1 //===-- CodeGenFunction.h - Per-Function state for LLVM CodeGen -*- C++ -*-===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This is the internal per-function state used for llvm translation. 10 // 11 //===----------------------------------------------------------------------===// 12 13 #ifndef LLVM_CLANG_LIB_CODEGEN_CODEGENFUNCTION_H 14 #define LLVM_CLANG_LIB_CODEGEN_CODEGENFUNCTION_H 15 16 #include "CGBuilder.h" 17 #include "CGDebugInfo.h" 18 #include "CGLoopInfo.h" 19 #include "CGValue.h" 20 #include "CodeGenModule.h" 21 #include "CodeGenPGO.h" 22 #include "EHScopeStack.h" 23 #include "VarBypassDetector.h" 24 #include "clang/AST/CharUnits.h" 25 #include "clang/AST/ExprCXX.h" 26 #include "clang/AST/ExprObjC.h" 27 #include "clang/AST/ExprOpenMP.h" 28 #include "clang/AST/Type.h" 29 #include "clang/Basic/ABI.h" 30 #include "clang/Basic/CapturedStmt.h" 31 #include "clang/Basic/CodeGenOptions.h" 32 #include "clang/Basic/OpenMPKinds.h" 33 #include "clang/Basic/TargetInfo.h" 34 #include "llvm/ADT/ArrayRef.h" 35 #include "llvm/ADT/DenseMap.h" 36 #include "llvm/ADT/MapVector.h" 37 #include "llvm/ADT/SmallVector.h" 38 #include "llvm/IR/ValueHandle.h" 39 #include "llvm/Support/Debug.h" 40 #include "llvm/Transforms/Utils/SanitizerStats.h" 41 42 namespace llvm { 43 class BasicBlock; 44 class LLVMContext; 45 class MDNode; 46 class Module; 47 class SwitchInst; 48 class Twine; 49 class Value; 50 } 51 52 namespace clang { 53 class ASTContext; 54 class BlockDecl; 55 class CXXDestructorDecl; 56 class CXXForRangeStmt; 57 class CXXTryStmt; 58 class Decl; 59 class LabelDecl; 60 class EnumConstantDecl; 61 class FunctionDecl; 62 class FunctionProtoType; 63 class LabelStmt; 64 class ObjCContainerDecl; 65 class ObjCInterfaceDecl; 66 class ObjCIvarDecl; 67 class ObjCMethodDecl; 68 class ObjCImplementationDecl; 69 class ObjCPropertyImplDecl; 70 class TargetInfo; 71 class VarDecl; 72 class ObjCForCollectionStmt; 73 class ObjCAtTryStmt; 74 class ObjCAtThrowStmt; 75 class ObjCAtSynchronizedStmt; 76 class ObjCAutoreleasePoolStmt; 77 78 namespace analyze_os_log { 79 class OSLogBufferLayout; 80 } 81 82 namespace CodeGen { 83 class CodeGenTypes; 84 class CGCallee; 85 class CGFunctionInfo; 86 class CGRecordLayout; 87 class CGBlockInfo; 88 class CGCXXABI; 89 class BlockByrefHelpers; 90 class BlockByrefInfo; 91 class BlockFlags; 92 class BlockFieldFlags; 93 class RegionCodeGenTy; 94 class TargetCodeGenInfo; 95 struct OMPTaskDataTy; 96 struct CGCoroData; 97 98 /// The kind of evaluation to perform on values of a particular 99 /// type. Basically, is the code in CGExprScalar, CGExprComplex, or 100 /// CGExprAgg? 101 /// 102 /// TODO: should vectors maybe be split out into their own thing? 103 enum TypeEvaluationKind { 104 TEK_Scalar, 105 TEK_Complex, 106 TEK_Aggregate 107 }; 108 109 #define LIST_SANITIZER_CHECKS \ 110 SANITIZER_CHECK(AddOverflow, add_overflow, 0) \ 111 SANITIZER_CHECK(BuiltinUnreachable, builtin_unreachable, 0) \ 112 SANITIZER_CHECK(CFICheckFail, cfi_check_fail, 0) \ 113 SANITIZER_CHECK(DivremOverflow, divrem_overflow, 0) \ 114 SANITIZER_CHECK(DynamicTypeCacheMiss, dynamic_type_cache_miss, 0) \ 115 SANITIZER_CHECK(FloatCastOverflow, float_cast_overflow, 0) \ 116 SANITIZER_CHECK(FunctionTypeMismatch, function_type_mismatch, 0) \ 117 SANITIZER_CHECK(ImplicitConversion, implicit_conversion, 0) \ 118 SANITIZER_CHECK(InvalidBuiltin, invalid_builtin, 0) \ 119 SANITIZER_CHECK(LoadInvalidValue, load_invalid_value, 0) \ 120 SANITIZER_CHECK(MissingReturn, missing_return, 0) \ 121 SANITIZER_CHECK(MulOverflow, mul_overflow, 0) \ 122 SANITIZER_CHECK(NegateOverflow, negate_overflow, 0) \ 123 SANITIZER_CHECK(NullabilityArg, nullability_arg, 0) \ 124 SANITIZER_CHECK(NullabilityReturn, nullability_return, 1) \ 125 SANITIZER_CHECK(NonnullArg, nonnull_arg, 0) \ 126 SANITIZER_CHECK(NonnullReturn, nonnull_return, 1) \ 127 SANITIZER_CHECK(OutOfBounds, out_of_bounds, 0) \ 128 SANITIZER_CHECK(PointerOverflow, pointer_overflow, 0) \ 129 SANITIZER_CHECK(ShiftOutOfBounds, shift_out_of_bounds, 0) \ 130 SANITIZER_CHECK(SubOverflow, sub_overflow, 0) \ 131 SANITIZER_CHECK(TypeMismatch, type_mismatch, 1) \ 132 SANITIZER_CHECK(AlignmentAssumption, alignment_assumption, 0) \ 133 SANITIZER_CHECK(VLABoundNotPositive, vla_bound_not_positive, 0) 134 135 enum SanitizerHandler { 136 #define SANITIZER_CHECK(Enum, Name, Version) Enum, 137 LIST_SANITIZER_CHECKS 138 #undef SANITIZER_CHECK 139 }; 140 141 /// Helper class with most of the code for saving a value for a 142 /// conditional expression cleanup. 143 struct DominatingLLVMValue { 144 typedef llvm::PointerIntPair<llvm::Value*, 1, bool> saved_type; 145 146 /// Answer whether the given value needs extra work to be saved. 147 static bool needsSaving(llvm::Value *value) { 148 // If it's not an instruction, we don't need to save. 149 if (!isa<llvm::Instruction>(value)) return false; 150 151 // If it's an instruction in the entry block, we don't need to save. 152 llvm::BasicBlock *block = cast<llvm::Instruction>(value)->getParent(); 153 return (block != &block->getParent()->getEntryBlock()); 154 } 155 156 static saved_type save(CodeGenFunction &CGF, llvm::Value *value); 157 static llvm::Value *restore(CodeGenFunction &CGF, saved_type value); 158 }; 159 160 /// A partial specialization of DominatingValue for llvm::Values that 161 /// might be llvm::Instructions. 162 template <class T> struct DominatingPointer<T,true> : DominatingLLVMValue { 163 typedef T *type; 164 static type restore(CodeGenFunction &CGF, saved_type value) { 165 return static_cast<T*>(DominatingLLVMValue::restore(CGF, value)); 166 } 167 }; 168 169 /// A specialization of DominatingValue for Address. 170 template <> struct DominatingValue<Address> { 171 typedef Address type; 172 173 struct saved_type { 174 DominatingLLVMValue::saved_type SavedValue; 175 CharUnits Alignment; 176 }; 177 178 static bool needsSaving(type value) { 179 return DominatingLLVMValue::needsSaving(value.getPointer()); 180 } 181 static saved_type save(CodeGenFunction &CGF, type value) { 182 return { DominatingLLVMValue::save(CGF, value.getPointer()), 183 value.getAlignment() }; 184 } 185 static type restore(CodeGenFunction &CGF, saved_type value) { 186 return Address(DominatingLLVMValue::restore(CGF, value.SavedValue), 187 value.Alignment); 188 } 189 }; 190 191 /// A specialization of DominatingValue for RValue. 192 template <> struct DominatingValue<RValue> { 193 typedef RValue type; 194 class saved_type { 195 enum Kind { ScalarLiteral, ScalarAddress, AggregateLiteral, 196 AggregateAddress, ComplexAddress }; 197 198 llvm::Value *Value; 199 unsigned K : 3; 200 unsigned Align : 29; 201 saved_type(llvm::Value *v, Kind k, unsigned a = 0) 202 : Value(v), K(k), Align(a) {} 203 204 public: 205 static bool needsSaving(RValue value); 206 static saved_type save(CodeGenFunction &CGF, RValue value); 207 RValue restore(CodeGenFunction &CGF); 208 209 // implementations in CGCleanup.cpp 210 }; 211 212 static bool needsSaving(type value) { 213 return saved_type::needsSaving(value); 214 } 215 static saved_type save(CodeGenFunction &CGF, type value) { 216 return saved_type::save(CGF, value); 217 } 218 static type restore(CodeGenFunction &CGF, saved_type value) { 219 return value.restore(CGF); 220 } 221 }; 222 223 /// CodeGenFunction - This class organizes the per-function state that is used 224 /// while generating LLVM code. 225 class CodeGenFunction : public CodeGenTypeCache { 226 CodeGenFunction(const CodeGenFunction &) = delete; 227 void operator=(const CodeGenFunction &) = delete; 228 229 friend class CGCXXABI; 230 public: 231 /// A jump destination is an abstract label, branching to which may 232 /// require a jump out through normal cleanups. 233 struct JumpDest { 234 JumpDest() : Block(nullptr), ScopeDepth(), Index(0) {} 235 JumpDest(llvm::BasicBlock *Block, 236 EHScopeStack::stable_iterator Depth, 237 unsigned Index) 238 : Block(Block), ScopeDepth(Depth), Index(Index) {} 239 240 bool isValid() const { return Block != nullptr; } 241 llvm::BasicBlock *getBlock() const { return Block; } 242 EHScopeStack::stable_iterator getScopeDepth() const { return ScopeDepth; } 243 unsigned getDestIndex() const { return Index; } 244 245 // This should be used cautiously. 246 void setScopeDepth(EHScopeStack::stable_iterator depth) { 247 ScopeDepth = depth; 248 } 249 250 private: 251 llvm::BasicBlock *Block; 252 EHScopeStack::stable_iterator ScopeDepth; 253 unsigned Index; 254 }; 255 256 CodeGenModule &CGM; // Per-module state. 257 const TargetInfo &Target; 258 259 typedef std::pair<llvm::Value *, llvm::Value *> ComplexPairTy; 260 LoopInfoStack LoopStack; 261 CGBuilderTy Builder; 262 263 // Stores variables for which we can't generate correct lifetime markers 264 // because of jumps. 265 VarBypassDetector Bypasses; 266 267 // CodeGen lambda for loops and support for ordered clause 268 typedef llvm::function_ref<void(CodeGenFunction &, const OMPLoopDirective &, 269 JumpDest)> 270 CodeGenLoopTy; 271 typedef llvm::function_ref<void(CodeGenFunction &, SourceLocation, 272 const unsigned, const bool)> 273 CodeGenOrderedTy; 274 275 // Codegen lambda for loop bounds in worksharing loop constructs 276 typedef llvm::function_ref<std::pair<LValue, LValue>( 277 CodeGenFunction &, const OMPExecutableDirective &S)> 278 CodeGenLoopBoundsTy; 279 280 // Codegen lambda for loop bounds in dispatch-based loop implementation 281 typedef llvm::function_ref<std::pair<llvm::Value *, llvm::Value *>( 282 CodeGenFunction &, const OMPExecutableDirective &S, Address LB, 283 Address UB)> 284 CodeGenDispatchBoundsTy; 285 286 /// CGBuilder insert helper. This function is called after an 287 /// instruction is created using Builder. 288 void InsertHelper(llvm::Instruction *I, const llvm::Twine &Name, 289 llvm::BasicBlock *BB, 290 llvm::BasicBlock::iterator InsertPt) const; 291 292 /// CurFuncDecl - Holds the Decl for the current outermost 293 /// non-closure context. 294 const Decl *CurFuncDecl; 295 /// CurCodeDecl - This is the inner-most code context, which includes blocks. 296 const Decl *CurCodeDecl; 297 const CGFunctionInfo *CurFnInfo; 298 QualType FnRetTy; 299 llvm::Function *CurFn = nullptr; 300 301 // Holds coroutine data if the current function is a coroutine. We use a 302 // wrapper to manage its lifetime, so that we don't have to define CGCoroData 303 // in this header. 304 struct CGCoroInfo { 305 std::unique_ptr<CGCoroData> Data; 306 CGCoroInfo(); 307 ~CGCoroInfo(); 308 }; 309 CGCoroInfo CurCoro; 310 311 bool isCoroutine() const { 312 return CurCoro.Data != nullptr; 313 } 314 315 /// CurGD - The GlobalDecl for the current function being compiled. 316 GlobalDecl CurGD; 317 318 /// PrologueCleanupDepth - The cleanup depth enclosing all the 319 /// cleanups associated with the parameters. 320 EHScopeStack::stable_iterator PrologueCleanupDepth; 321 322 /// ReturnBlock - Unified return block. 323 JumpDest ReturnBlock; 324 325 /// ReturnValue - The temporary alloca to hold the return 326 /// value. This is invalid iff the function has no return value. 327 Address ReturnValue = Address::invalid(); 328 329 /// Return true if a label was seen in the current scope. 330 bool hasLabelBeenSeenInCurrentScope() const { 331 if (CurLexicalScope) 332 return CurLexicalScope->hasLabels(); 333 return !LabelMap.empty(); 334 } 335 336 /// AllocaInsertPoint - This is an instruction in the entry block before which 337 /// we prefer to insert allocas. 338 llvm::AssertingVH<llvm::Instruction> AllocaInsertPt; 339 340 /// API for captured statement code generation. 341 class CGCapturedStmtInfo { 342 public: 343 explicit CGCapturedStmtInfo(CapturedRegionKind K = CR_Default) 344 : Kind(K), ThisValue(nullptr), CXXThisFieldDecl(nullptr) {} 345 explicit CGCapturedStmtInfo(const CapturedStmt &S, 346 CapturedRegionKind K = CR_Default) 347 : Kind(K), ThisValue(nullptr), CXXThisFieldDecl(nullptr) { 348 349 RecordDecl::field_iterator Field = 350 S.getCapturedRecordDecl()->field_begin(); 351 for (CapturedStmt::const_capture_iterator I = S.capture_begin(), 352 E = S.capture_end(); 353 I != E; ++I, ++Field) { 354 if (I->capturesThis()) 355 CXXThisFieldDecl = *Field; 356 else if (I->capturesVariable()) 357 CaptureFields[I->getCapturedVar()->getCanonicalDecl()] = *Field; 358 else if (I->capturesVariableByCopy()) 359 CaptureFields[I->getCapturedVar()->getCanonicalDecl()] = *Field; 360 } 361 } 362 363 virtual ~CGCapturedStmtInfo(); 364 365 CapturedRegionKind getKind() const { return Kind; } 366 367 virtual void setContextValue(llvm::Value *V) { ThisValue = V; } 368 // Retrieve the value of the context parameter. 369 virtual llvm::Value *getContextValue() const { return ThisValue; } 370 371 /// Lookup the captured field decl for a variable. 372 virtual const FieldDecl *lookup(const VarDecl *VD) const { 373 return CaptureFields.lookup(VD->getCanonicalDecl()); 374 } 375 376 bool isCXXThisExprCaptured() const { return getThisFieldDecl() != nullptr; } 377 virtual FieldDecl *getThisFieldDecl() const { return CXXThisFieldDecl; } 378 379 static bool classof(const CGCapturedStmtInfo *) { 380 return true; 381 } 382 383 /// Emit the captured statement body. 384 virtual void EmitBody(CodeGenFunction &CGF, const Stmt *S) { 385 CGF.incrementProfileCounter(S); 386 CGF.EmitStmt(S); 387 } 388 389 /// Get the name of the capture helper. 390 virtual StringRef getHelperName() const { return "__captured_stmt"; } 391 392 private: 393 /// The kind of captured statement being generated. 394 CapturedRegionKind Kind; 395 396 /// Keep the map between VarDecl and FieldDecl. 397 llvm::SmallDenseMap<const VarDecl *, FieldDecl *> CaptureFields; 398 399 /// The base address of the captured record, passed in as the first 400 /// argument of the parallel region function. 401 llvm::Value *ThisValue; 402 403 /// Captured 'this' type. 404 FieldDecl *CXXThisFieldDecl; 405 }; 406 CGCapturedStmtInfo *CapturedStmtInfo = nullptr; 407 408 /// RAII for correct setting/restoring of CapturedStmtInfo. 409 class CGCapturedStmtRAII { 410 private: 411 CodeGenFunction &CGF; 412 CGCapturedStmtInfo *PrevCapturedStmtInfo; 413 public: 414 CGCapturedStmtRAII(CodeGenFunction &CGF, 415 CGCapturedStmtInfo *NewCapturedStmtInfo) 416 : CGF(CGF), PrevCapturedStmtInfo(CGF.CapturedStmtInfo) { 417 CGF.CapturedStmtInfo = NewCapturedStmtInfo; 418 } 419 ~CGCapturedStmtRAII() { CGF.CapturedStmtInfo = PrevCapturedStmtInfo; } 420 }; 421 422 /// An abstract representation of regular/ObjC call/message targets. 423 class AbstractCallee { 424 /// The function declaration of the callee. 425 const Decl *CalleeDecl; 426 427 public: 428 AbstractCallee() : CalleeDecl(nullptr) {} 429 AbstractCallee(const FunctionDecl *FD) : CalleeDecl(FD) {} 430 AbstractCallee(const ObjCMethodDecl *OMD) : CalleeDecl(OMD) {} 431 bool hasFunctionDecl() const { 432 return dyn_cast_or_null<FunctionDecl>(CalleeDecl); 433 } 434 const Decl *getDecl() const { return CalleeDecl; } 435 unsigned getNumParams() const { 436 if (const auto *FD = dyn_cast<FunctionDecl>(CalleeDecl)) 437 return FD->getNumParams(); 438 return cast<ObjCMethodDecl>(CalleeDecl)->param_size(); 439 } 440 const ParmVarDecl *getParamDecl(unsigned I) const { 441 if (const auto *FD = dyn_cast<FunctionDecl>(CalleeDecl)) 442 return FD->getParamDecl(I); 443 return *(cast<ObjCMethodDecl>(CalleeDecl)->param_begin() + I); 444 } 445 }; 446 447 /// Sanitizers enabled for this function. 448 SanitizerSet SanOpts; 449 450 /// True if CodeGen currently emits code implementing sanitizer checks. 451 bool IsSanitizerScope = false; 452 453 /// RAII object to set/unset CodeGenFunction::IsSanitizerScope. 454 class SanitizerScope { 455 CodeGenFunction *CGF; 456 public: 457 SanitizerScope(CodeGenFunction *CGF); 458 ~SanitizerScope(); 459 }; 460 461 /// In C++, whether we are code generating a thunk. This controls whether we 462 /// should emit cleanups. 463 bool CurFuncIsThunk = false; 464 465 /// In ARC, whether we should autorelease the return value. 466 bool AutoreleaseResult = false; 467 468 /// Whether we processed a Microsoft-style asm block during CodeGen. These can 469 /// potentially set the return value. 470 bool SawAsmBlock = false; 471 472 const NamedDecl *CurSEHParent = nullptr; 473 474 /// True if the current function is an outlined SEH helper. This can be a 475 /// finally block or filter expression. 476 bool IsOutlinedSEHHelper = false; 477 478 const CodeGen::CGBlockInfo *BlockInfo = nullptr; 479 llvm::Value *BlockPointer = nullptr; 480 481 llvm::DenseMap<const VarDecl *, FieldDecl *> LambdaCaptureFields; 482 FieldDecl *LambdaThisCaptureField = nullptr; 483 484 /// A mapping from NRVO variables to the flags used to indicate 485 /// when the NRVO has been applied to this variable. 486 llvm::DenseMap<const VarDecl *, llvm::Value *> NRVOFlags; 487 488 EHScopeStack EHStack; 489 llvm::SmallVector<char, 256> LifetimeExtendedCleanupStack; 490 llvm::SmallVector<const JumpDest *, 2> SEHTryEpilogueStack; 491 492 llvm::Instruction *CurrentFuncletPad = nullptr; 493 494 class CallLifetimeEnd final : public EHScopeStack::Cleanup { 495 llvm::Value *Addr; 496 llvm::Value *Size; 497 498 public: 499 CallLifetimeEnd(Address addr, llvm::Value *size) 500 : Addr(addr.getPointer()), Size(size) {} 501 502 void Emit(CodeGenFunction &CGF, Flags flags) override { 503 CGF.EmitLifetimeEnd(Size, Addr); 504 } 505 }; 506 507 /// Header for data within LifetimeExtendedCleanupStack. 508 struct LifetimeExtendedCleanupHeader { 509 /// The size of the following cleanup object. 510 unsigned Size; 511 /// The kind of cleanup to push: a value from the CleanupKind enumeration. 512 unsigned Kind : 31; 513 /// Whether this is a conditional cleanup. 514 unsigned IsConditional : 1; 515 516 size_t getSize() const { return Size; } 517 CleanupKind getKind() const { return (CleanupKind)Kind; } 518 bool isConditional() const { return IsConditional; } 519 }; 520 521 /// i32s containing the indexes of the cleanup destinations. 522 Address NormalCleanupDest = Address::invalid(); 523 524 unsigned NextCleanupDestIndex = 1; 525 526 /// FirstBlockInfo - The head of a singly-linked-list of block layouts. 527 CGBlockInfo *FirstBlockInfo = nullptr; 528 529 /// EHResumeBlock - Unified block containing a call to llvm.eh.resume. 530 llvm::BasicBlock *EHResumeBlock = nullptr; 531 532 /// The exception slot. All landing pads write the current exception pointer 533 /// into this alloca. 534 llvm::Value *ExceptionSlot = nullptr; 535 536 /// The selector slot. Under the MandatoryCleanup model, all landing pads 537 /// write the current selector value into this alloca. 538 llvm::AllocaInst *EHSelectorSlot = nullptr; 539 540 /// A stack of exception code slots. Entering an __except block pushes a slot 541 /// on the stack and leaving pops one. The __exception_code() intrinsic loads 542 /// a value from the top of the stack. 543 SmallVector<Address, 1> SEHCodeSlotStack; 544 545 /// Value returned by __exception_info intrinsic. 546 llvm::Value *SEHInfo = nullptr; 547 548 /// Emits a landing pad for the current EH stack. 549 llvm::BasicBlock *EmitLandingPad(); 550 551 llvm::BasicBlock *getInvokeDestImpl(); 552 553 template <class T> 554 typename DominatingValue<T>::saved_type saveValueInCond(T value) { 555 return DominatingValue<T>::save(*this, value); 556 } 557 558 public: 559 /// ObjCEHValueStack - Stack of Objective-C exception values, used for 560 /// rethrows. 561 SmallVector<llvm::Value*, 8> ObjCEHValueStack; 562 563 /// A class controlling the emission of a finally block. 564 class FinallyInfo { 565 /// Where the catchall's edge through the cleanup should go. 566 JumpDest RethrowDest; 567 568 /// A function to call to enter the catch. 569 llvm::FunctionCallee BeginCatchFn; 570 571 /// An i1 variable indicating whether or not the @finally is 572 /// running for an exception. 573 llvm::AllocaInst *ForEHVar; 574 575 /// An i8* variable into which the exception pointer to rethrow 576 /// has been saved. 577 llvm::AllocaInst *SavedExnVar; 578 579 public: 580 void enter(CodeGenFunction &CGF, const Stmt *Finally, 581 llvm::FunctionCallee beginCatchFn, 582 llvm::FunctionCallee endCatchFn, llvm::FunctionCallee rethrowFn); 583 void exit(CodeGenFunction &CGF); 584 }; 585 586 /// Returns true inside SEH __try blocks. 587 bool isSEHTryScope() const { return !SEHTryEpilogueStack.empty(); } 588 589 /// Returns true while emitting a cleanuppad. 590 bool isCleanupPadScope() const { 591 return CurrentFuncletPad && isa<llvm::CleanupPadInst>(CurrentFuncletPad); 592 } 593 594 /// pushFullExprCleanup - Push a cleanup to be run at the end of the 595 /// current full-expression. Safe against the possibility that 596 /// we're currently inside a conditionally-evaluated expression. 597 template <class T, class... As> 598 void pushFullExprCleanup(CleanupKind kind, As... A) { 599 // If we're not in a conditional branch, or if none of the 600 // arguments requires saving, then use the unconditional cleanup. 601 if (!isInConditionalBranch()) 602 return EHStack.pushCleanup<T>(kind, A...); 603 604 // Stash values in a tuple so we can guarantee the order of saves. 605 typedef std::tuple<typename DominatingValue<As>::saved_type...> SavedTuple; 606 SavedTuple Saved{saveValueInCond(A)...}; 607 608 typedef EHScopeStack::ConditionalCleanup<T, As...> CleanupType; 609 EHStack.pushCleanupTuple<CleanupType>(kind, Saved); 610 initFullExprCleanup(); 611 } 612 613 /// Queue a cleanup to be pushed after finishing the current 614 /// full-expression. 615 template <class T, class... As> 616 void pushCleanupAfterFullExpr(CleanupKind Kind, As... A) { 617 if (!isInConditionalBranch()) 618 return pushCleanupAfterFullExprImpl<T>(Kind, Address::invalid(), A...); 619 620 Address ActiveFlag = createCleanupActiveFlag(); 621 assert(!DominatingValue<Address>::needsSaving(ActiveFlag) && 622 "cleanup active flag should never need saving"); 623 624 typedef std::tuple<typename DominatingValue<As>::saved_type...> SavedTuple; 625 SavedTuple Saved{saveValueInCond(A)...}; 626 627 typedef EHScopeStack::ConditionalCleanup<T, As...> CleanupType; 628 pushCleanupAfterFullExprImpl<CleanupType>(Kind, ActiveFlag, Saved); 629 } 630 631 template <class T, class... As> 632 void pushCleanupAfterFullExprImpl(CleanupKind Kind, Address ActiveFlag, 633 As... A) { 634 LifetimeExtendedCleanupHeader Header = {sizeof(T), Kind, 635 ActiveFlag.isValid()}; 636 637 size_t OldSize = LifetimeExtendedCleanupStack.size(); 638 LifetimeExtendedCleanupStack.resize( 639 LifetimeExtendedCleanupStack.size() + sizeof(Header) + Header.Size + 640 (Header.IsConditional ? sizeof(ActiveFlag) : 0)); 641 642 static_assert(sizeof(Header) % alignof(T) == 0, 643 "Cleanup will be allocated on misaligned address"); 644 char *Buffer = &LifetimeExtendedCleanupStack[OldSize]; 645 new (Buffer) LifetimeExtendedCleanupHeader(Header); 646 new (Buffer + sizeof(Header)) T(A...); 647 if (Header.IsConditional) 648 new (Buffer + sizeof(Header) + sizeof(T)) Address(ActiveFlag); 649 } 650 651 /// Set up the last cleanup that was pushed as a conditional 652 /// full-expression cleanup. 