1 //===-- CodeGenFunction.h - Per-Function state for LLVM CodeGen -*- C++ -*-===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This is the internal per-function state used for llvm translation.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #ifndef LLVM_CLANG_LIB_CODEGEN_CODEGENFUNCTION_H
15 #define LLVM_CLANG_LIB_CODEGEN_CODEGENFUNCTION_H
16 
17 #include "CGBuilder.h"
18 #include "CGDebugInfo.h"
19 #include "CGLoopInfo.h"
20 #include "CGValue.h"
21 #include "CodeGenModule.h"
22 #include "CodeGenPGO.h"
23 #include "EHScopeStack.h"
24 #include "VarBypassDetector.h"
25 #include "clang/AST/CharUnits.h"
26 #include "clang/AST/ExprCXX.h"
27 #include "clang/AST/ExprObjC.h"
28 #include "clang/AST/ExprOpenMP.h"
29 #include "clang/AST/Type.h"
30 #include "clang/Basic/ABI.h"
31 #include "clang/Basic/CapturedStmt.h"
32 #include "clang/Basic/OpenMPKinds.h"
33 #include "clang/Basic/TargetInfo.h"
34 #include "clang/Frontend/CodeGenOptions.h"
35 #include "llvm/ADT/ArrayRef.h"
36 #include "llvm/ADT/DenseMap.h"
37 #include "llvm/ADT/SmallVector.h"
38 #include "llvm/IR/ValueHandle.h"
39 #include "llvm/Support/Debug.h"
40 #include "llvm/Transforms/Utils/SanitizerStats.h"
41 
42 namespace llvm {
43 class BasicBlock;
44 class LLVMContext;
45 class MDNode;
46 class Module;
47 class SwitchInst;
48 class Twine;
49 class Value;
50 class CallSite;
51 }
52 
53 namespace clang {
54 class ASTContext;
55 class BlockDecl;
56 class CXXDestructorDecl;
57 class CXXForRangeStmt;
58 class CXXTryStmt;
59 class Decl;
60 class LabelDecl;
61 class EnumConstantDecl;
62 class FunctionDecl;
63 class FunctionProtoType;
64 class LabelStmt;
65 class ObjCContainerDecl;
66 class ObjCInterfaceDecl;
67 class ObjCIvarDecl;
68 class ObjCMethodDecl;
69 class ObjCImplementationDecl;
70 class ObjCPropertyImplDecl;
71 class TargetInfo;
72 class VarDecl;
73 class ObjCForCollectionStmt;
74 class ObjCAtTryStmt;
75 class ObjCAtThrowStmt;
76 class ObjCAtSynchronizedStmt;
77 class ObjCAutoreleasePoolStmt;
78 
79 namespace CodeGen {
80 class CodeGenTypes;
81 class CGCallee;
82 class CGFunctionInfo;
83 class CGRecordLayout;
84 class CGBlockInfo;
85 class CGCXXABI;
86 class BlockByrefHelpers;
87 class BlockByrefInfo;
88 class BlockFlags;
89 class BlockFieldFlags;
90 class RegionCodeGenTy;
91 class TargetCodeGenInfo;
92 struct OMPTaskDataTy;
93 struct CGCoroData;
94 
95 /// The kind of evaluation to perform on values of a particular
96 /// type.  Basically, is the code in CGExprScalar, CGExprComplex, or
97 /// CGExprAgg?
98 ///
99 /// TODO: should vectors maybe be split out into their own thing?
100 enum TypeEvaluationKind {
101   TEK_Scalar,
102   TEK_Complex,
103   TEK_Aggregate
104 };
105 
106 #define LIST_SANITIZER_CHECKS                                                  \
107   SANITIZER_CHECK(AddOverflow, add_overflow, 0)                                \
108   SANITIZER_CHECK(BuiltinUnreachable, builtin_unreachable, 0)                  \
109   SANITIZER_CHECK(CFICheckFail, cfi_check_fail, 0)                             \
110   SANITIZER_CHECK(DivremOverflow, divrem_overflow, 0)                          \
111   SANITIZER_CHECK(DynamicTypeCacheMiss, dynamic_type_cache_miss, 0)            \
112   SANITIZER_CHECK(FloatCastOverflow, float_cast_overflow, 0)                   \
113   SANITIZER_CHECK(FunctionTypeMismatch, function_type_mismatch, 0)             \
114   SANITIZER_CHECK(InvalidBuiltin, invalid_builtin, 0)                          \
115   SANITIZER_CHECK(LoadInvalidValue, load_invalid_value, 0)                     \
116   SANITIZER_CHECK(MissingReturn, missing_return, 0)                            \
117   SANITIZER_CHECK(MulOverflow, mul_overflow, 0)                                \
118   SANITIZER_CHECK(NegateOverflow, negate_overflow, 0)                          \
119   SANITIZER_CHECK(NullabilityArg, nullability_arg, 0)                          \
120   SANITIZER_CHECK(NullabilityReturn, nullability_return, 1)                    \
121   SANITIZER_CHECK(NonnullArg, nonnull_arg, 0)                                  \
122   SANITIZER_CHECK(NonnullReturn, nonnull_return, 1)                            \
123   SANITIZER_CHECK(OutOfBounds, out_of_bounds, 0)                               \
124   SANITIZER_CHECK(PointerOverflow, pointer_overflow, 0)                        \
125   SANITIZER_CHECK(ShiftOutOfBounds, shift_out_of_bounds, 0)                    \
126   SANITIZER_CHECK(SubOverflow, sub_overflow, 0)                                \
127   SANITIZER_CHECK(TypeMismatch, type_mismatch, 1)                              \
128   SANITIZER_CHECK(VLABoundNotPositive, vla_bound_not_positive, 0)
129 
130 enum SanitizerHandler {
131 #define SANITIZER_CHECK(Enum, Name, Version) Enum,
132   LIST_SANITIZER_CHECKS
133 #undef SANITIZER_CHECK
134 };
135 
136 /// CodeGenFunction - This class organizes the per-function state that is used
137 /// while generating LLVM code.
138 class CodeGenFunction : public CodeGenTypeCache {
139   CodeGenFunction(const CodeGenFunction &) = delete;
140   void operator=(const CodeGenFunction &) = delete;
141 
142   friend class CGCXXABI;
143 public:
144   /// A jump destination is an abstract label, branching to which may
145   /// require a jump out through normal cleanups.
146   struct JumpDest {
147     JumpDest() : Block(nullptr), ScopeDepth(), Index(0) {}
148     JumpDest(llvm::BasicBlock *Block,
149              EHScopeStack::stable_iterator Depth,
150              unsigned Index)
151       : Block(Block), ScopeDepth(Depth), Index(Index) {}
152 
153     bool isValid() const { return Block != nullptr; }
154     llvm::BasicBlock *getBlock() const { return Block; }
155     EHScopeStack::stable_iterator getScopeDepth() const { return ScopeDepth; }
156     unsigned getDestIndex() const { return Index; }
157 
158     // This should be used cautiously.
159     void setScopeDepth(EHScopeStack::stable_iterator depth) {
160       ScopeDepth = depth;
161     }
162 
163   private:
164     llvm::BasicBlock *Block;
165     EHScopeStack::stable_iterator ScopeDepth;
166     unsigned Index;
167   };
168 
169   CodeGenModule &CGM;  // Per-module state.
170   const TargetInfo &Target;
171 
172   typedef std::pair<llvm::Value *, llvm::Value *> ComplexPairTy;
173   LoopInfoStack LoopStack;
174   CGBuilderTy Builder;
175 
176   // Stores variables for which we can't generate correct lifetime markers
177   // because of jumps.
178   VarBypassDetector Bypasses;
179 
180   // CodeGen lambda for loops and support for ordered clause
181   typedef llvm::function_ref<void(CodeGenFunction &, const OMPLoopDirective &,
182                                   JumpDest)>
183       CodeGenLoopTy;
184   typedef llvm::function_ref<void(CodeGenFunction &, SourceLocation,
185                                   const unsigned, const bool)>
186       CodeGenOrderedTy;
187 
188   // Codegen lambda for loop bounds in worksharing loop constructs
189   typedef llvm::function_ref<std::pair<LValue, LValue>(
190       CodeGenFunction &, const OMPExecutableDirective &S)>
191       CodeGenLoopBoundsTy;
192 
193   // Codegen lambda for loop bounds in dispatch-based loop implementation
194   typedef llvm::function_ref<std::pair<llvm::Value *, llvm::Value *>(
195       CodeGenFunction &, const OMPExecutableDirective &S, Address LB,
196       Address UB)>
197       CodeGenDispatchBoundsTy;
198 
199   /// \brief CGBuilder insert helper. This function is called after an
200   /// instruction is created using Builder.
201   void InsertHelper(llvm::Instruction *I, const llvm::Twine &Name,
202                     llvm::BasicBlock *BB,
203                     llvm::BasicBlock::iterator InsertPt) const;
204 
205   /// CurFuncDecl - Holds the Decl for the current outermost
206   /// non-closure context.
207   const Decl *CurFuncDecl;
208   /// CurCodeDecl - This is the inner-most code context, which includes blocks.
209   const Decl *CurCodeDecl;
210   const CGFunctionInfo *CurFnInfo;
211   QualType FnRetTy;
212   llvm::Function *CurFn;
213 
214   // Holds coroutine data if the current function is a coroutine. We use a
215   // wrapper to manage its lifetime, so that we don't have to define CGCoroData
216   // in this header.
217   struct CGCoroInfo {
218     std::unique_ptr<CGCoroData> Data;
219     CGCoroInfo();
220     ~CGCoroInfo();
221   };
222   CGCoroInfo CurCoro;
223 
224   /// CurGD - The GlobalDecl for the current function being compiled.
225   GlobalDecl CurGD;
226 
227   /// PrologueCleanupDepth - The cleanup depth enclosing all the
228   /// cleanups associated with the parameters.
229   EHScopeStack::stable_iterator PrologueCleanupDepth;
230 
231   /// ReturnBlock - Unified return block.
232   JumpDest ReturnBlock;
233 
234   /// ReturnValue - The temporary alloca to hold the return
235   /// value. This is invalid iff the function has no return value.
236   Address ReturnValue;
237 
238   /// Return true if a label was seen in the current scope.
239   bool hasLabelBeenSeenInCurrentScope() const {
240     if (CurLexicalScope)
241       return CurLexicalScope->hasLabels();
242     return !LabelMap.empty();
243   }
244 
245   /// AllocaInsertPoint - This is an instruction in the entry block before which
246   /// we prefer to insert allocas.
247   llvm::AssertingVH<llvm::Instruction> AllocaInsertPt;
248 
249   /// \brief API for captured statement code generation.
250   class CGCapturedStmtInfo {
251   public:
252     explicit CGCapturedStmtInfo(CapturedRegionKind K = CR_Default)
253         : Kind(K), ThisValue(nullptr), CXXThisFieldDecl(nullptr) {}
254     explicit CGCapturedStmtInfo(const CapturedStmt &S,
255                                 CapturedRegionKind K = CR_Default)
256       : Kind(K), ThisValue(nullptr), CXXThisFieldDecl(nullptr) {
257 
258       RecordDecl::field_iterator Field =
259         S.getCapturedRecordDecl()->field_begin();
260       for (CapturedStmt::const_capture_iterator I = S.capture_begin(),
261                                                 E = S.capture_end();
262            I != E; ++I, ++Field) {
263         if (I->capturesThis())
264           CXXThisFieldDecl = *Field;
265         else if (I->capturesVariable())
266           CaptureFields[I->getCapturedVar()] = *Field;
267         else if (I->capturesVariableByCopy())
268           CaptureFields[I->getCapturedVar()] = *Field;
269       }
270     }
271 
272     virtual ~CGCapturedStmtInfo();
273 
274     CapturedRegionKind getKind() const { return Kind; }
275 
276     virtual void setContextValue(llvm::Value *V) { ThisValue = V; }
277     // \brief Retrieve the value of the context parameter.
278     virtual llvm::Value *getContextValue() const { return ThisValue; }
279 
280     /// \brief Lookup the captured field decl for a variable.
281     virtual const FieldDecl *lookup(const VarDecl *VD) const {
282       return CaptureFields.lookup(VD);
283     }
284 
285     bool isCXXThisExprCaptured() const { return getThisFieldDecl() != nullptr; }
286     virtual FieldDecl *getThisFieldDecl() const { return CXXThisFieldDecl; }
287 
288     static bool classof(const CGCapturedStmtInfo *) {
289       return true;
290     }
291 
292     /// \brief Emit the captured statement body.
293     virtual void EmitBody(CodeGenFunction &CGF, const Stmt *S) {
294       CGF.incrementProfileCounter(S);
295       CGF.EmitStmt(S);
296     }
297 
298     /// \brief Get the name of the capture helper.
299     virtual StringRef getHelperName() const { return "__captured_stmt"; }
300 
301   private:
302     /// \brief The kind of captured statement being generated.
303     CapturedRegionKind Kind;
304 
305     /// \brief Keep the map between VarDecl and FieldDecl.
306     llvm::SmallDenseMap<const VarDecl *, FieldDecl *> CaptureFields;
307 
308     /// \brief The base address of the captured record, passed in as the first
309     /// argument of the parallel region function.
310     llvm::Value *ThisValue;
311 
312     /// \brief Captured 'this' type.
313     FieldDecl *CXXThisFieldDecl;
314   };
315   CGCapturedStmtInfo *CapturedStmtInfo;
316 
317   /// \brief RAII for correct setting/restoring of CapturedStmtInfo.
318   class CGCapturedStmtRAII {
319   private:
320     CodeGenFunction &CGF;
321     CGCapturedStmtInfo *PrevCapturedStmtInfo;
322   public:
323     CGCapturedStmtRAII(CodeGenFunction &CGF,
324                        CGCapturedStmtInfo *NewCapturedStmtInfo)
325         : CGF(CGF), PrevCapturedStmtInfo(CGF.CapturedStmtInfo) {
326       CGF.CapturedStmtInfo = NewCapturedStmtInfo;
327     }
328     ~CGCapturedStmtRAII() { CGF.CapturedStmtInfo = PrevCapturedStmtInfo; }
329   };
330 
331   /// An abstract representation of regular/ObjC call/message targets.
332   class AbstractCallee {
333     /// The function declaration of the callee.
334     const Decl *CalleeDecl;
335 
336   public:
337     AbstractCallee() : CalleeDecl(nullptr) {}
338     AbstractCallee(const FunctionDecl *FD) : CalleeDecl(FD) {}
339     AbstractCallee(const ObjCMethodDecl *OMD) : CalleeDecl(OMD) {}
340     bool hasFunctionDecl() const {
341       return dyn_cast_or_null<FunctionDecl>(CalleeDecl);
342     }
343     const Decl *getDecl() const { return CalleeDecl; }
344     unsigned getNumParams() const {
345       if (const auto *FD = dyn_cast<FunctionDecl>(CalleeDecl))
346         return FD->getNumParams();
347       return cast<ObjCMethodDecl>(CalleeDecl)->param_size();
348     }
349     const ParmVarDecl *getParamDecl(unsigned I) const {
350       if (const auto *FD = dyn_cast<FunctionDecl>(CalleeDecl))
351         return FD->getParamDecl(I);
352       return *(cast<ObjCMethodDecl>(CalleeDecl)->param_begin() + I);
353     }
354   };
355 
356   /// \brief Sanitizers enabled for this function.
357   SanitizerSet SanOpts;
358 
359   /// \brief True if CodeGen currently emits code implementing sanitizer checks.
360   bool IsSanitizerScope;
361 
362   /// \brief RAII object to set/unset CodeGenFunction::IsSanitizerScope.
363   class SanitizerScope {
364     CodeGenFunction *CGF;
365   public:
366     SanitizerScope(CodeGenFunction *CGF);
367     ~SanitizerScope();
368   };
369 
370   /// In C++, whether we are code generating a thunk.  This controls whether we
371   /// should emit cleanups.
372   bool CurFuncIsThunk;
373 
374   /// In ARC, whether we should autorelease the return value.
375   bool AutoreleaseResult;
376 
377   /// Whether we processed a Microsoft-style asm block during CodeGen. These can
378   /// potentially set the return value.
379   bool SawAsmBlock;
380 
381   const FunctionDecl *CurSEHParent = nullptr;
382 
383   /// True if the current function is an outlined SEH helper. This can be a
384   /// finally block or filter expression.
385   bool IsOutlinedSEHHelper;
386 
387   const CodeGen::CGBlockInfo *BlockInfo;
388   llvm::Value *BlockPointer;
389 
390   llvm::DenseMap<const VarDecl *, FieldDecl *> LambdaCaptureFields;
391   FieldDecl *LambdaThisCaptureField;
392 
393   /// \brief A mapping from NRVO variables to the flags used to indicate
394   /// when the NRVO has been applied to this variable.
395   llvm::DenseMap<const VarDecl *, llvm::Value *> NRVOFlags;
396 
397   EHScopeStack EHStack;
398   llvm::SmallVector<char, 256> LifetimeExtendedCleanupStack;
399   llvm::SmallVector<const JumpDest *, 2> SEHTryEpilogueStack;
400 
401   llvm::Instruction *CurrentFuncletPad = nullptr;
402 
403   class CallLifetimeEnd final : public EHScopeStack::Cleanup {
404     llvm::Value *Addr;
405     llvm::Value *Size;
406 
407   public:
408     CallLifetimeEnd(Address addr, llvm::Value *size)
409         : Addr(addr.getPointer()), Size(size) {}
410 
411     void Emit(CodeGenFunction &CGF, Flags flags) override {
412       CGF.EmitLifetimeEnd(Size, Addr);
413     }
414   };
415 
416   /// Header for data within LifetimeExtendedCleanupStack.
417   struct LifetimeExtendedCleanupHeader {
418     /// The size of the following cleanup object.
419     unsigned Size;
420     /// The kind of cleanup to push: a value from the CleanupKind enumeration.
421     CleanupKind Kind;
422 
423     size_t getSize() const { return Size; }
424     CleanupKind getKind() const { return Kind; }
425   };
426 
427   /// i32s containing the indexes of the cleanup destinations.
428   llvm::AllocaInst *NormalCleanupDest;
429 
430   unsigned NextCleanupDestIndex;
431 
432   /// FirstBlockInfo - The head of a singly-linked-list of block layouts.
433   CGBlockInfo *FirstBlockInfo;
434 
435   /// EHResumeBlock - Unified block containing a call to llvm.eh.resume.
436   llvm::BasicBlock *EHResumeBlock;
437 
438   /// The exception slot.  All landing pads write the current exception pointer
439   /// into this alloca.
440   llvm::Value *ExceptionSlot;
441 
442   /// The selector slot.  Under the MandatoryCleanup model, all landing pads
443   /// write the current selector value into this alloca.
444   llvm::AllocaInst *EHSelectorSlot;
445 
446   /// A stack of exception code slots. Entering an __except block pushes a slot
447   /// on the stack and leaving pops one. The __exception_code() intrinsic loads
448   /// a value from the top of the stack.
449   SmallVector<Address, 1> SEHCodeSlotStack;
450 
451   /// Value returned by __exception_info intrinsic.
452   llvm::Value *SEHInfo = nullptr;
453 
454   /// Emits a landing pad for the current EH stack.
455   llvm::BasicBlock *EmitLandingPad();
456 
457   llvm::BasicBlock *getInvokeDestImpl();
458 
459   template <class T>
460   typename DominatingValue<T>::saved_type saveValueInCond(T value) {
461     return DominatingValue<T>::save(*this, value);
462   }
463 
464 public:
465   /// ObjCEHValueStack - Stack of Objective-C exception values, used for
466   /// rethrows.
467   SmallVector<llvm::Value*, 8> ObjCEHValueStack;
468 
469   /// A class controlling the emission of a finally block.
470   class FinallyInfo {
471     /// Where the catchall's edge through the cleanup should go.
472     JumpDest RethrowDest;
473 
474     /// A function to call to enter the catch.
475     llvm::Constant *BeginCatchFn;
476 
477     /// An i1 variable indicating whether or not the @finally is
478     /// running for an exception.
479     llvm::AllocaInst *ForEHVar;
480 
481     /// An i8* variable into which the exception pointer to rethrow
482     /// has been saved.
483     llvm::AllocaInst *SavedExnVar;
484 
485   public:
486     void enter(CodeGenFunction &CGF, const Stmt *Finally,
487                llvm::Constant *beginCatchFn, llvm::Constant *endCatchFn,
488                llvm::Constant *rethrowFn);
489     void exit(CodeGenFunction &CGF);
490   };
491 
492   /// Returns true inside SEH __try blocks.
493   bool isSEHTryScope() const { return !SEHTryEpilogueStack.empty(); }
494 
495   /// Returns true while emitting a cleanuppad.
496   bool isCleanupPadScope() const {
497     return CurrentFuncletPad && isa<llvm::CleanupPadInst>(CurrentFuncletPad);
498   }
499 
500   /// pushFullExprCleanup - Push a cleanup to be run at the end of the
501   /// current full-expression.  Safe against the possibility that
502   /// we're currently inside a conditionally-evaluated expression.
503   template <class T, class... As>
504   void pushFullExprCleanup(CleanupKind kind, As... A) {
505     // If we're not in a conditional branch, or if none of the
506     // arguments requires saving, then use the unconditional cleanup.
507     if (!isInConditionalBranch())
508       return EHStack.pushCleanup<T>(kind, A...);
509 
510     // Stash values in a tuple so we can guarantee the order of saves.
511     typedef std::tuple<typename DominatingValue<As>::saved_type...> SavedTuple;
512     SavedTuple Saved{saveValueInCond(A)...};
513 
514     typedef EHScopeStack::ConditionalCleanup<T, As...> CleanupType;
515     EHStack.pushCleanupTuple<CleanupType>(kind, Saved);
516     initFullExprCleanup();
517   }
518 
519   /// \brief Queue a cleanup to be pushed after finishing the current
520   /// full-expression.
521   template <class T, class... As>
522   void pushCleanupAfterFullExpr(CleanupKind Kind, As... A) {
523     assert(!isInConditionalBranch() && "can't defer conditional cleanup");
524 
525     LifetimeExtendedCleanupHeader Header = { sizeof(T), Kind };
526 
527     size_t OldSize = LifetimeExtendedCleanupStack.size();
528     LifetimeExtendedCleanupStack.resize(
529         LifetimeExtendedCleanupStack.size() + sizeof(Header) + Header.Size);
530 
531     static_assert(sizeof(Header) % alignof(T) == 0,
532                   "Cleanup will be allocated on misaligned address");
533     char *Buffer = &LifetimeExtendedCleanupStack[OldSize];
534     new (Buffer) LifetimeExtendedCleanupHeader(Header);
535     new (Buffer + sizeof(Header)) T(A...);
536   }
537 
538   /// Set up the last cleaup that was pushed as a conditional
539   /// full-expression cleanup.
540   void initFullExprCleanup();
541 
542   /// PushDestructorCleanup - Push a cleanup to call the
543   /// complete-object destructor of an object of the given type at the
544   /// given address.  Does nothing if T is not a C++ class type with a
545   /// non-trivial destructor.
546   void PushDestructorCleanup(QualType T, Address Addr);
547 
548   /// PushDestructorCleanup - Push a cleanup to call the
549   /// complete-object variant of the given destructor on the object at
550   /// the given address.
551   void PushDestructorCleanup(const CXXDestructorDecl *Dtor, Address Addr);
552 
553   /// PopCleanupBlock - Will pop the cleanup entry on the stack and
554   /// process all branch fixups.
555   void PopCleanupBlock(bool FallThroughIsBranchThrough = false);
556 
557   /// DeactivateCleanupBlock - Deactivates the given cleanup block.
558   /// The block cannot be reactivated.  Pops it if it's the top of the
559   /// stack.
560   ///
561   /// \param DominatingIP - An instruction which is known to
562   ///   dominate the current IP (if set) and which lies along
563   ///   all paths of execution between the current IP and the
564   ///   the point at which the cleanup comes into scope.
565   void DeactivateCleanupBlock(EHScopeStack::stable_iterator Cleanup,
566                               llvm::Instruction *DominatingIP);
567 
568   /// ActivateCleanupBlock - Activates an initially-inactive cleanup.
569   /// Cannot be used to resurrect a deactivated cleanup.
570   ///
571   /// \param DominatingIP - An instruction which is known to
572   ///   dominate the current IP (if set) and which lies along
573   ///   all paths of execution between the current IP and the
574   ///   the point at which the cleanup comes into scope.
