1 //===-- CodeGenFunction.h - Per-Function state for LLVM CodeGen -*- C++ -*-===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This is the internal per-function state used for llvm translation.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #ifndef CLANG_CODEGEN_CODEGENFUNCTION_H
15 #define CLANG_CODEGEN_CODEGENFUNCTION_H
16 
17 #include "clang/AST/Type.h"
18 #include "clang/AST/ExprCXX.h"
19 #include "clang/AST/ExprObjC.h"
20 #include "clang/AST/CharUnits.h"
21 #include "clang/Basic/ABI.h"
22 #include "clang/Basic/TargetInfo.h"
23 #include "llvm/ADT/DenseMap.h"
24 #include "llvm/ADT/SmallVector.h"
25 #include "llvm/Support/ValueHandle.h"
26 #include "CodeGenModule.h"
27 #include "CGBuilder.h"
28 #include "CGValue.h"
29 
30 namespace llvm {
31   class BasicBlock;
32   class LLVMContext;
33   class MDNode;
34   class Module;
35   class SwitchInst;
36   class Twine;
37   class Value;
38   class CallSite;
39 }
40 
41 namespace clang {
42   class APValue;
43   class ASTContext;
44   class CXXDestructorDecl;
45   class CXXForRangeStmt;
46   class CXXTryStmt;
47   class Decl;
48   class LabelDecl;
49   class EnumConstantDecl;
50   class FunctionDecl;
51   class FunctionProtoType;
52   class LabelStmt;
53   class ObjCContainerDecl;
54   class ObjCInterfaceDecl;
55   class ObjCIvarDecl;
56   class ObjCMethodDecl;
57   class ObjCImplementationDecl;
58   class ObjCPropertyImplDecl;
59   class TargetInfo;
60   class TargetCodeGenInfo;
61   class VarDecl;
62   class ObjCForCollectionStmt;
63   class ObjCAtTryStmt;
64   class ObjCAtThrowStmt;
65   class ObjCAtSynchronizedStmt;
66 
67 namespace CodeGen {
68   class CodeGenTypes;
69   class CGDebugInfo;
70   class CGFunctionInfo;
71   class CGRecordLayout;
72   class CGBlockInfo;
73   class CGCXXABI;
74   class BlockFlags;
75   class BlockFieldFlags;
76 
77 /// A branch fixup.  These are required when emitting a goto to a
78 /// label which hasn't been emitted yet.  The goto is optimistically
79 /// emitted as a branch to the basic block for the label, and (if it
80 /// occurs in a scope with non-trivial cleanups) a fixup is added to
81 /// the innermost cleanup.  When a (normal) cleanup is popped, any
82 /// unresolved fixups in that scope are threaded through the cleanup.
83 struct BranchFixup {
84   /// The block containing the terminator which needs to be modified
85   /// into a switch if this fixup is resolved into the current scope.
86   /// If null, LatestBranch points directly to the destination.
87   llvm::BasicBlock *OptimisticBranchBlock;
88 
89   /// The ultimate destination of the branch.
90   ///
91   /// This can be set to null to indicate that this fixup was
92   /// successfully resolved.
93   llvm::BasicBlock *Destination;
94 
95   /// The destination index value.
96   unsigned DestinationIndex;
97 
98   /// The initial branch of the fixup.
99   llvm::BranchInst *InitialBranch;
100 };
101 
102 template <class T> struct InvariantValue {
103   typedef T type;
104   typedef T saved_type;
105   static bool needsSaving(type value) { return false; }
106   static saved_type save(CodeGenFunction &CGF, type value) { return value; }
107   static type restore(CodeGenFunction &CGF, saved_type value) { return value; }
108 };
109 
110 /// A metaprogramming class for ensuring that a value will dominate an
111 /// arbitrary position in a function.
112 template <class T> struct DominatingValue : InvariantValue<T> {};
113 
114 template <class T, bool mightBeInstruction =
115             llvm::is_base_of<llvm::Value, T>::value &&
116             !llvm::is_base_of<llvm::Constant, T>::value &&
117             !llvm::is_base_of<llvm::BasicBlock, T>::value>
118 struct DominatingPointer;
119 template <class T> struct DominatingPointer<T,false> : InvariantValue<T*> {};
120 // template <class T> struct DominatingPointer<T,true> at end of file
121 
122 template <class T> struct DominatingValue<T*> : DominatingPointer<T> {};
123 
124 enum CleanupKind {
125   EHCleanup = 0x1,
126   NormalCleanup = 0x2,
127   NormalAndEHCleanup = EHCleanup | NormalCleanup,
128 
129   InactiveCleanup = 0x4,
130   InactiveEHCleanup = EHCleanup | InactiveCleanup,
131   InactiveNormalCleanup = NormalCleanup | InactiveCleanup,
132   InactiveNormalAndEHCleanup = NormalAndEHCleanup | InactiveCleanup
133 };
134 
135 /// A stack of scopes which respond to exceptions, including cleanups
136 /// and catch blocks.
137 class EHScopeStack {
138 public:
139   /// A saved depth on the scope stack.  This is necessary because
140   /// pushing scopes onto the stack invalidates iterators.
141   class stable_iterator {
142     friend class EHScopeStack;
143 
144     /// Offset from StartOfData to EndOfBuffer.
145     ptrdiff_t Size;
146 
147     stable_iterator(ptrdiff_t Size) : Size(Size) {}
148 
149   public:
150     static stable_iterator invalid() { return stable_iterator(-1); }
151     stable_iterator() : Size(-1) {}
152 
153     bool isValid() const { return Size >= 0; }
154 
155     /// Returns true if this scope encloses I.
156     /// Returns false if I is invalid.
157     /// This scope must be valid.
158     bool encloses(stable_iterator I) const { return Size <= I.Size; }
159 
160     /// Returns true if this scope strictly encloses I: that is,
161     /// if it encloses I and is not I.
162     /// Returns false is I is invalid.
163     /// This scope must be valid.
164     bool strictlyEncloses(stable_iterator I) const { return Size < I.Size; }
165 
166     friend bool operator==(stable_iterator A, stable_iterator B) {
167       return A.Size == B.Size;
168     }
169     friend bool operator!=(stable_iterator A, stable_iterator B) {
170       return A.Size != B.Size;
171     }
172   };
173 
174   /// Information for lazily generating a cleanup.  Subclasses must be
175   /// POD-like: cleanups will not be destructed, and they will be
176   /// allocated on the cleanup stack and freely copied and moved
177   /// around.
178   ///
179   /// Cleanup implementations should generally be declared in an
180   /// anonymous namespace.
181   class Cleanup {
182   public:
183     // Anchor the construction vtable.  We use the destructor because
184     // gcc gives an obnoxious warning if there are virtual methods
185     // with an accessible non-virtual destructor.  Unfortunately,
186     // declaring this destructor makes it non-trivial, but there
187     // doesn't seem to be any other way around this warning.
188     //
189     // This destructor will never be called.
190     virtual ~Cleanup();
191 
192     /// Emit the cleanup.  For normal cleanups, this is run in the
193     /// same EH context as when the cleanup was pushed, i.e. the
194     /// immediately-enclosing context of the cleanup scope.  For
195     /// EH cleanups, this is run in a terminate context.
196     ///
197     // \param IsForEHCleanup true if this is for an EH cleanup, false
198     ///  if for a normal cleanup.
199     virtual void Emit(CodeGenFunction &CGF, bool IsForEHCleanup) = 0;
200   };
201 
202   /// UnconditionalCleanupN stores its N parameters and just passes
203   /// them to the real cleanup function.
204   template <class T, class A0>
205   class UnconditionalCleanup1 : public Cleanup {
206     A0 a0;
207   public:
208     UnconditionalCleanup1(A0 a0) : a0(a0) {}
209     void Emit(CodeGenFunction &CGF, bool IsForEHCleanup) {
210       T::Emit(CGF, IsForEHCleanup, a0);
211     }
212   };
213 
214   template <class T, class A0, class A1>
215   class UnconditionalCleanup2 : public Cleanup {
216     A0 a0; A1 a1;
217   public:
218     UnconditionalCleanup2(A0 a0, A1 a1) : a0(a0), a1(a1) {}
219     void Emit(CodeGenFunction &CGF, bool IsForEHCleanup) {
220       T::Emit(CGF, IsForEHCleanup, a0, a1);
221     }
222   };
223 
224   /// ConditionalCleanupN stores the saved form of its N parameters,
225   /// then restores them and performs the cleanup.
226   template <class T, class A0>
227   class ConditionalCleanup1 : public Cleanup {
228     typedef typename DominatingValue<A0>::saved_type A0_saved;
229     A0_saved a0_saved;
230 
231     void Emit(CodeGenFunction &CGF, bool IsForEHCleanup) {
232       A0 a0 = DominatingValue<A0>::restore(CGF, a0_saved);
233       T::Emit(CGF, IsForEHCleanup, a0);
234     }
235 
236   public:
237     ConditionalCleanup1(A0_saved a0)
238       : a0_saved(a0) {}
239   };
240 
241   template <class T, class A0, class A1>
242   class ConditionalCleanup2 : public Cleanup {
243     typedef typename DominatingValue<A0>::saved_type A0_saved;
244     typedef typename DominatingValue<A1>::saved_type A1_saved;
245     A0_saved a0_saved;
246     A1_saved a1_saved;
247 
248     void Emit(CodeGenFunction &CGF, bool IsForEHCleanup) {
249       A0 a0 = DominatingValue<A0>::restore(CGF, a0_saved);
250       A1 a1 = DominatingValue<A1>::restore(CGF, a1_saved);
251       T::Emit(CGF, IsForEHCleanup, a0, a1);
252     }
253 
254   public:
255     ConditionalCleanup2(A0_saved a0, A1_saved a1)
256       : a0_saved(a0), a1_saved(a1) {}
257   };
258 
259 private:
260   // The implementation for this class is in CGException.h and
261   // CGException.cpp; the definition is here because it's used as a
262   // member of CodeGenFunction.
263 
264   /// The start of the scope-stack buffer, i.e. the allocated pointer
265   /// for the buffer.  All of these pointers are either simultaneously
266   /// null or simultaneously valid.
267   char *StartOfBuffer;
268 
269   /// The end of the buffer.
270   char *EndOfBuffer;
271 
272   /// The first valid entry in the buffer.
273   char *StartOfData;
274 
275   /// The innermost normal cleanup on the stack.
276   stable_iterator InnermostNormalCleanup;
277 
278   /// The innermost EH cleanup on the stack.
279   stable_iterator InnermostEHCleanup;
280 
281   /// The number of catches on the stack.
282   unsigned CatchDepth;
283 
284   /// The current EH destination index.  Reset to FirstCatchIndex
285   /// whenever the last EH cleanup is popped.
286   unsigned NextEHDestIndex;
287   enum { FirstEHDestIndex = 1 };
288 
289   /// The current set of branch fixups.  A branch fixup is a jump to
290   /// an as-yet unemitted label, i.e. a label for which we don't yet
291   /// know the EH stack depth.  Whenever we pop a cleanup, we have
292   /// to thread all the current branch fixups through it.
293   ///
294   /// Fixups are recorded as the Use of the respective branch or
295   /// switch statement.  The use points to the final destination.
296   /// When popping out of a cleanup, these uses are threaded through
297   /// the cleanup and adjusted to point to the new cleanup.
298   ///
299   /// Note that branches are allowed to jump into protected scopes
300   /// in certain situations;  e.g. the following code is legal:
301   ///     struct A { ~A(); }; // trivial ctor, non-trivial dtor
302   ///     goto foo;
303   ///     A a;
304   ///    foo:
305   ///     bar();
306   llvm::SmallVector<BranchFixup, 8> BranchFixups;
307 
308   char *allocate(size_t Size);
309 
310   void *pushCleanup(CleanupKind K, size_t DataSize);
311 
312 public:
313   EHScopeStack() : StartOfBuffer(0), EndOfBuffer(0), StartOfData(0),
314                    InnermostNormalCleanup(stable_end()),
315                    InnermostEHCleanup(stable_end()),
316                    CatchDepth(0), NextEHDestIndex(FirstEHDestIndex) {}
317   ~EHScopeStack() { delete[] StartOfBuffer; }
318 
319   // Variadic templates would make this not terrible.
320 
321   /// Push a lazily-created cleanup on the stack.
322   template <class T>
323   void pushCleanup(CleanupKind Kind) {
324     void *Buffer = pushCleanup(Kind, sizeof(T));
325     Cleanup *Obj = new(Buffer) T();
326     (void) Obj;
327   }
328 
329   /// Push a lazily-created cleanup on the stack.
330   template <class T, class A0>
331   void pushCleanup(CleanupKind Kind, A0 a0) {
332     void *Buffer = pushCleanup(Kind, sizeof(T));
333     Cleanup *Obj = new(Buffer) T(a0);
334     (void) Obj;
335   }
336 
337   /// Push a lazily-created cleanup on the stack.
338   template <class T, class A0, class A1>
339   void pushCleanup(CleanupKind Kind, A0 a0, A1 a1) {
340     void *Buffer = pushCleanup(Kind, sizeof(T));
341     Cleanup *Obj = new(Buffer) T(a0, a1);
342     (void) Obj;
343   }
344 
345   /// Push a lazily-created cleanup on the stack.
