1 //===--- CodeGenFunction.cpp - Emit LLVM Code from ASTs for a Function ----===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This coordinates the per-function state used while generating code.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "CodeGenFunction.h"
15 #include "CGCUDARuntime.h"
16 #include "CGCXXABI.h"
17 #include "CGDebugInfo.h"
18 #include "CodeGenModule.h"
19 #include "clang/AST/ASTContext.h"
20 #include "clang/AST/Decl.h"
21 #include "clang/AST/DeclCXX.h"
22 #include "clang/AST/StmtCXX.h"
23 #include "clang/Basic/TargetInfo.h"
24 #include "clang/Frontend/CodeGenOptions.h"
25 #include "llvm/IR/DataLayout.h"
26 #include "llvm/IR/Intrinsics.h"
27 #include "llvm/IR/MDBuilder.h"
28 #include "llvm/IR/Operator.h"
29 using namespace clang;
30 using namespace CodeGen;
31 
32 CodeGenFunction::CodeGenFunction(CodeGenModule &cgm, bool suppressNewContext)
33   : CodeGenTypeCache(cgm), CGM(cgm),
34     Target(CGM.getContext().getTargetInfo()),
35     Builder(cgm.getModule().getContext()),
36     SanitizePerformTypeCheck(CGM.getLangOpts().SanitizeNull |
37                              CGM.getLangOpts().SanitizeAlignment |
38                              CGM.getLangOpts().SanitizeObjectSize |
39                              CGM.getLangOpts().SanitizeVptr),
40     AutoreleaseResult(false), BlockInfo(0), BlockPointer(0),
41     LambdaThisCaptureField(0), NormalCleanupDest(0), NextCleanupDestIndex(1),
42     FirstBlockInfo(0), EHResumeBlock(0), ExceptionSlot(0), EHSelectorSlot(0),
43     DebugInfo(0), DisableDebugInfo(false), DidCallStackSave(false),
44     IndirectBranch(0), SwitchInsn(0), CaseRangeBlock(0), UnreachableBlock(0),
45     CXXABIThisDecl(0), CXXABIThisValue(0), CXXThisValue(0), CXXVTTDecl(0),
46     CXXVTTValue(0), OutermostConditional(0), TerminateLandingPad(0),
47     TerminateHandler(0), TrapBB(0) {
48   if (!suppressNewContext)
49     CGM.getCXXABI().getMangleContext().startNewFunction();
50 
51   llvm::FastMathFlags FMF;
52   if (CGM.getLangOpts().FastMath)
53     FMF.setUnsafeAlgebra();
54   if (CGM.getLangOpts().FiniteMathOnly) {
55     FMF.setNoNaNs();
56     FMF.setNoInfs();
57   }
58   Builder.SetFastMathFlags(FMF);
59 }
60 
61 CodeGenFunction::~CodeGenFunction() {
62   // If there are any unclaimed block infos, go ahead and destroy them
63   // now.  This can happen if IR-gen gets clever and skips evaluating
64   // something.
65   if (FirstBlockInfo)
66     destroyBlockInfos(FirstBlockInfo);
67 }
68 
69 
70 llvm::Type *CodeGenFunction::ConvertTypeForMem(QualType T) {
71   return CGM.getTypes().ConvertTypeForMem(T);
72 }
73 
74 llvm::Type *CodeGenFunction::ConvertType(QualType T) {
75   return CGM.getTypes().ConvertType(T);
76 }
77 
78 bool CodeGenFunction::hasAggregateLLVMType(QualType type) {
79   switch (type.getCanonicalType()->getTypeClass()) {
80 #define TYPE(name, parent)
81 #define ABSTRACT_TYPE(name, parent)
82 #define NON_CANONICAL_TYPE(name, parent) case Type::name:
83 #define DEPENDENT_TYPE(name, parent) case Type::name:
84 #define NON_CANONICAL_UNLESS_DEPENDENT_TYPE(name, parent) case Type::name:
85 #include "clang/AST/TypeNodes.def"
86     llvm_unreachable("non-canonical or dependent type in IR-generation");
87 
88   case Type::Builtin:
89   case Type::Pointer:
90   case Type::BlockPointer:
91   case Type::LValueReference:
92   case Type::RValueReference:
93   case Type::MemberPointer:
94   case Type::Vector:
95   case Type::ExtVector:
96   case Type::FunctionProto:
97   case Type::FunctionNoProto:
98   case Type::Enum:
99   case Type::ObjCObjectPointer:
100     return false;
101 
102   // Complexes, arrays, records, and Objective-C objects.
103   case Type::Complex:
104   case Type::ConstantArray:
105   case Type::IncompleteArray:
106   case Type::VariableArray:
107   case Type::Record:
108   case Type::ObjCObject:
109   case Type::ObjCInterface:
110     return true;
111 
112   // In IRGen, atomic types are just the underlying type
113   case Type::Atomic:
114     return hasAggregateLLVMType(type->getAs<AtomicType>()->getValueType());
115   }
116   llvm_unreachable("unknown type kind!");
117 }
118 
119 void CodeGenFunction::EmitReturnBlock() {
120   // For cleanliness, we try to avoid emitting the return block for
121   // simple cases.
122   llvm::BasicBlock *CurBB = Builder.GetInsertBlock();
123 
124   if (CurBB) {
125     assert(!CurBB->getTerminator() && "Unexpected terminated block.");
126 
127     // We have a valid insert point, reuse it if it is empty or there are no
128     // explicit jumps to the return block.
129     if (CurBB->empty() || ReturnBlock.getBlock()->use_empty()) {
130       ReturnBlock.getBlock()->replaceAllUsesWith(CurBB);
131       delete ReturnBlock.getBlock();
132     } else
133       EmitBlock(ReturnBlock.getBlock());
134     return;
135   }
136 
137   // Otherwise, if the return block is the target of a single direct
138   // branch then we can just put the code in that block instead. This
139   // cleans up functions which started with a unified return block.
140   if (ReturnBlock.getBlock()->hasOneUse()) {
141     llvm::BranchInst *BI =
142       dyn_cast<llvm::BranchInst>(*ReturnBlock.getBlock()->use_begin());
143     if (BI && BI->isUnconditional() &&
144         BI->getSuccessor(0) == ReturnBlock.getBlock()) {
145       // Reset insertion point, including debug location, and delete the branch.
146       Builder.SetCurrentDebugLocation(BI->getDebugLoc());
147       Builder.SetInsertPoint(BI->getParent());
148       BI->eraseFromParent();
149       delete ReturnBlock.getBlock();
150       return;
151     }
152   }
153 
154   // FIXME: We are at an unreachable point, there is no reason to emit the block
155   // unless it has uses. However, we still need a place to put the debug
156   // region.end for now.
157 
158   EmitBlock(ReturnBlock.getBlock());
159 }
160 
161 static void EmitIfUsed(CodeGenFunction &CGF, llvm::BasicBlock *BB) {
162   if (!BB) return;
163   if (!BB->use_empty())
164     return CGF.CurFn->getBasicBlockList().push_back(BB);
165   delete BB;
166 }
167 
168 void CodeGenFunction::FinishFunction(SourceLocation EndLoc) {
169   assert(BreakContinueStack.empty() &&
170          "mismatched push/pop in break/continue stack!");
171 
172   // Pop any cleanups that might have been associated with the
173   // parameters.  Do this in whatever block we're currently in; it's
174   // important to do this before we enter the return block or return
175   // edges will be *really* confused.
