1128 const LangOptions &getLangOpts() const { return CGM.getLangOpts(); } 1129 1130 /// Returns a pointer to the function's exception object and selector slot, 1131 /// which is assigned in every landing pad. 1132 Address getExceptionSlot(); 1133 Address getEHSelectorSlot(); 1134 1135 /// Returns the contents of the function's exception object and selector 1136 /// slots. 1137 llvm::Value *getExceptionFromSlot(); 1138 llvm::Value *getSelectorFromSlot(); 1139 1140 Address getNormalCleanupDestSlot(); 1141 1142 llvm::BasicBlock *getUnreachableBlock() { 1143 if (!UnreachableBlock) { 1144 UnreachableBlock = createBasicBlock("unreachable"); 1145 new llvm::UnreachableInst(getLLVMContext(), UnreachableBlock); 1146 } 1147 return UnreachableBlock; 1148 } 1149 1150 llvm::BasicBlock *getInvokeDest() { 1151 if (!EHStack.requiresLandingPad()) return nullptr; 1152 return getInvokeDestImpl(); 1153 } 1154 1155 bool currentFunctionUsesSEHTry() const { return CurSEHParent != nullptr; } 1156 1157 const TargetInfo &getTarget() const { return Target; } 1158 llvm::LLVMContext &getLLVMContext() { return CGM.getLLVMContext(); } 1159 1160 //===--------------------------------------------------------------------===// 1161 // Cleanups 1162 //===--------------------------------------------------------------------===// 1163 1164 typedef void Destroyer(CodeGenFunction &CGF, Address addr, QualType ty); 1165 1166 void pushIrregularPartialArrayCleanup(llvm::Value *arrayBegin, 1167 Address arrayEndPointer, 1168 QualType elementType, 1169 CharUnits elementAlignment, 1170 Destroyer *destroyer); 1171 void pushRegularPartialArrayCleanup(llvm::Value *arrayBegin, 1172 llvm::Value *arrayEnd, 1173 QualType elementType, 1174 CharUnits elementAlignment, 1175 Destroyer *destroyer); 1176 1177 void pushDestroy(QualType::DestructionKind dtorKind, 1178 Address addr, QualType type); 1179 void pushEHDestroy(QualType::DestructionKind dtorKind, 1180 Address addr, QualType type); 1181 void pushDestroy(CleanupKind kind, Address addr, QualType type, 1182 Destroyer *destroyer, bool useEHCleanupForArray); 1183 void pushLifetimeExtendedDestroy(CleanupKind kind, Address addr, 1184 QualType type, Destroyer *destroyer, 1185 bool useEHCleanupForArray); 1186 void pushCallObjectDeleteCleanup(const FunctionDecl *OperatorDelete, 1187 llvm::Value *CompletePtr, 1188 QualType ElementType); 1189 void pushStackRestore(CleanupKind kind, Address SPMem); 1190 void emitDestroy(Address addr, QualType type, Destroyer *destroyer, 1191 bool useEHCleanupForArray); 1192 llvm::Function *generateDestroyHelper(Address addr, QualType type, 1193 Destroyer *destroyer, 1194 bool useEHCleanupForArray, 1195 const VarDecl *VD); 1196 void emitArrayDestroy(llvm::Value *begin, llvm::Value *end, 1197 QualType elementType, CharUnits elementAlign, 1198 Destroyer *destroyer, 1199 bool checkZeroLength, bool useEHCleanup); 1200 1201 Destroyer *getDestroyer(QualType::DestructionKind destructionKind); 1202 1203 /// Determines whether an EH cleanup is required to destroy a type 1204 /// with the given destruction kind. 1205 bool needsEHCleanup(QualType::DestructionKind kind) { 1206 switch (kind) { 1207 case QualType::DK_none: 1208 return false; 1209 case QualType::DK_cxx_destructor: 1210 case QualType::DK_objc_weak_lifetime: 1211 return getLangOpts().Exceptions; 1212 case QualType::DK_objc_strong_lifetime: 1213 return getLangOpts().Exceptions && 1214 CGM.getCodeGenOpts().ObjCAutoRefCountExceptions; 1215 } 1216 llvm_unreachable("bad destruction kind"); 1217 } 1218 1219 CleanupKind getCleanupKind(QualType::DestructionKind kind) { 1220 return (needsEHCleanup(kind) ? NormalAndEHCleanup : NormalCleanup); 1221 } 1222 1223 //===--------------------------------------------------------------------===// 1224 // Objective-C 1225 //===--------------------------------------------------------------------===// 1226 1227 void GenerateObjCMethod(const ObjCMethodDecl *OMD); 1228 1229 void StartObjCMethod(const ObjCMethodDecl *MD, const ObjCContainerDecl *CD); 1230 1231 /// GenerateObjCGetter - Synthesize an Objective-C property getter function. 1232 void GenerateObjCGetter(ObjCImplementationDecl *IMP, 1233 const ObjCPropertyImplDecl *PID); 1234 void generateObjCGetterBody(const ObjCImplementationDecl *classImpl, 1235 const ObjCPropertyImplDecl *propImpl, 1236 const ObjCMethodDecl *GetterMothodDecl, 1237 llvm::Constant *AtomicHelperFn); 1238 1239 void GenerateObjCCtorDtorMethod(ObjCImplementationDecl *IMP, 1240 ObjCMethodDecl *MD, bool ctor); 1241 1242 /// GenerateObjCSetter - Synthesize an Objective-C property setter function 1243 /// for the given property. 1244 void GenerateObjCSetter(ObjCImplementationDecl *IMP, 1245 const ObjCPropertyImplDecl *PID); 1246 void generateObjCSetterBody(const ObjCImplementationDecl *classImpl, 1247 const ObjCPropertyImplDecl *propImpl, 1248 llvm::Constant *AtomicHelperFn); 1249 1250 //===--------------------------------------------------------------------===// 1251 // Block Bits 1252 //===--------------------------------------------------------------------===// 1253 1254 llvm::Value *EmitBlockLiteral(const BlockExpr *); 1255 llvm::Value *EmitBlockLiteral(const CGBlockInfo &Info); 1256 static void destroyBlockInfos(CGBlockInfo *info); 1257 1258 llvm::Function *GenerateBlockFunction(GlobalDecl GD, 1259 const CGBlockInfo &Info, 1260 const DeclMapTy &ldm, 1261 bool IsLambdaConversionToBlock); 1262 1263 llvm::Constant *GenerateCopyHelperFunction(const CGBlockInfo &blockInfo); 1264 llvm::Constant *GenerateDestroyHelperFunction(const CGBlockInfo &blockInfo); 1265 llvm::Constant *GenerateObjCAtomicSetterCopyHelperFunction( 1266 const ObjCPropertyImplDecl *PID); 1267 llvm::Constant *GenerateObjCAtomicGetterCopyHelperFunction( 1268 const ObjCPropertyImplDecl *PID); 1269 llvm::Value *EmitBlockCopyAndAutorelease(llvm::Value *Block, QualType Ty); 1270 1271 void BuildBlockRelease(llvm::Value *DeclPtr, BlockFieldFlags flags); 1272 1273 class AutoVarEmission; 1274 1275 void emitByrefStructureInit(const AutoVarEmission &emission); 1276 void enterByrefCleanup(const AutoVarEmission &emission); 1277 1278 void setBlockContextParameter(const ImplicitParamDecl *D, unsigned argNum, 1279 llvm::Value *ptr); 1280 1281 Address LoadBlockStruct(); 1282 Address GetAddrOfBlockDecl(const VarDecl *var, bool ByRef); 1283 1284 /// BuildBlockByrefAddress - Computes the location of the 1285 /// data in a variable which is declared as __block. 1286 Address emitBlockByrefAddress(Address baseAddr, const VarDecl *V, 1287 bool followForward = true); 1288 Address emitBlockByrefAddress(Address baseAddr, 1289 const BlockByrefInfo &info, 1290 bool followForward, 1291 const llvm::Twine &name); 1292 1293 const BlockByrefInfo &getBlockByrefInfo(const VarDecl *var); 1294 1295 void GenerateCode(GlobalDecl GD, llvm::Function *Fn, 1296 const CGFunctionInfo &FnInfo); 1297 /// \brief Emit code for the start of a function. 1298 /// \param Loc The location to be associated with the function. 1299 /// \param StartLoc The location of the function body. 1300 void StartFunction(GlobalDecl GD, 1301 QualType RetTy, 1302 llvm::Function *Fn, 1303 const CGFunctionInfo &FnInfo, 1304 const FunctionArgList &Args, 1305 SourceLocation Loc = SourceLocation(), 1306 SourceLocation StartLoc = SourceLocation()); 1307 1308 void EmitConstructorBody(FunctionArgList &Args); 1309 void EmitDestructorBody(FunctionArgList &Args); 1310 void emitImplicitAssignmentOperatorBody(FunctionArgList &Args); 1311 void EmitFunctionBody(FunctionArgList &Args, const Stmt *Body); 1312 void EmitBlockWithFallThrough(llvm::BasicBlock *BB, const Stmt *S); 1313 1314 void EmitForwardingCallToLambda(const CXXMethodDecl *LambdaCallOperator, 1315 CallArgList &CallArgs); 1316 void EmitLambdaToBlockPointerBody(FunctionArgList &Args); 1317 void EmitLambdaBlockInvokeBody(); 1318 void EmitLambdaDelegatingInvokeBody(const CXXMethodDecl *MD); 1319 void EmitLambdaStaticInvokeFunction(const CXXMethodDecl *MD); 1320 void EmitAsanPrologueOrEpilogue(bool Prologue); 1321 1322 /// \brief Emit the unified return block, trying to avoid its emission when 1323 /// possible. 1324 /// \return The debug location of the user written return statement if the 1325 /// return block is is avoided. 1326 llvm::DebugLoc EmitReturnBlock(); 1327 1328 /// FinishFunction - Complete IR generation of the current function. It is 1329 /// legal to call this function even if there is no current insertion point. 1330 void FinishFunction(SourceLocation EndLoc=SourceLocation()); 1331 1332 void StartThunk(llvm::Function *Fn, GlobalDecl GD, 1333 const CGFunctionInfo &FnInfo); 1334 1335 void EmitCallAndReturnForThunk(llvm::Value *Callee, const ThunkInfo *Thunk); 1336 1337 void FinishThunk(); 1338 1339 /// Emit a musttail call for a thunk with a potentially adjusted this pointer. 1340 void EmitMustTailThunk(const CXXMethodDecl *MD, llvm::Value *AdjustedThisPtr, 1341 llvm::Value *Callee); 1342 1343 /// Generate a thunk for the given method. 1344 void generateThunk(llvm::Function *Fn, const CGFunctionInfo &FnInfo, 1345 GlobalDecl GD, const ThunkInfo &Thunk); 1346 1347 llvm::Function *GenerateVarArgsThunk(llvm::Function *Fn, 1348 const CGFunctionInfo &FnInfo, 1349 GlobalDecl GD, const ThunkInfo &Thunk); 1350 1351 void EmitCtorPrologue(const CXXConstructorDecl *CD, CXXCtorType Type, 1352 FunctionArgList &Args); 1353 1354 void EmitInitializerForField(FieldDecl *Field, LValue LHS, Expr *Init, 1355 ArrayRef<VarDecl *> ArrayIndexes); 1356 1357 /// Struct with all informations about dynamic [sub]class needed to set vptr. 1358 struct VPtr { 1359 BaseSubobject Base; 1360 const CXXRecordDecl *NearestVBase; 1361 CharUnits OffsetFromNearestVBase; 1362 const CXXRecordDecl *VTableClass; 1363 }; 1364 1365 /// Initialize the vtable pointer of the given subobject. 1366 void InitializeVTablePointer(const VPtr &vptr); 1367 1368 typedef llvm::SmallVector<VPtr, 4> VPtrsVector; 1369 1370 typedef llvm::SmallPtrSet<const CXXRecordDecl *, 4> VisitedVirtualBasesSetTy; 1371 VPtrsVector getVTablePointers(const CXXRecordDecl *VTableClass); 1372 1373 void getVTablePointers(BaseSubobject Base, const CXXRecordDecl *NearestVBase, 1374 CharUnits OffsetFromNearestVBase, 1375 bool BaseIsNonVirtualPrimaryBase, 1376 const CXXRecordDecl *VTableClass, 1377 VisitedVirtualBasesSetTy &VBases, VPtrsVector &vptrs); 1378 1379 void InitializeVTablePointers(const CXXRecordDecl *ClassDecl); 1380 1381 /// GetVTablePtr - Return the Value of the vtable pointer member pointed 1382 /// to by This. 1383 llvm::Value *GetVTablePtr(Address This, llvm::Type *VTableTy, 1384 const CXXRecordDecl *VTableClass); 1385 1386 enum CFITypeCheckKind { 1387 CFITCK_VCall, 1388 CFITCK_NVCall, 1389 CFITCK_DerivedCast, 1390 CFITCK_UnrelatedCast, 1391 CFITCK_ICall, 1392 }; 1393 1394 /// \brief Derived is the presumed address of an object of type T after a 1395 /// cast. If T is a polymorphic class type, emit a check that the virtual 1396 /// table for Derived belongs to a class derived from T. 1397 void EmitVTablePtrCheckForCast(QualType T, llvm::Value *Derived, 1398 bool MayBeNull, CFITypeCheckKind TCK, 1399 SourceLocation Loc); 1400 1401 /// EmitVTablePtrCheckForCall - Virtual method MD is being called via VTable. 1402 /// If vptr CFI is enabled, emit a check that VTable is valid. 1403 void EmitVTablePtrCheckForCall(const CXXRecordDecl *RD, llvm::Value *VTable, 1404 CFITypeCheckKind TCK, SourceLocation Loc); 1405 1406 /// EmitVTablePtrCheck - Emit a check that VTable is a valid virtual table for 1407 /// RD using llvm.bitset.test. 1408 void EmitVTablePtrCheck(const CXXRecordDecl *RD, llvm::Value *VTable, 1409 CFITypeCheckKind TCK, SourceLocation Loc); 1410 1411 /// If whole-program virtual table optimization is enabled, emit an assumption 1412 /// that VTable is a member of the type's bitset. Or, if vptr CFI is enabled, 1413 /// emit a check that VTable is a member of the type's bitset. 1414 void EmitBitSetCodeForVCall(const CXXRecordDecl *RD, llvm::Value *VTable, 1415 SourceLocation Loc); 1416 1417 /// CanDevirtualizeMemberFunctionCalls - Checks whether virtual calls on given 1418 /// expr can be devirtualized. 1419 bool CanDevirtualizeMemberFunctionCall(const Expr *Base, 1420 const CXXMethodDecl *MD); 1421 1422 /// EnterDtorCleanups - Enter the cleanups necessary to complete the 1423 /// given phase of destruction for a destructor. The end result 1424 /// should call destructors on members and base classes in reverse 1425 /// order of their construction. 