1 //===-- CodeGenFunction.h - Per-Function state for LLVM CodeGen -*- C++ -*-===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This is the internal per-function state used for llvm translation. 10 // 11 //===----------------------------------------------------------------------===// 12 13 #ifndef LLVM_CLANG_LIB_CODEGEN_CODEGENFUNCTION_H 14 #define LLVM_CLANG_LIB_CODEGEN_CODEGENFUNCTION_H 15 16 #include "CGBuilder.h" 17 #include "CGDebugInfo.h" 18 #include "CGLoopInfo.h" 19 #include "CGValue.h" 20 #include "CodeGenModule.h" 21 #include "CodeGenPGO.h" 22 #include "EHScopeStack.h" 23 #include "VarBypassDetector.h" 24 #include "clang/AST/CharUnits.h" 25 #include "clang/AST/CurrentSourceLocExprScope.h" 26 #include "clang/AST/ExprCXX.h" 27 #include "clang/AST/ExprObjC.h" 28 #include "clang/AST/ExprOpenMP.h" 29 #include "clang/AST/Type.h" 30 #include "clang/Basic/ABI.h" 31 #include "clang/Basic/CapturedStmt.h" 32 #include "clang/Basic/CodeGenOptions.h" 33 #include "clang/Basic/OpenMPKinds.h" 34 #include "clang/Basic/TargetInfo.h" 35 #include "llvm/ADT/ArrayRef.h" 36 #include "llvm/ADT/DenseMap.h" 37 #include "llvm/ADT/MapVector.h" 38 #include "llvm/ADT/SmallVector.h" 39 #include "llvm/Frontend/OpenMP/OMPIRBuilder.h" 40 #include "llvm/IR/ValueHandle.h" 41 #include "llvm/Support/Debug.h" 42 #include "llvm/Transforms/Utils/SanitizerStats.h" 43 44 namespace llvm { 45 class BasicBlock; 46 class LLVMContext; 47 class MDNode; 48 class Module; 49 class SwitchInst; 50 class Twine; 51 class Value; 52 } 53 54 namespace clang { 55 class ASTContext; 56 class BlockDecl; 57 class CXXDestructorDecl; 58 class CXXForRangeStmt; 59 class CXXTryStmt; 60 class Decl; 61 class LabelDecl; 62 class EnumConstantDecl; 63 class FunctionDecl; 64 class FunctionProtoType; 65 class LabelStmt; 66 class ObjCContainerDecl; 67 class ObjCInterfaceDecl; 68 class ObjCIvarDecl; 69 class ObjCMethodDecl; 70 class ObjCImplementationDecl; 71 class ObjCPropertyImplDecl; 72 class TargetInfo; 73 class VarDecl; 74 class ObjCForCollectionStmt; 75 class ObjCAtTryStmt; 76 class ObjCAtThrowStmt; 77 class ObjCAtSynchronizedStmt; 78 class ObjCAutoreleasePoolStmt; 79 class OMPUseDevicePtrClause; 80 class OMPUseDeviceAddrClause; 81 class ReturnsNonNullAttr; 82 class SVETypeFlags; 83 84 namespace analyze_os_log { 85 class OSLogBufferLayout; 86 } 87 88 namespace CodeGen { 89 class CodeGenTypes; 90 class CGCallee; 91 class CGFunctionInfo; 92 class CGRecordLayout; 93 class CGBlockInfo; 94 class CGCXXABI; 95 class BlockByrefHelpers; 96 class BlockByrefInfo; 97 class BlockFlags; 98 class BlockFieldFlags; 99 class RegionCodeGenTy; 100 class TargetCodeGenInfo; 101 struct OMPTaskDataTy; 102 struct CGCoroData; 103 104 /// The kind of evaluation to perform on values of a particular 105 /// type. Basically, is the code in CGExprScalar, CGExprComplex, or 106 /// CGExprAgg? 107 /// 108 /// TODO: should vectors maybe be split out into their own thing? 109 enum TypeEvaluationKind { 110 TEK_Scalar, 111 TEK_Complex, 112 TEK_Aggregate 113 }; 114 115 #define LIST_SANITIZER_CHECKS \ 116 SANITIZER_CHECK(AddOverflow, add_overflow, 0) \ 117 SANITIZER_CHECK(BuiltinUnreachable, builtin_unreachable, 0) \ 118 SANITIZER_CHECK(CFICheckFail, cfi_check_fail, 0) \ 119 SANITIZER_CHECK(DivremOverflow, divrem_overflow, 0) \ 120 SANITIZER_CHECK(DynamicTypeCacheMiss, dynamic_type_cache_miss, 0) \ 121 SANITIZER_CHECK(FloatCastOverflow, float_cast_overflow, 0) \ 122 SANITIZER_CHECK(FunctionTypeMismatch, function_type_mismatch, 1) \ 123 SANITIZER_CHECK(ImplicitConversion, implicit_conversion, 0) \ 124 SANITIZER_CHECK(InvalidBuiltin, invalid_builtin, 0) \ 125 SANITIZER_CHECK(LoadInvalidValue, load_invalid_value, 0) \ 126 SANITIZER_CHECK(MissingReturn, missing_return, 0) \ 127 SANITIZER_CHECK(MulOverflow, mul_overflow, 0) \ 128 SANITIZER_CHECK(NegateOverflow, negate_overflow, 0) \ 129 SANITIZER_CHECK(NullabilityArg, nullability_arg, 0) \ 130 SANITIZER_CHECK(NullabilityReturn, nullability_return, 1) \ 131 SANITIZER_CHECK(NonnullArg, nonnull_arg, 0) \ 132 SANITIZER_CHECK(NonnullReturn, nonnull_return, 1) \ 133 SANITIZER_CHECK(OutOfBounds, out_of_bounds, 0) \ 134 SANITIZER_CHECK(PointerOverflow, pointer_overflow, 0) \ 135 SANITIZER_CHECK(ShiftOutOfBounds, shift_out_of_bounds, 0) \ 136 SANITIZER_CHECK(SubOverflow, sub_overflow, 0) \ 137 SANITIZER_CHECK(TypeMismatch, type_mismatch, 1) \ 138 SANITIZER_CHECK(AlignmentAssumption, alignment_assumption, 0) \ 139 SANITIZER_CHECK(VLABoundNotPositive, vla_bound_not_positive, 0) 140 141 enum SanitizerHandler { 142 #define SANITIZER_CHECK(Enum, Name, Version) Enum, 143 LIST_SANITIZER_CHECKS 144 #undef SANITIZER_CHECK 145 }; 146 147 /// Helper class with most of the code for saving a value for a 148 /// conditional expression cleanup. 149 struct DominatingLLVMValue { 150 typedef llvm::PointerIntPair<llvm::Value*, 1, bool> saved_type; 151 152 /// Answer whether the given value needs extra work to be saved. 153 static bool needsSaving(llvm::Value *value) { 154 // If it's not an instruction, we don't need to save. 155 if (!isa<llvm::Instruction>(value)) return false; 156 157 // If it's an instruction in the entry block, we don't need to save. 158 llvm::BasicBlock *block = cast<llvm::Instruction>(value)->getParent(); 159 return (block != &block->getParent()->getEntryBlock()); 160 } 161 162 static saved_type save(CodeGenFunction &CGF, llvm::Value *value); 163 static llvm::Value *restore(CodeGenFunction &CGF, saved_type value); 164 }; 165 166 /// A partial specialization of DominatingValue for llvm::Values that 167 /// might be llvm::Instructions. 168 template <class T> struct DominatingPointer<T,true> : DominatingLLVMValue { 169 typedef T *type; 170 static type restore(CodeGenFunction &CGF, saved_type value) { 171 return static_cast<T*>(DominatingLLVMValue::restore(CGF, value)); 172 } 173 }; 174 175 /// A specialization of DominatingValue for Address. 176 template <> struct DominatingValue<Address> { 177 typedef Address type; 178 179 struct saved_type { 180 DominatingLLVMValue::saved_type SavedValue; 181 CharUnits Alignment; 182 }; 183 184 static bool needsSaving(type value) { 185 return DominatingLLVMValue::needsSaving(value.getPointer()); 186 } 187 static saved_type save(CodeGenFunction &CGF, type value) { 188 return { DominatingLLVMValue::save(CGF, value.getPointer()), 189 value.getAlignment() }; 190 } 191 static type restore(CodeGenFunction &CGF, saved_type value) { 192 return Address(DominatingLLVMValue::restore(CGF, value.SavedValue), 193 value.Alignment); 194 } 195 }; 196 197 /// A specialization of DominatingValue for RValue. 198 template <> struct DominatingValue<RValue> { 199 typedef RValue type; 200 class saved_type { 201 enum Kind { ScalarLiteral, ScalarAddress, AggregateLiteral, 202 AggregateAddress, ComplexAddress }; 203 204 llvm::Value *Value; 205 unsigned K : 3; 206 unsigned Align : 29; 207 saved_type(llvm::Value *v, Kind k, unsigned a = 0) 208 : Value(v), K(k), Align(a) {} 209 210 public: 211 static bool needsSaving(RValue value); 212 static saved_type save(CodeGenFunction &CGF, RValue value); 213 RValue restore(CodeGenFunction &CGF); 214 215 // implementations in CGCleanup.cpp 216 }; 217 218 static bool needsSaving(type value) { 219 return saved_type::needsSaving(value); 220 } 221 static saved_type save(CodeGenFunction &CGF, type value) { 222 return saved_type::save(CGF, value); 223 } 224 static type restore(CodeGenFunction &CGF, saved_type value) { 225 return value.restore(CGF); 226 } 227 }; 228 229 /// CodeGenFunction - This class organizes the per-function state that is used 230 /// while generating LLVM code. 231 class CodeGenFunction : public CodeGenTypeCache { 232 CodeGenFunction(const CodeGenFunction &) = delete; 233 void operator=(const CodeGenFunction &) = delete; 234 235 friend class CGCXXABI; 236 public: 237 /// A jump destination is an abstract label, branching to which may 238 /// require a jump out through normal cleanups. 239 struct JumpDest { 240 JumpDest() : Block(nullptr), ScopeDepth(), Index(0) {} 241 JumpDest(llvm::BasicBlock *Block, 242 EHScopeStack::stable_iterator Depth, 243 unsigned Index) 244 : Block(Block), ScopeDepth(Depth), Index(Index) {} 245 246 bool isValid() const { return Block != nullptr; } 247 llvm::BasicBlock *getBlock() const { return Block; } 248 EHScopeStack::stable_iterator getScopeDepth() const { return ScopeDepth; } 249 unsigned getDestIndex() const { return Index; } 250 251 // This should be used cautiously. 252 void setScopeDepth(EHScopeStack::stable_iterator depth) { 253 ScopeDepth = depth; 254 } 255 256 private: 257 llvm::BasicBlock *Block; 258 EHScopeStack::stable_iterator ScopeDepth; 259 unsigned Index; 260 }; 261 262 // Helper class for the OpenMP IR Builder. Allows reusability of code used for 263 // region body, and finalization codegen callbacks. This will class will also 264 // contain privatization functions used by the privatization call backs 265 struct OMPBuilderCBHelpers { 266 267 using InsertPointTy = llvm::OpenMPIRBuilder::InsertPointTy; 268 269 /// Emit the Finalization for an OMP region 270 /// \param CGF The Codegen function this belongs to 271 /// \param IP Insertion point for generating the finalization code. 272 static void FinalizeOMPRegion(CodeGenFunction &CGF, InsertPointTy IP) { 273 CGBuilderTy::InsertPointGuard IPG(CGF.Builder); 274 assert(IP.getBlock()->end() != IP.getPoint() && 275 "OpenMP IR Builder should cause terminated block!"); 276 277 llvm::BasicBlock *IPBB = IP.getBlock(); 278 llvm::BasicBlock *DestBB = IPBB->getUniqueSuccessor(); 279 assert(DestBB && "Finalization block should have one successor!"); 280 281 // erase and replace with cleanup branch. 282 IPBB->getTerminator()->eraseFromParent(); 283 CGF.Builder.SetInsertPoint(IPBB); 284 CodeGenFunction::JumpDest Dest = CGF.getJumpDestInCurrentScope(DestBB); 285 CGF.EmitBranchThroughCleanup(Dest); 286 } 287 288 /// Emit the body of an OMP region 289 /// \param CGF The Codegen function this belongs to 290 /// \param RegionBodyStmt The body statement for the OpenMP region being 291 /// generated 292 /// \param CodeGenIP Insertion point for generating the body code. 293 /// \param FiniBB The finalization basic block 294 static void EmitOMPRegionBody(CodeGenFunction &CGF, 295 const Stmt *RegionBodyStmt, 296 InsertPointTy CodeGenIP, 297 llvm::BasicBlock &FiniBB) { 298 llvm::BasicBlock *CodeGenIPBB = CodeGenIP.getBlock(); 299 if (llvm::Instruction *CodeGenIPBBTI = CodeGenIPBB->getTerminator()) 300 CodeGenIPBBTI->eraseFromParent(); 301 302 CGF.Builder.SetInsertPoint(CodeGenIPBB); 303 304 CGF.EmitStmt(RegionBodyStmt); 305 306 if (CGF.Builder.saveIP().isSet()) 307 CGF.Builder.CreateBr(&FiniBB); 308 } 309 310 /// RAII for preserving necessary info during Outlined region body codegen. 311 class OutlinedRegionBodyRAII { 312 313 llvm::AssertingVH<llvm::Instruction> OldAllocaIP; 314 CodeGenFunction::JumpDest OldReturnBlock; 315 CodeGenFunction &CGF; 316 317 public: 318 OutlinedRegionBodyRAII(CodeGenFunction &cgf, InsertPointTy &AllocaIP, 319 llvm::BasicBlock &RetBB) 320 : CGF(cgf) { 321 assert(AllocaIP.isSet() && 322 "Must specify Insertion point for allocas of outlined function"); 323 OldAllocaIP = CGF.AllocaInsertPt; 324 CGF.AllocaInsertPt = &*AllocaIP.getPoint(); 325 326 OldReturnBlock = CGF.ReturnBlock; 327 CGF.ReturnBlock = CGF.getJumpDestInCurrentScope(&RetBB); 328 } 329 330 ~OutlinedRegionBodyRAII() { 331 CGF.AllocaInsertPt = OldAllocaIP; 332 CGF.ReturnBlock = OldReturnBlock; 333 } 334 }; 335 336 /// RAII for preserving necessary info during inlined region body codegen. 337 class InlinedRegionBodyRAII { 338 339 llvm::AssertingVH<llvm::Instruction> OldAllocaIP; 340 CodeGenFunction &CGF; 341 342 public: 343 InlinedRegionBodyRAII(CodeGenFunction &cgf, InsertPointTy &AllocaIP, 344 llvm::BasicBlock &FiniBB) 345 : CGF(cgf) { 346 // Alloca insertion block should be in the entry block of the containing 347 // function so it expects an empty AllocaIP in which case will reuse the 348 // old alloca insertion point, or a new AllocaIP in the same block as 349 // the old one 350 assert((!AllocaIP.isSet() || 351 CGF.AllocaInsertPt->getParent() == AllocaIP.getBlock()) && 352 "Insertion point should be in the entry block of containing " 353 "function!"); 354 OldAllocaIP = CGF.AllocaInsertPt; 355 if (AllocaIP.isSet()) 356 CGF.AllocaInsertPt = &*AllocaIP.getPoint(); 357 358 // TODO: Remove the call, after making sure the counter is not used by 359 // the EHStack. 360 // Since this is an inlined region, it should not modify the 361 // ReturnBlock, and should reuse the one for the enclosing outlined 362 // region. So, the JumpDest being return by the function is discarded 363 (void)CGF.getJumpDestInCurrentScope(&FiniBB); 364 } 365 366 ~InlinedRegionBodyRAII() { CGF.AllocaInsertPt = OldAllocaIP; } 367 }; 368 }; 369 370 CodeGenModule &CGM; // Per-module state. 371 const TargetInfo &Target; 372 373 typedef std::pair<llvm::Value *, llvm::Value *> ComplexPairTy; 374 LoopInfoStack LoopStack; 375 CGBuilderTy Builder; 376 377 // Stores variables for which we can't generate correct lifetime markers 378 // because of jumps. 379 VarBypassDetector Bypasses; 380 381 // CodeGen lambda for loops and support for ordered clause 382 typedef llvm::function_ref<void(CodeGenFunction &, const OMPLoopDirective &, 383 JumpDest)> 384 CodeGenLoopTy; 385 typedef llvm::function_ref<void(CodeGenFunction &, SourceLocation, 386 const unsigned, const bool)> 387 CodeGenOrderedTy; 388 389 // Codegen lambda for loop bounds in worksharing loop constructs 390 typedef llvm::function_ref<std::pair<LValue, LValue>( 391 CodeGenFunction &, const OMPExecutableDirective &S)> 392 CodeGenLoopBoundsTy; 393 394 // Codegen lambda for loop bounds in dispatch-based loop implementation 395 typedef llvm::function_ref<std::pair<llvm::Value *, llvm::Value *>( 396 CodeGenFunction &, const OMPExecutableDirective &S, Address LB, 397 Address UB)> 398 CodeGenDispatchBoundsTy; 399 400 /// CGBuilder insert helper. This function is called after an 401 /// instruction is created using Builder. 402 void InsertHelper(llvm::Instruction *I, const llvm::Twine &Name, 403 llvm::BasicBlock *BB, 404 llvm::BasicBlock::iterator InsertPt) const; 405 406 /// CurFuncDecl - Holds the Decl for the current outermost 407 /// non-closure context. 408 const Decl *CurFuncDecl; 409 /// CurCodeDecl - This is the inner-most code context, which includes blocks. 410 const Decl *CurCodeDecl; 411 const CGFunctionInfo *CurFnInfo; 412 QualType FnRetTy; 413 llvm::Function *CurFn = nullptr; 414 415 // Holds coroutine data if the current function is a coroutine. We use a 416 // wrapper to manage its lifetime, so that we don't have to define CGCoroData 417 // in this header. 418 struct CGCoroInfo { 419 std::unique_ptr<CGCoroData> Data; 420 CGCoroInfo(); 421 ~CGCoroInfo(); 422 }; 423 CGCoroInfo CurCoro; 424 425 bool isCoroutine() const { 426 return CurCoro.Data != nullptr; 427 } 428 429 /// CurGD - The GlobalDecl for the current function being compiled. 430 GlobalDecl CurGD; 431 432 /// PrologueCleanupDepth - The cleanup depth enclosing all the 433 /// cleanups associated with the parameters. 434 EHScopeStack::stable_iterator PrologueCleanupDepth; 435 436 /// ReturnBlock - Unified return block. 437 JumpDest ReturnBlock; 438 439 /// ReturnValue - The temporary alloca to hold the return 440 /// value. This is invalid iff the function has no return value. 441 Address ReturnValue = Address::invalid(); 442 443 /// ReturnValuePointer - The temporary alloca to hold a pointer to sret. 444 /// This is invalid if sret is not in use. 445 Address ReturnValuePointer = Address::invalid(); 446 447 /// If a return statement is being visited, this holds the return statment's 448 /// result expression. 449 const Expr *RetExpr = nullptr; 450 451 /// Return true if a label was seen in the current scope. 452 bool hasLabelBeenSeenInCurrentScope() const { 453 if (CurLexicalScope) 454 return CurLexicalScope->hasLabels(); 455 return !LabelMap.empty(); 456 } 457 458 /// AllocaInsertPoint - This is an instruction in the entry block before which 459 /// we prefer to insert allocas. 460 llvm::AssertingVH<llvm::Instruction> AllocaInsertPt; 461 462 /// API for captured statement code generation. 463 class CGCapturedStmtInfo { 464 public: 465 explicit CGCapturedStmtInfo(CapturedRegionKind K = CR_Default) 466 : Kind(K), ThisValue(nullptr), CXXThisFieldDecl(nullptr) {} 467 explicit CGCapturedStmtInfo(const CapturedStmt &S, 468 CapturedRegionKind K = CR_Default) 469 : Kind(K), ThisValue(nullptr), CXXThisFieldDecl(nullptr) { 470 471 RecordDecl::field_iterator Field = 472 S.getCapturedRecordDecl()->field_begin(); 473 for (CapturedStmt::const_capture_iterator I = S.capture_begin(), 474 E = S.capture_end(); 475 I != E; ++I, ++Field) { 476 if (I->capturesThis()) 477 CXXThisFieldDecl = *Field; 478 else if (I->capturesVariable()) 479 CaptureFields[I->getCapturedVar()->getCanonicalDecl()] = *Field; 480 else if (I->capturesVariableByCopy()) 481 CaptureFields[I->getCapturedVar()->getCanonicalDecl()] = *Field; 482 } 483 } 484 485 virtual ~CGCapturedStmtInfo(); 486 487 CapturedRegionKind getKind() const { return Kind; } 488 489 virtual void setContextValue(llvm::Value *V) { ThisValue = V; } 490 // Retrieve the value of the context parameter. 491 virtual llvm::Value *getContextValue() const { return ThisValue; } 492 493 /// Lookup the captured field decl for a variable. 494 virtual const FieldDecl *lookup(const VarDecl *VD) const { 495 return CaptureFields.lookup(VD->getCanonicalDecl()); 496 } 497 498 bool isCXXThisExprCaptured() const { return getThisFieldDecl() != nullptr; } 499 virtual FieldDecl *getThisFieldDecl() const { return CXXThisFieldDecl; } 500 501 static bool classof(const CGCapturedStmtInfo *) { 502 return true; 503 } 504 505 /// Emit the captured statement body. 506 virtual void EmitBody(CodeGenFunction &CGF, const Stmt *S) { 507 CGF.incrementProfileCounter(S); 508 CGF.EmitStmt(S); 509 } 510 511 /// Get the name of the capture helper. 512 virtual StringRef getHelperName() const { return "__captured_stmt"; } 513 514 private: 515 /// The kind of captured statement being generated. 516 CapturedRegionKind Kind; 517 518 /// Keep the map between VarDecl and FieldDecl. 519 llvm::SmallDenseMap<const VarDecl *, FieldDecl *> CaptureFields; 520 521 /// The base address of the captured record, passed in as the first 522 /// argument of the parallel region function. 523 llvm::Value *ThisValue; 524 525 /// Captured 'this' type. 526 FieldDecl *CXXThisFieldDecl; 527 }; 528 CGCapturedStmtInfo *CapturedStmtInfo = nullptr; 529 530 /// RAII for correct setting/restoring of CapturedStmtInfo. 531 class CGCapturedStmtRAII { 532 private: 533 CodeGenFunction &CGF; 534 CGCapturedStmtInfo *PrevCapturedStmtInfo; 535 public: 536 CGCapturedStmtRAII(CodeGenFunction &CGF, 537 CGCapturedStmtInfo *NewCapturedStmtInfo) 538 : CGF(CGF), PrevCapturedStmtInfo(CGF.CapturedStmtInfo) { 539 CGF.CapturedStmtInfo = NewCapturedStmtInfo; 540 } 541 ~CGCapturedStmtRAII() { CGF.CapturedStmtInfo = PrevCapturedStmtInfo; } 542 }; 543 544 /// An abstract representation of regular/ObjC call/message targets. 545 class AbstractCallee { 546 /// The function declaration of the callee. 547 const Decl *CalleeDecl; 548 549 public: 550 AbstractCallee() : CalleeDecl(nullptr) {} 551 AbstractCallee(const FunctionDecl *FD) : CalleeDecl(FD) {} 552 AbstractCallee(const ObjCMethodDecl *OMD) : CalleeDecl(OMD) {} 553 bool hasFunctionDecl() const { 554 return dyn_cast_or_null<FunctionDecl>(CalleeDecl); 555 } 556 const Decl *getDecl() const { return CalleeDecl; } 557 unsigned getNumParams() const { 558 if (const auto *FD = dyn_cast<FunctionDecl>(CalleeDecl)) 559 return FD->getNumParams(); 560 return cast<ObjCMethodDecl>(CalleeDecl)->param_size(); 561 } 562 const ParmVarDecl *getParamDecl(unsigned I) const { 563 if (const auto *FD = dyn_cast<FunctionDecl>(CalleeDecl)) 564 return FD->getParamDecl(I); 565 return *(cast<ObjCMethodDecl>(CalleeDecl)->param_begin() + I); 566 } 567 }; 568 569 /// Sanitizers enabled for this function. 570 SanitizerSet SanOpts; 571 572 /// True if CodeGen currently emits code implementing sanitizer checks. 573 bool IsSanitizerScope = false; 574 575 /// RAII object to set/unset CodeGenFunction::IsSanitizerScope. 576 class SanitizerScope { 577 CodeGenFunction *CGF; 578 public: 579 SanitizerScope(CodeGenFunction *CGF); 580 ~SanitizerScope(); 581 }; 582 583 /// In C++, whether we are code generating a thunk. This controls whether we 584 /// should emit cleanups. 585 bool CurFuncIsThunk = false; 586 587 /// In ARC, whether we should autorelease the return value. 588 bool AutoreleaseResult = false; 589 590 /// Whether we processed a Microsoft-style asm block during CodeGen. These can 591 /// potentially set the return value. 592 bool SawAsmBlock = false; 593 594 const NamedDecl *CurSEHParent = nullptr; 595 596 /// True if the current function is an outlined SEH helper. This can be a 597 /// finally block or filter expression. 598 bool IsOutlinedSEHHelper = false; 599 600 /// True if CodeGen currently emits code inside presereved access index 601 /// region. 602 bool IsInPreservedAIRegion = false; 603 604 /// True if the current statement has nomerge attribute. 605 bool InNoMergeAttributedStmt = false; 606 607 const CodeGen::CGBlockInfo *BlockInfo = nullptr; 608 llvm::Value *BlockPointer = nullptr; 609 610 llvm::DenseMap<const VarDecl *, FieldDecl *> LambdaCaptureFields; 611 FieldDecl *LambdaThisCaptureField = nullptr; 612 613 /// A mapping from NRVO variables to the flags used to indicate 614 /// when the NRVO has been applied to this variable. 615 llvm::DenseMap<const VarDecl *, llvm::Value *> NRVOFlags; 616 617 EHScopeStack EHStack; 618 llvm::SmallVector<char, 256> LifetimeExtendedCleanupStack; 619 llvm::SmallVector<const JumpDest *, 2> SEHTryEpilogueStack; 620 621 llvm::Instruction *CurrentFuncletPad = nullptr; 622 623 class CallLifetimeEnd final : public EHScopeStack::Cleanup { 624 llvm::Value *Addr; 625 llvm::Value *Size; 626 627 public: 628 CallLifetimeEnd(Address addr, llvm::Value *size) 629 : Addr(addr.getPointer()), Size(size) {} 630 631 void Emit(CodeGenFunction &CGF, Flags flags) override { 632 CGF.EmitLifetimeEnd(Size, Addr); 633 } 634 }; 635 636 /// Header for data within LifetimeExtendedCleanupStack. 637 struct LifetimeExtendedCleanupHeader { 638 /// The size of the following cleanup object. 639 unsigned Size; 640 /// The kind of cleanup to push: a value from the CleanupKind enumeration. 641 unsigned Kind : 31; 642 /// Whether this is a conditional cleanup. 643 unsigned IsConditional : 1; 644 645 size_t getSize() const { return Size; } 646 CleanupKind getKind() const { return (CleanupKind)Kind; } 647 bool isConditional() const { return IsConditional; } 648 }; 649 650 /// i32s containing the indexes of the cleanup destinations. 651 Address NormalCleanupDest = Address::invalid(); 652 653 unsigned NextCleanupDestIndex = 1; 654 655 /// EHResumeBlock - Unified block containing a call to llvm.eh.resume. 656 llvm::BasicBlock *EHResumeBlock = nullptr; 657 658 /// The exception slot. All landing pads write the current exception pointer 659 /// into this alloca. 660 llvm::Value *ExceptionSlot = nullptr; 661 662 /// The selector slot. Under the MandatoryCleanup model, all landing pads 663 /// write the current selector value into this alloca. 664 llvm::AllocaInst *EHSelectorSlot = nullptr; 665 666 /// A stack of exception code slots. Entering an __except block pushes a slot 667 /// on the stack and leaving pops one. The __exception_code() intrinsic loads 668 /// a value from the top of the stack. 669 SmallVector<Address, 1> SEHCodeSlotStack; 670 671 /// Value returned by __exception_info intrinsic. 672 llvm::Value *SEHInfo = nullptr; 673 674 /// Emits a landing pad for the current EH stack. 675 llvm::BasicBlock *EmitLandingPad(); 676 677 llvm::BasicBlock *getInvokeDestImpl(); 678 679 /// Parent loop-based directive for scan directive. 680 const OMPExecutableDirective *OMPParentLoopDirectiveForScan = nullptr; 681 llvm::BasicBlock *OMPBeforeScanBlock = nullptr; 682 llvm::BasicBlock *OMPAfterScanBlock = nullptr; 683 llvm::BasicBlock *OMPScanExitBlock = nullptr; 684 llvm::BasicBlock *OMPScanDispatch = nullptr; 685 bool OMPFirstScanLoop = false; 686 687 /// Manages parent directive for scan directives. 