1 //===--- CodeGenFunction.cpp - Emit LLVM Code from ASTs for a Function ----===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This coordinates the per-function state used while generating code.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "CodeGenFunction.h"
15 #include "CGBlocks.h"
16 #include "CGCleanup.h"
17 #include "CGCUDARuntime.h"
18 #include "CGCXXABI.h"
19 #include "CGDebugInfo.h"
20 #include "CGOpenMPRuntime.h"
21 #include "CodeGenModule.h"
22 #include "CodeGenPGO.h"
23 #include "TargetInfo.h"
24 #include "clang/AST/ASTContext.h"
25 #include "clang/AST/Decl.h"
26 #include "clang/AST/DeclCXX.h"
27 #include "clang/AST/StmtCXX.h"
28 #include "clang/Basic/Builtins.h"
29 #include "clang/Basic/TargetInfo.h"
30 #include "clang/CodeGen/CGFunctionInfo.h"
31 #include "clang/Frontend/CodeGenOptions.h"
32 #include "clang/Sema/SemaDiagnostic.h"
33 #include "llvm/IR/DataLayout.h"
34 #include "llvm/IR/Intrinsics.h"
35 #include "llvm/IR/MDBuilder.h"
36 #include "llvm/IR/Operator.h"
37 using namespace clang;
38 using namespace CodeGen;
39 
40 CodeGenFunction::CodeGenFunction(CodeGenModule &cgm, bool suppressNewContext)
41     : CodeGenTypeCache(cgm), CGM(cgm), Target(cgm.getTarget()),
42       Builder(cgm, cgm.getModule().getContext(), llvm::ConstantFolder(),
43               CGBuilderInserterTy(this)),
44       CurFn(nullptr), ReturnValue(Address::invalid()),
45       CapturedStmtInfo(nullptr),
46       SanOpts(CGM.getLangOpts().Sanitize), IsSanitizerScope(false),
47       CurFuncIsThunk(false), AutoreleaseResult(false), SawAsmBlock(false),
48       IsOutlinedSEHHelper(false),
49       BlockInfo(nullptr), BlockPointer(nullptr),
50       LambdaThisCaptureField(nullptr), NormalCleanupDest(nullptr),
51       NextCleanupDestIndex(1), FirstBlockInfo(nullptr), EHResumeBlock(nullptr),
52       ExceptionSlot(nullptr), EHSelectorSlot(nullptr),
53       DebugInfo(CGM.getModuleDebugInfo()),
54       DisableDebugInfo(false), DidCallStackSave(false), IndirectBranch(nullptr),
55       PGO(cgm), SwitchInsn(nullptr), SwitchWeights(nullptr),
56       CaseRangeBlock(nullptr), UnreachableBlock(nullptr), NumReturnExprs(0),
57       NumSimpleReturnExprs(0), CXXABIThisDecl(nullptr),
58       CXXABIThisValue(nullptr), CXXThisValue(nullptr),
59       CXXStructorImplicitParamDecl(nullptr),
60       CXXStructorImplicitParamValue(nullptr), OutermostConditional(nullptr),
61       CurLexicalScope(nullptr), TerminateLandingPad(nullptr),
62       TerminateHandler(nullptr), TrapBB(nullptr) {
63   if (!suppressNewContext)
64     CGM.getCXXABI().getMangleContext().startNewFunction();
65 
66   llvm::FastMathFlags FMF;
67   if (CGM.getLangOpts().FastMath)
68     FMF.setUnsafeAlgebra();
69   if (CGM.getLangOpts().FiniteMathOnly) {
70     FMF.setNoNaNs();
71     FMF.setNoInfs();
72   }
73   if (CGM.getCodeGenOpts().NoNaNsFPMath) {
74     FMF.setNoNaNs();
75   }
76   if (CGM.getCodeGenOpts().NoSignedZeros) {
77     FMF.setNoSignedZeros();
78   }
79   if (CGM.getCodeGenOpts().ReciprocalMath) {
80     FMF.setAllowReciprocal();
81   }
82   Builder.setFastMathFlags(FMF);
83 }
84 
85 CodeGenFunction::~CodeGenFunction() {
86   assert(LifetimeExtendedCleanupStack.empty() && "failed to emit a cleanup");
87 
88   // If there are any unclaimed block infos, go ahead and destroy them
89   // now.  This can happen if IR-gen gets clever and skips evaluating
90   // something.
91   if (FirstBlockInfo)
92     destroyBlockInfos(FirstBlockInfo);
93 
94   if (getLangOpts().OpenMP) {
95     CGM.getOpenMPRuntime().functionFinished(*this);
96   }
97 }
98 
99 CharUnits CodeGenFunction::getNaturalPointeeTypeAlignment(QualType T,
100                                                      AlignmentSource *Source) {
101   return getNaturalTypeAlignment(T->getPointeeType(), Source,
102                                  /*forPointee*/ true);
103 }
104 
105 CharUnits CodeGenFunction::getNaturalTypeAlignment(QualType T,
106                                                    AlignmentSource *Source,
107                                                    bool forPointeeType) {
108   // Honor alignment typedef attributes even on incomplete types.
109   // We also honor them straight for C++ class types, even as pointees;
110   // there's an expressivity gap here.
111   if (auto TT = T->getAs<TypedefType>()) {
112     if (auto Align = TT->getDecl()->getMaxAlignment()) {
113       if (Source) *Source = AlignmentSource::AttributedType;
114       return getContext().toCharUnitsFromBits(Align);
115     }
116   }
117 
118   if (Source) *Source = AlignmentSource::Type;
119 
120   CharUnits Alignment;
121   if (T->isIncompleteType()) {
122     Alignment = CharUnits::One(); // Shouldn't be used, but pessimistic is best.
123   } else {
124     // For C++ class pointees, we don't know whether we're pointing at a
125     // base or a complete object, so we generally need to use the
126     // non-virtual alignment.
127     const CXXRecordDecl *RD;
128     if (forPointeeType && (RD = T->getAsCXXRecordDecl())) {
129       Alignment = CGM.getClassPointerAlignment(RD);
130     } else {
131       Alignment = getContext().getTypeAlignInChars(T);
132     }
133 
134     // Cap to the global maximum type alignment unless the alignment
135     // was somehow explicit on the type.
136     if (unsigned MaxAlign = getLangOpts().MaxTypeAlign) {
137       if (Alignment.getQuantity() > MaxAlign &&
138           !getContext().isAlignmentRequired(T))
139         Alignment = CharUnits::fromQuantity(MaxAlign);
140     }
141   }
142   return Alignment;
143 }
144 
145 LValue CodeGenFunction::MakeNaturalAlignAddrLValue(llvm::Value *V, QualType T) {
146   AlignmentSource AlignSource;
147   CharUnits Alignment = getNaturalTypeAlignment(T, &AlignSource);
148   return LValue::MakeAddr(Address(V, Alignment), T, getContext(), AlignSource,
149                           CGM.getTBAAInfo(T));
150 }
151 
152 /// Given a value of type T* that may not be to a complete object,
153 /// construct an l-value with the natural pointee alignment of T.
154 LValue
155 CodeGenFunction::MakeNaturalAlignPointeeAddrLValue(llvm::Value *V, QualType T) {
156   AlignmentSource AlignSource;
157   CharUnits Align = getNaturalTypeAlignment(T, &AlignSource, /*pointee*/ true);
158   return MakeAddrLValue(Address(V, Align), T, AlignSource);
159 }
160 
161 
162 llvm::Type *CodeGenFunction::ConvertTypeForMem(QualType T) {
163   return CGM.getTypes().ConvertTypeForMem(T);
164 }
165 
166 llvm::Type *CodeGenFunction::ConvertType(QualType T) {
167   return CGM.getTypes().ConvertType(T);
168 }
169 
170 TypeEvaluationKind CodeGenFunction::getEvaluationKind(QualType type) {
171   type = type.getCanonicalType();
172   while (true) {
173     switch (type->getTypeClass()) {
174 #define TYPE(name, parent)
175 #define ABSTRACT_TYPE(name, parent)
176 #define NON_CANONICAL_TYPE(name, parent) case Type::name:
177 #define DEPENDENT_TYPE(name, parent) case Type::name:
178 #define NON_CANONICAL_UNLESS_DEPENDENT_TYPE(name, parent) case Type::name:
179 #include "clang/AST/TypeNodes.def"
180       llvm_unreachable("non-canonical or dependent type in IR-generation");
181 
182     case Type::Auto:
183       llvm_unreachable("undeduced auto type in IR-generation");
184 
185     // Various scalar types.
186     case Type::Builtin:
187     case Type::Pointer:
188     case Type::BlockPointer:
189     case Type::LValueReference:
190     case Type::RValueReference:
191     case Type::MemberPointer:
192     case Type::Vector:
193     case Type::ExtVector:
194     case Type::FunctionProto:
195     case Type::FunctionNoProto:
196     case Type::Enum:
197     case Type::ObjCObjectPointer:
198     case Type::Pipe:
199       return TEK_Scalar;
200 
201     // Complexes.
202     case Type::Complex:
203       return TEK_Complex;
204 
205     // Arrays, records, and Objective-C objects.
206     case Type::ConstantArray:
207     case Type::IncompleteArray:
208     case Type::VariableArray:
209     case Type::Record:
210     case Type::ObjCObject:
211     case Type::ObjCInterface:
212       return TEK_Aggregate;
213 
214     // We operate on atomic values according to their underlying type.
215     case Type::Atomic:
216       type = cast<AtomicType>(type)->getValueType();
217       continue;
218     }
219     llvm_unreachable("unknown type kind!");
220   }
221 }
222 
223 llvm::DebugLoc CodeGenFunction::EmitReturnBlock() {
224   // For cleanliness, we try to avoid emitting the return block for
225   // simple cases.
226   llvm::BasicBlock *CurBB = Builder.GetInsertBlock();
227 
228   if (CurBB) {
229     assert(!CurBB->getTerminator() && "Unexpected terminated block.");
230 
231     // We have a valid insert point, reuse it if it is empty or there are no
232     // explicit jumps to the return block.
233     if (CurBB->empty() || ReturnBlock.getBlock()->use_empty()) {
234       ReturnBlock.getBlock()->replaceAllUsesWith(CurBB);
235       delete ReturnBlock.getBlock();
236     } else
237       EmitBlock(ReturnBlock.getBlock());
238     return llvm::DebugLoc();
239   }
240 
241   // Otherwise, if the return block is the target of a single direct
242   // branch then we can just put the code in that block instead. This
243   // cleans up functions which started with a unified return block.
244   if (ReturnBlock.getBlock()->hasOneUse()) {
245     llvm::BranchInst *BI =
246       dyn_cast<llvm::BranchInst>(*ReturnBlock.getBlock()->user_begin());
247     if (BI && BI->isUnconditional() &&
248         BI->getSuccessor(0) == ReturnBlock.getBlock()) {
249       // Record/return the DebugLoc of the simple 'return' expression to be used
250       // later by the actual 'ret' instruction.
251       llvm::DebugLoc Loc = BI->getDebugLoc();
252       Builder.SetInsertPoint(BI->getParent());
253       BI->eraseFromParent();
254       delete ReturnBlock.getBlock();
255       return Loc;
256     }
257   }
258 
259   // FIXME: We are at an unreachable point, there is no reason to emit the block
260   // unless it has uses. However, we still need a place to put the debug
261   // region.end for now.
