1 //===--- CodeGenFunction.cpp - Emit LLVM Code from ASTs for a Function ----===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This coordinates the per-function state used while generating code.
10 //
11 //===----------------------------------------------------------------------===//
12 
13 #include "CodeGenFunction.h"
14 #include "CGBlocks.h"
15 #include "CGCUDARuntime.h"
16 #include "CGCXXABI.h"
17 #include "CGCleanup.h"
18 #include "CGDebugInfo.h"
19 #include "CGOpenMPRuntime.h"
20 #include "CodeGenModule.h"
21 #include "CodeGenPGO.h"
22 #include "TargetInfo.h"
23 #include "clang/AST/ASTContext.h"
24 #include "clang/AST/ASTLambda.h"
25 #include "clang/AST/Attr.h"
26 #include "clang/AST/Decl.h"
27 #include "clang/AST/DeclCXX.h"
28 #include "clang/AST/StmtCXX.h"
29 #include "clang/AST/StmtObjC.h"
30 #include "clang/Basic/Builtins.h"
31 #include "clang/Basic/CodeGenOptions.h"
32 #include "clang/Basic/TargetInfo.h"
33 #include "clang/CodeGen/CGFunctionInfo.h"
34 #include "clang/Frontend/FrontendDiagnostic.h"
35 #include "llvm/Frontend/OpenMP/OMPIRBuilder.h"
36 #include "llvm/IR/DataLayout.h"
37 #include "llvm/IR/Dominators.h"
38 #include "llvm/IR/FPEnv.h"
39 #include "llvm/IR/IntrinsicInst.h"
40 #include "llvm/IR/Intrinsics.h"
41 #include "llvm/IR/MDBuilder.h"
42 #include "llvm/IR/Operator.h"
43 #include "llvm/Transforms/Utils/PromoteMemToReg.h"
44 using namespace clang;
45 using namespace CodeGen;
46 
47 /// shouldEmitLifetimeMarkers - Decide whether we need emit the life-time
48 /// markers.
49 static bool shouldEmitLifetimeMarkers(const CodeGenOptions &CGOpts,
50                                       const LangOptions &LangOpts) {
51   if (CGOpts.DisableLifetimeMarkers)
52     return false;
53 
54   // Sanitizers may use markers.
55   if (CGOpts.SanitizeAddressUseAfterScope ||
56       LangOpts.Sanitize.has(SanitizerKind::HWAddress) ||
57       LangOpts.Sanitize.has(SanitizerKind::Memory))
58     return true;
59 
60   // For now, only in optimized builds.
61   return CGOpts.OptimizationLevel != 0;
62 }
63 
64 CodeGenFunction::CodeGenFunction(CodeGenModule &cgm, bool suppressNewContext)
65     : CodeGenTypeCache(cgm), CGM(cgm), Target(cgm.getTarget()),
66       Builder(cgm, cgm.getModule().getContext(), llvm::ConstantFolder(),
67               CGBuilderInserterTy(this)),
68       SanOpts(CGM.getLangOpts().Sanitize), DebugInfo(CGM.getModuleDebugInfo()),
69       PGO(cgm), ShouldEmitLifetimeMarkers(shouldEmitLifetimeMarkers(
70                     CGM.getCodeGenOpts(), CGM.getLangOpts())) {
71   if (!suppressNewContext)
72     CGM.getCXXABI().getMangleContext().startNewFunction();
73 
74   SetFastMathFlags(FPOptions(CGM.getLangOpts()));
75   SetFPModel();
76 }
77 
78 CodeGenFunction::~CodeGenFunction() {
79   assert(LifetimeExtendedCleanupStack.empty() && "failed to emit a cleanup");
80 
81   // If there are any unclaimed block infos, go ahead and destroy them
82   // now.  This can happen if IR-gen gets clever and skips evaluating
83   // something.
84   if (FirstBlockInfo)
85     destroyBlockInfos(FirstBlockInfo);
86 
87   if (getLangOpts().OpenMP && CurFn)
88     CGM.getOpenMPRuntime().functionFinished(*this);
89 
90   // If we have an OpenMPIRBuilder we want to finalize functions (incl.
91   // outlining etc) at some point. Doing it once the function codegen is done
92   // seems to be a reasonable spot. We do it here, as opposed to the deletion
93   // time of the CodeGenModule, because we have to ensure the IR has not yet
94   // been "emitted" to the outside, thus, modifications are still sensible.
95   if (llvm::OpenMPIRBuilder *OMPBuilder = CGM.getOpenMPIRBuilder())
96     OMPBuilder->finalize();
97 }
98 
99 // Map the LangOption for exception behavior into
100 // the corresponding enum in the IR.
101 llvm::fp::ExceptionBehavior
102 clang::ToConstrainedExceptMD(LangOptions::FPExceptionModeKind Kind) {
103 
104   switch (Kind) {
105   case LangOptions::FPE_Ignore:  return llvm::fp::ebIgnore;
106   case LangOptions::FPE_MayTrap: return llvm::fp::ebMayTrap;
107   case LangOptions::FPE_Strict:  return llvm::fp::ebStrict;
108   }
109   llvm_unreachable("Unsupported FP Exception Behavior");
110 }
111 
112 void CodeGenFunction::SetFPModel() {
113   llvm::RoundingMode RM = getLangOpts().getFPRoundingMode();
114   auto fpExceptionBehavior = ToConstrainedExceptMD(
115                                getLangOpts().getFPExceptionMode());
116 
117   Builder.setDefaultConstrainedRounding(RM);
118   Builder.setDefaultConstrainedExcept(fpExceptionBehavior);
119   Builder.setIsFPConstrained(fpExceptionBehavior != llvm::fp::ebIgnore ||
120                              RM != llvm::RoundingMode::NearestTiesToEven);
121 }
122 
123 void CodeGenFunction::SetFastMathFlags(FPOptions FPFeatures) {
124   llvm::FastMathFlags FMF;
125   FMF.setAllowReassoc(FPFeatures.allowAssociativeMath());
126   FMF.setNoNaNs(FPFeatures.noHonorNaNs());
127   FMF.setNoInfs(FPFeatures.noHonorInfs());
128   FMF.setNoSignedZeros(FPFeatures.noSignedZeros());
129   FMF.setAllowReciprocal(FPFeatures.allowReciprocalMath());
130   FMF.setApproxFunc(FPFeatures.allowApproximateFunctions());
131   FMF.setAllowContract(FPFeatures.allowFPContractAcrossStatement());
132   Builder.setFastMathFlags(FMF);
133 }
134 
135 LValue CodeGenFunction::MakeNaturalAlignAddrLValue(llvm::Value *V, QualType T) {
136   LValueBaseInfo BaseInfo;
137   TBAAAccessInfo TBAAInfo;
138   CharUnits Alignment = CGM.getNaturalTypeAlignment(T, &BaseInfo, &TBAAInfo);
139   return LValue::MakeAddr(Address(V, Alignment), T, getContext(), BaseInfo,
140                           TBAAInfo);
141 }
142 
143 /// Given a value of type T* that may not be to a complete object,
144 /// construct an l-value with the natural pointee alignment of T.
145 LValue
146 CodeGenFunction::MakeNaturalAlignPointeeAddrLValue(llvm::Value *V, QualType T) {
147   LValueBaseInfo BaseInfo;
148   TBAAAccessInfo TBAAInfo;
149   CharUnits Align = CGM.getNaturalTypeAlignment(T, &BaseInfo, &TBAAInfo,
150                                                 /* forPointeeType= */ true);
151   return MakeAddrLValue(Address(V, Align), T, BaseInfo, TBAAInfo);
152 }
153 
154 
155 llvm::Type *CodeGenFunction::ConvertTypeForMem(QualType T) {
156   return CGM.getTypes().ConvertTypeForMem(T);
157 }
158 
159 llvm::Type *CodeGenFunction::ConvertType(QualType T) {
160   return CGM.getTypes().ConvertType(T);
161 }
162 
163 TypeEvaluationKind CodeGenFunction::getEvaluationKind(QualType type) {
164   type = type.getCanonicalType();
165   while (true) {
166     switch (type->getTypeClass()) {
167 #define TYPE(name, parent)
168 #define ABSTRACT_TYPE(name, parent)
169 #define NON_CANONICAL_TYPE(name, parent) case Type::name:
170 #define DEPENDENT_TYPE(name, parent) case Type::name:
171 #define NON_CANONICAL_UNLESS_DEPENDENT_TYPE(name, parent) case Type::name:
172 #include "clang/AST/TypeNodes.inc"
173       llvm_unreachable("non-canonical or dependent type in IR-generation");
174 
175     case Type::Auto:
176     case Type::DeducedTemplateSpecialization:
177       llvm_unreachable("undeduced type in IR-generation");
178 
179     // Various scalar types.
180     case Type::Builtin:
181     case Type::Pointer:
182     case Type::BlockPointer:
183     case Type::LValueReference:
184     case Type::RValueReference:
185     case Type::MemberPointer:
186     case Type::Vector:
187     case Type::ExtVector:
188     case Type::ConstantMatrix:
189     case Type::FunctionProto:
190     case Type::FunctionNoProto:
191     case Type::Enum:
192     case Type::ObjCObjectPointer:
193     case Type::Pipe:
194     case Type::ExtInt:
195       return TEK_Scalar;
196 
197     // Complexes.
198     case Type::Complex:
199       return TEK_Complex;
200 
201     // Arrays, records, and Objective-C objects.
202     case Type::ConstantArray:
203     case Type::IncompleteArray:
204     case Type::VariableArray:
205     case Type::Record:
206     case Type::ObjCObject:
207     case Type::ObjCInterface:
208       return TEK_Aggregate;
209 
210     // We operate on atomic values according to their underlying type.
211     case Type::Atomic:
212       type = cast<AtomicType>(type)->getValueType();
213       continue;
214     }
215     llvm_unreachable("unknown type kind!");
216   }
217 }
218 
219 llvm::DebugLoc CodeGenFunction::EmitReturnBlock() {
220   // For cleanliness, we try to avoid emitting the return block for
221   // simple cases.
222   llvm::BasicBlock *CurBB = Builder.GetInsertBlock();
223 
224   if (CurBB) {
225     assert(!CurBB->getTerminator() && "Unexpected terminated block.");
226 
227     // We have a valid insert point, reuse it if it is empty or there are no
228     // explicit jumps to the return block.
229     if (CurBB->empty() || ReturnBlock.getBlock()->use_empty()) {
230       ReturnBlock.getBlock()->replaceAllUsesWith(CurBB);
231       delete ReturnBlock.getBlock();
232       ReturnBlock = JumpDest();
233     } else
234       EmitBlock(ReturnBlock.getBlock());
235     return llvm::DebugLoc();
236   }
237 
238   // Otherwise, if the return block is the target of a single direct
239   // branch then we can just put the code in that block instead. This
240   // cleans up functions which started with a unified return block.
241   if (ReturnBlock.getBlock()->hasOneUse()) {
242     llvm::BranchInst *BI =
243       dyn_cast<llvm::BranchInst>(*ReturnBlock.getBlock()->user_begin());
244     if (BI && BI->isUnconditional() &&
245         BI->getSuccessor(0) == ReturnBlock.getBlock()) {
246       // Record/return the DebugLoc of the simple 'return' expression to be used
247       // later by the actual 'ret' instruction.
248       llvm::DebugLoc Loc = BI->getDebugLoc();
249       Builder.SetInsertPoint(BI->getParent());
250       BI->eraseFromParent();
251       delete ReturnBlock.getBlock();
252       ReturnBlock = JumpDest();
253       return Loc;
254     }
255   }
256 
257   // FIXME: We are at an unreachable point, there is no reason to emit the block
258   // unless it has uses. However, we still need a place to put the debug
259   // region.end for now.
260 
261   EmitBlock(ReturnBlock.getBlock());
262   return llvm::DebugLoc();
263 }
264 
265 static void EmitIfUsed(CodeGenFunction &CGF, llvm::BasicBlock *BB) {
266   if (!BB) return;
267   if (!BB->use_empty())
268     return CGF.CurFn->getBasicBlockList().push_back(BB);
269   delete BB;
270 }
271 
272 void CodeGenFunction::FinishFunction(SourceLocation EndLoc) {
273   assert(BreakContinueStack.empty() &&
274          "mismatched push/pop in break/continue stack!");
275 
276   bool OnlySimpleReturnStmts = NumSimpleReturnExprs > 0
277     && NumSimpleReturnExprs == NumReturnExprs
278     && ReturnBlock.getBlock()->use_empty();
279   // Usually the return expression is evaluated before the cleanup
280   // code.  If the function contains only a simple return statement,
281   // such as a constant, the location before the cleanup code becomes
282   // the last useful breakpoint in the function, because the simple
283   // return expression will be evaluated after the cleanup code. To be
284   // safe, set the debug location for cleanup code to the location of
285   // the return statement.  Otherwise the cleanup code should be at the
286   // end of the function's lexical scope.
287   //
288   // If there are multiple branches to the return block, the branch
289   // instructions will get the location of the return statements and
290   // all will be fine.
291   if (CGDebugInfo *DI = getDebugInfo()) {
292     if (OnlySimpleReturnStmts)
293       DI->EmitLocation(Builder, LastStopPoint);
294     else
295       DI->EmitLocation(Builder, EndLoc);
296   }
297 
298   // Pop any cleanups that might have been associated with the
299   // parameters.  Do this in whatever block we're currently in; it's
300   // important to do this before we enter the return block or return
301   // edges will be *really* confused.
302   bool HasCleanups = EHStack.stable_begin() != PrologueCleanupDepth;
303   bool HasOnlyLifetimeMarkers =
304       HasCleanups && EHStack.containsOnlyLifetimeMarkers(PrologueCleanupDepth);
305   bool EmitRetDbgLoc = !HasCleanups || HasOnlyLifetimeMarkers;
306   if (HasCleanups) {
307     // Make sure the line table doesn't jump back into the body for
308     // the ret after it's been at EndLoc.
309     Optional<ApplyDebugLocation> AL;
310     if (CGDebugInfo *DI = getDebugInfo()) {
311       if (OnlySimpleReturnStmts)
312         DI->EmitLocation(Builder, EndLoc);
313       else
314         // We may not have a valid end location. Try to apply it anyway, and
315         // fall back to an artificial location if needed.
316         AL = ApplyDebugLocation::CreateDefaultArtificial(*this, EndLoc);
317     }
318 
319     PopCleanupBlocks(PrologueCleanupDepth);
320   }
321 
322   // Emit function epilog (to return).
