1 //===--- CodeGenFunction.cpp - Emit LLVM Code from ASTs for a Function ----===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This coordinates the per-function state used while generating code. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "CodeGenFunction.h" 15 #include "CGBlocks.h" 16 #include "CGCleanup.h" 17 #include "CGCUDARuntime.h" 18 #include "CGCXXABI.h" 19 #include "CGDebugInfo.h" 20 #include "CGOpenMPRuntime.h" 21 #include "CodeGenModule.h" 22 #include "CodeGenPGO.h" 23 #include "TargetInfo.h" 24 #include "clang/AST/ASTContext.h" 25 #include "clang/AST/Decl.h" 26 #include "clang/AST/DeclCXX.h" 27 #include "clang/AST/StmtCXX.h" 28 #include "clang/AST/StmtObjC.h" 29 #include "clang/Basic/Builtins.h" 30 #include "clang/Basic/TargetInfo.h" 31 #include "clang/CodeGen/CGFunctionInfo.h" 32 #include "clang/Frontend/CodeGenOptions.h" 33 #include "clang/Sema/SemaDiagnostic.h" 34 #include "llvm/IR/DataLayout.h" 35 #include "llvm/IR/Intrinsics.h" 36 #include "llvm/IR/MDBuilder.h" 37 #include "llvm/IR/Operator.h" 38 using namespace clang; 39 using namespace CodeGen; 40 41 /// shouldEmitLifetimeMarkers - Decide whether we need emit the life-time 42 /// markers. 43 static bool shouldEmitLifetimeMarkers(const CodeGenOptions &CGOpts, 44 const LangOptions &LangOpts) { 45 if (CGOpts.DisableLifetimeMarkers) 46 return false; 47 48 // Asan uses markers for use-after-scope checks. 49 if (CGOpts.SanitizeAddressUseAfterScope) 50 return true; 51 52 // Disable lifetime markers in msan builds. 53 // FIXME: Remove this when msan works with lifetime markers. 54 if (LangOpts.Sanitize.has(SanitizerKind::Memory)) 55 return false; 56 57 // For now, only in optimized builds. 58 return CGOpts.OptimizationLevel != 0; 59 } 60 61 CodeGenFunction::CodeGenFunction(CodeGenModule &cgm, bool suppressNewContext) 62 : CodeGenTypeCache(cgm), CGM(cgm), Target(cgm.getTarget()), 63 Builder(cgm, cgm.getModule().getContext(), llvm::ConstantFolder(), 64 CGBuilderInserterTy(this)), 65 CurFn(nullptr), ReturnValue(Address::invalid()), 66 CapturedStmtInfo(nullptr), SanOpts(CGM.getLangOpts().Sanitize), 67 IsSanitizerScope(false), CurFuncIsThunk(false), AutoreleaseResult(false), 68 SawAsmBlock(false), IsOutlinedSEHHelper(false), BlockInfo(nullptr), 69 BlockPointer(nullptr), LambdaThisCaptureField(nullptr), 70 NormalCleanupDest(nullptr), NextCleanupDestIndex(1), 71 FirstBlockInfo(nullptr), EHResumeBlock(nullptr), ExceptionSlot(nullptr), 72 EHSelectorSlot(nullptr), DebugInfo(CGM.getModuleDebugInfo()), 73 DisableDebugInfo(false), DidCallStackSave(false), IndirectBranch(nullptr), 74 PGO(cgm), SwitchInsn(nullptr), SwitchWeights(nullptr), 75 CaseRangeBlock(nullptr), UnreachableBlock(nullptr), NumReturnExprs(0), 76 NumSimpleReturnExprs(0), CXXABIThisDecl(nullptr), 77 CXXABIThisValue(nullptr), CXXThisValue(nullptr), 78 CXXStructorImplicitParamDecl(nullptr), 79 CXXStructorImplicitParamValue(nullptr), OutermostConditional(nullptr), 80 CurLexicalScope(nullptr), TerminateLandingPad(nullptr), 81 TerminateHandler(nullptr), TrapBB(nullptr), 82 ShouldEmitLifetimeMarkers( 83 shouldEmitLifetimeMarkers(CGM.getCodeGenOpts(), CGM.getLangOpts())) { 84 if (!suppressNewContext) 85 CGM.getCXXABI().getMangleContext().startNewFunction(); 86 87 llvm::FastMathFlags FMF; 88 if (CGM.getLangOpts().FastMath) 89 FMF.setUnsafeAlgebra(); 90 if (CGM.getLangOpts().FiniteMathOnly) { 91 FMF.setNoNaNs(); 92 FMF.setNoInfs(); 93 } 94 if (CGM.getCodeGenOpts().NoNaNsFPMath) { 95 FMF.setNoNaNs(); 96 } 97 if (CGM.getCodeGenOpts().NoSignedZeros) { 98 FMF.setNoSignedZeros(); 99 } 100 if (CGM.getCodeGenOpts().ReciprocalMath) { 101 FMF.setAllowReciprocal(); 102 } 103 Builder.setFastMathFlags(FMF); 104 } 105 106 CodeGenFunction::~CodeGenFunction() { 107 assert(LifetimeExtendedCleanupStack.empty() && "failed to emit a cleanup"); 108 109 // If there are any unclaimed block infos, go ahead and destroy them 110 // now. This can happen if IR-gen gets clever and skips evaluating 111 // something. 112 if (FirstBlockInfo) 113 destroyBlockInfos(FirstBlockInfo); 114 115 if (getLangOpts().OpenMP && CurFn) 116 CGM.getOpenMPRuntime().functionFinished(*this); 117 } 118 119 CharUnits CodeGenFunction::getNaturalPointeeTypeAlignment(QualType T, 120 AlignmentSource *Source) { 121 return getNaturalTypeAlignment(T->getPointeeType(), Source, 122 /*forPointee*/ true); 123 } 124 125 CharUnits CodeGenFunction::getNaturalTypeAlignment(QualType T, 126 AlignmentSource *Source, 127 bool forPointeeType) { 128 // Honor alignment typedef attributes even on incomplete types. 129 // We also honor them straight for C++ class types, even as pointees; 130 // there's an expressivity gap here. 131 if (auto TT = T->getAs<TypedefType>()) { 132 if (auto Align = TT->getDecl()->getMaxAlignment()) { 133 if (Source) *Source = AlignmentSource::AttributedType; 134 return getContext().toCharUnitsFromBits(Align); 135 } 136 } 137 138 if (Source) *Source = AlignmentSource::Type; 139 140 CharUnits Alignment; 141 if (T->isIncompleteType()) { 142 Alignment = CharUnits::One(); // Shouldn't be used, but pessimistic is best. 143 } else { 144 // For C++ class pointees, we don't know whether we're pointing at a 145 // base or a complete object, so we generally need to use the 146 // non-virtual alignment. 147 const CXXRecordDecl *RD; 148 if (forPointeeType && (RD = T->getAsCXXRecordDecl())) { 149 Alignment = CGM.getClassPointerAlignment(RD); 150 } else { 151 Alignment = getContext().getTypeAlignInChars(T); 152 } 153 154 // Cap to the global maximum type alignment unless the alignment 155 // was somehow explicit on the type. 156 if (unsigned MaxAlign = getLangOpts().MaxTypeAlign) { 157 if (Alignment.getQuantity() > MaxAlign && 158 !getContext().isAlignmentRequired(T)) 159 Alignment = CharUnits::fromQuantity(MaxAlign); 160 } 161 } 162 return Alignment; 163 } 164 165 LValue CodeGenFunction::MakeNaturalAlignAddrLValue(llvm::Value *V, QualType T) { 166 AlignmentSource AlignSource; 167 CharUnits Alignment = getNaturalTypeAlignment(T, &AlignSource); 168 return LValue::MakeAddr(Address(V, Alignment), T, getContext(), AlignSource, 169 CGM.getTBAAInfo(T)); 170 } 171 172 /// Given a value of type T* that may not be to a complete object, 173 /// construct an l-value with the natural pointee alignment of T. 174 LValue 175 CodeGenFunction::MakeNaturalAlignPointeeAddrLValue(llvm::Value *V, QualType T) { 176 AlignmentSource AlignSource; 177 CharUnits Align = getNaturalTypeAlignment(T, &AlignSource, /*pointee*/ true); 178 return MakeAddrLValue(Address(V, Align), T, AlignSource); 179 } 180 181 182 llvm::Type *CodeGenFunction::ConvertTypeForMem(QualType T) { 183 return CGM.getTypes().ConvertTypeForMem(T); 184 } 185 186 llvm::Type *CodeGenFunction::ConvertType(QualType T) { 187 return CGM.getTypes().ConvertType(T); 188 } 189 190 TypeEvaluationKind CodeGenFunction::getEvaluationKind(QualType type) { 191 type = type.getCanonicalType(); 192 while (true) { 193 switch (type->getTypeClass()) { 194 #define TYPE(name, parent) 195 #define ABSTRACT_TYPE(name, parent) 196 #define NON_CANONICAL_TYPE(name, parent) case Type::name: 197 #define DEPENDENT_TYPE(name, parent) case Type::name: 198 #define NON_CANONICAL_UNLESS_DEPENDENT_TYPE(name, parent) case Type::name: 199 #include "clang/AST/TypeNodes.def" 200 llvm_unreachable("non-canonical or dependent type in IR-generation"); 201 202 case Type::Auto: 203 llvm_unreachable("undeduced auto type in IR-generation"); 204 205 // Various scalar types. 206 case Type::Builtin: 207 case Type::Pointer: 208 case Type::BlockPointer: 209 case Type::LValueReference: 210 case Type::RValueReference: 211 case Type::MemberPointer: 212 case Type::Vector: 213 case Type::ExtVector: 214 case Type::FunctionProto: 215 case Type::FunctionNoProto: 216 case Type::Enum: 217 case Type::ObjCObjectPointer: 218 case Type::Pipe: 219 return TEK_Scalar; 220 221 // Complexes. 222 case Type::Complex: 223 return TEK_Complex; 224 225 // Arrays, records, and Objective-C objects. 226 case Type::ConstantArray: 227 case Type::IncompleteArray: 228 case Type::VariableArray: 229 case Type::Record: 230 case Type::ObjCObject: 231 case Type::ObjCInterface: 232 return TEK_Aggregate; 233 234 // We operate on atomic values according to their underlying type. 235 case Type::Atomic: 236 type = cast<AtomicType>(type)->getValueType(); 237 continue; 238 } 239 llvm_unreachable("unknown type kind!"); 240 } 241 } 242 243 llvm::DebugLoc CodeGenFunction::EmitReturnBlock() { 244 // For cleanliness, we try to avoid emitting the return block for 245 // simple cases. 246 llvm::BasicBlock *CurBB = Builder.GetInsertBlock(); 247 248 if (CurBB) { 249 assert(!CurBB->getTerminator() && "Unexpected terminated block."); 250 251 // We have a valid insert point, reuse it if it is empty or there are no 252 // explicit jumps to the return block. 253 if (CurBB->empty() || ReturnBlock.getBlock()->use_empty()) { 254 ReturnBlock.getBlock()->replaceAllUsesWith(CurBB); 255 delete ReturnBlock.getBlock(); 256 } else 257 EmitBlock(ReturnBlock.getBlock()); 258 return llvm::DebugLoc(); 259 } 260 261 // Otherwise, if the return block is the target of a single direct 262 // branch then we can just put the code in that block instead. This 263 // cleans up functions which started with a unified return block. 264 if (ReturnBlock.getBlock()->hasOneUse()) { 265 llvm::BranchInst *BI = 266 dyn_cast<llvm::BranchInst>(*ReturnBlock.getBlock()->user_begin()); 267 if (BI && BI->isUnconditional() && 268 BI->getSuccessor(0) == ReturnBlock.getBlock()) { 269 // Record/return the DebugLoc of the simple 'return' expression to be used 270 // later by the actual 'ret' instruction. 