262 
263   EmitBlock(ReturnBlock.getBlock());
264   return llvm::DebugLoc();
265 }
266 
267 static void EmitIfUsed(CodeGenFunction &CGF, llvm::BasicBlock *BB) {
268   if (!BB) return;
269   if (!BB->use_empty())
270     return CGF.CurFn->getBasicBlockList().push_back(BB);
271   delete BB;
272 }
273 
274 void CodeGenFunction::FinishFunction(SourceLocation EndLoc) {
275   assert(BreakContinueStack.empty() &&
276          "mismatched push/pop in break/continue stack!");
277 
278   bool OnlySimpleReturnStmts = NumSimpleReturnExprs > 0
279     && NumSimpleReturnExprs == NumReturnExprs
280     && ReturnBlock.getBlock()->use_empty();
281   // Usually the return expression is evaluated before the cleanup
282   // code.  If the function contains only a simple return statement,
283   // such as a constant, the location before the cleanup code becomes
284   // the last useful breakpoint in the function, because the simple
285   // return expression will be evaluated after the cleanup code. To be
286   // safe, set the debug location for cleanup code to the location of
287   // the return statement.  Otherwise the cleanup code should be at the
288   // end of the function's lexical scope.
289   //
290   // If there are multiple branches to the return block, the branch
291   // instructions will get the location of the return statements and
292   // all will be fine.
293   if (CGDebugInfo *DI = getDebugInfo()) {
294     if (OnlySimpleReturnStmts)
295       DI->EmitLocation(Builder, LastStopPoint);
296     else
297       DI->EmitLocation(Builder, EndLoc);
298   }
299 
300   // Pop any cleanups that might have been associated with the
301   // parameters.  Do this in whatever block we're currently in; it's
302   // important to do this before we enter the return block or return
303   // edges will be *really* confused.
304   bool HasCleanups = EHStack.stable_begin() != PrologueCleanupDepth;
305   bool HasOnlyLifetimeMarkers =
306       HasCleanups && EHStack.containsOnlyLifetimeMarkers(PrologueCleanupDepth);
307   bool EmitRetDbgLoc = !HasCleanups || HasOnlyLifetimeMarkers;
308   if (HasCleanups) {
309     // Make sure the line table doesn't jump back into the body for
310     // the ret after it's been at EndLoc.
311     if (CGDebugInfo *DI = getDebugInfo())
312       if (OnlySimpleReturnStmts)
313         DI->EmitLocation(Builder, EndLoc);
314 
315     PopCleanupBlocks(PrologueCleanupDepth);
316   }
317 
318   // Emit function epilog (to return).
319   llvm::DebugLoc Loc = EmitReturnBlock();
320 
321   if (ShouldInstrumentFunction())
322     EmitFunctionInstrumentation("__cyg_profile_func_exit");
323 
324   // Emit debug descriptor for function end.
325   if (CGDebugInfo *DI = getDebugInfo())
326     DI->EmitFunctionEnd(Builder);
327 
328   // Reset the debug location to that of the simple 'return' expression, if any
329   // rather than that of the end of the function's scope '}'.
330   ApplyDebugLocation AL(*this, Loc);
331   EmitFunctionEpilog(*CurFnInfo, EmitRetDbgLoc, EndLoc);
332   EmitEndEHSpec(CurCodeDecl);
333 
334   assert(EHStack.empty() &&
335          "did not remove all scopes from cleanup stack!");
336 
337   // If someone did an indirect goto, emit the indirect goto block at the end of
338   // the function.
339   if (IndirectBranch) {
340     EmitBlock(IndirectBranch->getParent());
341     Builder.ClearInsertionPoint();
342   }
343 
344   // If some of our locals escaped, insert a call to llvm.localescape in the
345   // entry block.
346   if (!EscapedLocals.empty()) {
347     // Invert the map from local to index into a simple vector. There should be
348     // no holes.
349     SmallVector<llvm::Value *, 4> EscapeArgs;
350     EscapeArgs.resize(EscapedLocals.size());
351     for (auto &Pair : EscapedLocals)
352       EscapeArgs[Pair.second] = Pair.first;
353     llvm::Function *FrameEscapeFn = llvm::Intrinsic::getDeclaration(
354         &CGM.getModule(), llvm::Intrinsic::localescape);
355     CGBuilderTy(*this, AllocaInsertPt).CreateCall(FrameEscapeFn, EscapeArgs);
356   }
357 
358   // Remove the AllocaInsertPt instruction, which is just a convenience for us.
359   llvm::Instruction *Ptr = AllocaInsertPt;
360   AllocaInsertPt = nullptr;
361   Ptr->eraseFromParent();
362 
363   // If someone took the address of a label but never did an indirect goto, we
364   // made a zero entry PHI node, which is illegal, zap it now.
365   if (IndirectBranch) {
366     llvm::PHINode *PN = cast<llvm::PHINode>(IndirectBranch->getAddress());
367     if (PN->getNumIncomingValues() == 0) {
368       PN->replaceAllUsesWith(llvm::UndefValue::get(PN->getType()));
369       PN->eraseFromParent();
370     }
371   }
372 
373   EmitIfUsed(*this, EHResumeBlock);
374   EmitIfUsed(*this, TerminateLandingPad);
375   EmitIfUsed(*this, TerminateHandler);
376   EmitIfUsed(*this, UnreachableBlock);
377 
378   if (CGM.getCodeGenOpts().EmitDeclMetadata)
379     EmitDeclMetadata();
380 
381   for (SmallVectorImpl<std::pair<llvm::Instruction *, llvm::Value *> >::iterator
382            I = DeferredReplacements.begin(),
383            E = DeferredReplacements.end();
384        I != E; ++I) {
385     I->first->replaceAllUsesWith(I->second);
386     I->first->eraseFromParent();
387   }
388 }
389 
390 /// ShouldInstrumentFunction - Return true if the current function should be
391 /// instrumented with __cyg_profile_func_* calls
392 bool CodeGenFunction::ShouldInstrumentFunction() {
393   if (!CGM.getCodeGenOpts().InstrumentFunctions)
394     return false;
395   if (!CurFuncDecl || CurFuncDecl->hasAttr<NoInstrumentFunctionAttr>())
396     return false;
397   return true;
398 }
399 
400 /// ShouldXRayInstrument - Return true if the current function should be
401 /// instrumented with XRay nop sleds.
402 bool CodeGenFunction::ShouldXRayInstrumentFunction() const {
403   return CGM.getCodeGenOpts().XRayInstrumentFunctions;
404 }
405 
406 /// EmitFunctionInstrumentation - Emit LLVM code to call the specified
407 /// instrumentation function with the current function and the call site, if
408 /// function instrumentation is enabled.
409 void CodeGenFunction::EmitFunctionInstrumentation(const char *Fn) {
410   auto NL = ApplyDebugLocation::CreateArtificial(*this);
411   // void __cyg_profile_func_{enter,exit} (void *this_fn, void *call_site);
412   llvm::PointerType *PointerTy = Int8PtrTy;
413   llvm::Type *ProfileFuncArgs[] = { PointerTy, PointerTy };
414   llvm::FunctionType *FunctionTy =
415     llvm::FunctionType::get(VoidTy, ProfileFuncArgs, false);
416 
417   llvm::Constant *F = CGM.CreateRuntimeFunction(FunctionTy, Fn);
418   llvm::CallInst *CallSite = Builder.CreateCall(
419     CGM.getIntrinsic(llvm::Intrinsic::returnaddress),
420     llvm::ConstantInt::get(Int32Ty, 0),
421     "callsite");
422 
423   llvm::Value *args[] = {
424     llvm::ConstantExpr::getBitCast(CurFn, PointerTy),
425     CallSite
426   };
427 
428   EmitNounwindRuntimeCall(F, args);
429 }
430 
431 static void removeImageAccessQualifier(std::string& TyName) {
432   std::string ReadOnlyQual("__read_only");
433   std::string::size_type ReadOnlyPos = TyName.find(ReadOnlyQual);
434   if (ReadOnlyPos != std::string::npos)
435     // "+ 1" for the space after access qualifier.
436     TyName.erase(ReadOnlyPos, ReadOnlyQual.size() + 1);
437   else {
438     std::string WriteOnlyQual("__write_only");
439     std::string::size_type WriteOnlyPos = TyName.find(WriteOnlyQual);
440     if (WriteOnlyPos != std::string::npos)
441       TyName.erase(WriteOnlyPos, WriteOnlyQual.size() + 1);
442     else {
443       std::string ReadWriteQual("__read_write");
444       std::string::size_type ReadWritePos = TyName.find(ReadWriteQual);
445       if (ReadWritePos != std::string::npos)
446         TyName.erase(ReadWritePos, ReadWriteQual.size() + 1);
447     }
448   }
449 }
450 
451 // OpenCL v1.2 s5.6.4.6 allows the compiler to store kernel argument
452 // information in the program executable. The argument information stored
453 // includes the argument name, its type, the address and access qualifiers used.
454 static void GenOpenCLArgMetadata(const FunctionDecl *FD, llvm::Function *Fn,
455                                  CodeGenModule &CGM, llvm::LLVMContext &Context,
456                                  CGBuilderTy &Builder, ASTContext &ASTCtx) {
457   // Create MDNodes that represent the kernel arg metadata.
458   // Each MDNode is a list in the form of "key", N number of values which is
459   // the same number of values as their are kernel arguments.
460 
461   const PrintingPolicy &Policy = ASTCtx.getPrintingPolicy();
462 
463   // MDNode for the kernel argument address space qualifiers.
464   SmallVector<llvm::Metadata *, 8> addressQuals;
465 
466   // MDNode for the kernel argument access qualifiers (images only).
467   SmallVector<llvm::Metadata *, 8> accessQuals;
468 
469   // MDNode for the kernel argument type names.
470   SmallVector<llvm::Metadata *, 8> argTypeNames;
471 
472   // MDNode for the kernel argument base type names.
473   SmallVector<llvm::Metadata *, 8> argBaseTypeNames;
474 
475   // MDNode for the kernel argument type qualifiers.
476   SmallVector<llvm::Metadata *, 8> argTypeQuals;
477 
478   // MDNode for the kernel argument names.
479   SmallVector<llvm::Metadata *, 8> argNames;
480 
481   for (unsigned i = 0, e = FD->getNumParams(); i != e; ++i) {
482     const ParmVarDecl *parm = FD->getParamDecl(i);
483     QualType ty = parm->getType();
484     std::string typeQuals;
485 
486     if (ty->isPointerType()) {
487       QualType pointeeTy = ty->getPointeeType();
488 
489       // Get address qualifier.
490       addressQuals.push_back(llvm::ConstantAsMetadata::get(Builder.getInt32(
491           ASTCtx.getTargetAddressSpace(pointeeTy.getAddressSpace()))));
492 
493       // Get argument type name.
494       std::string typeName =
495           pointeeTy.getUnqualifiedType().getAsString(Policy) + "*";
496 
497       // Turn "unsigned type" to "utype"
498       std::string::size_type pos = typeName.find("unsigned");
499       if (pointeeTy.isCanonical() && pos != std::string::npos)
500         typeName.erase(pos+1, 8);
501 
502       argTypeNames.push_back(llvm::MDString::get(Context, typeName));
503 
504       std::string baseTypeName =
505           pointeeTy.getUnqualifiedType().getCanonicalType().getAsString(
506               Policy) +
507           "*";
508 
509       // Turn "unsigned type" to "utype"
510       pos = baseTypeName.find("unsigned");
511       if (pos != std::string::npos)
512         baseTypeName.erase(pos+1, 8);
513 
514       argBaseTypeNames.push_back(llvm::MDString::get(Context, baseTypeName));
515 
516       // Get argument type qualifiers:
517       if (ty.isRestrictQualified())
518         typeQuals = "restrict";
519       if (pointeeTy.isConstQualified() ||
520           (pointeeTy.getAddressSpace() == LangAS::opencl_constant))
521         typeQuals += typeQuals.empty() ? "const" : " const";
522       if (pointeeTy.isVolatileQualified())
523         typeQuals += typeQuals.empty() ? "volatile" : " volatile";
524     } else {
525       uint32_t AddrSpc = 0;
526       bool isPipe = ty->isPipeType();
527       if (ty->isImageType() || isPipe)
528         AddrSpc =
529           CGM.getContext().getTargetAddressSpace(LangAS::opencl_global);
530 
531       addressQuals.push_back(
532           llvm::ConstantAsMetadata::get(Builder.getInt32(AddrSpc)));
533 
534       // Get argument type name.
