1 //===-- CodeGenFunction.h - Per-Function state for LLVM CodeGen -*- C++ -*-===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This is the internal per-function state used for llvm translation.
10 //
11 //===----------------------------------------------------------------------===//
12 
13 #ifndef LLVM_CLANG_LIB_CODEGEN_CODEGENFUNCTION_H
14 #define LLVM_CLANG_LIB_CODEGEN_CODEGENFUNCTION_H
15 
16 #include "CGBuilder.h"
17 #include "CGDebugInfo.h"
18 #include "CGLoopInfo.h"
19 #include "CGValue.h"
20 #include "CodeGenModule.h"
21 #include "CodeGenPGO.h"
22 #include "EHScopeStack.h"
23 #include "VarBypassDetector.h"
24 #include "clang/AST/CharUnits.h"
25 #include "clang/AST/CurrentSourceLocExprScope.h"
26 #include "clang/AST/ExprCXX.h"
27 #include "clang/AST/ExprObjC.h"
28 #include "clang/AST/ExprOpenMP.h"
29 #include "clang/AST/StmtOpenMP.h"
30 #include "clang/AST/Type.h"
31 #include "clang/Basic/ABI.h"
32 #include "clang/Basic/CapturedStmt.h"
33 #include "clang/Basic/CodeGenOptions.h"
34 #include "clang/Basic/OpenMPKinds.h"
35 #include "clang/Basic/TargetInfo.h"
36 #include "llvm/ADT/ArrayRef.h"
37 #include "llvm/ADT/DenseMap.h"
38 #include "llvm/ADT/MapVector.h"
39 #include "llvm/ADT/SmallVector.h"
40 #include "llvm/Frontend/OpenMP/OMPIRBuilder.h"
41 #include "llvm/IR/ValueHandle.h"
42 #include "llvm/Support/Debug.h"
43 #include "llvm/Transforms/Utils/SanitizerStats.h"
44 
45 namespace llvm {
46 class BasicBlock;
47 class LLVMContext;
48 class MDNode;
49 class Module;
50 class SwitchInst;
51 class Twine;
52 class Value;
53 }
54 
55 namespace clang {
56 class ASTContext;
57 class BlockDecl;
58 class CXXDestructorDecl;
59 class CXXForRangeStmt;
60 class CXXTryStmt;
61 class Decl;
62 class LabelDecl;
63 class EnumConstantDecl;
64 class FunctionDecl;
65 class FunctionProtoType;
66 class LabelStmt;
67 class ObjCContainerDecl;
68 class ObjCInterfaceDecl;
69 class ObjCIvarDecl;
70 class ObjCMethodDecl;
71 class ObjCImplementationDecl;
72 class ObjCPropertyImplDecl;
73 class TargetInfo;
74 class VarDecl;
75 class ObjCForCollectionStmt;
76 class ObjCAtTryStmt;
77 class ObjCAtThrowStmt;
78 class ObjCAtSynchronizedStmt;
79 class ObjCAutoreleasePoolStmt;
80 class OMPUseDevicePtrClause;
81 class OMPUseDeviceAddrClause;
82 class ReturnsNonNullAttr;
83 class SVETypeFlags;
84 class OMPExecutableDirective;
85 
86 namespace analyze_os_log {
87 class OSLogBufferLayout;
88 }
89 
90 namespace CodeGen {
91 class CodeGenTypes;
92 class CGCallee;
93 class CGFunctionInfo;
94 class CGRecordLayout;
95 class CGBlockInfo;
96 class CGCXXABI;
97 class BlockByrefHelpers;
98 class BlockByrefInfo;
99 class BlockFlags;
100 class BlockFieldFlags;
101 class RegionCodeGenTy;
102 class TargetCodeGenInfo;
103 struct OMPTaskDataTy;
104 struct CGCoroData;
105 
106 /// The kind of evaluation to perform on values of a particular
107 /// type.  Basically, is the code in CGExprScalar, CGExprComplex, or
108 /// CGExprAgg?
109 ///
110 /// TODO: should vectors maybe be split out into their own thing?
111 enum TypeEvaluationKind {
112   TEK_Scalar,
113   TEK_Complex,
114   TEK_Aggregate
115 };
116 
117 #define LIST_SANITIZER_CHECKS                                                  \
118   SANITIZER_CHECK(AddOverflow, add_overflow, 0)                                \
119   SANITIZER_CHECK(BuiltinUnreachable, builtin_unreachable, 0)                  \
120   SANITIZER_CHECK(CFICheckFail, cfi_check_fail, 0)                             \
121   SANITIZER_CHECK(DivremOverflow, divrem_overflow, 0)                          \
122   SANITIZER_CHECK(DynamicTypeCacheMiss, dynamic_type_cache_miss, 0)            \
123   SANITIZER_CHECK(FloatCastOverflow, float_cast_overflow, 0)                   \
124   SANITIZER_CHECK(FunctionTypeMismatch, function_type_mismatch, 1)             \
125   SANITIZER_CHECK(ImplicitConversion, implicit_conversion, 0)                  \
126   SANITIZER_CHECK(InvalidBuiltin, invalid_builtin, 0)                          \
127   SANITIZER_CHECK(InvalidObjCCast, invalid_objc_cast, 0)                       \
128   SANITIZER_CHECK(LoadInvalidValue, load_invalid_value, 0)                     \
129   SANITIZER_CHECK(MissingReturn, missing_return, 0)                            \
130   SANITIZER_CHECK(MulOverflow, mul_overflow, 0)                                \
131   SANITIZER_CHECK(NegateOverflow, negate_overflow, 0)                          \
132   SANITIZER_CHECK(NullabilityArg, nullability_arg, 0)                          \
133   SANITIZER_CHECK(NullabilityReturn, nullability_return, 1)                    \
134   SANITIZER_CHECK(NonnullArg, nonnull_arg, 0)                                  \
135   SANITIZER_CHECK(NonnullReturn, nonnull_return, 1)                            \
136   SANITIZER_CHECK(OutOfBounds, out_of_bounds, 0)                               \
137   SANITIZER_CHECK(PointerOverflow, pointer_overflow, 0)                        \
138   SANITIZER_CHECK(ShiftOutOfBounds, shift_out_of_bounds, 0)                    \
139   SANITIZER_CHECK(SubOverflow, sub_overflow, 0)                                \
140   SANITIZER_CHECK(TypeMismatch, type_mismatch, 1)                              \
141   SANITIZER_CHECK(AlignmentAssumption, alignment_assumption, 0)                \
142   SANITIZER_CHECK(VLABoundNotPositive, vla_bound_not_positive, 0)
143 
144 enum SanitizerHandler {
145 #define SANITIZER_CHECK(Enum, Name, Version) Enum,
146   LIST_SANITIZER_CHECKS
147 #undef SANITIZER_CHECK
148 };
149 
150 /// Helper class with most of the code for saving a value for a
151 /// conditional expression cleanup.
152 struct DominatingLLVMValue {
153   typedef llvm::PointerIntPair<llvm::Value*, 1, bool> saved_type;
154 
155   /// Answer whether the given value needs extra work to be saved.
156   static bool needsSaving(llvm::Value *value) {
157     // If it's not an instruction, we don't need to save.
158     if (!isa<llvm::Instruction>(value)) return false;
159 
160     // If it's an instruction in the entry block, we don't need to save.
161     llvm::BasicBlock *block = cast<llvm::Instruction>(value)->getParent();
162     return (block != &block->getParent()->getEntryBlock());
163   }
164 
165   static saved_type save(CodeGenFunction &CGF, llvm::Value *value);
166   static llvm::Value *restore(CodeGenFunction &CGF, saved_type value);
167 };
168 
169 /// A partial specialization of DominatingValue for llvm::Values that
170 /// might be llvm::Instructions.
171 template <class T> struct DominatingPointer<T,true> : DominatingLLVMValue {
172   typedef T *type;
173   static type restore(CodeGenFunction &CGF, saved_type value) {
174     return static_cast<T*>(DominatingLLVMValue::restore(CGF, value));
175   }
176 };
177 
178 /// A specialization of DominatingValue for Address.
179 template <> struct DominatingValue<Address> {
180   typedef Address type;
181 
182   struct saved_type {
183     DominatingLLVMValue::saved_type SavedValue;
184     CharUnits Alignment;
185   };
186 
187   static bool needsSaving(type value) {
188     return DominatingLLVMValue::needsSaving(value.getPointer());
189   }
190   static saved_type save(CodeGenFunction &CGF, type value) {
191     return { DominatingLLVMValue::save(CGF, value.getPointer()),
192              value.getAlignment() };
193   }
194   static type restore(CodeGenFunction &CGF, saved_type value) {
195     return Address(DominatingLLVMValue::restore(CGF, value.SavedValue),
196                    value.Alignment);
197   }
198 };
199 
200 /// A specialization of DominatingValue for RValue.
201 template <> struct DominatingValue<RValue> {
202   typedef RValue type;
203   class saved_type {
204     enum Kind { ScalarLiteral, ScalarAddress, AggregateLiteral,
205                 AggregateAddress, ComplexAddress };
206 
207     llvm::Value *Value;
208     unsigned K : 3;
209     unsigned Align : 29;
210     saved_type(llvm::Value *v, Kind k, unsigned a = 0)
211       : Value(v), K(k), Align(a) {}
212 
213   public:
214     static bool needsSaving(RValue value);
215     static saved_type save(CodeGenFunction &CGF, RValue value);
216     RValue restore(CodeGenFunction &CGF);
217 
218     // implementations in CGCleanup.cpp
219   };
220 
221   static bool needsSaving(type value) {
222     return saved_type::needsSaving(value);
223   }
224   static saved_type save(CodeGenFunction &CGF, type value) {
225     return saved_type::save(CGF, value);
226   }
227   static type restore(CodeGenFunction &CGF, saved_type value) {
228     return value.restore(CGF);
229   }
230 };
231 
232 /// CodeGenFunction - This class organizes the per-function state that is used
233 /// while generating LLVM code.
234 class CodeGenFunction : public CodeGenTypeCache {
235   CodeGenFunction(const CodeGenFunction &) = delete;
236   void operator=(const CodeGenFunction &) = delete;
237 
238   friend class CGCXXABI;
239 public:
240   /// A jump destination is an abstract label, branching to which may
241   /// require a jump out through normal cleanups.
242   struct JumpDest {
243     JumpDest() : Block(nullptr), ScopeDepth(), Index(0) {}
244     JumpDest(llvm::BasicBlock *Block,
245              EHScopeStack::stable_iterator Depth,
246              unsigned Index)
247       : Block(Block), ScopeDepth(Depth), Index(Index) {}
248 
249     bool isValid() const { return Block != nullptr; }
250     llvm::BasicBlock *getBlock() const { return Block; }
251     EHScopeStack::stable_iterator getScopeDepth() const { return ScopeDepth; }
252     unsigned getDestIndex() const { return Index; }
253 
254     // This should be used cautiously.
255     void setScopeDepth(EHScopeStack::stable_iterator depth) {
256       ScopeDepth = depth;
257     }
258 
259   private:
260     llvm::BasicBlock *Block;
261     EHScopeStack::stable_iterator ScopeDepth;
262     unsigned Index;
263   };
264 
265   CodeGenModule &CGM;  // Per-module state.
266   const TargetInfo &Target;
267 
268   // For EH/SEH outlined funclets, this field points to parent's CGF
269   CodeGenFunction *ParentCGF = nullptr;
270 
271   typedef std::pair<llvm::Value *, llvm::Value *> ComplexPairTy;
272   LoopInfoStack LoopStack;
273   CGBuilderTy Builder;
274 
275   // Stores variables for which we can't generate correct lifetime markers
276   // because of jumps.
277   VarBypassDetector Bypasses;
278 
279   // CodeGen lambda for loops and support for ordered clause
280   typedef llvm::function_ref<void(CodeGenFunction &, const OMPLoopDirective &,
281                                   JumpDest)>
282       CodeGenLoopTy;
283   typedef llvm::function_ref<void(CodeGenFunction &, SourceLocation,
284                                   const unsigned, const bool)>
285       CodeGenOrderedTy;
286 
287   // Codegen lambda for loop bounds in worksharing loop constructs
288   typedef llvm::function_ref<std::pair<LValue, LValue>(
289       CodeGenFunction &, const OMPExecutableDirective &S)>
290       CodeGenLoopBoundsTy;
291 
292   // Codegen lambda for loop bounds in dispatch-based loop implementation
293   typedef llvm::function_ref<std::pair<llvm::Value *, llvm::Value *>(
294       CodeGenFunction &, const OMPExecutableDirective &S, Address LB,
295       Address UB)>
296       CodeGenDispatchBoundsTy;
297 
298   /// CGBuilder insert helper. This function is called after an
299   /// instruction is created using Builder.
300   void InsertHelper(llvm::Instruction *I, const llvm::Twine &Name,
301                     llvm::BasicBlock *BB,
302                     llvm::BasicBlock::iterator InsertPt) const;
303 
304   /// CurFuncDecl - Holds the Decl for the current outermost
305   /// non-closure context.
306   const Decl *CurFuncDecl;
307   /// CurCodeDecl - This is the inner-most code context, which includes blocks.
308   const Decl *CurCodeDecl;
309   const CGFunctionInfo *CurFnInfo;
310   QualType FnRetTy;
311   llvm::Function *CurFn = nullptr;
312 
313   // Holds coroutine data if the current function is a coroutine. We use a
314   // wrapper to manage its lifetime, so that we don't have to define CGCoroData
315   // in this header.
316   struct CGCoroInfo {
317     std::unique_ptr<CGCoroData> Data;
318     CGCoroInfo();
319     ~CGCoroInfo();
320   };
321   CGCoroInfo CurCoro;
322 
323   bool isCoroutine() const {
324     return CurCoro.Data != nullptr;
325   }
326 
327   /// CurGD - The GlobalDecl for the current function being compiled.
328   GlobalDecl CurGD;
329 
330   /// PrologueCleanupDepth - The cleanup depth enclosing all the
331   /// cleanups associated with the parameters.
332   EHScopeStack::stable_iterator PrologueCleanupDepth;
333 
334   /// ReturnBlock - Unified return block.
335   JumpDest ReturnBlock;
336 
337   /// ReturnValue - The temporary alloca to hold the return
338   /// value. This is invalid iff the function has no return value.
339   Address ReturnValue = Address::invalid();
340 
341   /// ReturnValuePointer - The temporary alloca to hold a pointer to sret.
342   /// This is invalid if sret is not in use.
343   Address ReturnValuePointer = Address::invalid();
344 
345   /// If a return statement is being visited, this holds the return statment's
346   /// result expression.
347   const Expr *RetExpr = nullptr;
348 
349   /// Return true if a label was seen in the current scope.
350   bool hasLabelBeenSeenInCurrentScope() const {
351     if (CurLexicalScope)
352       return CurLexicalScope->hasLabels();
353     return !LabelMap.empty();
354   }
355 
356   /// AllocaInsertPoint - This is an instruction in the entry block before which
357   /// we prefer to insert allocas.
358   llvm::AssertingVH<llvm::Instruction> AllocaInsertPt;
359 
360   /// API for captured statement code generation.
361   class CGCapturedStmtInfo {
362   public:
363     explicit CGCapturedStmtInfo(CapturedRegionKind K = CR_Default)
364         : Kind(K), ThisValue(nullptr), CXXThisFieldDecl(nullptr) {}
365     explicit CGCapturedStmtInfo(const CapturedStmt &S,
366                                 CapturedRegionKind K = CR_Default)
367       : Kind(K), ThisValue(nullptr), CXXThisFieldDecl(nullptr) {
368 
369       RecordDecl::field_iterator Field =
370         S.getCapturedRecordDecl()->field_begin();
371       for (CapturedStmt::const_capture_iterator I = S.capture_begin(),
372                                                 E = S.capture_end();
373            I != E; ++I, ++Field) {
374         if (I->capturesThis())
375           CXXThisFieldDecl = *Field;
376         else if (I->capturesVariable())
377           CaptureFields[I->getCapturedVar()->getCanonicalDecl()] = *Field;
378         else if (I->capturesVariableByCopy())
379           CaptureFields[I->getCapturedVar()->getCanonicalDecl()] = *Field;
380       }
381     }
382 
383     virtual ~CGCapturedStmtInfo();
384 
385     CapturedRegionKind getKind() const { return Kind; }
386 
387     virtual void setContextValue(llvm::Value *V) { ThisValue = V; }
388     // Retrieve the value of the context parameter.
389     virtual llvm::Value *getContextValue() const { return ThisValue; }
390 
391     /// Lookup the captured field decl for a variable.
392     virtual const FieldDecl *lookup(const VarDecl *VD) const {
393       return CaptureFields.lookup(VD->getCanonicalDecl());
394     }
395 
396     bool isCXXThisExprCaptured() const { return getThisFieldDecl() != nullptr; }
397     virtual FieldDecl *getThisFieldDecl() const { return CXXThisFieldDecl; }
398 
399     static bool classof(const CGCapturedStmtInfo *) {
400       return true;
401     }
402 
403     /// Emit the captured statement body.
404     virtual void EmitBody(CodeGenFunction &CGF, const Stmt *S) {
405       CGF.incrementProfileCounter(S);
406       CGF.EmitStmt(S);
407     }
408 
409     /// Get the name of the capture helper.
410     virtual StringRef getHelperName() const { return "__captured_stmt"; }
411 
412   private:
413     /// The kind of captured statement being generated.
414     CapturedRegionKind Kind;
415 
416     /// Keep the map between VarDecl and FieldDecl.
417     llvm::SmallDenseMap<const VarDecl *, FieldDecl *> CaptureFields;
418 
419     /// The base address of the captured record, passed in as the first
420     /// argument of the parallel region function.
421     llvm::Value *ThisValue;
422 
423     /// Captured 'this' type.
424     FieldDecl *CXXThisFieldDecl;
425   };
426   CGCapturedStmtInfo *CapturedStmtInfo = nullptr;
427 
428   /// RAII for correct setting/restoring of CapturedStmtInfo.
429   class CGCapturedStmtRAII {
430   private:
431     CodeGenFunction &CGF;
432     CGCapturedStmtInfo *PrevCapturedStmtInfo;
433   public:
434     CGCapturedStmtRAII(CodeGenFunction &CGF,
435                        CGCapturedStmtInfo *NewCapturedStmtInfo)
436         : CGF(CGF), PrevCapturedStmtInfo(CGF.CapturedStmtInfo) {
437       CGF.CapturedStmtInfo = NewCapturedStmtInfo;
438     }
439     ~CGCapturedStmtRAII() { CGF.CapturedStmtInfo = PrevCapturedStmtInfo; }
440   };
441 
442   /// An abstract representation of regular/ObjC call/message targets.
443   class AbstractCallee {
444     /// The function declaration of the callee.
445     const Decl *CalleeDecl;
446 
447   public:
448     AbstractCallee() : CalleeDecl(nullptr) {}
449     AbstractCallee(const FunctionDecl *FD) : CalleeDecl(FD) {}
450     AbstractCallee(const ObjCMethodDecl *OMD) : CalleeDecl(OMD) {}
451     bool hasFunctionDecl() const {
452       return dyn_cast_or_null<FunctionDecl>(CalleeDecl);
453     }
454     const Decl *getDecl() const { return CalleeDecl; }
455     unsigned getNumParams() const {
456       if (const auto *FD = dyn_cast<FunctionDecl>(CalleeDecl))
457         return FD->getNumParams();
458       return cast<ObjCMethodDecl>(CalleeDecl)->param_size();
459     }
460     const ParmVarDecl *getParamDecl(unsigned I) const {
461       if (const auto *FD = dyn_cast<FunctionDecl>(CalleeDecl))
462         return FD->getParamDecl(I);
463       return *(cast<ObjCMethodDecl>(CalleeDecl)->param_begin() + I);
464     }
465   };
466 
467   /// Sanitizers enabled for this function.
468   SanitizerSet SanOpts;
469 
470   /// True if CodeGen currently emits code implementing sanitizer checks.
471   bool IsSanitizerScope = false;
472 
473   /// RAII object to set/unset CodeGenFunction::IsSanitizerScope.
474   class SanitizerScope {
475     CodeGenFunction *CGF;
476   public:
477     SanitizerScope(CodeGenFunction *CGF);
478     ~SanitizerScope();
479   };
480 
481   /// In C++, whether we are code generating a thunk.  This controls whether we
482   /// should emit cleanups.
483   bool CurFuncIsThunk = false;
484 
485   /// In ARC, whether we should autorelease the return value.
486   bool AutoreleaseResult = false;
487 
488   /// Whether we processed a Microsoft-style asm block during CodeGen. These can
489   /// potentially set the return value.
490   bool SawAsmBlock = false;
491 
492   const NamedDecl *CurSEHParent = nullptr;
493 
494   /// True if the current function is an outlined SEH helper. This can be a
495   /// finally block or filter expression.
496   bool IsOutlinedSEHHelper = false;
497 
498   /// True if CodeGen currently emits code inside presereved access index
499   /// region.
500   bool IsInPreservedAIRegion = false;
501 
502   /// True if the current statement has nomerge attribute.
503   bool InNoMergeAttributedStmt = false;
504 
505   const CodeGen::CGBlockInfo *BlockInfo = nullptr;
506   llvm::Value *BlockPointer = nullptr;
507 
508   llvm::DenseMap<const VarDecl *, FieldDecl *> LambdaCaptureFields;
509   FieldDecl *LambdaThisCaptureField = nullptr;
510 
511   /// A mapping from NRVO variables to the flags used to indicate
512   /// when the NRVO has been applied to this variable.
513   llvm::DenseMap<const VarDecl *, llvm::Value *> NRVOFlags;
514 
515   EHScopeStack EHStack;
516   llvm::SmallVector<char, 256> LifetimeExtendedCleanupStack;
517   llvm::SmallVector<const JumpDest *, 2> SEHTryEpilogueStack;
518 
519   llvm::Instruction *CurrentFuncletPad = nullptr;
520 
521   class CallLifetimeEnd final : public EHScopeStack::Cleanup {
522     llvm::Value *Addr;
523     llvm::Value *Size;
524 
525   public:
526     CallLifetimeEnd(Address addr, llvm::Value *size)
527         : Addr(addr.getPointer()), Size(size) {}
528 
529     void Emit(CodeGenFunction &CGF, Flags flags) override {
530       CGF.EmitLifetimeEnd(Size, Addr);
531     }
532   };
533 
534   /// Header for data within LifetimeExtendedCleanupStack.
535   struct LifetimeExtendedCleanupHeader {
536     /// The size of the following cleanup object.
537     unsigned Size;
538     /// The kind of cleanup to push: a value from the CleanupKind enumeration.
539     unsigned Kind : 31;
540     /// Whether this is a conditional cleanup.
541     unsigned IsConditional : 1;
542 
543     size_t getSize() const { return Size; }
544     CleanupKind getKind() const { return (CleanupKind)Kind; }
545     bool isConditional() const { return IsConditional; }
546   };
547 
548   /// i32s containing the indexes of the cleanup destinations.
549   Address NormalCleanupDest = Address::invalid();
550 
551   unsigned NextCleanupDestIndex = 1;
552 
553   /// EHResumeBlock - Unified block containing a call to llvm.eh.resume.
554   llvm::BasicBlock *EHResumeBlock = nullptr;
555 
556   /// The exception slot.  All landing pads write the current exception pointer
557   /// into this alloca.
558   llvm::Value *ExceptionSlot = nullptr;
559 
560   /// The selector slot.  Under the MandatoryCleanup model, all landing pads
561   /// write the current selector value into this alloca.
562   llvm::AllocaInst *EHSelectorSlot = nullptr;
563 
564   /// A stack of exception code slots. Entering an __except block pushes a slot
565   /// on the stack and leaving pops one. The __exception_code() intrinsic loads
566   /// a value from the top of the stack.
567   SmallVector<Address, 1> SEHCodeSlotStack;
568 
569   /// Value returned by __exception_info intrinsic.
570   llvm::Value *SEHInfo = nullptr;
571 
572   /// Emits a landing pad for the current EH stack.
573   llvm::BasicBlock *EmitLandingPad();
574 
575   llvm::BasicBlock *getInvokeDestImpl();
576 
577   /// Parent loop-based directive for scan directive.
578   const OMPExecutableDirective *OMPParentLoopDirectiveForScan = nullptr;
579   llvm::BasicBlock *OMPBeforeScanBlock = nullptr;
580   llvm::BasicBlock *OMPAfterScanBlock = nullptr;
581   llvm::BasicBlock *OMPScanExitBlock = nullptr;
582   llvm::BasicBlock *OMPScanDispatch = nullptr;
583   bool OMPFirstScanLoop = false;
584 
585   /// Manages parent directive for scan directives.
586   class ParentLoopDirectiveForScanRegion {
587     CodeGenFunction &CGF;
588     const OMPExecutableDirective *ParentLoopDirectiveForScan;
589 
590   public:
591     ParentLoopDirectiveForScanRegion(
592         CodeGenFunction &CGF,
593         const OMPExecutableDirective &ParentLoopDirectiveForScan)
594         : CGF(CGF),
595           ParentLoopDirectiveForScan(CGF.OMPParentLoopDirectiveForScan) {
596       CGF.OMPParentLoopDirectiveForScan = &ParentLoopDirectiveForScan;
597     }
598     ~ParentLoopDirectiveForScanRegion() {
599       CGF.OMPParentLoopDirectiveForScan = ParentLoopDirectiveForScan;
600     }
601   };
602 
603   template <class T>
604   typename DominatingValue<T>::saved_type saveValueInCond(T value) {
605     return DominatingValue<T>::save(*this, value);
606   }
607 
608   class CGFPOptionsRAII {
609   public:
610     CGFPOptionsRAII(CodeGenFunction &CGF, FPOptions FPFeatures);
611     ~CGFPOptionsRAII();
612 
613   private:
614     CodeGenFunction &CGF;
615     FPOptions OldFPFeatures;
616     Optional<CGBuilderTy::FastMathFlagGuard> FMFGuard;
617   };
618   FPOptions CurFPFeatures;
619 
620 public:
621   /// ObjCEHValueStack - Stack of Objective-C exception values, used for
622   /// rethrows.
623   SmallVector<llvm::Value*, 8> ObjCEHValueStack;
624 
625   /// A class controlling the emission of a finally block.
626   class FinallyInfo {
627     /// Where the catchall's edge through the cleanup should go.
628     JumpDest RethrowDest;
629 
630     /// A function to call to enter the catch.
631     llvm::FunctionCallee BeginCatchFn;
632 
633     /// An i1 variable indicating whether or not the @finally is
634     /// running for an exception.
635     llvm::AllocaInst *ForEHVar;
636 
637     /// An i8* variable into which the exception pointer to rethrow
638     /// has been saved.
639     llvm::AllocaInst *SavedExnVar;
640 
641   public:
642     void enter(CodeGenFunction &CGF, const Stmt *Finally,
643                llvm::FunctionCallee beginCatchFn,
644                llvm::FunctionCallee endCatchFn, llvm::FunctionCallee rethrowFn);
645     void exit(CodeGenFunction &CGF);
646   };
647 
648   /// Returns true inside SEH __try blocks.
649   bool isSEHTryScope() const { return !SEHTryEpilogueStack.empty(); }
650 
651   /// Returns true while emitting a cleanuppad.
652   bool isCleanupPadScope() const {
653     return CurrentFuncletPad && isa<llvm::CleanupPadInst>(CurrentFuncletPad);
654   }
655 
656   /// pushFullExprCleanup - Push a cleanup to be run at the end of the
657   /// current full-expression.  Safe against the possibility that
658   /// we're currently inside a conditionally-evaluated expression.
659   template <class T, class... As>
660   void pushFullExprCleanup(CleanupKind kind, As... A) {
661     // If we're not in a conditional branch, or if none of the
662     // arguments requires saving, then use the unconditional cleanup.
663     if (!isInConditionalBranch())
664       return EHStack.pushCleanup<T>(kind, A...);
665 
666     // Stash values in a tuple so we can guarantee the order of saves.
667     typedef std::tuple<typename DominatingValue<As>::saved_type...> SavedTuple;
668     SavedTuple Saved{saveValueInCond(A)...};
669 
670     typedef EHScopeStack::ConditionalCleanup<T, As...> CleanupType;
671     EHStack.pushCleanupTuple<CleanupType>(kind, Saved);
672     initFullExprCleanup();
673   }
674 
675   /// Queue a cleanup to be pushed after finishing the current full-expression,
676   /// potentially with an active flag.
677   template <class T, class... As>
678   void pushCleanupAfterFullExpr(CleanupKind Kind, As... A) {
679     if (!isInConditionalBranch())
680       return pushCleanupAfterFullExprWithActiveFlag<T>(Kind, Address::invalid(),
681                                                        A...);
682 
683     Address ActiveFlag = createCleanupActiveFlag();
684     assert(!DominatingValue<Address>::needsSaving(ActiveFlag) &&
685            "cleanup active flag should never need saving");
686 
687     typedef std::tuple<typename DominatingValue<As>::saved_type...> SavedTuple;
688     SavedTuple Saved{saveValueInCond(A)...};
689 
690     typedef EHScopeStack::ConditionalCleanup<T, As...> CleanupType;
691     pushCleanupAfterFullExprWithActiveFlag<CleanupType>(Kind, ActiveFlag, Saved);
692   }
693 
694   template <class T, class... As>
695   void pushCleanupAfterFullExprWithActiveFlag(CleanupKind Kind,
696                                               Address ActiveFlag, As... A) {
697     LifetimeExtendedCleanupHeader Header = {sizeof(T), Kind,
698                                             ActiveFlag.isValid()};
699 
700     size_t OldSize = LifetimeExtendedCleanupStack.size();
701     LifetimeExtendedCleanupStack.resize(
702         LifetimeExtendedCleanupStack.size() + sizeof(Header) + Header.Size +
703         (Header.IsConditional ? sizeof(ActiveFlag) : 0));
704 
705     static_assert(sizeof(Header) % alignof(T) == 0,
706                   "Cleanup will be allocated on misaligned address");
707     char *Buffer = &LifetimeExtendedCleanupStack[OldSize];
708     new (Buffer) LifetimeExtendedCleanupHeader(Header);
709     new (Buffer + sizeof(Header)) T(A...);
710     if (Header.IsConditional)
711       new (Buffer + sizeof(Header) + sizeof(T)) Address(ActiveFlag);
712   }
713 
714   /// Set up the last cleanup that was pushed as a conditional
715   /// full-expression cleanup.