575   void ActivateCleanupBlock(EHScopeStack::stable_iterator Cleanup,
576                             llvm::Instruction *DominatingIP);
577 
578   /// \brief Enters a new scope for capturing cleanups, all of which
579   /// will be executed once the scope is exited.
580   class RunCleanupsScope {
581     EHScopeStack::stable_iterator CleanupStackDepth;
582     size_t LifetimeExtendedCleanupStackSize;
583     bool OldDidCallStackSave;
584   protected:
585     bool PerformCleanup;
586   private:
587 
588     RunCleanupsScope(const RunCleanupsScope &) = delete;
589     void operator=(const RunCleanupsScope &) = delete;
590 
591   protected:
592     CodeGenFunction& CGF;
593 
594   public:
595     /// \brief Enter a new cleanup scope.
596     explicit RunCleanupsScope(CodeGenFunction &CGF)
597       : PerformCleanup(true), CGF(CGF)
598     {
599       CleanupStackDepth = CGF.EHStack.stable_begin();
600       LifetimeExtendedCleanupStackSize =
601           CGF.LifetimeExtendedCleanupStack.size();
602       OldDidCallStackSave = CGF.DidCallStackSave;
603       CGF.DidCallStackSave = false;
604     }
605 
606     /// \brief Exit this cleanup scope, emitting any accumulated cleanups.
607     ~RunCleanupsScope() {
608       if (PerformCleanup)
609         ForceCleanup();
610     }
611 
612     /// \brief Determine whether this scope requires any cleanups.
613     bool requiresCleanups() const {
614       return CGF.EHStack.stable_begin() != CleanupStackDepth;
615     }
616 
617     /// \brief Force the emission of cleanups now, instead of waiting
618     /// until this object is destroyed.
619     /// \param ValuesToReload - A list of values that need to be available at
620     /// the insertion point after cleanup emission. If cleanup emission created
621     /// a shared cleanup block, these value pointers will be rewritten.
622     /// Otherwise, they not will be modified.
623     void ForceCleanup(std::initializer_list<llvm::Value**> ValuesToReload = {}) {
624       assert(PerformCleanup && "Already forced cleanup");
625       CGF.DidCallStackSave = OldDidCallStackSave;
626       CGF.PopCleanupBlocks(CleanupStackDepth, LifetimeExtendedCleanupStackSize,
627                            ValuesToReload);
628       PerformCleanup = false;
629     }
630   };
631 
632   class LexicalScope : public RunCleanupsScope {
633     SourceRange Range;
634     SmallVector<const LabelDecl*, 4> Labels;
635     LexicalScope *ParentScope;
636 
637     LexicalScope(const LexicalScope &) = delete;
638     void operator=(const LexicalScope &) = delete;
639 
640   public:
641     /// \brief Enter a new cleanup scope.
642     explicit LexicalScope(CodeGenFunction &CGF, SourceRange Range)
643       : RunCleanupsScope(CGF), Range(Range), ParentScope(CGF.CurLexicalScope) {
644       CGF.CurLexicalScope = this;
645       if (CGDebugInfo *DI = CGF.getDebugInfo())
646         DI->EmitLexicalBlockStart(CGF.Builder, Range.getBegin());
647     }
648 
649     void addLabel(const LabelDecl *label) {
650       assert(PerformCleanup && "adding label to dead scope?");
651       Labels.push_back(label);
652     }
653 
654     /// \brief Exit this cleanup scope, emitting any accumulated
655     /// cleanups.
656     ~LexicalScope() {
657       if (CGDebugInfo *DI = CGF.getDebugInfo())
658         DI->EmitLexicalBlockEnd(CGF.Builder, Range.getEnd());
659 
660       // If we should perform a cleanup, force them now.  Note that
661       // this ends the cleanup scope before rescoping any labels.
662       if (PerformCleanup) {
663         ApplyDebugLocation DL(CGF, Range.getEnd());
664         ForceCleanup();
665       }
666     }
667 
668     /// \brief Force the emission of cleanups now, instead of waiting
669     /// until this object is destroyed.
670     void ForceCleanup() {
671       CGF.CurLexicalScope = ParentScope;
672       RunCleanupsScope::ForceCleanup();
673 
674       if (!Labels.empty())
675         rescopeLabels();
676     }
677 
678     bool hasLabels() const {
679       return !Labels.empty();
680     }
681 
682     void rescopeLabels();
683   };
684 
685   typedef llvm::DenseMap<const Decl *, Address> DeclMapTy;
686 
687   /// \brief The scope used to remap some variables as private in the OpenMP
688   /// loop body (or other captured region emitted without outlining), and to
689   /// restore old vars back on exit.
690   class OMPPrivateScope : public RunCleanupsScope {
691     DeclMapTy SavedLocals;
692     DeclMapTy SavedPrivates;
693 
694   private:
695     OMPPrivateScope(const OMPPrivateScope &) = delete;
696     void operator=(const OMPPrivateScope &) = delete;
697 
698   public:
699     /// \brief Enter a new OpenMP private scope.
700     explicit OMPPrivateScope(CodeGenFunction &CGF) : RunCleanupsScope(CGF) {}
701 
702     /// \brief Registers \a LocalVD variable as a private and apply \a
703     /// PrivateGen function for it to generate corresponding private variable.
704     /// \a PrivateGen returns an address of the generated private variable.
705     /// \return true if the variable is registered as private, false if it has
706     /// been privatized already.
707     bool
708     addPrivate(const VarDecl *LocalVD,
709                llvm::function_ref<Address()> PrivateGen) {
710       assert(PerformCleanup && "adding private to dead scope");
711 
712       LocalVD = LocalVD->getCanonicalDecl();
713       // Only save it once.
714       if (SavedLocals.count(LocalVD)) return false;
715 
716       // Copy the existing local entry to SavedLocals.
717       auto it = CGF.LocalDeclMap.find(LocalVD);
718       if (it != CGF.LocalDeclMap.end()) {
719         SavedLocals.insert({LocalVD, it->second});
720       } else {
721         SavedLocals.insert({LocalVD, Address::invalid()});
722       }
723 
724       // Generate the private entry.
725       Address Addr = PrivateGen();
726       QualType VarTy = LocalVD->getType();
727       if (VarTy->isReferenceType()) {
728         Address Temp = CGF.CreateMemTemp(VarTy);
729         CGF.Builder.CreateStore(Addr.getPointer(), Temp);
730         Addr = Temp;
731       }
732       SavedPrivates.insert({LocalVD, Addr});
733 
734       return true;
735     }
736 
737     /// \brief Privatizes local variables previously registered as private.
738     /// Registration is separate from the actual privatization to allow
739     /// initializers use values of the original variables, not the private one.
740     /// This is important, for example, if the private variable is a class
741     /// variable initialized by a constructor that references other private
742     /// variables. But at initialization original variables must be used, not
743     /// private copies.
744     /// \return true if at least one variable was privatized, false otherwise.
745     bool Privatize() {
746       copyInto(SavedPrivates, CGF.LocalDeclMap);
747       SavedPrivates.clear();
748       return !SavedLocals.empty();
749     }
750 
751     void ForceCleanup() {
752       RunCleanupsScope::ForceCleanup();
753       copyInto(SavedLocals, CGF.LocalDeclMap);
754       SavedLocals.clear();
755     }
756 
757     /// \brief Exit scope - all the mapped variables are restored.
758     ~OMPPrivateScope() {
759       if (PerformCleanup)
760         ForceCleanup();
761     }
762 
763     /// Checks if the global variable is captured in current function.
764     bool isGlobalVarCaptured(const VarDecl *VD) const {
765       VD = VD->getCanonicalDecl();
766       return !VD->isLocalVarDeclOrParm() && CGF.LocalDeclMap.count(VD) > 0;
767     }
768 
769   private:
770     /// Copy all the entries in the source map over the corresponding
771     /// entries in the destination, which must exist.
772     static void copyInto(const DeclMapTy &src, DeclMapTy &dest) {
773       for (auto &pair : src) {
774         if (!pair.second.isValid()) {
775           dest.erase(pair.first);
776           continue;
777         }
778 
779         auto it = dest.find(pair.first);
780         if (it != dest.end()) {
781           it->second = pair.second;
782         } else {
783           dest.insert(pair);
784         }
785       }
786     }
787   };
788 
789   /// \brief Takes the old cleanup stack size and emits the cleanup blocks
790   /// that have been added.
791   void
792   PopCleanupBlocks(EHScopeStack::stable_iterator OldCleanupStackSize,
793                    std::initializer_list<llvm::Value **> ValuesToReload = {});
794 
795   /// \brief Takes the old cleanup stack size and emits the cleanup blocks
796   /// that have been added, then adds all lifetime-extended cleanups from
797   /// the given position to the stack.
798   void
799   PopCleanupBlocks(EHScopeStack::stable_iterator OldCleanupStackSize,
800                    size_t OldLifetimeExtendedStackSize,
801                    std::initializer_list<llvm::Value **> ValuesToReload = {});
802 
803   void ResolveBranchFixups(llvm::BasicBlock *Target);
804 
805   /// The given basic block lies in the current EH scope, but may be a
806   /// target of a potentially scope-crossing jump; get a stable handle
807   /// to which we can perform this jump later.
808   JumpDest getJumpDestInCurrentScope(llvm::BasicBlock *Target) {
809     return JumpDest(Target,
810                     EHStack.getInnermostNormalCleanup(),
811                     NextCleanupDestIndex++);
812   }
813 
814   /// The given basic block lies in the current EH scope, but may be a
815   /// target of a potentially scope-crossing jump; get a stable handle
816   /// to which we can perform this jump later.
817   JumpDest getJumpDestInCurrentScope(StringRef Name = StringRef()) {
818     return getJumpDestInCurrentScope(createBasicBlock(Name));
819   }
820 
821   /// EmitBranchThroughCleanup - Emit a branch from the current insert
822   /// block through the normal cleanup handling code (if any) and then
823   /// on to \arg Dest.
824   void EmitBranchThroughCleanup(JumpDest Dest);
825 
826   /// isObviouslyBranchWithoutCleanups - Return true if a branch to the
827   /// specified destination obviously has no cleanups to run.  'false' is always
828   /// a conservatively correct answer for this method.
829   bool isObviouslyBranchWithoutCleanups(JumpDest Dest) const;
830 
831   /// popCatchScope - Pops the catch scope at the top of the EHScope
832   /// stack, emitting any required code (other than the catch handlers
833   /// themselves).
834   void popCatchScope();
835 
836   llvm::BasicBlock *getEHResumeBlock(bool isCleanup);
837   llvm::BasicBlock *getEHDispatchBlock(EHScopeStack::stable_iterator scope);
838   llvm::BasicBlock *getMSVCDispatchBlock(EHScopeStack::stable_iterator scope);
839 
840   /// An object to manage conditionally-evaluated expressions.
841   class ConditionalEvaluation {
842     llvm::BasicBlock *StartBB;
843 
844   public:
845     ConditionalEvaluation(CodeGenFunction &CGF)
846       : StartBB(CGF.Builder.GetInsertBlock()) {}
847 
848     void begin(CodeGenFunction &CGF) {
849       assert(CGF.OutermostConditional != this);
850       if (!CGF.OutermostConditional)
851         CGF.OutermostConditional = this;
852     }
853 
854     void end(CodeGenFunction &CGF) {
855       assert(CGF.OutermostConditional != nullptr);
856       if (CGF.OutermostConditional == this)
857         CGF.OutermostConditional = nullptr;
858     }
859 
860     /// Returns a block which will be executed prior to each
861     /// evaluation of the conditional code.
862     llvm::BasicBlock *getStartingBlock() const {
863       return StartBB;
864     }
865   };
866 
867   /// isInConditionalBranch - Return true if we're currently emitting
868   /// one branch or the other of a conditional expression.
869   bool isInConditionalBranch() const { return OutermostConditional != nullptr; }
870 
871   void setBeforeOutermostConditional(llvm::Value *value, Address addr) {
872     assert(isInConditionalBranch());
873     llvm::BasicBlock *block = OutermostConditional->getStartingBlock();
874     auto store = new llvm::StoreInst(value, addr.getPointer(), &block->back());
875     store->setAlignment(addr.getAlignment().getQuantity());
876   }
877 
878   /// An RAII object to record that we're evaluating a statement
879   /// expression.
880   class StmtExprEvaluation {
881     CodeGenFunction &CGF;
882 
883     /// We have to save the outermost conditional: cleanups in a
884     /// statement expression aren't conditional just because the
885     /// StmtExpr is.
886     ConditionalEvaluation *SavedOutermostConditional;
887 
888   public:
889     StmtExprEvaluation(CodeGenFunction &CGF)
890       : CGF(CGF), SavedOutermostConditional(CGF.OutermostConditional) {
891       CGF.OutermostConditional = nullptr;
892     }
893 
894     ~StmtExprEvaluation() {
895       CGF.OutermostConditional = SavedOutermostConditional;
896       CGF.EnsureInsertPoint();
897     }
898   };
899 
900   /// An object which temporarily prevents a value from being
901   /// destroyed by aggressive peephole optimizations that assume that
902   /// all uses of a value have been realized in the IR.
903   class PeepholeProtection {
904     llvm::Instruction *Inst;
905     friend class CodeGenFunction;
906 
907   public:
908     PeepholeProtection() : Inst(nullptr) {}
909   };
910 
911   /// A non-RAII class containing all the information about a bound
912   /// opaque value.  OpaqueValueMapping, below, is a RAII wrapper for
913   /// this which makes individual mappings very simple; using this
914   /// class directly is useful when you have a variable number of
915   /// opaque values or don't want the RAII functionality for some
916   /// reason.
917   class OpaqueValueMappingData {
918     const OpaqueValueExpr *OpaqueValue;
919     bool BoundLValue;
920     CodeGenFunction::PeepholeProtection Protection;
921 
922     OpaqueValueMappingData(const OpaqueValueExpr *ov,
923                            bool boundLValue)
924       : OpaqueValue(ov), BoundLValue(boundLValue) {}
925   public:
926     OpaqueValueMappingData() : OpaqueValue(nullptr) {}
927 
928     static bool shouldBindAsLValue(const Expr *expr) {
929       // gl-values should be bound as l-values for obvious reasons.
930       // Records should be bound as l-values because IR generation
931       // always keeps them in memory.  Expressions of function type
932       // act exactly like l-values but are formally required to be
933       // r-values in C.
934       return expr->isGLValue() ||
935              expr->getType()->isFunctionType() ||
936              hasAggregateEvaluationKind(expr->getType());
937     }
938 
939     static OpaqueValueMappingData bind(CodeGenFunction &CGF,
940                                        const OpaqueValueExpr *ov,
941                                        const Expr *e) {
942       if (shouldBindAsLValue(ov))
943         return bind(CGF, ov, CGF.EmitLValue(e));
944       return bind(CGF, ov, CGF.EmitAnyExpr(e));
945     }
946 
947     static OpaqueValueMappingData bind(CodeGenFunction &CGF,
948                                        const OpaqueValueExpr *ov,
949                                        const LValue &lv) {
950       assert(shouldBindAsLValue(ov));
951       CGF.OpaqueLValues.insert(std::make_pair(ov, lv));
952       return OpaqueValueMappingData(ov, true);
953     }
954 
955     static OpaqueValueMappingData bind(CodeGenFunction &CGF,
956                                        const OpaqueValueExpr *ov,
957                                        const RValue &rv) {
958       assert(!shouldBindAsLValue(ov));
959       CGF.OpaqueRValues.insert(std::make_pair(ov, rv));
960 
961       OpaqueValueMappingData data(ov, false);
962 
963       // Work around an extremely aggressive peephole optimization in
964       // EmitScalarConversion which assumes that all other uses of a
965       // value are extant.
966       data.Protection = CGF.protectFromPeepholes(rv);
967 
968       return data;
969     }
970 
971     bool isValid() const { return OpaqueValue != nullptr; }
972     void clear() { OpaqueValue = nullptr; }
973 
974     void unbind(CodeGenFunction &CGF) {
975       assert(OpaqueValue && "no data to unbind!");
976 
977       if (BoundLValue) {
978         CGF.OpaqueLValues.erase(OpaqueValue);
979       } else {
980         CGF.OpaqueRValues.erase(OpaqueValue);
981         CGF.unprotectFromPeepholes(Protection);
982       }
983     }
984   };
985 
986   /// An RAII object to set (and then clear) a mapping for an OpaqueValueExpr.
987   class OpaqueValueMapping {
988     CodeGenFunction &CGF;
989     OpaqueValueMappingData Data;
990 
991   public:
992     static bool shouldBindAsLValue(const Expr *expr) {
993       return OpaqueValueMappingData::shouldBindAsLValue(expr);
994     }
995 
996     /// Build the opaque value mapping for the given conditional
997     /// operator if it's the GNU ?: extension.  This is a common
998     /// enough pattern that the convenience operator is really
999     /// helpful.
1000     ///
1001     OpaqueValueMapping(CodeGenFunction &CGF,
1002                        const AbstractConditionalOperator *op) : CGF(CGF) {
1003       if (isa<ConditionalOperator>(op))
1004         // Leave Data empty.
1005         return;
1006 
1007       const BinaryConditionalOperator *e = cast<BinaryConditionalOperator>(op);
1008       Data = OpaqueValueMappingData::bind(CGF, e->getOpaqueValue(),
1009                                           e->getCommon());
1010     }
1011 
1012     /// Build the opaque value mapping for an OpaqueValueExpr whose source
1013     /// expression is set to the expression the OVE represents.
1014     OpaqueValueMapping(CodeGenFunction &CGF, const OpaqueValueExpr *OV)
1015         : CGF(CGF) {
1016       if (OV) {
1017         assert(OV->getSourceExpr() && "wrong form of OpaqueValueMapping used "
1018                                       "for OVE with no source expression");
1019         Data = OpaqueValueMappingData::bind(CGF, OV, OV->getSourceExpr());
1020       }
1021     }
1022 
1023     OpaqueValueMapping(CodeGenFunction &CGF,
1024                        const OpaqueValueExpr *opaqueValue,
1025                        LValue lvalue)
1026       : CGF(CGF), Data(OpaqueValueMappingData::bind(CGF, opaqueValue, lvalue)) {
1027     }
1028 
1029     OpaqueValueMapping(CodeGenFunction &CGF,
1030                        const OpaqueValueExpr *opaqueValue,
1031                        RValue rvalue)
1032       : CGF(CGF), Data(OpaqueValueMappingData::bind(CGF, opaqueValue, rvalue)) {
1033     }
1034 
1035     void pop() {
1036       Data.unbind(CGF);
1037       Data.clear();
1038     }
1039 
1040     ~OpaqueValueMapping() {
1041       if (Data.isValid()) Data.unbind(CGF);
1042     }
1043   };
1044 
1045 private:
1046   CGDebugInfo *DebugInfo;
1047   bool DisableDebugInfo;
1048 
1049   /// DidCallStackSave - Whether llvm.stacksave has been called. Used to avoid
1050   /// calling llvm.stacksave for multiple VLAs in the same scope.
1051   bool DidCallStackSave;
1052 
1053   /// IndirectBranch - The first time an indirect goto is seen we create a block
1054   /// with an indirect branch.  Every time we see the address of a label taken,
1055   /// we add the label to the indirect goto.  Every subsequent indirect goto is
1056   /// codegen'd as a jump to the IndirectBranch's basic block.
1057   llvm::IndirectBrInst *IndirectBranch;
1058 
1059   /// LocalDeclMap - This keeps track of the LLVM allocas or globals for local C
1060   /// decls.
1061   DeclMapTy LocalDeclMap;
1062 
1063   /// SizeArguments - If a ParmVarDecl had the pass_object_size attribute, this
1064   /// will contain a mapping from said ParmVarDecl to its implicit "object_size"
1065   /// parameter.
1066   llvm::SmallDenseMap<const ParmVarDecl *, const ImplicitParamDecl *, 2>
1067       SizeArguments;
1068 
1069   /// Track escaped local variables with auto storage. Used during SEH
1070   /// outlining to produce a call to llvm.localescape.
1071   llvm::DenseMap<llvm::AllocaInst *, int> EscapedLocals;
1072 
1073   /// LabelMap - This keeps track of the LLVM basic block for each C label.
1074   llvm::DenseMap<const LabelDecl*, JumpDest> LabelMap;
1075 
1076   // BreakContinueStack - This keeps track of where break and continue
1077   // statements should jump to.
1078   struct BreakContinue {
1079     BreakContinue(JumpDest Break, JumpDest Continue)
1080       : BreakBlock(Break), ContinueBlock(Continue) {}
1081 
1082     JumpDest BreakBlock;
1083     JumpDest ContinueBlock;
1084   };
1085   SmallVector<BreakContinue, 8> BreakContinueStack;
1086 
1087   /// Handles cancellation exit points in OpenMP-related constructs.
1088   class OpenMPCancelExitStack {
1089     /// Tracks cancellation exit point and join point for cancel-related exit
1090     /// and normal exit.
1091     struct CancelExit {
1092       CancelExit() = default;
1093       CancelExit(OpenMPDirectiveKind Kind, JumpDest ExitBlock,
1094                  JumpDest ContBlock)
1095           : Kind(Kind), ExitBlock(ExitBlock), ContBlock(ContBlock) {}
1096       OpenMPDirectiveKind Kind = OMPD_unknown;
1097       /// true if the exit block has been emitted already by the special
1098       /// emitExit() call, false if the default codegen is used.
1099       bool HasBeenEmitted = false;
1100       JumpDest ExitBlock;
1101       JumpDest ContBlock;
1102     };
1103 
1104     SmallVector<CancelExit, 8> Stack;
1105 
1106   public:
1107     OpenMPCancelExitStack() : Stack(1) {}
1108     ~OpenMPCancelExitStack() = default;
1109     /// Fetches the exit block for the current OpenMP construct.
1110     JumpDest getExitBlock() const { return Stack.back().ExitBlock; }
1111     /// Emits exit block with special codegen procedure specific for the related
1112     /// OpenMP construct + emits code for normal construct cleanup.
1113     void emitExit(CodeGenFunction &CGF, OpenMPDirectiveKind Kind,
1114                   const llvm::function_ref<void(CodeGenFunction &)> &CodeGen) {
1115       if (Stack.back().Kind == Kind && getExitBlock().isValid()) {
1116         assert(CGF.getOMPCancelDestination(Kind).isValid());
1117         assert(CGF.HaveInsertPoint());
1118         assert(!Stack.back().HasBeenEmitted);
1119         auto IP = CGF.Builder.saveAndClearIP();
1120         CGF.EmitBlock(Stack.back().ExitBlock.getBlock());
1121         CodeGen(CGF);
1122         CGF.EmitBranch(Stack.back().ContBlock.getBlock());
1123         CGF.Builder.restoreIP(IP);
1124         Stack.back().HasBeenEmitted = true;
1125       }
1126       CodeGen(CGF);
1127     }
1128     /// Enter the cancel supporting \a Kind construct.
1129     /// \param Kind OpenMP directive that supports cancel constructs.
1130     /// \param HasCancel true, if the construct has inner cancel directive,
1131     /// false otherwise.
1132     void enter(CodeGenFunction &CGF, OpenMPDirectiveKind Kind, bool HasCancel) {
1133       Stack.push_back({Kind,
1134                        HasCancel ? CGF.getJumpDestInCurrentScope("cancel.exit")
1135                                  : JumpDest(),
1136                        HasCancel ? CGF.getJumpDestInCurrentScope("cancel.cont")
1137                                  : JumpDest()});
1138     }
1139     /// Emits default exit point for the cancel construct (if the special one
1140     /// has not be used) + join point for cancel/normal exits.
1141     void exit(CodeGenFunction &CGF) {
1142       if (getExitBlock().isValid()) {
1143         assert(CGF.getOMPCancelDestination(Stack.back().Kind).isValid());
1144         bool HaveIP = CGF.HaveInsertPoint();
1145         if (!Stack.back().HasBeenEmitted) {
1146           if (HaveIP)
1147             CGF.EmitBranchThroughCleanup(Stack.back().ContBlock);
1148           CGF.EmitBlock(Stack.back().ExitBlock.getBlock());
1149           CGF.EmitBranchThroughCleanup(Stack.back().ContBlock);
1150         }
1151         CGF.EmitBlock(Stack.back().ContBlock.getBlock());
1152         if (!HaveIP) {
1153           CGF.Builder.CreateUnreachable();
1154           CGF.Builder.ClearInsertionPoint();
1155         }
1156       }
1157       Stack.pop_back();
1158     }
1159   };
1160   OpenMPCancelExitStack OMPCancelStack;
1161 
1162   /// Controls insertion of cancellation exit blocks in worksharing constructs.