176   if (EHStack.stable_begin() != PrologueCleanupDepth)
177     PopCleanupBlocks(PrologueCleanupDepth);
178 
179   // Emit function epilog (to return).
180   EmitReturnBlock();
181 
182   if (ShouldInstrumentFunction())
183     EmitFunctionInstrumentation("__cyg_profile_func_exit");
184 
185   // Emit debug descriptor for function end.
186   if (CGDebugInfo *DI = getDebugInfo()) {
187     DI->setLocation(EndLoc);
188     DI->EmitFunctionEnd(Builder);
189   }
190 
191   EmitFunctionEpilog(*CurFnInfo);
192   EmitEndEHSpec(CurCodeDecl);
193 
194   assert(EHStack.empty() &&
195          "did not remove all scopes from cleanup stack!");
196 
197   // If someone did an indirect goto, emit the indirect goto block at the end of
198   // the function.
199   if (IndirectBranch) {
200     EmitBlock(IndirectBranch->getParent());
201     Builder.ClearInsertionPoint();
202   }
203 
204   // Remove the AllocaInsertPt instruction, which is just a convenience for us.
205   llvm::Instruction *Ptr = AllocaInsertPt;
206   AllocaInsertPt = 0;
207   Ptr->eraseFromParent();
208 
209   // If someone took the address of a label but never did an indirect goto, we
210   // made a zero entry PHI node, which is illegal, zap it now.
211   if (IndirectBranch) {
212     llvm::PHINode *PN = cast<llvm::PHINode>(IndirectBranch->getAddress());
213     if (PN->getNumIncomingValues() == 0) {
214       PN->replaceAllUsesWith(llvm::UndefValue::get(PN->getType()));
215       PN->eraseFromParent();
216     }
217   }
218 
219   EmitIfUsed(*this, EHResumeBlock);
220   EmitIfUsed(*this, TerminateLandingPad);
221   EmitIfUsed(*this, TerminateHandler);
222   EmitIfUsed(*this, UnreachableBlock);
223 
224   if (CGM.getCodeGenOpts().EmitDeclMetadata)
225     EmitDeclMetadata();
226 }
227 
228 /// ShouldInstrumentFunction - Return true if the current function should be
229 /// instrumented with __cyg_profile_func_* calls
230 bool CodeGenFunction::ShouldInstrumentFunction() {
231   if (!CGM.getCodeGenOpts().InstrumentFunctions)
232     return false;
233   if (!CurFuncDecl || CurFuncDecl->hasAttr<NoInstrumentFunctionAttr>())
234     return false;
235   return true;
236 }
237 
238 /// EmitFunctionInstrumentation - Emit LLVM code to call the specified
239 /// instrumentation function with the current function and the call site, if
240 /// function instrumentation is enabled.
241 void CodeGenFunction::EmitFunctionInstrumentation(const char *Fn) {
242   // void __cyg_profile_func_{enter,exit} (void *this_fn, void *call_site);
243   llvm::PointerType *PointerTy = Int8PtrTy;
244   llvm::Type *ProfileFuncArgs[] = { PointerTy, PointerTy };
245   llvm::FunctionType *FunctionTy =
246     llvm::FunctionType::get(VoidTy, ProfileFuncArgs, false);
247 
248   llvm::Constant *F = CGM.CreateRuntimeFunction(FunctionTy, Fn);
249   llvm::CallInst *CallSite = Builder.CreateCall(
250     CGM.getIntrinsic(llvm::Intrinsic::returnaddress),
251     llvm::ConstantInt::get(Int32Ty, 0),
252     "callsite");
253 
254   Builder.CreateCall2(F,
255                       llvm::ConstantExpr::getBitCast(CurFn, PointerTy),
256                       CallSite);
257 }
258 
259 void CodeGenFunction::EmitMCountInstrumentation() {
260   llvm::FunctionType *FTy = llvm::FunctionType::get(VoidTy, false);
261 
262   llvm::Constant *MCountFn = CGM.CreateRuntimeFunction(FTy,
263                                                        Target.getMCountName());
264   Builder.CreateCall(MCountFn);
265 }
266 
267 // OpenCL v1.2 s5.6.4.6 allows the compiler to store kernel argument
268 // information in the program executable. The argument information stored
269 // includes the argument name, its type, the address and access qualifiers used.
270 // FIXME: Add type, address, and access qualifiers.
271 static void GenOpenCLArgMetadata(const FunctionDecl *FD, llvm::Function *Fn,
272                                  CodeGenModule &CGM,llvm::LLVMContext &Context,
273                                  SmallVector <llvm::Value*, 5> &kernelMDArgs) {
274 
275   // Create MDNodes that represents the kernel arg metadata.
276   // Each MDNode is a list in the form of "key", N number of values which is
277   // the same number of values as their are kernel arguments.
278 
279   // MDNode for the kernel argument names.
280   SmallVector<llvm::Value*, 8> argNames;
281   argNames.push_back(llvm::MDString::get(Context, "kernel_arg_name"));
282 
283   for (unsigned i = 0, e = FD->getNumParams(); i != e; ++i) {
284     const ParmVarDecl *parm = FD->getParamDecl(i);
285 
286     // Get argument name.
287     argNames.push_back(llvm::MDString::get(Context, parm->getName()));
288 
289   }
290   // Add MDNode to the list of all metadata.
291   kernelMDArgs.push_back(llvm::MDNode::get(Context, argNames));
292 }
293 
294 void CodeGenFunction::EmitOpenCLKernelMetadata(const FunctionDecl *FD,
295                                                llvm::Function *Fn)
296 {
297   if (!FD->hasAttr<OpenCLKernelAttr>())
298     return;
299 
300   llvm::LLVMContext &Context = getLLVMContext();
301 
302   SmallVector <llvm::Value*, 5> kernelMDArgs;
303   kernelMDArgs.push_back(Fn);
304 
305   if (CGM.getCodeGenOpts().EmitOpenCLArgMetadata)
306     GenOpenCLArgMetadata(FD, Fn, CGM, Context, kernelMDArgs);
307 
308   if (FD->hasAttr<WorkGroupSizeHintAttr>()) {
309     WorkGroupSizeHintAttr *attr = FD->getAttr<WorkGroupSizeHintAttr>();
310     llvm::Value *attrMDArgs[] = {
311       llvm::MDString::get(Context, "work_group_size_hint"),
312       Builder.getInt32(attr->getXDim()),
313       Builder.getInt32(attr->getYDim()),
314       Builder.getInt32(attr->getZDim())
315     };
316     kernelMDArgs.push_back(llvm::MDNode::get(Context, attrMDArgs));
317   }
318 
319   if (FD->hasAttr<ReqdWorkGroupSizeAttr>()) {
320     ReqdWorkGroupSizeAttr *attr = FD->getAttr<ReqdWorkGroupSizeAttr>();
321     llvm::Value *attrMDArgs[] = {
322       llvm::MDString::get(Context, "reqd_work_group_size"),
323       Builder.getInt32(attr->getXDim()),
324       Builder.getInt32(attr->getYDim()),
325       Builder.getInt32(attr->getZDim())
326     };
327     kernelMDArgs.push_back(llvm::MDNode::get(Context, attrMDArgs));
328   }
329 
330   llvm::MDNode *kernelMDNode = llvm::MDNode::get(Context, kernelMDArgs);
331   llvm::NamedMDNode *OpenCLKernelMetadata =
332     CGM.getModule().getOrInsertNamedMetadata("opencl.kernels");
333   OpenCLKernelMetadata->addOperand(kernelMDNode);
334 }
335 
336 void CodeGenFunction::StartFunction(GlobalDecl GD, QualType RetTy,
337                                     llvm::Function *Fn,
338                                     const CGFunctionInfo &FnInfo,
339                                     const FunctionArgList &Args,
340                                     SourceLocation StartLoc) {
341   const Decl *D = GD.getDecl();
342 
343   DidCallStackSave = false;
344   CurCodeDecl = CurFuncDecl = D;
345   FnRetTy = RetTy;
346   CurFn = Fn;
347   CurFnInfo = &FnInfo;
348   assert(CurFn->isDeclaration() && "Function already has body?");
349 
350   // Pass inline keyword to optimizer if it appears explicitly on any
351   // declaration.