323   llvm::DebugLoc Loc = EmitReturnBlock();
324 
325   if (ShouldInstrumentFunction()) {
326     if (CGM.getCodeGenOpts().InstrumentFunctions)
327       CurFn->addFnAttr("instrument-function-exit", "__cyg_profile_func_exit");
328     if (CGM.getCodeGenOpts().InstrumentFunctionsAfterInlining)
329       CurFn->addFnAttr("instrument-function-exit-inlined",
330                        "__cyg_profile_func_exit");
331   }
332 
333   // Emit debug descriptor for function end.
334   if (CGDebugInfo *DI = getDebugInfo())
335     DI->EmitFunctionEnd(Builder, CurFn);
336 
337   // Reset the debug location to that of the simple 'return' expression, if any
338   // rather than that of the end of the function's scope '}'.
339   ApplyDebugLocation AL(*this, Loc);
340   EmitFunctionEpilog(*CurFnInfo, EmitRetDbgLoc, EndLoc);
341   EmitEndEHSpec(CurCodeDecl);
342 
343   assert(EHStack.empty() &&
344          "did not remove all scopes from cleanup stack!");
345 
346   // If someone did an indirect goto, emit the indirect goto block at the end of
347   // the function.
348   if (IndirectBranch) {
349     EmitBlock(IndirectBranch->getParent());
350     Builder.ClearInsertionPoint();
351   }
352 
353   // If some of our locals escaped, insert a call to llvm.localescape in the
354   // entry block.
355   if (!EscapedLocals.empty()) {
356     // Invert the map from local to index into a simple vector. There should be
357     // no holes.
358     SmallVector<llvm::Value *, 4> EscapeArgs;
359     EscapeArgs.resize(EscapedLocals.size());
360     for (auto &Pair : EscapedLocals)
361       EscapeArgs[Pair.second] = Pair.first;
362     llvm::Function *FrameEscapeFn = llvm::Intrinsic::getDeclaration(
363         &CGM.getModule(), llvm::Intrinsic::localescape);
364     CGBuilderTy(*this, AllocaInsertPt).CreateCall(FrameEscapeFn, EscapeArgs);
365   }
366 
367   // Remove the AllocaInsertPt instruction, which is just a convenience for us.
368   llvm::Instruction *Ptr = AllocaInsertPt;
369   AllocaInsertPt = nullptr;
370   Ptr->eraseFromParent();
371 
372   // If someone took the address of a label but never did an indirect goto, we
373   // made a zero entry PHI node, which is illegal, zap it now.
374   if (IndirectBranch) {
375     llvm::PHINode *PN = cast<llvm::PHINode>(IndirectBranch->getAddress());
376     if (PN->getNumIncomingValues() == 0) {
377       PN->replaceAllUsesWith(llvm::UndefValue::get(PN->getType()));
378       PN->eraseFromParent();
379     }
380   }
381 
382   EmitIfUsed(*this, EHResumeBlock);
383   EmitIfUsed(*this, TerminateLandingPad);
384   EmitIfUsed(*this, TerminateHandler);
385   EmitIfUsed(*this, UnreachableBlock);
386 
387   for (const auto &FuncletAndParent : TerminateFunclets)
388     EmitIfUsed(*this, FuncletAndParent.second);
389 
390   if (CGM.getCodeGenOpts().EmitDeclMetadata)
391     EmitDeclMetadata();
392 
393   for (SmallVectorImpl<std::pair<llvm::Instruction *, llvm::Value *> >::iterator
394            I = DeferredReplacements.begin(),
395            E = DeferredReplacements.end();
396        I != E; ++I) {
397     I->first->replaceAllUsesWith(I->second);
398     I->first->eraseFromParent();
399   }
400 
401   // Eliminate CleanupDestSlot alloca by replacing it with SSA values and
402   // PHIs if the current function is a coroutine. We don't do it for all
403   // functions as it may result in slight increase in numbers of instructions
404   // if compiled with no optimizations. We do it for coroutine as the lifetime
405   // of CleanupDestSlot alloca make correct coroutine frame building very
406   // difficult.
407   if (NormalCleanupDest.isValid() && isCoroutine()) {
408     llvm::DominatorTree DT(*CurFn);
409     llvm::PromoteMemToReg(
410         cast<llvm::AllocaInst>(NormalCleanupDest.getPointer()), DT);
411     NormalCleanupDest = Address::invalid();
412   }
413 
414   // Scan function arguments for vector width.
415   for (llvm::Argument &A : CurFn->args())
416     if (auto *VT = dyn_cast<llvm::VectorType>(A.getType()))
417       LargestVectorWidth =
418           std::max((uint64_t)LargestVectorWidth,
419                    VT->getPrimitiveSizeInBits().getKnownMinSize());
420 
421   // Update vector width based on return type.
422   if (auto *VT = dyn_cast<llvm::VectorType>(CurFn->getReturnType()))
423     LargestVectorWidth =
424         std::max((uint64_t)LargestVectorWidth,
425                  VT->getPrimitiveSizeInBits().getKnownMinSize());
426 
427   // Add the required-vector-width attribute. This contains the max width from:
428   // 1. min-vector-width attribute used in the source program.
429   // 2. Any builtins used that have a vector width specified.
430   // 3. Values passed in and out of inline assembly.
431   // 4. Width of vector arguments and return types for this function.
432   // 5. Width of vector aguments and return types for functions called by this
433   //    function.
434   CurFn->addFnAttr("min-legal-vector-width", llvm::utostr(LargestVectorWidth));
435 
436   // If we generated an unreachable return block, delete it now.
437   if (ReturnBlock.isValid() && ReturnBlock.getBlock()->use_empty()) {
438     Builder.ClearInsertionPoint();
439     ReturnBlock.getBlock()->eraseFromParent();
440   }
441   if (ReturnValue.isValid()) {
442     auto *RetAlloca = dyn_cast<llvm::AllocaInst>(ReturnValue.getPointer());
443     if (RetAlloca && RetAlloca->use_empty()) {
444       RetAlloca->eraseFromParent();
445       ReturnValue = Address::invalid();
446     }
447   }
448 }
449 
450 /// ShouldInstrumentFunction - Return true if the current function should be
451 /// instrumented with __cyg_profile_func_* calls
452 bool CodeGenFunction::ShouldInstrumentFunction() {
453   if (!CGM.getCodeGenOpts().InstrumentFunctions &&
454       !CGM.getCodeGenOpts().InstrumentFunctionsAfterInlining &&
455       !CGM.getCodeGenOpts().InstrumentFunctionEntryBare)
456     return false;
457   if (!CurFuncDecl || CurFuncDecl->hasAttr<NoInstrumentFunctionAttr>())
458     return false;
459   return true;
460 }
461 
462 /// ShouldXRayInstrument - Return true if the current function should be
463 /// instrumented with XRay nop sleds.
464 bool CodeGenFunction::ShouldXRayInstrumentFunction() const {
465   return CGM.getCodeGenOpts().XRayInstrumentFunctions;
466 }
467 
468 /// AlwaysEmitXRayCustomEvents - Return true if we should emit IR for calls to
469 /// the __xray_customevent(...) builtin calls, when doing XRay instrumentation.
470 bool CodeGenFunction::AlwaysEmitXRayCustomEvents() const {
471   return CGM.getCodeGenOpts().XRayInstrumentFunctions &&
472          (CGM.getCodeGenOpts().XRayAlwaysEmitCustomEvents ||
473           CGM.getCodeGenOpts().XRayInstrumentationBundle.Mask ==
474               XRayInstrKind::Custom);
475 }
476 
477 bool CodeGenFunction::AlwaysEmitXRayTypedEvents() const {
478   return CGM.getCodeGenOpts().XRayInstrumentFunctions &&
479          (CGM.getCodeGenOpts().XRayAlwaysEmitTypedEvents ||
480           CGM.getCodeGenOpts().XRayInstrumentationBundle.Mask ==
481               XRayInstrKind::Typed);
482 }
483 
484 llvm::Constant *
485 CodeGenFunction::EncodeAddrForUseInPrologue(llvm::Function *F,
486                                             llvm::Constant *Addr) {
487   // Addresses stored in prologue data can't require run-time fixups and must
488   // be PC-relative. Run-time fixups are undesirable because they necessitate
489   // writable text segments, which are unsafe. And absolute addresses are
490   // undesirable because they break PIE mode.
491 
492   // Add a layer of indirection through a private global. Taking its address
493   // won't result in a run-time fixup, even if Addr has linkonce_odr linkage.
494   auto *GV = new llvm::GlobalVariable(CGM.getModule(), Addr->getType(),
495                                       /*isConstant=*/true,
496                                       llvm::GlobalValue::PrivateLinkage, Addr);
497 
498   // Create a PC-relative address.
499   auto *GOTAsInt = llvm::ConstantExpr::getPtrToInt(GV, IntPtrTy);
500   auto *FuncAsInt = llvm::ConstantExpr::getPtrToInt(F, IntPtrTy);
501   auto *PCRelAsInt = llvm::ConstantExpr::getSub(GOTAsInt, FuncAsInt);
502   return (IntPtrTy == Int32Ty)
503              ? PCRelAsInt
504              : llvm::ConstantExpr::getTrunc(PCRelAsInt, Int32Ty);
505 }
506 
507 llvm::Value *
508 CodeGenFunction::DecodeAddrUsedInPrologue(llvm::Value *F,
509                                           llvm::Value *EncodedAddr) {
510   // Reconstruct the address of the global.
511   auto *PCRelAsInt = Builder.CreateSExt(EncodedAddr, IntPtrTy);
512   auto *FuncAsInt = Builder.CreatePtrToInt(F, IntPtrTy, "func_addr.int");
513   auto *GOTAsInt = Builder.CreateAdd(PCRelAsInt, FuncAsInt, "global_addr.int");
514   auto *GOTAddr = Builder.CreateIntToPtr(GOTAsInt, Int8PtrPtrTy, "global_addr");
515 
516   // Load the original pointer through the global.
517   return Builder.CreateLoad(Address(GOTAddr, getPointerAlign()),
518                             "decoded_addr");
519 }
520 
521 void CodeGenFunction::EmitOpenCLKernelMetadata(const FunctionDecl *FD,
522                                                llvm::Function *Fn)
523 {
524   if (!FD->hasAttr<OpenCLKernelAttr>())
525     return;
526 
527   llvm::LLVMContext &Context = getLLVMContext();
528 
529   CGM.GenOpenCLArgMetadata(Fn, FD, this);
530 
531   if (const VecTypeHintAttr *A = FD->getAttr<VecTypeHintAttr>()) {
532     QualType HintQTy = A->getTypeHint();
533     const ExtVectorType *HintEltQTy = HintQTy->getAs<ExtVectorType>();
534     bool IsSignedInteger =
535         HintQTy->isSignedIntegerType() ||
536         (HintEltQTy && HintEltQTy->getElementType()->isSignedIntegerType());
537     llvm::Metadata *AttrMDArgs[] = {
538         llvm::ConstantAsMetadata::get(llvm::UndefValue::get(
539             CGM.getTypes().ConvertType(A->getTypeHint()))),
540         llvm::ConstantAsMetadata::get(llvm::ConstantInt::get(
541             llvm::IntegerType::get(Context, 32),
542             llvm::APInt(32, (uint64_t)(IsSignedInteger ? 1 : 0))))};
543     Fn->setMetadata("vec_type_hint", llvm::MDNode::get(Context, AttrMDArgs));
544   }
545 
546   if (const WorkGroupSizeHintAttr *A = FD->getAttr<WorkGroupSizeHintAttr>()) {
547     llvm::Metadata *AttrMDArgs[] = {
548         llvm::ConstantAsMetadata::get(Builder.getInt32(A->getXDim())),
549         llvm::ConstantAsMetadata::get(Builder.getInt32(A->getYDim())),
550         llvm::ConstantAsMetadata::get(Builder.getInt32(A->getZDim()))};
551     Fn->setMetadata("work_group_size_hint", llvm::MDNode::get(Context, AttrMDArgs));
552   }
553 
554   if (const ReqdWorkGroupSizeAttr *A = FD->getAttr<ReqdWorkGroupSizeAttr>()) {
555     llvm::Metadata *AttrMDArgs[] = {
556         llvm::ConstantAsMetadata::get(Builder.getInt32(A->getXDim())),
557         llvm::ConstantAsMetadata::get(Builder.getInt32(A->getYDim())),
558         llvm::ConstantAsMetadata::get(Builder.getInt32(A->getZDim()))};
559     Fn->setMetadata("reqd_work_group_size", llvm::MDNode::get(Context, AttrMDArgs));
560   }
561 
562   if (const OpenCLIntelReqdSubGroupSizeAttr *A =
563           FD->getAttr<OpenCLIntelReqdSubGroupSizeAttr>()) {
564     llvm::Metadata *AttrMDArgs[] = {
565         llvm::ConstantAsMetadata::get(Builder.getInt32(A->getSubGroupSize()))};
566     Fn->setMetadata("intel_reqd_sub_group_size",
567                     llvm::MDNode::get(Context, AttrMDArgs));
568   }
569 }
570 
571 /// Determine whether the function F ends with a return stmt.
572 static bool endsWithReturn(const Decl* F) {
573   const Stmt *Body = nullptr;
574   if (auto *FD = dyn_cast_or_null<FunctionDecl>(F))
575     Body = FD->getBody();
576   else if (auto *OMD = dyn_cast_or_null<ObjCMethodDecl>(F))
577     Body = OMD->getBody();
578 
579   if (auto *CS = dyn_cast_or_null<CompoundStmt>(Body)) {
580     auto LastStmt = CS->body_rbegin();
581     if (LastStmt != CS->body_rend())
582       return isa<ReturnStmt>(*LastStmt);
583   }
584   return false;
585 }
586 
587 void CodeGenFunction::markAsIgnoreThreadCheckingAtRuntime(llvm::Function *Fn) {
588   if (SanOpts.has(SanitizerKind::Thread)) {
589     Fn->addFnAttr("sanitize_thread_no_checking_at_run_time");
590     Fn->removeFnAttr(llvm::Attribute::SanitizeThread);
591   }
592 }
593 
594 /// Check if the return value of this function requires sanitization.
595 bool CodeGenFunction::requiresReturnValueCheck() const {
596   return requiresReturnValueNullabilityCheck() ||
597          (SanOpts.has(SanitizerKind::ReturnsNonnullAttribute) && CurCodeDecl &&
598           CurCodeDecl->getAttr<ReturnsNonNullAttr>());
599 }
600 
601 static bool matchesStlAllocatorFn(const Decl *D, const ASTContext &Ctx) {
602   auto *MD = dyn_cast_or_null<CXXMethodDecl>(D);
603   if (!MD || !MD->getDeclName().getAsIdentifierInfo() ||
604       !MD->getDeclName().getAsIdentifierInfo()->isStr("allocate") ||
605       (MD->getNumParams() != 1 && MD->getNumParams() != 2))
606     return false;
607 
608   if (MD->parameters()[0]->getType().getCanonicalType() != Ctx.getSizeType())
609     return false;
610 
611   if (MD->getNumParams() == 2) {
612     auto *PT = MD->parameters()[1]->getType()->getAs<PointerType>();
613     if (!PT || !PT->isVoidPointerType() ||
614         !PT->getPointeeType().isConstQualified())
615       return false;
616   }
617 
618   return true;
619 }
620 
621 /// Return the UBSan prologue signature for \p FD if one is available.