1426 void EnterDtorCleanups(const CXXDestructorDecl *Dtor, CXXDtorType Type); 1427 1428 /// ShouldInstrumentFunction - Return true if the current function should be 1429 /// instrumented with __cyg_profile_func_* calls 1430 bool ShouldInstrumentFunction(); 1431 1432 /// EmitFunctionInstrumentation - Emit LLVM code to call the specified 1433 /// instrumentation function with the current function and the call site, if 1434 /// function instrumentation is enabled. 1435 void EmitFunctionInstrumentation(const char *Fn); 1436 1437 /// EmitMCountInstrumentation - Emit call to .mcount. 1438 void EmitMCountInstrumentation(); 1439 1440 /// EmitFunctionProlog - Emit the target specific LLVM code to load the 1441 /// arguments for the given function. This is also responsible for naming the 1442 /// LLVM function arguments. 1443 void EmitFunctionProlog(const CGFunctionInfo &FI, 1444 llvm::Function *Fn, 1445 const FunctionArgList &Args); 1446 1447 /// EmitFunctionEpilog - Emit the target specific LLVM code to return the 1448 /// given temporary. 1449 void EmitFunctionEpilog(const CGFunctionInfo &FI, bool EmitRetDbgLoc, 1450 SourceLocation EndLoc); 1451 1452 /// EmitStartEHSpec - Emit the start of the exception spec. 1453 void EmitStartEHSpec(const Decl *D); 1454 1455 /// EmitEndEHSpec - Emit the end of the exception spec. 1456 void EmitEndEHSpec(const Decl *D); 1457 1458 /// getTerminateLandingPad - Return a landing pad that just calls terminate. 1459 llvm::BasicBlock *getTerminateLandingPad(); 1460 1461 /// getTerminateHandler - Return a handler (not a landing pad, just 1462 /// a catch handler) that just calls terminate. This is used when 1463 /// a terminate scope encloses a try. 1464 llvm::BasicBlock *getTerminateHandler(); 1465 1466 llvm::Type *ConvertTypeForMem(QualType T); 1467 llvm::Type *ConvertType(QualType T); 1468 llvm::Type *ConvertType(const TypeDecl *T) { 1469 return ConvertType(getContext().getTypeDeclType(T)); 1470 } 1471 1472 /// LoadObjCSelf - Load the value of self. This function is only valid while 1473 /// generating code for an Objective-C method. 1474 llvm::Value *LoadObjCSelf(); 1475 1476 /// TypeOfSelfObject - Return type of object that this self represents. 1477 QualType TypeOfSelfObject(); 1478 1479 /// hasAggregateLLVMType - Return true if the specified AST type will map into 1480 /// an aggregate LLVM type or is void. 1481 static TypeEvaluationKind getEvaluationKind(QualType T); 1482 1483 static bool hasScalarEvaluationKind(QualType T) { 1484 return getEvaluationKind(T) == TEK_Scalar; 1485 } 1486 1487 static bool hasAggregateEvaluationKind(QualType T) { 1488 return getEvaluationKind(T) == TEK_Aggregate; 1489 } 1490 1491 /// createBasicBlock - Create an LLVM basic block. 1492 llvm::BasicBlock *createBasicBlock(const Twine &name = "", 1493 llvm::Function *parent = nullptr, 1494 llvm::BasicBlock *before = nullptr) { 1495 #ifdef NDEBUG 1496 return llvm::BasicBlock::Create(getLLVMContext(), "", parent, before); 1497 #else 1498 return llvm::BasicBlock::Create(getLLVMContext(), name, parent, before); 1499 #endif 1500 } 1501 1502 /// getBasicBlockForLabel - Return the LLVM basicblock that the specified 1503 /// label maps to. 1504 JumpDest getJumpDestForLabel(const LabelDecl *S); 1505 1506 /// SimplifyForwardingBlocks - If the given basic block is only a branch to 1507 /// another basic block, simplify it. This assumes that no other code could 1508 /// potentially reference the basic block. 1509 void SimplifyForwardingBlocks(llvm::BasicBlock *BB); 1510 1511 /// EmitBlock - Emit the given block \arg BB and set it as the insert point, 1512 /// adding a fall-through branch from the current insert block if 1513 /// necessary. It is legal to call this function even if there is no current 1514 /// insertion point. 1515 /// 1516 /// IsFinished - If true, indicates that the caller has finished emitting 1517 /// branches to the given block and does not expect to emit code into it. This 1518 /// means the block can be ignored if it is unreachable. 1519 void EmitBlock(llvm::BasicBlock *BB, bool IsFinished=false); 1520 1521 /// EmitBlockAfterUses - Emit the given block somewhere hopefully 1522 /// near its uses, and leave the insertion point in it. 1523 void EmitBlockAfterUses(llvm::BasicBlock *BB); 1524 1525 /// EmitBranch - Emit a branch to the specified basic block from the current 1526 /// insert block, taking care to avoid creation of branches from dummy 1527 /// blocks. It is legal to call this function even if there is no current 1528 /// insertion point. 1529 /// 1530 /// This function clears the current insertion point. The caller should follow 1531 /// calls to this function with calls to Emit*Block prior to generation new 1532 /// code. 1533 void EmitBranch(llvm::BasicBlock *Block); 1534 1535 /// HaveInsertPoint - True if an insertion point is defined. If not, this 1536 /// indicates that the current code being emitted is unreachable. 1537 bool HaveInsertPoint() const { 1538 return Builder.GetInsertBlock() != nullptr; 1539 } 1540 1541 /// EnsureInsertPoint - Ensure that an insertion point is defined so that 1542 /// emitted IR has a place to go. Note that by definition, if this function 1543 /// creates a block then that block is unreachable; callers may do better to 1544 /// detect when no insertion point is defined and simply skip IR generation. 1545 void EnsureInsertPoint() { 1546 if (!HaveInsertPoint()) 1547 EmitBlock(createBasicBlock()); 1548 } 1549 1550 /// ErrorUnsupported - Print out an error that codegen doesn't support the 1551 /// specified stmt yet. 1552 void ErrorUnsupported(const Stmt *S, const char *Type); 1553 1554 //===--------------------------------------------------------------------===// 1555 // Helpers 1556 //===--------------------------------------------------------------------===// 1557 1558 LValue MakeAddrLValue(Address Addr, QualType T, 1559 AlignmentSource AlignSource = AlignmentSource::Type) { 1560 return LValue::MakeAddr(Addr, T, getContext(), AlignSource, 1561 CGM.getTBAAInfo(T)); 1562 } 1563 1564 LValue MakeAddrLValue(llvm::Value *V, QualType T, CharUnits Alignment, 1565 AlignmentSource AlignSource = AlignmentSource::Type) { 1566 return LValue::MakeAddr(Address(V, Alignment), T, getContext(), 1567 AlignSource, CGM.getTBAAInfo(T)); 1568 } 1569 1570 LValue MakeNaturalAlignPointeeAddrLValue(llvm::Value *V, QualType T); 1571 LValue MakeNaturalAlignAddrLValue(llvm::Value *V, QualType T); 1572 CharUnits getNaturalTypeAlignment(QualType T, 1573 AlignmentSource *Source = nullptr, 1574 bool forPointeeType = false); 1575 CharUnits getNaturalPointeeTypeAlignment(QualType T, 1576 AlignmentSource *Source = nullptr); 1577 1578 Address EmitLoadOfReference(Address Ref, const ReferenceType *RefTy, 1579 AlignmentSource *Source = nullptr); 1580 LValue EmitLoadOfReferenceLValue(Address Ref, const ReferenceType *RefTy); 1581 1582 Address EmitLoadOfPointer(Address Ptr, const PointerType *PtrTy, 1583 AlignmentSource *Source = nullptr); 1584 LValue EmitLoadOfPointerLValue(Address Ptr, const PointerType *PtrTy); 1585 1586 /// CreateTempAlloca - This creates a alloca and inserts it into the entry 1587 /// block. The caller is responsible for setting an appropriate alignment on 1588 /// the alloca. 1589 llvm::AllocaInst *CreateTempAlloca(llvm::Type *Ty, 1590 const Twine &Name = "tmp"); 1591 Address CreateTempAlloca(llvm::Type *Ty, CharUnits align, 1592 const Twine &Name = "tmp"); 1593 1594 /// CreateDefaultAlignedTempAlloca - This creates an alloca with the 1595 /// default ABI alignment of the given LLVM type. 1596 /// 1597 /// IMPORTANT NOTE: This is *not* generally the right alignment for 1598 /// any given AST type that happens to have been lowered to the 1599 /// given IR type. This should only ever be used for function-local, 1600 /// IR-driven manipulations like saving and restoring a value. Do 1601 /// not hand this address off to arbitrary IRGen routines, and especially 1602 /// do not pass it as an argument to a function that might expect a 1603 /// properly ABI-aligned value. 1604 Address CreateDefaultAlignTempAlloca(llvm::Type *Ty, 1605 const Twine &Name = "tmp"); 1606 1607 /// InitTempAlloca - Provide an initial value for the given alloca which 1608 /// will be observable at all locations in the function. 1609 /// 1610 /// The address should be something that was returned from one of 1611 /// the CreateTempAlloca or CreateMemTemp routines, and the 1612 /// initializer must be valid in the entry block (i.e. it must 1613 /// either be a constant or an argument value). 1614 void InitTempAlloca(Address Alloca, llvm::Value *Value); 1615 1616 /// CreateIRTemp - Create a temporary IR object of the given type, with 1617 /// appropriate alignment. This routine should only be used when an temporary 1618 /// value needs to be stored into an alloca (for example, to avoid explicit 1619 /// PHI construction), but the type is the IR type, not the type appropriate 1620 /// for storing in memory. 1621 /// 1622 /// That is, this is exactly equivalent to CreateMemTemp, but calling 1623 /// ConvertType instead of ConvertTypeForMem. 1624 Address CreateIRTemp(QualType T, const Twine &Name = "tmp"); 1625 1626 /// CreateMemTemp - Create a temporary memory object of the given type, with 1627 /// appropriate alignment. 1628 Address CreateMemTemp(QualType T, const Twine &Name = "tmp"); 1629 Address CreateMemTemp(QualType T, CharUnits Align, const Twine &Name = "tmp"); 1630 1631 /// CreateAggTemp - Create a temporary memory object for the given 1632 /// aggregate type. 1633 AggValueSlot CreateAggTemp(QualType T, const Twine &Name = "tmp") { 1634 return AggValueSlot::forAddr(CreateMemTemp(T, Name), 1635 T.getQualifiers(), 1636 AggValueSlot::IsNotDestructed, 1637 AggValueSlot::DoesNotNeedGCBarriers, 1638 AggValueSlot::IsNotAliased); 1639 } 1640 1641 /// Emit a cast to void* in the appropriate address space. 1642 llvm::Value *EmitCastToVoidPtr(llvm::Value *value); 1643 1644 /// EvaluateExprAsBool - Perform the usual unary conversions on the specified 1645 /// expression and compare the result against zero, returning an Int1Ty value. 1646 llvm::Value *EvaluateExprAsBool(const Expr *E); 1647 1648 /// EmitIgnoredExpr - Emit an expression in a context which ignores the result. 1649 void EmitIgnoredExpr(const Expr *E); 1650 1651 /// EmitAnyExpr - Emit code to compute the specified expression which can have 1652 /// any type. The result is returned as an RValue struct. If this is an 1653 /// aggregate expression, the aggloc/agglocvolatile arguments indicate where 1654 /// the result should be returned. 1655 /// 1656 /// \param ignoreResult True if the resulting value isn't used. 1657 RValue EmitAnyExpr(const Expr *E, 1658 AggValueSlot aggSlot = AggValueSlot::ignored(), 1659 bool ignoreResult = false); 1660 1661 // EmitVAListRef - Emit a "reference" to a va_list; this is either the address 1662 // or the value of the expression, depending on how va_list is defined. 1663 Address EmitVAListRef(const Expr *E); 1664 1665 /// Emit a "reference" to a __builtin_ms_va_list; this is 1666 /// always the value of the expression, because a __builtin_ms_va_list is a 1667 /// pointer to a char. 1668 Address EmitMSVAListRef(const Expr *E); 1669 1670 /// EmitAnyExprToTemp - Similary to EmitAnyExpr(), however, the result will 1671 /// always be accessible even if no aggregate location is provided. 1672 RValue EmitAnyExprToTemp(const Expr *E); 1673 1674 /// EmitAnyExprToMem - Emits the code necessary to evaluate an 1675 /// arbitrary expression into the given memory location. 1676 void EmitAnyExprToMem(const Expr *E, Address Location, 1677 Qualifiers Quals, bool IsInitializer); 1678 1679 void EmitAnyExprToExn(const Expr *E, Address Addr); 1680 1681 /// EmitExprAsInit - Emits the code necessary to initialize a 1682 /// location in memory with the given initializer. 1683 void EmitExprAsInit(const Expr *init, const ValueDecl *D, LValue lvalue, 1684 bool capturedByInit); 1685 1686 /// hasVolatileMember - returns true if aggregate type has a volatile 1687 /// member. 1688 bool hasVolatileMember(QualType T) { 1689 if (const RecordType *RT = T->getAs<RecordType>()) { 1690 const RecordDecl *RD = cast<RecordDecl>(RT->getDecl()); 1691 return RD->hasVolatileMember(); 1692 } 1693 return false; 1694 } 1695 /// EmitAggregateCopy - Emit an aggregate assignment. 1696 /// 1697 /// The difference to EmitAggregateCopy is that tail padding is not copied. 1698 /// This is required for correctness when assigning non-POD structures in C++. 