688 class ParentLoopDirectiveForScanRegion { 689 CodeGenFunction &CGF; 690 const OMPExecutableDirective *ParentLoopDirectiveForScan; 691 692 public: 693 ParentLoopDirectiveForScanRegion( 694 CodeGenFunction &CGF, 695 const OMPExecutableDirective &ParentLoopDirectiveForScan) 696 : CGF(CGF), 697 ParentLoopDirectiveForScan(CGF.OMPParentLoopDirectiveForScan) { 698 CGF.OMPParentLoopDirectiveForScan = &ParentLoopDirectiveForScan; 699 } 700 ~ParentLoopDirectiveForScanRegion() { 701 CGF.OMPParentLoopDirectiveForScan = ParentLoopDirectiveForScan; 702 } 703 }; 704 705 template <class T> 706 typename DominatingValue<T>::saved_type saveValueInCond(T value) { 707 return DominatingValue<T>::save(*this, value); 708 } 709 710 class CGFPOptionsRAII { 711 public: 712 CGFPOptionsRAII(CodeGenFunction &CGF, FPOptions FPFeatures); 713 ~CGFPOptionsRAII(); 714 715 private: 716 CodeGenFunction &CGF; 717 FPOptions OldFPFeatures; 718 Optional<CGBuilderTy::FastMathFlagGuard> FMFGuard; 719 }; 720 FPOptions CurFPFeatures; 721 722 public: 723 /// ObjCEHValueStack - Stack of Objective-C exception values, used for 724 /// rethrows. 725 SmallVector<llvm::Value*, 8> ObjCEHValueStack; 726 727 /// A class controlling the emission of a finally block. 728 class FinallyInfo { 729 /// Where the catchall's edge through the cleanup should go. 730 JumpDest RethrowDest; 731 732 /// A function to call to enter the catch. 733 llvm::FunctionCallee BeginCatchFn; 734 735 /// An i1 variable indicating whether or not the @finally is 736 /// running for an exception. 737 llvm::AllocaInst *ForEHVar; 738 739 /// An i8* variable into which the exception pointer to rethrow 740 /// has been saved. 741 llvm::AllocaInst *SavedExnVar; 742 743 public: 744 void enter(CodeGenFunction &CGF, const Stmt *Finally, 745 llvm::FunctionCallee beginCatchFn, 746 llvm::FunctionCallee endCatchFn, llvm::FunctionCallee rethrowFn); 747 void exit(CodeGenFunction &CGF); 748 }; 749 750 /// Returns true inside SEH __try blocks. 751 bool isSEHTryScope() const { return !SEHTryEpilogueStack.empty(); } 752 753 /// Returns true while emitting a cleanuppad. 754 bool isCleanupPadScope() const { 755 return CurrentFuncletPad && isa<llvm::CleanupPadInst>(CurrentFuncletPad); 756 } 757 758 /// pushFullExprCleanup - Push a cleanup to be run at the end of the 759 /// current full-expression. Safe against the possibility that 760 /// we're currently inside a conditionally-evaluated expression. 761 template <class T, class... As> 762 void pushFullExprCleanup(CleanupKind kind, As... A) { 763 // If we're not in a conditional branch, or if none of the 764 // arguments requires saving, then use the unconditional cleanup. 765 if (!isInConditionalBranch()) 766 return EHStack.pushCleanup<T>(kind, A...); 767 768 // Stash values in a tuple so we can guarantee the order of saves. 769 typedef std::tuple<typename DominatingValue<As>::saved_type...> SavedTuple; 770 SavedTuple Saved{saveValueInCond(A)...}; 771 772 typedef EHScopeStack::ConditionalCleanup<T, As...> CleanupType; 773 EHStack.pushCleanupTuple<CleanupType>(kind, Saved); 774 initFullExprCleanup(); 775 } 776 777 /// Queue a cleanup to be pushed after finishing the current 778 /// full-expression. 779 template <class T, class... As> 780 void pushCleanupAfterFullExpr(CleanupKind Kind, As... A) { 781 if (!isInConditionalBranch()) 782 return pushCleanupAfterFullExprImpl<T>(Kind, Address::invalid(), A...); 783 784 Address ActiveFlag = createCleanupActiveFlag(); 785 assert(!DominatingValue<Address>::needsSaving(ActiveFlag) && 786 "cleanup active flag should never need saving"); 787 788 typedef std::tuple<typename DominatingValue<As>::saved_type...> SavedTuple; 789 SavedTuple Saved{saveValueInCond(A)...}; 790 791 typedef EHScopeStack::ConditionalCleanup<T, As...> CleanupType; 792 pushCleanupAfterFullExprImpl<CleanupType>(Kind, ActiveFlag, Saved); 793 } 794 795 template <class T, class... As> 796 void pushCleanupAfterFullExprImpl(CleanupKind Kind, Address ActiveFlag, 797 As... A) { 798 LifetimeExtendedCleanupHeader Header = {sizeof(T), Kind, 799 ActiveFlag.isValid()}; 800 801 size_t OldSize = LifetimeExtendedCleanupStack.size(); 802 LifetimeExtendedCleanupStack.resize( 803 LifetimeExtendedCleanupStack.size() + sizeof(Header) + Header.Size + 804 (Header.IsConditional ? sizeof(ActiveFlag) : 0)); 805 806 static_assert(sizeof(Header) % alignof(T) == 0, 807 "Cleanup will be allocated on misaligned address"); 808 char *Buffer = &LifetimeExtendedCleanupStack[OldSize]; 809 new (Buffer) LifetimeExtendedCleanupHeader(Header); 810 new (Buffer + sizeof(Header)) T(A...); 811 if (Header.IsConditional) 812 new (Buffer + sizeof(Header) + sizeof(T)) Address(ActiveFlag); 813 } 814 815 /// Set up the last cleanup that was pushed as a conditional 816 /// full-expression cleanup. 817 void initFullExprCleanup() { 818 initFullExprCleanupWithFlag(createCleanupActiveFlag()); 819 } 820 821 void initFullExprCleanupWithFlag(Address ActiveFlag); 822 Address createCleanupActiveFlag(); 823 824 /// PushDestructorCleanup - Push a cleanup to call the 825 /// complete-object destructor of an object of the given type at the 826 /// given address. Does nothing if T is not a C++ class type with a 827 /// non-trivial destructor. 828 void PushDestructorCleanup(QualType T, Address Addr); 829 830 /// PushDestructorCleanup - Push a cleanup to call the 831 /// complete-object variant of the given destructor on the object at 832 /// the given address. 833 void PushDestructorCleanup(const CXXDestructorDecl *Dtor, QualType T, 834 Address Addr); 835 836 /// PopCleanupBlock - Will pop the cleanup entry on the stack and 837 /// process all branch fixups. 838 void PopCleanupBlock(bool FallThroughIsBranchThrough = false); 839 840 /// DeactivateCleanupBlock - Deactivates the given cleanup block. 841 /// The block cannot be reactivated. Pops it if it's the top of the 842 /// stack. 843 /// 844 /// \param DominatingIP - An instruction which is known to 845 /// dominate the current IP (if set) and which lies along 846 /// all paths of execution between the current IP and the 847 /// the point at which the cleanup comes into scope. 848 void DeactivateCleanupBlock(EHScopeStack::stable_iterator Cleanup, 849 llvm::Instruction *DominatingIP); 850 851 /// ActivateCleanupBlock - Activates an initially-inactive cleanup. 852 /// Cannot be used to resurrect a deactivated cleanup. 853 /// 854 /// \param DominatingIP - An instruction which is known to 855 /// dominate the current IP (if set) and which lies along 856 /// all paths of execution between the current IP and the 857 /// the point at which the cleanup comes into scope. 858 void ActivateCleanupBlock(EHScopeStack::stable_iterator Cleanup, 859 llvm::Instruction *DominatingIP); 860 861 /// Enters a new scope for capturing cleanups, all of which 862 /// will be executed once the scope is exited. 863 class RunCleanupsScope { 864 EHScopeStack::stable_iterator CleanupStackDepth, OldCleanupScopeDepth; 865 size_t LifetimeExtendedCleanupStackSize; 866 bool OldDidCallStackSave; 867 protected: 868 bool PerformCleanup; 869 private: 870 871 RunCleanupsScope(const RunCleanupsScope &) = delete; 872 void operator=(const RunCleanupsScope &) = delete; 873 874 protected: 875 CodeGenFunction& CGF; 876 877 public: 878 /// Enter a new cleanup scope. 879 explicit RunCleanupsScope(CodeGenFunction &CGF) 880 : PerformCleanup(true), CGF(CGF) 881 { 882 CleanupStackDepth = CGF.EHStack.stable_begin(); 883 LifetimeExtendedCleanupStackSize = 884 CGF.LifetimeExtendedCleanupStack.size(); 885 OldDidCallStackSave = CGF.DidCallStackSave; 886 CGF.DidCallStackSave = false; 887 OldCleanupScopeDepth = CGF.CurrentCleanupScopeDepth; 888 CGF.CurrentCleanupScopeDepth = CleanupStackDepth; 889 } 890 891 /// Exit this cleanup scope, emitting any accumulated cleanups. 892 ~RunCleanupsScope() { 893 if (PerformCleanup) 894 ForceCleanup(); 895 } 896 897 /// Determine whether this scope requires any cleanups. 898 bool requiresCleanups() const { 899 return CGF.EHStack.stable_begin() != CleanupStackDepth; 900 } 901 902 /// Force the emission of cleanups now, instead of waiting 903 /// until this object is destroyed. 904 /// \param ValuesToReload - A list of values that need to be available at 905 /// the insertion point after cleanup emission. If cleanup emission created 906 /// a shared cleanup block, these value pointers will be rewritten. 907 /// Otherwise, they not will be modified. 908 void ForceCleanup(std::initializer_list<llvm::Value**> ValuesToReload = {}) { 909 assert(PerformCleanup && "Already forced cleanup"); 910 CGF.DidCallStackSave = OldDidCallStackSave; 911 CGF.PopCleanupBlocks(CleanupStackDepth, LifetimeExtendedCleanupStackSize, 912 ValuesToReload); 913 PerformCleanup = false; 914 CGF.CurrentCleanupScopeDepth = OldCleanupScopeDepth; 915 } 916 }; 917 918 // Cleanup stack depth of the RunCleanupsScope that was pushed most recently. 919 EHScopeStack::stable_iterator CurrentCleanupScopeDepth = 920 EHScopeStack::stable_end(); 921 922 class LexicalScope : public RunCleanupsScope { 923 SourceRange Range; 924 SmallVector<const LabelDecl*, 4> Labels; 925 LexicalScope *ParentScope; 926 927 LexicalScope(const LexicalScope &) = delete; 928 void operator=(const LexicalScope &) = delete; 929 930 public: 931 /// Enter a new cleanup scope. 932 explicit LexicalScope(CodeGenFunction &CGF, SourceRange Range) 933 : RunCleanupsScope(CGF), Range(Range), ParentScope(CGF.CurLexicalScope) { 934 CGF.CurLexicalScope = this; 935 if (CGDebugInfo *DI = CGF.getDebugInfo()) 936 DI->EmitLexicalBlockStart(CGF.Builder, Range.getBegin()); 937 } 938 939 void addLabel(const LabelDecl *label) { 940 assert(PerformCleanup && "adding label to dead scope?"); 941 Labels.push_back(label); 942 } 943 944 /// Exit this cleanup scope, emitting any accumulated 945 /// cleanups. 946 ~LexicalScope() { 947 if (CGDebugInfo *DI = CGF.getDebugInfo()) 948 DI->EmitLexicalBlockEnd(CGF.Builder, Range.getEnd()); 949 950 // If we should perform a cleanup, force them now. Note that 951 // this ends the cleanup scope before rescoping any labels. 952 if (PerformCleanup) { 953 ApplyDebugLocation DL(CGF, Range.getEnd()); 954 ForceCleanup(); 955 } 956 } 957 958 /// Force the emission of cleanups now, instead of waiting 959 /// until this object is destroyed. 960 void ForceCleanup() { 961 CGF.CurLexicalScope = ParentScope; 962 RunCleanupsScope::ForceCleanup(); 963 964 if (!Labels.empty()) 965 rescopeLabels(); 966 } 967 968 bool hasLabels() const { 969 return !Labels.empty(); 970 } 971 972 void rescopeLabels(); 973 }; 974 975 typedef llvm::DenseMap<const Decl *, Address> DeclMapTy; 976 977 /// The class used to assign some variables some temporarily addresses. 978 class OMPMapVars { 979 DeclMapTy SavedLocals; 980 DeclMapTy SavedTempAddresses; 981 OMPMapVars(const OMPMapVars &) = delete; 982 void operator=(const OMPMapVars &) = delete; 983 984 public: 985 explicit OMPMapVars() = default; 986 ~OMPMapVars() { 987 assert(SavedLocals.empty() && "Did not restored original addresses."); 988 }; 989 990 /// Sets the address of the variable \p LocalVD to be \p TempAddr in 991 /// function \p CGF. 992 /// \return true if at least one variable was set already, false otherwise. 993 bool setVarAddr(CodeGenFunction &CGF, const VarDecl *LocalVD, 994 Address TempAddr) { 995 LocalVD = LocalVD->getCanonicalDecl(); 996 // Only save it once. 997 if (SavedLocals.count(LocalVD)) return false; 998 999 // Copy the existing local entry to SavedLocals. 1000 auto it = CGF.LocalDeclMap.find(LocalVD); 1001 if (it != CGF.LocalDeclMap.end()) 1002 SavedLocals.try_emplace(LocalVD, it->second); 1003 else 1004 SavedLocals.try_emplace(LocalVD, Address::invalid()); 1005 1006 // Generate the private entry. 1007 QualType VarTy = LocalVD->getType(); 1008 if (VarTy->isReferenceType()) { 1009 Address Temp = CGF.CreateMemTemp(VarTy); 1010 CGF.Builder.CreateStore(TempAddr.getPointer(), Temp); 1011 TempAddr = Temp; 1012 } 1013 SavedTempAddresses.try_emplace(LocalVD, TempAddr); 1014 1015 return true; 1016 } 1017 1018 /// Applies new addresses to the list of the variables. 1019 /// \return true if at least one variable is using new address, false 1020 /// otherwise. 1021 bool apply(CodeGenFunction &CGF) { 1022 copyInto(SavedTempAddresses, CGF.LocalDeclMap); 1023 SavedTempAddresses.clear(); 1024 return !SavedLocals.empty(); 1025 } 1026 1027 /// Restores original addresses of the variables. 1028 void restore(CodeGenFunction &CGF) { 1029 if (!SavedLocals.empty()) { 1030 copyInto(SavedLocals, CGF.LocalDeclMap); 1031 SavedLocals.clear(); 1032 } 1033 } 1034 1035 private: 1036 /// Copy all the entries in the source map over the corresponding 1037 /// entries in the destination, which must exist. 1038 static void copyInto(const DeclMapTy &Src, DeclMapTy &Dest) { 1039 for (auto &Pair : Src) { 1040 if (!Pair.second.isValid()) { 1041 Dest.erase(Pair.first); 1042 continue; 1043 } 1044 1045 auto I = Dest.find(Pair.first); 1046 if (I != Dest.end()) 1047 I->second = Pair.second; 1048 else 1049 Dest.insert(Pair); 1050 } 1051 } 1052 }; 1053 1054 /// The scope used to remap some variables as private in the OpenMP loop body 1055 /// (or other captured region emitted without outlining), and to restore old 1056 /// vars back on exit. 1057 class OMPPrivateScope : public RunCleanupsScope { 1058 OMPMapVars MappedVars; 1059 OMPPrivateScope(const OMPPrivateScope &) = delete; 1060 void operator=(const OMPPrivateScope &) = delete; 1061 1062 public: 1063 /// Enter a new OpenMP private scope. 1064 explicit OMPPrivateScope(CodeGenFunction &CGF) : RunCleanupsScope(CGF) {} 1065 1066 /// Registers \p LocalVD variable as a private and apply \p PrivateGen 1067 /// function for it to generate corresponding private variable. \p 1068 /// PrivateGen returns an address of the generated private variable. 1069 /// \return true if the variable is registered as private, false if it has 1070 /// been privatized already. 1071 bool addPrivate(const VarDecl *LocalVD, 1072 const llvm::function_ref<Address()> PrivateGen) { 1073 assert(PerformCleanup && "adding private to dead scope"); 1074 return MappedVars.setVarAddr(CGF, LocalVD, PrivateGen()); 1075 } 1076 1077 /// Privatizes local variables previously registered as private. 1078 /// Registration is separate from the actual privatization to allow 1079 /// initializers use values of the original variables, not the private one. 1080 /// This is important, for example, if the private variable is a class 1081 /// variable initialized by a constructor that references other private 1082 /// variables. But at initialization original variables must be used, not 1083 /// private copies. 1084 /// \return true if at least one variable was privatized, false otherwise. 1085 bool Privatize() { return MappedVars.apply(CGF); } 1086 1087 void ForceCleanup() { 1088 RunCleanupsScope::ForceCleanup(); 1089 MappedVars.restore(CGF); 1090 } 1091 1092 /// Exit scope - all the mapped variables are restored. 1093 ~OMPPrivateScope() { 1094 if (PerformCleanup) 1095 ForceCleanup(); 1096 } 1097 1098 /// Checks if the global variable is captured in current function. 1099 bool isGlobalVarCaptured(const VarDecl *VD) const { 1100 VD = VD->getCanonicalDecl(); 1101 return !VD->isLocalVarDeclOrParm() && CGF.LocalDeclMap.count(VD) > 0; 1102 } 1103 }; 1104 1105 /// Save/restore original map of previously emitted local vars in case when we 1106 /// need to duplicate emission of the same code several times in the same 1107 /// function for OpenMP code. 1108 class OMPLocalDeclMapRAII { 1109 CodeGenFunction &CGF; 1110 DeclMapTy SavedMap; 1111 1112 public: 1113 OMPLocalDeclMapRAII(CodeGenFunction &CGF) 1114 : CGF(CGF), SavedMap(CGF.LocalDeclMap) {} 1115 ~OMPLocalDeclMapRAII() { SavedMap.swap(CGF.LocalDeclMap); } 1116 }; 1117 1118 /// Takes the old cleanup stack size and emits the cleanup blocks 1119 /// that have been added. 1120 void 1121 PopCleanupBlocks(EHScopeStack::stable_iterator OldCleanupStackSize, 1122 std::initializer_list<llvm::Value **> ValuesToReload = {}); 1123 1124 /// Takes the old cleanup stack size and emits the cleanup blocks 1125 /// that have been added, then adds all lifetime-extended cleanups from 1126 /// the given position to the stack. 1127 void 1128 PopCleanupBlocks(EHScopeStack::stable_iterator OldCleanupStackSize, 1129 size_t OldLifetimeExtendedStackSize, 1130 std::initializer_list<llvm::Value **> ValuesToReload = {}); 1131 1132 void ResolveBranchFixups(llvm::BasicBlock *Target); 1133 1134 /// The given basic block lies in the current EH scope, but may be a 1135 /// target of a potentially scope-crossing jump; get a stable handle 1136 /// to which we can perform this jump later. 1137 JumpDest getJumpDestInCurrentScope(llvm::BasicBlock *Target) { 1138 return JumpDest(Target, 1139 EHStack.getInnermostNormalCleanup(), 1140 NextCleanupDestIndex++); 1141 } 1142 1143 /// The given basic block lies in the current EH scope, but may be a 1144 /// target of a potentially scope-crossing jump; get a stable handle 1145 /// to which we can perform this jump later. 1146 JumpDest getJumpDestInCurrentScope(StringRef Name = StringRef()) { 1147 return getJumpDestInCurrentScope(createBasicBlock(Name)); 1148 } 1149 1150 /// EmitBranchThroughCleanup - Emit a branch from the current insert 1151 /// block through the normal cleanup handling code (if any) and then 1152 /// on to \arg Dest. 1153 void EmitBranchThroughCleanup(JumpDest Dest); 1154 1155 /// isObviouslyBranchWithoutCleanups - Return true if a branch to the 1156 /// specified destination obviously has no cleanups to run. 'false' is always 1157 /// a conservatively correct answer for this method. 1158 bool isObviouslyBranchWithoutCleanups(JumpDest Dest) const; 1159 1160 /// popCatchScope - Pops the catch scope at the top of the EHScope 1161 /// stack, emitting any required code (other than the catch handlers 1162 /// themselves). 1163 void popCatchScope(); 1164 1165 llvm::BasicBlock *getEHResumeBlock(bool isCleanup); 1166 llvm::BasicBlock *getEHDispatchBlock(EHScopeStack::stable_iterator scope); 1167 llvm::BasicBlock * 1168 getFuncletEHDispatchBlock(EHScopeStack::stable_iterator scope); 1169 1170 /// An object to manage conditionally-evaluated expressions. 1171 class ConditionalEvaluation { 1172 llvm::BasicBlock *StartBB; 1173 1174 public: 1175 ConditionalEvaluation(CodeGenFunction &CGF) 1176 : StartBB(CGF.Builder.GetInsertBlock()) {} 1177 1178 void begin(CodeGenFunction &CGF) { 1179 assert(CGF.OutermostConditional != this); 1180 if (!CGF.OutermostConditional) 1181 CGF.OutermostConditional = this; 1182 } 1183 1184 void end(CodeGenFunction &CGF) { 1185 assert(CGF.OutermostConditional != nullptr); 1186 if (CGF.OutermostConditional == this) 1187 CGF.OutermostConditional = nullptr; 1188 } 1189 1190 /// Returns a block which will be executed prior to each 1191 /// evaluation of the conditional code. 1192 llvm::BasicBlock *getStartingBlock() const { 1193 return StartBB; 1194 } 1195 }; 1196 1197 /// isInConditionalBranch - Return true if we're currently emitting 1198 /// one branch or the other of a conditional expression. 1199 bool isInConditionalBranch() const { return OutermostConditional != nullptr; } 1200 1201 void setBeforeOutermostConditional(llvm::Value *value, Address addr) { 1202 assert(isInConditionalBranch()); 1203 llvm::BasicBlock *block = OutermostConditional->getStartingBlock(); 1204 auto store = new llvm::StoreInst(value, addr.getPointer(), &block->back()); 1205 store->setAlignment(addr.getAlignment().getAsAlign()); 1206 } 1207 1208 /// An RAII object to record that we're evaluating a statement 1209 /// expression. 1210 class StmtExprEvaluation { 1211 CodeGenFunction &CGF; 1212 1213 /// We have to save the outermost conditional: cleanups in a 1214 /// statement expression aren't conditional just because the 1215 /// StmtExpr is. 1216 ConditionalEvaluation *SavedOutermostConditional; 1217 1218 public: 1219 StmtExprEvaluation(CodeGenFunction &CGF) 1220 : CGF(CGF), SavedOutermostConditional(CGF.OutermostConditional) { 1221 CGF.OutermostConditional = nullptr; 1222 } 1223 1224 ~StmtExprEvaluation() { 1225 CGF.OutermostConditional = SavedOutermostConditional; 1226 CGF.EnsureInsertPoint(); 1227 } 1228 }; 1229 1230 /// An object which temporarily prevents a value from being 1231 /// destroyed by aggressive peephole optimizations that assume that 1232 /// all uses of a value have been realized in the IR. 1233 class PeepholeProtection { 1234 llvm::Instruction *Inst; 1235 friend class CodeGenFunction; 1236 1237 public: 1238 PeepholeProtection() : Inst(nullptr) {} 1239 }; 1240 1241 /// A non-RAII class containing all the information about a bound 1242 /// opaque value. OpaqueValueMapping, below, is a RAII wrapper for 1243 /// this which makes individual mappings very simple; using this 1244 /// class directly is useful when you have a variable number of 1245 /// opaque values or don't want the RAII functionality for some 1246 /// reason. 1247 class OpaqueValueMappingData { 1248 const OpaqueValueExpr *OpaqueValue; 1249 bool BoundLValue; 1250 CodeGenFunction::PeepholeProtection Protection; 1251 1252 OpaqueValueMappingData(const OpaqueValueExpr *ov, 1253 bool boundLValue) 1254 : OpaqueValue(ov), BoundLValue(boundLValue) {} 1255 public: 1256 OpaqueValueMappingData() : OpaqueValue(nullptr) {} 1257 1258 static bool shouldBindAsLValue(const Expr *expr) { 1259 // gl-values should be bound as l-values for obvious reasons. 1260 // Records should be bound as l-values because IR generation 1261 // always keeps them in memory. Expressions of function type 1262 // act exactly like l-values but are formally required to be 1263 // r-values in C. 1264 return expr->isGLValue() || 1265 expr->getType()->isFunctionType() || 1266 hasAggregateEvaluationKind(expr->getType()); 1267 } 1268 1269 static OpaqueValueMappingData bind(CodeGenFunction &CGF, 1270 const OpaqueValueExpr *ov, 1271 const Expr *e) { 1272 if (shouldBindAsLValue(ov)) 1273 return bind(CGF, ov, CGF.EmitLValue(e)); 1274 return bind(CGF, ov, CGF.EmitAnyExpr(e)); 1275 } 1276 1277 static OpaqueValueMappingData bind(CodeGenFunction &CGF, 1278 const OpaqueValueExpr *ov, 1279 const LValue &lv) { 1280 assert(shouldBindAsLValue(ov)); 1281 CGF.OpaqueLValues.insert(std::make_pair(ov, lv)); 1282 return OpaqueValueMappingData(ov, true); 1283 } 1284 1285 static OpaqueValueMappingData bind(CodeGenFunction &CGF, 1286 const OpaqueValueExpr *ov, 1287 const RValue &rv) { 1288 assert(!shouldBindAsLValue(ov)); 1289 CGF.OpaqueRValues.insert(std::make_pair(ov, rv)); 1290 1291 OpaqueValueMappingData data(ov, false); 1292 1293 // Work around an extremely aggressive peephole optimization in 1294 // EmitScalarConversion which assumes that all other uses of a 1295 // value are extant. 1296 data.Protection = CGF.protectFromPeepholes(rv); 1297 1298 return data; 1299 } 1300 1301 bool isValid() const { return OpaqueValue != nullptr; } 1302 void clear() { OpaqueValue = nullptr; } 1303 1304 void unbind(CodeGenFunction &CGF) { 1305 assert(OpaqueValue && "no data to unbind!"); 1306 1307 if (BoundLValue) { 1308 CGF.OpaqueLValues.erase(OpaqueValue); 1309 } else { 1310 CGF.OpaqueRValues.erase(OpaqueValue); 1311 CGF.unprotectFromPeepholes(Protection); 1312 } 1313 } 1314 }; 1315 1316 /// An RAII object to set (and then clear) a mapping for an OpaqueValueExpr. 1317 class OpaqueValueMapping { 1318 CodeGenFunction &CGF; 1319 OpaqueValueMappingData Data; 1320 1321 public: 1322 static bool shouldBindAsLValue(const Expr *expr) { 1323 return OpaqueValueMappingData::shouldBindAsLValue(expr); 1324 } 1325 1326 /// Build the opaque value mapping for the given conditional 1327 /// operator if it's the GNU ?: extension. This is a common 1328 /// enough pattern that the convenience operator is really 1329 /// helpful. 1330 /// 1331 OpaqueValueMapping(CodeGenFunction &CGF, 1332 const AbstractConditionalOperator *op) : CGF(CGF) { 1333 if (isa<ConditionalOperator>(op)) 1334 // Leave Data empty. 1335 return; 1336 1337 const BinaryConditionalOperator *e = cast<BinaryConditionalOperator>(op); 1338 Data = OpaqueValueMappingData::bind(CGF, e->getOpaqueValue(), 1339 e->getCommon()); 1340 } 1341 1342 /// Build the opaque value mapping for an OpaqueValueExpr whose source 1343 /// expression is set to the expression the OVE represents. 