1 //===--- CodeGenFunction.cpp - Emit LLVM Code from ASTs for a Function ----===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This coordinates the per-function state used while generating code. 10 // 11 //===----------------------------------------------------------------------===// 12 13 #include "CodeGenFunction.h" 14 #include "CGBlocks.h" 15 #include "CGCleanup.h" 16 #include "CGCUDARuntime.h" 17 #include "CGCXXABI.h" 18 #include "CGDebugInfo.h" 19 #include "CGOpenMPRuntime.h" 20 #include "CodeGenModule.h" 21 #include "CodeGenPGO.h" 22 #include "TargetInfo.h" 23 #include "clang/AST/ASTContext.h" 24 #include "clang/AST/ASTLambda.h" 25 #include "clang/AST/Decl.h" 26 #include "clang/AST/DeclCXX.h" 27 #include "clang/AST/StmtCXX.h" 28 #include "clang/AST/StmtObjC.h" 29 #include "clang/Basic/Builtins.h" 30 #include "clang/Basic/CodeGenOptions.h" 31 #include "clang/Basic/TargetInfo.h" 32 #include "clang/CodeGen/CGFunctionInfo.h" 33 #include "clang/Frontend/FrontendDiagnostic.h" 34 #include "llvm/IR/DataLayout.h" 35 #include "llvm/IR/Dominators.h" 36 #include "llvm/IR/Intrinsics.h" 37 #include "llvm/IR/MDBuilder.h" 38 #include "llvm/IR/Operator.h" 39 #include "llvm/Transforms/Utils/PromoteMemToReg.h" 40 using namespace clang; 41 using namespace CodeGen; 42 43 /// shouldEmitLifetimeMarkers - Decide whether we need emit the life-time 44 /// markers. 45 static bool shouldEmitLifetimeMarkers(const CodeGenOptions &CGOpts, 46 const LangOptions &LangOpts) { 47 if (CGOpts.DisableLifetimeMarkers) 48 return false; 49 50 // Sanitizers may use markers. 51 if (CGOpts.SanitizeAddressUseAfterScope || 52 LangOpts.Sanitize.has(SanitizerKind::HWAddress) || 53 LangOpts.Sanitize.has(SanitizerKind::Memory)) 54 return true; 55 56 // For now, only in optimized builds. 57 return CGOpts.OptimizationLevel != 0; 58 } 59 60 CodeGenFunction::CodeGenFunction(CodeGenModule &cgm, bool suppressNewContext) 61 : CodeGenTypeCache(cgm), CGM(cgm), Target(cgm.getTarget()), 62 Builder(cgm, cgm.getModule().getContext(), llvm::ConstantFolder(), 63 CGBuilderInserterTy(this)), 64 SanOpts(CGM.getLangOpts().Sanitize), DebugInfo(CGM.getModuleDebugInfo()), 65 PGO(cgm), ShouldEmitLifetimeMarkers(shouldEmitLifetimeMarkers( 66 CGM.getCodeGenOpts(), CGM.getLangOpts())) { 67 if (!suppressNewContext) 68 CGM.getCXXABI().getMangleContext().startNewFunction(); 69 70 llvm::FastMathFlags FMF; 71 if (CGM.getLangOpts().FastMath) 72 FMF.setFast(); 73 if (CGM.getLangOpts().FiniteMathOnly) { 74 FMF.setNoNaNs(); 75 FMF.setNoInfs(); 76 } 77 if (CGM.getCodeGenOpts().NoNaNsFPMath) { 78 FMF.setNoNaNs(); 79 } 80 if (CGM.getCodeGenOpts().NoSignedZeros) { 81 FMF.setNoSignedZeros(); 82 } 83 if (CGM.getCodeGenOpts().ReciprocalMath) { 84 FMF.setAllowReciprocal(); 85 } 86 if (CGM.getCodeGenOpts().Reassociate) { 87 FMF.setAllowReassoc(); 88 } 89 Builder.setFastMathFlags(FMF); 90 } 91 92 CodeGenFunction::~CodeGenFunction() { 93 assert(LifetimeExtendedCleanupStack.empty() && "failed to emit a cleanup"); 94 95 // If there are any unclaimed block infos, go ahead and destroy them 96 // now. This can happen if IR-gen gets clever and skips evaluating 97 // something. 98 if (FirstBlockInfo) 99 destroyBlockInfos(FirstBlockInfo); 100 101 if (getLangOpts().OpenMP && CurFn) 102 CGM.getOpenMPRuntime().functionFinished(*this); 103 } 104 105 CharUnits CodeGenFunction::getNaturalPointeeTypeAlignment(QualType T, 106 LValueBaseInfo *BaseInfo, 107 TBAAAccessInfo *TBAAInfo) { 108 return getNaturalTypeAlignment(T->getPointeeType(), BaseInfo, TBAAInfo, 109 /* forPointeeType= */ true); 110 } 111 112 CharUnits CodeGenFunction::getNaturalTypeAlignment(QualType T, 113 LValueBaseInfo *BaseInfo, 114 TBAAAccessInfo *TBAAInfo, 115 bool forPointeeType) { 116 if (TBAAInfo) 117 *TBAAInfo = CGM.getTBAAAccessInfo(T); 118 119 // Honor alignment typedef attributes even on incomplete types. 120 // We also honor them straight for C++ class types, even as pointees; 121 // there's an expressivity gap here. 122 if (auto TT = T->getAs<TypedefType>()) { 123 if (auto Align = TT->getDecl()->getMaxAlignment()) { 124 if (BaseInfo) 125 *BaseInfo = LValueBaseInfo(AlignmentSource::AttributedType); 126 return getContext().toCharUnitsFromBits(Align); 127 } 128 } 129 130 if (BaseInfo) 131 *BaseInfo = LValueBaseInfo(AlignmentSource::Type); 132 133 CharUnits Alignment; 134 if (T->isIncompleteType()) { 135 Alignment = CharUnits::One(); // Shouldn't be used, but pessimistic is best. 136 } else { 137 // For C++ class pointees, we don't know whether we're pointing at a 138 // base or a complete object, so we generally need to use the 139 // non-virtual alignment. 140 const CXXRecordDecl *RD; 141 if (forPointeeType && (RD = T->getAsCXXRecordDecl())) { 142 Alignment = CGM.getClassPointerAlignment(RD); 143 } else { 144 Alignment = getContext().getTypeAlignInChars(T); 145 if (T.getQualifiers().hasUnaligned()) 146 Alignment = CharUnits::One(); 147 } 148 149 // Cap to the global maximum type alignment unless the alignment 150 // was somehow explicit on the type. 151 if (unsigned MaxAlign = getLangOpts().MaxTypeAlign) { 152 if (Alignment.getQuantity() > MaxAlign && 153 !getContext().isAlignmentRequired(T)) 154 Alignment = CharUnits::fromQuantity(MaxAlign); 155 } 156 } 157 return Alignment; 158 } 159 160 LValue CodeGenFunction::MakeNaturalAlignAddrLValue(llvm::Value *V, QualType T) { 161 LValueBaseInfo BaseInfo; 162 TBAAAccessInfo TBAAInfo; 163 CharUnits Alignment = getNaturalTypeAlignment(T, &BaseInfo, &TBAAInfo); 164 return LValue::MakeAddr(Address(V, Alignment), T, getContext(), BaseInfo, 165 TBAAInfo); 166 } 167 168 /// Given a value of type T* that may not be to a complete object, 169 /// construct an l-value with the natural pointee alignment of T. 170 LValue 171 CodeGenFunction::MakeNaturalAlignPointeeAddrLValue(llvm::Value *V, QualType T) { 172 LValueBaseInfo BaseInfo; 173 TBAAAccessInfo TBAAInfo; 174 CharUnits Align = getNaturalTypeAlignment(T, &BaseInfo, &TBAAInfo, 175 /* forPointeeType= */ true); 176 return MakeAddrLValue(Address(V, Align), T, BaseInfo, TBAAInfo); 177 } 178 179 180 llvm::Type *CodeGenFunction::ConvertTypeForMem(QualType T) { 181 return CGM.getTypes().ConvertTypeForMem(T); 182 } 183 184 llvm::Type *CodeGenFunction::ConvertType(QualType T) { 185 return CGM.getTypes().ConvertType(T); 186 } 187 188 TypeEvaluationKind CodeGenFunction::getEvaluationKind(QualType type) { 189 type = type.getCanonicalType(); 190 while (true) { 191 switch (type->getTypeClass()) { 192 #define TYPE(name, parent) 193 #define ABSTRACT_TYPE(name, parent) 194 #define NON_CANONICAL_TYPE(name, parent) case Type::name: 195 #define DEPENDENT_TYPE(name, parent) case Type::name: 196 #define NON_CANONICAL_UNLESS_DEPENDENT_TYPE(name, parent) case Type::name: 197 #include "clang/AST/TypeNodes.inc" 198 llvm_unreachable("non-canonical or dependent type in IR-generation"); 199 200 case Type::Auto: 201 case Type::DeducedTemplateSpecialization: 202 llvm_unreachable("undeduced type in IR-generation"); 203 204 // Various scalar types. 205 case Type::Builtin: 206 case Type::Pointer: 207 case Type::BlockPointer: 208 case Type::LValueReference: 209 case Type::RValueReference: 210 case Type::MemberPointer: 211 case Type::Vector: 212 case Type::ExtVector: 213 case Type::FunctionProto: 214 case Type::FunctionNoProto: 215 case Type::Enum: 216 case Type::ObjCObjectPointer: 217 case Type::Pipe: 218 return TEK_Scalar; 219 220 // Complexes. 221 case Type::Complex: 222 return TEK_Complex; 223 224 // Arrays, records, and Objective-C objects. 225 case Type::ConstantArray: 226 case Type::IncompleteArray: 227 case Type::VariableArray: 228 case Type::Record: 229 case Type::ObjCObject: 230 case Type::ObjCInterface: 231 return TEK_Aggregate; 232 233 // We operate on atomic values according to their underlying type. 234 case Type::Atomic: 235 type = cast<AtomicType>(type)->getValueType(); 236 continue; 237 } 238 llvm_unreachable("unknown type kind!"); 239 } 240 } 241 242 llvm::DebugLoc CodeGenFunction::EmitReturnBlock() { 243 // For cleanliness, we try to avoid emitting the return block for 244 // simple cases. 245 llvm::BasicBlock *CurBB = Builder.GetInsertBlock(); 246 247 if (CurBB) { 248 assert(!CurBB->getTerminator() && "Unexpected terminated block."); 249 250 // We have a valid insert point, reuse it if it is empty or there are no 251 // explicit jumps to the return block. 252 if (CurBB->empty() || ReturnBlock.getBlock()->use_empty()) { 253 ReturnBlock.getBlock()->replaceAllUsesWith(CurBB); 254 delete ReturnBlock.getBlock(); 255 ReturnBlock = JumpDest(); 256 } else 257 EmitBlock(ReturnBlock.getBlock()); 258 return llvm::DebugLoc(); 259 } 260 261 // Otherwise, if the return block is the target of a single direct 262 // branch then we can just put the code in that block instead. This 263 // cleans up functions which started with a unified return block. 264 if (ReturnBlock.getBlock()->hasOneUse()) { 265 llvm::BranchInst *BI = 266 dyn_cast<llvm::BranchInst>(*ReturnBlock.getBlock()->user_begin()); 267 if (BI && BI->isUnconditional() && 268 BI->getSuccessor(0) == ReturnBlock.getBlock()) { 269 // Record/return the DebugLoc of the simple 'return' expression to be used 270 // later by the actual 'ret' instruction. 271 llvm::DebugLoc Loc = BI->getDebugLoc(); 272 Builder.SetInsertPoint(BI->getParent()); 273 BI->eraseFromParent(); 274 delete ReturnBlock.getBlock(); 275 ReturnBlock = JumpDest(); 276 return Loc; 277 } 278 } 279 280 // FIXME: We are at an unreachable point, there is no reason to emit the block 281 // unless it has uses. However, we still need a place to put the debug 282 // region.end for now. 283 284 EmitBlock(ReturnBlock.getBlock()); 285 return llvm::DebugLoc(); 286 } 287 288 static void EmitIfUsed(CodeGenFunction &CGF, llvm::BasicBlock *BB) { 289 if (!BB) return; 290 if (!BB->use_empty()) 291 return CGF.CurFn->getBasicBlockList().push_back(BB); 292 delete BB; 293 } 294 295 void CodeGenFunction::FinishFunction(SourceLocation EndLoc) { 296 assert(BreakContinueStack.empty() && 297 "mismatched push/pop in break/continue stack!"); 298 299 bool OnlySimpleReturnStmts = NumSimpleReturnExprs > 0 300 && NumSimpleReturnExprs == NumReturnExprs 301 && ReturnBlock.getBlock()->use_empty(); 302 // Usually the return expression is evaluated before the cleanup 303 // code. If the function contains only a simple return statement, 304 // such as a constant, the location before the cleanup code becomes 305 // the last useful breakpoint in the function, because the simple 306 // return expression will be evaluated after the cleanup code. To be 307 // safe, set the debug location for cleanup code to the location of 308 // the return statement. Otherwise the cleanup code should be at the 309 // end of the function's lexical scope. 310 // 311 // If there are multiple branches to the return block, the branch 312 // instructions will get the location of the return statements and 313 // all will be fine. 314 if (CGDebugInfo *DI = getDebugInfo()) { 315 if (OnlySimpleReturnStmts) 316 DI->EmitLocation(Builder, LastStopPoint); 317 else 318 DI->EmitLocation(Builder, EndLoc); 319 } 320 321 // Pop any cleanups that might have been associated with the 322 // parameters. Do this in whatever block we're currently in; it's 323 // important to do this before we enter the return block or return 324 // edges will be *really* confused. 