1 //===--- CodeGenFunction.cpp - Emit LLVM Code from ASTs for a Function ----===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This coordinates the per-function state used while generating code. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "CodeGenFunction.h" 15 #include "CGBlocks.h" 16 #include "CGCleanup.h" 17 #include "CGCUDARuntime.h" 18 #include "CGCXXABI.h" 19 #include "CGDebugInfo.h" 20 #include "CGOpenMPRuntime.h" 21 #include "CodeGenModule.h" 22 #include "CodeGenPGO.h" 23 #include "TargetInfo.h" 24 #include "clang/AST/ASTContext.h" 25 #include "clang/AST/Decl.h" 26 #include "clang/AST/DeclCXX.h" 27 #include "clang/AST/StmtCXX.h" 28 #include "clang/AST/StmtObjC.h" 29 #include "clang/Basic/Builtins.h" 30 #include "clang/Basic/TargetInfo.h" 31 #include "clang/CodeGen/CGFunctionInfo.h" 32 #include "clang/Frontend/CodeGenOptions.h" 33 #include "clang/Sema/SemaDiagnostic.h" 34 #include "llvm/IR/DataLayout.h" 35 #include "llvm/IR/Intrinsics.h" 36 #include "llvm/IR/MDBuilder.h" 37 #include "llvm/IR/Operator.h" 38 using namespace clang; 39 using namespace CodeGen; 40 41 /// shouldEmitLifetimeMarkers - Decide whether we need emit the life-time 42 /// markers. 43 static bool shouldEmitLifetimeMarkers(const CodeGenOptions &CGOpts, 44 const LangOptions &LangOpts) { 45 // Asan uses markers for use-after-scope checks. 46 if (CGOpts.SanitizeAddressUseAfterScope) 47 return true; 48 49 // Disable lifetime markers in msan builds. 50 // FIXME: Remove this when msan works with lifetime markers. 51 if (LangOpts.Sanitize.has(SanitizerKind::Memory)) 52 return false; 53 54 // For now, only in optimized builds. 55 return CGOpts.OptimizationLevel != 0; 56 } 57 58 CodeGenFunction::CodeGenFunction(CodeGenModule &cgm, bool suppressNewContext) 59 : CodeGenTypeCache(cgm), CGM(cgm), Target(cgm.getTarget()), 60 Builder(cgm, cgm.getModule().getContext(), llvm::ConstantFolder(), 61 CGBuilderInserterTy(this)), 62 CurFn(nullptr), ReturnValue(Address::invalid()), 63 CapturedStmtInfo(nullptr), SanOpts(CGM.getLangOpts().Sanitize), 64 IsSanitizerScope(false), CurFuncIsThunk(false), AutoreleaseResult(false), 65 SawAsmBlock(false), IsOutlinedSEHHelper(false), BlockInfo(nullptr), 66 BlockPointer(nullptr), LambdaThisCaptureField(nullptr), 67 NormalCleanupDest(nullptr), NextCleanupDestIndex(1), 68 FirstBlockInfo(nullptr), EHResumeBlock(nullptr), ExceptionSlot(nullptr), 69 EHSelectorSlot(nullptr), DebugInfo(CGM.getModuleDebugInfo()), 70 DisableDebugInfo(false), DidCallStackSave(false), IndirectBranch(nullptr), 71 PGO(cgm), SwitchInsn(nullptr), SwitchWeights(nullptr), 72 CaseRangeBlock(nullptr), UnreachableBlock(nullptr), NumReturnExprs(0), 73 NumSimpleReturnExprs(0), CXXABIThisDecl(nullptr), 74 CXXABIThisValue(nullptr), CXXThisValue(nullptr), 75 CXXStructorImplicitParamDecl(nullptr), 76 CXXStructorImplicitParamValue(nullptr), OutermostConditional(nullptr), 77 CurLexicalScope(nullptr), TerminateLandingPad(nullptr), 78 TerminateHandler(nullptr), TrapBB(nullptr), 79 ShouldEmitLifetimeMarkers( 80 shouldEmitLifetimeMarkers(CGM.getCodeGenOpts(), CGM.getLangOpts())) { 81 if (!suppressNewContext) 82 CGM.getCXXABI().getMangleContext().startNewFunction(); 83 84 llvm::FastMathFlags FMF; 85 if (CGM.getLangOpts().FastMath) 86 FMF.setUnsafeAlgebra(); 87 if (CGM.getLangOpts().FiniteMathOnly) { 88 FMF.setNoNaNs(); 89 FMF.setNoInfs(); 90 } 91 if (CGM.getCodeGenOpts().NoNaNsFPMath) { 92 FMF.setNoNaNs(); 93 } 94 if (CGM.getCodeGenOpts().NoSignedZeros) { 95 FMF.setNoSignedZeros(); 96 } 97 if (CGM.getCodeGenOpts().ReciprocalMath) { 98 FMF.setAllowReciprocal(); 99 } 100 Builder.setFastMathFlags(FMF); 101 } 102 103 CodeGenFunction::~CodeGenFunction() { 104 assert(LifetimeExtendedCleanupStack.empty() && "failed to emit a cleanup"); 105 106 // If there are any unclaimed block infos, go ahead and destroy them 107 // now. This can happen if IR-gen gets clever and skips evaluating 108 // something. 109 if (FirstBlockInfo) 110 destroyBlockInfos(FirstBlockInfo); 111 112 if (getLangOpts().OpenMP) { 113 CGM.getOpenMPRuntime().functionFinished(*this); 114 } 115 } 116 117 CharUnits CodeGenFunction::getNaturalPointeeTypeAlignment(QualType T, 118 AlignmentSource *Source) { 119 return getNaturalTypeAlignment(T->getPointeeType(), Source, 120 /*forPointee*/ true); 121 } 122 123 CharUnits CodeGenFunction::getNaturalTypeAlignment(QualType T, 124 AlignmentSource *Source, 125 bool forPointeeType) { 126 // Honor alignment typedef attributes even on incomplete types. 127 // We also honor them straight for C++ class types, even as pointees; 128 // there's an expressivity gap here. 129 if (auto TT = T->getAs<TypedefType>()) { 130 if (auto Align = TT->getDecl()->getMaxAlignment()) { 131 if (Source) *Source = AlignmentSource::AttributedType; 132 return getContext().toCharUnitsFromBits(Align); 133 } 134 } 135 136 if (Source) *Source = AlignmentSource::Type; 137 138 CharUnits Alignment; 139 if (T->isIncompleteType()) { 140 Alignment = CharUnits::One(); // Shouldn't be used, but pessimistic is best. 141 } else { 142 // For C++ class pointees, we don't know whether we're pointing at a 143 // base or a complete object, so we generally need to use the 144 // non-virtual alignment. 145 const CXXRecordDecl *RD; 146 if (forPointeeType && (RD = T->getAsCXXRecordDecl())) { 147 Alignment = CGM.getClassPointerAlignment(RD); 148 } else { 149 Alignment = getContext().getTypeAlignInChars(T); 150 } 151 152 // Cap to the global maximum type alignment unless the alignment 153 // was somehow explicit on the type. 154 if (unsigned MaxAlign = getLangOpts().MaxTypeAlign) { 155 if (Alignment.getQuantity() > MaxAlign && 156 !getContext().isAlignmentRequired(T)) 157 Alignment = CharUnits::fromQuantity(MaxAlign); 158 } 159 } 160 return Alignment; 161 } 162 163 LValue CodeGenFunction::MakeNaturalAlignAddrLValue(llvm::Value *V, QualType T) { 164 AlignmentSource AlignSource; 165 CharUnits Alignment = getNaturalTypeAlignment(T, &AlignSource); 166 return LValue::MakeAddr(Address(V, Alignment), T, getContext(), AlignSource, 167 CGM.getTBAAInfo(T)); 168 } 169 170 /// Given a value of type T* that may not be to a complete object, 171 /// construct an l-value with the natural pointee alignment of T. 172 LValue 173 CodeGenFunction::MakeNaturalAlignPointeeAddrLValue(llvm::Value *V, QualType T) { 174 AlignmentSource AlignSource; 175 CharUnits Align = getNaturalTypeAlignment(T, &AlignSource, /*pointee*/ true); 176 return MakeAddrLValue(Address(V, Align), T, AlignSource); 177 } 178 179 180 llvm::Type *CodeGenFunction::ConvertTypeForMem(QualType T) { 181 return CGM.getTypes().ConvertTypeForMem(T); 182 } 183 184 llvm::Type *CodeGenFunction::ConvertType(QualType T) { 185 return CGM.getTypes().ConvertType(T); 186 } 187 188 TypeEvaluationKind CodeGenFunction::getEvaluationKind(QualType type) { 189 type = type.getCanonicalType(); 190 while (true) { 191 switch (type->getTypeClass()) { 192 #define TYPE(name, parent) 193 #define ABSTRACT_TYPE(name, parent) 194 #define NON_CANONICAL_TYPE(name, parent) case Type::name: 195 #define DEPENDENT_TYPE(name, parent) case Type::name: 196 #define NON_CANONICAL_UNLESS_DEPENDENT_TYPE(name, parent) case Type::name: 197 #include "clang/AST/TypeNodes.def" 198 llvm_unreachable("non-canonical or dependent type in IR-generation"); 199 200 case Type::Auto: 201 llvm_unreachable("undeduced auto type in IR-generation"); 202 203 // Various scalar types. 204 case Type::Builtin: 205 case Type::Pointer: 206 case Type::BlockPointer: 207 case Type::LValueReference: 208 case Type::RValueReference: 209 case Type::MemberPointer: 210 case Type::Vector: 211 case Type::ExtVector: 212 case Type::FunctionProto: 213 case Type::FunctionNoProto: 214 case Type::Enum: 215 case Type::ObjCObjectPointer: 216 case Type::Pipe: 217 return TEK_Scalar; 218 219 // Complexes. 220 case Type::Complex: 221 return TEK_Complex; 222 223 // Arrays, records, and Objective-C objects. 224 case Type::ConstantArray: 225 case Type::IncompleteArray: 226 case Type::VariableArray: 227 case Type::Record: 228 case Type::ObjCObject: 229 case Type::ObjCInterface: 230 return TEK_Aggregate; 231 232 // We operate on atomic values according to their underlying type. 233 case Type::Atomic: 234 type = cast<AtomicType>(type)->getValueType(); 235 continue; 236 } 237 llvm_unreachable("unknown type kind!"); 238 } 239 } 240 241 llvm::DebugLoc CodeGenFunction::EmitReturnBlock() { 242 // For cleanliness, we try to avoid emitting the return block for 243 // simple cases. 244 llvm::BasicBlock *CurBB = Builder.GetInsertBlock(); 245 246 if (CurBB) { 247 assert(!CurBB->getTerminator() && "Unexpected terminated block."); 248 249 // We have a valid insert point, reuse it if it is empty or there are no 250 // explicit jumps to the return block. 251 if (CurBB->empty() || ReturnBlock.getBlock()->use_empty()) { 252 ReturnBlock.getBlock()->replaceAllUsesWith(CurBB); 253 delete ReturnBlock.getBlock(); 254 } else 255 EmitBlock(ReturnBlock.getBlock()); 256 return llvm::DebugLoc(); 257 } 258 259 // Otherwise, if the return block is the target of a single direct 260 // branch then we can just put the code in that block instead. This 261 // cleans up functions which started with a unified return block. 262 if (ReturnBlock.getBlock()->hasOneUse()) { 263 llvm::BranchInst *BI = 264 dyn_cast<llvm::BranchInst>(*ReturnBlock.getBlock()->user_begin()); 265 if (BI && BI->isUnconditional() && 266 BI->getSuccessor(0) == ReturnBlock.getBlock()) { 267 // Record/return the DebugLoc of the simple 'return' expression to be used 268 // later by the actual 'ret' instruction. 