1 //===-- CodeGenFunction.h - Per-Function state for LLVM CodeGen -*- C++ -*-===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This is the internal per-function state used for llvm translation.
10 //
11 //===----------------------------------------------------------------------===//
12 
13 #ifndef LLVM_CLANG_LIB_CODEGEN_CODEGENFUNCTION_H
14 #define LLVM_CLANG_LIB_CODEGEN_CODEGENFUNCTION_H
15 
16 #include "CGBuilder.h"
17 #include "CGDebugInfo.h"
18 #include "CGLoopInfo.h"
19 #include "CGValue.h"
20 #include "CodeGenModule.h"
21 #include "CodeGenPGO.h"
22 #include "EHScopeStack.h"
23 #include "VarBypassDetector.h"
24 #include "clang/AST/CharUnits.h"
25 #include "clang/AST/CurrentSourceLocExprScope.h"
26 #include "clang/AST/ExprCXX.h"
27 #include "clang/AST/ExprObjC.h"
28 #include "clang/AST/ExprOpenMP.h"
29 #include "clang/AST/StmtOpenMP.h"
30 #include "clang/AST/Type.h"
31 #include "clang/Basic/ABI.h"
32 #include "clang/Basic/CapturedStmt.h"
33 #include "clang/Basic/CodeGenOptions.h"
34 #include "clang/Basic/OpenMPKinds.h"
35 #include "clang/Basic/TargetInfo.h"
36 #include "llvm/ADT/ArrayRef.h"
37 #include "llvm/ADT/DenseMap.h"
38 #include "llvm/ADT/MapVector.h"
39 #include "llvm/ADT/SmallVector.h"
40 #include "llvm/Frontend/OpenMP/OMPIRBuilder.h"
41 #include "llvm/IR/ValueHandle.h"
42 #include "llvm/Support/Debug.h"
43 #include "llvm/Transforms/Utils/SanitizerStats.h"
44 
45 namespace llvm {
46 class BasicBlock;
47 class LLVMContext;
48 class MDNode;
49 class SwitchInst;
50 class Twine;
51 class Value;
52 class CanonicalLoopInfo;
53 }
54 
55 namespace clang {
56 class ASTContext;
57 class CXXDestructorDecl;
58 class CXXForRangeStmt;
59 class CXXTryStmt;
60 class Decl;
61 class LabelDecl;
62 class FunctionDecl;
63 class FunctionProtoType;
64 class LabelStmt;
65 class ObjCContainerDecl;
66 class ObjCInterfaceDecl;
67 class ObjCIvarDecl;
68 class ObjCMethodDecl;
69 class ObjCImplementationDecl;
70 class ObjCPropertyImplDecl;
71 class TargetInfo;
72 class VarDecl;
73 class ObjCForCollectionStmt;
74 class ObjCAtTryStmt;
75 class ObjCAtThrowStmt;
76 class ObjCAtSynchronizedStmt;
77 class ObjCAutoreleasePoolStmt;
78 class OMPUseDevicePtrClause;
79 class OMPUseDeviceAddrClause;
80 class SVETypeFlags;
81 class OMPExecutableDirective;
82 
83 namespace analyze_os_log {
84 class OSLogBufferLayout;
85 }
86 
87 namespace CodeGen {
88 class CodeGenTypes;
89 class CGCallee;
90 class CGFunctionInfo;
91 class CGBlockInfo;
92 class CGCXXABI;
93 class BlockByrefHelpers;
94 class BlockByrefInfo;
95 class BlockFieldFlags;
96 class RegionCodeGenTy;
97 class TargetCodeGenInfo;
98 struct OMPTaskDataTy;
99 struct CGCoroData;
100 
101 /// The kind of evaluation to perform on values of a particular
102 /// type.  Basically, is the code in CGExprScalar, CGExprComplex, or
103 /// CGExprAgg?
104 ///
105 /// TODO: should vectors maybe be split out into their own thing?
106 enum TypeEvaluationKind {
107   TEK_Scalar,
108   TEK_Complex,
109   TEK_Aggregate
110 };
111 
112 #define LIST_SANITIZER_CHECKS                                                  \
113   SANITIZER_CHECK(AddOverflow, add_overflow, 0)                                \
114   SANITIZER_CHECK(BuiltinUnreachable, builtin_unreachable, 0)                  \
115   SANITIZER_CHECK(CFICheckFail, cfi_check_fail, 0)                             \
116   SANITIZER_CHECK(DivremOverflow, divrem_overflow, 0)                          \
117   SANITIZER_CHECK(DynamicTypeCacheMiss, dynamic_type_cache_miss, 0)            \
118   SANITIZER_CHECK(FloatCastOverflow, float_cast_overflow, 0)                   \
119   SANITIZER_CHECK(FunctionTypeMismatch, function_type_mismatch, 1)             \
120   SANITIZER_CHECK(ImplicitConversion, implicit_conversion, 0)                  \
121   SANITIZER_CHECK(InvalidBuiltin, invalid_builtin, 0)                          \
122   SANITIZER_CHECK(InvalidObjCCast, invalid_objc_cast, 0)                       \
123   SANITIZER_CHECK(LoadInvalidValue, load_invalid_value, 0)                     \
124   SANITIZER_CHECK(MissingReturn, missing_return, 0)                            \
125   SANITIZER_CHECK(MulOverflow, mul_overflow, 0)                                \
126   SANITIZER_CHECK(NegateOverflow, negate_overflow, 0)                          \
127   SANITIZER_CHECK(NullabilityArg, nullability_arg, 0)                          \
128   SANITIZER_CHECK(NullabilityReturn, nullability_return, 1)                    \
129   SANITIZER_CHECK(NonnullArg, nonnull_arg, 0)                                  \
130   SANITIZER_CHECK(NonnullReturn, nonnull_return, 1)                            \
131   SANITIZER_CHECK(OutOfBounds, out_of_bounds, 0)                               \
132   SANITIZER_CHECK(PointerOverflow, pointer_overflow, 0)                        \
133   SANITIZER_CHECK(ShiftOutOfBounds, shift_out_of_bounds, 0)                    \
134   SANITIZER_CHECK(SubOverflow, sub_overflow, 0)                                \
135   SANITIZER_CHECK(TypeMismatch, type_mismatch, 1)                              \
136   SANITIZER_CHECK(AlignmentAssumption, alignment_assumption, 0)                \
137   SANITIZER_CHECK(VLABoundNotPositive, vla_bound_not_positive, 0)
138 
139 enum SanitizerHandler {
140 #define SANITIZER_CHECK(Enum, Name, Version) Enum,
141   LIST_SANITIZER_CHECKS
142 #undef SANITIZER_CHECK
143 };
144 
145 /// Helper class with most of the code for saving a value for a
146 /// conditional expression cleanup.
147 struct DominatingLLVMValue {
148   typedef llvm::PointerIntPair<llvm::Value*, 1, bool> saved_type;
149 
150   /// Answer whether the given value needs extra work to be saved.
151   static bool needsSaving(llvm::Value *value) {
152     // If it's not an instruction, we don't need to save.
153     if (!isa<llvm::Instruction>(value)) return false;
154 
155     // If it's an instruction in the entry block, we don't need to save.
156     llvm::BasicBlock *block = cast<llvm::Instruction>(value)->getParent();
157     return (block != &block->getParent()->getEntryBlock());
158   }
159 
160   static saved_type save(CodeGenFunction &CGF, llvm::Value *value);
161   static llvm::Value *restore(CodeGenFunction &CGF, saved_type value);
162 };
163 
164 /// A partial specialization of DominatingValue for llvm::Values that
165 /// might be llvm::Instructions.
166 template <class T> struct DominatingPointer<T,true> : DominatingLLVMValue {
167   typedef T *type;
168   static type restore(CodeGenFunction &CGF, saved_type value) {
169     return static_cast<T*>(DominatingLLVMValue::restore(CGF, value));
170   }
171 };
172 
173 /// A specialization of DominatingValue for Address.
174 template <> struct DominatingValue<Address> {
175   typedef Address type;
176 
177   struct saved_type {
178     DominatingLLVMValue::saved_type SavedValue;
179     llvm::Type *ElementType;
180     CharUnits Alignment;
181   };
182 
183   static bool needsSaving(type value) {
184     return DominatingLLVMValue::needsSaving(value.getPointer());
185   }
186   static saved_type save(CodeGenFunction &CGF, type value) {
187     return { DominatingLLVMValue::save(CGF, value.getPointer()),
188              value.getElementType(), value.getAlignment() };
189   }
190   static type restore(CodeGenFunction &CGF, saved_type value) {
191     return Address(DominatingLLVMValue::restore(CGF, value.SavedValue),
192                    value.ElementType, value.Alignment);
193   }
194 };
195 
196 /// A specialization of DominatingValue for RValue.
197 template <> struct DominatingValue<RValue> {
198   typedef RValue type;
199   class saved_type {
200     enum Kind { ScalarLiteral, ScalarAddress, AggregateLiteral,
201                 AggregateAddress, ComplexAddress };
202 
203     llvm::Value *Value;
204     llvm::Type *ElementType;
205     unsigned K : 3;
206     unsigned Align : 29;
207     saved_type(llvm::Value *v, llvm::Type *e, Kind k, unsigned a = 0)
208       : Value(v), ElementType(e), K(k), Align(a) {}
209 
210   public:
211     static bool needsSaving(RValue value);
212     static saved_type save(CodeGenFunction &CGF, RValue value);
213     RValue restore(CodeGenFunction &CGF);
214 
215     // implementations in CGCleanup.cpp
216   };
217 
218   static bool needsSaving(type value) {
219     return saved_type::needsSaving(value);
220   }
221   static saved_type save(CodeGenFunction &CGF, type value) {
222     return saved_type::save(CGF, value);
223   }
224   static type restore(CodeGenFunction &CGF, saved_type value) {
225     return value.restore(CGF);
226   }
227 };
228 
229 /// CodeGenFunction - This class organizes the per-function state that is used
230 /// while generating LLVM code.
231 class CodeGenFunction : public CodeGenTypeCache {
232   CodeGenFunction(const CodeGenFunction &) = delete;
233   void operator=(const CodeGenFunction &) = delete;
234 
235   friend class CGCXXABI;
236 public:
237   /// A jump destination is an abstract label, branching to which may
238   /// require a jump out through normal cleanups.
239   struct JumpDest {
240     JumpDest() : Block(nullptr), Index(0) {}
241     JumpDest(llvm::BasicBlock *Block, EHScopeStack::stable_iterator Depth,
242              unsigned Index)
243         : Block(Block), ScopeDepth(Depth), Index(Index) {}
244 
245     bool isValid() const { return Block != nullptr; }
246     llvm::BasicBlock *getBlock() const { return Block; }
247     EHScopeStack::stable_iterator getScopeDepth() const { return ScopeDepth; }
248     unsigned getDestIndex() const { return Index; }
249 
250     // This should be used cautiously.
251     void setScopeDepth(EHScopeStack::stable_iterator depth) {
252       ScopeDepth = depth;
253     }
254 
255   private:
256     llvm::BasicBlock *Block;
257     EHScopeStack::stable_iterator ScopeDepth;
258     unsigned Index;
259   };
260 
261   CodeGenModule &CGM;  // Per-module state.
262   const TargetInfo &Target;
263 
264   // For EH/SEH outlined funclets, this field points to parent's CGF
265   CodeGenFunction *ParentCGF = nullptr;
266 
267   typedef std::pair<llvm::Value *, llvm::Value *> ComplexPairTy;
268   LoopInfoStack LoopStack;
269   CGBuilderTy Builder;
270 
271   // Stores variables for which we can't generate correct lifetime markers
272   // because of jumps.
273   VarBypassDetector Bypasses;
274 
275   /// List of recently emitted OMPCanonicalLoops.
276   ///
277   /// Since OMPCanonicalLoops are nested inside other statements (in particular
278   /// CapturedStmt generated by OMPExecutableDirective and non-perfectly nested
279   /// loops), we cannot directly call OMPEmitOMPCanonicalLoop and receive its
280   /// llvm::CanonicalLoopInfo. Instead, we call EmitStmt and any
281   /// OMPEmitOMPCanonicalLoop called by it will add its CanonicalLoopInfo to
282   /// this stack when done. Entering a new loop requires clearing this list; it
283   /// either means we start parsing a new loop nest (in which case the previous
284   /// loop nest goes out of scope) or a second loop in the same level in which
285   /// case it would be ambiguous into which of the two (or more) loops the loop
286   /// nest would extend.
287   SmallVector<llvm::CanonicalLoopInfo *, 4> OMPLoopNestStack;
288 
289   /// Number of nested loop to be consumed by the last surrounding
290   /// loop-associated directive.
291   int ExpectedOMPLoopDepth = 0;
292 
293   // CodeGen lambda for loops and support for ordered clause
294   typedef llvm::function_ref<void(CodeGenFunction &, const OMPLoopDirective &,
295                                   JumpDest)>
296       CodeGenLoopTy;
297   typedef llvm::function_ref<void(CodeGenFunction &, SourceLocation,
298                                   const unsigned, const bool)>
299       CodeGenOrderedTy;
300 
301   // Codegen lambda for loop bounds in worksharing loop constructs
302   typedef llvm::function_ref<std::pair<LValue, LValue>(
303       CodeGenFunction &, const OMPExecutableDirective &S)>
304       CodeGenLoopBoundsTy;
305 
306   // Codegen lambda for loop bounds in dispatch-based loop implementation
307   typedef llvm::function_ref<std::pair<llvm::Value *, llvm::Value *>(
308       CodeGenFunction &, const OMPExecutableDirective &S, Address LB,
309       Address UB)>
310       CodeGenDispatchBoundsTy;
311 
312   /// CGBuilder insert helper. This function is called after an
313   /// instruction is created using Builder.
314   void InsertHelper(llvm::Instruction *I, const llvm::Twine &Name,
315                     llvm::BasicBlock *BB,
316                     llvm::BasicBlock::iterator InsertPt) const;
317 
318   /// CurFuncDecl - Holds the Decl for the current outermost
319   /// non-closure context.
320   const Decl *CurFuncDecl;
321   /// CurCodeDecl - This is the inner-most code context, which includes blocks.
322   const Decl *CurCodeDecl;
323   const CGFunctionInfo *CurFnInfo;
324   QualType FnRetTy;
325   llvm::Function *CurFn = nullptr;
326 
327   /// Save Parameter Decl for coroutine.
328   llvm::SmallVector<const ParmVarDecl *, 4> FnArgs;
329 
330   // Holds coroutine data if the current function is a coroutine. We use a
331   // wrapper to manage its lifetime, so that we don't have to define CGCoroData
332   // in this header.
333   struct CGCoroInfo {
334     std::unique_ptr<CGCoroData> Data;
335     CGCoroInfo();
336     ~CGCoroInfo();
337   };
338   CGCoroInfo CurCoro;
339 
340   bool isCoroutine() const {
341     return CurCoro.Data != nullptr;
342   }
343 
344   /// CurGD - The GlobalDecl for the current function being compiled.
345   GlobalDecl CurGD;
346 
347   /// PrologueCleanupDepth - The cleanup depth enclosing all the
348   /// cleanups associated with the parameters.
349   EHScopeStack::stable_iterator PrologueCleanupDepth;
350 
351   /// ReturnBlock - Unified return block.
352   JumpDest ReturnBlock;
353 
354   /// ReturnValue - The temporary alloca to hold the return
355   /// value. This is invalid iff the function has no return value.
356   Address ReturnValue = Address::invalid();
357 
358   /// ReturnValuePointer - The temporary alloca to hold a pointer to sret.
359   /// This is invalid if sret is not in use.
360   Address ReturnValuePointer = Address::invalid();
361 
362   /// If a return statement is being visited, this holds the return statment's
363   /// result expression.
364   const Expr *RetExpr = nullptr;
365 
366   /// Return true if a label was seen in the current scope.
367   bool hasLabelBeenSeenInCurrentScope() const {
368     if (CurLexicalScope)
369       return CurLexicalScope->hasLabels();
370     return !LabelMap.empty();
371   }
372 
373   /// AllocaInsertPoint - This is an instruction in the entry block before which
374   /// we prefer to insert allocas.
375   llvm::AssertingVH<llvm::Instruction> AllocaInsertPt;
376 
377 private:
378   /// PostAllocaInsertPt - This is a place in the prologue where code can be
379   /// inserted that will be dominated by all the static allocas. This helps
380   /// achieve two things:
381   ///   1. Contiguity of all static allocas (within the prologue) is maintained.
382   ///   2. All other prologue code (which are dominated by static allocas) do
383   ///      appear in the source order immediately after all static allocas.
384   ///
385   /// PostAllocaInsertPt will be lazily created when it is *really* required.
386   llvm::AssertingVH<llvm::Instruction> PostAllocaInsertPt = nullptr;
387 
388 public:
389   /// Return PostAllocaInsertPt. If it is not yet created, then insert it
390   /// immediately after AllocaInsertPt.
391   llvm::Instruction *getPostAllocaInsertPoint() {
392     if (!PostAllocaInsertPt) {
393       assert(AllocaInsertPt &&
394              "Expected static alloca insertion point at function prologue");
395       assert(AllocaInsertPt->getParent()->isEntryBlock() &&
396              "EBB should be entry block of the current code gen function");
397       PostAllocaInsertPt = AllocaInsertPt->clone();
398       PostAllocaInsertPt->setName("postallocapt");
399       PostAllocaInsertPt->insertAfter(AllocaInsertPt);
400     }
401 
402     return PostAllocaInsertPt;
403   }
404 
405   /// API for captured statement code generation.
406   class CGCapturedStmtInfo {
407   public:
408     explicit CGCapturedStmtInfo(CapturedRegionKind K = CR_Default)
409         : Kind(K), ThisValue(nullptr), CXXThisFieldDecl(nullptr) {}
410     explicit CGCapturedStmtInfo(const CapturedStmt &S,
411                                 CapturedRegionKind K = CR_Default)
412       : Kind(K), ThisValue(nullptr), CXXThisFieldDecl(nullptr) {
413 
414       RecordDecl::field_iterator Field =
415         S.getCapturedRecordDecl()->field_begin();
416       for (CapturedStmt::const_capture_iterator I = S.capture_begin(),
417                                                 E = S.capture_end();
418            I != E; ++I, ++Field) {
419         if (I->capturesThis())
420           CXXThisFieldDecl = *Field;
421         else if (I->capturesVariable())
422           CaptureFields[I->getCapturedVar()->getCanonicalDecl()] = *Field;
423         else if (I->capturesVariableByCopy())
424           CaptureFields[I->getCapturedVar()->getCanonicalDecl()] = *Field;
425       }
426     }
427 
428     virtual ~CGCapturedStmtInfo();
429 
430     CapturedRegionKind getKind() const { return Kind; }
431 
432     virtual void setContextValue(llvm::Value *V) { ThisValue = V; }
433     // Retrieve the value of the context parameter.
434     virtual llvm::Value *getContextValue() const { return ThisValue; }
435 
436     /// Lookup the captured field decl for a variable.
437     virtual const FieldDecl *lookup(const VarDecl *VD) const {
438       return CaptureFields.lookup(VD->getCanonicalDecl());
439     }
440 
441     bool isCXXThisExprCaptured() const { return getThisFieldDecl() != nullptr; }
442     virtual FieldDecl *getThisFieldDecl() const { return CXXThisFieldDecl; }
443 
444     static bool classof(const CGCapturedStmtInfo *) {
445       return true;
446     }
447 
448     /// Emit the captured statement body.
449     virtual void EmitBody(CodeGenFunction &CGF, const Stmt *S) {
450       CGF.incrementProfileCounter(S);
451       CGF.EmitStmt(S);
452     }
453 
454     /// Get the name of the capture helper.
455     virtual StringRef getHelperName() const { return "__captured_stmt"; }
456 
457     /// Get the CaptureFields
458     llvm::SmallDenseMap<const VarDecl *, FieldDecl *> getCaptureFields() {
459       return CaptureFields;
460     }
461 
462   private:
463     /// The kind of captured statement being generated.
464     CapturedRegionKind Kind;
465 
466     /// Keep the map between VarDecl and FieldDecl.
467     llvm::SmallDenseMap<const VarDecl *, FieldDecl *> CaptureFields;
468 
469     /// The base address of the captured record, passed in as the first
470     /// argument of the parallel region function.
471     llvm::Value *ThisValue;
472 
473     /// Captured 'this' type.
474     FieldDecl *CXXThisFieldDecl;
475   };
476   CGCapturedStmtInfo *CapturedStmtInfo = nullptr;
477 
478   /// RAII for correct setting/restoring of CapturedStmtInfo.
479   class CGCapturedStmtRAII {
480   private:
481     CodeGenFunction &CGF;
482     CGCapturedStmtInfo *PrevCapturedStmtInfo;
483   public:
484     CGCapturedStmtRAII(CodeGenFunction &CGF,
485                        CGCapturedStmtInfo *NewCapturedStmtInfo)
486         : CGF(CGF), PrevCapturedStmtInfo(CGF.CapturedStmtInfo) {
487       CGF.CapturedStmtInfo = NewCapturedStmtInfo;
488     }
489     ~CGCapturedStmtRAII() { CGF.CapturedStmtInfo = PrevCapturedStmtInfo; }
490   };
491 
492   /// An abstract representation of regular/ObjC call/message targets.
493   class AbstractCallee {
494     /// The function declaration of the callee.
495     const Decl *CalleeDecl;
496 
497   public:
498     AbstractCallee() : CalleeDecl(nullptr) {}
499     AbstractCallee(const FunctionDecl *FD) : CalleeDecl(FD) {}
500     AbstractCallee(const ObjCMethodDecl *OMD) : CalleeDecl(OMD) {}
501     bool hasFunctionDecl() const {
502       return isa_and_nonnull<FunctionDecl>(CalleeDecl);
503     }
504     const Decl *getDecl() const { return CalleeDecl; }
505     unsigned getNumParams() const {
506       if (const auto *FD = dyn_cast<FunctionDecl>(CalleeDecl))
507         return FD->getNumParams();
508       return cast<ObjCMethodDecl>(CalleeDecl)->param_size();
509     }
510     const ParmVarDecl *getParamDecl(unsigned I) const {
511       if (const auto *FD = dyn_cast<FunctionDecl>(CalleeDecl))
512         return FD->getParamDecl(I);
513       return *(cast<ObjCMethodDecl>(CalleeDecl)->param_begin() + I);
514     }
515   };
516 
517   /// Sanitizers enabled for this function.
518   SanitizerSet SanOpts;
519 
520   /// True if CodeGen currently emits code implementing sanitizer checks.
521   bool IsSanitizerScope = false;
522 
523   /// RAII object to set/unset CodeGenFunction::IsSanitizerScope.
524   class SanitizerScope {
525     CodeGenFunction *CGF;
526   public:
527     SanitizerScope(CodeGenFunction *CGF);
528     ~SanitizerScope();
529   };
530 
531   /// In C++, whether we are code generating a thunk.  This controls whether we
532   /// should emit cleanups.
533   bool CurFuncIsThunk = false;
534 
535   /// In ARC, whether we should autorelease the return value.
536   bool AutoreleaseResult = false;
537 
538   /// Whether we processed a Microsoft-style asm block during CodeGen. These can
539   /// potentially set the return value.
540   bool SawAsmBlock = false;
541 
542   const NamedDecl *CurSEHParent = nullptr;
543 
544   /// True if the current function is an outlined SEH helper. This can be a
545   /// finally block or filter expression.
546   bool IsOutlinedSEHHelper = false;
547 
548   /// True if CodeGen currently emits code inside presereved access index
549   /// region.
550   bool IsInPreservedAIRegion = false;
551 
552   /// True if the current statement has nomerge attribute.
553   bool InNoMergeAttributedStmt = false;
554 
555   /// True if the current statement has noinline attribute.
556   bool InNoInlineAttributedStmt = false;
557 
558   /// True if the current statement has always_inline attribute.
559   bool InAlwaysInlineAttributedStmt = false;
560 
561   // The CallExpr within the current statement that the musttail attribute
562   // applies to.  nullptr if there is no 'musttail' on the current statement.
563   const CallExpr *MustTailCall = nullptr;
564 
565   /// Returns true if a function must make progress, which means the
566   /// mustprogress attribute can be added.
567   bool checkIfFunctionMustProgress() {
568     if (CGM.getCodeGenOpts().getFiniteLoops() ==
569         CodeGenOptions::FiniteLoopsKind::Never)
570       return false;
571 
572     // C++11 and later guarantees that a thread eventually will do one of the
573     // following (6.9.2.3.1 in C++11):
574     // - terminate,
575     //  - make a call to a library I/O function,
576     //  - perform an access through a volatile glvalue, or
577     //  - perform a synchronization operation or an atomic operation.
578     //
579     // Hence each function is 'mustprogress' in C++11 or later.
580     return getLangOpts().CPlusPlus11;
581   }
582 
583   /// Returns true if a loop must make progress, which means the mustprogress
584   /// attribute can be added. \p HasConstantCond indicates whether the branch
585   /// condition is a known constant.
586   bool checkIfLoopMustProgress(bool HasConstantCond) {
587     if (CGM.getCodeGenOpts().getFiniteLoops() ==
588         CodeGenOptions::FiniteLoopsKind::Always)
589       return true;
590     if (CGM.getCodeGenOpts().getFiniteLoops() ==
591         CodeGenOptions::FiniteLoopsKind::Never)
592       return false;
593 
594     // If the containing function must make progress, loops also must make
595     // progress (as in C++11 and later).
596     if (checkIfFunctionMustProgress())
597       return true;
598 
599     // Now apply rules for plain C (see  6.8.5.6 in C11).
600     // Loops with constant conditions do not have to make progress in any C
601     // version.
602     if (HasConstantCond)
603       return false;
604 
605     // Loops with non-constant conditions must make progress in C11 and later.
606     return getLangOpts().C11;
607   }
608 
609   const CodeGen::CGBlockInfo *BlockInfo = nullptr;
610   llvm::Value *BlockPointer = nullptr;
611 
612   llvm::DenseMap<const VarDecl *, FieldDecl *> LambdaCaptureFields;
613   FieldDecl *LambdaThisCaptureField = nullptr;
614 
615   /// A mapping from NRVO variables to the flags used to indicate
616   /// when the NRVO has been applied to this variable.
617   llvm::DenseMap<const VarDecl *, llvm::Value *> NRVOFlags;
618 
619   EHScopeStack EHStack;
620   llvm::SmallVector<char, 256> LifetimeExtendedCleanupStack;
621   llvm::SmallVector<const JumpDest *, 2> SEHTryEpilogueStack;
622 
623   llvm::Instruction *CurrentFuncletPad = nullptr;
624 
625   class CallLifetimeEnd final : public EHScopeStack::Cleanup {
626     bool isRedundantBeforeReturn() override { return true; }
627 
628     llvm::Value *Addr;
629     llvm::Value *Size;
630 
631   public:
632     CallLifetimeEnd(Address addr, llvm::Value *size)
633         : Addr(addr.getPointer()), Size(size) {}
634 
635     void Emit(CodeGenFunction &CGF, Flags flags) override {
636       CGF.EmitLifetimeEnd(Size, Addr);
637     }
638   };
639 
640   /// Header for data within LifetimeExtendedCleanupStack.
641   struct LifetimeExtendedCleanupHeader {
642     /// The size of the following cleanup object.
643     unsigned Size;
644     /// The kind of cleanup to push: a value from the CleanupKind enumeration.
645     unsigned Kind : 31;
646     /// Whether this is a conditional cleanup.
647     unsigned IsConditional : 1;
648 
649     size_t getSize() const { return Size; }
650     CleanupKind getKind() const { return (CleanupKind)Kind; }
651     bool isConditional() const { return IsConditional; }
652   };
653 
654   /// i32s containing the indexes of the cleanup destinations.
655   Address NormalCleanupDest = Address::invalid();
656 
657   unsigned NextCleanupDestIndex = 1;
658 
659   /// EHResumeBlock - Unified block containing a call to llvm.eh.resume.
660   llvm::BasicBlock *EHResumeBlock = nullptr;
661 
662   /// The exception slot.  All landing pads write the current exception pointer
663   /// into this alloca.
664   llvm::Value *ExceptionSlot = nullptr;
665 
666   /// The selector slot.  Under the MandatoryCleanup model, all landing pads
667   /// write the current selector value into this alloca.
668   llvm::AllocaInst *EHSelectorSlot = nullptr;
669 
670   /// A stack of exception code slots. Entering an __except block pushes a slot
671   /// on the stack and leaving pops one. The __exception_code() intrinsic loads
672   /// a value from the top of the stack.
673   SmallVector<Address, 1> SEHCodeSlotStack;
674 
675   /// Value returned by __exception_info intrinsic.
676   llvm::Value *SEHInfo = nullptr;
677 
678   /// Emits a landing pad for the current EH stack.
679   llvm::BasicBlock *EmitLandingPad();
680 
681   llvm::BasicBlock *getInvokeDestImpl();
682 
683   /// Parent loop-based directive for scan directive.
684   const OMPExecutableDirective *OMPParentLoopDirectiveForScan = nullptr;
685   llvm::BasicBlock *OMPBeforeScanBlock = nullptr;
686   llvm::BasicBlock *OMPAfterScanBlock = nullptr;
687   llvm::BasicBlock *OMPScanExitBlock = nullptr;
688   llvm::BasicBlock *OMPScanDispatch = nullptr;
689   bool OMPFirstScanLoop = false;
690 
691   /// Manages parent directive for scan directives.
692   class ParentLoopDirectiveForScanRegion {
693     CodeGenFunction &CGF;
694     const OMPExecutableDirective *ParentLoopDirectiveForScan;
695 
696   public:
697     ParentLoopDirectiveForScanRegion(
698         CodeGenFunction &CGF,
699         const OMPExecutableDirective &ParentLoopDirectiveForScan)
700         : CGF(CGF),
701           ParentLoopDirectiveForScan(CGF.OMPParentLoopDirectiveForScan) {
702       CGF.OMPParentLoopDirectiveForScan = &ParentLoopDirectiveForScan;
703     }
704     ~ParentLoopDirectiveForScanRegion() {
705       CGF.OMPParentLoopDirectiveForScan = ParentLoopDirectiveForScan;
706     }
707   };
708 
709   template <class T>
710   typename DominatingValue<T>::saved_type saveValueInCond(T value) {
711     return DominatingValue<T>::save(*this, value);
712   }
713 
714   class CGFPOptionsRAII {
715   public:
716     CGFPOptionsRAII(CodeGenFunction &CGF, FPOptions FPFeatures);
717     CGFPOptionsRAII(CodeGenFunction &CGF, const Expr *E);
718     ~CGFPOptionsRAII();
719 
720   private:
721     void ConstructorHelper(FPOptions FPFeatures);
722     CodeGenFunction &CGF;
723     FPOptions OldFPFeatures;
724     llvm::fp::ExceptionBehavior OldExcept;
725     llvm::RoundingMode OldRounding;
726     Optional<CGBuilderTy::FastMathFlagGuard> FMFGuard;
727   };
728   FPOptions CurFPFeatures;
729 
730 public:
731   /// ObjCEHValueStack - Stack of Objective-C exception values, used for
732   /// rethrows.