716   void initFullExprCleanup() {
717     initFullExprCleanupWithFlag(createCleanupActiveFlag());
718   }
719 
720   void initFullExprCleanupWithFlag(Address ActiveFlag);
721   Address createCleanupActiveFlag();
722 
723   /// PushDestructorCleanup - Push a cleanup to call the
724   /// complete-object destructor of an object of the given type at the
725   /// given address.  Does nothing if T is not a C++ class type with a
726   /// non-trivial destructor.
727   void PushDestructorCleanup(QualType T, Address Addr);
728 
729   /// PushDestructorCleanup - Push a cleanup to call the
730   /// complete-object variant of the given destructor on the object at
731   /// the given address.
732   void PushDestructorCleanup(const CXXDestructorDecl *Dtor, QualType T,
733                              Address Addr);
734 
735   /// PopCleanupBlock - Will pop the cleanup entry on the stack and
736   /// process all branch fixups.
737   void PopCleanupBlock(bool FallThroughIsBranchThrough = false);
738 
739   /// DeactivateCleanupBlock - Deactivates the given cleanup block.
740   /// The block cannot be reactivated.  Pops it if it's the top of the
741   /// stack.
742   ///
743   /// \param DominatingIP - An instruction which is known to
744   ///   dominate the current IP (if set) and which lies along
745   ///   all paths of execution between the current IP and the
746   ///   the point at which the cleanup comes into scope.
747   void DeactivateCleanupBlock(EHScopeStack::stable_iterator Cleanup,
748                               llvm::Instruction *DominatingIP);
749 
750   /// ActivateCleanupBlock - Activates an initially-inactive cleanup.
751   /// Cannot be used to resurrect a deactivated cleanup.
752   ///
753   /// \param DominatingIP - An instruction which is known to
754   ///   dominate the current IP (if set) and which lies along
755   ///   all paths of execution between the current IP and the
756   ///   the point at which the cleanup comes into scope.
757   void ActivateCleanupBlock(EHScopeStack::stable_iterator Cleanup,
758                             llvm::Instruction *DominatingIP);
759 
760   /// Enters a new scope for capturing cleanups, all of which
761   /// will be executed once the scope is exited.
762   class RunCleanupsScope {
763     EHScopeStack::stable_iterator CleanupStackDepth, OldCleanupScopeDepth;
764     size_t LifetimeExtendedCleanupStackSize;
765     bool OldDidCallStackSave;
766   protected:
767     bool PerformCleanup;
768   private:
769 
770     RunCleanupsScope(const RunCleanupsScope &) = delete;
771     void operator=(const RunCleanupsScope &) = delete;
772 
773   protected:
774     CodeGenFunction& CGF;
775 
776   public:
777     /// Enter a new cleanup scope.
778     explicit RunCleanupsScope(CodeGenFunction &CGF)
779       : PerformCleanup(true), CGF(CGF)
780     {
781       CleanupStackDepth = CGF.EHStack.stable_begin();
782       LifetimeExtendedCleanupStackSize =
783           CGF.LifetimeExtendedCleanupStack.size();
784       OldDidCallStackSave = CGF.DidCallStackSave;
785       CGF.DidCallStackSave = false;
786       OldCleanupScopeDepth = CGF.CurrentCleanupScopeDepth;
787       CGF.CurrentCleanupScopeDepth = CleanupStackDepth;
788     }
789 
790     /// Exit this cleanup scope, emitting any accumulated cleanups.
791     ~RunCleanupsScope() {
792       if (PerformCleanup)
793         ForceCleanup();
794     }
795 
796     /// Determine whether this scope requires any cleanups.
797     bool requiresCleanups() const {
798       return CGF.EHStack.stable_begin() != CleanupStackDepth;
799     }
800 
801     /// Force the emission of cleanups now, instead of waiting
802     /// until this object is destroyed.
803     /// \param ValuesToReload - A list of values that need to be available at
804     /// the insertion point after cleanup emission. If cleanup emission created
805     /// a shared cleanup block, these value pointers will be rewritten.
806     /// Otherwise, they not will be modified.
807     void ForceCleanup(std::initializer_list<llvm::Value**> ValuesToReload = {}) {
808       assert(PerformCleanup && "Already forced cleanup");
809       CGF.DidCallStackSave = OldDidCallStackSave;
810       CGF.PopCleanupBlocks(CleanupStackDepth, LifetimeExtendedCleanupStackSize,
811                            ValuesToReload);
812       PerformCleanup = false;
813       CGF.CurrentCleanupScopeDepth = OldCleanupScopeDepth;
814     }
815   };
816 
817   // Cleanup stack depth of the RunCleanupsScope that was pushed most recently.
818   EHScopeStack::stable_iterator CurrentCleanupScopeDepth =
819       EHScopeStack::stable_end();
820 
821   class LexicalScope : public RunCleanupsScope {
822     SourceRange Range;
823     SmallVector<const LabelDecl*, 4> Labels;
824     LexicalScope *ParentScope;
825 
826     LexicalScope(const LexicalScope &) = delete;
827     void operator=(const LexicalScope &) = delete;
828 
829   public:
830     /// Enter a new cleanup scope.
831     explicit LexicalScope(CodeGenFunction &CGF, SourceRange Range)
832       : RunCleanupsScope(CGF), Range(Range), ParentScope(CGF.CurLexicalScope) {
833       CGF.CurLexicalScope = this;
834       if (CGDebugInfo *DI = CGF.getDebugInfo())
835         DI->EmitLexicalBlockStart(CGF.Builder, Range.getBegin());
836     }
837 
838     void addLabel(const LabelDecl *label) {
839       assert(PerformCleanup && "adding label to dead scope?");
840       Labels.push_back(label);
841     }
842 
843     /// Exit this cleanup scope, emitting any accumulated
844     /// cleanups.
845     ~LexicalScope() {
846       if (CGDebugInfo *DI = CGF.getDebugInfo())
847         DI->EmitLexicalBlockEnd(CGF.Builder, Range.getEnd());
848 
849       // If we should perform a cleanup, force them now.  Note that
850       // this ends the cleanup scope before rescoping any labels.
851       if (PerformCleanup) {
852         ApplyDebugLocation DL(CGF, Range.getEnd());
853         ForceCleanup();
854       }
855     }
856 
857     /// Force the emission of cleanups now, instead of waiting
858     /// until this object is destroyed.
859     void ForceCleanup() {
860       CGF.CurLexicalScope = ParentScope;
861       RunCleanupsScope::ForceCleanup();
862 
863       if (!Labels.empty())
864         rescopeLabels();
865     }
866 
867     bool hasLabels() const {
868       return !Labels.empty();
869     }
870 
871     void rescopeLabels();
872   };
873 
874   typedef llvm::DenseMap<const Decl *, Address> DeclMapTy;
875 
876   /// The class used to assign some variables some temporarily addresses.
877   class OMPMapVars {
878     DeclMapTy SavedLocals;
879     DeclMapTy SavedTempAddresses;
880     OMPMapVars(const OMPMapVars &) = delete;
881     void operator=(const OMPMapVars &) = delete;
882 
883   public:
884     explicit OMPMapVars() = default;
885     ~OMPMapVars() {
886       assert(SavedLocals.empty() && "Did not restored original addresses.");
887     };
888 
889     /// Sets the address of the variable \p LocalVD to be \p TempAddr in
890     /// function \p CGF.
891     /// \return true if at least one variable was set already, false otherwise.
892     bool setVarAddr(CodeGenFunction &CGF, const VarDecl *LocalVD,
893                     Address TempAddr) {
894       LocalVD = LocalVD->getCanonicalDecl();
895       // Only save it once.
896       if (SavedLocals.count(LocalVD)) return false;
897 
898       // Copy the existing local entry to SavedLocals.
899       auto it = CGF.LocalDeclMap.find(LocalVD);
900       if (it != CGF.LocalDeclMap.end())
901         SavedLocals.try_emplace(LocalVD, it->second);
902       else
903         SavedLocals.try_emplace(LocalVD, Address::invalid());
904 
905       // Generate the private entry.
906       QualType VarTy = LocalVD->getType();
907       if (VarTy->isReferenceType()) {
908         Address Temp = CGF.CreateMemTemp(VarTy);
909         CGF.Builder.CreateStore(TempAddr.getPointer(), Temp);
910         TempAddr = Temp;
911       }
912       SavedTempAddresses.try_emplace(LocalVD, TempAddr);
913 
914       return true;
915     }
916 
917     /// Applies new addresses to the list of the variables.
918     /// \return true if at least one variable is using new address, false
919     /// otherwise.
920     bool apply(CodeGenFunction &CGF) {
921       copyInto(SavedTempAddresses, CGF.LocalDeclMap);
922       SavedTempAddresses.clear();
923       return !SavedLocals.empty();
924     }
925 
926     /// Restores original addresses of the variables.
927     void restore(CodeGenFunction &CGF) {
928       if (!SavedLocals.empty()) {
929         copyInto(SavedLocals, CGF.LocalDeclMap);
930         SavedLocals.clear();
931       }
932     }
933 
934   private:
935     /// Copy all the entries in the source map over the corresponding
936     /// entries in the destination, which must exist.
937     static void copyInto(const DeclMapTy &Src, DeclMapTy &Dest) {
938       for (auto &Pair : Src) {
939         if (!Pair.second.isValid()) {
940           Dest.erase(Pair.first);
941           continue;
942         }
943 
944         auto I = Dest.find(Pair.first);
945         if (I != Dest.end())
946           I->second = Pair.second;
947         else
948           Dest.insert(Pair);
949       }
950     }
951   };
952 
953   /// The scope used to remap some variables as private in the OpenMP loop body
954   /// (or other captured region emitted without outlining), and to restore old
955   /// vars back on exit.
956   class OMPPrivateScope : public RunCleanupsScope {
957     OMPMapVars MappedVars;
958     OMPPrivateScope(const OMPPrivateScope &) = delete;
959     void operator=(const OMPPrivateScope &) = delete;
960 
961   public:
962     /// Enter a new OpenMP private scope.
963     explicit OMPPrivateScope(CodeGenFunction &CGF) : RunCleanupsScope(CGF) {}
964 
965     /// Registers \p LocalVD variable as a private and apply \p PrivateGen
966     /// function for it to generate corresponding private variable. \p
967     /// PrivateGen returns an address of the generated private variable.
968     /// \return true if the variable is registered as private, false if it has
969     /// been privatized already.
970     bool addPrivate(const VarDecl *LocalVD,
971                     const llvm::function_ref<Address()> PrivateGen) {
972       assert(PerformCleanup && "adding private to dead scope");
973       return MappedVars.setVarAddr(CGF, LocalVD, PrivateGen());
974     }
975 
976     /// Privatizes local variables previously registered as private.
977     /// Registration is separate from the actual privatization to allow
978     /// initializers use values of the original variables, not the private one.
979     /// This is important, for example, if the private variable is a class
980     /// variable initialized by a constructor that references other private
981     /// variables. But at initialization original variables must be used, not
982     /// private copies.
983     /// \return true if at least one variable was privatized, false otherwise.
984     bool Privatize() { return MappedVars.apply(CGF); }
985 
986     void ForceCleanup() {
987       RunCleanupsScope::ForceCleanup();
988       MappedVars.restore(CGF);
989     }
990 
991     /// Exit scope - all the mapped variables are restored.
992     ~OMPPrivateScope() {
993       if (PerformCleanup)
994         ForceCleanup();
995     }
996 
997     /// Checks if the global variable is captured in current function.
998     bool isGlobalVarCaptured(const VarDecl *VD) const {
999       VD = VD->getCanonicalDecl();
1000       return !VD->isLocalVarDeclOrParm() && CGF.LocalDeclMap.count(VD) > 0;
1001     }
1002   };
1003 
1004   /// Save/restore original map of previously emitted local vars in case when we
1005   /// need to duplicate emission of the same code several times in the same
1006   /// function for OpenMP code.
1007   class OMPLocalDeclMapRAII {
1008     CodeGenFunction &CGF;
1009     DeclMapTy SavedMap;
1010 
1011   public:
1012     OMPLocalDeclMapRAII(CodeGenFunction &CGF)
1013         : CGF(CGF), SavedMap(CGF.LocalDeclMap) {}
1014     ~OMPLocalDeclMapRAII() { SavedMap.swap(CGF.LocalDeclMap); }
1015   };
1016 
1017   /// Takes the old cleanup stack size and emits the cleanup blocks
1018   /// that have been added.
1019   void
1020   PopCleanupBlocks(EHScopeStack::stable_iterator OldCleanupStackSize,
1021                    std::initializer_list<llvm::Value **> ValuesToReload = {});
1022 
1023   /// Takes the old cleanup stack size and emits the cleanup blocks
1024   /// that have been added, then adds all lifetime-extended cleanups from
1025   /// the given position to the stack.
1026   void
1027   PopCleanupBlocks(EHScopeStack::stable_iterator OldCleanupStackSize,
1028                    size_t OldLifetimeExtendedStackSize,
1029                    std::initializer_list<llvm::Value **> ValuesToReload = {});
1030 
1031   void ResolveBranchFixups(llvm::BasicBlock *Target);
1032 
1033   /// The given basic block lies in the current EH scope, but may be a
1034   /// target of a potentially scope-crossing jump; get a stable handle
1035   /// to which we can perform this jump later.
1036   JumpDest getJumpDestInCurrentScope(llvm::BasicBlock *Target) {
1037     return JumpDest(Target,
1038                     EHStack.getInnermostNormalCleanup(),
1039                     NextCleanupDestIndex++);
1040   }
1041 
1042   /// The given basic block lies in the current EH scope, but may be a
1043   /// target of a potentially scope-crossing jump; get a stable handle
1044   /// to which we can perform this jump later.
1045   JumpDest getJumpDestInCurrentScope(StringRef Name = StringRef()) {
1046     return getJumpDestInCurrentScope(createBasicBlock(Name));
1047   }
1048 
1049   /// EmitBranchThroughCleanup - Emit a branch from the current insert
1050   /// block through the normal cleanup handling code (if any) and then
1051   /// on to \arg Dest.
1052   void EmitBranchThroughCleanup(JumpDest Dest);
1053 
1054   /// isObviouslyBranchWithoutCleanups - Return true if a branch to the
1055   /// specified destination obviously has no cleanups to run.  'false' is always
1056   /// a conservatively correct answer for this method.
1057   bool isObviouslyBranchWithoutCleanups(JumpDest Dest) const;
1058 
1059   /// popCatchScope - Pops the catch scope at the top of the EHScope
1060   /// stack, emitting any required code (other than the catch handlers
1061   /// themselves).
1062   void popCatchScope();
1063 
1064   llvm::BasicBlock *getEHResumeBlock(bool isCleanup);
1065   llvm::BasicBlock *getEHDispatchBlock(EHScopeStack::stable_iterator scope);
1066   llvm::BasicBlock *
1067   getFuncletEHDispatchBlock(EHScopeStack::stable_iterator scope);
1068 
1069   /// An object to manage conditionally-evaluated expressions.
1070   class ConditionalEvaluation {
1071     llvm::BasicBlock *StartBB;
1072 
1073   public:
1074     ConditionalEvaluation(CodeGenFunction &CGF)
1075       : StartBB(CGF.Builder.GetInsertBlock()) {}
1076 
1077     void begin(CodeGenFunction &CGF) {
1078       assert(CGF.OutermostConditional != this);
1079       if (!CGF.OutermostConditional)
1080         CGF.OutermostConditional = this;
1081     }
1082 
1083     void end(CodeGenFunction &CGF) {
1084       assert(CGF.OutermostConditional != nullptr);
1085       if (CGF.OutermostConditional == this)
1086         CGF.OutermostConditional = nullptr;
1087     }
1088 
1089     /// Returns a block which will be executed prior to each
1090     /// evaluation of the conditional code.
1091     llvm::BasicBlock *getStartingBlock() const {
1092       return StartBB;
1093     }
1094   };
1095 
1096   /// isInConditionalBranch - Return true if we're currently emitting
1097   /// one branch or the other of a conditional expression.
1098   bool isInConditionalBranch() const { return OutermostConditional != nullptr; }
1099 
1100   void setBeforeOutermostConditional(llvm::Value *value, Address addr) {
1101     assert(isInConditionalBranch());
1102     llvm::BasicBlock *block = OutermostConditional->getStartingBlock();
1103     auto store = new llvm::StoreInst(value, addr.getPointer(), &block->back());
1104     store->setAlignment(addr.getAlignment().getAsAlign());
1105   }
1106 
1107   /// An RAII object to record that we're evaluating a statement
1108   /// expression.
1109   class StmtExprEvaluation {
1110     CodeGenFunction &CGF;
1111 
1112     /// We have to save the outermost conditional: cleanups in a
1113     /// statement expression aren't conditional just because the
1114     /// StmtExpr is.
1115     ConditionalEvaluation *SavedOutermostConditional;
1116 
1117   public:
1118     StmtExprEvaluation(CodeGenFunction &CGF)
1119       : CGF(CGF), SavedOutermostConditional(CGF.OutermostConditional) {
1120       CGF.OutermostConditional = nullptr;
1121     }
1122 
1123     ~StmtExprEvaluation() {
1124       CGF.OutermostConditional = SavedOutermostConditional;
1125       CGF.EnsureInsertPoint();
1126     }
1127   };
1128 
1129   /// An object which temporarily prevents a value from being
1130   /// destroyed by aggressive peephole optimizations that assume that
1131   /// all uses of a value have been realized in the IR.
1132   class PeepholeProtection {
1133     llvm::Instruction *Inst;
1134     friend class CodeGenFunction;
1135 
1136   public:
1137     PeepholeProtection() : Inst(nullptr) {}
1138   };
1139 
1140   /// A non-RAII class containing all the information about a bound
1141   /// opaque value.  OpaqueValueMapping, below, is a RAII wrapper for
1142   /// this which makes individual mappings very simple; using this
1143   /// class directly is useful when you have a variable number of
1144   /// opaque values or don't want the RAII functionality for some
1145   /// reason.
1146   class OpaqueValueMappingData {
1147     const OpaqueValueExpr *OpaqueValue;
1148     bool BoundLValue;
1149     CodeGenFunction::PeepholeProtection Protection;
1150 
1151     OpaqueValueMappingData(const OpaqueValueExpr *ov,
1152                            bool boundLValue)
1153       : OpaqueValue(ov), BoundLValue(boundLValue) {}
1154   public:
1155     OpaqueValueMappingData() : OpaqueValue(nullptr) {}
1156 
1157     static bool shouldBindAsLValue(const Expr *expr) {
1158       // gl-values should be bound as l-values for obvious reasons.
1159       // Records should be bound as l-values because IR generation
1160       // always keeps them in memory.  Expressions of function type
1161       // act exactly like l-values but are formally required to be
1162       // r-values in C.
1163       return expr->isGLValue() ||
1164              expr->getType()->isFunctionType() ||
1165              hasAggregateEvaluationKind(expr->getType());
1166     }
1167 
1168     static OpaqueValueMappingData bind(CodeGenFunction &CGF,
1169                                        const OpaqueValueExpr *ov,
1170                                        const Expr *e) {
1171       if (shouldBindAsLValue(ov))
1172         return bind(CGF, ov, CGF.EmitLValue(e));
1173       return bind(CGF, ov, CGF.EmitAnyExpr(e));
1174     }
1175 
1176     static OpaqueValueMappingData bind(CodeGenFunction &CGF,
1177                                        const OpaqueValueExpr *ov,
1178                                        const LValue &lv) {
1179       assert(shouldBindAsLValue(ov));
1180       CGF.OpaqueLValues.insert(std::make_pair(ov, lv));
1181       return OpaqueValueMappingData(ov, true);
1182     }
1183 
1184     static OpaqueValueMappingData bind(CodeGenFunction &CGF,
1185                                        const OpaqueValueExpr *ov,
1186                                        const RValue &rv) {
1187       assert(!shouldBindAsLValue(ov));
1188       CGF.OpaqueRValues.insert(std::make_pair(ov, rv));
1189 
1190       OpaqueValueMappingData data(ov, false);
1191 
1192       // Work around an extremely aggressive peephole optimization in
1193       // EmitScalarConversion which assumes that all other uses of a
1194       // value are extant.
1195       data.Protection = CGF.protectFromPeepholes(rv);
1196 
1197       return data;
1198     }
1199 
1200     bool isValid() const { return OpaqueValue != nullptr; }
1201     void clear() { OpaqueValue = nullptr; }
1202 
1203     void unbind(CodeGenFunction &CGF) {
1204       assert(OpaqueValue && "no data to unbind!");
1205 
1206       if (BoundLValue) {
1207         CGF.OpaqueLValues.erase(OpaqueValue);
1208       } else {
1209         CGF.OpaqueRValues.erase(OpaqueValue);
1210         CGF.unprotectFromPeepholes(Protection);
1211       }
1212     }
1213   };
1214 
1215   /// An RAII object to set (and then clear) a mapping for an OpaqueValueExpr.
1216   class OpaqueValueMapping {
1217     CodeGenFunction &CGF;
1218     OpaqueValueMappingData Data;
1219 
1220   public:
1221     static bool shouldBindAsLValue(const Expr *expr) {
1222       return OpaqueValueMappingData::shouldBindAsLValue(expr);
1223     }
1224 
1225     /// Build the opaque value mapping for the given conditional
1226     /// operator if it's the GNU ?: extension.  This is a common
1227     /// enough pattern that the convenience operator is really
1228     /// helpful.
1229     ///
1230     OpaqueValueMapping(CodeGenFunction &CGF,
1231                        const AbstractConditionalOperator *op) : CGF(CGF) {
1232       if (isa<ConditionalOperator>(op))
1233         // Leave Data empty.
1234         return;
1235 
1236       const BinaryConditionalOperator *e = cast<BinaryConditionalOperator>(op);
1237       Data = OpaqueValueMappingData::bind(CGF, e->getOpaqueValue(),
1238                                           e->getCommon());
1239     }
1240 
1241     /// Build the opaque value mapping for an OpaqueValueExpr whose source
1242     /// expression is set to the expression the OVE represents.
1243     OpaqueValueMapping(CodeGenFunction &CGF, const OpaqueValueExpr *OV)
1244         : CGF(CGF) {
1245       if (OV) {
1246         assert(OV->getSourceExpr() && "wrong form of OpaqueValueMapping used "
1247                                       "for OVE with no source expression");
1248         Data = OpaqueValueMappingData::bind(CGF, OV, OV->getSourceExpr());
1249       }
1250     }
1251 
1252     OpaqueValueMapping(CodeGenFunction &CGF,
1253                        const OpaqueValueExpr *opaqueValue,
1254                        LValue lvalue)
1255       : CGF(CGF), Data(OpaqueValueMappingData::bind(CGF, opaqueValue, lvalue)) {
1256     }
1257 
1258     OpaqueValueMapping(CodeGenFunction &CGF,
1259                        const OpaqueValueExpr *opaqueValue,
1260                        RValue rvalue)
1261       : CGF(CGF), Data(OpaqueValueMappingData::bind(CGF, opaqueValue, rvalue)) {
1262     }
1263 
1264     void pop() {
1265       Data.unbind(CGF);
1266       Data.clear();
1267     }
1268 
1269     ~OpaqueValueMapping() {
1270       if (Data.isValid()) Data.unbind(CGF);
1271     }
1272   };
1273 
1274 private:
1275   CGDebugInfo *DebugInfo;
1276   /// Used to create unique names for artificial VLA size debug info variables.
1277   unsigned VLAExprCounter = 0;
1278   bool DisableDebugInfo = false;
1279 
1280   /// DidCallStackSave - Whether llvm.stacksave has been called. Used to avoid
1281   /// calling llvm.stacksave for multiple VLAs in the same scope.
1282   bool DidCallStackSave = false;
1283 
1284   /// IndirectBranch - The first time an indirect goto is seen we create a block
1285   /// with an indirect branch.  Every time we see the address of a label taken,
1286   /// we add the label to the indirect goto.  Every subsequent indirect goto is
1287   /// codegen'd as a jump to the IndirectBranch's basic block.
1288   llvm::IndirectBrInst *IndirectBranch = nullptr;
1289 
1290   /// LocalDeclMap - This keeps track of the LLVM allocas or globals for local C
1291   /// decls.
1292   DeclMapTy LocalDeclMap;
1293 
1294   // Keep track of the cleanups for callee-destructed parameters pushed to the
1295   // cleanup stack so that they can be deactivated later.
1296   llvm::DenseMap<const ParmVarDecl *, EHScopeStack::stable_iterator>
1297       CalleeDestructedParamCleanups;
1298 
1299   /// SizeArguments - If a ParmVarDecl had the pass_object_size attribute, this
1300   /// will contain a mapping from said ParmVarDecl to its implicit "object_size"
1301   /// parameter.
1302   llvm::SmallDenseMap<const ParmVarDecl *, const ImplicitParamDecl *, 2>
1303       SizeArguments;
1304 
1305   /// Track escaped local variables with auto storage. Used during SEH
1306   /// outlining to produce a call to llvm.localescape.
1307   llvm::DenseMap<llvm::AllocaInst *, int> EscapedLocals;
1308 
1309   /// LabelMap - This keeps track of the LLVM basic block for each C label.
1310   llvm::DenseMap<const LabelDecl*, JumpDest> LabelMap;
1311 
1312   // BreakContinueStack - This keeps track of where break and continue
1313   // statements should jump to.
1314   struct BreakContinue {
1315     BreakContinue(JumpDest Break, JumpDest Continue)
1316       : BreakBlock(Break), ContinueBlock(Continue) {}
1317 
1318     JumpDest BreakBlock;
1319     JumpDest ContinueBlock;
1320   };
1321   SmallVector<BreakContinue, 8> BreakContinueStack;
1322 
1323   /// Handles cancellation exit points in OpenMP-related constructs.
1324   class OpenMPCancelExitStack {
1325     /// Tracks cancellation exit point and join point for cancel-related exit
1326     /// and normal exit.
1327     struct CancelExit {
1328       CancelExit() = default;
1329       CancelExit(OpenMPDirectiveKind Kind, JumpDest ExitBlock,
1330                  JumpDest ContBlock)
1331           : Kind(Kind), ExitBlock(ExitBlock), ContBlock(ContBlock) {}
1332       OpenMPDirectiveKind Kind = llvm::omp::OMPD_unknown;
1333       /// true if the exit block has been emitted already by the special
1334       /// emitExit() call, false if the default codegen is used.
1335       bool HasBeenEmitted = false;
1336       JumpDest ExitBlock;
1337       JumpDest ContBlock;
1338     };
1339 
1340     SmallVector<CancelExit, 8> Stack;
1341 
1342   public:
1343     OpenMPCancelExitStack() : Stack(1) {}
1344     ~OpenMPCancelExitStack() = default;
1345     /// Fetches the exit block for the current OpenMP construct.
1346     JumpDest getExitBlock() const { return Stack.back().ExitBlock; }
1347     /// Emits exit block with special codegen procedure specific for the related
1348     /// OpenMP construct + emits code for normal construct cleanup.
1349     void emitExit(CodeGenFunction &CGF, OpenMPDirectiveKind Kind,
1350                   const llvm::function_ref<void(CodeGenFunction &)> CodeGen) {
1351       if (Stack.back().Kind == Kind && getExitBlock().isValid()) {
1352         assert(CGF.getOMPCancelDestination(Kind).isValid());
1353         assert(CGF.HaveInsertPoint());
1354         assert(!Stack.back().HasBeenEmitted);
1355         auto IP = CGF.Builder.saveAndClearIP();
1356         CGF.EmitBlock(Stack.back().ExitBlock.getBlock());
1357         CodeGen(CGF);
1358         CGF.EmitBranch(Stack.back().ContBlock.getBlock());
1359         CGF.Builder.restoreIP(IP);
1360         Stack.back().HasBeenEmitted = true;
1361       }
1362       CodeGen(CGF);
1363     }
1364     /// Enter the cancel supporting \a Kind construct.
1365     /// \param Kind OpenMP directive that supports cancel constructs.
1366     /// \param HasCancel true, if the construct has inner cancel directive,
1367     /// false otherwise.
1368     void enter(CodeGenFunction &CGF, OpenMPDirectiveKind Kind, bool HasCancel) {
1369       Stack.push_back({Kind,
1370                        HasCancel ? CGF.getJumpDestInCurrentScope("cancel.exit")
1371                                  : JumpDest(),
1372                        HasCancel ? CGF.getJumpDestInCurrentScope("cancel.cont")
1373                                  : JumpDest()});
1374     }
1375     /// Emits default exit point for the cancel construct (if the special one
1376     /// has not be used) + join point for cancel/normal exits.