269 llvm::DebugLoc Loc = BI->getDebugLoc(); 270 Builder.SetInsertPoint(BI->getParent()); 271 BI->eraseFromParent(); 272 delete ReturnBlock.getBlock(); 273 return Loc; 274 } 275 } 276 277 // FIXME: We are at an unreachable point, there is no reason to emit the block 278 // unless it has uses. However, we still need a place to put the debug 279 // region.end for now. 280 281 EmitBlock(ReturnBlock.getBlock()); 282 return llvm::DebugLoc(); 283 } 284 285 static void EmitIfUsed(CodeGenFunction &CGF, llvm::BasicBlock *BB) { 286 if (!BB) return; 287 if (!BB->use_empty()) 288 return CGF.CurFn->getBasicBlockList().push_back(BB); 289 delete BB; 290 } 291 292 void CodeGenFunction::FinishFunction(SourceLocation EndLoc) { 293 assert(BreakContinueStack.empty() && 294 "mismatched push/pop in break/continue stack!"); 295 296 bool OnlySimpleReturnStmts = NumSimpleReturnExprs > 0 297 && NumSimpleReturnExprs == NumReturnExprs 298 && ReturnBlock.getBlock()->use_empty(); 299 // Usually the return expression is evaluated before the cleanup 300 // code. If the function contains only a simple return statement, 301 // such as a constant, the location before the cleanup code becomes 302 // the last useful breakpoint in the function, because the simple 303 // return expression will be evaluated after the cleanup code. To be 304 // safe, set the debug location for cleanup code to the location of 305 // the return statement. Otherwise the cleanup code should be at the 306 // end of the function's lexical scope. 307 // 308 // If there are multiple branches to the return block, the branch 309 // instructions will get the location of the return statements and 310 // all will be fine. 311 if (CGDebugInfo *DI = getDebugInfo()) { 312 if (OnlySimpleReturnStmts) 313 DI->EmitLocation(Builder, LastStopPoint); 314 else 315 DI->EmitLocation(Builder, EndLoc); 316 } 317 318 // Pop any cleanups that might have been associated with the 319 // parameters. Do this in whatever block we're currently in; it's 320 // important to do this before we enter the return block or return 321 // edges will be *really* confused. 322 bool HasCleanups = EHStack.stable_begin() != PrologueCleanupDepth; 323 bool HasOnlyLifetimeMarkers = 324 HasCleanups && EHStack.containsOnlyLifetimeMarkers(PrologueCleanupDepth); 325 bool EmitRetDbgLoc = !HasCleanups || HasOnlyLifetimeMarkers; 326 if (HasCleanups) { 327 // Make sure the line table doesn't jump back into the body for 328 // the ret after it's been at EndLoc. 329 if (CGDebugInfo *DI = getDebugInfo()) 330 if (OnlySimpleReturnStmts) 331 DI->EmitLocation(Builder, EndLoc); 332 333 PopCleanupBlocks(PrologueCleanupDepth); 334 } 335 336 // Emit function epilog (to return). 337 llvm::DebugLoc Loc = EmitReturnBlock(); 338 339 if (ShouldInstrumentFunction()) 340 EmitFunctionInstrumentation("__cyg_profile_func_exit"); 341 342 // Emit debug descriptor for function end. 343 if (CGDebugInfo *DI = getDebugInfo()) 344 DI->EmitFunctionEnd(Builder); 345 346 // Reset the debug location to that of the simple 'return' expression, if any 347 // rather than that of the end of the function's scope '}'. 348 ApplyDebugLocation AL(*this, Loc); 349 EmitFunctionEpilog(*CurFnInfo, EmitRetDbgLoc, EndLoc); 350 EmitEndEHSpec(CurCodeDecl); 351 352 assert(EHStack.empty() && 353 "did not remove all scopes from cleanup stack!"); 354 355 // If someone did an indirect goto, emit the indirect goto block at the end of 356 // the function. 357 if (IndirectBranch) { 358 EmitBlock(IndirectBranch->getParent()); 359 Builder.ClearInsertionPoint(); 360 } 361 362 // If some of our locals escaped, insert a call to llvm.localescape in the 363 // entry block. 364 if (!EscapedLocals.empty()) { 365 // Invert the map from local to index into a simple vector. There should be 366 // no holes. 367 SmallVector<llvm::Value *, 4> EscapeArgs; 368 EscapeArgs.resize(EscapedLocals.size()); 369 for (auto &Pair : EscapedLocals) 370 EscapeArgs[Pair.second] = Pair.first; 371 llvm::Function *FrameEscapeFn = llvm::Intrinsic::getDeclaration( 372 &CGM.getModule(), llvm::Intrinsic::localescape); 373 CGBuilderTy(*this, AllocaInsertPt).CreateCall(FrameEscapeFn, EscapeArgs); 374 } 375 376 // Remove the AllocaInsertPt instruction, which is just a convenience for us. 377 llvm::Instruction *Ptr = AllocaInsertPt; 378 AllocaInsertPt = nullptr; 379 Ptr->eraseFromParent(); 380 381 // If someone took the address of a label but never did an indirect goto, we 382 // made a zero entry PHI node, which is illegal, zap it now. 383 if (IndirectBranch) { 384 llvm::PHINode *PN = cast<llvm::PHINode>(IndirectBranch->getAddress()); 385 if (PN->getNumIncomingValues() == 0) { 386 PN->replaceAllUsesWith(llvm::UndefValue::get(PN->getType())); 387 PN->eraseFromParent(); 388 } 389 } 390 391 EmitIfUsed(*this, EHResumeBlock); 392 EmitIfUsed(*this, TerminateLandingPad); 393 EmitIfUsed(*this, TerminateHandler); 394 EmitIfUsed(*this, UnreachableBlock); 395 396 if (CGM.getCodeGenOpts().EmitDeclMetadata) 397 EmitDeclMetadata(); 398 399 for (SmallVectorImpl<std::pair<llvm::Instruction *, llvm::Value *> >::iterator 400 I = DeferredReplacements.begin(), 401 E = DeferredReplacements.end(); 402 I != E; ++I) { 403 I->first->replaceAllUsesWith(I->second); 404 I->first->eraseFromParent(); 405 } 406 } 407 408 /// ShouldInstrumentFunction - Return true if the current function should be 409 /// instrumented with __cyg_profile_func_* calls 410 bool CodeGenFunction::ShouldInstrumentFunction() { 411 if (!CGM.getCodeGenOpts().InstrumentFunctions) 412 return false; 413 if (!CurFuncDecl || CurFuncDecl->hasAttr<NoInstrumentFunctionAttr>()) 414 return false; 415 return true; 416 } 417 418 /// ShouldXRayInstrument - Return true if the current function should be 419 /// instrumented with XRay nop sleds. 420 bool CodeGenFunction::ShouldXRayInstrumentFunction() const { 421 return CGM.getCodeGenOpts().XRayInstrumentFunctions; 422 } 423 424 /// EmitFunctionInstrumentation - Emit LLVM code to call the specified 425 /// instrumentation function with the current function and the call site, if 426 /// function instrumentation is enabled. 427 void CodeGenFunction::EmitFunctionInstrumentation(const char *Fn) { 428 auto NL = ApplyDebugLocation::CreateArtificial(*this); 429 // void __cyg_profile_func_{enter,exit} (void *this_fn, void *call_site); 430 llvm::PointerType *PointerTy = Int8PtrTy; 431 llvm::Type *ProfileFuncArgs[] = { PointerTy, PointerTy }; 432 llvm::FunctionType *FunctionTy = 433 llvm::FunctionType::get(VoidTy, ProfileFuncArgs, false); 434 435 llvm::Constant *F = CGM.CreateRuntimeFunction(FunctionTy, Fn); 436 llvm::CallInst *CallSite = Builder.CreateCall( 437 CGM.getIntrinsic(llvm::Intrinsic::returnaddress), 438 llvm::ConstantInt::get(Int32Ty, 0), 439 "callsite"); 440 441 llvm::Value *args[] = { 442 llvm::ConstantExpr::getBitCast(CurFn, PointerTy), 443 CallSite 444 }; 445 446 EmitNounwindRuntimeCall(F, args); 447 } 448 449 static void removeImageAccessQualifier(std::string& TyName) { 450 std::string ReadOnlyQual("__read_only"); 451 std::string::size_type ReadOnlyPos = TyName.find(ReadOnlyQual); 452 if (ReadOnlyPos != std::string::npos) 453 // "+ 1" for the space after access qualifier. 454 TyName.erase(ReadOnlyPos, ReadOnlyQual.size() + 1); 455 else { 456 std::string WriteOnlyQual("__write_only"); 457 std::string::size_type WriteOnlyPos = TyName.find(WriteOnlyQual); 458 if (WriteOnlyPos != std::string::npos) 459 TyName.erase(WriteOnlyPos, WriteOnlyQual.size() + 1); 460 else { 461 std::string ReadWriteQual("__read_write"); 462 std::string::size_type ReadWritePos = TyName.find(ReadWriteQual); 463 if (ReadWritePos != std::string::npos) 464 TyName.erase(ReadWritePos, ReadWriteQual.size() + 1); 465 } 466 } 467 } 468 469 // Returns the address space id that should be produced to the 470 // kernel_arg_addr_space metadata. This is always fixed to the ids 471 // as specified in the SPIR 2.0 specification in order to differentiate 472 // for example in clGetKernelArgInfo() implementation between the address 473 // spaces with targets without unique mapping to the OpenCL address spaces 474 // (basically all single AS CPUs). 475 static unsigned ArgInfoAddressSpace(unsigned LangAS) { 476 switch (LangAS) { 477 case LangAS::opencl_global: return 1; 478 case LangAS::opencl_constant: return 2; 479 case LangAS::opencl_local: return 3; 480 case LangAS::opencl_generic: return 4; // Not in SPIR 2.0 specs. 481 default: 482 return 0; // Assume private. 483 } 484 } 485 486 // OpenCL v1.2 s5.6.4.6 allows the compiler to store kernel argument 487 // information in the program executable. The argument information stored 488 // includes the argument name, its type, the address and access qualifiers used. 489 static void GenOpenCLArgMetadata(const FunctionDecl *FD, llvm::Function *Fn, 490 CodeGenModule &CGM, llvm::LLVMContext &Context, 491 CGBuilderTy &Builder, ASTContext &ASTCtx) { 492 // Create MDNodes that represent the kernel arg metadata. 493 // Each MDNode is a list in the form of "key", N number of values which is 494 // the same number of values as their are kernel arguments. 495 496 const PrintingPolicy &Policy = ASTCtx.getPrintingPolicy(); 497 498 // MDNode for the kernel argument address space qualifiers. 499 SmallVector<llvm::Metadata *, 8> addressQuals; 500 501 // MDNode for the kernel argument access qualifiers (images only). 502 SmallVector<llvm::Metadata *, 8> accessQuals; 503 504 // MDNode for the kernel argument type names. 505 SmallVector<llvm::Metadata *, 8> argTypeNames; 506 507 // MDNode for the kernel argument base type names. 508 SmallVector<llvm::Metadata *, 8> argBaseTypeNames; 509 510 // MDNode for the kernel argument type qualifiers. 511 SmallVector<llvm::Metadata *, 8> argTypeQuals; 512 513 // MDNode for the kernel argument names. 514 SmallVector<llvm::Metadata *, 8> argNames; 515 516 for (unsigned i = 0, e = FD->getNumParams(); i != e; ++i) { 517 const ParmVarDecl *parm = FD->getParamDecl(i); 518 QualType ty = parm->getType(); 519 std::string typeQuals; 520 521 if (ty->isPointerType()) { 522 QualType pointeeTy = ty->getPointeeType(); 523 524 // Get address qualifier. 