733   SmallVector<llvm::Value*, 8> ObjCEHValueStack;
734 
735   /// A class controlling the emission of a finally block.
736   class FinallyInfo {
737     /// Where the catchall's edge through the cleanup should go.
738     JumpDest RethrowDest;
739 
740     /// A function to call to enter the catch.
741     llvm::FunctionCallee BeginCatchFn;
742 
743     /// An i1 variable indicating whether or not the @finally is
744     /// running for an exception.
745     llvm::AllocaInst *ForEHVar;
746 
747     /// An i8* variable into which the exception pointer to rethrow
748     /// has been saved.
749     llvm::AllocaInst *SavedExnVar;
750 
751   public:
752     void enter(CodeGenFunction &CGF, const Stmt *Finally,
753                llvm::FunctionCallee beginCatchFn,
754                llvm::FunctionCallee endCatchFn, llvm::FunctionCallee rethrowFn);
755     void exit(CodeGenFunction &CGF);
756   };
757 
758   /// Returns true inside SEH __try blocks.
759   bool isSEHTryScope() const { return !SEHTryEpilogueStack.empty(); }
760 
761   /// Returns true while emitting a cleanuppad.
762   bool isCleanupPadScope() const {
763     return CurrentFuncletPad && isa<llvm::CleanupPadInst>(CurrentFuncletPad);
764   }
765 
766   /// pushFullExprCleanup - Push a cleanup to be run at the end of the
767   /// current full-expression.  Safe against the possibility that
768   /// we're currently inside a conditionally-evaluated expression.
769   template <class T, class... As>
770   void pushFullExprCleanup(CleanupKind kind, As... A) {
771     // If we're not in a conditional branch, or if none of the
772     // arguments requires saving, then use the unconditional cleanup.
773     if (!isInConditionalBranch())
774       return EHStack.pushCleanup<T>(kind, A...);
775 
776     // Stash values in a tuple so we can guarantee the order of saves.
777     typedef std::tuple<typename DominatingValue<As>::saved_type...> SavedTuple;
778     SavedTuple Saved{saveValueInCond(A)...};
779 
780     typedef EHScopeStack::ConditionalCleanup<T, As...> CleanupType;
781     EHStack.pushCleanupTuple<CleanupType>(kind, Saved);
782     initFullExprCleanup();
783   }
784 
785   /// Queue a cleanup to be pushed after finishing the current full-expression,
786   /// potentially with an active flag.
787   template <class T, class... As>
788   void pushCleanupAfterFullExpr(CleanupKind Kind, As... A) {
789     if (!isInConditionalBranch())
790       return pushCleanupAfterFullExprWithActiveFlag<T>(Kind, Address::invalid(),
791                                                        A...);
792 
793     Address ActiveFlag = createCleanupActiveFlag();
794     assert(!DominatingValue<Address>::needsSaving(ActiveFlag) &&
795            "cleanup active flag should never need saving");
796 
797     typedef std::tuple<typename DominatingValue<As>::saved_type...> SavedTuple;
798     SavedTuple Saved{saveValueInCond(A)...};
799 
800     typedef EHScopeStack::ConditionalCleanup<T, As...> CleanupType;
801     pushCleanupAfterFullExprWithActiveFlag<CleanupType>(Kind, ActiveFlag, Saved);
802   }
803 
804   template <class T, class... As>
805   void pushCleanupAfterFullExprWithActiveFlag(CleanupKind Kind,
806                                               Address ActiveFlag, As... A) {
807     LifetimeExtendedCleanupHeader Header = {sizeof(T), Kind,
808                                             ActiveFlag.isValid()};
809 
810     size_t OldSize = LifetimeExtendedCleanupStack.size();
811     LifetimeExtendedCleanupStack.resize(
812         LifetimeExtendedCleanupStack.size() + sizeof(Header) + Header.Size +
813         (Header.IsConditional ? sizeof(ActiveFlag) : 0));
814 
815     static_assert(sizeof(Header) % alignof(T) == 0,
816                   "Cleanup will be allocated on misaligned address");
817     char *Buffer = &LifetimeExtendedCleanupStack[OldSize];
818     new (Buffer) LifetimeExtendedCleanupHeader(Header);
819     new (Buffer + sizeof(Header)) T(A...);
820     if (Header.IsConditional)
821       new (Buffer + sizeof(Header) + sizeof(T)) Address(ActiveFlag);
822   }
823 
824   /// Set up the last cleanup that was pushed as a conditional
825   /// full-expression cleanup.
826   void initFullExprCleanup() {
827     initFullExprCleanupWithFlag(createCleanupActiveFlag());
828   }
829 
830   void initFullExprCleanupWithFlag(Address ActiveFlag);
831   Address createCleanupActiveFlag();
832 
833   /// PushDestructorCleanup - Push a cleanup to call the
834   /// complete-object destructor of an object of the given type at the
835   /// given address.  Does nothing if T is not a C++ class type with a
836   /// non-trivial destructor.
837   void PushDestructorCleanup(QualType T, Address Addr);
838 
839   /// PushDestructorCleanup - Push a cleanup to call the
840   /// complete-object variant of the given destructor on the object at
841   /// the given address.
842   void PushDestructorCleanup(const CXXDestructorDecl *Dtor, QualType T,
843                              Address Addr);
844 
845   /// PopCleanupBlock - Will pop the cleanup entry on the stack and
846   /// process all branch fixups.
847   void PopCleanupBlock(bool FallThroughIsBranchThrough = false);
848 
849   /// DeactivateCleanupBlock - Deactivates the given cleanup block.
850   /// The block cannot be reactivated.  Pops it if it's the top of the
851   /// stack.
852   ///
853   /// \param DominatingIP - An instruction which is known to
854   ///   dominate the current IP (if set) and which lies along
855   ///   all paths of execution between the current IP and the
856   ///   the point at which the cleanup comes into scope.
857   void DeactivateCleanupBlock(EHScopeStack::stable_iterator Cleanup,
858                               llvm::Instruction *DominatingIP);
859 
860   /// ActivateCleanupBlock - Activates an initially-inactive cleanup.
861   /// Cannot be used to resurrect a deactivated cleanup.
862   ///
863   /// \param DominatingIP - An instruction which is known to
864   ///   dominate the current IP (if set) and which lies along
865   ///   all paths of execution between the current IP and the
866   ///   the point at which the cleanup comes into scope.
867   void ActivateCleanupBlock(EHScopeStack::stable_iterator Cleanup,
868                             llvm::Instruction *DominatingIP);
869 
870   /// Enters a new scope for capturing cleanups, all of which
871   /// will be executed once the scope is exited.
872   class RunCleanupsScope {
873     EHScopeStack::stable_iterator CleanupStackDepth, OldCleanupScopeDepth;
874     size_t LifetimeExtendedCleanupStackSize;
875     bool OldDidCallStackSave;
876   protected:
877     bool PerformCleanup;
878   private:
879 
880     RunCleanupsScope(const RunCleanupsScope &) = delete;
881     void operator=(const RunCleanupsScope &) = delete;
882 
883   protected:
884     CodeGenFunction& CGF;
885 
886   public:
887     /// Enter a new cleanup scope.
888     explicit RunCleanupsScope(CodeGenFunction &CGF)
889       : PerformCleanup(true), CGF(CGF)
890     {
891       CleanupStackDepth = CGF.EHStack.stable_begin();
892       LifetimeExtendedCleanupStackSize =
893           CGF.LifetimeExtendedCleanupStack.size();
894       OldDidCallStackSave = CGF.DidCallStackSave;
895       CGF.DidCallStackSave = false;
896       OldCleanupScopeDepth = CGF.CurrentCleanupScopeDepth;
897       CGF.CurrentCleanupScopeDepth = CleanupStackDepth;
898     }
899 
900     /// Exit this cleanup scope, emitting any accumulated cleanups.
901     ~RunCleanupsScope() {
902       if (PerformCleanup)
903         ForceCleanup();
904     }
905 
906     /// Determine whether this scope requires any cleanups.
907     bool requiresCleanups() const {
908       return CGF.EHStack.stable_begin() != CleanupStackDepth;
909     }
910 
911     /// Force the emission of cleanups now, instead of waiting
912     /// until this object is destroyed.
913     /// \param ValuesToReload - A list of values that need to be available at
914     /// the insertion point after cleanup emission. If cleanup emission created
915     /// a shared cleanup block, these value pointers will be rewritten.
916     /// Otherwise, they not will be modified.
917     void ForceCleanup(std::initializer_list<llvm::Value**> ValuesToReload = {}) {
918       assert(PerformCleanup && "Already forced cleanup");
919       CGF.DidCallStackSave = OldDidCallStackSave;
920       CGF.PopCleanupBlocks(CleanupStackDepth, LifetimeExtendedCleanupStackSize,
921                            ValuesToReload);
922       PerformCleanup = false;
923       CGF.CurrentCleanupScopeDepth = OldCleanupScopeDepth;
924     }
925   };
926 
927   // Cleanup stack depth of the RunCleanupsScope that was pushed most recently.
928   EHScopeStack::stable_iterator CurrentCleanupScopeDepth =
929       EHScopeStack::stable_end();
930 
931   class LexicalScope : public RunCleanupsScope {
932     SourceRange Range;
933     SmallVector<const LabelDecl*, 4> Labels;
934     LexicalScope *ParentScope;
935 
936     LexicalScope(const LexicalScope &) = delete;
937     void operator=(const LexicalScope &) = delete;
938 
939   public:
940     /// Enter a new cleanup scope.
941     explicit LexicalScope(CodeGenFunction &CGF, SourceRange Range)
942       : RunCleanupsScope(CGF), Range(Range), ParentScope(CGF.CurLexicalScope) {
943       CGF.CurLexicalScope = this;
944       if (CGDebugInfo *DI = CGF.getDebugInfo())
945         DI->EmitLexicalBlockStart(CGF.Builder, Range.getBegin());
946     }
947 
948     void addLabel(const LabelDecl *label) {
949       assert(PerformCleanup && "adding label to dead scope?");
950       Labels.push_back(label);
951     }
952 
953     /// Exit this cleanup scope, emitting any accumulated
954     /// cleanups.
955     ~LexicalScope() {
956       if (CGDebugInfo *DI = CGF.getDebugInfo())
957         DI->EmitLexicalBlockEnd(CGF.Builder, Range.getEnd());
958 
959       // If we should perform a cleanup, force them now.  Note that
960       // this ends the cleanup scope before rescoping any labels.
961       if (PerformCleanup) {
962         ApplyDebugLocation DL(CGF, Range.getEnd());
963         ForceCleanup();
964       }
965     }
966 
967     /// Force the emission of cleanups now, instead of waiting
968     /// until this object is destroyed.
969     void ForceCleanup() {
970       CGF.CurLexicalScope = ParentScope;
971       RunCleanupsScope::ForceCleanup();
972 
973       if (!Labels.empty())
974         rescopeLabels();
975     }
976 
977     bool hasLabels() const {
978       return !Labels.empty();
979     }
980 
981     void rescopeLabels();
982   };
983 
984   typedef llvm::DenseMap<const Decl *, Address> DeclMapTy;
985 
986   /// The class used to assign some variables some temporarily addresses.
987   class OMPMapVars {
988     DeclMapTy SavedLocals;
989     DeclMapTy SavedTempAddresses;
990     OMPMapVars(const OMPMapVars &) = delete;
991     void operator=(const OMPMapVars &) = delete;
992 
993   public:
994     explicit OMPMapVars() = default;
995     ~OMPMapVars() {
996       assert(SavedLocals.empty() && "Did not restored original addresses.");
997     };
998 
999     /// Sets the address of the variable \p LocalVD to be \p TempAddr in
1000     /// function \p CGF.
1001     /// \return true if at least one variable was set already, false otherwise.
1002     bool setVarAddr(CodeGenFunction &CGF, const VarDecl *LocalVD,
1003                     Address TempAddr) {
1004       LocalVD = LocalVD->getCanonicalDecl();
1005       // Only save it once.
1006       if (SavedLocals.count(LocalVD)) return false;
1007 
1008       // Copy the existing local entry to SavedLocals.
1009       auto it = CGF.LocalDeclMap.find(LocalVD);
1010       if (it != CGF.LocalDeclMap.end())
1011         SavedLocals.try_emplace(LocalVD, it->second);
1012       else
1013         SavedLocals.try_emplace(LocalVD, Address::invalid());
1014 
1015       // Generate the private entry.
1016       QualType VarTy = LocalVD->getType();
1017       if (VarTy->isReferenceType()) {
1018         Address Temp = CGF.CreateMemTemp(VarTy);
1019         CGF.Builder.CreateStore(TempAddr.getPointer(), Temp);
1020         TempAddr = Temp;
1021       }
1022       SavedTempAddresses.try_emplace(LocalVD, TempAddr);
1023 
1024       return true;
1025     }
1026 
1027     /// Applies new addresses to the list of the variables.
1028     /// \return true if at least one variable is using new address, false
1029     /// otherwise.
1030     bool apply(CodeGenFunction &CGF) {
1031       copyInto(SavedTempAddresses, CGF.LocalDeclMap);
1032       SavedTempAddresses.clear();
1033       return !SavedLocals.empty();
1034     }
1035 
1036     /// Restores original addresses of the variables.
1037     void restore(CodeGenFunction &CGF) {
1038       if (!SavedLocals.empty()) {
1039         copyInto(SavedLocals, CGF.LocalDeclMap);
1040         SavedLocals.clear();
1041       }
1042     }
1043 
1044   private:
1045     /// Copy all the entries in the source map over the corresponding
1046     /// entries in the destination, which must exist.
1047     static void copyInto(const DeclMapTy &Src, DeclMapTy &Dest) {
1048       for (auto &Pair : Src) {
1049         if (!Pair.second.isValid()) {
1050           Dest.erase(Pair.first);
1051           continue;
1052         }
1053 
1054         auto I = Dest.find(Pair.first);
1055         if (I != Dest.end())
1056           I->second = Pair.second;
1057         else
1058           Dest.insert(Pair);
1059       }
1060     }
1061   };
1062 
1063   /// The scope used to remap some variables as private in the OpenMP loop body
1064   /// (or other captured region emitted without outlining), and to restore old
1065   /// vars back on exit.
1066   class OMPPrivateScope : public RunCleanupsScope {
1067     OMPMapVars MappedVars;
1068     OMPPrivateScope(const OMPPrivateScope &) = delete;
1069     void operator=(const OMPPrivateScope &) = delete;
1070 
1071   public:
1072     /// Enter a new OpenMP private scope.
1073     explicit OMPPrivateScope(CodeGenFunction &CGF) : RunCleanupsScope(CGF) {}
1074 
1075     /// Registers \p LocalVD variable as a private with \p Addr as the address
1076     /// of the corresponding private variable. \p
1077     /// PrivateGen is the address of the generated private variable.
1078     /// \return true if the variable is registered as private, false if it has
1079     /// been privatized already.
1080     bool addPrivate(const VarDecl *LocalVD, Address Addr) {
1081       assert(PerformCleanup && "adding private to dead scope");
1082       return MappedVars.setVarAddr(CGF, LocalVD, Addr);
1083     }
1084 
1085     /// Privatizes local variables previously registered as private.
1086     /// Registration is separate from the actual privatization to allow
1087     /// initializers use values of the original variables, not the private one.
1088     /// This is important, for example, if the private variable is a class
1089     /// variable initialized by a constructor that references other private
1090     /// variables. But at initialization original variables must be used, not
1091     /// private copies.
1092     /// \return true if at least one variable was privatized, false otherwise.
1093     bool Privatize() { return MappedVars.apply(CGF); }
1094 
1095     void ForceCleanup() {
1096       RunCleanupsScope::ForceCleanup();
1097       MappedVars.restore(CGF);
1098     }
1099 
1100     /// Exit scope - all the mapped variables are restored.
1101     ~OMPPrivateScope() {
1102       if (PerformCleanup)
1103         ForceCleanup();
1104     }
1105 
1106     /// Checks if the global variable is captured in current function.
1107     bool isGlobalVarCaptured(const VarDecl *VD) const {
1108       VD = VD->getCanonicalDecl();
1109       return !VD->isLocalVarDeclOrParm() && CGF.LocalDeclMap.count(VD) > 0;
1110     }
1111   };
1112 
1113   /// Save/restore original map of previously emitted local vars in case when we
1114   /// need to duplicate emission of the same code several times in the same
1115   /// function for OpenMP code.
1116   class OMPLocalDeclMapRAII {
1117     CodeGenFunction &CGF;
1118     DeclMapTy SavedMap;
1119 
1120   public:
1121     OMPLocalDeclMapRAII(CodeGenFunction &CGF)
1122         : CGF(CGF), SavedMap(CGF.LocalDeclMap) {}
1123     ~OMPLocalDeclMapRAII() { SavedMap.swap(CGF.LocalDeclMap); }
1124   };
1125 
1126   /// Takes the old cleanup stack size and emits the cleanup blocks
1127   /// that have been added.
1128   void
1129   PopCleanupBlocks(EHScopeStack::stable_iterator OldCleanupStackSize,
1130                    std::initializer_list<llvm::Value **> ValuesToReload = {});
1131 
1132   /// Takes the old cleanup stack size and emits the cleanup blocks
1133   /// that have been added, then adds all lifetime-extended cleanups from
1134   /// the given position to the stack.
1135   void
1136   PopCleanupBlocks(EHScopeStack::stable_iterator OldCleanupStackSize,
1137                    size_t OldLifetimeExtendedStackSize,
1138                    std::initializer_list<llvm::Value **> ValuesToReload = {});
1139 
1140   void ResolveBranchFixups(llvm::BasicBlock *Target);
1141 
1142   /// The given basic block lies in the current EH scope, but may be a
1143   /// target of a potentially scope-crossing jump; get a stable handle
1144   /// to which we can perform this jump later.
1145   JumpDest getJumpDestInCurrentScope(llvm::BasicBlock *Target) {
1146     return JumpDest(Target,
1147                     EHStack.getInnermostNormalCleanup(),
1148                     NextCleanupDestIndex++);
1149   }
1150 
1151   /// The given basic block lies in the current EH scope, but may be a
1152   /// target of a potentially scope-crossing jump; get a stable handle
1153   /// to which we can perform this jump later.
1154   JumpDest getJumpDestInCurrentScope(StringRef Name = StringRef()) {
1155     return getJumpDestInCurrentScope(createBasicBlock(Name));
1156   }
1157 
1158   /// EmitBranchThroughCleanup - Emit a branch from the current insert
1159   /// block through the normal cleanup handling code (if any) and then
1160   /// on to \arg Dest.
1161   void EmitBranchThroughCleanup(JumpDest Dest);
1162 
1163   /// isObviouslyBranchWithoutCleanups - Return true if a branch to the
1164   /// specified destination obviously has no cleanups to run.  'false' is always
1165   /// a conservatively correct answer for this method.
1166   bool isObviouslyBranchWithoutCleanups(JumpDest Dest) const;
1167 
1168   /// popCatchScope - Pops the catch scope at the top of the EHScope
1169   /// stack, emitting any required code (other than the catch handlers
1170   /// themselves).
1171   void popCatchScope();
1172 
1173   llvm::BasicBlock *getEHResumeBlock(bool isCleanup);
1174   llvm::BasicBlock *getEHDispatchBlock(EHScopeStack::stable_iterator scope);
1175   llvm::BasicBlock *
1176   getFuncletEHDispatchBlock(EHScopeStack::stable_iterator scope);
1177 
1178   /// An object to manage conditionally-evaluated expressions.
1179   class ConditionalEvaluation {
1180     llvm::BasicBlock *StartBB;
1181 
1182   public:
1183     ConditionalEvaluation(CodeGenFunction &CGF)
1184       : StartBB(CGF.Builder.GetInsertBlock()) {}
1185 
1186     void begin(CodeGenFunction &CGF) {
1187       assert(CGF.OutermostConditional != this);
1188       if (!CGF.OutermostConditional)
1189         CGF.OutermostConditional = this;
1190     }
1191 
1192     void end(CodeGenFunction &CGF) {
1193       assert(CGF.OutermostConditional != nullptr);
1194       if (CGF.OutermostConditional == this)
1195         CGF.OutermostConditional = nullptr;
1196     }
1197 
1198     /// Returns a block which will be executed prior to each
1199     /// evaluation of the conditional code.
1200     llvm::BasicBlock *getStartingBlock() const {
1201       return StartBB;
1202     }
1203   };
1204 
1205   /// isInConditionalBranch - Return true if we're currently emitting
1206   /// one branch or the other of a conditional expression.
1207   bool isInConditionalBranch() const { return OutermostConditional != nullptr; }
1208 
1209   void setBeforeOutermostConditional(llvm::Value *value, Address addr) {
1210     assert(isInConditionalBranch());
1211     llvm::BasicBlock *block = OutermostConditional->getStartingBlock();
1212     auto store = new llvm::StoreInst(value, addr.getPointer(), &block->back());
1213     store->setAlignment(addr.getAlignment().getAsAlign());
1214   }
1215 
1216   /// An RAII object to record that we're evaluating a statement
1217   /// expression.
1218   class StmtExprEvaluation {
1219     CodeGenFunction &CGF;
1220 
1221     /// We have to save the outermost conditional: cleanups in a
1222     /// statement expression aren't conditional just because the
1223     /// StmtExpr is.
1224     ConditionalEvaluation *SavedOutermostConditional;
1225 
1226   public:
1227     StmtExprEvaluation(CodeGenFunction &CGF)
1228       : CGF(CGF), SavedOutermostConditional(CGF.OutermostConditional) {
1229       CGF.OutermostConditional = nullptr;
1230     }
1231 
1232     ~StmtExprEvaluation() {
1233       CGF.OutermostConditional = SavedOutermostConditional;
1234       CGF.EnsureInsertPoint();
1235     }
1236   };
1237 
1238   /// An object which temporarily prevents a value from being
1239   /// destroyed by aggressive peephole optimizations that assume that
1240   /// all uses of a value have been realized in the IR.
1241   class PeepholeProtection {
1242     llvm::Instruction *Inst;
1243     friend class CodeGenFunction;
1244 
1245   public:
1246     PeepholeProtection() : Inst(nullptr) {}
1247   };
1248 
1249   /// A non-RAII class containing all the information about a bound
1250   /// opaque value.  OpaqueValueMapping, below, is a RAII wrapper for
1251   /// this which makes individual mappings very simple; using this
1252   /// class directly is useful when you have a variable number of
1253   /// opaque values or don't want the RAII functionality for some
1254   /// reason.
1255   class OpaqueValueMappingData {
1256     const OpaqueValueExpr *OpaqueValue;
1257     bool BoundLValue;
1258     CodeGenFunction::PeepholeProtection Protection;
1259 
1260     OpaqueValueMappingData(const OpaqueValueExpr *ov,
1261                            bool boundLValue)
1262       : OpaqueValue(ov), BoundLValue(boundLValue) {}
1263   public:
1264     OpaqueValueMappingData() : OpaqueValue(nullptr) {}
1265 
1266     static bool shouldBindAsLValue(const Expr *expr) {
1267       // gl-values should be bound as l-values for obvious reasons.
1268       // Records should be bound as l-values because IR generation
1269       // always keeps them in memory.  Expressions of function type
1270       // act exactly like l-values but are formally required to be
1271       // r-values in C.
1272       return expr->isGLValue() ||
1273              expr->getType()->isFunctionType() ||
1274              hasAggregateEvaluationKind(expr->getType());
1275     }
1276 
1277     static OpaqueValueMappingData bind(CodeGenFunction &CGF,
1278                                        const OpaqueValueExpr *ov,
1279                                        const Expr *e) {
1280       if (shouldBindAsLValue(ov))
1281         return bind(CGF, ov, CGF.EmitLValue(e));
1282       return bind(CGF, ov, CGF.EmitAnyExpr(e));
1283     }
1284 
1285     static OpaqueValueMappingData bind(CodeGenFunction &CGF,
1286                                        const OpaqueValueExpr *ov,
1287                                        const LValue &lv) {
1288       assert(shouldBindAsLValue(ov));
1289       CGF.OpaqueLValues.insert(std::make_pair(ov, lv));
1290       return OpaqueValueMappingData(ov, true);
1291     }
1292 
1293     static OpaqueValueMappingData bind(CodeGenFunction &CGF,
1294                                        const OpaqueValueExpr *ov,
1295                                        const RValue &rv) {
1296       assert(!shouldBindAsLValue(ov));
1297       CGF.OpaqueRValues.insert(std::make_pair(ov, rv));
1298 
1299       OpaqueValueMappingData data(ov, false);
1300 
1301       // Work around an extremely aggressive peephole optimization in
1302       // EmitScalarConversion which assumes that all other uses of a
1303       // value are extant.
1304       data.Protection = CGF.protectFromPeepholes(rv);
1305 
1306       return data;
1307     }
1308 
1309     bool isValid() const { return OpaqueValue != nullptr; }
1310     void clear() { OpaqueValue = nullptr; }
1311 
1312     void unbind(CodeGenFunction &CGF) {
1313       assert(OpaqueValue && "no data to unbind!");
1314 
1315       if (BoundLValue) {
1316         CGF.OpaqueLValues.erase(OpaqueValue);
1317       } else {
1318         CGF.OpaqueRValues.erase(OpaqueValue);
1319         CGF.unprotectFromPeepholes(Protection);
1320       }
1321     }
1322   };
1323 
1324   /// An RAII object to set (and then clear) a mapping for an OpaqueValueExpr.
1325   class OpaqueValueMapping {
1326     CodeGenFunction &CGF;
1327     OpaqueValueMappingData Data;
1328 
1329   public:
1330     static bool shouldBindAsLValue(const Expr *expr) {
1331       return OpaqueValueMappingData::shouldBindAsLValue(expr);
1332     }
1333 
1334     /// Build the opaque value mapping for the given conditional
1335     /// operator if it's the GNU ?: extension.  This is a common
1336     /// enough pattern that the convenience operator is really
1337     /// helpful.
1338     ///
1339     OpaqueValueMapping(CodeGenFunction &CGF,
1340                        const AbstractConditionalOperator *op) : CGF(CGF) {
1341       if (isa<ConditionalOperator>(op))
1342         // Leave Data empty.
1343         return;
1344 
1345       const BinaryConditionalOperator *e = cast<BinaryConditionalOperator>(op);
1346       Data = OpaqueValueMappingData::bind(CGF, e->getOpaqueValue(),
1347                                           e->getCommon());
1348     }
1349 
1350     /// Build the opaque value mapping for an OpaqueValueExpr whose source
1351     /// expression is set to the expression the OVE represents.
1352     OpaqueValueMapping(CodeGenFunction &CGF, const OpaqueValueExpr *OV)
1353         : CGF(CGF) {
1354       if (OV) {
1355         assert(OV->getSourceExpr() && "wrong form of OpaqueValueMapping used "
1356                                       "for OVE with no source expression");
1357         Data = OpaqueValueMappingData::bind(CGF, OV, OV->getSourceExpr());
1358       }
1359     }
1360 
1361     OpaqueValueMapping(CodeGenFunction &CGF,
1362                        const OpaqueValueExpr *opaqueValue,
1363                        LValue lvalue)
1364       : CGF(CGF), Data(OpaqueValueMappingData::bind(CGF, opaqueValue, lvalue)) {
1365     }
1366 
1367     OpaqueValueMapping(CodeGenFunction &CGF,
1368                        const OpaqueValueExpr *opaqueValue,
1369                        RValue rvalue)
1370       : CGF(CGF), Data(OpaqueValueMappingData::bind(CGF, opaqueValue, rvalue)) {
1371     }
1372 
1373     void pop() {
1374       Data.unbind(CGF);
1375       Data.clear();
1376     }
1377 
1378     ~OpaqueValueMapping() {
1379       if (Data.isValid()) Data.unbind(CGF);
1380     }
1381   };
1382 
1383 private:
1384   CGDebugInfo *DebugInfo;
1385   /// Used to create unique names for artificial VLA size debug info variables.
1386   unsigned VLAExprCounter = 0;
1387   bool DisableDebugInfo = false;
1388 
1389   /// DidCallStackSave - Whether llvm.stacksave has been called. Used to avoid
1390   /// calling llvm.stacksave for multiple VLAs in the same scope.
1391   bool DidCallStackSave = false;
1392 
1393   /// IndirectBranch - The first time an indirect goto is seen we create a block
1394   /// with an indirect branch.  Every time we see the address of a label taken,
1395   /// we add the label to the indirect goto.  Every subsequent indirect goto is
1396   /// codegen'd as a jump to the IndirectBranch's basic block.
1397   llvm::IndirectBrInst *IndirectBranch = nullptr;
1398 
1399   /// LocalDeclMap - This keeps track of the LLVM allocas or globals for local C
1400   /// decls.
1401   DeclMapTy LocalDeclMap;
1402 
1403   // Keep track of the cleanups for callee-destructed parameters pushed to the
1404   // cleanup stack so that they can be deactivated later.
1405   llvm::DenseMap<const ParmVarDecl *, EHScopeStack::stable_iterator>
1406       CalleeDestructedParamCleanups;
1407 
1408   /// SizeArguments - If a ParmVarDecl had the pass_object_size attribute, this
1409   /// will contain a mapping from said ParmVarDecl to its implicit "object_size"
1410   /// parameter.
1411   llvm::SmallDenseMap<const ParmVarDecl *, const ImplicitParamDecl *, 2>
1412       SizeArguments;
1413 
1414   /// Track escaped local variables with auto storage. Used during SEH
1415   /// outlining to produce a call to llvm.localescape.
1416   llvm::DenseMap<llvm::AllocaInst *, int> EscapedLocals;
1417 
1418   /// LabelMap - This keeps track of the LLVM basic block for each C label.
1419   llvm::DenseMap<const LabelDecl*, JumpDest> LabelMap;
1420 
1421   // BreakContinueStack - This keeps track of where break and continue
1422   // statements should jump to.
1423   struct BreakContinue {
1424     BreakContinue(JumpDest Break, JumpDest Continue)
1425       : BreakBlock(Break), ContinueBlock(Continue) {}
1426 
1427     JumpDest BreakBlock;
1428     JumpDest ContinueBlock;
1429   };
1430   SmallVector<BreakContinue, 8> BreakContinueStack;
1431 
1432   /// Handles cancellation exit points in OpenMP-related constructs.
1433   class OpenMPCancelExitStack {
1434     /// Tracks cancellation exit point and join point for cancel-related exit
1435     /// and normal exit.
