1 //===-- CodeGenFunction.h - Per-Function state for LLVM CodeGen -*- C++ -*-===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This is the internal per-function state used for llvm translation. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #ifndef LLVM_CLANG_LIB_CODEGEN_CODEGENFUNCTION_H 15 #define LLVM_CLANG_LIB_CODEGEN_CODEGENFUNCTION_H 16 17 #include "CGBuilder.h" 18 #include "CGDebugInfo.h" 19 #include "CGLoopInfo.h" 20 #include "CGValue.h" 21 #include "CodeGenModule.h" 22 #include "CodeGenPGO.h" 23 #include "EHScopeStack.h" 24 #include "VarBypassDetector.h" 25 #include "clang/AST/CharUnits.h" 26 #include "clang/AST/ExprCXX.h" 27 #include "clang/AST/ExprObjC.h" 28 #include "clang/AST/ExprOpenMP.h" 29 #include "clang/AST/Type.h" 30 #include "clang/Basic/ABI.h" 31 #include "clang/Basic/CapturedStmt.h" 32 #include "clang/Basic/OpenMPKinds.h" 33 #include "clang/Basic/TargetInfo.h" 34 #include "clang/Frontend/CodeGenOptions.h" 35 #include "llvm/ADT/ArrayRef.h" 36 #include "llvm/ADT/DenseMap.h" 37 #include "llvm/ADT/SmallVector.h" 38 #include "llvm/IR/ValueHandle.h" 39 #include "llvm/Support/Debug.h" 40 #include "llvm/Transforms/Utils/SanitizerStats.h" 41 42 namespace llvm { 43 class BasicBlock; 44 class LLVMContext; 45 class MDNode; 46 class Module; 47 class SwitchInst; 48 class Twine; 49 class Value; 50 class CallSite; 51 } 52 53 namespace clang { 54 class ASTContext; 55 class BlockDecl; 56 class CXXDestructorDecl; 57 class CXXForRangeStmt; 58 class CXXTryStmt; 59 class Decl; 60 class LabelDecl; 61 class EnumConstantDecl; 62 class FunctionDecl; 63 class FunctionProtoType; 64 class LabelStmt; 65 class ObjCContainerDecl; 66 class ObjCInterfaceDecl; 67 class ObjCIvarDecl; 68 class ObjCMethodDecl; 69 class ObjCImplementationDecl; 70 class ObjCPropertyImplDecl; 71 class TargetInfo; 72 class VarDecl; 73 class ObjCForCollectionStmt; 74 class ObjCAtTryStmt; 75 class ObjCAtThrowStmt; 76 class ObjCAtSynchronizedStmt; 77 class ObjCAutoreleasePoolStmt; 78 79 namespace CodeGen { 80 class CodeGenTypes; 81 class CGCallee; 82 class CGFunctionInfo; 83 class CGRecordLayout; 84 class CGBlockInfo; 85 class CGCXXABI; 86 class BlockByrefHelpers; 87 class BlockByrefInfo; 88 class BlockFlags; 89 class BlockFieldFlags; 90 class RegionCodeGenTy; 91 class TargetCodeGenInfo; 92 struct OMPTaskDataTy; 93 struct CGCoroData; 94 95 /// The kind of evaluation to perform on values of a particular 96 /// type. Basically, is the code in CGExprScalar, CGExprComplex, or 97 /// CGExprAgg? 98 /// 99 /// TODO: should vectors maybe be split out into their own thing? 100 enum TypeEvaluationKind { 101 TEK_Scalar, 102 TEK_Complex, 103 TEK_Aggregate 104 }; 105 106 #define LIST_SANITIZER_CHECKS \ 107 SANITIZER_CHECK(AddOverflow, add_overflow, 0) \ 108 SANITIZER_CHECK(BuiltinUnreachable, builtin_unreachable, 0) \ 109 SANITIZER_CHECK(CFICheckFail, cfi_check_fail, 0) \ 110 SANITIZER_CHECK(DivremOverflow, divrem_overflow, 0) \ 111 SANITIZER_CHECK(DynamicTypeCacheMiss, dynamic_type_cache_miss, 0) \ 112 SANITIZER_CHECK(FloatCastOverflow, float_cast_overflow, 0) \ 113 SANITIZER_CHECK(FunctionTypeMismatch, function_type_mismatch, 0) \ 114 SANITIZER_CHECK(LoadInvalidValue, load_invalid_value, 0) \ 115 SANITIZER_CHECK(MissingReturn, missing_return, 0) \ 116 SANITIZER_CHECK(MulOverflow, mul_overflow, 0) \ 117 SANITIZER_CHECK(NegateOverflow, negate_overflow, 0) \ 118 SANITIZER_CHECK(NonnullArg, nonnull_arg, 0) \ 119 SANITIZER_CHECK(NonnullReturn, nonnull_return, 0) \ 120 SANITIZER_CHECK(OutOfBounds, out_of_bounds, 0) \ 121 SANITIZER_CHECK(ShiftOutOfBounds, shift_out_of_bounds, 0) \ 122 SANITIZER_CHECK(SubOverflow, sub_overflow, 0) \ 123 SANITIZER_CHECK(TypeMismatch, type_mismatch, 0) \ 124 SANITIZER_CHECK(VLABoundNotPositive, vla_bound_not_positive, 0) 125 126 enum SanitizerHandler { 127 #define SANITIZER_CHECK(Enum, Name, Version) Enum, 128 LIST_SANITIZER_CHECKS 129 #undef SANITIZER_CHECK 130 }; 131 132 /// CodeGenFunction - This class organizes the per-function state that is used 133 /// while generating LLVM code. 134 class CodeGenFunction : public CodeGenTypeCache { 135 CodeGenFunction(const CodeGenFunction &) = delete; 136 void operator=(const CodeGenFunction &) = delete; 137 138 friend class CGCXXABI; 139 public: 140 /// A jump destination is an abstract label, branching to which may 141 /// require a jump out through normal cleanups. 142 struct JumpDest { 143 JumpDest() : Block(nullptr), ScopeDepth(), Index(0) {} 144 JumpDest(llvm::BasicBlock *Block, 145 EHScopeStack::stable_iterator Depth, 146 unsigned Index) 147 : Block(Block), ScopeDepth(Depth), Index(Index) {} 148 149 bool isValid() const { return Block != nullptr; } 150 llvm::BasicBlock *getBlock() const { return Block; } 151 EHScopeStack::stable_iterator getScopeDepth() const { return ScopeDepth; } 152 unsigned getDestIndex() const { return Index; } 153 154 // This should be used cautiously. 155 void setScopeDepth(EHScopeStack::stable_iterator depth) { 156 ScopeDepth = depth; 157 } 158 159 private: 160 llvm::BasicBlock *Block; 161 EHScopeStack::stable_iterator ScopeDepth; 162 unsigned Index; 163 }; 164 165 CodeGenModule &CGM; // Per-module state. 166 const TargetInfo &Target; 167 168 typedef std::pair<llvm::Value *, llvm::Value *> ComplexPairTy; 169 LoopInfoStack LoopStack; 170 CGBuilderTy Builder; 171 172 // Stores variables for which we can't generate correct lifetime markers 173 // because of jumps. 174 VarBypassDetector Bypasses; 175 176 /// \brief CGBuilder insert helper. This function is called after an 177 /// instruction is created using Builder. 178 void InsertHelper(llvm::Instruction *I, const llvm::Twine &Name, 179 llvm::BasicBlock *BB, 180 llvm::BasicBlock::iterator InsertPt) const; 181 182 /// CurFuncDecl - Holds the Decl for the current outermost 183 /// non-closure context. 184 const Decl *CurFuncDecl; 185 /// CurCodeDecl - This is the inner-most code context, which includes blocks. 186 const Decl *CurCodeDecl; 187 const CGFunctionInfo *CurFnInfo; 188 QualType FnRetTy; 189 llvm::Function *CurFn; 190 191 // Holds coroutine data if the current function is a coroutine. We use a 192 // wrapper to manage its lifetime, so that we don't have to define CGCoroData 193 // in this header. 194 struct CGCoroInfo { 195 std::unique_ptr<CGCoroData> Data; 196 CGCoroInfo(); 197 ~CGCoroInfo(); 198 }; 199 CGCoroInfo CurCoro; 200 201 /// CurGD - The GlobalDecl for the current function being compiled. 202 GlobalDecl CurGD; 203 204 /// PrologueCleanupDepth - The cleanup depth enclosing all the 205 /// cleanups associated with the parameters. 206 EHScopeStack::stable_iterator PrologueCleanupDepth; 207 208 /// ReturnBlock - Unified return block. 209 JumpDest ReturnBlock; 210 211 /// ReturnValue - The temporary alloca to hold the return 212 /// value. This is invalid iff the function has no return value. 213 Address ReturnValue; 214 215 /// AllocaInsertPoint - This is an instruction in the entry block before which 216 /// we prefer to insert allocas. 217 llvm::AssertingVH<llvm::Instruction> AllocaInsertPt; 218 219 /// \brief API for captured statement code generation. 220 class CGCapturedStmtInfo { 221 public: 222 explicit CGCapturedStmtInfo(CapturedRegionKind K = CR_Default) 223 : Kind(K), ThisValue(nullptr), CXXThisFieldDecl(nullptr) {} 224 explicit CGCapturedStmtInfo(const CapturedStmt &S, 225 CapturedRegionKind K = CR_Default) 226 : Kind(K), ThisValue(nullptr), CXXThisFieldDecl(nullptr) { 227 228 RecordDecl::field_iterator Field = 229 S.getCapturedRecordDecl()->field_begin(); 230 for (CapturedStmt::const_capture_iterator I = S.capture_begin(), 231 E = S.capture_end(); 232 I != E; ++I, ++Field) { 233 if (I->capturesThis()) 234 CXXThisFieldDecl = *Field; 235 else if (I->capturesVariable()) 236 CaptureFields[I->getCapturedVar()] = *Field; 237 else if (I->capturesVariableByCopy()) 238 CaptureFields[I->getCapturedVar()] = *Field; 239 } 240 } 241 242 virtual ~CGCapturedStmtInfo(); 243 244 CapturedRegionKind getKind() const { return Kind; } 245 246 virtual void setContextValue(llvm::Value *V) { ThisValue = V; } 247 // \brief Retrieve the value of the context parameter. 248 virtual llvm::Value *getContextValue() const { return ThisValue; } 249 250 /// \brief Lookup the captured field decl for a variable. 251 virtual const FieldDecl *lookup(const VarDecl *VD) const { 252 return CaptureFields.lookup(VD); 253 } 254 255 bool isCXXThisExprCaptured() const { return getThisFieldDecl() != nullptr; } 256 virtual FieldDecl *getThisFieldDecl() const { return CXXThisFieldDecl; } 257 258 static bool classof(const CGCapturedStmtInfo *) { 259 return true; 260 } 261 262 /// \brief Emit the captured statement body. 263 virtual void EmitBody(CodeGenFunction &CGF, const Stmt *S) { 264 CGF.incrementProfileCounter(S); 265 CGF.EmitStmt(S); 266 } 267 268 /// \brief Get the name of the capture helper. 269 virtual StringRef getHelperName() const { return "__captured_stmt"; } 270 271 private: 272 /// \brief The kind of captured statement being generated. 273 CapturedRegionKind Kind; 274 275 /// \brief Keep the map between VarDecl and FieldDecl. 276 llvm::SmallDenseMap<const VarDecl *, FieldDecl *> CaptureFields; 277 278 /// \brief The base address of the captured record, passed in as the first 279 /// argument of the parallel region function. 280 llvm::Value *ThisValue; 281 282 /// \brief Captured 'this' type. 283 FieldDecl *CXXThisFieldDecl; 284 }; 285 CGCapturedStmtInfo *CapturedStmtInfo; 286 287 /// \brief RAII for correct setting/restoring of CapturedStmtInfo. 288 class CGCapturedStmtRAII { 289 private: 290 CodeGenFunction &CGF; 291 CGCapturedStmtInfo *PrevCapturedStmtInfo; 292 public: 293 CGCapturedStmtRAII(CodeGenFunction &CGF, 294 CGCapturedStmtInfo *NewCapturedStmtInfo) 295 : CGF(CGF), PrevCapturedStmtInfo(CGF.CapturedStmtInfo) { 296 CGF.CapturedStmtInfo = NewCapturedStmtInfo; 297 } 298 ~CGCapturedStmtRAII() { CGF.CapturedStmtInfo = PrevCapturedStmtInfo; } 299 }; 300 301 /// \brief Sanitizers enabled for this function. 302 SanitizerSet SanOpts; 303 304 /// \brief True if CodeGen currently emits code implementing sanitizer checks. 305 bool IsSanitizerScope; 306 307 /// \brief RAII object to set/unset CodeGenFunction::IsSanitizerScope. 308 class SanitizerScope { 309 CodeGenFunction *CGF; 310 public: 311 SanitizerScope(CodeGenFunction *CGF); 312 ~SanitizerScope(); 313 }; 314 315 /// In C++, whether we are code generating a thunk. This controls whether we 316 /// should emit cleanups. 317 bool CurFuncIsThunk; 318 319 /// In ARC, whether we should autorelease the return value. 320 bool AutoreleaseResult; 321 322 /// Whether we processed a Microsoft-style asm block during CodeGen. These can 323 /// potentially set the return value. 324 bool SawAsmBlock; 325 326 const FunctionDecl *CurSEHParent = nullptr; 327 328 /// True if the current function is an outlined SEH helper. This can be a 329 /// finally block or filter expression. 330 bool IsOutlinedSEHHelper; 331 332 const CodeGen::CGBlockInfo *BlockInfo; 333 llvm::Value *BlockPointer; 334 335 llvm::DenseMap<const VarDecl *, FieldDecl *> LambdaCaptureFields; 336 FieldDecl *LambdaThisCaptureField; 337 338 /// \brief A mapping from NRVO variables to the flags used to indicate 339 /// when the NRVO has been applied to this variable. 340 llvm::DenseMap<const VarDecl *, llvm::Value *> NRVOFlags; 341 342 EHScopeStack EHStack; 343 llvm::SmallVector<char, 256> LifetimeExtendedCleanupStack; 344 llvm::SmallVector<const JumpDest *, 2> SEHTryEpilogueStack; 345 346 llvm::Instruction *CurrentFuncletPad = nullptr; 347 348 class CallLifetimeEnd final : public EHScopeStack::Cleanup { 349 llvm::Value *Addr; 350 llvm::Value *Size; 351 352 public: 353 CallLifetimeEnd(Address addr, llvm::Value *size) 354 : Addr(addr.getPointer()), Size(size) {} 355 356 void Emit(CodeGenFunction &CGF, Flags flags) override { 357 CGF.EmitLifetimeEnd(Size, Addr); 358 } 359 }; 360 361 /// Header for data within LifetimeExtendedCleanupStack. 362 struct LifetimeExtendedCleanupHeader { 363 /// The size of the following cleanup object. 364 unsigned Size; 365 /// The kind of cleanup to push: a value from the CleanupKind enumeration. 366 CleanupKind Kind; 367 368 size_t getSize() const { return Size; } 369 CleanupKind getKind() const { return Kind; } 370 }; 371 372 /// i32s containing the indexes of the cleanup destinations. 373 llvm::AllocaInst *NormalCleanupDest; 374 375 unsigned NextCleanupDestIndex; 376 377 /// FirstBlockInfo - The head of a singly-linked-list of block layouts. 378 CGBlockInfo *FirstBlockInfo; 379 380 /// EHResumeBlock - Unified block containing a call to llvm.eh.resume. 381 llvm::BasicBlock *EHResumeBlock; 382 383 /// The exception slot. All landing pads write the current exception pointer 384 /// into this alloca. 385 llvm::Value *ExceptionSlot; 386 387 /// The selector slot. Under the MandatoryCleanup model, all landing pads 388 /// write the current selector value into this alloca. 389 llvm::AllocaInst *EHSelectorSlot; 390 391 /// A stack of exception code slots. Entering an __except block pushes a slot 392 /// on the stack and leaving pops one. The __exception_code() intrinsic loads 393 /// a value from the top of the stack. 394 SmallVector<Address, 1> SEHCodeSlotStack; 395 396 /// Value returned by __exception_info intrinsic. 397 llvm::Value *SEHInfo = nullptr; 398 399 /// Emits a landing pad for the current EH stack. 400 llvm::BasicBlock *EmitLandingPad(); 401 402 llvm::BasicBlock *getInvokeDestImpl(); 403 404 template <class T> 405 typename DominatingValue<T>::saved_type saveValueInCond(T value) { 406 return DominatingValue<T>::save(*this, value); 407 } 408 409 public: 410 /// ObjCEHValueStack - Stack of Objective-C exception values, used for 411 /// rethrows. 412 SmallVector<llvm::Value*, 8> ObjCEHValueStack; 413 414 /// A class controlling the emission of a finally block. 415 class FinallyInfo { 416 /// Where the catchall's edge through the cleanup should go. 417 JumpDest RethrowDest; 418 419 /// A function to call to enter the catch. 420 llvm::Constant *BeginCatchFn; 421 422 /// An i1 variable indicating whether or not the @finally is 423 /// running for an exception. 424 llvm::AllocaInst *ForEHVar; 425 426 /// An i8* variable into which the exception pointer to rethrow 427 /// has been saved. 428 llvm::AllocaInst *SavedExnVar; 429 430 public: 431 void enter(CodeGenFunction &CGF, const Stmt *Finally, 432 llvm::Constant *beginCatchFn, llvm::Constant *endCatchFn, 433 llvm::Constant *rethrowFn); 434 void exit(CodeGenFunction &CGF); 435 }; 436 437 /// Returns true inside SEH __try blocks. 438 bool isSEHTryScope() const { return !SEHTryEpilogueStack.empty(); } 439 440 /// Returns true while emitting a cleanuppad. 441 bool isCleanupPadScope() const { 442 return CurrentFuncletPad && isa<llvm::CleanupPadInst>(CurrentFuncletPad); 443 } 444 445 /// pushFullExprCleanup - Push a cleanup to be run at the end of the 446 /// current full-expression. Safe against the possibility that 447 /// we're currently inside a conditionally-evaluated expression. 448 template <class T, class... As> 449 void pushFullExprCleanup(CleanupKind kind, As... A) { 450 // If we're not in a conditional branch, or if none of the 451 // arguments requires saving, then use the unconditional cleanup. 452 if (!isInConditionalBranch()) 453 return EHStack.pushCleanup<T>(kind, A...); 454 455 // Stash values in a tuple so we can guarantee the order of saves. 456 typedef std::tuple<typename DominatingValue<As>::saved_type...> SavedTuple; 457 SavedTuple Saved{saveValueInCond(A)...}; 458 459 typedef EHScopeStack::ConditionalCleanup<T, As...> CleanupType; 460 EHStack.pushCleanupTuple<CleanupType>(kind, Saved); 461 initFullExprCleanup(); 462 } 463 464 /// \brief Queue a cleanup to be pushed after finishing the current 465 /// full-expression. 466 template <class T, class... As> 467 void pushCleanupAfterFullExpr(CleanupKind Kind, As... A) { 468 assert(!isInConditionalBranch() && "can't defer conditional cleanup"); 469 470 LifetimeExtendedCleanupHeader Header = { sizeof(T), Kind }; 471 472 size_t OldSize = LifetimeExtendedCleanupStack.size(); 473 LifetimeExtendedCleanupStack.resize( 474 LifetimeExtendedCleanupStack.size() + sizeof(Header) + Header.Size); 475 476 static_assert(sizeof(Header) % alignof(T) == 0, 477 "Cleanup will be allocated on misaligned address"); 478 char *Buffer = &LifetimeExtendedCleanupStack[OldSize]; 479 new (Buffer) LifetimeExtendedCleanupHeader(Header); 480 new (Buffer + sizeof(Header)) T(A...); 481 } 482 483 /// Set up the last cleaup that was pushed as a conditional 484 /// full-expression cleanup. 485 void initFullExprCleanup(); 486 487 /// PushDestructorCleanup - Push a cleanup to call the 488 /// complete-object destructor of an object of the given type at the 489 /// given address. Does nothing if T is not a C++ class type with a 490 /// non-trivial destructor. 491 void PushDestructorCleanup(QualType T, Address Addr); 492 493 /// PushDestructorCleanup - Push a cleanup to call the 494 /// complete-object variant of the given destructor on the object at 495 /// the given address. 496 void PushDestructorCleanup(const CXXDestructorDecl *Dtor, Address Addr); 497 498 /// PopCleanupBlock - Will pop the cleanup entry on the stack and 499 /// process all branch fixups. 500 void PopCleanupBlock(bool FallThroughIsBranchThrough = false); 501 502 /// DeactivateCleanupBlock - Deactivates the given cleanup block. 503 /// The block cannot be reactivated. Pops it if it's the top of the 504 /// stack. 505 /// 506 /// \param DominatingIP - An instruction which is known to 507 /// dominate the current IP (if set) and which lies along 508 /// all paths of execution between the current IP and the 509 /// the point at which the cleanup comes into scope. 510 void DeactivateCleanupBlock(EHScopeStack::stable_iterator Cleanup, 511 llvm::Instruction *DominatingIP); 512 513 /// ActivateCleanupBlock - Activates an initially-inactive cleanup. 514 /// Cannot be used to resurrect a deactivated cleanup. 515 /// 516 /// \param DominatingIP - An instruction which is known to 517 /// dominate the current IP (if set) and which lies along 518 /// all paths of execution between the current IP and the 519 /// the point at which the cleanup comes into scope. 520 void ActivateCleanupBlock(EHScopeStack::stable_iterator Cleanup, 521 llvm::Instruction *DominatingIP); 522 523 /// \brief Enters a new scope for capturing cleanups, all of which 524 /// will be executed once the scope is exited. 525 class RunCleanupsScope { 526 EHScopeStack::stable_iterator CleanupStackDepth; 527 size_t LifetimeExtendedCleanupStackSize; 528 bool OldDidCallStackSave; 529 protected: 530 bool PerformCleanup; 531 private: 532 533 RunCleanupsScope(const RunCleanupsScope &) = delete; 534 void operator=(const RunCleanupsScope &) = delete; 535 536 protected: 537 CodeGenFunction& CGF; 538 539 public: 540 /// \brief Enter a new cleanup scope. 541 explicit RunCleanupsScope(CodeGenFunction &CGF) 542 : PerformCleanup(true), CGF(CGF) 543 { 544 CleanupStackDepth = CGF.EHStack.stable_begin(); 545 LifetimeExtendedCleanupStackSize = 546 CGF.LifetimeExtendedCleanupStack.size(); 547 OldDidCallStackSave = CGF.DidCallStackSave; 548 CGF.DidCallStackSave = false; 549 } 550 551 /// \brief Exit this cleanup scope, emitting any accumulated 552 /// cleanups. 