1 //===-- CodeGenFunction.h - Per-Function state for LLVM CodeGen -*- C++ -*-===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This is the internal per-function state used for llvm translation.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #ifndef CLANG_CODEGEN_CODEGENFUNCTION_H
15 #define CLANG_CODEGEN_CODEGENFUNCTION_H
16 
17 #include "clang/AST/Type.h"
18 #include "clang/AST/ExprCXX.h"
19 #include "clang/AST/ExprObjC.h"
20 #include "clang/AST/CharUnits.h"
21 #include "clang/Frontend/CodeGenOptions.h"
22 #include "clang/Basic/ABI.h"
23 #include "clang/Basic/TargetInfo.h"
24 #include "llvm/ADT/ArrayRef.h"
25 #include "llvm/ADT/DenseMap.h"
26 #include "llvm/ADT/SmallVector.h"
27 #include "llvm/Support/ValueHandle.h"
28 #include "llvm/Support/Debug.h"
29 #include "CodeGenModule.h"
30 #include "CGBuilder.h"
31 #include "CGDebugInfo.h"
32 #include "CGValue.h"
33 
34 namespace llvm {
35   class BasicBlock;
36   class LLVMContext;
37   class MDNode;
38   class Module;
39   class SwitchInst;
40   class Twine;
41   class Value;
42   class CallSite;
43 }
44 
45 namespace clang {
46   class ASTContext;
47   class BlockDecl;
48   class CXXDestructorDecl;
49   class CXXForRangeStmt;
50   class CXXTryStmt;
51   class Decl;
52   class LabelDecl;
53   class EnumConstantDecl;
54   class FunctionDecl;
55   class FunctionProtoType;
56   class LabelStmt;
57   class ObjCContainerDecl;
58   class ObjCInterfaceDecl;
59   class ObjCIvarDecl;
60   class ObjCMethodDecl;
61   class ObjCImplementationDecl;
62   class ObjCPropertyImplDecl;
63   class TargetInfo;
64   class TargetCodeGenInfo;
65   class VarDecl;
66   class ObjCForCollectionStmt;
67   class ObjCAtTryStmt;
68   class ObjCAtThrowStmt;
69   class ObjCAtSynchronizedStmt;
70   class ObjCAutoreleasePoolStmt;
71 
72 namespace CodeGen {
73   class CodeGenTypes;
74   class CGFunctionInfo;
75   class CGRecordLayout;
76   class CGBlockInfo;
77   class CGCXXABI;
78   class BlockFlags;
79   class BlockFieldFlags;
80 
81 /// A branch fixup.  These are required when emitting a goto to a
82 /// label which hasn't been emitted yet.  The goto is optimistically
83 /// emitted as a branch to the basic block for the label, and (if it
84 /// occurs in a scope with non-trivial cleanups) a fixup is added to
85 /// the innermost cleanup.  When a (normal) cleanup is popped, any
86 /// unresolved fixups in that scope are threaded through the cleanup.
87 struct BranchFixup {
88   /// The block containing the terminator which needs to be modified
89   /// into a switch if this fixup is resolved into the current scope.
90   /// If null, LatestBranch points directly to the destination.
91   llvm::BasicBlock *OptimisticBranchBlock;
92 
93   /// The ultimate destination of the branch.
94   ///
95   /// This can be set to null to indicate that this fixup was
96   /// successfully resolved.
97   llvm::BasicBlock *Destination;
98 
99   /// The destination index value.
100   unsigned DestinationIndex;
101 
102   /// The initial branch of the fixup.
103   llvm::BranchInst *InitialBranch;
104 };
105 
106 template <class T> struct InvariantValue {
107   typedef T type;
108   typedef T saved_type;
109   static bool needsSaving(type value) { return false; }
110   static saved_type save(CodeGenFunction &CGF, type value) { return value; }
111   static type restore(CodeGenFunction &CGF, saved_type value) { return value; }
112 };
113 
114 /// A metaprogramming class for ensuring that a value will dominate an
115 /// arbitrary position in a function.
116 template <class T> struct DominatingValue : InvariantValue<T> {};
117 
118 template <class T, bool mightBeInstruction =
119             llvm::is_base_of<llvm::Value, T>::value &&
120             !llvm::is_base_of<llvm::Constant, T>::value &&
121             !llvm::is_base_of<llvm::BasicBlock, T>::value>
122 struct DominatingPointer;
123 template <class T> struct DominatingPointer<T,false> : InvariantValue<T*> {};
124 // template <class T> struct DominatingPointer<T,true> at end of file
125 
126 template <class T> struct DominatingValue<T*> : DominatingPointer<T> {};
127 
128 enum CleanupKind {
129   EHCleanup = 0x1,
130   NormalCleanup = 0x2,
131   NormalAndEHCleanup = EHCleanup | NormalCleanup,
132 
133   InactiveCleanup = 0x4,
134   InactiveEHCleanup = EHCleanup | InactiveCleanup,
135   InactiveNormalCleanup = NormalCleanup | InactiveCleanup,
136   InactiveNormalAndEHCleanup = NormalAndEHCleanup | InactiveCleanup
137 };
138 
139 /// A stack of scopes which respond to exceptions, including cleanups
140 /// and catch blocks.
141 class EHScopeStack {
142 public:
143   /// A saved depth on the scope stack.  This is necessary because
144   /// pushing scopes onto the stack invalidates iterators.
145   class stable_iterator {
146     friend class EHScopeStack;
147 
148     /// Offset from StartOfData to EndOfBuffer.
149     ptrdiff_t Size;
150 
151     stable_iterator(ptrdiff_t Size) : Size(Size) {}
152 
153   public:
154     static stable_iterator invalid() { return stable_iterator(-1); }
155     stable_iterator() : Size(-1) {}
156 
157     bool isValid() const { return Size >= 0; }
158 
159     /// Returns true if this scope encloses I.
160     /// Returns false if I is invalid.
161     /// This scope must be valid.
162     bool encloses(stable_iterator I) const { return Size <= I.Size; }
163 
164     /// Returns true if this scope strictly encloses I: that is,
165     /// if it encloses I and is not I.
166     /// Returns false is I is invalid.
167     /// This scope must be valid.
168     bool strictlyEncloses(stable_iterator I) const { return Size < I.Size; }
169 
170     friend bool operator==(stable_iterator A, stable_iterator B) {
171       return A.Size == B.Size;
172     }
173     friend bool operator!=(stable_iterator A, stable_iterator B) {
174       return A.Size != B.Size;
175     }
176   };
177 
178   /// Information for lazily generating a cleanup.  Subclasses must be
179   /// POD-like: cleanups will not be destructed, and they will be
180   /// allocated on the cleanup stack and freely copied and moved
181   /// around.
182   ///
183   /// Cleanup implementations should generally be declared in an
184   /// anonymous namespace.
185   class Cleanup {
186     // Anchor the construction vtable.
187     virtual void anchor();
188   public:
189     /// Generation flags.
190     class Flags {
191       enum {
192         F_IsForEH             = 0x1,
193         F_IsNormalCleanupKind = 0x2,
194         F_IsEHCleanupKind     = 0x4
195       };
196       unsigned flags;
197 
198     public:
199       Flags() : flags(0) {}
200 
201       /// isForEH - true if the current emission is for an EH cleanup.
202       bool isForEHCleanup() const { return flags & F_IsForEH; }
203       bool isForNormalCleanup() const { return !isForEHCleanup(); }
204       void setIsForEHCleanup() { flags |= F_IsForEH; }
205 
206       bool isNormalCleanupKind() const { return flags & F_IsNormalCleanupKind; }
207       void setIsNormalCleanupKind() { flags |= F_IsNormalCleanupKind; }
208 
209       /// isEHCleanupKind - true if the cleanup was pushed as an EH
210       /// cleanup.
211       bool isEHCleanupKind() const { return flags & F_IsEHCleanupKind; }
212       void setIsEHCleanupKind() { flags |= F_IsEHCleanupKind; }
213     };
214 
215     // Provide a virtual destructor to suppress a very common warning
216     // that unfortunately cannot be suppressed without this.  Cleanups
217     // should not rely on this destructor ever being called.
218     virtual ~Cleanup() {}
219 
220     /// Emit the cleanup.  For normal cleanups, this is run in the
221     /// same EH context as when the cleanup was pushed, i.e. the
222     /// immediately-enclosing context of the cleanup scope.  For
223     /// EH cleanups, this is run in a terminate context.
224     ///
225     // \param IsForEHCleanup true if this is for an EH cleanup, false
226     ///  if for a normal cleanup.
227     virtual void Emit(CodeGenFunction &CGF, Flags flags) = 0;
228   };
229 
230   /// ConditionalCleanupN stores the saved form of its N parameters,
231   /// then restores them and performs the cleanup.
232   template <class T, class A0>
233   class ConditionalCleanup1 : public Cleanup {
234     typedef typename DominatingValue<A0>::saved_type A0_saved;
235     A0_saved a0_saved;
236 
237     void Emit(CodeGenFunction &CGF, Flags flags) {
238       A0 a0 = DominatingValue<A0>::restore(CGF, a0_saved);
239       T(a0).Emit(CGF, flags);
240     }
241 
242   public:
243     ConditionalCleanup1(A0_saved a0)
244       : a0_saved(a0) {}
245   };
246 
247   template <class T, class A0, class A1>
248   class ConditionalCleanup2 : public Cleanup {
249     typedef typename DominatingValue<A0>::saved_type A0_saved;
250     typedef typename DominatingValue<A1>::saved_type A1_saved;
251     A0_saved a0_saved;
252     A1_saved a1_saved;
253 
254     void Emit(CodeGenFunction &CGF, Flags flags) {
255       A0 a0 = DominatingValue<A0>::restore(CGF, a0_saved);
256       A1 a1 = DominatingValue<A1>::restore(CGF, a1_saved);
257       T(a0, a1).Emit(CGF, flags);
258     }
259 
260   public:
261     ConditionalCleanup2(A0_saved a0, A1_saved a1)
262       : a0_saved(a0), a1_saved(a1) {}
263   };
264 
265   template <class T, class A0, class A1, class A2>
266   class ConditionalCleanup3 : public Cleanup {
267     typedef typename DominatingValue<A0>::saved_type A0_saved;
268     typedef typename DominatingValue<A1>::saved_type A1_saved;
269     typedef typename DominatingValue<A2>::saved_type A2_saved;
270     A0_saved a0_saved;
271     A1_saved a1_saved;
272     A2_saved a2_saved;
273 
274     void Emit(CodeGenFunction &CGF, Flags flags) {
275       A0 a0 = DominatingValue<A0>::restore(CGF, a0_saved);
276       A1 a1 = DominatingValue<A1>::restore(CGF, a1_saved);
277       A2 a2 = DominatingValue<A2>::restore(CGF, a2_saved);
278       T(a0, a1, a2).Emit(CGF, flags);
279     }
280 
281   public:
282     ConditionalCleanup3(A0_saved a0, A1_saved a1, A2_saved a2)
283       : a0_saved(a0), a1_saved(a1), a2_saved(a2) {}
284   };
285 
286   template <class T, class A0, class A1, class A2, class A3>
287   class ConditionalCleanup4 : public Cleanup {
288     typedef typename DominatingValue<A0>::saved_type A0_saved;
289     typedef typename DominatingValue<A1>::saved_type A1_saved;
290     typedef typename DominatingValue<A2>::saved_type A2_saved;
291     typedef typename DominatingValue<A3>::saved_type A3_saved;
292     A0_saved a0_saved;
293     A1_saved a1_saved;
294     A2_saved a2_saved;
295     A3_saved a3_saved;
296 
297     void Emit(CodeGenFunction &CGF, Flags flags) {
298       A0 a0 = DominatingValue<A0>::restore(CGF, a0_saved);
299       A1 a1 = DominatingValue<A1>::restore(CGF, a1_saved);
300       A2 a2 = DominatingValue<A2>::restore(CGF, a2_saved);
301       A3 a3 = DominatingValue<A3>::restore(CGF, a3_saved);
302       T(a0, a1, a2, a3).Emit(CGF, flags);
303     }
304 
305   public:
306     ConditionalCleanup4(A0_saved a0, A1_saved a1, A2_saved a2, A3_saved a3)
307       : a0_saved(a0), a1_saved(a1), a2_saved(a2), a3_saved(a3) {}
308   };
309 
310 private:
311   // The implementation for this class is in CGException.h and
312   // CGException.cpp; the definition is here because it's used as a
313   // member of CodeGenFunction.
314 
315   /// The start of the scope-stack buffer, i.e. the allocated pointer
316   /// for the buffer.  All of these pointers are either simultaneously
317   /// null or simultaneously valid.
318   char *StartOfBuffer;
319 
320   /// The end of the buffer.
321   char *EndOfBuffer;
322 
323   /// The first valid entry in the buffer.
324   char *StartOfData;
325 
326   /// The innermost normal cleanup on the stack.
327   stable_iterator InnermostNormalCleanup;
328 
329   /// The innermost EH scope on the stack.
330   stable_iterator InnermostEHScope;
331 
332   /// The current set of branch fixups.  A branch fixup is a jump to
333   /// an as-yet unemitted label, i.e. a label for which we don't yet
334   /// know the EH stack depth.  Whenever we pop a cleanup, we have
335   /// to thread all the current branch fixups through it.
336   ///
337   /// Fixups are recorded as the Use of the respective branch or
338   /// switch statement.  The use points to the final destination.
339   /// When popping out of a cleanup, these uses are threaded through
340   /// the cleanup and adjusted to point to the new cleanup.
341   ///
342   /// Note that branches are allowed to jump into protected scopes
343   /// in certain situations;  e.g. the following code is legal:
344   ///     struct A { ~A(); }; // trivial ctor, non-trivial dtor
345   ///     goto foo;
346   ///     A a;
347   ///    foo:
348   ///     bar();
349   SmallVector<BranchFixup, 8> BranchFixups;
350 
351   char *allocate(size_t Size);
352 
353   void *pushCleanup(CleanupKind K, size_t DataSize);
354 
355 public:
356   EHScopeStack() : StartOfBuffer(0), EndOfBuffer(0), StartOfData(0),
357                    InnermostNormalCleanup(stable_end()),
358                    InnermostEHScope(stable_end()) {}
359   ~EHScopeStack() { delete[] StartOfBuffer; }
360 
361   // Variadic templates would make this not terrible.
362 
363   /// Push a lazily-created cleanup on the stack.
364   template <class T>
365   void pushCleanup(CleanupKind Kind) {
366     void *Buffer = pushCleanup(Kind, sizeof(T));
367     Cleanup *Obj = new(Buffer) T();
368     (void) Obj;
369   }
370 
371   /// Push a lazily-created cleanup on the stack.
372   template <class T, class A0>
373   void pushCleanup(CleanupKind Kind, A0 a0) {
374     void *Buffer = pushCleanup(Kind, sizeof(T));
375     Cleanup *Obj = new(Buffer) T(a0);
376     (void) Obj;
377   }
378 
379   /// Push a lazily-created cleanup on the stack.
380   template <class T, class A0, class A1>
381   void pushCleanup(CleanupKind Kind, A0 a0, A1 a1) {
382     void *Buffer = pushCleanup(Kind, sizeof(T));
383     Cleanup *Obj = new(Buffer) T(a0, a1);
384     (void) Obj;
385   }
386 
387   /// Push a lazily-created cleanup on the stack.
