1 //===--- CodeGenFunction.cpp - Emit LLVM Code from ASTs for a Function ----===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This coordinates the per-function state used while generating code.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "CodeGenFunction.h"
15 #include "CGCUDARuntime.h"
16 #include "CGCXXABI.h"
17 #include "CGDebugInfo.h"
18 #include "CodeGenModule.h"
19 #include "clang/AST/ASTContext.h"
20 #include "clang/AST/Decl.h"
21 #include "clang/AST/DeclCXX.h"
22 #include "clang/AST/StmtCXX.h"
23 #include "clang/Basic/OpenCL.h"
24 #include "clang/Basic/TargetInfo.h"
25 #include "clang/Frontend/CodeGenOptions.h"
26 #include "llvm/IR/DataLayout.h"
27 #include "llvm/IR/Intrinsics.h"
28 #include "llvm/IR/MDBuilder.h"
29 #include "llvm/IR/Operator.h"
30 using namespace clang;
31 using namespace CodeGen;
32 
33 CodeGenFunction::CodeGenFunction(CodeGenModule &cgm, bool suppressNewContext)
34   : CodeGenTypeCache(cgm), CGM(cgm),
35     Target(CGM.getContext().getTargetInfo()),
36     Builder(cgm.getModule().getContext()),
37     SanitizePerformTypeCheck(CGM.getSanOpts().Null |
38                              CGM.getSanOpts().Alignment |
39                              CGM.getSanOpts().ObjectSize |
40                              CGM.getSanOpts().Vptr),
41     SanOpts(&CGM.getSanOpts()),
42     AutoreleaseResult(false), BlockInfo(0), BlockPointer(0),
43     LambdaThisCaptureField(0), NormalCleanupDest(0), NextCleanupDestIndex(1),
44     FirstBlockInfo(0), EHResumeBlock(0), ExceptionSlot(0), EHSelectorSlot(0),
45     DebugInfo(0), DisableDebugInfo(false), DidCallStackSave(false),
46     IndirectBranch(0), SwitchInsn(0), CaseRangeBlock(0), UnreachableBlock(0),
47     CXXABIThisDecl(0), CXXABIThisValue(0), CXXThisValue(0),
48     CXXStructorImplicitParamDecl(0), CXXStructorImplicitParamValue(0),
49     OutermostConditional(0), CurLexicalScope(0), TerminateLandingPad(0),
50     TerminateHandler(0), TrapBB(0) {
51   if (!suppressNewContext)
52     CGM.getCXXABI().getMangleContext().startNewFunction();
53 
54   llvm::FastMathFlags FMF;
55   if (CGM.getLangOpts().FastMath)
56     FMF.setUnsafeAlgebra();
57   if (CGM.getLangOpts().FiniteMathOnly) {
58     FMF.setNoNaNs();
59     FMF.setNoInfs();
60   }
61   Builder.SetFastMathFlags(FMF);
62 }
63 
64 CodeGenFunction::~CodeGenFunction() {
65   // If there are any unclaimed block infos, go ahead and destroy them
66   // now.  This can happen if IR-gen gets clever and skips evaluating
67   // something.
68   if (FirstBlockInfo)
69     destroyBlockInfos(FirstBlockInfo);
70 }
71 
72 
73 llvm::Type *CodeGenFunction::ConvertTypeForMem(QualType T) {
74   return CGM.getTypes().ConvertTypeForMem(T);
75 }
76 
77 llvm::Type *CodeGenFunction::ConvertType(QualType T) {
78   return CGM.getTypes().ConvertType(T);
79 }
80 
81 TypeEvaluationKind CodeGenFunction::getEvaluationKind(QualType type) {
82   type = type.getCanonicalType();
83   while (true) {
84     switch (type->getTypeClass()) {
85 #define TYPE(name, parent)
86 #define ABSTRACT_TYPE(name, parent)
87 #define NON_CANONICAL_TYPE(name, parent) case Type::name:
88 #define DEPENDENT_TYPE(name, parent) case Type::name:
89 #define NON_CANONICAL_UNLESS_DEPENDENT_TYPE(name, parent) case Type::name:
90 #include "clang/AST/TypeNodes.def"
91       llvm_unreachable("non-canonical or dependent type in IR-generation");
92 
93     // Various scalar types.
94     case Type::Builtin:
95     case Type::Pointer:
96     case Type::BlockPointer:
97     case Type::LValueReference:
98     case Type::RValueReference:
99     case Type::MemberPointer:
100     case Type::Vector:
101     case Type::ExtVector:
102     case Type::FunctionProto:
103     case Type::FunctionNoProto:
104     case Type::Enum:
105     case Type::ObjCObjectPointer:
106       return TEK_Scalar;
107 
108     // Complexes.
109     case Type::Complex:
110       return TEK_Complex;
111 
112     // Arrays, records, and Objective-C objects.
113     case Type::ConstantArray:
114     case Type::IncompleteArray:
115     case Type::VariableArray:
116     case Type::Record:
117     case Type::ObjCObject:
118     case Type::ObjCInterface:
119       return TEK_Aggregate;
120 
121     // We operate on atomic values according to their underlying type.
122     case Type::Atomic:
123       type = cast<AtomicType>(type)->getValueType();
124       continue;
125     }
126     llvm_unreachable("unknown type kind!");
127   }
128 }
129 
130 void CodeGenFunction::EmitReturnBlock() {
131   // For cleanliness, we try to avoid emitting the return block for
132   // simple cases.
133   llvm::BasicBlock *CurBB = Builder.GetInsertBlock();
134 
135   if (CurBB) {
136     assert(!CurBB->getTerminator() && "Unexpected terminated block.");
137 
138     // We have a valid insert point, reuse it if it is empty or there are no
139     // explicit jumps to the return block.
140     if (CurBB->empty() || ReturnBlock.getBlock()->use_empty()) {
141       ReturnBlock.getBlock()->replaceAllUsesWith(CurBB);
142       delete ReturnBlock.getBlock();
143     } else
144       EmitBlock(ReturnBlock.getBlock());
145     return;
146   }
147 
148   // Otherwise, if the return block is the target of a single direct
149   // branch then we can just put the code in that block instead. This
150   // cleans up functions which started with a unified return block.
151   if (ReturnBlock.getBlock()->hasOneUse()) {
152     llvm::BranchInst *BI =
153       dyn_cast<llvm::BranchInst>(*ReturnBlock.getBlock()->use_begin());
154     if (BI && BI->isUnconditional() &&
155         BI->getSuccessor(0) == ReturnBlock.getBlock()) {
156       // Reset insertion point, including debug location, and delete the
157       // branch.  This is really subtle and only works because the next change
158       // in location will hit the caching in CGDebugInfo::EmitLocation and not
159       // override this.
160       Builder.SetCurrentDebugLocation(BI->getDebugLoc());
161       Builder.SetInsertPoint(BI->getParent());
162       BI->eraseFromParent();
163       delete ReturnBlock.getBlock();
164       return;
165     }
166   }
167 
168   // FIXME: We are at an unreachable point, there is no reason to emit the block
169   // unless it has uses. However, we still need a place to put the debug
170   // region.end for now.
171 
172   EmitBlock(ReturnBlock.getBlock());
173 }
174 
175 static void EmitIfUsed(CodeGenFunction &CGF, llvm::BasicBlock *BB) {
176   if (!BB) return;
177   if (!BB->use_empty())
178     return CGF.CurFn->getBasicBlockList().push_back(BB);
179   delete BB;
180 }
181 
182 void CodeGenFunction::FinishFunction(SourceLocation EndLoc) {
183   assert(BreakContinueStack.empty() &&
184          "mismatched push/pop in break/continue stack!");
185 
186   if (CGDebugInfo *DI = getDebugInfo())
187     DI->EmitLocation(Builder, EndLoc);
188 
189   // Pop any cleanups that might have been associated with the
190   // parameters.  Do this in whatever block we're currently in; it's
191   // important to do this before we enter the return block or return
192   // edges will be *really* confused.
193   if (EHStack.stable_begin() != PrologueCleanupDepth)
194     PopCleanupBlocks(PrologueCleanupDepth);
195 
196   // Emit function epilog (to return).