622 static llvm::Constant *getPrologueSignature(CodeGenModule &CGM,
623                                             const FunctionDecl *FD) {
624   if (const auto *MD = dyn_cast<CXXMethodDecl>(FD))
625     if (!MD->isStatic())
626       return nullptr;
627   return CGM.getTargetCodeGenInfo().getUBSanFunctionSignature(CGM);
628 }
629 
630 void CodeGenFunction::StartFunction(GlobalDecl GD, QualType RetTy,
631                                     llvm::Function *Fn,
632                                     const CGFunctionInfo &FnInfo,
633                                     const FunctionArgList &Args,
634                                     SourceLocation Loc,
635                                     SourceLocation StartLoc) {
636   assert(!CurFn &&
637          "Do not use a CodeGenFunction object for more than one function");
638 
639   const Decl *D = GD.getDecl();
640 
641   DidCallStackSave = false;
642   CurCodeDecl = D;
643   if (const auto *FD = dyn_cast_or_null<FunctionDecl>(D))
644     if (FD->usesSEHTry())
645       CurSEHParent = FD;
646   CurFuncDecl = (D ? D->getNonClosureContext() : nullptr);
647   FnRetTy = RetTy;
648   CurFn = Fn;
649   CurFnInfo = &FnInfo;
650   assert(CurFn->isDeclaration() && "Function already has body?");
651 
652   // If this function has been blacklisted for any of the enabled sanitizers,
653   // disable the sanitizer for the function.
654   do {
655 #define SANITIZER(NAME, ID)                                                    \
656   if (SanOpts.empty())                                                         \
657     break;                                                                     \
658   if (SanOpts.has(SanitizerKind::ID))                                          \
659     if (CGM.isInSanitizerBlacklist(SanitizerKind::ID, Fn, Loc))                \
660       SanOpts.set(SanitizerKind::ID, false);
661 
662 #include "clang/Basic/Sanitizers.def"
663 #undef SANITIZER
664   } while (0);
665 
666   if (D) {
667     // Apply the no_sanitize* attributes to SanOpts.
668     for (auto Attr : D->specific_attrs<NoSanitizeAttr>()) {
669       SanitizerMask mask = Attr->getMask();
670       SanOpts.Mask &= ~mask;
671       if (mask & SanitizerKind::Address)
672         SanOpts.set(SanitizerKind::KernelAddress, false);
673       if (mask & SanitizerKind::KernelAddress)
674         SanOpts.set(SanitizerKind::Address, false);
675       if (mask & SanitizerKind::HWAddress)
676         SanOpts.set(SanitizerKind::KernelHWAddress, false);
677       if (mask & SanitizerKind::KernelHWAddress)
678         SanOpts.set(SanitizerKind::HWAddress, false);
679     }
680   }
681 
682   // Apply sanitizer attributes to the function.
683   if (SanOpts.hasOneOf(SanitizerKind::Address | SanitizerKind::KernelAddress))
684     Fn->addFnAttr(llvm::Attribute::SanitizeAddress);
685   if (SanOpts.hasOneOf(SanitizerKind::HWAddress | SanitizerKind::KernelHWAddress))
686     Fn->addFnAttr(llvm::Attribute::SanitizeHWAddress);
687   if (SanOpts.has(SanitizerKind::MemTag))
688     Fn->addFnAttr(llvm::Attribute::SanitizeMemTag);
689   if (SanOpts.has(SanitizerKind::Thread))
690     Fn->addFnAttr(llvm::Attribute::SanitizeThread);
691   if (SanOpts.hasOneOf(SanitizerKind::Memory | SanitizerKind::KernelMemory))
692     Fn->addFnAttr(llvm::Attribute::SanitizeMemory);
693   if (SanOpts.has(SanitizerKind::SafeStack))
694     Fn->addFnAttr(llvm::Attribute::SafeStack);
695   if (SanOpts.has(SanitizerKind::ShadowCallStack))
696     Fn->addFnAttr(llvm::Attribute::ShadowCallStack);
697 
698   // Apply fuzzing attribute to the function.
699   if (SanOpts.hasOneOf(SanitizerKind::Fuzzer | SanitizerKind::FuzzerNoLink))
700     Fn->addFnAttr(llvm::Attribute::OptForFuzzing);
701 
702   // Ignore TSan memory acesses from within ObjC/ObjC++ dealloc, initialize,
703   // .cxx_destruct, __destroy_helper_block_ and all of their calees at run time.
704   if (SanOpts.has(SanitizerKind::Thread)) {
705     if (const auto *OMD = dyn_cast_or_null<ObjCMethodDecl>(D)) {
706       IdentifierInfo *II = OMD->getSelector().getIdentifierInfoForSlot(0);
707       if (OMD->getMethodFamily() == OMF_dealloc ||
708           OMD->getMethodFamily() == OMF_initialize ||
709           (OMD->getSelector().isUnarySelector() && II->isStr(".cxx_destruct"))) {
710         markAsIgnoreThreadCheckingAtRuntime(Fn);
711       }
712     }
713   }
714 
715   // Ignore unrelated casts in STL allocate() since the allocator must cast
716   // from void* to T* before object initialization completes. Don't match on the
717   // namespace because not all allocators are in std::
718   if (D && SanOpts.has(SanitizerKind::CFIUnrelatedCast)) {
719     if (matchesStlAllocatorFn(D, getContext()))
720       SanOpts.Mask &= ~SanitizerKind::CFIUnrelatedCast;
721   }
722 
723   // Ignore null checks in coroutine functions since the coroutines passes
724   // are not aware of how to move the extra UBSan instructions across the split
725   // coroutine boundaries.
726   if (D && SanOpts.has(SanitizerKind::Null))
727     if (const auto *FD = dyn_cast<FunctionDecl>(D))
728       if (FD->getBody() &&
729           FD->getBody()->getStmtClass() == Stmt::CoroutineBodyStmtClass)
730         SanOpts.Mask &= ~SanitizerKind::Null;
731 
732   // Apply xray attributes to the function (as a string, for now)
733   if (const auto *XRayAttr = D ? D->getAttr<XRayInstrumentAttr>() : nullptr) {
734     if (CGM.getCodeGenOpts().XRayInstrumentationBundle.has(
735             XRayInstrKind::FunctionEntry) ||
736         CGM.getCodeGenOpts().XRayInstrumentationBundle.has(
737             XRayInstrKind::FunctionExit)) {
738       if (XRayAttr->alwaysXRayInstrument() && ShouldXRayInstrumentFunction())
739         Fn->addFnAttr("function-instrument", "xray-always");
740       if (XRayAttr->neverXRayInstrument())
741         Fn->addFnAttr("function-instrument", "xray-never");
742       if (const auto *LogArgs = D->getAttr<XRayLogArgsAttr>())
743         if (ShouldXRayInstrumentFunction())
744           Fn->addFnAttr("xray-log-args",
745                         llvm::utostr(LogArgs->getArgumentCount()));
746     }
747   } else {
748     if (ShouldXRayInstrumentFunction() && !CGM.imbueXRayAttrs(Fn, Loc))
749       Fn->addFnAttr(
750           "xray-instruction-threshold",
751           llvm::itostr(CGM.getCodeGenOpts().XRayInstructionThreshold));
752   }
753 
754   if (ShouldXRayInstrumentFunction()) {
755     if (CGM.getCodeGenOpts().XRayIgnoreLoops)
756       Fn->addFnAttr("xray-ignore-loops");
757 
758     if (!CGM.getCodeGenOpts().XRayInstrumentationBundle.has(
759             XRayInstrKind::FunctionExit))
760       Fn->addFnAttr("xray-skip-exit");
761 
762     if (!CGM.getCodeGenOpts().XRayInstrumentationBundle.has(
763             XRayInstrKind::FunctionEntry))
764       Fn->addFnAttr("xray-skip-entry");
765   }
766 
767   unsigned Count, Offset;
768   if (const auto *Attr =
769           D ? D->getAttr<PatchableFunctionEntryAttr>() : nullptr) {
770     Count = Attr->getCount();
771     Offset = Attr->getOffset();
772   } else {
773     Count = CGM.getCodeGenOpts().PatchableFunctionEntryCount;
774     Offset = CGM.getCodeGenOpts().PatchableFunctionEntryOffset;
775   }
776   if (Count && Offset <= Count) {
777     Fn->addFnAttr("patchable-function-entry", std::to_string(Count - Offset));
778     if (Offset)
779       Fn->addFnAttr("patchable-function-prefix", std::to_string(Offset));
780   }
781 
782   // Add no-jump-tables value.
783   Fn->addFnAttr("no-jump-tables",
784                 llvm::toStringRef(CGM.getCodeGenOpts().NoUseJumpTables));
785 
786   // Add no-inline-line-tables value.
787   if (CGM.getCodeGenOpts().NoInlineLineTables)
788     Fn->addFnAttr("no-inline-line-tables");
789 
790   // Add profile-sample-accurate value.
791   if (CGM.getCodeGenOpts().ProfileSampleAccurate)
792     Fn->addFnAttr("profile-sample-accurate");
793 
794   if (!CGM.getCodeGenOpts().SampleProfileFile.empty())
795     Fn->addFnAttr("use-sample-profile");
796 
797   if (D && D->hasAttr<CFICanonicalJumpTableAttr>())
798     Fn->addFnAttr("cfi-canonical-jump-table");
799 
800   if (getLangOpts().OpenCL) {
801     // Add metadata for a kernel function.
802     if (const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D))
803       EmitOpenCLKernelMetadata(FD, Fn);
804   }
805 
806   // If we are checking function types, emit a function type signature as
807   // prologue data.
808   if (getLangOpts().CPlusPlus && SanOpts.has(SanitizerKind::Function)) {
809     if (const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D)) {
810       if (llvm::Constant *PrologueSig = getPrologueSignature(CGM, FD)) {
811         // Remove any (C++17) exception specifications, to allow calling e.g. a
812         // noexcept function through a non-noexcept pointer.
813         auto ProtoTy =
814           getContext().getFunctionTypeWithExceptionSpec(FD->getType(),
815                                                         EST_None);
816         llvm::Constant *FTRTTIConst =
817             CGM.GetAddrOfRTTIDescriptor(ProtoTy, /*ForEH=*/true);
818         llvm::Constant *FTRTTIConstEncoded =
819             EncodeAddrForUseInPrologue(Fn, FTRTTIConst);
820         llvm::Constant *PrologueStructElems[] = {PrologueSig,
821                                                  FTRTTIConstEncoded};
822         llvm::Constant *PrologueStructConst =
823             llvm::ConstantStruct::getAnon(PrologueStructElems, /*Packed=*/true);
824         Fn->setPrologueData(PrologueStructConst);
825       }
826     }
827   }
828 
829   // If we're checking nullability, we need to know whether we can check the
830   // return value. Initialize the flag to 'true' and refine it in EmitParmDecl.
831   if (SanOpts.has(SanitizerKind::NullabilityReturn)) {
832     auto Nullability = FnRetTy->getNullability(getContext());
833     if (Nullability && *Nullability == NullabilityKind::NonNull) {
834       if (!(SanOpts.has(SanitizerKind::ReturnsNonnullAttribute) &&
835             CurCodeDecl && CurCodeDecl->getAttr<ReturnsNonNullAttr>()))
836         RetValNullabilityPrecondition =
837             llvm::ConstantInt::getTrue(getLLVMContext());
838     }
839   }
840 
841   // If we're in C++ mode and the function name is "main", it is guaranteed
842   // to be norecurse by the standard (3.6.1.3 "The function main shall not be
843   // used within a program").
844   //
845   // OpenCL C 2.0 v2.2-11 s6.9.i:
846   //     Recursion is not supported.
847   //
848   // SYCL v1.2.1 s3.10:
849   //     kernels cannot include RTTI information, exception classes,
850   //     recursive code, virtual functions or make use of C++ libraries that
851   //     are not compiled for the device.
852   if (const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D)) {
853     if ((getLangOpts().CPlusPlus && FD->isMain()) || getLangOpts().OpenCL ||
854         getLangOpts().SYCLIsDevice ||
855         (getLangOpts().CUDA && FD->hasAttr<CUDAGlobalAttr>()))
856       Fn->addFnAttr(llvm::Attribute::NoRecurse);
857   }
858 
859   if (const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D)) {
860     Builder.setIsFPConstrained(FD->usesFPIntrin());
861     if (FD->usesFPIntrin())
862       Fn->addFnAttr(llvm::Attribute::StrictFP);
863   }
864 
865   // If a custom alignment is used, force realigning to this alignment on
866   // any main function which certainly will need it.
867   if (const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D))
868     if ((FD->isMain() || FD->isMSVCRTEntryPoint()) &&
869         CGM.getCodeGenOpts().StackAlignment)
870       Fn->addFnAttr("stackrealign");
871 
872   llvm::BasicBlock *EntryBB = createBasicBlock("entry", CurFn);
873 
874   // Create a marker to make it easy to insert allocas into the entryblock
875   // later.  Don't create this with the builder, because we don't want it
876   // folded.
877   llvm::Value *Undef = llvm::UndefValue::get(Int32Ty);
878   AllocaInsertPt = new llvm::BitCastInst(Undef, Int32Ty, "allocapt", EntryBB);
879 
880   ReturnBlock = getJumpDestInCurrentScope("return");
881 
882   Builder.SetInsertPoint(EntryBB);
883 
884   // If we're checking the return value, allocate space for a pointer to a
885   // precise source location of the checked return statement.
886   if (requiresReturnValueCheck()) {
887     ReturnLocation = CreateDefaultAlignTempAlloca(Int8PtrTy, "return.sloc.ptr");
888     InitTempAlloca(ReturnLocation, llvm::ConstantPointerNull::get(Int8PtrTy));
889   }
890 
891   // Emit subprogram debug descriptor.
892   if (CGDebugInfo *DI = getDebugInfo()) {
893     // Reconstruct the type from the argument list so that implicit parameters,
894     // such as 'this' and 'vtt', show up in the debug info. Preserve the calling
895     // convention.