388   template <class T, class A0, class A1, class A2>
389   void pushCleanup(CleanupKind Kind, A0 a0, A1 a1, A2 a2) {
390     void *Buffer = pushCleanup(Kind, sizeof(T));
391     Cleanup *Obj = new(Buffer) T(a0, a1, a2);
392     (void) Obj;
393   }
394 
395   /// Push a lazily-created cleanup on the stack.
396   template <class T, class A0, class A1, class A2, class A3>
397   void pushCleanup(CleanupKind Kind, A0 a0, A1 a1, A2 a2, A3 a3) {
398     void *Buffer = pushCleanup(Kind, sizeof(T));
399     Cleanup *Obj = new(Buffer) T(a0, a1, a2, a3);
400     (void) Obj;
401   }
402 
403   /// Push a lazily-created cleanup on the stack.
404   template <class T, class A0, class A1, class A2, class A3, class A4>
405   void pushCleanup(CleanupKind Kind, A0 a0, A1 a1, A2 a2, A3 a3, A4 a4) {
406     void *Buffer = pushCleanup(Kind, sizeof(T));
407     Cleanup *Obj = new(Buffer) T(a0, a1, a2, a3, a4);
408     (void) Obj;
409   }
410 
411   // Feel free to add more variants of the following:
412 
413   /// Push a cleanup with non-constant storage requirements on the
414   /// stack.  The cleanup type must provide an additional static method:
415   ///   static size_t getExtraSize(size_t);
416   /// The argument to this method will be the value N, which will also
417   /// be passed as the first argument to the constructor.
418   ///
419   /// The data stored in the extra storage must obey the same
420   /// restrictions as normal cleanup member data.
421   ///
422   /// The pointer returned from this method is valid until the cleanup
423   /// stack is modified.
424   template <class T, class A0, class A1, class A2>
425   T *pushCleanupWithExtra(CleanupKind Kind, size_t N, A0 a0, A1 a1, A2 a2) {
426     void *Buffer = pushCleanup(Kind, sizeof(T) + T::getExtraSize(N));
427     return new (Buffer) T(N, a0, a1, a2);
428   }
429 
430   /// Pops a cleanup scope off the stack.  This is private to CGCleanup.cpp.
431   void popCleanup();
432 
433   /// Push a set of catch handlers on the stack.  The catch is
434   /// uninitialized and will need to have the given number of handlers
435   /// set on it.
436   class EHCatchScope *pushCatch(unsigned NumHandlers);
437 
438   /// Pops a catch scope off the stack.  This is private to CGException.cpp.
439   void popCatch();
440 
441   /// Push an exceptions filter on the stack.
442   class EHFilterScope *pushFilter(unsigned NumFilters);
443 
444   /// Pops an exceptions filter off the stack.
445   void popFilter();
446 
447   /// Push a terminate handler on the stack.
448   void pushTerminate();
449 
450   /// Pops a terminate handler off the stack.
451   void popTerminate();
452 
453   /// Determines whether the exception-scopes stack is empty.
454   bool empty() const { return StartOfData == EndOfBuffer; }
455 
456   bool requiresLandingPad() const {
457     return InnermostEHScope != stable_end();
458   }
459 
460   /// Determines whether there are any normal cleanups on the stack.
461   bool hasNormalCleanups() const {
462     return InnermostNormalCleanup != stable_end();
463   }
464 
465   /// Returns the innermost normal cleanup on the stack, or
466   /// stable_end() if there are no normal cleanups.
467   stable_iterator getInnermostNormalCleanup() const {
468     return InnermostNormalCleanup;
469   }
470   stable_iterator getInnermostActiveNormalCleanup() const;
471 
472   stable_iterator getInnermostEHScope() const {
473     return InnermostEHScope;
474   }
475 
476   stable_iterator getInnermostActiveEHScope() const;
477 
478   /// An unstable reference to a scope-stack depth.  Invalidated by
479   /// pushes but not pops.
480   class iterator;
481 
482   /// Returns an iterator pointing to the innermost EH scope.
483   iterator begin() const;
484 
485   /// Returns an iterator pointing to the outermost EH scope.
486   iterator end() const;
487 
488   /// Create a stable reference to the top of the EH stack.  The
489   /// returned reference is valid until that scope is popped off the
490   /// stack.
491   stable_iterator stable_begin() const {
492     return stable_iterator(EndOfBuffer - StartOfData);
493   }
494 
495   /// Create a stable reference to the bottom of the EH stack.
496   static stable_iterator stable_end() {
497     return stable_iterator(0);
498   }
499 
500   /// Translates an iterator into a stable_iterator.
501   stable_iterator stabilize(iterator it) const;
502 
503   /// Turn a stable reference to a scope depth into a unstable pointer
504   /// to the EH stack.
505   iterator find(stable_iterator save) const;
506 
507   /// Removes the cleanup pointed to by the given stable_iterator.
508   void removeCleanup(stable_iterator save);
509 
510   /// Add a branch fixup to the current cleanup scope.
511   BranchFixup &addBranchFixup() {
512     assert(hasNormalCleanups() && "adding fixup in scope without cleanups");
513     BranchFixups.push_back(BranchFixup());
514     return BranchFixups.back();
515   }
516 
517   unsigned getNumBranchFixups() const { return BranchFixups.size(); }
518   BranchFixup &getBranchFixup(unsigned I) {
519     assert(I < getNumBranchFixups());
520     return BranchFixups[I];
521   }
522 
523   /// Pops lazily-removed fixups from the end of the list.  This
524   /// should only be called by procedures which have just popped a
525   /// cleanup or resolved one or more fixups.
526   void popNullFixups();
527 
528   /// Clears the branch-fixups list.  This should only be called by
529   /// ResolveAllBranchFixups.
530   void clearFixups() { BranchFixups.clear(); }
531 };
532 
533 /// CodeGenFunction - This class organizes the per-function state that is used
534 /// while generating LLVM code.
535 class CodeGenFunction : public CodeGenTypeCache {
536   CodeGenFunction(const CodeGenFunction&); // DO NOT IMPLEMENT
537   void operator=(const CodeGenFunction&);  // DO NOT IMPLEMENT
538 
539   friend class CGCXXABI;
540 public:
541   /// A jump destination is an abstract label, branching to which may
542   /// require a jump out through normal cleanups.
543   struct JumpDest {
544     JumpDest() : Block(0), ScopeDepth(), Index(0) {}
545     JumpDest(llvm::BasicBlock *Block,
546              EHScopeStack::stable_iterator Depth,
547              unsigned Index)
548       : Block(Block), ScopeDepth(Depth), Index(Index) {}
549 
550     bool isValid() const { return Block != 0; }
551     llvm::BasicBlock *getBlock() const { return Block; }
552     EHScopeStack::stable_iterator getScopeDepth() const { return ScopeDepth; }
553     unsigned getDestIndex() const { return Index; }
554 
555   private:
556     llvm::BasicBlock *Block;
557     EHScopeStack::stable_iterator ScopeDepth;
558     unsigned Index;
559   };
560 
561   CodeGenModule &CGM;  // Per-module state.
562   const TargetInfo &Target;
563 
564   typedef std::pair<llvm::Value *, llvm::Value *> ComplexPairTy;
565   CGBuilderTy Builder;
566 
567   /// CurFuncDecl - Holds the Decl for the current function or ObjC method.
568   /// This excludes BlockDecls.
569   const Decl *CurFuncDecl;
570   /// CurCodeDecl - This is the inner-most code context, which includes blocks.
571   const Decl *CurCodeDecl;
572   const CGFunctionInfo *CurFnInfo;
573   QualType FnRetTy;
574   llvm::Function *CurFn;
575 
576   /// CurGD - The GlobalDecl for the current function being compiled.
577   GlobalDecl CurGD;
578 
579   /// PrologueCleanupDepth - The cleanup depth enclosing all the
580   /// cleanups associated with the parameters.
581   EHScopeStack::stable_iterator PrologueCleanupDepth;
582 
583   /// ReturnBlock - Unified return block.
584   JumpDest ReturnBlock;
585 
586   /// ReturnValue - The temporary alloca to hold the return value. This is null
587   /// iff the function has no return value.
588   llvm::Value *ReturnValue;
589 
590   /// AllocaInsertPoint - This is an instruction in the entry block before which
591   /// we prefer to insert allocas.
592   llvm::AssertingVH<llvm::Instruction> AllocaInsertPt;
593 
594   bool CatchUndefined;
595 
596   /// In ARC, whether we should autorelease the return value.
597   bool AutoreleaseResult;
598 
599   const CodeGen::CGBlockInfo *BlockInfo;
600   llvm::Value *BlockPointer;
601 
602   /// \brief A mapping from NRVO variables to the flags used to indicate
603   /// when the NRVO has been applied to this variable.
604   llvm::DenseMap<const VarDecl *, llvm::Value *> NRVOFlags;
605 
606   EHScopeStack EHStack;
607 
608   /// i32s containing the indexes of the cleanup destinations.
609   llvm::AllocaInst *NormalCleanupDest;
610 
611   unsigned NextCleanupDestIndex;
612 
613   /// FirstBlockInfo - The head of a singly-linked-list of block layouts.
614   CGBlockInfo *FirstBlockInfo;
615 
616   /// EHResumeBlock - Unified block containing a call to llvm.eh.resume.
617   llvm::BasicBlock *EHResumeBlock;
618 
619   /// The exception slot.  All landing pads write the current exception pointer
620   /// into this alloca.
621   llvm::Value *ExceptionSlot;
622 
623   /// The selector slot.  Under the MandatoryCleanup model, all landing pads
624   /// write the current selector value into this alloca.
625   llvm::AllocaInst *EHSelectorSlot;
626 
627   /// Emits a landing pad for the current EH stack.
628   llvm::BasicBlock *EmitLandingPad();
629 
630   llvm::BasicBlock *getInvokeDestImpl();
631 
632   template <class T>
633   typename DominatingValue<T>::saved_type saveValueInCond(T value) {
634     return DominatingValue<T>::save(*this, value);
635   }
636 
637 public:
638   /// ObjCEHValueStack - Stack of Objective-C exception values, used for
639   /// rethrows.
640   SmallVector<llvm::Value*, 8> ObjCEHValueStack;
641 
642   /// A class controlling the emission of a finally block.
643   class FinallyInfo {
644     /// Where the catchall's edge through the cleanup should go.
645     JumpDest RethrowDest;
646 
647     /// A function to call to enter the catch.
648     llvm::Constant *BeginCatchFn;
649 
650     /// An i1 variable indicating whether or not the @finally is
651     /// running for an exception.
652     llvm::AllocaInst *ForEHVar;
653 
654     /// An i8* variable into which the exception pointer to rethrow
655     /// has been saved.
656     llvm::AllocaInst *SavedExnVar;
657 
658   public:
659     void enter(CodeGenFunction &CGF, const Stmt *Finally,
660                llvm::Constant *beginCatchFn, llvm::Constant *endCatchFn,
661                llvm::Constant *rethrowFn);
662     void exit(CodeGenFunction &CGF);
663   };
664 
665   /// pushFullExprCleanup - Push a cleanup to be run at the end of the
666   /// current full-expression.  Safe against the possibility that
667   /// we're currently inside a conditionally-evaluated expression.
668   template <class T, class A0>
669   void pushFullExprCleanup(CleanupKind kind, A0 a0) {
670     // If we're not in a conditional branch, or if none of the
671     // arguments requires saving, then use the unconditional cleanup.
672     if (!isInConditionalBranch())
673       return EHStack.pushCleanup<T>(kind, a0);
674 
675     typename DominatingValue<A0>::saved_type a0_saved = saveValueInCond(a0);
676 
677     typedef EHScopeStack::ConditionalCleanup1<T, A0> CleanupType;
678     EHStack.pushCleanup<CleanupType>(kind, a0_saved);
679     initFullExprCleanup();
680   }
681 
682   /// pushFullExprCleanup - Push a cleanup to be run at the end of the
683   /// current full-expression.  Safe against the possibility that
684   /// we're currently inside a conditionally-evaluated expression.
685   template <class T, class A0, class A1>
686   void pushFullExprCleanup(CleanupKind kind, A0 a0, A1 a1) {
687     // If we're not in a conditional branch, or if none of the
688     // arguments requires saving, then use the unconditional cleanup.
689     if (!isInConditionalBranch())
690       return EHStack.pushCleanup<T>(kind, a0, a1);
691 
692     typename DominatingValue<A0>::saved_type a0_saved = saveValueInCond(a0);
693     typename DominatingValue<A1>::saved_type a1_saved = saveValueInCond(a1);
694 
695     typedef EHScopeStack::ConditionalCleanup2<T, A0, A1> CleanupType;
696     EHStack.pushCleanup<CleanupType>(kind, a0_saved, a1_saved);
697     initFullExprCleanup();
698   }
699 
700   /// pushFullExprCleanup - Push a cleanup to be run at the end of the
701   /// current full-expression.  Safe against the possibility that
702   /// we're currently inside a conditionally-evaluated expression.
703   template <class T, class A0, class A1, class A2>
704   void pushFullExprCleanup(CleanupKind kind, A0 a0, A1 a1, A2 a2) {
705     // If we're not in a conditional branch, or if none of the
706     // arguments requires saving, then use the unconditional cleanup.
707     if (!isInConditionalBranch()) {
708       return EHStack.pushCleanup<T>(kind, a0, a1, a2);
709     }
710 
711     typename DominatingValue<A0>::saved_type a0_saved = saveValueInCond(a0);
712     typename DominatingValue<A1>::saved_type a1_saved = saveValueInCond(a1);
713     typename DominatingValue<A2>::saved_type a2_saved = saveValueInCond(a2);
714 
715     typedef EHScopeStack::ConditionalCleanup3<T, A0, A1, A2> CleanupType;
716     EHStack.pushCleanup<CleanupType>(kind, a0_saved, a1_saved, a2_saved);
717     initFullExprCleanup();
718   }
719 
720   /// pushFullExprCleanup - Push a cleanup to be run at the end of the
721   /// current full-expression.  Safe against the possibility that
722   /// we're currently inside a conditionally-evaluated expression.
723   template <class T, class A0, class A1, class A2, class A3>
724   void pushFullExprCleanup(CleanupKind kind, A0 a0, A1 a1, A2 a2, A3 a3) {
725     // If we're not in a conditional branch, or if none of the
726     // arguments requires saving, then use the unconditional cleanup.
727     if (!isInConditionalBranch()) {
728       return EHStack.pushCleanup<T>(kind, a0, a1, a2, a3);
729     }
730 
731     typename DominatingValue<A0>::saved_type a0_saved = saveValueInCond(a0);
732     typename DominatingValue<A1>::saved_type a1_saved = saveValueInCond(a1);
733     typename DominatingValue<A2>::saved_type a2_saved = saveValueInCond(a2);
734     typename DominatingValue<A3>::saved_type a3_saved = saveValueInCond(a3);
735 
736     typedef EHScopeStack::ConditionalCleanup4<T, A0, A1, A2, A3> CleanupType;
737     EHStack.pushCleanup<CleanupType>(kind, a0_saved, a1_saved,
738                                      a2_saved, a3_saved);
739     initFullExprCleanup();
740   }
741 
742   /// Set up the last cleaup that was pushed as a conditional
743   /// full-expression cleanup.
744   void initFullExprCleanup();
745 
746   /// PushDestructorCleanup - Push a cleanup to call the
747   /// complete-object destructor of an object of the given type at the
748   /// given address.  Does nothing if T is not a C++ class type with a
749   /// non-trivial destructor.