1344 OpaqueValueMapping(CodeGenFunction &CGF, const OpaqueValueExpr *OV) 1345 : CGF(CGF) { 1346 if (OV) { 1347 assert(OV->getSourceExpr() && "wrong form of OpaqueValueMapping used " 1348 "for OVE with no source expression"); 1349 Data = OpaqueValueMappingData::bind(CGF, OV, OV->getSourceExpr()); 1350 } 1351 } 1352 1353 OpaqueValueMapping(CodeGenFunction &CGF, 1354 const OpaqueValueExpr *opaqueValue, 1355 LValue lvalue) 1356 : CGF(CGF), Data(OpaqueValueMappingData::bind(CGF, opaqueValue, lvalue)) { 1357 } 1358 1359 OpaqueValueMapping(CodeGenFunction &CGF, 1360 const OpaqueValueExpr *opaqueValue, 1361 RValue rvalue) 1362 : CGF(CGF), Data(OpaqueValueMappingData::bind(CGF, opaqueValue, rvalue)) { 1363 } 1364 1365 void pop() { 1366 Data.unbind(CGF); 1367 Data.clear(); 1368 } 1369 1370 ~OpaqueValueMapping() { 1371 if (Data.isValid()) Data.unbind(CGF); 1372 } 1373 }; 1374 1375 private: 1376 CGDebugInfo *DebugInfo; 1377 /// Used to create unique names for artificial VLA size debug info variables. 1378 unsigned VLAExprCounter = 0; 1379 bool DisableDebugInfo = false; 1380 1381 /// DidCallStackSave - Whether llvm.stacksave has been called. Used to avoid 1382 /// calling llvm.stacksave for multiple VLAs in the same scope. 1383 bool DidCallStackSave = false; 1384 1385 /// IndirectBranch - The first time an indirect goto is seen we create a block 1386 /// with an indirect branch. Every time we see the address of a label taken, 1387 /// we add the label to the indirect goto. Every subsequent indirect goto is 1388 /// codegen'd as a jump to the IndirectBranch's basic block. 1389 llvm::IndirectBrInst *IndirectBranch = nullptr; 1390 1391 /// LocalDeclMap - This keeps track of the LLVM allocas or globals for local C 1392 /// decls. 1393 DeclMapTy LocalDeclMap; 1394 1395 // Keep track of the cleanups for callee-destructed parameters pushed to the 1396 // cleanup stack so that they can be deactivated later. 1397 llvm::DenseMap<const ParmVarDecl *, EHScopeStack::stable_iterator> 1398 CalleeDestructedParamCleanups; 1399 1400 /// SizeArguments - If a ParmVarDecl had the pass_object_size attribute, this 1401 /// will contain a mapping from said ParmVarDecl to its implicit "object_size" 1402 /// parameter. 1403 llvm::SmallDenseMap<const ParmVarDecl *, const ImplicitParamDecl *, 2> 1404 SizeArguments; 1405 1406 /// Track escaped local variables with auto storage. Used during SEH 1407 /// outlining to produce a call to llvm.localescape. 1408 llvm::DenseMap<llvm::AllocaInst *, int> EscapedLocals; 1409 1410 /// LabelMap - This keeps track of the LLVM basic block for each C label. 1411 llvm::DenseMap<const LabelDecl*, JumpDest> LabelMap; 1412 1413 // BreakContinueStack - This keeps track of where break and continue 1414 // statements should jump to. 1415 struct BreakContinue { 1416 BreakContinue(JumpDest Break, JumpDest Continue) 1417 : BreakBlock(Break), ContinueBlock(Continue) {} 1418 1419 JumpDest BreakBlock; 1420 JumpDest ContinueBlock; 1421 }; 1422 SmallVector<BreakContinue, 8> BreakContinueStack; 1423 1424 /// Handles cancellation exit points in OpenMP-related constructs. 1425 class OpenMPCancelExitStack { 1426 /// Tracks cancellation exit point and join point for cancel-related exit 1427 /// and normal exit. 1428 struct CancelExit { 1429 CancelExit() = default; 1430 CancelExit(OpenMPDirectiveKind Kind, JumpDest ExitBlock, 1431 JumpDest ContBlock) 1432 : Kind(Kind), ExitBlock(ExitBlock), ContBlock(ContBlock) {} 1433 OpenMPDirectiveKind Kind = llvm::omp::OMPD_unknown; 1434 /// true if the exit block has been emitted already by the special 1435 /// emitExit() call, false if the default codegen is used. 1436 bool HasBeenEmitted = false; 1437 JumpDest ExitBlock; 1438 JumpDest ContBlock; 1439 }; 1440 1441 SmallVector<CancelExit, 8> Stack; 1442 1443 public: 1444 OpenMPCancelExitStack() : Stack(1) {} 1445 ~OpenMPCancelExitStack() = default; 1446 /// Fetches the exit block for the current OpenMP construct. 1447 JumpDest getExitBlock() const { return Stack.back().ExitBlock; } 1448 /// Emits exit block with special codegen procedure specific for the related 1449 /// OpenMP construct + emits code for normal construct cleanup. 1450 void emitExit(CodeGenFunction &CGF, OpenMPDirectiveKind Kind, 1451 const llvm::function_ref<void(CodeGenFunction &)> CodeGen) { 1452 if (Stack.back().Kind == Kind && getExitBlock().isValid()) { 1453 assert(CGF.getOMPCancelDestination(Kind).isValid()); 1454 assert(CGF.HaveInsertPoint()); 1455 assert(!Stack.back().HasBeenEmitted); 1456 auto IP = CGF.Builder.saveAndClearIP(); 1457 CGF.EmitBlock(Stack.back().ExitBlock.getBlock()); 1458 CodeGen(CGF); 1459 CGF.EmitBranch(Stack.back().ContBlock.getBlock()); 1460 CGF.Builder.restoreIP(IP); 1461 Stack.back().HasBeenEmitted = true; 1462 } 1463 CodeGen(CGF); 1464 } 1465 /// Enter the cancel supporting \a Kind construct. 1466 /// \param Kind OpenMP directive that supports cancel constructs. 1467 /// \param HasCancel true, if the construct has inner cancel directive, 1468 /// false otherwise. 1469 void enter(CodeGenFunction &CGF, OpenMPDirectiveKind Kind, bool HasCancel) { 1470 Stack.push_back({Kind, 1471 HasCancel ? CGF.getJumpDestInCurrentScope("cancel.exit") 1472 : JumpDest(), 1473 HasCancel ? CGF.getJumpDestInCurrentScope("cancel.cont") 1474 : JumpDest()}); 1475 } 1476 /// Emits default exit point for the cancel construct (if the special one 1477 /// has not be used) + join point for cancel/normal exits. 1478 void exit(CodeGenFunction &CGF) { 1479 if (getExitBlock().isValid()) { 1480 assert(CGF.getOMPCancelDestination(Stack.back().Kind).isValid()); 1481 bool HaveIP = CGF.HaveInsertPoint(); 1482 if (!Stack.back().HasBeenEmitted) { 1483 if (HaveIP) 1484 CGF.EmitBranchThroughCleanup(Stack.back().ContBlock); 1485 CGF.EmitBlock(Stack.back().ExitBlock.getBlock()); 1486 CGF.EmitBranchThroughCleanup(Stack.back().ContBlock); 1487 } 1488 CGF.EmitBlock(Stack.back().ContBlock.getBlock()); 1489 if (!HaveIP) { 1490 CGF.Builder.CreateUnreachable(); 1491 CGF.Builder.ClearInsertionPoint(); 1492 } 1493 } 1494 Stack.pop_back(); 1495 } 1496 }; 1497 OpenMPCancelExitStack OMPCancelStack; 1498 1499 CodeGenPGO PGO; 1500 1501 /// Calculate branch weights appropriate for PGO data 1502 llvm::MDNode *createProfileWeights(uint64_t TrueCount, uint64_t FalseCount); 1503 llvm::MDNode *createProfileWeights(ArrayRef<uint64_t> Weights); 1504 llvm::MDNode *createProfileWeightsForLoop(const Stmt *Cond, 1505 uint64_t LoopCount); 1506 1507 public: 1508 /// Increment the profiler's counter for the given statement by \p StepV. 1509 /// If \p StepV is null, the default increment is 1. 1510 void incrementProfileCounter(const Stmt *S, llvm::Value *StepV = nullptr) { 1511 if (CGM.getCodeGenOpts().hasProfileClangInstr()) 1512 PGO.emitCounterIncrement(Builder, S, StepV); 1513 PGO.setCurrentStmt(S); 1514 } 1515 1516 /// Get the profiler's count for the given statement. 1517 uint64_t getProfileCount(const Stmt *S) { 1518 Optional<uint64_t> Count = PGO.getStmtCount(S); 1519 if (!Count.hasValue()) 1520 return 0; 1521 return *Count; 1522 } 1523 1524 /// Set the profiler's current count. 1525 void setCurrentProfileCount(uint64_t Count) { 1526 PGO.setCurrentRegionCount(Count); 1527 } 1528 1529 /// Get the profiler's current count. This is generally the count for the most 1530 /// recently incremented counter. 1531 uint64_t getCurrentProfileCount() { 1532 return PGO.getCurrentRegionCount(); 1533 } 1534 1535 private: 1536 1537 /// SwitchInsn - This is nearest current switch instruction. It is null if 1538 /// current context is not in a switch. 1539 llvm::SwitchInst *SwitchInsn = nullptr; 1540 /// The branch weights of SwitchInsn when doing instrumentation based PGO. 1541 SmallVector<uint64_t, 16> *SwitchWeights = nullptr; 1542 1543 /// CaseRangeBlock - This block holds if condition check for last case 1544 /// statement range in current switch instruction. 1545 llvm::BasicBlock *CaseRangeBlock = nullptr; 1546 1547 /// OpaqueLValues - Keeps track of the current set of opaque value 1548 /// expressions. 1549 llvm::DenseMap<const OpaqueValueExpr *, LValue> OpaqueLValues; 1550 llvm::DenseMap<const OpaqueValueExpr *, RValue> OpaqueRValues; 1551 1552 // VLASizeMap - This keeps track of the associated size for each VLA type. 1553 // We track this by the size expression rather than the type itself because 1554 // in certain situations, like a const qualifier applied to an VLA typedef, 1555 // multiple VLA types can share the same size expression. 1556 // FIXME: Maybe this could be a stack of maps that is pushed/popped as we 1557 // enter/leave scopes. 1558 llvm::DenseMap<const Expr*, llvm::Value*> VLASizeMap; 1559 1560 /// A block containing a single 'unreachable' instruction. Created 1561 /// lazily by getUnreachableBlock(). 1562 llvm::BasicBlock *UnreachableBlock = nullptr; 1563 1564 /// Counts of the number return expressions in the function. 1565 unsigned NumReturnExprs = 0; 1566 1567 /// Count the number of simple (constant) return expressions in the function. 1568 unsigned NumSimpleReturnExprs = 0; 1569 1570 /// The last regular (non-return) debug location (breakpoint) in the function. 1571 SourceLocation LastStopPoint; 1572 1573 public: 1574 /// Source location information about the default argument or member 1575 /// initializer expression we're evaluating, if any. 1576 CurrentSourceLocExprScope CurSourceLocExprScope; 1577 using SourceLocExprScopeGuard = 1578 CurrentSourceLocExprScope::SourceLocExprScopeGuard; 1579 1580 /// A scope within which we are constructing the fields of an object which 1581 /// might use a CXXDefaultInitExpr. This stashes away a 'this' value to use 1582 /// if we need to evaluate a CXXDefaultInitExpr within the evaluation. 1583 class FieldConstructionScope { 1584 public: 1585 FieldConstructionScope(CodeGenFunction &CGF, Address This) 1586 : CGF(CGF), OldCXXDefaultInitExprThis(CGF.CXXDefaultInitExprThis) { 1587 CGF.CXXDefaultInitExprThis = This; 1588 } 1589 ~FieldConstructionScope() { 1590 CGF.CXXDefaultInitExprThis = OldCXXDefaultInitExprThis; 1591 } 1592 1593 private: 1594 CodeGenFunction &CGF; 1595 Address OldCXXDefaultInitExprThis; 1596 }; 1597 1598 /// The scope of a CXXDefaultInitExpr. Within this scope, the value of 'this' 1599 /// is overridden to be the object under construction. 1600 class CXXDefaultInitExprScope { 1601 public: 1602 CXXDefaultInitExprScope(CodeGenFunction &CGF, const CXXDefaultInitExpr *E) 1603 : CGF(CGF), OldCXXThisValue(CGF.CXXThisValue), 1604 OldCXXThisAlignment(CGF.CXXThisAlignment), 1605 SourceLocScope(E, CGF.CurSourceLocExprScope) { 1606 CGF.CXXThisValue = CGF.CXXDefaultInitExprThis.getPointer(); 1607 CGF.CXXThisAlignment = CGF.CXXDefaultInitExprThis.getAlignment(); 1608 } 1609 ~CXXDefaultInitExprScope() { 1610 CGF.CXXThisValue = OldCXXThisValue; 1611 CGF.CXXThisAlignment = OldCXXThisAlignment; 1612 } 1613 1614 public: 1615 CodeGenFunction &CGF; 1616 llvm::Value *OldCXXThisValue; 1617 CharUnits OldCXXThisAlignment; 1618 SourceLocExprScopeGuard SourceLocScope; 1619 }; 1620 1621 struct CXXDefaultArgExprScope : SourceLocExprScopeGuard { 1622 CXXDefaultArgExprScope(CodeGenFunction &CGF, const CXXDefaultArgExpr *E) 1623 : SourceLocExprScopeGuard(E, CGF.CurSourceLocExprScope) {} 1624 }; 1625 1626 /// The scope of an ArrayInitLoopExpr. Within this scope, the value of the 1627 /// current loop index is overridden. 1628 class ArrayInitLoopExprScope { 1629 public: 1630 ArrayInitLoopExprScope(CodeGenFunction &CGF, llvm::Value *Index) 1631 : CGF(CGF), OldArrayInitIndex(CGF.ArrayInitIndex) { 1632 CGF.ArrayInitIndex = Index; 1633 } 1634 ~ArrayInitLoopExprScope() { 1635 CGF.ArrayInitIndex = OldArrayInitIndex; 1636 } 1637 1638 private: 1639 CodeGenFunction &CGF; 1640 llvm::Value *OldArrayInitIndex; 1641 }; 1642 1643 class InlinedInheritingConstructorScope { 1644 public: 1645 InlinedInheritingConstructorScope(CodeGenFunction &CGF, GlobalDecl GD) 1646 : CGF(CGF), OldCurGD(CGF.CurGD), OldCurFuncDecl(CGF.CurFuncDecl), 1647 OldCurCodeDecl(CGF.CurCodeDecl), 1648 OldCXXABIThisDecl(CGF.CXXABIThisDecl), 1649 OldCXXABIThisValue(CGF.CXXABIThisValue), 1650 OldCXXThisValue(CGF.CXXThisValue), 1651 OldCXXABIThisAlignment(CGF.CXXABIThisAlignment), 1652 OldCXXThisAlignment(CGF.CXXThisAlignment), 1653 OldReturnValue(CGF.ReturnValue), OldFnRetTy(CGF.FnRetTy), 1654 OldCXXInheritedCtorInitExprArgs( 1655 std::move(CGF.CXXInheritedCtorInitExprArgs)) { 1656 CGF.CurGD = GD; 1657 CGF.CurFuncDecl = CGF.CurCodeDecl = 1658 cast<CXXConstructorDecl>(GD.getDecl()); 1659 CGF.CXXABIThisDecl = nullptr; 1660 CGF.CXXABIThisValue = nullptr; 1661 CGF.CXXThisValue = nullptr; 1662 CGF.CXXABIThisAlignment = CharUnits(); 1663 CGF.CXXThisAlignment = CharUnits(); 1664 CGF.ReturnValue = Address::invalid(); 1665 CGF.FnRetTy = QualType(); 1666 CGF.CXXInheritedCtorInitExprArgs.clear(); 1667 } 1668 ~InlinedInheritingConstructorScope() { 1669 CGF.CurGD = OldCurGD; 1670 CGF.CurFuncDecl = OldCurFuncDecl; 1671 CGF.CurCodeDecl = OldCurCodeDecl; 1672 CGF.CXXABIThisDecl = OldCXXABIThisDecl; 1673 CGF.CXXABIThisValue = OldCXXABIThisValue; 1674 CGF.CXXThisValue = OldCXXThisValue; 1675 CGF.CXXABIThisAlignment = OldCXXABIThisAlignment; 1676 CGF.CXXThisAlignment = OldCXXThisAlignment; 1677 CGF.ReturnValue = OldReturnValue; 1678 CGF.FnRetTy = OldFnRetTy; 1679 CGF.CXXInheritedCtorInitExprArgs = 1680 std::move(OldCXXInheritedCtorInitExprArgs); 1681 } 1682 1683 private: 1684 CodeGenFunction &CGF; 1685 GlobalDecl OldCurGD; 1686 const Decl *OldCurFuncDecl; 1687 const Decl *OldCurCodeDecl; 1688 ImplicitParamDecl *OldCXXABIThisDecl; 1689 llvm::Value *OldCXXABIThisValue; 1690 llvm::Value *OldCXXThisValue; 1691 CharUnits OldCXXABIThisAlignment; 1692 CharUnits OldCXXThisAlignment; 1693 Address OldReturnValue; 1694 QualType OldFnRetTy; 1695 CallArgList OldCXXInheritedCtorInitExprArgs; 1696 }; 1697 1698 private: 1699 /// CXXThisDecl - When generating code for a C++ member function, 1700 /// this will hold the implicit 'this' declaration. 1701 ImplicitParamDecl *CXXABIThisDecl = nullptr; 1702 llvm::Value *CXXABIThisValue = nullptr; 1703 llvm::Value *CXXThisValue = nullptr; 1704 CharUnits CXXABIThisAlignment; 1705 CharUnits CXXThisAlignment; 1706 1707 /// The value of 'this' to use when evaluating CXXDefaultInitExprs within 1708 /// this expression. 1709 Address CXXDefaultInitExprThis = Address::invalid(); 1710 1711 /// The current array initialization index when evaluating an 1712 /// ArrayInitIndexExpr within an ArrayInitLoopExpr. 1713 llvm::Value *ArrayInitIndex = nullptr; 1714 1715 /// The values of function arguments to use when evaluating 1716 /// CXXInheritedCtorInitExprs within this context. 1717 CallArgList CXXInheritedCtorInitExprArgs; 1718 1719 /// CXXStructorImplicitParamDecl - When generating code for a constructor or 1720 /// destructor, this will hold the implicit argument (e.g. VTT). 1721 ImplicitParamDecl *CXXStructorImplicitParamDecl = nullptr; 1722 llvm::Value *CXXStructorImplicitParamValue = nullptr; 1723 1724 /// OutermostConditional - Points to the outermost active 1725 /// conditional control. This is used so that we know if a 1726 /// temporary should be destroyed conditionally. 1727 ConditionalEvaluation *OutermostConditional = nullptr; 1728 1729 /// The current lexical scope. 1730 LexicalScope *CurLexicalScope = nullptr; 1731 1732 /// The current source location that should be used for exception 1733 /// handling code. 1734 SourceLocation CurEHLocation; 1735 1736 /// BlockByrefInfos - For each __block variable, contains 1737 /// information about the layout of the variable. 1738 llvm::DenseMap<const ValueDecl *, BlockByrefInfo> BlockByrefInfos; 1739 1740 /// Used by -fsanitize=nullability-return to determine whether the return 1741 /// value can be checked. 1742 llvm::Value *RetValNullabilityPrecondition = nullptr; 1743 1744 /// Check if -fsanitize=nullability-return instrumentation is required for 1745 /// this function. 1746 bool requiresReturnValueNullabilityCheck() const { 1747 return RetValNullabilityPrecondition; 1748 } 1749 1750 /// Used to store precise source locations for return statements by the 1751 /// runtime return value checks. 1752 Address ReturnLocation = Address::invalid(); 1753 1754 /// Check if the return value of this function requires sanitization. 1755 bool requiresReturnValueCheck() const; 1756 1757 llvm::BasicBlock *TerminateLandingPad = nullptr; 1758 llvm::BasicBlock *TerminateHandler = nullptr; 1759 llvm::BasicBlock *TrapBB = nullptr; 1760 1761 /// Terminate funclets keyed by parent funclet pad. 1762 llvm::MapVector<llvm::Value *, llvm::BasicBlock *> TerminateFunclets; 1763 1764 /// Largest vector width used in ths function. Will be used to create a 1765 /// function attribute. 1766 unsigned LargestVectorWidth = 0; 1767 1768 /// True if we need emit the life-time markers. 1769 const bool ShouldEmitLifetimeMarkers; 1770 1771 /// Add OpenCL kernel arg metadata and the kernel attribute metadata to 1772 /// the function metadata. 1773 void EmitOpenCLKernelMetadata(const FunctionDecl *FD, 1774 llvm::Function *Fn); 1775 1776 public: 1777 CodeGenFunction(CodeGenModule &cgm, bool suppressNewContext=false); 1778 ~CodeGenFunction(); 1779 1780 CodeGenTypes &getTypes() const { return CGM.getTypes(); } 1781 ASTContext &getContext() const { return CGM.getContext(); } 1782 CGDebugInfo *getDebugInfo() { 1783 if (DisableDebugInfo) 1784 return nullptr; 1785 return DebugInfo; 1786 } 1787 void disableDebugInfo() { DisableDebugInfo = true; } 1788 void enableDebugInfo() { DisableDebugInfo = false; } 1789 1790 bool shouldUseFusedARCCalls() { 1791 return CGM.getCodeGenOpts().OptimizationLevel == 0; 1792 } 1793 1794 const LangOptions &getLangOpts() const { return CGM.getLangOpts(); } 1795 1796 /// Returns a pointer to the function's exception object and selector slot, 1797 /// which is assigned in every landing pad. 1798 Address getExceptionSlot(); 1799 Address getEHSelectorSlot(); 1800 1801 /// Returns the contents of the function's exception object and selector 1802 /// slots. 1803 llvm::Value *getExceptionFromSlot(); 1804 llvm::Value *getSelectorFromSlot(); 1805 1806 Address getNormalCleanupDestSlot(); 1807 1808 llvm::BasicBlock *getUnreachableBlock() { 1809 if (!UnreachableBlock) { 1810 UnreachableBlock = createBasicBlock("unreachable"); 1811 new llvm::UnreachableInst(getLLVMContext(), UnreachableBlock); 1812 } 1813 return UnreachableBlock; 1814 } 1815 1816 llvm::BasicBlock *getInvokeDest() { 1817 if (!EHStack.requiresLandingPad()) return nullptr; 1818 return getInvokeDestImpl(); 1819 } 1820 1821 bool currentFunctionUsesSEHTry() const { return CurSEHParent != nullptr; } 1822 1823 const TargetInfo &getTarget() const { return Target; } 1824 llvm::LLVMContext &getLLVMContext() { return CGM.getLLVMContext(); } 1825 const TargetCodeGenInfo &getTargetHooks() const { 1826 return CGM.getTargetCodeGenInfo(); 1827 } 1828 1829 //===--------------------------------------------------------------------===// 1830 // Cleanups 1831 //===--------------------------------------------------------------------===// 1832 1833 typedef void Destroyer(CodeGenFunction &CGF, Address addr, QualType ty); 1834 1835 void pushIrregularPartialArrayCleanup(llvm::Value *arrayBegin, 1836 Address arrayEndPointer, 1837 QualType elementType, 1838 CharUnits elementAlignment, 1839 Destroyer *destroyer); 1840 void pushRegularPartialArrayCleanup(llvm::Value *arrayBegin, 1841 llvm::Value *arrayEnd, 1842 QualType elementType, 1843 CharUnits elementAlignment, 1844 Destroyer *destroyer); 1845 1846 void pushDestroy(QualType::DestructionKind dtorKind, 1847 Address addr, QualType type); 1848 void pushEHDestroy(QualType::DestructionKind dtorKind, 1849 Address addr, QualType type); 1850 void pushDestroy(CleanupKind kind, Address addr, QualType type, 1851 Destroyer *destroyer, bool useEHCleanupForArray); 1852 void pushLifetimeExtendedDestroy(CleanupKind kind, Address addr, 1853 QualType type, Destroyer *destroyer, 1854 bool useEHCleanupForArray); 1855 void pushCallObjectDeleteCleanup(const FunctionDecl *OperatorDelete, 1856 llvm::Value *CompletePtr, 1857 QualType ElementType); 1858 void pushStackRestore(CleanupKind kind, Address SPMem); 1859 void emitDestroy(Address addr, QualType type, Destroyer *destroyer, 1860 bool useEHCleanupForArray); 1861 llvm::Function *generateDestroyHelper(Address addr, QualType type, 1862 Destroyer *destroyer, 1863 bool useEHCleanupForArray, 1864 const VarDecl *VD); 1865 void emitArrayDestroy(llvm::Value *begin, llvm::Value *end, 1866 QualType elementType, CharUnits elementAlign, 1867 Destroyer *destroyer, 1868 bool checkZeroLength, bool useEHCleanup); 1869 1870 Destroyer *getDestroyer(QualType::DestructionKind destructionKind); 1871 1872 /// Determines whether an EH cleanup is required to destroy a type 1873 /// with the given destruction kind. 1874 bool needsEHCleanup(QualType::DestructionKind kind) { 1875 switch (kind) { 1876 case QualType::DK_none: 1877 return false; 1878 case QualType::DK_cxx_destructor: 1879 case QualType::DK_objc_weak_lifetime: 1880 case QualType::DK_nontrivial_c_struct: 1881 return getLangOpts().Exceptions; 1882 case QualType::DK_objc_strong_lifetime: 1883 return getLangOpts().Exceptions && 1884 CGM.getCodeGenOpts().ObjCAutoRefCountExceptions; 1885 } 1886 llvm_unreachable("bad destruction kind"); 1887 } 1888 1889 CleanupKind getCleanupKind(QualType::DestructionKind kind) { 1890 return (needsEHCleanup(kind) ? NormalAndEHCleanup : NormalCleanup); 1891 } 1892 1893 //===--------------------------------------------------------------------===// 1894 // Objective-C 1895 //===--------------------------------------------------------------------===// 1896 1897 void GenerateObjCMethod(const ObjCMethodDecl *OMD); 1898 1899 void StartObjCMethod(const ObjCMethodDecl *MD, const ObjCContainerDecl *CD); 1900 1901 /// GenerateObjCGetter - Synthesize an Objective-C property getter function. 1902 void GenerateObjCGetter(ObjCImplementationDecl *IMP, 1903 const ObjCPropertyImplDecl *PID); 1904 void generateObjCGetterBody(const ObjCImplementationDecl *classImpl, 1905 const ObjCPropertyImplDecl *propImpl, 1906 const ObjCMethodDecl *GetterMothodDecl, 1907 llvm::Constant *AtomicHelperFn); 1908 1909 void GenerateObjCCtorDtorMethod(ObjCImplementationDecl *IMP, 1910 ObjCMethodDecl *MD, bool ctor); 1911 1912 /// GenerateObjCSetter - Synthesize an Objective-C property setter function 1913 /// for the given property. 1914 void GenerateObjCSetter(ObjCImplementationDecl *IMP, 1915 const ObjCPropertyImplDecl *PID); 1916 void generateObjCSetterBody(const ObjCImplementationDecl *classImpl, 1917 const ObjCPropertyImplDecl *propImpl, 1918 llvm::Constant *AtomicHelperFn); 1919 1920 //===--------------------------------------------------------------------===// 1921 // Block Bits 1922 //===--------------------------------------------------------------------===// 1923 1924 /// Emit block literal. 1925 /// \return an LLVM value which is a pointer to a struct which contains 1926 /// information about the block, including the block invoke function, the 1927 /// captured variables, etc. 1928 llvm::Value *EmitBlockLiteral(const BlockExpr *); 1929 1930 llvm::Function *GenerateBlockFunction(GlobalDecl GD, 1931 const CGBlockInfo &Info, 1932 const DeclMapTy &ldm, 1933 bool IsLambdaConversionToBlock, 1934 bool BuildGlobalBlock); 1935 1936 /// Check if \p T is a C++ class that has a destructor that can throw. 1937 static bool cxxDestructorCanThrow(QualType T); 1938 1939 llvm::Constant *GenerateCopyHelperFunction(const CGBlockInfo &blockInfo); 1940 llvm::Constant *GenerateDestroyHelperFunction(const CGBlockInfo &blockInfo); 1941 llvm::Constant *GenerateObjCAtomicSetterCopyHelperFunction( 1942 const ObjCPropertyImplDecl *PID); 1943 llvm::Constant *GenerateObjCAtomicGetterCopyHelperFunction( 1944 const ObjCPropertyImplDecl *PID); 1945 llvm::Value *EmitBlockCopyAndAutorelease(llvm::Value *Block, QualType Ty); 1946 1947 void BuildBlockRelease(llvm::Value *DeclPtr, BlockFieldFlags flags, 1948 bool CanThrow); 1949 1950 class AutoVarEmission; 1951 1952 void emitByrefStructureInit(const AutoVarEmission &emission); 1953 1954 /// Enter a cleanup to destroy a __block variable. Note that this 1955 /// cleanup should be a no-op if the variable hasn't left the stack 1956 /// yet; if a cleanup is required for the variable itself, that needs 1957 /// to be done externally. 1958 /// 1959 /// \param Kind Cleanup kind. 1960 /// 1961 /// \param Addr When \p LoadBlockVarAddr is false, the address of the __block 1962 /// structure that will be passed to _Block_object_dispose. When 1963 /// \p LoadBlockVarAddr is true, the address of the field of the block 1964 /// structure that holds the address of the __block structure. 1965 /// 1966 /// \param Flags The flag that will be passed to _Block_object_dispose. 