197   EmitReturnBlock();
198 
199   if (ShouldInstrumentFunction())
200     EmitFunctionInstrumentation("__cyg_profile_func_exit");
201 
202   // Emit debug descriptor for function end.
203   if (CGDebugInfo *DI = getDebugInfo()) {
204     DI->EmitFunctionEnd(Builder);
205   }
206 
207   EmitFunctionEpilog(*CurFnInfo);
208   EmitEndEHSpec(CurCodeDecl);
209 
210   assert(EHStack.empty() &&
211          "did not remove all scopes from cleanup stack!");
212 
213   // If someone did an indirect goto, emit the indirect goto block at the end of
214   // the function.
215   if (IndirectBranch) {
216     EmitBlock(IndirectBranch->getParent());
217     Builder.ClearInsertionPoint();
218   }
219 
220   // Remove the AllocaInsertPt instruction, which is just a convenience for us.
221   llvm::Instruction *Ptr = AllocaInsertPt;
222   AllocaInsertPt = 0;
223   Ptr->eraseFromParent();
224 
225   // If someone took the address of a label but never did an indirect goto, we
226   // made a zero entry PHI node, which is illegal, zap it now.
227   if (IndirectBranch) {
228     llvm::PHINode *PN = cast<llvm::PHINode>(IndirectBranch->getAddress());
229     if (PN->getNumIncomingValues() == 0) {
230       PN->replaceAllUsesWith(llvm::UndefValue::get(PN->getType()));
231       PN->eraseFromParent();
232     }
233   }
234 
235   EmitIfUsed(*this, EHResumeBlock);
236   EmitIfUsed(*this, TerminateLandingPad);
237   EmitIfUsed(*this, TerminateHandler);
238   EmitIfUsed(*this, UnreachableBlock);
239 
240   if (CGM.getCodeGenOpts().EmitDeclMetadata)
241     EmitDeclMetadata();
242 }
243 
244 /// ShouldInstrumentFunction - Return true if the current function should be
245 /// instrumented with __cyg_profile_func_* calls
246 bool CodeGenFunction::ShouldInstrumentFunction() {
247   if (!CGM.getCodeGenOpts().InstrumentFunctions)
248     return false;
249   if (!CurFuncDecl || CurFuncDecl->hasAttr<NoInstrumentFunctionAttr>())
250     return false;
251   return true;
252 }
253 
254 /// EmitFunctionInstrumentation - Emit LLVM code to call the specified
255 /// instrumentation function with the current function and the call site, if
256 /// function instrumentation is enabled.
257 void CodeGenFunction::EmitFunctionInstrumentation(const char *Fn) {
258   // void __cyg_profile_func_{enter,exit} (void *this_fn, void *call_site);
259   llvm::PointerType *PointerTy = Int8PtrTy;
260   llvm::Type *ProfileFuncArgs[] = { PointerTy, PointerTy };
261   llvm::FunctionType *FunctionTy =
262     llvm::FunctionType::get(VoidTy, ProfileFuncArgs, false);
263 
264   llvm::Constant *F = CGM.CreateRuntimeFunction(FunctionTy, Fn);
265   llvm::CallInst *CallSite = Builder.CreateCall(
266     CGM.getIntrinsic(llvm::Intrinsic::returnaddress),
267     llvm::ConstantInt::get(Int32Ty, 0),
268     "callsite");
269 
270   llvm::Value *args[] = {
271     llvm::ConstantExpr::getBitCast(CurFn, PointerTy),
272     CallSite
273   };
274 
275   EmitNounwindRuntimeCall(F, args);
276 }
277 
278 void CodeGenFunction::EmitMCountInstrumentation() {
279   llvm::FunctionType *FTy = llvm::FunctionType::get(VoidTy, false);
280 
281   llvm::Constant *MCountFn = CGM.CreateRuntimeFunction(FTy,
282                                                        Target.getMCountName());
283   EmitNounwindRuntimeCall(MCountFn);
284 }
285 
286 // OpenCL v1.2 s5.6.4.6 allows the compiler to store kernel argument
287 // information in the program executable. The argument information stored
288 // includes the argument name, its type, the address and access qualifiers used.
289 static void GenOpenCLArgMetadata(const FunctionDecl *FD, llvm::Function *Fn,
290                                  CodeGenModule &CGM,llvm::LLVMContext &Context,
291                                  SmallVector <llvm::Value*, 5> &kernelMDArgs,
292                                  CGBuilderTy& Builder, ASTContext &ASTCtx) {
293   // Create MDNodes that represent the kernel arg metadata.
294   // Each MDNode is a list in the form of "key", N number of values which is
295   // the same number of values as their are kernel arguments.
296 
297   // MDNode for the kernel argument address space qualifiers.
298   SmallVector<llvm::Value*, 8> addressQuals;
299   addressQuals.push_back(llvm::MDString::get(Context, "kernel_arg_addr_space"));
300 
301   // MDNode for the kernel argument access qualifiers (images only).
302   SmallVector<llvm::Value*, 8> accessQuals;
303   accessQuals.push_back(llvm::MDString::get(Context, "kernel_arg_access_qual"));
304 
305   // MDNode for the kernel argument type names.
306   SmallVector<llvm::Value*, 8> argTypeNames;
307   argTypeNames.push_back(llvm::MDString::get(Context, "kernel_arg_type"));
308 
309   // MDNode for the kernel argument type qualifiers.
310   SmallVector<llvm::Value*, 8> argTypeQuals;
311   argTypeQuals.push_back(llvm::MDString::get(Context, "kernel_arg_type_qual"));
312 
313   // MDNode for the kernel argument names.
314   SmallVector<llvm::Value*, 8> argNames;
315   argNames.push_back(llvm::MDString::get(Context, "kernel_arg_name"));
316 
317   for (unsigned i = 0, e = FD->getNumParams(); i != e; ++i) {
318     const ParmVarDecl *parm = FD->getParamDecl(i);
319     QualType ty = parm->getType();
320     std::string typeQuals;
321 
322     if (ty->isPointerType()) {
323       QualType pointeeTy = ty->getPointeeType();
324 
325       // Get address qualifier.
326       addressQuals.push_back(Builder.getInt32(ASTCtx.getTargetAddressSpace(
327         pointeeTy.getAddressSpace())));
328 
329       // Get argument type name.
330       std::string typeName = pointeeTy.getUnqualifiedType().getAsString() + "*";
331 
332       // Turn "unsigned type" to "utype"
333       std::string::size_type pos = typeName.find("unsigned");
334       if(pos != std::string::npos) {
335         typeName = typeName.substr(0, pos+1) +
336                    typeName.substr(pos+9, typeName.size());
337       }
338 
339       argTypeNames.push_back(llvm::MDString::get(Context, typeName));
340 
341       // Get argument type qualifiers:
342       if (ty.isRestrictQualified())
343         typeQuals = "restrict";
344       if (pointeeTy.isConstQualified() ||
345           (pointeeTy.getAddressSpace() == LangAS::opencl_constant))
346         if (typeQuals != "")
347           typeQuals += " const";
348         else
349           typeQuals += "const";
350       if (pointeeTy.isVolatileQualified())
351         if (typeQuals != "")
352           typeQuals += " volatile";
353         else
354           typeQuals += "volatile";
355     } else {
356       addressQuals.push_back(Builder.getInt32(0));
357 
358       // Get argument type name.
359       std::string typeName = ty.getUnqualifiedType().getAsString();
360 
361       // Turn "unsigned type" to "utype"
362       std::string::size_type pos = typeName.find("unsigned");
363       if(pos != std::string::npos) {
364         typeName = typeName.substr(0, pos+1) +
365                    typeName.substr(pos+9, typeName.size());
366       }
367 
368       argTypeNames.push_back(llvm::MDString::get(Context, typeName));
369 
370       // Get argument type qualifiers:
371       if (ty.isConstQualified())
372         typeQuals = "const";
373       if (ty.isVolatileQualified())
374         if (typeQuals != "")
375           typeQuals += " volatile";
376         else
377           typeQuals += "volatile";
378     }
379 
380     argTypeQuals.push_back(llvm::MDString::get(Context, typeQuals));
381 
382     // Get image access qualifier:
383     if (ty->isImageType()) {
384       if (parm->hasAttr<OpenCLImageAccessAttr>() &&
385           parm->getAttr<OpenCLImageAccessAttr>()->getAccess() == CLIA_write_only)
386         accessQuals.push_back(llvm::MDString::get(Context, "write_only"));
387       else
388         accessQuals.push_back(llvm::MDString::get(Context, "read_only"));
389     } else
390       accessQuals.push_back(llvm::MDString::get(Context, "none"));
391 
392     // Get argument name.