653 void initFullExprCleanup() { 654 initFullExprCleanupWithFlag(createCleanupActiveFlag()); 655 } 656 657 void initFullExprCleanupWithFlag(Address ActiveFlag); 658 Address createCleanupActiveFlag(); 659 660 /// PushDestructorCleanup - Push a cleanup to call the 661 /// complete-object destructor of an object of the given type at the 662 /// given address. Does nothing if T is not a C++ class type with a 663 /// non-trivial destructor. 664 void PushDestructorCleanup(QualType T, Address Addr); 665 666 /// PushDestructorCleanup - Push a cleanup to call the 667 /// complete-object variant of the given destructor on the object at 668 /// the given address. 669 void PushDestructorCleanup(const CXXDestructorDecl *Dtor, Address Addr); 670 671 /// PopCleanupBlock - Will pop the cleanup entry on the stack and 672 /// process all branch fixups. 673 void PopCleanupBlock(bool FallThroughIsBranchThrough = false); 674 675 /// DeactivateCleanupBlock - Deactivates the given cleanup block. 676 /// The block cannot be reactivated. Pops it if it's the top of the 677 /// stack. 678 /// 679 /// \param DominatingIP - An instruction which is known to 680 /// dominate the current IP (if set) and which lies along 681 /// all paths of execution between the current IP and the 682 /// the point at which the cleanup comes into scope. 683 void DeactivateCleanupBlock(EHScopeStack::stable_iterator Cleanup, 684 llvm::Instruction *DominatingIP); 685 686 /// ActivateCleanupBlock - Activates an initially-inactive cleanup. 687 /// Cannot be used to resurrect a deactivated cleanup. 688 /// 689 /// \param DominatingIP - An instruction which is known to 690 /// dominate the current IP (if set) and which lies along 691 /// all paths of execution between the current IP and the 692 /// the point at which the cleanup comes into scope. 693 void ActivateCleanupBlock(EHScopeStack::stable_iterator Cleanup, 694 llvm::Instruction *DominatingIP); 695 696 /// Enters a new scope for capturing cleanups, all of which 697 /// will be executed once the scope is exited. 698 class RunCleanupsScope { 699 EHScopeStack::stable_iterator CleanupStackDepth, OldCleanupScopeDepth; 700 size_t LifetimeExtendedCleanupStackSize; 701 bool OldDidCallStackSave; 702 protected: 703 bool PerformCleanup; 704 private: 705 706 RunCleanupsScope(const RunCleanupsScope &) = delete; 707 void operator=(const RunCleanupsScope &) = delete; 708 709 protected: 710 CodeGenFunction& CGF; 711 712 public: 713 /// Enter a new cleanup scope. 714 explicit RunCleanupsScope(CodeGenFunction &CGF) 715 : PerformCleanup(true), CGF(CGF) 716 { 717 CleanupStackDepth = CGF.EHStack.stable_begin(); 718 LifetimeExtendedCleanupStackSize = 719 CGF.LifetimeExtendedCleanupStack.size(); 720 OldDidCallStackSave = CGF.DidCallStackSave; 721 CGF.DidCallStackSave = false; 722 OldCleanupScopeDepth = CGF.CurrentCleanupScopeDepth; 723 CGF.CurrentCleanupScopeDepth = CleanupStackDepth; 724 } 725 726 /// Exit this cleanup scope, emitting any accumulated cleanups. 727 ~RunCleanupsScope() { 728 if (PerformCleanup) 729 ForceCleanup(); 730 } 731 732 /// Determine whether this scope requires any cleanups. 733 bool requiresCleanups() const { 734 return CGF.EHStack.stable_begin() != CleanupStackDepth; 735 } 736 737 /// Force the emission of cleanups now, instead of waiting 738 /// until this object is destroyed. 739 /// \param ValuesToReload - A list of values that need to be available at 740 /// the insertion point after cleanup emission. If cleanup emission created 741 /// a shared cleanup block, these value pointers will be rewritten. 742 /// Otherwise, they not will be modified. 743 void ForceCleanup(std::initializer_list<llvm::Value**> ValuesToReload = {}) { 744 assert(PerformCleanup && "Already forced cleanup"); 745 CGF.DidCallStackSave = OldDidCallStackSave; 746 CGF.PopCleanupBlocks(CleanupStackDepth, LifetimeExtendedCleanupStackSize, 747 ValuesToReload); 748 PerformCleanup = false; 749 CGF.CurrentCleanupScopeDepth = OldCleanupScopeDepth; 750 } 751 }; 752 753 // Cleanup stack depth of the RunCleanupsScope that was pushed most recently. 754 EHScopeStack::stable_iterator CurrentCleanupScopeDepth = 755 EHScopeStack::stable_end(); 756 757 class LexicalScope : public RunCleanupsScope { 758 SourceRange Range; 759 SmallVector<const LabelDecl*, 4> Labels; 760 LexicalScope *ParentScope; 761 762 LexicalScope(const LexicalScope &) = delete; 763 void operator=(const LexicalScope &) = delete; 764 765 public: 766 /// Enter a new cleanup scope. 767 explicit LexicalScope(CodeGenFunction &CGF, SourceRange Range) 768 : RunCleanupsScope(CGF), Range(Range), ParentScope(CGF.CurLexicalScope) { 769 CGF.CurLexicalScope = this; 770 if (CGDebugInfo *DI = CGF.getDebugInfo()) 771 DI->EmitLexicalBlockStart(CGF.Builder, Range.getBegin()); 772 } 773 774 void addLabel(const LabelDecl *label) { 775 assert(PerformCleanup && "adding label to dead scope?"); 776 Labels.push_back(label); 777 } 778 779 /// Exit this cleanup scope, emitting any accumulated 780 /// cleanups. 781 ~LexicalScope() { 782 if (CGDebugInfo *DI = CGF.getDebugInfo()) 783 DI->EmitLexicalBlockEnd(CGF.Builder, Range.getEnd()); 784 785 // If we should perform a cleanup, force them now. Note that 786 // this ends the cleanup scope before rescoping any labels. 787 if (PerformCleanup) { 788 ApplyDebugLocation DL(CGF, Range.getEnd()); 789 ForceCleanup(); 790 } 791 } 792 793 /// Force the emission of cleanups now, instead of waiting 794 /// until this object is destroyed. 795 void ForceCleanup() { 796 CGF.CurLexicalScope = ParentScope; 797 RunCleanupsScope::ForceCleanup(); 798 799 if (!Labels.empty()) 800 rescopeLabels(); 801 } 802 803 bool hasLabels() const { 804 return !Labels.empty(); 805 } 806 807 void rescopeLabels(); 808 }; 809 810 typedef llvm::DenseMap<const Decl *, Address> DeclMapTy; 811 812 /// The class used to assign some variables some temporarily addresses. 813 class OMPMapVars { 814 DeclMapTy SavedLocals; 815 DeclMapTy SavedTempAddresses; 816 OMPMapVars(const OMPMapVars &) = delete; 817 void operator=(const OMPMapVars &) = delete; 818 819 public: 820 explicit OMPMapVars() = default; 821 ~OMPMapVars() { 822 assert(SavedLocals.empty() && "Did not restored original addresses."); 823 }; 824 825 /// Sets the address of the variable \p LocalVD to be \p TempAddr in 826 /// function \p CGF. 827 /// \return true if at least one variable was set already, false otherwise. 828 bool setVarAddr(CodeGenFunction &CGF, const VarDecl *LocalVD, 829 Address TempAddr) { 830 LocalVD = LocalVD->getCanonicalDecl(); 831 // Only save it once. 832 if (SavedLocals.count(LocalVD)) return false; 833 834 // Copy the existing local entry to SavedLocals. 835 auto it = CGF.LocalDeclMap.find(LocalVD); 836 if (it != CGF.LocalDeclMap.end()) 837 SavedLocals.try_emplace(LocalVD, it->second); 838 else 839 SavedLocals.try_emplace(LocalVD, Address::invalid()); 840 841 // Generate the private entry. 842 QualType VarTy = LocalVD->getType(); 843 if (VarTy->isReferenceType()) { 844 Address Temp = CGF.CreateMemTemp(VarTy); 845 CGF.Builder.CreateStore(TempAddr.getPointer(), Temp); 846 TempAddr = Temp; 847 } 848 SavedTempAddresses.try_emplace(LocalVD, TempAddr); 849 850 return true; 851 } 852 853 /// Applies new addresses to the list of the variables. 854 /// \return true if at least one variable is using new address, false 855 /// otherwise. 856 bool apply(CodeGenFunction &CGF) { 857 copyInto(SavedTempAddresses, CGF.LocalDeclMap); 858 SavedTempAddresses.clear(); 859 return !SavedLocals.empty(); 860 } 861 862 /// Restores original addresses of the variables. 863 void restore(CodeGenFunction &CGF) { 864 if (!SavedLocals.empty()) { 865 copyInto(SavedLocals, CGF.LocalDeclMap); 866 SavedLocals.clear(); 867 } 868 } 869 870 private: 871 /// Copy all the entries in the source map over the corresponding 872 /// entries in the destination, which must exist. 873 static void copyInto(const DeclMapTy &Src, DeclMapTy &Dest) { 874 for (auto &Pair : Src) { 875 if (!Pair.second.isValid()) { 876 Dest.erase(Pair.first); 877 continue; 878 } 879 880 auto I = Dest.find(Pair.first); 881 if (I != Dest.end()) 882 I->second = Pair.second; 883 else 884 Dest.insert(Pair); 885 } 886 } 887 }; 888 889 /// The scope used to remap some variables as private in the OpenMP loop body 890 /// (or other captured region emitted without outlining), and to restore old 891 /// vars back on exit. 892 class OMPPrivateScope : public RunCleanupsScope { 893 OMPMapVars MappedVars; 894 OMPPrivateScope(const OMPPrivateScope &) = delete; 895 void operator=(const OMPPrivateScope &) = delete; 896 897 public: 898 /// Enter a new OpenMP private scope. 899 explicit OMPPrivateScope(CodeGenFunction &CGF) : RunCleanupsScope(CGF) {} 900 901 /// Registers \p LocalVD variable as a private and apply \p PrivateGen 902 /// function for it to generate corresponding private variable. \p 903 /// PrivateGen returns an address of the generated private variable. 904 /// \return true if the variable is registered as private, false if it has 905 /// been privatized already. 906 bool addPrivate(const VarDecl *LocalVD, 907 const llvm::function_ref<Address()> PrivateGen) { 908 assert(PerformCleanup && "adding private to dead scope"); 909 return MappedVars.setVarAddr(CGF, LocalVD, PrivateGen()); 910 } 911 912 /// Privatizes local variables previously registered as private. 913 /// Registration is separate from the actual privatization to allow 914 /// initializers use values of the original variables, not the private one. 915 /// This is important, for example, if the private variable is a class 916 /// variable initialized by a constructor that references other private 917 /// variables. But at initialization original variables must be used, not 918 /// private copies. 919 /// \return true if at least one variable was privatized, false otherwise. 920 bool Privatize() { return MappedVars.apply(CGF); } 921 922 void ForceCleanup() { 923 RunCleanupsScope::ForceCleanup(); 924 MappedVars.restore(CGF); 925 } 926 927 /// Exit scope - all the mapped variables are restored. 928 ~OMPPrivateScope() { 929 if (PerformCleanup) 930 ForceCleanup(); 931 } 932 933 /// Checks if the global variable is captured in current function. 934 bool isGlobalVarCaptured(const VarDecl *VD) const { 935 VD = VD->getCanonicalDecl(); 936 return !VD->isLocalVarDeclOrParm() && CGF.LocalDeclMap.count(VD) > 0; 937 } 938 }; 939 940 /// Takes the old cleanup stack size and emits the cleanup blocks 941 /// that have been added. 942 void 943 PopCleanupBlocks(EHScopeStack::stable_iterator OldCleanupStackSize, 944 std::initializer_list<llvm::Value **> ValuesToReload = {}); 945 946 /// Takes the old cleanup stack size and emits the cleanup blocks 947 /// that have been added, then adds all lifetime-extended cleanups from 948 /// the given position to the stack. 949 void 950 PopCleanupBlocks(EHScopeStack::stable_iterator OldCleanupStackSize, 951 size_t OldLifetimeExtendedStackSize, 952 std::initializer_list<llvm::Value **> ValuesToReload = {}); 953 954 void ResolveBranchFixups(llvm::BasicBlock *Target); 955 956 /// The given basic block lies in the current EH scope, but may be a 957 /// target of a potentially scope-crossing jump; get a stable handle 958 /// to which we can perform this jump later. 959 JumpDest getJumpDestInCurrentScope(llvm::BasicBlock *Target) { 960 return JumpDest(Target, 961 EHStack.getInnermostNormalCleanup(), 962 NextCleanupDestIndex++); 963 } 964 965 /// The given basic block lies in the current EH scope, but may be a 966 /// target of a potentially scope-crossing jump; get a stable handle 967 /// to which we can perform this jump later. 968 JumpDest getJumpDestInCurrentScope(StringRef Name = StringRef()) { 969 return getJumpDestInCurrentScope(createBasicBlock(Name)); 970 } 971 972 /// EmitBranchThroughCleanup - Emit a branch from the current insert 973 /// block through the normal cleanup handling code (if any) and then 974 /// on to \arg Dest. 975 void EmitBranchThroughCleanup(JumpDest Dest); 976 977 /// isObviouslyBranchWithoutCleanups - Return true if a branch to the 978 /// specified destination obviously has no cleanups to run. 'false' is always 979 /// a conservatively correct answer for this method. 980 bool isObviouslyBranchWithoutCleanups(JumpDest Dest) const; 981 982 /// popCatchScope - Pops the catch scope at the top of the EHScope 983 /// stack, emitting any required code (other than the catch handlers 984 /// themselves). 985 void popCatchScope(); 986 987 llvm::BasicBlock *getEHResumeBlock(bool isCleanup); 988 llvm::BasicBlock *getEHDispatchBlock(EHScopeStack::stable_iterator scope); 989 llvm::BasicBlock * 990 getFuncletEHDispatchBlock(EHScopeStack::stable_iterator scope); 991 992 /// An object to manage conditionally-evaluated expressions. 993 class ConditionalEvaluation { 994 llvm::BasicBlock *StartBB; 995 996 public: 997 ConditionalEvaluation(CodeGenFunction &CGF) 998 : StartBB(CGF.Builder.GetInsertBlock()) {} 999 1000 void begin(CodeGenFunction &CGF) { 1001 assert(CGF.OutermostConditional != this); 1002 if (!CGF.OutermostConditional) 1003 CGF.OutermostConditional = this; 1004 } 1005 1006 void end(CodeGenFunction &CGF) { 1007 assert(CGF.OutermostConditional != nullptr); 1008 if (CGF.OutermostConditional == this) 1009 CGF.OutermostConditional = nullptr; 1010 } 1011 1012 /// Returns a block which will be executed prior to each 1013 /// evaluation of the conditional code. 1014 llvm::BasicBlock *getStartingBlock() const { 1015 return StartBB; 1016 } 1017 }; 1018 1019 /// isInConditionalBranch - Return true if we're currently emitting 1020 /// one branch or the other of a conditional expression. 1021 bool isInConditionalBranch() const { return OutermostConditional != nullptr; } 1022 1023 void setBeforeOutermostConditional(llvm::Value *value, Address addr) { 1024 assert(isInConditionalBranch()); 1025 llvm::BasicBlock *block = OutermostConditional->getStartingBlock(); 1026 auto store = new llvm::StoreInst(value, addr.getPointer(), &block->back()); 1027 store->setAlignment(addr.getAlignment().getQuantity()); 1028 } 1029 1030 /// An RAII object to record that we're evaluating a statement 1031 /// expression. 1032 class StmtExprEvaluation { 1033 CodeGenFunction &CGF; 1034 1035 /// We have to save the outermost conditional: cleanups in a 1036 /// statement expression aren't conditional just because the 1037 /// StmtExpr is. 1038 ConditionalEvaluation *SavedOutermostConditional; 1039 1040 public: 1041 StmtExprEvaluation(CodeGenFunction &CGF) 1042 : CGF(CGF), SavedOutermostConditional(CGF.OutermostConditional) { 1043 CGF.OutermostConditional = nullptr; 1044 } 1045 1046 ~StmtExprEvaluation() { 1047 CGF.OutermostConditional = SavedOutermostConditional; 1048 CGF.EnsureInsertPoint(); 1049 } 1050 }; 1051 1052 /// An object which temporarily prevents a value from being 1053 /// destroyed by aggressive peephole optimizations that assume that 1054 /// all uses of a value have been realized in the IR. 1055 class PeepholeProtection { 1056 llvm::Instruction *Inst; 1057 friend class CodeGenFunction; 1058 1059 public: 1060 PeepholeProtection() : Inst(nullptr) {} 1061 }; 1062 1063 /// A non-RAII class containing all the information about a bound 1064 /// opaque value. OpaqueValueMapping, below, is a RAII wrapper for 1065 /// this which makes individual mappings very simple; using this 1066 /// class directly is useful when you have a variable number of 1067 /// opaque values or don't want the RAII functionality for some 1068 /// reason. 1069 class OpaqueValueMappingData { 1070 const OpaqueValueExpr *OpaqueValue; 1071 bool BoundLValue; 1072 CodeGenFunction::PeepholeProtection Protection; 1073 1074 OpaqueValueMappingData(const OpaqueValueExpr *ov, 1075 bool boundLValue) 1076 : OpaqueValue(ov), BoundLValue(boundLValue) {} 1077 public: 1078 OpaqueValueMappingData() : OpaqueValue(nullptr) {} 1079 1080 static bool shouldBindAsLValue(const Expr *expr) { 1081 // gl-values should be bound as l-values for obvious reasons. 1082 // Records should be bound as l-values because IR generation 1083 // always keeps them in memory. Expressions of function type 1084 // act exactly like l-values but are formally required to be 1085 // r-values in C. 1086 return expr->isGLValue() || 1087 expr->getType()->isFunctionType() || 1088 hasAggregateEvaluationKind(expr->getType()); 1089 } 1090 1091 static OpaqueValueMappingData bind(CodeGenFunction &CGF, 1092 const OpaqueValueExpr *ov, 1093 const Expr *e) { 1094 if (shouldBindAsLValue(ov)) 1095 return bind(CGF, ov, CGF.EmitLValue(e)); 1096 return bind(CGF, ov, CGF.EmitAnyExpr(e)); 1097 } 1098 1099 static OpaqueValueMappingData bind(CodeGenFunction &CGF, 1100 const OpaqueValueExpr *ov, 1101 const LValue &lv) { 1102 assert(shouldBindAsLValue(ov)); 1103 CGF.OpaqueLValues.insert(std::make_pair(ov, lv)); 1104 return OpaqueValueMappingData(ov, true); 1105 } 1106 1107 static OpaqueValueMappingData bind(CodeGenFunction &CGF, 1108 const OpaqueValueExpr *ov, 1109 const RValue &rv) { 1110 assert(!shouldBindAsLValue(ov)); 1111 CGF.OpaqueRValues.insert(std::make_pair(ov, rv)); 1112 1113 OpaqueValueMappingData data(ov, false); 1114 1115 // Work around an extremely aggressive peephole optimization in 1116 // EmitScalarConversion which assumes that all other uses of a 1117 // value are extant. 1118 data.Protection = CGF.protectFromPeepholes(rv); 1119 1120 return data; 1121 } 1122 1123 bool isValid() const { return OpaqueValue != nullptr; } 1124 void clear() { OpaqueValue = nullptr; } 1125 1126 void unbind(CodeGenFunction &CGF) { 1127 assert(OpaqueValue && "no data to unbind!"); 1128 1129 if (BoundLValue) { 1130 CGF.OpaqueLValues.erase(OpaqueValue); 1131 } else { 1132 CGF.OpaqueRValues.erase(OpaqueValue); 1133 CGF.unprotectFromPeepholes(Protection); 1134 } 1135 } 1136 }; 1137 1138 /// An RAII object to set (and then clear) a mapping for an OpaqueValueExpr. 1139 class OpaqueValueMapping { 1140 CodeGenFunction &CGF; 1141 OpaqueValueMappingData Data; 1142 1143 public: 1144 static bool shouldBindAsLValue(const Expr *expr) { 1145 return OpaqueValueMappingData::shouldBindAsLValue(expr); 1146 } 1147 1148 /// Build the opaque value mapping for the given conditional 1149 /// operator if it's the GNU ?: extension. This is a common 1150 /// enough pattern that the convenience operator is really 1151 /// helpful. 1152 /// 1153 OpaqueValueMapping(CodeGenFunction &CGF, 1154 const AbstractConditionalOperator *op) : CGF(CGF) { 1155 if (isa<ConditionalOperator>(op)) 1156 // Leave Data empty. 1157 return; 1158 1159 const BinaryConditionalOperator *e = cast<BinaryConditionalOperator>(op); 1160 Data = OpaqueValueMappingData::bind(CGF, e->getOpaqueValue(), 1161 e->getCommon()); 1162 } 1163 1164 /// Build the opaque value mapping for an OpaqueValueExpr whose source 1165 /// expression is set to the expression the OVE represents. 1166 OpaqueValueMapping(CodeGenFunction &CGF, const OpaqueValueExpr *OV) 1167 : CGF(CGF) { 1168 if (OV) { 1169 assert(OV->getSourceExpr() && "wrong form of OpaqueValueMapping used " 1170 "for OVE with no source expression"); 1171 Data = OpaqueValueMappingData::bind(CGF, OV, OV->getSourceExpr()); 1172 } 1173 } 1174 1175 OpaqueValueMapping(CodeGenFunction &CGF, 1176 const OpaqueValueExpr *opaqueValue, 1177 LValue lvalue) 1178 : CGF(CGF), Data(OpaqueValueMappingData::bind(CGF, opaqueValue, lvalue)) { 1179 } 1180 1181 OpaqueValueMapping(CodeGenFunction &CGF, 1182 const OpaqueValueExpr *opaqueValue, 1183 RValue rvalue) 1184 : CGF(CGF), Data(OpaqueValueMappingData::bind(CGF, opaqueValue, rvalue)) { 1185 } 1186 1187 void pop() { 1188 Data.unbind(CGF); 1189 Data.clear(); 1190 } 1191 1192 ~OpaqueValueMapping() { 1193 if (Data.isValid()) Data.unbind(CGF); 1194 } 1195 }; 1196 1197 private: 1198 CGDebugInfo *DebugInfo; 1199 /// Used to create unique names for artificial VLA size debug info variables. 1200 unsigned VLAExprCounter = 0; 1201 bool DisableDebugInfo = false; 1202 1203 /// DidCallStackSave - Whether llvm.stacksave has been called. Used to avoid 1204 /// calling llvm.stacksave for multiple VLAs in the same scope. 1205 bool DidCallStackSave = false; 1206 1207 /// IndirectBranch - The first time an indirect goto is seen we create a block 1208 /// with an indirect branch. Every time we see the address of a label taken, 1209 /// we add the label to the indirect goto. Every subsequent indirect goto is 1210 /// codegen'd as a jump to the IndirectBranch's basic block. 1211 llvm::IndirectBrInst *IndirectBranch = nullptr; 1212 1213 /// LocalDeclMap - This keeps track of the LLVM allocas or globals for local C 1214 /// decls. 1215 DeclMapTy LocalDeclMap; 1216 1217 // Keep track of the cleanups for callee-destructed parameters pushed to the 1218 // cleanup stack so that they can be deactivated later. 1219 llvm::DenseMap<const ParmVarDecl *, EHScopeStack::stable_iterator> 1220 CalleeDestructedParamCleanups; 1221 1222 /// SizeArguments - If a ParmVarDecl had the pass_object_size attribute, this 1223 /// will contain a mapping from said ParmVarDecl to its implicit "object_size" 1224 /// parameter. 1225 llvm::SmallDenseMap<const ParmVarDecl *, const ImplicitParamDecl *, 2> 1226 SizeArguments; 1227 1228 /// Track escaped local variables with auto storage. Used during SEH 1229 /// outlining to produce a call to llvm.localescape. 1230 llvm::DenseMap<llvm::AllocaInst *, int> EscapedLocals; 1231 1232 /// LabelMap - This keeps track of the LLVM basic block for each C label. 1233 llvm::DenseMap<const LabelDecl*, JumpDest> LabelMap; 1234 1235 // BreakContinueStack - This keeps track of where break and continue 1236 // statements should jump to. 1237 struct BreakContinue { 1238 BreakContinue(JumpDest Break, JumpDest Continue) 1239 : BreakBlock(Break), ContinueBlock(Continue) {} 1240 1241 JumpDest BreakBlock; 1242 JumpDest ContinueBlock; 1243 }; 1244 SmallVector<BreakContinue, 8> BreakContinueStack; 1245 1246 /// Handles cancellation exit points in OpenMP-related constructs. 1247 class OpenMPCancelExitStack { 1248 /// Tracks cancellation exit point and join point for cancel-related exit 1249 /// and normal exit. 1250 struct CancelExit { 1251 CancelExit() = default; 1252 CancelExit(OpenMPDirectiveKind Kind, JumpDest ExitBlock, 1253 JumpDest ContBlock) 1254 : Kind(Kind), ExitBlock(ExitBlock), ContBlock(ContBlock) {} 1255 OpenMPDirectiveKind Kind = OMPD_unknown; 1256 /// true if the exit block has been emitted already by the special 1257 /// emitExit() call, false if the default codegen is used. 1258 bool HasBeenEmitted = false; 1259 JumpDest ExitBlock; 1260 JumpDest ContBlock; 1261 }; 1262 1263 SmallVector<CancelExit, 8> Stack; 1264 1265 public: 1266 OpenMPCancelExitStack() : Stack(1) {} 1267 ~OpenMPCancelExitStack() = default; 1268 /// Fetches the exit block for the current OpenMP construct. 1269 JumpDest getExitBlock() const { return Stack.back().ExitBlock; } 1270 /// Emits exit block with special codegen procedure specific for the related 1271 /// OpenMP construct + emits code for normal construct cleanup. 