352   if (!CGM.getCodeGenOpts().NoInline)
353     if (const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D))
354       for (FunctionDecl::redecl_iterator RI = FD->redecls_begin(),
355              RE = FD->redecls_end(); RI != RE; ++RI)
356         if (RI->isInlineSpecified()) {
357           Fn->addFnAttr(llvm::Attribute::InlineHint);
358           break;
359         }
360 
361   if (getLangOpts().OpenCL) {
362     // Add metadata for a kernel function.
363     if (const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D))
364       EmitOpenCLKernelMetadata(FD, Fn);
365   }
366 
367   llvm::BasicBlock *EntryBB = createBasicBlock("entry", CurFn);
368 
369   // Create a marker to make it easy to insert allocas into the entryblock
370   // later.  Don't create this with the builder, because we don't want it
371   // folded.
372   llvm::Value *Undef = llvm::UndefValue::get(Int32Ty);
373   AllocaInsertPt = new llvm::BitCastInst(Undef, Int32Ty, "", EntryBB);
374   if (Builder.isNamePreserving())
375     AllocaInsertPt->setName("allocapt");
376 
377   ReturnBlock = getJumpDestInCurrentScope("return");
378 
379   Builder.SetInsertPoint(EntryBB);
380 
381   // Emit subprogram debug descriptor.
382   if (CGDebugInfo *DI = getDebugInfo()) {
383     unsigned NumArgs = 0;
384     QualType *ArgsArray = new QualType[Args.size()];
385     for (FunctionArgList::const_iterator i = Args.begin(), e = Args.end();
386 	 i != e; ++i) {
387       ArgsArray[NumArgs++] = (*i)->getType();
388     }
389 
390     QualType FnType =
391       getContext().getFunctionType(RetTy, ArgsArray, NumArgs,
392                                    FunctionProtoType::ExtProtoInfo());
393 
394     delete[] ArgsArray;
395 
396     DI->setLocation(StartLoc);
397     DI->EmitFunctionStart(GD, FnType, CurFn, Builder);
398   }
399 
400   if (ShouldInstrumentFunction())
401     EmitFunctionInstrumentation("__cyg_profile_func_enter");
402 
403   if (CGM.getCodeGenOpts().InstrumentForProfiling)
404     EmitMCountInstrumentation();
405 
406   if (RetTy->isVoidType()) {
407     // Void type; nothing to return.
408     ReturnValue = 0;
409   } else if (CurFnInfo->getReturnInfo().getKind() == ABIArgInfo::Indirect &&
410              hasAggregateLLVMType(CurFnInfo->getReturnType())) {
411     // Indirect aggregate return; emit returned value directly into sret slot.
412     // This reduces code size, and affects correctness in C++.
413     ReturnValue = CurFn->arg_begin();
414   } else {
415     ReturnValue = CreateIRTemp(RetTy, "retval");
416 
417     // Tell the epilog emitter to autorelease the result.  We do this
418     // now so that various specialized functions can suppress it
419     // during their IR-generation.
420     if (getLangOpts().ObjCAutoRefCount &&
421         !CurFnInfo->isReturnsRetained() &&
422         RetTy->isObjCRetainableType())
423       AutoreleaseResult = true;
424   }
425 
426   EmitStartEHSpec(CurCodeDecl);
427 
428   PrologueCleanupDepth = EHStack.stable_begin();
429   EmitFunctionProlog(*CurFnInfo, CurFn, Args);
430 
431   if (D && isa<CXXMethodDecl>(D) && cast<CXXMethodDecl>(D)->isInstance()) {
432     CGM.getCXXABI().EmitInstanceFunctionProlog(*this);
433     const CXXMethodDecl *MD = cast<CXXMethodDecl>(D);
434     if (MD->getParent()->isLambda() &&
435         MD->getOverloadedOperator() == OO_Call) {
436       // We're in a lambda; figure out the captures.
437       MD->getParent()->getCaptureFields(LambdaCaptureFields,
438                                         LambdaThisCaptureField);
439       if (LambdaThisCaptureField) {
440         // If this lambda captures this, load it.
441         QualType LambdaTagType =
442             getContext().getTagDeclType(LambdaThisCaptureField->getParent());
443         LValue LambdaLV = MakeNaturalAlignAddrLValue(CXXABIThisValue,
444                                                      LambdaTagType);
445         LValue ThisLValue = EmitLValueForField(LambdaLV,
446                                                LambdaThisCaptureField);
447         CXXThisValue = EmitLoadOfLValue(ThisLValue).getScalarVal();
448       }
449     } else {
450       // Not in a lambda; just use 'this' from the method.
451       // FIXME: Should we generate a new load for each use of 'this'?  The
452       // fast register allocator would be happier...
453       CXXThisValue = CXXABIThisValue;
454     }
455   }
456 
457   // If any of the arguments have a variably modified type, make sure to
458   // emit the type size.
459   for (FunctionArgList::const_iterator i = Args.begin(), e = Args.end();
460        i != e; ++i) {
461     const VarDecl *VD = *i;
462 
463     // Dig out the type as written from ParmVarDecls; it's unclear whether
464     // the standard (C99 6.9.1p10) requires this, but we're following the
465     // precedent set by gcc.
466     QualType Ty;
467     if (const ParmVarDecl *PVD = dyn_cast<ParmVarDecl>(VD))
468       Ty = PVD->getOriginalType();
469     else
470       Ty = VD->getType();
471 
472     if (Ty->isVariablyModifiedType())
473       EmitVariablyModifiedType(Ty);
474   }
475   // Emit a location at the end of the prologue.
476   if (CGDebugInfo *DI = getDebugInfo())
477     DI->EmitLocation(Builder, StartLoc);
478 }
479 
480 void CodeGenFunction::EmitFunctionBody(FunctionArgList &Args) {
481   const FunctionDecl *FD = cast<FunctionDecl>(CurGD.getDecl());
482   assert(FD->getBody());
483   EmitStmt(FD->getBody());
484 }
485 
486 /// Tries to mark the given function nounwind based on the
487 /// non-existence of any throwing calls within it.  We believe this is
488 /// lightweight enough to do at -O0.