525 addressQuals.push_back(llvm::ConstantAsMetadata::get(Builder.getInt32( 526 ArgInfoAddressSpace(pointeeTy.getAddressSpace())))); 527 528 // Get argument type name. 529 std::string typeName = 530 pointeeTy.getUnqualifiedType().getAsString(Policy) + "*"; 531 532 // Turn "unsigned type" to "utype" 533 std::string::size_type pos = typeName.find("unsigned"); 534 if (pointeeTy.isCanonical() && pos != std::string::npos) 535 typeName.erase(pos+1, 8); 536 537 argTypeNames.push_back(llvm::MDString::get(Context, typeName)); 538 539 std::string baseTypeName = 540 pointeeTy.getUnqualifiedType().getCanonicalType().getAsString( 541 Policy) + 542 "*"; 543 544 // Turn "unsigned type" to "utype" 545 pos = baseTypeName.find("unsigned"); 546 if (pos != std::string::npos) 547 baseTypeName.erase(pos+1, 8); 548 549 argBaseTypeNames.push_back(llvm::MDString::get(Context, baseTypeName)); 550 551 // Get argument type qualifiers: 552 if (ty.isRestrictQualified()) 553 typeQuals = "restrict"; 554 if (pointeeTy.isConstQualified() || 555 (pointeeTy.getAddressSpace() == LangAS::opencl_constant)) 556 typeQuals += typeQuals.empty() ? "const" : " const"; 557 if (pointeeTy.isVolatileQualified()) 558 typeQuals += typeQuals.empty() ? "volatile" : " volatile"; 559 } else { 560 uint32_t AddrSpc = 0; 561 bool isPipe = ty->isPipeType(); 562 if (ty->isImageType() || isPipe) 563 AddrSpc = ArgInfoAddressSpace(LangAS::opencl_global); 564 565 addressQuals.push_back( 566 llvm::ConstantAsMetadata::get(Builder.getInt32(AddrSpc))); 567 568 // Get argument type name. 569 std::string typeName; 570 if (isPipe) 571 typeName = ty.getCanonicalType()->getAs<PipeType>()->getElementType() 572 .getAsString(Policy); 573 else 574 typeName = ty.getUnqualifiedType().getAsString(Policy); 575 576 // Turn "unsigned type" to "utype" 577 std::string::size_type pos = typeName.find("unsigned"); 578 if (ty.isCanonical() && pos != std::string::npos) 579 typeName.erase(pos+1, 8); 580 581 std::string baseTypeName; 582 if (isPipe) 583 baseTypeName = ty.getCanonicalType()->getAs<PipeType>() 584 ->getElementType().getCanonicalType() 585 .getAsString(Policy); 586 else 587 baseTypeName = 588 ty.getUnqualifiedType().getCanonicalType().getAsString(Policy); 589 590 // Remove access qualifiers on images 591 // (as they are inseparable from type in clang implementation, 592 // but OpenCL spec provides a special query to get access qualifier 593 // via clGetKernelArgInfo with CL_KERNEL_ARG_ACCESS_QUALIFIER): 594 if (ty->isImageType()) { 595 removeImageAccessQualifier(typeName); 596 removeImageAccessQualifier(baseTypeName); 597 } 598 599 argTypeNames.push_back(llvm::MDString::get(Context, typeName)); 600 601 // Turn "unsigned type" to "utype" 602 pos = baseTypeName.find("unsigned"); 603 if (pos != std::string::npos) 604 baseTypeName.erase(pos+1, 8); 605 606 argBaseTypeNames.push_back(llvm::MDString::get(Context, baseTypeName)); 607 608 // Get argument type qualifiers: 609 if (ty.isConstQualified()) 610 typeQuals = "const"; 611 if (ty.isVolatileQualified()) 612 typeQuals += typeQuals.empty() ? "volatile" : " volatile"; 613 if (isPipe) 614 typeQuals = "pipe"; 615 } 616 617 argTypeQuals.push_back(llvm::MDString::get(Context, typeQuals)); 618 619 // Get image and pipe access qualifier: 620 if (ty->isImageType()|| ty->isPipeType()) { 621 const OpenCLAccessAttr *A = parm->getAttr<OpenCLAccessAttr>(); 622 if (A && A->isWriteOnly()) 623 accessQuals.push_back(llvm::MDString::get(Context, "write_only")); 624 else if (A && A->isReadWrite()) 625 accessQuals.push_back(llvm::MDString::get(Context, "read_write")); 626 else 627 accessQuals.push_back(llvm::MDString::get(Context, "read_only")); 628 } else 629 accessQuals.push_back(llvm::MDString::get(Context, "none")); 630 631 // Get argument name. 632 argNames.push_back(llvm::MDString::get(Context, parm->getName())); 633 } 634 635 Fn->setMetadata("kernel_arg_addr_space", 636 llvm::MDNode::get(Context, addressQuals)); 637 Fn->setMetadata("kernel_arg_access_qual", 638 llvm::MDNode::get(Context, accessQuals)); 639 Fn->setMetadata("kernel_arg_type", 640 llvm::MDNode::get(Context, argTypeNames)); 641 Fn->setMetadata("kernel_arg_base_type", 642 llvm::MDNode::get(Context, argBaseTypeNames)); 643 Fn->setMetadata("kernel_arg_type_qual", 644 llvm::MDNode::get(Context, argTypeQuals)); 645 if (CGM.getCodeGenOpts().EmitOpenCLArgMetadata) 646 Fn->setMetadata("kernel_arg_name", 647 llvm::MDNode::get(Context, argNames)); 648 } 649 650 void CodeGenFunction::EmitOpenCLKernelMetadata(const FunctionDecl *FD, 651 llvm::Function *Fn) 652 { 653 if (!FD->hasAttr<OpenCLKernelAttr>()) 654 return; 655 656 llvm::LLVMContext &Context = getLLVMContext(); 657 658 GenOpenCLArgMetadata(FD, Fn, CGM, Context, Builder, getContext()); 659 660 if (const VecTypeHintAttr *A = FD->getAttr<VecTypeHintAttr>()) { 661 QualType hintQTy = A->getTypeHint(); 662 const ExtVectorType *hintEltQTy = hintQTy->getAs<ExtVectorType>(); 663 bool isSignedInteger = 664 hintQTy->isSignedIntegerType() || 665 (hintEltQTy && hintEltQTy->getElementType()->isSignedIntegerType()); 666 llvm::Metadata *attrMDArgs[] = { 667 llvm::ConstantAsMetadata::get(llvm::UndefValue::get( 668 CGM.getTypes().ConvertType(A->getTypeHint()))), 669 llvm::ConstantAsMetadata::get(llvm::ConstantInt::get( 670 llvm::IntegerType::get(Context, 32), 671 llvm::APInt(32, (uint64_t)(isSignedInteger ? 1 : 0))))}; 672 Fn->setMetadata("vec_type_hint", llvm::MDNode::get(Context, attrMDArgs)); 673 } 674 675 if (const WorkGroupSizeHintAttr *A = FD->getAttr<WorkGroupSizeHintAttr>()) { 676 llvm::Metadata *attrMDArgs[] = { 677 llvm::ConstantAsMetadata::get(Builder.getInt32(A->getXDim())), 678 llvm::ConstantAsMetadata::get(Builder.getInt32(A->getYDim())), 679 llvm::ConstantAsMetadata::get(Builder.getInt32(A->getZDim()))}; 680 Fn->setMetadata("work_group_size_hint", llvm::MDNode::get(Context, attrMDArgs)); 681 } 682 683 if (const ReqdWorkGroupSizeAttr *A = FD->getAttr<ReqdWorkGroupSizeAttr>()) { 684 llvm::Metadata *attrMDArgs[] = { 685 llvm::ConstantAsMetadata::get(Builder.getInt32(A->getXDim())), 686 llvm::ConstantAsMetadata::get(Builder.getInt32(A->getYDim())), 687 llvm::ConstantAsMetadata::get(Builder.getInt32(A->getZDim()))}; 688 Fn->setMetadata("reqd_work_group_size", llvm::MDNode::get(Context, attrMDArgs)); 689 } 690 } 691 692 /// Determine whether the function F ends with a return stmt. 693 static bool endsWithReturn(const Decl* F) { 694 const Stmt *Body = nullptr; 695 if (auto *FD = dyn_cast_or_null<FunctionDecl>(F)) 696 Body = FD->getBody(); 697 else if (auto *OMD = dyn_cast_or_null<ObjCMethodDecl>(F)) 698 Body = OMD->getBody(); 699 700 if (auto *CS = dyn_cast_or_null<CompoundStmt>(Body)) { 701 auto LastStmt = CS->body_rbegin(); 702 if (LastStmt != CS->body_rend()) 703 return isa<ReturnStmt>(*LastStmt); 704 } 705 return false; 706 } 707 708 void CodeGenFunction::StartFunction(GlobalDecl GD, 709 QualType RetTy, 710 llvm::Function *Fn, 711 const CGFunctionInfo &FnInfo, 712 const FunctionArgList &Args, 713 SourceLocation Loc, 714 SourceLocation StartLoc) { 715 assert(!CurFn && 716 "Do not use a CodeGenFunction object for more than one function"); 717 718 const Decl *D = GD.getDecl(); 719 720 DidCallStackSave = false; 721 CurCodeDecl = D; 722 if (const auto *FD = dyn_cast_or_null<FunctionDecl>(D)) 723 if (FD->usesSEHTry()) 724 CurSEHParent = FD; 725 CurFuncDecl = (D ? D->getNonClosureContext() : nullptr); 726 FnRetTy = RetTy; 727 CurFn = Fn; 728 CurFnInfo = &FnInfo; 729 assert(CurFn->isDeclaration() && "Function already has body?"); 730 731 if (CGM.isInSanitizerBlacklist(Fn, Loc)) 732 SanOpts.clear(); 733 734 if (D) { 735 // Apply the no_sanitize* attributes to SanOpts. 736 for (auto Attr : D->specific_attrs<NoSanitizeAttr>()) 737 SanOpts.Mask &= ~Attr->getMask(); 738 } 739 740 // Apply sanitizer attributes to the function. 741 if (SanOpts.hasOneOf(SanitizerKind::Address | SanitizerKind::KernelAddress)) 742 Fn->addFnAttr(llvm::Attribute::SanitizeAddress); 743 if (SanOpts.has(SanitizerKind::Thread)) 744 Fn->addFnAttr(llvm::Attribute::SanitizeThread); 745 if (SanOpts.has(SanitizerKind::Memory)) 746 Fn->addFnAttr(llvm::Attribute::SanitizeMemory); 747 if (SanOpts.has(SanitizerKind::SafeStack)) 748 Fn->addFnAttr(llvm::Attribute::SafeStack); 749 750 // Ignore TSan memory acesses from within ObjC/ObjC++ dealloc, initialize, 751 // .cxx_destruct and all of their calees at run time. 752 if (SanOpts.has(SanitizerKind::Thread)) { 753 if (const auto *OMD = dyn_cast_or_null<ObjCMethodDecl>(D)) { 754 IdentifierInfo *II = OMD->getSelector().getIdentifierInfoForSlot(0); 755 if (OMD->getMethodFamily() == OMF_dealloc || 756 OMD->getMethodFamily() == OMF_initialize || 757 (OMD->getSelector().isUnarySelector() && II->isStr(".cxx_destruct"))) { 758 Fn->addFnAttr("sanitize_thread_no_checking_at_run_time"); 759 Fn->removeFnAttr(llvm::Attribute::SanitizeThread); 760 } 761 } 762 } 763 764 // Apply xray attributes to the function (as a string, for now) 765 if (D && ShouldXRayInstrumentFunction()) { 766 if (const auto *XRayAttr = D->getAttr<XRayInstrumentAttr>()) { 767 if (XRayAttr->alwaysXRayInstrument()) 768 Fn->addFnAttr("function-instrument", "xray-always"); 769 if (XRayAttr->neverXRayInstrument()) 770 Fn->addFnAttr("function-instrument", "xray-never"); 771 } else { 772 Fn->addFnAttr( 773 "xray-instruction-threshold", 774 llvm::itostr(CGM.getCodeGenOpts().XRayInstructionThreshold)); 775 } 776 } 777 778 if (const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D)) 779 if (CGM.getLangOpts().OpenMP && FD->hasAttr<OMPDeclareSimdDeclAttr>()) 780 CGM.getOpenMPRuntime().emitDeclareSimdFunction(FD, Fn); 781 782 // Add no-jump-tables value. 783 Fn->addFnAttr("no-jump-tables", 784 llvm::toStringRef(CGM.getCodeGenOpts().NoUseJumpTables)); 785 786 if (getLangOpts().OpenCL) { 787 // Add metadata for a kernel function. 