1272 void emitExit(CodeGenFunction &CGF, OpenMPDirectiveKind Kind, 1273 const llvm::function_ref<void(CodeGenFunction &)> CodeGen) { 1274 if (Stack.back().Kind == Kind && getExitBlock().isValid()) { 1275 assert(CGF.getOMPCancelDestination(Kind).isValid()); 1276 assert(CGF.HaveInsertPoint()); 1277 assert(!Stack.back().HasBeenEmitted); 1278 auto IP = CGF.Builder.saveAndClearIP(); 1279 CGF.EmitBlock(Stack.back().ExitBlock.getBlock()); 1280 CodeGen(CGF); 1281 CGF.EmitBranch(Stack.back().ContBlock.getBlock()); 1282 CGF.Builder.restoreIP(IP); 1283 Stack.back().HasBeenEmitted = true; 1284 } 1285 CodeGen(CGF); 1286 } 1287 /// Enter the cancel supporting \a Kind construct. 1288 /// \param Kind OpenMP directive that supports cancel constructs. 1289 /// \param HasCancel true, if the construct has inner cancel directive, 1290 /// false otherwise. 1291 void enter(CodeGenFunction &CGF, OpenMPDirectiveKind Kind, bool HasCancel) { 1292 Stack.push_back({Kind, 1293 HasCancel ? CGF.getJumpDestInCurrentScope("cancel.exit") 1294 : JumpDest(), 1295 HasCancel ? CGF.getJumpDestInCurrentScope("cancel.cont") 1296 : JumpDest()}); 1297 } 1298 /// Emits default exit point for the cancel construct (if the special one 1299 /// has not be used) + join point for cancel/normal exits. 1300 void exit(CodeGenFunction &CGF) { 1301 if (getExitBlock().isValid()) { 1302 assert(CGF.getOMPCancelDestination(Stack.back().Kind).isValid()); 1303 bool HaveIP = CGF.HaveInsertPoint(); 1304 if (!Stack.back().HasBeenEmitted) { 1305 if (HaveIP) 1306 CGF.EmitBranchThroughCleanup(Stack.back().ContBlock); 1307 CGF.EmitBlock(Stack.back().ExitBlock.getBlock()); 1308 CGF.EmitBranchThroughCleanup(Stack.back().ContBlock); 1309 } 1310 CGF.EmitBlock(Stack.back().ContBlock.getBlock()); 1311 if (!HaveIP) { 1312 CGF.Builder.CreateUnreachable(); 1313 CGF.Builder.ClearInsertionPoint(); 1314 } 1315 } 1316 Stack.pop_back(); 1317 } 1318 }; 1319 OpenMPCancelExitStack OMPCancelStack; 1320 1321 CodeGenPGO PGO; 1322 1323 /// Calculate branch weights appropriate for PGO data 1324 llvm::MDNode *createProfileWeights(uint64_t TrueCount, uint64_t FalseCount); 1325 llvm::MDNode *createProfileWeights(ArrayRef<uint64_t> Weights); 1326 llvm::MDNode *createProfileWeightsForLoop(const Stmt *Cond, 1327 uint64_t LoopCount); 1328 1329 public: 1330 /// Increment the profiler's counter for the given statement by \p StepV. 1331 /// If \p StepV is null, the default increment is 1. 1332 void incrementProfileCounter(const Stmt *S, llvm::Value *StepV = nullptr) { 1333 if (CGM.getCodeGenOpts().hasProfileClangInstr()) 1334 PGO.emitCounterIncrement(Builder, S, StepV); 1335 PGO.setCurrentStmt(S); 1336 } 1337 1338 /// Get the profiler's count for the given statement. 1339 uint64_t getProfileCount(const Stmt *S) { 1340 Optional<uint64_t> Count = PGO.getStmtCount(S); 1341 if (!Count.hasValue()) 1342 return 0; 1343 return *Count; 1344 } 1345 1346 /// Set the profiler's current count. 1347 void setCurrentProfileCount(uint64_t Count) { 1348 PGO.setCurrentRegionCount(Count); 1349 } 1350 1351 /// Get the profiler's current count. This is generally the count for the most 1352 /// recently incremented counter. 1353 uint64_t getCurrentProfileCount() { 1354 return PGO.getCurrentRegionCount(); 1355 } 1356 1357 private: 1358 1359 /// SwitchInsn - This is nearest current switch instruction. It is null if 1360 /// current context is not in a switch. 1361 llvm::SwitchInst *SwitchInsn = nullptr; 1362 /// The branch weights of SwitchInsn when doing instrumentation based PGO. 1363 SmallVector<uint64_t, 16> *SwitchWeights = nullptr; 1364 1365 /// CaseRangeBlock - This block holds if condition check for last case 1366 /// statement range in current switch instruction. 1367 llvm::BasicBlock *CaseRangeBlock = nullptr; 1368 1369 /// OpaqueLValues - Keeps track of the current set of opaque value 1370 /// expressions. 1371 llvm::DenseMap<const OpaqueValueExpr *, LValue> OpaqueLValues; 1372 llvm::DenseMap<const OpaqueValueExpr *, RValue> OpaqueRValues; 1373 1374 // VLASizeMap - This keeps track of the associated size for each VLA type. 1375 // We track this by the size expression rather than the type itself because 1376 // in certain situations, like a const qualifier applied to an VLA typedef, 1377 // multiple VLA types can share the same size expression. 1378 // FIXME: Maybe this could be a stack of maps that is pushed/popped as we 1379 // enter/leave scopes. 1380 llvm::DenseMap<const Expr*, llvm::Value*> VLASizeMap; 1381 1382 /// A block containing a single 'unreachable' instruction. Created 1383 /// lazily by getUnreachableBlock(). 1384 llvm::BasicBlock *UnreachableBlock = nullptr; 1385 1386 /// Counts of the number return expressions in the function. 1387 unsigned NumReturnExprs = 0; 1388 1389 /// Count the number of simple (constant) return expressions in the function. 1390 unsigned NumSimpleReturnExprs = 0; 1391 1392 /// The last regular (non-return) debug location (breakpoint) in the function. 1393 SourceLocation LastStopPoint; 1394 1395 public: 1396 /// A scope within which we are constructing the fields of an object which 1397 /// might use a CXXDefaultInitExpr. This stashes away a 'this' value to use 1398 /// if we need to evaluate a CXXDefaultInitExpr within the evaluation. 1399 class FieldConstructionScope { 1400 public: 1401 FieldConstructionScope(CodeGenFunction &CGF, Address This) 1402 : CGF(CGF), OldCXXDefaultInitExprThis(CGF.CXXDefaultInitExprThis) { 1403 CGF.CXXDefaultInitExprThis = This; 1404 } 1405 ~FieldConstructionScope() { 1406 CGF.CXXDefaultInitExprThis = OldCXXDefaultInitExprThis; 1407 } 1408 1409 private: 1410 CodeGenFunction &CGF; 1411 Address OldCXXDefaultInitExprThis; 1412 }; 1413 1414 /// The scope of a CXXDefaultInitExpr. Within this scope, the value of 'this' 1415 /// is overridden to be the object under construction. 1416 class CXXDefaultInitExprScope { 1417 public: 1418 CXXDefaultInitExprScope(CodeGenFunction &CGF) 1419 : CGF(CGF), OldCXXThisValue(CGF.CXXThisValue), 1420 OldCXXThisAlignment(CGF.CXXThisAlignment) { 1421 CGF.CXXThisValue = CGF.CXXDefaultInitExprThis.getPointer(); 1422 CGF.CXXThisAlignment = CGF.CXXDefaultInitExprThis.getAlignment(); 1423 } 1424 ~CXXDefaultInitExprScope() { 1425 CGF.CXXThisValue = OldCXXThisValue; 1426 CGF.CXXThisAlignment = OldCXXThisAlignment; 1427 } 1428 1429 public: 1430 CodeGenFunction &CGF; 1431 llvm::Value *OldCXXThisValue; 1432 CharUnits OldCXXThisAlignment; 1433 }; 1434 1435 /// The scope of an ArrayInitLoopExpr. Within this scope, the value of the 1436 /// current loop index is overridden. 1437 class ArrayInitLoopExprScope { 1438 public: 1439 ArrayInitLoopExprScope(CodeGenFunction &CGF, llvm::Value *Index) 1440 : CGF(CGF), OldArrayInitIndex(CGF.ArrayInitIndex) { 1441 CGF.ArrayInitIndex = Index; 1442 } 1443 ~ArrayInitLoopExprScope() { 1444 CGF.ArrayInitIndex = OldArrayInitIndex; 1445 } 1446 1447 private: 1448 CodeGenFunction &CGF; 1449 llvm::Value *OldArrayInitIndex; 1450 }; 1451 1452 class InlinedInheritingConstructorScope { 1453 public: 1454 InlinedInheritingConstructorScope(CodeGenFunction &CGF, GlobalDecl GD) 1455 : CGF(CGF), OldCurGD(CGF.CurGD), OldCurFuncDecl(CGF.CurFuncDecl), 1456 OldCurCodeDecl(CGF.CurCodeDecl), 1457 OldCXXABIThisDecl(CGF.CXXABIThisDecl), 1458 OldCXXABIThisValue(CGF.CXXABIThisValue), 1459 OldCXXThisValue(CGF.CXXThisValue), 1460 OldCXXABIThisAlignment(CGF.CXXABIThisAlignment), 1461 OldCXXThisAlignment(CGF.CXXThisAlignment), 1462 OldReturnValue(CGF.ReturnValue), OldFnRetTy(CGF.FnRetTy), 1463 OldCXXInheritedCtorInitExprArgs( 1464 std::move(CGF.CXXInheritedCtorInitExprArgs)) { 1465 CGF.CurGD = GD; 1466 CGF.CurFuncDecl = CGF.CurCodeDecl = 1467 cast<CXXConstructorDecl>(GD.getDecl()); 1468 CGF.CXXABIThisDecl = nullptr; 1469 CGF.CXXABIThisValue = nullptr; 1470 CGF.CXXThisValue = nullptr; 1471 CGF.CXXABIThisAlignment = CharUnits(); 1472 CGF.CXXThisAlignment = CharUnits(); 1473 CGF.ReturnValue = Address::invalid(); 1474 CGF.FnRetTy = QualType(); 1475 CGF.CXXInheritedCtorInitExprArgs.clear(); 1476 } 1477 ~InlinedInheritingConstructorScope() { 1478 CGF.CurGD = OldCurGD; 1479 CGF.CurFuncDecl = OldCurFuncDecl; 1480 CGF.CurCodeDecl = OldCurCodeDecl; 1481 CGF.CXXABIThisDecl = OldCXXABIThisDecl; 1482 CGF.CXXABIThisValue = OldCXXABIThisValue; 1483 CGF.CXXThisValue = OldCXXThisValue; 1484 CGF.CXXABIThisAlignment = OldCXXABIThisAlignment; 1485 CGF.CXXThisAlignment = OldCXXThisAlignment; 1486 CGF.ReturnValue = OldReturnValue; 1487 CGF.FnRetTy = OldFnRetTy; 1488 CGF.CXXInheritedCtorInitExprArgs = 1489 std::move(OldCXXInheritedCtorInitExprArgs); 1490 } 1491 1492 private: 1493 CodeGenFunction &CGF; 1494 GlobalDecl OldCurGD; 1495 const Decl *OldCurFuncDecl; 1496 const Decl *OldCurCodeDecl; 1497 ImplicitParamDecl *OldCXXABIThisDecl; 1498 llvm::Value *OldCXXABIThisValue; 1499 llvm::Value *OldCXXThisValue; 1500 CharUnits OldCXXABIThisAlignment; 1501 CharUnits OldCXXThisAlignment; 1502 Address OldReturnValue; 1503 QualType OldFnRetTy; 1504 CallArgList OldCXXInheritedCtorInitExprArgs; 1505 }; 1506 1507 private: 1508 /// CXXThisDecl - When generating code for a C++ member function, 1509 /// this will hold the implicit 'this' declaration. 1510 ImplicitParamDecl *CXXABIThisDecl = nullptr; 1511 llvm::Value *CXXABIThisValue = nullptr; 1512 llvm::Value *CXXThisValue = nullptr; 1513 CharUnits CXXABIThisAlignment; 1514 CharUnits CXXThisAlignment; 1515 1516 /// The value of 'this' to use when evaluating CXXDefaultInitExprs within 1517 /// this expression. 1518 Address CXXDefaultInitExprThis = Address::invalid(); 1519 1520 /// The current array initialization index when evaluating an 1521 /// ArrayInitIndexExpr within an ArrayInitLoopExpr. 1522 llvm::Value *ArrayInitIndex = nullptr; 1523 1524 /// The values of function arguments to use when evaluating 1525 /// CXXInheritedCtorInitExprs within this context. 1526 CallArgList CXXInheritedCtorInitExprArgs; 1527 1528 /// CXXStructorImplicitParamDecl - When generating code for a constructor or 1529 /// destructor, this will hold the implicit argument (e.g. VTT). 1530 ImplicitParamDecl *CXXStructorImplicitParamDecl = nullptr; 1531 llvm::Value *CXXStructorImplicitParamValue = nullptr; 1532 1533 /// OutermostConditional - Points to the outermost active 1534 /// conditional control. This is used so that we know if a 1535 /// temporary should be destroyed conditionally. 1536 ConditionalEvaluation *OutermostConditional = nullptr; 1537 1538 /// The current lexical scope. 1539 LexicalScope *CurLexicalScope = nullptr; 1540 1541 /// The current source location that should be used for exception 1542 /// handling code. 1543 SourceLocation CurEHLocation; 1544 1545 /// BlockByrefInfos - For each __block variable, contains 1546 /// information about the layout of the variable. 1547 llvm::DenseMap<const ValueDecl *, BlockByrefInfo> BlockByrefInfos; 1548 1549 /// Used by -fsanitize=nullability-return to determine whether the return 1550 /// value can be checked. 1551 llvm::Value *RetValNullabilityPrecondition = nullptr; 1552 1553 /// Check if -fsanitize=nullability-return instrumentation is required for 1554 /// this function. 1555 bool requiresReturnValueNullabilityCheck() const { 1556 return RetValNullabilityPrecondition; 1557 } 1558 1559 /// Used to store precise source locations for return statements by the 1560 /// runtime return value checks. 1561 Address ReturnLocation = Address::invalid(); 1562 1563 /// Check if the return value of this function requires sanitization. 1564 bool requiresReturnValueCheck() const { 1565 return requiresReturnValueNullabilityCheck() || 1566 (SanOpts.has(SanitizerKind::ReturnsNonnullAttribute) && 1567 CurCodeDecl && CurCodeDecl->getAttr<ReturnsNonNullAttr>()); 1568 } 1569 1570 llvm::BasicBlock *TerminateLandingPad = nullptr; 1571 llvm::BasicBlock *TerminateHandler = nullptr; 1572 llvm::BasicBlock *TrapBB = nullptr; 1573 1574 /// Terminate funclets keyed by parent funclet pad. 1575 llvm::MapVector<llvm::Value *, llvm::BasicBlock *> TerminateFunclets; 1576 1577 /// Largest vector width used in ths function. Will be used to create a 1578 /// function attribute. 1579 unsigned LargestVectorWidth = 0; 1580 1581 /// True if we need emit the life-time markers. 1582 const bool ShouldEmitLifetimeMarkers; 1583 1584 /// Add OpenCL kernel arg metadata and the kernel attribute metadata to 1585 /// the function metadata. 1586 void EmitOpenCLKernelMetadata(const FunctionDecl *FD, 1587 llvm::Function *Fn); 1588 1589 public: 1590 CodeGenFunction(CodeGenModule &cgm, bool suppressNewContext=false); 1591 ~CodeGenFunction(); 1592 1593 CodeGenTypes &getTypes() const { return CGM.getTypes(); } 1594 ASTContext &getContext() const { return CGM.getContext(); } 1595 CGDebugInfo *getDebugInfo() { 1596 if (DisableDebugInfo) 1597 return nullptr; 1598 return DebugInfo; 1599 } 1600 void disableDebugInfo() { DisableDebugInfo = true; } 1601 void enableDebugInfo() { DisableDebugInfo = false; } 1602 1603 bool shouldUseFusedARCCalls() { 1604 return CGM.getCodeGenOpts().OptimizationLevel == 0; 1605 } 1606 1607 const LangOptions &getLangOpts() const { return CGM.getLangOpts(); } 1608 1609 /// Returns a pointer to the function's exception object and selector slot, 1610 /// which is assigned in every landing pad. 1611 Address getExceptionSlot(); 1612 Address getEHSelectorSlot(); 1613 1614 /// Returns the contents of the function's exception object and selector 1615 /// slots. 1616 llvm::Value *getExceptionFromSlot(); 1617 llvm::Value *getSelectorFromSlot(); 1618 1619 Address getNormalCleanupDestSlot(); 1620 1621 llvm::BasicBlock *getUnreachableBlock() { 1622 if (!UnreachableBlock) { 1623 UnreachableBlock = createBasicBlock("unreachable"); 1624 new llvm::UnreachableInst(getLLVMContext(), UnreachableBlock); 1625 } 1626 return UnreachableBlock; 1627 } 1628 1629 llvm::BasicBlock *getInvokeDest() { 1630 if (!EHStack.requiresLandingPad()) return nullptr; 1631 return getInvokeDestImpl(); 1632 } 1633 1634 bool currentFunctionUsesSEHTry() const { return CurSEHParent != nullptr; } 1635 1636 const TargetInfo &getTarget() const { return Target; } 1637 llvm::LLVMContext &getLLVMContext() { return CGM.getLLVMContext(); } 1638 const TargetCodeGenInfo &getTargetHooks() const { 1639 return CGM.getTargetCodeGenInfo(); 1640 } 1641 1642 //===--------------------------------------------------------------------===// 1643 // Cleanups 1644 //===--------------------------------------------------------------------===// 1645 1646 typedef void Destroyer(CodeGenFunction &CGF, Address addr, QualType ty); 1647 1648 void pushIrregularPartialArrayCleanup(llvm::Value *arrayBegin, 1649 Address arrayEndPointer, 1650 QualType elementType, 1651 CharUnits elementAlignment, 1652 Destroyer *destroyer); 1653 void pushRegularPartialArrayCleanup(llvm::Value *arrayBegin, 1654 llvm::Value *arrayEnd, 1655 QualType elementType, 1656 CharUnits elementAlignment, 1657 Destroyer *destroyer); 1658 1659 void pushDestroy(QualType::DestructionKind dtorKind, 1660 Address addr, QualType type); 1661 void pushEHDestroy(QualType::DestructionKind dtorKind, 1662 Address addr, QualType type); 1663 void pushDestroy(CleanupKind kind, Address addr, QualType type, 1664 Destroyer *destroyer, bool useEHCleanupForArray); 1665 void pushLifetimeExtendedDestroy(CleanupKind kind, Address addr, 1666 QualType type, Destroyer *destroyer, 1667 bool useEHCleanupForArray); 1668 void pushCallObjectDeleteCleanup(const FunctionDecl *OperatorDelete, 1669 llvm::Value *CompletePtr, 1670 QualType ElementType); 1671 void pushStackRestore(CleanupKind kind, Address SPMem); 1672 void emitDestroy(Address addr, QualType type, Destroyer *destroyer, 1673 bool useEHCleanupForArray); 1674 llvm::Function *generateDestroyHelper(Address addr, QualType type, 1675 Destroyer *destroyer, 1676 bool useEHCleanupForArray, 1677 const VarDecl *VD); 1678 void emitArrayDestroy(llvm::Value *begin, llvm::Value *end, 1679 QualType elementType, CharUnits elementAlign, 1680 Destroyer *destroyer, 1681 bool checkZeroLength, bool useEHCleanup); 1682 1683 Destroyer *getDestroyer(QualType::DestructionKind destructionKind); 1684 1685 /// Determines whether an EH cleanup is required to destroy a type 1686 /// with the given destruction kind. 1687 bool needsEHCleanup(QualType::DestructionKind kind) { 1688 switch (kind) { 1689 case QualType::DK_none: 1690 return false; 1691 case QualType::DK_cxx_destructor: 1692 case QualType::DK_objc_weak_lifetime: 1693 case QualType::DK_nontrivial_c_struct: 1694 return getLangOpts().Exceptions; 1695 case QualType::DK_objc_strong_lifetime: 1696 return getLangOpts().Exceptions && 1697 CGM.getCodeGenOpts().ObjCAutoRefCountExceptions; 1698 } 1699 llvm_unreachable("bad destruction kind"); 1700 } 1701 1702 CleanupKind getCleanupKind(QualType::DestructionKind kind) { 1703 return (needsEHCleanup(kind) ? NormalAndEHCleanup : NormalCleanup); 1704 } 1705 1706 //===--------------------------------------------------------------------===// 1707 // Objective-C 1708 //===--------------------------------------------------------------------===// 1709 1710 void GenerateObjCMethod(const ObjCMethodDecl *OMD); 1711 1712 void StartObjCMethod(const ObjCMethodDecl *MD, const ObjCContainerDecl *CD); 1713 1714 /// GenerateObjCGetter - Synthesize an Objective-C property getter function. 1715 void GenerateObjCGetter(ObjCImplementationDecl *IMP, 1716 const ObjCPropertyImplDecl *PID); 1717 void generateObjCGetterBody(const ObjCImplementationDecl *classImpl, 1718 const ObjCPropertyImplDecl *propImpl, 1719 const ObjCMethodDecl *GetterMothodDecl, 1720 llvm::Constant *AtomicHelperFn); 1721 1722 void GenerateObjCCtorDtorMethod(ObjCImplementationDecl *IMP, 1723 ObjCMethodDecl *MD, bool ctor); 1724 1725 /// GenerateObjCSetter - Synthesize an Objective-C property setter function 1726 /// for the given property. 1727 void GenerateObjCSetter(ObjCImplementationDecl *IMP, 1728 const ObjCPropertyImplDecl *PID); 1729 void generateObjCSetterBody(const ObjCImplementationDecl *classImpl, 1730 const ObjCPropertyImplDecl *propImpl, 1731 llvm::Constant *AtomicHelperFn); 1732 1733 //===--------------------------------------------------------------------===// 1734 // Block Bits 1735 //===--------------------------------------------------------------------===// 1736 1737 /// Emit block literal. 1738 /// \return an LLVM value which is a pointer to a struct which contains 1739 /// information about the block, including the block invoke function, the 1740 /// captured variables, etc. 1741 llvm::Value *EmitBlockLiteral(const BlockExpr *); 1742 static void destroyBlockInfos(CGBlockInfo *info); 1743 1744 llvm::Function *GenerateBlockFunction(GlobalDecl GD, 1745 const CGBlockInfo &Info, 1746 const DeclMapTy &ldm, 1747 bool IsLambdaConversionToBlock, 1748 bool BuildGlobalBlock); 1749 1750 /// Check if \p T is a C++ class that has a destructor that can throw. 1751 static bool cxxDestructorCanThrow(QualType T); 1752 1753 llvm::Constant *GenerateCopyHelperFunction(const CGBlockInfo &blockInfo); 1754 llvm::Constant *GenerateDestroyHelperFunction(const CGBlockInfo &blockInfo); 1755 llvm::Constant *GenerateObjCAtomicSetterCopyHelperFunction( 1756 const ObjCPropertyImplDecl *PID); 1757 llvm::Constant *GenerateObjCAtomicGetterCopyHelperFunction( 1758 const ObjCPropertyImplDecl *PID); 1759 llvm::Value *EmitBlockCopyAndAutorelease(llvm::Value *Block, QualType Ty); 1760 1761 void BuildBlockRelease(llvm::Value *DeclPtr, BlockFieldFlags flags, 1762 bool CanThrow); 1763 1764 class AutoVarEmission; 1765 1766 void emitByrefStructureInit(const AutoVarEmission &emission); 1767 1768 /// Enter a cleanup to destroy a __block variable. Note that this 1769 /// cleanup should be a no-op if the variable hasn't left the stack 1770 /// yet; if a cleanup is required for the variable itself, that needs 1771 /// to be done externally. 1772 /// 1773 /// \param Kind Cleanup kind. 1774 /// 1775 /// \param Addr When \p LoadBlockVarAddr is false, the address of the __block 1776 /// structure that will be passed to _Block_object_dispose. When 1777 /// \p LoadBlockVarAddr is true, the address of the field of the block 1778 /// structure that holds the address of the __block structure. 1779 /// 1780 /// \param Flags The flag that will be passed to _Block_object_dispose. 1781 /// 1782 /// \param LoadBlockVarAddr Indicates whether we need to emit a load from 1783 /// \p Addr to get the address of the __block structure. 1784 void enterByrefCleanup(CleanupKind Kind, Address Addr, BlockFieldFlags Flags, 1785 bool LoadBlockVarAddr, bool CanThrow); 1786 1787 void setBlockContextParameter(const ImplicitParamDecl *D, unsigned argNum, 1788 llvm::Value *ptr); 1789 1790 Address LoadBlockStruct(); 1791 Address GetAddrOfBlockDecl(const VarDecl *var); 1792 1793 /// BuildBlockByrefAddress - Computes the location of the 1794 /// data in a variable which is declared as __block. 1795 Address emitBlockByrefAddress(Address baseAddr, const VarDecl *V, 1796 bool followForward = true); 1797 Address emitBlockByrefAddress(Address baseAddr, 1798 const BlockByrefInfo &info, 1799 bool followForward, 1800 const llvm::Twine &name); 1801 1802 const BlockByrefInfo &getBlockByrefInfo(const VarDecl *var); 1803 1804 QualType BuildFunctionArgList(GlobalDecl GD, FunctionArgList &Args); 1805 1806 void GenerateCode(GlobalDecl GD, llvm::Function *Fn, 1807 const CGFunctionInfo &FnInfo); 1808 1809 /// Annotate the function with an attribute that disables TSan checking at 1810 /// runtime. 1811 void markAsIgnoreThreadCheckingAtRuntime(llvm::Function *Fn); 1812 1813 /// Emit code for the start of a function. 1814 /// \param Loc The location to be associated with the function. 1815 /// \param StartLoc The location of the function body. 1816 void StartFunction(GlobalDecl GD, 1817 QualType RetTy, 1818 llvm::Function *Fn, 1819 const CGFunctionInfo &FnInfo, 1820 const FunctionArgList &Args, 1821 SourceLocation Loc = SourceLocation(), 1822 SourceLocation StartLoc = SourceLocation()); 1823 1824 static bool IsConstructorDelegationValid(const CXXConstructorDecl *Ctor); 1825 1826 void EmitConstructorBody(FunctionArgList &Args); 1827 void EmitDestructorBody(FunctionArgList &Args); 1828 void emitImplicitAssignmentOperatorBody(FunctionArgList &Args); 1829 void EmitFunctionBody(const Stmt *Body); 1830 void EmitBlockWithFallThrough(llvm::BasicBlock *BB, const Stmt *S); 1831 1832 void EmitForwardingCallToLambda(const CXXMethodDecl *LambdaCallOperator, 1833 CallArgList &CallArgs); 1834 void EmitLambdaBlockInvokeBody(); 1835 void EmitLambdaDelegatingInvokeBody(const CXXMethodDecl *MD); 1836 void EmitLambdaStaticInvokeBody(const CXXMethodDecl *MD); 1837 void EmitLambdaVLACapture(const VariableArrayType *VAT, LValue LV) { 1838 EmitStoreThroughLValue(RValue::get(VLASizeMap[VAT->getSizeExpr()]), LV); 1839 } 1840 void EmitAsanPrologueOrEpilogue(bool Prologue); 1841 1842 /// Emit the unified return block, trying to avoid its emission when 1843 /// possible. 1844 /// \return The debug location of the user written return statement if the 1845 /// return block is is avoided. 1846 llvm::DebugLoc EmitReturnBlock(); 1847 1848 /// FinishFunction - Complete IR generation of the current function. It is 1849 /// legal to call this function even if there is no current insertion point. 