1377     void exit(CodeGenFunction &CGF) {
1378       if (getExitBlock().isValid()) {
1379         assert(CGF.getOMPCancelDestination(Stack.back().Kind).isValid());
1380         bool HaveIP = CGF.HaveInsertPoint();
1381         if (!Stack.back().HasBeenEmitted) {
1382           if (HaveIP)
1383             CGF.EmitBranchThroughCleanup(Stack.back().ContBlock);
1384           CGF.EmitBlock(Stack.back().ExitBlock.getBlock());
1385           CGF.EmitBranchThroughCleanup(Stack.back().ContBlock);
1386         }
1387         CGF.EmitBlock(Stack.back().ContBlock.getBlock());
1388         if (!HaveIP) {
1389           CGF.Builder.CreateUnreachable();
1390           CGF.Builder.ClearInsertionPoint();
1391         }
1392       }
1393       Stack.pop_back();
1394     }
1395   };
1396   OpenMPCancelExitStack OMPCancelStack;
1397 
1398   /// Calculate branch weights for the likelihood attribute
1399   llvm::MDNode *createBranchWeights(Stmt::Likelihood LH) const;
1400 
1401   CodeGenPGO PGO;
1402 
1403   /// Calculate branch weights appropriate for PGO data
1404   llvm::MDNode *createProfileWeights(uint64_t TrueCount,
1405                                      uint64_t FalseCount) const;
1406   llvm::MDNode *createProfileWeights(ArrayRef<uint64_t> Weights) const;
1407   llvm::MDNode *createProfileWeightsForLoop(const Stmt *Cond,
1408                                             uint64_t LoopCount) const;
1409 
1410 public:
1411   /// Increment the profiler's counter for the given statement by \p StepV.
1412   /// If \p StepV is null, the default increment is 1.
1413   void incrementProfileCounter(const Stmt *S, llvm::Value *StepV = nullptr) {
1414     if (CGM.getCodeGenOpts().hasProfileClangInstr())
1415       PGO.emitCounterIncrement(Builder, S, StepV);
1416     PGO.setCurrentStmt(S);
1417   }
1418 
1419   /// Get the profiler's count for the given statement.
1420   uint64_t getProfileCount(const Stmt *S) {
1421     Optional<uint64_t> Count = PGO.getStmtCount(S);
1422     if (!Count.hasValue())
1423       return 0;
1424     return *Count;
1425   }
1426 
1427   /// Set the profiler's current count.
1428   void setCurrentProfileCount(uint64_t Count) {
1429     PGO.setCurrentRegionCount(Count);
1430   }
1431 
1432   /// Get the profiler's current count. This is generally the count for the most
1433   /// recently incremented counter.
1434   uint64_t getCurrentProfileCount() {
1435     return PGO.getCurrentRegionCount();
1436   }
1437 
1438 private:
1439 
1440   /// SwitchInsn - This is nearest current switch instruction. It is null if
1441   /// current context is not in a switch.
1442   llvm::SwitchInst *SwitchInsn = nullptr;
1443   /// The branch weights of SwitchInsn when doing instrumentation based PGO.
1444   SmallVector<uint64_t, 16> *SwitchWeights = nullptr;
1445 
1446   /// The likelihood attributes of the SwitchCase.
1447   SmallVector<Stmt::Likelihood, 16> *SwitchLikelihood = nullptr;
1448 
1449   /// CaseRangeBlock - This block holds if condition check for last case
1450   /// statement range in current switch instruction.
1451   llvm::BasicBlock *CaseRangeBlock = nullptr;
1452 
1453   /// OpaqueLValues - Keeps track of the current set of opaque value
1454   /// expressions.
1455   llvm::DenseMap<const OpaqueValueExpr *, LValue> OpaqueLValues;
1456   llvm::DenseMap<const OpaqueValueExpr *, RValue> OpaqueRValues;
1457 
1458   // VLASizeMap - This keeps track of the associated size for each VLA type.
1459   // We track this by the size expression rather than the type itself because
1460   // in certain situations, like a const qualifier applied to an VLA typedef,
1461   // multiple VLA types can share the same size expression.
1462   // FIXME: Maybe this could be a stack of maps that is pushed/popped as we
1463   // enter/leave scopes.
1464   llvm::DenseMap<const Expr*, llvm::Value*> VLASizeMap;
1465 
1466   /// A block containing a single 'unreachable' instruction.  Created
1467   /// lazily by getUnreachableBlock().
1468   llvm::BasicBlock *UnreachableBlock = nullptr;
1469 
1470   /// Counts of the number return expressions in the function.
1471   unsigned NumReturnExprs = 0;
1472 
1473   /// Count the number of simple (constant) return expressions in the function.
1474   unsigned NumSimpleReturnExprs = 0;
1475 
1476   /// The last regular (non-return) debug location (breakpoint) in the function.
1477   SourceLocation LastStopPoint;
1478 
1479 public:
1480   /// Source location information about the default argument or member
1481   /// initializer expression we're evaluating, if any.
1482   CurrentSourceLocExprScope CurSourceLocExprScope;
1483   using SourceLocExprScopeGuard =
1484       CurrentSourceLocExprScope::SourceLocExprScopeGuard;
1485 
1486   /// A scope within which we are constructing the fields of an object which
1487   /// might use a CXXDefaultInitExpr. This stashes away a 'this' value to use
1488   /// if we need to evaluate a CXXDefaultInitExpr within the evaluation.
1489   class FieldConstructionScope {
1490   public:
1491     FieldConstructionScope(CodeGenFunction &CGF, Address This)
1492         : CGF(CGF), OldCXXDefaultInitExprThis(CGF.CXXDefaultInitExprThis) {
1493       CGF.CXXDefaultInitExprThis = This;
1494     }
1495     ~FieldConstructionScope() {
1496       CGF.CXXDefaultInitExprThis = OldCXXDefaultInitExprThis;
1497     }
1498 
1499   private:
1500     CodeGenFunction &CGF;
1501     Address OldCXXDefaultInitExprThis;
1502   };
1503 
1504   /// The scope of a CXXDefaultInitExpr. Within this scope, the value of 'this'
1505   /// is overridden to be the object under construction.
1506   class CXXDefaultInitExprScope  {
1507   public:
1508     CXXDefaultInitExprScope(CodeGenFunction &CGF, const CXXDefaultInitExpr *E)
1509         : CGF(CGF), OldCXXThisValue(CGF.CXXThisValue),
1510           OldCXXThisAlignment(CGF.CXXThisAlignment),
1511           SourceLocScope(E, CGF.CurSourceLocExprScope) {
1512       CGF.CXXThisValue = CGF.CXXDefaultInitExprThis.getPointer();
1513       CGF.CXXThisAlignment = CGF.CXXDefaultInitExprThis.getAlignment();
1514     }
1515     ~CXXDefaultInitExprScope() {
1516       CGF.CXXThisValue = OldCXXThisValue;
1517       CGF.CXXThisAlignment = OldCXXThisAlignment;
1518     }
1519 
1520   public:
1521     CodeGenFunction &CGF;
1522     llvm::Value *OldCXXThisValue;
1523     CharUnits OldCXXThisAlignment;
1524     SourceLocExprScopeGuard SourceLocScope;
1525   };
1526 
1527   struct CXXDefaultArgExprScope : SourceLocExprScopeGuard {
1528     CXXDefaultArgExprScope(CodeGenFunction &CGF, const CXXDefaultArgExpr *E)
1529         : SourceLocExprScopeGuard(E, CGF.CurSourceLocExprScope) {}
1530   };
1531 
1532   /// The scope of an ArrayInitLoopExpr. Within this scope, the value of the
1533   /// current loop index is overridden.
1534   class ArrayInitLoopExprScope {
1535   public:
1536     ArrayInitLoopExprScope(CodeGenFunction &CGF, llvm::Value *Index)
1537       : CGF(CGF), OldArrayInitIndex(CGF.ArrayInitIndex) {
1538       CGF.ArrayInitIndex = Index;
1539     }
1540     ~ArrayInitLoopExprScope() {
1541       CGF.ArrayInitIndex = OldArrayInitIndex;
1542     }
1543 
1544   private:
1545     CodeGenFunction &CGF;
1546     llvm::Value *OldArrayInitIndex;
1547   };
1548 
1549   class InlinedInheritingConstructorScope {
1550   public:
1551     InlinedInheritingConstructorScope(CodeGenFunction &CGF, GlobalDecl GD)
1552         : CGF(CGF), OldCurGD(CGF.CurGD), OldCurFuncDecl(CGF.CurFuncDecl),
1553           OldCurCodeDecl(CGF.CurCodeDecl),
1554           OldCXXABIThisDecl(CGF.CXXABIThisDecl),
1555           OldCXXABIThisValue(CGF.CXXABIThisValue),
1556           OldCXXThisValue(CGF.CXXThisValue),
1557           OldCXXABIThisAlignment(CGF.CXXABIThisAlignment),
1558           OldCXXThisAlignment(CGF.CXXThisAlignment),
1559           OldReturnValue(CGF.ReturnValue), OldFnRetTy(CGF.FnRetTy),
1560           OldCXXInheritedCtorInitExprArgs(
1561               std::move(CGF.CXXInheritedCtorInitExprArgs)) {
1562       CGF.CurGD = GD;
1563       CGF.CurFuncDecl = CGF.CurCodeDecl =
1564           cast<CXXConstructorDecl>(GD.getDecl());
1565       CGF.CXXABIThisDecl = nullptr;
1566       CGF.CXXABIThisValue = nullptr;
1567       CGF.CXXThisValue = nullptr;
1568       CGF.CXXABIThisAlignment = CharUnits();
1569       CGF.CXXThisAlignment = CharUnits();
1570       CGF.ReturnValue = Address::invalid();
1571       CGF.FnRetTy = QualType();
1572       CGF.CXXInheritedCtorInitExprArgs.clear();
1573     }
1574     ~InlinedInheritingConstructorScope() {
1575       CGF.CurGD = OldCurGD;
1576       CGF.CurFuncDecl = OldCurFuncDecl;
1577       CGF.CurCodeDecl = OldCurCodeDecl;
1578       CGF.CXXABIThisDecl = OldCXXABIThisDecl;
1579       CGF.CXXABIThisValue = OldCXXABIThisValue;
1580       CGF.CXXThisValue = OldCXXThisValue;
1581       CGF.CXXABIThisAlignment = OldCXXABIThisAlignment;
1582       CGF.CXXThisAlignment = OldCXXThisAlignment;
1583       CGF.ReturnValue = OldReturnValue;
1584       CGF.FnRetTy = OldFnRetTy;
1585       CGF.CXXInheritedCtorInitExprArgs =
1586           std::move(OldCXXInheritedCtorInitExprArgs);
1587     }
1588 
1589   private:
1590     CodeGenFunction &CGF;
1591     GlobalDecl OldCurGD;
1592     const Decl *OldCurFuncDecl;
1593     const Decl *OldCurCodeDecl;
1594     ImplicitParamDecl *OldCXXABIThisDecl;
1595     llvm::Value *OldCXXABIThisValue;
1596     llvm::Value *OldCXXThisValue;
1597     CharUnits OldCXXABIThisAlignment;
1598     CharUnits OldCXXThisAlignment;
1599     Address OldReturnValue;
1600     QualType OldFnRetTy;
1601     CallArgList OldCXXInheritedCtorInitExprArgs;
1602   };
1603 
1604   // Helper class for the OpenMP IR Builder. Allows reusability of code used for
1605   // region body, and finalization codegen callbacks. This will class will also
1606   // contain privatization functions used by the privatization call backs
1607   //
1608   // TODO: this is temporary class for things that are being moved out of
1609   // CGOpenMPRuntime, new versions of current CodeGenFunction methods, or
1610   // utility function for use with the OMPBuilder. Once that move to use the
1611   // OMPBuilder is done, everything here will either become part of CodeGenFunc.
1612   // directly, or a new helper class that will contain functions used by both
1613   // this and the OMPBuilder
1614 
1615   struct OMPBuilderCBHelpers {
1616 
1617     OMPBuilderCBHelpers() = delete;
1618     OMPBuilderCBHelpers(const OMPBuilderCBHelpers &) = delete;
1619     OMPBuilderCBHelpers &operator=(const OMPBuilderCBHelpers &) = delete;
1620 
1621     using InsertPointTy = llvm::OpenMPIRBuilder::InsertPointTy;
1622 
1623     /// Cleanup action for allocate support.
1624     class OMPAllocateCleanupTy final : public EHScopeStack::Cleanup {
1625 
1626     private:
1627       llvm::CallInst *RTLFnCI;
1628 
1629     public:
1630       OMPAllocateCleanupTy(llvm::CallInst *RLFnCI) : RTLFnCI(RLFnCI) {
1631         RLFnCI->removeFromParent();
1632       }
1633 
1634       void Emit(CodeGenFunction &CGF, Flags /*flags*/) override {
1635         if (!CGF.HaveInsertPoint())
1636           return;
1637         CGF.Builder.Insert(RTLFnCI);
1638       }
1639     };
1640 
1641     /// Returns address of the threadprivate variable for the current
1642     /// thread. This Also create any necessary OMP runtime calls.
1643     ///
1644     /// \param VD VarDecl for Threadprivate variable.
1645     /// \param VDAddr Address of the Vardecl
1646     /// \param Loc  The location where the barrier directive was encountered
1647     static Address getAddrOfThreadPrivate(CodeGenFunction &CGF,
1648                                           const VarDecl *VD, Address VDAddr,
1649                                           SourceLocation Loc);
1650 
1651     /// Gets the OpenMP-specific address of the local variable /p VD.
1652     static Address getAddressOfLocalVariable(CodeGenFunction &CGF,
1653                                              const VarDecl *VD);
1654     /// Get the platform-specific name separator.
1655     /// \param Parts different parts of the final name that needs separation
1656     /// \param FirstSeparator First separator used between the initial two
1657     ///        parts of the name.
1658     /// \param Separator separator used between all of the rest consecutinve
1659     ///        parts of the name
1660     static std::string getNameWithSeparators(ArrayRef<StringRef> Parts,
1661                                              StringRef FirstSeparator = ".",
1662                                              StringRef Separator = ".");
1663     /// Emit the Finalization for an OMP region
1664     /// \param CGF	The Codegen function this belongs to
1665     /// \param IP	Insertion point for generating the finalization code.
1666     static void FinalizeOMPRegion(CodeGenFunction &CGF, InsertPointTy IP) {
1667       CGBuilderTy::InsertPointGuard IPG(CGF.Builder);
1668       assert(IP.getBlock()->end() != IP.getPoint() &&
1669              "OpenMP IR Builder should cause terminated block!");
1670 
1671       llvm::BasicBlock *IPBB = IP.getBlock();
1672       llvm::BasicBlock *DestBB = IPBB->getUniqueSuccessor();
1673       assert(DestBB && "Finalization block should have one successor!");
1674 
1675       // erase and replace with cleanup branch.
1676       IPBB->getTerminator()->eraseFromParent();
1677       CGF.Builder.SetInsertPoint(IPBB);
1678       CodeGenFunction::JumpDest Dest = CGF.getJumpDestInCurrentScope(DestBB);
1679       CGF.EmitBranchThroughCleanup(Dest);
1680     }
1681 
1682     /// Emit the body of an OMP region
1683     /// \param CGF	The Codegen function this belongs to
1684     /// \param RegionBodyStmt	The body statement for the OpenMP region being
1685     /// 			 generated
1686     /// \param CodeGenIP	Insertion point for generating the body code.
1687     /// \param FiniBB	The finalization basic block
1688     static void EmitOMPRegionBody(CodeGenFunction &CGF,
1689                                   const Stmt *RegionBodyStmt,
1690                                   InsertPointTy CodeGenIP,
1691                                   llvm::BasicBlock &FiniBB) {
1692       llvm::BasicBlock *CodeGenIPBB = CodeGenIP.getBlock();
1693       if (llvm::Instruction *CodeGenIPBBTI = CodeGenIPBB->getTerminator())
1694         CodeGenIPBBTI->eraseFromParent();
1695 
1696       CGF.Builder.SetInsertPoint(CodeGenIPBB);
1697 
1698       CGF.EmitStmt(RegionBodyStmt);
1699 
1700       if (CGF.Builder.saveIP().isSet())
1701         CGF.Builder.CreateBr(&FiniBB);
1702     }
1703 
1704     /// RAII for preserving necessary info during Outlined region body codegen.
1705     class OutlinedRegionBodyRAII {
1706 
1707       llvm::AssertingVH<llvm::Instruction> OldAllocaIP;
1708       CodeGenFunction::JumpDest OldReturnBlock;
1709       CGBuilderTy::InsertPoint IP;
1710       CodeGenFunction &CGF;
1711 
1712     public:
1713       OutlinedRegionBodyRAII(CodeGenFunction &cgf, InsertPointTy &AllocaIP,
1714                              llvm::BasicBlock &RetBB)
1715           : CGF(cgf) {
1716         assert(AllocaIP.isSet() &&
1717                "Must specify Insertion point for allocas of outlined function");
1718         OldAllocaIP = CGF.AllocaInsertPt;
1719         CGF.AllocaInsertPt = &*AllocaIP.getPoint();
1720         IP = CGF.Builder.saveIP();
1721 
1722         OldReturnBlock = CGF.ReturnBlock;
1723         CGF.ReturnBlock = CGF.getJumpDestInCurrentScope(&RetBB);
1724       }
1725 
1726       ~OutlinedRegionBodyRAII() {
1727         CGF.AllocaInsertPt = OldAllocaIP;
1728         CGF.ReturnBlock = OldReturnBlock;
1729         CGF.Builder.restoreIP(IP);
1730       }
1731     };
1732 
1733     /// RAII for preserving necessary info during inlined region body codegen.
1734     class InlinedRegionBodyRAII {
1735 
1736       llvm::AssertingVH<llvm::Instruction> OldAllocaIP;
1737       CodeGenFunction &CGF;
1738 
1739     public:
1740       InlinedRegionBodyRAII(CodeGenFunction &cgf, InsertPointTy &AllocaIP,
1741                             llvm::BasicBlock &FiniBB)
1742           : CGF(cgf) {
1743         // Alloca insertion block should be in the entry block of the containing
1744         // function so it expects an empty AllocaIP in which case will reuse the
1745         // old alloca insertion point, or a new AllocaIP in the same block as
1746         // the old one
1747         assert((!AllocaIP.isSet() ||
1748                 CGF.AllocaInsertPt->getParent() == AllocaIP.getBlock()) &&
1749                "Insertion point should be in the entry block of containing "
1750                "function!");
1751         OldAllocaIP = CGF.AllocaInsertPt;
1752         if (AllocaIP.isSet())
1753           CGF.AllocaInsertPt = &*AllocaIP.getPoint();
1754 
1755         // TODO: Remove the call, after making sure the counter is not used by
1756         //       the EHStack.
1757         // Since this is an inlined region, it should not modify the
1758         // ReturnBlock, and should reuse the one for the enclosing outlined
1759         // region. So, the JumpDest being return by the function is discarded
1760         (void)CGF.getJumpDestInCurrentScope(&FiniBB);
1761       }
1762 
1763       ~InlinedRegionBodyRAII() { CGF.AllocaInsertPt = OldAllocaIP; }
1764     };
1765   };
1766 
1767 private:
1768   /// CXXThisDecl - When generating code for a C++ member function,
1769   /// this will hold the implicit 'this' declaration.
1770   ImplicitParamDecl *CXXABIThisDecl = nullptr;
1771   llvm::Value *CXXABIThisValue = nullptr;
1772   llvm::Value *CXXThisValue = nullptr;
1773   CharUnits CXXABIThisAlignment;
1774   CharUnits CXXThisAlignment;
1775 
1776   /// The value of 'this' to use when evaluating CXXDefaultInitExprs within
1777   /// this expression.
1778   Address CXXDefaultInitExprThis = Address::invalid();
1779 
1780   /// The current array initialization index when evaluating an
1781   /// ArrayInitIndexExpr within an ArrayInitLoopExpr.
1782   llvm::Value *ArrayInitIndex = nullptr;
1783 
1784   /// The values of function arguments to use when evaluating
1785   /// CXXInheritedCtorInitExprs within this context.
1786   CallArgList CXXInheritedCtorInitExprArgs;
1787 
1788   /// CXXStructorImplicitParamDecl - When generating code for a constructor or
1789   /// destructor, this will hold the implicit argument (e.g. VTT).
1790   ImplicitParamDecl *CXXStructorImplicitParamDecl = nullptr;
1791   llvm::Value *CXXStructorImplicitParamValue = nullptr;
1792 
1793   /// OutermostConditional - Points to the outermost active
1794   /// conditional control.  This is used so that we know if a
1795   /// temporary should be destroyed conditionally.
1796   ConditionalEvaluation *OutermostConditional = nullptr;
1797 
1798   /// The current lexical scope.
1799   LexicalScope *CurLexicalScope = nullptr;
1800 
1801   /// The current source location that should be used for exception
1802   /// handling code.
1803   SourceLocation CurEHLocation;
1804 
1805   /// BlockByrefInfos - For each __block variable, contains
1806   /// information about the layout of the variable.
1807   llvm::DenseMap<const ValueDecl *, BlockByrefInfo> BlockByrefInfos;
1808 
1809   /// Used by -fsanitize=nullability-return to determine whether the return
1810   /// value can be checked.
1811   llvm::Value *RetValNullabilityPrecondition = nullptr;
1812 
1813   /// Check if -fsanitize=nullability-return instrumentation is required for
1814   /// this function.
1815   bool requiresReturnValueNullabilityCheck() const {
1816     return RetValNullabilityPrecondition;
1817   }
1818 
1819   /// Used to store precise source locations for return statements by the
1820   /// runtime return value checks.
1821   Address ReturnLocation = Address::invalid();
1822 
1823   /// Check if the return value of this function requires sanitization.
1824   bool requiresReturnValueCheck() const;
1825 
1826   llvm::BasicBlock *TerminateLandingPad = nullptr;
1827   llvm::BasicBlock *TerminateHandler = nullptr;
1828   llvm::BasicBlock *TrapBB = nullptr;
1829 
1830   /// Terminate funclets keyed by parent funclet pad.
1831   llvm::MapVector<llvm::Value *, llvm::BasicBlock *> TerminateFunclets;
1832 
1833   /// Largest vector width used in ths function. Will be used to create a
1834   /// function attribute.
1835   unsigned LargestVectorWidth = 0;
1836 
1837   /// True if we need emit the life-time markers.
1838   const bool ShouldEmitLifetimeMarkers;
1839 
1840   /// Add OpenCL kernel arg metadata and the kernel attribute metadata to
1841   /// the function metadata.
1842   void EmitOpenCLKernelMetadata(const FunctionDecl *FD,
1843                                 llvm::Function *Fn);
1844 
1845 public:
1846   CodeGenFunction(CodeGenModule &cgm, bool suppressNewContext=false);
1847   ~CodeGenFunction();
1848 
1849   CodeGenTypes &getTypes() const { return CGM.getTypes(); }
1850   ASTContext &getContext() const { return CGM.getContext(); }
1851   CGDebugInfo *getDebugInfo() {
1852     if (DisableDebugInfo)
1853       return nullptr;
1854     return DebugInfo;
1855   }
1856   void disableDebugInfo() { DisableDebugInfo = true; }
1857   void enableDebugInfo() { DisableDebugInfo = false; }
1858 
1859   bool shouldUseFusedARCCalls() {
1860     return CGM.getCodeGenOpts().OptimizationLevel == 0;
1861   }
1862 
1863   const LangOptions &getLangOpts() const { return CGM.getLangOpts(); }
1864 
1865   /// Returns a pointer to the function's exception object and selector slot,
1866   /// which is assigned in every landing pad.
1867   Address getExceptionSlot();
1868   Address getEHSelectorSlot();
1869 
1870   /// Returns the contents of the function's exception object and selector
1871   /// slots.
1872   llvm::Value *getExceptionFromSlot();
1873   llvm::Value *getSelectorFromSlot();
1874 
1875   Address getNormalCleanupDestSlot();
1876 
1877   llvm::BasicBlock *getUnreachableBlock() {
1878     if (!UnreachableBlock) {
1879       UnreachableBlock = createBasicBlock("unreachable");
1880       new llvm::UnreachableInst(getLLVMContext(), UnreachableBlock);
1881     }
1882     return UnreachableBlock;
1883   }
1884 
1885   llvm::BasicBlock *getInvokeDest() {
1886     if (!EHStack.requiresLandingPad()) return nullptr;
1887     return getInvokeDestImpl();
1888   }
1889 
1890   bool currentFunctionUsesSEHTry() const { return CurSEHParent != nullptr; }
1891 
1892   const TargetInfo &getTarget() const { return Target; }
1893   llvm::LLVMContext &getLLVMContext() { return CGM.getLLVMContext(); }
1894   const TargetCodeGenInfo &getTargetHooks() const {
1895     return CGM.getTargetCodeGenInfo();
1896   }
1897 
1898   //===--------------------------------------------------------------------===//
1899   //                                  Cleanups
1900   //===--------------------------------------------------------------------===//
1901 
1902   typedef void Destroyer(CodeGenFunction &CGF, Address addr, QualType ty);
1903 
1904   void pushIrregularPartialArrayCleanup(llvm::Value *arrayBegin,
1905                                         Address arrayEndPointer,
1906                                         QualType elementType,
1907                                         CharUnits elementAlignment,
1908                                         Destroyer *destroyer);
1909   void pushRegularPartialArrayCleanup(llvm::Value *arrayBegin,
1910                                       llvm::Value *arrayEnd,
1911                                       QualType elementType,
1912                                       CharUnits elementAlignment,
1913                                       Destroyer *destroyer);
1914 
1915   void pushDestroy(QualType::DestructionKind dtorKind,
1916                    Address addr, QualType type);
1917   void pushEHDestroy(QualType::DestructionKind dtorKind,
1918                      Address addr, QualType type);
1919   void pushDestroy(CleanupKind kind, Address addr, QualType type,
1920                    Destroyer *destroyer, bool useEHCleanupForArray);
1921   void pushLifetimeExtendedDestroy(CleanupKind kind, Address addr,
1922                                    QualType type, Destroyer *destroyer,
1923                                    bool useEHCleanupForArray);
1924   void pushCallObjectDeleteCleanup(const FunctionDecl *OperatorDelete,
1925                                    llvm::Value *CompletePtr,
1926                                    QualType ElementType);
1927   void pushStackRestore(CleanupKind kind, Address SPMem);
1928   void emitDestroy(Address addr, QualType type, Destroyer *destroyer,
1929                    bool useEHCleanupForArray);
1930   llvm::Function *generateDestroyHelper(Address addr, QualType type,
1931                                         Destroyer *destroyer,
1932                                         bool useEHCleanupForArray,
1933                                         const VarDecl *VD);
1934   void emitArrayDestroy(llvm::Value *begin, llvm::Value *end,
1935                         QualType elementType, CharUnits elementAlign,
1936                         Destroyer *destroyer,
1937                         bool checkZeroLength, bool useEHCleanup);
1938 
1939   Destroyer *getDestroyer(QualType::DestructionKind destructionKind);
1940 
1941   /// Determines whether an EH cleanup is required to destroy a type
1942   /// with the given destruction kind.
1943   bool needsEHCleanup(QualType::DestructionKind kind) {
1944     switch (kind) {
1945     case QualType::DK_none:
1946       return false;
1947     case QualType::DK_cxx_destructor:
1948     case QualType::DK_objc_weak_lifetime:
1949     case QualType::DK_nontrivial_c_struct:
1950       return getLangOpts().Exceptions;
1951     case QualType::DK_objc_strong_lifetime:
1952       return getLangOpts().Exceptions &&
1953              CGM.getCodeGenOpts().ObjCAutoRefCountExceptions;
1954     }
1955     llvm_unreachable("bad destruction kind");
1956   }
1957 
1958   CleanupKind getCleanupKind(QualType::DestructionKind kind) {
1959     return (needsEHCleanup(kind) ? NormalAndEHCleanup : NormalCleanup);
1960   }
1961 
1962   //===--------------------------------------------------------------------===//
1963   //                                  Objective-C
1964   //===--------------------------------------------------------------------===//
1965 
1966   void GenerateObjCMethod(const ObjCMethodDecl *OMD);
1967 
1968   void StartObjCMethod(const ObjCMethodDecl *MD, const ObjCContainerDecl *CD);
1969 
1970   /// GenerateObjCGetter - Synthesize an Objective-C property getter function.
1971   void GenerateObjCGetter(ObjCImplementationDecl *IMP,
1972                           const ObjCPropertyImplDecl *PID);
1973   void generateObjCGetterBody(const ObjCImplementationDecl *classImpl,
1974                               const ObjCPropertyImplDecl *propImpl,
1975                               const ObjCMethodDecl *GetterMothodDecl,
1976                               llvm::Constant *AtomicHelperFn);
1977 
1978   void GenerateObjCCtorDtorMethod(ObjCImplementationDecl *IMP,
1979                                   ObjCMethodDecl *MD, bool ctor);
1980 
1981   /// GenerateObjCSetter - Synthesize an Objective-C property setter function
1982   /// for the given property.
1983   void GenerateObjCSetter(ObjCImplementationDecl *IMP,
1984                           const ObjCPropertyImplDecl *PID);
1985   void generateObjCSetterBody(const ObjCImplementationDecl *classImpl,
1986                               const ObjCPropertyImplDecl *propImpl,
1987                               llvm::Constant *AtomicHelperFn);
1988 
1989   //===--------------------------------------------------------------------===//
1990   //                                  Block Bits
1991   //===--------------------------------------------------------------------===//
1992 
1993   /// Emit block literal.
1994   /// \return an LLVM value which is a pointer to a struct which contains
1995   /// information about the block, including the block invoke function, the
1996   /// captured variables, etc.