393     argNames.push_back(llvm::MDString::get(Context, parm->getName()));
394   }
395 
396   kernelMDArgs.push_back(llvm::MDNode::get(Context, addressQuals));
397   kernelMDArgs.push_back(llvm::MDNode::get(Context, accessQuals));
398   kernelMDArgs.push_back(llvm::MDNode::get(Context, argTypeNames));
399   kernelMDArgs.push_back(llvm::MDNode::get(Context, argTypeQuals));
400   kernelMDArgs.push_back(llvm::MDNode::get(Context, argNames));
401 }
402 
403 void CodeGenFunction::EmitOpenCLKernelMetadata(const FunctionDecl *FD,
404                                                llvm::Function *Fn)
405 {
406   if (!FD->hasAttr<OpenCLKernelAttr>())
407     return;
408 
409   llvm::LLVMContext &Context = getLLVMContext();
410 
411   SmallVector <llvm::Value*, 5> kernelMDArgs;
412   kernelMDArgs.push_back(Fn);
413 
414   if (CGM.getCodeGenOpts().EmitOpenCLArgMetadata)
415     GenOpenCLArgMetadata(FD, Fn, CGM, Context, kernelMDArgs,
416                          Builder, getContext());
417 
418   if (FD->hasAttr<VecTypeHintAttr>()) {
419     VecTypeHintAttr *attr = FD->getAttr<VecTypeHintAttr>();
420     QualType hintQTy = attr->getTypeHint();
421     const ExtVectorType *hintEltQTy = hintQTy->getAs<ExtVectorType>();
422     bool isSignedInteger =
423         hintQTy->isSignedIntegerType() ||
424         (hintEltQTy && hintEltQTy->getElementType()->isSignedIntegerType());
425     llvm::Value *attrMDArgs[] = {
426       llvm::MDString::get(Context, "vec_type_hint"),
427       llvm::UndefValue::get(CGM.getTypes().ConvertType(attr->getTypeHint())),
428       llvm::ConstantInt::get(
429           llvm::IntegerType::get(Context, 32),
430           llvm::APInt(32, (uint64_t)(isSignedInteger ? 1 : 0)))
431     };
432     kernelMDArgs.push_back(llvm::MDNode::get(Context, attrMDArgs));
433   }
434 
435   if (FD->hasAttr<WorkGroupSizeHintAttr>()) {
436     WorkGroupSizeHintAttr *attr = FD->getAttr<WorkGroupSizeHintAttr>();
437     llvm::Value *attrMDArgs[] = {
438       llvm::MDString::get(Context, "work_group_size_hint"),
439       Builder.getInt32(attr->getXDim()),
440       Builder.getInt32(attr->getYDim()),
441       Builder.getInt32(attr->getZDim())
442     };
443     kernelMDArgs.push_back(llvm::MDNode::get(Context, attrMDArgs));
444   }
445 
446   if (FD->hasAttr<ReqdWorkGroupSizeAttr>()) {
447     ReqdWorkGroupSizeAttr *attr = FD->getAttr<ReqdWorkGroupSizeAttr>();
448     llvm::Value *attrMDArgs[] = {
449       llvm::MDString::get(Context, "reqd_work_group_size"),
450       Builder.getInt32(attr->getXDim()),
451       Builder.getInt32(attr->getYDim()),
452       Builder.getInt32(attr->getZDim())
453     };
454     kernelMDArgs.push_back(llvm::MDNode::get(Context, attrMDArgs));
455   }
456 
457   llvm::MDNode *kernelMDNode = llvm::MDNode::get(Context, kernelMDArgs);
458   llvm::NamedMDNode *OpenCLKernelMetadata =
459     CGM.getModule().getOrInsertNamedMetadata("opencl.kernels");
460   OpenCLKernelMetadata->addOperand(kernelMDNode);
461 }
462 
463 void CodeGenFunction::StartFunction(GlobalDecl GD, QualType RetTy,
464                                     llvm::Function *Fn,
465                                     const CGFunctionInfo &FnInfo,
466                                     const FunctionArgList &Args,
467                                     SourceLocation StartLoc) {
468   const Decl *D = GD.getDecl();
469 
470   DidCallStackSave = false;
471   CurCodeDecl = CurFuncDecl = D;
472   FnRetTy = RetTy;
473   CurFn = Fn;
474   CurFnInfo = &FnInfo;
475   assert(CurFn->isDeclaration() && "Function already has body?");
476 
477   if (CGM.getSanitizerBlacklist().isIn(*Fn)) {
478     SanOpts = &SanitizerOptions::Disabled;
479     SanitizePerformTypeCheck = false;
480   }
481 
482   // Pass inline keyword to optimizer if it appears explicitly on any
483   // declaration.
484   if (!CGM.getCodeGenOpts().NoInline)
485     if (const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D))
486       for (FunctionDecl::redecl_iterator RI = FD->redecls_begin(),
487              RE = FD->redecls_end(); RI != RE; ++RI)
488         if (RI->isInlineSpecified()) {
489           Fn->addFnAttr(llvm::Attribute::InlineHint);
490           break;
491         }
492 
493   if (getLangOpts().OpenCL) {
494     // Add metadata for a kernel function.
495     if (const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D))
496       EmitOpenCLKernelMetadata(FD, Fn);
497   }
498 
499   llvm::BasicBlock *EntryBB = createBasicBlock("entry", CurFn);
500 
501   // Create a marker to make it easy to insert allocas into the entryblock
502   // later.  Don't create this with the builder, because we don't want it
503   // folded.
504   llvm::Value *Undef = llvm::UndefValue::get(Int32Ty);
505   AllocaInsertPt = new llvm::BitCastInst(Undef, Int32Ty, "", EntryBB);
506   if (Builder.isNamePreserving())
507     AllocaInsertPt->setName("allocapt");
508 
509   ReturnBlock = getJumpDestInCurrentScope("return");
510 
511   Builder.SetInsertPoint(EntryBB);
512 
513   // Emit subprogram debug descriptor.
514   if (CGDebugInfo *DI = getDebugInfo()) {
515     SmallVector<QualType, 16> ArgTypes;
516     for (FunctionArgList::const_iterator i = Args.begin(), e = Args.end();
517 	 i != e; ++i) {
518       ArgTypes.push_back((*i)->getType());
519     }
520 
521     QualType FnType =
522       getContext().getFunctionType(RetTy, ArgTypes,
523                                    FunctionProtoType::ExtProtoInfo());
524 
525     DI->setLocation(StartLoc);
526     DI->EmitFunctionStart(GD, FnType, CurFn, Builder);
527   }
528 
529   if (ShouldInstrumentFunction())
530     EmitFunctionInstrumentation("__cyg_profile_func_enter");
531 
532   if (CGM.getCodeGenOpts().InstrumentForProfiling)
533     EmitMCountInstrumentation();
534 
535   if (RetTy->isVoidType()) {
536     // Void type; nothing to return.
537     ReturnValue = 0;
538   } else if (CurFnInfo->getReturnInfo().getKind() == ABIArgInfo::Indirect &&
539              !hasScalarEvaluationKind(CurFnInfo->getReturnType())) {
540     // Indirect aggregate return; emit returned value directly into sret slot.
541     // This reduces code size, and affects correctness in C++.
542     ReturnValue = CurFn->arg_begin();
543   } else {
544     ReturnValue = CreateIRTemp(RetTy, "retval");
545 
546     // Tell the epilog emitter to autorelease the result.  We do this
547     // now so that various specialized functions can suppress it
548     // during their IR-generation.