346   template <class T, class A0, class A1, class A2>
347   void pushCleanup(CleanupKind Kind, A0 a0, A1 a1, A2 a2) {
348     void *Buffer = pushCleanup(Kind, sizeof(T));
349     Cleanup *Obj = new(Buffer) T(a0, a1, a2);
350     (void) Obj;
351   }
352 
353   /// Push a lazily-created cleanup on the stack.
354   template <class T, class A0, class A1, class A2, class A3>
355   void pushCleanup(CleanupKind Kind, A0 a0, A1 a1, A2 a2, A3 a3) {
356     void *Buffer = pushCleanup(Kind, sizeof(T));
357     Cleanup *Obj = new(Buffer) T(a0, a1, a2, a3);
358     (void) Obj;
359   }
360 
361   /// Push a lazily-created cleanup on the stack.
362   template <class T, class A0, class A1, class A2, class A3, class A4>
363   void pushCleanup(CleanupKind Kind, A0 a0, A1 a1, A2 a2, A3 a3, A4 a4) {
364     void *Buffer = pushCleanup(Kind, sizeof(T));
365     Cleanup *Obj = new(Buffer) T(a0, a1, a2, a3, a4);
366     (void) Obj;
367   }
368 
369   // Feel free to add more variants of the following:
370 
371   /// Push a cleanup with non-constant storage requirements on the
372   /// stack.  The cleanup type must provide an additional static method:
373   ///   static size_t getExtraSize(size_t);
374   /// The argument to this method will be the value N, which will also
375   /// be passed as the first argument to the constructor.
376   ///
377   /// The data stored in the extra storage must obey the same
378   /// restrictions as normal cleanup member data.
379   ///
380   /// The pointer returned from this method is valid until the cleanup
381   /// stack is modified.
382   template <class T, class A0, class A1, class A2>
383   T *pushCleanupWithExtra(CleanupKind Kind, size_t N, A0 a0, A1 a1, A2 a2) {
384     void *Buffer = pushCleanup(Kind, sizeof(T) + T::getExtraSize(N));
385     return new (Buffer) T(N, a0, a1, a2);
386   }
387 
388   /// Pops a cleanup scope off the stack.  This should only be called
389   /// by CodeGenFunction::PopCleanupBlock.
390   void popCleanup();
391 
392   /// Push a set of catch handlers on the stack.  The catch is
393   /// uninitialized and will need to have the given number of handlers
394   /// set on it.
395   class EHCatchScope *pushCatch(unsigned NumHandlers);
396 
397   /// Pops a catch scope off the stack.
398   void popCatch();
399 
400   /// Push an exceptions filter on the stack.
401   class EHFilterScope *pushFilter(unsigned NumFilters);
402 
403   /// Pops an exceptions filter off the stack.
404   void popFilter();
405 
406   /// Push a terminate handler on the stack.
407   void pushTerminate();
408 
409   /// Pops a terminate handler off the stack.
410   void popTerminate();
411 
412   /// Determines whether the exception-scopes stack is empty.
413   bool empty() const { return StartOfData == EndOfBuffer; }
414 
415   bool requiresLandingPad() const {
416     return (CatchDepth || hasEHCleanups());
417   }
418 
419   /// Determines whether there are any normal cleanups on the stack.
420   bool hasNormalCleanups() const {
421     return InnermostNormalCleanup != stable_end();
422   }
423 
424   /// Returns the innermost normal cleanup on the stack, or
425   /// stable_end() if there are no normal cleanups.
426   stable_iterator getInnermostNormalCleanup() const {
427     return InnermostNormalCleanup;
428   }
429   stable_iterator getInnermostActiveNormalCleanup() const; // CGException.h
430 
431   /// Determines whether there are any EH cleanups on the stack.
432   bool hasEHCleanups() const {
433     return InnermostEHCleanup != stable_end();
434   }
435 
436   /// Returns the innermost EH cleanup on the stack, or stable_end()
437   /// if there are no EH cleanups.
438   stable_iterator getInnermostEHCleanup() const {
439     return InnermostEHCleanup;
440   }
441   stable_iterator getInnermostActiveEHCleanup() const; // CGException.h
442 
443   /// An unstable reference to a scope-stack depth.  Invalidated by
444   /// pushes but not pops.
445   class iterator;
446 
447   /// Returns an iterator pointing to the innermost EH scope.
448   iterator begin() const;
449 
450   /// Returns an iterator pointing to the outermost EH scope.
451   iterator end() const;
452 
453   /// Create a stable reference to the top of the EH stack.  The
454   /// returned reference is valid until that scope is popped off the
455   /// stack.
456   stable_iterator stable_begin() const {
457     return stable_iterator(EndOfBuffer - StartOfData);
458   }
459 
460   /// Create a stable reference to the bottom of the EH stack.
461   static stable_iterator stable_end() {
462     return stable_iterator(0);
463   }
464 
465   /// Translates an iterator into a stable_iterator.
466   stable_iterator stabilize(iterator it) const;
467 
468   /// Finds the nearest cleanup enclosing the given iterator.
469   /// Returns stable_iterator::invalid() if there are no such cleanups.
470   stable_iterator getEnclosingEHCleanup(iterator it) const;
471 
472   /// Turn a stable reference to a scope depth into a unstable pointer
473   /// to the EH stack.
474   iterator find(stable_iterator save) const;
475 
476   /// Removes the cleanup pointed to by the given stable_iterator.
477   void removeCleanup(stable_iterator save);
478 
479   /// Add a branch fixup to the current cleanup scope.
480   BranchFixup &addBranchFixup() {
481     assert(hasNormalCleanups() && "adding fixup in scope without cleanups");
482     BranchFixups.push_back(BranchFixup());
483     return BranchFixups.back();
484   }
485 
486   unsigned getNumBranchFixups() const { return BranchFixups.size(); }
487   BranchFixup &getBranchFixup(unsigned I) {
488     assert(I < getNumBranchFixups());
489     return BranchFixups[I];
490   }
491 
492   /// Pops lazily-removed fixups from the end of the list.  This
493   /// should only be called by procedures which have just popped a
494   /// cleanup or resolved one or more fixups.
495   void popNullFixups();
496 
497   /// Clears the branch-fixups list.  This should only be called by
498   /// ResolveAllBranchFixups.
499   void clearFixups() { BranchFixups.clear(); }
500 
501   /// Gets the next EH destination index.
502   unsigned getNextEHDestIndex() { return NextEHDestIndex++; }
503 };
504 
505 /// CodeGenFunction - This class organizes the per-function state that is used
506 /// while generating LLVM code.
507 class CodeGenFunction : public CodeGenTypeCache {
508   CodeGenFunction(const CodeGenFunction&); // DO NOT IMPLEMENT
509   void operator=(const CodeGenFunction&);  // DO NOT IMPLEMENT
510 
511   friend class CGCXXABI;
512 public:
513   /// A jump destination is an abstract label, branching to which may
514   /// require a jump out through normal cleanups.
515   struct JumpDest {
516     JumpDest() : Block(0), ScopeDepth(), Index(0) {}
517     JumpDest(llvm::BasicBlock *Block,
518              EHScopeStack::stable_iterator Depth,
519              unsigned Index)
520       : Block(Block), ScopeDepth(Depth), Index(Index) {}
521 
522     bool isValid() const { return Block != 0; }
523     llvm::BasicBlock *getBlock() const { return Block; }
524     EHScopeStack::stable_iterator getScopeDepth() const { return ScopeDepth; }
525     unsigned getDestIndex() const { return Index; }
526 
527   private:
528     llvm::BasicBlock *Block;
529     EHScopeStack::stable_iterator ScopeDepth;
530     unsigned Index;
531   };
532 
533   /// An unwind destination is an abstract label, branching to which
534   /// may require a jump out through EH cleanups.
535   struct UnwindDest {
536     UnwindDest() : Block(0), ScopeDepth(), Index(0) {}
537     UnwindDest(llvm::BasicBlock *Block,
538                EHScopeStack::stable_iterator Depth,
539                unsigned Index)
540       : Block(Block), ScopeDepth(Depth), Index(Index) {}
541 
542     bool isValid() const { return Block != 0; }
543     llvm::BasicBlock *getBlock() const { return Block; }
544     EHScopeStack::stable_iterator getScopeDepth() const { return ScopeDepth; }
545     unsigned getDestIndex() const { return Index; }
546 
547   private:
548     llvm::BasicBlock *Block;
549     EHScopeStack::stable_iterator ScopeDepth;
550     unsigned Index;
551   };
552 
553   CodeGenModule &CGM;  // Per-module state.
554   const TargetInfo &Target;
555 
556   typedef std::pair<llvm::Value *, llvm::Value *> ComplexPairTy;
557   CGBuilderTy Builder;
558 
559   /// CurFuncDecl - Holds the Decl for the current function or ObjC method.
560   /// This excludes BlockDecls.
561   const Decl *CurFuncDecl;
562   /// CurCodeDecl - This is the inner-most code context, which includes blocks.
563   const Decl *CurCodeDecl;
564   const CGFunctionInfo *CurFnInfo;
565   QualType FnRetTy;
566   llvm::Function *CurFn;
567 
568   /// CurGD - The GlobalDecl for the current function being compiled.
569   GlobalDecl CurGD;
570 
571   /// ReturnBlock - Unified return block.
572   JumpDest ReturnBlock;
573 
574   /// ReturnValue - The temporary alloca to hold the return value. This is null
575   /// iff the function has no return value.
576   llvm::Value *ReturnValue;
577 
578   /// RethrowBlock - Unified rethrow block.
579   UnwindDest RethrowBlock;
580 
581   /// AllocaInsertPoint - This is an instruction in the entry block before which
582   /// we prefer to insert allocas.
583   llvm::AssertingVH<llvm::Instruction> AllocaInsertPt;
584 
585   bool CatchUndefined;
586 
587   const CodeGen::CGBlockInfo *BlockInfo;
588   llvm::Value *BlockPointer;
589 
590   /// \brief A mapping from NRVO variables to the flags used to indicate
591   /// when the NRVO has been applied to this variable.
592   llvm::DenseMap<const VarDecl *, llvm::Value *> NRVOFlags;
593 
594   EHScopeStack EHStack;
595 
596   /// i32s containing the indexes of the cleanup destinations.
597   llvm::AllocaInst *NormalCleanupDest;
598   llvm::AllocaInst *EHCleanupDest;
599 
600   unsigned NextCleanupDestIndex;
601 
602   /// The exception slot.  All landing pads write the current
603   /// exception pointer into this alloca.
604   llvm::Value *ExceptionSlot;
605 
606   /// Emits a landing pad for the current EH stack.
607   llvm::BasicBlock *EmitLandingPad();
608 
609   llvm::BasicBlock *getInvokeDestImpl();
610 
611   /// Set up the last cleaup that was pushed as a conditional
612   /// full-expression cleanup.
613   void initFullExprCleanup();
614 
615   template <class T>
616   typename DominatingValue<T>::saved_type saveValueInCond(T value) {
617     return DominatingValue<T>::save(*this, value);
618   }
619 
620 public:
621   /// ObjCEHValueStack - Stack of Objective-C exception values, used for
622   /// rethrows.
623   llvm::SmallVector<llvm::Value*, 8> ObjCEHValueStack;
624 
625   // A struct holding information about a finally block's IR
626   // generation.  For now, doesn't actually hold anything.
627   struct FinallyInfo {
628   };
629 
630   FinallyInfo EnterFinallyBlock(const Stmt *Stmt,
631                                 llvm::Constant *BeginCatchFn,
632                                 llvm::Constant *EndCatchFn,
633                                 llvm::Constant *RethrowFn);
634   void ExitFinallyBlock(FinallyInfo &FinallyInfo);
635 
636   /// pushFullExprCleanup - Push a cleanup to be run at the end of the
637   /// current full-expression.  Safe against the possibility that
638   /// we're currently inside a conditionally-evaluated expression.
639   template <class T, class A0>
640   void pushFullExprCleanup(CleanupKind kind, A0 a0) {
641     // If we're not in a conditional branch, or if none of the
642     // arguments requires saving, then use the unconditional cleanup.
643     if (!isInConditionalBranch()) {
644       typedef EHScopeStack::UnconditionalCleanup1<T, A0> CleanupType;
645       return EHStack.pushCleanup<CleanupType>(kind, a0);
646     }
647 
648     typename DominatingValue<A0>::saved_type a0_saved = saveValueInCond(a0);
649 
650     typedef EHScopeStack::ConditionalCleanup1<T, A0> CleanupType;
651     EHStack.pushCleanup<CleanupType>(kind, a0_saved);
652     initFullExprCleanup();
653   }
654 
655   /// pushFullExprCleanup - Push a cleanup to be run at the end of the
656   /// current full-expression.  Safe against the possibility that
657   /// we're currently inside a conditionally-evaluated expression.