750   void PushDestructorCleanup(QualType T, llvm::Value *Addr);
751 
752   /// PushDestructorCleanup - Push a cleanup to call the
753   /// complete-object variant of the given destructor on the object at
754   /// the given address.
755   void PushDestructorCleanup(const CXXDestructorDecl *Dtor,
756                              llvm::Value *Addr);
757 
758   /// PopCleanupBlock - Will pop the cleanup entry on the stack and
759   /// process all branch fixups.
760   void PopCleanupBlock(bool FallThroughIsBranchThrough = false);
761 
762   /// DeactivateCleanupBlock - Deactivates the given cleanup block.
763   /// The block cannot be reactivated.  Pops it if it's the top of the
764   /// stack.
765   ///
766   /// \param DominatingIP - An instruction which is known to
767   ///   dominate the current IP (if set) and which lies along
768   ///   all paths of execution between the current IP and the
769   ///   the point at which the cleanup comes into scope.
770   void DeactivateCleanupBlock(EHScopeStack::stable_iterator Cleanup,
771                               llvm::Instruction *DominatingIP);
772 
773   /// ActivateCleanupBlock - Activates an initially-inactive cleanup.
774   /// Cannot be used to resurrect a deactivated cleanup.
775   ///
776   /// \param DominatingIP - An instruction which is known to
777   ///   dominate the current IP (if set) and which lies along
778   ///   all paths of execution between the current IP and the
779   ///   the point at which the cleanup comes into scope.
780   void ActivateCleanupBlock(EHScopeStack::stable_iterator Cleanup,
781                             llvm::Instruction *DominatingIP);
782 
783   /// \brief Enters a new scope for capturing cleanups, all of which
784   /// will be executed once the scope is exited.
785   class RunCleanupsScope {
786     EHScopeStack::stable_iterator CleanupStackDepth;
787     bool OldDidCallStackSave;
788     bool PerformCleanup;
789 
790     RunCleanupsScope(const RunCleanupsScope &); // DO NOT IMPLEMENT
791     RunCleanupsScope &operator=(const RunCleanupsScope &); // DO NOT IMPLEMENT
792 
793   protected:
794     CodeGenFunction& CGF;
795 
796   public:
797     /// \brief Enter a new cleanup scope.
798     explicit RunCleanupsScope(CodeGenFunction &CGF)
799       : PerformCleanup(true), CGF(CGF)
800     {
801       CleanupStackDepth = CGF.EHStack.stable_begin();
802       OldDidCallStackSave = CGF.DidCallStackSave;
803       CGF.DidCallStackSave = false;
804     }
805 
806     /// \brief Exit this cleanup scope, emitting any accumulated
807     /// cleanups.
808     ~RunCleanupsScope() {
809       if (PerformCleanup) {
810         CGF.DidCallStackSave = OldDidCallStackSave;
811         CGF.PopCleanupBlocks(CleanupStackDepth);
812       }
813     }
814 
815     /// \brief Determine whether this scope requires any cleanups.
816     bool requiresCleanups() const {
817       return CGF.EHStack.stable_begin() != CleanupStackDepth;
818     }
819 
820     /// \brief Force the emission of cleanups now, instead of waiting
821     /// until this object is destroyed.
822     void ForceCleanup() {
823       assert(PerformCleanup && "Already forced cleanup");
824       CGF.DidCallStackSave = OldDidCallStackSave;
825       CGF.PopCleanupBlocks(CleanupStackDepth);
826       PerformCleanup = false;
827     }
828   };
829 
830   class LexicalScope: protected RunCleanupsScope {
831     SourceRange Range;
832     bool PopDebugStack;
833 
834     LexicalScope(const LexicalScope &); // DO NOT IMPLEMENT THESE
835     LexicalScope &operator=(const LexicalScope &);
836 
837   public:
838     /// \brief Enter a new cleanup scope.
839     explicit LexicalScope(CodeGenFunction &CGF, SourceRange Range)
840       : RunCleanupsScope(CGF), Range(Range), PopDebugStack(true) {
841       if (CGDebugInfo *DI = CGF.getDebugInfo())
842         DI->EmitLexicalBlockStart(CGF.Builder, Range.getBegin());
843     }
844 
845     /// \brief Exit this cleanup scope, emitting any accumulated
846     /// cleanups.
847     ~LexicalScope() {
848       if (PopDebugStack) {
849         CGDebugInfo *DI = CGF.getDebugInfo();
850         if (DI) DI->EmitLexicalBlockEnd(CGF.Builder, Range.getEnd());
851       }
852     }
853 
854     /// \brief Force the emission of cleanups now, instead of waiting
855     /// until this object is destroyed.
856     void ForceCleanup() {
857       RunCleanupsScope::ForceCleanup();
858       if (CGDebugInfo *DI = CGF.getDebugInfo()) {
859         DI->EmitLexicalBlockEnd(CGF.Builder, Range.getEnd());
860         PopDebugStack = false;
861       }
862     }
863   };
864 
865 
866   /// PopCleanupBlocks - Takes the old cleanup stack size and emits
867   /// the cleanup blocks that have been added.
868   void PopCleanupBlocks(EHScopeStack::stable_iterator OldCleanupStackSize);
869 
870   void ResolveBranchFixups(llvm::BasicBlock *Target);
871 
872   /// The given basic block lies in the current EH scope, but may be a
873   /// target of a potentially scope-crossing jump; get a stable handle
874   /// to which we can perform this jump later.
875   JumpDest getJumpDestInCurrentScope(llvm::BasicBlock *Target) {
876     return JumpDest(Target,
877                     EHStack.getInnermostNormalCleanup(),
878                     NextCleanupDestIndex++);
879   }
880 
881   /// The given basic block lies in the current EH scope, but may be a
882   /// target of a potentially scope-crossing jump; get a stable handle
883   /// to which we can perform this jump later.
884   JumpDest getJumpDestInCurrentScope(StringRef Name = StringRef()) {
885     return getJumpDestInCurrentScope(createBasicBlock(Name));
886   }
887 
888   /// EmitBranchThroughCleanup - Emit a branch from the current insert
889   /// block through the normal cleanup handling code (if any) and then
890   /// on to \arg Dest.
891   void EmitBranchThroughCleanup(JumpDest Dest);
892 
893   /// isObviouslyBranchWithoutCleanups - Return true if a branch to the
894   /// specified destination obviously has no cleanups to run.  'false' is always
895   /// a conservatively correct answer for this method.
896   bool isObviouslyBranchWithoutCleanups(JumpDest Dest) const;
897 
898   /// popCatchScope - Pops the catch scope at the top of the EHScope
899   /// stack, emitting any required code (other than the catch handlers
900   /// themselves).
901   void popCatchScope();
902 
903   llvm::BasicBlock *getEHResumeBlock();
904   llvm::BasicBlock *getEHDispatchBlock(EHScopeStack::stable_iterator scope);
905 
906   /// An object to manage conditionally-evaluated expressions.
907   class ConditionalEvaluation {
908     llvm::BasicBlock *StartBB;
909 
910   public:
911     ConditionalEvaluation(CodeGenFunction &CGF)
912       : StartBB(CGF.Builder.GetInsertBlock()) {}
913 
914     void begin(CodeGenFunction &CGF) {
915       assert(CGF.OutermostConditional != this);
916       if (!CGF.OutermostConditional)
917         CGF.OutermostConditional = this;
918     }
919 
920     void end(CodeGenFunction &CGF) {
921       assert(CGF.OutermostConditional != 0);
922       if (CGF.OutermostConditional == this)
923         CGF.OutermostConditional = 0;
924     }
925 
926     /// Returns a block which will be executed prior to each
927     /// evaluation of the conditional code.
928     llvm::BasicBlock *getStartingBlock() const {
929       return StartBB;
930     }
931   };
932 
933   /// isInConditionalBranch - Return true if we're currently emitting
934   /// one branch or the other of a conditional expression.
935   bool isInConditionalBranch() const { return OutermostConditional != 0; }
936 
937   void setBeforeOutermostConditional(llvm::Value *value, llvm::Value *addr) {
938     assert(isInConditionalBranch());
939     llvm::BasicBlock *block = OutermostConditional->getStartingBlock();
940     new llvm::StoreInst(value, addr, &block->back());
941   }
942 
943   /// An RAII object to record that we're evaluating a statement
944   /// expression.
945   class StmtExprEvaluation {
946     CodeGenFunction &CGF;
947 
948     /// We have to save the outermost conditional: cleanups in a
949     /// statement expression aren't conditional just because the
950     /// StmtExpr is.
951     ConditionalEvaluation *SavedOutermostConditional;
952 
953   public:
954     StmtExprEvaluation(CodeGenFunction &CGF)
955       : CGF(CGF), SavedOutermostConditional(CGF.OutermostConditional) {
956       CGF.OutermostConditional = 0;
957     }
958 
959     ~StmtExprEvaluation() {
960       CGF.OutermostConditional = SavedOutermostConditional;
961       CGF.EnsureInsertPoint();
962     }
963   };
964 
965   /// An object which temporarily prevents a value from being
966   /// destroyed by aggressive peephole optimizations that assume that
967   /// all uses of a value have been realized in the IR.
968   class PeepholeProtection {
969     llvm::Instruction *Inst;
970     friend class CodeGenFunction;
971 
972   public:
973     PeepholeProtection() : Inst(0) {}
974   };
975 
976   /// A non-RAII class containing all the information about a bound
977   /// opaque value.  OpaqueValueMapping, below, is a RAII wrapper for
978   /// this which makes individual mappings very simple; using this
979   /// class directly is useful when you have a variable number of
980   /// opaque values or don't want the RAII functionality for some
981   /// reason.
982   class OpaqueValueMappingData {
983     const OpaqueValueExpr *OpaqueValue;
984     bool BoundLValue;
985     CodeGenFunction::PeepholeProtection Protection;
986 
987     OpaqueValueMappingData(const OpaqueValueExpr *ov,
988                            bool boundLValue)
989       : OpaqueValue(ov), BoundLValue(boundLValue) {}
990   public:
991     OpaqueValueMappingData() : OpaqueValue(0) {}
992 
993     static bool shouldBindAsLValue(const Expr *expr) {
994       // gl-values should be bound as l-values for obvious reasons.
995       // Records should be bound as l-values because IR generation
996       // always keeps them in memory.  Expressions of function type
997       // act exactly like l-values but are formally required to be
998       // r-values in C.
999       return expr->isGLValue() ||
1000              expr->getType()->isRecordType() ||
1001              expr->getType()->isFunctionType();
1002     }
1003 
1004     static OpaqueValueMappingData bind(CodeGenFunction &CGF,
1005                                        const OpaqueValueExpr *ov,
1006                                        const Expr *e) {
1007       if (shouldBindAsLValue(ov))
1008         return bind(CGF, ov, CGF.EmitLValue(e));
1009       return bind(CGF, ov, CGF.EmitAnyExpr(e));
1010     }
1011 
1012     static OpaqueValueMappingData bind(CodeGenFunction &CGF,
1013                                        const OpaqueValueExpr *ov,
1014                                        const LValue &lv) {
1015       assert(shouldBindAsLValue(ov));
1016       CGF.OpaqueLValues.insert(std::make_pair(ov, lv));
1017       return OpaqueValueMappingData(ov, true);
1018     }
1019 
1020     static OpaqueValueMappingData bind(CodeGenFunction &CGF,
1021                                        const OpaqueValueExpr *ov,
1022                                        const RValue &rv) {
1023       assert(!shouldBindAsLValue(ov));
1024       CGF.OpaqueRValues.insert(std::make_pair(ov, rv));
1025 
1026       OpaqueValueMappingData data(ov, false);
1027 
1028       // Work around an extremely aggressive peephole optimization in
1029       // EmitScalarConversion which assumes that all other uses of a
1030       // value are extant.
1031       data.Protection = CGF.protectFromPeepholes(rv);
1032 
1033       return data;
1034     }
1035 
1036     bool isValid() const { return OpaqueValue != 0; }
1037     void clear() { OpaqueValue = 0; }
1038 
1039     void unbind(CodeGenFunction &CGF) {
1040       assert(OpaqueValue && "no data to unbind!");
1041 
1042       if (BoundLValue) {
1043         CGF.OpaqueLValues.erase(OpaqueValue);
1044       } else {
1045         CGF.OpaqueRValues.erase(OpaqueValue);
1046         CGF.unprotectFromPeepholes(Protection);
1047       }
1048     }
1049   };
1050 
1051   /// An RAII object to set (and then clear) a mapping for an OpaqueValueExpr.
1052   class OpaqueValueMapping {
1053     CodeGenFunction &CGF;
1054     OpaqueValueMappingData Data;
1055 
1056   public:
1057     static bool shouldBindAsLValue(const Expr *expr) {
1058       return OpaqueValueMappingData::shouldBindAsLValue(expr);
1059     }
1060 
1061     /// Build the opaque value mapping for the given conditional
1062     /// operator if it's the GNU ?: extension.  This is a common
1063     /// enough pattern that the convenience operator is really
1064     /// helpful.
1065     ///
1066     OpaqueValueMapping(CodeGenFunction &CGF,
1067                        const AbstractConditionalOperator *op) : CGF(CGF) {
1068       if (isa<ConditionalOperator>(op))
1069         // Leave Data empty.
1070         return;
1071 
1072       const BinaryConditionalOperator *e = cast<BinaryConditionalOperator>(op);
1073       Data = OpaqueValueMappingData::bind(CGF, e->getOpaqueValue(),
1074                                           e->getCommon());
1075     }
1076 
1077     OpaqueValueMapping(CodeGenFunction &CGF,
1078                        const OpaqueValueExpr *opaqueValue,
1079                        LValue lvalue)
1080       : CGF(CGF), Data(OpaqueValueMappingData::bind(CGF, opaqueValue, lvalue)) {
1081     }
1082 
1083     OpaqueValueMapping(CodeGenFunction &CGF,
1084                        const OpaqueValueExpr *opaqueValue,
1085                        RValue rvalue)
1086       : CGF(CGF), Data(OpaqueValueMappingData::bind(CGF, opaqueValue, rvalue)) {
1087     }
1088 
1089     void pop() {
1090       Data.unbind(CGF);
1091       Data.clear();
1092     }
1093 
1094     ~OpaqueValueMapping() {
1095       if (Data.isValid()) Data.unbind(CGF);
1096     }
1097   };
1098 
1099   /// getByrefValueFieldNumber - Given a declaration, returns the LLVM field
1100   /// number that holds the value.
1101   unsigned getByRefValueLLVMField(const ValueDecl *VD) const;
1102 
1103   /// BuildBlockByrefAddress - Computes address location of the
1104   /// variable which is declared as __block.
1105   llvm::Value *BuildBlockByrefAddress(llvm::Value *BaseAddr,
1106                                       const VarDecl *V);
1107 private:
1108   CGDebugInfo *DebugInfo;
1109   bool DisableDebugInfo;
1110 
1111   /// DidCallStackSave - Whether llvm.stacksave has been called. Used to avoid
1112   /// calling llvm.stacksave for multiple VLAs in the same scope.
1113   bool DidCallStackSave;
1114 
1115   /// IndirectBranch - The first time an indirect goto is seen we create a block
1116   /// with an indirect branch.  Every time we see the address of a label taken,
1117   /// we add the label to the indirect goto.  Every subsequent indirect goto is
1118   /// codegen'd as a jump to the IndirectBranch's basic block.
1119   llvm::IndirectBrInst *IndirectBranch;
1120 
1121   /// LocalDeclMap - This keeps track of the LLVM allocas or globals for local C
1122   /// decls.