549     if (getLangOpts().ObjCAutoRefCount &&
550         !CurFnInfo->isReturnsRetained() &&
551         RetTy->isObjCRetainableType())
552       AutoreleaseResult = true;
553   }
554 
555   EmitStartEHSpec(CurCodeDecl);
556 
557   PrologueCleanupDepth = EHStack.stable_begin();
558   EmitFunctionProlog(*CurFnInfo, CurFn, Args);
559 
560   if (D && isa<CXXMethodDecl>(D) && cast<CXXMethodDecl>(D)->isInstance()) {
561     CGM.getCXXABI().EmitInstanceFunctionProlog(*this);
562     const CXXMethodDecl *MD = cast<CXXMethodDecl>(D);
563     if (MD->getParent()->isLambda() &&
564         MD->getOverloadedOperator() == OO_Call) {
565       // We're in a lambda; figure out the captures.
566       MD->getParent()->getCaptureFields(LambdaCaptureFields,
567                                         LambdaThisCaptureField);
568       if (LambdaThisCaptureField) {
569         // If this lambda captures this, load it.
570         QualType LambdaTagType =
571             getContext().getTagDeclType(LambdaThisCaptureField->getParent());
572         LValue LambdaLV = MakeNaturalAlignAddrLValue(CXXABIThisValue,
573                                                      LambdaTagType);
574         LValue ThisLValue = EmitLValueForField(LambdaLV,
575                                                LambdaThisCaptureField);
576         CXXThisValue = EmitLoadOfLValue(ThisLValue).getScalarVal();
577       }
578     } else {
579       // Not in a lambda; just use 'this' from the method.
580       // FIXME: Should we generate a new load for each use of 'this'?  The
581       // fast register allocator would be happier...
582       CXXThisValue = CXXABIThisValue;
583     }
584   }
585 
586   // If any of the arguments have a variably modified type, make sure to
587   // emit the type size.
588   for (FunctionArgList::const_iterator i = Args.begin(), e = Args.end();
589        i != e; ++i) {
590     const VarDecl *VD = *i;
591 
592     // Dig out the type as written from ParmVarDecls; it's unclear whether
593     // the standard (C99 6.9.1p10) requires this, but we're following the
594     // precedent set by gcc.
595     QualType Ty;
596     if (const ParmVarDecl *PVD = dyn_cast<ParmVarDecl>(VD))
597       Ty = PVD->getOriginalType();
598     else
599       Ty = VD->getType();
600 
601     if (Ty->isVariablyModifiedType())
602       EmitVariablyModifiedType(Ty);
603   }
604   // Emit a location at the end of the prologue.
605   if (CGDebugInfo *DI = getDebugInfo())
606     DI->EmitLocation(Builder, StartLoc);
607 }
608 
609 void CodeGenFunction::EmitFunctionBody(FunctionArgList &Args) {
610   const FunctionDecl *FD = cast<FunctionDecl>(CurGD.getDecl());
611   assert(FD->getBody());
612   if (const CompoundStmt *S = dyn_cast<CompoundStmt>(FD->getBody()))
613     EmitCompoundStmtWithoutScope(*S);
614   else
615     EmitStmt(FD->getBody());
616 }
617 
618 /// Tries to mark the given function nounwind based on the
619 /// non-existence of any throwing calls within it.  We believe this is
620 /// lightweight enough to do at -O0.
621 static void TryMarkNoThrow(llvm::Function *F) {
622   // LLVM treats 'nounwind' on a function as part of the type, so we
623   // can't do this on functions that can be overwritten.
624   if (F->mayBeOverridden()) return;
625 
626   for (llvm::Function::iterator FI = F->begin(), FE = F->end(); FI != FE; ++FI)
627     for (llvm::BasicBlock::iterator
628            BI = FI->begin(), BE = FI->end(); BI != BE; ++BI)
629       if (llvm::CallInst *Call = dyn_cast<llvm::CallInst>(&*BI)) {
630         if (!Call->doesNotThrow())
631           return;
632       } else if (isa<llvm::ResumeInst>(&*BI)) {
633         return;
634       }
635   F->setDoesNotThrow();
636 }
637 
638 void CodeGenFunction::GenerateCode(GlobalDecl GD, llvm::Function *Fn,
639                                    const CGFunctionInfo &FnInfo) {
640   const FunctionDecl *FD = cast<FunctionDecl>(GD.getDecl());
641 
642   // Check if we should generate debug info for this function.
643   if (!FD->hasAttr<NoDebugAttr>())
644     maybeInitializeDebugInfo();
645 
646   FunctionArgList Args;
647   QualType ResTy = FD->getResultType();
648 
649   CurGD = GD;
650   if (isa<CXXMethodDecl>(FD) && cast<CXXMethodDecl>(FD)->isInstance())
651     CGM.getCXXABI().BuildInstanceFunctionParams(*this, ResTy, Args);
652 
653   for (unsigned i = 0, e = FD->getNumParams(); i != e; ++i)
654     Args.push_back(FD->getParamDecl(i));
655 
656   SourceRange BodyRange;
657   if (Stmt *Body = FD->getBody()) BodyRange = Body->getSourceRange();
658 
659   // CalleeWithThisReturn keeps track of the last callee inside this function
660   // that returns 'this'. Before starting the function, we set it to null.
661   CalleeWithThisReturn = 0;
662 
663   // Emit the standard function prologue.
664   StartFunction(GD, ResTy, Fn, FnInfo, Args, BodyRange.getBegin());
665 
666   // Generate the body of the function.
667   if (isa<CXXDestructorDecl>(FD))
668     EmitDestructorBody(Args);
669   else if (isa<CXXConstructorDecl>(FD))
670     EmitConstructorBody(Args);
671   else if (getLangOpts().CUDA &&
672            !CGM.getCodeGenOpts().CUDAIsDevice &&
673            FD->hasAttr<CUDAGlobalAttr>())
674     CGM.getCUDARuntime().EmitDeviceStubBody(*this, Args);
675   else if (isa<CXXConversionDecl>(FD) &&
676            cast<CXXConversionDecl>(FD)->isLambdaToBlockPointerConversion()) {
677     // The lambda conversion to block pointer is special; the semantics can't be
678     // expressed in the AST, so IRGen needs to special-case it.
679     EmitLambdaToBlockPointerBody(Args);
680   } else if (isa<CXXMethodDecl>(FD) &&
681              cast<CXXMethodDecl>(FD)->isLambdaStaticInvoker()) {
682     // The lambda "__invoke" function is special, because it forwards or
683     // clones the body of the function call operator (but is actually static).
684     EmitLambdaStaticInvokeFunction(cast<CXXMethodDecl>(FD));
685   } else if (FD->isDefaulted() && isa<CXXMethodDecl>(FD) &&
686              cast<CXXMethodDecl>(FD)->isCopyAssignmentOperator()) {
687     // Implicit copy-assignment gets the same special treatment as implicit
688     // copy-constructors.
689     emitImplicitAssignmentOperatorBody(Args);
690   }
691   else
692     EmitFunctionBody(Args);
693 
694   // C++11 [stmt.return]p2:
695   //   Flowing off the end of a function [...] results in undefined behavior in
696   //   a value-returning function.
697   // C11 6.9.1p12:
698   //   If the '}' that terminates a function is reached, and the value of the
699   //   function call is used by the caller, the behavior is undefined.
700   if (getLangOpts().CPlusPlus && !FD->hasImplicitReturnZero() &&
701       !FD->getResultType()->isVoidType() && Builder.GetInsertBlock()) {
702     if (SanOpts->Return)
703       EmitCheck(Builder.getFalse(), "missing_return",
704                 EmitCheckSourceLocation(FD->getLocation()),
705                 ArrayRef<llvm::Value *>(), CRK_Unrecoverable);
706     else if (CGM.getCodeGenOpts().OptimizationLevel == 0)
707       Builder.CreateCall(CGM.getIntrinsic(llvm::Intrinsic::trap));
708     Builder.CreateUnreachable();
709     Builder.ClearInsertionPoint();
710   }
711 
712   // Emit the standard function epilogue.
