1 //===-- CodeGenFunction.h - Per-Function state for LLVM CodeGen -*- C++ -*-===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This is the internal per-function state used for llvm translation.
10 //
11 //===----------------------------------------------------------------------===//
12 
13 #ifndef LLVM_CLANG_LIB_CODEGEN_CODEGENFUNCTION_H
14 #define LLVM_CLANG_LIB_CODEGEN_CODEGENFUNCTION_H
15 
16 #include "CGBuilder.h"
17 #include "CGDebugInfo.h"
18 #include "CGLoopInfo.h"
19 #include "CGValue.h"
20 #include "CodeGenModule.h"
21 #include "CodeGenPGO.h"
22 #include "EHScopeStack.h"
23 #include "VarBypassDetector.h"
24 #include "clang/AST/CharUnits.h"
25 #include "clang/AST/ExprCXX.h"
26 #include "clang/AST/ExprObjC.h"
27 #include "clang/AST/ExprOpenMP.h"
28 #include "clang/AST/Type.h"
29 #include "clang/Basic/ABI.h"
30 #include "clang/Basic/CapturedStmt.h"
31 #include "clang/Basic/CodeGenOptions.h"
32 #include "clang/Basic/OpenMPKinds.h"
33 #include "clang/Basic/TargetInfo.h"
34 #include "llvm/ADT/ArrayRef.h"
35 #include "llvm/ADT/DenseMap.h"
36 #include "llvm/ADT/MapVector.h"
37 #include "llvm/ADT/SmallVector.h"
38 #include "llvm/IR/ValueHandle.h"
39 #include "llvm/Support/Debug.h"
40 #include "llvm/Transforms/Utils/SanitizerStats.h"
41 
42 namespace llvm {
43 class BasicBlock;
44 class LLVMContext;
45 class MDNode;
46 class Module;
47 class SwitchInst;
48 class Twine;
49 class Value;
50 }
51 
52 namespace clang {
53 class ASTContext;
54 class BlockDecl;
55 class CXXDestructorDecl;
56 class CXXForRangeStmt;
57 class CXXTryStmt;
58 class Decl;
59 class LabelDecl;
60 class EnumConstantDecl;
61 class FunctionDecl;
62 class FunctionProtoType;
63 class LabelStmt;
64 class ObjCContainerDecl;
65 class ObjCInterfaceDecl;
66 class ObjCIvarDecl;
67 class ObjCMethodDecl;
68 class ObjCImplementationDecl;
69 class ObjCPropertyImplDecl;
70 class TargetInfo;
71 class VarDecl;
72 class ObjCForCollectionStmt;
73 class ObjCAtTryStmt;
74 class ObjCAtThrowStmt;
75 class ObjCAtSynchronizedStmt;
76 class ObjCAutoreleasePoolStmt;
77 
78 namespace analyze_os_log {
79 class OSLogBufferLayout;
80 }
81 
82 namespace CodeGen {
83 class CodeGenTypes;
84 class CGCallee;
85 class CGFunctionInfo;
86 class CGRecordLayout;
87 class CGBlockInfo;
88 class CGCXXABI;
89 class BlockByrefHelpers;
90 class BlockByrefInfo;
91 class BlockFlags;
92 class BlockFieldFlags;
93 class RegionCodeGenTy;
94 class TargetCodeGenInfo;
95 struct OMPTaskDataTy;
96 struct CGCoroData;
97 
98 /// The kind of evaluation to perform on values of a particular
99 /// type.  Basically, is the code in CGExprScalar, CGExprComplex, or
100 /// CGExprAgg?
101 ///
102 /// TODO: should vectors maybe be split out into their own thing?
103 enum TypeEvaluationKind {
104   TEK_Scalar,
105   TEK_Complex,
106   TEK_Aggregate
107 };
108 
109 #define LIST_SANITIZER_CHECKS                                                  \
110   SANITIZER_CHECK(AddOverflow, add_overflow, 0)                                \
111   SANITIZER_CHECK(BuiltinUnreachable, builtin_unreachable, 0)                  \
112   SANITIZER_CHECK(CFICheckFail, cfi_check_fail, 0)                             \
113   SANITIZER_CHECK(DivremOverflow, divrem_overflow, 0)                          \
114   SANITIZER_CHECK(DynamicTypeCacheMiss, dynamic_type_cache_miss, 0)            \
115   SANITIZER_CHECK(FloatCastOverflow, float_cast_overflow, 0)                   \
116   SANITIZER_CHECK(FunctionTypeMismatch, function_type_mismatch, 0)             \
117   SANITIZER_CHECK(ImplicitConversion, implicit_conversion, 0)                  \
118   SANITIZER_CHECK(InvalidBuiltin, invalid_builtin, 0)                          \
119   SANITIZER_CHECK(LoadInvalidValue, load_invalid_value, 0)                     \
120   SANITIZER_CHECK(MissingReturn, missing_return, 0)                            \
121   SANITIZER_CHECK(MulOverflow, mul_overflow, 0)                                \
122   SANITIZER_CHECK(NegateOverflow, negate_overflow, 0)                          \
123   SANITIZER_CHECK(NullabilityArg, nullability_arg, 0)                          \
124   SANITIZER_CHECK(NullabilityReturn, nullability_return, 1)                    \
125   SANITIZER_CHECK(NonnullArg, nonnull_arg, 0)                                  \
126   SANITIZER_CHECK(NonnullReturn, nonnull_return, 1)                            \
127   SANITIZER_CHECK(OutOfBounds, out_of_bounds, 0)                               \
128   SANITIZER_CHECK(PointerOverflow, pointer_overflow, 0)                        \
129   SANITIZER_CHECK(ShiftOutOfBounds, shift_out_of_bounds, 0)                    \
130   SANITIZER_CHECK(SubOverflow, sub_overflow, 0)                                \
131   SANITIZER_CHECK(TypeMismatch, type_mismatch, 1)                              \
132   SANITIZER_CHECK(AlignmentAssumption, alignment_assumption, 0)                \
133   SANITIZER_CHECK(VLABoundNotPositive, vla_bound_not_positive, 0)
134 
135 enum SanitizerHandler {
136 #define SANITIZER_CHECK(Enum, Name, Version) Enum,
137   LIST_SANITIZER_CHECKS
138 #undef SANITIZER_CHECK
139 };
140 
141 /// Helper class with most of the code for saving a value for a
142 /// conditional expression cleanup.
143 struct DominatingLLVMValue {
144   typedef llvm::PointerIntPair<llvm::Value*, 1, bool> saved_type;
145 
146   /// Answer whether the given value needs extra work to be saved.
147   static bool needsSaving(llvm::Value *value) {
148     // If it's not an instruction, we don't need to save.
149     if (!isa<llvm::Instruction>(value)) return false;
150 
151     // If it's an instruction in the entry block, we don't need to save.
152     llvm::BasicBlock *block = cast<llvm::Instruction>(value)->getParent();
153     return (block != &block->getParent()->getEntryBlock());
154   }
155 
156   static saved_type save(CodeGenFunction &CGF, llvm::Value *value);
157   static llvm::Value *restore(CodeGenFunction &CGF, saved_type value);
158 };
159 
160 /// A partial specialization of DominatingValue for llvm::Values that
161 /// might be llvm::Instructions.
162 template <class T> struct DominatingPointer<T,true> : DominatingLLVMValue {
163   typedef T *type;
164   static type restore(CodeGenFunction &CGF, saved_type value) {
165     return static_cast<T*>(DominatingLLVMValue::restore(CGF, value));
166   }
167 };
168 
169 /// A specialization of DominatingValue for Address.
170 template <> struct DominatingValue<Address> {
171   typedef Address type;
172 
173   struct saved_type {
174     DominatingLLVMValue::saved_type SavedValue;
175     CharUnits Alignment;
176   };
177 
178   static bool needsSaving(type value) {
179     return DominatingLLVMValue::needsSaving(value.getPointer());
180   }
181   static saved_type save(CodeGenFunction &CGF, type value) {
182     return { DominatingLLVMValue::save(CGF, value.getPointer()),
183              value.getAlignment() };
184   }
185   static type restore(CodeGenFunction &CGF, saved_type value) {
186     return Address(DominatingLLVMValue::restore(CGF, value.SavedValue),
187                    value.Alignment);
188   }
189 };
190 
191 /// A specialization of DominatingValue for RValue.
192 template <> struct DominatingValue<RValue> {
193   typedef RValue type;
194   class saved_type {
195     enum Kind { ScalarLiteral, ScalarAddress, AggregateLiteral,
196                 AggregateAddress, ComplexAddress };
197 
198     llvm::Value *Value;
199     unsigned K : 3;
200     unsigned Align : 29;
201     saved_type(llvm::Value *v, Kind k, unsigned a = 0)
202       : Value(v), K(k), Align(a) {}
203 
204   public:
205     static bool needsSaving(RValue value);
206     static saved_type save(CodeGenFunction &CGF, RValue value);
207     RValue restore(CodeGenFunction &CGF);
208 
209     // implementations in CGCleanup.cpp
210   };
211 
212   static bool needsSaving(type value) {
213     return saved_type::needsSaving(value);
214   }
215   static saved_type save(CodeGenFunction &CGF, type value) {
216     return saved_type::save(CGF, value);
217   }
218   static type restore(CodeGenFunction &CGF, saved_type value) {
219     return value.restore(CGF);
220   }
221 };
222 
223 /// CodeGenFunction - This class organizes the per-function state that is used
224 /// while generating LLVM code.
225 class CodeGenFunction : public CodeGenTypeCache {
226   CodeGenFunction(const CodeGenFunction &) = delete;
227   void operator=(const CodeGenFunction &) = delete;
228 
229   friend class CGCXXABI;
230 public:
231   /// A jump destination is an abstract label, branching to which may
232   /// require a jump out through normal cleanups.
233   struct JumpDest {
234     JumpDest() : Block(nullptr), ScopeDepth(), Index(0) {}
235     JumpDest(llvm::BasicBlock *Block,
236              EHScopeStack::stable_iterator Depth,
237              unsigned Index)
238       : Block(Block), ScopeDepth(Depth), Index(Index) {}
239 
240     bool isValid() const { return Block != nullptr; }
241     llvm::BasicBlock *getBlock() const { return Block; }
242     EHScopeStack::stable_iterator getScopeDepth() const { return ScopeDepth; }
243     unsigned getDestIndex() const { return Index; }
244 
245     // This should be used cautiously.
246     void setScopeDepth(EHScopeStack::stable_iterator depth) {
247       ScopeDepth = depth;
248     }
249 
250   private:
251     llvm::BasicBlock *Block;
252     EHScopeStack::stable_iterator ScopeDepth;
253     unsigned Index;
254   };
255 
256   CodeGenModule &CGM;  // Per-module state.
257   const TargetInfo &Target;
258 
259   typedef std::pair<llvm::Value *, llvm::Value *> ComplexPairTy;
260   LoopInfoStack LoopStack;
261   CGBuilderTy Builder;
262 
263   // Stores variables for which we can't generate correct lifetime markers
264   // because of jumps.
265   VarBypassDetector Bypasses;
266 
267   // CodeGen lambda for loops and support for ordered clause
268   typedef llvm::function_ref<void(CodeGenFunction &, const OMPLoopDirective &,
269                                   JumpDest)>
270       CodeGenLoopTy;
271   typedef llvm::function_ref<void(CodeGenFunction &, SourceLocation,
272                                   const unsigned, const bool)>
273       CodeGenOrderedTy;
274 
275   // Codegen lambda for loop bounds in worksharing loop constructs
276   typedef llvm::function_ref<std::pair<LValue, LValue>(
277       CodeGenFunction &, const OMPExecutableDirective &S)>
278       CodeGenLoopBoundsTy;
279 
280   // Codegen lambda for loop bounds in dispatch-based loop implementation
281   typedef llvm::function_ref<std::pair<llvm::Value *, llvm::Value *>(
282       CodeGenFunction &, const OMPExecutableDirective &S, Address LB,
283       Address UB)>
284       CodeGenDispatchBoundsTy;
285 
286   /// CGBuilder insert helper. This function is called after an
287   /// instruction is created using Builder.
288   void InsertHelper(llvm::Instruction *I, const llvm::Twine &Name,
289                     llvm::BasicBlock *BB,
290                     llvm::BasicBlock::iterator InsertPt) const;
291 
292   /// CurFuncDecl - Holds the Decl for the current outermost
293   /// non-closure context.
294   const Decl *CurFuncDecl;
295   /// CurCodeDecl - This is the inner-most code context, which includes blocks.
296   const Decl *CurCodeDecl;
297   const CGFunctionInfo *CurFnInfo;
298   QualType FnRetTy;
299   llvm::Function *CurFn = nullptr;
300 
301   // Holds coroutine data if the current function is a coroutine. We use a
302   // wrapper to manage its lifetime, so that we don't have to define CGCoroData
303   // in this header.
304   struct CGCoroInfo {
305     std::unique_ptr<CGCoroData> Data;
306     CGCoroInfo();
307     ~CGCoroInfo();
308   };
309   CGCoroInfo CurCoro;
310 
311   bool isCoroutine() const {
312     return CurCoro.Data != nullptr;
313   }
314 
315   /// CurGD - The GlobalDecl for the current function being compiled.
316   GlobalDecl CurGD;
317 
318   /// PrologueCleanupDepth - The cleanup depth enclosing all the
319   /// cleanups associated with the parameters.
320   EHScopeStack::stable_iterator PrologueCleanupDepth;
321 
322   /// ReturnBlock - Unified return block.
323   JumpDest ReturnBlock;
324 
325   /// ReturnValue - The temporary alloca to hold the return
326   /// value. This is invalid iff the function has no return value.
327   Address ReturnValue = Address::invalid();
328 
329   /// Return true if a label was seen in the current scope.
330   bool hasLabelBeenSeenInCurrentScope() const {
331     if (CurLexicalScope)
332       return CurLexicalScope->hasLabels();
333     return !LabelMap.empty();
334   }
335 
336   /// AllocaInsertPoint - This is an instruction in the entry block before which
337   /// we prefer to insert allocas.
338   llvm::AssertingVH<llvm::Instruction> AllocaInsertPt;
339 
340   /// API for captured statement code generation.
341   class CGCapturedStmtInfo {
342   public:
343     explicit CGCapturedStmtInfo(CapturedRegionKind K = CR_Default)
344         : Kind(K), ThisValue(nullptr), CXXThisFieldDecl(nullptr) {}
345     explicit CGCapturedStmtInfo(const CapturedStmt &S,
346                                 CapturedRegionKind K = CR_Default)
347       : Kind(K), ThisValue(nullptr), CXXThisFieldDecl(nullptr) {
348 
349       RecordDecl::field_iterator Field =
350         S.getCapturedRecordDecl()->field_begin();
351       for (CapturedStmt::const_capture_iterator I = S.capture_begin(),
352                                                 E = S.capture_end();
353            I != E; ++I, ++Field) {
354         if (I->capturesThis())
355           CXXThisFieldDecl = *Field;
356         else if (I->capturesVariable())
357           CaptureFields[I->getCapturedVar()->getCanonicalDecl()] = *Field;
358         else if (I->capturesVariableByCopy())
359           CaptureFields[I->getCapturedVar()->getCanonicalDecl()] = *Field;
360       }
361     }
362 
363     virtual ~CGCapturedStmtInfo();
364 
365     CapturedRegionKind getKind() const { return Kind; }
366 
367     virtual void setContextValue(llvm::Value *V) { ThisValue = V; }
368     // Retrieve the value of the context parameter.
369     virtual llvm::Value *getContextValue() const { return ThisValue; }
370 
371     /// Lookup the captured field decl for a variable.
372     virtual const FieldDecl *lookup(const VarDecl *VD) const {
373       return CaptureFields.lookup(VD->getCanonicalDecl());
374     }
375 
376     bool isCXXThisExprCaptured() const { return getThisFieldDecl() != nullptr; }
377     virtual FieldDecl *getThisFieldDecl() const { return CXXThisFieldDecl; }
378 
379     static bool classof(const CGCapturedStmtInfo *) {
380       return true;
381     }
382 
383     /// Emit the captured statement body.
384     virtual void EmitBody(CodeGenFunction &CGF, const Stmt *S) {
385       CGF.incrementProfileCounter(S);
386       CGF.EmitStmt(S);
387     }
388 
389     /// Get the name of the capture helper.
390     virtual StringRef getHelperName() const { return "__captured_stmt"; }
391 
392   private:
393     /// The kind of captured statement being generated.
394     CapturedRegionKind Kind;
395 
396     /// Keep the map between VarDecl and FieldDecl.
397     llvm::SmallDenseMap<const VarDecl *, FieldDecl *> CaptureFields;
398 
399     /// The base address of the captured record, passed in as the first
400     /// argument of the parallel region function.
401     llvm::Value *ThisValue;
402 
403     /// Captured 'this' type.
404     FieldDecl *CXXThisFieldDecl;
405   };
406   CGCapturedStmtInfo *CapturedStmtInfo = nullptr;
407 
408   /// RAII for correct setting/restoring of CapturedStmtInfo.
409   class CGCapturedStmtRAII {
410   private:
411     CodeGenFunction &CGF;
412     CGCapturedStmtInfo *PrevCapturedStmtInfo;
413   public:
414     CGCapturedStmtRAII(CodeGenFunction &CGF,
415                        CGCapturedStmtInfo *NewCapturedStmtInfo)
416         : CGF(CGF), PrevCapturedStmtInfo(CGF.CapturedStmtInfo) {
417       CGF.CapturedStmtInfo = NewCapturedStmtInfo;
418     }
419     ~CGCapturedStmtRAII() { CGF.CapturedStmtInfo = PrevCapturedStmtInfo; }
420   };
421 
422   /// An abstract representation of regular/ObjC call/message targets.
423   class AbstractCallee {
424     /// The function declaration of the callee.
425     const Decl *CalleeDecl;
426 
427   public:
428     AbstractCallee() : CalleeDecl(nullptr) {}
429     AbstractCallee(const FunctionDecl *FD) : CalleeDecl(FD) {}
430     AbstractCallee(const ObjCMethodDecl *OMD) : CalleeDecl(OMD) {}
431     bool hasFunctionDecl() const {
432       return dyn_cast_or_null<FunctionDecl>(CalleeDecl);
433     }
434     const Decl *getDecl() const { return CalleeDecl; }
435     unsigned getNumParams() const {
436       if (const auto *FD = dyn_cast<FunctionDecl>(CalleeDecl))
437         return FD->getNumParams();
438       return cast<ObjCMethodDecl>(CalleeDecl)->param_size();
439     }
440     const ParmVarDecl *getParamDecl(unsigned I) const {
441       if (const auto *FD = dyn_cast<FunctionDecl>(CalleeDecl))
442         return FD->getParamDecl(I);
443       return *(cast<ObjCMethodDecl>(CalleeDecl)->param_begin() + I);
444     }
445   };
446 
447   /// Sanitizers enabled for this function.
448   SanitizerSet SanOpts;
449 
450   /// True if CodeGen currently emits code implementing sanitizer checks.
451   bool IsSanitizerScope = false;
452 
453   /// RAII object to set/unset CodeGenFunction::IsSanitizerScope.
454   class SanitizerScope {
455     CodeGenFunction *CGF;
456   public:
457     SanitizerScope(CodeGenFunction *CGF);
458     ~SanitizerScope();
459   };
460 
461   /// In C++, whether we are code generating a thunk.  This controls whether we
462   /// should emit cleanups.
463   bool CurFuncIsThunk = false;
464 
465   /// In ARC, whether we should autorelease the return value.
466   bool AutoreleaseResult = false;
467 
468   /// Whether we processed a Microsoft-style asm block during CodeGen. These can
469   /// potentially set the return value.
470   bool SawAsmBlock = false;
471 
472   const NamedDecl *CurSEHParent = nullptr;
473 
474   /// True if the current function is an outlined SEH helper. This can be a
475   /// finally block or filter expression.
476   bool IsOutlinedSEHHelper = false;
477 
478   const CodeGen::CGBlockInfo *BlockInfo = nullptr;
479   llvm::Value *BlockPointer = nullptr;
480 
481   llvm::DenseMap<const VarDecl *, FieldDecl *> LambdaCaptureFields;
482   FieldDecl *LambdaThisCaptureField = nullptr;
483 
484   /// A mapping from NRVO variables to the flags used to indicate
485   /// when the NRVO has been applied to this variable.
486   llvm::DenseMap<const VarDecl *, llvm::Value *> NRVOFlags;
487 
488   EHScopeStack EHStack;
489   llvm::SmallVector<char, 256> LifetimeExtendedCleanupStack;
490   llvm::SmallVector<const JumpDest *, 2> SEHTryEpilogueStack;
491 
492   llvm::Instruction *CurrentFuncletPad = nullptr;
493 
494   class CallLifetimeEnd final : public EHScopeStack::Cleanup {
495     llvm::Value *Addr;
496     llvm::Value *Size;
497 
498   public:
499     CallLifetimeEnd(Address addr, llvm::Value *size)
500         : Addr(addr.getPointer()), Size(size) {}
501 
502     void Emit(CodeGenFunction &CGF, Flags flags) override {
503       CGF.EmitLifetimeEnd(Size, Addr);
504     }
505   };
506 
507   /// Header for data within LifetimeExtendedCleanupStack.
508   struct LifetimeExtendedCleanupHeader {
509     /// The size of the following cleanup object.
510     unsigned Size;
511     /// The kind of cleanup to push: a value from the CleanupKind enumeration.
512     unsigned Kind : 31;
513     /// Whether this is a conditional cleanup.
514     unsigned IsConditional : 1;
515 
516     size_t getSize() const { return Size; }
517     CleanupKind getKind() const { return (CleanupKind)Kind; }
518     bool isConditional() const { return IsConditional; }
519   };
520 
521   /// i32s containing the indexes of the cleanup destinations.
522   Address NormalCleanupDest = Address::invalid();
523 
524   unsigned NextCleanupDestIndex = 1;
525 
526   /// FirstBlockInfo - The head of a singly-linked-list of block layouts.
527   CGBlockInfo *FirstBlockInfo = nullptr;
528 
529   /// EHResumeBlock - Unified block containing a call to llvm.eh.resume.
530   llvm::BasicBlock *EHResumeBlock = nullptr;
531 
532   /// The exception slot.  All landing pads write the current exception pointer
533   /// into this alloca.
534   llvm::Value *ExceptionSlot = nullptr;
535 
536   /// The selector slot.  Under the MandatoryCleanup model, all landing pads
537   /// write the current selector value into this alloca.
538   llvm::AllocaInst *EHSelectorSlot = nullptr;
539 
540   /// A stack of exception code slots. Entering an __except block pushes a slot
541   /// on the stack and leaving pops one. The __exception_code() intrinsic loads
542   /// a value from the top of the stack.
543   SmallVector<Address, 1> SEHCodeSlotStack;
544 
545   /// Value returned by __exception_info intrinsic.
546   llvm::Value *SEHInfo = nullptr;
547 
548   /// Emits a landing pad for the current EH stack.
549   llvm::BasicBlock *EmitLandingPad();
550 
551   llvm::BasicBlock *getInvokeDestImpl();
552 
553   template <class T>
554   typename DominatingValue<T>::saved_type saveValueInCond(T value) {
555     return DominatingValue<T>::save(*this, value);
556   }
557 
558 public:
559   /// ObjCEHValueStack - Stack of Objective-C exception values, used for
560   /// rethrows.
561   SmallVector<llvm::Value*, 8> ObjCEHValueStack;
562 
563   /// A class controlling the emission of a finally block.
564   class FinallyInfo {
565     /// Where the catchall's edge through the cleanup should go.
566     JumpDest RethrowDest;
567 
568     /// A function to call to enter the catch.
569     llvm::FunctionCallee BeginCatchFn;
570 
571     /// An i1 variable indicating whether or not the @finally is
572     /// running for an exception.
573     llvm::AllocaInst *ForEHVar;
574 
575     /// An i8* variable into which the exception pointer to rethrow
576     /// has been saved.
577     llvm::AllocaInst *SavedExnVar;
578 
579   public:
580     void enter(CodeGenFunction &CGF, const Stmt *Finally,
581                llvm::FunctionCallee beginCatchFn,
582                llvm::FunctionCallee endCatchFn, llvm::FunctionCallee rethrowFn);
583     void exit(CodeGenFunction &CGF);
584   };
585 
586   /// Returns true inside SEH __try blocks.
587   bool isSEHTryScope() const { return !SEHTryEpilogueStack.empty(); }
588 
589   /// Returns true while emitting a cleanuppad.
590   bool isCleanupPadScope() const {
591     return CurrentFuncletPad && isa<llvm::CleanupPadInst>(CurrentFuncletPad);
592   }
593 
594   /// pushFullExprCleanup - Push a cleanup to be run at the end of the
595   /// current full-expression.  Safe against the possibility that
596   /// we're currently inside a conditionally-evaluated expression.
597   template <class T, class... As>
598   void pushFullExprCleanup(CleanupKind kind, As... A) {
599     // If we're not in a conditional branch, or if none of the
600     // arguments requires saving, then use the unconditional cleanup.
601     if (!isInConditionalBranch())
602       return EHStack.pushCleanup<T>(kind, A...);
603 
604     // Stash values in a tuple so we can guarantee the order of saves.
605     typedef std::tuple<typename DominatingValue<As>::saved_type...> SavedTuple;
606     SavedTuple Saved{saveValueInCond(A)...};
607 
608     typedef EHScopeStack::ConditionalCleanup<T, As...> CleanupType;
609     EHStack.pushCleanupTuple<CleanupType>(kind, Saved);
610     initFullExprCleanup();
611   }
612 
613   /// Queue a cleanup to be pushed after finishing the current
614   /// full-expression.
615   template <class T, class... As>
616   void pushCleanupAfterFullExpr(CleanupKind Kind, As... A) {
617     if (!isInConditionalBranch())
618       return pushCleanupAfterFullExprImpl<T>(Kind, Address::invalid(), A...);
619 
620     Address ActiveFlag = createCleanupActiveFlag();
621     assert(!DominatingValue<Address>::needsSaving(ActiveFlag) &&
622            "cleanup active flag should never need saving");
623 
624     typedef std::tuple<typename DominatingValue<As>::saved_type...> SavedTuple;
625     SavedTuple Saved{saveValueInCond(A)...};
626 
627     typedef EHScopeStack::ConditionalCleanup<T, As...> CleanupType;
628     pushCleanupAfterFullExprImpl<CleanupType>(Kind, ActiveFlag, Saved);
629   }
630 
631   template <class T, class... As>
632   void pushCleanupAfterFullExprImpl(CleanupKind Kind, Address ActiveFlag,
633                                     As... A) {
634     LifetimeExtendedCleanupHeader Header = {sizeof(T), Kind,
635                                             ActiveFlag.isValid()};
636 
637     size_t OldSize = LifetimeExtendedCleanupStack.size();
638     LifetimeExtendedCleanupStack.resize(
639         LifetimeExtendedCleanupStack.size() + sizeof(Header) + Header.Size +
640         (Header.IsConditional ? sizeof(ActiveFlag) : 0));
641 
642     static_assert(sizeof(Header) % alignof(T) == 0,
643                   "Cleanup will be allocated on misaligned address");
644     char *Buffer = &LifetimeExtendedCleanupStack[OldSize];
645     new (Buffer) LifetimeExtendedCleanupHeader(Header);
646     new (Buffer + sizeof(Header)) T(A...);
647     if (Header.IsConditional)
648       new (Buffer + sizeof(Header) + sizeof(T)) Address(ActiveFlag);
649   }
650 
651   /// Set up the last cleanup that was pushed as a conditional
652   /// full-expression cleanup.