1699 void EmitAggregateAssign(Address DestPtr, Address SrcPtr, 1700 QualType EltTy) { 1701 bool IsVolatile = hasVolatileMember(EltTy); 1702 EmitAggregateCopy(DestPtr, SrcPtr, EltTy, IsVolatile, true); 1703 } 1704 1705 void EmitAggregateCopyCtor(Address DestPtr, Address SrcPtr, 1706 QualType DestTy, QualType SrcTy) { 1707 EmitAggregateCopy(DestPtr, SrcPtr, SrcTy, /*IsVolatile=*/false, 1708 /*IsAssignment=*/false); 1709 } 1710 1711 /// EmitAggregateCopy - Emit an aggregate copy. 1712 /// 1713 /// \param isVolatile - True iff either the source or the destination is 1714 /// volatile. 1715 /// \param isAssignment - If false, allow padding to be copied. This often 1716 /// yields more efficient. 1717 void EmitAggregateCopy(Address DestPtr, Address SrcPtr, 1718 QualType EltTy, bool isVolatile=false, 1719 bool isAssignment = false); 1720 1721 /// GetAddrOfLocalVar - Return the address of a local variable. 1722 Address GetAddrOfLocalVar(const VarDecl *VD) { 1723 auto it = LocalDeclMap.find(VD); 1724 assert(it != LocalDeclMap.end() && 1725 "Invalid argument to GetAddrOfLocalVar(), no decl!"); 1726 return it->second; 1727 } 1728 1729 /// getOpaqueLValueMapping - Given an opaque value expression (which 1730 /// must be mapped to an l-value), return its mapping. 1731 const LValue &getOpaqueLValueMapping(const OpaqueValueExpr *e) { 1732 assert(OpaqueValueMapping::shouldBindAsLValue(e)); 1733 1734 llvm::DenseMap<const OpaqueValueExpr*,LValue>::iterator 1735 it = OpaqueLValues.find(e); 1736 assert(it != OpaqueLValues.end() && "no mapping for opaque value!"); 1737 return it->second; 1738 } 1739 1740 /// getOpaqueRValueMapping - Given an opaque value expression (which 1741 /// must be mapped to an r-value), return its mapping. 1742 const RValue &getOpaqueRValueMapping(const OpaqueValueExpr *e) { 1743 assert(!OpaqueValueMapping::shouldBindAsLValue(e)); 1744 1745 llvm::DenseMap<const OpaqueValueExpr*,RValue>::iterator 1746 it = OpaqueRValues.find(e); 1747 assert(it != OpaqueRValues.end() && "no mapping for opaque value!"); 1748 return it->second; 1749 } 1750 1751 /// getAccessedFieldNo - Given an encoded value and a result number, return 1752 /// the input field number being accessed. 1753 static unsigned getAccessedFieldNo(unsigned Idx, const llvm::Constant *Elts); 1754 1755 llvm::BlockAddress *GetAddrOfLabel(const LabelDecl *L); 1756 llvm::BasicBlock *GetIndirectGotoBlock(); 1757 1758 /// EmitNullInitialization - Generate code to set a value of the given type to 1759 /// null, If the type contains data member pointers, they will be initialized 1760 /// to -1 in accordance with the Itanium C++ ABI. 1761 void EmitNullInitialization(Address DestPtr, QualType Ty); 1762 1763 /// Emits a call to an LLVM variable-argument intrinsic, either 1764 /// \c llvm.va_start or \c llvm.va_end. 1765 /// \param ArgValue A reference to the \c va_list as emitted by either 1766 /// \c EmitVAListRef or \c EmitMSVAListRef. 1767 /// \param IsStart If \c true, emits a call to \c llvm.va_start; otherwise, 1768 /// calls \c llvm.va_end. 1769 llvm::Value *EmitVAStartEnd(llvm::Value *ArgValue, bool IsStart); 1770 1771 /// Generate code to get an argument from the passed in pointer 1772 /// and update it accordingly. 1773 /// \param VE The \c VAArgExpr for which to generate code. 1774 /// \param VAListAddr Receives a reference to the \c va_list as emitted by 1775 /// either \c EmitVAListRef or \c EmitMSVAListRef. 1776 /// \returns A pointer to the argument. 1777 // FIXME: We should be able to get rid of this method and use the va_arg 1778 // instruction in LLVM instead once it works well enough. 1779 Address EmitVAArg(VAArgExpr *VE, Address &VAListAddr); 1780 1781 /// emitArrayLength - Compute the length of an array, even if it's a 1782 /// VLA, and drill down to the base element type. 1783 llvm::Value *emitArrayLength(const ArrayType *arrayType, 1784 QualType &baseType, 1785 Address &addr); 1786 1787 /// EmitVLASize - Capture all the sizes for the VLA expressions in 1788 /// the given variably-modified type and store them in the VLASizeMap. 1789 /// 1790 /// This function can be called with a null (unreachable) insert point. 1791 void EmitVariablyModifiedType(QualType Ty); 1792 1793 /// getVLASize - Returns an LLVM value that corresponds to the size, 1794 /// in non-variably-sized elements, of a variable length array type, 1795 /// plus that largest non-variably-sized element type. Assumes that 1796 /// the type has already been emitted with EmitVariablyModifiedType. 1797 std::pair<llvm::Value*,QualType> getVLASize(const VariableArrayType *vla); 1798 std::pair<llvm::Value*,QualType> getVLASize(QualType vla); 1799 1800 /// LoadCXXThis - Load the value of 'this'. This function is only valid while 1801 /// generating code for an C++ member function. 1802 llvm::Value *LoadCXXThis() { 1803 assert(CXXThisValue && "no 'this' value for this function"); 1804 return CXXThisValue; 1805 } 1806 Address LoadCXXThisAddress(); 1807 1808 /// LoadCXXVTT - Load the VTT parameter to base constructors/destructors have 1809 /// virtual bases. 1810 // FIXME: Every place that calls LoadCXXVTT is something 1811 // that needs to be abstracted properly. 1812 llvm::Value *LoadCXXVTT() { 1813 assert(CXXStructorImplicitParamValue && "no VTT value for this function"); 1814 return CXXStructorImplicitParamValue; 1815 } 1816 1817 /// GetAddressOfBaseOfCompleteClass - Convert the given pointer to a 1818 /// complete class to the given direct base. 1819 Address 1820 GetAddressOfDirectBaseInCompleteClass(Address Value, 1821 const CXXRecordDecl *Derived, 1822 const CXXRecordDecl *Base, 1823 bool BaseIsVirtual); 1824 1825 static bool ShouldNullCheckClassCastValue(const CastExpr *Cast); 1826 1827 /// GetAddressOfBaseClass - This function will add the necessary delta to the 1828 /// load of 'this' and returns address of the base class. 1829 Address GetAddressOfBaseClass(Address Value, 1830 const CXXRecordDecl *Derived, 1831 CastExpr::path_const_iterator PathBegin, 1832 CastExpr::path_const_iterator PathEnd, 1833 bool NullCheckValue, SourceLocation Loc); 1834 1835 Address GetAddressOfDerivedClass(Address Value, 1836 const CXXRecordDecl *Derived, 1837 CastExpr::path_const_iterator PathBegin, 1838 CastExpr::path_const_iterator PathEnd, 1839 bool NullCheckValue); 1840 1841 /// GetVTTParameter - Return the VTT parameter that should be passed to a 1842 /// base constructor/destructor with virtual bases. 1843 /// FIXME: VTTs are Itanium ABI-specific, so the definition should move 1844 /// to ItaniumCXXABI.cpp together with all the references to VTT. 1845 llvm::Value *GetVTTParameter(GlobalDecl GD, bool ForVirtualBase, 1846 bool Delegating); 1847 1848 void EmitDelegateCXXConstructorCall(const CXXConstructorDecl *Ctor, 1849 CXXCtorType CtorType, 1850 const FunctionArgList &Args, 1851 SourceLocation Loc); 1852 // It's important not to confuse this and the previous function. Delegating 1853 // constructors are the C++0x feature. The constructor delegate optimization 1854 // is used to reduce duplication in the base and complete consturctors where 1855 // they are substantially the same. 1856 void EmitDelegatingCXXConstructorCall(const CXXConstructorDecl *Ctor, 1857 const FunctionArgList &Args); 1858 1859 void EmitCXXConstructorCall(const CXXConstructorDecl *D, CXXCtorType Type, 1860 bool ForVirtualBase, bool Delegating, 1861 Address This, const CXXConstructExpr *E); 1862 1863 /// Emit assumption load for all bases. Requires to be be called only on 1864 /// most-derived class and not under construction of the object. 1865 void EmitVTableAssumptionLoads(const CXXRecordDecl *ClassDecl, Address This); 1866 1867 /// Emit assumption that vptr load == global vtable. 1868 void EmitVTableAssumptionLoad(const VPtr &vptr, Address This); 1869 1870 void EmitSynthesizedCXXCopyCtorCall(const CXXConstructorDecl *D, 1871 Address This, Address Src, 1872 const CXXConstructExpr *E); 1873 1874 void EmitCXXAggrConstructorCall(const CXXConstructorDecl *D, 1875 const ConstantArrayType *ArrayTy, 1876 Address ArrayPtr, 1877 const CXXConstructExpr *E, 1878 bool ZeroInitialization = false); 1879 1880 void EmitCXXAggrConstructorCall(const CXXConstructorDecl *D, 1881 llvm::Value *NumElements, 1882 Address ArrayPtr, 1883 const CXXConstructExpr *E, 1884 bool ZeroInitialization = false); 1885 1886 static Destroyer destroyCXXObject; 1887 1888 void EmitCXXDestructorCall(const CXXDestructorDecl *D, CXXDtorType Type, 1889 bool ForVirtualBase, bool Delegating, 1890 Address This); 1891 1892 void EmitNewArrayInitializer(const CXXNewExpr *E, QualType elementType, 1893 llvm::Type *ElementTy, Address NewPtr, 1894 llvm::Value *NumElements, 1895 llvm::Value *AllocSizeWithoutCookie); 1896 1897 void EmitCXXTemporary(const CXXTemporary *Temporary, QualType TempType, 1898 Address Ptr); 1899 1900 llvm::Value *EmitLifetimeStart(uint64_t Size, llvm::Value *Addr); 1901 void EmitLifetimeEnd(llvm::Value *Size, llvm::Value *Addr); 1902 1903 llvm::Value *EmitCXXNewExpr(const CXXNewExpr *E); 1904 void EmitCXXDeleteExpr(const CXXDeleteExpr *E); 1905 1906 void EmitDeleteCall(const FunctionDecl *DeleteFD, llvm::Value *Ptr, 1907 QualType DeleteTy); 1908 1909 RValue EmitBuiltinNewDeleteCall(const FunctionProtoType *Type, 1910 const Expr *Arg, bool IsDelete); 1911 1912 llvm::Value *EmitCXXTypeidExpr(const CXXTypeidExpr *E); 1913 llvm::Value *EmitDynamicCast(Address V, const CXXDynamicCastExpr *DCE); 1914 Address EmitCXXUuidofExpr(const CXXUuidofExpr *E); 1915 1916 /// \brief Situations in which we might emit a check for the suitability of a 1917 /// pointer or glvalue. 1918 enum TypeCheckKind { 1919 /// Checking the operand of a load. Must be suitably sized and aligned. 1920 TCK_Load, 1921 /// Checking the destination of a store. Must be suitably sized and aligned. 1922 TCK_Store, 1923 /// Checking the bound value in a reference binding. Must be suitably sized 1924 /// and aligned, but is not required to refer to an object (until the 1925 /// reference is used), per core issue 453. 1926 TCK_ReferenceBinding, 1927 /// Checking the object expression in a non-static data member access. Must 1928 /// be an object within its lifetime. 1929 TCK_MemberAccess, 1930 /// Checking the 'this' pointer for a call to a non-static member function. 1931 /// Must be an object within its lifetime. 1932 TCK_MemberCall, 1933 /// Checking the 'this' pointer for a constructor call. 1934 TCK_ConstructorCall, 1935 /// Checking the operand of a static_cast to a derived pointer type. Must be 1936 /// null or an object within its lifetime. 1937 TCK_DowncastPointer, 1938 /// Checking the operand of a static_cast to a derived reference type. Must 1939 /// be an object within its lifetime. 1940 TCK_DowncastReference, 1941 /// Checking the operand of a cast to a base object. Must be suitably sized 1942 /// and aligned. 1943 TCK_Upcast, 1944 /// Checking the operand of a cast to a virtual base object. Must be an 1945 /// object within its lifetime. 1946 TCK_UpcastToVirtualBase 1947 }; 1948 1949 /// \brief Whether any type-checking sanitizers are enabled. If \c false, 1950 /// calls to EmitTypeCheck can be skipped. 1951 bool sanitizePerformTypeCheck() const; 1952 1953 /// \brief Emit a check that \p V is the address of storage of the 1954 /// appropriate size and alignment for an object of type \p Type. 1955 void EmitTypeCheck(TypeCheckKind TCK, SourceLocation Loc, llvm::Value *V, 1956 QualType Type, CharUnits Alignment = CharUnits::Zero(), 1957 bool SkipNullCheck = false); 1958 1959 /// \brief Emit a check that \p Base points into an array object, which 1960 /// we can access at index \p Index. \p Accessed should be \c false if we 1961 /// this expression is used as an lvalue, for instance in "&Arr[Idx]". 1962 void EmitBoundsCheck(const Expr *E, const Expr *Base, llvm::Value *Index, 1963 QualType IndexType, bool Accessed); 1964 1965 llvm::Value *EmitScalarPrePostIncDec(const UnaryOperator *E, LValue LV, 1966 bool isInc, bool isPre); 1967 ComplexPairTy EmitComplexPrePostIncDec(const UnaryOperator *E, LValue LV, 1968 bool isInc, bool isPre); 1969 1970 void EmitAlignmentAssumption(llvm::Value *PtrValue, unsigned Alignment, 1971 llvm::Value *OffsetValue = nullptr) { 1972 Builder.CreateAlignmentAssumption(CGM.getDataLayout(), PtrValue, Alignment, 1973 OffsetValue); 1974 } 1975 1976 //===--------------------------------------------------------------------===// 1977 // Declaration Emission 1978 //===--------------------------------------------------------------------===// 1979 1980 /// EmitDecl - Emit a declaration. 1981 /// 1982 /// This function can be called with a null (unreachable) insert point. 