1163   class OMPCancelStackRAII {
1164     CodeGenFunction &CGF;
1165 
1166   public:
1167     OMPCancelStackRAII(CodeGenFunction &CGF, OpenMPDirectiveKind Kind,
1168                        bool HasCancel)
1169         : CGF(CGF) {
1170       CGF.OMPCancelStack.enter(CGF, Kind, HasCancel);
1171     }
1172     ~OMPCancelStackRAII() { CGF.OMPCancelStack.exit(CGF); }
1173   };
1174 
1175   CodeGenPGO PGO;
1176 
1177   /// Calculate branch weights appropriate for PGO data
1178   llvm::MDNode *createProfileWeights(uint64_t TrueCount, uint64_t FalseCount);
1179   llvm::MDNode *createProfileWeights(ArrayRef<uint64_t> Weights);
1180   llvm::MDNode *createProfileWeightsForLoop(const Stmt *Cond,
1181                                             uint64_t LoopCount);
1182 
1183 public:
1184   /// Increment the profiler's counter for the given statement by \p StepV.
1185   /// If \p StepV is null, the default increment is 1.
1186   void incrementProfileCounter(const Stmt *S, llvm::Value *StepV = nullptr) {
1187     if (CGM.getCodeGenOpts().hasProfileClangInstr())
1188       PGO.emitCounterIncrement(Builder, S, StepV);
1189     PGO.setCurrentStmt(S);
1190   }
1191 
1192   /// Get the profiler's count for the given statement.
1193   uint64_t getProfileCount(const Stmt *S) {
1194     Optional<uint64_t> Count = PGO.getStmtCount(S);
1195     if (!Count.hasValue())
1196       return 0;
1197     return *Count;
1198   }
1199 
1200   /// Set the profiler's current count.
1201   void setCurrentProfileCount(uint64_t Count) {
1202     PGO.setCurrentRegionCount(Count);
1203   }
1204 
1205   /// Get the profiler's current count. This is generally the count for the most
1206   /// recently incremented counter.
1207   uint64_t getCurrentProfileCount() {
1208     return PGO.getCurrentRegionCount();
1209   }
1210 
1211 private:
1212 
1213   /// SwitchInsn - This is nearest current switch instruction. It is null if
1214   /// current context is not in a switch.
1215   llvm::SwitchInst *SwitchInsn;
1216   /// The branch weights of SwitchInsn when doing instrumentation based PGO.
1217   SmallVector<uint64_t, 16> *SwitchWeights;
1218 
1219   /// CaseRangeBlock - This block holds if condition check for last case
1220   /// statement range in current switch instruction.
1221   llvm::BasicBlock *CaseRangeBlock;
1222 
1223   /// OpaqueLValues - Keeps track of the current set of opaque value
1224   /// expressions.
1225   llvm::DenseMap<const OpaqueValueExpr *, LValue> OpaqueLValues;
1226   llvm::DenseMap<const OpaqueValueExpr *, RValue> OpaqueRValues;
1227 
1228   // VLASizeMap - This keeps track of the associated size for each VLA type.
1229   // We track this by the size expression rather than the type itself because
1230   // in certain situations, like a const qualifier applied to an VLA typedef,
1231   // multiple VLA types can share the same size expression.
1232   // FIXME: Maybe this could be a stack of maps that is pushed/popped as we
1233   // enter/leave scopes.
1234   llvm::DenseMap<const Expr*, llvm::Value*> VLASizeMap;
1235 
1236   /// A block containing a single 'unreachable' instruction.  Created
1237   /// lazily by getUnreachableBlock().
1238   llvm::BasicBlock *UnreachableBlock;
1239 
1240   /// Counts of the number return expressions in the function.
1241   unsigned NumReturnExprs;
1242 
1243   /// Count the number of simple (constant) return expressions in the function.
1244   unsigned NumSimpleReturnExprs;
1245 
1246   /// The last regular (non-return) debug location (breakpoint) in the function.
1247   SourceLocation LastStopPoint;
1248 
1249 public:
1250   /// A scope within which we are constructing the fields of an object which
1251   /// might use a CXXDefaultInitExpr. This stashes away a 'this' value to use
1252   /// if we need to evaluate a CXXDefaultInitExpr within the evaluation.
1253   class FieldConstructionScope {
1254   public:
1255     FieldConstructionScope(CodeGenFunction &CGF, Address This)
1256         : CGF(CGF), OldCXXDefaultInitExprThis(CGF.CXXDefaultInitExprThis) {
1257       CGF.CXXDefaultInitExprThis = This;
1258     }
1259     ~FieldConstructionScope() {
1260       CGF.CXXDefaultInitExprThis = OldCXXDefaultInitExprThis;
1261     }
1262 
1263   private:
1264     CodeGenFunction &CGF;
1265     Address OldCXXDefaultInitExprThis;
1266   };
1267 
1268   /// The scope of a CXXDefaultInitExpr. Within this scope, the value of 'this'
1269   /// is overridden to be the object under construction.
1270   class CXXDefaultInitExprScope {
1271   public:
1272     CXXDefaultInitExprScope(CodeGenFunction &CGF)
1273       : CGF(CGF), OldCXXThisValue(CGF.CXXThisValue),
1274         OldCXXThisAlignment(CGF.CXXThisAlignment) {
1275       CGF.CXXThisValue = CGF.CXXDefaultInitExprThis.getPointer();
1276       CGF.CXXThisAlignment = CGF.CXXDefaultInitExprThis.getAlignment();
1277     }
1278     ~CXXDefaultInitExprScope() {
1279       CGF.CXXThisValue = OldCXXThisValue;
1280       CGF.CXXThisAlignment = OldCXXThisAlignment;
1281     }
1282 
1283   public:
1284     CodeGenFunction &CGF;
1285     llvm::Value *OldCXXThisValue;
1286     CharUnits OldCXXThisAlignment;
1287   };
1288 
1289   /// The scope of an ArrayInitLoopExpr. Within this scope, the value of the
1290   /// current loop index is overridden.
1291   class ArrayInitLoopExprScope {
1292   public:
1293     ArrayInitLoopExprScope(CodeGenFunction &CGF, llvm::Value *Index)
1294       : CGF(CGF), OldArrayInitIndex(CGF.ArrayInitIndex) {
1295       CGF.ArrayInitIndex = Index;
1296     }
1297     ~ArrayInitLoopExprScope() {
1298       CGF.ArrayInitIndex = OldArrayInitIndex;
1299     }
1300 
1301   private:
1302     CodeGenFunction &CGF;
1303     llvm::Value *OldArrayInitIndex;
1304   };
1305 
1306   class InlinedInheritingConstructorScope {
1307   public:
1308     InlinedInheritingConstructorScope(CodeGenFunction &CGF, GlobalDecl GD)
1309         : CGF(CGF), OldCurGD(CGF.CurGD), OldCurFuncDecl(CGF.CurFuncDecl),
1310           OldCurCodeDecl(CGF.CurCodeDecl),
1311           OldCXXABIThisDecl(CGF.CXXABIThisDecl),
1312           OldCXXABIThisValue(CGF.CXXABIThisValue),
1313           OldCXXThisValue(CGF.CXXThisValue),
1314           OldCXXABIThisAlignment(CGF.CXXABIThisAlignment),
1315           OldCXXThisAlignment(CGF.CXXThisAlignment),
1316           OldReturnValue(CGF.ReturnValue), OldFnRetTy(CGF.FnRetTy),
1317           OldCXXInheritedCtorInitExprArgs(
1318               std::move(CGF.CXXInheritedCtorInitExprArgs)) {
1319       CGF.CurGD = GD;
1320       CGF.CurFuncDecl = CGF.CurCodeDecl =
1321           cast<CXXConstructorDecl>(GD.getDecl());
1322       CGF.CXXABIThisDecl = nullptr;
1323       CGF.CXXABIThisValue = nullptr;
1324       CGF.CXXThisValue = nullptr;
1325       CGF.CXXABIThisAlignment = CharUnits();
1326       CGF.CXXThisAlignment = CharUnits();
1327       CGF.ReturnValue = Address::invalid();
1328       CGF.FnRetTy = QualType();
1329       CGF.CXXInheritedCtorInitExprArgs.clear();
1330     }
1331     ~InlinedInheritingConstructorScope() {
1332       CGF.CurGD = OldCurGD;
1333       CGF.CurFuncDecl = OldCurFuncDecl;
1334       CGF.CurCodeDecl = OldCurCodeDecl;
1335       CGF.CXXABIThisDecl = OldCXXABIThisDecl;
1336       CGF.CXXABIThisValue = OldCXXABIThisValue;
1337       CGF.CXXThisValue = OldCXXThisValue;
1338       CGF.CXXABIThisAlignment = OldCXXABIThisAlignment;
1339       CGF.CXXThisAlignment = OldCXXThisAlignment;
1340       CGF.ReturnValue = OldReturnValue;
1341       CGF.FnRetTy = OldFnRetTy;
1342       CGF.CXXInheritedCtorInitExprArgs =
1343           std::move(OldCXXInheritedCtorInitExprArgs);
1344     }
1345 
1346   private:
1347     CodeGenFunction &CGF;
1348     GlobalDecl OldCurGD;
1349     const Decl *OldCurFuncDecl;
1350     const Decl *OldCurCodeDecl;
1351     ImplicitParamDecl *OldCXXABIThisDecl;
1352     llvm::Value *OldCXXABIThisValue;
1353     llvm::Value *OldCXXThisValue;
1354     CharUnits OldCXXABIThisAlignment;
1355     CharUnits OldCXXThisAlignment;
1356     Address OldReturnValue;
1357     QualType OldFnRetTy;
1358     CallArgList OldCXXInheritedCtorInitExprArgs;
1359   };
1360 
1361 private:
1362   /// CXXThisDecl - When generating code for a C++ member function,
1363   /// this will hold the implicit 'this' declaration.
1364   ImplicitParamDecl *CXXABIThisDecl;
1365   llvm::Value *CXXABIThisValue;
1366   llvm::Value *CXXThisValue;
1367   CharUnits CXXABIThisAlignment;
1368   CharUnits CXXThisAlignment;
1369 
1370   /// The value of 'this' to use when evaluating CXXDefaultInitExprs within
1371   /// this expression.
1372   Address CXXDefaultInitExprThis = Address::invalid();
1373 
1374   /// The current array initialization index when evaluating an
1375   /// ArrayInitIndexExpr within an ArrayInitLoopExpr.
1376   llvm::Value *ArrayInitIndex = nullptr;
1377 
1378   /// The values of function arguments to use when evaluating
1379   /// CXXInheritedCtorInitExprs within this context.
1380   CallArgList CXXInheritedCtorInitExprArgs;
1381 
1382   /// CXXStructorImplicitParamDecl - When generating code for a constructor or
1383   /// destructor, this will hold the implicit argument (e.g. VTT).
1384   ImplicitParamDecl *CXXStructorImplicitParamDecl;
1385   llvm::Value *CXXStructorImplicitParamValue;
1386 
1387   /// OutermostConditional - Points to the outermost active
1388   /// conditional control.  This is used so that we know if a
1389   /// temporary should be destroyed conditionally.
1390   ConditionalEvaluation *OutermostConditional;
1391 
1392   /// The current lexical scope.
1393   LexicalScope *CurLexicalScope;
1394 
1395   /// The current source location that should be used for exception
1396   /// handling code.
1397   SourceLocation CurEHLocation;
1398 
1399   /// BlockByrefInfos - For each __block variable, contains
1400   /// information about the layout of the variable.
1401   llvm::DenseMap<const ValueDecl *, BlockByrefInfo> BlockByrefInfos;
1402 
1403   /// Used by -fsanitize=nullability-return to determine whether the return
1404   /// value can be checked.
1405   llvm::Value *RetValNullabilityPrecondition = nullptr;
1406 
1407   /// Check if -fsanitize=nullability-return instrumentation is required for
1408   /// this function.
1409   bool requiresReturnValueNullabilityCheck() const {
1410     return RetValNullabilityPrecondition;
1411   }
1412 
1413   /// Used to store precise source locations for return statements by the
1414   /// runtime return value checks.
1415   Address ReturnLocation = Address::invalid();
1416 
1417   /// Check if the return value of this function requires sanitization.
1418   bool requiresReturnValueCheck() const {
1419     return requiresReturnValueNullabilityCheck() ||
1420            (SanOpts.has(SanitizerKind::ReturnsNonnullAttribute) &&
1421             CurCodeDecl && CurCodeDecl->getAttr<ReturnsNonNullAttr>());
1422   }
1423 
1424   llvm::BasicBlock *TerminateLandingPad;
1425   llvm::BasicBlock *TerminateHandler;
1426   llvm::BasicBlock *TrapBB;
1427 
1428   /// True if we need emit the life-time markers.
1429   const bool ShouldEmitLifetimeMarkers;
1430 
1431   /// Add OpenCL kernel arg metadata and the kernel attribute meatadata to
1432   /// the function metadata.
1433   void EmitOpenCLKernelMetadata(const FunctionDecl *FD,
1434                                 llvm::Function *Fn);
1435 
1436 public:
1437   CodeGenFunction(CodeGenModule &cgm, bool suppressNewContext=false);
1438   ~CodeGenFunction();
1439 
1440   CodeGenTypes &getTypes() const { return CGM.getTypes(); }
1441   ASTContext &getContext() const { return CGM.getContext(); }
1442   CGDebugInfo *getDebugInfo() {
1443     if (DisableDebugInfo)
1444       return nullptr;
1445     return DebugInfo;
1446   }
1447   void disableDebugInfo() { DisableDebugInfo = true; }
1448   void enableDebugInfo() { DisableDebugInfo = false; }
1449 
1450   bool shouldUseFusedARCCalls() {
1451     return CGM.getCodeGenOpts().OptimizationLevel == 0;
1452   }
1453 
1454   const LangOptions &getLangOpts() const { return CGM.getLangOpts(); }
1455 
1456   /// Returns a pointer to the function's exception object and selector slot,
1457   /// which is assigned in every landing pad.
1458   Address getExceptionSlot();
1459   Address getEHSelectorSlot();
1460 
1461   /// Returns the contents of the function's exception object and selector
1462   /// slots.
1463   llvm::Value *getExceptionFromSlot();
1464   llvm::Value *getSelectorFromSlot();
1465 
1466   Address getNormalCleanupDestSlot();
1467 
1468   llvm::BasicBlock *getUnreachableBlock() {
1469     if (!UnreachableBlock) {
1470       UnreachableBlock = createBasicBlock("unreachable");
1471       new llvm::UnreachableInst(getLLVMContext(), UnreachableBlock);
1472     }
1473     return UnreachableBlock;
1474   }
1475 
1476   llvm::BasicBlock *getInvokeDest() {
1477     if (!EHStack.requiresLandingPad()) return nullptr;
1478     return getInvokeDestImpl();
1479   }
1480 
1481   bool currentFunctionUsesSEHTry() const { return CurSEHParent != nullptr; }
1482 
1483   const TargetInfo &getTarget() const { return Target; }
1484   llvm::LLVMContext &getLLVMContext() { return CGM.getLLVMContext(); }
1485   const TargetCodeGenInfo &getTargetHooks() const {
1486     return CGM.getTargetCodeGenInfo();
1487   }
1488 
1489   //===--------------------------------------------------------------------===//
1490   //                                  Cleanups
1491   //===--------------------------------------------------------------------===//
1492 
1493   typedef void Destroyer(CodeGenFunction &CGF, Address addr, QualType ty);
1494 
1495   void pushIrregularPartialArrayCleanup(llvm::Value *arrayBegin,
1496                                         Address arrayEndPointer,
1497                                         QualType elementType,
1498                                         CharUnits elementAlignment,
1499                                         Destroyer *destroyer);
1500   void pushRegularPartialArrayCleanup(llvm::Value *arrayBegin,
1501                                       llvm::Value *arrayEnd,
1502                                       QualType elementType,
1503                                       CharUnits elementAlignment,
1504                                       Destroyer *destroyer);
1505 
1506   void pushDestroy(QualType::DestructionKind dtorKind,
1507                    Address addr, QualType type);
1508   void pushEHDestroy(QualType::DestructionKind dtorKind,
1509                      Address addr, QualType type);
1510   void pushDestroy(CleanupKind kind, Address addr, QualType type,
1511                    Destroyer *destroyer, bool useEHCleanupForArray);
1512   void pushLifetimeExtendedDestroy(CleanupKind kind, Address addr,
1513                                    QualType type, Destroyer *destroyer,
1514                                    bool useEHCleanupForArray);
1515   void pushCallObjectDeleteCleanup(const FunctionDecl *OperatorDelete,
1516                                    llvm::Value *CompletePtr,
1517                                    QualType ElementType);
1518   void pushStackRestore(CleanupKind kind, Address SPMem);
1519   void emitDestroy(Address addr, QualType type, Destroyer *destroyer,
1520                    bool useEHCleanupForArray);
1521   llvm::Function *generateDestroyHelper(Address addr, QualType type,
1522                                         Destroyer *destroyer,
1523                                         bool useEHCleanupForArray,
1524                                         const VarDecl *VD);
1525   void emitArrayDestroy(llvm::Value *begin, llvm::Value *end,
1526                         QualType elementType, CharUnits elementAlign,
1527                         Destroyer *destroyer,
1528                         bool checkZeroLength, bool useEHCleanup);
1529 
1530   Destroyer *getDestroyer(QualType::DestructionKind destructionKind);
1531 
1532   /// Determines whether an EH cleanup is required to destroy a type
1533   /// with the given destruction kind.
1534   bool needsEHCleanup(QualType::DestructionKind kind) {
1535     switch (kind) {
1536     case QualType::DK_none:
1537       return false;
1538     case QualType::DK_cxx_destructor:
1539     case QualType::DK_objc_weak_lifetime:
1540       return getLangOpts().Exceptions;
1541     case QualType::DK_objc_strong_lifetime:
1542       return getLangOpts().Exceptions &&
1543              CGM.getCodeGenOpts().ObjCAutoRefCountExceptions;
1544     }
1545     llvm_unreachable("bad destruction kind");
1546   }
1547 
1548   CleanupKind getCleanupKind(QualType::DestructionKind kind) {
1549     return (needsEHCleanup(kind) ? NormalAndEHCleanup : NormalCleanup);
1550   }
1551 
1552   //===--------------------------------------------------------------------===//
1553   //                                  Objective-C
1554   //===--------------------------------------------------------------------===//
1555 
1556   void GenerateObjCMethod(const ObjCMethodDecl *OMD);
1557 
1558   void StartObjCMethod(const ObjCMethodDecl *MD, const ObjCContainerDecl *CD);
1559 
1560   /// GenerateObjCGetter - Synthesize an Objective-C property getter function.
1561   void GenerateObjCGetter(ObjCImplementationDecl *IMP,
1562                           const ObjCPropertyImplDecl *PID);
1563   void generateObjCGetterBody(const ObjCImplementationDecl *classImpl,
1564                               const ObjCPropertyImplDecl *propImpl,
1565                               const ObjCMethodDecl *GetterMothodDecl,
1566                               llvm::Constant *AtomicHelperFn);
1567 
1568   void GenerateObjCCtorDtorMethod(ObjCImplementationDecl *IMP,
1569                                   ObjCMethodDecl *MD, bool ctor);
1570 
1571   /// GenerateObjCSetter - Synthesize an Objective-C property setter function
1572   /// for the given property.
1573   void GenerateObjCSetter(ObjCImplementationDecl *IMP,
1574                           const ObjCPropertyImplDecl *PID);
1575   void generateObjCSetterBody(const ObjCImplementationDecl *classImpl,
1576                               const ObjCPropertyImplDecl *propImpl,
1577                               llvm::Constant *AtomicHelperFn);
1578 
1579   //===--------------------------------------------------------------------===//
1580   //                                  Block Bits
1581   //===--------------------------------------------------------------------===//
1582 
1583   llvm::Value *EmitBlockLiteral(const BlockExpr *);
1584   static void destroyBlockInfos(CGBlockInfo *info);
1585 
1586   llvm::Function *GenerateBlockFunction(GlobalDecl GD,
1587                                         const CGBlockInfo &Info,
1588                                         const DeclMapTy &ldm,
1589                                         bool IsLambdaConversionToBlock);
1590 
1591   llvm::Constant *GenerateCopyHelperFunction(const CGBlockInfo &blockInfo);
1592   llvm::Constant *GenerateDestroyHelperFunction(const CGBlockInfo &blockInfo);
1593   llvm::Constant *GenerateObjCAtomicSetterCopyHelperFunction(
1594                                              const ObjCPropertyImplDecl *PID);
1595   llvm::Constant *GenerateObjCAtomicGetterCopyHelperFunction(
1596                                              const ObjCPropertyImplDecl *PID);
1597   llvm::Value *EmitBlockCopyAndAutorelease(llvm::Value *Block, QualType Ty);
1598 
1599   void BuildBlockRelease(llvm::Value *DeclPtr, BlockFieldFlags flags);
1600 
1601   class AutoVarEmission;
1602 
1603   void emitByrefStructureInit(const AutoVarEmission &emission);
1604   void enterByrefCleanup(const AutoVarEmission &emission);
1605 
1606   void setBlockContextParameter(const ImplicitParamDecl *D, unsigned argNum,
1607                                 llvm::Value *ptr);
1608 
1609   Address LoadBlockStruct();
1610   Address GetAddrOfBlockDecl(const VarDecl *var, bool ByRef);
1611 
1612   /// BuildBlockByrefAddress - Computes the location of the
1613   /// data in a variable which is declared as __block.
1614   Address emitBlockByrefAddress(Address baseAddr, const VarDecl *V,
1615                                 bool followForward = true);
1616   Address emitBlockByrefAddress(Address baseAddr,
1617                                 const BlockByrefInfo &info,
1618                                 bool followForward,
1619                                 const llvm::Twine &name);
1620 
1621   const BlockByrefInfo &getBlockByrefInfo(const VarDecl *var);
1622 
1623   QualType BuildFunctionArgList(GlobalDecl GD, FunctionArgList &Args);
1624 
1625   void GenerateCode(GlobalDecl GD, llvm::Function *Fn,
1626                     const CGFunctionInfo &FnInfo);
1627   /// \brief Emit code for the start of a function.
1628   /// \param Loc       The location to be associated with the function.
1629   /// \param StartLoc  The location of the function body.
1630   void StartFunction(GlobalDecl GD,
1631                      QualType RetTy,
1632                      llvm::Function *Fn,
1633                      const CGFunctionInfo &FnInfo,
1634                      const FunctionArgList &Args,
1635                      SourceLocation Loc = SourceLocation(),
1636                      SourceLocation StartLoc = SourceLocation());
1637 
1638   static bool IsConstructorDelegationValid(const CXXConstructorDecl *Ctor);
1639 
1640   void EmitConstructorBody(FunctionArgList &Args);
1641   void EmitDestructorBody(FunctionArgList &Args);
1642   void emitImplicitAssignmentOperatorBody(FunctionArgList &Args);
1643   void EmitFunctionBody(FunctionArgList &Args, const Stmt *Body);
1644   void EmitBlockWithFallThrough(llvm::BasicBlock *BB, const Stmt *S);
1645 
1646   void EmitForwardingCallToLambda(const CXXMethodDecl *LambdaCallOperator,
1647                                   CallArgList &CallArgs);
1648   void EmitLambdaBlockInvokeBody();
1649   void EmitLambdaDelegatingInvokeBody(const CXXMethodDecl *MD);
1650   void EmitLambdaStaticInvokeBody(const CXXMethodDecl *MD);
1651   void EmitAsanPrologueOrEpilogue(bool Prologue);
1652 
1653   /// \brief Emit the unified return block, trying to avoid its emission when
1654   /// possible.
1655   /// \return The debug location of the user written return statement if the
1656   /// return block is is avoided.
1657   llvm::DebugLoc EmitReturnBlock();
1658 
1659   /// FinishFunction - Complete IR generation of the current function. It is
1660   /// legal to call this function even if there is no current insertion point.
1661   void FinishFunction(SourceLocation EndLoc=SourceLocation());
1662 
1663   void StartThunk(llvm::Function *Fn, GlobalDecl GD,
1664                   const CGFunctionInfo &FnInfo);
1665 
1666   void EmitCallAndReturnForThunk(llvm::Constant *Callee,
1667                                  const ThunkInfo *Thunk);
1668 
1669   void FinishThunk();
1670 
1671   /// Emit a musttail call for a thunk with a potentially adjusted this pointer.