1997   llvm::Value *EmitBlockLiteral(const BlockExpr *);
1998 
1999   llvm::Function *GenerateBlockFunction(GlobalDecl GD,
2000                                         const CGBlockInfo &Info,
2001                                         const DeclMapTy &ldm,
2002                                         bool IsLambdaConversionToBlock,
2003                                         bool BuildGlobalBlock);
2004 
2005   /// Check if \p T is a C++ class that has a destructor that can throw.
2006   static bool cxxDestructorCanThrow(QualType T);
2007 
2008   llvm::Constant *GenerateCopyHelperFunction(const CGBlockInfo &blockInfo);
2009   llvm::Constant *GenerateDestroyHelperFunction(const CGBlockInfo &blockInfo);
2010   llvm::Constant *GenerateObjCAtomicSetterCopyHelperFunction(
2011                                              const ObjCPropertyImplDecl *PID);
2012   llvm::Constant *GenerateObjCAtomicGetterCopyHelperFunction(
2013                                              const ObjCPropertyImplDecl *PID);
2014   llvm::Value *EmitBlockCopyAndAutorelease(llvm::Value *Block, QualType Ty);
2015 
2016   void BuildBlockRelease(llvm::Value *DeclPtr, BlockFieldFlags flags,
2017                          bool CanThrow);
2018 
2019   class AutoVarEmission;
2020 
2021   void emitByrefStructureInit(const AutoVarEmission &emission);
2022 
2023   /// Enter a cleanup to destroy a __block variable.  Note that this
2024   /// cleanup should be a no-op if the variable hasn't left the stack
2025   /// yet; if a cleanup is required for the variable itself, that needs
2026   /// to be done externally.
2027   ///
2028   /// \param Kind Cleanup kind.
2029   ///
2030   /// \param Addr When \p LoadBlockVarAddr is false, the address of the __block
2031   /// structure that will be passed to _Block_object_dispose. When
2032   /// \p LoadBlockVarAddr is true, the address of the field of the block
2033   /// structure that holds the address of the __block structure.
2034   ///
2035   /// \param Flags The flag that will be passed to _Block_object_dispose.
2036   ///
2037   /// \param LoadBlockVarAddr Indicates whether we need to emit a load from
2038   /// \p Addr to get the address of the __block structure.
2039   void enterByrefCleanup(CleanupKind Kind, Address Addr, BlockFieldFlags Flags,
2040                          bool LoadBlockVarAddr, bool CanThrow);
2041 
2042   void setBlockContextParameter(const ImplicitParamDecl *D, unsigned argNum,
2043                                 llvm::Value *ptr);
2044 
2045   Address LoadBlockStruct();
2046   Address GetAddrOfBlockDecl(const VarDecl *var);
2047 
2048   /// BuildBlockByrefAddress - Computes the location of the
2049   /// data in a variable which is declared as __block.
2050   Address emitBlockByrefAddress(Address baseAddr, const VarDecl *V,
2051                                 bool followForward = true);
2052   Address emitBlockByrefAddress(Address baseAddr,
2053                                 const BlockByrefInfo &info,
2054                                 bool followForward,
2055                                 const llvm::Twine &name);
2056 
2057   const BlockByrefInfo &getBlockByrefInfo(const VarDecl *var);
2058 
2059   QualType BuildFunctionArgList(GlobalDecl GD, FunctionArgList &Args);
2060 
2061   void GenerateCode(GlobalDecl GD, llvm::Function *Fn,
2062                     const CGFunctionInfo &FnInfo);
2063 
2064   /// Annotate the function with an attribute that disables TSan checking at
2065   /// runtime.
2066   void markAsIgnoreThreadCheckingAtRuntime(llvm::Function *Fn);
2067 
2068   /// Emit code for the start of a function.
2069   /// \param Loc       The location to be associated with the function.
2070   /// \param StartLoc  The location of the function body.
2071   void StartFunction(GlobalDecl GD,
2072                      QualType RetTy,
2073                      llvm::Function *Fn,
2074                      const CGFunctionInfo &FnInfo,
2075                      const FunctionArgList &Args,
2076                      SourceLocation Loc = SourceLocation(),
2077                      SourceLocation StartLoc = SourceLocation());
2078 
2079   static bool IsConstructorDelegationValid(const CXXConstructorDecl *Ctor);
2080 
2081   void EmitConstructorBody(FunctionArgList &Args);
2082   void EmitDestructorBody(FunctionArgList &Args);
2083   void emitImplicitAssignmentOperatorBody(FunctionArgList &Args);
2084   void EmitFunctionBody(const Stmt *Body);
2085   void EmitBlockWithFallThrough(llvm::BasicBlock *BB, const Stmt *S);
2086 
2087   void EmitForwardingCallToLambda(const CXXMethodDecl *LambdaCallOperator,
2088                                   CallArgList &CallArgs);
2089   void EmitLambdaBlockInvokeBody();
2090   void EmitLambdaDelegatingInvokeBody(const CXXMethodDecl *MD);
2091   void EmitLambdaStaticInvokeBody(const CXXMethodDecl *MD);
2092   void EmitLambdaVLACapture(const VariableArrayType *VAT, LValue LV) {
2093     EmitStoreThroughLValue(RValue::get(VLASizeMap[VAT->getSizeExpr()]), LV);
2094   }
2095   void EmitAsanPrologueOrEpilogue(bool Prologue);
2096 
2097   /// Emit the unified return block, trying to avoid its emission when
2098   /// possible.
2099   /// \return The debug location of the user written return statement if the
2100   /// return block is is avoided.
2101   llvm::DebugLoc EmitReturnBlock();
2102 
2103   /// FinishFunction - Complete IR generation of the current function. It is
2104   /// legal to call this function even if there is no current insertion point.
2105   void FinishFunction(SourceLocation EndLoc=SourceLocation());
2106 
2107   void StartThunk(llvm::Function *Fn, GlobalDecl GD,
2108                   const CGFunctionInfo &FnInfo, bool IsUnprototyped);
2109 
2110   void EmitCallAndReturnForThunk(llvm::FunctionCallee Callee,
2111                                  const ThunkInfo *Thunk, bool IsUnprototyped);
2112 
2113   void FinishThunk();
2114 
2115   /// Emit a musttail call for a thunk with a potentially adjusted this pointer.
2116   void EmitMustTailThunk(GlobalDecl GD, llvm::Value *AdjustedThisPtr,
2117                          llvm::FunctionCallee Callee);
2118 
2119   /// Generate a thunk for the given method.
2120   void generateThunk(llvm::Function *Fn, const CGFunctionInfo &FnInfo,
2121                      GlobalDecl GD, const ThunkInfo &Thunk,
2122                      bool IsUnprototyped);
2123 
2124   llvm::Function *GenerateVarArgsThunk(llvm::Function *Fn,
2125                                        const CGFunctionInfo &FnInfo,
2126                                        GlobalDecl GD, const ThunkInfo &Thunk);
2127 
2128   void EmitCtorPrologue(const CXXConstructorDecl *CD, CXXCtorType Type,
2129                         FunctionArgList &Args);
2130 
2131   void EmitInitializerForField(FieldDecl *Field, LValue LHS, Expr *Init);
2132 
2133   /// Struct with all information about dynamic [sub]class needed to set vptr.
2134   struct VPtr {
2135     BaseSubobject Base;
2136     const CXXRecordDecl *NearestVBase;
2137     CharUnits OffsetFromNearestVBase;
2138     const CXXRecordDecl *VTableClass;
2139   };
2140 
2141   /// Initialize the vtable pointer of the given subobject.
2142   void InitializeVTablePointer(const VPtr &vptr);
2143 
2144   typedef llvm::SmallVector<VPtr, 4> VPtrsVector;
2145 
2146   typedef llvm::SmallPtrSet<const CXXRecordDecl *, 4> VisitedVirtualBasesSetTy;
2147   VPtrsVector getVTablePointers(const CXXRecordDecl *VTableClass);
2148 
2149   void getVTablePointers(BaseSubobject Base, const CXXRecordDecl *NearestVBase,
2150                          CharUnits OffsetFromNearestVBase,
2151                          bool BaseIsNonVirtualPrimaryBase,
2152                          const CXXRecordDecl *VTableClass,
2153                          VisitedVirtualBasesSetTy &VBases, VPtrsVector &vptrs);
2154 
2155   void InitializeVTablePointers(const CXXRecordDecl *ClassDecl);
2156 
2157   /// GetVTablePtr - Return the Value of the vtable pointer member pointed
2158   /// to by This.
2159   llvm::Value *GetVTablePtr(Address This, llvm::Type *VTableTy,
2160                             const CXXRecordDecl *VTableClass);
2161 
2162   enum CFITypeCheckKind {
2163     CFITCK_VCall,
2164     CFITCK_NVCall,
2165     CFITCK_DerivedCast,
2166     CFITCK_UnrelatedCast,
2167     CFITCK_ICall,
2168     CFITCK_NVMFCall,
2169     CFITCK_VMFCall,
2170   };
2171 
2172   /// Derived is the presumed address of an object of type T after a
2173   /// cast. If T is a polymorphic class type, emit a check that the virtual
2174   /// table for Derived belongs to a class derived from T.
2175   void EmitVTablePtrCheckForCast(QualType T, llvm::Value *Derived,
2176                                  bool MayBeNull, CFITypeCheckKind TCK,
2177                                  SourceLocation Loc);
2178 
2179   /// EmitVTablePtrCheckForCall - Virtual method MD is being called via VTable.
2180   /// If vptr CFI is enabled, emit a check that VTable is valid.
2181   void EmitVTablePtrCheckForCall(const CXXRecordDecl *RD, llvm::Value *VTable,
2182                                  CFITypeCheckKind TCK, SourceLocation Loc);
2183 
2184   /// EmitVTablePtrCheck - Emit a check that VTable is a valid virtual table for
2185   /// RD using llvm.type.test.
2186   void EmitVTablePtrCheck(const CXXRecordDecl *RD, llvm::Value *VTable,
2187                           CFITypeCheckKind TCK, SourceLocation Loc);
2188 
2189   /// If whole-program virtual table optimization is enabled, emit an assumption
2190   /// that VTable is a member of RD's type identifier. Or, if vptr CFI is
2191   /// enabled, emit a check that VTable is a member of RD's type identifier.
2192   void EmitTypeMetadataCodeForVCall(const CXXRecordDecl *RD,
2193                                     llvm::Value *VTable, SourceLocation Loc);
2194 
2195   /// Returns whether we should perform a type checked load when loading a
2196   /// virtual function for virtual calls to members of RD. This is generally
2197   /// true when both vcall CFI and whole-program-vtables are enabled.
2198   bool ShouldEmitVTableTypeCheckedLoad(const CXXRecordDecl *RD);
2199 
2200   /// Emit a type checked load from the given vtable.
2201   llvm::Value *EmitVTableTypeCheckedLoad(const CXXRecordDecl *RD, llvm::Value *VTable,
2202                                          uint64_t VTableByteOffset);
2203 
2204   /// EnterDtorCleanups - Enter the cleanups necessary to complete the
2205   /// given phase of destruction for a destructor.  The end result
2206   /// should call destructors on members and base classes in reverse
2207   /// order of their construction.
2208   void EnterDtorCleanups(const CXXDestructorDecl *Dtor, CXXDtorType Type);
2209 
2210   /// ShouldInstrumentFunction - Return true if the current function should be
2211   /// instrumented with __cyg_profile_func_* calls
2212   bool ShouldInstrumentFunction();
2213 
2214   /// ShouldXRayInstrument - Return true if the current function should be
2215   /// instrumented with XRay nop sleds.
2216   bool ShouldXRayInstrumentFunction() const;
2217 
2218   /// AlwaysEmitXRayCustomEvents - Return true if we must unconditionally emit
2219   /// XRay custom event handling calls.
2220   bool AlwaysEmitXRayCustomEvents() const;
2221 
2222   /// AlwaysEmitXRayTypedEvents - Return true if clang must unconditionally emit
2223   /// XRay typed event handling calls.
2224   bool AlwaysEmitXRayTypedEvents() const;
2225 
2226   /// Encode an address into a form suitable for use in a function prologue.
2227   llvm::Constant *EncodeAddrForUseInPrologue(llvm::Function *F,
2228                                              llvm::Constant *Addr);
2229 
2230   /// Decode an address used in a function prologue, encoded by \c
2231   /// EncodeAddrForUseInPrologue.
2232   llvm::Value *DecodeAddrUsedInPrologue(llvm::Value *F,
2233                                         llvm::Value *EncodedAddr);
2234 
2235   /// EmitFunctionProlog - Emit the target specific LLVM code to load the
2236   /// arguments for the given function. This is also responsible for naming the
2237   /// LLVM function arguments.
2238   void EmitFunctionProlog(const CGFunctionInfo &FI,
2239                           llvm::Function *Fn,
2240                           const FunctionArgList &Args);
2241 
2242   /// EmitFunctionEpilog - Emit the target specific LLVM code to return the
2243   /// given temporary.
2244   void EmitFunctionEpilog(const CGFunctionInfo &FI, bool EmitRetDbgLoc,
2245                           SourceLocation EndLoc);
2246 
2247   /// Emit a test that checks if the return value \p RV is nonnull.
2248   void EmitReturnValueCheck(llvm::Value *RV);
2249 
2250   /// EmitStartEHSpec - Emit the start of the exception spec.
2251   void EmitStartEHSpec(const Decl *D);
2252 
2253   /// EmitEndEHSpec - Emit the end of the exception spec.
2254   void EmitEndEHSpec(const Decl *D);
2255 
2256   /// getTerminateLandingPad - Return a landing pad that just calls terminate.
2257   llvm::BasicBlock *getTerminateLandingPad();
2258 
2259   /// getTerminateLandingPad - Return a cleanup funclet that just calls
2260   /// terminate.
2261   llvm::BasicBlock *getTerminateFunclet();
2262 
2263   /// getTerminateHandler - Return a handler (not a landing pad, just
2264   /// a catch handler) that just calls terminate.  This is used when
2265   /// a terminate scope encloses a try.
2266   llvm::BasicBlock *getTerminateHandler();
2267 
2268   llvm::Type *ConvertTypeForMem(QualType T);
2269   llvm::Type *ConvertType(QualType T);
2270   llvm::Type *ConvertType(const TypeDecl *T) {
2271     return ConvertType(getContext().getTypeDeclType(T));
2272   }
2273 
2274   /// LoadObjCSelf - Load the value of self. This function is only valid while
2275   /// generating code for an Objective-C method.
2276   llvm::Value *LoadObjCSelf();
2277 
2278   /// TypeOfSelfObject - Return type of object that this self represents.
2279   QualType TypeOfSelfObject();
2280 
2281   /// getEvaluationKind - Return the TypeEvaluationKind of QualType \c T.
2282   static TypeEvaluationKind getEvaluationKind(QualType T);
2283 
2284   static bool hasScalarEvaluationKind(QualType T) {
2285     return getEvaluationKind(T) == TEK_Scalar;
2286   }
2287 
2288   static bool hasAggregateEvaluationKind(QualType T) {
2289     return getEvaluationKind(T) == TEK_Aggregate;
2290   }
2291 
2292   /// createBasicBlock - Create an LLVM basic block.
2293   llvm::BasicBlock *createBasicBlock(const Twine &name = "",
2294                                      llvm::Function *parent = nullptr,
2295                                      llvm::BasicBlock *before = nullptr) {
2296     return llvm::BasicBlock::Create(getLLVMContext(), name, parent, before);
2297   }
2298 
2299   /// getBasicBlockForLabel - Return the LLVM basicblock that the specified
2300   /// label maps to.
2301   JumpDest getJumpDestForLabel(const LabelDecl *S);
2302 
2303   /// SimplifyForwardingBlocks - If the given basic block is only a branch to
2304   /// another basic block, simplify it. This assumes that no other code could
2305   /// potentially reference the basic block.
2306   void SimplifyForwardingBlocks(llvm::BasicBlock *BB);
2307 
2308   /// EmitBlock - Emit the given block \arg BB and set it as the insert point,
2309   /// adding a fall-through branch from the current insert block if
2310   /// necessary. It is legal to call this function even if there is no current
2311   /// insertion point.
2312   ///
2313   /// IsFinished - If true, indicates that the caller has finished emitting
2314   /// branches to the given block and does not expect to emit code into it. This
2315   /// means the block can be ignored if it is unreachable.
2316   void EmitBlock(llvm::BasicBlock *BB, bool IsFinished=false);
2317 
2318   /// EmitBlockAfterUses - Emit the given block somewhere hopefully
2319   /// near its uses, and leave the insertion point in it.
2320   void EmitBlockAfterUses(llvm::BasicBlock *BB);
2321 
2322   /// EmitBranch - Emit a branch to the specified basic block from the current
2323   /// insert block, taking care to avoid creation of branches from dummy
2324   /// blocks. It is legal to call this function even if there is no current
2325   /// insertion point.
2326   ///
2327   /// This function clears the current insertion point. The caller should follow
2328   /// calls to this function with calls to Emit*Block prior to generation new
2329   /// code.
2330   void EmitBranch(llvm::BasicBlock *Block);
2331 
2332   /// HaveInsertPoint - True if an insertion point is defined. If not, this
2333   /// indicates that the current code being emitted is unreachable.
2334   bool HaveInsertPoint() const {
2335     return Builder.GetInsertBlock() != nullptr;
2336   }
2337 
2338   /// EnsureInsertPoint - Ensure that an insertion point is defined so that
2339   /// emitted IR has a place to go. Note that by definition, if this function
2340   /// creates a block then that block is unreachable; callers may do better to
2341   /// detect when no insertion point is defined and simply skip IR generation.
2342   void EnsureInsertPoint() {
2343     if (!HaveInsertPoint())
2344       EmitBlock(createBasicBlock());
2345   }
2346 
2347   /// ErrorUnsupported - Print out an error that codegen doesn't support the
2348   /// specified stmt yet.
2349   void ErrorUnsupported(const Stmt *S, const char *Type);
2350 
2351   //===--------------------------------------------------------------------===//
2352   //                                  Helpers
2353   //===--------------------------------------------------------------------===//
2354 
2355   LValue MakeAddrLValue(Address Addr, QualType T,
2356                         AlignmentSource Source = AlignmentSource::Type) {
2357     return LValue::MakeAddr(Addr, T, getContext(), LValueBaseInfo(Source),
2358                             CGM.getTBAAAccessInfo(T));
2359   }
2360 
2361   LValue MakeAddrLValue(Address Addr, QualType T, LValueBaseInfo BaseInfo,
2362                         TBAAAccessInfo TBAAInfo) {
2363     return LValue::MakeAddr(Addr, T, getContext(), BaseInfo, TBAAInfo);
2364   }
2365 
2366   LValue MakeAddrLValue(llvm::Value *V, QualType T, CharUnits Alignment,
2367                         AlignmentSource Source = AlignmentSource::Type) {
2368     return LValue::MakeAddr(Address(V, Alignment), T, getContext(),
2369                             LValueBaseInfo(Source), CGM.getTBAAAccessInfo(T));
2370   }
2371 
2372   LValue MakeAddrLValue(llvm::Value *V, QualType T, CharUnits Alignment,
2373                         LValueBaseInfo BaseInfo, TBAAAccessInfo TBAAInfo) {
2374     return LValue::MakeAddr(Address(V, Alignment), T, getContext(),
2375                             BaseInfo, TBAAInfo);
2376   }
2377 
2378   LValue MakeNaturalAlignPointeeAddrLValue(llvm::Value *V, QualType T);
2379   LValue MakeNaturalAlignAddrLValue(llvm::Value *V, QualType T);
2380 
2381   Address EmitLoadOfReference(LValue RefLVal,
2382                               LValueBaseInfo *PointeeBaseInfo = nullptr,
2383                               TBAAAccessInfo *PointeeTBAAInfo = nullptr);
2384   LValue EmitLoadOfReferenceLValue(LValue RefLVal);
2385   LValue EmitLoadOfReferenceLValue(Address RefAddr, QualType RefTy,
2386                                    AlignmentSource Source =
2387                                        AlignmentSource::Type) {
2388     LValue RefLVal = MakeAddrLValue(RefAddr, RefTy, LValueBaseInfo(Source),
2389                                     CGM.getTBAAAccessInfo(RefTy));
2390     return EmitLoadOfReferenceLValue(RefLVal);
2391   }
2392 
2393   Address EmitLoadOfPointer(Address Ptr, const PointerType *PtrTy,
2394                             LValueBaseInfo *BaseInfo = nullptr,
2395                             TBAAAccessInfo *TBAAInfo = nullptr);
2396   LValue EmitLoadOfPointerLValue(Address Ptr, const PointerType *PtrTy);
2397 
2398   /// CreateTempAlloca - This creates an alloca and inserts it into the entry
2399   /// block if \p ArraySize is nullptr, otherwise inserts it at the current
2400   /// insertion point of the builder. The caller is responsible for setting an
2401   /// appropriate alignment on
2402   /// the alloca.
2403   ///
2404   /// \p ArraySize is the number of array elements to be allocated if it
2405   ///    is not nullptr.
2406   ///
2407   /// LangAS::Default is the address space of pointers to local variables and
2408   /// temporaries, as exposed in the source language. In certain
2409   /// configurations, this is not the same as the alloca address space, and a
2410   /// cast is needed to lift the pointer from the alloca AS into
2411   /// LangAS::Default. This can happen when the target uses a restricted
2412   /// address space for the stack but the source language requires
2413   /// LangAS::Default to be a generic address space. The latter condition is
2414   /// common for most programming languages; OpenCL is an exception in that
2415   /// LangAS::Default is the private address space, which naturally maps
2416   /// to the stack.
2417   ///
2418   /// Because the address of a temporary is often exposed to the program in
2419   /// various ways, this function will perform the cast. The original alloca
2420   /// instruction is returned through \p Alloca if it is not nullptr.
2421   ///
2422   /// The cast is not performaed in CreateTempAllocaWithoutCast. This is
2423   /// more efficient if the caller knows that the address will not be exposed.
2424   llvm::AllocaInst *CreateTempAlloca(llvm::Type *Ty, const Twine &Name = "tmp",
2425                                      llvm::Value *ArraySize = nullptr);
2426   Address CreateTempAlloca(llvm::Type *Ty, CharUnits align,
2427                            const Twine &Name = "tmp",
2428                            llvm::Value *ArraySize = nullptr,
2429                            Address *Alloca = nullptr);
2430   Address CreateTempAllocaWithoutCast(llvm::Type *Ty, CharUnits align,
2431                                       const Twine &Name = "tmp",
2432                                       llvm::Value *ArraySize = nullptr);
2433 
2434   /// CreateDefaultAlignedTempAlloca - This creates an alloca with the
2435   /// default ABI alignment of the given LLVM type.
2436   ///
2437   /// IMPORTANT NOTE: This is *not* generally the right alignment for
2438   /// any given AST type that happens to have been lowered to the
2439   /// given IR type.  This should only ever be used for function-local,
2440   /// IR-driven manipulations like saving and restoring a value.  Do
2441   /// not hand this address off to arbitrary IRGen routines, and especially
2442   /// do not pass it as an argument to a function that might expect a
2443   /// properly ABI-aligned value.
2444   Address CreateDefaultAlignTempAlloca(llvm::Type *Ty,
2445                                        const Twine &Name = "tmp");
2446 
2447   /// InitTempAlloca - Provide an initial value for the given alloca which
2448   /// will be observable at all locations in the function.
2449   ///
2450   /// The address should be something that was returned from one of
2451   /// the CreateTempAlloca or CreateMemTemp routines, and the
2452   /// initializer must be valid in the entry block (i.e. it must
2453   /// either be a constant or an argument value).
2454   void InitTempAlloca(Address Alloca, llvm::Value *Value);
2455 
2456   /// CreateIRTemp - Create a temporary IR object of the given type, with
2457   /// appropriate alignment. This routine should only be used when an temporary
2458   /// value needs to be stored into an alloca (for example, to avoid explicit
2459   /// PHI construction), but the type is the IR type, not the type appropriate
2460   /// for storing in memory.
2461   ///
2462   /// That is, this is exactly equivalent to CreateMemTemp, but calling
2463   /// ConvertType instead of ConvertTypeForMem.
2464   Address CreateIRTemp(QualType T, const Twine &Name = "tmp");
2465 
2466   /// CreateMemTemp - Create a temporary memory object of the given type, with
2467   /// appropriate alignmen and cast it to the default address space. Returns
2468   /// the original alloca instruction by \p Alloca if it is not nullptr.
2469   Address CreateMemTemp(QualType T, const Twine &Name = "tmp",
2470                         Address *Alloca = nullptr);
2471   Address CreateMemTemp(QualType T, CharUnits Align, const Twine &Name = "tmp",
2472                         Address *Alloca = nullptr);
2473 
2474   /// CreateMemTemp - Create a temporary memory object of the given type, with
2475   /// appropriate alignmen without casting it to the default address space.
2476   Address CreateMemTempWithoutCast(QualType T, const Twine &Name = "tmp");
2477   Address CreateMemTempWithoutCast(QualType T, CharUnits Align,
2478                                    const Twine &Name = "tmp");
2479 
2480   /// CreateAggTemp - Create a temporary memory object for the given
2481   /// aggregate type.
2482   AggValueSlot CreateAggTemp(QualType T, const Twine &Name = "tmp",
2483                              Address *Alloca = nullptr) {
2484     return AggValueSlot::forAddr(CreateMemTemp(T, Name, Alloca),
2485                                  T.getQualifiers(),
2486                                  AggValueSlot::IsNotDestructed,
2487                                  AggValueSlot::DoesNotNeedGCBarriers,
2488                                  AggValueSlot::IsNotAliased,
2489                                  AggValueSlot::DoesNotOverlap);
2490   }
2491 
2492   /// Emit a cast to void* in the appropriate address space.
2493   llvm::Value *EmitCastToVoidPtr(llvm::Value *value);
2494 
2495   /// EvaluateExprAsBool - Perform the usual unary conversions on the specified
2496   /// expression and compare the result against zero, returning an Int1Ty value.
2497   llvm::Value *EvaluateExprAsBool(const Expr *E);
2498 
2499   /// EmitIgnoredExpr - Emit an expression in a context which ignores the result.
2500   void EmitIgnoredExpr(const Expr *E);
2501 
2502   /// EmitAnyExpr - Emit code to compute the specified expression which can have
2503   /// any type.  The result is returned as an RValue struct.  If this is an
2504   /// aggregate expression, the aggloc/agglocvolatile arguments indicate where
2505   /// the result should be returned.
2506   ///
2507   /// \param ignoreResult True if the resulting value isn't used.
2508   RValue EmitAnyExpr(const Expr *E,
2509                      AggValueSlot aggSlot = AggValueSlot::ignored(),
2510                      bool ignoreResult = false);
2511 
2512   // EmitVAListRef - Emit a "reference" to a va_list; this is either the address
2513   // or the value of the expression, depending on how va_list is defined.
2514   Address EmitVAListRef(const Expr *E);
2515 
2516   /// Emit a "reference" to a __builtin_ms_va_list; this is
2517   /// always the value of the expression, because a __builtin_ms_va_list is a
2518   /// pointer to a char.
2519   Address EmitMSVAListRef(const Expr *E);
2520 
2521   /// EmitAnyExprToTemp - Similarly to EmitAnyExpr(), however, the result will
2522   /// always be accessible even if no aggregate location is provided.
2523   RValue EmitAnyExprToTemp(const Expr *E);
2524 
2525   /// EmitAnyExprToMem - Emits the code necessary to evaluate an
2526   /// arbitrary expression into the given memory location.
2527   void EmitAnyExprToMem(const Expr *E, Address Location,
2528                         Qualifiers Quals, bool IsInitializer);
2529 
2530   void EmitAnyExprToExn(const Expr *E, Address Addr);
2531 
2532   /// EmitExprAsInit - Emits the code necessary to initialize a
2533   /// location in memory with the given initializer.
2534   void EmitExprAsInit(const Expr *init, const ValueDecl *D, LValue lvalue,
2535                       bool capturedByInit);
2536 
2537   /// hasVolatileMember - returns true if aggregate type has a volatile
2538   /// member.
2539   bool hasVolatileMember(QualType T) {
2540     if (const RecordType *RT = T->getAs<RecordType>()) {
2541       const RecordDecl *RD = cast<RecordDecl>(RT->getDecl());
2542       return RD->hasVolatileMember();
2543     }
2544     return false;
2545   }
2546 
2547   /// Determine whether a return value slot may overlap some other object.
2548   AggValueSlot::Overlap_t getOverlapForReturnValue() {
2549     // FIXME: Assuming no overlap here breaks guaranteed copy elision for base
2550     // class subobjects. These cases may need to be revisited depending on the
2551     // resolution of the relevant core issue.
2552     return AggValueSlot::DoesNotOverlap;
2553   }
2554 
2555   /// Determine whether a field initialization may overlap some other object.
2556   AggValueSlot::Overlap_t getOverlapForFieldInit(const FieldDecl *FD);
2557 
2558   /// Determine whether a base class initialization may overlap some other
2559   /// object.
2560   AggValueSlot::Overlap_t getOverlapForBaseInit(const CXXRecordDecl *RD,
2561                                                 const CXXRecordDecl *BaseRD,
2562                                                 bool IsVirtual);
2563 
2564   /// Emit an aggregate assignment.