1436     struct CancelExit {
1437       CancelExit() = default;
1438       CancelExit(OpenMPDirectiveKind Kind, JumpDest ExitBlock,
1439                  JumpDest ContBlock)
1440           : Kind(Kind), ExitBlock(ExitBlock), ContBlock(ContBlock) {}
1441       OpenMPDirectiveKind Kind = llvm::omp::OMPD_unknown;
1442       /// true if the exit block has been emitted already by the special
1443       /// emitExit() call, false if the default codegen is used.
1444       bool HasBeenEmitted = false;
1445       JumpDest ExitBlock;
1446       JumpDest ContBlock;
1447     };
1448 
1449     SmallVector<CancelExit, 8> Stack;
1450 
1451   public:
1452     OpenMPCancelExitStack() : Stack(1) {}
1453     ~OpenMPCancelExitStack() = default;
1454     /// Fetches the exit block for the current OpenMP construct.
1455     JumpDest getExitBlock() const { return Stack.back().ExitBlock; }
1456     /// Emits exit block with special codegen procedure specific for the related
1457     /// OpenMP construct + emits code for normal construct cleanup.
1458     void emitExit(CodeGenFunction &CGF, OpenMPDirectiveKind Kind,
1459                   const llvm::function_ref<void(CodeGenFunction &)> CodeGen) {
1460       if (Stack.back().Kind == Kind && getExitBlock().isValid()) {
1461         assert(CGF.getOMPCancelDestination(Kind).isValid());
1462         assert(CGF.HaveInsertPoint());
1463         assert(!Stack.back().HasBeenEmitted);
1464         auto IP = CGF.Builder.saveAndClearIP();
1465         CGF.EmitBlock(Stack.back().ExitBlock.getBlock());
1466         CodeGen(CGF);
1467         CGF.EmitBranch(Stack.back().ContBlock.getBlock());
1468         CGF.Builder.restoreIP(IP);
1469         Stack.back().HasBeenEmitted = true;
1470       }
1471       CodeGen(CGF);
1472     }
1473     /// Enter the cancel supporting \a Kind construct.
1474     /// \param Kind OpenMP directive that supports cancel constructs.
1475     /// \param HasCancel true, if the construct has inner cancel directive,
1476     /// false otherwise.
1477     void enter(CodeGenFunction &CGF, OpenMPDirectiveKind Kind, bool HasCancel) {
1478       Stack.push_back({Kind,
1479                        HasCancel ? CGF.getJumpDestInCurrentScope("cancel.exit")
1480                                  : JumpDest(),
1481                        HasCancel ? CGF.getJumpDestInCurrentScope("cancel.cont")
1482                                  : JumpDest()});
1483     }
1484     /// Emits default exit point for the cancel construct (if the special one
1485     /// has not be used) + join point for cancel/normal exits.
1486     void exit(CodeGenFunction &CGF) {
1487       if (getExitBlock().isValid()) {
1488         assert(CGF.getOMPCancelDestination(Stack.back().Kind).isValid());
1489         bool HaveIP = CGF.HaveInsertPoint();
1490         if (!Stack.back().HasBeenEmitted) {
1491           if (HaveIP)
1492             CGF.EmitBranchThroughCleanup(Stack.back().ContBlock);
1493           CGF.EmitBlock(Stack.back().ExitBlock.getBlock());
1494           CGF.EmitBranchThroughCleanup(Stack.back().ContBlock);
1495         }
1496         CGF.EmitBlock(Stack.back().ContBlock.getBlock());
1497         if (!HaveIP) {
1498           CGF.Builder.CreateUnreachable();
1499           CGF.Builder.ClearInsertionPoint();
1500         }
1501       }
1502       Stack.pop_back();
1503     }
1504   };
1505   OpenMPCancelExitStack OMPCancelStack;
1506 
1507   /// Lower the Likelihood knowledge about the \p Cond via llvm.expect intrin.
1508   llvm::Value *emitCondLikelihoodViaExpectIntrinsic(llvm::Value *Cond,
1509                                                     Stmt::Likelihood LH);
1510 
1511   CodeGenPGO PGO;
1512 
1513   /// Calculate branch weights appropriate for PGO data
1514   llvm::MDNode *createProfileWeights(uint64_t TrueCount,
1515                                      uint64_t FalseCount) const;
1516   llvm::MDNode *createProfileWeights(ArrayRef<uint64_t> Weights) const;
1517   llvm::MDNode *createProfileWeightsForLoop(const Stmt *Cond,
1518                                             uint64_t LoopCount) const;
1519 
1520 public:
1521   /// Increment the profiler's counter for the given statement by \p StepV.
1522   /// If \p StepV is null, the default increment is 1.
1523   void incrementProfileCounter(const Stmt *S, llvm::Value *StepV = nullptr) {
1524     if (CGM.getCodeGenOpts().hasProfileClangInstr() &&
1525         !CurFn->hasFnAttribute(llvm::Attribute::NoProfile))
1526       PGO.emitCounterIncrement(Builder, S, StepV);
1527     PGO.setCurrentStmt(S);
1528   }
1529 
1530   /// Get the profiler's count for the given statement.
1531   uint64_t getProfileCount(const Stmt *S) {
1532     Optional<uint64_t> Count = PGO.getStmtCount(S);
1533     if (!Count.hasValue())
1534       return 0;
1535     return *Count;
1536   }
1537 
1538   /// Set the profiler's current count.
1539   void setCurrentProfileCount(uint64_t Count) {
1540     PGO.setCurrentRegionCount(Count);
1541   }
1542 
1543   /// Get the profiler's current count. This is generally the count for the most
1544   /// recently incremented counter.
1545   uint64_t getCurrentProfileCount() {
1546     return PGO.getCurrentRegionCount();
1547   }
1548 
1549 private:
1550 
1551   /// SwitchInsn - This is nearest current switch instruction. It is null if
1552   /// current context is not in a switch.
1553   llvm::SwitchInst *SwitchInsn = nullptr;
1554   /// The branch weights of SwitchInsn when doing instrumentation based PGO.
1555   SmallVector<uint64_t, 16> *SwitchWeights = nullptr;
1556 
1557   /// The likelihood attributes of the SwitchCase.
1558   SmallVector<Stmt::Likelihood, 16> *SwitchLikelihood = nullptr;
1559 
1560   /// CaseRangeBlock - This block holds if condition check for last case
1561   /// statement range in current switch instruction.
1562   llvm::BasicBlock *CaseRangeBlock = nullptr;
1563 
1564   /// OpaqueLValues - Keeps track of the current set of opaque value
1565   /// expressions.
1566   llvm::DenseMap<const OpaqueValueExpr *, LValue> OpaqueLValues;
1567   llvm::DenseMap<const OpaqueValueExpr *, RValue> OpaqueRValues;
1568 
1569   // VLASizeMap - This keeps track of the associated size for each VLA type.
1570   // We track this by the size expression rather than the type itself because
1571   // in certain situations, like a const qualifier applied to an VLA typedef,
1572   // multiple VLA types can share the same size expression.
1573   // FIXME: Maybe this could be a stack of maps that is pushed/popped as we
1574   // enter/leave scopes.
1575   llvm::DenseMap<const Expr*, llvm::Value*> VLASizeMap;
1576 
1577   /// A block containing a single 'unreachable' instruction.  Created
1578   /// lazily by getUnreachableBlock().
1579   llvm::BasicBlock *UnreachableBlock = nullptr;
1580 
1581   /// Counts of the number return expressions in the function.
1582   unsigned NumReturnExprs = 0;
1583 
1584   /// Count the number of simple (constant) return expressions in the function.
1585   unsigned NumSimpleReturnExprs = 0;
1586 
1587   /// The last regular (non-return) debug location (breakpoint) in the function.
1588   SourceLocation LastStopPoint;
1589 
1590 public:
1591   /// Source location information about the default argument or member
1592   /// initializer expression we're evaluating, if any.
1593   CurrentSourceLocExprScope CurSourceLocExprScope;
1594   using SourceLocExprScopeGuard =
1595       CurrentSourceLocExprScope::SourceLocExprScopeGuard;
1596 
1597   /// A scope within which we are constructing the fields of an object which
1598   /// might use a CXXDefaultInitExpr. This stashes away a 'this' value to use
1599   /// if we need to evaluate a CXXDefaultInitExpr within the evaluation.
1600   class FieldConstructionScope {
1601   public:
1602     FieldConstructionScope(CodeGenFunction &CGF, Address This)
1603         : CGF(CGF), OldCXXDefaultInitExprThis(CGF.CXXDefaultInitExprThis) {
1604       CGF.CXXDefaultInitExprThis = This;
1605     }
1606     ~FieldConstructionScope() {
1607       CGF.CXXDefaultInitExprThis = OldCXXDefaultInitExprThis;
1608     }
1609 
1610   private:
1611     CodeGenFunction &CGF;
1612     Address OldCXXDefaultInitExprThis;
1613   };
1614 
1615   /// The scope of a CXXDefaultInitExpr. Within this scope, the value of 'this'
1616   /// is overridden to be the object under construction.
1617   class CXXDefaultInitExprScope  {
1618   public:
1619     CXXDefaultInitExprScope(CodeGenFunction &CGF, const CXXDefaultInitExpr *E)
1620         : CGF(CGF), OldCXXThisValue(CGF.CXXThisValue),
1621           OldCXXThisAlignment(CGF.CXXThisAlignment),
1622           SourceLocScope(E, CGF.CurSourceLocExprScope) {
1623       CGF.CXXThisValue = CGF.CXXDefaultInitExprThis.getPointer();
1624       CGF.CXXThisAlignment = CGF.CXXDefaultInitExprThis.getAlignment();
1625     }
1626     ~CXXDefaultInitExprScope() {
1627       CGF.CXXThisValue = OldCXXThisValue;
1628       CGF.CXXThisAlignment = OldCXXThisAlignment;
1629     }
1630 
1631   public:
1632     CodeGenFunction &CGF;
1633     llvm::Value *OldCXXThisValue;
1634     CharUnits OldCXXThisAlignment;
1635     SourceLocExprScopeGuard SourceLocScope;
1636   };
1637 
1638   struct CXXDefaultArgExprScope : SourceLocExprScopeGuard {
1639     CXXDefaultArgExprScope(CodeGenFunction &CGF, const CXXDefaultArgExpr *E)
1640         : SourceLocExprScopeGuard(E, CGF.CurSourceLocExprScope) {}
1641   };
1642 
1643   /// The scope of an ArrayInitLoopExpr. Within this scope, the value of the
1644   /// current loop index is overridden.
1645   class ArrayInitLoopExprScope {
1646   public:
1647     ArrayInitLoopExprScope(CodeGenFunction &CGF, llvm::Value *Index)
1648       : CGF(CGF), OldArrayInitIndex(CGF.ArrayInitIndex) {
1649       CGF.ArrayInitIndex = Index;
1650     }
1651     ~ArrayInitLoopExprScope() {
1652       CGF.ArrayInitIndex = OldArrayInitIndex;
1653     }
1654 
1655   private:
1656     CodeGenFunction &CGF;
1657     llvm::Value *OldArrayInitIndex;
1658   };
1659 
1660   class InlinedInheritingConstructorScope {
1661   public:
1662     InlinedInheritingConstructorScope(CodeGenFunction &CGF, GlobalDecl GD)
1663         : CGF(CGF), OldCurGD(CGF.CurGD), OldCurFuncDecl(CGF.CurFuncDecl),
1664           OldCurCodeDecl(CGF.CurCodeDecl),
1665           OldCXXABIThisDecl(CGF.CXXABIThisDecl),
1666           OldCXXABIThisValue(CGF.CXXABIThisValue),
1667           OldCXXThisValue(CGF.CXXThisValue),
1668           OldCXXABIThisAlignment(CGF.CXXABIThisAlignment),
1669           OldCXXThisAlignment(CGF.CXXThisAlignment),
1670           OldReturnValue(CGF.ReturnValue), OldFnRetTy(CGF.FnRetTy),
1671           OldCXXInheritedCtorInitExprArgs(
1672               std::move(CGF.CXXInheritedCtorInitExprArgs)) {
1673       CGF.CurGD = GD;
1674       CGF.CurFuncDecl = CGF.CurCodeDecl =
1675           cast<CXXConstructorDecl>(GD.getDecl());
1676       CGF.CXXABIThisDecl = nullptr;
1677       CGF.CXXABIThisValue = nullptr;
1678       CGF.CXXThisValue = nullptr;
1679       CGF.CXXABIThisAlignment = CharUnits();
1680       CGF.CXXThisAlignment = CharUnits();
1681       CGF.ReturnValue = Address::invalid();
1682       CGF.FnRetTy = QualType();
1683       CGF.CXXInheritedCtorInitExprArgs.clear();
1684     }
1685     ~InlinedInheritingConstructorScope() {
1686       CGF.CurGD = OldCurGD;
1687       CGF.CurFuncDecl = OldCurFuncDecl;
1688       CGF.CurCodeDecl = OldCurCodeDecl;
1689       CGF.CXXABIThisDecl = OldCXXABIThisDecl;
1690       CGF.CXXABIThisValue = OldCXXABIThisValue;
1691       CGF.CXXThisValue = OldCXXThisValue;
1692       CGF.CXXABIThisAlignment = OldCXXABIThisAlignment;
1693       CGF.CXXThisAlignment = OldCXXThisAlignment;
1694       CGF.ReturnValue = OldReturnValue;
1695       CGF.FnRetTy = OldFnRetTy;
1696       CGF.CXXInheritedCtorInitExprArgs =
1697           std::move(OldCXXInheritedCtorInitExprArgs);
1698     }
1699 
1700   private:
1701     CodeGenFunction &CGF;
1702     GlobalDecl OldCurGD;
1703     const Decl *OldCurFuncDecl;
1704     const Decl *OldCurCodeDecl;
1705     ImplicitParamDecl *OldCXXABIThisDecl;
1706     llvm::Value *OldCXXABIThisValue;
1707     llvm::Value *OldCXXThisValue;
1708     CharUnits OldCXXABIThisAlignment;
1709     CharUnits OldCXXThisAlignment;
1710     Address OldReturnValue;
1711     QualType OldFnRetTy;
1712     CallArgList OldCXXInheritedCtorInitExprArgs;
1713   };
1714 
1715   // Helper class for the OpenMP IR Builder. Allows reusability of code used for
1716   // region body, and finalization codegen callbacks. This will class will also
1717   // contain privatization functions used by the privatization call backs
1718   //
1719   // TODO: this is temporary class for things that are being moved out of
1720   // CGOpenMPRuntime, new versions of current CodeGenFunction methods, or
1721   // utility function for use with the OMPBuilder. Once that move to use the
1722   // OMPBuilder is done, everything here will either become part of CodeGenFunc.
1723   // directly, or a new helper class that will contain functions used by both
1724   // this and the OMPBuilder
1725 
1726   struct OMPBuilderCBHelpers {
1727 
1728     OMPBuilderCBHelpers() = delete;
1729     OMPBuilderCBHelpers(const OMPBuilderCBHelpers &) = delete;
1730     OMPBuilderCBHelpers &operator=(const OMPBuilderCBHelpers &) = delete;
1731 
1732     using InsertPointTy = llvm::OpenMPIRBuilder::InsertPointTy;
1733 
1734     /// Cleanup action for allocate support.
1735     class OMPAllocateCleanupTy final : public EHScopeStack::Cleanup {
1736 
1737     private:
1738       llvm::CallInst *RTLFnCI;
1739 
1740     public:
1741       OMPAllocateCleanupTy(llvm::CallInst *RLFnCI) : RTLFnCI(RLFnCI) {
1742         RLFnCI->removeFromParent();
1743       }
1744 
1745       void Emit(CodeGenFunction &CGF, Flags /*flags*/) override {
1746         if (!CGF.HaveInsertPoint())
1747           return;
1748         CGF.Builder.Insert(RTLFnCI);
1749       }
1750     };
1751 
1752     /// Returns address of the threadprivate variable for the current
1753     /// thread. This Also create any necessary OMP runtime calls.
1754     ///
1755     /// \param VD VarDecl for Threadprivate variable.
1756     /// \param VDAddr Address of the Vardecl
1757     /// \param Loc  The location where the barrier directive was encountered
1758     static Address getAddrOfThreadPrivate(CodeGenFunction &CGF,
1759                                           const VarDecl *VD, Address VDAddr,
1760                                           SourceLocation Loc);
1761 
1762     /// Gets the OpenMP-specific address of the local variable /p VD.
1763     static Address getAddressOfLocalVariable(CodeGenFunction &CGF,
1764                                              const VarDecl *VD);
1765     /// Get the platform-specific name separator.
1766     /// \param Parts different parts of the final name that needs separation
1767     /// \param FirstSeparator First separator used between the initial two
1768     ///        parts of the name.
1769     /// \param Separator separator used between all of the rest consecutinve
1770     ///        parts of the name
1771     static std::string getNameWithSeparators(ArrayRef<StringRef> Parts,
1772                                              StringRef FirstSeparator = ".",
1773                                              StringRef Separator = ".");
1774     /// Emit the Finalization for an OMP region
1775     /// \param CGF	The Codegen function this belongs to
1776     /// \param IP	Insertion point for generating the finalization code.
1777     static void FinalizeOMPRegion(CodeGenFunction &CGF, InsertPointTy IP) {
1778       CGBuilderTy::InsertPointGuard IPG(CGF.Builder);
1779       assert(IP.getBlock()->end() != IP.getPoint() &&
1780              "OpenMP IR Builder should cause terminated block!");
1781 
1782       llvm::BasicBlock *IPBB = IP.getBlock();
1783       llvm::BasicBlock *DestBB = IPBB->getUniqueSuccessor();
1784       assert(DestBB && "Finalization block should have one successor!");
1785 
1786       // erase and replace with cleanup branch.
1787       IPBB->getTerminator()->eraseFromParent();
1788       CGF.Builder.SetInsertPoint(IPBB);
1789       CodeGenFunction::JumpDest Dest = CGF.getJumpDestInCurrentScope(DestBB);
1790       CGF.EmitBranchThroughCleanup(Dest);
1791     }
1792 
1793     /// Emit the body of an OMP region
1794     /// \param CGF	The Codegen function this belongs to
1795     /// \param RegionBodyStmt	The body statement for the OpenMP region being
1796     /// 			 generated
1797     /// \param CodeGenIP	Insertion point for generating the body code.
1798     /// \param FiniBB	The finalization basic block
1799     static void EmitOMPRegionBody(CodeGenFunction &CGF,
1800                                   const Stmt *RegionBodyStmt,
1801                                   InsertPointTy CodeGenIP,
1802                                   llvm::BasicBlock &FiniBB) {
1803       llvm::BasicBlock *CodeGenIPBB = CodeGenIP.getBlock();
1804       if (llvm::Instruction *CodeGenIPBBTI = CodeGenIPBB->getTerminator())
1805         CodeGenIPBBTI->eraseFromParent();
1806 
1807       CGF.Builder.SetInsertPoint(CodeGenIPBB);
1808 
1809       CGF.EmitStmt(RegionBodyStmt);
1810 
1811       if (CGF.Builder.saveIP().isSet())
1812         CGF.Builder.CreateBr(&FiniBB);
1813     }
1814 
1815     static void EmitCaptureStmt(CodeGenFunction &CGF, InsertPointTy CodeGenIP,
1816                                 llvm::BasicBlock &FiniBB, llvm::Function *Fn,
1817                                 ArrayRef<llvm::Value *> Args) {
1818       llvm::BasicBlock *CodeGenIPBB = CodeGenIP.getBlock();
1819       if (llvm::Instruction *CodeGenIPBBTI = CodeGenIPBB->getTerminator())
1820         CodeGenIPBBTI->eraseFromParent();
1821 
1822       CGF.Builder.SetInsertPoint(CodeGenIPBB);
1823 
1824       if (Fn->doesNotThrow())
1825         CGF.EmitNounwindRuntimeCall(Fn, Args);
1826       else
1827         CGF.EmitRuntimeCall(Fn, Args);
1828 
1829       if (CGF.Builder.saveIP().isSet())
1830         CGF.Builder.CreateBr(&FiniBB);
1831     }
1832 
1833     /// RAII for preserving necessary info during Outlined region body codegen.
1834     class OutlinedRegionBodyRAII {
1835 
1836       llvm::AssertingVH<llvm::Instruction> OldAllocaIP;
1837       CodeGenFunction::JumpDest OldReturnBlock;
1838       CGBuilderTy::InsertPoint IP;
1839       CodeGenFunction &CGF;
1840 
1841     public:
1842       OutlinedRegionBodyRAII(CodeGenFunction &cgf, InsertPointTy &AllocaIP,
1843                              llvm::BasicBlock &RetBB)
1844           : CGF(cgf) {
1845         assert(AllocaIP.isSet() &&
1846                "Must specify Insertion point for allocas of outlined function");
1847         OldAllocaIP = CGF.AllocaInsertPt;
1848         CGF.AllocaInsertPt = &*AllocaIP.getPoint();
1849         IP = CGF.Builder.saveIP();
1850 
1851         OldReturnBlock = CGF.ReturnBlock;
1852         CGF.ReturnBlock = CGF.getJumpDestInCurrentScope(&RetBB);
1853       }
1854 
1855       ~OutlinedRegionBodyRAII() {
1856         CGF.AllocaInsertPt = OldAllocaIP;
1857         CGF.ReturnBlock = OldReturnBlock;
1858         CGF.Builder.restoreIP(IP);
1859       }
1860     };
1861 
1862     /// RAII for preserving necessary info during inlined region body codegen.
1863     class InlinedRegionBodyRAII {
1864 
1865       llvm::AssertingVH<llvm::Instruction> OldAllocaIP;
1866       CodeGenFunction &CGF;
1867 
1868     public:
1869       InlinedRegionBodyRAII(CodeGenFunction &cgf, InsertPointTy &AllocaIP,
1870                             llvm::BasicBlock &FiniBB)
1871           : CGF(cgf) {
1872         // Alloca insertion block should be in the entry block of the containing
1873         // function so it expects an empty AllocaIP in which case will reuse the
1874         // old alloca insertion point, or a new AllocaIP in the same block as
1875         // the old one
1876         assert((!AllocaIP.isSet() ||
1877                 CGF.AllocaInsertPt->getParent() == AllocaIP.getBlock()) &&
1878                "Insertion point should be in the entry block of containing "
1879                "function!");
1880         OldAllocaIP = CGF.AllocaInsertPt;
1881         if (AllocaIP.isSet())
1882           CGF.AllocaInsertPt = &*AllocaIP.getPoint();
1883 
1884         // TODO: Remove the call, after making sure the counter is not used by
1885         //       the EHStack.
1886         // Since this is an inlined region, it should not modify the
1887         // ReturnBlock, and should reuse the one for the enclosing outlined
1888         // region. So, the JumpDest being return by the function is discarded
1889         (void)CGF.getJumpDestInCurrentScope(&FiniBB);
1890       }
1891 
1892       ~InlinedRegionBodyRAII() { CGF.AllocaInsertPt = OldAllocaIP; }
1893     };
1894   };
1895 
1896 private:
1897   /// CXXThisDecl - When generating code for a C++ member function,
1898   /// this will hold the implicit 'this' declaration.
1899   ImplicitParamDecl *CXXABIThisDecl = nullptr;
1900   llvm::Value *CXXABIThisValue = nullptr;
1901   llvm::Value *CXXThisValue = nullptr;
1902   CharUnits CXXABIThisAlignment;
1903   CharUnits CXXThisAlignment;
1904 
1905   /// The value of 'this' to use when evaluating CXXDefaultInitExprs within
1906   /// this expression.
1907   Address CXXDefaultInitExprThis = Address::invalid();
1908 
1909   /// The current array initialization index when evaluating an
1910   /// ArrayInitIndexExpr within an ArrayInitLoopExpr.
1911   llvm::Value *ArrayInitIndex = nullptr;
1912 
1913   /// The values of function arguments to use when evaluating
1914   /// CXXInheritedCtorInitExprs within this context.
1915   CallArgList CXXInheritedCtorInitExprArgs;
1916 
1917   /// CXXStructorImplicitParamDecl - When generating code for a constructor or
1918   /// destructor, this will hold the implicit argument (e.g. VTT).
1919   ImplicitParamDecl *CXXStructorImplicitParamDecl = nullptr;
1920   llvm::Value *CXXStructorImplicitParamValue = nullptr;
1921 
1922   /// OutermostConditional - Points to the outermost active
1923   /// conditional control.  This is used so that we know if a
1924   /// temporary should be destroyed conditionally.
1925   ConditionalEvaluation *OutermostConditional = nullptr;
1926 
1927   /// The current lexical scope.
1928   LexicalScope *CurLexicalScope = nullptr;
1929 
1930   /// The current source location that should be used for exception
1931   /// handling code.
1932   SourceLocation CurEHLocation;
1933 
1934   /// BlockByrefInfos - For each __block variable, contains
1935   /// information about the layout of the variable.
1936   llvm::DenseMap<const ValueDecl *, BlockByrefInfo> BlockByrefInfos;
1937 
1938   /// Used by -fsanitize=nullability-return to determine whether the return
1939   /// value can be checked.
1940   llvm::Value *RetValNullabilityPrecondition = nullptr;
1941 
1942   /// Check if -fsanitize=nullability-return instrumentation is required for
1943   /// this function.
1944   bool requiresReturnValueNullabilityCheck() const {
1945     return RetValNullabilityPrecondition;
1946   }
1947 
1948   /// Used to store precise source locations for return statements by the
1949   /// runtime return value checks.
1950   Address ReturnLocation = Address::invalid();
1951 
1952   /// Check if the return value of this function requires sanitization.
1953   bool requiresReturnValueCheck() const;
1954 
1955   llvm::BasicBlock *TerminateLandingPad = nullptr;
1956   llvm::BasicBlock *TerminateHandler = nullptr;
1957   llvm::SmallVector<llvm::BasicBlock *, 2> TrapBBs;
1958 
1959   /// Terminate funclets keyed by parent funclet pad.
1960   llvm::MapVector<llvm::Value *, llvm::BasicBlock *> TerminateFunclets;
1961 
1962   /// Largest vector width used in ths function. Will be used to create a
1963   /// function attribute.
1964   unsigned LargestVectorWidth = 0;
1965 
1966   /// True if we need emit the life-time markers. This is initially set in
1967   /// the constructor, but could be overwritten to true if this is a coroutine.
1968   bool ShouldEmitLifetimeMarkers;
1969 
1970   /// Add OpenCL kernel arg metadata and the kernel attribute metadata to
1971   /// the function metadata.
1972   void EmitOpenCLKernelMetadata(const FunctionDecl *FD,
1973                                 llvm::Function *Fn);
1974 
1975 public:
1976   CodeGenFunction(CodeGenModule &cgm, bool suppressNewContext=false);
1977   ~CodeGenFunction();
1978 
1979   CodeGenTypes &getTypes() const { return CGM.getTypes(); }
1980   ASTContext &getContext() const { return CGM.getContext(); }
1981   CGDebugInfo *getDebugInfo() {
1982     if (DisableDebugInfo)
1983       return nullptr;
1984     return DebugInfo;
1985   }
1986   void disableDebugInfo() { DisableDebugInfo = true; }
1987   void enableDebugInfo() { DisableDebugInfo = false; }
1988 
1989   bool shouldUseFusedARCCalls() {
1990     return CGM.getCodeGenOpts().OptimizationLevel == 0;
1991   }
1992 
1993   const LangOptions &getLangOpts() const { return CGM.getLangOpts(); }
1994 
1995   /// Returns a pointer to the function's exception object and selector slot,
1996   /// which is assigned in every landing pad.
1997   Address getExceptionSlot();
1998   Address getEHSelectorSlot();
1999 
2000   /// Returns the contents of the function's exception object and selector
2001   /// slots.
2002   llvm::Value *getExceptionFromSlot();
2003   llvm::Value *getSelectorFromSlot();
2004 
2005   Address getNormalCleanupDestSlot();
2006 
2007   llvm::BasicBlock *getUnreachableBlock() {
2008     if (!UnreachableBlock) {
2009       UnreachableBlock = createBasicBlock("unreachable");
2010       new llvm::UnreachableInst(getLLVMContext(), UnreachableBlock);
2011     }
2012     return UnreachableBlock;
2013   }
2014 
2015   llvm::BasicBlock *getInvokeDest() {
2016     if (!EHStack.requiresLandingPad()) return nullptr;
2017     return getInvokeDestImpl();
2018   }
2019 
2020   bool currentFunctionUsesSEHTry() const { return CurSEHParent != nullptr; }
2021 
2022   const TargetInfo &getTarget() const { return Target; }
2023   llvm::LLVMContext &getLLVMContext() { return CGM.getLLVMContext(); }
2024   const TargetCodeGenInfo &getTargetHooks() const {
2025     return CGM.getTargetCodeGenInfo();
2026   }
2027 
2028   //===--------------------------------------------------------------------===//
2029   //                                  Cleanups
2030   //===--------------------------------------------------------------------===//
2031 
2032   typedef void Destroyer(CodeGenFunction &CGF, Address addr, QualType ty);
2033 
2034   void pushIrregularPartialArrayCleanup(llvm::Value *arrayBegin,
2035                                         Address arrayEndPointer,
2036                                         QualType elementType,
2037                                         CharUnits elementAlignment,
2038                                         Destroyer *destroyer);
2039   void pushRegularPartialArrayCleanup(llvm::Value *arrayBegin,
2040                                       llvm::Value *arrayEnd,
2041                                       QualType elementType,
2042                                       CharUnits elementAlignment,
2043                                       Destroyer *destroyer);
2044 
2045   void pushDestroy(QualType::DestructionKind dtorKind,
2046                    Address addr, QualType type);
2047   void pushEHDestroy(QualType::DestructionKind dtorKind,
2048                      Address addr, QualType type);
2049   void pushDestroy(CleanupKind kind, Address addr, QualType type,
2050                    Destroyer *destroyer, bool useEHCleanupForArray);
2051   void pushLifetimeExtendedDestroy(CleanupKind kind, Address addr,
2052                                    QualType type, Destroyer *destroyer,
2053                                    bool useEHCleanupForArray);
2054   void pushCallObjectDeleteCleanup(const FunctionDecl *OperatorDelete,
2055                                    llvm::Value *CompletePtr,
2056                                    QualType ElementType);
2057   void pushStackRestore(CleanupKind kind, Address SPMem);
2058   void emitDestroy(Address addr, QualType type, Destroyer *destroyer,
2059                    bool useEHCleanupForArray);
2060   llvm::Function *generateDestroyHelper(Address addr, QualType type,
2061                                         Destroyer *destroyer,
2062                                         bool useEHCleanupForArray,
2063                                         const VarDecl *VD);
2064   void emitArrayDestroy(llvm::Value *begin, llvm::Value *end,
2065                         QualType elementType, CharUnits elementAlign,
2066                         Destroyer *destroyer,
2067                         bool checkZeroLength, bool useEHCleanup);
2068 
2069   Destroyer *getDestroyer(QualType::DestructionKind destructionKind);
2070 
2071   /// Determines whether an EH cleanup is required to destroy a type
2072   /// with the given destruction kind.