1123   typedef llvm::DenseMap<const Decl*, llvm::Value*> DeclMapTy;
1124   DeclMapTy LocalDeclMap;
1125 
1126   /// LabelMap - This keeps track of the LLVM basic block for each C label.
1127   llvm::DenseMap<const LabelDecl*, JumpDest> LabelMap;
1128 
1129   // BreakContinueStack - This keeps track of where break and continue
1130   // statements should jump to.
1131   struct BreakContinue {
1132     BreakContinue(JumpDest Break, JumpDest Continue)
1133       : BreakBlock(Break), ContinueBlock(Continue) {}
1134 
1135     JumpDest BreakBlock;
1136     JumpDest ContinueBlock;
1137   };
1138   SmallVector<BreakContinue, 8> BreakContinueStack;
1139 
1140   /// SwitchInsn - This is nearest current switch instruction. It is null if if
1141   /// current context is not in a switch.
1142   llvm::SwitchInst *SwitchInsn;
1143 
1144   /// CaseRangeBlock - This block holds if condition check for last case
1145   /// statement range in current switch instruction.
1146   llvm::BasicBlock *CaseRangeBlock;
1147 
1148   /// OpaqueLValues - Keeps track of the current set of opaque value
1149   /// expressions.
1150   llvm::DenseMap<const OpaqueValueExpr *, LValue> OpaqueLValues;
1151   llvm::DenseMap<const OpaqueValueExpr *, RValue> OpaqueRValues;
1152 
1153   // VLASizeMap - This keeps track of the associated size for each VLA type.
1154   // We track this by the size expression rather than the type itself because
1155   // in certain situations, like a const qualifier applied to an VLA typedef,
1156   // multiple VLA types can share the same size expression.
1157   // FIXME: Maybe this could be a stack of maps that is pushed/popped as we
1158   // enter/leave scopes.
1159   llvm::DenseMap<const Expr*, llvm::Value*> VLASizeMap;
1160 
1161   /// A block containing a single 'unreachable' instruction.  Created
1162   /// lazily by getUnreachableBlock().
1163   llvm::BasicBlock *UnreachableBlock;
1164 
1165   /// CXXThisDecl - When generating code for a C++ member function,
1166   /// this will hold the implicit 'this' declaration.
1167   ImplicitParamDecl *CXXThisDecl;
1168   llvm::Value *CXXThisValue;
1169 
1170   /// CXXVTTDecl - When generating code for a base object constructor or
1171   /// base object destructor with virtual bases, this will hold the implicit
1172   /// VTT parameter.
1173   ImplicitParamDecl *CXXVTTDecl;
1174   llvm::Value *CXXVTTValue;
1175 
1176   /// OutermostConditional - Points to the outermost active
1177   /// conditional control.  This is used so that we know if a
1178   /// temporary should be destroyed conditionally.
1179   ConditionalEvaluation *OutermostConditional;
1180 
1181 
1182   /// ByrefValueInfoMap - For each __block variable, contains a pair of the LLVM
1183   /// type as well as the field number that contains the actual data.
1184   llvm::DenseMap<const ValueDecl *, std::pair<llvm::Type *,
1185                                               unsigned> > ByRefValueInfo;
1186 
1187   llvm::BasicBlock *TerminateLandingPad;
1188   llvm::BasicBlock *TerminateHandler;
1189   llvm::BasicBlock *TrapBB;
1190 
1191 public:
1192   CodeGenFunction(CodeGenModule &cgm);
1193   ~CodeGenFunction();
1194 
1195   CodeGenTypes &getTypes() const { return CGM.getTypes(); }
1196   ASTContext &getContext() const { return CGM.getContext(); }
1197   CGDebugInfo *getDebugInfo() {
1198     if (DisableDebugInfo)
1199       return NULL;
1200     return DebugInfo;
1201   }
1202   void disableDebugInfo() { DisableDebugInfo = true; }
1203   void enableDebugInfo() { DisableDebugInfo = false; }
1204 
1205   bool shouldUseFusedARCCalls() {
1206     return CGM.getCodeGenOpts().OptimizationLevel == 0;
1207   }
1208 
1209   const LangOptions &getLangOptions() const { return CGM.getLangOptions(); }
1210 
1211   /// Returns a pointer to the function's exception object and selector slot,
1212   /// which is assigned in every landing pad.
1213   llvm::Value *getExceptionSlot();
1214   llvm::Value *getEHSelectorSlot();
1215 
1216   /// Returns the contents of the function's exception object and selector
1217   /// slots.
1218   llvm::Value *getExceptionFromSlot();
1219   llvm::Value *getSelectorFromSlot();
1220 
1221   llvm::Value *getNormalCleanupDestSlot();
1222 
1223   llvm::BasicBlock *getUnreachableBlock() {
1224     if (!UnreachableBlock) {
1225       UnreachableBlock = createBasicBlock("unreachable");
1226       new llvm::UnreachableInst(getLLVMContext(), UnreachableBlock);
1227     }
1228     return UnreachableBlock;
1229   }
1230 
1231   llvm::BasicBlock *getInvokeDest() {
1232     if (!EHStack.requiresLandingPad()) return 0;
1233     return getInvokeDestImpl();
1234   }
1235 
1236   llvm::LLVMContext &getLLVMContext() { return CGM.getLLVMContext(); }
1237 
1238   //===--------------------------------------------------------------------===//
1239   //                                  Cleanups
1240   //===--------------------------------------------------------------------===//
1241 
1242   typedef void Destroyer(CodeGenFunction &CGF, llvm::Value *addr, QualType ty);
1243 
1244   void pushIrregularPartialArrayCleanup(llvm::Value *arrayBegin,
1245                                         llvm::Value *arrayEndPointer,
1246                                         QualType elementType,
1247                                         Destroyer &destroyer);
1248   void pushRegularPartialArrayCleanup(llvm::Value *arrayBegin,
1249                                       llvm::Value *arrayEnd,
1250                                       QualType elementType,
1251                                       Destroyer &destroyer);
1252 
1253   void pushDestroy(QualType::DestructionKind dtorKind,
1254                    llvm::Value *addr, QualType type);
1255   void pushDestroy(CleanupKind kind, llvm::Value *addr, QualType type,
1256                    Destroyer &destroyer, bool useEHCleanupForArray);
1257   void emitDestroy(llvm::Value *addr, QualType type, Destroyer &destroyer,
1258                    bool useEHCleanupForArray);
1259   llvm::Function *generateDestroyHelper(llvm::Constant *addr,
1260                                         QualType type,
1261                                         Destroyer &destroyer,
1262                                         bool useEHCleanupForArray);
1263   void emitArrayDestroy(llvm::Value *begin, llvm::Value *end,
1264                         QualType type, Destroyer &destroyer,
1265                         bool checkZeroLength, bool useEHCleanup);
1266 
1267   Destroyer &getDestroyer(QualType::DestructionKind destructionKind);
1268 
1269   /// Determines whether an EH cleanup is required to destroy a type
1270   /// with the given destruction kind.
1271   bool needsEHCleanup(QualType::DestructionKind kind) {
1272     switch (kind) {
1273     case QualType::DK_none:
1274       return false;
1275     case QualType::DK_cxx_destructor:
1276     case QualType::DK_objc_weak_lifetime:
1277       return getLangOptions().Exceptions;
1278     case QualType::DK_objc_strong_lifetime:
1279       return getLangOptions().Exceptions &&
1280              CGM.getCodeGenOpts().ObjCAutoRefCountExceptions;
1281     }
1282     llvm_unreachable("bad destruction kind");
1283   }
1284 
1285   CleanupKind getCleanupKind(QualType::DestructionKind kind) {
1286     return (needsEHCleanup(kind) ? NormalAndEHCleanup : NormalCleanup);
1287   }
1288 
1289   //===--------------------------------------------------------------------===//
1290   //                                  Objective-C
1291   //===--------------------------------------------------------------------===//
1292 
1293   void GenerateObjCMethod(const ObjCMethodDecl *OMD);
1294 
1295   void StartObjCMethod(const ObjCMethodDecl *MD,
1296                        const ObjCContainerDecl *CD,
1297                        SourceLocation StartLoc);
1298 
1299   /// GenerateObjCGetter - Synthesize an Objective-C property getter function.
1300   void GenerateObjCGetter(ObjCImplementationDecl *IMP,
1301                           const ObjCPropertyImplDecl *PID);
1302   void generateObjCGetterBody(const ObjCImplementationDecl *classImpl,
1303                               const ObjCPropertyImplDecl *propImpl);
1304 
1305   void GenerateObjCCtorDtorMethod(ObjCImplementationDecl *IMP,
1306                                   ObjCMethodDecl *MD, bool ctor);
1307 
1308   /// GenerateObjCSetter - Synthesize an Objective-C property setter function
1309   /// for the given property.
1310   void GenerateObjCSetter(ObjCImplementationDecl *IMP,
1311                           const ObjCPropertyImplDecl *PID);
1312   void generateObjCSetterBody(const ObjCImplementationDecl *classImpl,
1313                               const ObjCPropertyImplDecl *propImpl);
1314   bool IndirectObjCSetterArg(const CGFunctionInfo &FI);
1315   bool IvarTypeWithAggrGCObjects(QualType Ty);
1316 
1317   //===--------------------------------------------------------------------===//
1318   //                                  Block Bits
1319   //===--------------------------------------------------------------------===//
1320 
1321   llvm::Value *EmitBlockLiteral(const BlockExpr *);
1322   llvm::Value *EmitBlockLiteral(const CGBlockInfo &Info);
1323   static void destroyBlockInfos(CGBlockInfo *info);
1324   llvm::Constant *BuildDescriptorBlockDecl(const BlockExpr *,
1325                                            const CGBlockInfo &Info,
1326                                            llvm::StructType *,
1327                                            llvm::Constant *BlockVarLayout);
1328 
1329   llvm::Function *GenerateBlockFunction(GlobalDecl GD,
1330                                         const CGBlockInfo &Info,
1331                                         const Decl *OuterFuncDecl,
1332                                         const DeclMapTy &ldm);
1333 
1334   llvm::Constant *GenerateCopyHelperFunction(const CGBlockInfo &blockInfo);
1335   llvm::Constant *GenerateDestroyHelperFunction(const CGBlockInfo &blockInfo);
1336 
1337   void BuildBlockRelease(llvm::Value *DeclPtr, BlockFieldFlags flags);
1338 
1339   class AutoVarEmission;
1340 
1341   void emitByrefStructureInit(const AutoVarEmission &emission);
1342   void enterByrefCleanup(const AutoVarEmission &emission);
1343 
1344   llvm::Value *LoadBlockStruct() {
1345     assert(BlockPointer && "no block pointer set!");
1346     return BlockPointer;
1347   }
1348 
1349   void AllocateBlockCXXThisPointer(const CXXThisExpr *E);
1350   void AllocateBlockDecl(const BlockDeclRefExpr *E);
1351   llvm::Value *GetAddrOfBlockDecl(const BlockDeclRefExpr *E) {
1352     return GetAddrOfBlockDecl(E->getDecl(), E->isByRef());
1353   }
1354   llvm::Value *GetAddrOfBlockDecl(const VarDecl *var, bool ByRef);
1355   llvm::Type *BuildByRefType(const VarDecl *var);
1356 
1357   void GenerateCode(GlobalDecl GD, llvm::Function *Fn,
1358                     const CGFunctionInfo &FnInfo);
1359   void StartFunction(GlobalDecl GD, QualType RetTy,
1360                      llvm::Function *Fn,
1361                      const CGFunctionInfo &FnInfo,
1362                      const FunctionArgList &Args,
1363                      SourceLocation StartLoc);
1364 
1365   void EmitConstructorBody(FunctionArgList &Args);
1366   void EmitDestructorBody(FunctionArgList &Args);
1367   void EmitFunctionBody(FunctionArgList &Args);
1368 
1369   /// EmitReturnBlock - Emit the unified return block, trying to avoid its
1370   /// emission when possible.
1371   void EmitReturnBlock();
1372 
1373   /// FinishFunction - Complete IR generation of the current function. It is
1374   /// legal to call this function even if there is no current insertion point.
1375   void FinishFunction(SourceLocation EndLoc=SourceLocation());
1376 
1377   /// GenerateThunk - Generate a thunk for the given method.
1378   void GenerateThunk(llvm::Function *Fn, const CGFunctionInfo &FnInfo,
1379                      GlobalDecl GD, const ThunkInfo &Thunk);
1380 
1381   void GenerateVarArgsThunk(llvm::Function *Fn, const CGFunctionInfo &FnInfo,
1382                             GlobalDecl GD, const ThunkInfo &Thunk);
1383 
1384   void EmitCtorPrologue(const CXXConstructorDecl *CD, CXXCtorType Type,
1385                         FunctionArgList &Args);
1386 
1387   /// InitializeVTablePointer - Initialize the vtable pointer of the given
1388   /// subobject.
1389   ///
1390   void InitializeVTablePointer(BaseSubobject Base,
1391                                const CXXRecordDecl *NearestVBase,
1392                                CharUnits OffsetFromNearestVBase,
1393                                llvm::Constant *VTable,
1394                                const CXXRecordDecl *VTableClass);
1395 
1396   typedef llvm::SmallPtrSet<const CXXRecordDecl *, 4> VisitedVirtualBasesSetTy;
1397   void InitializeVTablePointers(BaseSubobject Base,
1398                                 const CXXRecordDecl *NearestVBase,
1399                                 CharUnits OffsetFromNearestVBase,
1400                                 bool BaseIsNonVirtualPrimaryBase,
1401                                 llvm::Constant *VTable,
1402                                 const CXXRecordDecl *VTableClass,
1403                                 VisitedVirtualBasesSetTy& VBases);
1404 
1405   void InitializeVTablePointers(const CXXRecordDecl *ClassDecl);
1406 
1407   /// GetVTablePtr - Return the Value of the vtable pointer member pointed
1408   /// to by This.
1409   llvm::Value *GetVTablePtr(llvm::Value *This, llvm::Type *Ty);
1410 
1411   /// EnterDtorCleanups - Enter the cleanups necessary to complete the
1412   /// given phase of destruction for a destructor.  The end result
1413   /// should call destructors on members and base classes in reverse
1414   /// order of their construction.
1415   void EnterDtorCleanups(const CXXDestructorDecl *Dtor, CXXDtorType Type);
1416 
1417   /// ShouldInstrumentFunction - Return true if the current function should be
1418   /// instrumented with __cyg_profile_func_* calls
1419   bool ShouldInstrumentFunction();
1420 
1421   /// EmitFunctionInstrumentation - Emit LLVM code to call the specified
1422   /// instrumentation function with the current function and the call site, if
1423   /// function instrumentation is enabled.
1424   void EmitFunctionInstrumentation(const char *Fn);
1425 
1426   /// EmitMCountInstrumentation - Emit call to .mcount.
1427   void EmitMCountInstrumentation();
1428 
1429   /// EmitFunctionProlog - Emit the target specific LLVM code to load the
1430   /// arguments for the given function. This is also responsible for naming the
1431   /// LLVM function arguments.
1432   void EmitFunctionProlog(const CGFunctionInfo &FI,
1433                           llvm::Function *Fn,
1434                           const FunctionArgList &Args);
1435 
1436   /// EmitFunctionEpilog - Emit the target specific LLVM code to return the
1437   /// given temporary.
1438   void EmitFunctionEpilog(const CGFunctionInfo &FI);
1439 
1440   /// EmitStartEHSpec - Emit the start of the exception spec.