713   FinishFunction(BodyRange.getEnd());
714   // CalleeWithThisReturn keeps track of the last callee inside this function
715   // that returns 'this'. After finishing the function, we set it to null.
716   CalleeWithThisReturn = 0;
717 
718   // If we haven't marked the function nothrow through other means, do
719   // a quick pass now to see if we can.
720   if (!CurFn->doesNotThrow())
721     TryMarkNoThrow(CurFn);
722 }
723 
724 /// ContainsLabel - Return true if the statement contains a label in it.  If
725 /// this statement is not executed normally, it not containing a label means
726 /// that we can just remove the code.
727 bool CodeGenFunction::ContainsLabel(const Stmt *S, bool IgnoreCaseStmts) {
728   // Null statement, not a label!
729   if (S == 0) return false;
730 
731   // If this is a label, we have to emit the code, consider something like:
732   // if (0) {  ...  foo:  bar(); }  goto foo;
733   //
734   // TODO: If anyone cared, we could track __label__'s, since we know that you
735   // can't jump to one from outside their declared region.
736   if (isa<LabelStmt>(S))
737     return true;
738 
739   // If this is a case/default statement, and we haven't seen a switch, we have
740   // to emit the code.
741   if (isa<SwitchCase>(S) && !IgnoreCaseStmts)
742     return true;
743 
744   // If this is a switch statement, we want to ignore cases below it.
745   if (isa<SwitchStmt>(S))
746     IgnoreCaseStmts = true;
747 
748   // Scan subexpressions for verboten labels.
749   for (Stmt::const_child_range I = S->children(); I; ++I)
750     if (ContainsLabel(*I, IgnoreCaseStmts))
751       return true;
752 
753   return false;
754 }
755 
756 /// containsBreak - Return true if the statement contains a break out of it.
757 /// If the statement (recursively) contains a switch or loop with a break
758 /// inside of it, this is fine.
759 bool CodeGenFunction::containsBreak(const Stmt *S) {
760   // Null statement, not a label!
761   if (S == 0) return false;
762 
763   // If this is a switch or loop that defines its own break scope, then we can
764   // include it and anything inside of it.
765   if (isa<SwitchStmt>(S) || isa<WhileStmt>(S) || isa<DoStmt>(S) ||
766       isa<ForStmt>(S))
767     return false;
768 
769   if (isa<BreakStmt>(S))
770     return true;
771 
772   // Scan subexpressions for verboten breaks.
773   for (Stmt::const_child_range I = S->children(); I; ++I)
774     if (containsBreak(*I))
775       return true;
776 
777   return false;
778 }
779 
780 
781 /// ConstantFoldsToSimpleInteger - If the specified expression does not fold
782 /// to a constant, or if it does but contains a label, return false.  If it
783 /// constant folds return true and set the boolean result in Result.
784 bool CodeGenFunction::ConstantFoldsToSimpleInteger(const Expr *Cond,
785                                                    bool &ResultBool) {
786   llvm::APSInt ResultInt;
787   if (!ConstantFoldsToSimpleInteger(Cond, ResultInt))
788     return false;
789 
790   ResultBool = ResultInt.getBoolValue();
791   return true;
792 }
793 
794 /// ConstantFoldsToSimpleInteger - If the specified expression does not fold
795 /// to a constant, or if it does but contains a label, return false.  If it
796 /// constant folds return true and set the folded value.
797 bool CodeGenFunction::
798 ConstantFoldsToSimpleInteger(const Expr *Cond, llvm::APSInt &ResultInt) {
799   // FIXME: Rename and handle conversion of other evaluatable things
800   // to bool.
801   llvm::APSInt Int;
802   if (!Cond->EvaluateAsInt(Int, getContext()))
803     return false;  // Not foldable, not integer or not fully evaluatable.
804 
805   if (CodeGenFunction::ContainsLabel(Cond))
806     return false;  // Contains a label.
807 
808   ResultInt = Int;
809   return true;
810 }
811 
812 
813 
814 /// EmitBranchOnBoolExpr - Emit a branch on a boolean condition (e.g. for an if
815 /// statement) to the specified blocks.  Based on the condition, this might try
816 /// to simplify the codegen of the conditional based on the branch.
817 ///
818 void CodeGenFunction::EmitBranchOnBoolExpr(const Expr *Cond,
819                                            llvm::BasicBlock *TrueBlock,
820                                            llvm::BasicBlock *FalseBlock) {
821   Cond = Cond->IgnoreParens();
822 
823   if (const BinaryOperator *CondBOp = dyn_cast<BinaryOperator>(Cond)) {
824     // Handle X && Y in a condition.
825     if (CondBOp->getOpcode() == BO_LAnd) {
826       // If we have "1 && X", simplify the code.  "0 && X" would have constant
827       // folded if the case was simple enough.
828       bool ConstantBool = false;
829       if (ConstantFoldsToSimpleInteger(CondBOp->getLHS(), ConstantBool) &&
830           ConstantBool) {
831         // br(1 && X) -> br(X).
832         return EmitBranchOnBoolExpr(CondBOp->getRHS(), TrueBlock, FalseBlock);
833       }
834 
835       // If we have "X && 1", simplify the code to use an uncond branch.
836       // "X && 0" would have been constant folded to 0.
837       if (ConstantFoldsToSimpleInteger(CondBOp->getRHS(), ConstantBool) &&
838           ConstantBool) {
839         // br(X && 1) -> br(X).
840         return EmitBranchOnBoolExpr(CondBOp->getLHS(), TrueBlock, FalseBlock);
841       }
842 
843       // Emit the LHS as a conditional.  If the LHS conditional is false, we
844       // want to jump to the FalseBlock.
845       llvm::BasicBlock *LHSTrue = createBasicBlock("land.lhs.true");
846 
847       ConditionalEvaluation eval(*this);
848       EmitBranchOnBoolExpr(CondBOp->getLHS(), LHSTrue, FalseBlock);
849       EmitBlock(LHSTrue);
850 
851       // Any temporaries created here are conditional.
852       eval.begin(*this);
853       EmitBranchOnBoolExpr(CondBOp->getRHS(), TrueBlock, FalseBlock);
854       eval.end(*this);
855 
856       return;
857     }
858 
859     if (CondBOp->getOpcode() == BO_LOr) {
860       // If we have "0 || X", simplify the code.  "1 || X" would have constant
861       // folded if the case was simple enough.
862       bool ConstantBool = false;
863       if (ConstantFoldsToSimpleInteger(CondBOp->getLHS(), ConstantBool) &&
864           !ConstantBool) {
865         // br(0 || X) -> br(X).
866         return EmitBranchOnBoolExpr(CondBOp->getRHS(), TrueBlock, FalseBlock);
867       }
868 
869       // If we have "X || 0", simplify the code to use an uncond branch.
870       // "X || 1" would have been constant folded to 1.
871       if (ConstantFoldsToSimpleInteger(CondBOp->getRHS(), ConstantBool) &&
872           !ConstantBool) {
873         // br(X || 0) -> br(X).
874         return EmitBranchOnBoolExpr(CondBOp->getLHS(), TrueBlock, FalseBlock);
875       }
876 
877       // Emit the LHS as a conditional.  If the LHS conditional is true, we
878       // want to jump to the TrueBlock.
879       llvm::BasicBlock *LHSFalse = createBasicBlock("lor.lhs.false");
880 
881       ConditionalEvaluation eval(*this);
882       EmitBranchOnBoolExpr(CondBOp->getLHS(), TrueBlock, LHSFalse);
883       EmitBlock(LHSFalse);
884 
885       // Any temporaries created here are conditional.