553 ~RunCleanupsScope() { 554 if (PerformCleanup) { 555 CGF.DidCallStackSave = OldDidCallStackSave; 556 CGF.PopCleanupBlocks(CleanupStackDepth, 557 LifetimeExtendedCleanupStackSize); 558 } 559 } 560 561 /// \brief Determine whether this scope requires any cleanups. 562 bool requiresCleanups() const { 563 return CGF.EHStack.stable_begin() != CleanupStackDepth; 564 } 565 566 /// \brief Force the emission of cleanups now, instead of waiting 567 /// until this object is destroyed. 568 void ForceCleanup() { 569 assert(PerformCleanup && "Already forced cleanup"); 570 CGF.DidCallStackSave = OldDidCallStackSave; 571 CGF.PopCleanupBlocks(CleanupStackDepth, 572 LifetimeExtendedCleanupStackSize); 573 PerformCleanup = false; 574 } 575 }; 576 577 class LexicalScope : public RunCleanupsScope { 578 SourceRange Range; 579 SmallVector<const LabelDecl*, 4> Labels; 580 LexicalScope *ParentScope; 581 582 LexicalScope(const LexicalScope &) = delete; 583 void operator=(const LexicalScope &) = delete; 584 585 public: 586 /// \brief Enter a new cleanup scope. 587 explicit LexicalScope(CodeGenFunction &CGF, SourceRange Range) 588 : RunCleanupsScope(CGF), Range(Range), ParentScope(CGF.CurLexicalScope) { 589 CGF.CurLexicalScope = this; 590 if (CGDebugInfo *DI = CGF.getDebugInfo()) 591 DI->EmitLexicalBlockStart(CGF.Builder, Range.getBegin()); 592 } 593 594 void addLabel(const LabelDecl *label) { 595 assert(PerformCleanup && "adding label to dead scope?"); 596 Labels.push_back(label); 597 } 598 599 /// \brief Exit this cleanup scope, emitting any accumulated 600 /// cleanups. 601 ~LexicalScope() { 602 if (CGDebugInfo *DI = CGF.getDebugInfo()) 603 DI->EmitLexicalBlockEnd(CGF.Builder, Range.getEnd()); 604 605 // If we should perform a cleanup, force them now. Note that 606 // this ends the cleanup scope before rescoping any labels. 607 if (PerformCleanup) { 608 ApplyDebugLocation DL(CGF, Range.getEnd()); 609 ForceCleanup(); 610 } 611 } 612 613 /// \brief Force the emission of cleanups now, instead of waiting 614 /// until this object is destroyed. 615 void ForceCleanup() { 616 CGF.CurLexicalScope = ParentScope; 617 RunCleanupsScope::ForceCleanup(); 618 619 if (!Labels.empty()) 620 rescopeLabels(); 621 } 622 623 void rescopeLabels(); 624 }; 625 626 typedef llvm::DenseMap<const Decl *, Address> DeclMapTy; 627 628 /// \brief The scope used to remap some variables as private in the OpenMP 629 /// loop body (or other captured region emitted without outlining), and to 630 /// restore old vars back on exit. 631 class OMPPrivateScope : public RunCleanupsScope { 632 DeclMapTy SavedLocals; 633 DeclMapTy SavedPrivates; 634 635 private: 636 OMPPrivateScope(const OMPPrivateScope &) = delete; 637 void operator=(const OMPPrivateScope &) = delete; 638 639 public: 640 /// \brief Enter a new OpenMP private scope. 641 explicit OMPPrivateScope(CodeGenFunction &CGF) : RunCleanupsScope(CGF) {} 642 643 /// \brief Registers \a LocalVD variable as a private and apply \a 644 /// PrivateGen function for it to generate corresponding private variable. 645 /// \a PrivateGen returns an address of the generated private variable. 646 /// \return true if the variable is registered as private, false if it has 647 /// been privatized already. 648 bool 649 addPrivate(const VarDecl *LocalVD, 650 llvm::function_ref<Address()> PrivateGen) { 651 assert(PerformCleanup && "adding private to dead scope"); 652 653 // Only save it once. 654 if (SavedLocals.count(LocalVD)) return false; 655 656 // Copy the existing local entry to SavedLocals. 657 auto it = CGF.LocalDeclMap.find(LocalVD); 658 if (it != CGF.LocalDeclMap.end()) { 659 SavedLocals.insert({LocalVD, it->second}); 660 } else { 661 SavedLocals.insert({LocalVD, Address::invalid()}); 662 } 663 664 // Generate the private entry. 665 Address Addr = PrivateGen(); 666 QualType VarTy = LocalVD->getType(); 667 if (VarTy->isReferenceType()) { 668 Address Temp = CGF.CreateMemTemp(VarTy); 669 CGF.Builder.CreateStore(Addr.getPointer(), Temp); 670 Addr = Temp; 671 } 672 SavedPrivates.insert({LocalVD, Addr}); 673 674 return true; 675 } 676 677 /// \brief Privatizes local variables previously registered as private. 678 /// Registration is separate from the actual privatization to allow 679 /// initializers use values of the original variables, not the private one. 680 /// This is important, for example, if the private variable is a class 681 /// variable initialized by a constructor that references other private 682 /// variables. But at initialization original variables must be used, not 683 /// private copies. 684 /// \return true if at least one variable was privatized, false otherwise. 685 bool Privatize() { 686 copyInto(SavedPrivates, CGF.LocalDeclMap); 687 SavedPrivates.clear(); 688 return !SavedLocals.empty(); 689 } 690 691 void ForceCleanup() { 692 RunCleanupsScope::ForceCleanup(); 693 copyInto(SavedLocals, CGF.LocalDeclMap); 694 SavedLocals.clear(); 695 } 696 697 /// \brief Exit scope - all the mapped variables are restored. 698 ~OMPPrivateScope() { 699 if (PerformCleanup) 700 ForceCleanup(); 701 } 702 703 /// Checks if the global variable is captured in current function. 704 bool isGlobalVarCaptured(const VarDecl *VD) const { 705 return !VD->isLocalVarDeclOrParm() && CGF.LocalDeclMap.count(VD) > 0; 706 } 707 708 private: 709 /// Copy all the entries in the source map over the corresponding 710 /// entries in the destination, which must exist. 711 static void copyInto(const DeclMapTy &src, DeclMapTy &dest) { 712 for (auto &pair : src) { 713 if (!pair.second.isValid()) { 714 dest.erase(pair.first); 715 continue; 716 } 717 718 auto it = dest.find(pair.first); 719 if (it != dest.end()) { 720 it->second = pair.second; 721 } else { 722 dest.insert(pair); 723 } 724 } 725 } 726 }; 727 728 /// \brief Takes the old cleanup stack size and emits the cleanup blocks 729 /// that have been added. 730 void PopCleanupBlocks(EHScopeStack::stable_iterator OldCleanupStackSize); 731 732 /// \brief Takes the old cleanup stack size and emits the cleanup blocks 733 /// that have been added, then adds all lifetime-extended cleanups from 734 /// the given position to the stack. 735 void PopCleanupBlocks(EHScopeStack::stable_iterator OldCleanupStackSize, 736 size_t OldLifetimeExtendedStackSize); 737 738 void ResolveBranchFixups(llvm::BasicBlock *Target); 739 740 /// The given basic block lies in the current EH scope, but may be a 741 /// target of a potentially scope-crossing jump; get a stable handle 742 /// to which we can perform this jump later. 743 JumpDest getJumpDestInCurrentScope(llvm::BasicBlock *Target) { 744 return JumpDest(Target, 745 EHStack.getInnermostNormalCleanup(), 746 NextCleanupDestIndex++); 747 } 748 749 /// The given basic block lies in the current EH scope, but may be a 750 /// target of a potentially scope-crossing jump; get a stable handle 751 /// to which we can perform this jump later. 752 JumpDest getJumpDestInCurrentScope(StringRef Name = StringRef()) { 753 return getJumpDestInCurrentScope(createBasicBlock(Name)); 754 } 755 756 /// EmitBranchThroughCleanup - Emit a branch from the current insert 757 /// block through the normal cleanup handling code (if any) and then 758 /// on to \arg Dest. 759 void EmitBranchThroughCleanup(JumpDest Dest); 760 761 /// isObviouslyBranchWithoutCleanups - Return true if a branch to the 762 /// specified destination obviously has no cleanups to run. 'false' is always 763 /// a conservatively correct answer for this method. 764 bool isObviouslyBranchWithoutCleanups(JumpDest Dest) const; 765 766 /// popCatchScope - Pops the catch scope at the top of the EHScope 767 /// stack, emitting any required code (other than the catch handlers 768 /// themselves). 769 void popCatchScope(); 770 771 llvm::BasicBlock *getEHResumeBlock(bool isCleanup); 772 llvm::BasicBlock *getEHDispatchBlock(EHScopeStack::stable_iterator scope); 773 llvm::BasicBlock *getMSVCDispatchBlock(EHScopeStack::stable_iterator scope); 774 775 /// An object to manage conditionally-evaluated expressions. 776 class ConditionalEvaluation { 777 llvm::BasicBlock *StartBB; 778 779 public: 780 ConditionalEvaluation(CodeGenFunction &CGF) 781 : StartBB(CGF.Builder.GetInsertBlock()) {} 782 783 void begin(CodeGenFunction &CGF) { 784 assert(CGF.OutermostConditional != this); 785 if (!CGF.OutermostConditional) 786 CGF.OutermostConditional = this; 787 } 788 789 void end(CodeGenFunction &CGF) { 790 assert(CGF.OutermostConditional != nullptr); 791 if (CGF.OutermostConditional == this) 792 CGF.OutermostConditional = nullptr; 793 } 794 795 /// Returns a block which will be executed prior to each 796 /// evaluation of the conditional code. 797 llvm::BasicBlock *getStartingBlock() const { 798 return StartBB; 799 } 800 }; 801 802 /// isInConditionalBranch - Return true if we're currently emitting 803 /// one branch or the other of a conditional expression. 804 bool isInConditionalBranch() const { return OutermostConditional != nullptr; } 805 806 void setBeforeOutermostConditional(llvm::Value *value, Address addr) { 807 assert(isInConditionalBranch()); 808 llvm::BasicBlock *block = OutermostConditional->getStartingBlock(); 809 auto store = new llvm::StoreInst(value, addr.getPointer(), &block->back()); 810 store->setAlignment(addr.getAlignment().getQuantity()); 811 } 812 813 /// An RAII object to record that we're evaluating a statement 814 /// expression. 815 class StmtExprEvaluation { 816 CodeGenFunction &CGF; 817 818 /// We have to save the outermost conditional: cleanups in a 819 /// statement expression aren't conditional just because the 820 /// StmtExpr is. 821 ConditionalEvaluation *SavedOutermostConditional; 822 823 public: 824 StmtExprEvaluation(CodeGenFunction &CGF) 825 : CGF(CGF), SavedOutermostConditional(CGF.OutermostConditional) { 826 CGF.OutermostConditional = nullptr; 827 } 828 829 ~StmtExprEvaluation() { 830 CGF.OutermostConditional = SavedOutermostConditional; 831 CGF.EnsureInsertPoint(); 832 } 833 }; 834 835 /// An object which temporarily prevents a value from being 836 /// destroyed by aggressive peephole optimizations that assume that 837 /// all uses of a value have been realized in the IR. 838 class PeepholeProtection { 839 llvm::Instruction *Inst; 840 friend class CodeGenFunction; 841 842 public: 843 PeepholeProtection() : Inst(nullptr) {} 844 }; 845 846 /// A non-RAII class containing all the information about a bound 847 /// opaque value. OpaqueValueMapping, below, is a RAII wrapper for 848 /// this which makes individual mappings very simple; using this 849 /// class directly is useful when you have a variable number of 850 /// opaque values or don't want the RAII functionality for some 851 /// reason. 852 class OpaqueValueMappingData { 853 const OpaqueValueExpr *OpaqueValue; 854 bool BoundLValue; 855 CodeGenFunction::PeepholeProtection Protection; 856 857 OpaqueValueMappingData(const OpaqueValueExpr *ov, 858 bool boundLValue) 859 : OpaqueValue(ov), BoundLValue(boundLValue) {} 860 public: 861 OpaqueValueMappingData() : OpaqueValue(nullptr) {} 862 863 static bool shouldBindAsLValue(const Expr *expr) { 864 // gl-values should be bound as l-values for obvious reasons. 865 // Records should be bound as l-values because IR generation 866 // always keeps them in memory. Expressions of function type 867 // act exactly like l-values but are formally required to be 868 // r-values in C. 869 return expr->isGLValue() || 870 expr->getType()->isFunctionType() || 871 hasAggregateEvaluationKind(expr->getType()); 872 } 873 874 static OpaqueValueMappingData bind(CodeGenFunction &CGF, 875 const OpaqueValueExpr *ov, 876 const Expr *e) { 877 if (shouldBindAsLValue(ov)) 878 return bind(CGF, ov, CGF.EmitLValue(e)); 879 return bind(CGF, ov, CGF.EmitAnyExpr(e)); 880 } 881 882 static OpaqueValueMappingData bind(CodeGenFunction &CGF, 883 const OpaqueValueExpr *ov, 884 const LValue &lv) { 885 assert(shouldBindAsLValue(ov)); 886 CGF.OpaqueLValues.insert(std::make_pair(ov, lv)); 887 return OpaqueValueMappingData(ov, true); 888 } 889 890 static OpaqueValueMappingData bind(CodeGenFunction &CGF, 891 const OpaqueValueExpr *ov, 892 const RValue &rv) { 893 assert(!shouldBindAsLValue(ov)); 894 CGF.OpaqueRValues.insert(std::make_pair(ov, rv)); 895 896 OpaqueValueMappingData data(ov, false); 897 898 // Work around an extremely aggressive peephole optimization in 899 // EmitScalarConversion which assumes that all other uses of a 900 // value are extant. 901 data.Protection = CGF.protectFromPeepholes(rv); 902 903 return data; 904 } 905 906 bool isValid() const { return OpaqueValue != nullptr; } 907 void clear() { OpaqueValue = nullptr; } 908 909 void unbind(CodeGenFunction &CGF) { 910 assert(OpaqueValue && "no data to unbind!"); 911 912 if (BoundLValue) { 913 CGF.OpaqueLValues.erase(OpaqueValue); 914 } else { 915 CGF.OpaqueRValues.erase(OpaqueValue); 916 CGF.unprotectFromPeepholes(Protection); 917 } 918 } 919 }; 920 921 /// An RAII object to set (and then clear) a mapping for an OpaqueValueExpr. 922 class OpaqueValueMapping { 923 CodeGenFunction &CGF; 924 OpaqueValueMappingData Data; 925 926 public: 927 static bool shouldBindAsLValue(const Expr *expr) { 928 return OpaqueValueMappingData::shouldBindAsLValue(expr); 929 } 930 931 /// Build the opaque value mapping for the given conditional 932 /// operator if it's the GNU ?: extension. This is a common 933 /// enough pattern that the convenience operator is really 934 /// helpful. 935 /// 936 OpaqueValueMapping(CodeGenFunction &CGF, 937 const AbstractConditionalOperator *op) : CGF(CGF) { 938 if (isa<ConditionalOperator>(op)) 939 // Leave Data empty. 940 return; 941 942 const BinaryConditionalOperator *e = cast<BinaryConditionalOperator>(op); 943 Data = OpaqueValueMappingData::bind(CGF, e->getOpaqueValue(), 944 e->getCommon()); 945 } 946 947 /// Build the opaque value mapping for an OpaqueValueExpr whose source 948 /// expression is set to the expression the OVE represents. 949 OpaqueValueMapping(CodeGenFunction &CGF, const OpaqueValueExpr *OV) 950 : CGF(CGF) { 951 if (OV) { 952 assert(OV->getSourceExpr() && "wrong form of OpaqueValueMapping used " 953 "for OVE with no source expression"); 954 Data = OpaqueValueMappingData::bind(CGF, OV, OV->getSourceExpr()); 955 } 956 } 957 958 OpaqueValueMapping(CodeGenFunction &CGF, 959 const OpaqueValueExpr *opaqueValue, 960 LValue lvalue) 961 : CGF(CGF), Data(OpaqueValueMappingData::bind(CGF, opaqueValue, lvalue)) { 962 } 963 964 OpaqueValueMapping(CodeGenFunction &CGF, 965 const OpaqueValueExpr *opaqueValue, 966 RValue rvalue) 967 : CGF(CGF), Data(OpaqueValueMappingData::bind(CGF, opaqueValue, rvalue)) { 968 } 969 970 void pop() { 971 Data.unbind(CGF); 972 Data.clear(); 973 } 974 975 ~OpaqueValueMapping() { 976 if (Data.isValid()) Data.unbind(CGF); 977 } 978 }; 979 980 private: 981 CGDebugInfo *DebugInfo; 982 bool DisableDebugInfo; 983 984 /// DidCallStackSave - Whether llvm.stacksave has been called. Used to avoid 985 /// calling llvm.stacksave for multiple VLAs in the same scope. 986 bool DidCallStackSave; 987 988 /// IndirectBranch - The first time an indirect goto is seen we create a block 989 /// with an indirect branch. Every time we see the address of a label taken, 990 /// we add the label to the indirect goto. Every subsequent indirect goto is 991 /// codegen'd as a jump to the IndirectBranch's basic block. 992 llvm::IndirectBrInst *IndirectBranch; 993 994 /// LocalDeclMap - This keeps track of the LLVM allocas or globals for local C 995 /// decls. 996 DeclMapTy LocalDeclMap; 997 998 /// SizeArguments - If a ParmVarDecl had the pass_object_size attribute, this 999 /// will contain a mapping from said ParmVarDecl to its implicit "object_size" 1000 /// parameter. 1001 llvm::SmallDenseMap<const ParmVarDecl *, const ImplicitParamDecl *, 2> 1002 SizeArguments; 1003 1004 /// Track escaped local variables with auto storage. Used during SEH 1005 /// outlining to produce a call to llvm.localescape. 1006 llvm::DenseMap<llvm::AllocaInst *, int> EscapedLocals; 1007 1008 /// LabelMap - This keeps track of the LLVM basic block for each C label. 1009 llvm::DenseMap<const LabelDecl*, JumpDest> LabelMap; 1010 1011 // BreakContinueStack - This keeps track of where break and continue 1012 // statements should jump to. 1013 struct BreakContinue { 1014 BreakContinue(JumpDest Break, JumpDest Continue) 1015 : BreakBlock(Break), ContinueBlock(Continue) {} 1016 1017 JumpDest BreakBlock; 1018 JumpDest ContinueBlock; 1019 }; 1020 SmallVector<BreakContinue, 8> BreakContinueStack; 1021 1022 /// Handles cancellation exit points in OpenMP-related constructs. 1023 class OpenMPCancelExitStack { 1024 /// Tracks cancellation exit point and join point for cancel-related exit 1025 /// and normal exit. 1026 struct CancelExit { 1027 CancelExit() = default; 1028 CancelExit(OpenMPDirectiveKind Kind, JumpDest ExitBlock, 1029 JumpDest ContBlock) 1030 : Kind(Kind), ExitBlock(ExitBlock), ContBlock(ContBlock) {} 1031 OpenMPDirectiveKind Kind = OMPD_unknown; 1032 /// true if the exit block has been emitted already by the special 1033 /// emitExit() call, false if the default codegen is used. 1034 bool HasBeenEmitted = false; 1035 JumpDest ExitBlock; 1036 JumpDest ContBlock; 1037 }; 1038 1039 SmallVector<CancelExit, 8> Stack; 1040 1041 public: 1042 OpenMPCancelExitStack() : Stack(1) {} 1043 ~OpenMPCancelExitStack() = default; 1044 /// Fetches the exit block for the current OpenMP construct. 1045 JumpDest getExitBlock() const { return Stack.back().ExitBlock; } 1046 /// Emits exit block with special codegen procedure specific for the related 1047 /// OpenMP construct + emits code for normal construct cleanup. 1048 void emitExit(CodeGenFunction &CGF, OpenMPDirectiveKind Kind, 1049 const llvm::function_ref<void(CodeGenFunction &)> &CodeGen) { 1050 if (Stack.back().Kind == Kind && getExitBlock().isValid()) { 1051 assert(CGF.getOMPCancelDestination(Kind).isValid()); 1052 assert(CGF.HaveInsertPoint()); 1053 assert(!Stack.back().HasBeenEmitted); 1054 auto IP = CGF.Builder.saveAndClearIP(); 1055 CGF.EmitBlock(Stack.back().ExitBlock.getBlock()); 1056 CodeGen(CGF); 1057 CGF.EmitBranchThroughCleanup(Stack.back().ContBlock); 1058 CGF.Builder.restoreIP(IP); 1059 Stack.back().HasBeenEmitted = true; 1060 } 1061 CodeGen(CGF); 1062 } 1063 /// Enter the cancel supporting \a Kind construct. 1064 /// \param Kind OpenMP directive that supports cancel constructs. 1065 /// \param HasCancel true, if the construct has inner cancel directive, 1066 /// false otherwise. 1067 void enter(CodeGenFunction &CGF, OpenMPDirectiveKind Kind, bool HasCancel) { 1068 Stack.push_back({Kind, 1069 HasCancel ? CGF.getJumpDestInCurrentScope("cancel.exit") 1070 : JumpDest(), 1071 HasCancel ? CGF.getJumpDestInCurrentScope("cancel.cont") 1072 : JumpDest()}); 1073 } 1074 /// Emits default exit point for the cancel construct (if the special one 1075 /// has not be used) + join point for cancel/normal exits. 1076 void exit(CodeGenFunction &CGF) { 1077 if (getExitBlock().isValid()) { 1078 assert(CGF.getOMPCancelDestination(Stack.back().Kind).isValid()); 1079 bool HaveIP = CGF.HaveInsertPoint(); 1080 if (!Stack.back().HasBeenEmitted) { 1081 if (HaveIP) 1082 CGF.EmitBranchThroughCleanup(Stack.back().ContBlock); 1083 CGF.EmitBlock(Stack.back().ExitBlock.getBlock()); 1084 CGF.EmitBranchThroughCleanup(Stack.back().ContBlock); 1085 } 1086 CGF.EmitBlock(Stack.back().ContBlock.getBlock()); 1087 if (!HaveIP) { 1088 CGF.Builder.CreateUnreachable(); 1089 CGF.Builder.ClearInsertionPoint(); 1090 } 1091 } 1092 Stack.pop_back(); 1093 } 1094 }; 1095 OpenMPCancelExitStack OMPCancelStack; 1096 1097 /// Controls insertion of cancellation exit blocks in worksharing constructs. 