896     CallingConv CC = CallingConv::CC_C;
897     if (auto *FD = dyn_cast_or_null<FunctionDecl>(D))
898       if (const auto *SrcFnTy = FD->getType()->getAs<FunctionType>())
899         CC = SrcFnTy->getCallConv();
900     SmallVector<QualType, 16> ArgTypes;
901     for (const VarDecl *VD : Args)
902       ArgTypes.push_back(VD->getType());
903     QualType FnType = getContext().getFunctionType(
904         RetTy, ArgTypes, FunctionProtoType::ExtProtoInfo(CC));
905     DI->EmitFunctionStart(GD, Loc, StartLoc, FnType, CurFn, CurFuncIsThunk,
906                           Builder);
907   }
908 
909   if (ShouldInstrumentFunction()) {
910     if (CGM.getCodeGenOpts().InstrumentFunctions)
911       CurFn->addFnAttr("instrument-function-entry", "__cyg_profile_func_enter");
912     if (CGM.getCodeGenOpts().InstrumentFunctionsAfterInlining)
913       CurFn->addFnAttr("instrument-function-entry-inlined",
914                        "__cyg_profile_func_enter");
915     if (CGM.getCodeGenOpts().InstrumentFunctionEntryBare)
916       CurFn->addFnAttr("instrument-function-entry-inlined",
917                        "__cyg_profile_func_enter_bare");
918   }
919 
920   // Since emitting the mcount call here impacts optimizations such as function
921   // inlining, we just add an attribute to insert a mcount call in backend.
922   // The attribute "counting-function" is set to mcount function name which is
923   // architecture dependent.
924   if (CGM.getCodeGenOpts().InstrumentForProfiling) {
925     // Calls to fentry/mcount should not be generated if function has
926     // the no_instrument_function attribute.
927     if (!CurFuncDecl || !CurFuncDecl->hasAttr<NoInstrumentFunctionAttr>()) {
928       if (CGM.getCodeGenOpts().CallFEntry)
929         Fn->addFnAttr("fentry-call", "true");
930       else {
931         Fn->addFnAttr("instrument-function-entry-inlined",
932                       getTarget().getMCountName());
933       }
934       if (CGM.getCodeGenOpts().MNopMCount) {
935         if (!CGM.getCodeGenOpts().CallFEntry)
936           CGM.getDiags().Report(diag::err_opt_not_valid_without_opt)
937             << "-mnop-mcount" << "-mfentry";
938         Fn->addFnAttr("mnop-mcount");
939       }
940 
941       if (CGM.getCodeGenOpts().RecordMCount) {
942         if (!CGM.getCodeGenOpts().CallFEntry)
943           CGM.getDiags().Report(diag::err_opt_not_valid_without_opt)
944             << "-mrecord-mcount" << "-mfentry";
945         Fn->addFnAttr("mrecord-mcount");
946       }
947     }
948   }
949 
950   if (CGM.getCodeGenOpts().PackedStack) {
951     if (getContext().getTargetInfo().getTriple().getArch() !=
952         llvm::Triple::systemz)
953       CGM.getDiags().Report(diag::err_opt_not_valid_on_target)
954         << "-mpacked-stack";
955     Fn->addFnAttr("packed-stack");
956   }
957 
958   if (RetTy->isVoidType()) {
959     // Void type; nothing to return.
960     ReturnValue = Address::invalid();
961 
962     // Count the implicit return.
963     if (!endsWithReturn(D))
964       ++NumReturnExprs;
965   } else if (CurFnInfo->getReturnInfo().getKind() == ABIArgInfo::Indirect) {
966     // Indirect return; emit returned value directly into sret slot.
967     // This reduces code size, and affects correctness in C++.
968     auto AI = CurFn->arg_begin();
969     if (CurFnInfo->getReturnInfo().isSRetAfterThis())
970       ++AI;
971     ReturnValue = Address(&*AI, CurFnInfo->getReturnInfo().getIndirectAlign());
972     if (!CurFnInfo->getReturnInfo().getIndirectByVal()) {
973       ReturnValuePointer =
974           CreateDefaultAlignTempAlloca(Int8PtrTy, "result.ptr");
975       Builder.CreateStore(Builder.CreatePointerBitCastOrAddrSpaceCast(
976                               ReturnValue.getPointer(), Int8PtrTy),
977                           ReturnValuePointer);
978     }
979   } else if (CurFnInfo->getReturnInfo().getKind() == ABIArgInfo::InAlloca &&
980              !hasScalarEvaluationKind(CurFnInfo->getReturnType())) {
981     // Load the sret pointer from the argument struct and return into that.
982     unsigned Idx = CurFnInfo->getReturnInfo().getInAllocaFieldIndex();
983     llvm::Function::arg_iterator EI = CurFn->arg_end();
984     --EI;
985     llvm::Value *Addr = Builder.CreateStructGEP(nullptr, &*EI, Idx);
986     ReturnValuePointer = Address(Addr, getPointerAlign());
987     Addr = Builder.CreateAlignedLoad(Addr, getPointerAlign(), "agg.result");
988     ReturnValue = Address(Addr, CGM.getNaturalTypeAlignment(RetTy));
989   } else {
990     ReturnValue = CreateIRTemp(RetTy, "retval");
991 
992     // Tell the epilog emitter to autorelease the result.  We do this
993     // now so that various specialized functions can suppress it
994     // during their IR-generation.
995     if (getLangOpts().ObjCAutoRefCount &&
996         !CurFnInfo->isReturnsRetained() &&
997         RetTy->isObjCRetainableType())
998       AutoreleaseResult = true;
999   }
1000 
1001   EmitStartEHSpec(CurCodeDecl);
1002 
1003   PrologueCleanupDepth = EHStack.stable_begin();
1004 
1005   // Emit OpenMP specific initialization of the device functions.
1006   if (getLangOpts().OpenMP && CurCodeDecl)
1007     CGM.getOpenMPRuntime().emitFunctionProlog(*this, CurCodeDecl);
1008 
1009   EmitFunctionProlog(*CurFnInfo, CurFn, Args);
1010 
1011   if (D && isa<CXXMethodDecl>(D) && cast<CXXMethodDecl>(D)->isInstance()) {
1012     CGM.getCXXABI().EmitInstanceFunctionProlog(*this);
1013     const CXXMethodDecl *MD = cast<CXXMethodDecl>(D);
1014     if (MD->getParent()->isLambda() &&
1015         MD->getOverloadedOperator() == OO_Call) {
1016       // We're in a lambda; figure out the captures.
1017       MD->getParent()->getCaptureFields(LambdaCaptureFields,
1018                                         LambdaThisCaptureField);
1019       if (LambdaThisCaptureField) {
1020         // If the lambda captures the object referred to by '*this' - either by
1021         // value or by reference, make sure CXXThisValue points to the correct
1022         // object.
1023 
1024         // Get the lvalue for the field (which is a copy of the enclosing object
1025         // or contains the address of the enclosing object).
1026         LValue ThisFieldLValue = EmitLValueForLambdaField(LambdaThisCaptureField);
1027         if (!LambdaThisCaptureField->getType()->isPointerType()) {
1028           // If the enclosing object was captured by value, just use its address.
1029           CXXThisValue = ThisFieldLValue.getAddress(*this).getPointer();
1030         } else {
1031           // Load the lvalue pointed to by the field, since '*this' was captured
1032           // by reference.
1033           CXXThisValue =
1034               EmitLoadOfLValue(ThisFieldLValue, SourceLocation()).getScalarVal();
1035         }
1036       }
1037       for (auto *FD : MD->getParent()->fields()) {
1038         if (FD->hasCapturedVLAType()) {
1039           auto *ExprArg = EmitLoadOfLValue(EmitLValueForLambdaField(FD),
1040                                            SourceLocation()).getScalarVal();
1041           auto VAT = FD->getCapturedVLAType();
1042           VLASizeMap[VAT->getSizeExpr()] = ExprArg;
1043         }
1044       }
1045     } else {
1046       // Not in a lambda; just use 'this' from the method.
1047       // FIXME: Should we generate a new load for each use of 'this'?  The
1048       // fast register allocator would be happier...
1049       CXXThisValue = CXXABIThisValue;
1050     }
1051 
1052     // Check the 'this' pointer once per function, if it's available.
1053     if (CXXABIThisValue) {
1054       SanitizerSet SkippedChecks;
1055       SkippedChecks.set(SanitizerKind::ObjectSize, true);
1056       QualType ThisTy = MD->getThisType();
1057 
1058       // If this is the call operator of a lambda with no capture-default, it
1059       // may have a static invoker function, which may call this operator with
1060       // a null 'this' pointer.
1061       if (isLambdaCallOperator(MD) &&
1062           MD->getParent()->getLambdaCaptureDefault() == LCD_None)
1063         SkippedChecks.set(SanitizerKind::Null, true);
1064 
1065       EmitTypeCheck(isa<CXXConstructorDecl>(MD) ? TCK_ConstructorCall
1066                                                 : TCK_MemberCall,
1067                     Loc, CXXABIThisValue, ThisTy,
1068                     getContext().getTypeAlignInChars(ThisTy->getPointeeType()),
1069                     SkippedChecks);
1070     }
1071   }
1072 
1073   // If any of the arguments have a variably modified type, make sure to
1074   // emit the type size.
1075   for (FunctionArgList::const_iterator i = Args.begin(), e = Args.end();
1076        i != e; ++i) {
1077     const VarDecl *VD = *i;
1078 
1079     // Dig out the type as written from ParmVarDecls; it's unclear whether
1080     // the standard (C99 6.9.1p10) requires this, but we're following the
1081     // precedent set by gcc.
1082     QualType Ty;
1083     if (const ParmVarDecl *PVD = dyn_cast<ParmVarDecl>(VD))
1084       Ty = PVD->getOriginalType();
1085     else
1086       Ty = VD->getType();
1087 
1088     if (Ty->isVariablyModifiedType())
1089       EmitVariablyModifiedType(Ty);
1090   }
1091   // Emit a location at the end of the prologue.
1092   if (CGDebugInfo *DI = getDebugInfo())
1093     DI->EmitLocation(Builder, StartLoc);
1094 
1095   // TODO: Do we need to handle this in two places like we do with
1096   // target-features/target-cpu?
1097   if (CurFuncDecl)
1098     if (const auto *VecWidth = CurFuncDecl->getAttr<MinVectorWidthAttr>())
1099       LargestVectorWidth = VecWidth->getVectorWidth();
1100 }
1101 
1102 void CodeGenFunction::EmitFunctionBody(const Stmt *Body) {
1103   incrementProfileCounter(Body);
1104   if (const CompoundStmt *S = dyn_cast<CompoundStmt>(Body))
1105     EmitCompoundStmtWithoutScope(*S);
1106   else
1107     EmitStmt(Body);
1108 }
1109 
1110 /// When instrumenting to collect profile data, the counts for some blocks
1111 /// such as switch cases need to not include the fall-through counts, so
1112 /// emit a branch around the instrumentation code. When not instrumenting,
1113 /// this just calls EmitBlock().
1114 void CodeGenFunction::EmitBlockWithFallThrough(llvm::BasicBlock *BB,
1115                                                const Stmt *S) {
1116   llvm::BasicBlock *SkipCountBB = nullptr;
1117   if (HaveInsertPoint() && CGM.getCodeGenOpts().hasProfileClangInstr()) {
1118     // When instrumenting for profiling, the fallthrough to certain
1119     // statements needs to skip over the instrumentation code so that we
1120     // get an accurate count.
1121     SkipCountBB = createBasicBlock("skipcount");
1122     EmitBranch(SkipCountBB);
1123   }
1124   EmitBlock(BB);
1125   uint64_t CurrentCount = getCurrentProfileCount();
1126   incrementProfileCounter(S);
1127   setCurrentProfileCount(getCurrentProfileCount() + CurrentCount);
1128   if (SkipCountBB)
1129     EmitBlock(SkipCountBB);
1130 }
1131 
1132 /// Tries to mark the given function nounwind based on the
1133 /// non-existence of any throwing calls within it.  We believe this is
1134 /// lightweight enough to do at -O0.
1135 static void TryMarkNoThrow(llvm::Function *F) {
1136   // LLVM treats 'nounwind' on a function as part of the type, so we
1137   // can't do this on functions that can be overwritten.
1138   if (F->isInterposable()) return;
1139 
1140   for (llvm::BasicBlock &BB : *F)
1141     for (llvm::Instruction &I : BB)
1142       if (I.mayThrow())
1143         return;
1144 
1145   F->setDoesNotThrow();
1146 }
1147 
1148 QualType CodeGenFunction::BuildFunctionArgList(GlobalDecl GD,
1149                                                FunctionArgList &Args) {
1150   const FunctionDecl *FD = cast<FunctionDecl>(GD.getDecl());
1151   QualType ResTy = FD->getReturnType();
1152 
1153   const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(FD);
1154   if (MD && MD->isInstance()) {
1155     if (CGM.getCXXABI().HasThisReturn(GD))
1156       ResTy = MD->getThisType();
1157     else if (CGM.getCXXABI().hasMostDerivedReturn(GD))
1158       ResTy = CGM.getContext().VoidPtrTy;
1159     CGM.getCXXABI().buildThisParam(*this, Args);
1160   }
1161 
1162   // The base version of an inheriting constructor whose constructed base is a
1163   // virtual base is not passed any arguments (because it doesn't actually call
1164   // the inherited constructor).
1165   bool PassedParams = true;
1166   if (const CXXConstructorDecl *CD = dyn_cast<CXXConstructorDecl>(FD))
1167     if (auto Inherited = CD->getInheritedConstructor())
1168       PassedParams =
1169           getTypes().inheritingCtorHasParams(Inherited, GD.getCtorType());
1170 
1171   if (PassedParams) {
1172     for (auto *Param : FD->parameters()) {
1173       Args.push_back(Param);
1174       if (!Param->hasAttr<PassObjectSizeAttr>())
1175         continue;
1176 
1177       auto *Implicit = ImplicitParamDecl::Create(
1178           getContext(), Param->getDeclContext(), Param->getLocation(),
1179           /*Id=*/nullptr, getContext().getSizeType(), ImplicitParamDecl::Other);
1180       SizeArguments[Param] = Implicit;
1181       Args.push_back(Implicit);
1182     }
1183   }
1184 
1185   if (MD && (isa<CXXConstructorDecl>(MD) || isa<CXXDestructorDecl>(MD)))
1186     CGM.getCXXABI().addImplicitStructorParams(*this, ResTy, Args);
1187 
1188   return ResTy;
1189 }
1190 
1191 static bool
1192 shouldUseUndefinedBehaviorReturnOptimization(const FunctionDecl *FD,
1193                                              const ASTContext &Context) {
1194   QualType T = FD->getReturnType();
1195   // Avoid the optimization for functions that return a record type with a
1196   // trivial destructor or another trivially copyable type.