535       std::string typeName;
536       if (isPipe)
537         typeName = ty.getCanonicalType()->getAs<PipeType>()->getElementType()
538                      .getAsString(Policy);
539       else
540         typeName = ty.getUnqualifiedType().getAsString(Policy);
541 
542       // Turn "unsigned type" to "utype"
543       std::string::size_type pos = typeName.find("unsigned");
544       if (ty.isCanonical() && pos != std::string::npos)
545         typeName.erase(pos+1, 8);
546 
547       std::string baseTypeName;
548       if (isPipe)
549         baseTypeName = ty.getCanonicalType()->getAs<PipeType>()
550                           ->getElementType().getCanonicalType()
551                           .getAsString(Policy);
552       else
553         baseTypeName =
554           ty.getUnqualifiedType().getCanonicalType().getAsString(Policy);
555 
556       // Remove access qualifiers on images
557       // (as they are inseparable from type in clang implementation,
558       // but OpenCL spec provides a special query to get access qualifier
559       // via clGetKernelArgInfo with CL_KERNEL_ARG_ACCESS_QUALIFIER):
560       if (ty->isImageType()) {
561         removeImageAccessQualifier(typeName);
562         removeImageAccessQualifier(baseTypeName);
563       }
564 
565       argTypeNames.push_back(llvm::MDString::get(Context, typeName));
566 
567       // Turn "unsigned type" to "utype"
568       pos = baseTypeName.find("unsigned");
569       if (pos != std::string::npos)
570         baseTypeName.erase(pos+1, 8);
571 
572       argBaseTypeNames.push_back(llvm::MDString::get(Context, baseTypeName));
573 
574       // Get argument type qualifiers:
575       if (ty.isConstQualified())
576         typeQuals = "const";
577       if (ty.isVolatileQualified())
578         typeQuals += typeQuals.empty() ? "volatile" : " volatile";
579       if (isPipe)
580         typeQuals = "pipe";
581     }
582 
583     argTypeQuals.push_back(llvm::MDString::get(Context, typeQuals));
584 
585     // Get image and pipe access qualifier:
586     if (ty->isImageType()|| ty->isPipeType()) {
587       const OpenCLAccessAttr *A = parm->getAttr<OpenCLAccessAttr>();
588       if (A && A->isWriteOnly())
589         accessQuals.push_back(llvm::MDString::get(Context, "write_only"));
590       else if (A && A->isReadWrite())
591         accessQuals.push_back(llvm::MDString::get(Context, "read_write"));
592       else
593         accessQuals.push_back(llvm::MDString::get(Context, "read_only"));
594     } else
595       accessQuals.push_back(llvm::MDString::get(Context, "none"));
596 
597     // Get argument name.
598     argNames.push_back(llvm::MDString::get(Context, parm->getName()));
599   }
600 
601   Fn->setMetadata("kernel_arg_addr_space",
602                   llvm::MDNode::get(Context, addressQuals));
603   Fn->setMetadata("kernel_arg_access_qual",
604                   llvm::MDNode::get(Context, accessQuals));
605   Fn->setMetadata("kernel_arg_type",
606                   llvm::MDNode::get(Context, argTypeNames));
607   Fn->setMetadata("kernel_arg_base_type",
608                   llvm::MDNode::get(Context, argBaseTypeNames));
609   Fn->setMetadata("kernel_arg_type_qual",
610                   llvm::MDNode::get(Context, argTypeQuals));
611   if (CGM.getCodeGenOpts().EmitOpenCLArgMetadata)
612     Fn->setMetadata("kernel_arg_name",
613                     llvm::MDNode::get(Context, argNames));
614 }
615 
616 void CodeGenFunction::EmitOpenCLKernelMetadata(const FunctionDecl *FD,
617                                                llvm::Function *Fn)
618 {
619   if (!FD->hasAttr<OpenCLKernelAttr>())
620     return;
621 
622   llvm::LLVMContext &Context = getLLVMContext();
623 
624   GenOpenCLArgMetadata(FD, Fn, CGM, Context, Builder, getContext());
625 
626   if (const VecTypeHintAttr *A = FD->getAttr<VecTypeHintAttr>()) {
627     QualType hintQTy = A->getTypeHint();
628     const ExtVectorType *hintEltQTy = hintQTy->getAs<ExtVectorType>();
629     bool isSignedInteger =
630         hintQTy->isSignedIntegerType() ||
631         (hintEltQTy && hintEltQTy->getElementType()->isSignedIntegerType());
632     llvm::Metadata *attrMDArgs[] = {
633         llvm::ConstantAsMetadata::get(llvm::UndefValue::get(
634             CGM.getTypes().ConvertType(A->getTypeHint()))),
635         llvm::ConstantAsMetadata::get(llvm::ConstantInt::get(
636             llvm::IntegerType::get(Context, 32),
637             llvm::APInt(32, (uint64_t)(isSignedInteger ? 1 : 0))))};
638     Fn->setMetadata("vec_type_hint", llvm::MDNode::get(Context, attrMDArgs));
639   }
640 
641   if (const WorkGroupSizeHintAttr *A = FD->getAttr<WorkGroupSizeHintAttr>()) {
642     llvm::Metadata *attrMDArgs[] = {
643         llvm::ConstantAsMetadata::get(Builder.getInt32(A->getXDim())),
644         llvm::ConstantAsMetadata::get(Builder.getInt32(A->getYDim())),
645         llvm::ConstantAsMetadata::get(Builder.getInt32(A->getZDim()))};
646     Fn->setMetadata("work_group_size_hint", llvm::MDNode::get(Context, attrMDArgs));
647   }
648 
649   if (const ReqdWorkGroupSizeAttr *A = FD->getAttr<ReqdWorkGroupSizeAttr>()) {
650     llvm::Metadata *attrMDArgs[] = {
651         llvm::ConstantAsMetadata::get(Builder.getInt32(A->getXDim())),
652         llvm::ConstantAsMetadata::get(Builder.getInt32(A->getYDim())),
653         llvm::ConstantAsMetadata::get(Builder.getInt32(A->getZDim()))};
654     Fn->setMetadata("reqd_work_group_size", llvm::MDNode::get(Context, attrMDArgs));
655   }
656 }
657 
658 /// Determine whether the function F ends with a return stmt.
659 static bool endsWithReturn(const Decl* F) {
660   const Stmt *Body = nullptr;
661   if (auto *FD = dyn_cast_or_null<FunctionDecl>(F))
662     Body = FD->getBody();
663   else if (auto *OMD = dyn_cast_or_null<ObjCMethodDecl>(F))
664     Body = OMD->getBody();
665 
666   if (auto *CS = dyn_cast_or_null<CompoundStmt>(Body)) {
667     auto LastStmt = CS->body_rbegin();
668     if (LastStmt != CS->body_rend())
669       return isa<ReturnStmt>(*LastStmt);
670   }
671   return false;
672 }
673 
674 void CodeGenFunction::StartFunction(GlobalDecl GD,
675                                     QualType RetTy,
676                                     llvm::Function *Fn,
677                                     const CGFunctionInfo &FnInfo,
678                                     const FunctionArgList &Args,
679                                     SourceLocation Loc,
680                                     SourceLocation StartLoc) {
681   assert(!CurFn &&
682          "Do not use a CodeGenFunction object for more than one function");
683 
684   const Decl *D = GD.getDecl();
685 
686   DidCallStackSave = false;
687   CurCodeDecl = D;
688   if (const auto *FD = dyn_cast_or_null<FunctionDecl>(D))
689     if (FD->usesSEHTry())
690       CurSEHParent = FD;
691   CurFuncDecl = (D ? D->getNonClosureContext() : nullptr);
692   FnRetTy = RetTy;
693   CurFn = Fn;
694   CurFnInfo = &FnInfo;
695   assert(CurFn->isDeclaration() && "Function already has body?");
696 
697   if (CGM.isInSanitizerBlacklist(Fn, Loc))
698     SanOpts.clear();
699 
700   if (D) {
701     // Apply the no_sanitize* attributes to SanOpts.
702     for (auto Attr : D->specific_attrs<NoSanitizeAttr>())
703       SanOpts.Mask &= ~Attr->getMask();
704   }
705 
706   // Apply sanitizer attributes to the function.
707   if (SanOpts.hasOneOf(SanitizerKind::Address | SanitizerKind::KernelAddress))
708     Fn->addFnAttr(llvm::Attribute::SanitizeAddress);
709   if (SanOpts.has(SanitizerKind::Thread))
710     Fn->addFnAttr(llvm::Attribute::SanitizeThread);
711   if (SanOpts.has(SanitizerKind::Memory))
712     Fn->addFnAttr(llvm::Attribute::SanitizeMemory);
713   if (SanOpts.has(SanitizerKind::SafeStack))
714     Fn->addFnAttr(llvm::Attribute::SafeStack);
715 
716   // Apply xray attributes to the function (as a string, for now)
717   if (D && ShouldXRayInstrumentFunction()) {
718     if (const auto *XRayAttr = D->getAttr<XRayInstrumentAttr>()) {
719       if (XRayAttr->alwaysXRayInstrument())
720         Fn->addFnAttr("function-instrument", "xray-always");
721       if (XRayAttr->neverXRayInstrument())
722         Fn->addFnAttr("function-instrument", "xray-never");
723     } else {
724       Fn->addFnAttr(
725           "xray-instruction-threshold",
726           llvm::itostr(CGM.getCodeGenOpts().XRayInstructionThreshold));
727     }
728   }
729 
730   // Pass inline keyword to optimizer if it appears explicitly on any
731   // declaration. Also, in the case of -fno-inline attach NoInline
732   // attribute to all functions that are not marked AlwaysInline, or
733   // to all functions that are not marked inline or implicitly inline
734   // in the case of -finline-hint-functions.
735   if (const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D)) {
736     const CodeGenOptions& CodeGenOpts = CGM.getCodeGenOpts();
737     if (!CodeGenOpts.NoInline) {
738       for (auto RI : FD->redecls())
739         if (RI->isInlineSpecified()) {
740           Fn->addFnAttr(llvm::Attribute::InlineHint);
741           break;
742         }
743       if (CodeGenOpts.getInlining() == CodeGenOptions::OnlyHintInlining &&
744           !FD->isInlined() && !Fn->hasFnAttribute(llvm::Attribute::InlineHint))
745         Fn->addFnAttr(llvm::Attribute::NoInline);
746     } else if (!FD->hasAttr<AlwaysInlineAttr>())
747       Fn->addFnAttr(llvm::Attribute::NoInline);
748     if (CGM.getLangOpts().OpenMP && FD->hasAttr<OMPDeclareSimdDeclAttr>())
749       CGM.getOpenMPRuntime().emitDeclareSimdFunction(FD, Fn);
750   }
751 
752   // Add no-jump-tables value.
753   Fn->addFnAttr("no-jump-tables",
754                 llvm::toStringRef(CGM.getCodeGenOpts().NoUseJumpTables));
755 
756   if (getLangOpts().OpenCL) {
757     // Add metadata for a kernel function.
758     if (const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D))
759       EmitOpenCLKernelMetadata(FD, Fn);
760   }
761 
762   // If we are checking function types, emit a function type signature as
763   // prologue data.