489 static void TryMarkNoThrow(llvm::Function *F) {
490   // LLVM treats 'nounwind' on a function as part of the type, so we
491   // can't do this on functions that can be overwritten.
492   if (F->mayBeOverridden()) return;
493 
494   for (llvm::Function::iterator FI = F->begin(), FE = F->end(); FI != FE; ++FI)
495     for (llvm::BasicBlock::iterator
496            BI = FI->begin(), BE = FI->end(); BI != BE; ++BI)
497       if (llvm::CallInst *Call = dyn_cast<llvm::CallInst>(&*BI)) {
498         if (!Call->doesNotThrow())
499           return;
500       } else if (isa<llvm::ResumeInst>(&*BI)) {
501         return;
502       }
503   F->setDoesNotThrow();
504 }
505 
506 void CodeGenFunction::GenerateCode(GlobalDecl GD, llvm::Function *Fn,
507                                    const CGFunctionInfo &FnInfo) {
508   const FunctionDecl *FD = cast<FunctionDecl>(GD.getDecl());
509 
510   // Check if we should generate debug info for this function.
511   if (!FD->hasAttr<NoDebugAttr>())
512     maybeInitializeDebugInfo();
513 
514   FunctionArgList Args;
515   QualType ResTy = FD->getResultType();
516 
517   CurGD = GD;
518   if (isa<CXXMethodDecl>(FD) && cast<CXXMethodDecl>(FD)->isInstance())
519     CGM.getCXXABI().BuildInstanceFunctionParams(*this, ResTy, Args);
520 
521   for (unsigned i = 0, e = FD->getNumParams(); i != e; ++i)
522     Args.push_back(FD->getParamDecl(i));
523 
524   SourceRange BodyRange;
525   if (Stmt *Body = FD->getBody()) BodyRange = Body->getSourceRange();
526 
527   // Emit the standard function prologue.
528   StartFunction(GD, ResTy, Fn, FnInfo, Args, BodyRange.getBegin());
529 
530   // Generate the body of the function.
531   if (isa<CXXDestructorDecl>(FD))
532     EmitDestructorBody(Args);
533   else if (isa<CXXConstructorDecl>(FD))
534     EmitConstructorBody(Args);
535   else if (getLangOpts().CUDA &&
536            !CGM.getCodeGenOpts().CUDAIsDevice &&
537            FD->hasAttr<CUDAGlobalAttr>())
538     CGM.getCUDARuntime().EmitDeviceStubBody(*this, Args);
539   else if (isa<CXXConversionDecl>(FD) &&
540            cast<CXXConversionDecl>(FD)->isLambdaToBlockPointerConversion()) {
541     // The lambda conversion to block pointer is special; the semantics can't be
542     // expressed in the AST, so IRGen needs to special-case it.
543     EmitLambdaToBlockPointerBody(Args);
544   } else if (isa<CXXMethodDecl>(FD) &&
545              cast<CXXMethodDecl>(FD)->isLambdaStaticInvoker()) {
546     // The lambda "__invoke" function is special, because it forwards or
547     // clones the body of the function call operator (but is actually static).
548     EmitLambdaStaticInvokeFunction(cast<CXXMethodDecl>(FD));
549   }
550   else
551     EmitFunctionBody(Args);
552 
553   // C++11 [stmt.return]p2:
554   //   Flowing off the end of a function [...] results in undefined behavior in
555   //   a value-returning function.
556   // C11 6.9.1p12:
557   //   If the '}' that terminates a function is reached, and the value of the
558   //   function call is used by the caller, the behavior is undefined.
559   if (getLangOpts().CPlusPlus && !FD->hasImplicitReturnZero() &&
560       !FD->getResultType()->isVoidType() && Builder.GetInsertBlock()) {
561     if (getLangOpts().SanitizeReturn)
562       EmitCheck(Builder.getFalse(), "missing_return",
563                 EmitCheckSourceLocation(FD->getLocation()),
564                 ArrayRef<llvm::Value *>(), CRK_Unrecoverable);
565     else if (CGM.getCodeGenOpts().OptimizationLevel == 0)
566       Builder.CreateCall(CGM.getIntrinsic(llvm::Intrinsic::trap));
567     Builder.CreateUnreachable();
568     Builder.ClearInsertionPoint();
569   }
570 
571   // Emit the standard function epilogue.
572   FinishFunction(BodyRange.getEnd());
573 
574   // If we haven't marked the function nothrow through other means, do
575   // a quick pass now to see if we can.
576   if (!CurFn->doesNotThrow())
577     TryMarkNoThrow(CurFn);
578 }
579 
580 /// ContainsLabel - Return true if the statement contains a label in it.  If
581 /// this statement is not executed normally, it not containing a label means
582 /// that we can just remove the code.
583 bool CodeGenFunction::ContainsLabel(const Stmt *S, bool IgnoreCaseStmts) {
584   // Null statement, not a label!
585   if (S == 0) return false;
586 
587   // If this is a label, we have to emit the code, consider something like:
588   // if (0) {  ...  foo:  bar(); }  goto foo;
589   //
590   // TODO: If anyone cared, we could track __label__'s, since we know that you
591   // can't jump to one from outside their declared region.
592   if (isa<LabelStmt>(S))
593     return true;
594 
595   // If this is a case/default statement, and we haven't seen a switch, we have
596   // to emit the code.
597   if (isa<SwitchCase>(S) && !IgnoreCaseStmts)
598     return true;
599 
600   // If this is a switch statement, we want to ignore cases below it.
601   if (isa<SwitchStmt>(S))
602     IgnoreCaseStmts = true;
603 
604   // Scan subexpressions for verboten labels.
605   for (Stmt::const_child_range I = S->children(); I; ++I)
606     if (ContainsLabel(*I, IgnoreCaseStmts))
607       return true;
608 
609   return false;
610 }
611 
612 /// containsBreak - Return true if the statement contains a break out of it.
613 /// If the statement (recursively) contains a switch or loop with a break
614 /// inside of it, this is fine.
615 bool CodeGenFunction::containsBreak(const Stmt *S) {
616   // Null statement, not a label!
617   if (S == 0) return false;
618 
619   // If this is a switch or loop that defines its own break scope, then we can
620   // include it and anything inside of it.
621   if (isa<SwitchStmt>(S) || isa<WhileStmt>(S) || isa<DoStmt>(S) ||
622       isa<ForStmt>(S))
623     return false;
624 
625   if (isa<BreakStmt>(S))
626     return true;
627 
628   // Scan subexpressions for verboten breaks.
629   for (Stmt::const_child_range I = S->children(); I; ++I)
630     if (containsBreak(*I))
631       return true;
632 
633   return false;
634 }
635 
636 
637 /// ConstantFoldsToSimpleInteger - If the specified expression does not fold
638 /// to a constant, or if it does but contains a label, return false.  If it
639 /// constant folds return true and set the boolean result in Result.
640 bool CodeGenFunction::ConstantFoldsToSimpleInteger(const Expr *Cond,
641                                                    bool &ResultBool) {
642   llvm::APSInt ResultInt;
643   if (!ConstantFoldsToSimpleInteger(Cond, ResultInt))
644     return false;
645 
646   ResultBool = ResultInt.getBoolValue();
647   return true;
648 }
649 
650 /// ConstantFoldsToSimpleInteger - If the specified expression does not fold
651 /// to a constant, or if it does but contains a label, return false.  If it
652 /// constant folds return true and set the folded value.