886       eval.begin(*this);
887       EmitBranchOnBoolExpr(CondBOp->getRHS(), TrueBlock, FalseBlock);
888       eval.end(*this);
889 
890       return;
891     }
892   }
893 
894   if (const UnaryOperator *CondUOp = dyn_cast<UnaryOperator>(Cond)) {
895     // br(!x, t, f) -> br(x, f, t)
896     if (CondUOp->getOpcode() == UO_LNot)
897       return EmitBranchOnBoolExpr(CondUOp->getSubExpr(), FalseBlock, TrueBlock);
898   }
899 
900   if (const ConditionalOperator *CondOp = dyn_cast<ConditionalOperator>(Cond)) {
901     // br(c ? x : y, t, f) -> br(c, br(x, t, f), br(y, t, f))
902     llvm::BasicBlock *LHSBlock = createBasicBlock("cond.true");
903     llvm::BasicBlock *RHSBlock = createBasicBlock("cond.false");
904 
905     ConditionalEvaluation cond(*this);
906     EmitBranchOnBoolExpr(CondOp->getCond(), LHSBlock, RHSBlock);
907 
908     cond.begin(*this);
909     EmitBlock(LHSBlock);
910     EmitBranchOnBoolExpr(CondOp->getLHS(), TrueBlock, FalseBlock);
911     cond.end(*this);
912 
913     cond.begin(*this);
914     EmitBlock(RHSBlock);
915     EmitBranchOnBoolExpr(CondOp->getRHS(), TrueBlock, FalseBlock);
916     cond.end(*this);
917 
918     return;
919   }
920 
921   // Emit the code with the fully general case.
922   llvm::Value *CondV = EvaluateExprAsBool(Cond);
923   Builder.CreateCondBr(CondV, TrueBlock, FalseBlock);
924 }
925 
926 /// ErrorUnsupported - Print out an error that codegen doesn't support the
927 /// specified stmt yet.
928 void CodeGenFunction::ErrorUnsupported(const Stmt *S, const char *Type,
929                                        bool OmitOnError) {
930   CGM.ErrorUnsupported(S, Type, OmitOnError);
931 }
932 
933 /// emitNonZeroVLAInit - Emit the "zero" initialization of a
934 /// variable-length array whose elements have a non-zero bit-pattern.
935 ///
936 /// \param baseType the inner-most element type of the array
937 /// \param src - a char* pointing to the bit-pattern for a single
938 /// base element of the array
939 /// \param sizeInChars - the total size of the VLA, in chars
940 static void emitNonZeroVLAInit(CodeGenFunction &CGF, QualType baseType,
941                                llvm::Value *dest, llvm::Value *src,
942                                llvm::Value *sizeInChars) {
943   std::pair<CharUnits,CharUnits> baseSizeAndAlign
944     = CGF.getContext().getTypeInfoInChars(baseType);
945 
946   CGBuilderTy &Builder = CGF.Builder;
947 
948   llvm::Value *baseSizeInChars
949     = llvm::ConstantInt::get(CGF.IntPtrTy, baseSizeAndAlign.first.getQuantity());
950 
951   llvm::Type *i8p = Builder.getInt8PtrTy();
952 
953   llvm::Value *begin = Builder.CreateBitCast(dest, i8p, "vla.begin");
954   llvm::Value *end = Builder.CreateInBoundsGEP(dest, sizeInChars, "vla.end");
955 
956   llvm::BasicBlock *originBB = CGF.Builder.GetInsertBlock();
957   llvm::BasicBlock *loopBB = CGF.createBasicBlock("vla-init.loop");
958   llvm::BasicBlock *contBB = CGF.createBasicBlock("vla-init.cont");
959 
960   // Make a loop over the VLA.  C99 guarantees that the VLA element
961   // count must be nonzero.
962   CGF.EmitBlock(loopBB);
963 
964   llvm::PHINode *cur = Builder.CreatePHI(i8p, 2, "vla.cur");
965   cur->addIncoming(begin, originBB);
966 
967   // memcpy the individual element bit-pattern.
968   Builder.CreateMemCpy(cur, src, baseSizeInChars,
969                        baseSizeAndAlign.second.getQuantity(),
970                        /*volatile*/ false);
971 
972   // Go to the next element.
973   llvm::Value *next = Builder.CreateConstInBoundsGEP1_32(cur, 1, "vla.next");
974 
975   // Leave if that's the end of the VLA.
976   llvm::Value *done = Builder.CreateICmpEQ(next, end, "vla-init.isdone");
977   Builder.CreateCondBr(done, contBB, loopBB);
978   cur->addIncoming(next, loopBB);
979 
980   CGF.EmitBlock(contBB);
981 }
982 
983 void
984 CodeGenFunction::EmitNullInitialization(llvm::Value *DestPtr, QualType Ty) {
985   // Ignore empty classes in C++.
986   if (getLangOpts().CPlusPlus) {
987     if (const RecordType *RT = Ty->getAs<RecordType>()) {
988       if (cast<CXXRecordDecl>(RT->getDecl())->isEmpty())
989         return;
990     }
991   }
992 
993   // Cast the dest ptr to the appropriate i8 pointer type.
994   unsigned DestAS =
995     cast<llvm::PointerType>(DestPtr->getType())->getAddressSpace();
996   llvm::Type *BP = Builder.getInt8PtrTy(DestAS);
997   if (DestPtr->getType() != BP)
998     DestPtr = Builder.CreateBitCast(DestPtr, BP);
999 
1000   // Get size and alignment info for this aggregate.
1001   std::pair<CharUnits, CharUnits> TypeInfo =
1002     getContext().getTypeInfoInChars(Ty);
1003   CharUnits Size = TypeInfo.first;
1004   CharUnits Align = TypeInfo.second;
1005 
1006   llvm::Value *SizeVal;
1007   const VariableArrayType *vla;
1008 
1009   // Don't bother emitting a zero-byte memset.
1010   if (Size.isZero()) {
1011     // But note that getTypeInfo returns 0 for a VLA.
1012     if (const VariableArrayType *vlaType =
1013           dyn_cast_or_null<VariableArrayType>(
1014                                           getContext().getAsArrayType(Ty))) {
1015       QualType eltType;
1016       llvm::Value *numElts;
1017       llvm::tie(numElts, eltType) = getVLASize(vlaType);
1018 
1019       SizeVal = numElts;
1020       CharUnits eltSize = getContext().getTypeSizeInChars(eltType);
1021       if (!eltSize.isOne())
1022         SizeVal = Builder.CreateNUWMul(SizeVal, CGM.getSize(eltSize));
1023       vla = vlaType;
1024     } else {
1025       return;
1026     }
1027   } else {
1028     SizeVal = CGM.getSize(Size);
1029     vla = 0;
1030   }
1031 
1032   // If the type contains a pointer to data member we can't memset it to zero.
1033   // Instead, create a null constant and copy it to the destination.
1034   // TODO: there are other patterns besides zero that we can usefully memset,
1035   // like -1, which happens to be the pattern used by member-pointers.
1036   if (!CGM.getTypes().isZeroInitializable(Ty)) {
1037     // For a VLA, emit a single element, then splat that over the VLA.
1038     if (vla) Ty = getContext().getBaseElementType(vla);
1039 
1040     llvm::Constant *NullConstant = CGM.EmitNullConstant(Ty);
1041 
1042     llvm::GlobalVariable *NullVariable =
1043       new llvm::GlobalVariable(CGM.getModule(), NullConstant->getType(),
1044                                /*isConstant=*/true,
1045                                llvm::GlobalVariable::PrivateLinkage,
1046                                NullConstant, Twine());
1047     llvm::Value *SrcPtr =
1048       Builder.CreateBitCast(NullVariable, Builder.getInt8PtrTy());
1049 
1050     if (vla) return emitNonZeroVLAInit(*this, Ty, DestPtr, SrcPtr, SizeVal);
1051 
1052     // Get and call the appropriate llvm.memcpy overload.
1053     Builder.CreateMemCpy(DestPtr, SrcPtr, SizeVal, Align.getQuantity(), false);
1054     return;
1055   }
1056 
1057   // Otherwise, just memset the whole thing to zero.  This is legal
1058   // because in LLVM, all default initializers (other than the ones we just
1059   // handled above) are guaranteed to have a bit pattern of all zeros.
1060   Builder.CreateMemSet(DestPtr, Builder.getInt8(0), SizeVal,
1061                        Align.getQuantity(), false);
1062 }
1063 
1064 llvm::BlockAddress *CodeGenFunction::GetAddrOfLabel(const LabelDecl *L) {
1065   // Make sure that there is a block for the indirect goto.