788 if (const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D)) 789 EmitOpenCLKernelMetadata(FD, Fn); 790 } 791 792 // If we are checking function types, emit a function type signature as 793 // prologue data. 794 if (getLangOpts().CPlusPlus && SanOpts.has(SanitizerKind::Function)) { 795 if (const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D)) { 796 if (llvm::Constant *PrologueSig = 797 CGM.getTargetCodeGenInfo().getUBSanFunctionSignature(CGM)) { 798 llvm::Constant *FTRTTIConst = 799 CGM.GetAddrOfRTTIDescriptor(FD->getType(), /*ForEH=*/true); 800 llvm::Constant *PrologueStructElems[] = { PrologueSig, FTRTTIConst }; 801 llvm::Constant *PrologueStructConst = 802 llvm::ConstantStruct::getAnon(PrologueStructElems, /*Packed=*/true); 803 Fn->setPrologueData(PrologueStructConst); 804 } 805 } 806 } 807 808 // If we're in C++ mode and the function name is "main", it is guaranteed 809 // to be norecurse by the standard (3.6.1.3 "The function main shall not be 810 // used within a program"). 811 if (getLangOpts().CPlusPlus) 812 if (const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D)) 813 if (FD->isMain()) 814 Fn->addFnAttr(llvm::Attribute::NoRecurse); 815 816 llvm::BasicBlock *EntryBB = createBasicBlock("entry", CurFn); 817 818 // Create a marker to make it easy to insert allocas into the entryblock 819 // later. Don't create this with the builder, because we don't want it 820 // folded. 821 llvm::Value *Undef = llvm::UndefValue::get(Int32Ty); 822 AllocaInsertPt = new llvm::BitCastInst(Undef, Int32Ty, "allocapt", EntryBB); 823 824 ReturnBlock = getJumpDestInCurrentScope("return"); 825 826 Builder.SetInsertPoint(EntryBB); 827 828 // Emit subprogram debug descriptor. 829 if (CGDebugInfo *DI = getDebugInfo()) { 830 // Reconstruct the type from the argument list so that implicit parameters, 831 // such as 'this' and 'vtt', show up in the debug info. Preserve the calling 832 // convention. 833 CallingConv CC = CallingConv::CC_C; 834 if (auto *FD = dyn_cast_or_null<FunctionDecl>(D)) 835 if (const auto *SrcFnTy = FD->getType()->getAs<FunctionType>()) 836 CC = SrcFnTy->getCallConv(); 837 SmallVector<QualType, 16> ArgTypes; 838 for (const VarDecl *VD : Args) 839 ArgTypes.push_back(VD->getType()); 840 QualType FnType = getContext().getFunctionType( 841 RetTy, ArgTypes, FunctionProtoType::ExtProtoInfo(CC)); 842 DI->EmitFunctionStart(GD, Loc, StartLoc, FnType, CurFn, Builder); 843 } 844 845 if (ShouldInstrumentFunction()) 846 EmitFunctionInstrumentation("__cyg_profile_func_enter"); 847 848 // Since emitting the mcount call here impacts optimizations such as function 849 // inlining, we just add an attribute to insert a mcount call in backend. 850 // The attribute "counting-function" is set to mcount function name which is 851 // architecture dependent. 852 if (CGM.getCodeGenOpts().InstrumentForProfiling) 853 Fn->addFnAttr("counting-function", getTarget().getMCountName()); 854 855 if (RetTy->isVoidType()) { 856 // Void type; nothing to return. 857 ReturnValue = Address::invalid(); 858 859 // Count the implicit return. 860 if (!endsWithReturn(D)) 861 ++NumReturnExprs; 862 } else if (CurFnInfo->getReturnInfo().getKind() == ABIArgInfo::Indirect && 863 !hasScalarEvaluationKind(CurFnInfo->getReturnType())) { 864 // Indirect aggregate return; emit returned value directly into sret slot. 865 // This reduces code size, and affects correctness in C++. 866 auto AI = CurFn->arg_begin(); 867 if (CurFnInfo->getReturnInfo().isSRetAfterThis()) 868 ++AI; 869 ReturnValue = Address(&*AI, CurFnInfo->getReturnInfo().getIndirectAlign()); 870 } else if (CurFnInfo->getReturnInfo().getKind() == ABIArgInfo::InAlloca && 871 !hasScalarEvaluationKind(CurFnInfo->getReturnType())) { 872 // Load the sret pointer from the argument struct and return into that. 873 unsigned Idx = CurFnInfo->getReturnInfo().getInAllocaFieldIndex(); 874 llvm::Function::arg_iterator EI = CurFn->arg_end(); 875 --EI; 876 llvm::Value *Addr = Builder.CreateStructGEP(nullptr, &*EI, Idx); 877 Addr = Builder.CreateAlignedLoad(Addr, getPointerAlign(), "agg.result"); 878 ReturnValue = Address(Addr, getNaturalTypeAlignment(RetTy)); 879 } else { 880 ReturnValue = CreateIRTemp(RetTy, "retval"); 881 882 // Tell the epilog emitter to autorelease the result. We do this 883 // now so that various specialized functions can suppress it 884 // during their IR-generation. 885 if (getLangOpts().ObjCAutoRefCount && 886 !CurFnInfo->isReturnsRetained() && 887 RetTy->isObjCRetainableType()) 888 AutoreleaseResult = true; 889 } 890 891 EmitStartEHSpec(CurCodeDecl); 892 893 PrologueCleanupDepth = EHStack.stable_begin(); 894 EmitFunctionProlog(*CurFnInfo, CurFn, Args); 895 896 if (D && isa<CXXMethodDecl>(D) && cast<CXXMethodDecl>(D)->isInstance()) { 897 CGM.getCXXABI().EmitInstanceFunctionProlog(*this); 898 const CXXMethodDecl *MD = cast<CXXMethodDecl>(D); 899 if (MD->getParent()->isLambda() && 900 MD->getOverloadedOperator() == OO_Call) { 901 // We're in a lambda; figure out the captures. 902 MD->getParent()->getCaptureFields(LambdaCaptureFields, 903 LambdaThisCaptureField); 904 if (LambdaThisCaptureField) { 905 // If the lambda captures the object referred to by '*this' - either by 906 // value or by reference, make sure CXXThisValue points to the correct 907 // object. 908 909 // Get the lvalue for the field (which is a copy of the enclosing object 910 // or contains the address of the enclosing object). 911 LValue ThisFieldLValue = EmitLValueForLambdaField(LambdaThisCaptureField); 912 if (!LambdaThisCaptureField->getType()->isPointerType()) { 913 // If the enclosing object was captured by value, just use its address. 914 CXXThisValue = ThisFieldLValue.getAddress().getPointer(); 915 } else { 916 // Load the lvalue pointed to by the field, since '*this' was captured 917 // by reference. 918 CXXThisValue = 919 EmitLoadOfLValue(ThisFieldLValue, SourceLocation()).getScalarVal(); 920 } 921 } 922 for (auto *FD : MD->getParent()->fields()) { 923 if (FD->hasCapturedVLAType()) { 924 auto *ExprArg = EmitLoadOfLValue(EmitLValueForLambdaField(FD), 925 SourceLocation()).getScalarVal(); 926 auto VAT = FD->getCapturedVLAType(); 927 VLASizeMap[VAT->getSizeExpr()] = ExprArg; 928 } 929 } 930 } else { 931 // Not in a lambda; just use 'this' from the method. 932 // FIXME: Should we generate a new load for each use of 'this'? The 933 // fast register allocator would be happier... 934 CXXThisValue = CXXABIThisValue; 935 } 936 } 937 938 // If any of the arguments have a variably modified type, make sure to 939 // emit the type size. 940 for (FunctionArgList::const_iterator i = Args.begin(), e = Args.end(); 941 i != e; ++i) { 942 const VarDecl *VD = *i; 943 944 // Dig out the type as written from ParmVarDecls; it's unclear whether 945 // the standard (C99 6.9.1p10) requires this, but we're following the 946 // precedent set by gcc. 947 QualType Ty; 948 if (const ParmVarDecl *PVD = dyn_cast<ParmVarDecl>(VD)) 949 Ty = PVD->getOriginalType(); 950 else 951 Ty = VD->getType(); 952 953 if (Ty->isVariablyModifiedType()) 954 EmitVariablyModifiedType(Ty); 955 } 956 // Emit a location at the end of the prologue. 957 if (CGDebugInfo *DI = getDebugInfo()) 958 DI->EmitLocation(Builder, StartLoc); 959 } 960 961 void CodeGenFunction::EmitFunctionBody(FunctionArgList &Args, 962 const Stmt *Body) { 963 incrementProfileCounter(Body); 964 if (const CompoundStmt *S = dyn_cast<CompoundStmt>(Body)) 965 EmitCompoundStmtWithoutScope(*S); 966 else 967 EmitStmt(Body); 968 } 969 970 /// When instrumenting to collect profile data, the counts for some blocks 971 /// such as switch cases need to not include the fall-through counts, so 972 /// emit a branch around the instrumentation code. When not instrumenting, 973 /// this just calls EmitBlock(). 974 void CodeGenFunction::EmitBlockWithFallThrough(llvm::BasicBlock *BB, 975 const Stmt *S) { 976 llvm::BasicBlock *SkipCountBB = nullptr; 977 if (HaveInsertPoint() && CGM.getCodeGenOpts().hasProfileClangInstr()) { 978 // When instrumenting for profiling, the fallthrough to certain 979 // statements needs to skip over the instrumentation code so that we 980 // get an accurate count. 981 SkipCountBB = createBasicBlock("skipcount"); 982 EmitBranch(SkipCountBB); 983 } 984 EmitBlock(BB); 985 uint64_t CurrentCount = getCurrentProfileCount(); 986 incrementProfileCounter(S); 987 setCurrentProfileCount(getCurrentProfileCount() + CurrentCount); 988 if (SkipCountBB) 989 EmitBlock(SkipCountBB); 990 } 991 992 /// Tries to mark the given function nounwind based on the 993 /// non-existence of any throwing calls within it. We believe this is 994 /// lightweight enough to do at -O0. 995 static void TryMarkNoThrow(llvm::Function *F) { 996 // LLVM treats 'nounwind' on a function as part of the type, so we 997 // can't do this on functions that can be overwritten. 998 if (F->isInterposable()) return; 999 1000 for (llvm::BasicBlock &BB : *F) 1001 for (llvm::Instruction &I : BB) 1002 if (I.mayThrow()) 1003 return; 1004 1005 F->setDoesNotThrow(); 1006 } 1007 1008 QualType CodeGenFunction::BuildFunctionArgList(GlobalDecl GD, 1009 FunctionArgList &Args) { 1010 const FunctionDecl *FD = cast<FunctionDecl>(GD.getDecl()); 1011 QualType ResTy = FD->getReturnType(); 1012 1013 const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(FD); 1014 if (MD && MD->isInstance()) { 1015 if (CGM.getCXXABI().HasThisReturn(GD)) 1016 ResTy = MD->getThisType(getContext()); 1017 else if (CGM.getCXXABI().hasMostDerivedReturn(GD)) 1018 ResTy = CGM.getContext().VoidPtrTy; 1019 CGM.getCXXABI().buildThisParam(*this, Args); 1020 } 1021 1022 // The base version of an inheriting constructor whose constructed base is a 1023 // virtual base is not passed any arguments (because it doesn't actually call 1024 // the inherited constructor). 1025 bool PassedParams = true; 1026 if (const CXXConstructorDecl *CD = dyn_cast<CXXConstructorDecl>(FD)) 1027 if (auto Inherited = CD->getInheritedConstructor()) 1028 PassedParams = 1029 getTypes().inheritingCtorHasParams(Inherited, GD.getCtorType()); 1030 1031 if (PassedParams) { 1032 for (auto *Param : FD->parameters()) { 1033 Args.push_back(Param); 1034 if (!Param->hasAttr<PassObjectSizeAttr>()) 1035 continue; 1036 1037 IdentifierInfo *NoID = nullptr; 1038 auto *Implicit = ImplicitParamDecl::Create( 1039 getContext(), Param->getDeclContext(), Param->getLocation(), NoID, 1040 getContext().getSizeType()); 1041 SizeArguments[Param] = Implicit; 1042 Args.push_back(Implicit); 1043 } 1044 } 1045 1046 if (MD && (isa<CXXConstructorDecl>(MD) || isa<CXXDestructorDecl>(MD))) 1047 CGM.getCXXABI().addImplicitStructorParams(*this, ResTy, Args); 1048 1049 return ResTy; 1050 } 1051 1052 void CodeGenFunction::GenerateCode(GlobalDecl GD, llvm::Function *Fn, 1053 const CGFunctionInfo &FnInfo) { 1054 const FunctionDecl *FD = cast<FunctionDecl>(GD.getDecl()); 1055 CurGD = GD; 1056 1057 FunctionArgList Args; 1058 QualType ResTy = BuildFunctionArgList(GD, Args); 1059 1060 // Check if we should generate debug info for this function. 