764   if (getLangOpts().CPlusPlus && SanOpts.has(SanitizerKind::Function)) {
765     if (const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D)) {
766       if (llvm::Constant *PrologueSig =
767               CGM.getTargetCodeGenInfo().getUBSanFunctionSignature(CGM)) {
768         llvm::Constant *FTRTTIConst =
769             CGM.GetAddrOfRTTIDescriptor(FD->getType(), /*ForEH=*/true);
770         llvm::Constant *PrologueStructElems[] = { PrologueSig, FTRTTIConst };
771         llvm::Constant *PrologueStructConst =
772             llvm::ConstantStruct::getAnon(PrologueStructElems, /*Packed=*/true);
773         Fn->setPrologueData(PrologueStructConst);
774       }
775     }
776   }
777 
778   // If we're in C++ mode and the function name is "main", it is guaranteed
779   // to be norecurse by the standard (3.6.1.3 "The function main shall not be
780   // used within a program").
781   if (getLangOpts().CPlusPlus)
782     if (const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D))
783       if (FD->isMain())
784         Fn->addFnAttr(llvm::Attribute::NoRecurse);
785 
786   llvm::BasicBlock *EntryBB = createBasicBlock("entry", CurFn);
787 
788   // Create a marker to make it easy to insert allocas into the entryblock
789   // later.  Don't create this with the builder, because we don't want it
790   // folded.
791   llvm::Value *Undef = llvm::UndefValue::get(Int32Ty);
792   AllocaInsertPt = new llvm::BitCastInst(Undef, Int32Ty, "allocapt", EntryBB);
793 
794   ReturnBlock = getJumpDestInCurrentScope("return");
795 
796   Builder.SetInsertPoint(EntryBB);
797 
798   // Emit subprogram debug descriptor.
799   if (CGDebugInfo *DI = getDebugInfo()) {
800     // Reconstruct the type from the argument list so that implicit parameters,
801     // such as 'this' and 'vtt', show up in the debug info. Preserve the calling
802     // convention.
803     CallingConv CC = CallingConv::CC_C;
804     if (auto *FD = dyn_cast_or_null<FunctionDecl>(D))
805       if (const auto *SrcFnTy = FD->getType()->getAs<FunctionType>())
806         CC = SrcFnTy->getCallConv();
807     SmallVector<QualType, 16> ArgTypes;
808     for (const VarDecl *VD : Args)
809       ArgTypes.push_back(VD->getType());
810     QualType FnType = getContext().getFunctionType(
811         RetTy, ArgTypes, FunctionProtoType::ExtProtoInfo(CC));
812     DI->EmitFunctionStart(GD, Loc, StartLoc, FnType, CurFn, Builder);
813   }
814 
815   if (ShouldInstrumentFunction())
816     EmitFunctionInstrumentation("__cyg_profile_func_enter");
817 
818   // Since emitting the mcount call here impacts optimizations such as function
819   // inlining, we just add an attribute to insert a mcount call in backend.
820   // The attribute "counting-function" is set to mcount function name which is
821   // architecture dependent.
822   if (CGM.getCodeGenOpts().InstrumentForProfiling)
823     Fn->addFnAttr("counting-function", getTarget().getMCountName());
824 
825   if (RetTy->isVoidType()) {
826     // Void type; nothing to return.
827     ReturnValue = Address::invalid();
828 
829     // Count the implicit return.
830     if (!endsWithReturn(D))
831       ++NumReturnExprs;
832   } else if (CurFnInfo->getReturnInfo().getKind() == ABIArgInfo::Indirect &&
833              !hasScalarEvaluationKind(CurFnInfo->getReturnType())) {
834     // Indirect aggregate return; emit returned value directly into sret slot.
835     // This reduces code size, and affects correctness in C++.
836     auto AI = CurFn->arg_begin();
837     if (CurFnInfo->getReturnInfo().isSRetAfterThis())
838       ++AI;
839     ReturnValue = Address(&*AI, CurFnInfo->getReturnInfo().getIndirectAlign());
840   } else if (CurFnInfo->getReturnInfo().getKind() == ABIArgInfo::InAlloca &&
841              !hasScalarEvaluationKind(CurFnInfo->getReturnType())) {
842     // Load the sret pointer from the argument struct and return into that.
843     unsigned Idx = CurFnInfo->getReturnInfo().getInAllocaFieldIndex();
844     llvm::Function::arg_iterator EI = CurFn->arg_end();
845     --EI;
846     llvm::Value *Addr = Builder.CreateStructGEP(nullptr, &*EI, Idx);
847     Addr = Builder.CreateAlignedLoad(Addr, getPointerAlign(), "agg.result");
848     ReturnValue = Address(Addr, getNaturalTypeAlignment(RetTy));
849   } else {
850     ReturnValue = CreateIRTemp(RetTy, "retval");
851 
852     // Tell the epilog emitter to autorelease the result.  We do this
853     // now so that various specialized functions can suppress it
854     // during their IR-generation.
855     if (getLangOpts().ObjCAutoRefCount &&
856         !CurFnInfo->isReturnsRetained() &&
857         RetTy->isObjCRetainableType())
858       AutoreleaseResult = true;
859   }
860 
861   EmitStartEHSpec(CurCodeDecl);
862 
863   PrologueCleanupDepth = EHStack.stable_begin();
864   EmitFunctionProlog(*CurFnInfo, CurFn, Args);
865 
866   if (D && isa<CXXMethodDecl>(D) && cast<CXXMethodDecl>(D)->isInstance()) {
867     CGM.getCXXABI().EmitInstanceFunctionProlog(*this);
868     const CXXMethodDecl *MD = cast<CXXMethodDecl>(D);
869     if (MD->getParent()->isLambda() &&
870         MD->getOverloadedOperator() == OO_Call) {
871       // We're in a lambda; figure out the captures.
872       MD->getParent()->getCaptureFields(LambdaCaptureFields,
873                                         LambdaThisCaptureField);
874       if (LambdaThisCaptureField) {
875         // If the lambda captures the object referred to by '*this' - either by
876         // value or by reference, make sure CXXThisValue points to the correct
877         // object.
878 
879         // Get the lvalue for the field (which is a copy of the enclosing object
880         // or contains the address of the enclosing object).
881         LValue ThisFieldLValue = EmitLValueForLambdaField(LambdaThisCaptureField);
882         if (!LambdaThisCaptureField->getType()->isPointerType()) {
883           // If the enclosing object was captured by value, just use its address.
884           CXXThisValue = ThisFieldLValue.getAddress().getPointer();
885         } else {
886           // Load the lvalue pointed to by the field, since '*this' was captured
887           // by reference.
888           CXXThisValue =
889               EmitLoadOfLValue(ThisFieldLValue, SourceLocation()).getScalarVal();
890         }
891       }
892       for (auto *FD : MD->getParent()->fields()) {
893         if (FD->hasCapturedVLAType()) {
894           auto *ExprArg = EmitLoadOfLValue(EmitLValueForLambdaField(FD),
895                                            SourceLocation()).getScalarVal();
896           auto VAT = FD->getCapturedVLAType();
897           VLASizeMap[VAT->getSizeExpr()] = ExprArg;
898         }
899       }
900     } else {
901       // Not in a lambda; just use 'this' from the method.
902       // FIXME: Should we generate a new load for each use of 'this'?  The
903       // fast register allocator would be happier...
904       CXXThisValue = CXXABIThisValue;
905     }
906   }
907 
908   // If any of the arguments have a variably modified type, make sure to
909   // emit the type size.
910   for (FunctionArgList::const_iterator i = Args.begin(), e = Args.end();
911        i != e; ++i) {
912     const VarDecl *VD = *i;
913 
914     // Dig out the type as written from ParmVarDecls; it's unclear whether
915     // the standard (C99 6.9.1p10) requires this, but we're following the
916     // precedent set by gcc.
917     QualType Ty;
918     if (const ParmVarDecl *PVD = dyn_cast<ParmVarDecl>(VD))
919       Ty = PVD->getOriginalType();
920     else
921       Ty = VD->getType();
922 
923     if (Ty->isVariablyModifiedType())
924       EmitVariablyModifiedType(Ty);
925   }
926   // Emit a location at the end of the prologue.
927   if (CGDebugInfo *DI = getDebugInfo())
928     DI->EmitLocation(Builder, StartLoc);
929 }
930 
931 void CodeGenFunction::EmitFunctionBody(FunctionArgList &Args,
932                                        const Stmt *Body) {
933   incrementProfileCounter(Body);
934   if (const CompoundStmt *S = dyn_cast<CompoundStmt>(Body))
935     EmitCompoundStmtWithoutScope(*S);
936   else
937     EmitStmt(Body);
938 }
939 
940 /// When instrumenting to collect profile data, the counts for some blocks
941 /// such as switch cases need to not include the fall-through counts, so
942 /// emit a branch around the instrumentation code. When not instrumenting,
943 /// this just calls EmitBlock().
944 void CodeGenFunction::EmitBlockWithFallThrough(llvm::BasicBlock *BB,
945                                                const Stmt *S) {
946   llvm::BasicBlock *SkipCountBB = nullptr;
947   if (HaveInsertPoint() && CGM.getCodeGenOpts().hasProfileClangInstr()) {
948     // When instrumenting for profiling, the fallthrough to certain
949     // statements needs to skip over the instrumentation code so that we
950     // get an accurate count.
951     SkipCountBB = createBasicBlock("skipcount");
952     EmitBranch(SkipCountBB);
953   }
954   EmitBlock(BB);
955   uint64_t CurrentCount = getCurrentProfileCount();
956   incrementProfileCounter(S);
957   setCurrentProfileCount(getCurrentProfileCount() + CurrentCount);
958   if (SkipCountBB)
959     EmitBlock(SkipCountBB);
960 }
961 
962 /// Tries to mark the given function nounwind based on the
963 /// non-existence of any throwing calls within it.  We believe this is
964 /// lightweight enough to do at -O0.
965 static void TryMarkNoThrow(llvm::Function *F) {
966   // LLVM treats 'nounwind' on a function as part of the type, so we
967   // can't do this on functions that can be overwritten.
968   if (F->isInterposable()) return;
969 
970   for (llvm::BasicBlock &BB : *F)
971     for (llvm::Instruction &I : BB)
972       if (I.mayThrow())
973         return;
974 
975   F->setDoesNotThrow();
976 }
977 
978 QualType CodeGenFunction::BuildFunctionArgList(GlobalDecl GD,
979                                                FunctionArgList &Args) {
980   const FunctionDecl *FD = cast<FunctionDecl>(GD.getDecl());
981   QualType ResTy = FD->getReturnType();
982 
983   const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(FD);
984   if (MD && MD->isInstance()) {
985     if (CGM.getCXXABI().HasThisReturn(GD))
986       ResTy = MD->getThisType(getContext());
987     else if (CGM.getCXXABI().hasMostDerivedReturn(GD))
988       ResTy = CGM.getContext().VoidPtrTy;
989     CGM.getCXXABI().buildThisParam(*this, Args);
990   }
991 
992   // The base version of an inheriting constructor whose constructed base is a
993   // virtual base is not passed any arguments (because it doesn't actually call
994   // the inherited constructor).
995   bool PassedParams = true;
996   if (const CXXConstructorDecl *CD = dyn_cast<CXXConstructorDecl>(FD))
997     if (auto Inherited = CD->getInheritedConstructor())
998       PassedParams =
999           getTypes().inheritingCtorHasParams(Inherited, GD.getCtorType());
1000 
1001   if (PassedParams) {
1002     for (auto *Param : FD->parameters()) {
1003       Args.push_back(Param);
1004       if (!Param->hasAttr<PassObjectSizeAttr>())
1005         continue;
1006 
1007       IdentifierInfo *NoID = nullptr;
1008       auto *Implicit = ImplicitParamDecl::Create(
1009           getContext(), Param->getDeclContext(), Param->getLocation(), NoID,
1010           getContext().getSizeType());
1011       SizeArguments[Param] = Implicit;
1012       Args.push_back(Implicit);
1013     }
1014   }
1015 
1016   if (MD && (isa<CXXConstructorDecl>(MD) || isa<CXXDestructorDecl>(MD)))
1017     CGM.getCXXABI().addImplicitStructorParams(*this, ResTy, Args);
1018 
1019   return ResTy;
1020 }
1021 
1022 void CodeGenFunction::GenerateCode(GlobalDecl GD, llvm::Function *Fn,
1023                                    const CGFunctionInfo &FnInfo) {
1024   const FunctionDecl *FD = cast<FunctionDecl>(GD.getDecl());
1025   CurGD = GD;
1026 
1027   FunctionArgList Args;
1028   QualType ResTy = BuildFunctionArgList(GD, Args);
1029 
1030   // Check if we should generate debug info for this function.