325 bool HasCleanups = EHStack.stable_begin() != PrologueCleanupDepth; 326 bool HasOnlyLifetimeMarkers = 327 HasCleanups && EHStack.containsOnlyLifetimeMarkers(PrologueCleanupDepth); 328 bool EmitRetDbgLoc = !HasCleanups || HasOnlyLifetimeMarkers; 329 if (HasCleanups) { 330 // Make sure the line table doesn't jump back into the body for 331 // the ret after it's been at EndLoc. 332 if (CGDebugInfo *DI = getDebugInfo()) 333 if (OnlySimpleReturnStmts) 334 DI->EmitLocation(Builder, EndLoc); 335 336 PopCleanupBlocks(PrologueCleanupDepth); 337 } 338 339 // Emit function epilog (to return). 340 llvm::DebugLoc Loc = EmitReturnBlock(); 341 342 if (ShouldInstrumentFunction()) { 343 if (CGM.getCodeGenOpts().InstrumentFunctions) 344 CurFn->addFnAttr("instrument-function-exit", "__cyg_profile_func_exit"); 345 if (CGM.getCodeGenOpts().InstrumentFunctionsAfterInlining) 346 CurFn->addFnAttr("instrument-function-exit-inlined", 347 "__cyg_profile_func_exit"); 348 } 349 350 // Emit debug descriptor for function end. 351 if (CGDebugInfo *DI = getDebugInfo()) 352 DI->EmitFunctionEnd(Builder, CurFn); 353 354 // Reset the debug location to that of the simple 'return' expression, if any 355 // rather than that of the end of the function's scope '}'. 356 ApplyDebugLocation AL(*this, Loc); 357 EmitFunctionEpilog(*CurFnInfo, EmitRetDbgLoc, EndLoc); 358 EmitEndEHSpec(CurCodeDecl); 359 360 assert(EHStack.empty() && 361 "did not remove all scopes from cleanup stack!"); 362 363 // If someone did an indirect goto, emit the indirect goto block at the end of 364 // the function. 365 if (IndirectBranch) { 366 EmitBlock(IndirectBranch->getParent()); 367 Builder.ClearInsertionPoint(); 368 } 369 370 // If some of our locals escaped, insert a call to llvm.localescape in the 371 // entry block. 372 if (!EscapedLocals.empty()) { 373 // Invert the map from local to index into a simple vector. There should be 374 // no holes. 375 SmallVector<llvm::Value *, 4> EscapeArgs; 376 EscapeArgs.resize(EscapedLocals.size()); 377 for (auto &Pair : EscapedLocals) 378 EscapeArgs[Pair.second] = Pair.first; 379 llvm::Function *FrameEscapeFn = llvm::Intrinsic::getDeclaration( 380 &CGM.getModule(), llvm::Intrinsic::localescape); 381 CGBuilderTy(*this, AllocaInsertPt).CreateCall(FrameEscapeFn, EscapeArgs); 382 } 383 384 // Remove the AllocaInsertPt instruction, which is just a convenience for us. 385 llvm::Instruction *Ptr = AllocaInsertPt; 386 AllocaInsertPt = nullptr; 387 Ptr->eraseFromParent(); 388 389 // If someone took the address of a label but never did an indirect goto, we 390 // made a zero entry PHI node, which is illegal, zap it now. 391 if (IndirectBranch) { 392 llvm::PHINode *PN = cast<llvm::PHINode>(IndirectBranch->getAddress()); 393 if (PN->getNumIncomingValues() == 0) { 394 PN->replaceAllUsesWith(llvm::UndefValue::get(PN->getType())); 395 PN->eraseFromParent(); 396 } 397 } 398 399 EmitIfUsed(*this, EHResumeBlock); 400 EmitIfUsed(*this, TerminateLandingPad); 401 EmitIfUsed(*this, TerminateHandler); 402 EmitIfUsed(*this, UnreachableBlock); 403 404 for (const auto &FuncletAndParent : TerminateFunclets) 405 EmitIfUsed(*this, FuncletAndParent.second); 406 407 if (CGM.getCodeGenOpts().EmitDeclMetadata) 408 EmitDeclMetadata(); 409 410 for (SmallVectorImpl<std::pair<llvm::Instruction *, llvm::Value *> >::iterator 411 I = DeferredReplacements.begin(), 412 E = DeferredReplacements.end(); 413 I != E; ++I) { 414 I->first->replaceAllUsesWith(I->second); 415 I->first->eraseFromParent(); 416 } 417 418 // Eliminate CleanupDestSlot alloca by replacing it with SSA values and 419 // PHIs if the current function is a coroutine. We don't do it for all 420 // functions as it may result in slight increase in numbers of instructions 421 // if compiled with no optimizations. We do it for coroutine as the lifetime 422 // of CleanupDestSlot alloca make correct coroutine frame building very 423 // difficult. 424 if (NormalCleanupDest.isValid() && isCoroutine()) { 425 llvm::DominatorTree DT(*CurFn); 426 llvm::PromoteMemToReg( 427 cast<llvm::AllocaInst>(NormalCleanupDest.getPointer()), DT); 428 NormalCleanupDest = Address::invalid(); 429 } 430 431 // Scan function arguments for vector width. 432 for (llvm::Argument &A : CurFn->args()) 433 if (auto *VT = dyn_cast<llvm::VectorType>(A.getType())) 434 LargestVectorWidth = std::max((uint64_t)LargestVectorWidth, 435 VT->getPrimitiveSizeInBits().getFixedSize()); 436 437 // Update vector width based on return type. 438 if (auto *VT = dyn_cast<llvm::VectorType>(CurFn->getReturnType())) 439 LargestVectorWidth = std::max((uint64_t)LargestVectorWidth, 440 VT->getPrimitiveSizeInBits().getFixedSize()); 441 442 // Add the required-vector-width attribute. This contains the max width from: 443 // 1. min-vector-width attribute used in the source program. 444 // 2. Any builtins used that have a vector width specified. 445 // 3. Values passed in and out of inline assembly. 446 // 4. Width of vector arguments and return types for this function. 447 // 5. Width of vector aguments and return types for functions called by this 448 // function. 449 CurFn->addFnAttr("min-legal-vector-width", llvm::utostr(LargestVectorWidth)); 450 451 // If we generated an unreachable return block, delete it now. 452 if (ReturnBlock.isValid() && ReturnBlock.getBlock()->use_empty()) { 453 Builder.ClearInsertionPoint(); 454 ReturnBlock.getBlock()->eraseFromParent(); 455 } 456 if (ReturnValue.isValid()) { 457 auto *RetAlloca = dyn_cast<llvm::AllocaInst>(ReturnValue.getPointer()); 458 if (RetAlloca && RetAlloca->use_empty()) { 459 RetAlloca->eraseFromParent(); 460 ReturnValue = Address::invalid(); 461 } 462 } 463 } 464 465 /// ShouldInstrumentFunction - Return true if the current function should be 466 /// instrumented with __cyg_profile_func_* calls 467 bool CodeGenFunction::ShouldInstrumentFunction() { 468 if (!CGM.getCodeGenOpts().InstrumentFunctions && 469 !CGM.getCodeGenOpts().InstrumentFunctionsAfterInlining && 470 !CGM.getCodeGenOpts().InstrumentFunctionEntryBare) 471 return false; 472 if (!CurFuncDecl || CurFuncDecl->hasAttr<NoInstrumentFunctionAttr>()) 473 return false; 474 return true; 475 } 476 477 /// ShouldXRayInstrument - Return true if the current function should be 478 /// instrumented with XRay nop sleds. 479 bool CodeGenFunction::ShouldXRayInstrumentFunction() const { 480 return CGM.getCodeGenOpts().XRayInstrumentFunctions; 481 } 482 483 /// AlwaysEmitXRayCustomEvents - Return true if we should emit IR for calls to 484 /// the __xray_customevent(...) builtin calls, when doing XRay instrumentation. 485 bool CodeGenFunction::AlwaysEmitXRayCustomEvents() const { 486 return CGM.getCodeGenOpts().XRayInstrumentFunctions && 487 (CGM.getCodeGenOpts().XRayAlwaysEmitCustomEvents || 488 CGM.getCodeGenOpts().XRayInstrumentationBundle.Mask == 489 XRayInstrKind::Custom); 490 } 491 492 bool CodeGenFunction::AlwaysEmitXRayTypedEvents() const { 493 return CGM.getCodeGenOpts().XRayInstrumentFunctions && 494 (CGM.getCodeGenOpts().XRayAlwaysEmitTypedEvents || 495 CGM.getCodeGenOpts().XRayInstrumentationBundle.Mask == 496 XRayInstrKind::Typed); 497 } 498 499 llvm::Constant * 500 CodeGenFunction::EncodeAddrForUseInPrologue(llvm::Function *F, 501 llvm::Constant *Addr) { 502 // Addresses stored in prologue data can't require run-time fixups and must 503 // be PC-relative. Run-time fixups are undesirable because they necessitate 504 // writable text segments, which are unsafe. And absolute addresses are 505 // undesirable because they break PIE mode. 506 507 // Add a layer of indirection through a private global. Taking its address 508 // won't result in a run-time fixup, even if Addr has linkonce_odr linkage. 509 auto *GV = new llvm::GlobalVariable(CGM.getModule(), Addr->getType(), 510 /*isConstant=*/true, 511 llvm::GlobalValue::PrivateLinkage, Addr); 512 513 // Create a PC-relative address. 514 auto *GOTAsInt = llvm::ConstantExpr::getPtrToInt(GV, IntPtrTy); 515 auto *FuncAsInt = llvm::ConstantExpr::getPtrToInt(F, IntPtrTy); 516 auto *PCRelAsInt = llvm::ConstantExpr::getSub(GOTAsInt, FuncAsInt); 517 return (IntPtrTy == Int32Ty) 518 ? PCRelAsInt 519 : llvm::ConstantExpr::getTrunc(PCRelAsInt, Int32Ty); 520 } 521 522 llvm::Value * 523 CodeGenFunction::DecodeAddrUsedInPrologue(llvm::Value *F, 524 llvm::Value *EncodedAddr) { 525 // Reconstruct the address of the global. 526 auto *PCRelAsInt = Builder.CreateSExt(EncodedAddr, IntPtrTy); 527 auto *FuncAsInt = Builder.CreatePtrToInt(F, IntPtrTy, "func_addr.int"); 528 auto *GOTAsInt = Builder.CreateAdd(PCRelAsInt, FuncAsInt, "global_addr.int"); 529 auto *GOTAddr = Builder.CreateIntToPtr(GOTAsInt, Int8PtrPtrTy, "global_addr"); 530 531 // Load the original pointer through the global. 532 return Builder.CreateLoad(Address(GOTAddr, getPointerAlign()), 533 "decoded_addr"); 534 } 535 536 void CodeGenFunction::EmitOpenCLKernelMetadata(const FunctionDecl *FD, 537 llvm::Function *Fn) 538 { 539 if (!FD->hasAttr<OpenCLKernelAttr>()) 540 return; 541 542 llvm::LLVMContext &Context = getLLVMContext(); 543 544 CGM.GenOpenCLArgMetadata(Fn, FD, this); 545 546 if (const VecTypeHintAttr *A = FD->getAttr<VecTypeHintAttr>()) { 547 QualType HintQTy = A->getTypeHint(); 548 const ExtVectorType *HintEltQTy = HintQTy->getAs<ExtVectorType>(); 549 bool IsSignedInteger = 550 HintQTy->isSignedIntegerType() || 551 (HintEltQTy && HintEltQTy->getElementType()->isSignedIntegerType()); 552 llvm::Metadata *AttrMDArgs[] = { 553 llvm::ConstantAsMetadata::get(llvm::UndefValue::get( 554 CGM.getTypes().ConvertType(A->getTypeHint()))), 555 llvm::ConstantAsMetadata::get(llvm::ConstantInt::get( 556 llvm::IntegerType::get(Context, 32), 557 llvm::APInt(32, (uint64_t)(IsSignedInteger ? 1 : 0))))}; 558 Fn->setMetadata("vec_type_hint", llvm::MDNode::get(Context, AttrMDArgs)); 559 } 560 561 if (const WorkGroupSizeHintAttr *A = FD->getAttr<WorkGroupSizeHintAttr>()) { 562 llvm::Metadata *AttrMDArgs[] = { 563 llvm::ConstantAsMetadata::get(Builder.getInt32(A->getXDim())), 564 llvm::ConstantAsMetadata::get(Builder.getInt32(A->getYDim())), 565 llvm::ConstantAsMetadata::get(Builder.getInt32(A->getZDim()))}; 566 Fn->setMetadata("work_group_size_hint", llvm::MDNode::get(Context, AttrMDArgs)); 567 } 568 569 if (const ReqdWorkGroupSizeAttr *A = FD->getAttr<ReqdWorkGroupSizeAttr>()) { 570 llvm::Metadata *AttrMDArgs[] = { 571 llvm::ConstantAsMetadata::get(Builder.getInt32(A->getXDim())), 572 llvm::ConstantAsMetadata::get(Builder.getInt32(A->getYDim())), 573 llvm::ConstantAsMetadata::get(Builder.getInt32(A->getZDim()))}; 574 Fn->setMetadata("reqd_work_group_size", llvm::MDNode::get(Context, AttrMDArgs)); 575 } 576 577 if (const OpenCLIntelReqdSubGroupSizeAttr *A = 578 FD->getAttr<OpenCLIntelReqdSubGroupSizeAttr>()) { 579 llvm::Metadata *AttrMDArgs[] = { 580 llvm::ConstantAsMetadata::get(Builder.getInt32(A->getSubGroupSize()))}; 581 Fn->setMetadata("intel_reqd_sub_group_size", 582 llvm::MDNode::get(Context, AttrMDArgs)); 583 } 584 } 585 586 /// Determine whether the function F ends with a return stmt. 587 static bool endsWithReturn(const Decl* F) { 588 const Stmt *Body = nullptr; 589 if (auto *FD = dyn_cast_or_null<FunctionDecl>(F)) 590 Body = FD->getBody(); 591 else if (auto *OMD = dyn_cast_or_null<ObjCMethodDecl>(F)) 592 Body = OMD->getBody(); 593 594 if (auto *CS = dyn_cast_or_null<CompoundStmt>(Body)) { 595 auto LastStmt = CS->body_rbegin(); 596 if (LastStmt != CS->body_rend()) 597 return isa<ReturnStmt>(*LastStmt); 598 } 599 return false; 600 } 601 602 void CodeGenFunction::markAsIgnoreThreadCheckingAtRuntime(llvm::Function *Fn) { 603 if (SanOpts.has(SanitizerKind::Thread)) { 604 Fn->addFnAttr("sanitize_thread_no_checking_at_run_time"); 605 Fn->removeFnAttr(llvm::Attribute::SanitizeThread); 606 } 607 } 608 609 static bool matchesStlAllocatorFn(const Decl *D, const ASTContext &Ctx) { 610 auto *MD = dyn_cast_or_null<CXXMethodDecl>(D); 611 if (!MD || !MD->getDeclName().getAsIdentifierInfo() || 612 !MD->getDeclName().getAsIdentifierInfo()->isStr("allocate") || 613 (MD->getNumParams() != 1 && MD->getNumParams() != 2)) 614 return false; 615 616 if (MD->parameters()[0]->getType().getCanonicalType() != Ctx.getSizeType()) 617 return false; 618 619 if (MD->getNumParams() == 2) { 620 auto *PT = MD->parameters()[1]->getType()->getAs<PointerType>(); 621 if (!PT || !PT->isVoidPointerType() || 622 !PT->getPointeeType().isConstQualified()) 623 return false; 624 } 625 626 return true; 627 } 628 629 /// Return the UBSan prologue signature for \p FD if one is available. 