1967 /// 1968 /// \param LoadBlockVarAddr Indicates whether we need to emit a load from 1969 /// \p Addr to get the address of the __block structure. 1970 void enterByrefCleanup(CleanupKind Kind, Address Addr, BlockFieldFlags Flags, 1971 bool LoadBlockVarAddr, bool CanThrow); 1972 1973 void setBlockContextParameter(const ImplicitParamDecl *D, unsigned argNum, 1974 llvm::Value *ptr); 1975 1976 Address LoadBlockStruct(); 1977 Address GetAddrOfBlockDecl(const VarDecl *var); 1978 1979 /// BuildBlockByrefAddress - Computes the location of the 1980 /// data in a variable which is declared as __block. 1981 Address emitBlockByrefAddress(Address baseAddr, const VarDecl *V, 1982 bool followForward = true); 1983 Address emitBlockByrefAddress(Address baseAddr, 1984 const BlockByrefInfo &info, 1985 bool followForward, 1986 const llvm::Twine &name); 1987 1988 const BlockByrefInfo &getBlockByrefInfo(const VarDecl *var); 1989 1990 QualType BuildFunctionArgList(GlobalDecl GD, FunctionArgList &Args); 1991 1992 void GenerateCode(GlobalDecl GD, llvm::Function *Fn, 1993 const CGFunctionInfo &FnInfo); 1994 1995 /// Annotate the function with an attribute that disables TSan checking at 1996 /// runtime. 1997 void markAsIgnoreThreadCheckingAtRuntime(llvm::Function *Fn); 1998 1999 /// Emit code for the start of a function. 2000 /// \param Loc The location to be associated with the function. 2001 /// \param StartLoc The location of the function body. 2002 void StartFunction(GlobalDecl GD, 2003 QualType RetTy, 2004 llvm::Function *Fn, 2005 const CGFunctionInfo &FnInfo, 2006 const FunctionArgList &Args, 2007 SourceLocation Loc = SourceLocation(), 2008 SourceLocation StartLoc = SourceLocation()); 2009 2010 static bool IsConstructorDelegationValid(const CXXConstructorDecl *Ctor); 2011 2012 void EmitConstructorBody(FunctionArgList &Args); 2013 void EmitDestructorBody(FunctionArgList &Args); 2014 void emitImplicitAssignmentOperatorBody(FunctionArgList &Args); 2015 void EmitFunctionBody(const Stmt *Body); 2016 void EmitBlockWithFallThrough(llvm::BasicBlock *BB, const Stmt *S); 2017 2018 void EmitForwardingCallToLambda(const CXXMethodDecl *LambdaCallOperator, 2019 CallArgList &CallArgs); 2020 void EmitLambdaBlockInvokeBody(); 2021 void EmitLambdaDelegatingInvokeBody(const CXXMethodDecl *MD); 2022 void EmitLambdaStaticInvokeBody(const CXXMethodDecl *MD); 2023 void EmitLambdaVLACapture(const VariableArrayType *VAT, LValue LV) { 2024 EmitStoreThroughLValue(RValue::get(VLASizeMap[VAT->getSizeExpr()]), LV); 2025 } 2026 void EmitAsanPrologueOrEpilogue(bool Prologue); 2027 2028 /// Emit the unified return block, trying to avoid its emission when 2029 /// possible. 2030 /// \return The debug location of the user written return statement if the 2031 /// return block is is avoided. 2032 llvm::DebugLoc EmitReturnBlock(); 2033 2034 /// FinishFunction - Complete IR generation of the current function. It is 2035 /// legal to call this function even if there is no current insertion point. 2036 void FinishFunction(SourceLocation EndLoc=SourceLocation()); 2037 2038 void StartThunk(llvm::Function *Fn, GlobalDecl GD, 2039 const CGFunctionInfo &FnInfo, bool IsUnprototyped); 2040 2041 void EmitCallAndReturnForThunk(llvm::FunctionCallee Callee, 2042 const ThunkInfo *Thunk, bool IsUnprototyped); 2043 2044 void FinishThunk(); 2045 2046 /// Emit a musttail call for a thunk with a potentially adjusted this pointer. 2047 void EmitMustTailThunk(GlobalDecl GD, llvm::Value *AdjustedThisPtr, 2048 llvm::FunctionCallee Callee); 2049 2050 /// Generate a thunk for the given method. 2051 void generateThunk(llvm::Function *Fn, const CGFunctionInfo &FnInfo, 2052 GlobalDecl GD, const ThunkInfo &Thunk, 2053 bool IsUnprototyped); 2054 2055 llvm::Function *GenerateVarArgsThunk(llvm::Function *Fn, 2056 const CGFunctionInfo &FnInfo, 2057 GlobalDecl GD, const ThunkInfo &Thunk); 2058 2059 void EmitCtorPrologue(const CXXConstructorDecl *CD, CXXCtorType Type, 2060 FunctionArgList &Args); 2061 2062 void EmitInitializerForField(FieldDecl *Field, LValue LHS, Expr *Init); 2063 2064 /// Struct with all information about dynamic [sub]class needed to set vptr. 2065 struct VPtr { 2066 BaseSubobject Base; 2067 const CXXRecordDecl *NearestVBase; 2068 CharUnits OffsetFromNearestVBase; 2069 const CXXRecordDecl *VTableClass; 2070 }; 2071 2072 /// Initialize the vtable pointer of the given subobject. 2073 void InitializeVTablePointer(const VPtr &vptr); 2074 2075 typedef llvm::SmallVector<VPtr, 4> VPtrsVector; 2076 2077 typedef llvm::SmallPtrSet<const CXXRecordDecl *, 4> VisitedVirtualBasesSetTy; 2078 VPtrsVector getVTablePointers(const CXXRecordDecl *VTableClass); 2079 2080 void getVTablePointers(BaseSubobject Base, const CXXRecordDecl *NearestVBase, 2081 CharUnits OffsetFromNearestVBase, 2082 bool BaseIsNonVirtualPrimaryBase, 2083 const CXXRecordDecl *VTableClass, 2084 VisitedVirtualBasesSetTy &VBases, VPtrsVector &vptrs); 2085 2086 void InitializeVTablePointers(const CXXRecordDecl *ClassDecl); 2087 2088 /// GetVTablePtr - Return the Value of the vtable pointer member pointed 2089 /// to by This. 2090 llvm::Value *GetVTablePtr(Address This, llvm::Type *VTableTy, 2091 const CXXRecordDecl *VTableClass); 2092 2093 enum CFITypeCheckKind { 2094 CFITCK_VCall, 2095 CFITCK_NVCall, 2096 CFITCK_DerivedCast, 2097 CFITCK_UnrelatedCast, 2098 CFITCK_ICall, 2099 CFITCK_NVMFCall, 2100 CFITCK_VMFCall, 2101 }; 2102 2103 /// Derived is the presumed address of an object of type T after a 2104 /// cast. If T is a polymorphic class type, emit a check that the virtual 2105 /// table for Derived belongs to a class derived from T. 2106 void EmitVTablePtrCheckForCast(QualType T, llvm::Value *Derived, 2107 bool MayBeNull, CFITypeCheckKind TCK, 2108 SourceLocation Loc); 2109 2110 /// EmitVTablePtrCheckForCall - Virtual method MD is being called via VTable. 2111 /// If vptr CFI is enabled, emit a check that VTable is valid. 2112 void EmitVTablePtrCheckForCall(const CXXRecordDecl *RD, llvm::Value *VTable, 2113 CFITypeCheckKind TCK, SourceLocation Loc); 2114 2115 /// EmitVTablePtrCheck - Emit a check that VTable is a valid virtual table for 2116 /// RD using llvm.type.test. 2117 void EmitVTablePtrCheck(const CXXRecordDecl *RD, llvm::Value *VTable, 2118 CFITypeCheckKind TCK, SourceLocation Loc); 2119 2120 /// If whole-program virtual table optimization is enabled, emit an assumption 2121 /// that VTable is a member of RD's type identifier. Or, if vptr CFI is 2122 /// enabled, emit a check that VTable is a member of RD's type identifier. 2123 void EmitTypeMetadataCodeForVCall(const CXXRecordDecl *RD, 2124 llvm::Value *VTable, SourceLocation Loc); 2125 2126 /// Returns whether we should perform a type checked load when loading a 2127 /// virtual function for virtual calls to members of RD. This is generally 2128 /// true when both vcall CFI and whole-program-vtables are enabled. 2129 bool ShouldEmitVTableTypeCheckedLoad(const CXXRecordDecl *RD); 2130 2131 /// Emit a type checked load from the given vtable. 2132 llvm::Value *EmitVTableTypeCheckedLoad(const CXXRecordDecl *RD, llvm::Value *VTable, 2133 uint64_t VTableByteOffset); 2134 2135 /// EnterDtorCleanups - Enter the cleanups necessary to complete the 2136 /// given phase of destruction for a destructor. The end result 2137 /// should call destructors on members and base classes in reverse 2138 /// order of their construction. 2139 void EnterDtorCleanups(const CXXDestructorDecl *Dtor, CXXDtorType Type); 2140 2141 /// ShouldInstrumentFunction - Return true if the current function should be 2142 /// instrumented with __cyg_profile_func_* calls 2143 bool ShouldInstrumentFunction(); 2144 2145 /// ShouldXRayInstrument - Return true if the current function should be 2146 /// instrumented with XRay nop sleds. 2147 bool ShouldXRayInstrumentFunction() const; 2148 2149 /// AlwaysEmitXRayCustomEvents - Return true if we must unconditionally emit 2150 /// XRay custom event handling calls. 2151 bool AlwaysEmitXRayCustomEvents() const; 2152 2153 /// AlwaysEmitXRayTypedEvents - Return true if clang must unconditionally emit 2154 /// XRay typed event handling calls. 2155 bool AlwaysEmitXRayTypedEvents() const; 2156 2157 /// Encode an address into a form suitable for use in a function prologue. 2158 llvm::Constant *EncodeAddrForUseInPrologue(llvm::Function *F, 2159 llvm::Constant *Addr); 2160 2161 /// Decode an address used in a function prologue, encoded by \c 2162 /// EncodeAddrForUseInPrologue. 2163 llvm::Value *DecodeAddrUsedInPrologue(llvm::Value *F, 2164 llvm::Value *EncodedAddr); 2165 2166 /// EmitFunctionProlog - Emit the target specific LLVM code to load the 2167 /// arguments for the given function. This is also responsible for naming the 2168 /// LLVM function arguments. 2169 void EmitFunctionProlog(const CGFunctionInfo &FI, 2170 llvm::Function *Fn, 2171 const FunctionArgList &Args); 2172 2173 /// EmitFunctionEpilog - Emit the target specific LLVM code to return the 2174 /// given temporary. 2175 void EmitFunctionEpilog(const CGFunctionInfo &FI, bool EmitRetDbgLoc, 2176 SourceLocation EndLoc); 2177 2178 /// Emit a test that checks if the return value \p RV is nonnull. 2179 void EmitReturnValueCheck(llvm::Value *RV); 2180 2181 /// EmitStartEHSpec - Emit the start of the exception spec. 2182 void EmitStartEHSpec(const Decl *D); 2183 2184 /// EmitEndEHSpec - Emit the end of the exception spec. 2185 void EmitEndEHSpec(const Decl *D); 2186 2187 /// getTerminateLandingPad - Return a landing pad that just calls terminate. 2188 llvm::BasicBlock *getTerminateLandingPad(); 2189 2190 /// getTerminateLandingPad - Return a cleanup funclet that just calls 2191 /// terminate. 2192 llvm::BasicBlock *getTerminateFunclet(); 2193 2194 /// getTerminateHandler - Return a handler (not a landing pad, just 2195 /// a catch handler) that just calls terminate. This is used when 2196 /// a terminate scope encloses a try. 2197 llvm::BasicBlock *getTerminateHandler(); 2198 2199 llvm::Type *ConvertTypeForMem(QualType T); 2200 llvm::Type *ConvertType(QualType T); 2201 llvm::Type *ConvertType(const TypeDecl *T) { 2202 return ConvertType(getContext().getTypeDeclType(T)); 2203 } 2204 2205 /// LoadObjCSelf - Load the value of self. This function is only valid while 2206 /// generating code for an Objective-C method. 2207 llvm::Value *LoadObjCSelf(); 2208 2209 /// TypeOfSelfObject - Return type of object that this self represents. 2210 QualType TypeOfSelfObject(); 2211 2212 /// getEvaluationKind - Return the TypeEvaluationKind of QualType \c T. 2213 static TypeEvaluationKind getEvaluationKind(QualType T); 2214 2215 static bool hasScalarEvaluationKind(QualType T) { 2216 return getEvaluationKind(T) == TEK_Scalar; 2217 } 2218 2219 static bool hasAggregateEvaluationKind(QualType T) { 2220 return getEvaluationKind(T) == TEK_Aggregate; 2221 } 2222 2223 /// createBasicBlock - Create an LLVM basic block. 2224 llvm::BasicBlock *createBasicBlock(const Twine &name = "", 2225 llvm::Function *parent = nullptr, 2226 llvm::BasicBlock *before = nullptr) { 2227 return llvm::BasicBlock::Create(getLLVMContext(), name, parent, before); 2228 } 2229 2230 /// getBasicBlockForLabel - Return the LLVM basicblock that the specified 2231 /// label maps to. 2232 JumpDest getJumpDestForLabel(const LabelDecl *S); 2233 2234 /// SimplifyForwardingBlocks - If the given basic block is only a branch to 2235 /// another basic block, simplify it. This assumes that no other code could 2236 /// potentially reference the basic block. 2237 void SimplifyForwardingBlocks(llvm::BasicBlock *BB); 2238 2239 /// EmitBlock - Emit the given block \arg BB and set it as the insert point, 2240 /// adding a fall-through branch from the current insert block if 2241 /// necessary. It is legal to call this function even if there is no current 2242 /// insertion point. 2243 /// 2244 /// IsFinished - If true, indicates that the caller has finished emitting 2245 /// branches to the given block and does not expect to emit code into it. This 2246 /// means the block can be ignored if it is unreachable. 2247 void EmitBlock(llvm::BasicBlock *BB, bool IsFinished=false); 2248 2249 /// EmitBlockAfterUses - Emit the given block somewhere hopefully 2250 /// near its uses, and leave the insertion point in it. 2251 void EmitBlockAfterUses(llvm::BasicBlock *BB); 2252 2253 /// EmitBranch - Emit a branch to the specified basic block from the current 2254 /// insert block, taking care to avoid creation of branches from dummy 2255 /// blocks. It is legal to call this function even if there is no current 2256 /// insertion point. 2257 /// 2258 /// This function clears the current insertion point. The caller should follow 2259 /// calls to this function with calls to Emit*Block prior to generation new 2260 /// code. 2261 void EmitBranch(llvm::BasicBlock *Block); 2262 2263 /// HaveInsertPoint - True if an insertion point is defined. If not, this 2264 /// indicates that the current code being emitted is unreachable. 2265 bool HaveInsertPoint() const { 2266 return Builder.GetInsertBlock() != nullptr; 2267 } 2268 2269 /// EnsureInsertPoint - Ensure that an insertion point is defined so that 2270 /// emitted IR has a place to go. Note that by definition, if this function 2271 /// creates a block then that block is unreachable; callers may do better to 2272 /// detect when no insertion point is defined and simply skip IR generation. 2273 void EnsureInsertPoint() { 2274 if (!HaveInsertPoint()) 2275 EmitBlock(createBasicBlock()); 2276 } 2277 2278 /// ErrorUnsupported - Print out an error that codegen doesn't support the 2279 /// specified stmt yet. 2280 void ErrorUnsupported(const Stmt *S, const char *Type); 2281 2282 //===--------------------------------------------------------------------===// 2283 // Helpers 2284 //===--------------------------------------------------------------------===// 2285 2286 LValue MakeAddrLValue(Address Addr, QualType T, 2287 AlignmentSource Source = AlignmentSource::Type) { 2288 return LValue::MakeAddr(Addr, T, getContext(), LValueBaseInfo(Source), 2289 CGM.getTBAAAccessInfo(T)); 2290 } 2291 2292 LValue MakeAddrLValue(Address Addr, QualType T, LValueBaseInfo BaseInfo, 2293 TBAAAccessInfo TBAAInfo) { 2294 return LValue::MakeAddr(Addr, T, getContext(), BaseInfo, TBAAInfo); 2295 } 2296 2297 LValue MakeAddrLValue(llvm::Value *V, QualType T, CharUnits Alignment, 2298 AlignmentSource Source = AlignmentSource::Type) { 2299 return LValue::MakeAddr(Address(V, Alignment), T, getContext(), 2300 LValueBaseInfo(Source), CGM.getTBAAAccessInfo(T)); 2301 } 2302 2303 LValue MakeAddrLValue(llvm::Value *V, QualType T, CharUnits Alignment, 2304 LValueBaseInfo BaseInfo, TBAAAccessInfo TBAAInfo) { 2305 return LValue::MakeAddr(Address(V, Alignment), T, getContext(), 2306 BaseInfo, TBAAInfo); 2307 } 2308 2309 LValue MakeNaturalAlignPointeeAddrLValue(llvm::Value *V, QualType T); 2310 LValue MakeNaturalAlignAddrLValue(llvm::Value *V, QualType T); 2311 2312 Address EmitLoadOfReference(LValue RefLVal, 2313 LValueBaseInfo *PointeeBaseInfo = nullptr, 2314 TBAAAccessInfo *PointeeTBAAInfo = nullptr); 2315 LValue EmitLoadOfReferenceLValue(LValue RefLVal); 2316 LValue EmitLoadOfReferenceLValue(Address RefAddr, QualType RefTy, 2317 AlignmentSource Source = 2318 AlignmentSource::Type) { 2319 LValue RefLVal = MakeAddrLValue(RefAddr, RefTy, LValueBaseInfo(Source), 2320 CGM.getTBAAAccessInfo(RefTy)); 2321 return EmitLoadOfReferenceLValue(RefLVal); 2322 } 2323 2324 Address EmitLoadOfPointer(Address Ptr, const PointerType *PtrTy, 2325 LValueBaseInfo *BaseInfo = nullptr, 2326 TBAAAccessInfo *TBAAInfo = nullptr); 2327 LValue EmitLoadOfPointerLValue(Address Ptr, const PointerType *PtrTy); 2328 2329 /// CreateTempAlloca - This creates an alloca and inserts it into the entry 2330 /// block if \p ArraySize is nullptr, otherwise inserts it at the current 2331 /// insertion point of the builder. The caller is responsible for setting an 2332 /// appropriate alignment on 2333 /// the alloca. 2334 /// 2335 /// \p ArraySize is the number of array elements to be allocated if it 2336 /// is not nullptr. 2337 /// 2338 /// LangAS::Default is the address space of pointers to local variables and 2339 /// temporaries, as exposed in the source language. In certain 2340 /// configurations, this is not the same as the alloca address space, and a 2341 /// cast is needed to lift the pointer from the alloca AS into 2342 /// LangAS::Default. This can happen when the target uses a restricted 2343 /// address space for the stack but the source language requires 2344 /// LangAS::Default to be a generic address space. The latter condition is 2345 /// common for most programming languages; OpenCL is an exception in that 2346 /// LangAS::Default is the private address space, which naturally maps 2347 /// to the stack. 2348 /// 2349 /// Because the address of a temporary is often exposed to the program in 2350 /// various ways, this function will perform the cast. The original alloca 2351 /// instruction is returned through \p Alloca if it is not nullptr. 2352 /// 2353 /// The cast is not performaed in CreateTempAllocaWithoutCast. This is 2354 /// more efficient if the caller knows that the address will not be exposed. 2355 llvm::AllocaInst *CreateTempAlloca(llvm::Type *Ty, const Twine &Name = "tmp", 2356 llvm::Value *ArraySize = nullptr); 2357 Address CreateTempAlloca(llvm::Type *Ty, CharUnits align, 2358 const Twine &Name = "tmp", 2359 llvm::Value *ArraySize = nullptr, 2360 Address *Alloca = nullptr); 2361 Address CreateTempAllocaWithoutCast(llvm::Type *Ty, CharUnits align, 2362 const Twine &Name = "tmp", 2363 llvm::Value *ArraySize = nullptr); 2364 2365 /// CreateDefaultAlignedTempAlloca - This creates an alloca with the 2366 /// default ABI alignment of the given LLVM type. 2367 /// 2368 /// IMPORTANT NOTE: This is *not* generally the right alignment for 2369 /// any given AST type that happens to have been lowered to the 2370 /// given IR type. This should only ever be used for function-local, 2371 /// IR-driven manipulations like saving and restoring a value. Do 2372 /// not hand this address off to arbitrary IRGen routines, and especially 2373 /// do not pass it as an argument to a function that might expect a 2374 /// properly ABI-aligned value. 2375 Address CreateDefaultAlignTempAlloca(llvm::Type *Ty, 2376 const Twine &Name = "tmp"); 2377 2378 /// InitTempAlloca - Provide an initial value for the given alloca which 2379 /// will be observable at all locations in the function. 2380 /// 2381 /// The address should be something that was returned from one of 2382 /// the CreateTempAlloca or CreateMemTemp routines, and the 2383 /// initializer must be valid in the entry block (i.e. it must 2384 /// either be a constant or an argument value). 2385 void InitTempAlloca(Address Alloca, llvm::Value *Value); 2386 2387 /// CreateIRTemp - Create a temporary IR object of the given type, with 2388 /// appropriate alignment. This routine should only be used when an temporary 2389 /// value needs to be stored into an alloca (for example, to avoid explicit 2390 /// PHI construction), but the type is the IR type, not the type appropriate 2391 /// for storing in memory. 2392 /// 2393 /// That is, this is exactly equivalent to CreateMemTemp, but calling 2394 /// ConvertType instead of ConvertTypeForMem. 2395 Address CreateIRTemp(QualType T, const Twine &Name = "tmp"); 2396 2397 /// CreateMemTemp - Create a temporary memory object of the given type, with 2398 /// appropriate alignmen and cast it to the default address space. Returns 2399 /// the original alloca instruction by \p Alloca if it is not nullptr. 2400 Address CreateMemTemp(QualType T, const Twine &Name = "tmp", 2401 Address *Alloca = nullptr); 2402 Address CreateMemTemp(QualType T, CharUnits Align, const Twine &Name = "tmp", 2403 Address *Alloca = nullptr); 2404 2405 /// CreateMemTemp - Create a temporary memory object of the given type, with 2406 /// appropriate alignmen without casting it to the default address space. 2407 Address CreateMemTempWithoutCast(QualType T, const Twine &Name = "tmp"); 2408 Address CreateMemTempWithoutCast(QualType T, CharUnits Align, 2409 const Twine &Name = "tmp"); 2410 2411 /// CreateAggTemp - Create a temporary memory object for the given 2412 /// aggregate type. 2413 AggValueSlot CreateAggTemp(QualType T, const Twine &Name = "tmp", 2414 Address *Alloca = nullptr) { 2415 return AggValueSlot::forAddr(CreateMemTemp(T, Name, Alloca), 2416 T.getQualifiers(), 2417 AggValueSlot::IsNotDestructed, 2418 AggValueSlot::DoesNotNeedGCBarriers, 2419 AggValueSlot::IsNotAliased, 2420 AggValueSlot::DoesNotOverlap); 2421 } 2422 2423 /// Emit a cast to void* in the appropriate address space. 2424 llvm::Value *EmitCastToVoidPtr(llvm::Value *value); 2425 2426 /// EvaluateExprAsBool - Perform the usual unary conversions on the specified 2427 /// expression and compare the result against zero, returning an Int1Ty value. 2428 llvm::Value *EvaluateExprAsBool(const Expr *E); 2429 2430 /// EmitIgnoredExpr - Emit an expression in a context which ignores the result. 2431 void EmitIgnoredExpr(const Expr *E); 2432 2433 /// EmitAnyExpr - Emit code to compute the specified expression which can have 2434 /// any type. The result is returned as an RValue struct. If this is an 2435 /// aggregate expression, the aggloc/agglocvolatile arguments indicate where 2436 /// the result should be returned. 2437 /// 2438 /// \param ignoreResult True if the resulting value isn't used. 2439 RValue EmitAnyExpr(const Expr *E, 2440 AggValueSlot aggSlot = AggValueSlot::ignored(), 2441 bool ignoreResult = false); 2442 2443 // EmitVAListRef - Emit a "reference" to a va_list; this is either the address 2444 // or the value of the expression, depending on how va_list is defined. 2445 Address EmitVAListRef(const Expr *E); 2446 2447 /// Emit a "reference" to a __builtin_ms_va_list; this is 2448 /// always the value of the expression, because a __builtin_ms_va_list is a 2449 /// pointer to a char. 2450 Address EmitMSVAListRef(const Expr *E); 2451 2452 /// EmitAnyExprToTemp - Similarly to EmitAnyExpr(), however, the result will 2453 /// always be accessible even if no aggregate location is provided. 2454 RValue EmitAnyExprToTemp(const Expr *E); 2455 2456 /// EmitAnyExprToMem - Emits the code necessary to evaluate an 2457 /// arbitrary expression into the given memory location. 2458 void EmitAnyExprToMem(const Expr *E, Address Location, 2459 Qualifiers Quals, bool IsInitializer); 2460 2461 void EmitAnyExprToExn(const Expr *E, Address Addr); 2462 2463 /// EmitExprAsInit - Emits the code necessary to initialize a 2464 /// location in memory with the given initializer. 2465 void EmitExprAsInit(const Expr *init, const ValueDecl *D, LValue lvalue, 2466 bool capturedByInit); 2467 2468 /// hasVolatileMember - returns true if aggregate type has a volatile 2469 /// member. 2470 bool hasVolatileMember(QualType T) { 2471 if (const RecordType *RT = T->getAs<RecordType>()) { 2472 const RecordDecl *RD = cast<RecordDecl>(RT->getDecl()); 2473 return RD->hasVolatileMember(); 2474 } 2475 return false; 2476 } 2477 2478 /// Determine whether a return value slot may overlap some other object. 2479 AggValueSlot::Overlap_t getOverlapForReturnValue() { 2480 // FIXME: Assuming no overlap here breaks guaranteed copy elision for base 2481 // class subobjects. These cases may need to be revisited depending on the 2482 // resolution of the relevant core issue. 2483 return AggValueSlot::DoesNotOverlap; 2484 } 2485 2486 /// Determine whether a field initialization may overlap some other object. 2487 AggValueSlot::Overlap_t getOverlapForFieldInit(const FieldDecl *FD); 2488 2489 /// Determine whether a base class initialization may overlap some other 2490 /// object. 2491 AggValueSlot::Overlap_t getOverlapForBaseInit(const CXXRecordDecl *RD, 2492 const CXXRecordDecl *BaseRD, 2493 bool IsVirtual); 2494 2495 /// Emit an aggregate assignment. 2496 void EmitAggregateAssign(LValue Dest, LValue Src, QualType EltTy) { 2497 bool IsVolatile = hasVolatileMember(EltTy); 2498 EmitAggregateCopy(Dest, Src, EltTy, AggValueSlot::MayOverlap, IsVolatile); 2499 } 2500 2501 void EmitAggregateCopyCtor(LValue Dest, LValue Src, 2502 AggValueSlot::Overlap_t MayOverlap) { 2503 EmitAggregateCopy(Dest, Src, Src.getType(), MayOverlap); 2504 } 2505 2506 /// EmitAggregateCopy - Emit an aggregate copy. 2507 /// 2508 /// \param isVolatile \c true iff either the source or the destination is 2509 /// volatile. 