1031   if (FD->hasAttr<NoDebugAttr>())
1032     DebugInfo = nullptr; // disable debug info indefinitely for this function
1033 
1034   SourceRange BodyRange;
1035   if (Stmt *Body = FD->getBody()) BodyRange = Body->getSourceRange();
1036   CurEHLocation = BodyRange.getEnd();
1037 
1038   // Use the location of the start of the function to determine where
1039   // the function definition is located. By default use the location
1040   // of the declaration as the location for the subprogram. A function
1041   // may lack a declaration in the source code if it is created by code
1042   // gen. (examples: _GLOBAL__I_a, __cxx_global_array_dtor, thunk).
1043   SourceLocation Loc = FD->getLocation();
1044 
1045   // If this is a function specialization then use the pattern body
1046   // as the location for the function.
1047   if (const FunctionDecl *SpecDecl = FD->getTemplateInstantiationPattern())
1048     if (SpecDecl->hasBody(SpecDecl))
1049       Loc = SpecDecl->getLocation();
1050 
1051   // Emit the standard function prologue.
1052   StartFunction(GD, ResTy, Fn, FnInfo, Args, Loc, BodyRange.getBegin());
1053 
1054   // Generate the body of the function.
1055   PGO.assignRegionCounters(GD, CurFn);
1056   if (isa<CXXDestructorDecl>(FD))
1057     EmitDestructorBody(Args);
1058   else if (isa<CXXConstructorDecl>(FD))
1059     EmitConstructorBody(Args);
1060   else if (getLangOpts().CUDA &&
1061            !getLangOpts().CUDAIsDevice &&
1062            FD->hasAttr<CUDAGlobalAttr>())
1063     CGM.getCUDARuntime().emitDeviceStub(*this, Args);
1064   else if (isa<CXXConversionDecl>(FD) &&
1065            cast<CXXConversionDecl>(FD)->isLambdaToBlockPointerConversion()) {
1066     // The lambda conversion to block pointer is special; the semantics can't be
1067     // expressed in the AST, so IRGen needs to special-case it.
1068     EmitLambdaToBlockPointerBody(Args);
1069   } else if (isa<CXXMethodDecl>(FD) &&
1070              cast<CXXMethodDecl>(FD)->isLambdaStaticInvoker()) {
1071     // The lambda static invoker function is special, because it forwards or
1072     // clones the body of the function call operator (but is actually static).
1073     EmitLambdaStaticInvokeFunction(cast<CXXMethodDecl>(FD));
1074   } else if (FD->isDefaulted() && isa<CXXMethodDecl>(FD) &&
1075              (cast<CXXMethodDecl>(FD)->isCopyAssignmentOperator() ||
1076               cast<CXXMethodDecl>(FD)->isMoveAssignmentOperator())) {
1077     // Implicit copy-assignment gets the same special treatment as implicit
1078     // copy-constructors.
1079     emitImplicitAssignmentOperatorBody(Args);
1080   } else if (Stmt *Body = FD->getBody()) {
1081     EmitFunctionBody(Args, Body);
1082   } else
1083     llvm_unreachable("no definition for emitted function");
1084 
1085   // C++11 [stmt.return]p2:
1086   //   Flowing off the end of a function [...] results in undefined behavior in
1087   //   a value-returning function.
1088   // C11 6.9.1p12:
1089   //   If the '}' that terminates a function is reached, and the value of the
1090   //   function call is used by the caller, the behavior is undefined.
1091   if (getLangOpts().CPlusPlus && !FD->hasImplicitReturnZero() && !SawAsmBlock &&
1092       !FD->getReturnType()->isVoidType() && Builder.GetInsertBlock()) {
1093     if (SanOpts.has(SanitizerKind::Return)) {
1094       SanitizerScope SanScope(this);
1095       llvm::Value *IsFalse = Builder.getFalse();
1096       EmitCheck(std::make_pair(IsFalse, SanitizerKind::Return),
1097                 "missing_return", EmitCheckSourceLocation(FD->getLocation()),
1098                 None);
1099     } else if (CGM.getCodeGenOpts().OptimizationLevel == 0) {
1100       EmitTrapCall(llvm::Intrinsic::trap);
1101     }
1102     Builder.CreateUnreachable();
1103     Builder.ClearInsertionPoint();
1104   }
1105 
1106   // Emit the standard function epilogue.
1107   FinishFunction(BodyRange.getEnd());
1108 
1109   // If we haven't marked the function nothrow through other means, do
1110   // a quick pass now to see if we can.
1111   if (!CurFn->doesNotThrow())
1112     TryMarkNoThrow(CurFn);
1113 }
1114 
1115 /// ContainsLabel - Return true if the statement contains a label in it.  If
1116 /// this statement is not executed normally, it not containing a label means
1117 /// that we can just remove the code.
1118 bool CodeGenFunction::ContainsLabel(const Stmt *S, bool IgnoreCaseStmts) {
1119   // Null statement, not a label!
1120   if (!S) return false;
1121 
1122   // If this is a label, we have to emit the code, consider something like:
1123   // if (0) {  ...  foo:  bar(); }  goto foo;
1124   //
1125   // TODO: If anyone cared, we could track __label__'s, since we know that you
1126   // can't jump to one from outside their declared region.
1127   if (isa<LabelStmt>(S))
1128     return true;
1129 
1130   // If this is a case/default statement, and we haven't seen a switch, we have
1131   // to emit the code.
1132   if (isa<SwitchCase>(S) && !IgnoreCaseStmts)
1133     return true;
1134 
1135   // If this is a switch statement, we want to ignore cases below it.
1136   if (isa<SwitchStmt>(S))
1137     IgnoreCaseStmts = true;
1138 
1139   // Scan subexpressions for verboten labels.
1140   for (const Stmt *SubStmt : S->children())
1141     if (ContainsLabel(SubStmt, IgnoreCaseStmts))
1142       return true;
1143 
1144   return false;
1145 }
1146 
1147 /// containsBreak - Return true if the statement contains a break out of it.
1148 /// If the statement (recursively) contains a switch or loop with a break
1149 /// inside of it, this is fine.
1150 bool CodeGenFunction::containsBreak(const Stmt *S) {
1151   // Null statement, not a label!
1152   if (!S) return false;
1153 
1154   // If this is a switch or loop that defines its own break scope, then we can
1155   // include it and anything inside of it.
1156   if (isa<SwitchStmt>(S) || isa<WhileStmt>(S) || isa<DoStmt>(S) ||
1157       isa<ForStmt>(S))
1158     return false;
1159 
1160   if (isa<BreakStmt>(S))
1161     return true;
1162 
1163   // Scan subexpressions for verboten breaks.
1164   for (const Stmt *SubStmt : S->children())
1165     if (containsBreak(SubStmt))
1166       return true;
1167 
1168   return false;
1169 }
1170 
1171 
1172 /// ConstantFoldsToSimpleInteger - If the specified expression does not fold
1173 /// to a constant, or if it does but contains a label, return false.  If it
1174 /// constant folds return true and set the boolean result in Result.
1175 bool CodeGenFunction::ConstantFoldsToSimpleInteger(const Expr *Cond,
1176                                                    bool &ResultBool,
1177                                                    bool AllowLabels) {
1178   llvm::APSInt ResultInt;
1179   if (!ConstantFoldsToSimpleInteger(Cond, ResultInt, AllowLabels))
1180     return false;
1181 
1182   ResultBool = ResultInt.getBoolValue();
1183   return true;
1184 }
1185 
1186 /// ConstantFoldsToSimpleInteger - If the specified expression does not fold
1187 /// to a constant, or if it does but contains a label, return false.  If it
1188 /// constant folds return true and set the folded value.
1189 bool CodeGenFunction::ConstantFoldsToSimpleInteger(const Expr *Cond,
1190                                                    llvm::APSInt &ResultInt,
1191                                                    bool AllowLabels) {
1192   // FIXME: Rename and handle conversion of other evaluatable things
1193   // to bool.
1194   llvm::APSInt Int;
1195   if (!Cond->EvaluateAsInt(Int, getContext()))
1196     return false;  // Not foldable, not integer or not fully evaluatable.
1197 
1198   if (!AllowLabels && CodeGenFunction::ContainsLabel(Cond))
1199     return false;  // Contains a label.
1200 
1201   ResultInt = Int;
1202   return true;
1203 }
1204 
1205 
1206 
1207 /// EmitBranchOnBoolExpr - Emit a branch on a boolean condition (e.g. for an if
1208 /// statement) to the specified blocks.  Based on the condition, this might try
1209 /// to simplify the codegen of the conditional based on the branch.
1210 ///
1211 void CodeGenFunction::EmitBranchOnBoolExpr(const Expr *Cond,
1212                                            llvm::BasicBlock *TrueBlock,
1213                                            llvm::BasicBlock *FalseBlock,
1214                                            uint64_t TrueCount) {
1215   Cond = Cond->IgnoreParens();
1216 
1217   if (const BinaryOperator *CondBOp = dyn_cast<BinaryOperator>(Cond)) {
1218 
1219     // Handle X && Y in a condition.
1220     if (CondBOp->getOpcode() == BO_LAnd) {
1221       // If we have "1 && X", simplify the code.  "0 && X" would have constant
1222       // folded if the case was simple enough.
1223       bool ConstantBool = false;
1224       if (ConstantFoldsToSimpleInteger(CondBOp->getLHS(), ConstantBool) &&
1225           ConstantBool) {
1226         // br(1 && X) -> br(X).
1227         incrementProfileCounter(CondBOp);
1228         return EmitBranchOnBoolExpr(CondBOp->getRHS(), TrueBlock, FalseBlock,
1229                                     TrueCount);
1230       }
1231 
1232       // If we have "X && 1", simplify the code to use an uncond branch.
1233       // "X && 0" would have been constant folded to 0.
1234       if (ConstantFoldsToSimpleInteger(CondBOp->getRHS(), ConstantBool) &&
1235           ConstantBool) {
1236         // br(X && 1) -> br(X).
1237         return EmitBranchOnBoolExpr(CondBOp->getLHS(), TrueBlock, FalseBlock,
1238                                     TrueCount);
1239       }
1240 
1241       // Emit the LHS as a conditional.  If the LHS conditional is false, we
1242       // want to jump to the FalseBlock.
1243       llvm::BasicBlock *LHSTrue = createBasicBlock("land.lhs.true");
1244       // The counter tells us how often we evaluate RHS, and all of TrueCount
1245       // can be propagated to that branch.
1246       uint64_t RHSCount = getProfileCount(CondBOp->getRHS());
1247 
1248       ConditionalEvaluation eval(*this);
1249       {
1250         ApplyDebugLocation DL(*this, Cond);
1251         EmitBranchOnBoolExpr(CondBOp->getLHS(), LHSTrue, FalseBlock, RHSCount);
1252         EmitBlock(LHSTrue);
1253       }
1254 
1255       incrementProfileCounter(CondBOp);
1256       setCurrentProfileCount(getProfileCount(CondBOp->getRHS()));
1257 
1258       // Any temporaries created here are conditional.