653   void initFullExprCleanup() {
654     initFullExprCleanupWithFlag(createCleanupActiveFlag());
655   }
656 
657   void initFullExprCleanupWithFlag(Address ActiveFlag);
658   Address createCleanupActiveFlag();
659 
660   /// PushDestructorCleanup - Push a cleanup to call the
661   /// complete-object destructor of an object of the given type at the
662   /// given address.  Does nothing if T is not a C++ class type with a
663   /// non-trivial destructor.
664   void PushDestructorCleanup(QualType T, Address Addr);
665 
666   /// PushDestructorCleanup - Push a cleanup to call the
667   /// complete-object variant of the given destructor on the object at
668   /// the given address.
669   void PushDestructorCleanup(const CXXDestructorDecl *Dtor, Address Addr);
670 
671   /// PopCleanupBlock - Will pop the cleanup entry on the stack and
672   /// process all branch fixups.
673   void PopCleanupBlock(bool FallThroughIsBranchThrough = false);
674 
675   /// DeactivateCleanupBlock - Deactivates the given cleanup block.
676   /// The block cannot be reactivated.  Pops it if it's the top of the
677   /// stack.
678   ///
679   /// \param DominatingIP - An instruction which is known to
680   ///   dominate the current IP (if set) and which lies along
681   ///   all paths of execution between the current IP and the
682   ///   the point at which the cleanup comes into scope.
683   void DeactivateCleanupBlock(EHScopeStack::stable_iterator Cleanup,
684                               llvm::Instruction *DominatingIP);
685 
686   /// ActivateCleanupBlock - Activates an initially-inactive cleanup.
687   /// Cannot be used to resurrect a deactivated cleanup.
688   ///
689   /// \param DominatingIP - An instruction which is known to
690   ///   dominate the current IP (if set) and which lies along
691   ///   all paths of execution between the current IP and the
692   ///   the point at which the cleanup comes into scope.
693   void ActivateCleanupBlock(EHScopeStack::stable_iterator Cleanup,
694                             llvm::Instruction *DominatingIP);
695 
696   /// Enters a new scope for capturing cleanups, all of which
697   /// will be executed once the scope is exited.
698   class RunCleanupsScope {
699     EHScopeStack::stable_iterator CleanupStackDepth, OldCleanupScopeDepth;
700     size_t LifetimeExtendedCleanupStackSize;
701     bool OldDidCallStackSave;
702   protected:
703     bool PerformCleanup;
704   private:
705 
706     RunCleanupsScope(const RunCleanupsScope &) = delete;
707     void operator=(const RunCleanupsScope &) = delete;
708 
709   protected:
710     CodeGenFunction& CGF;
711 
712   public:
713     /// Enter a new cleanup scope.
714     explicit RunCleanupsScope(CodeGenFunction &CGF)
715       : PerformCleanup(true), CGF(CGF)
716     {
717       CleanupStackDepth = CGF.EHStack.stable_begin();
718       LifetimeExtendedCleanupStackSize =
719           CGF.LifetimeExtendedCleanupStack.size();
720       OldDidCallStackSave = CGF.DidCallStackSave;
721       CGF.DidCallStackSave = false;
722       OldCleanupScopeDepth = CGF.CurrentCleanupScopeDepth;
723       CGF.CurrentCleanupScopeDepth = CleanupStackDepth;
724     }
725 
726     /// Exit this cleanup scope, emitting any accumulated cleanups.
727     ~RunCleanupsScope() {
728       if (PerformCleanup)
729         ForceCleanup();
730     }
731 
732     /// Determine whether this scope requires any cleanups.
733     bool requiresCleanups() const {
734       return CGF.EHStack.stable_begin() != CleanupStackDepth;
735     }
736 
737     /// Force the emission of cleanups now, instead of waiting
738     /// until this object is destroyed.
739     /// \param ValuesToReload - A list of values that need to be available at
740     /// the insertion point after cleanup emission. If cleanup emission created
741     /// a shared cleanup block, these value pointers will be rewritten.
742     /// Otherwise, they not will be modified.
743     void ForceCleanup(std::initializer_list<llvm::Value**> ValuesToReload = {}) {
744       assert(PerformCleanup && "Already forced cleanup");
745       CGF.DidCallStackSave = OldDidCallStackSave;
746       CGF.PopCleanupBlocks(CleanupStackDepth, LifetimeExtendedCleanupStackSize,
747                            ValuesToReload);
748       PerformCleanup = false;
749       CGF.CurrentCleanupScopeDepth = OldCleanupScopeDepth;
750     }
751   };
752 
753   // Cleanup stack depth of the RunCleanupsScope that was pushed most recently.
754   EHScopeStack::stable_iterator CurrentCleanupScopeDepth =
755       EHScopeStack::stable_end();
756 
757   class LexicalScope : public RunCleanupsScope {
758     SourceRange Range;
759     SmallVector<const LabelDecl*, 4> Labels;
760     LexicalScope *ParentScope;
761 
762     LexicalScope(const LexicalScope &) = delete;
763     void operator=(const LexicalScope &) = delete;
764 
765   public:
766     /// Enter a new cleanup scope.
767     explicit LexicalScope(CodeGenFunction &CGF, SourceRange Range)
768       : RunCleanupsScope(CGF), Range(Range), ParentScope(CGF.CurLexicalScope) {
769       CGF.CurLexicalScope = this;
770       if (CGDebugInfo *DI = CGF.getDebugInfo())
771         DI->EmitLexicalBlockStart(CGF.Builder, Range.getBegin());
772     }
773 
774     void addLabel(const LabelDecl *label) {
775       assert(PerformCleanup && "adding label to dead scope?");
776       Labels.push_back(label);
777     }
778 
779     /// Exit this cleanup scope, emitting any accumulated
780     /// cleanups.
781     ~LexicalScope() {
782       if (CGDebugInfo *DI = CGF.getDebugInfo())
783         DI->EmitLexicalBlockEnd(CGF.Builder, Range.getEnd());
784 
785       // If we should perform a cleanup, force them now.  Note that
786       // this ends the cleanup scope before rescoping any labels.
787       if (PerformCleanup) {
788         ApplyDebugLocation DL(CGF, Range.getEnd());
789         ForceCleanup();
790       }
791     }
792 
793     /// Force the emission of cleanups now, instead of waiting
794     /// until this object is destroyed.
795     void ForceCleanup() {
796       CGF.CurLexicalScope = ParentScope;
797       RunCleanupsScope::ForceCleanup();
798 
799       if (!Labels.empty())
800         rescopeLabels();
801     }
802 
803     bool hasLabels() const {
804       return !Labels.empty();
805     }
806 
807     void rescopeLabels();
808   };
809 
810   typedef llvm::DenseMap<const Decl *, Address> DeclMapTy;
811 
812   /// The class used to assign some variables some temporarily addresses.
813   class OMPMapVars {
814     DeclMapTy SavedLocals;
815     DeclMapTy SavedTempAddresses;
816     OMPMapVars(const OMPMapVars &) = delete;
817     void operator=(const OMPMapVars &) = delete;
818 
819   public:
820     explicit OMPMapVars() = default;
821     ~OMPMapVars() {
822       assert(SavedLocals.empty() && "Did not restored original addresses.");
823     };
824 
825     /// Sets the address of the variable \p LocalVD to be \p TempAddr in
826     /// function \p CGF.
827     /// \return true if at least one variable was set already, false otherwise.
828     bool setVarAddr(CodeGenFunction &CGF, const VarDecl *LocalVD,
829                     Address TempAddr) {
830       LocalVD = LocalVD->getCanonicalDecl();
831       // Only save it once.
832       if (SavedLocals.count(LocalVD)) return false;
833 
834       // Copy the existing local entry to SavedLocals.
835       auto it = CGF.LocalDeclMap.find(LocalVD);
836       if (it != CGF.LocalDeclMap.end())
837         SavedLocals.try_emplace(LocalVD, it->second);
838       else
839         SavedLocals.try_emplace(LocalVD, Address::invalid());
840 
841       // Generate the private entry.
842       QualType VarTy = LocalVD->getType();
843       if (VarTy->isReferenceType()) {
844         Address Temp = CGF.CreateMemTemp(VarTy);
845         CGF.Builder.CreateStore(TempAddr.getPointer(), Temp);
846         TempAddr = Temp;
847       }
848       SavedTempAddresses.try_emplace(LocalVD, TempAddr);
849 
850       return true;
851     }
852 
853     /// Applies new addresses to the list of the variables.
854     /// \return true if at least one variable is using new address, false
855     /// otherwise.
856     bool apply(CodeGenFunction &CGF) {
857       copyInto(SavedTempAddresses, CGF.LocalDeclMap);
858       SavedTempAddresses.clear();
859       return !SavedLocals.empty();
860     }
861 
862     /// Restores original addresses of the variables.
863     void restore(CodeGenFunction &CGF) {
864       if (!SavedLocals.empty()) {
865         copyInto(SavedLocals, CGF.LocalDeclMap);
866         SavedLocals.clear();
867       }
868     }
869 
870   private:
871     /// Copy all the entries in the source map over the corresponding
872     /// entries in the destination, which must exist.
873     static void copyInto(const DeclMapTy &Src, DeclMapTy &Dest) {
874       for (auto &Pair : Src) {
875         if (!Pair.second.isValid()) {
876           Dest.erase(Pair.first);
877           continue;
878         }
879 
880         auto I = Dest.find(Pair.first);
881         if (I != Dest.end())
882           I->second = Pair.second;
883         else
884           Dest.insert(Pair);
885       }
886     }
887   };
888 
889   /// The scope used to remap some variables as private in the OpenMP loop body
890   /// (or other captured region emitted without outlining), and to restore old
891   /// vars back on exit.
892   class OMPPrivateScope : public RunCleanupsScope {
893     OMPMapVars MappedVars;
894     OMPPrivateScope(const OMPPrivateScope &) = delete;
895     void operator=(const OMPPrivateScope &) = delete;
896 
897   public:
898     /// Enter a new OpenMP private scope.
899     explicit OMPPrivateScope(CodeGenFunction &CGF) : RunCleanupsScope(CGF) {}
900 
901     /// Registers \p LocalVD variable as a private and apply \p PrivateGen
902     /// function for it to generate corresponding private variable. \p
903     /// PrivateGen returns an address of the generated private variable.
904     /// \return true if the variable is registered as private, false if it has
905     /// been privatized already.
906     bool addPrivate(const VarDecl *LocalVD,
907                     const llvm::function_ref<Address()> PrivateGen) {
908       assert(PerformCleanup && "adding private to dead scope");
909       return MappedVars.setVarAddr(CGF, LocalVD, PrivateGen());
910     }
911 
912     /// Privatizes local variables previously registered as private.
913     /// Registration is separate from the actual privatization to allow
914     /// initializers use values of the original variables, not the private one.
915     /// This is important, for example, if the private variable is a class
916     /// variable initialized by a constructor that references other private
917     /// variables. But at initialization original variables must be used, not
918     /// private copies.
919     /// \return true if at least one variable was privatized, false otherwise.
920     bool Privatize() { return MappedVars.apply(CGF); }
921 
922     void ForceCleanup() {
923       RunCleanupsScope::ForceCleanup();
924       MappedVars.restore(CGF);
925     }
926 
927     /// Exit scope - all the mapped variables are restored.
928     ~OMPPrivateScope() {
929       if (PerformCleanup)
930         ForceCleanup();
931     }
932 
933     /// Checks if the global variable is captured in current function.
934     bool isGlobalVarCaptured(const VarDecl *VD) const {
935       VD = VD->getCanonicalDecl();
936       return !VD->isLocalVarDeclOrParm() && CGF.LocalDeclMap.count(VD) > 0;
937     }
938   };
939 
940   /// Takes the old cleanup stack size and emits the cleanup blocks
941   /// that have been added.
942   void
943   PopCleanupBlocks(EHScopeStack::stable_iterator OldCleanupStackSize,
944                    std::initializer_list<llvm::Value **> ValuesToReload = {});
945 
946   /// Takes the old cleanup stack size and emits the cleanup blocks
947   /// that have been added, then adds all lifetime-extended cleanups from
948   /// the given position to the stack.
949   void
950   PopCleanupBlocks(EHScopeStack::stable_iterator OldCleanupStackSize,
951                    size_t OldLifetimeExtendedStackSize,
952                    std::initializer_list<llvm::Value **> ValuesToReload = {});
953 
954   void ResolveBranchFixups(llvm::BasicBlock *Target);
955 
956   /// The given basic block lies in the current EH scope, but may be a
957   /// target of a potentially scope-crossing jump; get a stable handle
958   /// to which we can perform this jump later.
959   JumpDest getJumpDestInCurrentScope(llvm::BasicBlock *Target) {
960     return JumpDest(Target,
961                     EHStack.getInnermostNormalCleanup(),
962                     NextCleanupDestIndex++);
963   }
964 
965   /// The given basic block lies in the current EH scope, but may be a
966   /// target of a potentially scope-crossing jump; get a stable handle
967   /// to which we can perform this jump later.
968   JumpDest getJumpDestInCurrentScope(StringRef Name = StringRef()) {
969     return getJumpDestInCurrentScope(createBasicBlock(Name));
970   }
971 
972   /// EmitBranchThroughCleanup - Emit a branch from the current insert
973   /// block through the normal cleanup handling code (if any) and then
974   /// on to \arg Dest.
975   void EmitBranchThroughCleanup(JumpDest Dest);
976 
977   /// isObviouslyBranchWithoutCleanups - Return true if a branch to the
978   /// specified destination obviously has no cleanups to run.  'false' is always
979   /// a conservatively correct answer for this method.
980   bool isObviouslyBranchWithoutCleanups(JumpDest Dest) const;
981 
982   /// popCatchScope - Pops the catch scope at the top of the EHScope
983   /// stack, emitting any required code (other than the catch handlers
984   /// themselves).
985   void popCatchScope();
986 
987   llvm::BasicBlock *getEHResumeBlock(bool isCleanup);
988   llvm::BasicBlock *getEHDispatchBlock(EHScopeStack::stable_iterator scope);
989   llvm::BasicBlock *
990   getFuncletEHDispatchBlock(EHScopeStack::stable_iterator scope);
991 
992   /// An object to manage conditionally-evaluated expressions.
993   class ConditionalEvaluation {
994     llvm::BasicBlock *StartBB;
995 
996   public:
997     ConditionalEvaluation(CodeGenFunction &CGF)
998       : StartBB(CGF.Builder.GetInsertBlock()) {}
999 
1000     void begin(CodeGenFunction &CGF) {
1001       assert(CGF.OutermostConditional != this);
1002       if (!CGF.OutermostConditional)
1003         CGF.OutermostConditional = this;
1004     }
1005 
1006     void end(CodeGenFunction &CGF) {
1007       assert(CGF.OutermostConditional != nullptr);
1008       if (CGF.OutermostConditional == this)
1009         CGF.OutermostConditional = nullptr;
1010     }
1011 
1012     /// Returns a block which will be executed prior to each
1013     /// evaluation of the conditional code.
1014     llvm::BasicBlock *getStartingBlock() const {
1015       return StartBB;
1016     }
1017   };
1018 
1019   /// isInConditionalBranch - Return true if we're currently emitting
1020   /// one branch or the other of a conditional expression.
1021   bool isInConditionalBranch() const { return OutermostConditional != nullptr; }
1022 
1023   void setBeforeOutermostConditional(llvm::Value *value, Address addr) {
1024     assert(isInConditionalBranch());
1025     llvm::BasicBlock *block = OutermostConditional->getStartingBlock();
1026     auto store = new llvm::StoreInst(value, addr.getPointer(), &block->back());
1027     store->setAlignment(addr.getAlignment().getQuantity());
1028   }
1029 
1030   /// An RAII object to record that we're evaluating a statement
1031   /// expression.
1032   class StmtExprEvaluation {
1033     CodeGenFunction &CGF;
1034 
1035     /// We have to save the outermost conditional: cleanups in a
1036     /// statement expression aren't conditional just because the
1037     /// StmtExpr is.
1038     ConditionalEvaluation *SavedOutermostConditional;
1039 
1040   public:
1041     StmtExprEvaluation(CodeGenFunction &CGF)
1042       : CGF(CGF), SavedOutermostConditional(CGF.OutermostConditional) {
1043       CGF.OutermostConditional = nullptr;
1044     }
1045 
1046     ~StmtExprEvaluation() {
1047       CGF.OutermostConditional = SavedOutermostConditional;
1048       CGF.EnsureInsertPoint();
1049     }
1050   };
1051 
1052   /// An object which temporarily prevents a value from being
1053   /// destroyed by aggressive peephole optimizations that assume that
1054   /// all uses of a value have been realized in the IR.
1055   class PeepholeProtection {
1056     llvm::Instruction *Inst;
1057     friend class CodeGenFunction;
1058 
1059   public:
1060     PeepholeProtection() : Inst(nullptr) {}
1061   };
1062 
1063   /// A non-RAII class containing all the information about a bound
1064   /// opaque value.  OpaqueValueMapping, below, is a RAII wrapper for
1065   /// this which makes individual mappings very simple; using this
1066   /// class directly is useful when you have a variable number of
1067   /// opaque values or don't want the RAII functionality for some
1068   /// reason.
1069   class OpaqueValueMappingData {
1070     const OpaqueValueExpr *OpaqueValue;
1071     bool BoundLValue;
1072     CodeGenFunction::PeepholeProtection Protection;
1073 
1074     OpaqueValueMappingData(const OpaqueValueExpr *ov,
1075                            bool boundLValue)
1076       : OpaqueValue(ov), BoundLValue(boundLValue) {}
1077   public:
1078     OpaqueValueMappingData() : OpaqueValue(nullptr) {}
1079 
1080     static bool shouldBindAsLValue(const Expr *expr) {
1081       // gl-values should be bound as l-values for obvious reasons.
1082       // Records should be bound as l-values because IR generation
1083       // always keeps them in memory.  Expressions of function type
1084       // act exactly like l-values but are formally required to be
1085       // r-values in C.
1086       return expr->isGLValue() ||
1087              expr->getType()->isFunctionType() ||
1088              hasAggregateEvaluationKind(expr->getType());
1089     }
1090 
1091     static OpaqueValueMappingData bind(CodeGenFunction &CGF,
1092                                        const OpaqueValueExpr *ov,
1093                                        const Expr *e) {
1094       if (shouldBindAsLValue(ov))
1095         return bind(CGF, ov, CGF.EmitLValue(e));
1096       return bind(CGF, ov, CGF.EmitAnyExpr(e));
1097     }
1098 
1099     static OpaqueValueMappingData bind(CodeGenFunction &CGF,
1100                                        const OpaqueValueExpr *ov,
1101                                        const LValue &lv) {
1102       assert(shouldBindAsLValue(ov));
1103       CGF.OpaqueLValues.insert(std::make_pair(ov, lv));
1104       return OpaqueValueMappingData(ov, true);
1105     }
1106 
1107     static OpaqueValueMappingData bind(CodeGenFunction &CGF,
1108                                        const OpaqueValueExpr *ov,
1109                                        const RValue &rv) {
1110       assert(!shouldBindAsLValue(ov));
1111       CGF.OpaqueRValues.insert(std::make_pair(ov, rv));
1112 
1113       OpaqueValueMappingData data(ov, false);
1114 
1115       // Work around an extremely aggressive peephole optimization in
1116       // EmitScalarConversion which assumes that all other uses of a
1117       // value are extant.
1118       data.Protection = CGF.protectFromPeepholes(rv);
1119 
1120       return data;
1121     }
1122 
1123     bool isValid() const { return OpaqueValue != nullptr; }
1124     void clear() { OpaqueValue = nullptr; }
1125 
1126     void unbind(CodeGenFunction &CGF) {
1127       assert(OpaqueValue && "no data to unbind!");
1128 
1129       if (BoundLValue) {
1130         CGF.OpaqueLValues.erase(OpaqueValue);
1131       } else {
1132         CGF.OpaqueRValues.erase(OpaqueValue);
1133         CGF.unprotectFromPeepholes(Protection);
1134       }
1135     }
1136   };
1137 
1138   /// An RAII object to set (and then clear) a mapping for an OpaqueValueExpr.
1139   class OpaqueValueMapping {
1140     CodeGenFunction &CGF;
1141     OpaqueValueMappingData Data;
1142 
1143   public:
1144     static bool shouldBindAsLValue(const Expr *expr) {
1145       return OpaqueValueMappingData::shouldBindAsLValue(expr);
1146     }
1147 
1148     /// Build the opaque value mapping for the given conditional
1149     /// operator if it's the GNU ?: extension.  This is a common
1150     /// enough pattern that the convenience operator is really
1151     /// helpful.
1152     ///
1153     OpaqueValueMapping(CodeGenFunction &CGF,
1154                        const AbstractConditionalOperator *op) : CGF(CGF) {
1155       if (isa<ConditionalOperator>(op))
1156         // Leave Data empty.
1157         return;
1158 
1159       const BinaryConditionalOperator *e = cast<BinaryConditionalOperator>(op);
1160       Data = OpaqueValueMappingData::bind(CGF, e->getOpaqueValue(),
1161                                           e->getCommon());
1162     }
1163 
1164     /// Build the opaque value mapping for an OpaqueValueExpr whose source
1165     /// expression is set to the expression the OVE represents.
1166     OpaqueValueMapping(CodeGenFunction &CGF, const OpaqueValueExpr *OV)
1167         : CGF(CGF) {
1168       if (OV) {
1169         assert(OV->getSourceExpr() && "wrong form of OpaqueValueMapping used "
1170                                       "for OVE with no source expression");
1171         Data = OpaqueValueMappingData::bind(CGF, OV, OV->getSourceExpr());
1172       }
1173     }
1174 
1175     OpaqueValueMapping(CodeGenFunction &CGF,
1176                        const OpaqueValueExpr *opaqueValue,
1177                        LValue lvalue)
1178       : CGF(CGF), Data(OpaqueValueMappingData::bind(CGF, opaqueValue, lvalue)) {
1179     }
1180 
1181     OpaqueValueMapping(CodeGenFunction &CGF,
1182                        const OpaqueValueExpr *opaqueValue,
1183                        RValue rvalue)
1184       : CGF(CGF), Data(OpaqueValueMappingData::bind(CGF, opaqueValue, rvalue)) {
1185     }
1186 
1187     void pop() {
1188       Data.unbind(CGF);
1189       Data.clear();
1190     }
1191 
1192     ~OpaqueValueMapping() {
1193       if (Data.isValid()) Data.unbind(CGF);
1194     }
1195   };
1196 
1197 private:
1198   CGDebugInfo *DebugInfo;
1199   /// Used to create unique names for artificial VLA size debug info variables.
1200   unsigned VLAExprCounter = 0;
1201   bool DisableDebugInfo = false;
1202 
1203   /// DidCallStackSave - Whether llvm.stacksave has been called. Used to avoid
1204   /// calling llvm.stacksave for multiple VLAs in the same scope.
1205   bool DidCallStackSave = false;
1206 
1207   /// IndirectBranch - The first time an indirect goto is seen we create a block
1208   /// with an indirect branch.  Every time we see the address of a label taken,
1209   /// we add the label to the indirect goto.  Every subsequent indirect goto is
1210   /// codegen'd as a jump to the IndirectBranch's basic block.
1211   llvm::IndirectBrInst *IndirectBranch = nullptr;
1212 
1213   /// LocalDeclMap - This keeps track of the LLVM allocas or globals for local C
1214   /// decls.
1215   DeclMapTy LocalDeclMap;
1216 
1217   // Keep track of the cleanups for callee-destructed parameters pushed to the
1218   // cleanup stack so that they can be deactivated later.
1219   llvm::DenseMap<const ParmVarDecl *, EHScopeStack::stable_iterator>
1220       CalleeDestructedParamCleanups;
1221 
1222   /// SizeArguments - If a ParmVarDecl had the pass_object_size attribute, this
1223   /// will contain a mapping from said ParmVarDecl to its implicit "object_size"
1224   /// parameter.
1225   llvm::SmallDenseMap<const ParmVarDecl *, const ImplicitParamDecl *, 2>
1226       SizeArguments;
1227 
1228   /// Track escaped local variables with auto storage. Used during SEH
1229   /// outlining to produce a call to llvm.localescape.
1230   llvm::DenseMap<llvm::AllocaInst *, int> EscapedLocals;
1231 
1232   /// LabelMap - This keeps track of the LLVM basic block for each C label.
1233   llvm::DenseMap<const LabelDecl*, JumpDest> LabelMap;
1234 
1235   // BreakContinueStack - This keeps track of where break and continue
1236   // statements should jump to.
1237   struct BreakContinue {
1238     BreakContinue(JumpDest Break, JumpDest Continue)
1239       : BreakBlock(Break), ContinueBlock(Continue) {}
1240 
1241     JumpDest BreakBlock;
1242     JumpDest ContinueBlock;
1243   };
1244   SmallVector<BreakContinue, 8> BreakContinueStack;
1245 
1246   /// Handles cancellation exit points in OpenMP-related constructs.
1247   class OpenMPCancelExitStack {
1248     /// Tracks cancellation exit point and join point for cancel-related exit
1249     /// and normal exit.
1250     struct CancelExit {
1251       CancelExit() = default;
1252       CancelExit(OpenMPDirectiveKind Kind, JumpDest ExitBlock,
1253                  JumpDest ContBlock)
1254           : Kind(Kind), ExitBlock(ExitBlock), ContBlock(ContBlock) {}
1255       OpenMPDirectiveKind Kind = OMPD_unknown;
1256       /// true if the exit block has been emitted already by the special
1257       /// emitExit() call, false if the default codegen is used.
1258       bool HasBeenEmitted = false;
1259       JumpDest ExitBlock;
1260       JumpDest ContBlock;
1261     };
1262 
1263     SmallVector<CancelExit, 8> Stack;
1264 
1265   public:
1266     OpenMPCancelExitStack() : Stack(1) {}
1267     ~OpenMPCancelExitStack() = default;
1268     /// Fetches the exit block for the current OpenMP construct.
1269     JumpDest getExitBlock() const { return Stack.back().ExitBlock; }
1270     /// Emits exit block with special codegen procedure specific for the related
1271     /// OpenMP construct + emits code for normal construct cleanup.
1272     void emitExit(CodeGenFunction &CGF, OpenMPDirectiveKind Kind,
1273                   const llvm::function_ref<void(CodeGenFunction &)> CodeGen) {
1274       if (Stack.back().Kind == Kind && getExitBlock().isValid()) {
1275         assert(CGF.getOMPCancelDestination(Kind).isValid());
1276         assert(CGF.HaveInsertPoint());
1277         assert(!Stack.back().HasBeenEmitted);
1278         auto IP = CGF.Builder.saveAndClearIP();
1279         CGF.EmitBlock(Stack.back().ExitBlock.getBlock());
1280         CodeGen(CGF);
1281         CGF.EmitBranch(Stack.back().ContBlock.getBlock());
1282         CGF.Builder.restoreIP(IP);
1283         Stack.back().HasBeenEmitted = true;
1284       }
1285       CodeGen(CGF);
1286     }
1287     /// Enter the cancel supporting \a Kind construct.