658   template <class T, class A0, class A1>
659   void pushFullExprCleanup(CleanupKind kind, A0 a0, A1 a1) {
660     // If we're not in a conditional branch, or if none of the
661     // arguments requires saving, then use the unconditional cleanup.
662     if (!isInConditionalBranch()) {
663       typedef EHScopeStack::UnconditionalCleanup2<T, A0, A1> CleanupType;
664       return EHStack.pushCleanup<CleanupType>(kind, a0, a1);
665     }
666 
667     typename DominatingValue<A0>::saved_type a0_saved = saveValueInCond(a0);
668     typename DominatingValue<A1>::saved_type a1_saved = saveValueInCond(a1);
669 
670     typedef EHScopeStack::ConditionalCleanup2<T, A0, A1> CleanupType;
671     EHStack.pushCleanup<CleanupType>(kind, a0_saved, a1_saved);
672     initFullExprCleanup();
673   }
674 
675   /// PushDestructorCleanup - Push a cleanup to call the
676   /// complete-object destructor of an object of the given type at the
677   /// given address.  Does nothing if T is not a C++ class type with a
678   /// non-trivial destructor.
679   void PushDestructorCleanup(QualType T, llvm::Value *Addr);
680 
681   /// PushDestructorCleanup - Push a cleanup to call the
682   /// complete-object variant of the given destructor on the object at
683   /// the given address.
684   void PushDestructorCleanup(const CXXDestructorDecl *Dtor,
685                              llvm::Value *Addr);
686 
687   /// PopCleanupBlock - Will pop the cleanup entry on the stack and
688   /// process all branch fixups.
689   void PopCleanupBlock(bool FallThroughIsBranchThrough = false);
690 
691   /// DeactivateCleanupBlock - Deactivates the given cleanup block.
692   /// The block cannot be reactivated.  Pops it if it's the top of the
693   /// stack.
694   void DeactivateCleanupBlock(EHScopeStack::stable_iterator Cleanup);
695 
696   /// ActivateCleanupBlock - Activates an initially-inactive cleanup.
697   /// Cannot be used to resurrect a deactivated cleanup.
698   void ActivateCleanupBlock(EHScopeStack::stable_iterator Cleanup);
699 
700   /// \brief Enters a new scope for capturing cleanups, all of which
701   /// will be executed once the scope is exited.
702   class RunCleanupsScope {
703     CodeGenFunction& CGF;
704     EHScopeStack::stable_iterator CleanupStackDepth;
705     bool OldDidCallStackSave;
706     bool PerformCleanup;
707 
708     RunCleanupsScope(const RunCleanupsScope &); // DO NOT IMPLEMENT
709     RunCleanupsScope &operator=(const RunCleanupsScope &); // DO NOT IMPLEMENT
710 
711   public:
712     /// \brief Enter a new cleanup scope.
713     explicit RunCleanupsScope(CodeGenFunction &CGF)
714       : CGF(CGF), PerformCleanup(true)
715     {
716       CleanupStackDepth = CGF.EHStack.stable_begin();
717       OldDidCallStackSave = CGF.DidCallStackSave;
718       CGF.DidCallStackSave = false;
719     }
720 
721     /// \brief Exit this cleanup scope, emitting any accumulated
722     /// cleanups.
723     ~RunCleanupsScope() {
724       if (PerformCleanup) {
725         CGF.DidCallStackSave = OldDidCallStackSave;
726         CGF.PopCleanupBlocks(CleanupStackDepth);
727       }
728     }
729 
730     /// \brief Determine whether this scope requires any cleanups.
731     bool requiresCleanups() const {
732       return CGF.EHStack.stable_begin() != CleanupStackDepth;
733     }
734 
735     /// \brief Force the emission of cleanups now, instead of waiting
736     /// until this object is destroyed.
737     void ForceCleanup() {
738       assert(PerformCleanup && "Already forced cleanup");
739       CGF.DidCallStackSave = OldDidCallStackSave;
740       CGF.PopCleanupBlocks(CleanupStackDepth);
741       PerformCleanup = false;
742     }
743   };
744 
745 
746   /// PopCleanupBlocks - Takes the old cleanup stack size and emits
747   /// the cleanup blocks that have been added.
748   void PopCleanupBlocks(EHScopeStack::stable_iterator OldCleanupStackSize);
749 
750   void ResolveBranchFixups(llvm::BasicBlock *Target);
751 
752   /// The given basic block lies in the current EH scope, but may be a
753   /// target of a potentially scope-crossing jump; get a stable handle
754   /// to which we can perform this jump later.
755   JumpDest getJumpDestInCurrentScope(llvm::BasicBlock *Target) {
756     return JumpDest(Target,
757                     EHStack.getInnermostNormalCleanup(),
758                     NextCleanupDestIndex++);
759   }
760 
761   /// The given basic block lies in the current EH scope, but may be a
762   /// target of a potentially scope-crossing jump; get a stable handle
763   /// to which we can perform this jump later.
764   JumpDest getJumpDestInCurrentScope(llvm::StringRef Name = llvm::StringRef()) {
765     return getJumpDestInCurrentScope(createBasicBlock(Name));
766   }
767 
768   /// EmitBranchThroughCleanup - Emit a branch from the current insert
769   /// block through the normal cleanup handling code (if any) and then
770   /// on to \arg Dest.
771   void EmitBranchThroughCleanup(JumpDest Dest);
772 
773   /// EmitBranchThroughEHCleanup - Emit a branch from the current
774   /// insert block through the EH cleanup handling code (if any) and
775   /// then on to \arg Dest.
776   void EmitBranchThroughEHCleanup(UnwindDest Dest);
777 
778   /// getRethrowDest - Returns the unified outermost-scope rethrow
779   /// destination.
780   UnwindDest getRethrowDest();
781 
782   /// An object to manage conditionally-evaluated expressions.
783   class ConditionalEvaluation {
784     llvm::BasicBlock *StartBB;
785 
786   public:
787     ConditionalEvaluation(CodeGenFunction &CGF)
788       : StartBB(CGF.Builder.GetInsertBlock()) {}
789 
790     void begin(CodeGenFunction &CGF) {
791       assert(CGF.OutermostConditional != this);
792       if (!CGF.OutermostConditional)
793         CGF.OutermostConditional = this;
794     }
795 
796     void end(CodeGenFunction &CGF) {
797       assert(CGF.OutermostConditional != 0);
798       if (CGF.OutermostConditional == this)
799         CGF.OutermostConditional = 0;
800     }
801 
802     /// Returns a block which will be executed prior to each
803     /// evaluation of the conditional code.
804     llvm::BasicBlock *getStartingBlock() const {
805       return StartBB;
806     }
807   };
808 
809   /// isInConditionalBranch - Return true if we're currently emitting
810   /// one branch or the other of a conditional expression.
811   bool isInConditionalBranch() const { return OutermostConditional != 0; }
812 
813   /// An RAII object to record that we're evaluating a statement
814   /// expression.
815   class StmtExprEvaluation {
816     CodeGenFunction &CGF;
817 
818     /// We have to save the outermost conditional: cleanups in a
819     /// statement expression aren't conditional just because the
820     /// StmtExpr is.
821     ConditionalEvaluation *SavedOutermostConditional;
822 
823   public:
824     StmtExprEvaluation(CodeGenFunction &CGF)
825       : CGF(CGF), SavedOutermostConditional(CGF.OutermostConditional) {
826       CGF.OutermostConditional = 0;
827     }
828 
829     ~StmtExprEvaluation() {
830       CGF.OutermostConditional = SavedOutermostConditional;
831       CGF.EnsureInsertPoint();
832     }
833   };
834 
835   /// An object which temporarily prevents a value from being
836   /// destroyed by aggressive peephole optimizations that assume that
837   /// all uses of a value have been realized in the IR.
838   class PeepholeProtection {
839     llvm::Instruction *Inst;
840     friend class CodeGenFunction;
841 
842   public:
843     PeepholeProtection() : Inst(0) {}
844   };
845 
846   /// An RAII object to set (and then clear) a mapping for an OpaqueValueExpr.
847   class OpaqueValueMapping {
848     CodeGenFunction &CGF;
849     const OpaqueValueExpr *OpaqueValue;
850     bool BoundLValue;
851     CodeGenFunction::PeepholeProtection Protection;
852 
853   public:
854     static bool shouldBindAsLValue(const Expr *expr) {
855       return expr->isGLValue() || expr->getType()->isRecordType();
856     }
857 
858     /// Build the opaque value mapping for the given conditional
859     /// operator if it's the GNU ?: extension.  This is a common
860     /// enough pattern that the convenience operator is really
861     /// helpful.
862     ///
863     OpaqueValueMapping(CodeGenFunction &CGF,
864                        const AbstractConditionalOperator *op) : CGF(CGF) {
865       if (isa<ConditionalOperator>(op)) {
866         OpaqueValue = 0;
867         BoundLValue = false;
868         return;
869       }
870 
871       const BinaryConditionalOperator *e = cast<BinaryConditionalOperator>(op);
872       init(e->getOpaqueValue(), e->getCommon());
873     }
874 
875     OpaqueValueMapping(CodeGenFunction &CGF,
876                        const OpaqueValueExpr *opaqueValue,
877                        LValue lvalue)
878       : CGF(CGF), OpaqueValue(opaqueValue), BoundLValue(true) {
879       assert(opaqueValue && "no opaque value expression!");
880       assert(shouldBindAsLValue(opaqueValue));
881       initLValue(lvalue);
882     }
883 
884     OpaqueValueMapping(CodeGenFunction &CGF,
885                        const OpaqueValueExpr *opaqueValue,
886                        RValue rvalue)
887       : CGF(CGF), OpaqueValue(opaqueValue), BoundLValue(false) {
888       assert(opaqueValue && "no opaque value expression!");
889       assert(!shouldBindAsLValue(opaqueValue));
890       initRValue(rvalue);
891     }
892 
893     void pop() {
894       assert(OpaqueValue && "mapping already popped!");
895       popImpl();
896       OpaqueValue = 0;
897     }
898 
899     ~OpaqueValueMapping() {
900       if (OpaqueValue) popImpl();
901     }
902 
903   private:
904     void popImpl() {
905       if (BoundLValue)
906         CGF.OpaqueLValues.erase(OpaqueValue);
907       else {
908         CGF.OpaqueRValues.erase(OpaqueValue);
909         CGF.unprotectFromPeepholes(Protection);
910       }
911     }
912 
913     void init(const OpaqueValueExpr *ov, const Expr *e) {
914       OpaqueValue = ov;
915       BoundLValue = shouldBindAsLValue(ov);
916       assert(BoundLValue == shouldBindAsLValue(e)
917              && "inconsistent expression value kinds!");
918       if (BoundLValue)
919         initLValue(CGF.EmitLValue(e));
920       else
921         initRValue(CGF.EmitAnyExpr(e));
922     }
923 
924     void initLValue(const LValue &lv) {
925       CGF.OpaqueLValues.insert(std::make_pair(OpaqueValue, lv));
926     }
927 
928     void initRValue(const RValue &rv) {
929       // Work around an extremely aggressive peephole optimization in
930       // EmitScalarConversion which assumes that all other uses of a
931       // value are extant.
932       Protection = CGF.protectFromPeepholes(rv);
933       CGF.OpaqueRValues.insert(std::make_pair(OpaqueValue, rv));
934     }
935   };
936 
937   /// getByrefValueFieldNumber - Given a declaration, returns the LLVM field
938   /// number that holds the value.
939   unsigned getByRefValueLLVMField(const ValueDecl *VD) const;
940 
941   /// BuildBlockByrefAddress - Computes address location of the
942   /// variable which is declared as __block.
943   llvm::Value *BuildBlockByrefAddress(llvm::Value *BaseAddr,
944                                       const VarDecl *V);
945 private:
946   CGDebugInfo *DebugInfo;
947   bool DisableDebugInfo;
948 
949   /// IndirectBranch - The first time an indirect goto is seen we create a block
950   /// with an indirect branch.  Every time we see the address of a label taken,
951   /// we add the label to the indirect goto.  Every subsequent indirect goto is
952   /// codegen'd as a jump to the IndirectBranch's basic block.
953   llvm::IndirectBrInst *IndirectBranch;
954 
955   /// LocalDeclMap - This keeps track of the LLVM allocas or globals for local C
956   /// decls.
957   typedef llvm::DenseMap<const Decl*, llvm::Value*> DeclMapTy;
958   DeclMapTy LocalDeclMap;
959 
960   /// LabelMap - This keeps track of the LLVM basic block for each C label.
961   llvm::DenseMap<const LabelDecl*, JumpDest> LabelMap;
962 
963   // BreakContinueStack - This keeps track of where break and continue
964   // statements should jump to.
965   struct BreakContinue {
966     BreakContinue(JumpDest Break, JumpDest Continue)
967       : BreakBlock(Break), ContinueBlock(Continue) {}
968 
969     JumpDest BreakBlock;
970     JumpDest ContinueBlock;
971   };
972   llvm::SmallVector<BreakContinue, 8> BreakContinueStack;
973 
974   /// SwitchInsn - This is nearest current switch instruction. It is null if if
975   /// current context is not in a switch.