630 static llvm::Constant *getPrologueSignature(CodeGenModule &CGM, 631 const FunctionDecl *FD) { 632 if (const auto *MD = dyn_cast<CXXMethodDecl>(FD)) 633 if (!MD->isStatic()) 634 return nullptr; 635 return CGM.getTargetCodeGenInfo().getUBSanFunctionSignature(CGM); 636 } 637 638 void CodeGenFunction::StartFunction(GlobalDecl GD, 639 QualType RetTy, 640 llvm::Function *Fn, 641 const CGFunctionInfo &FnInfo, 642 const FunctionArgList &Args, 643 SourceLocation Loc, 644 SourceLocation StartLoc) { 645 assert(!CurFn && 646 "Do not use a CodeGenFunction object for more than one function"); 647 648 const Decl *D = GD.getDecl(); 649 650 DidCallStackSave = false; 651 CurCodeDecl = D; 652 if (const auto *FD = dyn_cast_or_null<FunctionDecl>(D)) 653 if (FD->usesSEHTry()) 654 CurSEHParent = FD; 655 CurFuncDecl = (D ? D->getNonClosureContext() : nullptr); 656 FnRetTy = RetTy; 657 CurFn = Fn; 658 CurFnInfo = &FnInfo; 659 assert(CurFn->isDeclaration() && "Function already has body?"); 660 661 // If this function has been blacklisted for any of the enabled sanitizers, 662 // disable the sanitizer for the function. 663 do { 664 #define SANITIZER(NAME, ID) \ 665 if (SanOpts.empty()) \ 666 break; \ 667 if (SanOpts.has(SanitizerKind::ID)) \ 668 if (CGM.isInSanitizerBlacklist(SanitizerKind::ID, Fn, Loc)) \ 669 SanOpts.set(SanitizerKind::ID, false); 670 671 #include "clang/Basic/Sanitizers.def" 672 #undef SANITIZER 673 } while (0); 674 675 if (D) { 676 // Apply the no_sanitize* attributes to SanOpts. 677 for (auto Attr : D->specific_attrs<NoSanitizeAttr>()) { 678 SanitizerMask mask = Attr->getMask(); 679 SanOpts.Mask &= ~mask; 680 if (mask & SanitizerKind::Address) 681 SanOpts.set(SanitizerKind::KernelAddress, false); 682 if (mask & SanitizerKind::KernelAddress) 683 SanOpts.set(SanitizerKind::Address, false); 684 if (mask & SanitizerKind::HWAddress) 685 SanOpts.set(SanitizerKind::KernelHWAddress, false); 686 if (mask & SanitizerKind::KernelHWAddress) 687 SanOpts.set(SanitizerKind::HWAddress, false); 688 } 689 } 690 691 // Apply sanitizer attributes to the function. 692 if (SanOpts.hasOneOf(SanitizerKind::Address | SanitizerKind::KernelAddress)) 693 Fn->addFnAttr(llvm::Attribute::SanitizeAddress); 694 if (SanOpts.hasOneOf(SanitizerKind::HWAddress | SanitizerKind::KernelHWAddress)) 695 Fn->addFnAttr(llvm::Attribute::SanitizeHWAddress); 696 if (SanOpts.has(SanitizerKind::MemTag)) 697 Fn->addFnAttr(llvm::Attribute::SanitizeMemTag); 698 if (SanOpts.has(SanitizerKind::Thread)) 699 Fn->addFnAttr(llvm::Attribute::SanitizeThread); 700 if (SanOpts.hasOneOf(SanitizerKind::Memory | SanitizerKind::KernelMemory)) 701 Fn->addFnAttr(llvm::Attribute::SanitizeMemory); 702 if (SanOpts.has(SanitizerKind::SafeStack)) 703 Fn->addFnAttr(llvm::Attribute::SafeStack); 704 if (SanOpts.has(SanitizerKind::ShadowCallStack)) 705 Fn->addFnAttr(llvm::Attribute::ShadowCallStack); 706 707 // Apply fuzzing attribute to the function. 708 if (SanOpts.hasOneOf(SanitizerKind::Fuzzer | SanitizerKind::FuzzerNoLink)) 709 Fn->addFnAttr(llvm::Attribute::OptForFuzzing); 710 711 // Ignore TSan memory acesses from within ObjC/ObjC++ dealloc, initialize, 712 // .cxx_destruct, __destroy_helper_block_ and all of their calees at run time. 713 if (SanOpts.has(SanitizerKind::Thread)) { 714 if (const auto *OMD = dyn_cast_or_null<ObjCMethodDecl>(D)) { 715 IdentifierInfo *II = OMD->getSelector().getIdentifierInfoForSlot(0); 716 if (OMD->getMethodFamily() == OMF_dealloc || 717 OMD->getMethodFamily() == OMF_initialize || 718 (OMD->getSelector().isUnarySelector() && II->isStr(".cxx_destruct"))) { 719 markAsIgnoreThreadCheckingAtRuntime(Fn); 720 } 721 } 722 } 723 724 // Ignore unrelated casts in STL allocate() since the allocator must cast 725 // from void* to T* before object initialization completes. Don't match on the 726 // namespace because not all allocators are in std:: 727 if (D && SanOpts.has(SanitizerKind::CFIUnrelatedCast)) { 728 if (matchesStlAllocatorFn(D, getContext())) 729 SanOpts.Mask &= ~SanitizerKind::CFIUnrelatedCast; 730 } 731 732 // Ignore null checks in coroutine functions since the coroutines passes 733 // are not aware of how to move the extra UBSan instructions across the split 734 // coroutine boundaries. 735 if (D && SanOpts.has(SanitizerKind::Null)) 736 if (const auto *FD = dyn_cast<FunctionDecl>(D)) 737 if (FD->getBody() && 738 FD->getBody()->getStmtClass() == Stmt::CoroutineBodyStmtClass) 739 SanOpts.Mask &= ~SanitizerKind::Null; 740 741 // Apply xray attributes to the function (as a string, for now) 742 if (D) { 743 if (const auto *XRayAttr = D->getAttr<XRayInstrumentAttr>()) { 744 if (CGM.getCodeGenOpts().XRayInstrumentationBundle.has( 745 XRayInstrKind::Function)) { 746 if (XRayAttr->alwaysXRayInstrument() && ShouldXRayInstrumentFunction()) 747 Fn->addFnAttr("function-instrument", "xray-always"); 748 if (XRayAttr->neverXRayInstrument()) 749 Fn->addFnAttr("function-instrument", "xray-never"); 750 if (const auto *LogArgs = D->getAttr<XRayLogArgsAttr>()) 751 if (ShouldXRayInstrumentFunction()) 752 Fn->addFnAttr("xray-log-args", 753 llvm::utostr(LogArgs->getArgumentCount())); 754 } 755 } else { 756 if (ShouldXRayInstrumentFunction() && !CGM.imbueXRayAttrs(Fn, Loc)) 757 Fn->addFnAttr( 758 "xray-instruction-threshold", 759 llvm::itostr(CGM.getCodeGenOpts().XRayInstructionThreshold)); 760 } 761 } 762 763 // Add no-jump-tables value. 764 Fn->addFnAttr("no-jump-tables", 765 llvm::toStringRef(CGM.getCodeGenOpts().NoUseJumpTables)); 766 767 // Add no-inline-line-tables value. 768 if (CGM.getCodeGenOpts().NoInlineLineTables) 769 Fn->addFnAttr("no-inline-line-tables"); 770 771 // Add profile-sample-accurate value. 772 if (CGM.getCodeGenOpts().ProfileSampleAccurate) 773 Fn->addFnAttr("profile-sample-accurate"); 774 775 if (D && D->hasAttr<CFICanonicalJumpTableAttr>()) 776 Fn->addFnAttr("cfi-canonical-jump-table"); 777 778 if (getLangOpts().OpenCL) { 779 // Add metadata for a kernel function. 780 if (const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D)) 781 EmitOpenCLKernelMetadata(FD, Fn); 782 } 783 784 // If we are checking function types, emit a function type signature as 785 // prologue data. 786 if (getLangOpts().CPlusPlus && SanOpts.has(SanitizerKind::Function)) { 787 if (const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D)) { 788 if (llvm::Constant *PrologueSig = getPrologueSignature(CGM, FD)) { 789 // Remove any (C++17) exception specifications, to allow calling e.g. a 790 // noexcept function through a non-noexcept pointer. 791 auto ProtoTy = 792 getContext().getFunctionTypeWithExceptionSpec(FD->getType(), 793 EST_None); 794 llvm::Constant *FTRTTIConst = 795 CGM.GetAddrOfRTTIDescriptor(ProtoTy, /*ForEH=*/true); 796 llvm::Constant *FTRTTIConstEncoded = 797 EncodeAddrForUseInPrologue(Fn, FTRTTIConst); 798 llvm::Constant *PrologueStructElems[] = {PrologueSig, 799 FTRTTIConstEncoded}; 800 llvm::Constant *PrologueStructConst = 801 llvm::ConstantStruct::getAnon(PrologueStructElems, /*Packed=*/true); 802 Fn->setPrologueData(PrologueStructConst); 803 } 804 } 805 } 806 807 // If we're checking nullability, we need to know whether we can check the 808 // return value. Initialize the flag to 'true' and refine it in EmitParmDecl. 809 if (SanOpts.has(SanitizerKind::NullabilityReturn)) { 810 auto Nullability = FnRetTy->getNullability(getContext()); 811 if (Nullability && *Nullability == NullabilityKind::NonNull) { 812 if (!(SanOpts.has(SanitizerKind::ReturnsNonnullAttribute) && 813 CurCodeDecl && CurCodeDecl->getAttr<ReturnsNonNullAttr>())) 814 RetValNullabilityPrecondition = 815 llvm::ConstantInt::getTrue(getLLVMContext()); 816 } 817 } 818 819 // If we're in C++ mode and the function name is "main", it is guaranteed 820 // to be norecurse by the standard (3.6.1.3 "The function main shall not be 821 // used within a program"). 822 if (getLangOpts().CPlusPlus) 823 if (const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D)) 824 if (FD->isMain()) 825 Fn->addFnAttr(llvm::Attribute::NoRecurse); 826 827 // If a custom alignment is used, force realigning to this alignment on 828 // any main function which certainly will need it. 829 if (const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D)) 830 if ((FD->isMain() || FD->isMSVCRTEntryPoint()) && 831 CGM.getCodeGenOpts().StackAlignment) 832 Fn->addFnAttr("stackrealign"); 833 834 llvm::BasicBlock *EntryBB = createBasicBlock("entry", CurFn); 835 836 // Create a marker to make it easy to insert allocas into the entryblock 837 // later. Don't create this with the builder, because we don't want it 838 // folded. 839 llvm::Value *Undef = llvm::UndefValue::get(Int32Ty); 840 AllocaInsertPt = new llvm::BitCastInst(Undef, Int32Ty, "allocapt", EntryBB); 841 842 ReturnBlock = getJumpDestInCurrentScope("return"); 843 844 Builder.SetInsertPoint(EntryBB); 845 846 // If we're checking the return value, allocate space for a pointer to a 847 // precise source location of the checked return statement. 848 if (requiresReturnValueCheck()) { 849 ReturnLocation = CreateDefaultAlignTempAlloca(Int8PtrTy, "return.sloc.ptr"); 850 InitTempAlloca(ReturnLocation, llvm::ConstantPointerNull::get(Int8PtrTy)); 851 } 852 853 // Emit subprogram debug descriptor. 854 if (CGDebugInfo *DI = getDebugInfo()) { 855 // Reconstruct the type from the argument list so that implicit parameters, 856 // such as 'this' and 'vtt', show up in the debug info. Preserve the calling 857 // convention. 858 CallingConv CC = CallingConv::CC_C; 859 if (auto *FD = dyn_cast_or_null<FunctionDecl>(D)) 860 if (const auto *SrcFnTy = FD->getType()->getAs<FunctionType>()) 861 CC = SrcFnTy->getCallConv(); 862 SmallVector<QualType, 16> ArgTypes; 863 for (const VarDecl *VD : Args) 864 ArgTypes.push_back(VD->getType()); 865 QualType FnType = getContext().getFunctionType( 866 RetTy, ArgTypes, FunctionProtoType::ExtProtoInfo(CC)); 867 DI->EmitFunctionStart(GD, Loc, StartLoc, FnType, CurFn, CurFuncIsThunk, 868 Builder); 869 } 870 871 if (ShouldInstrumentFunction()) { 872 if (CGM.getCodeGenOpts().InstrumentFunctions) 873 CurFn->addFnAttr("instrument-function-entry", "__cyg_profile_func_enter"); 874 if (CGM.getCodeGenOpts().InstrumentFunctionsAfterInlining) 875 CurFn->addFnAttr("instrument-function-entry-inlined", 876 "__cyg_profile_func_enter"); 877 if (CGM.getCodeGenOpts().InstrumentFunctionEntryBare) 878 CurFn->addFnAttr("instrument-function-entry-inlined", 879 "__cyg_profile_func_enter_bare"); 880 } 881 882 // Since emitting the mcount call here impacts optimizations such as function 883 // inlining, we just add an attribute to insert a mcount call in backend. 884 // The attribute "counting-function" is set to mcount function name which is 885 // architecture dependent. 