2510 /// \param MayOverlap Whether the tail padding of the destination might be 2511 /// occupied by some other object. More efficient code can often be 2512 /// generated if not. 2513 void EmitAggregateCopy(LValue Dest, LValue Src, QualType EltTy, 2514 AggValueSlot::Overlap_t MayOverlap, 2515 bool isVolatile = false); 2516 2517 /// GetAddrOfLocalVar - Return the address of a local variable. 2518 Address GetAddrOfLocalVar(const VarDecl *VD) { 2519 auto it = LocalDeclMap.find(VD); 2520 assert(it != LocalDeclMap.end() && 2521 "Invalid argument to GetAddrOfLocalVar(), no decl!"); 2522 return it->second; 2523 } 2524 2525 /// Given an opaque value expression, return its LValue mapping if it exists, 2526 /// otherwise create one. 2527 LValue getOrCreateOpaqueLValueMapping(const OpaqueValueExpr *e); 2528 2529 /// Given an opaque value expression, return its RValue mapping if it exists, 2530 /// otherwise create one. 2531 RValue getOrCreateOpaqueRValueMapping(const OpaqueValueExpr *e); 2532 2533 /// Get the index of the current ArrayInitLoopExpr, if any. 2534 llvm::Value *getArrayInitIndex() { return ArrayInitIndex; } 2535 2536 /// getAccessedFieldNo - Given an encoded value and a result number, return 2537 /// the input field number being accessed. 2538 static unsigned getAccessedFieldNo(unsigned Idx, const llvm::Constant *Elts); 2539 2540 llvm::BlockAddress *GetAddrOfLabel(const LabelDecl *L); 2541 llvm::BasicBlock *GetIndirectGotoBlock(); 2542 2543 /// Check if \p E is a C++ "this" pointer wrapped in value-preserving casts. 2544 static bool IsWrappedCXXThis(const Expr *E); 2545 2546 /// EmitNullInitialization - Generate code to set a value of the given type to 2547 /// null, If the type contains data member pointers, they will be initialized 2548 /// to -1 in accordance with the Itanium C++ ABI. 2549 void EmitNullInitialization(Address DestPtr, QualType Ty); 2550 2551 /// Emits a call to an LLVM variable-argument intrinsic, either 2552 /// \c llvm.va_start or \c llvm.va_end. 2553 /// \param ArgValue A reference to the \c va_list as emitted by either 2554 /// \c EmitVAListRef or \c EmitMSVAListRef. 2555 /// \param IsStart If \c true, emits a call to \c llvm.va_start; otherwise, 2556 /// calls \c llvm.va_end. 2557 llvm::Value *EmitVAStartEnd(llvm::Value *ArgValue, bool IsStart); 2558 2559 /// Generate code to get an argument from the passed in pointer 2560 /// and update it accordingly. 2561 /// \param VE The \c VAArgExpr for which to generate code. 2562 /// \param VAListAddr Receives a reference to the \c va_list as emitted by 2563 /// either \c EmitVAListRef or \c EmitMSVAListRef. 2564 /// \returns A pointer to the argument. 2565 // FIXME: We should be able to get rid of this method and use the va_arg 2566 // instruction in LLVM instead once it works well enough. 2567 Address EmitVAArg(VAArgExpr *VE, Address &VAListAddr); 2568 2569 /// emitArrayLength - Compute the length of an array, even if it's a 2570 /// VLA, and drill down to the base element type. 2571 llvm::Value *emitArrayLength(const ArrayType *arrayType, 2572 QualType &baseType, 2573 Address &addr); 2574 2575 /// EmitVLASize - Capture all the sizes for the VLA expressions in 2576 /// the given variably-modified type and store them in the VLASizeMap. 2577 /// 2578 /// This function can be called with a null (unreachable) insert point. 2579 void EmitVariablyModifiedType(QualType Ty); 2580 2581 struct VlaSizePair { 2582 llvm::Value *NumElts; 2583 QualType Type; 2584 2585 VlaSizePair(llvm::Value *NE, QualType T) : NumElts(NE), Type(T) {} 2586 }; 2587 2588 /// Return the number of elements for a single dimension 2589 /// for the given array type. 2590 VlaSizePair getVLAElements1D(const VariableArrayType *vla); 2591 VlaSizePair getVLAElements1D(QualType vla); 2592 2593 /// Returns an LLVM value that corresponds to the size, 2594 /// in non-variably-sized elements, of a variable length array type, 2595 /// plus that largest non-variably-sized element type. Assumes that 2596 /// the type has already been emitted with EmitVariablyModifiedType. 2597 VlaSizePair getVLASize(const VariableArrayType *vla); 2598 VlaSizePair getVLASize(QualType vla); 2599 2600 /// LoadCXXThis - Load the value of 'this'. This function is only valid while 2601 /// generating code for an C++ member function. 2602 llvm::Value *LoadCXXThis() { 2603 assert(CXXThisValue && "no 'this' value for this function"); 2604 return CXXThisValue; 2605 } 2606 Address LoadCXXThisAddress(); 2607 2608 /// LoadCXXVTT - Load the VTT parameter to base constructors/destructors have 2609 /// virtual bases. 2610 // FIXME: Every place that calls LoadCXXVTT is something 2611 // that needs to be abstracted properly. 2612 llvm::Value *LoadCXXVTT() { 2613 assert(CXXStructorImplicitParamValue && "no VTT value for this function"); 2614 return CXXStructorImplicitParamValue; 2615 } 2616 2617 /// GetAddressOfBaseOfCompleteClass - Convert the given pointer to a 2618 /// complete class to the given direct base. 2619 Address 2620 GetAddressOfDirectBaseInCompleteClass(Address Value, 2621 const CXXRecordDecl *Derived, 2622 const CXXRecordDecl *Base, 2623 bool BaseIsVirtual); 2624 2625 static bool ShouldNullCheckClassCastValue(const CastExpr *Cast); 2626 2627 /// GetAddressOfBaseClass - This function will add the necessary delta to the 2628 /// load of 'this' and returns address of the base class. 2629 Address GetAddressOfBaseClass(Address Value, 2630 const CXXRecordDecl *Derived, 2631 CastExpr::path_const_iterator PathBegin, 2632 CastExpr::path_const_iterator PathEnd, 2633 bool NullCheckValue, SourceLocation Loc); 2634 2635 Address GetAddressOfDerivedClass(Address Value, 2636 const CXXRecordDecl *Derived, 2637 CastExpr::path_const_iterator PathBegin, 2638 CastExpr::path_const_iterator PathEnd, 2639 bool NullCheckValue); 2640 2641 /// GetVTTParameter - Return the VTT parameter that should be passed to a 2642 /// base constructor/destructor with virtual bases. 2643 /// FIXME: VTTs are Itanium ABI-specific, so the definition should move 2644 /// to ItaniumCXXABI.cpp together with all the references to VTT. 2645 llvm::Value *GetVTTParameter(GlobalDecl GD, bool ForVirtualBase, 2646 bool Delegating); 2647 2648 void EmitDelegateCXXConstructorCall(const CXXConstructorDecl *Ctor, 2649 CXXCtorType CtorType, 2650 const FunctionArgList &Args, 2651 SourceLocation Loc); 2652 // It's important not to confuse this and the previous function. Delegating 2653 // constructors are the C++0x feature. The constructor delegate optimization 2654 // is used to reduce duplication in the base and complete consturctors where 2655 // they are substantially the same. 2656 void EmitDelegatingCXXConstructorCall(const CXXConstructorDecl *Ctor, 2657 const FunctionArgList &Args); 2658 2659 /// Emit a call to an inheriting constructor (that is, one that invokes a 2660 /// constructor inherited from a base class) by inlining its definition. This 2661 /// is necessary if the ABI does not support forwarding the arguments to the 2662 /// base class constructor (because they're variadic or similar). 2663 void EmitInlinedInheritingCXXConstructorCall(const CXXConstructorDecl *Ctor, 2664 CXXCtorType CtorType, 2665 bool ForVirtualBase, 2666 bool Delegating, 2667 CallArgList &Args); 2668 2669 /// Emit a call to a constructor inherited from a base class, passing the 2670 /// current constructor's arguments along unmodified (without even making 2671 /// a copy). 2672 void EmitInheritedCXXConstructorCall(const CXXConstructorDecl *D, 2673 bool ForVirtualBase, Address This, 2674 bool InheritedFromVBase, 2675 const CXXInheritedCtorInitExpr *E); 2676 2677 void EmitCXXConstructorCall(const CXXConstructorDecl *D, CXXCtorType Type, 2678 bool ForVirtualBase, bool Delegating, 2679 AggValueSlot ThisAVS, const CXXConstructExpr *E); 2680 2681 void EmitCXXConstructorCall(const CXXConstructorDecl *D, CXXCtorType Type, 2682 bool ForVirtualBase, bool Delegating, 2683 Address This, CallArgList &Args, 2684 AggValueSlot::Overlap_t Overlap, 2685 SourceLocation Loc, bool NewPointerIsChecked); 2686 2687 /// Emit assumption load for all bases. Requires to be be called only on 2688 /// most-derived class and not under construction of the object. 2689 void EmitVTableAssumptionLoads(const CXXRecordDecl *ClassDecl, Address This); 2690 2691 /// Emit assumption that vptr load == global vtable. 2692 void EmitVTableAssumptionLoad(const VPtr &vptr, Address This); 2693 2694 void EmitSynthesizedCXXCopyCtorCall(const CXXConstructorDecl *D, 2695 Address This, Address Src, 2696 const CXXConstructExpr *E); 2697 2698 void EmitCXXAggrConstructorCall(const CXXConstructorDecl *D, 2699 const ArrayType *ArrayTy, 2700 Address ArrayPtr, 2701 const CXXConstructExpr *E, 2702 bool NewPointerIsChecked, 2703 bool ZeroInitialization = false); 2704 2705 void EmitCXXAggrConstructorCall(const CXXConstructorDecl *D, 2706 llvm::Value *NumElements, 2707 Address ArrayPtr, 2708 const CXXConstructExpr *E, 2709 bool NewPointerIsChecked, 2710 bool ZeroInitialization = false); 2711 2712 static Destroyer destroyCXXObject; 2713 2714 void EmitCXXDestructorCall(const CXXDestructorDecl *D, CXXDtorType Type, 2715 bool ForVirtualBase, bool Delegating, Address This, 2716 QualType ThisTy); 2717 2718 void EmitNewArrayInitializer(const CXXNewExpr *E, QualType elementType, 2719 llvm::Type *ElementTy, Address NewPtr, 2720 llvm::Value *NumElements, 2721 llvm::Value *AllocSizeWithoutCookie); 2722 2723 void EmitCXXTemporary(const CXXTemporary *Temporary, QualType TempType, 2724 Address Ptr); 2725 2726 llvm::Value *EmitLifetimeStart(uint64_t Size, llvm::Value *Addr); 2727 void EmitLifetimeEnd(llvm::Value *Size, llvm::Value *Addr); 2728 2729 llvm::Value *EmitCXXNewExpr(const CXXNewExpr *E); 2730 void EmitCXXDeleteExpr(const CXXDeleteExpr *E); 2731 2732 void EmitDeleteCall(const FunctionDecl *DeleteFD, llvm::Value *Ptr, 2733 QualType DeleteTy, llvm::Value *NumElements = nullptr, 2734 CharUnits CookieSize = CharUnits()); 2735 2736 RValue EmitBuiltinNewDeleteCall(const FunctionProtoType *Type, 2737 const CallExpr *TheCallExpr, bool IsDelete); 2738 2739 llvm::Value *EmitCXXTypeidExpr(const CXXTypeidExpr *E); 2740 llvm::Value *EmitDynamicCast(Address V, const CXXDynamicCastExpr *DCE); 2741 Address EmitCXXUuidofExpr(const CXXUuidofExpr *E); 2742 2743 /// Situations in which we might emit a check for the suitability of a 2744 /// pointer or glvalue. Needs to be kept in sync with ubsan_handlers.cpp in 2745 /// compiler-rt. 2746 enum TypeCheckKind { 2747 /// Checking the operand of a load. Must be suitably sized and aligned. 2748 TCK_Load, 2749 /// Checking the destination of a store. Must be suitably sized and aligned. 2750 TCK_Store, 2751 /// Checking the bound value in a reference binding. Must be suitably sized 2752 /// and aligned, but is not required to refer to an object (until the 2753 /// reference is used), per core issue 453. 2754 TCK_ReferenceBinding, 2755 /// Checking the object expression in a non-static data member access. Must 2756 /// be an object within its lifetime. 2757 TCK_MemberAccess, 2758 /// Checking the 'this' pointer for a call to a non-static member function. 2759 /// Must be an object within its lifetime. 2760 TCK_MemberCall, 2761 /// Checking the 'this' pointer for a constructor call. 2762 TCK_ConstructorCall, 2763 /// Checking the operand of a static_cast to a derived pointer type. Must be 2764 /// null or an object within its lifetime. 2765 TCK_DowncastPointer, 2766 /// Checking the operand of a static_cast to a derived reference type. Must 2767 /// be an object within its lifetime. 2768 TCK_DowncastReference, 2769 /// Checking the operand of a cast to a base object. Must be suitably sized 2770 /// and aligned. 2771 TCK_Upcast, 2772 /// Checking the operand of a cast to a virtual base object. Must be an 2773 /// object within its lifetime. 2774 TCK_UpcastToVirtualBase, 2775 /// Checking the value assigned to a _Nonnull pointer. Must not be null. 2776 TCK_NonnullAssign, 2777 /// Checking the operand of a dynamic_cast or a typeid expression. Must be 2778 /// null or an object within its lifetime. 2779 TCK_DynamicOperation 2780 }; 2781 2782 /// Determine whether the pointer type check \p TCK permits null pointers. 2783 static bool isNullPointerAllowed(TypeCheckKind TCK); 2784 2785 /// Determine whether the pointer type check \p TCK requires a vptr check. 2786 static bool isVptrCheckRequired(TypeCheckKind TCK, QualType Ty); 2787 2788 /// Whether any type-checking sanitizers are enabled. If \c false, 2789 /// calls to EmitTypeCheck can be skipped. 2790 bool sanitizePerformTypeCheck() const; 2791 2792 /// Emit a check that \p V is the address of storage of the 2793 /// appropriate size and alignment for an object of type \p Type 2794 /// (or if ArraySize is provided, for an array of that bound). 2795 void EmitTypeCheck(TypeCheckKind TCK, SourceLocation Loc, llvm::Value *V, 2796 QualType Type, CharUnits Alignment = CharUnits::Zero(), 2797 SanitizerSet SkippedChecks = SanitizerSet(), 2798 llvm::Value *ArraySize = nullptr); 2799 2800 /// Emit a check that \p Base points into an array object, which 2801 /// we can access at index \p Index. \p Accessed should be \c false if we 2802 /// this expression is used as an lvalue, for instance in "&Arr[Idx]". 2803 void EmitBoundsCheck(const Expr *E, const Expr *Base, llvm::Value *Index, 2804 QualType IndexType, bool Accessed); 2805 2806 llvm::Value *EmitScalarPrePostIncDec(const UnaryOperator *E, LValue LV, 2807 bool isInc, bool isPre); 2808 ComplexPairTy EmitComplexPrePostIncDec(const UnaryOperator *E, LValue LV, 2809 bool isInc, bool isPre); 2810 2811 /// Converts Location to a DebugLoc, if debug information is enabled. 2812 llvm::DebugLoc SourceLocToDebugLoc(SourceLocation Location); 2813 2814 /// Get the record field index as represented in debug info. 2815 unsigned getDebugInfoFIndex(const RecordDecl *Rec, unsigned FieldIndex); 2816 2817 2818 //===--------------------------------------------------------------------===// 2819 // Declaration Emission 2820 //===--------------------------------------------------------------------===// 2821 2822 /// EmitDecl - Emit a declaration. 2823 /// 2824 /// This function can be called with a null (unreachable) insert point. 2825 void EmitDecl(const Decl &D); 2826 2827 /// EmitVarDecl - Emit a local variable declaration. 2828 /// 2829 /// This function can be called with a null (unreachable) insert point. 2830 void EmitVarDecl(const VarDecl &D); 2831 2832 void EmitScalarInit(const Expr *init, const ValueDecl *D, LValue lvalue, 2833 bool capturedByInit); 2834 2835 typedef void SpecialInitFn(CodeGenFunction &Init, const VarDecl &D, 2836 llvm::Value *Address); 2837 2838 /// Determine whether the given initializer is trivial in the sense 2839 /// that it requires no code to be generated. 2840 bool isTrivialInitializer(const Expr *Init); 2841 2842 /// EmitAutoVarDecl - Emit an auto variable declaration. 2843 /// 2844 /// This function can be called with a null (unreachable) insert point. 2845 void EmitAutoVarDecl(const VarDecl &D); 2846 2847 class AutoVarEmission { 2848 friend class CodeGenFunction; 2849 2850 const VarDecl *Variable; 2851 2852 /// The address of the alloca for languages with explicit address space 2853 /// (e.g. OpenCL) or alloca casted to generic pointer for address space 2854 /// agnostic languages (e.g. C++). Invalid if the variable was emitted 2855 /// as a global constant. 2856 Address Addr; 2857 2858 llvm::Value *NRVOFlag; 2859 2860 /// True if the variable is a __block variable that is captured by an 2861 /// escaping block. 2862 bool IsEscapingByRef; 2863 2864 /// True if the variable is of aggregate type and has a constant 2865 /// initializer. 2866 bool IsConstantAggregate; 2867 2868 /// Non-null if we should use lifetime annotations. 2869 llvm::Value *SizeForLifetimeMarkers; 2870 2871 /// Address with original alloca instruction. Invalid if the variable was 2872 /// emitted as a global constant. 2873 Address AllocaAddr; 2874 2875 struct Invalid {}; 2876 AutoVarEmission(Invalid) 2877 : Variable(nullptr), Addr(Address::invalid()), 2878 AllocaAddr(Address::invalid()) {} 2879 2880 AutoVarEmission(const VarDecl &variable) 2881 : Variable(&variable), Addr(Address::invalid()), NRVOFlag(nullptr), 2882 IsEscapingByRef(false), IsConstantAggregate(false), 2883 SizeForLifetimeMarkers(nullptr), AllocaAddr(Address::invalid()) {} 2884 2885 bool wasEmittedAsGlobal() const { return !Addr.isValid(); } 2886 2887 public: 2888 static AutoVarEmission invalid() { return AutoVarEmission(Invalid()); } 2889 2890 bool useLifetimeMarkers() const { 2891 return SizeForLifetimeMarkers != nullptr; 2892 } 2893 llvm::Value *getSizeForLifetimeMarkers() const { 2894 assert(useLifetimeMarkers()); 2895 return SizeForLifetimeMarkers; 2896 } 2897 2898 /// Returns the raw, allocated address, which is not necessarily 2899 /// the address of the object itself. It is casted to default 2900 /// address space for address space agnostic languages. 2901 Address getAllocatedAddress() const { 2902 return Addr; 2903 } 2904 2905 /// Returns the address for the original alloca instruction. 2906 Address getOriginalAllocatedAddress() const { return AllocaAddr; } 2907 2908 /// Returns the address of the object within this declaration. 2909 /// Note that this does not chase the forwarding pointer for 2910 /// __block decls. 2911 Address getObjectAddress(CodeGenFunction &CGF) const { 2912 if (!IsEscapingByRef) return Addr; 2913 2914 return CGF.emitBlockByrefAddress(Addr, Variable, /*forward*/ false); 2915 } 2916 }; 2917 AutoVarEmission EmitAutoVarAlloca(const VarDecl &var); 2918 void EmitAutoVarInit(const AutoVarEmission &emission); 2919 void EmitAutoVarCleanups(const AutoVarEmission &emission); 2920 void emitAutoVarTypeCleanup(const AutoVarEmission &emission, 2921 QualType::DestructionKind dtorKind); 2922 2923 /// Emits the alloca and debug information for the size expressions for each 2924 /// dimension of an array. It registers the association of its (1-dimensional) 2925 /// QualTypes and size expression's debug node, so that CGDebugInfo can 2926 /// reference this node when creating the DISubrange object to describe the 2927 /// array types. 2928 void EmitAndRegisterVariableArrayDimensions(CGDebugInfo *DI, 2929 const VarDecl &D, 2930 bool EmitDebugInfo); 2931 2932 void EmitStaticVarDecl(const VarDecl &D, 2933 llvm::GlobalValue::LinkageTypes Linkage); 2934 2935 class ParamValue { 2936 llvm::Value *Value; 2937 unsigned Alignment; 2938 ParamValue(llvm::Value *V, unsigned A) : Value(V), Alignment(A) {} 2939 public: 2940 static ParamValue forDirect(llvm::Value *value) { 2941 return ParamValue(value, 0); 2942 } 2943 static ParamValue forIndirect(Address addr) { 2944 assert(!addr.getAlignment().isZero()); 2945 return ParamValue(addr.getPointer(), addr.getAlignment().getQuantity()); 2946 } 2947 2948 bool isIndirect() const { return Alignment != 0; } 2949 llvm::Value *getAnyValue() const { return Value; } 2950 2951 llvm::Value *getDirectValue() const { 2952 assert(!isIndirect()); 2953 return Value; 2954 } 2955 2956 Address getIndirectAddress() const { 2957 assert(isIndirect()); 2958 return Address(Value, CharUnits::fromQuantity(Alignment)); 2959 } 2960 }; 2961 2962 /// EmitParmDecl - Emit a ParmVarDecl or an ImplicitParamDecl. 2963 void EmitParmDecl(const VarDecl &D, ParamValue Arg, unsigned ArgNo); 2964 2965 /// protectFromPeepholes - Protect a value that we're intending to 2966 /// store to the side, but which will probably be used later, from 2967 /// aggressive peepholing optimizations that might delete it. 2968 /// 2969 /// Pass the result to unprotectFromPeepholes to declare that 2970 /// protection is no longer required. 2971 /// 2972 /// There's no particular reason why this shouldn't apply to 2973 /// l-values, it's just that no existing peepholes work on pointers. 2974 PeepholeProtection protectFromPeepholes(RValue rvalue); 2975 void unprotectFromPeepholes(PeepholeProtection protection); 2976 2977 void emitAlignmentAssumptionCheck(llvm::Value *Ptr, QualType Ty, 2978 SourceLocation Loc, 2979 SourceLocation AssumptionLoc, 2980 llvm::Value *Alignment, 2981 llvm::Value *OffsetValue, 2982 llvm::Value *TheCheck, 2983 llvm::Instruction *Assumption); 2984 2985 void emitAlignmentAssumption(llvm::Value *PtrValue, QualType Ty, 2986 SourceLocation Loc, SourceLocation AssumptionLoc, 2987 llvm::Value *Alignment, 2988 llvm::Value *OffsetValue = nullptr); 2989 2990 void emitAlignmentAssumption(llvm::Value *PtrValue, const Expr *E, 2991 SourceLocation AssumptionLoc, 2992 llvm::Value *Alignment, 2993 llvm::Value *OffsetValue = nullptr); 2994 2995 //===--------------------------------------------------------------------===// 2996 // Statement Emission 2997 //===--------------------------------------------------------------------===// 2998 2999 /// EmitStopPoint - Emit a debug stoppoint if we are emitting debug info. 3000 void EmitStopPoint(const Stmt *S); 3001 3002 /// EmitStmt - Emit the code for the statement \arg S. It is legal to call 3003 /// this function even if there is no current insertion point. 3004 /// 3005 /// This function may clear the current insertion point; callers should use 3006 /// EnsureInsertPoint if they wish to subsequently generate code without first 3007 /// calling EmitBlock, EmitBranch, or EmitStmt. 3008 void EmitStmt(const Stmt *S, ArrayRef<const Attr *> Attrs = None); 3009 3010 /// EmitSimpleStmt - Try to emit a "simple" statement which does not 3011 /// necessarily require an insertion point or debug information; typically 3012 /// because the statement amounts to a jump or a container of other 3013 /// statements. 3014 /// 3015 /// \return True if the statement was handled. 3016 bool EmitSimpleStmt(const Stmt *S); 3017 3018 Address EmitCompoundStmt(const CompoundStmt &S, bool GetLast = false, 3019 AggValueSlot AVS = AggValueSlot::ignored()); 3020 Address EmitCompoundStmtWithoutScope(const CompoundStmt &S, 3021 bool GetLast = false, 3022 AggValueSlot AVS = 3023 AggValueSlot::ignored()); 3024 3025 /// EmitLabel - Emit the block for the given label. It is legal to call this 3026 /// function even if there is no current insertion point. 3027 void EmitLabel(const LabelDecl *D); // helper for EmitLabelStmt. 3028 3029 void EmitLabelStmt(const LabelStmt &S); 3030 void EmitAttributedStmt(const AttributedStmt &S); 3031 void EmitGotoStmt(const GotoStmt &S); 3032 void EmitIndirectGotoStmt(const IndirectGotoStmt &S); 3033 void EmitIfStmt(const IfStmt &S); 3034 3035 void EmitWhileStmt(const WhileStmt &S, 3036 ArrayRef<const Attr *> Attrs = None); 3037 void EmitDoStmt(const DoStmt &S, ArrayRef<const Attr *> Attrs = None); 3038 void EmitForStmt(const ForStmt &S, 3039 ArrayRef<const Attr *> Attrs = None); 3040 void EmitReturnStmt(const ReturnStmt &S); 3041 void EmitDeclStmt(const DeclStmt &S); 3042 void EmitBreakStmt(const BreakStmt &S); 3043 void EmitContinueStmt(const ContinueStmt &S); 3044 void EmitSwitchStmt(const SwitchStmt &S); 3045 void EmitDefaultStmt(const DefaultStmt &S); 3046 void EmitCaseStmt(const CaseStmt &S); 3047 void EmitCaseStmtRange(const CaseStmt &S); 3048 void EmitAsmStmt(const AsmStmt &S); 3049 3050 void EmitObjCForCollectionStmt(const ObjCForCollectionStmt &S); 3051 void EmitObjCAtTryStmt(const ObjCAtTryStmt &S); 3052 void EmitObjCAtThrowStmt(const ObjCAtThrowStmt &S); 3053 void EmitObjCAtSynchronizedStmt(const ObjCAtSynchronizedStmt &S); 3054 void EmitObjCAutoreleasePoolStmt(const ObjCAutoreleasePoolStmt &S); 3055 3056 void EmitCoroutineBody(const CoroutineBodyStmt &S); 3057 void EmitCoreturnStmt(const CoreturnStmt &S); 3058 RValue EmitCoawaitExpr(const CoawaitExpr &E, 3059 AggValueSlot aggSlot = AggValueSlot::ignored(), 3060 bool ignoreResult = false); 3061 LValue EmitCoawaitLValue(const CoawaitExpr *E); 3062 RValue EmitCoyieldExpr(const CoyieldExpr &E, 3063 AggValueSlot aggSlot = AggValueSlot::ignored(), 3064 bool ignoreResult = false); 3065 LValue EmitCoyieldLValue(const CoyieldExpr *E); 3066 RValue EmitCoroutineIntrinsic(const CallExpr *E, unsigned int IID); 3067 3068 void EnterCXXTryStmt(const CXXTryStmt &S, bool IsFnTryBlock = false); 3069 void ExitCXXTryStmt(const CXXTryStmt &S, bool IsFnTryBlock = false); 3070 3071 void EmitCXXTryStmt(const CXXTryStmt &S); 3072 void EmitSEHTryStmt(const SEHTryStmt &S); 3073 void EmitSEHLeaveStmt(const SEHLeaveStmt &S); 3074 void EnterSEHTryStmt(const SEHTryStmt &S); 3075 void ExitSEHTryStmt(const SEHTryStmt &S); 3076 3077 void pushSEHCleanup(CleanupKind kind, 3078 llvm::Function *FinallyFunc); 3079 void startOutlinedSEHHelper(CodeGenFunction &ParentCGF, bool IsFilter, 3080 const Stmt *OutlinedStmt); 3081 3082 llvm::Function *GenerateSEHFilterFunction(CodeGenFunction &ParentCGF, 3083 const SEHExceptStmt &Except); 3084 3085 llvm::Function *GenerateSEHFinallyFunction(CodeGenFunction &ParentCGF, 3086 const SEHFinallyStmt &Finally); 3087 3088 void EmitSEHExceptionCodeSave(CodeGenFunction &ParentCGF, 3089 llvm::Value *ParentFP, 3090 llvm::Value *EntryEBP); 3091 llvm::Value *EmitSEHExceptionCode(); 3092 llvm::Value *EmitSEHExceptionInfo(); 3093 llvm::Value *EmitSEHAbnormalTermination(); 3094 3095 /// Emit simple code for OpenMP directives in Simd-only mode. 3096 void EmitSimpleOMPExecutableDirective(const OMPExecutableDirective &D); 3097 3098 /// Scan the outlined statement for captures from the parent function. For 3099 /// each capture, mark the capture as escaped and emit a call to 3100 /// llvm.localrecover. Insert the localrecover result into the LocalDeclMap. 