1066   if (IndirectBranch == 0)
1067     GetIndirectGotoBlock();
1068 
1069   llvm::BasicBlock *BB = getJumpDestForLabel(L).getBlock();
1070 
1071   // Make sure the indirect branch includes all of the address-taken blocks.
1072   IndirectBranch->addDestination(BB);
1073   return llvm::BlockAddress::get(CurFn, BB);
1074 }
1075 
1076 llvm::BasicBlock *CodeGenFunction::GetIndirectGotoBlock() {
1077   // If we already made the indirect branch for indirect goto, return its block.
1078   if (IndirectBranch) return IndirectBranch->getParent();
1079 
1080   CGBuilderTy TmpBuilder(createBasicBlock("indirectgoto"));
1081 
1082   // Create the PHI node that indirect gotos will add entries to.
1083   llvm::Value *DestVal = TmpBuilder.CreatePHI(Int8PtrTy, 0,
1084                                               "indirect.goto.dest");
1085 
1086   // Create the indirect branch instruction.
1087   IndirectBranch = TmpBuilder.CreateIndirectBr(DestVal);
1088   return IndirectBranch->getParent();
1089 }
1090 
1091 /// Computes the length of an array in elements, as well as the base
1092 /// element type and a properly-typed first element pointer.
1093 llvm::Value *CodeGenFunction::emitArrayLength(const ArrayType *origArrayType,
1094                                               QualType &baseType,
1095                                               llvm::Value *&addr) {
1096   const ArrayType *arrayType = origArrayType;
1097 
1098   // If it's a VLA, we have to load the stored size.  Note that
1099   // this is the size of the VLA in bytes, not its size in elements.
1100   llvm::Value *numVLAElements = 0;
1101   if (isa<VariableArrayType>(arrayType)) {
1102     numVLAElements = getVLASize(cast<VariableArrayType>(arrayType)).first;
1103 
1104     // Walk into all VLAs.  This doesn't require changes to addr,
1105     // which has type T* where T is the first non-VLA element type.
1106     do {
1107       QualType elementType = arrayType->getElementType();
1108       arrayType = getContext().getAsArrayType(elementType);
1109 
1110       // If we only have VLA components, 'addr' requires no adjustment.
1111       if (!arrayType) {
1112         baseType = elementType;
1113         return numVLAElements;
1114       }
1115     } while (isa<VariableArrayType>(arrayType));
1116 
1117     // We get out here only if we find a constant array type
1118     // inside the VLA.
1119   }
1120 
1121   // We have some number of constant-length arrays, so addr should
1122   // have LLVM type [M x [N x [...]]]*.  Build a GEP that walks
1123   // down to the first element of addr.
1124   SmallVector<llvm::Value*, 8> gepIndices;
1125 
1126   // GEP down to the array type.
1127   llvm::ConstantInt *zero = Builder.getInt32(0);
1128   gepIndices.push_back(zero);
1129 
1130   uint64_t countFromCLAs = 1;
1131   QualType eltType;
1132 
1133   llvm::ArrayType *llvmArrayType =
1134     dyn_cast<llvm::ArrayType>(
1135       cast<llvm::PointerType>(addr->getType())->getElementType());
1136   while (llvmArrayType) {
1137     assert(isa<ConstantArrayType>(arrayType));
1138     assert(cast<ConstantArrayType>(arrayType)->getSize().getZExtValue()
1139              == llvmArrayType->getNumElements());
1140 
1141     gepIndices.push_back(zero);
1142     countFromCLAs *= llvmArrayType->getNumElements();
1143     eltType = arrayType->getElementType();
1144 
1145     llvmArrayType =
1146       dyn_cast<llvm::ArrayType>(llvmArrayType->getElementType());
1147     arrayType = getContext().getAsArrayType(arrayType->getElementType());
1148     assert((!llvmArrayType || arrayType) &&
1149            "LLVM and Clang types are out-of-synch");
1150   }
1151 
1152   if (arrayType) {
1153     // From this point onwards, the Clang array type has been emitted
1154     // as some other type (probably a packed struct). Compute the array
1155     // size, and just emit the 'begin' expression as a bitcast.
1156     while (arrayType) {
1157       countFromCLAs *=
1158           cast<ConstantArrayType>(arrayType)->getSize().getZExtValue();
1159       eltType = arrayType->getElementType();
1160       arrayType = getContext().getAsArrayType(eltType);
1161     }
1162 
1163     unsigned AddressSpace = addr->getType()->getPointerAddressSpace();
1164     llvm::Type *BaseType = ConvertType(eltType)->getPointerTo(AddressSpace);
1165     addr = Builder.CreateBitCast(addr, BaseType, "array.begin");
1166   } else {
1167     // Create the actual GEP.
1168     addr = Builder.CreateInBoundsGEP(addr, gepIndices, "array.begin");
1169   }
1170 
1171   baseType = eltType;
1172 
1173   llvm::Value *numElements
1174     = llvm::ConstantInt::get(SizeTy, countFromCLAs);
1175 
1176   // If we had any VLA dimensions, factor them in.
1177   if (numVLAElements)
1178     numElements = Builder.CreateNUWMul(numVLAElements, numElements);
1179 
1180   return numElements;
1181 }
1182 
1183 std::pair<llvm::Value*, QualType>
1184 CodeGenFunction::getVLASize(QualType type) {
1185   const VariableArrayType *vla = getContext().getAsVariableArrayType(type);
1186   assert(vla && "type was not a variable array type!");
1187   return getVLASize(vla);
1188 }
1189 
1190 std::pair<llvm::Value*, QualType>
1191 CodeGenFunction::getVLASize(const VariableArrayType *type) {
1192   // The number of elements so far; always size_t.
1193   llvm::Value *numElements = 0;
1194 
1195   QualType elementType;
1196   do {
1197     elementType = type->getElementType();
1198     llvm::Value *vlaSize = VLASizeMap[type->getSizeExpr()];
1199     assert(vlaSize && "no size for VLA!");
1200     assert(vlaSize->getType() == SizeTy);
1201 
1202     if (!numElements) {
1203       numElements = vlaSize;
1204     } else {
1205       // It's undefined behavior if this wraps around, so mark it that way.
1206       // FIXME: Teach -fcatch-undefined-behavior to trap this.
1207       numElements = Builder.CreateNUWMul(numElements, vlaSize);
1208     }
1209   } while ((type = getContext().getAsVariableArrayType(elementType)));
1210 
1211   return std::pair<llvm::Value*,QualType>(numElements, elementType);
1212 }
1213 
1214 void CodeGenFunction::EmitVariablyModifiedType(QualType type) {
1215   assert(type->isVariablyModifiedType() &&
1216          "Must pass variably modified type to EmitVLASizes!");
1217 
1218   EnsureInsertPoint();
1219 
1220   // We're going to walk down into the type and look for VLA
1221   // expressions.
1222   do {
1223     assert(type->isVariablyModifiedType());
1224 
1225     const Type *ty = type.getTypePtr();
1226     switch (ty->getTypeClass()) {
1227 
1228 #define TYPE(Class, Base)
1229 #define ABSTRACT_TYPE(Class, Base)
1230 #define NON_CANONICAL_TYPE(Class, Base)
1231 #define DEPENDENT_TYPE(Class, Base) case Type::Class:
1232 #define NON_CANONICAL_UNLESS_DEPENDENT_TYPE(Class, Base)
1233 #include "clang/AST/TypeNodes.def"
1234       llvm_unreachable("unexpected dependent type!");
1235 
1236     // These types are never variably-modified.