653 bool CodeGenFunction::
654 ConstantFoldsToSimpleInteger(const Expr *Cond, llvm::APSInt &ResultInt) {
655   // FIXME: Rename and handle conversion of other evaluatable things
656   // to bool.
657   llvm::APSInt Int;
658   if (!Cond->EvaluateAsInt(Int, getContext()))
659     return false;  // Not foldable, not integer or not fully evaluatable.
660 
661   if (CodeGenFunction::ContainsLabel(Cond))
662     return false;  // Contains a label.
663 
664   ResultInt = Int;
665   return true;
666 }
667 
668 
669 
670 /// EmitBranchOnBoolExpr - Emit a branch on a boolean condition (e.g. for an if
671 /// statement) to the specified blocks.  Based on the condition, this might try
672 /// to simplify the codegen of the conditional based on the branch.
673 ///
674 void CodeGenFunction::EmitBranchOnBoolExpr(const Expr *Cond,
675                                            llvm::BasicBlock *TrueBlock,
676                                            llvm::BasicBlock *FalseBlock) {
677   Cond = Cond->IgnoreParens();
678 
679   if (const BinaryOperator *CondBOp = dyn_cast<BinaryOperator>(Cond)) {
680     // Handle X && Y in a condition.
681     if (CondBOp->getOpcode() == BO_LAnd) {
682       // If we have "1 && X", simplify the code.  "0 && X" would have constant
683       // folded if the case was simple enough.
684       bool ConstantBool = false;
685       if (ConstantFoldsToSimpleInteger(CondBOp->getLHS(), ConstantBool) &&
686           ConstantBool) {
687         // br(1 && X) -> br(X).
688         return EmitBranchOnBoolExpr(CondBOp->getRHS(), TrueBlock, FalseBlock);
689       }
690 
691       // If we have "X && 1", simplify the code to use an uncond branch.
692       // "X && 0" would have been constant folded to 0.
693       if (ConstantFoldsToSimpleInteger(CondBOp->getRHS(), ConstantBool) &&
694           ConstantBool) {
695         // br(X && 1) -> br(X).
696         return EmitBranchOnBoolExpr(CondBOp->getLHS(), TrueBlock, FalseBlock);
697       }
698 
699       // Emit the LHS as a conditional.  If the LHS conditional is false, we
700       // want to jump to the FalseBlock.
701       llvm::BasicBlock *LHSTrue = createBasicBlock("land.lhs.true");
702 
703       ConditionalEvaluation eval(*this);
704       EmitBranchOnBoolExpr(CondBOp->getLHS(), LHSTrue, FalseBlock);
705       EmitBlock(LHSTrue);
706 
707       // Any temporaries created here are conditional.
708       eval.begin(*this);
709       EmitBranchOnBoolExpr(CondBOp->getRHS(), TrueBlock, FalseBlock);
710       eval.end(*this);
711 
712       return;
713     }
714 
715     if (CondBOp->getOpcode() == BO_LOr) {
716       // If we have "0 || X", simplify the code.  "1 || X" would have constant
717       // folded if the case was simple enough.
718       bool ConstantBool = false;
719       if (ConstantFoldsToSimpleInteger(CondBOp->getLHS(), ConstantBool) &&
720           !ConstantBool) {
721         // br(0 || X) -> br(X).
722         return EmitBranchOnBoolExpr(CondBOp->getRHS(), TrueBlock, FalseBlock);
723       }
724 
725       // If we have "X || 0", simplify the code to use an uncond branch.
726       // "X || 1" would have been constant folded to 1.
727       if (ConstantFoldsToSimpleInteger(CondBOp->getRHS(), ConstantBool) &&
728           !ConstantBool) {
729         // br(X || 0) -> br(X).
730         return EmitBranchOnBoolExpr(CondBOp->getLHS(), TrueBlock, FalseBlock);
731       }
732 
733       // Emit the LHS as a conditional.  If the LHS conditional is true, we
734       // want to jump to the TrueBlock.
735       llvm::BasicBlock *LHSFalse = createBasicBlock("lor.lhs.false");
736 
737       ConditionalEvaluation eval(*this);
738       EmitBranchOnBoolExpr(CondBOp->getLHS(), TrueBlock, LHSFalse);
739       EmitBlock(LHSFalse);
740 
741       // Any temporaries created here are conditional.
742       eval.begin(*this);
743       EmitBranchOnBoolExpr(CondBOp->getRHS(), TrueBlock, FalseBlock);
744       eval.end(*this);
745 
746       return;
747     }
748   }
749 
750   if (const UnaryOperator *CondUOp = dyn_cast<UnaryOperator>(Cond)) {
751     // br(!x, t, f) -> br(x, f, t)
752     if (CondUOp->getOpcode() == UO_LNot)
753       return EmitBranchOnBoolExpr(CondUOp->getSubExpr(), FalseBlock, TrueBlock);
754   }
755 
756   if (const ConditionalOperator *CondOp = dyn_cast<ConditionalOperator>(Cond)) {
757     // br(c ? x : y, t, f) -> br(c, br(x, t, f), br(y, t, f))
758     llvm::BasicBlock *LHSBlock = createBasicBlock("cond.true");
759     llvm::BasicBlock *RHSBlock = createBasicBlock("cond.false");
760 
761     ConditionalEvaluation cond(*this);
762     EmitBranchOnBoolExpr(CondOp->getCond(), LHSBlock, RHSBlock);
763 
764     cond.begin(*this);
765     EmitBlock(LHSBlock);
766     EmitBranchOnBoolExpr(CondOp->getLHS(), TrueBlock, FalseBlock);
767     cond.end(*this);
768 
769     cond.begin(*this);
770     EmitBlock(RHSBlock);
771     EmitBranchOnBoolExpr(CondOp->getRHS(), TrueBlock, FalseBlock);
772     cond.end(*this);
773 
774     return;
775   }
776 
777   // Emit the code with the fully general case.
778   llvm::Value *CondV = EvaluateExprAsBool(Cond);
779   Builder.CreateCondBr(CondV, TrueBlock, FalseBlock);
780 }
781 
782 /// ErrorUnsupported - Print out an error that codegen doesn't support the
783 /// specified stmt yet.
784 void CodeGenFunction::ErrorUnsupported(const Stmt *S, const char *Type,
785                                        bool OmitOnError) {
786   CGM.ErrorUnsupported(S, Type, OmitOnError);
787 }
788 
789 /// emitNonZeroVLAInit - Emit the "zero" initialization of a
790 /// variable-length array whose elements have a non-zero bit-pattern.