3101 void EmitCapturedLocals(CodeGenFunction &ParentCGF, const Stmt *OutlinedStmt, 3102 bool IsFilter); 3103 3104 /// Recovers the address of a local in a parent function. ParentVar is the 3105 /// address of the variable used in the immediate parent function. It can 3106 /// either be an alloca or a call to llvm.localrecover if there are nested 3107 /// outlined functions. ParentFP is the frame pointer of the outermost parent 3108 /// frame. 3109 Address recoverAddrOfEscapedLocal(CodeGenFunction &ParentCGF, 3110 Address ParentVar, 3111 llvm::Value *ParentFP); 3112 3113 void EmitCXXForRangeStmt(const CXXForRangeStmt &S, 3114 ArrayRef<const Attr *> Attrs = None); 3115 3116 /// Controls insertion of cancellation exit blocks in worksharing constructs. 3117 class OMPCancelStackRAII { 3118 CodeGenFunction &CGF; 3119 3120 public: 3121 OMPCancelStackRAII(CodeGenFunction &CGF, OpenMPDirectiveKind Kind, 3122 bool HasCancel) 3123 : CGF(CGF) { 3124 CGF.OMPCancelStack.enter(CGF, Kind, HasCancel); 3125 } 3126 ~OMPCancelStackRAII() { CGF.OMPCancelStack.exit(CGF); } 3127 }; 3128 3129 /// Returns calculated size of the specified type. 3130 llvm::Value *getTypeSize(QualType Ty); 3131 LValue InitCapturedStruct(const CapturedStmt &S); 3132 llvm::Function *EmitCapturedStmt(const CapturedStmt &S, CapturedRegionKind K); 3133 llvm::Function *GenerateCapturedStmtFunction(const CapturedStmt &S); 3134 Address GenerateCapturedStmtArgument(const CapturedStmt &S); 3135 llvm::Function *GenerateOpenMPCapturedStmtFunction(const CapturedStmt &S, 3136 SourceLocation Loc); 3137 void GenerateOpenMPCapturedVars(const CapturedStmt &S, 3138 SmallVectorImpl<llvm::Value *> &CapturedVars); 3139 void emitOMPSimpleStore(LValue LVal, RValue RVal, QualType RValTy, 3140 SourceLocation Loc); 3141 /// Perform element by element copying of arrays with type \a 3142 /// OriginalType from \a SrcAddr to \a DestAddr using copying procedure 3143 /// generated by \a CopyGen. 3144 /// 3145 /// \param DestAddr Address of the destination array. 3146 /// \param SrcAddr Address of the source array. 3147 /// \param OriginalType Type of destination and source arrays. 3148 /// \param CopyGen Copying procedure that copies value of single array element 3149 /// to another single array element. 3150 void EmitOMPAggregateAssign( 3151 Address DestAddr, Address SrcAddr, QualType OriginalType, 3152 const llvm::function_ref<void(Address, Address)> CopyGen); 3153 /// Emit proper copying of data from one variable to another. 3154 /// 3155 /// \param OriginalType Original type of the copied variables. 3156 /// \param DestAddr Destination address. 3157 /// \param SrcAddr Source address. 3158 /// \param DestVD Destination variable used in \a CopyExpr (for arrays, has 3159 /// type of the base array element). 3160 /// \param SrcVD Source variable used in \a CopyExpr (for arrays, has type of 3161 /// the base array element). 3162 /// \param Copy Actual copygin expression for copying data from \a SrcVD to \a 3163 /// DestVD. 3164 void EmitOMPCopy(QualType OriginalType, 3165 Address DestAddr, Address SrcAddr, 3166 const VarDecl *DestVD, const VarDecl *SrcVD, 3167 const Expr *Copy); 3168 /// Emit atomic update code for constructs: \a X = \a X \a BO \a E or 3169 /// \a X = \a E \a BO \a E. 3170 /// 3171 /// \param X Value to be updated. 3172 /// \param E Update value. 3173 /// \param BO Binary operation for update operation. 3174 /// \param IsXLHSInRHSPart true if \a X is LHS in RHS part of the update 3175 /// expression, false otherwise. 3176 /// \param AO Atomic ordering of the generated atomic instructions. 3177 /// \param CommonGen Code generator for complex expressions that cannot be 3178 /// expressed through atomicrmw instruction. 3179 /// \returns <true, OldAtomicValue> if simple 'atomicrmw' instruction was 3180 /// generated, <false, RValue::get(nullptr)> otherwise. 3181 std::pair<bool, RValue> EmitOMPAtomicSimpleUpdateExpr( 3182 LValue X, RValue E, BinaryOperatorKind BO, bool IsXLHSInRHSPart, 3183 llvm::AtomicOrdering AO, SourceLocation Loc, 3184 const llvm::function_ref<RValue(RValue)> CommonGen); 3185 bool EmitOMPFirstprivateClause(const OMPExecutableDirective &D, 3186 OMPPrivateScope &PrivateScope); 3187 void EmitOMPPrivateClause(const OMPExecutableDirective &D, 3188 OMPPrivateScope &PrivateScope); 3189 void EmitOMPUseDevicePtrClause( 3190 const OMPUseDevicePtrClause &C, OMPPrivateScope &PrivateScope, 3191 const llvm::DenseMap<const ValueDecl *, Address> &CaptureDeviceAddrMap); 3192 void EmitOMPUseDeviceAddrClause( 3193 const OMPUseDeviceAddrClause &C, OMPPrivateScope &PrivateScope, 3194 const llvm::DenseMap<const ValueDecl *, Address> &CaptureDeviceAddrMap); 3195 /// Emit code for copyin clause in \a D directive. The next code is 3196 /// generated at the start of outlined functions for directives: 3197 /// \code 3198 /// threadprivate_var1 = master_threadprivate_var1; 3199 /// operator=(threadprivate_var2, master_threadprivate_var2); 3200 /// ... 3201 /// __kmpc_barrier(&loc, global_tid); 3202 /// \endcode 3203 /// 3204 /// \param D OpenMP directive possibly with 'copyin' clause(s). 3205 /// \returns true if at least one copyin variable is found, false otherwise. 3206 bool EmitOMPCopyinClause(const OMPExecutableDirective &D); 3207 /// Emit initial code for lastprivate variables. If some variable is 3208 /// not also firstprivate, then the default initialization is used. Otherwise 3209 /// initialization of this variable is performed by EmitOMPFirstprivateClause 3210 /// method. 3211 /// 3212 /// \param D Directive that may have 'lastprivate' directives. 3213 /// \param PrivateScope Private scope for capturing lastprivate variables for 3214 /// proper codegen in internal captured statement. 3215 /// 3216 /// \returns true if there is at least one lastprivate variable, false 3217 /// otherwise. 3218 bool EmitOMPLastprivateClauseInit(const OMPExecutableDirective &D, 3219 OMPPrivateScope &PrivateScope); 3220 /// Emit final copying of lastprivate values to original variables at 3221 /// the end of the worksharing or simd directive. 3222 /// 3223 /// \param D Directive that has at least one 'lastprivate' directives. 3224 /// \param IsLastIterCond Boolean condition that must be set to 'i1 true' if 3225 /// it is the last iteration of the loop code in associated directive, or to 3226 /// 'i1 false' otherwise. If this item is nullptr, no final check is required. 3227 void EmitOMPLastprivateClauseFinal(const OMPExecutableDirective &D, 3228 bool NoFinals, 3229 llvm::Value *IsLastIterCond = nullptr); 3230 /// Emit initial code for linear clauses. 3231 void EmitOMPLinearClause(const OMPLoopDirective &D, 3232 CodeGenFunction::OMPPrivateScope &PrivateScope); 3233 /// Emit final code for linear clauses. 3234 /// \param CondGen Optional conditional code for final part of codegen for 3235 /// linear clause. 3236 void EmitOMPLinearClauseFinal( 3237 const OMPLoopDirective &D, 3238 const llvm::function_ref<llvm::Value *(CodeGenFunction &)> CondGen); 3239 /// Emit initial code for reduction variables. Creates reduction copies 3240 /// and initializes them with the values according to OpenMP standard. 3241 /// 3242 /// \param D Directive (possibly) with the 'reduction' clause. 3243 /// \param PrivateScope Private scope for capturing reduction variables for 3244 /// proper codegen in internal captured statement. 3245 /// 3246 void EmitOMPReductionClauseInit(const OMPExecutableDirective &D, 3247 OMPPrivateScope &PrivateScope, 3248 bool ForInscan = false); 3249 /// Emit final update of reduction values to original variables at 3250 /// the end of the directive. 3251 /// 3252 /// \param D Directive that has at least one 'reduction' directives. 3253 /// \param ReductionKind The kind of reduction to perform. 3254 void EmitOMPReductionClauseFinal(const OMPExecutableDirective &D, 3255 const OpenMPDirectiveKind ReductionKind); 3256 /// Emit initial code for linear variables. Creates private copies 3257 /// and initializes them with the values according to OpenMP standard. 3258 /// 3259 /// \param D Directive (possibly) with the 'linear' clause. 3260 /// \return true if at least one linear variable is found that should be 3261 /// initialized with the value of the original variable, false otherwise. 3262 bool EmitOMPLinearClauseInit(const OMPLoopDirective &D); 3263 3264 typedef const llvm::function_ref<void(CodeGenFunction & /*CGF*/, 3265 llvm::Function * /*OutlinedFn*/, 3266 const OMPTaskDataTy & /*Data*/)> 3267 TaskGenTy; 3268 void EmitOMPTaskBasedDirective(const OMPExecutableDirective &S, 3269 const OpenMPDirectiveKind CapturedRegion, 3270 const RegionCodeGenTy &BodyGen, 3271 const TaskGenTy &TaskGen, OMPTaskDataTy &Data); 3272 struct OMPTargetDataInfo { 3273 Address BasePointersArray = Address::invalid(); 3274 Address PointersArray = Address::invalid(); 3275 Address SizesArray = Address::invalid(); 3276 unsigned NumberOfTargetItems = 0; 3277 explicit OMPTargetDataInfo() = default; 3278 OMPTargetDataInfo(Address BasePointersArray, Address PointersArray, 3279 Address SizesArray, unsigned NumberOfTargetItems) 3280 : BasePointersArray(BasePointersArray), PointersArray(PointersArray), 3281 SizesArray(SizesArray), NumberOfTargetItems(NumberOfTargetItems) {} 3282 }; 3283 void EmitOMPTargetTaskBasedDirective(const OMPExecutableDirective &S, 3284 const RegionCodeGenTy &BodyGen, 3285 OMPTargetDataInfo &InputInfo); 3286 3287 void EmitOMPParallelDirective(const OMPParallelDirective &S); 3288 void EmitOMPSimdDirective(const OMPSimdDirective &S); 3289 void EmitOMPForDirective(const OMPForDirective &S); 3290 void EmitOMPForSimdDirective(const OMPForSimdDirective &S); 3291 void EmitOMPSectionsDirective(const OMPSectionsDirective &S); 3292 void EmitOMPSectionDirective(const OMPSectionDirective &S); 3293 void EmitOMPSingleDirective(const OMPSingleDirective &S); 3294 void EmitOMPMasterDirective(const OMPMasterDirective &S); 3295 void EmitOMPCriticalDirective(const OMPCriticalDirective &S); 3296 void EmitOMPParallelForDirective(const OMPParallelForDirective &S); 3297 void EmitOMPParallelForSimdDirective(const OMPParallelForSimdDirective &S); 3298 void EmitOMPParallelSectionsDirective(const OMPParallelSectionsDirective &S); 3299 void EmitOMPParallelMasterDirective(const OMPParallelMasterDirective &S); 3300 void EmitOMPTaskDirective(const OMPTaskDirective &S); 3301 void EmitOMPTaskyieldDirective(const OMPTaskyieldDirective &S); 3302 void EmitOMPBarrierDirective(const OMPBarrierDirective &S); 3303 void EmitOMPTaskwaitDirective(const OMPTaskwaitDirective &S); 3304 void EmitOMPTaskgroupDirective(const OMPTaskgroupDirective &S); 3305 void EmitOMPFlushDirective(const OMPFlushDirective &S); 3306 void EmitOMPDepobjDirective(const OMPDepobjDirective &S); 3307 void EmitOMPScanDirective(const OMPScanDirective &S); 3308 void EmitOMPOrderedDirective(const OMPOrderedDirective &S); 3309 void EmitOMPAtomicDirective(const OMPAtomicDirective &S); 3310 void EmitOMPTargetDirective(const OMPTargetDirective &S); 3311 void EmitOMPTargetDataDirective(const OMPTargetDataDirective &S); 3312 void EmitOMPTargetEnterDataDirective(const OMPTargetEnterDataDirective &S); 3313 void EmitOMPTargetExitDataDirective(const OMPTargetExitDataDirective &S); 3314 void EmitOMPTargetUpdateDirective(const OMPTargetUpdateDirective &S); 3315 void EmitOMPTargetParallelDirective(const OMPTargetParallelDirective &S); 3316 void 3317 EmitOMPTargetParallelForDirective(const OMPTargetParallelForDirective &S); 3318 void EmitOMPTeamsDirective(const OMPTeamsDirective &S); 3319 void 3320 EmitOMPCancellationPointDirective(const OMPCancellationPointDirective &S); 3321 void EmitOMPCancelDirective(const OMPCancelDirective &S); 3322 void EmitOMPTaskLoopBasedDirective(const OMPLoopDirective &S); 3323 void EmitOMPTaskLoopDirective(const OMPTaskLoopDirective &S); 3324 void EmitOMPTaskLoopSimdDirective(const OMPTaskLoopSimdDirective &S); 3325 void EmitOMPMasterTaskLoopDirective(const OMPMasterTaskLoopDirective &S); 3326 void 3327 EmitOMPMasterTaskLoopSimdDirective(const OMPMasterTaskLoopSimdDirective &S); 3328 void EmitOMPParallelMasterTaskLoopDirective( 3329 const OMPParallelMasterTaskLoopDirective &S); 3330 void EmitOMPParallelMasterTaskLoopSimdDirective( 3331 const OMPParallelMasterTaskLoopSimdDirective &S); 3332 void EmitOMPDistributeDirective(const OMPDistributeDirective &S); 3333 void EmitOMPDistributeParallelForDirective( 3334 const OMPDistributeParallelForDirective &S); 3335 void EmitOMPDistributeParallelForSimdDirective( 3336 const OMPDistributeParallelForSimdDirective &S); 3337 void EmitOMPDistributeSimdDirective(const OMPDistributeSimdDirective &S); 3338 void EmitOMPTargetParallelForSimdDirective( 3339 const OMPTargetParallelForSimdDirective &S); 3340 void EmitOMPTargetSimdDirective(const OMPTargetSimdDirective &S); 3341 void EmitOMPTeamsDistributeDirective(const OMPTeamsDistributeDirective &S); 3342 void 3343 EmitOMPTeamsDistributeSimdDirective(const OMPTeamsDistributeSimdDirective &S); 3344 void EmitOMPTeamsDistributeParallelForSimdDirective( 3345 const OMPTeamsDistributeParallelForSimdDirective &S); 3346 void EmitOMPTeamsDistributeParallelForDirective( 3347 const OMPTeamsDistributeParallelForDirective &S); 3348 void EmitOMPTargetTeamsDirective(const OMPTargetTeamsDirective &S); 3349 void EmitOMPTargetTeamsDistributeDirective( 3350 const OMPTargetTeamsDistributeDirective &S); 3351 void EmitOMPTargetTeamsDistributeParallelForDirective( 3352 const OMPTargetTeamsDistributeParallelForDirective &S); 3353 void EmitOMPTargetTeamsDistributeParallelForSimdDirective( 3354 const OMPTargetTeamsDistributeParallelForSimdDirective &S); 3355 void EmitOMPTargetTeamsDistributeSimdDirective( 3356 const OMPTargetTeamsDistributeSimdDirective &S); 3357 3358 /// Emit device code for the target directive. 3359 static void EmitOMPTargetDeviceFunction(CodeGenModule &CGM, 3360 StringRef ParentName, 3361 const OMPTargetDirective &S); 3362 static void 3363 EmitOMPTargetParallelDeviceFunction(CodeGenModule &CGM, StringRef ParentName, 3364 const OMPTargetParallelDirective &S); 3365 /// Emit device code for the target parallel for directive. 3366 static void EmitOMPTargetParallelForDeviceFunction( 3367 CodeGenModule &CGM, StringRef ParentName, 3368 const OMPTargetParallelForDirective &S); 3369 /// Emit device code for the target parallel for simd directive. 3370 static void EmitOMPTargetParallelForSimdDeviceFunction( 3371 CodeGenModule &CGM, StringRef ParentName, 3372 const OMPTargetParallelForSimdDirective &S); 3373 /// Emit device code for the target teams directive. 3374 static void 3375 EmitOMPTargetTeamsDeviceFunction(CodeGenModule &CGM, StringRef ParentName, 3376 const OMPTargetTeamsDirective &S); 3377 /// Emit device code for the target teams distribute directive. 3378 static void EmitOMPTargetTeamsDistributeDeviceFunction( 3379 CodeGenModule &CGM, StringRef ParentName, 3380 const OMPTargetTeamsDistributeDirective &S); 3381 /// Emit device code for the target teams distribute simd directive. 3382 static void EmitOMPTargetTeamsDistributeSimdDeviceFunction( 3383 CodeGenModule &CGM, StringRef ParentName, 3384 const OMPTargetTeamsDistributeSimdDirective &S); 3385 /// Emit device code for the target simd directive. 3386 static void EmitOMPTargetSimdDeviceFunction(CodeGenModule &CGM, 3387 StringRef ParentName, 3388 const OMPTargetSimdDirective &S); 3389 /// Emit device code for the target teams distribute parallel for simd 3390 /// directive. 3391 static void EmitOMPTargetTeamsDistributeParallelForSimdDeviceFunction( 3392 CodeGenModule &CGM, StringRef ParentName, 3393 const OMPTargetTeamsDistributeParallelForSimdDirective &S); 3394 3395 static void EmitOMPTargetTeamsDistributeParallelForDeviceFunction( 3396 CodeGenModule &CGM, StringRef ParentName, 3397 const OMPTargetTeamsDistributeParallelForDirective &S); 3398 /// Emit inner loop of the worksharing/simd construct. 3399 /// 3400 /// \param S Directive, for which the inner loop must be emitted. 3401 /// \param RequiresCleanup true, if directive has some associated private 3402 /// variables. 3403 /// \param LoopCond Bollean condition for loop continuation. 3404 /// \param IncExpr Increment expression for loop control variable. 3405 /// \param BodyGen Generator for the inner body of the inner loop. 3406 /// \param PostIncGen Genrator for post-increment code (required for ordered 3407 /// loop directvies). 3408 void EmitOMPInnerLoop( 3409 const OMPExecutableDirective &S, bool RequiresCleanup, 3410 const Expr *LoopCond, const Expr *IncExpr, 3411 const llvm::function_ref<void(CodeGenFunction &)> BodyGen, 3412 const llvm::function_ref<void(CodeGenFunction &)> PostIncGen); 3413 3414 JumpDest getOMPCancelDestination(OpenMPDirectiveKind Kind); 3415 /// Emit initial code for loop counters of loop-based directives. 3416 void EmitOMPPrivateLoopCounters(const OMPLoopDirective &S, 3417 OMPPrivateScope &LoopScope); 3418 3419 /// Helper for the OpenMP loop directives. 3420 void EmitOMPLoopBody(const OMPLoopDirective &D, JumpDest LoopExit); 3421 3422 /// Emit code for the worksharing loop-based directive. 3423 /// \return true, if this construct has any lastprivate clause, false - 3424 /// otherwise. 3425 bool EmitOMPWorksharingLoop(const OMPLoopDirective &S, Expr *EUB, 3426 const CodeGenLoopBoundsTy &CodeGenLoopBounds, 3427 const CodeGenDispatchBoundsTy &CGDispatchBounds); 3428 3429 /// Emit code for the distribute loop-based directive. 3430 void EmitOMPDistributeLoop(const OMPLoopDirective &S, 3431 const CodeGenLoopTy &CodeGenLoop, Expr *IncExpr); 3432 3433 /// Helpers for the OpenMP loop directives. 3434 void EmitOMPSimdInit(const OMPLoopDirective &D, bool IsMonotonic = false); 3435 void EmitOMPSimdFinal( 3436 const OMPLoopDirective &D, 3437 const llvm::function_ref<llvm::Value *(CodeGenFunction &)> CondGen); 3438 3439 /// Emits the lvalue for the expression with possibly captured variable. 3440 LValue EmitOMPSharedLValue(const Expr *E); 3441 3442 private: 3443 /// Helpers for blocks. 3444 llvm::Value *EmitBlockLiteral(const CGBlockInfo &Info); 3445 3446 /// struct with the values to be passed to the OpenMP loop-related functions 3447 struct OMPLoopArguments { 3448 /// loop lower bound 3449 Address LB = Address::invalid(); 3450 /// loop upper bound 3451 Address UB = Address::invalid(); 3452 /// loop stride 3453 Address ST = Address::invalid(); 3454 /// isLastIteration argument for runtime functions 3455 Address IL = Address::invalid(); 3456 /// Chunk value generated by sema 3457 llvm::Value *Chunk = nullptr; 3458 /// EnsureUpperBound 3459 Expr *EUB = nullptr; 3460 /// IncrementExpression 3461 Expr *IncExpr = nullptr; 3462 /// Loop initialization 3463 Expr *Init = nullptr; 3464 /// Loop exit condition 3465 Expr *Cond = nullptr; 3466 /// Update of LB after a whole chunk has been executed 3467 Expr *NextLB = nullptr; 3468 /// Update of UB after a whole chunk has been executed 3469 Expr *NextUB = nullptr; 3470 OMPLoopArguments() = default; 3471 OMPLoopArguments(Address LB, Address UB, Address ST, Address IL, 3472 llvm::Value *Chunk = nullptr, Expr *EUB = nullptr, 3473 Expr *IncExpr = nullptr, Expr *Init = nullptr, 3474 Expr *Cond = nullptr, Expr *NextLB = nullptr, 3475 Expr *NextUB = nullptr) 3476 : LB(LB), UB(UB), ST(ST), IL(IL), Chunk(Chunk), EUB(EUB), 3477 IncExpr(IncExpr), Init(Init), Cond(Cond), NextLB(NextLB), 3478 NextUB(NextUB) {} 3479 }; 3480 void EmitOMPOuterLoop(bool DynamicOrOrdered, bool IsMonotonic, 3481 const OMPLoopDirective &S, OMPPrivateScope &LoopScope, 3482 const OMPLoopArguments &LoopArgs, 3483 const CodeGenLoopTy &CodeGenLoop, 3484 const CodeGenOrderedTy &CodeGenOrdered); 3485 void EmitOMPForOuterLoop(const OpenMPScheduleTy &ScheduleKind, 3486 bool IsMonotonic, const OMPLoopDirective &S, 3487 OMPPrivateScope &LoopScope, bool Ordered, 3488 const OMPLoopArguments &LoopArgs, 3489 const CodeGenDispatchBoundsTy &CGDispatchBounds); 3490 void EmitOMPDistributeOuterLoop(OpenMPDistScheduleClauseKind ScheduleKind, 3491 const OMPLoopDirective &S, 3492 OMPPrivateScope &LoopScope, 3493 const OMPLoopArguments &LoopArgs, 3494 const CodeGenLoopTy &CodeGenLoopContent); 3495 /// Emit code for sections directive. 3496 void EmitSections(const OMPExecutableDirective &S); 3497 3498 public: 3499 3500 //===--------------------------------------------------------------------===// 3501 // LValue Expression Emission 3502 //===--------------------------------------------------------------------===// 3503 3504 /// GetUndefRValue - Get an appropriate 'undef' rvalue for the given type. 3505 RValue GetUndefRValue(QualType Ty); 3506 3507 /// EmitUnsupportedRValue - Emit a dummy r-value using the type of E 3508 /// and issue an ErrorUnsupported style diagnostic (using the 3509 /// provided Name). 3510 RValue EmitUnsupportedRValue(const Expr *E, 3511 const char *Name); 3512 3513 /// EmitUnsupportedLValue - Emit a dummy l-value using the type of E and issue 3514 /// an ErrorUnsupported style diagnostic (using the provided Name). 3515 LValue EmitUnsupportedLValue(const Expr *E, 3516 const char *Name); 3517 3518 /// EmitLValue - Emit code to compute a designator that specifies the location 3519 /// of the expression. 3520 /// 3521 /// This can return one of two things: a simple address or a bitfield 3522 /// reference. In either case, the LLVM Value* in the LValue structure is 3523 /// guaranteed to be an LLVM pointer type. 3524 /// 3525 /// If this returns a bitfield reference, nothing about the pointee type of 3526 /// the LLVM value is known: For example, it may not be a pointer to an 3527 /// integer. 3528 /// 3529 /// If this returns a normal address, and if the lvalue's C type is fixed 3530 /// size, this method guarantees that the returned pointer type will point to 3531 /// an LLVM type of the same size of the lvalue's type. If the lvalue has a 3532 /// variable length type, this is not possible. 3533 /// 3534 LValue EmitLValue(const Expr *E); 3535 3536 /// Same as EmitLValue but additionally we generate checking code to 3537 /// guard against undefined behavior. This is only suitable when we know 3538 /// that the address will be used to access the object. 3539 LValue EmitCheckedLValue(const Expr *E, TypeCheckKind TCK); 3540 3541 RValue convertTempToRValue(Address addr, QualType type, 3542 SourceLocation Loc); 3543 3544 void EmitAtomicInit(Expr *E, LValue lvalue); 3545 3546 bool LValueIsSuitableForInlineAtomic(LValue Src); 3547 3548 RValue EmitAtomicLoad(LValue LV, SourceLocation SL, 3549 AggValueSlot Slot = AggValueSlot::ignored()); 3550 3551 RValue EmitAtomicLoad(LValue lvalue, SourceLocation loc, 3552 llvm::AtomicOrdering AO, bool IsVolatile = false, 3553 AggValueSlot slot = AggValueSlot::ignored()); 3554 3555 void EmitAtomicStore(RValue rvalue, LValue lvalue, bool isInit); 3556 3557 void EmitAtomicStore(RValue rvalue, LValue lvalue, llvm::AtomicOrdering AO, 3558 bool IsVolatile, bool isInit); 3559 3560 std::pair<RValue, llvm::Value *> EmitAtomicCompareExchange( 3561 LValue Obj, RValue Expected, RValue Desired, SourceLocation Loc, 3562 llvm::AtomicOrdering Success = 3563 llvm::AtomicOrdering::SequentiallyConsistent, 3564 llvm::AtomicOrdering Failure = 3565 llvm::AtomicOrdering::SequentiallyConsistent, 3566 bool IsWeak = false, AggValueSlot Slot = AggValueSlot::ignored()); 3567 3568 void EmitAtomicUpdate(LValue LVal, llvm::AtomicOrdering AO, 3569 const llvm::function_ref<RValue(RValue)> &UpdateOp, 3570 bool IsVolatile); 3571 3572 /// EmitToMemory - Change a scalar value from its value 3573 /// representation to its in-memory representation. 