2073   bool needsEHCleanup(QualType::DestructionKind kind) {
2074     switch (kind) {
2075     case QualType::DK_none:
2076       return false;
2077     case QualType::DK_cxx_destructor:
2078     case QualType::DK_objc_weak_lifetime:
2079     case QualType::DK_nontrivial_c_struct:
2080       return getLangOpts().Exceptions;
2081     case QualType::DK_objc_strong_lifetime:
2082       return getLangOpts().Exceptions &&
2083              CGM.getCodeGenOpts().ObjCAutoRefCountExceptions;
2084     }
2085     llvm_unreachable("bad destruction kind");
2086   }
2087 
2088   CleanupKind getCleanupKind(QualType::DestructionKind kind) {
2089     return (needsEHCleanup(kind) ? NormalAndEHCleanup : NormalCleanup);
2090   }
2091 
2092   //===--------------------------------------------------------------------===//
2093   //                                  Objective-C
2094   //===--------------------------------------------------------------------===//
2095 
2096   void GenerateObjCMethod(const ObjCMethodDecl *OMD);
2097 
2098   void StartObjCMethod(const ObjCMethodDecl *MD, const ObjCContainerDecl *CD);
2099 
2100   /// GenerateObjCGetter - Synthesize an Objective-C property getter function.
2101   void GenerateObjCGetter(ObjCImplementationDecl *IMP,
2102                           const ObjCPropertyImplDecl *PID);
2103   void generateObjCGetterBody(const ObjCImplementationDecl *classImpl,
2104                               const ObjCPropertyImplDecl *propImpl,
2105                               const ObjCMethodDecl *GetterMothodDecl,
2106                               llvm::Constant *AtomicHelperFn);
2107 
2108   void GenerateObjCCtorDtorMethod(ObjCImplementationDecl *IMP,
2109                                   ObjCMethodDecl *MD, bool ctor);
2110 
2111   /// GenerateObjCSetter - Synthesize an Objective-C property setter function
2112   /// for the given property.
2113   void GenerateObjCSetter(ObjCImplementationDecl *IMP,
2114                           const ObjCPropertyImplDecl *PID);
2115   void generateObjCSetterBody(const ObjCImplementationDecl *classImpl,
2116                               const ObjCPropertyImplDecl *propImpl,
2117                               llvm::Constant *AtomicHelperFn);
2118 
2119   //===--------------------------------------------------------------------===//
2120   //                                  Block Bits
2121   //===--------------------------------------------------------------------===//
2122 
2123   /// Emit block literal.
2124   /// \return an LLVM value which is a pointer to a struct which contains
2125   /// information about the block, including the block invoke function, the
2126   /// captured variables, etc.
2127   llvm::Value *EmitBlockLiteral(const BlockExpr *);
2128 
2129   llvm::Function *GenerateBlockFunction(GlobalDecl GD,
2130                                         const CGBlockInfo &Info,
2131                                         const DeclMapTy &ldm,
2132                                         bool IsLambdaConversionToBlock,
2133                                         bool BuildGlobalBlock);
2134 
2135   /// Check if \p T is a C++ class that has a destructor that can throw.
2136   static bool cxxDestructorCanThrow(QualType T);
2137 
2138   llvm::Constant *GenerateCopyHelperFunction(const CGBlockInfo &blockInfo);
2139   llvm::Constant *GenerateDestroyHelperFunction(const CGBlockInfo &blockInfo);
2140   llvm::Constant *GenerateObjCAtomicSetterCopyHelperFunction(
2141                                              const ObjCPropertyImplDecl *PID);
2142   llvm::Constant *GenerateObjCAtomicGetterCopyHelperFunction(
2143                                              const ObjCPropertyImplDecl *PID);
2144   llvm::Value *EmitBlockCopyAndAutorelease(llvm::Value *Block, QualType Ty);
2145 
2146   void BuildBlockRelease(llvm::Value *DeclPtr, BlockFieldFlags flags,
2147                          bool CanThrow);
2148 
2149   class AutoVarEmission;
2150 
2151   void emitByrefStructureInit(const AutoVarEmission &emission);
2152 
2153   /// Enter a cleanup to destroy a __block variable.  Note that this
2154   /// cleanup should be a no-op if the variable hasn't left the stack
2155   /// yet; if a cleanup is required for the variable itself, that needs
2156   /// to be done externally.
2157   ///
2158   /// \param Kind Cleanup kind.
2159   ///
2160   /// \param Addr When \p LoadBlockVarAddr is false, the address of the __block
2161   /// structure that will be passed to _Block_object_dispose. When
2162   /// \p LoadBlockVarAddr is true, the address of the field of the block
2163   /// structure that holds the address of the __block structure.
2164   ///
2165   /// \param Flags The flag that will be passed to _Block_object_dispose.
2166   ///
2167   /// \param LoadBlockVarAddr Indicates whether we need to emit a load from
2168   /// \p Addr to get the address of the __block structure.
2169   void enterByrefCleanup(CleanupKind Kind, Address Addr, BlockFieldFlags Flags,
2170                          bool LoadBlockVarAddr, bool CanThrow);
2171 
2172   void setBlockContextParameter(const ImplicitParamDecl *D, unsigned argNum,
2173                                 llvm::Value *ptr);
2174 
2175   Address LoadBlockStruct();
2176   Address GetAddrOfBlockDecl(const VarDecl *var);
2177 
2178   /// BuildBlockByrefAddress - Computes the location of the
2179   /// data in a variable which is declared as __block.
2180   Address emitBlockByrefAddress(Address baseAddr, const VarDecl *V,
2181                                 bool followForward = true);
2182   Address emitBlockByrefAddress(Address baseAddr,
2183                                 const BlockByrefInfo &info,
2184                                 bool followForward,
2185                                 const llvm::Twine &name);
2186 
2187   const BlockByrefInfo &getBlockByrefInfo(const VarDecl *var);
2188 
2189   QualType BuildFunctionArgList(GlobalDecl GD, FunctionArgList &Args);
2190 
2191   void GenerateCode(GlobalDecl GD, llvm::Function *Fn,
2192                     const CGFunctionInfo &FnInfo);
2193 
2194   /// Annotate the function with an attribute that disables TSan checking at
2195   /// runtime.
2196   void markAsIgnoreThreadCheckingAtRuntime(llvm::Function *Fn);
2197 
2198   /// Emit code for the start of a function.
2199   /// \param Loc       The location to be associated with the function.
2200   /// \param StartLoc  The location of the function body.
2201   void StartFunction(GlobalDecl GD,
2202                      QualType RetTy,
2203                      llvm::Function *Fn,
2204                      const CGFunctionInfo &FnInfo,
2205                      const FunctionArgList &Args,
2206                      SourceLocation Loc = SourceLocation(),
2207                      SourceLocation StartLoc = SourceLocation());
2208 
2209   static bool IsConstructorDelegationValid(const CXXConstructorDecl *Ctor);
2210 
2211   void EmitConstructorBody(FunctionArgList &Args);
2212   void EmitDestructorBody(FunctionArgList &Args);
2213   void emitImplicitAssignmentOperatorBody(FunctionArgList &Args);
2214   void EmitFunctionBody(const Stmt *Body);
2215   void EmitBlockWithFallThrough(llvm::BasicBlock *BB, const Stmt *S);
2216 
2217   void EmitForwardingCallToLambda(const CXXMethodDecl *LambdaCallOperator,
2218                                   CallArgList &CallArgs);
2219   void EmitLambdaBlockInvokeBody();
2220   void EmitLambdaDelegatingInvokeBody(const CXXMethodDecl *MD);
2221   void EmitLambdaStaticInvokeBody(const CXXMethodDecl *MD);
2222   void EmitLambdaVLACapture(const VariableArrayType *VAT, LValue LV) {
2223     EmitStoreThroughLValue(RValue::get(VLASizeMap[VAT->getSizeExpr()]), LV);
2224   }
2225   void EmitAsanPrologueOrEpilogue(bool Prologue);
2226 
2227   /// Emit the unified return block, trying to avoid its emission when
2228   /// possible.
2229   /// \return The debug location of the user written return statement if the
2230   /// return block is is avoided.
2231   llvm::DebugLoc EmitReturnBlock();
2232 
2233   /// FinishFunction - Complete IR generation of the current function. It is
2234   /// legal to call this function even if there is no current insertion point.
2235   void FinishFunction(SourceLocation EndLoc=SourceLocation());
2236 
2237   void StartThunk(llvm::Function *Fn, GlobalDecl GD,
2238                   const CGFunctionInfo &FnInfo, bool IsUnprototyped);
2239 
2240   void EmitCallAndReturnForThunk(llvm::FunctionCallee Callee,
2241                                  const ThunkInfo *Thunk, bool IsUnprototyped);
2242 
2243   void FinishThunk();
2244 
2245   /// Emit a musttail call for a thunk with a potentially adjusted this pointer.
2246   void EmitMustTailThunk(GlobalDecl GD, llvm::Value *AdjustedThisPtr,
2247                          llvm::FunctionCallee Callee);
2248 
2249   /// Generate a thunk for the given method.
2250   void generateThunk(llvm::Function *Fn, const CGFunctionInfo &FnInfo,
2251                      GlobalDecl GD, const ThunkInfo &Thunk,
2252                      bool IsUnprototyped);
2253 
2254   llvm::Function *GenerateVarArgsThunk(llvm::Function *Fn,
2255                                        const CGFunctionInfo &FnInfo,
2256                                        GlobalDecl GD, const ThunkInfo &Thunk);
2257 
2258   void EmitCtorPrologue(const CXXConstructorDecl *CD, CXXCtorType Type,
2259                         FunctionArgList &Args);
2260 
2261   void EmitInitializerForField(FieldDecl *Field, LValue LHS, Expr *Init);
2262 
2263   /// Struct with all information about dynamic [sub]class needed to set vptr.
2264   struct VPtr {
2265     BaseSubobject Base;
2266     const CXXRecordDecl *NearestVBase;
2267     CharUnits OffsetFromNearestVBase;
2268     const CXXRecordDecl *VTableClass;
2269   };
2270 
2271   /// Initialize the vtable pointer of the given subobject.
2272   void InitializeVTablePointer(const VPtr &vptr);
2273 
2274   typedef llvm::SmallVector<VPtr, 4> VPtrsVector;
2275 
2276   typedef llvm::SmallPtrSet<const CXXRecordDecl *, 4> VisitedVirtualBasesSetTy;
2277   VPtrsVector getVTablePointers(const CXXRecordDecl *VTableClass);
2278 
2279   void getVTablePointers(BaseSubobject Base, const CXXRecordDecl *NearestVBase,
2280                          CharUnits OffsetFromNearestVBase,
2281                          bool BaseIsNonVirtualPrimaryBase,
2282                          const CXXRecordDecl *VTableClass,
2283                          VisitedVirtualBasesSetTy &VBases, VPtrsVector &vptrs);
2284 
2285   void InitializeVTablePointers(const CXXRecordDecl *ClassDecl);
2286 
2287   /// GetVTablePtr - Return the Value of the vtable pointer member pointed
2288   /// to by This.
2289   llvm::Value *GetVTablePtr(Address This, llvm::Type *VTableTy,
2290                             const CXXRecordDecl *VTableClass);
2291 
2292   enum CFITypeCheckKind {
2293     CFITCK_VCall,
2294     CFITCK_NVCall,
2295     CFITCK_DerivedCast,
2296     CFITCK_UnrelatedCast,
2297     CFITCK_ICall,
2298     CFITCK_NVMFCall,
2299     CFITCK_VMFCall,
2300   };
2301 
2302   /// Derived is the presumed address of an object of type T after a
2303   /// cast. If T is a polymorphic class type, emit a check that the virtual
2304   /// table for Derived belongs to a class derived from T.
2305   void EmitVTablePtrCheckForCast(QualType T, Address Derived, bool MayBeNull,
2306                                  CFITypeCheckKind TCK, SourceLocation Loc);
2307 
2308   /// EmitVTablePtrCheckForCall - Virtual method MD is being called via VTable.
2309   /// If vptr CFI is enabled, emit a check that VTable is valid.
2310   void EmitVTablePtrCheckForCall(const CXXRecordDecl *RD, llvm::Value *VTable,
2311                                  CFITypeCheckKind TCK, SourceLocation Loc);
2312 
2313   /// EmitVTablePtrCheck - Emit a check that VTable is a valid virtual table for
2314   /// RD using llvm.type.test.
2315   void EmitVTablePtrCheck(const CXXRecordDecl *RD, llvm::Value *VTable,
2316                           CFITypeCheckKind TCK, SourceLocation Loc);
2317 
2318   /// If whole-program virtual table optimization is enabled, emit an assumption
2319   /// that VTable is a member of RD's type identifier. Or, if vptr CFI is
2320   /// enabled, emit a check that VTable is a member of RD's type identifier.
2321   void EmitTypeMetadataCodeForVCall(const CXXRecordDecl *RD,
2322                                     llvm::Value *VTable, SourceLocation Loc);
2323 
2324   /// Returns whether we should perform a type checked load when loading a
2325   /// virtual function for virtual calls to members of RD. This is generally
2326   /// true when both vcall CFI and whole-program-vtables are enabled.
2327   bool ShouldEmitVTableTypeCheckedLoad(const CXXRecordDecl *RD);
2328 
2329   /// Emit a type checked load from the given vtable.
2330   llvm::Value *EmitVTableTypeCheckedLoad(const CXXRecordDecl *RD,
2331                                          llvm::Value *VTable,
2332                                          llvm::Type *VTableTy,
2333                                          uint64_t VTableByteOffset);
2334 
2335   /// EnterDtorCleanups - Enter the cleanups necessary to complete the
2336   /// given phase of destruction for a destructor.  The end result
2337   /// should call destructors on members and base classes in reverse
2338   /// order of their construction.
2339   void EnterDtorCleanups(const CXXDestructorDecl *Dtor, CXXDtorType Type);
2340 
2341   /// ShouldInstrumentFunction - Return true if the current function should be
2342   /// instrumented with __cyg_profile_func_* calls
2343   bool ShouldInstrumentFunction();
2344 
2345   /// ShouldSkipSanitizerInstrumentation - Return true if the current function
2346   /// should not be instrumented with sanitizers.
2347   bool ShouldSkipSanitizerInstrumentation();
2348 
2349   /// ShouldXRayInstrument - Return true if the current function should be
2350   /// instrumented with XRay nop sleds.
2351   bool ShouldXRayInstrumentFunction() const;
2352 
2353   /// AlwaysEmitXRayCustomEvents - Return true if we must unconditionally emit
2354   /// XRay custom event handling calls.
2355   bool AlwaysEmitXRayCustomEvents() const;
2356 
2357   /// AlwaysEmitXRayTypedEvents - Return true if clang must unconditionally emit
2358   /// XRay typed event handling calls.
2359   bool AlwaysEmitXRayTypedEvents() const;
2360 
2361   /// Encode an address into a form suitable for use in a function prologue.
2362   llvm::Constant *EncodeAddrForUseInPrologue(llvm::Function *F,
2363                                              llvm::Constant *Addr);
2364 
2365   /// Decode an address used in a function prologue, encoded by \c
2366   /// EncodeAddrForUseInPrologue.
2367   llvm::Value *DecodeAddrUsedInPrologue(llvm::Value *F,
2368                                         llvm::Value *EncodedAddr);
2369 
2370   /// EmitFunctionProlog - Emit the target specific LLVM code to load the
2371   /// arguments for the given function. This is also responsible for naming the
2372   /// LLVM function arguments.
2373   void EmitFunctionProlog(const CGFunctionInfo &FI,
2374                           llvm::Function *Fn,
2375                           const FunctionArgList &Args);
2376 
2377   /// EmitFunctionEpilog - Emit the target specific LLVM code to return the
2378   /// given temporary.
2379   void EmitFunctionEpilog(const CGFunctionInfo &FI, bool EmitRetDbgLoc,
2380                           SourceLocation EndLoc);
2381 
2382   /// Emit a test that checks if the return value \p RV is nonnull.
2383   void EmitReturnValueCheck(llvm::Value *RV);
2384 
2385   /// EmitStartEHSpec - Emit the start of the exception spec.
2386   void EmitStartEHSpec(const Decl *D);
2387 
2388   /// EmitEndEHSpec - Emit the end of the exception spec.
2389   void EmitEndEHSpec(const Decl *D);
2390 
2391   /// getTerminateLandingPad - Return a landing pad that just calls terminate.
2392   llvm::BasicBlock *getTerminateLandingPad();
2393 
2394   /// getTerminateLandingPad - Return a cleanup funclet that just calls
2395   /// terminate.
2396   llvm::BasicBlock *getTerminateFunclet();
2397 
2398   /// getTerminateHandler - Return a handler (not a landing pad, just
2399   /// a catch handler) that just calls terminate.  This is used when
2400   /// a terminate scope encloses a try.
2401   llvm::BasicBlock *getTerminateHandler();
2402 
2403   llvm::Type *ConvertTypeForMem(QualType T);
2404   llvm::Type *ConvertType(QualType T);
2405   llvm::Type *ConvertType(const TypeDecl *T) {
2406     return ConvertType(getContext().getTypeDeclType(T));
2407   }
2408 
2409   /// LoadObjCSelf - Load the value of self. This function is only valid while
2410   /// generating code for an Objective-C method.
2411   llvm::Value *LoadObjCSelf();
2412 
2413   /// TypeOfSelfObject - Return type of object that this self represents.
2414   QualType TypeOfSelfObject();
2415 
2416   /// getEvaluationKind - Return the TypeEvaluationKind of QualType \c T.
2417   static TypeEvaluationKind getEvaluationKind(QualType T);
2418 
2419   static bool hasScalarEvaluationKind(QualType T) {
2420     return getEvaluationKind(T) == TEK_Scalar;
2421   }
2422 
2423   static bool hasAggregateEvaluationKind(QualType T) {
2424     return getEvaluationKind(T) == TEK_Aggregate;
2425   }
2426 
2427   /// createBasicBlock - Create an LLVM basic block.
2428   llvm::BasicBlock *createBasicBlock(const Twine &name = "",
2429                                      llvm::Function *parent = nullptr,
2430                                      llvm::BasicBlock *before = nullptr) {
2431     return llvm::BasicBlock::Create(getLLVMContext(), name, parent, before);
2432   }
2433 
2434   /// getBasicBlockForLabel - Return the LLVM basicblock that the specified
2435   /// label maps to.
2436   JumpDest getJumpDestForLabel(const LabelDecl *S);
2437 
2438   /// SimplifyForwardingBlocks - If the given basic block is only a branch to
2439   /// another basic block, simplify it. This assumes that no other code could
2440   /// potentially reference the basic block.
2441   void SimplifyForwardingBlocks(llvm::BasicBlock *BB);
2442 
2443   /// EmitBlock - Emit the given block \arg BB and set it as the insert point,
2444   /// adding a fall-through branch from the current insert block if
2445   /// necessary. It is legal to call this function even if there is no current
2446   /// insertion point.
2447   ///
2448   /// IsFinished - If true, indicates that the caller has finished emitting
2449   /// branches to the given block and does not expect to emit code into it. This
2450   /// means the block can be ignored if it is unreachable.
2451   void EmitBlock(llvm::BasicBlock *BB, bool IsFinished=false);
2452 
2453   /// EmitBlockAfterUses - Emit the given block somewhere hopefully
2454   /// near its uses, and leave the insertion point in it.
2455   void EmitBlockAfterUses(llvm::BasicBlock *BB);
2456 
2457   /// EmitBranch - Emit a branch to the specified basic block from the current
2458   /// insert block, taking care to avoid creation of branches from dummy
2459   /// blocks. It is legal to call this function even if there is no current
2460   /// insertion point.
2461   ///
2462   /// This function clears the current insertion point. The caller should follow
2463   /// calls to this function with calls to Emit*Block prior to generation new
2464   /// code.
2465   void EmitBranch(llvm::BasicBlock *Block);
2466 
2467   /// HaveInsertPoint - True if an insertion point is defined. If not, this
2468   /// indicates that the current code being emitted is unreachable.
2469   bool HaveInsertPoint() const {
2470     return Builder.GetInsertBlock() != nullptr;
2471   }
2472 
2473   /// EnsureInsertPoint - Ensure that an insertion point is defined so that
2474   /// emitted IR has a place to go. Note that by definition, if this function
2475   /// creates a block then that block is unreachable; callers may do better to
2476   /// detect when no insertion point is defined and simply skip IR generation.
2477   void EnsureInsertPoint() {
2478     if (!HaveInsertPoint())
2479       EmitBlock(createBasicBlock());
2480   }
2481 
2482   /// ErrorUnsupported - Print out an error that codegen doesn't support the
2483   /// specified stmt yet.
2484   void ErrorUnsupported(const Stmt *S, const char *Type);
2485 
2486   //===--------------------------------------------------------------------===//
2487   //                                  Helpers
2488   //===--------------------------------------------------------------------===//
2489 
2490   LValue MakeAddrLValue(Address Addr, QualType T,
2491                         AlignmentSource Source = AlignmentSource::Type) {
2492     return LValue::MakeAddr(Addr, T, getContext(), LValueBaseInfo(Source),
2493                             CGM.getTBAAAccessInfo(T));
2494   }
2495 
2496   LValue MakeAddrLValue(Address Addr, QualType T, LValueBaseInfo BaseInfo,
2497                         TBAAAccessInfo TBAAInfo) {
2498     return LValue::MakeAddr(Addr, T, getContext(), BaseInfo, TBAAInfo);
2499   }
2500 
2501   LValue MakeAddrLValue(llvm::Value *V, QualType T, CharUnits Alignment,
2502                         AlignmentSource Source = AlignmentSource::Type) {
2503     Address Addr(V, ConvertTypeForMem(T), Alignment);
2504     return LValue::MakeAddr(Addr, T, getContext(), LValueBaseInfo(Source),
2505                             CGM.getTBAAAccessInfo(T));
2506   }
2507 
2508   LValue
2509   MakeAddrLValueWithoutTBAA(Address Addr, QualType T,
2510                             AlignmentSource Source = AlignmentSource::Type) {
2511     return LValue::MakeAddr(Addr, T, getContext(), LValueBaseInfo(Source),
2512                             TBAAAccessInfo());
2513   }
2514 
2515   LValue MakeNaturalAlignPointeeAddrLValue(llvm::Value *V, QualType T);
2516   LValue MakeNaturalAlignAddrLValue(llvm::Value *V, QualType T);
2517 
2518   Address EmitLoadOfReference(LValue RefLVal,
2519                               LValueBaseInfo *PointeeBaseInfo = nullptr,
2520                               TBAAAccessInfo *PointeeTBAAInfo = nullptr);
2521   LValue EmitLoadOfReferenceLValue(LValue RefLVal);
2522   LValue EmitLoadOfReferenceLValue(Address RefAddr, QualType RefTy,
2523                                    AlignmentSource Source =
2524                                        AlignmentSource::Type) {
2525     LValue RefLVal = MakeAddrLValue(RefAddr, RefTy, LValueBaseInfo(Source),
2526                                     CGM.getTBAAAccessInfo(RefTy));
2527     return EmitLoadOfReferenceLValue(RefLVal);
2528   }
2529 
2530   Address EmitLoadOfPointer(Address Ptr, const PointerType *PtrTy,
2531                             LValueBaseInfo *BaseInfo = nullptr,
2532                             TBAAAccessInfo *TBAAInfo = nullptr);
2533   LValue EmitLoadOfPointerLValue(Address Ptr, const PointerType *PtrTy);
2534 
2535   /// CreateTempAlloca - This creates an alloca and inserts it into the entry
2536   /// block if \p ArraySize is nullptr, otherwise inserts it at the current
2537   /// insertion point of the builder. The caller is responsible for setting an
2538   /// appropriate alignment on
2539   /// the alloca.
2540   ///
2541   /// \p ArraySize is the number of array elements to be allocated if it
2542   ///    is not nullptr.
2543   ///
2544   /// LangAS::Default is the address space of pointers to local variables and
2545   /// temporaries, as exposed in the source language. In certain
2546   /// configurations, this is not the same as the alloca address space, and a
2547   /// cast is needed to lift the pointer from the alloca AS into
2548   /// LangAS::Default. This can happen when the target uses a restricted
2549   /// address space for the stack but the source language requires
2550   /// LangAS::Default to be a generic address space. The latter condition is
2551   /// common for most programming languages; OpenCL is an exception in that
2552   /// LangAS::Default is the private address space, which naturally maps
2553   /// to the stack.
2554   ///
2555   /// Because the address of a temporary is often exposed to the program in
2556   /// various ways, this function will perform the cast. The original alloca
2557   /// instruction is returned through \p Alloca if it is not nullptr.
2558   ///
2559   /// The cast is not performaed in CreateTempAllocaWithoutCast. This is
2560   /// more efficient if the caller knows that the address will not be exposed.
2561   llvm::AllocaInst *CreateTempAlloca(llvm::Type *Ty, const Twine &Name = "tmp",
2562                                      llvm::Value *ArraySize = nullptr);
2563   Address CreateTempAlloca(llvm::Type *Ty, CharUnits align,
2564                            const Twine &Name = "tmp",
2565                            llvm::Value *ArraySize = nullptr,
2566                            Address *Alloca = nullptr);
2567   Address CreateTempAllocaWithoutCast(llvm::Type *Ty, CharUnits align,
2568                                       const Twine &Name = "tmp",
2569                                       llvm::Value *ArraySize = nullptr);
2570 
2571   /// CreateDefaultAlignedTempAlloca - This creates an alloca with the
2572   /// default ABI alignment of the given LLVM type.
2573   ///
2574   /// IMPORTANT NOTE: This is *not* generally the right alignment for
2575   /// any given AST type that happens to have been lowered to the
2576   /// given IR type.  This should only ever be used for function-local,
2577   /// IR-driven manipulations like saving and restoring a value.  Do
2578   /// not hand this address off to arbitrary IRGen routines, and especially
2579   /// do not pass it as an argument to a function that might expect a
2580   /// properly ABI-aligned value.
2581   Address CreateDefaultAlignTempAlloca(llvm::Type *Ty,
2582                                        const Twine &Name = "tmp");
2583 
2584   /// CreateIRTemp - Create a temporary IR object of the given type, with
2585   /// appropriate alignment. This routine should only be used when an temporary
2586   /// value needs to be stored into an alloca (for example, to avoid explicit
2587   /// PHI construction), but the type is the IR type, not the type appropriate
2588   /// for storing in memory.
2589   ///
2590   /// That is, this is exactly equivalent to CreateMemTemp, but calling
2591   /// ConvertType instead of ConvertTypeForMem.
2592   Address CreateIRTemp(QualType T, const Twine &Name = "tmp");
2593 
2594   /// CreateMemTemp - Create a temporary memory object of the given type, with
2595   /// appropriate alignmen and cast it to the default address space. Returns
2596   /// the original alloca instruction by \p Alloca if it is not nullptr.
2597   Address CreateMemTemp(QualType T, const Twine &Name = "tmp",
2598                         Address *Alloca = nullptr);
2599   Address CreateMemTemp(QualType T, CharUnits Align, const Twine &Name = "tmp",
2600                         Address *Alloca = nullptr);
2601 
2602   /// CreateMemTemp - Create a temporary memory object of the given type, with
2603   /// appropriate alignmen without casting it to the default address space.
2604   Address CreateMemTempWithoutCast(QualType T, const Twine &Name = "tmp");
2605   Address CreateMemTempWithoutCast(QualType T, CharUnits Align,
2606                                    const Twine &Name = "tmp");
2607 
2608   /// CreateAggTemp - Create a temporary memory object for the given
2609   /// aggregate type.
2610   AggValueSlot CreateAggTemp(QualType T, const Twine &Name = "tmp",
2611                              Address *Alloca = nullptr) {
2612     return AggValueSlot::forAddr(CreateMemTemp(T, Name, Alloca),
2613                                  T.getQualifiers(),
2614                                  AggValueSlot::IsNotDestructed,
2615                                  AggValueSlot::DoesNotNeedGCBarriers,
2616                                  AggValueSlot::IsNotAliased,
2617                                  AggValueSlot::DoesNotOverlap);
2618   }
2619 
2620   /// Emit a cast to void* in the appropriate address space.
2621   llvm::Value *EmitCastToVoidPtr(llvm::Value *value);
2622 
2623   /// EvaluateExprAsBool - Perform the usual unary conversions on the specified
2624   /// expression and compare the result against zero, returning an Int1Ty value.
2625   llvm::Value *EvaluateExprAsBool(const Expr *E);
2626 
2627   /// EmitIgnoredExpr - Emit an expression in a context which ignores the result.
2628   void EmitIgnoredExpr(const Expr *E);
2629 
2630   /// EmitAnyExpr - Emit code to compute the specified expression which can have
2631   /// any type.  The result is returned as an RValue struct.  If this is an
2632   /// aggregate expression, the aggloc/agglocvolatile arguments indicate where
2633   /// the result should be returned.
2634   ///
2635   /// \param ignoreResult True if the resulting value isn't used.
2636   RValue EmitAnyExpr(const Expr *E,
2637                      AggValueSlot aggSlot = AggValueSlot::ignored(),
2638                      bool ignoreResult = false);
2639 
2640   // EmitVAListRef - Emit a "reference" to a va_list; this is either the address
2641   // or the value of the expression, depending on how va_list is defined.
2642   Address EmitVAListRef(const Expr *E);
2643 
2644   /// Emit a "reference" to a __builtin_ms_va_list; this is
2645   /// always the value of the expression, because a __builtin_ms_va_list is a
2646   /// pointer to a char.
2647   Address EmitMSVAListRef(const Expr *E);
2648 
2649   /// EmitAnyExprToTemp - Similarly to EmitAnyExpr(), however, the result will
2650   /// always be accessible even if no aggregate location is provided.
2651   RValue EmitAnyExprToTemp(const Expr *E);
2652 
2653   /// EmitAnyExprToMem - Emits the code necessary to evaluate an
2654   /// arbitrary expression into the given memory location.
2655   void EmitAnyExprToMem(const Expr *E, Address Location,
2656                         Qualifiers Quals, bool IsInitializer);
2657 
2658   void EmitAnyExprToExn(const Expr *E, Address Addr);
2659 
2660   /// EmitExprAsInit - Emits the code necessary to initialize a
2661   /// location in memory with the given initializer.
2662   void EmitExprAsInit(const Expr *init, const ValueDecl *D, LValue lvalue,
2663                       bool capturedByInit);
2664 
2665   /// hasVolatileMember - returns true if aggregate type has a volatile
2666   /// member.