976   llvm::SwitchInst *SwitchInsn;
977 
978   /// CaseRangeBlock - This block holds if condition check for last case
979   /// statement range in current switch instruction.
980   llvm::BasicBlock *CaseRangeBlock;
981 
982   /// OpaqueLValues - Keeps track of the current set of opaque value
983   /// expressions.
984   llvm::DenseMap<const OpaqueValueExpr *, LValue> OpaqueLValues;
985   llvm::DenseMap<const OpaqueValueExpr *, RValue> OpaqueRValues;
986 
987   // VLASizeMap - This keeps track of the associated size for each VLA type.
988   // We track this by the size expression rather than the type itself because
989   // in certain situations, like a const qualifier applied to an VLA typedef,
990   // multiple VLA types can share the same size expression.
991   // FIXME: Maybe this could be a stack of maps that is pushed/popped as we
992   // enter/leave scopes.
993   llvm::DenseMap<const Expr*, llvm::Value*> VLASizeMap;
994 
995   /// DidCallStackSave - Whether llvm.stacksave has been called. Used to avoid
996   /// calling llvm.stacksave for multiple VLAs in the same scope.
997   bool DidCallStackSave;
998 
999   /// A block containing a single 'unreachable' instruction.  Created
1000   /// lazily by getUnreachableBlock().
1001   llvm::BasicBlock *UnreachableBlock;
1002 
1003   /// CXXThisDecl - When generating code for a C++ member function,
1004   /// this will hold the implicit 'this' declaration.
1005   ImplicitParamDecl *CXXThisDecl;
1006   llvm::Value *CXXThisValue;
1007 
1008   /// CXXVTTDecl - When generating code for a base object constructor or
1009   /// base object destructor with virtual bases, this will hold the implicit
1010   /// VTT parameter.
1011   ImplicitParamDecl *CXXVTTDecl;
1012   llvm::Value *CXXVTTValue;
1013 
1014   /// OutermostConditional - Points to the outermost active
1015   /// conditional control.  This is used so that we know if a
1016   /// temporary should be destroyed conditionally.
1017   ConditionalEvaluation *OutermostConditional;
1018 
1019 
1020   /// ByrefValueInfoMap - For each __block variable, contains a pair of the LLVM
1021   /// type as well as the field number that contains the actual data.
1022   llvm::DenseMap<const ValueDecl *, std::pair<const llvm::Type *,
1023                                               unsigned> > ByRefValueInfo;
1024 
1025   llvm::BasicBlock *TerminateLandingPad;
1026   llvm::BasicBlock *TerminateHandler;
1027   llvm::BasicBlock *TrapBB;
1028 
1029 public:
1030   CodeGenFunction(CodeGenModule &cgm);
1031 
1032   CodeGenTypes &getTypes() const { return CGM.getTypes(); }
1033   ASTContext &getContext() const;
1034   CGDebugInfo *getDebugInfo() {
1035     if (DisableDebugInfo)
1036       return NULL;
1037     return DebugInfo;
1038   }
1039   void disableDebugInfo() { DisableDebugInfo = true; }
1040   void enableDebugInfo() { DisableDebugInfo = false; }
1041 
1042 
1043   const LangOptions &getLangOptions() const { return CGM.getLangOptions(); }
1044 
1045   /// Returns a pointer to the function's exception object slot, which
1046   /// is assigned in every landing pad.
1047   llvm::Value *getExceptionSlot();
1048 
1049   llvm::Value *getNormalCleanupDestSlot();
1050   llvm::Value *getEHCleanupDestSlot();
1051 
1052   llvm::BasicBlock *getUnreachableBlock() {
1053     if (!UnreachableBlock) {
1054       UnreachableBlock = createBasicBlock("unreachable");
1055       new llvm::UnreachableInst(getLLVMContext(), UnreachableBlock);
1056     }
1057     return UnreachableBlock;
1058   }
1059 
1060   llvm::BasicBlock *getInvokeDest() {
1061     if (!EHStack.requiresLandingPad()) return 0;
1062     return getInvokeDestImpl();
1063   }
1064 
1065   llvm::LLVMContext &getLLVMContext() { return CGM.getLLVMContext(); }
1066 
1067   //===--------------------------------------------------------------------===//
1068   //                                  Objective-C
1069   //===--------------------------------------------------------------------===//
1070 
1071   void GenerateObjCMethod(const ObjCMethodDecl *OMD);
1072 
1073   void StartObjCMethod(const ObjCMethodDecl *MD,
1074                        const ObjCContainerDecl *CD);
1075 
1076   /// GenerateObjCGetter - Synthesize an Objective-C property getter function.
1077   void GenerateObjCGetter(ObjCImplementationDecl *IMP,
1078                           const ObjCPropertyImplDecl *PID);
1079   void GenerateObjCGetterBody(ObjCIvarDecl *Ivar, bool IsAtomic, bool IsStrong);
1080   void GenerateObjCAtomicSetterBody(ObjCMethodDecl *OMD,
1081                                     ObjCIvarDecl *Ivar);
1082 
1083   void GenerateObjCCtorDtorMethod(ObjCImplementationDecl *IMP,
1084                                   ObjCMethodDecl *MD, bool ctor);
1085 
1086   /// GenerateObjCSetter - Synthesize an Objective-C property setter function
1087   /// for the given property.
1088   void GenerateObjCSetter(ObjCImplementationDecl *IMP,
1089                           const ObjCPropertyImplDecl *PID);
1090   bool IndirectObjCSetterArg(const CGFunctionInfo &FI);
1091   bool IvarTypeWithAggrGCObjects(QualType Ty);
1092 
1093   //===--------------------------------------------------------------------===//
1094   //                                  Block Bits
1095   //===--------------------------------------------------------------------===//
1096 
1097   llvm::Value *EmitBlockLiteral(const BlockExpr *);
1098   llvm::Constant *BuildDescriptorBlockDecl(const BlockExpr *,
1099                                            const CGBlockInfo &Info,
1100                                            const llvm::StructType *,
1101                                            llvm::Constant *BlockVarLayout);
1102 
1103   llvm::Function *GenerateBlockFunction(GlobalDecl GD,
1104                                         const CGBlockInfo &Info,
1105                                         const Decl *OuterFuncDecl,
1106                                         const DeclMapTy &ldm);
1107 
1108   llvm::Constant *GenerateCopyHelperFunction(const CGBlockInfo &blockInfo);
1109   llvm::Constant *GenerateDestroyHelperFunction(const CGBlockInfo &blockInfo);
1110 
1111   void BuildBlockRelease(llvm::Value *DeclPtr, BlockFieldFlags flags);
1112 
1113   class AutoVarEmission;
1114 
1115   void emitByrefStructureInit(const AutoVarEmission &emission);
1116   void enterByrefCleanup(const AutoVarEmission &emission);
1117 
1118   llvm::Value *LoadBlockStruct() {
1119     assert(BlockPointer && "no block pointer set!");
1120     return BlockPointer;
1121   }
1122 
1123   void AllocateBlockCXXThisPointer(const CXXThisExpr *E);
1124   void AllocateBlockDecl(const BlockDeclRefExpr *E);
1125   llvm::Value *GetAddrOfBlockDecl(const BlockDeclRefExpr *E) {
1126     return GetAddrOfBlockDecl(E->getDecl(), E->isByRef());
1127   }
1128   llvm::Value *GetAddrOfBlockDecl(const VarDecl *var, bool ByRef);
1129   const llvm::Type *BuildByRefType(const VarDecl *var);
1130 
1131   void GenerateCode(GlobalDecl GD, llvm::Function *Fn,
1132                     const CGFunctionInfo &FnInfo);
1133   void StartFunction(GlobalDecl GD, QualType RetTy,
1134                      llvm::Function *Fn,
1135                      const CGFunctionInfo &FnInfo,
1136                      const FunctionArgList &Args,
1137                      SourceLocation StartLoc);
1138 
1139   void EmitConstructorBody(FunctionArgList &Args);
1140   void EmitDestructorBody(FunctionArgList &Args);
1141   void EmitFunctionBody(FunctionArgList &Args);
1142 
1143   /// EmitReturnBlock - Emit the unified return block, trying to avoid its
1144   /// emission when possible.
1145   void EmitReturnBlock();
1146 
1147   /// FinishFunction - Complete IR generation of the current function. It is
1148   /// legal to call this function even if there is no current insertion point.
1149   void FinishFunction(SourceLocation EndLoc=SourceLocation());
1150 
1151   /// GenerateThunk - Generate a thunk for the given method.
1152   void GenerateThunk(llvm::Function *Fn, const CGFunctionInfo &FnInfo,
1153                      GlobalDecl GD, const ThunkInfo &Thunk);
1154 
1155   void EmitCtorPrologue(const CXXConstructorDecl *CD, CXXCtorType Type,
1156                         FunctionArgList &Args);
1157 
1158   /// InitializeVTablePointer - Initialize the vtable pointer of the given
1159   /// subobject.
1160   ///
1161   void InitializeVTablePointer(BaseSubobject Base,
1162                                const CXXRecordDecl *NearestVBase,
1163                                CharUnits OffsetFromNearestVBase,
1164                                llvm::Constant *VTable,
1165                                const CXXRecordDecl *VTableClass);
1166 
1167   typedef llvm::SmallPtrSet<const CXXRecordDecl *, 4> VisitedVirtualBasesSetTy;
1168   void InitializeVTablePointers(BaseSubobject Base,
1169                                 const CXXRecordDecl *NearestVBase,
1170                                 CharUnits OffsetFromNearestVBase,
1171                                 bool BaseIsNonVirtualPrimaryBase,
1172                                 llvm::Constant *VTable,
1173                                 const CXXRecordDecl *VTableClass,
1174                                 VisitedVirtualBasesSetTy& VBases);
1175 
1176   void InitializeVTablePointers(const CXXRecordDecl *ClassDecl);
1177 
1178   /// GetVTablePtr - Return the Value of the vtable pointer member pointed
1179   /// to by This.
1180   llvm::Value *GetVTablePtr(llvm::Value *This, const llvm::Type *Ty);
1181 
1182   /// EnterDtorCleanups - Enter the cleanups necessary to complete the
1183   /// given phase of destruction for a destructor.  The end result
1184   /// should call destructors on members and base classes in reverse
1185   /// order of their construction.
1186   void EnterDtorCleanups(const CXXDestructorDecl *Dtor, CXXDtorType Type);
1187 
1188   /// ShouldInstrumentFunction - Return true if the current function should be
1189   /// instrumented with __cyg_profile_func_* calls
1190   bool ShouldInstrumentFunction();
1191 
1192   /// EmitFunctionInstrumentation - Emit LLVM code to call the specified
1193   /// instrumentation function with the current function and the call site, if
1194   /// function instrumentation is enabled.
1195   void EmitFunctionInstrumentation(const char *Fn);
1196 
1197   /// EmitMCountInstrumentation - Emit call to .mcount.
1198   void EmitMCountInstrumentation();
1199 
1200   /// EmitFunctionProlog - Emit the target specific LLVM code to load the
1201   /// arguments for the given function. This is also responsible for naming the
1202   /// LLVM function arguments.
1203   void EmitFunctionProlog(const CGFunctionInfo &FI,
1204                           llvm::Function *Fn,
1205                           const FunctionArgList &Args);
1206 
1207   /// EmitFunctionEpilog - Emit the target specific LLVM code to return the
1208   /// given temporary.
1209   void EmitFunctionEpilog(const CGFunctionInfo &FI);
1210 
1211   /// EmitStartEHSpec - Emit the start of the exception spec.
1212   void EmitStartEHSpec(const Decl *D);
1213 
1214   /// EmitEndEHSpec - Emit the end of the exception spec.
1215   void EmitEndEHSpec(const Decl *D);
1216 
1217   /// getTerminateLandingPad - Return a landing pad that just calls terminate.
1218   llvm::BasicBlock *getTerminateLandingPad();
1219 
1220   /// getTerminateHandler - Return a handler (not a landing pad, just
1221   /// a catch handler) that just calls terminate.  This is used when
1222   /// a terminate scope encloses a try.
1223   llvm::BasicBlock *getTerminateHandler();
1224 
1225   const llvm::Type *ConvertTypeForMem(QualType T);
1226   const llvm::Type *ConvertType(QualType T);
1227   const llvm::Type *ConvertType(const TypeDecl *T) {
1228     return ConvertType(getContext().getTypeDeclType(T));
1229   }
1230 
1231   /// LoadObjCSelf - Load the value of self. This function is only valid while
1232   /// generating code for an Objective-C method.
1233   llvm::Value *LoadObjCSelf();
1234 
1235   /// TypeOfSelfObject - Return type of object that this self represents.
1236   QualType TypeOfSelfObject();
1237 
1238   /// hasAggregateLLVMType - Return true if the specified AST type will map into
1239   /// an aggregate LLVM type or is void.
1240   static bool hasAggregateLLVMType(QualType T);
1241 
1242   /// createBasicBlock - Create an LLVM basic block.