791 ///
792 /// \param baseType the inner-most element type of the array
793 /// \param src - a char* pointing to the bit-pattern for a single
794 /// base element of the array
795 /// \param sizeInChars - the total size of the VLA, in chars
796 static void emitNonZeroVLAInit(CodeGenFunction &CGF, QualType baseType,
797                                llvm::Value *dest, llvm::Value *src,
798                                llvm::Value *sizeInChars) {
799   std::pair<CharUnits,CharUnits> baseSizeAndAlign
800     = CGF.getContext().getTypeInfoInChars(baseType);
801 
802   CGBuilderTy &Builder = CGF.Builder;
803 
804   llvm::Value *baseSizeInChars
805     = llvm::ConstantInt::get(CGF.IntPtrTy, baseSizeAndAlign.first.getQuantity());
806 
807   llvm::Type *i8p = Builder.getInt8PtrTy();
808 
809   llvm::Value *begin = Builder.CreateBitCast(dest, i8p, "vla.begin");
810   llvm::Value *end = Builder.CreateInBoundsGEP(dest, sizeInChars, "vla.end");
811 
812   llvm::BasicBlock *originBB = CGF.Builder.GetInsertBlock();
813   llvm::BasicBlock *loopBB = CGF.createBasicBlock("vla-init.loop");
814   llvm::BasicBlock *contBB = CGF.createBasicBlock("vla-init.cont");
815 
816   // Make a loop over the VLA.  C99 guarantees that the VLA element
817   // count must be nonzero.
818   CGF.EmitBlock(loopBB);
819 
820   llvm::PHINode *cur = Builder.CreatePHI(i8p, 2, "vla.cur");
821   cur->addIncoming(begin, originBB);
822 
823   // memcpy the individual element bit-pattern.
824   Builder.CreateMemCpy(cur, src, baseSizeInChars,
825                        baseSizeAndAlign.second.getQuantity(),
826                        /*volatile*/ false);
827 
828   // Go to the next element.
829   llvm::Value *next = Builder.CreateConstInBoundsGEP1_32(cur, 1, "vla.next");
830 
831   // Leave if that's the end of the VLA.
832   llvm::Value *done = Builder.CreateICmpEQ(next, end, "vla-init.isdone");
833   Builder.CreateCondBr(done, contBB, loopBB);
834   cur->addIncoming(next, loopBB);
835 
836   CGF.EmitBlock(contBB);
837 }
838 
839 void
840 CodeGenFunction::EmitNullInitialization(llvm::Value *DestPtr, QualType Ty) {
841   // Ignore empty classes in C++.
842   if (getLangOpts().CPlusPlus) {
843     if (const RecordType *RT = Ty->getAs<RecordType>()) {
844       if (cast<CXXRecordDecl>(RT->getDecl())->isEmpty())
845         return;
846     }
847   }
848 
849   // Cast the dest ptr to the appropriate i8 pointer type.
850   unsigned DestAS =
851     cast<llvm::PointerType>(DestPtr->getType())->getAddressSpace();
852   llvm::Type *BP = Builder.getInt8PtrTy(DestAS);
853   if (DestPtr->getType() != BP)
854     DestPtr = Builder.CreateBitCast(DestPtr, BP);
855 
856   // Get size and alignment info for this aggregate.
857   std::pair<CharUnits, CharUnits> TypeInfo =
858     getContext().getTypeInfoInChars(Ty);
859   CharUnits Size = TypeInfo.first;
860   CharUnits Align = TypeInfo.second;
861 
862   llvm::Value *SizeVal;
863   const VariableArrayType *vla;
864 
865   // Don't bother emitting a zero-byte memset.
866   if (Size.isZero()) {
867     // But note that getTypeInfo returns 0 for a VLA.
868     if (const VariableArrayType *vlaType =
869           dyn_cast_or_null<VariableArrayType>(
870                                           getContext().getAsArrayType(Ty))) {
871       QualType eltType;
872       llvm::Value *numElts;
873       llvm::tie(numElts, eltType) = getVLASize(vlaType);
874 
875       SizeVal = numElts;
876       CharUnits eltSize = getContext().getTypeSizeInChars(eltType);
877       if (!eltSize.isOne())
878         SizeVal = Builder.CreateNUWMul(SizeVal, CGM.getSize(eltSize));
879       vla = vlaType;
880     } else {
881       return;
882     }
883   } else {
884     SizeVal = CGM.getSize(Size);
885     vla = 0;
886   }
887 
888   // If the type contains a pointer to data member we can't memset it to zero.
889   // Instead, create a null constant and copy it to the destination.
890   // TODO: there are other patterns besides zero that we can usefully memset,
891   // like -1, which happens to be the pattern used by member-pointers.
892   if (!CGM.getTypes().isZeroInitializable(Ty)) {
893     // For a VLA, emit a single element, then splat that over the VLA.
894     if (vla) Ty = getContext().getBaseElementType(vla);
895 
896     llvm::Constant *NullConstant = CGM.EmitNullConstant(Ty);
897 
898     llvm::GlobalVariable *NullVariable =
899       new llvm::GlobalVariable(CGM.getModule(), NullConstant->getType(),
900                                /*isConstant=*/true,
901                                llvm::GlobalVariable::PrivateLinkage,
902                                NullConstant, Twine());
903     llvm::Value *SrcPtr =
904       Builder.CreateBitCast(NullVariable, Builder.getInt8PtrTy());
905 
906     if (vla) return emitNonZeroVLAInit(*this, Ty, DestPtr, SrcPtr, SizeVal);
907 
908     // Get and call the appropriate llvm.memcpy overload.
909     Builder.CreateMemCpy(DestPtr, SrcPtr, SizeVal, Align.getQuantity(), false);
910     return;
911   }
912 
913   // Otherwise, just memset the whole thing to zero.  This is legal
914   // because in LLVM, all default initializers (other than the ones we just
915   // handled above) are guaranteed to have a bit pattern of all zeros.
916   Builder.CreateMemSet(DestPtr, Builder.getInt8(0), SizeVal,
917                        Align.getQuantity(), false);
918 }
919 
920 llvm::BlockAddress *CodeGenFunction::GetAddrOfLabel(const LabelDecl *L) {
921   // Make sure that there is a block for the indirect goto.
922   if (IndirectBranch == 0)
923     GetIndirectGotoBlock();
924 
925   llvm::BasicBlock *BB = getJumpDestForLabel(L).getBlock();
926 
927   // Make sure the indirect branch includes all of the address-taken blocks.
928   IndirectBranch->addDestination(BB);
929   return llvm::BlockAddress::get(CurFn, BB);
930 }
931 
932 llvm::BasicBlock *CodeGenFunction::GetIndirectGotoBlock() {
933   // If we already made the indirect branch for indirect goto, return its block.
934   if (IndirectBranch) return IndirectBranch->getParent();
935 
936   CGBuilderTy TmpBuilder(createBasicBlock("indirectgoto"));
937 
938   // Create the PHI node that indirect gotos will add entries to.
939   llvm::Value *DestVal = TmpBuilder.CreatePHI(Int8PtrTy, 0,
940                                               "indirect.goto.dest");
941 
942   // Create the indirect branch instruction.
943   IndirectBranch = TmpBuilder.CreateIndirectBr(DestVal);
944   return IndirectBranch->getParent();
945 }
946 
947 /// Computes the length of an array in elements, as well as the base
948 /// element type and a properly-typed first element pointer.
949 llvm::Value *CodeGenFunction::emitArrayLength(const ArrayType *origArrayType,
950                                               QualType &baseType,
951                                               llvm::Value *&addr) {
952   const ArrayType *arrayType = origArrayType;
953 
954   // If it's a VLA, we have to load the stored size.  Note that
955   // this is the size of the VLA in bytes, not its size in elements.