1983 void EmitDecl(const Decl &D); 1984 1985 /// EmitVarDecl - Emit a local variable declaration. 1986 /// 1987 /// This function can be called with a null (unreachable) insert point. 1988 void EmitVarDecl(const VarDecl &D); 1989 1990 void EmitScalarInit(const Expr *init, const ValueDecl *D, LValue lvalue, 1991 bool capturedByInit); 1992 void EmitScalarInit(llvm::Value *init, LValue lvalue); 1993 1994 typedef void SpecialInitFn(CodeGenFunction &Init, const VarDecl &D, 1995 llvm::Value *Address); 1996 1997 /// \brief Determine whether the given initializer is trivial in the sense 1998 /// that it requires no code to be generated. 1999 bool isTrivialInitializer(const Expr *Init); 2000 2001 /// EmitAutoVarDecl - Emit an auto variable declaration. 2002 /// 2003 /// This function can be called with a null (unreachable) insert point. 2004 void EmitAutoVarDecl(const VarDecl &D); 2005 2006 class AutoVarEmission { 2007 friend class CodeGenFunction; 2008 2009 const VarDecl *Variable; 2010 2011 /// The address of the alloca. Invalid if the variable was emitted 2012 /// as a global constant. 2013 Address Addr; 2014 2015 llvm::Value *NRVOFlag; 2016 2017 /// True if the variable is a __block variable. 2018 bool IsByRef; 2019 2020 /// True if the variable is of aggregate type and has a constant 2021 /// initializer. 2022 bool IsConstantAggregate; 2023 2024 /// Non-null if we should use lifetime annotations. 2025 llvm::Value *SizeForLifetimeMarkers; 2026 2027 struct Invalid {}; 2028 AutoVarEmission(Invalid) : Variable(nullptr), Addr(Address::invalid()) {} 2029 2030 AutoVarEmission(const VarDecl &variable) 2031 : Variable(&variable), Addr(Address::invalid()), NRVOFlag(nullptr), 2032 IsByRef(false), IsConstantAggregate(false), 2033 SizeForLifetimeMarkers(nullptr) {} 2034 2035 bool wasEmittedAsGlobal() const { return !Addr.isValid(); } 2036 2037 public: 2038 static AutoVarEmission invalid() { return AutoVarEmission(Invalid()); } 2039 2040 bool useLifetimeMarkers() const { 2041 return SizeForLifetimeMarkers != nullptr; 2042 } 2043 llvm::Value *getSizeForLifetimeMarkers() const { 2044 assert(useLifetimeMarkers()); 2045 return SizeForLifetimeMarkers; 2046 } 2047 2048 /// Returns the raw, allocated address, which is not necessarily 2049 /// the address of the object itself. 2050 Address getAllocatedAddress() const { 2051 return Addr; 2052 } 2053 2054 /// Returns the address of the object within this declaration. 2055 /// Note that this does not chase the forwarding pointer for 2056 /// __block decls. 2057 Address getObjectAddress(CodeGenFunction &CGF) const { 2058 if (!IsByRef) return Addr; 2059 2060 return CGF.emitBlockByrefAddress(Addr, Variable, /*forward*/ false); 2061 } 2062 }; 2063 AutoVarEmission EmitAutoVarAlloca(const VarDecl &var); 2064 void EmitAutoVarInit(const AutoVarEmission &emission); 2065 void EmitAutoVarCleanups(const AutoVarEmission &emission); 2066 void emitAutoVarTypeCleanup(const AutoVarEmission &emission, 2067 QualType::DestructionKind dtorKind); 2068 2069 void EmitStaticVarDecl(const VarDecl &D, 2070 llvm::GlobalValue::LinkageTypes Linkage); 2071 2072 class ParamValue { 2073 llvm::Value *Value; 2074 unsigned Alignment; 2075 ParamValue(llvm::Value *V, unsigned A) : Value(V), Alignment(A) {} 2076 public: 2077 static ParamValue forDirect(llvm::Value *value) { 2078 return ParamValue(value, 0); 2079 } 2080 static ParamValue forIndirect(Address addr) { 2081 assert(!addr.getAlignment().isZero()); 2082 return ParamValue(addr.getPointer(), addr.getAlignment().getQuantity()); 2083 } 2084 2085 bool isIndirect() const { return Alignment != 0; } 2086 llvm::Value *getAnyValue() const { return Value; } 2087 2088 llvm::Value *getDirectValue() const { 2089 assert(!isIndirect()); 2090 return Value; 2091 } 2092 2093 Address getIndirectAddress() const { 2094 assert(isIndirect()); 2095 return Address(Value, CharUnits::fromQuantity(Alignment)); 2096 } 2097 }; 2098 2099 /// EmitParmDecl - Emit a ParmVarDecl or an ImplicitParamDecl. 2100 void EmitParmDecl(const VarDecl &D, ParamValue Arg, unsigned ArgNo); 2101 2102 /// protectFromPeepholes - Protect a value that we're intending to 2103 /// store to the side, but which will probably be used later, from 2104 /// aggressive peepholing optimizations that might delete it. 2105 /// 2106 /// Pass the result to unprotectFromPeepholes to declare that 2107 /// protection is no longer required. 2108 /// 2109 /// There's no particular reason why this shouldn't apply to 2110 /// l-values, it's just that no existing peepholes work on pointers. 2111 PeepholeProtection protectFromPeepholes(RValue rvalue); 2112 void unprotectFromPeepholes(PeepholeProtection protection); 2113 2114 //===--------------------------------------------------------------------===// 2115 // Statement Emission 2116 //===--------------------------------------------------------------------===// 2117 2118 /// EmitStopPoint - Emit a debug stoppoint if we are emitting debug info. 2119 void EmitStopPoint(const Stmt *S); 2120 2121 /// EmitStmt - Emit the code for the statement \arg S. It is legal to call 2122 /// this function even if there is no current insertion point. 2123 /// 2124 /// This function may clear the current insertion point; callers should use 2125 /// EnsureInsertPoint if they wish to subsequently generate code without first 2126 /// calling EmitBlock, EmitBranch, or EmitStmt. 2127 void EmitStmt(const Stmt *S); 2128 2129 /// EmitSimpleStmt - Try to emit a "simple" statement which does not 2130 /// necessarily require an insertion point or debug information; typically 2131 /// because the statement amounts to a jump or a container of other 2132 /// statements. 2133 /// 2134 /// \return True if the statement was handled. 2135 bool EmitSimpleStmt(const Stmt *S); 2136 2137 Address EmitCompoundStmt(const CompoundStmt &S, bool GetLast = false, 2138 AggValueSlot AVS = AggValueSlot::ignored()); 2139 Address EmitCompoundStmtWithoutScope(const CompoundStmt &S, 2140 bool GetLast = false, 2141 AggValueSlot AVS = 2142 AggValueSlot::ignored()); 2143 2144 /// EmitLabel - Emit the block for the given label. It is legal to call this 2145 /// function even if there is no current insertion point. 2146 void EmitLabel(const LabelDecl *D); // helper for EmitLabelStmt. 2147 2148 void EmitLabelStmt(const LabelStmt &S); 2149 void EmitAttributedStmt(const AttributedStmt &S); 2150 void EmitGotoStmt(const GotoStmt &S); 2151 void EmitIndirectGotoStmt(const IndirectGotoStmt &S); 2152 void EmitIfStmt(const IfStmt &S); 2153 2154 void EmitWhileStmt(const WhileStmt &S, 2155 ArrayRef<const Attr *> Attrs = None); 2156 void EmitDoStmt(const DoStmt &S, ArrayRef<const Attr *> Attrs = None); 2157 void EmitForStmt(const ForStmt &S, 2158 ArrayRef<const Attr *> Attrs = None); 2159 void EmitReturnStmt(const ReturnStmt &S); 2160 void EmitDeclStmt(const DeclStmt &S); 2161 void EmitBreakStmt(const BreakStmt &S); 2162 void EmitContinueStmt(const ContinueStmt &S); 2163 void EmitSwitchStmt(const SwitchStmt &S); 2164 void EmitDefaultStmt(const DefaultStmt &S); 2165 void EmitCaseStmt(const CaseStmt &S); 2166 void EmitCaseStmtRange(const CaseStmt &S); 2167 void EmitAsmStmt(const AsmStmt &S); 2168 2169 void EmitObjCForCollectionStmt(const ObjCForCollectionStmt &S); 2170 void EmitObjCAtTryStmt(const ObjCAtTryStmt &S); 2171 void EmitObjCAtThrowStmt(const ObjCAtThrowStmt &S); 2172 void EmitObjCAtSynchronizedStmt(const ObjCAtSynchronizedStmt &S); 2173 void EmitObjCAutoreleasePoolStmt(const ObjCAutoreleasePoolStmt &S); 2174 2175 void EnterCXXTryStmt(const CXXTryStmt &S, bool IsFnTryBlock = false); 2176 void ExitCXXTryStmt(const CXXTryStmt &S, bool IsFnTryBlock = false); 2177 2178 void EmitCXXTryStmt(const CXXTryStmt &S); 2179 void EmitSEHTryStmt(const SEHTryStmt &S); 2180 void EmitSEHLeaveStmt(const SEHLeaveStmt &S); 2181 void EnterSEHTryStmt(const SEHTryStmt &S); 2182 void ExitSEHTryStmt(const SEHTryStmt &S); 2183 2184 void startOutlinedSEHHelper(CodeGenFunction &ParentCGF, bool IsFilter, 2185 const Stmt *OutlinedStmt); 2186 2187 llvm::Function *GenerateSEHFilterFunction(CodeGenFunction &ParentCGF, 2188 const SEHExceptStmt &Except); 2189 2190 llvm::Function *GenerateSEHFinallyFunction(CodeGenFunction &ParentCGF, 2191 const SEHFinallyStmt &Finally); 2192 2193 void EmitSEHExceptionCodeSave(CodeGenFunction &ParentCGF, 2194 llvm::Value *ParentFP, 2195 llvm::Value *EntryEBP); 2196 llvm::Value *EmitSEHExceptionCode(); 2197 llvm::Value *EmitSEHExceptionInfo(); 2198 llvm::Value *EmitSEHAbnormalTermination(); 2199 2200 /// Scan the outlined statement for captures from the parent function. For 2201 /// each capture, mark the capture as escaped and emit a call to 2202 /// llvm.localrecover. Insert the localrecover result into the LocalDeclMap. 2203 void EmitCapturedLocals(CodeGenFunction &ParentCGF, const Stmt *OutlinedStmt, 2204 bool IsFilter); 2205 2206 /// Recovers the address of a local in a parent function. ParentVar is the 2207 /// address of the variable used in the immediate parent function. It can 2208 /// either be an alloca or a call to llvm.localrecover if there are nested 2209 /// outlined functions. ParentFP is the frame pointer of the outermost parent 2210 /// frame. 2211 Address recoverAddrOfEscapedLocal(CodeGenFunction &ParentCGF, 2212 Address ParentVar, 2213 llvm::Value *ParentFP); 2214 2215 void EmitCXXForRangeStmt(const CXXForRangeStmt &S, 2216 ArrayRef<const Attr *> Attrs = None); 2217 2218 /// Returns calculated size of the specified type. 2219 llvm::Value *getTypeSize(QualType Ty); 2220 LValue InitCapturedStruct(const CapturedStmt &S); 2221 llvm::Function *EmitCapturedStmt(const CapturedStmt &S, CapturedRegionKind K); 2222 llvm::Function *GenerateCapturedStmtFunction(const CapturedStmt &S); 2223 Address GenerateCapturedStmtArgument(const CapturedStmt &S); 2224 llvm::Function *GenerateOpenMPCapturedStmtFunction(const CapturedStmt &S, 2225 QualType ReturnQTy); 2226 llvm::Function *GenerateOpenMPCapturedStmtFunction(const CapturedStmt &S); 2227 void GenerateOpenMPCapturedVars(const CapturedStmt &S, 2228 SmallVectorImpl<llvm::Value *> &CapturedVars); 2229 void emitOMPSimpleStore(LValue LVal, RValue RVal, QualType RValTy, 2230 SourceLocation Loc); 2231 /// \brief Perform element by element copying of arrays with type \a 2232 /// OriginalType from \a SrcAddr to \a DestAddr using copying procedure 2233 /// generated by \a CopyGen. 2234 /// 2235 /// \param DestAddr Address of the destination array. 2236 /// \param SrcAddr Address of the source array. 2237 /// \param OriginalType Type of destination and source arrays. 2238 /// \param CopyGen Copying procedure that copies value of single array element 2239 /// to another single array element. 2240 void EmitOMPAggregateAssign( 2241 Address DestAddr, Address SrcAddr, QualType OriginalType, 2242 const llvm::function_ref<void(Address, Address)> &CopyGen); 2243 /// \brief Emit proper copying of data from one variable to another. 2244 /// 2245 /// \param OriginalType Original type of the copied variables. 2246 /// \param DestAddr Destination address. 2247 /// \param SrcAddr Source address. 2248 /// \param DestVD Destination variable used in \a CopyExpr (for arrays, has 2249 /// type of the base array element). 2250 /// \param SrcVD Source variable used in \a CopyExpr (for arrays, has type of 2251 /// the base array element). 2252 /// \param Copy Actual copygin expression for copying data from \a SrcVD to \a 2253 /// DestVD. 2254 void EmitOMPCopy(QualType OriginalType, 2255 Address DestAddr, Address SrcAddr, 2256 const VarDecl *DestVD, const VarDecl *SrcVD, 2257 const Expr *Copy); 2258 /// \brief Emit atomic update code for constructs: \a X = \a X \a BO \a E or 2259 /// \a X = \a E \a BO \a E. 2260 /// 2261 /// \param X Value to be updated. 2262 /// \param E Update value. 2263 /// \param BO Binary operation for update operation. 2264 /// \param IsXLHSInRHSPart true if \a X is LHS in RHS part of the update 2265 /// expression, false otherwise. 2266 /// \param AO Atomic ordering of the generated atomic instructions. 2267 /// \param CommonGen Code generator for complex expressions that cannot be 2268 /// expressed through atomicrmw instruction. 2269 /// \returns <true, OldAtomicValue> if simple 'atomicrmw' instruction was 2270 /// generated, <false, RValue::get(nullptr)> otherwise. 