1061 if (FD->hasAttr<NoDebugAttr>()) 1062 DebugInfo = nullptr; // disable debug info indefinitely for this function 1063 1064 SourceRange BodyRange; 1065 if (Stmt *Body = FD->getBody()) BodyRange = Body->getSourceRange(); 1066 CurEHLocation = BodyRange.getEnd(); 1067 1068 // Use the location of the start of the function to determine where 1069 // the function definition is located. By default use the location 1070 // of the declaration as the location for the subprogram. A function 1071 // may lack a declaration in the source code if it is created by code 1072 // gen. (examples: _GLOBAL__I_a, __cxx_global_array_dtor, thunk). 1073 SourceLocation Loc = FD->getLocation(); 1074 1075 // If this is a function specialization then use the pattern body 1076 // as the location for the function. 1077 if (const FunctionDecl *SpecDecl = FD->getTemplateInstantiationPattern()) 1078 if (SpecDecl->hasBody(SpecDecl)) 1079 Loc = SpecDecl->getLocation(); 1080 1081 Stmt *Body = FD->getBody(); 1082 1083 // Initialize helper which will detect jumps which can cause invalid lifetime 1084 // markers. 1085 if (Body && ShouldEmitLifetimeMarkers) 1086 Bypasses.Init(Body); 1087 1088 // Emit the standard function prologue. 1089 StartFunction(GD, ResTy, Fn, FnInfo, Args, Loc, BodyRange.getBegin()); 1090 1091 // Generate the body of the function. 1092 PGO.assignRegionCounters(GD, CurFn); 1093 if (isa<CXXDestructorDecl>(FD)) 1094 EmitDestructorBody(Args); 1095 else if (isa<CXXConstructorDecl>(FD)) 1096 EmitConstructorBody(Args); 1097 else if (getLangOpts().CUDA && 1098 !getLangOpts().CUDAIsDevice && 1099 FD->hasAttr<CUDAGlobalAttr>()) 1100 CGM.getCUDARuntime().emitDeviceStub(*this, Args); 1101 else if (isa<CXXConversionDecl>(FD) && 1102 cast<CXXConversionDecl>(FD)->isLambdaToBlockPointerConversion()) { 1103 // The lambda conversion to block pointer is special; the semantics can't be 1104 // expressed in the AST, so IRGen needs to special-case it. 1105 EmitLambdaToBlockPointerBody(Args); 1106 } else if (isa<CXXMethodDecl>(FD) && 1107 cast<CXXMethodDecl>(FD)->isLambdaStaticInvoker()) { 1108 // The lambda static invoker function is special, because it forwards or 1109 // clones the body of the function call operator (but is actually static). 1110 EmitLambdaStaticInvokeFunction(cast<CXXMethodDecl>(FD)); 1111 } else if (FD->isDefaulted() && isa<CXXMethodDecl>(FD) && 1112 (cast<CXXMethodDecl>(FD)->isCopyAssignmentOperator() || 1113 cast<CXXMethodDecl>(FD)->isMoveAssignmentOperator())) { 1114 // Implicit copy-assignment gets the same special treatment as implicit 1115 // copy-constructors. 1116 emitImplicitAssignmentOperatorBody(Args); 1117 } else if (Body) { 1118 EmitFunctionBody(Args, Body); 1119 } else 1120 llvm_unreachable("no definition for emitted function"); 1121 1122 // C++11 [stmt.return]p2: 1123 // Flowing off the end of a function [...] results in undefined behavior in 1124 // a value-returning function. 1125 // C11 6.9.1p12: 1126 // If the '}' that terminates a function is reached, and the value of the 1127 // function call is used by the caller, the behavior is undefined. 1128 if (getLangOpts().CPlusPlus && !FD->hasImplicitReturnZero() && !SawAsmBlock && 1129 !FD->getReturnType()->isVoidType() && Builder.GetInsertBlock()) { 1130 if (SanOpts.has(SanitizerKind::Return)) { 1131 SanitizerScope SanScope(this); 1132 llvm::Value *IsFalse = Builder.getFalse(); 1133 EmitCheck(std::make_pair(IsFalse, SanitizerKind::Return), 1134 SanitizerHandler::MissingReturn, 1135 EmitCheckSourceLocation(FD->getLocation()), None); 1136 } else if (CGM.getCodeGenOpts().OptimizationLevel == 0) { 1137 EmitTrapCall(llvm::Intrinsic::trap); 1138 } 1139 Builder.CreateUnreachable(); 1140 Builder.ClearInsertionPoint(); 1141 } 1142 1143 // Emit the standard function epilogue. 1144 FinishFunction(BodyRange.getEnd()); 1145 1146 // If we haven't marked the function nothrow through other means, do 1147 // a quick pass now to see if we can. 1148 if (!CurFn->doesNotThrow()) 1149 TryMarkNoThrow(CurFn); 1150 } 1151 1152 /// ContainsLabel - Return true if the statement contains a label in it. If 1153 /// this statement is not executed normally, it not containing a label means 1154 /// that we can just remove the code. 1155 bool CodeGenFunction::ContainsLabel(const Stmt *S, bool IgnoreCaseStmts) { 1156 // Null statement, not a label! 1157 if (!S) return false; 1158 1159 // If this is a label, we have to emit the code, consider something like: 1160 // if (0) { ... foo: bar(); } goto foo; 1161 // 1162 // TODO: If anyone cared, we could track __label__'s, since we know that you 1163 // can't jump to one from outside their declared region. 1164 if (isa<LabelStmt>(S)) 1165 return true; 1166 1167 // If this is a case/default statement, and we haven't seen a switch, we have 1168 // to emit the code. 1169 if (isa<SwitchCase>(S) && !IgnoreCaseStmts) 1170 return true; 1171 1172 // If this is a switch statement, we want to ignore cases below it. 1173 if (isa<SwitchStmt>(S)) 1174 IgnoreCaseStmts = true; 1175 1176 // Scan subexpressions for verboten labels. 1177 for (const Stmt *SubStmt : S->children()) 1178 if (ContainsLabel(SubStmt, IgnoreCaseStmts)) 1179 return true; 1180 1181 return false; 1182 } 1183 1184 /// containsBreak - Return true if the statement contains a break out of it. 1185 /// If the statement (recursively) contains a switch or loop with a break 1186 /// inside of it, this is fine. 1187 bool CodeGenFunction::containsBreak(const Stmt *S) { 1188 // Null statement, not a label! 1189 if (!S) return false; 1190 1191 // If this is a switch or loop that defines its own break scope, then we can 1192 // include it and anything inside of it. 1193 if (isa<SwitchStmt>(S) || isa<WhileStmt>(S) || isa<DoStmt>(S) || 1194 isa<ForStmt>(S)) 1195 return false; 1196 1197 if (isa<BreakStmt>(S)) 1198 return true; 1199 1200 // Scan subexpressions for verboten breaks. 1201 for (const Stmt *SubStmt : S->children()) 1202 if (containsBreak(SubStmt)) 1203 return true; 1204 1205 return false; 1206 } 1207 1208 bool CodeGenFunction::mightAddDeclToScope(const Stmt *S) { 1209 if (!S) return false; 1210 1211 // Some statement kinds add a scope and thus never add a decl to the current 1212 // scope. Note, this list is longer than the list of statements that might 1213 // have an unscoped decl nested within them, but this way is conservatively 1214 // correct even if more statement kinds are added. 1215 if (isa<IfStmt>(S) || isa<SwitchStmt>(S) || isa<WhileStmt>(S) || 1216 isa<DoStmt>(S) || isa<ForStmt>(S) || isa<CompoundStmt>(S) || 1217 isa<CXXForRangeStmt>(S) || isa<CXXTryStmt>(S) || 1218 isa<ObjCForCollectionStmt>(S) || isa<ObjCAtTryStmt>(S)) 1219 return false; 1220 1221 if (isa<DeclStmt>(S)) 1222 return true; 1223 1224 for (const Stmt *SubStmt : S->children()) 1225 if (mightAddDeclToScope(SubStmt)) 1226 return true; 1227 1228 return false; 1229 } 1230 1231 /// ConstantFoldsToSimpleInteger - If the specified expression does not fold 1232 /// to a constant, or if it does but contains a label, return false. If it 1233 /// constant folds return true and set the boolean result in Result. 1234 bool CodeGenFunction::ConstantFoldsToSimpleInteger(const Expr *Cond, 1235 bool &ResultBool, 1236 bool AllowLabels) { 1237 llvm::APSInt ResultInt; 1238 if (!ConstantFoldsToSimpleInteger(Cond, ResultInt, AllowLabels)) 1239 return false; 1240 1241 ResultBool = ResultInt.getBoolValue(); 1242 return true; 1243 } 1244 1245 /// ConstantFoldsToSimpleInteger - If the specified expression does not fold 1246 /// to a constant, or if it does but contains a label, return false. If it 1247 /// constant folds return true and set the folded value. 1248 bool CodeGenFunction::ConstantFoldsToSimpleInteger(const Expr *Cond, 1249 llvm::APSInt &ResultInt, 1250 bool AllowLabels) { 1251 // FIXME: Rename and handle conversion of other evaluatable things 1252 // to bool. 1253 llvm::APSInt Int; 1254 if (!Cond->EvaluateAsInt(Int, getContext())) 1255 return false; // Not foldable, not integer or not fully evaluatable. 1256 1257 if (!AllowLabels && CodeGenFunction::ContainsLabel(Cond)) 1258 return false; // Contains a label. 1259 1260 ResultInt = Int; 1261 return true; 1262 } 1263 1264 1265 1266 /// EmitBranchOnBoolExpr - Emit a branch on a boolean condition (e.g. for an if 1267 /// statement) to the specified blocks. Based on the condition, this might try 1268 /// to simplify the codegen of the conditional based on the branch. 1269 /// 1270 void CodeGenFunction::EmitBranchOnBoolExpr(const Expr *Cond, 1271 llvm::BasicBlock *TrueBlock, 1272 llvm::BasicBlock *FalseBlock, 1273 uint64_t TrueCount) { 1274 Cond = Cond->IgnoreParens(); 1275 1276 if (const BinaryOperator *CondBOp = dyn_cast<BinaryOperator>(Cond)) { 1277 1278 // Handle X && Y in a condition. 1279 if (CondBOp->getOpcode() == BO_LAnd) { 1280 // If we have "1 && X", simplify the code. "0 && X" would have constant 1281 // folded if the case was simple enough. 1282 bool ConstantBool = false; 1283 if (ConstantFoldsToSimpleInteger(CondBOp->getLHS(), ConstantBool) && 1284 ConstantBool) { 1285 // br(1 && X) -> br(X). 1286 incrementProfileCounter(CondBOp); 1287 return EmitBranchOnBoolExpr(CondBOp->getRHS(), TrueBlock, FalseBlock, 1288 TrueCount); 1289 } 1290 1291 // If we have "X && 1", simplify the code to use an uncond branch. 1292 // "X && 0" would have been constant folded to 0. 