1243   llvm::BasicBlock *createBasicBlock(llvm::StringRef name = "",
1244                                      llvm::Function *parent = 0,
1245                                      llvm::BasicBlock *before = 0) {
1246 #ifdef NDEBUG
1247     return llvm::BasicBlock::Create(getLLVMContext(), "", parent, before);
1248 #else
1249     return llvm::BasicBlock::Create(getLLVMContext(), name, parent, before);
1250 #endif
1251   }
1252 
1253   /// getBasicBlockForLabel - Return the LLVM basicblock that the specified
1254   /// label maps to.
1255   JumpDest getJumpDestForLabel(const LabelDecl *S);
1256 
1257   /// SimplifyForwardingBlocks - If the given basic block is only a branch to
1258   /// another basic block, simplify it. This assumes that no other code could
1259   /// potentially reference the basic block.
1260   void SimplifyForwardingBlocks(llvm::BasicBlock *BB);
1261 
1262   /// EmitBlock - Emit the given block \arg BB and set it as the insert point,
1263   /// adding a fall-through branch from the current insert block if
1264   /// necessary. It is legal to call this function even if there is no current
1265   /// insertion point.
1266   ///
1267   /// IsFinished - If true, indicates that the caller has finished emitting
1268   /// branches to the given block and does not expect to emit code into it. This
1269   /// means the block can be ignored if it is unreachable.
1270   void EmitBlock(llvm::BasicBlock *BB, bool IsFinished=false);
1271 
1272   /// EmitBranch - Emit a branch to the specified basic block from the current
1273   /// insert block, taking care to avoid creation of branches from dummy
1274   /// blocks. It is legal to call this function even if there is no current
1275   /// insertion point.
1276   ///
1277   /// This function clears the current insertion point. The caller should follow
1278   /// calls to this function with calls to Emit*Block prior to generation new
1279   /// code.
1280   void EmitBranch(llvm::BasicBlock *Block);
1281 
1282   /// HaveInsertPoint - True if an insertion point is defined. If not, this
1283   /// indicates that the current code being emitted is unreachable.
1284   bool HaveInsertPoint() const {
1285     return Builder.GetInsertBlock() != 0;
1286   }
1287 
1288   /// EnsureInsertPoint - Ensure that an insertion point is defined so that
1289   /// emitted IR has a place to go. Note that by definition, if this function
1290   /// creates a block then that block is unreachable; callers may do better to
1291   /// detect when no insertion point is defined and simply skip IR generation.
1292   void EnsureInsertPoint() {
1293     if (!HaveInsertPoint())
1294       EmitBlock(createBasicBlock());
1295   }
1296 
1297   /// ErrorUnsupported - Print out an error that codegen doesn't support the
1298   /// specified stmt yet.
1299   void ErrorUnsupported(const Stmt *S, const char *Type,
1300                         bool OmitOnError=false);
1301 
1302   //===--------------------------------------------------------------------===//
1303   //                                  Helpers
1304   //===--------------------------------------------------------------------===//
1305 
1306   LValue MakeAddrLValue(llvm::Value *V, QualType T, unsigned Alignment = 0) {
1307     return LValue::MakeAddr(V, T, Alignment, getContext(),
1308                             CGM.getTBAAInfo(T));
1309   }
1310 
1311   /// CreateTempAlloca - This creates a alloca and inserts it into the entry
1312   /// block. The caller is responsible for setting an appropriate alignment on
1313   /// the alloca.
1314   llvm::AllocaInst *CreateTempAlloca(const llvm::Type *Ty,
1315                                      const llvm::Twine &Name = "tmp");
1316 
1317   /// InitTempAlloca - Provide an initial value for the given alloca.
1318   void InitTempAlloca(llvm::AllocaInst *Alloca, llvm::Value *Value);
1319 
1320   /// CreateIRTemp - Create a temporary IR object of the given type, with
1321   /// appropriate alignment. This routine should only be used when an temporary
1322   /// value needs to be stored into an alloca (for example, to avoid explicit
1323   /// PHI construction), but the type is the IR type, not the type appropriate
1324   /// for storing in memory.
1325   llvm::AllocaInst *CreateIRTemp(QualType T, const llvm::Twine &Name = "tmp");
1326 
1327   /// CreateMemTemp - Create a temporary memory object of the given type, with
1328   /// appropriate alignment.
1329   llvm::AllocaInst *CreateMemTemp(QualType T, const llvm::Twine &Name = "tmp");
1330 
1331   /// CreateAggTemp - Create a temporary memory object for the given
1332   /// aggregate type.
1333   AggValueSlot CreateAggTemp(QualType T, const llvm::Twine &Name = "tmp") {
1334     return AggValueSlot::forAddr(CreateMemTemp(T, Name), false, false);
1335   }
1336 
1337   /// Emit a cast to void* in the appropriate address space.
1338   llvm::Value *EmitCastToVoidPtr(llvm::Value *value);
1339 
1340   /// EvaluateExprAsBool - Perform the usual unary conversions on the specified
1341   /// expression and compare the result against zero, returning an Int1Ty value.
1342   llvm::Value *EvaluateExprAsBool(const Expr *E);
1343 
1344   /// EmitIgnoredExpr - Emit an expression in a context which ignores the result.
1345   void EmitIgnoredExpr(const Expr *E);
1346 
1347   /// EmitAnyExpr - Emit code to compute the specified expression which can have
1348   /// any type.  The result is returned as an RValue struct.  If this is an
1349   /// aggregate expression, the aggloc/agglocvolatile arguments indicate where
1350   /// the result should be returned.
1351   ///
1352   /// \param IgnoreResult - True if the resulting value isn't used.
1353   RValue EmitAnyExpr(const Expr *E,
1354                      AggValueSlot AggSlot = AggValueSlot::ignored(),
1355                      bool IgnoreResult = false);
1356 
1357   // EmitVAListRef - Emit a "reference" to a va_list; this is either the address
1358   // or the value of the expression, depending on how va_list is defined.
1359   llvm::Value *EmitVAListRef(const Expr *E);
1360 
1361   /// EmitAnyExprToTemp - Similary to EmitAnyExpr(), however, the result will
1362   /// always be accessible even if no aggregate location is provided.
1363   RValue EmitAnyExprToTemp(const Expr *E);
1364 
1365   /// EmitAnyExprToMem - Emits the code necessary to evaluate an
1366   /// arbitrary expression into the given memory location.
1367   void EmitAnyExprToMem(const Expr *E, llvm::Value *Location,
1368                         bool IsLocationVolatile,
1369                         bool IsInitializer);
1370 
1371   /// EmitExprAsInit - Emits the code necessary to initialize a
1372   /// location in memory with the given initializer.
1373   void EmitExprAsInit(const Expr *init, const VarDecl *var,
1374                       llvm::Value *loc, CharUnits alignment,
1375                       bool capturedByInit);
1376 
1377   /// EmitAggregateCopy - Emit an aggrate copy.
1378   ///
1379   /// \param isVolatile - True iff either the source or the destination is
1380   /// volatile.
1381   void EmitAggregateCopy(llvm::Value *DestPtr, llvm::Value *SrcPtr,
1382                          QualType EltTy, bool isVolatile=false);
1383 
1384   /// StartBlock - Start new block named N. If insert block is a dummy block
1385   /// then reuse it.
1386   void StartBlock(const char *N);
1387 
1388   /// GetAddrOfStaticLocalVar - Return the address of a static local variable.
1389   llvm::Constant *GetAddrOfStaticLocalVar(const VarDecl *BVD) {
1390     return cast<llvm::Constant>(GetAddrOfLocalVar(BVD));
1391   }
1392 
1393   /// GetAddrOfLocalVar - Return the address of a local variable.
1394   llvm::Value *GetAddrOfLocalVar(const VarDecl *VD) {
1395     llvm::Value *Res = LocalDeclMap[VD];
1396     assert(Res && "Invalid argument to GetAddrOfLocalVar(), no decl!");
1397     return Res;
1398   }
1399 
1400   /// getOpaqueLValueMapping - Given an opaque value expression (which
1401   /// must be mapped to an l-value), return its mapping.
1402   const LValue &getOpaqueLValueMapping(const OpaqueValueExpr *e) {
1403     assert(OpaqueValueMapping::shouldBindAsLValue(e));
1404 
1405     llvm::DenseMap<const OpaqueValueExpr*,LValue>::iterator
1406       it = OpaqueLValues.find(e);
1407     assert(it != OpaqueLValues.end() && "no mapping for opaque value!");
1408     return it->second;
1409   }
1410 
1411   /// getOpaqueRValueMapping - Given an opaque value expression (which
1412   /// must be mapped to an r-value), return its mapping.
1413   const RValue &getOpaqueRValueMapping(const OpaqueValueExpr *e) {
1414     assert(!OpaqueValueMapping::shouldBindAsLValue(e));
1415 
1416     llvm::DenseMap<const OpaqueValueExpr*,RValue>::iterator
1417       it = OpaqueRValues.find(e);
1418     assert(it != OpaqueRValues.end() && "no mapping for opaque value!");
1419     return it->second;
1420   }
1421 
1422   /// getAccessedFieldNo - Given an encoded value and a result number, return
1423   /// the input field number being accessed.
1424   static unsigned getAccessedFieldNo(unsigned Idx, const llvm::Constant *Elts);
1425 
1426   llvm::BlockAddress *GetAddrOfLabel(const LabelDecl *L);
1427   llvm::BasicBlock *GetIndirectGotoBlock();
1428 
1429   /// EmitNullInitialization - Generate code to set a value of the given type to
1430   /// null, If the type contains data member pointers, they will be initialized
1431   /// to -1 in accordance with the Itanium C++ ABI.
1432   void EmitNullInitialization(llvm::Value *DestPtr, QualType Ty);
1433 
1434   // EmitVAArg - Generate code to get an argument from the passed in pointer
1435   // and update it accordingly. The return value is a pointer to the argument.
1436   // FIXME: We should be able to get rid of this method and use the va_arg
1437   // instruction in LLVM instead once it works well enough.
1438   llvm::Value *EmitVAArg(llvm::Value *VAListAddr, QualType Ty);
1439 
1440   /// EmitVLASize - Generate code for any VLA size expressions that might occur
1441   /// in a variably modified type. If Ty is a VLA, will return the value that
1442   /// corresponds to the size in bytes of the VLA type. Will return 0 otherwise.
1443   ///
1444   /// This function can be called with a null (unreachable) insert point.
1445   llvm::Value *EmitVLASize(QualType Ty);
1446 
1447   // GetVLASize - Returns an LLVM value that corresponds to the size in bytes
1448   // of a variable length array type.
1449   llvm::Value *GetVLASize(const VariableArrayType *);
1450 
1451   /// LoadCXXThis - Load the value of 'this'. This function is only valid while
1452   /// generating code for an C++ member function.
1453   llvm::Value *LoadCXXThis() {
1454     assert(CXXThisValue && "no 'this' value for this function");
1455     return CXXThisValue;
1456   }
1457 
1458   /// LoadCXXVTT - Load the VTT parameter to base constructors/destructors have
1459   /// virtual bases.
1460   llvm::Value *LoadCXXVTT() {
1461     assert(CXXVTTValue && "no VTT value for this function");
1462     return CXXVTTValue;
1463   }
1464 
1465   /// GetAddressOfBaseOfCompleteClass - Convert the given pointer to a
1466   /// complete class to the given direct base.
1467   llvm::Value *
1468   GetAddressOfDirectBaseInCompleteClass(llvm::Value *Value,
1469                                         const CXXRecordDecl *Derived,
1470                                         const CXXRecordDecl *Base,
1471                                         bool BaseIsVirtual);
1472 
1473   /// GetAddressOfBaseClass - This function will add the necessary delta to the
1474   /// load of 'this' and returns address of the base class.