1441   void EmitStartEHSpec(const Decl *D);
1442 
1443   /// EmitEndEHSpec - Emit the end of the exception spec.
1444   void EmitEndEHSpec(const Decl *D);
1445 
1446   /// getTerminateLandingPad - Return a landing pad that just calls terminate.
1447   llvm::BasicBlock *getTerminateLandingPad();
1448 
1449   /// getTerminateHandler - Return a handler (not a landing pad, just
1450   /// a catch handler) that just calls terminate.  This is used when
1451   /// a terminate scope encloses a try.
1452   llvm::BasicBlock *getTerminateHandler();
1453 
1454   llvm::Type *ConvertTypeForMem(QualType T);
1455   llvm::Type *ConvertType(QualType T);
1456   llvm::Type *ConvertType(const TypeDecl *T) {
1457     return ConvertType(getContext().getTypeDeclType(T));
1458   }
1459 
1460   /// LoadObjCSelf - Load the value of self. This function is only valid while
1461   /// generating code for an Objective-C method.
1462   llvm::Value *LoadObjCSelf();
1463 
1464   /// TypeOfSelfObject - Return type of object that this self represents.
1465   QualType TypeOfSelfObject();
1466 
1467   /// hasAggregateLLVMType - Return true if the specified AST type will map into
1468   /// an aggregate LLVM type or is void.
1469   static bool hasAggregateLLVMType(QualType T);
1470 
1471   /// createBasicBlock - Create an LLVM basic block.
1472   llvm::BasicBlock *createBasicBlock(StringRef name = "",
1473                                      llvm::Function *parent = 0,
1474                                      llvm::BasicBlock *before = 0) {
1475 #ifdef NDEBUG
1476     return llvm::BasicBlock::Create(getLLVMContext(), "", parent, before);
1477 #else
1478     return llvm::BasicBlock::Create(getLLVMContext(), name, parent, before);
1479 #endif
1480   }
1481 
1482   /// getBasicBlockForLabel - Return the LLVM basicblock that the specified
1483   /// label maps to.
1484   JumpDest getJumpDestForLabel(const LabelDecl *S);
1485 
1486   /// SimplifyForwardingBlocks - If the given basic block is only a branch to
1487   /// another basic block, simplify it. This assumes that no other code could
1488   /// potentially reference the basic block.
1489   void SimplifyForwardingBlocks(llvm::BasicBlock *BB);
1490 
1491   /// EmitBlock - Emit the given block \arg BB and set it as the insert point,
1492   /// adding a fall-through branch from the current insert block if
1493   /// necessary. It is legal to call this function even if there is no current
1494   /// insertion point.
1495   ///
1496   /// IsFinished - If true, indicates that the caller has finished emitting
1497   /// branches to the given block and does not expect to emit code into it. This
1498   /// means the block can be ignored if it is unreachable.
1499   void EmitBlock(llvm::BasicBlock *BB, bool IsFinished=false);
1500 
1501   /// EmitBlockAfterUses - Emit the given block somewhere hopefully
1502   /// near its uses, and leave the insertion point in it.
1503   void EmitBlockAfterUses(llvm::BasicBlock *BB);
1504 
1505   /// EmitBranch - Emit a branch to the specified basic block from the current
1506   /// insert block, taking care to avoid creation of branches from dummy
1507   /// blocks. It is legal to call this function even if there is no current
1508   /// insertion point.
1509   ///
1510   /// This function clears the current insertion point. The caller should follow
1511   /// calls to this function with calls to Emit*Block prior to generation new
1512   /// code.
1513   void EmitBranch(llvm::BasicBlock *Block);
1514 
1515   /// HaveInsertPoint - True if an insertion point is defined. If not, this
1516   /// indicates that the current code being emitted is unreachable.
1517   bool HaveInsertPoint() const {
1518     return Builder.GetInsertBlock() != 0;
1519   }
1520 
1521   /// EnsureInsertPoint - Ensure that an insertion point is defined so that
1522   /// emitted IR has a place to go. Note that by definition, if this function
1523   /// creates a block then that block is unreachable; callers may do better to
1524   /// detect when no insertion point is defined and simply skip IR generation.
1525   void EnsureInsertPoint() {
1526     if (!HaveInsertPoint())
1527       EmitBlock(createBasicBlock());
1528   }
1529 
1530   /// ErrorUnsupported - Print out an error that codegen doesn't support the
1531   /// specified stmt yet.
1532   void ErrorUnsupported(const Stmt *S, const char *Type,
1533                         bool OmitOnError=false);
1534 
1535   //===--------------------------------------------------------------------===//
1536   //                                  Helpers
1537   //===--------------------------------------------------------------------===//
1538 
1539   LValue MakeAddrLValue(llvm::Value *V, QualType T,
1540                         CharUnits Alignment = CharUnits()) {
1541     return LValue::MakeAddr(V, T, Alignment, getContext(),
1542                             CGM.getTBAAInfo(T));
1543   }
1544   LValue MakeNaturalAlignAddrLValue(llvm::Value *V, QualType T) {
1545     CharUnits Alignment;
1546     if (!T->isIncompleteType())
1547       Alignment = getContext().getTypeAlignInChars(T);
1548     return LValue::MakeAddr(V, T, Alignment, getContext(),
1549                             CGM.getTBAAInfo(T));
1550   }
1551 
1552   /// CreateTempAlloca - This creates a alloca and inserts it into the entry
1553   /// block. The caller is responsible for setting an appropriate alignment on
1554   /// the alloca.
1555   llvm::AllocaInst *CreateTempAlloca(llvm::Type *Ty,
1556                                      const Twine &Name = "tmp");
1557 
1558   /// InitTempAlloca - Provide an initial value for the given alloca.
1559   void InitTempAlloca(llvm::AllocaInst *Alloca, llvm::Value *Value);
1560 
1561   /// CreateIRTemp - Create a temporary IR object of the given type, with
1562   /// appropriate alignment. This routine should only be used when an temporary
1563   /// value needs to be stored into an alloca (for example, to avoid explicit
1564   /// PHI construction), but the type is the IR type, not the type appropriate
1565   /// for storing in memory.
1566   llvm::AllocaInst *CreateIRTemp(QualType T, const Twine &Name = "tmp");
1567 
1568   /// CreateMemTemp - Create a temporary memory object of the given type, with
1569   /// appropriate alignment.
1570   llvm::AllocaInst *CreateMemTemp(QualType T, const Twine &Name = "tmp");
1571 
1572   /// CreateAggTemp - Create a temporary memory object for the given
1573   /// aggregate type.
1574   AggValueSlot CreateAggTemp(QualType T, const Twine &Name = "tmp") {
1575     CharUnits Alignment = getContext().getTypeAlignInChars(T);
1576     return AggValueSlot::forAddr(CreateMemTemp(T, Name), Alignment,
1577                                  T.getQualifiers(),
1578                                  AggValueSlot::IsNotDestructed,
1579                                  AggValueSlot::DoesNotNeedGCBarriers,
1580                                  AggValueSlot::IsNotAliased);
1581   }
1582 
1583   /// Emit a cast to void* in the appropriate address space.
1584   llvm::Value *EmitCastToVoidPtr(llvm::Value *value);
1585 
1586   /// EvaluateExprAsBool - Perform the usual unary conversions on the specified
1587   /// expression and compare the result against zero, returning an Int1Ty value.
1588   llvm::Value *EvaluateExprAsBool(const Expr *E);
1589 
1590   /// EmitIgnoredExpr - Emit an expression in a context which ignores the result.
1591   void EmitIgnoredExpr(const Expr *E);
1592 
1593   /// EmitAnyExpr - Emit code to compute the specified expression which can have
1594   /// any type.  The result is returned as an RValue struct.  If this is an
1595   /// aggregate expression, the aggloc/agglocvolatile arguments indicate where
1596   /// the result should be returned.
1597   ///
1598   /// \param IgnoreResult - True if the resulting value isn't used.
1599   RValue EmitAnyExpr(const Expr *E,
1600                      AggValueSlot AggSlot = AggValueSlot::ignored(),
1601                      bool IgnoreResult = false);
1602 
1603   // EmitVAListRef - Emit a "reference" to a va_list; this is either the address
1604   // or the value of the expression, depending on how va_list is defined.
1605   llvm::Value *EmitVAListRef(const Expr *E);
1606 
1607   /// EmitAnyExprToTemp - Similary to EmitAnyExpr(), however, the result will
1608   /// always be accessible even if no aggregate location is provided.
1609   RValue EmitAnyExprToTemp(const Expr *E);
1610 
1611   /// EmitAnyExprToMem - Emits the code necessary to evaluate an
1612   /// arbitrary expression into the given memory location.
1613   void EmitAnyExprToMem(const Expr *E, llvm::Value *Location,
1614                         Qualifiers Quals, bool IsInitializer);
1615 
1616   /// EmitExprAsInit - Emits the code necessary to initialize a
1617   /// location in memory with the given initializer.
1618   void EmitExprAsInit(const Expr *init, const ValueDecl *D,
1619                       LValue lvalue, bool capturedByInit);
1620 
1621   /// EmitAggregateCopy - Emit an aggrate copy.
1622   ///
1623   /// \param isVolatile - True iff either the source or the destination is
1624   /// volatile.
1625   void EmitAggregateCopy(llvm::Value *DestPtr, llvm::Value *SrcPtr,
1626                          QualType EltTy, bool isVolatile=false,
1627                          unsigned Alignment = 0);
1628 
1629   /// StartBlock - Start new block named N. If insert block is a dummy block
1630   /// then reuse it.
1631   void StartBlock(const char *N);
1632 
1633   /// GetAddrOfStaticLocalVar - Return the address of a static local variable.
1634   llvm::Constant *GetAddrOfStaticLocalVar(const VarDecl *BVD) {
1635     return cast<llvm::Constant>(GetAddrOfLocalVar(BVD));
1636   }
1637 
1638   /// GetAddrOfLocalVar - Return the address of a local variable.
1639   llvm::Value *GetAddrOfLocalVar(const VarDecl *VD) {
1640     llvm::Value *Res = LocalDeclMap[VD];
1641     assert(Res && "Invalid argument to GetAddrOfLocalVar(), no decl!");
1642     return Res;
1643   }
1644 
1645   /// getOpaqueLValueMapping - Given an opaque value expression (which
1646   /// must be mapped to an l-value), return its mapping.
1647   const LValue &getOpaqueLValueMapping(const OpaqueValueExpr *e) {
1648     assert(OpaqueValueMapping::shouldBindAsLValue(e));
1649 
1650     llvm::DenseMap<const OpaqueValueExpr*,LValue>::iterator
1651       it = OpaqueLValues.find(e);
1652     assert(it != OpaqueLValues.end() && "no mapping for opaque value!");
1653     return it->second;
1654   }
1655 
1656   /// getOpaqueRValueMapping - Given an opaque value expression (which
1657   /// must be mapped to an r-value), return its mapping.
1658   const RValue &getOpaqueRValueMapping(const OpaqueValueExpr *e) {
1659     assert(!OpaqueValueMapping::shouldBindAsLValue(e));
1660 
1661     llvm::DenseMap<const OpaqueValueExpr*,RValue>::iterator
1662       it = OpaqueRValues.find(e);
1663     assert(it != OpaqueRValues.end() && "no mapping for opaque value!");
1664     return it->second;
1665   }
1666 
1667   /// getAccessedFieldNo - Given an encoded value and a result number, return
1668   /// the input field number being accessed.
1669   static unsigned getAccessedFieldNo(unsigned Idx, const llvm::Constant *Elts);
1670 
1671   llvm::BlockAddress *GetAddrOfLabel(const LabelDecl *L);
1672   llvm::BasicBlock *GetIndirectGotoBlock();
1673 
1674   /// EmitNullInitialization - Generate code to set a value of the given type to
1675   /// null, If the type contains data member pointers, they will be initialized
1676   /// to -1 in accordance with the Itanium C++ ABI.
1677   void EmitNullInitialization(llvm::Value *DestPtr, QualType Ty);
1678 
1679   // EmitVAArg - Generate code to get an argument from the passed in pointer
1680   // and update it accordingly. The return value is a pointer to the argument.
1681   // FIXME: We should be able to get rid of this method and use the va_arg
1682   // instruction in LLVM instead once it works well enough.
1683   llvm::Value *EmitVAArg(llvm::Value *VAListAddr, QualType Ty);
1684 
1685   /// emitArrayLength - Compute the length of an array, even if it's a
1686   /// VLA, and drill down to the base element type.
1687   llvm::Value *emitArrayLength(const ArrayType *arrayType,
1688                                QualType &baseType,
1689                                llvm::Value *&addr);
1690 
1691   /// EmitVLASize - Capture all the sizes for the VLA expressions in
1692   /// the given variably-modified type and store them in the VLASizeMap.
1693   ///
1694   /// This function can be called with a null (unreachable) insert point.
1695   void EmitVariablyModifiedType(QualType Ty);
1696 
1697   /// getVLASize - Returns an LLVM value that corresponds to the size,
1698   /// in non-variably-sized elements, of a variable length array type,
1699   /// plus that largest non-variably-sized element type.  Assumes that
1700   /// the type has already been emitted with EmitVariablyModifiedType.
1701   std::pair<llvm::Value*,QualType> getVLASize(const VariableArrayType *vla);
1702   std::pair<llvm::Value*,QualType> getVLASize(QualType vla);
1703 
1704   /// LoadCXXThis - Load the value of 'this'. This function is only valid while
1705   /// generating code for an C++ member function.
1706   llvm::Value *LoadCXXThis() {
1707     assert(CXXThisValue && "no 'this' value for this function");
1708     return CXXThisValue;
1709   }
1710 
1711   /// LoadCXXVTT - Load the VTT parameter to base constructors/destructors have
1712   /// virtual bases.
1713   llvm::Value *LoadCXXVTT() {
1714     assert(CXXVTTValue && "no VTT value for this function");
1715     return CXXVTTValue;
1716   }
1717 
1718   /// GetAddressOfBaseOfCompleteClass - Convert the given pointer to a
1719   /// complete class to the given direct base.
1720   llvm::Value *
1721   GetAddressOfDirectBaseInCompleteClass(llvm::Value *Value,
1722                                         const CXXRecordDecl *Derived,
1723                                         const CXXRecordDecl *Base,
1724                                         bool BaseIsVirtual);
1725 
1726   /// GetAddressOfBaseClass - This function will add the necessary delta to the
1727   /// load of 'this' and returns address of the base class.
1728   llvm::Value *GetAddressOfBaseClass(llvm::Value *Value,
1729                                      const CXXRecordDecl *Derived,
1730                                      CastExpr::path_const_iterator PathBegin,
1731                                      CastExpr::path_const_iterator PathEnd,
1732                                      bool NullCheckValue);
1733 
1734   llvm::Value *GetAddressOfDerivedClass(llvm::Value *Value,
1735                                         const CXXRecordDecl *Derived,
1736                                         CastExpr::path_const_iterator PathBegin,
1737                                         CastExpr::path_const_iterator PathEnd,
1738                                         bool NullCheckValue);
1739 
1740   llvm::Value *GetVirtualBaseClassOffset(llvm::Value *This,
1741                                          const CXXRecordDecl *ClassDecl,
1742                                          const CXXRecordDecl *BaseClassDecl);
1743 
1744   void EmitDelegateCXXConstructorCall(const CXXConstructorDecl *Ctor,
1745                                       CXXCtorType CtorType,
1746                                       const FunctionArgList &Args);
1747   // It's important not to confuse this and the previous function. Delegating
1748   // constructors are the C++0x feature. The constructor delegate optimization
1749   // is used to reduce duplication in the base and complete consturctors where
1750   // they are substantially the same.