1293 if (ConstantFoldsToSimpleInteger(CondBOp->getRHS(), ConstantBool) && 1294 ConstantBool) { 1295 // br(X && 1) -> br(X). 1296 return EmitBranchOnBoolExpr(CondBOp->getLHS(), TrueBlock, FalseBlock, 1297 TrueCount); 1298 } 1299 1300 // Emit the LHS as a conditional. If the LHS conditional is false, we 1301 // want to jump to the FalseBlock. 1302 llvm::BasicBlock *LHSTrue = createBasicBlock("land.lhs.true"); 1303 // The counter tells us how often we evaluate RHS, and all of TrueCount 1304 // can be propagated to that branch. 1305 uint64_t RHSCount = getProfileCount(CondBOp->getRHS()); 1306 1307 ConditionalEvaluation eval(*this); 1308 { 1309 ApplyDebugLocation DL(*this, Cond); 1310 EmitBranchOnBoolExpr(CondBOp->getLHS(), LHSTrue, FalseBlock, RHSCount); 1311 EmitBlock(LHSTrue); 1312 } 1313 1314 incrementProfileCounter(CondBOp); 1315 setCurrentProfileCount(getProfileCount(CondBOp->getRHS())); 1316 1317 // Any temporaries created here are conditional. 1318 eval.begin(*this); 1319 EmitBranchOnBoolExpr(CondBOp->getRHS(), TrueBlock, FalseBlock, TrueCount); 1320 eval.end(*this); 1321 1322 return; 1323 } 1324 1325 if (CondBOp->getOpcode() == BO_LOr) { 1326 // If we have "0 || X", simplify the code. "1 || X" would have constant 1327 // folded if the case was simple enough. 1328 bool ConstantBool = false; 1329 if (ConstantFoldsToSimpleInteger(CondBOp->getLHS(), ConstantBool) && 1330 !ConstantBool) { 1331 // br(0 || X) -> br(X). 1332 incrementProfileCounter(CondBOp); 1333 return EmitBranchOnBoolExpr(CondBOp->getRHS(), TrueBlock, FalseBlock, 1334 TrueCount); 1335 } 1336 1337 // If we have "X || 0", simplify the code to use an uncond branch. 1338 // "X || 1" would have been constant folded to 1. 1339 if (ConstantFoldsToSimpleInteger(CondBOp->getRHS(), ConstantBool) && 1340 !ConstantBool) { 1341 // br(X || 0) -> br(X). 1342 return EmitBranchOnBoolExpr(CondBOp->getLHS(), TrueBlock, FalseBlock, 1343 TrueCount); 1344 } 1345 1346 // Emit the LHS as a conditional. If the LHS conditional is true, we 1347 // want to jump to the TrueBlock. 1348 llvm::BasicBlock *LHSFalse = createBasicBlock("lor.lhs.false"); 1349 // We have the count for entry to the RHS and for the whole expression 1350 // being true, so we can divy up True count between the short circuit and 1351 // the RHS. 1352 uint64_t LHSCount = 1353 getCurrentProfileCount() - getProfileCount(CondBOp->getRHS()); 1354 uint64_t RHSCount = TrueCount - LHSCount; 1355 1356 ConditionalEvaluation eval(*this); 1357 { 1358 ApplyDebugLocation DL(*this, Cond); 1359 EmitBranchOnBoolExpr(CondBOp->getLHS(), TrueBlock, LHSFalse, LHSCount); 1360 EmitBlock(LHSFalse); 1361 } 1362 1363 incrementProfileCounter(CondBOp); 1364 setCurrentProfileCount(getProfileCount(CondBOp->getRHS())); 1365 1366 // Any temporaries created here are conditional. 1367 eval.begin(*this); 1368 EmitBranchOnBoolExpr(CondBOp->getRHS(), TrueBlock, FalseBlock, RHSCount); 1369 1370 eval.end(*this); 1371 1372 return; 1373 } 1374 } 1375 1376 if (const UnaryOperator *CondUOp = dyn_cast<UnaryOperator>(Cond)) { 1377 // br(!x, t, f) -> br(x, f, t) 1378 if (CondUOp->getOpcode() == UO_LNot) { 1379 // Negate the count. 1380 uint64_t FalseCount = getCurrentProfileCount() - TrueCount; 1381 // Negate the condition and swap the destination blocks. 1382 return EmitBranchOnBoolExpr(CondUOp->getSubExpr(), FalseBlock, TrueBlock, 1383 FalseCount); 1384 } 1385 } 1386 1387 if (const ConditionalOperator *CondOp = dyn_cast<ConditionalOperator>(Cond)) { 1388 // br(c ? x : y, t, f) -> br(c, br(x, t, f), br(y, t, f)) 1389 llvm::BasicBlock *LHSBlock = createBasicBlock("cond.true"); 1390 llvm::BasicBlock *RHSBlock = createBasicBlock("cond.false"); 1391 1392 ConditionalEvaluation cond(*this); 1393 EmitBranchOnBoolExpr(CondOp->getCond(), LHSBlock, RHSBlock, 1394 getProfileCount(CondOp)); 1395 1396 // When computing PGO branch weights, we only know the overall count for 1397 // the true block. This code is essentially doing tail duplication of the 1398 // naive code-gen, introducing new edges for which counts are not 1399 // available. Divide the counts proportionally between the LHS and RHS of 1400 // the conditional operator. 1401 uint64_t LHSScaledTrueCount = 0; 1402 if (TrueCount) { 1403 double LHSRatio = 1404 getProfileCount(CondOp) / (double)getCurrentProfileCount(); 1405 LHSScaledTrueCount = TrueCount * LHSRatio; 1406 } 1407 1408 cond.begin(*this); 1409 EmitBlock(LHSBlock); 1410 incrementProfileCounter(CondOp); 1411 { 1412 ApplyDebugLocation DL(*this, Cond); 1413 EmitBranchOnBoolExpr(CondOp->getLHS(), TrueBlock, FalseBlock, 1414 LHSScaledTrueCount); 1415 } 1416 cond.end(*this); 1417 1418 cond.begin(*this); 1419 EmitBlock(RHSBlock); 1420 EmitBranchOnBoolExpr(CondOp->getRHS(), TrueBlock, FalseBlock, 1421 TrueCount - LHSScaledTrueCount); 1422 cond.end(*this); 1423 1424 return; 1425 } 1426 1427 if (const CXXThrowExpr *Throw = dyn_cast<CXXThrowExpr>(Cond)) { 1428 // Conditional operator handling can give us a throw expression as a 1429 // condition for a case like: 1430 // br(c ? throw x : y, t, f) -> br(c, br(throw x, t, f), br(y, t, f) 1431 // Fold this to: 1432 // br(c, throw x, br(y, t, f)) 1433 EmitCXXThrowExpr(Throw, /*KeepInsertionPoint*/false); 1434 return; 1435 } 1436 1437 // If the branch has a condition wrapped by __builtin_unpredictable, 1438 // create metadata that specifies that the branch is unpredictable. 1439 // Don't bother if not optimizing because that metadata would not be used. 1440 llvm::MDNode *Unpredictable = nullptr; 1441 auto *Call = dyn_cast<CallExpr>(Cond); 1442 if (Call && CGM.getCodeGenOpts().OptimizationLevel != 0) { 1443 auto *FD = dyn_cast_or_null<FunctionDecl>(Call->getCalleeDecl()); 1444 if (FD && FD->getBuiltinID() == Builtin::BI__builtin_unpredictable) { 1445 llvm::MDBuilder MDHelper(getLLVMContext()); 1446 Unpredictable = MDHelper.createUnpredictable(); 1447 } 1448 } 1449 1450 // Create branch weights based on the number of times we get here and the 1451 // number of times the condition should be true. 1452 uint64_t CurrentCount = std::max(getCurrentProfileCount(), TrueCount); 1453 llvm::MDNode *Weights = 1454 createProfileWeights(TrueCount, CurrentCount - TrueCount); 1455 1456 // Emit the code with the fully general case. 1457 llvm::Value *CondV; 1458 { 1459 ApplyDebugLocation DL(*this, Cond); 1460 CondV = EvaluateExprAsBool(Cond); 1461 } 1462 Builder.CreateCondBr(CondV, TrueBlock, FalseBlock, Weights, Unpredictable); 1463 } 1464 1465 /// ErrorUnsupported - Print out an error that codegen doesn't support the 1466 /// specified stmt yet. 1467 void CodeGenFunction::ErrorUnsupported(const Stmt *S, const char *Type) { 1468 CGM.ErrorUnsupported(S, Type); 1469 } 1470 1471 /// emitNonZeroVLAInit - Emit the "zero" initialization of a 1472 /// variable-length array whose elements have a non-zero bit-pattern. 1473 /// 1474 /// \param baseType the inner-most element type of the array 1475 /// \param src - a char* pointing to the bit-pattern for a single 1476 /// base element of the array 1477 /// \param sizeInChars - the total size of the VLA, in chars 1478 static void emitNonZeroVLAInit(CodeGenFunction &CGF, QualType baseType, 1479 Address dest, Address src, 1480 llvm::Value *sizeInChars) { 1481 CGBuilderTy &Builder = CGF.Builder; 1482 1483 CharUnits baseSize = CGF.getContext().getTypeSizeInChars(baseType); 1484 llvm::Value *baseSizeInChars 1485 = llvm::ConstantInt::get(CGF.IntPtrTy, baseSize.getQuantity()); 1486 1487 Address begin = 1488 Builder.CreateElementBitCast(dest, CGF.Int8Ty, "vla.begin"); 1489 llvm::Value *end = 1490 Builder.CreateInBoundsGEP(begin.getPointer(), sizeInChars, "vla.end"); 1491 1492 llvm::BasicBlock *originBB = CGF.Builder.GetInsertBlock(); 1493 llvm::BasicBlock *loopBB = CGF.createBasicBlock("vla-init.loop"); 1494 llvm::BasicBlock *contBB = CGF.createBasicBlock("vla-init.cont"); 1495 1496 // Make a loop over the VLA. C99 guarantees that the VLA element 1497 // count must be nonzero. 1498 CGF.EmitBlock(loopBB); 1499 1500 llvm::PHINode *cur = Builder.CreatePHI(begin.getType(), 2, "vla.cur"); 1501 cur->addIncoming(begin.getPointer(), originBB); 1502 1503 CharUnits curAlign = 1504 dest.getAlignment().alignmentOfArrayElement(baseSize); 1505 1506 // memcpy the individual element bit-pattern. 1507 Builder.CreateMemCpy(Address(cur, curAlign), src, baseSizeInChars, 1508 /*volatile*/ false); 1509 1510 // Go to the next element. 1511 llvm::Value *next = 1512 Builder.CreateInBoundsGEP(CGF.Int8Ty, cur, baseSizeInChars, "vla.next"); 1513 1514 // Leave if that's the end of the VLA. 1515 llvm::Value *done = Builder.CreateICmpEQ(next, end, "vla-init.isdone"); 1516 Builder.CreateCondBr(done, contBB, loopBB); 1517 cur->addIncoming(next, loopBB); 1518 1519 CGF.EmitBlock(contBB); 1520 } 1521 1522 void 1523 CodeGenFunction::EmitNullInitialization(Address DestPtr, QualType Ty) { 1524 // Ignore empty classes in C++. 1525 if (getLangOpts().CPlusPlus) { 1526 if (const RecordType *RT = Ty->getAs<RecordType>()) { 1527 if (cast<CXXRecordDecl>(RT->getDecl())->isEmpty()) 1528 return; 1529 } 1530 } 1531 1532 // Cast the dest ptr to the appropriate i8 pointer type. 1533 if (DestPtr.getElementType() != Int8Ty) 1534 DestPtr = Builder.CreateElementBitCast(DestPtr, Int8Ty); 1535 1536 // Get size and alignment info for this aggregate. 1537 CharUnits size = getContext().getTypeSizeInChars(Ty); 1538 1539 llvm::Value *SizeVal; 1540 const VariableArrayType *vla; 1541 1542 // Don't bother emitting a zero-byte memset. 1543 if (size.isZero()) { 1544 // But note that getTypeInfo returns 0 for a VLA. 1545 if (const VariableArrayType *vlaType = 1546 dyn_cast_or_null<VariableArrayType>( 1547 getContext().getAsArrayType(Ty))) { 1548 QualType eltType; 1549 llvm::Value *numElts; 1550 std::tie(numElts, eltType) = getVLASize(vlaType); 1551 1552 SizeVal = numElts; 1553 CharUnits eltSize = getContext().getTypeSizeInChars(eltType); 1554 if (!eltSize.isOne()) 1555 SizeVal = Builder.CreateNUWMul(SizeVal, CGM.getSize(eltSize)); 1556 vla = vlaType; 1557 } else { 1558 return; 1559 } 1560 } else { 1561 SizeVal = CGM.getSize(size); 1562 vla = nullptr; 1563 } 1564 1565 // If the type contains a pointer to data member we can't memset it to zero. 1566 // Instead, create a null constant and copy it to the destination. 