886 if (CGM.getCodeGenOpts().InstrumentForProfiling) { 887 // Calls to fentry/mcount should not be generated if function has 888 // the no_instrument_function attribute. 889 if (!CurFuncDecl || !CurFuncDecl->hasAttr<NoInstrumentFunctionAttr>()) { 890 if (CGM.getCodeGenOpts().CallFEntry) 891 Fn->addFnAttr("fentry-call", "true"); 892 else { 893 Fn->addFnAttr("instrument-function-entry-inlined", 894 getTarget().getMCountName()); 895 } 896 } 897 } 898 899 if (RetTy->isVoidType()) { 900 // Void type; nothing to return. 901 ReturnValue = Address::invalid(); 902 903 // Count the implicit return. 904 if (!endsWithReturn(D)) 905 ++NumReturnExprs; 906 } else if (CurFnInfo->getReturnInfo().getKind() == ABIArgInfo::Indirect) { 907 // Indirect return; emit returned value directly into sret slot. 908 // This reduces code size, and affects correctness in C++. 909 auto AI = CurFn->arg_begin(); 910 if (CurFnInfo->getReturnInfo().isSRetAfterThis()) 911 ++AI; 912 ReturnValue = Address(&*AI, CurFnInfo->getReturnInfo().getIndirectAlign()); 913 if (!CurFnInfo->getReturnInfo().getIndirectByVal()) { 914 ReturnValuePointer = 915 CreateDefaultAlignTempAlloca(Int8PtrTy, "result.ptr"); 916 Builder.CreateStore(Builder.CreatePointerBitCastOrAddrSpaceCast( 917 ReturnValue.getPointer(), Int8PtrTy), 918 ReturnValuePointer); 919 } 920 } else if (CurFnInfo->getReturnInfo().getKind() == ABIArgInfo::InAlloca && 921 !hasScalarEvaluationKind(CurFnInfo->getReturnType())) { 922 // Load the sret pointer from the argument struct and return into that. 923 unsigned Idx = CurFnInfo->getReturnInfo().getInAllocaFieldIndex(); 924 llvm::Function::arg_iterator EI = CurFn->arg_end(); 925 --EI; 926 llvm::Value *Addr = Builder.CreateStructGEP(nullptr, &*EI, Idx); 927 ReturnValuePointer = Address(Addr, getPointerAlign()); 928 Addr = Builder.CreateAlignedLoad(Addr, getPointerAlign(), "agg.result"); 929 ReturnValue = Address(Addr, getNaturalTypeAlignment(RetTy)); 930 } else { 931 ReturnValue = CreateIRTemp(RetTy, "retval"); 932 933 // Tell the epilog emitter to autorelease the result. We do this 934 // now so that various specialized functions can suppress it 935 // during their IR-generation. 936 if (getLangOpts().ObjCAutoRefCount && 937 !CurFnInfo->isReturnsRetained() && 938 RetTy->isObjCRetainableType()) 939 AutoreleaseResult = true; 940 } 941 942 EmitStartEHSpec(CurCodeDecl); 943 944 PrologueCleanupDepth = EHStack.stable_begin(); 945 946 // Emit OpenMP specific initialization of the device functions. 947 if (getLangOpts().OpenMP && CurCodeDecl) 948 CGM.getOpenMPRuntime().emitFunctionProlog(*this, CurCodeDecl); 949 950 EmitFunctionProlog(*CurFnInfo, CurFn, Args); 951 952 if (D && isa<CXXMethodDecl>(D) && cast<CXXMethodDecl>(D)->isInstance()) { 953 CGM.getCXXABI().EmitInstanceFunctionProlog(*this); 954 const CXXMethodDecl *MD = cast<CXXMethodDecl>(D); 955 if (MD->getParent()->isLambda() && 956 MD->getOverloadedOperator() == OO_Call) { 957 // We're in a lambda; figure out the captures. 958 MD->getParent()->getCaptureFields(LambdaCaptureFields, 959 LambdaThisCaptureField); 960 if (LambdaThisCaptureField) { 961 // If the lambda captures the object referred to by '*this' - either by 962 // value or by reference, make sure CXXThisValue points to the correct 963 // object. 964 965 // Get the lvalue for the field (which is a copy of the enclosing object 966 // or contains the address of the enclosing object). 967 LValue ThisFieldLValue = EmitLValueForLambdaField(LambdaThisCaptureField); 968 if (!LambdaThisCaptureField->getType()->isPointerType()) { 969 // If the enclosing object was captured by value, just use its address. 970 CXXThisValue = ThisFieldLValue.getAddress().getPointer(); 971 } else { 972 // Load the lvalue pointed to by the field, since '*this' was captured 973 // by reference. 974 CXXThisValue = 975 EmitLoadOfLValue(ThisFieldLValue, SourceLocation()).getScalarVal(); 976 } 977 } 978 for (auto *FD : MD->getParent()->fields()) { 979 if (FD->hasCapturedVLAType()) { 980 auto *ExprArg = EmitLoadOfLValue(EmitLValueForLambdaField(FD), 981 SourceLocation()).getScalarVal(); 982 auto VAT = FD->getCapturedVLAType(); 983 VLASizeMap[VAT->getSizeExpr()] = ExprArg; 984 } 985 } 986 } else { 987 // Not in a lambda; just use 'this' from the method. 988 // FIXME: Should we generate a new load for each use of 'this'? The 989 // fast register allocator would be happier... 990 CXXThisValue = CXXABIThisValue; 991 } 992 993 // Check the 'this' pointer once per function, if it's available. 994 if (CXXABIThisValue) { 995 SanitizerSet SkippedChecks; 996 SkippedChecks.set(SanitizerKind::ObjectSize, true); 997 QualType ThisTy = MD->getThisType(); 998 999 // If this is the call operator of a lambda with no capture-default, it 1000 // may have a static invoker function, which may call this operator with 1001 // a null 'this' pointer. 1002 if (isLambdaCallOperator(MD) && 1003 MD->getParent()->getLambdaCaptureDefault() == LCD_None) 1004 SkippedChecks.set(SanitizerKind::Null, true); 1005 1006 EmitTypeCheck(isa<CXXConstructorDecl>(MD) ? TCK_ConstructorCall 1007 : TCK_MemberCall, 1008 Loc, CXXABIThisValue, ThisTy, 1009 getContext().getTypeAlignInChars(ThisTy->getPointeeType()), 1010 SkippedChecks); 1011 } 1012 } 1013 1014 // If any of the arguments have a variably modified type, make sure to 1015 // emit the type size. 1016 for (FunctionArgList::const_iterator i = Args.begin(), e = Args.end(); 1017 i != e; ++i) { 1018 const VarDecl *VD = *i; 1019 1020 // Dig out the type as written from ParmVarDecls; it's unclear whether 1021 // the standard (C99 6.9.1p10) requires this, but we're following the 1022 // precedent set by gcc. 1023 QualType Ty; 1024 if (const ParmVarDecl *PVD = dyn_cast<ParmVarDecl>(VD)) 1025 Ty = PVD->getOriginalType(); 1026 else 1027 Ty = VD->getType(); 1028 1029 if (Ty->isVariablyModifiedType()) 1030 EmitVariablyModifiedType(Ty); 1031 } 1032 // Emit a location at the end of the prologue. 1033 if (CGDebugInfo *DI = getDebugInfo()) 1034 DI->EmitLocation(Builder, StartLoc); 1035 1036 // TODO: Do we need to handle this in two places like we do with 1037 // target-features/target-cpu? 1038 if (CurFuncDecl) 1039 if (const auto *VecWidth = CurFuncDecl->getAttr<MinVectorWidthAttr>()) 1040 LargestVectorWidth = VecWidth->getVectorWidth(); 1041 } 1042 1043 void CodeGenFunction::EmitFunctionBody(const Stmt *Body) { 1044 incrementProfileCounter(Body); 1045 if (const CompoundStmt *S = dyn_cast<CompoundStmt>(Body)) 1046 EmitCompoundStmtWithoutScope(*S); 1047 else 1048 EmitStmt(Body); 1049 } 1050 1051 /// When instrumenting to collect profile data, the counts for some blocks 1052 /// such as switch cases need to not include the fall-through counts, so 1053 /// emit a branch around the instrumentation code. When not instrumenting, 1054 /// this just calls EmitBlock(). 1055 void CodeGenFunction::EmitBlockWithFallThrough(llvm::BasicBlock *BB, 1056 const Stmt *S) { 1057 llvm::BasicBlock *SkipCountBB = nullptr; 1058 if (HaveInsertPoint() && CGM.getCodeGenOpts().hasProfileClangInstr()) { 1059 // When instrumenting for profiling, the fallthrough to certain 1060 // statements needs to skip over the instrumentation code so that we 1061 // get an accurate count. 1062 SkipCountBB = createBasicBlock("skipcount"); 1063 EmitBranch(SkipCountBB); 1064 } 1065 EmitBlock(BB); 1066 uint64_t CurrentCount = getCurrentProfileCount(); 1067 incrementProfileCounter(S); 1068 setCurrentProfileCount(getCurrentProfileCount() + CurrentCount); 1069 if (SkipCountBB) 1070 EmitBlock(SkipCountBB); 1071 } 1072 1073 /// Tries to mark the given function nounwind based on the 1074 /// non-existence of any throwing calls within it. We believe this is 1075 /// lightweight enough to do at -O0. 1076 static void TryMarkNoThrow(llvm::Function *F) { 1077 // LLVM treats 'nounwind' on a function as part of the type, so we 1078 // can't do this on functions that can be overwritten. 1079 if (F->isInterposable()) return; 1080 1081 for (llvm::BasicBlock &BB : *F) 1082 for (llvm::Instruction &I : BB) 1083 if (I.mayThrow()) 1084 return; 1085 1086 F->setDoesNotThrow(); 1087 } 1088 1089 QualType CodeGenFunction::BuildFunctionArgList(GlobalDecl GD, 1090 FunctionArgList &Args) { 1091 const FunctionDecl *FD = cast<FunctionDecl>(GD.getDecl()); 1092 QualType ResTy = FD->getReturnType(); 1093 1094 const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(FD); 1095 if (MD && MD->isInstance()) { 1096 if (CGM.getCXXABI().HasThisReturn(GD)) 1097 ResTy = MD->getThisType(); 1098 else if (CGM.getCXXABI().hasMostDerivedReturn(GD)) 1099 ResTy = CGM.getContext().VoidPtrTy; 1100 CGM.getCXXABI().buildThisParam(*this, Args); 1101 } 1102 1103 // The base version of an inheriting constructor whose constructed base is a 1104 // virtual base is not passed any arguments (because it doesn't actually call 1105 // the inherited constructor). 1106 bool PassedParams = true; 1107 if (const CXXConstructorDecl *CD = dyn_cast<CXXConstructorDecl>(FD)) 1108 if (auto Inherited = CD->getInheritedConstructor()) 1109 PassedParams = 1110 getTypes().inheritingCtorHasParams(Inherited, GD.getCtorType()); 1111 1112 if (PassedParams) { 1113 for (auto *Param : FD->parameters()) { 1114 Args.push_back(Param); 1115 if (!Param->hasAttr<PassObjectSizeAttr>()) 1116 continue; 1117 1118 auto *Implicit = ImplicitParamDecl::Create( 1119 getContext(), Param->getDeclContext(), Param->getLocation(), 1120 /*Id=*/nullptr, getContext().getSizeType(), ImplicitParamDecl::Other); 1121 SizeArguments[Param] = Implicit; 1122 Args.push_back(Implicit); 1123 } 1124 } 1125 1126 if (MD && (isa<CXXConstructorDecl>(MD) || isa<CXXDestructorDecl>(MD))) 1127 CGM.getCXXABI().addImplicitStructorParams(*this, ResTy, Args); 1128 1129 return ResTy; 1130 } 1131 1132 static bool 1133 shouldUseUndefinedBehaviorReturnOptimization(const FunctionDecl *FD, 1134 const ASTContext &Context) { 1135 QualType T = FD->getReturnType(); 1136 // Avoid the optimization for functions that return a record type with a 1137 // trivial destructor or another trivially copyable type. 1138 if (const RecordType *RT = T.getCanonicalType()->getAs<RecordType>()) { 1139 if (const auto *ClassDecl = dyn_cast<CXXRecordDecl>(RT->getDecl())) 1140 return !ClassDecl->hasTrivialDestructor(); 1141 } 1142 return !T.isTriviallyCopyableType(Context); 1143 } 1144 1145 void CodeGenFunction::GenerateCode(GlobalDecl GD, llvm::Function *Fn, 1146 const CGFunctionInfo &FnInfo) { 1147 const FunctionDecl *FD = cast<FunctionDecl>(GD.getDecl()); 1148 CurGD = GD; 1149 1150 FunctionArgList Args; 1151 QualType ResTy = BuildFunctionArgList(GD, Args); 1152 1153 // Check if we should generate debug info for this function. 1154 if (FD->hasAttr<NoDebugAttr>()) 1155 DebugInfo = nullptr; // disable debug info indefinitely for this function 1156 1157 // The function might not have a body if we're generating thunks for a 1158 // function declaration. 1159 SourceRange BodyRange; 1160 if (Stmt *Body = FD->getBody()) 1161 BodyRange = Body->getSourceRange(); 1162 else 1163 BodyRange = FD->getLocation(); 1164 CurEHLocation = BodyRange.getEnd(); 1165 1166 // Use the location of the start of the function to determine where 1167 // the function definition is located. By default use the location 1168 // of the declaration as the location for the subprogram. A function 1169 // may lack a declaration in the source code if it is created by code 1170 // gen. (examples: _GLOBAL__I_a, __cxx_global_array_dtor, thunk). 1171 SourceLocation Loc = FD->getLocation(); 1172 1173 // If this is a function specialization then use the pattern body 1174 // as the location for the function. 