2271 std::pair<bool, RValue> EmitOMPAtomicSimpleUpdateExpr( 2272 LValue X, RValue E, BinaryOperatorKind BO, bool IsXLHSInRHSPart, 2273 llvm::AtomicOrdering AO, SourceLocation Loc, 2274 const llvm::function_ref<RValue(RValue)> &CommonGen); 2275 bool EmitOMPFirstprivateClause(const OMPExecutableDirective &D, 2276 OMPPrivateScope &PrivateScope); 2277 void EmitOMPPrivateClause(const OMPExecutableDirective &D, 2278 OMPPrivateScope &PrivateScope); 2279 /// \brief Emit code for copyin clause in \a D directive. The next code is 2280 /// generated at the start of outlined functions for directives: 2281 /// \code 2282 /// threadprivate_var1 = master_threadprivate_var1; 2283 /// operator=(threadprivate_var2, master_threadprivate_var2); 2284 /// ... 2285 /// __kmpc_barrier(&loc, global_tid); 2286 /// \endcode 2287 /// 2288 /// \param D OpenMP directive possibly with 'copyin' clause(s). 2289 /// \returns true if at least one copyin variable is found, false otherwise. 2290 bool EmitOMPCopyinClause(const OMPExecutableDirective &D); 2291 /// \brief Emit initial code for lastprivate variables. If some variable is 2292 /// not also firstprivate, then the default initialization is used. Otherwise 2293 /// initialization of this variable is performed by EmitOMPFirstprivateClause 2294 /// method. 2295 /// 2296 /// \param D Directive that may have 'lastprivate' directives. 2297 /// \param PrivateScope Private scope for capturing lastprivate variables for 2298 /// proper codegen in internal captured statement. 2299 /// 2300 /// \returns true if there is at least one lastprivate variable, false 2301 /// otherwise. 2302 bool EmitOMPLastprivateClauseInit(const OMPExecutableDirective &D, 2303 OMPPrivateScope &PrivateScope); 2304 /// \brief Emit final copying of lastprivate values to original variables at 2305 /// the end of the worksharing or simd directive. 2306 /// 2307 /// \param D Directive that has at least one 'lastprivate' directives. 2308 /// \param IsLastIterCond Boolean condition that must be set to 'i1 true' if 2309 /// it is the last iteration of the loop code in associated directive, or to 2310 /// 'i1 false' otherwise. If this item is nullptr, no final check is required. 2311 void EmitOMPLastprivateClauseFinal(const OMPExecutableDirective &D, 2312 llvm::Value *IsLastIterCond = nullptr); 2313 /// \brief Emit initial code for reduction variables. Creates reduction copies 2314 /// and initializes them with the values according to OpenMP standard. 2315 /// 2316 /// \param D Directive (possibly) with the 'reduction' clause. 2317 /// \param PrivateScope Private scope for capturing reduction variables for 2318 /// proper codegen in internal captured statement. 2319 /// 2320 void EmitOMPReductionClauseInit(const OMPExecutableDirective &D, 2321 OMPPrivateScope &PrivateScope); 2322 /// \brief Emit final update of reduction values to original variables at 2323 /// the end of the directive. 2324 /// 2325 /// \param D Directive that has at least one 'reduction' directives. 2326 void EmitOMPReductionClauseFinal(const OMPExecutableDirective &D); 2327 /// \brief Emit initial code for linear variables. Creates private copies 2328 /// and initializes them with the values according to OpenMP standard. 2329 /// 2330 /// \param D Directive (possibly) with the 'linear' clause. 2331 void EmitOMPLinearClauseInit(const OMPLoopDirective &D); 2332 2333 void EmitOMPParallelDirective(const OMPParallelDirective &S); 2334 void EmitOMPSimdDirective(const OMPSimdDirective &S); 2335 void EmitOMPForDirective(const OMPForDirective &S); 2336 void EmitOMPForSimdDirective(const OMPForSimdDirective &S); 2337 void EmitOMPSectionsDirective(const OMPSectionsDirective &S); 2338 void EmitOMPSectionDirective(const OMPSectionDirective &S); 2339 void EmitOMPSingleDirective(const OMPSingleDirective &S); 2340 void EmitOMPMasterDirective(const OMPMasterDirective &S); 2341 void EmitOMPCriticalDirective(const OMPCriticalDirective &S); 2342 void EmitOMPParallelForDirective(const OMPParallelForDirective &S); 2343 void EmitOMPParallelForSimdDirective(const OMPParallelForSimdDirective &S); 2344 void EmitOMPParallelSectionsDirective(const OMPParallelSectionsDirective &S); 2345 void EmitOMPTaskDirective(const OMPTaskDirective &S); 2346 void EmitOMPTaskyieldDirective(const OMPTaskyieldDirective &S); 2347 void EmitOMPBarrierDirective(const OMPBarrierDirective &S); 2348 void EmitOMPTaskwaitDirective(const OMPTaskwaitDirective &S); 2349 void EmitOMPTaskgroupDirective(const OMPTaskgroupDirective &S); 2350 void EmitOMPFlushDirective(const OMPFlushDirective &S); 2351 void EmitOMPOrderedDirective(const OMPOrderedDirective &S); 2352 void EmitOMPAtomicDirective(const OMPAtomicDirective &S); 2353 void EmitOMPTargetDirective(const OMPTargetDirective &S); 2354 void EmitOMPTargetDataDirective(const OMPTargetDataDirective &S); 2355 void EmitOMPTargetEnterDataDirective(const OMPTargetEnterDataDirective &S); 2356 void EmitOMPTargetExitDataDirective(const OMPTargetExitDataDirective &S); 2357 void EmitOMPTargetParallelDirective(const OMPTargetParallelDirective &S); 2358 void 2359 EmitOMPTargetParallelForDirective(const OMPTargetParallelForDirective &S); 2360 void EmitOMPTeamsDirective(const OMPTeamsDirective &S); 2361 void 2362 EmitOMPCancellationPointDirective(const OMPCancellationPointDirective &S); 2363 void EmitOMPCancelDirective(const OMPCancelDirective &S); 2364 void EmitOMPTaskLoopDirective(const OMPTaskLoopDirective &S); 2365 void EmitOMPTaskLoopSimdDirective(const OMPTaskLoopSimdDirective &S); 2366 void EmitOMPDistributeDirective(const OMPDistributeDirective &S); 2367 void EmitOMPDistributeLoop(const OMPDistributeDirective &S); 2368 2369 /// Emit outlined function for the target directive. 2370 static std::pair<llvm::Function * /*OutlinedFn*/, 2371 llvm::Constant * /*OutlinedFnID*/> 2372 EmitOMPTargetDirectiveOutlinedFunction(CodeGenModule &CGM, 2373 const OMPTargetDirective &S, 2374 StringRef ParentName, 2375 bool IsOffloadEntry); 2376 /// \brief Emit inner loop of the worksharing/simd construct. 2377 /// 2378 /// \param S Directive, for which the inner loop must be emitted. 2379 /// \param RequiresCleanup true, if directive has some associated private 2380 /// variables. 2381 /// \param LoopCond Bollean condition for loop continuation. 2382 /// \param IncExpr Increment expression for loop control variable. 2383 /// \param BodyGen Generator for the inner body of the inner loop. 2384 /// \param PostIncGen Genrator for post-increment code (required for ordered 2385 /// loop directvies). 2386 void EmitOMPInnerLoop( 2387 const Stmt &S, bool RequiresCleanup, const Expr *LoopCond, 2388 const Expr *IncExpr, 2389 const llvm::function_ref<void(CodeGenFunction &)> &BodyGen, 2390 const llvm::function_ref<void(CodeGenFunction &)> &PostIncGen); 2391 2392 JumpDest getOMPCancelDestination(OpenMPDirectiveKind Kind); 2393 2394 private: 2395 2396 /// Helpers for the OpenMP loop directives. 2397 void EmitOMPLoopBody(const OMPLoopDirective &D, JumpDest LoopExit); 2398 void EmitOMPSimdInit(const OMPLoopDirective &D, bool IsMonotonic = false); 2399 void EmitOMPSimdFinal( 2400 const OMPLoopDirective &D, 2401 const llvm::function_ref<llvm::Value *(CodeGenFunction &)> &CondGen); 2402 /// \brief Emit code for the worksharing loop-based directive. 2403 /// \return true, if this construct has any lastprivate clause, false - 2404 /// otherwise. 2405 bool EmitOMPWorksharingLoop(const OMPLoopDirective &S); 2406 void EmitOMPOuterLoop(bool IsMonotonic, bool DynamicOrOrdered, 2407 const OMPLoopDirective &S, OMPPrivateScope &LoopScope, bool Ordered, 2408 Address LB, Address UB, Address ST, Address IL, llvm::Value *Chunk); 2409 void EmitOMPForOuterLoop(OpenMPScheduleClauseKind ScheduleKind, 2410 bool IsMonotonic, const OMPLoopDirective &S, 2411 OMPPrivateScope &LoopScope, bool Ordered, Address LB, 2412 Address UB, Address ST, Address IL, 2413 llvm::Value *Chunk); 2414 void EmitOMPDistributeOuterLoop( 2415 OpenMPDistScheduleClauseKind ScheduleKind, 2416 const OMPDistributeDirective &S, OMPPrivateScope &LoopScope, 2417 Address LB, Address UB, Address ST, Address IL, llvm::Value *Chunk); 2418 /// \brief Emit code for sections directive. 2419 void EmitSections(const OMPExecutableDirective &S); 2420 2421 public: 2422 2423 //===--------------------------------------------------------------------===// 2424 // LValue Expression Emission 2425 //===--------------------------------------------------------------------===// 2426 2427 /// GetUndefRValue - Get an appropriate 'undef' rvalue for the given type. 2428 RValue GetUndefRValue(QualType Ty); 2429 2430 /// EmitUnsupportedRValue - Emit a dummy r-value using the type of E 2431 /// and issue an ErrorUnsupported style diagnostic (using the 2432 /// provided Name). 2433 RValue EmitUnsupportedRValue(const Expr *E, 2434 const char *Name); 2435 2436 /// EmitUnsupportedLValue - Emit a dummy l-value using the type of E and issue 2437 /// an ErrorUnsupported style diagnostic (using the provided Name). 2438 LValue EmitUnsupportedLValue(const Expr *E, 2439 const char *Name); 2440 2441 /// EmitLValue - Emit code to compute a designator that specifies the location 2442 /// of the expression. 2443 /// 2444 /// This can return one of two things: a simple address or a bitfield 2445 /// reference. In either case, the LLVM Value* in the LValue structure is 2446 /// guaranteed to be an LLVM pointer type. 2447 /// 2448 /// If this returns a bitfield reference, nothing about the pointee type of 2449 /// the LLVM value is known: For example, it may not be a pointer to an 2450 /// integer. 2451 /// 2452 /// If this returns a normal address, and if the lvalue's C type is fixed 2453 /// size, this method guarantees that the returned pointer type will point to 2454 /// an LLVM type of the same size of the lvalue's type. If the lvalue has a 2455 /// variable length type, this is not possible. 2456 /// 2457 LValue EmitLValue(const Expr *E); 2458 2459 /// \brief Same as EmitLValue but additionally we generate checking code to 2460 /// guard against undefined behavior. This is only suitable when we know 2461 /// that the address will be used to access the object. 2462 LValue EmitCheckedLValue(const Expr *E, TypeCheckKind TCK); 2463 2464 RValue convertTempToRValue(Address addr, QualType type, 2465 SourceLocation Loc); 2466 2467 void EmitAtomicInit(Expr *E, LValue lvalue); 2468 2469 bool LValueIsSuitableForInlineAtomic(LValue Src); 2470 bool typeIsSuitableForInlineAtomic(QualType Ty, bool IsVolatile) const; 2471 2472 RValue EmitAtomicLoad(LValue LV, SourceLocation SL, 2473 AggValueSlot Slot = AggValueSlot::ignored()); 2474 2475 RValue EmitAtomicLoad(LValue lvalue, SourceLocation loc, 2476 llvm::AtomicOrdering AO, bool IsVolatile = false, 2477 AggValueSlot slot = AggValueSlot::ignored()); 2478 2479 void EmitAtomicStore(RValue rvalue, LValue lvalue, bool isInit); 2480 2481 void EmitAtomicStore(RValue rvalue, LValue lvalue, llvm::AtomicOrdering AO, 2482 bool IsVolatile, bool isInit); 2483 2484 std::pair<RValue, llvm::Value *> EmitAtomicCompareExchange( 2485 LValue Obj, RValue Expected, RValue Desired, SourceLocation Loc, 2486 llvm::AtomicOrdering Success = 2487 llvm::AtomicOrdering::SequentiallyConsistent, 2488 llvm::AtomicOrdering Failure = 2489 llvm::AtomicOrdering::SequentiallyConsistent, 2490 bool IsWeak = false, AggValueSlot Slot = AggValueSlot::ignored()); 2491 2492 void EmitAtomicUpdate(LValue LVal, llvm::AtomicOrdering AO, 2493 const llvm::function_ref<RValue(RValue)> &UpdateOp, 2494 bool IsVolatile); 2495 2496 /// EmitToMemory - Change a scalar value from its value 2497 /// representation to its in-memory representation. 2498 llvm::Value *EmitToMemory(llvm::Value *Value, QualType Ty); 2499 2500 /// EmitFromMemory - Change a scalar value from its memory 2501 /// representation to its value representation. 2502 llvm::Value *EmitFromMemory(llvm::Value *Value, QualType Ty); 2503 2504 /// EmitLoadOfScalar - Load a scalar value from an address, taking 2505 /// care to appropriately convert from the memory representation to 2506 /// the LLVM value representation. 2507 llvm::Value *EmitLoadOfScalar(Address Addr, bool Volatile, QualType Ty, 2508 SourceLocation Loc, 2509 AlignmentSource AlignSource = 2510 AlignmentSource::Type, 2511 llvm::MDNode *TBAAInfo = nullptr, 2512 QualType TBAABaseTy = QualType(), 2513 uint64_t TBAAOffset = 0, 2514 bool isNontemporal = false); 2515 2516 /// EmitLoadOfScalar - Load a scalar value from an address, taking 2517 /// care to appropriately convert from the memory representation to 2518 /// the LLVM value representation. The l-value must be a simple 2519 /// l-value. 2520 llvm::Value *EmitLoadOfScalar(LValue lvalue, SourceLocation Loc); 2521 2522 /// EmitStoreOfScalar - Store a scalar value to an address, taking 2523 /// care to appropriately convert from the memory representation to 2524 /// the LLVM value representation. 