3574 llvm::Value *EmitToMemory(llvm::Value *Value, QualType Ty); 3575 3576 /// EmitFromMemory - Change a scalar value from its memory 3577 /// representation to its value representation. 3578 llvm::Value *EmitFromMemory(llvm::Value *Value, QualType Ty); 3579 3580 /// Check if the scalar \p Value is within the valid range for the given 3581 /// type \p Ty. 3582 /// 3583 /// Returns true if a check is needed (even if the range is unknown). 3584 bool EmitScalarRangeCheck(llvm::Value *Value, QualType Ty, 3585 SourceLocation Loc); 3586 3587 /// EmitLoadOfScalar - Load a scalar value from an address, taking 3588 /// care to appropriately convert from the memory representation to 3589 /// the LLVM value representation. 3590 llvm::Value *EmitLoadOfScalar(Address Addr, bool Volatile, QualType Ty, 3591 SourceLocation Loc, 3592 AlignmentSource Source = AlignmentSource::Type, 3593 bool isNontemporal = false) { 3594 return EmitLoadOfScalar(Addr, Volatile, Ty, Loc, LValueBaseInfo(Source), 3595 CGM.getTBAAAccessInfo(Ty), isNontemporal); 3596 } 3597 3598 llvm::Value *EmitLoadOfScalar(Address Addr, bool Volatile, QualType Ty, 3599 SourceLocation Loc, LValueBaseInfo BaseInfo, 3600 TBAAAccessInfo TBAAInfo, 3601 bool isNontemporal = false); 3602 3603 /// EmitLoadOfScalar - Load a scalar value from an address, taking 3604 /// care to appropriately convert from the memory representation to 3605 /// the LLVM value representation. The l-value must be a simple 3606 /// l-value. 3607 llvm::Value *EmitLoadOfScalar(LValue lvalue, SourceLocation Loc); 3608 3609 /// EmitStoreOfScalar - Store a scalar value to an address, taking 3610 /// care to appropriately convert from the memory representation to 3611 /// the LLVM value representation. 3612 void EmitStoreOfScalar(llvm::Value *Value, Address Addr, 3613 bool Volatile, QualType Ty, 3614 AlignmentSource Source = AlignmentSource::Type, 3615 bool isInit = false, bool isNontemporal = false) { 3616 EmitStoreOfScalar(Value, Addr, Volatile, Ty, LValueBaseInfo(Source), 3617 CGM.getTBAAAccessInfo(Ty), isInit, isNontemporal); 3618 } 3619 3620 void EmitStoreOfScalar(llvm::Value *Value, Address Addr, 3621 bool Volatile, QualType Ty, 3622 LValueBaseInfo BaseInfo, TBAAAccessInfo TBAAInfo, 3623 bool isInit = false, bool isNontemporal = false); 3624 3625 /// EmitStoreOfScalar - Store a scalar value to an address, taking 3626 /// care to appropriately convert from the memory representation to 3627 /// the LLVM value representation. The l-value must be a simple 3628 /// l-value. The isInit flag indicates whether this is an initialization. 3629 /// If so, atomic qualifiers are ignored and the store is always non-atomic. 3630 void EmitStoreOfScalar(llvm::Value *value, LValue lvalue, bool isInit=false); 3631 3632 /// EmitLoadOfLValue - Given an expression that represents a value lvalue, 3633 /// this method emits the address of the lvalue, then loads the result as an 3634 /// rvalue, returning the rvalue. 3635 RValue EmitLoadOfLValue(LValue V, SourceLocation Loc); 3636 RValue EmitLoadOfExtVectorElementLValue(LValue V); 3637 RValue EmitLoadOfBitfieldLValue(LValue LV, SourceLocation Loc); 3638 RValue EmitLoadOfGlobalRegLValue(LValue LV); 3639 3640 /// EmitStoreThroughLValue - Store the specified rvalue into the specified 3641 /// lvalue, where both are guaranteed to the have the same type, and that type 3642 /// is 'Ty'. 3643 void EmitStoreThroughLValue(RValue Src, LValue Dst, bool isInit = false); 3644 void EmitStoreThroughExtVectorComponentLValue(RValue Src, LValue Dst); 3645 void EmitStoreThroughGlobalRegLValue(RValue Src, LValue Dst); 3646 3647 /// EmitStoreThroughBitfieldLValue - Store Src into Dst with same constraints 3648 /// as EmitStoreThroughLValue. 3649 /// 3650 /// \param Result [out] - If non-null, this will be set to a Value* for the 3651 /// bit-field contents after the store, appropriate for use as the result of 3652 /// an assignment to the bit-field. 3653 void EmitStoreThroughBitfieldLValue(RValue Src, LValue Dst, 3654 llvm::Value **Result=nullptr); 3655 3656 /// Emit an l-value for an assignment (simple or compound) of complex type. 3657 LValue EmitComplexAssignmentLValue(const BinaryOperator *E); 3658 LValue EmitComplexCompoundAssignmentLValue(const CompoundAssignOperator *E); 3659 LValue EmitScalarCompoundAssignWithComplex(const CompoundAssignOperator *E, 3660 llvm::Value *&Result); 3661 3662 // Note: only available for agg return types 3663 LValue EmitBinaryOperatorLValue(const BinaryOperator *E); 3664 LValue EmitCompoundAssignmentLValue(const CompoundAssignOperator *E); 3665 // Note: only available for agg return types 3666 LValue EmitCallExprLValue(const CallExpr *E); 3667 // Note: only available for agg return types 3668 LValue EmitVAArgExprLValue(const VAArgExpr *E); 3669 LValue EmitDeclRefLValue(const DeclRefExpr *E); 3670 LValue EmitStringLiteralLValue(const StringLiteral *E); 3671 LValue EmitObjCEncodeExprLValue(const ObjCEncodeExpr *E); 3672 LValue EmitPredefinedLValue(const PredefinedExpr *E); 3673 LValue EmitUnaryOpLValue(const UnaryOperator *E); 3674 LValue EmitArraySubscriptExpr(const ArraySubscriptExpr *E, 3675 bool Accessed = false); 3676 LValue EmitMatrixSubscriptExpr(const MatrixSubscriptExpr *E); 3677 LValue EmitOMPArraySectionExpr(const OMPArraySectionExpr *E, 3678 bool IsLowerBound = true); 3679 LValue EmitExtVectorElementExpr(const ExtVectorElementExpr *E); 3680 LValue EmitMemberExpr(const MemberExpr *E); 3681 LValue EmitObjCIsaExpr(const ObjCIsaExpr *E); 3682 LValue EmitCompoundLiteralLValue(const CompoundLiteralExpr *E); 3683 LValue EmitInitListLValue(const InitListExpr *E); 3684 LValue EmitConditionalOperatorLValue(const AbstractConditionalOperator *E); 3685 LValue EmitCastLValue(const CastExpr *E); 3686 LValue EmitMaterializeTemporaryExpr(const MaterializeTemporaryExpr *E); 3687 LValue EmitOpaqueValueLValue(const OpaqueValueExpr *e); 3688 3689 Address EmitExtVectorElementLValue(LValue V); 3690 3691 RValue EmitRValueForField(LValue LV, const FieldDecl *FD, SourceLocation Loc); 3692 3693 Address EmitArrayToPointerDecay(const Expr *Array, 3694 LValueBaseInfo *BaseInfo = nullptr, 3695 TBAAAccessInfo *TBAAInfo = nullptr); 3696 3697 class ConstantEmission { 3698 llvm::PointerIntPair<llvm::Constant*, 1, bool> ValueAndIsReference; 3699 ConstantEmission(llvm::Constant *C, bool isReference) 3700 : ValueAndIsReference(C, isReference) {} 3701 public: 3702 ConstantEmission() {} 3703 static ConstantEmission forReference(llvm::Constant *C) { 3704 return ConstantEmission(C, true); 3705 } 3706 static ConstantEmission forValue(llvm::Constant *C) { 3707 return ConstantEmission(C, false); 3708 } 3709 3710 explicit operator bool() const { 3711 return ValueAndIsReference.getOpaqueValue() != nullptr; 3712 } 3713 3714 bool isReference() const { return ValueAndIsReference.getInt(); } 3715 LValue getReferenceLValue(CodeGenFunction &CGF, Expr *refExpr) const { 3716 assert(isReference()); 3717 return CGF.MakeNaturalAlignAddrLValue(ValueAndIsReference.getPointer(), 3718 refExpr->getType()); 3719 } 3720 3721 llvm::Constant *getValue() const { 3722 assert(!isReference()); 3723 return ValueAndIsReference.getPointer(); 3724 } 3725 }; 3726 3727 ConstantEmission tryEmitAsConstant(DeclRefExpr *refExpr); 3728 ConstantEmission tryEmitAsConstant(const MemberExpr *ME); 3729 llvm::Value *emitScalarConstant(const ConstantEmission &Constant, Expr *E); 3730 3731 RValue EmitPseudoObjectRValue(const PseudoObjectExpr *e, 3732 AggValueSlot slot = AggValueSlot::ignored()); 3733 LValue EmitPseudoObjectLValue(const PseudoObjectExpr *e); 3734 3735 llvm::Value *EmitIvarOffset(const ObjCInterfaceDecl *Interface, 3736 const ObjCIvarDecl *Ivar); 3737 LValue EmitLValueForField(LValue Base, const FieldDecl* Field); 3738 LValue EmitLValueForLambdaField(const FieldDecl *Field); 3739 3740 /// EmitLValueForFieldInitialization - Like EmitLValueForField, except that 3741 /// if the Field is a reference, this will return the address of the reference 3742 /// and not the address of the value stored in the reference. 3743 LValue EmitLValueForFieldInitialization(LValue Base, 3744 const FieldDecl* Field); 3745 3746 LValue EmitLValueForIvar(QualType ObjectTy, 3747 llvm::Value* Base, const ObjCIvarDecl *Ivar, 3748 unsigned CVRQualifiers); 3749 3750 LValue EmitCXXConstructLValue(const CXXConstructExpr *E); 3751 LValue EmitCXXBindTemporaryLValue(const CXXBindTemporaryExpr *E); 3752 LValue EmitCXXTypeidLValue(const CXXTypeidExpr *E); 3753 LValue EmitCXXUuidofLValue(const CXXUuidofExpr *E); 3754 3755 LValue EmitObjCMessageExprLValue(const ObjCMessageExpr *E); 3756 LValue EmitObjCIvarRefLValue(const ObjCIvarRefExpr *E); 3757 LValue EmitStmtExprLValue(const StmtExpr *E); 3758 LValue EmitPointerToDataMemberBinaryExpr(const BinaryOperator *E); 3759 LValue EmitObjCSelectorLValue(const ObjCSelectorExpr *E); 3760 void EmitDeclRefExprDbgValue(const DeclRefExpr *E, const APValue &Init); 3761 3762 //===--------------------------------------------------------------------===// 3763 // Scalar Expression Emission 3764 //===--------------------------------------------------------------------===// 3765 3766 /// EmitCall - Generate a call of the given function, expecting the given 3767 /// result type, and using the given argument list which specifies both the 3768 /// LLVM arguments and the types they were derived from. 3769 RValue EmitCall(const CGFunctionInfo &CallInfo, const CGCallee &Callee, 3770 ReturnValueSlot ReturnValue, const CallArgList &Args, 3771 llvm::CallBase **callOrInvoke, SourceLocation Loc); 3772 RValue EmitCall(const CGFunctionInfo &CallInfo, const CGCallee &Callee, 3773 ReturnValueSlot ReturnValue, const CallArgList &Args, 3774 llvm::CallBase **callOrInvoke = nullptr) { 3775 return EmitCall(CallInfo, Callee, ReturnValue, Args, callOrInvoke, 3776 SourceLocation()); 3777 } 3778 RValue EmitCall(QualType FnType, const CGCallee &Callee, const CallExpr *E, 3779 ReturnValueSlot ReturnValue, llvm::Value *Chain = nullptr); 3780 RValue EmitCallExpr(const CallExpr *E, 3781 ReturnValueSlot ReturnValue = ReturnValueSlot()); 3782 RValue EmitSimpleCallExpr(const CallExpr *E, ReturnValueSlot ReturnValue); 3783 CGCallee EmitCallee(const Expr *E); 3784 3785 void checkTargetFeatures(const CallExpr *E, const FunctionDecl *TargetDecl); 3786 void checkTargetFeatures(SourceLocation Loc, const FunctionDecl *TargetDecl); 3787 3788 llvm::CallInst *EmitRuntimeCall(llvm::FunctionCallee callee, 3789 const Twine &name = ""); 3790 llvm::CallInst *EmitRuntimeCall(llvm::FunctionCallee callee, 3791 ArrayRef<llvm::Value *> args, 3792 const Twine &name = ""); 3793 llvm::CallInst *EmitNounwindRuntimeCall(llvm::FunctionCallee callee, 3794 const Twine &name = ""); 3795 llvm::CallInst *EmitNounwindRuntimeCall(llvm::FunctionCallee callee, 3796 ArrayRef<llvm::Value *> args, 3797 const Twine &name = ""); 3798 3799 SmallVector<llvm::OperandBundleDef, 1> 3800 getBundlesForFunclet(llvm::Value *Callee); 3801 3802 llvm::CallBase *EmitCallOrInvoke(llvm::FunctionCallee Callee, 3803 ArrayRef<llvm::Value *> Args, 3804 const Twine &Name = ""); 3805 llvm::CallBase *EmitRuntimeCallOrInvoke(llvm::FunctionCallee callee, 3806 ArrayRef<llvm::Value *> args, 3807 const Twine &name = ""); 3808 llvm::CallBase *EmitRuntimeCallOrInvoke(llvm::FunctionCallee callee, 3809 const Twine &name = ""); 3810 void EmitNoreturnRuntimeCallOrInvoke(llvm::FunctionCallee callee, 3811 ArrayRef<llvm::Value *> args); 3812 3813 CGCallee BuildAppleKextVirtualCall(const CXXMethodDecl *MD, 3814 NestedNameSpecifier *Qual, 3815 llvm::Type *Ty); 3816 3817 CGCallee BuildAppleKextVirtualDestructorCall(const CXXDestructorDecl *DD, 3818 CXXDtorType Type, 3819 const CXXRecordDecl *RD); 3820 3821 // Return the copy constructor name with the prefix "__copy_constructor_" 3822 // removed. 3823 static std::string getNonTrivialCopyConstructorStr(QualType QT, 3824 CharUnits Alignment, 3825 bool IsVolatile, 3826 ASTContext &Ctx); 3827 3828 // Return the destructor name with the prefix "__destructor_" removed. 3829 static std::string getNonTrivialDestructorStr(QualType QT, 3830 CharUnits Alignment, 3831 bool IsVolatile, 3832 ASTContext &Ctx); 3833 3834 // These functions emit calls to the special functions of non-trivial C 3835 // structs. 3836 void defaultInitNonTrivialCStructVar(LValue Dst); 3837 void callCStructDefaultConstructor(LValue Dst); 3838 void callCStructDestructor(LValue Dst); 3839 void callCStructCopyConstructor(LValue Dst, LValue Src); 3840 void callCStructMoveConstructor(LValue Dst, LValue Src); 3841 void callCStructCopyAssignmentOperator(LValue Dst, LValue Src); 3842 void callCStructMoveAssignmentOperator(LValue Dst, LValue Src); 3843 3844 RValue 3845 EmitCXXMemberOrOperatorCall(const CXXMethodDecl *Method, 3846 const CGCallee &Callee, 3847 ReturnValueSlot ReturnValue, llvm::Value *This, 3848 llvm::Value *ImplicitParam, 3849 QualType ImplicitParamTy, const CallExpr *E, 3850 CallArgList *RtlArgs); 3851 RValue EmitCXXDestructorCall(GlobalDecl Dtor, const CGCallee &Callee, 3852 llvm::Value *This, QualType ThisTy, 3853 llvm::Value *ImplicitParam, 3854 QualType ImplicitParamTy, const CallExpr *E); 3855 RValue EmitCXXMemberCallExpr(const CXXMemberCallExpr *E, 3856 ReturnValueSlot ReturnValue); 3857 RValue EmitCXXMemberOrOperatorMemberCallExpr(const CallExpr *CE, 3858 const CXXMethodDecl *MD, 3859 ReturnValueSlot ReturnValue, 3860 bool HasQualifier, 3861 NestedNameSpecifier *Qualifier, 3862 bool IsArrow, const Expr *Base); 3863 // Compute the object pointer. 3864 Address EmitCXXMemberDataPointerAddress(const Expr *E, Address base, 3865 llvm::Value *memberPtr, 3866 const MemberPointerType *memberPtrType, 3867 LValueBaseInfo *BaseInfo = nullptr, 3868 TBAAAccessInfo *TBAAInfo = nullptr); 3869 RValue EmitCXXMemberPointerCallExpr(const CXXMemberCallExpr *E, 3870 ReturnValueSlot ReturnValue); 3871 3872 RValue EmitCXXOperatorMemberCallExpr(const CXXOperatorCallExpr *E, 3873 const CXXMethodDecl *MD, 3874 ReturnValueSlot ReturnValue); 3875 RValue EmitCXXPseudoDestructorExpr(const CXXPseudoDestructorExpr *E); 3876 3877 RValue EmitCUDAKernelCallExpr(const CUDAKernelCallExpr *E, 3878 ReturnValueSlot ReturnValue); 3879 3880 RValue EmitNVPTXDevicePrintfCallExpr(const CallExpr *E, 3881 ReturnValueSlot ReturnValue); 3882 RValue EmitAMDGPUDevicePrintfCallExpr(const CallExpr *E, 3883 ReturnValueSlot ReturnValue); 3884 3885 RValue EmitBuiltinExpr(const GlobalDecl GD, unsigned BuiltinID, 3886 const CallExpr *E, ReturnValueSlot ReturnValue); 3887 3888 RValue emitRotate(const CallExpr *E, bool IsRotateRight); 3889 3890 /// Emit IR for __builtin_os_log_format. 3891 RValue emitBuiltinOSLogFormat(const CallExpr &E); 3892 3893 /// Emit IR for __builtin_is_aligned. 3894 RValue EmitBuiltinIsAligned(const CallExpr *E); 3895 /// Emit IR for __builtin_align_up/__builtin_align_down. 3896 RValue EmitBuiltinAlignTo(const CallExpr *E, bool AlignUp); 3897 3898 llvm::Function *generateBuiltinOSLogHelperFunction( 3899 const analyze_os_log::OSLogBufferLayout &Layout, 3900 CharUnits BufferAlignment); 3901 3902 RValue EmitBlockCallExpr(const CallExpr *E, ReturnValueSlot ReturnValue); 3903 3904 /// EmitTargetBuiltinExpr - Emit the given builtin call. Returns 0 if the call 3905 /// is unhandled by the current target. 3906 llvm::Value *EmitTargetBuiltinExpr(unsigned BuiltinID, const CallExpr *E, 3907 ReturnValueSlot ReturnValue); 3908 3909 llvm::Value *EmitAArch64CompareBuiltinExpr(llvm::Value *Op, llvm::Type *Ty, 3910 const llvm::CmpInst::Predicate Fp, 3911 const llvm::CmpInst::Predicate Ip, 3912 const llvm::Twine &Name = ""); 3913 llvm::Value *EmitARMBuiltinExpr(unsigned BuiltinID, const CallExpr *E, 3914 ReturnValueSlot ReturnValue, 3915 llvm::Triple::ArchType Arch); 3916 llvm::Value *EmitARMMVEBuiltinExpr(unsigned BuiltinID, const CallExpr *E, 3917 ReturnValueSlot ReturnValue, 3918 llvm::Triple::ArchType Arch); 3919 llvm::Value *EmitARMCDEBuiltinExpr(unsigned BuiltinID, const CallExpr *E, 3920 ReturnValueSlot ReturnValue, 3921 llvm::Triple::ArchType Arch); 3922 llvm::Value *EmitCMSEClearRecord(llvm::Value *V, llvm::IntegerType *ITy, 3923 QualType RTy); 3924 llvm::Value *EmitCMSEClearRecord(llvm::Value *V, llvm::ArrayType *ATy, 3925 QualType RTy); 3926 3927 llvm::Value *EmitCommonNeonBuiltinExpr(unsigned BuiltinID, 3928 unsigned LLVMIntrinsic, 3929 unsigned AltLLVMIntrinsic, 3930 const char *NameHint, 3931 unsigned Modifier, 3932 const CallExpr *E, 3933 SmallVectorImpl<llvm::Value *> &Ops, 3934 Address PtrOp0, Address PtrOp1, 3935 llvm::Triple::ArchType Arch); 3936 3937 llvm::Function *LookupNeonLLVMIntrinsic(unsigned IntrinsicID, 3938 unsigned Modifier, llvm::Type *ArgTy, 3939 const CallExpr *E); 3940 llvm::Value *EmitNeonCall(llvm::Function *F, 3941 SmallVectorImpl<llvm::Value*> &O, 3942 const char *name, 3943 unsigned shift = 0, bool rightshift = false); 3944 llvm::Value *EmitNeonSplat(llvm::Value *V, llvm::Constant *Idx, 3945 const llvm::ElementCount &Count); 3946 llvm::Value *EmitNeonSplat(llvm::Value *V, llvm::Constant *Idx); 3947 llvm::Value *EmitNeonShiftVector(llvm::Value *V, llvm::Type *Ty, 3948 bool negateForRightShift); 3949 llvm::Value *EmitNeonRShiftImm(llvm::Value *Vec, llvm::Value *Amt, 3950 llvm::Type *Ty, bool usgn, const char *name); 3951 llvm::Value *vectorWrapScalar16(llvm::Value *Op); 3952 /// SVEBuiltinMemEltTy - Returns the memory element type for this memory 3953 /// access builtin. Only required if it can't be inferred from the base 3954 /// pointer operand. 3955 llvm::Type *SVEBuiltinMemEltTy(SVETypeFlags TypeFlags); 3956 3957 SmallVector<llvm::Type *, 2> getSVEOverloadTypes(SVETypeFlags TypeFlags, 3958 llvm::Type *ReturnType, 3959 ArrayRef<llvm::Value *> Ops); 3960 llvm::Type *getEltType(SVETypeFlags TypeFlags); 3961 llvm::ScalableVectorType *getSVEType(const SVETypeFlags &TypeFlags); 3962 llvm::ScalableVectorType *getSVEPredType(SVETypeFlags TypeFlags); 3963 llvm::Value *EmitSVEAllTruePred(SVETypeFlags TypeFlags); 3964 llvm::Value *EmitSVEDupX(llvm::Value *Scalar); 3965 llvm::Value *EmitSVEDupX(llvm::Value *Scalar, llvm::Type *Ty); 3966 llvm::Value *EmitSVEReinterpret(llvm::Value *Val, llvm::Type *Ty); 3967 llvm::Value *EmitSVEPMull(SVETypeFlags TypeFlags, 3968 llvm::SmallVectorImpl<llvm::Value *> &Ops, 3969 unsigned BuiltinID); 3970 llvm::Value *EmitSVEMovl(SVETypeFlags TypeFlags, 3971 llvm::ArrayRef<llvm::Value *> Ops, 3972 unsigned BuiltinID); 3973 llvm::Value *EmitSVEPredicateCast(llvm::Value *Pred, 3974 llvm::ScalableVectorType *VTy); 3975 llvm::Value *EmitSVEGatherLoad(SVETypeFlags TypeFlags, 3976 llvm::SmallVectorImpl<llvm::Value *> &Ops, 3977 unsigned IntID); 3978 llvm::Value *EmitSVEScatterStore(SVETypeFlags TypeFlags, 3979 llvm::SmallVectorImpl<llvm::Value *> &Ops, 3980 unsigned IntID); 3981 llvm::Value *EmitSVEMaskedLoad(const CallExpr *, llvm::Type *ReturnTy, 3982 SmallVectorImpl<llvm::Value *> &Ops, 3983 unsigned BuiltinID, bool IsZExtReturn); 3984 llvm::Value *EmitSVEMaskedStore(const CallExpr *, 3985 SmallVectorImpl<llvm::Value *> &Ops, 3986 unsigned BuiltinID); 3987 llvm::Value *EmitSVEPrefetchLoad(SVETypeFlags TypeFlags, 3988 SmallVectorImpl<llvm::Value *> &Ops, 3989 unsigned BuiltinID); 3990 llvm::Value *EmitSVEGatherPrefetch(SVETypeFlags TypeFlags, 3991 SmallVectorImpl<llvm::Value *> &Ops, 3992 unsigned IntID); 3993 llvm::Value *EmitSVEStructLoad(SVETypeFlags TypeFlags, 3994 SmallVectorImpl<llvm::Value *> &Ops, unsigned IntID); 3995 llvm::Value *EmitSVEStructStore(SVETypeFlags TypeFlags, 3996 SmallVectorImpl<llvm::Value *> &Ops, 3997 unsigned IntID); 3998 llvm::Value *EmitAArch64SVEBuiltinExpr(unsigned BuiltinID, const CallExpr *E); 3999 4000 llvm::Value *EmitAArch64BuiltinExpr(unsigned BuiltinID, const CallExpr *E, 4001 llvm::Triple::ArchType Arch); 4002 llvm::Value *EmitBPFBuiltinExpr(unsigned BuiltinID, const CallExpr *E); 4003 4004 llvm::Value *BuildVector(ArrayRef<llvm::Value*> Ops); 4005 llvm::Value *EmitX86BuiltinExpr(unsigned BuiltinID, const CallExpr *E); 4006 llvm::Value *EmitPPCBuiltinExpr(unsigned BuiltinID, const CallExpr *E); 4007 llvm::Value *EmitAMDGPUBuiltinExpr(unsigned BuiltinID, const CallExpr *E); 4008 llvm::Value *EmitSystemZBuiltinExpr(unsigned BuiltinID, const CallExpr *E); 4009 llvm::Value *EmitNVPTXBuiltinExpr(unsigned BuiltinID, const CallExpr *E); 4010 llvm::Value *EmitWebAssemblyBuiltinExpr(unsigned BuiltinID, 4011 const CallExpr *E); 4012 llvm::Value *EmitHexagonBuiltinExpr(unsigned BuiltinID, const CallExpr *E); 4013 bool ProcessOrderScopeAMDGCN(llvm::Value *Order, llvm::Value *Scope, 4014 llvm::AtomicOrdering &AO, 4015 llvm::SyncScope::ID &SSID); 4016 4017 private: 4018 enum class MSVCIntrin; 4019 4020 public: 4021 llvm::Value *EmitMSVCBuiltinExpr(MSVCIntrin BuiltinID, const CallExpr *E); 4022 4023 llvm::Value *EmitBuiltinAvailable(ArrayRef<llvm::Value *> Args); 4024 4025 llvm::Value *EmitObjCProtocolExpr(const ObjCProtocolExpr *E); 4026 llvm::Value *EmitObjCStringLiteral(const ObjCStringLiteral *E); 4027 llvm::Value *EmitObjCBoxedExpr(const ObjCBoxedExpr *E); 4028 llvm::Value *EmitObjCArrayLiteral(const ObjCArrayLiteral *E); 4029 llvm::Value *EmitObjCDictionaryLiteral(const ObjCDictionaryLiteral *E); 4030 llvm::Value *EmitObjCCollectionLiteral(const Expr *E, 4031 const ObjCMethodDecl *MethodWithObjects); 4032 llvm::Value *EmitObjCSelectorExpr(const ObjCSelectorExpr *E); 4033 RValue EmitObjCMessageExpr(const ObjCMessageExpr *E, 4034 ReturnValueSlot Return = ReturnValueSlot()); 4035 4036 /// Retrieves the default cleanup kind for an ARC cleanup. 4037 /// Except under -fobjc-arc-eh, ARC cleanups are normal-only. 4038 CleanupKind getARCCleanupKind() { 4039 return CGM.getCodeGenOpts().ObjCAutoRefCountExceptions 4040 ? NormalAndEHCleanup : NormalCleanup; 4041 } 4042 4043 // ARC primitives. 4044 void EmitARCInitWeak(Address addr, llvm::Value *value); 4045 void EmitARCDestroyWeak(Address addr); 4046 llvm::Value *EmitARCLoadWeak(Address addr); 4047 llvm::Value *EmitARCLoadWeakRetained(Address addr); 4048 llvm::Value *EmitARCStoreWeak(Address addr, llvm::Value *value, bool ignored); 4049 void emitARCCopyAssignWeak(QualType Ty, Address DstAddr, Address SrcAddr); 4050 void emitARCMoveAssignWeak(QualType Ty, Address DstAddr, Address SrcAddr); 4051 void EmitARCCopyWeak(Address dst, Address src); 4052 void EmitARCMoveWeak(Address dst, Address src); 4053 llvm::Value *EmitARCRetainAutorelease(QualType type, llvm::Value *value); 4054 llvm::Value *EmitARCRetainAutoreleaseNonBlock(llvm::Value *value); 4055 llvm::Value *EmitARCStoreStrong(LValue lvalue, llvm::Value *value, 4056 bool resultIgnored); 4057 llvm::Value *EmitARCStoreStrongCall(Address addr, llvm::Value *value, 4058 bool resultIgnored); 4059 llvm::Value *EmitARCRetain(QualType type, llvm::Value *value); 4060 llvm::Value *EmitARCRetainNonBlock(llvm::Value *value); 4061 llvm::Value *EmitARCRetainBlock(llvm::Value *value, bool mandatory); 4062 void EmitARCDestroyStrong(Address addr, ARCPreciseLifetime_t precise); 4063 void EmitARCRelease(llvm::Value *value, ARCPreciseLifetime_t precise); 4064 llvm::Value *EmitARCAutorelease(llvm::Value *value); 4065 llvm::Value *EmitARCAutoreleaseReturnValue(llvm::Value *value); 4066 llvm::Value *EmitARCRetainAutoreleaseReturnValue(llvm::Value *value); 4067 llvm::Value *EmitARCRetainAutoreleasedReturnValue(llvm::Value *value); 4068 llvm::Value *EmitARCUnsafeClaimAutoreleasedReturnValue(llvm::Value *value); 4069 4070 llvm::Value *EmitObjCAutorelease(llvm::Value *value, llvm::Type *returnType); 4071 llvm::Value *EmitObjCRetainNonBlock(llvm::Value *value, 4072 llvm::Type *returnType); 4073 void EmitObjCRelease(llvm::Value *value, ARCPreciseLifetime_t precise); 4074 4075 std::pair<LValue,llvm::Value*> 4076 EmitARCStoreAutoreleasing(const BinaryOperator *e); 4077 std::pair<LValue,llvm::Value*> 4078 EmitARCStoreStrong(const BinaryOperator *e, bool ignored); 4079 std::pair<LValue,llvm::Value*> 4080 EmitARCStoreUnsafeUnretained(const BinaryOperator *e, bool ignored); 4081 4082 llvm::Value *EmitObjCAlloc(llvm::Value *value, 4083 llvm::Type *returnType); 4084 llvm::Value *EmitObjCAllocWithZone(llvm::Value *value, 4085 llvm::Type *returnType); 4086 llvm::Value *EmitObjCAllocInit(llvm::Value *value, llvm::Type *resultType); 4087 4088 llvm::Value *EmitObjCThrowOperand(const Expr *expr); 4089 llvm::Value *EmitObjCConsumeObject(QualType T, llvm::Value *Ptr); 4090 llvm::Value *EmitObjCExtendObjectLifetime(QualType T, llvm::Value *Ptr); 4091 4092 llvm::Value *EmitARCExtendBlockObject(const Expr *expr); 4093 llvm::Value *EmitARCReclaimReturnedObject(const Expr *e, 4094 bool allowUnsafeClaim); 4095 llvm::Value *EmitARCRetainScalarExpr(const Expr *expr); 4096 llvm::Value *EmitARCRetainAutoreleaseScalarExpr(const Expr *expr); 4097 llvm::Value *EmitARCUnsafeUnretainedScalarExpr(const Expr *expr); 4098 4099 void EmitARCIntrinsicUse(ArrayRef<llvm::Value*> values); 4100 4101 static Destroyer destroyARCStrongImprecise; 4102 static Destroyer destroyARCStrongPrecise; 4103 static Destroyer destroyARCWeak; 4104 static Destroyer emitARCIntrinsicUse; 4105 static Destroyer destroyNonTrivialCStruct; 4106 4107 void EmitObjCAutoreleasePoolPop(llvm::Value *Ptr); 4108 llvm::Value *EmitObjCAutoreleasePoolPush(); 4109 llvm::Value *EmitObjCMRRAutoreleasePoolPush(); 4110 void EmitObjCAutoreleasePoolCleanup(llvm::Value *Ptr); 4111 void EmitObjCMRRAutoreleasePoolPop(llvm::Value *Ptr); 4112 4113 /// Emits a reference binding to the passed in expression. 