1850 void FinishFunction(SourceLocation EndLoc=SourceLocation()); 1851 1852 void StartThunk(llvm::Function *Fn, GlobalDecl GD, 1853 const CGFunctionInfo &FnInfo, bool IsUnprototyped); 1854 1855 void EmitCallAndReturnForThunk(llvm::FunctionCallee Callee, 1856 const ThunkInfo *Thunk, bool IsUnprototyped); 1857 1858 void FinishThunk(); 1859 1860 /// Emit a musttail call for a thunk with a potentially adjusted this pointer. 1861 void EmitMustTailThunk(GlobalDecl GD, llvm::Value *AdjustedThisPtr, 1862 llvm::FunctionCallee Callee); 1863 1864 /// Generate a thunk for the given method. 1865 void generateThunk(llvm::Function *Fn, const CGFunctionInfo &FnInfo, 1866 GlobalDecl GD, const ThunkInfo &Thunk, 1867 bool IsUnprototyped); 1868 1869 llvm::Function *GenerateVarArgsThunk(llvm::Function *Fn, 1870 const CGFunctionInfo &FnInfo, 1871 GlobalDecl GD, const ThunkInfo &Thunk); 1872 1873 void EmitCtorPrologue(const CXXConstructorDecl *CD, CXXCtorType Type, 1874 FunctionArgList &Args); 1875 1876 void EmitInitializerForField(FieldDecl *Field, LValue LHS, Expr *Init); 1877 1878 /// Struct with all information about dynamic [sub]class needed to set vptr. 1879 struct VPtr { 1880 BaseSubobject Base; 1881 const CXXRecordDecl *NearestVBase; 1882 CharUnits OffsetFromNearestVBase; 1883 const CXXRecordDecl *VTableClass; 1884 }; 1885 1886 /// Initialize the vtable pointer of the given subobject. 1887 void InitializeVTablePointer(const VPtr &vptr); 1888 1889 typedef llvm::SmallVector<VPtr, 4> VPtrsVector; 1890 1891 typedef llvm::SmallPtrSet<const CXXRecordDecl *, 4> VisitedVirtualBasesSetTy; 1892 VPtrsVector getVTablePointers(const CXXRecordDecl *VTableClass); 1893 1894 void getVTablePointers(BaseSubobject Base, const CXXRecordDecl *NearestVBase, 1895 CharUnits OffsetFromNearestVBase, 1896 bool BaseIsNonVirtualPrimaryBase, 1897 const CXXRecordDecl *VTableClass, 1898 VisitedVirtualBasesSetTy &VBases, VPtrsVector &vptrs); 1899 1900 void InitializeVTablePointers(const CXXRecordDecl *ClassDecl); 1901 1902 /// GetVTablePtr - Return the Value of the vtable pointer member pointed 1903 /// to by This. 1904 llvm::Value *GetVTablePtr(Address This, llvm::Type *VTableTy, 1905 const CXXRecordDecl *VTableClass); 1906 1907 enum CFITypeCheckKind { 1908 CFITCK_VCall, 1909 CFITCK_NVCall, 1910 CFITCK_DerivedCast, 1911 CFITCK_UnrelatedCast, 1912 CFITCK_ICall, 1913 CFITCK_NVMFCall, 1914 CFITCK_VMFCall, 1915 }; 1916 1917 /// Derived is the presumed address of an object of type T after a 1918 /// cast. If T is a polymorphic class type, emit a check that the virtual 1919 /// table for Derived belongs to a class derived from T. 1920 void EmitVTablePtrCheckForCast(QualType T, llvm::Value *Derived, 1921 bool MayBeNull, CFITypeCheckKind TCK, 1922 SourceLocation Loc); 1923 1924 /// EmitVTablePtrCheckForCall - Virtual method MD is being called via VTable. 1925 /// If vptr CFI is enabled, emit a check that VTable is valid. 1926 void EmitVTablePtrCheckForCall(const CXXRecordDecl *RD, llvm::Value *VTable, 1927 CFITypeCheckKind TCK, SourceLocation Loc); 1928 1929 /// EmitVTablePtrCheck - Emit a check that VTable is a valid virtual table for 1930 /// RD using llvm.type.test. 1931 void EmitVTablePtrCheck(const CXXRecordDecl *RD, llvm::Value *VTable, 1932 CFITypeCheckKind TCK, SourceLocation Loc); 1933 1934 /// If whole-program virtual table optimization is enabled, emit an assumption 1935 /// that VTable is a member of RD's type identifier. Or, if vptr CFI is 1936 /// enabled, emit a check that VTable is a member of RD's type identifier. 1937 void EmitTypeMetadataCodeForVCall(const CXXRecordDecl *RD, 1938 llvm::Value *VTable, SourceLocation Loc); 1939 1940 /// Returns whether we should perform a type checked load when loading a 1941 /// virtual function for virtual calls to members of RD. This is generally 1942 /// true when both vcall CFI and whole-program-vtables are enabled. 1943 bool ShouldEmitVTableTypeCheckedLoad(const CXXRecordDecl *RD); 1944 1945 /// Emit a type checked load from the given vtable. 1946 llvm::Value *EmitVTableTypeCheckedLoad(const CXXRecordDecl *RD, llvm::Value *VTable, 1947 uint64_t VTableByteOffset); 1948 1949 /// EnterDtorCleanups - Enter the cleanups necessary to complete the 1950 /// given phase of destruction for a destructor. The end result 1951 /// should call destructors on members and base classes in reverse 1952 /// order of their construction. 1953 void EnterDtorCleanups(const CXXDestructorDecl *Dtor, CXXDtorType Type); 1954 1955 /// ShouldInstrumentFunction - Return true if the current function should be 1956 /// instrumented with __cyg_profile_func_* calls 1957 bool ShouldInstrumentFunction(); 1958 1959 /// ShouldXRayInstrument - Return true if the current function should be 1960 /// instrumented with XRay nop sleds. 1961 bool ShouldXRayInstrumentFunction() const; 1962 1963 /// AlwaysEmitXRayCustomEvents - Return true if we must unconditionally emit 1964 /// XRay custom event handling calls. 1965 bool AlwaysEmitXRayCustomEvents() const; 1966 1967 /// AlwaysEmitXRayTypedEvents - Return true if clang must unconditionally emit 1968 /// XRay typed event handling calls. 1969 bool AlwaysEmitXRayTypedEvents() const; 1970 1971 /// Encode an address into a form suitable for use in a function prologue. 1972 llvm::Constant *EncodeAddrForUseInPrologue(llvm::Function *F, 1973 llvm::Constant *Addr); 1974 1975 /// Decode an address used in a function prologue, encoded by \c 1976 /// EncodeAddrForUseInPrologue. 1977 llvm::Value *DecodeAddrUsedInPrologue(llvm::Value *F, 1978 llvm::Value *EncodedAddr); 1979 1980 /// EmitFunctionProlog - Emit the target specific LLVM code to load the 1981 /// arguments for the given function. This is also responsible for naming the 1982 /// LLVM function arguments. 1983 void EmitFunctionProlog(const CGFunctionInfo &FI, 1984 llvm::Function *Fn, 1985 const FunctionArgList &Args); 1986 1987 /// EmitFunctionEpilog - Emit the target specific LLVM code to return the 1988 /// given temporary. 1989 void EmitFunctionEpilog(const CGFunctionInfo &FI, bool EmitRetDbgLoc, 1990 SourceLocation EndLoc); 1991 1992 /// Emit a test that checks if the return value \p RV is nonnull. 1993 void EmitReturnValueCheck(llvm::Value *RV); 1994 1995 /// EmitStartEHSpec - Emit the start of the exception spec. 1996 void EmitStartEHSpec(const Decl *D); 1997 1998 /// EmitEndEHSpec - Emit the end of the exception spec. 1999 void EmitEndEHSpec(const Decl *D); 2000 2001 /// getTerminateLandingPad - Return a landing pad that just calls terminate. 2002 llvm::BasicBlock *getTerminateLandingPad(); 2003 2004 /// getTerminateLandingPad - Return a cleanup funclet that just calls 2005 /// terminate. 2006 llvm::BasicBlock *getTerminateFunclet(); 2007 2008 /// getTerminateHandler - Return a handler (not a landing pad, just 2009 /// a catch handler) that just calls terminate. This is used when 2010 /// a terminate scope encloses a try. 2011 llvm::BasicBlock *getTerminateHandler(); 2012 2013 llvm::Type *ConvertTypeForMem(QualType T); 2014 llvm::Type *ConvertType(QualType T); 2015 llvm::Type *ConvertType(const TypeDecl *T) { 2016 return ConvertType(getContext().getTypeDeclType(T)); 2017 } 2018 2019 /// LoadObjCSelf - Load the value of self. This function is only valid while 2020 /// generating code for an Objective-C method. 2021 llvm::Value *LoadObjCSelf(); 2022 2023 /// TypeOfSelfObject - Return type of object that this self represents. 2024 QualType TypeOfSelfObject(); 2025 2026 /// getEvaluationKind - Return the TypeEvaluationKind of QualType \c T. 2027 static TypeEvaluationKind getEvaluationKind(QualType T); 2028 2029 static bool hasScalarEvaluationKind(QualType T) { 2030 return getEvaluationKind(T) == TEK_Scalar; 2031 } 2032 2033 static bool hasAggregateEvaluationKind(QualType T) { 2034 return getEvaluationKind(T) == TEK_Aggregate; 2035 } 2036 2037 /// createBasicBlock - Create an LLVM basic block. 2038 llvm::BasicBlock *createBasicBlock(const Twine &name = "", 2039 llvm::Function *parent = nullptr, 2040 llvm::BasicBlock *before = nullptr) { 2041 return llvm::BasicBlock::Create(getLLVMContext(), name, parent, before); 2042 } 2043 2044 /// getBasicBlockForLabel - Return the LLVM basicblock that the specified 2045 /// label maps to. 2046 JumpDest getJumpDestForLabel(const LabelDecl *S); 2047 2048 /// SimplifyForwardingBlocks - If the given basic block is only a branch to 2049 /// another basic block, simplify it. This assumes that no other code could 2050 /// potentially reference the basic block. 2051 void SimplifyForwardingBlocks(llvm::BasicBlock *BB); 2052 2053 /// EmitBlock - Emit the given block \arg BB and set it as the insert point, 2054 /// adding a fall-through branch from the current insert block if 2055 /// necessary. It is legal to call this function even if there is no current 2056 /// insertion point. 2057 /// 2058 /// IsFinished - If true, indicates that the caller has finished emitting 2059 /// branches to the given block and does not expect to emit code into it. This 2060 /// means the block can be ignored if it is unreachable. 2061 void EmitBlock(llvm::BasicBlock *BB, bool IsFinished=false); 2062 2063 /// EmitBlockAfterUses - Emit the given block somewhere hopefully 2064 /// near its uses, and leave the insertion point in it. 2065 void EmitBlockAfterUses(llvm::BasicBlock *BB); 2066 2067 /// EmitBranch - Emit a branch to the specified basic block from the current 2068 /// insert block, taking care to avoid creation of branches from dummy 2069 /// blocks. It is legal to call this function even if there is no current 2070 /// insertion point. 2071 /// 2072 /// This function clears the current insertion point. The caller should follow 2073 /// calls to this function with calls to Emit*Block prior to generation new 2074 /// code. 2075 void EmitBranch(llvm::BasicBlock *Block); 2076 2077 /// HaveInsertPoint - True if an insertion point is defined. If not, this 2078 /// indicates that the current code being emitted is unreachable. 2079 bool HaveInsertPoint() const { 2080 return Builder.GetInsertBlock() != nullptr; 2081 } 2082 2083 /// EnsureInsertPoint - Ensure that an insertion point is defined so that 2084 /// emitted IR has a place to go. Note that by definition, if this function 2085 /// creates a block then that block is unreachable; callers may do better to 2086 /// detect when no insertion point is defined and simply skip IR generation. 2087 void EnsureInsertPoint() { 2088 if (!HaveInsertPoint()) 2089 EmitBlock(createBasicBlock()); 2090 } 2091 2092 /// ErrorUnsupported - Print out an error that codegen doesn't support the 2093 /// specified stmt yet. 2094 void ErrorUnsupported(const Stmt *S, const char *Type); 2095 2096 //===--------------------------------------------------------------------===// 2097 // Helpers 2098 //===--------------------------------------------------------------------===// 2099 2100 LValue MakeAddrLValue(Address Addr, QualType T, 2101 AlignmentSource Source = AlignmentSource::Type) { 2102 return LValue::MakeAddr(Addr, T, getContext(), LValueBaseInfo(Source), 2103 CGM.getTBAAAccessInfo(T)); 2104 } 2105 2106 LValue MakeAddrLValue(Address Addr, QualType T, LValueBaseInfo BaseInfo, 2107 TBAAAccessInfo TBAAInfo) { 2108 return LValue::MakeAddr(Addr, T, getContext(), BaseInfo, TBAAInfo); 2109 } 2110 2111 LValue MakeAddrLValue(llvm::Value *V, QualType T, CharUnits Alignment, 2112 AlignmentSource Source = AlignmentSource::Type) { 2113 return LValue::MakeAddr(Address(V, Alignment), T, getContext(), 2114 LValueBaseInfo(Source), CGM.getTBAAAccessInfo(T)); 2115 } 2116 2117 LValue MakeAddrLValue(llvm::Value *V, QualType T, CharUnits Alignment, 2118 LValueBaseInfo BaseInfo, TBAAAccessInfo TBAAInfo) { 2119 return LValue::MakeAddr(Address(V, Alignment), T, getContext(), 2120 BaseInfo, TBAAInfo); 2121 } 2122 2123 LValue MakeNaturalAlignPointeeAddrLValue(llvm::Value *V, QualType T); 2124 LValue MakeNaturalAlignAddrLValue(llvm::Value *V, QualType T); 2125 CharUnits getNaturalTypeAlignment(QualType T, 2126 LValueBaseInfo *BaseInfo = nullptr, 2127 TBAAAccessInfo *TBAAInfo = nullptr, 2128 bool forPointeeType = false); 2129 CharUnits getNaturalPointeeTypeAlignment(QualType T, 2130 LValueBaseInfo *BaseInfo = nullptr, 2131 TBAAAccessInfo *TBAAInfo = nullptr); 2132 2133 Address EmitLoadOfReference(LValue RefLVal, 2134 LValueBaseInfo *PointeeBaseInfo = nullptr, 2135 TBAAAccessInfo *PointeeTBAAInfo = nullptr); 2136 LValue EmitLoadOfReferenceLValue(LValue RefLVal); 2137 LValue EmitLoadOfReferenceLValue(Address RefAddr, QualType RefTy, 2138 AlignmentSource Source = 2139 AlignmentSource::Type) { 2140 LValue RefLVal = MakeAddrLValue(RefAddr, RefTy, LValueBaseInfo(Source), 2141 CGM.getTBAAAccessInfo(RefTy)); 2142 return EmitLoadOfReferenceLValue(RefLVal); 2143 } 2144 2145 Address EmitLoadOfPointer(Address Ptr, const PointerType *PtrTy, 2146 LValueBaseInfo *BaseInfo = nullptr, 2147 TBAAAccessInfo *TBAAInfo = nullptr); 2148 LValue EmitLoadOfPointerLValue(Address Ptr, const PointerType *PtrTy); 2149 2150 /// CreateTempAlloca - This creates an alloca and inserts it into the entry 2151 /// block if \p ArraySize is nullptr, otherwise inserts it at the current 2152 /// insertion point of the builder. The caller is responsible for setting an 2153 /// appropriate alignment on 2154 /// the alloca. 2155 /// 2156 /// \p ArraySize is the number of array elements to be allocated if it 2157 /// is not nullptr. 2158 /// 2159 /// LangAS::Default is the address space of pointers to local variables and 2160 /// temporaries, as exposed in the source language. In certain 2161 /// configurations, this is not the same as the alloca address space, and a 2162 /// cast is needed to lift the pointer from the alloca AS into 2163 /// LangAS::Default. This can happen when the target uses a restricted 2164 /// address space for the stack but the source language requires 2165 /// LangAS::Default to be a generic address space. The latter condition is 2166 /// common for most programming languages; OpenCL is an exception in that 2167 /// LangAS::Default is the private address space, which naturally maps 2168 /// to the stack. 2169 /// 2170 /// Because the address of a temporary is often exposed to the program in 2171 /// various ways, this function will perform the cast. The original alloca 2172 /// instruction is returned through \p Alloca if it is not nullptr. 2173 /// 2174 /// The cast is not performaed in CreateTempAllocaWithoutCast. This is 2175 /// more efficient if the caller knows that the address will not be exposed. 2176 llvm::AllocaInst *CreateTempAlloca(llvm::Type *Ty, const Twine &Name = "tmp", 2177 llvm::Value *ArraySize = nullptr); 2178 Address CreateTempAlloca(llvm::Type *Ty, CharUnits align, 2179 const Twine &Name = "tmp", 2180 llvm::Value *ArraySize = nullptr, 2181 Address *Alloca = nullptr); 2182 Address CreateTempAllocaWithoutCast(llvm::Type *Ty, CharUnits align, 2183 const Twine &Name = "tmp", 2184 llvm::Value *ArraySize = nullptr); 2185 2186 /// CreateDefaultAlignedTempAlloca - This creates an alloca with the 2187 /// default ABI alignment of the given LLVM type. 2188 /// 2189 /// IMPORTANT NOTE: This is *not* generally the right alignment for 2190 /// any given AST type that happens to have been lowered to the 2191 /// given IR type. This should only ever be used for function-local, 2192 /// IR-driven manipulations like saving and restoring a value. Do 2193 /// not hand this address off to arbitrary IRGen routines, and especially 2194 /// do not pass it as an argument to a function that might expect a 2195 /// properly ABI-aligned value. 2196 Address CreateDefaultAlignTempAlloca(llvm::Type *Ty, 2197 const Twine &Name = "tmp"); 2198 2199 /// InitTempAlloca - Provide an initial value for the given alloca which 2200 /// will be observable at all locations in the function. 2201 /// 2202 /// The address should be something that was returned from one of 2203 /// the CreateTempAlloca or CreateMemTemp routines, and the 2204 /// initializer must be valid in the entry block (i.e. it must 2205 /// either be a constant or an argument value). 2206 void InitTempAlloca(Address Alloca, llvm::Value *Value); 2207 2208 /// CreateIRTemp - Create a temporary IR object of the given type, with 2209 /// appropriate alignment. This routine should only be used when an temporary 2210 /// value needs to be stored into an alloca (for example, to avoid explicit 2211 /// PHI construction), but the type is the IR type, not the type appropriate 2212 /// for storing in memory. 2213 /// 2214 /// That is, this is exactly equivalent to CreateMemTemp, but calling 2215 /// ConvertType instead of ConvertTypeForMem. 2216 Address CreateIRTemp(QualType T, const Twine &Name = "tmp"); 2217 2218 /// CreateMemTemp - Create a temporary memory object of the given type, with 2219 /// appropriate alignmen and cast it to the default address space. Returns 2220 /// the original alloca instruction by \p Alloca if it is not nullptr. 2221 Address CreateMemTemp(QualType T, const Twine &Name = "tmp", 2222 Address *Alloca = nullptr); 2223 Address CreateMemTemp(QualType T, CharUnits Align, const Twine &Name = "tmp", 2224 Address *Alloca = nullptr); 2225 2226 /// CreateMemTemp - Create a temporary memory object of the given type, with 2227 /// appropriate alignmen without casting it to the default address space. 2228 Address CreateMemTempWithoutCast(QualType T, const Twine &Name = "tmp"); 2229 Address CreateMemTempWithoutCast(QualType T, CharUnits Align, 2230 const Twine &Name = "tmp"); 2231 2232 /// CreateAggTemp - Create a temporary memory object for the given 2233 /// aggregate type. 2234 AggValueSlot CreateAggTemp(QualType T, const Twine &Name = "tmp") { 2235 return AggValueSlot::forAddr(CreateMemTemp(T, Name), 2236 T.getQualifiers(), 2237 AggValueSlot::IsNotDestructed, 2238 AggValueSlot::DoesNotNeedGCBarriers, 2239 AggValueSlot::IsNotAliased, 2240 AggValueSlot::DoesNotOverlap); 2241 } 2242 2243 /// Emit a cast to void* in the appropriate address space. 2244 llvm::Value *EmitCastToVoidPtr(llvm::Value *value); 2245 2246 /// EvaluateExprAsBool - Perform the usual unary conversions on the specified 2247 /// expression and compare the result against zero, returning an Int1Ty value. 2248 llvm::Value *EvaluateExprAsBool(const Expr *E); 2249 2250 /// EmitIgnoredExpr - Emit an expression in a context which ignores the result. 2251 void EmitIgnoredExpr(const Expr *E); 2252 2253 /// EmitAnyExpr - Emit code to compute the specified expression which can have 2254 /// any type. The result is returned as an RValue struct. If this is an 2255 /// aggregate expression, the aggloc/agglocvolatile arguments indicate where 2256 /// the result should be returned. 2257 /// 2258 /// \param ignoreResult True if the resulting value isn't used. 2259 RValue EmitAnyExpr(const Expr *E, 2260 AggValueSlot aggSlot = AggValueSlot::ignored(), 2261 bool ignoreResult = false); 2262 2263 // EmitVAListRef - Emit a "reference" to a va_list; this is either the address 2264 // or the value of the expression, depending on how va_list is defined. 2265 Address EmitVAListRef(const Expr *E); 2266 2267 /// Emit a "reference" to a __builtin_ms_va_list; this is 2268 /// always the value of the expression, because a __builtin_ms_va_list is a 2269 /// pointer to a char. 2270 Address EmitMSVAListRef(const Expr *E); 2271 2272 /// EmitAnyExprToTemp - Similarly to EmitAnyExpr(), however, the result will 2273 /// always be accessible even if no aggregate location is provided. 2274 RValue EmitAnyExprToTemp(const Expr *E); 2275 2276 /// EmitAnyExprToMem - Emits the code necessary to evaluate an 2277 /// arbitrary expression into the given memory location. 2278 void EmitAnyExprToMem(const Expr *E, Address Location, 2279 Qualifiers Quals, bool IsInitializer); 2280 2281 void EmitAnyExprToExn(const Expr *E, Address Addr); 2282 2283 /// EmitExprAsInit - Emits the code necessary to initialize a 2284 /// location in memory with the given initializer. 2285 void EmitExprAsInit(const Expr *init, const ValueDecl *D, LValue lvalue, 2286 bool capturedByInit); 2287 2288 /// hasVolatileMember - returns true if aggregate type has a volatile 2289 /// member. 2290 bool hasVolatileMember(QualType T) { 2291 if (const RecordType *RT = T->getAs<RecordType>()) { 2292 const RecordDecl *RD = cast<RecordDecl>(RT->getDecl()); 2293 return RD->hasVolatileMember(); 2294 } 2295 return false; 2296 } 2297 2298 /// Determine whether a return value slot may overlap some other object. 2299 AggValueSlot::Overlap_t overlapForReturnValue() { 2300 // FIXME: Assuming no overlap here breaks guaranteed copy elision for base 2301 // class subobjects. These cases may need to be revisited depending on the 2302 // resolution of the relevant core issue. 2303 return AggValueSlot::DoesNotOverlap; 2304 } 2305 2306 /// Determine whether a field initialization may overlap some other object. 2307 AggValueSlot::Overlap_t overlapForFieldInit(const FieldDecl *FD) { 2308 // FIXME: These cases can result in overlap as a result of P0840R0's 2309 // [[no_unique_address]] attribute. We can still infer NoOverlap in the 2310 // presence of that attribute if the field is within the nvsize of its 2311 // containing class, because non-virtual subobjects are initialized in 2312 // address order. 2313 return AggValueSlot::DoesNotOverlap; 2314 } 2315 2316 /// Determine whether a base class initialization may overlap some other 2317 /// object. 2318 AggValueSlot::Overlap_t overlapForBaseInit(const CXXRecordDecl *RD, 2319 const CXXRecordDecl *BaseRD, 2320 bool IsVirtual); 2321 2322 /// Emit an aggregate assignment. 2323 void EmitAggregateAssign(LValue Dest, LValue Src, QualType EltTy) { 2324 bool IsVolatile = hasVolatileMember(EltTy); 2325 EmitAggregateCopy(Dest, Src, EltTy, AggValueSlot::MayOverlap, IsVolatile); 2326 } 2327 2328 void EmitAggregateCopyCtor(LValue Dest, LValue Src, 2329 AggValueSlot::Overlap_t MayOverlap) { 2330 EmitAggregateCopy(Dest, Src, Src.getType(), MayOverlap); 2331 } 2332 2333 /// EmitAggregateCopy - Emit an aggregate copy. 2334 /// 2335 /// \param isVolatile \c true iff either the source or the destination is 2336 /// volatile. 2337 /// \param MayOverlap Whether the tail padding of the destination might be 2338 /// occupied by some other object. More efficient code can often be 2339 /// generated if not. 2340 void EmitAggregateCopy(LValue Dest, LValue Src, QualType EltTy, 2341 AggValueSlot::Overlap_t MayOverlap, 2342 bool isVolatile = false); 2343 2344 /// GetAddrOfLocalVar - Return the address of a local variable. 2345 Address GetAddrOfLocalVar(const VarDecl *VD) { 2346 auto it = LocalDeclMap.find(VD); 2347 assert(it != LocalDeclMap.end() && 2348 "Invalid argument to GetAddrOfLocalVar(), no decl!"); 2349 return it->second; 2350 } 2351 2352 /// Given an opaque value expression, return its LValue mapping if it exists, 2353 /// otherwise create one. 2354 LValue getOrCreateOpaqueLValueMapping(const OpaqueValueExpr *e); 2355 2356 /// Given an opaque value expression, return its RValue mapping if it exists, 2357 /// otherwise create one. 2358 RValue getOrCreateOpaqueRValueMapping(const OpaqueValueExpr *e); 2359 2360 /// Get the index of the current ArrayInitLoopExpr, if any. 2361 llvm::Value *getArrayInitIndex() { return ArrayInitIndex; } 2362 2363 /// getAccessedFieldNo - Given an encoded value and a result number, return 2364 /// the input field number being accessed. 