2525 void EmitStoreOfScalar(llvm::Value *Value, Address Addr, 2526 bool Volatile, QualType Ty, 2527 AlignmentSource AlignSource = AlignmentSource::Type, 2528 llvm::MDNode *TBAAInfo = nullptr, bool isInit = false, 2529 QualType TBAABaseTy = QualType(), 2530 uint64_t TBAAOffset = 0, bool isNontemporal = false); 2531 2532 /// EmitStoreOfScalar - Store a scalar value to an address, taking 2533 /// care to appropriately convert from the memory representation to 2534 /// the LLVM value representation. The l-value must be a simple 2535 /// l-value. The isInit flag indicates whether this is an initialization. 2536 /// If so, atomic qualifiers are ignored and the store is always non-atomic. 2537 void EmitStoreOfScalar(llvm::Value *value, LValue lvalue, bool isInit=false); 2538 2539 /// EmitLoadOfLValue - Given an expression that represents a value lvalue, 2540 /// this method emits the address of the lvalue, then loads the result as an 2541 /// rvalue, returning the rvalue. 2542 RValue EmitLoadOfLValue(LValue V, SourceLocation Loc); 2543 RValue EmitLoadOfExtVectorElementLValue(LValue V); 2544 RValue EmitLoadOfBitfieldLValue(LValue LV); 2545 RValue EmitLoadOfGlobalRegLValue(LValue LV); 2546 2547 /// EmitStoreThroughLValue - Store the specified rvalue into the specified 2548 /// lvalue, where both are guaranteed to the have the same type, and that type 2549 /// is 'Ty'. 2550 void EmitStoreThroughLValue(RValue Src, LValue Dst, bool isInit = false); 2551 void EmitStoreThroughExtVectorComponentLValue(RValue Src, LValue Dst); 2552 void EmitStoreThroughGlobalRegLValue(RValue Src, LValue Dst); 2553 2554 /// EmitStoreThroughBitfieldLValue - Store Src into Dst with same constraints 2555 /// as EmitStoreThroughLValue. 2556 /// 2557 /// \param Result [out] - If non-null, this will be set to a Value* for the 2558 /// bit-field contents after the store, appropriate for use as the result of 2559 /// an assignment to the bit-field. 2560 void EmitStoreThroughBitfieldLValue(RValue Src, LValue Dst, 2561 llvm::Value **Result=nullptr); 2562 2563 /// Emit an l-value for an assignment (simple or compound) of complex type. 2564 LValue EmitComplexAssignmentLValue(const BinaryOperator *E); 2565 LValue EmitComplexCompoundAssignmentLValue(const CompoundAssignOperator *E); 2566 LValue EmitScalarCompoundAssignWithComplex(const CompoundAssignOperator *E, 2567 llvm::Value *&Result); 2568 2569 // Note: only available for agg return types 2570 LValue EmitBinaryOperatorLValue(const BinaryOperator *E); 2571 LValue EmitCompoundAssignmentLValue(const CompoundAssignOperator *E); 2572 // Note: only available for agg return types 2573 LValue EmitCallExprLValue(const CallExpr *E); 2574 // Note: only available for agg return types 2575 LValue EmitVAArgExprLValue(const VAArgExpr *E); 2576 LValue EmitDeclRefLValue(const DeclRefExpr *E); 2577 LValue EmitStringLiteralLValue(const StringLiteral *E); 2578 LValue EmitObjCEncodeExprLValue(const ObjCEncodeExpr *E); 2579 LValue EmitPredefinedLValue(const PredefinedExpr *E); 2580 LValue EmitUnaryOpLValue(const UnaryOperator *E); 2581 LValue EmitArraySubscriptExpr(const ArraySubscriptExpr *E, 2582 bool Accessed = false); 2583 LValue EmitOMPArraySectionExpr(const OMPArraySectionExpr *E, 2584 bool IsLowerBound = true); 2585 LValue EmitExtVectorElementExpr(const ExtVectorElementExpr *E); 2586 LValue EmitMemberExpr(const MemberExpr *E); 2587 LValue EmitObjCIsaExpr(const ObjCIsaExpr *E); 2588 LValue EmitCompoundLiteralLValue(const CompoundLiteralExpr *E); 2589 LValue EmitInitListLValue(const InitListExpr *E); 2590 LValue EmitConditionalOperatorLValue(const AbstractConditionalOperator *E); 2591 LValue EmitCastLValue(const CastExpr *E); 2592 LValue EmitMaterializeTemporaryExpr(const MaterializeTemporaryExpr *E); 2593 LValue EmitOpaqueValueLValue(const OpaqueValueExpr *e); 2594 2595 Address EmitExtVectorElementLValue(LValue V); 2596 2597 RValue EmitRValueForField(LValue LV, const FieldDecl *FD, SourceLocation Loc); 2598 2599 Address EmitArrayToPointerDecay(const Expr *Array, 2600 AlignmentSource *AlignSource = nullptr); 2601 2602 class ConstantEmission { 2603 llvm::PointerIntPair<llvm::Constant*, 1, bool> ValueAndIsReference; 2604 ConstantEmission(llvm::Constant *C, bool isReference) 2605 : ValueAndIsReference(C, isReference) {} 2606 public: 2607 ConstantEmission() {} 2608 static ConstantEmission forReference(llvm::Constant *C) { 2609 return ConstantEmission(C, true); 2610 } 2611 static ConstantEmission forValue(llvm::Constant *C) { 2612 return ConstantEmission(C, false); 2613 } 2614 2615 explicit operator bool() const { 2616 return ValueAndIsReference.getOpaqueValue() != nullptr; 2617 } 2618 2619 bool isReference() const { return ValueAndIsReference.getInt(); } 2620 LValue getReferenceLValue(CodeGenFunction &CGF, Expr *refExpr) const { 2621 assert(isReference()); 2622 return CGF.MakeNaturalAlignAddrLValue(ValueAndIsReference.getPointer(), 2623 refExpr->getType()); 2624 } 2625 2626 llvm::Constant *getValue() const { 2627 assert(!isReference()); 2628 return ValueAndIsReference.getPointer(); 2629 } 2630 }; 2631 2632 ConstantEmission tryEmitAsConstant(DeclRefExpr *refExpr); 2633 2634 RValue EmitPseudoObjectRValue(const PseudoObjectExpr *e, 2635 AggValueSlot slot = AggValueSlot::ignored()); 2636 LValue EmitPseudoObjectLValue(const PseudoObjectExpr *e); 2637 2638 llvm::Value *EmitIvarOffset(const ObjCInterfaceDecl *Interface, 2639 const ObjCIvarDecl *Ivar); 2640 LValue EmitLValueForField(LValue Base, const FieldDecl* Field); 2641 LValue EmitLValueForLambdaField(const FieldDecl *Field); 2642 2643 /// EmitLValueForFieldInitialization - Like EmitLValueForField, except that 2644 /// if the Field is a reference, this will return the address of the reference 2645 /// and not the address of the value stored in the reference. 2646 LValue EmitLValueForFieldInitialization(LValue Base, 2647 const FieldDecl* Field); 2648 2649 LValue EmitLValueForIvar(QualType ObjectTy, 2650 llvm::Value* Base, const ObjCIvarDecl *Ivar, 2651 unsigned CVRQualifiers); 2652 2653 LValue EmitCXXConstructLValue(const CXXConstructExpr *E); 2654 LValue EmitCXXBindTemporaryLValue(const CXXBindTemporaryExpr *E); 2655 LValue EmitLambdaLValue(const LambdaExpr *E); 2656 LValue EmitCXXTypeidLValue(const CXXTypeidExpr *E); 2657 LValue EmitCXXUuidofLValue(const CXXUuidofExpr *E); 2658 2659 LValue EmitObjCMessageExprLValue(const ObjCMessageExpr *E); 2660 LValue EmitObjCIvarRefLValue(const ObjCIvarRefExpr *E); 2661 LValue EmitStmtExprLValue(const StmtExpr *E); 2662 LValue EmitPointerToDataMemberBinaryExpr(const BinaryOperator *E); 2663 LValue EmitObjCSelectorLValue(const ObjCSelectorExpr *E); 2664 void EmitDeclRefExprDbgValue(const DeclRefExpr *E, llvm::Constant *Init); 2665 2666 //===--------------------------------------------------------------------===// 2667 // Scalar Expression Emission 2668 //===--------------------------------------------------------------------===// 2669 2670 /// EmitCall - Generate a call of the given function, expecting the given 2671 /// result type, and using the given argument list which specifies both the 2672 /// LLVM arguments and the types they were derived from. 2673 RValue EmitCall(const CGFunctionInfo &FnInfo, llvm::Value *Callee, 2674 ReturnValueSlot ReturnValue, const CallArgList &Args, 2675 CGCalleeInfo CalleeInfo = CGCalleeInfo(), 2676 llvm::Instruction **callOrInvoke = nullptr); 2677 2678 RValue EmitCall(QualType FnType, llvm::Value *Callee, const CallExpr *E, 2679 ReturnValueSlot ReturnValue, 2680 CGCalleeInfo CalleeInfo = CGCalleeInfo(), 2681 llvm::Value *Chain = nullptr); 2682 RValue EmitCallExpr(const CallExpr *E, 2683 ReturnValueSlot ReturnValue = ReturnValueSlot()); 2684 2685 void checkTargetFeatures(const CallExpr *E, const FunctionDecl *TargetDecl); 2686 2687 llvm::CallInst *EmitRuntimeCall(llvm::Value *callee, 2688 const Twine &name = ""); 2689 llvm::CallInst *EmitRuntimeCall(llvm::Value *callee, 2690 ArrayRef<llvm::Value*> args, 2691 const Twine &name = ""); 2692 llvm::CallInst *EmitNounwindRuntimeCall(llvm::Value *callee, 2693 const Twine &name = ""); 2694 llvm::CallInst *EmitNounwindRuntimeCall(llvm::Value *callee, 2695 ArrayRef<llvm::Value*> args, 2696 const Twine &name = ""); 2697 2698 llvm::CallSite EmitCallOrInvoke(llvm::Value *Callee, 2699 ArrayRef<llvm::Value *> Args, 2700 const Twine &Name = ""); 2701 llvm::CallSite EmitRuntimeCallOrInvoke(llvm::Value *callee, 2702 ArrayRef<llvm::Value*> args, 2703 const Twine &name = ""); 2704 llvm::CallSite EmitRuntimeCallOrInvoke(llvm::Value *callee, 2705 const Twine &name = ""); 2706 void EmitNoreturnRuntimeCallOrInvoke(llvm::Value *callee, 2707 ArrayRef<llvm::Value*> args); 2708 2709 llvm::Value *BuildAppleKextVirtualCall(const CXXMethodDecl *MD, 2710 NestedNameSpecifier *Qual, 2711 llvm::Type *Ty); 2712 2713 llvm::Value *BuildAppleKextVirtualDestructorCall(const CXXDestructorDecl *DD, 2714 CXXDtorType Type, 2715 const CXXRecordDecl *RD); 2716 2717 RValue 2718 EmitCXXMemberOrOperatorCall(const CXXMethodDecl *MD, llvm::Value *Callee, 2719 ReturnValueSlot ReturnValue, llvm::Value *This, 2720 llvm::Value *ImplicitParam, 2721 QualType ImplicitParamTy, const CallExpr *E); 2722 RValue EmitCXXDestructorCall(const CXXDestructorDecl *DD, llvm::Value *Callee, 2723 llvm::Value *This, llvm::Value *ImplicitParam, 2724 QualType ImplicitParamTy, const CallExpr *E, 2725 StructorType Type); 2726 RValue EmitCXXMemberCallExpr(const CXXMemberCallExpr *E, 2727 ReturnValueSlot ReturnValue); 2728 RValue EmitCXXMemberOrOperatorMemberCallExpr(const CallExpr *CE, 2729 const CXXMethodDecl *MD, 2730 ReturnValueSlot ReturnValue, 2731 bool HasQualifier, 2732 NestedNameSpecifier *Qualifier, 2733 bool IsArrow, const Expr *Base); 2734 // Compute the object pointer. 2735 Address EmitCXXMemberDataPointerAddress(const Expr *E, Address base, 2736 llvm::Value *memberPtr, 2737 const MemberPointerType *memberPtrType, 2738 AlignmentSource *AlignSource = nullptr); 2739 RValue EmitCXXMemberPointerCallExpr(const CXXMemberCallExpr *E, 2740 ReturnValueSlot ReturnValue); 2741 2742 RValue EmitCXXOperatorMemberCallExpr(const CXXOperatorCallExpr *E, 2743 const CXXMethodDecl *MD, 2744 ReturnValueSlot ReturnValue); 2745 2746 RValue EmitCUDAKernelCallExpr(const CUDAKernelCallExpr *E, 2747 ReturnValueSlot ReturnValue); 2748 2749 RValue EmitCUDADevicePrintfCallExpr(const CallExpr *E, 2750 ReturnValueSlot ReturnValue); 2751 2752 RValue EmitBuiltinExpr(const FunctionDecl *FD, 2753 unsigned BuiltinID, const CallExpr *E, 2754 ReturnValueSlot ReturnValue); 2755 2756 RValue EmitBlockCallExpr(const CallExpr *E, ReturnValueSlot ReturnValue); 2757 2758 /// EmitTargetBuiltinExpr - Emit the given builtin call. Returns 0 if the call 2759 /// is unhandled by the current target. 2760 llvm::Value *EmitTargetBuiltinExpr(unsigned BuiltinID, const CallExpr *E); 2761 2762 llvm::Value *EmitAArch64CompareBuiltinExpr(llvm::Value *Op, llvm::Type *Ty, 2763 const llvm::CmpInst::Predicate Fp, 2764 const llvm::CmpInst::Predicate Ip, 2765 const llvm::Twine &Name = ""); 2766 llvm::Value *EmitARMBuiltinExpr(unsigned BuiltinID, const CallExpr *E); 2767 2768 llvm::Value *EmitCommonNeonBuiltinExpr(unsigned BuiltinID, 2769 unsigned LLVMIntrinsic, 2770 unsigned AltLLVMIntrinsic, 2771 const char *NameHint, 2772 unsigned Modifier, 2773 const CallExpr *E, 2774 SmallVectorImpl<llvm::Value *> &Ops, 2775 Address PtrOp0, Address PtrOp1); 2776 llvm::Function *LookupNeonLLVMIntrinsic(unsigned IntrinsicID, 2777 unsigned Modifier, llvm::Type *ArgTy, 2778 const CallExpr *E); 2779 llvm::Value *EmitNeonCall(llvm::Function *F, 2780 SmallVectorImpl<llvm::Value*> &O, 2781 const char *name, 2782 unsigned shift = 0, bool rightshift = false); 2783 llvm::Value *EmitNeonSplat(llvm::Value *V, llvm::Constant *Idx); 2784 llvm::Value *EmitNeonShiftVector(llvm::Value *V, llvm::Type *Ty, 2785 bool negateForRightShift); 2786 llvm::Value *EmitNeonRShiftImm(llvm::Value *Vec, llvm::Value *Amt, 2787 llvm::Type *Ty, bool usgn, const char *name); 2788 llvm::Value *vectorWrapScalar16(llvm::Value *Op); 2789 llvm::Value *EmitAArch64BuiltinExpr(unsigned BuiltinID, const CallExpr *E); 2790 2791 llvm::Value *BuildVector(ArrayRef<llvm::Value*> Ops); 2792 llvm::Value *EmitX86BuiltinExpr(unsigned BuiltinID, const CallExpr *E); 2793 llvm::Value *EmitPPCBuiltinExpr(unsigned BuiltinID, const CallExpr *E); 2794 llvm::Value *EmitAMDGPUBuiltinExpr(unsigned BuiltinID, const CallExpr *E); 2795 llvm::Value *EmitSystemZBuiltinExpr(unsigned BuiltinID, const CallExpr *E); 2796 llvm::Value *EmitNVPTXBuiltinExpr(unsigned BuiltinID, const CallExpr *E); 2797 llvm::Value *EmitWebAssemblyBuiltinExpr(unsigned BuiltinID, 2798 const CallExpr *E); 2799 2800 llvm::Value *EmitObjCProtocolExpr(const ObjCProtocolExpr *E); 2801 llvm::Value *EmitObjCStringLiteral(const ObjCStringLiteral *E); 2802 llvm::Value *EmitObjCBoxedExpr(const ObjCBoxedExpr *E); 2803 llvm::Value *EmitObjCArrayLiteral(const ObjCArrayLiteral *E); 2804 llvm::Value *EmitObjCDictionaryLiteral(const ObjCDictionaryLiteral *E); 2805 llvm::Value *EmitObjCCollectionLiteral(const Expr *E, 2806 const ObjCMethodDecl *MethodWithObjects); 2807 llvm::Value *EmitObjCSelectorExpr(const ObjCSelectorExpr *E); 2808 RValue EmitObjCMessageExpr(const ObjCMessageExpr *E, 2809 ReturnValueSlot Return = ReturnValueSlot()); 2810 2811 /// Retrieves the default cleanup kind for an ARC cleanup. 