1288     /// \param Kind OpenMP directive that supports cancel constructs.
1289     /// \param HasCancel true, if the construct has inner cancel directive,
1290     /// false otherwise.
1291     void enter(CodeGenFunction &CGF, OpenMPDirectiveKind Kind, bool HasCancel) {
1292       Stack.push_back({Kind,
1293                        HasCancel ? CGF.getJumpDestInCurrentScope("cancel.exit")
1294                                  : JumpDest(),
1295                        HasCancel ? CGF.getJumpDestInCurrentScope("cancel.cont")
1296                                  : JumpDest()});
1297     }
1298     /// Emits default exit point for the cancel construct (if the special one
1299     /// has not be used) + join point for cancel/normal exits.
1300     void exit(CodeGenFunction &CGF) {
1301       if (getExitBlock().isValid()) {
1302         assert(CGF.getOMPCancelDestination(Stack.back().Kind).isValid());
1303         bool HaveIP = CGF.HaveInsertPoint();
1304         if (!Stack.back().HasBeenEmitted) {
1305           if (HaveIP)
1306             CGF.EmitBranchThroughCleanup(Stack.back().ContBlock);
1307           CGF.EmitBlock(Stack.back().ExitBlock.getBlock());
1308           CGF.EmitBranchThroughCleanup(Stack.back().ContBlock);
1309         }
1310         CGF.EmitBlock(Stack.back().ContBlock.getBlock());
1311         if (!HaveIP) {
1312           CGF.Builder.CreateUnreachable();
1313           CGF.Builder.ClearInsertionPoint();
1314         }
1315       }
1316       Stack.pop_back();
1317     }
1318   };
1319   OpenMPCancelExitStack OMPCancelStack;
1320 
1321   CodeGenPGO PGO;
1322 
1323   /// Calculate branch weights appropriate for PGO data
1324   llvm::MDNode *createProfileWeights(uint64_t TrueCount, uint64_t FalseCount);
1325   llvm::MDNode *createProfileWeights(ArrayRef<uint64_t> Weights);
1326   llvm::MDNode *createProfileWeightsForLoop(const Stmt *Cond,
1327                                             uint64_t LoopCount);
1328 
1329 public:
1330   /// Increment the profiler's counter for the given statement by \p StepV.
1331   /// If \p StepV is null, the default increment is 1.
1332   void incrementProfileCounter(const Stmt *S, llvm::Value *StepV = nullptr) {
1333     if (CGM.getCodeGenOpts().hasProfileClangInstr())
1334       PGO.emitCounterIncrement(Builder, S, StepV);
1335     PGO.setCurrentStmt(S);
1336   }
1337 
1338   /// Get the profiler's count for the given statement.
1339   uint64_t getProfileCount(const Stmt *S) {
1340     Optional<uint64_t> Count = PGO.getStmtCount(S);
1341     if (!Count.hasValue())
1342       return 0;
1343     return *Count;
1344   }
1345 
1346   /// Set the profiler's current count.
1347   void setCurrentProfileCount(uint64_t Count) {
1348     PGO.setCurrentRegionCount(Count);
1349   }
1350 
1351   /// Get the profiler's current count. This is generally the count for the most
1352   /// recently incremented counter.
1353   uint64_t getCurrentProfileCount() {
1354     return PGO.getCurrentRegionCount();
1355   }
1356 
1357 private:
1358 
1359   /// SwitchInsn - This is nearest current switch instruction. It is null if
1360   /// current context is not in a switch.
1361   llvm::SwitchInst *SwitchInsn = nullptr;
1362   /// The branch weights of SwitchInsn when doing instrumentation based PGO.
1363   SmallVector<uint64_t, 16> *SwitchWeights = nullptr;
1364 
1365   /// CaseRangeBlock - This block holds if condition check for last case
1366   /// statement range in current switch instruction.
1367   llvm::BasicBlock *CaseRangeBlock = nullptr;
1368 
1369   /// OpaqueLValues - Keeps track of the current set of opaque value
1370   /// expressions.
1371   llvm::DenseMap<const OpaqueValueExpr *, LValue> OpaqueLValues;
1372   llvm::DenseMap<const OpaqueValueExpr *, RValue> OpaqueRValues;
1373 
1374   // VLASizeMap - This keeps track of the associated size for each VLA type.
1375   // We track this by the size expression rather than the type itself because
1376   // in certain situations, like a const qualifier applied to an VLA typedef,
1377   // multiple VLA types can share the same size expression.
1378   // FIXME: Maybe this could be a stack of maps that is pushed/popped as we
1379   // enter/leave scopes.
1380   llvm::DenseMap<const Expr*, llvm::Value*> VLASizeMap;
1381 
1382   /// A block containing a single 'unreachable' instruction.  Created
1383   /// lazily by getUnreachableBlock().
1384   llvm::BasicBlock *UnreachableBlock = nullptr;
1385 
1386   /// Counts of the number return expressions in the function.
1387   unsigned NumReturnExprs = 0;
1388 
1389   /// Count the number of simple (constant) return expressions in the function.
1390   unsigned NumSimpleReturnExprs = 0;
1391 
1392   /// The last regular (non-return) debug location (breakpoint) in the function.
1393   SourceLocation LastStopPoint;
1394 
1395 public:
1396   /// A scope within which we are constructing the fields of an object which
1397   /// might use a CXXDefaultInitExpr. This stashes away a 'this' value to use
1398   /// if we need to evaluate a CXXDefaultInitExpr within the evaluation.
1399   class FieldConstructionScope {
1400   public:
1401     FieldConstructionScope(CodeGenFunction &CGF, Address This)
1402         : CGF(CGF), OldCXXDefaultInitExprThis(CGF.CXXDefaultInitExprThis) {
1403       CGF.CXXDefaultInitExprThis = This;
1404     }
1405     ~FieldConstructionScope() {
1406       CGF.CXXDefaultInitExprThis = OldCXXDefaultInitExprThis;
1407     }
1408 
1409   private:
1410     CodeGenFunction &CGF;
1411     Address OldCXXDefaultInitExprThis;
1412   };
1413 
1414   /// The scope of a CXXDefaultInitExpr. Within this scope, the value of 'this'
1415   /// is overridden to be the object under construction.
1416   class CXXDefaultInitExprScope {
1417   public:
1418     CXXDefaultInitExprScope(CodeGenFunction &CGF)
1419       : CGF(CGF), OldCXXThisValue(CGF.CXXThisValue),
1420         OldCXXThisAlignment(CGF.CXXThisAlignment) {
1421       CGF.CXXThisValue = CGF.CXXDefaultInitExprThis.getPointer();
1422       CGF.CXXThisAlignment = CGF.CXXDefaultInitExprThis.getAlignment();
1423     }
1424     ~CXXDefaultInitExprScope() {
1425       CGF.CXXThisValue = OldCXXThisValue;
1426       CGF.CXXThisAlignment = OldCXXThisAlignment;
1427     }
1428 
1429   public:
1430     CodeGenFunction &CGF;
1431     llvm::Value *OldCXXThisValue;
1432     CharUnits OldCXXThisAlignment;
1433   };
1434 
1435   /// The scope of an ArrayInitLoopExpr. Within this scope, the value of the
1436   /// current loop index is overridden.
1437   class ArrayInitLoopExprScope {
1438   public:
1439     ArrayInitLoopExprScope(CodeGenFunction &CGF, llvm::Value *Index)
1440       : CGF(CGF), OldArrayInitIndex(CGF.ArrayInitIndex) {
1441       CGF.ArrayInitIndex = Index;
1442     }
1443     ~ArrayInitLoopExprScope() {
1444       CGF.ArrayInitIndex = OldArrayInitIndex;
1445     }
1446 
1447   private:
1448     CodeGenFunction &CGF;
1449     llvm::Value *OldArrayInitIndex;
1450   };
1451 
1452   class InlinedInheritingConstructorScope {
1453   public:
1454     InlinedInheritingConstructorScope(CodeGenFunction &CGF, GlobalDecl GD)
1455         : CGF(CGF), OldCurGD(CGF.CurGD), OldCurFuncDecl(CGF.CurFuncDecl),
1456           OldCurCodeDecl(CGF.CurCodeDecl),
1457           OldCXXABIThisDecl(CGF.CXXABIThisDecl),
1458           OldCXXABIThisValue(CGF.CXXABIThisValue),
1459           OldCXXThisValue(CGF.CXXThisValue),
1460           OldCXXABIThisAlignment(CGF.CXXABIThisAlignment),
1461           OldCXXThisAlignment(CGF.CXXThisAlignment),
1462           OldReturnValue(CGF.ReturnValue), OldFnRetTy(CGF.FnRetTy),
1463           OldCXXInheritedCtorInitExprArgs(
1464               std::move(CGF.CXXInheritedCtorInitExprArgs)) {
1465       CGF.CurGD = GD;
1466       CGF.CurFuncDecl = CGF.CurCodeDecl =
1467           cast<CXXConstructorDecl>(GD.getDecl());
1468       CGF.CXXABIThisDecl = nullptr;
1469       CGF.CXXABIThisValue = nullptr;
1470       CGF.CXXThisValue = nullptr;
1471       CGF.CXXABIThisAlignment = CharUnits();
1472       CGF.CXXThisAlignment = CharUnits();
1473       CGF.ReturnValue = Address::invalid();
1474       CGF.FnRetTy = QualType();
1475       CGF.CXXInheritedCtorInitExprArgs.clear();
1476     }
1477     ~InlinedInheritingConstructorScope() {
1478       CGF.CurGD = OldCurGD;
1479       CGF.CurFuncDecl = OldCurFuncDecl;
1480       CGF.CurCodeDecl = OldCurCodeDecl;
1481       CGF.CXXABIThisDecl = OldCXXABIThisDecl;
1482       CGF.CXXABIThisValue = OldCXXABIThisValue;
1483       CGF.CXXThisValue = OldCXXThisValue;
1484       CGF.CXXABIThisAlignment = OldCXXABIThisAlignment;
1485       CGF.CXXThisAlignment = OldCXXThisAlignment;
1486       CGF.ReturnValue = OldReturnValue;
1487       CGF.FnRetTy = OldFnRetTy;
1488       CGF.CXXInheritedCtorInitExprArgs =
1489           std::move(OldCXXInheritedCtorInitExprArgs);
1490     }
1491 
1492   private:
1493     CodeGenFunction &CGF;
1494     GlobalDecl OldCurGD;
1495     const Decl *OldCurFuncDecl;
1496     const Decl *OldCurCodeDecl;
1497     ImplicitParamDecl *OldCXXABIThisDecl;
1498     llvm::Value *OldCXXABIThisValue;
1499     llvm::Value *OldCXXThisValue;
1500     CharUnits OldCXXABIThisAlignment;
1501     CharUnits OldCXXThisAlignment;
1502     Address OldReturnValue;
1503     QualType OldFnRetTy;
1504     CallArgList OldCXXInheritedCtorInitExprArgs;
1505   };
1506 
1507 private:
1508   /// CXXThisDecl - When generating code for a C++ member function,
1509   /// this will hold the implicit 'this' declaration.
1510   ImplicitParamDecl *CXXABIThisDecl = nullptr;
1511   llvm::Value *CXXABIThisValue = nullptr;
1512   llvm::Value *CXXThisValue = nullptr;
1513   CharUnits CXXABIThisAlignment;
1514   CharUnits CXXThisAlignment;
1515 
1516   /// The value of 'this' to use when evaluating CXXDefaultInitExprs within
1517   /// this expression.
1518   Address CXXDefaultInitExprThis = Address::invalid();
1519 
1520   /// The current array initialization index when evaluating an
1521   /// ArrayInitIndexExpr within an ArrayInitLoopExpr.
1522   llvm::Value *ArrayInitIndex = nullptr;
1523 
1524   /// The values of function arguments to use when evaluating
1525   /// CXXInheritedCtorInitExprs within this context.
1526   CallArgList CXXInheritedCtorInitExprArgs;
1527 
1528   /// CXXStructorImplicitParamDecl - When generating code for a constructor or
1529   /// destructor, this will hold the implicit argument (e.g. VTT).
1530   ImplicitParamDecl *CXXStructorImplicitParamDecl = nullptr;
1531   llvm::Value *CXXStructorImplicitParamValue = nullptr;
1532 
1533   /// OutermostConditional - Points to the outermost active
1534   /// conditional control.  This is used so that we know if a
1535   /// temporary should be destroyed conditionally.
1536   ConditionalEvaluation *OutermostConditional = nullptr;
1537 
1538   /// The current lexical scope.
1539   LexicalScope *CurLexicalScope = nullptr;
1540 
1541   /// The current source location that should be used for exception
1542   /// handling code.
1543   SourceLocation CurEHLocation;
1544 
1545   /// BlockByrefInfos - For each __block variable, contains
1546   /// information about the layout of the variable.
1547   llvm::DenseMap<const ValueDecl *, BlockByrefInfo> BlockByrefInfos;
1548 
1549   /// Used by -fsanitize=nullability-return to determine whether the return
1550   /// value can be checked.
1551   llvm::Value *RetValNullabilityPrecondition = nullptr;
1552 
1553   /// Check if -fsanitize=nullability-return instrumentation is required for
1554   /// this function.
1555   bool requiresReturnValueNullabilityCheck() const {
1556     return RetValNullabilityPrecondition;
1557   }
1558 
1559   /// Used to store precise source locations for return statements by the
1560   /// runtime return value checks.
1561   Address ReturnLocation = Address::invalid();
1562 
1563   /// Check if the return value of this function requires sanitization.
1564   bool requiresReturnValueCheck() const {
1565     return requiresReturnValueNullabilityCheck() ||
1566            (SanOpts.has(SanitizerKind::ReturnsNonnullAttribute) &&
1567             CurCodeDecl && CurCodeDecl->getAttr<ReturnsNonNullAttr>());
1568   }
1569 
1570   llvm::BasicBlock *TerminateLandingPad = nullptr;
1571   llvm::BasicBlock *TerminateHandler = nullptr;
1572   llvm::BasicBlock *TrapBB = nullptr;
1573 
1574   /// Terminate funclets keyed by parent funclet pad.
1575   llvm::MapVector<llvm::Value *, llvm::BasicBlock *> TerminateFunclets;
1576 
1577   /// Largest vector width used in ths function. Will be used to create a
1578   /// function attribute.
1579   unsigned LargestVectorWidth = 0;
1580 
1581   /// True if we need emit the life-time markers.
1582   const bool ShouldEmitLifetimeMarkers;
1583 
1584   /// Add OpenCL kernel arg metadata and the kernel attribute metadata to
1585   /// the function metadata.
1586   void EmitOpenCLKernelMetadata(const FunctionDecl *FD,
1587                                 llvm::Function *Fn);
1588 
1589 public:
1590   CodeGenFunction(CodeGenModule &cgm, bool suppressNewContext=false);
1591   ~CodeGenFunction();
1592 
1593   CodeGenTypes &getTypes() const { return CGM.getTypes(); }
1594   ASTContext &getContext() const { return CGM.getContext(); }
1595   CGDebugInfo *getDebugInfo() {
1596     if (DisableDebugInfo)
1597       return nullptr;
1598     return DebugInfo;
1599   }
1600   void disableDebugInfo() { DisableDebugInfo = true; }
1601   void enableDebugInfo() { DisableDebugInfo = false; }
1602 
1603   bool shouldUseFusedARCCalls() {
1604     return CGM.getCodeGenOpts().OptimizationLevel == 0;
1605   }
1606 
1607   const LangOptions &getLangOpts() const { return CGM.getLangOpts(); }
1608 
1609   /// Returns a pointer to the function's exception object and selector slot,
1610   /// which is assigned in every landing pad.
1611   Address getExceptionSlot();
1612   Address getEHSelectorSlot();
1613 
1614   /// Returns the contents of the function's exception object and selector
1615   /// slots.
1616   llvm::Value *getExceptionFromSlot();
1617   llvm::Value *getSelectorFromSlot();
1618 
1619   Address getNormalCleanupDestSlot();
1620 
1621   llvm::BasicBlock *getUnreachableBlock() {
1622     if (!UnreachableBlock) {
1623       UnreachableBlock = createBasicBlock("unreachable");
1624       new llvm::UnreachableInst(getLLVMContext(), UnreachableBlock);
1625     }
1626     return UnreachableBlock;
1627   }
1628 
1629   llvm::BasicBlock *getInvokeDest() {
1630     if (!EHStack.requiresLandingPad()) return nullptr;
1631     return getInvokeDestImpl();
1632   }
1633 
1634   bool currentFunctionUsesSEHTry() const { return CurSEHParent != nullptr; }
1635 
1636   const TargetInfo &getTarget() const { return Target; }
1637   llvm::LLVMContext &getLLVMContext() { return CGM.getLLVMContext(); }
1638   const TargetCodeGenInfo &getTargetHooks() const {
1639     return CGM.getTargetCodeGenInfo();
1640   }
1641 
1642   //===--------------------------------------------------------------------===//
1643   //                                  Cleanups
1644   //===--------------------------------------------------------------------===//
1645 
1646   typedef void Destroyer(CodeGenFunction &CGF, Address addr, QualType ty);
1647 
1648   void pushIrregularPartialArrayCleanup(llvm::Value *arrayBegin,
1649                                         Address arrayEndPointer,
1650                                         QualType elementType,
1651                                         CharUnits elementAlignment,
1652                                         Destroyer *destroyer);
1653   void pushRegularPartialArrayCleanup(llvm::Value *arrayBegin,
1654                                       llvm::Value *arrayEnd,
1655                                       QualType elementType,
1656                                       CharUnits elementAlignment,
1657                                       Destroyer *destroyer);
1658 
1659   void pushDestroy(QualType::DestructionKind dtorKind,
1660                    Address addr, QualType type);
1661   void pushEHDestroy(QualType::DestructionKind dtorKind,
1662                      Address addr, QualType type);
1663   void pushDestroy(CleanupKind kind, Address addr, QualType type,
1664                    Destroyer *destroyer, bool useEHCleanupForArray);
1665   void pushLifetimeExtendedDestroy(CleanupKind kind, Address addr,
1666                                    QualType type, Destroyer *destroyer,
1667                                    bool useEHCleanupForArray);
1668   void pushCallObjectDeleteCleanup(const FunctionDecl *OperatorDelete,
1669                                    llvm::Value *CompletePtr,
1670                                    QualType ElementType);
1671   void pushStackRestore(CleanupKind kind, Address SPMem);
1672   void emitDestroy(Address addr, QualType type, Destroyer *destroyer,
1673                    bool useEHCleanupForArray);
1674   llvm::Function *generateDestroyHelper(Address addr, QualType type,
1675                                         Destroyer *destroyer,
1676                                         bool useEHCleanupForArray,
1677                                         const VarDecl *VD);
1678   void emitArrayDestroy(llvm::Value *begin, llvm::Value *end,
1679                         QualType elementType, CharUnits elementAlign,
1680                         Destroyer *destroyer,
1681                         bool checkZeroLength, bool useEHCleanup);
1682 
1683   Destroyer *getDestroyer(QualType::DestructionKind destructionKind);
1684 
1685   /// Determines whether an EH cleanup is required to destroy a type
1686   /// with the given destruction kind.
1687   bool needsEHCleanup(QualType::DestructionKind kind) {
1688     switch (kind) {
1689     case QualType::DK_none:
1690       return false;
1691     case QualType::DK_cxx_destructor:
1692     case QualType::DK_objc_weak_lifetime:
1693     case QualType::DK_nontrivial_c_struct:
1694       return getLangOpts().Exceptions;
1695     case QualType::DK_objc_strong_lifetime:
1696       return getLangOpts().Exceptions &&
1697              CGM.getCodeGenOpts().ObjCAutoRefCountExceptions;
1698     }
1699     llvm_unreachable("bad destruction kind");
1700   }
1701 
1702   CleanupKind getCleanupKind(QualType::DestructionKind kind) {
1703     return (needsEHCleanup(kind) ? NormalAndEHCleanup : NormalCleanup);
1704   }
1705 
1706   //===--------------------------------------------------------------------===//
1707   //                                  Objective-C
1708   //===--------------------------------------------------------------------===//
1709 
1710   void GenerateObjCMethod(const ObjCMethodDecl *OMD);
1711 
1712   void StartObjCMethod(const ObjCMethodDecl *MD, const ObjCContainerDecl *CD);
1713 
1714   /// GenerateObjCGetter - Synthesize an Objective-C property getter function.
1715   void GenerateObjCGetter(ObjCImplementationDecl *IMP,
1716                           const ObjCPropertyImplDecl *PID);
1717   void generateObjCGetterBody(const ObjCImplementationDecl *classImpl,
1718                               const ObjCPropertyImplDecl *propImpl,
1719                               const ObjCMethodDecl *GetterMothodDecl,
1720                               llvm::Constant *AtomicHelperFn);
1721 
1722   void GenerateObjCCtorDtorMethod(ObjCImplementationDecl *IMP,
1723                                   ObjCMethodDecl *MD, bool ctor);
1724 
1725   /// GenerateObjCSetter - Synthesize an Objective-C property setter function
1726   /// for the given property.
1727   void GenerateObjCSetter(ObjCImplementationDecl *IMP,
1728                           const ObjCPropertyImplDecl *PID);
1729   void generateObjCSetterBody(const ObjCImplementationDecl *classImpl,
1730                               const ObjCPropertyImplDecl *propImpl,
1731                               llvm::Constant *AtomicHelperFn);
1732 
1733   //===--------------------------------------------------------------------===//
1734   //                                  Block Bits
1735   //===--------------------------------------------------------------------===//
1736 
1737   /// Emit block literal.
1738   /// \return an LLVM value which is a pointer to a struct which contains
1739   /// information about the block, including the block invoke function, the
1740   /// captured variables, etc.
1741   llvm::Value *EmitBlockLiteral(const BlockExpr *);
1742   static void destroyBlockInfos(CGBlockInfo *info);
1743 
1744   llvm::Function *GenerateBlockFunction(GlobalDecl GD,
1745                                         const CGBlockInfo &Info,
1746                                         const DeclMapTy &ldm,
1747                                         bool IsLambdaConversionToBlock,
1748                                         bool BuildGlobalBlock);
1749 
1750   /// Check if \p T is a C++ class that has a destructor that can throw.
1751   static bool cxxDestructorCanThrow(QualType T);
1752 
1753   llvm::Constant *GenerateCopyHelperFunction(const CGBlockInfo &blockInfo);
1754   llvm::Constant *GenerateDestroyHelperFunction(const CGBlockInfo &blockInfo);
1755   llvm::Constant *GenerateObjCAtomicSetterCopyHelperFunction(
1756                                              const ObjCPropertyImplDecl *PID);
1757   llvm::Constant *GenerateObjCAtomicGetterCopyHelperFunction(
1758                                              const ObjCPropertyImplDecl *PID);
1759   llvm::Value *EmitBlockCopyAndAutorelease(llvm::Value *Block, QualType Ty);
1760 
1761   void BuildBlockRelease(llvm::Value *DeclPtr, BlockFieldFlags flags,
1762                          bool CanThrow);
1763 
1764   class AutoVarEmission;
1765 
1766   void emitByrefStructureInit(const AutoVarEmission &emission);
1767 
1768   /// Enter a cleanup to destroy a __block variable.  Note that this
1769   /// cleanup should be a no-op if the variable hasn't left the stack
1770   /// yet; if a cleanup is required for the variable itself, that needs
1771   /// to be done externally.
1772   ///
1773   /// \param Kind Cleanup kind.
1774   ///
1775   /// \param Addr When \p LoadBlockVarAddr is false, the address of the __block
1776   /// structure that will be passed to _Block_object_dispose. When
1777   /// \p LoadBlockVarAddr is true, the address of the field of the block
1778   /// structure that holds the address of the __block structure.
1779   ///
1780   /// \param Flags The flag that will be passed to _Block_object_dispose.
1781   ///
1782   /// \param LoadBlockVarAddr Indicates whether we need to emit a load from
1783   /// \p Addr to get the address of the __block structure.
1784   void enterByrefCleanup(CleanupKind Kind, Address Addr, BlockFieldFlags Flags,
1785                          bool LoadBlockVarAddr, bool CanThrow);
1786 
1787   void setBlockContextParameter(const ImplicitParamDecl *D, unsigned argNum,
1788                                 llvm::Value *ptr);
1789 
1790   Address LoadBlockStruct();
1791   Address GetAddrOfBlockDecl(const VarDecl *var);
1792 
1793   /// BuildBlockByrefAddress - Computes the location of the
1794   /// data in a variable which is declared as __block.
1795   Address emitBlockByrefAddress(Address baseAddr, const VarDecl *V,
1796                                 bool followForward = true);
1797   Address emitBlockByrefAddress(Address baseAddr,
1798                                 const BlockByrefInfo &info,
1799                                 bool followForward,
1800                                 const llvm::Twine &name);
1801 
1802   const BlockByrefInfo &getBlockByrefInfo(const VarDecl *var);
1803 
1804   QualType BuildFunctionArgList(GlobalDecl GD, FunctionArgList &Args);
1805 
1806   void GenerateCode(GlobalDecl GD, llvm::Function *Fn,
1807                     const CGFunctionInfo &FnInfo);
1808 
1809   /// Annotate the function with an attribute that disables TSan checking at
1810   /// runtime.
1811   void markAsIgnoreThreadCheckingAtRuntime(llvm::Function *Fn);
1812 
1813   /// Emit code for the start of a function.
1814   /// \param Loc       The location to be associated with the function.
1815   /// \param StartLoc  The location of the function body.
1816   void StartFunction(GlobalDecl GD,
1817                      QualType RetTy,
1818                      llvm::Function *Fn,
1819                      const CGFunctionInfo &FnInfo,
1820                      const FunctionArgList &Args,
1821                      SourceLocation Loc = SourceLocation(),
1822                      SourceLocation StartLoc = SourceLocation());
1823 
1824   static bool IsConstructorDelegationValid(const CXXConstructorDecl *Ctor);
1825 
1826   void EmitConstructorBody(FunctionArgList &Args);
1827   void EmitDestructorBody(FunctionArgList &Args);
1828   void emitImplicitAssignmentOperatorBody(FunctionArgList &Args);
1829   void EmitFunctionBody(const Stmt *Body);
1830   void EmitBlockWithFallThrough(llvm::BasicBlock *BB, const Stmt *S);
1831 
1832   void EmitForwardingCallToLambda(const CXXMethodDecl *LambdaCallOperator,
1833                                   CallArgList &CallArgs);
1834   void EmitLambdaBlockInvokeBody();
1835   void EmitLambdaDelegatingInvokeBody(const CXXMethodDecl *MD);
1836   void EmitLambdaStaticInvokeBody(const CXXMethodDecl *MD);
1837   void EmitLambdaVLACapture(const VariableArrayType *VAT, LValue LV) {
1838     EmitStoreThroughLValue(RValue::get(VLASizeMap[VAT->getSizeExpr()]), LV);
1839   }
1840   void EmitAsanPrologueOrEpilogue(bool Prologue);
1841 
1842   /// Emit the unified return block, trying to avoid its emission when
1843   /// possible.