2365 static unsigned getAccessedFieldNo(unsigned Idx, const llvm::Constant *Elts); 2366 2367 llvm::BlockAddress *GetAddrOfLabel(const LabelDecl *L); 2368 llvm::BasicBlock *GetIndirectGotoBlock(); 2369 2370 /// Check if \p E is a C++ "this" pointer wrapped in value-preserving casts. 2371 static bool IsWrappedCXXThis(const Expr *E); 2372 2373 /// EmitNullInitialization - Generate code to set a value of the given type to 2374 /// null, If the type contains data member pointers, they will be initialized 2375 /// to -1 in accordance with the Itanium C++ ABI. 2376 void EmitNullInitialization(Address DestPtr, QualType Ty); 2377 2378 /// Emits a call to an LLVM variable-argument intrinsic, either 2379 /// \c llvm.va_start or \c llvm.va_end. 2380 /// \param ArgValue A reference to the \c va_list as emitted by either 2381 /// \c EmitVAListRef or \c EmitMSVAListRef. 2382 /// \param IsStart If \c true, emits a call to \c llvm.va_start; otherwise, 2383 /// calls \c llvm.va_end. 2384 llvm::Value *EmitVAStartEnd(llvm::Value *ArgValue, bool IsStart); 2385 2386 /// Generate code to get an argument from the passed in pointer 2387 /// and update it accordingly. 2388 /// \param VE The \c VAArgExpr for which to generate code. 2389 /// \param VAListAddr Receives a reference to the \c va_list as emitted by 2390 /// either \c EmitVAListRef or \c EmitMSVAListRef. 2391 /// \returns A pointer to the argument. 2392 // FIXME: We should be able to get rid of this method and use the va_arg 2393 // instruction in LLVM instead once it works well enough. 2394 Address EmitVAArg(VAArgExpr *VE, Address &VAListAddr); 2395 2396 /// emitArrayLength - Compute the length of an array, even if it's a 2397 /// VLA, and drill down to the base element type. 2398 llvm::Value *emitArrayLength(const ArrayType *arrayType, 2399 QualType &baseType, 2400 Address &addr); 2401 2402 /// EmitVLASize - Capture all the sizes for the VLA expressions in 2403 /// the given variably-modified type and store them in the VLASizeMap. 2404 /// 2405 /// This function can be called with a null (unreachable) insert point. 2406 void EmitVariablyModifiedType(QualType Ty); 2407 2408 struct VlaSizePair { 2409 llvm::Value *NumElts; 2410 QualType Type; 2411 2412 VlaSizePair(llvm::Value *NE, QualType T) : NumElts(NE), Type(T) {} 2413 }; 2414 2415 /// Return the number of elements for a single dimension 2416 /// for the given array type. 2417 VlaSizePair getVLAElements1D(const VariableArrayType *vla); 2418 VlaSizePair getVLAElements1D(QualType vla); 2419 2420 /// Returns an LLVM value that corresponds to the size, 2421 /// in non-variably-sized elements, of a variable length array type, 2422 /// plus that largest non-variably-sized element type. Assumes that 2423 /// the type has already been emitted with EmitVariablyModifiedType. 2424 VlaSizePair getVLASize(const VariableArrayType *vla); 2425 VlaSizePair getVLASize(QualType vla); 2426 2427 /// LoadCXXThis - Load the value of 'this'. This function is only valid while 2428 /// generating code for an C++ member function. 2429 llvm::Value *LoadCXXThis() { 2430 assert(CXXThisValue && "no 'this' value for this function"); 2431 return CXXThisValue; 2432 } 2433 Address LoadCXXThisAddress(); 2434 2435 /// LoadCXXVTT - Load the VTT parameter to base constructors/destructors have 2436 /// virtual bases. 2437 // FIXME: Every place that calls LoadCXXVTT is something 2438 // that needs to be abstracted properly. 2439 llvm::Value *LoadCXXVTT() { 2440 assert(CXXStructorImplicitParamValue && "no VTT value for this function"); 2441 return CXXStructorImplicitParamValue; 2442 } 2443 2444 /// GetAddressOfBaseOfCompleteClass - Convert the given pointer to a 2445 /// complete class to the given direct base. 2446 Address 2447 GetAddressOfDirectBaseInCompleteClass(Address Value, 2448 const CXXRecordDecl *Derived, 2449 const CXXRecordDecl *Base, 2450 bool BaseIsVirtual); 2451 2452 static bool ShouldNullCheckClassCastValue(const CastExpr *Cast); 2453 2454 /// GetAddressOfBaseClass - This function will add the necessary delta to the 2455 /// load of 'this' and returns address of the base class. 2456 Address GetAddressOfBaseClass(Address Value, 2457 const CXXRecordDecl *Derived, 2458 CastExpr::path_const_iterator PathBegin, 2459 CastExpr::path_const_iterator PathEnd, 2460 bool NullCheckValue, SourceLocation Loc); 2461 2462 Address GetAddressOfDerivedClass(Address Value, 2463 const CXXRecordDecl *Derived, 2464 CastExpr::path_const_iterator PathBegin, 2465 CastExpr::path_const_iterator PathEnd, 2466 bool NullCheckValue); 2467 2468 /// GetVTTParameter - Return the VTT parameter that should be passed to a 2469 /// base constructor/destructor with virtual bases. 2470 /// FIXME: VTTs are Itanium ABI-specific, so the definition should move 2471 /// to ItaniumCXXABI.cpp together with all the references to VTT. 2472 llvm::Value *GetVTTParameter(GlobalDecl GD, bool ForVirtualBase, 2473 bool Delegating); 2474 2475 void EmitDelegateCXXConstructorCall(const CXXConstructorDecl *Ctor, 2476 CXXCtorType CtorType, 2477 const FunctionArgList &Args, 2478 SourceLocation Loc); 2479 // It's important not to confuse this and the previous function. Delegating 2480 // constructors are the C++0x feature. The constructor delegate optimization 2481 // is used to reduce duplication in the base and complete consturctors where 2482 // they are substantially the same. 2483 void EmitDelegatingCXXConstructorCall(const CXXConstructorDecl *Ctor, 2484 const FunctionArgList &Args); 2485 2486 /// Emit a call to an inheriting constructor (that is, one that invokes a 2487 /// constructor inherited from a base class) by inlining its definition. This 2488 /// is necessary if the ABI does not support forwarding the arguments to the 2489 /// base class constructor (because they're variadic or similar). 2490 void EmitInlinedInheritingCXXConstructorCall(const CXXConstructorDecl *Ctor, 2491 CXXCtorType CtorType, 2492 bool ForVirtualBase, 2493 bool Delegating, 2494 CallArgList &Args); 2495 2496 /// Emit a call to a constructor inherited from a base class, passing the 2497 /// current constructor's arguments along unmodified (without even making 2498 /// a copy). 2499 void EmitInheritedCXXConstructorCall(const CXXConstructorDecl *D, 2500 bool ForVirtualBase, Address This, 2501 bool InheritedFromVBase, 2502 const CXXInheritedCtorInitExpr *E); 2503 2504 void EmitCXXConstructorCall(const CXXConstructorDecl *D, CXXCtorType Type, 2505 bool ForVirtualBase, bool Delegating, 2506 Address This, const CXXConstructExpr *E, 2507 AggValueSlot::Overlap_t Overlap, 2508 bool NewPointerIsChecked); 2509 2510 void EmitCXXConstructorCall(const CXXConstructorDecl *D, CXXCtorType Type, 2511 bool ForVirtualBase, bool Delegating, 2512 Address This, CallArgList &Args, 2513 AggValueSlot::Overlap_t Overlap, 2514 SourceLocation Loc, 2515 bool NewPointerIsChecked); 2516 2517 /// Emit assumption load for all bases. Requires to be be called only on 2518 /// most-derived class and not under construction of the object. 2519 void EmitVTableAssumptionLoads(const CXXRecordDecl *ClassDecl, Address This); 2520 2521 /// Emit assumption that vptr load == global vtable. 2522 void EmitVTableAssumptionLoad(const VPtr &vptr, Address This); 2523 2524 void EmitSynthesizedCXXCopyCtorCall(const CXXConstructorDecl *D, 2525 Address This, Address Src, 2526 const CXXConstructExpr *E); 2527 2528 void EmitCXXAggrConstructorCall(const CXXConstructorDecl *D, 2529 const ArrayType *ArrayTy, 2530 Address ArrayPtr, 2531 const CXXConstructExpr *E, 2532 bool NewPointerIsChecked, 2533 bool ZeroInitialization = false); 2534 2535 void EmitCXXAggrConstructorCall(const CXXConstructorDecl *D, 2536 llvm::Value *NumElements, 2537 Address ArrayPtr, 2538 const CXXConstructExpr *E, 2539 bool NewPointerIsChecked, 2540 bool ZeroInitialization = false); 2541 2542 static Destroyer destroyCXXObject; 2543 2544 void EmitCXXDestructorCall(const CXXDestructorDecl *D, CXXDtorType Type, 2545 bool ForVirtualBase, bool Delegating, 2546 Address This); 2547 2548 void EmitNewArrayInitializer(const CXXNewExpr *E, QualType elementType, 2549 llvm::Type *ElementTy, Address NewPtr, 2550 llvm::Value *NumElements, 2551 llvm::Value *AllocSizeWithoutCookie); 2552 2553 void EmitCXXTemporary(const CXXTemporary *Temporary, QualType TempType, 2554 Address Ptr); 2555 2556 llvm::Value *EmitLifetimeStart(uint64_t Size, llvm::Value *Addr); 2557 void EmitLifetimeEnd(llvm::Value *Size, llvm::Value *Addr); 2558 2559 llvm::Value *EmitCXXNewExpr(const CXXNewExpr *E); 2560 void EmitCXXDeleteExpr(const CXXDeleteExpr *E); 2561 2562 void EmitDeleteCall(const FunctionDecl *DeleteFD, llvm::Value *Ptr, 2563 QualType DeleteTy, llvm::Value *NumElements = nullptr, 2564 CharUnits CookieSize = CharUnits()); 2565 2566 RValue EmitBuiltinNewDeleteCall(const FunctionProtoType *Type, 2567 const CallExpr *TheCallExpr, bool IsDelete); 2568 2569 llvm::Value *EmitCXXTypeidExpr(const CXXTypeidExpr *E); 2570 llvm::Value *EmitDynamicCast(Address V, const CXXDynamicCastExpr *DCE); 2571 Address EmitCXXUuidofExpr(const CXXUuidofExpr *E); 2572 2573 /// Situations in which we might emit a check for the suitability of a 2574 /// pointer or glvalue. 2575 enum TypeCheckKind { 2576 /// Checking the operand of a load. Must be suitably sized and aligned. 2577 TCK_Load, 2578 /// Checking the destination of a store. Must be suitably sized and aligned. 2579 TCK_Store, 2580 /// Checking the bound value in a reference binding. Must be suitably sized 2581 /// and aligned, but is not required to refer to an object (until the 2582 /// reference is used), per core issue 453. 2583 TCK_ReferenceBinding, 2584 /// Checking the object expression in a non-static data member access. Must 2585 /// be an object within its lifetime. 2586 TCK_MemberAccess, 2587 /// Checking the 'this' pointer for a call to a non-static member function. 2588 /// Must be an object within its lifetime. 2589 TCK_MemberCall, 2590 /// Checking the 'this' pointer for a constructor call. 2591 TCK_ConstructorCall, 2592 /// Checking the operand of a static_cast to a derived pointer type. Must be 2593 /// null or an object within its lifetime. 2594 TCK_DowncastPointer, 2595 /// Checking the operand of a static_cast to a derived reference type. Must 2596 /// be an object within its lifetime. 2597 TCK_DowncastReference, 2598 /// Checking the operand of a cast to a base object. Must be suitably sized 2599 /// and aligned. 2600 TCK_Upcast, 2601 /// Checking the operand of a cast to a virtual base object. Must be an 2602 /// object within its lifetime. 2603 TCK_UpcastToVirtualBase, 2604 /// Checking the value assigned to a _Nonnull pointer. Must not be null. 2605 TCK_NonnullAssign, 2606 /// Checking the operand of a dynamic_cast or a typeid expression. Must be 2607 /// null or an object within its lifetime. 2608 TCK_DynamicOperation 2609 }; 2610 2611 /// Determine whether the pointer type check \p TCK permits null pointers. 2612 static bool isNullPointerAllowed(TypeCheckKind TCK); 2613 2614 /// Determine whether the pointer type check \p TCK requires a vptr check. 2615 static bool isVptrCheckRequired(TypeCheckKind TCK, QualType Ty); 2616 2617 /// Whether any type-checking sanitizers are enabled. If \c false, 2618 /// calls to EmitTypeCheck can be skipped. 2619 bool sanitizePerformTypeCheck() const; 2620 2621 /// Emit a check that \p V is the address of storage of the 2622 /// appropriate size and alignment for an object of type \p Type 2623 /// (or if ArraySize is provided, for an array of that bound). 2624 void EmitTypeCheck(TypeCheckKind TCK, SourceLocation Loc, llvm::Value *V, 2625 QualType Type, CharUnits Alignment = CharUnits::Zero(), 2626 SanitizerSet SkippedChecks = SanitizerSet(), 2627 llvm::Value *ArraySize = nullptr); 2628 2629 /// Emit a check that \p Base points into an array object, which 2630 /// we can access at index \p Index. \p Accessed should be \c false if we 2631 /// this expression is used as an lvalue, for instance in "&Arr[Idx]". 2632 void EmitBoundsCheck(const Expr *E, const Expr *Base, llvm::Value *Index, 2633 QualType IndexType, bool Accessed); 2634 2635 llvm::Value *EmitScalarPrePostIncDec(const UnaryOperator *E, LValue LV, 2636 bool isInc, bool isPre); 2637 ComplexPairTy EmitComplexPrePostIncDec(const UnaryOperator *E, LValue LV, 2638 bool isInc, bool isPre); 2639 2640 /// Converts Location to a DebugLoc, if debug information is enabled. 2641 llvm::DebugLoc SourceLocToDebugLoc(SourceLocation Location); 2642 2643 2644 //===--------------------------------------------------------------------===// 2645 // Declaration Emission 2646 //===--------------------------------------------------------------------===// 2647 2648 /// EmitDecl - Emit a declaration. 2649 /// 2650 /// This function can be called with a null (unreachable) insert point. 2651 void EmitDecl(const Decl &D); 2652 2653 /// EmitVarDecl - Emit a local variable declaration. 2654 /// 2655 /// This function can be called with a null (unreachable) insert point. 2656 void EmitVarDecl(const VarDecl &D); 2657 2658 void EmitScalarInit(const Expr *init, const ValueDecl *D, LValue lvalue, 2659 bool capturedByInit); 2660 2661 typedef void SpecialInitFn(CodeGenFunction &Init, const VarDecl &D, 2662 llvm::Value *Address); 2663 2664 /// Determine whether the given initializer is trivial in the sense 2665 /// that it requires no code to be generated. 2666 bool isTrivialInitializer(const Expr *Init); 2667 2668 /// EmitAutoVarDecl - Emit an auto variable declaration. 2669 /// 2670 /// This function can be called with a null (unreachable) insert point. 2671 void EmitAutoVarDecl(const VarDecl &D); 2672 2673 class AutoVarEmission { 2674 friend class CodeGenFunction; 2675 2676 const VarDecl *Variable; 2677 2678 /// The address of the alloca for languages with explicit address space 2679 /// (e.g. OpenCL) or alloca casted to generic pointer for address space 2680 /// agnostic languages (e.g. C++). Invalid if the variable was emitted 2681 /// as a global constant. 2682 Address Addr; 2683 2684 llvm::Value *NRVOFlag; 2685 2686 /// True if the variable is a __block variable that is captured by an 2687 /// escaping block. 2688 bool IsEscapingByRef; 2689 2690 /// True if the variable is of aggregate type and has a constant 2691 /// initializer. 2692 bool IsConstantAggregate; 2693 2694 /// Non-null if we should use lifetime annotations. 2695 llvm::Value *SizeForLifetimeMarkers; 2696 2697 /// Address with original alloca instruction. Invalid if the variable was 2698 /// emitted as a global constant. 2699 Address AllocaAddr; 2700 2701 struct Invalid {}; 2702 AutoVarEmission(Invalid) 2703 : Variable(nullptr), Addr(Address::invalid()), 2704 AllocaAddr(Address::invalid()) {} 2705 2706 AutoVarEmission(const VarDecl &variable) 2707 : Variable(&variable), Addr(Address::invalid()), NRVOFlag(nullptr), 2708 IsEscapingByRef(false), IsConstantAggregate(false), 2709 SizeForLifetimeMarkers(nullptr), AllocaAddr(Address::invalid()) {} 2710 2711 bool wasEmittedAsGlobal() const { return !Addr.isValid(); } 2712 2713 public: 2714 static AutoVarEmission invalid() { return AutoVarEmission(Invalid()); } 2715 2716 bool useLifetimeMarkers() const { 2717 return SizeForLifetimeMarkers != nullptr; 2718 } 2719 llvm::Value *getSizeForLifetimeMarkers() const { 2720 assert(useLifetimeMarkers()); 2721 return SizeForLifetimeMarkers; 2722 } 2723 2724 /// Returns the raw, allocated address, which is not necessarily 2725 /// the address of the object itself. It is casted to default 2726 /// address space for address space agnostic languages. 2727 Address getAllocatedAddress() const { 2728 return Addr; 2729 } 2730 2731 /// Returns the address for the original alloca instruction. 2732 Address getOriginalAllocatedAddress() const { return AllocaAddr; } 2733 2734 /// Returns the address of the object within this declaration. 2735 /// Note that this does not chase the forwarding pointer for 2736 /// __block decls. 2737 Address getObjectAddress(CodeGenFunction &CGF) const { 2738 if (!IsEscapingByRef) return Addr; 2739 2740 return CGF.emitBlockByrefAddress(Addr, Variable, /*forward*/ false); 2741 } 2742 }; 2743 AutoVarEmission EmitAutoVarAlloca(const VarDecl &var); 2744 void EmitAutoVarInit(const AutoVarEmission &emission); 2745 void EmitAutoVarCleanups(const AutoVarEmission &emission); 2746 void emitAutoVarTypeCleanup(const AutoVarEmission &emission, 2747 QualType::DestructionKind dtorKind); 2748 2749 /// Emits the alloca and debug information for the size expressions for each 2750 /// dimension of an array. It registers the association of its (1-dimensional) 2751 /// QualTypes and size expression's debug node, so that CGDebugInfo can 2752 /// reference this node when creating the DISubrange object to describe the 2753 /// array types. 2754 void EmitAndRegisterVariableArrayDimensions(CGDebugInfo *DI, 2755 const VarDecl &D, 2756 bool EmitDebugInfo); 2757 2758 void EmitStaticVarDecl(const VarDecl &D, 2759 llvm::GlobalValue::LinkageTypes Linkage); 2760 2761 class ParamValue { 2762 llvm::Value *Value; 2763 unsigned Alignment; 2764 ParamValue(llvm::Value *V, unsigned A) : Value(V), Alignment(A) {} 2765 public: 2766 static ParamValue forDirect(llvm::Value *value) { 2767 return ParamValue(value, 0); 2768 } 2769 static ParamValue forIndirect(Address addr) { 2770 assert(!addr.getAlignment().isZero()); 2771 return ParamValue(addr.getPointer(), addr.getAlignment().getQuantity()); 2772 } 2773 2774 bool isIndirect() const { return Alignment != 0; } 2775 llvm::Value *getAnyValue() const { return Value; } 2776 2777 llvm::Value *getDirectValue() const { 2778 assert(!isIndirect()); 2779 return Value; 2780 } 2781 2782 Address getIndirectAddress() const { 2783 assert(isIndirect()); 2784 return Address(Value, CharUnits::fromQuantity(Alignment)); 2785 } 2786 }; 2787 2788 /// EmitParmDecl - Emit a ParmVarDecl or an ImplicitParamDecl. 2789 void EmitParmDecl(const VarDecl &D, ParamValue Arg, unsigned ArgNo); 2790 2791 /// protectFromPeepholes - Protect a value that we're intending to 2792 /// store to the side, but which will probably be used later, from 2793 /// aggressive peepholing optimizations that might delete it. 2794 /// 2795 /// Pass the result to unprotectFromPeepholes to declare that 2796 /// protection is no longer required. 2797 /// 2798 /// There's no particular reason why this shouldn't apply to 2799 /// l-values, it's just that no existing peepholes work on pointers. 2800 PeepholeProtection protectFromPeepholes(RValue rvalue); 2801 void unprotectFromPeepholes(PeepholeProtection protection); 2802 2803 void EmitAlignmentAssumptionCheck(llvm::Value *Ptr, QualType Ty, 2804 SourceLocation Loc, 2805 SourceLocation AssumptionLoc, 2806 llvm::Value *Alignment, 2807 llvm::Value *OffsetValue, 2808 llvm::Value *TheCheck, 2809 llvm::Instruction *Assumption); 2810 2811 void EmitAlignmentAssumption(llvm::Value *PtrValue, QualType Ty, 2812 SourceLocation Loc, SourceLocation AssumptionLoc, 2813 llvm::Value *Alignment, 2814 llvm::Value *OffsetValue = nullptr); 2815 2816 void EmitAlignmentAssumption(llvm::Value *PtrValue, QualType Ty, 2817 SourceLocation Loc, SourceLocation AssumptionLoc, 2818 unsigned Alignment, 2819 llvm::Value *OffsetValue = nullptr); 2820 2821 void EmitAlignmentAssumption(llvm::Value *PtrValue, const Expr *E, 2822 SourceLocation AssumptionLoc, unsigned Alignment, 2823 llvm::Value *OffsetValue = nullptr); 2824 2825 //===--------------------------------------------------------------------===// 2826 // Statement Emission 2827 //===--------------------------------------------------------------------===// 2828 2829 /// EmitStopPoint - Emit a debug stoppoint if we are emitting debug info. 2830 void EmitStopPoint(const Stmt *S); 2831 2832 /// EmitStmt - Emit the code for the statement \arg S. It is legal to call 2833 /// this function even if there is no current insertion point. 2834 /// 2835 /// This function may clear the current insertion point; callers should use 2836 /// EnsureInsertPoint if they wish to subsequently generate code without first 2837 /// calling EmitBlock, EmitBranch, or EmitStmt. 2838 void EmitStmt(const Stmt *S, ArrayRef<const Attr *> Attrs = None); 2839 2840 /// EmitSimpleStmt - Try to emit a "simple" statement which does not 2841 /// necessarily require an insertion point or debug information; typically 2842 /// because the statement amounts to a jump or a container of other 2843 /// statements. 2844 /// 2845 /// \return True if the statement was handled. 2846 bool EmitSimpleStmt(const Stmt *S); 2847 2848 Address EmitCompoundStmt(const CompoundStmt &S, bool GetLast = false, 2849 AggValueSlot AVS = AggValueSlot::ignored()); 2850 Address EmitCompoundStmtWithoutScope(const CompoundStmt &S, 2851 bool GetLast = false, 2852 AggValueSlot AVS = 2853 AggValueSlot::ignored()); 2854 2855 /// EmitLabel - Emit the block for the given label. It is legal to call this 2856 /// function even if there is no current insertion point. 2857 void EmitLabel(const LabelDecl *D); // helper for EmitLabelStmt. 