2667   bool hasVolatileMember(QualType T) {
2668     if (const RecordType *RT = T->getAs<RecordType>()) {
2669       const RecordDecl *RD = cast<RecordDecl>(RT->getDecl());
2670       return RD->hasVolatileMember();
2671     }
2672     return false;
2673   }
2674 
2675   /// Determine whether a return value slot may overlap some other object.
2676   AggValueSlot::Overlap_t getOverlapForReturnValue() {
2677     // FIXME: Assuming no overlap here breaks guaranteed copy elision for base
2678     // class subobjects. These cases may need to be revisited depending on the
2679     // resolution of the relevant core issue.
2680     return AggValueSlot::DoesNotOverlap;
2681   }
2682 
2683   /// Determine whether a field initialization may overlap some other object.
2684   AggValueSlot::Overlap_t getOverlapForFieldInit(const FieldDecl *FD);
2685 
2686   /// Determine whether a base class initialization may overlap some other
2687   /// object.
2688   AggValueSlot::Overlap_t getOverlapForBaseInit(const CXXRecordDecl *RD,
2689                                                 const CXXRecordDecl *BaseRD,
2690                                                 bool IsVirtual);
2691 
2692   /// Emit an aggregate assignment.
2693   void EmitAggregateAssign(LValue Dest, LValue Src, QualType EltTy) {
2694     bool IsVolatile = hasVolatileMember(EltTy);
2695     EmitAggregateCopy(Dest, Src, EltTy, AggValueSlot::MayOverlap, IsVolatile);
2696   }
2697 
2698   void EmitAggregateCopyCtor(LValue Dest, LValue Src,
2699                              AggValueSlot::Overlap_t MayOverlap) {
2700     EmitAggregateCopy(Dest, Src, Src.getType(), MayOverlap);
2701   }
2702 
2703   /// EmitAggregateCopy - Emit an aggregate copy.
2704   ///
2705   /// \param isVolatile \c true iff either the source or the destination is
2706   ///        volatile.
2707   /// \param MayOverlap Whether the tail padding of the destination might be
2708   ///        occupied by some other object. More efficient code can often be
2709   ///        generated if not.
2710   void EmitAggregateCopy(LValue Dest, LValue Src, QualType EltTy,
2711                          AggValueSlot::Overlap_t MayOverlap,
2712                          bool isVolatile = false);
2713 
2714   /// GetAddrOfLocalVar - Return the address of a local variable.
2715   Address GetAddrOfLocalVar(const VarDecl *VD) {
2716     auto it = LocalDeclMap.find(VD);
2717     assert(it != LocalDeclMap.end() &&
2718            "Invalid argument to GetAddrOfLocalVar(), no decl!");
2719     return it->second;
2720   }
2721 
2722   /// Given an opaque value expression, return its LValue mapping if it exists,
2723   /// otherwise create one.
2724   LValue getOrCreateOpaqueLValueMapping(const OpaqueValueExpr *e);
2725 
2726   /// Given an opaque value expression, return its RValue mapping if it exists,
2727   /// otherwise create one.
2728   RValue getOrCreateOpaqueRValueMapping(const OpaqueValueExpr *e);
2729 
2730   /// Get the index of the current ArrayInitLoopExpr, if any.
2731   llvm::Value *getArrayInitIndex() { return ArrayInitIndex; }
2732 
2733   /// getAccessedFieldNo - Given an encoded value and a result number, return
2734   /// the input field number being accessed.
2735   static unsigned getAccessedFieldNo(unsigned Idx, const llvm::Constant *Elts);
2736 
2737   llvm::BlockAddress *GetAddrOfLabel(const LabelDecl *L);
2738   llvm::BasicBlock *GetIndirectGotoBlock();
2739 
2740   /// Check if \p E is a C++ "this" pointer wrapped in value-preserving casts.
2741   static bool IsWrappedCXXThis(const Expr *E);
2742 
2743   /// EmitNullInitialization - Generate code to set a value of the given type to
2744   /// null, If the type contains data member pointers, they will be initialized
2745   /// to -1 in accordance with the Itanium C++ ABI.
2746   void EmitNullInitialization(Address DestPtr, QualType Ty);
2747 
2748   /// Emits a call to an LLVM variable-argument intrinsic, either
2749   /// \c llvm.va_start or \c llvm.va_end.
2750   /// \param ArgValue A reference to the \c va_list as emitted by either
2751   /// \c EmitVAListRef or \c EmitMSVAListRef.
2752   /// \param IsStart If \c true, emits a call to \c llvm.va_start; otherwise,
2753   /// calls \c llvm.va_end.
2754   llvm::Value *EmitVAStartEnd(llvm::Value *ArgValue, bool IsStart);
2755 
2756   /// Generate code to get an argument from the passed in pointer
2757   /// and update it accordingly.
2758   /// \param VE The \c VAArgExpr for which to generate code.
2759   /// \param VAListAddr Receives a reference to the \c va_list as emitted by
2760   /// either \c EmitVAListRef or \c EmitMSVAListRef.
2761   /// \returns A pointer to the argument.
2762   // FIXME: We should be able to get rid of this method and use the va_arg
2763   // instruction in LLVM instead once it works well enough.
2764   Address EmitVAArg(VAArgExpr *VE, Address &VAListAddr);
2765 
2766   /// emitArrayLength - Compute the length of an array, even if it's a
2767   /// VLA, and drill down to the base element type.
2768   llvm::Value *emitArrayLength(const ArrayType *arrayType,
2769                                QualType &baseType,
2770                                Address &addr);
2771 
2772   /// EmitVLASize - Capture all the sizes for the VLA expressions in
2773   /// the given variably-modified type and store them in the VLASizeMap.
2774   ///
2775   /// This function can be called with a null (unreachable) insert point.
2776   void EmitVariablyModifiedType(QualType Ty);
2777 
2778   struct VlaSizePair {
2779     llvm::Value *NumElts;
2780     QualType Type;
2781 
2782     VlaSizePair(llvm::Value *NE, QualType T) : NumElts(NE), Type(T) {}
2783   };
2784 
2785   /// Return the number of elements for a single dimension
2786   /// for the given array type.
2787   VlaSizePair getVLAElements1D(const VariableArrayType *vla);
2788   VlaSizePair getVLAElements1D(QualType vla);
2789 
2790   /// Returns an LLVM value that corresponds to the size,
2791   /// in non-variably-sized elements, of a variable length array type,
2792   /// plus that largest non-variably-sized element type.  Assumes that
2793   /// the type has already been emitted with EmitVariablyModifiedType.
2794   VlaSizePair getVLASize(const VariableArrayType *vla);
2795   VlaSizePair getVLASize(QualType vla);
2796 
2797   /// LoadCXXThis - Load the value of 'this'. This function is only valid while
2798   /// generating code for an C++ member function.
2799   llvm::Value *LoadCXXThis() {
2800     assert(CXXThisValue && "no 'this' value for this function");
2801     return CXXThisValue;
2802   }
2803   Address LoadCXXThisAddress();
2804 
2805   /// LoadCXXVTT - Load the VTT parameter to base constructors/destructors have
2806   /// virtual bases.
2807   // FIXME: Every place that calls LoadCXXVTT is something
2808   // that needs to be abstracted properly.
2809   llvm::Value *LoadCXXVTT() {
2810     assert(CXXStructorImplicitParamValue && "no VTT value for this function");
2811     return CXXStructorImplicitParamValue;
2812   }
2813 
2814   /// GetAddressOfBaseOfCompleteClass - Convert the given pointer to a
2815   /// complete class to the given direct base.
2816   Address
2817   GetAddressOfDirectBaseInCompleteClass(Address Value,
2818                                         const CXXRecordDecl *Derived,
2819                                         const CXXRecordDecl *Base,
2820                                         bool BaseIsVirtual);
2821 
2822   static bool ShouldNullCheckClassCastValue(const CastExpr *Cast);
2823 
2824   /// GetAddressOfBaseClass - This function will add the necessary delta to the
2825   /// load of 'this' and returns address of the base class.
2826   Address GetAddressOfBaseClass(Address Value,
2827                                 const CXXRecordDecl *Derived,
2828                                 CastExpr::path_const_iterator PathBegin,
2829                                 CastExpr::path_const_iterator PathEnd,
2830                                 bool NullCheckValue, SourceLocation Loc);
2831 
2832   Address GetAddressOfDerivedClass(Address Value,
2833                                    const CXXRecordDecl *Derived,
2834                                    CastExpr::path_const_iterator PathBegin,
2835                                    CastExpr::path_const_iterator PathEnd,
2836                                    bool NullCheckValue);
2837 
2838   /// GetVTTParameter - Return the VTT parameter that should be passed to a
2839   /// base constructor/destructor with virtual bases.
2840   /// FIXME: VTTs are Itanium ABI-specific, so the definition should move
2841   /// to ItaniumCXXABI.cpp together with all the references to VTT.
2842   llvm::Value *GetVTTParameter(GlobalDecl GD, bool ForVirtualBase,
2843                                bool Delegating);
2844 
2845   void EmitDelegateCXXConstructorCall(const CXXConstructorDecl *Ctor,
2846                                       CXXCtorType CtorType,
2847                                       const FunctionArgList &Args,
2848                                       SourceLocation Loc);
2849   // It's important not to confuse this and the previous function. Delegating
2850   // constructors are the C++0x feature. The constructor delegate optimization
2851   // is used to reduce duplication in the base and complete consturctors where
2852   // they are substantially the same.
2853   void EmitDelegatingCXXConstructorCall(const CXXConstructorDecl *Ctor,
2854                                         const FunctionArgList &Args);
2855 
2856   /// Emit a call to an inheriting constructor (that is, one that invokes a
2857   /// constructor inherited from a base class) by inlining its definition. This
2858   /// is necessary if the ABI does not support forwarding the arguments to the
2859   /// base class constructor (because they're variadic or similar).
2860   void EmitInlinedInheritingCXXConstructorCall(const CXXConstructorDecl *Ctor,
2861                                                CXXCtorType CtorType,
2862                                                bool ForVirtualBase,
2863                                                bool Delegating,
2864                                                CallArgList &Args);
2865 
2866   /// Emit a call to a constructor inherited from a base class, passing the
2867   /// current constructor's arguments along unmodified (without even making
2868   /// a copy).
2869   void EmitInheritedCXXConstructorCall(const CXXConstructorDecl *D,
2870                                        bool ForVirtualBase, Address This,
2871                                        bool InheritedFromVBase,
2872                                        const CXXInheritedCtorInitExpr *E);
2873 
2874   void EmitCXXConstructorCall(const CXXConstructorDecl *D, CXXCtorType Type,
2875                               bool ForVirtualBase, bool Delegating,
2876                               AggValueSlot ThisAVS, const CXXConstructExpr *E);
2877 
2878   void EmitCXXConstructorCall(const CXXConstructorDecl *D, CXXCtorType Type,
2879                               bool ForVirtualBase, bool Delegating,
2880                               Address This, CallArgList &Args,
2881                               AggValueSlot::Overlap_t Overlap,
2882                               SourceLocation Loc, bool NewPointerIsChecked);
2883 
2884   /// Emit assumption load for all bases. Requires to be be called only on
2885   /// most-derived class and not under construction of the object.
2886   void EmitVTableAssumptionLoads(const CXXRecordDecl *ClassDecl, Address This);
2887 
2888   /// Emit assumption that vptr load == global vtable.
2889   void EmitVTableAssumptionLoad(const VPtr &vptr, Address This);
2890 
2891   void EmitSynthesizedCXXCopyCtorCall(const CXXConstructorDecl *D,
2892                                       Address This, Address Src,
2893                                       const CXXConstructExpr *E);
2894 
2895   void EmitCXXAggrConstructorCall(const CXXConstructorDecl *D,
2896                                   const ArrayType *ArrayTy,
2897                                   Address ArrayPtr,
2898                                   const CXXConstructExpr *E,
2899                                   bool NewPointerIsChecked,
2900                                   bool ZeroInitialization = false);
2901 
2902   void EmitCXXAggrConstructorCall(const CXXConstructorDecl *D,
2903                                   llvm::Value *NumElements,
2904                                   Address ArrayPtr,
2905                                   const CXXConstructExpr *E,
2906                                   bool NewPointerIsChecked,
2907                                   bool ZeroInitialization = false);
2908 
2909   static Destroyer destroyCXXObject;
2910 
2911   void EmitCXXDestructorCall(const CXXDestructorDecl *D, CXXDtorType Type,
2912                              bool ForVirtualBase, bool Delegating, Address This,
2913                              QualType ThisTy);
2914 
2915   void EmitNewArrayInitializer(const CXXNewExpr *E, QualType elementType,
2916                                llvm::Type *ElementTy, Address NewPtr,
2917                                llvm::Value *NumElements,
2918                                llvm::Value *AllocSizeWithoutCookie);
2919 
2920   void EmitCXXTemporary(const CXXTemporary *Temporary, QualType TempType,
2921                         Address Ptr);
2922 
2923   void EmitSehCppScopeBegin();
2924   void EmitSehCppScopeEnd();
2925   void EmitSehTryScopeBegin();
2926   void EmitSehTryScopeEnd();
2927 
2928   llvm::Value *EmitLifetimeStart(llvm::TypeSize Size, llvm::Value *Addr);
2929   void EmitLifetimeEnd(llvm::Value *Size, llvm::Value *Addr);
2930 
2931   llvm::Value *EmitCXXNewExpr(const CXXNewExpr *E);
2932   void EmitCXXDeleteExpr(const CXXDeleteExpr *E);
2933 
2934   void EmitDeleteCall(const FunctionDecl *DeleteFD, llvm::Value *Ptr,
2935                       QualType DeleteTy, llvm::Value *NumElements = nullptr,
2936                       CharUnits CookieSize = CharUnits());
2937 
2938   RValue EmitBuiltinNewDeleteCall(const FunctionProtoType *Type,
2939                                   const CallExpr *TheCallExpr, bool IsDelete);
2940 
2941   llvm::Value *EmitCXXTypeidExpr(const CXXTypeidExpr *E);
2942   llvm::Value *EmitDynamicCast(Address V, const CXXDynamicCastExpr *DCE);
2943   Address EmitCXXUuidofExpr(const CXXUuidofExpr *E);
2944 
2945   /// Situations in which we might emit a check for the suitability of a
2946   /// pointer or glvalue. Needs to be kept in sync with ubsan_handlers.cpp in
2947   /// compiler-rt.
2948   enum TypeCheckKind {
2949     /// Checking the operand of a load. Must be suitably sized and aligned.
2950     TCK_Load,
2951     /// Checking the destination of a store. Must be suitably sized and aligned.
2952     TCK_Store,
2953     /// Checking the bound value in a reference binding. Must be suitably sized
2954     /// and aligned, but is not required to refer to an object (until the
2955     /// reference is used), per core issue 453.
2956     TCK_ReferenceBinding,
2957     /// Checking the object expression in a non-static data member access. Must
2958     /// be an object within its lifetime.
2959     TCK_MemberAccess,
2960     /// Checking the 'this' pointer for a call to a non-static member function.
2961     /// Must be an object within its lifetime.
2962     TCK_MemberCall,
2963     /// Checking the 'this' pointer for a constructor call.
2964     TCK_ConstructorCall,
2965     /// Checking the operand of a static_cast to a derived pointer type. Must be
2966     /// null or an object within its lifetime.
2967     TCK_DowncastPointer,
2968     /// Checking the operand of a static_cast to a derived reference type. Must
2969     /// be an object within its lifetime.
2970     TCK_DowncastReference,
2971     /// Checking the operand of a cast to a base object. Must be suitably sized
2972     /// and aligned.
2973     TCK_Upcast,
2974     /// Checking the operand of a cast to a virtual base object. Must be an
2975     /// object within its lifetime.
2976     TCK_UpcastToVirtualBase,
2977     /// Checking the value assigned to a _Nonnull pointer. Must not be null.
2978     TCK_NonnullAssign,
2979     /// Checking the operand of a dynamic_cast or a typeid expression.  Must be
2980     /// null or an object within its lifetime.
2981     TCK_DynamicOperation
2982   };
2983 
2984   /// Determine whether the pointer type check \p TCK permits null pointers.
2985   static bool isNullPointerAllowed(TypeCheckKind TCK);
2986 
2987   /// Determine whether the pointer type check \p TCK requires a vptr check.
2988   static bool isVptrCheckRequired(TypeCheckKind TCK, QualType Ty);
2989 
2990   /// Whether any type-checking sanitizers are enabled. If \c false,
2991   /// calls to EmitTypeCheck can be skipped.
2992   bool sanitizePerformTypeCheck() const;
2993 
2994   /// Emit a check that \p V is the address of storage of the
2995   /// appropriate size and alignment for an object of type \p Type
2996   /// (or if ArraySize is provided, for an array of that bound).
2997   void EmitTypeCheck(TypeCheckKind TCK, SourceLocation Loc, llvm::Value *V,
2998                      QualType Type, CharUnits Alignment = CharUnits::Zero(),
2999                      SanitizerSet SkippedChecks = SanitizerSet(),
3000                      llvm::Value *ArraySize = nullptr);
3001 
3002   /// Emit a check that \p Base points into an array object, which
3003   /// we can access at index \p Index. \p Accessed should be \c false if we
3004   /// this expression is used as an lvalue, for instance in "&Arr[Idx]".
3005   void EmitBoundsCheck(const Expr *E, const Expr *Base, llvm::Value *Index,
3006                        QualType IndexType, bool Accessed);
3007 
3008   llvm::Value *EmitScalarPrePostIncDec(const UnaryOperator *E, LValue LV,
3009                                        bool isInc, bool isPre);
3010   ComplexPairTy EmitComplexPrePostIncDec(const UnaryOperator *E, LValue LV,
3011                                          bool isInc, bool isPre);
3012 
3013   /// Converts Location to a DebugLoc, if debug information is enabled.
3014   llvm::DebugLoc SourceLocToDebugLoc(SourceLocation Location);
3015 
3016   /// Get the record field index as represented in debug info.
3017   unsigned getDebugInfoFIndex(const RecordDecl *Rec, unsigned FieldIndex);
3018 
3019 
3020   //===--------------------------------------------------------------------===//
3021   //                            Declaration Emission
3022   //===--------------------------------------------------------------------===//
3023 
3024   /// EmitDecl - Emit a declaration.
3025   ///
3026   /// This function can be called with a null (unreachable) insert point.
3027   void EmitDecl(const Decl &D);
3028 
3029   /// EmitVarDecl - Emit a local variable declaration.
3030   ///
3031   /// This function can be called with a null (unreachable) insert point.
3032   void EmitVarDecl(const VarDecl &D);
3033 
3034   void EmitScalarInit(const Expr *init, const ValueDecl *D, LValue lvalue,
3035                       bool capturedByInit);
3036 
3037   typedef void SpecialInitFn(CodeGenFunction &Init, const VarDecl &D,
3038                              llvm::Value *Address);
3039 
3040   /// Determine whether the given initializer is trivial in the sense
3041   /// that it requires no code to be generated.
3042   bool isTrivialInitializer(const Expr *Init);
3043 
3044   /// EmitAutoVarDecl - Emit an auto variable declaration.
3045   ///
3046   /// This function can be called with a null (unreachable) insert point.
3047   void EmitAutoVarDecl(const VarDecl &D);
3048 
3049   class AutoVarEmission {
3050     friend class CodeGenFunction;
3051 
3052     const VarDecl *Variable;
3053 
3054     /// The address of the alloca for languages with explicit address space
3055     /// (e.g. OpenCL) or alloca casted to generic pointer for address space
3056     /// agnostic languages (e.g. C++). Invalid if the variable was emitted
3057     /// as a global constant.
3058     Address Addr;
3059 
3060     llvm::Value *NRVOFlag;
3061 
3062     /// True if the variable is a __block variable that is captured by an
3063     /// escaping block.
3064     bool IsEscapingByRef;
3065 
3066     /// True if the variable is of aggregate type and has a constant
3067     /// initializer.
3068     bool IsConstantAggregate;
3069 
3070     /// Non-null if we should use lifetime annotations.
3071     llvm::Value *SizeForLifetimeMarkers;
3072 
3073     /// Address with original alloca instruction. Invalid if the variable was
3074     /// emitted as a global constant.
3075     Address AllocaAddr;
3076 
3077     struct Invalid {};
3078     AutoVarEmission(Invalid)
3079         : Variable(nullptr), Addr(Address::invalid()),
3080           AllocaAddr(Address::invalid()) {}
3081 
3082     AutoVarEmission(const VarDecl &variable)
3083         : Variable(&variable), Addr(Address::invalid()), NRVOFlag(nullptr),
3084           IsEscapingByRef(false), IsConstantAggregate(false),
3085           SizeForLifetimeMarkers(nullptr), AllocaAddr(Address::invalid()) {}
3086 
3087     bool wasEmittedAsGlobal() const { return !Addr.isValid(); }
3088 
3089   public:
3090     static AutoVarEmission invalid() { return AutoVarEmission(Invalid()); }
3091 
3092     bool useLifetimeMarkers() const {
3093       return SizeForLifetimeMarkers != nullptr;
3094     }
3095     llvm::Value *getSizeForLifetimeMarkers() const {
3096       assert(useLifetimeMarkers());
3097       return SizeForLifetimeMarkers;
3098     }
3099 
3100     /// Returns the raw, allocated address, which is not necessarily
3101     /// the address of the object itself. It is casted to default
3102     /// address space for address space agnostic languages.
3103     Address getAllocatedAddress() const {
3104       return Addr;
3105     }
3106 
3107     /// Returns the address for the original alloca instruction.
3108     Address getOriginalAllocatedAddress() const { return AllocaAddr; }
3109 
3110     /// Returns the address of the object within this declaration.
3111     /// Note that this does not chase the forwarding pointer for
3112     /// __block decls.
3113     Address getObjectAddress(CodeGenFunction &CGF) const {
3114       if (!IsEscapingByRef) return Addr;
3115 
3116       return CGF.emitBlockByrefAddress(Addr, Variable, /*forward*/ false);
3117     }
3118   };
3119   AutoVarEmission EmitAutoVarAlloca(const VarDecl &var);
3120   void EmitAutoVarInit(const AutoVarEmission &emission);
3121   void EmitAutoVarCleanups(const AutoVarEmission &emission);
3122   void emitAutoVarTypeCleanup(const AutoVarEmission &emission,
3123                               QualType::DestructionKind dtorKind);
3124 
3125   /// Emits the alloca and debug information for the size expressions for each
3126   /// dimension of an array. It registers the association of its (1-dimensional)
3127   /// QualTypes and size expression's debug node, so that CGDebugInfo can
3128   /// reference this node when creating the DISubrange object to describe the
3129   /// array types.
3130   void EmitAndRegisterVariableArrayDimensions(CGDebugInfo *DI,
3131                                               const VarDecl &D,
3132                                               bool EmitDebugInfo);
3133 
3134   void EmitStaticVarDecl(const VarDecl &D,
3135                          llvm::GlobalValue::LinkageTypes Linkage);
3136 
3137   class ParamValue {
3138     llvm::Value *Value;
3139     llvm::Type *ElementType;
3140     unsigned Alignment;
3141     ParamValue(llvm::Value *V, llvm::Type *T, unsigned A)
3142         : Value(V), ElementType(T), Alignment(A) {}
3143   public:
3144     static ParamValue forDirect(llvm::Value *value) {
3145       return ParamValue(value, nullptr, 0);
3146     }
3147     static ParamValue forIndirect(Address addr) {
3148       assert(!addr.getAlignment().isZero());
3149       return ParamValue(addr.getPointer(), addr.getElementType(),
3150                         addr.getAlignment().getQuantity());
3151     }
3152 
3153     bool isIndirect() const { return Alignment != 0; }
3154     llvm::Value *getAnyValue() const { return Value; }
3155 
3156     llvm::Value *getDirectValue() const {
3157       assert(!isIndirect());
3158       return Value;
3159     }
3160 
3161     Address getIndirectAddress() const {
3162       assert(isIndirect());
3163       return Address(Value, ElementType, CharUnits::fromQuantity(Alignment));
3164     }
3165   };
3166 
3167   /// EmitParmDecl - Emit a ParmVarDecl or an ImplicitParamDecl.
3168   void EmitParmDecl(const VarDecl &D, ParamValue Arg, unsigned ArgNo);
3169 
3170   /// protectFromPeepholes - Protect a value that we're intending to
3171   /// store to the side, but which will probably be used later, from
3172   /// aggressive peepholing optimizations that might delete it.
3173   ///
3174   /// Pass the result to unprotectFromPeepholes to declare that
3175   /// protection is no longer required.
3176   ///
3177   /// There's no particular reason why this shouldn't apply to
3178   /// l-values, it's just that no existing peepholes work on pointers.
3179   PeepholeProtection protectFromPeepholes(RValue rvalue);
3180   void unprotectFromPeepholes(PeepholeProtection protection);
3181 
3182   void emitAlignmentAssumptionCheck(llvm::Value *Ptr, QualType Ty,
3183                                     SourceLocation Loc,
3184                                     SourceLocation AssumptionLoc,
3185                                     llvm::Value *Alignment,
3186                                     llvm::Value *OffsetValue,
3187                                     llvm::Value *TheCheck,
3188                                     llvm::Instruction *Assumption);
3189 
3190   void emitAlignmentAssumption(llvm::Value *PtrValue, QualType Ty,
3191                                SourceLocation Loc, SourceLocation AssumptionLoc,
3192                                llvm::Value *Alignment,
3193                                llvm::Value *OffsetValue = nullptr);
3194 
3195   void emitAlignmentAssumption(llvm::Value *PtrValue, const Expr *E,
3196                                SourceLocation AssumptionLoc,
3197                                llvm::Value *Alignment,
3198                                llvm::Value *OffsetValue = nullptr);
3199 
3200   //===--------------------------------------------------------------------===//
3201   //                             Statement Emission
3202   //===--------------------------------------------------------------------===//
3203 
3204   /// EmitStopPoint - Emit a debug stoppoint if we are emitting debug info.
3205   void EmitStopPoint(const Stmt *S);
3206 
3207   /// EmitStmt - Emit the code for the statement \arg S. It is legal to call
3208   /// this function even if there is no current insertion point.
3209   ///
3210   /// This function may clear the current insertion point; callers should use
3211   /// EnsureInsertPoint if they wish to subsequently generate code without first
3212   /// calling EmitBlock, EmitBranch, or EmitStmt.
3213   void EmitStmt(const Stmt *S, ArrayRef<const Attr *> Attrs = None);
3214 
3215   /// EmitSimpleStmt - Try to emit a "simple" statement which does not
3216   /// necessarily require an insertion point or debug information; typically
3217   /// because the statement amounts to a jump or a container of other
3218   /// statements.
3219   ///
3220   /// \return True if the statement was handled.
3221   bool EmitSimpleStmt(const Stmt *S, ArrayRef<const Attr *> Attrs);
3222 
3223   Address EmitCompoundStmt(const CompoundStmt &S, bool GetLast = false,
3224                            AggValueSlot AVS = AggValueSlot::ignored());
3225   Address EmitCompoundStmtWithoutScope(const CompoundStmt &S,
3226                                        bool GetLast = false,
3227                                        AggValueSlot AVS =
3228                                                 AggValueSlot::ignored());
3229 
3230   /// EmitLabel - Emit the block for the given label. It is legal to call this
3231   /// function even if there is no current insertion point.
3232   void EmitLabel(const LabelDecl *D); // helper for EmitLabelStmt.
3233 
3234   void EmitLabelStmt(const LabelStmt &S);
3235   void EmitAttributedStmt(const AttributedStmt &S);
3236   void EmitGotoStmt(const GotoStmt &S);
3237   void EmitIndirectGotoStmt(const IndirectGotoStmt &S);
3238   void EmitIfStmt(const IfStmt &S);
3239 
3240   void EmitWhileStmt(const WhileStmt &S,
3241                      ArrayRef<const Attr *> Attrs = None);
3242   void EmitDoStmt(const DoStmt &S, ArrayRef<const Attr *> Attrs = None);
3243   void EmitForStmt(const ForStmt &S,
3244                    ArrayRef<const Attr *> Attrs = None);
3245   void EmitReturnStmt(const ReturnStmt &S);
3246   void EmitDeclStmt(const DeclStmt &S);
3247   void EmitBreakStmt(const BreakStmt &S);
3248   void EmitContinueStmt(const ContinueStmt &S);
3249   void EmitSwitchStmt(const SwitchStmt &S);
3250   void EmitDefaultStmt(const DefaultStmt &S, ArrayRef<const Attr *> Attrs);
3251   void EmitCaseStmt(const CaseStmt &S, ArrayRef<const Attr *> Attrs);
3252   void EmitCaseStmtRange(const CaseStmt &S, ArrayRef<const Attr *> Attrs);
3253   void EmitAsmStmt(const AsmStmt &S);
3254 
3255   void EmitObjCForCollectionStmt(const ObjCForCollectionStmt &S);
3256   void EmitObjCAtTryStmt(const ObjCAtTryStmt &S);
3257   void EmitObjCAtThrowStmt(const ObjCAtThrowStmt &S);
3258   void EmitObjCAtSynchronizedStmt(const ObjCAtSynchronizedStmt &S);
3259   void EmitObjCAutoreleasePoolStmt(const ObjCAutoreleasePoolStmt &S);
3260 
3261   void EmitCoroutineBody(const CoroutineBodyStmt &S);
3262   void EmitCoreturnStmt(const CoreturnStmt &S);
3263   RValue EmitCoawaitExpr(const CoawaitExpr &E,
3264                          AggValueSlot aggSlot = AggValueSlot::ignored(),
3265                          bool ignoreResult = false);
3266   LValue EmitCoawaitLValue(const CoawaitExpr *E);
3267   RValue EmitCoyieldExpr(const CoyieldExpr &E,
3268                          AggValueSlot aggSlot = AggValueSlot::ignored(),
3269                          bool ignoreResult = false);
3270   LValue EmitCoyieldLValue(const CoyieldExpr *E);
3271   RValue EmitCoroutineIntrinsic(const CallExpr *E, unsigned int IID);
3272 
3273   void EnterCXXTryStmt(const CXXTryStmt &S, bool IsFnTryBlock = false);
3274   void ExitCXXTryStmt(const CXXTryStmt &S, bool IsFnTryBlock = false);
3275 
3276   void EmitCXXTryStmt(const CXXTryStmt &S);
3277   void EmitSEHTryStmt(const SEHTryStmt &S);
3278   void EmitSEHLeaveStmt(const SEHLeaveStmt &S);
3279   void EnterSEHTryStmt(const SEHTryStmt &S);
3280   void ExitSEHTryStmt(const SEHTryStmt &S);
3281   void VolatilizeTryBlocks(llvm::BasicBlock *BB,
3282                            llvm::SmallPtrSet<llvm::BasicBlock *, 10> &V);
3283 
3284   void pushSEHCleanup(CleanupKind kind,
3285                       llvm::Function *FinallyFunc);
3286   void startOutlinedSEHHelper(CodeGenFunction &ParentCGF, bool IsFilter,
3287                               const Stmt *OutlinedStmt);
3288 
3289   llvm::Function *GenerateSEHFilterFunction(CodeGenFunction &ParentCGF,
3290                                             const SEHExceptStmt &Except);
3291 
3292   llvm::Function *GenerateSEHFinallyFunction(CodeGenFunction &ParentCGF,
3293                                              const SEHFinallyStmt &Finally);
3294 
3295   void EmitSEHExceptionCodeSave(CodeGenFunction &ParentCGF,
3296                                 llvm::Value *ParentFP,
3297                                 llvm::Value *EntryEBP);
3298   llvm::Value *EmitSEHExceptionCode();
3299   llvm::Value *EmitSEHExceptionInfo();
3300   llvm::Value *EmitSEHAbnormalTermination();
3301 
3302   /// Emit simple code for OpenMP directives in Simd-only mode.