1567 // TODO: there are other patterns besides zero that we can usefully memset, 1568 // like -1, which happens to be the pattern used by member-pointers. 1569 if (!CGM.getTypes().isZeroInitializable(Ty)) { 1570 // For a VLA, emit a single element, then splat that over the VLA. 1571 if (vla) Ty = getContext().getBaseElementType(vla); 1572 1573 llvm::Constant *NullConstant = CGM.EmitNullConstant(Ty); 1574 1575 llvm::GlobalVariable *NullVariable = 1576 new llvm::GlobalVariable(CGM.getModule(), NullConstant->getType(), 1577 /*isConstant=*/true, 1578 llvm::GlobalVariable::PrivateLinkage, 1579 NullConstant, Twine()); 1580 CharUnits NullAlign = DestPtr.getAlignment(); 1581 NullVariable->setAlignment(NullAlign.getQuantity()); 1582 Address SrcPtr(Builder.CreateBitCast(NullVariable, Builder.getInt8PtrTy()), 1583 NullAlign); 1584 1585 if (vla) return emitNonZeroVLAInit(*this, Ty, DestPtr, SrcPtr, SizeVal); 1586 1587 // Get and call the appropriate llvm.memcpy overload. 1588 Builder.CreateMemCpy(DestPtr, SrcPtr, SizeVal, false); 1589 return; 1590 } 1591 1592 // Otherwise, just memset the whole thing to zero. This is legal 1593 // because in LLVM, all default initializers (other than the ones we just 1594 // handled above) are guaranteed to have a bit pattern of all zeros. 1595 Builder.CreateMemSet(DestPtr, Builder.getInt8(0), SizeVal, false); 1596 } 1597 1598 llvm::BlockAddress *CodeGenFunction::GetAddrOfLabel(const LabelDecl *L) { 1599 // Make sure that there is a block for the indirect goto. 1600 if (!IndirectBranch) 1601 GetIndirectGotoBlock(); 1602 1603 llvm::BasicBlock *BB = getJumpDestForLabel(L).getBlock(); 1604 1605 // Make sure the indirect branch includes all of the address-taken blocks. 1606 IndirectBranch->addDestination(BB); 1607 return llvm::BlockAddress::get(CurFn, BB); 1608 } 1609 1610 llvm::BasicBlock *CodeGenFunction::GetIndirectGotoBlock() { 1611 // If we already made the indirect branch for indirect goto, return its block. 1612 if (IndirectBranch) return IndirectBranch->getParent(); 1613 1614 CGBuilderTy TmpBuilder(*this, createBasicBlock("indirectgoto")); 1615 1616 // Create the PHI node that indirect gotos will add entries to. 1617 llvm::Value *DestVal = TmpBuilder.CreatePHI(Int8PtrTy, 0, 1618 "indirect.goto.dest"); 1619 1620 // Create the indirect branch instruction. 1621 IndirectBranch = TmpBuilder.CreateIndirectBr(DestVal); 1622 return IndirectBranch->getParent(); 1623 } 1624 1625 /// Computes the length of an array in elements, as well as the base 1626 /// element type and a properly-typed first element pointer. 1627 llvm::Value *CodeGenFunction::emitArrayLength(const ArrayType *origArrayType, 1628 QualType &baseType, 1629 Address &addr) { 1630 const ArrayType *arrayType = origArrayType; 1631 1632 // If it's a VLA, we have to load the stored size. Note that 1633 // this is the size of the VLA in bytes, not its size in elements. 1634 llvm::Value *numVLAElements = nullptr; 1635 if (isa<VariableArrayType>(arrayType)) { 1636 numVLAElements = getVLASize(cast<VariableArrayType>(arrayType)).first; 1637 1638 // Walk into all VLAs. This doesn't require changes to addr, 1639 // which has type T* where T is the first non-VLA element type. 1640 do { 1641 QualType elementType = arrayType->getElementType(); 1642 arrayType = getContext().getAsArrayType(elementType); 1643 1644 // If we only have VLA components, 'addr' requires no adjustment. 1645 if (!arrayType) { 1646 baseType = elementType; 1647 return numVLAElements; 1648 } 1649 } while (isa<VariableArrayType>(arrayType)); 1650 1651 // We get out here only if we find a constant array type 1652 // inside the VLA. 1653 } 1654 1655 // We have some number of constant-length arrays, so addr should 1656 // have LLVM type [M x [N x [...]]]*. Build a GEP that walks 1657 // down to the first element of addr. 1658 SmallVector<llvm::Value*, 8> gepIndices; 1659 1660 // GEP down to the array type. 1661 llvm::ConstantInt *zero = Builder.getInt32(0); 1662 gepIndices.push_back(zero); 1663 1664 uint64_t countFromCLAs = 1; 1665 QualType eltType; 1666 1667 llvm::ArrayType *llvmArrayType = 1668 dyn_cast<llvm::ArrayType>(addr.getElementType()); 1669 while (llvmArrayType) { 1670 assert(isa<ConstantArrayType>(arrayType)); 1671 assert(cast<ConstantArrayType>(arrayType)->getSize().getZExtValue() 1672 == llvmArrayType->getNumElements()); 1673 1674 gepIndices.push_back(zero); 1675 countFromCLAs *= llvmArrayType->getNumElements(); 1676 eltType = arrayType->getElementType(); 1677 1678 llvmArrayType = 1679 dyn_cast<llvm::ArrayType>(llvmArrayType->getElementType()); 1680 arrayType = getContext().getAsArrayType(arrayType->getElementType()); 1681 assert((!llvmArrayType || arrayType) && 1682 "LLVM and Clang types are out-of-synch"); 1683 } 1684 1685 if (arrayType) { 1686 // From this point onwards, the Clang array type has been emitted 1687 // as some other type (probably a packed struct). Compute the array 1688 // size, and just emit the 'begin' expression as a bitcast. 1689 while (arrayType) { 1690 countFromCLAs *= 1691 cast<ConstantArrayType>(arrayType)->getSize().getZExtValue(); 1692 eltType = arrayType->getElementType(); 1693 arrayType = getContext().getAsArrayType(eltType); 1694 } 1695 1696 llvm::Type *baseType = ConvertType(eltType); 1697 addr = Builder.CreateElementBitCast(addr, baseType, "array.begin"); 1698 } else { 1699 // Create the actual GEP. 1700 addr = Address(Builder.CreateInBoundsGEP(addr.getPointer(), 1701 gepIndices, "array.begin"), 1702 addr.getAlignment()); 1703 } 1704 1705 baseType = eltType; 1706 1707 llvm::Value *numElements 1708 = llvm::ConstantInt::get(SizeTy, countFromCLAs); 1709 1710 // If we had any VLA dimensions, factor them in. 1711 if (numVLAElements) 1712 numElements = Builder.CreateNUWMul(numVLAElements, numElements); 1713 1714 return numElements; 1715 } 1716 1717 std::pair<llvm::Value*, QualType> 1718 CodeGenFunction::getVLASize(QualType type) { 1719 const VariableArrayType *vla = getContext().getAsVariableArrayType(type); 1720 assert(vla && "type was not a variable array type!"); 1721 return getVLASize(vla); 1722 } 1723 1724 std::pair<llvm::Value*, QualType> 1725 CodeGenFunction::getVLASize(const VariableArrayType *type) { 1726 // The number of elements so far; always size_t. 1727 llvm::Value *numElements = nullptr; 1728 1729 QualType elementType; 1730 do { 1731 elementType = type->getElementType(); 1732 llvm::Value *vlaSize = VLASizeMap[type->getSizeExpr()]; 1733 assert(vlaSize && "no size for VLA!"); 1734 assert(vlaSize->getType() == SizeTy); 1735 1736 if (!numElements) { 1737 numElements = vlaSize; 1738 } else { 1739 // It's undefined behavior if this wraps around, so mark it that way. 1740 // FIXME: Teach -fsanitize=undefined to trap this. 1741 numElements = Builder.CreateNUWMul(numElements, vlaSize); 1742 } 1743 } while ((type = getContext().getAsVariableArrayType(elementType))); 1744 1745 return std::pair<llvm::Value*,QualType>(numElements, elementType); 1746 } 1747 1748 void CodeGenFunction::EmitVariablyModifiedType(QualType type) { 1749 assert(type->isVariablyModifiedType() && 1750 "Must pass variably modified type to EmitVLASizes!"); 1751 1752 EnsureInsertPoint(); 1753 1754 // We're going to walk down into the type and look for VLA 1755 // expressions. 1756 do { 1757 assert(type->isVariablyModifiedType()); 1758 1759 const Type *ty = type.getTypePtr(); 1760 switch (ty->getTypeClass()) { 1761 1762 #define TYPE(Class, Base) 1763 #define ABSTRACT_TYPE(Class, Base) 1764 #define NON_CANONICAL_TYPE(Class, Base) 1765 #define DEPENDENT_TYPE(Class, Base) case Type::Class: 1766 #define NON_CANONICAL_UNLESS_DEPENDENT_TYPE(Class, Base) 1767 #include "clang/AST/TypeNodes.def" 1768 llvm_unreachable("unexpected dependent type!"); 1769 1770 // These types are never variably-modified. 1771 case Type::Builtin: 1772 case Type::Complex: 1773 case Type::Vector: 1774 case Type::ExtVector: 1775 case Type::Record: 1776 case Type::Enum: 1777 case Type::Elaborated: 1778 case Type::TemplateSpecialization: 1779 case Type::ObjCTypeParam: 1780 case Type::ObjCObject: 1781 case Type::ObjCInterface: 1782 case Type::ObjCObjectPointer: 1783 llvm_unreachable("type class is never variably-modified!"); 1784 1785 case Type::Adjusted: 1786 type = cast<AdjustedType>(ty)->getAdjustedType(); 1787 break; 1788 1789 case Type::Decayed: 1790 type = cast<DecayedType>(ty)->getPointeeType(); 1791 break; 1792 1793 case Type::Pointer: 1794 type = cast<PointerType>(ty)->getPointeeType(); 1795 break; 1796 1797 case Type::BlockPointer: 1798 type = cast<BlockPointerType>(ty)->getPointeeType(); 1799 break; 1800 1801 case Type::LValueReference: 1802 case Type::RValueReference: 1803 type = cast<ReferenceType>(ty)->getPointeeType(); 1804 break; 1805 1806 case Type::MemberPointer: 1807 type = cast<MemberPointerType>(ty)->getPointeeType(); 1808 break; 1809 1810 case Type::ConstantArray: 1811 case Type::IncompleteArray: 1812 // Losing element qualification here is fine. 1813 type = cast<ArrayType>(ty)->getElementType(); 1814 break; 1815 1816 case Type::VariableArray: { 1817 // Losing element qualification here is fine. 1818 const VariableArrayType *vat = cast<VariableArrayType>(ty); 1819 1820 // Unknown size indication requires no size computation. 