1672   void EmitMustTailThunk(const CXXMethodDecl *MD, llvm::Value *AdjustedThisPtr,
1673                          llvm::Value *Callee);
1674 
1675   /// Generate a thunk for the given method.
1676   void generateThunk(llvm::Function *Fn, const CGFunctionInfo &FnInfo,
1677                      GlobalDecl GD, const ThunkInfo &Thunk);
1678 
1679   llvm::Function *GenerateVarArgsThunk(llvm::Function *Fn,
1680                                        const CGFunctionInfo &FnInfo,
1681                                        GlobalDecl GD, const ThunkInfo &Thunk);
1682 
1683   void EmitCtorPrologue(const CXXConstructorDecl *CD, CXXCtorType Type,
1684                         FunctionArgList &Args);
1685 
1686   void EmitInitializerForField(FieldDecl *Field, LValue LHS, Expr *Init);
1687 
1688   /// Struct with all informations about dynamic [sub]class needed to set vptr.
1689   struct VPtr {
1690     BaseSubobject Base;
1691     const CXXRecordDecl *NearestVBase;
1692     CharUnits OffsetFromNearestVBase;
1693     const CXXRecordDecl *VTableClass;
1694   };
1695 
1696   /// Initialize the vtable pointer of the given subobject.
1697   void InitializeVTablePointer(const VPtr &vptr);
1698 
1699   typedef llvm::SmallVector<VPtr, 4> VPtrsVector;
1700 
1701   typedef llvm::SmallPtrSet<const CXXRecordDecl *, 4> VisitedVirtualBasesSetTy;
1702   VPtrsVector getVTablePointers(const CXXRecordDecl *VTableClass);
1703 
1704   void getVTablePointers(BaseSubobject Base, const CXXRecordDecl *NearestVBase,
1705                          CharUnits OffsetFromNearestVBase,
1706                          bool BaseIsNonVirtualPrimaryBase,
1707                          const CXXRecordDecl *VTableClass,
1708                          VisitedVirtualBasesSetTy &VBases, VPtrsVector &vptrs);
1709 
1710   void InitializeVTablePointers(const CXXRecordDecl *ClassDecl);
1711 
1712   /// GetVTablePtr - Return the Value of the vtable pointer member pointed
1713   /// to by This.
1714   llvm::Value *GetVTablePtr(Address This, llvm::Type *VTableTy,
1715                             const CXXRecordDecl *VTableClass);
1716 
1717   enum CFITypeCheckKind {
1718     CFITCK_VCall,
1719     CFITCK_NVCall,
1720     CFITCK_DerivedCast,
1721     CFITCK_UnrelatedCast,
1722     CFITCK_ICall,
1723   };
1724 
1725   /// \brief Derived is the presumed address of an object of type T after a
1726   /// cast. If T is a polymorphic class type, emit a check that the virtual
1727   /// table for Derived belongs to a class derived from T.
1728   void EmitVTablePtrCheckForCast(QualType T, llvm::Value *Derived,
1729                                  bool MayBeNull, CFITypeCheckKind TCK,
1730                                  SourceLocation Loc);
1731 
1732   /// EmitVTablePtrCheckForCall - Virtual method MD is being called via VTable.
1733   /// If vptr CFI is enabled, emit a check that VTable is valid.
1734   void EmitVTablePtrCheckForCall(const CXXRecordDecl *RD, llvm::Value *VTable,
1735                                  CFITypeCheckKind TCK, SourceLocation Loc);
1736 
1737   /// EmitVTablePtrCheck - Emit a check that VTable is a valid virtual table for
1738   /// RD using llvm.type.test.
1739   void EmitVTablePtrCheck(const CXXRecordDecl *RD, llvm::Value *VTable,
1740                           CFITypeCheckKind TCK, SourceLocation Loc);
1741 
1742   /// If whole-program virtual table optimization is enabled, emit an assumption
1743   /// that VTable is a member of RD's type identifier. Or, if vptr CFI is
1744   /// enabled, emit a check that VTable is a member of RD's type identifier.
1745   void EmitTypeMetadataCodeForVCall(const CXXRecordDecl *RD,
1746                                     llvm::Value *VTable, SourceLocation Loc);
1747 
1748   /// Returns whether we should perform a type checked load when loading a
1749   /// virtual function for virtual calls to members of RD. This is generally
1750   /// true when both vcall CFI and whole-program-vtables are enabled.
1751   bool ShouldEmitVTableTypeCheckedLoad(const CXXRecordDecl *RD);
1752 
1753   /// Emit a type checked load from the given vtable.
1754   llvm::Value *EmitVTableTypeCheckedLoad(const CXXRecordDecl *RD, llvm::Value *VTable,
1755                                          uint64_t VTableByteOffset);
1756 
1757   /// EnterDtorCleanups - Enter the cleanups necessary to complete the
1758   /// given phase of destruction for a destructor.  The end result
1759   /// should call destructors on members and base classes in reverse
1760   /// order of their construction.
1761   void EnterDtorCleanups(const CXXDestructorDecl *Dtor, CXXDtorType Type);
1762 
1763   /// ShouldInstrumentFunction - Return true if the current function should be
1764   /// instrumented with __cyg_profile_func_* calls
1765   bool ShouldInstrumentFunction();
1766 
1767   /// ShouldXRayInstrument - Return true if the current function should be
1768   /// instrumented with XRay nop sleds.
1769   bool ShouldXRayInstrumentFunction() const;
1770 
1771   /// EmitFunctionInstrumentation - Emit LLVM code to call the specified
1772   /// instrumentation function with the current function and the call site, if
1773   /// function instrumentation is enabled.
1774   void EmitFunctionInstrumentation(const char *Fn);
1775 
1776   /// EmitMCountInstrumentation - Emit call to .mcount.
1777   void EmitMCountInstrumentation();
1778 
1779   /// EmitFunctionProlog - Emit the target specific LLVM code to load the
1780   /// arguments for the given function. This is also responsible for naming the
1781   /// LLVM function arguments.
1782   void EmitFunctionProlog(const CGFunctionInfo &FI,
1783                           llvm::Function *Fn,
1784                           const FunctionArgList &Args);
1785 
1786   /// EmitFunctionEpilog - Emit the target specific LLVM code to return the
1787   /// given temporary.
1788   void EmitFunctionEpilog(const CGFunctionInfo &FI, bool EmitRetDbgLoc,
1789                           SourceLocation EndLoc);
1790 
1791   /// Emit a test that checks if the return value \p RV is nonnull.
1792   void EmitReturnValueCheck(llvm::Value *RV);
1793 
1794   /// EmitStartEHSpec - Emit the start of the exception spec.
1795   void EmitStartEHSpec(const Decl *D);
1796 
1797   /// EmitEndEHSpec - Emit the end of the exception spec.
1798   void EmitEndEHSpec(const Decl *D);
1799 
1800   /// getTerminateLandingPad - Return a landing pad that just calls terminate.
1801   llvm::BasicBlock *getTerminateLandingPad();
1802 
1803   /// getTerminateHandler - Return a handler (not a landing pad, just
1804   /// a catch handler) that just calls terminate.  This is used when
1805   /// a terminate scope encloses a try.
1806   llvm::BasicBlock *getTerminateHandler();
1807 
1808   llvm::Type *ConvertTypeForMem(QualType T);
1809   llvm::Type *ConvertType(QualType T);
1810   llvm::Type *ConvertType(const TypeDecl *T) {
1811     return ConvertType(getContext().getTypeDeclType(T));
1812   }
1813 
1814   /// LoadObjCSelf - Load the value of self. This function is only valid while
1815   /// generating code for an Objective-C method.
1816   llvm::Value *LoadObjCSelf();
1817 
1818   /// TypeOfSelfObject - Return type of object that this self represents.
1819   QualType TypeOfSelfObject();
1820 
1821   /// hasAggregateLLVMType - Return true if the specified AST type will map into
1822   /// an aggregate LLVM type or is void.
1823   static TypeEvaluationKind getEvaluationKind(QualType T);
1824 
1825   static bool hasScalarEvaluationKind(QualType T) {
1826     return getEvaluationKind(T) == TEK_Scalar;
1827   }
1828 
1829   static bool hasAggregateEvaluationKind(QualType T) {
1830     return getEvaluationKind(T) == TEK_Aggregate;
1831   }
1832 
1833   /// createBasicBlock - Create an LLVM basic block.
1834   llvm::BasicBlock *createBasicBlock(const Twine &name = "",
1835                                      llvm::Function *parent = nullptr,
1836                                      llvm::BasicBlock *before = nullptr) {
1837 #ifdef NDEBUG
1838     return llvm::BasicBlock::Create(getLLVMContext(), "", parent, before);
1839 #else
1840     return llvm::BasicBlock::Create(getLLVMContext(), name, parent, before);
1841 #endif
1842   }
1843 
1844   /// getBasicBlockForLabel - Return the LLVM basicblock that the specified
1845   /// label maps to.
1846   JumpDest getJumpDestForLabel(const LabelDecl *S);
1847 
1848   /// SimplifyForwardingBlocks - If the given basic block is only a branch to
1849   /// another basic block, simplify it. This assumes that no other code could
1850   /// potentially reference the basic block.
1851   void SimplifyForwardingBlocks(llvm::BasicBlock *BB);
1852 
1853   /// EmitBlock - Emit the given block \arg BB and set it as the insert point,
1854   /// adding a fall-through branch from the current insert block if
1855   /// necessary. It is legal to call this function even if there is no current
1856   /// insertion point.
1857   ///
1858   /// IsFinished - If true, indicates that the caller has finished emitting
1859   /// branches to the given block and does not expect to emit code into it. This
1860   /// means the block can be ignored if it is unreachable.
1861   void EmitBlock(llvm::BasicBlock *BB, bool IsFinished=false);
1862 
1863   /// EmitBlockAfterUses - Emit the given block somewhere hopefully
1864   /// near its uses, and leave the insertion point in it.
1865   void EmitBlockAfterUses(llvm::BasicBlock *BB);
1866 
1867   /// EmitBranch - Emit a branch to the specified basic block from the current
1868   /// insert block, taking care to avoid creation of branches from dummy
1869   /// blocks. It is legal to call this function even if there is no current
1870   /// insertion point.
1871   ///
1872   /// This function clears the current insertion point. The caller should follow
1873   /// calls to this function with calls to Emit*Block prior to generation new
1874   /// code.
1875   void EmitBranch(llvm::BasicBlock *Block);
1876 
1877   /// HaveInsertPoint - True if an insertion point is defined. If not, this
1878   /// indicates that the current code being emitted is unreachable.
1879   bool HaveInsertPoint() const {
1880     return Builder.GetInsertBlock() != nullptr;
1881   }
1882 
1883   /// EnsureInsertPoint - Ensure that an insertion point is defined so that
1884   /// emitted IR has a place to go. Note that by definition, if this function
1885   /// creates a block then that block is unreachable; callers may do better to
1886   /// detect when no insertion point is defined and simply skip IR generation.
1887   void EnsureInsertPoint() {
1888     if (!HaveInsertPoint())
1889       EmitBlock(createBasicBlock());
1890   }
1891 
1892   /// ErrorUnsupported - Print out an error that codegen doesn't support the
1893   /// specified stmt yet.
1894   void ErrorUnsupported(const Stmt *S, const char *Type);
1895 
1896   //===--------------------------------------------------------------------===//
1897   //                                  Helpers
1898   //===--------------------------------------------------------------------===//
1899 
1900   LValue MakeAddrLValue(Address Addr, QualType T,
1901                         LValueBaseInfo BaseInfo =
1902                             LValueBaseInfo(AlignmentSource::Type)) {
1903     return LValue::MakeAddr(Addr, T, getContext(), BaseInfo,
1904                             CGM.getTBAAInfo(T));
1905   }
1906 
1907   LValue MakeAddrLValue(llvm::Value *V, QualType T, CharUnits Alignment,
1908                         LValueBaseInfo BaseInfo =
1909                             LValueBaseInfo(AlignmentSource::Type)) {
1910     return LValue::MakeAddr(Address(V, Alignment), T, getContext(),
1911                             BaseInfo, CGM.getTBAAInfo(T));
1912   }
1913 
1914   LValue MakeNaturalAlignPointeeAddrLValue(llvm::Value *V, QualType T);
1915   LValue MakeNaturalAlignAddrLValue(llvm::Value *V, QualType T);
1916   CharUnits getNaturalTypeAlignment(QualType T,
1917                                     LValueBaseInfo *BaseInfo = nullptr,
1918                                     bool forPointeeType = false);
1919   CharUnits getNaturalPointeeTypeAlignment(QualType T,
1920                                            LValueBaseInfo *BaseInfo = nullptr);
1921 
1922   Address EmitLoadOfReference(Address Ref, const ReferenceType *RefTy,
1923                               LValueBaseInfo *BaseInfo = nullptr);
1924   LValue EmitLoadOfReferenceLValue(Address Ref, const ReferenceType *RefTy);
1925 
1926   Address EmitLoadOfPointer(Address Ptr, const PointerType *PtrTy,
1927                             LValueBaseInfo *BaseInfo = nullptr);
1928   LValue EmitLoadOfPointerLValue(Address Ptr, const PointerType *PtrTy);
1929 
1930   /// CreateTempAlloca - This creates an alloca and inserts it into the entry
1931   /// block if \p ArraySize is nullptr, otherwise inserts it at the current
1932   /// insertion point of the builder. The caller is responsible for setting an
1933   /// appropriate alignment on
1934   /// the alloca.
1935   ///
1936   /// \p ArraySize is the number of array elements to be allocated if it
1937   ///    is not nullptr.
1938   ///
1939   /// LangAS::Default is the address space of pointers to local variables and
1940   /// temporaries, as exposed in the source language. In certain
1941   /// configurations, this is not the same as the alloca address space, and a
1942   /// cast is needed to lift the pointer from the alloca AS into
1943   /// LangAS::Default. This can happen when the target uses a restricted
1944   /// address space for the stack but the source language requires
1945   /// LangAS::Default to be a generic address space. The latter condition is
1946   /// common for most programming languages; OpenCL is an exception in that
1947   /// LangAS::Default is the private address space, which naturally maps
1948   /// to the stack.
1949   ///
1950   /// Because the address of a temporary is often exposed to the program in
1951   /// various ways, this function will perform the cast by default. The cast
1952   /// may be avoided by passing false as \p CastToDefaultAddrSpace; this is
1953   /// more efficient if the caller knows that the address will not be exposed.
1954   llvm::AllocaInst *CreateTempAlloca(llvm::Type *Ty, const Twine &Name = "tmp",
1955                                      llvm::Value *ArraySize = nullptr);
1956   Address CreateTempAlloca(llvm::Type *Ty, CharUnits align,
1957                            const Twine &Name = "tmp",
1958                            llvm::Value *ArraySize = nullptr,
1959                            bool CastToDefaultAddrSpace = true);
1960 
1961   /// CreateDefaultAlignedTempAlloca - This creates an alloca with the
1962   /// default ABI alignment of the given LLVM type.
1963   ///
1964   /// IMPORTANT NOTE: This is *not* generally the right alignment for
1965   /// any given AST type that happens to have been lowered to the
1966   /// given IR type.  This should only ever be used for function-local,
1967   /// IR-driven manipulations like saving and restoring a value.  Do
1968   /// not hand this address off to arbitrary IRGen routines, and especially
1969   /// do not pass it as an argument to a function that might expect a
1970   /// properly ABI-aligned value.
1971   Address CreateDefaultAlignTempAlloca(llvm::Type *Ty,
1972                                        const Twine &Name = "tmp");
1973 
1974   /// InitTempAlloca - Provide an initial value for the given alloca which
1975   /// will be observable at all locations in the function.
1976   ///
1977   /// The address should be something that was returned from one of
1978   /// the CreateTempAlloca or CreateMemTemp routines, and the
1979   /// initializer must be valid in the entry block (i.e. it must
1980   /// either be a constant or an argument value).
1981   void InitTempAlloca(Address Alloca, llvm::Value *Value);
1982 
1983   /// CreateIRTemp - Create a temporary IR object of the given type, with
1984   /// appropriate alignment. This routine should only be used when an temporary
1985   /// value needs to be stored into an alloca (for example, to avoid explicit
1986   /// PHI construction), but the type is the IR type, not the type appropriate
1987   /// for storing in memory.
1988   ///
1989   /// That is, this is exactly equivalent to CreateMemTemp, but calling
1990   /// ConvertType instead of ConvertTypeForMem.
1991   Address CreateIRTemp(QualType T, const Twine &Name = "tmp");
1992 
1993   /// CreateMemTemp - Create a temporary memory object of the given type, with
1994   /// appropriate alignment. Cast it to the default address space if
1995   /// \p CastToDefaultAddrSpace is true.
1996   Address CreateMemTemp(QualType T, const Twine &Name = "tmp",
1997                         bool CastToDefaultAddrSpace = true);
1998   Address CreateMemTemp(QualType T, CharUnits Align, const Twine &Name = "tmp",
1999                         bool CastToDefaultAddrSpace = true);
2000 
2001   /// CreateAggTemp - Create a temporary memory object for the given
2002   /// aggregate type.
2003   AggValueSlot CreateAggTemp(QualType T, const Twine &Name = "tmp") {
2004     return AggValueSlot::forAddr(CreateMemTemp(T, Name),
2005                                  T.getQualifiers(),
2006                                  AggValueSlot::IsNotDestructed,
2007                                  AggValueSlot::DoesNotNeedGCBarriers,
2008                                  AggValueSlot::IsNotAliased);
2009   }
2010 
2011   /// Emit a cast to void* in the appropriate address space.
2012   llvm::Value *EmitCastToVoidPtr(llvm::Value *value);
2013 
2014   /// EvaluateExprAsBool - Perform the usual unary conversions on the specified
2015   /// expression and compare the result against zero, returning an Int1Ty value.
2016   llvm::Value *EvaluateExprAsBool(const Expr *E);
2017 
2018   /// EmitIgnoredExpr - Emit an expression in a context which ignores the result.
2019   void EmitIgnoredExpr(const Expr *E);
2020 
2021   /// EmitAnyExpr - Emit code to compute the specified expression which can have
2022   /// any type.  The result is returned as an RValue struct.  If this is an
2023   /// aggregate expression, the aggloc/agglocvolatile arguments indicate where
2024   /// the result should be returned.
2025   ///
2026   /// \param ignoreResult True if the resulting value isn't used.
2027   RValue EmitAnyExpr(const Expr *E,
2028                      AggValueSlot aggSlot = AggValueSlot::ignored(),
2029                      bool ignoreResult = false);
2030 
2031   // EmitVAListRef - Emit a "reference" to a va_list; this is either the address
2032   // or the value of the expression, depending on how va_list is defined.
2033   Address EmitVAListRef(const Expr *E);
2034 
2035   /// Emit a "reference" to a __builtin_ms_va_list; this is
2036   /// always the value of the expression, because a __builtin_ms_va_list is a
2037   /// pointer to a char.
2038   Address EmitMSVAListRef(const Expr *E);
2039 
2040   /// EmitAnyExprToTemp - Similarly to EmitAnyExpr(), however, the result will
2041   /// always be accessible even if no aggregate location is provided.
2042   RValue EmitAnyExprToTemp(const Expr *E);
2043 
2044   /// EmitAnyExprToMem - Emits the code necessary to evaluate an
2045   /// arbitrary expression into the given memory location.
2046   void EmitAnyExprToMem(const Expr *E, Address Location,
2047                         Qualifiers Quals, bool IsInitializer);
2048 
2049   void EmitAnyExprToExn(const Expr *E, Address Addr);
2050 
2051   /// EmitExprAsInit - Emits the code necessary to initialize a
2052   /// location in memory with the given initializer.
2053   void EmitExprAsInit(const Expr *init, const ValueDecl *D, LValue lvalue,
2054                       bool capturedByInit);
2055 
2056   /// hasVolatileMember - returns true if aggregate type has a volatile
2057   /// member.
2058   bool hasVolatileMember(QualType T) {
2059     if (const RecordType *RT = T->getAs<RecordType>()) {
2060       const RecordDecl *RD = cast<RecordDecl>(RT->getDecl());
2061       return RD->hasVolatileMember();
2062     }
2063     return false;
2064   }
2065   /// EmitAggregateCopy - Emit an aggregate assignment.
2066   ///
2067   /// The difference to EmitAggregateCopy is that tail padding is not copied.
2068   /// This is required for correctness when assigning non-POD structures in C++.
2069   void EmitAggregateAssign(Address DestPtr, Address SrcPtr,
2070                            QualType EltTy) {
2071     bool IsVolatile = hasVolatileMember(EltTy);
2072     EmitAggregateCopy(DestPtr, SrcPtr, EltTy, IsVolatile, true);
2073   }
2074 
2075   void EmitAggregateCopyCtor(Address DestPtr, Address SrcPtr,
2076                              QualType DestTy, QualType SrcTy) {
2077     EmitAggregateCopy(DestPtr, SrcPtr, SrcTy, /*IsVolatile=*/false,
2078                       /*IsAssignment=*/false);
2079   }
2080 
2081   /// EmitAggregateCopy - Emit an aggregate copy.
2082   ///
2083   /// \param isVolatile - True iff either the source or the destination is
2084   /// volatile.
2085   /// \param isAssignment - If false, allow padding to be copied.  This often
2086   /// yields more efficient.
2087   void EmitAggregateCopy(Address DestPtr, Address SrcPtr,
2088                          QualType EltTy, bool isVolatile=false,
2089                          bool isAssignment = false);
2090 
2091   /// GetAddrOfLocalVar - Return the address of a local variable.
2092   Address GetAddrOfLocalVar(const VarDecl *VD) {
2093     auto it = LocalDeclMap.find(VD);
2094     assert(it != LocalDeclMap.end() &&
2095            "Invalid argument to GetAddrOfLocalVar(), no decl!");
2096     return it->second;
2097   }
2098 
2099   /// getOpaqueLValueMapping - Given an opaque value expression (which
2100   /// must be mapped to an l-value), return its mapping.
2101   const LValue &getOpaqueLValueMapping(const OpaqueValueExpr *e) {
2102     assert(OpaqueValueMapping::shouldBindAsLValue(e));
2103 
2104     llvm::DenseMap<const OpaqueValueExpr*,LValue>::iterator
2105       it = OpaqueLValues.find(e);
2106     assert(it != OpaqueLValues.end() && "no mapping for opaque value!");
2107     return it->second;
2108   }
2109 
2110   /// getOpaqueRValueMapping - Given an opaque value expression (which
2111   /// must be mapped to an r-value), return its mapping.
2112   const RValue &getOpaqueRValueMapping(const OpaqueValueExpr *e) {
2113     assert(!OpaqueValueMapping::shouldBindAsLValue(e));
2114 
2115     llvm::DenseMap<const OpaqueValueExpr*,RValue>::iterator
2116       it = OpaqueRValues.find(e);
2117     assert(it != OpaqueRValues.end() && "no mapping for opaque value!");
2118     return it->second;
2119   }
2120 
2121   /// Get the index of the current ArrayInitLoopExpr, if any.
2122   llvm::Value *getArrayInitIndex() { return ArrayInitIndex; }
2123 
2124   /// getAccessedFieldNo - Given an encoded value and a result number, return
2125   /// the input field number being accessed.
2126   static unsigned getAccessedFieldNo(unsigned Idx, const llvm::Constant *Elts);
2127 
2128   llvm::BlockAddress *GetAddrOfLabel(const LabelDecl *L);
2129   llvm::BasicBlock *GetIndirectGotoBlock();
2130 
2131   /// Check if \p E is a C++ "this" pointer wrapped in value-preserving casts.
2132   static bool IsWrappedCXXThis(const Expr *E);
2133 
2134   /// EmitNullInitialization - Generate code to set a value of the given type to
2135   /// null, If the type contains data member pointers, they will be initialized
2136   /// to -1 in accordance with the Itanium C++ ABI.
2137   void EmitNullInitialization(Address DestPtr, QualType Ty);
2138 
2139   /// Emits a call to an LLVM variable-argument intrinsic, either
2140   /// \c llvm.va_start or \c llvm.va_end.
2141   /// \param ArgValue A reference to the \c va_list as emitted by either
2142   /// \c EmitVAListRef or \c EmitMSVAListRef.
2143   /// \param IsStart If \c true, emits a call to \c llvm.va_start; otherwise,
2144   /// calls \c llvm.va_end.