1197   if (const RecordType *RT = T.getCanonicalType()->getAs<RecordType>()) {
1198     if (const auto *ClassDecl = dyn_cast<CXXRecordDecl>(RT->getDecl()))
1199       return !ClassDecl->hasTrivialDestructor();
1200   }
1201   return !T.isTriviallyCopyableType(Context);
1202 }
1203 
1204 void CodeGenFunction::GenerateCode(GlobalDecl GD, llvm::Function *Fn,
1205                                    const CGFunctionInfo &FnInfo) {
1206   const FunctionDecl *FD = cast<FunctionDecl>(GD.getDecl());
1207   CurGD = GD;
1208 
1209   FunctionArgList Args;
1210   QualType ResTy = BuildFunctionArgList(GD, Args);
1211 
1212   // Check if we should generate debug info for this function.
1213   if (FD->hasAttr<NoDebugAttr>())
1214     DebugInfo = nullptr; // disable debug info indefinitely for this function
1215 
1216   // The function might not have a body if we're generating thunks for a
1217   // function declaration.
1218   SourceRange BodyRange;
1219   if (Stmt *Body = FD->getBody())
1220     BodyRange = Body->getSourceRange();
1221   else
1222     BodyRange = FD->getLocation();
1223   CurEHLocation = BodyRange.getEnd();
1224 
1225   // Use the location of the start of the function to determine where
1226   // the function definition is located. By default use the location
1227   // of the declaration as the location for the subprogram. A function
1228   // may lack a declaration in the source code if it is created by code
1229   // gen. (examples: _GLOBAL__I_a, __cxx_global_array_dtor, thunk).
1230   SourceLocation Loc = FD->getLocation();
1231 
1232   // If this is a function specialization then use the pattern body
1233   // as the location for the function.
1234   if (const FunctionDecl *SpecDecl = FD->getTemplateInstantiationPattern())
1235     if (SpecDecl->hasBody(SpecDecl))
1236       Loc = SpecDecl->getLocation();
1237 
1238   Stmt *Body = FD->getBody();
1239 
1240   // Initialize helper which will detect jumps which can cause invalid lifetime
1241   // markers.
1242   if (Body && ShouldEmitLifetimeMarkers)
1243     Bypasses.Init(Body);
1244 
1245   // Emit the standard function prologue.
1246   StartFunction(GD, ResTy, Fn, FnInfo, Args, Loc, BodyRange.getBegin());
1247 
1248   // Generate the body of the function.
1249   PGO.assignRegionCounters(GD, CurFn);
1250   if (isa<CXXDestructorDecl>(FD))
1251     EmitDestructorBody(Args);
1252   else if (isa<CXXConstructorDecl>(FD))
1253     EmitConstructorBody(Args);
1254   else if (getLangOpts().CUDA &&
1255            !getLangOpts().CUDAIsDevice &&
1256            FD->hasAttr<CUDAGlobalAttr>())
1257     CGM.getCUDARuntime().emitDeviceStub(*this, Args);
1258   else if (isa<CXXMethodDecl>(FD) &&
1259            cast<CXXMethodDecl>(FD)->isLambdaStaticInvoker()) {
1260     // The lambda static invoker function is special, because it forwards or
1261     // clones the body of the function call operator (but is actually static).
1262     EmitLambdaStaticInvokeBody(cast<CXXMethodDecl>(FD));
1263   } else if (FD->isDefaulted() && isa<CXXMethodDecl>(FD) &&
1264              (cast<CXXMethodDecl>(FD)->isCopyAssignmentOperator() ||
1265               cast<CXXMethodDecl>(FD)->isMoveAssignmentOperator())) {
1266     // Implicit copy-assignment gets the same special treatment as implicit
1267     // copy-constructors.
1268     emitImplicitAssignmentOperatorBody(Args);
1269   } else if (Body) {
1270     EmitFunctionBody(Body);
1271   } else
1272     llvm_unreachable("no definition for emitted function");
1273 
1274   // C++11 [stmt.return]p2:
1275   //   Flowing off the end of a function [...] results in undefined behavior in
1276   //   a value-returning function.
1277   // C11 6.9.1p12:
1278   //   If the '}' that terminates a function is reached, and the value of the
1279   //   function call is used by the caller, the behavior is undefined.
1280   if (getLangOpts().CPlusPlus && !FD->hasImplicitReturnZero() && !SawAsmBlock &&
1281       !FD->getReturnType()->isVoidType() && Builder.GetInsertBlock()) {
1282     bool ShouldEmitUnreachable =
1283         CGM.getCodeGenOpts().StrictReturn ||
1284         shouldUseUndefinedBehaviorReturnOptimization(FD, getContext());
1285     if (SanOpts.has(SanitizerKind::Return)) {
1286       SanitizerScope SanScope(this);
1287       llvm::Value *IsFalse = Builder.getFalse();
1288       EmitCheck(std::make_pair(IsFalse, SanitizerKind::Return),
1289                 SanitizerHandler::MissingReturn,
1290                 EmitCheckSourceLocation(FD->getLocation()), None);
1291     } else if (ShouldEmitUnreachable) {
1292       if (CGM.getCodeGenOpts().OptimizationLevel == 0)
1293         EmitTrapCall(llvm::Intrinsic::trap);
1294     }
1295     if (SanOpts.has(SanitizerKind::Return) || ShouldEmitUnreachable) {
1296       Builder.CreateUnreachable();
1297       Builder.ClearInsertionPoint();
1298     }
1299   }
1300 
1301   // Emit the standard function epilogue.
1302   FinishFunction(BodyRange.getEnd());
1303 
1304   // If we haven't marked the function nothrow through other means, do
1305   // a quick pass now to see if we can.
1306   if (!CurFn->doesNotThrow())
1307     TryMarkNoThrow(CurFn);
1308 }
1309 
1310 /// ContainsLabel - Return true if the statement contains a label in it.  If
1311 /// this statement is not executed normally, it not containing a label means
1312 /// that we can just remove the code.
1313 bool CodeGenFunction::ContainsLabel(const Stmt *S, bool IgnoreCaseStmts) {
1314   // Null statement, not a label!
1315   if (!S) return false;
1316 
1317   // If this is a label, we have to emit the code, consider something like:
1318   // if (0) {  ...  foo:  bar(); }  goto foo;
1319   //
1320   // TODO: If anyone cared, we could track __label__'s, since we know that you
1321   // can't jump to one from outside their declared region.
1322   if (isa<LabelStmt>(S))
1323     return true;
1324 
1325   // If this is a case/default statement, and we haven't seen a switch, we have
1326   // to emit the code.
1327   if (isa<SwitchCase>(S) && !IgnoreCaseStmts)
1328     return true;
1329 
1330   // If this is a switch statement, we want to ignore cases below it.
1331   if (isa<SwitchStmt>(S))
1332     IgnoreCaseStmts = true;
1333 
1334   // Scan subexpressions for verboten labels.
1335   for (const Stmt *SubStmt : S->children())
1336     if (ContainsLabel(SubStmt, IgnoreCaseStmts))
1337       return true;
1338 
1339   return false;
1340 }
1341 
1342 /// containsBreak - Return true if the statement contains a break out of it.
1343 /// If the statement (recursively) contains a switch or loop with a break
1344 /// inside of it, this is fine.
1345 bool CodeGenFunction::containsBreak(const Stmt *S) {
1346   // Null statement, not a label!
1347   if (!S) return false;
1348 
1349   // If this is a switch or loop that defines its own break scope, then we can
1350   // include it and anything inside of it.
1351   if (isa<SwitchStmt>(S) || isa<WhileStmt>(S) || isa<DoStmt>(S) ||
1352       isa<ForStmt>(S))
1353     return false;
1354 
1355   if (isa<BreakStmt>(S))
1356     return true;
1357 
1358   // Scan subexpressions for verboten breaks.
1359   for (const Stmt *SubStmt : S->children())
1360     if (containsBreak(SubStmt))
1361       return true;
1362 
1363   return false;
1364 }
1365 
1366 bool CodeGenFunction::mightAddDeclToScope(const Stmt *S) {
1367   if (!S) return false;
1368 
1369   // Some statement kinds add a scope and thus never add a decl to the current
1370   // scope. Note, this list is longer than the list of statements that might
1371   // have an unscoped decl nested within them, but this way is conservatively
1372   // correct even if more statement kinds are added.
1373   if (isa<IfStmt>(S) || isa<SwitchStmt>(S) || isa<WhileStmt>(S) ||
1374       isa<DoStmt>(S) || isa<ForStmt>(S) || isa<CompoundStmt>(S) ||
1375       isa<CXXForRangeStmt>(S) || isa<CXXTryStmt>(S) ||
1376       isa<ObjCForCollectionStmt>(S) || isa<ObjCAtTryStmt>(S))
1377     return false;
1378 
1379   if (isa<DeclStmt>(S))
1380     return true;
1381 
1382   for (const Stmt *SubStmt : S->children())
1383     if (mightAddDeclToScope(SubStmt))
1384       return true;
1385 
1386   return false;
1387 }
1388 
1389 /// ConstantFoldsToSimpleInteger - If the specified expression does not fold
1390 /// to a constant, or if it does but contains a label, return false.  If it
1391 /// constant folds return true and set the boolean result in Result.
1392 bool CodeGenFunction::ConstantFoldsToSimpleInteger(const Expr *Cond,
1393                                                    bool &ResultBool,
1394                                                    bool AllowLabels) {
1395   llvm::APSInt ResultInt;
1396   if (!ConstantFoldsToSimpleInteger(Cond, ResultInt, AllowLabels))
1397     return false;
1398 
1399   ResultBool = ResultInt.getBoolValue();
1400   return true;
1401 }
1402 
1403 /// ConstantFoldsToSimpleInteger - If the specified expression does not fold
1404 /// to a constant, or if it does but contains a label, return false.  If it
1405 /// constant folds return true and set the folded value.
1406 bool CodeGenFunction::ConstantFoldsToSimpleInteger(const Expr *Cond,
1407                                                    llvm::APSInt &ResultInt,
1408                                                    bool AllowLabels) {
1409   // FIXME: Rename and handle conversion of other evaluatable things
1410   // to bool.
1411   Expr::EvalResult Result;
1412   if (!Cond->EvaluateAsInt(Result, getContext()))
1413     return false;  // Not foldable, not integer or not fully evaluatable.
1414 
1415   llvm::APSInt Int = Result.Val.getInt();
1416   if (!AllowLabels && CodeGenFunction::ContainsLabel(Cond))
1417     return false;  // Contains a label.
1418 
1419   ResultInt = Int;
1420   return true;
1421 }
1422 
1423 
1424 
1425 /// EmitBranchOnBoolExpr - Emit a branch on a boolean condition (e.g. for an if
1426 /// statement) to the specified blocks.  Based on the condition, this might try
1427 /// to simplify the codegen of the conditional based on the branch.
1428 ///
1429 void CodeGenFunction::EmitBranchOnBoolExpr(const Expr *Cond,
1430                                            llvm::BasicBlock *TrueBlock,
1431                                            llvm::BasicBlock *FalseBlock,
1432                                            uint64_t TrueCount) {
1433   Cond = Cond->IgnoreParens();
1434 
1435   if (const BinaryOperator *CondBOp = dyn_cast<BinaryOperator>(Cond)) {
1436 
1437     // Handle X && Y in a condition.
1438     if (CondBOp->getOpcode() == BO_LAnd) {
1439       // If we have "1 && X", simplify the code.  "0 && X" would have constant
1440       // folded if the case was simple enough.
1441       bool ConstantBool = false;
1442       if (ConstantFoldsToSimpleInteger(CondBOp->getLHS(), ConstantBool) &&
1443           ConstantBool) {
1444         // br(1 && X) -> br(X).
1445         incrementProfileCounter(CondBOp);
1446         return EmitBranchOnBoolExpr(CondBOp->getRHS(), TrueBlock, FalseBlock,
1447                                     TrueCount);
1448       }
1449 
1450       // If we have "X && 1", simplify the code to use an uncond branch.
1451       // "X && 0" would have been constant folded to 0.
1452       if (ConstantFoldsToSimpleInteger(CondBOp->getRHS(), ConstantBool) &&
1453           ConstantBool) {
1454         // br(X && 1) -> br(X).
1455         return EmitBranchOnBoolExpr(CondBOp->getLHS(), TrueBlock, FalseBlock,
1456                                     TrueCount);
1457       }
1458 
1459       // Emit the LHS as a conditional.  If the LHS conditional is false, we
1460       // want to jump to the FalseBlock.
1461       llvm::BasicBlock *LHSTrue = createBasicBlock("land.lhs.true");
1462       // The counter tells us how often we evaluate RHS, and all of TrueCount
1463       // can be propagated to that branch.
1464       uint64_t RHSCount = getProfileCount(CondBOp->getRHS());
1465 
1466       ConditionalEvaluation eval(*this);
1467       {
1468         ApplyDebugLocation DL(*this, Cond);
1469         EmitBranchOnBoolExpr(CondBOp->getLHS(), LHSTrue, FalseBlock, RHSCount);
1470         EmitBlock(LHSTrue);
1471       }
1472 
1473       incrementProfileCounter(CondBOp);
1474       setCurrentProfileCount(getProfileCount(CondBOp->getRHS()));
1475 
1476       // Any temporaries created here are conditional.
1477       eval.begin(*this);
1478       EmitBranchOnBoolExpr(CondBOp->getRHS(), TrueBlock, FalseBlock, TrueCount);
1479       eval.end(*this);
1480 
1481       return;
1482     }
1483 
1484     if (CondBOp->getOpcode() == BO_LOr) {
1485       // If we have "0 || X", simplify the code.  "1 || X" would have constant
1486       // folded if the case was simple enough.
1487       bool ConstantBool = false;
1488       if (ConstantFoldsToSimpleInteger(CondBOp->getLHS(), ConstantBool) &&
1489           !ConstantBool) {
1490         // br(0 || X) -> br(X).
1491         incrementProfileCounter(CondBOp);
1492         return EmitBranchOnBoolExpr(CondBOp->getRHS(), TrueBlock, FalseBlock,
1493                                     TrueCount);
1494       }
1495 
1496       // If we have "X || 0", simplify the code to use an uncond branch.
1497       // "X || 1" would have been constant folded to 1.
1498       if (ConstantFoldsToSimpleInteger(CondBOp->getRHS(), ConstantBool) &&
1499           !ConstantBool) {
1500         // br(X || 0) -> br(X).