271 llvm::DebugLoc Loc = BI->getDebugLoc(); 272 Builder.SetInsertPoint(BI->getParent()); 273 BI->eraseFromParent(); 274 delete ReturnBlock.getBlock(); 275 return Loc; 276 } 277 } 278 279 // FIXME: We are at an unreachable point, there is no reason to emit the block 280 // unless it has uses. However, we still need a place to put the debug 281 // region.end for now. 282 283 EmitBlock(ReturnBlock.getBlock()); 284 return llvm::DebugLoc(); 285 } 286 287 static void EmitIfUsed(CodeGenFunction &CGF, llvm::BasicBlock *BB) { 288 if (!BB) return; 289 if (!BB->use_empty()) 290 return CGF.CurFn->getBasicBlockList().push_back(BB); 291 delete BB; 292 } 293 294 void CodeGenFunction::FinishFunction(SourceLocation EndLoc) { 295 assert(BreakContinueStack.empty() && 296 "mismatched push/pop in break/continue stack!"); 297 298 bool OnlySimpleReturnStmts = NumSimpleReturnExprs > 0 299 && NumSimpleReturnExprs == NumReturnExprs 300 && ReturnBlock.getBlock()->use_empty(); 301 // Usually the return expression is evaluated before the cleanup 302 // code. If the function contains only a simple return statement, 303 // such as a constant, the location before the cleanup code becomes 304 // the last useful breakpoint in the function, because the simple 305 // return expression will be evaluated after the cleanup code. To be 306 // safe, set the debug location for cleanup code to the location of 307 // the return statement. Otherwise the cleanup code should be at the 308 // end of the function's lexical scope. 309 // 310 // If there are multiple branches to the return block, the branch 311 // instructions will get the location of the return statements and 312 // all will be fine. 313 if (CGDebugInfo *DI = getDebugInfo()) { 314 if (OnlySimpleReturnStmts) 315 DI->EmitLocation(Builder, LastStopPoint); 316 else 317 DI->EmitLocation(Builder, EndLoc); 318 } 319 320 // Pop any cleanups that might have been associated with the 321 // parameters. Do this in whatever block we're currently in; it's 322 // important to do this before we enter the return block or return 323 // edges will be *really* confused. 324 bool HasCleanups = EHStack.stable_begin() != PrologueCleanupDepth; 325 bool HasOnlyLifetimeMarkers = 326 HasCleanups && EHStack.containsOnlyLifetimeMarkers(PrologueCleanupDepth); 327 bool EmitRetDbgLoc = !HasCleanups || HasOnlyLifetimeMarkers; 328 if (HasCleanups) { 329 // Make sure the line table doesn't jump back into the body for 330 // the ret after it's been at EndLoc. 331 if (CGDebugInfo *DI = getDebugInfo()) 332 if (OnlySimpleReturnStmts) 333 DI->EmitLocation(Builder, EndLoc); 334 335 PopCleanupBlocks(PrologueCleanupDepth); 336 } 337 338 // Emit function epilog (to return). 339 llvm::DebugLoc Loc = EmitReturnBlock(); 340 341 if (ShouldInstrumentFunction()) 342 EmitFunctionInstrumentation("__cyg_profile_func_exit"); 343 344 // Emit debug descriptor for function end. 345 if (CGDebugInfo *DI = getDebugInfo()) 346 DI->EmitFunctionEnd(Builder); 347 348 // Reset the debug location to that of the simple 'return' expression, if any 349 // rather than that of the end of the function's scope '}'. 350 ApplyDebugLocation AL(*this, Loc); 351 EmitFunctionEpilog(*CurFnInfo, EmitRetDbgLoc, EndLoc); 352 EmitEndEHSpec(CurCodeDecl); 353 354 assert(EHStack.empty() && 355 "did not remove all scopes from cleanup stack!"); 356 357 // If someone did an indirect goto, emit the indirect goto block at the end of 358 // the function. 359 if (IndirectBranch) { 360 EmitBlock(IndirectBranch->getParent()); 361 Builder.ClearInsertionPoint(); 362 } 363 364 // If some of our locals escaped, insert a call to llvm.localescape in the 365 // entry block. 366 if (!EscapedLocals.empty()) { 367 // Invert the map from local to index into a simple vector. There should be 368 // no holes. 369 SmallVector<llvm::Value *, 4> EscapeArgs; 370 EscapeArgs.resize(EscapedLocals.size()); 371 for (auto &Pair : EscapedLocals) 372 EscapeArgs[Pair.second] = Pair.first; 373 llvm::Function *FrameEscapeFn = llvm::Intrinsic::getDeclaration( 374 &CGM.getModule(), llvm::Intrinsic::localescape); 375 CGBuilderTy(*this, AllocaInsertPt).CreateCall(FrameEscapeFn, EscapeArgs); 376 } 377 378 // Remove the AllocaInsertPt instruction, which is just a convenience for us. 379 llvm::Instruction *Ptr = AllocaInsertPt; 380 AllocaInsertPt = nullptr; 381 Ptr->eraseFromParent(); 382 383 // If someone took the address of a label but never did an indirect goto, we 384 // made a zero entry PHI node, which is illegal, zap it now. 385 if (IndirectBranch) { 386 llvm::PHINode *PN = cast<llvm::PHINode>(IndirectBranch->getAddress()); 387 if (PN->getNumIncomingValues() == 0) { 388 PN->replaceAllUsesWith(llvm::UndefValue::get(PN->getType())); 389 PN->eraseFromParent(); 390 } 391 } 392 393 EmitIfUsed(*this, EHResumeBlock); 394 EmitIfUsed(*this, TerminateLandingPad); 395 EmitIfUsed(*this, TerminateHandler); 396 EmitIfUsed(*this, UnreachableBlock); 397 398 if (CGM.getCodeGenOpts().EmitDeclMetadata) 399 EmitDeclMetadata(); 400 401 for (SmallVectorImpl<std::pair<llvm::Instruction *, llvm::Value *> >::iterator 402 I = DeferredReplacements.begin(), 403 E = DeferredReplacements.end(); 404 I != E; ++I) { 405 I->first->replaceAllUsesWith(I->second); 406 I->first->eraseFromParent(); 407 } 408 } 409 410 /// ShouldInstrumentFunction - Return true if the current function should be 411 /// instrumented with __cyg_profile_func_* calls 412 bool CodeGenFunction::ShouldInstrumentFunction() { 413 if (!CGM.getCodeGenOpts().InstrumentFunctions) 414 return false; 415 if (!CurFuncDecl || CurFuncDecl->hasAttr<NoInstrumentFunctionAttr>()) 416 return false; 417 return true; 418 } 419 420 /// ShouldXRayInstrument - Return true if the current function should be 421 /// instrumented with XRay nop sleds. 422 bool CodeGenFunction::ShouldXRayInstrumentFunction() const { 423 return CGM.getCodeGenOpts().XRayInstrumentFunctions; 424 } 425 426 /// EmitFunctionInstrumentation - Emit LLVM code to call the specified 427 /// instrumentation function with the current function and the call site, if 428 /// function instrumentation is enabled. 429 void CodeGenFunction::EmitFunctionInstrumentation(const char *Fn) { 430 auto NL = ApplyDebugLocation::CreateArtificial(*this); 431 // void __cyg_profile_func_{enter,exit} (void *this_fn, void *call_site); 432 llvm::PointerType *PointerTy = Int8PtrTy; 433 llvm::Type *ProfileFuncArgs[] = { PointerTy, PointerTy }; 434 llvm::FunctionType *FunctionTy = 435 llvm::FunctionType::get(VoidTy, ProfileFuncArgs, false); 436 437 llvm::Constant *F = CGM.CreateRuntimeFunction(FunctionTy, Fn); 438 llvm::CallInst *CallSite = Builder.CreateCall( 439 CGM.getIntrinsic(llvm::Intrinsic::returnaddress), 440 llvm::ConstantInt::get(Int32Ty, 0), 441 "callsite"); 442 443 llvm::Value *args[] = { 444 llvm::ConstantExpr::getBitCast(CurFn, PointerTy), 445 CallSite 446 }; 447 448 EmitNounwindRuntimeCall(F, args); 449 } 450 451 static void removeImageAccessQualifier(std::string& TyName) { 452 std::string ReadOnlyQual("__read_only"); 453 std::string::size_type ReadOnlyPos = TyName.find(ReadOnlyQual); 454 if (ReadOnlyPos != std::string::npos) 455 // "+ 1" for the space after access qualifier. 456 TyName.erase(ReadOnlyPos, ReadOnlyQual.size() + 1); 457 else { 458 std::string WriteOnlyQual("__write_only"); 459 std::string::size_type WriteOnlyPos = TyName.find(WriteOnlyQual); 460 if (WriteOnlyPos != std::string::npos) 461 TyName.erase(WriteOnlyPos, WriteOnlyQual.size() + 1); 462 else { 463 std::string ReadWriteQual("__read_write"); 464 std::string::size_type ReadWritePos = TyName.find(ReadWriteQual); 465 if (ReadWritePos != std::string::npos) 466 TyName.erase(ReadWritePos, ReadWriteQual.size() + 1); 467 } 468 } 469 } 470 471 // Returns the address space id that should be produced to the 472 // kernel_arg_addr_space metadata. This is always fixed to the ids 473 // as specified in the SPIR 2.0 specification in order to differentiate 474 // for example in clGetKernelArgInfo() implementation between the address 475 // spaces with targets without unique mapping to the OpenCL address spaces 476 // (basically all single AS CPUs). 477 static unsigned ArgInfoAddressSpace(unsigned LangAS) { 478 switch (LangAS) { 479 case LangAS::opencl_global: return 1; 480 case LangAS::opencl_constant: return 2; 481 case LangAS::opencl_local: return 3; 482 case LangAS::opencl_generic: return 4; // Not in SPIR 2.0 specs. 483 default: 484 return 0; // Assume private. 485 } 486 } 487 488 // OpenCL v1.2 s5.6.4.6 allows the compiler to store kernel argument 489 // information in the program executable. The argument information stored 490 // includes the argument name, its type, the address and access qualifiers used. 491 static void GenOpenCLArgMetadata(const FunctionDecl *FD, llvm::Function *Fn, 492 CodeGenModule &CGM, llvm::LLVMContext &Context, 493 CGBuilderTy &Builder, ASTContext &ASTCtx) { 494 // Create MDNodes that represent the kernel arg metadata. 495 // Each MDNode is a list in the form of "key", N number of values which is 496 // the same number of values as their are kernel arguments. 497 498 const PrintingPolicy &Policy = ASTCtx.getPrintingPolicy(); 499 500 // MDNode for the kernel argument address space qualifiers. 501 SmallVector<llvm::Metadata *, 8> addressQuals; 502 503 // MDNode for the kernel argument access qualifiers (images only). 504 SmallVector<llvm::Metadata *, 8> accessQuals; 505 506 // MDNode for the kernel argument type names. 507 SmallVector<llvm::Metadata *, 8> argTypeNames; 508 509 // MDNode for the kernel argument base type names. 510 SmallVector<llvm::Metadata *, 8> argBaseTypeNames; 511 512 // MDNode for the kernel argument type qualifiers. 513 SmallVector<llvm::Metadata *, 8> argTypeQuals; 514 515 // MDNode for the kernel argument names. 516 SmallVector<llvm::Metadata *, 8> argNames; 517 518 for (unsigned i = 0, e = FD->getNumParams(); i != e; ++i) { 519 const ParmVarDecl *parm = FD->getParamDecl(i); 520 QualType ty = parm->getType(); 521 std::string typeQuals; 522 523 if (ty->isPointerType()) { 524 QualType pointeeTy = ty->getPointeeType(); 525 526 // Get address qualifier. 