1751   void EmitDelegatingCXXConstructorCall(const CXXConstructorDecl *Ctor,
1752                                         const FunctionArgList &Args);
1753   void EmitCXXConstructorCall(const CXXConstructorDecl *D, CXXCtorType Type,
1754                               bool ForVirtualBase, llvm::Value *This,
1755                               CallExpr::const_arg_iterator ArgBeg,
1756                               CallExpr::const_arg_iterator ArgEnd);
1757 
1758   void EmitSynthesizedCXXCopyCtorCall(const CXXConstructorDecl *D,
1759                               llvm::Value *This, llvm::Value *Src,
1760                               CallExpr::const_arg_iterator ArgBeg,
1761                               CallExpr::const_arg_iterator ArgEnd);
1762 
1763   void EmitCXXAggrConstructorCall(const CXXConstructorDecl *D,
1764                                   const ConstantArrayType *ArrayTy,
1765                                   llvm::Value *ArrayPtr,
1766                                   CallExpr::const_arg_iterator ArgBeg,
1767                                   CallExpr::const_arg_iterator ArgEnd,
1768                                   bool ZeroInitialization = false);
1769 
1770   void EmitCXXAggrConstructorCall(const CXXConstructorDecl *D,
1771                                   llvm::Value *NumElements,
1772                                   llvm::Value *ArrayPtr,
1773                                   CallExpr::const_arg_iterator ArgBeg,
1774                                   CallExpr::const_arg_iterator ArgEnd,
1775                                   bool ZeroInitialization = false);
1776 
1777   static Destroyer destroyCXXObject;
1778 
1779   void EmitCXXDestructorCall(const CXXDestructorDecl *D, CXXDtorType Type,
1780                              bool ForVirtualBase, llvm::Value *This);
1781 
1782   void EmitNewArrayInitializer(const CXXNewExpr *E, QualType elementType,
1783                                llvm::Value *NewPtr, llvm::Value *NumElements);
1784 
1785   void EmitCXXTemporary(const CXXTemporary *Temporary, QualType TempType,
1786                         llvm::Value *Ptr);
1787 
1788   llvm::Value *EmitCXXNewExpr(const CXXNewExpr *E);
1789   void EmitCXXDeleteExpr(const CXXDeleteExpr *E);
1790 
1791   void EmitDeleteCall(const FunctionDecl *DeleteFD, llvm::Value *Ptr,
1792                       QualType DeleteTy);
1793 
1794   llvm::Value* EmitCXXTypeidExpr(const CXXTypeidExpr *E);
1795   llvm::Value *EmitDynamicCast(llvm::Value *V, const CXXDynamicCastExpr *DCE);
1796 
1797   void EmitCheck(llvm::Value *, unsigned Size);
1798 
1799   llvm::Value *EmitScalarPrePostIncDec(const UnaryOperator *E, LValue LV,
1800                                        bool isInc, bool isPre);
1801   ComplexPairTy EmitComplexPrePostIncDec(const UnaryOperator *E, LValue LV,
1802                                          bool isInc, bool isPre);
1803   //===--------------------------------------------------------------------===//
1804   //                            Declaration Emission
1805   //===--------------------------------------------------------------------===//
1806 
1807   /// EmitDecl - Emit a declaration.
1808   ///
1809   /// This function can be called with a null (unreachable) insert point.
1810   void EmitDecl(const Decl &D);
1811 
1812   /// EmitVarDecl - Emit a local variable declaration.
1813   ///
1814   /// This function can be called with a null (unreachable) insert point.
1815   void EmitVarDecl(const VarDecl &D);
1816 
1817   void EmitScalarInit(const Expr *init, const ValueDecl *D,
1818                       LValue lvalue, bool capturedByInit);
1819   void EmitScalarInit(llvm::Value *init, LValue lvalue);
1820 
1821   typedef void SpecialInitFn(CodeGenFunction &Init, const VarDecl &D,
1822                              llvm::Value *Address);
1823 
1824   /// EmitAutoVarDecl - Emit an auto variable declaration.
1825   ///
1826   /// This function can be called with a null (unreachable) insert point.
1827   void EmitAutoVarDecl(const VarDecl &D);
1828 
1829   class AutoVarEmission {
1830     friend class CodeGenFunction;
1831 
1832     const VarDecl *Variable;
1833 
1834     /// The alignment of the variable.
1835     CharUnits Alignment;
1836 
1837     /// The address of the alloca.  Null if the variable was emitted
1838     /// as a global constant.
1839     llvm::Value *Address;
1840 
1841     llvm::Value *NRVOFlag;
1842 
1843     /// True if the variable is a __block variable.
1844     bool IsByRef;
1845 
1846     /// True if the variable is of aggregate type and has a constant
1847     /// initializer.
1848     bool IsConstantAggregate;
1849 
1850     struct Invalid {};
1851     AutoVarEmission(Invalid) : Variable(0) {}
1852 
1853     AutoVarEmission(const VarDecl &variable)
1854       : Variable(&variable), Address(0), NRVOFlag(0),
1855         IsByRef(false), IsConstantAggregate(false) {}
1856 
1857     bool wasEmittedAsGlobal() const { return Address == 0; }
1858 
1859   public:
1860     static AutoVarEmission invalid() { return AutoVarEmission(Invalid()); }
1861 
1862     /// Returns the address of the object within this declaration.
1863     /// Note that this does not chase the forwarding pointer for
1864     /// __block decls.
1865     llvm::Value *getObjectAddress(CodeGenFunction &CGF) const {
1866       if (!IsByRef) return Address;
1867 
1868       return CGF.Builder.CreateStructGEP(Address,
1869                                          CGF.getByRefValueLLVMField(Variable),
1870                                          Variable->getNameAsString());
1871     }
1872   };
1873   AutoVarEmission EmitAutoVarAlloca(const VarDecl &var);
1874   void EmitAutoVarInit(const AutoVarEmission &emission);
1875   void EmitAutoVarCleanups(const AutoVarEmission &emission);
1876   void emitAutoVarTypeCleanup(const AutoVarEmission &emission,
1877                               QualType::DestructionKind dtorKind);
1878 
1879   void EmitStaticVarDecl(const VarDecl &D,
1880                          llvm::GlobalValue::LinkageTypes Linkage);
1881 
1882   /// EmitParmDecl - Emit a ParmVarDecl or an ImplicitParamDecl.
1883   void EmitParmDecl(const VarDecl &D, llvm::Value *Arg, unsigned ArgNo);
1884 
1885   /// protectFromPeepholes - Protect a value that we're intending to
1886   /// store to the side, but which will probably be used later, from
1887   /// aggressive peepholing optimizations that might delete it.
1888   ///
1889   /// Pass the result to unprotectFromPeepholes to declare that
1890   /// protection is no longer required.
1891   ///
1892   /// There's no particular reason why this shouldn't apply to
1893   /// l-values, it's just that no existing peepholes work on pointers.
1894   PeepholeProtection protectFromPeepholes(RValue rvalue);
1895   void unprotectFromPeepholes(PeepholeProtection protection);
1896 
1897   //===--------------------------------------------------------------------===//
1898   //                             Statement Emission
1899   //===--------------------------------------------------------------------===//
1900 
1901   /// EmitStopPoint - Emit a debug stoppoint if we are emitting debug info.
1902   void EmitStopPoint(const Stmt *S);
1903 
1904   /// EmitStmt - Emit the code for the statement \arg S. It is legal to call
1905   /// this function even if there is no current insertion point.
1906   ///
1907   /// This function may clear the current insertion point; callers should use
1908   /// EnsureInsertPoint if they wish to subsequently generate code without first
1909   /// calling EmitBlock, EmitBranch, or EmitStmt.
1910   void EmitStmt(const Stmt *S);
1911 
1912   /// EmitSimpleStmt - Try to emit a "simple" statement which does not
1913   /// necessarily require an insertion point or debug information; typically
1914   /// because the statement amounts to a jump or a container of other
1915   /// statements.
1916   ///
1917   /// \return True if the statement was handled.
1918   bool EmitSimpleStmt(const Stmt *S);
1919 
1920   RValue EmitCompoundStmt(const CompoundStmt &S, bool GetLast = false,
1921                           AggValueSlot AVS = AggValueSlot::ignored());
1922 
1923   /// EmitLabel - Emit the block for the given label. It is legal to call this
1924   /// function even if there is no current insertion point.
1925   void EmitLabel(const LabelDecl *D); // helper for EmitLabelStmt.
1926 
1927   void EmitLabelStmt(const LabelStmt &S);
1928   void EmitGotoStmt(const GotoStmt &S);
1929   void EmitIndirectGotoStmt(const IndirectGotoStmt &S);
1930   void EmitIfStmt(const IfStmt &S);
1931   void EmitWhileStmt(const WhileStmt &S);
1932   void EmitDoStmt(const DoStmt &S);
1933   void EmitForStmt(const ForStmt &S);
1934   void EmitReturnStmt(const ReturnStmt &S);
1935   void EmitDeclStmt(const DeclStmt &S);
1936   void EmitBreakStmt(const BreakStmt &S);
1937   void EmitContinueStmt(const ContinueStmt &S);
1938   void EmitSwitchStmt(const SwitchStmt &S);
1939   void EmitDefaultStmt(const DefaultStmt &S);
1940   void EmitCaseStmt(const CaseStmt &S);
1941   void EmitCaseStmtRange(const CaseStmt &S);
1942   void EmitAsmStmt(const AsmStmt &S);
1943 
1944   void EmitObjCForCollectionStmt(const ObjCForCollectionStmt &S);
1945   void EmitObjCAtTryStmt(const ObjCAtTryStmt &S);
1946   void EmitObjCAtThrowStmt(const ObjCAtThrowStmt &S);
1947   void EmitObjCAtSynchronizedStmt(const ObjCAtSynchronizedStmt &S);
1948   void EmitObjCAutoreleasePoolStmt(const ObjCAutoreleasePoolStmt &S);
1949 
1950   llvm::Constant *getUnwindResumeFn();
1951   llvm::Constant *getUnwindResumeOrRethrowFn();
1952   void EnterCXXTryStmt(const CXXTryStmt &S, bool IsFnTryBlock = false);
1953   void ExitCXXTryStmt(const CXXTryStmt &S, bool IsFnTryBlock = false);
1954 
1955   void EmitCXXTryStmt(const CXXTryStmt &S);
1956   void EmitCXXForRangeStmt(const CXXForRangeStmt &S);
1957 
1958   //===--------------------------------------------------------------------===//
1959   //                         LValue Expression Emission
1960   //===--------------------------------------------------------------------===//
1961 
1962   /// GetUndefRValue - Get an appropriate 'undef' rvalue for the given type.
1963   RValue GetUndefRValue(QualType Ty);
1964 
1965   /// EmitUnsupportedRValue - Emit a dummy r-value using the type of E
1966   /// and issue an ErrorUnsupported style diagnostic (using the
1967   /// provided Name).
1968   RValue EmitUnsupportedRValue(const Expr *E,
1969                                const char *Name);
1970 
1971   /// EmitUnsupportedLValue - Emit a dummy l-value using the type of E and issue
1972   /// an ErrorUnsupported style diagnostic (using the provided Name).
1973   LValue EmitUnsupportedLValue(const Expr *E,
1974                                const char *Name);
1975 
1976   /// EmitLValue - Emit code to compute a designator that specifies the location
1977   /// of the expression.
1978   ///
1979   /// This can return one of two things: a simple address or a bitfield
1980   /// reference.  In either case, the LLVM Value* in the LValue structure is
1981   /// guaranteed to be an LLVM pointer type.
1982   ///
1983   /// If this returns a bitfield reference, nothing about the pointee type of
1984   /// the LLVM value is known: For example, it may not be a pointer to an
1985   /// integer.
1986   ///
1987   /// If this returns a normal address, and if the lvalue's C type is fixed
1988   /// size, this method guarantees that the returned pointer type will point to
1989   /// an LLVM type of the same size of the lvalue's type.  If the lvalue has a
1990   /// variable length type, this is not possible.
1991   ///
1992   LValue EmitLValue(const Expr *E);
1993 
1994   /// EmitCheckedLValue - Same as EmitLValue but additionally we generate
1995   /// checking code to guard against undefined behavior.  This is only
1996   /// suitable when we know that the address will be used to access the
1997   /// object.
1998   LValue EmitCheckedLValue(const Expr *E);
1999 
2000   /// EmitToMemory - Change a scalar value from its value
2001   /// representation to its in-memory representation.
2002   llvm::Value *EmitToMemory(llvm::Value *Value, QualType Ty);
2003 
2004   /// EmitFromMemory - Change a scalar value from its memory
2005   /// representation to its value representation.
2006   llvm::Value *EmitFromMemory(llvm::Value *Value, QualType Ty);
2007 
2008   /// EmitLoadOfScalar - Load a scalar value from an address, taking
2009   /// care to appropriately convert from the memory representation to
2010   /// the LLVM value representation.
2011   llvm::Value *EmitLoadOfScalar(llvm::Value *Addr, bool Volatile,
2012                                 unsigned Alignment, QualType Ty,
2013                                 llvm::MDNode *TBAAInfo = 0);
2014 
2015   /// EmitLoadOfScalar - Load a scalar value from an address, taking
2016   /// care to appropriately convert from the memory representation to
2017   /// the LLVM value representation.  The l-value must be a simple
2018   /// l-value.
2019   llvm::Value *EmitLoadOfScalar(LValue lvalue);
2020 
2021   /// EmitStoreOfScalar - Store a scalar value to an address, taking
2022   /// care to appropriately convert from the memory representation to
2023   /// the LLVM value representation.
2024   void EmitStoreOfScalar(llvm::Value *Value, llvm::Value *Addr,
2025                          bool Volatile, unsigned Alignment, QualType Ty,
2026                          llvm::MDNode *TBAAInfo = 0);
2027 
2028   /// EmitStoreOfScalar - Store a scalar value to an address, taking
2029   /// care to appropriately convert from the memory representation to
2030   /// the LLVM value representation.  The l-value must be a simple
2031   /// l-value.
2032   void EmitStoreOfScalar(llvm::Value *value, LValue lvalue);
2033 
2034   /// EmitLoadOfLValue - Given an expression that represents a value lvalue,
2035   /// this method emits the address of the lvalue, then loads the result as an
2036   /// rvalue, returning the rvalue.
2037   RValue EmitLoadOfLValue(LValue V);
2038   RValue EmitLoadOfExtVectorElementLValue(LValue V);
2039   RValue EmitLoadOfBitfieldLValue(LValue LV);
2040 
2041   /// EmitStoreThroughLValue - Store the specified rvalue into the specified
2042   /// lvalue, where both are guaranteed to the have the same type, and that type
2043   /// is 'Ty'.
2044   void EmitStoreThroughLValue(RValue Src, LValue Dst);
2045   void EmitStoreThroughExtVectorComponentLValue(RValue Src, LValue Dst);
2046 
2047   /// EmitStoreThroughLValue - Store Src into Dst with same constraints as
2048   /// EmitStoreThroughLValue.
2049   ///
2050   /// \param Result [out] - If non-null, this will be set to a Value* for the
2051   /// bit-field contents after the store, appropriate for use as the result of
2052   /// an assignment to the bit-field.