3303   void EmitSimpleOMPExecutableDirective(const OMPExecutableDirective &D);
3304 
3305   /// Scan the outlined statement for captures from the parent function. For
3306   /// each capture, mark the capture as escaped and emit a call to
3307   /// llvm.localrecover. Insert the localrecover result into the LocalDeclMap.
3308   void EmitCapturedLocals(CodeGenFunction &ParentCGF, const Stmt *OutlinedStmt,
3309                           bool IsFilter);
3310 
3311   /// Recovers the address of a local in a parent function. ParentVar is the
3312   /// address of the variable used in the immediate parent function. It can
3313   /// either be an alloca or a call to llvm.localrecover if there are nested
3314   /// outlined functions. ParentFP is the frame pointer of the outermost parent
3315   /// frame.
3316   Address recoverAddrOfEscapedLocal(CodeGenFunction &ParentCGF,
3317                                     Address ParentVar,
3318                                     llvm::Value *ParentFP);
3319 
3320   void EmitCXXForRangeStmt(const CXXForRangeStmt &S,
3321                            ArrayRef<const Attr *> Attrs = None);
3322 
3323   /// Controls insertion of cancellation exit blocks in worksharing constructs.
3324   class OMPCancelStackRAII {
3325     CodeGenFunction &CGF;
3326 
3327   public:
3328     OMPCancelStackRAII(CodeGenFunction &CGF, OpenMPDirectiveKind Kind,
3329                        bool HasCancel)
3330         : CGF(CGF) {
3331       CGF.OMPCancelStack.enter(CGF, Kind, HasCancel);
3332     }
3333     ~OMPCancelStackRAII() { CGF.OMPCancelStack.exit(CGF); }
3334   };
3335 
3336   /// Returns calculated size of the specified type.
3337   llvm::Value *getTypeSize(QualType Ty);
3338   LValue InitCapturedStruct(const CapturedStmt &S);
3339   llvm::Function *EmitCapturedStmt(const CapturedStmt &S, CapturedRegionKind K);
3340   llvm::Function *GenerateCapturedStmtFunction(const CapturedStmt &S);
3341   Address GenerateCapturedStmtArgument(const CapturedStmt &S);
3342   llvm::Function *GenerateOpenMPCapturedStmtFunction(const CapturedStmt &S,
3343                                                      SourceLocation Loc);
3344   void GenerateOpenMPCapturedVars(const CapturedStmt &S,
3345                                   SmallVectorImpl<llvm::Value *> &CapturedVars);
3346   void emitOMPSimpleStore(LValue LVal, RValue RVal, QualType RValTy,
3347                           SourceLocation Loc);
3348   /// Perform element by element copying of arrays with type \a
3349   /// OriginalType from \a SrcAddr to \a DestAddr using copying procedure
3350   /// generated by \a CopyGen.
3351   ///
3352   /// \param DestAddr Address of the destination array.
3353   /// \param SrcAddr Address of the source array.
3354   /// \param OriginalType Type of destination and source arrays.
3355   /// \param CopyGen Copying procedure that copies value of single array element
3356   /// to another single array element.
3357   void EmitOMPAggregateAssign(
3358       Address DestAddr, Address SrcAddr, QualType OriginalType,
3359       const llvm::function_ref<void(Address, Address)> CopyGen);
3360   /// Emit proper copying of data from one variable to another.
3361   ///
3362   /// \param OriginalType Original type of the copied variables.
3363   /// \param DestAddr Destination address.
3364   /// \param SrcAddr Source address.
3365   /// \param DestVD Destination variable used in \a CopyExpr (for arrays, has
3366   /// type of the base array element).
3367   /// \param SrcVD Source variable used in \a CopyExpr (for arrays, has type of
3368   /// the base array element).
3369   /// \param Copy Actual copygin expression for copying data from \a SrcVD to \a
3370   /// DestVD.
3371   void EmitOMPCopy(QualType OriginalType,
3372                    Address DestAddr, Address SrcAddr,
3373                    const VarDecl *DestVD, const VarDecl *SrcVD,
3374                    const Expr *Copy);
3375   /// Emit atomic update code for constructs: \a X = \a X \a BO \a E or
3376   /// \a X = \a E \a BO \a E.
3377   ///
3378   /// \param X Value to be updated.
3379   /// \param E Update value.
3380   /// \param BO Binary operation for update operation.
3381   /// \param IsXLHSInRHSPart true if \a X is LHS in RHS part of the update
3382   /// expression, false otherwise.
3383   /// \param AO Atomic ordering of the generated atomic instructions.
3384   /// \param CommonGen Code generator for complex expressions that cannot be
3385   /// expressed through atomicrmw instruction.
3386   /// \returns <true, OldAtomicValue> if simple 'atomicrmw' instruction was
3387   /// generated, <false, RValue::get(nullptr)> otherwise.
3388   std::pair<bool, RValue> EmitOMPAtomicSimpleUpdateExpr(
3389       LValue X, RValue E, BinaryOperatorKind BO, bool IsXLHSInRHSPart,
3390       llvm::AtomicOrdering AO, SourceLocation Loc,
3391       const llvm::function_ref<RValue(RValue)> CommonGen);
3392   bool EmitOMPFirstprivateClause(const OMPExecutableDirective &D,
3393                                  OMPPrivateScope &PrivateScope);
3394   void EmitOMPPrivateClause(const OMPExecutableDirective &D,
3395                             OMPPrivateScope &PrivateScope);
3396   void EmitOMPUseDevicePtrClause(
3397       const OMPUseDevicePtrClause &C, OMPPrivateScope &PrivateScope,
3398       const llvm::DenseMap<const ValueDecl *, Address> &CaptureDeviceAddrMap);
3399   void EmitOMPUseDeviceAddrClause(
3400       const OMPUseDeviceAddrClause &C, OMPPrivateScope &PrivateScope,
3401       const llvm::DenseMap<const ValueDecl *, Address> &CaptureDeviceAddrMap);
3402   /// Emit code for copyin clause in \a D directive. The next code is
3403   /// generated at the start of outlined functions for directives:
3404   /// \code
3405   /// threadprivate_var1 = master_threadprivate_var1;
3406   /// operator=(threadprivate_var2, master_threadprivate_var2);
3407   /// ...
3408   /// __kmpc_barrier(&loc, global_tid);
3409   /// \endcode
3410   ///
3411   /// \param D OpenMP directive possibly with 'copyin' clause(s).
3412   /// \returns true if at least one copyin variable is found, false otherwise.
3413   bool EmitOMPCopyinClause(const OMPExecutableDirective &D);
3414   /// Emit initial code for lastprivate variables. If some variable is
3415   /// not also firstprivate, then the default initialization is used. Otherwise
3416   /// initialization of this variable is performed by EmitOMPFirstprivateClause
3417   /// method.
3418   ///
3419   /// \param D Directive that may have 'lastprivate' directives.
3420   /// \param PrivateScope Private scope for capturing lastprivate variables for
3421   /// proper codegen in internal captured statement.
3422   ///
3423   /// \returns true if there is at least one lastprivate variable, false
3424   /// otherwise.
3425   bool EmitOMPLastprivateClauseInit(const OMPExecutableDirective &D,
3426                                     OMPPrivateScope &PrivateScope);
3427   /// Emit final copying of lastprivate values to original variables at
3428   /// the end of the worksharing or simd directive.
3429   ///
3430   /// \param D Directive that has at least one 'lastprivate' directives.
3431   /// \param IsLastIterCond Boolean condition that must be set to 'i1 true' if
3432   /// it is the last iteration of the loop code in associated directive, or to
3433   /// 'i1 false' otherwise. If this item is nullptr, no final check is required.
3434   void EmitOMPLastprivateClauseFinal(const OMPExecutableDirective &D,
3435                                      bool NoFinals,
3436                                      llvm::Value *IsLastIterCond = nullptr);
3437   /// Emit initial code for linear clauses.
3438   void EmitOMPLinearClause(const OMPLoopDirective &D,
3439                            CodeGenFunction::OMPPrivateScope &PrivateScope);
3440   /// Emit final code for linear clauses.
3441   /// \param CondGen Optional conditional code for final part of codegen for
3442   /// linear clause.
3443   void EmitOMPLinearClauseFinal(
3444       const OMPLoopDirective &D,
3445       const llvm::function_ref<llvm::Value *(CodeGenFunction &)> CondGen);
3446   /// Emit initial code for reduction variables. Creates reduction copies
3447   /// and initializes them with the values according to OpenMP standard.
3448   ///
3449   /// \param D Directive (possibly) with the 'reduction' clause.
3450   /// \param PrivateScope Private scope for capturing reduction variables for
3451   /// proper codegen in internal captured statement.
3452   ///
3453   void EmitOMPReductionClauseInit(const OMPExecutableDirective &D,
3454                                   OMPPrivateScope &PrivateScope,
3455                                   bool ForInscan = false);
3456   /// Emit final update of reduction values to original variables at
3457   /// the end of the directive.
3458   ///
3459   /// \param D Directive that has at least one 'reduction' directives.
3460   /// \param ReductionKind The kind of reduction to perform.
3461   void EmitOMPReductionClauseFinal(const OMPExecutableDirective &D,
3462                                    const OpenMPDirectiveKind ReductionKind);
3463   /// Emit initial code for linear variables. Creates private copies
3464   /// and initializes them with the values according to OpenMP standard.
3465   ///
3466   /// \param D Directive (possibly) with the 'linear' clause.
3467   /// \return true if at least one linear variable is found that should be
3468   /// initialized with the value of the original variable, false otherwise.
3469   bool EmitOMPLinearClauseInit(const OMPLoopDirective &D);
3470 
3471   typedef const llvm::function_ref<void(CodeGenFunction & /*CGF*/,
3472                                         llvm::Function * /*OutlinedFn*/,
3473                                         const OMPTaskDataTy & /*Data*/)>
3474       TaskGenTy;
3475   void EmitOMPTaskBasedDirective(const OMPExecutableDirective &S,
3476                                  const OpenMPDirectiveKind CapturedRegion,
3477                                  const RegionCodeGenTy &BodyGen,
3478                                  const TaskGenTy &TaskGen, OMPTaskDataTy &Data);
3479   struct OMPTargetDataInfo {
3480     Address BasePointersArray = Address::invalid();
3481     Address PointersArray = Address::invalid();
3482     Address SizesArray = Address::invalid();
3483     Address MappersArray = Address::invalid();
3484     unsigned NumberOfTargetItems = 0;
3485     explicit OMPTargetDataInfo() = default;
3486     OMPTargetDataInfo(Address BasePointersArray, Address PointersArray,
3487                       Address SizesArray, Address MappersArray,
3488                       unsigned NumberOfTargetItems)
3489         : BasePointersArray(BasePointersArray), PointersArray(PointersArray),
3490           SizesArray(SizesArray), MappersArray(MappersArray),
3491           NumberOfTargetItems(NumberOfTargetItems) {}
3492   };
3493   void EmitOMPTargetTaskBasedDirective(const OMPExecutableDirective &S,
3494                                        const RegionCodeGenTy &BodyGen,
3495                                        OMPTargetDataInfo &InputInfo);
3496 
3497   void EmitOMPMetaDirective(const OMPMetaDirective &S);
3498   void EmitOMPParallelDirective(const OMPParallelDirective &S);
3499   void EmitOMPSimdDirective(const OMPSimdDirective &S);
3500   void EmitOMPTileDirective(const OMPTileDirective &S);
3501   void EmitOMPUnrollDirective(const OMPUnrollDirective &S);
3502   void EmitOMPForDirective(const OMPForDirective &S);
3503   void EmitOMPForSimdDirective(const OMPForSimdDirective &S);
3504   void EmitOMPSectionsDirective(const OMPSectionsDirective &S);
3505   void EmitOMPSectionDirective(const OMPSectionDirective &S);
3506   void EmitOMPSingleDirective(const OMPSingleDirective &S);
3507   void EmitOMPMasterDirective(const OMPMasterDirective &S);
3508   void EmitOMPMaskedDirective(const OMPMaskedDirective &S);
3509   void EmitOMPCriticalDirective(const OMPCriticalDirective &S);
3510   void EmitOMPParallelForDirective(const OMPParallelForDirective &S);
3511   void EmitOMPParallelForSimdDirective(const OMPParallelForSimdDirective &S);
3512   void EmitOMPParallelSectionsDirective(const OMPParallelSectionsDirective &S);
3513   void EmitOMPParallelMasterDirective(const OMPParallelMasterDirective &S);
3514   void EmitOMPTaskDirective(const OMPTaskDirective &S);
3515   void EmitOMPTaskyieldDirective(const OMPTaskyieldDirective &S);
3516   void EmitOMPBarrierDirective(const OMPBarrierDirective &S);
3517   void EmitOMPTaskwaitDirective(const OMPTaskwaitDirective &S);
3518   void EmitOMPTaskgroupDirective(const OMPTaskgroupDirective &S);
3519   void EmitOMPFlushDirective(const OMPFlushDirective &S);
3520   void EmitOMPDepobjDirective(const OMPDepobjDirective &S);
3521   void EmitOMPScanDirective(const OMPScanDirective &S);
3522   void EmitOMPOrderedDirective(const OMPOrderedDirective &S);
3523   void EmitOMPAtomicDirective(const OMPAtomicDirective &S);
3524   void EmitOMPTargetDirective(const OMPTargetDirective &S);
3525   void EmitOMPTargetDataDirective(const OMPTargetDataDirective &S);
3526   void EmitOMPTargetEnterDataDirective(const OMPTargetEnterDataDirective &S);
3527   void EmitOMPTargetExitDataDirective(const OMPTargetExitDataDirective &S);
3528   void EmitOMPTargetUpdateDirective(const OMPTargetUpdateDirective &S);
3529   void EmitOMPTargetParallelDirective(const OMPTargetParallelDirective &S);
3530   void
3531   EmitOMPTargetParallelForDirective(const OMPTargetParallelForDirective &S);
3532   void EmitOMPTeamsDirective(const OMPTeamsDirective &S);
3533   void
3534   EmitOMPCancellationPointDirective(const OMPCancellationPointDirective &S);
3535   void EmitOMPCancelDirective(const OMPCancelDirective &S);
3536   void EmitOMPTaskLoopBasedDirective(const OMPLoopDirective &S);
3537   void EmitOMPTaskLoopDirective(const OMPTaskLoopDirective &S);
3538   void EmitOMPTaskLoopSimdDirective(const OMPTaskLoopSimdDirective &S);
3539   void EmitOMPMasterTaskLoopDirective(const OMPMasterTaskLoopDirective &S);
3540   void
3541   EmitOMPMasterTaskLoopSimdDirective(const OMPMasterTaskLoopSimdDirective &S);
3542   void EmitOMPParallelMasterTaskLoopDirective(
3543       const OMPParallelMasterTaskLoopDirective &S);
3544   void EmitOMPParallelMasterTaskLoopSimdDirective(
3545       const OMPParallelMasterTaskLoopSimdDirective &S);
3546   void EmitOMPDistributeDirective(const OMPDistributeDirective &S);
3547   void EmitOMPDistributeParallelForDirective(
3548       const OMPDistributeParallelForDirective &S);
3549   void EmitOMPDistributeParallelForSimdDirective(
3550       const OMPDistributeParallelForSimdDirective &S);
3551   void EmitOMPDistributeSimdDirective(const OMPDistributeSimdDirective &S);
3552   void EmitOMPTargetParallelForSimdDirective(
3553       const OMPTargetParallelForSimdDirective &S);
3554   void EmitOMPTargetSimdDirective(const OMPTargetSimdDirective &S);
3555   void EmitOMPTeamsDistributeDirective(const OMPTeamsDistributeDirective &S);
3556   void
3557   EmitOMPTeamsDistributeSimdDirective(const OMPTeamsDistributeSimdDirective &S);
3558   void EmitOMPTeamsDistributeParallelForSimdDirective(
3559       const OMPTeamsDistributeParallelForSimdDirective &S);
3560   void EmitOMPTeamsDistributeParallelForDirective(
3561       const OMPTeamsDistributeParallelForDirective &S);
3562   void EmitOMPTargetTeamsDirective(const OMPTargetTeamsDirective &S);
3563   void EmitOMPTargetTeamsDistributeDirective(
3564       const OMPTargetTeamsDistributeDirective &S);
3565   void EmitOMPTargetTeamsDistributeParallelForDirective(
3566       const OMPTargetTeamsDistributeParallelForDirective &S);
3567   void EmitOMPTargetTeamsDistributeParallelForSimdDirective(
3568       const OMPTargetTeamsDistributeParallelForSimdDirective &S);
3569   void EmitOMPTargetTeamsDistributeSimdDirective(
3570       const OMPTargetTeamsDistributeSimdDirective &S);
3571   void EmitOMPGenericLoopDirective(const OMPGenericLoopDirective &S);
3572   void EmitOMPInteropDirective(const OMPInteropDirective &S);
3573 
3574   /// Emit device code for the target directive.
3575   static void EmitOMPTargetDeviceFunction(CodeGenModule &CGM,
3576                                           StringRef ParentName,
3577                                           const OMPTargetDirective &S);
3578   static void
3579   EmitOMPTargetParallelDeviceFunction(CodeGenModule &CGM, StringRef ParentName,
3580                                       const OMPTargetParallelDirective &S);
3581   /// Emit device code for the target parallel for directive.
3582   static void EmitOMPTargetParallelForDeviceFunction(
3583       CodeGenModule &CGM, StringRef ParentName,
3584       const OMPTargetParallelForDirective &S);
3585   /// Emit device code for the target parallel for simd directive.
3586   static void EmitOMPTargetParallelForSimdDeviceFunction(
3587       CodeGenModule &CGM, StringRef ParentName,
3588       const OMPTargetParallelForSimdDirective &S);
3589   /// Emit device code for the target teams directive.
3590   static void
3591   EmitOMPTargetTeamsDeviceFunction(CodeGenModule &CGM, StringRef ParentName,
3592                                    const OMPTargetTeamsDirective &S);
3593   /// Emit device code for the target teams distribute directive.
3594   static void EmitOMPTargetTeamsDistributeDeviceFunction(
3595       CodeGenModule &CGM, StringRef ParentName,
3596       const OMPTargetTeamsDistributeDirective &S);
3597   /// Emit device code for the target teams distribute simd directive.
3598   static void EmitOMPTargetTeamsDistributeSimdDeviceFunction(
3599       CodeGenModule &CGM, StringRef ParentName,
3600       const OMPTargetTeamsDistributeSimdDirective &S);
3601   /// Emit device code for the target simd directive.
3602   static void EmitOMPTargetSimdDeviceFunction(CodeGenModule &CGM,
3603                                               StringRef ParentName,
3604                                               const OMPTargetSimdDirective &S);
3605   /// Emit device code for the target teams distribute parallel for simd
3606   /// directive.
3607   static void EmitOMPTargetTeamsDistributeParallelForSimdDeviceFunction(
3608       CodeGenModule &CGM, StringRef ParentName,
3609       const OMPTargetTeamsDistributeParallelForSimdDirective &S);
3610 
3611   static void EmitOMPTargetTeamsDistributeParallelForDeviceFunction(
3612       CodeGenModule &CGM, StringRef ParentName,
3613       const OMPTargetTeamsDistributeParallelForDirective &S);
3614 
3615   /// Emit the Stmt \p S and return its topmost canonical loop, if any.
3616   /// TODO: The \p Depth paramter is not yet implemented and must be 1. In the
3617   /// future it is meant to be the number of loops expected in the loop nests
3618   /// (usually specified by the "collapse" clause) that are collapsed to a
3619   /// single loop by this function.
3620   llvm::CanonicalLoopInfo *EmitOMPCollapsedCanonicalLoopNest(const Stmt *S,
3621                                                              int Depth);
3622 
3623   /// Emit an OMPCanonicalLoop using the OpenMPIRBuilder.
3624   void EmitOMPCanonicalLoop(const OMPCanonicalLoop *S);
3625 
3626   /// Emit inner loop of the worksharing/simd construct.
3627   ///
3628   /// \param S Directive, for which the inner loop must be emitted.
3629   /// \param RequiresCleanup true, if directive has some associated private
3630   /// variables.
3631   /// \param LoopCond Bollean condition for loop continuation.
3632   /// \param IncExpr Increment expression for loop control variable.
3633   /// \param BodyGen Generator for the inner body of the inner loop.
3634   /// \param PostIncGen Genrator for post-increment code (required for ordered
3635   /// loop directvies).
3636   void EmitOMPInnerLoop(
3637       const OMPExecutableDirective &S, bool RequiresCleanup,
3638       const Expr *LoopCond, const Expr *IncExpr,
3639       const llvm::function_ref<void(CodeGenFunction &)> BodyGen,
3640       const llvm::function_ref<void(CodeGenFunction &)> PostIncGen);
3641 
3642   JumpDest getOMPCancelDestination(OpenMPDirectiveKind Kind);
3643   /// Emit initial code for loop counters of loop-based directives.
3644   void EmitOMPPrivateLoopCounters(const OMPLoopDirective &S,
3645                                   OMPPrivateScope &LoopScope);
3646 
3647   /// Helper for the OpenMP loop directives.
3648   void EmitOMPLoopBody(const OMPLoopDirective &D, JumpDest LoopExit);
3649 
3650   /// Emit code for the worksharing loop-based directive.
3651   /// \return true, if this construct has any lastprivate clause, false -
3652   /// otherwise.
3653   bool EmitOMPWorksharingLoop(const OMPLoopDirective &S, Expr *EUB,
3654                               const CodeGenLoopBoundsTy &CodeGenLoopBounds,
3655                               const CodeGenDispatchBoundsTy &CGDispatchBounds);
3656 
3657   /// Emit code for the distribute loop-based directive.
3658   void EmitOMPDistributeLoop(const OMPLoopDirective &S,
3659                              const CodeGenLoopTy &CodeGenLoop, Expr *IncExpr);
3660 
3661   /// Helpers for the OpenMP loop directives.
3662   void EmitOMPSimdInit(const OMPLoopDirective &D);
3663   void EmitOMPSimdFinal(
3664       const OMPLoopDirective &D,
3665       const llvm::function_ref<llvm::Value *(CodeGenFunction &)> CondGen);
3666 
3667   /// Emits the lvalue for the expression with possibly captured variable.
3668   LValue EmitOMPSharedLValue(const Expr *E);
3669 
3670 private:
3671   /// Helpers for blocks.
3672   llvm::Value *EmitBlockLiteral(const CGBlockInfo &Info);
3673 
3674   /// struct with the values to be passed to the OpenMP loop-related functions
3675   struct OMPLoopArguments {
3676     /// loop lower bound
3677     Address LB = Address::invalid();
3678     /// loop upper bound
3679     Address UB = Address::invalid();
3680     /// loop stride
3681     Address ST = Address::invalid();
3682     /// isLastIteration argument for runtime functions
3683     Address IL = Address::invalid();
3684     /// Chunk value generated by sema
3685     llvm::Value *Chunk = nullptr;
3686     /// EnsureUpperBound
3687     Expr *EUB = nullptr;
3688     /// IncrementExpression
3689     Expr *IncExpr = nullptr;
3690     /// Loop initialization
3691     Expr *Init = nullptr;
3692     /// Loop exit condition
3693     Expr *Cond = nullptr;
3694     /// Update of LB after a whole chunk has been executed
3695     Expr *NextLB = nullptr;
3696     /// Update of UB after a whole chunk has been executed
3697     Expr *NextUB = nullptr;
3698     OMPLoopArguments() = default;
3699     OMPLoopArguments(Address LB, Address UB, Address ST, Address IL,
3700                      llvm::Value *Chunk = nullptr, Expr *EUB = nullptr,
3701                      Expr *IncExpr = nullptr, Expr *Init = nullptr,
3702                      Expr *Cond = nullptr, Expr *NextLB = nullptr,
3703                      Expr *NextUB = nullptr)
3704         : LB(LB), UB(UB), ST(ST), IL(IL), Chunk(Chunk), EUB(EUB),
3705           IncExpr(IncExpr), Init(Init), Cond(Cond), NextLB(NextLB),
3706           NextUB(NextUB) {}
3707   };
3708   void EmitOMPOuterLoop(bool DynamicOrOrdered, bool IsMonotonic,
3709                         const OMPLoopDirective &S, OMPPrivateScope &LoopScope,
3710                         const OMPLoopArguments &LoopArgs,
3711                         const CodeGenLoopTy &CodeGenLoop,
3712                         const CodeGenOrderedTy &CodeGenOrdered);
3713   void EmitOMPForOuterLoop(const OpenMPScheduleTy &ScheduleKind,
3714                            bool IsMonotonic, const OMPLoopDirective &S,
3715                            OMPPrivateScope &LoopScope, bool Ordered,
3716                            const OMPLoopArguments &LoopArgs,
3717                            const CodeGenDispatchBoundsTy &CGDispatchBounds);
3718   void EmitOMPDistributeOuterLoop(OpenMPDistScheduleClauseKind ScheduleKind,
3719                                   const OMPLoopDirective &S,
3720                                   OMPPrivateScope &LoopScope,
3721                                   const OMPLoopArguments &LoopArgs,
3722                                   const CodeGenLoopTy &CodeGenLoopContent);
3723   /// Emit code for sections directive.
3724   void EmitSections(const OMPExecutableDirective &S);
3725 
3726 public:
3727 
3728   //===--------------------------------------------------------------------===//
3729   //                         LValue Expression Emission
3730   //===--------------------------------------------------------------------===//
3731 
3732   /// Create a check that a scalar RValue is non-null.
3733   llvm::Value *EmitNonNullRValueCheck(RValue RV, QualType T);
3734 
3735   /// GetUndefRValue - Get an appropriate 'undef' rvalue for the given type.
3736   RValue GetUndefRValue(QualType Ty);
3737 
3738   /// EmitUnsupportedRValue - Emit a dummy r-value using the type of E
3739   /// and issue an ErrorUnsupported style diagnostic (using the
3740   /// provided Name).
3741   RValue EmitUnsupportedRValue(const Expr *E,
3742                                const char *Name);
3743 
3744   /// EmitUnsupportedLValue - Emit a dummy l-value using the type of E and issue
3745   /// an ErrorUnsupported style diagnostic (using the provided Name).
3746   LValue EmitUnsupportedLValue(const Expr *E,
3747                                const char *Name);
3748 
3749   /// EmitLValue - Emit code to compute a designator that specifies the location
3750   /// of the expression.
3751   ///
3752   /// This can return one of two things: a simple address or a bitfield
3753   /// reference.  In either case, the LLVM Value* in the LValue structure is
3754   /// guaranteed to be an LLVM pointer type.
3755   ///
3756   /// If this returns a bitfield reference, nothing about the pointee type of
3757   /// the LLVM value is known: For example, it may not be a pointer to an
3758   /// integer.
3759   ///
3760   /// If this returns a normal address, and if the lvalue's C type is fixed
3761   /// size, this method guarantees that the returned pointer type will point to
3762   /// an LLVM type of the same size of the lvalue's type.  If the lvalue has a
3763   /// variable length type, this is not possible.
3764   ///
3765   LValue EmitLValue(const Expr *E);
3766 
3767   /// Same as EmitLValue but additionally we generate checking code to
3768   /// guard against undefined behavior.  This is only suitable when we know
3769   /// that the address will be used to access the object.
3770   LValue EmitCheckedLValue(const Expr *E, TypeCheckKind TCK);
3771 
3772   RValue convertTempToRValue(Address addr, QualType type,
3773                              SourceLocation Loc);
3774 
3775   void EmitAtomicInit(Expr *E, LValue lvalue);
3776 
3777   bool LValueIsSuitableForInlineAtomic(LValue Src);
3778 
3779   RValue EmitAtomicLoad(LValue LV, SourceLocation SL,
3780                         AggValueSlot Slot = AggValueSlot::ignored());
3781 
3782   RValue EmitAtomicLoad(LValue lvalue, SourceLocation loc,
3783                         llvm::AtomicOrdering AO, bool IsVolatile = false,
3784                         AggValueSlot slot = AggValueSlot::ignored());
3785 
3786   void EmitAtomicStore(RValue rvalue, LValue lvalue, bool isInit);
3787 
3788   void EmitAtomicStore(RValue rvalue, LValue lvalue, llvm::AtomicOrdering AO,
3789                        bool IsVolatile, bool isInit);
3790 
3791   std::pair<RValue, llvm::Value *> EmitAtomicCompareExchange(
3792       LValue Obj, RValue Expected, RValue Desired, SourceLocation Loc,
3793       llvm::AtomicOrdering Success =
3794           llvm::AtomicOrdering::SequentiallyConsistent,
3795       llvm::AtomicOrdering Failure =
3796           llvm::AtomicOrdering::SequentiallyConsistent,
3797       bool IsWeak = false, AggValueSlot Slot = AggValueSlot::ignored());
3798 
3799   void EmitAtomicUpdate(LValue LVal, llvm::AtomicOrdering AO,
3800                         const llvm::function_ref<RValue(RValue)> &UpdateOp,
3801                         bool IsVolatile);
3802 
3803   /// EmitToMemory - Change a scalar value from its value
3804   /// representation to its in-memory representation.
3805   llvm::Value *EmitToMemory(llvm::Value *Value, QualType Ty);
3806 
3807   /// EmitFromMemory - Change a scalar value from its memory
3808   /// representation to its value representation.
3809   llvm::Value *EmitFromMemory(llvm::Value *Value, QualType Ty);
3810 
3811   /// Check if the scalar \p Value is within the valid range for the given
3812   /// type \p Ty.
3813   ///
3814   /// Returns true if a check is needed (even if the range is unknown).