2145   llvm::Value *EmitVAStartEnd(llvm::Value *ArgValue, bool IsStart);
2146 
2147   /// Generate code to get an argument from the passed in pointer
2148   /// and update it accordingly.
2149   /// \param VE The \c VAArgExpr for which to generate code.
2150   /// \param VAListAddr Receives a reference to the \c va_list as emitted by
2151   /// either \c EmitVAListRef or \c EmitMSVAListRef.
2152   /// \returns A pointer to the argument.
2153   // FIXME: We should be able to get rid of this method and use the va_arg
2154   // instruction in LLVM instead once it works well enough.
2155   Address EmitVAArg(VAArgExpr *VE, Address &VAListAddr);
2156 
2157   /// emitArrayLength - Compute the length of an array, even if it's a
2158   /// VLA, and drill down to the base element type.
2159   llvm::Value *emitArrayLength(const ArrayType *arrayType,
2160                                QualType &baseType,
2161                                Address &addr);
2162 
2163   /// EmitVLASize - Capture all the sizes for the VLA expressions in
2164   /// the given variably-modified type and store them in the VLASizeMap.
2165   ///
2166   /// This function can be called with a null (unreachable) insert point.
2167   void EmitVariablyModifiedType(QualType Ty);
2168 
2169   /// getVLASize - Returns an LLVM value that corresponds to the size,
2170   /// in non-variably-sized elements, of a variable length array type,
2171   /// plus that largest non-variably-sized element type.  Assumes that
2172   /// the type has already been emitted with EmitVariablyModifiedType.
2173   std::pair<llvm::Value*,QualType> getVLASize(const VariableArrayType *vla);
2174   std::pair<llvm::Value*,QualType> getVLASize(QualType vla);
2175 
2176   /// LoadCXXThis - Load the value of 'this'. This function is only valid while
2177   /// generating code for an C++ member function.
2178   llvm::Value *LoadCXXThis() {
2179     assert(CXXThisValue && "no 'this' value for this function");
2180     return CXXThisValue;
2181   }
2182   Address LoadCXXThisAddress();
2183 
2184   /// LoadCXXVTT - Load the VTT parameter to base constructors/destructors have
2185   /// virtual bases.
2186   // FIXME: Every place that calls LoadCXXVTT is something
2187   // that needs to be abstracted properly.
2188   llvm::Value *LoadCXXVTT() {
2189     assert(CXXStructorImplicitParamValue && "no VTT value for this function");
2190     return CXXStructorImplicitParamValue;
2191   }
2192 
2193   /// GetAddressOfBaseOfCompleteClass - Convert the given pointer to a
2194   /// complete class to the given direct base.
2195   Address
2196   GetAddressOfDirectBaseInCompleteClass(Address Value,
2197                                         const CXXRecordDecl *Derived,
2198                                         const CXXRecordDecl *Base,
2199                                         bool BaseIsVirtual);
2200 
2201   static bool ShouldNullCheckClassCastValue(const CastExpr *Cast);
2202 
2203   /// GetAddressOfBaseClass - This function will add the necessary delta to the
2204   /// load of 'this' and returns address of the base class.
2205   Address GetAddressOfBaseClass(Address Value,
2206                                 const CXXRecordDecl *Derived,
2207                                 CastExpr::path_const_iterator PathBegin,
2208                                 CastExpr::path_const_iterator PathEnd,
2209                                 bool NullCheckValue, SourceLocation Loc);
2210 
2211   Address GetAddressOfDerivedClass(Address Value,
2212                                    const CXXRecordDecl *Derived,
2213                                    CastExpr::path_const_iterator PathBegin,
2214                                    CastExpr::path_const_iterator PathEnd,
2215                                    bool NullCheckValue);
2216 
2217   /// GetVTTParameter - Return the VTT parameter that should be passed to a
2218   /// base constructor/destructor with virtual bases.
2219   /// FIXME: VTTs are Itanium ABI-specific, so the definition should move
2220   /// to ItaniumCXXABI.cpp together with all the references to VTT.
2221   llvm::Value *GetVTTParameter(GlobalDecl GD, bool ForVirtualBase,
2222                                bool Delegating);
2223 
2224   void EmitDelegateCXXConstructorCall(const CXXConstructorDecl *Ctor,
2225                                       CXXCtorType CtorType,
2226                                       const FunctionArgList &Args,
2227                                       SourceLocation Loc);
2228   // It's important not to confuse this and the previous function. Delegating
2229   // constructors are the C++0x feature. The constructor delegate optimization
2230   // is used to reduce duplication in the base and complete consturctors where
2231   // they are substantially the same.
2232   void EmitDelegatingCXXConstructorCall(const CXXConstructorDecl *Ctor,
2233                                         const FunctionArgList &Args);
2234 
2235   /// Emit a call to an inheriting constructor (that is, one that invokes a
2236   /// constructor inherited from a base class) by inlining its definition. This
2237   /// is necessary if the ABI does not support forwarding the arguments to the
2238   /// base class constructor (because they're variadic or similar).
2239   void EmitInlinedInheritingCXXConstructorCall(const CXXConstructorDecl *Ctor,
2240                                                CXXCtorType CtorType,
2241                                                bool ForVirtualBase,
2242                                                bool Delegating,
2243                                                CallArgList &Args);
2244 
2245   /// Emit a call to a constructor inherited from a base class, passing the
2246   /// current constructor's arguments along unmodified (without even making
2247   /// a copy).
2248   void EmitInheritedCXXConstructorCall(const CXXConstructorDecl *D,
2249                                        bool ForVirtualBase, Address This,
2250                                        bool InheritedFromVBase,
2251                                        const CXXInheritedCtorInitExpr *E);
2252 
2253   void EmitCXXConstructorCall(const CXXConstructorDecl *D, CXXCtorType Type,
2254                               bool ForVirtualBase, bool Delegating,
2255                               Address This, const CXXConstructExpr *E);
2256 
2257   void EmitCXXConstructorCall(const CXXConstructorDecl *D, CXXCtorType Type,
2258                               bool ForVirtualBase, bool Delegating,
2259                               Address This, CallArgList &Args);
2260 
2261   /// Emit assumption load for all bases. Requires to be be called only on
2262   /// most-derived class and not under construction of the object.
2263   void EmitVTableAssumptionLoads(const CXXRecordDecl *ClassDecl, Address This);
2264 
2265   /// Emit assumption that vptr load == global vtable.
2266   void EmitVTableAssumptionLoad(const VPtr &vptr, Address This);
2267 
2268   void EmitSynthesizedCXXCopyCtorCall(const CXXConstructorDecl *D,
2269                                       Address This, Address Src,
2270                                       const CXXConstructExpr *E);
2271 
2272   void EmitCXXAggrConstructorCall(const CXXConstructorDecl *D,
2273                                   const ArrayType *ArrayTy,
2274                                   Address ArrayPtr,
2275                                   const CXXConstructExpr *E,
2276                                   bool ZeroInitialization = false);
2277 
2278   void EmitCXXAggrConstructorCall(const CXXConstructorDecl *D,
2279                                   llvm::Value *NumElements,
2280                                   Address ArrayPtr,
2281                                   const CXXConstructExpr *E,
2282                                   bool ZeroInitialization = false);
2283 
2284   static Destroyer destroyCXXObject;
2285 
2286   void EmitCXXDestructorCall(const CXXDestructorDecl *D, CXXDtorType Type,
2287                              bool ForVirtualBase, bool Delegating,
2288                              Address This);
2289 
2290   void EmitNewArrayInitializer(const CXXNewExpr *E, QualType elementType,
2291                                llvm::Type *ElementTy, Address NewPtr,
2292                                llvm::Value *NumElements,
2293                                llvm::Value *AllocSizeWithoutCookie);
2294 
2295   void EmitCXXTemporary(const CXXTemporary *Temporary, QualType TempType,
2296                         Address Ptr);
2297 
2298   llvm::Value *EmitLifetimeStart(uint64_t Size, llvm::Value *Addr);
2299   void EmitLifetimeEnd(llvm::Value *Size, llvm::Value *Addr);
2300 
2301   llvm::Value *EmitCXXNewExpr(const CXXNewExpr *E);
2302   void EmitCXXDeleteExpr(const CXXDeleteExpr *E);
2303 
2304   void EmitDeleteCall(const FunctionDecl *DeleteFD, llvm::Value *Ptr,
2305                       QualType DeleteTy, llvm::Value *NumElements = nullptr,
2306                       CharUnits CookieSize = CharUnits());
2307 
2308   RValue EmitBuiltinNewDeleteCall(const FunctionProtoType *Type,
2309                                   const Expr *Arg, bool IsDelete);
2310 
2311   llvm::Value *EmitCXXTypeidExpr(const CXXTypeidExpr *E);
2312   llvm::Value *EmitDynamicCast(Address V, const CXXDynamicCastExpr *DCE);
2313   Address EmitCXXUuidofExpr(const CXXUuidofExpr *E);
2314 
2315   /// \brief Situations in which we might emit a check for the suitability of a
2316   ///        pointer or glvalue.
2317   enum TypeCheckKind {
2318     /// Checking the operand of a load. Must be suitably sized and aligned.
2319     TCK_Load,
2320     /// Checking the destination of a store. Must be suitably sized and aligned.
2321     TCK_Store,
2322     /// Checking the bound value in a reference binding. Must be suitably sized
2323     /// and aligned, but is not required to refer to an object (until the
2324     /// reference is used), per core issue 453.
2325     TCK_ReferenceBinding,
2326     /// Checking the object expression in a non-static data member access. Must
2327     /// be an object within its lifetime.
2328     TCK_MemberAccess,
2329     /// Checking the 'this' pointer for a call to a non-static member function.
2330     /// Must be an object within its lifetime.
2331     TCK_MemberCall,
2332     /// Checking the 'this' pointer for a constructor call.
2333     TCK_ConstructorCall,
2334     /// Checking the operand of a static_cast to a derived pointer type. Must be
2335     /// null or an object within its lifetime.
2336     TCK_DowncastPointer,
2337     /// Checking the operand of a static_cast to a derived reference type. Must
2338     /// be an object within its lifetime.
2339     TCK_DowncastReference,
2340     /// Checking the operand of a cast to a base object. Must be suitably sized
2341     /// and aligned.
2342     TCK_Upcast,
2343     /// Checking the operand of a cast to a virtual base object. Must be an
2344     /// object within its lifetime.
2345     TCK_UpcastToVirtualBase,
2346     /// Checking the value assigned to a _Nonnull pointer. Must not be null.
2347     TCK_NonnullAssign
2348   };
2349 
2350   /// \brief Whether any type-checking sanitizers are enabled. If \c false,
2351   /// calls to EmitTypeCheck can be skipped.
2352   bool sanitizePerformTypeCheck() const;
2353 
2354   /// \brief Emit a check that \p V is the address of storage of the
2355   /// appropriate size and alignment for an object of type \p Type.
2356   void EmitTypeCheck(TypeCheckKind TCK, SourceLocation Loc, llvm::Value *V,
2357                      QualType Type, CharUnits Alignment = CharUnits::Zero(),
2358                      SanitizerSet SkippedChecks = SanitizerSet());
2359 
2360   /// \brief Emit a check that \p Base points into an array object, which
2361   /// we can access at index \p Index. \p Accessed should be \c false if we
2362   /// this expression is used as an lvalue, for instance in "&Arr[Idx]".
2363   void EmitBoundsCheck(const Expr *E, const Expr *Base, llvm::Value *Index,
2364                        QualType IndexType, bool Accessed);
2365 
2366   llvm::Value *EmitScalarPrePostIncDec(const UnaryOperator *E, LValue LV,
2367                                        bool isInc, bool isPre);
2368   ComplexPairTy EmitComplexPrePostIncDec(const UnaryOperator *E, LValue LV,
2369                                          bool isInc, bool isPre);
2370 
2371   void EmitAlignmentAssumption(llvm::Value *PtrValue, unsigned Alignment,
2372                                llvm::Value *OffsetValue = nullptr) {
2373     Builder.CreateAlignmentAssumption(CGM.getDataLayout(), PtrValue, Alignment,
2374                                       OffsetValue);
2375   }
2376 
2377   /// Converts Location to a DebugLoc, if debug information is enabled.
2378   llvm::DebugLoc SourceLocToDebugLoc(SourceLocation Location);
2379 
2380 
2381   //===--------------------------------------------------------------------===//
2382   //                            Declaration Emission
2383   //===--------------------------------------------------------------------===//
2384 
2385   /// EmitDecl - Emit a declaration.
2386   ///
2387   /// This function can be called with a null (unreachable) insert point.
2388   void EmitDecl(const Decl &D);
2389 
2390   /// EmitVarDecl - Emit a local variable declaration.
2391   ///
2392   /// This function can be called with a null (unreachable) insert point.
2393   void EmitVarDecl(const VarDecl &D);
2394 
2395   void EmitScalarInit(const Expr *init, const ValueDecl *D, LValue lvalue,
2396                       bool capturedByInit);
2397 
2398   typedef void SpecialInitFn(CodeGenFunction &Init, const VarDecl &D,
2399                              llvm::Value *Address);
2400 
2401   /// \brief Determine whether the given initializer is trivial in the sense
2402   /// that it requires no code to be generated.
2403   bool isTrivialInitializer(const Expr *Init);
2404 
2405   /// EmitAutoVarDecl - Emit an auto variable declaration.
2406   ///
2407   /// This function can be called with a null (unreachable) insert point.
2408   void EmitAutoVarDecl(const VarDecl &D);
2409 
2410   class AutoVarEmission {
2411     friend class CodeGenFunction;
2412 
2413     const VarDecl *Variable;
2414 
2415     /// The address of the alloca.  Invalid if the variable was emitted
2416     /// as a global constant.
2417     Address Addr;
2418 
2419     llvm::Value *NRVOFlag;
2420 
2421     /// True if the variable is a __block variable.
2422     bool IsByRef;
2423 
2424     /// True if the variable is of aggregate type and has a constant
2425     /// initializer.
2426     bool IsConstantAggregate;
2427 
2428     /// Non-null if we should use lifetime annotations.
2429     llvm::Value *SizeForLifetimeMarkers;
2430 
2431     struct Invalid {};
2432     AutoVarEmission(Invalid) : Variable(nullptr), Addr(Address::invalid()) {}
2433 
2434     AutoVarEmission(const VarDecl &variable)
2435       : Variable(&variable), Addr(Address::invalid()), NRVOFlag(nullptr),
2436         IsByRef(false), IsConstantAggregate(false),
2437         SizeForLifetimeMarkers(nullptr) {}
2438 
2439     bool wasEmittedAsGlobal() const { return !Addr.isValid(); }
2440 
2441   public:
2442     static AutoVarEmission invalid() { return AutoVarEmission(Invalid()); }
2443 
2444     bool useLifetimeMarkers() const {
2445       return SizeForLifetimeMarkers != nullptr;
2446     }
2447     llvm::Value *getSizeForLifetimeMarkers() const {
2448       assert(useLifetimeMarkers());
2449       return SizeForLifetimeMarkers;
2450     }
2451 
2452     /// Returns the raw, allocated address, which is not necessarily
2453     /// the address of the object itself.
2454     Address getAllocatedAddress() const {
2455       return Addr;
2456     }
2457 
2458     /// Returns the address of the object within this declaration.
2459     /// Note that this does not chase the forwarding pointer for
2460     /// __block decls.
2461     Address getObjectAddress(CodeGenFunction &CGF) const {
2462       if (!IsByRef) return Addr;
2463 
2464       return CGF.emitBlockByrefAddress(Addr, Variable, /*forward*/ false);
2465     }
2466   };
2467   AutoVarEmission EmitAutoVarAlloca(const VarDecl &var);
2468   void EmitAutoVarInit(const AutoVarEmission &emission);
2469   void EmitAutoVarCleanups(const AutoVarEmission &emission);
2470   void emitAutoVarTypeCleanup(const AutoVarEmission &emission,
2471                               QualType::DestructionKind dtorKind);
2472 
2473   void EmitStaticVarDecl(const VarDecl &D,
2474                          llvm::GlobalValue::LinkageTypes Linkage);
2475 
2476   class ParamValue {
2477     llvm::Value *Value;
2478     unsigned Alignment;
2479     ParamValue(llvm::Value *V, unsigned A) : Value(V), Alignment(A) {}
2480   public:
2481     static ParamValue forDirect(llvm::Value *value) {
2482       return ParamValue(value, 0);
2483     }
2484     static ParamValue forIndirect(Address addr) {
2485       assert(!addr.getAlignment().isZero());
2486       return ParamValue(addr.getPointer(), addr.getAlignment().getQuantity());
2487     }
2488 
2489     bool isIndirect() const { return Alignment != 0; }
2490     llvm::Value *getAnyValue() const { return Value; }
2491 
2492     llvm::Value *getDirectValue() const {
2493       assert(!isIndirect());
2494       return Value;
2495     }
2496 
2497     Address getIndirectAddress() const {
2498       assert(isIndirect());
2499       return Address(Value, CharUnits::fromQuantity(Alignment));
2500     }
2501   };
2502 
2503   /// EmitParmDecl - Emit a ParmVarDecl or an ImplicitParamDecl.
2504   void EmitParmDecl(const VarDecl &D, ParamValue Arg, unsigned ArgNo);
2505 
2506   /// protectFromPeepholes - Protect a value that we're intending to
2507   /// store to the side, but which will probably be used later, from
2508   /// aggressive peepholing optimizations that might delete it.
2509   ///
2510   /// Pass the result to unprotectFromPeepholes to declare that
2511   /// protection is no longer required.
2512   ///
2513   /// There's no particular reason why this shouldn't apply to
2514   /// l-values, it's just that no existing peepholes work on pointers.
2515   PeepholeProtection protectFromPeepholes(RValue rvalue);
2516   void unprotectFromPeepholes(PeepholeProtection protection);
2517 
2518   void EmitAlignmentAssumption(llvm::Value *PtrValue, llvm::Value *Alignment,
2519                                llvm::Value *OffsetValue = nullptr) {
2520     Builder.CreateAlignmentAssumption(CGM.getDataLayout(), PtrValue, Alignment,
2521                                       OffsetValue);
2522   }
2523 
2524   //===--------------------------------------------------------------------===//
2525   //                             Statement Emission
2526   //===--------------------------------------------------------------------===//
2527 
2528   /// EmitStopPoint - Emit a debug stoppoint if we are emitting debug info.
2529   void EmitStopPoint(const Stmt *S);
2530 
2531   /// EmitStmt - Emit the code for the statement \arg S. It is legal to call
2532   /// this function even if there is no current insertion point.
2533   ///
2534   /// This function may clear the current insertion point; callers should use
2535   /// EnsureInsertPoint if they wish to subsequently generate code without first
2536   /// calling EmitBlock, EmitBranch, or EmitStmt.
2537   void EmitStmt(const Stmt *S, ArrayRef<const Attr *> Attrs = None);
2538 
2539   /// EmitSimpleStmt - Try to emit a "simple" statement which does not
2540   /// necessarily require an insertion point or debug information; typically
2541   /// because the statement amounts to a jump or a container of other
2542   /// statements.
2543   ///
2544   /// \return True if the statement was handled.
2545   bool EmitSimpleStmt(const Stmt *S);
2546 
2547   Address EmitCompoundStmt(const CompoundStmt &S, bool GetLast = false,
2548                            AggValueSlot AVS = AggValueSlot::ignored());
2549   Address EmitCompoundStmtWithoutScope(const CompoundStmt &S,
2550                                        bool GetLast = false,
2551                                        AggValueSlot AVS =
2552                                                 AggValueSlot::ignored());
2553 
2554   /// EmitLabel - Emit the block for the given label. It is legal to call this
2555   /// function even if there is no current insertion point.
2556   void EmitLabel(const LabelDecl *D); // helper for EmitLabelStmt.
2557 
2558   void EmitLabelStmt(const LabelStmt &S);
2559   void EmitAttributedStmt(const AttributedStmt &S);
2560   void EmitGotoStmt(const GotoStmt &S);
2561   void EmitIndirectGotoStmt(const IndirectGotoStmt &S);
2562   void EmitIfStmt(const IfStmt &S);
2563 
2564   void EmitWhileStmt(const WhileStmt &S,
2565                      ArrayRef<const Attr *> Attrs = None);
2566   void EmitDoStmt(const DoStmt &S, ArrayRef<const Attr *> Attrs = None);
2567   void EmitForStmt(const ForStmt &S,
2568                    ArrayRef<const Attr *> Attrs = None);
2569   void EmitReturnStmt(const ReturnStmt &S);
2570   void EmitDeclStmt(const DeclStmt &S);
2571   void EmitBreakStmt(const BreakStmt &S);
2572   void EmitContinueStmt(const ContinueStmt &S);
2573   void EmitSwitchStmt(const SwitchStmt &S);
2574   void EmitDefaultStmt(const DefaultStmt &S);
2575   void EmitCaseStmt(const CaseStmt &S);
2576   void EmitCaseStmtRange(const CaseStmt &S);
2577   void EmitAsmStmt(const AsmStmt &S);
2578 
2579   void EmitObjCForCollectionStmt(const ObjCForCollectionStmt &S);
2580   void EmitObjCAtTryStmt(const ObjCAtTryStmt &S);
2581   void EmitObjCAtThrowStmt(const ObjCAtThrowStmt &S);
2582   void EmitObjCAtSynchronizedStmt(const ObjCAtSynchronizedStmt &S);
2583   void EmitObjCAutoreleasePoolStmt(const ObjCAutoreleasePoolStmt &S);
2584 
2585   void EmitCoroutineBody(const CoroutineBodyStmt &S);
2586   void EmitCoreturnStmt(const CoreturnStmt &S);
2587   RValue EmitCoawaitExpr(const CoawaitExpr &E,
2588                          AggValueSlot aggSlot = AggValueSlot::ignored(),
2589                          bool ignoreResult = false);
2590   LValue EmitCoawaitLValue(const CoawaitExpr *E);
2591   RValue EmitCoyieldExpr(const CoyieldExpr &E,
2592                          AggValueSlot aggSlot = AggValueSlot::ignored(),
2593                          bool ignoreResult = false);
2594   LValue EmitCoyieldLValue(const CoyieldExpr *E);
2595   RValue EmitCoroutineIntrinsic(const CallExpr *E, unsigned int IID);
2596 
2597   void EnterCXXTryStmt(const CXXTryStmt &S, bool IsFnTryBlock = false);
2598   void ExitCXXTryStmt(const CXXTryStmt &S, bool IsFnTryBlock = false);
2599 
2600   void EmitCXXTryStmt(const CXXTryStmt &S);
2601   void EmitSEHTryStmt(const SEHTryStmt &S);
2602   void EmitSEHLeaveStmt(const SEHLeaveStmt &S);
2603   void EnterSEHTryStmt(const SEHTryStmt &S);
2604   void ExitSEHTryStmt(const SEHTryStmt &S);
2605 
2606   void startOutlinedSEHHelper(CodeGenFunction &ParentCGF, bool IsFilter,
2607                               const Stmt *OutlinedStmt);
2608 
2609   llvm::Function *GenerateSEHFilterFunction(CodeGenFunction &ParentCGF,
2610                                             const SEHExceptStmt &Except);
2611 
2612   llvm::Function *GenerateSEHFinallyFunction(CodeGenFunction &ParentCGF,
2613                                              const SEHFinallyStmt &Finally);
2614 
2615   void EmitSEHExceptionCodeSave(CodeGenFunction &ParentCGF,
2616                                 llvm::Value *ParentFP,
2617                                 llvm::Value *EntryEBP);
2618   llvm::Value *EmitSEHExceptionCode();
2619   llvm::Value *EmitSEHExceptionInfo();
2620   llvm::Value *EmitSEHAbnormalTermination();
2621 
2622   /// Scan the outlined statement for captures from the parent function. For
2623   /// each capture, mark the capture as escaped and emit a call to
2624   /// llvm.localrecover. Insert the localrecover result into the LocalDeclMap.
2625   void EmitCapturedLocals(CodeGenFunction &ParentCGF, const Stmt *OutlinedStmt,
2626                           bool IsFilter);
2627 
2628   /// Recovers the address of a local in a parent function. ParentVar is the
2629   /// address of the variable used in the immediate parent function. It can
2630   /// either be an alloca or a call to llvm.localrecover if there are nested
2631   /// outlined functions. ParentFP is the frame pointer of the outermost parent
2632   /// frame.