1844   /// \return The debug location of the user written return statement if the
1845   /// return block is is avoided.
1846   llvm::DebugLoc EmitReturnBlock();
1847 
1848   /// FinishFunction - Complete IR generation of the current function. It is
1849   /// legal to call this function even if there is no current insertion point.
1850   void FinishFunction(SourceLocation EndLoc=SourceLocation());
1851 
1852   void StartThunk(llvm::Function *Fn, GlobalDecl GD,
1853                   const CGFunctionInfo &FnInfo, bool IsUnprototyped);
1854 
1855   void EmitCallAndReturnForThunk(llvm::FunctionCallee Callee,
1856                                  const ThunkInfo *Thunk, bool IsUnprototyped);
1857 
1858   void FinishThunk();
1859 
1860   /// Emit a musttail call for a thunk with a potentially adjusted this pointer.
1861   void EmitMustTailThunk(GlobalDecl GD, llvm::Value *AdjustedThisPtr,
1862                          llvm::FunctionCallee Callee);
1863 
1864   /// Generate a thunk for the given method.
1865   void generateThunk(llvm::Function *Fn, const CGFunctionInfo &FnInfo,
1866                      GlobalDecl GD, const ThunkInfo &Thunk,
1867                      bool IsUnprototyped);
1868 
1869   llvm::Function *GenerateVarArgsThunk(llvm::Function *Fn,
1870                                        const CGFunctionInfo &FnInfo,
1871                                        GlobalDecl GD, const ThunkInfo &Thunk);
1872 
1873   void EmitCtorPrologue(const CXXConstructorDecl *CD, CXXCtorType Type,
1874                         FunctionArgList &Args);
1875 
1876   void EmitInitializerForField(FieldDecl *Field, LValue LHS, Expr *Init);
1877 
1878   /// Struct with all information about dynamic [sub]class needed to set vptr.
1879   struct VPtr {
1880     BaseSubobject Base;
1881     const CXXRecordDecl *NearestVBase;
1882     CharUnits OffsetFromNearestVBase;
1883     const CXXRecordDecl *VTableClass;
1884   };
1885 
1886   /// Initialize the vtable pointer of the given subobject.
1887   void InitializeVTablePointer(const VPtr &vptr);
1888 
1889   typedef llvm::SmallVector<VPtr, 4> VPtrsVector;
1890 
1891   typedef llvm::SmallPtrSet<const CXXRecordDecl *, 4> VisitedVirtualBasesSetTy;
1892   VPtrsVector getVTablePointers(const CXXRecordDecl *VTableClass);
1893 
1894   void getVTablePointers(BaseSubobject Base, const CXXRecordDecl *NearestVBase,
1895                          CharUnits OffsetFromNearestVBase,
1896                          bool BaseIsNonVirtualPrimaryBase,
1897                          const CXXRecordDecl *VTableClass,
1898                          VisitedVirtualBasesSetTy &VBases, VPtrsVector &vptrs);
1899 
1900   void InitializeVTablePointers(const CXXRecordDecl *ClassDecl);
1901 
1902   /// GetVTablePtr - Return the Value of the vtable pointer member pointed
1903   /// to by This.
1904   llvm::Value *GetVTablePtr(Address This, llvm::Type *VTableTy,
1905                             const CXXRecordDecl *VTableClass);
1906 
1907   enum CFITypeCheckKind {
1908     CFITCK_VCall,
1909     CFITCK_NVCall,
1910     CFITCK_DerivedCast,
1911     CFITCK_UnrelatedCast,
1912     CFITCK_ICall,
1913     CFITCK_NVMFCall,
1914     CFITCK_VMFCall,
1915   };
1916 
1917   /// Derived is the presumed address of an object of type T after a
1918   /// cast. If T is a polymorphic class type, emit a check that the virtual
1919   /// table for Derived belongs to a class derived from T.
1920   void EmitVTablePtrCheckForCast(QualType T, llvm::Value *Derived,
1921                                  bool MayBeNull, CFITypeCheckKind TCK,
1922                                  SourceLocation Loc);
1923 
1924   /// EmitVTablePtrCheckForCall - Virtual method MD is being called via VTable.
1925   /// If vptr CFI is enabled, emit a check that VTable is valid.
1926   void EmitVTablePtrCheckForCall(const CXXRecordDecl *RD, llvm::Value *VTable,
1927                                  CFITypeCheckKind TCK, SourceLocation Loc);
1928 
1929   /// EmitVTablePtrCheck - Emit a check that VTable is a valid virtual table for
1930   /// RD using llvm.type.test.
1931   void EmitVTablePtrCheck(const CXXRecordDecl *RD, llvm::Value *VTable,
1932                           CFITypeCheckKind TCK, SourceLocation Loc);
1933 
1934   /// If whole-program virtual table optimization is enabled, emit an assumption
1935   /// that VTable is a member of RD's type identifier. Or, if vptr CFI is
1936   /// enabled, emit a check that VTable is a member of RD's type identifier.
1937   void EmitTypeMetadataCodeForVCall(const CXXRecordDecl *RD,
1938                                     llvm::Value *VTable, SourceLocation Loc);
1939 
1940   /// Returns whether we should perform a type checked load when loading a
1941   /// virtual function for virtual calls to members of RD. This is generally
1942   /// true when both vcall CFI and whole-program-vtables are enabled.
1943   bool ShouldEmitVTableTypeCheckedLoad(const CXXRecordDecl *RD);
1944 
1945   /// Emit a type checked load from the given vtable.
1946   llvm::Value *EmitVTableTypeCheckedLoad(const CXXRecordDecl *RD, llvm::Value *VTable,
1947                                          uint64_t VTableByteOffset);
1948 
1949   /// EnterDtorCleanups - Enter the cleanups necessary to complete the
1950   /// given phase of destruction for a destructor.  The end result
1951   /// should call destructors on members and base classes in reverse
1952   /// order of their construction.
1953   void EnterDtorCleanups(const CXXDestructorDecl *Dtor, CXXDtorType Type);
1954 
1955   /// ShouldInstrumentFunction - Return true if the current function should be
1956   /// instrumented with __cyg_profile_func_* calls
1957   bool ShouldInstrumentFunction();
1958 
1959   /// ShouldXRayInstrument - Return true if the current function should be
1960   /// instrumented with XRay nop sleds.
1961   bool ShouldXRayInstrumentFunction() const;
1962 
1963   /// AlwaysEmitXRayCustomEvents - Return true if we must unconditionally emit
1964   /// XRay custom event handling calls.
1965   bool AlwaysEmitXRayCustomEvents() const;
1966 
1967   /// AlwaysEmitXRayTypedEvents - Return true if clang must unconditionally emit
1968   /// XRay typed event handling calls.
1969   bool AlwaysEmitXRayTypedEvents() const;
1970 
1971   /// Encode an address into a form suitable for use in a function prologue.
1972   llvm::Constant *EncodeAddrForUseInPrologue(llvm::Function *F,
1973                                              llvm::Constant *Addr);
1974 
1975   /// Decode an address used in a function prologue, encoded by \c
1976   /// EncodeAddrForUseInPrologue.
1977   llvm::Value *DecodeAddrUsedInPrologue(llvm::Value *F,
1978                                         llvm::Value *EncodedAddr);
1979 
1980   /// EmitFunctionProlog - Emit the target specific LLVM code to load the
1981   /// arguments for the given function. This is also responsible for naming the
1982   /// LLVM function arguments.
1983   void EmitFunctionProlog(const CGFunctionInfo &FI,
1984                           llvm::Function *Fn,
1985                           const FunctionArgList &Args);
1986 
1987   /// EmitFunctionEpilog - Emit the target specific LLVM code to return the
1988   /// given temporary.
1989   void EmitFunctionEpilog(const CGFunctionInfo &FI, bool EmitRetDbgLoc,
1990                           SourceLocation EndLoc);
1991 
1992   /// Emit a test that checks if the return value \p RV is nonnull.
1993   void EmitReturnValueCheck(llvm::Value *RV);
1994 
1995   /// EmitStartEHSpec - Emit the start of the exception spec.
1996   void EmitStartEHSpec(const Decl *D);
1997 
1998   /// EmitEndEHSpec - Emit the end of the exception spec.
1999   void EmitEndEHSpec(const Decl *D);
2000 
2001   /// getTerminateLandingPad - Return a landing pad that just calls terminate.
2002   llvm::BasicBlock *getTerminateLandingPad();
2003 
2004   /// getTerminateLandingPad - Return a cleanup funclet that just calls
2005   /// terminate.
2006   llvm::BasicBlock *getTerminateFunclet();
2007 
2008   /// getTerminateHandler - Return a handler (not a landing pad, just
2009   /// a catch handler) that just calls terminate.  This is used when
2010   /// a terminate scope encloses a try.
2011   llvm::BasicBlock *getTerminateHandler();
2012 
2013   llvm::Type *ConvertTypeForMem(QualType T);
2014   llvm::Type *ConvertType(QualType T);
2015   llvm::Type *ConvertType(const TypeDecl *T) {
2016     return ConvertType(getContext().getTypeDeclType(T));
2017   }
2018 
2019   /// LoadObjCSelf - Load the value of self. This function is only valid while
2020   /// generating code for an Objective-C method.
2021   llvm::Value *LoadObjCSelf();
2022 
2023   /// TypeOfSelfObject - Return type of object that this self represents.
2024   QualType TypeOfSelfObject();
2025 
2026   /// getEvaluationKind - Return the TypeEvaluationKind of QualType \c T.
2027   static TypeEvaluationKind getEvaluationKind(QualType T);
2028 
2029   static bool hasScalarEvaluationKind(QualType T) {
2030     return getEvaluationKind(T) == TEK_Scalar;
2031   }
2032 
2033   static bool hasAggregateEvaluationKind(QualType T) {
2034     return getEvaluationKind(T) == TEK_Aggregate;
2035   }
2036 
2037   /// createBasicBlock - Create an LLVM basic block.
2038   llvm::BasicBlock *createBasicBlock(const Twine &name = "",
2039                                      llvm::Function *parent = nullptr,
2040                                      llvm::BasicBlock *before = nullptr) {
2041     return llvm::BasicBlock::Create(getLLVMContext(), name, parent, before);
2042   }
2043 
2044   /// getBasicBlockForLabel - Return the LLVM basicblock that the specified
2045   /// label maps to.
2046   JumpDest getJumpDestForLabel(const LabelDecl *S);
2047 
2048   /// SimplifyForwardingBlocks - If the given basic block is only a branch to
2049   /// another basic block, simplify it. This assumes that no other code could
2050   /// potentially reference the basic block.
2051   void SimplifyForwardingBlocks(llvm::BasicBlock *BB);
2052 
2053   /// EmitBlock - Emit the given block \arg BB and set it as the insert point,
2054   /// adding a fall-through branch from the current insert block if
2055   /// necessary. It is legal to call this function even if there is no current
2056   /// insertion point.
2057   ///
2058   /// IsFinished - If true, indicates that the caller has finished emitting
2059   /// branches to the given block and does not expect to emit code into it. This
2060   /// means the block can be ignored if it is unreachable.
2061   void EmitBlock(llvm::BasicBlock *BB, bool IsFinished=false);
2062 
2063   /// EmitBlockAfterUses - Emit the given block somewhere hopefully
2064   /// near its uses, and leave the insertion point in it.
2065   void EmitBlockAfterUses(llvm::BasicBlock *BB);
2066 
2067   /// EmitBranch - Emit a branch to the specified basic block from the current
2068   /// insert block, taking care to avoid creation of branches from dummy
2069   /// blocks. It is legal to call this function even if there is no current
2070   /// insertion point.
2071   ///
2072   /// This function clears the current insertion point. The caller should follow
2073   /// calls to this function with calls to Emit*Block prior to generation new
2074   /// code.
2075   void EmitBranch(llvm::BasicBlock *Block);
2076 
2077   /// HaveInsertPoint - True if an insertion point is defined. If not, this
2078   /// indicates that the current code being emitted is unreachable.
2079   bool HaveInsertPoint() const {
2080     return Builder.GetInsertBlock() != nullptr;
2081   }
2082 
2083   /// EnsureInsertPoint - Ensure that an insertion point is defined so that
2084   /// emitted IR has a place to go. Note that by definition, if this function
2085   /// creates a block then that block is unreachable; callers may do better to
2086   /// detect when no insertion point is defined and simply skip IR generation.
2087   void EnsureInsertPoint() {
2088     if (!HaveInsertPoint())
2089       EmitBlock(createBasicBlock());
2090   }
2091 
2092   /// ErrorUnsupported - Print out an error that codegen doesn't support the
2093   /// specified stmt yet.
2094   void ErrorUnsupported(const Stmt *S, const char *Type);
2095 
2096   //===--------------------------------------------------------------------===//
2097   //                                  Helpers
2098   //===--------------------------------------------------------------------===//
2099 
2100   LValue MakeAddrLValue(Address Addr, QualType T,
2101                         AlignmentSource Source = AlignmentSource::Type) {
2102     return LValue::MakeAddr(Addr, T, getContext(), LValueBaseInfo(Source),
2103                             CGM.getTBAAAccessInfo(T));
2104   }
2105 
2106   LValue MakeAddrLValue(Address Addr, QualType T, LValueBaseInfo BaseInfo,
2107                         TBAAAccessInfo TBAAInfo) {
2108     return LValue::MakeAddr(Addr, T, getContext(), BaseInfo, TBAAInfo);
2109   }
2110 
2111   LValue MakeAddrLValue(llvm::Value *V, QualType T, CharUnits Alignment,
2112                         AlignmentSource Source = AlignmentSource::Type) {
2113     return LValue::MakeAddr(Address(V, Alignment), T, getContext(),
2114                             LValueBaseInfo(Source), CGM.getTBAAAccessInfo(T));
2115   }
2116 
2117   LValue MakeAddrLValue(llvm::Value *V, QualType T, CharUnits Alignment,
2118                         LValueBaseInfo BaseInfo, TBAAAccessInfo TBAAInfo) {
2119     return LValue::MakeAddr(Address(V, Alignment), T, getContext(),
2120                             BaseInfo, TBAAInfo);
2121   }
2122 
2123   LValue MakeNaturalAlignPointeeAddrLValue(llvm::Value *V, QualType T);
2124   LValue MakeNaturalAlignAddrLValue(llvm::Value *V, QualType T);
2125   CharUnits getNaturalTypeAlignment(QualType T,
2126                                     LValueBaseInfo *BaseInfo = nullptr,
2127                                     TBAAAccessInfo *TBAAInfo = nullptr,
2128                                     bool forPointeeType = false);
2129   CharUnits getNaturalPointeeTypeAlignment(QualType T,
2130                                            LValueBaseInfo *BaseInfo = nullptr,
2131                                            TBAAAccessInfo *TBAAInfo = nullptr);
2132 
2133   Address EmitLoadOfReference(LValue RefLVal,
2134                               LValueBaseInfo *PointeeBaseInfo = nullptr,
2135                               TBAAAccessInfo *PointeeTBAAInfo = nullptr);
2136   LValue EmitLoadOfReferenceLValue(LValue RefLVal);
2137   LValue EmitLoadOfReferenceLValue(Address RefAddr, QualType RefTy,
2138                                    AlignmentSource Source =
2139                                        AlignmentSource::Type) {
2140     LValue RefLVal = MakeAddrLValue(RefAddr, RefTy, LValueBaseInfo(Source),
2141                                     CGM.getTBAAAccessInfo(RefTy));
2142     return EmitLoadOfReferenceLValue(RefLVal);
2143   }
2144 
2145   Address EmitLoadOfPointer(Address Ptr, const PointerType *PtrTy,
2146                             LValueBaseInfo *BaseInfo = nullptr,
2147                             TBAAAccessInfo *TBAAInfo = nullptr);
2148   LValue EmitLoadOfPointerLValue(Address Ptr, const PointerType *PtrTy);
2149 
2150   /// CreateTempAlloca - This creates an alloca and inserts it into the entry
2151   /// block if \p ArraySize is nullptr, otherwise inserts it at the current
2152   /// insertion point of the builder. The caller is responsible for setting an
2153   /// appropriate alignment on
2154   /// the alloca.
2155   ///
2156   /// \p ArraySize is the number of array elements to be allocated if it
2157   ///    is not nullptr.
2158   ///
2159   /// LangAS::Default is the address space of pointers to local variables and
2160   /// temporaries, as exposed in the source language. In certain
2161   /// configurations, this is not the same as the alloca address space, and a
2162   /// cast is needed to lift the pointer from the alloca AS into
2163   /// LangAS::Default. This can happen when the target uses a restricted
2164   /// address space for the stack but the source language requires
2165   /// LangAS::Default to be a generic address space. The latter condition is
2166   /// common for most programming languages; OpenCL is an exception in that
2167   /// LangAS::Default is the private address space, which naturally maps
2168   /// to the stack.
2169   ///
2170   /// Because the address of a temporary is often exposed to the program in
2171   /// various ways, this function will perform the cast. The original alloca
2172   /// instruction is returned through \p Alloca if it is not nullptr.
2173   ///
2174   /// The cast is not performaed in CreateTempAllocaWithoutCast. This is
2175   /// more efficient if the caller knows that the address will not be exposed.
2176   llvm::AllocaInst *CreateTempAlloca(llvm::Type *Ty, const Twine &Name = "tmp",
2177                                      llvm::Value *ArraySize = nullptr);
2178   Address CreateTempAlloca(llvm::Type *Ty, CharUnits align,
2179                            const Twine &Name = "tmp",
2180                            llvm::Value *ArraySize = nullptr,
2181                            Address *Alloca = nullptr);
2182   Address CreateTempAllocaWithoutCast(llvm::Type *Ty, CharUnits align,
2183                                       const Twine &Name = "tmp",
2184                                       llvm::Value *ArraySize = nullptr);
2185 
2186   /// CreateDefaultAlignedTempAlloca - This creates an alloca with the
2187   /// default ABI alignment of the given LLVM type.
2188   ///
2189   /// IMPORTANT NOTE: This is *not* generally the right alignment for
2190   /// any given AST type that happens to have been lowered to the
2191   /// given IR type.  This should only ever be used for function-local,
2192   /// IR-driven manipulations like saving and restoring a value.  Do
2193   /// not hand this address off to arbitrary IRGen routines, and especially
2194   /// do not pass it as an argument to a function that might expect a
2195   /// properly ABI-aligned value.
2196   Address CreateDefaultAlignTempAlloca(llvm::Type *Ty,
2197                                        const Twine &Name = "tmp");
2198 
2199   /// InitTempAlloca - Provide an initial value for the given alloca which
2200   /// will be observable at all locations in the function.
2201   ///
2202   /// The address should be something that was returned from one of
2203   /// the CreateTempAlloca or CreateMemTemp routines, and the
2204   /// initializer must be valid in the entry block (i.e. it must
2205   /// either be a constant or an argument value).
2206   void InitTempAlloca(Address Alloca, llvm::Value *Value);
2207 
2208   /// CreateIRTemp - Create a temporary IR object of the given type, with
2209   /// appropriate alignment. This routine should only be used when an temporary
2210   /// value needs to be stored into an alloca (for example, to avoid explicit
2211   /// PHI construction), but the type is the IR type, not the type appropriate
2212   /// for storing in memory.
2213   ///
2214   /// That is, this is exactly equivalent to CreateMemTemp, but calling
2215   /// ConvertType instead of ConvertTypeForMem.
2216   Address CreateIRTemp(QualType T, const Twine &Name = "tmp");
2217 
2218   /// CreateMemTemp - Create a temporary memory object of the given type, with
2219   /// appropriate alignmen and cast it to the default address space. Returns
2220   /// the original alloca instruction by \p Alloca if it is not nullptr.
2221   Address CreateMemTemp(QualType T, const Twine &Name = "tmp",
2222                         Address *Alloca = nullptr);
2223   Address CreateMemTemp(QualType T, CharUnits Align, const Twine &Name = "tmp",
2224                         Address *Alloca = nullptr);
2225 
2226   /// CreateMemTemp - Create a temporary memory object of the given type, with
2227   /// appropriate alignmen without casting it to the default address space.
2228   Address CreateMemTempWithoutCast(QualType T, const Twine &Name = "tmp");
2229   Address CreateMemTempWithoutCast(QualType T, CharUnits Align,
2230                                    const Twine &Name = "tmp");
2231 
2232   /// CreateAggTemp - Create a temporary memory object for the given
2233   /// aggregate type.
2234   AggValueSlot CreateAggTemp(QualType T, const Twine &Name = "tmp") {
2235     return AggValueSlot::forAddr(CreateMemTemp(T, Name),
2236                                  T.getQualifiers(),
2237                                  AggValueSlot::IsNotDestructed,
2238                                  AggValueSlot::DoesNotNeedGCBarriers,
2239                                  AggValueSlot::IsNotAliased,
2240                                  AggValueSlot::DoesNotOverlap);
2241   }
2242 
2243   /// Emit a cast to void* in the appropriate address space.
2244   llvm::Value *EmitCastToVoidPtr(llvm::Value *value);
2245 
2246   /// EvaluateExprAsBool - Perform the usual unary conversions on the specified
2247   /// expression and compare the result against zero, returning an Int1Ty value.
2248   llvm::Value *EvaluateExprAsBool(const Expr *E);
2249 
2250   /// EmitIgnoredExpr - Emit an expression in a context which ignores the result.
2251   void EmitIgnoredExpr(const Expr *E);
2252 
2253   /// EmitAnyExpr - Emit code to compute the specified expression which can have
2254   /// any type.  The result is returned as an RValue struct.  If this is an
2255   /// aggregate expression, the aggloc/agglocvolatile arguments indicate where
2256   /// the result should be returned.
2257   ///
2258   /// \param ignoreResult True if the resulting value isn't used.
2259   RValue EmitAnyExpr(const Expr *E,
2260                      AggValueSlot aggSlot = AggValueSlot::ignored(),
2261                      bool ignoreResult = false);
2262 
2263   // EmitVAListRef - Emit a "reference" to a va_list; this is either the address
2264   // or the value of the expression, depending on how va_list is defined.
2265   Address EmitVAListRef(const Expr *E);
2266 
2267   /// Emit a "reference" to a __builtin_ms_va_list; this is
2268   /// always the value of the expression, because a __builtin_ms_va_list is a
2269   /// pointer to a char.
2270   Address EmitMSVAListRef(const Expr *E);
2271 
2272   /// EmitAnyExprToTemp - Similarly to EmitAnyExpr(), however, the result will
2273   /// always be accessible even if no aggregate location is provided.
2274   RValue EmitAnyExprToTemp(const Expr *E);
2275 
2276   /// EmitAnyExprToMem - Emits the code necessary to evaluate an
2277   /// arbitrary expression into the given memory location.
2278   void EmitAnyExprToMem(const Expr *E, Address Location,
2279                         Qualifiers Quals, bool IsInitializer);
2280 
2281   void EmitAnyExprToExn(const Expr *E, Address Addr);
2282 
2283   /// EmitExprAsInit - Emits the code necessary to initialize a
2284   /// location in memory with the given initializer.
2285   void EmitExprAsInit(const Expr *init, const ValueDecl *D, LValue lvalue,
2286                       bool capturedByInit);
2287 
2288   /// hasVolatileMember - returns true if aggregate type has a volatile
2289   /// member.
2290   bool hasVolatileMember(QualType T) {
2291     if (const RecordType *RT = T->getAs<RecordType>()) {
2292       const RecordDecl *RD = cast<RecordDecl>(RT->getDecl());
2293       return RD->hasVolatileMember();
2294     }
2295     return false;
2296   }
2297 
2298   /// Determine whether a return value slot may overlap some other object.
2299   AggValueSlot::Overlap_t overlapForReturnValue() {
2300     // FIXME: Assuming no overlap here breaks guaranteed copy elision for base
2301     // class subobjects. These cases may need to be revisited depending on the
2302     // resolution of the relevant core issue.
2303     return AggValueSlot::DoesNotOverlap;
2304   }
2305 
2306   /// Determine whether a field initialization may overlap some other object.
2307   AggValueSlot::Overlap_t overlapForFieldInit(const FieldDecl *FD) {
2308     // FIXME: These cases can result in overlap as a result of P0840R0's
2309     // [[no_unique_address]] attribute. We can still infer NoOverlap in the
2310     // presence of that attribute if the field is within the nvsize of its
2311     // containing class, because non-virtual subobjects are initialized in
2312     // address order.
2313     return AggValueSlot::DoesNotOverlap;
2314   }
2315 
2316   /// Determine whether a base class initialization may overlap some other
2317   /// object.
2318   AggValueSlot::Overlap_t overlapForBaseInit(const CXXRecordDecl *RD,
2319                                              const CXXRecordDecl *BaseRD,
2320                                              bool IsVirtual);
2321 
2322   /// Emit an aggregate assignment.
2323   void EmitAggregateAssign(LValue Dest, LValue Src, QualType EltTy) {
2324     bool IsVolatile = hasVolatileMember(EltTy);
2325     EmitAggregateCopy(Dest, Src, EltTy, AggValueSlot::MayOverlap, IsVolatile);
2326   }
2327 
2328   void EmitAggregateCopyCtor(LValue Dest, LValue Src,
2329                              AggValueSlot::Overlap_t MayOverlap) {
2330     EmitAggregateCopy(Dest, Src, Src.getType(), MayOverlap);
2331   }
2332 
2333   /// EmitAggregateCopy - Emit an aggregate copy.
2334   ///
2335   /// \param isVolatile \c true iff either the source or the destination is
2336   ///        volatile.
2337   /// \param MayOverlap Whether the tail padding of the destination might be
2338   ///        occupied by some other object. More efficient code can often be
2339   ///        generated if not.
2340   void EmitAggregateCopy(LValue Dest, LValue Src, QualType EltTy,
2341                          AggValueSlot::Overlap_t MayOverlap,
2342                          bool isVolatile = false);
2343 
2344   /// GetAddrOfLocalVar - Return the address of a local variable.
2345   Address GetAddrOfLocalVar(const VarDecl *VD) {
2346     auto it = LocalDeclMap.find(VD);
2347     assert(it != LocalDeclMap.end() &&
2348            "Invalid argument to GetAddrOfLocalVar(), no decl!");
2349     return it->second;
2350   }
2351 
2352   /// Given an opaque value expression, return its LValue mapping if it exists,
2353   /// otherwise create one.
2354   LValue getOrCreateOpaqueLValueMapping(const OpaqueValueExpr *e);
2355 
2356   /// Given an opaque value expression, return its RValue mapping if it exists,
2357   /// otherwise create one.
2358   RValue getOrCreateOpaqueRValueMapping(const OpaqueValueExpr *e);
2359 
2360   /// Get the index of the current ArrayInitLoopExpr, if any.
2361   llvm::Value *getArrayInitIndex() { return ArrayInitIndex; }
2362 
2363   /// getAccessedFieldNo - Given an encoded value and a result number, return
2364   /// the input field number being accessed.
2365   static unsigned getAccessedFieldNo(unsigned Idx, const llvm::Constant *Elts);
2366 
2367   llvm::BlockAddress *GetAddrOfLabel(const LabelDecl *L);
2368   llvm::BasicBlock *GetIndirectGotoBlock();
2369 
2370   /// Check if \p E is a C++ "this" pointer wrapped in value-preserving casts.