1259       eval.begin(*this);
1260       EmitBranchOnBoolExpr(CondBOp->getRHS(), TrueBlock, FalseBlock, TrueCount);
1261       eval.end(*this);
1262 
1263       return;
1264     }
1265 
1266     if (CondBOp->getOpcode() == BO_LOr) {
1267       // If we have "0 || X", simplify the code.  "1 || X" would have constant
1268       // folded if the case was simple enough.
1269       bool ConstantBool = false;
1270       if (ConstantFoldsToSimpleInteger(CondBOp->getLHS(), ConstantBool) &&
1271           !ConstantBool) {
1272         // br(0 || X) -> br(X).
1273         incrementProfileCounter(CondBOp);
1274         return EmitBranchOnBoolExpr(CondBOp->getRHS(), TrueBlock, FalseBlock,
1275                                     TrueCount);
1276       }
1277 
1278       // If we have "X || 0", simplify the code to use an uncond branch.
1279       // "X || 1" would have been constant folded to 1.
1280       if (ConstantFoldsToSimpleInteger(CondBOp->getRHS(), ConstantBool) &&
1281           !ConstantBool) {
1282         // br(X || 0) -> br(X).
1283         return EmitBranchOnBoolExpr(CondBOp->getLHS(), TrueBlock, FalseBlock,
1284                                     TrueCount);
1285       }
1286 
1287       // Emit the LHS as a conditional.  If the LHS conditional is true, we
1288       // want to jump to the TrueBlock.
1289       llvm::BasicBlock *LHSFalse = createBasicBlock("lor.lhs.false");
1290       // We have the count for entry to the RHS and for the whole expression
1291       // being true, so we can divy up True count between the short circuit and
1292       // the RHS.
1293       uint64_t LHSCount =
1294           getCurrentProfileCount() - getProfileCount(CondBOp->getRHS());
1295       uint64_t RHSCount = TrueCount - LHSCount;
1296 
1297       ConditionalEvaluation eval(*this);
1298       {
1299         ApplyDebugLocation DL(*this, Cond);
1300         EmitBranchOnBoolExpr(CondBOp->getLHS(), TrueBlock, LHSFalse, LHSCount);
1301         EmitBlock(LHSFalse);
1302       }
1303 
1304       incrementProfileCounter(CondBOp);
1305       setCurrentProfileCount(getProfileCount(CondBOp->getRHS()));
1306 
1307       // Any temporaries created here are conditional.
1308       eval.begin(*this);
1309       EmitBranchOnBoolExpr(CondBOp->getRHS(), TrueBlock, FalseBlock, RHSCount);
1310 
1311       eval.end(*this);
1312 
1313       return;
1314     }
1315   }
1316 
1317   if (const UnaryOperator *CondUOp = dyn_cast<UnaryOperator>(Cond)) {
1318     // br(!x, t, f) -> br(x, f, t)
1319     if (CondUOp->getOpcode() == UO_LNot) {
1320       // Negate the count.
1321       uint64_t FalseCount = getCurrentProfileCount() - TrueCount;
1322       // Negate the condition and swap the destination blocks.
1323       return EmitBranchOnBoolExpr(CondUOp->getSubExpr(), FalseBlock, TrueBlock,
1324                                   FalseCount);
1325     }
1326   }
1327 
1328   if (const ConditionalOperator *CondOp = dyn_cast<ConditionalOperator>(Cond)) {
1329     // br(c ? x : y, t, f) -> br(c, br(x, t, f), br(y, t, f))
1330     llvm::BasicBlock *LHSBlock = createBasicBlock("cond.true");
1331     llvm::BasicBlock *RHSBlock = createBasicBlock("cond.false");
1332 
1333     ConditionalEvaluation cond(*this);
1334     EmitBranchOnBoolExpr(CondOp->getCond(), LHSBlock, RHSBlock,
1335                          getProfileCount(CondOp));
1336 
1337     // When computing PGO branch weights, we only know the overall count for
1338     // the true block. This code is essentially doing tail duplication of the
1339     // naive code-gen, introducing new edges for which counts are not
1340     // available. Divide the counts proportionally between the LHS and RHS of
1341     // the conditional operator.
1342     uint64_t LHSScaledTrueCount = 0;
1343     if (TrueCount) {
1344       double LHSRatio =
1345           getProfileCount(CondOp) / (double)getCurrentProfileCount();
1346       LHSScaledTrueCount = TrueCount * LHSRatio;
1347     }
1348 
1349     cond.begin(*this);
1350     EmitBlock(LHSBlock);
1351     incrementProfileCounter(CondOp);
1352     {
1353       ApplyDebugLocation DL(*this, Cond);
1354       EmitBranchOnBoolExpr(CondOp->getLHS(), TrueBlock, FalseBlock,
1355                            LHSScaledTrueCount);
1356     }
1357     cond.end(*this);
1358 
1359     cond.begin(*this);
1360     EmitBlock(RHSBlock);
1361     EmitBranchOnBoolExpr(CondOp->getRHS(), TrueBlock, FalseBlock,
1362                          TrueCount - LHSScaledTrueCount);
1363     cond.end(*this);
1364 
1365     return;
1366   }
1367 
1368   if (const CXXThrowExpr *Throw = dyn_cast<CXXThrowExpr>(Cond)) {
1369     // Conditional operator handling can give us a throw expression as a
1370     // condition for a case like:
1371     //   br(c ? throw x : y, t, f) -> br(c, br(throw x, t, f), br(y, t, f)
1372     // Fold this to:
1373     //   br(c, throw x, br(y, t, f))
1374     EmitCXXThrowExpr(Throw, /*KeepInsertionPoint*/false);
1375     return;
1376   }
1377 
1378   // If the branch has a condition wrapped by __builtin_unpredictable,
1379   // create metadata that specifies that the branch is unpredictable.
1380   // Don't bother if not optimizing because that metadata would not be used.
1381   llvm::MDNode *Unpredictable = nullptr;
1382   auto *Call = dyn_cast<CallExpr>(Cond);
1383   if (Call && CGM.getCodeGenOpts().OptimizationLevel != 0) {
1384     auto *FD = dyn_cast_or_null<FunctionDecl>(Call->getCalleeDecl());
1385     if (FD && FD->getBuiltinID() == Builtin::BI__builtin_unpredictable) {
1386       llvm::MDBuilder MDHelper(getLLVMContext());
1387       Unpredictable = MDHelper.createUnpredictable();
1388     }
1389   }
1390 
1391   // Create branch weights based on the number of times we get here and the
1392   // number of times the condition should be true.
1393   uint64_t CurrentCount = std::max(getCurrentProfileCount(), TrueCount);
1394   llvm::MDNode *Weights =
1395       createProfileWeights(TrueCount, CurrentCount - TrueCount);
1396 
1397   // Emit the code with the fully general case.
1398   llvm::Value *CondV;
1399   {
1400     ApplyDebugLocation DL(*this, Cond);
1401     CondV = EvaluateExprAsBool(Cond);
1402   }
1403   Builder.CreateCondBr(CondV, TrueBlock, FalseBlock, Weights, Unpredictable);
1404 }
1405 
1406 /// ErrorUnsupported - Print out an error that codegen doesn't support the
1407 /// specified stmt yet.
1408 void CodeGenFunction::ErrorUnsupported(const Stmt *S, const char *Type) {
1409   CGM.ErrorUnsupported(S, Type);
1410 }
1411 
1412 /// emitNonZeroVLAInit - Emit the "zero" initialization of a
1413 /// variable-length array whose elements have a non-zero bit-pattern.
1414 ///
1415 /// \param baseType the inner-most element type of the array
1416 /// \param src - a char* pointing to the bit-pattern for a single
1417 /// base element of the array
1418 /// \param sizeInChars - the total size of the VLA, in chars
1419 static void emitNonZeroVLAInit(CodeGenFunction &CGF, QualType baseType,
1420                                Address dest, Address src,
1421                                llvm::Value *sizeInChars) {
1422   CGBuilderTy &Builder = CGF.Builder;
1423 
1424   CharUnits baseSize = CGF.getContext().getTypeSizeInChars(baseType);
1425   llvm::Value *baseSizeInChars
1426     = llvm::ConstantInt::get(CGF.IntPtrTy, baseSize.getQuantity());
1427 
1428   Address begin =
1429     Builder.CreateElementBitCast(dest, CGF.Int8Ty, "vla.begin");
1430   llvm::Value *end =
1431     Builder.CreateInBoundsGEP(begin.getPointer(), sizeInChars, "vla.end");
1432 
1433   llvm::BasicBlock *originBB = CGF.Builder.GetInsertBlock();
1434   llvm::BasicBlock *loopBB = CGF.createBasicBlock("vla-init.loop");
1435   llvm::BasicBlock *contBB = CGF.createBasicBlock("vla-init.cont");
1436 
1437   // Make a loop over the VLA.  C99 guarantees that the VLA element
1438   // count must be nonzero.
1439   CGF.EmitBlock(loopBB);
1440 
1441   llvm::PHINode *cur = Builder.CreatePHI(begin.getType(), 2, "vla.cur");
1442   cur->addIncoming(begin.getPointer(), originBB);
1443 
1444   CharUnits curAlign =
1445     dest.getAlignment().alignmentOfArrayElement(baseSize);
1446 
1447   // memcpy the individual element bit-pattern.
1448   Builder.CreateMemCpy(Address(cur, curAlign), src, baseSizeInChars,
1449                        /*volatile*/ false);
1450 
1451   // Go to the next element.
1452   llvm::Value *next =
1453     Builder.CreateInBoundsGEP(CGF.Int8Ty, cur, baseSizeInChars, "vla.next");
1454 
1455   // Leave if that's the end of the VLA.
1456   llvm::Value *done = Builder.CreateICmpEQ(next, end, "vla-init.isdone");
1457   Builder.CreateCondBr(done, contBB, loopBB);
1458   cur->addIncoming(next, loopBB);
1459 
1460   CGF.EmitBlock(contBB);
1461 }
1462 
1463 void
1464 CodeGenFunction::EmitNullInitialization(Address DestPtr, QualType Ty) {
1465   // Ignore empty classes in C++.
1466   if (getLangOpts().CPlusPlus) {
1467     if (const RecordType *RT = Ty->getAs<RecordType>()) {
1468       if (cast<CXXRecordDecl>(RT->getDecl())->isEmpty())
1469         return;
1470     }
1471   }
1472 
1473   // Cast the dest ptr to the appropriate i8 pointer type.
1474   if (DestPtr.getElementType() != Int8Ty)
1475     DestPtr = Builder.CreateElementBitCast(DestPtr, Int8Ty);
1476 
1477   // Get size and alignment info for this aggregate.
1478   CharUnits size = getContext().getTypeSizeInChars(Ty);
1479 
1480   llvm::Value *SizeVal;
1481   const VariableArrayType *vla;
1482 
1483   // Don't bother emitting a zero-byte memset.
1484   if (size.isZero()) {
1485     // But note that getTypeInfo returns 0 for a VLA.
1486     if (const VariableArrayType *vlaType =
1487           dyn_cast_or_null<VariableArrayType>(
1488                                           getContext().getAsArrayType(Ty))) {
1489       QualType eltType;
1490       llvm::Value *numElts;
1491       std::tie(numElts, eltType) = getVLASize(vlaType);
1492 
1493       SizeVal = numElts;
1494       CharUnits eltSize = getContext().getTypeSizeInChars(eltType);
1495       if (!eltSize.isOne())
1496         SizeVal = Builder.CreateNUWMul(SizeVal, CGM.getSize(eltSize));
1497       vla = vlaType;
1498     } else {
1499       return;
1500     }
1501   } else {
1502     SizeVal = CGM.getSize(size);
1503     vla = nullptr;
1504   }
1505 
1506   // If the type contains a pointer to data member we can't memset it to zero.
1507   // Instead, create a null constant and copy it to the destination.
1508   // TODO: there are other patterns besides zero that we can usefully memset,
1509   // like -1, which happens to be the pattern used by member-pointers.