2633   Address recoverAddrOfEscapedLocal(CodeGenFunction &ParentCGF,
2634                                     Address ParentVar,
2635                                     llvm::Value *ParentFP);
2636 
2637   void EmitCXXForRangeStmt(const CXXForRangeStmt &S,
2638                            ArrayRef<const Attr *> Attrs = None);
2639 
2640   /// Returns calculated size of the specified type.
2641   llvm::Value *getTypeSize(QualType Ty);
2642   LValue InitCapturedStruct(const CapturedStmt &S);
2643   llvm::Function *EmitCapturedStmt(const CapturedStmt &S, CapturedRegionKind K);
2644   llvm::Function *GenerateCapturedStmtFunction(const CapturedStmt &S);
2645   Address GenerateCapturedStmtArgument(const CapturedStmt &S);
2646   llvm::Function *GenerateOpenMPCapturedStmtFunction(const CapturedStmt &S);
2647   void GenerateOpenMPCapturedVars(const CapturedStmt &S,
2648                                   SmallVectorImpl<llvm::Value *> &CapturedVars);
2649   void emitOMPSimpleStore(LValue LVal, RValue RVal, QualType RValTy,
2650                           SourceLocation Loc);
2651   /// \brief Perform element by element copying of arrays with type \a
2652   /// OriginalType from \a SrcAddr to \a DestAddr using copying procedure
2653   /// generated by \a CopyGen.
2654   ///
2655   /// \param DestAddr Address of the destination array.
2656   /// \param SrcAddr Address of the source array.
2657   /// \param OriginalType Type of destination and source arrays.
2658   /// \param CopyGen Copying procedure that copies value of single array element
2659   /// to another single array element.
2660   void EmitOMPAggregateAssign(
2661       Address DestAddr, Address SrcAddr, QualType OriginalType,
2662       const llvm::function_ref<void(Address, Address)> &CopyGen);
2663   /// \brief Emit proper copying of data from one variable to another.
2664   ///
2665   /// \param OriginalType Original type of the copied variables.
2666   /// \param DestAddr Destination address.
2667   /// \param SrcAddr Source address.
2668   /// \param DestVD Destination variable used in \a CopyExpr (for arrays, has
2669   /// type of the base array element).
2670   /// \param SrcVD Source variable used in \a CopyExpr (for arrays, has type of
2671   /// the base array element).
2672   /// \param Copy Actual copygin expression for copying data from \a SrcVD to \a
2673   /// DestVD.
2674   void EmitOMPCopy(QualType OriginalType,
2675                    Address DestAddr, Address SrcAddr,
2676                    const VarDecl *DestVD, const VarDecl *SrcVD,
2677                    const Expr *Copy);
2678   /// \brief Emit atomic update code for constructs: \a X = \a X \a BO \a E or
2679   /// \a X = \a E \a BO \a E.
2680   ///
2681   /// \param X Value to be updated.
2682   /// \param E Update value.
2683   /// \param BO Binary operation for update operation.
2684   /// \param IsXLHSInRHSPart true if \a X is LHS in RHS part of the update
2685   /// expression, false otherwise.
2686   /// \param AO Atomic ordering of the generated atomic instructions.
2687   /// \param CommonGen Code generator for complex expressions that cannot be
2688   /// expressed through atomicrmw instruction.
2689   /// \returns <true, OldAtomicValue> if simple 'atomicrmw' instruction was
2690   /// generated, <false, RValue::get(nullptr)> otherwise.
2691   std::pair<bool, RValue> EmitOMPAtomicSimpleUpdateExpr(
2692       LValue X, RValue E, BinaryOperatorKind BO, bool IsXLHSInRHSPart,
2693       llvm::AtomicOrdering AO, SourceLocation Loc,
2694       const llvm::function_ref<RValue(RValue)> &CommonGen);
2695   bool EmitOMPFirstprivateClause(const OMPExecutableDirective &D,
2696                                  OMPPrivateScope &PrivateScope);
2697   void EmitOMPPrivateClause(const OMPExecutableDirective &D,
2698                             OMPPrivateScope &PrivateScope);
2699   void EmitOMPUseDevicePtrClause(
2700       const OMPClause &C, OMPPrivateScope &PrivateScope,
2701       const llvm::DenseMap<const ValueDecl *, Address> &CaptureDeviceAddrMap);
2702   /// \brief Emit code for copyin clause in \a D directive. The next code is
2703   /// generated at the start of outlined functions for directives:
2704   /// \code
2705   /// threadprivate_var1 = master_threadprivate_var1;
2706   /// operator=(threadprivate_var2, master_threadprivate_var2);
2707   /// ...
2708   /// __kmpc_barrier(&loc, global_tid);
2709   /// \endcode
2710   ///
2711   /// \param D OpenMP directive possibly with 'copyin' clause(s).
2712   /// \returns true if at least one copyin variable is found, false otherwise.
2713   bool EmitOMPCopyinClause(const OMPExecutableDirective &D);
2714   /// \brief Emit initial code for lastprivate variables. If some variable is
2715   /// not also firstprivate, then the default initialization is used. Otherwise
2716   /// initialization of this variable is performed by EmitOMPFirstprivateClause
2717   /// method.
2718   ///
2719   /// \param D Directive that may have 'lastprivate' directives.
2720   /// \param PrivateScope Private scope for capturing lastprivate variables for
2721   /// proper codegen in internal captured statement.
2722   ///
2723   /// \returns true if there is at least one lastprivate variable, false
2724   /// otherwise.
2725   bool EmitOMPLastprivateClauseInit(const OMPExecutableDirective &D,
2726                                     OMPPrivateScope &PrivateScope);
2727   /// \brief Emit final copying of lastprivate values to original variables at
2728   /// the end of the worksharing or simd directive.
2729   ///
2730   /// \param D Directive that has at least one 'lastprivate' directives.
2731   /// \param IsLastIterCond Boolean condition that must be set to 'i1 true' if
2732   /// it is the last iteration of the loop code in associated directive, or to
2733   /// 'i1 false' otherwise. If this item is nullptr, no final check is required.
2734   void EmitOMPLastprivateClauseFinal(const OMPExecutableDirective &D,
2735                                      bool NoFinals,
2736                                      llvm::Value *IsLastIterCond = nullptr);
2737   /// Emit initial code for linear clauses.
2738   void EmitOMPLinearClause(const OMPLoopDirective &D,
2739                            CodeGenFunction::OMPPrivateScope &PrivateScope);
2740   /// Emit final code for linear clauses.
2741   /// \param CondGen Optional conditional code for final part of codegen for
2742   /// linear clause.
2743   void EmitOMPLinearClauseFinal(
2744       const OMPLoopDirective &D,
2745       const llvm::function_ref<llvm::Value *(CodeGenFunction &)> &CondGen);
2746   /// \brief Emit initial code for reduction variables. Creates reduction copies
2747   /// and initializes them with the values according to OpenMP standard.
2748   ///
2749   /// \param D Directive (possibly) with the 'reduction' clause.
2750   /// \param PrivateScope Private scope for capturing reduction variables for
2751   /// proper codegen in internal captured statement.
2752   ///
2753   void EmitOMPReductionClauseInit(const OMPExecutableDirective &D,
2754                                   OMPPrivateScope &PrivateScope);
2755   /// \brief Emit final update of reduction values to original variables at
2756   /// the end of the directive.
2757   ///
2758   /// \param D Directive that has at least one 'reduction' directives.
2759   /// \param ReductionKind The kind of reduction to perform.
2760   void EmitOMPReductionClauseFinal(const OMPExecutableDirective &D,
2761                                    const OpenMPDirectiveKind ReductionKind);
2762   /// \brief Emit initial code for linear variables. Creates private copies
2763   /// and initializes them with the values according to OpenMP standard.
2764   ///
2765   /// \param D Directive (possibly) with the 'linear' clause.
2766   /// \return true if at least one linear variable is found that should be
2767   /// initialized with the value of the original variable, false otherwise.
2768   bool EmitOMPLinearClauseInit(const OMPLoopDirective &D);
2769 
2770   typedef const llvm::function_ref<void(CodeGenFunction & /*CGF*/,
2771                                         llvm::Value * /*OutlinedFn*/,
2772                                         const OMPTaskDataTy & /*Data*/)>
2773       TaskGenTy;
2774   void EmitOMPTaskBasedDirective(const OMPExecutableDirective &S,
2775                                  const RegionCodeGenTy &BodyGen,
2776                                  const TaskGenTy &TaskGen, OMPTaskDataTy &Data);
2777 
2778   void EmitOMPParallelDirective(const OMPParallelDirective &S);
2779   void EmitOMPSimdDirective(const OMPSimdDirective &S);
2780   void EmitOMPForDirective(const OMPForDirective &S);
2781   void EmitOMPForSimdDirective(const OMPForSimdDirective &S);
2782   void EmitOMPSectionsDirective(const OMPSectionsDirective &S);
2783   void EmitOMPSectionDirective(const OMPSectionDirective &S);
2784   void EmitOMPSingleDirective(const OMPSingleDirective &S);
2785   void EmitOMPMasterDirective(const OMPMasterDirective &S);
2786   void EmitOMPCriticalDirective(const OMPCriticalDirective &S);
2787   void EmitOMPParallelForDirective(const OMPParallelForDirective &S);
2788   void EmitOMPParallelForSimdDirective(const OMPParallelForSimdDirective &S);
2789   void EmitOMPParallelSectionsDirective(const OMPParallelSectionsDirective &S);
2790   void EmitOMPTaskDirective(const OMPTaskDirective &S);
2791   void EmitOMPTaskyieldDirective(const OMPTaskyieldDirective &S);
2792   void EmitOMPBarrierDirective(const OMPBarrierDirective &S);
2793   void EmitOMPTaskwaitDirective(const OMPTaskwaitDirective &S);
2794   void EmitOMPTaskgroupDirective(const OMPTaskgroupDirective &S);
2795   void EmitOMPFlushDirective(const OMPFlushDirective &S);
2796   void EmitOMPOrderedDirective(const OMPOrderedDirective &S);
2797   void EmitOMPAtomicDirective(const OMPAtomicDirective &S);
2798   void EmitOMPTargetDirective(const OMPTargetDirective &S);
2799   void EmitOMPTargetDataDirective(const OMPTargetDataDirective &S);
2800   void EmitOMPTargetEnterDataDirective(const OMPTargetEnterDataDirective &S);
2801   void EmitOMPTargetExitDataDirective(const OMPTargetExitDataDirective &S);
2802   void EmitOMPTargetUpdateDirective(const OMPTargetUpdateDirective &S);
2803   void EmitOMPTargetParallelDirective(const OMPTargetParallelDirective &S);
2804   void
2805   EmitOMPTargetParallelForDirective(const OMPTargetParallelForDirective &S);
2806   void EmitOMPTeamsDirective(const OMPTeamsDirective &S);
2807   void
2808   EmitOMPCancellationPointDirective(const OMPCancellationPointDirective &S);
2809   void EmitOMPCancelDirective(const OMPCancelDirective &S);
2810   void EmitOMPTaskLoopBasedDirective(const OMPLoopDirective &S);
2811   void EmitOMPTaskLoopDirective(const OMPTaskLoopDirective &S);
2812   void EmitOMPTaskLoopSimdDirective(const OMPTaskLoopSimdDirective &S);
2813   void EmitOMPDistributeDirective(const OMPDistributeDirective &S);
2814   void EmitOMPDistributeParallelForDirective(
2815       const OMPDistributeParallelForDirective &S);
2816   void EmitOMPDistributeParallelForSimdDirective(
2817       const OMPDistributeParallelForSimdDirective &S);
2818   void EmitOMPDistributeSimdDirective(const OMPDistributeSimdDirective &S);
2819   void EmitOMPTargetParallelForSimdDirective(
2820       const OMPTargetParallelForSimdDirective &S);
2821   void EmitOMPTargetSimdDirective(const OMPTargetSimdDirective &S);
2822   void EmitOMPTeamsDistributeDirective(const OMPTeamsDistributeDirective &S);
2823   void
2824   EmitOMPTeamsDistributeSimdDirective(const OMPTeamsDistributeSimdDirective &S);
2825   void EmitOMPTeamsDistributeParallelForSimdDirective(
2826       const OMPTeamsDistributeParallelForSimdDirective &S);
2827   void EmitOMPTeamsDistributeParallelForDirective(
2828       const OMPTeamsDistributeParallelForDirective &S);
2829   void EmitOMPTargetTeamsDirective(const OMPTargetTeamsDirective &S);
2830   void EmitOMPTargetTeamsDistributeDirective(
2831       const OMPTargetTeamsDistributeDirective &S);
2832   void EmitOMPTargetTeamsDistributeParallelForDirective(
2833       const OMPTargetTeamsDistributeParallelForDirective &S);
2834   void EmitOMPTargetTeamsDistributeParallelForSimdDirective(
2835       const OMPTargetTeamsDistributeParallelForSimdDirective &S);
2836   void EmitOMPTargetTeamsDistributeSimdDirective(
2837       const OMPTargetTeamsDistributeSimdDirective &S);
2838 
2839   /// Emit device code for the target directive.
2840   static void EmitOMPTargetDeviceFunction(CodeGenModule &CGM,
2841                                           StringRef ParentName,
2842                                           const OMPTargetDirective &S);
2843   static void
2844   EmitOMPTargetParallelDeviceFunction(CodeGenModule &CGM, StringRef ParentName,
2845                                       const OMPTargetParallelDirective &S);
2846   static void
2847   EmitOMPTargetTeamsDeviceFunction(CodeGenModule &CGM, StringRef ParentName,
2848                                    const OMPTargetTeamsDirective &S);
2849   /// \brief Emit inner loop of the worksharing/simd construct.
2850   ///
2851   /// \param S Directive, for which the inner loop must be emitted.
2852   /// \param RequiresCleanup true, if directive has some associated private
2853   /// variables.
2854   /// \param LoopCond Bollean condition for loop continuation.
2855   /// \param IncExpr Increment expression for loop control variable.
2856   /// \param BodyGen Generator for the inner body of the inner loop.
2857   /// \param PostIncGen Genrator for post-increment code (required for ordered
2858   /// loop directvies).
2859   void EmitOMPInnerLoop(
2860       const Stmt &S, bool RequiresCleanup, const Expr *LoopCond,
2861       const Expr *IncExpr,
2862       const llvm::function_ref<void(CodeGenFunction &)> &BodyGen,
2863       const llvm::function_ref<void(CodeGenFunction &)> &PostIncGen);
2864 
2865   JumpDest getOMPCancelDestination(OpenMPDirectiveKind Kind);
2866   /// Emit initial code for loop counters of loop-based directives.
2867   void EmitOMPPrivateLoopCounters(const OMPLoopDirective &S,
2868                                   OMPPrivateScope &LoopScope);
2869 
2870   /// Helper for the OpenMP loop directives.
2871   void EmitOMPLoopBody(const OMPLoopDirective &D, JumpDest LoopExit);
2872 
2873   /// \brief Emit code for the worksharing loop-based directive.
2874   /// \return true, if this construct has any lastprivate clause, false -
2875   /// otherwise.
2876   bool EmitOMPWorksharingLoop(const OMPLoopDirective &S, Expr *EUB,
2877                               const CodeGenLoopBoundsTy &CodeGenLoopBounds,
2878                               const CodeGenDispatchBoundsTy &CGDispatchBounds);
2879 
2880 private:
2881   /// Helpers for blocks
2882   llvm::Value *EmitBlockLiteral(const CGBlockInfo &Info);
2883 
2884   /// Helpers for the OpenMP loop directives.
2885   void EmitOMPSimdInit(const OMPLoopDirective &D, bool IsMonotonic = false);
2886   void EmitOMPSimdFinal(
2887       const OMPLoopDirective &D,
2888       const llvm::function_ref<llvm::Value *(CodeGenFunction &)> &CondGen);
2889 
2890   void EmitOMPDistributeLoop(const OMPLoopDirective &S,
2891                              const CodeGenLoopTy &CodeGenLoop, Expr *IncExpr);
2892 
2893   /// struct with the values to be passed to the OpenMP loop-related functions
2894   struct OMPLoopArguments {
2895     /// loop lower bound
2896     Address LB = Address::invalid();
2897     /// loop upper bound
2898     Address UB = Address::invalid();
2899     /// loop stride
2900     Address ST = Address::invalid();
2901     /// isLastIteration argument for runtime functions
2902     Address IL = Address::invalid();
2903     /// Chunk value generated by sema
2904     llvm::Value *Chunk = nullptr;
2905     /// EnsureUpperBound
2906     Expr *EUB = nullptr;
2907     /// IncrementExpression
2908     Expr *IncExpr = nullptr;
2909     /// Loop initialization
2910     Expr *Init = nullptr;
2911     /// Loop exit condition
2912     Expr *Cond = nullptr;
2913     /// Update of LB after a whole chunk has been executed
2914     Expr *NextLB = nullptr;
2915     /// Update of UB after a whole chunk has been executed
2916     Expr *NextUB = nullptr;
2917     OMPLoopArguments() = default;
2918     OMPLoopArguments(Address LB, Address UB, Address ST, Address IL,
2919                      llvm::Value *Chunk = nullptr, Expr *EUB = nullptr,
2920                      Expr *IncExpr = nullptr, Expr *Init = nullptr,
2921                      Expr *Cond = nullptr, Expr *NextLB = nullptr,
2922                      Expr *NextUB = nullptr)
2923         : LB(LB), UB(UB), ST(ST), IL(IL), Chunk(Chunk), EUB(EUB),
2924           IncExpr(IncExpr), Init(Init), Cond(Cond), NextLB(NextLB),
2925           NextUB(NextUB) {}
2926   };
2927   void EmitOMPOuterLoop(bool DynamicOrOrdered, bool IsMonotonic,
2928                         const OMPLoopDirective &S, OMPPrivateScope &LoopScope,
2929                         const OMPLoopArguments &LoopArgs,
2930                         const CodeGenLoopTy &CodeGenLoop,
2931                         const CodeGenOrderedTy &CodeGenOrdered);
2932   void EmitOMPForOuterLoop(const OpenMPScheduleTy &ScheduleKind,
2933                            bool IsMonotonic, const OMPLoopDirective &S,
2934                            OMPPrivateScope &LoopScope, bool Ordered,
2935                            const OMPLoopArguments &LoopArgs,
2936                            const CodeGenDispatchBoundsTy &CGDispatchBounds);
2937   void EmitOMPDistributeOuterLoop(OpenMPDistScheduleClauseKind ScheduleKind,
2938                                   const OMPLoopDirective &S,
2939                                   OMPPrivateScope &LoopScope,
2940                                   const OMPLoopArguments &LoopArgs,
2941                                   const CodeGenLoopTy &CodeGenLoopContent);
2942   /// \brief Emit code for sections directive.
2943   void EmitSections(const OMPExecutableDirective &S);
2944 
2945 public:
2946 
2947   //===--------------------------------------------------------------------===//
2948   //                         LValue Expression Emission
2949   //===--------------------------------------------------------------------===//
2950 
2951   /// GetUndefRValue - Get an appropriate 'undef' rvalue for the given type.
2952   RValue GetUndefRValue(QualType Ty);
2953 
2954   /// EmitUnsupportedRValue - Emit a dummy r-value using the type of E
2955   /// and issue an ErrorUnsupported style diagnostic (using the
2956   /// provided Name).
2957   RValue EmitUnsupportedRValue(const Expr *E,
2958                                const char *Name);
2959 
2960   /// EmitUnsupportedLValue - Emit a dummy l-value using the type of E and issue
2961   /// an ErrorUnsupported style diagnostic (using the provided Name).
2962   LValue EmitUnsupportedLValue(const Expr *E,
2963                                const char *Name);
2964 
2965   /// EmitLValue - Emit code to compute a designator that specifies the location
2966   /// of the expression.
2967   ///
2968   /// This can return one of two things: a simple address or a bitfield
2969   /// reference.  In either case, the LLVM Value* in the LValue structure is
2970   /// guaranteed to be an LLVM pointer type.
2971   ///
2972   /// If this returns a bitfield reference, nothing about the pointee type of
2973   /// the LLVM value is known: For example, it may not be a pointer to an
2974   /// integer.
2975   ///
2976   /// If this returns a normal address, and if the lvalue's C type is fixed
2977   /// size, this method guarantees that the returned pointer type will point to
2978   /// an LLVM type of the same size of the lvalue's type.  If the lvalue has a
2979   /// variable length type, this is not possible.
2980   ///
2981   LValue EmitLValue(const Expr *E);
2982 
2983   /// \brief Same as EmitLValue but additionally we generate checking code to
2984   /// guard against undefined behavior.  This is only suitable when we know
2985   /// that the address will be used to access the object.
2986   LValue EmitCheckedLValue(const Expr *E, TypeCheckKind TCK);
2987 
2988   RValue convertTempToRValue(Address addr, QualType type,
2989                              SourceLocation Loc);
2990 
2991   void EmitAtomicInit(Expr *E, LValue lvalue);
2992 
2993   bool LValueIsSuitableForInlineAtomic(LValue Src);
2994 
2995   RValue EmitAtomicLoad(LValue LV, SourceLocation SL,
2996                         AggValueSlot Slot = AggValueSlot::ignored());
2997 
2998   RValue EmitAtomicLoad(LValue lvalue, SourceLocation loc,
2999                         llvm::AtomicOrdering AO, bool IsVolatile = false,
3000                         AggValueSlot slot = AggValueSlot::ignored());
3001 
3002   void EmitAtomicStore(RValue rvalue, LValue lvalue, bool isInit);
3003 
3004   void EmitAtomicStore(RValue rvalue, LValue lvalue, llvm::AtomicOrdering AO,
3005                        bool IsVolatile, bool isInit);
3006 
3007   std::pair<RValue, llvm::Value *> EmitAtomicCompareExchange(
3008       LValue Obj, RValue Expected, RValue Desired, SourceLocation Loc,
3009       llvm::AtomicOrdering Success =
3010           llvm::AtomicOrdering::SequentiallyConsistent,
3011       llvm::AtomicOrdering Failure =
3012           llvm::AtomicOrdering::SequentiallyConsistent,
3013       bool IsWeak = false, AggValueSlot Slot = AggValueSlot::ignored());
3014 
3015   void EmitAtomicUpdate(LValue LVal, llvm::AtomicOrdering AO,
3016                         const llvm::function_ref<RValue(RValue)> &UpdateOp,
3017                         bool IsVolatile);
3018 
3019   /// EmitToMemory - Change a scalar value from its value
3020   /// representation to its in-memory representation.
3021   llvm::Value *EmitToMemory(llvm::Value *Value, QualType Ty);
3022 
3023   /// EmitFromMemory - Change a scalar value from its memory
3024   /// representation to its value representation.
3025   llvm::Value *EmitFromMemory(llvm::Value *Value, QualType Ty);
3026 
3027   /// Check if the scalar \p Value is within the valid range for the given
3028   /// type \p Ty.
3029   ///
3030   /// Returns true if a check is needed (even if the range is unknown).
3031   bool EmitScalarRangeCheck(llvm::Value *Value, QualType Ty,
3032                             SourceLocation Loc);
3033 
3034   /// EmitLoadOfScalar - Load a scalar value from an address, taking
3035   /// care to appropriately convert from the memory representation to
3036   /// the LLVM value representation.
3037   llvm::Value *EmitLoadOfScalar(Address Addr, bool Volatile, QualType Ty,
3038                                 SourceLocation Loc,
3039                                 LValueBaseInfo BaseInfo =
3040                                     LValueBaseInfo(AlignmentSource::Type),
3041                                 llvm::MDNode *TBAAInfo = nullptr,
3042                                 QualType TBAABaseTy = QualType(),
3043                                 uint64_t TBAAOffset = 0,
3044                                 bool isNontemporal = false);
3045 
3046   /// EmitLoadOfScalar - Load a scalar value from an address, taking
3047   /// care to appropriately convert from the memory representation to
3048   /// the LLVM value representation.  The l-value must be a simple
3049   /// l-value.
3050   llvm::Value *EmitLoadOfScalar(LValue lvalue, SourceLocation Loc);
3051 
3052   /// EmitStoreOfScalar - Store a scalar value to an address, taking
3053   /// care to appropriately convert from the memory representation to
3054   /// the LLVM value representation.