527 addressQuals.push_back(llvm::ConstantAsMetadata::get(Builder.getInt32( 528 ArgInfoAddressSpace(pointeeTy.getAddressSpace())))); 529 530 // Get argument type name. 531 std::string typeName = 532 pointeeTy.getUnqualifiedType().getAsString(Policy) + "*"; 533 534 // Turn "unsigned type" to "utype" 535 std::string::size_type pos = typeName.find("unsigned"); 536 if (pointeeTy.isCanonical() && pos != std::string::npos) 537 typeName.erase(pos+1, 8); 538 539 argTypeNames.push_back(llvm::MDString::get(Context, typeName)); 540 541 std::string baseTypeName = 542 pointeeTy.getUnqualifiedType().getCanonicalType().getAsString( 543 Policy) + 544 "*"; 545 546 // Turn "unsigned type" to "utype" 547 pos = baseTypeName.find("unsigned"); 548 if (pos != std::string::npos) 549 baseTypeName.erase(pos+1, 8); 550 551 argBaseTypeNames.push_back(llvm::MDString::get(Context, baseTypeName)); 552 553 // Get argument type qualifiers: 554 if (ty.isRestrictQualified()) 555 typeQuals = "restrict"; 556 if (pointeeTy.isConstQualified() || 557 (pointeeTy.getAddressSpace() == LangAS::opencl_constant)) 558 typeQuals += typeQuals.empty() ? "const" : " const"; 559 if (pointeeTy.isVolatileQualified()) 560 typeQuals += typeQuals.empty() ? "volatile" : " volatile"; 561 } else { 562 uint32_t AddrSpc = 0; 563 bool isPipe = ty->isPipeType(); 564 if (ty->isImageType() || isPipe) 565 AddrSpc = ArgInfoAddressSpace(LangAS::opencl_global); 566 567 addressQuals.push_back( 568 llvm::ConstantAsMetadata::get(Builder.getInt32(AddrSpc))); 569 570 // Get argument type name. 571 std::string typeName; 572 if (isPipe) 573 typeName = ty.getCanonicalType()->getAs<PipeType>()->getElementType() 574 .getAsString(Policy); 575 else 576 typeName = ty.getUnqualifiedType().getAsString(Policy); 577 578 // Turn "unsigned type" to "utype" 579 std::string::size_type pos = typeName.find("unsigned"); 580 if (ty.isCanonical() && pos != std::string::npos) 581 typeName.erase(pos+1, 8); 582 583 std::string baseTypeName; 584 if (isPipe) 585 baseTypeName = ty.getCanonicalType()->getAs<PipeType>() 586 ->getElementType().getCanonicalType() 587 .getAsString(Policy); 588 else 589 baseTypeName = 590 ty.getUnqualifiedType().getCanonicalType().getAsString(Policy); 591 592 // Remove access qualifiers on images 593 // (as they are inseparable from type in clang implementation, 594 // but OpenCL spec provides a special query to get access qualifier 595 // via clGetKernelArgInfo with CL_KERNEL_ARG_ACCESS_QUALIFIER): 596 if (ty->isImageType()) { 597 removeImageAccessQualifier(typeName); 598 removeImageAccessQualifier(baseTypeName); 599 } 600 601 argTypeNames.push_back(llvm::MDString::get(Context, typeName)); 602 603 // Turn "unsigned type" to "utype" 604 pos = baseTypeName.find("unsigned"); 605 if (pos != std::string::npos) 606 baseTypeName.erase(pos+1, 8); 607 608 argBaseTypeNames.push_back(llvm::MDString::get(Context, baseTypeName)); 609 610 // Get argument type qualifiers: 611 if (ty.isConstQualified()) 612 typeQuals = "const"; 613 if (ty.isVolatileQualified()) 614 typeQuals += typeQuals.empty() ? "volatile" : " volatile"; 615 if (isPipe) 616 typeQuals = "pipe"; 617 } 618 619 argTypeQuals.push_back(llvm::MDString::get(Context, typeQuals)); 620 621 // Get image and pipe access qualifier: 622 if (ty->isImageType()|| ty->isPipeType()) { 623 const OpenCLAccessAttr *A = parm->getAttr<OpenCLAccessAttr>(); 624 if (A && A->isWriteOnly()) 625 accessQuals.push_back(llvm::MDString::get(Context, "write_only")); 626 else if (A && A->isReadWrite()) 627 accessQuals.push_back(llvm::MDString::get(Context, "read_write")); 628 else 629 accessQuals.push_back(llvm::MDString::get(Context, "read_only")); 630 } else 631 accessQuals.push_back(llvm::MDString::get(Context, "none")); 632 633 // Get argument name. 634 argNames.push_back(llvm::MDString::get(Context, parm->getName())); 635 } 636 637 Fn->setMetadata("kernel_arg_addr_space", 638 llvm::MDNode::get(Context, addressQuals)); 639 Fn->setMetadata("kernel_arg_access_qual", 640 llvm::MDNode::get(Context, accessQuals)); 641 Fn->setMetadata("kernel_arg_type", 642 llvm::MDNode::get(Context, argTypeNames)); 643 Fn->setMetadata("kernel_arg_base_type", 644 llvm::MDNode::get(Context, argBaseTypeNames)); 645 Fn->setMetadata("kernel_arg_type_qual", 646 llvm::MDNode::get(Context, argTypeQuals)); 647 if (CGM.getCodeGenOpts().EmitOpenCLArgMetadata) 648 Fn->setMetadata("kernel_arg_name", 649 llvm::MDNode::get(Context, argNames)); 650 } 651 652 void CodeGenFunction::EmitOpenCLKernelMetadata(const FunctionDecl *FD, 653 llvm::Function *Fn) 654 { 655 if (!FD->hasAttr<OpenCLKernelAttr>()) 656 return; 657 658 llvm::LLVMContext &Context = getLLVMContext(); 659 660 GenOpenCLArgMetadata(FD, Fn, CGM, Context, Builder, getContext()); 661 662 if (const VecTypeHintAttr *A = FD->getAttr<VecTypeHintAttr>()) { 663 QualType hintQTy = A->getTypeHint(); 664 const ExtVectorType *hintEltQTy = hintQTy->getAs<ExtVectorType>(); 665 bool isSignedInteger = 666 hintQTy->isSignedIntegerType() || 667 (hintEltQTy && hintEltQTy->getElementType()->isSignedIntegerType()); 668 llvm::Metadata *attrMDArgs[] = { 669 llvm::ConstantAsMetadata::get(llvm::UndefValue::get( 670 CGM.getTypes().ConvertType(A->getTypeHint()))), 671 llvm::ConstantAsMetadata::get(llvm::ConstantInt::get( 672 llvm::IntegerType::get(Context, 32), 673 llvm::APInt(32, (uint64_t)(isSignedInteger ? 1 : 0))))}; 674 Fn->setMetadata("vec_type_hint", llvm::MDNode::get(Context, attrMDArgs)); 675 } 676 677 if (const WorkGroupSizeHintAttr *A = FD->getAttr<WorkGroupSizeHintAttr>()) { 678 llvm::Metadata *attrMDArgs[] = { 679 llvm::ConstantAsMetadata::get(Builder.getInt32(A->getXDim())), 680 llvm::ConstantAsMetadata::get(Builder.getInt32(A->getYDim())), 681 llvm::ConstantAsMetadata::get(Builder.getInt32(A->getZDim()))}; 682 Fn->setMetadata("work_group_size_hint", llvm::MDNode::get(Context, attrMDArgs)); 683 } 684 685 if (const ReqdWorkGroupSizeAttr *A = FD->getAttr<ReqdWorkGroupSizeAttr>()) { 686 llvm::Metadata *attrMDArgs[] = { 687 llvm::ConstantAsMetadata::get(Builder.getInt32(A->getXDim())), 688 llvm::ConstantAsMetadata::get(Builder.getInt32(A->getYDim())), 689 llvm::ConstantAsMetadata::get(Builder.getInt32(A->getZDim()))}; 690 Fn->setMetadata("reqd_work_group_size", llvm::MDNode::get(Context, attrMDArgs)); 691 } 692 } 693 694 /// Determine whether the function F ends with a return stmt. 695 static bool endsWithReturn(const Decl* F) { 696 const Stmt *Body = nullptr; 697 if (auto *FD = dyn_cast_or_null<FunctionDecl>(F)) 698 Body = FD->getBody(); 699 else if (auto *OMD = dyn_cast_or_null<ObjCMethodDecl>(F)) 700 Body = OMD->getBody(); 701 702 if (auto *CS = dyn_cast_or_null<CompoundStmt>(Body)) { 703 auto LastStmt = CS->body_rbegin(); 704 if (LastStmt != CS->body_rend()) 705 return isa<ReturnStmt>(*LastStmt); 706 } 707 return false; 708 } 709 710 static void markAsIgnoreThreadCheckingAtRuntime(llvm::Function *Fn) { 711 Fn->addFnAttr("sanitize_thread_no_checking_at_run_time"); 712 Fn->removeFnAttr(llvm::Attribute::SanitizeThread); 713 } 714 715 void CodeGenFunction::StartFunction(GlobalDecl GD, 716 QualType RetTy, 717 llvm::Function *Fn, 718 const CGFunctionInfo &FnInfo, 719 const FunctionArgList &Args, 720 SourceLocation Loc, 721 SourceLocation StartLoc) { 722 assert(!CurFn && 723 "Do not use a CodeGenFunction object for more than one function"); 724 725 const Decl *D = GD.getDecl(); 726 727 DidCallStackSave = false; 728 CurCodeDecl = D; 729 if (const auto *FD = dyn_cast_or_null<FunctionDecl>(D)) 730 if (FD->usesSEHTry()) 731 CurSEHParent = FD; 732 CurFuncDecl = (D ? D->getNonClosureContext() : nullptr); 733 FnRetTy = RetTy; 734 CurFn = Fn; 735 CurFnInfo = &FnInfo; 736 assert(CurFn->isDeclaration() && "Function already has body?"); 737 738 if (CGM.isInSanitizerBlacklist(Fn, Loc)) 739 SanOpts.clear(); 740 741 if (D) { 742 // Apply the no_sanitize* attributes to SanOpts. 743 for (auto Attr : D->specific_attrs<NoSanitizeAttr>()) 744 SanOpts.Mask &= ~Attr->getMask(); 745 } 746 747 // Apply sanitizer attributes to the function. 748 if (SanOpts.hasOneOf(SanitizerKind::Address | SanitizerKind::KernelAddress)) 749 Fn->addFnAttr(llvm::Attribute::SanitizeAddress); 750 if (SanOpts.has(SanitizerKind::Thread)) 751 Fn->addFnAttr(llvm::Attribute::SanitizeThread); 752 if (SanOpts.has(SanitizerKind::Memory)) 753 Fn->addFnAttr(llvm::Attribute::SanitizeMemory); 754 if (SanOpts.has(SanitizerKind::SafeStack)) 755 Fn->addFnAttr(llvm::Attribute::SafeStack); 756 757 // Ignore TSan memory acesses from within ObjC/ObjC++ dealloc, initialize, 758 // .cxx_destruct, __destroy_helper_block_ and all of their calees at run time. 759 if (SanOpts.has(SanitizerKind::Thread)) { 760 if (const auto *OMD = dyn_cast_or_null<ObjCMethodDecl>(D)) { 761 IdentifierInfo *II = OMD->getSelector().getIdentifierInfoForSlot(0); 762 if (OMD->getMethodFamily() == OMF_dealloc || 763 OMD->getMethodFamily() == OMF_initialize || 764 (OMD->getSelector().isUnarySelector() && II->isStr(".cxx_destruct"))) { 765 markAsIgnoreThreadCheckingAtRuntime(Fn); 766 } 767 } else if (const auto *FD = dyn_cast_or_null<FunctionDecl>(D)) { 768 IdentifierInfo *II = FD->getIdentifier(); 769 if (II && II->isStr("__destroy_helper_block_")) 770 markAsIgnoreThreadCheckingAtRuntime(Fn); 771 } 772 } 773 774 // Apply xray attributes to the function (as a string, for now) 775 if (D && ShouldXRayInstrumentFunction()) { 776 if (const auto *XRayAttr = D->getAttr<XRayInstrumentAttr>()) { 777 if (XRayAttr->alwaysXRayInstrument()) 778 Fn->addFnAttr("function-instrument", "xray-always"); 779 if (XRayAttr->neverXRayInstrument()) 780 Fn->addFnAttr("function-instrument", "xray-never"); 781 } else { 782 Fn->addFnAttr( 783 "xray-instruction-threshold", 784 llvm::itostr(CGM.getCodeGenOpts().XRayInstructionThreshold)); 785 } 786 } 787 788 if (const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D)) 789 if (CGM.getLangOpts().OpenMP && FD->hasAttr<OMPDeclareSimdDeclAttr>()) 790 CGM.getOpenMPRuntime().emitDeclareSimdFunction(FD, Fn); 791 792 // Add no-jump-tables value. 793 Fn->addFnAttr("no-jump-tables", 794 llvm::toStringRef(CGM.getCodeGenOpts().NoUseJumpTables)); 795 796 if (getLangOpts().OpenCL) { 797 // Add metadata for a kernel function. 