2858 2859 void EmitLabelStmt(const LabelStmt &S); 2860 void EmitAttributedStmt(const AttributedStmt &S); 2861 void EmitGotoStmt(const GotoStmt &S); 2862 void EmitIndirectGotoStmt(const IndirectGotoStmt &S); 2863 void EmitIfStmt(const IfStmt &S); 2864 2865 void EmitWhileStmt(const WhileStmt &S, 2866 ArrayRef<const Attr *> Attrs = None); 2867 void EmitDoStmt(const DoStmt &S, ArrayRef<const Attr *> Attrs = None); 2868 void EmitForStmt(const ForStmt &S, 2869 ArrayRef<const Attr *> Attrs = None); 2870 void EmitReturnStmt(const ReturnStmt &S); 2871 void EmitDeclStmt(const DeclStmt &S); 2872 void EmitBreakStmt(const BreakStmt &S); 2873 void EmitContinueStmt(const ContinueStmt &S); 2874 void EmitSwitchStmt(const SwitchStmt &S); 2875 void EmitDefaultStmt(const DefaultStmt &S); 2876 void EmitCaseStmt(const CaseStmt &S); 2877 void EmitCaseStmtRange(const CaseStmt &S); 2878 void EmitAsmStmt(const AsmStmt &S); 2879 2880 void EmitObjCForCollectionStmt(const ObjCForCollectionStmt &S); 2881 void EmitObjCAtTryStmt(const ObjCAtTryStmt &S); 2882 void EmitObjCAtThrowStmt(const ObjCAtThrowStmt &S); 2883 void EmitObjCAtSynchronizedStmt(const ObjCAtSynchronizedStmt &S); 2884 void EmitObjCAutoreleasePoolStmt(const ObjCAutoreleasePoolStmt &S); 2885 2886 void EmitCoroutineBody(const CoroutineBodyStmt &S); 2887 void EmitCoreturnStmt(const CoreturnStmt &S); 2888 RValue EmitCoawaitExpr(const CoawaitExpr &E, 2889 AggValueSlot aggSlot = AggValueSlot::ignored(), 2890 bool ignoreResult = false); 2891 LValue EmitCoawaitLValue(const CoawaitExpr *E); 2892 RValue EmitCoyieldExpr(const CoyieldExpr &E, 2893 AggValueSlot aggSlot = AggValueSlot::ignored(), 2894 bool ignoreResult = false); 2895 LValue EmitCoyieldLValue(const CoyieldExpr *E); 2896 RValue EmitCoroutineIntrinsic(const CallExpr *E, unsigned int IID); 2897 2898 void EnterCXXTryStmt(const CXXTryStmt &S, bool IsFnTryBlock = false); 2899 void ExitCXXTryStmt(const CXXTryStmt &S, bool IsFnTryBlock = false); 2900 2901 void EmitCXXTryStmt(const CXXTryStmt &S); 2902 void EmitSEHTryStmt(const SEHTryStmt &S); 2903 void EmitSEHLeaveStmt(const SEHLeaveStmt &S); 2904 void EnterSEHTryStmt(const SEHTryStmt &S); 2905 void ExitSEHTryStmt(const SEHTryStmt &S); 2906 2907 void pushSEHCleanup(CleanupKind kind, 2908 llvm::Function *FinallyFunc); 2909 void startOutlinedSEHHelper(CodeGenFunction &ParentCGF, bool IsFilter, 2910 const Stmt *OutlinedStmt); 2911 2912 llvm::Function *GenerateSEHFilterFunction(CodeGenFunction &ParentCGF, 2913 const SEHExceptStmt &Except); 2914 2915 llvm::Function *GenerateSEHFinallyFunction(CodeGenFunction &ParentCGF, 2916 const SEHFinallyStmt &Finally); 2917 2918 void EmitSEHExceptionCodeSave(CodeGenFunction &ParentCGF, 2919 llvm::Value *ParentFP, 2920 llvm::Value *EntryEBP); 2921 llvm::Value *EmitSEHExceptionCode(); 2922 llvm::Value *EmitSEHExceptionInfo(); 2923 llvm::Value *EmitSEHAbnormalTermination(); 2924 2925 /// Emit simple code for OpenMP directives in Simd-only mode. 2926 void EmitSimpleOMPExecutableDirective(const OMPExecutableDirective &D); 2927 2928 /// Scan the outlined statement for captures from the parent function. For 2929 /// each capture, mark the capture as escaped and emit a call to 2930 /// llvm.localrecover. Insert the localrecover result into the LocalDeclMap. 2931 void EmitCapturedLocals(CodeGenFunction &ParentCGF, const Stmt *OutlinedStmt, 2932 bool IsFilter); 2933 2934 /// Recovers the address of a local in a parent function. ParentVar is the 2935 /// address of the variable used in the immediate parent function. It can 2936 /// either be an alloca or a call to llvm.localrecover if there are nested 2937 /// outlined functions. ParentFP is the frame pointer of the outermost parent 2938 /// frame. 2939 Address recoverAddrOfEscapedLocal(CodeGenFunction &ParentCGF, 2940 Address ParentVar, 2941 llvm::Value *ParentFP); 2942 2943 void EmitCXXForRangeStmt(const CXXForRangeStmt &S, 2944 ArrayRef<const Attr *> Attrs = None); 2945 2946 /// Controls insertion of cancellation exit blocks in worksharing constructs. 2947 class OMPCancelStackRAII { 2948 CodeGenFunction &CGF; 2949 2950 public: 2951 OMPCancelStackRAII(CodeGenFunction &CGF, OpenMPDirectiveKind Kind, 2952 bool HasCancel) 2953 : CGF(CGF) { 2954 CGF.OMPCancelStack.enter(CGF, Kind, HasCancel); 2955 } 2956 ~OMPCancelStackRAII() { CGF.OMPCancelStack.exit(CGF); } 2957 }; 2958 2959 /// Returns calculated size of the specified type. 2960 llvm::Value *getTypeSize(QualType Ty); 2961 LValue InitCapturedStruct(const CapturedStmt &S); 2962 llvm::Function *EmitCapturedStmt(const CapturedStmt &S, CapturedRegionKind K); 2963 llvm::Function *GenerateCapturedStmtFunction(const CapturedStmt &S); 2964 Address GenerateCapturedStmtArgument(const CapturedStmt &S); 2965 llvm::Function *GenerateOpenMPCapturedStmtFunction(const CapturedStmt &S); 2966 void GenerateOpenMPCapturedVars(const CapturedStmt &S, 2967 SmallVectorImpl<llvm::Value *> &CapturedVars); 2968 void emitOMPSimpleStore(LValue LVal, RValue RVal, QualType RValTy, 2969 SourceLocation Loc); 2970 /// Perform element by element copying of arrays with type \a 2971 /// OriginalType from \a SrcAddr to \a DestAddr using copying procedure 2972 /// generated by \a CopyGen. 2973 /// 2974 /// \param DestAddr Address of the destination array. 2975 /// \param SrcAddr Address of the source array. 2976 /// \param OriginalType Type of destination and source arrays. 2977 /// \param CopyGen Copying procedure that copies value of single array element 2978 /// to another single array element. 2979 void EmitOMPAggregateAssign( 2980 Address DestAddr, Address SrcAddr, QualType OriginalType, 2981 const llvm::function_ref<void(Address, Address)> CopyGen); 2982 /// Emit proper copying of data from one variable to another. 2983 /// 2984 /// \param OriginalType Original type of the copied variables. 2985 /// \param DestAddr Destination address. 2986 /// \param SrcAddr Source address. 2987 /// \param DestVD Destination variable used in \a CopyExpr (for arrays, has 2988 /// type of the base array element). 2989 /// \param SrcVD Source variable used in \a CopyExpr (for arrays, has type of 2990 /// the base array element). 2991 /// \param Copy Actual copygin expression for copying data from \a SrcVD to \a 2992 /// DestVD. 2993 void EmitOMPCopy(QualType OriginalType, 2994 Address DestAddr, Address SrcAddr, 2995 const VarDecl *DestVD, const VarDecl *SrcVD, 2996 const Expr *Copy); 2997 /// Emit atomic update code for constructs: \a X = \a X \a BO \a E or 2998 /// \a X = \a E \a BO \a E. 2999 /// 3000 /// \param X Value to be updated. 3001 /// \param E Update value. 3002 /// \param BO Binary operation for update operation. 3003 /// \param IsXLHSInRHSPart true if \a X is LHS in RHS part of the update 3004 /// expression, false otherwise. 3005 /// \param AO Atomic ordering of the generated atomic instructions. 3006 /// \param CommonGen Code generator for complex expressions that cannot be 3007 /// expressed through atomicrmw instruction. 3008 /// \returns <true, OldAtomicValue> if simple 'atomicrmw' instruction was 3009 /// generated, <false, RValue::get(nullptr)> otherwise. 3010 std::pair<bool, RValue> EmitOMPAtomicSimpleUpdateExpr( 3011 LValue X, RValue E, BinaryOperatorKind BO, bool IsXLHSInRHSPart, 3012 llvm::AtomicOrdering AO, SourceLocation Loc, 3013 const llvm::function_ref<RValue(RValue)> CommonGen); 3014 bool EmitOMPFirstprivateClause(const OMPExecutableDirective &D, 3015 OMPPrivateScope &PrivateScope); 3016 void EmitOMPPrivateClause(const OMPExecutableDirective &D, 3017 OMPPrivateScope &PrivateScope); 3018 void EmitOMPUseDevicePtrClause( 3019 const OMPClause &C, OMPPrivateScope &PrivateScope, 3020 const llvm::DenseMap<const ValueDecl *, Address> &CaptureDeviceAddrMap); 3021 /// Emit code for copyin clause in \a D directive. The next code is 3022 /// generated at the start of outlined functions for directives: 3023 /// \code 3024 /// threadprivate_var1 = master_threadprivate_var1; 3025 /// operator=(threadprivate_var2, master_threadprivate_var2); 3026 /// ... 3027 /// __kmpc_barrier(&loc, global_tid); 3028 /// \endcode 3029 /// 3030 /// \param D OpenMP directive possibly with 'copyin' clause(s). 3031 /// \returns true if at least one copyin variable is found, false otherwise. 3032 bool EmitOMPCopyinClause(const OMPExecutableDirective &D); 3033 /// Emit initial code for lastprivate variables. If some variable is 3034 /// not also firstprivate, then the default initialization is used. Otherwise 3035 /// initialization of this variable is performed by EmitOMPFirstprivateClause 3036 /// method. 3037 /// 3038 /// \param D Directive that may have 'lastprivate' directives. 3039 /// \param PrivateScope Private scope for capturing lastprivate variables for 3040 /// proper codegen in internal captured statement. 3041 /// 3042 /// \returns true if there is at least one lastprivate variable, false 3043 /// otherwise. 3044 bool EmitOMPLastprivateClauseInit(const OMPExecutableDirective &D, 3045 OMPPrivateScope &PrivateScope); 3046 /// Emit final copying of lastprivate values to original variables at 3047 /// the end of the worksharing or simd directive. 3048 /// 3049 /// \param D Directive that has at least one 'lastprivate' directives. 3050 /// \param IsLastIterCond Boolean condition that must be set to 'i1 true' if 3051 /// it is the last iteration of the loop code in associated directive, or to 3052 /// 'i1 false' otherwise. If this item is nullptr, no final check is required. 3053 void EmitOMPLastprivateClauseFinal(const OMPExecutableDirective &D, 3054 bool NoFinals, 3055 llvm::Value *IsLastIterCond = nullptr); 3056 /// Emit initial code for linear clauses. 3057 void EmitOMPLinearClause(const OMPLoopDirective &D, 3058 CodeGenFunction::OMPPrivateScope &PrivateScope); 3059 /// Emit final code for linear clauses. 3060 /// \param CondGen Optional conditional code for final part of codegen for 3061 /// linear clause. 3062 void EmitOMPLinearClauseFinal( 3063 const OMPLoopDirective &D, 3064 const llvm::function_ref<llvm::Value *(CodeGenFunction &)> CondGen); 3065 /// Emit initial code for reduction variables. Creates reduction copies 3066 /// and initializes them with the values according to OpenMP standard. 3067 /// 3068 /// \param D Directive (possibly) with the 'reduction' clause. 3069 /// \param PrivateScope Private scope for capturing reduction variables for 3070 /// proper codegen in internal captured statement. 3071 /// 3072 void EmitOMPReductionClauseInit(const OMPExecutableDirective &D, 3073 OMPPrivateScope &PrivateScope); 3074 /// Emit final update of reduction values to original variables at 3075 /// the end of the directive. 3076 /// 3077 /// \param D Directive that has at least one 'reduction' directives. 3078 /// \param ReductionKind The kind of reduction to perform. 3079 void EmitOMPReductionClauseFinal(const OMPExecutableDirective &D, 3080 const OpenMPDirectiveKind ReductionKind); 3081 /// Emit initial code for linear variables. Creates private copies 3082 /// and initializes them with the values according to OpenMP standard. 3083 /// 3084 /// \param D Directive (possibly) with the 'linear' clause. 3085 /// \return true if at least one linear variable is found that should be 3086 /// initialized with the value of the original variable, false otherwise. 3087 bool EmitOMPLinearClauseInit(const OMPLoopDirective &D); 3088 3089 typedef const llvm::function_ref<void(CodeGenFunction & /*CGF*/, 3090 llvm::Function * /*OutlinedFn*/, 3091 const OMPTaskDataTy & /*Data*/)> 3092 TaskGenTy; 3093 void EmitOMPTaskBasedDirective(const OMPExecutableDirective &S, 3094 const OpenMPDirectiveKind CapturedRegion, 3095 const RegionCodeGenTy &BodyGen, 3096 const TaskGenTy &TaskGen, OMPTaskDataTy &Data); 3097 struct OMPTargetDataInfo { 3098 Address BasePointersArray = Address::invalid(); 3099 Address PointersArray = Address::invalid(); 3100 Address SizesArray = Address::invalid(); 3101 unsigned NumberOfTargetItems = 0; 3102 explicit OMPTargetDataInfo() = default; 3103 OMPTargetDataInfo(Address BasePointersArray, Address PointersArray, 3104 Address SizesArray, unsigned NumberOfTargetItems) 3105 : BasePointersArray(BasePointersArray), PointersArray(PointersArray), 3106 SizesArray(SizesArray), NumberOfTargetItems(NumberOfTargetItems) {} 3107 }; 3108 void EmitOMPTargetTaskBasedDirective(const OMPExecutableDirective &S, 3109 const RegionCodeGenTy &BodyGen, 3110 OMPTargetDataInfo &InputInfo); 3111 3112 void EmitOMPParallelDirective(const OMPParallelDirective &S); 3113 void EmitOMPSimdDirective(const OMPSimdDirective &S); 3114 void EmitOMPForDirective(const OMPForDirective &S); 3115 void EmitOMPForSimdDirective(const OMPForSimdDirective &S); 3116 void EmitOMPSectionsDirective(const OMPSectionsDirective &S); 3117 void EmitOMPSectionDirective(const OMPSectionDirective &S); 3118 void EmitOMPSingleDirective(const OMPSingleDirective &S); 3119 void EmitOMPMasterDirective(const OMPMasterDirective &S); 3120 void EmitOMPCriticalDirective(const OMPCriticalDirective &S); 3121 void EmitOMPParallelForDirective(const OMPParallelForDirective &S); 3122 void EmitOMPParallelForSimdDirective(const OMPParallelForSimdDirective &S); 3123 void EmitOMPParallelSectionsDirective(const OMPParallelSectionsDirective &S); 3124 void EmitOMPTaskDirective(const OMPTaskDirective &S); 3125 void EmitOMPTaskyieldDirective(const OMPTaskyieldDirective &S); 3126 void EmitOMPBarrierDirective(const OMPBarrierDirective &S); 3127 void EmitOMPTaskwaitDirective(const OMPTaskwaitDirective &S); 3128 void EmitOMPTaskgroupDirective(const OMPTaskgroupDirective &S); 3129 void EmitOMPFlushDirective(const OMPFlushDirective &S); 3130 void EmitOMPOrderedDirective(const OMPOrderedDirective &S); 3131 void EmitOMPAtomicDirective(const OMPAtomicDirective &S); 3132 void EmitOMPTargetDirective(const OMPTargetDirective &S); 3133 void EmitOMPTargetDataDirective(const OMPTargetDataDirective &S); 3134 void EmitOMPTargetEnterDataDirective(const OMPTargetEnterDataDirective &S); 3135 void EmitOMPTargetExitDataDirective(const OMPTargetExitDataDirective &S); 3136 void EmitOMPTargetUpdateDirective(const OMPTargetUpdateDirective &S); 3137 void EmitOMPTargetParallelDirective(const OMPTargetParallelDirective &S); 3138 void 3139 EmitOMPTargetParallelForDirective(const OMPTargetParallelForDirective &S); 3140 void EmitOMPTeamsDirective(const OMPTeamsDirective &S); 3141 void 3142 EmitOMPCancellationPointDirective(const OMPCancellationPointDirective &S); 3143 void EmitOMPCancelDirective(const OMPCancelDirective &S); 3144 void EmitOMPTaskLoopBasedDirective(const OMPLoopDirective &S); 3145 void EmitOMPTaskLoopDirective(const OMPTaskLoopDirective &S); 3146 void EmitOMPTaskLoopSimdDirective(const OMPTaskLoopSimdDirective &S); 3147 void EmitOMPDistributeDirective(const OMPDistributeDirective &S); 3148 void EmitOMPDistributeParallelForDirective( 3149 const OMPDistributeParallelForDirective &S); 3150 void EmitOMPDistributeParallelForSimdDirective( 3151 const OMPDistributeParallelForSimdDirective &S); 3152 void EmitOMPDistributeSimdDirective(const OMPDistributeSimdDirective &S); 3153 void EmitOMPTargetParallelForSimdDirective( 3154 const OMPTargetParallelForSimdDirective &S); 3155 void EmitOMPTargetSimdDirective(const OMPTargetSimdDirective &S); 3156 void EmitOMPTeamsDistributeDirective(const OMPTeamsDistributeDirective &S); 3157 void 3158 EmitOMPTeamsDistributeSimdDirective(const OMPTeamsDistributeSimdDirective &S); 3159 void EmitOMPTeamsDistributeParallelForSimdDirective( 3160 const OMPTeamsDistributeParallelForSimdDirective &S); 3161 void EmitOMPTeamsDistributeParallelForDirective( 3162 const OMPTeamsDistributeParallelForDirective &S); 3163 void EmitOMPTargetTeamsDirective(const OMPTargetTeamsDirective &S); 3164 void EmitOMPTargetTeamsDistributeDirective( 3165 const OMPTargetTeamsDistributeDirective &S); 3166 void EmitOMPTargetTeamsDistributeParallelForDirective( 3167 const OMPTargetTeamsDistributeParallelForDirective &S); 3168 void EmitOMPTargetTeamsDistributeParallelForSimdDirective( 3169 const OMPTargetTeamsDistributeParallelForSimdDirective &S); 3170 void EmitOMPTargetTeamsDistributeSimdDirective( 3171 const OMPTargetTeamsDistributeSimdDirective &S); 3172 3173 /// Emit device code for the target directive. 3174 static void EmitOMPTargetDeviceFunction(CodeGenModule &CGM, 3175 StringRef ParentName, 3176 const OMPTargetDirective &S); 3177 static void 3178 EmitOMPTargetParallelDeviceFunction(CodeGenModule &CGM, StringRef ParentName, 3179 const OMPTargetParallelDirective &S); 3180 /// Emit device code for the target parallel for directive. 3181 static void EmitOMPTargetParallelForDeviceFunction( 3182 CodeGenModule &CGM, StringRef ParentName, 3183 const OMPTargetParallelForDirective &S); 3184 /// Emit device code for the target parallel for simd directive. 3185 static void EmitOMPTargetParallelForSimdDeviceFunction( 3186 CodeGenModule &CGM, StringRef ParentName, 3187 const OMPTargetParallelForSimdDirective &S); 3188 /// Emit device code for the target teams directive. 3189 static void 3190 EmitOMPTargetTeamsDeviceFunction(CodeGenModule &CGM, StringRef ParentName, 3191 const OMPTargetTeamsDirective &S); 3192 /// Emit device code for the target teams distribute directive. 3193 static void EmitOMPTargetTeamsDistributeDeviceFunction( 3194 CodeGenModule &CGM, StringRef ParentName, 3195 const OMPTargetTeamsDistributeDirective &S); 3196 /// Emit device code for the target teams distribute simd directive. 3197 static void EmitOMPTargetTeamsDistributeSimdDeviceFunction( 3198 CodeGenModule &CGM, StringRef ParentName, 3199 const OMPTargetTeamsDistributeSimdDirective &S); 3200 /// Emit device code for the target simd directive. 3201 static void EmitOMPTargetSimdDeviceFunction(CodeGenModule &CGM, 3202 StringRef ParentName, 3203 const OMPTargetSimdDirective &S); 3204 /// Emit device code for the target teams distribute parallel for simd 3205 /// directive. 3206 static void EmitOMPTargetTeamsDistributeParallelForSimdDeviceFunction( 3207 CodeGenModule &CGM, StringRef ParentName, 3208 const OMPTargetTeamsDistributeParallelForSimdDirective &S); 3209 3210 static void EmitOMPTargetTeamsDistributeParallelForDeviceFunction( 3211 CodeGenModule &CGM, StringRef ParentName, 3212 const OMPTargetTeamsDistributeParallelForDirective &S); 3213 /// Emit inner loop of the worksharing/simd construct. 3214 /// 3215 /// \param S Directive, for which the inner loop must be emitted. 3216 /// \param RequiresCleanup true, if directive has some associated private 3217 /// variables. 3218 /// \param LoopCond Bollean condition for loop continuation. 3219 /// \param IncExpr Increment expression for loop control variable. 3220 /// \param BodyGen Generator for the inner body of the inner loop. 3221 /// \param PostIncGen Genrator for post-increment code (required for ordered 3222 /// loop directvies). 3223 void EmitOMPInnerLoop( 3224 const Stmt &S, bool RequiresCleanup, const Expr *LoopCond, 3225 const Expr *IncExpr, 3226 const llvm::function_ref<void(CodeGenFunction &)> BodyGen, 3227 const llvm::function_ref<void(CodeGenFunction &)> PostIncGen); 3228 3229 JumpDest getOMPCancelDestination(OpenMPDirectiveKind Kind); 3230 /// Emit initial code for loop counters of loop-based directives. 3231 void EmitOMPPrivateLoopCounters(const OMPLoopDirective &S, 3232 OMPPrivateScope &LoopScope); 3233 3234 /// Helper for the OpenMP loop directives. 3235 void EmitOMPLoopBody(const OMPLoopDirective &D, JumpDest LoopExit); 3236 3237 /// Emit code for the worksharing loop-based directive. 3238 /// \return true, if this construct has any lastprivate clause, false - 3239 /// otherwise. 3240 bool EmitOMPWorksharingLoop(const OMPLoopDirective &S, Expr *EUB, 3241 const CodeGenLoopBoundsTy &CodeGenLoopBounds, 3242 const CodeGenDispatchBoundsTy &CGDispatchBounds); 3243 3244 /// Emit code for the distribute loop-based directive. 3245 void EmitOMPDistributeLoop(const OMPLoopDirective &S, 3246 const CodeGenLoopTy &CodeGenLoop, Expr *IncExpr); 3247 3248 /// Helpers for the OpenMP loop directives. 3249 void EmitOMPSimdInit(const OMPLoopDirective &D, bool IsMonotonic = false); 3250 void EmitOMPSimdFinal( 3251 const OMPLoopDirective &D, 3252 const llvm::function_ref<llvm::Value *(CodeGenFunction &)> CondGen); 3253 3254 /// Emits the lvalue for the expression with possibly captured variable. 3255 LValue EmitOMPSharedLValue(const Expr *E); 3256 3257 private: 3258 /// Helpers for blocks. 3259 llvm::Value *EmitBlockLiteral(const CGBlockInfo &Info); 3260 3261 /// struct with the values to be passed to the OpenMP loop-related functions 3262 struct OMPLoopArguments { 3263 /// loop lower bound 3264 Address LB = Address::invalid(); 3265 /// loop upper bound 3266 Address UB = Address::invalid(); 3267 /// loop stride 3268 Address ST = Address::invalid(); 3269 /// isLastIteration argument for runtime functions 3270 Address IL = Address::invalid(); 3271 /// Chunk value generated by sema 3272 llvm::Value *Chunk = nullptr; 3273 /// EnsureUpperBound 3274 Expr *EUB = nullptr; 3275 /// IncrementExpression 3276 Expr *IncExpr = nullptr; 3277 /// Loop initialization 3278 Expr *Init = nullptr; 3279 /// Loop exit condition 3280 Expr *Cond = nullptr; 3281 /// Update of LB after a whole chunk has been executed 3282 Expr *NextLB = nullptr; 3283 /// Update of UB after a whole chunk has been executed 3284 Expr *NextUB = nullptr; 3285 OMPLoopArguments() = default; 3286 OMPLoopArguments(Address LB, Address UB, Address ST, Address IL, 3287 llvm::Value *Chunk = nullptr, Expr *EUB = nullptr, 3288 Expr *IncExpr = nullptr, Expr *Init = nullptr, 3289 Expr *Cond = nullptr, Expr *NextLB = nullptr, 3290 Expr *NextUB = nullptr) 3291 : LB(LB), UB(UB), ST(ST), IL(IL), Chunk(Chunk), EUB(EUB), 3292 IncExpr(IncExpr), Init(Init), Cond(Cond), NextLB(NextLB), 3293 NextUB(NextUB) {} 3294 }; 3295 void EmitOMPOuterLoop(bool DynamicOrOrdered, bool IsMonotonic, 3296 const OMPLoopDirective &S, OMPPrivateScope &LoopScope, 3297 const OMPLoopArguments &LoopArgs, 3298 const CodeGenLoopTy &CodeGenLoop, 3299 const CodeGenOrderedTy &CodeGenOrdered); 3300 void EmitOMPForOuterLoop(const OpenMPScheduleTy &ScheduleKind, 3301 bool IsMonotonic, const OMPLoopDirective &S, 3302 OMPPrivateScope &LoopScope, bool Ordered, 3303 const OMPLoopArguments &LoopArgs, 3304 const CodeGenDispatchBoundsTy &CGDispatchBounds); 3305 void EmitOMPDistributeOuterLoop(OpenMPDistScheduleClauseKind ScheduleKind, 3306 const OMPLoopDirective &S, 3307 OMPPrivateScope &LoopScope, 3308 const OMPLoopArguments &LoopArgs, 3309 const CodeGenLoopTy &CodeGenLoopContent); 3310 /// Emit code for sections directive. 3311 void EmitSections(const OMPExecutableDirective &S); 3312 3313 public: 3314 3315 //===--------------------------------------------------------------------===// 3316 // LValue Expression Emission 3317 //===--------------------------------------------------------------------===// 3318 3319 /// GetUndefRValue - Get an appropriate 'undef' rvalue for the given type. 3320 RValue GetUndefRValue(QualType Ty); 3321 3322 /// EmitUnsupportedRValue - Emit a dummy r-value using the type of E 3323 /// and issue an ErrorUnsupported style diagnostic (using the 3324 /// provided Name). 3325 RValue EmitUnsupportedRValue(const Expr *E, 3326 const char *Name); 3327 3328 /// EmitUnsupportedLValue - Emit a dummy l-value using the type of E and issue 3329 /// an ErrorUnsupported style diagnostic (using the provided Name). 3330 LValue EmitUnsupportedLValue(const Expr *E, 3331 const char *Name); 3332 3333 /// EmitLValue - Emit code to compute a designator that specifies the location 3334 /// of the expression. 3335 /// 3336 /// This can return one of two things: a simple address or a bitfield 3337 /// reference. In either case, the LLVM Value* in the LValue structure is 3338 /// guaranteed to be an LLVM pointer type. 3339 /// 3340 /// If this returns a bitfield reference, nothing about the pointee type of 3341 /// the LLVM value is known: For example, it may not be a pointer to an 3342 /// integer. 3343 /// 3344 /// If this returns a normal address, and if the lvalue's C type is fixed 3345 /// size, this method guarantees that the returned pointer type will point to 3346 /// an LLVM type of the same size of the lvalue's type. If the lvalue has a 3347 /// variable length type, this is not possible. 3348 /// 3349 LValue EmitLValue(const Expr *E); 3350 3351 /// Same as EmitLValue but additionally we generate checking code to 3352 /// guard against undefined behavior. This is only suitable when we know 3353 /// that the address will be used to access the object. 