956   llvm::Value *numVLAElements = 0;
957   if (isa<VariableArrayType>(arrayType)) {
958     numVLAElements = getVLASize(cast<VariableArrayType>(arrayType)).first;
959 
960     // Walk into all VLAs.  This doesn't require changes to addr,
961     // which has type T* where T is the first non-VLA element type.
962     do {
963       QualType elementType = arrayType->getElementType();
964       arrayType = getContext().getAsArrayType(elementType);
965 
966       // If we only have VLA components, 'addr' requires no adjustment.
967       if (!arrayType) {
968         baseType = elementType;
969         return numVLAElements;
970       }
971     } while (isa<VariableArrayType>(arrayType));
972 
973     // We get out here only if we find a constant array type
974     // inside the VLA.
975   }
976 
977   // We have some number of constant-length arrays, so addr should
978   // have LLVM type [M x [N x [...]]]*.  Build a GEP that walks
979   // down to the first element of addr.
980   SmallVector<llvm::Value*, 8> gepIndices;
981 
982   // GEP down to the array type.
983   llvm::ConstantInt *zero = Builder.getInt32(0);
984   gepIndices.push_back(zero);
985 
986   uint64_t countFromCLAs = 1;
987   QualType eltType;
988 
989   llvm::ArrayType *llvmArrayType =
990     dyn_cast<llvm::ArrayType>(
991       cast<llvm::PointerType>(addr->getType())->getElementType());
992   while (llvmArrayType) {
993     assert(isa<ConstantArrayType>(arrayType));
994     assert(cast<ConstantArrayType>(arrayType)->getSize().getZExtValue()
995              == llvmArrayType->getNumElements());
996 
997     gepIndices.push_back(zero);
998     countFromCLAs *= llvmArrayType->getNumElements();
999     eltType = arrayType->getElementType();
1000 
1001     llvmArrayType =
1002       dyn_cast<llvm::ArrayType>(llvmArrayType->getElementType());
1003     arrayType = getContext().getAsArrayType(arrayType->getElementType());
1004     assert((!llvmArrayType || arrayType) &&
1005            "LLVM and Clang types are out-of-synch");
1006   }
1007 
1008   if (arrayType) {
1009     // From this point onwards, the Clang array type has been emitted
1010     // as some other type (probably a packed struct). Compute the array
1011     // size, and just emit the 'begin' expression as a bitcast.
1012     while (arrayType) {
1013       countFromCLAs *=
1014           cast<ConstantArrayType>(arrayType)->getSize().getZExtValue();
1015       eltType = arrayType->getElementType();
1016       arrayType = getContext().getAsArrayType(eltType);
1017     }
1018 
1019     unsigned AddressSpace = addr->getType()->getPointerAddressSpace();
1020     llvm::Type *BaseType = ConvertType(eltType)->getPointerTo(AddressSpace);
1021     addr = Builder.CreateBitCast(addr, BaseType, "array.begin");
1022   } else {
1023     // Create the actual GEP.
1024     addr = Builder.CreateInBoundsGEP(addr, gepIndices, "array.begin");
1025   }
1026 
1027   baseType = eltType;
1028 
1029   llvm::Value *numElements
1030     = llvm::ConstantInt::get(SizeTy, countFromCLAs);
1031 
1032   // If we had any VLA dimensions, factor them in.
1033   if (numVLAElements)
1034     numElements = Builder.CreateNUWMul(numVLAElements, numElements);
1035 
1036   return numElements;
1037 }
1038 
1039 std::pair<llvm::Value*, QualType>
1040 CodeGenFunction::getVLASize(QualType type) {
1041   const VariableArrayType *vla = getContext().getAsVariableArrayType(type);
1042   assert(vla && "type was not a variable array type!");
1043   return getVLASize(vla);
1044 }
1045 
1046 std::pair<llvm::Value*, QualType>
1047 CodeGenFunction::getVLASize(const VariableArrayType *type) {
1048   // The number of elements so far; always size_t.
1049   llvm::Value *numElements = 0;
1050 
1051   QualType elementType;
1052   do {
1053     elementType = type->getElementType();
1054     llvm::Value *vlaSize = VLASizeMap[type->getSizeExpr()];
1055     assert(vlaSize && "no size for VLA!");
1056     assert(vlaSize->getType() == SizeTy);
1057 
1058     if (!numElements) {
1059       numElements = vlaSize;
1060     } else {
1061       // It's undefined behavior if this wraps around, so mark it that way.
1062       // FIXME: Teach -fcatch-undefined-behavior to trap this.
1063       numElements = Builder.CreateNUWMul(numElements, vlaSize);
1064     }
1065   } while ((type = getContext().getAsVariableArrayType(elementType)));
1066 
1067   return std::pair<llvm::Value*,QualType>(numElements, elementType);
1068 }
1069 
1070 void CodeGenFunction::EmitVariablyModifiedType(QualType type) {
1071   assert(type->isVariablyModifiedType() &&
1072          "Must pass variably modified type to EmitVLASizes!");
1073 
1074   EnsureInsertPoint();
1075 
1076   // We're going to walk down into the type and look for VLA
1077   // expressions.
1078   do {
1079     assert(type->isVariablyModifiedType());
1080 
1081     const Type *ty = type.getTypePtr();
1082     switch (ty->getTypeClass()) {
1083 
1084 #define TYPE(Class, Base)
1085 #define ABSTRACT_TYPE(Class, Base)
1086 #define NON_CANONICAL_TYPE(Class, Base)
1087 #define DEPENDENT_TYPE(Class, Base) case Type::Class:
1088 #define NON_CANONICAL_UNLESS_DEPENDENT_TYPE(Class, Base)
1089 #include "clang/AST/TypeNodes.def"
1090       llvm_unreachable("unexpected dependent type!");
1091 
1092     // These types are never variably-modified.
1093     case Type::Builtin:
1094     case Type::Complex:
1095     case Type::Vector:
1096     case Type::ExtVector:
1097     case Type::Record:
1098     case Type::Enum:
1099     case Type::Elaborated:
1100     case Type::TemplateSpecialization:
1101     case Type::ObjCObject:
1102     case Type::ObjCInterface:
1103     case Type::ObjCObjectPointer:
1104       llvm_unreachable("type class is never variably-modified!");
1105 
1106     case Type::Pointer:
1107       type = cast<PointerType>(ty)->getPointeeType();
1108       break;
1109 
1110     case Type::BlockPointer:
1111       type = cast<BlockPointerType>(ty)->getPointeeType();
1112       break;
1113 
1114     case Type::LValueReference:
1115     case Type::RValueReference:
1116       type = cast<ReferenceType>(ty)->getPointeeType();
1117       break;
1118 
1119     case Type::MemberPointer:
1120       type = cast<MemberPointerType>(ty)->getPointeeType();
1121       break;
1122 
1123     case Type::ConstantArray:
1124     case Type::IncompleteArray:
1125       // Losing element qualification here is fine.
1126       type = cast<ArrayType>(ty)->getElementType();
1127       break;
1128 
1129     case Type::VariableArray: {
1130       // Losing element qualification here is fine.
1131       const VariableArrayType *vat = cast<VariableArrayType>(ty);
1132 
1133       // Unknown size indication requires no size computation.