1098 class OMPCancelStackRAII { 1099 CodeGenFunction &CGF; 1100 1101 public: 1102 OMPCancelStackRAII(CodeGenFunction &CGF, OpenMPDirectiveKind Kind, 1103 bool HasCancel) 1104 : CGF(CGF) { 1105 CGF.OMPCancelStack.enter(CGF, Kind, HasCancel); 1106 } 1107 ~OMPCancelStackRAII() { CGF.OMPCancelStack.exit(CGF); } 1108 }; 1109 1110 CodeGenPGO PGO; 1111 1112 /// Calculate branch weights appropriate for PGO data 1113 llvm::MDNode *createProfileWeights(uint64_t TrueCount, uint64_t FalseCount); 1114 llvm::MDNode *createProfileWeights(ArrayRef<uint64_t> Weights); 1115 llvm::MDNode *createProfileWeightsForLoop(const Stmt *Cond, 1116 uint64_t LoopCount); 1117 1118 public: 1119 /// Increment the profiler's counter for the given statement. 1120 void incrementProfileCounter(const Stmt *S) { 1121 if (CGM.getCodeGenOpts().hasProfileClangInstr()) 1122 PGO.emitCounterIncrement(Builder, S); 1123 PGO.setCurrentStmt(S); 1124 } 1125 1126 /// Get the profiler's count for the given statement. 1127 uint64_t getProfileCount(const Stmt *S) { 1128 Optional<uint64_t> Count = PGO.getStmtCount(S); 1129 if (!Count.hasValue()) 1130 return 0; 1131 return *Count; 1132 } 1133 1134 /// Set the profiler's current count. 1135 void setCurrentProfileCount(uint64_t Count) { 1136 PGO.setCurrentRegionCount(Count); 1137 } 1138 1139 /// Get the profiler's current count. This is generally the count for the most 1140 /// recently incremented counter. 1141 uint64_t getCurrentProfileCount() { 1142 return PGO.getCurrentRegionCount(); 1143 } 1144 1145 private: 1146 1147 /// SwitchInsn - This is nearest current switch instruction. It is null if 1148 /// current context is not in a switch. 1149 llvm::SwitchInst *SwitchInsn; 1150 /// The branch weights of SwitchInsn when doing instrumentation based PGO. 1151 SmallVector<uint64_t, 16> *SwitchWeights; 1152 1153 /// CaseRangeBlock - This block holds if condition check for last case 1154 /// statement range in current switch instruction. 1155 llvm::BasicBlock *CaseRangeBlock; 1156 1157 /// OpaqueLValues - Keeps track of the current set of opaque value 1158 /// expressions. 1159 llvm::DenseMap<const OpaqueValueExpr *, LValue> OpaqueLValues; 1160 llvm::DenseMap<const OpaqueValueExpr *, RValue> OpaqueRValues; 1161 1162 // VLASizeMap - This keeps track of the associated size for each VLA type. 1163 // We track this by the size expression rather than the type itself because 1164 // in certain situations, like a const qualifier applied to an VLA typedef, 1165 // multiple VLA types can share the same size expression. 1166 // FIXME: Maybe this could be a stack of maps that is pushed/popped as we 1167 // enter/leave scopes. 1168 llvm::DenseMap<const Expr*, llvm::Value*> VLASizeMap; 1169 1170 /// A block containing a single 'unreachable' instruction. Created 1171 /// lazily by getUnreachableBlock(). 1172 llvm::BasicBlock *UnreachableBlock; 1173 1174 /// Counts of the number return expressions in the function. 1175 unsigned NumReturnExprs; 1176 1177 /// Count the number of simple (constant) return expressions in the function. 1178 unsigned NumSimpleReturnExprs; 1179 1180 /// The last regular (non-return) debug location (breakpoint) in the function. 1181 SourceLocation LastStopPoint; 1182 1183 public: 1184 /// A scope within which we are constructing the fields of an object which 1185 /// might use a CXXDefaultInitExpr. This stashes away a 'this' value to use 1186 /// if we need to evaluate a CXXDefaultInitExpr within the evaluation. 1187 class FieldConstructionScope { 1188 public: 1189 FieldConstructionScope(CodeGenFunction &CGF, Address This) 1190 : CGF(CGF), OldCXXDefaultInitExprThis(CGF.CXXDefaultInitExprThis) { 1191 CGF.CXXDefaultInitExprThis = This; 1192 } 1193 ~FieldConstructionScope() { 1194 CGF.CXXDefaultInitExprThis = OldCXXDefaultInitExprThis; 1195 } 1196 1197 private: 1198 CodeGenFunction &CGF; 1199 Address OldCXXDefaultInitExprThis; 1200 }; 1201 1202 /// The scope of a CXXDefaultInitExpr. Within this scope, the value of 'this' 1203 /// is overridden to be the object under construction. 1204 class CXXDefaultInitExprScope { 1205 public: 1206 CXXDefaultInitExprScope(CodeGenFunction &CGF) 1207 : CGF(CGF), OldCXXThisValue(CGF.CXXThisValue), 1208 OldCXXThisAlignment(CGF.CXXThisAlignment) { 1209 CGF.CXXThisValue = CGF.CXXDefaultInitExprThis.getPointer(); 1210 CGF.CXXThisAlignment = CGF.CXXDefaultInitExprThis.getAlignment(); 1211 } 1212 ~CXXDefaultInitExprScope() { 1213 CGF.CXXThisValue = OldCXXThisValue; 1214 CGF.CXXThisAlignment = OldCXXThisAlignment; 1215 } 1216 1217 public: 1218 CodeGenFunction &CGF; 1219 llvm::Value *OldCXXThisValue; 1220 CharUnits OldCXXThisAlignment; 1221 }; 1222 1223 /// The scope of an ArrayInitLoopExpr. Within this scope, the value of the 1224 /// current loop index is overridden. 1225 class ArrayInitLoopExprScope { 1226 public: 1227 ArrayInitLoopExprScope(CodeGenFunction &CGF, llvm::Value *Index) 1228 : CGF(CGF), OldArrayInitIndex(CGF.ArrayInitIndex) { 1229 CGF.ArrayInitIndex = Index; 1230 } 1231 ~ArrayInitLoopExprScope() { 1232 CGF.ArrayInitIndex = OldArrayInitIndex; 1233 } 1234 1235 private: 1236 CodeGenFunction &CGF; 1237 llvm::Value *OldArrayInitIndex; 1238 }; 1239 1240 class InlinedInheritingConstructorScope { 1241 public: 1242 InlinedInheritingConstructorScope(CodeGenFunction &CGF, GlobalDecl GD) 1243 : CGF(CGF), OldCurGD(CGF.CurGD), OldCurFuncDecl(CGF.CurFuncDecl), 1244 OldCurCodeDecl(CGF.CurCodeDecl), 1245 OldCXXABIThisDecl(CGF.CXXABIThisDecl), 1246 OldCXXABIThisValue(CGF.CXXABIThisValue), 1247 OldCXXThisValue(CGF.CXXThisValue), 1248 OldCXXABIThisAlignment(CGF.CXXABIThisAlignment), 1249 OldCXXThisAlignment(CGF.CXXThisAlignment), 1250 OldReturnValue(CGF.ReturnValue), OldFnRetTy(CGF.FnRetTy), 1251 OldCXXInheritedCtorInitExprArgs( 1252 std::move(CGF.CXXInheritedCtorInitExprArgs)) { 1253 CGF.CurGD = GD; 1254 CGF.CurFuncDecl = CGF.CurCodeDecl = 1255 cast<CXXConstructorDecl>(GD.getDecl()); 1256 CGF.CXXABIThisDecl = nullptr; 1257 CGF.CXXABIThisValue = nullptr; 1258 CGF.CXXThisValue = nullptr; 1259 CGF.CXXABIThisAlignment = CharUnits(); 1260 CGF.CXXThisAlignment = CharUnits(); 1261 CGF.ReturnValue = Address::invalid(); 1262 CGF.FnRetTy = QualType(); 1263 CGF.CXXInheritedCtorInitExprArgs.clear(); 1264 } 1265 ~InlinedInheritingConstructorScope() { 1266 CGF.CurGD = OldCurGD; 1267 CGF.CurFuncDecl = OldCurFuncDecl; 1268 CGF.CurCodeDecl = OldCurCodeDecl; 1269 CGF.CXXABIThisDecl = OldCXXABIThisDecl; 1270 CGF.CXXABIThisValue = OldCXXABIThisValue; 1271 CGF.CXXThisValue = OldCXXThisValue; 1272 CGF.CXXABIThisAlignment = OldCXXABIThisAlignment; 1273 CGF.CXXThisAlignment = OldCXXThisAlignment; 1274 CGF.ReturnValue = OldReturnValue; 1275 CGF.FnRetTy = OldFnRetTy; 1276 CGF.CXXInheritedCtorInitExprArgs = 1277 std::move(OldCXXInheritedCtorInitExprArgs); 1278 } 1279 1280 private: 1281 CodeGenFunction &CGF; 1282 GlobalDecl OldCurGD; 1283 const Decl *OldCurFuncDecl; 1284 const Decl *OldCurCodeDecl; 1285 ImplicitParamDecl *OldCXXABIThisDecl; 1286 llvm::Value *OldCXXABIThisValue; 1287 llvm::Value *OldCXXThisValue; 1288 CharUnits OldCXXABIThisAlignment; 1289 CharUnits OldCXXThisAlignment; 1290 Address OldReturnValue; 1291 QualType OldFnRetTy; 1292 CallArgList OldCXXInheritedCtorInitExprArgs; 1293 }; 1294 1295 private: 1296 /// CXXThisDecl - When generating code for a C++ member function, 1297 /// this will hold the implicit 'this' declaration. 1298 ImplicitParamDecl *CXXABIThisDecl; 1299 llvm::Value *CXXABIThisValue; 1300 llvm::Value *CXXThisValue; 1301 CharUnits CXXABIThisAlignment; 1302 CharUnits CXXThisAlignment; 1303 1304 /// The value of 'this' to use when evaluating CXXDefaultInitExprs within 1305 /// this expression. 1306 Address CXXDefaultInitExprThis = Address::invalid(); 1307 1308 /// The current array initialization index when evaluating an 1309 /// ArrayInitIndexExpr within an ArrayInitLoopExpr. 1310 llvm::Value *ArrayInitIndex = nullptr; 1311 1312 /// The values of function arguments to use when evaluating 1313 /// CXXInheritedCtorInitExprs within this context. 1314 CallArgList CXXInheritedCtorInitExprArgs; 1315 1316 /// CXXStructorImplicitParamDecl - When generating code for a constructor or 1317 /// destructor, this will hold the implicit argument (e.g. VTT). 1318 ImplicitParamDecl *CXXStructorImplicitParamDecl; 1319 llvm::Value *CXXStructorImplicitParamValue; 1320 1321 /// OutermostConditional - Points to the outermost active 1322 /// conditional control. This is used so that we know if a 1323 /// temporary should be destroyed conditionally. 1324 ConditionalEvaluation *OutermostConditional; 1325 1326 /// The current lexical scope. 1327 LexicalScope *CurLexicalScope; 1328 1329 /// The current source location that should be used for exception 1330 /// handling code. 1331 SourceLocation CurEHLocation; 1332 1333 /// BlockByrefInfos - For each __block variable, contains 1334 /// information about the layout of the variable. 1335 llvm::DenseMap<const ValueDecl *, BlockByrefInfo> BlockByrefInfos; 1336 1337 llvm::BasicBlock *TerminateLandingPad; 1338 llvm::BasicBlock *TerminateHandler; 1339 llvm::BasicBlock *TrapBB; 1340 1341 /// True if we need emit the life-time markers. 1342 const bool ShouldEmitLifetimeMarkers; 1343 1344 /// Add a kernel metadata node to the named metadata node 'opencl.kernels'. 1345 /// In the kernel metadata node, reference the kernel function and metadata 1346 /// nodes for its optional attribute qualifiers (OpenCL 1.1 6.7.2): 1347 /// - A node for the vec_type_hint(<type>) qualifier contains string 1348 /// "vec_type_hint", an undefined value of the <type> data type, 1349 /// and a Boolean that is true if the <type> is integer and signed. 1350 /// - A node for the work_group_size_hint(X,Y,Z) qualifier contains string 1351 /// "work_group_size_hint", and three 32-bit integers X, Y and Z. 1352 /// - A node for the reqd_work_group_size(X,Y,Z) qualifier contains string 1353 /// "reqd_work_group_size", and three 32-bit integers X, Y and Z. 1354 void EmitOpenCLKernelMetadata(const FunctionDecl *FD, 1355 llvm::Function *Fn); 1356 1357 public: 1358 CodeGenFunction(CodeGenModule &cgm, bool suppressNewContext=false); 1359 ~CodeGenFunction(); 1360 1361 CodeGenTypes &getTypes() const { return CGM.getTypes(); } 1362 ASTContext &getContext() const { return CGM.getContext(); } 1363 CGDebugInfo *getDebugInfo() { 1364 if (DisableDebugInfo) 1365 return nullptr; 1366 return DebugInfo; 1367 } 1368 void disableDebugInfo() { DisableDebugInfo = true; } 1369 void enableDebugInfo() { DisableDebugInfo = false; } 1370 1371 bool shouldUseFusedARCCalls() { 1372 return CGM.getCodeGenOpts().OptimizationLevel == 0; 1373 } 1374 1375 const LangOptions &getLangOpts() const { return CGM.getLangOpts(); } 1376 1377 /// Returns a pointer to the function's exception object and selector slot, 1378 /// which is assigned in every landing pad. 1379 Address getExceptionSlot(); 1380 Address getEHSelectorSlot(); 1381 1382 /// Returns the contents of the function's exception object and selector 1383 /// slots. 1384 llvm::Value *getExceptionFromSlot(); 1385 llvm::Value *getSelectorFromSlot(); 1386 1387 Address getNormalCleanupDestSlot(); 1388 1389 llvm::BasicBlock *getUnreachableBlock() { 1390 if (!UnreachableBlock) { 1391 UnreachableBlock = createBasicBlock("unreachable"); 1392 new llvm::UnreachableInst(getLLVMContext(), UnreachableBlock); 1393 } 1394 return UnreachableBlock; 1395 } 1396 1397 llvm::BasicBlock *getInvokeDest() { 1398 if (!EHStack.requiresLandingPad()) return nullptr; 1399 return getInvokeDestImpl(); 1400 } 1401 1402 bool currentFunctionUsesSEHTry() const { return CurSEHParent != nullptr; } 1403 1404 const TargetInfo &getTarget() const { return Target; } 1405 llvm::LLVMContext &getLLVMContext() { return CGM.getLLVMContext(); } 1406 1407 //===--------------------------------------------------------------------===// 1408 // Cleanups 1409 //===--------------------------------------------------------------------===// 1410 1411 typedef void Destroyer(CodeGenFunction &CGF, Address addr, QualType ty); 1412 1413 void pushIrregularPartialArrayCleanup(llvm::Value *arrayBegin, 1414 Address arrayEndPointer, 1415 QualType elementType, 1416 CharUnits elementAlignment, 1417 Destroyer *destroyer); 1418 void pushRegularPartialArrayCleanup(llvm::Value *arrayBegin, 1419 llvm::Value *arrayEnd, 1420 QualType elementType, 1421 CharUnits elementAlignment, 1422 Destroyer *destroyer); 1423 1424 void pushDestroy(QualType::DestructionKind dtorKind, 1425 Address addr, QualType type); 1426 void pushEHDestroy(QualType::DestructionKind dtorKind, 1427 Address addr, QualType type); 1428 void pushDestroy(CleanupKind kind, Address addr, QualType type, 1429 Destroyer *destroyer, bool useEHCleanupForArray); 1430 void pushLifetimeExtendedDestroy(CleanupKind kind, Address addr, 1431 QualType type, Destroyer *destroyer, 1432 bool useEHCleanupForArray); 1433 void pushCallObjectDeleteCleanup(const FunctionDecl *OperatorDelete, 1434 llvm::Value *CompletePtr, 1435 QualType ElementType); 1436 void pushStackRestore(CleanupKind kind, Address SPMem); 1437 void emitDestroy(Address addr, QualType type, Destroyer *destroyer, 1438 bool useEHCleanupForArray); 1439 llvm::Function *generateDestroyHelper(Address addr, QualType type, 1440 Destroyer *destroyer, 1441 bool useEHCleanupForArray, 1442 const VarDecl *VD); 1443 void emitArrayDestroy(llvm::Value *begin, llvm::Value *end, 1444 QualType elementType, CharUnits elementAlign, 1445 Destroyer *destroyer, 1446 bool checkZeroLength, bool useEHCleanup); 1447 1448 Destroyer *getDestroyer(QualType::DestructionKind destructionKind); 1449 1450 /// Determines whether an EH cleanup is required to destroy a type 1451 /// with the given destruction kind. 1452 bool needsEHCleanup(QualType::DestructionKind kind) { 1453 switch (kind) { 1454 case QualType::DK_none: 1455 return false; 1456 case QualType::DK_cxx_destructor: 1457 case QualType::DK_objc_weak_lifetime: 1458 return getLangOpts().Exceptions; 1459 case QualType::DK_objc_strong_lifetime: 1460 return getLangOpts().Exceptions && 1461 CGM.getCodeGenOpts().ObjCAutoRefCountExceptions; 1462 } 1463 llvm_unreachable("bad destruction kind"); 1464 } 1465 1466 CleanupKind getCleanupKind(QualType::DestructionKind kind) { 1467 return (needsEHCleanup(kind) ? NormalAndEHCleanup : NormalCleanup); 1468 } 1469 1470 //===--------------------------------------------------------------------===// 1471 // Objective-C 1472 //===--------------------------------------------------------------------===// 1473 1474 void GenerateObjCMethod(const ObjCMethodDecl *OMD); 1475 1476 void StartObjCMethod(const ObjCMethodDecl *MD, const ObjCContainerDecl *CD); 1477 1478 /// GenerateObjCGetter - Synthesize an Objective-C property getter function. 1479 void GenerateObjCGetter(ObjCImplementationDecl *IMP, 1480 const ObjCPropertyImplDecl *PID); 1481 void generateObjCGetterBody(const ObjCImplementationDecl *classImpl, 1482 const ObjCPropertyImplDecl *propImpl, 1483 const ObjCMethodDecl *GetterMothodDecl, 1484 llvm::Constant *AtomicHelperFn); 1485 1486 void GenerateObjCCtorDtorMethod(ObjCImplementationDecl *IMP, 1487 ObjCMethodDecl *MD, bool ctor); 1488 1489 /// GenerateObjCSetter - Synthesize an Objective-C property setter function 1490 /// for the given property. 1491 void GenerateObjCSetter(ObjCImplementationDecl *IMP, 1492 const ObjCPropertyImplDecl *PID); 1493 void generateObjCSetterBody(const ObjCImplementationDecl *classImpl, 1494 const ObjCPropertyImplDecl *propImpl, 1495 llvm::Constant *AtomicHelperFn); 1496 1497 //===--------------------------------------------------------------------===// 1498 // Block Bits 1499 //===--------------------------------------------------------------------===// 1500 1501 llvm::Value *EmitBlockLiteral(const BlockExpr *); 1502 llvm::Value *EmitBlockLiteral(const CGBlockInfo &Info); 1503 static void destroyBlockInfos(CGBlockInfo *info); 1504 1505 llvm::Function *GenerateBlockFunction(GlobalDecl GD, 1506 const CGBlockInfo &Info, 1507 const DeclMapTy &ldm, 1508 bool IsLambdaConversionToBlock); 1509 1510 llvm::Constant *GenerateCopyHelperFunction(const CGBlockInfo &blockInfo); 1511 llvm::Constant *GenerateDestroyHelperFunction(const CGBlockInfo &blockInfo); 1512 llvm::Constant *GenerateObjCAtomicSetterCopyHelperFunction( 1513 const ObjCPropertyImplDecl *PID); 1514 llvm::Constant *GenerateObjCAtomicGetterCopyHelperFunction( 1515 const ObjCPropertyImplDecl *PID); 1516 llvm::Value *EmitBlockCopyAndAutorelease(llvm::Value *Block, QualType Ty); 1517 1518 void BuildBlockRelease(llvm::Value *DeclPtr, BlockFieldFlags flags); 1519 1520 class AutoVarEmission; 1521 1522 void emitByrefStructureInit(const AutoVarEmission &emission); 1523 void enterByrefCleanup(const AutoVarEmission &emission); 1524 1525 void setBlockContextParameter(const ImplicitParamDecl *D, unsigned argNum, 1526 llvm::Value *ptr); 1527 1528 Address LoadBlockStruct(); 1529 Address GetAddrOfBlockDecl(const VarDecl *var, bool ByRef); 1530 1531 /// BuildBlockByrefAddress - Computes the location of the 1532 /// data in a variable which is declared as __block. 1533 Address emitBlockByrefAddress(Address baseAddr, const VarDecl *V, 1534 bool followForward = true); 1535 Address emitBlockByrefAddress(Address baseAddr, 1536 const BlockByrefInfo &info, 1537 bool followForward, 1538 const llvm::Twine &name); 1539 1540 const BlockByrefInfo &getBlockByrefInfo(const VarDecl *var); 1541 1542 QualType BuildFunctionArgList(GlobalDecl GD, FunctionArgList &Args); 1543 1544 void GenerateCode(GlobalDecl GD, llvm::Function *Fn, 1545 const CGFunctionInfo &FnInfo); 1546 /// \brief Emit code for the start of a function. 1547 /// \param Loc The location to be associated with the function. 1548 /// \param StartLoc The location of the function body. 1549 void StartFunction(GlobalDecl GD, 1550 QualType RetTy, 1551 llvm::Function *Fn, 1552 const CGFunctionInfo &FnInfo, 1553 const FunctionArgList &Args, 1554 SourceLocation Loc = SourceLocation(), 1555 SourceLocation StartLoc = SourceLocation()); 1556 1557 void EmitConstructorBody(FunctionArgList &Args); 1558 void EmitDestructorBody(FunctionArgList &Args); 1559 void emitImplicitAssignmentOperatorBody(FunctionArgList &Args); 1560 void EmitFunctionBody(FunctionArgList &Args, const Stmt *Body); 1561 void EmitBlockWithFallThrough(llvm::BasicBlock *BB, const Stmt *S); 1562 1563 void EmitForwardingCallToLambda(const CXXMethodDecl *LambdaCallOperator, 1564 CallArgList &CallArgs); 1565 void EmitLambdaToBlockPointerBody(FunctionArgList &Args); 1566 void EmitLambdaBlockInvokeBody(); 1567 void EmitLambdaDelegatingInvokeBody(const CXXMethodDecl *MD); 1568 void EmitLambdaStaticInvokeFunction(const CXXMethodDecl *MD); 1569 void EmitAsanPrologueOrEpilogue(bool Prologue); 1570 1571 /// \brief Emit the unified return block, trying to avoid its emission when 1572 /// possible. 1573 /// \return The debug location of the user written return statement if the 1574 /// return block is is avoided. 1575 llvm::DebugLoc EmitReturnBlock(); 1576 1577 /// FinishFunction - Complete IR generation of the current function. It is 1578 /// legal to call this function even if there is no current insertion point. 