2565   void EmitAggregateAssign(LValue Dest, LValue Src, QualType EltTy) {
2566     bool IsVolatile = hasVolatileMember(EltTy);
2567     EmitAggregateCopy(Dest, Src, EltTy, AggValueSlot::MayOverlap, IsVolatile);
2568   }
2569 
2570   void EmitAggregateCopyCtor(LValue Dest, LValue Src,
2571                              AggValueSlot::Overlap_t MayOverlap) {
2572     EmitAggregateCopy(Dest, Src, Src.getType(), MayOverlap);
2573   }
2574 
2575   /// EmitAggregateCopy - Emit an aggregate copy.
2576   ///
2577   /// \param isVolatile \c true iff either the source or the destination is
2578   ///        volatile.
2579   /// \param MayOverlap Whether the tail padding of the destination might be
2580   ///        occupied by some other object. More efficient code can often be
2581   ///        generated if not.
2582   void EmitAggregateCopy(LValue Dest, LValue Src, QualType EltTy,
2583                          AggValueSlot::Overlap_t MayOverlap,
2584                          bool isVolatile = false);
2585 
2586   /// GetAddrOfLocalVar - Return the address of a local variable.
2587   Address GetAddrOfLocalVar(const VarDecl *VD) {
2588     auto it = LocalDeclMap.find(VD);
2589     assert(it != LocalDeclMap.end() &&
2590            "Invalid argument to GetAddrOfLocalVar(), no decl!");
2591     return it->second;
2592   }
2593 
2594   /// Given an opaque value expression, return its LValue mapping if it exists,
2595   /// otherwise create one.
2596   LValue getOrCreateOpaqueLValueMapping(const OpaqueValueExpr *e);
2597 
2598   /// Given an opaque value expression, return its RValue mapping if it exists,
2599   /// otherwise create one.
2600   RValue getOrCreateOpaqueRValueMapping(const OpaqueValueExpr *e);
2601 
2602   /// Get the index of the current ArrayInitLoopExpr, if any.
2603   llvm::Value *getArrayInitIndex() { return ArrayInitIndex; }
2604 
2605   /// getAccessedFieldNo - Given an encoded value and a result number, return
2606   /// the input field number being accessed.
2607   static unsigned getAccessedFieldNo(unsigned Idx, const llvm::Constant *Elts);
2608 
2609   llvm::BlockAddress *GetAddrOfLabel(const LabelDecl *L);
2610   llvm::BasicBlock *GetIndirectGotoBlock();
2611 
2612   /// Check if \p E is a C++ "this" pointer wrapped in value-preserving casts.
2613   static bool IsWrappedCXXThis(const Expr *E);
2614 
2615   /// EmitNullInitialization - Generate code to set a value of the given type to
2616   /// null, If the type contains data member pointers, they will be initialized
2617   /// to -1 in accordance with the Itanium C++ ABI.
2618   void EmitNullInitialization(Address DestPtr, QualType Ty);
2619 
2620   /// Emits a call to an LLVM variable-argument intrinsic, either
2621   /// \c llvm.va_start or \c llvm.va_end.
2622   /// \param ArgValue A reference to the \c va_list as emitted by either
2623   /// \c EmitVAListRef or \c EmitMSVAListRef.
2624   /// \param IsStart If \c true, emits a call to \c llvm.va_start; otherwise,
2625   /// calls \c llvm.va_end.
2626   llvm::Value *EmitVAStartEnd(llvm::Value *ArgValue, bool IsStart);
2627 
2628   /// Generate code to get an argument from the passed in pointer
2629   /// and update it accordingly.
2630   /// \param VE The \c VAArgExpr for which to generate code.
2631   /// \param VAListAddr Receives a reference to the \c va_list as emitted by
2632   /// either \c EmitVAListRef or \c EmitMSVAListRef.
2633   /// \returns A pointer to the argument.
2634   // FIXME: We should be able to get rid of this method and use the va_arg
2635   // instruction in LLVM instead once it works well enough.
2636   Address EmitVAArg(VAArgExpr *VE, Address &VAListAddr);
2637 
2638   /// emitArrayLength - Compute the length of an array, even if it's a
2639   /// VLA, and drill down to the base element type.
2640   llvm::Value *emitArrayLength(const ArrayType *arrayType,
2641                                QualType &baseType,
2642                                Address &addr);
2643 
2644   /// EmitVLASize - Capture all the sizes for the VLA expressions in
2645   /// the given variably-modified type and store them in the VLASizeMap.
2646   ///
2647   /// This function can be called with a null (unreachable) insert point.
2648   void EmitVariablyModifiedType(QualType Ty);
2649 
2650   struct VlaSizePair {
2651     llvm::Value *NumElts;
2652     QualType Type;
2653 
2654     VlaSizePair(llvm::Value *NE, QualType T) : NumElts(NE), Type(T) {}
2655   };
2656 
2657   /// Return the number of elements for a single dimension
2658   /// for the given array type.
2659   VlaSizePair getVLAElements1D(const VariableArrayType *vla);
2660   VlaSizePair getVLAElements1D(QualType vla);
2661 
2662   /// Returns an LLVM value that corresponds to the size,
2663   /// in non-variably-sized elements, of a variable length array type,
2664   /// plus that largest non-variably-sized element type.  Assumes that
2665   /// the type has already been emitted with EmitVariablyModifiedType.
2666   VlaSizePair getVLASize(const VariableArrayType *vla);
2667   VlaSizePair getVLASize(QualType vla);
2668 
2669   /// LoadCXXThis - Load the value of 'this'. This function is only valid while
2670   /// generating code for an C++ member function.
2671   llvm::Value *LoadCXXThis() {
2672     assert(CXXThisValue && "no 'this' value for this function");
2673     return CXXThisValue;
2674   }
2675   Address LoadCXXThisAddress();
2676 
2677   /// LoadCXXVTT - Load the VTT parameter to base constructors/destructors have
2678   /// virtual bases.
2679   // FIXME: Every place that calls LoadCXXVTT is something
2680   // that needs to be abstracted properly.
2681   llvm::Value *LoadCXXVTT() {
2682     assert(CXXStructorImplicitParamValue && "no VTT value for this function");
2683     return CXXStructorImplicitParamValue;
2684   }
2685 
2686   /// GetAddressOfBaseOfCompleteClass - Convert the given pointer to a
2687   /// complete class to the given direct base.
2688   Address
2689   GetAddressOfDirectBaseInCompleteClass(Address Value,
2690                                         const CXXRecordDecl *Derived,
2691                                         const CXXRecordDecl *Base,
2692                                         bool BaseIsVirtual);
2693 
2694   static bool ShouldNullCheckClassCastValue(const CastExpr *Cast);
2695 
2696   /// GetAddressOfBaseClass - This function will add the necessary delta to the
2697   /// load of 'this' and returns address of the base class.
2698   Address GetAddressOfBaseClass(Address Value,
2699                                 const CXXRecordDecl *Derived,
2700                                 CastExpr::path_const_iterator PathBegin,
2701                                 CastExpr::path_const_iterator PathEnd,
2702                                 bool NullCheckValue, SourceLocation Loc);
2703 
2704   Address GetAddressOfDerivedClass(Address Value,
2705                                    const CXXRecordDecl *Derived,
2706                                    CastExpr::path_const_iterator PathBegin,
2707                                    CastExpr::path_const_iterator PathEnd,
2708                                    bool NullCheckValue);
2709 
2710   /// GetVTTParameter - Return the VTT parameter that should be passed to a
2711   /// base constructor/destructor with virtual bases.
2712   /// FIXME: VTTs are Itanium ABI-specific, so the definition should move
2713   /// to ItaniumCXXABI.cpp together with all the references to VTT.
2714   llvm::Value *GetVTTParameter(GlobalDecl GD, bool ForVirtualBase,
2715                                bool Delegating);
2716 
2717   void EmitDelegateCXXConstructorCall(const CXXConstructorDecl *Ctor,
2718                                       CXXCtorType CtorType,
2719                                       const FunctionArgList &Args,
2720                                       SourceLocation Loc);
2721   // It's important not to confuse this and the previous function. Delegating
2722   // constructors are the C++0x feature. The constructor delegate optimization
2723   // is used to reduce duplication in the base and complete consturctors where
2724   // they are substantially the same.
2725   void EmitDelegatingCXXConstructorCall(const CXXConstructorDecl *Ctor,
2726                                         const FunctionArgList &Args);
2727 
2728   /// Emit a call to an inheriting constructor (that is, one that invokes a
2729   /// constructor inherited from a base class) by inlining its definition. This
2730   /// is necessary if the ABI does not support forwarding the arguments to the
2731   /// base class constructor (because they're variadic or similar).
2732   void EmitInlinedInheritingCXXConstructorCall(const CXXConstructorDecl *Ctor,
2733                                                CXXCtorType CtorType,
2734                                                bool ForVirtualBase,
2735                                                bool Delegating,
2736                                                CallArgList &Args);
2737 
2738   /// Emit a call to a constructor inherited from a base class, passing the
2739   /// current constructor's arguments along unmodified (without even making
2740   /// a copy).
2741   void EmitInheritedCXXConstructorCall(const CXXConstructorDecl *D,
2742                                        bool ForVirtualBase, Address This,
2743                                        bool InheritedFromVBase,
2744                                        const CXXInheritedCtorInitExpr *E);
2745 
2746   void EmitCXXConstructorCall(const CXXConstructorDecl *D, CXXCtorType Type,
2747                               bool ForVirtualBase, bool Delegating,
2748                               AggValueSlot ThisAVS, const CXXConstructExpr *E);
2749 
2750   void EmitCXXConstructorCall(const CXXConstructorDecl *D, CXXCtorType Type,
2751                               bool ForVirtualBase, bool Delegating,
2752                               Address This, CallArgList &Args,
2753                               AggValueSlot::Overlap_t Overlap,
2754                               SourceLocation Loc, bool NewPointerIsChecked);
2755 
2756   /// Emit assumption load for all bases. Requires to be be called only on
2757   /// most-derived class and not under construction of the object.
2758   void EmitVTableAssumptionLoads(const CXXRecordDecl *ClassDecl, Address This);
2759 
2760   /// Emit assumption that vptr load == global vtable.
2761   void EmitVTableAssumptionLoad(const VPtr &vptr, Address This);
2762 
2763   void EmitSynthesizedCXXCopyCtorCall(const CXXConstructorDecl *D,
2764                                       Address This, Address Src,
2765                                       const CXXConstructExpr *E);
2766 
2767   void EmitCXXAggrConstructorCall(const CXXConstructorDecl *D,
2768                                   const ArrayType *ArrayTy,
2769                                   Address ArrayPtr,
2770                                   const CXXConstructExpr *E,
2771                                   bool NewPointerIsChecked,
2772                                   bool ZeroInitialization = false);
2773 
2774   void EmitCXXAggrConstructorCall(const CXXConstructorDecl *D,
2775                                   llvm::Value *NumElements,
2776                                   Address ArrayPtr,
2777                                   const CXXConstructExpr *E,
2778                                   bool NewPointerIsChecked,
2779                                   bool ZeroInitialization = false);
2780 
2781   static Destroyer destroyCXXObject;
2782 
2783   void EmitCXXDestructorCall(const CXXDestructorDecl *D, CXXDtorType Type,
2784                              bool ForVirtualBase, bool Delegating, Address This,
2785                              QualType ThisTy);
2786 
2787   void EmitNewArrayInitializer(const CXXNewExpr *E, QualType elementType,
2788                                llvm::Type *ElementTy, Address NewPtr,
2789                                llvm::Value *NumElements,
2790                                llvm::Value *AllocSizeWithoutCookie);
2791 
2792   void EmitCXXTemporary(const CXXTemporary *Temporary, QualType TempType,
2793                         Address Ptr);
2794 
2795   llvm::Value *EmitLifetimeStart(uint64_t Size, llvm::Value *Addr);
2796   void EmitLifetimeEnd(llvm::Value *Size, llvm::Value *Addr);
2797 
2798   llvm::Value *EmitCXXNewExpr(const CXXNewExpr *E);
2799   void EmitCXXDeleteExpr(const CXXDeleteExpr *E);
2800 
2801   void EmitDeleteCall(const FunctionDecl *DeleteFD, llvm::Value *Ptr,
2802                       QualType DeleteTy, llvm::Value *NumElements = nullptr,
2803                       CharUnits CookieSize = CharUnits());
2804 
2805   RValue EmitBuiltinNewDeleteCall(const FunctionProtoType *Type,
2806                                   const CallExpr *TheCallExpr, bool IsDelete);
2807 
2808   llvm::Value *EmitCXXTypeidExpr(const CXXTypeidExpr *E);
2809   llvm::Value *EmitDynamicCast(Address V, const CXXDynamicCastExpr *DCE);
2810   Address EmitCXXUuidofExpr(const CXXUuidofExpr *E);
2811 
2812   /// Situations in which we might emit a check for the suitability of a
2813   /// pointer or glvalue. Needs to be kept in sync with ubsan_handlers.cpp in
2814   /// compiler-rt.
2815   enum TypeCheckKind {
2816     /// Checking the operand of a load. Must be suitably sized and aligned.
2817     TCK_Load,
2818     /// Checking the destination of a store. Must be suitably sized and aligned.
2819     TCK_Store,
2820     /// Checking the bound value in a reference binding. Must be suitably sized
2821     /// and aligned, but is not required to refer to an object (until the
2822     /// reference is used), per core issue 453.
2823     TCK_ReferenceBinding,
2824     /// Checking the object expression in a non-static data member access. Must
2825     /// be an object within its lifetime.
2826     TCK_MemberAccess,
2827     /// Checking the 'this' pointer for a call to a non-static member function.
2828     /// Must be an object within its lifetime.
2829     TCK_MemberCall,
2830     /// Checking the 'this' pointer for a constructor call.
2831     TCK_ConstructorCall,
2832     /// Checking the operand of a static_cast to a derived pointer type. Must be
2833     /// null or an object within its lifetime.
2834     TCK_DowncastPointer,
2835     /// Checking the operand of a static_cast to a derived reference type. Must
2836     /// be an object within its lifetime.
2837     TCK_DowncastReference,
2838     /// Checking the operand of a cast to a base object. Must be suitably sized
2839     /// and aligned.
2840     TCK_Upcast,
2841     /// Checking the operand of a cast to a virtual base object. Must be an
2842     /// object within its lifetime.
2843     TCK_UpcastToVirtualBase,
2844     /// Checking the value assigned to a _Nonnull pointer. Must not be null.
2845     TCK_NonnullAssign,
2846     /// Checking the operand of a dynamic_cast or a typeid expression.  Must be
2847     /// null or an object within its lifetime.
2848     TCK_DynamicOperation
2849   };
2850 
2851   /// Determine whether the pointer type check \p TCK permits null pointers.
2852   static bool isNullPointerAllowed(TypeCheckKind TCK);
2853 
2854   /// Determine whether the pointer type check \p TCK requires a vptr check.
2855   static bool isVptrCheckRequired(TypeCheckKind TCK, QualType Ty);
2856 
2857   /// Whether any type-checking sanitizers are enabled. If \c false,
2858   /// calls to EmitTypeCheck can be skipped.
2859   bool sanitizePerformTypeCheck() const;
2860 
2861   /// Emit a check that \p V is the address of storage of the
2862   /// appropriate size and alignment for an object of type \p Type
2863   /// (or if ArraySize is provided, for an array of that bound).
2864   void EmitTypeCheck(TypeCheckKind TCK, SourceLocation Loc, llvm::Value *V,
2865                      QualType Type, CharUnits Alignment = CharUnits::Zero(),
2866                      SanitizerSet SkippedChecks = SanitizerSet(),
2867                      llvm::Value *ArraySize = nullptr);
2868 
2869   /// Emit a check that \p Base points into an array object, which
2870   /// we can access at index \p Index. \p Accessed should be \c false if we
2871   /// this expression is used as an lvalue, for instance in "&Arr[Idx]".
2872   void EmitBoundsCheck(const Expr *E, const Expr *Base, llvm::Value *Index,
2873                        QualType IndexType, bool Accessed);
2874 
2875   llvm::Value *EmitScalarPrePostIncDec(const UnaryOperator *E, LValue LV,
2876                                        bool isInc, bool isPre);
2877   ComplexPairTy EmitComplexPrePostIncDec(const UnaryOperator *E, LValue LV,
2878                                          bool isInc, bool isPre);
2879 
2880   /// Converts Location to a DebugLoc, if debug information is enabled.
2881   llvm::DebugLoc SourceLocToDebugLoc(SourceLocation Location);
2882 
2883   /// Get the record field index as represented in debug info.
2884   unsigned getDebugInfoFIndex(const RecordDecl *Rec, unsigned FieldIndex);
2885 
2886 
2887   //===--------------------------------------------------------------------===//
2888   //                            Declaration Emission
2889   //===--------------------------------------------------------------------===//
2890 
2891   /// EmitDecl - Emit a declaration.
2892   ///
2893   /// This function can be called with a null (unreachable) insert point.
2894   void EmitDecl(const Decl &D);
2895 
2896   /// EmitVarDecl - Emit a local variable declaration.
2897   ///
2898   /// This function can be called with a null (unreachable) insert point.
2899   void EmitVarDecl(const VarDecl &D);
2900 
2901   void EmitScalarInit(const Expr *init, const ValueDecl *D, LValue lvalue,
2902                       bool capturedByInit);
2903 
2904   typedef void SpecialInitFn(CodeGenFunction &Init, const VarDecl &D,
2905                              llvm::Value *Address);
2906 
2907   /// Determine whether the given initializer is trivial in the sense
2908   /// that it requires no code to be generated.
2909   bool isTrivialInitializer(const Expr *Init);
2910 
2911   /// EmitAutoVarDecl - Emit an auto variable declaration.
2912   ///
2913   /// This function can be called with a null (unreachable) insert point.
2914   void EmitAutoVarDecl(const VarDecl &D);
2915 
2916   class AutoVarEmission {
2917     friend class CodeGenFunction;
2918 
2919     const VarDecl *Variable;
2920 
2921     /// The address of the alloca for languages with explicit address space
2922     /// (e.g. OpenCL) or alloca casted to generic pointer for address space
2923     /// agnostic languages (e.g. C++). Invalid if the variable was emitted
2924     /// as a global constant.
2925     Address Addr;
2926 
2927     llvm::Value *NRVOFlag;
2928 
2929     /// True if the variable is a __block variable that is captured by an
2930     /// escaping block.
2931     bool IsEscapingByRef;
2932 
2933     /// True if the variable is of aggregate type and has a constant
2934     /// initializer.
2935     bool IsConstantAggregate;
2936 
2937     /// Non-null if we should use lifetime annotations.
2938     llvm::Value *SizeForLifetimeMarkers;
2939 
2940     /// Address with original alloca instruction. Invalid if the variable was
2941     /// emitted as a global constant.
2942     Address AllocaAddr;
2943 
2944     struct Invalid {};
2945     AutoVarEmission(Invalid)
2946         : Variable(nullptr), Addr(Address::invalid()),
2947           AllocaAddr(Address::invalid()) {}
2948 
2949     AutoVarEmission(const VarDecl &variable)
2950         : Variable(&variable), Addr(Address::invalid()), NRVOFlag(nullptr),
2951           IsEscapingByRef(false), IsConstantAggregate(false),
2952           SizeForLifetimeMarkers(nullptr), AllocaAddr(Address::invalid()) {}
2953 
2954     bool wasEmittedAsGlobal() const { return !Addr.isValid(); }
2955 
2956   public:
2957     static AutoVarEmission invalid() { return AutoVarEmission(Invalid()); }
2958 
2959     bool useLifetimeMarkers() const {
2960       return SizeForLifetimeMarkers != nullptr;
2961     }
2962     llvm::Value *getSizeForLifetimeMarkers() const {
2963       assert(useLifetimeMarkers());
2964       return SizeForLifetimeMarkers;
2965     }
2966 
2967     /// Returns the raw, allocated address, which is not necessarily
2968     /// the address of the object itself. It is casted to default
2969     /// address space for address space agnostic languages.
2970     Address getAllocatedAddress() const {
2971       return Addr;
2972     }
2973 
2974     /// Returns the address for the original alloca instruction.
2975     Address getOriginalAllocatedAddress() const { return AllocaAddr; }
2976 
2977     /// Returns the address of the object within this declaration.
2978     /// Note that this does not chase the forwarding pointer for
2979     /// __block decls.
2980     Address getObjectAddress(CodeGenFunction &CGF) const {
2981       if (!IsEscapingByRef) return Addr;
2982 
2983       return CGF.emitBlockByrefAddress(Addr, Variable, /*forward*/ false);
2984     }
2985   };
2986   AutoVarEmission EmitAutoVarAlloca(const VarDecl &var);
2987   void EmitAutoVarInit(const AutoVarEmission &emission);
2988   void EmitAutoVarCleanups(const AutoVarEmission &emission);
2989   void emitAutoVarTypeCleanup(const AutoVarEmission &emission,
2990                               QualType::DestructionKind dtorKind);
2991 
2992   /// Emits the alloca and debug information for the size expressions for each
2993   /// dimension of an array. It registers the association of its (1-dimensional)
2994   /// QualTypes and size expression's debug node, so that CGDebugInfo can
2995   /// reference this node when creating the DISubrange object to describe the
2996   /// array types.
2997   void EmitAndRegisterVariableArrayDimensions(CGDebugInfo *DI,
2998                                               const VarDecl &D,
2999                                               bool EmitDebugInfo);
3000 
3001   void EmitStaticVarDecl(const VarDecl &D,
3002                          llvm::GlobalValue::LinkageTypes Linkage);
3003 
3004   class ParamValue {
3005     llvm::Value *Value;
3006     unsigned Alignment;
3007     ParamValue(llvm::Value *V, unsigned A) : Value(V), Alignment(A) {}
3008   public:
3009     static ParamValue forDirect(llvm::Value *value) {
3010       return ParamValue(value, 0);
3011     }
3012     static ParamValue forIndirect(Address addr) {
3013       assert(!addr.getAlignment().isZero());
3014       return ParamValue(addr.getPointer(), addr.getAlignment().getQuantity());
3015     }
3016 
3017     bool isIndirect() const { return Alignment != 0; }
3018     llvm::Value *getAnyValue() const { return Value; }
3019 
3020     llvm::Value *getDirectValue() const {
3021       assert(!isIndirect());
3022       return Value;
3023     }
3024 
3025     Address getIndirectAddress() const {
3026       assert(isIndirect());
3027       return Address(Value, CharUnits::fromQuantity(Alignment));
3028     }
3029   };
3030 
3031   /// EmitParmDecl - Emit a ParmVarDecl or an ImplicitParamDecl.
3032   void EmitParmDecl(const VarDecl &D, ParamValue Arg, unsigned ArgNo);
3033 
3034   /// protectFromPeepholes - Protect a value that we're intending to
3035   /// store to the side, but which will probably be used later, from
3036   /// aggressive peepholing optimizations that might delete it.
3037   ///
3038   /// Pass the result to unprotectFromPeepholes to declare that
3039   /// protection is no longer required.
3040   ///
3041   /// There's no particular reason why this shouldn't apply to
3042   /// l-values, it's just that no existing peepholes work on pointers.
3043   PeepholeProtection protectFromPeepholes(RValue rvalue);
3044   void unprotectFromPeepholes(PeepholeProtection protection);
3045 
3046   void emitAlignmentAssumptionCheck(llvm::Value *Ptr, QualType Ty,
3047                                     SourceLocation Loc,
3048                                     SourceLocation AssumptionLoc,
3049                                     llvm::Value *Alignment,
3050                                     llvm::Value *OffsetValue,
3051                                     llvm::Value *TheCheck,
3052                                     llvm::Instruction *Assumption);
3053 
3054   void emitAlignmentAssumption(llvm::Value *PtrValue, QualType Ty,
3055                                SourceLocation Loc, SourceLocation AssumptionLoc,
3056                                llvm::Value *Alignment,
3057                                llvm::Value *OffsetValue = nullptr);
3058 
3059   void emitAlignmentAssumption(llvm::Value *PtrValue, const Expr *E,
3060                                SourceLocation AssumptionLoc,
3061                                llvm::Value *Alignment,
3062                                llvm::Value *OffsetValue = nullptr);
3063 
3064   //===--------------------------------------------------------------------===//
3065   //                             Statement Emission
3066   //===--------------------------------------------------------------------===//
3067 
3068   /// EmitStopPoint - Emit a debug stoppoint if we are emitting debug info.
3069   void EmitStopPoint(const Stmt *S);
3070 
3071   /// EmitStmt - Emit the code for the statement \arg S. It is legal to call
3072   /// this function even if there is no current insertion point.
3073   ///
3074   /// This function may clear the current insertion point; callers should use
3075   /// EnsureInsertPoint if they wish to subsequently generate code without first
3076   /// calling EmitBlock, EmitBranch, or EmitStmt.
3077   void EmitStmt(const Stmt *S, ArrayRef<const Attr *> Attrs = None);
3078 
3079   /// EmitSimpleStmt - Try to emit a "simple" statement which does not
3080   /// necessarily require an insertion point or debug information; typically
3081   /// because the statement amounts to a jump or a container of other
3082   /// statements.
3083   ///
3084   /// \return True if the statement was handled.
3085   bool EmitSimpleStmt(const Stmt *S, ArrayRef<const Attr *> Attrs);
3086 
3087   Address EmitCompoundStmt(const CompoundStmt &S, bool GetLast = false,
3088                            AggValueSlot AVS = AggValueSlot::ignored());
3089   Address EmitCompoundStmtWithoutScope(const CompoundStmt &S,
3090                                        bool GetLast = false,
3091                                        AggValueSlot AVS =
3092                                                 AggValueSlot::ignored());
3093 
3094   /// EmitLabel - Emit the block for the given label. It is legal to call this
3095   /// function even if there is no current insertion point.
3096   void EmitLabel(const LabelDecl *D); // helper for EmitLabelStmt.
3097 
3098   void EmitLabelStmt(const LabelStmt &S);
3099   void EmitAttributedStmt(const AttributedStmt &S);
3100   void EmitGotoStmt(const GotoStmt &S);
3101   void EmitIndirectGotoStmt(const IndirectGotoStmt &S);
3102   void EmitIfStmt(const IfStmt &S);
3103 
3104   void EmitWhileStmt(const WhileStmt &S,
3105                      ArrayRef<const Attr *> Attrs = None);
3106   void EmitDoStmt(const DoStmt &S, ArrayRef<const Attr *> Attrs = None);
3107   void EmitForStmt(const ForStmt &S,
3108                    ArrayRef<const Attr *> Attrs = None);
3109   void EmitReturnStmt(const ReturnStmt &S);
3110   void EmitDeclStmt(const DeclStmt &S);
3111   void EmitBreakStmt(const BreakStmt &S);
3112   void EmitContinueStmt(const ContinueStmt &S);
3113   void EmitSwitchStmt(const SwitchStmt &S);
3114   void EmitDefaultStmt(const DefaultStmt &S, ArrayRef<const Attr *> Attrs);
3115   void EmitCaseStmt(const CaseStmt &S, ArrayRef<const Attr *> Attrs);
3116   void EmitCaseStmtRange(const CaseStmt &S, ArrayRef<const Attr *> Attrs);
3117   void EmitAsmStmt(const AsmStmt &S);
3118 
3119   void EmitObjCForCollectionStmt(const ObjCForCollectionStmt &S);
3120   void EmitObjCAtTryStmt(const ObjCAtTryStmt &S);
3121   void EmitObjCAtThrowStmt(const ObjCAtThrowStmt &S);
3122   void EmitObjCAtSynchronizedStmt(const ObjCAtSynchronizedStmt &S);
3123   void EmitObjCAutoreleasePoolStmt(const ObjCAutoreleasePoolStmt &S);
3124 
3125   void EmitCoroutineBody(const CoroutineBodyStmt &S);
3126   void EmitCoreturnStmt(const CoreturnStmt &S);
3127   RValue EmitCoawaitExpr(const CoawaitExpr &E,
3128                          AggValueSlot aggSlot = AggValueSlot::ignored(),
3129                          bool ignoreResult = false);
3130   LValue EmitCoawaitLValue(const CoawaitExpr *E);
3131   RValue EmitCoyieldExpr(const CoyieldExpr &E,
3132                          AggValueSlot aggSlot = AggValueSlot::ignored(),
3133                          bool ignoreResult = false);
3134   LValue EmitCoyieldLValue(const CoyieldExpr *E);
3135   RValue EmitCoroutineIntrinsic(const CallExpr *E, unsigned int IID);
3136 
3137   void EnterCXXTryStmt(const CXXTryStmt &S, bool IsFnTryBlock = false);
3138   void ExitCXXTryStmt(const CXXTryStmt &S, bool IsFnTryBlock = false);
3139 
3140   void EmitCXXTryStmt(const CXXTryStmt &S);
3141   void EmitSEHTryStmt(const SEHTryStmt &S);
3142   void EmitSEHLeaveStmt(const SEHLeaveStmt &S);
3143   void EnterSEHTryStmt(const SEHTryStmt &S);
3144   void ExitSEHTryStmt(const SEHTryStmt &S);
3145 
3146   void pushSEHCleanup(CleanupKind kind,
3147                       llvm::Function *FinallyFunc);
3148   void startOutlinedSEHHelper(CodeGenFunction &ParentCGF, bool IsFilter,
3149                               const Stmt *OutlinedStmt);
3150 
3151   llvm::Function *GenerateSEHFilterFunction(CodeGenFunction &ParentCGF,
3152                                             const SEHExceptStmt &Except);
3153 
3154   llvm::Function *GenerateSEHFinallyFunction(CodeGenFunction &ParentCGF,
3155                                              const SEHFinallyStmt &Finally);
3156 
3157   void EmitSEHExceptionCodeSave(CodeGenFunction &ParentCGF,
3158                                 llvm::Value *ParentFP,
3159                                 llvm::Value *EntryEBP);
3160   llvm::Value *EmitSEHExceptionCode();
3161   llvm::Value *EmitSEHExceptionInfo();
3162   llvm::Value *EmitSEHAbnormalTermination();
3163 
3164   /// Emit simple code for OpenMP directives in Simd-only mode.