1175 if (const FunctionDecl *SpecDecl = FD->getTemplateInstantiationPattern()) 1176 if (SpecDecl->hasBody(SpecDecl)) 1177 Loc = SpecDecl->getLocation(); 1178 1179 Stmt *Body = FD->getBody(); 1180 1181 // Initialize helper which will detect jumps which can cause invalid lifetime 1182 // markers. 1183 if (Body && ShouldEmitLifetimeMarkers) 1184 Bypasses.Init(Body); 1185 1186 // Emit the standard function prologue. 1187 StartFunction(GD, ResTy, Fn, FnInfo, Args, Loc, BodyRange.getBegin()); 1188 1189 // Generate the body of the function. 1190 PGO.assignRegionCounters(GD, CurFn); 1191 if (isa<CXXDestructorDecl>(FD)) 1192 EmitDestructorBody(Args); 1193 else if (isa<CXXConstructorDecl>(FD)) 1194 EmitConstructorBody(Args); 1195 else if (getLangOpts().CUDA && 1196 !getLangOpts().CUDAIsDevice && 1197 FD->hasAttr<CUDAGlobalAttr>()) 1198 CGM.getCUDARuntime().emitDeviceStub(*this, Args); 1199 else if (isa<CXXMethodDecl>(FD) && 1200 cast<CXXMethodDecl>(FD)->isLambdaStaticInvoker()) { 1201 // The lambda static invoker function is special, because it forwards or 1202 // clones the body of the function call operator (but is actually static). 1203 EmitLambdaStaticInvokeBody(cast<CXXMethodDecl>(FD)); 1204 } else if (FD->isDefaulted() && isa<CXXMethodDecl>(FD) && 1205 (cast<CXXMethodDecl>(FD)->isCopyAssignmentOperator() || 1206 cast<CXXMethodDecl>(FD)->isMoveAssignmentOperator())) { 1207 // Implicit copy-assignment gets the same special treatment as implicit 1208 // copy-constructors. 1209 emitImplicitAssignmentOperatorBody(Args); 1210 } else if (Body) { 1211 EmitFunctionBody(Body); 1212 } else 1213 llvm_unreachable("no definition for emitted function"); 1214 1215 // C++11 [stmt.return]p2: 1216 // Flowing off the end of a function [...] results in undefined behavior in 1217 // a value-returning function. 1218 // C11 6.9.1p12: 1219 // If the '}' that terminates a function is reached, and the value of the 1220 // function call is used by the caller, the behavior is undefined. 1221 if (getLangOpts().CPlusPlus && !FD->hasImplicitReturnZero() && !SawAsmBlock && 1222 !FD->getReturnType()->isVoidType() && Builder.GetInsertBlock()) { 1223 bool ShouldEmitUnreachable = 1224 CGM.getCodeGenOpts().StrictReturn || 1225 shouldUseUndefinedBehaviorReturnOptimization(FD, getContext()); 1226 if (SanOpts.has(SanitizerKind::Return)) { 1227 SanitizerScope SanScope(this); 1228 llvm::Value *IsFalse = Builder.getFalse(); 1229 EmitCheck(std::make_pair(IsFalse, SanitizerKind::Return), 1230 SanitizerHandler::MissingReturn, 1231 EmitCheckSourceLocation(FD->getLocation()), None); 1232 } else if (ShouldEmitUnreachable) { 1233 if (CGM.getCodeGenOpts().OptimizationLevel == 0) 1234 EmitTrapCall(llvm::Intrinsic::trap); 1235 } 1236 if (SanOpts.has(SanitizerKind::Return) || ShouldEmitUnreachable) { 1237 Builder.CreateUnreachable(); 1238 Builder.ClearInsertionPoint(); 1239 } 1240 } 1241 1242 // Emit the standard function epilogue. 1243 FinishFunction(BodyRange.getEnd()); 1244 1245 // If we haven't marked the function nothrow through other means, do 1246 // a quick pass now to see if we can. 1247 if (!CurFn->doesNotThrow()) 1248 TryMarkNoThrow(CurFn); 1249 } 1250 1251 /// ContainsLabel - Return true if the statement contains a label in it. If 1252 /// this statement is not executed normally, it not containing a label means 1253 /// that we can just remove the code. 1254 bool CodeGenFunction::ContainsLabel(const Stmt *S, bool IgnoreCaseStmts) { 1255 // Null statement, not a label! 1256 if (!S) return false; 1257 1258 // If this is a label, we have to emit the code, consider something like: 1259 // if (0) { ... foo: bar(); } goto foo; 1260 // 1261 // TODO: If anyone cared, we could track __label__'s, since we know that you 1262 // can't jump to one from outside their declared region. 1263 if (isa<LabelStmt>(S)) 1264 return true; 1265 1266 // If this is a case/default statement, and we haven't seen a switch, we have 1267 // to emit the code. 1268 if (isa<SwitchCase>(S) && !IgnoreCaseStmts) 1269 return true; 1270 1271 // If this is a switch statement, we want to ignore cases below it. 1272 if (isa<SwitchStmt>(S)) 1273 IgnoreCaseStmts = true; 1274 1275 // Scan subexpressions for verboten labels. 1276 for (const Stmt *SubStmt : S->children()) 1277 if (ContainsLabel(SubStmt, IgnoreCaseStmts)) 1278 return true; 1279 1280 return false; 1281 } 1282 1283 /// containsBreak - Return true if the statement contains a break out of it. 1284 /// If the statement (recursively) contains a switch or loop with a break 1285 /// inside of it, this is fine. 1286 bool CodeGenFunction::containsBreak(const Stmt *S) { 1287 // Null statement, not a label! 1288 if (!S) return false; 1289 1290 // If this is a switch or loop that defines its own break scope, then we can 1291 // include it and anything inside of it. 1292 if (isa<SwitchStmt>(S) || isa<WhileStmt>(S) || isa<DoStmt>(S) || 1293 isa<ForStmt>(S)) 1294 return false; 1295 1296 if (isa<BreakStmt>(S)) 1297 return true; 1298 1299 // Scan subexpressions for verboten breaks. 1300 for (const Stmt *SubStmt : S->children()) 1301 if (containsBreak(SubStmt)) 1302 return true; 1303 1304 return false; 1305 } 1306 1307 bool CodeGenFunction::mightAddDeclToScope(const Stmt *S) { 1308 if (!S) return false; 1309 1310 // Some statement kinds add a scope and thus never add a decl to the current 1311 // scope. Note, this list is longer than the list of statements that might 1312 // have an unscoped decl nested within them, but this way is conservatively 1313 // correct even if more statement kinds are added. 1314 if (isa<IfStmt>(S) || isa<SwitchStmt>(S) || isa<WhileStmt>(S) || 1315 isa<DoStmt>(S) || isa<ForStmt>(S) || isa<CompoundStmt>(S) || 1316 isa<CXXForRangeStmt>(S) || isa<CXXTryStmt>(S) || 1317 isa<ObjCForCollectionStmt>(S) || isa<ObjCAtTryStmt>(S)) 1318 return false; 1319 1320 if (isa<DeclStmt>(S)) 1321 return true; 1322 1323 for (const Stmt *SubStmt : S->children()) 1324 if (mightAddDeclToScope(SubStmt)) 1325 return true; 1326 1327 return false; 1328 } 1329 1330 /// ConstantFoldsToSimpleInteger - If the specified expression does not fold 1331 /// to a constant, or if it does but contains a label, return false. If it 1332 /// constant folds return true and set the boolean result in Result. 1333 bool CodeGenFunction::ConstantFoldsToSimpleInteger(const Expr *Cond, 1334 bool &ResultBool, 1335 bool AllowLabels) { 1336 llvm::APSInt ResultInt; 1337 if (!ConstantFoldsToSimpleInteger(Cond, ResultInt, AllowLabels)) 1338 return false; 1339 1340 ResultBool = ResultInt.getBoolValue(); 1341 return true; 1342 } 1343 1344 /// ConstantFoldsToSimpleInteger - If the specified expression does not fold 1345 /// to a constant, or if it does but contains a label, return false. If it 1346 /// constant folds return true and set the folded value. 1347 bool CodeGenFunction::ConstantFoldsToSimpleInteger(const Expr *Cond, 1348 llvm::APSInt &ResultInt, 1349 bool AllowLabels) { 1350 // FIXME: Rename and handle conversion of other evaluatable things 1351 // to bool. 1352 Expr::EvalResult Result; 1353 if (!Cond->EvaluateAsInt(Result, getContext())) 1354 return false; // Not foldable, not integer or not fully evaluatable. 1355 1356 llvm::APSInt Int = Result.Val.getInt(); 1357 if (!AllowLabels && CodeGenFunction::ContainsLabel(Cond)) 1358 return false; // Contains a label. 1359 1360 ResultInt = Int; 1361 return true; 1362 } 1363 1364 1365 1366 /// EmitBranchOnBoolExpr - Emit a branch on a boolean condition (e.g. for an if 1367 /// statement) to the specified blocks. Based on the condition, this might try 1368 /// to simplify the codegen of the conditional based on the branch. 1369 /// 1370 void CodeGenFunction::EmitBranchOnBoolExpr(const Expr *Cond, 1371 llvm::BasicBlock *TrueBlock, 1372 llvm::BasicBlock *FalseBlock, 1373 uint64_t TrueCount) { 1374 Cond = Cond->IgnoreParens(); 1375 1376 if (const BinaryOperator *CondBOp = dyn_cast<BinaryOperator>(Cond)) { 1377 1378 // Handle X && Y in a condition. 1379 if (CondBOp->getOpcode() == BO_LAnd) { 1380 // If we have "1 && X", simplify the code. "0 && X" would have constant 1381 // folded if the case was simple enough. 1382 bool ConstantBool = false; 1383 if (ConstantFoldsToSimpleInteger(CondBOp->getLHS(), ConstantBool) && 1384 ConstantBool) { 1385 // br(1 && X) -> br(X). 1386 incrementProfileCounter(CondBOp); 1387 return EmitBranchOnBoolExpr(CondBOp->getRHS(), TrueBlock, FalseBlock, 1388 TrueCount); 1389 } 1390 1391 // If we have "X && 1", simplify the code to use an uncond branch. 1392 // "X && 0" would have been constant folded to 0. 1393 if (ConstantFoldsToSimpleInteger(CondBOp->getRHS(), ConstantBool) && 1394 ConstantBool) { 1395 // br(X && 1) -> br(X). 1396 return EmitBranchOnBoolExpr(CondBOp->getLHS(), TrueBlock, FalseBlock, 1397 TrueCount); 1398 } 1399 1400 // Emit the LHS as a conditional. If the LHS conditional is false, we 1401 // want to jump to the FalseBlock. 1402 llvm::BasicBlock *LHSTrue = createBasicBlock("land.lhs.true"); 1403 // The counter tells us how often we evaluate RHS, and all of TrueCount 1404 // can be propagated to that branch. 1405 uint64_t RHSCount = getProfileCount(CondBOp->getRHS()); 1406 1407 ConditionalEvaluation eval(*this); 1408 { 1409 ApplyDebugLocation DL(*this, Cond); 1410 EmitBranchOnBoolExpr(CondBOp->getLHS(), LHSTrue, FalseBlock, RHSCount); 1411 EmitBlock(LHSTrue); 1412 } 1413 1414 incrementProfileCounter(CondBOp); 1415 setCurrentProfileCount(getProfileCount(CondBOp->getRHS())); 1416 1417 // Any temporaries created here are conditional. 1418 eval.begin(*this); 1419 EmitBranchOnBoolExpr(CondBOp->getRHS(), TrueBlock, FalseBlock, TrueCount); 1420 eval.end(*this); 1421 1422 return; 1423 } 1424 1425 if (CondBOp->getOpcode() == BO_LOr) { 1426 // If we have "0 || X", simplify the code. "1 || X" would have constant 1427 // folded if the case was simple enough. 1428 bool ConstantBool = false; 1429 if (ConstantFoldsToSimpleInteger(CondBOp->getLHS(), ConstantBool) && 1430 !ConstantBool) { 1431 // br(0 || X) -> br(X). 1432 incrementProfileCounter(CondBOp); 1433 return EmitBranchOnBoolExpr(CondBOp->getRHS(), TrueBlock, FalseBlock, 1434 TrueCount); 1435 } 1436 1437 // If we have "X || 0", simplify the code to use an uncond branch. 1438 // "X || 1" would have been constant folded to 1. 1439 if (ConstantFoldsToSimpleInteger(CondBOp->getRHS(), ConstantBool) && 1440 !ConstantBool) { 1441 // br(X || 0) -> br(X). 1442 return EmitBranchOnBoolExpr(CondBOp->getLHS(), TrueBlock, FalseBlock, 1443 TrueCount); 1444 } 1445 1446 // Emit the LHS as a conditional. If the LHS conditional is true, we 1447 // want to jump to the TrueBlock. 1448 llvm::BasicBlock *LHSFalse = createBasicBlock("lor.lhs.false"); 1449 // We have the count for entry to the RHS and for the whole expression 1450 // being true, so we can divy up True count between the short circuit and 1451 // the RHS. 1452 uint64_t LHSCount = 1453 getCurrentProfileCount() - getProfileCount(CondBOp->getRHS()); 1454 uint64_t RHSCount = TrueCount - LHSCount; 1455 1456 ConditionalEvaluation eval(*this); 1457 { 1458 ApplyDebugLocation DL(*this, Cond); 1459 EmitBranchOnBoolExpr(CondBOp->getLHS(), TrueBlock, LHSFalse, LHSCount); 1460 EmitBlock(LHSFalse); 1461 } 1462 1463 incrementProfileCounter(CondBOp); 1464 setCurrentProfileCount(getProfileCount(CondBOp->getRHS())); 1465 1466 // Any temporaries created here are conditional. 