1579 void FinishFunction(SourceLocation EndLoc=SourceLocation()); 1580 1581 void StartThunk(llvm::Function *Fn, GlobalDecl GD, 1582 const CGFunctionInfo &FnInfo); 1583 1584 void EmitCallAndReturnForThunk(llvm::Constant *Callee, 1585 const ThunkInfo *Thunk); 1586 1587 void FinishThunk(); 1588 1589 /// Emit a musttail call for a thunk with a potentially adjusted this pointer. 1590 void EmitMustTailThunk(const CXXMethodDecl *MD, llvm::Value *AdjustedThisPtr, 1591 llvm::Value *Callee); 1592 1593 /// Generate a thunk for the given method. 1594 void generateThunk(llvm::Function *Fn, const CGFunctionInfo &FnInfo, 1595 GlobalDecl GD, const ThunkInfo &Thunk); 1596 1597 llvm::Function *GenerateVarArgsThunk(llvm::Function *Fn, 1598 const CGFunctionInfo &FnInfo, 1599 GlobalDecl GD, const ThunkInfo &Thunk); 1600 1601 void EmitCtorPrologue(const CXXConstructorDecl *CD, CXXCtorType Type, 1602 FunctionArgList &Args); 1603 1604 void EmitInitializerForField(FieldDecl *Field, LValue LHS, Expr *Init, 1605 ArrayRef<VarDecl *> ArrayIndexes); 1606 1607 /// Struct with all informations about dynamic [sub]class needed to set vptr. 1608 struct VPtr { 1609 BaseSubobject Base; 1610 const CXXRecordDecl *NearestVBase; 1611 CharUnits OffsetFromNearestVBase; 1612 const CXXRecordDecl *VTableClass; 1613 }; 1614 1615 /// Initialize the vtable pointer of the given subobject. 1616 void InitializeVTablePointer(const VPtr &vptr); 1617 1618 typedef llvm::SmallVector<VPtr, 4> VPtrsVector; 1619 1620 typedef llvm::SmallPtrSet<const CXXRecordDecl *, 4> VisitedVirtualBasesSetTy; 1621 VPtrsVector getVTablePointers(const CXXRecordDecl *VTableClass); 1622 1623 void getVTablePointers(BaseSubobject Base, const CXXRecordDecl *NearestVBase, 1624 CharUnits OffsetFromNearestVBase, 1625 bool BaseIsNonVirtualPrimaryBase, 1626 const CXXRecordDecl *VTableClass, 1627 VisitedVirtualBasesSetTy &VBases, VPtrsVector &vptrs); 1628 1629 void InitializeVTablePointers(const CXXRecordDecl *ClassDecl); 1630 1631 /// GetVTablePtr - Return the Value of the vtable pointer member pointed 1632 /// to by This. 1633 llvm::Value *GetVTablePtr(Address This, llvm::Type *VTableTy, 1634 const CXXRecordDecl *VTableClass); 1635 1636 enum CFITypeCheckKind { 1637 CFITCK_VCall, 1638 CFITCK_NVCall, 1639 CFITCK_DerivedCast, 1640 CFITCK_UnrelatedCast, 1641 CFITCK_ICall, 1642 }; 1643 1644 /// \brief Derived is the presumed address of an object of type T after a 1645 /// cast. If T is a polymorphic class type, emit a check that the virtual 1646 /// table for Derived belongs to a class derived from T. 1647 void EmitVTablePtrCheckForCast(QualType T, llvm::Value *Derived, 1648 bool MayBeNull, CFITypeCheckKind TCK, 1649 SourceLocation Loc); 1650 1651 /// EmitVTablePtrCheckForCall - Virtual method MD is being called via VTable. 1652 /// If vptr CFI is enabled, emit a check that VTable is valid. 1653 void EmitVTablePtrCheckForCall(const CXXRecordDecl *RD, llvm::Value *VTable, 1654 CFITypeCheckKind TCK, SourceLocation Loc); 1655 1656 /// EmitVTablePtrCheck - Emit a check that VTable is a valid virtual table for 1657 /// RD using llvm.type.test. 1658 void EmitVTablePtrCheck(const CXXRecordDecl *RD, llvm::Value *VTable, 1659 CFITypeCheckKind TCK, SourceLocation Loc); 1660 1661 /// If whole-program virtual table optimization is enabled, emit an assumption 1662 /// that VTable is a member of RD's type identifier. Or, if vptr CFI is 1663 /// enabled, emit a check that VTable is a member of RD's type identifier. 1664 void EmitTypeMetadataCodeForVCall(const CXXRecordDecl *RD, 1665 llvm::Value *VTable, SourceLocation Loc); 1666 1667 /// Returns whether we should perform a type checked load when loading a 1668 /// virtual function for virtual calls to members of RD. This is generally 1669 /// true when both vcall CFI and whole-program-vtables are enabled. 1670 bool ShouldEmitVTableTypeCheckedLoad(const CXXRecordDecl *RD); 1671 1672 /// Emit a type checked load from the given vtable. 1673 llvm::Value *EmitVTableTypeCheckedLoad(const CXXRecordDecl *RD, llvm::Value *VTable, 1674 uint64_t VTableByteOffset); 1675 1676 /// CanDevirtualizeMemberFunctionCalls - Checks whether virtual calls on given 1677 /// expr can be devirtualized. 1678 bool CanDevirtualizeMemberFunctionCall(const Expr *Base, 1679 const CXXMethodDecl *MD); 1680 1681 /// EnterDtorCleanups - Enter the cleanups necessary to complete the 1682 /// given phase of destruction for a destructor. The end result 1683 /// should call destructors on members and base classes in reverse 1684 /// order of their construction. 1685 void EnterDtorCleanups(const CXXDestructorDecl *Dtor, CXXDtorType Type); 1686 1687 /// ShouldInstrumentFunction - Return true if the current function should be 1688 /// instrumented with __cyg_profile_func_* calls 1689 bool ShouldInstrumentFunction(); 1690 1691 /// ShouldXRayInstrument - Return true if the current function should be 1692 /// instrumented with XRay nop sleds. 1693 bool ShouldXRayInstrumentFunction() const; 1694 1695 /// EmitFunctionInstrumentation - Emit LLVM code to call the specified 1696 /// instrumentation function with the current function and the call site, if 1697 /// function instrumentation is enabled. 1698 void EmitFunctionInstrumentation(const char *Fn); 1699 1700 /// EmitMCountInstrumentation - Emit call to .mcount. 1701 void EmitMCountInstrumentation(); 1702 1703 /// EmitFunctionProlog - Emit the target specific LLVM code to load the 1704 /// arguments for the given function. This is also responsible for naming the 1705 /// LLVM function arguments. 1706 void EmitFunctionProlog(const CGFunctionInfo &FI, 1707 llvm::Function *Fn, 1708 const FunctionArgList &Args); 1709 1710 /// EmitFunctionEpilog - Emit the target specific LLVM code to return the 1711 /// given temporary. 1712 void EmitFunctionEpilog(const CGFunctionInfo &FI, bool EmitRetDbgLoc, 1713 SourceLocation EndLoc); 1714 1715 /// EmitStartEHSpec - Emit the start of the exception spec. 1716 void EmitStartEHSpec(const Decl *D); 1717 1718 /// EmitEndEHSpec - Emit the end of the exception spec. 1719 void EmitEndEHSpec(const Decl *D); 1720 1721 /// getTerminateLandingPad - Return a landing pad that just calls terminate. 1722 llvm::BasicBlock *getTerminateLandingPad(); 1723 1724 /// getTerminateHandler - Return a handler (not a landing pad, just 1725 /// a catch handler) that just calls terminate. This is used when 1726 /// a terminate scope encloses a try. 1727 llvm::BasicBlock *getTerminateHandler(); 1728 1729 llvm::Type *ConvertTypeForMem(QualType T); 1730 llvm::Type *ConvertType(QualType T); 1731 llvm::Type *ConvertType(const TypeDecl *T) { 1732 return ConvertType(getContext().getTypeDeclType(T)); 1733 } 1734 1735 /// LoadObjCSelf - Load the value of self. This function is only valid while 1736 /// generating code for an Objective-C method. 1737 llvm::Value *LoadObjCSelf(); 1738 1739 /// TypeOfSelfObject - Return type of object that this self represents. 1740 QualType TypeOfSelfObject(); 1741 1742 /// hasAggregateLLVMType - Return true if the specified AST type will map into 1743 /// an aggregate LLVM type or is void. 1744 static TypeEvaluationKind getEvaluationKind(QualType T); 1745 1746 static bool hasScalarEvaluationKind(QualType T) { 1747 return getEvaluationKind(T) == TEK_Scalar; 1748 } 1749 1750 static bool hasAggregateEvaluationKind(QualType T) { 1751 return getEvaluationKind(T) == TEK_Aggregate; 1752 } 1753 1754 /// createBasicBlock - Create an LLVM basic block. 1755 llvm::BasicBlock *createBasicBlock(const Twine &name = "", 1756 llvm::Function *parent = nullptr, 1757 llvm::BasicBlock *before = nullptr) { 1758 #ifdef NDEBUG 1759 return llvm::BasicBlock::Create(getLLVMContext(), "", parent, before); 1760 #else 1761 return llvm::BasicBlock::Create(getLLVMContext(), name, parent, before); 1762 #endif 1763 } 1764 1765 /// getBasicBlockForLabel - Return the LLVM basicblock that the specified 1766 /// label maps to. 1767 JumpDest getJumpDestForLabel(const LabelDecl *S); 1768 1769 /// SimplifyForwardingBlocks - If the given basic block is only a branch to 1770 /// another basic block, simplify it. This assumes that no other code could 1771 /// potentially reference the basic block. 1772 void SimplifyForwardingBlocks(llvm::BasicBlock *BB); 1773 1774 /// EmitBlock - Emit the given block \arg BB and set it as the insert point, 1775 /// adding a fall-through branch from the current insert block if 1776 /// necessary. It is legal to call this function even if there is no current 1777 /// insertion point. 1778 /// 1779 /// IsFinished - If true, indicates that the caller has finished emitting 1780 /// branches to the given block and does not expect to emit code into it. This 1781 /// means the block can be ignored if it is unreachable. 1782 void EmitBlock(llvm::BasicBlock *BB, bool IsFinished=false); 1783 1784 /// EmitBlockAfterUses - Emit the given block somewhere hopefully 1785 /// near its uses, and leave the insertion point in it. 1786 void EmitBlockAfterUses(llvm::BasicBlock *BB); 1787 1788 /// EmitBranch - Emit a branch to the specified basic block from the current 1789 /// insert block, taking care to avoid creation of branches from dummy 1790 /// blocks. It is legal to call this function even if there is no current 1791 /// insertion point. 1792 /// 1793 /// This function clears the current insertion point. The caller should follow 1794 /// calls to this function with calls to Emit*Block prior to generation new 1795 /// code. 1796 void EmitBranch(llvm::BasicBlock *Block); 1797 1798 /// HaveInsertPoint - True if an insertion point is defined. If not, this 1799 /// indicates that the current code being emitted is unreachable. 1800 bool HaveInsertPoint() const { 1801 return Builder.GetInsertBlock() != nullptr; 1802 } 1803 1804 /// EnsureInsertPoint - Ensure that an insertion point is defined so that 1805 /// emitted IR has a place to go. Note that by definition, if this function 1806 /// creates a block then that block is unreachable; callers may do better to 1807 /// detect when no insertion point is defined and simply skip IR generation. 1808 void EnsureInsertPoint() { 1809 if (!HaveInsertPoint()) 1810 EmitBlock(createBasicBlock()); 1811 } 1812 1813 /// ErrorUnsupported - Print out an error that codegen doesn't support the 1814 /// specified stmt yet. 1815 void ErrorUnsupported(const Stmt *S, const char *Type); 1816 1817 //===--------------------------------------------------------------------===// 1818 // Helpers 1819 //===--------------------------------------------------------------------===// 1820 1821 LValue MakeAddrLValue(Address Addr, QualType T, 1822 AlignmentSource AlignSource = AlignmentSource::Type) { 1823 return LValue::MakeAddr(Addr, T, getContext(), AlignSource, 1824 CGM.getTBAAInfo(T)); 1825 } 1826 1827 LValue MakeAddrLValue(llvm::Value *V, QualType T, CharUnits Alignment, 1828 AlignmentSource AlignSource = AlignmentSource::Type) { 1829 return LValue::MakeAddr(Address(V, Alignment), T, getContext(), 1830 AlignSource, CGM.getTBAAInfo(T)); 1831 } 1832 1833 LValue MakeNaturalAlignPointeeAddrLValue(llvm::Value *V, QualType T); 1834 LValue MakeNaturalAlignAddrLValue(llvm::Value *V, QualType T); 1835 CharUnits getNaturalTypeAlignment(QualType T, 1836 AlignmentSource *Source = nullptr, 1837 bool forPointeeType = false); 1838 CharUnits getNaturalPointeeTypeAlignment(QualType T, 1839 AlignmentSource *Source = nullptr); 1840 1841 Address EmitLoadOfReference(Address Ref, const ReferenceType *RefTy, 1842 AlignmentSource *Source = nullptr); 1843 LValue EmitLoadOfReferenceLValue(Address Ref, const ReferenceType *RefTy); 1844 1845 Address EmitLoadOfPointer(Address Ptr, const PointerType *PtrTy, 1846 AlignmentSource *Source = nullptr); 1847 LValue EmitLoadOfPointerLValue(Address Ptr, const PointerType *PtrTy); 1848 1849 /// CreateTempAlloca - This creates a alloca and inserts it into the entry 1850 /// block. The caller is responsible for setting an appropriate alignment on 1851 /// the alloca. 1852 llvm::AllocaInst *CreateTempAlloca(llvm::Type *Ty, 1853 const Twine &Name = "tmp"); 1854 Address CreateTempAlloca(llvm::Type *Ty, CharUnits align, 1855 const Twine &Name = "tmp"); 1856 1857 /// CreateDefaultAlignedTempAlloca - This creates an alloca with the 1858 /// default ABI alignment of the given LLVM type. 1859 /// 1860 /// IMPORTANT NOTE: This is *not* generally the right alignment for 1861 /// any given AST type that happens to have been lowered to the 1862 /// given IR type. This should only ever be used for function-local, 1863 /// IR-driven manipulations like saving and restoring a value. Do 1864 /// not hand this address off to arbitrary IRGen routines, and especially 1865 /// do not pass it as an argument to a function that might expect a 1866 /// properly ABI-aligned value. 1867 Address CreateDefaultAlignTempAlloca(llvm::Type *Ty, 1868 const Twine &Name = "tmp"); 1869 1870 /// InitTempAlloca - Provide an initial value for the given alloca which 1871 /// will be observable at all locations in the function. 1872 /// 1873 /// The address should be something that was returned from one of 1874 /// the CreateTempAlloca or CreateMemTemp routines, and the 1875 /// initializer must be valid in the entry block (i.e. it must 1876 /// either be a constant or an argument value). 1877 void InitTempAlloca(Address Alloca, llvm::Value *Value); 1878 1879 /// CreateIRTemp - Create a temporary IR object of the given type, with 1880 /// appropriate alignment. This routine should only be used when an temporary 1881 /// value needs to be stored into an alloca (for example, to avoid explicit 1882 /// PHI construction), but the type is the IR type, not the type appropriate 1883 /// for storing in memory. 1884 /// 1885 /// That is, this is exactly equivalent to CreateMemTemp, but calling 1886 /// ConvertType instead of ConvertTypeForMem. 1887 Address CreateIRTemp(QualType T, const Twine &Name = "tmp"); 1888 1889 /// CreateMemTemp - Create a temporary memory object of the given type, with 1890 /// appropriate alignment. 1891 Address CreateMemTemp(QualType T, const Twine &Name = "tmp"); 1892 Address CreateMemTemp(QualType T, CharUnits Align, const Twine &Name = "tmp"); 1893 1894 /// CreateAggTemp - Create a temporary memory object for the given 1895 /// aggregate type. 1896 AggValueSlot CreateAggTemp(QualType T, const Twine &Name = "tmp") { 1897 return AggValueSlot::forAddr(CreateMemTemp(T, Name), 1898 T.getQualifiers(), 1899 AggValueSlot::IsNotDestructed, 1900 AggValueSlot::DoesNotNeedGCBarriers, 1901 AggValueSlot::IsNotAliased); 1902 } 1903 1904 /// Emit a cast to void* in the appropriate address space. 1905 llvm::Value *EmitCastToVoidPtr(llvm::Value *value); 1906 1907 /// EvaluateExprAsBool - Perform the usual unary conversions on the specified 1908 /// expression and compare the result against zero, returning an Int1Ty value. 1909 llvm::Value *EvaluateExprAsBool(const Expr *E); 1910 1911 /// EmitIgnoredExpr - Emit an expression in a context which ignores the result. 1912 void EmitIgnoredExpr(const Expr *E); 1913 1914 /// EmitAnyExpr - Emit code to compute the specified expression which can have 1915 /// any type. The result is returned as an RValue struct. If this is an 1916 /// aggregate expression, the aggloc/agglocvolatile arguments indicate where 1917 /// the result should be returned. 1918 /// 1919 /// \param ignoreResult True if the resulting value isn't used. 1920 RValue EmitAnyExpr(const Expr *E, 1921 AggValueSlot aggSlot = AggValueSlot::ignored(), 1922 bool ignoreResult = false); 1923 1924 // EmitVAListRef - Emit a "reference" to a va_list; this is either the address 1925 // or the value of the expression, depending on how va_list is defined. 1926 Address EmitVAListRef(const Expr *E); 1927 1928 /// Emit a "reference" to a __builtin_ms_va_list; this is 1929 /// always the value of the expression, because a __builtin_ms_va_list is a 1930 /// pointer to a char. 1931 Address EmitMSVAListRef(const Expr *E); 1932 1933 /// EmitAnyExprToTemp - Similary to EmitAnyExpr(), however, the result will 1934 /// always be accessible even if no aggregate location is provided. 1935 RValue EmitAnyExprToTemp(const Expr *E); 1936 1937 /// EmitAnyExprToMem - Emits the code necessary to evaluate an 1938 /// arbitrary expression into the given memory location. 1939 void EmitAnyExprToMem(const Expr *E, Address Location, 1940 Qualifiers Quals, bool IsInitializer); 1941 1942 void EmitAnyExprToExn(const Expr *E, Address Addr); 1943 1944 /// EmitExprAsInit - Emits the code necessary to initialize a 1945 /// location in memory with the given initializer. 1946 void EmitExprAsInit(const Expr *init, const ValueDecl *D, LValue lvalue, 1947 bool capturedByInit); 1948 1949 /// hasVolatileMember - returns true if aggregate type has a volatile 1950 /// member. 1951 bool hasVolatileMember(QualType T) { 1952 if (const RecordType *RT = T->getAs<RecordType>()) { 1953 const RecordDecl *RD = cast<RecordDecl>(RT->getDecl()); 1954 return RD->hasVolatileMember(); 1955 } 1956 return false; 1957 } 1958 /// EmitAggregateCopy - Emit an aggregate assignment. 1959 /// 1960 /// The difference to EmitAggregateCopy is that tail padding is not copied. 1961 /// This is required for correctness when assigning non-POD structures in C++. 1962 void EmitAggregateAssign(Address DestPtr, Address SrcPtr, 1963 QualType EltTy) { 1964 bool IsVolatile = hasVolatileMember(EltTy); 1965 EmitAggregateCopy(DestPtr, SrcPtr, EltTy, IsVolatile, true); 1966 } 1967 1968 void EmitAggregateCopyCtor(Address DestPtr, Address SrcPtr, 1969 QualType DestTy, QualType SrcTy) { 1970 EmitAggregateCopy(DestPtr, SrcPtr, SrcTy, /*IsVolatile=*/false, 1971 /*IsAssignment=*/false); 1972 } 1973 1974 /// EmitAggregateCopy - Emit an aggregate copy. 1975 /// 1976 /// \param isVolatile - True iff either the source or the destination is 1977 /// volatile. 1978 /// \param isAssignment - If false, allow padding to be copied. This often 1979 /// yields more efficient. 1980 void EmitAggregateCopy(Address DestPtr, Address SrcPtr, 1981 QualType EltTy, bool isVolatile=false, 1982 bool isAssignment = false); 1983 1984 /// GetAddrOfLocalVar - Return the address of a local variable. 1985 Address GetAddrOfLocalVar(const VarDecl *VD) { 1986 auto it = LocalDeclMap.find(VD); 1987 assert(it != LocalDeclMap.end() && 1988 "Invalid argument to GetAddrOfLocalVar(), no decl!"); 1989 return it->second; 1990 } 1991 1992 /// getOpaqueLValueMapping - Given an opaque value expression (which 1993 /// must be mapped to an l-value), return its mapping. 1994 const LValue &getOpaqueLValueMapping(const OpaqueValueExpr *e) { 1995 assert(OpaqueValueMapping::shouldBindAsLValue(e)); 1996 1997 llvm::DenseMap<const OpaqueValueExpr*,LValue>::iterator 1998 it = OpaqueLValues.find(e); 1999 assert(it != OpaqueLValues.end() && "no mapping for opaque value!"); 2000 return it->second; 2001 } 2002 2003 /// getOpaqueRValueMapping - Given an opaque value expression (which 2004 /// must be mapped to an r-value), return its mapping. 2005 const RValue &getOpaqueRValueMapping(const OpaqueValueExpr *e) { 2006 assert(!OpaqueValueMapping::shouldBindAsLValue(e)); 2007 2008 llvm::DenseMap<const OpaqueValueExpr*,RValue>::iterator 2009 it = OpaqueRValues.find(e); 2010 assert(it != OpaqueRValues.end() && "no mapping for opaque value!"); 2011 return it->second; 2012 } 2013 2014 /// Get the index of the current ArrayInitLoopExpr, if any. 2015 llvm::Value *getArrayInitIndex() { return ArrayInitIndex; } 2016 2017 /// getAccessedFieldNo - Given an encoded value and a result number, return 2018 /// the input field number being accessed. 