3165   void EmitSimpleOMPExecutableDirective(const OMPExecutableDirective &D);
3166 
3167   /// Scan the outlined statement for captures from the parent function. For
3168   /// each capture, mark the capture as escaped and emit a call to
3169   /// llvm.localrecover. Insert the localrecover result into the LocalDeclMap.
3170   void EmitCapturedLocals(CodeGenFunction &ParentCGF, const Stmt *OutlinedStmt,
3171                           bool IsFilter);
3172 
3173   /// Recovers the address of a local in a parent function. ParentVar is the
3174   /// address of the variable used in the immediate parent function. It can
3175   /// either be an alloca or a call to llvm.localrecover if there are nested
3176   /// outlined functions. ParentFP is the frame pointer of the outermost parent
3177   /// frame.
3178   Address recoverAddrOfEscapedLocal(CodeGenFunction &ParentCGF,
3179                                     Address ParentVar,
3180                                     llvm::Value *ParentFP);
3181 
3182   void EmitCXXForRangeStmt(const CXXForRangeStmt &S,
3183                            ArrayRef<const Attr *> Attrs = None);
3184 
3185   /// Controls insertion of cancellation exit blocks in worksharing constructs.
3186   class OMPCancelStackRAII {
3187     CodeGenFunction &CGF;
3188 
3189   public:
3190     OMPCancelStackRAII(CodeGenFunction &CGF, OpenMPDirectiveKind Kind,
3191                        bool HasCancel)
3192         : CGF(CGF) {
3193       CGF.OMPCancelStack.enter(CGF, Kind, HasCancel);
3194     }
3195     ~OMPCancelStackRAII() { CGF.OMPCancelStack.exit(CGF); }
3196   };
3197 
3198   /// Returns calculated size of the specified type.
3199   llvm::Value *getTypeSize(QualType Ty);
3200   LValue InitCapturedStruct(const CapturedStmt &S);
3201   llvm::Function *EmitCapturedStmt(const CapturedStmt &S, CapturedRegionKind K);
3202   llvm::Function *GenerateCapturedStmtFunction(const CapturedStmt &S);
3203   Address GenerateCapturedStmtArgument(const CapturedStmt &S);
3204   llvm::Function *GenerateOpenMPCapturedStmtFunction(const CapturedStmt &S,
3205                                                      SourceLocation Loc);
3206   void GenerateOpenMPCapturedVars(const CapturedStmt &S,
3207                                   SmallVectorImpl<llvm::Value *> &CapturedVars);
3208   void emitOMPSimpleStore(LValue LVal, RValue RVal, QualType RValTy,
3209                           SourceLocation Loc);
3210   /// Perform element by element copying of arrays with type \a
3211   /// OriginalType from \a SrcAddr to \a DestAddr using copying procedure
3212   /// generated by \a CopyGen.
3213   ///
3214   /// \param DestAddr Address of the destination array.
3215   /// \param SrcAddr Address of the source array.
3216   /// \param OriginalType Type of destination and source arrays.
3217   /// \param CopyGen Copying procedure that copies value of single array element
3218   /// to another single array element.
3219   void EmitOMPAggregateAssign(
3220       Address DestAddr, Address SrcAddr, QualType OriginalType,
3221       const llvm::function_ref<void(Address, Address)> CopyGen);
3222   /// Emit proper copying of data from one variable to another.
3223   ///
3224   /// \param OriginalType Original type of the copied variables.
3225   /// \param DestAddr Destination address.
3226   /// \param SrcAddr Source address.
3227   /// \param DestVD Destination variable used in \a CopyExpr (for arrays, has
3228   /// type of the base array element).
3229   /// \param SrcVD Source variable used in \a CopyExpr (for arrays, has type of
3230   /// the base array element).
3231   /// \param Copy Actual copygin expression for copying data from \a SrcVD to \a
3232   /// DestVD.
3233   void EmitOMPCopy(QualType OriginalType,
3234                    Address DestAddr, Address SrcAddr,
3235                    const VarDecl *DestVD, const VarDecl *SrcVD,
3236                    const Expr *Copy);
3237   /// Emit atomic update code for constructs: \a X = \a X \a BO \a E or
3238   /// \a X = \a E \a BO \a E.
3239   ///
3240   /// \param X Value to be updated.
3241   /// \param E Update value.
3242   /// \param BO Binary operation for update operation.
3243   /// \param IsXLHSInRHSPart true if \a X is LHS in RHS part of the update
3244   /// expression, false otherwise.
3245   /// \param AO Atomic ordering of the generated atomic instructions.
3246   /// \param CommonGen Code generator for complex expressions that cannot be
3247   /// expressed through atomicrmw instruction.
3248   /// \returns <true, OldAtomicValue> if simple 'atomicrmw' instruction was
3249   /// generated, <false, RValue::get(nullptr)> otherwise.
3250   std::pair<bool, RValue> EmitOMPAtomicSimpleUpdateExpr(
3251       LValue X, RValue E, BinaryOperatorKind BO, bool IsXLHSInRHSPart,
3252       llvm::AtomicOrdering AO, SourceLocation Loc,
3253       const llvm::function_ref<RValue(RValue)> CommonGen);
3254   bool EmitOMPFirstprivateClause(const OMPExecutableDirective &D,
3255                                  OMPPrivateScope &PrivateScope);
3256   void EmitOMPPrivateClause(const OMPExecutableDirective &D,
3257                             OMPPrivateScope &PrivateScope);
3258   void EmitOMPUseDevicePtrClause(
3259       const OMPUseDevicePtrClause &C, OMPPrivateScope &PrivateScope,
3260       const llvm::DenseMap<const ValueDecl *, Address> &CaptureDeviceAddrMap);
3261   void EmitOMPUseDeviceAddrClause(
3262       const OMPUseDeviceAddrClause &C, OMPPrivateScope &PrivateScope,
3263       const llvm::DenseMap<const ValueDecl *, Address> &CaptureDeviceAddrMap);
3264   /// Emit code for copyin clause in \a D directive. The next code is
3265   /// generated at the start of outlined functions for directives:
3266   /// \code
3267   /// threadprivate_var1 = master_threadprivate_var1;
3268   /// operator=(threadprivate_var2, master_threadprivate_var2);
3269   /// ...
3270   /// __kmpc_barrier(&loc, global_tid);
3271   /// \endcode
3272   ///
3273   /// \param D OpenMP directive possibly with 'copyin' clause(s).
3274   /// \returns true if at least one copyin variable is found, false otherwise.
3275   bool EmitOMPCopyinClause(const OMPExecutableDirective &D);
3276   /// Emit initial code for lastprivate variables. If some variable is
3277   /// not also firstprivate, then the default initialization is used. Otherwise
3278   /// initialization of this variable is performed by EmitOMPFirstprivateClause
3279   /// method.
3280   ///
3281   /// \param D Directive that may have 'lastprivate' directives.
3282   /// \param PrivateScope Private scope for capturing lastprivate variables for
3283   /// proper codegen in internal captured statement.
3284   ///
3285   /// \returns true if there is at least one lastprivate variable, false
3286   /// otherwise.
3287   bool EmitOMPLastprivateClauseInit(const OMPExecutableDirective &D,
3288                                     OMPPrivateScope &PrivateScope);
3289   /// Emit final copying of lastprivate values to original variables at
3290   /// the end of the worksharing or simd directive.
3291   ///
3292   /// \param D Directive that has at least one 'lastprivate' directives.
3293   /// \param IsLastIterCond Boolean condition that must be set to 'i1 true' if
3294   /// it is the last iteration of the loop code in associated directive, or to
3295   /// 'i1 false' otherwise. If this item is nullptr, no final check is required.
3296   void EmitOMPLastprivateClauseFinal(const OMPExecutableDirective &D,
3297                                      bool NoFinals,
3298                                      llvm::Value *IsLastIterCond = nullptr);
3299   /// Emit initial code for linear clauses.
3300   void EmitOMPLinearClause(const OMPLoopDirective &D,
3301                            CodeGenFunction::OMPPrivateScope &PrivateScope);
3302   /// Emit final code for linear clauses.
3303   /// \param CondGen Optional conditional code for final part of codegen for
3304   /// linear clause.
3305   void EmitOMPLinearClauseFinal(
3306       const OMPLoopDirective &D,
3307       const llvm::function_ref<llvm::Value *(CodeGenFunction &)> CondGen);
3308   /// Emit initial code for reduction variables. Creates reduction copies
3309   /// and initializes them with the values according to OpenMP standard.
3310   ///
3311   /// \param D Directive (possibly) with the 'reduction' clause.
3312   /// \param PrivateScope Private scope for capturing reduction variables for
3313   /// proper codegen in internal captured statement.
3314   ///
3315   void EmitOMPReductionClauseInit(const OMPExecutableDirective &D,
3316                                   OMPPrivateScope &PrivateScope,
3317                                   bool ForInscan = false);
3318   /// Emit final update of reduction values to original variables at
3319   /// the end of the directive.
3320   ///
3321   /// \param D Directive that has at least one 'reduction' directives.
3322   /// \param ReductionKind The kind of reduction to perform.
3323   void EmitOMPReductionClauseFinal(const OMPExecutableDirective &D,
3324                                    const OpenMPDirectiveKind ReductionKind);
3325   /// Emit initial code for linear variables. Creates private copies
3326   /// and initializes them with the values according to OpenMP standard.
3327   ///
3328   /// \param D Directive (possibly) with the 'linear' clause.
3329   /// \return true if at least one linear variable is found that should be
3330   /// initialized with the value of the original variable, false otherwise.
3331   bool EmitOMPLinearClauseInit(const OMPLoopDirective &D);
3332 
3333   typedef const llvm::function_ref<void(CodeGenFunction & /*CGF*/,
3334                                         llvm::Function * /*OutlinedFn*/,
3335                                         const OMPTaskDataTy & /*Data*/)>
3336       TaskGenTy;
3337   void EmitOMPTaskBasedDirective(const OMPExecutableDirective &S,
3338                                  const OpenMPDirectiveKind CapturedRegion,
3339                                  const RegionCodeGenTy &BodyGen,
3340                                  const TaskGenTy &TaskGen, OMPTaskDataTy &Data);
3341   struct OMPTargetDataInfo {
3342     Address BasePointersArray = Address::invalid();
3343     Address PointersArray = Address::invalid();
3344     Address SizesArray = Address::invalid();
3345     Address MappersArray = Address::invalid();
3346     unsigned NumberOfTargetItems = 0;
3347     explicit OMPTargetDataInfo() = default;
3348     OMPTargetDataInfo(Address BasePointersArray, Address PointersArray,
3349                       Address SizesArray, Address MappersArray,
3350                       unsigned NumberOfTargetItems)
3351         : BasePointersArray(BasePointersArray), PointersArray(PointersArray),
3352           SizesArray(SizesArray), MappersArray(MappersArray),
3353           NumberOfTargetItems(NumberOfTargetItems) {}
3354   };
3355   void EmitOMPTargetTaskBasedDirective(const OMPExecutableDirective &S,
3356                                        const RegionCodeGenTy &BodyGen,
3357                                        OMPTargetDataInfo &InputInfo);
3358 
3359   void EmitOMPParallelDirective(const OMPParallelDirective &S);
3360   void EmitOMPSimdDirective(const OMPSimdDirective &S);
3361   void EmitOMPForDirective(const OMPForDirective &S);
3362   void EmitOMPForSimdDirective(const OMPForSimdDirective &S);
3363   void EmitOMPSectionsDirective(const OMPSectionsDirective &S);
3364   void EmitOMPSectionDirective(const OMPSectionDirective &S);
3365   void EmitOMPSingleDirective(const OMPSingleDirective &S);
3366   void EmitOMPMasterDirective(const OMPMasterDirective &S);
3367   void EmitOMPCriticalDirective(const OMPCriticalDirective &S);
3368   void EmitOMPParallelForDirective(const OMPParallelForDirective &S);
3369   void EmitOMPParallelForSimdDirective(const OMPParallelForSimdDirective &S);
3370   void EmitOMPParallelSectionsDirective(const OMPParallelSectionsDirective &S);
3371   void EmitOMPParallelMasterDirective(const OMPParallelMasterDirective &S);
3372   void EmitOMPTaskDirective(const OMPTaskDirective &S);
3373   void EmitOMPTaskyieldDirective(const OMPTaskyieldDirective &S);
3374   void EmitOMPBarrierDirective(const OMPBarrierDirective &S);
3375   void EmitOMPTaskwaitDirective(const OMPTaskwaitDirective &S);
3376   void EmitOMPTaskgroupDirective(const OMPTaskgroupDirective &S);
3377   void EmitOMPFlushDirective(const OMPFlushDirective &S);
3378   void EmitOMPDepobjDirective(const OMPDepobjDirective &S);
3379   void EmitOMPScanDirective(const OMPScanDirective &S);
3380   void EmitOMPOrderedDirective(const OMPOrderedDirective &S);
3381   void EmitOMPAtomicDirective(const OMPAtomicDirective &S);
3382   void EmitOMPTargetDirective(const OMPTargetDirective &S);
3383   void EmitOMPTargetDataDirective(const OMPTargetDataDirective &S);
3384   void EmitOMPTargetEnterDataDirective(const OMPTargetEnterDataDirective &S);
3385   void EmitOMPTargetExitDataDirective(const OMPTargetExitDataDirective &S);
3386   void EmitOMPTargetUpdateDirective(const OMPTargetUpdateDirective &S);
3387   void EmitOMPTargetParallelDirective(const OMPTargetParallelDirective &S);
3388   void
3389   EmitOMPTargetParallelForDirective(const OMPTargetParallelForDirective &S);
3390   void EmitOMPTeamsDirective(const OMPTeamsDirective &S);
3391   void
3392   EmitOMPCancellationPointDirective(const OMPCancellationPointDirective &S);
3393   void EmitOMPCancelDirective(const OMPCancelDirective &S);
3394   void EmitOMPTaskLoopBasedDirective(const OMPLoopDirective &S);
3395   void EmitOMPTaskLoopDirective(const OMPTaskLoopDirective &S);
3396   void EmitOMPTaskLoopSimdDirective(const OMPTaskLoopSimdDirective &S);
3397   void EmitOMPMasterTaskLoopDirective(const OMPMasterTaskLoopDirective &S);
3398   void
3399   EmitOMPMasterTaskLoopSimdDirective(const OMPMasterTaskLoopSimdDirective &S);
3400   void EmitOMPParallelMasterTaskLoopDirective(
3401       const OMPParallelMasterTaskLoopDirective &S);
3402   void EmitOMPParallelMasterTaskLoopSimdDirective(
3403       const OMPParallelMasterTaskLoopSimdDirective &S);
3404   void EmitOMPDistributeDirective(const OMPDistributeDirective &S);
3405   void EmitOMPDistributeParallelForDirective(
3406       const OMPDistributeParallelForDirective &S);
3407   void EmitOMPDistributeParallelForSimdDirective(
3408       const OMPDistributeParallelForSimdDirective &S);
3409   void EmitOMPDistributeSimdDirective(const OMPDistributeSimdDirective &S);
3410   void EmitOMPTargetParallelForSimdDirective(
3411       const OMPTargetParallelForSimdDirective &S);
3412   void EmitOMPTargetSimdDirective(const OMPTargetSimdDirective &S);
3413   void EmitOMPTeamsDistributeDirective(const OMPTeamsDistributeDirective &S);
3414   void
3415   EmitOMPTeamsDistributeSimdDirective(const OMPTeamsDistributeSimdDirective &S);
3416   void EmitOMPTeamsDistributeParallelForSimdDirective(
3417       const OMPTeamsDistributeParallelForSimdDirective &S);
3418   void EmitOMPTeamsDistributeParallelForDirective(
3419       const OMPTeamsDistributeParallelForDirective &S);
3420   void EmitOMPTargetTeamsDirective(const OMPTargetTeamsDirective &S);
3421   void EmitOMPTargetTeamsDistributeDirective(
3422       const OMPTargetTeamsDistributeDirective &S);
3423   void EmitOMPTargetTeamsDistributeParallelForDirective(
3424       const OMPTargetTeamsDistributeParallelForDirective &S);
3425   void EmitOMPTargetTeamsDistributeParallelForSimdDirective(
3426       const OMPTargetTeamsDistributeParallelForSimdDirective &S);
3427   void EmitOMPTargetTeamsDistributeSimdDirective(
3428       const OMPTargetTeamsDistributeSimdDirective &S);
3429 
3430   /// Emit device code for the target directive.
3431   static void EmitOMPTargetDeviceFunction(CodeGenModule &CGM,
3432                                           StringRef ParentName,
3433                                           const OMPTargetDirective &S);
3434   static void
3435   EmitOMPTargetParallelDeviceFunction(CodeGenModule &CGM, StringRef ParentName,
3436                                       const OMPTargetParallelDirective &S);
3437   /// Emit device code for the target parallel for directive.
3438   static void EmitOMPTargetParallelForDeviceFunction(
3439       CodeGenModule &CGM, StringRef ParentName,
3440       const OMPTargetParallelForDirective &S);
3441   /// Emit device code for the target parallel for simd directive.
3442   static void EmitOMPTargetParallelForSimdDeviceFunction(
3443       CodeGenModule &CGM, StringRef ParentName,
3444       const OMPTargetParallelForSimdDirective &S);
3445   /// Emit device code for the target teams directive.
3446   static void
3447   EmitOMPTargetTeamsDeviceFunction(CodeGenModule &CGM, StringRef ParentName,
3448                                    const OMPTargetTeamsDirective &S);
3449   /// Emit device code for the target teams distribute directive.
3450   static void EmitOMPTargetTeamsDistributeDeviceFunction(
3451       CodeGenModule &CGM, StringRef ParentName,
3452       const OMPTargetTeamsDistributeDirective &S);
3453   /// Emit device code for the target teams distribute simd directive.
3454   static void EmitOMPTargetTeamsDistributeSimdDeviceFunction(
3455       CodeGenModule &CGM, StringRef ParentName,
3456       const OMPTargetTeamsDistributeSimdDirective &S);
3457   /// Emit device code for the target simd directive.
3458   static void EmitOMPTargetSimdDeviceFunction(CodeGenModule &CGM,
3459                                               StringRef ParentName,
3460                                               const OMPTargetSimdDirective &S);
3461   /// Emit device code for the target teams distribute parallel for simd
3462   /// directive.
3463   static void EmitOMPTargetTeamsDistributeParallelForSimdDeviceFunction(
3464       CodeGenModule &CGM, StringRef ParentName,
3465       const OMPTargetTeamsDistributeParallelForSimdDirective &S);
3466 
3467   static void EmitOMPTargetTeamsDistributeParallelForDeviceFunction(
3468       CodeGenModule &CGM, StringRef ParentName,
3469       const OMPTargetTeamsDistributeParallelForDirective &S);
3470   /// Emit inner loop of the worksharing/simd construct.
3471   ///
3472   /// \param S Directive, for which the inner loop must be emitted.
3473   /// \param RequiresCleanup true, if directive has some associated private
3474   /// variables.
3475   /// \param LoopCond Bollean condition for loop continuation.
3476   /// \param IncExpr Increment expression for loop control variable.
3477   /// \param BodyGen Generator for the inner body of the inner loop.
3478   /// \param PostIncGen Genrator for post-increment code (required for ordered
3479   /// loop directvies).
3480   void EmitOMPInnerLoop(
3481       const OMPExecutableDirective &S, bool RequiresCleanup,
3482       const Expr *LoopCond, const Expr *IncExpr,
3483       const llvm::function_ref<void(CodeGenFunction &)> BodyGen,
3484       const llvm::function_ref<void(CodeGenFunction &)> PostIncGen);
3485 
3486   JumpDest getOMPCancelDestination(OpenMPDirectiveKind Kind);
3487   /// Emit initial code for loop counters of loop-based directives.
3488   void EmitOMPPrivateLoopCounters(const OMPLoopDirective &S,
3489                                   OMPPrivateScope &LoopScope);
3490 
3491   /// Helper for the OpenMP loop directives.
3492   void EmitOMPLoopBody(const OMPLoopDirective &D, JumpDest LoopExit);
3493 
3494   /// Emit code for the worksharing loop-based directive.
3495   /// \return true, if this construct has any lastprivate clause, false -
3496   /// otherwise.
3497   bool EmitOMPWorksharingLoop(const OMPLoopDirective &S, Expr *EUB,
3498                               const CodeGenLoopBoundsTy &CodeGenLoopBounds,
3499                               const CodeGenDispatchBoundsTy &CGDispatchBounds);
3500 
3501   /// Emit code for the distribute loop-based directive.
3502   void EmitOMPDistributeLoop(const OMPLoopDirective &S,
3503                              const CodeGenLoopTy &CodeGenLoop, Expr *IncExpr);
3504 
3505   /// Helpers for the OpenMP loop directives.
3506   void EmitOMPSimdInit(const OMPLoopDirective &D, bool IsMonotonic = false);
3507   void EmitOMPSimdFinal(
3508       const OMPLoopDirective &D,
3509       const llvm::function_ref<llvm::Value *(CodeGenFunction &)> CondGen);
3510 
3511   /// Emits the lvalue for the expression with possibly captured variable.
3512   LValue EmitOMPSharedLValue(const Expr *E);
3513 
3514 private:
3515   /// Helpers for blocks.
3516   llvm::Value *EmitBlockLiteral(const CGBlockInfo &Info);
3517 
3518   /// struct with the values to be passed to the OpenMP loop-related functions
3519   struct OMPLoopArguments {
3520     /// loop lower bound
3521     Address LB = Address::invalid();
3522     /// loop upper bound
3523     Address UB = Address::invalid();
3524     /// loop stride
3525     Address ST = Address::invalid();
3526     /// isLastIteration argument for runtime functions
3527     Address IL = Address::invalid();
3528     /// Chunk value generated by sema
3529     llvm::Value *Chunk = nullptr;
3530     /// EnsureUpperBound
3531     Expr *EUB = nullptr;
3532     /// IncrementExpression
3533     Expr *IncExpr = nullptr;
3534     /// Loop initialization
3535     Expr *Init = nullptr;
3536     /// Loop exit condition
3537     Expr *Cond = nullptr;
3538     /// Update of LB after a whole chunk has been executed
3539     Expr *NextLB = nullptr;
3540     /// Update of UB after a whole chunk has been executed
3541     Expr *NextUB = nullptr;
3542     OMPLoopArguments() = default;
3543     OMPLoopArguments(Address LB, Address UB, Address ST, Address IL,
3544                      llvm::Value *Chunk = nullptr, Expr *EUB = nullptr,
3545                      Expr *IncExpr = nullptr, Expr *Init = nullptr,
3546                      Expr *Cond = nullptr, Expr *NextLB = nullptr,
3547                      Expr *NextUB = nullptr)
3548         : LB(LB), UB(UB), ST(ST), IL(IL), Chunk(Chunk), EUB(EUB),
3549           IncExpr(IncExpr), Init(Init), Cond(Cond), NextLB(NextLB),
3550           NextUB(NextUB) {}
3551   };
3552   void EmitOMPOuterLoop(bool DynamicOrOrdered, bool IsMonotonic,
3553                         const OMPLoopDirective &S, OMPPrivateScope &LoopScope,
3554                         const OMPLoopArguments &LoopArgs,
3555                         const CodeGenLoopTy &CodeGenLoop,
3556                         const CodeGenOrderedTy &CodeGenOrdered);
3557   void EmitOMPForOuterLoop(const OpenMPScheduleTy &ScheduleKind,
3558                            bool IsMonotonic, const OMPLoopDirective &S,
3559                            OMPPrivateScope &LoopScope, bool Ordered,
3560                            const OMPLoopArguments &LoopArgs,
3561                            const CodeGenDispatchBoundsTy &CGDispatchBounds);
3562   void EmitOMPDistributeOuterLoop(OpenMPDistScheduleClauseKind ScheduleKind,
3563                                   const OMPLoopDirective &S,
3564                                   OMPPrivateScope &LoopScope,
3565                                   const OMPLoopArguments &LoopArgs,
3566                                   const CodeGenLoopTy &CodeGenLoopContent);
3567   /// Emit code for sections directive.
3568   void EmitSections(const OMPExecutableDirective &S);
3569 
3570 public:
3571 
3572   //===--------------------------------------------------------------------===//
3573   //                         LValue Expression Emission
3574   //===--------------------------------------------------------------------===//
3575 
3576   /// Create a check that a scalar RValue is non-null.
3577   llvm::Value *EmitNonNullRValueCheck(RValue RV, QualType T);
3578 
3579   /// GetUndefRValue - Get an appropriate 'undef' rvalue for the given type.
3580   RValue GetUndefRValue(QualType Ty);
3581 
3582   /// EmitUnsupportedRValue - Emit a dummy r-value using the type of E
3583   /// and issue an ErrorUnsupported style diagnostic (using the
3584   /// provided Name).
3585   RValue EmitUnsupportedRValue(const Expr *E,
3586                                const char *Name);
3587 
3588   /// EmitUnsupportedLValue - Emit a dummy l-value using the type of E and issue
3589   /// an ErrorUnsupported style diagnostic (using the provided Name).
3590   LValue EmitUnsupportedLValue(const Expr *E,
3591                                const char *Name);
3592 
3593   /// EmitLValue - Emit code to compute a designator that specifies the location
3594   /// of the expression.
3595   ///
3596   /// This can return one of two things: a simple address or a bitfield
3597   /// reference.  In either case, the LLVM Value* in the LValue structure is
3598   /// guaranteed to be an LLVM pointer type.
3599   ///
3600   /// If this returns a bitfield reference, nothing about the pointee type of
3601   /// the LLVM value is known: For example, it may not be a pointer to an
3602   /// integer.
3603   ///
3604   /// If this returns a normal address, and if the lvalue's C type is fixed
3605   /// size, this method guarantees that the returned pointer type will point to
3606   /// an LLVM type of the same size of the lvalue's type.  If the lvalue has a
3607   /// variable length type, this is not possible.
3608   ///
3609   LValue EmitLValue(const Expr *E);
3610 
3611   /// Same as EmitLValue but additionally we generate checking code to
3612   /// guard against undefined behavior.  This is only suitable when we know
3613   /// that the address will be used to access the object.
3614   LValue EmitCheckedLValue(const Expr *E, TypeCheckKind TCK);
3615 
3616   RValue convertTempToRValue(Address addr, QualType type,
3617                              SourceLocation Loc);
3618 
3619   void EmitAtomicInit(Expr *E, LValue lvalue);
3620 
3621   bool LValueIsSuitableForInlineAtomic(LValue Src);
3622 
3623   RValue EmitAtomicLoad(LValue LV, SourceLocation SL,
3624                         AggValueSlot Slot = AggValueSlot::ignored());
3625 
3626   RValue EmitAtomicLoad(LValue lvalue, SourceLocation loc,
3627                         llvm::AtomicOrdering AO, bool IsVolatile = false,
3628                         AggValueSlot slot = AggValueSlot::ignored());
3629 
3630   void EmitAtomicStore(RValue rvalue, LValue lvalue, bool isInit);
3631 
3632   void EmitAtomicStore(RValue rvalue, LValue lvalue, llvm::AtomicOrdering AO,
3633                        bool IsVolatile, bool isInit);
3634 
3635   std::pair<RValue, llvm::Value *> EmitAtomicCompareExchange(
3636       LValue Obj, RValue Expected, RValue Desired, SourceLocation Loc,
3637       llvm::AtomicOrdering Success =
3638           llvm::AtomicOrdering::SequentiallyConsistent,
3639       llvm::AtomicOrdering Failure =
3640           llvm::AtomicOrdering::SequentiallyConsistent,
3641       bool IsWeak = false, AggValueSlot Slot = AggValueSlot::ignored());
3642 
3643   void EmitAtomicUpdate(LValue LVal, llvm::AtomicOrdering AO,
3644                         const llvm::function_ref<RValue(RValue)> &UpdateOp,
3645                         bool IsVolatile);
3646 
3647   /// EmitToMemory - Change a scalar value from its value
3648   /// representation to its in-memory representation.
3649   llvm::Value *EmitToMemory(llvm::Value *Value, QualType Ty);
3650 
3651   /// EmitFromMemory - Change a scalar value from its memory
3652   /// representation to its value representation.
3653   llvm::Value *EmitFromMemory(llvm::Value *Value, QualType Ty);
3654 
3655   /// Check if the scalar \p Value is within the valid range for the given
3656   /// type \p Ty.
3657   ///
3658   /// Returns true if a check is needed (even if the range is unknown).
3659   bool EmitScalarRangeCheck(llvm::Value *Value, QualType Ty,
3660                             SourceLocation Loc);
3661 
3662   /// EmitLoadOfScalar - Load a scalar value from an address, taking
3663   /// care to appropriately convert from the memory representation to
3664   /// the LLVM value representation.
3665   llvm::Value *EmitLoadOfScalar(Address Addr, bool Volatile, QualType Ty,
3666                                 SourceLocation Loc,
3667                                 AlignmentSource Source = AlignmentSource::Type,
3668                                 bool isNontemporal = false) {
3669     return EmitLoadOfScalar(Addr, Volatile, Ty, Loc, LValueBaseInfo(Source),
3670                             CGM.getTBAAAccessInfo(Ty), isNontemporal);
3671   }
3672 
3673   llvm::Value *EmitLoadOfScalar(Address Addr, bool Volatile, QualType Ty,
3674                                 SourceLocation Loc, LValueBaseInfo BaseInfo,
3675                                 TBAAAccessInfo TBAAInfo,
3676                                 bool isNontemporal = false);
3677 
3678   /// EmitLoadOfScalar - Load a scalar value from an address, taking
3679   /// care to appropriately convert from the memory representation to
3680   /// the LLVM value representation.  The l-value must be a simple
3681   /// l-value.