2053   void EmitStoreThroughBitfieldLValue(RValue Src, LValue Dst,
2054                                       llvm::Value **Result=0);
2055 
2056   /// Emit an l-value for an assignment (simple or compound) of complex type.
2057   LValue EmitComplexAssignmentLValue(const BinaryOperator *E);
2058   LValue EmitComplexCompoundAssignmentLValue(const CompoundAssignOperator *E);
2059 
2060   // Note: only available for agg return types
2061   LValue EmitBinaryOperatorLValue(const BinaryOperator *E);
2062   LValue EmitCompoundAssignmentLValue(const CompoundAssignOperator *E);
2063   // Note: only available for agg return types
2064   LValue EmitCallExprLValue(const CallExpr *E);
2065   // Note: only available for agg return types
2066   LValue EmitVAArgExprLValue(const VAArgExpr *E);
2067   LValue EmitDeclRefLValue(const DeclRefExpr *E);
2068   LValue EmitStringLiteralLValue(const StringLiteral *E);
2069   LValue EmitObjCEncodeExprLValue(const ObjCEncodeExpr *E);
2070   LValue EmitPredefinedLValue(const PredefinedExpr *E);
2071   LValue EmitUnaryOpLValue(const UnaryOperator *E);
2072   LValue EmitArraySubscriptExpr(const ArraySubscriptExpr *E);
2073   LValue EmitExtVectorElementExpr(const ExtVectorElementExpr *E);
2074   LValue EmitMemberExpr(const MemberExpr *E);
2075   LValue EmitObjCIsaExpr(const ObjCIsaExpr *E);
2076   LValue EmitCompoundLiteralLValue(const CompoundLiteralExpr *E);
2077   LValue EmitConditionalOperatorLValue(const AbstractConditionalOperator *E);
2078   LValue EmitCastLValue(const CastExpr *E);
2079   LValue EmitNullInitializationLValue(const CXXScalarValueInitExpr *E);
2080   LValue EmitMaterializeTemporaryExpr(const MaterializeTemporaryExpr *E);
2081   LValue EmitOpaqueValueLValue(const OpaqueValueExpr *e);
2082 
2083   RValue EmitPseudoObjectRValue(const PseudoObjectExpr *e,
2084                                 AggValueSlot slot = AggValueSlot::ignored());
2085   LValue EmitPseudoObjectLValue(const PseudoObjectExpr *e);
2086 
2087   llvm::Value *EmitIvarOffset(const ObjCInterfaceDecl *Interface,
2088                               const ObjCIvarDecl *Ivar);
2089   LValue EmitLValueForAnonRecordField(llvm::Value* Base,
2090                                       const IndirectFieldDecl* Field,
2091                                       unsigned CVRQualifiers);
2092   LValue EmitLValueForField(llvm::Value* Base, const FieldDecl* Field,
2093                             unsigned CVRQualifiers);
2094 
2095   /// EmitLValueForFieldInitialization - Like EmitLValueForField, except that
2096   /// if the Field is a reference, this will return the address of the reference
2097   /// and not the address of the value stored in the reference.
2098   LValue EmitLValueForFieldInitialization(llvm::Value* Base,
2099                                           const FieldDecl* Field,
2100                                           unsigned CVRQualifiers);
2101 
2102   LValue EmitLValueForIvar(QualType ObjectTy,
2103                            llvm::Value* Base, const ObjCIvarDecl *Ivar,
2104                            unsigned CVRQualifiers);
2105 
2106   LValue EmitLValueForBitfield(llvm::Value* Base, const FieldDecl* Field,
2107                                 unsigned CVRQualifiers);
2108 
2109   LValue EmitBlockDeclRefLValue(const BlockDeclRefExpr *E);
2110 
2111   LValue EmitCXXConstructLValue(const CXXConstructExpr *E);
2112   LValue EmitCXXBindTemporaryLValue(const CXXBindTemporaryExpr *E);
2113   LValue EmitCXXTypeidLValue(const CXXTypeidExpr *E);
2114 
2115   LValue EmitObjCMessageExprLValue(const ObjCMessageExpr *E);
2116   LValue EmitObjCIvarRefLValue(const ObjCIvarRefExpr *E);
2117   LValue EmitStmtExprLValue(const StmtExpr *E);
2118   LValue EmitPointerToDataMemberBinaryExpr(const BinaryOperator *E);
2119   LValue EmitObjCSelectorLValue(const ObjCSelectorExpr *E);
2120   void   EmitDeclRefExprDbgValue(const DeclRefExpr *E, llvm::Constant *Init);
2121 
2122   //===--------------------------------------------------------------------===//
2123   //                         Scalar Expression Emission
2124   //===--------------------------------------------------------------------===//
2125 
2126   /// EmitCall - Generate a call of the given function, expecting the given
2127   /// result type, and using the given argument list which specifies both the
2128   /// LLVM arguments and the types they were derived from.
2129   ///
2130   /// \param TargetDecl - If given, the decl of the function in a direct call;
2131   /// used to set attributes on the call (noreturn, etc.).
2132   RValue EmitCall(const CGFunctionInfo &FnInfo,
2133                   llvm::Value *Callee,
2134                   ReturnValueSlot ReturnValue,
2135                   const CallArgList &Args,
2136                   const Decl *TargetDecl = 0,
2137                   llvm::Instruction **callOrInvoke = 0);
2138 
2139   RValue EmitCall(QualType FnType, llvm::Value *Callee,
2140                   ReturnValueSlot ReturnValue,
2141                   CallExpr::const_arg_iterator ArgBeg,
2142                   CallExpr::const_arg_iterator ArgEnd,
2143                   const Decl *TargetDecl = 0);
2144   RValue EmitCallExpr(const CallExpr *E,
2145                       ReturnValueSlot ReturnValue = ReturnValueSlot());
2146 
2147   llvm::CallSite EmitCallOrInvoke(llvm::Value *Callee,
2148                                   ArrayRef<llvm::Value *> Args,
2149                                   const Twine &Name = "");
2150   llvm::CallSite EmitCallOrInvoke(llvm::Value *Callee,
2151                                   const Twine &Name = "");
2152 
2153   llvm::Value *BuildVirtualCall(const CXXMethodDecl *MD, llvm::Value *This,
2154                                 llvm::Type *Ty);
2155   llvm::Value *BuildVirtualCall(const CXXDestructorDecl *DD, CXXDtorType Type,
2156                                 llvm::Value *This, llvm::Type *Ty);
2157   llvm::Value *BuildAppleKextVirtualCall(const CXXMethodDecl *MD,
2158                                          NestedNameSpecifier *Qual,
2159                                          llvm::Type *Ty);
2160 
2161   llvm::Value *BuildAppleKextVirtualDestructorCall(const CXXDestructorDecl *DD,
2162                                                    CXXDtorType Type,
2163                                                    const CXXRecordDecl *RD);
2164 
2165   RValue EmitCXXMemberCall(const CXXMethodDecl *MD,
2166                            llvm::Value *Callee,
2167                            ReturnValueSlot ReturnValue,
2168                            llvm::Value *This,
2169                            llvm::Value *VTT,
2170                            CallExpr::const_arg_iterator ArgBeg,
2171                            CallExpr::const_arg_iterator ArgEnd);
2172   RValue EmitCXXMemberCallExpr(const CXXMemberCallExpr *E,
2173                                ReturnValueSlot ReturnValue);
2174   RValue EmitCXXMemberPointerCallExpr(const CXXMemberCallExpr *E,
2175                                       ReturnValueSlot ReturnValue);
2176 
2177   llvm::Value *EmitCXXOperatorMemberCallee(const CXXOperatorCallExpr *E,
2178                                            const CXXMethodDecl *MD,
2179                                            llvm::Value *This);
2180   RValue EmitCXXOperatorMemberCallExpr(const CXXOperatorCallExpr *E,
2181                                        const CXXMethodDecl *MD,
2182                                        ReturnValueSlot ReturnValue);
2183 
2184   RValue EmitCUDAKernelCallExpr(const CUDAKernelCallExpr *E,
2185                                 ReturnValueSlot ReturnValue);
2186 
2187 
2188   RValue EmitBuiltinExpr(const FunctionDecl *FD,
2189                          unsigned BuiltinID, const CallExpr *E);
2190 
2191   RValue EmitBlockCallExpr(const CallExpr *E, ReturnValueSlot ReturnValue);
2192 
2193   /// EmitTargetBuiltinExpr - Emit the given builtin call. Returns 0 if the call
2194   /// is unhandled by the current target.
2195   llvm::Value *EmitTargetBuiltinExpr(unsigned BuiltinID, const CallExpr *E);
2196 
2197   llvm::Value *EmitARMBuiltinExpr(unsigned BuiltinID, const CallExpr *E);
2198   llvm::Value *EmitNeonCall(llvm::Function *F,
2199                             SmallVectorImpl<llvm::Value*> &O,
2200                             const char *name,
2201                             unsigned shift = 0, bool rightshift = false);
2202   llvm::Value *EmitNeonSplat(llvm::Value *V, llvm::Constant *Idx);
2203   llvm::Value *EmitNeonShiftVector(llvm::Value *V, llvm::Type *Ty,
2204                                    bool negateForRightShift);
2205 
2206   llvm::Value *BuildVector(const SmallVectorImpl<llvm::Value*> &Ops);
2207   llvm::Value *EmitX86BuiltinExpr(unsigned BuiltinID, const CallExpr *E);
2208   llvm::Value *EmitHexagonBuiltinExpr(unsigned BuiltinID, const CallExpr *E);
2209   llvm::Value *EmitPPCBuiltinExpr(unsigned BuiltinID, const CallExpr *E);
2210 
2211   llvm::Value *EmitObjCProtocolExpr(const ObjCProtocolExpr *E);
2212   llvm::Value *EmitObjCStringLiteral(const ObjCStringLiteral *E);
2213   llvm::Value *EmitObjCSelectorExpr(const ObjCSelectorExpr *E);
2214   RValue EmitObjCMessageExpr(const ObjCMessageExpr *E,
2215                              ReturnValueSlot Return = ReturnValueSlot());
2216 
2217   /// Retrieves the default cleanup kind for an ARC cleanup.
2218   /// Except under -fobjc-arc-eh, ARC cleanups are normal-only.
2219   CleanupKind getARCCleanupKind() {
2220     return CGM.getCodeGenOpts().ObjCAutoRefCountExceptions
2221              ? NormalAndEHCleanup : NormalCleanup;
2222   }
2223 
2224   // ARC primitives.
2225   void EmitARCInitWeak(llvm::Value *value, llvm::Value *addr);
2226   void EmitARCDestroyWeak(llvm::Value *addr);
2227   llvm::Value *EmitARCLoadWeak(llvm::Value *addr);
2228   llvm::Value *EmitARCLoadWeakRetained(llvm::Value *addr);
2229   llvm::Value *EmitARCStoreWeak(llvm::Value *value, llvm::Value *addr,
2230                                 bool ignored);
2231   void EmitARCCopyWeak(llvm::Value *dst, llvm::Value *src);
2232   void EmitARCMoveWeak(llvm::Value *dst, llvm::Value *src);
2233   llvm::Value *EmitARCRetainAutorelease(QualType type, llvm::Value *value);
2234   llvm::Value *EmitARCRetainAutoreleaseNonBlock(llvm::Value *value);
2235   llvm::Value *EmitARCStoreStrong(LValue lvalue, llvm::Value *value,
2236                                   bool ignored);
2237   llvm::Value *EmitARCStoreStrongCall(llvm::Value *addr, llvm::Value *value,
2238                                       bool ignored);
2239   llvm::Value *EmitARCRetain(QualType type, llvm::Value *value);
2240   llvm::Value *EmitARCRetainNonBlock(llvm::Value *value);
2241   llvm::Value *EmitARCRetainBlock(llvm::Value *value, bool mandatory);
2242   void EmitARCRelease(llvm::Value *value, bool precise);
2243   llvm::Value *EmitARCAutorelease(llvm::Value *value);
2244   llvm::Value *EmitARCAutoreleaseReturnValue(llvm::Value *value);
2245   llvm::Value *EmitARCRetainAutoreleaseReturnValue(llvm::Value *value);
2246   llvm::Value *EmitARCRetainAutoreleasedReturnValue(llvm::Value *value);
2247 
2248   std::pair<LValue,llvm::Value*>
2249   EmitARCStoreAutoreleasing(const BinaryOperator *e);
2250   std::pair<LValue,llvm::Value*>
2251   EmitARCStoreStrong(const BinaryOperator *e, bool ignored);
2252 
2253   llvm::Value *EmitObjCThrowOperand(const Expr *expr);
2254 
2255   llvm::Value *EmitObjCProduceObject(QualType T, llvm::Value *Ptr);
2256   llvm::Value *EmitObjCConsumeObject(QualType T, llvm::Value *Ptr);
2257   llvm::Value *EmitObjCExtendObjectLifetime(QualType T, llvm::Value *Ptr);
2258 
2259   llvm::Value *EmitARCExtendBlockObject(const Expr *expr);
2260   llvm::Value *EmitARCRetainScalarExpr(const Expr *expr);
2261   llvm::Value *EmitARCRetainAutoreleaseScalarExpr(const Expr *expr);
2262 
2263   static Destroyer destroyARCStrongImprecise;
2264   static Destroyer destroyARCStrongPrecise;
2265   static Destroyer destroyARCWeak;
2266 
2267   void EmitObjCAutoreleasePoolPop(llvm::Value *Ptr);
2268   llvm::Value *EmitObjCAutoreleasePoolPush();
2269   llvm::Value *EmitObjCMRRAutoreleasePoolPush();
2270   void EmitObjCAutoreleasePoolCleanup(llvm::Value *Ptr);
2271   void EmitObjCMRRAutoreleasePoolPop(llvm::Value *Ptr);
2272 
2273   /// EmitReferenceBindingToExpr - Emits a reference binding to the passed in
2274   /// expression. Will emit a temporary variable if E is not an LValue.
2275   RValue EmitReferenceBindingToExpr(const Expr* E,
2276                                     const NamedDecl *InitializedDecl);
2277 
2278   //===--------------------------------------------------------------------===//
2279   //                           Expression Emission
2280   //===--------------------------------------------------------------------===//
2281 
2282   // Expressions are broken into three classes: scalar, complex, aggregate.
2283 
2284   /// EmitScalarExpr - Emit the computation of the specified expression of LLVM
2285   /// scalar type, returning the result.
2286   llvm::Value *EmitScalarExpr(const Expr *E , bool IgnoreResultAssign = false);
2287 
2288   /// EmitScalarConversion - Emit a conversion from the specified type to the
2289   /// specified destination type, both of which are LLVM scalar types.
2290   llvm::Value *EmitScalarConversion(llvm::Value *Src, QualType SrcTy,
2291                                     QualType DstTy);
2292 
2293   /// EmitComplexToScalarConversion - Emit a conversion from the specified
2294   /// complex type to the specified destination type, where the destination type
2295   /// is an LLVM scalar type.
2296   llvm::Value *EmitComplexToScalarConversion(ComplexPairTy Src, QualType SrcTy,
2297                                              QualType DstTy);
2298 
2299 
2300   /// EmitAggExpr - Emit the computation of the specified expression
2301   /// of aggregate type.  The result is computed into the given slot,
2302   /// which may be null to indicate that the value is not needed.
2303   void EmitAggExpr(const Expr *E, AggValueSlot AS, bool IgnoreResult = false);
2304 
2305   /// EmitAggExprToLValue - Emit the computation of the specified expression of
2306   /// aggregate type into a temporary LValue.