3354 LValue EmitCheckedLValue(const Expr *E, TypeCheckKind TCK); 3355 3356 RValue convertTempToRValue(Address addr, QualType type, 3357 SourceLocation Loc); 3358 3359 void EmitAtomicInit(Expr *E, LValue lvalue); 3360 3361 bool LValueIsSuitableForInlineAtomic(LValue Src); 3362 3363 RValue EmitAtomicLoad(LValue LV, SourceLocation SL, 3364 AggValueSlot Slot = AggValueSlot::ignored()); 3365 3366 RValue EmitAtomicLoad(LValue lvalue, SourceLocation loc, 3367 llvm::AtomicOrdering AO, bool IsVolatile = false, 3368 AggValueSlot slot = AggValueSlot::ignored()); 3369 3370 void EmitAtomicStore(RValue rvalue, LValue lvalue, bool isInit); 3371 3372 void EmitAtomicStore(RValue rvalue, LValue lvalue, llvm::AtomicOrdering AO, 3373 bool IsVolatile, bool isInit); 3374 3375 std::pair<RValue, llvm::Value *> EmitAtomicCompareExchange( 3376 LValue Obj, RValue Expected, RValue Desired, SourceLocation Loc, 3377 llvm::AtomicOrdering Success = 3378 llvm::AtomicOrdering::SequentiallyConsistent, 3379 llvm::AtomicOrdering Failure = 3380 llvm::AtomicOrdering::SequentiallyConsistent, 3381 bool IsWeak = false, AggValueSlot Slot = AggValueSlot::ignored()); 3382 3383 void EmitAtomicUpdate(LValue LVal, llvm::AtomicOrdering AO, 3384 const llvm::function_ref<RValue(RValue)> &UpdateOp, 3385 bool IsVolatile); 3386 3387 /// EmitToMemory - Change a scalar value from its value 3388 /// representation to its in-memory representation. 3389 llvm::Value *EmitToMemory(llvm::Value *Value, QualType Ty); 3390 3391 /// EmitFromMemory - Change a scalar value from its memory 3392 /// representation to its value representation. 3393 llvm::Value *EmitFromMemory(llvm::Value *Value, QualType Ty); 3394 3395 /// Check if the scalar \p Value is within the valid range for the given 3396 /// type \p Ty. 3397 /// 3398 /// Returns true if a check is needed (even if the range is unknown). 3399 bool EmitScalarRangeCheck(llvm::Value *Value, QualType Ty, 3400 SourceLocation Loc); 3401 3402 /// EmitLoadOfScalar - Load a scalar value from an address, taking 3403 /// care to appropriately convert from the memory representation to 3404 /// the LLVM value representation. 3405 llvm::Value *EmitLoadOfScalar(Address Addr, bool Volatile, QualType Ty, 3406 SourceLocation Loc, 3407 AlignmentSource Source = AlignmentSource::Type, 3408 bool isNontemporal = false) { 3409 return EmitLoadOfScalar(Addr, Volatile, Ty, Loc, LValueBaseInfo(Source), 3410 CGM.getTBAAAccessInfo(Ty), isNontemporal); 3411 } 3412 3413 llvm::Value *EmitLoadOfScalar(Address Addr, bool Volatile, QualType Ty, 3414 SourceLocation Loc, LValueBaseInfo BaseInfo, 3415 TBAAAccessInfo TBAAInfo, 3416 bool isNontemporal = false); 3417 3418 /// EmitLoadOfScalar - Load a scalar value from an address, taking 3419 /// care to appropriately convert from the memory representation to 3420 /// the LLVM value representation. The l-value must be a simple 3421 /// l-value. 3422 llvm::Value *EmitLoadOfScalar(LValue lvalue, SourceLocation Loc); 3423 3424 /// EmitStoreOfScalar - Store a scalar value to an address, taking 3425 /// care to appropriately convert from the memory representation to 3426 /// the LLVM value representation. 3427 void EmitStoreOfScalar(llvm::Value *Value, Address Addr, 3428 bool Volatile, QualType Ty, 3429 AlignmentSource Source = AlignmentSource::Type, 3430 bool isInit = false, bool isNontemporal = false) { 3431 EmitStoreOfScalar(Value, Addr, Volatile, Ty, LValueBaseInfo(Source), 3432 CGM.getTBAAAccessInfo(Ty), isInit, isNontemporal); 3433 } 3434 3435 void EmitStoreOfScalar(llvm::Value *Value, Address Addr, 3436 bool Volatile, QualType Ty, 3437 LValueBaseInfo BaseInfo, TBAAAccessInfo TBAAInfo, 3438 bool isInit = false, bool isNontemporal = false); 3439 3440 /// EmitStoreOfScalar - Store a scalar value to an address, taking 3441 /// care to appropriately convert from the memory representation to 3442 /// the LLVM value representation. The l-value must be a simple 3443 /// l-value. The isInit flag indicates whether this is an initialization. 3444 /// If so, atomic qualifiers are ignored and the store is always non-atomic. 3445 void EmitStoreOfScalar(llvm::Value *value, LValue lvalue, bool isInit=false); 3446 3447 /// EmitLoadOfLValue - Given an expression that represents a value lvalue, 3448 /// this method emits the address of the lvalue, then loads the result as an 3449 /// rvalue, returning the rvalue. 3450 RValue EmitLoadOfLValue(LValue V, SourceLocation Loc); 3451 RValue EmitLoadOfExtVectorElementLValue(LValue V); 3452 RValue EmitLoadOfBitfieldLValue(LValue LV, SourceLocation Loc); 3453 RValue EmitLoadOfGlobalRegLValue(LValue LV); 3454 3455 /// EmitStoreThroughLValue - Store the specified rvalue into the specified 3456 /// lvalue, where both are guaranteed to the have the same type, and that type 3457 /// is 'Ty'. 3458 void EmitStoreThroughLValue(RValue Src, LValue Dst, bool isInit = false); 3459 void EmitStoreThroughExtVectorComponentLValue(RValue Src, LValue Dst); 3460 void EmitStoreThroughGlobalRegLValue(RValue Src, LValue Dst); 3461 3462 /// EmitStoreThroughBitfieldLValue - Store Src into Dst with same constraints 3463 /// as EmitStoreThroughLValue. 3464 /// 3465 /// \param Result [out] - If non-null, this will be set to a Value* for the 3466 /// bit-field contents after the store, appropriate for use as the result of 3467 /// an assignment to the bit-field. 3468 void EmitStoreThroughBitfieldLValue(RValue Src, LValue Dst, 3469 llvm::Value **Result=nullptr); 3470 3471 /// Emit an l-value for an assignment (simple or compound) of complex type. 3472 LValue EmitComplexAssignmentLValue(const BinaryOperator *E); 3473 LValue EmitComplexCompoundAssignmentLValue(const CompoundAssignOperator *E); 3474 LValue EmitScalarCompoundAssignWithComplex(const CompoundAssignOperator *E, 3475 llvm::Value *&Result); 3476 3477 // Note: only available for agg return types 3478 LValue EmitBinaryOperatorLValue(const BinaryOperator *E); 3479 LValue EmitCompoundAssignmentLValue(const CompoundAssignOperator *E); 3480 // Note: only available for agg return types 3481 LValue EmitCallExprLValue(const CallExpr *E); 3482 // Note: only available for agg return types 3483 LValue EmitVAArgExprLValue(const VAArgExpr *E); 3484 LValue EmitDeclRefLValue(const DeclRefExpr *E); 3485 LValue EmitStringLiteralLValue(const StringLiteral *E); 3486 LValue EmitObjCEncodeExprLValue(const ObjCEncodeExpr *E); 3487 LValue EmitPredefinedLValue(const PredefinedExpr *E); 3488 LValue EmitUnaryOpLValue(const UnaryOperator *E); 3489 LValue EmitArraySubscriptExpr(const ArraySubscriptExpr *E, 3490 bool Accessed = false); 3491 LValue EmitOMPArraySectionExpr(const OMPArraySectionExpr *E, 3492 bool IsLowerBound = true); 3493 LValue EmitExtVectorElementExpr(const ExtVectorElementExpr *E); 3494 LValue EmitMemberExpr(const MemberExpr *E); 3495 LValue EmitObjCIsaExpr(const ObjCIsaExpr *E); 3496 LValue EmitCompoundLiteralLValue(const CompoundLiteralExpr *E); 3497 LValue EmitInitListLValue(const InitListExpr *E); 3498 LValue EmitConditionalOperatorLValue(const AbstractConditionalOperator *E); 3499 LValue EmitCastLValue(const CastExpr *E); 3500 LValue EmitMaterializeTemporaryExpr(const MaterializeTemporaryExpr *E); 3501 LValue EmitOpaqueValueLValue(const OpaqueValueExpr *e); 3502 3503 Address EmitExtVectorElementLValue(LValue V); 3504 3505 RValue EmitRValueForField(LValue LV, const FieldDecl *FD, SourceLocation Loc); 3506 3507 Address EmitArrayToPointerDecay(const Expr *Array, 3508 LValueBaseInfo *BaseInfo = nullptr, 3509 TBAAAccessInfo *TBAAInfo = nullptr); 3510 3511 class ConstantEmission { 3512 llvm::PointerIntPair<llvm::Constant*, 1, bool> ValueAndIsReference; 3513 ConstantEmission(llvm::Constant *C, bool isReference) 3514 : ValueAndIsReference(C, isReference) {} 3515 public: 3516 ConstantEmission() {} 3517 static ConstantEmission forReference(llvm::Constant *C) { 3518 return ConstantEmission(C, true); 3519 } 3520 static ConstantEmission forValue(llvm::Constant *C) { 3521 return ConstantEmission(C, false); 3522 } 3523 3524 explicit operator bool() const { 3525 return ValueAndIsReference.getOpaqueValue() != nullptr; 3526 } 3527 3528 bool isReference() const { return ValueAndIsReference.getInt(); } 3529 LValue getReferenceLValue(CodeGenFunction &CGF, Expr *refExpr) const { 3530 assert(isReference()); 3531 return CGF.MakeNaturalAlignAddrLValue(ValueAndIsReference.getPointer(), 3532 refExpr->getType()); 3533 } 3534 3535 llvm::Constant *getValue() const { 3536 assert(!isReference()); 3537 return ValueAndIsReference.getPointer(); 3538 } 3539 }; 3540 3541 ConstantEmission tryEmitAsConstant(DeclRefExpr *refExpr); 3542 ConstantEmission tryEmitAsConstant(const MemberExpr *ME); 3543 llvm::Value *emitScalarConstant(const ConstantEmission &Constant, Expr *E); 3544 3545 RValue EmitPseudoObjectRValue(const PseudoObjectExpr *e, 3546 AggValueSlot slot = AggValueSlot::ignored()); 3547 LValue EmitPseudoObjectLValue(const PseudoObjectExpr *e); 3548 3549 llvm::Value *EmitIvarOffset(const ObjCInterfaceDecl *Interface, 3550 const ObjCIvarDecl *Ivar); 3551 LValue EmitLValueForField(LValue Base, const FieldDecl* Field); 3552 LValue EmitLValueForLambdaField(const FieldDecl *Field); 3553 3554 /// EmitLValueForFieldInitialization - Like EmitLValueForField, except that 3555 /// if the Field is a reference, this will return the address of the reference 3556 /// and not the address of the value stored in the reference. 3557 LValue EmitLValueForFieldInitialization(LValue Base, 3558 const FieldDecl* Field); 3559 3560 LValue EmitLValueForIvar(QualType ObjectTy, 3561 llvm::Value* Base, const ObjCIvarDecl *Ivar, 3562 unsigned CVRQualifiers); 3563 3564 LValue EmitCXXConstructLValue(const CXXConstructExpr *E); 3565 LValue EmitCXXBindTemporaryLValue(const CXXBindTemporaryExpr *E); 3566 LValue EmitCXXTypeidLValue(const CXXTypeidExpr *E); 3567 LValue EmitCXXUuidofLValue(const CXXUuidofExpr *E); 3568 3569 LValue EmitObjCMessageExprLValue(const ObjCMessageExpr *E); 3570 LValue EmitObjCIvarRefLValue(const ObjCIvarRefExpr *E); 3571 LValue EmitStmtExprLValue(const StmtExpr *E); 3572 LValue EmitPointerToDataMemberBinaryExpr(const BinaryOperator *E); 3573 LValue EmitObjCSelectorLValue(const ObjCSelectorExpr *E); 3574 void EmitDeclRefExprDbgValue(const DeclRefExpr *E, const APValue &Init); 3575 3576 //===--------------------------------------------------------------------===// 3577 // Scalar Expression Emission 3578 //===--------------------------------------------------------------------===// 3579 3580 /// EmitCall - Generate a call of the given function, expecting the given 3581 /// result type, and using the given argument list which specifies both the 3582 /// LLVM arguments and the types they were derived from. 3583 RValue EmitCall(const CGFunctionInfo &CallInfo, const CGCallee &Callee, 3584 ReturnValueSlot ReturnValue, const CallArgList &Args, 3585 llvm::CallBase **callOrInvoke, SourceLocation Loc); 3586 RValue EmitCall(const CGFunctionInfo &CallInfo, const CGCallee &Callee, 3587 ReturnValueSlot ReturnValue, const CallArgList &Args, 3588 llvm::CallBase **callOrInvoke = nullptr) { 3589 return EmitCall(CallInfo, Callee, ReturnValue, Args, callOrInvoke, 3590 SourceLocation()); 3591 } 3592 RValue EmitCall(QualType FnType, const CGCallee &Callee, const CallExpr *E, 3593 ReturnValueSlot ReturnValue, llvm::Value *Chain = nullptr); 3594 RValue EmitCallExpr(const CallExpr *E, 3595 ReturnValueSlot ReturnValue = ReturnValueSlot()); 3596 RValue EmitSimpleCallExpr(const CallExpr *E, ReturnValueSlot ReturnValue); 3597 CGCallee EmitCallee(const Expr *E); 3598 3599 void checkTargetFeatures(const CallExpr *E, const FunctionDecl *TargetDecl); 3600 3601 llvm::CallInst *EmitRuntimeCall(llvm::FunctionCallee callee, 3602 const Twine &name = ""); 3603 llvm::CallInst *EmitRuntimeCall(llvm::FunctionCallee callee, 3604 ArrayRef<llvm::Value *> args, 3605 const Twine &name = ""); 3606 llvm::CallInst *EmitNounwindRuntimeCall(llvm::FunctionCallee callee, 3607 const Twine &name = ""); 3608 llvm::CallInst *EmitNounwindRuntimeCall(llvm::FunctionCallee callee, 3609 ArrayRef<llvm::Value *> args, 3610 const Twine &name = ""); 3611 3612 SmallVector<llvm::OperandBundleDef, 1> 3613 getBundlesForFunclet(llvm::Value *Callee); 3614 3615 llvm::CallBase *EmitCallOrInvoke(llvm::FunctionCallee Callee, 3616 ArrayRef<llvm::Value *> Args, 3617 const Twine &Name = ""); 3618 llvm::CallBase *EmitRuntimeCallOrInvoke(llvm::FunctionCallee callee, 3619 ArrayRef<llvm::Value *> args, 3620 const Twine &name = ""); 3621 llvm::CallBase *EmitRuntimeCallOrInvoke(llvm::FunctionCallee callee, 3622 const Twine &name = ""); 3623 void EmitNoreturnRuntimeCallOrInvoke(llvm::FunctionCallee callee, 3624 ArrayRef<llvm::Value *> args); 3625 3626 CGCallee BuildAppleKextVirtualCall(const CXXMethodDecl *MD, 3627 NestedNameSpecifier *Qual, 3628 llvm::Type *Ty); 3629 3630 CGCallee BuildAppleKextVirtualDestructorCall(const CXXDestructorDecl *DD, 3631 CXXDtorType Type, 3632 const CXXRecordDecl *RD); 3633 3634 // Return the copy constructor name with the prefix "__copy_constructor_" 3635 // removed. 3636 static std::string getNonTrivialCopyConstructorStr(QualType QT, 3637 CharUnits Alignment, 3638 bool IsVolatile, 3639 ASTContext &Ctx); 3640 3641 // Return the destructor name with the prefix "__destructor_" removed. 3642 static std::string getNonTrivialDestructorStr(QualType QT, 3643 CharUnits Alignment, 3644 bool IsVolatile, 3645 ASTContext &Ctx); 3646 3647 // These functions emit calls to the special functions of non-trivial C 3648 // structs. 3649 void defaultInitNonTrivialCStructVar(LValue Dst); 3650 void callCStructDefaultConstructor(LValue Dst); 3651 void callCStructDestructor(LValue Dst); 3652 void callCStructCopyConstructor(LValue Dst, LValue Src); 3653 void callCStructMoveConstructor(LValue Dst, LValue Src); 3654 void callCStructCopyAssignmentOperator(LValue Dst, LValue Src); 3655 void callCStructMoveAssignmentOperator(LValue Dst, LValue Src); 3656 3657 RValue 3658 EmitCXXMemberOrOperatorCall(const CXXMethodDecl *Method, 3659 const CGCallee &Callee, 3660 ReturnValueSlot ReturnValue, llvm::Value *This, 3661 llvm::Value *ImplicitParam, 3662 QualType ImplicitParamTy, const CallExpr *E, 3663 CallArgList *RtlArgs); 3664 RValue EmitCXXDestructorCall(const CXXDestructorDecl *DD, 3665 const CGCallee &Callee, 3666 llvm::Value *This, llvm::Value *ImplicitParam, 3667 QualType ImplicitParamTy, const CallExpr *E, 3668 StructorType Type); 3669 RValue EmitCXXMemberCallExpr(const CXXMemberCallExpr *E, 3670 ReturnValueSlot ReturnValue); 3671 RValue EmitCXXMemberOrOperatorMemberCallExpr(const CallExpr *CE, 3672 const CXXMethodDecl *MD, 3673 ReturnValueSlot ReturnValue, 3674 bool HasQualifier, 3675 NestedNameSpecifier *Qualifier, 3676 bool IsArrow, const Expr *Base); 3677 // Compute the object pointer. 3678 Address EmitCXXMemberDataPointerAddress(const Expr *E, Address base, 3679 llvm::Value *memberPtr, 3680 const MemberPointerType *memberPtrType, 3681 LValueBaseInfo *BaseInfo = nullptr, 3682 TBAAAccessInfo *TBAAInfo = nullptr); 3683 RValue EmitCXXMemberPointerCallExpr(const CXXMemberCallExpr *E, 3684 ReturnValueSlot ReturnValue); 3685 3686 RValue EmitCXXOperatorMemberCallExpr(const CXXOperatorCallExpr *E, 3687 const CXXMethodDecl *MD, 3688 ReturnValueSlot ReturnValue); 3689 RValue EmitCXXPseudoDestructorExpr(const CXXPseudoDestructorExpr *E); 3690 3691 RValue EmitCUDAKernelCallExpr(const CUDAKernelCallExpr *E, 3692 ReturnValueSlot ReturnValue); 3693 3694 RValue EmitNVPTXDevicePrintfCallExpr(const CallExpr *E, 3695 ReturnValueSlot ReturnValue); 3696 3697 RValue EmitBuiltinExpr(const GlobalDecl GD, unsigned BuiltinID, 3698 const CallExpr *E, ReturnValueSlot ReturnValue); 3699 3700 RValue emitFortifiedStdLibCall(CodeGenFunction &CGF, const CallExpr *CE, 3701 unsigned BuiltinID, unsigned BOSType, 3702 unsigned Flag); 3703 3704 RValue emitRotate(const CallExpr *E, bool IsRotateRight); 3705 3706 /// Emit IR for __builtin_os_log_format. 3707 RValue emitBuiltinOSLogFormat(const CallExpr &E); 3708 3709 llvm::Function *generateBuiltinOSLogHelperFunction( 3710 const analyze_os_log::OSLogBufferLayout &Layout, 3711 CharUnits BufferAlignment); 3712 3713 RValue EmitBlockCallExpr(const CallExpr *E, ReturnValueSlot ReturnValue); 3714 3715 /// EmitTargetBuiltinExpr - Emit the given builtin call. Returns 0 if the call 3716 /// is unhandled by the current target. 3717 llvm::Value *EmitTargetBuiltinExpr(unsigned BuiltinID, const CallExpr *E); 3718 3719 llvm::Value *EmitAArch64CompareBuiltinExpr(llvm::Value *Op, llvm::Type *Ty, 3720 const llvm::CmpInst::Predicate Fp, 3721 const llvm::CmpInst::Predicate Ip, 3722 const llvm::Twine &Name = ""); 3723 llvm::Value *EmitARMBuiltinExpr(unsigned BuiltinID, const CallExpr *E, 3724 llvm::Triple::ArchType Arch); 3725 3726 llvm::Value *EmitCommonNeonBuiltinExpr(unsigned BuiltinID, 3727 unsigned LLVMIntrinsic, 3728 unsigned AltLLVMIntrinsic, 3729 const char *NameHint, 3730 unsigned Modifier, 3731 const CallExpr *E, 3732 SmallVectorImpl<llvm::Value *> &Ops, 3733 Address PtrOp0, Address PtrOp1, 3734 llvm::Triple::ArchType Arch); 3735 3736 llvm::Value *EmitISOVolatileLoad(const CallExpr *E); 3737 llvm::Value *EmitISOVolatileStore(const CallExpr *E); 3738 3739 llvm::Function *LookupNeonLLVMIntrinsic(unsigned IntrinsicID, 3740 unsigned Modifier, llvm::Type *ArgTy, 3741 const CallExpr *E); 3742 llvm::Value *EmitNeonCall(llvm::Function *F, 3743 SmallVectorImpl<llvm::Value*> &O, 3744 const char *name, 3745 unsigned shift = 0, bool rightshift = false); 3746 llvm::Value *EmitNeonSplat(llvm::Value *V, llvm::Constant *Idx); 3747 llvm::Value *EmitNeonShiftVector(llvm::Value *V, llvm::Type *Ty, 3748 bool negateForRightShift); 3749 llvm::Value *EmitNeonRShiftImm(llvm::Value *Vec, llvm::Value *Amt, 3750 llvm::Type *Ty, bool usgn, const char *name); 3751 llvm::Value *vectorWrapScalar16(llvm::Value *Op); 3752 llvm::Value *EmitAArch64BuiltinExpr(unsigned BuiltinID, const CallExpr *E, 3753 llvm::Triple::ArchType Arch); 3754 3755 llvm::Value *BuildVector(ArrayRef<llvm::Value*> Ops); 3756 llvm::Value *EmitX86BuiltinExpr(unsigned BuiltinID, const CallExpr *E); 3757 llvm::Value *EmitPPCBuiltinExpr(unsigned BuiltinID, const CallExpr *E); 3758 llvm::Value *EmitAMDGPUBuiltinExpr(unsigned BuiltinID, const CallExpr *E); 3759 llvm::Value *EmitSystemZBuiltinExpr(unsigned BuiltinID, const CallExpr *E); 3760 llvm::Value *EmitNVPTXBuiltinExpr(unsigned BuiltinID, const CallExpr *E); 3761 llvm::Value *EmitWebAssemblyBuiltinExpr(unsigned BuiltinID, 3762 const CallExpr *E); 3763 llvm::Value *EmitHexagonBuiltinExpr(unsigned BuiltinID, const CallExpr *E); 3764 3765 private: 3766 enum class MSVCIntrin; 3767 3768 public: 3769 llvm::Value *EmitMSVCBuiltinExpr(MSVCIntrin BuiltinID, const CallExpr *E); 3770 3771 llvm::Value *EmitBuiltinAvailable(ArrayRef<llvm::Value *> Args); 3772 3773 llvm::Value *EmitObjCProtocolExpr(const ObjCProtocolExpr *E); 3774 llvm::Value *EmitObjCStringLiteral(const ObjCStringLiteral *E); 3775 llvm::Value *EmitObjCBoxedExpr(const ObjCBoxedExpr *E); 3776 llvm::Value *EmitObjCArrayLiteral(const ObjCArrayLiteral *E); 3777 llvm::Value *EmitObjCDictionaryLiteral(const ObjCDictionaryLiteral *E); 3778 llvm::Value *EmitObjCCollectionLiteral(const Expr *E, 3779 const ObjCMethodDecl *MethodWithObjects); 3780 llvm::Value *EmitObjCSelectorExpr(const ObjCSelectorExpr *E); 3781 RValue EmitObjCMessageExpr(const ObjCMessageExpr *E, 3782 ReturnValueSlot Return = ReturnValueSlot()); 3783 3784 /// Retrieves the default cleanup kind for an ARC cleanup. 3785 /// Except under -fobjc-arc-eh, ARC cleanups are normal-only. 3786 CleanupKind getARCCleanupKind() { 3787 return CGM.getCodeGenOpts().ObjCAutoRefCountExceptions 3788 ? NormalAndEHCleanup : NormalCleanup; 3789 } 3790 3791 // ARC primitives. 3792 void EmitARCInitWeak(Address addr, llvm::Value *value); 3793 void EmitARCDestroyWeak(Address addr); 3794 llvm::Value *EmitARCLoadWeak(Address addr); 3795 llvm::Value *EmitARCLoadWeakRetained(Address addr); 3796 llvm::Value *EmitARCStoreWeak(Address addr, llvm::Value *value, bool ignored); 3797 void emitARCCopyAssignWeak(QualType Ty, Address DstAddr, Address SrcAddr); 3798 void emitARCMoveAssignWeak(QualType Ty, Address DstAddr, Address SrcAddr); 3799 void EmitARCCopyWeak(Address dst, Address src); 3800 void EmitARCMoveWeak(Address dst, Address src); 3801 llvm::Value *EmitARCRetainAutorelease(QualType type, llvm::Value *value); 3802 llvm::Value *EmitARCRetainAutoreleaseNonBlock(llvm::Value *value); 3803 llvm::Value *EmitARCStoreStrong(LValue lvalue, llvm::Value *value, 3804 bool resultIgnored); 3805 llvm::Value *EmitARCStoreStrongCall(Address addr, llvm::Value *value, 3806 bool resultIgnored); 3807 llvm::Value *EmitARCRetain(QualType type, llvm::Value *value); 3808 llvm::Value *EmitARCRetainNonBlock(llvm::Value *value); 3809 llvm::Value *EmitARCRetainBlock(llvm::Value *value, bool mandatory); 3810 void EmitARCDestroyStrong(Address addr, ARCPreciseLifetime_t precise); 3811 void EmitARCRelease(llvm::Value *value, ARCPreciseLifetime_t precise); 3812 llvm::Value *EmitARCAutorelease(llvm::Value *value); 3813 llvm::Value *EmitARCAutoreleaseReturnValue(llvm::Value *value); 3814 llvm::Value *EmitARCRetainAutoreleaseReturnValue(llvm::Value *value); 3815 llvm::Value *EmitARCRetainAutoreleasedReturnValue(llvm::Value *value); 3816 llvm::Value *EmitARCUnsafeClaimAutoreleasedReturnValue(llvm::Value *value); 3817 3818 llvm::Value *EmitObjCAutorelease(llvm::Value *value, llvm::Type *returnType); 3819 llvm::Value *EmitObjCRetainNonBlock(llvm::Value *value, 3820 llvm::Type *returnType); 3821 void EmitObjCRelease(llvm::Value *value, ARCPreciseLifetime_t precise); 3822 3823 std::pair<LValue,llvm::Value*> 3824 EmitARCStoreAutoreleasing(const BinaryOperator *e); 3825 std::pair<LValue,llvm::Value*> 3826 EmitARCStoreStrong(const BinaryOperator *e, bool ignored); 3827 std::pair<LValue,llvm::Value*> 3828 EmitARCStoreUnsafeUnretained(const BinaryOperator *e, bool ignored); 3829 3830 llvm::Value *EmitObjCAlloc(llvm::Value *value, 3831 llvm::Type *returnType); 3832 llvm::Value *EmitObjCAllocWithZone(llvm::Value *value, 3833 llvm::Type *returnType); 3834 llvm::Value *EmitObjCAllocInit(llvm::Value *value, llvm::Type *resultType); 3835 3836 llvm::Value *EmitObjCThrowOperand(const Expr *expr); 3837 llvm::Value *EmitObjCConsumeObject(QualType T, llvm::Value *Ptr); 3838 llvm::Value *EmitObjCExtendObjectLifetime(QualType T, llvm::Value *Ptr); 3839 3840 llvm::Value *EmitARCExtendBlockObject(const Expr *expr); 3841 llvm::Value *EmitARCReclaimReturnedObject(const Expr *e, 3842 bool allowUnsafeClaim); 3843 llvm::Value *EmitARCRetainScalarExpr(const Expr *expr); 3844 llvm::Value *EmitARCRetainAutoreleaseScalarExpr(const Expr *expr); 3845 llvm::Value *EmitARCUnsafeUnretainedScalarExpr(const Expr *expr); 3846 3847 void EmitARCIntrinsicUse(ArrayRef<llvm::Value*> values); 3848 3849 static Destroyer destroyARCStrongImprecise; 3850 static Destroyer destroyARCStrongPrecise; 3851 static Destroyer destroyARCWeak; 3852 static Destroyer emitARCIntrinsicUse; 3853 static Destroyer destroyNonTrivialCStruct; 3854 3855 void EmitObjCAutoreleasePoolPop(llvm::Value *Ptr); 3856 llvm::Value *EmitObjCAutoreleasePoolPush(); 3857 llvm::Value *EmitObjCMRRAutoreleasePoolPush(); 3858 void EmitObjCAutoreleasePoolCleanup(llvm::Value *Ptr); 3859 void EmitObjCMRRAutoreleasePoolPop(llvm::Value *Ptr); 3860 3861 /// Emits a reference binding to the passed in expression. 