1475   llvm::Value *GetAddressOfBaseClass(llvm::Value *Value,
1476                                      const CXXRecordDecl *Derived,
1477                                      CastExpr::path_const_iterator PathBegin,
1478                                      CastExpr::path_const_iterator PathEnd,
1479                                      bool NullCheckValue);
1480 
1481   llvm::Value *GetAddressOfDerivedClass(llvm::Value *Value,
1482                                         const CXXRecordDecl *Derived,
1483                                         CastExpr::path_const_iterator PathBegin,
1484                                         CastExpr::path_const_iterator PathEnd,
1485                                         bool NullCheckValue);
1486 
1487   llvm::Value *GetVirtualBaseClassOffset(llvm::Value *This,
1488                                          const CXXRecordDecl *ClassDecl,
1489                                          const CXXRecordDecl *BaseClassDecl);
1490 
1491   void EmitDelegateCXXConstructorCall(const CXXConstructorDecl *Ctor,
1492                                       CXXCtorType CtorType,
1493                                       const FunctionArgList &Args);
1494   void EmitCXXConstructorCall(const CXXConstructorDecl *D, CXXCtorType Type,
1495                               bool ForVirtualBase, llvm::Value *This,
1496                               CallExpr::const_arg_iterator ArgBeg,
1497                               CallExpr::const_arg_iterator ArgEnd);
1498 
1499   void EmitSynthesizedCXXCopyCtorCall(const CXXConstructorDecl *D,
1500                               llvm::Value *This, llvm::Value *Src,
1501                               CallExpr::const_arg_iterator ArgBeg,
1502                               CallExpr::const_arg_iterator ArgEnd);
1503 
1504   void EmitCXXAggrConstructorCall(const CXXConstructorDecl *D,
1505                                   const ConstantArrayType *ArrayTy,
1506                                   llvm::Value *ArrayPtr,
1507                                   CallExpr::const_arg_iterator ArgBeg,
1508                                   CallExpr::const_arg_iterator ArgEnd,
1509                                   bool ZeroInitialization = false);
1510 
1511   void EmitCXXAggrConstructorCall(const CXXConstructorDecl *D,
1512                                   llvm::Value *NumElements,
1513                                   llvm::Value *ArrayPtr,
1514                                   CallExpr::const_arg_iterator ArgBeg,
1515                                   CallExpr::const_arg_iterator ArgEnd,
1516                                   bool ZeroInitialization = false);
1517 
1518   void EmitCXXAggrDestructorCall(const CXXDestructorDecl *D,
1519                                  const ArrayType *Array,
1520                                  llvm::Value *This);
1521 
1522   void EmitCXXAggrDestructorCall(const CXXDestructorDecl *D,
1523                                  llvm::Value *NumElements,
1524                                  llvm::Value *This);
1525 
1526   llvm::Function *GenerateCXXAggrDestructorHelper(const CXXDestructorDecl *D,
1527                                                   const ArrayType *Array,
1528                                                   llvm::Value *This);
1529 
1530   void EmitCXXDestructorCall(const CXXDestructorDecl *D, CXXDtorType Type,
1531                              bool ForVirtualBase, llvm::Value *This);
1532 
1533   void EmitNewArrayInitializer(const CXXNewExpr *E, llvm::Value *NewPtr,
1534                                llvm::Value *NumElements);
1535 
1536   void EmitCXXTemporary(const CXXTemporary *Temporary, llvm::Value *Ptr);
1537 
1538   llvm::Value *EmitCXXNewExpr(const CXXNewExpr *E);
1539   void EmitCXXDeleteExpr(const CXXDeleteExpr *E);
1540 
1541   void EmitDeleteCall(const FunctionDecl *DeleteFD, llvm::Value *Ptr,
1542                       QualType DeleteTy);
1543 
1544   llvm::Value* EmitCXXTypeidExpr(const CXXTypeidExpr *E);
1545   llvm::Value *EmitDynamicCast(llvm::Value *V, const CXXDynamicCastExpr *DCE);
1546 
1547   void EmitCheck(llvm::Value *, unsigned Size);
1548 
1549   llvm::Value *EmitScalarPrePostIncDec(const UnaryOperator *E, LValue LV,
1550                                        bool isInc, bool isPre);
1551   ComplexPairTy EmitComplexPrePostIncDec(const UnaryOperator *E, LValue LV,
1552                                          bool isInc, bool isPre);
1553   //===--------------------------------------------------------------------===//
1554   //                            Declaration Emission
1555   //===--------------------------------------------------------------------===//
1556 
1557   /// EmitDecl - Emit a declaration.
1558   ///
1559   /// This function can be called with a null (unreachable) insert point.
1560   void EmitDecl(const Decl &D);
1561 
1562   /// EmitVarDecl - Emit a local variable declaration.
1563   ///
1564   /// This function can be called with a null (unreachable) insert point.
1565   void EmitVarDecl(const VarDecl &D);
1566 
1567   typedef void SpecialInitFn(CodeGenFunction &Init, const VarDecl &D,
1568                              llvm::Value *Address);
1569 
1570   /// EmitAutoVarDecl - Emit an auto variable declaration.
1571   ///
1572   /// This function can be called with a null (unreachable) insert point.
1573   void EmitAutoVarDecl(const VarDecl &D);
1574 
1575   class AutoVarEmission {
1576     friend class CodeGenFunction;
1577 
1578     const VarDecl *Variable;
1579 
1580     /// The alignment of the variable.
1581     CharUnits Alignment;
1582 
1583     /// The address of the alloca.  Null if the variable was emitted
1584     /// as a global constant.
1585     llvm::Value *Address;
1586 
1587     llvm::Value *NRVOFlag;
1588 
1589     /// True if the variable is a __block variable.
1590     bool IsByRef;
1591 
1592     /// True if the variable is of aggregate type and has a constant
1593     /// initializer.
1594     bool IsConstantAggregate;
1595 
1596     struct Invalid {};
1597     AutoVarEmission(Invalid) : Variable(0) {}
1598 
1599     AutoVarEmission(const VarDecl &variable)
1600       : Variable(&variable), Address(0), NRVOFlag(0),
1601         IsByRef(false), IsConstantAggregate(false) {}
1602 
1603     bool wasEmittedAsGlobal() const { return Address == 0; }
1604 
1605   public:
1606     static AutoVarEmission invalid() { return AutoVarEmission(Invalid()); }
1607 
1608     /// Returns the address of the object within this declaration.
1609     /// Note that this does not chase the forwarding pointer for
1610     /// __block decls.
1611     llvm::Value *getObjectAddress(CodeGenFunction &CGF) const {
1612       if (!IsByRef) return Address;
1613 
1614       return CGF.Builder.CreateStructGEP(Address,
1615                                          CGF.getByRefValueLLVMField(Variable),
1616                                          Variable->getNameAsString());
1617     }
1618   };
1619   AutoVarEmission EmitAutoVarAlloca(const VarDecl &var);
1620   void EmitAutoVarInit(const AutoVarEmission &emission);
1621   void EmitAutoVarCleanups(const AutoVarEmission &emission);
1622 
1623   void EmitStaticVarDecl(const VarDecl &D,
1624                          llvm::GlobalValue::LinkageTypes Linkage);
1625 
1626   /// EmitParmDecl - Emit a ParmVarDecl or an ImplicitParamDecl.
1627   void EmitParmDecl(const VarDecl &D, llvm::Value *Arg, unsigned ArgNo);
1628 
1629   /// protectFromPeepholes - Protect a value that we're intending to
1630   /// store to the side, but which will probably be used later, from
1631   /// aggressive peepholing optimizations that might delete it.
1632   ///
1633   /// Pass the result to unprotectFromPeepholes to declare that
1634   /// protection is no longer required.
1635   ///
1636   /// There's no particular reason why this shouldn't apply to
1637   /// l-values, it's just that no existing peepholes work on pointers.
1638   PeepholeProtection protectFromPeepholes(RValue rvalue);
1639   void unprotectFromPeepholes(PeepholeProtection protection);
1640 
1641   //===--------------------------------------------------------------------===//
1642   //                             Statement Emission
1643   //===--------------------------------------------------------------------===//
1644 
1645   /// EmitStopPoint - Emit a debug stoppoint if we are emitting debug info.
1646   void EmitStopPoint(const Stmt *S);
1647 
1648   /// EmitStmt - Emit the code for the statement \arg S. It is legal to call
1649   /// this function even if there is no current insertion point.
1650   ///
1651   /// This function may clear the current insertion point; callers should use
1652   /// EnsureInsertPoint if they wish to subsequently generate code without first
1653   /// calling EmitBlock, EmitBranch, or EmitStmt.
1654   void EmitStmt(const Stmt *S);
1655 
1656   /// EmitSimpleStmt - Try to emit a "simple" statement which does not
1657   /// necessarily require an insertion point or debug information; typically
1658   /// because the statement amounts to a jump or a container of other
1659   /// statements.
1660   ///
1661   /// \return True if the statement was handled.
1662   bool EmitSimpleStmt(const Stmt *S);
1663 
1664   RValue EmitCompoundStmt(const CompoundStmt &S, bool GetLast = false,
1665                           AggValueSlot AVS = AggValueSlot::ignored());
1666 
1667   /// EmitLabel - Emit the block for the given label. It is legal to call this
1668   /// function even if there is no current insertion point.
1669   void EmitLabel(const LabelDecl *D); // helper for EmitLabelStmt.
1670 
1671   void EmitLabelStmt(const LabelStmt &S);
1672   void EmitGotoStmt(const GotoStmt &S);
1673   void EmitIndirectGotoStmt(const IndirectGotoStmt &S);
1674   void EmitIfStmt(const IfStmt &S);
1675   void EmitWhileStmt(const WhileStmt &S);
1676   void EmitDoStmt(const DoStmt &S);
1677   void EmitForStmt(const ForStmt &S);
1678   void EmitReturnStmt(const ReturnStmt &S);
1679   void EmitDeclStmt(const DeclStmt &S);
1680   void EmitBreakStmt(const BreakStmt &S);
1681   void EmitContinueStmt(const ContinueStmt &S);
1682   void EmitSwitchStmt(const SwitchStmt &S);
1683   void EmitDefaultStmt(const DefaultStmt &S);
1684   void EmitCaseStmt(const CaseStmt &S);
1685   void EmitCaseStmtRange(const CaseStmt &S);
1686   void EmitAsmStmt(const AsmStmt &S);
1687 
1688   void EmitObjCForCollectionStmt(const ObjCForCollectionStmt &S);
1689   void EmitObjCAtTryStmt(const ObjCAtTryStmt &S);
1690   void EmitObjCAtThrowStmt(const ObjCAtThrowStmt &S);
1691   void EmitObjCAtSynchronizedStmt(const ObjCAtSynchronizedStmt &S);
1692 
1693   llvm::Constant *getUnwindResumeOrRethrowFn();
1694   void EnterCXXTryStmt(const CXXTryStmt &S, bool IsFnTryBlock = false);
1695   void ExitCXXTryStmt(const CXXTryStmt &S, bool IsFnTryBlock = false);
1696 
1697   void EmitCXXTryStmt(const CXXTryStmt &S);
1698   void EmitCXXForRangeStmt(const CXXForRangeStmt &S);
1699 
1700   //===--------------------------------------------------------------------===//
1701   //                         LValue Expression Emission
1702   //===--------------------------------------------------------------------===//
1703 
1704   /// GetUndefRValue - Get an appropriate 'undef' rvalue for the given type.
1705   RValue GetUndefRValue(QualType Ty);
1706 
1707   /// EmitUnsupportedRValue - Emit a dummy r-value using the type of E
1708   /// and issue an ErrorUnsupported style diagnostic (using the
1709   /// provided Name).
1710   RValue EmitUnsupportedRValue(const Expr *E,
1711                                const char *Name);
1712 
1713   /// EmitUnsupportedLValue - Emit a dummy l-value using the type of E and issue
1714   /// an ErrorUnsupported style diagnostic (using the provided Name).
1715   LValue EmitUnsupportedLValue(const Expr *E,
1716                                const char *Name);
1717 
1718   /// EmitLValue - Emit code to compute a designator that specifies the location
1719   /// of the expression.
1720   ///
1721   /// This can return one of two things: a simple address or a bitfield
1722   /// reference.  In either case, the LLVM Value* in the LValue structure is
1723   /// guaranteed to be an LLVM pointer type.
1724   ///
1725   /// If this returns a bitfield reference, nothing about the pointee type of
1726   /// the LLVM value is known: For example, it may not be a pointer to an
1727   /// integer.
1728   ///
1729   /// If this returns a normal address, and if the lvalue's C type is fixed
1730   /// size, this method guarantees that the returned pointer type will point to
1731   /// an LLVM type of the same size of the lvalue's type.  If the lvalue has a
1732   /// variable length type, this is not possible.
1733   ///
1734   LValue EmitLValue(const Expr *E);
1735 
1736   /// EmitCheckedLValue - Same as EmitLValue but additionally we generate
1737   /// checking code to guard against undefined behavior.  This is only
1738   /// suitable when we know that the address will be used to access the
1739   /// object.
1740   LValue EmitCheckedLValue(const Expr *E);
1741 
1742   /// EmitToMemory - Change a scalar value from its value
1743   /// representation to its in-memory representation.
1744   llvm::Value *EmitToMemory(llvm::Value *Value, QualType Ty);
1745 
1746   /// EmitFromMemory - Change a scalar value from its memory
1747   /// representation to its value representation.
1748   llvm::Value *EmitFromMemory(llvm::Value *Value, QualType Ty);
1749 
1750   /// EmitLoadOfScalar - Load a scalar value from an address, taking
1751   /// care to appropriately convert from the memory representation to
1752   /// the LLVM value representation.
1753   llvm::Value *EmitLoadOfScalar(llvm::Value *Addr, bool Volatile,
1754                                 unsigned Alignment, QualType Ty,
1755                                 llvm::MDNode *TBAAInfo = 0);
1756 
1757   /// EmitStoreOfScalar - Store a scalar value to an address, taking
1758   /// care to appropriately convert from the memory representation to
1759   /// the LLVM value representation.
1760   void EmitStoreOfScalar(llvm::Value *Value, llvm::Value *Addr,
1761                          bool Volatile, unsigned Alignment, QualType Ty,
1762                          llvm::MDNode *TBAAInfo = 0);
1763 
1764   /// EmitLoadOfLValue - Given an expression that represents a value lvalue,
1765   /// this method emits the address of the lvalue, then loads the result as an
1766   /// rvalue, returning the rvalue.