2019 static unsigned getAccessedFieldNo(unsigned Idx, const llvm::Constant *Elts); 2020 2021 llvm::BlockAddress *GetAddrOfLabel(const LabelDecl *L); 2022 llvm::BasicBlock *GetIndirectGotoBlock(); 2023 2024 /// EmitNullInitialization - Generate code to set a value of the given type to 2025 /// null, If the type contains data member pointers, they will be initialized 2026 /// to -1 in accordance with the Itanium C++ ABI. 2027 void EmitNullInitialization(Address DestPtr, QualType Ty); 2028 2029 /// Emits a call to an LLVM variable-argument intrinsic, either 2030 /// \c llvm.va_start or \c llvm.va_end. 2031 /// \param ArgValue A reference to the \c va_list as emitted by either 2032 /// \c EmitVAListRef or \c EmitMSVAListRef. 2033 /// \param IsStart If \c true, emits a call to \c llvm.va_start; otherwise, 2034 /// calls \c llvm.va_end. 2035 llvm::Value *EmitVAStartEnd(llvm::Value *ArgValue, bool IsStart); 2036 2037 /// Generate code to get an argument from the passed in pointer 2038 /// and update it accordingly. 2039 /// \param VE The \c VAArgExpr for which to generate code. 2040 /// \param VAListAddr Receives a reference to the \c va_list as emitted by 2041 /// either \c EmitVAListRef or \c EmitMSVAListRef. 2042 /// \returns A pointer to the argument. 2043 // FIXME: We should be able to get rid of this method and use the va_arg 2044 // instruction in LLVM instead once it works well enough. 2045 Address EmitVAArg(VAArgExpr *VE, Address &VAListAddr); 2046 2047 /// emitArrayLength - Compute the length of an array, even if it's a 2048 /// VLA, and drill down to the base element type. 2049 llvm::Value *emitArrayLength(const ArrayType *arrayType, 2050 QualType &baseType, 2051 Address &addr); 2052 2053 /// EmitVLASize - Capture all the sizes for the VLA expressions in 2054 /// the given variably-modified type and store them in the VLASizeMap. 2055 /// 2056 /// This function can be called with a null (unreachable) insert point. 2057 void EmitVariablyModifiedType(QualType Ty); 2058 2059 /// getVLASize - Returns an LLVM value that corresponds to the size, 2060 /// in non-variably-sized elements, of a variable length array type, 2061 /// plus that largest non-variably-sized element type. Assumes that 2062 /// the type has already been emitted with EmitVariablyModifiedType. 2063 std::pair<llvm::Value*,QualType> getVLASize(const VariableArrayType *vla); 2064 std::pair<llvm::Value*,QualType> getVLASize(QualType vla); 2065 2066 /// LoadCXXThis - Load the value of 'this'. This function is only valid while 2067 /// generating code for an C++ member function. 2068 llvm::Value *LoadCXXThis() { 2069 assert(CXXThisValue && "no 'this' value for this function"); 2070 return CXXThisValue; 2071 } 2072 Address LoadCXXThisAddress(); 2073 2074 /// LoadCXXVTT - Load the VTT parameter to base constructors/destructors have 2075 /// virtual bases. 2076 // FIXME: Every place that calls LoadCXXVTT is something 2077 // that needs to be abstracted properly. 2078 llvm::Value *LoadCXXVTT() { 2079 assert(CXXStructorImplicitParamValue && "no VTT value for this function"); 2080 return CXXStructorImplicitParamValue; 2081 } 2082 2083 /// GetAddressOfBaseOfCompleteClass - Convert the given pointer to a 2084 /// complete class to the given direct base. 2085 Address 2086 GetAddressOfDirectBaseInCompleteClass(Address Value, 2087 const CXXRecordDecl *Derived, 2088 const CXXRecordDecl *Base, 2089 bool BaseIsVirtual); 2090 2091 static bool ShouldNullCheckClassCastValue(const CastExpr *Cast); 2092 2093 /// GetAddressOfBaseClass - This function will add the necessary delta to the 2094 /// load of 'this' and returns address of the base class. 2095 Address GetAddressOfBaseClass(Address Value, 2096 const CXXRecordDecl *Derived, 2097 CastExpr::path_const_iterator PathBegin, 2098 CastExpr::path_const_iterator PathEnd, 2099 bool NullCheckValue, SourceLocation Loc); 2100 2101 Address GetAddressOfDerivedClass(Address Value, 2102 const CXXRecordDecl *Derived, 2103 CastExpr::path_const_iterator PathBegin, 2104 CastExpr::path_const_iterator PathEnd, 2105 bool NullCheckValue); 2106 2107 /// GetVTTParameter - Return the VTT parameter that should be passed to a 2108 /// base constructor/destructor with virtual bases. 2109 /// FIXME: VTTs are Itanium ABI-specific, so the definition should move 2110 /// to ItaniumCXXABI.cpp together with all the references to VTT. 2111 llvm::Value *GetVTTParameter(GlobalDecl GD, bool ForVirtualBase, 2112 bool Delegating); 2113 2114 void EmitDelegateCXXConstructorCall(const CXXConstructorDecl *Ctor, 2115 CXXCtorType CtorType, 2116 const FunctionArgList &Args, 2117 SourceLocation Loc); 2118 // It's important not to confuse this and the previous function. Delegating 2119 // constructors are the C++0x feature. The constructor delegate optimization 2120 // is used to reduce duplication in the base and complete consturctors where 2121 // they are substantially the same. 2122 void EmitDelegatingCXXConstructorCall(const CXXConstructorDecl *Ctor, 2123 const FunctionArgList &Args); 2124 2125 /// Emit a call to an inheriting constructor (that is, one that invokes a 2126 /// constructor inherited from a base class) by inlining its definition. This 2127 /// is necessary if the ABI does not support forwarding the arguments to the 2128 /// base class constructor (because they're variadic or similar). 2129 void EmitInlinedInheritingCXXConstructorCall(const CXXConstructorDecl *Ctor, 2130 CXXCtorType CtorType, 2131 bool ForVirtualBase, 2132 bool Delegating, 2133 CallArgList &Args); 2134 2135 /// Emit a call to a constructor inherited from a base class, passing the 2136 /// current constructor's arguments along unmodified (without even making 2137 /// a copy). 2138 void EmitInheritedCXXConstructorCall(const CXXConstructorDecl *D, 2139 bool ForVirtualBase, Address This, 2140 bool InheritedFromVBase, 2141 const CXXInheritedCtorInitExpr *E); 2142 2143 void EmitCXXConstructorCall(const CXXConstructorDecl *D, CXXCtorType Type, 2144 bool ForVirtualBase, bool Delegating, 2145 Address This, const CXXConstructExpr *E); 2146 2147 void EmitCXXConstructorCall(const CXXConstructorDecl *D, CXXCtorType Type, 2148 bool ForVirtualBase, bool Delegating, 2149 Address This, CallArgList &Args); 2150 2151 /// Emit assumption load for all bases. Requires to be be called only on 2152 /// most-derived class and not under construction of the object. 2153 void EmitVTableAssumptionLoads(const CXXRecordDecl *ClassDecl, Address This); 2154 2155 /// Emit assumption that vptr load == global vtable. 2156 void EmitVTableAssumptionLoad(const VPtr &vptr, Address This); 2157 2158 void EmitSynthesizedCXXCopyCtorCall(const CXXConstructorDecl *D, 2159 Address This, Address Src, 2160 const CXXConstructExpr *E); 2161 2162 void EmitCXXAggrConstructorCall(const CXXConstructorDecl *D, 2163 const ArrayType *ArrayTy, 2164 Address ArrayPtr, 2165 const CXXConstructExpr *E, 2166 bool ZeroInitialization = false); 2167 2168 void EmitCXXAggrConstructorCall(const CXXConstructorDecl *D, 2169 llvm::Value *NumElements, 2170 Address ArrayPtr, 2171 const CXXConstructExpr *E, 2172 bool ZeroInitialization = false); 2173 2174 static Destroyer destroyCXXObject; 2175 2176 void EmitCXXDestructorCall(const CXXDestructorDecl *D, CXXDtorType Type, 2177 bool ForVirtualBase, bool Delegating, 2178 Address This); 2179 2180 void EmitNewArrayInitializer(const CXXNewExpr *E, QualType elementType, 2181 llvm::Type *ElementTy, Address NewPtr, 2182 llvm::Value *NumElements, 2183 llvm::Value *AllocSizeWithoutCookie); 2184 2185 void EmitCXXTemporary(const CXXTemporary *Temporary, QualType TempType, 2186 Address Ptr); 2187 2188 llvm::Value *EmitLifetimeStart(uint64_t Size, llvm::Value *Addr); 2189 void EmitLifetimeEnd(llvm::Value *Size, llvm::Value *Addr); 2190 2191 llvm::Value *EmitCXXNewExpr(const CXXNewExpr *E); 2192 void EmitCXXDeleteExpr(const CXXDeleteExpr *E); 2193 2194 void EmitDeleteCall(const FunctionDecl *DeleteFD, llvm::Value *Ptr, 2195 QualType DeleteTy, llvm::Value *NumElements = nullptr, 2196 CharUnits CookieSize = CharUnits()); 2197 2198 RValue EmitBuiltinNewDeleteCall(const FunctionProtoType *Type, 2199 const Expr *Arg, bool IsDelete); 2200 2201 llvm::Value *EmitCXXTypeidExpr(const CXXTypeidExpr *E); 2202 llvm::Value *EmitDynamicCast(Address V, const CXXDynamicCastExpr *DCE); 2203 Address EmitCXXUuidofExpr(const CXXUuidofExpr *E); 2204 2205 /// \brief Situations in which we might emit a check for the suitability of a 2206 /// pointer or glvalue. 2207 enum TypeCheckKind { 2208 /// Checking the operand of a load. Must be suitably sized and aligned. 2209 TCK_Load, 2210 /// Checking the destination of a store. Must be suitably sized and aligned. 2211 TCK_Store, 2212 /// Checking the bound value in a reference binding. Must be suitably sized 2213 /// and aligned, but is not required to refer to an object (until the 2214 /// reference is used), per core issue 453. 2215 TCK_ReferenceBinding, 2216 /// Checking the object expression in a non-static data member access. Must 2217 /// be an object within its lifetime. 2218 TCK_MemberAccess, 2219 /// Checking the 'this' pointer for a call to a non-static member function. 2220 /// Must be an object within its lifetime. 2221 TCK_MemberCall, 2222 /// Checking the 'this' pointer for a constructor call. 2223 TCK_ConstructorCall, 2224 /// Checking the operand of a static_cast to a derived pointer type. Must be 2225 /// null or an object within its lifetime. 2226 TCK_DowncastPointer, 2227 /// Checking the operand of a static_cast to a derived reference type. Must 2228 /// be an object within its lifetime. 2229 TCK_DowncastReference, 2230 /// Checking the operand of a cast to a base object. Must be suitably sized 2231 /// and aligned. 2232 TCK_Upcast, 2233 /// Checking the operand of a cast to a virtual base object. Must be an 2234 /// object within its lifetime. 2235 TCK_UpcastToVirtualBase 2236 }; 2237 2238 /// \brief Whether any type-checking sanitizers are enabled. If \c false, 2239 /// calls to EmitTypeCheck can be skipped. 2240 bool sanitizePerformTypeCheck() const; 2241 2242 /// \brief Emit a check that \p V is the address of storage of the 2243 /// appropriate size and alignment for an object of type \p Type. 2244 void EmitTypeCheck(TypeCheckKind TCK, SourceLocation Loc, llvm::Value *V, 2245 QualType Type, CharUnits Alignment = CharUnits::Zero(), 2246 bool SkipNullCheck = false); 2247 2248 /// \brief Emit a check that \p Base points into an array object, which 2249 /// we can access at index \p Index. \p Accessed should be \c false if we 2250 /// this expression is used as an lvalue, for instance in "&Arr[Idx]". 2251 void EmitBoundsCheck(const Expr *E, const Expr *Base, llvm::Value *Index, 2252 QualType IndexType, bool Accessed); 2253 2254 llvm::Value *EmitScalarPrePostIncDec(const UnaryOperator *E, LValue LV, 2255 bool isInc, bool isPre); 2256 ComplexPairTy EmitComplexPrePostIncDec(const UnaryOperator *E, LValue LV, 2257 bool isInc, bool isPre); 2258 2259 void EmitAlignmentAssumption(llvm::Value *PtrValue, unsigned Alignment, 2260 llvm::Value *OffsetValue = nullptr) { 2261 Builder.CreateAlignmentAssumption(CGM.getDataLayout(), PtrValue, Alignment, 2262 OffsetValue); 2263 } 2264 2265 /// Converts Location to a DebugLoc, if debug information is enabled. 2266 llvm::DebugLoc SourceLocToDebugLoc(SourceLocation Location); 2267 2268 2269 //===--------------------------------------------------------------------===// 2270 // Declaration Emission 2271 //===--------------------------------------------------------------------===// 2272 2273 /// EmitDecl - Emit a declaration. 2274 /// 2275 /// This function can be called with a null (unreachable) insert point. 2276 void EmitDecl(const Decl &D); 2277 2278 /// EmitVarDecl - Emit a local variable declaration. 2279 /// 2280 /// This function can be called with a null (unreachable) insert point. 2281 void EmitVarDecl(const VarDecl &D); 2282 2283 void EmitScalarInit(const Expr *init, const ValueDecl *D, LValue lvalue, 2284 bool capturedByInit); 2285 2286 typedef void SpecialInitFn(CodeGenFunction &Init, const VarDecl &D, 2287 llvm::Value *Address); 2288 2289 /// \brief Determine whether the given initializer is trivial in the sense 2290 /// that it requires no code to be generated. 2291 bool isTrivialInitializer(const Expr *Init); 2292 2293 /// EmitAutoVarDecl - Emit an auto variable declaration. 2294 /// 2295 /// This function can be called with a null (unreachable) insert point. 2296 void EmitAutoVarDecl(const VarDecl &D); 2297 2298 class AutoVarEmission { 2299 friend class CodeGenFunction; 2300 2301 const VarDecl *Variable; 2302 2303 /// The address of the alloca. Invalid if the variable was emitted 2304 /// as a global constant. 2305 Address Addr; 2306 2307 llvm::Value *NRVOFlag; 2308 2309 /// True if the variable is a __block variable. 2310 bool IsByRef; 2311 2312 /// True if the variable is of aggregate type and has a constant 2313 /// initializer. 2314 bool IsConstantAggregate; 2315 2316 /// Non-null if we should use lifetime annotations. 2317 llvm::Value *SizeForLifetimeMarkers; 2318 2319 struct Invalid {}; 2320 AutoVarEmission(Invalid) : Variable(nullptr), Addr(Address::invalid()) {} 2321 2322 AutoVarEmission(const VarDecl &variable) 2323 : Variable(&variable), Addr(Address::invalid()), NRVOFlag(nullptr), 2324 IsByRef(false), IsConstantAggregate(false), 2325 SizeForLifetimeMarkers(nullptr) {} 2326 2327 bool wasEmittedAsGlobal() const { return !Addr.isValid(); } 2328 2329 public: 2330 static AutoVarEmission invalid() { return AutoVarEmission(Invalid()); } 2331 2332 bool useLifetimeMarkers() const { 2333 return SizeForLifetimeMarkers != nullptr; 2334 } 2335 llvm::Value *getSizeForLifetimeMarkers() const { 2336 assert(useLifetimeMarkers()); 2337 return SizeForLifetimeMarkers; 2338 } 2339 2340 /// Returns the raw, allocated address, which is not necessarily 2341 /// the address of the object itself. 2342 Address getAllocatedAddress() const { 2343 return Addr; 2344 } 2345 2346 /// Returns the address of the object within this declaration. 2347 /// Note that this does not chase the forwarding pointer for 2348 /// __block decls. 2349 Address getObjectAddress(CodeGenFunction &CGF) const { 2350 if (!IsByRef) return Addr; 2351 2352 return CGF.emitBlockByrefAddress(Addr, Variable, /*forward*/ false); 2353 } 2354 }; 2355 AutoVarEmission EmitAutoVarAlloca(const VarDecl &var); 2356 void EmitAutoVarInit(const AutoVarEmission &emission); 2357 void EmitAutoVarCleanups(const AutoVarEmission &emission); 2358 void emitAutoVarTypeCleanup(const AutoVarEmission &emission, 2359 QualType::DestructionKind dtorKind); 2360 2361 void EmitStaticVarDecl(const VarDecl &D, 2362 llvm::GlobalValue::LinkageTypes Linkage); 2363 2364 class ParamValue { 2365 llvm::Value *Value; 2366 unsigned Alignment; 2367 ParamValue(llvm::Value *V, unsigned A) : Value(V), Alignment(A) {} 2368 public: 2369 static ParamValue forDirect(llvm::Value *value) { 2370 return ParamValue(value, 0); 2371 } 2372 static ParamValue forIndirect(Address addr) { 2373 assert(!addr.getAlignment().isZero()); 2374 return ParamValue(addr.getPointer(), addr.getAlignment().getQuantity()); 2375 } 2376 2377 bool isIndirect() const { return Alignment != 0; } 2378 llvm::Value *getAnyValue() const { return Value; } 2379 2380 llvm::Value *getDirectValue() const { 2381 assert(!isIndirect()); 2382 return Value; 2383 } 2384 2385 Address getIndirectAddress() const { 2386 assert(isIndirect()); 2387 return Address(Value, CharUnits::fromQuantity(Alignment)); 2388 } 2389 }; 2390 2391 /// EmitParmDecl - Emit a ParmVarDecl or an ImplicitParamDecl. 2392 void EmitParmDecl(const VarDecl &D, ParamValue Arg, unsigned ArgNo); 2393 2394 /// protectFromPeepholes - Protect a value that we're intending to 2395 /// store to the side, but which will probably be used later, from 2396 /// aggressive peepholing optimizations that might delete it. 2397 /// 2398 /// Pass the result to unprotectFromPeepholes to declare that 2399 /// protection is no longer required. 2400 /// 2401 /// There's no particular reason why this shouldn't apply to 2402 /// l-values, it's just that no existing peepholes work on pointers. 2403 PeepholeProtection protectFromPeepholes(RValue rvalue); 2404 void unprotectFromPeepholes(PeepholeProtection protection); 2405 2406 //===--------------------------------------------------------------------===// 2407 // Statement Emission 2408 //===--------------------------------------------------------------------===// 2409 2410 /// EmitStopPoint - Emit a debug stoppoint if we are emitting debug info. 2411 void EmitStopPoint(const Stmt *S); 2412 2413 /// EmitStmt - Emit the code for the statement \arg S. It is legal to call 2414 /// this function even if there is no current insertion point. 2415 /// 2416 /// This function may clear the current insertion point; callers should use 2417 /// EnsureInsertPoint if they wish to subsequently generate code without first 2418 /// calling EmitBlock, EmitBranch, or EmitStmt. 2419 void EmitStmt(const Stmt *S); 2420 2421 /// EmitSimpleStmt - Try to emit a "simple" statement which does not 2422 /// necessarily require an insertion point or debug information; typically 2423 /// because the statement amounts to a jump or a container of other 2424 /// statements. 2425 /// 2426 /// \return True if the statement was handled. 2427 bool EmitSimpleStmt(const Stmt *S); 2428 2429 Address EmitCompoundStmt(const CompoundStmt &S, bool GetLast = false, 2430 AggValueSlot AVS = AggValueSlot::ignored()); 2431 Address EmitCompoundStmtWithoutScope(const CompoundStmt &S, 2432 bool GetLast = false, 2433 AggValueSlot AVS = 2434 AggValueSlot::ignored()); 2435 2436 /// EmitLabel - Emit the block for the given label. It is legal to call this 2437 /// function even if there is no current insertion point. 2438 void EmitLabel(const LabelDecl *D); // helper for EmitLabelStmt. 2439 2440 void EmitLabelStmt(const LabelStmt &S); 2441 void EmitAttributedStmt(const AttributedStmt &S); 2442 void EmitGotoStmt(const GotoStmt &S); 2443 void EmitIndirectGotoStmt(const IndirectGotoStmt &S); 2444 void EmitIfStmt(const IfStmt &S); 2445 2446 void EmitWhileStmt(const WhileStmt &S, 2447 ArrayRef<const Attr *> Attrs = None); 2448 void EmitDoStmt(const DoStmt &S, ArrayRef<const Attr *> Attrs = None); 2449 void EmitForStmt(const ForStmt &S, 2450 ArrayRef<const Attr *> Attrs = None); 2451 void EmitReturnStmt(const ReturnStmt &S); 2452 void EmitDeclStmt(const DeclStmt &S); 2453 void EmitBreakStmt(const BreakStmt &S); 2454 void EmitContinueStmt(const ContinueStmt &S); 2455 void EmitSwitchStmt(const SwitchStmt &S); 2456 void EmitDefaultStmt(const DefaultStmt &S); 2457 void EmitCaseStmt(const CaseStmt &S); 2458 void EmitCaseStmtRange(const CaseStmt &S); 2459 void EmitAsmStmt(const AsmStmt &S); 2460 2461 void EmitObjCForCollectionStmt(const ObjCForCollectionStmt &S); 2462 void EmitObjCAtTryStmt(const ObjCAtTryStmt &S); 2463 void EmitObjCAtThrowStmt(const ObjCAtThrowStmt &S); 2464 void EmitObjCAtSynchronizedStmt(const ObjCAtSynchronizedStmt &S); 2465 void EmitObjCAutoreleasePoolStmt(const ObjCAutoreleasePoolStmt &S); 2466 2467 void EmitCoroutineBody(const CoroutineBodyStmt &S); 2468 RValue EmitCoroutineIntrinsic(const CallExpr *E, unsigned int IID); 2469 2470 void EnterCXXTryStmt(const CXXTryStmt &S, bool IsFnTryBlock = false); 2471 void ExitCXXTryStmt(const CXXTryStmt &S, bool IsFnTryBlock = false); 2472 2473 void EmitCXXTryStmt(const CXXTryStmt &S); 2474 void EmitSEHTryStmt(const SEHTryStmt &S); 2475 void EmitSEHLeaveStmt(const SEHLeaveStmt &S); 2476 void EnterSEHTryStmt(const SEHTryStmt &S); 2477 void ExitSEHTryStmt(const SEHTryStmt &S); 2478 2479 void startOutlinedSEHHelper(CodeGenFunction &ParentCGF, bool IsFilter, 2480 const Stmt *OutlinedStmt); 2481 2482 llvm::Function *GenerateSEHFilterFunction(CodeGenFunction &ParentCGF, 2483 const SEHExceptStmt &Except); 2484 2485 llvm::Function *GenerateSEHFinallyFunction(CodeGenFunction &ParentCGF, 2486 const SEHFinallyStmt &Finally); 2487 2488 void EmitSEHExceptionCodeSave(CodeGenFunction &ParentCGF, 2489 llvm::Value *ParentFP, 2490 llvm::Value *EntryEBP); 2491 llvm::Value *EmitSEHExceptionCode(); 2492 llvm::Value *EmitSEHExceptionInfo(); 2493 llvm::Value *EmitSEHAbnormalTermination(); 2494 2495 /// Scan the outlined statement for captures from the parent function. For 2496 /// each capture, mark the capture as escaped and emit a call to 2497 /// llvm.localrecover. Insert the localrecover result into the LocalDeclMap. 