3055   void EmitStoreOfScalar(llvm::Value *Value, Address Addr,
3056                          bool Volatile, QualType Ty,
3057                          LValueBaseInfo BaseInfo =
3058                              LValueBaseInfo(AlignmentSource::Type),
3059                          llvm::MDNode *TBAAInfo = nullptr, bool isInit = false,
3060                          QualType TBAABaseTy = QualType(),
3061                          uint64_t TBAAOffset = 0, bool isNontemporal = false);
3062 
3063   /// EmitStoreOfScalar - Store a scalar value to an address, taking
3064   /// care to appropriately convert from the memory representation to
3065   /// the LLVM value representation.  The l-value must be a simple
3066   /// l-value.  The isInit flag indicates whether this is an initialization.
3067   /// If so, atomic qualifiers are ignored and the store is always non-atomic.
3068   void EmitStoreOfScalar(llvm::Value *value, LValue lvalue, bool isInit=false);
3069 
3070   /// EmitLoadOfLValue - Given an expression that represents a value lvalue,
3071   /// this method emits the address of the lvalue, then loads the result as an
3072   /// rvalue, returning the rvalue.
3073   RValue EmitLoadOfLValue(LValue V, SourceLocation Loc);
3074   RValue EmitLoadOfExtVectorElementLValue(LValue V);
3075   RValue EmitLoadOfBitfieldLValue(LValue LV, SourceLocation Loc);
3076   RValue EmitLoadOfGlobalRegLValue(LValue LV);
3077 
3078   /// EmitStoreThroughLValue - Store the specified rvalue into the specified
3079   /// lvalue, where both are guaranteed to the have the same type, and that type
3080   /// is 'Ty'.
3081   void EmitStoreThroughLValue(RValue Src, LValue Dst, bool isInit = false);
3082   void EmitStoreThroughExtVectorComponentLValue(RValue Src, LValue Dst);
3083   void EmitStoreThroughGlobalRegLValue(RValue Src, LValue Dst);
3084 
3085   /// EmitStoreThroughBitfieldLValue - Store Src into Dst with same constraints
3086   /// as EmitStoreThroughLValue.
3087   ///
3088   /// \param Result [out] - If non-null, this will be set to a Value* for the
3089   /// bit-field contents after the store, appropriate for use as the result of
3090   /// an assignment to the bit-field.
3091   void EmitStoreThroughBitfieldLValue(RValue Src, LValue Dst,
3092                                       llvm::Value **Result=nullptr);
3093 
3094   /// Emit an l-value for an assignment (simple or compound) of complex type.
3095   LValue EmitComplexAssignmentLValue(const BinaryOperator *E);
3096   LValue EmitComplexCompoundAssignmentLValue(const CompoundAssignOperator *E);
3097   LValue EmitScalarCompoundAssignWithComplex(const CompoundAssignOperator *E,
3098                                              llvm::Value *&Result);
3099 
3100   // Note: only available for agg return types
3101   LValue EmitBinaryOperatorLValue(const BinaryOperator *E);
3102   LValue EmitCompoundAssignmentLValue(const CompoundAssignOperator *E);
3103   // Note: only available for agg return types
3104   LValue EmitCallExprLValue(const CallExpr *E);
3105   // Note: only available for agg return types
3106   LValue EmitVAArgExprLValue(const VAArgExpr *E);
3107   LValue EmitDeclRefLValue(const DeclRefExpr *E);
3108   LValue EmitStringLiteralLValue(const StringLiteral *E);
3109   LValue EmitObjCEncodeExprLValue(const ObjCEncodeExpr *E);
3110   LValue EmitPredefinedLValue(const PredefinedExpr *E);
3111   LValue EmitUnaryOpLValue(const UnaryOperator *E);
3112   LValue EmitArraySubscriptExpr(const ArraySubscriptExpr *E,
3113                                 bool Accessed = false);
3114   LValue EmitOMPArraySectionExpr(const OMPArraySectionExpr *E,
3115                                  bool IsLowerBound = true);
3116   LValue EmitExtVectorElementExpr(const ExtVectorElementExpr *E);
3117   LValue EmitMemberExpr(const MemberExpr *E);
3118   LValue EmitObjCIsaExpr(const ObjCIsaExpr *E);
3119   LValue EmitCompoundLiteralLValue(const CompoundLiteralExpr *E);
3120   LValue EmitInitListLValue(const InitListExpr *E);
3121   LValue EmitConditionalOperatorLValue(const AbstractConditionalOperator *E);
3122   LValue EmitCastLValue(const CastExpr *E);
3123   LValue EmitMaterializeTemporaryExpr(const MaterializeTemporaryExpr *E);
3124   LValue EmitOpaqueValueLValue(const OpaqueValueExpr *e);
3125 
3126   Address EmitExtVectorElementLValue(LValue V);
3127 
3128   RValue EmitRValueForField(LValue LV, const FieldDecl *FD, SourceLocation Loc);
3129 
3130   Address EmitArrayToPointerDecay(const Expr *Array,
3131                                   LValueBaseInfo *BaseInfo = nullptr);
3132 
3133   class ConstantEmission {
3134     llvm::PointerIntPair<llvm::Constant*, 1, bool> ValueAndIsReference;
3135     ConstantEmission(llvm::Constant *C, bool isReference)
3136       : ValueAndIsReference(C, isReference) {}
3137   public:
3138     ConstantEmission() {}
3139     static ConstantEmission forReference(llvm::Constant *C) {
3140       return ConstantEmission(C, true);
3141     }
3142     static ConstantEmission forValue(llvm::Constant *C) {
3143       return ConstantEmission(C, false);
3144     }
3145 
3146     explicit operator bool() const {
3147       return ValueAndIsReference.getOpaqueValue() != nullptr;
3148     }
3149 
3150     bool isReference() const { return ValueAndIsReference.getInt(); }
3151     LValue getReferenceLValue(CodeGenFunction &CGF, Expr *refExpr) const {
3152       assert(isReference());
3153       return CGF.MakeNaturalAlignAddrLValue(ValueAndIsReference.getPointer(),
3154                                             refExpr->getType());
3155     }
3156 
3157     llvm::Constant *getValue() const {
3158       assert(!isReference());
3159       return ValueAndIsReference.getPointer();
3160     }
3161   };
3162 
3163   ConstantEmission tryEmitAsConstant(DeclRefExpr *refExpr);
3164   ConstantEmission tryEmitAsConstant(const MemberExpr *ME);
3165 
3166   RValue EmitPseudoObjectRValue(const PseudoObjectExpr *e,
3167                                 AggValueSlot slot = AggValueSlot::ignored());
3168   LValue EmitPseudoObjectLValue(const PseudoObjectExpr *e);
3169 
3170   llvm::Value *EmitIvarOffset(const ObjCInterfaceDecl *Interface,
3171                               const ObjCIvarDecl *Ivar);
3172   LValue EmitLValueForField(LValue Base, const FieldDecl* Field);
3173   LValue EmitLValueForLambdaField(const FieldDecl *Field);
3174 
3175   /// EmitLValueForFieldInitialization - Like EmitLValueForField, except that
3176   /// if the Field is a reference, this will return the address of the reference
3177   /// and not the address of the value stored in the reference.
3178   LValue EmitLValueForFieldInitialization(LValue Base,
3179                                           const FieldDecl* Field);
3180 
3181   LValue EmitLValueForIvar(QualType ObjectTy,
3182                            llvm::Value* Base, const ObjCIvarDecl *Ivar,
3183                            unsigned CVRQualifiers);
3184 
3185   LValue EmitCXXConstructLValue(const CXXConstructExpr *E);
3186   LValue EmitCXXBindTemporaryLValue(const CXXBindTemporaryExpr *E);
3187   LValue EmitLambdaLValue(const LambdaExpr *E);
3188   LValue EmitCXXTypeidLValue(const CXXTypeidExpr *E);
3189   LValue EmitCXXUuidofLValue(const CXXUuidofExpr *E);
3190 
3191   LValue EmitObjCMessageExprLValue(const ObjCMessageExpr *E);
3192   LValue EmitObjCIvarRefLValue(const ObjCIvarRefExpr *E);
3193   LValue EmitStmtExprLValue(const StmtExpr *E);
3194   LValue EmitPointerToDataMemberBinaryExpr(const BinaryOperator *E);
3195   LValue EmitObjCSelectorLValue(const ObjCSelectorExpr *E);
3196   void   EmitDeclRefExprDbgValue(const DeclRefExpr *E, const APValue &Init);
3197 
3198   //===--------------------------------------------------------------------===//
3199   //                         Scalar Expression Emission
3200   //===--------------------------------------------------------------------===//
3201 
3202   /// EmitCall - Generate a call of the given function, expecting the given
3203   /// result type, and using the given argument list which specifies both the
3204   /// LLVM arguments and the types they were derived from.
3205   RValue EmitCall(const CGFunctionInfo &CallInfo, const CGCallee &Callee,
3206                   ReturnValueSlot ReturnValue, const CallArgList &Args,
3207                   llvm::Instruction **callOrInvoke = nullptr);
3208 
3209   RValue EmitCall(QualType FnType, const CGCallee &Callee, const CallExpr *E,
3210                   ReturnValueSlot ReturnValue,
3211                   llvm::Value *Chain = nullptr);
3212   RValue EmitCallExpr(const CallExpr *E,
3213                       ReturnValueSlot ReturnValue = ReturnValueSlot());
3214   RValue EmitSimpleCallExpr(const CallExpr *E, ReturnValueSlot ReturnValue);
3215   CGCallee EmitCallee(const Expr *E);
3216 
3217   void checkTargetFeatures(const CallExpr *E, const FunctionDecl *TargetDecl);
3218 
3219   llvm::CallInst *EmitRuntimeCall(llvm::Value *callee,
3220                                   const Twine &name = "");
3221   llvm::CallInst *EmitRuntimeCall(llvm::Value *callee,
3222                                   ArrayRef<llvm::Value*> args,
3223                                   const Twine &name = "");
3224   llvm::CallInst *EmitNounwindRuntimeCall(llvm::Value *callee,
3225                                           const Twine &name = "");
3226   llvm::CallInst *EmitNounwindRuntimeCall(llvm::Value *callee,
3227                                           ArrayRef<llvm::Value*> args,
3228                                           const Twine &name = "");
3229 
3230   llvm::CallSite EmitCallOrInvoke(llvm::Value *Callee,
3231                                   ArrayRef<llvm::Value *> Args,
3232                                   const Twine &Name = "");
3233   llvm::CallSite EmitRuntimeCallOrInvoke(llvm::Value *callee,
3234                                          ArrayRef<llvm::Value*> args,
3235                                          const Twine &name = "");
3236   llvm::CallSite EmitRuntimeCallOrInvoke(llvm::Value *callee,
3237                                          const Twine &name = "");
3238   void EmitNoreturnRuntimeCallOrInvoke(llvm::Value *callee,
3239                                        ArrayRef<llvm::Value*> args);
3240 
3241   CGCallee BuildAppleKextVirtualCall(const CXXMethodDecl *MD,
3242                                      NestedNameSpecifier *Qual,
3243                                      llvm::Type *Ty);
3244 
3245   CGCallee BuildAppleKextVirtualDestructorCall(const CXXDestructorDecl *DD,
3246                                                CXXDtorType Type,
3247                                                const CXXRecordDecl *RD);
3248 
3249   RValue
3250   EmitCXXMemberOrOperatorCall(const CXXMethodDecl *Method,
3251                               const CGCallee &Callee,
3252                               ReturnValueSlot ReturnValue, llvm::Value *This,
3253                               llvm::Value *ImplicitParam,
3254                               QualType ImplicitParamTy, const CallExpr *E,
3255                               CallArgList *RtlArgs);
3256   RValue EmitCXXDestructorCall(const CXXDestructorDecl *DD,
3257                                const CGCallee &Callee,
3258                                llvm::Value *This, llvm::Value *ImplicitParam,
3259                                QualType ImplicitParamTy, const CallExpr *E,
3260                                StructorType Type);
3261   RValue EmitCXXMemberCallExpr(const CXXMemberCallExpr *E,
3262                                ReturnValueSlot ReturnValue);
3263   RValue EmitCXXMemberOrOperatorMemberCallExpr(const CallExpr *CE,
3264                                                const CXXMethodDecl *MD,
3265                                                ReturnValueSlot ReturnValue,
3266                                                bool HasQualifier,
3267                                                NestedNameSpecifier *Qualifier,
3268                                                bool IsArrow, const Expr *Base);
3269   // Compute the object pointer.
3270   Address EmitCXXMemberDataPointerAddress(const Expr *E, Address base,
3271                                           llvm::Value *memberPtr,
3272                                           const MemberPointerType *memberPtrType,
3273                                           LValueBaseInfo *BaseInfo = nullptr);
3274   RValue EmitCXXMemberPointerCallExpr(const CXXMemberCallExpr *E,
3275                                       ReturnValueSlot ReturnValue);
3276 
3277   RValue EmitCXXOperatorMemberCallExpr(const CXXOperatorCallExpr *E,
3278                                        const CXXMethodDecl *MD,
3279                                        ReturnValueSlot ReturnValue);
3280   RValue EmitCXXPseudoDestructorExpr(const CXXPseudoDestructorExpr *E);
3281 
3282   RValue EmitCUDAKernelCallExpr(const CUDAKernelCallExpr *E,
3283                                 ReturnValueSlot ReturnValue);
3284 
3285   RValue EmitNVPTXDevicePrintfCallExpr(const CallExpr *E,
3286                                        ReturnValueSlot ReturnValue);
3287 
3288   RValue EmitBuiltinExpr(const FunctionDecl *FD,
3289                          unsigned BuiltinID, const CallExpr *E,
3290                          ReturnValueSlot ReturnValue);
3291 
3292   RValue EmitBlockCallExpr(const CallExpr *E, ReturnValueSlot ReturnValue);
3293 
3294   /// EmitTargetBuiltinExpr - Emit the given builtin call. Returns 0 if the call
3295   /// is unhandled by the current target.
3296   llvm::Value *EmitTargetBuiltinExpr(unsigned BuiltinID, const CallExpr *E);
3297 
3298   llvm::Value *EmitAArch64CompareBuiltinExpr(llvm::Value *Op, llvm::Type *Ty,
3299                                              const llvm::CmpInst::Predicate Fp,
3300                                              const llvm::CmpInst::Predicate Ip,
3301                                              const llvm::Twine &Name = "");
3302   llvm::Value *EmitARMBuiltinExpr(unsigned BuiltinID, const CallExpr *E);
3303 
3304   llvm::Value *EmitCommonNeonBuiltinExpr(unsigned BuiltinID,
3305                                          unsigned LLVMIntrinsic,
3306                                          unsigned AltLLVMIntrinsic,
3307                                          const char *NameHint,
3308                                          unsigned Modifier,
3309                                          const CallExpr *E,
3310                                          SmallVectorImpl<llvm::Value *> &Ops,
3311                                          Address PtrOp0, Address PtrOp1);
3312   llvm::Function *LookupNeonLLVMIntrinsic(unsigned IntrinsicID,
3313                                           unsigned Modifier, llvm::Type *ArgTy,
3314                                           const CallExpr *E);
3315   llvm::Value *EmitNeonCall(llvm::Function *F,
3316                             SmallVectorImpl<llvm::Value*> &O,
3317                             const char *name,
3318                             unsigned shift = 0, bool rightshift = false);
3319   llvm::Value *EmitNeonSplat(llvm::Value *V, llvm::Constant *Idx);
3320   llvm::Value *EmitNeonShiftVector(llvm::Value *V, llvm::Type *Ty,
3321                                    bool negateForRightShift);
3322   llvm::Value *EmitNeonRShiftImm(llvm::Value *Vec, llvm::Value *Amt,
3323                                  llvm::Type *Ty, bool usgn, const char *name);
3324   llvm::Value *vectorWrapScalar16(llvm::Value *Op);
3325   llvm::Value *EmitAArch64BuiltinExpr(unsigned BuiltinID, const CallExpr *E);
3326 
3327   llvm::Value *BuildVector(ArrayRef<llvm::Value*> Ops);
3328   llvm::Value *EmitX86BuiltinExpr(unsigned BuiltinID, const CallExpr *E);
3329   llvm::Value *EmitPPCBuiltinExpr(unsigned BuiltinID, const CallExpr *E);
3330   llvm::Value *EmitAMDGPUBuiltinExpr(unsigned BuiltinID, const CallExpr *E);
3331   llvm::Value *EmitSystemZBuiltinExpr(unsigned BuiltinID, const CallExpr *E);
3332   llvm::Value *EmitNVPTXBuiltinExpr(unsigned BuiltinID, const CallExpr *E);
3333   llvm::Value *EmitWebAssemblyBuiltinExpr(unsigned BuiltinID,
3334                                           const CallExpr *E);
3335 
3336 private:
3337   enum class MSVCIntrin;
3338 
3339 public:
3340   llvm::Value *EmitMSVCBuiltinExpr(MSVCIntrin BuiltinID, const CallExpr *E);
3341 
3342   llvm::Value *EmitBuiltinAvailable(ArrayRef<llvm::Value *> Args);
3343 
3344   llvm::Value *EmitObjCProtocolExpr(const ObjCProtocolExpr *E);
3345   llvm::Value *EmitObjCStringLiteral(const ObjCStringLiteral *E);
3346   llvm::Value *EmitObjCBoxedExpr(const ObjCBoxedExpr *E);
3347   llvm::Value *EmitObjCArrayLiteral(const ObjCArrayLiteral *E);
3348   llvm::Value *EmitObjCDictionaryLiteral(const ObjCDictionaryLiteral *E);
3349   llvm::Value *EmitObjCCollectionLiteral(const Expr *E,
3350                                 const ObjCMethodDecl *MethodWithObjects);
3351   llvm::Value *EmitObjCSelectorExpr(const ObjCSelectorExpr *E);
3352   RValue EmitObjCMessageExpr(const ObjCMessageExpr *E,
3353                              ReturnValueSlot Return = ReturnValueSlot());
3354 
3355   /// Retrieves the default cleanup kind for an ARC cleanup.
3356   /// Except under -fobjc-arc-eh, ARC cleanups are normal-only.
3357   CleanupKind getARCCleanupKind() {
3358     return CGM.getCodeGenOpts().ObjCAutoRefCountExceptions
3359              ? NormalAndEHCleanup : NormalCleanup;
3360   }
3361 
3362   // ARC primitives.
3363   void EmitARCInitWeak(Address addr, llvm::Value *value);
3364   void EmitARCDestroyWeak(Address addr);
3365   llvm::Value *EmitARCLoadWeak(Address addr);
3366   llvm::Value *EmitARCLoadWeakRetained(Address addr);
3367   llvm::Value *EmitARCStoreWeak(Address addr, llvm::Value *value, bool ignored);
3368   void EmitARCCopyWeak(Address dst, Address src);
3369   void EmitARCMoveWeak(Address dst, Address src);
3370   llvm::Value *EmitARCRetainAutorelease(QualType type, llvm::Value *value);
3371   llvm::Value *EmitARCRetainAutoreleaseNonBlock(llvm::Value *value);
3372   llvm::Value *EmitARCStoreStrong(LValue lvalue, llvm::Value *value,
3373                                   bool resultIgnored);
3374   llvm::Value *EmitARCStoreStrongCall(Address addr, llvm::Value *value,
3375                                       bool resultIgnored);
3376   llvm::Value *EmitARCRetain(QualType type, llvm::Value *value);
3377   llvm::Value *EmitARCRetainNonBlock(llvm::Value *value);
3378   llvm::Value *EmitARCRetainBlock(llvm::Value *value, bool mandatory);
3379   void EmitARCDestroyStrong(Address addr, ARCPreciseLifetime_t precise);
3380   void EmitARCRelease(llvm::Value *value, ARCPreciseLifetime_t precise);
3381   llvm::Value *EmitARCAutorelease(llvm::Value *value);
3382   llvm::Value *EmitARCAutoreleaseReturnValue(llvm::Value *value);
3383   llvm::Value *EmitARCRetainAutoreleaseReturnValue(llvm::Value *value);
3384   llvm::Value *EmitARCRetainAutoreleasedReturnValue(llvm::Value *value);
3385   llvm::Value *EmitARCUnsafeClaimAutoreleasedReturnValue(llvm::Value *value);
3386 
3387   std::pair<LValue,llvm::Value*>
3388   EmitARCStoreAutoreleasing(const BinaryOperator *e);
3389   std::pair<LValue,llvm::Value*>
3390   EmitARCStoreStrong(const BinaryOperator *e, bool ignored);
3391   std::pair<LValue,llvm::Value*>
3392   EmitARCStoreUnsafeUnretained(const BinaryOperator *e, bool ignored);
3393 
3394   llvm::Value *EmitObjCThrowOperand(const Expr *expr);
3395   llvm::Value *EmitObjCConsumeObject(QualType T, llvm::Value *Ptr);
3396   llvm::Value *EmitObjCExtendObjectLifetime(QualType T, llvm::Value *Ptr);
3397 
3398   llvm::Value *EmitARCExtendBlockObject(const Expr *expr);
3399   llvm::Value *EmitARCReclaimReturnedObject(const Expr *e,
3400                                             bool allowUnsafeClaim);
3401   llvm::Value *EmitARCRetainScalarExpr(const Expr *expr);
3402   llvm::Value *EmitARCRetainAutoreleaseScalarExpr(const Expr *expr);
3403   llvm::Value *EmitARCUnsafeUnretainedScalarExpr(const Expr *expr);
3404 
3405   void EmitARCIntrinsicUse(ArrayRef<llvm::Value*> values);
3406 
3407   static Destroyer destroyARCStrongImprecise;
3408   static Destroyer destroyARCStrongPrecise;
3409   static Destroyer destroyARCWeak;
3410   static Destroyer emitARCIntrinsicUse;
3411 
3412   void EmitObjCAutoreleasePoolPop(llvm::Value *Ptr);
3413   llvm::Value *EmitObjCAutoreleasePoolPush();
3414   llvm::Value *EmitObjCMRRAutoreleasePoolPush();
3415   void EmitObjCAutoreleasePoolCleanup(llvm::Value *Ptr);
3416   void EmitObjCMRRAutoreleasePoolPop(llvm::Value *Ptr);
3417 
3418   /// \brief Emits a reference binding to the passed in expression.
3419   RValue EmitReferenceBindingToExpr(const Expr *E);
3420 
3421   //===--------------------------------------------------------------------===//
3422   //                           Expression Emission
3423   //===--------------------------------------------------------------------===//
3424 
3425   // Expressions are broken into three classes: scalar, complex, aggregate.
3426 
3427   /// EmitScalarExpr - Emit the computation of the specified expression of LLVM
3428   /// scalar type, returning the result.
3429   llvm::Value *EmitScalarExpr(const Expr *E , bool IgnoreResultAssign = false);
3430 
3431   /// Emit a conversion from the specified type to the specified destination
3432   /// type, both of which are LLVM scalar types.
3433   llvm::Value *EmitScalarConversion(llvm::Value *Src, QualType SrcTy,
3434                                     QualType DstTy, SourceLocation Loc);
3435 
3436   /// Emit a conversion from the specified complex type to the specified
3437   /// destination type, where the destination type is an LLVM scalar type.
3438   llvm::Value *EmitComplexToScalarConversion(ComplexPairTy Src, QualType SrcTy,
3439                                              QualType DstTy,
3440                                              SourceLocation Loc);
3441 
3442   /// EmitAggExpr - Emit the computation of the specified expression
3443   /// of aggregate type.  The result is computed into the given slot,
3444   /// which may be null to indicate that the value is not needed.
3445   void EmitAggExpr(const Expr *E, AggValueSlot AS);
3446 
3447   /// EmitAggExprToLValue - Emit the computation of the specified expression of
3448   /// aggregate type into a temporary LValue.
3449   LValue EmitAggExprToLValue(const Expr *E);
3450 
3451   /// EmitExtendGCLifetime - Given a pointer to an Objective-C object,
3452   /// make sure it survives garbage collection until this point.
3453   void EmitExtendGCLifetime(llvm::Value *object);
3454 
3455   /// EmitComplexExpr - Emit the computation of the specified expression of
3456   /// complex type, returning the result.
3457   ComplexPairTy EmitComplexExpr(const Expr *E,
3458                                 bool IgnoreReal = false,
3459                                 bool IgnoreImag = false);
3460 
3461   /// EmitComplexExprIntoLValue - Emit the given expression of complex
3462   /// type and place its result into the specified l-value.
3463   void EmitComplexExprIntoLValue(const Expr *E, LValue dest, bool isInit);
3464 
3465   /// EmitStoreOfComplex - Store a complex number into the specified l-value.
3466   void EmitStoreOfComplex(ComplexPairTy V, LValue dest, bool isInit);
3467 
3468   /// EmitLoadOfComplex - Load a complex number from the specified l-value.