2371   static bool IsWrappedCXXThis(const Expr *E);
2372 
2373   /// EmitNullInitialization - Generate code to set a value of the given type to
2374   /// null, If the type contains data member pointers, they will be initialized
2375   /// to -1 in accordance with the Itanium C++ ABI.
2376   void EmitNullInitialization(Address DestPtr, QualType Ty);
2377 
2378   /// Emits a call to an LLVM variable-argument intrinsic, either
2379   /// \c llvm.va_start or \c llvm.va_end.
2380   /// \param ArgValue A reference to the \c va_list as emitted by either
2381   /// \c EmitVAListRef or \c EmitMSVAListRef.
2382   /// \param IsStart If \c true, emits a call to \c llvm.va_start; otherwise,
2383   /// calls \c llvm.va_end.
2384   llvm::Value *EmitVAStartEnd(llvm::Value *ArgValue, bool IsStart);
2385 
2386   /// Generate code to get an argument from the passed in pointer
2387   /// and update it accordingly.
2388   /// \param VE The \c VAArgExpr for which to generate code.
2389   /// \param VAListAddr Receives a reference to the \c va_list as emitted by
2390   /// either \c EmitVAListRef or \c EmitMSVAListRef.
2391   /// \returns A pointer to the argument.
2392   // FIXME: We should be able to get rid of this method and use the va_arg
2393   // instruction in LLVM instead once it works well enough.
2394   Address EmitVAArg(VAArgExpr *VE, Address &VAListAddr);
2395 
2396   /// emitArrayLength - Compute the length of an array, even if it's a
2397   /// VLA, and drill down to the base element type.
2398   llvm::Value *emitArrayLength(const ArrayType *arrayType,
2399                                QualType &baseType,
2400                                Address &addr);
2401 
2402   /// EmitVLASize - Capture all the sizes for the VLA expressions in
2403   /// the given variably-modified type and store them in the VLASizeMap.
2404   ///
2405   /// This function can be called with a null (unreachable) insert point.
2406   void EmitVariablyModifiedType(QualType Ty);
2407 
2408   struct VlaSizePair {
2409     llvm::Value *NumElts;
2410     QualType Type;
2411 
2412     VlaSizePair(llvm::Value *NE, QualType T) : NumElts(NE), Type(T) {}
2413   };
2414 
2415   /// Return the number of elements for a single dimension
2416   /// for the given array type.
2417   VlaSizePair getVLAElements1D(const VariableArrayType *vla);
2418   VlaSizePair getVLAElements1D(QualType vla);
2419 
2420   /// Returns an LLVM value that corresponds to the size,
2421   /// in non-variably-sized elements, of a variable length array type,
2422   /// plus that largest non-variably-sized element type.  Assumes that
2423   /// the type has already been emitted with EmitVariablyModifiedType.
2424   VlaSizePair getVLASize(const VariableArrayType *vla);
2425   VlaSizePair getVLASize(QualType vla);
2426 
2427   /// LoadCXXThis - Load the value of 'this'. This function is only valid while
2428   /// generating code for an C++ member function.
2429   llvm::Value *LoadCXXThis() {
2430     assert(CXXThisValue && "no 'this' value for this function");
2431     return CXXThisValue;
2432   }
2433   Address LoadCXXThisAddress();
2434 
2435   /// LoadCXXVTT - Load the VTT parameter to base constructors/destructors have
2436   /// virtual bases.
2437   // FIXME: Every place that calls LoadCXXVTT is something
2438   // that needs to be abstracted properly.
2439   llvm::Value *LoadCXXVTT() {
2440     assert(CXXStructorImplicitParamValue && "no VTT value for this function");
2441     return CXXStructorImplicitParamValue;
2442   }
2443 
2444   /// GetAddressOfBaseOfCompleteClass - Convert the given pointer to a
2445   /// complete class to the given direct base.
2446   Address
2447   GetAddressOfDirectBaseInCompleteClass(Address Value,
2448                                         const CXXRecordDecl *Derived,
2449                                         const CXXRecordDecl *Base,
2450                                         bool BaseIsVirtual);
2451 
2452   static bool ShouldNullCheckClassCastValue(const CastExpr *Cast);
2453 
2454   /// GetAddressOfBaseClass - This function will add the necessary delta to the
2455   /// load of 'this' and returns address of the base class.
2456   Address GetAddressOfBaseClass(Address Value,
2457                                 const CXXRecordDecl *Derived,
2458                                 CastExpr::path_const_iterator PathBegin,
2459                                 CastExpr::path_const_iterator PathEnd,
2460                                 bool NullCheckValue, SourceLocation Loc);
2461 
2462   Address GetAddressOfDerivedClass(Address Value,
2463                                    const CXXRecordDecl *Derived,
2464                                    CastExpr::path_const_iterator PathBegin,
2465                                    CastExpr::path_const_iterator PathEnd,
2466                                    bool NullCheckValue);
2467 
2468   /// GetVTTParameter - Return the VTT parameter that should be passed to a
2469   /// base constructor/destructor with virtual bases.
2470   /// FIXME: VTTs are Itanium ABI-specific, so the definition should move
2471   /// to ItaniumCXXABI.cpp together with all the references to VTT.
2472   llvm::Value *GetVTTParameter(GlobalDecl GD, bool ForVirtualBase,
2473                                bool Delegating);
2474 
2475   void EmitDelegateCXXConstructorCall(const CXXConstructorDecl *Ctor,
2476                                       CXXCtorType CtorType,
2477                                       const FunctionArgList &Args,
2478                                       SourceLocation Loc);
2479   // It's important not to confuse this and the previous function. Delegating
2480   // constructors are the C++0x feature. The constructor delegate optimization
2481   // is used to reduce duplication in the base and complete consturctors where
2482   // they are substantially the same.
2483   void EmitDelegatingCXXConstructorCall(const CXXConstructorDecl *Ctor,
2484                                         const FunctionArgList &Args);
2485 
2486   /// Emit a call to an inheriting constructor (that is, one that invokes a
2487   /// constructor inherited from a base class) by inlining its definition. This
2488   /// is necessary if the ABI does not support forwarding the arguments to the
2489   /// base class constructor (because they're variadic or similar).
2490   void EmitInlinedInheritingCXXConstructorCall(const CXXConstructorDecl *Ctor,
2491                                                CXXCtorType CtorType,
2492                                                bool ForVirtualBase,
2493                                                bool Delegating,
2494                                                CallArgList &Args);
2495 
2496   /// Emit a call to a constructor inherited from a base class, passing the
2497   /// current constructor's arguments along unmodified (without even making
2498   /// a copy).
2499   void EmitInheritedCXXConstructorCall(const CXXConstructorDecl *D,
2500                                        bool ForVirtualBase, Address This,
2501                                        bool InheritedFromVBase,
2502                                        const CXXInheritedCtorInitExpr *E);
2503 
2504   void EmitCXXConstructorCall(const CXXConstructorDecl *D, CXXCtorType Type,
2505                               bool ForVirtualBase, bool Delegating,
2506                               Address This, const CXXConstructExpr *E,
2507                               AggValueSlot::Overlap_t Overlap,
2508                               bool NewPointerIsChecked);
2509 
2510   void EmitCXXConstructorCall(const CXXConstructorDecl *D, CXXCtorType Type,
2511                               bool ForVirtualBase, bool Delegating,
2512                               Address This, CallArgList &Args,
2513                               AggValueSlot::Overlap_t Overlap,
2514                               SourceLocation Loc,
2515                               bool NewPointerIsChecked);
2516 
2517   /// Emit assumption load for all bases. Requires to be be called only on
2518   /// most-derived class and not under construction of the object.
2519   void EmitVTableAssumptionLoads(const CXXRecordDecl *ClassDecl, Address This);
2520 
2521   /// Emit assumption that vptr load == global vtable.
2522   void EmitVTableAssumptionLoad(const VPtr &vptr, Address This);
2523 
2524   void EmitSynthesizedCXXCopyCtorCall(const CXXConstructorDecl *D,
2525                                       Address This, Address Src,
2526                                       const CXXConstructExpr *E);
2527 
2528   void EmitCXXAggrConstructorCall(const CXXConstructorDecl *D,
2529                                   const ArrayType *ArrayTy,
2530                                   Address ArrayPtr,
2531                                   const CXXConstructExpr *E,
2532                                   bool NewPointerIsChecked,
2533                                   bool ZeroInitialization = false);
2534 
2535   void EmitCXXAggrConstructorCall(const CXXConstructorDecl *D,
2536                                   llvm::Value *NumElements,
2537                                   Address ArrayPtr,
2538                                   const CXXConstructExpr *E,
2539                                   bool NewPointerIsChecked,
2540                                   bool ZeroInitialization = false);
2541 
2542   static Destroyer destroyCXXObject;
2543 
2544   void EmitCXXDestructorCall(const CXXDestructorDecl *D, CXXDtorType Type,
2545                              bool ForVirtualBase, bool Delegating,
2546                              Address This);
2547 
2548   void EmitNewArrayInitializer(const CXXNewExpr *E, QualType elementType,
2549                                llvm::Type *ElementTy, Address NewPtr,
2550                                llvm::Value *NumElements,
2551                                llvm::Value *AllocSizeWithoutCookie);
2552 
2553   void EmitCXXTemporary(const CXXTemporary *Temporary, QualType TempType,
2554                         Address Ptr);
2555 
2556   llvm::Value *EmitLifetimeStart(uint64_t Size, llvm::Value *Addr);
2557   void EmitLifetimeEnd(llvm::Value *Size, llvm::Value *Addr);
2558 
2559   llvm::Value *EmitCXXNewExpr(const CXXNewExpr *E);
2560   void EmitCXXDeleteExpr(const CXXDeleteExpr *E);
2561 
2562   void EmitDeleteCall(const FunctionDecl *DeleteFD, llvm::Value *Ptr,
2563                       QualType DeleteTy, llvm::Value *NumElements = nullptr,
2564                       CharUnits CookieSize = CharUnits());
2565 
2566   RValue EmitBuiltinNewDeleteCall(const FunctionProtoType *Type,
2567                                   const CallExpr *TheCallExpr, bool IsDelete);
2568 
2569   llvm::Value *EmitCXXTypeidExpr(const CXXTypeidExpr *E);
2570   llvm::Value *EmitDynamicCast(Address V, const CXXDynamicCastExpr *DCE);
2571   Address EmitCXXUuidofExpr(const CXXUuidofExpr *E);
2572 
2573   /// Situations in which we might emit a check for the suitability of a
2574   ///        pointer or glvalue.
2575   enum TypeCheckKind {
2576     /// Checking the operand of a load. Must be suitably sized and aligned.
2577     TCK_Load,
2578     /// Checking the destination of a store. Must be suitably sized and aligned.
2579     TCK_Store,
2580     /// Checking the bound value in a reference binding. Must be suitably sized
2581     /// and aligned, but is not required to refer to an object (until the
2582     /// reference is used), per core issue 453.
2583     TCK_ReferenceBinding,
2584     /// Checking the object expression in a non-static data member access. Must
2585     /// be an object within its lifetime.
2586     TCK_MemberAccess,
2587     /// Checking the 'this' pointer for a call to a non-static member function.
2588     /// Must be an object within its lifetime.
2589     TCK_MemberCall,
2590     /// Checking the 'this' pointer for a constructor call.
2591     TCK_ConstructorCall,
2592     /// Checking the operand of a static_cast to a derived pointer type. Must be
2593     /// null or an object within its lifetime.
2594     TCK_DowncastPointer,
2595     /// Checking the operand of a static_cast to a derived reference type. Must
2596     /// be an object within its lifetime.
2597     TCK_DowncastReference,
2598     /// Checking the operand of a cast to a base object. Must be suitably sized
2599     /// and aligned.
2600     TCK_Upcast,
2601     /// Checking the operand of a cast to a virtual base object. Must be an
2602     /// object within its lifetime.
2603     TCK_UpcastToVirtualBase,
2604     /// Checking the value assigned to a _Nonnull pointer. Must not be null.
2605     TCK_NonnullAssign,
2606     /// Checking the operand of a dynamic_cast or a typeid expression.  Must be
2607     /// null or an object within its lifetime.
2608     TCK_DynamicOperation
2609   };
2610 
2611   /// Determine whether the pointer type check \p TCK permits null pointers.
2612   static bool isNullPointerAllowed(TypeCheckKind TCK);
2613 
2614   /// Determine whether the pointer type check \p TCK requires a vptr check.
2615   static bool isVptrCheckRequired(TypeCheckKind TCK, QualType Ty);
2616 
2617   /// Whether any type-checking sanitizers are enabled. If \c false,
2618   /// calls to EmitTypeCheck can be skipped.
2619   bool sanitizePerformTypeCheck() const;
2620 
2621   /// Emit a check that \p V is the address of storage of the
2622   /// appropriate size and alignment for an object of type \p Type
2623   /// (or if ArraySize is provided, for an array of that bound).
2624   void EmitTypeCheck(TypeCheckKind TCK, SourceLocation Loc, llvm::Value *V,
2625                      QualType Type, CharUnits Alignment = CharUnits::Zero(),
2626                      SanitizerSet SkippedChecks = SanitizerSet(),
2627                      llvm::Value *ArraySize = nullptr);
2628 
2629   /// Emit a check that \p Base points into an array object, which
2630   /// we can access at index \p Index. \p Accessed should be \c false if we
2631   /// this expression is used as an lvalue, for instance in "&Arr[Idx]".
2632   void EmitBoundsCheck(const Expr *E, const Expr *Base, llvm::Value *Index,
2633                        QualType IndexType, bool Accessed);
2634 
2635   llvm::Value *EmitScalarPrePostIncDec(const UnaryOperator *E, LValue LV,
2636                                        bool isInc, bool isPre);
2637   ComplexPairTy EmitComplexPrePostIncDec(const UnaryOperator *E, LValue LV,
2638                                          bool isInc, bool isPre);
2639 
2640   /// Converts Location to a DebugLoc, if debug information is enabled.
2641   llvm::DebugLoc SourceLocToDebugLoc(SourceLocation Location);
2642 
2643 
2644   //===--------------------------------------------------------------------===//
2645   //                            Declaration Emission
2646   //===--------------------------------------------------------------------===//
2647 
2648   /// EmitDecl - Emit a declaration.
2649   ///
2650   /// This function can be called with a null (unreachable) insert point.
2651   void EmitDecl(const Decl &D);
2652 
2653   /// EmitVarDecl - Emit a local variable declaration.
2654   ///
2655   /// This function can be called with a null (unreachable) insert point.
2656   void EmitVarDecl(const VarDecl &D);
2657 
2658   void EmitScalarInit(const Expr *init, const ValueDecl *D, LValue lvalue,
2659                       bool capturedByInit);
2660 
2661   typedef void SpecialInitFn(CodeGenFunction &Init, const VarDecl &D,
2662                              llvm::Value *Address);
2663 
2664   /// Determine whether the given initializer is trivial in the sense
2665   /// that it requires no code to be generated.
2666   bool isTrivialInitializer(const Expr *Init);
2667 
2668   /// EmitAutoVarDecl - Emit an auto variable declaration.
2669   ///
2670   /// This function can be called with a null (unreachable) insert point.
2671   void EmitAutoVarDecl(const VarDecl &D);
2672 
2673   class AutoVarEmission {
2674     friend class CodeGenFunction;
2675 
2676     const VarDecl *Variable;
2677 
2678     /// The address of the alloca for languages with explicit address space
2679     /// (e.g. OpenCL) or alloca casted to generic pointer for address space
2680     /// agnostic languages (e.g. C++). Invalid if the variable was emitted
2681     /// as a global constant.
2682     Address Addr;
2683 
2684     llvm::Value *NRVOFlag;
2685 
2686     /// True if the variable is a __block variable that is captured by an
2687     /// escaping block.
2688     bool IsEscapingByRef;
2689 
2690     /// True if the variable is of aggregate type and has a constant
2691     /// initializer.
2692     bool IsConstantAggregate;
2693 
2694     /// Non-null if we should use lifetime annotations.
2695     llvm::Value *SizeForLifetimeMarkers;
2696 
2697     /// Address with original alloca instruction. Invalid if the variable was
2698     /// emitted as a global constant.
2699     Address AllocaAddr;
2700 
2701     struct Invalid {};
2702     AutoVarEmission(Invalid)
2703         : Variable(nullptr), Addr(Address::invalid()),
2704           AllocaAddr(Address::invalid()) {}
2705 
2706     AutoVarEmission(const VarDecl &variable)
2707         : Variable(&variable), Addr(Address::invalid()), NRVOFlag(nullptr),
2708           IsEscapingByRef(false), IsConstantAggregate(false),
2709           SizeForLifetimeMarkers(nullptr), AllocaAddr(Address::invalid()) {}
2710 
2711     bool wasEmittedAsGlobal() const { return !Addr.isValid(); }
2712 
2713   public:
2714     static AutoVarEmission invalid() { return AutoVarEmission(Invalid()); }
2715 
2716     bool useLifetimeMarkers() const {
2717       return SizeForLifetimeMarkers != nullptr;
2718     }
2719     llvm::Value *getSizeForLifetimeMarkers() const {
2720       assert(useLifetimeMarkers());
2721       return SizeForLifetimeMarkers;
2722     }
2723 
2724     /// Returns the raw, allocated address, which is not necessarily
2725     /// the address of the object itself. It is casted to default
2726     /// address space for address space agnostic languages.
2727     Address getAllocatedAddress() const {
2728       return Addr;
2729     }
2730 
2731     /// Returns the address for the original alloca instruction.
2732     Address getOriginalAllocatedAddress() const { return AllocaAddr; }
2733 
2734     /// Returns the address of the object within this declaration.
2735     /// Note that this does not chase the forwarding pointer for
2736     /// __block decls.
2737     Address getObjectAddress(CodeGenFunction &CGF) const {
2738       if (!IsEscapingByRef) return Addr;
2739 
2740       return CGF.emitBlockByrefAddress(Addr, Variable, /*forward*/ false);
2741     }
2742   };
2743   AutoVarEmission EmitAutoVarAlloca(const VarDecl &var);
2744   void EmitAutoVarInit(const AutoVarEmission &emission);
2745   void EmitAutoVarCleanups(const AutoVarEmission &emission);
2746   void emitAutoVarTypeCleanup(const AutoVarEmission &emission,
2747                               QualType::DestructionKind dtorKind);
2748 
2749   /// Emits the alloca and debug information for the size expressions for each
2750   /// dimension of an array. It registers the association of its (1-dimensional)
2751   /// QualTypes and size expression's debug node, so that CGDebugInfo can
2752   /// reference this node when creating the DISubrange object to describe the
2753   /// array types.
2754   void EmitAndRegisterVariableArrayDimensions(CGDebugInfo *DI,
2755                                               const VarDecl &D,
2756                                               bool EmitDebugInfo);
2757 
2758   void EmitStaticVarDecl(const VarDecl &D,
2759                          llvm::GlobalValue::LinkageTypes Linkage);
2760 
2761   class ParamValue {
2762     llvm::Value *Value;
2763     unsigned Alignment;
2764     ParamValue(llvm::Value *V, unsigned A) : Value(V), Alignment(A) {}
2765   public:
2766     static ParamValue forDirect(llvm::Value *value) {
2767       return ParamValue(value, 0);
2768     }
2769     static ParamValue forIndirect(Address addr) {
2770       assert(!addr.getAlignment().isZero());
2771       return ParamValue(addr.getPointer(), addr.getAlignment().getQuantity());
2772     }
2773 
2774     bool isIndirect() const { return Alignment != 0; }
2775     llvm::Value *getAnyValue() const { return Value; }
2776 
2777     llvm::Value *getDirectValue() const {
2778       assert(!isIndirect());
2779       return Value;
2780     }
2781 
2782     Address getIndirectAddress() const {
2783       assert(isIndirect());
2784       return Address(Value, CharUnits::fromQuantity(Alignment));
2785     }
2786   };
2787 
2788   /// EmitParmDecl - Emit a ParmVarDecl or an ImplicitParamDecl.
2789   void EmitParmDecl(const VarDecl &D, ParamValue Arg, unsigned ArgNo);
2790 
2791   /// protectFromPeepholes - Protect a value that we're intending to
2792   /// store to the side, but which will probably be used later, from
2793   /// aggressive peepholing optimizations that might delete it.
2794   ///
2795   /// Pass the result to unprotectFromPeepholes to declare that
2796   /// protection is no longer required.
2797   ///
2798   /// There's no particular reason why this shouldn't apply to
2799   /// l-values, it's just that no existing peepholes work on pointers.
2800   PeepholeProtection protectFromPeepholes(RValue rvalue);
2801   void unprotectFromPeepholes(PeepholeProtection protection);
2802 
2803   void EmitAlignmentAssumptionCheck(llvm::Value *Ptr, QualType Ty,
2804                                     SourceLocation Loc,
2805                                     SourceLocation AssumptionLoc,
2806                                     llvm::Value *Alignment,
2807                                     llvm::Value *OffsetValue,
2808                                     llvm::Value *TheCheck,
2809                                     llvm::Instruction *Assumption);
2810 
2811   void EmitAlignmentAssumption(llvm::Value *PtrValue, QualType Ty,
2812                                SourceLocation Loc, SourceLocation AssumptionLoc,
2813                                llvm::Value *Alignment,
2814                                llvm::Value *OffsetValue = nullptr);
2815 
2816   void EmitAlignmentAssumption(llvm::Value *PtrValue, QualType Ty,
2817                                SourceLocation Loc, SourceLocation AssumptionLoc,
2818                                unsigned Alignment,
2819                                llvm::Value *OffsetValue = nullptr);
2820 
2821   void EmitAlignmentAssumption(llvm::Value *PtrValue, const Expr *E,
2822                                SourceLocation AssumptionLoc, unsigned Alignment,
2823                                llvm::Value *OffsetValue = nullptr);
2824 
2825   //===--------------------------------------------------------------------===//
2826   //                             Statement Emission
2827   //===--------------------------------------------------------------------===//
2828 
2829   /// EmitStopPoint - Emit a debug stoppoint if we are emitting debug info.
2830   void EmitStopPoint(const Stmt *S);
2831 
2832   /// EmitStmt - Emit the code for the statement \arg S. It is legal to call
2833   /// this function even if there is no current insertion point.
2834   ///
2835   /// This function may clear the current insertion point; callers should use
2836   /// EnsureInsertPoint if they wish to subsequently generate code without first
2837   /// calling EmitBlock, EmitBranch, or EmitStmt.
2838   void EmitStmt(const Stmt *S, ArrayRef<const Attr *> Attrs = None);
2839 
2840   /// EmitSimpleStmt - Try to emit a "simple" statement which does not
2841   /// necessarily require an insertion point or debug information; typically
2842   /// because the statement amounts to a jump or a container of other
2843   /// statements.
2844   ///
2845   /// \return True if the statement was handled.
2846   bool EmitSimpleStmt(const Stmt *S);
2847 
2848   Address EmitCompoundStmt(const CompoundStmt &S, bool GetLast = false,
2849                            AggValueSlot AVS = AggValueSlot::ignored());
2850   Address EmitCompoundStmtWithoutScope(const CompoundStmt &S,
2851                                        bool GetLast = false,
2852                                        AggValueSlot AVS =
2853                                                 AggValueSlot::ignored());
2854 
2855   /// EmitLabel - Emit the block for the given label. It is legal to call this
2856   /// function even if there is no current insertion point.
2857   void EmitLabel(const LabelDecl *D); // helper for EmitLabelStmt.
2858 
2859   void EmitLabelStmt(const LabelStmt &S);
2860   void EmitAttributedStmt(const AttributedStmt &S);
2861   void EmitGotoStmt(const GotoStmt &S);
2862   void EmitIndirectGotoStmt(const IndirectGotoStmt &S);
2863   void EmitIfStmt(const IfStmt &S);
2864 
2865   void EmitWhileStmt(const WhileStmt &S,
2866                      ArrayRef<const Attr *> Attrs = None);
2867   void EmitDoStmt(const DoStmt &S, ArrayRef<const Attr *> Attrs = None);
2868   void EmitForStmt(const ForStmt &S,
2869                    ArrayRef<const Attr *> Attrs = None);
2870   void EmitReturnStmt(const ReturnStmt &S);
2871   void EmitDeclStmt(const DeclStmt &S);
2872   void EmitBreakStmt(const BreakStmt &S);
2873   void EmitContinueStmt(const ContinueStmt &S);
2874   void EmitSwitchStmt(const SwitchStmt &S);
2875   void EmitDefaultStmt(const DefaultStmt &S);
2876   void EmitCaseStmt(const CaseStmt &S);
2877   void EmitCaseStmtRange(const CaseStmt &S);
2878   void EmitAsmStmt(const AsmStmt &S);
2879 
2880   void EmitObjCForCollectionStmt(const ObjCForCollectionStmt &S);
2881   void EmitObjCAtTryStmt(const ObjCAtTryStmt &S);
2882   void EmitObjCAtThrowStmt(const ObjCAtThrowStmt &S);
2883   void EmitObjCAtSynchronizedStmt(const ObjCAtSynchronizedStmt &S);
2884   void EmitObjCAutoreleasePoolStmt(const ObjCAutoreleasePoolStmt &S);
2885 
2886   void EmitCoroutineBody(const CoroutineBodyStmt &S);
2887   void EmitCoreturnStmt(const CoreturnStmt &S);
2888   RValue EmitCoawaitExpr(const CoawaitExpr &E,
2889                          AggValueSlot aggSlot = AggValueSlot::ignored(),
2890                          bool ignoreResult = false);
2891   LValue EmitCoawaitLValue(const CoawaitExpr *E);
2892   RValue EmitCoyieldExpr(const CoyieldExpr &E,
2893                          AggValueSlot aggSlot = AggValueSlot::ignored(),
2894                          bool ignoreResult = false);
2895   LValue EmitCoyieldLValue(const CoyieldExpr *E);
2896   RValue EmitCoroutineIntrinsic(const CallExpr *E, unsigned int IID);
2897 
2898   void EnterCXXTryStmt(const CXXTryStmt &S, bool IsFnTryBlock = false);
2899   void ExitCXXTryStmt(const CXXTryStmt &S, bool IsFnTryBlock = false);
2900 
2901   void EmitCXXTryStmt(const CXXTryStmt &S);
2902   void EmitSEHTryStmt(const SEHTryStmt &S);
2903   void EmitSEHLeaveStmt(const SEHLeaveStmt &S);
2904   void EnterSEHTryStmt(const SEHTryStmt &S);
2905   void ExitSEHTryStmt(const SEHTryStmt &S);
2906 
2907   void pushSEHCleanup(CleanupKind kind,
2908                       llvm::Function *FinallyFunc);
2909   void startOutlinedSEHHelper(CodeGenFunction &ParentCGF, bool IsFilter,
2910                               const Stmt *OutlinedStmt);
2911 
2912   llvm::Function *GenerateSEHFilterFunction(CodeGenFunction &ParentCGF,
2913                                             const SEHExceptStmt &Except);
2914 
2915   llvm::Function *GenerateSEHFinallyFunction(CodeGenFunction &ParentCGF,
2916                                              const SEHFinallyStmt &Finally);
2917 
2918   void EmitSEHExceptionCodeSave(CodeGenFunction &ParentCGF,
2919                                 llvm::Value *ParentFP,
2920                                 llvm::Value *EntryEBP);
2921   llvm::Value *EmitSEHExceptionCode();
2922   llvm::Value *EmitSEHExceptionInfo();
2923   llvm::Value *EmitSEHAbnormalTermination();
2924 
2925   /// Emit simple code for OpenMP directives in Simd-only mode.