1237     case Type::Builtin:
1238     case Type::Complex:
1239     case Type::Vector:
1240     case Type::ExtVector:
1241     case Type::Record:
1242     case Type::Enum:
1243     case Type::Elaborated:
1244     case Type::TemplateSpecialization:
1245     case Type::ObjCObject:
1246     case Type::ObjCInterface:
1247     case Type::ObjCObjectPointer:
1248       llvm_unreachable("type class is never variably-modified!");
1249 
1250     case Type::Pointer:
1251       type = cast<PointerType>(ty)->getPointeeType();
1252       break;
1253 
1254     case Type::BlockPointer:
1255       type = cast<BlockPointerType>(ty)->getPointeeType();
1256       break;
1257 
1258     case Type::LValueReference:
1259     case Type::RValueReference:
1260       type = cast<ReferenceType>(ty)->getPointeeType();
1261       break;
1262 
1263     case Type::MemberPointer:
1264       type = cast<MemberPointerType>(ty)->getPointeeType();
1265       break;
1266 
1267     case Type::ConstantArray:
1268     case Type::IncompleteArray:
1269       // Losing element qualification here is fine.
1270       type = cast<ArrayType>(ty)->getElementType();
1271       break;
1272 
1273     case Type::VariableArray: {
1274       // Losing element qualification here is fine.
1275       const VariableArrayType *vat = cast<VariableArrayType>(ty);
1276 
1277       // Unknown size indication requires no size computation.
1278       // Otherwise, evaluate and record it.
1279       if (const Expr *size = vat->getSizeExpr()) {
1280         // It's possible that we might have emitted this already,
1281         // e.g. with a typedef and a pointer to it.
1282         llvm::Value *&entry = VLASizeMap[size];
1283         if (!entry) {
1284           llvm::Value *Size = EmitScalarExpr(size);
1285 
1286           // C11 6.7.6.2p5:
1287           //   If the size is an expression that is not an integer constant
1288           //   expression [...] each time it is evaluated it shall have a value
1289           //   greater than zero.
1290           if (SanOpts->VLABound &&
1291               size->getType()->isSignedIntegerType()) {
1292             llvm::Value *Zero = llvm::Constant::getNullValue(Size->getType());
1293             llvm::Constant *StaticArgs[] = {
1294               EmitCheckSourceLocation(size->getLocStart()),
1295               EmitCheckTypeDescriptor(size->getType())
1296             };
1297             EmitCheck(Builder.CreateICmpSGT(Size, Zero),
1298                       "vla_bound_not_positive", StaticArgs, Size,
1299                       CRK_Recoverable);
1300           }
1301 
1302           // Always zexting here would be wrong if it weren't
1303           // undefined behavior to have a negative bound.
1304           entry = Builder.CreateIntCast(Size, SizeTy, /*signed*/ false);
1305         }
1306       }
1307       type = vat->getElementType();
1308       break;
1309     }
1310 
1311     case Type::FunctionProto:
1312     case Type::FunctionNoProto:
1313       type = cast<FunctionType>(ty)->getResultType();
1314       break;
1315 
1316     case Type::Paren:
1317     case Type::TypeOf:
1318     case Type::UnaryTransform:
1319     case Type::Attributed:
1320     case Type::SubstTemplateTypeParm:
1321       // Keep walking after single level desugaring.
1322       type = type.getSingleStepDesugaredType(getContext());
1323       break;
1324 
1325     case Type::Typedef:
1326     case Type::Decltype:
1327     case Type::Auto:
1328       // Stop walking: nothing to do.
1329       return;
1330 
1331     case Type::TypeOfExpr:
1332       // Stop walking: emit typeof expression.
1333       EmitIgnoredExpr(cast<TypeOfExprType>(ty)->getUnderlyingExpr());
1334       return;
1335 
1336     case Type::Atomic:
1337       type = cast<AtomicType>(ty)->getValueType();
1338       break;
1339     }
1340   } while (type->isVariablyModifiedType());
1341 }
1342 
1343 llvm::Value* CodeGenFunction::EmitVAListRef(const Expr* E) {
1344   if (getContext().getBuiltinVaListType()->isArrayType())
1345     return EmitScalarExpr(E);
1346   return EmitLValue(E).getAddress();
1347 }
1348 
1349 void CodeGenFunction::EmitDeclRefExprDbgValue(const DeclRefExpr *E,
1350                                               llvm::Constant *Init) {
1351   assert (Init && "Invalid DeclRefExpr initializer!");
1352   if (CGDebugInfo *Dbg = getDebugInfo())
1353     if (CGM.getCodeGenOpts().getDebugInfo() >= CodeGenOptions::LimitedDebugInfo)
1354       Dbg->EmitGlobalVariable(E->getDecl(), Init);
1355 }
1356 
1357 CodeGenFunction::PeepholeProtection
1358 CodeGenFunction::protectFromPeepholes(RValue rvalue) {
1359   // At the moment, the only aggressive peephole we do in IR gen
1360   // is trunc(zext) folding, but if we add more, we can easily
1361   // extend this protection.
1362 
1363   if (!rvalue.isScalar()) return PeepholeProtection();
1364   llvm::Value *value = rvalue.getScalarVal();
1365   if (!isa<llvm::ZExtInst>(value)) return PeepholeProtection();
1366 
1367   // Just make an extra bitcast.
1368   assert(HaveInsertPoint());
1369   llvm::Instruction *inst = new llvm::BitCastInst(value, value->getType(), "",
1370                                                   Builder.GetInsertBlock());
1371 
1372   PeepholeProtection protection;
1373   protection.Inst = inst;
1374   return protection;
1375 }
1376 
1377 void CodeGenFunction::unprotectFromPeepholes(PeepholeProtection protection) {
1378   if (!protection.Inst) return;
1379 
1380   // In theory, we could try to duplicate the peepholes now, but whatever.
1381   protection.Inst->eraseFromParent();
1382 }
1383 
1384 llvm::Value *CodeGenFunction::EmitAnnotationCall(llvm::Value *AnnotationFn,
1385                                                  llvm::Value *AnnotatedVal,
1386                                                  StringRef AnnotationStr,
1387                                                  SourceLocation Location) {
1388   llvm::Value *Args[4] = {
1389     AnnotatedVal,
1390     Builder.CreateBitCast(CGM.EmitAnnotationString(AnnotationStr), Int8PtrTy),
1391     Builder.CreateBitCast(CGM.EmitAnnotationUnit(Location), Int8PtrTy),
1392     CGM.EmitAnnotationLineNo(Location)
1393   };
1394   return Builder.CreateCall(AnnotationFn, Args);
1395 }
1396 
1397 void CodeGenFunction::EmitVarAnnotations(const VarDecl *D, llvm::Value *V) {
1398   assert(D->hasAttr<AnnotateAttr>() && "no annotate attribute");
1399   // FIXME We create a new bitcast for every annotation because that's what
1400   // llvm-gcc was doing.
1401   for (specific_attr_iterator<AnnotateAttr>
1402        ai = D->specific_attr_begin<AnnotateAttr>(),
1403        ae = D->specific_attr_end<AnnotateAttr>(); ai != ae; ++ai)
1404     EmitAnnotationCall(CGM.getIntrinsic(llvm::Intrinsic::var_annotation),
1405                        Builder.CreateBitCast(V, CGM.Int8PtrTy, V->getName()),
1406                        (*ai)->getAnnotation(), D->getLocation());
1407 }
1408 
1409 llvm::Value *CodeGenFunction::EmitFieldAnnotations(const FieldDecl *D,
1410                                                    llvm::Value *V) {
1411   assert(D->hasAttr<AnnotateAttr>() && "no annotate attribute");
1412   llvm::Type *VTy = V->getType();
1413   llvm::Value *F = CGM.getIntrinsic(llvm::Intrinsic::ptr_annotation,
1414                                     CGM.Int8PtrTy);
1415 
1416   for (specific_attr_iterator<AnnotateAttr>
1417        ai = D->specific_attr_begin<AnnotateAttr>(),
1418        ae = D->specific_attr_end<AnnotateAttr>(); ai != ae; ++ai) {
1419     // FIXME Always emit the cast inst so we can differentiate between
1420     // annotation on the first field of a struct and annotation on the struct
1421     // itself.
1422     if (VTy != CGM.Int8PtrTy)
1423       V = Builder.Insert(new llvm::BitCastInst(V, CGM.Int8PtrTy));
1424     V = EmitAnnotationCall(F, V, (*ai)->getAnnotation(), D->getLocation());
1425     V = Builder.CreateBitCast(V, VTy);
1426   }
1427 
1428   return V;
1429 }
1430