3469   ComplexPairTy EmitLoadOfComplex(LValue src, SourceLocation loc);
3470 
3471   Address emitAddrOfRealComponent(Address complex, QualType complexType);
3472   Address emitAddrOfImagComponent(Address complex, QualType complexType);
3473 
3474   /// AddInitializerToStaticVarDecl - Add the initializer for 'D' to the
3475   /// global variable that has already been created for it.  If the initializer
3476   /// has a different type than GV does, this may free GV and return a different
3477   /// one.  Otherwise it just returns GV.
3478   llvm::GlobalVariable *
3479   AddInitializerToStaticVarDecl(const VarDecl &D,
3480                                 llvm::GlobalVariable *GV);
3481 
3482 
3483   /// EmitCXXGlobalVarDeclInit - Create the initializer for a C++
3484   /// variable with global storage.
3485   void EmitCXXGlobalVarDeclInit(const VarDecl &D, llvm::Constant *DeclPtr,
3486                                 bool PerformInit);
3487 
3488   llvm::Constant *createAtExitStub(const VarDecl &VD, llvm::Constant *Dtor,
3489                                    llvm::Constant *Addr);
3490 
3491   /// Call atexit() with a function that passes the given argument to
3492   /// the given function.
3493   void registerGlobalDtorWithAtExit(const VarDecl &D, llvm::Constant *fn,
3494                                     llvm::Constant *addr);
3495 
3496   /// Emit code in this function to perform a guarded variable
3497   /// initialization.  Guarded initializations are used when it's not
3498   /// possible to prove that an initialization will be done exactly
3499   /// once, e.g. with a static local variable or a static data member
3500   /// of a class template.
3501   void EmitCXXGuardedInit(const VarDecl &D, llvm::GlobalVariable *DeclPtr,
3502                           bool PerformInit);
3503 
3504   enum class GuardKind { VariableGuard, TlsGuard };
3505 
3506   /// Emit a branch to select whether or not to perform guarded initialization.
3507   void EmitCXXGuardedInitBranch(llvm::Value *NeedsInit,
3508                                 llvm::BasicBlock *InitBlock,
3509                                 llvm::BasicBlock *NoInitBlock,
3510                                 GuardKind Kind, const VarDecl *D);
3511 
3512   /// GenerateCXXGlobalInitFunc - Generates code for initializing global
3513   /// variables.
3514   void GenerateCXXGlobalInitFunc(llvm::Function *Fn,
3515                                  ArrayRef<llvm::Function *> CXXThreadLocals,
3516                                  Address Guard = Address::invalid());
3517 
3518   /// GenerateCXXGlobalDtorsFunc - Generates code for destroying global
3519   /// variables.
3520   void GenerateCXXGlobalDtorsFunc(
3521       llvm::Function *Fn,
3522       const std::vector<std::pair<llvm::WeakTrackingVH, llvm::Constant *>>
3523           &DtorsAndObjects);
3524 
3525   void GenerateCXXGlobalVarDeclInitFunc(llvm::Function *Fn,
3526                                         const VarDecl *D,
3527                                         llvm::GlobalVariable *Addr,
3528                                         bool PerformInit);
3529 
3530   void EmitCXXConstructExpr(const CXXConstructExpr *E, AggValueSlot Dest);
3531 
3532   void EmitSynthesizedCXXCopyCtor(Address Dest, Address Src, const Expr *Exp);
3533 
3534   void enterFullExpression(const ExprWithCleanups *E) {
3535     if (E->getNumObjects() == 0) return;
3536     enterNonTrivialFullExpression(E);
3537   }
3538   void enterNonTrivialFullExpression(const ExprWithCleanups *E);
3539 
3540   void EmitCXXThrowExpr(const CXXThrowExpr *E, bool KeepInsertionPoint = true);
3541 
3542   void EmitLambdaExpr(const LambdaExpr *E, AggValueSlot Dest);
3543 
3544   RValue EmitAtomicExpr(AtomicExpr *E);
3545 
3546   //===--------------------------------------------------------------------===//
3547   //                         Annotations Emission
3548   //===--------------------------------------------------------------------===//
3549 
3550   /// Emit an annotation call (intrinsic or builtin).
3551   llvm::Value *EmitAnnotationCall(llvm::Value *AnnotationFn,
3552                                   llvm::Value *AnnotatedVal,
3553                                   StringRef AnnotationStr,
3554                                   SourceLocation Location);
3555 
3556   /// Emit local annotations for the local variable V, declared by D.
3557   void EmitVarAnnotations(const VarDecl *D, llvm::Value *V);
3558 
3559   /// Emit field annotations for the given field & value. Returns the
3560   /// annotation result.
3561   Address EmitFieldAnnotations(const FieldDecl *D, Address V);
3562 
3563   //===--------------------------------------------------------------------===//
3564   //                             Internal Helpers
3565   //===--------------------------------------------------------------------===//
3566 
3567   /// ContainsLabel - Return true if the statement contains a label in it.  If
3568   /// this statement is not executed normally, it not containing a label means
3569   /// that we can just remove the code.
3570   static bool ContainsLabel(const Stmt *S, bool IgnoreCaseStmts = false);
3571 
3572   /// containsBreak - Return true if the statement contains a break out of it.
3573   /// If the statement (recursively) contains a switch or loop with a break
3574   /// inside of it, this is fine.
3575   static bool containsBreak(const Stmt *S);
3576 
3577   /// Determine if the given statement might introduce a declaration into the
3578   /// current scope, by being a (possibly-labelled) DeclStmt.
3579   static bool mightAddDeclToScope(const Stmt *S);
3580 
3581   /// ConstantFoldsToSimpleInteger - If the specified expression does not fold
3582   /// to a constant, or if it does but contains a label, return false.  If it
3583   /// constant folds return true and set the boolean result in Result.
3584   bool ConstantFoldsToSimpleInteger(const Expr *Cond, bool &Result,
3585                                     bool AllowLabels = false);
3586 
3587   /// ConstantFoldsToSimpleInteger - If the specified expression does not fold
3588   /// to a constant, or if it does but contains a label, return false.  If it
3589   /// constant folds return true and set the folded value.
3590   bool ConstantFoldsToSimpleInteger(const Expr *Cond, llvm::APSInt &Result,
3591                                     bool AllowLabels = false);
3592 
3593   /// EmitBranchOnBoolExpr - Emit a branch on a boolean condition (e.g. for an
3594   /// if statement) to the specified blocks.  Based on the condition, this might
3595   /// try to simplify the codegen of the conditional based on the branch.
3596   /// TrueCount should be the number of times we expect the condition to
3597   /// evaluate to true based on PGO data.
3598   void EmitBranchOnBoolExpr(const Expr *Cond, llvm::BasicBlock *TrueBlock,
3599                             llvm::BasicBlock *FalseBlock, uint64_t TrueCount);
3600 
3601   /// Given an assignment `*LHS = RHS`, emit a test that checks if \p RHS is
3602   /// nonnull, if \p LHS is marked _Nonnull.
3603   void EmitNullabilityCheck(LValue LHS, llvm::Value *RHS, SourceLocation Loc);
3604 
3605   /// An enumeration which makes it easier to specify whether or not an
3606   /// operation is a subtraction.
3607   enum { NotSubtraction = false, IsSubtraction = true };
3608 
3609   /// Same as IRBuilder::CreateInBoundsGEP, but additionally emits a check to
3610   /// detect undefined behavior when the pointer overflow sanitizer is enabled.
3611   /// \p SignedIndices indicates whether any of the GEP indices are signed.
3612   /// \p IsSubtraction indicates whether the expression used to form the GEP
3613   /// is a subtraction.
3614   llvm::Value *EmitCheckedInBoundsGEP(llvm::Value *Ptr,
3615                                       ArrayRef<llvm::Value *> IdxList,
3616                                       bool SignedIndices,
3617                                       bool IsSubtraction,
3618                                       SourceLocation Loc,
3619                                       const Twine &Name = "");
3620 
3621   /// Specifies which type of sanitizer check to apply when handling a
3622   /// particular builtin.
3623   enum BuiltinCheckKind {
3624     BCK_CTZPassedZero,
3625     BCK_CLZPassedZero,
3626   };
3627 
3628   /// Emits an argument for a call to a builtin. If the builtin sanitizer is
3629   /// enabled, a runtime check specified by \p Kind is also emitted.
3630   llvm::Value *EmitCheckedArgForBuiltin(const Expr *E, BuiltinCheckKind Kind);
3631 
3632   /// \brief Emit a description of a type in a format suitable for passing to
3633   /// a runtime sanitizer handler.
3634   llvm::Constant *EmitCheckTypeDescriptor(QualType T);
3635 
3636   /// \brief Convert a value into a format suitable for passing to a runtime
3637   /// sanitizer handler.
3638   llvm::Value *EmitCheckValue(llvm::Value *V);
3639 
3640   /// \brief Emit a description of a source location in a format suitable for
3641   /// passing to a runtime sanitizer handler.
3642   llvm::Constant *EmitCheckSourceLocation(SourceLocation Loc);
3643 
3644   /// \brief Create a basic block that will call a handler function in a
3645   /// sanitizer runtime with the provided arguments, and create a conditional
3646   /// branch to it.
3647   void EmitCheck(ArrayRef<std::pair<llvm::Value *, SanitizerMask>> Checked,
3648                  SanitizerHandler Check, ArrayRef<llvm::Constant *> StaticArgs,
3649                  ArrayRef<llvm::Value *> DynamicArgs);
3650 
3651   /// \brief Emit a slow path cross-DSO CFI check which calls __cfi_slowpath
3652   /// if Cond if false.
3653   void EmitCfiSlowPathCheck(SanitizerMask Kind, llvm::Value *Cond,
3654                             llvm::ConstantInt *TypeId, llvm::Value *Ptr,
3655                             ArrayRef<llvm::Constant *> StaticArgs);
3656 
3657   /// \brief Create a basic block that will call the trap intrinsic, and emit a
3658   /// conditional branch to it, for the -ftrapv checks.
3659   void EmitTrapCheck(llvm::Value *Checked);
3660 
3661   /// \brief Emit a call to trap or debugtrap and attach function attribute
3662   /// "trap-func-name" if specified.
3663   llvm::CallInst *EmitTrapCall(llvm::Intrinsic::ID IntrID);
3664 
3665   /// \brief Emit a stub for the cross-DSO CFI check function.
3666   void EmitCfiCheckStub();
3667 
3668   /// \brief Emit a cross-DSO CFI failure handling function.
3669   void EmitCfiCheckFail();
3670 
3671   /// \brief Create a check for a function parameter that may potentially be
3672   /// declared as non-null.
3673   void EmitNonNullArgCheck(RValue RV, QualType ArgType, SourceLocation ArgLoc,
3674                            AbstractCallee AC, unsigned ParmNum);
3675 
3676   /// EmitCallArg - Emit a single call argument.
3677   void EmitCallArg(CallArgList &args, const Expr *E, QualType ArgType);
3678 
3679   /// EmitDelegateCallArg - We are performing a delegate call; that
3680   /// is, the current function is delegating to another one.  Produce
3681   /// a r-value suitable for passing the given parameter.
3682   void EmitDelegateCallArg(CallArgList &args, const VarDecl *param,
3683                            SourceLocation loc);
3684 
3685   /// SetFPAccuracy - Set the minimum required accuracy of the given floating
3686   /// point operation, expressed as the maximum relative error in ulp.
3687   void SetFPAccuracy(llvm::Value *Val, float Accuracy);
3688 
3689 private:
3690   llvm::MDNode *getRangeForLoadFromType(QualType Ty);
3691   void EmitReturnOfRValue(RValue RV, QualType Ty);
3692 
3693   void deferPlaceholderReplacement(llvm::Instruction *Old, llvm::Value *New);
3694 
3695   llvm::SmallVector<std::pair<llvm::Instruction *, llvm::Value *>, 4>
3696   DeferredReplacements;
3697 
3698   /// Set the address of a local variable.
3699   void setAddrOfLocalVar(const VarDecl *VD, Address Addr) {
3700     assert(!LocalDeclMap.count(VD) && "Decl already exists in LocalDeclMap!");
3701     LocalDeclMap.insert({VD, Addr});
3702   }
3703 
3704   /// ExpandTypeFromArgs - Reconstruct a structure of type \arg Ty
3705   /// from function arguments into \arg Dst. See ABIArgInfo::Expand.
3706   ///
3707   /// \param AI - The first function argument of the expansion.
3708   void ExpandTypeFromArgs(QualType Ty, LValue Dst,
3709                           SmallVectorImpl<llvm::Value *>::iterator &AI);
3710 
3711   /// ExpandTypeToArgs - Expand an RValue \arg RV, with the LLVM type for \arg
3712   /// Ty, into individual arguments on the provided vector \arg IRCallArgs,
3713   /// starting at index \arg IRCallArgPos. See ABIArgInfo::Expand.
3714   void ExpandTypeToArgs(QualType Ty, RValue RV, llvm::FunctionType *IRFuncTy,
3715                         SmallVectorImpl<llvm::Value *> &IRCallArgs,
3716                         unsigned &IRCallArgPos);
3717 
3718   llvm::Value* EmitAsmInput(const TargetInfo::ConstraintInfo &Info,
3719                             const Expr *InputExpr, std::string &ConstraintStr);
3720 
3721   llvm::Value* EmitAsmInputLValue(const TargetInfo::ConstraintInfo &Info,
3722                                   LValue InputValue, QualType InputType,
3723                                   std::string &ConstraintStr,
3724                                   SourceLocation Loc);
3725 
3726   /// \brief Attempts to statically evaluate the object size of E. If that
3727   /// fails, emits code to figure the size of E out for us. This is
3728   /// pass_object_size aware.
3729   ///
3730   /// If EmittedExpr is non-null, this will use that instead of re-emitting E.
3731   llvm::Value *evaluateOrEmitBuiltinObjectSize(const Expr *E, unsigned Type,
3732                                                llvm::IntegerType *ResType,
3733                                                llvm::Value *EmittedE);
3734 
3735   /// \brief Emits the size of E, as required by __builtin_object_size. This
3736   /// function is aware of pass_object_size parameters, and will act accordingly
3737   /// if E is a parameter with the pass_object_size attribute.
3738   llvm::Value *emitBuiltinObjectSize(const Expr *E, unsigned Type,
3739                                      llvm::IntegerType *ResType,
3740                                      llvm::Value *EmittedE);
3741 
3742 public:
3743 #ifndef NDEBUG
3744   // Determine whether the given argument is an Objective-C method
3745   // that may have type parameters in its signature.
3746   static bool isObjCMethodWithTypeParams(const ObjCMethodDecl *method) {
3747     const DeclContext *dc = method->getDeclContext();
3748     if (const ObjCInterfaceDecl *classDecl= dyn_cast<ObjCInterfaceDecl>(dc)) {
3749       return classDecl->getTypeParamListAsWritten();
3750     }
3751 
3752     if (const ObjCCategoryDecl *catDecl = dyn_cast<ObjCCategoryDecl>(dc)) {
3753       return catDecl->getTypeParamList();
3754     }
3755 
3756     return false;
3757   }
3758 
3759   template<typename T>
3760   static bool isObjCMethodWithTypeParams(const T *) { return false; }
3761 #endif
3762 
3763   enum class EvaluationOrder {
3764     ///! No language constraints on evaluation order.
3765     Default,
3766     ///! Language semantics require left-to-right evaluation.
3767     ForceLeftToRight,
3768     ///! Language semantics require right-to-left evaluation.
3769     ForceRightToLeft
3770   };
3771 
3772   /// EmitCallArgs - Emit call arguments for a function.
3773   template <typename T>
3774   void EmitCallArgs(CallArgList &Args, const T *CallArgTypeInfo,
3775                     llvm::iterator_range<CallExpr::const_arg_iterator> ArgRange,
3776                     AbstractCallee AC = AbstractCallee(),
3777                     unsigned ParamsToSkip = 0,
3778                     EvaluationOrder Order = EvaluationOrder::Default) {
3779     SmallVector<QualType, 16> ArgTypes;
3780     CallExpr::const_arg_iterator Arg = ArgRange.begin();
3781 
3782     assert((ParamsToSkip == 0 || CallArgTypeInfo) &&
3783            "Can't skip parameters if type info is not provided");
3784     if (CallArgTypeInfo) {
3785 #ifndef NDEBUG
3786       bool isGenericMethod = isObjCMethodWithTypeParams(CallArgTypeInfo);
3787 #endif
3788 
3789       // First, use the argument types that the type info knows about
3790       for (auto I = CallArgTypeInfo->param_type_begin() + ParamsToSkip,
3791                 E = CallArgTypeInfo->param_type_end();
3792            I != E; ++I, ++Arg) {
3793         assert(Arg != ArgRange.end() && "Running over edge of argument list!");
3794         assert((isGenericMethod ||
3795                 ((*I)->isVariablyModifiedType() ||
3796                  (*I).getNonReferenceType()->isObjCRetainableType() ||
3797                  getContext()
3798                          .getCanonicalType((*I).getNonReferenceType())
3799                          .getTypePtr() ==
3800                      getContext()
3801                          .getCanonicalType((*Arg)->getType())
3802                          .getTypePtr())) &&
3803                "type mismatch in call argument!");
3804         ArgTypes.push_back(*I);
3805       }
3806     }
3807 
3808     // Either we've emitted all the call args, or we have a call to variadic
3809     // function.
3810     assert((Arg == ArgRange.end() || !CallArgTypeInfo ||
3811             CallArgTypeInfo->isVariadic()) &&
3812            "Extra arguments in non-variadic function!");
3813 
3814     // If we still have any arguments, emit them using the type of the argument.
3815     for (auto *A : llvm::make_range(Arg, ArgRange.end()))
3816       ArgTypes.push_back(CallArgTypeInfo ? getVarArgType(A) : A->getType());
3817 
3818     EmitCallArgs(Args, ArgTypes, ArgRange, AC, ParamsToSkip, Order);
3819   }
3820 
3821   void EmitCallArgs(CallArgList &Args, ArrayRef<QualType> ArgTypes,
3822                     llvm::iterator_range<CallExpr::const_arg_iterator> ArgRange,
3823                     AbstractCallee AC = AbstractCallee(),
3824                     unsigned ParamsToSkip = 0,
3825                     EvaluationOrder Order = EvaluationOrder::Default);
3826 
3827   /// EmitPointerWithAlignment - Given an expression with a pointer type,
3828   /// emit the value and compute our best estimate of the alignment of the
3829   /// pointee.
3830   ///
3831   /// \param BaseInfo - If non-null, this will be initialized with
3832   /// information about the source of the alignment and the may-alias
3833   /// attribute.  Note that this function will conservatively fall back on
3834   /// the type when it doesn't recognize the expression and may-alias will
3835   /// be set to false.
3836   ///
3837   /// One reasonable way to use this information is when there's a language
3838   /// guarantee that the pointer must be aligned to some stricter value, and
3839   /// we're simply trying to ensure that sufficiently obvious uses of under-
3840   /// aligned objects don't get miscompiled; for example, a placement new
3841   /// into the address of a local variable.  In such a case, it's quite
3842   /// reasonable to just ignore the returned alignment when it isn't from an
3843   /// explicit source.
3844   Address EmitPointerWithAlignment(const Expr *Addr,
3845                                    LValueBaseInfo *BaseInfo = nullptr);
3846 
3847   void EmitSanitizerStatReport(llvm::SanitizerStatKind SSK);
3848 
3849 private:
3850   QualType getVarArgType(const Expr *Arg);
3851 
3852   void EmitDeclMetadata();
3853 
3854   BlockByrefHelpers *buildByrefHelpers(llvm::StructType &byrefType,
3855                                   const AutoVarEmission &emission);
3856 
3857   void AddObjCARCExceptionMetadata(llvm::Instruction *Inst);
3858 
3859   llvm::Value *GetValueForARMHint(unsigned BuiltinID);
3860   llvm::Value *EmitX86CpuIs(const CallExpr *E);
3861   llvm::Value *EmitX86CpuIs(StringRef CPUStr);
3862   llvm::Value *EmitX86CpuSupports(const CallExpr *E);
3863   llvm::Value *EmitX86CpuSupports(ArrayRef<StringRef> FeatureStrs);
3864 };
3865 
3866 /// Helper class with most of the code for saving a value for a
3867 /// conditional expression cleanup.
3868 struct DominatingLLVMValue {
3869   typedef llvm::PointerIntPair<llvm::Value*, 1, bool> saved_type;
3870 
3871   /// Answer whether the given value needs extra work to be saved.
3872   static bool needsSaving(llvm::Value *value) {
3873     // If it's not an instruction, we don't need to save.
3874     if (!isa<llvm::Instruction>(value)) return false;
3875 
3876     // If it's an instruction in the entry block, we don't need to save.
3877     llvm::BasicBlock *block = cast<llvm::Instruction>(value)->getParent();
3878     return (block != &block->getParent()->getEntryBlock());
3879   }
3880 
3881   /// Try to save the given value.
3882   static saved_type save(CodeGenFunction &CGF, llvm::Value *value) {
3883     if (!needsSaving(value)) return saved_type(value, false);
3884 
3885     // Otherwise, we need an alloca.
3886     auto align = CharUnits::fromQuantity(
3887               CGF.CGM.getDataLayout().getPrefTypeAlignment(value->getType()));
3888     Address alloca =
3889       CGF.CreateTempAlloca(value->getType(), align, "cond-cleanup.save");
3890     CGF.Builder.CreateStore(value, alloca);
3891 
3892     return saved_type(alloca.getPointer(), true);
3893   }
3894 
3895   static llvm::Value *restore(CodeGenFunction &CGF, saved_type value) {
3896     // If the value says it wasn't saved, trust that it's still dominating.
3897     if (!value.getInt()) return value.getPointer();
3898 
3899     // Otherwise, it should be an alloca instruction, as set up in save().
3900     auto alloca = cast<llvm::AllocaInst>(value.getPointer());
3901     return CGF.Builder.CreateAlignedLoad(alloca, alloca->getAlignment());
3902   }
3903 };
3904 
3905 /// A partial specialization of DominatingValue for llvm::Values that
3906 /// might be llvm::Instructions.
3907 template <class T> struct DominatingPointer<T,true> : DominatingLLVMValue {
3908   typedef T *type;
3909   static type restore(CodeGenFunction &CGF, saved_type value) {
3910     return static_cast<T*>(DominatingLLVMValue::restore(CGF, value));
3911   }
3912 };
3913 
3914 /// A specialization of DominatingValue for Address.
3915 template <> struct DominatingValue<Address> {
3916   typedef Address type;
3917 
3918   struct saved_type {
3919     DominatingLLVMValue::saved_type SavedValue;
3920     CharUnits Alignment;
3921   };
3922 
3923   static bool needsSaving(type value) {
3924     return DominatingLLVMValue::needsSaving(value.getPointer());
3925   }
3926   static saved_type save(CodeGenFunction &CGF, type value) {
3927     return { DominatingLLVMValue::save(CGF, value.getPointer()),
3928              value.getAlignment() };
3929   }
3930   static type restore(CodeGenFunction &CGF, saved_type value) {
3931     return Address(DominatingLLVMValue::restore(CGF, value.SavedValue),
3932                    value.Alignment);
3933   }
3934 };
3935 
3936 /// A specialization of DominatingValue for RValue.
3937 template <> struct DominatingValue<RValue> {
3938   typedef RValue type;
3939   class saved_type {
3940     enum Kind { ScalarLiteral, ScalarAddress, AggregateLiteral,
3941                 AggregateAddress, ComplexAddress };
3942 
3943     llvm::Value *Value;
3944     unsigned K : 3;
3945     unsigned Align : 29;
3946     saved_type(llvm::Value *v, Kind k, unsigned a = 0)
3947       : Value(v), K(k), Align(a) {}
3948 
3949   public:
3950     static bool needsSaving(RValue value);
3951     static saved_type save(CodeGenFunction &CGF, RValue value);
3952     RValue restore(CodeGenFunction &CGF);
3953 
3954     // implementations in CGCleanup.cpp
3955   };
3956 
3957   static bool needsSaving(type value) {
3958     return saved_type::needsSaving(value);
3959   }
3960   static saved_type save(CodeGenFunction &CGF, type value) {
3961     return saved_type::save(CGF, value);
3962   }
3963   static type restore(CodeGenFunction &CGF, saved_type value) {
3964     return value.restore(CGF);
3965   }
3966 };
3967 
3968 }  // end namespace CodeGen
3969 }  // end namespace clang
3970 
3971 #endif
3972