1767   RValue EmitLoadOfLValue(LValue V, QualType LVType);
1768   RValue EmitLoadOfExtVectorElementLValue(LValue V, QualType LVType);
1769   RValue EmitLoadOfBitfieldLValue(LValue LV, QualType ExprType);
1770   RValue EmitLoadOfPropertyRefLValue(LValue LV,
1771                                  ReturnValueSlot Return = ReturnValueSlot());
1772 
1773   /// EmitStoreThroughLValue - Store the specified rvalue into the specified
1774   /// lvalue, where both are guaranteed to the have the same type, and that type
1775   /// is 'Ty'.
1776   void EmitStoreThroughLValue(RValue Src, LValue Dst, QualType Ty);
1777   void EmitStoreThroughExtVectorComponentLValue(RValue Src, LValue Dst,
1778                                                 QualType Ty);
1779   void EmitStoreThroughPropertyRefLValue(RValue Src, LValue Dst);
1780 
1781   /// EmitStoreThroughLValue - Store Src into Dst with same constraints as
1782   /// EmitStoreThroughLValue.
1783   ///
1784   /// \param Result [out] - If non-null, this will be set to a Value* for the
1785   /// bit-field contents after the store, appropriate for use as the result of
1786   /// an assignment to the bit-field.
1787   void EmitStoreThroughBitfieldLValue(RValue Src, LValue Dst, QualType Ty,
1788                                       llvm::Value **Result=0);
1789 
1790   /// Emit an l-value for an assignment (simple or compound) of complex type.
1791   LValue EmitComplexAssignmentLValue(const BinaryOperator *E);
1792   LValue EmitComplexCompoundAssignmentLValue(const CompoundAssignOperator *E);
1793 
1794   // Note: only availabe for agg return types
1795   LValue EmitBinaryOperatorLValue(const BinaryOperator *E);
1796   LValue EmitCompoundAssignmentLValue(const CompoundAssignOperator *E);
1797   // Note: only available for agg return types
1798   LValue EmitCallExprLValue(const CallExpr *E);
1799   // Note: only available for agg return types
1800   LValue EmitVAArgExprLValue(const VAArgExpr *E);
1801   LValue EmitDeclRefLValue(const DeclRefExpr *E);
1802   LValue EmitStringLiteralLValue(const StringLiteral *E);
1803   LValue EmitObjCEncodeExprLValue(const ObjCEncodeExpr *E);
1804   LValue EmitPredefinedLValue(const PredefinedExpr *E);
1805   LValue EmitUnaryOpLValue(const UnaryOperator *E);
1806   LValue EmitArraySubscriptExpr(const ArraySubscriptExpr *E);
1807   LValue EmitExtVectorElementExpr(const ExtVectorElementExpr *E);
1808   LValue EmitMemberExpr(const MemberExpr *E);
1809   LValue EmitObjCIsaExpr(const ObjCIsaExpr *E);
1810   LValue EmitCompoundLiteralLValue(const CompoundLiteralExpr *E);
1811   LValue EmitConditionalOperatorLValue(const AbstractConditionalOperator *E);
1812   LValue EmitCastLValue(const CastExpr *E);
1813   LValue EmitNullInitializationLValue(const CXXScalarValueInitExpr *E);
1814   LValue EmitOpaqueValueLValue(const OpaqueValueExpr *e);
1815 
1816   llvm::Value *EmitIvarOffset(const ObjCInterfaceDecl *Interface,
1817                               const ObjCIvarDecl *Ivar);
1818   LValue EmitLValueForAnonRecordField(llvm::Value* Base,
1819                                       const IndirectFieldDecl* Field,
1820                                       unsigned CVRQualifiers);
1821   LValue EmitLValueForField(llvm::Value* Base, const FieldDecl* Field,
1822                             unsigned CVRQualifiers);
1823 
1824   /// EmitLValueForFieldInitialization - Like EmitLValueForField, except that
1825   /// if the Field is a reference, this will return the address of the reference
1826   /// and not the address of the value stored in the reference.
1827   LValue EmitLValueForFieldInitialization(llvm::Value* Base,
1828                                           const FieldDecl* Field,
1829                                           unsigned CVRQualifiers);
1830 
1831   LValue EmitLValueForIvar(QualType ObjectTy,
1832                            llvm::Value* Base, const ObjCIvarDecl *Ivar,
1833                            unsigned CVRQualifiers);
1834 
1835   LValue EmitLValueForBitfield(llvm::Value* Base, const FieldDecl* Field,
1836                                 unsigned CVRQualifiers);
1837 
1838   LValue EmitBlockDeclRefLValue(const BlockDeclRefExpr *E);
1839 
1840   LValue EmitCXXConstructLValue(const CXXConstructExpr *E);
1841   LValue EmitCXXBindTemporaryLValue(const CXXBindTemporaryExpr *E);
1842   LValue EmitExprWithCleanupsLValue(const ExprWithCleanups *E);
1843   LValue EmitCXXTypeidLValue(const CXXTypeidExpr *E);
1844 
1845   LValue EmitObjCMessageExprLValue(const ObjCMessageExpr *E);
1846   LValue EmitObjCIvarRefLValue(const ObjCIvarRefExpr *E);
1847   LValue EmitObjCPropertyRefLValue(const ObjCPropertyRefExpr *E);
1848   LValue EmitStmtExprLValue(const StmtExpr *E);
1849   LValue EmitPointerToDataMemberBinaryExpr(const BinaryOperator *E);
1850   LValue EmitObjCSelectorLValue(const ObjCSelectorExpr *E);
1851   void   EmitDeclRefExprDbgValue(const DeclRefExpr *E, llvm::Constant *Init);
1852 
1853   //===--------------------------------------------------------------------===//
1854   //                         Scalar Expression Emission
1855   //===--------------------------------------------------------------------===//
1856 
1857   /// EmitCall - Generate a call of the given function, expecting the given
1858   /// result type, and using the given argument list which specifies both the
1859   /// LLVM arguments and the types they were derived from.
1860   ///
1861   /// \param TargetDecl - If given, the decl of the function in a direct call;
1862   /// used to set attributes on the call (noreturn, etc.).
1863   RValue EmitCall(const CGFunctionInfo &FnInfo,
1864                   llvm::Value *Callee,
1865                   ReturnValueSlot ReturnValue,
1866                   const CallArgList &Args,
1867                   const Decl *TargetDecl = 0,
1868                   llvm::Instruction **callOrInvoke = 0);
1869 
1870   RValue EmitCall(QualType FnType, llvm::Value *Callee,
1871                   ReturnValueSlot ReturnValue,
1872                   CallExpr::const_arg_iterator ArgBeg,
1873                   CallExpr::const_arg_iterator ArgEnd,
1874                   const Decl *TargetDecl = 0);
1875   RValue EmitCallExpr(const CallExpr *E,
1876                       ReturnValueSlot ReturnValue = ReturnValueSlot());
1877 
1878   llvm::CallSite EmitCallOrInvoke(llvm::Value *Callee,
1879                                   llvm::Value * const *ArgBegin,
1880                                   llvm::Value * const *ArgEnd,
1881                                   const llvm::Twine &Name = "");
1882 
1883   llvm::Value *BuildVirtualCall(const CXXMethodDecl *MD, llvm::Value *This,
1884                                 const llvm::Type *Ty);
1885   llvm::Value *BuildVirtualCall(const CXXDestructorDecl *DD, CXXDtorType Type,
1886                                 llvm::Value *This, const llvm::Type *Ty);
1887   llvm::Value *BuildAppleKextVirtualCall(const CXXMethodDecl *MD,
1888                                          NestedNameSpecifier *Qual,
1889                                          const llvm::Type *Ty);
1890 
1891   llvm::Value *BuildAppleKextVirtualDestructorCall(const CXXDestructorDecl *DD,
1892                                                    CXXDtorType Type,
1893                                                    const CXXRecordDecl *RD);
1894 
1895   RValue EmitCXXMemberCall(const CXXMethodDecl *MD,
1896                            llvm::Value *Callee,
1897                            ReturnValueSlot ReturnValue,
1898                            llvm::Value *This,
1899                            llvm::Value *VTT,
1900                            CallExpr::const_arg_iterator ArgBeg,
1901                            CallExpr::const_arg_iterator ArgEnd);
1902   RValue EmitCXXMemberCallExpr(const CXXMemberCallExpr *E,
1903                                ReturnValueSlot ReturnValue);
1904   RValue EmitCXXMemberPointerCallExpr(const CXXMemberCallExpr *E,
1905                                       ReturnValueSlot ReturnValue);
1906 
1907   RValue EmitCXXOperatorMemberCallExpr(const CXXOperatorCallExpr *E,
1908                                        const CXXMethodDecl *MD,
1909                                        ReturnValueSlot ReturnValue);
1910 
1911 
1912   RValue EmitBuiltinExpr(const FunctionDecl *FD,
1913                          unsigned BuiltinID, const CallExpr *E);
1914 
1915   RValue EmitBlockCallExpr(const CallExpr *E, ReturnValueSlot ReturnValue);
1916 
1917   /// EmitTargetBuiltinExpr - Emit the given builtin call. Returns 0 if the call
1918   /// is unhandled by the current target.
1919   llvm::Value *EmitTargetBuiltinExpr(unsigned BuiltinID, const CallExpr *E);
1920 
1921   llvm::Value *EmitARMBuiltinExpr(unsigned BuiltinID, const CallExpr *E);
1922   llvm::Value *EmitNeonCall(llvm::Function *F,
1923                             llvm::SmallVectorImpl<llvm::Value*> &O,
1924                             const char *name,
1925                             unsigned shift = 0, bool rightshift = false);
1926   llvm::Value *EmitNeonSplat(llvm::Value *V, llvm::Constant *Idx);
1927   llvm::Value *EmitNeonShiftVector(llvm::Value *V, const llvm::Type *Ty,
1928                                    bool negateForRightShift);
1929 
1930   llvm::Value *BuildVector(const llvm::SmallVectorImpl<llvm::Value*> &Ops);
1931   llvm::Value *EmitX86BuiltinExpr(unsigned BuiltinID, const CallExpr *E);
1932   llvm::Value *EmitPPCBuiltinExpr(unsigned BuiltinID, const CallExpr *E);
1933 
1934   llvm::Value *EmitObjCProtocolExpr(const ObjCProtocolExpr *E);
1935   llvm::Value *EmitObjCStringLiteral(const ObjCStringLiteral *E);
1936   llvm::Value *EmitObjCSelectorExpr(const ObjCSelectorExpr *E);
1937   RValue EmitObjCMessageExpr(const ObjCMessageExpr *E,
1938                              ReturnValueSlot Return = ReturnValueSlot());
1939 
1940   /// EmitReferenceBindingToExpr - Emits a reference binding to the passed in
1941   /// expression. Will emit a temporary variable if E is not an LValue.
1942   RValue EmitReferenceBindingToExpr(const Expr* E,
1943                                     const NamedDecl *InitializedDecl);
1944 
1945   //===--------------------------------------------------------------------===//
1946   //                           Expression Emission
1947   //===--------------------------------------------------------------------===//
1948 
1949   // Expressions are broken into three classes: scalar, complex, aggregate.
1950 
1951   /// EmitScalarExpr - Emit the computation of the specified expression of LLVM
1952   /// scalar type, returning the result.
1953   llvm::Value *EmitScalarExpr(const Expr *E , bool IgnoreResultAssign = false);
1954 
1955   /// EmitScalarConversion - Emit a conversion from the specified type to the
1956   /// specified destination type, both of which are LLVM scalar types.
1957   llvm::Value *EmitScalarConversion(llvm::Value *Src, QualType SrcTy,
1958                                     QualType DstTy);
1959 
1960   /// EmitComplexToScalarConversion - Emit a conversion from the specified
1961   /// complex type to the specified destination type, where the destination type
1962   /// is an LLVM scalar type.
1963   llvm::Value *EmitComplexToScalarConversion(ComplexPairTy Src, QualType SrcTy,
1964                                              QualType DstTy);
1965 
1966 
1967   /// EmitAggExpr - Emit the computation of the specified expression
1968   /// of aggregate type.  The result is computed into the given slot,
1969   /// which may be null to indicate that the value is not needed.
1970   void EmitAggExpr(const Expr *E, AggValueSlot AS, bool IgnoreResult = false);
1971 
1972   /// EmitAggExprToLValue - Emit the computation of the specified expression of
1973   /// aggregate type into a temporary LValue.
1974   LValue EmitAggExprToLValue(const Expr *E);
1975 
1976   /// EmitGCMemmoveCollectable - Emit special API for structs with object
1977   /// pointers.
1978   void EmitGCMemmoveCollectable(llvm::Value *DestPtr, llvm::Value *SrcPtr,
1979                                 QualType Ty);
1980 
1981   /// EmitComplexExpr - Emit the computation of the specified expression of
1982   /// complex type, returning the result.
1983   ComplexPairTy EmitComplexExpr(const Expr *E,
1984                                 bool IgnoreReal = false,
1985                                 bool IgnoreImag = false);
1986 
1987   /// EmitComplexExprIntoAddr - Emit the computation of the specified expression
1988   /// of complex type, storing into the specified Value*.