2926   void EmitSimpleOMPExecutableDirective(const OMPExecutableDirective &D);
2927 
2928   /// Scan the outlined statement for captures from the parent function. For
2929   /// each capture, mark the capture as escaped and emit a call to
2930   /// llvm.localrecover. Insert the localrecover result into the LocalDeclMap.
2931   void EmitCapturedLocals(CodeGenFunction &ParentCGF, const Stmt *OutlinedStmt,
2932                           bool IsFilter);
2933 
2934   /// Recovers the address of a local in a parent function. ParentVar is the
2935   /// address of the variable used in the immediate parent function. It can
2936   /// either be an alloca or a call to llvm.localrecover if there are nested
2937   /// outlined functions. ParentFP is the frame pointer of the outermost parent
2938   /// frame.
2939   Address recoverAddrOfEscapedLocal(CodeGenFunction &ParentCGF,
2940                                     Address ParentVar,
2941                                     llvm::Value *ParentFP);
2942 
2943   void EmitCXXForRangeStmt(const CXXForRangeStmt &S,
2944                            ArrayRef<const Attr *> Attrs = None);
2945 
2946   /// Controls insertion of cancellation exit blocks in worksharing constructs.
2947   class OMPCancelStackRAII {
2948     CodeGenFunction &CGF;
2949 
2950   public:
2951     OMPCancelStackRAII(CodeGenFunction &CGF, OpenMPDirectiveKind Kind,
2952                        bool HasCancel)
2953         : CGF(CGF) {
2954       CGF.OMPCancelStack.enter(CGF, Kind, HasCancel);
2955     }
2956     ~OMPCancelStackRAII() { CGF.OMPCancelStack.exit(CGF); }
2957   };
2958 
2959   /// Returns calculated size of the specified type.
2960   llvm::Value *getTypeSize(QualType Ty);
2961   LValue InitCapturedStruct(const CapturedStmt &S);
2962   llvm::Function *EmitCapturedStmt(const CapturedStmt &S, CapturedRegionKind K);
2963   llvm::Function *GenerateCapturedStmtFunction(const CapturedStmt &S);
2964   Address GenerateCapturedStmtArgument(const CapturedStmt &S);
2965   llvm::Function *GenerateOpenMPCapturedStmtFunction(const CapturedStmt &S);
2966   void GenerateOpenMPCapturedVars(const CapturedStmt &S,
2967                                   SmallVectorImpl<llvm::Value *> &CapturedVars);
2968   void emitOMPSimpleStore(LValue LVal, RValue RVal, QualType RValTy,
2969                           SourceLocation Loc);
2970   /// Perform element by element copying of arrays with type \a
2971   /// OriginalType from \a SrcAddr to \a DestAddr using copying procedure
2972   /// generated by \a CopyGen.
2973   ///
2974   /// \param DestAddr Address of the destination array.
2975   /// \param SrcAddr Address of the source array.
2976   /// \param OriginalType Type of destination and source arrays.
2977   /// \param CopyGen Copying procedure that copies value of single array element
2978   /// to another single array element.
2979   void EmitOMPAggregateAssign(
2980       Address DestAddr, Address SrcAddr, QualType OriginalType,
2981       const llvm::function_ref<void(Address, Address)> CopyGen);
2982   /// Emit proper copying of data from one variable to another.
2983   ///
2984   /// \param OriginalType Original type of the copied variables.
2985   /// \param DestAddr Destination address.
2986   /// \param SrcAddr Source address.
2987   /// \param DestVD Destination variable used in \a CopyExpr (for arrays, has
2988   /// type of the base array element).
2989   /// \param SrcVD Source variable used in \a CopyExpr (for arrays, has type of
2990   /// the base array element).
2991   /// \param Copy Actual copygin expression for copying data from \a SrcVD to \a
2992   /// DestVD.
2993   void EmitOMPCopy(QualType OriginalType,
2994                    Address DestAddr, Address SrcAddr,
2995                    const VarDecl *DestVD, const VarDecl *SrcVD,
2996                    const Expr *Copy);
2997   /// Emit atomic update code for constructs: \a X = \a X \a BO \a E or
2998   /// \a X = \a E \a BO \a E.
2999   ///
3000   /// \param X Value to be updated.
3001   /// \param E Update value.
3002   /// \param BO Binary operation for update operation.
3003   /// \param IsXLHSInRHSPart true if \a X is LHS in RHS part of the update
3004   /// expression, false otherwise.
3005   /// \param AO Atomic ordering of the generated atomic instructions.
3006   /// \param CommonGen Code generator for complex expressions that cannot be
3007   /// expressed through atomicrmw instruction.
3008   /// \returns <true, OldAtomicValue> if simple 'atomicrmw' instruction was
3009   /// generated, <false, RValue::get(nullptr)> otherwise.
3010   std::pair<bool, RValue> EmitOMPAtomicSimpleUpdateExpr(
3011       LValue X, RValue E, BinaryOperatorKind BO, bool IsXLHSInRHSPart,
3012       llvm::AtomicOrdering AO, SourceLocation Loc,
3013       const llvm::function_ref<RValue(RValue)> CommonGen);
3014   bool EmitOMPFirstprivateClause(const OMPExecutableDirective &D,
3015                                  OMPPrivateScope &PrivateScope);
3016   void EmitOMPPrivateClause(const OMPExecutableDirective &D,
3017                             OMPPrivateScope &PrivateScope);
3018   void EmitOMPUseDevicePtrClause(
3019       const OMPClause &C, OMPPrivateScope &PrivateScope,
3020       const llvm::DenseMap<const ValueDecl *, Address> &CaptureDeviceAddrMap);
3021   /// Emit code for copyin clause in \a D directive. The next code is
3022   /// generated at the start of outlined functions for directives:
3023   /// \code
3024   /// threadprivate_var1 = master_threadprivate_var1;
3025   /// operator=(threadprivate_var2, master_threadprivate_var2);
3026   /// ...
3027   /// __kmpc_barrier(&loc, global_tid);
3028   /// \endcode
3029   ///
3030   /// \param D OpenMP directive possibly with 'copyin' clause(s).
3031   /// \returns true if at least one copyin variable is found, false otherwise.
3032   bool EmitOMPCopyinClause(const OMPExecutableDirective &D);
3033   /// Emit initial code for lastprivate variables. If some variable is
3034   /// not also firstprivate, then the default initialization is used. Otherwise
3035   /// initialization of this variable is performed by EmitOMPFirstprivateClause
3036   /// method.
3037   ///
3038   /// \param D Directive that may have 'lastprivate' directives.
3039   /// \param PrivateScope Private scope for capturing lastprivate variables for
3040   /// proper codegen in internal captured statement.
3041   ///
3042   /// \returns true if there is at least one lastprivate variable, false
3043   /// otherwise.
3044   bool EmitOMPLastprivateClauseInit(const OMPExecutableDirective &D,
3045                                     OMPPrivateScope &PrivateScope);
3046   /// Emit final copying of lastprivate values to original variables at
3047   /// the end of the worksharing or simd directive.
3048   ///
3049   /// \param D Directive that has at least one 'lastprivate' directives.
3050   /// \param IsLastIterCond Boolean condition that must be set to 'i1 true' if
3051   /// it is the last iteration of the loop code in associated directive, or to
3052   /// 'i1 false' otherwise. If this item is nullptr, no final check is required.
3053   void EmitOMPLastprivateClauseFinal(const OMPExecutableDirective &D,
3054                                      bool NoFinals,
3055                                      llvm::Value *IsLastIterCond = nullptr);
3056   /// Emit initial code for linear clauses.
3057   void EmitOMPLinearClause(const OMPLoopDirective &D,
3058                            CodeGenFunction::OMPPrivateScope &PrivateScope);
3059   /// Emit final code for linear clauses.
3060   /// \param CondGen Optional conditional code for final part of codegen for
3061   /// linear clause.
3062   void EmitOMPLinearClauseFinal(
3063       const OMPLoopDirective &D,
3064       const llvm::function_ref<llvm::Value *(CodeGenFunction &)> CondGen);
3065   /// Emit initial code for reduction variables. Creates reduction copies
3066   /// and initializes them with the values according to OpenMP standard.
3067   ///
3068   /// \param D Directive (possibly) with the 'reduction' clause.
3069   /// \param PrivateScope Private scope for capturing reduction variables for
3070   /// proper codegen in internal captured statement.
3071   ///
3072   void EmitOMPReductionClauseInit(const OMPExecutableDirective &D,
3073                                   OMPPrivateScope &PrivateScope);
3074   /// Emit final update of reduction values to original variables at
3075   /// the end of the directive.
3076   ///
3077   /// \param D Directive that has at least one 'reduction' directives.
3078   /// \param ReductionKind The kind of reduction to perform.
3079   void EmitOMPReductionClauseFinal(const OMPExecutableDirective &D,
3080                                    const OpenMPDirectiveKind ReductionKind);
3081   /// Emit initial code for linear variables. Creates private copies
3082   /// and initializes them with the values according to OpenMP standard.
3083   ///
3084   /// \param D Directive (possibly) with the 'linear' clause.
3085   /// \return true if at least one linear variable is found that should be
3086   /// initialized with the value of the original variable, false otherwise.
3087   bool EmitOMPLinearClauseInit(const OMPLoopDirective &D);
3088 
3089   typedef const llvm::function_ref<void(CodeGenFunction & /*CGF*/,
3090                                         llvm::Function * /*OutlinedFn*/,
3091                                         const OMPTaskDataTy & /*Data*/)>
3092       TaskGenTy;
3093   void EmitOMPTaskBasedDirective(const OMPExecutableDirective &S,
3094                                  const OpenMPDirectiveKind CapturedRegion,
3095                                  const RegionCodeGenTy &BodyGen,
3096                                  const TaskGenTy &TaskGen, OMPTaskDataTy &Data);
3097   struct OMPTargetDataInfo {
3098     Address BasePointersArray = Address::invalid();
3099     Address PointersArray = Address::invalid();
3100     Address SizesArray = Address::invalid();
3101     unsigned NumberOfTargetItems = 0;
3102     explicit OMPTargetDataInfo() = default;
3103     OMPTargetDataInfo(Address BasePointersArray, Address PointersArray,
3104                       Address SizesArray, unsigned NumberOfTargetItems)
3105         : BasePointersArray(BasePointersArray), PointersArray(PointersArray),
3106           SizesArray(SizesArray), NumberOfTargetItems(NumberOfTargetItems) {}
3107   };
3108   void EmitOMPTargetTaskBasedDirective(const OMPExecutableDirective &S,
3109                                        const RegionCodeGenTy &BodyGen,
3110                                        OMPTargetDataInfo &InputInfo);
3111 
3112   void EmitOMPParallelDirective(const OMPParallelDirective &S);
3113   void EmitOMPSimdDirective(const OMPSimdDirective &S);
3114   void EmitOMPForDirective(const OMPForDirective &S);
3115   void EmitOMPForSimdDirective(const OMPForSimdDirective &S);
3116   void EmitOMPSectionsDirective(const OMPSectionsDirective &S);
3117   void EmitOMPSectionDirective(const OMPSectionDirective &S);
3118   void EmitOMPSingleDirective(const OMPSingleDirective &S);
3119   void EmitOMPMasterDirective(const OMPMasterDirective &S);
3120   void EmitOMPCriticalDirective(const OMPCriticalDirective &S);
3121   void EmitOMPParallelForDirective(const OMPParallelForDirective &S);
3122   void EmitOMPParallelForSimdDirective(const OMPParallelForSimdDirective &S);
3123   void EmitOMPParallelSectionsDirective(const OMPParallelSectionsDirective &S);
3124   void EmitOMPTaskDirective(const OMPTaskDirective &S);
3125   void EmitOMPTaskyieldDirective(const OMPTaskyieldDirective &S);
3126   void EmitOMPBarrierDirective(const OMPBarrierDirective &S);
3127   void EmitOMPTaskwaitDirective(const OMPTaskwaitDirective &S);
3128   void EmitOMPTaskgroupDirective(const OMPTaskgroupDirective &S);
3129   void EmitOMPFlushDirective(const OMPFlushDirective &S);
3130   void EmitOMPOrderedDirective(const OMPOrderedDirective &S);
3131   void EmitOMPAtomicDirective(const OMPAtomicDirective &S);
3132   void EmitOMPTargetDirective(const OMPTargetDirective &S);
3133   void EmitOMPTargetDataDirective(const OMPTargetDataDirective &S);
3134   void EmitOMPTargetEnterDataDirective(const OMPTargetEnterDataDirective &S);
3135   void EmitOMPTargetExitDataDirective(const OMPTargetExitDataDirective &S);
3136   void EmitOMPTargetUpdateDirective(const OMPTargetUpdateDirective &S);
3137   void EmitOMPTargetParallelDirective(const OMPTargetParallelDirective &S);
3138   void
3139   EmitOMPTargetParallelForDirective(const OMPTargetParallelForDirective &S);
3140   void EmitOMPTeamsDirective(const OMPTeamsDirective &S);
3141   void
3142   EmitOMPCancellationPointDirective(const OMPCancellationPointDirective &S);
3143   void EmitOMPCancelDirective(const OMPCancelDirective &S);
3144   void EmitOMPTaskLoopBasedDirective(const OMPLoopDirective &S);
3145   void EmitOMPTaskLoopDirective(const OMPTaskLoopDirective &S);
3146   void EmitOMPTaskLoopSimdDirective(const OMPTaskLoopSimdDirective &S);
3147   void EmitOMPDistributeDirective(const OMPDistributeDirective &S);
3148   void EmitOMPDistributeParallelForDirective(
3149       const OMPDistributeParallelForDirective &S);
3150   void EmitOMPDistributeParallelForSimdDirective(
3151       const OMPDistributeParallelForSimdDirective &S);
3152   void EmitOMPDistributeSimdDirective(const OMPDistributeSimdDirective &S);
3153   void EmitOMPTargetParallelForSimdDirective(
3154       const OMPTargetParallelForSimdDirective &S);
3155   void EmitOMPTargetSimdDirective(const OMPTargetSimdDirective &S);
3156   void EmitOMPTeamsDistributeDirective(const OMPTeamsDistributeDirective &S);
3157   void
3158   EmitOMPTeamsDistributeSimdDirective(const OMPTeamsDistributeSimdDirective &S);
3159   void EmitOMPTeamsDistributeParallelForSimdDirective(
3160       const OMPTeamsDistributeParallelForSimdDirective &S);
3161   void EmitOMPTeamsDistributeParallelForDirective(
3162       const OMPTeamsDistributeParallelForDirective &S);
3163   void EmitOMPTargetTeamsDirective(const OMPTargetTeamsDirective &S);
3164   void EmitOMPTargetTeamsDistributeDirective(
3165       const OMPTargetTeamsDistributeDirective &S);
3166   void EmitOMPTargetTeamsDistributeParallelForDirective(
3167       const OMPTargetTeamsDistributeParallelForDirective &S);
3168   void EmitOMPTargetTeamsDistributeParallelForSimdDirective(
3169       const OMPTargetTeamsDistributeParallelForSimdDirective &S);
3170   void EmitOMPTargetTeamsDistributeSimdDirective(
3171       const OMPTargetTeamsDistributeSimdDirective &S);
3172 
3173   /// Emit device code for the target directive.
3174   static void EmitOMPTargetDeviceFunction(CodeGenModule &CGM,
3175                                           StringRef ParentName,
3176                                           const OMPTargetDirective &S);
3177   static void
3178   EmitOMPTargetParallelDeviceFunction(CodeGenModule &CGM, StringRef ParentName,
3179                                       const OMPTargetParallelDirective &S);
3180   /// Emit device code for the target parallel for directive.
3181   static void EmitOMPTargetParallelForDeviceFunction(
3182       CodeGenModule &CGM, StringRef ParentName,
3183       const OMPTargetParallelForDirective &S);
3184   /// Emit device code for the target parallel for simd directive.
3185   static void EmitOMPTargetParallelForSimdDeviceFunction(
3186       CodeGenModule &CGM, StringRef ParentName,
3187       const OMPTargetParallelForSimdDirective &S);
3188   /// Emit device code for the target teams directive.
3189   static void
3190   EmitOMPTargetTeamsDeviceFunction(CodeGenModule &CGM, StringRef ParentName,
3191                                    const OMPTargetTeamsDirective &S);
3192   /// Emit device code for the target teams distribute directive.
3193   static void EmitOMPTargetTeamsDistributeDeviceFunction(
3194       CodeGenModule &CGM, StringRef ParentName,
3195       const OMPTargetTeamsDistributeDirective &S);
3196   /// Emit device code for the target teams distribute simd directive.
3197   static void EmitOMPTargetTeamsDistributeSimdDeviceFunction(
3198       CodeGenModule &CGM, StringRef ParentName,
3199       const OMPTargetTeamsDistributeSimdDirective &S);
3200   /// Emit device code for the target simd directive.
3201   static void EmitOMPTargetSimdDeviceFunction(CodeGenModule &CGM,
3202                                               StringRef ParentName,
3203                                               const OMPTargetSimdDirective &S);
3204   /// Emit device code for the target teams distribute parallel for simd
3205   /// directive.
3206   static void EmitOMPTargetTeamsDistributeParallelForSimdDeviceFunction(
3207       CodeGenModule &CGM, StringRef ParentName,
3208       const OMPTargetTeamsDistributeParallelForSimdDirective &S);
3209 
3210   static void EmitOMPTargetTeamsDistributeParallelForDeviceFunction(
3211       CodeGenModule &CGM, StringRef ParentName,
3212       const OMPTargetTeamsDistributeParallelForDirective &S);
3213   /// Emit inner loop of the worksharing/simd construct.
3214   ///
3215   /// \param S Directive, for which the inner loop must be emitted.
3216   /// \param RequiresCleanup true, if directive has some associated private
3217   /// variables.
3218   /// \param LoopCond Bollean condition for loop continuation.
3219   /// \param IncExpr Increment expression for loop control variable.
3220   /// \param BodyGen Generator for the inner body of the inner loop.
3221   /// \param PostIncGen Genrator for post-increment code (required for ordered
3222   /// loop directvies).
3223   void EmitOMPInnerLoop(
3224       const Stmt &S, bool RequiresCleanup, const Expr *LoopCond,
3225       const Expr *IncExpr,
3226       const llvm::function_ref<void(CodeGenFunction &)> BodyGen,
3227       const llvm::function_ref<void(CodeGenFunction &)> PostIncGen);
3228 
3229   JumpDest getOMPCancelDestination(OpenMPDirectiveKind Kind);
3230   /// Emit initial code for loop counters of loop-based directives.
3231   void EmitOMPPrivateLoopCounters(const OMPLoopDirective &S,
3232                                   OMPPrivateScope &LoopScope);
3233 
3234   /// Helper for the OpenMP loop directives.
3235   void EmitOMPLoopBody(const OMPLoopDirective &D, JumpDest LoopExit);
3236 
3237   /// Emit code for the worksharing loop-based directive.
3238   /// \return true, if this construct has any lastprivate clause, false -
3239   /// otherwise.
3240   bool EmitOMPWorksharingLoop(const OMPLoopDirective &S, Expr *EUB,
3241                               const CodeGenLoopBoundsTy &CodeGenLoopBounds,
3242                               const CodeGenDispatchBoundsTy &CGDispatchBounds);
3243 
3244   /// Emit code for the distribute loop-based directive.
3245   void EmitOMPDistributeLoop(const OMPLoopDirective &S,
3246                              const CodeGenLoopTy &CodeGenLoop, Expr *IncExpr);
3247 
3248   /// Helpers for the OpenMP loop directives.
3249   void EmitOMPSimdInit(const OMPLoopDirective &D, bool IsMonotonic = false);
3250   void EmitOMPSimdFinal(
3251       const OMPLoopDirective &D,
3252       const llvm::function_ref<llvm::Value *(CodeGenFunction &)> CondGen);
3253 
3254   /// Emits the lvalue for the expression with possibly captured variable.
3255   LValue EmitOMPSharedLValue(const Expr *E);
3256 
3257 private:
3258   /// Helpers for blocks.
3259   llvm::Value *EmitBlockLiteral(const CGBlockInfo &Info);
3260 
3261   /// struct with the values to be passed to the OpenMP loop-related functions
3262   struct OMPLoopArguments {
3263     /// loop lower bound
3264     Address LB = Address::invalid();
3265     /// loop upper bound
3266     Address UB = Address::invalid();
3267     /// loop stride
3268     Address ST = Address::invalid();
3269     /// isLastIteration argument for runtime functions
3270     Address IL = Address::invalid();
3271     /// Chunk value generated by sema
3272     llvm::Value *Chunk = nullptr;
3273     /// EnsureUpperBound
3274     Expr *EUB = nullptr;
3275     /// IncrementExpression
3276     Expr *IncExpr = nullptr;
3277     /// Loop initialization
3278     Expr *Init = nullptr;
3279     /// Loop exit condition
3280     Expr *Cond = nullptr;
3281     /// Update of LB after a whole chunk has been executed
3282     Expr *NextLB = nullptr;
3283     /// Update of UB after a whole chunk has been executed
3284     Expr *NextUB = nullptr;
3285     OMPLoopArguments() = default;
3286     OMPLoopArguments(Address LB, Address UB, Address ST, Address IL,
3287                      llvm::Value *Chunk = nullptr, Expr *EUB = nullptr,
3288                      Expr *IncExpr = nullptr, Expr *Init = nullptr,
3289                      Expr *Cond = nullptr, Expr *NextLB = nullptr,
3290                      Expr *NextUB = nullptr)
3291         : LB(LB), UB(UB), ST(ST), IL(IL), Chunk(Chunk), EUB(EUB),
3292           IncExpr(IncExpr), Init(Init), Cond(Cond), NextLB(NextLB),
3293           NextUB(NextUB) {}
3294   };
3295   void EmitOMPOuterLoop(bool DynamicOrOrdered, bool IsMonotonic,
3296                         const OMPLoopDirective &S, OMPPrivateScope &LoopScope,
3297                         const OMPLoopArguments &LoopArgs,
3298                         const CodeGenLoopTy &CodeGenLoop,
3299                         const CodeGenOrderedTy &CodeGenOrdered);
3300   void EmitOMPForOuterLoop(const OpenMPScheduleTy &ScheduleKind,
3301                            bool IsMonotonic, const OMPLoopDirective &S,
3302                            OMPPrivateScope &LoopScope, bool Ordered,
3303                            const OMPLoopArguments &LoopArgs,
3304                            const CodeGenDispatchBoundsTy &CGDispatchBounds);
3305   void EmitOMPDistributeOuterLoop(OpenMPDistScheduleClauseKind ScheduleKind,
3306                                   const OMPLoopDirective &S,
3307                                   OMPPrivateScope &LoopScope,
3308                                   const OMPLoopArguments &LoopArgs,
3309                                   const CodeGenLoopTy &CodeGenLoopContent);
3310   /// Emit code for sections directive.
3311   void EmitSections(const OMPExecutableDirective &S);
3312 
3313 public:
3314 
3315   //===--------------------------------------------------------------------===//
3316   //                         LValue Expression Emission
3317   //===--------------------------------------------------------------------===//
3318 
3319   /// GetUndefRValue - Get an appropriate 'undef' rvalue for the given type.
3320   RValue GetUndefRValue(QualType Ty);
3321 
3322   /// EmitUnsupportedRValue - Emit a dummy r-value using the type of E
3323   /// and issue an ErrorUnsupported style diagnostic (using the
3324   /// provided Name).
3325   RValue EmitUnsupportedRValue(const Expr *E,
3326                                const char *Name);
3327 
3328   /// EmitUnsupportedLValue - Emit a dummy l-value using the type of E and issue
3329   /// an ErrorUnsupported style diagnostic (using the provided Name).
3330   LValue EmitUnsupportedLValue(const Expr *E,
3331                                const char *Name);
3332 
3333   /// EmitLValue - Emit code to compute a designator that specifies the location
3334   /// of the expression.
3335   ///
3336   /// This can return one of two things: a simple address or a bitfield
3337   /// reference.  In either case, the LLVM Value* in the LValue structure is
3338   /// guaranteed to be an LLVM pointer type.
3339   ///
3340   /// If this returns a bitfield reference, nothing about the pointee type of
3341   /// the LLVM value is known: For example, it may not be a pointer to an
3342   /// integer.
3343   ///
3344   /// If this returns a normal address, and if the lvalue's C type is fixed
3345   /// size, this method guarantees that the returned pointer type will point to
3346   /// an LLVM type of the same size of the lvalue's type.  If the lvalue has a
3347   /// variable length type, this is not possible.
3348   ///
3349   LValue EmitLValue(const Expr *E);
3350 
3351   /// Same as EmitLValue but additionally we generate checking code to
3352   /// guard against undefined behavior.  This is only suitable when we know
3353   /// that the address will be used to access the object.
3354   LValue EmitCheckedLValue(const Expr *E, TypeCheckKind TCK);
3355 
3356   RValue convertTempToRValue(Address addr, QualType type,
3357                              SourceLocation Loc);
3358 
3359   void EmitAtomicInit(Expr *E, LValue lvalue);
3360 
3361   bool LValueIsSuitableForInlineAtomic(LValue Src);
3362 
3363   RValue EmitAtomicLoad(LValue LV, SourceLocation SL,
3364                         AggValueSlot Slot = AggValueSlot::ignored());
3365 
3366   RValue EmitAtomicLoad(LValue lvalue, SourceLocation loc,
3367                         llvm::AtomicOrdering AO, bool IsVolatile = false,
3368                         AggValueSlot slot = AggValueSlot::ignored());
3369 
3370   void EmitAtomicStore(RValue rvalue, LValue lvalue, bool isInit);
3371 
3372   void EmitAtomicStore(RValue rvalue, LValue lvalue, llvm::AtomicOrdering AO,
3373                        bool IsVolatile, bool isInit);
3374 
3375   std::pair<RValue, llvm::Value *> EmitAtomicCompareExchange(
3376       LValue Obj, RValue Expected, RValue Desired, SourceLocation Loc,
3377       llvm::AtomicOrdering Success =
3378           llvm::AtomicOrdering::SequentiallyConsistent,
3379       llvm::AtomicOrdering Failure =
3380           llvm::AtomicOrdering::SequentiallyConsistent,
3381       bool IsWeak = false, AggValueSlot Slot = AggValueSlot::ignored());
3382 
3383   void EmitAtomicUpdate(LValue LVal, llvm::AtomicOrdering AO,
3384                         const llvm::function_ref<RValue(RValue)> &UpdateOp,
3385                         bool IsVolatile);
3386 
3387   /// EmitToMemory - Change a scalar value from its value
3388   /// representation to its in-memory representation.
3389   llvm::Value *EmitToMemory(llvm::Value *Value, QualType Ty);
3390 
3391   /// EmitFromMemory - Change a scalar value from its memory
3392   /// representation to its value representation.