2498 void EmitCapturedLocals(CodeGenFunction &ParentCGF, const Stmt *OutlinedStmt, 2499 bool IsFilter); 2500 2501 /// Recovers the address of a local in a parent function. ParentVar is the 2502 /// address of the variable used in the immediate parent function. It can 2503 /// either be an alloca or a call to llvm.localrecover if there are nested 2504 /// outlined functions. ParentFP is the frame pointer of the outermost parent 2505 /// frame. 2506 Address recoverAddrOfEscapedLocal(CodeGenFunction &ParentCGF, 2507 Address ParentVar, 2508 llvm::Value *ParentFP); 2509 2510 void EmitCXXForRangeStmt(const CXXForRangeStmt &S, 2511 ArrayRef<const Attr *> Attrs = None); 2512 2513 /// Returns calculated size of the specified type. 2514 llvm::Value *getTypeSize(QualType Ty); 2515 LValue InitCapturedStruct(const CapturedStmt &S); 2516 llvm::Function *EmitCapturedStmt(const CapturedStmt &S, CapturedRegionKind K); 2517 llvm::Function *GenerateCapturedStmtFunction(const CapturedStmt &S); 2518 Address GenerateCapturedStmtArgument(const CapturedStmt &S); 2519 llvm::Function *GenerateOpenMPCapturedStmtFunction(const CapturedStmt &S); 2520 void GenerateOpenMPCapturedVars(const CapturedStmt &S, 2521 SmallVectorImpl<llvm::Value *> &CapturedVars); 2522 void emitOMPSimpleStore(LValue LVal, RValue RVal, QualType RValTy, 2523 SourceLocation Loc); 2524 /// \brief Perform element by element copying of arrays with type \a 2525 /// OriginalType from \a SrcAddr to \a DestAddr using copying procedure 2526 /// generated by \a CopyGen. 2527 /// 2528 /// \param DestAddr Address of the destination array. 2529 /// \param SrcAddr Address of the source array. 2530 /// \param OriginalType Type of destination and source arrays. 2531 /// \param CopyGen Copying procedure that copies value of single array element 2532 /// to another single array element. 2533 void EmitOMPAggregateAssign( 2534 Address DestAddr, Address SrcAddr, QualType OriginalType, 2535 const llvm::function_ref<void(Address, Address)> &CopyGen); 2536 /// \brief Emit proper copying of data from one variable to another. 2537 /// 2538 /// \param OriginalType Original type of the copied variables. 2539 /// \param DestAddr Destination address. 2540 /// \param SrcAddr Source address. 2541 /// \param DestVD Destination variable used in \a CopyExpr (for arrays, has 2542 /// type of the base array element). 2543 /// \param SrcVD Source variable used in \a CopyExpr (for arrays, has type of 2544 /// the base array element). 2545 /// \param Copy Actual copygin expression for copying data from \a SrcVD to \a 2546 /// DestVD. 2547 void EmitOMPCopy(QualType OriginalType, 2548 Address DestAddr, Address SrcAddr, 2549 const VarDecl *DestVD, const VarDecl *SrcVD, 2550 const Expr *Copy); 2551 /// \brief Emit atomic update code for constructs: \a X = \a X \a BO \a E or 2552 /// \a X = \a E \a BO \a E. 2553 /// 2554 /// \param X Value to be updated. 2555 /// \param E Update value. 2556 /// \param BO Binary operation for update operation. 2557 /// \param IsXLHSInRHSPart true if \a X is LHS in RHS part of the update 2558 /// expression, false otherwise. 2559 /// \param AO Atomic ordering of the generated atomic instructions. 2560 /// \param CommonGen Code generator for complex expressions that cannot be 2561 /// expressed through atomicrmw instruction. 2562 /// \returns <true, OldAtomicValue> if simple 'atomicrmw' instruction was 2563 /// generated, <false, RValue::get(nullptr)> otherwise. 2564 std::pair<bool, RValue> EmitOMPAtomicSimpleUpdateExpr( 2565 LValue X, RValue E, BinaryOperatorKind BO, bool IsXLHSInRHSPart, 2566 llvm::AtomicOrdering AO, SourceLocation Loc, 2567 const llvm::function_ref<RValue(RValue)> &CommonGen); 2568 bool EmitOMPFirstprivateClause(const OMPExecutableDirective &D, 2569 OMPPrivateScope &PrivateScope); 2570 void EmitOMPPrivateClause(const OMPExecutableDirective &D, 2571 OMPPrivateScope &PrivateScope); 2572 void EmitOMPUseDevicePtrClause( 2573 const OMPClause &C, OMPPrivateScope &PrivateScope, 2574 const llvm::DenseMap<const ValueDecl *, Address> &CaptureDeviceAddrMap); 2575 /// \brief Emit code for copyin clause in \a D directive. The next code is 2576 /// generated at the start of outlined functions for directives: 2577 /// \code 2578 /// threadprivate_var1 = master_threadprivate_var1; 2579 /// operator=(threadprivate_var2, master_threadprivate_var2); 2580 /// ... 2581 /// __kmpc_barrier(&loc, global_tid); 2582 /// \endcode 2583 /// 2584 /// \param D OpenMP directive possibly with 'copyin' clause(s). 2585 /// \returns true if at least one copyin variable is found, false otherwise. 2586 bool EmitOMPCopyinClause(const OMPExecutableDirective &D); 2587 /// \brief Emit initial code for lastprivate variables. If some variable is 2588 /// not also firstprivate, then the default initialization is used. Otherwise 2589 /// initialization of this variable is performed by EmitOMPFirstprivateClause 2590 /// method. 2591 /// 2592 /// \param D Directive that may have 'lastprivate' directives. 2593 /// \param PrivateScope Private scope for capturing lastprivate variables for 2594 /// proper codegen in internal captured statement. 2595 /// 2596 /// \returns true if there is at least one lastprivate variable, false 2597 /// otherwise. 2598 bool EmitOMPLastprivateClauseInit(const OMPExecutableDirective &D, 2599 OMPPrivateScope &PrivateScope); 2600 /// \brief Emit final copying of lastprivate values to original variables at 2601 /// the end of the worksharing or simd directive. 2602 /// 2603 /// \param D Directive that has at least one 'lastprivate' directives. 2604 /// \param IsLastIterCond Boolean condition that must be set to 'i1 true' if 2605 /// it is the last iteration of the loop code in associated directive, or to 2606 /// 'i1 false' otherwise. If this item is nullptr, no final check is required. 2607 void EmitOMPLastprivateClauseFinal(const OMPExecutableDirective &D, 2608 bool NoFinals, 2609 llvm::Value *IsLastIterCond = nullptr); 2610 /// Emit initial code for linear clauses. 2611 void EmitOMPLinearClause(const OMPLoopDirective &D, 2612 CodeGenFunction::OMPPrivateScope &PrivateScope); 2613 /// Emit final code for linear clauses. 2614 /// \param CondGen Optional conditional code for final part of codegen for 2615 /// linear clause. 2616 void EmitOMPLinearClauseFinal( 2617 const OMPLoopDirective &D, 2618 const llvm::function_ref<llvm::Value *(CodeGenFunction &)> &CondGen); 2619 /// \brief Emit initial code for reduction variables. Creates reduction copies 2620 /// and initializes them with the values according to OpenMP standard. 2621 /// 2622 /// \param D Directive (possibly) with the 'reduction' clause. 2623 /// \param PrivateScope Private scope for capturing reduction variables for 2624 /// proper codegen in internal captured statement. 2625 /// 2626 void EmitOMPReductionClauseInit(const OMPExecutableDirective &D, 2627 OMPPrivateScope &PrivateScope); 2628 /// \brief Emit final update of reduction values to original variables at 2629 /// the end of the directive. 2630 /// 2631 /// \param D Directive that has at least one 'reduction' directives. 2632 void EmitOMPReductionClauseFinal(const OMPExecutableDirective &D); 2633 /// \brief Emit initial code for linear variables. Creates private copies 2634 /// and initializes them with the values according to OpenMP standard. 2635 /// 2636 /// \param D Directive (possibly) with the 'linear' clause. 2637 void EmitOMPLinearClauseInit(const OMPLoopDirective &D); 2638 2639 typedef const llvm::function_ref<void(CodeGenFunction & /*CGF*/, 2640 llvm::Value * /*OutlinedFn*/, 2641 const OMPTaskDataTy & /*Data*/)> 2642 TaskGenTy; 2643 void EmitOMPTaskBasedDirective(const OMPExecutableDirective &S, 2644 const RegionCodeGenTy &BodyGen, 2645 const TaskGenTy &TaskGen, OMPTaskDataTy &Data); 2646 2647 void EmitOMPParallelDirective(const OMPParallelDirective &S); 2648 void EmitOMPSimdDirective(const OMPSimdDirective &S); 2649 void EmitOMPForDirective(const OMPForDirective &S); 2650 void EmitOMPForSimdDirective(const OMPForSimdDirective &S); 2651 void EmitOMPSectionsDirective(const OMPSectionsDirective &S); 2652 void EmitOMPSectionDirective(const OMPSectionDirective &S); 2653 void EmitOMPSingleDirective(const OMPSingleDirective &S); 2654 void EmitOMPMasterDirective(const OMPMasterDirective &S); 2655 void EmitOMPCriticalDirective(const OMPCriticalDirective &S); 2656 void EmitOMPParallelForDirective(const OMPParallelForDirective &S); 2657 void EmitOMPParallelForSimdDirective(const OMPParallelForSimdDirective &S); 2658 void EmitOMPParallelSectionsDirective(const OMPParallelSectionsDirective &S); 2659 void EmitOMPTaskDirective(const OMPTaskDirective &S); 2660 void EmitOMPTaskyieldDirective(const OMPTaskyieldDirective &S); 2661 void EmitOMPBarrierDirective(const OMPBarrierDirective &S); 2662 void EmitOMPTaskwaitDirective(const OMPTaskwaitDirective &S); 2663 void EmitOMPTaskgroupDirective(const OMPTaskgroupDirective &S); 2664 void EmitOMPFlushDirective(const OMPFlushDirective &S); 2665 void EmitOMPOrderedDirective(const OMPOrderedDirective &S); 2666 void EmitOMPAtomicDirective(const OMPAtomicDirective &S); 2667 void EmitOMPTargetDirective(const OMPTargetDirective &S); 2668 void EmitOMPTargetDataDirective(const OMPTargetDataDirective &S); 2669 void EmitOMPTargetEnterDataDirective(const OMPTargetEnterDataDirective &S); 2670 void EmitOMPTargetExitDataDirective(const OMPTargetExitDataDirective &S); 2671 void EmitOMPTargetUpdateDirective(const OMPTargetUpdateDirective &S); 2672 void EmitOMPTargetParallelDirective(const OMPTargetParallelDirective &S); 2673 void 2674 EmitOMPTargetParallelForDirective(const OMPTargetParallelForDirective &S); 2675 void EmitOMPTeamsDirective(const OMPTeamsDirective &S); 2676 void 2677 EmitOMPCancellationPointDirective(const OMPCancellationPointDirective &S); 2678 void EmitOMPCancelDirective(const OMPCancelDirective &S); 2679 void EmitOMPTaskLoopBasedDirective(const OMPLoopDirective &S); 2680 void EmitOMPTaskLoopDirective(const OMPTaskLoopDirective &S); 2681 void EmitOMPTaskLoopSimdDirective(const OMPTaskLoopSimdDirective &S); 2682 void EmitOMPDistributeDirective(const OMPDistributeDirective &S); 2683 void EmitOMPDistributeLoop(const OMPDistributeDirective &S); 2684 void EmitOMPDistributeParallelForDirective( 2685 const OMPDistributeParallelForDirective &S); 2686 void EmitOMPDistributeParallelForSimdDirective( 2687 const OMPDistributeParallelForSimdDirective &S); 2688 void EmitOMPDistributeSimdDirective(const OMPDistributeSimdDirective &S); 2689 void EmitOMPTargetParallelForSimdDirective( 2690 const OMPTargetParallelForSimdDirective &S); 2691 void EmitOMPTargetSimdDirective(const OMPTargetSimdDirective &S); 2692 void EmitOMPTeamsDistributeDirective(const OMPTeamsDistributeDirective &S); 2693 void 2694 EmitOMPTeamsDistributeSimdDirective(const OMPTeamsDistributeSimdDirective &S); 2695 void EmitOMPTeamsDistributeParallelForSimdDirective( 2696 const OMPTeamsDistributeParallelForSimdDirective &S); 2697 void EmitOMPTeamsDistributeParallelForDirective( 2698 const OMPTeamsDistributeParallelForDirective &S); 2699 2700 /// Emit outlined function for the target directive. 2701 static std::pair<llvm::Function * /*OutlinedFn*/, 2702 llvm::Constant * /*OutlinedFnID*/> 2703 EmitOMPTargetDirectiveOutlinedFunction(CodeGenModule &CGM, 2704 const OMPTargetDirective &S, 2705 StringRef ParentName, 2706 bool IsOffloadEntry); 2707 /// \brief Emit inner loop of the worksharing/simd construct. 2708 /// 2709 /// \param S Directive, for which the inner loop must be emitted. 2710 /// \param RequiresCleanup true, if directive has some associated private 2711 /// variables. 2712 /// \param LoopCond Bollean condition for loop continuation. 2713 /// \param IncExpr Increment expression for loop control variable. 2714 /// \param BodyGen Generator for the inner body of the inner loop. 2715 /// \param PostIncGen Genrator for post-increment code (required for ordered 2716 /// loop directvies). 2717 void EmitOMPInnerLoop( 2718 const Stmt &S, bool RequiresCleanup, const Expr *LoopCond, 2719 const Expr *IncExpr, 2720 const llvm::function_ref<void(CodeGenFunction &)> &BodyGen, 2721 const llvm::function_ref<void(CodeGenFunction &)> &PostIncGen); 2722 2723 JumpDest getOMPCancelDestination(OpenMPDirectiveKind Kind); 2724 /// Emit initial code for loop counters of loop-based directives. 2725 void EmitOMPPrivateLoopCounters(const OMPLoopDirective &S, 2726 OMPPrivateScope &LoopScope); 2727 2728 private: 2729 /// Helpers for the OpenMP loop directives. 2730 void EmitOMPLoopBody(const OMPLoopDirective &D, JumpDest LoopExit); 2731 void EmitOMPSimdInit(const OMPLoopDirective &D, bool IsMonotonic = false); 2732 void EmitOMPSimdFinal( 2733 const OMPLoopDirective &D, 2734 const llvm::function_ref<llvm::Value *(CodeGenFunction &)> &CondGen); 2735 /// \brief Emit code for the worksharing loop-based directive. 2736 /// \return true, if this construct has any lastprivate clause, false - 2737 /// otherwise. 2738 bool EmitOMPWorksharingLoop(const OMPLoopDirective &S); 2739 void EmitOMPOuterLoop(bool IsMonotonic, bool DynamicOrOrdered, 2740 const OMPLoopDirective &S, OMPPrivateScope &LoopScope, bool Ordered, 2741 Address LB, Address UB, Address ST, Address IL, llvm::Value *Chunk); 2742 void EmitOMPForOuterLoop(const OpenMPScheduleTy &ScheduleKind, 2743 bool IsMonotonic, const OMPLoopDirective &S, 2744 OMPPrivateScope &LoopScope, bool Ordered, Address LB, 2745 Address UB, Address ST, Address IL, 2746 llvm::Value *Chunk); 2747 void EmitOMPDistributeOuterLoop( 2748 OpenMPDistScheduleClauseKind ScheduleKind, 2749 const OMPDistributeDirective &S, OMPPrivateScope &LoopScope, 2750 Address LB, Address UB, Address ST, Address IL, llvm::Value *Chunk); 2751 /// \brief Emit code for sections directive. 2752 void EmitSections(const OMPExecutableDirective &S); 2753 2754 public: 2755 2756 //===--------------------------------------------------------------------===// 2757 // LValue Expression Emission 2758 //===--------------------------------------------------------------------===// 2759 2760 /// GetUndefRValue - Get an appropriate 'undef' rvalue for the given type. 2761 RValue GetUndefRValue(QualType Ty); 2762 2763 /// EmitUnsupportedRValue - Emit a dummy r-value using the type of E 2764 /// and issue an ErrorUnsupported style diagnostic (using the 2765 /// provided Name). 2766 RValue EmitUnsupportedRValue(const Expr *E, 2767 const char *Name); 2768 2769 /// EmitUnsupportedLValue - Emit a dummy l-value using the type of E and issue 2770 /// an ErrorUnsupported style diagnostic (using the provided Name). 2771 LValue EmitUnsupportedLValue(const Expr *E, 2772 const char *Name); 2773 2774 /// EmitLValue - Emit code to compute a designator that specifies the location 2775 /// of the expression. 2776 /// 2777 /// This can return one of two things: a simple address or a bitfield 2778 /// reference. In either case, the LLVM Value* in the LValue structure is 2779 /// guaranteed to be an LLVM pointer type. 2780 /// 2781 /// If this returns a bitfield reference, nothing about the pointee type of 2782 /// the LLVM value is known: For example, it may not be a pointer to an 2783 /// integer. 2784 /// 2785 /// If this returns a normal address, and if the lvalue's C type is fixed 2786 /// size, this method guarantees that the returned pointer type will point to 2787 /// an LLVM type of the same size of the lvalue's type. If the lvalue has a 2788 /// variable length type, this is not possible. 2789 /// 2790 LValue EmitLValue(const Expr *E); 2791 2792 /// \brief Same as EmitLValue but additionally we generate checking code to 2793 /// guard against undefined behavior. This is only suitable when we know 2794 /// that the address will be used to access the object. 2795 LValue EmitCheckedLValue(const Expr *E, TypeCheckKind TCK); 2796 2797 RValue convertTempToRValue(Address addr, QualType type, 2798 SourceLocation Loc); 2799 2800 void EmitAtomicInit(Expr *E, LValue lvalue); 2801 2802 bool LValueIsSuitableForInlineAtomic(LValue Src); 2803 2804 RValue EmitAtomicLoad(LValue LV, SourceLocation SL, 2805 AggValueSlot Slot = AggValueSlot::ignored()); 2806 2807 RValue EmitAtomicLoad(LValue lvalue, SourceLocation loc, 2808 llvm::AtomicOrdering AO, bool IsVolatile = false, 2809 AggValueSlot slot = AggValueSlot::ignored()); 2810 2811 void EmitAtomicStore(RValue rvalue, LValue lvalue, bool isInit); 2812 2813 void EmitAtomicStore(RValue rvalue, LValue lvalue, llvm::AtomicOrdering AO, 2814 bool IsVolatile, bool isInit); 2815 2816 std::pair<RValue, llvm::Value *> EmitAtomicCompareExchange( 2817 LValue Obj, RValue Expected, RValue Desired, SourceLocation Loc, 2818 llvm::AtomicOrdering Success = 2819 llvm::AtomicOrdering::SequentiallyConsistent, 2820 llvm::AtomicOrdering Failure = 2821 llvm::AtomicOrdering::SequentiallyConsistent, 2822 bool IsWeak = false, AggValueSlot Slot = AggValueSlot::ignored()); 2823 2824 void EmitAtomicUpdate(LValue LVal, llvm::AtomicOrdering AO, 2825 const llvm::function_ref<RValue(RValue)> &UpdateOp, 2826 bool IsVolatile); 2827 2828 /// EmitToMemory - Change a scalar value from its value 2829 /// representation to its in-memory representation. 2830 llvm::Value *EmitToMemory(llvm::Value *Value, QualType Ty); 2831 2832 /// EmitFromMemory - Change a scalar value from its memory 2833 /// representation to its value representation. 2834 llvm::Value *EmitFromMemory(llvm::Value *Value, QualType Ty); 2835 2836 /// EmitLoadOfScalar - Load a scalar value from an address, taking 2837 /// care to appropriately convert from the memory representation to 2838 /// the LLVM value representation. 2839 llvm::Value *EmitLoadOfScalar(Address Addr, bool Volatile, QualType Ty, 2840 SourceLocation Loc, 2841 AlignmentSource AlignSource = 2842 AlignmentSource::Type, 2843 llvm::MDNode *TBAAInfo = nullptr, 2844 QualType TBAABaseTy = QualType(), 2845 uint64_t TBAAOffset = 0, 2846 bool isNontemporal = false); 2847 2848 /// EmitLoadOfScalar - Load a scalar value from an address, taking 2849 /// care to appropriately convert from the memory representation to 2850 /// the LLVM value representation. The l-value must be a simple 2851 /// l-value. 