4114 RValue EmitReferenceBindingToExpr(const Expr *E); 4115 4116 //===--------------------------------------------------------------------===// 4117 // Expression Emission 4118 //===--------------------------------------------------------------------===// 4119 4120 // Expressions are broken into three classes: scalar, complex, aggregate. 4121 4122 /// EmitScalarExpr - Emit the computation of the specified expression of LLVM 4123 /// scalar type, returning the result. 4124 llvm::Value *EmitScalarExpr(const Expr *E , bool IgnoreResultAssign = false); 4125 4126 /// Emit a conversion from the specified type to the specified destination 4127 /// type, both of which are LLVM scalar types. 4128 llvm::Value *EmitScalarConversion(llvm::Value *Src, QualType SrcTy, 4129 QualType DstTy, SourceLocation Loc); 4130 4131 /// Emit a conversion from the specified complex type to the specified 4132 /// destination type, where the destination type is an LLVM scalar type. 4133 llvm::Value *EmitComplexToScalarConversion(ComplexPairTy Src, QualType SrcTy, 4134 QualType DstTy, 4135 SourceLocation Loc); 4136 4137 /// EmitAggExpr - Emit the computation of the specified expression 4138 /// of aggregate type. The result is computed into the given slot, 4139 /// which may be null to indicate that the value is not needed. 4140 void EmitAggExpr(const Expr *E, AggValueSlot AS); 4141 4142 /// EmitAggExprToLValue - Emit the computation of the specified expression of 4143 /// aggregate type into a temporary LValue. 4144 LValue EmitAggExprToLValue(const Expr *E); 4145 4146 /// Build all the stores needed to initialize an aggregate at Dest with the 4147 /// value Val. 4148 void EmitAggregateStore(llvm::Value *Val, Address Dest, bool DestIsVolatile); 4149 4150 /// EmitExtendGCLifetime - Given a pointer to an Objective-C object, 4151 /// make sure it survives garbage collection until this point. 4152 void EmitExtendGCLifetime(llvm::Value *object); 4153 4154 /// EmitComplexExpr - Emit the computation of the specified expression of 4155 /// complex type, returning the result. 4156 ComplexPairTy EmitComplexExpr(const Expr *E, 4157 bool IgnoreReal = false, 4158 bool IgnoreImag = false); 4159 4160 /// EmitComplexExprIntoLValue - Emit the given expression of complex 4161 /// type and place its result into the specified l-value. 4162 void EmitComplexExprIntoLValue(const Expr *E, LValue dest, bool isInit); 4163 4164 /// EmitStoreOfComplex - Store a complex number into the specified l-value. 4165 void EmitStoreOfComplex(ComplexPairTy V, LValue dest, bool isInit); 4166 4167 /// EmitLoadOfComplex - Load a complex number from the specified l-value. 4168 ComplexPairTy EmitLoadOfComplex(LValue src, SourceLocation loc); 4169 4170 Address emitAddrOfRealComponent(Address complex, QualType complexType); 4171 Address emitAddrOfImagComponent(Address complex, QualType complexType); 4172 4173 /// AddInitializerToStaticVarDecl - Add the initializer for 'D' to the 4174 /// global variable that has already been created for it. If the initializer 4175 /// has a different type than GV does, this may free GV and return a different 4176 /// one. Otherwise it just returns GV. 4177 llvm::GlobalVariable * 4178 AddInitializerToStaticVarDecl(const VarDecl &D, 4179 llvm::GlobalVariable *GV); 4180 4181 // Emit an @llvm.invariant.start call for the given memory region. 4182 void EmitInvariantStart(llvm::Constant *Addr, CharUnits Size); 4183 4184 /// EmitCXXGlobalVarDeclInit - Create the initializer for a C++ 4185 /// variable with global storage. 4186 void EmitCXXGlobalVarDeclInit(const VarDecl &D, llvm::Constant *DeclPtr, 4187 bool PerformInit); 4188 4189 llvm::Function *createAtExitStub(const VarDecl &VD, llvm::FunctionCallee Dtor, 4190 llvm::Constant *Addr); 4191 4192 /// Call atexit() with a function that passes the given argument to 4193 /// the given function. 4194 void registerGlobalDtorWithAtExit(const VarDecl &D, llvm::FunctionCallee fn, 4195 llvm::Constant *addr); 4196 4197 /// Call atexit() with function dtorStub. 4198 void registerGlobalDtorWithAtExit(llvm::Constant *dtorStub); 4199 4200 /// Call unatexit() with function dtorStub. 4201 llvm::Value *unregisterGlobalDtorWithUnAtExit(llvm::Function *dtorStub); 4202 4203 /// Emit code in this function to perform a guarded variable 4204 /// initialization. Guarded initializations are used when it's not 4205 /// possible to prove that an initialization will be done exactly 4206 /// once, e.g. with a static local variable or a static data member 4207 /// of a class template. 4208 void EmitCXXGuardedInit(const VarDecl &D, llvm::GlobalVariable *DeclPtr, 4209 bool PerformInit); 4210 4211 enum class GuardKind { VariableGuard, TlsGuard }; 4212 4213 /// Emit a branch to select whether or not to perform guarded initialization. 4214 void EmitCXXGuardedInitBranch(llvm::Value *NeedsInit, 4215 llvm::BasicBlock *InitBlock, 4216 llvm::BasicBlock *NoInitBlock, 4217 GuardKind Kind, const VarDecl *D); 4218 4219 /// GenerateCXXGlobalInitFunc - Generates code for initializing global 4220 /// variables. 4221 void 4222 GenerateCXXGlobalInitFunc(llvm::Function *Fn, 4223 ArrayRef<llvm::Function *> CXXThreadLocals, 4224 ConstantAddress Guard = ConstantAddress::invalid()); 4225 4226 /// GenerateCXXGlobalCleanUpFunc - Generates code for cleaning up global 4227 /// variables. 4228 void GenerateCXXGlobalCleanUpFunc( 4229 llvm::Function *Fn, 4230 const std::vector<std::tuple<llvm::FunctionType *, llvm::WeakTrackingVH, 4231 llvm::Constant *>> &DtorsOrStermFinalizers); 4232 4233 void GenerateCXXGlobalVarDeclInitFunc(llvm::Function *Fn, 4234 const VarDecl *D, 4235 llvm::GlobalVariable *Addr, 4236 bool PerformInit); 4237 4238 void EmitCXXConstructExpr(const CXXConstructExpr *E, AggValueSlot Dest); 4239 4240 void EmitSynthesizedCXXCopyCtor(Address Dest, Address Src, const Expr *Exp); 4241 4242 void EmitCXXThrowExpr(const CXXThrowExpr *E, bool KeepInsertionPoint = true); 4243 4244 RValue EmitAtomicExpr(AtomicExpr *E); 4245 4246 //===--------------------------------------------------------------------===// 4247 // Annotations Emission 4248 //===--------------------------------------------------------------------===// 4249 4250 /// Emit an annotation call (intrinsic). 4251 llvm::Value *EmitAnnotationCall(llvm::Function *AnnotationFn, 4252 llvm::Value *AnnotatedVal, 4253 StringRef AnnotationStr, 4254 SourceLocation Location); 4255 4256 /// Emit local annotations for the local variable V, declared by D. 4257 void EmitVarAnnotations(const VarDecl *D, llvm::Value *V); 4258 4259 /// Emit field annotations for the given field & value. Returns the 4260 /// annotation result. 4261 Address EmitFieldAnnotations(const FieldDecl *D, Address V); 4262 4263 //===--------------------------------------------------------------------===// 4264 // Internal Helpers 4265 //===--------------------------------------------------------------------===// 4266 4267 /// ContainsLabel - Return true if the statement contains a label in it. If 4268 /// this statement is not executed normally, it not containing a label means 4269 /// that we can just remove the code. 4270 static bool ContainsLabel(const Stmt *S, bool IgnoreCaseStmts = false); 4271 4272 /// containsBreak - Return true if the statement contains a break out of it. 4273 /// If the statement (recursively) contains a switch or loop with a break 4274 /// inside of it, this is fine. 4275 static bool containsBreak(const Stmt *S); 4276 4277 /// Determine if the given statement might introduce a declaration into the 4278 /// current scope, by being a (possibly-labelled) DeclStmt. 4279 static bool mightAddDeclToScope(const Stmt *S); 4280 4281 /// ConstantFoldsToSimpleInteger - If the specified expression does not fold 4282 /// to a constant, or if it does but contains a label, return false. If it 4283 /// constant folds return true and set the boolean result in Result. 4284 bool ConstantFoldsToSimpleInteger(const Expr *Cond, bool &Result, 4285 bool AllowLabels = false); 4286 4287 /// ConstantFoldsToSimpleInteger - If the specified expression does not fold 4288 /// to a constant, or if it does but contains a label, return false. If it 4289 /// constant folds return true and set the folded value. 4290 bool ConstantFoldsToSimpleInteger(const Expr *Cond, llvm::APSInt &Result, 4291 bool AllowLabels = false); 4292 4293 /// EmitBranchOnBoolExpr - Emit a branch on a boolean condition (e.g. for an 4294 /// if statement) to the specified blocks. Based on the condition, this might 4295 /// try to simplify the codegen of the conditional based on the branch. 4296 /// TrueCount should be the number of times we expect the condition to 4297 /// evaluate to true based on PGO data. 4298 void EmitBranchOnBoolExpr(const Expr *Cond, llvm::BasicBlock *TrueBlock, 4299 llvm::BasicBlock *FalseBlock, uint64_t TrueCount); 4300 4301 /// Given an assignment `*LHS = RHS`, emit a test that checks if \p RHS is 4302 /// nonnull, if \p LHS is marked _Nonnull. 4303 void EmitNullabilityCheck(LValue LHS, llvm::Value *RHS, SourceLocation Loc); 4304 4305 /// An enumeration which makes it easier to specify whether or not an 4306 /// operation is a subtraction. 4307 enum { NotSubtraction = false, IsSubtraction = true }; 4308 4309 /// Same as IRBuilder::CreateInBoundsGEP, but additionally emits a check to 4310 /// detect undefined behavior when the pointer overflow sanitizer is enabled. 4311 /// \p SignedIndices indicates whether any of the GEP indices are signed. 4312 /// \p IsSubtraction indicates whether the expression used to form the GEP 4313 /// is a subtraction. 4314 llvm::Value *EmitCheckedInBoundsGEP(llvm::Value *Ptr, 4315 ArrayRef<llvm::Value *> IdxList, 4316 bool SignedIndices, 4317 bool IsSubtraction, 4318 SourceLocation Loc, 4319 const Twine &Name = ""); 4320 4321 /// Specifies which type of sanitizer check to apply when handling a 4322 /// particular builtin. 4323 enum BuiltinCheckKind { 4324 BCK_CTZPassedZero, 4325 BCK_CLZPassedZero, 4326 }; 4327 4328 /// Emits an argument for a call to a builtin. If the builtin sanitizer is 4329 /// enabled, a runtime check specified by \p Kind is also emitted. 4330 llvm::Value *EmitCheckedArgForBuiltin(const Expr *E, BuiltinCheckKind Kind); 4331 4332 /// Emit a description of a type in a format suitable for passing to 4333 /// a runtime sanitizer handler. 4334 llvm::Constant *EmitCheckTypeDescriptor(QualType T); 4335 4336 /// Convert a value into a format suitable for passing to a runtime 4337 /// sanitizer handler. 4338 llvm::Value *EmitCheckValue(llvm::Value *V); 4339 4340 /// Emit a description of a source location in a format suitable for 4341 /// passing to a runtime sanitizer handler. 4342 llvm::Constant *EmitCheckSourceLocation(SourceLocation Loc); 4343 4344 /// Create a basic block that will either trap or call a handler function in 4345 /// the UBSan runtime with the provided arguments, and create a conditional 4346 /// branch to it. 4347 void EmitCheck(ArrayRef<std::pair<llvm::Value *, SanitizerMask>> Checked, 4348 SanitizerHandler Check, ArrayRef<llvm::Constant *> StaticArgs, 4349 ArrayRef<llvm::Value *> DynamicArgs); 4350 4351 /// Emit a slow path cross-DSO CFI check which calls __cfi_slowpath 4352 /// if Cond if false. 4353 void EmitCfiSlowPathCheck(SanitizerMask Kind, llvm::Value *Cond, 4354 llvm::ConstantInt *TypeId, llvm::Value *Ptr, 4355 ArrayRef<llvm::Constant *> StaticArgs); 4356 4357 /// Emit a reached-unreachable diagnostic if \p Loc is valid and runtime 4358 /// checking is enabled. Otherwise, just emit an unreachable instruction. 4359 void EmitUnreachable(SourceLocation Loc); 4360 4361 /// Create a basic block that will call the trap intrinsic, and emit a 4362 /// conditional branch to it, for the -ftrapv checks. 4363 void EmitTrapCheck(llvm::Value *Checked); 4364 4365 /// Emit a call to trap or debugtrap and attach function attribute 4366 /// "trap-func-name" if specified. 4367 llvm::CallInst *EmitTrapCall(llvm::Intrinsic::ID IntrID); 4368 4369 /// Emit a stub for the cross-DSO CFI check function. 4370 void EmitCfiCheckStub(); 4371 4372 /// Emit a cross-DSO CFI failure handling function. 4373 void EmitCfiCheckFail(); 4374 4375 /// Create a check for a function parameter that may potentially be 4376 /// declared as non-null. 4377 void EmitNonNullArgCheck(RValue RV, QualType ArgType, SourceLocation ArgLoc, 4378 AbstractCallee AC, unsigned ParmNum); 4379 4380 /// EmitCallArg - Emit a single call argument. 4381 void EmitCallArg(CallArgList &args, const Expr *E, QualType ArgType); 4382 4383 /// EmitDelegateCallArg - We are performing a delegate call; that 4384 /// is, the current function is delegating to another one. Produce 4385 /// a r-value suitable for passing the given parameter. 4386 void EmitDelegateCallArg(CallArgList &args, const VarDecl *param, 4387 SourceLocation loc); 4388 4389 /// SetFPAccuracy - Set the minimum required accuracy of the given floating 4390 /// point operation, expressed as the maximum relative error in ulp. 4391 void SetFPAccuracy(llvm::Value *Val, float Accuracy); 4392 4393 /// SetFPModel - Control floating point behavior via fp-model settings. 4394 void SetFPModel(); 4395 4396 /// Set the codegen fast-math flags. 4397 void SetFastMathFlags(FPOptions FPFeatures); 4398 4399 private: 4400 llvm::MDNode *getRangeForLoadFromType(QualType Ty); 4401 void EmitReturnOfRValue(RValue RV, QualType Ty); 4402 4403 void deferPlaceholderReplacement(llvm::Instruction *Old, llvm::Value *New); 4404 4405 llvm::SmallVector<std::pair<llvm::Instruction *, llvm::Value *>, 4> 4406 DeferredReplacements; 4407 4408 /// Set the address of a local variable. 4409 void setAddrOfLocalVar(const VarDecl *VD, Address Addr) { 4410 assert(!LocalDeclMap.count(VD) && "Decl already exists in LocalDeclMap!"); 4411 LocalDeclMap.insert({VD, Addr}); 4412 } 4413 4414 /// ExpandTypeFromArgs - Reconstruct a structure of type \arg Ty 4415 /// from function arguments into \arg Dst. See ABIArgInfo::Expand. 4416 /// 4417 /// \param AI - The first function argument of the expansion. 4418 void ExpandTypeFromArgs(QualType Ty, LValue Dst, 4419 llvm::Function::arg_iterator &AI); 4420 4421 /// ExpandTypeToArgs - Expand an CallArg \arg Arg, with the LLVM type for \arg 4422 /// Ty, into individual arguments on the provided vector \arg IRCallArgs, 4423 /// starting at index \arg IRCallArgPos. See ABIArgInfo::Expand. 4424 void ExpandTypeToArgs(QualType Ty, CallArg Arg, llvm::FunctionType *IRFuncTy, 4425 SmallVectorImpl<llvm::Value *> &IRCallArgs, 4426 unsigned &IRCallArgPos); 4427 4428 llvm::Value* EmitAsmInput(const TargetInfo::ConstraintInfo &Info, 4429 const Expr *InputExpr, std::string &ConstraintStr); 4430 4431 llvm::Value* EmitAsmInputLValue(const TargetInfo::ConstraintInfo &Info, 4432 LValue InputValue, QualType InputType, 4433 std::string &ConstraintStr, 4434 SourceLocation Loc); 4435 4436 /// Attempts to statically evaluate the object size of E. If that 4437 /// fails, emits code to figure the size of E out for us. This is 4438 /// pass_object_size aware. 4439 /// 4440 /// If EmittedExpr is non-null, this will use that instead of re-emitting E. 4441 llvm::Value *evaluateOrEmitBuiltinObjectSize(const Expr *E, unsigned Type, 4442 llvm::IntegerType *ResType, 4443 llvm::Value *EmittedE, 4444 bool IsDynamic); 4445 4446 /// Emits the size of E, as required by __builtin_object_size. This 4447 /// function is aware of pass_object_size parameters, and will act accordingly 4448 /// if E is a parameter with the pass_object_size attribute. 4449 llvm::Value *emitBuiltinObjectSize(const Expr *E, unsigned Type, 4450 llvm::IntegerType *ResType, 4451 llvm::Value *EmittedE, 4452 bool IsDynamic); 4453 4454 void emitZeroOrPatternForAutoVarInit(QualType type, const VarDecl &D, 4455 Address Loc); 4456 4457 public: 4458 #ifndef NDEBUG 4459 // Determine whether the given argument is an Objective-C method 4460 // that may have type parameters in its signature. 4461 static bool isObjCMethodWithTypeParams(const ObjCMethodDecl *method) { 4462 const DeclContext *dc = method->getDeclContext(); 4463 if (const ObjCInterfaceDecl *classDecl= dyn_cast<ObjCInterfaceDecl>(dc)) { 4464 return classDecl->getTypeParamListAsWritten(); 4465 } 4466 4467 if (const ObjCCategoryDecl *catDecl = dyn_cast<ObjCCategoryDecl>(dc)) { 4468 return catDecl->getTypeParamList(); 4469 } 4470 4471 return false; 4472 } 4473 4474 template<typename T> 4475 static bool isObjCMethodWithTypeParams(const T *) { return false; } 4476 #endif 4477 4478 enum class EvaluationOrder { 4479 ///! No language constraints on evaluation order. 4480 Default, 4481 ///! Language semantics require left-to-right evaluation. 4482 ForceLeftToRight, 4483 ///! Language semantics require right-to-left evaluation. 4484 ForceRightToLeft 4485 }; 4486 4487 /// EmitCallArgs - Emit call arguments for a function. 4488 template <typename T> 4489 void EmitCallArgs(CallArgList &Args, const T *CallArgTypeInfo, 4490 llvm::iterator_range<CallExpr::const_arg_iterator> ArgRange, 4491 AbstractCallee AC = AbstractCallee(), 4492 unsigned ParamsToSkip = 0, 4493 EvaluationOrder Order = EvaluationOrder::Default) { 4494 SmallVector<QualType, 16> ArgTypes; 4495 CallExpr::const_arg_iterator Arg = ArgRange.begin(); 4496 4497 assert((ParamsToSkip == 0 || CallArgTypeInfo) && 4498 "Can't skip parameters if type info is not provided"); 4499 if (CallArgTypeInfo) { 4500 #ifndef NDEBUG 4501 bool isGenericMethod = isObjCMethodWithTypeParams(CallArgTypeInfo); 4502 #endif 4503 4504 // First, use the argument types that the type info knows about 4505 for (auto I = CallArgTypeInfo->param_type_begin() + ParamsToSkip, 4506 E = CallArgTypeInfo->param_type_end(); 4507 I != E; ++I, ++Arg) { 4508 assert(Arg != ArgRange.end() && "Running over edge of argument list!"); 4509 assert((isGenericMethod || 4510 ((*I)->isVariablyModifiedType() || 4511 (*I).getNonReferenceType()->isObjCRetainableType() || 4512 getContext() 4513 .getCanonicalType((*I).getNonReferenceType()) 4514 .getTypePtr() == 4515 getContext() 4516 .getCanonicalType((*Arg)->getType()) 4517 .getTypePtr())) && 4518 "type mismatch in call argument!"); 4519 ArgTypes.push_back(*I); 4520 } 4521 } 4522 4523 // Either we've emitted all the call args, or we have a call to variadic 4524 // function. 4525 assert((Arg == ArgRange.end() || !CallArgTypeInfo || 4526 CallArgTypeInfo->isVariadic()) && 4527 "Extra arguments in non-variadic function!"); 4528 4529 // If we still have any arguments, emit them using the type of the argument. 4530 for (auto *A : llvm::make_range(Arg, ArgRange.end())) 4531 ArgTypes.push_back(CallArgTypeInfo ? getVarArgType(A) : A->getType()); 4532 4533 EmitCallArgs(Args, ArgTypes, ArgRange, AC, ParamsToSkip, Order); 4534 } 4535 4536 void EmitCallArgs(CallArgList &Args, ArrayRef<QualType> ArgTypes, 4537 llvm::iterator_range<CallExpr::const_arg_iterator> ArgRange, 4538 AbstractCallee AC = AbstractCallee(), 4539 unsigned ParamsToSkip = 0, 4540 EvaluationOrder Order = EvaluationOrder::Default); 4541 4542 /// EmitPointerWithAlignment - Given an expression with a pointer type, 4543 /// emit the value and compute our best estimate of the alignment of the 4544 /// pointee. 4545 /// 4546 /// \param BaseInfo - If non-null, this will be initialized with 4547 /// information about the source of the alignment and the may-alias 4548 /// attribute. Note that this function will conservatively fall back on 4549 /// the type when it doesn't recognize the expression and may-alias will 4550 /// be set to false. 4551 /// 4552 /// One reasonable way to use this information is when there's a language 4553 /// guarantee that the pointer must be aligned to some stricter value, and 4554 /// we're simply trying to ensure that sufficiently obvious uses of under- 4555 /// aligned objects don't get miscompiled; for example, a placement new 4556 /// into the address of a local variable. In such a case, it's quite 4557 /// reasonable to just ignore the returned alignment when it isn't from an 4558 /// explicit source. 4559 Address EmitPointerWithAlignment(const Expr *Addr, 4560 LValueBaseInfo *BaseInfo = nullptr, 4561 TBAAAccessInfo *TBAAInfo = nullptr); 4562 4563 /// If \p E references a parameter with pass_object_size info or a constant 4564 /// array size modifier, emit the object size divided by the size of \p EltTy. 4565 /// Otherwise return null. 4566 llvm::Value *LoadPassedObjectSize(const Expr *E, QualType EltTy); 4567 4568 void EmitSanitizerStatReport(llvm::SanitizerStatKind SSK); 4569 4570 struct MultiVersionResolverOption { 4571 llvm::Function *Function; 4572 FunctionDecl *FD; 4573 struct Conds { 4574 StringRef Architecture; 4575 llvm::SmallVector<StringRef, 8> Features; 4576 4577 Conds(StringRef Arch, ArrayRef<StringRef> Feats) 4578 : Architecture(Arch), Features(Feats.begin(), Feats.end()) {} 4579 } Conditions; 4580 4581 MultiVersionResolverOption(llvm::Function *F, StringRef Arch, 4582 ArrayRef<StringRef> Feats) 4583 : Function(F), Conditions(Arch, Feats) {} 4584 }; 4585 4586 // Emits the body of a multiversion function's resolver. Assumes that the 4587 // options are already sorted in the proper order, with the 'default' option 4588 // last (if it exists). 4589 void EmitMultiVersionResolver(llvm::Function *Resolver, 4590 ArrayRef<MultiVersionResolverOption> Options); 4591 4592 static uint64_t GetX86CpuSupportsMask(ArrayRef<StringRef> FeatureStrs); 4593 4594 private: 4595 QualType getVarArgType(const Expr *Arg); 4596 4597 void EmitDeclMetadata(); 4598 4599 BlockByrefHelpers *buildByrefHelpers(llvm::StructType &byrefType, 4600 const AutoVarEmission &emission); 4601 4602 void AddObjCARCExceptionMetadata(llvm::Instruction *Inst); 4603 4604 llvm::Value *GetValueForARMHint(unsigned BuiltinID); 4605 llvm::Value *EmitX86CpuIs(const CallExpr *E); 4606 llvm::Value *EmitX86CpuIs(StringRef CPUStr); 4607 llvm::Value *EmitX86CpuSupports(const CallExpr *E); 4608 llvm::Value *EmitX86CpuSupports(ArrayRef<StringRef> FeatureStrs); 4609 llvm::Value *EmitX86CpuSupports(uint64_t Mask); 4610 llvm::Value *EmitX86CpuInit(); 4611 llvm::Value *FormResolverCondition(const MultiVersionResolverOption &RO); 4612 }; 4613 4614 inline DominatingLLVMValue::saved_type 4615 DominatingLLVMValue::save(CodeGenFunction &CGF, llvm::Value *value) { 4616 if (!needsSaving(value)) return saved_type(value, false); 4617 4618 // Otherwise, we need an alloca. 4619 auto align = CharUnits::fromQuantity( 4620 CGF.CGM.getDataLayout().getPrefTypeAlignment(value->getType())); 4621 Address alloca = 4622 CGF.CreateTempAlloca(value->getType(), align, "cond-cleanup.save"); 4623 CGF.Builder.CreateStore(value, alloca); 4624 4625 return saved_type(alloca.getPointer(), true); 4626 } 4627 4628 inline llvm::Value *DominatingLLVMValue::restore(CodeGenFunction &CGF, 4629 saved_type value) { 4630 // If the value says it wasn't saved, trust that it's still dominating. 4631 if (!value.getInt()) return value.getPointer(); 4632 4633 // Otherwise, it should be an alloca instruction, as set up in save(). 4634 auto alloca = cast<llvm::AllocaInst>(value.getPointer()); 4635 return CGF.Builder.CreateAlignedLoad(alloca, alloca->getAlign()); 4636 } 4637 4638 } // end namespace CodeGen 4639 4640 // Map the LangOption for floating point exception behavior into 4641 // the corresponding enum in the IR. 4642 llvm::fp::ExceptionBehavior 4643 ToConstrainedExceptMD(LangOptions::FPExceptionModeKind Kind); 4644 } // end namespace clang 4645 4646 #endif 4647