1510   if (!CGM.getTypes().isZeroInitializable(Ty)) {
1511     // For a VLA, emit a single element, then splat that over the VLA.
1512     if (vla) Ty = getContext().getBaseElementType(vla);
1513 
1514     llvm::Constant *NullConstant = CGM.EmitNullConstant(Ty);
1515 
1516     llvm::GlobalVariable *NullVariable =
1517       new llvm::GlobalVariable(CGM.getModule(), NullConstant->getType(),
1518                                /*isConstant=*/true,
1519                                llvm::GlobalVariable::PrivateLinkage,
1520                                NullConstant, Twine());
1521     CharUnits NullAlign = DestPtr.getAlignment();
1522     NullVariable->setAlignment(NullAlign.getQuantity());
1523     Address SrcPtr(Builder.CreateBitCast(NullVariable, Builder.getInt8PtrTy()),
1524                    NullAlign);
1525 
1526     if (vla) return emitNonZeroVLAInit(*this, Ty, DestPtr, SrcPtr, SizeVal);
1527 
1528     // Get and call the appropriate llvm.memcpy overload.
1529     Builder.CreateMemCpy(DestPtr, SrcPtr, SizeVal, false);
1530     return;
1531   }
1532 
1533   // Otherwise, just memset the whole thing to zero.  This is legal
1534   // because in LLVM, all default initializers (other than the ones we just
1535   // handled above) are guaranteed to have a bit pattern of all zeros.
1536   Builder.CreateMemSet(DestPtr, Builder.getInt8(0), SizeVal, false);
1537 }
1538 
1539 llvm::BlockAddress *CodeGenFunction::GetAddrOfLabel(const LabelDecl *L) {
1540   // Make sure that there is a block for the indirect goto.
1541   if (!IndirectBranch)
1542     GetIndirectGotoBlock();
1543 
1544   llvm::BasicBlock *BB = getJumpDestForLabel(L).getBlock();
1545 
1546   // Make sure the indirect branch includes all of the address-taken blocks.
1547   IndirectBranch->addDestination(BB);
1548   return llvm::BlockAddress::get(CurFn, BB);
1549 }
1550 
1551 llvm::BasicBlock *CodeGenFunction::GetIndirectGotoBlock() {
1552   // If we already made the indirect branch for indirect goto, return its block.
1553   if (IndirectBranch) return IndirectBranch->getParent();
1554 
1555   CGBuilderTy TmpBuilder(*this, createBasicBlock("indirectgoto"));
1556 
1557   // Create the PHI node that indirect gotos will add entries to.
1558   llvm::Value *DestVal = TmpBuilder.CreatePHI(Int8PtrTy, 0,
1559                                               "indirect.goto.dest");
1560 
1561   // Create the indirect branch instruction.
1562   IndirectBranch = TmpBuilder.CreateIndirectBr(DestVal);
1563   return IndirectBranch->getParent();
1564 }
1565 
1566 /// Computes the length of an array in elements, as well as the base
1567 /// element type and a properly-typed first element pointer.
1568 llvm::Value *CodeGenFunction::emitArrayLength(const ArrayType *origArrayType,
1569                                               QualType &baseType,
1570                                               Address &addr) {
1571   const ArrayType *arrayType = origArrayType;
1572 
1573   // If it's a VLA, we have to load the stored size.  Note that
1574   // this is the size of the VLA in bytes, not its size in elements.
1575   llvm::Value *numVLAElements = nullptr;
1576   if (isa<VariableArrayType>(arrayType)) {
1577     numVLAElements = getVLASize(cast<VariableArrayType>(arrayType)).first;
1578 
1579     // Walk into all VLAs.  This doesn't require changes to addr,
1580     // which has type T* where T is the first non-VLA element type.
1581     do {
1582       QualType elementType = arrayType->getElementType();
1583       arrayType = getContext().getAsArrayType(elementType);
1584 
1585       // If we only have VLA components, 'addr' requires no adjustment.
1586       if (!arrayType) {
1587         baseType = elementType;
1588         return numVLAElements;
1589       }
1590     } while (isa<VariableArrayType>(arrayType));
1591 
1592     // We get out here only if we find a constant array type
1593     // inside the VLA.
1594   }
1595 
1596   // We have some number of constant-length arrays, so addr should
1597   // have LLVM type [M x [N x [...]]]*.  Build a GEP that walks
1598   // down to the first element of addr.
1599   SmallVector<llvm::Value*, 8> gepIndices;
1600 
1601   // GEP down to the array type.
1602   llvm::ConstantInt *zero = Builder.getInt32(0);
1603   gepIndices.push_back(zero);
1604 
1605   uint64_t countFromCLAs = 1;
1606   QualType eltType;
1607 
1608   llvm::ArrayType *llvmArrayType =
1609     dyn_cast<llvm::ArrayType>(addr.getElementType());
1610   while (llvmArrayType) {
1611     assert(isa<ConstantArrayType>(arrayType));
1612     assert(cast<ConstantArrayType>(arrayType)->getSize().getZExtValue()
1613              == llvmArrayType->getNumElements());
1614 
1615     gepIndices.push_back(zero);
1616     countFromCLAs *= llvmArrayType->getNumElements();
1617     eltType = arrayType->getElementType();
1618 
1619     llvmArrayType =
1620       dyn_cast<llvm::ArrayType>(llvmArrayType->getElementType());
1621     arrayType = getContext().getAsArrayType(arrayType->getElementType());
1622     assert((!llvmArrayType || arrayType) &&
1623            "LLVM and Clang types are out-of-synch");
1624   }
1625 
1626   if (arrayType) {
1627     // From this point onwards, the Clang array type has been emitted
1628     // as some other type (probably a packed struct). Compute the array
1629     // size, and just emit the 'begin' expression as a bitcast.
1630     while (arrayType) {
1631       countFromCLAs *=
1632           cast<ConstantArrayType>(arrayType)->getSize().getZExtValue();
1633       eltType = arrayType->getElementType();
1634       arrayType = getContext().getAsArrayType(eltType);
1635     }
1636 
1637     llvm::Type *baseType = ConvertType(eltType);
1638     addr = Builder.CreateElementBitCast(addr, baseType, "array.begin");
1639   } else {
1640     // Create the actual GEP.
1641     addr = Address(Builder.CreateInBoundsGEP(addr.getPointer(),
1642                                              gepIndices, "array.begin"),
1643                    addr.getAlignment());
1644   }
1645 
1646   baseType = eltType;
1647 
1648   llvm::Value *numElements
1649     = llvm::ConstantInt::get(SizeTy, countFromCLAs);
1650 
1651   // If we had any VLA dimensions, factor them in.
1652   if (numVLAElements)
1653     numElements = Builder.CreateNUWMul(numVLAElements, numElements);
1654 
1655   return numElements;
1656 }
1657 
1658 std::pair<llvm::Value*, QualType>
1659 CodeGenFunction::getVLASize(QualType type) {
1660   const VariableArrayType *vla = getContext().getAsVariableArrayType(type);
1661   assert(vla && "type was not a variable array type!");
1662   return getVLASize(vla);
1663 }
1664 
1665 std::pair<llvm::Value*, QualType>
1666 CodeGenFunction::getVLASize(const VariableArrayType *type) {
1667   // The number of elements so far; always size_t.
1668   llvm::Value *numElements = nullptr;
1669 
1670   QualType elementType;
1671   do {
1672     elementType = type->getElementType();
1673     llvm::Value *vlaSize = VLASizeMap[type->getSizeExpr()];
1674     assert(vlaSize && "no size for VLA!");
1675     assert(vlaSize->getType() == SizeTy);
1676 
1677     if (!numElements) {
1678       numElements = vlaSize;
1679     } else {
1680       // It's undefined behavior if this wraps around, so mark it that way.
1681       // FIXME: Teach -fsanitize=undefined to trap this.
1682       numElements = Builder.CreateNUWMul(numElements, vlaSize);
1683     }
1684   } while ((type = getContext().getAsVariableArrayType(elementType)));
1685 
1686   return std::pair<llvm::Value*,QualType>(numElements, elementType);
1687 }
1688 
1689 void CodeGenFunction::EmitVariablyModifiedType(QualType type) {
1690   assert(type->isVariablyModifiedType() &&
1691          "Must pass variably modified type to EmitVLASizes!");
1692 
1693   EnsureInsertPoint();
1694 
1695   // We're going to walk down into the type and look for VLA
1696   // expressions.
1697   do {
1698     assert(type->isVariablyModifiedType());
1699 
1700     const Type *ty = type.getTypePtr();
1701     switch (ty->getTypeClass()) {
1702 
1703 #define TYPE(Class, Base)
1704 #define ABSTRACT_TYPE(Class, Base)
1705 #define NON_CANONICAL_TYPE(Class, Base)
1706 #define DEPENDENT_TYPE(Class, Base) case Type::Class:
1707 #define NON_CANONICAL_UNLESS_DEPENDENT_TYPE(Class, Base)
1708 #include "clang/AST/TypeNodes.def"
1709       llvm_unreachable("unexpected dependent type!");
1710 
1711     // These types are never variably-modified.
1712     case Type::Builtin:
1713     case Type::Complex:
1714     case Type::Vector:
1715     case Type::ExtVector:
1716     case Type::Record:
1717     case Type::Enum:
1718     case Type::Elaborated:
1719     case Type::TemplateSpecialization:
1720     case Type::ObjCObject:
1721     case Type::ObjCInterface:
1722     case Type::ObjCObjectPointer:
1723       llvm_unreachable("type class is never variably-modified!");
1724 
1725     case Type::Adjusted:
1726       type = cast<AdjustedType>(ty)->getAdjustedType();
1727       break;
1728 
1729     case Type::Decayed:
1730       type = cast<DecayedType>(ty)->getPointeeType();
1731       break;
1732 
1733     case Type::Pointer:
1734       type = cast<PointerType>(ty)->getPointeeType();
1735       break;
1736 
1737     case Type::BlockPointer:
1738       type = cast<BlockPointerType>(ty)->getPointeeType();
1739       break;
1740 
1741     case Type::LValueReference:
1742     case Type::RValueReference:
1743       type = cast<ReferenceType>(ty)->getPointeeType();
1744       break;
1745 
1746     case Type::MemberPointer:
1747       type = cast<MemberPointerType>(ty)->getPointeeType();
1748       break;
1749 
1750     case Type::ConstantArray:
1751     case Type::IncompleteArray:
1752       // Losing element qualification here is fine.
1753       type = cast<ArrayType>(ty)->getElementType();
1754       break;
1755 
1756     case Type::VariableArray: {
1757       // Losing element qualification here is fine.
1758       const VariableArrayType *vat = cast<VariableArrayType>(ty);
1759 
1760       // Unknown size indication requires no size computation.
1761       // Otherwise, evaluate and record it.
1762       if (const Expr *size = vat->getSizeExpr()) {
1763         // It's possible that we might have emitted this already,
1764         // e.g. with a typedef and a pointer to it.
1765         llvm::Value *&entry = VLASizeMap[size];
1766         if (!entry) {
1767           llvm::Value *Size = EmitScalarExpr(size);
1768 
1769           // C11 6.7.6.2p5:
1770           //   If the size is an expression that is not an integer constant
1771           //   expression [...] each time it is evaluated it shall have a value
1772           //   greater than zero.
1773           if (SanOpts.has(SanitizerKind::VLABound) &&
1774               size->getType()->isSignedIntegerType()) {
1775             SanitizerScope SanScope(this);
1776             llvm::Value *Zero = llvm::Constant::getNullValue(Size->getType());
1777             llvm::Constant *StaticArgs[] = {
1778               EmitCheckSourceLocation(size->getLocStart()),
1779               EmitCheckTypeDescriptor(size->getType())
1780             };
1781             EmitCheck(std::make_pair(Builder.CreateICmpSGT(Size, Zero),
1782                                      SanitizerKind::VLABound),
1783                       "vla_bound_not_positive", StaticArgs, Size);
1784           }
1785 
1786           // Always zexting here would be wrong if it weren't
1787           // undefined behavior to have a negative bound.