3815   bool EmitScalarRangeCheck(llvm::Value *Value, QualType Ty,
3816                             SourceLocation Loc);
3817 
3818   /// EmitLoadOfScalar - Load a scalar value from an address, taking
3819   /// care to appropriately convert from the memory representation to
3820   /// the LLVM value representation.
3821   llvm::Value *EmitLoadOfScalar(Address Addr, bool Volatile, QualType Ty,
3822                                 SourceLocation Loc,
3823                                 AlignmentSource Source = AlignmentSource::Type,
3824                                 bool isNontemporal = false) {
3825     return EmitLoadOfScalar(Addr, Volatile, Ty, Loc, LValueBaseInfo(Source),
3826                             CGM.getTBAAAccessInfo(Ty), isNontemporal);
3827   }
3828 
3829   llvm::Value *EmitLoadOfScalar(Address Addr, bool Volatile, QualType Ty,
3830                                 SourceLocation Loc, LValueBaseInfo BaseInfo,
3831                                 TBAAAccessInfo TBAAInfo,
3832                                 bool isNontemporal = false);
3833 
3834   /// EmitLoadOfScalar - Load a scalar value from an address, taking
3835   /// care to appropriately convert from the memory representation to
3836   /// the LLVM value representation.  The l-value must be a simple
3837   /// l-value.
3838   llvm::Value *EmitLoadOfScalar(LValue lvalue, SourceLocation Loc);
3839 
3840   /// EmitStoreOfScalar - Store a scalar value to an address, taking
3841   /// care to appropriately convert from the memory representation to
3842   /// the LLVM value representation.
3843   void EmitStoreOfScalar(llvm::Value *Value, Address Addr,
3844                          bool Volatile, QualType Ty,
3845                          AlignmentSource Source = AlignmentSource::Type,
3846                          bool isInit = false, bool isNontemporal = false) {
3847     EmitStoreOfScalar(Value, Addr, Volatile, Ty, LValueBaseInfo(Source),
3848                       CGM.getTBAAAccessInfo(Ty), isInit, isNontemporal);
3849   }
3850 
3851   void EmitStoreOfScalar(llvm::Value *Value, Address Addr,
3852                          bool Volatile, QualType Ty,
3853                          LValueBaseInfo BaseInfo, TBAAAccessInfo TBAAInfo,
3854                          bool isInit = false, bool isNontemporal = false);
3855 
3856   /// EmitStoreOfScalar - Store a scalar value to an address, taking
3857   /// care to appropriately convert from the memory representation to
3858   /// the LLVM value representation.  The l-value must be a simple
3859   /// l-value.  The isInit flag indicates whether this is an initialization.
3860   /// If so, atomic qualifiers are ignored and the store is always non-atomic.
3861   void EmitStoreOfScalar(llvm::Value *value, LValue lvalue, bool isInit=false);
3862 
3863   /// EmitLoadOfLValue - Given an expression that represents a value lvalue,
3864   /// this method emits the address of the lvalue, then loads the result as an
3865   /// rvalue, returning the rvalue.
3866   RValue EmitLoadOfLValue(LValue V, SourceLocation Loc);
3867   RValue EmitLoadOfExtVectorElementLValue(LValue V);
3868   RValue EmitLoadOfBitfieldLValue(LValue LV, SourceLocation Loc);
3869   RValue EmitLoadOfGlobalRegLValue(LValue LV);
3870 
3871   /// EmitStoreThroughLValue - Store the specified rvalue into the specified
3872   /// lvalue, where both are guaranteed to the have the same type, and that type
3873   /// is 'Ty'.
3874   void EmitStoreThroughLValue(RValue Src, LValue Dst, bool isInit = false);
3875   void EmitStoreThroughExtVectorComponentLValue(RValue Src, LValue Dst);
3876   void EmitStoreThroughGlobalRegLValue(RValue Src, LValue Dst);
3877 
3878   /// EmitStoreThroughBitfieldLValue - Store Src into Dst with same constraints
3879   /// as EmitStoreThroughLValue.
3880   ///
3881   /// \param Result [out] - If non-null, this will be set to a Value* for the
3882   /// bit-field contents after the store, appropriate for use as the result of
3883   /// an assignment to the bit-field.
3884   void EmitStoreThroughBitfieldLValue(RValue Src, LValue Dst,
3885                                       llvm::Value **Result=nullptr);
3886 
3887   /// Emit an l-value for an assignment (simple or compound) of complex type.
3888   LValue EmitComplexAssignmentLValue(const BinaryOperator *E);
3889   LValue EmitComplexCompoundAssignmentLValue(const CompoundAssignOperator *E);
3890   LValue EmitScalarCompoundAssignWithComplex(const CompoundAssignOperator *E,
3891                                              llvm::Value *&Result);
3892 
3893   // Note: only available for agg return types
3894   LValue EmitBinaryOperatorLValue(const BinaryOperator *E);
3895   LValue EmitCompoundAssignmentLValue(const CompoundAssignOperator *E);
3896   // Note: only available for agg return types
3897   LValue EmitCallExprLValue(const CallExpr *E);
3898   // Note: only available for agg return types
3899   LValue EmitVAArgExprLValue(const VAArgExpr *E);
3900   LValue EmitDeclRefLValue(const DeclRefExpr *E);
3901   LValue EmitStringLiteralLValue(const StringLiteral *E);
3902   LValue EmitObjCEncodeExprLValue(const ObjCEncodeExpr *E);
3903   LValue EmitPredefinedLValue(const PredefinedExpr *E);
3904   LValue EmitUnaryOpLValue(const UnaryOperator *E);
3905   LValue EmitArraySubscriptExpr(const ArraySubscriptExpr *E,
3906                                 bool Accessed = false);
3907   LValue EmitMatrixSubscriptExpr(const MatrixSubscriptExpr *E);
3908   LValue EmitOMPArraySectionExpr(const OMPArraySectionExpr *E,
3909                                  bool IsLowerBound = true);
3910   LValue EmitExtVectorElementExpr(const ExtVectorElementExpr *E);
3911   LValue EmitMemberExpr(const MemberExpr *E);
3912   LValue EmitObjCIsaExpr(const ObjCIsaExpr *E);
3913   LValue EmitCompoundLiteralLValue(const CompoundLiteralExpr *E);
3914   LValue EmitInitListLValue(const InitListExpr *E);
3915   LValue EmitConditionalOperatorLValue(const AbstractConditionalOperator *E);
3916   LValue EmitCastLValue(const CastExpr *E);
3917   LValue EmitMaterializeTemporaryExpr(const MaterializeTemporaryExpr *E);
3918   LValue EmitOpaqueValueLValue(const OpaqueValueExpr *e);
3919 
3920   Address EmitExtVectorElementLValue(LValue V);
3921 
3922   RValue EmitRValueForField(LValue LV, const FieldDecl *FD, SourceLocation Loc);
3923 
3924   Address EmitArrayToPointerDecay(const Expr *Array,
3925                                   LValueBaseInfo *BaseInfo = nullptr,
3926                                   TBAAAccessInfo *TBAAInfo = nullptr);
3927 
3928   class ConstantEmission {
3929     llvm::PointerIntPair<llvm::Constant*, 1, bool> ValueAndIsReference;
3930     ConstantEmission(llvm::Constant *C, bool isReference)
3931       : ValueAndIsReference(C, isReference) {}
3932   public:
3933     ConstantEmission() {}
3934     static ConstantEmission forReference(llvm::Constant *C) {
3935       return ConstantEmission(C, true);
3936     }
3937     static ConstantEmission forValue(llvm::Constant *C) {
3938       return ConstantEmission(C, false);
3939     }
3940 
3941     explicit operator bool() const {
3942       return ValueAndIsReference.getOpaqueValue() != nullptr;
3943     }
3944 
3945     bool isReference() const { return ValueAndIsReference.getInt(); }
3946     LValue getReferenceLValue(CodeGenFunction &CGF, Expr *refExpr) const {
3947       assert(isReference());
3948       return CGF.MakeNaturalAlignAddrLValue(ValueAndIsReference.getPointer(),
3949                                             refExpr->getType());
3950     }
3951 
3952     llvm::Constant *getValue() const {
3953       assert(!isReference());
3954       return ValueAndIsReference.getPointer();
3955     }
3956   };
3957 
3958   ConstantEmission tryEmitAsConstant(DeclRefExpr *refExpr);
3959   ConstantEmission tryEmitAsConstant(const MemberExpr *ME);
3960   llvm::Value *emitScalarConstant(const ConstantEmission &Constant, Expr *E);
3961 
3962   RValue EmitPseudoObjectRValue(const PseudoObjectExpr *e,
3963                                 AggValueSlot slot = AggValueSlot::ignored());
3964   LValue EmitPseudoObjectLValue(const PseudoObjectExpr *e);
3965 
3966   llvm::Value *EmitIvarOffset(const ObjCInterfaceDecl *Interface,
3967                               const ObjCIvarDecl *Ivar);
3968   LValue EmitLValueForField(LValue Base, const FieldDecl* Field);
3969   LValue EmitLValueForLambdaField(const FieldDecl *Field);
3970 
3971   /// EmitLValueForFieldInitialization - Like EmitLValueForField, except that
3972   /// if the Field is a reference, this will return the address of the reference
3973   /// and not the address of the value stored in the reference.
3974   LValue EmitLValueForFieldInitialization(LValue Base,
3975                                           const FieldDecl* Field);
3976 
3977   LValue EmitLValueForIvar(QualType ObjectTy,
3978                            llvm::Value* Base, const ObjCIvarDecl *Ivar,
3979                            unsigned CVRQualifiers);
3980 
3981   LValue EmitCXXConstructLValue(const CXXConstructExpr *E);
3982   LValue EmitCXXBindTemporaryLValue(const CXXBindTemporaryExpr *E);
3983   LValue EmitCXXTypeidLValue(const CXXTypeidExpr *E);
3984   LValue EmitCXXUuidofLValue(const CXXUuidofExpr *E);
3985 
3986   LValue EmitObjCMessageExprLValue(const ObjCMessageExpr *E);
3987   LValue EmitObjCIvarRefLValue(const ObjCIvarRefExpr *E);
3988   LValue EmitStmtExprLValue(const StmtExpr *E);
3989   LValue EmitPointerToDataMemberBinaryExpr(const BinaryOperator *E);
3990   LValue EmitObjCSelectorLValue(const ObjCSelectorExpr *E);
3991   void   EmitDeclRefExprDbgValue(const DeclRefExpr *E, const APValue &Init);
3992 
3993   //===--------------------------------------------------------------------===//
3994   //                         Scalar Expression Emission
3995   //===--------------------------------------------------------------------===//
3996 
3997   /// EmitCall - Generate a call of the given function, expecting the given
3998   /// result type, and using the given argument list which specifies both the
3999   /// LLVM arguments and the types they were derived from.
4000   RValue EmitCall(const CGFunctionInfo &CallInfo, const CGCallee &Callee,
4001                   ReturnValueSlot ReturnValue, const CallArgList &Args,
4002                   llvm::CallBase **callOrInvoke, bool IsMustTail,
4003                   SourceLocation Loc);
4004   RValue EmitCall(const CGFunctionInfo &CallInfo, const CGCallee &Callee,
4005                   ReturnValueSlot ReturnValue, const CallArgList &Args,
4006                   llvm::CallBase **callOrInvoke = nullptr,
4007                   bool IsMustTail = false) {
4008     return EmitCall(CallInfo, Callee, ReturnValue, Args, callOrInvoke,
4009                     IsMustTail, SourceLocation());
4010   }
4011   RValue EmitCall(QualType FnType, const CGCallee &Callee, const CallExpr *E,
4012                   ReturnValueSlot ReturnValue, llvm::Value *Chain = nullptr);
4013   RValue EmitCallExpr(const CallExpr *E,
4014                       ReturnValueSlot ReturnValue = ReturnValueSlot());
4015   RValue EmitSimpleCallExpr(const CallExpr *E, ReturnValueSlot ReturnValue);
4016   CGCallee EmitCallee(const Expr *E);
4017 
4018   void checkTargetFeatures(const CallExpr *E, const FunctionDecl *TargetDecl);
4019   void checkTargetFeatures(SourceLocation Loc, const FunctionDecl *TargetDecl);
4020 
4021   llvm::CallInst *EmitRuntimeCall(llvm::FunctionCallee callee,
4022                                   const Twine &name = "");
4023   llvm::CallInst *EmitRuntimeCall(llvm::FunctionCallee callee,
4024                                   ArrayRef<llvm::Value *> args,
4025                                   const Twine &name = "");
4026   llvm::CallInst *EmitNounwindRuntimeCall(llvm::FunctionCallee callee,
4027                                           const Twine &name = "");
4028   llvm::CallInst *EmitNounwindRuntimeCall(llvm::FunctionCallee callee,
4029                                           ArrayRef<llvm::Value *> args,
4030                                           const Twine &name = "");
4031 
4032   SmallVector<llvm::OperandBundleDef, 1>
4033   getBundlesForFunclet(llvm::Value *Callee);
4034 
4035   llvm::CallBase *EmitCallOrInvoke(llvm::FunctionCallee Callee,
4036                                    ArrayRef<llvm::Value *> Args,
4037                                    const Twine &Name = "");
4038   llvm::CallBase *EmitRuntimeCallOrInvoke(llvm::FunctionCallee callee,
4039                                           ArrayRef<llvm::Value *> args,
4040                                           const Twine &name = "");
4041   llvm::CallBase *EmitRuntimeCallOrInvoke(llvm::FunctionCallee callee,
4042                                           const Twine &name = "");
4043   void EmitNoreturnRuntimeCallOrInvoke(llvm::FunctionCallee callee,
4044                                        ArrayRef<llvm::Value *> args);
4045 
4046   CGCallee BuildAppleKextVirtualCall(const CXXMethodDecl *MD,
4047                                      NestedNameSpecifier *Qual,
4048                                      llvm::Type *Ty);
4049 
4050   CGCallee BuildAppleKextVirtualDestructorCall(const CXXDestructorDecl *DD,
4051                                                CXXDtorType Type,
4052                                                const CXXRecordDecl *RD);
4053 
4054   // Return the copy constructor name with the prefix "__copy_constructor_"
4055   // removed.
4056   static std::string getNonTrivialCopyConstructorStr(QualType QT,
4057                                                      CharUnits Alignment,
4058                                                      bool IsVolatile,
4059                                                      ASTContext &Ctx);
4060 
4061   // Return the destructor name with the prefix "__destructor_" removed.
4062   static std::string getNonTrivialDestructorStr(QualType QT,
4063                                                 CharUnits Alignment,
4064                                                 bool IsVolatile,
4065                                                 ASTContext &Ctx);
4066 
4067   // These functions emit calls to the special functions of non-trivial C
4068   // structs.
4069   void defaultInitNonTrivialCStructVar(LValue Dst);
4070   void callCStructDefaultConstructor(LValue Dst);
4071   void callCStructDestructor(LValue Dst);
4072   void callCStructCopyConstructor(LValue Dst, LValue Src);
4073   void callCStructMoveConstructor(LValue Dst, LValue Src);
4074   void callCStructCopyAssignmentOperator(LValue Dst, LValue Src);
4075   void callCStructMoveAssignmentOperator(LValue Dst, LValue Src);
4076 
4077   RValue
4078   EmitCXXMemberOrOperatorCall(const CXXMethodDecl *Method,
4079                               const CGCallee &Callee,
4080                               ReturnValueSlot ReturnValue, llvm::Value *This,
4081                               llvm::Value *ImplicitParam,
4082                               QualType ImplicitParamTy, const CallExpr *E,
4083                               CallArgList *RtlArgs);
4084   RValue EmitCXXDestructorCall(GlobalDecl Dtor, const CGCallee &Callee,
4085                                llvm::Value *This, QualType ThisTy,
4086                                llvm::Value *ImplicitParam,
4087                                QualType ImplicitParamTy, const CallExpr *E);
4088   RValue EmitCXXMemberCallExpr(const CXXMemberCallExpr *E,
4089                                ReturnValueSlot ReturnValue);
4090   RValue EmitCXXMemberOrOperatorMemberCallExpr(const CallExpr *CE,
4091                                                const CXXMethodDecl *MD,
4092                                                ReturnValueSlot ReturnValue,
4093                                                bool HasQualifier,
4094                                                NestedNameSpecifier *Qualifier,
4095                                                bool IsArrow, const Expr *Base);
4096   // Compute the object pointer.
4097   Address EmitCXXMemberDataPointerAddress(const Expr *E, Address base,
4098                                           llvm::Value *memberPtr,
4099                                           const MemberPointerType *memberPtrType,
4100                                           LValueBaseInfo *BaseInfo = nullptr,
4101                                           TBAAAccessInfo *TBAAInfo = nullptr);
4102   RValue EmitCXXMemberPointerCallExpr(const CXXMemberCallExpr *E,
4103                                       ReturnValueSlot ReturnValue);
4104 
4105   RValue EmitCXXOperatorMemberCallExpr(const CXXOperatorCallExpr *E,
4106                                        const CXXMethodDecl *MD,
4107                                        ReturnValueSlot ReturnValue);
4108   RValue EmitCXXPseudoDestructorExpr(const CXXPseudoDestructorExpr *E);
4109 
4110   RValue EmitCUDAKernelCallExpr(const CUDAKernelCallExpr *E,
4111                                 ReturnValueSlot ReturnValue);
4112 
4113   RValue EmitNVPTXDevicePrintfCallExpr(const CallExpr *E);
4114   RValue EmitAMDGPUDevicePrintfCallExpr(const CallExpr *E);
4115   RValue EmitOpenMPDevicePrintfCallExpr(const CallExpr *E);
4116 
4117   RValue EmitBuiltinExpr(const GlobalDecl GD, unsigned BuiltinID,
4118                          const CallExpr *E, ReturnValueSlot ReturnValue);
4119 
4120   RValue emitRotate(const CallExpr *E, bool IsRotateRight);
4121 
4122   /// Emit IR for __builtin_os_log_format.
4123   RValue emitBuiltinOSLogFormat(const CallExpr &E);
4124 
4125   /// Emit IR for __builtin_is_aligned.
4126   RValue EmitBuiltinIsAligned(const CallExpr *E);
4127   /// Emit IR for __builtin_align_up/__builtin_align_down.
4128   RValue EmitBuiltinAlignTo(const CallExpr *E, bool AlignUp);
4129 
4130   llvm::Function *generateBuiltinOSLogHelperFunction(
4131       const analyze_os_log::OSLogBufferLayout &Layout,
4132       CharUnits BufferAlignment);
4133 
4134   RValue EmitBlockCallExpr(const CallExpr *E, ReturnValueSlot ReturnValue);
4135 
4136   /// EmitTargetBuiltinExpr - Emit the given builtin call. Returns 0 if the call
4137   /// is unhandled by the current target.
4138   llvm::Value *EmitTargetBuiltinExpr(unsigned BuiltinID, const CallExpr *E,
4139                                      ReturnValueSlot ReturnValue);
4140 
4141   llvm::Value *EmitAArch64CompareBuiltinExpr(llvm::Value *Op, llvm::Type *Ty,
4142                                              const llvm::CmpInst::Predicate Fp,
4143                                              const llvm::CmpInst::Predicate Ip,
4144                                              const llvm::Twine &Name = "");
4145   llvm::Value *EmitARMBuiltinExpr(unsigned BuiltinID, const CallExpr *E,
4146                                   ReturnValueSlot ReturnValue,
4147                                   llvm::Triple::ArchType Arch);
4148   llvm::Value *EmitARMMVEBuiltinExpr(unsigned BuiltinID, const CallExpr *E,
4149                                      ReturnValueSlot ReturnValue,
4150                                      llvm::Triple::ArchType Arch);
4151   llvm::Value *EmitARMCDEBuiltinExpr(unsigned BuiltinID, const CallExpr *E,
4152                                      ReturnValueSlot ReturnValue,
4153                                      llvm::Triple::ArchType Arch);
4154   llvm::Value *EmitCMSEClearRecord(llvm::Value *V, llvm::IntegerType *ITy,
4155                                    QualType RTy);
4156   llvm::Value *EmitCMSEClearRecord(llvm::Value *V, llvm::ArrayType *ATy,
4157                                    QualType RTy);
4158 
4159   llvm::Value *EmitCommonNeonBuiltinExpr(unsigned BuiltinID,
4160                                          unsigned LLVMIntrinsic,
4161                                          unsigned AltLLVMIntrinsic,
4162                                          const char *NameHint,
4163                                          unsigned Modifier,
4164                                          const CallExpr *E,
4165                                          SmallVectorImpl<llvm::Value *> &Ops,
4166                                          Address PtrOp0, Address PtrOp1,
4167                                          llvm::Triple::ArchType Arch);
4168 
4169   llvm::Function *LookupNeonLLVMIntrinsic(unsigned IntrinsicID,
4170                                           unsigned Modifier, llvm::Type *ArgTy,
4171                                           const CallExpr *E);
4172   llvm::Value *EmitNeonCall(llvm::Function *F,
4173                             SmallVectorImpl<llvm::Value*> &O,
4174                             const char *name,
4175                             unsigned shift = 0, bool rightshift = false);
4176   llvm::Value *EmitNeonSplat(llvm::Value *V, llvm::Constant *Idx,
4177                              const llvm::ElementCount &Count);
4178   llvm::Value *EmitNeonSplat(llvm::Value *V, llvm::Constant *Idx);
4179   llvm::Value *EmitNeonShiftVector(llvm::Value *V, llvm::Type *Ty,
4180                                    bool negateForRightShift);
4181   llvm::Value *EmitNeonRShiftImm(llvm::Value *Vec, llvm::Value *Amt,
4182                                  llvm::Type *Ty, bool usgn, const char *name);
4183   llvm::Value *vectorWrapScalar16(llvm::Value *Op);
4184   /// SVEBuiltinMemEltTy - Returns the memory element type for this memory
4185   /// access builtin.  Only required if it can't be inferred from the base
4186   /// pointer operand.
4187   llvm::Type *SVEBuiltinMemEltTy(const SVETypeFlags &TypeFlags);
4188 
4189   SmallVector<llvm::Type *, 2>
4190   getSVEOverloadTypes(const SVETypeFlags &TypeFlags, llvm::Type *ReturnType,
4191                       ArrayRef<llvm::Value *> Ops);
4192   llvm::Type *getEltType(const SVETypeFlags &TypeFlags);
4193   llvm::ScalableVectorType *getSVEType(const SVETypeFlags &TypeFlags);
4194   llvm::ScalableVectorType *getSVEPredType(const SVETypeFlags &TypeFlags);
4195   llvm::Value *EmitSVEAllTruePred(const SVETypeFlags &TypeFlags);
4196   llvm::Value *EmitSVEDupX(llvm::Value *Scalar);
4197   llvm::Value *EmitSVEDupX(llvm::Value *Scalar, llvm::Type *Ty);
4198   llvm::Value *EmitSVEReinterpret(llvm::Value *Val, llvm::Type *Ty);
4199   llvm::Value *EmitSVEPMull(const SVETypeFlags &TypeFlags,
4200                             llvm::SmallVectorImpl<llvm::Value *> &Ops,
4201                             unsigned BuiltinID);
4202   llvm::Value *EmitSVEMovl(const SVETypeFlags &TypeFlags,
4203                            llvm::ArrayRef<llvm::Value *> Ops,
4204                            unsigned BuiltinID);
4205   llvm::Value *EmitSVEPredicateCast(llvm::Value *Pred,
4206                                     llvm::ScalableVectorType *VTy);
4207   llvm::Value *EmitSVEGatherLoad(const SVETypeFlags &TypeFlags,
4208                                  llvm::SmallVectorImpl<llvm::Value *> &Ops,
4209                                  unsigned IntID);
4210   llvm::Value *EmitSVEScatterStore(const SVETypeFlags &TypeFlags,
4211                                    llvm::SmallVectorImpl<llvm::Value *> &Ops,
4212                                    unsigned IntID);
4213   llvm::Value *EmitSVEMaskedLoad(const CallExpr *, llvm::Type *ReturnTy,
4214                                  SmallVectorImpl<llvm::Value *> &Ops,
4215                                  unsigned BuiltinID, bool IsZExtReturn);
4216   llvm::Value *EmitSVEMaskedStore(const CallExpr *,
4217                                   SmallVectorImpl<llvm::Value *> &Ops,
4218                                   unsigned BuiltinID);
4219   llvm::Value *EmitSVEPrefetchLoad(const SVETypeFlags &TypeFlags,
4220                                    SmallVectorImpl<llvm::Value *> &Ops,
4221                                    unsigned BuiltinID);
4222   llvm::Value *EmitSVEGatherPrefetch(const SVETypeFlags &TypeFlags,
4223                                      SmallVectorImpl<llvm::Value *> &Ops,
4224                                      unsigned IntID);
4225   llvm::Value *EmitSVEStructLoad(const SVETypeFlags &TypeFlags,
4226                                  SmallVectorImpl<llvm::Value *> &Ops,
4227                                  unsigned IntID);
4228   llvm::Value *EmitSVEStructStore(const SVETypeFlags &TypeFlags,
4229                                   SmallVectorImpl<llvm::Value *> &Ops,
4230                                   unsigned IntID);
4231   llvm::Value *EmitAArch64SVEBuiltinExpr(unsigned BuiltinID, const CallExpr *E);
4232 
4233   llvm::Value *EmitAArch64BuiltinExpr(unsigned BuiltinID, const CallExpr *E,
4234                                       llvm::Triple::ArchType Arch);
4235   llvm::Value *EmitBPFBuiltinExpr(unsigned BuiltinID, const CallExpr *E);
4236 
4237   llvm::Value *BuildVector(ArrayRef<llvm::Value*> Ops);
4238   llvm::Value *EmitX86BuiltinExpr(unsigned BuiltinID, const CallExpr *E);
4239   llvm::Value *EmitPPCBuiltinExpr(unsigned BuiltinID, const CallExpr *E);
4240   llvm::Value *EmitAMDGPUBuiltinExpr(unsigned BuiltinID, const CallExpr *E);
4241   llvm::Value *EmitSystemZBuiltinExpr(unsigned BuiltinID, const CallExpr *E);
4242   llvm::Value *EmitNVPTXBuiltinExpr(unsigned BuiltinID, const CallExpr *E);
4243   llvm::Value *EmitWebAssemblyBuiltinExpr(unsigned BuiltinID,
4244                                           const CallExpr *E);
4245   llvm::Value *EmitHexagonBuiltinExpr(unsigned BuiltinID, const CallExpr *E);
4246   llvm::Value *EmitRISCVBuiltinExpr(unsigned BuiltinID, const CallExpr *E,
4247                                     ReturnValueSlot ReturnValue);
4248   bool ProcessOrderScopeAMDGCN(llvm::Value *Order, llvm::Value *Scope,
4249                                llvm::AtomicOrdering &AO,
4250                                llvm::SyncScope::ID &SSID);
4251 
4252   enum class MSVCIntrin;
4253   llvm::Value *EmitMSVCBuiltinExpr(MSVCIntrin BuiltinID, const CallExpr *E);
4254 
4255   llvm::Value *EmitBuiltinAvailable(const VersionTuple &Version);
4256 
4257   llvm::Value *EmitObjCProtocolExpr(const ObjCProtocolExpr *E);
4258   llvm::Value *EmitObjCStringLiteral(const ObjCStringLiteral *E);
4259   llvm::Value *EmitObjCBoxedExpr(const ObjCBoxedExpr *E);
4260   llvm::Value *EmitObjCArrayLiteral(const ObjCArrayLiteral *E);
4261   llvm::Value *EmitObjCDictionaryLiteral(const ObjCDictionaryLiteral *E);
4262   llvm::Value *EmitObjCCollectionLiteral(const Expr *E,
4263                                 const ObjCMethodDecl *MethodWithObjects);
4264   llvm::Value *EmitObjCSelectorExpr(const ObjCSelectorExpr *E);
4265   RValue EmitObjCMessageExpr(const ObjCMessageExpr *E,
4266                              ReturnValueSlot Return = ReturnValueSlot());
4267 
4268   /// Retrieves the default cleanup kind for an ARC cleanup.
4269   /// Except under -fobjc-arc-eh, ARC cleanups are normal-only.
4270   CleanupKind getARCCleanupKind() {
4271     return CGM.getCodeGenOpts().ObjCAutoRefCountExceptions
4272              ? NormalAndEHCleanup : NormalCleanup;
4273   }
4274 
4275   // ARC primitives.
4276   void EmitARCInitWeak(Address addr, llvm::Value *value);
4277   void EmitARCDestroyWeak(Address addr);
4278   llvm::Value *EmitARCLoadWeak(Address addr);
4279   llvm::Value *EmitARCLoadWeakRetained(Address addr);
4280   llvm::Value *EmitARCStoreWeak(Address addr, llvm::Value *value, bool ignored);
4281   void emitARCCopyAssignWeak(QualType Ty, Address DstAddr, Address SrcAddr);
4282   void emitARCMoveAssignWeak(QualType Ty, Address DstAddr, Address SrcAddr);
4283   void EmitARCCopyWeak(Address dst, Address src);
4284   void EmitARCMoveWeak(Address dst, Address src);
4285   llvm::Value *EmitARCRetainAutorelease(QualType type, llvm::Value *value);
4286   llvm::Value *EmitARCRetainAutoreleaseNonBlock(llvm::Value *value);
4287   llvm::Value *EmitARCStoreStrong(LValue lvalue, llvm::Value *value,
4288                                   bool resultIgnored);
4289   llvm::Value *EmitARCStoreStrongCall(Address addr, llvm::Value *value,
4290                                       bool resultIgnored);
4291   llvm::Value *EmitARCRetain(QualType type, llvm::Value *value);
4292   llvm::Value *EmitARCRetainNonBlock(llvm::Value *value);
4293   llvm::Value *EmitARCRetainBlock(llvm::Value *value, bool mandatory);
4294   void EmitARCDestroyStrong(Address addr, ARCPreciseLifetime_t precise);
4295   void EmitARCRelease(llvm::Value *value, ARCPreciseLifetime_t precise);
4296   llvm::Value *EmitARCAutorelease(llvm::Value *value);
4297   llvm::Value *EmitARCAutoreleaseReturnValue(llvm::Value *value);
4298   llvm::Value *EmitARCRetainAutoreleaseReturnValue(llvm::Value *value);
4299   llvm::Value *EmitARCRetainAutoreleasedReturnValue(llvm::Value *value);
4300   llvm::Value *EmitARCUnsafeClaimAutoreleasedReturnValue(llvm::Value *value);
4301 
4302   llvm::Value *EmitObjCAutorelease(llvm::Value *value, llvm::Type *returnType);
4303   llvm::Value *EmitObjCRetainNonBlock(llvm::Value *value,
4304                                       llvm::Type *returnType);
4305   void EmitObjCRelease(llvm::Value *value, ARCPreciseLifetime_t precise);
4306 
4307   std::pair<LValue,llvm::Value*>
4308   EmitARCStoreAutoreleasing(const BinaryOperator *e);
4309   std::pair<LValue,llvm::Value*>
4310   EmitARCStoreStrong(const BinaryOperator *e, bool ignored);
4311   std::pair<LValue,llvm::Value*>
4312   EmitARCStoreUnsafeUnretained(const BinaryOperator *e, bool ignored);
4313 
4314   llvm::Value *EmitObjCAlloc(llvm::Value *value,
4315                              llvm::Type *returnType);
4316   llvm::Value *EmitObjCAllocWithZone(llvm::Value *value,
4317                                      llvm::Type *returnType);
4318   llvm::Value *EmitObjCAllocInit(llvm::Value *value, llvm::Type *resultType);
4319 
4320   llvm::Value *EmitObjCThrowOperand(const Expr *expr);
4321   llvm::Value *EmitObjCConsumeObject(QualType T, llvm::Value *Ptr);
4322   llvm::Value *EmitObjCExtendObjectLifetime(QualType T, llvm::Value *Ptr);
4323 
4324   llvm::Value *EmitARCExtendBlockObject(const Expr *expr);
4325   llvm::Value *EmitARCReclaimReturnedObject(const Expr *e,
4326                                             bool allowUnsafeClaim);
4327   llvm::Value *EmitARCRetainScalarExpr(const Expr *expr);
4328   llvm::Value *EmitARCRetainAutoreleaseScalarExpr(const Expr *expr);
4329   llvm::Value *EmitARCUnsafeUnretainedScalarExpr(const Expr *expr);
4330 
4331   void EmitARCIntrinsicUse(ArrayRef<llvm::Value*> values);
4332 
4333   void EmitARCNoopIntrinsicUse(ArrayRef<llvm::Value *> values);
4334 
4335   static Destroyer destroyARCStrongImprecise;
4336   static Destroyer destroyARCStrongPrecise;
4337   static Destroyer destroyARCWeak;
4338   static Destroyer emitARCIntrinsicUse;
4339   static Destroyer destroyNonTrivialCStruct;
4340 
4341   void EmitObjCAutoreleasePoolPop(llvm::Value *Ptr);
4342   llvm::Value *EmitObjCAutoreleasePoolPush();
4343   llvm::Value *EmitObjCMRRAutoreleasePoolPush();
4344   void EmitObjCAutoreleasePoolCleanup(llvm::Value *Ptr);
4345   void EmitObjCMRRAutoreleasePoolPop(llvm::Value *Ptr);
4346 
4347   /// Emits a reference binding to the passed in expression.