1501         return EmitBranchOnBoolExpr(CondBOp->getLHS(), TrueBlock, FalseBlock,
1502                                     TrueCount);
1503       }
1504 
1505       // Emit the LHS as a conditional.  If the LHS conditional is true, we
1506       // want to jump to the TrueBlock.
1507       llvm::BasicBlock *LHSFalse = createBasicBlock("lor.lhs.false");
1508       // We have the count for entry to the RHS and for the whole expression
1509       // being true, so we can divy up True count between the short circuit and
1510       // the RHS.
1511       uint64_t LHSCount =
1512           getCurrentProfileCount() - getProfileCount(CondBOp->getRHS());
1513       uint64_t RHSCount = TrueCount - LHSCount;
1514 
1515       ConditionalEvaluation eval(*this);
1516       {
1517         ApplyDebugLocation DL(*this, Cond);
1518         EmitBranchOnBoolExpr(CondBOp->getLHS(), TrueBlock, LHSFalse, LHSCount);
1519         EmitBlock(LHSFalse);
1520       }
1521 
1522       incrementProfileCounter(CondBOp);
1523       setCurrentProfileCount(getProfileCount(CondBOp->getRHS()));
1524 
1525       // Any temporaries created here are conditional.
1526       eval.begin(*this);
1527       EmitBranchOnBoolExpr(CondBOp->getRHS(), TrueBlock, FalseBlock, RHSCount);
1528 
1529       eval.end(*this);
1530 
1531       return;
1532     }
1533   }
1534 
1535   if (const UnaryOperator *CondUOp = dyn_cast<UnaryOperator>(Cond)) {
1536     // br(!x, t, f) -> br(x, f, t)
1537     if (CondUOp->getOpcode() == UO_LNot) {
1538       // Negate the count.
1539       uint64_t FalseCount = getCurrentProfileCount() - TrueCount;
1540       // Negate the condition and swap the destination blocks.
1541       return EmitBranchOnBoolExpr(CondUOp->getSubExpr(), FalseBlock, TrueBlock,
1542                                   FalseCount);
1543     }
1544   }
1545 
1546   if (const ConditionalOperator *CondOp = dyn_cast<ConditionalOperator>(Cond)) {
1547     // br(c ? x : y, t, f) -> br(c, br(x, t, f), br(y, t, f))
1548     llvm::BasicBlock *LHSBlock = createBasicBlock("cond.true");
1549     llvm::BasicBlock *RHSBlock = createBasicBlock("cond.false");
1550 
1551     ConditionalEvaluation cond(*this);
1552     EmitBranchOnBoolExpr(CondOp->getCond(), LHSBlock, RHSBlock,
1553                          getProfileCount(CondOp));
1554 
1555     // When computing PGO branch weights, we only know the overall count for
1556     // the true block. This code is essentially doing tail duplication of the
1557     // naive code-gen, introducing new edges for which counts are not
1558     // available. Divide the counts proportionally between the LHS and RHS of
1559     // the conditional operator.
1560     uint64_t LHSScaledTrueCount = 0;
1561     if (TrueCount) {
1562       double LHSRatio =
1563           getProfileCount(CondOp) / (double)getCurrentProfileCount();
1564       LHSScaledTrueCount = TrueCount * LHSRatio;
1565     }
1566 
1567     cond.begin(*this);
1568     EmitBlock(LHSBlock);
1569     incrementProfileCounter(CondOp);
1570     {
1571       ApplyDebugLocation DL(*this, Cond);
1572       EmitBranchOnBoolExpr(CondOp->getLHS(), TrueBlock, FalseBlock,
1573                            LHSScaledTrueCount);
1574     }
1575     cond.end(*this);
1576 
1577     cond.begin(*this);
1578     EmitBlock(RHSBlock);
1579     EmitBranchOnBoolExpr(CondOp->getRHS(), TrueBlock, FalseBlock,
1580                          TrueCount - LHSScaledTrueCount);
1581     cond.end(*this);
1582 
1583     return;
1584   }
1585 
1586   if (const CXXThrowExpr *Throw = dyn_cast<CXXThrowExpr>(Cond)) {
1587     // Conditional operator handling can give us a throw expression as a
1588     // condition for a case like:
1589     //   br(c ? throw x : y, t, f) -> br(c, br(throw x, t, f), br(y, t, f)
1590     // Fold this to:
1591     //   br(c, throw x, br(y, t, f))
1592     EmitCXXThrowExpr(Throw, /*KeepInsertionPoint*/false);
1593     return;
1594   }
1595 
1596   // If the branch has a condition wrapped by __builtin_unpredictable,
1597   // create metadata that specifies that the branch is unpredictable.
1598   // Don't bother if not optimizing because that metadata would not be used.
1599   llvm::MDNode *Unpredictable = nullptr;
1600   auto *Call = dyn_cast<CallExpr>(Cond->IgnoreImpCasts());
1601   if (Call && CGM.getCodeGenOpts().OptimizationLevel != 0) {
1602     auto *FD = dyn_cast_or_null<FunctionDecl>(Call->getCalleeDecl());
1603     if (FD && FD->getBuiltinID() == Builtin::BI__builtin_unpredictable) {
1604       llvm::MDBuilder MDHelper(getLLVMContext());
1605       Unpredictable = MDHelper.createUnpredictable();
1606     }
1607   }
1608 
1609   // Create branch weights based on the number of times we get here and the
1610   // number of times the condition should be true.
1611   uint64_t CurrentCount = std::max(getCurrentProfileCount(), TrueCount);
1612   llvm::MDNode *Weights =
1613       createProfileWeights(TrueCount, CurrentCount - TrueCount);
1614 
1615   // Emit the code with the fully general case.
1616   llvm::Value *CondV;
1617   {
1618     ApplyDebugLocation DL(*this, Cond);
1619     CondV = EvaluateExprAsBool(Cond);
1620   }
1621   Builder.CreateCondBr(CondV, TrueBlock, FalseBlock, Weights, Unpredictable);
1622 }
1623 
1624 /// ErrorUnsupported - Print out an error that codegen doesn't support the
1625 /// specified stmt yet.
1626 void CodeGenFunction::ErrorUnsupported(const Stmt *S, const char *Type) {
1627   CGM.ErrorUnsupported(S, Type);
1628 }
1629 
1630 /// emitNonZeroVLAInit - Emit the "zero" initialization of a
1631 /// variable-length array whose elements have a non-zero bit-pattern.
1632 ///
1633 /// \param baseType the inner-most element type of the array
1634 /// \param src - a char* pointing to the bit-pattern for a single
1635 /// base element of the array
1636 /// \param sizeInChars - the total size of the VLA, in chars
1637 static void emitNonZeroVLAInit(CodeGenFunction &CGF, QualType baseType,
1638                                Address dest, Address src,
1639                                llvm::Value *sizeInChars) {
1640   CGBuilderTy &Builder = CGF.Builder;
1641 
1642   CharUnits baseSize = CGF.getContext().getTypeSizeInChars(baseType);
1643   llvm::Value *baseSizeInChars
1644     = llvm::ConstantInt::get(CGF.IntPtrTy, baseSize.getQuantity());
1645 
1646   Address begin =
1647     Builder.CreateElementBitCast(dest, CGF.Int8Ty, "vla.begin");
1648   llvm::Value *end =
1649     Builder.CreateInBoundsGEP(begin.getPointer(), sizeInChars, "vla.end");
1650 
1651   llvm::BasicBlock *originBB = CGF.Builder.GetInsertBlock();
1652   llvm::BasicBlock *loopBB = CGF.createBasicBlock("vla-init.loop");
1653   llvm::BasicBlock *contBB = CGF.createBasicBlock("vla-init.cont");
1654 
1655   // Make a loop over the VLA.  C99 guarantees that the VLA element
1656   // count must be nonzero.
1657   CGF.EmitBlock(loopBB);
1658 
1659   llvm::PHINode *cur = Builder.CreatePHI(begin.getType(), 2, "vla.cur");
1660   cur->addIncoming(begin.getPointer(), originBB);
1661 
1662   CharUnits curAlign =
1663     dest.getAlignment().alignmentOfArrayElement(baseSize);
1664 
1665   // memcpy the individual element bit-pattern.
1666   Builder.CreateMemCpy(Address(cur, curAlign), src, baseSizeInChars,
1667                        /*volatile*/ false);
1668 
1669   // Go to the next element.
1670   llvm::Value *next =
1671     Builder.CreateInBoundsGEP(CGF.Int8Ty, cur, baseSizeInChars, "vla.next");
1672 
1673   // Leave if that's the end of the VLA.
1674   llvm::Value *done = Builder.CreateICmpEQ(next, end, "vla-init.isdone");
1675   Builder.CreateCondBr(done, contBB, loopBB);
1676   cur->addIncoming(next, loopBB);
1677 
1678   CGF.EmitBlock(contBB);
1679 }
1680 
1681 void
1682 CodeGenFunction::EmitNullInitialization(Address DestPtr, QualType Ty) {
1683   // Ignore empty classes in C++.
1684   if (getLangOpts().CPlusPlus) {
1685     if (const RecordType *RT = Ty->getAs<RecordType>()) {
1686       if (cast<CXXRecordDecl>(RT->getDecl())->isEmpty())
1687         return;
1688     }
1689   }
1690 
1691   // Cast the dest ptr to the appropriate i8 pointer type.
1692   if (DestPtr.getElementType() != Int8Ty)
1693     DestPtr = Builder.CreateElementBitCast(DestPtr, Int8Ty);
1694 
1695   // Get size and alignment info for this aggregate.
1696   CharUnits size = getContext().getTypeSizeInChars(Ty);
1697 
1698   llvm::Value *SizeVal;
1699   const VariableArrayType *vla;
1700 
1701   // Don't bother emitting a zero-byte memset.
1702   if (size.isZero()) {
1703     // But note that getTypeInfo returns 0 for a VLA.
1704     if (const VariableArrayType *vlaType =
1705           dyn_cast_or_null<VariableArrayType>(
1706                                           getContext().getAsArrayType(Ty))) {
1707       auto VlaSize = getVLASize(vlaType);
1708       SizeVal = VlaSize.NumElts;
1709       CharUnits eltSize = getContext().getTypeSizeInChars(VlaSize.Type);
1710       if (!eltSize.isOne())
1711         SizeVal = Builder.CreateNUWMul(SizeVal, CGM.getSize(eltSize));
1712       vla = vlaType;
1713     } else {
1714       return;
1715     }
1716   } else {
1717     SizeVal = CGM.getSize(size);
1718     vla = nullptr;
1719   }
1720 
1721   // If the type contains a pointer to data member we can't memset it to zero.
1722   // Instead, create a null constant and copy it to the destination.
1723   // TODO: there are other patterns besides zero that we can usefully memset,
1724   // like -1, which happens to be the pattern used by member-pointers.
1725   if (!CGM.getTypes().isZeroInitializable(Ty)) {
1726     // For a VLA, emit a single element, then splat that over the VLA.
1727     if (vla) Ty = getContext().getBaseElementType(vla);
1728 
1729     llvm::Constant *NullConstant = CGM.EmitNullConstant(Ty);
1730 
1731     llvm::GlobalVariable *NullVariable =
1732       new llvm::GlobalVariable(CGM.getModule(), NullConstant->getType(),
1733                                /*isConstant=*/true,
1734                                llvm::GlobalVariable::PrivateLinkage,
1735                                NullConstant, Twine());
1736     CharUnits NullAlign = DestPtr.getAlignment();
1737     NullVariable->setAlignment(NullAlign.getAsAlign());
1738     Address SrcPtr(Builder.CreateBitCast(NullVariable, Builder.getInt8PtrTy()),
1739                    NullAlign);
1740 
1741     if (vla) return emitNonZeroVLAInit(*this, Ty, DestPtr, SrcPtr, SizeVal);
1742 
1743     // Get and call the appropriate llvm.memcpy overload.
1744     Builder.CreateMemCpy(DestPtr, SrcPtr, SizeVal, false);
1745     return;
1746   }
1747 
1748   // Otherwise, just memset the whole thing to zero.  This is legal
1749   // because in LLVM, all default initializers (other than the ones we just
1750   // handled above) are guaranteed to have a bit pattern of all zeros.
1751   Builder.CreateMemSet(DestPtr, Builder.getInt8(0), SizeVal, false);
1752 }
1753 
1754 llvm::BlockAddress *CodeGenFunction::GetAddrOfLabel(const LabelDecl *L) {
1755   // Make sure that there is a block for the indirect goto.
1756   if (!IndirectBranch)
1757     GetIndirectGotoBlock();
1758 
1759   llvm::BasicBlock *BB = getJumpDestForLabel(L).getBlock();
1760 
1761   // Make sure the indirect branch includes all of the address-taken blocks.
1762   IndirectBranch->addDestination(BB);
1763   return llvm::BlockAddress::get(CurFn, BB);
1764 }
1765 
1766 llvm::BasicBlock *CodeGenFunction::GetIndirectGotoBlock() {
1767   // If we already made the indirect branch for indirect goto, return its block.
1768   if (IndirectBranch) return IndirectBranch->getParent();
1769 
1770   CGBuilderTy TmpBuilder(*this, createBasicBlock("indirectgoto"));
1771 
1772   // Create the PHI node that indirect gotos will add entries to.
1773   llvm::Value *DestVal = TmpBuilder.CreatePHI(Int8PtrTy, 0,
1774                                               "indirect.goto.dest");
1775 
1776   // Create the indirect branch instruction.
1777   IndirectBranch = TmpBuilder.CreateIndirectBr(DestVal);
1778   return IndirectBranch->getParent();
1779 }
1780 
1781 /// Computes the length of an array in elements, as well as the base
1782 /// element type and a properly-typed first element pointer.
1783 llvm::Value *CodeGenFunction::emitArrayLength(const ArrayType *origArrayType,
1784                                               QualType &baseType,
1785                                               Address &addr) {
1786   const ArrayType *arrayType = origArrayType;
1787 
1788   // If it's a VLA, we have to load the stored size.  Note that
1789   // this is the size of the VLA in bytes, not its size in elements.
1790   llvm::Value *numVLAElements = nullptr;
1791   if (isa<VariableArrayType>(arrayType)) {
1792     numVLAElements = getVLASize(cast<VariableArrayType>(arrayType)).NumElts;
1793 
1794     // Walk into all VLAs.  This doesn't require changes to addr,
1795     // which has type T* where T is the first non-VLA element type.
1796     do {
1797       QualType elementType = arrayType->getElementType();
1798       arrayType = getContext().getAsArrayType(elementType);
1799 
1800       // If we only have VLA components, 'addr' requires no adjustment.