1788           entry = Builder.CreateIntCast(Size, SizeTy, /*signed*/ false);
1789         }
1790       }
1791       type = vat->getElementType();
1792       break;
1793     }
1794 
1795     case Type::FunctionProto:
1796     case Type::FunctionNoProto:
1797       type = cast<FunctionType>(ty)->getReturnType();
1798       break;
1799 
1800     case Type::Paren:
1801     case Type::TypeOf:
1802     case Type::UnaryTransform:
1803     case Type::Attributed:
1804     case Type::SubstTemplateTypeParm:
1805     case Type::PackExpansion:
1806       // Keep walking after single level desugaring.
1807       type = type.getSingleStepDesugaredType(getContext());
1808       break;
1809 
1810     case Type::Typedef:
1811     case Type::Decltype:
1812     case Type::Auto:
1813       // Stop walking: nothing to do.
1814       return;
1815 
1816     case Type::TypeOfExpr:
1817       // Stop walking: emit typeof expression.
1818       EmitIgnoredExpr(cast<TypeOfExprType>(ty)->getUnderlyingExpr());
1819       return;
1820 
1821     case Type::Atomic:
1822       type = cast<AtomicType>(ty)->getValueType();
1823       break;
1824 
1825     case Type::Pipe:
1826       type = cast<PipeType>(ty)->getElementType();
1827       break;
1828     }
1829   } while (type->isVariablyModifiedType());
1830 }
1831 
1832 Address CodeGenFunction::EmitVAListRef(const Expr* E) {
1833   if (getContext().getBuiltinVaListType()->isArrayType())
1834     return EmitPointerWithAlignment(E);
1835   return EmitLValue(E).getAddress();
1836 }
1837 
1838 Address CodeGenFunction::EmitMSVAListRef(const Expr *E) {
1839   return EmitLValue(E).getAddress();
1840 }
1841 
1842 void CodeGenFunction::EmitDeclRefExprDbgValue(const DeclRefExpr *E,
1843                                               llvm::Constant *Init) {
1844   assert (Init && "Invalid DeclRefExpr initializer!");
1845   if (CGDebugInfo *Dbg = getDebugInfo())
1846     if (CGM.getCodeGenOpts().getDebugInfo() >= codegenoptions::LimitedDebugInfo)
1847       Dbg->EmitGlobalVariable(E->getDecl(), Init);
1848 }
1849 
1850 CodeGenFunction::PeepholeProtection
1851 CodeGenFunction::protectFromPeepholes(RValue rvalue) {
1852   // At the moment, the only aggressive peephole we do in IR gen
1853   // is trunc(zext) folding, but if we add more, we can easily
1854   // extend this protection.
1855 
1856   if (!rvalue.isScalar()) return PeepholeProtection();
1857   llvm::Value *value = rvalue.getScalarVal();
1858   if (!isa<llvm::ZExtInst>(value)) return PeepholeProtection();
1859 
1860   // Just make an extra bitcast.
1861   assert(HaveInsertPoint());
1862   llvm::Instruction *inst = new llvm::BitCastInst(value, value->getType(), "",
1863                                                   Builder.GetInsertBlock());
1864 
1865   PeepholeProtection protection;
1866   protection.Inst = inst;
1867   return protection;
1868 }
1869 
1870 void CodeGenFunction::unprotectFromPeepholes(PeepholeProtection protection) {
1871   if (!protection.Inst) return;
1872 
1873   // In theory, we could try to duplicate the peepholes now, but whatever.
1874   protection.Inst->eraseFromParent();
1875 }
1876 
1877 llvm::Value *CodeGenFunction::EmitAnnotationCall(llvm::Value *AnnotationFn,
1878                                                  llvm::Value *AnnotatedVal,
1879                                                  StringRef AnnotationStr,
1880                                                  SourceLocation Location) {
1881   llvm::Value *Args[4] = {
1882     AnnotatedVal,
1883     Builder.CreateBitCast(CGM.EmitAnnotationString(AnnotationStr), Int8PtrTy),
1884     Builder.CreateBitCast(CGM.EmitAnnotationUnit(Location), Int8PtrTy),
1885     CGM.EmitAnnotationLineNo(Location)
1886   };
1887   return Builder.CreateCall(AnnotationFn, Args);
1888 }
1889 
1890 void CodeGenFunction::EmitVarAnnotations(const VarDecl *D, llvm::Value *V) {
1891   assert(D->hasAttr<AnnotateAttr>() && "no annotate attribute");
1892   // FIXME We create a new bitcast for every annotation because that's what
1893   // llvm-gcc was doing.
1894   for (const auto *I : D->specific_attrs<AnnotateAttr>())
1895     EmitAnnotationCall(CGM.getIntrinsic(llvm::Intrinsic::var_annotation),
1896                        Builder.CreateBitCast(V, CGM.Int8PtrTy, V->getName()),
1897                        I->getAnnotation(), D->getLocation());
1898 }
1899 
1900 Address CodeGenFunction::EmitFieldAnnotations(const FieldDecl *D,
1901                                               Address Addr) {
1902   assert(D->hasAttr<AnnotateAttr>() && "no annotate attribute");
1903   llvm::Value *V = Addr.getPointer();
1904   llvm::Type *VTy = V->getType();
1905   llvm::Value *F = CGM.getIntrinsic(llvm::Intrinsic::ptr_annotation,
1906                                     CGM.Int8PtrTy);
1907 
1908   for (const auto *I : D->specific_attrs<AnnotateAttr>()) {
1909     // FIXME Always emit the cast inst so we can differentiate between
1910     // annotation on the first field of a struct and annotation on the struct
1911     // itself.
1912     if (VTy != CGM.Int8PtrTy)
1913       V = Builder.Insert(new llvm::BitCastInst(V, CGM.Int8PtrTy));
1914     V = EmitAnnotationCall(F, V, I->getAnnotation(), D->getLocation());
1915     V = Builder.CreateBitCast(V, VTy);
1916   }
1917 
1918   return Address(V, Addr.getAlignment());
1919 }
1920 
1921 CodeGenFunction::CGCapturedStmtInfo::~CGCapturedStmtInfo() { }
1922 
1923 CodeGenFunction::SanitizerScope::SanitizerScope(CodeGenFunction *CGF)
1924     : CGF(CGF) {
1925   assert(!CGF->IsSanitizerScope);
1926   CGF->IsSanitizerScope = true;
1927 }
1928 
1929 CodeGenFunction::SanitizerScope::~SanitizerScope() {
1930   CGF->IsSanitizerScope = false;
1931 }
1932 
1933 void CodeGenFunction::InsertHelper(llvm::Instruction *I,
1934                                    const llvm::Twine &Name,
1935                                    llvm::BasicBlock *BB,
1936                                    llvm::BasicBlock::iterator InsertPt) const {
1937   LoopStack.InsertHelper(I);
1938   if (IsSanitizerScope)
1939     CGM.getSanitizerMetadata()->disableSanitizerForInstruction(I);
1940 }
1941 
1942 void CGBuilderInserter::InsertHelper(
1943     llvm::Instruction *I, const llvm::Twine &Name, llvm::BasicBlock *BB,
1944     llvm::BasicBlock::iterator InsertPt) const {
1945   llvm::IRBuilderDefaultInserter::InsertHelper(I, Name, BB, InsertPt);
1946   if (CGF)
1947     CGF->InsertHelper(I, Name, BB, InsertPt);
1948 }
1949 
1950 static bool hasRequiredFeatures(const SmallVectorImpl<StringRef> &ReqFeatures,
1951                                 CodeGenModule &CGM, const FunctionDecl *FD,
1952                                 std::string &FirstMissing) {
1953   // If there aren't any required features listed then go ahead and return.
1954   if (ReqFeatures.empty())
1955     return false;
1956 
1957   // Now build up the set of caller features and verify that all the required
1958   // features are there.
1959   llvm::StringMap<bool> CallerFeatureMap;
1960   CGM.getFunctionFeatureMap(CallerFeatureMap, FD);
1961 
1962   // If we have at least one of the features in the feature list return
1963   // true, otherwise return false.
1964   return std::all_of(
1965       ReqFeatures.begin(), ReqFeatures.end(), [&](StringRef Feature) {
1966         SmallVector<StringRef, 1> OrFeatures;
1967         Feature.split(OrFeatures, "|");
1968         return std::any_of(OrFeatures.begin(), OrFeatures.end(),
1969                            [&](StringRef Feature) {
1970                              if (!CallerFeatureMap.lookup(Feature)) {
1971                                FirstMissing = Feature.str();
1972                                return false;
1973                              }
1974                              return true;
1975                            });
1976       });
1977 }
1978 
1979 // Emits an error if we don't have a valid set of target features for the
1980 // called function.
1981 void CodeGenFunction::checkTargetFeatures(const CallExpr *E,
1982                                           const FunctionDecl *TargetDecl) {
1983   // Early exit if this is an indirect call.
1984   if (!TargetDecl)
1985     return;
1986 
1987   // Get the current enclosing function if it exists. If it doesn't
1988   // we can't check the target features anyhow.
1989   const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(CurFuncDecl);
1990   if (!FD)
1991     return;
1992 
1993   // Grab the required features for the call. For a builtin this is listed in
1994   // the td file with the default cpu, for an always_inline function this is any
1995   // listed cpu and any listed features.
1996   unsigned BuiltinID = TargetDecl->getBuiltinID();
1997   std::string MissingFeature;
1998   if (BuiltinID) {
1999     SmallVector<StringRef, 1> ReqFeatures;
2000     const char *FeatureList =
2001         CGM.getContext().BuiltinInfo.getRequiredFeatures(BuiltinID);
2002     // Return if the builtin doesn't have any required features.
2003     if (!FeatureList || StringRef(FeatureList) == "")
2004       return;
2005     StringRef(FeatureList).split(ReqFeatures, ",");
2006     if (!hasRequiredFeatures(ReqFeatures, CGM, FD, MissingFeature))
2007       CGM.getDiags().Report(E->getLocStart(), diag::err_builtin_needs_feature)
2008           << TargetDecl->getDeclName()
2009           << CGM.getContext().BuiltinInfo.getRequiredFeatures(BuiltinID);
2010 
2011   } else if (TargetDecl->hasAttr<TargetAttr>()) {
2012     // Get the required features for the callee.
2013     SmallVector<StringRef, 1> ReqFeatures;
2014     llvm::StringMap<bool> CalleeFeatureMap;
2015     CGM.getFunctionFeatureMap(CalleeFeatureMap, TargetDecl);
2016     for (const auto &F : CalleeFeatureMap) {
2017       // Only positive features are "required".
2018       if (F.getValue())
2019         ReqFeatures.push_back(F.getKey());
2020     }
2021     if (!hasRequiredFeatures(ReqFeatures, CGM, FD, MissingFeature))
2022       CGM.getDiags().Report(E->getLocStart(), diag::err_function_needs_feature)
2023           << FD->getDeclName() << TargetDecl->getDeclName() << MissingFeature;
2024   }
2025 }
2026 
2027 void CodeGenFunction::EmitSanitizerStatReport(llvm::SanitizerStatKind SSK) {
2028   if (!CGM.getCodeGenOpts().SanitizeStats)
2029     return;
2030 
2031   llvm::IRBuilder<> IRB(Builder.GetInsertBlock(), Builder.GetInsertPoint());
2032   IRB.SetCurrentDebugLocation(Builder.getCurrentDebugLocation());
2033   CGM.getSanStats().create(IRB, SSK);
2034 }
2035