798 if (const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D)) 799 EmitOpenCLKernelMetadata(FD, Fn); 800 } 801 802 // If we are checking function types, emit a function type signature as 803 // prologue data. 804 if (getLangOpts().CPlusPlus && SanOpts.has(SanitizerKind::Function)) { 805 if (const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D)) { 806 if (llvm::Constant *PrologueSig = 807 CGM.getTargetCodeGenInfo().getUBSanFunctionSignature(CGM)) { 808 llvm::Constant *FTRTTIConst = 809 CGM.GetAddrOfRTTIDescriptor(FD->getType(), /*ForEH=*/true); 810 llvm::Constant *PrologueStructElems[] = { PrologueSig, FTRTTIConst }; 811 llvm::Constant *PrologueStructConst = 812 llvm::ConstantStruct::getAnon(PrologueStructElems, /*Packed=*/true); 813 Fn->setPrologueData(PrologueStructConst); 814 } 815 } 816 } 817 818 // If we're in C++ mode and the function name is "main", it is guaranteed 819 // to be norecurse by the standard (3.6.1.3 "The function main shall not be 820 // used within a program"). 821 if (getLangOpts().CPlusPlus) 822 if (const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D)) 823 if (FD->isMain()) 824 Fn->addFnAttr(llvm::Attribute::NoRecurse); 825 826 llvm::BasicBlock *EntryBB = createBasicBlock("entry", CurFn); 827 828 // Create a marker to make it easy to insert allocas into the entryblock 829 // later. Don't create this with the builder, because we don't want it 830 // folded. 831 llvm::Value *Undef = llvm::UndefValue::get(Int32Ty); 832 AllocaInsertPt = new llvm::BitCastInst(Undef, Int32Ty, "allocapt", EntryBB); 833 834 ReturnBlock = getJumpDestInCurrentScope("return"); 835 836 Builder.SetInsertPoint(EntryBB); 837 838 // Emit subprogram debug descriptor. 839 if (CGDebugInfo *DI = getDebugInfo()) { 840 // Reconstruct the type from the argument list so that implicit parameters, 841 // such as 'this' and 'vtt', show up in the debug info. Preserve the calling 842 // convention. 843 CallingConv CC = CallingConv::CC_C; 844 if (auto *FD = dyn_cast_or_null<FunctionDecl>(D)) 845 if (const auto *SrcFnTy = FD->getType()->getAs<FunctionType>()) 846 CC = SrcFnTy->getCallConv(); 847 SmallVector<QualType, 16> ArgTypes; 848 for (const VarDecl *VD : Args) 849 ArgTypes.push_back(VD->getType()); 850 QualType FnType = getContext().getFunctionType( 851 RetTy, ArgTypes, FunctionProtoType::ExtProtoInfo(CC)); 852 DI->EmitFunctionStart(GD, Loc, StartLoc, FnType, CurFn, Builder); 853 } 854 855 if (ShouldInstrumentFunction()) 856 EmitFunctionInstrumentation("__cyg_profile_func_enter"); 857 858 // Since emitting the mcount call here impacts optimizations such as function 859 // inlining, we just add an attribute to insert a mcount call in backend. 860 // The attribute "counting-function" is set to mcount function name which is 861 // architecture dependent. 862 if (CGM.getCodeGenOpts().InstrumentForProfiling) 863 Fn->addFnAttr("counting-function", getTarget().getMCountName()); 864 865 if (RetTy->isVoidType()) { 866 // Void type; nothing to return. 867 ReturnValue = Address::invalid(); 868 869 // Count the implicit return. 870 if (!endsWithReturn(D)) 871 ++NumReturnExprs; 872 } else if (CurFnInfo->getReturnInfo().getKind() == ABIArgInfo::Indirect && 873 !hasScalarEvaluationKind(CurFnInfo->getReturnType())) { 874 // Indirect aggregate return; emit returned value directly into sret slot. 875 // This reduces code size, and affects correctness in C++. 876 auto AI = CurFn->arg_begin(); 877 if (CurFnInfo->getReturnInfo().isSRetAfterThis()) 878 ++AI; 879 ReturnValue = Address(&*AI, CurFnInfo->getReturnInfo().getIndirectAlign()); 880 } else if (CurFnInfo->getReturnInfo().getKind() == ABIArgInfo::InAlloca && 881 !hasScalarEvaluationKind(CurFnInfo->getReturnType())) { 882 // Load the sret pointer from the argument struct and return into that. 883 unsigned Idx = CurFnInfo->getReturnInfo().getInAllocaFieldIndex(); 884 llvm::Function::arg_iterator EI = CurFn->arg_end(); 885 --EI; 886 llvm::Value *Addr = Builder.CreateStructGEP(nullptr, &*EI, Idx); 887 Addr = Builder.CreateAlignedLoad(Addr, getPointerAlign(), "agg.result"); 888 ReturnValue = Address(Addr, getNaturalTypeAlignment(RetTy)); 889 } else { 890 ReturnValue = CreateIRTemp(RetTy, "retval"); 891 892 // Tell the epilog emitter to autorelease the result. We do this 893 // now so that various specialized functions can suppress it 894 // during their IR-generation. 895 if (getLangOpts().ObjCAutoRefCount && 896 !CurFnInfo->isReturnsRetained() && 897 RetTy->isObjCRetainableType()) 898 AutoreleaseResult = true; 899 } 900 901 EmitStartEHSpec(CurCodeDecl); 902 903 PrologueCleanupDepth = EHStack.stable_begin(); 904 EmitFunctionProlog(*CurFnInfo, CurFn, Args); 905 906 if (D && isa<CXXMethodDecl>(D) && cast<CXXMethodDecl>(D)->isInstance()) { 907 CGM.getCXXABI().EmitInstanceFunctionProlog(*this); 908 const CXXMethodDecl *MD = cast<CXXMethodDecl>(D); 909 if (MD->getParent()->isLambda() && 910 MD->getOverloadedOperator() == OO_Call) { 911 // We're in a lambda; figure out the captures. 912 MD->getParent()->getCaptureFields(LambdaCaptureFields, 913 LambdaThisCaptureField); 914 if (LambdaThisCaptureField) { 915 // If the lambda captures the object referred to by '*this' - either by 916 // value or by reference, make sure CXXThisValue points to the correct 917 // object. 918 919 // Get the lvalue for the field (which is a copy of the enclosing object 920 // or contains the address of the enclosing object). 921 LValue ThisFieldLValue = EmitLValueForLambdaField(LambdaThisCaptureField); 922 if (!LambdaThisCaptureField->getType()->isPointerType()) { 923 // If the enclosing object was captured by value, just use its address. 924 CXXThisValue = ThisFieldLValue.getAddress().getPointer(); 925 } else { 926 // Load the lvalue pointed to by the field, since '*this' was captured 927 // by reference. 928 CXXThisValue = 929 EmitLoadOfLValue(ThisFieldLValue, SourceLocation()).getScalarVal(); 930 } 931 } 932 for (auto *FD : MD->getParent()->fields()) { 933 if (FD->hasCapturedVLAType()) { 934 auto *ExprArg = EmitLoadOfLValue(EmitLValueForLambdaField(FD), 935 SourceLocation()).getScalarVal(); 936 auto VAT = FD->getCapturedVLAType(); 937 VLASizeMap[VAT->getSizeExpr()] = ExprArg; 938 } 939 } 940 } else { 941 // Not in a lambda; just use 'this' from the method. 942 // FIXME: Should we generate a new load for each use of 'this'? The 943 // fast register allocator would be happier... 944 CXXThisValue = CXXABIThisValue; 945 } 946 } 947 948 // If any of the arguments have a variably modified type, make sure to 949 // emit the type size. 950 for (FunctionArgList::const_iterator i = Args.begin(), e = Args.end(); 951 i != e; ++i) { 952 const VarDecl *VD = *i; 953 954 // Dig out the type as written from ParmVarDecls; it's unclear whether 955 // the standard (C99 6.9.1p10) requires this, but we're following the 956 // precedent set by gcc. 957 QualType Ty; 958 if (const ParmVarDecl *PVD = dyn_cast<ParmVarDecl>(VD)) 959 Ty = PVD->getOriginalType(); 960 else 961 Ty = VD->getType(); 962 963 if (Ty->isVariablyModifiedType()) 964 EmitVariablyModifiedType(Ty); 965 } 966 // Emit a location at the end of the prologue. 967 if (CGDebugInfo *DI = getDebugInfo()) 968 DI->EmitLocation(Builder, StartLoc); 969 } 970 971 void CodeGenFunction::EmitFunctionBody(FunctionArgList &Args, 972 const Stmt *Body) { 973 incrementProfileCounter(Body); 974 if (const CompoundStmt *S = dyn_cast<CompoundStmt>(Body)) 975 EmitCompoundStmtWithoutScope(*S); 976 else 977 EmitStmt(Body); 978 } 979 980 /// When instrumenting to collect profile data, the counts for some blocks 981 /// such as switch cases need to not include the fall-through counts, so 982 /// emit a branch around the instrumentation code. When not instrumenting, 983 /// this just calls EmitBlock(). 984 void CodeGenFunction::EmitBlockWithFallThrough(llvm::BasicBlock *BB, 985 const Stmt *S) { 986 llvm::BasicBlock *SkipCountBB = nullptr; 987 if (HaveInsertPoint() && CGM.getCodeGenOpts().hasProfileClangInstr()) { 988 // When instrumenting for profiling, the fallthrough to certain 989 // statements needs to skip over the instrumentation code so that we 990 // get an accurate count. 991 SkipCountBB = createBasicBlock("skipcount"); 992 EmitBranch(SkipCountBB); 993 } 994 EmitBlock(BB); 995 uint64_t CurrentCount = getCurrentProfileCount(); 996 incrementProfileCounter(S); 997 setCurrentProfileCount(getCurrentProfileCount() + CurrentCount); 998 if (SkipCountBB) 999 EmitBlock(SkipCountBB); 1000 } 1001 1002 /// Tries to mark the given function nounwind based on the 1003 /// non-existence of any throwing calls within it. We believe this is 1004 /// lightweight enough to do at -O0. 1005 static void TryMarkNoThrow(llvm::Function *F) { 1006 // LLVM treats 'nounwind' on a function as part of the type, so we 1007 // can't do this on functions that can be overwritten. 1008 if (F->isInterposable()) return; 1009 1010 for (llvm::BasicBlock &BB : *F) 1011 for (llvm::Instruction &I : BB) 1012 if (I.mayThrow()) 1013 return; 1014 1015 F->setDoesNotThrow(); 1016 } 1017 1018 QualType CodeGenFunction::BuildFunctionArgList(GlobalDecl GD, 1019 FunctionArgList &Args) { 1020 const FunctionDecl *FD = cast<FunctionDecl>(GD.getDecl()); 1021 QualType ResTy = FD->getReturnType(); 1022 1023 const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(FD); 1024 if (MD && MD->isInstance()) { 1025 if (CGM.getCXXABI().HasThisReturn(GD)) 1026 ResTy = MD->getThisType(getContext()); 1027 else if (CGM.getCXXABI().hasMostDerivedReturn(GD)) 1028 ResTy = CGM.getContext().VoidPtrTy; 1029 CGM.getCXXABI().buildThisParam(*this, Args); 1030 } 1031 1032 // The base version of an inheriting constructor whose constructed base is a 1033 // virtual base is not passed any arguments (because it doesn't actually call 1034 // the inherited constructor). 