1989   void EmitComplexExprIntoAddr(const Expr *E, llvm::Value *DestAddr,
1990                                bool DestIsVolatile);
1991 
1992   /// StoreComplexToAddr - Store a complex number into the specified address.
1993   void StoreComplexToAddr(ComplexPairTy V, llvm::Value *DestAddr,
1994                           bool DestIsVolatile);
1995   /// LoadComplexFromAddr - Load a complex number from the specified address.
1996   ComplexPairTy LoadComplexFromAddr(llvm::Value *SrcAddr, bool SrcIsVolatile);
1997 
1998   /// CreateStaticVarDecl - Create a zero-initialized LLVM global for
1999   /// a static local variable.
2000   llvm::GlobalVariable *CreateStaticVarDecl(const VarDecl &D,
2001                                             const char *Separator,
2002                                        llvm::GlobalValue::LinkageTypes Linkage);
2003 
2004   /// AddInitializerToStaticVarDecl - Add the initializer for 'D' to the
2005   /// global variable that has already been created for it.  If the initializer
2006   /// has a different type than GV does, this may free GV and return a different
2007   /// one.  Otherwise it just returns GV.
2008   llvm::GlobalVariable *
2009   AddInitializerToStaticVarDecl(const VarDecl &D,
2010                                 llvm::GlobalVariable *GV);
2011 
2012 
2013   /// EmitCXXGlobalVarDeclInit - Create the initializer for a C++
2014   /// variable with global storage.
2015   void EmitCXXGlobalVarDeclInit(const VarDecl &D, llvm::Constant *DeclPtr);
2016 
2017   /// EmitCXXGlobalDtorRegistration - Emits a call to register the global ptr
2018   /// with the C++ runtime so that its destructor will be called at exit.
2019   void EmitCXXGlobalDtorRegistration(llvm::Constant *DtorFn,
2020                                      llvm::Constant *DeclPtr);
2021 
2022   /// Emit code in this function to perform a guarded variable
2023   /// initialization.  Guarded initializations are used when it's not
2024   /// possible to prove that an initialization will be done exactly
2025   /// once, e.g. with a static local variable or a static data member
2026   /// of a class template.
2027   void EmitCXXGuardedInit(const VarDecl &D, llvm::GlobalVariable *DeclPtr);
2028 
2029   /// GenerateCXXGlobalInitFunc - Generates code for initializing global
2030   /// variables.
2031   void GenerateCXXGlobalInitFunc(llvm::Function *Fn,
2032                                  llvm::Constant **Decls,
2033                                  unsigned NumDecls);
2034 
2035   /// GenerateCXXGlobalDtorFunc - Generates code for destroying global
2036   /// variables.
2037   void GenerateCXXGlobalDtorFunc(llvm::Function *Fn,
2038                                  const std::vector<std::pair<llvm::WeakVH,
2039                                    llvm::Constant*> > &DtorsAndObjects);
2040 
2041   void GenerateCXXGlobalVarDeclInitFunc(llvm::Function *Fn,
2042                                         const VarDecl *D,
2043                                         llvm::GlobalVariable *Addr);
2044 
2045   void EmitCXXConstructExpr(const CXXConstructExpr *E, AggValueSlot Dest);
2046 
2047   void EmitSynthesizedCXXCopyCtor(llvm::Value *Dest, llvm::Value *Src,
2048                                   const Expr *Exp);
2049 
2050   RValue EmitExprWithCleanups(const ExprWithCleanups *E,
2051                               AggValueSlot Slot =AggValueSlot::ignored());
2052 
2053   void EmitCXXThrowExpr(const CXXThrowExpr *E);
2054 
2055   //===--------------------------------------------------------------------===//
2056   //                             Internal Helpers
2057   //===--------------------------------------------------------------------===//
2058 
2059   /// ContainsLabel - Return true if the statement contains a label in it.  If
2060   /// this statement is not executed normally, it not containing a label means
2061   /// that we can just remove the code.
2062   static bool ContainsLabel(const Stmt *S, bool IgnoreCaseStmts = false);
2063 
2064   /// containsBreak - Return true if the statement contains a break out of it.
2065   /// If the statement (recursively) contains a switch or loop with a break
2066   /// inside of it, this is fine.
2067   static bool containsBreak(const Stmt *S);
2068 
2069   /// ConstantFoldsToSimpleInteger - If the specified expression does not fold
2070   /// to a constant, or if it does but contains a label, return false.  If it
2071   /// constant folds return true and set the boolean result in Result.
2072   bool ConstantFoldsToSimpleInteger(const Expr *Cond, bool &Result);
2073 
2074   /// ConstantFoldsToSimpleInteger - If the specified expression does not fold
2075   /// to a constant, or if it does but contains a label, return false.  If it
2076   /// constant folds return true and set the folded value.
2077   bool ConstantFoldsToSimpleInteger(const Expr *Cond, llvm::APInt &Result);
2078 
2079   /// EmitBranchOnBoolExpr - Emit a branch on a boolean condition (e.g. for an
2080   /// if statement) to the specified blocks.  Based on the condition, this might
2081   /// try to simplify the codegen of the conditional based on the branch.
2082   void EmitBranchOnBoolExpr(const Expr *Cond, llvm::BasicBlock *TrueBlock,
2083                             llvm::BasicBlock *FalseBlock);
2084 
2085   /// getTrapBB - Create a basic block that will call the trap intrinsic.  We'll
2086   /// generate a branch around the created basic block as necessary.
2087   llvm::BasicBlock *getTrapBB();
2088 
2089   /// EmitCallArg - Emit a single call argument.
2090   void EmitCallArg(CallArgList &args, const Expr *E, QualType ArgType);
2091 
2092   /// EmitDelegateCallArg - We are performing a delegate call; that
2093   /// is, the current function is delegating to another one.  Produce
2094   /// a r-value suitable for passing the given parameter.
2095   void EmitDelegateCallArg(CallArgList &args, const VarDecl *param);
2096 
2097 private:
2098   void EmitReturnOfRValue(RValue RV, QualType Ty);
2099 
2100   /// ExpandTypeFromArgs - Reconstruct a structure of type \arg Ty
2101   /// from function arguments into \arg Dst. See ABIArgInfo::Expand.
2102   ///
2103   /// \param AI - The first function argument of the expansion.
2104   /// \return The argument following the last expanded function
2105   /// argument.
2106   llvm::Function::arg_iterator
2107   ExpandTypeFromArgs(QualType Ty, LValue Dst,
2108                      llvm::Function::arg_iterator AI);
2109 
2110   /// ExpandTypeToArgs - Expand an RValue \arg Src, with the LLVM type for \arg
2111   /// Ty, into individual arguments on the provided vector \arg Args. See
2112   /// ABIArgInfo::Expand.
2113   void ExpandTypeToArgs(QualType Ty, RValue Src,
2114                         llvm::SmallVector<llvm::Value*, 16> &Args);
2115 
2116   llvm::Value* EmitAsmInput(const AsmStmt &S,
2117                             const TargetInfo::ConstraintInfo &Info,
2118                             const Expr *InputExpr, std::string &ConstraintStr);
2119 
2120   llvm::Value* EmitAsmInputLValue(const AsmStmt &S,
2121                                   const TargetInfo::ConstraintInfo &Info,
2122                                   LValue InputValue, QualType InputType,
2123                                   std::string &ConstraintStr);
2124 
2125   /// EmitCallArgs - Emit call arguments for a function.
2126   /// The CallArgTypeInfo parameter is used for iterating over the known
2127   /// argument types of the function being called.
2128   template<typename T>
2129   void EmitCallArgs(CallArgList& Args, const T* CallArgTypeInfo,
2130                     CallExpr::const_arg_iterator ArgBeg,
2131                     CallExpr::const_arg_iterator ArgEnd) {
2132       CallExpr::const_arg_iterator Arg = ArgBeg;
2133 
2134     // First, use the argument types that the type info knows about
2135     if (CallArgTypeInfo) {
2136       for (typename T::arg_type_iterator I = CallArgTypeInfo->arg_type_begin(),
2137            E = CallArgTypeInfo->arg_type_end(); I != E; ++I, ++Arg) {
2138         assert(Arg != ArgEnd && "Running over edge of argument list!");
2139         QualType ArgType = *I;
2140 #ifndef NDEBUG
2141         QualType ActualArgType = Arg->getType();
2142         if (ArgType->isPointerType() && ActualArgType->isPointerType()) {
2143           QualType ActualBaseType =
2144             ActualArgType->getAs<PointerType>()->getPointeeType();
2145           QualType ArgBaseType =
2146             ArgType->getAs<PointerType>()->getPointeeType();
2147           if (ArgBaseType->isVariableArrayType()) {
2148             if (const VariableArrayType *VAT =
2149                 getContext().getAsVariableArrayType(ActualBaseType)) {
2150               if (!VAT->getSizeExpr())
2151                 ActualArgType = ArgType;
2152             }
2153           }
2154         }
2155         assert(getContext().getCanonicalType(ArgType.getNonReferenceType()).
2156                getTypePtr() ==
2157                getContext().getCanonicalType(ActualArgType).getTypePtr() &&
2158                "type mismatch in call argument!");
2159 #endif
2160         EmitCallArg(Args, *Arg, ArgType);
2161       }
2162 
2163       // Either we've emitted all the call args, or we have a call to a
2164       // variadic function.
2165       assert((Arg == ArgEnd || CallArgTypeInfo->isVariadic()) &&
2166              "Extra arguments in non-variadic function!");
2167 
2168     }
2169 
2170     // If we still have any arguments, emit them using the type of the argument.
2171     for (; Arg != ArgEnd; ++Arg)
2172       EmitCallArg(Args, *Arg, Arg->getType());
2173   }
2174 
2175   const TargetCodeGenInfo &getTargetHooks() const {
2176     return CGM.getTargetCodeGenInfo();
2177   }
2178 
2179   void EmitDeclMetadata();
2180 
2181   CodeGenModule::ByrefHelpers *
2182   buildByrefHelpers(const llvm::StructType &byrefType,
2183                     const AutoVarEmission &emission);
2184 };
2185 
2186 /// Helper class with most of the code for saving a value for a
2187 /// conditional expression cleanup.
2188 struct DominatingLLVMValue {
2189   typedef llvm::PointerIntPair<llvm::Value*, 1, bool> saved_type;
2190 
2191   /// Answer whether the given value needs extra work to be saved.
2192   static bool needsSaving(llvm::Value *value) {
2193     // If it's not an instruction, we don't need to save.
2194     if (!isa<llvm::Instruction>(value)) return false;
2195 
2196     // If it's an instruction in the entry block, we don't need to save.
2197     llvm::BasicBlock *block = cast<llvm::Instruction>(value)->getParent();
2198     return (block != &block->getParent()->getEntryBlock());
2199   }
2200 
2201   /// Try to save the given value.
2202   static saved_type save(CodeGenFunction &CGF, llvm::Value *value) {
2203     if (!needsSaving(value)) return saved_type(value, false);
2204 
2205     // Otherwise we need an alloca.
2206     llvm::Value *alloca =
2207       CGF.CreateTempAlloca(value->getType(), "cond-cleanup.save");
2208     CGF.Builder.CreateStore(value, alloca);
2209 
2210     return saved_type(alloca, true);
2211   }
2212 
2213   static llvm::Value *restore(CodeGenFunction &CGF, saved_type value) {
2214     if (!value.getInt()) return value.getPointer();
2215     return CGF.Builder.CreateLoad(value.getPointer());
2216   }
2217 };
2218 
2219 /// A partial specialization of DominatingValue for llvm::Values that
2220 /// might be llvm::Instructions.
2221 template <class T> struct DominatingPointer<T,true> : DominatingLLVMValue {
2222   typedef T *type;
2223   static type restore(CodeGenFunction &CGF, saved_type value) {
2224     return static_cast<T*>(DominatingLLVMValue::restore(CGF, value));
2225   }
2226 };
2227 
2228 /// A specialization of DominatingValue for RValue.
2229 template <> struct DominatingValue<RValue> {
2230   typedef RValue type;
2231   class saved_type {
2232     enum Kind { ScalarLiteral, ScalarAddress, AggregateLiteral,
2233                 AggregateAddress, ComplexAddress };
2234 
2235     llvm::Value *Value;
2236     Kind K;
2237     saved_type(llvm::Value *v, Kind k) : Value(v), K(k) {}
2238 
2239   public:
2240     static bool needsSaving(RValue value);
2241     static saved_type save(CodeGenFunction &CGF, RValue value);
2242     RValue restore(CodeGenFunction &CGF);
2243 
2244     // implementations in CGExprCXX.cpp
2245   };
2246 
2247   static bool needsSaving(type value) {
2248     return saved_type::needsSaving(value);
2249   }
2250   static saved_type save(CodeGenFunction &CGF, type value) {
2251     return saved_type::save(CGF, value);
2252   }
2253   static type restore(CodeGenFunction &CGF, saved_type value) {
2254     return value.restore(CGF);
2255   }
2256 };
2257 
2258 }  // end namespace CodeGen
2259 }  // end namespace clang
2260 
2261 #endif
2262