1801       if (!arrayType) {
1802         baseType = elementType;
1803         return numVLAElements;
1804       }
1805     } while (isa<VariableArrayType>(arrayType));
1806 
1807     // We get out here only if we find a constant array type
1808     // inside the VLA.
1809   }
1810 
1811   // We have some number of constant-length arrays, so addr should
1812   // have LLVM type [M x [N x [...]]]*.  Build a GEP that walks
1813   // down to the first element of addr.
1814   SmallVector<llvm::Value*, 8> gepIndices;
1815 
1816   // GEP down to the array type.
1817   llvm::ConstantInt *zero = Builder.getInt32(0);
1818   gepIndices.push_back(zero);
1819 
1820   uint64_t countFromCLAs = 1;
1821   QualType eltType;
1822 
1823   llvm::ArrayType *llvmArrayType =
1824     dyn_cast<llvm::ArrayType>(addr.getElementType());
1825   while (llvmArrayType) {
1826     assert(isa<ConstantArrayType>(arrayType));
1827     assert(cast<ConstantArrayType>(arrayType)->getSize().getZExtValue()
1828              == llvmArrayType->getNumElements());
1829 
1830     gepIndices.push_back(zero);
1831     countFromCLAs *= llvmArrayType->getNumElements();
1832     eltType = arrayType->getElementType();
1833 
1834     llvmArrayType =
1835       dyn_cast<llvm::ArrayType>(llvmArrayType->getElementType());
1836     arrayType = getContext().getAsArrayType(arrayType->getElementType());
1837     assert((!llvmArrayType || arrayType) &&
1838            "LLVM and Clang types are out-of-synch");
1839   }
1840 
1841   if (arrayType) {
1842     // From this point onwards, the Clang array type has been emitted
1843     // as some other type (probably a packed struct). Compute the array
1844     // size, and just emit the 'begin' expression as a bitcast.
1845     while (arrayType) {
1846       countFromCLAs *=
1847           cast<ConstantArrayType>(arrayType)->getSize().getZExtValue();
1848       eltType = arrayType->getElementType();
1849       arrayType = getContext().getAsArrayType(eltType);
1850     }
1851 
1852     llvm::Type *baseType = ConvertType(eltType);
1853     addr = Builder.CreateElementBitCast(addr, baseType, "array.begin");
1854   } else {
1855     // Create the actual GEP.
1856     addr = Address(Builder.CreateInBoundsGEP(addr.getPointer(),
1857                                              gepIndices, "array.begin"),
1858                    addr.getAlignment());
1859   }
1860 
1861   baseType = eltType;
1862 
1863   llvm::Value *numElements
1864     = llvm::ConstantInt::get(SizeTy, countFromCLAs);
1865 
1866   // If we had any VLA dimensions, factor them in.
1867   if (numVLAElements)
1868     numElements = Builder.CreateNUWMul(numVLAElements, numElements);
1869 
1870   return numElements;
1871 }
1872 
1873 CodeGenFunction::VlaSizePair CodeGenFunction::getVLASize(QualType type) {
1874   const VariableArrayType *vla = getContext().getAsVariableArrayType(type);
1875   assert(vla && "type was not a variable array type!");
1876   return getVLASize(vla);
1877 }
1878 
1879 CodeGenFunction::VlaSizePair
1880 CodeGenFunction::getVLASize(const VariableArrayType *type) {
1881   // The number of elements so far; always size_t.
1882   llvm::Value *numElements = nullptr;
1883 
1884   QualType elementType;
1885   do {
1886     elementType = type->getElementType();
1887     llvm::Value *vlaSize = VLASizeMap[type->getSizeExpr()];
1888     assert(vlaSize && "no size for VLA!");
1889     assert(vlaSize->getType() == SizeTy);
1890 
1891     if (!numElements) {
1892       numElements = vlaSize;
1893     } else {
1894       // It's undefined behavior if this wraps around, so mark it that way.
1895       // FIXME: Teach -fsanitize=undefined to trap this.
1896       numElements = Builder.CreateNUWMul(numElements, vlaSize);
1897     }
1898   } while ((type = getContext().getAsVariableArrayType(elementType)));
1899 
1900   return { numElements, elementType };
1901 }
1902 
1903 CodeGenFunction::VlaSizePair
1904 CodeGenFunction::getVLAElements1D(QualType type) {
1905   const VariableArrayType *vla = getContext().getAsVariableArrayType(type);
1906   assert(vla && "type was not a variable array type!");
1907   return getVLAElements1D(vla);
1908 }
1909 
1910 CodeGenFunction::VlaSizePair
1911 CodeGenFunction::getVLAElements1D(const VariableArrayType *Vla) {
1912   llvm::Value *VlaSize = VLASizeMap[Vla->getSizeExpr()];
1913   assert(VlaSize && "no size for VLA!");
1914   assert(VlaSize->getType() == SizeTy);
1915   return { VlaSize, Vla->getElementType() };
1916 }
1917 
1918 void CodeGenFunction::EmitVariablyModifiedType(QualType type) {
1919   assert(type->isVariablyModifiedType() &&
1920          "Must pass variably modified type to EmitVLASizes!");
1921 
1922   EnsureInsertPoint();
1923 
1924   // We're going to walk down into the type and look for VLA
1925   // expressions.
1926   do {
1927     assert(type->isVariablyModifiedType());
1928 
1929     const Type *ty = type.getTypePtr();
1930     switch (ty->getTypeClass()) {
1931 
1932 #define TYPE(Class, Base)
1933 #define ABSTRACT_TYPE(Class, Base)
1934 #define NON_CANONICAL_TYPE(Class, Base)
1935 #define DEPENDENT_TYPE(Class, Base) case Type::Class:
1936 #define NON_CANONICAL_UNLESS_DEPENDENT_TYPE(Class, Base)
1937 #include "clang/AST/TypeNodes.inc"
1938       llvm_unreachable("unexpected dependent type!");
1939 
1940     // These types are never variably-modified.
1941     case Type::Builtin:
1942     case Type::Complex:
1943     case Type::Vector:
1944     case Type::ExtVector:
1945     case Type::ConstantMatrix:
1946     case Type::Record:
1947     case Type::Enum:
1948     case Type::Elaborated:
1949     case Type::TemplateSpecialization:
1950     case Type::ObjCTypeParam:
1951     case Type::ObjCObject:
1952     case Type::ObjCInterface:
1953     case Type::ObjCObjectPointer:
1954     case Type::ExtInt:
1955       llvm_unreachable("type class is never variably-modified!");
1956 
1957     case Type::Adjusted:
1958       type = cast<AdjustedType>(ty)->getAdjustedType();
1959       break;
1960 
1961     case Type::Decayed:
1962       type = cast<DecayedType>(ty)->getPointeeType();
1963       break;
1964 
1965     case Type::Pointer:
1966       type = cast<PointerType>(ty)->getPointeeType();
1967       break;
1968 
1969     case Type::BlockPointer:
1970       type = cast<BlockPointerType>(ty)->getPointeeType();
1971       break;
1972 
1973     case Type::LValueReference:
1974     case Type::RValueReference:
1975       type = cast<ReferenceType>(ty)->getPointeeType();
1976       break;
1977 
1978     case Type::MemberPointer:
1979       type = cast<MemberPointerType>(ty)->getPointeeType();
1980       break;
1981 
1982     case Type::ConstantArray:
1983     case Type::IncompleteArray:
1984       // Losing element qualification here is fine.
1985       type = cast<ArrayType>(ty)->getElementType();
1986       break;
1987 
1988     case Type::VariableArray: {
1989       // Losing element qualification here is fine.
1990       const VariableArrayType *vat = cast<VariableArrayType>(ty);
1991 
1992       // Unknown size indication requires no size computation.
1993       // Otherwise, evaluate and record it.
1994       if (const Expr *size = vat->getSizeExpr()) {
1995         // It's possible that we might have emitted this already,
1996         // e.g. with a typedef and a pointer to it.
1997         llvm::Value *&entry = VLASizeMap[size];
1998         if (!entry) {
1999           llvm::Value *Size = EmitScalarExpr(size);
2000 
2001           // C11 6.7.6.2p5:
2002           //   If the size is an expression that is not an integer constant
2003           //   expression [...] each time it is evaluated it shall have a value
2004           //   greater than zero.
2005           if (SanOpts.has(SanitizerKind::VLABound) &&
2006               size->getType()->isSignedIntegerType()) {
2007             SanitizerScope SanScope(this);
2008             llvm::Value *Zero = llvm::Constant::getNullValue(Size->getType());
2009             llvm::Constant *StaticArgs[] = {
2010                 EmitCheckSourceLocation(size->getBeginLoc()),
2011                 EmitCheckTypeDescriptor(size->getType())};
2012             EmitCheck(std::make_pair(Builder.CreateICmpSGT(Size, Zero),
2013                                      SanitizerKind::VLABound),
2014                       SanitizerHandler::VLABoundNotPositive, StaticArgs, Size);
2015           }
2016 
2017           // Always zexting here would be wrong if it weren't
2018           // undefined behavior to have a negative bound.
2019           entry = Builder.CreateIntCast(Size, SizeTy, /*signed*/ false);
2020         }
2021       }
2022       type = vat->getElementType();
2023       break;
2024     }
2025 
2026     case Type::FunctionProto:
2027     case Type::FunctionNoProto:
2028       type = cast<FunctionType>(ty)->getReturnType();
2029       break;
2030 
2031     case Type::Paren:
2032     case Type::TypeOf:
2033     case Type::UnaryTransform:
2034     case Type::Attributed:
2035     case Type::SubstTemplateTypeParm:
2036     case Type::PackExpansion:
2037     case Type::MacroQualified:
2038       // Keep walking after single level desugaring.
2039       type = type.getSingleStepDesugaredType(getContext());
2040       break;
2041 
2042     case Type::Typedef:
2043     case Type::Decltype:
2044     case Type::Auto:
2045     case Type::DeducedTemplateSpecialization:
2046       // Stop walking: nothing to do.
2047       return;
2048 
2049     case Type::TypeOfExpr:
2050       // Stop walking: emit typeof expression.
2051       EmitIgnoredExpr(cast<TypeOfExprType>(ty)->getUnderlyingExpr());
2052       return;
2053 
2054     case Type::Atomic:
2055       type = cast<AtomicType>(ty)->getValueType();
2056       break;
2057 
2058     case Type::Pipe:
2059       type = cast<PipeType>(ty)->getElementType();
2060       break;
2061     }
2062   } while (type->isVariablyModifiedType());
2063 }
2064 
2065 Address CodeGenFunction::EmitVAListRef(const Expr* E) {
2066   if (getContext().getBuiltinVaListType()->isArrayType())
2067     return EmitPointerWithAlignment(E);
2068   return EmitLValue(E).getAddress(*this);
2069 }
2070 
2071 Address CodeGenFunction::EmitMSVAListRef(const Expr *E) {
2072   return EmitLValue(E).getAddress(*this);
2073 }
2074 
2075 void CodeGenFunction::EmitDeclRefExprDbgValue(const DeclRefExpr *E,
2076                                               const APValue &Init) {
2077   assert(Init.hasValue() && "Invalid DeclRefExpr initializer!");
2078   if (CGDebugInfo *Dbg = getDebugInfo())
2079     if (CGM.getCodeGenOpts().hasReducedDebugInfo())
2080       Dbg->EmitGlobalVariable(E->getDecl(), Init);
2081 }
2082 
2083 CodeGenFunction::PeepholeProtection
2084 CodeGenFunction::protectFromPeepholes(RValue rvalue) {
2085   // At the moment, the only aggressive peephole we do in IR gen
2086   // is trunc(zext) folding, but if we add more, we can easily
2087   // extend this protection.
2088 
2089   if (!rvalue.isScalar()) return PeepholeProtection();
2090   llvm::Value *value = rvalue.getScalarVal();
2091   if (!isa<llvm::ZExtInst>(value)) return PeepholeProtection();
2092 
2093   // Just make an extra bitcast.
2094   assert(HaveInsertPoint());
2095   llvm::Instruction *inst = new llvm::BitCastInst(value, value->getType(), "",
2096                                                   Builder.GetInsertBlock());
2097 
2098   PeepholeProtection protection;
2099   protection.Inst = inst;
2100   return protection;
2101 }
2102 
2103 void CodeGenFunction::unprotectFromPeepholes(PeepholeProtection protection) {
2104   if (!protection.Inst) return;
2105 
2106   // In theory, we could try to duplicate the peepholes now, but whatever.
2107   protection.Inst->eraseFromParent();
2108 }
2109 
2110 void CodeGenFunction::emitAlignmentAssumption(llvm::Value *PtrValue,
2111                                               QualType Ty, SourceLocation Loc,
2112                                               SourceLocation AssumptionLoc,
2113                                               llvm::Value *Alignment,
2114                                               llvm::Value *OffsetValue) {
2115   llvm::Value *TheCheck;
2116   llvm::Instruction *Assumption = Builder.CreateAlignmentAssumption(
2117       CGM.getDataLayout(), PtrValue, Alignment, OffsetValue, &TheCheck);
2118   if (SanOpts.has(SanitizerKind::Alignment)) {
2119     emitAlignmentAssumptionCheck(PtrValue, Ty, Loc, AssumptionLoc, Alignment,
2120                                  OffsetValue, TheCheck, Assumption);
2121   }
2122 }
2123 
2124 void CodeGenFunction::emitAlignmentAssumption(llvm::Value *PtrValue,
2125                                               const Expr *E,
2126                                               SourceLocation AssumptionLoc,
2127                                               llvm::Value *Alignment,
2128                                               llvm::Value *OffsetValue) {
2129   if (auto *CE = dyn_cast<CastExpr>(E))
2130     E = CE->getSubExprAsWritten();
2131   QualType Ty = E->getType();
2132   SourceLocation Loc = E->getExprLoc();
2133 
2134   emitAlignmentAssumption(PtrValue, Ty, Loc, AssumptionLoc, Alignment,
2135                           OffsetValue);
2136 }
2137 
2138 llvm::Value *CodeGenFunction::EmitAnnotationCall(llvm::Function *AnnotationFn,
2139                                                  llvm::Value *AnnotatedVal,
2140                                                  StringRef AnnotationStr,
2141                                                  SourceLocation Location) {
2142   llvm::Value *Args[4] = {
2143     AnnotatedVal,
2144     Builder.CreateBitCast(CGM.EmitAnnotationString(AnnotationStr), Int8PtrTy),
2145     Builder.CreateBitCast(CGM.EmitAnnotationUnit(Location), Int8PtrTy),
2146     CGM.EmitAnnotationLineNo(Location)
2147   };
2148   return Builder.CreateCall(AnnotationFn, Args);
2149 }
2150 
2151 void CodeGenFunction::EmitVarAnnotations(const VarDecl *D, llvm::Value *V) {
2152   assert(D->hasAttr<AnnotateAttr>() && "no annotate attribute");
2153   // FIXME We create a new bitcast for every annotation because that's what
2154   // llvm-gcc was doing.