1035 bool PassedParams = true; 1036 if (const CXXConstructorDecl *CD = dyn_cast<CXXConstructorDecl>(FD)) 1037 if (auto Inherited = CD->getInheritedConstructor()) 1038 PassedParams = 1039 getTypes().inheritingCtorHasParams(Inherited, GD.getCtorType()); 1040 1041 if (PassedParams) { 1042 for (auto *Param : FD->parameters()) { 1043 Args.push_back(Param); 1044 if (!Param->hasAttr<PassObjectSizeAttr>()) 1045 continue; 1046 1047 IdentifierInfo *NoID = nullptr; 1048 auto *Implicit = ImplicitParamDecl::Create( 1049 getContext(), Param->getDeclContext(), Param->getLocation(), NoID, 1050 getContext().getSizeType()); 1051 SizeArguments[Param] = Implicit; 1052 Args.push_back(Implicit); 1053 } 1054 } 1055 1056 if (MD && (isa<CXXConstructorDecl>(MD) || isa<CXXDestructorDecl>(MD))) 1057 CGM.getCXXABI().addImplicitStructorParams(*this, ResTy, Args); 1058 1059 return ResTy; 1060 } 1061 1062 static bool 1063 shouldUseUndefinedBehaviorReturnOptimization(const FunctionDecl *FD, 1064 const ASTContext &Context) { 1065 QualType T = FD->getReturnType(); 1066 // Avoid the optimization for functions that return a record type with a 1067 // trivial destructor or another trivially copyable type. 1068 if (const RecordType *RT = T.getCanonicalType()->getAs<RecordType>()) { 1069 if (const auto *ClassDecl = dyn_cast<CXXRecordDecl>(RT->getDecl())) 1070 return !ClassDecl->hasTrivialDestructor(); 1071 } 1072 return !T.isTriviallyCopyableType(Context); 1073 } 1074 1075 void CodeGenFunction::GenerateCode(GlobalDecl GD, llvm::Function *Fn, 1076 const CGFunctionInfo &FnInfo) { 1077 const FunctionDecl *FD = cast<FunctionDecl>(GD.getDecl()); 1078 CurGD = GD; 1079 1080 FunctionArgList Args; 1081 QualType ResTy = BuildFunctionArgList(GD, Args); 1082 1083 // Check if we should generate debug info for this function. 1084 if (FD->hasAttr<NoDebugAttr>()) 1085 DebugInfo = nullptr; // disable debug info indefinitely for this function 1086 1087 SourceRange BodyRange; 1088 if (Stmt *Body = FD->getBody()) BodyRange = Body->getSourceRange(); 1089 CurEHLocation = BodyRange.getEnd(); 1090 1091 // Use the location of the start of the function to determine where 1092 // the function definition is located. By default use the location 1093 // of the declaration as the location for the subprogram. A function 1094 // may lack a declaration in the source code if it is created by code 1095 // gen. (examples: _GLOBAL__I_a, __cxx_global_array_dtor, thunk). 1096 SourceLocation Loc = FD->getLocation(); 1097 1098 // If this is a function specialization then use the pattern body 1099 // as the location for the function. 1100 if (const FunctionDecl *SpecDecl = FD->getTemplateInstantiationPattern()) 1101 if (SpecDecl->hasBody(SpecDecl)) 1102 Loc = SpecDecl->getLocation(); 1103 1104 Stmt *Body = FD->getBody(); 1105 1106 // Initialize helper which will detect jumps which can cause invalid lifetime 1107 // markers. 1108 if (Body && ShouldEmitLifetimeMarkers) 1109 Bypasses.Init(Body); 1110 1111 // Emit the standard function prologue. 1112 StartFunction(GD, ResTy, Fn, FnInfo, Args, Loc, BodyRange.getBegin()); 1113 1114 // Generate the body of the function. 1115 PGO.assignRegionCounters(GD, CurFn); 1116 if (isa<CXXDestructorDecl>(FD)) 1117 EmitDestructorBody(Args); 1118 else if (isa<CXXConstructorDecl>(FD)) 1119 EmitConstructorBody(Args); 1120 else if (getLangOpts().CUDA && 1121 !getLangOpts().CUDAIsDevice && 1122 FD->hasAttr<CUDAGlobalAttr>()) 1123 CGM.getCUDARuntime().emitDeviceStub(*this, Args); 1124 else if (isa<CXXConversionDecl>(FD) && 1125 cast<CXXConversionDecl>(FD)->isLambdaToBlockPointerConversion()) { 1126 // The lambda conversion to block pointer is special; the semantics can't be 1127 // expressed in the AST, so IRGen needs to special-case it. 1128 EmitLambdaToBlockPointerBody(Args); 1129 } else if (isa<CXXMethodDecl>(FD) && 1130 cast<CXXMethodDecl>(FD)->isLambdaStaticInvoker()) { 1131 // The lambda static invoker function is special, because it forwards or 1132 // clones the body of the function call operator (but is actually static). 1133 EmitLambdaStaticInvokeFunction(cast<CXXMethodDecl>(FD)); 1134 } else if (FD->isDefaulted() && isa<CXXMethodDecl>(FD) && 1135 (cast<CXXMethodDecl>(FD)->isCopyAssignmentOperator() || 1136 cast<CXXMethodDecl>(FD)->isMoveAssignmentOperator())) { 1137 // Implicit copy-assignment gets the same special treatment as implicit 1138 // copy-constructors. 1139 emitImplicitAssignmentOperatorBody(Args); 1140 } else if (Body) { 1141 EmitFunctionBody(Args, Body); 1142 } else 1143 llvm_unreachable("no definition for emitted function"); 1144 1145 // C++11 [stmt.return]p2: 1146 // Flowing off the end of a function [...] results in undefined behavior in 1147 // a value-returning function. 1148 // C11 6.9.1p12: 1149 // If the '}' that terminates a function is reached, and the value of the 1150 // function call is used by the caller, the behavior is undefined. 1151 if (getLangOpts().CPlusPlus && !FD->hasImplicitReturnZero() && !SawAsmBlock && 1152 !FD->getReturnType()->isVoidType() && Builder.GetInsertBlock()) { 1153 bool ShouldEmitUnreachable = 1154 CGM.getCodeGenOpts().StrictReturn || 1155 shouldUseUndefinedBehaviorReturnOptimization(FD, getContext()); 1156 if (SanOpts.has(SanitizerKind::Return)) { 1157 SanitizerScope SanScope(this); 1158 llvm::Value *IsFalse = Builder.getFalse(); 1159 EmitCheck(std::make_pair(IsFalse, SanitizerKind::Return), 1160 SanitizerHandler::MissingReturn, 1161 EmitCheckSourceLocation(FD->getLocation()), None); 1162 } else if (ShouldEmitUnreachable) { 1163 if (CGM.getCodeGenOpts().OptimizationLevel == 0) 1164 EmitTrapCall(llvm::Intrinsic::trap); 1165 } 1166 if (SanOpts.has(SanitizerKind::Return) || ShouldEmitUnreachable) { 1167 Builder.CreateUnreachable(); 1168 Builder.ClearInsertionPoint(); 1169 } 1170 } 1171 1172 // Emit the standard function epilogue. 1173 FinishFunction(BodyRange.getEnd()); 1174 1175 // If we haven't marked the function nothrow through other means, do 1176 // a quick pass now to see if we can. 1177 if (!CurFn->doesNotThrow()) 1178 TryMarkNoThrow(CurFn); 1179 } 1180 1181 /// ContainsLabel - Return true if the statement contains a label in it. If 1182 /// this statement is not executed normally, it not containing a label means 1183 /// that we can just remove the code. 1184 bool CodeGenFunction::ContainsLabel(const Stmt *S, bool IgnoreCaseStmts) { 1185 // Null statement, not a label! 1186 if (!S) return false; 1187 1188 // If this is a label, we have to emit the code, consider something like: 1189 // if (0) { ... foo: bar(); } goto foo; 1190 // 1191 // TODO: If anyone cared, we could track __label__'s, since we know that you 1192 // can't jump to one from outside their declared region. 1193 if (isa<LabelStmt>(S)) 1194 return true; 1195 1196 // If this is a case/default statement, and we haven't seen a switch, we have 1197 // to emit the code. 1198 if (isa<SwitchCase>(S) && !IgnoreCaseStmts) 1199 return true; 1200 1201 // If this is a switch statement, we want to ignore cases below it. 1202 if (isa<SwitchStmt>(S)) 1203 IgnoreCaseStmts = true; 1204 1205 // Scan subexpressions for verboten labels. 1206 for (const Stmt *SubStmt : S->children()) 1207 if (ContainsLabel(SubStmt, IgnoreCaseStmts)) 1208 return true; 1209 1210 return false; 1211 } 1212 1213 /// containsBreak - Return true if the statement contains a break out of it. 1214 /// If the statement (recursively) contains a switch or loop with a break 1215 /// inside of it, this is fine. 1216 bool CodeGenFunction::containsBreak(const Stmt *S) { 1217 // Null statement, not a label! 1218 if (!S) return false; 1219 1220 // If this is a switch or loop that defines its own break scope, then we can 1221 // include it and anything inside of it. 1222 if (isa<SwitchStmt>(S) || isa<WhileStmt>(S) || isa<DoStmt>(S) || 1223 isa<ForStmt>(S)) 1224 return false; 1225 1226 if (isa<BreakStmt>(S)) 1227 return true; 1228 1229 // Scan subexpressions for verboten breaks. 1230 for (const Stmt *SubStmt : S->children()) 1231 if (containsBreak(SubStmt)) 1232 return true; 1233 1234 return false; 1235 } 1236 1237 bool CodeGenFunction::mightAddDeclToScope(const Stmt *S) { 1238 if (!S) return false; 1239 1240 // Some statement kinds add a scope and thus never add a decl to the current 1241 // scope. Note, this list is longer than the list of statements that might 1242 // have an unscoped decl nested within them, but this way is conservatively 1243 // correct even if more statement kinds are added. 1244 if (isa<IfStmt>(S) || isa<SwitchStmt>(S) || isa<WhileStmt>(S) || 1245 isa<DoStmt>(S) || isa<ForStmt>(S) || isa<CompoundStmt>(S) || 1246 isa<CXXForRangeStmt>(S) || isa<CXXTryStmt>(S) || 1247 isa<ObjCForCollectionStmt>(S) || isa<ObjCAtTryStmt>(S)) 1248 return false; 1249 1250 if (isa<DeclStmt>(S)) 1251 return true; 1252 1253 for (const Stmt *SubStmt : S->children()) 1254 if (mightAddDeclToScope(SubStmt)) 1255 return true; 1256 1257 return false; 1258 } 1259 1260 /// ConstantFoldsToSimpleInteger - If the specified expression does not fold 1261 /// to a constant, or if it does but contains a label, return false. If it 1262 /// constant folds return true and set the boolean result in Result. 1263 bool CodeGenFunction::ConstantFoldsToSimpleInteger(const Expr *Cond, 1264 bool &ResultBool, 1265 bool AllowLabels) { 1266 llvm::APSInt ResultInt; 1267 if (!ConstantFoldsToSimpleInteger(Cond, ResultInt, AllowLabels)) 1268 return false; 1269 1270 ResultBool = ResultInt.getBoolValue(); 1271 return true; 1272 } 1273 1274 /// ConstantFoldsToSimpleInteger - If the specified expression does not fold 1275 /// to a constant, or if it does but contains a label, return false. If it 1276 /// constant folds return true and set the folded value. 1277 bool CodeGenFunction::ConstantFoldsToSimpleInteger(const Expr *Cond, 1278 llvm::APSInt &ResultInt, 1279 bool AllowLabels) { 1280 // FIXME: Rename and handle conversion of other evaluatable things 1281 // to bool. 1282 llvm::APSInt Int; 1283 if (!Cond->EvaluateAsInt(Int, getContext())) 1284 return false; // Not foldable, not integer or not fully evaluatable. 1285 1286 if (!AllowLabels && CodeGenFunction::ContainsLabel(Cond)) 1287 return false; // Contains a label. 1288 1289 ResultInt = Int; 1290 return true; 1291 } 1292 1293 1294 1295 /// EmitBranchOnBoolExpr - Emit a branch on a boolean condition (e.g. for an if 1296 /// statement) to the specified blocks. Based on the condition, this might try 1297 /// to simplify the codegen of the conditional based on the branch. 1298 /// 1299 void CodeGenFunction::EmitBranchOnBoolExpr(const Expr *Cond, 1300 llvm::BasicBlock *TrueBlock, 1301 llvm::BasicBlock *FalseBlock, 1302 uint64_t TrueCount) { 1303 Cond = Cond->IgnoreParens(); 1304 1305 if (const BinaryOperator *CondBOp = dyn_cast<BinaryOperator>(Cond)) { 1306 1307 // Handle X && Y in a condition. 1308 if (CondBOp->getOpcode() == BO_LAnd) { 1309 // If we have "1 && X", simplify the code. "0 && X" would have constant 1310 // folded if the case was simple enough. 