2852 llvm::Value *EmitLoadOfScalar(LValue lvalue, SourceLocation Loc); 2853 2854 /// EmitStoreOfScalar - Store a scalar value to an address, taking 2855 /// care to appropriately convert from the memory representation to 2856 /// the LLVM value representation. 2857 void EmitStoreOfScalar(llvm::Value *Value, Address Addr, 2858 bool Volatile, QualType Ty, 2859 AlignmentSource AlignSource = AlignmentSource::Type, 2860 llvm::MDNode *TBAAInfo = nullptr, bool isInit = false, 2861 QualType TBAABaseTy = QualType(), 2862 uint64_t TBAAOffset = 0, bool isNontemporal = false); 2863 2864 /// EmitStoreOfScalar - Store a scalar value to an address, taking 2865 /// care to appropriately convert from the memory representation to 2866 /// the LLVM value representation. The l-value must be a simple 2867 /// l-value. The isInit flag indicates whether this is an initialization. 2868 /// If so, atomic qualifiers are ignored and the store is always non-atomic. 2869 void EmitStoreOfScalar(llvm::Value *value, LValue lvalue, bool isInit=false); 2870 2871 /// EmitLoadOfLValue - Given an expression that represents a value lvalue, 2872 /// this method emits the address of the lvalue, then loads the result as an 2873 /// rvalue, returning the rvalue. 2874 RValue EmitLoadOfLValue(LValue V, SourceLocation Loc); 2875 RValue EmitLoadOfExtVectorElementLValue(LValue V); 2876 RValue EmitLoadOfBitfieldLValue(LValue LV); 2877 RValue EmitLoadOfGlobalRegLValue(LValue LV); 2878 2879 /// EmitStoreThroughLValue - Store the specified rvalue into the specified 2880 /// lvalue, where both are guaranteed to the have the same type, and that type 2881 /// is 'Ty'. 2882 void EmitStoreThroughLValue(RValue Src, LValue Dst, bool isInit = false); 2883 void EmitStoreThroughExtVectorComponentLValue(RValue Src, LValue Dst); 2884 void EmitStoreThroughGlobalRegLValue(RValue Src, LValue Dst); 2885 2886 /// EmitStoreThroughBitfieldLValue - Store Src into Dst with same constraints 2887 /// as EmitStoreThroughLValue. 2888 /// 2889 /// \param Result [out] - If non-null, this will be set to a Value* for the 2890 /// bit-field contents after the store, appropriate for use as the result of 2891 /// an assignment to the bit-field. 2892 void EmitStoreThroughBitfieldLValue(RValue Src, LValue Dst, 2893 llvm::Value **Result=nullptr); 2894 2895 /// Emit an l-value for an assignment (simple or compound) of complex type. 2896 LValue EmitComplexAssignmentLValue(const BinaryOperator *E); 2897 LValue EmitComplexCompoundAssignmentLValue(const CompoundAssignOperator *E); 2898 LValue EmitScalarCompoundAssignWithComplex(const CompoundAssignOperator *E, 2899 llvm::Value *&Result); 2900 2901 // Note: only available for agg return types 2902 LValue EmitBinaryOperatorLValue(const BinaryOperator *E); 2903 LValue EmitCompoundAssignmentLValue(const CompoundAssignOperator *E); 2904 // Note: only available for agg return types 2905 LValue EmitCallExprLValue(const CallExpr *E); 2906 // Note: only available for agg return types 2907 LValue EmitVAArgExprLValue(const VAArgExpr *E); 2908 LValue EmitDeclRefLValue(const DeclRefExpr *E); 2909 LValue EmitStringLiteralLValue(const StringLiteral *E); 2910 LValue EmitObjCEncodeExprLValue(const ObjCEncodeExpr *E); 2911 LValue EmitPredefinedLValue(const PredefinedExpr *E); 2912 LValue EmitUnaryOpLValue(const UnaryOperator *E); 2913 LValue EmitArraySubscriptExpr(const ArraySubscriptExpr *E, 2914 bool Accessed = false); 2915 LValue EmitOMPArraySectionExpr(const OMPArraySectionExpr *E, 2916 bool IsLowerBound = true); 2917 LValue EmitExtVectorElementExpr(const ExtVectorElementExpr *E); 2918 LValue EmitMemberExpr(const MemberExpr *E); 2919 LValue EmitObjCIsaExpr(const ObjCIsaExpr *E); 2920 LValue EmitCompoundLiteralLValue(const CompoundLiteralExpr *E); 2921 LValue EmitInitListLValue(const InitListExpr *E); 2922 LValue EmitConditionalOperatorLValue(const AbstractConditionalOperator *E); 2923 LValue EmitCastLValue(const CastExpr *E); 2924 LValue EmitMaterializeTemporaryExpr(const MaterializeTemporaryExpr *E); 2925 LValue EmitOpaqueValueLValue(const OpaqueValueExpr *e); 2926 2927 Address EmitExtVectorElementLValue(LValue V); 2928 2929 RValue EmitRValueForField(LValue LV, const FieldDecl *FD, SourceLocation Loc); 2930 2931 Address EmitArrayToPointerDecay(const Expr *Array, 2932 AlignmentSource *AlignSource = nullptr); 2933 2934 class ConstantEmission { 2935 llvm::PointerIntPair<llvm::Constant*, 1, bool> ValueAndIsReference; 2936 ConstantEmission(llvm::Constant *C, bool isReference) 2937 : ValueAndIsReference(C, isReference) {} 2938 public: 2939 ConstantEmission() {} 2940 static ConstantEmission forReference(llvm::Constant *C) { 2941 return ConstantEmission(C, true); 2942 } 2943 static ConstantEmission forValue(llvm::Constant *C) { 2944 return ConstantEmission(C, false); 2945 } 2946 2947 explicit operator bool() const { 2948 return ValueAndIsReference.getOpaqueValue() != nullptr; 2949 } 2950 2951 bool isReference() const { return ValueAndIsReference.getInt(); } 2952 LValue getReferenceLValue(CodeGenFunction &CGF, Expr *refExpr) const { 2953 assert(isReference()); 2954 return CGF.MakeNaturalAlignAddrLValue(ValueAndIsReference.getPointer(), 2955 refExpr->getType()); 2956 } 2957 2958 llvm::Constant *getValue() const { 2959 assert(!isReference()); 2960 return ValueAndIsReference.getPointer(); 2961 } 2962 }; 2963 2964 ConstantEmission tryEmitAsConstant(DeclRefExpr *refExpr); 2965 2966 RValue EmitPseudoObjectRValue(const PseudoObjectExpr *e, 2967 AggValueSlot slot = AggValueSlot::ignored()); 2968 LValue EmitPseudoObjectLValue(const PseudoObjectExpr *e); 2969 2970 llvm::Value *EmitIvarOffset(const ObjCInterfaceDecl *Interface, 2971 const ObjCIvarDecl *Ivar); 2972 LValue EmitLValueForField(LValue Base, const FieldDecl* Field); 2973 LValue EmitLValueForLambdaField(const FieldDecl *Field); 2974 2975 /// EmitLValueForFieldInitialization - Like EmitLValueForField, except that 2976 /// if the Field is a reference, this will return the address of the reference 2977 /// and not the address of the value stored in the reference. 2978 LValue EmitLValueForFieldInitialization(LValue Base, 2979 const FieldDecl* Field); 2980 2981 LValue EmitLValueForIvar(QualType ObjectTy, 2982 llvm::Value* Base, const ObjCIvarDecl *Ivar, 2983 unsigned CVRQualifiers); 2984 2985 LValue EmitCXXConstructLValue(const CXXConstructExpr *E); 2986 LValue EmitCXXBindTemporaryLValue(const CXXBindTemporaryExpr *E); 2987 LValue EmitLambdaLValue(const LambdaExpr *E); 2988 LValue EmitCXXTypeidLValue(const CXXTypeidExpr *E); 2989 LValue EmitCXXUuidofLValue(const CXXUuidofExpr *E); 2990 2991 LValue EmitObjCMessageExprLValue(const ObjCMessageExpr *E); 2992 LValue EmitObjCIvarRefLValue(const ObjCIvarRefExpr *E); 2993 LValue EmitStmtExprLValue(const StmtExpr *E); 2994 LValue EmitPointerToDataMemberBinaryExpr(const BinaryOperator *E); 2995 LValue EmitObjCSelectorLValue(const ObjCSelectorExpr *E); 2996 void EmitDeclRefExprDbgValue(const DeclRefExpr *E, const APValue &Init); 2997 2998 //===--------------------------------------------------------------------===// 2999 // Scalar Expression Emission 3000 //===--------------------------------------------------------------------===// 3001 3002 /// EmitCall - Generate a call of the given function, expecting the given 3003 /// result type, and using the given argument list which specifies both the 3004 /// LLVM arguments and the types they were derived from. 3005 RValue EmitCall(const CGFunctionInfo &CallInfo, const CGCallee &Callee, 3006 ReturnValueSlot ReturnValue, const CallArgList &Args, 3007 llvm::Instruction **callOrInvoke = nullptr); 3008 3009 RValue EmitCall(QualType FnType, const CGCallee &Callee, const CallExpr *E, 3010 ReturnValueSlot ReturnValue, 3011 llvm::Value *Chain = nullptr); 3012 RValue EmitCallExpr(const CallExpr *E, 3013 ReturnValueSlot ReturnValue = ReturnValueSlot()); 3014 RValue EmitSimpleCallExpr(const CallExpr *E, ReturnValueSlot ReturnValue); 3015 CGCallee EmitCallee(const Expr *E); 3016 3017 void checkTargetFeatures(const CallExpr *E, const FunctionDecl *TargetDecl); 3018 3019 llvm::CallInst *EmitRuntimeCall(llvm::Value *callee, 3020 const Twine &name = ""); 3021 llvm::CallInst *EmitRuntimeCall(llvm::Value *callee, 3022 ArrayRef<llvm::Value*> args, 3023 const Twine &name = ""); 3024 llvm::CallInst *EmitNounwindRuntimeCall(llvm::Value *callee, 3025 const Twine &name = ""); 3026 llvm::CallInst *EmitNounwindRuntimeCall(llvm::Value *callee, 3027 ArrayRef<llvm::Value*> args, 3028 const Twine &name = ""); 3029 3030 llvm::CallSite EmitCallOrInvoke(llvm::Value *Callee, 3031 ArrayRef<llvm::Value *> Args, 3032 const Twine &Name = ""); 3033 llvm::CallSite EmitRuntimeCallOrInvoke(llvm::Value *callee, 3034 ArrayRef<llvm::Value*> args, 3035 const Twine &name = ""); 3036 llvm::CallSite EmitRuntimeCallOrInvoke(llvm::Value *callee, 3037 const Twine &name = ""); 3038 void EmitNoreturnRuntimeCallOrInvoke(llvm::Value *callee, 3039 ArrayRef<llvm::Value*> args); 3040 3041 CGCallee BuildAppleKextVirtualCall(const CXXMethodDecl *MD, 3042 NestedNameSpecifier *Qual, 3043 llvm::Type *Ty); 3044 3045 CGCallee BuildAppleKextVirtualDestructorCall(const CXXDestructorDecl *DD, 3046 CXXDtorType Type, 3047 const CXXRecordDecl *RD); 3048 3049 RValue 3050 EmitCXXMemberOrOperatorCall(const CXXMethodDecl *Method, 3051 const CGCallee &Callee, 3052 ReturnValueSlot ReturnValue, llvm::Value *This, 3053 llvm::Value *ImplicitParam, 3054 QualType ImplicitParamTy, const CallExpr *E, 3055 CallArgList *RtlArgs); 3056 RValue EmitCXXDestructorCall(const CXXDestructorDecl *DD, 3057 const CGCallee &Callee, 3058 llvm::Value *This, llvm::Value *ImplicitParam, 3059 QualType ImplicitParamTy, const CallExpr *E, 3060 StructorType Type); 3061 RValue EmitCXXMemberCallExpr(const CXXMemberCallExpr *E, 3062 ReturnValueSlot ReturnValue); 3063 RValue EmitCXXMemberOrOperatorMemberCallExpr(const CallExpr *CE, 3064 const CXXMethodDecl *MD, 3065 ReturnValueSlot ReturnValue, 3066 bool HasQualifier, 3067 NestedNameSpecifier *Qualifier, 3068 bool IsArrow, const Expr *Base); 3069 // Compute the object pointer. 3070 Address EmitCXXMemberDataPointerAddress(const Expr *E, Address base, 3071 llvm::Value *memberPtr, 3072 const MemberPointerType *memberPtrType, 3073 AlignmentSource *AlignSource = nullptr); 3074 RValue EmitCXXMemberPointerCallExpr(const CXXMemberCallExpr *E, 3075 ReturnValueSlot ReturnValue); 3076 3077 RValue EmitCXXOperatorMemberCallExpr(const CXXOperatorCallExpr *E, 3078 const CXXMethodDecl *MD, 3079 ReturnValueSlot ReturnValue); 3080 RValue EmitCXXPseudoDestructorExpr(const CXXPseudoDestructorExpr *E); 3081 3082 RValue EmitCUDAKernelCallExpr(const CUDAKernelCallExpr *E, 3083 ReturnValueSlot ReturnValue); 3084 3085 RValue EmitCUDADevicePrintfCallExpr(const CallExpr *E, 3086 ReturnValueSlot ReturnValue); 3087 3088 RValue EmitBuiltinExpr(const FunctionDecl *FD, 3089 unsigned BuiltinID, const CallExpr *E, 3090 ReturnValueSlot ReturnValue); 3091 3092 RValue EmitBlockCallExpr(const CallExpr *E, ReturnValueSlot ReturnValue); 3093 3094 /// EmitTargetBuiltinExpr - Emit the given builtin call. Returns 0 if the call 3095 /// is unhandled by the current target. 3096 llvm::Value *EmitTargetBuiltinExpr(unsigned BuiltinID, const CallExpr *E); 3097 3098 llvm::Value *EmitAArch64CompareBuiltinExpr(llvm::Value *Op, llvm::Type *Ty, 3099 const llvm::CmpInst::Predicate Fp, 3100 const llvm::CmpInst::Predicate Ip, 3101 const llvm::Twine &Name = ""); 3102 llvm::Value *EmitARMBuiltinExpr(unsigned BuiltinID, const CallExpr *E); 3103 3104 llvm::Value *EmitCommonNeonBuiltinExpr(unsigned BuiltinID, 3105 unsigned LLVMIntrinsic, 3106 unsigned AltLLVMIntrinsic, 3107 const char *NameHint, 3108 unsigned Modifier, 3109 const CallExpr *E, 3110 SmallVectorImpl<llvm::Value *> &Ops, 3111 Address PtrOp0, Address PtrOp1); 3112 llvm::Function *LookupNeonLLVMIntrinsic(unsigned IntrinsicID, 3113 unsigned Modifier, llvm::Type *ArgTy, 3114 const CallExpr *E); 3115 llvm::Value *EmitNeonCall(llvm::Function *F, 3116 SmallVectorImpl<llvm::Value*> &O, 3117 const char *name, 3118 unsigned shift = 0, bool rightshift = false); 3119 llvm::Value *EmitNeonSplat(llvm::Value *V, llvm::Constant *Idx); 3120 llvm::Value *EmitNeonShiftVector(llvm::Value *V, llvm::Type *Ty, 3121 bool negateForRightShift); 3122 llvm::Value *EmitNeonRShiftImm(llvm::Value *Vec, llvm::Value *Amt, 3123 llvm::Type *Ty, bool usgn, const char *name); 3124 llvm::Value *vectorWrapScalar16(llvm::Value *Op); 3125 llvm::Value *EmitAArch64BuiltinExpr(unsigned BuiltinID, const CallExpr *E); 3126 3127 llvm::Value *BuildVector(ArrayRef<llvm::Value*> Ops); 3128 llvm::Value *EmitX86BuiltinExpr(unsigned BuiltinID, const CallExpr *E); 3129 llvm::Value *EmitPPCBuiltinExpr(unsigned BuiltinID, const CallExpr *E); 3130 llvm::Value *EmitAMDGPUBuiltinExpr(unsigned BuiltinID, const CallExpr *E); 3131 llvm::Value *EmitSystemZBuiltinExpr(unsigned BuiltinID, const CallExpr *E); 3132 llvm::Value *EmitNVPTXBuiltinExpr(unsigned BuiltinID, const CallExpr *E); 3133 llvm::Value *EmitWebAssemblyBuiltinExpr(unsigned BuiltinID, 3134 const CallExpr *E); 3135 3136 private: 3137 enum class MSVCIntrin; 3138 3139 public: 3140 llvm::Value *EmitMSVCBuiltinExpr(MSVCIntrin BuiltinID, const CallExpr *E); 3141 3142 llvm::Value *EmitObjCProtocolExpr(const ObjCProtocolExpr *E); 3143 llvm::Value *EmitObjCStringLiteral(const ObjCStringLiteral *E); 3144 llvm::Value *EmitObjCBoxedExpr(const ObjCBoxedExpr *E); 3145 llvm::Value *EmitObjCArrayLiteral(const ObjCArrayLiteral *E); 3146 llvm::Value *EmitObjCDictionaryLiteral(const ObjCDictionaryLiteral *E); 3147 llvm::Value *EmitObjCCollectionLiteral(const Expr *E, 3148 const ObjCMethodDecl *MethodWithObjects); 3149 llvm::Value *EmitObjCSelectorExpr(const ObjCSelectorExpr *E); 3150 RValue EmitObjCMessageExpr(const ObjCMessageExpr *E, 3151 ReturnValueSlot Return = ReturnValueSlot()); 3152 3153 /// Retrieves the default cleanup kind for an ARC cleanup. 3154 /// Except under -fobjc-arc-eh, ARC cleanups are normal-only. 3155 CleanupKind getARCCleanupKind() { 3156 return CGM.getCodeGenOpts().ObjCAutoRefCountExceptions 3157 ? NormalAndEHCleanup : NormalCleanup; 3158 } 3159 3160 // ARC primitives. 3161 void EmitARCInitWeak(Address addr, llvm::Value *value); 3162 void EmitARCDestroyWeak(Address addr); 3163 llvm::Value *EmitARCLoadWeak(Address addr); 3164 llvm::Value *EmitARCLoadWeakRetained(Address addr); 3165 llvm::Value *EmitARCStoreWeak(Address addr, llvm::Value *value, bool ignored); 3166 void EmitARCCopyWeak(Address dst, Address src); 3167 void EmitARCMoveWeak(Address dst, Address src); 3168 llvm::Value *EmitARCRetainAutorelease(QualType type, llvm::Value *value); 3169 llvm::Value *EmitARCRetainAutoreleaseNonBlock(llvm::Value *value); 3170 llvm::Value *EmitARCStoreStrong(LValue lvalue, llvm::Value *value, 3171 bool resultIgnored); 3172 llvm::Value *EmitARCStoreStrongCall(Address addr, llvm::Value *value, 3173 bool resultIgnored); 3174 llvm::Value *EmitARCRetain(QualType type, llvm::Value *value); 3175 llvm::Value *EmitARCRetainNonBlock(llvm::Value *value); 3176 llvm::Value *EmitARCRetainBlock(llvm::Value *value, bool mandatory); 3177 void EmitARCDestroyStrong(Address addr, ARCPreciseLifetime_t precise); 3178 void EmitARCRelease(llvm::Value *value, ARCPreciseLifetime_t precise); 3179 llvm::Value *EmitARCAutorelease(llvm::Value *value); 3180 llvm::Value *EmitARCAutoreleaseReturnValue(llvm::Value *value); 3181 llvm::Value *EmitARCRetainAutoreleaseReturnValue(llvm::Value *value); 3182 llvm::Value *EmitARCRetainAutoreleasedReturnValue(llvm::Value *value); 3183 llvm::Value *EmitARCUnsafeClaimAutoreleasedReturnValue(llvm::Value *value); 3184 3185 std::pair<LValue,llvm::Value*> 3186 EmitARCStoreAutoreleasing(const BinaryOperator *e); 3187 std::pair<LValue,llvm::Value*> 3188 EmitARCStoreStrong(const BinaryOperator *e, bool ignored); 3189 std::pair<LValue,llvm::Value*> 3190 EmitARCStoreUnsafeUnretained(const BinaryOperator *e, bool ignored); 3191 3192 llvm::Value *EmitObjCThrowOperand(const Expr *expr); 3193 llvm::Value *EmitObjCConsumeObject(QualType T, llvm::Value *Ptr); 3194 llvm::Value *EmitObjCExtendObjectLifetime(QualType T, llvm::Value *Ptr); 3195 3196 llvm::Value *EmitARCExtendBlockObject(const Expr *expr); 3197 llvm::Value *EmitARCReclaimReturnedObject(const Expr *e, 3198 bool allowUnsafeClaim); 3199 llvm::Value *EmitARCRetainScalarExpr(const Expr *expr); 3200 llvm::Value *EmitARCRetainAutoreleaseScalarExpr(const Expr *expr); 3201 llvm::Value *EmitARCUnsafeUnretainedScalarExpr(const Expr *expr); 3202 3203 void EmitARCIntrinsicUse(ArrayRef<llvm::Value*> values); 3204 3205 static Destroyer destroyARCStrongImprecise; 3206 static Destroyer destroyARCStrongPrecise; 3207 static Destroyer destroyARCWeak; 3208 3209 void EmitObjCAutoreleasePoolPop(llvm::Value *Ptr); 3210 llvm::Value *EmitObjCAutoreleasePoolPush(); 3211 llvm::Value *EmitObjCMRRAutoreleasePoolPush(); 3212 void EmitObjCAutoreleasePoolCleanup(llvm::Value *Ptr); 3213 void EmitObjCMRRAutoreleasePoolPop(llvm::Value *Ptr); 3214 3215 /// \brief Emits a reference binding to the passed in expression. 3216 RValue EmitReferenceBindingToExpr(const Expr *E); 3217 3218 //===--------------------------------------------------------------------===// 3219 // Expression Emission 3220 //===--------------------------------------------------------------------===// 3221 3222 // Expressions are broken into three classes: scalar, complex, aggregate. 3223 3224 /// EmitScalarExpr - Emit the computation of the specified expression of LLVM 3225 /// scalar type, returning the result. 3226 llvm::Value *EmitScalarExpr(const Expr *E , bool IgnoreResultAssign = false); 3227 3228 /// Emit a conversion from the specified type to the specified destination 3229 /// type, both of which are LLVM scalar types. 3230 llvm::Value *EmitScalarConversion(llvm::Value *Src, QualType SrcTy, 3231 QualType DstTy, SourceLocation Loc); 3232 3233 /// Emit a conversion from the specified complex type to the specified 3234 /// destination type, where the destination type is an LLVM scalar type. 3235 llvm::Value *EmitComplexToScalarConversion(ComplexPairTy Src, QualType SrcTy, 3236 QualType DstTy, 3237 SourceLocation Loc); 3238 3239 /// EmitAggExpr - Emit the computation of the specified expression 3240 /// of aggregate type. The result is computed into the given slot, 3241 /// which may be null to indicate that the value is not needed. 3242 void EmitAggExpr(const Expr *E, AggValueSlot AS); 3243 3244 /// EmitAggExprToLValue - Emit the computation of the specified expression of 3245 /// aggregate type into a temporary LValue. 3246 LValue EmitAggExprToLValue(const Expr *E); 3247 3248 /// EmitExtendGCLifetime - Given a pointer to an Objective-C object, 3249 /// make sure it survives garbage collection until this point. 3250 void EmitExtendGCLifetime(llvm::Value *object); 3251 3252 /// EmitComplexExpr - Emit the computation of the specified expression of 3253 /// complex type, returning the result. 3254 ComplexPairTy EmitComplexExpr(const Expr *E, 3255 bool IgnoreReal = false, 3256 bool IgnoreImag = false); 3257 3258 /// EmitComplexExprIntoLValue - Emit the given expression of complex 3259 /// type and place its result into the specified l-value. 3260 void EmitComplexExprIntoLValue(const Expr *E, LValue dest, bool isInit); 3261 3262 /// EmitStoreOfComplex - Store a complex number into the specified l-value. 