2812 /// Except under -fobjc-arc-eh, ARC cleanups are normal-only. 2813 CleanupKind getARCCleanupKind() { 2814 return CGM.getCodeGenOpts().ObjCAutoRefCountExceptions 2815 ? NormalAndEHCleanup : NormalCleanup; 2816 } 2817 2818 // ARC primitives. 2819 void EmitARCInitWeak(Address addr, llvm::Value *value); 2820 void EmitARCDestroyWeak(Address addr); 2821 llvm::Value *EmitARCLoadWeak(Address addr); 2822 llvm::Value *EmitARCLoadWeakRetained(Address addr); 2823 llvm::Value *EmitARCStoreWeak(Address addr, llvm::Value *value, bool ignored); 2824 void EmitARCCopyWeak(Address dst, Address src); 2825 void EmitARCMoveWeak(Address dst, Address src); 2826 llvm::Value *EmitARCRetainAutorelease(QualType type, llvm::Value *value); 2827 llvm::Value *EmitARCRetainAutoreleaseNonBlock(llvm::Value *value); 2828 llvm::Value *EmitARCStoreStrong(LValue lvalue, llvm::Value *value, 2829 bool resultIgnored); 2830 llvm::Value *EmitARCStoreStrongCall(Address addr, llvm::Value *value, 2831 bool resultIgnored); 2832 llvm::Value *EmitARCRetain(QualType type, llvm::Value *value); 2833 llvm::Value *EmitARCRetainNonBlock(llvm::Value *value); 2834 llvm::Value *EmitARCRetainBlock(llvm::Value *value, bool mandatory); 2835 void EmitARCDestroyStrong(Address addr, ARCPreciseLifetime_t precise); 2836 void EmitARCRelease(llvm::Value *value, ARCPreciseLifetime_t precise); 2837 llvm::Value *EmitARCAutorelease(llvm::Value *value); 2838 llvm::Value *EmitARCAutoreleaseReturnValue(llvm::Value *value); 2839 llvm::Value *EmitARCRetainAutoreleaseReturnValue(llvm::Value *value); 2840 llvm::Value *EmitARCRetainAutoreleasedReturnValue(llvm::Value *value); 2841 llvm::Value *EmitARCUnsafeClaimAutoreleasedReturnValue(llvm::Value *value); 2842 2843 std::pair<LValue,llvm::Value*> 2844 EmitARCStoreAutoreleasing(const BinaryOperator *e); 2845 std::pair<LValue,llvm::Value*> 2846 EmitARCStoreStrong(const BinaryOperator *e, bool ignored); 2847 std::pair<LValue,llvm::Value*> 2848 EmitARCStoreUnsafeUnretained(const BinaryOperator *e, bool ignored); 2849 2850 llvm::Value *EmitObjCThrowOperand(const Expr *expr); 2851 llvm::Value *EmitObjCConsumeObject(QualType T, llvm::Value *Ptr); 2852 llvm::Value *EmitObjCExtendObjectLifetime(QualType T, llvm::Value *Ptr); 2853 2854 llvm::Value *EmitARCExtendBlockObject(const Expr *expr); 2855 llvm::Value *EmitARCReclaimReturnedObject(const Expr *e, 2856 bool allowUnsafeClaim); 2857 llvm::Value *EmitARCRetainScalarExpr(const Expr *expr); 2858 llvm::Value *EmitARCRetainAutoreleaseScalarExpr(const Expr *expr); 2859 llvm::Value *EmitARCUnsafeUnretainedScalarExpr(const Expr *expr); 2860 2861 void EmitARCIntrinsicUse(ArrayRef<llvm::Value*> values); 2862 2863 static Destroyer destroyARCStrongImprecise; 2864 static Destroyer destroyARCStrongPrecise; 2865 static Destroyer destroyARCWeak; 2866 2867 void EmitObjCAutoreleasePoolPop(llvm::Value *Ptr); 2868 llvm::Value *EmitObjCAutoreleasePoolPush(); 2869 llvm::Value *EmitObjCMRRAutoreleasePoolPush(); 2870 void EmitObjCAutoreleasePoolCleanup(llvm::Value *Ptr); 2871 void EmitObjCMRRAutoreleasePoolPop(llvm::Value *Ptr); 2872 2873 /// \brief Emits a reference binding to the passed in expression. 2874 RValue EmitReferenceBindingToExpr(const Expr *E); 2875 2876 //===--------------------------------------------------------------------===// 2877 // Expression Emission 2878 //===--------------------------------------------------------------------===// 2879 2880 // Expressions are broken into three classes: scalar, complex, aggregate. 2881 2882 /// EmitScalarExpr - Emit the computation of the specified expression of LLVM 2883 /// scalar type, returning the result. 2884 llvm::Value *EmitScalarExpr(const Expr *E , bool IgnoreResultAssign = false); 2885 2886 /// Emit a conversion from the specified type to the specified destination 2887 /// type, both of which are LLVM scalar types. 2888 llvm::Value *EmitScalarConversion(llvm::Value *Src, QualType SrcTy, 2889 QualType DstTy, SourceLocation Loc); 2890 2891 /// Emit a conversion from the specified complex type to the specified 2892 /// destination type, where the destination type is an LLVM scalar type. 2893 llvm::Value *EmitComplexToScalarConversion(ComplexPairTy Src, QualType SrcTy, 2894 QualType DstTy, 2895 SourceLocation Loc); 2896 2897 /// EmitAggExpr - Emit the computation of the specified expression 2898 /// of aggregate type. The result is computed into the given slot, 2899 /// which may be null to indicate that the value is not needed. 2900 void EmitAggExpr(const Expr *E, AggValueSlot AS); 2901 2902 /// EmitAggExprToLValue - Emit the computation of the specified expression of 2903 /// aggregate type into a temporary LValue. 2904 LValue EmitAggExprToLValue(const Expr *E); 2905 2906 /// EmitExtendGCLifetime - Given a pointer to an Objective-C object, 2907 /// make sure it survives garbage collection until this point. 2908 void EmitExtendGCLifetime(llvm::Value *object); 2909 2910 /// EmitComplexExpr - Emit the computation of the specified expression of 2911 /// complex type, returning the result. 2912 ComplexPairTy EmitComplexExpr(const Expr *E, 2913 bool IgnoreReal = false, 2914 bool IgnoreImag = false); 2915 2916 /// EmitComplexExprIntoLValue - Emit the given expression of complex 2917 /// type and place its result into the specified l-value. 2918 void EmitComplexExprIntoLValue(const Expr *E, LValue dest, bool isInit); 2919 2920 /// EmitStoreOfComplex - Store a complex number into the specified l-value. 2921 void EmitStoreOfComplex(ComplexPairTy V, LValue dest, bool isInit); 2922 2923 /// EmitLoadOfComplex - Load a complex number from the specified l-value. 2924 ComplexPairTy EmitLoadOfComplex(LValue src, SourceLocation loc); 2925 2926 Address emitAddrOfRealComponent(Address complex, QualType complexType); 2927 Address emitAddrOfImagComponent(Address complex, QualType complexType); 2928 2929 /// AddInitializerToStaticVarDecl - Add the initializer for 'D' to the 2930 /// global variable that has already been created for it. If the initializer 2931 /// has a different type than GV does, this may free GV and return a different 2932 /// one. Otherwise it just returns GV. 2933 llvm::GlobalVariable * 2934 AddInitializerToStaticVarDecl(const VarDecl &D, 2935 llvm::GlobalVariable *GV); 2936 2937 2938 /// EmitCXXGlobalVarDeclInit - Create the initializer for a C++ 2939 /// variable with global storage. 2940 void EmitCXXGlobalVarDeclInit(const VarDecl &D, llvm::Constant *DeclPtr, 2941 bool PerformInit); 2942 2943 llvm::Constant *createAtExitStub(const VarDecl &VD, llvm::Constant *Dtor, 2944 llvm::Constant *Addr); 2945 2946 /// Call atexit() with a function that passes the given argument to 2947 /// the given function. 2948 void registerGlobalDtorWithAtExit(const VarDecl &D, llvm::Constant *fn, 2949 llvm::Constant *addr); 2950 2951 /// Emit code in this function to perform a guarded variable 2952 /// initialization. Guarded initializations are used when it's not 2953 /// possible to prove that an initialization will be done exactly 2954 /// once, e.g. with a static local variable or a static data member 2955 /// of a class template. 2956 void EmitCXXGuardedInit(const VarDecl &D, llvm::GlobalVariable *DeclPtr, 2957 bool PerformInit); 2958 2959 /// GenerateCXXGlobalInitFunc - Generates code for initializing global 2960 /// variables. 2961 void GenerateCXXGlobalInitFunc(llvm::Function *Fn, 2962 ArrayRef<llvm::Function *> CXXThreadLocals, 2963 Address Guard = Address::invalid()); 2964 2965 /// GenerateCXXGlobalDtorsFunc - Generates code for destroying global 2966 /// variables. 2967 void GenerateCXXGlobalDtorsFunc(llvm::Function *Fn, 2968 const std::vector<std::pair<llvm::WeakVH, 2969 llvm::Constant*> > &DtorsAndObjects); 2970 2971 void GenerateCXXGlobalVarDeclInitFunc(llvm::Function *Fn, 2972 const VarDecl *D, 2973 llvm::GlobalVariable *Addr, 2974 bool PerformInit); 2975 2976 void EmitCXXConstructExpr(const CXXConstructExpr *E, AggValueSlot Dest); 2977 2978 void EmitSynthesizedCXXCopyCtor(Address Dest, Address Src, const Expr *Exp); 2979 2980 void enterFullExpression(const ExprWithCleanups *E) { 2981 if (E->getNumObjects() == 0) return; 2982 enterNonTrivialFullExpression(E); 2983 } 2984 void enterNonTrivialFullExpression(const ExprWithCleanups *E); 2985 2986 void EmitCXXThrowExpr(const CXXThrowExpr *E, bool KeepInsertionPoint = true); 2987 2988 void EmitLambdaExpr(const LambdaExpr *E, AggValueSlot Dest); 2989 2990 RValue EmitAtomicExpr(AtomicExpr *E); 2991 2992 //===--------------------------------------------------------------------===// 2993 // Annotations Emission 2994 //===--------------------------------------------------------------------===// 2995 2996 /// Emit an annotation call (intrinsic or builtin). 2997 llvm::Value *EmitAnnotationCall(llvm::Value *AnnotationFn, 2998 llvm::Value *AnnotatedVal, 2999 StringRef AnnotationStr, 3000 SourceLocation Location); 3001 3002 /// Emit local annotations for the local variable V, declared by D. 3003 void EmitVarAnnotations(const VarDecl *D, llvm::Value *V); 3004 3005 /// Emit field annotations for the given field & value. Returns the 3006 /// annotation result. 3007 Address EmitFieldAnnotations(const FieldDecl *D, Address V); 3008 3009 //===--------------------------------------------------------------------===// 3010 // Internal Helpers 3011 //===--------------------------------------------------------------------===// 3012 3013 /// ContainsLabel - Return true if the statement contains a label in it. If 3014 /// this statement is not executed normally, it not containing a label means 3015 /// that we can just remove the code. 3016 static bool ContainsLabel(const Stmt *S, bool IgnoreCaseStmts = false); 3017 3018 /// containsBreak - Return true if the statement contains a break out of it. 3019 /// If the statement (recursively) contains a switch or loop with a break 3020 /// inside of it, this is fine. 3021 static bool containsBreak(const Stmt *S); 3022 3023 /// ConstantFoldsToSimpleInteger - If the specified expression does not fold 3024 /// to a constant, or if it does but contains a label, return false. If it 3025 /// constant folds return true and set the boolean result in Result. 3026 bool ConstantFoldsToSimpleInteger(const Expr *Cond, bool &Result); 3027 3028 /// ConstantFoldsToSimpleInteger - If the specified expression does not fold 3029 /// to a constant, or if it does but contains a label, return false. If it 3030 /// constant folds return true and set the folded value. 3031 bool ConstantFoldsToSimpleInteger(const Expr *Cond, llvm::APSInt &Result); 3032 3033 /// EmitBranchOnBoolExpr - Emit a branch on a boolean condition (e.g. for an 3034 /// if statement) to the specified blocks. Based on the condition, this might 3035 /// try to simplify the codegen of the conditional based on the branch. 3036 /// TrueCount should be the number of times we expect the condition to 3037 /// evaluate to true based on PGO data. 3038 void EmitBranchOnBoolExpr(const Expr *Cond, llvm::BasicBlock *TrueBlock, 3039 llvm::BasicBlock *FalseBlock, uint64_t TrueCount); 3040 3041 /// \brief Emit a description of a type in a format suitable for passing to 3042 /// a runtime sanitizer handler. 3043 llvm::Constant *EmitCheckTypeDescriptor(QualType T); 3044 3045 /// \brief Convert a value into a format suitable for passing to a runtime 3046 /// sanitizer handler. 3047 llvm::Value *EmitCheckValue(llvm::Value *V); 3048 3049 /// \brief Emit a description of a source location in a format suitable for 3050 /// passing to a runtime sanitizer handler. 