2307   LValue EmitAggExprToLValue(const Expr *E);
2308 
2309   /// EmitGCMemmoveCollectable - Emit special API for structs with object
2310   /// pointers.
2311   void EmitGCMemmoveCollectable(llvm::Value *DestPtr, llvm::Value *SrcPtr,
2312                                 QualType Ty);
2313 
2314   /// EmitExtendGCLifetime - Given a pointer to an Objective-C object,
2315   /// make sure it survives garbage collection until this point.
2316   void EmitExtendGCLifetime(llvm::Value *object);
2317 
2318   /// EmitComplexExpr - Emit the computation of the specified expression of
2319   /// complex type, returning the result.
2320   ComplexPairTy EmitComplexExpr(const Expr *E,
2321                                 bool IgnoreReal = false,
2322                                 bool IgnoreImag = false);
2323 
2324   /// EmitComplexExprIntoAddr - Emit the computation of the specified expression
2325   /// of complex type, storing into the specified Value*.
2326   void EmitComplexExprIntoAddr(const Expr *E, llvm::Value *DestAddr,
2327                                bool DestIsVolatile);
2328 
2329   /// StoreComplexToAddr - Store a complex number into the specified address.
2330   void StoreComplexToAddr(ComplexPairTy V, llvm::Value *DestAddr,
2331                           bool DestIsVolatile);
2332   /// LoadComplexFromAddr - Load a complex number from the specified address.
2333   ComplexPairTy LoadComplexFromAddr(llvm::Value *SrcAddr, bool SrcIsVolatile);
2334 
2335   /// CreateStaticVarDecl - Create a zero-initialized LLVM global for
2336   /// a static local variable.
2337   llvm::GlobalVariable *CreateStaticVarDecl(const VarDecl &D,
2338                                             const char *Separator,
2339                                        llvm::GlobalValue::LinkageTypes Linkage);
2340 
2341   /// AddInitializerToStaticVarDecl - Add the initializer for 'D' to the
2342   /// global variable that has already been created for it.  If the initializer
2343   /// has a different type than GV does, this may free GV and return a different
2344   /// one.  Otherwise it just returns GV.
2345   llvm::GlobalVariable *
2346   AddInitializerToStaticVarDecl(const VarDecl &D,
2347                                 llvm::GlobalVariable *GV);
2348 
2349 
2350   /// EmitCXXGlobalVarDeclInit - Create the initializer for a C++
2351   /// variable with global storage.
2352   void EmitCXXGlobalVarDeclInit(const VarDecl &D, llvm::Constant *DeclPtr);
2353 
2354   /// EmitCXXGlobalDtorRegistration - Emits a call to register the global ptr
2355   /// with the C++ runtime so that its destructor will be called at exit.
2356   void EmitCXXGlobalDtorRegistration(llvm::Constant *DtorFn,
2357                                      llvm::Constant *DeclPtr);
2358 
2359   /// Emit code in this function to perform a guarded variable
2360   /// initialization.  Guarded initializations are used when it's not
2361   /// possible to prove that an initialization will be done exactly
2362   /// once, e.g. with a static local variable or a static data member
2363   /// of a class template.
2364   void EmitCXXGuardedInit(const VarDecl &D, llvm::GlobalVariable *DeclPtr);
2365 
2366   /// GenerateCXXGlobalInitFunc - Generates code for initializing global
2367   /// variables.
2368   void GenerateCXXGlobalInitFunc(llvm::Function *Fn,
2369                                  llvm::Constant **Decls,
2370                                  unsigned NumDecls);
2371 
2372   /// GenerateCXXGlobalDtorFunc - Generates code for destroying global
2373   /// variables.
2374   void GenerateCXXGlobalDtorFunc(llvm::Function *Fn,
2375                                  const std::vector<std::pair<llvm::WeakVH,
2376                                    llvm::Constant*> > &DtorsAndObjects);
2377 
2378   void GenerateCXXGlobalVarDeclInitFunc(llvm::Function *Fn,
2379                                         const VarDecl *D,
2380                                         llvm::GlobalVariable *Addr);
2381 
2382   void EmitCXXConstructExpr(const CXXConstructExpr *E, AggValueSlot Dest);
2383 
2384   void EmitSynthesizedCXXCopyCtor(llvm::Value *Dest, llvm::Value *Src,
2385                                   const Expr *Exp);
2386 
2387   void enterFullExpression(const ExprWithCleanups *E) {
2388     if (E->getNumObjects() == 0) return;
2389     enterNonTrivialFullExpression(E);
2390   }
2391   void enterNonTrivialFullExpression(const ExprWithCleanups *E);
2392 
2393   void EmitCXXThrowExpr(const CXXThrowExpr *E);
2394 
2395   RValue EmitAtomicExpr(AtomicExpr *E, llvm::Value *Dest = 0);
2396 
2397   //===--------------------------------------------------------------------===//
2398   //                         Annotations Emission
2399   //===--------------------------------------------------------------------===//
2400 
2401   /// Emit an annotation call (intrinsic or builtin).
2402   llvm::Value *EmitAnnotationCall(llvm::Value *AnnotationFn,
2403                                   llvm::Value *AnnotatedVal,
2404                                   llvm::StringRef AnnotationStr,
2405                                   SourceLocation Location);
2406 
2407   /// Emit local annotations for the local variable V, declared by D.
2408   void EmitVarAnnotations(const VarDecl *D, llvm::Value *V);
2409 
2410   /// Emit field annotations for the given field & value. Returns the
2411   /// annotation result.
2412   llvm::Value *EmitFieldAnnotations(const FieldDecl *D, llvm::Value *V);
2413 
2414   //===--------------------------------------------------------------------===//
2415   //                             Internal Helpers
2416   //===--------------------------------------------------------------------===//
2417 
2418   /// ContainsLabel - Return true if the statement contains a label in it.  If
2419   /// this statement is not executed normally, it not containing a label means
2420   /// that we can just remove the code.
2421   static bool ContainsLabel(const Stmt *S, bool IgnoreCaseStmts = false);
2422 
2423   /// containsBreak - Return true if the statement contains a break out of it.
2424   /// If the statement (recursively) contains a switch or loop with a break
2425   /// inside of it, this is fine.
2426   static bool containsBreak(const Stmt *S);
2427 
2428   /// ConstantFoldsToSimpleInteger - If the specified expression does not fold
2429   /// to a constant, or if it does but contains a label, return false.  If it
2430   /// constant folds return true and set the boolean result in Result.
2431   bool ConstantFoldsToSimpleInteger(const Expr *Cond, bool &Result);
2432 
2433   /// ConstantFoldsToSimpleInteger - If the specified expression does not fold
2434   /// to a constant, or if it does but contains a label, return false.  If it
2435   /// constant folds return true and set the folded value.
2436   bool ConstantFoldsToSimpleInteger(const Expr *Cond, llvm::APInt &Result);
2437 
2438   /// EmitBranchOnBoolExpr - Emit a branch on a boolean condition (e.g. for an
2439   /// if statement) to the specified blocks.  Based on the condition, this might
2440   /// try to simplify the codegen of the conditional based on the branch.
2441   void EmitBranchOnBoolExpr(const Expr *Cond, llvm::BasicBlock *TrueBlock,
2442                             llvm::BasicBlock *FalseBlock);
2443 
2444   /// getTrapBB - Create a basic block that will call the trap intrinsic.  We'll
2445   /// generate a branch around the created basic block as necessary.
2446   llvm::BasicBlock *getTrapBB();
2447 
2448   /// EmitCallArg - Emit a single call argument.
2449   void EmitCallArg(CallArgList &args, const Expr *E, QualType ArgType);
2450 
2451   /// EmitDelegateCallArg - We are performing a delegate call; that
2452   /// is, the current function is delegating to another one.  Produce
2453   /// a r-value suitable for passing the given parameter.
2454   void EmitDelegateCallArg(CallArgList &args, const VarDecl *param);
2455 
2456   /// SetFPAccuracy - Set the minimum required accuracy of the given floating
2457   /// point operation, expressed as the maximum relative error in ulp.
2458   void SetFPAccuracy(llvm::Value *Val, unsigned AccuracyN,
2459                      unsigned AccuracyD = 1);
2460 
2461 private:
2462   void EmitReturnOfRValue(RValue RV, QualType Ty);
2463 
2464   /// ExpandTypeFromArgs - Reconstruct a structure of type \arg Ty
2465   /// from function arguments into \arg Dst. See ABIArgInfo::Expand.
2466   ///
2467   /// \param AI - The first function argument of the expansion.
2468   /// \return The argument following the last expanded function
2469   /// argument.
2470   llvm::Function::arg_iterator
2471   ExpandTypeFromArgs(QualType Ty, LValue Dst,
2472                      llvm::Function::arg_iterator AI);
2473 
2474   /// ExpandTypeToArgs - Expand an RValue \arg Src, with the LLVM type for \arg
2475   /// Ty, into individual arguments on the provided vector \arg Args. See
2476   /// ABIArgInfo::Expand.
2477   void ExpandTypeToArgs(QualType Ty, RValue Src,
2478                         SmallVector<llvm::Value*, 16> &Args,
2479                         llvm::FunctionType *IRFuncTy);
2480 
2481   llvm::Value* EmitAsmInput(const AsmStmt &S,
2482                             const TargetInfo::ConstraintInfo &Info,
2483                             const Expr *InputExpr, std::string &ConstraintStr);
2484 
2485   llvm::Value* EmitAsmInputLValue(const AsmStmt &S,
2486                                   const TargetInfo::ConstraintInfo &Info,
2487                                   LValue InputValue, QualType InputType,
2488                                   std::string &ConstraintStr);
2489 
2490   /// EmitCallArgs - Emit call arguments for a function.
2491   /// The CallArgTypeInfo parameter is used for iterating over the known
2492   /// argument types of the function being called.
2493   template<typename T>
2494   void EmitCallArgs(CallArgList& Args, const T* CallArgTypeInfo,
2495                     CallExpr::const_arg_iterator ArgBeg,
2496                     CallExpr::const_arg_iterator ArgEnd) {
2497       CallExpr::const_arg_iterator Arg = ArgBeg;
2498 
2499     // First, use the argument types that the type info knows about
2500     if (CallArgTypeInfo) {
2501       for (typename T::arg_type_iterator I = CallArgTypeInfo->arg_type_begin(),
2502            E = CallArgTypeInfo->arg_type_end(); I != E; ++I, ++Arg) {
2503         assert(Arg != ArgEnd && "Running over edge of argument list!");
2504         QualType ArgType = *I;
2505 #ifndef NDEBUG
2506         QualType ActualArgType = Arg->getType();
2507         if (ArgType->isPointerType() && ActualArgType->isPointerType()) {
2508           QualType ActualBaseType =
2509             ActualArgType->getAs<PointerType>()->getPointeeType();
2510           QualType ArgBaseType =
2511             ArgType->getAs<PointerType>()->getPointeeType();
2512           if (ArgBaseType->isVariableArrayType()) {
2513             if (const VariableArrayType *VAT =
2514                 getContext().getAsVariableArrayType(ActualBaseType)) {
2515               if (!VAT->getSizeExpr())
2516                 ActualArgType = ArgType;
2517             }
2518           }
2519         }
2520         assert(getContext().getCanonicalType(ArgType.getNonReferenceType()).
2521                getTypePtr() ==
2522                getContext().getCanonicalType(ActualArgType).getTypePtr() &&
2523                "type mismatch in call argument!");
2524 #endif
2525         EmitCallArg(Args, *Arg, ArgType);
2526       }
2527 
2528       // Either we've emitted all the call args, or we have a call to a
2529       // variadic function.
2530       assert((Arg == ArgEnd || CallArgTypeInfo->isVariadic()) &&
2531              "Extra arguments in non-variadic function!");
2532 
2533     }
2534 
2535     // If we still have any arguments, emit them using the type of the argument.
2536     for (; Arg != ArgEnd; ++Arg)
2537       EmitCallArg(Args, *Arg, Arg->getType());
2538   }
2539 
2540   const TargetCodeGenInfo &getTargetHooks() const {
2541     return CGM.getTargetCodeGenInfo();
2542   }
2543 
2544   void EmitDeclMetadata();
2545 
2546   CodeGenModule::ByrefHelpers *
2547   buildByrefHelpers(llvm::StructType &byrefType,
2548                     const AutoVarEmission &emission);
2549 };
2550 
2551 /// Helper class with most of the code for saving a value for a
2552 /// conditional expression cleanup.
2553 struct DominatingLLVMValue {
2554   typedef llvm::PointerIntPair<llvm::Value*, 1, bool> saved_type;
2555 
2556   /// Answer whether the given value needs extra work to be saved.
2557   static bool needsSaving(llvm::Value *value) {
2558     // If it's not an instruction, we don't need to save.
2559     if (!isa<llvm::Instruction>(value)) return false;
2560 
2561     // If it's an instruction in the entry block, we don't need to save.
2562     llvm::BasicBlock *block = cast<llvm::Instruction>(value)->getParent();
2563     return (block != &block->getParent()->getEntryBlock());
2564   }
2565 
2566   /// Try to save the given value.
2567   static saved_type save(CodeGenFunction &CGF, llvm::Value *value) {
2568     if (!needsSaving(value)) return saved_type(value, false);
2569 
2570     // Otherwise we need an alloca.
2571     llvm::Value *alloca =
2572       CGF.CreateTempAlloca(value->getType(), "cond-cleanup.save");
2573     CGF.Builder.CreateStore(value, alloca);
2574 
2575     return saved_type(alloca, true);
2576   }
2577 
2578   static llvm::Value *restore(CodeGenFunction &CGF, saved_type value) {
2579     if (!value.getInt()) return value.getPointer();
2580     return CGF.Builder.CreateLoad(value.getPointer());
2581   }
2582 };
2583 
2584 /// A partial specialization of DominatingValue for llvm::Values that
2585 /// might be llvm::Instructions.
2586 template <class T> struct DominatingPointer<T,true> : DominatingLLVMValue {
2587   typedef T *type;
2588   static type restore(CodeGenFunction &CGF, saved_type value) {
2589     return static_cast<T*>(DominatingLLVMValue::restore(CGF, value));
2590   }
2591 };
2592 
2593 /// A specialization of DominatingValue for RValue.
2594 template <> struct DominatingValue<RValue> {
2595   typedef RValue type;
2596   class saved_type {
2597     enum Kind { ScalarLiteral, ScalarAddress, AggregateLiteral,
2598                 AggregateAddress, ComplexAddress };
2599 
2600     llvm::Value *Value;
2601     Kind K;
2602     saved_type(llvm::Value *v, Kind k) : Value(v), K(k) {}
2603 
2604   public:
2605     static bool needsSaving(RValue value);
2606     static saved_type save(CodeGenFunction &CGF, RValue value);
2607     RValue restore(CodeGenFunction &CGF);
2608 
2609     // implementations in CGExprCXX.cpp
2610   };
2611 
2612   static bool needsSaving(type value) {
2613     return saved_type::needsSaving(value);
2614   }
2615   static saved_type save(CodeGenFunction &CGF, type value) {
2616     return saved_type::save(CGF, value);
2617   }
2618   static type restore(CodeGenFunction &CGF, saved_type value) {
2619     return value.restore(CGF);
2620   }
2621 };
2622 
2623 }  // end namespace CodeGen
2624 }  // end namespace clang
2625 
2626 #endif
2627