3263 void EmitStoreOfComplex(ComplexPairTy V, LValue dest, bool isInit); 3264 3265 /// EmitLoadOfComplex - Load a complex number from the specified l-value. 3266 ComplexPairTy EmitLoadOfComplex(LValue src, SourceLocation loc); 3267 3268 Address emitAddrOfRealComponent(Address complex, QualType complexType); 3269 Address emitAddrOfImagComponent(Address complex, QualType complexType); 3270 3271 /// AddInitializerToStaticVarDecl - Add the initializer for 'D' to the 3272 /// global variable that has already been created for it. If the initializer 3273 /// has a different type than GV does, this may free GV and return a different 3274 /// one. Otherwise it just returns GV. 3275 llvm::GlobalVariable * 3276 AddInitializerToStaticVarDecl(const VarDecl &D, 3277 llvm::GlobalVariable *GV); 3278 3279 3280 /// EmitCXXGlobalVarDeclInit - Create the initializer for a C++ 3281 /// variable with global storage. 3282 void EmitCXXGlobalVarDeclInit(const VarDecl &D, llvm::Constant *DeclPtr, 3283 bool PerformInit); 3284 3285 llvm::Constant *createAtExitStub(const VarDecl &VD, llvm::Constant *Dtor, 3286 llvm::Constant *Addr); 3287 3288 /// Call atexit() with a function that passes the given argument to 3289 /// the given function. 3290 void registerGlobalDtorWithAtExit(const VarDecl &D, llvm::Constant *fn, 3291 llvm::Constant *addr); 3292 3293 /// Emit code in this function to perform a guarded variable 3294 /// initialization. Guarded initializations are used when it's not 3295 /// possible to prove that an initialization will be done exactly 3296 /// once, e.g. with a static local variable or a static data member 3297 /// of a class template. 3298 void EmitCXXGuardedInit(const VarDecl &D, llvm::GlobalVariable *DeclPtr, 3299 bool PerformInit); 3300 3301 /// GenerateCXXGlobalInitFunc - Generates code for initializing global 3302 /// variables. 3303 void GenerateCXXGlobalInitFunc(llvm::Function *Fn, 3304 ArrayRef<llvm::Function *> CXXThreadLocals, 3305 Address Guard = Address::invalid()); 3306 3307 /// GenerateCXXGlobalDtorsFunc - Generates code for destroying global 3308 /// variables. 3309 void GenerateCXXGlobalDtorsFunc(llvm::Function *Fn, 3310 const std::vector<std::pair<llvm::WeakVH, 3311 llvm::Constant*> > &DtorsAndObjects); 3312 3313 void GenerateCXXGlobalVarDeclInitFunc(llvm::Function *Fn, 3314 const VarDecl *D, 3315 llvm::GlobalVariable *Addr, 3316 bool PerformInit); 3317 3318 void EmitCXXConstructExpr(const CXXConstructExpr *E, AggValueSlot Dest); 3319 3320 void EmitSynthesizedCXXCopyCtor(Address Dest, Address Src, const Expr *Exp); 3321 3322 void enterFullExpression(const ExprWithCleanups *E) { 3323 if (E->getNumObjects() == 0) return; 3324 enterNonTrivialFullExpression(E); 3325 } 3326 void enterNonTrivialFullExpression(const ExprWithCleanups *E); 3327 3328 void EmitCXXThrowExpr(const CXXThrowExpr *E, bool KeepInsertionPoint = true); 3329 3330 void EmitLambdaExpr(const LambdaExpr *E, AggValueSlot Dest); 3331 3332 RValue EmitAtomicExpr(AtomicExpr *E); 3333 3334 //===--------------------------------------------------------------------===// 3335 // Annotations Emission 3336 //===--------------------------------------------------------------------===// 3337 3338 /// Emit an annotation call (intrinsic or builtin). 3339 llvm::Value *EmitAnnotationCall(llvm::Value *AnnotationFn, 3340 llvm::Value *AnnotatedVal, 3341 StringRef AnnotationStr, 3342 SourceLocation Location); 3343 3344 /// Emit local annotations for the local variable V, declared by D. 3345 void EmitVarAnnotations(const VarDecl *D, llvm::Value *V); 3346 3347 /// Emit field annotations for the given field & value. Returns the 3348 /// annotation result. 3349 Address EmitFieldAnnotations(const FieldDecl *D, Address V); 3350 3351 //===--------------------------------------------------------------------===// 3352 // Internal Helpers 3353 //===--------------------------------------------------------------------===// 3354 3355 /// ContainsLabel - Return true if the statement contains a label in it. If 3356 /// this statement is not executed normally, it not containing a label means 3357 /// that we can just remove the code. 3358 static bool ContainsLabel(const Stmt *S, bool IgnoreCaseStmts = false); 3359 3360 /// containsBreak - Return true if the statement contains a break out of it. 3361 /// If the statement (recursively) contains a switch or loop with a break 3362 /// inside of it, this is fine. 3363 static bool containsBreak(const Stmt *S); 3364 3365 /// Determine if the given statement might introduce a declaration into the 3366 /// current scope, by being a (possibly-labelled) DeclStmt. 3367 static bool mightAddDeclToScope(const Stmt *S); 3368 3369 /// ConstantFoldsToSimpleInteger - If the specified expression does not fold 3370 /// to a constant, or if it does but contains a label, return false. If it 3371 /// constant folds return true and set the boolean result in Result. 3372 bool ConstantFoldsToSimpleInteger(const Expr *Cond, bool &Result, 3373 bool AllowLabels = false); 3374 3375 /// ConstantFoldsToSimpleInteger - If the specified expression does not fold 3376 /// to a constant, or if it does but contains a label, return false. If it 3377 /// constant folds return true and set the folded value. 3378 bool ConstantFoldsToSimpleInteger(const Expr *Cond, llvm::APSInt &Result, 3379 bool AllowLabels = false); 3380 3381 /// EmitBranchOnBoolExpr - Emit a branch on a boolean condition (e.g. for an 3382 /// if statement) to the specified blocks. Based on the condition, this might 3383 /// try to simplify the codegen of the conditional based on the branch. 3384 /// TrueCount should be the number of times we expect the condition to 3385 /// evaluate to true based on PGO data. 3386 void EmitBranchOnBoolExpr(const Expr *Cond, llvm::BasicBlock *TrueBlock, 3387 llvm::BasicBlock *FalseBlock, uint64_t TrueCount); 3388 3389 /// \brief Emit a description of a type in a format suitable for passing to 3390 /// a runtime sanitizer handler. 3391 llvm::Constant *EmitCheckTypeDescriptor(QualType T); 3392 3393 /// \brief Convert a value into a format suitable for passing to a runtime 3394 /// sanitizer handler. 3395 llvm::Value *EmitCheckValue(llvm::Value *V); 3396 3397 /// \brief Emit a description of a source location in a format suitable for 3398 /// passing to a runtime sanitizer handler. 3399 llvm::Constant *EmitCheckSourceLocation(SourceLocation Loc); 3400 3401 /// \brief Create a basic block that will call a handler function in a 3402 /// sanitizer runtime with the provided arguments, and create a conditional 3403 /// branch to it. 3404 void EmitCheck(ArrayRef<std::pair<llvm::Value *, SanitizerMask>> Checked, 3405 SanitizerHandler Check, ArrayRef<llvm::Constant *> StaticArgs, 3406 ArrayRef<llvm::Value *> DynamicArgs); 3407 3408 /// \brief Emit a slow path cross-DSO CFI check which calls __cfi_slowpath 3409 /// if Cond if false. 3410 void EmitCfiSlowPathCheck(SanitizerMask Kind, llvm::Value *Cond, 3411 llvm::ConstantInt *TypeId, llvm::Value *Ptr, 3412 ArrayRef<llvm::Constant *> StaticArgs); 3413 3414 /// \brief Create a basic block that will call the trap intrinsic, and emit a 3415 /// conditional branch to it, for the -ftrapv checks. 3416 void EmitTrapCheck(llvm::Value *Checked); 3417 3418 /// \brief Emit a call to trap or debugtrap and attach function attribute 3419 /// "trap-func-name" if specified. 3420 llvm::CallInst *EmitTrapCall(llvm::Intrinsic::ID IntrID); 3421 3422 /// \brief Emit a cross-DSO CFI failure handling function. 3423 void EmitCfiCheckFail(); 3424 3425 /// \brief Create a check for a function parameter that may potentially be 3426 /// declared as non-null. 3427 void EmitNonNullArgCheck(RValue RV, QualType ArgType, SourceLocation ArgLoc, 3428 const FunctionDecl *FD, unsigned ParmNum); 3429 3430 /// EmitCallArg - Emit a single call argument. 3431 void EmitCallArg(CallArgList &args, const Expr *E, QualType ArgType); 3432 3433 /// EmitDelegateCallArg - We are performing a delegate call; that 3434 /// is, the current function is delegating to another one. Produce 3435 /// a r-value suitable for passing the given parameter. 3436 void EmitDelegateCallArg(CallArgList &args, const VarDecl *param, 3437 SourceLocation loc); 3438 3439 /// SetFPAccuracy - Set the minimum required accuracy of the given floating 3440 /// point operation, expressed as the maximum relative error in ulp. 3441 void SetFPAccuracy(llvm::Value *Val, float Accuracy); 3442 3443 private: 3444 llvm::MDNode *getRangeForLoadFromType(QualType Ty); 3445 void EmitReturnOfRValue(RValue RV, QualType Ty); 3446 3447 void deferPlaceholderReplacement(llvm::Instruction *Old, llvm::Value *New); 3448 3449 llvm::SmallVector<std::pair<llvm::Instruction *, llvm::Value *>, 4> 3450 DeferredReplacements; 3451 3452 /// Set the address of a local variable. 3453 void setAddrOfLocalVar(const VarDecl *VD, Address Addr) { 3454 assert(!LocalDeclMap.count(VD) && "Decl already exists in LocalDeclMap!"); 3455 LocalDeclMap.insert({VD, Addr}); 3456 } 3457 3458 /// ExpandTypeFromArgs - Reconstruct a structure of type \arg Ty 3459 /// from function arguments into \arg Dst. See ABIArgInfo::Expand. 3460 /// 3461 /// \param AI - The first function argument of the expansion. 3462 void ExpandTypeFromArgs(QualType Ty, LValue Dst, 3463 SmallVectorImpl<llvm::Value *>::iterator &AI); 3464 3465 /// ExpandTypeToArgs - Expand an RValue \arg RV, with the LLVM type for \arg 3466 /// Ty, into individual arguments on the provided vector \arg IRCallArgs, 3467 /// starting at index \arg IRCallArgPos. See ABIArgInfo::Expand. 3468 void ExpandTypeToArgs(QualType Ty, RValue RV, llvm::FunctionType *IRFuncTy, 3469 SmallVectorImpl<llvm::Value *> &IRCallArgs, 3470 unsigned &IRCallArgPos); 3471 3472 llvm::Value* EmitAsmInput(const TargetInfo::ConstraintInfo &Info, 3473 const Expr *InputExpr, std::string &ConstraintStr); 3474 3475 llvm::Value* EmitAsmInputLValue(const TargetInfo::ConstraintInfo &Info, 3476 LValue InputValue, QualType InputType, 3477 std::string &ConstraintStr, 3478 SourceLocation Loc); 3479 3480 /// \brief Attempts to statically evaluate the object size of E. If that 3481 /// fails, emits code to figure the size of E out for us. This is 3482 /// pass_object_size aware. 3483 llvm::Value *evaluateOrEmitBuiltinObjectSize(const Expr *E, unsigned Type, 3484 llvm::IntegerType *ResType); 3485 3486 /// \brief Emits the size of E, as required by __builtin_object_size. This 3487 /// function is aware of pass_object_size parameters, and will act accordingly 3488 /// if E is a parameter with the pass_object_size attribute. 3489 llvm::Value *emitBuiltinObjectSize(const Expr *E, unsigned Type, 3490 llvm::IntegerType *ResType); 3491 3492 public: 3493 #ifndef NDEBUG 3494 // Determine whether the given argument is an Objective-C method 3495 // that may have type parameters in its signature. 3496 static bool isObjCMethodWithTypeParams(const ObjCMethodDecl *method) { 3497 const DeclContext *dc = method->getDeclContext(); 3498 if (const ObjCInterfaceDecl *classDecl= dyn_cast<ObjCInterfaceDecl>(dc)) { 3499 return classDecl->getTypeParamListAsWritten(); 3500 } 3501 3502 if (const ObjCCategoryDecl *catDecl = dyn_cast<ObjCCategoryDecl>(dc)) { 3503 return catDecl->getTypeParamList(); 3504 } 3505 3506 return false; 3507 } 3508 3509 template<typename T> 3510 static bool isObjCMethodWithTypeParams(const T *) { return false; } 3511 #endif 3512 3513 enum class EvaluationOrder { 3514 ///! No language constraints on evaluation order. 3515 Default, 3516 ///! Language semantics require left-to-right evaluation. 3517 ForceLeftToRight, 3518 ///! Language semantics require right-to-left evaluation. 3519 ForceRightToLeft 3520 }; 3521 3522 /// EmitCallArgs - Emit call arguments for a function. 3523 template <typename T> 3524 void EmitCallArgs(CallArgList &Args, const T *CallArgTypeInfo, 3525 llvm::iterator_range<CallExpr::const_arg_iterator> ArgRange, 3526 const FunctionDecl *CalleeDecl = nullptr, 3527 unsigned ParamsToSkip = 0, 3528 EvaluationOrder Order = EvaluationOrder::Default) { 3529 SmallVector<QualType, 16> ArgTypes; 3530 CallExpr::const_arg_iterator Arg = ArgRange.begin(); 3531 3532 assert((ParamsToSkip == 0 || CallArgTypeInfo) && 3533 "Can't skip parameters if type info is not provided"); 3534 if (CallArgTypeInfo) { 3535 #ifndef NDEBUG 3536 bool isGenericMethod = isObjCMethodWithTypeParams(CallArgTypeInfo); 3537 #endif 3538 3539 // First, use the argument types that the type info knows about 3540 for (auto I = CallArgTypeInfo->param_type_begin() + ParamsToSkip, 3541 E = CallArgTypeInfo->param_type_end(); 3542 I != E; ++I, ++Arg) { 3543 assert(Arg != ArgRange.end() && "Running over edge of argument list!"); 3544 assert((isGenericMethod || 3545 ((*I)->isVariablyModifiedType() || 3546 (*I).getNonReferenceType()->isObjCRetainableType() || 3547 getContext() 3548 .getCanonicalType((*I).getNonReferenceType()) 3549 .getTypePtr() == 3550 getContext() 3551 .getCanonicalType((*Arg)->getType()) 3552 .getTypePtr())) && 3553 "type mismatch in call argument!"); 3554 ArgTypes.push_back(*I); 3555 } 3556 } 3557 3558 // Either we've emitted all the call args, or we have a call to variadic 3559 // function. 3560 assert((Arg == ArgRange.end() || !CallArgTypeInfo || 3561 CallArgTypeInfo->isVariadic()) && 3562 "Extra arguments in non-variadic function!"); 3563 3564 // If we still have any arguments, emit them using the type of the argument. 3565 for (auto *A : llvm::make_range(Arg, ArgRange.end())) 3566 ArgTypes.push_back(getVarArgType(A)); 3567 3568 EmitCallArgs(Args, ArgTypes, ArgRange, CalleeDecl, ParamsToSkip, Order); 3569 } 3570 3571 void EmitCallArgs(CallArgList &Args, ArrayRef<QualType> ArgTypes, 3572 llvm::iterator_range<CallExpr::const_arg_iterator> ArgRange, 3573 const FunctionDecl *CalleeDecl = nullptr, 3574 unsigned ParamsToSkip = 0, 3575 EvaluationOrder Order = EvaluationOrder::Default); 3576 3577 /// EmitPointerWithAlignment - Given an expression with a pointer 3578 /// type, emit the value and compute our best estimate of the 3579 /// alignment of the pointee. 3580 /// 3581 /// Note that this function will conservatively fall back on the type 3582 /// when it doesn't 3583 /// 3584 /// \param Source - If non-null, this will be initialized with 3585 /// information about the source of the alignment. Note that this 3586 /// function will conservatively fall back on the type when it 3587 /// doesn't recognize the expression, which means that sometimes 3588 /// 3589 /// a worst-case One 3590 /// reasonable way to use this information is when there's a 3591 /// language guarantee that the pointer must be aligned to some 3592 /// stricter value, and we're simply trying to ensure that 3593 /// sufficiently obvious uses of under-aligned objects don't get 3594 /// miscompiled; for example, a placement new into the address of 3595 /// a local variable. In such a case, it's quite reasonable to 3596 /// just ignore the returned alignment when it isn't from an 3597 /// explicit source. 3598 Address EmitPointerWithAlignment(const Expr *Addr, 3599 AlignmentSource *Source = nullptr); 3600 3601 void EmitSanitizerStatReport(llvm::SanitizerStatKind SSK); 3602 3603 private: 3604 QualType getVarArgType(const Expr *Arg); 3605 3606 const TargetCodeGenInfo &getTargetHooks() const { 3607 return CGM.getTargetCodeGenInfo(); 3608 } 3609 3610 void EmitDeclMetadata(); 3611 3612 BlockByrefHelpers *buildByrefHelpers(llvm::StructType &byrefType, 3613 const AutoVarEmission &emission); 3614 3615 void AddObjCARCExceptionMetadata(llvm::Instruction *Inst); 3616 3617 llvm::Value *GetValueForARMHint(unsigned BuiltinID); 3618 }; 3619 3620 /// Helper class with most of the code for saving a value for a 3621 /// conditional expression cleanup. 3622 struct DominatingLLVMValue { 3623 typedef llvm::PointerIntPair<llvm::Value*, 1, bool> saved_type; 3624 3625 /// Answer whether the given value needs extra work to be saved. 3626 static bool needsSaving(llvm::Value *value) { 3627 // If it's not an instruction, we don't need to save. 3628 if (!isa<llvm::Instruction>(value)) return false; 3629 3630 // If it's an instruction in the entry block, we don't need to save. 3631 llvm::BasicBlock *block = cast<llvm::Instruction>(value)->getParent(); 3632 return (block != &block->getParent()->getEntryBlock()); 3633 } 3634 3635 /// Try to save the given value. 3636 static saved_type save(CodeGenFunction &CGF, llvm::Value *value) { 3637 if (!needsSaving(value)) return saved_type(value, false); 3638 3639 // Otherwise, we need an alloca. 3640 auto align = CharUnits::fromQuantity( 3641 CGF.CGM.getDataLayout().getPrefTypeAlignment(value->getType())); 3642 Address alloca = 3643 CGF.CreateTempAlloca(value->getType(), align, "cond-cleanup.save"); 3644 CGF.Builder.CreateStore(value, alloca); 3645 3646 return saved_type(alloca.getPointer(), true); 3647 } 3648 3649 static llvm::Value *restore(CodeGenFunction &CGF, saved_type value) { 3650 // If the value says it wasn't saved, trust that it's still dominating. 3651 if (!value.getInt()) return value.getPointer(); 3652 3653 // Otherwise, it should be an alloca instruction, as set up in save(). 3654 auto alloca = cast<llvm::AllocaInst>(value.getPointer()); 3655 return CGF.Builder.CreateAlignedLoad(alloca, alloca->getAlignment()); 3656 } 3657 }; 3658 3659 /// A partial specialization of DominatingValue for llvm::Values that 3660 /// might be llvm::Instructions. 3661 template <class T> struct DominatingPointer<T,true> : DominatingLLVMValue { 3662 typedef T *type; 3663 static type restore(CodeGenFunction &CGF, saved_type value) { 3664 return static_cast<T*>(DominatingLLVMValue::restore(CGF, value)); 3665 } 3666 }; 3667 3668 /// A specialization of DominatingValue for Address. 3669 template <> struct DominatingValue<Address> { 3670 typedef Address type; 3671 3672 struct saved_type { 3673 DominatingLLVMValue::saved_type SavedValue; 3674 CharUnits Alignment; 3675 }; 3676 3677 static bool needsSaving(type value) { 3678 return DominatingLLVMValue::needsSaving(value.getPointer()); 3679 } 3680 static saved_type save(CodeGenFunction &CGF, type value) { 3681 return { DominatingLLVMValue::save(CGF, value.getPointer()), 3682 value.getAlignment() }; 3683 } 3684 static type restore(CodeGenFunction &CGF, saved_type value) { 3685 return Address(DominatingLLVMValue::restore(CGF, value.SavedValue), 3686 value.Alignment); 3687 } 3688 }; 3689 3690 /// A specialization of DominatingValue for RValue. 3691 template <> struct DominatingValue<RValue> { 3692 typedef RValue type; 3693 class saved_type { 3694 enum Kind { ScalarLiteral, ScalarAddress, AggregateLiteral, 3695 AggregateAddress, ComplexAddress }; 3696 3697 llvm::Value *Value; 3698 unsigned K : 3; 3699 unsigned Align : 29; 3700 saved_type(llvm::Value *v, Kind k, unsigned a = 0) 3701 : Value(v), K(k), Align(a) {} 3702 3703 public: 3704 static bool needsSaving(RValue value); 3705 static saved_type save(CodeGenFunction &CGF, RValue value); 3706 RValue restore(CodeGenFunction &CGF); 3707 3708 // implementations in CGCleanup.cpp 3709 }; 3710 3711 static bool needsSaving(type value) { 3712 return saved_type::needsSaving(value); 3713 } 3714 static saved_type save(CodeGenFunction &CGF, type value) { 3715 return saved_type::save(CGF, value); 3716 } 3717 static type restore(CodeGenFunction &CGF, saved_type value) { 3718 return value.restore(CGF); 3719 } 3720 }; 3721 3722 } // end namespace CodeGen 3723 } // end namespace clang 3724 3725 #endif 3726