3051 llvm::Constant *EmitCheckSourceLocation(SourceLocation Loc); 3052 3053 /// \brief Create a basic block that will call a handler function in a 3054 /// sanitizer runtime with the provided arguments, and create a conditional 3055 /// branch to it. 3056 void EmitCheck(ArrayRef<std::pair<llvm::Value *, SanitizerMask>> Checked, 3057 StringRef CheckName, ArrayRef<llvm::Constant *> StaticArgs, 3058 ArrayRef<llvm::Value *> DynamicArgs); 3059 3060 /// \brief Emit a slow path cross-DSO CFI check which calls __cfi_slowpath 3061 /// if Cond if false. 3062 void EmitCfiSlowPathCheck(SanitizerMask Kind, llvm::Value *Cond, 3063 llvm::ConstantInt *TypeId, llvm::Value *Ptr, 3064 ArrayRef<llvm::Constant *> StaticArgs); 3065 3066 /// \brief Create a basic block that will call the trap intrinsic, and emit a 3067 /// conditional branch to it, for the -ftrapv checks. 3068 void EmitTrapCheck(llvm::Value *Checked); 3069 3070 /// \brief Emit a call to trap or debugtrap and attach function attribute 3071 /// "trap-func-name" if specified. 3072 llvm::CallInst *EmitTrapCall(llvm::Intrinsic::ID IntrID); 3073 3074 /// \brief Emit a cross-DSO CFI failure handling function. 3075 void EmitCfiCheckFail(); 3076 3077 /// \brief Create a check for a function parameter that may potentially be 3078 /// declared as non-null. 3079 void EmitNonNullArgCheck(RValue RV, QualType ArgType, SourceLocation ArgLoc, 3080 const FunctionDecl *FD, unsigned ParmNum); 3081 3082 /// EmitCallArg - Emit a single call argument. 3083 void EmitCallArg(CallArgList &args, const Expr *E, QualType ArgType); 3084 3085 /// EmitDelegateCallArg - We are performing a delegate call; that 3086 /// is, the current function is delegating to another one. Produce 3087 /// a r-value suitable for passing the given parameter. 3088 void EmitDelegateCallArg(CallArgList &args, const VarDecl *param, 3089 SourceLocation loc); 3090 3091 /// SetFPAccuracy - Set the minimum required accuracy of the given floating 3092 /// point operation, expressed as the maximum relative error in ulp. 3093 void SetFPAccuracy(llvm::Value *Val, float Accuracy); 3094 3095 private: 3096 llvm::MDNode *getRangeForLoadFromType(QualType Ty); 3097 void EmitReturnOfRValue(RValue RV, QualType Ty); 3098 3099 void deferPlaceholderReplacement(llvm::Instruction *Old, llvm::Value *New); 3100 3101 llvm::SmallVector<std::pair<llvm::Instruction *, llvm::Value *>, 4> 3102 DeferredReplacements; 3103 3104 /// Set the address of a local variable. 3105 void setAddrOfLocalVar(const VarDecl *VD, Address Addr) { 3106 assert(!LocalDeclMap.count(VD) && "Decl already exists in LocalDeclMap!"); 3107 LocalDeclMap.insert({VD, Addr}); 3108 } 3109 3110 /// ExpandTypeFromArgs - Reconstruct a structure of type \arg Ty 3111 /// from function arguments into \arg Dst. See ABIArgInfo::Expand. 3112 /// 3113 /// \param AI - The first function argument of the expansion. 3114 void ExpandTypeFromArgs(QualType Ty, LValue Dst, 3115 SmallVectorImpl<llvm::Value *>::iterator &AI); 3116 3117 /// ExpandTypeToArgs - Expand an RValue \arg RV, with the LLVM type for \arg 3118 /// Ty, into individual arguments on the provided vector \arg IRCallArgs, 3119 /// starting at index \arg IRCallArgPos. See ABIArgInfo::Expand. 3120 void ExpandTypeToArgs(QualType Ty, RValue RV, llvm::FunctionType *IRFuncTy, 3121 SmallVectorImpl<llvm::Value *> &IRCallArgs, 3122 unsigned &IRCallArgPos); 3123 3124 llvm::Value* EmitAsmInput(const TargetInfo::ConstraintInfo &Info, 3125 const Expr *InputExpr, std::string &ConstraintStr); 3126 3127 llvm::Value* EmitAsmInputLValue(const TargetInfo::ConstraintInfo &Info, 3128 LValue InputValue, QualType InputType, 3129 std::string &ConstraintStr, 3130 SourceLocation Loc); 3131 3132 /// \brief Attempts to statically evaluate the object size of E. If that 3133 /// fails, emits code to figure the size of E out for us. This is 3134 /// pass_object_size aware. 3135 llvm::Value *evaluateOrEmitBuiltinObjectSize(const Expr *E, unsigned Type, 3136 llvm::IntegerType *ResType); 3137 3138 /// \brief Emits the size of E, as required by __builtin_object_size. This 3139 /// function is aware of pass_object_size parameters, and will act accordingly 3140 /// if E is a parameter with the pass_object_size attribute. 3141 llvm::Value *emitBuiltinObjectSize(const Expr *E, unsigned Type, 3142 llvm::IntegerType *ResType); 3143 3144 public: 3145 #ifndef NDEBUG 3146 // Determine whether the given argument is an Objective-C method 3147 // that may have type parameters in its signature. 3148 static bool isObjCMethodWithTypeParams(const ObjCMethodDecl *method) { 3149 const DeclContext *dc = method->getDeclContext(); 3150 if (const ObjCInterfaceDecl *classDecl= dyn_cast<ObjCInterfaceDecl>(dc)) { 3151 return classDecl->getTypeParamListAsWritten(); 3152 } 3153 3154 if (const ObjCCategoryDecl *catDecl = dyn_cast<ObjCCategoryDecl>(dc)) { 3155 return catDecl->getTypeParamList(); 3156 } 3157 3158 return false; 3159 } 3160 3161 template<typename T> 3162 static bool isObjCMethodWithTypeParams(const T *) { return false; } 3163 #endif 3164 3165 /// EmitCallArgs - Emit call arguments for a function. 3166 template <typename T> 3167 void EmitCallArgs(CallArgList &Args, const T *CallArgTypeInfo, 3168 llvm::iterator_range<CallExpr::const_arg_iterator> ArgRange, 3169 const FunctionDecl *CalleeDecl = nullptr, 3170 unsigned ParamsToSkip = 0) { 3171 SmallVector<QualType, 16> ArgTypes; 3172 CallExpr::const_arg_iterator Arg = ArgRange.begin(); 3173 3174 assert((ParamsToSkip == 0 || CallArgTypeInfo) && 3175 "Can't skip parameters if type info is not provided"); 3176 if (CallArgTypeInfo) { 3177 #ifndef NDEBUG 3178 bool isGenericMethod = isObjCMethodWithTypeParams(CallArgTypeInfo); 3179 #endif 3180 3181 // First, use the argument types that the type info knows about 3182 for (auto I = CallArgTypeInfo->param_type_begin() + ParamsToSkip, 3183 E = CallArgTypeInfo->param_type_end(); 3184 I != E; ++I, ++Arg) { 3185 assert(Arg != ArgRange.end() && "Running over edge of argument list!"); 3186 assert((isGenericMethod || 3187 ((*I)->isVariablyModifiedType() || 3188 (*I).getNonReferenceType()->isObjCRetainableType() || 3189 getContext() 3190 .getCanonicalType((*I).getNonReferenceType()) 3191 .getTypePtr() == 3192 getContext() 3193 .getCanonicalType((*Arg)->getType()) 3194 .getTypePtr())) && 3195 "type mismatch in call argument!"); 3196 ArgTypes.push_back(*I); 3197 } 3198 } 3199 3200 // Either we've emitted all the call args, or we have a call to variadic 3201 // function. 3202 assert((Arg == ArgRange.end() || !CallArgTypeInfo || 3203 CallArgTypeInfo->isVariadic()) && 3204 "Extra arguments in non-variadic function!"); 3205 3206 // If we still have any arguments, emit them using the type of the argument. 3207 for (auto *A : llvm::make_range(Arg, ArgRange.end())) 3208 ArgTypes.push_back(getVarArgType(A)); 3209 3210 EmitCallArgs(Args, ArgTypes, ArgRange, CalleeDecl, ParamsToSkip); 3211 } 3212 3213 void EmitCallArgs(CallArgList &Args, ArrayRef<QualType> ArgTypes, 3214 llvm::iterator_range<CallExpr::const_arg_iterator> ArgRange, 3215 const FunctionDecl *CalleeDecl = nullptr, 3216 unsigned ParamsToSkip = 0); 3217 3218 /// EmitPointerWithAlignment - Given an expression with a pointer 3219 /// type, emit the value and compute our best estimate of the 3220 /// alignment of the pointee. 3221 /// 3222 /// Note that this function will conservatively fall back on the type 3223 /// when it doesn't 3224 /// 3225 /// \param Source - If non-null, this will be initialized with 3226 /// information about the source of the alignment. Note that this 3227 /// function will conservatively fall back on the type when it 3228 /// doesn't recognize the expression, which means that sometimes 3229 /// 3230 /// a worst-case One 3231 /// reasonable way to use this information is when there's a 3232 /// language guarantee that the pointer must be aligned to some 3233 /// stricter value, and we're simply trying to ensure that 3234 /// sufficiently obvious uses of under-aligned objects don't get 3235 /// miscompiled; for example, a placement new into the address of 3236 /// a local variable. In such a case, it's quite reasonable to 3237 /// just ignore the returned alignment when it isn't from an 3238 /// explicit source. 3239 Address EmitPointerWithAlignment(const Expr *Addr, 3240 AlignmentSource *Source = nullptr); 3241 3242 void EmitSanitizerStatReport(llvm::SanitizerStatKind SSK); 3243 3244 private: 3245 QualType getVarArgType(const Expr *Arg); 3246 3247 const TargetCodeGenInfo &getTargetHooks() const { 3248 return CGM.getTargetCodeGenInfo(); 3249 } 3250 3251 void EmitDeclMetadata(); 3252 3253 BlockByrefHelpers *buildByrefHelpers(llvm::StructType &byrefType, 3254 const AutoVarEmission &emission); 3255 3256 void AddObjCARCExceptionMetadata(llvm::Instruction *Inst); 3257 3258 llvm::Value *GetValueForARMHint(unsigned BuiltinID); 3259 }; 3260 3261 /// Helper class with most of the code for saving a value for a 3262 /// conditional expression cleanup. 3263 struct DominatingLLVMValue { 3264 typedef llvm::PointerIntPair<llvm::Value*, 1, bool> saved_type; 3265 3266 /// Answer whether the given value needs extra work to be saved. 3267 static bool needsSaving(llvm::Value *value) { 3268 // If it's not an instruction, we don't need to save. 3269 if (!isa<llvm::Instruction>(value)) return false; 3270 3271 // If it's an instruction in the entry block, we don't need to save. 3272 llvm::BasicBlock *block = cast<llvm::Instruction>(value)->getParent(); 3273 return (block != &block->getParent()->getEntryBlock()); 3274 } 3275 3276 /// Try to save the given value. 3277 static saved_type save(CodeGenFunction &CGF, llvm::Value *value) { 3278 if (!needsSaving(value)) return saved_type(value, false); 3279 3280 // Otherwise, we need an alloca. 3281 auto align = CharUnits::fromQuantity( 3282 CGF.CGM.getDataLayout().getPrefTypeAlignment(value->getType())); 3283 Address alloca = 3284 CGF.CreateTempAlloca(value->getType(), align, "cond-cleanup.save"); 3285 CGF.Builder.CreateStore(value, alloca); 3286 3287 return saved_type(alloca.getPointer(), true); 3288 } 3289 3290 static llvm::Value *restore(CodeGenFunction &CGF, saved_type value) { 3291 // If the value says it wasn't saved, trust that it's still dominating. 3292 if (!value.getInt()) return value.getPointer(); 3293 3294 // Otherwise, it should be an alloca instruction, as set up in save(). 3295 auto alloca = cast<llvm::AllocaInst>(value.getPointer()); 3296 return CGF.Builder.CreateAlignedLoad(alloca, alloca->getAlignment()); 3297 } 3298 }; 3299 3300 /// A partial specialization of DominatingValue for llvm::Values that 3301 /// might be llvm::Instructions. 3302 template <class T> struct DominatingPointer<T,true> : DominatingLLVMValue { 3303 typedef T *type; 3304 static type restore(CodeGenFunction &CGF, saved_type value) { 3305 return static_cast<T*>(DominatingLLVMValue::restore(CGF, value)); 3306 } 3307 }; 3308 3309 /// A specialization of DominatingValue for Address. 3310 template <> struct DominatingValue<Address> { 3311 typedef Address type; 3312 3313 struct saved_type { 3314 DominatingLLVMValue::saved_type SavedValue; 3315 CharUnits Alignment; 3316 }; 3317 3318 static bool needsSaving(type value) { 3319 return DominatingLLVMValue::needsSaving(value.getPointer()); 3320 } 3321 static saved_type save(CodeGenFunction &CGF, type value) { 3322 return { DominatingLLVMValue::save(CGF, value.getPointer()), 3323 value.getAlignment() }; 3324 } 3325 static type restore(CodeGenFunction &CGF, saved_type value) { 3326 return Address(DominatingLLVMValue::restore(CGF, value.SavedValue), 3327 value.Alignment); 3328 } 3329 }; 3330 3331 /// A specialization of DominatingValue for RValue. 3332 template <> struct DominatingValue<RValue> { 3333 typedef RValue type; 3334 class saved_type { 3335 enum Kind { ScalarLiteral, ScalarAddress, AggregateLiteral, 3336 AggregateAddress, ComplexAddress }; 3337 3338 llvm::Value *Value; 3339 unsigned K : 3; 3340 unsigned Align : 29; 3341 saved_type(llvm::Value *v, Kind k, unsigned a = 0) 3342 : Value(v), K(k), Align(a) {} 3343 3344 public: 3345 static bool needsSaving(RValue value); 3346 static saved_type save(CodeGenFunction &CGF, RValue value); 3347 RValue restore(CodeGenFunction &CGF); 3348 3349 // implementations in CGCleanup.cpp 3350 }; 3351 3352 static bool needsSaving(type value) { 3353 return saved_type::needsSaving(value); 3354 } 3355 static saved_type save(CodeGenFunction &CGF, type value) { 3356 return saved_type::save(CGF, value); 3357 } 3358 static type restore(CodeGenFunction &CGF, saved_type value) { 3359 return value.restore(CGF); 3360 } 3361 }; 3362 3363 } // end namespace CodeGen 3364 } // end namespace clang 3365 3366 #endif 3367