3393   llvm::Value *EmitFromMemory(llvm::Value *Value, QualType Ty);
3394 
3395   /// Check if the scalar \p Value is within the valid range for the given
3396   /// type \p Ty.
3397   ///
3398   /// Returns true if a check is needed (even if the range is unknown).
3399   bool EmitScalarRangeCheck(llvm::Value *Value, QualType Ty,
3400                             SourceLocation Loc);
3401 
3402   /// EmitLoadOfScalar - Load a scalar value from an address, taking
3403   /// care to appropriately convert from the memory representation to
3404   /// the LLVM value representation.
3405   llvm::Value *EmitLoadOfScalar(Address Addr, bool Volatile, QualType Ty,
3406                                 SourceLocation Loc,
3407                                 AlignmentSource Source = AlignmentSource::Type,
3408                                 bool isNontemporal = false) {
3409     return EmitLoadOfScalar(Addr, Volatile, Ty, Loc, LValueBaseInfo(Source),
3410                             CGM.getTBAAAccessInfo(Ty), isNontemporal);
3411   }
3412 
3413   llvm::Value *EmitLoadOfScalar(Address Addr, bool Volatile, QualType Ty,
3414                                 SourceLocation Loc, LValueBaseInfo BaseInfo,
3415                                 TBAAAccessInfo TBAAInfo,
3416                                 bool isNontemporal = false);
3417 
3418   /// EmitLoadOfScalar - Load a scalar value from an address, taking
3419   /// care to appropriately convert from the memory representation to
3420   /// the LLVM value representation.  The l-value must be a simple
3421   /// l-value.
3422   llvm::Value *EmitLoadOfScalar(LValue lvalue, SourceLocation Loc);
3423 
3424   /// EmitStoreOfScalar - Store a scalar value to an address, taking
3425   /// care to appropriately convert from the memory representation to
3426   /// the LLVM value representation.
3427   void EmitStoreOfScalar(llvm::Value *Value, Address Addr,
3428                          bool Volatile, QualType Ty,
3429                          AlignmentSource Source = AlignmentSource::Type,
3430                          bool isInit = false, bool isNontemporal = false) {
3431     EmitStoreOfScalar(Value, Addr, Volatile, Ty, LValueBaseInfo(Source),
3432                       CGM.getTBAAAccessInfo(Ty), isInit, isNontemporal);
3433   }
3434 
3435   void EmitStoreOfScalar(llvm::Value *Value, Address Addr,
3436                          bool Volatile, QualType Ty,
3437                          LValueBaseInfo BaseInfo, TBAAAccessInfo TBAAInfo,
3438                          bool isInit = false, bool isNontemporal = false);
3439 
3440   /// EmitStoreOfScalar - Store a scalar value to an address, taking
3441   /// care to appropriately convert from the memory representation to
3442   /// the LLVM value representation.  The l-value must be a simple
3443   /// l-value.  The isInit flag indicates whether this is an initialization.
3444   /// If so, atomic qualifiers are ignored and the store is always non-atomic.
3445   void EmitStoreOfScalar(llvm::Value *value, LValue lvalue, bool isInit=false);
3446 
3447   /// EmitLoadOfLValue - Given an expression that represents a value lvalue,
3448   /// this method emits the address of the lvalue, then loads the result as an
3449   /// rvalue, returning the rvalue.
3450   RValue EmitLoadOfLValue(LValue V, SourceLocation Loc);
3451   RValue EmitLoadOfExtVectorElementLValue(LValue V);
3452   RValue EmitLoadOfBitfieldLValue(LValue LV, SourceLocation Loc);
3453   RValue EmitLoadOfGlobalRegLValue(LValue LV);
3454 
3455   /// EmitStoreThroughLValue - Store the specified rvalue into the specified
3456   /// lvalue, where both are guaranteed to the have the same type, and that type
3457   /// is 'Ty'.
3458   void EmitStoreThroughLValue(RValue Src, LValue Dst, bool isInit = false);
3459   void EmitStoreThroughExtVectorComponentLValue(RValue Src, LValue Dst);
3460   void EmitStoreThroughGlobalRegLValue(RValue Src, LValue Dst);
3461 
3462   /// EmitStoreThroughBitfieldLValue - Store Src into Dst with same constraints
3463   /// as EmitStoreThroughLValue.
3464   ///
3465   /// \param Result [out] - If non-null, this will be set to a Value* for the
3466   /// bit-field contents after the store, appropriate for use as the result of
3467   /// an assignment to the bit-field.
3468   void EmitStoreThroughBitfieldLValue(RValue Src, LValue Dst,
3469                                       llvm::Value **Result=nullptr);
3470 
3471   /// Emit an l-value for an assignment (simple or compound) of complex type.
3472   LValue EmitComplexAssignmentLValue(const BinaryOperator *E);
3473   LValue EmitComplexCompoundAssignmentLValue(const CompoundAssignOperator *E);
3474   LValue EmitScalarCompoundAssignWithComplex(const CompoundAssignOperator *E,
3475                                              llvm::Value *&Result);
3476 
3477   // Note: only available for agg return types
3478   LValue EmitBinaryOperatorLValue(const BinaryOperator *E);
3479   LValue EmitCompoundAssignmentLValue(const CompoundAssignOperator *E);
3480   // Note: only available for agg return types
3481   LValue EmitCallExprLValue(const CallExpr *E);
3482   // Note: only available for agg return types
3483   LValue EmitVAArgExprLValue(const VAArgExpr *E);
3484   LValue EmitDeclRefLValue(const DeclRefExpr *E);
3485   LValue EmitStringLiteralLValue(const StringLiteral *E);
3486   LValue EmitObjCEncodeExprLValue(const ObjCEncodeExpr *E);
3487   LValue EmitPredefinedLValue(const PredefinedExpr *E);
3488   LValue EmitUnaryOpLValue(const UnaryOperator *E);
3489   LValue EmitArraySubscriptExpr(const ArraySubscriptExpr *E,
3490                                 bool Accessed = false);
3491   LValue EmitOMPArraySectionExpr(const OMPArraySectionExpr *E,
3492                                  bool IsLowerBound = true);
3493   LValue EmitExtVectorElementExpr(const ExtVectorElementExpr *E);
3494   LValue EmitMemberExpr(const MemberExpr *E);
3495   LValue EmitObjCIsaExpr(const ObjCIsaExpr *E);
3496   LValue EmitCompoundLiteralLValue(const CompoundLiteralExpr *E);
3497   LValue EmitInitListLValue(const InitListExpr *E);
3498   LValue EmitConditionalOperatorLValue(const AbstractConditionalOperator *E);
3499   LValue EmitCastLValue(const CastExpr *E);
3500   LValue EmitMaterializeTemporaryExpr(const MaterializeTemporaryExpr *E);
3501   LValue EmitOpaqueValueLValue(const OpaqueValueExpr *e);
3502 
3503   Address EmitExtVectorElementLValue(LValue V);
3504 
3505   RValue EmitRValueForField(LValue LV, const FieldDecl *FD, SourceLocation Loc);
3506 
3507   Address EmitArrayToPointerDecay(const Expr *Array,
3508                                   LValueBaseInfo *BaseInfo = nullptr,
3509                                   TBAAAccessInfo *TBAAInfo = nullptr);
3510 
3511   class ConstantEmission {
3512     llvm::PointerIntPair<llvm::Constant*, 1, bool> ValueAndIsReference;
3513     ConstantEmission(llvm::Constant *C, bool isReference)
3514       : ValueAndIsReference(C, isReference) {}
3515   public:
3516     ConstantEmission() {}
3517     static ConstantEmission forReference(llvm::Constant *C) {
3518       return ConstantEmission(C, true);
3519     }
3520     static ConstantEmission forValue(llvm::Constant *C) {
3521       return ConstantEmission(C, false);
3522     }
3523 
3524     explicit operator bool() const {
3525       return ValueAndIsReference.getOpaqueValue() != nullptr;
3526     }
3527 
3528     bool isReference() const { return ValueAndIsReference.getInt(); }
3529     LValue getReferenceLValue(CodeGenFunction &CGF, Expr *refExpr) const {
3530       assert(isReference());
3531       return CGF.MakeNaturalAlignAddrLValue(ValueAndIsReference.getPointer(),
3532                                             refExpr->getType());
3533     }
3534 
3535     llvm::Constant *getValue() const {
3536       assert(!isReference());
3537       return ValueAndIsReference.getPointer();
3538     }
3539   };
3540 
3541   ConstantEmission tryEmitAsConstant(DeclRefExpr *refExpr);
3542   ConstantEmission tryEmitAsConstant(const MemberExpr *ME);
3543   llvm::Value *emitScalarConstant(const ConstantEmission &Constant, Expr *E);
3544 
3545   RValue EmitPseudoObjectRValue(const PseudoObjectExpr *e,
3546                                 AggValueSlot slot = AggValueSlot::ignored());
3547   LValue EmitPseudoObjectLValue(const PseudoObjectExpr *e);
3548 
3549   llvm::Value *EmitIvarOffset(const ObjCInterfaceDecl *Interface,
3550                               const ObjCIvarDecl *Ivar);
3551   LValue EmitLValueForField(LValue Base, const FieldDecl* Field);
3552   LValue EmitLValueForLambdaField(const FieldDecl *Field);
3553 
3554   /// EmitLValueForFieldInitialization - Like EmitLValueForField, except that
3555   /// if the Field is a reference, this will return the address of the reference
3556   /// and not the address of the value stored in the reference.
3557   LValue EmitLValueForFieldInitialization(LValue Base,
3558                                           const FieldDecl* Field);
3559 
3560   LValue EmitLValueForIvar(QualType ObjectTy,
3561                            llvm::Value* Base, const ObjCIvarDecl *Ivar,
3562                            unsigned CVRQualifiers);
3563 
3564   LValue EmitCXXConstructLValue(const CXXConstructExpr *E);
3565   LValue EmitCXXBindTemporaryLValue(const CXXBindTemporaryExpr *E);
3566   LValue EmitCXXTypeidLValue(const CXXTypeidExpr *E);
3567   LValue EmitCXXUuidofLValue(const CXXUuidofExpr *E);
3568 
3569   LValue EmitObjCMessageExprLValue(const ObjCMessageExpr *E);
3570   LValue EmitObjCIvarRefLValue(const ObjCIvarRefExpr *E);
3571   LValue EmitStmtExprLValue(const StmtExpr *E);
3572   LValue EmitPointerToDataMemberBinaryExpr(const BinaryOperator *E);
3573   LValue EmitObjCSelectorLValue(const ObjCSelectorExpr *E);
3574   void   EmitDeclRefExprDbgValue(const DeclRefExpr *E, const APValue &Init);
3575 
3576   //===--------------------------------------------------------------------===//
3577   //                         Scalar Expression Emission
3578   //===--------------------------------------------------------------------===//
3579 
3580   /// EmitCall - Generate a call of the given function, expecting the given
3581   /// result type, and using the given argument list which specifies both the
3582   /// LLVM arguments and the types they were derived from.
3583   RValue EmitCall(const CGFunctionInfo &CallInfo, const CGCallee &Callee,
3584                   ReturnValueSlot ReturnValue, const CallArgList &Args,
3585                   llvm::CallBase **callOrInvoke, SourceLocation Loc);
3586   RValue EmitCall(const CGFunctionInfo &CallInfo, const CGCallee &Callee,
3587                   ReturnValueSlot ReturnValue, const CallArgList &Args,
3588                   llvm::CallBase **callOrInvoke = nullptr) {
3589     return EmitCall(CallInfo, Callee, ReturnValue, Args, callOrInvoke,
3590                     SourceLocation());
3591   }
3592   RValue EmitCall(QualType FnType, const CGCallee &Callee, const CallExpr *E,
3593                   ReturnValueSlot ReturnValue, llvm::Value *Chain = nullptr);
3594   RValue EmitCallExpr(const CallExpr *E,
3595                       ReturnValueSlot ReturnValue = ReturnValueSlot());
3596   RValue EmitSimpleCallExpr(const CallExpr *E, ReturnValueSlot ReturnValue);
3597   CGCallee EmitCallee(const Expr *E);
3598 
3599   void checkTargetFeatures(const CallExpr *E, const FunctionDecl *TargetDecl);
3600 
3601   llvm::CallInst *EmitRuntimeCall(llvm::FunctionCallee callee,
3602                                   const Twine &name = "");
3603   llvm::CallInst *EmitRuntimeCall(llvm::FunctionCallee callee,
3604                                   ArrayRef<llvm::Value *> args,
3605                                   const Twine &name = "");
3606   llvm::CallInst *EmitNounwindRuntimeCall(llvm::FunctionCallee callee,
3607                                           const Twine &name = "");
3608   llvm::CallInst *EmitNounwindRuntimeCall(llvm::FunctionCallee callee,
3609                                           ArrayRef<llvm::Value *> args,
3610                                           const Twine &name = "");
3611 
3612   SmallVector<llvm::OperandBundleDef, 1>
3613   getBundlesForFunclet(llvm::Value *Callee);
3614 
3615   llvm::CallBase *EmitCallOrInvoke(llvm::FunctionCallee Callee,
3616                                    ArrayRef<llvm::Value *> Args,
3617                                    const Twine &Name = "");
3618   llvm::CallBase *EmitRuntimeCallOrInvoke(llvm::FunctionCallee callee,
3619                                           ArrayRef<llvm::Value *> args,
3620                                           const Twine &name = "");
3621   llvm::CallBase *EmitRuntimeCallOrInvoke(llvm::FunctionCallee callee,
3622                                           const Twine &name = "");
3623   void EmitNoreturnRuntimeCallOrInvoke(llvm::FunctionCallee callee,
3624                                        ArrayRef<llvm::Value *> args);
3625 
3626   CGCallee BuildAppleKextVirtualCall(const CXXMethodDecl *MD,
3627                                      NestedNameSpecifier *Qual,
3628                                      llvm::Type *Ty);
3629 
3630   CGCallee BuildAppleKextVirtualDestructorCall(const CXXDestructorDecl *DD,
3631                                                CXXDtorType Type,
3632                                                const CXXRecordDecl *RD);
3633 
3634   // Return the copy constructor name with the prefix "__copy_constructor_"
3635   // removed.
3636   static std::string getNonTrivialCopyConstructorStr(QualType QT,
3637                                                      CharUnits Alignment,
3638                                                      bool IsVolatile,
3639                                                      ASTContext &Ctx);
3640 
3641   // Return the destructor name with the prefix "__destructor_" removed.
3642   static std::string getNonTrivialDestructorStr(QualType QT,
3643                                                 CharUnits Alignment,
3644                                                 bool IsVolatile,
3645                                                 ASTContext &Ctx);
3646 
3647   // These functions emit calls to the special functions of non-trivial C
3648   // structs.
3649   void defaultInitNonTrivialCStructVar(LValue Dst);
3650   void callCStructDefaultConstructor(LValue Dst);
3651   void callCStructDestructor(LValue Dst);
3652   void callCStructCopyConstructor(LValue Dst, LValue Src);
3653   void callCStructMoveConstructor(LValue Dst, LValue Src);
3654   void callCStructCopyAssignmentOperator(LValue Dst, LValue Src);
3655   void callCStructMoveAssignmentOperator(LValue Dst, LValue Src);
3656 
3657   RValue
3658   EmitCXXMemberOrOperatorCall(const CXXMethodDecl *Method,
3659                               const CGCallee &Callee,
3660                               ReturnValueSlot ReturnValue, llvm::Value *This,
3661                               llvm::Value *ImplicitParam,
3662                               QualType ImplicitParamTy, const CallExpr *E,
3663                               CallArgList *RtlArgs);
3664   RValue EmitCXXDestructorCall(const CXXDestructorDecl *DD,
3665                                const CGCallee &Callee,
3666                                llvm::Value *This, llvm::Value *ImplicitParam,
3667                                QualType ImplicitParamTy, const CallExpr *E,
3668                                StructorType Type);
3669   RValue EmitCXXMemberCallExpr(const CXXMemberCallExpr *E,
3670                                ReturnValueSlot ReturnValue);
3671   RValue EmitCXXMemberOrOperatorMemberCallExpr(const CallExpr *CE,
3672                                                const CXXMethodDecl *MD,
3673                                                ReturnValueSlot ReturnValue,
3674                                                bool HasQualifier,
3675                                                NestedNameSpecifier *Qualifier,
3676                                                bool IsArrow, const Expr *Base);
3677   // Compute the object pointer.
3678   Address EmitCXXMemberDataPointerAddress(const Expr *E, Address base,
3679                                           llvm::Value *memberPtr,
3680                                           const MemberPointerType *memberPtrType,
3681                                           LValueBaseInfo *BaseInfo = nullptr,
3682                                           TBAAAccessInfo *TBAAInfo = nullptr);
3683   RValue EmitCXXMemberPointerCallExpr(const CXXMemberCallExpr *E,
3684                                       ReturnValueSlot ReturnValue);
3685 
3686   RValue EmitCXXOperatorMemberCallExpr(const CXXOperatorCallExpr *E,
3687                                        const CXXMethodDecl *MD,
3688                                        ReturnValueSlot ReturnValue);
3689   RValue EmitCXXPseudoDestructorExpr(const CXXPseudoDestructorExpr *E);
3690 
3691   RValue EmitCUDAKernelCallExpr(const CUDAKernelCallExpr *E,
3692                                 ReturnValueSlot ReturnValue);
3693 
3694   RValue EmitNVPTXDevicePrintfCallExpr(const CallExpr *E,
3695                                        ReturnValueSlot ReturnValue);
3696 
3697   RValue EmitBuiltinExpr(const GlobalDecl GD, unsigned BuiltinID,
3698                          const CallExpr *E, ReturnValueSlot ReturnValue);
3699 
3700   RValue emitFortifiedStdLibCall(CodeGenFunction &CGF, const CallExpr *CE,
3701                                  unsigned BuiltinID, unsigned BOSType,
3702                                  unsigned Flag);
3703 
3704   RValue emitRotate(const CallExpr *E, bool IsRotateRight);
3705 
3706   /// Emit IR for __builtin_os_log_format.
3707   RValue emitBuiltinOSLogFormat(const CallExpr &E);
3708 
3709   llvm::Function *generateBuiltinOSLogHelperFunction(
3710       const analyze_os_log::OSLogBufferLayout &Layout,
3711       CharUnits BufferAlignment);
3712 
3713   RValue EmitBlockCallExpr(const CallExpr *E, ReturnValueSlot ReturnValue);
3714 
3715   /// EmitTargetBuiltinExpr - Emit the given builtin call. Returns 0 if the call
3716   /// is unhandled by the current target.
3717   llvm::Value *EmitTargetBuiltinExpr(unsigned BuiltinID, const CallExpr *E);
3718 
3719   llvm::Value *EmitAArch64CompareBuiltinExpr(llvm::Value *Op, llvm::Type *Ty,
3720                                              const llvm::CmpInst::Predicate Fp,
3721                                              const llvm::CmpInst::Predicate Ip,
3722                                              const llvm::Twine &Name = "");
3723   llvm::Value *EmitARMBuiltinExpr(unsigned BuiltinID, const CallExpr *E,
3724                                   llvm::Triple::ArchType Arch);
3725 
3726   llvm::Value *EmitCommonNeonBuiltinExpr(unsigned BuiltinID,
3727                                          unsigned LLVMIntrinsic,
3728                                          unsigned AltLLVMIntrinsic,
3729                                          const char *NameHint,
3730                                          unsigned Modifier,
3731                                          const CallExpr *E,
3732                                          SmallVectorImpl<llvm::Value *> &Ops,
3733                                          Address PtrOp0, Address PtrOp1,
3734                                          llvm::Triple::ArchType Arch);
3735 
3736   llvm::Value *EmitISOVolatileLoad(const CallExpr *E);
3737   llvm::Value *EmitISOVolatileStore(const CallExpr *E);
3738 
3739   llvm::Function *LookupNeonLLVMIntrinsic(unsigned IntrinsicID,
3740                                           unsigned Modifier, llvm::Type *ArgTy,
3741                                           const CallExpr *E);
3742   llvm::Value *EmitNeonCall(llvm::Function *F,
3743                             SmallVectorImpl<llvm::Value*> &O,
3744                             const char *name,
3745                             unsigned shift = 0, bool rightshift = false);
3746   llvm::Value *EmitNeonSplat(llvm::Value *V, llvm::Constant *Idx);
3747   llvm::Value *EmitNeonShiftVector(llvm::Value *V, llvm::Type *Ty,
3748                                    bool negateForRightShift);
3749   llvm::Value *EmitNeonRShiftImm(llvm::Value *Vec, llvm::Value *Amt,
3750                                  llvm::Type *Ty, bool usgn, const char *name);
3751   llvm::Value *vectorWrapScalar16(llvm::Value *Op);
3752   llvm::Value *EmitAArch64BuiltinExpr(unsigned BuiltinID, const CallExpr *E,
3753                                       llvm::Triple::ArchType Arch);
3754 
3755   llvm::Value *BuildVector(ArrayRef<llvm::Value*> Ops);
3756   llvm::Value *EmitX86BuiltinExpr(unsigned BuiltinID, const CallExpr *E);
3757   llvm::Value *EmitPPCBuiltinExpr(unsigned BuiltinID, const CallExpr *E);
3758   llvm::Value *EmitAMDGPUBuiltinExpr(unsigned BuiltinID, const CallExpr *E);
3759   llvm::Value *EmitSystemZBuiltinExpr(unsigned BuiltinID, const CallExpr *E);
3760   llvm::Value *EmitNVPTXBuiltinExpr(unsigned BuiltinID, const CallExpr *E);
3761   llvm::Value *EmitWebAssemblyBuiltinExpr(unsigned BuiltinID,
3762                                           const CallExpr *E);
3763   llvm::Value *EmitHexagonBuiltinExpr(unsigned BuiltinID, const CallExpr *E);
3764 
3765 private:
3766   enum class MSVCIntrin;
3767 
3768 public:
3769   llvm::Value *EmitMSVCBuiltinExpr(MSVCIntrin BuiltinID, const CallExpr *E);
3770 
3771   llvm::Value *EmitBuiltinAvailable(ArrayRef<llvm::Value *> Args);
3772 
3773   llvm::Value *EmitObjCProtocolExpr(const ObjCProtocolExpr *E);
3774   llvm::Value *EmitObjCStringLiteral(const ObjCStringLiteral *E);
3775   llvm::Value *EmitObjCBoxedExpr(const ObjCBoxedExpr *E);
3776   llvm::Value *EmitObjCArrayLiteral(const ObjCArrayLiteral *E);
3777   llvm::Value *EmitObjCDictionaryLiteral(const ObjCDictionaryLiteral *E);
3778   llvm::Value *EmitObjCCollectionLiteral(const Expr *E,
3779                                 const ObjCMethodDecl *MethodWithObjects);
3780   llvm::Value *EmitObjCSelectorExpr(const ObjCSelectorExpr *E);
3781   RValue EmitObjCMessageExpr(const ObjCMessageExpr *E,
3782                              ReturnValueSlot Return = ReturnValueSlot());
3783 
3784   /// Retrieves the default cleanup kind for an ARC cleanup.
3785   /// Except under -fobjc-arc-eh, ARC cleanups are normal-only.
3786   CleanupKind getARCCleanupKind() {
3787     return CGM.getCodeGenOpts().ObjCAutoRefCountExceptions
3788              ? NormalAndEHCleanup : NormalCleanup;
3789   }
3790 
3791   // ARC primitives.
3792   void EmitARCInitWeak(Address addr, llvm::Value *value);
3793   void EmitARCDestroyWeak(Address addr);
3794   llvm::Value *EmitARCLoadWeak(Address addr);
3795   llvm::Value *EmitARCLoadWeakRetained(Address addr);
3796   llvm::Value *EmitARCStoreWeak(Address addr, llvm::Value *value, bool ignored);
3797   void emitARCCopyAssignWeak(QualType Ty, Address DstAddr, Address SrcAddr);
3798   void emitARCMoveAssignWeak(QualType Ty, Address DstAddr, Address SrcAddr);
3799   void EmitARCCopyWeak(Address dst, Address src);
3800   void EmitARCMoveWeak(Address dst, Address src);
3801   llvm::Value *EmitARCRetainAutorelease(QualType type, llvm::Value *value);
3802   llvm::Value *EmitARCRetainAutoreleaseNonBlock(llvm::Value *value);
3803   llvm::Value *EmitARCStoreStrong(LValue lvalue, llvm::Value *value,
3804                                   bool resultIgnored);
3805   llvm::Value *EmitARCStoreStrongCall(Address addr, llvm::Value *value,
3806                                       bool resultIgnored);
3807   llvm::Value *EmitARCRetain(QualType type, llvm::Value *value);
3808   llvm::Value *EmitARCRetainNonBlock(llvm::Value *value);
3809   llvm::Value *EmitARCRetainBlock(llvm::Value *value, bool mandatory);
3810   void EmitARCDestroyStrong(Address addr, ARCPreciseLifetime_t precise);
3811   void EmitARCRelease(llvm::Value *value, ARCPreciseLifetime_t precise);
3812   llvm::Value *EmitARCAutorelease(llvm::Value *value);
3813   llvm::Value *EmitARCAutoreleaseReturnValue(llvm::Value *value);
3814   llvm::Value *EmitARCRetainAutoreleaseReturnValue(llvm::Value *value);
3815   llvm::Value *EmitARCRetainAutoreleasedReturnValue(llvm::Value *value);
3816   llvm::Value *EmitARCUnsafeClaimAutoreleasedReturnValue(llvm::Value *value);
3817 
3818   llvm::Value *EmitObjCAutorelease(llvm::Value *value, llvm::Type *returnType);
3819   llvm::Value *EmitObjCRetainNonBlock(llvm::Value *value,
3820                                       llvm::Type *returnType);
3821   void EmitObjCRelease(llvm::Value *value, ARCPreciseLifetime_t precise);
3822 
3823   std::pair<LValue,llvm::Value*>
3824   EmitARCStoreAutoreleasing(const BinaryOperator *e);
3825   std::pair<LValue,llvm::Value*>
3826   EmitARCStoreStrong(const BinaryOperator *e, bool ignored);
3827   std::pair<LValue,llvm::Value*>
3828   EmitARCStoreUnsafeUnretained(const BinaryOperator *e, bool ignored);
3829 
3830   llvm::Value *EmitObjCAlloc(llvm::Value *value,
3831                              llvm::Type *returnType);
3832   llvm::Value *EmitObjCAllocWithZone(llvm::Value *value,
3833                                      llvm::Type *returnType);
3834   llvm::Value *EmitObjCAllocInit(llvm::Value *value, llvm::Type *resultType);
3835 
3836   llvm::Value *EmitObjCThrowOperand(const Expr *expr);
3837   llvm::Value *EmitObjCConsumeObject(QualType T, llvm::Value *Ptr);
3838   llvm::Value *EmitObjCExtendObjectLifetime(QualType T, llvm::Value *Ptr);
3839 
3840   llvm::Value *EmitARCExtendBlockObject(const Expr *expr);
3841   llvm::Value *EmitARCReclaimReturnedObject(const Expr *e,
3842                                             bool allowUnsafeClaim);
3843   llvm::Value *EmitARCRetainScalarExpr(const Expr *expr);
3844   llvm::Value *EmitARCRetainAutoreleaseScalarExpr(const Expr *expr);
3845   llvm::Value *EmitARCUnsafeUnretainedScalarExpr(const Expr *expr);
3846 
3847   void EmitARCIntrinsicUse(ArrayRef<llvm::Value*> values);
3848 
3849   static Destroyer destroyARCStrongImprecise;
3850   static Destroyer destroyARCStrongPrecise;
3851   static Destroyer destroyARCWeak;
3852   static Destroyer emitARCIntrinsicUse;
3853   static Destroyer destroyNonTrivialCStruct;
3854 
3855   void EmitObjCAutoreleasePoolPop(llvm::Value *Ptr);
3856   llvm::Value *EmitObjCAutoreleasePoolPush();
3857   llvm::Value *EmitObjCMRRAutoreleasePoolPush();
3858   void EmitObjCAutoreleasePoolCleanup(llvm::Value *Ptr);
3859   void EmitObjCMRRAutoreleasePoolPop(llvm::Value *Ptr);
3860 
3861   /// Emits a reference binding to the passed in expression.