1467 eval.begin(*this); 1468 EmitBranchOnBoolExpr(CondBOp->getRHS(), TrueBlock, FalseBlock, RHSCount); 1469 1470 eval.end(*this); 1471 1472 return; 1473 } 1474 } 1475 1476 if (const UnaryOperator *CondUOp = dyn_cast<UnaryOperator>(Cond)) { 1477 // br(!x, t, f) -> br(x, f, t) 1478 if (CondUOp->getOpcode() == UO_LNot) { 1479 // Negate the count. 1480 uint64_t FalseCount = getCurrentProfileCount() - TrueCount; 1481 // Negate the condition and swap the destination blocks. 1482 return EmitBranchOnBoolExpr(CondUOp->getSubExpr(), FalseBlock, TrueBlock, 1483 FalseCount); 1484 } 1485 } 1486 1487 if (const ConditionalOperator *CondOp = dyn_cast<ConditionalOperator>(Cond)) { 1488 // br(c ? x : y, t, f) -> br(c, br(x, t, f), br(y, t, f)) 1489 llvm::BasicBlock *LHSBlock = createBasicBlock("cond.true"); 1490 llvm::BasicBlock *RHSBlock = createBasicBlock("cond.false"); 1491 1492 ConditionalEvaluation cond(*this); 1493 EmitBranchOnBoolExpr(CondOp->getCond(), LHSBlock, RHSBlock, 1494 getProfileCount(CondOp)); 1495 1496 // When computing PGO branch weights, we only know the overall count for 1497 // the true block. This code is essentially doing tail duplication of the 1498 // naive code-gen, introducing new edges for which counts are not 1499 // available. Divide the counts proportionally between the LHS and RHS of 1500 // the conditional operator. 1501 uint64_t LHSScaledTrueCount = 0; 1502 if (TrueCount) { 1503 double LHSRatio = 1504 getProfileCount(CondOp) / (double)getCurrentProfileCount(); 1505 LHSScaledTrueCount = TrueCount * LHSRatio; 1506 } 1507 1508 cond.begin(*this); 1509 EmitBlock(LHSBlock); 1510 incrementProfileCounter(CondOp); 1511 { 1512 ApplyDebugLocation DL(*this, Cond); 1513 EmitBranchOnBoolExpr(CondOp->getLHS(), TrueBlock, FalseBlock, 1514 LHSScaledTrueCount); 1515 } 1516 cond.end(*this); 1517 1518 cond.begin(*this); 1519 EmitBlock(RHSBlock); 1520 EmitBranchOnBoolExpr(CondOp->getRHS(), TrueBlock, FalseBlock, 1521 TrueCount - LHSScaledTrueCount); 1522 cond.end(*this); 1523 1524 return; 1525 } 1526 1527 if (const CXXThrowExpr *Throw = dyn_cast<CXXThrowExpr>(Cond)) { 1528 // Conditional operator handling can give us a throw expression as a 1529 // condition for a case like: 1530 // br(c ? throw x : y, t, f) -> br(c, br(throw x, t, f), br(y, t, f) 1531 // Fold this to: 1532 // br(c, throw x, br(y, t, f)) 1533 EmitCXXThrowExpr(Throw, /*KeepInsertionPoint*/false); 1534 return; 1535 } 1536 1537 // If the branch has a condition wrapped by __builtin_unpredictable, 1538 // create metadata that specifies that the branch is unpredictable. 1539 // Don't bother if not optimizing because that metadata would not be used. 1540 llvm::MDNode *Unpredictable = nullptr; 1541 auto *Call = dyn_cast<CallExpr>(Cond->IgnoreImpCasts()); 1542 if (Call && CGM.getCodeGenOpts().OptimizationLevel != 0) { 1543 auto *FD = dyn_cast_or_null<FunctionDecl>(Call->getCalleeDecl()); 1544 if (FD && FD->getBuiltinID() == Builtin::BI__builtin_unpredictable) { 1545 llvm::MDBuilder MDHelper(getLLVMContext()); 1546 Unpredictable = MDHelper.createUnpredictable(); 1547 } 1548 } 1549 1550 // Create branch weights based on the number of times we get here and the 1551 // number of times the condition should be true. 1552 uint64_t CurrentCount = std::max(getCurrentProfileCount(), TrueCount); 1553 llvm::MDNode *Weights = 1554 createProfileWeights(TrueCount, CurrentCount - TrueCount); 1555 1556 // Emit the code with the fully general case. 1557 llvm::Value *CondV; 1558 { 1559 ApplyDebugLocation DL(*this, Cond); 1560 CondV = EvaluateExprAsBool(Cond); 1561 } 1562 Builder.CreateCondBr(CondV, TrueBlock, FalseBlock, Weights, Unpredictable); 1563 } 1564 1565 /// ErrorUnsupported - Print out an error that codegen doesn't support the 1566 /// specified stmt yet. 1567 void CodeGenFunction::ErrorUnsupported(const Stmt *S, const char *Type) { 1568 CGM.ErrorUnsupported(S, Type); 1569 } 1570 1571 /// emitNonZeroVLAInit - Emit the "zero" initialization of a 1572 /// variable-length array whose elements have a non-zero bit-pattern. 1573 /// 1574 /// \param baseType the inner-most element type of the array 1575 /// \param src - a char* pointing to the bit-pattern for a single 1576 /// base element of the array 1577 /// \param sizeInChars - the total size of the VLA, in chars 1578 static void emitNonZeroVLAInit(CodeGenFunction &CGF, QualType baseType, 1579 Address dest, Address src, 1580 llvm::Value *sizeInChars) { 1581 CGBuilderTy &Builder = CGF.Builder; 1582 1583 CharUnits baseSize = CGF.getContext().getTypeSizeInChars(baseType); 1584 llvm::Value *baseSizeInChars 1585 = llvm::ConstantInt::get(CGF.IntPtrTy, baseSize.getQuantity()); 1586 1587 Address begin = 1588 Builder.CreateElementBitCast(dest, CGF.Int8Ty, "vla.begin"); 1589 llvm::Value *end = 1590 Builder.CreateInBoundsGEP(begin.getPointer(), sizeInChars, "vla.end"); 1591 1592 llvm::BasicBlock *originBB = CGF.Builder.GetInsertBlock(); 1593 llvm::BasicBlock *loopBB = CGF.createBasicBlock("vla-init.loop"); 1594 llvm::BasicBlock *contBB = CGF.createBasicBlock("vla-init.cont"); 1595 1596 // Make a loop over the VLA. C99 guarantees that the VLA element 1597 // count must be nonzero. 1598 CGF.EmitBlock(loopBB); 1599 1600 llvm::PHINode *cur = Builder.CreatePHI(begin.getType(), 2, "vla.cur"); 1601 cur->addIncoming(begin.getPointer(), originBB); 1602 1603 CharUnits curAlign = 1604 dest.getAlignment().alignmentOfArrayElement(baseSize); 1605 1606 // memcpy the individual element bit-pattern. 1607 Builder.CreateMemCpy(Address(cur, curAlign), src, baseSizeInChars, 1608 /*volatile*/ false); 1609 1610 // Go to the next element. 1611 llvm::Value *next = 1612 Builder.CreateInBoundsGEP(CGF.Int8Ty, cur, baseSizeInChars, "vla.next"); 1613 1614 // Leave if that's the end of the VLA. 1615 llvm::Value *done = Builder.CreateICmpEQ(next, end, "vla-init.isdone"); 1616 Builder.CreateCondBr(done, contBB, loopBB); 1617 cur->addIncoming(next, loopBB); 1618 1619 CGF.EmitBlock(contBB); 1620 } 1621 1622 void 1623 CodeGenFunction::EmitNullInitialization(Address DestPtr, QualType Ty) { 1624 // Ignore empty classes in C++. 1625 if (getLangOpts().CPlusPlus) { 1626 if (const RecordType *RT = Ty->getAs<RecordType>()) { 1627 if (cast<CXXRecordDecl>(RT->getDecl())->isEmpty()) 1628 return; 1629 } 1630 } 1631 1632 // Cast the dest ptr to the appropriate i8 pointer type. 1633 if (DestPtr.getElementType() != Int8Ty) 1634 DestPtr = Builder.CreateElementBitCast(DestPtr, Int8Ty); 1635 1636 // Get size and alignment info for this aggregate. 1637 CharUnits size = getContext().getTypeSizeInChars(Ty); 1638 1639 llvm::Value *SizeVal; 1640 const VariableArrayType *vla; 1641 1642 // Don't bother emitting a zero-byte memset. 1643 if (size.isZero()) { 1644 // But note that getTypeInfo returns 0 for a VLA. 1645 if (const VariableArrayType *vlaType = 1646 dyn_cast_or_null<VariableArrayType>( 1647 getContext().getAsArrayType(Ty))) { 1648 auto VlaSize = getVLASize(vlaType); 1649 SizeVal = VlaSize.NumElts; 1650 CharUnits eltSize = getContext().getTypeSizeInChars(VlaSize.Type); 1651 if (!eltSize.isOne()) 1652 SizeVal = Builder.CreateNUWMul(SizeVal, CGM.getSize(eltSize)); 1653 vla = vlaType; 1654 } else { 1655 return; 1656 } 1657 } else { 1658 SizeVal = CGM.getSize(size); 1659 vla = nullptr; 1660 } 1661 1662 // If the type contains a pointer to data member we can't memset it to zero. 1663 // Instead, create a null constant and copy it to the destination. 1664 // TODO: there are other patterns besides zero that we can usefully memset, 1665 // like -1, which happens to be the pattern used by member-pointers. 1666 if (!CGM.getTypes().isZeroInitializable(Ty)) { 1667 // For a VLA, emit a single element, then splat that over the VLA. 1668 if (vla) Ty = getContext().getBaseElementType(vla); 1669 1670 llvm::Constant *NullConstant = CGM.EmitNullConstant(Ty); 1671 1672 llvm::GlobalVariable *NullVariable = 1673 new llvm::GlobalVariable(CGM.getModule(), NullConstant->getType(), 1674 /*isConstant=*/true, 1675 llvm::GlobalVariable::PrivateLinkage, 1676 NullConstant, Twine()); 1677 CharUnits NullAlign = DestPtr.getAlignment(); 1678 NullVariable->setAlignment(NullAlign.getAsAlign()); 1679 Address SrcPtr(Builder.CreateBitCast(NullVariable, Builder.getInt8PtrTy()), 1680 NullAlign); 1681 1682 if (vla) return emitNonZeroVLAInit(*this, Ty, DestPtr, SrcPtr, SizeVal); 1683 1684 // Get and call the appropriate llvm.memcpy overload. 1685 Builder.CreateMemCpy(DestPtr, SrcPtr, SizeVal, false); 1686 return; 1687 } 1688 1689 // Otherwise, just memset the whole thing to zero. This is legal 1690 // because in LLVM, all default initializers (other than the ones we just 1691 // handled above) are guaranteed to have a bit pattern of all zeros. 1692 Builder.CreateMemSet(DestPtr, Builder.getInt8(0), SizeVal, false); 1693 } 1694 1695 llvm::BlockAddress *CodeGenFunction::GetAddrOfLabel(const LabelDecl *L) { 1696 // Make sure that there is a block for the indirect goto. 1697 if (!IndirectBranch) 1698 GetIndirectGotoBlock(); 1699 1700 llvm::BasicBlock *BB = getJumpDestForLabel(L).getBlock(); 1701 1702 // Make sure the indirect branch includes all of the address-taken blocks. 1703 IndirectBranch->addDestination(BB); 1704 return llvm::BlockAddress::get(CurFn, BB); 1705 } 1706 1707 llvm::BasicBlock *CodeGenFunction::GetIndirectGotoBlock() { 1708 // If we already made the indirect branch for indirect goto, return its block. 1709 if (IndirectBranch) return IndirectBranch->getParent(); 1710 1711 CGBuilderTy TmpBuilder(*this, createBasicBlock("indirectgoto")); 1712 1713 // Create the PHI node that indirect gotos will add entries to. 1714 llvm::Value *DestVal = TmpBuilder.CreatePHI(Int8PtrTy, 0, 1715 "indirect.goto.dest"); 1716 1717 // Create the indirect branch instruction. 1718 IndirectBranch = TmpBuilder.CreateIndirectBr(DestVal); 1719 return IndirectBranch->getParent(); 1720 } 1721 1722 /// Computes the length of an array in elements, as well as the base 1723 /// element type and a properly-typed first element pointer. 1724 llvm::Value *CodeGenFunction::emitArrayLength(const ArrayType *origArrayType, 1725 QualType &baseType, 1726 Address &addr) { 1727 const ArrayType *arrayType = origArrayType; 1728 1729 // If it's a VLA, we have to load the stored size. Note that 1730 // this is the size of the VLA in bytes, not its size in elements. 1731 llvm::Value *numVLAElements = nullptr; 1732 if (isa<VariableArrayType>(arrayType)) { 1733 numVLAElements = getVLASize(cast<VariableArrayType>(arrayType)).NumElts; 1734 1735 // Walk into all VLAs. This doesn't require changes to addr, 1736 // which has type T* where T is the first non-VLA element type. 1737 do { 1738 QualType elementType = arrayType->getElementType(); 1739 arrayType = getContext().getAsArrayType(elementType); 1740 1741 // If we only have VLA components, 'addr' requires no adjustment. 1742 if (!arrayType) { 1743 baseType = elementType; 1744 return numVLAElements; 1745 } 1746 } while (isa<VariableArrayType>(arrayType)); 1747 1748 // We get out here only if we find a constant array type 1749 // inside the VLA. 1750 } 1751 1752 // We have some number of constant-length arrays, so addr should 1753 // have LLVM type [M x [N x [...]]]