1134       // Otherwise, evaluate and record it.
1135       if (const Expr *size = vat->getSizeExpr()) {
1136         // It's possible that we might have emitted this already,
1137         // e.g. with a typedef and a pointer to it.
1138         llvm::Value *&entry = VLASizeMap[size];
1139         if (!entry) {
1140           llvm::Value *Size = EmitScalarExpr(size);
1141 
1142           // C11 6.7.6.2p5:
1143           //   If the size is an expression that is not an integer constant
1144           //   expression [...] each time it is evaluated it shall have a value
1145           //   greater than zero.
1146           if (getLangOpts().SanitizeVLABound &&
1147               size->getType()->isSignedIntegerType()) {
1148             llvm::Value *Zero = llvm::Constant::getNullValue(Size->getType());
1149             llvm::Constant *StaticArgs[] = {
1150               EmitCheckSourceLocation(size->getLocStart()),
1151               EmitCheckTypeDescriptor(size->getType())
1152             };
1153             EmitCheck(Builder.CreateICmpSGT(Size, Zero),
1154                       "vla_bound_not_positive", StaticArgs, Size,
1155                       CRK_Recoverable);
1156           }
1157 
1158           // Always zexting here would be wrong if it weren't
1159           // undefined behavior to have a negative bound.
1160           entry = Builder.CreateIntCast(Size, SizeTy, /*signed*/ false);
1161         }
1162       }
1163       type = vat->getElementType();
1164       break;
1165     }
1166 
1167     case Type::FunctionProto:
1168     case Type::FunctionNoProto:
1169       type = cast<FunctionType>(ty)->getResultType();
1170       break;
1171 
1172     case Type::Paren:
1173     case Type::TypeOf:
1174     case Type::UnaryTransform:
1175     case Type::Attributed:
1176     case Type::SubstTemplateTypeParm:
1177       // Keep walking after single level desugaring.
1178       type = type.getSingleStepDesugaredType(getContext());
1179       break;
1180 
1181     case Type::Typedef:
1182     case Type::Decltype:
1183     case Type::Auto:
1184       // Stop walking: nothing to do.
1185       return;
1186 
1187     case Type::TypeOfExpr:
1188       // Stop walking: emit typeof expression.
1189       EmitIgnoredExpr(cast<TypeOfExprType>(ty)->getUnderlyingExpr());
1190       return;
1191 
1192     case Type::Atomic:
1193       type = cast<AtomicType>(ty)->getValueType();
1194       break;
1195     }
1196   } while (type->isVariablyModifiedType());
1197 }
1198 
1199 llvm::Value* CodeGenFunction::EmitVAListRef(const Expr* E) {
1200   if (getContext().getBuiltinVaListType()->isArrayType())
1201     return EmitScalarExpr(E);
1202   return EmitLValue(E).getAddress();
1203 }
1204 
1205 void CodeGenFunction::EmitDeclRefExprDbgValue(const DeclRefExpr *E,
1206                                               llvm::Constant *Init) {
1207   assert (Init && "Invalid DeclRefExpr initializer!");
1208   if (CGDebugInfo *Dbg = getDebugInfo())
1209     if (CGM.getCodeGenOpts().getDebugInfo() >= CodeGenOptions::LimitedDebugInfo)
1210       Dbg->EmitGlobalVariable(E->getDecl(), Init);
1211 }
1212 
1213 CodeGenFunction::PeepholeProtection
1214 CodeGenFunction::protectFromPeepholes(RValue rvalue) {
1215   // At the moment, the only aggressive peephole we do in IR gen
1216   // is trunc(zext) folding, but if we add more, we can easily
1217   // extend this protection.
1218 
1219   if (!rvalue.isScalar()) return PeepholeProtection();
1220   llvm::Value *value = rvalue.getScalarVal();
1221   if (!isa<llvm::ZExtInst>(value)) return PeepholeProtection();
1222 
1223   // Just make an extra bitcast.
1224   assert(HaveInsertPoint());
1225   llvm::Instruction *inst = new llvm::BitCastInst(value, value->getType(), "",
1226                                                   Builder.GetInsertBlock());
1227 
1228   PeepholeProtection protection;
1229   protection.Inst = inst;
1230   return protection;
1231 }
1232 
1233 void CodeGenFunction::unprotectFromPeepholes(PeepholeProtection protection) {
1234   if (!protection.Inst) return;
1235 
1236   // In theory, we could try to duplicate the peepholes now, but whatever.
1237   protection.Inst->eraseFromParent();
1238 }
1239 
1240 llvm::Value *CodeGenFunction::EmitAnnotationCall(llvm::Value *AnnotationFn,
1241                                                  llvm::Value *AnnotatedVal,
1242                                                  StringRef AnnotationStr,
1243                                                  SourceLocation Location) {
1244   llvm::Value *Args[4] = {
1245     AnnotatedVal,
1246     Builder.CreateBitCast(CGM.EmitAnnotationString(AnnotationStr), Int8PtrTy),
1247     Builder.CreateBitCast(CGM.EmitAnnotationUnit(Location), Int8PtrTy),
1248     CGM.EmitAnnotationLineNo(Location)
1249   };
1250   return Builder.CreateCall(AnnotationFn, Args);
1251 }
1252 
1253 void CodeGenFunction::EmitVarAnnotations(const VarDecl *D, llvm::Value *V) {
1254   assert(D->hasAttr<AnnotateAttr>() && "no annotate attribute");
1255   // FIXME We create a new bitcast for every annotation because that's what
1256   // llvm-gcc was doing.
1257   for (specific_attr_iterator<AnnotateAttr>
1258        ai = D->specific_attr_begin<AnnotateAttr>(),
1259        ae = D->specific_attr_end<AnnotateAttr>(); ai != ae; ++ai)
1260     EmitAnnotationCall(CGM.getIntrinsic(llvm::Intrinsic::var_annotation),
1261                        Builder.CreateBitCast(V, CGM.Int8PtrTy, V->getName()),
1262                        (*ai)->getAnnotation(), D->getLocation());
1263 }
1264 
1265 llvm::Value *CodeGenFunction::EmitFieldAnnotations(const FieldDecl *D,
1266                                                    llvm::Value *V) {
1267   assert(D->hasAttr<AnnotateAttr>() && "no annotate attribute");
1268   llvm::Type *VTy = V->getType();
1269   llvm::Value *F = CGM.getIntrinsic(llvm::Intrinsic::ptr_annotation,
1270                                     CGM.Int8PtrTy);
1271 
1272   for (specific_attr_iterator<AnnotateAttr>
1273        ai = D->specific_attr_begin<AnnotateAttr>(),
1274        ae = D->specific_attr_end<AnnotateAttr>(); ai != ae; ++ai) {
1275     // FIXME Always emit the cast inst so we can differentiate between
1276     // annotation on the first field of a struct and annotation on the struct
1277     // itself.
1278     if (VTy != CGM.Int8PtrTy)
1279       V = Builder.Insert(new llvm::BitCastInst(V, CGM.Int8PtrTy));
1280     V = EmitAnnotationCall(F, V, (*ai)->getAnnotation(), D->getLocation());
1281     V = Builder.CreateBitCast(V, VTy);
1282   }
1283 
1284   return V;
1285 }
1286