1821 // Otherwise, evaluate and record it. 1822 if (const Expr *size = vat->getSizeExpr()) { 1823 // It's possible that we might have emitted this already, 1824 // e.g. with a typedef and a pointer to it. 1825 llvm::Value *&entry = VLASizeMap[size]; 1826 if (!entry) { 1827 llvm::Value *Size = EmitScalarExpr(size); 1828 1829 // C11 6.7.6.2p5: 1830 // If the size is an expression that is not an integer constant 1831 // expression [...] each time it is evaluated it shall have a value 1832 // greater than zero. 1833 if (SanOpts.has(SanitizerKind::VLABound) && 1834 size->getType()->isSignedIntegerType()) { 1835 SanitizerScope SanScope(this); 1836 llvm::Value *Zero = llvm::Constant::getNullValue(Size->getType()); 1837 llvm::Constant *StaticArgs[] = { 1838 EmitCheckSourceLocation(size->getLocStart()), 1839 EmitCheckTypeDescriptor(size->getType()) 1840 }; 1841 EmitCheck(std::make_pair(Builder.CreateICmpSGT(Size, Zero), 1842 SanitizerKind::VLABound), 1843 SanitizerHandler::VLABoundNotPositive, StaticArgs, Size); 1844 } 1845 1846 // Always zexting here would be wrong if it weren't 1847 // undefined behavior to have a negative bound. 1848 entry = Builder.CreateIntCast(Size, SizeTy, /*signed*/ false); 1849 } 1850 } 1851 type = vat->getElementType(); 1852 break; 1853 } 1854 1855 case Type::FunctionProto: 1856 case Type::FunctionNoProto: 1857 type = cast<FunctionType>(ty)->getReturnType(); 1858 break; 1859 1860 case Type::Paren: 1861 case Type::TypeOf: 1862 case Type::UnaryTransform: 1863 case Type::Attributed: 1864 case Type::SubstTemplateTypeParm: 1865 case Type::PackExpansion: 1866 // Keep walking after single level desugaring. 1867 type = type.getSingleStepDesugaredType(getContext()); 1868 break; 1869 1870 case Type::Typedef: 1871 case Type::Decltype: 1872 case Type::Auto: 1873 // Stop walking: nothing to do. 1874 return; 1875 1876 case Type::TypeOfExpr: 1877 // Stop walking: emit typeof expression. 1878 EmitIgnoredExpr(cast<TypeOfExprType>(ty)->getUnderlyingExpr()); 1879 return; 1880 1881 case Type::Atomic: 1882 type = cast<AtomicType>(ty)->getValueType(); 1883 break; 1884 1885 case Type::Pipe: 1886 type = cast<PipeType>(ty)->getElementType(); 1887 break; 1888 } 1889 } while (type->isVariablyModifiedType()); 1890 } 1891 1892 Address CodeGenFunction::EmitVAListRef(const Expr* E) { 1893 if (getContext().getBuiltinVaListType()->isArrayType()) 1894 return EmitPointerWithAlignment(E); 1895 return EmitLValue(E).getAddress(); 1896 } 1897 1898 Address CodeGenFunction::EmitMSVAListRef(const Expr *E) { 1899 return EmitLValue(E).getAddress(); 1900 } 1901 1902 void CodeGenFunction::EmitDeclRefExprDbgValue(const DeclRefExpr *E, 1903 const APValue &Init) { 1904 assert(!Init.isUninit() && "Invalid DeclRefExpr initializer!"); 1905 if (CGDebugInfo *Dbg = getDebugInfo()) 1906 if (CGM.getCodeGenOpts().getDebugInfo() >= codegenoptions::LimitedDebugInfo) 1907 Dbg->EmitGlobalVariable(E->getDecl(), Init); 1908 } 1909 1910 CodeGenFunction::PeepholeProtection 1911 CodeGenFunction::protectFromPeepholes(RValue rvalue) { 1912 // At the moment, the only aggressive peephole we do in IR gen 1913 // is trunc(zext) folding, but if we add more, we can easily 1914 // extend this protection. 1915 1916 if (!rvalue.isScalar()) return PeepholeProtection(); 1917 llvm::Value *value = rvalue.getScalarVal(); 1918 if (!isa<llvm::ZExtInst>(value)) return PeepholeProtection(); 1919 1920 // Just make an extra bitcast. 1921 assert(HaveInsertPoint()); 1922 llvm::Instruction *inst = new llvm::BitCastInst(value, value->getType(), "", 1923 Builder.GetInsertBlock()); 1924 1925 PeepholeProtection protection; 1926 protection.Inst = inst; 1927 return protection; 1928 } 1929 1930 void CodeGenFunction::unprotectFromPeepholes(PeepholeProtection protection) { 1931 if (!protection.Inst) return; 1932 1933 // In theory, we could try to duplicate the peepholes now, but whatever. 1934 protection.Inst->eraseFromParent(); 1935 } 1936 1937 llvm::Value *CodeGenFunction::EmitAnnotationCall(llvm::Value *AnnotationFn, 1938 llvm::Value *AnnotatedVal, 1939 StringRef AnnotationStr, 1940 SourceLocation Location) { 1941 llvm::Value *Args[4] = { 1942 AnnotatedVal, 1943 Builder.CreateBitCast(CGM.EmitAnnotationString(AnnotationStr), Int8PtrTy), 1944 Builder.CreateBitCast(CGM.EmitAnnotationUnit(Location), Int8PtrTy), 1945 CGM.EmitAnnotationLineNo(Location) 1946 }; 1947 return Builder.CreateCall(AnnotationFn, Args); 1948 } 1949 1950 void CodeGenFunction::EmitVarAnnotations(const VarDecl *D, llvm::Value *V) { 1951 assert(D->hasAttr<AnnotateAttr>() && "no annotate attribute"); 1952 // FIXME We create a new bitcast for every annotation because that's what 1953 // llvm-gcc was doing. 1954 for (const auto *I : D->specific_attrs<AnnotateAttr>()) 1955 EmitAnnotationCall(CGM.getIntrinsic(llvm::Intrinsic::var_annotation), 1956 Builder.CreateBitCast(V, CGM.Int8PtrTy, V->getName()), 1957 I->getAnnotation(), D->getLocation()); 1958 } 1959 1960 Address CodeGenFunction::EmitFieldAnnotations(const FieldDecl *D, 1961 Address Addr) { 1962 assert(D->hasAttr<AnnotateAttr>() && "no annotate attribute"); 1963 llvm::Value *V = Addr.getPointer(); 1964 llvm::Type *VTy = V->getType(); 1965 llvm::Value *F = CGM.getIntrinsic(llvm::Intrinsic::ptr_annotation, 1966 CGM.Int8PtrTy); 1967 1968 for (const auto *I : D->specific_attrs<AnnotateAttr>()) { 1969 // FIXME Always emit the cast inst so we can differentiate between 1970 // annotation on the first field of a struct and annotation on the struct 1971 // itself. 1972 if (VTy != CGM.Int8PtrTy) 1973 V = Builder.Insert(new llvm::BitCastInst(V, CGM.Int8PtrTy)); 1974 V = EmitAnnotationCall(F, V, I->getAnnotation(), D->getLocation()); 1975 V = Builder.CreateBitCast(V, VTy); 1976 } 1977 1978 return Address(V, Addr.getAlignment()); 1979 } 1980 1981 CodeGenFunction::CGCapturedStmtInfo::~CGCapturedStmtInfo() { } 1982 1983 CodeGenFunction::SanitizerScope::SanitizerScope(CodeGenFunction *CGF) 1984 : CGF(CGF) { 1985 assert(!CGF->IsSanitizerScope); 1986 CGF->IsSanitizerScope = true; 1987 } 1988 1989 CodeGenFunction::SanitizerScope::~SanitizerScope() { 1990 CGF->IsSanitizerScope = false; 1991 } 1992 1993 void CodeGenFunction::InsertHelper(llvm::Instruction *I, 1994 const llvm::Twine &Name, 1995 llvm::BasicBlock *BB, 1996 llvm::BasicBlock::iterator InsertPt) const { 1997 LoopStack.InsertHelper(I); 1998 if (IsSanitizerScope) 1999 CGM.getSanitizerMetadata()->disableSanitizerForInstruction(I); 2000 } 2001 2002 void CGBuilderInserter::InsertHelper( 2003 llvm::Instruction *I, const llvm::Twine &Name, llvm::BasicBlock *BB, 2004 llvm::BasicBlock::iterator InsertPt) const { 2005 llvm::IRBuilderDefaultInserter::InsertHelper(I, Name, BB, InsertPt); 2006 if (CGF) 2007 CGF->InsertHelper(I, Name, BB, InsertPt); 2008 } 2009 2010 static bool hasRequiredFeatures(const SmallVectorImpl<StringRef> &ReqFeatures, 2011 CodeGenModule &CGM, const FunctionDecl *FD, 2012 std::string &FirstMissing) { 2013 // If there aren't any required features listed then go ahead and return. 2014 if (ReqFeatures.empty()) 2015 return false; 2016 2017 // Now build up the set of caller features and verify that all the required 2018 // features are there. 2019 llvm::StringMap<bool> CallerFeatureMap; 2020 CGM.getFunctionFeatureMap(CallerFeatureMap, FD); 2021 2022 // If we have at least one of the features in the feature list return 2023 // true, otherwise return false. 2024 return std::all_of( 2025 ReqFeatures.begin(), ReqFeatures.end(), [&](StringRef Feature) { 2026 SmallVector<StringRef, 1> OrFeatures; 2027 Feature.split(OrFeatures, "|"); 2028 return std::any_of(OrFeatures.begin(), OrFeatures.end(), 2029 [&](StringRef Feature) { 2030 if (!CallerFeatureMap.lookup(Feature)) { 2031 FirstMissing = Feature.str(); 2032 return false; 2033 } 2034 return true; 2035 }); 2036 }); 2037 } 2038 2039 // Emits an error if we don't have a valid set of target features for the 2040 // called function. 2041 void CodeGenFunction::checkTargetFeatures(const CallExpr *E, 2042 const FunctionDecl *TargetDecl) { 2043 // Early exit if this is an indirect call. 2044 if (!TargetDecl) 2045 return; 2046 2047 // Get the current enclosing function if it exists. If it doesn't 2048 // we can't check the target features anyhow. 2049 const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(CurFuncDecl); 2050 if (!FD) 2051 return; 2052 2053 // Grab the required features for the call. For a builtin this is listed in 2054 // the td file with the default cpu, for an always_inline function this is any 2055 // listed cpu and any listed features. 2056 unsigned BuiltinID = TargetDecl->getBuiltinID(); 2057 std::string MissingFeature; 2058 if (BuiltinID) { 2059 SmallVector<StringRef, 1> ReqFeatures; 2060 const char *FeatureList = 2061 CGM.getContext().BuiltinInfo.getRequiredFeatures(BuiltinID); 2062 // Return if the builtin doesn't have any required features. 2063 if (!FeatureList || StringRef(FeatureList) == "") 2064 return; 2065 StringRef(FeatureList).split(ReqFeatures, ","); 2066 if (!hasRequiredFeatures(ReqFeatures, CGM, FD, MissingFeature)) 2067 CGM.getDiags().Report(E->getLocStart(), diag::err_builtin_needs_feature) 2068 << TargetDecl->getDeclName() 2069 << CGM.getContext().BuiltinInfo.getRequiredFeatures(BuiltinID); 2070 2071 } else if (TargetDecl->hasAttr<TargetAttr>()) { 2072 // Get the required features for the callee. 2073 SmallVector<StringRef, 1> ReqFeatures; 2074 llvm::StringMap<bool> CalleeFeatureMap; 2075 CGM.getFunctionFeatureMap(CalleeFeatureMap, TargetDecl); 2076 for (const auto &F : CalleeFeatureMap) { 2077 // Only positive features are "required". 2078 if (F.getValue()) 2079 ReqFeatures.push_back(F.getKey()); 2080 } 2081 if (!hasRequiredFeatures(ReqFeatures, CGM, FD, MissingFeature)) 2082 CGM.getDiags().Report(E->getLocStart(), diag::err_function_needs_feature) 2083 << FD->getDeclName() << TargetDecl->getDeclName() << MissingFeature; 2084 } 2085 } 2086 2087 void CodeGenFunction::EmitSanitizerStatReport(llvm::SanitizerStatKind SSK) { 2088 if (!CGM.getCodeGenOpts().SanitizeStats) 2089 return; 2090 2091 llvm::IRBuilder<> IRB(Builder.GetInsertBlock(), Builder.GetInsertPoint()); 2092 IRB.SetCurrentDebugLocation(Builder.getCurrentDebugLocation()); 2093 CGM.getSanStats().create(IRB, SSK); 2094 } 2095 2096 llvm::DebugLoc CodeGenFunction::SourceLocToDebugLoc(SourceLocation Location) { 2097 if (CGDebugInfo *DI = getDebugInfo()) 2098 return DI->SourceLocToDebugLoc(Location); 2099 2100 return llvm::DebugLoc(); 2101 } 2102