*. Build a GEP that walks 1754 // down to the first element of addr. 1755 SmallVector<llvm::Value*, 8> gepIndices; 1756 1757 // GEP down to the array type. 1758 llvm::ConstantInt *zero = Builder.getInt32(0); 1759 gepIndices.push_back(zero); 1760 1761 uint64_t countFromCLAs = 1; 1762 QualType eltType; 1763 1764 llvm::ArrayType *llvmArrayType = 1765 dyn_cast<llvm::ArrayType>(addr.getElementType()); 1766 while (llvmArrayType) { 1767 assert(isa<ConstantArrayType>(arrayType)); 1768 assert(cast<ConstantArrayType>(arrayType)->getSize().getZExtValue() 1769 == llvmArrayType->getNumElements()); 1770 1771 gepIndices.push_back(zero); 1772 countFromCLAs *= llvmArrayType->getNumElements(); 1773 eltType = arrayType->getElementType(); 1774 1775 llvmArrayType = 1776 dyn_cast<llvm::ArrayType>(llvmArrayType->getElementType()); 1777 arrayType = getContext().getAsArrayType(arrayType->getElementType()); 1778 assert((!llvmArrayType || arrayType) && 1779 "LLVM and Clang types are out-of-synch"); 1780 } 1781 1782 if (arrayType) { 1783 // From this point onwards, the Clang array type has been emitted 1784 // as some other type (probably a packed struct). Compute the array 1785 // size, and just emit the 'begin' expression as a bitcast. 1786 while (arrayType) { 1787 countFromCLAs *= 1788 cast<ConstantArrayType>(arrayType)->getSize().getZExtValue(); 1789 eltType = arrayType->getElementType(); 1790 arrayType = getContext().getAsArrayType(eltType); 1791 } 1792 1793 llvm::Type *baseType = ConvertType(eltType); 1794 addr = Builder.CreateElementBitCast(addr, baseType, "array.begin"); 1795 } else { 1796 // Create the actual GEP. 1797 addr = Address(Builder.CreateInBoundsGEP(addr.getPointer(), 1798 gepIndices, "array.begin"), 1799 addr.getAlignment()); 1800 } 1801 1802 baseType = eltType; 1803 1804 llvm::Value *numElements 1805 = llvm::ConstantInt::get(SizeTy, countFromCLAs); 1806 1807 // If we had any VLA dimensions, factor them in. 1808 if (numVLAElements) 1809 numElements = Builder.CreateNUWMul(numVLAElements, numElements); 1810 1811 return numElements; 1812 } 1813 1814 CodeGenFunction::VlaSizePair CodeGenFunction::getVLASize(QualType type) { 1815 const VariableArrayType *vla = getContext().getAsVariableArrayType(type); 1816 assert(vla && "type was not a variable array type!"); 1817 return getVLASize(vla); 1818 } 1819 1820 CodeGenFunction::VlaSizePair 1821 CodeGenFunction::getVLASize(const VariableArrayType *type) { 1822 // The number of elements so far; always size_t. 1823 llvm::Value *numElements = nullptr; 1824 1825 QualType elementType; 1826 do { 1827 elementType = type->getElementType(); 1828 llvm::Value *vlaSize = VLASizeMap[type->getSizeExpr()]; 1829 assert(vlaSize && "no size for VLA!"); 1830 assert(vlaSize->getType() == SizeTy); 1831 1832 if (!numElements) { 1833 numElements = vlaSize; 1834 } else { 1835 // It's undefined behavior if this wraps around, so mark it that way. 1836 // FIXME: Teach -fsanitize=undefined to trap this. 1837 numElements = Builder.CreateNUWMul(numElements, vlaSize); 1838 } 1839 } while ((type = getContext().getAsVariableArrayType(elementType))); 1840 1841 return { numElements, elementType }; 1842 } 1843 1844 CodeGenFunction::VlaSizePair 1845 CodeGenFunction::getVLAElements1D(QualType type) { 1846 const VariableArrayType *vla = getContext().getAsVariableArrayType(type); 1847 assert(vla && "type was not a variable array type!"); 1848 return getVLAElements1D(vla); 1849 } 1850 1851 CodeGenFunction::VlaSizePair 1852 CodeGenFunction::getVLAElements1D(const VariableArrayType *Vla) { 1853 llvm::Value *VlaSize = VLASizeMap[Vla->getSizeExpr()]; 1854 assert(VlaSize && "no size for VLA!"); 1855 assert(VlaSize->getType() == SizeTy); 1856 return { VlaSize, Vla->getElementType() }; 1857 } 1858 1859 void CodeGenFunction::EmitVariablyModifiedType(QualType type) { 1860 assert(type->isVariablyModifiedType() && 1861 "Must pass variably modified type to EmitVLASizes!"); 1862 1863 EnsureInsertPoint(); 1864 1865 // We're going to walk down into the type and look for VLA 1866 // expressions. 1867 do { 1868 assert(type->isVariablyModifiedType()); 1869 1870 const Type *ty = type.getTypePtr(); 1871 switch (ty->getTypeClass()) { 1872 1873 #define TYPE(Class, Base) 1874 #define ABSTRACT_TYPE(Class, Base) 1875 #define NON_CANONICAL_TYPE(Class, Base) 1876 #define DEPENDENT_TYPE(Class, Base) case Type::Class: 1877 #define NON_CANONICAL_UNLESS_DEPENDENT_TYPE(Class, Base) 1878 #include "clang/AST/TypeNodes.inc" 1879 llvm_unreachable("unexpected dependent type!"); 1880 1881 // These types are never variably-modified. 1882 case Type::Builtin: 1883 case Type::Complex: 1884 case Type::Vector: 1885 case Type::ExtVector: 1886 case Type::Record: 1887 case Type::Enum: 1888 case Type::Elaborated: 1889 case Type::TemplateSpecialization: 1890 case Type::ObjCTypeParam: 1891 case Type::ObjCObject: 1892 case Type::ObjCInterface: 1893 case Type::ObjCObjectPointer: 1894 llvm_unreachable("type class is never variably-modified!"); 1895 1896 case Type::Adjusted: 1897 type = cast<AdjustedType>(ty)->getAdjustedType(); 1898 break; 1899 1900 case Type::Decayed: 1901 type = cast<DecayedType>(ty)->getPointeeType(); 1902 break; 1903 1904 case Type::Pointer: 1905 type = cast<PointerType>(ty)->getPointeeType(); 1906 break; 1907 1908 case Type::BlockPointer: 1909 type = cast<BlockPointerType>(ty)->getPointeeType(); 1910 break; 1911 1912 case Type::LValueReference: 1913 case Type::RValueReference: 1914 type = cast<ReferenceType>(ty)->getPointeeType(); 1915 break; 1916 1917 case Type::MemberPointer: 1918 type = cast<MemberPointerType>(ty)->getPointeeType(); 1919 break; 1920 1921 case Type::ConstantArray: 1922 case Type::IncompleteArray: 1923 // Losing element qualification here is fine. 1924 type = cast<ArrayType>(ty)->getElementType(); 1925 break; 1926 1927 case Type::VariableArray: { 1928 // Losing element qualification here is fine. 1929 const VariableArrayType *vat = cast<VariableArrayType>(ty); 1930 1931 // Unknown size indication requires no size computation. 1932 // Otherwise, evaluate and record it. 1933 if (const Expr *size = vat->getSizeExpr()) { 1934 // It's possible that we might have emitted this already, 1935 // e.g. with a typedef and a pointer to it. 1936 llvm::Value *&entry = VLASizeMap[size]; 1937 if (!entry) { 1938 llvm::Value *Size = EmitScalarExpr(size); 1939 1940 // C11 6.7.6.2p5: 1941 // If the size is an expression that is not an integer constant 1942 // expression [...] each time it is evaluated it shall have a value 1943 // greater than zero. 1944 if (SanOpts.has(SanitizerKind::VLABound) && 1945 size->getType()->isSignedIntegerType()) { 1946 SanitizerScope SanScope(this); 1947 llvm::Value *Zero = llvm::Constant::getNullValue(Size->getType()); 1948 llvm::Constant *StaticArgs[] = { 1949 EmitCheckSourceLocation(size->getBeginLoc()), 1950 EmitCheckTypeDescriptor(size->getType())}; 1951 EmitCheck(std::make_pair(Builder.CreateICmpSGT(Size, Zero), 1952 SanitizerKind::VLABound), 1953 SanitizerHandler::VLABoundNotPositive, StaticArgs, Size); 1954 } 1955 1956 // Always zexting here would be wrong if it weren't 1957 // undefined behavior to have a negative bound. 1958 entry = Builder.CreateIntCast(Size, SizeTy, /*signed*/ false); 1959 } 1960 } 1961 type = vat->getElementType(); 1962 break; 1963 } 1964 1965 case Type::FunctionProto: 1966 case Type::FunctionNoProto: 1967 type = cast<FunctionType>(ty)->getReturnType(); 1968 break; 1969 1970 case Type::Paren: 1971 case Type::TypeOf: 1972 case Type::UnaryTransform: 1973 case Type::Attributed: 1974 case Type::SubstTemplateTypeParm: 1975 case Type::PackExpansion: 1976 case Type::MacroQualified: 1977 // Keep walking after single level desugaring. 1978 type = type.getSingleStepDesugaredType(getContext()); 1979 break; 1980 1981 case Type::Typedef: 1982 case Type::Decltype: 1983 case Type::Auto: 1984 case Type::DeducedTemplateSpecialization: 1985 // Stop walking: nothing to do. 1986 return; 1987 1988 case Type::TypeOfExpr: 1989 // Stop walking: emit typeof expression. 1990 EmitIgnoredExpr(cast<TypeOfExprType>(ty)->getUnderlyingExpr()); 1991 return; 1992 1993 case Type::Atomic: 1994 type = cast<AtomicType>(ty)->getValueType(); 1995 break; 1996 1997 case Type::Pipe: 1998 type = cast<PipeType>(ty)->getElementType(); 1999 break; 2000 } 2001 } while (type->isVariablyModifiedType()); 2002 } 2003 2004 Address CodeGenFunction::EmitVAListRef(const Expr* E) { 2005 if (getContext().getBuiltinVaListType()->isArrayType()) 2006 return EmitPointerWithAlignment(E); 2007 return EmitLValue(E).getAddress(); 2008 } 2009 2010 Address CodeGenFunction::EmitMSVAListRef(const Expr *E) { 2011 return EmitLValue(E).getAddress(); 2012 } 2013 2014 void CodeGenFunction::EmitDeclRefExprDbgValue(const DeclRefExpr *E, 2015 const APValue &Init) { 2016 assert(Init.hasValue() && "Invalid DeclRefExpr initializer!"); 2017 if (CGDebugInfo *Dbg = getDebugInfo()) 2018 if (CGM.getCodeGenOpts().getDebugInfo() >= codegenoptions::LimitedDebugInfo) 2019 Dbg->EmitGlobalVariable(E->getDecl(), Init); 2020 } 2021 2022 CodeGenFunction::PeepholeProtection 2023 CodeGenFunction::protectFromPeepholes(RValue rvalue) { 2024 // At the moment, the only aggressive peephole we do in IR gen 2025 // is trunc(zext) folding, but if we add more, we can easily 2026 // extend this protection. 2027 2028 if (!rvalue.isScalar()) return PeepholeProtection(); 2029 llvm::Value *value = rvalue.getScalarVal(); 2030 if (!isa<llvm::ZExtInst>(value)) return PeepholeProtection(); 2031 2032 // Just make an extra bitcast. 2033 assert(HaveInsertPoint()); 2034 llvm::Instruction *inst = new llvm::BitCastInst(value, value->getType(), "", 2035 Builder.GetInsertBlock()); 2036 2037 PeepholeProtection protection; 2038 protection.Inst = inst; 2039 return protection; 2040 } 2041 2042 void CodeGenFunction::unprotectFromPeepholes(PeepholeProtection protection) { 2043 if (!protection.Inst) return; 2044 2045 // In theory, we could try to duplicate the peepholes now, but whatever. 2046 protection.Inst->eraseFromParent(); 2047 } 2048 2049 void CodeGenFunction::EmitAlignmentAssumption(llvm::Value *PtrValue, 2050 QualType Ty, SourceLocation Loc, 2051 SourceLocation AssumptionLoc, 2052 llvm::Value *Alignment, 2053 llvm::Value *OffsetValue) { 2054 llvm::Value *TheCheck; 2055 llvm::Instruction *Assumption = Builder.CreateAlignmentAssumption( 2056 CGM.getDataLayout(), PtrValue, Alignment, OffsetValue, &TheCheck); 2057 if (SanOpts.has(SanitizerKind::Alignment)) { 2058 EmitAlignmentAssumptionCheck(PtrValue, Ty, Loc, AssumptionLoc, Alignment, 2059 OffsetValue, TheCheck, Assumption); 2060 } 2061 } 2062 2063 void CodeGenFunction::EmitAlignmentAssumption(llvm::Value *PtrValue, 2064 const Expr *E, 2065 SourceLocation AssumptionLoc, 2066 llvm::Value *Alignment, 2067 llvm::Value *OffsetValue) { 2068 if (auto *CE = dyn_cast<CastExpr>(E)) 2069 E = CE->getSubExprAsWritten(); 2070 QualType Ty = E->getType(); 2071 SourceLocation Loc = E->getExprLoc(); 2072 2073 EmitAlignmentAssumption(PtrValue, Ty, Loc, AssumptionLoc, Alignment, 2074 OffsetValue); 2075 } 2076 2077 llvm::Value *CodeGenFunction::EmitAnnotationCall(llvm::Function *AnnotationFn, 2078 llvm::Value *AnnotatedVal, 2079 StringRef AnnotationStr, 2080 SourceLocation Location) { 2081 llvm::Value *Args[4] = { 2082 AnnotatedVal, 2083 Builder.CreateBitCast(CGM.EmitAnnotationString(AnnotationStr), Int8PtrTy), 2084 Builder.CreateBitCast(CGM.EmitAnnotationUnit(Location), Int8PtrTy), 2085 CGM.EmitAnnotationLineNo(Location) 2086 }; 2087 return Builder.CreateCall(AnnotationFn, Args); 2088 } 2089 2090 void CodeGenFunction::EmitVarAnnotations(const VarDecl *D, llvm::Value *V) { 2091 assert(D->hasAttr<AnnotateAttr>() && "no annotate attribute"); 2092 // FIXME We create a new bitcast for every annotation because that's what 2093 // llvm-gcc was doing. 