1311 bool ConstantBool = false; 1312 if (ConstantFoldsToSimpleInteger(CondBOp->getLHS(), ConstantBool) && 1313 ConstantBool) { 1314 // br(1 && X) -> br(X). 1315 incrementProfileCounter(CondBOp); 1316 return EmitBranchOnBoolExpr(CondBOp->getRHS(), TrueBlock, FalseBlock, 1317 TrueCount); 1318 } 1319 1320 // If we have "X && 1", simplify the code to use an uncond branch. 1321 // "X && 0" would have been constant folded to 0. 1322 if (ConstantFoldsToSimpleInteger(CondBOp->getRHS(), ConstantBool) && 1323 ConstantBool) { 1324 // br(X && 1) -> br(X). 1325 return EmitBranchOnBoolExpr(CondBOp->getLHS(), TrueBlock, FalseBlock, 1326 TrueCount); 1327 } 1328 1329 // Emit the LHS as a conditional. If the LHS conditional is false, we 1330 // want to jump to the FalseBlock. 1331 llvm::BasicBlock *LHSTrue = createBasicBlock("land.lhs.true"); 1332 // The counter tells us how often we evaluate RHS, and all of TrueCount 1333 // can be propagated to that branch. 1334 uint64_t RHSCount = getProfileCount(CondBOp->getRHS()); 1335 1336 ConditionalEvaluation eval(*this); 1337 { 1338 ApplyDebugLocation DL(*this, Cond); 1339 EmitBranchOnBoolExpr(CondBOp->getLHS(), LHSTrue, FalseBlock, RHSCount); 1340 EmitBlock(LHSTrue); 1341 } 1342 1343 incrementProfileCounter(CondBOp); 1344 setCurrentProfileCount(getProfileCount(CondBOp->getRHS())); 1345 1346 // Any temporaries created here are conditional. 1347 eval.begin(*this); 1348 EmitBranchOnBoolExpr(CondBOp->getRHS(), TrueBlock, FalseBlock, TrueCount); 1349 eval.end(*this); 1350 1351 return; 1352 } 1353 1354 if (CondBOp->getOpcode() == BO_LOr) { 1355 // If we have "0 || X", simplify the code. "1 || X" would have constant 1356 // folded if the case was simple enough. 1357 bool ConstantBool = false; 1358 if (ConstantFoldsToSimpleInteger(CondBOp->getLHS(), ConstantBool) && 1359 !ConstantBool) { 1360 // br(0 || X) -> br(X). 1361 incrementProfileCounter(CondBOp); 1362 return EmitBranchOnBoolExpr(CondBOp->getRHS(), TrueBlock, FalseBlock, 1363 TrueCount); 1364 } 1365 1366 // If we have "X || 0", simplify the code to use an uncond branch. 1367 // "X || 1" would have been constant folded to 1. 1368 if (ConstantFoldsToSimpleInteger(CondBOp->getRHS(), ConstantBool) && 1369 !ConstantBool) { 1370 // br(X || 0) -> br(X). 1371 return EmitBranchOnBoolExpr(CondBOp->getLHS(), TrueBlock, FalseBlock, 1372 TrueCount); 1373 } 1374 1375 // Emit the LHS as a conditional. If the LHS conditional is true, we 1376 // want to jump to the TrueBlock. 1377 llvm::BasicBlock *LHSFalse = createBasicBlock("lor.lhs.false"); 1378 // We have the count for entry to the RHS and for the whole expression 1379 // being true, so we can divy up True count between the short circuit and 1380 // the RHS. 1381 uint64_t LHSCount = 1382 getCurrentProfileCount() - getProfileCount(CondBOp->getRHS()); 1383 uint64_t RHSCount = TrueCount - LHSCount; 1384 1385 ConditionalEvaluation eval(*this); 1386 { 1387 ApplyDebugLocation DL(*this, Cond); 1388 EmitBranchOnBoolExpr(CondBOp->getLHS(), TrueBlock, LHSFalse, LHSCount); 1389 EmitBlock(LHSFalse); 1390 } 1391 1392 incrementProfileCounter(CondBOp); 1393 setCurrentProfileCount(getProfileCount(CondBOp->getRHS())); 1394 1395 // Any temporaries created here are conditional. 1396 eval.begin(*this); 1397 EmitBranchOnBoolExpr(CondBOp->getRHS(), TrueBlock, FalseBlock, RHSCount); 1398 1399 eval.end(*this); 1400 1401 return; 1402 } 1403 } 1404 1405 if (const UnaryOperator *CondUOp = dyn_cast<UnaryOperator>(Cond)) { 1406 // br(!x, t, f) -> br(x, f, t) 1407 if (CondUOp->getOpcode() == UO_LNot) { 1408 // Negate the count. 1409 uint64_t FalseCount = getCurrentProfileCount() - TrueCount; 1410 // Negate the condition and swap the destination blocks. 1411 return EmitBranchOnBoolExpr(CondUOp->getSubExpr(), FalseBlock, TrueBlock, 1412 FalseCount); 1413 } 1414 } 1415 1416 if (const ConditionalOperator *CondOp = dyn_cast<ConditionalOperator>(Cond)) { 1417 // br(c ? x : y, t, f) -> br(c, br(x, t, f), br(y, t, f)) 1418 llvm::BasicBlock *LHSBlock = createBasicBlock("cond.true"); 1419 llvm::BasicBlock *RHSBlock = createBasicBlock("cond.false"); 1420 1421 ConditionalEvaluation cond(*this); 1422 EmitBranchOnBoolExpr(CondOp->getCond(), LHSBlock, RHSBlock, 1423 getProfileCount(CondOp)); 1424 1425 // When computing PGO branch weights, we only know the overall count for 1426 // the true block. This code is essentially doing tail duplication of the 1427 // naive code-gen, introducing new edges for which counts are not 1428 // available. Divide the counts proportionally between the LHS and RHS of 1429 // the conditional operator. 1430 uint64_t LHSScaledTrueCount = 0; 1431 if (TrueCount) { 1432 double LHSRatio = 1433 getProfileCount(CondOp) / (double)getCurrentProfileCount(); 1434 LHSScaledTrueCount = TrueCount * LHSRatio; 1435 } 1436 1437 cond.begin(*this); 1438 EmitBlock(LHSBlock); 1439 incrementProfileCounter(CondOp); 1440 { 1441 ApplyDebugLocation DL(*this, Cond); 1442 EmitBranchOnBoolExpr(CondOp->getLHS(), TrueBlock, FalseBlock, 1443 LHSScaledTrueCount); 1444 } 1445 cond.end(*this); 1446 1447 cond.begin(*this); 1448 EmitBlock(RHSBlock); 1449 EmitBranchOnBoolExpr(CondOp->getRHS(), TrueBlock, FalseBlock, 1450 TrueCount - LHSScaledTrueCount); 1451 cond.end(*this); 1452 1453 return; 1454 } 1455 1456 if (const CXXThrowExpr *Throw = dyn_cast<CXXThrowExpr>(Cond)) { 1457 // Conditional operator handling can give us a throw expression as a 1458 // condition for a case like: 1459 // br(c ? throw x : y, t, f) -> br(c, br(throw x, t, f), br(y, t, f) 1460 // Fold this to: 1461 // br(c, throw x, br(y, t, f)) 1462 EmitCXXThrowExpr(Throw, /*KeepInsertionPoint*/false); 1463 return; 1464 } 1465 1466 // If the branch has a condition wrapped by __builtin_unpredictable, 1467 // create metadata that specifies that the branch is unpredictable. 1468 // Don't bother if not optimizing because that metadata would not be used. 1469 llvm::MDNode *Unpredictable = nullptr; 1470 auto *Call = dyn_cast<CallExpr>(Cond); 1471 if (Call && CGM.getCodeGenOpts().OptimizationLevel != 0) { 1472 auto *FD = dyn_cast_or_null<FunctionDecl>(Call->getCalleeDecl()); 1473 if (FD && FD->getBuiltinID() == Builtin::BI__builtin_unpredictable) { 1474 llvm::MDBuilder MDHelper(getLLVMContext()); 1475 Unpredictable = MDHelper.createUnpredictable(); 1476 } 1477 } 1478 1479 // Create branch weights based on the number of times we get here and the 1480 // number of times the condition should be true. 1481 uint64_t CurrentCount = std::max(getCurrentProfileCount(), TrueCount); 1482 llvm::MDNode *Weights = 1483 createProfileWeights(TrueCount, CurrentCount - TrueCount); 1484 1485 // Emit the code with the fully general case. 1486 llvm::Value *CondV; 1487 { 1488 ApplyDebugLocation DL(*this, Cond); 1489 CondV = EvaluateExprAsBool(Cond); 1490 } 1491 Builder.CreateCondBr(CondV, TrueBlock, FalseBlock, Weights, Unpredictable); 1492 } 1493 1494 /// ErrorUnsupported - Print out an error that codegen doesn't support the 1495 /// specified stmt yet. 1496 void CodeGenFunction::ErrorUnsupported(const Stmt *S, const char *Type) { 1497 CGM.ErrorUnsupported(S, Type); 1498 } 1499 1500 /// emitNonZeroVLAInit - Emit the "zero" initialization of a 1501 /// variable-length array whose elements have a non-zero bit-pattern. 1502 /// 1503 /// \param baseType the inner-most element type of the array 1504 /// \param src - a char* pointing to the bit-pattern for a single 1505 /// base element of the array 1506 /// \param sizeInChars - the total size of the VLA, in chars 1507 static void emitNonZeroVLAInit(CodeGenFunction &CGF, QualType baseType, 1508 Address dest, Address src, 1509 llvm::Value *sizeInChars) { 1510 CGBuilderTy &Builder = CGF.Builder; 1511 1512 CharUnits baseSize = CGF.getContext().getTypeSizeInChars(baseType); 1513 llvm::Value *baseSizeInChars 1514 = llvm::ConstantInt::get(CGF.IntPtrTy, baseSize.getQuantity()); 1515 1516 Address begin = 1517 Builder.CreateElementBitCast(dest, CGF.Int8Ty, "vla.begin"); 1518 llvm::Value *end = 1519 Builder.CreateInBoundsGEP(begin.getPointer(), sizeInChars, "vla.end"); 1520 1521 llvm::BasicBlock *originBB = CGF.Builder.GetInsertBlock(); 1522 llvm::BasicBlock *loopBB = CGF.createBasicBlock("vla-init.loop"); 1523 llvm::BasicBlock *contBB = CGF.createBasicBlock("vla-init.cont"); 1524 1525 // Make a loop over the VLA. C99 guarantees that the VLA element 1526 // count must be nonzero. 1527 CGF.EmitBlock(loopBB); 1528 1529 llvm::PHINode *cur = Builder.CreatePHI(begin.getType(), 2, "vla.cur"); 1530 cur->addIncoming(begin.getPointer(), originBB); 1531 1532 CharUnits curAlign = 1533 dest.getAlignment().alignmentOfArrayElement(baseSize); 1534 1535 // memcpy the individual element bit-pattern. 1536 Builder.CreateMemCpy(Address(cur, curAlign), src, baseSizeInChars, 1537 /*volatile*/ false); 1538 1539 // Go to the next element. 1540 llvm::Value *next = 1541 Builder.CreateInBoundsGEP(CGF.Int8Ty, cur, baseSizeInChars, "vla.next"); 1542 1543 // Leave if that's the end of the VLA. 1544 llvm::Value *done = Builder.CreateICmpEQ(next, end, "vla-init.isdone"); 1545 Builder.CreateCondBr(done, contBB, loopBB); 1546 cur->addIncoming(next, loopBB); 1547 1548 CGF.EmitBlock(contBB); 1549 } 1550 1551 void 1552 CodeGenFunction::EmitNullInitialization(Address DestPtr, QualType Ty) { 1553 // Ignore empty classes in C++. 1554 if (getLangOpts().CPlusPlus) { 1555 if (const RecordType *RT = Ty->getAs<RecordType>()) { 1556 if (cast<CXXRecordDecl>(RT->getDecl())->isEmpty()) 1557 return; 1558 } 1559 } 1560 1561 // Cast the dest ptr to the appropriate i8 pointer type. 1562 if (DestPtr.getElementType() != Int8Ty) 1563 DestPtr = Builder.CreateElementBitCast(DestPtr, Int8Ty); 1564 1565 // Get size and alignment info for this aggregate. 1566 CharUnits size = getContext().getTypeSizeInChars(Ty); 1567 1568 llvm::Value *SizeVal; 1569 const VariableArrayType *vla; 1570 1571 // Don't bother emitting a zero-byte memset. 