4348   RValue EmitReferenceBindingToExpr(const Expr *E);
4349 
4350   //===--------------------------------------------------------------------===//
4351   //                           Expression Emission
4352   //===--------------------------------------------------------------------===//
4353 
4354   // Expressions are broken into three classes: scalar, complex, aggregate.
4355 
4356   /// EmitScalarExpr - Emit the computation of the specified expression of LLVM
4357   /// scalar type, returning the result.
4358   llvm::Value *EmitScalarExpr(const Expr *E , bool IgnoreResultAssign = false);
4359 
4360   /// Emit a conversion from the specified type to the specified destination
4361   /// type, both of which are LLVM scalar types.
4362   llvm::Value *EmitScalarConversion(llvm::Value *Src, QualType SrcTy,
4363                                     QualType DstTy, SourceLocation Loc);
4364 
4365   /// Emit a conversion from the specified complex type to the specified
4366   /// destination type, where the destination type is an LLVM scalar type.
4367   llvm::Value *EmitComplexToScalarConversion(ComplexPairTy Src, QualType SrcTy,
4368                                              QualType DstTy,
4369                                              SourceLocation Loc);
4370 
4371   /// EmitAggExpr - Emit the computation of the specified expression
4372   /// of aggregate type.  The result is computed into the given slot,
4373   /// which may be null to indicate that the value is not needed.
4374   void EmitAggExpr(const Expr *E, AggValueSlot AS);
4375 
4376   /// EmitAggExprToLValue - Emit the computation of the specified expression of
4377   /// aggregate type into a temporary LValue.
4378   LValue EmitAggExprToLValue(const Expr *E);
4379 
4380   /// Build all the stores needed to initialize an aggregate at Dest with the
4381   /// value Val.
4382   void EmitAggregateStore(llvm::Value *Val, Address Dest, bool DestIsVolatile);
4383 
4384   /// EmitExtendGCLifetime - Given a pointer to an Objective-C object,
4385   /// make sure it survives garbage collection until this point.
4386   void EmitExtendGCLifetime(llvm::Value *object);
4387 
4388   /// EmitComplexExpr - Emit the computation of the specified expression of
4389   /// complex type, returning the result.
4390   ComplexPairTy EmitComplexExpr(const Expr *E,
4391                                 bool IgnoreReal = false,
4392                                 bool IgnoreImag = false);
4393 
4394   /// EmitComplexExprIntoLValue - Emit the given expression of complex
4395   /// type and place its result into the specified l-value.
4396   void EmitComplexExprIntoLValue(const Expr *E, LValue dest, bool isInit);
4397 
4398   /// EmitStoreOfComplex - Store a complex number into the specified l-value.
4399   void EmitStoreOfComplex(ComplexPairTy V, LValue dest, bool isInit);
4400 
4401   /// EmitLoadOfComplex - Load a complex number from the specified l-value.
4402   ComplexPairTy EmitLoadOfComplex(LValue src, SourceLocation loc);
4403 
4404   Address emitAddrOfRealComponent(Address complex, QualType complexType);
4405   Address emitAddrOfImagComponent(Address complex, QualType complexType);
4406 
4407   /// AddInitializerToStaticVarDecl - Add the initializer for 'D' to the
4408   /// global variable that has already been created for it.  If the initializer
4409   /// has a different type than GV does, this may free GV and return a different
4410   /// one.  Otherwise it just returns GV.
4411   llvm::GlobalVariable *
4412   AddInitializerToStaticVarDecl(const VarDecl &D,
4413                                 llvm::GlobalVariable *GV);
4414 
4415   // Emit an @llvm.invariant.start call for the given memory region.
4416   void EmitInvariantStart(llvm::Constant *Addr, CharUnits Size);
4417 
4418   /// EmitCXXGlobalVarDeclInit - Create the initializer for a C++
4419   /// variable with global storage.
4420   void EmitCXXGlobalVarDeclInit(const VarDecl &D, llvm::GlobalVariable *GV,
4421                                 bool PerformInit);
4422 
4423   llvm::Function *createAtExitStub(const VarDecl &VD, llvm::FunctionCallee Dtor,
4424                                    llvm::Constant *Addr);
4425 
4426   llvm::Function *createTLSAtExitStub(const VarDecl &VD,
4427                                       llvm::FunctionCallee Dtor,
4428                                       llvm::Constant *Addr,
4429                                       llvm::FunctionCallee &AtExit);
4430 
4431   /// Call atexit() with a function that passes the given argument to
4432   /// the given function.
4433   void registerGlobalDtorWithAtExit(const VarDecl &D, llvm::FunctionCallee fn,
4434                                     llvm::Constant *addr);
4435 
4436   /// Call atexit() with function dtorStub.
4437   void registerGlobalDtorWithAtExit(llvm::Constant *dtorStub);
4438 
4439   /// Call unatexit() with function dtorStub.
4440   llvm::Value *unregisterGlobalDtorWithUnAtExit(llvm::Constant *dtorStub);
4441 
4442   /// Emit code in this function to perform a guarded variable
4443   /// initialization.  Guarded initializations are used when it's not
4444   /// possible to prove that an initialization will be done exactly
4445   /// once, e.g. with a static local variable or a static data member
4446   /// of a class template.
4447   void EmitCXXGuardedInit(const VarDecl &D, llvm::GlobalVariable *DeclPtr,
4448                           bool PerformInit);
4449 
4450   enum class GuardKind { VariableGuard, TlsGuard };
4451 
4452   /// Emit a branch to select whether or not to perform guarded initialization.
4453   void EmitCXXGuardedInitBranch(llvm::Value *NeedsInit,
4454                                 llvm::BasicBlock *InitBlock,
4455                                 llvm::BasicBlock *NoInitBlock,
4456                                 GuardKind Kind, const VarDecl *D);
4457 
4458   /// GenerateCXXGlobalInitFunc - Generates code for initializing global
4459   /// variables.
4460   void
4461   GenerateCXXGlobalInitFunc(llvm::Function *Fn,
4462                             ArrayRef<llvm::Function *> CXXThreadLocals,
4463                             ConstantAddress Guard = ConstantAddress::invalid());
4464 
4465   /// GenerateCXXGlobalCleanUpFunc - Generates code for cleaning up global
4466   /// variables.
4467   void GenerateCXXGlobalCleanUpFunc(
4468       llvm::Function *Fn,
4469       ArrayRef<std::tuple<llvm::FunctionType *, llvm::WeakTrackingVH,
4470                           llvm::Constant *>>
4471           DtorsOrStermFinalizers);
4472 
4473   void GenerateCXXGlobalVarDeclInitFunc(llvm::Function *Fn,
4474                                         const VarDecl *D,
4475                                         llvm::GlobalVariable *Addr,
4476                                         bool PerformInit);
4477 
4478   void EmitCXXConstructExpr(const CXXConstructExpr *E, AggValueSlot Dest);
4479 
4480   void EmitSynthesizedCXXCopyCtor(Address Dest, Address Src, const Expr *Exp);
4481 
4482   void EmitCXXThrowExpr(const CXXThrowExpr *E, bool KeepInsertionPoint = true);
4483 
4484   RValue EmitAtomicExpr(AtomicExpr *E);
4485 
4486   //===--------------------------------------------------------------------===//
4487   //                         Annotations Emission
4488   //===--------------------------------------------------------------------===//
4489 
4490   /// Emit an annotation call (intrinsic).
4491   llvm::Value *EmitAnnotationCall(llvm::Function *AnnotationFn,
4492                                   llvm::Value *AnnotatedVal,
4493                                   StringRef AnnotationStr,
4494                                   SourceLocation Location,
4495                                   const AnnotateAttr *Attr);
4496 
4497   /// Emit local annotations for the local variable V, declared by D.
4498   void EmitVarAnnotations(const VarDecl *D, llvm::Value *V);
4499 
4500   /// Emit field annotations for the given field & value. Returns the
4501   /// annotation result.
4502   Address EmitFieldAnnotations(const FieldDecl *D, Address V);
4503 
4504   //===--------------------------------------------------------------------===//
4505   //                             Internal Helpers
4506   //===--------------------------------------------------------------------===//
4507 
4508   /// ContainsLabel - Return true if the statement contains a label in it.  If
4509   /// this statement is not executed normally, it not containing a label means
4510   /// that we can just remove the code.
4511   static bool ContainsLabel(const Stmt *S, bool IgnoreCaseStmts = false);
4512 
4513   /// containsBreak - Return true if the statement contains a break out of it.
4514   /// If the statement (recursively) contains a switch or loop with a break
4515   /// inside of it, this is fine.
4516   static bool containsBreak(const Stmt *S);
4517 
4518   /// Determine if the given statement might introduce a declaration into the
4519   /// current scope, by being a (possibly-labelled) DeclStmt.
4520   static bool mightAddDeclToScope(const Stmt *S);
4521 
4522   /// ConstantFoldsToSimpleInteger - If the specified expression does not fold
4523   /// to a constant, or if it does but contains a label, return false.  If it
4524   /// constant folds return true and set the boolean result in Result.
4525   bool ConstantFoldsToSimpleInteger(const Expr *Cond, bool &Result,
4526                                     bool AllowLabels = false);
4527 
4528   /// ConstantFoldsToSimpleInteger - If the specified expression does not fold
4529   /// to a constant, or if it does but contains a label, return false.  If it
4530   /// constant folds return true and set the folded value.
4531   bool ConstantFoldsToSimpleInteger(const Expr *Cond, llvm::APSInt &Result,
4532                                     bool AllowLabels = false);
4533 
4534   /// isInstrumentedCondition - Determine whether the given condition is an
4535   /// instrumentable condition (i.e. no "&&" or "||").
4536   static bool isInstrumentedCondition(const Expr *C);
4537 
4538   /// EmitBranchToCounterBlock - Emit a conditional branch to a new block that
4539   /// increments a profile counter based on the semantics of the given logical
4540   /// operator opcode.  This is used to instrument branch condition coverage
4541   /// for logical operators.
4542   void EmitBranchToCounterBlock(const Expr *Cond, BinaryOperator::Opcode LOp,
4543                                 llvm::BasicBlock *TrueBlock,
4544                                 llvm::BasicBlock *FalseBlock,
4545                                 uint64_t TrueCount = 0,
4546                                 Stmt::Likelihood LH = Stmt::LH_None,
4547                                 const Expr *CntrIdx = nullptr);
4548 
4549   /// EmitBranchOnBoolExpr - Emit a branch on a boolean condition (e.g. for an
4550   /// if statement) to the specified blocks.  Based on the condition, this might
4551   /// try to simplify the codegen of the conditional based on the branch.
4552   /// TrueCount should be the number of times we expect the condition to
4553   /// evaluate to true based on PGO data.
4554   void EmitBranchOnBoolExpr(const Expr *Cond, llvm::BasicBlock *TrueBlock,
4555                             llvm::BasicBlock *FalseBlock, uint64_t TrueCount,
4556                             Stmt::Likelihood LH = Stmt::LH_None);
4557 
4558   /// Given an assignment `*LHS = RHS`, emit a test that checks if \p RHS is
4559   /// nonnull, if \p LHS is marked _Nonnull.
4560   void EmitNullabilityCheck(LValue LHS, llvm::Value *RHS, SourceLocation Loc);
4561 
4562   /// An enumeration which makes it easier to specify whether or not an
4563   /// operation is a subtraction.
4564   enum { NotSubtraction = false, IsSubtraction = true };
4565 
4566   /// Same as IRBuilder::CreateInBoundsGEP, but additionally emits a check to
4567   /// detect undefined behavior when the pointer overflow sanitizer is enabled.
4568   /// \p SignedIndices indicates whether any of the GEP indices are signed.
4569   /// \p IsSubtraction indicates whether the expression used to form the GEP
4570   /// is a subtraction.
4571   llvm::Value *EmitCheckedInBoundsGEP(llvm::Type *ElemTy, llvm::Value *Ptr,
4572                                       ArrayRef<llvm::Value *> IdxList,
4573                                       bool SignedIndices,
4574                                       bool IsSubtraction,
4575                                       SourceLocation Loc,
4576                                       const Twine &Name = "");
4577 
4578   /// Specifies which type of sanitizer check to apply when handling a
4579   /// particular builtin.
4580   enum BuiltinCheckKind {
4581     BCK_CTZPassedZero,
4582     BCK_CLZPassedZero,
4583   };
4584 
4585   /// Emits an argument for a call to a builtin. If the builtin sanitizer is
4586   /// enabled, a runtime check specified by \p Kind is also emitted.
4587   llvm::Value *EmitCheckedArgForBuiltin(const Expr *E, BuiltinCheckKind Kind);
4588 
4589   /// Emit a description of a type in a format suitable for passing to
4590   /// a runtime sanitizer handler.
4591   llvm::Constant *EmitCheckTypeDescriptor(QualType T);
4592 
4593   /// Convert a value into a format suitable for passing to a runtime
4594   /// sanitizer handler.
4595   llvm::Value *EmitCheckValue(llvm::Value *V);
4596 
4597   /// Emit a description of a source location in a format suitable for
4598   /// passing to a runtime sanitizer handler.
4599   llvm::Constant *EmitCheckSourceLocation(SourceLocation Loc);
4600 
4601   /// Create a basic block that will either trap or call a handler function in
4602   /// the UBSan runtime with the provided arguments, and create a conditional
4603   /// branch to it.
4604   void EmitCheck(ArrayRef<std::pair<llvm::Value *, SanitizerMask>> Checked,
4605                  SanitizerHandler Check, ArrayRef<llvm::Constant *> StaticArgs,
4606                  ArrayRef<llvm::Value *> DynamicArgs);
4607 
4608   /// Emit a slow path cross-DSO CFI check which calls __cfi_slowpath
4609   /// if Cond if false.
4610   void EmitCfiSlowPathCheck(SanitizerMask Kind, llvm::Value *Cond,
4611                             llvm::ConstantInt *TypeId, llvm::Value *Ptr,
4612                             ArrayRef<llvm::Constant *> StaticArgs);
4613 
4614   /// Emit a reached-unreachable diagnostic if \p Loc is valid and runtime
4615   /// checking is enabled. Otherwise, just emit an unreachable instruction.
4616   void EmitUnreachable(SourceLocation Loc);
4617 
4618   /// Create a basic block that will call the trap intrinsic, and emit a
4619   /// conditional branch to it, for the -ftrapv checks.
4620   void EmitTrapCheck(llvm::Value *Checked, SanitizerHandler CheckHandlerID);
4621 
4622   /// Emit a call to trap or debugtrap and attach function attribute
4623   /// "trap-func-name" if specified.
4624   llvm::CallInst *EmitTrapCall(llvm::Intrinsic::ID IntrID);
4625 
4626   /// Emit a stub for the cross-DSO CFI check function.
4627   void EmitCfiCheckStub();
4628 
4629   /// Emit a cross-DSO CFI failure handling function.
4630   void EmitCfiCheckFail();
4631 
4632   /// Create a check for a function parameter that may potentially be
4633   /// declared as non-null.
4634   void EmitNonNullArgCheck(RValue RV, QualType ArgType, SourceLocation ArgLoc,
4635                            AbstractCallee AC, unsigned ParmNum);
4636 
4637   /// EmitCallArg - Emit a single call argument.
4638   void EmitCallArg(CallArgList &args, const Expr *E, QualType ArgType);
4639 
4640   /// EmitDelegateCallArg - We are performing a delegate call; that
4641   /// is, the current function is delegating to another one.  Produce
4642   /// a r-value suitable for passing the given parameter.
4643   void EmitDelegateCallArg(CallArgList &args, const VarDecl *param,
4644                            SourceLocation loc);
4645 
4646   /// SetFPAccuracy - Set the minimum required accuracy of the given floating
4647   /// point operation, expressed as the maximum relative error in ulp.
4648   void SetFPAccuracy(llvm::Value *Val, float Accuracy);
4649 
4650   /// Set the codegen fast-math flags.
4651   void SetFastMathFlags(FPOptions FPFeatures);
4652 
4653   // Truncate or extend a boolean vector to the requested number of elements.
4654   llvm::Value *emitBoolVecConversion(llvm::Value *SrcVec,
4655                                      unsigned NumElementsDst,
4656                                      const llvm::Twine &Name = "");
4657 
4658 private:
4659   llvm::MDNode *getRangeForLoadFromType(QualType Ty);
4660   void EmitReturnOfRValue(RValue RV, QualType Ty);
4661 
4662   void deferPlaceholderReplacement(llvm::Instruction *Old, llvm::Value *New);
4663 
4664   llvm::SmallVector<std::pair<llvm::WeakTrackingVH, llvm::Value *>, 4>
4665       DeferredReplacements;
4666 
4667   /// Set the address of a local variable.
4668   void setAddrOfLocalVar(const VarDecl *VD, Address Addr) {
4669     assert(!LocalDeclMap.count(VD) && "Decl already exists in LocalDeclMap!");
4670     LocalDeclMap.insert({VD, Addr});
4671   }
4672 
4673   /// ExpandTypeFromArgs - Reconstruct a structure of type \arg Ty
4674   /// from function arguments into \arg Dst. See ABIArgInfo::Expand.
4675   ///
4676   /// \param AI - The first function argument of the expansion.
4677   void ExpandTypeFromArgs(QualType Ty, LValue Dst,
4678                           llvm::Function::arg_iterator &AI);
4679 
4680   /// ExpandTypeToArgs - Expand an CallArg \arg Arg, with the LLVM type for \arg
4681   /// Ty, into individual arguments on the provided vector \arg IRCallArgs,
4682   /// starting at index \arg IRCallArgPos. See ABIArgInfo::Expand.
4683   void ExpandTypeToArgs(QualType Ty, CallArg Arg, llvm::FunctionType *IRFuncTy,
4684                         SmallVectorImpl<llvm::Value *> &IRCallArgs,
4685                         unsigned &IRCallArgPos);
4686 
4687   std::pair<llvm::Value *, llvm::Type *>
4688   EmitAsmInput(const TargetInfo::ConstraintInfo &Info, const Expr *InputExpr,
4689                std::string &ConstraintStr);
4690 
4691   std::pair<llvm::Value *, llvm::Type *>
4692   EmitAsmInputLValue(const TargetInfo::ConstraintInfo &Info, LValue InputValue,
4693                      QualType InputType, std::string &ConstraintStr,
4694                      SourceLocation Loc);
4695 
4696   /// Attempts to statically evaluate the object size of E. If that
4697   /// fails, emits code to figure the size of E out for us. This is
4698   /// pass_object_size aware.
4699   ///
4700   /// If EmittedExpr is non-null, this will use that instead of re-emitting E.
4701   llvm::Value *evaluateOrEmitBuiltinObjectSize(const Expr *E, unsigned Type,
4702                                                llvm::IntegerType *ResType,
4703                                                llvm::Value *EmittedE,
4704                                                bool IsDynamic);
4705 
4706   /// Emits the size of E, as required by __builtin_object_size. This
4707   /// function is aware of pass_object_size parameters, and will act accordingly
4708   /// if E is a parameter with the pass_object_size attribute.
4709   llvm::Value *emitBuiltinObjectSize(const Expr *E, unsigned Type,
4710                                      llvm::IntegerType *ResType,
4711                                      llvm::Value *EmittedE,
4712                                      bool IsDynamic);
4713 
4714   void emitZeroOrPatternForAutoVarInit(QualType type, const VarDecl &D,
4715                                        Address Loc);
4716 
4717 public:
4718   enum class EvaluationOrder {
4719     ///! No language constraints on evaluation order.
4720     Default,
4721     ///! Language semantics require left-to-right evaluation.
4722     ForceLeftToRight,
4723     ///! Language semantics require right-to-left evaluation.
4724     ForceRightToLeft
4725   };
4726 
4727   // Wrapper for function prototype sources. Wraps either a FunctionProtoType or
4728   // an ObjCMethodDecl.
4729   struct PrototypeWrapper {
4730     llvm::PointerUnion<const FunctionProtoType *, const ObjCMethodDecl *> P;
4731 
4732     PrototypeWrapper(const FunctionProtoType *FT) : P(FT) {}
4733     PrototypeWrapper(const ObjCMethodDecl *MD) : P(MD) {}
4734   };
4735 
4736   void EmitCallArgs(CallArgList &Args, PrototypeWrapper Prototype,
4737                     llvm::iterator_range<CallExpr::const_arg_iterator> ArgRange,
4738                     AbstractCallee AC = AbstractCallee(),
4739                     unsigned ParamsToSkip = 0,
4740                     EvaluationOrder Order = EvaluationOrder::Default);
4741 
4742   /// EmitPointerWithAlignment - Given an expression with a pointer type,
4743   /// emit the value and compute our best estimate of the alignment of the
4744   /// pointee.
4745   ///
4746   /// \param BaseInfo - If non-null, this will be initialized with
4747   /// information about the source of the alignment and the may-alias
4748   /// attribute.  Note that this function will conservatively fall back on
4749   /// the type when it doesn't recognize the expression and may-alias will
4750   /// be set to false.
4751   ///
4752   /// One reasonable way to use this information is when there's a language
4753   /// guarantee that the pointer must be aligned to some stricter value, and
4754   /// we're simply trying to ensure that sufficiently obvious uses of under-
4755   /// aligned objects don't get miscompiled; for example, a placement new
4756   /// into the address of a local variable.  In such a case, it's quite
4757   /// reasonable to just ignore the returned alignment when it isn't from an
4758   /// explicit source.
4759   Address EmitPointerWithAlignment(const Expr *Addr,
4760                                    LValueBaseInfo *BaseInfo = nullptr,
4761                                    TBAAAccessInfo *TBAAInfo = nullptr);
4762 
4763   /// If \p E references a parameter with pass_object_size info or a constant
4764   /// array size modifier, emit the object size divided by the size of \p EltTy.
4765   /// Otherwise return null.
4766   llvm::Value *LoadPassedObjectSize(const Expr *E, QualType EltTy);
4767 
4768   void EmitSanitizerStatReport(llvm::SanitizerStatKind SSK);
4769 
4770   struct MultiVersionResolverOption {
4771     llvm::Function *Function;
4772     struct Conds {
4773       StringRef Architecture;
4774       llvm::SmallVector<StringRef, 8> Features;
4775 
4776       Conds(StringRef Arch, ArrayRef<StringRef> Feats)
4777           : Architecture(Arch), Features(Feats.begin(), Feats.end()) {}
4778     } Conditions;
4779 
4780     MultiVersionResolverOption(llvm::Function *F, StringRef Arch,
4781                                ArrayRef<StringRef> Feats)
4782         : Function(F), Conditions(Arch, Feats) {}
4783   };
4784 
4785   // Emits the body of a multiversion function's resolver. Assumes that the
4786   // options are already sorted in the proper order, with the 'default' option
4787   // last (if it exists).
4788   void EmitMultiVersionResolver(llvm::Function *Resolver,
4789                                 ArrayRef<MultiVersionResolverOption> Options);
4790 
4791 private:
4792   QualType getVarArgType(const Expr *Arg);
4793 
4794   void EmitDeclMetadata();
4795 
4796   BlockByrefHelpers *buildByrefHelpers(llvm::StructType &byrefType,
4797                                   const AutoVarEmission &emission);
4798 
4799   void AddObjCARCExceptionMetadata(llvm::Instruction *Inst);
4800 
4801   llvm::Value *GetValueForARMHint(unsigned BuiltinID);
4802   llvm::Value *EmitX86CpuIs(const CallExpr *E);
4803   llvm::Value *EmitX86CpuIs(StringRef CPUStr);
4804   llvm::Value *EmitX86CpuSupports(const CallExpr *E);
4805   llvm::Value *EmitX86CpuSupports(ArrayRef<StringRef> FeatureStrs);
4806   llvm::Value *EmitX86CpuSupports(uint64_t Mask);
4807   llvm::Value *EmitX86CpuInit();
4808   llvm::Value *FormResolverCondition(const MultiVersionResolverOption &RO);
4809 };
4810 
4811 /// TargetFeatures - This class is used to check whether the builtin function
4812 /// has the required tagert specific features. It is able to support the
4813 /// combination of ','(and), '|'(or), and '()'. By default, the priority of
4814 /// ',' is higher than that of '|' .
4815 /// E.g:
4816 /// A,B|C means the builtin function requires both A and B, or C.
4817 /// If we want the builtin function requires both A and B, or both A and C,
4818 /// there are two ways: A,B|A,C or A,(B|C).
4819 /// The FeaturesList should not contain spaces, and brackets must appear in
4820 /// pairs.
4821 class TargetFeatures {
4822   struct FeatureListStatus {
4823     bool HasFeatures;
4824     StringRef CurFeaturesList;
4825   };
4826 
4827   const llvm::StringMap<bool> &CallerFeatureMap;
4828 
4829   FeatureListStatus getAndFeatures(StringRef FeatureList) {
4830     int InParentheses = 0;
4831     bool HasFeatures = true;
4832     size_t SubexpressionStart = 0;
4833     for (size_t i = 0, e = FeatureList.size(); i < e; ++i) {
4834       char CurrentToken = FeatureList[i];
4835       switch (CurrentToken) {
4836       default:
4837         break;
4838       case '(':
4839         if (InParentheses == 0)
4840           SubexpressionStart = i + 1;
4841         ++InParentheses;
4842         break;
4843       case ')':
4844         --InParentheses;
4845         assert(InParentheses >= 0 && "Parentheses are not in pair");
4846         LLVM_FALLTHROUGH;
4847       case '|':
4848       case ',':
4849         if (InParentheses == 0) {
4850           if (HasFeatures && i != SubexpressionStart) {
4851             StringRef F = FeatureList.slice(SubexpressionStart, i);
4852             HasFeatures = CurrentToken == ')' ? hasRequiredFeatures(F)
4853                                               : CallerFeatureMap.lookup(F);
4854           }
4855           SubexpressionStart = i + 1;
4856           if (CurrentToken == '|') {
4857             return {HasFeatures, FeatureList.substr(SubexpressionStart)};
4858           }
4859         }
4860         break;
4861       }
4862     }
4863     assert(InParentheses == 0 && "Parentheses are not in pair");
4864     if (HasFeatures && SubexpressionStart != FeatureList.size())
4865       HasFeatures =
4866           CallerFeatureMap.lookup(FeatureList.substr(SubexpressionStart));
4867     return {HasFeatures, StringRef()};
4868   }
4869 
4870 public:
4871   bool hasRequiredFeatures(StringRef FeatureList) {
4872     FeatureListStatus FS = {false, FeatureList};
4873     while (!FS.HasFeatures && !FS.CurFeaturesList.empty())
4874       FS = getAndFeatures(FS.CurFeaturesList);
4875     return FS.HasFeatures;
4876   }
4877 
4878   TargetFeatures(const llvm::StringMap<bool> &CallerFeatureMap)
4879       : CallerFeatureMap(CallerFeatureMap) {}
4880 };
4881 
4882 inline DominatingLLVMValue::saved_type
4883 DominatingLLVMValue::save(CodeGenFunction &CGF, llvm::Value *value) {
4884   if (!needsSaving(value)) return saved_type(value, false);
4885 
4886   // Otherwise, we need an alloca.
4887   auto align = CharUnits::fromQuantity(
4888             CGF.CGM.getDataLayout().getPrefTypeAlignment(value->getType()));
4889   Address alloca =
4890     CGF.CreateTempAlloca(value->getType(), align, "cond-cleanup.save");
4891   CGF.Builder.CreateStore(value, alloca);
4892 
4893   return saved_type(alloca.getPointer(), true);
4894 }
4895 
4896 inline llvm::Value *DominatingLLVMValue::restore(CodeGenFunction &CGF,
4897                                                  saved_type value) {
4898   // If the value says it wasn't saved, trust that it's still dominating.
4899   if (!value.getInt()) return value.getPointer();
4900 
4901   // Otherwise, it should be an alloca instruction, as set up in save().
4902   auto alloca = cast<llvm::AllocaInst>(value.getPointer());
4903   return CGF.Builder.CreateAlignedLoad(alloca->getAllocatedType(), alloca,
4904                                        alloca->getAlign());
4905 }
4906 
4907 }  // end namespace CodeGen
4908 
4909 // Map the LangOption for floating point exception behavior into
4910 // the corresponding enum in the IR.
4911 llvm::fp::ExceptionBehavior
4912 ToConstrainedExceptMD(LangOptions::FPExceptionModeKind Kind);
4913 }  // end namespace clang
4914 
4915 #endif
4916