2094 for (const auto *I : D->specific_attrs<AnnotateAttr>()) 2095 EmitAnnotationCall(CGM.getIntrinsic(llvm::Intrinsic::var_annotation), 2096 Builder.CreateBitCast(V, CGM.Int8PtrTy, V->getName()), 2097 I->getAnnotation(), D->getLocation()); 2098 } 2099 2100 Address CodeGenFunction::EmitFieldAnnotations(const FieldDecl *D, 2101 Address Addr) { 2102 assert(D->hasAttr<AnnotateAttr>() && "no annotate attribute"); 2103 llvm::Value *V = Addr.getPointer(); 2104 llvm::Type *VTy = V->getType(); 2105 llvm::Function *F = CGM.getIntrinsic(llvm::Intrinsic::ptr_annotation, 2106 CGM.Int8PtrTy); 2107 2108 for (const auto *I : D->specific_attrs<AnnotateAttr>()) { 2109 // FIXME Always emit the cast inst so we can differentiate between 2110 // annotation on the first field of a struct and annotation on the struct 2111 // itself. 2112 if (VTy != CGM.Int8PtrTy) 2113 V = Builder.CreateBitCast(V, CGM.Int8PtrTy); 2114 V = EmitAnnotationCall(F, V, I->getAnnotation(), D->getLocation()); 2115 V = Builder.CreateBitCast(V, VTy); 2116 } 2117 2118 return Address(V, Addr.getAlignment()); 2119 } 2120 2121 CodeGenFunction::CGCapturedStmtInfo::~CGCapturedStmtInfo() { } 2122 2123 CodeGenFunction::SanitizerScope::SanitizerScope(CodeGenFunction *CGF) 2124 : CGF(CGF) { 2125 assert(!CGF->IsSanitizerScope); 2126 CGF->IsSanitizerScope = true; 2127 } 2128 2129 CodeGenFunction::SanitizerScope::~SanitizerScope() { 2130 CGF->IsSanitizerScope = false; 2131 } 2132 2133 void CodeGenFunction::InsertHelper(llvm::Instruction *I, 2134 const llvm::Twine &Name, 2135 llvm::BasicBlock *BB, 2136 llvm::BasicBlock::iterator InsertPt) const { 2137 LoopStack.InsertHelper(I); 2138 if (IsSanitizerScope) 2139 CGM.getSanitizerMetadata()->disableSanitizerForInstruction(I); 2140 } 2141 2142 void CGBuilderInserter::InsertHelper( 2143 llvm::Instruction *I, const llvm::Twine &Name, llvm::BasicBlock *BB, 2144 llvm::BasicBlock::iterator InsertPt) const { 2145 llvm::IRBuilderDefaultInserter::InsertHelper(I, Name, BB, InsertPt); 2146 if (CGF) 2147 CGF->InsertHelper(I, Name, BB, InsertPt); 2148 } 2149 2150 static bool hasRequiredFeatures(const SmallVectorImpl<StringRef> &ReqFeatures, 2151 CodeGenModule &CGM, const FunctionDecl *FD, 2152 std::string &FirstMissing) { 2153 // If there aren't any required features listed then go ahead and return. 2154 if (ReqFeatures.empty()) 2155 return false; 2156 2157 // Now build up the set of caller features and verify that all the required 2158 // features are there. 2159 llvm::StringMap<bool> CallerFeatureMap; 2160 CGM.getFunctionFeatureMap(CallerFeatureMap, GlobalDecl().getWithDecl(FD)); 2161 2162 // If we have at least one of the features in the feature list return 2163 // true, otherwise return false. 2164 return std::all_of( 2165 ReqFeatures.begin(), ReqFeatures.end(), [&](StringRef Feature) { 2166 SmallVector<StringRef, 1> OrFeatures; 2167 Feature.split(OrFeatures, '|'); 2168 return llvm::any_of(OrFeatures, [&](StringRef Feature) { 2169 if (!CallerFeatureMap.lookup(Feature)) { 2170 FirstMissing = Feature.str(); 2171 return false; 2172 } 2173 return true; 2174 }); 2175 }); 2176 } 2177 2178 // Emits an error if we don't have a valid set of target features for the 2179 // called function. 2180 void CodeGenFunction::checkTargetFeatures(const CallExpr *E, 2181 const FunctionDecl *TargetDecl) { 2182 return checkTargetFeatures(E->getBeginLoc(), TargetDecl); 2183 } 2184 2185 // Emits an error if we don't have a valid set of target features for the 2186 // called function. 2187 void CodeGenFunction::checkTargetFeatures(SourceLocation Loc, 2188 const FunctionDecl *TargetDecl) { 2189 // Early exit if this is an indirect call. 2190 if (!TargetDecl) 2191 return; 2192 2193 // Get the current enclosing function if it exists. If it doesn't 2194 // we can't check the target features anyhow. 2195 const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(CurCodeDecl); 2196 if (!FD) 2197 return; 2198 2199 // Grab the required features for the call. For a builtin this is listed in 2200 // the td file with the default cpu, for an always_inline function this is any 2201 // listed cpu and any listed features. 2202 unsigned BuiltinID = TargetDecl->getBuiltinID(); 2203 std::string MissingFeature; 2204 if (BuiltinID) { 2205 SmallVector<StringRef, 1> ReqFeatures; 2206 const char *FeatureList = 2207 CGM.getContext().BuiltinInfo.getRequiredFeatures(BuiltinID); 2208 // Return if the builtin doesn't have any required features. 2209 if (!FeatureList || StringRef(FeatureList) == "") 2210 return; 2211 StringRef(FeatureList).split(ReqFeatures, ','); 2212 if (!hasRequiredFeatures(ReqFeatures, CGM, FD, MissingFeature)) 2213 CGM.getDiags().Report(Loc, diag::err_builtin_needs_feature) 2214 << TargetDecl->getDeclName() 2215 << CGM.getContext().BuiltinInfo.getRequiredFeatures(BuiltinID); 2216 2217 } else if (TargetDecl->hasAttr<TargetAttr>() || 2218 TargetDecl->hasAttr<CPUSpecificAttr>()) { 2219 // Get the required features for the callee. 2220 2221 const TargetAttr *TD = TargetDecl->getAttr<TargetAttr>(); 2222 TargetAttr::ParsedTargetAttr ParsedAttr = CGM.filterFunctionTargetAttrs(TD); 2223 2224 SmallVector<StringRef, 1> ReqFeatures; 2225 llvm::StringMap<bool> CalleeFeatureMap; 2226 CGM.getFunctionFeatureMap(CalleeFeatureMap, TargetDecl); 2227 2228 for (const auto &F : ParsedAttr.Features) { 2229 if (F[0] == '+' && CalleeFeatureMap.lookup(F.substr(1))) 2230 ReqFeatures.push_back(StringRef(F).substr(1)); 2231 } 2232 2233 for (const auto &F : CalleeFeatureMap) { 2234 // Only positive features are "required". 2235 if (F.getValue()) 2236 ReqFeatures.push_back(F.getKey()); 2237 } 2238 if (!hasRequiredFeatures(ReqFeatures, CGM, FD, MissingFeature)) 2239 CGM.getDiags().Report(Loc, diag::err_function_needs_feature) 2240 << FD->getDeclName() << TargetDecl->getDeclName() << MissingFeature; 2241 } 2242 } 2243 2244 void CodeGenFunction::EmitSanitizerStatReport(llvm::SanitizerStatKind SSK) { 2245 if (!CGM.getCodeGenOpts().SanitizeStats) 2246 return; 2247 2248 llvm::IRBuilder<> IRB(Builder.GetInsertBlock(), Builder.GetInsertPoint()); 2249 IRB.SetCurrentDebugLocation(Builder.getCurrentDebugLocation()); 2250 CGM.getSanStats().create(IRB, SSK); 2251 } 2252 2253 llvm::Value * 2254 CodeGenFunction::FormResolverCondition(const MultiVersionResolverOption &RO) { 2255 llvm::Value *Condition = nullptr; 2256 2257 if (!RO.Conditions.Architecture.empty()) 2258 Condition = EmitX86CpuIs(RO.Conditions.Architecture); 2259 2260 if (!RO.Conditions.Features.empty()) { 2261 llvm::Value *FeatureCond = EmitX86CpuSupports(RO.Conditions.Features); 2262 Condition = 2263 Condition ? Builder.CreateAnd(Condition, FeatureCond) : FeatureCond; 2264 } 2265 return Condition; 2266 } 2267 2268 static void CreateMultiVersionResolverReturn(CodeGenModule &CGM, 2269 llvm::Function *Resolver, 2270 CGBuilderTy &Builder, 2271 llvm::Function *FuncToReturn, 2272 bool SupportsIFunc) { 2273 if (SupportsIFunc) { 2274 Builder.CreateRet(FuncToReturn); 2275 return; 2276 } 2277 2278 llvm::SmallVector<llvm::Value *, 10> Args; 2279 llvm::for_each(Resolver->args(), 2280 [&](llvm::Argument &Arg) { Args.push_back(&Arg); }); 2281 2282 llvm::CallInst *Result = Builder.CreateCall(FuncToReturn, Args); 2283 Result->setTailCallKind(llvm::CallInst::TCK_MustTail); 2284 2285 if (Resolver->getReturnType()->isVoidTy()) 2286 Builder.CreateRetVoid(); 2287 else 2288 Builder.CreateRet(Result); 2289 } 2290 2291 void CodeGenFunction::EmitMultiVersionResolver( 2292 llvm::Function *Resolver, ArrayRef<MultiVersionResolverOption> Options) { 2293 assert((getContext().getTargetInfo().getTriple().getArch() == 2294 llvm::Triple::x86 || 2295 getContext().getTargetInfo().getTriple().getArch() == 2296 llvm::Triple::x86_64) && 2297 "Only implemented for x86 targets"); 2298 2299 bool SupportsIFunc = getContext().getTargetInfo().supportsIFunc(); 2300 2301 // Main function's basic block. 2302 llvm::BasicBlock *CurBlock = createBasicBlock("resolver_entry", Resolver); 2303 Builder.SetInsertPoint(CurBlock); 2304 EmitX86CpuInit(); 2305 2306 for (const MultiVersionResolverOption &RO : Options) { 2307 Builder.SetInsertPoint(CurBlock); 2308 llvm::Value *Condition = FormResolverCondition(RO); 2309 2310 // The 'default' or 'generic' case. 2311 if (!Condition) { 2312 assert(&RO == Options.end() - 1 && 2313 "Default or Generic case must be last"); 2314 CreateMultiVersionResolverReturn(CGM, Resolver, Builder, RO.Function, 2315 SupportsIFunc); 2316 return; 2317 } 2318 2319 llvm::BasicBlock *RetBlock = createBasicBlock("resolver_return", Resolver); 2320 CGBuilderTy RetBuilder(*this, RetBlock); 2321 CreateMultiVersionResolverReturn(CGM, Resolver, RetBuilder, RO.Function, 2322 SupportsIFunc); 2323 CurBlock = createBasicBlock("resolver_else", Resolver); 2324 Builder.CreateCondBr(Condition, RetBlock, CurBlock); 2325 } 2326 2327 // If no generic/default, emit an unreachable. 2328 Builder.SetInsertPoint(CurBlock); 2329 llvm::CallInst *TrapCall = EmitTrapCall(llvm::Intrinsic::trap); 2330 TrapCall->setDoesNotReturn(); 2331 TrapCall->setDoesNotThrow(); 2332 Builder.CreateUnreachable(); 2333 Builder.ClearInsertionPoint(); 2334 } 2335 2336 // Loc - where the diagnostic will point, where in the source code this 2337 // alignment has failed. 2338 // SecondaryLoc - if present (will be present if sufficiently different from 2339 // Loc), the diagnostic will additionally point a "Note:" to this location. 2340 // It should be the location where the __attribute__((assume_aligned)) 2341 // was written e.g. 2342 void CodeGenFunction::EmitAlignmentAssumptionCheck( 2343 llvm::Value *Ptr, QualType Ty, SourceLocation Loc, 2344 SourceLocation SecondaryLoc, llvm::Value *Alignment, 2345 llvm::Value *OffsetValue, llvm::Value *TheCheck, 2346 llvm::Instruction *Assumption) { 2347 assert(Assumption && isa<llvm::CallInst>(Assumption) && 2348 cast<llvm::CallInst>(Assumption)->getCalledValue() == 2349 llvm::Intrinsic::getDeclaration( 2350 Builder.GetInsertBlock()->getParent()->getParent(), 2351 llvm::Intrinsic::assume) && 2352 "Assumption should be a call to llvm.assume()."); 2353 assert(&(Builder.GetInsertBlock()->back()) == Assumption && 2354 "Assumption should be the last instruction of the basic block, " 2355 "since the basic block is still being generated."); 2356 2357 if (!SanOpts.has(SanitizerKind::Alignment)) 2358 return; 2359 2360 // Don't check pointers to volatile data. The behavior here is implementation- 2361 // defined. 2362 if (Ty->getPointeeType().isVolatileQualified()) 2363 return; 2364 2365 // We need to temorairly remove the assumption so we can insert the 2366 // sanitizer check before it, else the check will be dropped by optimizations. 2367 Assumption->removeFromParent(); 2368 2369 { 2370 SanitizerScope SanScope(this); 2371 2372 if (!OffsetValue) 2373 OffsetValue = Builder.getInt1(0); // no offset. 2374 2375 llvm::Constant *StaticData[] = {EmitCheckSourceLocation(Loc), 2376 EmitCheckSourceLocation(SecondaryLoc), 2377 EmitCheckTypeDescriptor(Ty)}; 2378 llvm::Value *DynamicData[] = {EmitCheckValue(Ptr), 2379 EmitCheckValue(Alignment), 2380 EmitCheckValue(OffsetValue)}; 2381 EmitCheck({std::make_pair(TheCheck, SanitizerKind::Alignment)}, 2382 SanitizerHandler::AlignmentAssumption, StaticData, DynamicData); 2383 } 2384 2385 // We are now in the (new, empty) "cont" basic block. 2386 // Reintroduce the assumption. 2387 Builder.Insert(Assumption); 2388 // FIXME: Assumption still has it's original basic block as it's Parent. 2389 } 2390 2391 llvm::DebugLoc CodeGenFunction::SourceLocToDebugLoc(SourceLocation Location) { 2392 if (CGDebugInfo *DI = getDebugInfo()) 2393 return DI->SourceLocToDebugLoc(Location); 2394 2395 return llvm::DebugLoc(); 2396 } 2397