3862 RValue EmitReferenceBindingToExpr(const Expr *E); 3863 3864 //===--------------------------------------------------------------------===// 3865 // Expression Emission 3866 //===--------------------------------------------------------------------===// 3867 3868 // Expressions are broken into three classes: scalar, complex, aggregate. 3869 3870 /// EmitScalarExpr - Emit the computation of the specified expression of LLVM 3871 /// scalar type, returning the result. 3872 llvm::Value *EmitScalarExpr(const Expr *E , bool IgnoreResultAssign = false); 3873 3874 /// Emit a conversion from the specified type to the specified destination 3875 /// type, both of which are LLVM scalar types. 3876 llvm::Value *EmitScalarConversion(llvm::Value *Src, QualType SrcTy, 3877 QualType DstTy, SourceLocation Loc); 3878 3879 /// Emit a conversion from the specified complex type to the specified 3880 /// destination type, where the destination type is an LLVM scalar type. 3881 llvm::Value *EmitComplexToScalarConversion(ComplexPairTy Src, QualType SrcTy, 3882 QualType DstTy, 3883 SourceLocation Loc); 3884 3885 /// EmitAggExpr - Emit the computation of the specified expression 3886 /// of aggregate type. The result is computed into the given slot, 3887 /// which may be null to indicate that the value is not needed. 3888 void EmitAggExpr(const Expr *E, AggValueSlot AS); 3889 3890 /// EmitAggExprToLValue - Emit the computation of the specified expression of 3891 /// aggregate type into a temporary LValue. 3892 LValue EmitAggExprToLValue(const Expr *E); 3893 3894 /// EmitExtendGCLifetime - Given a pointer to an Objective-C object, 3895 /// make sure it survives garbage collection until this point. 3896 void EmitExtendGCLifetime(llvm::Value *object); 3897 3898 /// EmitComplexExpr - Emit the computation of the specified expression of 3899 /// complex type, returning the result. 3900 ComplexPairTy EmitComplexExpr(const Expr *E, 3901 bool IgnoreReal = false, 3902 bool IgnoreImag = false); 3903 3904 /// EmitComplexExprIntoLValue - Emit the given expression of complex 3905 /// type and place its result into the specified l-value. 3906 void EmitComplexExprIntoLValue(const Expr *E, LValue dest, bool isInit); 3907 3908 /// EmitStoreOfComplex - Store a complex number into the specified l-value. 3909 void EmitStoreOfComplex(ComplexPairTy V, LValue dest, bool isInit); 3910 3911 /// EmitLoadOfComplex - Load a complex number from the specified l-value. 3912 ComplexPairTy EmitLoadOfComplex(LValue src, SourceLocation loc); 3913 3914 Address emitAddrOfRealComponent(Address complex, QualType complexType); 3915 Address emitAddrOfImagComponent(Address complex, QualType complexType); 3916 3917 /// AddInitializerToStaticVarDecl - Add the initializer for 'D' to the 3918 /// global variable that has already been created for it. If the initializer 3919 /// has a different type than GV does, this may free GV and return a different 3920 /// one. Otherwise it just returns GV. 3921 llvm::GlobalVariable * 3922 AddInitializerToStaticVarDecl(const VarDecl &D, 3923 llvm::GlobalVariable *GV); 3924 3925 // Emit an @llvm.invariant.start call for the given memory region. 3926 void EmitInvariantStart(llvm::Constant *Addr, CharUnits Size); 3927 3928 /// EmitCXXGlobalVarDeclInit - Create the initializer for a C++ 3929 /// variable with global storage. 3930 void EmitCXXGlobalVarDeclInit(const VarDecl &D, llvm::Constant *DeclPtr, 3931 bool PerformInit); 3932 3933 llvm::Function *createAtExitStub(const VarDecl &VD, llvm::FunctionCallee Dtor, 3934 llvm::Constant *Addr); 3935 3936 /// Call atexit() with a function that passes the given argument to 3937 /// the given function. 3938 void registerGlobalDtorWithAtExit(const VarDecl &D, llvm::FunctionCallee fn, 3939 llvm::Constant *addr); 3940 3941 /// Call atexit() with function dtorStub. 3942 void registerGlobalDtorWithAtExit(llvm::Constant *dtorStub); 3943 3944 /// Emit code in this function to perform a guarded variable 3945 /// initialization. Guarded initializations are used when it's not 3946 /// possible to prove that an initialization will be done exactly 3947 /// once, e.g. with a static local variable or a static data member 3948 /// of a class template. 3949 void EmitCXXGuardedInit(const VarDecl &D, llvm::GlobalVariable *DeclPtr, 3950 bool PerformInit); 3951 3952 enum class GuardKind { VariableGuard, TlsGuard }; 3953 3954 /// Emit a branch to select whether or not to perform guarded initialization. 3955 void EmitCXXGuardedInitBranch(llvm::Value *NeedsInit, 3956 llvm::BasicBlock *InitBlock, 3957 llvm::BasicBlock *NoInitBlock, 3958 GuardKind Kind, const VarDecl *D); 3959 3960 /// GenerateCXXGlobalInitFunc - Generates code for initializing global 3961 /// variables. 3962 void 3963 GenerateCXXGlobalInitFunc(llvm::Function *Fn, 3964 ArrayRef<llvm::Function *> CXXThreadLocals, 3965 ConstantAddress Guard = ConstantAddress::invalid()); 3966 3967 /// GenerateCXXGlobalDtorsFunc - Generates code for destroying global 3968 /// variables. 3969 void GenerateCXXGlobalDtorsFunc( 3970 llvm::Function *Fn, 3971 const std::vector<std::tuple<llvm::FunctionType *, llvm::WeakTrackingVH, 3972 llvm::Constant *>> &DtorsAndObjects); 3973 3974 void GenerateCXXGlobalVarDeclInitFunc(llvm::Function *Fn, 3975 const VarDecl *D, 3976 llvm::GlobalVariable *Addr, 3977 bool PerformInit); 3978 3979 void EmitCXXConstructExpr(const CXXConstructExpr *E, AggValueSlot Dest); 3980 3981 void EmitSynthesizedCXXCopyCtor(Address Dest, Address Src, const Expr *Exp); 3982 3983 void enterFullExpression(const FullExpr *E) { 3984 if (const auto *EWC = dyn_cast<ExprWithCleanups>(E)) 3985 if (EWC->getNumObjects() == 0) 3986 return; 3987 enterNonTrivialFullExpression(E); 3988 } 3989 void enterNonTrivialFullExpression(const FullExpr *E); 3990 3991 void EmitCXXThrowExpr(const CXXThrowExpr *E, bool KeepInsertionPoint = true); 3992 3993 RValue EmitAtomicExpr(AtomicExpr *E); 3994 3995 //===--------------------------------------------------------------------===// 3996 // Annotations Emission 3997 //===--------------------------------------------------------------------===// 3998 3999 /// Emit an annotation call (intrinsic). 4000 llvm::Value *EmitAnnotationCall(llvm::Function *AnnotationFn, 4001 llvm::Value *AnnotatedVal, 4002 StringRef AnnotationStr, 4003 SourceLocation Location); 4004 4005 /// Emit local annotations for the local variable V, declared by D. 4006 void EmitVarAnnotations(const VarDecl *D, llvm::Value *V); 4007 4008 /// Emit field annotations for the given field & value. Returns the 4009 /// annotation result. 4010 Address EmitFieldAnnotations(const FieldDecl *D, Address V); 4011 4012 //===--------------------------------------------------------------------===// 4013 // Internal Helpers 4014 //===--------------------------------------------------------------------===// 4015 4016 /// ContainsLabel - Return true if the statement contains a label in it. If 4017 /// this statement is not executed normally, it not containing a label means 4018 /// that we can just remove the code. 4019 static bool ContainsLabel(const Stmt *S, bool IgnoreCaseStmts = false); 4020 4021 /// containsBreak - Return true if the statement contains a break out of it. 4022 /// If the statement (recursively) contains a switch or loop with a break 4023 /// inside of it, this is fine. 4024 static bool containsBreak(const Stmt *S); 4025 4026 /// Determine if the given statement might introduce a declaration into the 4027 /// current scope, by being a (possibly-labelled) DeclStmt. 4028 static bool mightAddDeclToScope(const Stmt *S); 4029 4030 /// ConstantFoldsToSimpleInteger - If the specified expression does not fold 4031 /// to a constant, or if it does but contains a label, return false. If it 4032 /// constant folds return true and set the boolean result in Result. 4033 bool ConstantFoldsToSimpleInteger(const Expr *Cond, bool &Result, 4034 bool AllowLabels = false); 4035 4036 /// ConstantFoldsToSimpleInteger - If the specified expression does not fold 4037 /// to a constant, or if it does but contains a label, return false. If it 4038 /// constant folds return true and set the folded value. 4039 bool ConstantFoldsToSimpleInteger(const Expr *Cond, llvm::APSInt &Result, 4040 bool AllowLabels = false); 4041 4042 /// EmitBranchOnBoolExpr - Emit a branch on a boolean condition (e.g. for an 4043 /// if statement) to the specified blocks. Based on the condition, this might 4044 /// try to simplify the codegen of the conditional based on the branch. 4045 /// TrueCount should be the number of times we expect the condition to 4046 /// evaluate to true based on PGO data. 4047 void EmitBranchOnBoolExpr(const Expr *Cond, llvm::BasicBlock *TrueBlock, 4048 llvm::BasicBlock *FalseBlock, uint64_t TrueCount); 4049 4050 /// Given an assignment `*LHS = RHS`, emit a test that checks if \p RHS is 4051 /// nonnull, if \p LHS is marked _Nonnull. 4052 void EmitNullabilityCheck(LValue LHS, llvm::Value *RHS, SourceLocation Loc); 4053 4054 /// An enumeration which makes it easier to specify whether or not an 4055 /// operation is a subtraction. 4056 enum { NotSubtraction = false, IsSubtraction = true }; 4057 4058 /// Same as IRBuilder::CreateInBoundsGEP, but additionally emits a check to 4059 /// detect undefined behavior when the pointer overflow sanitizer is enabled. 4060 /// \p SignedIndices indicates whether any of the GEP indices are signed. 4061 /// \p IsSubtraction indicates whether the expression used to form the GEP 4062 /// is a subtraction. 4063 llvm::Value *EmitCheckedInBoundsGEP(llvm::Value *Ptr, 4064 ArrayRef<llvm::Value *> IdxList, 4065 bool SignedIndices, 4066 bool IsSubtraction, 4067 SourceLocation Loc, 4068 const Twine &Name = ""); 4069 4070 /// Specifies which type of sanitizer check to apply when handling a 4071 /// particular builtin. 4072 enum BuiltinCheckKind { 4073 BCK_CTZPassedZero, 4074 BCK_CLZPassedZero, 4075 }; 4076 4077 /// Emits an argument for a call to a builtin. If the builtin sanitizer is 4078 /// enabled, a runtime check specified by \p Kind is also emitted. 4079 llvm::Value *EmitCheckedArgForBuiltin(const Expr *E, BuiltinCheckKind Kind); 4080 4081 /// Emit a description of a type in a format suitable for passing to 4082 /// a runtime sanitizer handler. 4083 llvm::Constant *EmitCheckTypeDescriptor(QualType T); 4084 4085 /// Convert a value into a format suitable for passing to a runtime 4086 /// sanitizer handler. 4087 llvm::Value *EmitCheckValue(llvm::Value *V); 4088 4089 /// Emit a description of a source location in a format suitable for 4090 /// passing to a runtime sanitizer handler. 4091 llvm::Constant *EmitCheckSourceLocation(SourceLocation Loc); 4092 4093 /// Create a basic block that will either trap or call a handler function in 4094 /// the UBSan runtime with the provided arguments, and create a conditional 4095 /// branch to it. 4096 void EmitCheck(ArrayRef<std::pair<llvm::Value *, SanitizerMask>> Checked, 4097 SanitizerHandler Check, ArrayRef<llvm::Constant *> StaticArgs, 4098 ArrayRef<llvm::Value *> DynamicArgs); 4099 4100 /// Emit a slow path cross-DSO CFI check which calls __cfi_slowpath 4101 /// if Cond if false. 4102 void EmitCfiSlowPathCheck(SanitizerMask Kind, llvm::Value *Cond, 4103 llvm::ConstantInt *TypeId, llvm::Value *Ptr, 4104 ArrayRef<llvm::Constant *> StaticArgs); 4105 4106 /// Emit a reached-unreachable diagnostic if \p Loc is valid and runtime 4107 /// checking is enabled. Otherwise, just emit an unreachable instruction. 4108 void EmitUnreachable(SourceLocation Loc); 4109 4110 /// Create a basic block that will call the trap intrinsic, and emit a 4111 /// conditional branch to it, for the -ftrapv checks. 4112 void EmitTrapCheck(llvm::Value *Checked); 4113 4114 /// Emit a call to trap or debugtrap and attach function attribute 4115 /// "trap-func-name" if specified. 4116 llvm::CallInst *EmitTrapCall(llvm::Intrinsic::ID IntrID); 4117 4118 /// Emit a stub for the cross-DSO CFI check function. 4119 void EmitCfiCheckStub(); 4120 4121 /// Emit a cross-DSO CFI failure handling function. 4122 void EmitCfiCheckFail(); 4123 4124 /// Create a check for a function parameter that may potentially be 4125 /// declared as non-null. 4126 void EmitNonNullArgCheck(RValue RV, QualType ArgType, SourceLocation ArgLoc, 4127 AbstractCallee AC, unsigned ParmNum); 4128 4129 /// EmitCallArg - Emit a single call argument. 4130 void EmitCallArg(CallArgList &args, const Expr *E, QualType ArgType); 4131 4132 /// EmitDelegateCallArg - We are performing a delegate call; that 4133 /// is, the current function is delegating to another one. Produce 4134 /// a r-value suitable for passing the given parameter. 4135 void EmitDelegateCallArg(CallArgList &args, const VarDecl *param, 4136 SourceLocation loc); 4137 4138 /// SetFPAccuracy - Set the minimum required accuracy of the given floating 4139 /// point operation, expressed as the maximum relative error in ulp. 4140 void SetFPAccuracy(llvm::Value *Val, float Accuracy); 4141 4142 private: 4143 llvm::MDNode *getRangeForLoadFromType(QualType Ty); 4144 void EmitReturnOfRValue(RValue RV, QualType Ty); 4145 4146 void deferPlaceholderReplacement(llvm::Instruction *Old, llvm::Value *New); 4147 4148 llvm::SmallVector<std::pair<llvm::Instruction *, llvm::Value *>, 4> 4149 DeferredReplacements; 4150 4151 /// Set the address of a local variable. 4152 void setAddrOfLocalVar(const VarDecl *VD, Address Addr) { 4153 assert(!LocalDeclMap.count(VD) && "Decl already exists in LocalDeclMap!"); 4154 LocalDeclMap.insert({VD, Addr}); 4155 } 4156 4157 /// ExpandTypeFromArgs - Reconstruct a structure of type \arg Ty 4158 /// from function arguments into \arg Dst. See ABIArgInfo::Expand. 4159 /// 4160 /// \param AI - The first function argument of the expansion. 4161 void ExpandTypeFromArgs(QualType Ty, LValue Dst, 4162 SmallVectorImpl<llvm::Value *>::iterator &AI); 4163 4164 /// ExpandTypeToArgs - Expand an CallArg \arg Arg, with the LLVM type for \arg 4165 /// Ty, into individual arguments on the provided vector \arg IRCallArgs, 4166 /// starting at index \arg IRCallArgPos. See ABIArgInfo::Expand. 4167 void ExpandTypeToArgs(QualType Ty, CallArg Arg, llvm::FunctionType *IRFuncTy, 4168 SmallVectorImpl<llvm::Value *> &IRCallArgs, 4169 unsigned &IRCallArgPos); 4170 4171 llvm::Value* EmitAsmInput(const TargetInfo::ConstraintInfo &Info, 4172 const Expr *InputExpr, std::string &ConstraintStr); 4173 4174 llvm::Value* EmitAsmInputLValue(const TargetInfo::ConstraintInfo &Info, 4175 LValue InputValue, QualType InputType, 4176 std::string &ConstraintStr, 4177 SourceLocation Loc); 4178 4179 /// Attempts to statically evaluate the object size of E. If that 4180 /// fails, emits code to figure the size of E out for us. This is 4181 /// pass_object_size aware. 4182 /// 4183 /// If EmittedExpr is non-null, this will use that instead of re-emitting E. 4184 llvm::Value *evaluateOrEmitBuiltinObjectSize(const Expr *E, unsigned Type, 4185 llvm::IntegerType *ResType, 4186 llvm::Value *EmittedE, 4187 bool IsDynamic); 4188 4189 /// Emits the size of E, as required by __builtin_object_size. This 4190 /// function is aware of pass_object_size parameters, and will act accordingly 4191 /// if E is a parameter with the pass_object_size attribute. 4192 llvm::Value *emitBuiltinObjectSize(const Expr *E, unsigned Type, 4193 llvm::IntegerType *ResType, 4194 llvm::Value *EmittedE, 4195 bool IsDynamic); 4196 4197 public: 4198 #ifndef NDEBUG 4199 // Determine whether the given argument is an Objective-C method 4200 // that may have type parameters in its signature. 4201 static bool isObjCMethodWithTypeParams(const ObjCMethodDecl *method) { 4202 const DeclContext *dc = method->getDeclContext(); 4203 if (const ObjCInterfaceDecl *classDecl= dyn_cast<ObjCInterfaceDecl>(dc)) { 4204 return classDecl->getTypeParamListAsWritten(); 4205 } 4206 4207 if (const ObjCCategoryDecl *catDecl = dyn_cast<ObjCCategoryDecl>(dc)) { 4208 return catDecl->getTypeParamList(); 4209 } 4210 4211 return false; 4212 } 4213 4214 template<typename T> 4215 static bool isObjCMethodWithTypeParams(const T *) { return false; } 4216 #endif 4217 4218 enum class EvaluationOrder { 4219 ///! No language constraints on evaluation order. 4220 Default, 4221 ///! Language semantics require left-to-right evaluation. 4222 ForceLeftToRight, 4223 ///! Language semantics require right-to-left evaluation. 4224 ForceRightToLeft 4225 }; 4226 4227 /// EmitCallArgs - Emit call arguments for a function. 4228 template <typename T> 4229 void EmitCallArgs(CallArgList &Args, const T *CallArgTypeInfo, 4230 llvm::iterator_range<CallExpr::const_arg_iterator> ArgRange, 4231 AbstractCallee AC = AbstractCallee(), 4232 unsigned ParamsToSkip = 0, 4233 EvaluationOrder Order = EvaluationOrder::Default) { 4234 SmallVector<QualType, 16> ArgTypes; 4235 CallExpr::const_arg_iterator Arg = ArgRange.begin(); 4236 4237 assert((ParamsToSkip == 0 || CallArgTypeInfo) && 4238 "Can't skip parameters if type info is not provided"); 4239 if (CallArgTypeInfo) { 4240 #ifndef NDEBUG 4241 bool isGenericMethod = isObjCMethodWithTypeParams(CallArgTypeInfo); 4242 #endif 4243 4244 // First, use the argument types that the type info knows about 4245 for (auto I = CallArgTypeInfo->param_type_begin() + ParamsToSkip, 4246 E = CallArgTypeInfo->param_type_end(); 4247 I != E; ++I, ++Arg) { 4248 assert(Arg != ArgRange.end() && "Running over edge of argument list!"); 4249 assert((isGenericMethod || 4250 ((*I)->isVariablyModifiedType() || 4251 (*I).getNonReferenceType()->isObjCRetainableType() || 4252 getContext() 4253 .getCanonicalType((*I).getNonReferenceType()) 4254 .getTypePtr() == 4255 getContext() 4256 .getCanonicalType((*Arg)->getType()) 4257 .getTypePtr())) && 4258 "type mismatch in call argument!"); 4259 ArgTypes.push_back(*I); 4260 } 4261 } 4262 4263 // Either we've emitted all the call args, or we have a call to variadic 4264 // function. 4265 assert((Arg == ArgRange.end() || !CallArgTypeInfo || 4266 CallArgTypeInfo->isVariadic()) && 4267 "Extra arguments in non-variadic function!"); 4268 4269 // If we still have any arguments, emit them using the type of the argument. 4270 for (auto *A : llvm::make_range(Arg, ArgRange.end())) 4271 ArgTypes.push_back(CallArgTypeInfo ? getVarArgType(A) : A->getType()); 4272 4273 EmitCallArgs(Args, ArgTypes, ArgRange, AC, ParamsToSkip, Order); 4274 } 4275 4276 void EmitCallArgs(CallArgList &Args, ArrayRef<QualType> ArgTypes, 4277 llvm::iterator_range<CallExpr::const_arg_iterator> ArgRange, 4278 AbstractCallee AC = AbstractCallee(), 4279 unsigned ParamsToSkip = 0, 4280 EvaluationOrder Order = EvaluationOrder::Default); 4281 4282 /// EmitPointerWithAlignment - Given an expression with a pointer type, 4283 /// emit the value and compute our best estimate of the alignment of the 4284 /// pointee. 4285 /// 4286 /// \param BaseInfo - If non-null, this will be initialized with 4287 /// information about the source of the alignment and the may-alias 4288 /// attribute. Note that this function will conservatively fall back on 4289 /// the type when it doesn't recognize the expression and may-alias will 4290 /// be set to false. 4291 /// 4292 /// One reasonable way to use this information is when there's a language 4293 /// guarantee that the pointer must be aligned to some stricter value, and 4294 /// we're simply trying to ensure that sufficiently obvious uses of under- 4295 /// aligned objects don't get miscompiled; for example, a placement new 4296 /// into the address of a local variable. In such a case, it's quite 4297 /// reasonable to just ignore the returned alignment when it isn't from an 4298 /// explicit source. 4299 Address EmitPointerWithAlignment(const Expr *Addr, 4300 LValueBaseInfo *BaseInfo = nullptr, 4301 TBAAAccessInfo *TBAAInfo = nullptr); 4302 4303 /// If \p E references a parameter with pass_object_size info or a constant 4304 /// array size modifier, emit the object size divided by the size of \p EltTy. 4305 /// Otherwise return null. 4306 llvm::Value *LoadPassedObjectSize(const Expr *E, QualType EltTy); 4307 4308 void EmitSanitizerStatReport(llvm::SanitizerStatKind SSK); 4309 4310 struct MultiVersionResolverOption { 4311 llvm::Function *Function; 4312 FunctionDecl *FD; 4313 struct Conds { 4314 StringRef Architecture; 4315 llvm::SmallVector<StringRef, 8> Features; 4316 4317 Conds(StringRef Arch, ArrayRef<StringRef> Feats) 4318 : Architecture(Arch), Features(Feats.begin(), Feats.end()) {} 4319 } Conditions; 4320 4321 MultiVersionResolverOption(llvm::Function *F, StringRef Arch, 4322 ArrayRef<StringRef> Feats) 4323 : Function(F), Conditions(Arch, Feats) {} 4324 }; 4325 4326 // Emits the body of a multiversion function's resolver. Assumes that the 4327 // options are already sorted in the proper order, with the 'default' option 4328 // last (if it exists). 4329 void EmitMultiVersionResolver(llvm::Function *Resolver, 4330 ArrayRef<MultiVersionResolverOption> Options); 4331 4332 static uint64_t GetX86CpuSupportsMask(ArrayRef<StringRef> FeatureStrs); 4333 4334 private: 4335 QualType getVarArgType(const Expr *Arg); 4336 4337 void EmitDeclMetadata(); 4338 4339 BlockByrefHelpers *buildByrefHelpers(llvm::StructType &byrefType, 4340 const AutoVarEmission &emission); 4341 4342 void AddObjCARCExceptionMetadata(llvm::Instruction *Inst); 4343 4344 llvm::Value *GetValueForARMHint(unsigned BuiltinID); 4345 llvm::Value *EmitX86CpuIs(const CallExpr *E); 4346 llvm::Value *EmitX86CpuIs(StringRef CPUStr); 4347 llvm::Value *EmitX86CpuSupports(const CallExpr *E); 4348 llvm::Value *EmitX86CpuSupports(ArrayRef<StringRef> FeatureStrs); 4349 llvm::Value *EmitX86CpuSupports(uint64_t Mask); 4350 llvm::Value *EmitX86CpuInit(); 4351 llvm::Value *FormResolverCondition(const MultiVersionResolverOption &RO); 4352 }; 4353 4354 inline DominatingLLVMValue::saved_type 4355 DominatingLLVMValue::save(CodeGenFunction &CGF, llvm::Value *value) { 4356 if (!needsSaving(value)) return saved_type(value, false); 4357 4358 // Otherwise, we need an alloca. 4359 auto align = CharUnits::fromQuantity( 4360 CGF.CGM.getDataLayout().getPrefTypeAlignment(value->getType())); 4361 Address alloca = 4362 CGF.CreateTempAlloca(value->getType(), align, "cond-cleanup.save"); 4363 CGF.Builder.CreateStore(value, alloca); 4364 4365 return saved_type(alloca.getPointer(), true); 4366 } 4367 4368 inline llvm::Value *DominatingLLVMValue::restore(CodeGenFunction &CGF, 4369 saved_type value) { 4370 // If the value says it wasn't saved, trust that it's still dominating. 4371 if (!value.getInt()) return value.getPointer(); 4372 4373 // Otherwise, it should be an alloca instruction, as set up in save(). 4374 auto alloca = cast<llvm::AllocaInst>(value.getPointer()); 4375 return CGF.Builder.CreateAlignedLoad(alloca, alloca->getAlignment()); 4376 } 4377 4378 } // end namespace CodeGen 4379 } // end namespace clang 4380 4381 #endif 4382