3682   llvm::Value *EmitLoadOfScalar(LValue lvalue, SourceLocation Loc);
3683 
3684   /// EmitStoreOfScalar - Store a scalar value to an address, taking
3685   /// care to appropriately convert from the memory representation to
3686   /// the LLVM value representation.
3687   void EmitStoreOfScalar(llvm::Value *Value, Address Addr,
3688                          bool Volatile, QualType Ty,
3689                          AlignmentSource Source = AlignmentSource::Type,
3690                          bool isInit = false, bool isNontemporal = false) {
3691     EmitStoreOfScalar(Value, Addr, Volatile, Ty, LValueBaseInfo(Source),
3692                       CGM.getTBAAAccessInfo(Ty), isInit, isNontemporal);
3693   }
3694 
3695   void EmitStoreOfScalar(llvm::Value *Value, Address Addr,
3696                          bool Volatile, QualType Ty,
3697                          LValueBaseInfo BaseInfo, TBAAAccessInfo TBAAInfo,
3698                          bool isInit = false, bool isNontemporal = false);
3699 
3700   /// EmitStoreOfScalar - Store a scalar value to an address, taking
3701   /// care to appropriately convert from the memory representation to
3702   /// the LLVM value representation.  The l-value must be a simple
3703   /// l-value.  The isInit flag indicates whether this is an initialization.
3704   /// If so, atomic qualifiers are ignored and the store is always non-atomic.
3705   void EmitStoreOfScalar(llvm::Value *value, LValue lvalue, bool isInit=false);
3706 
3707   /// EmitLoadOfLValue - Given an expression that represents a value lvalue,
3708   /// this method emits the address of the lvalue, then loads the result as an
3709   /// rvalue, returning the rvalue.
3710   RValue EmitLoadOfLValue(LValue V, SourceLocation Loc);
3711   RValue EmitLoadOfExtVectorElementLValue(LValue V);
3712   RValue EmitLoadOfBitfieldLValue(LValue LV, SourceLocation Loc);
3713   RValue EmitLoadOfGlobalRegLValue(LValue LV);
3714 
3715   /// EmitStoreThroughLValue - Store the specified rvalue into the specified
3716   /// lvalue, where both are guaranteed to the have the same type, and that type
3717   /// is 'Ty'.
3718   void EmitStoreThroughLValue(RValue Src, LValue Dst, bool isInit = false);
3719   void EmitStoreThroughExtVectorComponentLValue(RValue Src, LValue Dst);
3720   void EmitStoreThroughGlobalRegLValue(RValue Src, LValue Dst);
3721 
3722   /// EmitStoreThroughBitfieldLValue - Store Src into Dst with same constraints
3723   /// as EmitStoreThroughLValue.
3724   ///
3725   /// \param Result [out] - If non-null, this will be set to a Value* for the
3726   /// bit-field contents after the store, appropriate for use as the result of
3727   /// an assignment to the bit-field.
3728   void EmitStoreThroughBitfieldLValue(RValue Src, LValue Dst,
3729                                       llvm::Value **Result=nullptr);
3730 
3731   /// Emit an l-value for an assignment (simple or compound) of complex type.
3732   LValue EmitComplexAssignmentLValue(const BinaryOperator *E);
3733   LValue EmitComplexCompoundAssignmentLValue(const CompoundAssignOperator *E);
3734   LValue EmitScalarCompoundAssignWithComplex(const CompoundAssignOperator *E,
3735                                              llvm::Value *&Result);
3736 
3737   // Note: only available for agg return types
3738   LValue EmitBinaryOperatorLValue(const BinaryOperator *E);
3739   LValue EmitCompoundAssignmentLValue(const CompoundAssignOperator *E);
3740   // Note: only available for agg return types
3741   LValue EmitCallExprLValue(const CallExpr *E);
3742   // Note: only available for agg return types
3743   LValue EmitVAArgExprLValue(const VAArgExpr *E);
3744   LValue EmitDeclRefLValue(const DeclRefExpr *E);
3745   LValue EmitStringLiteralLValue(const StringLiteral *E);
3746   LValue EmitObjCEncodeExprLValue(const ObjCEncodeExpr *E);
3747   LValue EmitPredefinedLValue(const PredefinedExpr *E);
3748   LValue EmitUnaryOpLValue(const UnaryOperator *E);
3749   LValue EmitArraySubscriptExpr(const ArraySubscriptExpr *E,
3750                                 bool Accessed = false);
3751   LValue EmitMatrixSubscriptExpr(const MatrixSubscriptExpr *E);
3752   LValue EmitOMPArraySectionExpr(const OMPArraySectionExpr *E,
3753                                  bool IsLowerBound = true);
3754   LValue EmitExtVectorElementExpr(const ExtVectorElementExpr *E);
3755   LValue EmitMemberExpr(const MemberExpr *E);
3756   LValue EmitObjCIsaExpr(const ObjCIsaExpr *E);
3757   LValue EmitCompoundLiteralLValue(const CompoundLiteralExpr *E);
3758   LValue EmitInitListLValue(const InitListExpr *E);
3759   LValue EmitConditionalOperatorLValue(const AbstractConditionalOperator *E);
3760   LValue EmitCastLValue(const CastExpr *E);
3761   LValue EmitMaterializeTemporaryExpr(const MaterializeTemporaryExpr *E);
3762   LValue EmitOpaqueValueLValue(const OpaqueValueExpr *e);
3763 
3764   Address EmitExtVectorElementLValue(LValue V);
3765 
3766   RValue EmitRValueForField(LValue LV, const FieldDecl *FD, SourceLocation Loc);
3767 
3768   Address EmitArrayToPointerDecay(const Expr *Array,
3769                                   LValueBaseInfo *BaseInfo = nullptr,
3770                                   TBAAAccessInfo *TBAAInfo = nullptr);
3771 
3772   class ConstantEmission {
3773     llvm::PointerIntPair<llvm::Constant*, 1, bool> ValueAndIsReference;
3774     ConstantEmission(llvm::Constant *C, bool isReference)
3775       : ValueAndIsReference(C, isReference) {}
3776   public:
3777     ConstantEmission() {}
3778     static ConstantEmission forReference(llvm::Constant *C) {
3779       return ConstantEmission(C, true);
3780     }
3781     static ConstantEmission forValue(llvm::Constant *C) {
3782       return ConstantEmission(C, false);
3783     }
3784 
3785     explicit operator bool() const {
3786       return ValueAndIsReference.getOpaqueValue() != nullptr;
3787     }
3788 
3789     bool isReference() const { return ValueAndIsReference.getInt(); }
3790     LValue getReferenceLValue(CodeGenFunction &CGF, Expr *refExpr) const {
3791       assert(isReference());
3792       return CGF.MakeNaturalAlignAddrLValue(ValueAndIsReference.getPointer(),
3793                                             refExpr->getType());
3794     }
3795 
3796     llvm::Constant *getValue() const {
3797       assert(!isReference());
3798       return ValueAndIsReference.getPointer();
3799     }
3800   };
3801 
3802   ConstantEmission tryEmitAsConstant(DeclRefExpr *refExpr);
3803   ConstantEmission tryEmitAsConstant(const MemberExpr *ME);
3804   llvm::Value *emitScalarConstant(const ConstantEmission &Constant, Expr *E);
3805 
3806   RValue EmitPseudoObjectRValue(const PseudoObjectExpr *e,
3807                                 AggValueSlot slot = AggValueSlot::ignored());
3808   LValue EmitPseudoObjectLValue(const PseudoObjectExpr *e);
3809 
3810   llvm::Value *EmitIvarOffset(const ObjCInterfaceDecl *Interface,
3811                               const ObjCIvarDecl *Ivar);
3812   LValue EmitLValueForField(LValue Base, const FieldDecl* Field);
3813   LValue EmitLValueForLambdaField(const FieldDecl *Field);
3814 
3815   /// EmitLValueForFieldInitialization - Like EmitLValueForField, except that
3816   /// if the Field is a reference, this will return the address of the reference
3817   /// and not the address of the value stored in the reference.
3818   LValue EmitLValueForFieldInitialization(LValue Base,
3819                                           const FieldDecl* Field);
3820 
3821   LValue EmitLValueForIvar(QualType ObjectTy,
3822                            llvm::Value* Base, const ObjCIvarDecl *Ivar,
3823                            unsigned CVRQualifiers);
3824 
3825   LValue EmitCXXConstructLValue(const CXXConstructExpr *E);
3826   LValue EmitCXXBindTemporaryLValue(const CXXBindTemporaryExpr *E);
3827   LValue EmitCXXTypeidLValue(const CXXTypeidExpr *E);
3828   LValue EmitCXXUuidofLValue(const CXXUuidofExpr *E);
3829 
3830   LValue EmitObjCMessageExprLValue(const ObjCMessageExpr *E);
3831   LValue EmitObjCIvarRefLValue(const ObjCIvarRefExpr *E);
3832   LValue EmitStmtExprLValue(const StmtExpr *E);
3833   LValue EmitPointerToDataMemberBinaryExpr(const BinaryOperator *E);
3834   LValue EmitObjCSelectorLValue(const ObjCSelectorExpr *E);
3835   void   EmitDeclRefExprDbgValue(const DeclRefExpr *E, const APValue &Init);
3836 
3837   //===--------------------------------------------------------------------===//
3838   //                         Scalar Expression Emission
3839   //===--------------------------------------------------------------------===//
3840 
3841   /// EmitCall - Generate a call of the given function, expecting the given
3842   /// result type, and using the given argument list which specifies both the
3843   /// LLVM arguments and the types they were derived from.
3844   RValue EmitCall(const CGFunctionInfo &CallInfo, const CGCallee &Callee,
3845                   ReturnValueSlot ReturnValue, const CallArgList &Args,
3846                   llvm::CallBase **callOrInvoke, SourceLocation Loc);
3847   RValue EmitCall(const CGFunctionInfo &CallInfo, const CGCallee &Callee,
3848                   ReturnValueSlot ReturnValue, const CallArgList &Args,
3849                   llvm::CallBase **callOrInvoke = nullptr) {
3850     return EmitCall(CallInfo, Callee, ReturnValue, Args, callOrInvoke,
3851                     SourceLocation());
3852   }
3853   RValue EmitCall(QualType FnType, const CGCallee &Callee, const CallExpr *E,
3854                   ReturnValueSlot ReturnValue, llvm::Value *Chain = nullptr);
3855   RValue EmitCallExpr(const CallExpr *E,
3856                       ReturnValueSlot ReturnValue = ReturnValueSlot());
3857   RValue EmitSimpleCallExpr(const CallExpr *E, ReturnValueSlot ReturnValue);
3858   CGCallee EmitCallee(const Expr *E);
3859 
3860   void checkTargetFeatures(const CallExpr *E, const FunctionDecl *TargetDecl);
3861   void checkTargetFeatures(SourceLocation Loc, const FunctionDecl *TargetDecl);
3862 
3863   llvm::CallInst *EmitRuntimeCall(llvm::FunctionCallee callee,
3864                                   const Twine &name = "");
3865   llvm::CallInst *EmitRuntimeCall(llvm::FunctionCallee callee,
3866                                   ArrayRef<llvm::Value *> args,
3867                                   const Twine &name = "");
3868   llvm::CallInst *EmitNounwindRuntimeCall(llvm::FunctionCallee callee,
3869                                           const Twine &name = "");
3870   llvm::CallInst *EmitNounwindRuntimeCall(llvm::FunctionCallee callee,
3871                                           ArrayRef<llvm::Value *> args,
3872                                           const Twine &name = "");
3873 
3874   SmallVector<llvm::OperandBundleDef, 1>
3875   getBundlesForFunclet(llvm::Value *Callee);
3876 
3877   llvm::CallBase *EmitCallOrInvoke(llvm::FunctionCallee Callee,
3878                                    ArrayRef<llvm::Value *> Args,
3879                                    const Twine &Name = "");
3880   llvm::CallBase *EmitRuntimeCallOrInvoke(llvm::FunctionCallee callee,
3881                                           ArrayRef<llvm::Value *> args,
3882                                           const Twine &name = "");
3883   llvm::CallBase *EmitRuntimeCallOrInvoke(llvm::FunctionCallee callee,
3884                                           const Twine &name = "");
3885   void EmitNoreturnRuntimeCallOrInvoke(llvm::FunctionCallee callee,
3886                                        ArrayRef<llvm::Value *> args);
3887 
3888   CGCallee BuildAppleKextVirtualCall(const CXXMethodDecl *MD,
3889                                      NestedNameSpecifier *Qual,
3890                                      llvm::Type *Ty);
3891 
3892   CGCallee BuildAppleKextVirtualDestructorCall(const CXXDestructorDecl *DD,
3893                                                CXXDtorType Type,
3894                                                const CXXRecordDecl *RD);
3895 
3896   // Return the copy constructor name with the prefix "__copy_constructor_"
3897   // removed.
3898   static std::string getNonTrivialCopyConstructorStr(QualType QT,
3899                                                      CharUnits Alignment,
3900                                                      bool IsVolatile,
3901                                                      ASTContext &Ctx);
3902 
3903   // Return the destructor name with the prefix "__destructor_" removed.
3904   static std::string getNonTrivialDestructorStr(QualType QT,
3905                                                 CharUnits Alignment,
3906                                                 bool IsVolatile,
3907                                                 ASTContext &Ctx);
3908 
3909   // These functions emit calls to the special functions of non-trivial C
3910   // structs.
3911   void defaultInitNonTrivialCStructVar(LValue Dst);
3912   void callCStructDefaultConstructor(LValue Dst);
3913   void callCStructDestructor(LValue Dst);
3914   void callCStructCopyConstructor(LValue Dst, LValue Src);
3915   void callCStructMoveConstructor(LValue Dst, LValue Src);
3916   void callCStructCopyAssignmentOperator(LValue Dst, LValue Src);
3917   void callCStructMoveAssignmentOperator(LValue Dst, LValue Src);
3918 
3919   RValue
3920   EmitCXXMemberOrOperatorCall(const CXXMethodDecl *Method,
3921                               const CGCallee &Callee,
3922                               ReturnValueSlot ReturnValue, llvm::Value *This,
3923                               llvm::Value *ImplicitParam,
3924                               QualType ImplicitParamTy, const CallExpr *E,
3925                               CallArgList *RtlArgs);
3926   RValue EmitCXXDestructorCall(GlobalDecl Dtor, const CGCallee &Callee,
3927                                llvm::Value *This, QualType ThisTy,
3928                                llvm::Value *ImplicitParam,
3929                                QualType ImplicitParamTy, const CallExpr *E);
3930   RValue EmitCXXMemberCallExpr(const CXXMemberCallExpr *E,
3931                                ReturnValueSlot ReturnValue);
3932   RValue EmitCXXMemberOrOperatorMemberCallExpr(const CallExpr *CE,
3933                                                const CXXMethodDecl *MD,
3934                                                ReturnValueSlot ReturnValue,
3935                                                bool HasQualifier,
3936                                                NestedNameSpecifier *Qualifier,
3937                                                bool IsArrow, const Expr *Base);
3938   // Compute the object pointer.
3939   Address EmitCXXMemberDataPointerAddress(const Expr *E, Address base,
3940                                           llvm::Value *memberPtr,
3941                                           const MemberPointerType *memberPtrType,
3942                                           LValueBaseInfo *BaseInfo = nullptr,
3943                                           TBAAAccessInfo *TBAAInfo = nullptr);
3944   RValue EmitCXXMemberPointerCallExpr(const CXXMemberCallExpr *E,
3945                                       ReturnValueSlot ReturnValue);
3946 
3947   RValue EmitCXXOperatorMemberCallExpr(const CXXOperatorCallExpr *E,
3948                                        const CXXMethodDecl *MD,
3949                                        ReturnValueSlot ReturnValue);
3950   RValue EmitCXXPseudoDestructorExpr(const CXXPseudoDestructorExpr *E);
3951 
3952   RValue EmitCUDAKernelCallExpr(const CUDAKernelCallExpr *E,
3953                                 ReturnValueSlot ReturnValue);
3954 
3955   RValue EmitNVPTXDevicePrintfCallExpr(const CallExpr *E,
3956                                        ReturnValueSlot ReturnValue);
3957   RValue EmitAMDGPUDevicePrintfCallExpr(const CallExpr *E,
3958                                         ReturnValueSlot ReturnValue);
3959 
3960   RValue EmitBuiltinExpr(const GlobalDecl GD, unsigned BuiltinID,
3961                          const CallExpr *E, ReturnValueSlot ReturnValue);
3962 
3963   RValue emitRotate(const CallExpr *E, bool IsRotateRight);
3964 
3965   /// Emit IR for __builtin_os_log_format.
3966   RValue emitBuiltinOSLogFormat(const CallExpr &E);
3967 
3968   /// Emit IR for __builtin_is_aligned.
3969   RValue EmitBuiltinIsAligned(const CallExpr *E);
3970   /// Emit IR for __builtin_align_up/__builtin_align_down.
3971   RValue EmitBuiltinAlignTo(const CallExpr *E, bool AlignUp);
3972 
3973   llvm::Function *generateBuiltinOSLogHelperFunction(
3974       const analyze_os_log::OSLogBufferLayout &Layout,
3975       CharUnits BufferAlignment);
3976 
3977   RValue EmitBlockCallExpr(const CallExpr *E, ReturnValueSlot ReturnValue);
3978 
3979   /// EmitTargetBuiltinExpr - Emit the given builtin call. Returns 0 if the call
3980   /// is unhandled by the current target.
3981   llvm::Value *EmitTargetBuiltinExpr(unsigned BuiltinID, const CallExpr *E,
3982                                      ReturnValueSlot ReturnValue);
3983 
3984   llvm::Value *EmitAArch64CompareBuiltinExpr(llvm::Value *Op, llvm::Type *Ty,
3985                                              const llvm::CmpInst::Predicate Fp,
3986                                              const llvm::CmpInst::Predicate Ip,
3987                                              const llvm::Twine &Name = "");
3988   llvm::Value *EmitARMBuiltinExpr(unsigned BuiltinID, const CallExpr *E,
3989                                   ReturnValueSlot ReturnValue,
3990                                   llvm::Triple::ArchType Arch);
3991   llvm::Value *EmitARMMVEBuiltinExpr(unsigned BuiltinID, const CallExpr *E,
3992                                      ReturnValueSlot ReturnValue,
3993                                      llvm::Triple::ArchType Arch);
3994   llvm::Value *EmitARMCDEBuiltinExpr(unsigned BuiltinID, const CallExpr *E,
3995                                      ReturnValueSlot ReturnValue,
3996                                      llvm::Triple::ArchType Arch);
3997   llvm::Value *EmitCMSEClearRecord(llvm::Value *V, llvm::IntegerType *ITy,
3998                                    QualType RTy);
3999   llvm::Value *EmitCMSEClearRecord(llvm::Value *V, llvm::ArrayType *ATy,
4000                                    QualType RTy);
4001 
4002   llvm::Value *EmitCommonNeonBuiltinExpr(unsigned BuiltinID,
4003                                          unsigned LLVMIntrinsic,
4004                                          unsigned AltLLVMIntrinsic,
4005                                          const char *NameHint,
4006                                          unsigned Modifier,
4007                                          const CallExpr *E,
4008                                          SmallVectorImpl<llvm::Value *> &Ops,
4009                                          Address PtrOp0, Address PtrOp1,
4010                                          llvm::Triple::ArchType Arch);
4011 
4012   llvm::Function *LookupNeonLLVMIntrinsic(unsigned IntrinsicID,
4013                                           unsigned Modifier, llvm::Type *ArgTy,
4014                                           const CallExpr *E);
4015   llvm::Value *EmitNeonCall(llvm::Function *F,
4016                             SmallVectorImpl<llvm::Value*> &O,
4017                             const char *name,
4018                             unsigned shift = 0, bool rightshift = false);
4019   llvm::Value *EmitNeonSplat(llvm::Value *V, llvm::Constant *Idx,
4020                              const llvm::ElementCount &Count);
4021   llvm::Value *EmitNeonSplat(llvm::Value *V, llvm::Constant *Idx);
4022   llvm::Value *EmitNeonShiftVector(llvm::Value *V, llvm::Type *Ty,
4023                                    bool negateForRightShift);
4024   llvm::Value *EmitNeonRShiftImm(llvm::Value *Vec, llvm::Value *Amt,
4025                                  llvm::Type *Ty, bool usgn, const char *name);
4026   llvm::Value *vectorWrapScalar16(llvm::Value *Op);
4027   /// SVEBuiltinMemEltTy - Returns the memory element type for this memory
4028   /// access builtin.  Only required if it can't be inferred from the base
4029   /// pointer operand.
4030   llvm::Type *SVEBuiltinMemEltTy(SVETypeFlags TypeFlags);
4031 
4032   SmallVector<llvm::Type *, 2> getSVEOverloadTypes(SVETypeFlags TypeFlags,
4033                                                    llvm::Type *ReturnType,
4034                                                    ArrayRef<llvm::Value *> Ops);
4035   llvm::Type *getEltType(SVETypeFlags TypeFlags);
4036   llvm::ScalableVectorType *getSVEType(const SVETypeFlags &TypeFlags);
4037   llvm::ScalableVectorType *getSVEPredType(SVETypeFlags TypeFlags);
4038   llvm::Value *EmitSVEAllTruePred(SVETypeFlags TypeFlags);
4039   llvm::Value *EmitSVEDupX(llvm::Value *Scalar);
4040   llvm::Value *EmitSVEDupX(llvm::Value *Scalar, llvm::Type *Ty);
4041   llvm::Value *EmitSVEReinterpret(llvm::Value *Val, llvm::Type *Ty);
4042   llvm::Value *EmitSVEPMull(SVETypeFlags TypeFlags,
4043                             llvm::SmallVectorImpl<llvm::Value *> &Ops,
4044                             unsigned BuiltinID);
4045   llvm::Value *EmitSVEMovl(SVETypeFlags TypeFlags,
4046                            llvm::ArrayRef<llvm::Value *> Ops,
4047                            unsigned BuiltinID);
4048   llvm::Value *EmitSVEPredicateCast(llvm::Value *Pred,
4049                                     llvm::ScalableVectorType *VTy);
4050   llvm::Value *EmitSVEGatherLoad(SVETypeFlags TypeFlags,
4051                                  llvm::SmallVectorImpl<llvm::Value *> &Ops,
4052                                  unsigned IntID);
4053   llvm::Value *EmitSVEScatterStore(SVETypeFlags TypeFlags,
4054                                    llvm::SmallVectorImpl<llvm::Value *> &Ops,
4055                                    unsigned IntID);
4056   llvm::Value *EmitSVEMaskedLoad(const CallExpr *, llvm::Type *ReturnTy,
4057                                  SmallVectorImpl<llvm::Value *> &Ops,
4058                                  unsigned BuiltinID, bool IsZExtReturn);
4059   llvm::Value *EmitSVEMaskedStore(const CallExpr *,
4060                                   SmallVectorImpl<llvm::Value *> &Ops,
4061                                   unsigned BuiltinID);
4062   llvm::Value *EmitSVEPrefetchLoad(SVETypeFlags TypeFlags,
4063                                    SmallVectorImpl<llvm::Value *> &Ops,
4064                                    unsigned BuiltinID);
4065   llvm::Value *EmitSVEGatherPrefetch(SVETypeFlags TypeFlags,
4066                                      SmallVectorImpl<llvm::Value *> &Ops,
4067                                      unsigned IntID);
4068   llvm::Value *EmitSVEStructLoad(SVETypeFlags TypeFlags,
4069                                  SmallVectorImpl<llvm::Value *> &Ops, unsigned IntID);
4070   llvm::Value *EmitSVEStructStore(SVETypeFlags TypeFlags,
4071                                   SmallVectorImpl<llvm::Value *> &Ops,
4072                                   unsigned IntID);
4073   llvm::Value *EmitAArch64SVEBuiltinExpr(unsigned BuiltinID, const CallExpr *E);
4074 
4075   llvm::Value *EmitAArch64BuiltinExpr(unsigned BuiltinID, const CallExpr *E,
4076                                       llvm::Triple::ArchType Arch);
4077   llvm::Value *EmitBPFBuiltinExpr(unsigned BuiltinID, const CallExpr *E);
4078 
4079   llvm::Value *BuildVector(ArrayRef<llvm::Value*> Ops);
4080   llvm::Value *EmitX86BuiltinExpr(unsigned BuiltinID, const CallExpr *E);
4081   llvm::Value *EmitPPCBuiltinExpr(unsigned BuiltinID, const CallExpr *E);
4082   llvm::Value *EmitAMDGPUBuiltinExpr(unsigned BuiltinID, const CallExpr *E);
4083   llvm::Value *EmitSystemZBuiltinExpr(unsigned BuiltinID, const CallExpr *E);
4084   llvm::Value *EmitNVPTXBuiltinExpr(unsigned BuiltinID, const CallExpr *E);
4085   llvm::Value *EmitWebAssemblyBuiltinExpr(unsigned BuiltinID,
4086                                           const CallExpr *E);
4087   llvm::Value *EmitHexagonBuiltinExpr(unsigned BuiltinID, const CallExpr *E);
4088   bool ProcessOrderScopeAMDGCN(llvm::Value *Order, llvm::Value *Scope,
4089                                llvm::AtomicOrdering &AO,
4090                                llvm::SyncScope::ID &SSID);
4091 
4092 private:
4093   enum class MSVCIntrin;
4094 
4095 public:
4096   llvm::Value *EmitMSVCBuiltinExpr(MSVCIntrin BuiltinID, const CallExpr *E);
4097 
4098   llvm::Value *EmitBuiltinAvailable(ArrayRef<llvm::Value *> Args);
4099 
4100   llvm::Value *EmitObjCProtocolExpr(const ObjCProtocolExpr *E);
4101   llvm::Value *EmitObjCStringLiteral(const ObjCStringLiteral *E);
4102   llvm::Value *EmitObjCBoxedExpr(const ObjCBoxedExpr *E);
4103   llvm::Value *EmitObjCArrayLiteral(const ObjCArrayLiteral *E);
4104   llvm::Value *EmitObjCDictionaryLiteral(const ObjCDictionaryLiteral *E);
4105   llvm::Value *EmitObjCCollectionLiteral(const Expr *E,
4106                                 const ObjCMethodDecl *MethodWithObjects);
4107   llvm::Value *EmitObjCSelectorExpr(const ObjCSelectorExpr *E);
4108   RValue EmitObjCMessageExpr(const ObjCMessageExpr *E,
4109                              ReturnValueSlot Return = ReturnValueSlot());
4110 
4111   /// Retrieves the default cleanup kind for an ARC cleanup.
4112   /// Except under -fobjc-arc-eh, ARC cleanups are normal-only.
4113   CleanupKind getARCCleanupKind() {
4114     return CGM.getCodeGenOpts().ObjCAutoRefCountExceptions
4115              ? NormalAndEHCleanup : NormalCleanup;
4116   }
4117 
4118   // ARC primitives.