1572 if (size.isZero()) { 1573 // But note that getTypeInfo returns 0 for a VLA. 1574 if (const VariableArrayType *vlaType = 1575 dyn_cast_or_null<VariableArrayType>( 1576 getContext().getAsArrayType(Ty))) { 1577 QualType eltType; 1578 llvm::Value *numElts; 1579 std::tie(numElts, eltType) = getVLASize(vlaType); 1580 1581 SizeVal = numElts; 1582 CharUnits eltSize = getContext().getTypeSizeInChars(eltType); 1583 if (!eltSize.isOne()) 1584 SizeVal = Builder.CreateNUWMul(SizeVal, CGM.getSize(eltSize)); 1585 vla = vlaType; 1586 } else { 1587 return; 1588 } 1589 } else { 1590 SizeVal = CGM.getSize(size); 1591 vla = nullptr; 1592 } 1593 1594 // If the type contains a pointer to data member we can't memset it to zero. 1595 // Instead, create a null constant and copy it to the destination. 1596 // TODO: there are other patterns besides zero that we can usefully memset, 1597 // like -1, which happens to be the pattern used by member-pointers. 1598 if (!CGM.getTypes().isZeroInitializable(Ty)) { 1599 // For a VLA, emit a single element, then splat that over the VLA. 1600 if (vla) Ty = getContext().getBaseElementType(vla); 1601 1602 llvm::Constant *NullConstant = CGM.EmitNullConstant(Ty); 1603 1604 llvm::GlobalVariable *NullVariable = 1605 new llvm::GlobalVariable(CGM.getModule(), NullConstant->getType(), 1606 /*isConstant=*/true, 1607 llvm::GlobalVariable::PrivateLinkage, 1608 NullConstant, Twine()); 1609 CharUnits NullAlign = DestPtr.getAlignment(); 1610 NullVariable->setAlignment(NullAlign.getQuantity()); 1611 Address SrcPtr(Builder.CreateBitCast(NullVariable, Builder.getInt8PtrTy()), 1612 NullAlign); 1613 1614 if (vla) return emitNonZeroVLAInit(*this, Ty, DestPtr, SrcPtr, SizeVal); 1615 1616 // Get and call the appropriate llvm.memcpy overload. 1617 Builder.CreateMemCpy(DestPtr, SrcPtr, SizeVal, false); 1618 return; 1619 } 1620 1621 // Otherwise, just memset the whole thing to zero. This is legal 1622 // because in LLVM, all default initializers (other than the ones we just 1623 // handled above) are guaranteed to have a bit pattern of all zeros. 1624 Builder.CreateMemSet(DestPtr, Builder.getInt8(0), SizeVal, false); 1625 } 1626 1627 llvm::BlockAddress *CodeGenFunction::GetAddrOfLabel(const LabelDecl *L) { 1628 // Make sure that there is a block for the indirect goto. 1629 if (!IndirectBranch) 1630 GetIndirectGotoBlock(); 1631 1632 llvm::BasicBlock *BB = getJumpDestForLabel(L).getBlock(); 1633 1634 // Make sure the indirect branch includes all of the address-taken blocks. 1635 IndirectBranch->addDestination(BB); 1636 return llvm::BlockAddress::get(CurFn, BB); 1637 } 1638 1639 llvm::BasicBlock *CodeGenFunction::GetIndirectGotoBlock() { 1640 // If we already made the indirect branch for indirect goto, return its block. 1641 if (IndirectBranch) return IndirectBranch->getParent(); 1642 1643 CGBuilderTy TmpBuilder(*this, createBasicBlock("indirectgoto")); 1644 1645 // Create the PHI node that indirect gotos will add entries to. 1646 llvm::Value *DestVal = TmpBuilder.CreatePHI(Int8PtrTy, 0, 1647 "indirect.goto.dest"); 1648 1649 // Create the indirect branch instruction. 1650 IndirectBranch = TmpBuilder.CreateIndirectBr(DestVal); 1651 return IndirectBranch->getParent(); 1652 } 1653 1654 /// Computes the length of an array in elements, as well as the base 1655 /// element type and a properly-typed first element pointer. 1656 llvm::Value *CodeGenFunction::emitArrayLength(const ArrayType *origArrayType, 1657 QualType &baseType, 1658 Address &addr) { 1659 const ArrayType *arrayType = origArrayType; 1660 1661 // If it's a VLA, we have to load the stored size. Note that 1662 // this is the size of the VLA in bytes, not its size in elements. 1663 llvm::Value *numVLAElements = nullptr; 1664 if (isa<VariableArrayType>(arrayType)) { 1665 numVLAElements = getVLASize(cast<VariableArrayType>(arrayType)).first; 1666 1667 // Walk into all VLAs. This doesn't require changes to addr, 1668 // which has type T* where T is the first non-VLA element type. 1669 do { 1670 QualType elementType = arrayType->getElementType(); 1671 arrayType = getContext().getAsArrayType(elementType); 1672 1673 // If we only have VLA components, 'addr' requires no adjustment. 1674 if (!arrayType) { 1675 baseType = elementType; 1676 return numVLAElements; 1677 } 1678 } while (isa<VariableArrayType>(arrayType)); 1679 1680 // We get out here only if we find a constant array type 1681 // inside the VLA. 1682 } 1683 1684 // We have some number of constant-length arrays, so addr should 1685 // have LLVM type [M x [N x [...]]]*. Build a GEP that walks 1686 // down to the first element of addr. 1687 SmallVector<llvm::Value*, 8> gepIndices; 1688 1689 // GEP down to the array type. 1690 llvm::ConstantInt *zero = Builder.getInt32(0); 1691 gepIndices.push_back(zero); 1692 1693 uint64_t countFromCLAs = 1; 1694 QualType eltType; 1695 1696 llvm::ArrayType *llvmArrayType = 1697 dyn_cast<llvm::ArrayType>(addr.getElementType()); 1698 while (llvmArrayType) { 1699 assert(isa<ConstantArrayType>(arrayType)); 1700 assert(cast<ConstantArrayType>(arrayType)->getSize().getZExtValue() 1701 == llvmArrayType->getNumElements()); 1702 1703 gepIndices.push_back(zero); 1704 countFromCLAs *= llvmArrayType->getNumElements(); 1705 eltType = arrayType->getElementType(); 1706 1707 llvmArrayType = 1708 dyn_cast<llvm::ArrayType>(llvmArrayType->getElementType()); 1709 arrayType = getContext().getAsArrayType(arrayType->getElementType()); 1710 assert((!llvmArrayType || arrayType) && 1711 "LLVM and Clang types are out-of-synch"); 1712 } 1713 1714 if (arrayType) { 1715 // From this point onwards, the Clang array type has been emitted 1716 // as some other type (probably a packed struct). Compute the array 1717 // size, and just emit the 'begin' expression as a bitcast. 1718 while (arrayType) { 1719 countFromCLAs *= 1720 cast<ConstantArrayType>(arrayType)->getSize().getZExtValue(); 1721 eltType = arrayType->getElementType(); 1722 arrayType = getContext().getAsArrayType(eltType); 1723 } 1724 1725 llvm::Type *baseType = ConvertType(eltType); 1726 addr = Builder.CreateElementBitCast(addr, baseType, "array.begin"); 1727 } else { 1728 // Create the actual GEP. 1729 addr = Address(Builder.CreateInBoundsGEP(addr.getPointer(), 1730 gepIndices, "array.begin"), 1731 addr.getAlignment()); 1732 } 1733 1734 baseType = eltType; 1735 1736 llvm::Value *numElements 1737 = llvm::ConstantInt::get(SizeTy, countFromCLAs); 1738 1739 // If we had any VLA dimensions, factor them in. 1740 if (numVLAElements) 1741 numElements = Builder.CreateNUWMul(numVLAElements, numElements); 1742 1743 return numElements; 1744 } 1745 1746 std::pair<llvm::Value*, QualType> 1747 CodeGenFunction::getVLASize(QualType type) { 1748 const VariableArrayType *vla = getContext().getAsVariableArrayType(type); 1749 assert(vla && "type was not a variable array type!"); 1750 return getVLASize(vla); 1751 } 1752 1753 std::pair<llvm::Value*, QualType> 1754 CodeGenFunction::getVLASize(const VariableArrayType *type) { 1755 // The number of elements so far; always size_t. 1756 llvm::Value *numElements = nullptr; 1757 1758 QualType elementType; 1759 do { 1760 elementType = type->getElementType(); 1761 llvm::Value *vlaSize = VLASizeMap[type->getSizeExpr()]; 1762 assert(vlaSize && "no size for VLA!"); 1763 assert(vlaSize->getType() == SizeTy); 1764 1765 if (!numElements) { 1766 numElements = vlaSize; 1767 } else { 1768 // It's undefined behavior if this wraps around, so mark it that way. 1769 // FIXME: Teach -fsanitize=undefined to trap this. 1770 numElements = Builder.CreateNUWMul(numElements, vlaSize); 1771 } 1772 } while ((type = getContext().getAsVariableArrayType(elementType))); 1773 1774 return std::pair<llvm::Value*,QualType>(numElements, elementType); 1775 } 1776 1777 void CodeGenFunction::EmitVariablyModifiedType(QualType type) { 1778 assert(type->isVariablyModifiedType() && 1779 "Must pass variably modified type to EmitVLASizes!"); 1780 1781 EnsureInsertPoint(); 1782 1783 // We're going to walk down into the type and look for VLA 1784 // expressions. 1785 do { 1786 assert(type->isVariablyModifiedType()); 1787 1788 const Type *ty = type.getTypePtr(); 1789 switch (ty->getTypeClass()) { 1790 1791 #define TYPE(Class, Base) 1792 #define ABSTRACT_TYPE(Class, Base) 1793 #define NON_CANONICAL_TYPE(Class, Base) 1794 #define DEPENDENT_TYPE(Class, Base) case Type::Class: 1795 #define NON_CANONICAL_UNLESS_DEPENDENT_TYPE(Class, Base) 1796 #include "clang/AST/TypeNodes.def" 1797 llvm_unreachable("unexpected dependent type!"); 1798 1799 // These types are never variably-modified. 1800 case Type::Builtin: 1801 case Type::Complex: 1802 case Type::Vector: 1803 case Type::ExtVector: 1804 case Type::Record: 1805 case Type::Enum: 1806 case Type::Elaborated: 1807 case Type::TemplateSpecialization: 1808 case Type::ObjCTypeParam: 1809 case Type::ObjCObject: 1810 case Type::ObjCInterface: 1811 case Type::ObjCObjectPointer: 1812 llvm_unreachable("type class is never variably-modified!"); 1813 1814 case Type::Adjusted: 1815 type = cast<AdjustedType>(ty)->getAdjustedType(); 1816 break; 1817 1818 case Type::Decayed: 1819 type = cast<DecayedType>(ty)->getPointeeType(); 1820 break; 1821 1822 case Type::Pointer: 1823 type = cast<PointerType>(ty)->getPointeeType(); 1824 break; 1825 1826 case Type::BlockPointer: 1827 type = cast<BlockPointerType>(ty)->getPointeeType(); 1828 break; 1829 1830 case Type::LValueReference: 1831 case Type::RValueReference: 1832 type = cast<ReferenceType>(ty)->getPointeeType(); 1833 break; 1834 1835 case Type::MemberPointer: 1836 type = cast<MemberPointerType>(ty)->getPointeeType(); 1837 break; 1838 1839 case Type::ConstantArray: 1840 case Type::IncompleteArray: 1841 // Losing element qualification here is fine. 1842 type = cast<ArrayType>(ty)->getElementType(); 1843 break; 1844 1845 case Type::VariableArray: { 1846 // Losing element qualification here is fine. 1847 const VariableArrayType *vat = cast<VariableArrayType>(ty); 1848 1849 // Unknown size indication requires no size computation. 