3862   RValue EmitReferenceBindingToExpr(const Expr *E);
3863 
3864   //===--------------------------------------------------------------------===//
3865   //                           Expression Emission
3866   //===--------------------------------------------------------------------===//
3867 
3868   // Expressions are broken into three classes: scalar, complex, aggregate.
3869 
3870   /// EmitScalarExpr - Emit the computation of the specified expression of LLVM
3871   /// scalar type, returning the result.
3872   llvm::Value *EmitScalarExpr(const Expr *E , bool IgnoreResultAssign = false);
3873 
3874   /// Emit a conversion from the specified type to the specified destination
3875   /// type, both of which are LLVM scalar types.
3876   llvm::Value *EmitScalarConversion(llvm::Value *Src, QualType SrcTy,
3877                                     QualType DstTy, SourceLocation Loc);
3878 
3879   /// Emit a conversion from the specified complex type to the specified
3880   /// destination type, where the destination type is an LLVM scalar type.
3881   llvm::Value *EmitComplexToScalarConversion(ComplexPairTy Src, QualType SrcTy,
3882                                              QualType DstTy,
3883                                              SourceLocation Loc);
3884 
3885   /// EmitAggExpr - Emit the computation of the specified expression
3886   /// of aggregate type.  The result is computed into the given slot,
3887   /// which may be null to indicate that the value is not needed.
3888   void EmitAggExpr(const Expr *E, AggValueSlot AS);
3889 
3890   /// EmitAggExprToLValue - Emit the computation of the specified expression of
3891   /// aggregate type into a temporary LValue.
3892   LValue EmitAggExprToLValue(const Expr *E);
3893 
3894   /// EmitExtendGCLifetime - Given a pointer to an Objective-C object,
3895   /// make sure it survives garbage collection until this point.
3896   void EmitExtendGCLifetime(llvm::Value *object);
3897 
3898   /// EmitComplexExpr - Emit the computation of the specified expression of
3899   /// complex type, returning the result.
3900   ComplexPairTy EmitComplexExpr(const Expr *E,
3901                                 bool IgnoreReal = false,
3902                                 bool IgnoreImag = false);
3903 
3904   /// EmitComplexExprIntoLValue - Emit the given expression of complex
3905   /// type and place its result into the specified l-value.
3906   void EmitComplexExprIntoLValue(const Expr *E, LValue dest, bool isInit);
3907 
3908   /// EmitStoreOfComplex - Store a complex number into the specified l-value.
3909   void EmitStoreOfComplex(ComplexPairTy V, LValue dest, bool isInit);
3910 
3911   /// EmitLoadOfComplex - Load a complex number from the specified l-value.
3912   ComplexPairTy EmitLoadOfComplex(LValue src, SourceLocation loc);
3913 
3914   Address emitAddrOfRealComponent(Address complex, QualType complexType);
3915   Address emitAddrOfImagComponent(Address complex, QualType complexType);
3916 
3917   /// AddInitializerToStaticVarDecl - Add the initializer for 'D' to the
3918   /// global variable that has already been created for it.  If the initializer
3919   /// has a different type than GV does, this may free GV and return a different
3920   /// one.  Otherwise it just returns GV.
3921   llvm::GlobalVariable *
3922   AddInitializerToStaticVarDecl(const VarDecl &D,
3923                                 llvm::GlobalVariable *GV);
3924 
3925   // Emit an @llvm.invariant.start call for the given memory region.
3926   void EmitInvariantStart(llvm::Constant *Addr, CharUnits Size);
3927 
3928   /// EmitCXXGlobalVarDeclInit - Create the initializer for a C++
3929   /// variable with global storage.
3930   void EmitCXXGlobalVarDeclInit(const VarDecl &D, llvm::Constant *DeclPtr,
3931                                 bool PerformInit);
3932 
3933   llvm::Function *createAtExitStub(const VarDecl &VD, llvm::FunctionCallee Dtor,
3934                                    llvm::Constant *Addr);
3935 
3936   /// Call atexit() with a function that passes the given argument to
3937   /// the given function.
3938   void registerGlobalDtorWithAtExit(const VarDecl &D, llvm::FunctionCallee fn,
3939                                     llvm::Constant *addr);
3940 
3941   /// Call atexit() with function dtorStub.
3942   void registerGlobalDtorWithAtExit(llvm::Constant *dtorStub);
3943 
3944   /// Emit code in this function to perform a guarded variable
3945   /// initialization.  Guarded initializations are used when it's not
3946   /// possible to prove that an initialization will be done exactly
3947   /// once, e.g. with a static local variable or a static data member
3948   /// of a class template.
3949   void EmitCXXGuardedInit(const VarDecl &D, llvm::GlobalVariable *DeclPtr,
3950                           bool PerformInit);
3951 
3952   enum class GuardKind { VariableGuard, TlsGuard };
3953 
3954   /// Emit a branch to select whether or not to perform guarded initialization.
3955   void EmitCXXGuardedInitBranch(llvm::Value *NeedsInit,
3956                                 llvm::BasicBlock *InitBlock,
3957                                 llvm::BasicBlock *NoInitBlock,
3958                                 GuardKind Kind, const VarDecl *D);
3959 
3960   /// GenerateCXXGlobalInitFunc - Generates code for initializing global
3961   /// variables.
3962   void
3963   GenerateCXXGlobalInitFunc(llvm::Function *Fn,
3964                             ArrayRef<llvm::Function *> CXXThreadLocals,
3965                             ConstantAddress Guard = ConstantAddress::invalid());
3966 
3967   /// GenerateCXXGlobalDtorsFunc - Generates code for destroying global
3968   /// variables.
3969   void GenerateCXXGlobalDtorsFunc(
3970       llvm::Function *Fn,
3971       const std::vector<std::tuple<llvm::FunctionType *, llvm::WeakTrackingVH,
3972                                    llvm::Constant *>> &DtorsAndObjects);
3973 
3974   void GenerateCXXGlobalVarDeclInitFunc(llvm::Function *Fn,
3975                                         const VarDecl *D,
3976                                         llvm::GlobalVariable *Addr,
3977                                         bool PerformInit);
3978 
3979   void EmitCXXConstructExpr(const CXXConstructExpr *E, AggValueSlot Dest);
3980 
3981   void EmitSynthesizedCXXCopyCtor(Address Dest, Address Src, const Expr *Exp);
3982 
3983   void enterFullExpression(const FullExpr *E) {
3984     if (const auto *EWC = dyn_cast<ExprWithCleanups>(E))
3985       if (EWC->getNumObjects() == 0)
3986         return;
3987     enterNonTrivialFullExpression(E);
3988   }
3989   void enterNonTrivialFullExpression(const FullExpr *E);
3990 
3991   void EmitCXXThrowExpr(const CXXThrowExpr *E, bool KeepInsertionPoint = true);
3992 
3993   RValue EmitAtomicExpr(AtomicExpr *E);
3994 
3995   //===--------------------------------------------------------------------===//
3996   //                         Annotations Emission
3997   //===--------------------------------------------------------------------===//
3998 
3999   /// Emit an annotation call (intrinsic).
4000   llvm::Value *EmitAnnotationCall(llvm::Function *AnnotationFn,
4001                                   llvm::Value *AnnotatedVal,
4002                                   StringRef AnnotationStr,
4003                                   SourceLocation Location);
4004 
4005   /// Emit local annotations for the local variable V, declared by D.
4006   void EmitVarAnnotations(const VarDecl *D, llvm::Value *V);
4007 
4008   /// Emit field annotations for the given field & value. Returns the
4009   /// annotation result.
4010   Address EmitFieldAnnotations(const FieldDecl *D, Address V);
4011 
4012   //===--------------------------------------------------------------------===//
4013   //                             Internal Helpers
4014   //===--------------------------------------------------------------------===//
4015 
4016   /// ContainsLabel - Return true if the statement contains a label in it.  If
4017   /// this statement is not executed normally, it not containing a label means
4018   /// that we can just remove the code.
4019   static bool ContainsLabel(const Stmt *S, bool IgnoreCaseStmts = false);
4020 
4021   /// containsBreak - Return true if the statement contains a break out of it.
4022   /// If the statement (recursively) contains a switch or loop with a break
4023   /// inside of it, this is fine.
4024   static bool containsBreak(const Stmt *S);
4025 
4026   /// Determine if the given statement might introduce a declaration into the
4027   /// current scope, by being a (possibly-labelled) DeclStmt.
4028   static bool mightAddDeclToScope(const Stmt *S);
4029 
4030   /// ConstantFoldsToSimpleInteger - If the specified expression does not fold
4031   /// to a constant, or if it does but contains a label, return false.  If it
4032   /// constant folds return true and set the boolean result in Result.
4033   bool ConstantFoldsToSimpleInteger(const Expr *Cond, bool &Result,
4034                                     bool AllowLabels = false);
4035 
4036   /// ConstantFoldsToSimpleInteger - If the specified expression does not fold
4037   /// to a constant, or if it does but contains a label, return false.  If it
4038   /// constant folds return true and set the folded value.
4039   bool ConstantFoldsToSimpleInteger(const Expr *Cond, llvm::APSInt &Result,
4040                                     bool AllowLabels = false);
4041 
4042   /// EmitBranchOnBoolExpr - Emit a branch on a boolean condition (e.g. for an
4043   /// if statement) to the specified blocks.  Based on the condition, this might
4044   /// try to simplify the codegen of the conditional based on the branch.
4045   /// TrueCount should be the number of times we expect the condition to
4046   /// evaluate to true based on PGO data.
4047   void EmitBranchOnBoolExpr(const Expr *Cond, llvm::BasicBlock *TrueBlock,
4048                             llvm::BasicBlock *FalseBlock, uint64_t TrueCount);
4049 
4050   /// Given an assignment `*LHS = RHS`, emit a test that checks if \p RHS is
4051   /// nonnull, if \p LHS is marked _Nonnull.
4052   void EmitNullabilityCheck(LValue LHS, llvm::Value *RHS, SourceLocation Loc);
4053 
4054   /// An enumeration which makes it easier to specify whether or not an
4055   /// operation is a subtraction.
4056   enum { NotSubtraction = false, IsSubtraction = true };
4057 
4058   /// Same as IRBuilder::CreateInBoundsGEP, but additionally emits a check to
4059   /// detect undefined behavior when the pointer overflow sanitizer is enabled.
4060   /// \p SignedIndices indicates whether any of the GEP indices are signed.
4061   /// \p IsSubtraction indicates whether the expression used to form the GEP
4062   /// is a subtraction.
4063   llvm::Value *EmitCheckedInBoundsGEP(llvm::Value *Ptr,
4064                                       ArrayRef<llvm::Value *> IdxList,
4065                                       bool SignedIndices,
4066                                       bool IsSubtraction,
4067                                       SourceLocation Loc,
4068                                       const Twine &Name = "");
4069 
4070   /// Specifies which type of sanitizer check to apply when handling a
4071   /// particular builtin.
4072   enum BuiltinCheckKind {
4073     BCK_CTZPassedZero,
4074     BCK_CLZPassedZero,
4075   };
4076 
4077   /// Emits an argument for a call to a builtin. If the builtin sanitizer is
4078   /// enabled, a runtime check specified by \p Kind is also emitted.
4079   llvm::Value *EmitCheckedArgForBuiltin(const Expr *E, BuiltinCheckKind Kind);
4080 
4081   /// Emit a description of a type in a format suitable for passing to
4082   /// a runtime sanitizer handler.
4083   llvm::Constant *EmitCheckTypeDescriptor(QualType T);
4084 
4085   /// Convert a value into a format suitable for passing to a runtime
4086   /// sanitizer handler.
4087   llvm::Value *EmitCheckValue(llvm::Value *V);
4088 
4089   /// Emit a description of a source location in a format suitable for
4090   /// passing to a runtime sanitizer handler.
4091   llvm::Constant *EmitCheckSourceLocation(SourceLocation Loc);
4092 
4093   /// Create a basic block that will either trap or call a handler function in
4094   /// the UBSan runtime with the provided arguments, and create a conditional
4095   /// branch to it.
4096   void EmitCheck(ArrayRef<std::pair<llvm::Value *, SanitizerMask>> Checked,
4097                  SanitizerHandler Check, ArrayRef<llvm::Constant *> StaticArgs,
4098                  ArrayRef<llvm::Value *> DynamicArgs);
4099 
4100   /// Emit a slow path cross-DSO CFI check which calls __cfi_slowpath
4101   /// if Cond if false.
4102   void EmitCfiSlowPathCheck(SanitizerMask Kind, llvm::Value *Cond,
4103                             llvm::ConstantInt *TypeId, llvm::Value *Ptr,
4104                             ArrayRef<llvm::Constant *> StaticArgs);
4105 
4106   /// Emit a reached-unreachable diagnostic if \p Loc is valid and runtime
4107   /// checking is enabled. Otherwise, just emit an unreachable instruction.
4108   void EmitUnreachable(SourceLocation Loc);
4109 
4110   /// Create a basic block that will call the trap intrinsic, and emit a
4111   /// conditional branch to it, for the -ftrapv checks.
4112   void EmitTrapCheck(llvm::Value *Checked);
4113 
4114   /// Emit a call to trap or debugtrap and attach function attribute
4115   /// "trap-func-name" if specified.
4116   llvm::CallInst *EmitTrapCall(llvm::Intrinsic::ID IntrID);
4117 
4118   /// Emit a stub for the cross-DSO CFI check function.
4119   void EmitCfiCheckStub();
4120 
4121   /// Emit a cross-DSO CFI failure handling function.
4122   void EmitCfiCheckFail();
4123 
4124   /// Create a check for a function parameter that may potentially be
4125   /// declared as non-null.
4126   void EmitNonNullArgCheck(RValue RV, QualType ArgType, SourceLocation ArgLoc,
4127                            AbstractCallee AC, unsigned ParmNum);
4128 
4129   /// EmitCallArg - Emit a single call argument.
4130   void EmitCallArg(CallArgList &args, const Expr *E, QualType ArgType);
4131 
4132   /// EmitDelegateCallArg - We are performing a delegate call; that
4133   /// is, the current function is delegating to another one.  Produce
4134   /// a r-value suitable for passing the given parameter.
4135   void EmitDelegateCallArg(CallArgList &args, const VarDecl *param,
4136                            SourceLocation loc);
4137 
4138   /// SetFPAccuracy - Set the minimum required accuracy of the given floating
4139   /// point operation, expressed as the maximum relative error in ulp.
4140   void SetFPAccuracy(llvm::Value *Val, float Accuracy);
4141 
4142 private:
4143   llvm::MDNode *getRangeForLoadFromType(QualType Ty);
4144   void EmitReturnOfRValue(RValue RV, QualType Ty);
4145 
4146   void deferPlaceholderReplacement(llvm::Instruction *Old, llvm::Value *New);
4147 
4148   llvm::SmallVector<std::pair<llvm::Instruction *, llvm::Value *>, 4>
4149   DeferredReplacements;
4150 
4151   /// Set the address of a local variable.
4152   void setAddrOfLocalVar(const VarDecl *VD, Address Addr) {
4153     assert(!LocalDeclMap.count(VD) && "Decl already exists in LocalDeclMap!");
4154     LocalDeclMap.insert({VD, Addr});
4155   }
4156 
4157   /// ExpandTypeFromArgs - Reconstruct a structure of type \arg Ty
4158   /// from function arguments into \arg Dst. See ABIArgInfo::Expand.
4159   ///
4160   /// \param AI - The first function argument of the expansion.
4161   void ExpandTypeFromArgs(QualType Ty, LValue Dst,
4162                           SmallVectorImpl<llvm::Value *>::iterator &AI);
4163 
4164   /// ExpandTypeToArgs - Expand an CallArg \arg Arg, with the LLVM type for \arg
4165   /// Ty, into individual arguments on the provided vector \arg IRCallArgs,
4166   /// starting at index \arg IRCallArgPos. See ABIArgInfo::Expand.
4167   void ExpandTypeToArgs(QualType Ty, CallArg Arg, llvm::FunctionType *IRFuncTy,
4168                         SmallVectorImpl<llvm::Value *> &IRCallArgs,
4169                         unsigned &IRCallArgPos);
4170 
4171   llvm::Value* EmitAsmInput(const TargetInfo::ConstraintInfo &Info,
4172                             const Expr *InputExpr, std::string &ConstraintStr);
4173 
4174   llvm::Value* EmitAsmInputLValue(const TargetInfo::ConstraintInfo &Info,
4175                                   LValue InputValue, QualType InputType,
4176                                   std::string &ConstraintStr,
4177                                   SourceLocation Loc);
4178 
4179   /// Attempts to statically evaluate the object size of E. If that
4180   /// fails, emits code to figure the size of E out for us. This is
4181   /// pass_object_size aware.
4182   ///
4183   /// If EmittedExpr is non-null, this will use that instead of re-emitting E.
4184   llvm::Value *evaluateOrEmitBuiltinObjectSize(const Expr *E, unsigned Type,
4185                                                llvm::IntegerType *ResType,
4186                                                llvm::Value *EmittedE,
4187                                                bool IsDynamic);
4188 
4189   /// Emits the size of E, as required by __builtin_object_size. This
4190   /// function is aware of pass_object_size parameters, and will act accordingly
4191   /// if E is a parameter with the pass_object_size attribute.
4192   llvm::Value *emitBuiltinObjectSize(const Expr *E, unsigned Type,
4193                                      llvm::IntegerType *ResType,
4194                                      llvm::Value *EmittedE,
4195                                      bool IsDynamic);
4196 
4197 public:
4198 #ifndef NDEBUG
4199   // Determine whether the given argument is an Objective-C method
4200   // that may have type parameters in its signature.
4201   static bool isObjCMethodWithTypeParams(const ObjCMethodDecl *method) {
4202     const DeclContext *dc = method->getDeclContext();
4203     if (const ObjCInterfaceDecl *classDecl= dyn_cast<ObjCInterfaceDecl>(dc)) {
4204       return classDecl->getTypeParamListAsWritten();
4205     }
4206 
4207     if (const ObjCCategoryDecl *catDecl = dyn_cast<ObjCCategoryDecl>(dc)) {
4208       return catDecl->getTypeParamList();
4209     }
4210 
4211     return false;
4212   }
4213 
4214   template<typename T>
4215   static bool isObjCMethodWithTypeParams(const T *) { return false; }
4216 #endif
4217 
4218   enum class EvaluationOrder {
4219     ///! No language constraints on evaluation order.
4220     Default,
4221     ///! Language semantics require left-to-right evaluation.
4222     ForceLeftToRight,
4223     ///! Language semantics require right-to-left evaluation.
4224     ForceRightToLeft
4225   };
4226 
4227   /// EmitCallArgs - Emit call arguments for a function.
4228   template <typename T>
4229   void EmitCallArgs(CallArgList &Args, const T *CallArgTypeInfo,
4230                     llvm::iterator_range<CallExpr::const_arg_iterator> ArgRange,
4231                     AbstractCallee AC = AbstractCallee(),
4232                     unsigned ParamsToSkip = 0,
4233                     EvaluationOrder Order = EvaluationOrder::Default) {
4234     SmallVector<QualType, 16> ArgTypes;
4235     CallExpr::const_arg_iterator Arg = ArgRange.begin();
4236 
4237     assert((ParamsToSkip == 0 || CallArgTypeInfo) &&
4238            "Can't skip parameters if type info is not provided");
4239     if (CallArgTypeInfo) {
4240 #ifndef NDEBUG
4241       bool isGenericMethod = isObjCMethodWithTypeParams(CallArgTypeInfo);
4242 #endif
4243 
4244       // First, use the argument types that the type info knows about
4245       for (auto I = CallArgTypeInfo->param_type_begin() + ParamsToSkip,
4246                 E = CallArgTypeInfo->param_type_end();
4247            I != E; ++I, ++Arg) {
4248         assert(Arg != ArgRange.end() && "Running over edge of argument list!");
4249         assert((isGenericMethod ||
4250                 ((*I)->isVariablyModifiedType() ||
4251                  (*I).getNonReferenceType()->isObjCRetainableType() ||
4252                  getContext()
4253                          .getCanonicalType((*I).getNonReferenceType())
4254                          .getTypePtr() ==
4255                      getContext()
4256                          .getCanonicalType((*Arg)->getType())
4257                          .getTypePtr())) &&
4258                "type mismatch in call argument!");
4259         ArgTypes.push_back(*I);
4260       }
4261     }
4262 
4263     // Either we've emitted all the call args, or we have a call to variadic
4264     // function.
4265     assert((Arg == ArgRange.end() || !CallArgTypeInfo ||
4266             CallArgTypeInfo->isVariadic()) &&
4267            "Extra arguments in non-variadic function!");
4268 
4269     // If we still have any arguments, emit them using the type of the argument.
4270     for (auto *A : llvm::make_range(Arg, ArgRange.end()))
4271       ArgTypes.push_back(CallArgTypeInfo ? getVarArgType(A) : A->getType());
4272 
4273     EmitCallArgs(Args, ArgTypes, ArgRange, AC, ParamsToSkip, Order);
4274   }
4275 
4276   void EmitCallArgs(CallArgList &Args, ArrayRef<QualType> ArgTypes,
4277                     llvm::iterator_range<CallExpr::const_arg_iterator> ArgRange,
4278                     AbstractCallee AC = AbstractCallee(),
4279                     unsigned ParamsToSkip = 0,
4280                     EvaluationOrder Order = EvaluationOrder::Default);
4281 
4282   /// EmitPointerWithAlignment - Given an expression with a pointer type,
4283   /// emit the value and compute our best estimate of the alignment of the
4284   /// pointee.
4285   ///
4286   /// \param BaseInfo - If non-null, this will be initialized with
4287   /// information about the source of the alignment and the may-alias
4288   /// attribute.  Note that this function will conservatively fall back on
4289   /// the type when it doesn't recognize the expression and may-alias will
4290   /// be set to false.
4291   ///
4292   /// One reasonable way to use this information is when there's a language
4293   /// guarantee that the pointer must be aligned to some stricter value, and
4294   /// we're simply trying to ensure that sufficiently obvious uses of under-
4295   /// aligned objects don't get miscompiled; for example, a placement new
4296   /// into the address of a local variable.  In such a case, it's quite
4297   /// reasonable to just ignore the returned alignment when it isn't from an
4298   /// explicit source.
4299   Address EmitPointerWithAlignment(const Expr *Addr,
4300                                    LValueBaseInfo *BaseInfo = nullptr,
4301                                    TBAAAccessInfo *TBAAInfo = nullptr);
4302 
4303   /// If \p E references a parameter with pass_object_size info or a constant
4304   /// array size modifier, emit the object size divided by the size of \p EltTy.
4305   /// Otherwise return null.
4306   llvm::Value *LoadPassedObjectSize(const Expr *E, QualType EltTy);
4307 
4308   void EmitSanitizerStatReport(llvm::SanitizerStatKind SSK);
4309 
4310   struct MultiVersionResolverOption {
4311     llvm::Function *Function;
4312     FunctionDecl *FD;
4313     struct Conds {
4314       StringRef Architecture;
4315       llvm::SmallVector<StringRef, 8> Features;
4316 
4317       Conds(StringRef Arch, ArrayRef<StringRef> Feats)
4318           : Architecture(Arch), Features(Feats.begin(), Feats.end()) {}
4319     } Conditions;
4320 
4321     MultiVersionResolverOption(llvm::Function *F, StringRef Arch,
4322                                ArrayRef<StringRef> Feats)
4323         : Function(F), Conditions(Arch, Feats) {}
4324   };
4325 
4326   // Emits the body of a multiversion function's resolver. Assumes that the
4327   // options are already sorted in the proper order, with the 'default' option
4328   // last (if it exists).
4329   void EmitMultiVersionResolver(llvm::Function *Resolver,
4330                                 ArrayRef<MultiVersionResolverOption> Options);
4331 
4332   static uint64_t GetX86CpuSupportsMask(ArrayRef<StringRef> FeatureStrs);
4333 
4334 private:
4335   QualType getVarArgType(const Expr *Arg);
4336 
4337   void EmitDeclMetadata();
4338 
4339   BlockByrefHelpers *buildByrefHelpers(llvm::StructType &byrefType,
4340                                   const AutoVarEmission &emission);
4341 
4342   void AddObjCARCExceptionMetadata(llvm::Instruction *Inst);
4343 
4344   llvm::Value *GetValueForARMHint(unsigned BuiltinID);
4345   llvm::Value *EmitX86CpuIs(const CallExpr *E);
4346   llvm::Value *EmitX86CpuIs(StringRef CPUStr);
4347   llvm::Value *EmitX86CpuSupports(const CallExpr *E);
4348   llvm::Value *EmitX86CpuSupports(ArrayRef<StringRef> FeatureStrs);
4349   llvm::Value *EmitX86CpuSupports(uint64_t Mask);
4350   llvm::Value *EmitX86CpuInit();
4351   llvm::Value *FormResolverCondition(const MultiVersionResolverOption &RO);
4352 };
4353 
4354 inline DominatingLLVMValue::saved_type
4355 DominatingLLVMValue::save(CodeGenFunction &CGF, llvm::Value *value) {
4356   if (!needsSaving(value)) return saved_type(value, false);
4357 
4358   // Otherwise, we need an alloca.
4359   auto align = CharUnits::fromQuantity(
4360             CGF.CGM.getDataLayout().getPrefTypeAlignment(value->getType()));
4361   Address alloca =
4362     CGF.CreateTempAlloca(value->getType(), align, "cond-cleanup.save");
4363   CGF.Builder.CreateStore(value, alloca);
4364 
4365   return saved_type(alloca.getPointer(), true);
4366 }
4367 
4368 inline llvm::Value *DominatingLLVMValue::restore(CodeGenFunction &CGF,
4369                                                  saved_type value) {
4370   // If the value says it wasn't saved, trust that it's still dominating.
4371   if (!value.getInt()) return value.getPointer();
4372 
4373   // Otherwise, it should be an alloca instruction, as set up in save().
4374   auto alloca = cast<llvm::AllocaInst>(value.getPointer());
4375   return CGF.Builder.CreateAlignedLoad(alloca, alloca->getAlignment());
4376 }
4377 
4378 }  // end namespace CodeGen
4379 }  // end namespace clang
4380 
4381 #endif
4382