4119   void EmitARCInitWeak(Address addr, llvm::Value *value);
4120   void EmitARCDestroyWeak(Address addr);
4121   llvm::Value *EmitARCLoadWeak(Address addr);
4122   llvm::Value *EmitARCLoadWeakRetained(Address addr);
4123   llvm::Value *EmitARCStoreWeak(Address addr, llvm::Value *value, bool ignored);
4124   void emitARCCopyAssignWeak(QualType Ty, Address DstAddr, Address SrcAddr);
4125   void emitARCMoveAssignWeak(QualType Ty, Address DstAddr, Address SrcAddr);
4126   void EmitARCCopyWeak(Address dst, Address src);
4127   void EmitARCMoveWeak(Address dst, Address src);
4128   llvm::Value *EmitARCRetainAutorelease(QualType type, llvm::Value *value);
4129   llvm::Value *EmitARCRetainAutoreleaseNonBlock(llvm::Value *value);
4130   llvm::Value *EmitARCStoreStrong(LValue lvalue, llvm::Value *value,
4131                                   bool resultIgnored);
4132   llvm::Value *EmitARCStoreStrongCall(Address addr, llvm::Value *value,
4133                                       bool resultIgnored);
4134   llvm::Value *EmitARCRetain(QualType type, llvm::Value *value);
4135   llvm::Value *EmitARCRetainNonBlock(llvm::Value *value);
4136   llvm::Value *EmitARCRetainBlock(llvm::Value *value, bool mandatory);
4137   void EmitARCDestroyStrong(Address addr, ARCPreciseLifetime_t precise);
4138   void EmitARCRelease(llvm::Value *value, ARCPreciseLifetime_t precise);
4139   llvm::Value *EmitARCAutorelease(llvm::Value *value);
4140   llvm::Value *EmitARCAutoreleaseReturnValue(llvm::Value *value);
4141   llvm::Value *EmitARCRetainAutoreleaseReturnValue(llvm::Value *value);
4142   llvm::Value *EmitARCRetainAutoreleasedReturnValue(llvm::Value *value);
4143   llvm::Value *EmitARCUnsafeClaimAutoreleasedReturnValue(llvm::Value *value);
4144 
4145   llvm::Value *EmitObjCAutorelease(llvm::Value *value, llvm::Type *returnType);
4146   llvm::Value *EmitObjCRetainNonBlock(llvm::Value *value,
4147                                       llvm::Type *returnType);
4148   void EmitObjCRelease(llvm::Value *value, ARCPreciseLifetime_t precise);
4149 
4150   std::pair<LValue,llvm::Value*>
4151   EmitARCStoreAutoreleasing(const BinaryOperator *e);
4152   std::pair<LValue,llvm::Value*>
4153   EmitARCStoreStrong(const BinaryOperator *e, bool ignored);
4154   std::pair<LValue,llvm::Value*>
4155   EmitARCStoreUnsafeUnretained(const BinaryOperator *e, bool ignored);
4156 
4157   llvm::Value *EmitObjCAlloc(llvm::Value *value,
4158                              llvm::Type *returnType);
4159   llvm::Value *EmitObjCAllocWithZone(llvm::Value *value,
4160                                      llvm::Type *returnType);
4161   llvm::Value *EmitObjCAllocInit(llvm::Value *value, llvm::Type *resultType);
4162 
4163   llvm::Value *EmitObjCThrowOperand(const Expr *expr);
4164   llvm::Value *EmitObjCConsumeObject(QualType T, llvm::Value *Ptr);
4165   llvm::Value *EmitObjCExtendObjectLifetime(QualType T, llvm::Value *Ptr);
4166 
4167   llvm::Value *EmitARCExtendBlockObject(const Expr *expr);
4168   llvm::Value *EmitARCReclaimReturnedObject(const Expr *e,
4169                                             bool allowUnsafeClaim);
4170   llvm::Value *EmitARCRetainScalarExpr(const Expr *expr);
4171   llvm::Value *EmitARCRetainAutoreleaseScalarExpr(const Expr *expr);
4172   llvm::Value *EmitARCUnsafeUnretainedScalarExpr(const Expr *expr);
4173 
4174   void EmitARCIntrinsicUse(ArrayRef<llvm::Value*> values);
4175 
4176   static Destroyer destroyARCStrongImprecise;
4177   static Destroyer destroyARCStrongPrecise;
4178   static Destroyer destroyARCWeak;
4179   static Destroyer emitARCIntrinsicUse;
4180   static Destroyer destroyNonTrivialCStruct;
4181 
4182   void EmitObjCAutoreleasePoolPop(llvm::Value *Ptr);
4183   llvm::Value *EmitObjCAutoreleasePoolPush();
4184   llvm::Value *EmitObjCMRRAutoreleasePoolPush();
4185   void EmitObjCAutoreleasePoolCleanup(llvm::Value *Ptr);
4186   void EmitObjCMRRAutoreleasePoolPop(llvm::Value *Ptr);
4187 
4188   /// Emits a reference binding to the passed in expression.
4189   RValue EmitReferenceBindingToExpr(const Expr *E);
4190 
4191   //===--------------------------------------------------------------------===//
4192   //                           Expression Emission
4193   //===--------------------------------------------------------------------===//
4194 
4195   // Expressions are broken into three classes: scalar, complex, aggregate.
4196 
4197   /// EmitScalarExpr - Emit the computation of the specified expression of LLVM
4198   /// scalar type, returning the result.
4199   llvm::Value *EmitScalarExpr(const Expr *E , bool IgnoreResultAssign = false);
4200 
4201   /// Emit a conversion from the specified type to the specified destination
4202   /// type, both of which are LLVM scalar types.
4203   llvm::Value *EmitScalarConversion(llvm::Value *Src, QualType SrcTy,
4204                                     QualType DstTy, SourceLocation Loc);
4205 
4206   /// Emit a conversion from the specified complex type to the specified
4207   /// destination type, where the destination type is an LLVM scalar type.
4208   llvm::Value *EmitComplexToScalarConversion(ComplexPairTy Src, QualType SrcTy,
4209                                              QualType DstTy,
4210                                              SourceLocation Loc);
4211 
4212   /// EmitAggExpr - Emit the computation of the specified expression
4213   /// of aggregate type.  The result is computed into the given slot,
4214   /// which may be null to indicate that the value is not needed.
4215   void EmitAggExpr(const Expr *E, AggValueSlot AS);
4216 
4217   /// EmitAggExprToLValue - Emit the computation of the specified expression of
4218   /// aggregate type into a temporary LValue.
4219   LValue EmitAggExprToLValue(const Expr *E);
4220 
4221   /// Build all the stores needed to initialize an aggregate at Dest with the
4222   /// value Val.
4223   void EmitAggregateStore(llvm::Value *Val, Address Dest, bool DestIsVolatile);
4224 
4225   /// EmitExtendGCLifetime - Given a pointer to an Objective-C object,
4226   /// make sure it survives garbage collection until this point.
4227   void EmitExtendGCLifetime(llvm::Value *object);
4228 
4229   /// EmitComplexExpr - Emit the computation of the specified expression of
4230   /// complex type, returning the result.
4231   ComplexPairTy EmitComplexExpr(const Expr *E,
4232                                 bool IgnoreReal = false,
4233                                 bool IgnoreImag = false);
4234 
4235   /// EmitComplexExprIntoLValue - Emit the given expression of complex
4236   /// type and place its result into the specified l-value.
4237   void EmitComplexExprIntoLValue(const Expr *E, LValue dest, bool isInit);
4238 
4239   /// EmitStoreOfComplex - Store a complex number into the specified l-value.
4240   void EmitStoreOfComplex(ComplexPairTy V, LValue dest, bool isInit);
4241 
4242   /// EmitLoadOfComplex - Load a complex number from the specified l-value.
4243   ComplexPairTy EmitLoadOfComplex(LValue src, SourceLocation loc);
4244 
4245   Address emitAddrOfRealComponent(Address complex, QualType complexType);
4246   Address emitAddrOfImagComponent(Address complex, QualType complexType);
4247 
4248   /// AddInitializerToStaticVarDecl - Add the initializer for 'D' to the
4249   /// global variable that has already been created for it.  If the initializer
4250   /// has a different type than GV does, this may free GV and return a different
4251   /// one.  Otherwise it just returns GV.
4252   llvm::GlobalVariable *
4253   AddInitializerToStaticVarDecl(const VarDecl &D,
4254                                 llvm::GlobalVariable *GV);
4255 
4256   // Emit an @llvm.invariant.start call for the given memory region.
4257   void EmitInvariantStart(llvm::Constant *Addr, CharUnits Size);
4258 
4259   /// EmitCXXGlobalVarDeclInit - Create the initializer for a C++
4260   /// variable with global storage.
4261   void EmitCXXGlobalVarDeclInit(const VarDecl &D, llvm::Constant *DeclPtr,
4262                                 bool PerformInit);
4263 
4264   llvm::Function *createAtExitStub(const VarDecl &VD, llvm::FunctionCallee Dtor,
4265                                    llvm::Constant *Addr);
4266 
4267   /// Call atexit() with a function that passes the given argument to
4268   /// the given function.
4269   void registerGlobalDtorWithAtExit(const VarDecl &D, llvm::FunctionCallee fn,
4270                                     llvm::Constant *addr);
4271 
4272   /// Call atexit() with function dtorStub.
4273   void registerGlobalDtorWithAtExit(llvm::Constant *dtorStub);
4274 
4275   /// Call unatexit() with function dtorStub.
4276   llvm::Value *unregisterGlobalDtorWithUnAtExit(llvm::Function *dtorStub);
4277 
4278   /// Emit code in this function to perform a guarded variable
4279   /// initialization.  Guarded initializations are used when it's not
4280   /// possible to prove that an initialization will be done exactly
4281   /// once, e.g. with a static local variable or a static data member
4282   /// of a class template.
4283   void EmitCXXGuardedInit(const VarDecl &D, llvm::GlobalVariable *DeclPtr,
4284                           bool PerformInit);
4285 
4286   enum class GuardKind { VariableGuard, TlsGuard };
4287 
4288   /// Emit a branch to select whether or not to perform guarded initialization.
4289   void EmitCXXGuardedInitBranch(llvm::Value *NeedsInit,
4290                                 llvm::BasicBlock *InitBlock,
4291                                 llvm::BasicBlock *NoInitBlock,
4292                                 GuardKind Kind, const VarDecl *D);
4293 
4294   /// GenerateCXXGlobalInitFunc - Generates code for initializing global
4295   /// variables.
4296   void
4297   GenerateCXXGlobalInitFunc(llvm::Function *Fn,
4298                             ArrayRef<llvm::Function *> CXXThreadLocals,
4299                             ConstantAddress Guard = ConstantAddress::invalid());
4300 
4301   /// GenerateCXXGlobalCleanUpFunc - Generates code for cleaning up global
4302   /// variables.
4303   void GenerateCXXGlobalCleanUpFunc(
4304       llvm::Function *Fn,
4305       const std::vector<std::tuple<llvm::FunctionType *, llvm::WeakTrackingVH,
4306                                    llvm::Constant *>> &DtorsOrStermFinalizers);
4307 
4308   void GenerateCXXGlobalVarDeclInitFunc(llvm::Function *Fn,
4309                                         const VarDecl *D,
4310                                         llvm::GlobalVariable *Addr,
4311                                         bool PerformInit);
4312 
4313   void EmitCXXConstructExpr(const CXXConstructExpr *E, AggValueSlot Dest);
4314 
4315   void EmitSynthesizedCXXCopyCtor(Address Dest, Address Src, const Expr *Exp);
4316 
4317   void EmitCXXThrowExpr(const CXXThrowExpr *E, bool KeepInsertionPoint = true);
4318 
4319   RValue EmitAtomicExpr(AtomicExpr *E);
4320 
4321   //===--------------------------------------------------------------------===//
4322   //                         Annotations Emission
4323   //===--------------------------------------------------------------------===//
4324 
4325   /// Emit an annotation call (intrinsic).
4326   llvm::Value *EmitAnnotationCall(llvm::Function *AnnotationFn,
4327                                   llvm::Value *AnnotatedVal,
4328                                   StringRef AnnotationStr,
4329                                   SourceLocation Location,
4330                                   const AnnotateAttr *Attr);
4331 
4332   /// Emit local annotations for the local variable V, declared by D.
4333   void EmitVarAnnotations(const VarDecl *D, llvm::Value *V);
4334 
4335   /// Emit field annotations for the given field & value. Returns the
4336   /// annotation result.
4337   Address EmitFieldAnnotations(const FieldDecl *D, Address V);
4338 
4339   //===--------------------------------------------------------------------===//
4340   //                             Internal Helpers
4341   //===--------------------------------------------------------------------===//
4342 
4343   /// ContainsLabel - Return true if the statement contains a label in it.  If
4344   /// this statement is not executed normally, it not containing a label means
4345   /// that we can just remove the code.
4346   static bool ContainsLabel(const Stmt *S, bool IgnoreCaseStmts = false);
4347 
4348   /// containsBreak - Return true if the statement contains a break out of it.
4349   /// If the statement (recursively) contains a switch or loop with a break
4350   /// inside of it, this is fine.
4351   static bool containsBreak(const Stmt *S);
4352 
4353   /// Determine if the given statement might introduce a declaration into the
4354   /// current scope, by being a (possibly-labelled) DeclStmt.
4355   static bool mightAddDeclToScope(const Stmt *S);
4356 
4357   /// ConstantFoldsToSimpleInteger - If the specified expression does not fold
4358   /// to a constant, or if it does but contains a label, return false.  If it
4359   /// constant folds return true and set the boolean result in Result.
4360   bool ConstantFoldsToSimpleInteger(const Expr *Cond, bool &Result,
4361                                     bool AllowLabels = false);
4362 
4363   /// ConstantFoldsToSimpleInteger - If the specified expression does not fold
4364   /// to a constant, or if it does but contains a label, return false.  If it
4365   /// constant folds return true and set the folded value.
4366   bool ConstantFoldsToSimpleInteger(const Expr *Cond, llvm::APSInt &Result,
4367                                     bool AllowLabels = false);
4368 
4369   /// EmitBranchOnBoolExpr - Emit a branch on a boolean condition (e.g. for an
4370   /// if statement) to the specified blocks.  Based on the condition, this might
4371   /// try to simplify the codegen of the conditional based on the branch.
4372   /// TrueCount should be the number of times we expect the condition to
4373   /// evaluate to true based on PGO data.
4374   void EmitBranchOnBoolExpr(const Expr *Cond, llvm::BasicBlock *TrueBlock,
4375                             llvm::BasicBlock *FalseBlock, uint64_t TrueCount,
4376                             Stmt::Likelihood LH = Stmt::LH_None);
4377 
4378   /// Given an assignment `*LHS = RHS`, emit a test that checks if \p RHS is
4379   /// nonnull, if \p LHS is marked _Nonnull.
4380   void EmitNullabilityCheck(LValue LHS, llvm::Value *RHS, SourceLocation Loc);
4381 
4382   /// An enumeration which makes it easier to specify whether or not an
4383   /// operation is a subtraction.
4384   enum { NotSubtraction = false, IsSubtraction = true };
4385 
4386   /// Same as IRBuilder::CreateInBoundsGEP, but additionally emits a check to
4387   /// detect undefined behavior when the pointer overflow sanitizer is enabled.
4388   /// \p SignedIndices indicates whether any of the GEP indices are signed.
4389   /// \p IsSubtraction indicates whether the expression used to form the GEP
4390   /// is a subtraction.
4391   llvm::Value *EmitCheckedInBoundsGEP(llvm::Value *Ptr,
4392                                       ArrayRef<llvm::Value *> IdxList,
4393                                       bool SignedIndices,
4394                                       bool IsSubtraction,
4395                                       SourceLocation Loc,
4396                                       const Twine &Name = "");
4397 
4398   /// Specifies which type of sanitizer check to apply when handling a
4399   /// particular builtin.
4400   enum BuiltinCheckKind {
4401     BCK_CTZPassedZero,
4402     BCK_CLZPassedZero,
4403   };
4404 
4405   /// Emits an argument for a call to a builtin. If the builtin sanitizer is
4406   /// enabled, a runtime check specified by \p Kind is also emitted.
4407   llvm::Value *EmitCheckedArgForBuiltin(const Expr *E, BuiltinCheckKind Kind);
4408 
4409   /// Emit a description of a type in a format suitable for passing to
4410   /// a runtime sanitizer handler.
4411   llvm::Constant *EmitCheckTypeDescriptor(QualType T);
4412 
4413   /// Convert a value into a format suitable for passing to a runtime
4414   /// sanitizer handler.
4415   llvm::Value *EmitCheckValue(llvm::Value *V);
4416 
4417   /// Emit a description of a source location in a format suitable for
4418   /// passing to a runtime sanitizer handler.
4419   llvm::Constant *EmitCheckSourceLocation(SourceLocation Loc);
4420 
4421   /// Create a basic block that will either trap or call a handler function in
4422   /// the UBSan runtime with the provided arguments, and create a conditional
4423   /// branch to it.
4424   void EmitCheck(ArrayRef<std::pair<llvm::Value *, SanitizerMask>> Checked,
4425                  SanitizerHandler Check, ArrayRef<llvm::Constant *> StaticArgs,
4426                  ArrayRef<llvm::Value *> DynamicArgs);
4427 
4428   /// Emit a slow path cross-DSO CFI check which calls __cfi_slowpath
4429   /// if Cond if false.
4430   void EmitCfiSlowPathCheck(SanitizerMask Kind, llvm::Value *Cond,
4431                             llvm::ConstantInt *TypeId, llvm::Value *Ptr,
4432                             ArrayRef<llvm::Constant *> StaticArgs);
4433 
4434   /// Emit a reached-unreachable diagnostic if \p Loc is valid and runtime
4435   /// checking is enabled. Otherwise, just emit an unreachable instruction.
4436   void EmitUnreachable(SourceLocation Loc);
4437 
4438   /// Create a basic block that will call the trap intrinsic, and emit a
4439   /// conditional branch to it, for the -ftrapv checks.
4440   void EmitTrapCheck(llvm::Value *Checked);
4441 
4442   /// Emit a call to trap or debugtrap and attach function attribute
4443   /// "trap-func-name" if specified.
4444   llvm::CallInst *EmitTrapCall(llvm::Intrinsic::ID IntrID);
4445 
4446   /// Emit a stub for the cross-DSO CFI check function.
4447   void EmitCfiCheckStub();
4448 
4449   /// Emit a cross-DSO CFI failure handling function.
4450   void EmitCfiCheckFail();
4451 
4452   /// Create a check for a function parameter that may potentially be
4453   /// declared as non-null.
4454   void EmitNonNullArgCheck(RValue RV, QualType ArgType, SourceLocation ArgLoc,
4455                            AbstractCallee AC, unsigned ParmNum);
4456 
4457   /// EmitCallArg - Emit a single call argument.
4458   void EmitCallArg(CallArgList &args, const Expr *E, QualType ArgType);
4459 
4460   /// EmitDelegateCallArg - We are performing a delegate call; that
4461   /// is, the current function is delegating to another one.  Produce
4462   /// a r-value suitable for passing the given parameter.
4463   void EmitDelegateCallArg(CallArgList &args, const VarDecl *param,
4464                            SourceLocation loc);
4465 
4466   /// SetFPAccuracy - Set the minimum required accuracy of the given floating
4467   /// point operation, expressed as the maximum relative error in ulp.
4468   void SetFPAccuracy(llvm::Value *Val, float Accuracy);
4469 
4470   /// SetFPModel - Control floating point behavior via fp-model settings.
4471   void SetFPModel();
4472 
4473   /// Set the codegen fast-math flags.
4474   void SetFastMathFlags(FPOptions FPFeatures);
4475 
4476 private:
4477   llvm::MDNode *getRangeForLoadFromType(QualType Ty);
4478   void EmitReturnOfRValue(RValue RV, QualType Ty);
4479 
4480   void deferPlaceholderReplacement(llvm::Instruction *Old, llvm::Value *New);
4481 
4482   llvm::SmallVector<std::pair<llvm::Instruction *, llvm::Value *>, 4>
4483   DeferredReplacements;
4484 
4485   /// Set the address of a local variable.
4486   void setAddrOfLocalVar(const VarDecl *VD, Address Addr) {
4487     assert(!LocalDeclMap.count(VD) && "Decl already exists in LocalDeclMap!");
4488     LocalDeclMap.insert({VD, Addr});
4489   }
4490 
4491   /// ExpandTypeFromArgs - Reconstruct a structure of type \arg Ty
4492   /// from function arguments into \arg Dst. See ABIArgInfo::Expand.
4493   ///
4494   /// \param AI - The first function argument of the expansion.
4495   void ExpandTypeFromArgs(QualType Ty, LValue Dst,
4496                           llvm::Function::arg_iterator &AI);
4497 
4498   /// ExpandTypeToArgs - Expand an CallArg \arg Arg, with the LLVM type for \arg
4499   /// Ty, into individual arguments on the provided vector \arg IRCallArgs,
4500   /// starting at index \arg IRCallArgPos. See ABIArgInfo::Expand.
4501   void ExpandTypeToArgs(QualType Ty, CallArg Arg, llvm::FunctionType *IRFuncTy,
4502                         SmallVectorImpl<llvm::Value *> &IRCallArgs,
4503                         unsigned &IRCallArgPos);
4504 
4505   llvm::Value* EmitAsmInput(const TargetInfo::ConstraintInfo &Info,
4506                             const Expr *InputExpr, std::string &ConstraintStr);
4507 
4508   llvm::Value* EmitAsmInputLValue(const TargetInfo::ConstraintInfo &Info,
4509                                   LValue InputValue, QualType InputType,
4510                                   std::string &ConstraintStr,
4511                                   SourceLocation Loc);
4512 
4513   /// Attempts to statically evaluate the object size of E. If that
4514   /// fails, emits code to figure the size of E out for us. This is
4515   /// pass_object_size aware.
4516   ///
4517   /// If EmittedExpr is non-null, this will use that instead of re-emitting E.
4518   llvm::Value *evaluateOrEmitBuiltinObjectSize(const Expr *E, unsigned Type,
4519                                                llvm::IntegerType *ResType,
4520                                                llvm::Value *EmittedE,
4521                                                bool IsDynamic);
4522 
4523   /// Emits the size of E, as required by __builtin_object_size. This
4524   /// function is aware of pass_object_size parameters, and will act accordingly
4525   /// if E is a parameter with the pass_object_size attribute.
4526   llvm::Value *emitBuiltinObjectSize(const Expr *E, unsigned Type,
4527                                      llvm::IntegerType *ResType,
4528                                      llvm::Value *EmittedE,
4529                                      bool IsDynamic);
4530 
4531   void emitZeroOrPatternForAutoVarInit(QualType type, const VarDecl &D,
4532                                        Address Loc);
4533 
4534 public:
4535 #ifndef NDEBUG
4536   // Determine whether the given argument is an Objective-C method
4537   // that may have type parameters in its signature.
4538   static bool isObjCMethodWithTypeParams(const ObjCMethodDecl *method) {
4539     const DeclContext *dc = method->getDeclContext();
4540     if (const ObjCInterfaceDecl *classDecl= dyn_cast<ObjCInterfaceDecl>(dc)) {
4541       return classDecl->getTypeParamListAsWritten();
4542     }
4543 
4544     if (const ObjCCategoryDecl *catDecl = dyn_cast<ObjCCategoryDecl>(dc)) {
4545       return catDecl->getTypeParamList();
4546     }
4547 
4548     return false;
4549   }
4550 
4551   template<typename T>
4552   static bool isObjCMethodWithTypeParams(const T *) { return false; }
4553 #endif
4554 
4555   enum class EvaluationOrder {
4556     ///! No language constraints on evaluation order.
4557     Default,
4558     ///! Language semantics require left-to-right evaluation.
4559     ForceLeftToRight,
4560     ///! Language semantics require right-to-left evaluation.
4561     ForceRightToLeft
4562   };
4563 
4564   /// EmitCallArgs - Emit call arguments for a function.
4565   template <typename T>
4566   void EmitCallArgs(CallArgList &Args, const T *CallArgTypeInfo,
4567                     llvm::iterator_range<CallExpr::const_arg_iterator> ArgRange,
4568                     AbstractCallee AC = AbstractCallee(),
4569                     unsigned ParamsToSkip = 0,
4570                     EvaluationOrder Order = EvaluationOrder::Default) {
4571     SmallVector<QualType, 16> ArgTypes;
4572     CallExpr::const_arg_iterator Arg = ArgRange.begin();
4573 
4574     assert((ParamsToSkip == 0 || CallArgTypeInfo) &&
4575            "Can't skip parameters if type info is not provided");
4576     if (CallArgTypeInfo) {
4577 #ifndef NDEBUG
4578       bool isGenericMethod = isObjCMethodWithTypeParams(CallArgTypeInfo);
4579 #endif
4580 
4581       // First, use the argument types that the type info knows about
4582       for (auto I = CallArgTypeInfo->param_type_begin() + ParamsToSkip,
4583                 E = CallArgTypeInfo->param_type_end();
4584            I != E; ++I, ++Arg) {
4585         assert(Arg != ArgRange.end() && "Running over edge of argument list!");
4586         assert((isGenericMethod ||
4587                 ((*I)->isVariablyModifiedType() ||
4588                  (*I).getNonReferenceType()->isObjCRetainableType() ||
4589                  getContext()
4590                          .getCanonicalType((*I).getNonReferenceType())
4591                          .getTypePtr() ==
4592                      getContext()
4593                          .getCanonicalType((*Arg)->getType())
4594                          .getTypePtr())) &&
4595                "type mismatch in call argument!");
4596         ArgTypes.push_back(*I);
4597       }
4598     }
4599 
4600     // Either we've emitted all the call args, or we have a call to variadic
4601     // function.
4602     assert((Arg == ArgRange.end() || !CallArgTypeInfo ||
4603             CallArgTypeInfo->isVariadic()) &&
4604            "Extra arguments in non-variadic function!");
4605 
4606     // If we still have any arguments, emit them using the type of the argument.
4607     for (auto *A : llvm::make_range(Arg, ArgRange.end()))
4608       ArgTypes.push_back(CallArgTypeInfo ? getVarArgType(A) : A->getType());
4609 
4610     EmitCallArgs(Args, ArgTypes, ArgRange, AC, ParamsToSkip, Order);
4611   }
4612 
4613   void EmitCallArgs(CallArgList &Args, ArrayRef<QualType> ArgTypes,
4614                     llvm::iterator_range<CallExpr::const_arg_iterator> ArgRange,
4615                     AbstractCallee AC = AbstractCallee(),
4616                     unsigned ParamsToSkip = 0,
4617                     EvaluationOrder Order = EvaluationOrder::Default);
4618 
4619   /// EmitPointerWithAlignment - Given an expression with a pointer type,
4620   /// emit the value and compute our best estimate of the alignment of the
4621   /// pointee.
4622   ///
4623   /// \param BaseInfo - If non-null, this will be initialized with
4624   /// information about the source of the alignment and the may-alias
4625   /// attribute.  Note that this function will conservatively fall back on
4626   /// the type when it doesn't recognize the expression and may-alias will
4627   /// be set to false.
4628   ///
4629   /// One reasonable way to use this information is when there's a language
4630   /// guarantee that the pointer must be aligned to some stricter value, and
4631   /// we're simply trying to ensure that sufficiently obvious uses of under-
4632   /// aligned objects don't get miscompiled; for example, a placement new
4633   /// into the address of a local variable.  In such a case, it's quite
4634   /// reasonable to just ignore the returned alignment when it isn't from an
4635   /// explicit source.
4636   Address EmitPointerWithAlignment(const Expr *Addr,
4637                                    LValueBaseInfo *BaseInfo = nullptr,
4638                                    TBAAAccessInfo *TBAAInfo = nullptr);
4639 
4640   /// If \p E references a parameter with pass_object_size info or a constant
4641   /// array size modifier, emit the object size divided by the size of \p EltTy.
4642   /// Otherwise return null.
4643   llvm::Value *LoadPassedObjectSize(const Expr *E, QualType EltTy);
4644 
4645   void EmitSanitizerStatReport(llvm::SanitizerStatKind SSK);
4646 
4647   struct MultiVersionResolverOption {
4648     llvm::Function *Function;
4649     FunctionDecl *FD;
4650     struct Conds {
4651       StringRef Architecture;
4652       llvm::SmallVector<StringRef, 8> Features;
4653 
4654       Conds(StringRef Arch, ArrayRef<StringRef> Feats)
4655           : Architecture(Arch), Features(Feats.begin(), Feats.end()) {}
4656     } Conditions;
4657 
4658     MultiVersionResolverOption(llvm::Function *F, StringRef Arch,
4659                                ArrayRef<StringRef> Feats)
4660         : Function(F), Conditions(Arch, Feats) {}
4661   };
4662 
4663   // Emits the body of a multiversion function's resolver. Assumes that the
4664   // options are already sorted in the proper order, with the 'default' option
4665   // last (if it exists).
4666   void EmitMultiVersionResolver(llvm::Function *Resolver,
4667                                 ArrayRef<MultiVersionResolverOption> Options);
4668 
4669   static uint64_t GetX86CpuSupportsMask(ArrayRef<StringRef> FeatureStrs);
4670 
4671 private:
4672   QualType getVarArgType(const Expr *Arg);
4673 
4674   void EmitDeclMetadata();
4675 
4676   BlockByrefHelpers *buildByrefHelpers(llvm::StructType &byrefType,
4677                                   const AutoVarEmission &emission);
4678 
4679   void AddObjCARCExceptionMetadata(llvm::Instruction *Inst);
4680 
4681   llvm::Value *GetValueForARMHint(unsigned BuiltinID);
4682   llvm::Value *EmitX86CpuIs(const CallExpr *E);
4683   llvm::Value *EmitX86CpuIs(StringRef CPUStr);
4684   llvm::Value *EmitX86CpuSupports(const CallExpr *E);
4685   llvm::Value *EmitX86CpuSupports(ArrayRef<StringRef> FeatureStrs);
4686   llvm::Value *EmitX86CpuSupports(uint64_t Mask);
4687   llvm::Value *EmitX86CpuInit();
4688   llvm::Value *FormResolverCondition(const MultiVersionResolverOption &RO);
4689 };
4690 
4691 inline DominatingLLVMValue::saved_type
4692 DominatingLLVMValue::save(CodeGenFunction &CGF, llvm::Value *value) {
4693   if (!needsSaving(value)) return saved_type(value, false);
4694 
4695   // Otherwise, we need an alloca.
4696   auto align = CharUnits::fromQuantity(
4697             CGF.CGM.getDataLayout().getPrefTypeAlignment(value->getType()));
4698   Address alloca =
4699     CGF.CreateTempAlloca(value->getType(), align, "cond-cleanup.save");
4700   CGF.Builder.CreateStore(value, alloca);
4701 
4702   return saved_type(alloca.getPointer(), true);
4703 }
4704 
4705 inline llvm::Value *DominatingLLVMValue::restore(CodeGenFunction &CGF,
4706                                                  saved_type value) {
4707   // If the value says it wasn't saved, trust that it's still dominating.
4708   if (!value.getInt()) return value.getPointer();
4709 
4710   // Otherwise, it should be an alloca instruction, as set up in save().
4711   auto alloca = cast<llvm::AllocaInst>(value.getPointer());
4712   return CGF.Builder.CreateAlignedLoad(alloca, alloca->getAlign());
4713 }
4714 
4715 }  // end namespace CodeGen
4716 
4717 // Map the LangOption for floating point exception behavior into
4718 // the corresponding enum in the IR.
4719 llvm::fp::ExceptionBehavior
4720 ToConstrainedExceptMD(LangOptions::FPExceptionModeKind Kind);
4721 }  // end namespace clang
4722 
4723 #endif
4724