2155   for (const auto *I : D->specific_attrs<AnnotateAttr>())
2156     EmitAnnotationCall(CGM.getIntrinsic(llvm::Intrinsic::var_annotation),
2157                        Builder.CreateBitCast(V, CGM.Int8PtrTy, V->getName()),
2158                        I->getAnnotation(), D->getLocation());
2159 }
2160 
2161 Address CodeGenFunction::EmitFieldAnnotations(const FieldDecl *D,
2162                                               Address Addr) {
2163   assert(D->hasAttr<AnnotateAttr>() && "no annotate attribute");
2164   llvm::Value *V = Addr.getPointer();
2165   llvm::Type *VTy = V->getType();
2166   llvm::Function *F = CGM.getIntrinsic(llvm::Intrinsic::ptr_annotation,
2167                                     CGM.Int8PtrTy);
2168 
2169   for (const auto *I : D->specific_attrs<AnnotateAttr>()) {
2170     // FIXME Always emit the cast inst so we can differentiate between
2171     // annotation on the first field of a struct and annotation on the struct
2172     // itself.
2173     if (VTy != CGM.Int8PtrTy)
2174       V = Builder.CreateBitCast(V, CGM.Int8PtrTy);
2175     V = EmitAnnotationCall(F, V, I->getAnnotation(), D->getLocation());
2176     V = Builder.CreateBitCast(V, VTy);
2177   }
2178 
2179   return Address(V, Addr.getAlignment());
2180 }
2181 
2182 CodeGenFunction::CGCapturedStmtInfo::~CGCapturedStmtInfo() { }
2183 
2184 CodeGenFunction::SanitizerScope::SanitizerScope(CodeGenFunction *CGF)
2185     : CGF(CGF) {
2186   assert(!CGF->IsSanitizerScope);
2187   CGF->IsSanitizerScope = true;
2188 }
2189 
2190 CodeGenFunction::SanitizerScope::~SanitizerScope() {
2191   CGF->IsSanitizerScope = false;
2192 }
2193 
2194 void CodeGenFunction::InsertHelper(llvm::Instruction *I,
2195                                    const llvm::Twine &Name,
2196                                    llvm::BasicBlock *BB,
2197                                    llvm::BasicBlock::iterator InsertPt) const {
2198   LoopStack.InsertHelper(I);
2199   if (IsSanitizerScope)
2200     CGM.getSanitizerMetadata()->disableSanitizerForInstruction(I);
2201 }
2202 
2203 void CGBuilderInserter::InsertHelper(
2204     llvm::Instruction *I, const llvm::Twine &Name, llvm::BasicBlock *BB,
2205     llvm::BasicBlock::iterator InsertPt) const {
2206   llvm::IRBuilderDefaultInserter::InsertHelper(I, Name, BB, InsertPt);
2207   if (CGF)
2208     CGF->InsertHelper(I, Name, BB, InsertPt);
2209 }
2210 
2211 static bool hasRequiredFeatures(const SmallVectorImpl<StringRef> &ReqFeatures,
2212                                 CodeGenModule &CGM, const FunctionDecl *FD,
2213                                 std::string &FirstMissing) {
2214   // If there aren't any required features listed then go ahead and return.
2215   if (ReqFeatures.empty())
2216     return false;
2217 
2218   // Now build up the set of caller features and verify that all the required
2219   // features are there.
2220   llvm::StringMap<bool> CallerFeatureMap;
2221   CGM.getContext().getFunctionFeatureMap(CallerFeatureMap, FD);
2222 
2223   // If we have at least one of the features in the feature list return
2224   // true, otherwise return false.
2225   return std::all_of(
2226       ReqFeatures.begin(), ReqFeatures.end(), [&](StringRef Feature) {
2227         SmallVector<StringRef, 1> OrFeatures;
2228         Feature.split(OrFeatures, '|');
2229         return llvm::any_of(OrFeatures, [&](StringRef Feature) {
2230           if (!CallerFeatureMap.lookup(Feature)) {
2231             FirstMissing = Feature.str();
2232             return false;
2233           }
2234           return true;
2235         });
2236       });
2237 }
2238 
2239 // Emits an error if we don't have a valid set of target features for the
2240 // called function.
2241 void CodeGenFunction::checkTargetFeatures(const CallExpr *E,
2242                                           const FunctionDecl *TargetDecl) {
2243   return checkTargetFeatures(E->getBeginLoc(), TargetDecl);
2244 }
2245 
2246 // Emits an error if we don't have a valid set of target features for the
2247 // called function.
2248 void CodeGenFunction::checkTargetFeatures(SourceLocation Loc,
2249                                           const FunctionDecl *TargetDecl) {
2250   // Early exit if this is an indirect call.
2251   if (!TargetDecl)
2252     return;
2253 
2254   // Get the current enclosing function if it exists. If it doesn't
2255   // we can't check the target features anyhow.
2256   const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(CurCodeDecl);
2257   if (!FD)
2258     return;
2259 
2260   // Grab the required features for the call. For a builtin this is listed in
2261   // the td file with the default cpu, for an always_inline function this is any
2262   // listed cpu and any listed features.
2263   unsigned BuiltinID = TargetDecl->getBuiltinID();
2264   std::string MissingFeature;
2265   if (BuiltinID) {
2266     SmallVector<StringRef, 1> ReqFeatures;
2267     const char *FeatureList =
2268         CGM.getContext().BuiltinInfo.getRequiredFeatures(BuiltinID);
2269     // Return if the builtin doesn't have any required features.
2270     if (!FeatureList || StringRef(FeatureList) == "")
2271       return;
2272     StringRef(FeatureList).split(ReqFeatures, ',');
2273     if (!hasRequiredFeatures(ReqFeatures, CGM, FD, MissingFeature))
2274       CGM.getDiags().Report(Loc, diag::err_builtin_needs_feature)
2275           << TargetDecl->getDeclName()
2276           << CGM.getContext().BuiltinInfo.getRequiredFeatures(BuiltinID);
2277 
2278   } else if (!TargetDecl->isMultiVersion() &&
2279              TargetDecl->hasAttr<TargetAttr>()) {
2280     // Get the required features for the callee.
2281 
2282     const TargetAttr *TD = TargetDecl->getAttr<TargetAttr>();
2283     ParsedTargetAttr ParsedAttr =
2284         CGM.getContext().filterFunctionTargetAttrs(TD);
2285 
2286     SmallVector<StringRef, 1> ReqFeatures;
2287     llvm::StringMap<bool> CalleeFeatureMap;
2288     CGM.getContext().getFunctionFeatureMap(CalleeFeatureMap, TargetDecl);
2289 
2290     for (const auto &F : ParsedAttr.Features) {
2291       if (F[0] == '+' && CalleeFeatureMap.lookup(F.substr(1)))
2292         ReqFeatures.push_back(StringRef(F).substr(1));
2293     }
2294 
2295     for (const auto &F : CalleeFeatureMap) {
2296       // Only positive features are "required".
2297       if (F.getValue())
2298         ReqFeatures.push_back(F.getKey());
2299     }
2300     if (!hasRequiredFeatures(ReqFeatures, CGM, FD, MissingFeature))
2301       CGM.getDiags().Report(Loc, diag::err_function_needs_feature)
2302           << FD->getDeclName() << TargetDecl->getDeclName() << MissingFeature;
2303   }
2304 }
2305 
2306 void CodeGenFunction::EmitSanitizerStatReport(llvm::SanitizerStatKind SSK) {
2307   if (!CGM.getCodeGenOpts().SanitizeStats)
2308     return;
2309 
2310   llvm::IRBuilder<> IRB(Builder.GetInsertBlock(), Builder.GetInsertPoint());
2311   IRB.SetCurrentDebugLocation(Builder.getCurrentDebugLocation());
2312   CGM.getSanStats().create(IRB, SSK);
2313 }
2314 
2315 llvm::Value *
2316 CodeGenFunction::FormResolverCondition(const MultiVersionResolverOption &RO) {
2317   llvm::Value *Condition = nullptr;
2318 
2319   if (!RO.Conditions.Architecture.empty())
2320     Condition = EmitX86CpuIs(RO.Conditions.Architecture);
2321 
2322   if (!RO.Conditions.Features.empty()) {
2323     llvm::Value *FeatureCond = EmitX86CpuSupports(RO.Conditions.Features);
2324     Condition =
2325         Condition ? Builder.CreateAnd(Condition, FeatureCond) : FeatureCond;
2326   }
2327   return Condition;
2328 }
2329 
2330 static void CreateMultiVersionResolverReturn(CodeGenModule &CGM,
2331                                              llvm::Function *Resolver,
2332                                              CGBuilderTy &Builder,
2333                                              llvm::Function *FuncToReturn,
2334                                              bool SupportsIFunc) {
2335   if (SupportsIFunc) {
2336     Builder.CreateRet(FuncToReturn);
2337     return;
2338   }
2339 
2340   llvm::SmallVector<llvm::Value *, 10> Args;
2341   llvm::for_each(Resolver->args(),
2342                  [&](llvm::Argument &Arg) { Args.push_back(&Arg); });
2343 
2344   llvm::CallInst *Result = Builder.CreateCall(FuncToReturn, Args);
2345   Result->setTailCallKind(llvm::CallInst::TCK_MustTail);
2346 
2347   if (Resolver->getReturnType()->isVoidTy())
2348     Builder.CreateRetVoid();
2349   else
2350     Builder.CreateRet(Result);
2351 }
2352 
2353 void CodeGenFunction::EmitMultiVersionResolver(
2354     llvm::Function *Resolver, ArrayRef<MultiVersionResolverOption> Options) {
2355   assert(getContext().getTargetInfo().getTriple().isX86() &&
2356          "Only implemented for x86 targets");
2357 
2358   bool SupportsIFunc = getContext().getTargetInfo().supportsIFunc();
2359 
2360   // Main function's basic block.
2361   llvm::BasicBlock *CurBlock = createBasicBlock("resolver_entry", Resolver);
2362   Builder.SetInsertPoint(CurBlock);
2363   EmitX86CpuInit();
2364 
2365   for (const MultiVersionResolverOption &RO : Options) {
2366     Builder.SetInsertPoint(CurBlock);
2367     llvm::Value *Condition = FormResolverCondition(RO);
2368 
2369     // The 'default' or 'generic' case.
2370     if (!Condition) {
2371       assert(&RO == Options.end() - 1 &&
2372              "Default or Generic case must be last");
2373       CreateMultiVersionResolverReturn(CGM, Resolver, Builder, RO.Function,
2374                                        SupportsIFunc);
2375       return;
2376     }
2377 
2378     llvm::BasicBlock *RetBlock = createBasicBlock("resolver_return", Resolver);
2379     CGBuilderTy RetBuilder(*this, RetBlock);
2380     CreateMultiVersionResolverReturn(CGM, Resolver, RetBuilder, RO.Function,
2381                                      SupportsIFunc);
2382     CurBlock = createBasicBlock("resolver_else", Resolver);
2383     Builder.CreateCondBr(Condition, RetBlock, CurBlock);
2384   }
2385 
2386   // If no generic/default, emit an unreachable.
2387   Builder.SetInsertPoint(CurBlock);
2388   llvm::CallInst *TrapCall = EmitTrapCall(llvm::Intrinsic::trap);
2389   TrapCall->setDoesNotReturn();
2390   TrapCall->setDoesNotThrow();
2391   Builder.CreateUnreachable();
2392   Builder.ClearInsertionPoint();
2393 }
2394 
2395 // Loc - where the diagnostic will point, where in the source code this
2396 //  alignment has failed.
2397 // SecondaryLoc - if present (will be present if sufficiently different from
2398 //  Loc), the diagnostic will additionally point a "Note:" to this location.
2399 //  It should be the location where the __attribute__((assume_aligned))
2400 //  was written e.g.
2401 void CodeGenFunction::emitAlignmentAssumptionCheck(
2402     llvm::Value *Ptr, QualType Ty, SourceLocation Loc,
2403     SourceLocation SecondaryLoc, llvm::Value *Alignment,
2404     llvm::Value *OffsetValue, llvm::Value *TheCheck,
2405     llvm::Instruction *Assumption) {
2406   assert(Assumption && isa<llvm::CallInst>(Assumption) &&
2407          cast<llvm::CallInst>(Assumption)->getCalledOperand() ==
2408              llvm::Intrinsic::getDeclaration(
2409                  Builder.GetInsertBlock()->getParent()->getParent(),
2410                  llvm::Intrinsic::assume) &&
2411          "Assumption should be a call to llvm.assume().");
2412   assert(&(Builder.GetInsertBlock()->back()) == Assumption &&
2413          "Assumption should be the last instruction of the basic block, "
2414          "since the basic block is still being generated.");
2415 
2416   if (!SanOpts.has(SanitizerKind::Alignment))
2417     return;
2418 
2419   // Don't check pointers to volatile data. The behavior here is implementation-
2420   // defined.
2421   if (Ty->getPointeeType().isVolatileQualified())
2422     return;
2423 
2424   // We need to temorairly remove the assumption so we can insert the
2425   // sanitizer check before it, else the check will be dropped by optimizations.
2426   Assumption->removeFromParent();
2427 
2428   {
2429     SanitizerScope SanScope(this);
2430 
2431     if (!OffsetValue)
2432       OffsetValue = Builder.getInt1(0); // no offset.
2433 
2434     llvm::Constant *StaticData[] = {EmitCheckSourceLocation(Loc),
2435                                     EmitCheckSourceLocation(SecondaryLoc),
2436                                     EmitCheckTypeDescriptor(Ty)};
2437     llvm::Value *DynamicData[] = {EmitCheckValue(Ptr),
2438                                   EmitCheckValue(Alignment),
2439                                   EmitCheckValue(OffsetValue)};
2440     EmitCheck({std::make_pair(TheCheck, SanitizerKind::Alignment)},
2441               SanitizerHandler::AlignmentAssumption, StaticData, DynamicData);
2442   }
2443 
2444   // We are now in the (new, empty) "cont" basic block.
2445   // Reintroduce the assumption.
2446   Builder.Insert(Assumption);
2447   // FIXME: Assumption still has it's original basic block as it's Parent.
2448 }
2449 
2450 llvm::DebugLoc CodeGenFunction::SourceLocToDebugLoc(SourceLocation Location) {
2451   if (CGDebugInfo *DI = getDebugInfo())
2452     return DI->SourceLocToDebugLoc(Location);
2453 
2454   return llvm::DebugLoc();
2455 }
2456