1850 // Otherwise, evaluate and record it. 1851 if (const Expr *size = vat->getSizeExpr()) { 1852 // It's possible that we might have emitted this already, 1853 // e.g. with a typedef and a pointer to it. 1854 llvm::Value *&entry = VLASizeMap[size]; 1855 if (!entry) { 1856 llvm::Value *Size = EmitScalarExpr(size); 1857 1858 // C11 6.7.6.2p5: 1859 // If the size is an expression that is not an integer constant 1860 // expression [...] each time it is evaluated it shall have a value 1861 // greater than zero. 1862 if (SanOpts.has(SanitizerKind::VLABound) && 1863 size->getType()->isSignedIntegerType()) { 1864 SanitizerScope SanScope(this); 1865 llvm::Value *Zero = llvm::Constant::getNullValue(Size->getType()); 1866 llvm::Constant *StaticArgs[] = { 1867 EmitCheckSourceLocation(size->getLocStart()), 1868 EmitCheckTypeDescriptor(size->getType()) 1869 }; 1870 EmitCheck(std::make_pair(Builder.CreateICmpSGT(Size, Zero), 1871 SanitizerKind::VLABound), 1872 SanitizerHandler::VLABoundNotPositive, StaticArgs, Size); 1873 } 1874 1875 // Always zexting here would be wrong if it weren't 1876 // undefined behavior to have a negative bound. 1877 entry = Builder.CreateIntCast(Size, SizeTy, /*signed*/ false); 1878 } 1879 } 1880 type = vat->getElementType(); 1881 break; 1882 } 1883 1884 case Type::FunctionProto: 1885 case Type::FunctionNoProto: 1886 type = cast<FunctionType>(ty)->getReturnType(); 1887 break; 1888 1889 case Type::Paren: 1890 case Type::TypeOf: 1891 case Type::UnaryTransform: 1892 case Type::Attributed: 1893 case Type::SubstTemplateTypeParm: 1894 case Type::PackExpansion: 1895 // Keep walking after single level desugaring. 1896 type = type.getSingleStepDesugaredType(getContext()); 1897 break; 1898 1899 case Type::Typedef: 1900 case Type::Decltype: 1901 case Type::Auto: 1902 // Stop walking: nothing to do. 1903 return; 1904 1905 case Type::TypeOfExpr: 1906 // Stop walking: emit typeof expression. 1907 EmitIgnoredExpr(cast<TypeOfExprType>(ty)->getUnderlyingExpr()); 1908 return; 1909 1910 case Type::Atomic: 1911 type = cast<AtomicType>(ty)->getValueType(); 1912 break; 1913 1914 case Type::Pipe: 1915 type = cast<PipeType>(ty)->getElementType(); 1916 break; 1917 } 1918 } while (type->isVariablyModifiedType()); 1919 } 1920 1921 Address CodeGenFunction::EmitVAListRef(const Expr* E) { 1922 if (getContext().getBuiltinVaListType()->isArrayType()) 1923 return EmitPointerWithAlignment(E); 1924 return EmitLValue(E).getAddress(); 1925 } 1926 1927 Address CodeGenFunction::EmitMSVAListRef(const Expr *E) { 1928 return EmitLValue(E).getAddress(); 1929 } 1930 1931 void CodeGenFunction::EmitDeclRefExprDbgValue(const DeclRefExpr *E, 1932 const APValue &Init) { 1933 assert(!Init.isUninit() && "Invalid DeclRefExpr initializer!"); 1934 if (CGDebugInfo *Dbg = getDebugInfo()) 1935 if (CGM.getCodeGenOpts().getDebugInfo() >= codegenoptions::LimitedDebugInfo) 1936 Dbg->EmitGlobalVariable(E->getDecl(), Init); 1937 } 1938 1939 CodeGenFunction::PeepholeProtection 1940 CodeGenFunction::protectFromPeepholes(RValue rvalue) { 1941 // At the moment, the only aggressive peephole we do in IR gen 1942 // is trunc(zext) folding, but if we add more, we can easily 1943 // extend this protection. 1944 1945 if (!rvalue.isScalar()) return PeepholeProtection(); 1946 llvm::Value *value = rvalue.getScalarVal(); 1947 if (!isa<llvm::ZExtInst>(value)) return PeepholeProtection(); 1948 1949 // Just make an extra bitcast. 1950 assert(HaveInsertPoint()); 1951 llvm::Instruction *inst = new llvm::BitCastInst(value, value->getType(), "", 1952 Builder.GetInsertBlock()); 1953 1954 PeepholeProtection protection; 1955 protection.Inst = inst; 1956 return protection; 1957 } 1958 1959 void CodeGenFunction::unprotectFromPeepholes(PeepholeProtection protection) { 1960 if (!protection.Inst) return; 1961 1962 // In theory, we could try to duplicate the peepholes now, but whatever. 1963 protection.Inst->eraseFromParent(); 1964 } 1965 1966 llvm::Value *CodeGenFunction::EmitAnnotationCall(llvm::Value *AnnotationFn, 1967 llvm::Value *AnnotatedVal, 1968 StringRef AnnotationStr, 1969 SourceLocation Location) { 1970 llvm::Value *Args[4] = { 1971 AnnotatedVal, 1972 Builder.CreateBitCast(CGM.EmitAnnotationString(AnnotationStr), Int8PtrTy), 1973 Builder.CreateBitCast(CGM.EmitAnnotationUnit(Location), Int8PtrTy), 1974 CGM.EmitAnnotationLineNo(Location) 1975 }; 1976 return Builder.CreateCall(AnnotationFn, Args); 1977 } 1978 1979 void CodeGenFunction::EmitVarAnnotations(const VarDecl *D, llvm::Value *V) { 1980 assert(D->hasAttr<AnnotateAttr>() && "no annotate attribute"); 1981 // FIXME We create a new bitcast for every annotation because that's what 1982 // llvm-gcc was doing. 1983 for (const auto *I : D->specific_attrs<AnnotateAttr>()) 1984 EmitAnnotationCall(CGM.getIntrinsic(llvm::Intrinsic::var_annotation), 1985 Builder.CreateBitCast(V, CGM.Int8PtrTy, V->getName()), 1986 I->getAnnotation(), D->getLocation()); 1987 } 1988 1989 Address CodeGenFunction::EmitFieldAnnotations(const FieldDecl *D, 1990 Address Addr) { 1991 assert(D->hasAttr<AnnotateAttr>() && "no annotate attribute"); 1992 llvm::Value *V = Addr.getPointer(); 1993 llvm::Type *VTy = V->getType(); 1994 llvm::Value *F = CGM.getIntrinsic(llvm::Intrinsic::ptr_annotation, 1995 CGM.Int8PtrTy); 1996 1997 for (const auto *I : D->specific_attrs<AnnotateAttr>()) { 1998 // FIXME Always emit the cast inst so we can differentiate between 1999 // annotation on the first field of a struct and annotation on the struct 2000 // itself. 2001 if (VTy != CGM.Int8PtrTy) 2002 V = Builder.Insert(new llvm::BitCastInst(V, CGM.Int8PtrTy)); 2003 V = EmitAnnotationCall(F, V, I->getAnnotation(), D->getLocation()); 2004 V = Builder.CreateBitCast(V, VTy); 2005 } 2006 2007 return Address(V, Addr.getAlignment()); 2008 } 2009 2010 CodeGenFunction::CGCapturedStmtInfo::~CGCapturedStmtInfo() { } 2011 2012 CodeGenFunction::SanitizerScope::SanitizerScope(CodeGenFunction *CGF) 2013 : CGF(CGF) { 2014 assert(!CGF->IsSanitizerScope); 2015 CGF->IsSanitizerScope = true; 2016 } 2017 2018 CodeGenFunction::SanitizerScope::~SanitizerScope() { 2019 CGF->IsSanitizerScope = false; 2020 } 2021 2022 void CodeGenFunction::InsertHelper(llvm::Instruction *I, 2023 const llvm::Twine &Name, 2024 llvm::BasicBlock *BB, 2025 llvm::BasicBlock::iterator InsertPt) const { 2026 LoopStack.InsertHelper(I); 2027 if (IsSanitizerScope) 2028 CGM.getSanitizerMetadata()->disableSanitizerForInstruction(I); 2029 } 2030 2031 void CGBuilderInserter::InsertHelper( 2032 llvm::Instruction *I, const llvm::Twine &Name, llvm::BasicBlock *BB, 2033 llvm::BasicBlock::iterator InsertPt) const { 2034 llvm::IRBuilderDefaultInserter::InsertHelper(I, Name, BB, InsertPt); 2035 if (CGF) 2036 CGF->InsertHelper(I, Name, BB, InsertPt); 2037 } 2038 2039 static bool hasRequiredFeatures(const SmallVectorImpl<StringRef> &ReqFeatures, 2040 CodeGenModule &CGM, const FunctionDecl *FD, 2041 std::string &FirstMissing) { 2042 // If there aren't any required features listed then go ahead and return. 2043 if (ReqFeatures.empty()) 2044 return false; 2045 2046 // Now build up the set of caller features and verify that all the required 2047 // features are there. 2048 llvm::StringMap<bool> CallerFeatureMap; 2049 CGM.getFunctionFeatureMap(CallerFeatureMap, FD); 2050 2051 // If we have at least one of the features in the feature list return 2052 // true, otherwise return false. 2053 return std::all_of( 2054 ReqFeatures.begin(), ReqFeatures.end(), [&](StringRef Feature) { 2055 SmallVector<StringRef, 1> OrFeatures; 2056 Feature.split(OrFeatures, "|"); 2057 return std::any_of(OrFeatures.begin(), OrFeatures.end(), 2058 [&](StringRef Feature) { 2059 if (!CallerFeatureMap.lookup(Feature)) { 2060 FirstMissing = Feature.str(); 2061 return false; 2062 } 2063 return true; 2064 }); 2065 }); 2066 } 2067 2068 // Emits an error if we don't have a valid set of target features for the 2069 // called function. 2070 void CodeGenFunction::checkTargetFeatures(const CallExpr *E, 2071 const FunctionDecl *TargetDecl) { 2072 // Early exit if this is an indirect call. 2073 if (!TargetDecl) 2074 return; 2075 2076 // Get the current enclosing function if it exists. If it doesn't 2077 // we can't check the target features anyhow. 2078 const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(CurFuncDecl); 2079 if (!FD) 2080 return; 2081 2082 // Grab the required features for the call. For a builtin this is listed in 2083 // the td file with the default cpu, for an always_inline function this is any 2084 // listed cpu and any listed features. 2085 unsigned BuiltinID = TargetDecl->getBuiltinID(); 2086 std::string MissingFeature; 2087 if (BuiltinID) { 2088 SmallVector<StringRef, 1> ReqFeatures; 2089 const char *FeatureList = 2090 CGM.getContext().BuiltinInfo.getRequiredFeatures(BuiltinID); 2091 // Return if the builtin doesn't have any required features. 2092 if (!FeatureList || StringRef(FeatureList) == "") 2093 return; 2094 StringRef(FeatureList).split(ReqFeatures, ","); 2095 if (!hasRequiredFeatures(ReqFeatures, CGM, FD, MissingFeature)) 2096 CGM.getDiags().Report(E->getLocStart(), diag::err_builtin_needs_feature) 2097 << TargetDecl->getDeclName() 2098 << CGM.getContext().BuiltinInfo.getRequiredFeatures(BuiltinID); 2099 2100 } else if (TargetDecl->hasAttr<TargetAttr>()) { 2101 // Get the required features for the callee. 2102 SmallVector<StringRef, 1> ReqFeatures; 2103 llvm::StringMap<bool> CalleeFeatureMap; 2104 CGM.getFunctionFeatureMap(CalleeFeatureMap, TargetDecl); 2105 for (const auto &F : CalleeFeatureMap) { 2106 // Only positive features are "required". 2107 if (F.getValue()) 2108 ReqFeatures.push_back(F.getKey()); 2109 } 2110 if (!hasRequiredFeatures(ReqFeatures, CGM, FD, MissingFeature)) 2111 CGM.getDiags().Report(E->getLocStart(), diag::err_function_needs_feature) 2112 << FD->getDeclName() << TargetDecl->getDeclName() << MissingFeature; 2113 } 2114 } 2115 2116 void CodeGenFunction::EmitSanitizerStatReport(llvm::SanitizerStatKind SSK) { 2117 if (!CGM.getCodeGenOpts().SanitizeStats) 2118 return; 2119 2120 llvm::IRBuilder<> IRB(Builder.GetInsertBlock(), Builder.GetInsertPoint()); 2121 IRB.SetCurrentDebugLocation(Builder.getCurrentDebugLocation()); 2122 CGM.getSanStats().create(IRB, SSK); 2123 } 2124 2125 llvm::DebugLoc CodeGenFunction::SourceLocToDebugLoc(SourceLocation Location) { 2126 if (CGDebugInfo *DI = getDebugInfo()) 2127 return DI->SourceLocToDebugLoc(Location); 2128 2129 return llvm::DebugLoc(); 2130 } 2131